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GENERAL INTRODUCTION 

It is now many years since the principles which govam 
the propagation of electric waves along lines were dis¬ 
covered, and there are a number of excellent treatises 
in existence deahng with the various aspects of the sub¬ 
ject. In particular their apphcation to telephony is very 
fully and ably dealt with by Mr. J. G. Hill,* and also 
by Professor Fleming,! and it is therefore evident that 
any further attempt to cover the same ground needs 
some explanation. 

The present book, however, is not so much a treatise 
as a series of notes on lectures dehvered by the authors 
to students of the London University, and the object 
specially aimed at is to present the subject in as con¬ 
cise, simple, and practical a form as possible. Their 
experience is that the books already in existence are 
apt, by their very completeness, to give the impression 
that the matter is one of considerable complexity and 
beyond the grasp of practical engineers not well 
equipped with a thorough mathematical training. 
This is not the case. The general theory is simple, 
and the only stumbling block is the use of complex 
h3q)erbolic functions without the aid of which the 
problems are practically insoluble. But this difficulty 
is far more apparent than real, since it is quite unneces¬ 
sary to^rm any mathematical conception of these 

^ Telephonic Transmission/* J. G* Hill. 

Propagation of Electric Currents/' J. A. Fleming. 
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functions in order to be able to use them for the pur¬ 
pose in hand. Once it is realised that they are far 
more formidable in appearance than in reality, and are 
merely a useful tool requiring no great skill in manipu¬ 
lation, the difficulty largely vanishes. 

It has been the authors’ aim, therefore, to write 
for that vast majority of students and practical engi¬ 
neers who are engineers first and mathematicians only 
in so far as their profession demands. They have 
therefore assumed a minimum of mathematical know¬ 
ledge, and have commenced with an introductory 
chapter in which the use of Vectors and Hyperbolic 
Function is explained. Once this chapter is thoroughly 
mastered there should be no difficulty in grasping the 
theory of Transmission dealt with in Chapter II., and 
the reader is then in a position to apply his knowledge 
to any of the practical directions in which it is now so 
valuable. 

The first of these applications is to the problems 
arising in long-distance telephone transmission, and the 
remainder of Part I. is devoted to this subject. It 

-was, indeed, for this purpose that the theory was 
originally developed, and Telephone Engineers were 
amongst the first to recognise its extreme practical im¬ 
portance. It is no exaggeration to say that the result 
has been a complete revolution in the methods of long¬ 
distance telephony, accompanied by a vast reduction 
in cost and gain in efficiency. Formerly long-distance 
circuits were composed of heavy gauge aerial lines, 
expensive to erect, costly and difficult to maintain, and 
subject to frequent and inevitable breakdown, owing 
to climatic conditions. Moreover, the number of cir¬ 
cuits which can be provided on any one air route is 
obviously strictly limited. The modem method, which 
is a direct application of the theory, consists in the 
employment of loaded underground cables of compara- 
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tively light gauge with their attendant advantages of 
reliability and ease of maintenance coupled with the 
all-important fact that an imlimited number of circuits 
between important points can be provided. The in¬ 
vention of telephone repeaters has enabled the gauge 
of circuits to be reduced still further, and a combina¬ 
tion of the two methods, that is, a loaded underground 
cable with repeaters-atjsuitable in±ervjals,,enabl€s.long,- 
distance circuits to be provided with a maximum 
^ciency and a minimum of gostj 

^Loading is not confined to underground cables, but 
^applied with equal success to submarine lines. Both 
lump and series loading are used, and the resulting 
advantages are very great indeed. Before the intro¬ 
duction of loading the conductors required to be of 
comparatively heavy gauge and the number which 
would be provided in a single cable was very small. 
Moreover, the capacity of submarine cables is large, 
and the distortion of speech transmitted by them was 
accordingly great. The addition of loading not only 
permits of more wires of lighter gauge to be included 
in the cable, but has also improved the quality of the 
speech transmitted to an enormous extent, '^en the 
great cost of submarine cables is borne in mind the ad¬ 
vantages accruing from loading will be appreciated. 

The second part of the book includes the application 
of the theory to the transmission of power along single 
and three-phase transmission lines. In the past this 
aspect of the subject h^ not received much attention 
in England, the voltages and distances of transmission 
being such as to make the various approximate methods 
neglecting line capacity sufficiently accurate. With the 
increase of long-distance high-voltage power transmis¬ 
sion, however, the accurate calculation of voltage drop 
by the application of the general theory of transmission 
will beccane of increasing importance. 
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The attention devoted to the theory of travelling 
waves needs little apology, since the extreme impor¬ 
tance of these transient phenomena in power trans¬ 
mission is now well recognised. The usual simplified 
treatment is given in Chapter VII., and is supplemented 
by a fuller mathematical discussion in Chapter IX. 
The latter treatment is necessarily somewhat incom¬ 
plete owing to the necessity of avoiding higher mathe¬ 
matics ; but, even so, its inclusion will, it is hoped, 
serve to give increased confidence in the results arrived 
at by the simplified process. The authors desire to 
express their appreciation of the assistance rendered by 
Professor G. S. Le Beau, Professor of Mathematics at 
East London College, in the preparation of this chapter. 

The preparation of the book has been divided be¬ 
tween the two authors, Mr. Bradfield being responsible 
for Part I., and Mr. John for Part II. They desire to 
acknowledge their indebtedness to Mr. J. G. Hill for 
permission to reproduce Tables I. and II. (pages 227 

and 228) from his book, “ Telephonic Transmission,” * 
already referred to, and also to Professor A. E. Kennelly, 
who kindly allowed the shortened Tables of Complex 
Hyperbolic Functions to be included. These are in¬ 
serted in order to familiarise the reader with the use 
of the full tables to which reference is made later, and 
which are, of course, essential for the solution of 
practical cases. 

Published by Longmans, Green & Co. 
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CHAPTER I. 

MATHEMATICAL INTRODUCTION. 

It is impossible to read any treatise on mathematics without 
encountering immediately the term function—a term the 
meaning of which it is essential to grasp. It may be defined 
as follows. One variable quantity is 
said to be a function of another when 
the relationship between them is such 
that the value of one is determined by 
the value of the other. Thus, if 

y = log,^,y = = e*, 

then, for every value of x, there is, in 
each case, a corresponding value of y, 
and y is a function of x in all three y 
instances. In general, when such re¬ 
lationship exists, we write 

y = <l>{x) 
or y=f(x). 

which means that y is some function 
or other, at present unknown, of x. 

If we take a piece of squared paper 
and plot values of y against correspond¬ 
ing values of x, we obtain a curve 
which is the graphic representation of 
the function. Thus Fig. i shows the graph of the function 
y as *». 

I 

Graph of 

Fio. 1. 
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Now observe the curve drawn in Fig. 2. 

Fio. 2. 

This curve is the graph of some function of x, but it has 
this special property, that the section from B to C is an exact 
reproduction of the section from A to B, and the curve goes on 
repeating itself in this manner indefinitely. Such a function is 
called a periodic function, and its period is AB. Amongst 
the best lino^ of such"*"periodic functions are the ordinary 
Circular Fimctions sin x, cos x, etc., which repeat themselves 
at intervals of 27r. 

Now, it has been proved that any single-valued periodic 
function can be replaced by a series of the form 

A -f B sin * -{- C cos x 
-f D sin 2:» -f E cos 2x 
-j- F sin 3* -f G cos 3* 

+ . . . 
provided the constants A, B, C . . . are suitably chosen.* 
This series is known as Fourier’s series, and is of funda¬ 
mental importance for the following reason. It permits an ir¬ 
regular periodic curve of any shape which would otherwise be 
difficult or impossible to treat mathematically to be resolved 
into a smes of sines and cosines which are easily susceptible 
of separate mathematical treatment. It gives us, moreova:, a 

* The constant tenn A in the series determines the position of the cum above 

or below the axis of x* If the curve is symmetrical about the axis of x this term of 
course disappears and this condition is that commonly encountered. 
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conception of the nature of such irregular curves which is of the 
utmost importance and should be fully grasped, since the whole 
theory of transmission is based upon it. It does not matter how 
irregular may be the form of the electric wave whose behaviour 
we are considering; all that is necessary is to split it into its 
component parts and examine what occurs to each separately. 
If we are able to do this we have the key to the behaviour of 
the wave as a whole. 

It is not necessary here to examine the precise method by 
which a curve can be so resolved. The reverse process, how¬ 
ever, illustrates in a rough maimer the truth of the theorem. 
For example, the curve in Fig. 2 is buUt up, as shown in Fig. 3, 
from the following series:— 

sin X, sin 2x, sin 3X 

Fig. 3. 

It is not, of course, necessary that all the terms of the series 
should be present. In the above instance, sin 4^ and subse¬ 
quent terms in addition to the cosine terms are missing; or, to 
regard it in another way, the coefficient of these terms is zero. 

It will be noted that the first term of the series has the 
same period as that of the original curve. It is usual to speak 
of this term as the fundamental and of the other terms as 
harmonics. Thus, the term involving sin 2x is the first 
hiumonic, and so on. 

Jt is necessary here to ol???rye that there is unfortunately a 
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difference in practice as between physicists and electrical engi¬ 
neers, particularly power engineers, in the use of the term 
" harmonics.” The definition given above is that employed by 
the former, but engineers frequently refer to the fundamental 
as the first harmonic, so that the term involving sin 2x is 
then the second harmonic. This method has the advantage 
of siijaplidty, since the term inwlving sin nx is then the «th 
and not the (tt — i)th harrnomc^ 

Vectors. 

In physics, quantities are frequently met with possessing 
not only magnitude and sense (i.e. they can be either positive 

or negative), but which possess direction 
in addition. Thus, alternating sinusoidal 
currents or voltages are not fully described 
unless, in addition to their magnitude, 
their phase relationship is stated. Quan¬ 
tities such as these may be represented 
by vectors in the manner shown in 
Fig. 4. 

Here the vector OB represents a Fig. 4. 

quantity whose magnitude is given by the length of OB, and 
whose direction is given by the angle 9 which OB makes with 
the horizontal axis. If the length of OB is A, we may indicate 

the vector by the expression K/B, 01 >/«* -f- ft^/’tan ~ ^ - where 

a and h are the projections of OB on the horizontal and ver¬ 
tical axes respectively. The portion A is called the modulus, 
while 9 is called the argument, or, often, simply the angle. 

We may regard projections on the horizontal axis to the 
right of O as positive, and to the left of 0 as negative. But 
what sign is to be given to projections on the vertical axis ? 
Now, it requires one operation for a vector to travel from the 
positive horizontal direction to the vertical, and another 
exactly equal operation to reach the negative directwn. 
Therefore we may r^ard the vertical axis above O as posseting 
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the sign '»/— i, since, if we perfonn the operation denoted by 

V — I twice, we arrive at the negative sign. Similarly, the 

vertical axis below A is given the sign —V — i, since, if we 

perfonn the operation denoted by </ — i once again, we arrive 
at the positive sign. 

A quantity having the sign V— i, or, as it is usually written, 
j, is frequently referred to as an unreal or imaginary quan¬ 
tity. It is not necessary here to enter into any discussion as 
to the exact significance of the sign, but only to remember 
what operation it represents, and also to remember that all 
quantities bearing this sign must be treated separately from 
these wldch are real, i.e. which bear the ordinary positive or 
>eg.Ui /e sign. 

To return to the vector OB : if we now introduce the nota¬ 
tion arrived at. we may write the horizontal projection as -f a 
and the vertical projection as -f- jh; and, since the vector is 
the resultant ol these projections, it is completely fixed in 
magnitude and direction by the expression 

a + jb. 

Such an expression is called a complex quantity, since it 
consists of an “ imaginary ” component jb in addition to a 
" real ” component a. Further, the projection a = A cos 6, 
and the projection & = A sin 6, so that 

a -\-jb = A(cos $ j sin 0). 

Again, by De Moivre’s Theorem referred to later, 

cos 6 j sin 0 — e>*, 

so that A(cos 0 -i- j sin 0) — Ae^*. 
Hence we have the following five ways in which the vector OB 
may be denoted :— 

m 
Va^ + Wtan-i-, *-a 

a +jb, 
A(cos 0 -r j sin 0), 

AeK 
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We have so far considered only a vector in the first quadrant, 
but there is no difficulty in extending the notation to vectors 

Fig. 5. 

in other quadrants. Thus (Fig. 5) a vector in the second quad¬ 
rant is 

k/B or —a 

A vector in the third quadrant is k/— 6, which is usually 

written A\0 to denote that the angle is negative. Or, alterna¬ 
tively, it may be written — a — jb. Finally, a vector in the 

fourth quadrant is A\0 or a — jb. 
The various modes of denoting a vector are easily inter¬ 

changeable, and it is necessary to gain facility in the process. 
For example, if it is required to express the vector 10/30° in 

the form a -|- jb, we proceed as follows :— 

a = k cos 30° = 10 X *866 = 8’66. 
& = A sin 30® = 10 X ’5 = 5. 

10/30° = 8-66 +j$. 
Again, 

5*7/ii8° = 57 cos 118° + 757 sin 118° 

= 57( - -469) +;57 X -883 
= - 2-67 +y5'03- 

The reverse process is equally simple. Thus, to put 4 + 73 
into the form A/d we have only to remember that 

A = + ft* = V16 + 9 — 5, 

0 = tan-* I = tan-* (75) == 36° 53', 

••• 4+i3 = 5/361531 
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It now remains to show how the ordinary processes of 
addition, multiplication, etc., can be performed on vector 
quantities, and it is largely to facilitate these operations that 
the various forms by which a vector may be denoted have been 
derived. 

Addition and Subtraction.—^The vectors must first be 
put into the form a + jh, a' + jV . . . 

Then add or subtract the real and imaginary parts 
separately, thus 

(« + «'+...) +y(6 + + • • •)• 

Example.— 

(10 +y5) + (6 ->4) - (8 +yio) 
= (10 + 6 - 8) +y(5 -4-10) 

= 8 -yq. 

Multiplication.—^The vectors must be put into the form 

k/e, M/d'. . . . 
Then multiply the moduli and add the angles,* thus, 

(A X A' X . . .) /g + g' + . . . 

Example.— 

15/57° X 10X30° = 15 X 10/57° — 30° = i5o/27°» 

Division is performed in a manner exactly similar to multi¬ 
plication, the rule being, divide the moduli and subtract 
the angles. 

Example.— 

Powers of a Vector.—^This is only a special case of multi¬ 
plication. Thus 

{A/6)* = (A X A X ... »times) /$ -f- d -1- .. ton terms 
= A»/ne. 

• Proof. Let the vectors be put into the form Ae^, AV*', .... Multiplying 
we have 

(A X A' X . . • • •) - (A X A' X . . .)/'8 + 
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Example.— 

(3/8oy — 27/240° = 27X120°. 

A particular case is the root of a vector. Thus 

s/A/l = (A/e)i = A*/g/2. 

Example.— 
n/4/30 = 2/15°. 

Logarithm of a Vector.—^This operation is performed as 
follows:— 

log* (A/g) = log* (AeJ») = log, A + log, ei^. 

But, from the definition of a logarithm, 

log, e}<> = je, 

.-. log. A/e = log, A+je. 

where 6 is in radians. 
Example.— 

logio (4/86°) = -434 X log, (4/86°) 
= *434 X (log, 4 +7i'5) since 86° = i'5 radians 

= *434 X (i'386 +;i-5) 
= -434 X 2-04/47° 17' 
= -885/47° 17'- 

The essential point to remember in these operations is the 
necessity to reduce the complex quantities to the appropriate 

forms before commencing. Thus -J a /jh must first be re¬ 

duced to the form •JA/e before it can be evaluated, and so on. 

Equations Involving Complex Quantities.—If two com¬ 
plex quantities are equal, that is, if 

« + yft == c -(- jd, 

then one fact emerges which is of great importance, namely, that 
the real parts and the imaginary parts separately must be 
equal. A very little consideration will show that this must be 
the case, for, any vector A/B has a definite projection, a, on 
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the horizontal axis, and a definite projection, b, on the vertical 
axis. Any vector which is equal to it must obviously have 
the same modulus, the same angle, and the same projections. 
Hence, from the above equation, we can immediately assert 
that 

a = c 
and b — d. 

Whence we have the following rule for equations involving 
complex quantities. Equate the real and imaginary parts 
separately. 

Example.—Find x and y from the equation 

First put the right-hand side into the same form as the left. 
Thus 

I _ a-\-jb _ a +jb_a_./ b \ 
a —jb (a —jb){a -j- jb) a® -j- 6® ~ a* -j- 6® 4- i®/ 

^ = “‘‘i 3' = ^rqf:ir®’ whence 

Application to Electrical Measurements. 

Suppose we have an alternating sinusoidal current whose 
instantaneous value is given by 

t = t/ sin od. 

This may be represented by a vector I whose magnitude is the 
maximum value of i, that is, . If this current traverse a 
non-inductive resistance R,-the voltage across R at any instant 
is R X sin ad, that is to say, the voltage is a vector E of 
magnitude I x R in phase with the current. Putting this in 
the form of an equation, we have 

where the " impedance ” R is obAuously a real quantity, since 

there is no difference in angle between E and I. 
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If, however, the same current traverse an inductance L, 
the voltage across the inductance at any instant, from first 
principles, is given by the equation 

e — = L sin w£] L X cos <j>t. 

Now, t/ cos (lit is a vector exactly 90° out of phase with the 
current, and may therefore be written jl since the operation 
denoted by j is that of turning the vector through 90®. Hence 
the voltage in this case may be written /a>LI, and we have the 
relation 

• T I —iwL. 

That is to say, the impedance which the inductance L offers to 
a current of frequency <0 is represented by the imaginary 
quantity joiL. 

Again, if an alternating sinusoidal voltage whose instan¬ 
taneous value is S sin uit is applied to a condenser of capacity 
C, the current through the condenser may be calculated from 
first principles in the following manner. 

The quantity of electricity, q, stored at any instant in a 
condenser of capacity C is equal to the product of C and of the 
E.M.F., e, existing across the plates of the condenser. That is, 

q = Q,X e. 

dq _ de 
M "" ^dt' 

do 
But ^ is, by definition, the current through the condenser 

Therefore 

I =5 CjiS sin (lit) = C <§oi cos orf = C X joiE, 
CLt 

in the same way as before. 

Whence 1 = JL= _i- 
I jdiC, a»C' 
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indicating that the impedance offered by the condenser is an 
j 

imaginary quantity of amount — 

Now, if we have a circuit such as that shown in Fig. 6, 
which combines all three, we have merely to add the impedance 

Fig. 6. 

of each part just as though there were three resistances in series, 
so that the impedance of the whole circuit is 

R+y«>L-^, 

or R+;(a.L-^). 

which is itself a complex quantity. 

Units. 

The same units must, of course, be used throughout. Thus 
R is reckoned in ohms, L in henries, and C in farads. The 
angular velocity tu is in radians per second, i.e. 27t x fre¬ 
quency. The current arrived at will be in amperes and the 
E.M.F. in volts. 

The method affords an extremely simple means of calculating 
the impedance of any circuit, however complicated. For ex¬ 
ample, a circuit consisting of a capacity and an inductance in 
parallel, as in Fig. 7, 

L 
Fio. 7. 

is treated exactly as though we were dealing with two resist¬ 
ances in parallel. Thus 
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the conductance of the condenser 

the conductance of the inductance 

wC 

—- jwC •, 

'ju>V 

therefore the conductance of the whole = jwC + 

and the impedance of the whole 

_ I _ y<t)L jwL 
1 y*<o*CL -f I uj^LC 

A special case of great importance occurs when ie'*LC 
I 

or <a 
s/LC The impedance of the circuit from A to B then 

becomes infinite, but if we consider the impedance offered to 
an idle current circulating within the loop composed of the 
capacity and inductance this is 

(OC wC ) 0. 

This is the well-known case of resonance in which the cir¬ 
culating current would become infinite were it not for the fact 
that certain losses always occur both in the condenser and the 
inductance which limit its amount. 

A numerical example will perhaps assist in showing the 
application of the method to actual problems Suppose an 
alternating E.M.F. of 50 volts and frequency 50 cycles is applied 
to a coil having an inductance of one henry and a resistance of 
50 ohms. 

Impedance of the coil = R -f jwL 

where R = 50 
o> = 50 X 2JJ- = 314 

L = I 
Impedance = 50-|-y3i4 = 318/80® 57', 
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The current in the coil is, therefore, 

Impedance ~ 3i8/'8o° 57' “ 57 • 

That is to say, the current is *1572 amperes and, since its angle 
is negative, it lags behind the voltage by the angle 80° 57'. 

HYPF.RBOLIC FUNCTIONS 

In any book of Trigonometry will be found the proof of the 
'oUowmg theorem, known as De Moivre’s Theorem :— 

= cos 6 + j sin 6, 
and, similarly. 

Whence, by subtraction sin 6 

and, by addition 

= cos 6 — j sin B. 

gj» 
cos B = 

(X) 

(2) 

Now there exists another set of functions bearing a relation¬ 
ship to the rectangular h37perbola similar to that which the 
circular fimctions bear to the circle, and known as the hyper¬ 
bolic functions. It is entirely outside the scope of this short 
book to enter into the mathematical interpretation attaching 
to them, but, fortunately, from the standpoint of an engineer 
this is wholly unnecessary. For our purpose they are merely 
a tool, and their usefulness lies in the simplification which their 
employment introduces in the handling of mathematical ex¬ 
pressions which would otherwise be extremely difficult and 
cumbersome of manipulation. 

Just as the circular functions sin B and cos B may be ex¬ 
pressed' in terms of the " exponential function,” e, as shown 
above, so the hyperbolic sine and cosine—or, as they are 
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written, sinh and cosh—^may also be expressed in 
manner thus— 

a similar 

_ p~» 
sinh Q =-^— . . (3) 

, _ e* + e~* 
cosh 8 =-. 

2 • (4) 

It follows from (i) that 

. — - e~* . . , » 

and from (2) 
_|_ g-j*« -j_ g-» 

cos 70 — = — coshfi. •'2 2 

Hence, the two sets of functions are related by the identities 

siny^ =ysinh0 . . (5) 
cosy0 = cosh0 . • (6) 

There are in all six hyperbolic functions, the remaining four 
being derived from the sinh and cosh precisely as in the case of 
the circular functions, thus— 

sech8 — Q gs ^ g-e ’ • (7) 

sinh 9 =««-«-• • • (8) 

, - sinh0 — e~* 
‘“** = cosh9“,- + s-- • • (9) 

. cosh0 + 
coth 8 = . , a = g g - smh0 c * • (10) 

Other well-known identities which exist in the circular 
functions have their analogy in the hyperbolic functions. 
Thus, if ^ = jd, we have 

sin* ^ + cos* <f> = i; 
but sin* <f> = sin* [j6) — {j sinh 0)* = — sinh* 0 
and cos* ^ = cos* = cosh* Q. 
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Hence 
cosh® 6 — sinh® 0 = i . (II) 

Again, 

smh« + cosh« = ‘‘7'' + '"V' = '' • (I2) 

In a similar manner it may be shown that 

sinh {6 + 6') — sinh 6 cosh 6’ + cosh 6 sinh 6' . (13) 
sinh {6 — 6') = sinh 0 cosh 6' — cosh 0 sinh 0' . (14) 
cosh {d -j- 6') — cosh 6 cosh 6' + sinh 0 sinh 6' . (15) 
cosh {0 — 0') — cosh 0 cosh 0' — sinh 0 sinh 0' . (16) 

tanh (« + «')= • ■ ' ' I + tanh 0 tanh 0 (17) 

4. -u !a a\ ^ ~ tanh(9 = • • (18) 

sinh 20 = 2 sinh 0 cosh 0 (19) 
cosh 20 — 2 cosh® 0 — 1 (20) 
^ - 2tanh0 

= I + tanh-D ■ ■ • 
(21) 

In general, therefore, hyperbolic functions can be used in 
engineering problems in a manner precisely similar to the circular 
functions, and tables* of their values are published similar to the 
ordinary tables of the circular functions. 

Complex Hyperbolic Functions. 

In their application to transmission problems, however, we 
encounter them usually, not simply as the functions of real 
quantities, as hitherto, but of complex quantities, such as sinh 
(a +y&) or sinh A/0, and it is therefore necessary to show how 

the value of such a complex h3rperbolic function can be cal¬ 
culated from the circular and hyperbolic functions of real 
quantities, the values of which can be found in tables. We 
proceed as follows:— 

* ** Smithsonian M^ath* Tables—Hyperbolic Functions,” published by Smith* 
sonian Institution, City of Washington (London agent, W. Wesley & Son, 
gS Essex Street, Strandi 
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sinh (a + jV) — sinh a coshy& + cosh a sitihjb ; 
but coshyft — cos (j X jb) = cos (— b) = cos b 

, . , -t sin (J X jb) sin (— b) . ■ , 
and smh;6 = —^ ^ ■ == —^—' =J sin b. 

Hence 

'sinh (a + jb) — sinh a cos b -{■ j cosh a sin 6 . (22) 

which is itself, as we should expect, a complex quantity. 
Similarly, 

cosh (a + jb) = cosh a cos 5 + j sinh a sin 6 . 
ainh (a — jb) — sinh a cos 6 — j cosh a sin 6 . 
cosh (a — jb) = cosh a cos b — j sinh a sin & . 
^ tanha+ytanft 
tanh (a + ]b) — —;—n—tT—l—r • \ ' J ! I + ^ tanh a tan h 

. , , tanh a—y tan 6 
^ ~ ^ ~ I _ y tanh a tan b' 

(23) 
(24) 
(25) 

(26) 

(27) 

Example.—Find cosh (2X60°). 

cosh (2X60°) — cosh (2 cos 60® — jz sin 60°) 
= cosh (i — y 1732) 
= cosh (i) cos (1732) — y sinh (i) sin (1732). 

Remember that i and 1732 are radians. 

cosh (i) = 1-543 
sinh (i) = 1-175 

cos (1-732) = — -160 
sin (1-732) = -987. 

cosh (2X60°) = — 1-543 X -160 — y 1-175 X -987. 
= — -2465 — y 1-160. 

= 1-18X102°. 

Tables * have, however, been published giving the values 
of complex hsqierbolic functions over a wide range, and, if a 
number of calculations have to be made, the labour is greatly 
reduced if such tables are available. 

* ** Tables of Complex Hyperbolic and Circular Functions/^ A. E. Kennelly. 
Harvard University Press. 
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EXAMPLES ON CHAPTER I. 

1. Express 3 + in the form A/^$. 

Answer: 5X53° 5'- 
2. Express 7 — 6j in the form A/ 0. 

Answer: 9*2\40° 36'. 

3. Express 5*3X3^° form a + jb. 

Answer: 4*28 +73‘ii. 

4. Express 2*6\2i® in the form a -f jb. 
Answer : 2*43 —j -932. 

5. Add (2*3 + 73*6) and (4*6 — 71*7) and express result in foim Ay'ff. 

Answer : 7*15X^5° 

6. Add 2^30^ and 6\45^ 

Answer : 5*98 — 73*24. 

7. Multiply 4X^“ 5X34°» 

Answer: 20X5^°- 

8. Divide 1*5/'lo® by 6X7®°* 

Answer: •25\6o®, 

9. Multiply i*5X^7° 2*3Xii3°- 

; — 3*45. 

10. Find square root of 3 + 74. 
Answer: 2-24X26° 34'. 

11. Find log, (2 +73). 
Answer : 1-28 +7 -98. 

12. If 1-09 +73;r = 1-2/2^find ;ir. 

Answer : x ^ *168. 

13. Evaluate sinh (3 + 74) in the form a + jb. 
Answer : — 6-548 — 77-620. 

14. Evaluate cosh (i + 71) in the form a + jb. 
Answer : -834 -{-7*99. 

15. A voltage of 28-3 volts of periodicity a> = 1000 is applied to a 

network consisting of a capacity of 40 mfs., an inductance 
of 15 millihenries, and a resistance of 10 ohms in series. 

Find the current passing and its phase relationship to the 

voltage. 
Answer : 2 amps, leading by 45°. 

2 
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CHAPTER II. 

GENERAL THEORY OF TRANSMISSION. 

Any circuit used for the transmission of electric currents, 
whether consisting of aerial wires or underground cable, possesses 
the following four primary constants:— 

Firstly, it has a certain resistance, denoted by the symbol 
R and stated in ohms per mile of circuit or “ loop.” 

Secondly, since the insulation of the circuit, however good, 
can never be perfect, there must be a certain leakance from 
wire to wire, denoted by the symbol G and stated in " mhos,” 
or sometimes in ” micro-mhos ” per mile of loop, these units 
being the reciprocal of the ohrn and megohm respectively. 

Thirdly, the circuit possesses a certain inductance, denoted 
by the s5mibol L, and usually stated in henries per mile of 
loop. 

Finally, a capacity exists between wire and wire, de¬ 
noted by the symbol C and stated in micro-farads per mile 
of loop. 

These constants can, in general, be calculated with a fair 
degree of accuracy from the cross-section and material of 
the wires and their distance apart; but a full discussion of 
them, together with a description of the methods by which 
they can be both calculated and measured experimentally, will 
be found in Chapter IV. 

Although, throughout this chapter, only circuits consisting 
of a pair of wires are considered, the calculations apply equally 
to a circuit made up of a single wire with an earth return. In 
this case the primary constants are, of course, stated per mile 
of single wire, an allowance being made for earth resistance. 
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Direct Current Case. 

The problem of the transmission of alternating currents is 
very much simplified by a preliminary examination of the much 
simpler problem of the transmission of direct ciurents, since 
there is a close analogy between the two. Moreover, the solu¬ 
tion of the latter problem is useful in 
itself, since it occurs in practice in 
such cases as long telegraph lines, etc. 

The method of procedure is to con¬ 
sider first what occurs in a very short 
length 8x of a line whose primary 
constants are R, G, L, and C (see 
Fig. 8). 

Since the resistance of the loop is R ohms per mile, the 
resistance of each side of the section under consideration is 
clearly |RSx. Similarly, the resistance of the leakage path 

I 
across the section is Since we are dealing with direct 

—— 

Fig. 8. 

/ 
Cr(fx 

currents only, the capacity and inductance of the line will have 
no effect, and they need not, therefore, be considered. 

Suppose, then, that a current I is traversing the section. 
The drop in voltage, — 8v, across it will be the product of the 
current and the resistance of the section. That is 

- 8V = I X R8x. 

Or, if the section be infinitely short. 

(28) 

Again, suppose the voltage across the circuit at this point 
is V, then the current which passes through the leakage path 
is V X GSa;, that is to say, the drop in current, — 81, in the 
section is 

- 81 = V X G8x. 

Or, if the section be infinitely short. 

dx = VG . . (29) 
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Differentiating (28) again, 

dl 

And differentiating (29) again. 

d*l dV 

Writing y = s/GR we have 

II • (30) 

,I . (31) 

These two differential equations are obviously precisely 
similar, and the general solution of (30) may easily be shown 
to be 

* V = Ac^* + . . . (32) 

where A and B are arbitrary constants. 

The next step is to determine the value of the constants A 
and B, and to do this we proceed as follows:— 

From the values of cosh yx and sinh yx given in (3) and (4) 
we obtain by addition — coshy* + sinhy* 
and by subtraction e~^ — coshy* — sinhy*. 

Whence (32) may be written 

V == (A + B) coshy* + (A — B) sinhy* . (33) 

We may now insert the " end conditions'' f in order to find 

* While the scope of this book does not admit of a discussion as to the method 
of arriving at this solution, the reader may at least convince himself that it does 
satisfy the equation by differentiating the right-hand side twice, thus 

^ = y*(A«V» + Bs-w) - y*V. 

fin the absence of knowledge as to these, the equation is obviously in* 
determinate. 
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the constants in terms of known quantities. Thus, let us sup¬ 
pose that a voltage V* is appUed to the line at the sending end, 
that is, at the point where * = o. We then have 

V, = (A -f- B) cosh o -f (A — B) sinh o 

But sinh o = o. 
and cosh o = i. 

A H- B = V,. 

Again, if we differentiate (32) once, we have 

dV 
- B<r-v*). 

But 
dY 

IR 

= Ae»* — Be-’’* 

= (A B) sinh y^: — (B — A) cosh yx. 

Now suppose the current at the sending end is I,, then, 
since x = 0, 

= B - A. 

Writing Z, = we arrive at the general equation, 

V = Vo coshy^; — IgZg sinhy:* . . (34) 

which is the general equation for the voltage along the 
line. 

Similarly, 

IZ, = (B — A) coshy* — (A -f- B) sinhy*. 
V 

I = I, cosh yx — r/ sinh yx . . . (35) 

which is the general equation for the current along the 
line. 

It should be observed that these equations are determined 
by the values of V# and I^. In general, one of these is known. 
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usually Vo, the voltage applied at the sending end. The 
other, however, becomes determinate as soon as the length of 
the line and the conditions at the distant end are fixed, i.e. the 
distant end may be open, short-circuited, or closed through 
some known resistance. 

Thus, if the line is of length I and the distant end is open, 
it is obvious that, at the open end, the current is zero ; that is, 
when = /, I — 0. Putting these values in (35), we have 

V 
lo cosh yl — rr sinh y/, 

whence, if Vj is known, I, is given by 

lo == ^ tanh yl, 

and, therefore, the value of the current and voltage along the 
line are given by 

V 
I = (tanh yl cosh yx — sinh yx), 

V = Vo (coshy* — tanhy/ sinhy*). 

Again, if the line is closed at the distant end, then, when 
X = I, V = 0, so that, from (34), we have 

Vo coshyZ = IjZo sinhy^. 

V 
Hence lo = coth yl. 

Hence the current and voltage along the line in this case are 
given by 

V 
1= nr (coth yl cosh yx — sinh yx), 

V = Vo (coshy* — cothylsinhy*). 

Line Infinite. 

A special case of great interest occurs when the line is 
infinite in length. In this event, it is obvious that, when 
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X = CO, both the current and the voltage must be zero. , Putting 
these values in the original equation, 

V = Ae»* + 

it becomes immediately evident that A = 0. Also, when 
X = 0, V = Vfl, hence B = Vq, so that the equation is sim¬ 
plified into the form 

V = Voc-^. 

Again, the current 
, dV T 

dx ^ R’ 

- rV-", 

^0 

At the sending end, when « — 0, I = I,. 

That is to say, is the sending-end impedance of the line 
when it is infinite in length, and is termed the characteristic 
impedance. 

Alternating Current Case. 

Turning now to the more difficult problem of alternating 
current transmission, it should be observed, in the first place, 
that the method employed is based on the fact previously 
mentioned,* that all periodic fimctions can be split into a 

* See Chap, I., p, 2. 
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-- 
}iLSx,)jiR<Sx 

series of pure harmonic quantities. The procedure, therefore, 
is to deduce the laws governing the propagation of voltages and 

currents of pure sine-wave form; 
since, if the behaviour of the com¬ 
ponent parts of the original wave 
can be calculated, the behaviour 
of the whole is known. 

As in the direct current case, 
we commence by considering a very 
short section of line 8x (Fig. 9), 

C(fx ^ 

}iLSx,\R6x 

Fio. 9. 

but, since the current and voltage are now alternating, account 
has to be taken of all four primary constants. 

Suppose the current in the section to be 

t = t/ sin <at, 

which may be represented by the vector I. The impedance of 
the section is clearly 

R8a? -j- jwl^x. 

Hence the voltage drop, — 8V, along it is given by the equation 

- 8V = I(R8^ -f jwUx). 

or, if the section is infinitely short, 

. . . (36) 

Again, suppose the voltage at this point is 

V— ^ mi {a)t -j- j>), 

which may also be represented by the vector V, which will, in 
general, be out of phase with the current vector I by some angle <f>. 

The conductance path between the wires is 

GSx - = G8* + j<oC8x, 
} 

so that the loss of current, — 81, in the section is 

- 81 = V{G8jc -1- jcoCSx). 
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Or, if the section is infinitely short, 

-^ = V(G+;a>C) . . . (37) 

Differentiating (36) again, 

^=-(R + ju>L)f^ = V(R + ;a,L)(G + ;coC), 

and, differentiating (37) again, 

g = _ (G + juycf^ = I(R + ya>L)(G + j<^). 

Writing y —- V’(R + 7a»L)(G + jtoQ), 

We have 
<f»V 

§. = yn .... (39) 
These equations will be seen to be identical with (30) and 

(31) in the D.C. case, and the solution of (38) is, therefore. 

V = Ae^* + B^-"* . . . (40) 

In order to find the value of the constants, we proceed 
exactly as in the D.C. case, first putting (38) into the form 

V = (A 4- B) coshyx + (A — B) sinhyx, 

when, as before, 
A+B = V. 

B - A = 

= I,Z. 

where Z* = and is the characteristic impedance 
’ G +7<oC 

of the line. Hence 

V = Vo coshy* — loZeSinhyx . . (41) 
V 

I = loCoshy* — ^sinhy* . . (42) 
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which are the general equations for the current and 
voltage at any point along the line. 

If the line is infinite we obtain, as in the D C. case, 

. . . (43) 

I = . ... (44) 

Physical Interpretation. 

It is interesting, at this point, to indicate what really is the 
physical interpretation of these equations, and, since the infinite 
line is simpler, let us examine this first. The voltage distribu¬ 
tion along the line is, in this case, the product of a vector or 
harmonic quantity Vj, and the exponential term e“'’'*j^But 
the index of the exponential is itself complex, since y is, in 
general, of the form jS -f- ]<*■• Therefore the exponential term 
may be written 

^ ^^«)* = g-fi* X = e~^*\ixx, 

that is, the amplitude of the voltage at any point along the line 
is Vo X e~^, while it differs in phase from the voltage, V,, at 
the sending end by the angle — ox. 

To look at the same thing from another point of view, the 

exponential term e ~ ^\(xx is itself a vector or hannonic quantity. 
Hence we have the combination of two waves, the resultant 
of which may be shown to be a wave travelling along the line. 

This is a well-known phenomenon in physics, and will per¬ 
haps be made clear by reference to the familiar example of 
waves on the surface of water. If an agitation is set up at any 
point in the water, as by dropping a stone into it, the surface 
of the water at this point is set into harmonic motion in a per¬ 
pendicular direction. This perpendicular motion is communi¬ 
cated in turn to successive surface layers of water more and 
more remote from the original point of disturbance, with a 
small but regular " time lag ” from layer to layer, imtil a large 
jjcea. of the pond is in vibration. But although the wave motion 
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of each particular section of water is confined to the perpen¬ 
dicular direction and there is no lateral movement at all, the 
phenomenon presents itself to the eye as a wave travelling 
along the surface in a horizontal direction. It is easily verified 
that the water does not move laterally by watching the motion 
of any body floating thereon, which will be observed merely to 
oscillate up and down ; yet, although the medium is in perpen¬ 
dicular vibration only, the resultant wave upon its surface does 
travel horizontally at a speed determined by the time taken 
by each layer of water to communicate its motion to the next. 

