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Preface

As airplanes and related flying objects such as pilotless aircraft

develop and are refined, additional improvements in their design require

more knowledge and an increasing awareness of the results of research

efforts, as well as an understanding of the fundamental principles upon

which analysis is based. Modifications in design are possible only

through a broad understanding of all the related design functions and

analysis, coupled with an appreciation for research, development, and

production. Less reliance can be placed on a strictly empirical approach.

For the reason stated, the emphasis in this book has been placed on

increasing the knowledge of the fundamental principles upon which the

analysis of the structure is made, along with an understanding of the

physical concepts involved, rather than on rules and techniques, which

change from time to time. However, many illustrative examples and

problems are included so that the application of the principles to modern
aircraft can be appreciated.

In presenting these fundamentals, it seems logical to divide the

subject into four major parts: (1) the origin and nature of some of the

loads on the aircraft; (2) the distribution of the loads through the indi-

vidual members of the structure; (3) the effect of the loads on the buckling

of the structural components; (4) the stress distributions and effects on

the material. The text begins, therefore, with the broad subject of

applied loads, becomes more detailed in following the overall actions of

the loads through the structure, and finally narrows down to a study

of the stress conditions from point to point of the structural material.

The author takes this opportunity to express his appreciation to all

those who have assisted in preparing the manuscript. In particular,

thanks are due to Dr. N. J. Hoff of the Polytechnic Institute of Brooklyn

for his helpful suggestions; Mr. W. Wayne Huff Jr., Mr. Joseph Dailey,

and Mr. Kendrick Radey for preparing the illustrations; Mr. Irving

Liggett for checking details; and Miss Floy Storey for typing the

manuscript.

Millard V. Barton
University of Texas

Austinf Texas
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Part I

AIRCRAFT LOADS AND DESIGN SPECIFICATIONS





CHAPTER 1

Desisn Requirements

1.1 Introduction. It has been less than half a century since the first

successful flight of a powered, controllable, man-carrying machine was
made by the Wright brothers. That flight lasted for twelve seconds

and was good for a distance of about 120 feet, or from the goal line to the

40 yard line of a football field, or about half the span of the wing of the

largest present aircraft. Today, flights of thousands of miles lasting

several hours are commonplace. Thousands of pounds of cargo and

passengers are carried successfully to their destination. Aircraft fly at

speeds in excess of 600 miles per hour at altitudes ranging up to 7 and

8 miles. In fact, many things that were considered miracles yesterday

are considered so comm.onplace today that we are likely to underestimate

the complexity of the airplane and overlook some of its limitations.

1.2 General specifications. One should always keep in mind the fact

that the completed airplane is a result of compromise. It might be

desirable, for example, to design and build the largest, highest-flying,

fastest, lowest-landing-speed, and most maneuverable airplane in the

world, but not all these characteristics could be obtained in one airplane.

In order to have one advantageous feature, several disadvantageous ones

must be accepted. High top speed usually means a high landing speed;

load-carrying ability means loss of maneuverability; pilot armor protec-

tion means sacrificing rate of climb; and so on.

The design of an airplane begins with the selection of the general

features desired and obtainable. The following is a list of a few features

to be considered.

(1) Loads

(a) crew

(b) passengers

(c) cargo

(d) fuel and equipment

(2) Performance

(a) speed

(b) range

(c) rate of climb

(d) maneuverability

(e) controllability

(3) Structure

(a) type—monoplane, biplane, helicopter, and so on
3
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(b) number and size of engines

(c) cabin arrangement

(d) passenger comfort

(e) safety

(f) weight

(g) cost

1.3 Design of the structure. After the general specifications of the

proposed airplane are established, a three-view drawing showing the

FiS. 1.1. Dream Airplanes. (Courtesy Lockheed Aircraft Corp.)

shape and approximate location of major parts, such as motor, wings,

empennage, and so forth, is made. The aerodynamicist, using the wind-

tunnel as his tool, studies the performance of the proposed airplane and
recommehds modifications for better aerodynamic efficiency. The design

of the structure then begins.
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It is the structural designer’s duty to provide a structure contained as

completely as possible within the outside shape specified by the aerody-

namicist, capable of carrying the loads, and as light in weight as possible.

The structure must be strong enough, but it must not be excessively

strong because of the excess weight involved with consequent loss of pay

load that the airplane can carry. These conditions require a precise

structural analysis, testing, research, and close correlation between design

and production. The design processes are usually broken down into

separate groups. It is possible to have a fuselage group responsible for

the design of the fuselage, an empennage group responsible for the design

of the tail surfaces, and so on. Obviously the functions of the separate

groups must be correlated closely in order to have an airplane that fits

together and performs as predicted. Sometimes the separate groups

become so involved in their own fimctions they underemphasize the

importance of the other groups. Here again, as in the case of determin-

ing the general specifications, compromise between the various group

functions must be made in order to produce an airplane that probably

does not have all the ideal features of any group, but that is a good

practical airplane with many desirable features.

The ideals of each design group are humorously shown in Figure 1.1.

The difference between the weight group, responsible for keeping the

weight to a minimum, and the stress group, responsible for designing a

structure with sufficient strength, should be noted particularly. Weight

and strength are two of the designer’s major problems.



CHAPTER 2

Aircraft Loads

2.1 Introduction. Before the structural design of the airplane can be

completed, the loads acting on the various units of the structure must be

known. The loads acting on the airframe are divided into two main

groups:

(1) flight loads

(2) ground loads.

There are many kinds of flight loads

y

including the lift on the wings,

drag, and inertia loads imposed during the maneuvering of the airplane.

The loads may, and usually do, vary from time to time, which depends

on the flight attitude of the airplane and weather conditions. These

loads exist while the airplane is air-borne.

Ground loads are the loads imposed on the airplane during landing,

take-off, or storing, such as tying the airplane down. These loads occur

while the airplane is in con^ct with the ground.

The Civil Aeronautics Authority and the Army and Navy Aviation

Bureaus specify load conditions for various types of aircraft. The Civil

Aeronautics bulletins on airplane airworthiness classify aircraft into sev-

eral categories depending on the intended operation, and the load condi-

tions for each category are specified. Some of these classifications taken

from Civil Air Regulations 03 and 04 are

:

Normal {N), Airplanes intended for non-acrobatic, non-scheduled passenger,

and non-scheduled cargo operation.

Utility (U), Airplanes intended for normal operation and limited acrobatic

maneuvers. These airplanes are not suited for use in snap or inverted maneuvers.
Acrohaiic (A). Airplanes with no specific restrictions as to type of maneuver

permitted unless the necessity therefor is disclosed by the required flight tests.

Transport (T), Multi-engined airplanes limited to non-acrobatic operation

and intended for, but not limited to, scheduled passenger, cargo, or combined
passenger and cargo carrying operation.

Complete information on load requirements, load distribution, and
location are given for the different types of aircraft in the government
bulletins, but, since some of these specifications are empirical and many
are constantly being modified and revised, only the fundamentals of the

subject, together with some specific applications, will be discussed in this

chapter. The student is referred to the references at the end of the

chapter for more complete details.

2.2 Flight loads. Many possible combinations of loads exist; these

possibilities depend on the flight attitude and on other factors, such as

6
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velocity, weight, and size of the airplane. The airplane, when flying in

level unaccelerated flight, will have entirely different forces acting on it

than when a snap roll or dive pull-out is performed. The designer must
determine the conditions or combination of conditions producing the most
severe actions of the forces on the structure. To understand the problem

a few simple flight situations will be considered.

Straight level flight at constant velocity. The forces acting on an air-

plane in straight, level, unaccelerated flight are shown in Figure 2.1.

In this figure, W is the total weight of the airplane and all it contains

acting at its center of gravity (c.g.), L is the lift of the wings, T is the

propeller thrust causing the airplane to be pulled forward, Dp (parasite

Fis. 2.1 . Straisht Level Flisht. Fig. 2.2. Force

Polygon.

drag) is the drag or resistance to motion through the air caused by all parts

except the wing, Dw is the wing drag caused by moving the wing through

the air, and P is the stabilizer load required to balance the airplane.

If a set of coordinate axes is taken perpendicular and parallel to the

flight path, then, since all the forces must be in equilibrium, the following

conditions must hold

:

DFx = 0; ZFz = 0; 2M = 0 (2.1)

This equilibrium is shown by the force polygon. Figure 2.2.

Performing the operations indicated in Equation 2.1, we find that

SFjc = 0 = Dp + Du> — T (aft forces are positive, or the thrust

equals the total drag of the airplane) (2.2)

SFz = 0= L + P — T7 (upward forces are positive)

P is usually small, so that for this condition the lift is approximately equal

to the weight, L = TF.
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Taking moments ab«ut the center of gravity, we find that (nosing-up

moments are positive)

HiMeg = 0 = Tc — L6 + Dpa — D^e — Pd

When we solve this for P,

Pc Lh “1“ PpCt fd o\

Accordingly, if the nosing-up moment due to the sum of the moments of

thrust (Tc) and parasite drag (DpO) is greater than the moment due to the

Fig. 2.3. Inverted Flight. Fig. 2.4. Force

Polygon.

sum of the moments of wing drag and lift (L6), then the stabilizer

force (P) will be positive and in the direction assumed for this flight*

condition. A change in conditions might easily make the stabilizer force

act in the opposite direction, or downward.

Tha condition of flight during which the lift is approximately equal

to the weight is called the basic load condition.

Inverted flight {unaccelerated). During inverted flight many of the

loads ar^ reversed and therefore may produce a critical condition.

Figure 2.3 shows the forces acting in inverted flight.

Again, the conditions of equilibrium must apply so that 2Fx = 0,

SPz = 0, XM = 0. This, condition is graphically represented in Figure

2.4.

Inertia forces. In addition to the loads on the airplane in unacceler-

ated flight, there may be inertia loads imposed by the acceleration of the

airplane during maneuvers or because of gusts. An example of inertia

loads caused by maneuvers is that of the dive pull-out.
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In pulling out of a dive, the airplane is forced to follow a curved path.

The curvilinear path causes an acceleration perpendicular to the flight

path and acting toward the center of curvature. The mass of the airplane

FLIGHT T

PATH

Pis. 2.5. Dive Pull-out. Fig. 2.6. Force

Polygon.

times this acceleration gives a force which is acting to throw the airplane

outward from the center of curvature. The value of this force is

Fn EYl
g R (2.4)

where Fn = force normal to flight path (lb)

W = weight of airplane (lb)

g = acceleration of gravity (32.2 ft/sec^)

V = velocity (ft/sec)

R = radius of turn (ft).

Other inertia forces that may be applied in this maneuver are the

inertia force Ft acting tangential to the flight path caused by the deceller-

ation (slowing down) and an inertia couple Mi caused by the rotation of

the airplane about its center of gravity as its attitude is changed in the

maneuver. The values of the force and moment are:
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(2.5)

Mj = la

where Ft = force tangential to flight path (lb)

At = tangential acceleration (ft/sec^)

Mj = inertia moment (lb ft)

I = mass moment of inertia of airplane about the c.g. (slugs ft^)

a = angular acceleration (radians/sec^).

Consider an airplane in a dive pull-out, Figure 2.5. It is evident that

the lift on the wing may be several times the weight for force equilibrium

as shown in the force polygon, Figure 2.6.

Other maneuvers, such as snap rolls, loops, and so on, will impose

different accelerations. A snap roll, for example, will induce a different

lift on the two ends of the wings and an inertia couple about the longi-

tudinal axis of the airplane.

2.3 Load factor. The lift on the wings during maneuvers may have

a value several times the weight of the airplane. It is convenient to

express this wing load in terms of the wing load for the basic flight con-

dition. In level flight the wing load is approximately equal to the weight,

L = W. If the ratio, n, of the lift to the weight is known for any maneu-

ver, then the lift can be specified as the weight times the factor n. The
factor n is called the load factor. For an example of the meaning of the

load factor, consider the airplane at the bottom of a dive pull-out when
the centrifugal force is seven times the weight. The total lift on the

wings is therefore 7TF + W = SWj and the load factor for this condition

is 8.

Since the load factor is the ratio of force to weight, it can be considered

also as the ratio of the acceleration of a weight to the acceleration of

gravity, g. For this reason the load factor is sometimes called the number

of g^s. The use of load factors is not restricted only to wing loads but

may be used to express the load on any part in relation to its normal load.

Load factor or acceleration factory n. The ratio of the force acting on a mass
to the weight of the mass. When the force in question represents the net external

load acting in a given direction, n represents the acceleration in that direction in

terms of the gravitational constant.

2.4 Maneuver load factors. The load factor imposed by a maneuver

is often determined experimentally. An accelerometer (acceleration

measuring device) is put in an airplane and a record made of the acceler-

ations in a given direction during the flight of the airplane. The results

are plotted as load factor versus velocity of the airplane.

A typical load factor velocity diagram is shown in Figure 2.7. The
load factor in this diagram is for a direction perpendicular to the flight

path.
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The portion of the curve ab represents the load condition of the

airplane in straight level flight. As the pilot puts the airplane into the

dive, the load conditions are as indicated by portion be of the curve. In

the dive there is no load perpendicular to the flight path although the

speed of the airplane is increased as shown by cd. When a speed of

325 mph is reached, the pilot starts to pull the airplane out of the dive.

The radius of pull-out is gradually decreased so that the centrifugal force,

and therefore the load factor, is increased until in this case a load factor

of 8 is attained. This pull-out is indicated by de. When the pilot

attains an acceleration of 8g, he again gradually increases his radius of

pull-out; and, since the velocity is decreasing, the load factor decreases

VELOCITY (mph)

Fis. 2.7. Maneuver Load Factor Diagram.

as shown by ef. At the point indicated by / on the curve the airplane is

again flying straight and level so that the load factor is 1.

It is apparent that the loads on the airplane can become large. These
same loads, however, are exerted on the pilot and passengers; and to some
extent the physical limitation of the people will limit the load the airplane

must withstand. If a pilot weighs 200 pounds, then during level flight

the pressure exerted on the seat of his pants is 200 pounds. During an

8g pull-out all loads are increased 8 times, thus increasing the seat

pressure to 1000 pounds. This increase in force acts on all parts of the

pilot: forces his head down between his shoulders, makes his spine bend,

and forces the blood out of his head, which causes blackout. The amount
of force a pilot can stand before he blacks out depends on its duration.

For example, it may be possible for the pilot to take a force of three times
his weight for a relatively long period, whereas a force of eight times his

weight will cause almost instant blackout. Greater forces are liable to

cause permanent injury.
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2.6 Limit load. It is necessary when designing an airplane to decide

on the maximum loads that will be exerted. These maximum loads will

vary with the type of airplane, flying conditions, and physical limitations

of people. Small high-speed pursuit airplanes that are highly maneuver-

able will be subjected to greater inertia loads than large cargo-carrying

airplanes. The greatest expected load factor during normal operations

of the large airplane would, therefore, be less than for the pursuit air-

plane. The limit load is the highest load expected during the normal

a

(a) (b)

FLIGHT DIRECTION

FiS. 2.8. Airfoil Forces.

operations of the airplane. The definition of limit load given in CAR 04

is Limit Load: the maximum load expected in service The limit load

should not cause yielding of the structure.

2.6 Ultimate load and factor of safety. The limit load should not

cause yielding of the structure; a higher load than the limit load is

required to rupture the structure. The maximum load which a part

of the structure must be capable of supporting without causing failure

is called the ultimate loady and the ratio between the ultimate load and the

limit load is called the factor of safety. This factor is sometimes takeq

as 1.5.
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2.7 Aerod3maniic forces on airfoil. The lift on the wings is due to the

shape of the wing cross section (airfoil), the velocities of the air passing

over its surfaces, and other factors. The velocities of the air over the

top of the airfoil are increased, causing a decrease in pressure. The
pressures on the bottom of the wing are greater than atmospheric because

of the decrease in velocity on this surface. This lessening of pressure

on the top and increasing of pressure on the bottom results in a force

with an upward component. The distribution of pressure for a low

angle of attack (LAA) is shown in Figure 2.8(b). The pressure distri-

bution will vary with angle of attack. This pressure variation along the

airfoil section is known as the chordwise load distribution. The net effect

of the pressures acting over an area of the wing can be resolved into a

single force acting at the center of pressure, (c.p.) of the section. It is

then customary to resolve this force into two components; one perpen-

dicular to the flight direction, called the lift, and one parallel to the flight

direction, called the drag. Figure 2.8(c).

Aerodynamic tests on airfoil sections indicate that the lift and drag

forces are proportional to the area of wing, square of the velocity, and

the density of the air for a given angle of attack and airfoil section.

Also, if the drag force is neglected, a point exists about which the moment
of the lift force is a constant for varying angles of attack. This point

about which moments are taken is called the aerodynamic center

,

and the

forces of lift and drag are usually considered acting at this point. Figure

2.8(d). The equations expressing the relationships for lift, drag, and

moment about the aerodynamic center are:

L = Ci
I

F2<S (2.6)

D = Cb
I
V^S

M =^Cu^ V^Sc

where L == lift (lb)

D = drag (lb)

M = moment (lb ft)

p = density of air (slug/ft^) 0.002378 at sea level

S = area of wing (sq*^ ft)

V = airplane speed (ft/sec)

c = chord of wing (ft)

Cl = coeflScient of lift

Cd = coefficient of drag

Cm = coeflScient of moment.

The coefficients in the above equations are dimensionless and are deter-

mined by the shape of the airfoil section and the angle of attack. The
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values of coefficients for a typical airfoil are shown in Figure 2.9. It

should be noticed that in this example the coefficient of moment about the

aerodynamic center is negative, which indicates a diving moment.

From previous analysis it has been shown that for straight level flight

the lift approximately equals the weight of the airplane, L = W, Equat-

ing the lift to the weight in Equation 2.6 and solving for the velocity, we

obtain

For a given angle of attack, Cl is known; and, if the weight of the airplane,

density of the air, and wing area are held constant, the airspeed V is

Fis. 2.9. Airfoil Coefficients.

determined. The lowest speed the airplane can fly, the stall speed (Vs),

will therefore occur when the angle of attack is such as to make the

coefficient of lift a maximum.

V. = (2.7)

This stall speed becomes important in determining the load factor in

pull-ups.

2.8 Gust loads. If an airplane is in level flight and a vertical gust is

exerted normal to the flight direction, the effective angle of attack of the

wing is increased without a corresponding change in the forward velocity
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of the airplane. The change in angle of attack is illustrated in Figure

2.10. An upward gust adds a vertical component of velocity to the

horizontal velocity of the airplane so that the relative wind direction is

upward and back. Since the coefficient of lift varies almost directly

with the angle of attack, a sudden increase in the angle of attack results

in a sudden increase in the lift on the wing. The airplane therefore

accelerates upward, and a load factor greater than unity is experienced.

The change in angle of attack due to gust will depend on the relative

magnitudes of the horizontal velocity of the airplane and the vertical gust

velocity. Experience has shown that the maximum gust velocity to be

(a) (b)

Fig. 2.10. Effect of Gusts.

expected is about 30 fps. Using this gust velocity, we find that the load

factor increases approximately directly with the airspeed. It is for this

reason that pilots are cautioned to slow down during gusty weather.

The value of the additional load factor due to gust given by CAR 03 is

An
KUVa

575
W (2 .8 )

^here ^ ^ \ ^ ^ Ib/ft^

K = IM - for ^ > 16 lb/ft»

{fi
^

U = gust velocity (ft/sec)

V = airplane speed (mph)

a = slope of the lift curve, (Cl per radian)

W = wing loading (Ib/ft^).