Let us now examine the more general case of the finite line, 
the equation for which is 

V = Ac’'* + Be-^*. / if 0 

We have seen that the second term denotes a wave travelling 
along the line with decreasing ampUtude. When this reaches 
the distant end, it is reflected there, and the first term represents 
the reflected wave travelling back along the line decreasing in 
amplitude as it approaches the sending end. If the line is 
infinite, there can obviously be no reflection from the distant 
end, and we should accordingly expect this term to be absent, 
which will be observed to be the case. 

Wave-length and Velocity. 
» 

To return, then, to the voltage along the line, we have a 
stationary wave, V<„ whose amplitude or envelope is another 

wave, e~^\oLX, and the resultant is a wave decreasing in ampli¬ 
tude as it travels along the line in accordance with the expo¬ 
nential term e~^, and whose wave-length and rate of travel 
are determined by ocr in the following manner.- It is obvious 
that, at a distance I along the line, such that 

ad = 27r, 

the stationary wave will again be in phase with the stationary 
wave at the sending end. That is to say, the horizontal wave 
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will have completed its period at this point, and its wave-length 
is therefore 

I 
2lT 

a (45) 

Moreover, if the periodicity of the voltage V, is n per second, 

the whole cycle of operations will take ^ seconds, and, therefore. 

the velocity of the wave 
27r« 

a (46) 

Secondary Constants. 

Since it is the factor j8 which determines the decrease in 
amplitude or attenuation of the wave, it is called the attenua¬ 
tion constant, while, since a similarly determines the wave¬ 
length, it is called the wave-length constant. Further, 
since both of these go to make up the complex quantity y, 
the latter completely governs the propagation of the wave, 
and is therefore called the propagation constant. These 
constants are known as the secondary or transmission con¬ 
stants of the line. 

Again, since the propagation constant y is equal to 

-|-ycuL)(G-f yoiC), it is evident that it is dependent, 
not only upon the primary constants of the line, R, L, G, and C, 
but also upon the angular velocity, «, of the particular wave 
being transmitted, and since the attenuation and wave-length 
constants are derived from it, these are also dependent upon w. 
It follows, therefore, that, for the same transmission line, waves 
of different frequencies will, in general, be propagated at different 
velocities and with differing attenuation. 

Line Open at Distant End. 

Returning to the general equations (41) and (42), if the line 
is of length I and open at the distant end, then the current at 
the end is zero. T^t is 



GENERAL THEORY OF TRANSMISSION 29 

1 = 0 when x — 1. 

V 
I, coshy/ = ^ sinhyl. 

••• I. = ^ tanhy/ . . (47) 

So that (41) and (42) become determinate, thus 

V = Vo (coshy* — tanhy/ sinhy*) . . (48) 

I -= ^ (tanhyl coshya; — sinhya;) . . (49) 

and from these equations the current and voltage at any point 
along the line can be found. 

V 
Moreover, .=4 is clearly the apparent impedance or, as it is 

usually termed, the sending-end impedance of the line. 
This is commonly written and we have 

Zopui = ^ = ZoCothy/ . . . (50) 

If it is required to find the voltage at the distant end, this 
is, from (48), 

Yf = Vo (coshy/ — tanhy/ sinhy/) 

cosh* yl — sinh* yl 

-''•X-- 

T/ Vo /»»\ 

cosh yl 
• (51) 

Line Closed at Distant End. 

Similarly, if the line is closed at the distant end, 

V = 0 when * = /. 
Vo coshy/ = loZo sinhy/. 

.-. Io = Jcothy/. (52) 
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so that (41) and (42) become determinate thus 

V = Vo (coshy* — cothy/ sinhy*) . • (53) 

I — (coth yl cosh yx — sinh yx) . (54) 

And the sending-end impedance 

^cioeed = 1^ = 2, tanh yl. 
J-O 

• (55) 

Whence, from (50) and (55), 

^^open ^ ^closed • • (56) 

The current at the distant end of the closed line from (53) is 

V 
L = ^(coth yl cosh yl — sinh yJ) 

_ Y® cosh^ yl — sinh^ yl 

~ ^ sinh yl 

Vo 
‘ ~ Zf sinh yl. 

whence the ratio of the received current to the sent current is 

L V Zj sinh yl 
j. = ^eothy/x-^ 

. h--I— 
•• L~coshyI (58) 

Example.—The lOo-lb, air-space paper-core telephone cable 
has the following primary constants:— 

R = 17*6 ohms per mile. 
L = "001 henries per mile. 
C = -065 mfs. per mile. 
G = 10"* mhos, per mile. 

At the 'standard frequency at which telephonic measure¬ 
ments are made, viz., <0 = 5000, 
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y = ^/(R + ya»L)(G + ;wC) 

=» %/(i7-6 4-;5)(io-«+y3-25 X io-<) 

= -0771/52° 50'> 

-v: 

= V: 

R 4“ ^cuL 

G + juiC 

^7-^+j 5 
io'« +;3'25 X 10 

= 237-3X36° 59'- 

-4 

Hence, if the line is 30 miles long and open at the distant end. 

Zopen = Zo coth yl 

Zp . 
tanh yl ’ 

tanh yl — tanh (2-3i3/52° 50') 

= tanh (1*40 I-84). 

.dranting,* this becomes tanh (1*40 +7 1-171). 

Hence 

= i-iio\3° 30'. t 

, _ 237-3X36° 59' 
i-iio\3° 30' 

= 214X33° 29'- 

And if a voltage of 10 volts at cd = 5000 is applied at the 

sending end, the voltage at the distant end is 
V. 

' cosh yl' 

cosh yl = cosh (1-40 + j 1-84) 

= I-922/107°!^ { 

Voltage at distant end 

_10 

” 1-922^/1072^ 

= 5-20\i07° 12'. 

• See Appendix, p. 63. t Sec Kennelly’s “ Tables,” p. 127. 
} p. xzz. 
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Similarly, if the line is closed at the distant end, 

^closed ~ tanh yl 

= 237-3X36® 59' X i-iio\3° 30' 

= 263-3X40^2^, 

And with 10 volts applied as before, the current at the dis- 

Current = 

sinhy/ = sinh (1-40 + j 1-84) 

= 2-I32/-I03° 36'.* 

10 

237-3X36® 59' X 2-142/103° 36' 
10 

508/66° if 

-0196X66° 37'. 

The voltage or current at any intermediate point on the 
line can immediately be found from (48) and (49). 

Thus, at a distance of 15 miles from the sending end, with 
the distant end open, the voltage may be found as follows :— 

voltage = V, (coshya; — tanh / sinhyAt). 

cosh yx — cosh 1-156/52° 50' 

= cosh (-70 + j -92). 

Quadranting, this becomes cosh (-70 + j -585), 

= -968/3^'. 

Similarly, sinh yx — 1-099/65° 12'. 

Voltage = io(-968/36° 36' — 1-110X3° 30' x 1-099/65° 12') 

= 9-68/36° 36' — 12-20/61° 42' 

= 7-77 + 3 5-77 - 5*8i - j 10-73 
= — 1-96 —j 4-96 

= 5-33\wi“34'* 

See Kenx>ell3r’s “ Tables,” p. 95* 
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Line Closed through Impedance. 

The more general case, and one of great practical impor¬ 
tance, is that in which a line of length I is closed at the distant 
end through some piece of apparatus whose impedance, Z„ is 
known. If I,, and V, are the current and voltage respectively 
at the distant end, then 

IrZ, = V, 

.•. Z,(I<, coshy/ — ^ sinhyZ) = coshyZ — I^Zj sinhyZ. 

.*. Ic(Zr coshyZ + Zo sinhyZ) = sinhyZ + coshyZ^ 

T _ Y? y + Z, cosh yZ 
* * ^ 2jq Zo sinh yl + Z,. cosh yl 

^ (Zr sinhy/ + coshy/). 

• (59) 

Whence 

ir TT / , Zrsinh yZ + Z, cosh yZ \ 
V = V.(cosh X iinhy*), 

and 
V,/Z, sinhyZ-I-Z, cosh yZ \ 

“ Z, VZ, sinh yZ + Z, cosh yZ ^ ~ ' 

Also, the sending-end impedance of the line so closed is 

Vo „ Z, sinh yl -f- Z, cosh yl 
T - Zo (60) Ip ®Z, sinh yZ + ^ cosh yl 

In particular, the current I, through the impedance Zp is 

V,/Z,sinhvZ-f-Zpcoshy/ . , , , ,\ 
Z;(z, sa'yZ + ^,b08h yZ ^ >”7 

Zy sinh y/ cosh yl + cosh* yl — Zq sinh* yl — Zy sinh yl cosh yl 

sinh y/ + Zy cosh yl 

v« 
Zp sinh yZ + Z, cosh yl 

3 

. (6i) 
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And the ratio of the sent to the received current, 

I, _ Vj Z,sinhy/ + Zfl coshyl Z, sinh yl + Z, cosh yl 
L ~ Ze ^ Z, sinh yl + Z, cosh yl ^ V* 

2 
= cosh + 2^ sinh yl.(62) 

It is interesting to note what occurs if Z,. = Z^, that is to 
say, if the line is closed through an impedance equal to its own 
characteristic impedance. The voltage along the line is then 

/ , Z, sinh yl + Za cosh yl . , \ 
V = V,(cosh yx - z. sinh yt + Z. cosh 

= Ve (coshyA: — sinhy^f) 

i.e. the line behaves exactly as though it were infinite in length, 
and there is no reflection from the end. The result is what one 
would expect, and is valuable in certain cases where, for special 
reasons, it is desired to eliminate the reflected wave. 

Composite Lines. 

It frequently happens that a transmission line is not uniform 
throughout, but is made up of two or more sections, the line 
constants of which are different. Such lines may be dealt with 
as follows;— 

ABC 

I. Ii I. 

Suppose the line to consist of a section AB of length I, 
propagation constant y, and characteristic impedance Zp, fol¬ 
lowed by a second section BC of length propagation constant 
y', and characteristic impedance Z,', and supjjose the second 
section to be short-circuited at the end C. Then, by (55), the 
sending-^d impedance of the section BC is 

Z,'tanhyT. 
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Hence we may consider the line as consisting of the first section 
only, closed through an impedance Z,' tanh y7', and apply 
formulae 59 to 62 by simply replacing Z, by Z, tanhyV'. 

Thus the current at the sending end, 

Zq* tanh y'l' sinh yl + Z, cosh yl 
® “ Z, ^ Zj sinh yi + Zo' tanh y’l' cosh yl ’ 

whilst the current at the end of the first section 

I __Yo_ 
^ Zo sinh yl + Z,' tanh y'l' cosh yl 

Whence it follows from (58) that the current at the receiving 
end of the whole line, 

I _i x-i-=__ 
^ cosh y'l' Z, sinh yl cosh y'l' + Z/ sinh y'l' cosh yl' 

If the second section is closed through an impedance Z, 
instead of being short-circuited, then the sending-end impedance 
of this section considered by itself is given by (60), and is 

Z,'(Z,' sinhyT-t-Z,coshy7') 
Z, sinh yT-l-Z/cosh yT ‘ 

Whence, by (61), 

T_L_ 
, , Z,'{V Sinh/r + Z, cosh//') coshy/• 

Zj smh/ + Z,smh//' + Z/coshy'r 

And, by (62), 

__”0 
sinh y'l' + Z, cosh //') cosh yl) (Z/ cosh y’l' + z, sinh y'/') 

|z.smhy/ +-z^smhy'/^ + Z/SaTiP-/-- 

_Yo_ 
z z 

sinh y/cosh y7' + -^-rsinhy/sinhy'/'-j-Z/coshy/sinhy'/'+ZyCOshy/coshy'/ 

Again, if the line consists of three sections, AB, BC, CD, of 
lengths I, r, and propagation constants y, y', and y", and 
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characteristic impedance Z,, ZJ, and Z”, and short-circuited 
at D, 

A B C D 

1# la la 

then we proceed as before by considering the last section CD 
by itself first. The sending-end impedance of this section is 
Zo" tanh y'V. Taking now sections BC and CD together, 
we have in effect a line BC closed through an impedance 
Ze" tanhy'7", and its sending-end impedance by (6o) is 

Z/(Z<,' sinh y’V -f- Z/ tanh yT cosh y'V) 

Z/ tanh y*/' sinh y'V -f Z,' cosh y'V ‘ 

We can now consider the line as a whole, for it is equivalent to 
a line AB closed through an impedance equal to the above 
expression. The current at B is therefore 

T_^_ 
* .» •_!. » I ^0 cosfi sinh y'V -f- Z/ tanh cosh y'V) 

Z, smh yl + 2/ 2^/ cosh y'V 

Returning now to section BC, and remembering that this 
is equivalent to a line Vy'Zo closed through Z” tanhy'7", it 
follows from (62) that 

T h 

cosh y'V -t- 
Z/tanhyT 

Z' sinh y'V. 

Whilst considering the last section CD, we have from (58), 

I* 
I.= 

Whence 

■ 

cosh y'/' 

Z,sinhy/ + 
77'cSK";7IZ7'ShliyV^ -h Z/tanK'7/*c'ci^Ey 15} 

Z/ tanh y'/' sinh y'V + 1L^ cosh y'V 

{!»tanhyVsinKy'^P H-'Z7cosE'TT)^'?? X-^- 

Z„ sinh yl cosh y'V cosh y^V + sinh yl sinh y'V sinh y"^ 
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The same method can be extended to deal with any number 
of lines, but the formulae obtained become so complicated as to 
be of little practical value. 

Attenuation and Wave-length Constants. 

The values of the attenuation constant jS and of the wave¬ 
length constant a are derived from the propagation constant y 
as follows:— 

y* == j8® — a® -f- jzctp ^ (R + ya>L)(G juiC) 
— GR ytoLG “t" y<uCR -{- y*t«>*Lc 
= GR — a»*LC + y(toLG + tt>CR). 

- a* = GR - a)*LC 
2a^ = wLG -j- toCR. 

(jS* - a*)* + (2a/3)* = (GR - a>*LC)* -|- (a.LG -f <«.CR)». 

Whence 

jS* 4- a* = V(G* + w*C*)(R» + a>*L*). 

Also 
(j8* + a*) + (/S* - a») = 2iS». 

Therefore 

)3 = -f w*C»)(R* + w*L*) -f- J(GR - w*LC) (63) 

« = -s/K (G* + a»*C*)(R* + a>*L*) - J(GR - co*LC) (64) 

Conditions for Minimum Attenuation. 

The minimum value of j8 may be found in the usual manner 
by differentiating it with respect to any of the constants and 
equating to zero. 

H 

VK(R* + «)*L*)(G* -I- a>*c*) 4- i(RG - W*CL) 

.-. = Vr*(G* 4- «>*C*) 4- a»»L*(G* 4- <«>*C*) 4- RG - tu*CL. 

Differentiating with respect to L (say) and equating to zero, 

a>»L(G«4-ft>«C«) 
V(R*4-«*L*)(G*4-w*C*) " ’ 

LG CR. whence 
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Substituting in the expressions for j3, Z„ and a, 

/3 

Z. 
a 

and velocity of wave 

V 

Distortionless Lines. 

It will be observed that both j8 and v are independent of 
to, that is to say, all waves travel along the line with the same 
attenuation and the same velocity. Since, therefore, both the 
fundamental and all the harmonics of any irregular wave im¬ 
pressed upon the line will travel equally, the wave form will 
be unchanged at the end of the line, and the line is said to be 
distortionless. 

The above case is of theoretical rather than of practical 
importance, since even with the maximum value of L attain¬ 
able in practice, G would require to be artificially increased 
in order to satisfy the conditions, with the result that the 
attenuation would become excessive. Moreover, such a line 
would possess the additional disadvantage of a very high 
dMtcacteristic impedance. 

A somewhat similar case, however, of great practical im¬ 
portance occurs when 

toL > > R 

a»C > > G. 

The attenuation constant may then be simplified thus, 

J8= -v/W(R* -}- a>*L*)(G» -I- «*C*) -I- i(RG - toKL) 

R*\*/ . G*\* 

= Vrg, 

== LC, 

_ I 
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Whence, neglecting small quantities above the second order. 

P - + 

_ /R»C G*L , RG 
“ V 4L 4C 2 

R /C , G /L 
= jVl + ¥Vc ■ ' . (65) 

Similarly, 

. - + sS?) - *("0 - "’CL). 

But, in this case, since the larger terms Jw*CL do not cancel 
R* G* 

out, we may neglect aU the terms ^.nd RG, which 

are of the second order of small quantities, and a becomes 

a = oVCL .... (66) 

If greater accuracy be required, these small terms may be 
retained, and 

G*L 
4C 

55 
2 

= y^(l)*CL, + . (67) 

It will be noticed that the expressions (65) and (66) denote 
that the line is distortionless as before, and the conditions of 
this case are actually met with in a heavily loaded telephone 
line. 
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CHAPTER III. 

APPLICATION TO TELEPHONE TRANSMISSION. 

The sound waves emitted by the human voice and converted 
by the microphone into electric waves of the same form are all 
more or less irregular in shape. If analysed into a Fourier 
series, they consist of a fundamental corresponding to the 
pitch of the voice, and a number of harmonics or overtones of 
varying prominence which determine the quality or timbre of 
the voice and the particular vowel sound or consonant which 
is being pronounced. The range of pitch varies from about 
80-500 in the male voice, and from about 150-800 in the female 
voice. It has, moreover, been found in practice that the 
suppression of harmonics above a frequency of 2000 p.p.s. 
does not greatly affect the quality of speech and, except where 
circuits of special quality are required, it is unnecessary to pay 
attention to the propagation of harmonics exceeding this fre¬ 
quency. The figure upon which all transmission calculations 
in telephony are based is 800 p.p.s. (w = 5000) which, although 
higher than the average pitch of the voice, was decided upon 
at the Paris conference in 1910 as the rough mean of the fre¬ 
quencies of the important tones and overtones. 

In the application of the theory developed in the previous 
chapter to the transmission of telephonic currents, it should be 
observed that the theory is strictly applicable only to periodic 
currents which have reached their steady state; and it might 
be objected that, since this condition is not accurately at¬ 
tained in speech currents, especially in the case of the sharper 
consonants such as " p," the theory will not apply. An examina¬ 
tion of oscillograms, however, such as those reproduced in 
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Hill’s “ Telephonic Transmission,” • will show that the change 
in wave form is not so abrupt as might be expected, and, further, 
the extremely close agreement which is found in practice to exist 
between results predicted from the theory and those arrived at 
by actual experiment, is conclusive proof that the error involved 
in neglecting the transient effect of changes in wave form is 
not great. 

Attenuation Measurement by Standard Cable. 

In determining the efficiency of a circuit for the trans¬ 
mission of speech, account has to be taken of two factors. 
First, there is the attenuation of the wave, which causes the 
speech to become faint at the distant end. This is measured 
by the British Post Office in terms of standard cable in the 
following manner. The speech through the line under test is 
compared with that through a standard artificial non-reactive 
cable possessing an attenuation equal to the attenuation at 
800 p.p.s. of a cable having the following primary and 
secondary constants:— 

R — 88 ohms. 

L =* •cxii henries, 
G ~ I micro-mho. 

C = *054 mfs. 

Propagation constant - o* 15427/46° 31', 

Attenuation constant = o-io6i6, 
W ave-length constant = o-11193, 

Characteristic impedance ~ 57i’4\43“ 16', 

the length of the artificial cable in circuit being adjusted until 
equality of speech is obtained between the two. If the length 
of standard cable required to obtain such equality is « miles, 
then the circuit under test is said to have a standard cable 
equivalent or s.c.e. of n miles. In practice, an artificial 
standard cable is employed, the equivalent length of which can 
be immediately adjusted by means of switches. It is useful to 
observe that, since the attenuation constant of standard cable 
is •10616, the volume of speech is approximately halved in 
traversing miles of it, for tf*ix.io6i6» 2. The limit of com¬ 

mercial speech is generally assumed to be reached in 35 miles 

* “ Telephonic Transmiseion,” J. G. Hill (Longmans, Green & Co.). 
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of standard cable, corresponding to a reduction to one-fortieth 
in volume, so that, in general, the s.c.e. of a circuit should not 
exceed 35 miles.* 

Distortion. 

Apart from loss of volume, however, speech may fail 
because it becomes unintelligible owing to distortion, that is 
to say, because the wave form of the received speech differs 
too much from that of the sent speech. Such distortion arises 
from a number of causes, amongst which are the imperfections 
of the transmitter and receiver, neither of which instruments 
fulfils perfectly its function of converting sound waves into 
electric waves and the reverse without change of form. We 
are concerned here, however, only with the distortion which 
occurs in the transmission of the electric wave along the line, 
and the causes of this are as follows. 

In the previous chapter it has been shown the attenuation 
constant and the wave velocity vary, except in certain special 
cases, with the frequency of the wave.] If, therefore, an irre-' 
gular wave is being transmitted, the harmonics will, in general, 
travel with an attenuation and velocity differing from one 
another and from the fundamental, with the result that the 
wave form at the receiving end will be different from the im¬ 
pressed wave at the sending end. The general tendency is for 
the attenuation to increase with frequency, £ojt^t the higher 
liarmonics are relafrvely less prominent in the received speech. 
Distortion is thus seen to arise ffom two separate causes :— 

(a) The alteration of the relative amplitudes of the com¬ 
ponent parts of the wave. 

The alteration of their phase relation due to their 
different velocities. 

Now, while it is clear that both must cause alteration in the 
wave form, there is some difference of opinion as to the practical 
effect of phase change. It has been held by some scientists, 

*e~ ’loeie •0243 s= (approx.). 
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and experiments have been conducted which lend colour to 
their theory, that phase alterations are compensated for by 
the human ear, and that no loss of timbre or distinctness is 
caused thereby; but the balance of opinion is probably against 
this view. At the same time, it is almost certainly correct to 
say that there is some compensation, and that distortion of 
wave form due to the shifting of the phase of the harmonics, 
provided their amplitude is correctly reproduced, is of less 
importance than distortion due to alteration in the relative 
amphtudes of the harmonics. 

It is evident, then, that the ideal telephone line should 
possess not only a low attenuation constant, but that it should 
also bejiiifofHonless. * Tlw OTdinary line, whether jcoasisting’oi 
aerial wires or of underground cable, will be found not to meet 
these conditions, owing to the fad that the capacity is always 
relatively too high. The capacity of aerial wires is much the 
smaller of the two, since the wires are much further apart than 
in a cable, and, for this reason, an aerial circuit is much better 
for transmission purposes than an ordinary cable pair; so 
much so that, for many years, long distance telephony was 
practically confined to aerial open wires. A comparison between 
an aerial circuit and a paper cable pair both of 100 lb. gauge 
will make this clear :— 

R. L. G. c. 
Attenuation 

Constant. 

ft) *= 5000 

Wave-length 
Constant. 

S.C.E. 
per mile. 

Aerial . 17*60 •0039 10 0081 •0120 •0303 •1136 
Cable . 17*60 •001 I0“« •065 *0466 •0615 •4388 

Loading. 

The relatively poor transmission properties of underground 
cables have been vastly improved by artificially increasing the 
inductance of the circuit, the principles underl5ing which will 
now be explained. 

It was shown in the previous chapter that a line becomes 
distortionless if LG = RC, when the attenuation constant 

becomes */RG. In practice, RC is always greater than LG, 
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so that the condition could be arrived at by artificially increasing 
the leakance G; but such an operation would be useless, 
because it would also increase the attenuation constant, with 
the result that, although the line would be rendered distortion¬ 
less, it would give extremely heavy losses. But it remains true 
that, with G kept at its natural low value, the condition 
LG — RC is the ideal one, since it is the condition for minimum 
attenuation as well as freedom from distortion, and the nearer 
we can approach it the better. The discovery of the principles 
underlying the loading of cables is due to Oliver Heavyside 
(“ Electromagnetic Theory,” 1894, Vol. I., Chap. IV.), but for 
the development of the theory and its apphcation to practice 
we are indebted to Prof. M. I. Pupin, who expounded the 
theory in a paper given before the American Institute of Elec¬ 
trical Engineers, March 22nd, 1899, entitled " Propagation of 
Long Electrical Waves.” 

Since we cannot, with advantage, increase G, and since it 
is obviously impossible to decrease R and C in a given line, the 
only feasible thing to do is to increase L by artificially adding 
inductance to the line. This procedure, for which the first 
practical suggestion was made by Prof. Pupin in 1899, is called 
loading, and is now very extensively carried out. It is never 
possible in practice to add sufficient inductance to reach the 
point where LG = RC, but it is possible to increase L so as 
to obtain the second condition discussed in Chapter II., viz., 
wL > > R and toC > > G, when the line again becomes dis¬ 
tortionless. One reason why there is a limit, apart even from 
cost, to the inductance which may usefully be added lies in 
the consideration that such artificial inductance must increase 
the resistance losses on account both of the ohmic resistance 
of the loading coils and of their hysteresis losses, so that, 
beyond a certain point, the advantage of adding more inductance 
is neutralised by the increased losses in the line. 
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Continuous Loading. 

There are two methods of loading in general use. The first 
of these is continuous or krarup loading, consisting of one 
or more layers of wire of some magnetic material wound con¬ 
tinuously round the conductor. This method is confined to 
cables, and the inductance of the pair so loaded has been 
shown by Prof. Breisig to be 

L(«ns.) = 44log. 7 + i + 2(2r + «)(i + a)} 

where I = length in cms. 

D = distance between centres of conductors. 
r = radius of conductors. 
t — thickness of windings. 

fi = permeabihty of magnetic material. 
a — distance between spirals. 
a = an empirical factor dependent upon magnetic losses 

in the winding. 

If the spirals of the wire surrounding the conductor are very 
close together, both a and a become small and may be neglected, 
when the formula reduces to 

= 44^.7 + h + 
fint 'j 

2{2r + i)] 

which has been found to give results in fairly good agreement 
with actual measurements. It should be observed that the 

term 
2r+t 

represents the added inductance, since the part 

4^(log» — + i) is the natural inductance of the circuit unloaded. 

This t3^e of loading has certain important advantages, 
particularly for submarine cables, but is expensive, and, 
moreover, the amount of inductance which can be added is 
limited. On the other hand, it seems probable that, with 

* “ Theoretisphp Telegrapbie,” p. 322. 



46 TELEPHONE AND POWER TRANSMISSION 

improvements in the magnetic material and method of manu¬ 
facture, its use will be extended. It is obviously applicable 
only to new cables. 

Lumped Loading. 

The second method is that of lumped series loading, con¬ 
sisting of inductance coils inserted at regular intervals in the 
line in the manner .shown in Fig. lo. 

—.. " .... 

.  —•—    ‘ 

Fig. io. 

In order to preserve the “ balance ” of the circuit the loading 
coU at each point consists of a circular core of magnetic material 
on which are placed two equal windings (Fig. lo), one being 
inserted in the A line and the other in the B. 

The design of these coils is a matter of the greatest impor¬ 
tance, since, in addition to fulfilling their primary function of 
adding inductance, it is very necessary that the harmful effects, 
which are to some extent unavoidable, should be reduced to 
a minimum. Thus, their resistance must be as low as possible, 
and resistance, in this case, includes the losses in the core. 
The material employed for the core should therefore combine 
a high permeability with low losses. Iron wire cores were 
chiefly employed until recently, but the invention of a method 
of compressing iron in the form of dust into a material of 
sufficient strength to make the cores of the so-called " dust- 
core ” coils has superseded the use of iron wire in long 
distance circuits and those in which repeaters are inserted. 
For shorter circuits, however, iron tape is now employed since 
coils made from it are both cheaper and smaller than those 
with dust cores. Further, the windings are bound to possess 
a certain self-capacity, but since this is exactly the reverse of 
what is required, the capacity must be kept as low as possible. 
There are many other requirements to be fulfilled in addition to 
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these, a full description of which, together with the methods 
employed in practice of connecting the coils to cables and to 
aerial circuits, will be found in Hill’s “ Telephonic Transmission,” 
already referred to. 

In the same book will be found a description of a third 
method, known as leak loading, which consists in joining load¬ 
ing coils across the circuit at intervals instead of placing them in 
series in the two wires. This method has not, however, for the 
present at any rate, the same practical importance as those 
previously described. 

Propagation Constant of Series Loaded Circuit. 

Tht propagation constant of a series loaded circuit may be 
calculated by Campbell’s method * in the following manner:— 

Let Z be the impedance of each set of loading coils and d 
the distance between them, and let Ij be the current through 

..•'TRnrBity " ... ..*Tnnnnnr* ■ ■ ■ ■■ 

-'mnnr 
Fig. II. 

■^innmnp— 

the first set (considered constant throughout the coils), and If 
the current through the second set. In order to find the pro¬ 
pagation constant, consider a section of line from the middle 
of the first set of coils to the middle of the second. If the line 
is long, the average propagation constant of this section is the 
same as the average propagation constant of the line as a whole, 
and we may therefore fairly consider the section by itself, dis¬ 
regarding the sections of line both in front of it and following 

-w 

Fio. 12. 

it. Hence we can imagine a short-circuit made at the centres 
of the loading coils as in Fig. 12, and we have, in effect, an 

* Phil. Mag-> Vol. V., p. 319, March, 1903. 
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unloaded line of length d closed at the distant end through an 
impedance Z/2, so that, from (62), 

Z 
cobh yd -|- sinh yd 

where y is the propagation constant of the unloaded line. 
Again, if y’ is the propagation constant of the loaded hne, then 
we may regard the section alternatively as a length d of loaded 
line short-circuited at the receiving end, whence, from (58) 

^ = cosh y'd. 

So that y' is given by the relationship 

2 
cosh y'd = cosh yd + ^ sinh yd. 

If y' be calculated from the above equation, for different 
values of d and the real part, which is the attenuation constant 
of the loaded cable, be plotted, it will be found that it exhibits 
a sudden and enonnous increase as it approaches the value 

I, 
2 

or a = — 
a)V hiO 

where Lj is the total inductance of the circuit per mile including 
the coils. But in a loaded circuit, where wLi > > R and 
wC > > G, we have 

wave-length constant = ttfVLiC, 

and wave-length A = —7?=^* 
a»v DjO 

Hence, the critical spacing occurs when 

A 
TT 

or, as the rule is usually stated, there must be more than n- 
coils per wave-length. 
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The increase of the attenuation constant of the loaded line 
for different spacing of the coils over that of a line in which the 
inductance is uniformly distributed is given in the following 
table:— 

Percentage Increase in 
Coils per Wave-length. Attenuation Constant. 

9 
8 

7 
6 

5 
4 
3 

1 per cent 
2 ») n 

3 m m 

7 M M 
>6 „ „ 

200 „ 
from which it will be seen that the divergence begins to be 
marked when the coils are less than 5 per wave-length. 

The practical rule for the spacing of coils is based upon the 
fact, previously stated, that harmonics above a frequency of 
2000 p.p.s. are unimportant. Since the wave-length decreases 
with increased frequency, it is obvious that a spacing which is 
sufficiently close for the higher harmonics will be ample for 
the fundamental and lower harmonics ; so that, if we determine 
the critical spacing for a wave of 2000 p.p.s., the waves of lower 
frequency will pass satisfactorily. Neglecting the relatively 
small natural inductance of the line, the inductance per mile 

will be-^, where L is the inductance of each coil, so that the 

critical spacing for 2000 p p.s. is 

d = 

2ir X 2000 

or, if C is in microfarads and L in millihenries, we obtain the 
practical rule 

CLd — 25 (approx.), 

which is the spacing rule adhered to in the British Post Of&ce 
This rule was originally determined by experiment, but 
the above calculations show that it possesses a sound basis 
in theory. 

4 



50 TELEPHONE AND POWER TRANSMISSION 

Partial Reflection, 

In Chapter II. it was shown that the wave is reflected at 
the end of a hne, and that the reflected wave travels back to 
the sending end. In a similar manner, if at any point in the 
line there occurs some abrupt change in its characteristics, as, 
for example, if a length of cable is inserted in an aerial hne, 
then the wave at this point is partially transmitted forwards 
and partially reflected backwards. Evidence of such partial 
reflection is supphed as follows. If the sending-end impedance 
of a finite hne is measured over a range of frequencies, the 
impedance curve exhibits a pei iodic rise and fall in value, the 
maximum points occurring at those frequencies at which the 
impressed and reflected currents and volts are in opposition, 
and the minimum points at those frequencies at which they 
are in phase with one another. If the hne is so long as to be 
the equivalent, for transmission purposes, to an infinite hne, 
or if it is closed at the distant end through its own characteristic 
impedance, then there wiU be no reflection, and the sending-end 
impedance curve wiU be smooth and wiU not exhibit periodic 
maxima and minima. Hence, if such a hne does show periodic 
undulations, partial reflection must be occurring at some in¬ 
termediate point along it. 

The distance from the sending end at which the reflection 
is taking place can be calculated by the foUowing method, due 
to Mr. Ritter,* of the Post Office Engineering Service. 

If « is the wave-length constant of the hne at any given 
frequency, and I the distance of the point of reflection from 
the sending end, then the change in phase of a wave of that 
frequency in travelling to the point of reflection and back to 
the sending end is 2af. In addition, its phase will be changed 
by some indeterminate angle ^ at the point of reflection itself, 
so that the total phase change wih be 2cd -f 4>- If. therefore, 
two successive points of maximum impedance occur at fre- 

See I.P.O.E*£. Paper No. 76» by C» Robinson and R. M. Cbamney. 
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quencies /i and /*, it is evident that the total phase change of 
the second wave must be greater by 2n than the first, or 

(2ajl + ^2) — {2a.il + ^x) = 27r 

where aj, a* and ^1, ^2 are the wave-length constants, and the 
angles of phase change at the point of reflection of the respective 
waves 

Now, although <f>i and ^2 are indeterminate, it is reasonable 
to suppose, especially if the reflection is not great, that both 
are small and that they are approximately equal—an assump¬ 
tion found in practice to be justified. We therefore obtain the 
simple result that 

-JL- . 
as — ax 

If the fine is loaded ax = Zw/xVCL and a^ = CL 
(approx.). 

J • TT _ I 

^ -/O VCL(/2 -/x)‘ 

In unloaded lines it may be shown that 

ax = VwRC/x and as = ■»/wRC/s (approx.). 

• 7 - ^772 

\/RC(/2 /i) 

This method is of practical use in locating faults which are 
not revealed by the ordinary D.C. tests. Thus, in a loaded 
line, if a loading coil has beconie short-circuited, it forms a 
discontinuity in the electrical constants of the line, and causes 
partial reflection and its position can therefore be located by 
this means. 
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CHAPTER IV. 

LINE CONSTANIS AND THEIR MEASUREMENT. 

(i) Resistance. 

The resistance of a telephone line may be calculated from 
the size of the wire and the material of which it consists. Thus, 
the resistance per mile at 68° F. of a single annealed copper 
wire is 

P _ -05475 

where d is the diameter of the wire in inches. 
Or, if the weight of the wire is W lbs. per mile. 

R _ 874-9 
--W' 

The wires used for telephone circuits in the British Post 
Ofiftce are gauged by their weight in lbs. per mile. Their 
resistances are always stated per mile of loop, and are, in 
practice, invariably taken from the table of values as given in 
Table I. 

Copper possesses a considerable temperature coefSicient, 
amounting to 

I 

234-5 +1 

where t is in degrees Centigrade. Thus, at 40° C. the coefficient 

is ‘3^4 ^ temperature of one degree. 

The greatest changes in temperature obviously occur in open 
lines, but calculations based on the constants of such lines are, 
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in any case, only approximate, owing to the great changes 
which occur in the leakance due to varying weather conditions, 
so that small variations in resistance can be neglected. 

The resistance to alternating currents is also subject to 
increase owing to the well-known phenomenon called “ skin 
effect,” the amount of which may be calculated from Lord 
Ra5deigh’s formula, 

R' _ h* ¥ 
R ^ 48 2880 ' 58647 

Where R' = high frequency resistance, 

R = D.C. resistance, 

h -, 
P 

where n = frequency, 
d =■ diameter in cms., 
p = resistivity in absolute C.G.S. units (t6oo for copper). 

For example, a 400-lb. copper wire has a diameter of approxi¬ 
mately 4 cms. Hence, at 800 p.p.s., 

, 800 X w* X -16 
*---=79 

K-r I (79)^ (79)* 
R ~ 48 2880 

= 1*013, 

that is, the resistance offered to an alternating current of this 
frequency is 1*3 per cent, greater than the resistance offered 
to a direct current. Aerial wires seldom exceed this gauge, 
and underground cable wires are usually considerably smaller, 
so that the increase in resistance' due to skin effect may be 
said to be negligible at telephonic frequency. It becomes 
marked, however, when dealing with the higher frequencies 
employed in carrier wave telephony. 

(2) Inductance. 

The inductance of a metallic circuit may be calculated from 
the usual formula for a long straight pair, viz.. 
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L=-4^(log,?+i), 

where I — length of circuit, 
D ~ distance apart of wires, 
f — radius of wires, 

and all quantities, including L, are in centimetres. The for¬ 
mula may be written in a more practical form for telephonic 
calculations, as follows :— 

L — -001482 logio y + •000161, 

where L is in henries per mile loop. 
This formula may be applied with accuracy to the calcula¬ 

tion of the inductance of aerial circuits where the distance 
apart of the wires is considerable compared with their diameters, 
but it is not very accurate when applied to cable pairs, partly 
because the formula itself is not strictly accurate, especially 
at high frequencies, but chiefly because the average distance 
apart of a pair of wires closely packed in a paper cable is diffi¬ 
cult to determine with sufficient exactitude. 

The variation of inductance with frequency is negligible 
over the range employed in telephony. 

(3) Capacity. 

The capacity of an aerial circuit may be accurately cal¬ 
culated from the following formula:— 

C = - mfs. per mile, 

logic 7 

where D and r have the same meaning as above. 
The capacity of cable circuits, however, depends on so many 

factors that it can only be determined satisfactorily by experi¬ 
ment The dielectric constant of the insulating material is one 
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factor, and this varies, for example, in the case of paper in¬ 
sulated cables from i'7 to 1*9. The proximity of other wires 
and of the sheath are also important considerations. 

c 
B 

z 
B 

Thus, in the above diagram, if A and B form the pair and D is 
a third wire close to them, the actual capacity between A and B 

C C 
is C + p—7-7^, indicating the extreme difficulty of calculating 

the capacity of a pair surrounded by other wires, and in greater 
or less proximity to the sheath. 

(4) Leakance. 

The leakance of aerial circuits varies irregularly between 
wide limits, owing to weather and other conditions, and it is 
therefore impossible to take accurate account of it in trans¬ 
mission calculations of such circuits. The inaccuracy intro¬ 
duced is not very great, since it is always a comparatively small 
quantity. 

In underground circuits the leakance also varies very 
greatly indeed, but the variation is regular, and, since it arises 
from a definite cause, it can be allowed for. In this case, the 
D.C. leakance is practically nil, being of the order io~* or less, 
but with alternating currents a loss of energy occurs in the 
dielectric due to some form of dielectric hysteresis, which is 
roughly proportional to the frequency, and which is, at 800 p.p.s. 



56 TELEPHONE AND POWER TRANSMISSION 

equivalent to a leakance about looo times greater than the 
normal D.C. leakance. That is to say, 

Leakance Constant x to A<o (say) 

where A depends on the t3q)e of insulating material. 
This being so, it is clear that the formulae deduced on the 

theory that G is constant acre not strictly accurate, but the 
leakance is still so small at telephonic frequencies as to be 
almost negligible, and the inaccuracy is therefore inconsiderable. 
Moreover, provided the value assigned to G is that which it 
possesses at 800 p.p.s., its variation over the range of frequencies 
important in telephony is not such as to matter greatly. At the 
same time, the author is personally of the opinion that it would 
be preferable to recognise the variable character of leakance in 
cables by including it in the form Aco and amending the formulae 
accordingly. This is especially necessary when the formulae 
are applied, as otherwise they certainly may be, to transmission 
at the higher frequencies employed in carrier wave telephony, 
that is, at frequencies from 10,000 p.p.s. upwards, at which 
leakance becomes not merely an important, but, in some cases, 
a dominating factor. In this book the usual method has, how¬ 
ever, been adhered to as being that, at present, universally 
employed. 

Measurement of Primary Constants. 

Since the primary constants of cables, with the exception 
of resistance, cannot, as a general rule, be calculated with 
accuracy, it is usual to measure them experimentally. This is 
done by making open and closed end impedance tests of a 
measured length of line and calcidating the constants from 
these in the following manner. 

From page 30 of Chapter II. we have the relationships. 

tanh yl = = Vlsisse?. 
^0 " open 
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Whence y and Zo may be found. 

But y — •J (R -f-7wL)((i jaC). 
Therefore, Z^y = R + joiL 

and ^ = G + j<aC, 
^0 

whence, by equating real and imaginary parts, all the primary 
constants may be found. 

If the length of the line under test is very short, so that 
yl> > 1, a simpler method of calculating the constants is 
arrived at in the following manner. 

The function tanh yl may be expanded into the series, 

(yiy 
3 15 

which is clearly rapidly converging when yl is less than i, while, 
if yl is very much less than i, even the second term becomes 
negligibly small, and 

Similarly, 

Therefore, 

tanh yl» yl. 

cothy/«=® 
£ 
yl’ 

Zeio.6d = ZotanhyZ 
= Zoyf 

= ^ X X +;«'L)(G +;a,C) 

and 
= /(R + jitil), 

Z open “ Zp coth yl 

= h. 
yl 

_ I 
/(G -j-7'wC)’ 

that is to say, the constants are immediately derived from the 
c^en and closed end impedances. 
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This is a convenient method of making tests at audio fre¬ 
quencies on sample lengths of cable of, say, 200 yds. The 
author has also employed it with great success on lengths as 
short as 4 yds. when testing cables at carrier wave frequencies 
with apparatus specially designed for the purpose. 

Measurements of line impedance are very important, not 
only as a means of arriving at the primary constants, but also 
for other purposes. The first requisite of all methods of 
measurement is some means of producing alternating cunents 
of pure sine wave form whose frequency can be varied at will 
over the range required. The Drysdale A.C. potentiometer 
used in connection with a suitable sine wave alternator and the 
Franke machine are two good methods when such apparatus 
is available, but they have the disadvantage of being extremely 
costly and are not portable. They are, however, extensively 
used in the British Post Office, and a full description of them 
will be found in Hill’s “ Transmission.” 

The A.C. Bridge. 

The advent of the thermionic valve provides a very simple 
means of producing alternating currents of any desired fre¬ 
quency, and, if proper care is taken, sensibly free from harmonics, 
and it is therefore particularly suitable for use in connection 
with these measurements. The means by which a valve can 
be made to oscillate, and the rate of oscillation controlled, are 
too well known to require any explanation here. Since, how¬ 
ever, the calibration of the frequency of the oscillator is of the 
greatest importance, it may not be out of place to describe a 
very accurate method of effecting this. 

Let the oscillator be connected across the points AB of the 
bridge in Fig. 13 (p. 60). The bridge consists of two equal non- 
inductive resistances fj, (usually 1000 ohms), in the arms a 
and b, while the two remaining arms c and d consist of a variable 
non-inductive resistance box and a variable condenser, these 
being joined in series in one arm and in parallel in the other. 
Finally, a telephone receiver is joined across the points C and D. 
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The bridge is balanced by manipulating the resistance and 

condenser in either c or d, the condition of balance being indi¬ 

cated by silence in the telephone receiver. We then have the 

same relations as in the ordinary Wheatstone bridge, viz., 

a _ c 
1 'd 

That is to say, since a and b are equal, the impedance of c and d 

are equal. 

Impedance of c = Rj — • 

Impedance of d= ——^ 

i^~"r 

I "j—^CI)R2C2 

R2 — 

~ I + a>*R2*C2* ■ 

, -p • ^ _ 1^2 yaiR2*C2 
■ ^ ^ wCi “ I -f a>*R2*C2* I + ft)®R8*C2*’ 

Whence 

or 

And 

Whence 

> _ *'■2 
^’“H-ro*R2*C2*’ 

H-a>*R2»C2*=|-*. 

I _ a»R2*C2 

~ I -4- w*R2*C2* 
(oR.®C2Ri 

I 

RiR2CjiC2 

The oscillator having been calibrated by this or other means, 

it may be employed for impedance measurements in connection 

with any suitable type of A.C. bridge. 

In designing the oscillator, however, it should be borne in 

mind that the frequency is affected to an appreciable extent 
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by the load upon the plate circuit of the valve. Where greater 
accuracy is required, therefore, it is essential that the oscillator 
should consist of at least two valves, the first being the oscillat¬ 
ing valve with its plate circuit controlling the grid of the 
second valve. With two valves the error is reduced to under 

I per cent., but if still greater 
exactitude is required this can 
be obtained either by using ad¬ 
ditional valves or by employ¬ 
ing the method of a feed back 
resistance in the oscillating 
circuit patented by the Ameri¬ 
can Telegraph and Telephone 
Company of New York. 

Bridges may be designed in 
several different ways to suit the 

conditions required, and the theory of each can be easily de¬ 
duced on the same lines as before. 

Thus, in the above arrangement, the impedance of the line 
is clearly 

Fig. 14. Fig. 15. 

Should the line impedance have a positive angle, the arms 
'> and d are reversed as in Fig. 15. 
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In this case the line impedance is 

This expression, however, does not lend itself to rapid 
evaluation, and for ease in calculating results it is simpler 
to re-arrange the arm b by placing the resistance and condenser 
in parallel instead of in series, as shown in Fig. i6. 

The impedance of b is now 

I 

l+yo'C 

so that the line impedance is 

Since one does not know whether the line impedance at any 
given frequency will prove to possess a positive or negative 
angle, it is convenient in practice to provide a special switch 
by means of which the connections of the bridge can be quickly 
changed from those in Fig. 14 to those in Fig. 16. 

There are many other methods of making up bridges, 
not cmly for measurement of line impedance but also for 
measuring unknown inductances and capacities. They are 
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very accurate provided proper care is taken in avoiding 
stray earth capacities and provided the resistances are truly 
non-inductive, since it is possible with a little practice to 
obtain an extremely sensitive balance. Their use can be ex¬ 
tended to ultra-audio frequencies by introducing a heterodyne 
anangement in place of the telephone receiver, but the effect 
of stray earth capacities becomes more marked at higher 
frequencies and special precautions are necessary to ensure 
accuracy. For impedance measurements on lines the method 
has the great advantage of portability and relative cheapness 
and is now extensively used. 
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APPENDIX. 

Note on Use of Kennelly's Tables. 

At first sight these tables appear to be incomplete and to present 

some difficulty in manipulation The following notes will facilitate their 
use. 

Firstly, it should be noted that q is in quadrants and not in radians, 
so that q ^ 2 IS really q = 27r Now 

smh (x + iq) = - —\g 

It IS therefore evident that ~ /q and \^q repeat themselves when 

q z=x q i-n, q etc. It follows that 

sinh (x -f- tzn + q) = smh {x -f tq) 

Since q is in quadrants, the first operation consists in reducing q from 
radians to quadrants by dividing it by i^sjoqg Thus, to find 

— smh (i 5 + oi) 

divide —- =51 
I 57079 

subtract 51 — 4 = i*i, 

then look up smh (1*5 + ^i»i) 

= -• 33309 + ^ 2 32345 
Similarly, 

tanh (i 5 -h 1 9 74) 

quadrant 974 = 6*2, 
subtract 6 = *2 

Look up tanh (1*5 -ft - 2), 

= *92104 + ^ ‘05404 

Change of Sign.—If x or iq are negative, change sign of u and iv 
accordingly. 

Thus, smh (x — iq) = u — tv 

The same applies when the values are given m the form r /y Thus, 

smh {pc — = f\y. 
smh (— + tg') = — r/y 

smh (— ;r — — f\y7 
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Values of q above 4 

g _ 
When the term .— \q becomes very small compared with 

I?* 
~nis-y neglected. We have, therefore, 

y 
smh (x -f tq) cosh (x + tq) y/ 

and a range of value is given in Table XIV For these laige values of q, 
tanh (x + %q) is obvious s^ss i 

Interpolation 

Methods of accurate interpolation are given in the explanatory notes 
appended to the tables. In practice, however, they are cumbersome, 
and are only of use when extreme accuracy is required m a few calcula¬ 
tions. The Chart Atlas, which can be purchased with the tables, is of 
considerable assistance, but it is the author's experience, when making 

calculations in practice, that it is often as quick to calculate the values 
from the identics given in Chapter I, provided good tables of real Circular 
and H5rperbolic Functions are available Rough arithmetic interpolation 
between values given in the tables is, however, both practical and expedi¬ 
tious, and will give results sufiiciently accurate for many engineering 

purposes 
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CHAPTER V. 

POWER TRANSMISSION. 

The transmission of electric power from the source of supply 
to the place where it is to be utihsed is accomplished by over¬ 
head lines or underground cables. In single-phase working the 
general theory of transmission given in Chapter II. can be 
applied to the calculation of the voltage and current at any 
l>oint along the transmission line, and formulae (41) and (42) 
used without alteration. Moreover, with but shght modifica¬ 
tions they can be appUed to the much more important case of 
3-phase transmission. The formulae for propagation, attenu¬ 
ation, and wave-length constants apply equally well to the 
problems of both telephone and power transmission. It should 
be noted that the currents used in power transmission have 
a much lower frequency than those used in telephone trans¬ 
mission, the usual frequencies being 50 and 60 cycles per second. 

All modem alternators generate an E.M.F. which is a close 
approximation to a sine wave. The error introduced by the 
assumption that all currents and voltages are sinusoidal is 
therefore small. 

Many transmission Hnes are so short that the effect of the 
capacity between conductors is negligible, and the current will 
be constant at all points along the line. This makes it possible 
to use simple methods of calculation when dealing with such 
lines. For long transmission lines, however, the capacity 
effects cannot be ignored, and here the methods of Chapter II. 
have an important field of application. The trend of develop¬ 
ment is to transmit power over longer distances, and the 
methods of Chapter II. as appUed to the transmission of power 
are therefore becoming of increasing practical importance. 
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In this chapter the simple methods which serve for the 
solution of short lines will first be given, and then the applica¬ 
tion of formula (41) and (42) of Chapter II to the solution of 
long lines will be considered. 

Primary Constants of Power Lines. 

The primary constants of power lines are the same as those 
given on pages 52-55 of Chapter IV. for telephone lines, but 
certain of the formula there given can be modified into forms 
convenient for application to single- and 3-phase transmission 
lines. 

Resistance.—The conductor resistance is the ordinary 
ohmic resistance of the conductor corrected for skin effect. 
This correction at the low frequency of power lines will be very 
small, and can usually be neglected. 

Inductance.—^The reactance is more frequently required 
than the inductance, and so the formula will be given for the 
former quantity. The inductance is obtained by dividing the 
reactance by 2it/ where / is the frequency in cycles per second. 

For a single-phase overhead transmission line with con¬ 
ductors of non-magnetic material (e.g. copper or aluminium), 

Reactance per mile of conductor 

— 27Ty (741 logio ^ -f 80) X 10 ohms . (68) 

r — radius of power conductor. 
D — distance separating the centres of the two conductors. 

(iV.B.—and r must be measured in the same units of length.) 
/ = frequency in cycles per second. 

The reactance of a single-phase concentric cable is very small. 
When required it may be calculated from the formula :— 

Reactance per mile of loop 

= S’r/|74i logio^+ 1^2^+ •••)}>< 10"* ohms 

(69) 
where — diameter of inner conductor. 

= inner diameter of outer conductor (see Fig. 20). 
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For a 3-phase transmission line with conductors of radius r 
spaced as in Fig. 17, 

Fig. 17.—3-phase overhead transmission line, conductors unequally spaced. 

Reactance per mile of conductor 

i/n 2 V n 2 V n 2 
— 2jr/(370-6 logio---^^ + 80) X 10'* ohms (70) 

When the conductors are situated at the corners of an 
equilateral triangle of side D, then D, = Dj = D3 — D. 

Reactance per mile of conductor 

= 27r/(74i logio— + 80) X io“* ohms . . (71) 
t 

Thus the reactance per conductor of a 3-phase line with 
conductors at the comers of an equilateial triangle is equal 
to the reactance per conductor of a single-phase hne of equal 
length, and with equal spacing between conductors. 

Where the spacing is not equilateral (as D,, D2, D, of Fig. 17) 
it is often convenient to obtain an equivalent equilateral spacing 
D which will give the same reactance as the actual spacing. 

The equivalent equilateral spacing 

D = v^Di X Dg X Ds . . . (72) 

Typical arrangements of 3-phase conductors with their 
equivalent spacings are given in Fig. 18. 

In Fig. 19 is given the conductor arrangement for a t3q)ical 
3-phase underground cable with the dimensions D and r 
indicated. 

Capacity.—A distinction must be made between under¬ 
ground cables and overhead lines when giving fonnulx for the 
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calculation of capacity. For overhead lines the dielectric 
separating the conductors is air with a specific inductive 

uLs:^_^^ 

y ? ^ u 
Equivalent spacing- fjiSv45»G0 

- 34 
Equivalent spacing^^ts*l5*30 

= 19’ 

czr 

Equivalent spacing-^61x90x96 
<%■♦ = Bl’ 

f 1 
90\ 1 
_j 

Fio. 18 —^3-phase overhead transmission line, equivalent equilateral conductor 

spacings. 

capacity of unity, whilst for underground cables the dielectric 
is material having a greater specific inductive capacity than 

unity. Also, the capacity of cables is affected by other factors 
which need not be considered for overhead lines, such as the 
capacity existing between each conductor and earth. 
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I. Capacity of Overhead Lines. 

For a singlo-phase transmission line, 
19*4 X 10"* 

Capacity per mile of loop 

log 
D 

microfarads (73) 

10 

For a 3-phase transmission line. 

Capacity per mile of conductor = 
38-8 X io-» 

log.o^ 

microfarads, 

(74) 

with the conductors at the comers of an equilateral triangle of 
side D. When the conductor spacing is Di. D*, Dj, as in Fig. 17, 
the equivalent spacing D — 4/Di x Dj x D, must be taken. 

It should be noted that the above expression for the capacity 
of a 3-phase line is the capacity of each of three equal condensers 
which, if connected in “ star ” across the lines, would take the 
same charging current as the line actually takes. The capacity 
as calculated by the above formula will therefore be the 
" capacity to neutral.” 

nie capacity to neutral of the three-phase line is equal to 
twice the capacity between conductors of a single-phase line 
with the same conductor spacing. 

2. Capacity of Underground Cables. 

Single-phase Concentric Cable.—Referring to Fig. 20, let 

di = outside diameter of inner conductor, 
j — inside diameter of outer conductor. 

K = S I.C of insulating material. 

Capacity in microfarads per mile of loop 

38-8 X io~* X K 
• (75) 

Thre^-phase Cables.—Six capacities have to be considered, 
viz., the three equal capacities between cores C, and the three 
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equal capacities between each core and the sheath C,. These 
are indicated in Figs. 
2ia and 2Xb. 

As for overhead lines, 
it is convenient to re¬ 
place the various capa¬ 
cities by three equal 
condensers connected in 
star across the lines, 
each condenser having 
a capacity C. The ar- 

Fig. 20.—Single-phase roncentric cable. rangement is indicated 
in Fig. 2IC. 

C can be calculated from the following formula— 

_0-039K_ 

log 1 
microfarads per mile 

of conductor, (76) 

Fig. 21.—Capacity of 3-phase cable. 

Refer to Fig. 19. 

where R = inside radius of sheath 
r = radius of conductor 
d = distance between axis of con¬ 

ductor and axis of sheath 
K = S.I.C. of insulating material, and for impregnated 

paper cables varies from 2-8 to 3*5, according 
to methods of manufacture. 
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This formula must be used with caution, since it gives inac¬ 
curate results for large conductors closely spaced. In practice 
it is customary to obtain the value of C by experiment. For 
detailed information on the capacity of cables, the reader is 
referred to " Alternating Currents,” by Dr. A. Russell.* 

Leakance.—The leakance between conductors is very 
small, and may be neglected. It is interesting to note that 
the leakance of an overhead line includes not only the leakage 
over the insulators but also the loss caused by corona discharge. 

Voltage Drop along Short Single-Phase Transmission 

Line. 

Capacity Effects Neglected. 

Neglecting capacity and leakance effects the current will 
be the same at all points along the line. For purposes of cal¬ 
culation, therefore, it is permissible to consider the resistance 

Fig. 22.—Single-phase transmission line having resistance and reactance but no 
capacity. 

and reactance of a single-phase circuit such as that shown on 
the left of Fig. 32, as if it were lumped as indicated on the 
right of the same figure. 

Let E = voltage between lines at generator. 
V = voltage between lines at receiver (or load). 
I = current. 

cos <f> = power-factor at receiver. 
R/2 = resistance of each conductor. 
X/2 = reactance of each conductor. 

I == length of line. 

It is required to calculate the voltage E at the generator 

♦ ** Theory of Alternating Currents,” Vol. I., by Alex. Russell. Cambridge 
University Press. 
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when the other quantities are specified. Using vector quanti¬ 
ties for voltage and current, 

E = V -h I (R -t- jX). 

The vector diagram for the circuit will be as shown in 
Fig. 23. Taking I as the reference vector, the voltage V in 
vector notation will be 

V = V cos ^ 4- yv sin <f>. 
E = V cos <f> -t- yv sin ^ -f IR -|- yiX 

= (V cos ^ + IR) + y(V sin <f> + IX). 

The magnitude of E will therefore be 

E = V(V cos ^ + IR)* + (V sin i> + IX)* . (77) 

and it wiU be displaced from the current I by an angle 6 where 

, , Vsin^ + IX 
tan 0 - y ^ 

E 

IX 

Fio. 23.—^Vector diagram for single-phase transmission line. 

The voltage drop along the line will therefore be equal to 

(E-V) 

= x/(Vcos^ 4- IR)* -4- (Vsin^ 4- IX)* - V. 

Formula (77) may be simplified into an important practical 
working formula thus :— 

E = V(V cos if> + IR)> 4- (V sin ^ 4- IX)* 
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When V* is large compared with P(R* + X*)—and this will 
P 

usually be the case—^then ^ (R® + X*) can be neglected, and 

E = v|i + Y (R cos ^ + X sin 

Neglecting terms containing V* in denominator 

= V + I(R cos ^ + X sin ^). 

Voltage drop = E — V = I (R cos ^ + X sin^). 

Voltage drop per ampere _ (E — V) 
per mile of conductor ^I 

= 2(-^cos 

= 2V 

^resistance per mile of conductor X cos (f> 

where v + 

[reactance per mile of conductor X sin (f>. 

Voltage Drop along Short 3-Phase Transmission 

Line. 

Capacity Effects Neglected, 

Let P == power delivered at receiver in watts. 
V = voltage between lines at receiver. 

= phase voltage at receiver = 
cos p = power-factor of load at receiver. 

E = voltage between lines at generator. 
= phase voltage at generator = 

R = resistance of each conductor. 
X = reactance of each conductor. 

Line current I = x V X cos^ amperes. 

The 3-phase transmission scheme is shown in Fig. 24, and 
the corresponding diagram for line i, with its resistance and 
reactance lumped, is given in Fig. 25. 

The diagram for lines 2 and 3 will be identical with that for 
line z. 
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No current will flow in the neutral conductor with a balanced 
3-phase load, and hence there will be no drop of volts in the 
neutral. 

In practice the neutral conductor is omitted. 

Generator Receiver 

Fig. 24.—3-phase transmission line. Fig. 25.—3-phase transmission line 

having resistance and reactance 

but no capacity. 

The vector diagram for the circuit of Fig. 25 is given in 
Fig. 26. 

As for single-phase case, 

cos 4, + IR)* -h (V,» sin ^ -h IX)* . (78) 

And, since E = V3E,j, the voltage at the generator, and 
hence the voltage drop in the line, can be calculated. 

Fig. 26.—^Vector diagram for 3-phase transmission line. 

In the same manner as for the single-phase case, it can be 
proved that approximately:— 

Phase voltage drop per ampere per mile of conductor = v, 
and therefore the drop as measured between lines = 

where t)=resistance per mile X cos ^-f reactance per mile x sin <f>. 

If • R = resistance per mile and X = reactance per mile of 
conductor 

* This notation is used throughout the remainder of the book. 
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Then for 3-phase lines the voltage drop 
— ,y3{K. cos ^ + X sin <f>)ll . . (79) 

while for single-phase lines the voltage drop 
= 2{R cos ^ + X sin . . . (80) 

With the new notation (R and X being resistance and 
reactance per mile) formulae (77) and (78) become 

E = >/(V cos p + 2IR/)* + (V sin <f> + 2IX/)* . {77a) 

cos p + IR/)* + (V,» sin ^ + IX/)* {78a) 
I being the distance of transmission in miles. 

These approximate formulae, (79) and (80), yield results 
which aure sufficiently accurate when applied to the majority 
of short tninsmission lines. Their chief use, perhaps, is in 
obtaining quickly an estimate of what the correct conductor 
size is to suit a given caise, the hnail calculations being made by 
using formula (77a) or (78a). 

Table I. gives the voltage drop per ampere-mile for vaurious 
conductors and spacings commonly used for overhead power 
transmission, and will be found of considerable assistance 
when making cailculations of size of conductors for overhead 
transmission lines. 

Table II. is similar to Table I., but the conductor sizes amd 
spacings aire such as will be met with in underground cables. 

Calculation of Conductor Size. 

The calculation of voltage drop when the conductor size is 
known has been dealt with in the preceding sections. The cal¬ 
culation of the conductor size which will give a certain specified 
voltage drop is more difficult. The most convenient method 
when tables such as I. and II. are available is to proceed 
thus:— 

1. Calculate the line current I, 
2. Knowing the specified voltage drop E — V, calculate the 

permissible value of » = (E — V)/2l/ for single-phase 
and (E — V)ls/8^l for 3-phase lines. 

3. Using Table I or II., ascertain the conductor size iftdiich 
gives the nearest v to that required. 
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4. Using this conductor size, calculate the true voltage drop 
by formula (77a) or (78fl). 

5. Adjust conductor size if necessary. 
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This method is illustrated by the following example:— 
Example.—It is desired to deliver 1000 kw., cos^ = o*8, 

3-phase, 50 cycles, at 10,000 volts to a load at a distance of 
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10 miles from the power-station. If the permissible voltage drop 
between load and generator is not to exceed lo per cent, of the 
delivered voltage, calculate the necessary size of conductor— 

(а) If an overhead line with conductors spaced 24 ins. apart 
is used. 

(б) If an underground cable is used. 

Assume that the possible conductor sizes are limited to those 
given in Tables I. and II. 

T. ^ 1000000 
Line current = -7=-s = 72 amperes. 

V3 X 10000 X 0*8 ' ^ 

Permissible voltage drop = ^ X 10000 = 1000 volts. 

Using the approximate formula :— 

Voltage drop = ^^3 x v x I X 1. 
.-. 1000 = ,^3 X w X 72 X 10. 

V = 0*8. 

I. Overhead Line. 

From Table I., ig/’o64 conductor gives v — 0-893, 
I9/-072 „ „ v = o-y65. 

Work out the correct voltage drops for both conductors 
thus:— 

I9/-072. 

Resistance per mile = 0-566 ohms = R. 
Reactance „ „ = 0-52 ,, = X. 

Generated phase volts = s/cos /IR)*-f(V^ sin ^-f/IX)® 

= ^(4620 + 407)* + (3460 + 375)* 
= 6320 volts. 

.-. Generated line volts = 4/3 X 6320 
= 11,000 volts. 

, 1000 
Percentage voltage drop = X 100 

= 10 per cent, 
aassBaassMBsaBaps 

xg/’o64. 

R = Resistance per mile = 0-717 ohms. 
X s® Reactance „ „ = 0-532 >1 
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Generated phase volts = V(Vj,»cos04-^IN)®+(V,*sin^-l-II^)* 
= s/ (4620 + 518)* + (3460 + 385)* 
= 6420 volts. 

Generated line volts =• ^3 x 6420 
= 11,200 volts. 

Percentage voltage drop — X 100 

= 12 per cent. 

Use igj-oyz conductor. 

11. Underground Cable. 

As before, v — o-8. 
From Table II. for 11,000 working voltage— 

I9/‘o64 conductor gives w = 0‘67i. 
i9/'052 „ v = 0-976. 

Calculate correct voltage drops for both conductors thus:— 

iq/-o64. 

Resistance per mile = 0-717 ohms = R. 
Reactance „ „ = 0-162 „ = X. 

Generated phase volts = V(V,* cos (^+/IR)*+(V,ft sin ^+/IX)* 

= V (4620 + 516)* + (3460 + 117)* 
= 6250 volts. 

.-. Generated line volts = 6250 x ^3 = 10,820. 

Percentage voltage drop = x 100 

= 8-2 per ceht. 

I9/-052- 

Resistance per mile = 1-09 ohms = R. 
Reactance „ „ = 0-173 „ = X. 

Generated phase volts 

= V(V,» cos i> + fIR)* + (Vrt sin ^ + /IX)* 

== ^(4620 + 785)* + (3460 + 125)* 

= 6480 volts. 
6 
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Generated Une volts = ^3 x 6480 = 11,240. 

Percentage voltage drop = X 100 

= 12*4 per cent. 

Use i9/-o64 conductor. 

Voltage Drop along Single- or 3-Phase Transmission Line. 

Capacity Effects Included. 

When capacity effects are included the current varies from 
point to point along the transmission line, and the simple 
methods given can no longer be applied. 

The general theory of transmission given in Chapter II. 
includes capacity effects and formula (41) and (42) for the vol¬ 
tage and current at any point along the hne can be applied. 

It wiU be convenient, however, to modify the equations 
shghtly so as to make them incorporate the quantities which 
are usually stated in transmission line problems. Those quan¬ 
tities are:— 

(а) The load delivered to the receiver in watts. 
(б) The receiver voltage. 
(c) The receiver power-factor. 

The problem is to calculate the voltage and current at the 
generator. 

If E = voltage at generator. 
V = voltage at receiver. 
Ig = current at generator. 
I, = current at receiver. 
A = cosh yl. 
B = Zg sinh yl. 

* C = ^ sinh yl 
Lo 

y — propagation constant. 

Do not confuse C with C the symbol used for Capacity. 
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y = ^/(R + yx) (G + jiuCy 

Z« = characteristic impedance (or surge impedance) 

^ /R+yx 
V G + jwQ, 

I = distance of transmission in miles. 

The equations as modified become— 

E = VA + I,B . . . (81) 

I, = U + VC . . . (82) 

The formulae are applicable to both single-phase and 3-phase 
S5retems, provided the following distinctions are carefully noted. 

Single-Phase. 3* Phase. 

R = resistance in ohms per mile of loop. 
X reactance in ohms „ „ 
C » capacity in farads ,, ,, 

G leakance in ohms „ ,, 
E voltage between lines at generator. 

V ~ voltage between lines at receiver. 

R — resistance in ohms per mile of conductor. 
X = reactance m ohms „ ,, „ 
C = capacity in farads to neutral per mile of 

conductor. 
G *= leakance in mhos per mile of conductor. 
E — generator volts to neutral 

— generator line volts 

a/3 
V ~ receiver volts to neutral 

__ receiver line volts 

If the generator conditions are fixed and it is desired to 
obtain the conditions at the receiver, the corresponding equa¬ 
tions are:— 

V = EA-I„B . . . (83) 
L = I,A-*EC . . . (84) 

Example.—k lOO-mile, 50-cycle, 3-phase transmission line 
has its conductors placed at the corners of an equilateral triangle. 
The conductors have an overall diameter of 0’4I4 in. and are 
spaced 10 ft. apart. 

Calculate the voltage and current at the power station if 
23,000 kilowatts at 110,000 volts, 0-8 power-factor, are delivered 
to the load at the end of the line. 
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Resistance of line.—0-426 ohms per mile (from Table L, 
p. 78). 

Primary Constants.— 

R = 0-426 ohms. 
G = 0 (assumed). 

^ 38-8 X 10-*_ 38-8 X 
L — D ~ 

logic -- logic - 

10“ 

120 

t 

■ = 14-0 X I0“® microfarads 
per mile. 

X = 2,r/[74I logic + 80] X I0-* = 0-67 ohms per mile. 

Characteristic Impedance.- 

+yx 
4- jwC W„- 0-426 + 70-67 

“V; 0-79 57-5 
' 4-4 X io~V90 

= 425/- 16*25- 

+ 7277 X 50 X 14 X I0“» 

= V180-5 X 10®/— 32*5 

y = Propagation constant 

= ^/(R + jX){G + jwC) 

= -v/(0-426 -4-70-67) (0 +74-4 X 10“ *7 

= V3’494 X io“«/i47-5 

== 1-87 X io“®/73-75. 

A = cosh yl 

= cosh [1*87 X io~®/73-75] X 100 

= cosh [0-187/73-75] 

== cosh [0-0523 + 70*1795] 
= 0-9854/0-55. 

B = Zo sinh yl 

— 425/- 16-25 sinh 0-I87/73-75 

= 425/- 16-25 {0*1864/73-9} 

= 79*22/57*65- 
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0 = 2" sinh yl 

16-25 

= 0‘0004386/90’I5. 

E = VA + I^. 

V = 

I,= 

IIOOOO 

Vs 
= 63,510. 

23000000 

Vs X IIOOOO X 0-8 amperes. 

Taking V along the axis of reference, 

V — 63510. 
I, = 150 X 0-8 — ji$o X 0’6 

= 150/- 36-9- 

E = 635io(o-9854/o-55} + 150/- 36-9{79-22/57-65} 

= 73690 4- 74806 

= 7385o/3‘6 to neutral. 

.•. Generator line volts = ^3 x 73850 
= 128,000 volts. 

I„ = I^ + VC. 

= 150/— 36-9{o’9854/o-55} + 635io{o-ooo4386/90-i5} 

= 147-8/- 36-35 + 27-9/90-I5 

= 133/— 26-6. 

Hence the generator line volts = 128,000. 
Generator line current = 133 amps. 
Voltage drop in line = 128,000 — 110,000 

= 18,000 volts. 

Open Circuit Load Volts and Charging Current of 
Line.—Referring to equations (41) and (42), 

V = Vb cosh yx — I,Ze sinh yx . . {41) 
V 

1 = 1, cosh yx — — sinh yx . . . (42) 
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These are the general equations for the voltage and current at 
any point along the line, x being positive when measured from 
the generator to the load. 

In power transmission problems it is occasionally of im¬ 
portance to be able to calculate the two following quantities :— 

(a) The open-circuit voltage at the load for definite voltage 
at generator. 

(b) The current at the generator with zero load current at 
the receiver. This will be the charging current of the 
line. 

These two quantities can be readily obtained from equa¬ 
tions (41) and (42), thus :— 

When X — I, I = o. 

Substituting in equation (42) and using notation on p. 82— 
E 

0 = locoshyl-y- sinhyl 

Iq = ^ tanhyl, .... (85) 

E 
i.e. charging current = y- tanh yl. 

From equation (41), 

V=Ecosh,i-(|?^5smhy/)z. 

= E[cosh yl — sinh yl tanh y/] . . (86) 

where V = open circuit load volts corresponding to a voltage 
E at the generator. 

In previous example the no-load receiver voltage with 
128,000 line volts at the generator may be obtained thus— 

E = 73850 [taking E along reference axis] 

cosh yl — 0-9854/0-55 

sinh yl = o-l864/73-9. 

.*. sinh y/tanh y/= 
(o»i864/73-9)(o-i864/73«9) 

0-9854/0-55 

0-0353/I47-25- 
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V = 7385o[o-9854/o-55 - 0-0353/147^] 

= 130,000 volts between lines. 

Charging current 

_ 73850 0-1864/73-9 

425/- 16-25 0-9854/0-55 

= 32-8/89-6, 

i.e. charging current = 32-8 amperes. 

Methods of Obtaining cosHyZ and siNHyZ. 

Three methods are available for obtaining the values of 
cosh yZ and sinh yZ, viz. :— 

(1) From Kennelly’s “Tables,” interpolation being used 
when necessary. 

(2) From the identities— 

cosh (m + jv) — cosh u cos v j sinh « sin v 
and sinh (« + jv) — sinh u cos v j cosh u sin v. 

The numerical labour involved is very considerably reduced 
by using tables of log cosh u, log sinh u, log cos v, and log 
sin V. 

(3) From the identities as in (2) above, but using for cosh « 
the expression J{€“ -f- and for sinh u the ex¬ 
pression ]^{e“ — e“"}. The values of f“, c““, cos v 
and sin v are obtained from tables. 

As an illustration, we will calculate the value of cosh 
0-187/73-75° (taken from the example on p. 83) by each of 

the three methods. 

I. From Kennelly’s “ Tables.” 

cosh o-i/^ = 0-99586/0-161° 

cosh o-i^° = 0-99576/0-153°. 
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Difference for i° — — o-oooio/0‘Oo8. 

Difference for — — o-oooo75/o’Oo6. 

cosh o-i/7375° = 0*995785/02^° 
cosh 0*2/73° == 0*98350/0*648° 

cosh 0*2/74° = 0*98312/0*614°. 

Difference for 1° == — 0*00038/0*034°. 

Difference for 0*75° = — 0*000285/0*0255. 

.*. cosh 0*2/73*75° -- 0*983215/0*6225 

cosh 0*2/73*75° = 0*983215/0*6225 

cosh 0*1/7375° = 0*995785/00^ 

Difference for 0*1 = — 0*012570/0*4665. 

.*. Difference for 0*087 = — 0*010936/0*4059. 

.*. cosh 0*187/73*75° = 0*984849/0*5619° 

= 0*984849/0° 33*7\ 

II. From cosA (« + 7^) — cos/t « cos v + 7 « sm anti 
«smg <aWes 0/ log cosh u, log sink u, log cos v, and log sin v. 

cosh 0*187/73*75° = cosh (0*0523 + 70*1795) 

log cosh ucosv = log cosh u + log cos v. 

From tables log cosh 0*0523 = 0*000594 
log cos 0*1795 = 1*992967. 

.*. log cosh M cos V — 1*993561 
Antilog = 0*98528. 

.*. cosh u cos V = 0*98528. 

log sinh « sin » log sinh u + log sin v. 

Tables of log sinh u may be used, but for small values of « 
such as will occur in practical problems interpolation is diffi¬ 
cult, and the following procedure is advisable :— 

sinh u — u 
sinh u 

u 

.*, log sinh « = log « -f- log 
sinh u 

u 
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Hence log sinh m sin w = log u + log 
sinh u 

u 
+ log sin V. 

Values of log are available, and interpolation is much 
u 

more easily carried out than with log sinh u. 

When u = 0-0523 
log u — log 0-0523 = 2-718502 

, sinh u , sinh 0-0523 0 
log-= log-^ = o-oooigS 

“ « 0-0523 ^ 
log sin V = log sin 0-1795 = 1-251724. 

log sinh « sin V = 3-970424. 
sinh « sin V = 0-0093417. 

Hence cosh (0-0523 + j 0-1795) = 0-98528 j 0-00934 

= 0-98533/0° 32-6'- 

Tables of log cosh u, log sinh u, and log are given in 

“ Alternating Current Phenomena in Parallel Conductors,” 
Vol. I., by F. E. Pemot; also in " Smithsonian Mathematical 
Tables ” [see Method III.). Suitable tables of logarithmic sines, 
cosines, and tangents are given in " Chambers’ Mathematical 
Tables,” published by W. & R. Chambers. 

III. From Tables giving e“, e~“, cosv, and sinv. 

cosh 0-187/73-75° = cosh (0-0523 -f j 0-1795) 

= cosh 0-0523 cos 0-1795 + j sinh 0-0523 
sin 0-1795. 

Now cosh « = 
€“ -f 

2 

Tables of c* and €““ are given in " Smithsonian Mathematical 
Ta,bles—Hyperbolic Functions,” by George F. Becker and 
C. E. van Orstrand. Interpolation is very simple. Thus, if 
u = X a where x is given in the tables and a is a small 
increment, then 
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Similarly, e““~“ 

When u = 0*0523 

From "Smithsonian Tables,” — 1*053376. 
50-o5»3 _ joo5J J00003 _ 1-053376 [r4-o*ooo34- • 

-= 1*053692. 
Also, £-0-0523 £-0-052^-0-0003^ 

From tables ^-0052 _ 0*9493289. 

* g-0-0523 = 0*9493289 [i — 0*0003] 

= 0*9490441. 

cosh u = 
2 

.*. cosh 0*0523 = 1*001368. 

.] 

Similarly, sinh 0*0523 = 0*052324. 

V = 0*1795 radians = 10° 7*04'. 

cos V = 0*98393 ■> From suitable tables such as " Chambers’ 
sin V = 0*17851 / Mathematical Tables.” 