The design shall be made for positive (up) and negative (down) gusts of

30 fps at the design cruising speed Vc and for positive and negative

15 fps gusts at design diving speed Ed. The design cruising speed and

design diving speed are designated in CAR 04 and CAR 03 for each
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category of airplane. In general, these speeds are specified in terms of the

wing loading.

Since the load factor without gusts for an airplane in level flight is

unity, the total load factor with gusts is

n = 1 ± An- (2.9)

The negative sign is used for downward gusts.

The gust load factors are assumed to vary linearly between Vc and Fd.

Example 2.1. Determine the gust load factors for a transport air-

plane weighing 50,000 pounds and having a wing area of 1460 square feet

if the design cruising speed is 250 mph and the design dive speed is 1.25Fc

or 313 mph. The slope of the lift curve is 4.8.

Solution. ^ = 34.2 lb/ft=

From Equation 2.8, since -^ > 16

K = 1.33 = 1.33 - = 1.14
(34.2)3

„ , KUVca 1.14 X 30 X 250 X 4.8
For F., Aa = =

575 x 34.2
=

575 ^
'

* KUVaa 1.14 X 15 X 313 X 4.8 , ,,,for F., An =

575 ^
Then the gust load factors are

n = 1 + An = 1 + 2.09 = 3.09 and -1.09 for F.

= 1 + An = 1 + 1.31 = 2.31 and -0.31 for Fj

2.9 Loads due to sudden pull-ups. Another flying condition to be

considered is that of sudden pull-up. If the airplane is flying in an

unaccelerated level flight at a given velocity, and the pilot suddenly

pulls back on the stick, thereby increasing the angle of attack of the wing,

the lift is suddenly increased without a corresponding decrease in air-

speed. Assuming that the pilot pulls up to an angle of attack correspond-

ing to the maximum coeflflcient of lift, the lift in the wings would be

L =

The lift before the pull-up equals the weight, and this can be expressed in

terms of the stall velocity and the maximurti lift coefficient

w = = Ci,
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The load factor is therefore

«
^ w v^.

(2 . 10)

2.10 F-n diagram. Among other conditions, the airplane must be

designed to withstand the loads imposed by maneuvers, gusts, and pull-

ups. These factors must be considered in combination in order to

determine the critical load conditions of the airplane. A convenient

device for indicating the various load conditions on the airplane is the

velocity load factor diagram, otherwise known as the V-n diagram. A
typical V-n diagram is shown in Figure 2.11.

It has been shown that the load factor for pull-ups varies with the

square of the velocity. The variation of load factor with velocity can

therefore be represented by a parabola as shown by the curves 01

A

and

OHG of Figure 2.11. Since the airplane cannot fly at a velocity lower

than the stall velocity, it is apparent that only the portion of the parabola

corresponding to velocities greater than the stall velocity can apply.

It is usual to limit the maneuver load factor of an airplane according

to its intended use. Thus, for a transport airplane, which is not designed

to do acrobatics, the maneuver load factor is less than for a pursuit

airplane. In this example the positive maneuver load factor has been

assumed to be 3 and the negative (inverted flight or for loads in the

opposite direction to the usual sense) has been assumed to be —1.2.

The positive maneuver load factor is specified as constant up to the design
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dive speed, and thus line AC represents this condition. The negative

maneuver load factors are usually specified a little differently from, the

positive ones. It is assumed that the negative maneuver load factor is

constant up to the design cruising speed but is zero at the design dive

speed, and varies linearly between the design cruising speed and the

design dive speed. Thus, the line GFD represents this condition.

The gust loads vary linearly with the velocity. Further, the airplane

is to be designed for gust loads corresponding to gusts of 30 fps up to the

cruising speed and for gusts of 15 fps at the design dive speed with a

linear variation of the loads from the design cruising speed to the design

dive speed. Thus, the line from the load factor +1 to point B represents

the variation of load factor with velocity for a +30 fps gust, and point

C' represents the gust load factor at the design dive speed. The line

between B and C' represents the gust load factor between Ve and Fd.

The corresponding line for the negative gust is +IF'E.

The airplane must be designed to withstand all load factors included

on or within the envelope of the curves for pull-ups, gusts, and maneuvers.

This envelope is shown by the solid line IAB'BB"CEF"FGHI of the

figure. The question may arise of why the line for a +30 fps gust at a

velocity near the stall velocity is not included in the envelope since the

load factor for this condition is greater than for the pull-up condition.

The answer is that the pull-up condition corresponds to a high angle of

attack for which the coefficient of lift is a maximum and that therefore

the gust which effectively increases the angle of attack cannot increase

the lift greater than is already indicated by the pull-up. It should be

noted also that in this example the load factor for a positive 30 fps gust

is greater than the positive maneuver factor in the vicinity of the design

cruising velocity. Therefore, at the design cruising speed the design

would be based on the gust condition.

It should be noted also that, since point A is oh the pull-up line, it

corresponds to a high angle of attack condition {HA A). Point C,

representing conditions at a high speed Frf, corresponds to a low angle of

attack {LAA). Similarly, points G and E are for negative high angles of

attack and negative low angles of attack respectively.

2.11 Airplane coefficients and balance. It is convenient to refer the

forces acting on the airplane to a set of coordinate axes that are fixed

with respect to the airplane and therefore move with it. These axes

may be selected in any suitable direction and with any origin. We will

assume that the origin is at the center of gravity of the airplane, with the

X axis along the fuselage, the Y axis along the wing and perpendicular

to the X axis, and the Z axis perpendicular to the other two axes, as

shown in Figure 2.12. The forces shown in Figures 2.1, 2.3, 2.5, or

similar forces for any other flight conditions, are now resolved into forces

along the X, F, and Z-axes, giving a force in the Z direction at the center
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of gravity of Paz, and so forth. The subscript A refers to airplane and

the subscript w to the wing.

The forces that include the reversed effective forces are in equilibrium

I

so that the value of a force can be determined in terms of the other forces

by applying the conditions of equilibrium. Since the lines of action

of the thrust force and the parasite drag usually pass close to the center

of gravity for most conventional airplanes, the moments of these forces

z

about the center of gravity are neglected. Although these moments are

neglected in the following analysis, it is apparent how they could be’

considered.
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All the forces can be expressed in terms of dimensionless coefficients

similar to those used for lift and drag of an airfoil. Consider for example

a wing with a lift and drag force as shown in Figure 2.13. Then the force

in the Z direction is given by

Pwz = L cos + D sin

but L = Cl^V^S

D = Ci,^ V^S

therefore, P,cz = {Cl cos /S + Co sin F*/S

Since Pwz is proportionate to
^

F*<S, let

P.z = C^z^V^S

where Cwz = Cl cos 0 + Cd sin 0 (2.11)

Similarly, all the other forces can be written

Pzz = Czz^V^S

Pi = Ct^V^S

Pax = Cax
I

F^(S and so on (2.12)

If the coefficients can be obtained for an airplane by wind tunnel

tests or other means, the forces acting on the airplane can be determined

for any flight condition. The coefficients for an airplane are shown in

Figure 2.14. Of course, the coefficients are functions of the angle 0 so

that for any flight condition the angle must be known before the forces

can be determined. The value of 0, and therefore the values of the

constants, are determined from the design condition, which is determined

from the F-n diagram. Suppose, for example, that it is necessary to

compute the forces represented by point B on the F-n diagram. Figure

2.11. The load factor, which is the load factor for the whole airplane

in the Z direction, for this case is slightly greater than 3 and the speed

of the airplane is Fc. Then by definition

Paz = nW = Caz
^
V^S

nW
SO that Caz = (2.13)

fF«S

If we have Cazj we can obtain the value of 0 and all the other coeffi-

ti
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cients from Figure 2.14. The forces are calculated then from Equation

2 . 12 .

Example 2.2. Determine the forces on an airplane weighing 50,000

pounds and having a wing area of 1460 square feet if it is flying at sea

Fig. 2 .14 . Airplane and Wing Coefficients for Forward Position of C.G.

level with a cruising speed of 250 mph at a load factor of 3.2. The rela-

tion of the coefficients are given by Figure 2.14.

Solution,

V — 250 mph = 367 ft/sec

£ 7=^ = 1 X 0.002378 X 367* X 1460 = 233.8 X 10»
z z

Irom Equation 2.13, Caz = =
233 g ^

= 0.684

From Figure 2.14, corresponding to a Caz of 0.684,

C^z = 0.70

Ct = -0.022

= 0.02

/3 = 3°

Cl = 0.70
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Then Paz = nW = 3.2 X 50,000 = 160,000 lb

P^z = C„z^V^S = 0.70 X 233.8 X 10=' = 164,000 lb

P, = Ct^V^S = -0.022 X 233.8 X 10’ = - 5140 lb (down)

Pwx = C„,v
^

= 0.02 X 233.8 X 10’ = 4680 lb

If the coefficients for the airplane drag were known, the drag forces

could be obtained in a similar manner.

It should be noticed that the sum of the forces in the Z direction

nearly balance

:

XFz = -100,000 - 5140 + 164,000 = -1140 lb

The unbalanced forces would be balanced by the Z component of the

drag which has not been considered in the above calculations.

2.12 Airload distribution. In order to design the airplane structure,

not only the magnitude of the loads must be known but their distribution

as well.

The distribution of lift and drag along the span of a wing depends

on many factors. For an untwisted wing with elliptical planform, the

lift distribution is a semiellipse. The lift distribution for wings of other

planform is more complicated and can be determined by the methods set

forth in ANC-1, ^^Spanwise Airload Distribution.^^ These methods will

not be developed here, but some idea of the results will be indicated. ^

Consider a wing divided into sections 1 foot apart along the span.

The area of each section is therefore equal to the 1 foot times the chord of

the wing at that section. The lift, drag, and moment for the 1-foot

section will then be

/ = C,|F’c

d = Ca^V^c

m = W (2 . 14)

where I = lift per unit length of span (Ib/ft)

d = drag per unit length of span (Ib/ft)

m = moment about aerodynamic center per unit length of span

(lb ft/ft)

Cl == local lift coefficient

Cd = local drag coefficient

Cm = local moment coefficient

c = chord of wing at section (ft).

The local wing coefficients are functions of the angle of attack and the
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geometry of the wing, and can be determined by use of the ANC-1. The
values of the coefficients together with the associated coefficients in the

X and Z directions for a high angle of attack condition are shown in

Figure 2.15. The force per unit length in the Z direction is directly

proportional to the values given by the curve Cxozc.

2.13 Airload distribution on empennage and control surfaces. The
load distribution for various control surfaces is specified in the bulletins

CAR 04 and CAR 03. Some of these distributions are shown in Figure

2.16. The horizontal tail-balancing load is for the case of maintaining

the airplane in equilibrium with zero pitch acceleration. The maneuver-

ing load distribution is for a sudden deflection of the control surface.

The w in the figure is load per unit length of chord.

2.14 Ground loads. A rational determination of ground loads, espe-

cially those developed during landing, is complicated because of the
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multiplicity of factors that enter the problem. An airplane on first

contacting the ground is likely to do so with some impact similar to a

weight being dropped. This impact deforms the elastic structure of the

airplane, which in turn sets up vibrations very difficult to analyze. At

the same time the airplane is partially air-borne since it has a forw^ard

velocity. Because of the complexity of the problem, the loads acting

on the landing gear are somewffiat arbitrarily chosen although they are

based on experience.

AILERON LOAD

Fis. 2 .16 . Control Surface Loads.

As in the case of airloads, it is usual to express the ground loads in

terms of load factors that can be determined from the conditions of the

design and from the airplane airworthiness specifications. For example,

if it is specified that the design shall be made for a vertical descent of

10 fps and a shock absorber travel of 1 foot, the acceleration and therefore

the load factor can be determined. If we assume that for the 1-foot

travel the acceleration is constant, then we find that

A El
2s

102

2
= 50 ft/sec2

The load factor corresponding to this inertia loading is

_ A __ 50

g 32.2
1.55

If the airplane were motionless on the ground, the wheels would have to

support the weight of the airplane and this would correspond to a load

factor of unity. Assuming in the landing condition that one half of the
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weight is air-borne, then the load factor at the wheels is the inertia load

factor plus the load factor of the non-air-bome weight or finally

n = 1.55 + 0.50 = 2.05

The total vertical force to be supported by the wheels is nW, The
distribution of this force, as well as other forces due to the friction, or

inertia forces caused by sliding the tires, spinning the wheels, or braking,

depends on the landing condition. A few of these landing conditions

and force distributions will now be investigated. The conditions apply

to nontransport categories.

Tail down landing. In this condition it will be assumed that the

wheels have been brought up to speed before the maximum vertical load

is applied so that the ground reactions are vertical. The airplane having

a tail wheel is then in the attitude shown in Figure 2.17. Since the

forces are in equilibrium, the forces on the front wheels can be determined

easily.

2Muii = 0 = - nWh

Vr = nW
d̂

The load on the tail wheel is

F, = nW
^

For the airplane with a nose wheel, all the reaction must be taken by the

main gear or

Vr = nW

Level landing. For a level landing condition it is assumed that drag

components of force are required to accelerate the wheels up to landing

speed. These drag loads are usually expressed in terms of the vertical

reaction much the same as a friction force is expressed in terms of a
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normal force between two sliding blocks. The situation and notation

for the nose wheel type and the tail wheel type of airplane are shown in

Figure 2.18. The factor K is defined as

K = 0.25 for W < 3000 lb (2.14)

K = 0.33 for W > 6000 lb

K = 0.25 + for 3000 < W < (5000 lb
ouLMJ

A summary of some of these data is given in the following table taken

from CAR 03-0.

Condition

Tail Wheel
Type Nose Wheel Type

Level

Landing
Tail

Down
Level

Landing

Level

Landing
with Nose
Wheel
Clear

Tail

Down

Vertical component at c.g. n\V nW nW nW nW
Fore and aft component at c p;.

' KnW 0 KnW KnW 0

b b'
Main wheel loads (both wh<‘ols) Vr nW nW-z

a
nWj)

a
nW 7lW

Dr KnW 0
6'

KnW y,a
KnW 0

Tail (nose) wheel loads V/ 0
a

nW:^
a

o!
nW ya 0 0

Of 0 0
a' 1

KnW^,~ 0 0

n = limit load factor

It should be emphasized again that only a few of the landing condi-

tions have been discussed. Therefore, the student is referred to the

government bulletins for further details.

2.16 Weight distribution. In determining the airloads and ground

loads, it has been convenient to consider the weight of the airplane

concentrated at the center of gravity. This is a valid method for

determining external loads, but for structural analysis the distribution

of the weight should be known. The weight distribution for continuous

structures, such as wings and fuselage, should be determined together

with the location and amount of concentrated weight, such as fuel tanks,

radio, baggage, armament, and so forth.



AIRCRAFT LOADS 27

Problems

2 . 1 . If the following data apply to the airplane shown in Figure 2.1

gross weight = 1450 lb

span of wing = 35 ft

mean wing chord = 62 in

limit load factor = 4

factor of safety = 1.5

total drag, Du> + Dp passes through the c.g.

5 = 10 in

c = 5 in

d = 13 ft

determine

(a) ultimate wing load

(b) limit load on horizontal stabilizer when the propeller thrust is 420 lb

(c) chordwise limit load distribution on horizontal stabilizer if the chord

is 24 in.

2 .2. If an airplane weighing 6000 pounds has a limit maneuver load factor of

5, determine the smallest radius of turn it can make when traveling at a speed

of 400 mph.
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2.3^ Determine the load factor due to a sudden pullrup for an airplane weigh-

ing 20()0 pounds and having a wing area of 90 square feet for which CL(m*x) =
if the airplane is flying 100 mph at sea level atmospheric conditions.

2.4. Determine the gust load factors for an airplane with a wing loading of

33 pounds per square foot if the design cruising speed is 300 mph, the design

dive speed is 450 mph, and the slope of the lift curve is 4.5.

2.6.

Determine values and draw the F-n diagram for an airplane having the

following specifications:

Vc = 325 mph
Fa = 1.2Fe

F, = 0.33 F«, (flaps up)

Limit maneuver factors, -ffi, —2,

wing loading = 35 Ib/ft^

slope of lift curve = 4.1

2.6.

An airplane with a wing area of 2000 square feet and a gross weight of

60,000 pounds is to be designed for a limit load factor of 3.5 at a speed of 300 mph.

Fig. 2.19. Wing Layout.

If the tail coefficient Ct is —0.045 times the airplane coefficient Caz^ what is the
tail load for sea level conditions?

2.7.

An airplane similar to that shown in Figure 2.12 has a gross weight of

2100 pounds, a wing span of 40 feet, and a wing area of 204 square feet. For a
low angle of attack = 2°) the limit load factor is 3.2 and the design speed is

190 mph. If Cd = O.OSCl, Cm = —O.OICl and a = 10 inches, h = 218 inches,

and c = 14 inches, determine

(a) coefl&cient of lift, assuming all load carried by wing (neglect tail)

(b) Cz and Cx
(c) Py,z and Pu>x -
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(d) tail load for balancing, assuming thrust and parasite drag pass through

the c.g.

(e) distribution of balancing load on horizontal stabilizer when the chord of

the stabilizer is 20 inches.
2.8.

A twin engine passenger airplane weighing 21,000 pounds has a wing as

shown in Figure 2.19. The specifications for high angle of attack indicate that

the limit load factor should not exceed 4.5 for a design speed of 194 mph.
If the following table gives the aerodynamic coefficients for the wing at

HAA, determine the lift, drag, and moment distribution.

Draw curves of all load distributions.

NACA Series 230 Airfoil

(From ANC-l(l))

Percent of semi-

span 0 20 40 60 80 90 95 97.5 100

Distance from t 0 95.2 190.4 285.6 380.8 428.4 452.2 464.1 476

Chord c 191.35 165.36 139.38 113.39 87.41 74.41 67.92 64.67 61.42

Aerodynamic
center

Fraction c

.2275

1

.2288 .2302 .2323 .2347

1

.2357 .2360 .2360 .2359

Aerodynamic Coefficients, for a 14% Cl = 1.184

Lift Cl 1.057 1.162 1.221 1.266 1.250 1.157 1.000 0.799

'

0

Drag Cd .0949 .0789 .0685 .0601 .0645 .0831 .1041 .1170 —
Moment Cm -.0062 -.0065 -.0070 -.0078 -.0086 -.0094 -.00991 -.01011

i

-.0105

2.9. Determine the reaction at the wheels for an airplane weighing 10,000

pounds and having a tail wheel as shown in Figure 2.17 if a = 2 feet and d = 40

feet and the limit load factor is 2.2.

2.10. For an airplane with nose wheel and the same conditions as those in

Problem 2.9, except that the horizontal distance from the nose wheel to line of

main wheels is 10 feet and the distance from the nose wheel to the center of

gravity is 8 feet 10^ inches, determine the wheel reactions. The distance from

the center of gravity to the ground is 5 feet.
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CHAPTER 3

Behavior oF Loaded Material

3.1 Introduction. The various airloads and ground loads to which

the aircraft is subjected must be transmitted through the airframe. The
action of these loads on the structure can be divided into five major

types: (a) tension, (b) compression, (c) shear, (d) bending, and (e)

torsion. An example of a tensile action is the pull of the propeller which

is transmitted along the propeller shaft. A torque or twisting action

is also transmitted along the propeller shaft because of the propeller drag

absorbing the powerplant torque. A compressive load is transmitted

along the landing gear strut during landing. The airload on a wing

causing it to become curved spanwise is an example of a bending action.