.*. cosh (0*0523 + j 0*1795) = 1*001368 X 0*98393 

+ j 0*052324 X 0*17851 

= 0*98528 4- j 0*00934 

= 0-9^533/0° 32-6’. 

Example Illustrating Method of Calculation when 

Great Accuracy is Required. 

Consider again the example on page 83. In calculating Zj 
the slide rule was used, and, generally, in the whole of the 
working there was no striving after extreme accuracy. This 
procedure is quite satisfactory for most practical cases, but 
where very accurate results are required a more elaborate 
method such as that now to be described must be used. 
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The various steps in the calculation will be illustrated by again 
working through the example on page 83 and using five-figure 
logarithms. 

R = 0’426. G = 0. 
C = 14 X io~*. X = O'fiy. 

Calculation of Z,. 

_ /R+;X 
^ " V G + ycoC‘ / 

Express R + jX in form P/0. v 

tan 0 = ^. 
R j? 

•. log tan 0 = log X — log R 

= I‘82607 ~ f‘62941 

= 0‘I9666. Whence 0 = 57° 33' 2". 

•. log sin 0 = i‘92627 from table of log sines, etc. 

Hence 

~ sin 0' 

.•. log P = log X — log sin 0 

= I‘826o7 — i‘92627 

= i‘89980. 

.‘. P = 0‘79396. 

R -|-;X == 0-79396/57° 33' 2". 

Express G -f- ja)C in form P/^ 
G 4- joiC = O -|- jL 2Tr/C. 

log Ztt — 0*79818 

log/= I‘69897 

log C = 8*14613 

6*64328. 

Antilog = 0*0000043982 

= 4-3982 X IO-*. 

.*. G -j-ywC = 4*3982 X io~V9o°. 
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Hence 
/ 079396/57° 33' 2" 

' 4*3982 X io"‘/90° 

log 0-79396 = 1-89980 

log 4-3982 X 10-" = 6-64328 

5-25652. 

-r 2 = 2-62826. 
Antilog = 424-87. 

.-. Z„ = 424-87/— 16° 13' 29". 

90 

57° 33' 2* 

32° 26' 58" 

- 16° 13' 29" 

y = v^(R 4 7X)(G + j^) 

= V(0-79396/57° 33'2")(4-3982 X 10-V90'") 

= 1-8687 X io“*/73° 46'31". 

Obtain cosh yl in form cosh (a + jb). 

Since I — 100 
coshy/ = cosh 0-18687/73° 46' 31" 

= cosh [0-18687 cos 73° 46' 31" 
+ j 0-18687 sin 73® 46' 31'] 

log 0-18687 = 1-27154 log 0-18687 = i-27154 
log cos 73° 46' 31' = 1-44623 log sin 73° 46' 31" = 1-98235 

2-71777 1-25389 
Antilog = 0-05221. Antilog = 0-17943. 

.-. cosh yl = cosh [0-05221 4-7 0-17943]. 

Obtain cosh yl in form —^Using the notation on 

page 26, viz., y = jS + 7a, 
cosh yl — cosh [^l + jal]. 

pi = 0-05221 
cd = 0-17943. 

Now, cosh ipi + jod] = cosh pi cos cd +j sinh pi sin od. 
log cosh pi — log cosh 0-05221 = 0-000592 (from tables), 
log sinh pi — log sinh 0-05221 = 2-71795 (from tables), 

log sin cd = log sin 0-17943 = log sin 10° 16' 50' 
= I*25I56. 

log cos cd = log cos 10° 16' 50' = 1-99297. 
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Let Q = cosh j8/ cos (d. 

Then log Q = 1*99356. 
Let S = sinh pi sin cd. 

Then log S = 3*96951 

tan ^ — Q- 

.*. log tan 0 = log S — log Q 

= 3-97595. 
.*. 6 — 0° 32' 31" 

and log cos d — 1*99998. 

Now P = 
cos 6 

.*. log P = log Q — log cos 0 

= i-99358. 
... P = 0*98533. 

Hence A = cosh yl 

= 0-98533/0° 32' 31 "■ 

0 

Obtain sinhy/ in form 

Let T = sinh pi cos od. 

U = cosh pi sin od. 

log T = 2*71092. 

log U = 1*25215. 

Since tan ^ 

log tan 5 = 0*54123. 

.••» = 73°57' 19' 
log sin 6 = 1*98275. 

Since P = 
sm^ 

log P == 1*26940 

P = 0*18595. 

.*. sinh yl = 0*18595/73° 57' 19*'. 
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B = Z# sinh yl 

= 424-87/- 16° 13' 29* X 0-18595/73° 57' 19*. 

log 424-87 = 2-62826 73° 57' 19" 
log 0-18595 = 1-26940 16° 13' 29" 

1-89766. 57° 43' 50' 
Antilog = 79-006. 

.-. B = 79-006/57° 43' 50". 

C = i sinh yl 
^0 

= 4a4-87/- i6--i7i-9- °-^W5/73°57'i9- 
— 0-00043767/90° 10' 48*. 

E = VA + I,B 

_ I10000 

“ s/Z 
X 0-98533/0° 32* 31* + 150/— 36° 52' 14* 

X 79-006/57° 43' 50*. 

FA m form P/0. 

log iioooo = 5-04139 
log 0-98533 = i-99358 

5-03497 
log V3 = 0-23858 

4-79639 
Antilog = 62573 = P. 

.-. VA = 62573/0° 32' 31*. 

VA in form a + jb. 

a = 62573 cos 0° 32' 31'. 
log 62573 = 4-79639 

log cos 0° 32' 31' = 1*99998 

4*79637 
Antilog = 62570 = a. 

IfB in form P/$. 

log 150 = 2-17609 
log 79-006 = 1-89766 

4-07375 
Antilog = 11851 = P. 

-36° 52' 14'+ 57° 43'50' 
= 20° 51' 36' = 0. 

.-. I,B = 11851/20° 51' 36*. 

IfB in form a + jb. 

a = 11851 cos 20° 51' 36'. 
log 11851 = 4-07375 

log cos 20° 51' 36* = 1-97056 

4-04431 
Antilog = 11074 = «- 
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b = 62573 sin 0° 32' 31*. 

log 62573 = 479639 
log sin 0° 32' 31" = 3'97583 

277222 
Antilog = 591*86 = h. 
VA = 62570 +7 591*86. 

b — 11851 sin 20° 51' 36*. 

log 11851 = 4-07375 
log sin 20° 51' 36' = 1*55155 

3-62530 
Antilog = 4219*9 = b. 

.*. 13 “ X1074 +7 4219*9. 

E = VA + I,B — 62570 + 7 591*86 -f 11074 + 7 4219*9 
= 736444-74812. 

I, = u + VC 

-= 150/— 36° 52' 14" X 0-98533/0° 32' 3X" + 
IIOOOO 

v/3 
X 0*00043767/90° 10' 48*. 

VC in form Pjd. JfA in form Pjd. 

log 150 — 2*17609 
log 0*98533 = 1*99358 

2*16967 
Antilog = 147*8 = P. 

-36° 52'14'4-0° 32'31" 
= - 36° 18' 43" = 0. 

.*. I^ = 147*8/- 36° 18' 43^ 

IfA in form a + jb. 

a — 147*8 cos 36° 18' 43'. 
log 147*8 = 2*16967 

log cos 36° 18' 43* = 1*90623 

2*07590 

Antilog = 119*1 = a. 

b = — 147*8 sin 36° 18' 43'. 
log 147*8 = 2*16967 

log sin 36° 18' 43' = 1*77245 

1*942x2 

log IIOOOO = 5*04139 
log 0*00043767 = 4*64115 

1*68254 

log V3 = 0-23858 

1-44396 

Antilog = 27*794=P. 
.*. VC = 27*794/90° 10' 48*. 

FC in form a -4- jb. 

a = 27*794 cos 90° 10' 48* 
= — 27*794 sin 0° 10' 48'. 

• log 27*794 = 1*44396 
log sin 0° 10' 48* = 3*49715 

2*94111 
Antilog = 0*087319 = — «. 

b = 27*794 sin 90° 10' 48* 
= 27*794 cos 0° 10' 48'. 

log 27*794 = 1*44396 
log cos 0° 10' 48' = 0 
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Antilog = 87*52 = b. I Antilog = 27*794 = b. 
*. = 119*1 — j 87*52. .*. VC = — 0*087 + j 27*794. 

lo = IrA + VC = 119*1 — j 87*52 — 0*087 + j 27*794 
= 119-; 59*73. 

E in form P/d. 

E = 73644 + j 4812. 

tan« = i2j2. tail V — -7- 

73644 
log tan 0 = log 4812 - 

log 4812 = 3*68233 
log 73644 = 4*86714 

. log tan 6 — 2*81519 
g = 3° 44' 20* 

log cos 6 = 1*99907 

p _ 73644 
cos 6 

log 73644 = 4-86714 
log cos 6 = 1*99907 

log P = 4*86807 
P = 73802 

- log 

73644 

*. E = 73802/3° 44' 20*. 

Ja in form P/^ 

Io = 119-759*73. 

log 59-73 = 177619 
log 119 = 2*07555 

.*. log tan 6 = 1*70064 
-26° 39^0*. 

log cos 6 = 1*95122 

p - 
cos 0 

log 119 = 2*07555 
log cos 0 = 1*95122 

log P = 2*12433 
p = 133*1 

.*. le = 133-1/— 26° 39' 0*. 

EXAMPLES ON CHAPTER V. 
« 

I, A 3-phase overhead transmission line has conductors spaced with 

Dj 3 ft., D, « 4 ft,, D, = 5 ft., referring to Fig. 17. If the 

radius of each conductor is 0-096 in. and the frequency is 50 cycles 
per second, calculate— 

(а) The equivalent equilateral spacing. 
(б) The reactance per mile of conductor. 

(c) The capacity to neutral per mile of conductor. 

f(a) 3*914 ft. 
Answers^ (b) 0-65 ohms. 

^(c) 0*0145 microfarads. 

7 
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2* A 3-phase underground cable has conductors spaced so that, referring 

to Fig. 19, 

Y = o»i8 in. D = 0*5 in. R = o*6i in. K = 3. 

Calculate— 

(fl) The reactance per mile of conductor at a frequency of 50 cycles 

per second. 

(6) The capacity to neutral per mile of conductor. 

Answersf^^^ ohms 
(^(6) 0*417 microfarads. 

3. Show that when the fall of voltage due to resistance and reactance 

is small compared with the line voltage, the fall of voltage along 

a 3-phase transmission line per ampere per mile is given by the 

expression cos ^ + X sin where R is the resistance per 

mile of conductor, X is the reactance per mile of conductor, and 

cos 6 the power-factor of the load. 
Find the fall of voltage along a 3-phase transmission line, the 

line pressure at the load being 30,000 volts, and the length of the 

line being 30 miles, when 5000 k.v.a. are delivered at a power- 

factor of 0*8, the current lagging. The resistance and reactance 

per mile are 0*72 w and o*6 w respectively. 

Answer : 4680 by formula (80), 4700 by formula (79). [London 

University, 1925.] 

4. Prove that in a symmetrically arranged 3-phase transmission line 

the inductive drop and resistance drop between any two wires 

is the same as that which would occur if half the total power 

were transmitted at the same voltage and frequency along two 

of the wires. 

An overhead 3-phase line consists of three wires each o*8 in. 

in diameter spaced 4 ft. apart. The current flowing per wire is 

300 amps, at 50 cycles. Calculate the resistance and inductive 

drops per mile of line; the specific resistance of copper is 0*67 

microhms per inch cube. 

Answer : RI = 43*9 volts, XI = 264*5 volts. [London 

University, 1921.] 

5. 1000 kw. of 3-phase power are to be delivered over a distance of 
20 miles to a star-connected receiving circuit, the power-factor 

of which is 0*85. The voltage between lines at the receiving end 

is 20,000 and the frequency is 50. What must be the voltage at 

the transmitting end if the resistance per mile of each line con¬ 

ductor is 1*5 ohms and its inductance per mile is 0*0015 henry. 

Answer : 21,810 volts. [London University, 1918.] 
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6. It is required to deliver 250 k.w. at 6600 volts 0*8 power-factor, 

50 cycles per second, to a load which is situated 10 miles from 

the source of supply. The permissible voltage drop being 5 per 

cent, of the delivered voltage, calculate the necessary conductor 

size— 

{a) If an overhead line is used with conductors spaced 2 ft, 
apart. 

(b) If an underground cable is used. 

Assume that the choice of conductor size is limited to those 
given in Tables I. and II. 

Answers 

'(a) Overhead Line,—19/-083 conductor gives 4*1 
per cent. drop. 

I9/-072 conductor gives 5*3 per cent. drop. 

Hence i9/-o83 conductor must be used. 

{b) Cable,—i9/-o64 conductor gives 4-6 per cent. 
. drop and should be used. 

7. An overhead transmission line has primary constants per mile of 
R = o«5 ohms, C = 10 X io~* farads, G — o, and an inductance 

such that the reactance X at 50 cycles per second is 0*6 ohms. 

Calculate for this frequency :— 

(a) The characteristic impedance Z^. 

(&) The propagation constant y. 

Slide rule accuracy only is required. 

Answers { 
(а) = 498/-- I9»4°. 

(б) y = 1*57 X io-»/70-i°. 

8. An overhead transmission line has the following primary constants 

per mile: R = 0*291, C == 14*5 x 10G = o, and inductance 
such that the reactance X at a frequency of 50 cycles per second 

is 0*649 ohms. Calculate for this frequency ;— 

(а) The characteristic impedance Z^. 
(б) The propagation constant y. 

Employ method given on pages 91 and 92, and use five-figure 
logarithms. 

Answers { 
(a) Z„ = 395-i4/-_i2V_30^ 

(&) y =x 1-8 X io-»/77° 55' 30*. 

Note.—Compare answers with values given in table on page 96, 

9. An overhead transmission line has a propagation constant 

Y 2 X 10- y6o^ 
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If the length of the line / is loo miles, calculate cosh yl and sinh y/, 

having given = 1*105 «-*®*i == 0*905. Slide rule accuracy 

only is required. 

Answer ( 
cosh yl = 0*9899 0*0172 = 0*99/1® 

sinh yl — 0*0985 + j 0*1733 = 0*2/60*37®. 

10. An overhead transmission line has a propagation constant 

y = 1*8 X io-»/77® 56^ 

If the length of the line I is 200 miles, calculate cash yl and sinh y/. 

Employ method 2 on page 87, and use five-figure logarithms 

and tables of log cosh x and log sinh x, 

rcosh yl •= 0*94178/1° 34' 48"^ 

Isinh yl = 0*35293/78° 26' 20^^. 
A nswer 

Note.—Compare answers with values given in table on page 96. 

II. A 3-phase overhead transmission line supplies 100 amperes at 200 

kilovolts, 50 cycles to a load, the power-factor being o»8 lagging. 

The line is 200 miles long and has a resistance per mile of 0*368 

ohms, reactance 0*705 ohms, capacity of 13*3 X 10 “® farads and 

negligible leakance. Calculate the voltage and current at the 

generator. 

A nswer s\ 
Voltage at generator = 123,150/4° 50'. 

Current „ „ == 86*3/27®59^ 

12. Taking transmission line particulars as given in the example on 

page 83, calculate :— 

(a) The voltage and current at the generator when delivering 

28,000 k.w. to the load at 0*8 power-factor, 100,000 volts, 

50 cycles. 

(6) The voltage and current halfway along the line when 

delivering this load of 28,000 k.w. 

A nswers ■ («){ 

(6){ 

Voltage = 71,950/4° 55^ 

Current = 183/— 29° 57^ amperes. 

Voltage = 64,99o/2°3^. 

Current = 192/— 33° 44^ amperes. 

Note,—Voltage and current are given in the answers as phase 

quantities, the load conditions being :— 

Voltage « 57,700, 

Current « 200/^^362^^ 
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CHAPTER VI. 

EFFECT OF TRANSFORMERS ON VOLTAGE DROP IN 
TRANSMISSION CIRCUIT. 

Most transmission schemes include step-up and step-down 
transformers, and it is of considerable practical importance to 
be able to calculate the voltage drop with the transformers 
included in the line. 

Consider the following simple single-phase transmission 
scheme as illustrated in Fig. 27. 

ABC 

Fig. 27.—Single-phase transmission scheme consisting of transmission line and 

step-up and step-down transformer. 

A is a step-up transformer installed, say, in a power- 
station. 

B is the transmission line. 
C is the step-down transformer'installed, say, in a sub¬ 

station. 
The problem is to calculate the total drop in volts from the 

low-tension terminals at A to the low-tension terminals at C 
The drop as calculated will include the drop in volts in the 
transformers A and C as well as in the line B. 

Equivalent Network of Transformer.—The calculation 
of the voltage drop in the transformer is most readily performed 
by using an equivalent network to replace each transformer. 
It is proved in text-books on the subject that any transformer 
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can be replaced by a network of suitably arranged resistances 
and reactances. 

Thus a single-phase transformer with a voltage Vi applied 
to the primary, and a voltage Vj at the secondary terminals, 
can be replaced by either of the simple networks shown in 
Figs. 28 and 29. As will be seen later, these simple networks 
do not exactly reproduce the transformer conditions, but they 
are sufficiently accurate for most purposes. 

The following symbols are employed in Figs. 28 and 29 :— 

Ti — primary resistance. ^2 = secondary resistance. 
Xi — primary reactance. X2 = secondary reactance. 
11 = primary current. Vj = primary apphed volts. 
12 = secondary current. Vg —■ secondary voltage. 

a — ratio of transformation — primary turns/secondary turns. 

Xf re 

Fig. 28.—Equivalent approximate Fig. 29.—Equivalent approximate 

network of transformer. All network of transformer. All 

quantities referred to primary quantities referred to second- 

side. ary side. 

r. = r, I aV, - - 
Xt = j,* + »,. '■» = ^ + xt. 

The primary winding is, of course, that winding to which 
power is supplied, and it should be noted that the ratio of 
transformation a will be a whole number or a fraction, depending 
upon whether the primary or the secondary is the high-tension 
winding. 

In Fig. 28 everything is referred to the primary winding, 
and when tising this network the current flowing is the actual 
primary current. 

X, = equivalent reactance of transformer referred to primary 
winding. 

f. = equivalent resistance of transformer referred to primary 
winding. 
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In Fig. 29 ever5?thing is referred to the secondary winding, 
and when using this network the current flowing is the actual 
secondary current. 

x, = equivalent reactance of transformer referred to secon¬ 
dary winding. 

r, — equivalent resistance of transformer referred to secon¬ 
dary winding. 

The calculation of the total voltage drop in A, B, and C is 
now simple. It is convenient to express all the transformer 
quantities in terms of the high-tension winding, hence, since 
at the power-station A the primary winding is the low-tension 

Fio. 30.—Equivalent circuit for single-phase transmission scheme. 

Xi •• equivalent reactance of transformer A referred to secondary. 
Rs » equivalent resistance of transformer A referred to secondary. 
Xb = reactance of transmission line B. 
Rb = resistance of transmission line B. 

Xo = equivalent reactance of transformer C referred to primary. 
Ro equivalent resistance of transformer C referred to primary. 

winding, we replace the transformer at A by a network where 
everything is referred to the secondary side (Fig. 29), while at 
the sub-station C, the primary winding being the high-tension 
winding, we replace transformer C by a network where every¬ 
thing is referred to the primary side (Fig. 28). The equivalent 
circuit for the transmission scheme of Fig. 27 is therefore as 
indicated in Fig. 30. 

The vector diagram for this circuit is given in Fig. 31. 
It is clear that in order to calculate the voltage drop, in¬ 

cluding the transformers, all that is necessary is to add the 
equivalent resistances and reactances of transformers at A and 
C expressed in terms of the high-tension winding, to the resist¬ 
ance and reactance of the transmission line, and the problem 



104 TELEPHONE AND POWER TRANSMISSION 

can be solved from formula (77) where for R is substituted 
(R^ + Rj 4- Ro), and for X is substituted (X^ + X, + X^). 
The current to be used is the high-tension current throughout, 
and the resultant vector OA is the voltage at the low-tension 
side of transformer at A divided by the ratio of transformation 
a. Since at A the primary winding is the low-tension winding, 
this ratio will be a fraction. 

Example.—K single-phase transmission scheme consists of 
an overhead line and step-up and step-down transformers at 
A and C as in Fig. 27. The load delivered at the low-tension 
side at C is 300 k.v.a at 2300 volt o-8 power-factor lagging. 
The high-voltage side at C is directly connected to the overhead 

h 

Fig. 31.—Vector diagram for single-phase transmission scheme. 

line, the ratio of transformation being 479. The step-up 
transformer at A is identical with that at C. The total resist¬ 
ance of the overhead line is 10 ohms, and its reactance 30 ohms. 
The resistance of the low-voltage winding of each transformer 
is 0*05 ohms, and its reactance 0*162 ohms. The resistance of 
the high-tension winding is 1*28 ohms, and its reactance 4*28 
ohms. Calculate the voltage on the low-tension side of the 
power-station transformer at A. 

Current delivered at low-tension side of transformer at C 
= 300000/2300 = 130 amperes. 

At C the hig^-ten^on side is the primary and the low-ten- 
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sion side is the secondary. Referring transformer to high- 
tension (i.e. primary winding) the network is 

Fig. 32. 

X, = *1 + 
= 4-28 + (479)* X 0-162 
= 4-28 + 3-73 
— 8-01 ohms. 

Ro = ri -f a’h't = 1-28 + (4-79)* X 0-05 = 2-43 ohms. 

At A the low-tension side is the primary and the high-tension 
side is the secondary. 

Referring ever3rthing to the high-tension, i.e. to the secondary 
winding, the network is 

Fio. 33. 

^ *s, = ■ ^ 4 28 = 8'0i ohms, 
^ /JE_\ 

\479/ 

R^ = 2-43 ohms. 

Referring to Fig. 31, 
« 

aVg = 4*79 X 2300 = 11,000, 

T la 130 = I 27 amperes. 

+ Rb + R®} = 27(2-4 -f-10 -1- 2-4} = 400. 

Ii{X^-h X. + Xo} = 27(8 + 30 + 8} = 1240. 

OA = V(iiooo X 0-6 + 1240)* + (iiooo X 0-8 -f- 400)* 

= 12,100 volts. 
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Voltage at primary (i.e. low-tension side) of transformer at 

A = Vi and — = 12,100. 
^ a 

a — —^ 47qVi = 12,100. 
479 ^ ^ 

Vi == 2530 volts. 

Effect of Transformers when Magnetising Current 

IS Included. 

As indicated in a previous section, the circuits of Figs. 28 
and 2Q do not represent with complete accuracy the equivalent 
network of a transformer. The error arises from the fact that 
they do not allow for the magnetising current flowing in the 
primary winding. This magnetising current may be divided 
into two components, viz., a purely wattless current which 
supplies the magnetising ampere turns for the core, and a 

Fio. 34.—^Accurate equivalent Fig. 35.—^Accurate equivalent 
network of transformer. network of transformer. 

purely wattful current required to supply the iron losses in the 
core. 

An accurate network is represented in Fig. 34, where every¬ 
thing is expressed in terms of the primary winding. In this 
network g is a pure non-inductive resistance which takes a 
current equal to the wattful component of the magnetising 
current, while 5 is a pure inductance which takes a current 
equal to the wattless component of the magnetising current. 
Fig. 35 reproduces Fig. 34, excepting that g and b in parallel 
have been replaced by a single equivalent admittance Y,. 

Whilst the approximate methods already given are suffi¬ 
ciently accurate for most purposes, it is interesting to calculate 
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the voltage drop in a transmission scheme, including trans¬ 
formers represented by the accurate network of Fig. 34, instead 
of the approximate ones of Figs. 28 and 29. The method which 
will be given is due to Messrs. R. D. Evans and H. K. Sels,* 
and is instructive as an application of the principles of Chapter I. 
for the solution of alternating current problems by the methods 
of vector algebra, as well as important in the theory of the 
transmission of electric power. In this method the trans¬ 
former primary and secondary impedances are assumed to be 
equal when expressed in terms of either the high-tension or 
low-tension winding. 'Ihe error introduced by this assumption 
is small, and the resulting equations embody transformer 
quantities which are readily obtained by simple tests, and are 
therefore usually stated by transformer manufacturers. 

When currents and voltages are expressed in vector quan¬ 
tities in the manner described 
in Chapter I., the equations for 
the solution of an alternating 
current network can be written 
as if the network were traversed 
by direct current. Thus, in 
Fig. 36, where ever3^hing is 
expressed in terms of the high- 
tension winding: 

Let T,. = equivalent impedance of transformer. 
Y, = admittance which takes current equal to magnetis¬ 

ing current. 
E, = voltage at sending end. 
E, = voltage at receiver. 

Then E.= E, + I.^'-1-Ir5’ 

= E, + ^U + Ir] 

Fig. 36.—^Equivalent network of 

transformer when primary and 

secondary impedances are equal. 

Eleetrie Journal, Vol. i8, p. 306. 
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ALo 

= {E, + |^(I.+ g-I.^;}Y, 

= (e. f 

Applying Kirchoff’s laws— 

I. = Ir + I. 
T I Y 

= I, + E,Y, + 

= ,[. + M] + E,V, 

= I,D -f E,C 

Where 

Where 

T Y 1 
C = Y, and D = i + 

L 2 _ 

E. - E, + + IJ 

- E, + + i'i') + E,Y, + I,] 

= E, + I’[l,li + If’ + i)+EY,] 

„ , i,T,r T,Y,i 
= E, + -y [2 + J + EX- 

-E, 

= E, 

A — I + 

[■+¥']+'4. 
Y,T, 

= E,A + 13 

2 

(87) 

(88) 

Measurement of T,, Y„ r„ and x,. 

These values can be readily determined for any transformer 
by two simple tests, viz.:— 

1. An open-circuit test. 
2. A short-circuit test. 
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The open-circuit test will give the value of Y,. 
The short-circuit test will give the values of T,, x^, and r,. 
Open-circuit Test.—^The diagram of connections for this is 

given in Fig. 37. 

The normal voltage at normal frequency is applied to the 
primary circuit. The secondary is on open-circuit. The input 
amperes and input watts are measured. 

On open-circuit the transformer will, since it is working at 
full voltage, have the 
normal flux in its core. 
The full iron loss will 
therefore be present and 
will be measured by the 
wattmeter. The cur¬ 
rent flowing will be the 
no-load current of the 
transformer, and this will always be very small compared with 
the normal full load current. Under these circumstances the 

— -I-IRiW—X 

Ir i 
2 ^y'r T 

Fig. 38.—Equivalent network of transformer in 

open-circuit. 

Fig. 39.—Equivalent network and vector diagram of single-phase transformer on 

open-circuit. 

T 
voltage drop in the primary impedance — (Fig. 38) will be very 

small, and the current input I, will be practically unaltered if 
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Y, is represented as being joined across the primary terminals 
as in Fig. 39. 

Obviously I, = E,Y„ i.e. Y, = . . . . (89) 

If the wattmeter reading is W, then the power-factor of 
the input current I, is 

cos <p = W/E,I, . . • (90) 

In this way the vector Y, is determined both in magnitude and 
direction. 

For three-phase transformers E, must be “ voltage to 
neutral,” and thus is equal to the line voltage during the test 
divided by s/% Y, will be the admittance per phase. 

Transformer manufacturers give the information necessary 
for the determination of Y, in various ways. Sometimes it is 
given in terms of “ magnetising watts ” and “ magnetising 
K.V.A.” Sometimes the magnetising watts are called “ no-load 
watts ” or ” core loss,” while the magnetising K.V.A. may be 
called " no-load K.V.A.” The magnetising (or no-load) watts 
are the watts input during the open-circuit test, i.e. they are 
the core loss at normal primary voltage. The magnetising (or 
no-load) K.V.A. is the K.V.A. input to the transformer during 
the open-circuit test. The manner in which Y, can be deter¬ 
mined when these quantities are given will be explained by an 
example. 

Example.—A 3-phase, 1000 K.V.A., 6600 volt transformer 
has a magnetising K.V.A. of 10 per cent, and magnetising 
watts of 20,000. Calculate Y,. 

Under open-circuit conditions input to transformer = 100 
K.V.A. The input to any 3-phase transformer is volt- 
amperes, 

where Ei, = line volts, 
II = line amperes. 

X 6600 X II = 100,000. 

Il == 8-7 amperes. 
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[Note.—^When in 3-phase problems a voltage is specified (as 
6600 in this problem) it always means line voltage unless the 
contrary is definitely indicated.] 

Watts input to any 3-phase transformer 

= <f> = (K.V.A.) X cos <f>, 

where cos is the power-factor. 
Watts input under open-circuit conditions = 20,000. 

.-. 20,000 = 100,000 cos <f> 
cos ^ = 0*2. 

Thus the no-load current is 87 amperes lagging behind the 
voltage by an angle <f>, w’here cos ^ = 0*2. 

Y, = i ^ 0-00227/- 78° 28' mhos per phase. 

Short-circuit Test.—^The diagram of connections for this 
test is given in Fig. 40. 

The secondary is short-circuited on itself, and it is therefore 
necessary for the primary volts to be reduced to a small fraction 
of their normal value, otherwise the currents flowing in primary 
and secondary windings would be excessive. Under these cir¬ 
cumstances the flux in the core is also a small fraction of its 
normal value, and the iron loss and magnetising current will 
therefore be very small. The circuit of the transformer may 
now be represented with a high degree of accuracy by Fig. 41. 

The shunt admittance Y, is omitted. It was only included 
in the general diagram to take account of the magnetising 
current and the iron loss, and these are so small during short- 
circuit as to be negligible. 
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Referring to Fig. 41, 

Input current = I, = I,. 
E. = I.T, 

T.-f-' • • ■ 
i.e. for a single-phase transformer the equivalent impedance is 
equal to the input voltage divided by the input current during 
short-circuit. This impedance is referred to that side of the 
transformer which was used as primary during the short- 
circuit test. 

If P is the power input as measured by the wattmeter W, 

_ {^Resistance 
—Wattmeter {Reactance JCf 

—O— 
Ammeter 

Fio. 41.—Equivalent network of single-phase transfomier on short-circuit. 

then this input is all expended as resistance losses, i.e. " copper 
losses ” in the transformer winding. 

P = I,V, and y, •= . . (92) 

where y, is the equivalent resistance of the transformer 
referred to the side used as primary during the test. 

The equivalent reactance x, is obtained from 

Xt = V'T,* - y,* . . . (93) 

Thus by measuring the input volts, amperes, and watts 
during the short-circuit test, we obtain T, in the form 

Tr = y, -f jx,. 

For three-phase transformers the following modifications 
are necessary. 

During short-circuit— 

let P = total input power in watts. 
Ei, — voltage between any two lines. 
If, = line current. 
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Then since line voltages must be made " voltages to neutral,” 

ohms per phase . (94) 

Also, since the total copper loss is divided equally between the 
p 

three phases, the loss per phase is — watts. 

P 

3 

r, = ohms per phase 
3^l 

(95) 

Transformer manufacturers usually give the information 
necessary for the determination of T, in the form of percentage 
impedance drop and full load copper loss. 

Percentage Impedance Voltage Drop at any specified out¬ 
put is the ratio of the internal impedance voltage drop at 
that output to the no-load secondary voltage with the rated 
voltage on the primary, the result being expressed as a per¬ 
centage. 

The copper loss is also frequently given as a percentage 
thus:— 

Full load copper loss per cent. 

_ Copper loss in K.W. at full output 
Full load output.in K.V.A. ^ 

It is obvious that both the full load impedance drop and the 
full load copper loss can be obtained from the short-circuit test 
by adjusting I, to be the normal full load current of the trans¬ 
former. 

Example.—k 100 K.V.A., 440 volt, 3-phase transformer has 
a no-load transformation ratio of 3300 to 440 volts. The full 
load impedance drop is 6 per cent., and the copper Io.ss 2 per 
cent. Calculate r, and x,. 

8 
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Referred to 440 volt side, 

^ . . 100000 
output current = -7=-= 130 amperes. 

v3 X 440 

This calculation assumes that the voltage on the secondary 
side is the same at full load as at no load. This is incorrect, 
since the voltage changes with the load, but the error introduced 
is usually very small, and it is customary to neglect it in com¬ 
mercial transformer practice. 

Impedance drop at full load = 0'06 x ^ == i5-2 volts. 
v3 

Equivalent impedance T, referred to low-tension side 

= = 0-II7 ohms per phase. 

Copper loss at full load = 0-02 x 100,000 = 2000 watts. 

3 X 130* X r, = 2000. 

y, = 0-04 ohms per phase. 

x^ — 0'ii7® — 0-04* = 0-109 ohms per phase. 

.-. Referred to low-tension side, 

T, — 0-04 -f- j 0-109 ohnis per phase. 

Referred to high-tension side, 

T, = (0-04 -I- j 0-109) X (^)* 

= 2-21 -j- j 6-1 ohms per phase. 

Example.—K 3-phase transformer having an open-circuited 
transformation ratio of 11,000 to 110,000 is operated from 
11,000 volt mains. It gave the following results on open- ' 
circuit and short-circuit tests:— 

Open-circuit.—Primary volts = 11,000; primary amperes 
= 75 ; watts = 285,000. 

Short-circuit. — Primary volts = 170; primary amperes 
= 500; watts =s 33,000. 

Calculate the values of Y, and T, for this transformer. 
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Refer all quantities to primary side. 
From Open-circuit test, I, = E,Y,. 

. Y - 75 X V3 
^ IIOOO 

= o*oii8 mhos. 

cos a 
285000 = 0-2, 

.^3 X IIOOO X 75 

where cos « = open-circuit power-factor. 
.. a = - 78-5°. 

.-. Y, = o-oii8/ — 78-5° 

= 0-00236 — j 0-0II58. 

From Short-circuit test, I, = If 
T/ 

••• Tr == - 7-^- 7 ;— = 0-197 ohms. 
V3 X 500 

Resistance loss = 33,000 = 3 X 500® x r,. 
-. r, — 0-044 ohms. 

Xf — 0-197® — 0-044® 
= 0-192 ohms. 

Referred to low-tension j Y, = 0-00236 — j 0-01158. 
side, I Tr = 0-044 + j 0-192. 

Referred tohigh-tension j Y, = 0-0000236 — j 0-0001158. 
side, IT, =4-4-1-;■ 19-2. 

Calculation of Voltage Drop along Short Transmission 

Line Including Transformers Represented by 

Accurate Network, 

Applying equation (88), the voltage E, at the high-tension 
side of the transformer at sub-station C (Fig, 27) can be obtained 
for a given value of E„ the voltage on the low-tension side and 
I, the low-voltage current. 

Also, the current in the line I, can be calculated from 
equation (87). Knowing the line current and the voltage at the 
receiver end of the line, the voltage at the generator end of the 
line can be obtained from equation (77). 

This gives the voltage and current at the high-tension side 
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of the transformer at A, and an application of equations (88) and 
(87) will now give the voltage and current at the low-tension 
terminals of the transformer at A. 

Example—A 3-phase transmission scheme consists of an 
overhead line with step-up and step-down transformers at A 
and C (see Fig. below). The load delivered to the low-tension 
side at C is 1000 K.W. at 6000 volts, 0*8 power-factor lagging. 
The high-tension side at C is connected to the overhead line. 
Ratio of transformation, 10. The step-up transformer at A 
is identical with that at C. Test data for both transformers 
are as follows :— 

Open-cxYcmi.—Primary volts = 6000; primary amps. = 9 ; 
power = 9300 watts. 

Short-circuit,—Primary volts ==: 360 ; primary amps. = 120; 
power = 8150 watts. 

The total resistance of the overhead line B is 10 ohms per 
conductor, and its reactance is 30 ohms per conductor. 

Calculate the voltage and current on the low-tension side 
of the transformer at A. Represent the transformers by the 
accurate network of Fig. 36. 

ABC 

f I ... g I*—. 1000 K.W. 

Current delivered on low-tension side of transformer at C 
1000000 

= ^rx^ x-5:8 = 

Step-down Transformer at C. 

Referring all transformer quantities to low-tension side. 
From Open-circuit test— 

Y, = = 0-0026 mhos. 
6000 

cos a 9300 

./a X 6000 X 9 
•. Y, = 0-0026 / — 84-2°. 

= 0-00026 — j 0-00258. 

o-l. .-. a = 84-2° 
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From Short-circuit test— 

T, = — = 1732 ohms. 
s/Z X 120 

Resistance loss = 3 X 120* x f, = 8150. 
y, = 0-189 ohms. 

x, = V1732* — 0-189® 
= 1-72 ohms. 

Ty = 0-189 + yi'72. 

Referred to high-tension side, 

i Y, — 0-0000026 — 70-0000258. 
IT, 18-9 +7172. 

Referring all quantities to high-tension side, 

_ 60000 
E, = = 34700. 

I, = 12 / - ^ = 12/- 36-9° 

= 9-6 — 77-2. 

Y,T, = (0-0000026 —70-0000258) (18-9 +7172) 

= 0-00449 ~ 70'00004i. 

Y T 
A = I -|—^ = 1-00224 — 70-00002. 

B = T,|i -1- = (18-9 + 7T72)(i-ooii2 — 70-00001) 

= 18-92 -|- 7172-19. 

C = Y, = 0-0000026 — 70*0000258. 

D = A = 1-00224 — yo-00002. 

1, = IrD E,G. 
= (9-6 --77-2) (1-00224 —70-00002) -f 34700(0-0000026 

— 70-0000258) 
= 9-71 — 78-12 

= 12-7/-39-9°- 
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E, = EfA “f" 
= 34700 [1-00224 —70-00002] + (9-6 —y7-2)(i8-92 -f 7172-19) 
= 36200 + 7T516 
= 36220 / 2-4®. 

The vector diagram for the circuit is given in Fig. 42. 

Transmission Line. 

B E* 
I. R « 10 X = 30 

Applying the formula for a short transmission line, 

Voltage at H.T. transformer terminals at A = E^. 

E^ = V (E, cos 42-3 + IR)* + (E, sin 42-3 + IX)* 

= 26920* 4- 24760* 
== 36,570 volts. 

24760 
26920' 

So that, referred to E, as reference axis, 

Ea = 36570/27°- 

Ia = 12-7/-39-9°. 

36220 / 2-4° 
12-7/ -39-9° 

tan a = 42-6®. 

Step-up Transformer at A. 

For the transformer at A, referring everything to high-ten¬ 
sion side, 

I, = 12-7/- 39-9° = 974 

E, = 36570 /2-7° = 36530 + yi720. 

A = 1-00224 — 70-00002. 
B = 18-92 + 7172-19. 
C = 0*0000026 — 70*0000258. 
D = 1*00224 — 70*00002. 

E. = E^ 
— (36530 4-71720) (1*00224 —70*00002) 

+ (9'74 -78-I5) (18*92 -1-7172*19) 
== 38200 -f 73240 

« 38340/4-8“. 
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Ij = ^rD “1“ EfC 
= (974 —;8-I5) (1-00224 — yo-00002) 

+ (36530 +yi72o) (0-0000026 — yo-0000258) 

= 9-86 —jg’ii 

= 13-4/-42-7°. 

Vector Diagram of Currents and 
Voltages in Step-down Transformer Vector Diagram of Currents 

and Voltages in Transmission 
Line 

T 

F^(LT)^38340 

Fa (HT)^ 36 570 

Eg ^36 220 

■Er^3^700 

AH currents and all voltages 
referred to H T side 

142 7^ 
» It “ 

7 

^Ia(L T)^13 4 

Complete Vector Diagram of Currents and Voltages 

Fio. 42.—^Vector diagrams for transmission scheme, consisting of short overhead 
line with step-up and step-down transformers. 

( voltage on low-tension side of transformer at A 

Therefore ' "" Vs = 6630. 
] current on low-tension side of transformer at A 
1 = 134 amperes. 

Vector diagrams are given in Fig. 42. 
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Calculation of Voltage Drop in Long Transmission 

Line and Including Transformers Represented by 

Accurate Network. 

The important result follows from equations (87) and (88) 
that the primary and secondary current and voltages of a trans¬ 
former are connected by the following equations:— 

E, = E^ -I- I,B 
I, = I^D -f E,C. 

These equations are of the same form as equations (81) and 
(82), which connect the generator and receiver voltages and 
currents of a long transmission line. 

A general solution to the problem of a long transmission 
circuit including step-up and step-down transformers can now 
be made. 

Starting at the low-tension terminals of the transformer at C 
(Fig. 27), the voltage and current at the high-tension terminals 
B can be obtained from the equations, 

Ej = AiE, Bil, I where A^, Bi, Cj, and Di are the circuit 
Ij = CiE, -f- Dll, J constants for the transformer at C. 

The high-tension terminals are connected to the transmission 
line, and the voltage and current at the generator end of the 
transmission line can be obtained from— 

Eg = AjEg + B2I21 where Aj, B*, C2, and Dj are the circuit 
I3 = C2E2 -f- D2I2 J constants for the transmission line, 

and Dj will equal Aj. 
This brings us to the high-tension side of the transformer 

at A, and the voltage and current at the low-tension terminals 
can be obtained from— 

E, = A,E, -f B3I2) where A, B, C,, and Ds are the circuit 
I, = CsE, -f Djlj ( constants for the transformer at A. 

The networks representing the transformer C at the load 
and the transmission circuits may be replaced by a single 
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equivalent network with constants A4, B4, C4, and D4 by 
eliminating Ej and I2 from the first four equations given above. 
We can then pass direct from the low-tension transformer 
terminals at C to the high-tension transformer terminals at A 
by means of equations, 

Es = E,A4 -f- I,B4, 
Is = E,C4 -|- IrD4. 

Similarly, if we wish to pass direct from the low-tension 
terminals of the transformer at C to the low-tension terminals 
of the transformer at A, we can do so by obtaining constants 
from equations above such that 

E» =-- ErA„ -f I,IL . . . (96) 
I< = E,€„ -f- LDo . . . (97) 

It can be readily proved that the constants A^, B#, Cq, and 
Do have the following values— 

Aj = Ay(AiA^ -f- C1B2) -f- Bs(AiC2 -f- C1D2). 
B(, = As(BjA2 -f- DjBs) -)- B3(BiC2 -f" DjDs). 
Cj = C3(AiA2 B2C1) -j- D3(AiC2 4- C1D2). 

Dj = C3(BiA2 -)- DjBs) -f- D3(BiC2 -j- DjDs). 

It is important to remember that all of the above circuit 
constants are complex quantities and must be dealt with by 
the methods described in Chapter I. 

It is clear, then, that knowing the load conditions on one 
end of such a transmission syltem as that indicated in Fig. 27 
we can calculate the conditions at the generator end by means 
of the general circuit constants Ao, B®, and D*, and equations 
(96) and (97) above. 

If the generator conditions are fixed, the load conditions 
may be determined by means of the general circuit constants 
Ae, B4, C,, and D,, and the following equation:— 

E, = AoE, — BoL • • • (98) 
I, = - C4E.-1-D„L . • . (99) 
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Application to Three-phase Circuits.—^The theory has 
been worked out for the case of single-phase transmission 
circuits, but the results apply equally well to 3-phase circuits, 
provided that the following modifications are made. 

All voltages must be voltages to neutral, and all trans¬ 
former resistances and reactances must be resistances and 
reactances to neutral. The following example illustrates the 
application of the principles discussed to a 3-phase system. 

Example.—A 3-phase, 50-cycle transmission circuit consists 
of a transmission line with a step-up transformer at one end 
and a step-down transformer at the other. The two trans¬ 
formers are identical 3-phase 11,000 to 110,000 volt units, and 
their particulars are given in the example on page 115. 

The transmission line is as given on page 83, i.e. 100 miles 
of 19/0*083 conductor. 

If 10,000 lew, at 0*8 power-factor are delivered to the load 
on the low tension of the step-down transformer at a voltage 
of 11,000, calculate the voltage and current on the low-tension 
side of the step-up transformer. 

Load Particulars.— 
_ , 10000000 , , 
Load current = —t=-s = 050 amperes. 

.^3 X iiooo X 0*8 ^ 

Referred to high-tension side, load current = 65*6 amperes. 

.*. E, = 110000/V3 = 63510. 
If = 65-61-<f> = 52*48 - y39'36. 

Transformer Particulars (from p. 115).— 

Y, = 0*0000236 — yo*oooii58. 

Tr = 4-4 +yi9-2. 
.*. Y,T, = 0*002327 — 70*0000564. 

YT 
A = I -i—^ = i*ooii6 — 70*0000282. 

B = T,|i + = 4*4028 -1-719*2111. 

C = Y, = 0*0000236 — 70*0001158. 
D = A = i*ooii6 — 70*0000282. 
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I. Step-down Transformer. 

I2 “ “H E|.C 
= (52-48 — ;39-36)(i-ooii6 —^0-0000282) 

-f 63,510 (i-oon6 —^0-0000282) 
- 54-04 -j;46-76 

71-5/-40° 52'. 

Eg = ErA + I,B 
= 63,510 (1-00116 — 70-0000282) 

-f (52-48 -739-36)(4-4028 4-719-2111) 
= 64571 -I-7833 
= 64580/0° 44'. (See Fig. 43.) 

II. Transmission Line. 

Particulars from pages 91 to 94. 

V = 64571 -j-7833 = 64580/0° 44'. 

If = 54-04 -746-76 = 71-5/- 40° 52'. 

Eg = VA + IfB. From equation (81), page 83. 

= 64580/0° 44'{o-9853 /o° 33'} 4- 71-5/-40°52'{79/57°44'} 

= 63636/1° 17^ 4- 5649/16° 52' 

= 69030 4-73060 
= 69090/2° 32'. 

Ig = IfA 4- VC. From equation (82), page 83. 

= 71-5/- 40° 52'{o-9853/o° 33'} 
4- 64580/0° 44^(0-0004377/90° ii'} 

= 70-45 /— 40° 19' 4- 28-26/90° 55' 

= 53-27 -717-32 
= 56/— 18°. (See Fig. 43.) 

III. Step-up Transformer. 

I. = I,D 4- E,C 
— (53-27 — 7T7-32)(i-ooii6 —70-0000282) 

4- (69030 -1-73060) (0-0000236 —70-0001158) 

= 55-3 -725-3 
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E, = E3A -f- IjB 
= (69030 +y3o6o)(i'OOii6 — yo-0000282) 

+ (53-27 -717-32)(4-4028 +719-2111) 
= 69670 + 74013. 
— 69780/3° 18'. 

The vector diagram is given in Jng. 43. 

' 69 780 

-Eg ‘69090 

-Eg’64 580 

-Er’SiSW 

AH currents and all voltages 
referred to HT side. 
Diagram is not to scale. 

Fig. 43.—Vector diagram for transmission scheme, consisting of long overhead line 

and step-up and step-down transformers. 

EXAMPLES ON CHAPTER VI. 

I. A 1000 K.V.A., 3-phase transformer is operated from ii,ooo-volt 

mains. It has a no-load transformation ratio of ii,ooo to 440 

volts. At full load the impedance drop is 5 per cent, and the 

copper loss is i per cent. Calculate the equivalent resistance and 
reactance referred to both high-tension and low-tension sides. 

Answer \ 

Referred to high-tension side 

,, ,, low-tension side 

{r, = 1*21 ohms. 

== 5*9 M 
ir^ 0*00193 ohms. 

\x^ = 0*0094 »» 

2. A 3-phase, 60 K.V.A., 5000-volt transformer has a no-load trans¬ 

formation ratio of 5000 to 220 volts. It gave the following 

results on open-circuit and short-circuit tests:— 

Open^circuit—Primary volts == 5000, primary amps. = 0*4, 

watts == 600. 
Short-circuit,—Primary volts « 200, primary amps. = 10, 

watts = 1000. 

Calculate the equivalent impedance referred to high-tension side 
in the form +y;r,, where equivalent resistance, 

= equivalent reactance. 
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Calculate also the value of Y^. 

n'r = 3*3 
Answer. -= 0-000139/ — a where cos a = 0-174 referred 

to high-tension side. 

3. A 3-phase overhead line has a resistance per mile of 0-35 ohms 
and a reactance per mile of o-6 ohms. At the power-station the 
line is connected directly to the generator, and after proceeding 
for 20 miles it is connected to a step-down transformer which 
delivers a load of 600 kw. at 2200 volts 0-8 p.f. on its secondary 
side. Referred to its primary side the equivalent resistance of the 
transformer is 2-5 ohms, and its equivalent reactance is 15 ohms. 
The ratio of primary to secondary turns is 6 to i. Calculate the 
voltage at the high-tension side of the transformer, and also at 
the generator. Neglect capacity of line and no-load current of 
transformer. 

[London University, 1927.] 

. rVoltage at transformer = 13,800. 
AnswerJ ® 

,, generator = 13,920. 

4. If a 3-phase load is supplied through a step-up transformer at the 
power-station, a 10 mile overhead line, and a step-down trans¬ 
former at the load, calculate the voltage at the power-station 
end, under the following conditions :— 

Load delivered = 2000 kw. at 6000 volts, 0-85 power-factor. 
The transformers are identical, having a ratio of transformation 

of 3 and resistances and reactances per phase as follows :— 

Resistance of low-tension side = 0-1 ohms. 
Reactance of low-tension side = 0-5 ,, 
Resistance of high-tension side = i ,, 
Reactance of high-tension side — 5 ,, 

No-load current may be neglected. 
The overhead line has a resistance per mile of conductor of 0*4 

ohms, a reactance per mile of 0-45 ohms, and negligible capacity. 

Answer : 6880 volts. 

5. A 3-phase 50 cycle transmission scheme consists of an overhead line 

200 miles long with a step-up transformer at the generating station 
and a step-down transformer at the load. The overhead line 

consists of copper conductors 0-504 ins. diameter spaced 10 ft. 

apart. The resistance per mile of conductor is 0-291 ohms. 
The two transformers are identical, 12,000 to 120,000 volt units. 

The equivalent impedance of each referred to the high-tension 

side is T^ = 5 -f y 20 ohms, whilst the admittance 

Y^ =5 0*00002 — 7*0-0002 mhos. 
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If 10,000 kw, are delivered to the load at 12,000 volts, o 8 power-factor 

(lagging), calculate — 

(а) The voltage and current at the high-tension terminals of 
the step-down transformer. 

(б) Ihe voltage and current at the high-tension terminals of 

the step-up transformer. 
{c) The voltage and current at the low-tension terminals of 

the step-up transformer. 

Answers — 

[Note —Voltage and cunent are given as phase quantities, 

and are referred to high-tension side Refer to Table, p 96 ] 

Step-down transformer— 

Low-tension side Voltage = 69280 

Current = 60 / — 36® 52' amperes 

[a) High-tension side Voltage = 70400/0^37' 

Current = 70 3 / •— 45® 16' 

Step-up transformer— 

(b) High tension side Voltage = 75650/4® 36' 

Current = 49*7/20® ii' 

{c) Low-tension side Voltage 75760/5° 21' 

Current = 49 5 /2° 34' 
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CHAPTER VII. 

TRAVELLING WAVES IN TRANSMISSION LINES. 

SwiTCH-iN Phenomena. 

The equations for the voltage and current at any point along 
a transmission line have been developed in Chapter II, and 
are given in equations 41 and 42. It is now necessary to point 
out that these equations hold only when the line is in what is 
referred to as a “steady state.” They give correct values 
of current and voltage only when some time has elapsed since 
the circuit conditions were last altered. When circuit con¬ 
ditions are altered certain transient phenomena appear and 
equations 41 and 42 take no account of these. As the name 
imphes, such phenomena are transitory in character and very 
quickly vanish, leaving equations 41 and 42 to express cor¬ 
rectly voltage and current along the line. Short though the life 
of these transients is, during the time of their occurrence they 
produce important results. In this chapter and the following 
one, the theory of transient phenomena will be discussed. 
Our study is concerned with what happens in the exceedingly 
short interval of time after circuit conditions are altered before 
equations 41 and 42 hold. 

Circuit conditions are most obviously altered by switching, 
and switching a transmission line into circuit or switching it 
out causes transient phenomena. Any alteration in the load 
on the system (and included in this we consider an earth on the 
system) produces like effects. Also, atmospheric conditions 
such as occur during thunderstorms may produce transients. 

In this chapter we will consider the phenomena accompany¬ 
ing the switching into circuit of a transmission line. 
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Switching in an Open-circuited Transmission Line. 

Consider a direct current generator* which is switched 
on to an open-circuited transmission line as in Fig. 44. 
The commonly held idea is that with the closing of the switch, 
the voltage E of the generator is established instantaneously 
over the whole length of the line. This is incorrect. The 
voltage E takes an exceedingly short, but none the less definite 
time to establish itself at all points along the line. At the 
instant of closing the switch, the voltage E is applied to the 
extreme end of the line, and a certain current i flows from the 
generator into the line. 

Assume that the line is of infinite length, and that the resist¬ 
ance and leakage conductance of the line are negligible. Con¬ 

sider an exceedingly short 

Switch \ 
JL 

Transmission 
Lme 

FlO. 44- -Switching in an open-circuited 

transmission line 

length Ax of the line im¬ 
mediately adjacent to the 
switch. A moment before 
the closing of the switch 
there is no current, and 
consequently there is no 

magnetic flux linked with the portion Ax. After a short inter¬ 
val of time At, there is a current i over the length Ax and a 
flux hi Ax linked with it; L being the inductance of the line 
per unit length in henries. The creation of these flux linkages 

A Y. 

generates in the length Ax a voltage = which must be 

equal and opposite to the applied voltage E. 

.*. E = Lt 2i^ = Ltv in the limit, where v is the velocity of 

propagation of the current along the wire. Hence it is seen 
that the current must be passing along the wire with sufficient 
velocity to generate a voltage E in the extreme end portion 
adjacent to the switch. 

* For note regarding alternating current case see end of Chapter VIII. 
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Another very important change has accompanied the 
creation of the current i. The length Ax is now at a definite 
voltage E, and therefore between conductors there must be a 
quantity of electricity C JjtE coulombs where C is the capacity 
between lines in farads per unit length. 

This quantity of electricity has been supplied by the genera¬ 
tor in time At, and since current is rate of change of quantity, 

t = CE amps. 

Hence, in the limit 

i 
But 

= CE» amps. * . (100) 

E = Ltty volts . • • (loi) 

i • — 
•*E 

CE . T. 
= f- -r » = E 

L t ^ • 
. (102) 

Also i'E = CLiEv®, V = ^ Ik ■ • (103) 

i.e. the requirements of simultaneous establishment of flux 
(magnetic and dielectric) along the line cause, at the instant 
of closing the switch, a voltage E and a current i moving with 
velocity v to be established at the extreme end of the line. 
The voltage E of the generator is now transferred to an exceed¬ 
ingly short length Ax immediately adjacent to the switch. The 
portion of the line immediately- adjacent to the length Ax is 
now in exactly the same state as the length Ax was when 
the switch was closed, viz. there is a voltage E applied to it. 
By exactly the same reasoning as before, the current i and 
voltage E will be established along the length of line adjacent 
to Ax, and so on all the way along the line. 

We see, tlien, that the voltage E is established progressively 
along the line as by the passage of a wave which has a voltage 
distribution of magnitude E volts associated with it. The 
front of the wave is quite definitely located at any time. The 

9 
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wave also has a current distribution associated with it, and this 
is connected with the voltage distribution by the relation 

i.e. i E E 
Z' 

where Z and this (see p. 83) is the natural impedance 

of the line. It is also called the surge impedance or the wave 

RESISTANCE Such a wave as we are here considering is called 
a COMPLETE or PURE TRAVELLING WAVE. 

Complete or Pure Travelling Wave.—^A complete or 
pure travelling wave in a conductor consists of a voltage 
distribution and a current distribution, which travel along 
together. The current i and the voltage E at any point in 
the wave are connected by the relation 

The travelling voltage distribution is frequently called the 
VOLTAGE WAVE. The travelling current distribution is fre¬ 
quently called the current wave. 

If we imagine a voltmeter and ammeter whose moving 

FlO. 45,—Voltage and current waves along 
transmission line. Switch S closed. 

parts had no inertia, in¬ 
stalled at any point A, 
along the line, the ammeter 
and voltmeter would read 
zero until the front of the 
wave reached A. They 
would then suddenly re¬ 
cord readings of E and i, 
and remain constant at 

these values. 

As long as the switch S remains closed, the back of the wave 
will remain established at the generator. The front of the wave 
moves forward as discussed in order to generate a voltage in the 
line equal and opposite to the generator voltage E. Suppose 
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that the switch S is opened. There is now no applied voltage 
to the line, and therefore there must be no resultant generated 
voltage in the line. What happens is that the back of the wave 
leaves the generator and moves along the line with velocity v. 
Flux linkages due to the travelling current distribution are now 
lost at the back of the wave as quickly as they are established 
at the front, and no voltage will be generated in the line. We 
now have a rectangular wave with its voltage and current dis¬ 
tributions moving along the line with velocity v as indicated in 
Fig. 46. Instruments at A 
will continue to read E and i 
only until the back of the 
wave reaches them. They 
wiu then suddenly drop to 46.—Voltage current waves 

XI- 1 X XI- along transmission line. Switch 
zero as the back of the wave ^ opened 

passes. The pressure E and 
current i persist over the whole length of the wave. They 
vanish only at the end of the last element, and are produced 
anew at the beginning of the first. 

The pressure of the wave mounts steeply up to the value 
E at its commencement, and falls rapidly to zero at its end. 

Inductance of Two-conductor Line having Zero 
Resistance.—It has been assumed in the above theory that 
the conductors have zero resistance. The current in such con¬ 
ductors would be entirely confined to their surfaces and there 
would be no internal flux linkages. The inductance as derived 
from equation (68), page 68, viz.-:— 

Inductance per mile of conductor 

== L = o-oooo8 -|- 0-000741 log -2 henries, 

assumes that the current is uniformly distributed over the 
section of the conductors. The formula must be modified for 
a resistanceless line by omitting the first term, which represents 
the portion of the inductance due to internal flux linkages. 
The formula thus modified is • 
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Inductance per mile of conductor 

— L — 0*000741 log ^ henries . . (104) 

The absence of internal flux linkages does not affect the capacity 
which remains correctly expressed by fonnula (73), page 71. 

Reflection of Travelling Waves.—Consider now what 
happens if instead of the line being of infinite length it is of a 
certain definite length. As before, let it be open-circuited at 
its far end. Consider the state of affairs indicated in Fig. 47, 
when a wave of voltage E and current i has just reached the 
open end of the line. As soon as the front of the wave reaches 

--Ti n 
_/ Ax Ax 

Fig. 47.—Reflection at end of open-circuited line. 

the end of the line, the current i at the end vanishes. All con¬ 
ditions elsewhere along the line are unaltered, and therefore 
need for their satisfaction the continuance of the wave. Is it 
correct to argue that what happens is this: As the back of the 
wave gets nearer and nearer to the end of the line, the wave 
gets shorter and shorter as indicated in Figs. 476 and 47c, until 
when the back of the wave reaches the end of the line it will 
have completely vanished ? This statement cannot be correct. 
In Fig. 47a the wave has a magnetic field and an electric field 
associated with it over a length 1. This represents an amount 
of energy = (JL** -f jjCE*)/. What has become of this energy ? 
It cannot disappear. What happens is that the vanishing of 
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current from a certain length of the hne must be accompanied 
by the formation of an amount of electrostatic energy equal 
to that released from the electromagnetic form. Referring to 
Fig. 47^, let us assume that a length Ax of the wave has 
vanished, and that an extra voltage A has been generated over 
the length Ax by the formation of electrostatic energy equal 
to the released electromagnetic energy. 

Then ^Li^Ax = \CA^Ax, 

i.e. the extra voltage A created must equal E. Hence the 
voltage at the end of the line rises to 2E. There is thus an 

-M X X k' 

(«r) 
Front of original wave 
voltagejE current i 
at end of line 

{h) 
Reflected wave of volt- 
ageE and current minus i 
over distance x at end. 

(C) 
Resultant voltage 

distribution. 

.no 
(d) 

Resultant current 
distribution 

m 

Fig, 48.—Reflection of travelling wave at open end of line. 

unbalanced voltage E at the end of the line which calls for the 
formation of a reflected wave of current i and voltage E. Wliat 
happens then when the wave strikes the open end of the line 
is not that the wave disappears, but that a reflected wave of 
voltage E and current i is created which travels back along 
the line with velocity v. Confirmation of this statement can 
be obtained by examining Fig. 48, where a portion x of the 
original wave has vanished. 
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Electromagnetic energy in original wave = . 1. 
Electrostatic energy in original wave — JCE®/. 
Total energy = (|L*® + |CE®)/ = iCE®2/, 

since i — 

Electromagnetic energy when reflected wave exists over 
length X in Figs. 48 or 49 

= - 2x). 
Electrostatic energy = JCE®(1 — 2x) + JC . 4E®. x 

= iCE®(/ + 2x). 
Total energy = — 2x) + ^CE®(1 + 2x) 

— ^CE®2/ since i — Eyj 

which equals the energy in the original wave. 
Hence, when the wave of voltage E and current t strikes 

the open end of the line, at that instant there is created a 
reflected wave of voltage E having the same sign as the original 
voltage and current i having the opposite sign. The length of 

-I- 

(i>^ 
Original CT 

'aye TT'-jy--- 

r 
Voltage distribution \ 1 __1 
after reflection 1-1 
at open end I 1_1 £_ 

Current distribution h—J 
5 after reflection i— - n j ^ 

at open end 3EZ1-V 

Fig. 49.—Reflection of travelling wave at open end of line. 

the reflected wave is equal to that of the incident wave. The 
two sets of waves combine where they exist simultaneously to 
give resultant waves, thus the voltage at end of line will be 2E 
and the current zero (Figs. 48 and 49). If the incident wave is 
of finite length and the line is a long one, then the reflected 
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wave will ultimately pass through the incident wave and wiU 
be the only one left in the circuit. 

It is instructive to carry this consideration further by 
considering the case illustrated in Figs. 50 to 55, where it is 
assumed that the connection to the supply is maintained 
throughout. 

When the wave reaches the open end of the line, it is 
reflected. The result of this 
reflection is, as we have seen, 
that the voltage is doubled 
and the current becomes zero 

(Fig 51)- 
When the reflected wave 

reaches the generator, the 50—Voltage and current waves 

voltage everywhere along the *'■ 
line is zE and the current is zero (Fig. 52). 

The state of affairs is now exactly reversed from what it 
is at the instant when the switch was first closed. Then the 
generator was at a voltage E above that of the line, but now 
the line is at a voltage E above that of the generator. The 
voltage at the end of the line must be E, and what happens there 
is that the excess pressure (= E volts) is used for the formation 

Fio. 51. Fio. 52. 

of a new current by the electrostatic energy changing into 
electromagnetic. If i is the current thus formed, 

JLt* = |CE». 

The reduction of the voltage from zE to E may be con¬ 
sidered as being due to a reducing wave of voltage — E and 
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current — i. Hence there is now created a new wave of voltage 
and current which gives conditions thus (Fig. 53):— 

2E 

Fig. S3. 

When this new wave reaches the end of the line, there will 
be a voltage E over the whole length and a current — i (Fig. 54). 

As soon as the wave of current — i reaches the end of the 
line a voltage — E is created, giving a reflected wave of voltage 
— E and of current + i (Fig- 55)- 

When the wave reaches the generator zero voltage and zero 
current exist throughout the line, which is now once again 
in its original state, and the cycle of operations is repeated. 
Thus, when an open-circuited transmission line is switched into 

Fio. 54. Fio. ss. 

circuit, a switch-in wave is created. The greatest voltage 
associated with this wave is twice the voltage of the supply. 

The frequency of the switch-in wave is the number of such 
complete cycles as have just been described which are performed 
per second. 

If V is the velocity of the wave, then the time for a cycle is 
4/ 

the time taken to travel four times the length of the line = — 
W y 

frequency = 
V _ I 

4^~4/VLC* 
Switch-in Phenomena when Line is Short-circuited 

at the End.—A very similar sequence of events to that dis- 
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cussed in the previous section occurs if the line is short-circuited 
at its end, only here the necessary requirement is that as soon 
as the original wave front reaches the end the voltage E and 
its stored electrostatic energy must vanish and be converted 
into electromagnetic. This necessity produces a reflected wave 
of current i of the same sense as the incident wave, and a re¬ 
flected wave of voltage E of opposite sense. These incident 

short-circuited 
y / here 

L ine short-circuited at end. (i) Voltage and current distributions 
associated with switch-in wave. 

(ii) Voltage and current distributions (ni) Voltage and current distributions 
after first reflection at end when first reflected wave arrives 
Reflected wave of voltagerEand at generator terminal 
current i over distance x 

(iv) Voltage and current distributions {v) Voltage and current distributions 
after first reflection at generator when first reflected wave from 
Reflected wave of voltage E and generator arrives at end of line, 
current i over length y. 

Fig. 56.—Reflection of travelling wave—short-circuited line. 

and reflected waves combine as shown in the above diagrams, 
which are self-explanatory (Fig. 56). 

Switch-in Phenomena when Line is Closed at End 
through Resistance.—^Now consider a general case of which 
these two examples of short-circuited and open-circuited are 
only particular cases. Suppose the wave strikes a resistance 
of R ohms. Assume the wave has associated with it a voltage 
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-Y*~ Inck Incident 

E and current I. When it strikes the resistance assume that 
a wave E' and I' is reflected, 

JkC_•*—-jrj^hcted jg^yjjjg a wave E„ and I„ to 

pass into the resistance (Fig. 

57)- 

Fio. s7.-Reflection of traveUing . ^hen. at the moment of 
wave at resistance connected to incidence, the VOltage acroSS 
end of line. the resistance is E + E' = I„R. 

The current which has been abstracted from the incident 

wave is I — I„, and this created the voltage E^ in the reflected 

wave where E, = (I — I "W c/ This pressure augments the 

pressure E, and the resistance has therefore the voltage 

E + (I - I„ across it. 

.-. E + (I - 1..)^?= InlL 

E + 1^^- = I„R and 1^1 = E. 

.-. 2E-I„^^ = 

.'. E + E' 

IfR=^: E + E, = E i.e. E, = o 
E 
R' 

i.e. there is no reflected wave, all of the current associated with 
the incident wave passes into the resistance. 

The magnitude of reflected wave of voltage 

(I-I "Wc 
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E, = I„R - E 
2ER 

-- - E -= E 

R +Vc 
Similarly, magnitude of reflected wave of current = I,. 

I. = I„ - I 
2E E 

Vi Vi 

'm 
Mi 

R+Vi 
= -1 

Reflected wave of voltage E, = Ei 

Reflected wave of current I, 

«-Vi 
R + 

vr 
«Ve is called the wave resistance and written = w, 

•r, -r- /R — 
• (105) 

. (106) 
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The following are particular cases :— 

(«) If R 00, i.e. receiving circuit is open, 

I, = - I and E, = E. 

(b) If R ~ 0, i.e. receiving circuit is short-circuited, 

E, = - E and I, = I. 

(c) IfR = ^, 

E, = O and I„ = O. 

No reflection, the entire wave being absorbed. 

Signs of Voltage and Current in Incident and 
Reflected Waves. 

In Fig. 58 the two conductors of a transmission system are 
shown. Assume that the conductors are initially at the same 
potential and that at one end they are suddenly connected 
to the terminals of a generator. This impressed voltage will 
cause current to flow in the conductors and will give rise to 
waves of voltage and current as discussed on page 128. If the 
polarity of the generator is as indicated in the figure, then the 
direction of current flow in the positive conductor will be from 

Dfrection of Current 

Gerte/\storC) Direction of Propagation 

Fio, 58.—Connection between direction of current, polarity of conductor and 

direction of wave propagation. 

left to right. The direction of propagation of the wave is also 
from left to right. It follows from this that the direction of 
current flow in the positive conductor is the direction of propa¬ 
gation for the waves of voltage and current. 

For reflected waves the direction of propagation is in the 
opposite direction to that of the incident waves. Reversal of 
the direction of wave propagation can mean only one of two 
things, viz.:— 
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Either the conductor which is positive for the incident wave 
is negative for the reflected ; or 

The conductors have the same polarity for both incident 
and reflected waves, but the direction of the current is 
reversed for the two sets of waves. 

The truth of these statements is made evident by an ex¬ 
amination of Figs. 59 and 60. 

Direction oP 
Conductor Current IW 
Positive for .. 
Incident Wave Direction of 

Wave Propagation 

Negative Conductor 
forlW 

IW Incident Wave 

Direction of 
Current PW 

Direction of 
Wave Pf^^^ation 

Conductor 
Negative for 
Perlected Wave 

Direction of 
Current (R W) m 
Positive (R W)Conducto^ 

Positive Conductor 
forRW 

RW'^Reflected Wave 

Fig. 59.—Incident and reflected waves. Currents in same direction. Voltages 

in opposite directions. 

It follows that if two sets of waves are travelling in opposite 
directions (as in incident and reflected waves) they must have 
either currents or voltages in opposite senses. 

For waves travelling to the right in Figs. 59 and 60, i.e. for 
E 

incident waves, the relation has been proved to be I = —. 

Direction of 
ThisConductorK CurrentJ^W 
Positive for ' .. 
Incident Wave Direction of 

Wave Propagation 

Direction of 
Cerent RW 

Direction of 
Wave Pro^gation 

r This Conductor 
Positive for 
Reflected Wave 

Fig. 60.—Incident and reflected waves. Currents in opposite directions. 

Voltages in same direction. 

Therefore, for waves travelling to the left, i.e. for reflected 
waves, since if E is positive I is negative, and vice versa, 

E 
I = — -. The work already done in this chapter has proved 

that for an open-circuited line the incident and reflected waves 
have voltages in the same sense, but currents in the opposite 
sense. For short-circuited lines the incident and reflected 
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waves have currents in the same sense, but voltages in the 
opposite sense. 

Cabie and Overhead Line in Series. 

It frequently happens in practice that it is convenient to 
insert short lengths of underground cable into an overhead 
line. For example, if an overhead line passes across railways 
or roads, strict regulations as to guarding against possibilities 
of broken wires falling to the ground have to be complied with. 
Under such circumstances it is common practice for the over¬ 
head line to be discontinued and the line continued under the 
road or railway by cable. Also where the line has to be brought 
into a sub-station or a power-.station, the overhead line fre¬ 
quently ends a short distance from the building, and the 
circuit is concluded by a length of underground cable. It is, 
therefore, of considerable practical importance to consider what 
happens if travelling waves are set up in a circuit which contains 
overhead line and underground cable in series. 

Three typical cases will be considered :— 

(1) A long (assumed infinitely long) overhead hne in series 
with a short cable open at its end. 

(2) A long (assumed infinitely long) cable in series with a 
short overhead line open at its end. 

(3) A short cable joining two long (assumed infinitely long) 
overhead lines. 

(i) Long Overhead Line in Series with Short Cable. 

Cable Open at End. Waves Originate in Overhead 

Line. 

Assume that there is a pure travelling wave of voltage E 
and current I in the overhead line. When the wave reaches the 
junction between overhead line and cable, a portion of the wave 
will be transmitted into the cable, and a portion reflected back 
into the overhead line. 
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Let the pressure of the wave entering the cable be and 
the current 4. Then 

«k- = *>k .... (107) 

where is the wave resistance of the cable. 
In Fig. 6i«, 6 and c the electrical state of the system is 

represented at the instants just before and just after the 
incident wave reaches the junction. 

Fig. 61.—Long overhead line in series with short cable open at end. 

Let A be the voltage of the wave reflected back into over¬ 
head line. 

Then 
E -f- A — e^, i.e. A = — E . . (108) 

Let B be the current in the wave reflected back into over¬ 
head line. 

Then 
I -f B = tg, i.e. B == t, — I . . (109) 

If is the wave resistance of the overhead line, then 

A = — Bte't . . . (no) 

the negative sign appearing because A and B are associated 

with a reflected wave. It follows that «, — £ = — (», — 
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substituting (io8) and (log) in (no). Also, since = E and 

then 

Also 

- E — ije/^ + 
— — |- E. 

2E + 4^., 
e. 

- e.-\ ~-w. 

•. = 2E 

2E 

* + u\ 

(111) 

(112) 

The wave which enters the cable travels to the open end, 
where it is reflected, the pressure being doubled and the current 
falling to zero. These effects are produced (as discussed on 
P- 133) by a pure wave of voltage and current — »*, reflected 
from the open end. As the reflected wave (voltage = 
travels towards the junction it will raise the voltage of the 
cable to 20^. Fig. 6irf shows the conditions after reflection at 
the open end. When the reflected wave (voltage = reaches 
the junction part of it is transmitted into the overhead line 
and part is reflected back into the cable. 

Let Xi be the voltage of the wave which penetrates into the 
overhead line, is obtained from equation (iii), but since the 
wave is now passing from cable to overhead line instead of 
vice versa, and must be interchanged. Also, the inci¬ 
dent wave has a voltage e,., not E. 

w, 
* “ re't + le'K 

Fig. 6ie represents conditions at a time just after the reflection 
from the open end of the cable has got back to the junction. 

At the jimction there is now a voltage of E -j- A + *i- 

.*. Voltage at junction — E + e,i — E + 2e^. —- 



TRAVELLING WAVES 145 

The voltage of the cable immediately before the reflected wave 
arrived at the junction was There must be a wave having 
a voltage yi reflected back into the cable, where 

= Ck + 26* . 

Vl = e*-;-. 

This wave (voltage = y^) is reflected at the open end of the 
cable, a reflected wave of equal voltage Vi, starting at the open 
end and traveUing back to the junction. When this, the 
second reflected wave from the open end, reaches the junction 
a wave having a voltage ** is transmitted into the overhead 
line, and a wave having voltage yj is reflected back into the 
cable. 

It has been proved that when a traveUing wave in the 
cable has a voltage 6* and reaches the junction, a wave having 
a voltage Xi is transmitted, and a wave having a voltage y^ is 
reflected where 

K'l + 

X, = 26. 
+ W*’ 

W'l + “'k 

Therefore, for a traveUing wave in the cable having a 
voltage yi, 

w, 

yz yi + wj 

The process repeats itself, and 

v,=6 r- ~ 
In general, after n reflections. 

_ 

~w + 
^ 2E /W, - 

Wi -f “'k'' 
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If E„ is the accumulated pressure in the cable after the «th 
reflection, 

E« +3'i + V, +yi 4->-2 + • • ■ 4-:y«+Vn 
= 2e^ + 2yi + -f . . . + 2jy„ 

W. ^ 

2»-« 

4e—^ 11+~ +rs-.^A"+. . .1 
^ W^L j 

=#-(S^-::)"‘] ■ ■ • • (»3) 

For » = 00, E„ = 2E. 

The charging of the cable, therefore, takes place by incre¬ 
ments. The charging time for each increment is obtained 
from the length of the cable and the wave velocity. For each 
increment the wave has to travel a distance equal to the length 
of the cable. If the length of the cable is I and the wave 
velocity is v, then the time between voltage increments is 

V 

The problem dealt with has been that of an overhead line 
and cable, but it is obvious that a general statement of the 
results obtained may be given thus:— 

If a pure travelling wave has a voltage Z and is travelling 
in a conductor of wave resistance w^, then when it strikes a 
junction where the conductor wave resistance changes to w^, 
the original incident wave is partly reflected back into the 
conductor of resistance Wj^, and partly transmitted into the 
conductor of resistance The relations between the vol¬ 
tages of incident reflected and transmitted waves are :— 

Incident wave = Z. 

Transmitted wave = 2Z-— . 

Reflected wave = Z . 
“'a + “'t 

(II4) 

(«5) 
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This general statement is illustrated in Fig. 62, which also 
shows the two particular cases of a travelling wave in an over¬ 
head line striking a junction whence the line is continued by 
cable, and the case of a travelling wave in a cable striking a 
junction whence the line is continued overhead. 

Fio. 62a.- “General case of conductors of wave resistances and in series 

Wave originating in conductor of resistance 

Overhead Lne 
Wave Resistance 

Incident^ 

Rejected 

Junction 

Wave Resistance 

Transmitted 

Fig. 62^.- -Overhead line (wave resistance wi) and cable in series, 

originating in overhead line. 

Wave 

Fig. 62^.—Overhead line (wave resistance Wi) and cable (wk) in series. Wave 

originating in cable. 

The problem just dealt with, i.e. a travelling wave in a long 
overhead line striking a junction between overhead line and 
cable, can now be summarised with the aid of Fig. 62 thus :— 

Voltage of original wave transmitted into cable from over¬ 
head line = e,.. 

Reflection at open end produces reflected wave having vol¬ 
tage — e^ — Incident Y (Fig. 62). 

Voltage of cable = 2e^. 
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^ — yi) 
Incident Y (Fig. 62) produces reflected wave c* 

Voltage of cable = 
® + zei, 

^ — y) 
Reflection at open end produces reflected wave e. —- 

^ ^ • zz'^ + zei. 
= Incident Y (Fig. 62). 

Voltage of cable = ze^ + 2c, 
w. 

(W — \ ® 

1^' J^'w) 

, •'Ut + wj 
Voltage of cable = 2e„ + 2c. 