The action on a rivet connecting two plates being pulled in opposite

directions is an example of shear.

Structural design consists largely in properly proportioning the

structural members to carry the loads. It is therefore necessary to know
the amount of load the structural material can safely withstand. The
basis for the material strength depends on the physical properties

obtained from tests made on the materials from which the structural

members are fabricated.

3.2 Physical properties of materials. At the present time the most

common materials used for aircraft construction are the various aluminum
alloys, steels, and magnesium alloys. Brass, copper, rubber, wood, and

plastics are also extensively used, and it is probable that other new
materials will be used in the future. All these materials have character-

istics which must be determined before they can be used satisfactorily.

Some of these characteristics, called physical properties, will now be

considered.

If a specimen, such as an aluminum rod, is held vertically by one end

with a weight fastened to the other end, the rod will stretch or elongate.

This deformation may be so small that precision instruments called strain

gages are required to measure it. If, on removal of the weight, the rod

regains its former length and shape, it is said to be perfectly elastic. If

successively heavier and heavier weights are applied, eventually the rod

will not regain its initial length when the weights are removed. The
elongation of the rod remaining after the removal of the load is called

permanent set. During loading the material has passed the elastic limit

and become partially plastic or inelastic. If the load is continually

increased, the rod will break or rupture.

Stress and strain are convenient measures of some of the physical

33
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properties of materials and are useful in comparing properties of several

materials.

3.3 Stress and strain. Stress is a measure of the intensity of force

acting at a point within the material. Stress is the force per unit of area.

Consider a uniform circular rod with an axial tensile load P applied

to each end, Figure 3.1. The stress conditions on various sections within

the cylinder will be different. If we assume that the load is distributed

Fig. 3.1. Stress

Conditions in Tensile

Specimen.

uniformly on a transverse cross section, we will see

that the stress on section A-A^ which is on a plane

perpendicular to the axis of the cylinder, is given by

where / = tensile stress (psi)

P = tensile load (lb)

A = cross-sectional area of rod (sq in).

This stress is called a tensile stress. If the stress on an

oblique plane such as B-B is considered, it is evident

that, since the area of this section is greater than

before, the stress \\ill be less. It is customary to con-

sider stresses on an oblicjue surface divided into two

components, as indicated on C-C. The stress per-

pendicular to the surface is called the normal stress

and the stress parallel to the surface is called the shear

stress. The stress conditions on section A~A consist

of a normal stress P/

A

with no shear stress.

Under the action of the load P the cylinder will

elongate in the axial direction an amount 8. The
amount of elongation per unit length is called the

axial strain and is given by

(3.2)

where e = axial strain (in/in)

8 == elongation of member (in)

L = original length of member (in).

The relationship between stress and strain provides data useful for

design. This relationship for a material may be established by recording

simultaneously the values of stress and strain obtained from tensile

tests of a specimen. The diagram representing the variation of stress

and strain is called a stress-strain diagram and has the general form indi-

cated in Figure 3.2. It should be emphasized that the stress used in the

stress-strain curve is the load divided by the original cross-section area
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of the specimen, and the strain is the average strain taken over a certain

length called the gage lengthy which is usually two inches. Since the area

of the cross section reduces during loading, the stress calculated on the

basis of the original area is not the true stress. Similarly, the strain is

not the true local strain because the strain over the gage length is not

uniform. True-stress true-strain data are now being used in the solution

Fi 3 . 3.2(a). Stress-Strain Diasram for Aluminum Alloy.

of some forming problems
;
however, the conventional stress-strain relation

is used for structural design.

3.4 Proportional limit (elastic limit). Stress-strain diagrams, such as

those shown in Figure 3.2, indicate that there is a range for which the stress

is directly proportional to the strain. This is known as the elastic range

as indicated in Figure 3.2(a), and beyond this range of stress the material

is inelastic or plastic. The value of the stress corresponding to the end

of the range where the stress is no longer directly proportional to the

strain is called the proportional limit and is denoted by the symbol Ftp
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for the tension case. As long as the proportional limit is not exceeded

the material will return to its original shape and size and will not have

permanent set when the stress is reduced to zero.

The proportional limit is sometimes difficult to determine since it is

the point at which the stress-strain curve departs from a straight line.

The proportional limit is sometimes specified as the stress corresponding

to a permanent set of 0.0001 inches per inch. The method of determin-

ing the permanent set is explained in the next article.

3.6

Yield stress. If a material is loaded so that the stress-strain

curve will be as shown up to point A of Figure 3.2(b) and then the load

reduced to zero, it will be found that the material unloads along line AB
so that the- residual strain or permanent set remaining at zero stress is

OB. It has been arbitrarily decided that the yield stress corresponds to a

permanent set of 0.002 inches per inch. The yield stress is determined

by the intersection between the stress-strain curve and a straight line

parallel to the slope of stress-strain curve in the elastic range and passing

through a permanent set corresponding to 0.002 inches per inch.

The strain scale is greatly magnified in Figure 3.2(b) and therefore

gives an erroneous impression of the relation between the yield stress and

proportional limit. Actually the yield stress is only very slightly in the

inelastic range.

3.6 Ultimate stress. The maximum value of the stress obtained is

called the ultimate stress. It may seem peculiar that the ultimate stress

does not correspond to the fracture point in the stress-strain curve until

it is remembered that the stress is based on the original cross-section area

of the test specimen. As the specimen is loaded it is found that the load

increases whereas the cross-section area decreases. Eventually a point

is reached where the area continues to decrease without increase in load

as the stretching of the material is continued in the test machine. When
this occurs the ultimate stress has been reached.

3.7 Poisson’s ratio. Experiment shows that as the tensile specimen

is elongated by the load the size of the cross section decreases. The ratio

of the lateral strain to the axial strain is found to be constant for a

material in the elastic range and is known as Poisson^s ratio

,

/i. The value

of Poisson’s ratio for steel is about 0.3. Therefore, for an axial strain of

0.001 inches per inch, there will be a contraction in the radial direction

of the cross section of 0.001 X 0.3 = 0.0003 inches per inch.

3.8 Modulus of elasticity. Since the stress is proportional to the

strain in the elastic range, then, if the constant of proportionality is JE,

f = Ee

€

where E = modulus of elasticity (Young’s modulus) (psi).
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This constant of proportionality is called the modulus of elasticity

y

and it

is a measure of the stiffness of the material. It should noticed that the

modulus has the same dimensions as stress, namely, pounds per square

inch. Geometrically, the modulus of elasticity is the slope of the stress-

strain curve.

The higher the modulus of elasticity, the greater the resistance of

the material to deformation. The elongation of a tension member can

now be obtained by use of Equations 3.1, 3.2 and 3.3. Thus,

Then

E
e A/

6 = AE (3.4)

If it were possible to elongate the tension member a distance equal to its

Fig. 3.3. Moduli.

own original length, the stress required would be equal to the modulus of

elasticity, or

Of course, materials would fracture long before such a stress could be

applied. If it is remembered that steel has a modulus of elasticity of

about 30 million pounds per square inch, some idea of the stiffness of the

material can be realized.

The modulus of elasticity as previously defined applies only to the

material in the elastic range, so that the stress is below the proportional

limit. It is convenient, however, to define a somewhat similar quantity

in the inelastic range called the tangent modulus.
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The tangent modulus, Ery is equal to the slope of the stress-strain

curve at any poiht, Figure 3.3,

or (3.5)

It is evident that the tangent modulus is not a constant In the inelastic

range but is a function of the stress. The tangent modulus reduces to

the ordinary modulus of elasticity in the elastic range.

Curves showing the variation of tangent modulus with stress are

given in the ANC-5.

3.9 Elastic energy. For the simple tensile specimen, we have seen

that, as the load P is gradually increased, the elongation increases directly

with the load as long as the material is elastic. Since the load starts at

zero and ends at some value P at the time the elongation is 5, the work

done by the force is the product of the average force times the distance

through which it moves. Since this energy can be recovered in the

unloading process, it must be stored in the specimen in the form of

potential energy. This energy is known as elastic energy and is given by

where U = elastic energy (lb in).

(3.6)

By use of Equation 3.4 the elastic energy can be obtained in terms of the

load, the geometric properties of the rod, and the elastic properties of the

material*.

U = P^L

2AE (3.7)

The elastic energy per unit volume that can be stored in the rod

without permanent set is called the modulus of resilience and is given by

where

U = IS
2E

Fp = proportional limit (psi).

(3.8)

3.10 Endurance limit. The properties of materials previously dis-

cussed have been obtained from tests in which the load is gradually

applied and unrepeated. It is well known that, if the load is fluctuating

so that the stresses vary with time, failure of the material can occur at a

stress lower than the ultimate stress obtained from static test. The
stress which a member can just withstand for an infinite number of load

cycles is called the endurance limit This failure is known as fatigue

failure and must be considered in the design of a structure subjected to

vibration or impact conditions.

3.11 Structural failure and allowable stresses. The allowable stress

for a member is the stress that must not be exceeded if failure of the
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member is to be prevented. Structural failure does not always imply

rupture of a member; failure may be any condition which impairs the

satisfactory functioning of a member. Thus, if an excessive amount of

permanent set is to be avoided, the stress in the member should not

exceed the yield stress, in which case the allowable stress is the yield

stress. The stress in a member, subjected to a vibratory load condition,

should not exceed the endurance limit, in which case the allowable stress

is the endurance limit. The selection of the allowable stress depends

on the conditions of the design and the judgment of the designer, or it is

specified by the licensing' authority.

The allowable stresses for a simple tension member may be the yield

stress, proportional limit, or ultimate stress, depending on the conditions

of the design. The allowable stresses are denoted by a capital F, such as

Fty^ and so on. Since allowable stresses are necessary for members other

than those in simple tension, other tests such as compression, shear, and

bearing must be made.

3.12 Margin of safety. It is necessary to have some means of com-

paring the value of the load or stress a structural member can carry safely

without failure with the load or stress actually imposed on the member.

This relation is usually expressed by the margin of safety defined as

follows:

MS =

MS =

allowable load

actual load

allowable stress

actual stress
(3.9)

Example 3.1. Determine the margin of safety on yielding of a

^-inch O.D. normalized 4130 rod carrying a limit tensile load of 13,000

pounds.

Solution. The actual tensile stress in the rod is

P
A

13,000
66,300 psi

The allowable yield stress from page 4-12 of ANC-5 is

Therefore,

Fty = 70,000 psi

MS Fti _ 70,000

ft

^
66,300

- 1 = .06 or 6%.

This means the member is able to withstand 6% more than the limit

load of 13,000 pounds before yielding.

A negative margin of safety indicates that the structure is weaker

than required.
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The Civil Aeronautics Authority specifies the following minimum
margins of safety. All fittings, 20%; castings, 100%; parts subjected to

shock loads, 100%; aluminum alloys and steel parts in bearing with

repeated reversed loading, 50%.

Problems

3.1. Determine the elongation of a steel rod 20 inches long if the tensile stress

is 20,000 psi.

3.2. The elongation of an aluminum rod ^ inch in diameter and 30 inches long

is found to be 0.012 inches owing to the action of tensile load. Determine the

value of the load.

3.3. Determine the elongation of the steel bar shown in Figure 3.4 if the area

of the cross section is 0.5 square inch.

3.4. A 17ST aluminum alloy fitting with a cross-section area of 0.30 square
inch is subjected to a tensile load of 15,000 pounds. Determine

(a) the margin of safety if

Ftu = 55,000 psi

(b) the load required to produce yielding.

///////////////////// 3.5. A rigid body of weight IT hangs from

I

I three equally spaced wires as shown in Figure 3.5.

(a) If all the wires are steel and the cross-

sectional area of each wire is 0.0625

square inches, determine the stress in

—1 — each wire.

(b) If the outer wires are aluminum and the

center wire steel, determine the stresses

in each wire. {Note: All wires elongate
Fig. 3.5. Wire Suspension. amount.)

(c) If one outer wire and the center wire are aluminum and the other outer

wire is steel, determine the stresses.

3.6. Of three materials, 4130 steel, 176T aluminum, and magnesium alloy,

determine the lightest of three rods carrying a tensUe load of 20,000 pounds
which causes a yield stress in each.

References

ANC-5, “Strength of Metal Aircraft Elements,"' Army-Navy Civil Committee
on Aircraft Design Criteria. Revised Edition, December 1942; with Amend-
ment No. 2, August 1946.



CHAPTER 4

Load Transmission in Single Span Beams

and Cantilever Beams

4.1 Introduction. The transmission of load through the structure

may depend upon the behavior of the material during the application of

the load. In many cases, however, the distribution of the loads in

the members of the structure depends only on force equilibrium of the

structure and not at all on the stiffness or other characteristics of the

material. If the distribution of loads can be determined from conditions

of statical equilibrium alone, namely the summation of moments and

forces equal to zero, it is said to be statically determinate; and, if other

conditions such as the deformations of the structure are required for the

determination of the load distribution, the structure is said to be statically

indeterminate.

Of the various members carrying loads of tension, compression, shear,

torsion, and bending, the members subjected to some bending action

P

Fig. 4.1. Simple Beam with Concentrated Load.

(although this action is usually accompanied by the other actions of

shear, torsion, and so forth), arc usually called beams. Many components

of the airframe can be thought of as beam components. For example,

the wing, the fuselage, or the longitudinal members supporting the floor

are beams. When beams extend between only two supports, they are

called single^span beams; and depending on the conditions at the supports

they can be either statically
,
determinate or statically indeterminate.

Multiple-span beams, beams with more than two supports, are always

statically indeterminate.

The determination of the reactions, deflections and distribution of

41
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shears and bending moments in single-span beams and cantilever beams
will be discuss

4.2 External reactions. If a beam is statically determinate, the

L

I.
1 1

P

Rb

P

Fig. 4.2. Cantilever Beam with Concentrated

Load.

reactions at the supports can be

determined from the equations of

statical equilibrium, = 0,

2F = 0. From the free body dia-

gram of the simple beam shown
in Figure 4.1, it is apparent that

there are two unknown reactions,

Ra and Rb. If moments about

any convenient point, say J5, are

summed,

^Mb = 0 = RaL - Pa

Since the sum of the forces in the vertical direction must be zero,

XFv = 0 = Ra - P + Rb

Rb ^ P - Ra^ P{\ -

In the case of the cantilever beam shown in Figure 4.2, it is apparent

again that the equations of statics are sufficient for determining the

reactions.

Thus, ZFv = 0 ^ Rb - P
Rb ==P

ZMb = 0 = Mb ~ Pa
Mb = Pa

However, if the end of the cantilever is supported as shown in Figure 4.3,

there are three unknown reactions Ra, Rb, and Mb and only two equa-

tions for determining the reactions, namely, the summation of moments

in the plane of the forces equal to zero and the summation of the forces
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in the vertical direction equal to zero. Summing forces m the nonzontal

direction does not give any additional information since there are no

forces in the horizontal direction. This beam is therefore statically

indeterminate, and one additional condition is required for the solution

which will be considered in a later article.

4.3 Internal forces. The external loads and reactions on a beam
cause internal forces in the beam. These internal actions can be divided

into a shearing force^ F, and a bend-

ing moment, M, Consider the canti-

lever beam shown in Figure 4.4, cut

at section a-b\ then consider the

beam forces required on the cut sec-

tion to hold the left portion of the

.beam in equilibrium. Since this

portion is in equilibrium, the sum of

the vertical forces and the sum of the

moments must be zero. If we
assume that the internal force V is

downward on the right end of the left

portion, then we see that

2F = 0 = P - 7
F = P

If we take moments about the cut

section, it is apparent to us that

2M = 0 = M - Px
M = Px Moment

Since there are no external forces 4.4. Shear and Bendins in Cantilever

acting on the cut between the two Beam,

portions, the internal forces must be balanced on the two faces, or the

moments and forces on the two sides must be equal and opposite.

The distribution of shear and moment will be as shown in Figure 4.4.

The sign convention for the positive directions of shear and bending
moment will be as follows. The shearing force is positive if the left

portion of the beam tends to move upward relative to the right portion.

The bending moment is positive if it tends to curve the beam concave
upward. It should be noticed particularly that positive beam bending
moments can be clockwise or counterclockwise depending upon the side

of the cut being investigated.

The distribution of shear force and bending moment for a beam carry-

ing more than one load can be determined by adding together or super-

imposing the effect of each load acting separately. This is an application

of the principle of superposition that will be more completely discussed
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in the next chapter. An example of superimposed systems is shown in

Figure 4.5.

If more and more loads are applied closer and closer together, the

condition of a continuously distributed load will be approached. The
intensity of the distributed load will be in force per unit length of beam.

As more and more equal loads equally spaced are added in Figure 4.5, the

. i

1
’

1 ^

1

P2 P| P2

LOADING

(+)

I

+ -
(4-)

SHEAR FORCE

BENDING MOMENT

Fis. 4.5. Cantilever Beam with Two Concentrated Loads.

more uniform the load tends to become, and the shear and moment
curves become smooth without discontinuities.

4.4 Load, shear, and moment relations. Some general relations

between load, shear, and moment can be established that will be useful for

determining the shear and moment distributions and their characteristics.

Consider the simply supported beam shown in Figure 4.6 carrying a

distributed load p where p is the intensity of load in force per unit

length of beam.

Then p = /(x)

For a small element of the length of beam Ax, the loading can be consid-

ered uniform with good approximation as long as the loading for the

interval is continuous. If we assume that the shear force changes by an

amount AV from the left side of the element to the right and similarly

that the moment changes by an amount AAf, then we find that, since the

total external load for the element is p Ax, where p is the average intensity

for the interval,
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= 0 = V - {V + AV) + p Ax
AV
Ax

- V

AxhM = 0 = M+ V Ax + pAx-^ — {M + AM)

AM
,

Ax
= +

(4.1)

(4.2)

FiS. 4.6. Beam with Distributed Load.

The limit of the ratios as Ax —> 0 are the well-known relations

dx

dM
dx

= V

= V

also V =
dV ^ dm
dx dx^

(4.3)

(4.4)

Geometrically, Equation 4,3 indicates that the slope of the shear

curve at any point is equal to the intensity of the load at that point. A
sudden change in the intensity of the load, such as for a concentrated

load, indicates a sudden change in the slope of the shear curve. In a

similar manner, the slope of the moment curve is equal to the value of the

shear force at a point. A sudden change in the shear force corresponds

to a sudden change in the slope of the moment curve. It should further
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be noted that when the shear is zero the slope of the moment curve is

zero, which thereby indicates a possible position of maximum or minimum
moment.

The change in shear force between any two points, such as A and B of

the beam shown in Figure 4.6, can be determined from Equation 4.3,

Solving for dV and integrating both sides, we have

jyv-j^pdz
fB

or Vb — Va — J^pdx== (area of load curve between A and B) (4.5)

Hence, if the distribution of load p is a known function of x, the change in

shear forces between any two sections of the beam can be determined.

It is useful also to remember that the integral on the right side of Equa-

tion 4.5 can be interpreted as the area of the load curve between A and B.

In many cases where the integration would be difficult, summation

processes, when this latter interpretation is used, can be employed

advantageously.

A difficulty in using Equation 4.5 may occur when the interval A, B
contains a concentrated load. Supposing such a concentrated load does

exist, then the integration can be divided into two parts, one containing

the concentrated load and the other the distributed loading. The
concentrated load can be thought of as a distributed load of higher

intensity pi spread over a small beam length e. The load then can be

defined as

the change in shear is therefore

Vb VA = p dx + Pi dxi = p dx + P (4.6)

Similar relations exist for the shear and moment so that

r B
Mb — Ma — / V dx = (area of shear curve between A and B) (4.7)

Example 4.1. Determine the shear force and bending moment dis-

tribution for the idealized wing with an external strut brace and a uniform

airload as shown in Figure 4.7. Neglect the effect of axial thrust on
bending.

t/; = 10 Ib/in; L = 100 in; a = 70 in; a = 20°

Solution.

Reactions: SMb = 0 = PyO —
2
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SFy = 0 = + Py - wL
Py = - P^ = 10 X 100 - 714 = 286 lb

2P* = 0 = Py cot a — Rx
Rx = 714 cot 20 = 1960 lb

Shear: The shear force distribution will be determined by the three

methods: equilibrium, relation between load and shear, and area of load

curve.

-4100 Ib.in.

MOMENT

Fig. 4.7. Shear Force and Bending Moment for a Simplified Wing.

From the conditions of equilibrium for a portion of beam of length x

XFy = 0 = V — wx
V = wx = lOx for 0 ^ X < (L — a)

XFy 0 V - tvx + Py

V ^ wx — Py — lOx — 71 4 for {L ~ a) < x ^ L
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From the shear load relation

/
JJ

^
p dx + concentrated loads

Since the shear force at the left end of the beam is zero and p = Wy

V = w dx = wx = lOx for 0 ^ x < (L — a)

V = w dx — Py = wx — Py = lOx — 714 for {L — a) < x S L

By use of area of load curve relation when the shear at the left end is

zero,

V = area of load curve

= wx = lOx for 0 ^ X < (L — a)

V = wx — Py — lOx — 714 for (L — o) < x ^ L

Moments: When the equilibrium of an element of length x is con-

sidered and moments are taken about the right end of the element,

2M = 0 = M - -

lex^ lOx^

2M = 0 = M

5x^ for 0 ^ X ^ (L — a)

+ Py[x - (L - a)]

M ^ ~ Py[x - (L - a)] = 5x2 - 714x + 21,400

for {L -- a) ^ X ^ L

By use of the relation between shear and moment when the moment
on the left end is zero.

= / F dx + m(
Jo

wx dx = = 5x2 for 0 g X g (L — o)

M — I V dx + moment due to concentrated loads
Jo

M = Vdx - Py[x - (L - a)] = - 714x + 21,400

for {L — a) ^ X ^ L

When the fact that area of the shear curve is equal to the change in

moment is used,

ilf = ^ = 5x* for 0 ^ X ^ (L - a)

M = 4500 + _ 30)

= 6x* - 714x + 21,400 for {L - a) ^ x ^ L
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The shear force and bending moment curves are shown in Figure 4.7.

The place where the slope of the moment curve is zero is a possible

maximum point. This point can be determined by differentiation of the

moment or from the relation of the moment and shear curves. Thus,

^ = 0 = ^ - 714x + 21,400) = lOx - 714

= 71.4 in

Then M = 5(71.4)2 _ 714(71.4) + 21,400 = -4,100 lb in

Actually, the moment is maximum at the load Py where the slope of

the moment curve varies discontinuously. The point of zero slope of

the moment curve also can be determined from the moment shear relation

since the zero slope of the moment curve corresponds to zero shear from

the relation

Then from similar triangles of the shear curve

h _ a — bm ““
414

h = 28.6

Then x ^ L — b = 100 — 28.6 = 71.4 in as before.

It will be left as an exercise for the student to show that the slopes

of the shear curve to the left and right of the load Py are equal and that

the slope of the moment curve suddenly changes at the load Py,

4.6 Distributed torque loads. Many structural members are sub-

jected to loads that cause twisting about their longitudinal axes. A
simple example is a rod with a torque applied at each end, in which the

torque distribution is a constant. The torque distribution for a wing,

and many other structures, is not usually constant; therefore, the analysis

of members carrying distributed torque should be considered.

Consider a rod fixed at one end with loads eccentrically placed with

respect to the longitudinal axis of the rod so that the distributed loads

can be considered as acting on a shelf extending out from the rod as shown

in Figure 4.8. If a torque T is assumed to act at one side of an element

of the rod of length Ax, then the torque at the other end will differ by
some amount AT. If the distributed loading is of intensity p then the

torque per linear inch of rod is

pr = m
and the total increase in torque for a section of length Ax is m Ax. From
equilibrium

2T = 0 = T + m Ax - (T 4- AT)

AT— ^ mor
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which taken in the limit is

f = (4.8)

This is analogous to dV/dx = p for the beam bending case and hence
the same methods for evaluation can be used as those developed in

Article 4.4.

Fi 3 . 4.8. Torque Distribution,

4.6 Shear, moment, and torque distribution for a wing with dihedral

and sweepback. Wings are usually built with dihedral and sweepback
for aerodynamic reasons and for the maintenance of the stability of the

airplane. A measure of sweepback is the angle between the lateral axis,

which is a line perpendicular to the longitudinal axis of the airplane lying

in the horizontal plane, and a reference line in the wing. The wing
reference line can be specified differently for various uses; however, for

purposes of load analysis, the elastic axis of the wing is convenient. In
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a similar manner the dihedral can be specified in terms of an angle

between the plane of the longitudinal and lateral axes, and the elastic

axis of the wing.

The intersection of the elastic axis with each cross section of the wing

determines the point, called the center of twist

,

about which each cross

section will rotate if the wing is twisted by a torque. In the preliminary

Z

Z

(b)

Fis. 4.9. Aerodynamic Forces in Reference Directions.

design stages the location of the elastic axis is not known; therefore,

analyses must be made for a possible range of locations of the elastic

axes and eventually the position used that most closely corresponds to the

final location. For one transport airplane the preliminary location of the

elastic axis was chosen between 24% and 32% of the chord. This range

being selected on the basis of similar previous designs.

Consider a portion of a wing, Figure 4.9, between two cross sections a
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unit distance apart along the span. The forces acting on this element will

be composed of (1) lift, (2) drag, (3) aerodynamic moment, (4) weight,

and (5) inertia forces. The forces can be resolved into forces in the

direction of the reference axes, x and z. If only the aerodynamic forces

are considered, it is apparent that the forces acting at the aerodynamic

center are

Pz = I cos {a — B) + d sin (a — B)

Px — —I sin (a — B) + d cos (a — B) (4.9)

where B = the angle of incidence between the chord line of the wing and

the reference line x

a = angle of attack

I = lift per unit length of span (Ib/ft)

d = drag per unit length of span (Ib/ft)

Pz = force per unit length of span in 2 direction (Ib/ft)

Px = force per unit length of span in x direction (Ib/ft).

When ^ = 0, the forces pz and p^ are the forces perpendicular to the chord

and parallel to the chord. The other forces can be resolved in a similar

manner.

If we refer to Figure 4.10, we see that the aerodynamic forces in the

X and z directions at any wing section of length Aun will be Pm Ai/n and

Pzn AWn. The shear forces in the x and z directions at any section a dis-

tance y from wing root will be the sum of all the airloads outboard of that

section. If the section of width Ai^n at the tip is denoted by Aiii and

the section on which the shear is being determined is denoted by f, then

Fx ^ Pxn AWn

’•

7
’ (4.10)

V. = ^ p.„ Au„
n-l

The moments about lines parallel to the x and z axes at any section i

can be determined from the area of the shear curve or by summing the

moments of the airloads outboard of the section i

M, ^ AUn
n — 1

^ p,„M„ AUn

M, PxnUn AU„

n 1 n-l

(4.11)

The shear forces F,n and 7xn are measured at the center of the interval

AWn, which may be considered as the average value of the shear forces

on the two sides of the interval.
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The torque about the elastic axis at section i can be obtained by
summing the torques produced by all the forces outboard of section i.

If we refer to Figure 4.10(b) we find that the moment of the forces of the

t

(b)

Fig. 4.10. Forces on Wing.

nth section about the center of twist of the ith section is

[nin + pxn(a + Un tan 5) — tan jS — Cn cos 6)] Aun

If the angle of incidence 6 is small (as it usually is), then the quantity a

can be neglected and cos 0 = 1 so that the total torque at the ith section

IS
%

T = y [m„ + pxWUn tan h — tan /3 - e„)] Awn (4.12)
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The shear, moment, and torque curves for the wing thus are com-

pletely determined. The actual values usually are obtained by sub-

stituting values in a table and performing the processes indicated in

Equations 4.10, 4.11, and 4.12. The values of pxn and p*n are determined

from the load curve, and values of AUn and Un are measured from a wing

drawing.

4.7 Beam deflection. The shear forces and bending moments cause

the beam to deflect. This deflection consists of a curvature of the beam,

which usually varies from point to point depending on the load distribu-

tion and manner in which the beam is supported. Roth the bending

moment and the shear force contribute to the deflection, but for most

conventional beams (except for short deep ones) the contribution of the

bending moment to the defletftion is far greater than the effect of the

shear force.

Consider a portion of a beam with bending moments at the ends as

shown in Figure 4.11. The moment causes the material at the top of the

beam to be compressed and the material at the bottom to be extended.

Therefore, there will be a longitudinal portion of the beam denoted by the

line aby which undergoes neither elongation nor contraction. If the two
lines passing through ac and hd were originally parallel and a distance

Ax apart before the moments were applied, it can be shown experimentally

that after the application of the moments the lines will remain straight

but be rotated through an angle M with respect to each other, as shown
in Figure 4.11. This situation will exist for the assumptions that the

material is homogeneous and that there is no lateral pressure across the

beam.

If only the geometry of the deformation of the beam is considered,

it is apparent that

Ax = K A^

1 ^ M
R Ax

or
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If is small, the arc length Ax is approximately equal to the projection

of the arc length on the x axis so that as Ax 0

1 = ^
R dx

(4.13)

where R = the radius of curvature

~ = the rate of change of slope.

Since ^ ^ and ~
dx dx

d^y

dx^

therefore, R dx^
(4.14)

If the slope is not small enough so that the distances measured along the

arc and the x axis are approximately equal, then it can be shown that

(4.15)

This is the exact equation for the curvature, but Equation 4.14 is suf-

ficiently accurate for all engineering applications of ordinary beam
deflections.

The strains in the material can be expressed in terms of the curvature

of the beam. Consider a longitudinal line cd some distance u below the

line of invariable length ah. The material along cd will elongate an

amount proportional to the distance u, since the ends of the line are

bounded by the straight radial lines ac and hd. The strain along cd

is the elongation of cd divided by its original length ah^ which is equivalent

to Ax, Hence, the strain e is

{R + 'll) Ad — Ax _ ^
Ax Ax

M
Ax

therefore ^ (4-1^)

This expression is useful in metal-forming problems where the allowable

radius of bend R can be calculated if the limiting strain € and thickness

of the material t = 2u are known.

In all the foregoing discussion nothing has been said about the

material except that it is homogeneous, and therefore the equations

developed apply to elastic as well as inelastic materials. If the material

is elastic, the deformation can be expressed easily in terms of the applied

but \_

R
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moments, the geometry of the beam, and the properties of the material.

For elastic materials

or, if Equation 4.16 is used,

/=

The stress distribution is therefore linear as indicated in Figure 4.11, and

for equilibrium the moment of the forces caused by the stresses on the

cross section of the beam is equal to the applied moment

M = JjudA = ^ u^dA

where I = j
dA = a, geometric property of the cross section.

This is usually written

or

i = M
R El

tl = K
dx'^ El

(4.17)

(4.18)

where M = bending moment (lb in)

E = modulus of elasticity of material (psi)

• / = moment of inertia of cross section abou tcentroidal axis (in^).

The determination of the deflection of a beam for a given moment
distribution, therefore, consists of solving Equation 4.18 for the proper

end conditions of the beam. The deflection can be determined by the

usual integration procedures or by the area-moment method.

4.8 Relations of load, shear, moment, slope, and deflection. The
relations between load, shear, and moment were discussed in Article 4.4,

and it was shown that

dV

^ dx

dV dm
^ dx dx^

The relations between moment, slope, and deflection as given in the

last article are

de M
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Thereforejl V

V

dx-^ dx*

iM = FT^
dx dx^

m.e,2.

y = y(^)

(4.19)

Each quantity of load, shear, moment, and slope can therefore be

expressed in terms of the deflection y, or conversely, y can be expressed in

P*f.(x)

\4-Va =

08-0^=

yi-yA =

MOMENT

EI^ (a)

(b)

(c)

£Un^^rJ^ro^l^^ AtjUed End

dx
SLOPE

r
Line For Zero Deflection
At Fixtd End

DEFLECTION

(d)

y = Vx) (e)

Fig. 4.12. Relations between Load, Shear, Moment, Slope, and Deflection.

terms of the load, shear, moment, or slope. In the former case of

determining load, shear, and so on, from the deflection, differentiation

is needed; whereas to determine the deflection from the load, shear, and

so on, integration is required. Figure 4.12 shows the relation of the five

curves of load, shear, moment, slope, and deflection. If we start with

the load curve and travel downward, we find that each curve is the

integral of the one immediately above; whereas if we start with the

deflection curve and go upward, we find that each curve is the derivative

of the one below.
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The designer usually is expected to obtain the deflectioD^ from the

load distribution, so that integration is required. Sometimes a direct

integration is difficult, and the approximate value of the integral is

determined by interpreting it as an area or a sum. For example, if the

moment distribution and the values of the moment of inertia are known,

and the slope of the beam is to be determined in the case where direct

integration is difficult, then an approximation can be made by

m

n = l

(4.20)

It should be noted that the final slope and moment curve should

include the consideration of the conditions at the ends of the beam. For

example, although the difference between the slope at two points, A and

JB, is given by the ordinate of the shaded area of curve (d) in Figure 4.12,

the actual slope must conform to the condition that the slope at the right

end is zero. Therefore, the slope

should be measured from the dotted

line sketched in on curve (d).

4.9 Area-moment method.
Before an example of the determi-

nation of the deflection of a beam
is given, another interesting relation

between the curves in Figure 4.12

should be pointed out. Each curve

is related in the same way to its

neighboring curve. Thus, the mo-
ment curve is obtained from the

load curve by two integrations, and
the deflection curve is obtained from

the M/EI curve by two integra-

tions. Since it is possible to deter-

mine the monient from the load by
direct summation of moments of the

load curve, the possibility of determining the deflection from the M/EI
curve by a similar process of taking the moments of the M/EI curve is

suggested. This can be done, and the process is known as the area-moment

method.

Consider two points, A and By on a beam. Suppose the M/EI dis-

tribution has been determined. Then if we refer to Figure 4.13, we find

that the top diagram represents the M/EI values between the two points

A and B on the beam and the lower diagram represents the deflection of

the neutral axis of the beam between the two points A and B. Of course,
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the deformation has been greatly exaggerated in the figure. A vertical

line through A intercepts the tangent to at A'. The tangents for two
points a distance Ax apart have tangent slopes differing by A6; and, since

Ad is small, the tangents intercept a length on AA' of approximately

ASnXn- Therefore, yABy the distance between point A and the tangent at

B is

Vab =
m

I
n = 1

Xn Adn

The summation is taken for the whole interval from A to B. According

to Equation 4.20 the change in slope between two points a distance Ax

apart is simply

A«„=(g)^A:r„ (4.21)

Therefore, ^ X (S)n (4.22)

n = l

or as Aa: — 0 the exact expression is

Since the product K
El

Ax is the area of the M/El diagram for an

interval Ax and since x is the moment of this area, Equation

4.22 can be interpreted in terms of the moment of the area of the M/El
diagram.

The distance between point A on a beam and the tangent at any

other point B is the moment of the area of the M/El curve about

point A.

Example 4.2. Determine the slope and deflection at the free end of a

tapered cantilever beam carrying a uniform load if the material of the

beam is aluminum and the cross section of the beam consists of two
flanges connected by a web, as shown in Figure 4.14. Assume the web
does not buckle.

L = 120 in w = 12 Ib/in

= 5 in A = 1 sq in

A2 = 10 in

Solution. Since the slope at the fixed end is zero, the slope at the free

end can be obtained from Equation 4.20.
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The approximate slope can be e^^pressed as a summation process that can

be interpreted geometrically as the area of the M/El diagram

zontal axis through the fixed end. From Equation 4.22

* X (^)n

Both the integral and summation processes will be used to illustrate

the methods. In any case it is necessary to determine the bending
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moment and moment of inertia of the cross section at various stations

along the beam.

The bending moment at any section x is

M - wx^~
2

^ = 6x^

The moment of inertia about the principal axis also is a function of x.

The depth h at any section can be determined by proportionality.

h = hi+ (h, - hi) y

Then

= 5 + (10 - 5)^ = 5 + 0.0417a:

I = 21/ + 2 A -f- Iu,

where I = moment of inertia of complete section

Irv = moment of inertia of web

1/ = moment of inertia of flange about its own centroidal axis

A = area of flange.

For sections of this tyije, // and Iw usually can be neglected in com-

parison with 2
( ^

Therefore,

I A = 0.5(5 + 0.0417a;)2

Since J? is a constant,

-1 6x2
^ E jo I

'

10,5 X lO* jo 0.5(5 + 0.0417x)2

By referring to integral tables we can show that

0^ = -0.00895 rad = -0.513®

The negative sign corresponds to the sign convention adopted earlier.

The deflection 5 is

\ M 1 6a:®
^
""E jo 10.5 X 10‘ jo 0.5(5 + 0.0417x)2

The values determined by the summation process are obtained from

the following table.
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Sta. Ax (in) X (in) M (lb in) I (in‘)
M
—r Ax
I

M
-j X Ax

1 10 5 0.15 X W 13.56 1.11 X 102 0.06 X W
2 10 15 1.35 15.82 8.53 1.28

3 10 25 3.75 18.26 20.53 5.13
4 10 35 7.35 20.86 35.23 12.33
5 10 45 12.15 23.65 51.37 23.12
6 10 55 18.15 26.60 68.23 37.53
7 10 65 25.35 29.73 85.26 55.42
8 10 75 33.75 33.03 102.1*8 76.63
9 10 85 ! 43.35 36.51 118.73 100.92
10 10 95 54.15 40.16 134.83 128.09
11 10 105 66.15 43.97 150.44 157.96
12 10 115 79.35

,
47.98 165.38 190.19

S = 941.81 X 102 788.66 X 10^

Then

Ba =

dA =

1 V A _ 941.81 X 102

E jLi I
^

10.5 X 10«
-0.00897 rad

788.66 X 10^

10.5 X 10«
= 0.751 inches

- 0 .514
^^

The accuracy of the given data and the physical nature of the problem

do not justify the number of significant figures carried in the above

analysis. This was done only to compare methods and should not be

interpreted as the accuracy to which the deformation is known.

4.10 Supported cantilever. The supported uniform cantilever beam
with a concentrated load shown in Figure 4.15 represents a statically

indeterminate structure because there are three unknown forces, Raj Ray

and Mb, and only two equations of statical equilibrium, XM = 0 and

SFi, = 0, relating the three unknowns. Since the value of the forces

cannot be obtained from the force equilibrium alone, another condition

must be used. This additional condition involves the consideration of

the deformation of the structure.

The final configuration of the supported cantilever may be obtained

fii^st by applying the load P to the cantilever without the support at A
,

in which case the end A deflects upward some distance 5, and then by
applying a downward force at A until the deflection of the end is zero.