° ^ zei^ + ze', 

Reflection at open end produces reflected wave e, 

= Incident Y (Fig. 62). 
yD — y) 

Voltage of cable = 2^^ + 2e, ^-- 

After » reflections, 
Voltage of cable 

= 2C, + 2C, 

■ le'i + 

/ze>^ — zg,y 
\w^ + wJ 

4- 2« p-- - 
^ *\zfY + 'wJ 

w. w„ 
+ . . . + 2e, 

/w^ - ze'A” 
Aze'i + Z6’,,/ ■ ze'i + zei, 

which agrees with the expression on page 146. 

Example.—If = 600 and zp, = 60, then e^ = 2E 

= 2E 

w. 
+ 

60 
660 

= 1e. 
II 

Voltage of cable builds up thus :— 
Time i. When first reflection from open end reaches junc¬ 

tion, voltage = 2^, = ^E = 0‘36E. 

Time 2. When second reflection from open end reaches 

w. 
junction, voltage = 2c, ze^. — 

w. 
+ O'* 

= Ae + = 0-66E. 
II ' II 660 
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Time 3. When third reflection from open end reaches junc¬ 

tion, voltage — Xe -j- ■iE54?+4E/54?/ 
II 660 II \66o/ 

— O’QoE. 

Time 4. When fourth reflection from open end reaches 
junction, voltage = i*iiE. 

Time 5- When fifth reflection from open end reaches junc¬ 
tion, voltage = i*26E. 

After 00 reflections, voltage = 2E. 

The way in which the voltage builds up is shown in Fig. 63. 
The voltage of the cable finally reaches a value of 2E after an 

^Z£ 

V 
I 

Voltage et'entually becomes Z. 

Time 

Fig. 63.—Long overhead line and short cable in series. Cable open at end. 

Figure shows voltage increments in cable. 

infinite number of oscillations of the switch-in wave in the 
cable. 

Example.—^A transmission line is 33 miles long. It runs 
overhead for 25 miles and then underground in cables for 
8 miles. 

The overhead line is connected to a continuous voltage of 
10,000, the distant end of the line being open. 

The inductance and capacity of the line are :— 

Overhead. Cable. 

Millihenries per mile of loop . 2’87 0-6 
Microfarads „ „ . o-oi 0-072 

Calculate, and illustrate by sketches, the voltage distribu¬ 
tion at the following instants :— 
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(«) Immediately before the wave front of the switch-in wave 
reaches the junction 

{b) Immediately after the wave front reaches the junction, 
(c) Immediately after first reflection fiom open end of cable 

has travelled back to junction. 

— w — wave resistance, 

/ 0-6 X io“® /5-i , 
“'k = V-::-it = V 0-3 X 10® — oi ohms, “ VO’072 X 10 « ^ ‘ 

w, — = s/2870 X 10® = 535 ohms. 
'• ''O’OI X 10 « ' 

Velocity of wave propagation = v — 

V for overhead = z:: .. . == 186,000 
•JX I0‘® X O-OI X I0~® 

miles per second. 

V for cable — -t------ ^ = 152,000 
VO‘6 X io“® X 0-072 X io“« 

miles per second. 

_2Bmiles Overhead_miles Cable 

J ' " ." 
Fig. 6^. 

{a) Immediately before front of switch-in wave reaches 
junction J, there is a voltage of 10,000 along the whole 
length of overhead line (see Fig. 646). 

10000 volts 

J 
Fig. 64^. 

(6) When wave-front reaches J, voltage of wave transmitted 

into cable = 20000 x ^ = 2900 volts. 
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Voltage of wave reflected back into overhead line = — 7100 
(Fig. 64c). 

10000 
^2900 

:s 
''7100 

-J 

fZ900 

_J 170000 1 — 
Fig. 64^. 

(c) When wave in cable reaches end, a reflected wave having 
a voltage of 2900 is reflected back and travels in cable 
towards junction J. 

When this reflected wave reaches J, voltage of wave trans¬ 
mitted into overhead line 

= 2900 X — = 4960 volts. 

Voltage of wave reflected back into cable = 2060 volts. 
During time taken for original transmitted wave into cable 

to travel 16 miles, reflected wave into overhead will have 
186 

travelled 16 x — = 19-6 miles. 
152 ^ 

.'. Voltage distribution will be as shown (Fig. 64^). 

j,— _distance 
/ ^ exafiifirated 

t 
, ^ 178€C j ‘ ‘ 1 

.-jk- law ^, 1 

Fig, 64flr. 

(2) Long Cable in Series with Short Overhead Line. 

Overhead Line Open at End. Waves Originate in 

Cable. 

The theory already obtained for Case I. holds in its entirety, 
only changing and Wg in the equations thus :— 

After arrival of the traveUing wave at the junction the 



152 TELEPHONE AND POWER TRANSMISSION 

voltage of the wave transmitted into the overhead line (see 
Fig. 62) is 

w. 
== 2E ■ , 

ze-K + 

The pressure reached in the overhead line after a series of 
n reflections is 

In the case of the example previously considered with 
= 600 and =- 60, the voltage of the overhead line builds 

up thus:— 

Time i. When first reflection from open end reaches junction, 
voltage = 3-63E. 

Time 2. When second reflection from open end reaches 
junction, voltage = 0-66E. 

Time 3. When third reflection from open end reaches junc¬ 
tion, voltage = 3'IoE. 

Time 4. When fourth reflection from open end reaches 
junction, voltage = i-i2E, 

Time 5. When fifth reflection from open end reaches junc¬ 
tion, voltage = 2'74E. 

After 00 reflections, voltage = 2E. 
The way in which the voltage builds up is shown in Fig. 65. 
In general terms (referring to Fig. 62), the problem just 

considered is one where the wave passes from a conductor of 
low wave resistance {w^ small) to a conductor of high wave 
resistance (ze^, large). In such cases the voltage jumps are 
always considerably greater than where the wave passes from 
conductors of large to conductors of small wave resistance, as 
from overhead line to cable. 

Example.—^A long transmission line starts from a generating 
station and is carried underground by cable, excepting for a 
short length spanning a river. The line is carried overhead 
across the river, and terminates in a sub-station on the river 
bank. The junction between cable and overhead line is made 
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at a junction box, the insulators of which flash over at a voltage 
of 100,000. If 20,000 volts is switched on to the cable, the 
switches in the sub-station being open, calculate the maximum 

0 1 2 3 4 5 Time 

Fig. 65.—Long cable and short overhead line in series. Overhead line open 

at end. Figure shows voltage increments in overhead line. 

voltage which the insulators of the junction box wiU be called 
upon to withstand. 

Wave resistance of overhead line = 600 ohms. 
Wave resistance of cable =60 ,, 

From formula on page 152 maximum voltage at junction of 
overhead line and cable = 3"63 E 

= 3-63 X 20,000 
= 72,600 volts. 

The flash-over voltage of the insulators being 100,000, they 
will not flash-over. The question serves to illustrate the high 
voltage (several times the working voltage) which insulation at 
the junction of cables and overhead lines may be called upon 
to withstand. 

(3) Short Cable Joining Two Long Overhead Lines. 

Overhead Lines Identical on Each Side of Cable. 

Waves Originate in Overhead Line. 

Assume that an overhead line is cut at some point along its 
length, and that the two portions are then connected by a short 
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length of cable. If a pure travelling wave of vertical wave- 
front and voltage E is set up in the left-hand portion of the 
overhead line (see Fig. 66), the voltage characteristics of the 
wave which passes through the cable and into the right-hand 
portion will now be considered. It will be proved that the 
presence of the cable materially alters the original wave. In 
particular, it changes its front from a vertical to a sloping one, 
and this reduces the possibility of damage resulting to machinery 
installed at the end of the second length of overhead line. 

In Fig. 62, Z, X, and Y are the voltages associated with 
any incident waves, and the relations between the voltages of 
incident, reflected, and transmitted waves are as indicated. 

Overhead Line Overhead Lme 

Volts 
10000 

5000 

0 

ra_ T_ 
— 

0-2 04 0-6 08 
Distance m Miles 

Fig. 66 —Short length of cable inserted into overhead line. Figure shows 

voltage distribution along line when 5th wave emerges from cable. 

When an incident wave having voltage E strikes the junction 
of overhead line and cable A, then a wave having voltage 

2E is transmitted into the cable. This is now the 

voltage Y of the incident wave at the junction B, and a wave 
2W, 4Vl is trans¬ having voltage 2E , ,-- , 

w^ + w^w^-\-w^ {w^ -f 

mitted into overhead line. Also, a wave is reflected back into 
the cable, the voltage of it being 

2E / «'k N , fW,, - 
\w^ -f wj 4- wJ 

This reflected wave travels back towards B, and when it arrives 
the conditions are those holding for the incident wave having 
voltage Y in Fig. 62, since the wave is travelling in the cable 
towards the overhead line. 
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The voltage of the incident wave corresponding to Y in 

IT- c • r' Fig. 62 IS 2E ;-r^. 
K }-wj^ 

Of this incident wave a portion passes into the overhead 
line, but a wave having a voltage 

(w^ + Vze<^ + wj “ {w^ + {w^ + w*)* 

is reflected back into the cable. This is now the voltage of the 
new incident wave (i.e. Y in Fig. 62), and the overhead line 
beyond B receives a second transmitted wave having a voltage 

2E ~ ^A'‘‘ ^ 2_^ _ £ 4Vy - WkY_ 
(w^ + -t- (av + !®k)* w,. + wJ ■ 

This process repeats itself, and at intervals, separated by 
the time taken for a wave to travel twice the length of the cable, 
the overhead line to the right of B receives a new travelling 
wave. The voltages of these successive waves are— 

1st transmitted wave — Ex 

2nd transmitted wave — Ex 

3rd transmitted wave = E x 

4th transmitted wave = E x 

«th transmitted wave = E x 

The voltage at B after the Mth wave has entered the over¬ 
head line 

K -i- 
V 1 (^y — 

(Wy + wA^ 
A 1 T wJ ' 

V 
— 

[Wy + «'k)® 

A 

T wJ ' 

4w^w^ 
V 

— 

K + “'k)® 

A + wJ ■ 

4“'k«'l V 
— 

£?y* 

(l‘>y + wA^ 
A 

\w^ T wJ 

= E X 
(O't + «'k)* K + «'k)* Wt + 

\iei, 4- wJ 

K + O',)® I + -f . . . + 
’ -H wJ \w^ -f- w^/ J 
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(117) 

After a large number of reflections and transmissions the 
voltage of the wave in the overhead hne to the right of B ap¬ 
proaches a maximum value of E, which is the voltage of the 
original incident wave. The insertion of the cable has therefore 
not reduced the maximum value of the voltage associated with 
the travelling wave, but it has smoothed out its front in the 
manner indicated in Fig. 66. This smoothing out of the front is 
very desirable, and the damage to apparatus is thereby reduced. 

Example.—cable 100 yds. long, having a wave-resistance 
of 60 ohms, is inserted between two long lengths of overhead 
line of wave-resistance 600 ohms. Calculate and show by 
means of a diagram the voltage wave along one section of the 
overhead line due to a travelling wave of 10,000 volts magnitude 
in the other section. Assume this wave is of infinite length, 
and of vertical wave front. Neglect resistance and leakance. 
Velocity of wave in cable = 100,000 miles per second. 

Time between successive transmissions into second part of 

overhead Une, t — — seconds, 
V 

where I — 300/5280 miles. 

V — velocity of wave in cable = 100,000 m.lsec. 

2 X 300 
= 0'00oooii4 seconds 

5280 X 100000 
= 1*14 micro-seconds. 

Voltage of overhead line after «th transmitted wave enters 
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Hence voltage due to first transmitted wave 

Now, 

=eTi - (-'■■■ 
L \w. + wJ J 

w. w. 
-t + 

600 — 60 

“'1. + “'k 600 + 60 
0*82. 

Voltage due to first transmitted wave 

= ioooo[i — (o‘82)*] = 3300 volts. 

After an interval of i'i4 micro-seconds this is followed by 
the second transmitted wave. In this time the first wave will 
have travelled 

I’I4 X 10 “• X 186,000 — 0-212 mile. 

So that when the second transmitted wave emerges the 0-212 
mile next to the junction is at a voltage of 3300. 

The second transmitted wave raises the voltage to 

E[i — (0-82)*] =• 5500 volts. 

The third transmitted wave raises the voltage to 

E[i — (o-82)«] = 7000 volts. 

The distance between fronts of second and third waves 
= 0-212 mile. 

Further voltage increments come thus :— 

After 4th wave E[i — (0-82)*] = E x 0-797 = 797^ volts. 
„ 5th „ E[i — (0-82)“] = E X 0-862 = 8620 „ 

This process continues, the voltage eventually reaching 
10,000. 

EXAMPLES ON CHAPTER VII. 

I. A single-phase transmission line has copper wires 0-25 in. diameter, 

spaced 3 ft. apart. 

Calculate— 

(a) The inductance of the line per mile of loop. 
ip) The capacity of the line per mile of loop. 

ip) The velocity of electric wave propagation in the conductors. 

(d) The wave resistance of the conductors. 

Answers .- (a) 0-00365 henry; (6) 0-0079 mfds.; (c) 186,000 

miles per sec.; (4) 680 ohms. 
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2. A single-phase concentric cable has the following particulars :— 
dy ~ 0*25 in., di — 0*85 in. (Fig. 20). The inductance per 

mile of loop is 0-0012 henry. K — 3. 

Calculate (b), (c), and (d) as in Question i. 

Answers : (b) 0*219 mfds. ; (c) 62,000 miles per sec. ; (d) 74 

ohms. 

[Nole.—In the following examples the overhead line has the 

particulars calculated in Question i, and the underground cable 
has particulars calculated in Question 2. Resistance and leakance 

to be neglected.] 

20 
Voftaie 

k\r^ 
WO 2(X) 300 400 Microseconds 

Voltafe at cc^O 

40 

Voltage 
kV ^20\ 

_ _ 

r 20 20 

0 54 WO m2 200 270300 378 400 Microseconds 
Voltage at X* 10 

40 

Voltage 
kV. ^20 

_ _ 

/in - 

fa 297. J 
'20 

Voltage at IS 
_ L__ 

\ 

/w 
40 

200 300324 400 Microseconds 
Voltage at 20 

0 WO 

Fig. 67.—Solution to Question 5. Voltage along open-circuited line. 

3. A 10,000 volt generator is suddenly switched on to the overhead line 

(see note above). Calculate the values of the current and vol¬ 
tage associated with the switch-in wave. 

Answers : Voltage == 10,000 ; current = 14*7 amperes. 

4. A 10,000-volt generator is suddenly switched on to the underground 

cable (see note above). Calculate the values of the current and 
voltage associated with the switch-in wave. 

Answers : Voltage = 10,000 ; current « 135 amperes. 
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5. A voltage of 20,000 is suddenly connected to a 20-mile length of 

overhead line (see note above). The far end df the line is open. 

Plot curves showing voltage and current at various times after 

switching-in for the following values of x where x is the distance 

from generator. 

(a) X ^ o miles ; (b) x — jo miles; (c) x miles. 

(d) X = 20 miles. 

(Solution is given in Figs 67 and 68.) 

Fig, 68.—Solution to Question 5. Current along open-circuited line. 

6. Repeat question 5 above, but assume now that the line is short- 

circuited at the far end. 

(Solution is given in Figs. 69 and 70.) 

Voltage at x»0 
is always 20kV. 

□ □ ' H J Q 1 20 J 
c ) dm Tirit tH 06 « xTj VO 370 < W microseconds 

Voltage at x*10 

kV 

_ _ 
to 20 □ 

duoo m m 
Voltage atX•-Id 

Voltage at X-20 
is always Zero. 

Fig. 69.—Solution to Question 6. Voltage along short-circuited line. 

7, In question 5 above, assume that a non-inductive resistance of 100 

ohms is connected across the far end of the line. Calculate 

(a) the magnitude of reflected waves of voltage and current; 
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(6) the resultant voltage at the terminals of the resistance im¬ 

mediately after the arrival of the switch-in wave ; (c) the current 

in the resistance. 
((a) Reflected wave of voltage == — 14,880 volts. 

,, ,, current = -f 21-8 amperes. 

(6) Resultant voltage =- 5120. 

(c) Current in resistance = 51*2 amperes. 

5d's 
LIl 

0 lOi dOO 3^ "W Microseconds 
Current atx^ZO 

Fio. 70.—Solution to Question 6. Current along short-circuited line. 

8. A lo-mile length of overhead line and a 5-mile length of cable (see 

note above) are connected in series. A travelling voltage wave 

of constant magnitude == 20,000 volts is in the overhead line 

moving towards the junction. When front of wave strikes 

junction, calculate:— 

(a) The voltage of wave transmitted into cable.. 
(&) The voltage of the wave reflected back into overhead line. 

(c) The voltage at the junction. 
Answers : (a) 3930 volte ; {b} — 16,070 volte ; (^) 3930 volte. 
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9. A lo-mile length of overhead line and a 5-mile length of cable (see 

note above) are connected in series. A travelling voltage wave 
of constant magnitude 20,000 volts is in the cable moving towards 

the junction. When front of wave strikes junction, calculate :— 

(a) The voltage of wave transmitted into overhead line. 
(b) The voltage of wave reflected back into cable. 
(c) The voltage at the junction. 

Ansivers : (a) 36,000 volts ; (6) 16,000 volts ; (c) 36,000 volts. 

10. A J-mile length of cable is inserted between two very long lengths 

of overhead line (see note above). A travelling wave whose 

voltage distribution is uniform and equal to 10,000 volts is 

travelling in one length of overhead line and is approaching the 

cable. Calculate :— 

(a) The voltage of the first and second waves transmitted 
through cable into the second length of overhead line, 

(b) The voltage in the second length of overhead line at a point 

I mile from its junction with the cable at times / = 10 

and 20 micro-seconds after first transmitted wave enters 

second length of line. 

An6wers/(‘^^ 3550 volts. 2280 volts. 
l(&) 3550 volts, 5830 volts. 

11. A lo-milc length of overhead line and a 5-mile length of cable (see 
note above) are connected in series. A voltage of 20,000 is 

impressed on the end of the overhead line, the end of the cable 
being open. 

Calculate the voltage and current 80 micro-seconds after 

switching at the following places :— 

(a) In the overhead line 6 miles from the generator. 

(b) In the underground cable 12 miles from the generator. 

Answers : (a) 3930 volts» 573 amps.; (b) zero. 

12. If in the previous question the voltage is applied to the cable and 

the end of the overhead line is open, calculate the voltage and 
current 170 micro-seconds after switching-in, at the following 

places:— 

(а) In the cable J mile from the generator. 
(б) In the overhead line 10 miles from the generator. 

Answers: (a) 20,000 volts; 270 amps,; (b) 72,000 volts; o. 

13 Obtain the law for the behaviour of a voltage surge with vertical 
wave-front which, after travelling in a transmission line of in¬ 

ductance L and capacity C per unit length, reaches a fork where 
the line splits into two sections having line constants L^Ci, and 

II 
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LgCj respectively. Neglect resistance and attenuation and obtain 
the distribution of voltage and current immediately after the 

wave-front has reached the fork. 
An overhead transmission line has a surge impedance of 700 

ohms, and a voltage wave of 10,000 volts travelling along it. 
The wave is to be assumed of infinite length and the wave-front 
is vertical. At a certain point the overhead line terminates and 
the circuit is continued by two cables in parallel. The surge 
impedance of one cable is 100 ohms, and that of the other is 
200 ohms. Calculate the voltage and current in the overhead 
line and in the two cables, immediately after the travelling wave 

has reached the fork. 
[London University, 1927.] 

Answer: Voltage transmitted into each fork 

where E == incident voltage, 

E' = 1740 volts. 

Reflected wave into overhead line = — 8260 volts. 
Current in LjCj = 17*4 amps. Current in LgC* ==8*7 amps. 

Original current in LC = 14*2 amps.) Total current in 
Reflected current in LC = ii*8 amps./ LC = 26 amps. 
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CHAPTER VIII. 

TYPICAL EXAMPLES OF TRAVELLING WAVES IN 

TRANSMISSION LINES. 

The travelling waves discussed in the previous chapter were all 
produced by switching a transmission line into service. Such 
waves may, however, be produced in a great variety of ways, 
and in this chapter we will study a few typical examples of 
travelling waves which are produced by other means than 
switching-in. 

The three following causes of the formation of travelling 
waves in transmission lines will be considered:— 

(a) Switching out an inductive load. 
(b) Earthing the line. 
(c) Atmospheric influences. 

Method of Determining Characteristics of Waves Set 
Up by any Change in Circuit Conditions.—^The distribution 
of voltage and current along a transmission line must at all 
times and at all places conform to the following essential 
requirements:— 

(1) The fundamental differential equations for a transmis¬ 
sion line must be satisfied. 

(2) The initial conditions as to voltage and current must be 
satisfied. 

(3) The boundary conditions must be satisfied. 

The differential equations referred to are given in their 
general form as equations (124) and (125) (p. 182). Since it is 
assumed that R — G = o, they reduce to equations (126) and 

(127). 
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A pure travelling wave, or a series of pure travelling waves, 
satisfies these differential equations. If this were not so, the 
solutions of Chapter VII. would not be valid. It can, moreover, 
be proved mathematically that a pure wave does satisfy the 
differential equations, and more will be said concerning this in 
Chapter IX. 

It does not necessarily foUow that the solution giving the 
voltage and current distributions along a line under any given 
set of conditions is always a pure wave. Unless requirements 
(2) and (3) are satisfied it will certainly not be the solution. 
As far as the differential equations are concerned, however, it 
is important to realise that one or more pure waves may be in¬ 
jected into a line, adding their voltage and current distributions 
to those already existing, and the dtjferential equations will still 
be satisfied. This follows because the pure wave is itself a 
solution of the differential equations. 

As far as the present study is concerned, time begins with the 
alteration of circuit conditions. Thus at zero time an inductive 
load is switched out of circuit, or an earth appears on the line. 
The initial conditions are those existing at zero time. In the 
first of the above cases the initial condition is that the current 
is zero at the switch ; in the second case, the voltage is zero at 
the earthed point. The previously existing voltage and current 
distributions no longer satisfy the initial conditions. Suppose 
now that a pure wave is injected into the line at the point 
where circuit conditions are altered, i.e. at the switch or at the 
earthed point. Suppose, also, that this wave is so selected that 
it makes the initial conditions correct. For insteince, in the 
first of the above cases of switching out an inductive load, 
inject into the line at the switch a pure wave having a current 
distribution — I, where I is the original current in the line. 
The current at the switch will now become zero by the ad¬ 
dition of the two current distributions [I -f (— I) = 0]. Thus 
the initial conditions will be satisfied, and the differential 
equations wiU also be satisfied. Remains only the boundary 
^nditions. The original distributions, whatever they were, 
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must have satisfied the boundary conditions. The injected 
travelling wave wiU also satisfy the boundary conditions by 
obeying the laws as to reflection, etc., which were deduced in 
Chapter VII. 

In the problems we are here considering it will be proved 
that the initial conditions will be satisfied by the injection of 
a single pure travelling wave. The voltage and current dis¬ 
tribution associated with it wiU vary with the individual 
problems, but in aU cases it must satisfy one of the two 
essential requirements for pure waves, viz., 

E E 
I = —, or 1 =-, where w = wave resistance. 

w w 

The injected wave will add its voltage and current distributions 
to those already present. As it travels along the line it will 
obey the laws obtained in Chapter VII. for its reflection or 
transmission. In general, by reflection at the ends of the line, 
or at points of discontinuity, additional pure waves will be 
created, and at any time the total voltage and current distri¬ 
butions will be the sum of those due to— 

(1) The original conditions. 
(2) The first injected pure wave. 
(3) A number of additional pure waves caused by reflection. 

E 
For all the pure waves I = ± —. 

^ w 

Switching Out an Inductive Load. 

In Fig. 71 a generator G is shown supplying a current I at 
voltage E through a switch S and a transmission line to an 
inductive load M. 

Fig. 71. 

Suppose the switch S is opened. Then the current at the 
open end of the line must become zero The disappearance of 



i66 TELEPHONE AND POWER TRANSMISSION 

the current and its electromagnetic energy gives 

of voltage of magnitude e where t = 

rise to a wave 

L being the inductance of the line per unit length, 
C being the capacitance of the line per unit length. 

The disappearance of the current I starts at the switch and 
travels back to the load, and it may be considered as due to 
a pure travelling wave having current — I associated with 
voltage e. This wave is called into existence immediately the 

Fig. 72 

switch is opened; it is the injected pure wave which makes 
initial conditions correct. 

In Fig. 72 the wave is drawn in the position it will occupy 
a little while after the switch is opened, its voltage and current 
being superimposed on those previously existing. The resulting 

voltage and current distribu¬ 
tion along the line is also 
shown. When the wave 
reaches the load the current 
will be zero all along the line, 
and the voltage will be E + «. 
The phenomena now resulting 
depend upon the fact that the 
current in an inductance can¬ 
not change instantaneously. 

If a voltage is applied to an inductance the current in it 
grows according to a well-known exponential law. The shape 
of the current time cmve is illustrated in Fig. 73. At the 

Fig. 73. 
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instant the incident wave impinges on the inductance the 
current is zero all along the line, but it is still I in the in¬ 
ductance, and this current cannot change instantaneously. 
Hence, since there can be no accumulation of current, there 
must be a wave having a current — I amperes reflected into 
the line from the load. Associated with this reflected wave 
there is a voltage distribution whose magnitude at the first 
instant of reflection may be found as follows. Since no ad¬ 
ditional current enters the inductance at the first instant after 
the arrival of the incident wave, it behaves as if w-^ were 
infinite in the formula for the reflected voltage given on page 
146, viz., 

Reflected voltage = Z-5—— 
® + “'b 

When w^ — CO. reflected voltage = Z = incident voltage. 
So that the reflected wave from the load starts off with a current 

:rdin 

Fio. 74. 

— I and voltage e, the total voltage at the load terminals being 

E + 26. 
This is shown in Fig. 74. 
After a very small interval of time the additional voltage 

which is now present at the load terminals will cause an addi- 

Fio. 7S. 

tional current i to flow in the inductance and this current will 
keep on increasing up to a certain maximum (see Fig. 75), 

As shown in Fig. 73, this means that the reflected current 
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flowing from the load to the point of disconnection will steadily 
increase with time. Also, since current is now being trans¬ 
mitted into the inductance it means that in formula 115 w-^ 
must now have some value less than 00, and the voltage of the 
reflected wave will be less than e. The state of affairs will be 
as shown in Fig. 76, which is drawn for an instant of time a 
little later than Fig. 75. When the reflected wave arrives at 
the open end it will be reflected, the voltage at the end of the 
line becoming E -f 31?. This reflected wave travels back to 

Fig. 76. 

the load and the process is repeated. There is thus an incre¬ 
mental rise of voltage on the line. 

The magnitude of the final voltage is determined from the 
consideration that tlie total electromagnetic energy which was 
associated with the original current must be converted into 
electrostatic energy. The amount of the former is JP[Ii -f Lq] 
where L is the inductance of the line per unit length and Lq 
that of the load. The original electrostatic energy was 
where C is the capacity of the line per unit length and E the 
original pressure. If E, is the voltage finally attained, then 

the small capacity of the load being neglected. 
If X is the additional voltage due to the disappearance of 

electromagnetic energy, then 

. {118) 
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Since li and Cl are dependent upon the length of the line, the 
value of X, and therefore of the final pressure E/, will be 
dependent upon the length of the line. 

It is clear that the resulting voltage depends upon the original 
current. Thus inductance loads should, whenever possible, not 
be switched out when carr5dng current, as travelling waves are 
formed, and the voltage associated with these may be destruc¬ 
tive. In any case, the current should be reduced to the smallest 
possible value before the switch is opened. 

Earthing of a Line.—^Travelling waves are produced when 
a line is earthed, and the effect will be considered by examining 
the special case ot a line at a voltage E open at both ends. 
Such a case may occur when the switch connecting the line to 
the generator is opened. Let this line be earthed at one end, 
the pressure becoming zero at the earthed point. 

The vanishing of the pressure signifies a liberation of electro¬ 
static energy. This changes immediately into electromagnetic 
energy and provides the current i flowing to earth. The magni¬ 
tude of this current is obtained from the equation of energy 

^Lt* - iCE^ 

»• = E-y/^.(119) 

The phenomena is very similar to that associated with the 
switching of a voltage E on to an open-circuited line as dis- 

Fio. 77. 

cussed on page 128. The reduction of the voltage to zero may 
be considered as due to the effect of a reducing wave having a 
voltage — E injected into the line at the earthed point (Fig. 77). 
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The direction of current is to the right in figure, which is 
a positive current according to the convention adopted on 
page 141 (Fig, 78). 

Fig. 78. 

The reducing wave is reflected at the open end, where its 
pressure is doubled and the current drops again to zero (Fig. 79). 

The current flow in the conductor is now from right to left, 
i.e. it is negative. The passage of the reflected wave (Fig. 79), 

Fig. 79. 

beginning from the open end, charges the system up to — E 
volts. When the reflected wave arrives at the earth point the 
whole system is at the pressure — E and the current is zero. 
At this point the first half period finishes (Fig. 80). 

Fig. 80. 

There is now again a liberation of electrostatic energy 
which changes to electromagnetic and produces a current — i, 
i.e. flowing from right to left in the conductor (Fig. 81). The 

Fio. 81, 

changing of the pressure from — E to zero may be considered 
the effect of a positive charging wave which starts at the 
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earthed point. This wave doubles its pressure by reflection at 
the open end of the line, and the current disappears (Fig. 82). 

1 i 
Fio. 82. 

When the wave reaches the earthed point the system is again 
at pressure + E and the current is zero (Fig. 83). The initial 

Zero 
Current \E Line 

earthed 
*~here 

Fio. 83. 

condition is now re-established, and the process can repeat 
itself. 

The pressure on the line, therefore, makes the jumps— 

E to o 
0 to — E 

— E to o 
o to E. 

The current in the line is zero before earthing. At the instant 
of earthing a current i flows to earth. This current to earth 
remains constant for a time*/ and then becomes zero again 

! C
u
rr

en
i 

LJ i 
Time 

Fig. 84. 

momentarily. The current now flows from earth into the con¬ 
ductor. It remains constant for a time and then becomes zero 
momentarily. This cycle repeats itself indefinitely (Fig. 84). 
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The Effects of Atmospheric Discharges on Overhead 
Transmission Lines. 

In connection with transmission by overhead lines the 
effects associated with atmospheric electrical discharges have 
to be carefully studied. If a line receives a direct stroke of 
lightning serious damage will be caused. Fortunately this 
rarely occurs. Electrical disturbances m the atmosphere are, 
however, a source of other hne phenomena which, unless 
guarded against, may give trouble. The disturbances give rise 
to two classes of phenomena, one due to the effects of indirect 
charges in causing the voltage of the hne to increase, and the 
other due to effects associated with the flash-over of insulators 
should the induced voltage be sufiicient to cause this. This 
latter phenomenon gives rise to “ Arcing Grounds,” and is a 
very fruitful source of trouble in overhead lines. 

Rise of Voltage due to Atmospheric Disturbances. 

Thunderstorms are caused by electrostatic charges in clouds. 
Owing to their electrical charges the clouds have a definite 
potential, so a thimdercloud is a “ charged body.” An over¬ 
head transmission line is a conductor insulated from earth. 

The insulation is not 
^ perfect, the insulators 

allowing a small leakage 
- Overhead current to flow to earth. 
♦ im ^ thunder- 

— — Earth cloud (“ charged body ”) 
Fio. Ss.-Chargeddoud approaching perfectly ig represented aS ap- 

insulated overhead line. 5. - , , 
preaching the insulated 

conductor (overhead line). Assume that the thundercloud is 
positively charged. As it approaches the overhead line it will 
by the laws of electrostatics induce a negative charge in the 
parts of the conductor adjacent to the cloud and repel a positive 
charge to the part of the conductor remote from the cloud. 
This state of affairs is indicated in Fig. 85. The positive and 
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negative charges have this important difference. The negative 
charge is “ bound ” by the positive charge on the cloud. The 
positive charge on the conductor is not bound, and if a path is 
provided, it will escape to earth. The leakage paths over the 
insulators permit of a slow discharge to earth, and very often 
special means (such as water jets) are provided for allowing the 
charge to escape (Fig. 86). The approach of the cloud is so 
slow that the positive charge is drained off by the leakage to 
earth, and as the cloud approaches there will be no change in 
the potential of the line. When the cloud discharges, however 
(either to earth or to another cloud), the potential of the part 

Fio. 86.—Charged cloud approaching overhead Fic. 87.—Voltage between per- 

line not perfectly insulated. fectly insulated line and earth. 

Voltage induced by thunder¬ 

cloud. 

of the line under the influence of the cloud suddenly rises and 
important phenomena result. 

If the overhead line is completely insulated with no path 
to earth, we may represent it diagrammatically as in Fig. 87. 

E = difference of potential between cloud and earth. 
El = difference of potential between line and earth. 
C' = capacity of transmission line to earth. 

C" = capacity of cloud to transmission line. 

By the laws for condensers in series 

El = Eg> . . . (130) 

As the cloud approaches the line, C" increases, C' remains 
constant, hence Ej increases. If then the line were completely 
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insulated, with the approach of the thundercloud there would 
be a slow rise in the voltage of the line. As we have seen, 
however, in an actual line with leaky insulators the repelled 
positive charge escapes to earth through whatever paths are 
available for it, and no increase of line voltage due to the 
thundercloud results. 

The bound charge is confined to a short length and is not 
evenly distributed over this length. The intensity of the charge 
is greatest near the centre of the cloud, and diminishes towards 
the edges of the cloud. 

If the cloud discharges, e.g. by a stroke of lightning to earth 
or between clouds, the bound charge is suddenly liberated and 
the line assumes a certain potential. The leaky insulators 
immediately begin to draw this charge off, but this takes time. 

_ 
Qyerhead 

Supports for-^ 
Overhead Line 

Earth 

Fio. 88.—^Voltage of overhead line raised by sudden discharge of thundercloud. 

Assuming that the charge of the same polarity as the cloud has 
completely escaped to earth, the electrical state of the conductor 
immediately following the discharge of the cloud is as shown in 
Fig. 88, where the induced bound charge is assumed to have a 
new voltage zY. 

The phenomena which foUow are very similar to that 
assodated with the switching on of a transmission line, discussed 
on page 128. 

The bound atmospheric charge has, on release, two paths 
available for its transmission. The paths are identical and 
therefore both will be utilised equally. Consequently, the 
charge spreads in both directions, two pure travelling waves 
being set up, one to the right and the other to the left, as shown 
in Fig. 89. As the bound charge does not have a steep front, 
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neither will these travelling waves have steep fronts. This is 
fortunate, as the stresses induced by the travelling waves in 
transformers and other machines will be reduced. 

To deal with the effects of the travelling waves in the manner 
developed in the preceding pages we will assume, however, 
that the charge liberated on the conductor has rectangular 
form. The charge cannot remain at the place where it was 
liberated, but will be propagated along the line with the velocity 

Fig. 89.—Travelling waves set up by discharge of thundercloud. 

of light. Since there are two identical paths offered, the charge 
will divide equally between the two paths. If we assume that 
the original charge at a pressure 2Y is made up of two equal 
charges each at a pressure Y, then these two charges will move 
one to the right and the other to the left. 

If C is the capacity per unit length of the line and X the 
length of the original bound charge, then the energy stored in 
the original bound charge is all electrostatic, and is given by 

A = 4^2^* ^ 2CXYK 
2 

The two travelling partial waves possess both electrostatic 
and electromagnetic energy. The electrostatic energy of each 
wave is 

If L is the inductance of the line per unit length, and i the 
current in each wave, then the electromagnetic energy of each is 

A' m — 

LXt* 
2 

The total energy of the travelling waves is 2[A', + A'*,]. 
This total energy must equal A. 

A = 2[A'. + A'„] 
aCXY* = CXY« + LX**. • 
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The well-known equation results 

(I2I) 

So that when a thundercloud discharges in the neighbour¬ 
hood of an overhead line, two equal travelling waves moving 
in opposite directions are set up in the line. Each of these 

waves has a voltage Y and a current i = associated with 

it. These waves oscillate backwards and forwards along the 
line subject to the laws already discussed for travelling waves. 
They are reflected from ends of the line, and at a certain point 
in the line the reflected waves meet again and form the original 
wave again at voltage 2Y. The process then begins again. 
In practice, as the waves oscillate backwards and forwards 
along the line they suffer an increasing damping effect, due to 
the resistance of the line. 

It should be carefully noted that 2Y is the voltage of the 
bound charge, and has no connection whatever with the 
ordinary voltage of the line. 

Arcing Grounds. 

In the discussion of the previous section it was assiuned 
that the rise of voltage due to the bound charge was not sufii- 
ciently great to cause flash-over of the line insulators. It was 
pointed out that the voltage rise was quite arbitrary, having no 
relation to the normal working voltage of the line. Whether 
any thundercloud will or will not cause the insulators to flash 
over and give rise to an arcing ground, will depend upon two 
factors:— 

(1) The voltage rise induced by the doud. 
(2) The flash-over voltage of the line insulators. 

Regarding {2), the following figures for flash-over are 
abstracted from the B,E.S.A. specification for overhead line 
insulators:— 
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Working Voltage. 

Flash-over Voltage 

Insulator Dry. Insulator Wet. 

3 K.V. 40 K.V. 20 K.V. 

6 „ so 30 „ 
10 „ 62 „ 39 M 
20 „ 95 M 62 „ 

30 „ 125 „ 84 „ 
60 „ 165 „ 140 „ 

100 „ 300 „ 220 „ 

It will be seen that a reasonable factor of safety is allowed 
between flash-over and working voltage. As, however, the 
rise of voltage induced by a thundercloud is arbitrary, it will 
frequently happen that an insulator will flash over during a 
thunderstorm. 

A transmission line normally has a certain potential with 
respect to earth. If an insulator breaks down, the potential 
of the line at this point suddenly drops to zero. The resulting 
phenomena are similar to those discussed on page 169 (“ Earthing 
of the Line ”). Since two identical paths are offered, discharge 
waves will be propagated in both directions along the line. 
These waves have a steep front and an amplitude equal to the 
flash-over voltage of the insulators. Thus, following on the 
insulator flash-over, there will be travelling waves moving in 
each direction from the earthed point. In each direction the 
waves may be considered to be divided into two distinct cate¬ 
gories, viz. those associated with the movement of the original 
bound charge and those due to the earthing of the line through 
the insulator flash-over. 

The waves due to the flash-over are particularly dangerous, 
as the wave-front is steep, while that of the bound charge is 
sloping. 