The beam can therefore be thought of as being composed of two statically

determinate systems, (1) and (2) in Figure 4.15, in which the deflection

at A diie to P acting alone is exactly equal and opposite to the deflection

at A due to Ra acting alone. This relation gives the additional condition

required for determining the values of the forces. Symbolically
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SM = 0

XF = 0

8p = 8r or d = 0 (4.23)

The deflection of system (1) can be determined easily by use of

H L ^

FINAL MOMENT

Fis. 4.15. Supported Cantilever with Concentrated Load.

the area-moment method. According to this method, the deflection is

the moment of the area of the M/EI diagram about A. Since E and I

are constants,

, PbW
,
2,\ 1

«" = T V" 3 7 17 (4.24)

Similarly, for system (2)
RaL^2 1

* ^ 2 3 £7 3EI
(4.25)

Now since 8p = »

_ ZPb^ f ,2,

\

Rji 2j% + 3 7
Or, because b L — a. Rji = {L - an2L + a) (4.26)
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The remaining unknowns, Rb and Mb, now can be determined by use

of the equations of equilibrium

ZF„ = 0 = Ra - P + Ra
Rb=P - Ra (4.27)

•ZMb = 0 = P(L - a) - RaL - Mb

Mb = PiL -a) - RaL = (L^ - o») (4.28)

The complete moment diagram is shown in Figure 4.15.

The results of the analysis for the case of the supported cantilever

Fi 3 . 4.16. Supported Cantilever with

Distributed Load.

ARa, then

with a concentrated load can be gen-

eralized to include that of a distrib-

uted load. Consider a distributed

load with intensity p as shown in

Figure 4.16. For a small interval Ax
on the beam, the load will be p Ax.

By consideration of only this load,

the reaction at A is determined by
Equation 4.26 where P = p Ax and x

replaces a. If we call the reaction

ARa = (L - xn2L + x)

If all the loads of this type are superimposed for the whole beam,
m

Px =^ ^ Pn{L — x„y{2L + x„) Ax„

n » 1

or, as Aa; —» 0, Ra = p(,L — xy(2L + x) dx (4.29)

Similarly, the moment Mb becomes
m

^ PnXniL^ - xl) AXn

n » 1

1
or Mb = px(L^ — x^) dx (4.30)

Example 4.3. Determine the fixed end moment for a uniform sup-

ported cantilever beam carrying a uniform load w.

Solution. p = w = constant

1
Then from Equation 4.30 Mb = sn / «’a:(L* —'a:*) dx

ZL Jo

— J£_ ra _ 5^1^ —
~2L*L2 Tjo“"r
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4.11 Supported cantilever with end moment. The results of an

analysis of a supported cantilever with a moment applied at the pinned

end will be useful in later analyses.

The analysis of the supported uniform cantilever with end moment

will be made in a manner similar to that used in the previous article.

The beam is considered to be composed of two statically determinate

systems, one consisting of a cantilever beam with the end moment

applied, which thus produces an end deflection, and the other consisting

Fig. 4.17. Supported Cantilever with End Moment.

of a cantilever beam with an end reaction which causes an end deflection

just sufficient to cancel the deflection produced by the moment.

Referring to Figure 4.17 and remembering that the deflection at the

end of the beam for system (1) is the moment of the area of the M/EI
diagram, we have

, _ Mj,L L __ MaL^
- El 2 2EI

(4.31)

The deflection of a cantilever with end load is given by Equation 4.25.

_ RaL^

ZEI

Since the end deflection must be zero,
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Su — 5s

MaL^ _ RaL>
2EI ZEI

(4.32)

The bending moment at the fixed end of the original supported canti-

lever is therefore

Mb = Ma - RaL Ma - \

Mb = - ^ (4.33)

and the bending moment distribution is as shown in Figure 4.17.

To summarize, a bending moment applied at the supported end and

producing compression in the top fibers of the beam causes a moment at

the fixed end equal in magnitude to one half the applied moment and in

the direction to cause tension in the top fibers of the beam.

4.12 Beam with both ends fixed. The solution of a uniform beam
with both ends fixed can be obtained by imposing another condition on the

analysis of the supported cantilever beam. This additional condition

recognizes the fact that the rotations at both ends of the beam are zero.

Consider the fixed-end beam shown in Figure 4.18 composed of two

systems: (1) a supported cantilever with concentrated load applied any-

where along the span; (2) a supported cantilever with a moment applied

at the supported end. The moment applied in the second system is then

adjusted so that the rotation produced by it exactly cancels the rotation

caused by the applied load in the first system. Since one end is fixed,

the rotation at for each system will be the area of the respectiveM/El

diagrams. These areas can be determined best from their original com-

ponents. Thus, when reference is made to Figure 4.15, the rotation

due to the load P in system (1) is

dp

and from Figure 4.17 Bma

Then, since Bma

MaL
^EI

Ma

- ^j[-^(L-ay + ^{L-an2L + a)^

= im (4.34)

~ ^ ~
4

~
4g7 (4.35)

= Bp

_ Pa (L - o)*

iEI L

= ^iL- ay (4.36)
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The reaction Ra may be determined by adding the reactions at A of

systems (1) and (2) as given by Equations 4.26 and 4.32.

Aa = ^, (^ - + a) + (L - a)*

= p (L - ayiL + 2a)

= ^ (L» - Sa^L + 2a*) (4.37)

Having one moment and one reaction, the other two can be deter-

Fis. 4.18. Fixed-End Beam.

mined from the equations of equilibrium, and the complete moment
distribution and shear distribution can be obtained.

The results for the fixed-end beam now can be generalized for a
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distributed load of intensity p. In a manner similar to that used in

Article 4.10 the concentrated load is replaced by p Ax and the elements

summed for the length of the beam. Thus,

m

II

^ px„(L — x„)'‘ Ax„

or Ma = ~
n 1

P
/

px{L — xY dx
lo
m

(4.38)

and Ra = ^ p(L’ - 3x’L + 2x1) Ax„

Ra = 21

n =® 1

p(L^ - 3x^L + 2x’) dx (4.39)

Determining Mb from the equations of equilibrium gives

Mb

Mb

pxl{L - X.)

L2
— x) dx (4.40)

Fis. 4.19. Uniformly Varyins Load.

Example 4.4. Determine the

bending moments at the fixed ends of a

uniform fixed-end beam carrying a

uniformly increasing load, as shown in

Figure 4.19.

Solution. If the intensity of the

load at B is po, the intensity at any

point X obtained by proportion will be

From Equation '4.38

JkfA = ^ pxiL - x^dx = ^ ” x)^4x

_ Po r 2x^L
, _ PqL^

"PL 3
4" " 30

From Equation 4.40

Mb = ^ /
px^{L ”

^ Po x^^ ^ poL^
" L* L 4 5 Jo 20
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Problems

4 .1

.

A small airplane with a 40 foot wing span has two gasoline tanks holding

50 gallons of gasoline each, located 3 feet outboard of the fuselage center line.

If an airload distribution as shown in Figure 4.20 is assumed and gasoline weighs

h3'

r*'i nnHil
60 lb/ ft

.

40*

Fig. 4.20. Airplane Wing.

6 pounds per gallon, determine the shear and bending moment distribution of the

wing, and draw the distribution diagrams.

4.2.

For a rudder with pressure distribution as shown in Figure 4.21, determine

(a) hinge moment
(b) shear distribution

(c) bending moment distribution.

The hinge moment represents a control force sufficient to hold the rudder in

equilibrium.

LANDING

ioiSi11
1 nn

STATION 130 170 280 700

Fig. 4.22. Wing Dead Weight.

4 .3

.

The dead weight loading on a wing is shown in Figure 4.22; determine

the shear and bending moment distribution.
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4.4. A circular rod, similar to the one shown in Figure 4.8, has a triangular

shelf extending horizontally from the rod. This shelf has a base at the fixed end
of length c and tapers uniformly to a point at the free end. Along the hypotenuse
of the triangle is a uniform downward load of w Ib/in. Determine the torque

distribution along the rod.

4.6.

For an airplane weigliing 21,000 pounds and with a wing as specified in

the wing loading Problem 2.8, determine the loads, shears, and bending moments
for a set of axes parallel and perpendicular to the chord. Also determine the

torque about the elastic axis at each section if the dihedral of the elastic axis is 6°,

the sweepback is zero, and the elastic axis is 30% of the chord aft of the leading

edge.
^

4.6.

Determine the shear and bending moment distribution, due to lift only,

of the rigid blade shown in Figure 4.23 of a hovering (zero velocity) helicopter,

FiS. 4.23. Helicopter Blade.

V S XO

assuming that the blade is pinned to the motor shaft so that it can move in the

vertical plane. The problem will be simplified by assuming also a constant chord
and a constant section coefficient of lift. Four blades support the total weight W
of the helicopter.

4.7. For the beam shown in Figure 4.14, determine the deflection of the free

end if the beam is carrying a uniformly increasing load having zero intensity at

the free end and 20 Ib/in at the fixed end.

4.8. Determine the deflection and rotation of the free end of the aluminum
cantilever beam shown in Figure 4,24. The cross section of the beam is rectangu-

lar, and the width of the beam is two inches.

20 )b./ln.
4.9.

For the supported cantilever with concentrated load shown in Figure

4.15, determine the position of the load F that causes the fixed-end moment to

be a maximum for a given beam. Determine the maximum fixed-end moment
and compare it with the moment at the load position when the load is in a position

to make the moment under the load a maximum.
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4.10. Answer the same questions stated in Problem 4.9 for a beam with both

ends fixed and carrying a concentrated load, Figure 4.18.

4.11. Determine the moment at the fixed end of the uniform supported canti-

lever beam shown in Figure 4.25.

Fig. 4.25. Supported Cantilever.

4.12.

A fixed-end beam has a fitting at mid span, through which a bending

moment is applied. Determine

(a) moments at fixed ends

(b) reactions at fixed ends

(c) bending moment distribution.



CHAPTER 5

General Structural Relationships

and Elastic Enersy

6.1 Introduction. A few simple structural components were dis-

cussed in the previous chapter. Before proceeding to the analysis of

more complicated structures we will consider some general structural

relationships, which will be useful in developing other methods of analysis

and which will increase the understanding of the fundamental principles

underlying all structural analyses.

Two assumptions will be made in the developments which follow in

this chapter. They are:

(1) The structure is elastic.

(2) The law of conservation of energy is valid.

6.2 Hooke’s law. Hookers law is a statement of the behavior of most

materials for a limited range of loading; namely, the deflections produced

by the loads are proportionate to the loads. This is a general statement

without restrictions as to the size or shape of the body, but it does infer

that the material is elastic. In the previous chapters it has been shown

that Hookers law applies to a few cases. For example, the elongation

of a tensile member is

and the end deflection for a cantilever beam with an end load is

6
PL^
ZEI

In each of the preceding instances the deflection is proportionate to the

load; in one case the constant of proportionality is L/AE and in the

other it is L^/ZEL In general then, the relation between load and

deflection can be written

62 = k 2iP 1

where 62 = deflection in a given direction at point 2

Pi = load at point 1

4*21 = the constant of proportionality such that when multiplied

by the load at point 1 it gives the deflection at point 2. This

is called an influence coefficient.

If it is permissible to superimpose the deflections at a point by adding
72
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the deflections in a given direction at that point because of several loads

ahting simultaneously, then

, 62 — k 2lPl + A'22jP2 + • *
* k 2nPn (5.1)

6.3 Principle of superposition. Consider a stnicture such as a canti-

lever beam, and for the sake of simplicity assume that two loads are

supported at the free end. If one load P[ is first applied, then

I?— p' _ — h' P'

If only the second load is applied,

V' — p" p"
^

^ 3Ei “ ^

The total deflection can be obtained by adding 6[ and 6'/ only so long as

each of the separate deflections are proportionate to the loads producing

them. In other words, changing the load should not change the load

deflection relationship. If this condition is fulfilled, then

5 .
= 5 '. + = {P[ + F()

3^
In order to superimpose deflections, it is necessary only that the deflec-

tion be proportionate to the load. This condition is not fulfilled when the

material is inelastic or when the geometry of the structure is such that

the deflection is not proportionate to the load as for example in beam
columns.

6.4 Elastic energy. Consider a structure on which several loads are

simultaneously and gradually applied to avoid vibration. If the deflec-

tions in the direction of the loads Pi, P 2 are 5i, 62
,
and so on, then since

only the force in the direction of the displacement will do work and since

the work done by each load is the average force times the displacement,

the work done on the structure is

W =
;5 [P l5i + p252 + • • * Pn5n]

This work is stored in the structure in the form of elastic energy or strain

energy, which is recoverable when the loads are removed since the struc-

ure is elastic. Therefore,

U = i[Pi5i + P252 + • • • Pn5n] (5.2)

where U = elastic energy (in lb)

It should be noted that the reactions at the flxed supports do no work

because there are no displacements at the supports.
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Although P and 5 in the above equations have been taken to represent

a force and linear displacement, the expressions can be generalized to

include moment and rotation.

The elastic energy in a structure can be considered as being composed

of the elastic energy due to

(1) tension-compression (3) torsion

(2) bending (4) shear.

(1) Tension-compression. The elastic energy stored in an element

of a tensile member of length dx is

=
2̂

^Pdx
EA

^P^dx
2EA

but

so

The total energy is the sum of the energies for each element of length dx;

therefore,

U = f P^dx

J 2EA (5.3)

But from Equation 4.17

So

where the integration is made throughout

the whole member.

(2) Bending. Consider an element of

length dx of a member in pure bending

about one of the principal axes of the

cross section as shown in Figure 5.1.

The work done by the applied moment is

the product of the average moment times

the angle through which it rotates, or

M dxM de

i =
R El

dx

The total elastic energy in the member is therefore

f dx . .

J -Mf
Example 6.1. Determine the elastic energy stored in a uniform

cantilever beam of length L with a concentrated load P at the free end.
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From Equation 5.4
M^dx
2EI

Measuring the coordinate x from the free end, we find that

M == Px

Therefore,
dx _ P“L»

jo 2P/ 6EI

(3) Torsion. If a torque T is applied to each end of a rod of length

Fi 3 . 5.2. Torsion.

dxj as shown in Figure 5.2, the angle of twist d<t> of one end relative to the

other can be shown to be

d<t> -
-gfy

where G = modulus of rigidity (psi)

C = geometric property of the cross section which becomes the

polar moment of inertia for circular sections (in^).

M
This expression is analogous to dd = ^ dx for the bending case. The

elastic energy stored in the rod is

Therefore, the total energy for a rod is

] 2GC

(4) Shear. The elastic energy of shear will

be derived from the consideration of a small

element of length dx subjected to a shear force

Vy as ^hown in Figure 5.3. If we assume that

the shear force on the right moves a distance 5, then

11.

Fig. 5.3. Shear.

2

d = y dxBut
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and it will be shown later that y
V
GA

where A = area of cross section on which V acts (in®).

V^dx
“ 2GA

The elastic energy of a structure subjected to tension, bending, torsion,

and shear is the sum of the energies given in Equations 5.3, 5.4, 5.6, and

5.7, or

,, f P^dx ^ f M^dx f
7’® dx /" F® dx

^ =
j WA^ J -w + jw + j w

Fortunately, in the analysis of most structures, not all these energies are

present at the same time; therefore, the problem is considerably simpli-

fied. It will be shown, for example, that the energy of shear can be

neglected for most beams.

5.6 Relation of influence coefficients. Consider a body such as a

cantilever beam with two concentrated loads applied at two different

positions along the span. If only the load Pi is applied, then the deflec-

tion at point 1 is

5i = kiiP 1

k P^
and the elastic energy is

Therefore,

and the total energy is

When the load P^ is applied, the work added, because of the deflection

at point 2, is

However, in applying the load at 2, the deflection at point 1 is changed

by an amount kiiPi] and, since the load at 1 remains constant during

this process, the additional work done by the load Pi is the force times the

displacement ki^P^y

or Ui2 — kiJP2P 1

The total energy for the system with both loads applied is therefore

U = kiiP\

2
+ + k,2PiP,

If the loads are applied in the reverse order so that P 2 is applied first, then

the elastic energy is

rr — kiiPi
I

k22P\2^2 + k2\PlP2
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It is apparent that these energies must be equal; for, if they are not

equal, it is necessary only to apply the loads in such a manner as to require

the least work and remove them in the proper sequence to recover the

maximum work and thus create energy. In order to have the energies

equal,

k\2 = A*21 (5-9)

Physically, this equality means that the deflection at point 1 in the

direction of a unit load at 1 due to a unit load at point 2
,

is equal in

magnitude to the deflection at point 2 in the direction of a unit load at 2

due to a unit load at point 1 .

6.6 Castigliano’s theorem. The elastic energy in structures has been

expressed in terms of the loads and deflections of the structure, as indi-

cated in Equation 5 .2
;
and in terms of the loads, the geometry of the

structure, and the elastic property of the material, as specified in Equa-

tion 5 . 8 . The equivalence of these expressions suggests a method for

determining deflections. For example, equating the work done by the

end load on a cantilever beam to the elastic energy stored as given by
Equation 5 .5

,
we have

or

2

b

P2LZ

^EI
PL^
ZEI

It is easily shown that the displacement in the direction of a force is

obtained also by taking the partial derivative of the strain energy with

respect to the force. Since

therefore

U =

dP

p2L^

{jEI

PU
^EI

= 5 as before. (5 . 10)

This latter result can be proved for the general case. For simplicity

the analysis of a structure having two applied loads will be made from

which the general case of a system with any number of loads can be

inferred.

U = + P252]

where 61 = kuPi + ki2P2

62 = A‘ 2 iPi + k22p2

Then U = ^[PiCA’uP 1 + kuP^ + P2(A*2iPi + A‘22P2)]

U - MA-nP? + A'23P? + A-12PiP2 + A'2iPiP2]

but A*12 = A*21

therefore, ‘ U = ^[friiPi + A'22P2 + 2A*i 2PiP2]

and + k,^P^) = h

(5.11)

(5.12)



78 STRUaURAL ANALYSIS

Castigliano^s theorem states that the deflection in the direction and

at the location of any external force on an elastic structure is the partial

derivative of the elastic energy of the structure with respect to the force.

Since the results apply equally to moments and rotations, there is an

analogous expression

dU
dM e (5.13)

This result may be summarized as follows: The rotation in the direc-

tion and at the location of an external moment on an elastic structure

is the partial derivative of the elastic energy of the structure with respect

to the moment.

The application of Castigliano^s theorem to a particular case now may
be considered. At the beginning of this article the end deflection of a

uniform cantilever beam with a concentrated end load was found to be

(Equation 5.10)

A = ^ = A _ PJl
^ dP dP\ijEl) 3EI

However, the elastic energy was found by an integration process (Equa-

tion 5,5) so that it may be simpler to differentiate before integrating and

thus make it unnecessary to obtain the elastic energy in order to deter-

mine the deflection. If this is done.

dU ^ d M^dx
dP dP Jo 2EI

and, since only M is a function of P,

d = M dM dx

Wei

Therefore, since in this case M = Px,
dM
dP

= Xj then

5
Px* dx

0 El
PU
3EI

as before.