Steep-fronted Waves Produced by the Screening 
Effect of Buildings, Transformer Tanks, etc.—^Travelling 
waves having steep-fronted characteristics may be produced 
without insulator flash-over if the thundercloud is near a 
building which the line enters. The building screens all the 

12 
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electrical apparatus within it from the influence of the electro¬ 
static field produced by the thundercloud. Thus the bound 
charge on the line must end abruptly at the walls of the building. 

An outdoor transformer tank acts in the same way as the 
building, and effectually screens the transformer within it. 

When the cloud discharges to earth, say, the bound charge 
is freed and spreads in both directions. The wave travelling in 
one direction will enter the building. The steepness of its front 
will make it especially dangerous to the machinery. 

Note regarding travelling waves produced when an alternating 
voltage is applied to end of line. 

The theory of travelling waves due to switching has been 
developed in Chapter VII. on the assumption that the applied 
voltage is constant If an altematmg voltage is applied to the 
end of the line, then the theory obtained will still hold as the 
alternating voltage is equivalent to a succession of constant 
voltages each lasting for a very short time. Moreover the 
velocity of propagation of the waves is so rapid compared with 
the slow cyclical change in the applied voltage, and in most 
actual lines the damping effect of resistance and leakance will 
be so great, that during the time the transient phenomena 
persist the applied voltage is practically constant. 

A more accurate discussion of the transient phenomena 
associated with the switching of an alternating voltage on to 
a line will be found in Chapter IX. 
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CHAPTER IX. 

INTRODUCTION TO MATHEMATICAL THEORY OF 

TRAVELLING WAVES. 

General Form of Differential Equations for Voltage 
and Current along Transmission Line.—In the general 
theory of transmission given in Chapter II. it was assumed, 
when studying the alternating current case (p. 24), that 

i = J sin wt and 

V = ‘P' sin {wt + ^). 

Based on these assumptions, the differential equations (36) and 
(37) were obtained, and their solution gave expressions for the 
voltage and current along the line (equations 41 and 42). 

A little consideration will show that in their most general 
form the differential equations for a transmission line are 

+ 

+ • • • (“3) 

Equations (36) and (37) are particular cases of equations 
(122) and (123), and hold only-when current and voltage may 
be assumed to vary sinusoidally with time. It will be proved 
in this chapter that the assumption is correct only after some 
time has elapsed, since circuit conditions were last altered, i.e. 
when the line is in a “ steady state ” electrically. Before this 
state is reached the assumption is incorrect and various tran¬ 
sient voltages and currents occur. Equations (41) and (42) 
take no account of these, since they hold only for the steady 
state. 

Similarly, for the direct current case studied in pages 19 
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to 23, the assumption has been made that at any point along 
the line, current and voltage are independent of time, i.e. 

rr — o, and 
at 

dV 
dt 

Equations (122) and (123) now reduce to 

dx 
= IR 

which are equations (28) and (29) (p. 19). The assumption 

that ^ and ^ are zero will be proved to be correct only when 

the line is in a steady state. As in the alternating current case, 
we will see that before the steady state is reached various tran¬ 
sient phenomena occur. 

The general equations for the distribution of voltage and 
current along a transmission hne are equations (122) and {123). 
A general solution of these equations, satisfying the boundary 
conditions for each case, would give the values of voltage and 
current along the hne at cdl instants, and must therefore in¬ 
clude the transient conditions. In the treatment followed in 
the preceding pages the transient conditions have been dealt 
with in Chapter VII, and the steady conditions in Chapter V, 
and the relation between the two is by no means obvious. 
In the present chapter the theory which connects the solutions 
for the transient and steady conditions will be given. 

The mathematics involved in a complete general solution of 
the differential equations (i22j and (123) is difficult and beyond 
the scope of this work, and for such solution reference must be 
made to more advanced works.* It is in order to avoid the 
mathematical difficulties involved in a complete solution that 

* ** The Propagation of Electric Currents in Telephone and Telegraph Con¬ 
ductors/’ J. A. Fleming; also, **Electromagnetic Theory/* Oliver Heaviside: 
Benn Bros. 
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the methods of Chapters V. and VII. have been followed. All 
the solutions given there are really particular solutions of the 
differential equations, the solutions of Chapter V. holding when 
all the transient terms have disappeared and the solutions of 
Chapter VII. holding only for an exceedingly small space of 
time after circuit conditions have been altered. In actual fact, 
the solutions for transient and steady conditions merge into 
one another and are contained in a general solution of the 
differential equations. Immediately after switching a voltage 
on to a line the phenomena described under transient condi¬ 
tions occur, while some time later a steady state is reached and 
the solutions of Chapter V. are correct; but between the 
transient state and the steady state neither method gives 
correct solutions. 

In practice this is of no great importance. The steady con¬ 
ditions are those with which we are usually concerned, and 
the methods of Chapter V. apply for these. The transient con¬ 
ditions are chiefly of importance because of their effect in 
causing the building up of voltage which may result in insula¬ 
tion breakdown. Now it can be shown that the voltage rises 
actually occurring will (owing to leakance and the damping 
effect of the resistance of the line) always be less than those 
calculated by the methods of Chapter VII. So if transients 
are thus calculated and provision made for dealing with them, 
the transients which arise in practice should not give any 
trouble. Hence the methods* and solutions of Chapters V. 
and VII. should meet most practical cases, and they have the 
advantage of greatly simplifying the mathematical treatment. 

A study of the complete mathematical treatment of the 
problem of travelling waves is helpful in several important re¬ 
spects. It serves to show how the transient and steady con¬ 
ditions merge into one another. Further, it will be proved that 
the solutions for the transients as obtained from the differential 
equations agree with those given in Chapter VII. and obtained 
by a quite different method. Also, the mathematical treatment 
will be helpful by indicating the effect on the transients of the 
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leakance and resistance of the line, which have been neglected 
in Chapter VII. 

Notation.—In Part I. the following symbols were used :— 

V — voltage at any point. 
e — base of Napierian logarithms. 
I == current at any point. 

In this chapter the notation will be altered, it being con¬ 
sidered advisable to do this to make it agree with that usually 
employed by writers when dealing with the mathematical theory 
of travelling waves. In what follows the notation will be 

e = voltage at any point. 
€ = base of Napienan logarithms. 
i — current at any point. 

General Solution of Fundamental Differential Equa> 
tions for Transmission Line:— 

The fundamental equations are 

-I =«'+«» • • • (-5) 

The general solution of these simultaneous differential equa¬ 
tions for any set of boundary conditions (open-circuited line, 
short-circuited line, etc.) is difficult, and beyond the scope of 
this work, but the following special cases are susceptible of 
simple treatment. 

Solution when Resistance and Leakance are neglec¬ 
ted.—^The assumption of no resistance and no leakance has been 
made in the theory already given for transients in Chapter VII., 
and the mathematical solution should agree with the results 
obtained therein. 

The differential equations for current and voltage are now 

C— 
dx di 

de ^ T 

25c ~ at 

(126) 

(127) 
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For the complete mathematical treatment leading to a solu¬ 
tion of these equations, reference should be made to the works 
previously mentioned (p. 180). The solutions only will be given 
here without proof. 

The complete solution of the equations gives e as 

e == F{x — v{) + G{x + v{) where V =^ . (128) 

The solution e — F{x — vt) represents a voltage distribution 
given at time t = 0 by c == F(a;), and which moves in the 
direction of increasing values of x at velocity v without change 
of magnitude or shape. 

Similarly, the solution e — G{x + vf) represents a voltage 
distribution given at time f = o by « = G(a:), and which moves 
in the direction of decreasing values of * at velocity v without 
change of magnitude or shape. 

The values of the functions F(«) and G(*) must be deter¬ 
mined by reference to the conditions of the problem (line open- 
circuited or short-circuited, etc.). 

As it is of importance to understand this part of the work 
clearly we will consider one or two examples. Suppose, for 
example, the terminal conditions are such that at time t — o, 
F(;r) = X. The solution e = F{x — vt) is now e = x — vt at 
any time t, and can be determined by plotting thus— 

vt. Equation of volts along line. 

o . . . . . e = X. 

X.e = X — X. 
2  e — X — 2. 

3  c = * — 3. 

The distribution of voltage along the line at various instants 
is shown in Fig. 90. 

An inspection of Fig. 90 makes it clear that the voltage 
distribution is moving to the right, without change, at a 
velocity v. 

As a further example, suppose that the terminal conditions 
necessitate a solution where F(*) = sin when / = o. We 
then have 
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t//. Equation of volts along line, 

o.e sin X. 

1 .c = sin (a; — i). 
2 .. = sin (a: — 2). 
3 .e = sin (* — 3). 

FlO. 90.—Equation e * plotted for various values of vt. 

These equations are plotted in Fig. 9^^ inspection 
shows that, as before, the voltage distribution is moving to the 

right, without change, at velocity v. 

Fig. 91.—^Equation e « sin {x — vi) plotted for various values of vt. 

Similarly, G{x + vt) can be shown to be a voltage distribu' 
tion which moves to the left with velocity v. 
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It follows that where the voltage distribution at any time 
t is given by e — F(a: — vi) + G{x + vt), this distribution can 
be determined thus : Obtain the values of F(*) and Q{x) which 
satisfy the boundary conditions. Then allow these voltage 
distributions to move, the one to the left and the other to the 
right, with velocity v. Their addition wUl give the resultant 
distribution at any instant. 

Before the values of F(a;) and Q{x) can be found, it is neces¬ 
sary to fix the boundary conditions, and they can then be 
mathematically determined. In the following discussion the 
values of F{x) and G(x) will be given, but without proof, for 
each set of boundary conditions. It should be understood that 
the theory which follows is based upon the acceptance without 
proof of two things, viz.;— 

(1) The expression for e as e = ¥{x — vt) -f- G{x -|- vt). 
(2) The values of F(«) and G{x) for each particular set of 

boundary conditions. 

It should be noted that x in the differential equations can 
have any value between plus and minus infinity. The actual 
physical length of the line includes only those values of x which 
lie between 0 and I, but values of F(x) and G{x) exist outside 
these limits. 

Distant-end of Line Open-circuited.—Suppose a volt¬ 
age E is applied to a hne of length 1. The boimdary conditions 
are 

e = E when a; = 0 for all values of t, 
c == 0 „ t — o „ „ * 
i = 0 ,, X — I ,, ), t 

We know the solution is of the form 

e = F(* — v{) -|- G(x -|- vt), 

and it can be proved that the boundary conditions necessitate 
that at time < = 0 the values of F(*) and G(*) are as given in 

the table:— 
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Values of F(*) and G(a:). / — o. 

Range of x Fix)- G(r). 

t 
- 4/ to — 2/ 

t 
0 

- 2/ „ 0 E — 
0 „ / 0 0 
/ „ 2/ — 0 

2/ „ 4/ — E 
4/ „ 6/ — 0 

1 

These values for F(;r) and G(;»;) are more complex than those 
taken in the typical examples given on page 183 [F(x) = x and 
F(x) = sin x], but the results there obtained still hold. 

Thus the two infinite series of rectangles represented by 
the above values for F(x) and G{x) move, one to the right and 
the other to the left, with velocity v. At time i = o they will 
be as represented in Fig. 92. At various other times they will 
be as represented in Fig. 93. It is seen that these two infinite 
series of rectangles, the one series moving to the right with 
velocity v, and the other to the left at the same speed, produce 
all the effects in the length 0 to / (the actual physical line) 
which have previously been described in Chapter VII., pages 132 
to 136. As before, it is seen that the voltage wave upon striking 
the open end is reflected without change of sign, the voltage at 
the open end being thereby doubled. 

Current Waves.—So far we have dealt only with the 
voltage along the line. We will now consider the current. 

The solution for e is 

e = F(x — vt) + G{x + vt). 

The general differential equations [R = G == o] are 

— — — 

^_ ^di 

dx~~ df 

Now, if (x - 

L 
dx 

-vt) = u say, 

r(«)-^F(«)x du 
Tx - • S 

where F'(«) 

then 
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When vt’O 

I e-F(x)^G{x) -61 
1 IE 
-M -31 -Zl -I -It 

mil 
21 SI u 

Fig. 92.—Values of F(jc) and G(;p) for open circuited line. 

When vt-\ 

When vt’l 

When 

c/'Cr-fWHr+f)- 

When vt"2l 

e-F{x-2l)'^G(x^2l)- 

When W-y 

e-F(x-f)*C(pe-*f) 

When vt^Sl 

f Whenvt^Y 
|e-/I*-f)+Gfc+f) 

r~ h .; 
-f 

1_ 
.ri n ■.' -i f 1 21 Zl 

1 . 

,. n ill . ! 
' -i wptfir^ 

^ 1 i.i. , , ,, , 

n 

0 1 21 

1 L 

. 1, . 1 _ 
-f i ^21 ^ 

r--* 1 ._f~rn.. ‘ 4 \0 l 21 5l 

r 11A • 
■f 

—1 
1 ■ 1 1 » 1 u H 

e\ 

\ 

2B\ 

1 
2Bj 

4 

4 

4 

2B 

In 
Fig. 93.—^Voltage distribution along open-circuited line e « F(ar — vt) -f G(x -f vt), 

F(a? — v/) and G(a: -f r'/) are shown for various values of vt. Voltage distri¬ 
butions from ^ = o to a; ^ are on right of figure. 

i.e. ~ — vt) X 1 = F'(jc — vt). 

du dt 
d 

i*e- -Tf F(* — vt) = F'(* — vt) X —v=— vF'(a; — vt). 
dt 

Now, ^ = — C ^ and e = F(ii; — v()-\- G{x + vt). 

— C»[F'(* — vt) — G'(* +1»<)] (129) 
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Further, x ~ ^ 
dx dt 

Since e = F{x — vt) + G{x + vt) 

^ = F'(a; — vt) + G'{x + vt). 

.‘.^^^=.-\[r{x-vt)-FG’{x + vt)] . (130) 

Also, ^ = Ci;[F'(a; - vt) - G'{x + vt)] . (129) 

Integrating equation (129), 

i — C7;[F(i; — vt) — G(a; + t)/)] . . (131) 

This also has to satisfy equation (130). 
Differentiating (131) with respect to t we have 

2 = Ct;[- vF'{x - vt) - vG'ix + 

= — Cv*[F'(;c — vt) + G'{x + 

This satisfies equation (130) when 

Cv® = p 

i-e. Vii.(^32) 

* = Ve ~ • • (^33) 

Comparing this with e = F(x — vt) G(x + vt), we see that 
the current associated with the wave of voltage F(a; — vt) is in 
phase with it for all values of t, and its value will be the corre¬ 
sponding value of the voltage divided by the surge impedance 

The current associated with the wave of voltage G(x 4- vt) 

is obtained by dividing the voltage by and then reversing it. 

It should be noted that this theorem connecting voltage 
and current is independent of the boundary conditions. 

In Fig. 94 the current waves are given for the open-cir¬ 
cuited line. 
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When vt*0 |— 
"4^ 'S~) S? fiZ T5f 

. 
Whervvt*^ j 

i WfiY^ 

When vt^^l ri —1 SI 
t-V?^(x-f)-0{x+l)]~ -i \0 iZ 21 1 0 1 

When vt» ^ ||||[^^ HHKHHH 
-t ^ l irp> 

When vt»2l _1 1 ...I. 
l^r-7 t..«__% 0 t 

When 
-i 1 1 . *? . 1 _ 0 I 1 

[Oi l ' ^ f 

When vt •SI < 1 0 t 
i •s/^]f*(x-SiyG(x'¥S^ 

1 0 7 zl u 

When v/ - ^ n, - oji 
L.. ...... \p\ i^h f 

fFfien vt ‘4-1 | j | 

1._r ^ ^ ^ ^ 
Fio. 94.—Current distribution along open-drcuited line 

I = — »<) — G(x + t/r)J. ~ ^0 “'d + vt) 

are shown for various values of vt. Current distributions from a: = o to » * / 
are on right of figure. 

Far-end of Line Short-circuited.—Here the boundary 
conditions are 

e = E when x = 0, 
tf = o „ f = 0 for all values of x between o and 1. 
e = o „ « = / for all values of t. 

The solutions for F(*) and G(*) which satisfy these boundary 
conditions are found to be as given in the following table:— 
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ATTiME/-o{§*^5^§^j; 

Range of x. F(*). G(*). 

t 
~ 6/ to ~ 4/ 
- 4/ „ - 2/ 2E — 

- 2/ „ 0 E — 
0,, / 0 0 
/ „ 2/ — 0 

2/ „ 4^ — ! ~E 
4/ .. 61 

1 
— 2E 

As before, the solution is lepresented by two infinite series 
of flat-topped figures, and they are shown in Fig. 95. The 
distnbution of voltage at any other instant than t = 0 can be 
obtained in the usual way, by allowing the figure representing 
F(«) to move to the right and that representing G{x) to move 
to the left, and then adding the two together. The actual 
physical length of the line being /, we are concerned with obtain¬ 
ing results only for values of x between 0 and 1. In Fig. 95 
the distribution of voltage from 0 to I at various instants is 
given. As in the case of the line open-circuited at the end, the 
results are found to agree with those obtained in Chapter VII. 
(p. 136). 

The current can be obtained from the differential equations 
as on page 188. It is there proved that, independent of boun¬ 
dary conditions, the current associated with any voltage e is 

e 
t = ± —j^, which is the formula on page 129. 

Vc 
The positive sign is taken for the F distribution and the 

negative sign for the G distribution (see Fig. 96). 

Solution when Resistance and Leakance are Included 
R G 

and when j- = g.—The general solution including resistance 

and leakance is dismissed on page 182 as being too difficult for 

inclusion in this book. When 
R 

g, however, the mathe- 
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matical work is greatly simplified, and some space will now be 
devoted to considering the solution when the above relation 
holds between the primary constants of the transmission line. 

Fig. 9S.—^Voltage distribution along short-circuited line e = F(* — o<)-f G(*-t-*'I). 
F(3r — vt) and G(* + vt) are shown for vanous values of »/, Vokage distri- 
butions from a; o to a; » / are on right of figure. 

Since the amount of leakage indicated by this relation is 
much greater than would be present on a power transmission 
line, the results obtained have no direct practical application 
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to such lines. They are, however, interesting and instructive 
as showing qualitatively the effect of resistance and leakage in 

Fio. 96.—Current distribution along short-circuited line 

are shown for various values of vt. Current distributions from * = o to *’ =• / 
are on right of figure. 

nxodifying the results obtained when these quantities are 
ni^lected. 
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is 

The solution of the differential equations 

de 
dx 
d% 
dx 

= ® + if 
= G. + C* 

when ^ 

e = — v{) + G{x + vf)] (134) 

for the voltage, and a similar expression for the current. The 
solution for a line open-circuited at its far end is subject to the 
terminal conditions— 

e = E at X — o, 
t = 0 „ X — I, 
e = 0 when < = 0 for all values of x between 0 and I, 
^ 0 ^ ® 91 99 99 99 

These boundary conditions result in the following three 
equations:— 

F{x) — G(x) = 0 for values of x between 0 and I (134a) 
F(*) = — G(— x) 4- Ee--** .... (134&) 

F(/ — «) = G(/ -f *).(134c) 

where a = s/RG = attenuation constant j8 for distortionless 
lines (see page 39). 

In order that these equations may be satisfied, the values of 
F(*) and G(x) must be as given in the following table:— 

VaIUBS of F(x) AMD G(x). 

Note.—^When / *= o, € l F(jc ~ = F(;i:) and « l G(a: -f »/) « G(«). 

Range of F(x). 

--.....r 
GW. 

t 
— 4/ to — 2/ 

- » 0. 
• 0 „ / 

/„ 2/ 

4/ ,, 4/ 
4/ „ 6/ 

____l_!_ 

£[«-«» - + 

E*-®* 
0 0 

0 

The way in which the values of F(flf) and G(*) are obtained 
is explained on page 205. 

13 
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Unlike the previous examples, the distribution of voltage 
along the line at any time cannot now be found by allowing 
the distributions represented by F(^;) and G(x) to move with 
velocity v and without change of shape. The distributions move 
(one to the right and the other to the left) with velocity v, 

__ R 

but, at the same time, are attenuated by the factor e ~ I*" 
The equation representing the distribution at any time t can 

under these circumstances be most conveniently foimd by 
direct substitution in equation (134), thus:— 

To determine the voltage distribution at time I — which is 

the time taken for the function F(a:) to move to the right by a 
distance I, and the function G{x) to move to the left by an 
equal distance. 

e == [F(a; — vt) + G(a: + *)/)]€”!'• 

When vt = I F(a; — = F(a; —/). 

... e=[F(^c-0^-G(x^-/)]f-^^ 
O _ 

Since a = j— = VkG, 

e -- fF(a: - /) + G{x + /)]€ - . (135) 

To get the values of the functions between the limits x~o 
and x = I, the procedure is thus:— 

For values of x between 0 and I the limits for x — I lie 
between — I and 0. 

At time t — 0 F(fl;) is Ee~®* between—I and 0. 

„ „ ^ “ 0 is Ec““(®“ between 0 and /. 

Also „ „ ^ ^ G(x + 1) is 0 between 0 and 1. 

c = €““* [Ec““(®“*)] = Ee““* . . (136) 

The same method gives the voltage distribution at any other 
time, and the results obtained are:— 
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Equation of Volts Along Line at Various Instants, 

t. From » »=» 0 to « == From « «= to « »»I. 

0 0 0 

OS- 
V 

E«-«® 0 

1 
0

 Ec-®» 

I-S^- 

rol 
V 

-f. As from o to J/ 

V 
E[6 J*)] E[e-ax 1 

30- 
Zf 

a® ^ jj) _ j As from o to J/ 

1 1 1 

An examination of this table shows how the mathematics 
fits in with the theory of successive reflections which occur each 
time the wave-front strikes either the open end of the line or 

the generator end. From time ^ — 0 to < — - only one wave 

is present, viz. Ee ■®®, From time t = - to time i—- there 

are present the original wave Ee"®® and a single reflected wave 
2I '4 

From time t ~ — to time t = — there are present 

the original wave Ee"®*, the original reflected wave Ee"®(**' 
and a second negative reflected wave Ee"®(**^ *). This process 
continues indefinitely. 

The first reflected wave starts off with a value e "“<** "0= €-<»i 
equal in value to the incident wave when it strikes the end of 
the line. This we would expect from previous work. At a 

time later by 0-5 - it will have moved halfway back to the 

generator, and the original wave-front e"®* will be attenuated 
by and its value will now bee"^^®®®. After a further 

I 2I 
interval of time 0*5- (making — from beginning) it will be 
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Passing from Transient to Steady State.—The voltage 
at any point x changes with each passage of a wave-front, the 
amount of the change getting less with each successive passage. 
The voltage will eventually settle down to a steady amount 
given by 

E|g-o» _|. g-o(al-«) _ g-a(aJ + *) _ g-a(4(-*) g-fl(4l > *) 

= £€'“*{1 — |- . . .} 
-2oi+«« _ g“4a/~fa«>| ^-Bal + ax 

E|l + {g-o* gol goa g-aJ "j 

g®i —j.. g ^ gol —~ f 

E 
cosh a{l - x) 

cosh al 

^ (cosh vl cosh vx — sinh y/ smh y 11 . / 
“ - -Lshyi - \ ““ ■> = VRG = y 

= E(cosh yx — tanh yl sinh yx}.(137) 

This agrees with the equation for the “ steady state ” voltage 
given on page 22, viz., 

V = Va(cosh yx — tanh yl sinh yx). 

Example.—K transmission line has a resistance per mile of 
loop of 0*5 ohm, and an inductance per mile of loop of 0-004 
henry. The leakance is 8-75 X 10-’' mho per mile of loop, and 

the capacitance is 7 X io~* farads per mile of loop. The line 
is 500 miles long, and a continuous voltage of 100,000 is main¬ 
tained at one end, the other end being open. Calculate the 
distribution of voltage and current along the line at various 
times after applying the voltage. 

E “ c[o-Si “ ““ 
equation (134) holds. 
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\lh = J — -g — 748 ohms. >C >7 X io-» 

V = = 186000 miles per second. 

a — s/RG = */o-5 X 875 X io-» 
= 0-000662. 

I = 500 miles. 

Time for wave to travel a distance equal to the length of the 

line = xi^^oo ~ seconds = 

At time t - equation of volts along line = Ee"“®. 

X ■■ 0 zoo 200 300 400 500 Miles. 

ax 0 0*0662 0*1324 0*1986 0 2648 0-331 

I 0*937 o*S78 0*818 0*767 0-719 

100,000 93,700 87,800 81,800 76,700 71,900 Volts 

At time ^=— equation of volts along line = Ee"®* + Ee“®<*^ “*). 

X. 0 zoo 200 300 400 500 

(2/ - x) 1,000 900 800 700 600 500 
ai2/— x) 0*662 0-5958 0*5296 0-4634 0*3972 0-331 
,-o(aZ-a;) 0*517 0-554 0*588 0-631 0*67 0-719 
E*-a(si-aj) 51,700 55.400 58,800 63,100 67,000 71,900 

151,700 149,100 146,600 144,900 143,700 143.800 

In the same way, the voltage at any other instant can be 
found. The voltage distributions at the two instants for which 
the tables are calculated are given in Fig. 98. 

If the resistance and leakance had been neglected the voltage 

at time / = ^ would have been 100,000 all along the line, and 

2I 
at time /» — it would have been 200,000 all along the line. 
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Current along Line when £ = q (Open-circuited Line). 

—The general solution for the voltage along the line has been 
considered. Regarding the current it can be shown that the 
current along the line is ever5nvhere in phase with the voltage 
and is in magnitude equal to the 

_ 150 000 

voltage divided hy w — .J t 
* 

the surge impedance. At the 12s 000 
open end of the line the current 
is reflected with change of sign 
in order that the current at the 100000 
end of the line may always 
be zero. Corresponding tables ^ 
may be constructed for the ^ 7Sooo 
current thus:— 

At time t = - 50 000 
V 

equation of volts along line 

is e = Ee~“* 25 000 

equation of current along line 
is i — Ee"**/®, 

where a/ surge impedance ^ 200 300 4oo 500 
= 748 ohms. Distance,m MfJes 

Therefore, equation of current 9^*—^Voltage distribution along 

At time t ■ 
100 200 300 400 500 
Distance,in Miles 

along line is i — —^ 
74° 

= 1337 €■ 

open-circuited 500-mile line for 

R G 
which L ^ when 100,000 volts 

are continuously applied. 

ox . 0 0*0662 0*1324 

«-**. . . 1 0*937 0*878 

133-7 • 1337 125 117*2 



In the same way the current distribution along the line can 
be found for any other time. 

The current distributions at the two instants for which the 
tables are calculated are given in Fig. 99. 

The current waves corresponding to the voltage curves of 
Fig. 97 are— 

At time f — 0 the current is zero all along tiie line (Fig. 100). 
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At time t-O'S- the wave of current accompanying the 

wave of voltage has reached a point halfway along the line 
(Fig. loi). 

0 100 200 300 400 500 
Distance,m Miles 

Fig. 99.—Current distribution along 

open-circuited 5oo-inile line for 
R G 

which j. w when 100,000 volts 

are continuously applied. 

I 

Fio. 100. 

•X ii I 

Fig. ioi. 

Equation to current along line is 

E 
t = - €*•“* from o to il, 

w 
i — 0 from to /. 

At timef = - the wave of current has reached the open end 
V 

of the line, where the current must be zero; » when * — Z is 
E 
~ There must now be a reflected wave of current of 
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E 
initial amplitude Equation of current along line is 

E 

At time f = 1-5 - the reflected wave of current has got half- 
V 

way back to the generator again. Equation of current along 
hne is 

E 
X = oto X = U t — — £-«* 

^ w 

E 
X = \liOX — l t — - [e-o*_ c-a(2*-*)] (Fig 103). 

Fig. 102. Fig. 103. 

2/ 
At time t = - the reflected wave of current has reached the 

V 

generator. 
Equation of current along line is 

i= 5re-a»_e-a(a*-»)l, 
w'- ■* 

Now equation of voltage along line is 

^ = E [c*®® + 

and this is made equal to E at the generator by a wave of volts 
« = — Ee ““(**+(see p. 195), and accompanying this is a wave 
of current 

E 
* == — ^ (Fig. 104). 
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At time t — 2-5 - the wave of current as given by equation 

E 
* = — ^®~‘’***^** halfway to open end of line, and 

equation to current is 

EE E 
from o to U i — -e-a(8i-») _ ») 

w w w 

From \l to I it is 

E E 

Fki. 104. Fig. 105. 

At time t — — the wave of current i — — ^e""***' *> 
V ■ w 

has got back to open end of line and equation to current along 
line is 

i z= 5e-<»* — Eg-o(2f-*) — ^-o(2J + ») (Pig, 106). 
w W W \ a I 

We have seen, then, that when the current wave reaches the 
open end of the line, the reflected wave of current is of opposite 
sign to the reflected wave of volt¬ 
age Ec“®(**~") for voltage and 

E —re-o(2i-») for current. When, 
w 

owever, a current wave reaches 
ae generator end of the line the 
jflected wave has the same sign 

s the reflected wave of voltage 
E 

— ■^*) for voltage and-e 

Fio. 106. 

-«(2i+») for current). 
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These results are embodied in the mathematical solution for 
the current. 

Alternating Current Transients.—The only transients 
which have been considered in this chapter are those associated 
with the switching-on of a continuous voltage E. It remains 
to consider the switching-on of an alternating voltage. 

R G 
Only lines where £ = be considered. Suppose an 

alternating voltage c = E cos wt is switched on to an open line 
of length I; the problem is, to determine the voltage distribu¬ 
tion along the line at any desired instant after switching on. 

As on page 193, the voltage distribution at any instant t is 
expressed by 

e = — vt) -f G(x -f vt)] . . (138) 

The boundary conditions are the same as those holding for the 
switching on of a continuous voltage (p. 185), excepting that 
when a; = o, e = E cos = e"“®‘[F(— vt) + G(vf)]. It can be 
proved that these boundary conditions result in the three fol¬ 
lowing equations:— 

F(a;) = G(a;) = 0 for x between 0 and I . (138A) 

W 

F(*) = — G( — a;) -J- Ec"®® cos - a; . . (138B) 

F(I — *) = G(/ -f x).(138c) 

When t=o, the expression c ®*’*[F(a; — vt) + G{x -f wf)] 
becomes [F(a:) + G(a;)]. It will be proved that in order to 
satisfy the boundary conditions, the values of F(At) and G{x) 
must be as given in the table (p. 205). 

The values for F(aj) and G(a?) are built up from the equations 
138A, B, and c in a manner which will now be explained. It 
should be noted that, excepting for the cosine term in equation 
138B, the equations 138A, b, and c are identical with those 
given <m page Z93 for the case of a continuous applied voltage 
E. The method now to be described for the building-up of 
the values of F(a;) and G(3r), as given in the table on page 205. 
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can be applied to the conditions on page 193. The results are 
given in the table on page 193. 

Values of F(j;) and Gjx) 

Note —F(i:) - F(a: — vt) at time t o and G(») - G{x i vt) at t — o 

Range of x FW. 0(x) 

t 
- 4/ to - 2l 

— 2/to 0 

0 to 2/ 

2/ to 4/ 

Eg—a* cos —X — cos ^(x 4* 2/) 

cos -ar 
V 

0 0 

cos ^{x — 2/) 

i 
1 

Values for F{x) and G(x) to Suit Boundary Condi¬ 
tions as Expressed in Equations 138A, b, and c.—Since 
F(*) = G(jc) = 0 between:»; = 0 and x = l, this enables a start 
to be made as shown in Fig 107a. Appl3dng equation 138B, 

it follows that from x = o to x=—I 

W 
F(*) = 0 + Ee""® cos -. * 

= E€"“*cos- . X. 
V 

The building-up can now be carried to the stage indicated 
in Fig. 1076. 

Also, from equation 138c, Q{x) must be 0 for x between I and 
2I, since F(«;) is 0 for * between 0 and I (Fig. 107c). From this 

w 
it follows that F(*) = Ee"®* cos ~x between I and 2I. This is 

indicated in Fig. lojd. 
Further progress can be made by using equation 138B thus: 

w 
For any value of * (say * = z), F(z) = Ee““* cos-z for z be¬ 

tween 0 and — 2I. 

Hence, if * = I — z, then F(I — 2) = cos ^(I—z) for 

(I z) between 0 and — 2I. 



cos -X 
z 

b =« Ec«(^ “ *0 cos —(j: — 2/). 

r *■ Ee “• cos —X — Ee — <»(^ + sO cos —(x '■ 2/), 

d at E«<*(^ “• 3^) cos — 2/) — E6»('»^ — 4O cos ~(a: — 4/). 

Fig. 107.—Illustratuig process of building up values of F(;t) and G(a:). 

So that in general, writing (I + z) ^ x, 
w 

Ct{x) — Ee““(”®+*0 cos -(— x-\-2J) for x between 2/ and 4/. 

This relation enables the building-up to be carried to the stage 
indicated in Fig. io7«. 

Using equation 138c again, it follows that since 
W 

G{x) — Ee“<*~*‘)cos -(* — 2/) between 2I and 4/ 

F(*) =—Ee"<~““**)cos —(— » — 2/) -f Ec"®* cos ^x 
V 

from — 2I to — 4f» 
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w w 
i.e. F(*) = Ec"®* cos -x — Ee“®<®+ *') cos -{* + 2/) 

from — 2/ to — 4/. 

This is shown in Fig. 107/. 
The next step is to use equation 138B again thus :— 

For z between — 2I and — 4/, 
W W 

F(«) = Ee~®* cos—^ — Ee“®('^ *’) cos ^ (■* + 2/). 

F(f — 2) = Ee““(*"*) cos ^(/ — z) — Ee"®(»*“*) cos ^(3/ — z) 

for (/ — z) between — 2/ and — 4/, i.e. for z 
between and 5/. 

.•. G(/ + 2) — E€“®(‘~*) cos — z) — E€~®<*^"*)cos^{3f — «) 

for (/ + z) between 4/ and 61 

— cos^{— (/ + 2) + 2/} 

- E€-»{-(J+*)+41}cos^- {I + z) +4/}. 

Or in general 
7P} IP) 

G(*) = E€"®(~® ***) cos -(—x+2/)—E€“®("*^ **)cos-( — X + 4/) 

for X between 4! and 61. 
This is indicated in Fig. io7g. 
In this way, by using equations 138B and 138c alternately 

the process of building-up may be indefinitely continued. 

The Values of V(x — vt) and G(x-f ut).—F(«) and 0(2;) 
are the values of F(2: — vt) and G(x -f- vt) at time t = 0. They 
are as given in the table on page 205, and are shown in Fig. io8«. 
In Figs. io8b, c, and d the expressions for the functions F(2; — vt) 
and G(2; vt) are given for other values of t, and the value of 
F(2C — vt) -1~ G(* -f vt) can be obtained at any time t by adding 
corresponding expressions as obtained from this figure. Multi- 
pl3ring by ewill then give the expression for the voltage 
distribution along the line. It is simpler, however, to proceed 
thus:— 
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Dtstributton of VoUage along Line when t — 0*5- 

e = €-«»« [F(* — vt) 4- (j{x + Di)] 

when < = 0-5^ c = €-i“‘[F(a: — + G(x + 101 

(«) \E2^U ^ -21 ^ h 0~~2l tr 

w ra. . 
-41 -2L 0 I _Zl . 41 -H-coc+i?) 

W ijj -2z ^ 

-Es^^ ^%os^(x-^l) 

'^G&e+|9 

Eiih--^'/| 

Fio. X08 —Values of F(* — o/) and 0{x -j- vt) for vanous values of vi 

w 
From Fig. 108 F(« — iQ = E€-«(*-i’) cos~{x—^ for^if between 

0 and 
F(* — J/) = 0 for * between J/ and 1. 

Q{x + J/) = 0 for Af between 0 and 1. 

.•. c= e"***[Ee~“<*‘~*') cos^(* — J/)] for x between 0 and \l. 

e—ohx X between ^ and 1. 

Now e-W[E€-<»(-*«) cos - i^)3 

■a £(-*• COS — |i) voltage dtstnbntioa from *«=o to at* Jl. (139) 
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Disiribuhon of Voltage along Line when I = -• 

g— — I) + G{x + /)]. 

From Fig. 108 [F(* — /) + G(a: + I)] 
w 

= Ee ~ “ n cos - (;ic — ^)] for x between 0 and 1. 

W 
e == 6-«*[E€~“(® ~ b cos - {x — I)] 

— Ee"®® cos -{x — 1) . . . . (140) 

Distribution of Voltage along Line when t~ 15 “ • 

e = 6-iI®'[F(* - i-5l) + G{x + 1-5^)]. 

From Fig. 108 [F(;»: — 1-5/) + G{x + i-5l)] 
w 

— E€~®<®"F) cos -{x — 11) for X between 0 and J/. 

.*. e = 6~l®‘[E€~®(®~lbcos — ;^^)] 

w 
— Ee-®* COS -{x — ioT X between o and (141) 

Also from Fig. 108, F(ir — i-^l) + G(ii: + 1-5/) 
w w 

= Ee~®(®“!*) cos-(;r — ]/) + Ec®*®"**) cos -^{x — lt) for x 

between \l and 1. 
w w 

c =: Ec"®* cos - (* — jf) -h Ee~®(®*" ®) cos— {x — i/) 
V " V 

for X between \l and 1. (142) 

The distribution of voltage along the line at other instants 
may be foimd in a similar way. 

Taking line particulars as given in the example 
on page 197, calculate the voltage distribution along the line 
at various instants after the switching on of an alternating 
E.M.F. expressed as 100,000 cos 314/. (This is, of course, an 
E.M.F. of 100,000 volts maximum value, and frequency 50 
cydea per second.) The line is, as before, opitm-drcuited. 

14 
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I. At time t = (i.e. 0-00134 secs, after switching on), 

V — 186,000. 

0-001689. 

‘V 
w = 314. 

. ® =_ 3^4 
'' V 186000 

X 0 100 200 250 Milei. 

ax 0 00662 0*1324 0165s 

I 0*937 0 878 0847 

Ef-o» 100,OCX) 93>7oo 87,8(X) 84,700 

x-il . . . - 250 - 150 - SO 0 

. . ~ 0*422 “O253 - 0084 0 

Cos ^(*-4/) . 0*913 0*968 0-996 

Ee - cos — 49 92,500 87,400 84,700 

This voltage distribution is plotted on Fig. 109. It should 
be noted that at « = 0, the voltage must be that given by 

e — 100,000 cos 314 X-— 
’ ^ 2 X 186000 

= 100,000 cos 0-422 
= 100,000 cos 24-3° 
= 91,300 volts. 