If the deflection in the direction of a load Po is required in a structure

having the various forms of elastic energy as given by Equation 5.8, it is

necessary only to differentiate the expression term by term

:

6 =
f p dP dx + f , . dM dx f

j "5p;r7 +

j

dT dx

anec + f y. dV dx

j WoGA
(5.14)

The analogous expression for the rotation at a point where a moment
Mo is applied is
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f rj dP dx f dM dx f
~ j ^ dMo EA j

^
aMo El ^ J

T
dT dx

'Wa GC /
dV dx

(5.15)

The use of elastic energy simplifies some deflection problems because

visualization of the deformation is not necessary. In other words, a

knowledge of the geometry of the deflection of the structure is not

required.

Example 5.2. Determine the deflection due to shear and bending

of a uniform cantilever beam of length L with a symmetrical rectangular

cross section of moment of inertia I and area and with a concentrated

end load P. Also determine the rotation of the end due to bending only.

Solution. Since shear and bending are to be considered, it will be

necessary to use Equation 5.14 including the elastic energy of shear and

bending. Then

dV dxf- „ dM dx
,

P
»PGA

Measuring x from the free end, we see that

F = P
<= .t;so that

M = Px;

dM
dP

^ = 1
dP

Px^ dx f
jo El ^ jo

’^ Pdx
0 GA

PL^ PL
3EI GA

Therefore, 5 =
PL’
3P/

l+ML]^ ^ GAL^j

The second part of this expression represents the effect of shear.

bh^
If we let / = =

12

where r = radius of gyration which in this case is equal to depth of the

cross section h divided by 2 \/3,

then 8 =

For aluminum for which
E
G

8 =

PL^
3EI

2.6

PL3
SEI

[’ + nr-l]

[i + o.65*;]

For a short beam for which L — 5h,

PL^
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Therefore, if the effect of the shear is neglected in determining the

deflection, the results are in error about 3% in this case. It has been

assumed in this analysis that the shear is uniformly distributed over

the cross section. This is not actually the case, but the results indicate

the order of magnitude of the effect of shear.

To determine the rotation of the free end, an applied moment at that

point is required. Since there is no applied moment, a moment Afo is

assumed although we know that eventually it will be made equal to zero.

If we consider only the bending energy, then from Equation 5.15

But

Therefore,

But

Therefore,

6 =
dM dx

dMo El

M — Px + Mq so that
dM
dMo

= 1

e = {Px + M„)

Afo = 0

e =
dx ^ PU
El 2Ei

Example 5.3. Determine the deflection of point A in the z direction

of the simplified landing strut shown in Figure 5.4. The following data

apply:

P = 50 lb Li = 5 in

a = 20° L 2 = 36 in

The structure is made of li — 0.035 4130 chrome-moly steel tubing,

The properties of the tubing as given in the ANC-5 arc

I = 0.02467 in^ F; = 29 X 10« psi

/ = 2/ = 0.04934 in^ (7 = 11 X 10® psi

A = 0.13360 in2

Solution. If the effect of shear is neglected, the elastic energy of

bending exists in the horizontal tube (1), and a combination of bending

and torsion exists in tube (2). The bending moment in tube (1) will

be represented by a double-headed vector as shown in Figure 5.4. From
equilibrium

Ml = Pxi

The force P and moment PLi will be applied at the lower end of tube (2)

as shown in the figure. At a distance X 2 ,
the torque and betiding moment

can be determined from equilibrium.

ST = 0 = 7^2 ^ PLi cos a
T2 = PLi cos a

ZM = 0 = M2 — PLi sin a — Px^

M2 = PLi sin a -f Px 2



GENERAL STRUCTURAL RELATIONSHIPS AND ELASTIC ENERGY 81

Fis. 5,4. Simplified Tubular Frame.

If we substitute numerical values,

5 - 1.33 in

• 6.7 Castigliano’s second theorem. An extension can be made of the

theorem developed in the last article that is particularly useful in solving

statically indeterminate structures.

In Article 4.10 a supported cantileyer beam was considered, and it was

shown that three unknowns were determined from two equations of

equilibrium and one condition of deflection; namely, that the deflection

at the supported end was zero. When we know the relation between
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elastic energy and deflection, this latter condition can be expressed in

terms of the elastic energy of the system. Thus, for any unyielding

support (fixed), where R is the reaction at the support which may be

either a force or moment,

S = « = 0 (5.16)

Equation 5.16 gives the relation of the elastic energy and the external

reaction at any support where the deflection is zero. A relation now will

be developed involving the elastic energy and an internal force or moment.

Consider a statically indeterminate framework, such as that shown in

Figure 5.5. If we assume that one of the diagonal members is cut and

that forces are applied as shown, the elastic energy of the system can

Pis. 5.5. Statically Indeterminate Frame.

be expressed in a manner similar to Equation 5.11. In this case, how-
ever, more than two loads must be considered since there are other

members of the structure having elastic energy. Then

U = + ^22^2 + 2A*i2PiP2 + other similar terms]

Assuming the same relations to exist for the “other similar terms and
considering in detail only the first three terms of the elastic energy, we
see that

Therefore

rir/

^ = A-nPi + + • • • = 8i

fiJJ
= /r22P2 + A*12Pi + • . • =52

X = 8i + 8. = (6.17)

Since Pi and are internal forces in the same member, they must be
equal in magnitude. Therefore, if Pi = P2 = P

U = i[A-iiP* + A*22P^ + 2k\JP^ + . . . other similar terms]

^ = ^uP + kj^P + 2ki2P + • . • = 5 i + 82and (5.18)
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By comparing Equations 5.17 and 5.18, it is evident that

(5.19)

If the structure is continuous so that there are no overlaps or gaps in the

members, then

S = 0 (5.20)

Equation 5.20 states that the rate of change of the elastic energy

of a structure with respect to an internal
.

’

.
///////

force or moment is zero. Since the vanish- ^
ing of this derivative is a condition for I

maximum or minimum energy, it can be ? vv--)

shown that an elastic structure in stable
| J J J ^

equilibrium will assume a configuration so
j

as to make the elastic energy a mini- v

mum. This is known as the principle of

least work.

Example 5.4. Determine the force in

a cable supporting the end of a cantilever

carrying a uniform load, as shown in Fig- 2

ure 5.6.
y

_

Solution. The force in the cable will be I I \ 1 T
f

assumed to be P2. Referring to the proper- j

j

ties of the beam by subscript 1 and using — x -J

subscript 2 for the cable, then from Equa-
pjg 5 ^

tions 5.14 and 5.20, we have Support.

-^ = 0 =
dPi

M = Pic -

^
, dM dx

,

^ Wi Wi
dP dy

dP2 2

Therefore,

P Pi
dM . dP
5F.

- * 5F.

pp,--g

PiL^ _ wL*

3 8 .

wL*

,
SaEiI I

If the cable is considered as infinitely rigid, the system reduces to

the one of the supported cantilever. Thus, as P2A2—» «, P^^jwL.
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As the cable is made less and less stiff, more and more of the load w is

carried by the beam until E2A 2 0 and P 2 —> 0.

When we know the end force on the cantilever, we can determine the

bending moment and shear force distribution of the beam.

Problems

6.1.

An elastic cable is strung between two supports and carries a load at the

midpoint, as shown in Figure 5.7. If the cable is initially straight and horizontal

and if the deflection after the load is

applied is 5, show that the principle of

superposition cannot be applied to this

structure.

6.2.

A nonuniform cantilever beam
such as a wing is loaded at its end,

and the deflections are measured at

various points along the length of the

beam so that the deflection curve may
Fig. 5.7. Cable with Load. plotted. What additional informa-

tion can be determined readily from the curve?

6.3. Show that for a cantilever beam such as a wing the average deflection

produced by a load at the end is the same as the deflection at the end produced

by the same load uniformly distributed.

6.4. Determine the deflection and rotation at the mid span of a uniform

cantilever beam carrying a uniformly distributed load.

6.6. Solve Problem 4.7 by elastic energy methods.

6.6. A torque of 1000 lb in about the x axis is applied at point A of the struc-

ture shown in Figure 5.4. Determine the deflection in the z direction and the

angle of twist in the yz plane of the end of the tube at point A.

Determine the fixed-end moments for the beam shown in Figure 4.18 by

elastic energy methods.

6.8. Determine the reaction at the simply supported end of the beam shown

in Figure 5.8, and draw the moment diagram.

Fig. 5.8. Supported Cantilever. Fig. 5.9. Cantilever.

6.9. An aluminum beam as shown in Figure 5.9 has both ends fixed against

rotation although the left end is free to displace vertically. With the beam
loaded as shown determine,

(a) moments at ends of beam
(b) deflection at end.
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CHAPTER 6

Load Transiliission in Multiple

Span Beams

6.1 Introduction. The single-span beams discussed in Chapter 4 had

either fixed ends, in which case the ends were completely restrained

against rotation, or supported ends, in which the ends were unrestrained

with regard to rotation. Multiple-span or continuous beams are beams
having several supports such as, for example, floor beams which are

supported at several points by bulkhead rings. The restraint against

rotation of the ends of each span depends upon the stiffnesses of the con-

necting spans. The interconnection between spans means that the

stiffness of any span influences to some extent the moment distribution

of every other span.

Two methods will be developed for analyzing multiple span beams.

One method, which uses the equation of three moments^ requires the

solution of a set of simultaneous equations for beams with more than

two spans. Another method, called the moment distribution or Hardy

Cross method^ is a method of successive approximations in which all the

unknowns are obtained directly without the solutions of simultaneous

equations. In general, the equation of three moments is simpler to use

on beams of three spans or less, whereas the moment distribution method

is easier to use for beams of more than three spans.

6.2 Equation of three moments. Consider a beam resting on three

supports, as shown in Figure 6.1. If the beam is cut at the center sup-

port jB, the internal moment, Mb, acting on the cut ends will be equal in

magnitude and in the direction shown. The left span (1) and right span

(2) now can be considered as single-span beams with the condition that

the moment Mb must be adjusted so that the rotation of span (1) at B
is equal to the rotation of span (2) at By which thus makes the beam
continuous over the support.

The forces and moments for the left span have been resolved into

their components. If Mpi is the moment due to the distributed loading

Pi span (1) being assumed as simply supported, then the moment at any

point a distance Xi from the left end of span (1) is

Ml = (Li - xi) + Mb P (6.1)
Li\ Li

dMi X\

dMB L\
and

85
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Similarly, if we measure from the right end of span (2),

and

^ {U - X*) + MbP
i-/2 i-/2

dM^ _ £2
dMB L 2

(6 .2)

MOMENT DIAGRAM

FiS* 6.1 . Two-Span Beam, with Distributed Load.

According to the principle of least work (Equation 5.20), which is

equivalent to equating the slopes on each side of support B,

^ - n - P' M ^ P' lit

dMs ^ Jo dMa Edi ^ Jo

dM% dx2
^ dMs

/:[
Ti/r I fTMpi H

—

jT- (Li

- +

Xi) + Ms £l dxi

Li_ Li Eili •

,
Me /X \ I Tir ^2! X2 dX2

Pt + y- (L, -Xi) + MBj-\j- yrrL/2 ^2j X-/2 ^2ia
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For El constant in each span,

Ma Li

E,h
+ 2Mb

G,;, E,/,)

- - ETS; T'

+ Me E2I2

»l3/ 1 doC\
'

6

E2I 2L 2 i:
Mp2X2 dx2 (6.3)

where Mpi = the moment due to the load pi at any section a distance Xi

from the left end of span (1) when the span is assumed to be

simply supported,

and Mp2 = the moment due to the load p2 at any section a distance X 2

from the right end of span (2) when the span is assumed

to be simply supported.

Equation 6.3 is called the equation of three moments. The integrals

on the right may be interpreted geometrically as the moments of the

areas of the moment diagrams.

If Mb is known, the reactions at the supports can be determined by
statics. Thus, if the moment due to the load pi only about A is called

Mpijiy then

= Ma- Mb - Mp,A + KLi = 0

Therefore,
Mb — Ma + Mp\A

Li

Similarly,
Mb ^ Me ~h Mp2C

L 2

The final reaction at B is therefore

Rb ^ K + Rb

jy _ Mb Ma + Mp\A
,Kb — f “T
Mb — Me 4“ Mp2C

T2

(6.4)

EbcAMPLE 6.1. Determine the moments at the supports, the support

reactions, and the moment diagram for the two-span beam shown in

Figure 6.2 when the material of the beam is aluminum and

w = Ib/in

P = 300 lb

Li == 30 in

L 2 = 36 in

fc-30
/i = 1 1

1

I2 = 1.5 in^ ^ ^ 04
Pi = P2 = 10.5 X 10« psi I 2

Solution. The moment at B will be obtained from Equation 6.3.

For E = constant

I 1

+ Me

= — f MpiXi dxi — [ MpiXi dXi
ElJUl Jo Jo
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The moment M

a

is the moment of the overhang

and

10 (5)2Ma = -7^ = O— =
A 4U

I A

Me = 0

125 lb in

Fis. 6.2. Two-Span Beam.

The moment on the left span due to the load Wj assuming a simply

supported beam, is

wxl wLiXi w . . j .^ = 2
{x\ - Lixi)

Thus, MpiXi dxt = ^ (xl - Lix\) dxi - -^
The first load term on the right of the equation of three moments is

therefore

6

IxL,
Mp\X\ dxi

6 _ wL\ _ 10(30) >

IxLx\ 24 ) 4Ji (4)(1)

= 67,600 Ib/in*
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The second load term on the right will be determined geometrically.

Thus,

Mp2pC 2 dx 2 == moment of the area of the moment curve about point C

PIj2 L 2 L 2 PL\

and

_6
I 2L 2

Mp2X2 dX2 — 6 PLl
16 I 2

-6(300) (36)
2

(16)(1.5)
-97,200 lb/in2

By substituting the above values into the equation of three moments,

(125 X 30) + 2Mb(30 + 24) = 67,500 - 97,200

Mb = —310 lb in (tension in top fiber).

The final moment distribution is shown in Figure 6.2.

The reactions are determined from equilibrium and Equation 6.4:

Pb — Mb — M

A

4“ MpiA
I

Mb — Me “I" Mp2C

Li Lo

-310 - 125 + 4500 -310 - 0 - 5400

30 36
= —23 lb (upward).

Also for the right span

SA/b = -310 + 5400 -f RS6 = 0

Rc = —141 lb (upward)

and = 0 = - 350 - 23 + 300 - 141

Ra = 214 lb (downward).

6.3 Beam with more than two spans. The equation of three moments
can be used for the analysis of beams of more than two spans by repeat-

ing the equation for two spans at a time until the entire length of the beam
has been considered.

-L«-

Fis. 6.3. Multiple-Span Beam.

Figure 6.3 shows a multiple span beam with the spans numbered 1, 2,

3, and so forth. The equation of three moments for the first two spans is

= loading terms for spans I and 2. (6.5)

Ma^ + 2Mb
Jill 1

(h.
\ej. +
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For spans 2 and 3,

Mb -
4- 2M c (

L, U\
\E2I2 EJz)

+ Ml
Eziz

= loading terms for spans 2 and 3. (6.6)

Continuing in this manner gives a set of simultaneous equations with as

many equations as unknowns. The moments at the supports thus can

be determined, and the reactions at the supports can be determined from

the statical equilibrium conditions.

6.4 Effect of end fixity. In the previous analyses of multi-span beams
it had been assumed that the beam was free to rotate at the supports.

If one or both ends of the beam are fixed against rotation, the moments
can be determined by the equation of three moments.

Consider a two-span beam with the right end fixed. This would

correspond to restraining the beam shown in Figure 6.3 at the support C.

Since the beam at C cannot rotate, the restraint can be thought of being

produced by having span 3 so stiff that no rotation at C is possible.

With /s = Equations 6.5 and 6.6 become

Eji eX
= loading terms for spans 1 and 2.

Mb
E2I2

+ 2Mcw-7- = loading terms for span 2. (6.7)

These two equations can be solved simultaneously for the unknowns Mb
and Me.

6.6 Moment distribution method. The equation of three moments
is most suitable for the analyses of beams having less than two or three

unknowns. For the determination of more unknown moments, the solu-

tion of the necessary simultaneous equations becomes burdensome;

therefore, another method involving successive approximations is more

suitable. The method of successive approximations is sometimes called

the Hardy Cross method^ after its originator, or more generally the moment

distribution method. The philosophy of the method has been extended

to many structures other than beams or frames with considerable success;

and the general method, of which the moment distribution method is a

special case, is called the relaxation method.

Briefly stated, the moment distribution method consists of fixing

the beam at each support so that the slopes at the supports are all zero

when the loads are applied. The restraints are then released one by one.

Allowing the beam to rotate at one support changes the moments at the

adjacent supports. After one end of the beam has been released and the
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beam has reached equilibrium, the end is fixed again, and the restraints

at the other supports are released one by one. This process continues

until the releasing of the beam at the supports docs not change the

moments at the adjacent supports and does not change the slope of the

beam at any support with an accuracy sufficient for engineering purposes.

When this condition is obtained the conditions of continuity and equi-

librium have been satisfied.

Consider the continuous beam shown in Figure 6.4. If the beam is

fixed at each support A, B, and C, then the fixed-end moments for the

P

(d)

Fig. 6.4. Moment Distribution.

left span are Ufa and Mfb, as shown in (b). However, the counter-

clockwise moment at B represents an unbalanced external moment.

This unbalanced moment may be balanced out by applying moments Mi
and M<z in such a way that the slopes on each side of support B are equal

and by making the sum of the balancing moments equal to the unbal-

anced moment, as shown in Figure G.4(b), (c), and (d).

If we take clockwise moments 'positive, then

VMb = 0 = Ml + M 2 — Mfb (6.8)

For continuity 01 = 0s

but from Equation 4.35 01
MxLx. II (6.9)

Therefore, if E,

Mx nr E«I\

-"’cr.
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Substituting this value into the equilibrium Equation 6.8 and solving for

gives

il/2 “ MFB = HIFbR2 (6 . 10)

where = stiffness factor

R = distribution factor.

Distributing the unbalanced moment Mfb into a moment M 1 on the

left span and M 2 on the right, changes the moments at A and C. It has

been shown (Article 4.11) that a supported cantilever with an end moment
induces a beam moment at the fixed end equal to half the applied moment
and in the opposite direction. Using a clockwise sign convention as shown

in Figure 6.4(c), a moment M2 on the right span at support By makes

the moment at C

=
(6 . 11 )

where C2 = i = the carry-over factor.

The moments at the supports A and C are changed by the distributed

moments at B by an amount CiMi and C 2M 2 respectively. The new
moments at A and C are now distributed similarly. Distributing the

unbalanced moment at A and C in turn, changes the moment at By and
the process is continued until the unbalanced moments converge to a

negligible value.

Example 6.2. Determine the moments at the supports by the moment
distribution method for the method beam analyzed in Example 6.1.