II. At time i = (i-e. 0-00269 secs, after switching on). 

X 0 100 200 250 300 400 500 

ax , . . 0 0*0662 0*1324 0-1655 0*1986 0*2648 0*331 
. 1 0-937 0*878 0-847 o*8i8 0*767 0*7x8 

Et-®* 100,000 93,700 84,700 81,800 76,700 
(ar - /) -500 - 400 - 250 - 200 0 

V ' ' 
- 0*845 -0*6756 - 0*5067 ~ 0*4225 -0*3378 -0*1689 0 

cos £ 0*663 0*786 0-873 0*913 0*943 0*986 1 

E«-««cos£(«-/) 66,300 73,600 77,300 77,200 75,600 71,800 

This voltage distribution is shown in Fig. 110. At * = 0, 
e != 100,000 cos 0*845 = 100,000 cos 48-6® = 66,300. 
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0 wo 200 300 400 500 
Distance m Miles 

Fio. 109.—^Voltage distribution along 
open-circuited soo-mile line for which 
R G 

« g, when an alternating E.M.F. 

of 100,000 volts maximum value is 
applied at peak of wave. Figure gives 

distribution seconds after switch* 

ing on. 

0 100 200 300 400 5(W 
Distance, in Miles 

Fio. 110.—As in Fig. 109, but figure 

gives voltage distribution^ seconds 

after switching on. 

III. At time t == 1*5- (i.e. 0-00403 secs, after switching on). 

X. 0 100 200 250 300 400 300 

ax. 0 0*0662 0*1324 0-1655 0*1986 0*2648 0*331 
.... I 0-937 mm E&Eai 0-767 0-719 
.... 100,000 93,700 87,800 84,700 81,900 76,700 71,900 

X ^ -750 - 650 -550 — 500 -450 - 350 - 250 

^*-4/). . ■ • 1-266 ^ 1*098 0*929 0*844 0*76 0*591 0*422 

0*298 0-454 0-598 0*662 0*725 0*83 0*91 

A-E.-'»»cos^(*-4/) . 29,800 42,600 52,500 56,000 59,300 63,600 65,300 

il—X .... _ _ _ 750 700 600 500 — — — 0-4965 0-4634 0*397 0*331 
.... — — — 0-609 0*630 0-672 0*718 

— — — 60,900 63,000 67,200 71,800 
*-J/ .... — — — 0 SO 150 250 

. . • — — — 0 0*0845 0*253 0*422 

— — — t 0-996 0*968 0*913 

B «. B. - «(“-») 60,900 62,750 65,050 65,500 

— — 116.900 122,050 

i 

1*8,650 

_i___ 

jsim 
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This voltage distribution is shown in Fig. in. At ac = o, 
e = 100,000 cos I'266 = loo.ooo cos 72-9° = 29,800. 

The voltage distribution at 
other instants may be obtained 
in a similar maimer. 

Alternating Current Tran¬ 

sients : Reflection of 

Waves 

The matliematical formulae 
given in the preceding section 
enable the voltage at any point 
along the line to be determined 
at certain instants. If an at¬ 
tempt is made to include other 

instants such = 3', 4^, 
V V V 

0 too 200 300 400 500 j x v r , , 
Distance,in Miles and so on, the formulae become 

Fig. III.—As in Figs 109 and no, but increasingly complicated. A 

figure gives voltage distribution i 5- Study of equations (l39) 

seconds after switching on. (^42) will show, however, that 
the labour associated with the 

use of such complicated formulae can be avoided by means 
of a theory of “ reflected waves.” This theory will give results 

identical with the mathematical theory, but in a much more 
convenient form. 

At a certain instant < = o it was assumed that an alternating 
voltage of magnitude E was switched on to the line. At this 
instant a wave having a voltage E entered the line and, in the 
distortionless case now being considered, this wave travels 
along the line with velocity v where v is the velocity of light. 

At time ^ = i~ the voltage distribution is given by equation 

100000 

75000 

<40 

5 
60000^ 

25000 

Reflected- 
W^ve 
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e = E€“®®cos^(J/ — x) since cos^(a: — = cos^(JZ — x).* 

The front of the wave is located at the point x = \l, and the 

voltage there is e = Ee~*». The voltage at the generator is 

now no longer E, but E cos ^ It follows, then, that the 

voltage at the wave-front has been attenuated from E to Ee 
i.e. by the factor in travelling the distance \l. Moreover, 
it started in time phase with the generator voltage, but it is 

now ■~U behind it. 
V * 

At time Z - the wave-front will have reached the end of the 
V 

line, and the voltage there (from equation (140)) is e = Ec"®*, 
w 

the voltage of the generator being E cos -1. Hence, in travers¬ 

ing the additional distance \l, the voltage at the wave-front 
has been attenuated by an additional and lags by an 

w w 
additional -\l, making ~l total lag. It would appear, then, 

that in travelling any distance the voltage at the wave-front is 
attenuated and altered in phase with respect to the generator 
voltage. The amount of attenuation for unit distance iS £ ~ and 

w 
the amount of phase displacement for unit distance is — —. 

The equation which gives the voltage distribution for the 
next period is equation (142). The first term is of the same 
form as equations (139) and (140). It will now be proved that 
the second term may be considered as representing the voltage 
distribution associated with a wave reflected from the open end 
of the line, this reflected wave having the following properties:— 

* In this section it is convenient to change the form of equations (139) to (142) 

hy using the law that cos ^ « cos where ^ is any angle. Thus 

cos~(;if - i/) « cos^(i/ - x), also ros ^{x - /) « cos - «), 

and so on. 
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(a) It is created when the front of the original wave reaches 

the end of the line, i.e. when t=-. 
V 

{b) The voltage at the front of the reflected wave has, at the 

instant of reflection a value equal to that at 

the front of the original wave, i.e. Ee“®*. 
(c) The reflected wave shares with the original wave the 

properties that its front is attenuated by e~“ and 
w 

retarded in phase by - per unit distance travelled. 

We will first study the voltage at the front of the reflected 
wave as it moves along the line, and show that the voltage 
there agrees with that obtained from equation (142). In the 
next section the general case of the voltage at any point along 
the line will be discussed in terms of the reflected wave theory. 

In time t = after leaving the open end, the front of the 

reflected wave will have travelled a distance \l. It will be 

attenuated by and retarded in phase by -^1. So that 

its voltage is E = Ee“I®*, lagging behind the gener- 

ator voltage by ^ 2 ‘ generator voltage at 

this instant (t = is E cos ^ j, so that if the above pro¬ 

cedure has been correct, the voltage at the reflected wave-front 

(* — J/) is Ee"i®* cos ~ Ee"!®*. From equation 

(142) we see that the voltage is 

e = Ee"®* cos•— xj + Ee~®(**“*) cos^[x — J/). 

The second term corresponds to the reflected wave, and 
substituting x = II'vre obtain the voltage at the wave-ftxjnt as 

agreeing with the reflected wave theory. At time 
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t — — the reflected wave arrives at the generator, and agree¬ 

ment with the mathematical analysis will be obtained if we say 
that the wave is again reflected, but this time with change of 
sign. This reflected wave starts off with the characteristics 
of a wave which has already travelled a distance 2I. When it 
reaches the open end another reflected wave will be set up, and 
so on indefinitely. 

As the wave-fronts move along the line they leave voltage 
distributions behind them, and the voltage at any point x is 
the sum of the voltages due to each distribution. The way in 
which this vol+age can be calculated will now be explained. 

Voltage at any Point along the Line.—Equation (139) 
I 

for the voltage at any point along the line at the instant ^ 

is 

e = Ee"®* cos^(|/ — x), 

X being the distance from the generator. 
w 

At this instant the generator voltage is c, = E cos -\l. 

Comparing the equations for e and Cg, we see that in magnitude 
w 

e = while it lags behind c, in phase by -. x. Equation 

(140) gives the voltage along the line at / = ^ as 

e — E«““® cos -(/ — x). 

w 
The generator voltage e, is now Ecos-L As before, we 

w * 
find that« = Cje"®® in magnitude and lags by - . 2:. Equation 

(141) g[ives the voltage along the line at t = as 

e = Ee"®* cos -(-/ — 
V\2 ) 

for X between 0 and Jl. At this instant = Ecos- . As 
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in the two previous cases, e = in ma^itude and lags by 

The equation for the voltage between and I is more 

comphcated. It is 

e = E€““* cos ~(^i — cos ^{x — ^l). 

The first part is identical with the distribution from o to 
and will give the same results. It will now be proved that the 
second part also obeys the same laws when, as discussed in the 
previous section, we consider it as representing the voltage 
distribution due to a wave reflected from the open end at the 

instant t = Thus the wave-front of the distribution 
V 

e = E€“«® cos -(/ — x) 

reaches the open end of the line when t = ^-, the voltage at the 

end being Ee“®‘. If the reflected wave is set up of equal 
value, tten the voltage at the end of the line becomes 2Ee“®^ 
The reflected wave travels towards the generator, and assuming 
that it obeys the same laws as have been deduced for the other 

voltage distributions, at time t = 1*5^, its front will have 

travelled a distance J/, and the voltage at any point x due to 
the reflected wave will have a magnitude 

£g-olg-o(J-e) _ 

w 
In phase it will have fallen - {I — x) behind its starting phase, 

w 
i.e. -(/ — *) behind the voltage at the end of the line. The 

phase of this voltage has been proved to be behind that 

of the generator. So that at the point x the voltage due to the 

reflected wave is -(/ — 2) -f ^ — -(a/ — x) behind the gener- 
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ator. At the instant i 1*5- the phase of the generator 

voltage is ^ Hence, if the reflected wave obeys the laws 

assumed, then the voltage at*will be Ee~“<**"®) in magnitude, 
and 

V 2 V 
-21 + X)=^^(X-\1) 

in phase. It will accordingly be written 

Ec-a(*J-.)coS^(*- 

and since this agrees with equation (142), the assumptions 
made as to the behaviour and natme of the reflected wave 
are correct. If other instants are considered, it will be found 
that formulae such as those given on page 209 can be translated 
into terms of reflected waves, thus :— 

From time t = 0 to t = only the voltage distribution due 

to one wave exists. 
I 2I * 

From time t = - tot = — the voltage distributions due to 

two waves exist, the second being associated with a wave 
reflected from the open end. 

2I “U 
From time < = — to < = — the voltage distributions due to 

V V 

three waves exist, the third being associated with a wave 
reflected from the generator end, and so on. 

All waves obey the law that the voltage is attenuated per 
w 

unit of length by e"“ and retarded in phase by 

The length to be taken in calculating the total attenuation 
and pliase ^splacement of the voltage at any point distant * 
from the generator will vary with the different waves. That 
this must be so is due to the fact that the first reflected wave 
from open end starts with all the characteristics of a wave 
which ^ already travelled a distance I (sea Fig. 112). In the 
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same way the first reflection from the generator starts as a 
wave which has travelled a distance 2I, and so on. The vol¬ 
tages at a point distant x from the generator for the various 
waves may be expressed in tabular form, thus :— 

Voltage at distance x from generator due to various reflected waves. 

Voltage at generator » £. 

Wave. Voltage. 

First from open end 

„ ,, generator 

Second from open end 

„ ,, generator . 

Third from open end 

,, ,, generator E€-“(»'+»')/--(6/+r) 

and so on 
/_^_ _ 

G •Generator 
x« Distance from 

Generator 

/Distance from G top by this path* 21 

f Distance from G toP by this path 

(3 
FlOr 112.—Showing effective lengths for attenuation, etc., in first reflected wave 

from open end and first reflected wave from generator. 

It must be remembered that at the open end reflection 
occurs without change of sign, while at the generator end the 
sign is changed. 

The voltage at x due to the original wave is Ee" 

Now an operator ei* turns the vector on whidi it operates 
through the angle 6. So that if we operate on the Vector £ 
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1 X IS) 
with « ■'» we will turn it through the angle — -x. Hence 

E€"®y^—may be wntten = Ee In 

this theory 

a — /s/RG = attenuation constant for a distortionless line 

= B on page 39, 
w 
- = wave-length constant for a distortionless line 

= a on page 39, 
so that /W 

— -X = Ee~(^+•>“)* = Ee" ■I'® . . (143) 

-x) = E6-(^+^“K*«-®) = Ee-v(*'-*) (144) 

and so on, where y is the propagation constant for a distortion¬ 
less line. 

So that we can repeat the statement on page 26, viz. 
" the voltage at any point along the hne is V, x e~P*, while 
it differs in phase from the voltage at the sending end by 
the angle — ctx.” 

X must be given its correct value for each wave from the 

table on page 218, and a and ^ must have the values which 
hold for a distortionless line. 

Passing from Transient to Steady State with Alter¬ 
nating Voltage applied to the Line.—When only one wa^ e 
is present, voltage V at any point x is 

V = Ee-i'*. 

When first reflected wave is also present, 

V = E€-v«-|-Ec-v(«-®). 

When second reflected wave (i.e. first from generator) is also 
present, 

V = -f- — E« 
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When third reflected wave (i.e. second from open end) is also 
present, 

V = Ee-v* + — Ee-Y(«+*) — Ee-v^^'-*). 

When fourth reflected wave (i.e. second from generator) is 
also present, 

V = Ee+ Ee-»(»' - *) — Ee -+ *) — Ee - “ ») + Ee“«). 

This process repeats itself indefinitely, and the voltage at 
any point x eventually settles down to 

V — Ee-v* + Ee-'>’(*'-») — Ec->(*'■' *) — Ee 

+ Ec “>(*' + *)+ • • • to infinity 
= Ee-''*[l — «-*>'' + • • •] 

Now [i — . • .] is a geometrical series of ratio 

c-*v< and its sum to infinity is jqj—57;- 

Also [e-*vi+y* 

series of ratio — e 

Therefore, 

j-4y! i-y* _l_ f-6y! Tva! ^ ] jg g, geometrical 
g - 2yZ + yaj 

and its sum to infinity is 

, Ee"'!'® E€"®’'* + >* 
I + 

I + I + 

rey(*-®) + c “■>'(* “»h 

-^L J 
_ E cosh y(I — x) 
~ cosh yl 

Now, cosh y{l — x) = cosh yl cosh yx — sinh yl sinh yx. 
V = E{cosh yx — tanh yl sinh yx) . (145). 

which agrees with equation (48), page 29. 
Voltage Waves in Transmission Line : General Case. 

—^The theory of the voltage waves produced when an alternat¬ 
ing voltage is switched on to a distortionless line open at the 
distant end has now been developed. In the general case, where 
R, L, G, and C may have any values, the mathematical work 
corresponding with that which resulted in equations (139) to 
(142) on page 209 is much more difficult. The method of treat¬ 
ment by means of the theory of reflected waves which has 
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been developed for the distortionless line is, however, most 
helpful in dealing with the general case. It is found, moreover, 
that with but small modifications the results obtained still 
hold. Thus, instead of the statement on page 217, “ All waves 
obey the law that the voltage is attenuated per unit length 

w 
by e~® and retarded in phase by must be substituted the 

statement, " All waves obey the law that the voltage is attenu¬ 
ated per unit length by e and retarded in phase by a.” This 
latter statement is made on page 26, and ]8 and a are the 
attenuation and wave-length constants obtained from formulae 
(63) and (64) on page sg. The former statement is merely 
a special case of the latter, since for distortionless lines j3 = a 

j w 
and a = -. 

V 

The theory developed for distortionless lines can now be 
applied almost in its entirety to the general case. Thus, if at 
time / = 0, an alternating voltage E is switched on to an open 
line a wave of voltage E enters the hne and travels along it 
with velocity v as determined from equation (46). This wave 
has the property that at any point in it distant x from 
the generator, the voltage is Ee"'''®. When the wave-front 

reaches the open end at time ^ tbe wave is reflected and 

travels back towards the generator. At the generator it is 
again reflected, and so on.^ Hence, after the elapse of some 
time the voltage at any point distant x from the generator is 

V = Ec'i'*-1-Ee'i't**”®) — + . . . and so on, 

as on page 220, but now y is the propagation constant in its 
general sense. 

The application of these methods to the general case is 
illustrated by the following example;— 

A transmission line is 500 miles long, and its propagation 
constant yisi*82 x i0“* /76°i3'. Calculate the various com¬ 

ponent voltages which go to make up the total voltage at the 
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open end of the line at the instant when the applied alternat¬ 
ing voltage has a value of 100,000. 

y = 1-82 X io~*/76° 13' 

0-435 X 10-® +j 1-78 X 10-*. 
yl = 0-2175 + j 0-89. 

=- 0-2175. 
a/ = 0-89 radians = 51°. 

Substituting in equation for V, page 220, the voltage at end of 
line with voltage E at generator 

= 2Ee“'''' — + 2Ee“®v* . . . and so on. 

Fig. 113,—Illustrating numerical example. 100,000 volts at generator. Re 

maining vectors represent component voltages at end of line. 

Now, = 0-805. 
j— ^-0-0626 ^ 0*521. 

. ^ g —1’0876 0*3371. 

Voltage at end of line is 

ioo,ooo{o-8o5/— 51° — 0-521/— 153° + 0-3371/- 855? + - • -} 

«= 80,300/- 51° -f 52,100/27° -1- 33,710/— 255° + . . . 

These vectors are shown in Fig. 113, and their addition will give 
the total voltage at the end of the line. 
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Quarter Wave Resonance.—It is clear from the preceding 
TT 

example that jf a/ = - radians, then all the vanous voltages 

which go to make up the total potential at the end of the line 
will be in phase, the arguments of the various vectors being 

/ — 90° - / - 270° + / — 450° +••• 

— / — 90° + / — 9Q° / ~ 9Q° ~H • • • 

Under these circumstances there wiU be a steady building up 
of voltage at the end of the line, and the total voltage reached 
may be greatly in excess of the voltage impressed by the 
generator. This phenomenon is called " Quarter Wave Re¬ 
sonance.” 

TT 
The condition ot «l — - is obtamed when the length of the 

hne is one-quarter of its wave-length 
From formula (45), page 28, 

wave-length = —. 

If «/ = -, then wave-length = —j-j — 4/, where I is the 
2 7r/24 

length of the line. 

Hence I = Wave-length 

It is on this account that' the phenomenon is called " Quarter- 
Wave Resonance.” 

In the problem just considered one-quarter wave-length will 
be obtained with a line of length I, where 

TT _ W 

2X “ 2 X 178 X 10"* 
= 840 miles. 

Considering the special case of R = G = O, 

a == from formula (67), page 35, 

= 2ir/4/CU. 
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Now, 7^ 
186,000 for an overhead line. 

2irf 

186000' 

Length for resonance 
n 

2a 

TT X 186000 

(147) 

where / is the frequency in cycles per second. 
The following table gives the length of line required for 

quarter-wave resonance at various commercial frequencies 
under the assumed conditions of R = G = 0:— 

Frequency, Lenirth for Resonance. 

15 cycles per second 3100 miles 

25 >» >> i860 ,, 

5^ >> >» 930 „ 

60 „ „ 775 ,, 

If harmonics are present in the impressed voltage wave, 
then the lengths of line which give resonance with the har¬ 
monics are shorter than those given above. For example, the 
lengths for 50 cycle fundamental frequency are given in the 
following table:— 

Frequency. Length for Resonance, 

50 cycles per second 930 miles. 

150 ,, „ 310 „ 

250 „ ,, 186 ff 

350 „ 133 II 

The efiect of line resistance and leakance is to reduce the 
length of line at which resonance occurs. As a rough 
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mation, it may be taken that if the length of the line is 90 per 
cent, of the above figures, then there is danger of quarter-wave 
resonance. The calculation of the exact length for resonance 
may be made as in the exaunple on page 223. 

Travelling Waves in Three-phase System.—Travelling 
waves in the three parallel conductors of a 3-phase transmission 
hue can be dealt with by elaborating the theory for the single 
phase case which has been given in the preceding pages. The 
problem is complicated by the interaction of the currents in 
the various conductors. The mathematical solution is given 
in a. paper by Di. S. Bekku, published in the “ Proceedings of 
the Japanese Institution of Electrical Engineers,” February, 
1923. The solution of a very similar problem, " Electric 
Oscillations in the Double-circuit Three-phase Transmission 
Line,” is given by T. Satoh in the Journal of the American 
Institution of Electrical Engineers, September, 1927. 

15 
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TABLE I. 

227 

Sizes of Hard-drawn Copper Telephone Conductors (at 60° F.). 
English, American, and Continental. 

This table is also approidxnately correct for resistance according to the l.E.C. 
stexidard for annealed copper conductors at 20** C« The error is less than half of 
one per cent 
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INDEX 

.A.DMITTANCE of transformer, io6, 
izo. 

Alternating current potentiometer, 58. 
Alternating current transmission, 

steady state— 
Current along finite line open at end, 

29. 
Current along finite line short- 

circuited at end, 30. 
General equation for current along 

finite line, 25. 
General equation for current along 

infinite line, 26. 
General ^nation for voltage along 

finite line, 25. 
General ec^uation for voltage along 

infinite Ime, 26. 
Phenomena when line closed through 

impedance, 33. 
Physical interpretation of pheno¬ 

mena, 26. 
Voltage along finite line open at 

end. 29. 
Voltage along finite line short- 

circuited at end, 30. 
Alternating current transmission, 

transient state— 
Passing from transient to steady 

state, 219. 
Hefiected wave theory, 212. 
Voltage distribution along open- 

circuited line, 208. 
(Also see under Travelling Waves.) 

Arcing grounds, 176. 
Argument of Vector, 4. 
Atmospheric disturbances producing 

travelling waves, 172. 
Attenuation constant, 28. 
Attenuation measurement by standard 

cable, 41. 

OhKKU, Dr. $., on 3-phase 
transients, 225. 

Breisig, Prof., formula for inductance 
of continuously loaded cables, 45. 

Bridge—^The alternating current, 58. 
Builmi&gs—Screening effect, producing 

steep-fronted waves, 177. 

Cables— 
ISipacity of. (See Capacity.) 
Inauet^ce of. (See inductance.) 
Beactance of. (See Beactanoe.) 

Cables (conf,)— 
Resistance of. (See Resistance.) 
In series with overhead line, 142. 
Standard equivalent (S.C.E.), 41. 
Voltage drop per ampere-mile in 

3-phase, 79. 
Campbell's method for determining 

propagation constant, 47. 
Capacity— 

Formula for telephone lines, 54. 
Measurement of, 55. 
Of single-phase concentric cable, 71. 
Of single-phase overhead line, 71. 
Of 3-phase cable, 71. 
Of 3-phase overhead line, 71. 

Characteristic impedance of trans¬ 
mission line, 23, 25, 83. 

Charging current of line, 85. 
Complete or pure travelling wave, 130. 
Complex hyperbolic functions, 15, 16. 
Complex quantity, 5. 
Composite lines, 36. 
Conductor size calculations, 77. 
Continuous loading, 43. 
Cosh yl—^Methods of calculating, 87, 
Current— 

Charging for long line, 85. 
Example of calculation for long line, 

83. 90- 
Magnetising for transformer, 106. 
Relation to voltage in pure wave, 

130, 188. 
Current along finite line, steady 

state— 
Closed at end through impedance, 33. 
General equation for A.C. case, 25. 
General equation for D.C. case, 21. 
Open-circuited at end, 29. 
Power transmission long line, 83. 
Short-circuited at end, 30. 

Current along finite line, tzanaient 
state— 

After lighting discharge, 176. 
In terms of reflected waves, 200. 
Line closed through resistance, 137. 
Line earthed, 169. 
line 8witched-in, 128, 178. 
Open-circuited line, R=» Gas 0,188. 

Open-circuited line, ^99* 

Overhead line in series vdth catfle. 

Short-circuited line, R«s G*#* 0,190. 
Current waves—^general equation for, 

186. I 
(See also Travelling Waves.) 
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De MOIVRE’S theonsm, 5. 
Differential equations for transmission 

line*-— 
Form for A.C. case—steady state, 

25- 
Form for D.C. case—^steady state, 

19. 
Form when R = G « O, 182. 
General form, 179, 182. 

Direct current transmission, steady 
state— 

General equation for current along 
finite line, 21. 

General equation for current along 
infinite une, 23. 

General equation for voltage along 
finite line, 21. 

General eq^uation for voltage along 
infinite line, 23. 

Direct current transmission, tran¬ 
sient state— 

Current distribution, R = G = O 
line open, 188. 

Current distribution, R= G= O 
line short-circuited, 190. | 

Current distribution. R G 
line 

open, 199. 
Passing from transient to steady 

state, 197. 
Reflected wave theory, 195. 
Voltage distribution, R = G = O 

line open, 185. 
Voltage distribution, R = G = O 

line short-circuited, 189. ■p ^ 
Voltage distribution, ^ lii^e 

open, X90. 
(See al^ Travelling Waves.) 

Distortion of speech, 42. 
Distortionless line— 

Attenuation constant for, 35. 
Wave-length constant for, 35, 

Drysdale—a,C, potentiometer, 58. 

Earthing of Ime — travelling 
waves produced by, 169. 

Equivalent impedance of transformer, 

EquiiiSSmt network of transformer 

Flash-over voltage of Une in- 
sulators, 177. 

Fleming, Prof. J. A., 180. 
Fouriers series, 2. 
Function, periodic, 2. 

H ARMONICS in periodic function, 
3. 

Heaviside, Oliver, 44. 
Hill, J. G., ^i. 
Human voice — Analysis of sound 

waves produced by, 40. 
Hyperbolic functions, 13, 15, 16. 
Hyperbolic functions, complex, 15. 

I MAGINARY quantity, 5. 
Inmedance— 

Characteristic, 23, 25, 83. 
Natural, 83. 
Of any circuit, ii. 
Percentage of transformer, 113. 
Sending-end, 29, 30. 
Surge, 83. 
Vector expression for, 10, ii. 
Wave, 83. 

Inductance— 
Equivalent equilateral spacing in 

calculations, 69. 
Formula for telephonic calculations, 

54- 
In parallel with capacity, 12. 
Of continuously loaded cables, 45. 
Of resistanceless line, 131. 
Of single-phase concentric cable, 68. 
Of single-phase overhead lines, 68. 
Of 3-phase overhead lines, 69. 

Infinite line— 
Alternating current case, 26. 
Direct current case, 22. 

Interpolation in KenneU/s tables, 63, 
88. 

KeNNELLY’S tabtes— 
Interpolation, 63, 88. 
Method of ussng, x6, 62, 87. 
Quadrantiug, 62. 

Krarup loading, 45. 

(accurate), xo6. 
Equivalent network of transformer 

(approximate), xoi. 
EqnivaleBt reactance of transformer, 

X02, 
Equivalent resistanoe of transformer, 

ros. I 

JLeAKANCE, x8, 35, 73. 
lightning disdiarges---Voltage pro- 

dttcedb5r,i73. 
Loadtiij^ 

Coatiawnu, 43. 
luqwovilig tmumifawion, 43. 
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Loading (coni,)— 
Krarup, 45. 
Leak, 47. 
Lumped, 46. 
Senes, 46. 
Series, propagation constant for, 47. 

Loading coils— 
Britifii P.O. rule for spacing of, 49 
Effect of spacing on attenuation 

constant, 48. 
Number per wave-length, 48. 
Partial reflection due to, 50. 

Magnetising current oi trans- 
forn^r, 106. 

Magnetisi^ watts (or K.V.A ), izo. 
Mathemati^ function, Definition of, i. 
Modulus of vector, 4. 

O-LOAD watts (or K.V.A.) of 
transformer, no. 

o PEN-CIRCUITED Une— 
Alternating current case, 28. 
Direct current case, 22 

Open-circuit test of transformer, 109. 
Oscillator for bridge—calibration of 

frequency, 58. 
Overhead lines— 

Capacity of. (See Capacity.) 
Inductance of. (See Inductance.) 
In series with cable, 142, 151, 153. 
Reactance of. (See Reactance.) 
Resistance of. (See Resistance.) 
Table of particulars for 3-phase 

transmission by, 96. 
Velocity of waves in, 1291 150.188. 
Voltage drop per ampere-nrile 

(Table), 78. 

1 ARTIAL reflection of wave by 
loading coil, 50. 

Periodic function—Definition of, 2. 
Primary constants of transmission &ae, 18, 68. 

Measurement of, 56. 
PsrapagatioD cbnstant, 28, 82. 

¥at aMea loaded cable, 47. 

QUADRAKTINO—Kennelly's 

Qniit6r<^tvmve resonance, 223. 
Len^ of Ikae lor, 224, 

Rayleigh, Ix)rd—Formula for 
resistance, 53. 

Reactance— 
Of cables, 68. 
Of overhead lines, 68. 

Reflection of travelling waves, 27, 132, 
137. 138, 146, 212. 

Partial, 50. 
Partial, locating faults by, 50. 
Signs of voltage and current, 140. 

Resistance— 
Of transformers, Z02, 112. 
Of transmission line, 18, 53, 68. 
Wave. 130, 139. 

Resonance, 12, 223. 
Russell, Dr. A, on capacity of cables, 

73. 

SaTOH, T., on 3-phase transients, 
223. 

Secondary constants of transmission 
line, 28 

Sending-end impedance, 30. 
Short cable— 

Between two long lines, 153. 
In series with long line, 142. 
Voltage drop along, 73, 75. 

Short-circuited line in steady state, 22, 
29. 

Short-circuited line—voltage and cur¬ 
rent waves in, 136, 189. 

Short-circuit test of transformer, xii. 
Short line— 

In series with long cable, 151. 
Voltage drop along—single phase, 

73. 
Volt^e drop along—3-phase, 75. 

Short line and transformers— 
Accurate calculations, 115. 
Approximate calculations, X03. 

Sinh yi—Methods of calculating, 87. 
Standard cable, 41. 
Standard cable equivalent (S.C.E.), 4X. 
Surge impedance, 83. 
Switching producing travelling waves, 

X28. 

X RANSFORMERS— 
Admittance, zo6. 
Admittance from manufacturer’s 

data, 110. 
Core loss, xio. 
Equivalent impedance, 107. 
Equivalent network (accurate), xo6. 
Equivalent network (approximate), 

102. 
Equivalent reactance, X02. 
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Transformers (cont.)^ 
Equivalent resistance^ 102. 
Impedance from manufacturer's 

data» 113. 
In transmission circuits* 103,115,120. 
Magnetising current* 106. 
Magnetising watts (01 K.V.A.)* no. 
No-load watts (or K.V.A.), no. 
Open-circuit test for admittance* 109. 
Percent^e impedance, 113. 
Short-circuit test for impedance, in. 
Three-phase, 112. 

Travelling waves— 
Complete or pure wave, 130. 
In line closed through resistance, 137. 
In open-circuited line, 128. 
In overhead line in series with cable, 

142, 151, 153. 
In short-circuited line, 136, 189. 
Produced by atmosphenc disturb¬ 

ances, 172. 
Produced by earthing of line* 169. 
Produced by switching* 128. 
Produced by switching-out induc¬ 

tive load, 165. 
Reflection of. 132* 137, 138. 
Three-phase* 225. 

Transients— 
In alternating current transmission, 

178, 204* 212. 
In direct current transmission, 185, 

186, 189, 190, 199. ! 
Passing into steady state (A.C.h 219. 
Passing into steady state (D.C.j* 197. 

LJnITS. h. 
Unreal quantities* 3. 

Vectors— 
Addition and subtraction, 7. 
Application to electrical measure¬ 

ments, 9* 
Argument of* 4. 
Logarithm of* 8. 
Modulus of* 4. 
Multiplication and division, 7. 
Power of, 7, 
Representation of* 4* 5. 

Vdocity of wave* 28* 129* x88. 
Voltage— 

Along infinite line--~steady state^ 23* 
26* 

At wave - front — reflected wave 
theory* 214. 

Building*>up at mid of line* 221. 
Plash-aver of line snsulators* X77. 

Voltage (conL)— 
Relation to current in pure wave, 

130- 
Voltage along finite line, steady 

state— 
Closed at end through impedance* 

33- 
General equation for A.C. case, 25. 
General equation for D.C. case, 21. 
Open-circmted at end, 22, 28. 
Power transmission, long line, 82. 
Power transmission, short line, 73, 

75- 
Short-circuited at end, 22, 29. 

Voltage along finite line, transient 
state— 

After lightning discharge, 176. 
In terms of reflected waves, 195, 215. 
Line closed through resistance, 137. 
Line earthed, 169. 
Line switched-in, 128, 178. 
Open-circuited line* R= G=a O, 

132, 185- 
R G 

Open-circuited line, ^ ^9®- 

Overhead line in series with cable, 
142- 

Passing into steady state—^A.C. 
apphed, 219. 

Passing into steady state—D.C. 
applied, 197. 

Short-circuited line, R =« G = O, 
136, 189. 

Voltage drop— 
Along long lines calculated with 

great accuracy, 90. 
Along long lines—power trans¬ 

mission* 82. 
Along short lines, 73, 75. 
Approximate formulae for. 75* 77. 
Including transformers, 115, 120. 
Per ampere-mile (Tables), 78* 79. 

^^AVES. (See Travelling 
Waves.) 

Wave-length, 27. 
Wave-length constant* 28. 

for distortionless lines* 35. 
Wave of cunent* 130. 
Wave of voltage, 130. 
Wave resistance* 130* 139^ 
Wave tranmnission and reflection— 

At junction of cable and overhead 
line* X42* 

At resistsmcd* 137. 
General theorem* 146* 
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EIiECTRICAL DESION OF OVERHEAD POWER 
TRANSMISSION LINES 

A Systematic Treatment of Technical and Commercial Factors; with special 
reference to Pressures up to 60,000 volts, and Distances up to 100 miles. 
By W. T. TAYLOR, M.Inst.C.E., M.I.E.E., Fellow Amer.LE.E., and 
R. E. NEALE, B.Sc., A.C.G.L, A.M.I.E.E. 
The book deals quantitatively with every factor which enters into the electri¬ 
cal design of overhead power transmission lines for all but the highest voltages 
and the longest distances. The treatment presented is a quantitative one 
directly applicable to practical design, and not an analytical one based on 
abstract circuits with purely symbolic magnitudes. Every formula and dia¬ 
gram is immediately applicable to the numerical solution of an actual 
problem, and, wherever possible, numerical examples have been included, 
Demybvo. 275 pages. Fully illustrated. Price2l9.net. 
Contents Trammittsion Systems and Circuit Relations—Standard data for Conducting 
Materials—General Formulce for Area and Weight of Conductor—Power Factor and Power 
Factor Correction—Alternative Bases for Line Design—Impedance and Power Loss Cal¬ 
culations and Charts—Weight and Loss of Conductor—Design of Transmission Lines for 
Minimum Cost—Transmission Systems compared. 

EXTRACTS FROM REVIEWS 
Enginemng.—A singularly complete account... and engineers called upon for the electri¬ 

cal design of overhead lines in this country will find the methods set out in these pages admirably 
suited to their needs. The treatment is definitely practical and commercial. 

Electrical Industries.—“Wt recommend distribution engineers to look ahead and prepare 
for the needs of the future by obtainii^ a copy of this excellent handboc^ now. 

Electrical Should be ot^at value to those engaged in the actual design of trans* 
mission lines, while at the same time it contains much information of general interest, especially 
to students. It is well produced and is set out in an attractive manner. 

MECHANICAL DESIGN OF OVERHEAD ELECTRICAL 
TRANSBHSSION LINES 

By E. T. PAINTON, B.Sc,, A.M.I.E.E. 
This is a companion volume to Messrs. Taylor and Neale’s book on the 
electrical side with which it forms a comprehensive treatise on the subject. 
It has been written principally for the designer and the consulting 
engineer, but the practical side of the construction has not been omitted, 
and both the constructor and the operator will find herein much useful 
intormation, more particularly in the final chapter on erection methods. 
It covers the latest constructional details, and the present trend of thought 
on design methods, pointing out those features which es^rience has 
shown to be desirable, and indicating how far the limitations of com¬ 
mercial manufacture enable the requirements to be fulfilled. 
Demy 8vo. 282 pages. Fully illustrated. Price 218. net. 
Contents .’—Conductors—Sag and Stress Problems—Supports—Insulators—Wood Sup¬ 
ports—Steel Supports—Constructional Details—Erection. 

EXTRACTS FROM REVIEWS 
Biectricai Review,—Exctlkatiy produced and well illustrated ... a valuable addition to any 

technical librae. 
Can be recommended to both the practical and the academic engineer. 

Bleetfieal Review.—Excellently produced and well illustrated ... in condvmction with the 
oompaakw volume it is a valuable aodition to any library. 

EfilgiNeerief’.—The practical and scientific qualifications of the volume justify its cordial re¬ 
commendation. 

Pcunr ENftMeer.—The book can be thoroughly recommended as an up-to-date and original 
treatise of eonridersfale utility both to the designer, erector and operator. 



THE PRINCIPLES OF 

ELECTRIC POWER TRANSMISSION 
BY ALTERNATING CURRENTS 

By H. WADDICOR, b.sc., a.m.i.b.b., a.a.i.e.b. 

This work is a complete exposition of the fundamental principles 
underlying the electrical design of overhead and underground transmission 
systems. Line solutions, both by approximate and vigorous methods, are 
developed and illustrative numerical examples worked out in detail. 
Special prominence is given to the characteristics of high tension cables 
which are now rapidly assuming importance in connection with bulk trans¬ 
mission of power. Other subjects discussed are the use of synchronous 
phase modifiers for voltage control of long lines, dangerous pressure and 
current rises, relay protection, lightning-arresters, and other protective 
apparatus 

The remarkable progress of the last ten or twelve years which is con¬ 
tained in a very scattered literature is provided here in a concise form, and 
the book is intended to be of direct utility to University students, Designers 
and Engineers engaged in the operation of transmission systems. 

Demy 8vo. 41MO pages. 148 illustrations 

Price, 21s. net 

ROTARY CONVERTERS; Their Principles, Construction and Operation. 
By E, P. Hill, M.Sc., A.M.I.E.E. Royal 8vo. 844 pages. Fully 
Illustrated. Price, 355. 

THE A.C. COMMUTATOR MOTOR 
By C. W. Olliver, B.Sg., E.S.E. (Paris). Royal 8vo. 292 pages. 
Fully Illustrated. Price, a is* net. 

THE ESSENTIALS OF TRANSFORMER PRACTICE 
Theory, Design and Operation. By Emerson G. Reed. Second 
Edition. Demy 8vo. 414 pages. Fully Illustrated, 

Price, aia. net. 

POLYPHASE INDUCTION MOTORS 
By R. D. Archibald, D.Sc., M.lnBt.£.B. Crown 8vo. 96 p^ges. 
Fully Illustrated. Price, 5s. net 
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