The stiffness factors are

h = 1
Li 30

0.0333; h
1/2

1.5

36
0.0417

The overhang on the left of support A offers no restraint against rotation;

so the stiffness is zero.

a

Similarly to the right of C,

The distribution factor at support B is obtained from Equation 6.10:

I

R2 — 1 — R\

0.0333

0.0333 + 0.0417
0.444

1 - 0.444 = 0.556
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At A and C the distribution factors on each side are

R

R

JO

/i

L,

= 0

h
L, = 1

The fixed-end moments for span (1) are given by Equation 4.40:

M = i '

wx^{Li - x) dx = ~ wL\ = -L X 10 X (30)^ = 750 lb in
L{ Jo LZ

For span (2), using Equation 4.36 gives

M PL, f, _ L,\ __ PL,

2LI 2 ) 8

300 X 36

8
1350 lb in

For cantilever on the left

wa^ __ 10(5)^

2
125 lb in

The solution of the problem is shown in Figure 6.5. The stiffness

factors and distribution factors have been tabulated in the first two lines

of the table. The fixed-end moments are given on the third line, and it

should be noticed that the moments correspond to the clockwise sign

convention. The fourth line shows the distributed moments. For

example, at support B there is a counterclockwise moment of 1350 lb in

to the right of the support and a counterclockwise moment of 750 lb in to

the left. The total unbalanced moment is 750 + 1350 = 2100 lb in

counterclockwise. This must be balanced out by a clockwise moment

(+ ) distributed according to the distribution factors on line 2. These

balancing moments are shown on line 4. The carry-over moments are

shown on the fifth line. These moments are obtained by multiplying

the distributed moments by the carry-over factor of ^ and applying the

resulting moments at the opposite ends of the span. This completes the

cycle of operation, and then the process is repeated.

Since there was no change in the distributions of lines 7 and 8, the

process could have been stopped at line 8. However, in this case the dis-

tribution was carried one more step to show the rate of decrease of the

values. If you are in doubt, continue the distribution until the values

on a line at the completion of a step become small compared with the

values of the initial fixed-end moments.
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The moments at the supports are obtained by adding separately the

columns to the left and right of the supports. If no errors have been

made, the sums should be numerically equal with opposite sign. Thus,

at support B the sum of the left column is 308 lb in and the sum of the

right is —308 lb in. This means a clockwise moment inducing tension

in the top fiber of the beam on the left and a counterclockwise moment

w

I I r:i:u

A

STIFFNESS
FACTOR 0 00333 0.0417 0 (1)

DISTRIBUTION
FACTOR ^ 0 1 0.444 0556 1 0 (2)

FIXED-END MOM. -125

DISTRIBUTED MOM. 0
750 -750
-625 932

-050 050
1168 _ -1350

0 (3)

0 (4)

CARRY-OVER MOM. 0

DISTRIBUTED MOM. 0

466 -312

-466 438

-675 584

549 -584

0 (5)

0 16)

0
0

219 -233
•219 233

- 292 274

292 -274
0 (7)

0 (8)

0
0

116 -109
- 1 16 109

- 137 146

137 - 146

0 (9)

0 OO)

MOM. AT SUPPORTS - 125 125 308 - 30b 0
1

0 (II)

Fi3. 6.5. Moment Distribution for Two-Span Beam.

inducing tension in the top fiber on the right. The moment determined

from the equation of three moments at this support was found to be

310 lb in.

6.6 Effect of support deflection. In many instances multiple-span

beams are supported on structures which themselves are elastic and may
therefore deform. An example of a beam on deflecting supports would

be an elevator which is supported by connecting hinges to the horizontal

stabilizer. The effect of the displacements of the supports can be con-

sidered by superimposing the fixed-end moments caused by the deflection

of the supports and the fixed-end moments due to the regular loading and

then proceeding with the usual moment distribution.

Figure 6.6 shows a beam for which the three supports have moved a

distance 5^, 5b and 5c. The left span between supports A and B is
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shown with the fixed-end moments induced by the relative support

deflection 6a ~ 6b- The moment at any point x is

M = Rx — Mi
From Castigliano’s theorem

5a
W _ dM dx

dR jo dR El

1 _ MsLA
El\ '6 2 /

{Rx — Mi)x
dx

El
.

Fig. 6.6. Support Deflection.

If we take moments about 2?, for equilibrium

2Mb = 0 = /fL - 2Mi

p _ 23/

a

L

Therefore, 5a — 5^ =

Mi = -j—y (5a — 6b)
Jj“

(6 . 12 )

This fixed-end moment caused by the deflection of the support should

be added with proper regard for sign to the fixed-end moment due to the

load. This sum takes the place of the values on line 3 of Figure 6.5.

6.7 Discussion of end restraints. In the examples, the moment dis-

tribution method has been applied only to multiple-span beams with the

beams externally unrestrained against rotation at the supports. One of the

most useful applications of the moment distribution method is for beams
with one or both ends fixed. .The fixing of the end influences the distribu-

tion factor at that point. For example, if the end C of the beam in Figure

6.5 is fixed, then the effect of the fixity can be considered as being produced

by a span to the right of C with an infinitely large stiffness factor. Since

the stiffness factor to the left of C is 0.0417, the distribution factor on this
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side is = 0. This means that all the moment going to C

is absorbed and the convergence of the values is greater than before so

that fewer steps are required for a solution.

It is possible for the ends of a beam to be only partially restrained

against rotation, as would be the case if the end of the beam were con-

nected to an elastic structure. Since the distribution factor for a beam
with a pin-connected end is unity and the factor for a beam with a com-
pletely fixed end is zero, it follows that for a beam with the end 75% fixed

the distribution factor is 0.25 on the beam side and 0.75 on the restrained

side of the support. This scheme provides an easy way of considering

various end restraints.

6.8 Determination of distribution factors and carry-over factors for

nontmiform beams. The moment distribution method has been applied

to beams for which the modulus of elasticity and moment of inertia are

constant throughout each span. There are cases, such as when the beam
is tapered, when this latter assumption does not hold. The carry-over

factors and distribution factors for nonuniform spans are different from

those for uniform spans.

The values of the distribution factors and carry-over factors for non-

uniform beams may be determined from a consideration of their definition

as given by Equations 6.10 and 6.11. According to Equation 6.11 the

carry-over factor is defined as the ratio of the moment induced at the fixed

end of a supported cantilever beam to the moment applied at the sup-

ported end. This ratio can be determined by the methods given in

Chapters 4 and 5. It is apparent that the carry-over factor in going

from left to right on the beam may be different from that for going from

right to left.

From the derivation of the distribution factor given in Equation

6.10 it can be shown that the distribution factor is defined as the ratio of

the moment to produce unit rotation of the span to one side of the support

when the span is assumed to be a supported cantilever, to the sum of the

moments required to produce unit rotation on the spans to both sides

of the support.

6.9 Short cuts of moment distribution method. Only the funda-

mentals of the moment distribution method have been discussed in the

foregoing articles. Many short cuts have been devised which greatly

simplify the solution of many problems. It is suggested that the student

study the references for further information.

Probiemf

6.1. Figure 6.7 shows the distribution of possible floor loadings for a modern
transport. If the numbers represent the load in pounds per linear inch, and if

1 is the moment of inertia of the floor beam for the various spans, determine
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(1) bending moments at the supports

(2) bending moment diagrams

(3) reactions at the supports.

6.2. An elevator spar supported at six hinge points is loaded as shown in

Figure 6.8. Assume that the moment of inertia of the cross section of the spar

is constant, and determine

(1) moments at hinges

(2) moment diagram.

(Hint: The problem can be simplified if it is realized that the structure is sym-

metrical about the center hinge so that the slop>e of the beam at the center hinge

is zero.)
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6.3. One half of an aluminum elevator spar is shown in Figure 6.0. If the

hinge supports deflect as shown, determine the beam moments at the supports.

Fig. 6.9. Deflected Elevator.

6.4. Determine the bending moments and shear forces for the uniform floor

beam shown in Figure 6.10, assuming that the fuselage wall restrains the rotation

of the ends of the floor beam 50%.
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CHAPTER 7

Frames and Rings

7.1 Introduction. For the multiple-span beams discussed in the

previous chapter it was shown that the moments and forces in the beams
depended on the stiffness distribution and the support restraint as well

as the loading. In all cases, however, the beam axis was essentially a

straight line so that the analysis was not complicated by the necessity of

considering the geometry of (nirvcd members or bent sections. Some
structures such as bulkhead rings or fuselage frames are composed of

curved members or a complicated arrangement of members which makes
the geometry of the structure complex.

A few of these more complicated structures will be discussed in this

chapter. The fundamental principles of analysis will be the same as

those used before.

Curved Beam.

7.2 Deflection of curved beams. One of the most useful applications

of Castigliano^s theorem is for the solutions of the deflections and forces

in curved members. Since the derivation of these theorems is in no way
restricted by the geometry of the structure, they can be applied directly

to curved members.

Consider a curved beam for which the locus of the center of gravities

of the cross sections is a portion of an arc of a circle and with a bending

moment, a thrust, and a shear force applied to the end, as shown in

Figure 7.1. It has been shown already in Example 5.2 that the effect

of the shear force on deflection is negligible for most beams and depends

on the length to depth ratio and the type of cross section of the beam.

Similar conclusions can be made for the effect of the thrust on the deflec-

tion of the curved beam. Therefore, if the energy of thrust and shear is

assumed to be negligible, the elastic energy is given by
99
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ds

Mi (7.1)

where ds is an element of length along the beam. In the case of the

circular bar it is more suitable to use polar coordinates. Therefore,

substituting ds — R d<t> gives

U
-i:

R d4>

But

and

M = Mo — HoR(l — cos <t>) + VoR sin </>

dM . dM .s dM
dMo

. oivi ,v UlVl . ,=
1;^ = -i2(l - cos <t>); sin

dVo

According to Castigliano’s theorem,

8r =
dU
dVo

^ I

El

, , dM R d<t>

-jo ‘^w.-rr

Mo(l — cos p) H•«(j- cos ;8 + T cos 2/3
4 t

+ V,R

_ dU _ f
dHo Jo

(^-^sin2/l))

^ ,, dM R d<t>

0 Wo^
El

ilfo(sin /3 - /3) + HoR0 /8 - 2 sin /8 + ^ sin 2/3^

- VoR

=^ = r
dMo Jo

0
— cos /8 + I

cos 2|9^
I

M dM R d<t>

dMo ET

= ^ {(Mo- HoR)fi + HoR sin 0 + Fo«(l - cos ^)1

(7.2)

(7.3)

(7.4)

where 5« = deflection in radial direction, positive away from center (in)

5r = deflection in tangential direction, extension positive (in)

0 = clockwise rotation (rad).

The expressions for the deflections become simplified for = 90° and
180°.

7.3 Circular frame with diametrically opposed loads. Elastic energy

methods are useful also in analyzing statically indeterminate frames.

The unknown forces and moments in these structures that cannot be

determined from static equilibrium conditions are called redundants.

A complete circular ring with diametrically opposed loads is shown in

Figure 7.2. Such a ring is similar to a proving ring used for calibrating

testing machines. A cut can be made in the ring at any point. How-
ever, if the cut is made at the top, the structure is symmetrical in loading
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and geometry with respect to the cut. The forces in the ring at the cut

are the redundant force Hi and the bending moment Mi. Since these

are internal forces they can have no external resultant so that the forces

acting on the sides of the cut are equal and opposite. Since Hi and Mi

MOMENT SHEAR THRUST

Fig. 7.2. Circular Frame.

are internal forces, then according to Castigliano^s theorem, in order to

make the ring continuous.

dM ds y = 0 = dM ds

JlTiTl

The integrals are to be evaluated over the entire structure. However,

since the structure and loading are symmetrical about the vertical axis,

the values of the integrals for the left and right sides of the ring are the

same so that the total value of the integral is equal to twice the value of

the integral for one side. The partial derivatives of the elastic energy

may therefore be considered as twice the value of the integral for one side,

and since this is equated to zero, the factor two can be cancelled out.

The bending moment at any angle </>, for 0 < </> < tt, is
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M = Ml - HiR{l - cos <f>)
sin <(>

Therefore, = 1;
= “^(1 " cos </>)

and, since ds = R d<t>

Equations 7.5 become

(7.6)

dU
dM

dU
dH

- = 0 = j’ - HiRil - cos <!>)
- sin

<#>j ^
= M\Tr

- = 0 = y* l^lfi
— — cos<^) — ^sin<^)j

j^—
/^(l — cos</>)

j

d(l>W
= Mxtt — H xRir — PR

R d<t)

El
= Mxt - HxR^t - PR

Solving these equations simultaneously, we have

//i = 0

IfMl =

Therefore, the moment at any angle <t> given by Equations 7.6 is

PP PPM = — -^ sin = Pfi(0.318 - 0.5 sin <^) for 0 < </> < tt (7.7)
IT Z

The thrust and shear at any section can be found from a consideration

of the stfiLtic equilibrium of the forces in the horizontal and vertical

directions. Thus,

^Fh = 0 = Hi + V sin <t>
— H cos <t>

2Fv = 0 = ^ + F cos <t> + H sin <t>

p
and ^ ~ ~

2
^

H == — ^
sin

(t> for 0 < 0 < TT (7.8)

The force and moment distributions are shown in Figure 7.2.

In this particular example it is possible to show immediately that

Hi = 0. If the ring is cut at the top and bottom, a thrust Hi is required

at each point because of symmetry. These forces are not balanced by
any external force and therefore in order to satisfy equilibrium conditions

the thrusts must be zero.

7.4 Redundant center. In the previous analyses the solution of two
simultaneous equations were required to determine the two unknowns of

moment and thrust. It will be shown that if the redundants are applied

at a point called the redundant center each redundant can be determined
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directly without the use of simultaneous equations. This is an advantage

when there are several unknowns.

Consider a structure of any shape with a cut at some point and the

redundants applied at the ends of rigid arms which are incapable of

absorbing energy, as shown in Figure 7.3. Select a coordinate system

with the origin at the point where the redundants are applied. The

moment at any section of the structure can be considered as ecjual to the

Fig. 7.3. Redundant Center.

moment due to the redundants plus the moments due to the external

loads. Thus,

M = Mr + Mi. (7.9)

where Ml = moment at any section due to external loads with the

redundant forces zero.

Mr == Mo + Hoy + VoX = moment due to reduntants only. (7.10)

Now
dM dM dM

1 J Trf — y) Vf7~ = since Ml does not contain the redun-
olVL 0 oil 0 o V Q

dants. From Castigliano’s theorem

dM]

dHo

dV]

dM ds

dMnM.

= » = /
f nr dM ds

j "w.m
:=-/ dM ds

WoEI
Therefore,

j
(Mo + H,y + + M,) ^ = M,

j ^ + Ho
jEl

+ Vo

ds

El

M.|| = 0 (7.11)
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I
{Mo + Hoy + Fox + M^)y^ = Mo

j y§f + Ho j y^^
+ VoJ xy^+ j

M,y^j^ 0

j
{Mo + Hoy + FoX + Ml)x

jj
= Mo

j
x^ + Ho J

yx^
+ F„/x^§+/m.x§=0

If the axes are selected so that

then it is evident that each of the above equations can be solved directly

for one unknown each. These axes may be thought of as the principal

axes of the ds/EPs. The redundant center always will lie on an axis of

symmetry; and, if there are two axes of symmetry, the redundant center

will be at their intersection.

The redundant center is determined much like the center of gravity

except that the value ds/EI is used in place of dA, For example, for a

structure such as the turnover bulkhead, with one axis of symmetry,

shown in Figure 7.4, a convenient reference axis is used and the structure

divided into a number of parts. The distance y from the reference axis

to the redundant center is given by
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m

n “ 1

m

n «

1

(7.13)

If is a constant, it can be cancelled out of the calculations.

Example 7.1. Determine the forces and moments at the supports

and the distribution of bending moments in the frame shown in Figure

7.5. Assume that — I\I2.

BENDING MOMENTS

Fis. 7.5. Square Frame.

Solution. The redundant center will be on the axis of symmetry, x.

The distance Z from the line of the supports to the redundant center will be

determined by equating moments of the ds/EFs as given in Equation 7. 13. ^

In this case the integral form is used. Since £ is a constant, it can be

cancelled out.
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J2 r^]^2r[p+ rip
L Jo '1 Jo '2J Jo ll Jo li

2 = L

‘1 + ih ^ h
1+1
-h h

The moment at any point due to the redundants is

Mr = M, + H^y + Vox

The moment of the applied load P is zero everywhere except on the lower

1®S>

Ml == 0 for AB and BC

Ml = P - a;^ for leg CD

Since
J ^^ ~ j ^^ ~ j ^ Equations 7.11

. ,
ds P ,, ds

reduces to Mo
/

” ”•
[1m + 1m 1 K

If we remember that for leg CD the s direction is the negative x direction,

we find that

Therefore, Mo = -

By using the second of equations 7.11

Tf / 2

L y m

Ho = |PTherefore,
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From the third of

Thus,

Equations 7.11

.r P

dx\

u)

The complete moment is therefore

M = Mr -f- Ml

M = P “g+gy+2]

"-^[
5
+

8 ''-!]

for A to C

for C to D

The moment distribution is shown in Figure 7.5. Positive moment
produces compression in outside fibers of frame.

7.5 Pressure cabin bulkhead ring. If there are additional members
attached to a closed frame, it is not always possible to apply all the

redundant forces at the redundant center. The analysis of the pressure

cabin which follows is an example of a structure of this type. It will be

shown, however, that the use of a redundant center to which some of the

redundants can be applied simplifies the resulting simultaneous equations.

Figure 7.6 shows a fuselage bulkhead ring with an applied internal

pressure load coming from the skin adjacent to the ring. A wing spar

or floor beam intersects the lower portion of the ring and for simplicity

it is assumed that this beam is pin-connected to the ring. The ring is

shown with a circular plan form although the analysis is suitable for any

shape. If a ring of uniform section is assumed, the redundant center

for the ring coincides with the center of the circle. It is assumed further

that the floor tie is relatively stiff so that its elongation can be neglected.

If Fo has a value other than zero, the deflection on the two halves of

the symmetrical ring will be unsymmetrical and the ends at the cut will

not join. Therefore, Fo = 0 from symmetry. The conditions for

determining the unknown redundants are therefore

W
dMo

dHo

= 0

= 0

If
= ®

(7.14)
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A rectangular coordinate system will be used so that the extension

of the method to noncircular frames will be apparent. This particular

case would be simplified by the use of polar coordinates. By using the

coordinates x, y, the moments due to the redundants are

Mr = ilfo + H^y a > y > —b
Mr = Mo + H,y + F{y + h) ^b>y>-^(c + b)

The moment caused by the pressure loading where p is the load per

linear inch of ring arc is obtained from a consideration of the equilibrium

y

Fis. 7.6. Pressure Cabin.

of a portion of the ring, Figure 7.5(c). The force acting on a small

element of length ds located at position xi, yi is p ds. The components
of force in the Xi, 2/ 1 ,

directions are

p ds sin a = p ds— = p dyi

p ds cos a — p ds = p dx\

The moment of these forces at the point x, t/, is

dM ^ p dyiiyi - y) + p dxi{x - Xi)
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The total moment at y due to the pressure will therefore be

Ml = p(2/i - y) dyi + p(x - X,) dxi

= l(y-a)^ + ^4

The moments for the ring due to the redundants and pressure are there-

fore

Also

(7.15)

M =- Mo + 7/o2/ -h liy-- o.y
2

for a > y > - b

M = 0 + + l(y
- ay

px^

2
+ F{y + b)

for --b > y > — (C + b)

dM
1 .
dM

y,
dM

- n h

dMo
'- il

dF
tor CL y > 0

dM dM dM
= y +

dMt)
= 1;

dHo y, dF
h

for --b > y > - (C -1- b)

The redundants are therefore determined from Equation 7.14 where

Si is a distance measured along the ring from the top to force F, and S 2 is

distance measured along ring from top to bottom. If we remember

then we see that
Jo ^ El Jo El

^

dU
dMo

dU
dHo

El
'

2 El
(7.16)

+

+ - f‘2;..

+ F

y{y +

ds

El

xHy + h)^r+ F

/:

ds

m
{y + b)y

ds

El

2 /,
~

El (9 + «•)’
ds

m
The values of the integrals of the equations can be determined by a

tabulation method and the simultaneous equations solved for Mo,
and F.
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The solution for a circular ring with constant moment of inertia of

the cross section, radius of 40 inches, and an internal pressure of four

pounds per inch is shown in Figure 7.6(d).

Problems

7.1.

A semicircular arch of radius R has a radial load P directed toward the

center at the crown. If the cross section of

the arch is constant and if one end of the arch

is fixed and the other free, determine the hori-

zontal deflection, vertical deflection, and rota-

tion of the free end.

7.2. If the free end of the arch in Problem
7.1 is pivoted, determine the reactions at the

pivot support.

7.3. A steel wire retainer ring shown in

Figure 7.7 is designed so that when the gap 5

is closed the maximum stress is just equal to

the yield stress of the material. Neglecting

the deformation of the portion e and assum-
ing that the maximum stress is given by

/ = determine the gap 5.

o =
e =

-J-
in

R = 1 in

fy = 100,000 psi

7.4.

D.etermine the bending moments for a frame similar to the one shown in

Figure 7.5 if the leg AB carries a uniformly distributed load w (Ib/in). The
frame is pin-connected at A, and the moment of inertia of the members of the

frame are constant and equal.

Fis. 7.8, Tie Rod Fitting.

7.6. A tension member is constructed with an access opening, as shown in

Figure 7.8. Determine the load P that will just cause yielding if the member is

an aluminum alloy forging with Fty ^ 30,000 psi.

7.6. Determine the bending moment distribution in the fuselage bulkhead
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frame and spar shown in Figure 7.9. The bulkhead distributes the wing reac-

tions into the fuselage skin by means of the assumed linear shear distribution.

I of bottom spar = 16,500 in^

I of frame = 10.2 in'* for 0 < a < 90®

1 of frame = 20 in'* for a > 90°.

F= 178,000 lb.

Ms 750.000 lb. in.

Fis. 7.9. Fuselage Ring and Spar.
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Part III

STRUCTURAL STABILITY





CHAPTER 8

Columns and Beam Columns

8.1 Introduction. Structural members carrying direct compressive

loads along their longitudinal axes are called columns or struts. If the

member is subjected to a transverse load as well as to the axial compres-

sion, it is called a beam column. Members transmitting axial compres-

sion, such as wing stiffeners, fuselage longerons, and landing gear struts,

are common in the airplane structure. The failure of columns is not

necessarily determined by the stress becoming a limiting value based

on the strength properties of the material as it is for many other members;
but it depends upon a phenomenon called huckling^ which may or may
not involve the strength properties of the material. The criterion for

buckling failure is the fact that the member will carry only a limited load

and that any attempt to increase the load merely increases the deflection

even though the stresses may be relatively low.

There are two main classifications of column failure: (1) general

stability failure or primary failure in which the whole member takes part

in the failure and (2) local stability failure in which a localized part of

the member fails. In the general stability failure the cross section of the

column retains its initial shape; and, although the cross sections may
move relative ‘to one another, they do not distort. In local stability

failure, the cross sections themselves distort and change shape. Both

types of failure may be classified further into two groups: (a) elastic

stability failure in which buckling occurs when the material is elastic;

namely, the stresses do not exceed the proportional limit of the material

and (b) inelastic stability failure in which the stresses do exceed the

proportional limit when buckling occurs.

The problem of column failure is complicated, and the theory is not

yet sufficiently developed so that all conditions can be predicted analyt-

ically. For this reason and for convenience many semi-empirical meth-

ods are used in analyzing columns. Some of these methods will be

discussed in this chapter.

8.2 Elastic stability of strut with one end fixed. The failure of a

strut for which the material is elastic, and for which, therefore, the

stresses are below the proportional limit, will be considered first. Further

assumptions made in analyzing the strut shown in Figure 8.1 are: (1)

The strut is initially straight of uniform cross section and homogeneous

material. (2) Deflections are small so that the ordinary flexural theory

may be used. (3) Weight of the strut is neglected.

For some small axial load P applied on the strut it will be found
115
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that if the top of the strut is deflected some slight amount sideways, the

strut will resume its initial straight condition when the sidewise pressure

is released. It is possible to apply a load so that when the strut is

slightly deflected sideways the strut will either stay in the deflected

position or its deflection will increase rapidly so that the strut collapses.

The load required just to maintain the slight deflection is called the Euler

or critical load.

If the critical load is assumed to be applied to the strut so that the

deflection h is maintained, then the bending moment
at any section a distance x from the fixed end is

M = P(5 - y)

or, since from Equation 4.18 M = El

g + F?/ = (8.1)

P
where ^ Wl

The solution of this equation is

y = A cos kx + B sin kx + d (8.2)

which may be verified by substitution. The condi-

tions at the ends of the strut are

?/
= ~= 0atx = 0

dx

Substituting these conditions into Equation 8.2, we obtain

?/ = 5(1 — cos kx) (8.3)

The shape of the deflection curve is therefore a cosine curve, and the end

deflection 5 is indeterminate. A further condition is

y ~ b at X = L
5 = 5(1 -- cos kL)

As long as 5 is not zero we may divide through by it, and therefore

cos kL = 0

K iP

Fis. 8.1. Strut with

One End Fixed.

TT 3
This condition is satisfied U kL = jzy and so on.

est of these to obtain the least load, then

If we take the small-
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This is the load required to hold the strut in a slightly deflected

position, and it is called the critical load or allowable column load. The
stress is essentially the load divided by the cross-section area, and therefore

Where Fc — the allowable column stress (psi)

p = radius of gyration of the cross section (in)

~ = slenderness ratio.
P

For values of P less than the critical load the strut remains straight.

For values of P greater than the criti-

cal load the deflection is indeter-

minate because of the approximation

d^yM = El ^2 analysis. The

load deflection curves for the assump-

tion used in the analysis are shown by

the dashed line in Figure 8.2. Actually

however, if the initial crookedness and

large deflections are considered, the

load deflection curve will be shown by

the solid line of Figure 8.2.

8.3 Elastic stability of struts with various end conditions. The
critical load and allowable column stress for a pin-ended strut and a strut

with both ends fixed can be determined from the results of the previous

analysis.

Since the slope at the center of the pin-ended strut sho\vn in Figure

8.3(a) is zero, the strut can be considered as being made up of two fixed-

free struts having half the length of the pin-ended strut. The critical

load for the pin-ended strut is therefore the same as for a strut of ^alf the

length and with one end fixed. Therefore,

Fig. 8.2. Load Deflection Curve.

P = w^EJ ^ ir^EI

The strut with both ends fixed against rotation will deflect as shown

in Figure 8.3(b). The points of counterflexure are positions of zero

bending moment so that the critical load may be considered the same

as that for the strut with one end fixed for which the length is L/4. Thus,
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P = irm
7.2

The strut shown in Figure 8.3(c) with one end fixed and one end

hinged cannot be analyzed in the same manner as the previous two struts

since the line between the point of counterflexure and the pinned-end

is not parallel to the line of action of the load. The form of equation for

the critical load, however, is the same.

Fis, 8.3. Struts with Various End Conditions,

For each strut it is evident that the critical load and allowable column

stress can be expressed in the forms

P = Ctt*
El

(8.5)

and F, =
E
/ly (8.6)

where C = end fixity coefficient

L— = slenderness ratio.
P

The end fixity coefl5cient is sometimes included in the expression for

the slenderness ratio as follows:

P

L

pVC
(8.7)

Therefore,
(8 .8)
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8.4 Struts with variable cross section. In the previous strut analyses

the moment of inertia of the cross section has been considered constant.

If the moment of inertia varies from section to section, then the differ-

ential equation for the equilibrium of the strut, Equation 8.1, is difficult

to solve. By using an energy
method, it is possible to express

the critical load in terms of inte-

grals, so that even if the variation

of moment of inertia cannot be
^

expressed analytically, the critical

load can be determined approxi-

mately by summation processes.

Consider the strut shown in

Figure 8.4. Suppose an axial load

P is applied and then the end of

the strut is displaced some distance

5. As the strut bends, the end

moves vertically downward a dis-

tance X; and, since the load remains

constant during this process, the

work done by the load is P\. The

elastic energy stored in the strut during bending

Fi3 . 8.4. Strut Shortening.

M^dx
2EI

If the work

done by the force is greater than the elastic energy stored in the strut,

the strut continues to deflect. If the Avork done by the force is less than

the clastic energy, the strut straightens. The deflection is maintained

when

PX =/:
dx

2EI (8.9)

From the geometry of an element of the strut

d\ = ds — dx

and ds = Vidxr + (dyr = d.ryjl +

Expanding this according to the binomial theorem and assuming that

is small so that higher powers of the slope may be neglected, we obtain

^- 1 (1
)’

dx

=
- r
2 Jo \dxj

dx (8 . 10 )
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Substituting this value of X into Equation 8.9 gives

/'
P -

/• I

3/2 dx

Elm dx

d^y
Since M = El this may be written

p (d^y
- 7 0 ydx'y

El dx

i:m dx

For the special case where the coordinate axes are selected so that

M — Py as in Figure 8.4, then

t 2

dx

P ^ (8.11)IM
/:

This latter form is usually the most accurate.

If the shape of the elastic curve of fhe strut and the distribution

of the rigidity El are known, the critical load P can be determined exactly

by use of Equation 8.11. For the case of the strut with one end fixed and

with constant cross-section moment of inertia, it was shown in Article 8.2

that the deflection curve is a trigonometric function. It is easy to verify

that Equation 8.11 gives the correct load if this function is used. The
power of this method, however, lies in the fact that even if the exact deflec-

tion curve is not known the critical load can be determined approximately

as long as the curve selected satisfies the end conditions. If a parabola is

used as a deflection curve of the pin-ended strut, in place of the trigono-

metric function, the critical load determined by means of Equation 8. 1

1

is only about 1^ % greater than the true critical load.

This method makes it possible to determine also the approximate

critical load for struts with variable moments of inertia. Of course, if

the variation of / cannot be expressed conveniently as a function of x, the

integrals of Equation 8.11 can be evaluated approximately by a summa-
tion process.

Example 8.1. Determine the critical load for the pin-ended steel

shaft shown in Figure 8.5: E = 30 X 10® psi.

Solution. The moments of inertia of the cross sections are

h =
64 64

_ irilY

= 0.00307 in^

J _ _
64 64

= 0.0155 in^
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Assume a deflection curve

. . wx
y = 5 sin

-jj

This curve satisfies the conditions that the deflections at the ends are

zero and the slope at the center is zero. At any section

^ = K-
dx L

Since the strut is symmetrical about the center, the integrations need

be evaluated for only half the length. Evaluating for the whole length

JoiA |"dia.

t

-0*6-

—
t

IS"

L

Fig. 8.5. Nonuniform Strut.

merely doubles the numerator and denominator of Equation 8.11 as

compared with the half-length evaluation. Therefore,

L

P = 3660 lb

The allowable column stress is

18,640 psi

This is below the proportional limit of the material so that the strut fails

elastically and it is correct to use Equation 8.11.
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8.5 Buckling of columns stressed beyond the proportional limit. In

the previous analyses it has been assumed that the stresses in the column

are less than the proportional limit of the material; The results are

correct for relatively slender columns. Most columns, however, are of

such size that the stresses at buckling exceed the proportional limit.

Consider a strut made of a material with a stress-strain curve as

sho^vn in Figure 3.2(b). If the axial compressive load is applied gradually

to the strut and if the strut is properly proportioned, the normal stress

P!

A

may become greater than the proportional limit before the strut

buckles. Therefore, the modulus of elasticity is nO' longer a constant as

previously assumed, but it is a variable and a function of the stress.

The modulus above the proportional limit is represented by the tangent

modulus shown in Figure 3.3. Engesser suggested that the constant

modulus of elasticity in the Euler Equation 8.6 be replaced by the

variable tangent modulus Er, for columns that buckle in the inelastic

range. Therefore,

where Et = tangent modulus (psi).

It is apparent that Et is a function of Fc, so that a curve showing the

relation between these two quantities must be known before the equality

expressed by Equation 8.12 can be established. The solution of this

expression is obtained by a trial and error process.

At about the same time Considere pointed out that, if the strut is

loaded first to a stress greater than the proportional limit and then

deflected sideways, a bending moment will be induced which will cause

the stress to increase on one side of the strut and decrease on the other.

The ratio of the stress to strain on the side where the stress is increased

is given by the tangent modulus. However, on the other side where the

stress is decreased, the material will unload along a line parallel to

the initial straight line of the stress-strain curve so that the ratio is the

ordinary modulus of elasticity. Consideration of this effect leads to

what is known as the double modulus theory. It has been shown that the

allowable column stress is a function of the shape of the cross section as

well as of the material. The allowable column stress therefore becomes.
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Subsequent carefully conducted tests made by Von Kdrmdn showed that

the double modulus theory approached the test values. However, for

most ordinary tests the tangent modulus theory gives satisfactory agree-

Fi 3 . 8.6. Column Curves.

ment; and, since it is simpler and gives the lower limit of the buckling

load, it is more commonly used.

Figure 8.6 shows the tangent modulus stress relation and the column

curves for the tangent modulus theory and reduced modulus theory for a

column of 17ST material having a rectangular cross section.
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8.6 Column yield stress. If we refer to Figure 8.6 we notice that

both the reduced modulus curve and the tangent modulus curve show

rapid increase in allowable column stress for small slenderness ratios.

The stress required to buckle the column for small slenderness ratios

exceeds the yield strength of the material. Since stresses much in excess

of the yield strength are undesirable and since it is convenient to have a

stress for zero slenderness ratio for the development of some semi-

empirical column formulas, a quantity called the column yield stress^ Fcoj

is defined.

The column yield stress is obtained from column tests by extrapolat-

ing the test curve to L/p = 0 and disregarding the tendency for the curve

to rise for very small slenderness ratios. See Figure 8.6. According to

the ANC-5, the column yield stress for aluminum is

Fco ^<^<'( 1 +
200

,
000)

(8.14)

and for 4130 steel it is

Fco = l.OGF^ (8.15)

8.7 Empirical column formulas. Various formulas have been pro-

posed for the region of column failure in which the stresses are greater

than the proportional limit. All these curves should join the Euler

curve at the proportional limit since the Euler curve is valid for column

failure when the stress is less than the proportional limit. The joining

of the curves at the proportional limit is not always realized, but the

empirical curves developed are suitable for preliminary design.

The family of curves that are tangent to the Euler curve at one end
and that have a value of Fco for L/p = 0 may be Avritten:

Forn = 1 the curve is a straight line. Forn = 2 the curve is a parabola.

These two curves are the ones most commonly used. The straight line

is sometimes used for columns of aluminum alloy; and the parabola, for

steel. These curves together with the tangent modulus curve are shown
in Figure 8.7.

It is simply a matter of geometry to show that the Euler curve joins

the straight line curve at a slenderness ratio

Similarly, it can be shown for the parabola that
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The values of K for the two curves are

2Cir^EK =

©:
for straight* line

Fig. 8.7. Empirical Column Curves for C = 1

.

Therefore, the column equations for the stresses in the inelastic range

are

Straight line: Fc = Fco I

Parabola: Fc = Fm 1

0.385 L

W P

IF.

F.

for
L ^
p V

/'lvi . L ^ ra
^EC\p) J

^
’"V Fc.

(8.16)

(8.17)

The Euler equation should be used for slenderness ratios greater than

the transition slenderness ratio, {L/p)t.

8.8 Torsional-bending stability of columns. The type of columns

discussed thus far have all been assumed to fail by general instability.

The cross sections of the columns have been assumed stable so that

localized failure is prevented. Since local stability failure is often con-

cerned with cross sections made up of thin sheet material, a discussion

of this type of failure will be postponed until later when sheet failure is

discussed.

There is another type of general failure, however, known as torsional-

bending stability

y

which is extremely important. It is a known fact that
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some columns when subjected to axial compression do not fail only by
deflecting sideways but by twisting about a longitudinal axis as well. That

is, the central sections of the column rotate relative to the end sections.

This torsional type of failure is most likely to occur in columns having

cross sections of thin material that do not form completely closed tubes,

such as channel sections or other open sections.

It has been shown that some bending occurs in a column when sub-

jected to an axial compression. The magnitude of the bending moment
varies along the column since it depends on the amount of deflection

which is not constant. The variation of the bending moment implies

P

P

(a)

Fis. 8.8. Torsional-Bending Stability.

that there is a shear force on the cross sections of the column since

= F. The shear force and bending moment at a cross section of a

pin-ended column are shown in Figure 8.8(a).

It will be shown later (Article 11.7) that, if the resultant shear force

does not pass through a point in the cross section known as the shear

center

y

the member will twist. In the case of the channel section shown
in Figure 8.8(b) the shear center is to the left of the channel at point A.

Suppose the column is loaded in such a manner that it bends about the

X axis of the cross section and so that the resulting shear force is parallel

to the y axis but does not pass through the shear center. In this case,

shear stresses will be induced in the flanges which result in flange shear
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forces in the directions shown in the figure. These flange forces produce

a couple which tends to rotate the section about the* shear center. If the

section is torsionally weak, the column may fail by twisting before it

fails by bending.

The analytical development of the critical conditions for a torsionally

weak column are too complicated to be presented here. This problem

has been solved successfully by Wagner and others, and the results will

be indicated.

The allowable column stress for a pin-ended strut with stresses below

the proportional limit is given by

Fe = ^
(gC + (8.18)

where L = length of column (in)

Ip = polar moment of inertia of the cross section about the axis of

rotation (shear center) (in^)

C = geometric property of the cross section involving its torsional

stiffness (see Article 12.5) (in^)

r = torsion-bending constant (see Article 12.9) (in®)

J?, G = usual elastic constants (psi).

For a channel section

r = ~ [e\h + 66) + 2b\b - 3e)]

where h = distance between flanges (in)

h = flange width (in)

e = distance between shear center and center of web (in)

t = sheet thickness (in).

If the column is attached to a sheet, such as a stringer attached to the

surface of a wing, the sheet tends to restrain the torsional buckling. See

references.

8.9 Beam column with uniform load. A beam column is a member
subjected to a transverse load similar to an ordinary beam and simul-

taneously carrying an axial compression like a column. Many members
in the airplane structure, such as fuselage longerons, are beam columns.

The analysis of the beam column is complicated because the transverse

load produces a deflection which in turn induces a moment due to the

eccentricity of the axial compression. The moment thus produced

induces further deflection, and the process continues until equilibrium is

reached.

For simplicity, a beam column carrying a uniform distributed trans-

verse load will be analyzed first. It is assumed that the material remains

elastic. From equilibrium of the forces the vertical reactions at the ends
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of the beam shown in Figure 8.9 can be determined. By taking equi-

librium of moments dor a portion of the beam of length x where the

deflection is y the moment can be determined. Therefore,

M =

dm

wx^ wLx

Differentiating gives
^^2

ild d^y
But for small deflections, ^ = -r4

' El dx^

d’^M + k^M = wso that

where

dx^

A-2 =
El

Py

(8.19)

y

Fi’s. 8.9. Beam Column with Uniform Load.

The solution of Equation 8.19 is

wM — A cos kx + B sin kx + (8 .20 )

The conditions at the ends of the beam are

M = 0 at x = 0

M = 0 at a; = L

By substituting these conditions in Equation 8.19 and solving for A and

B, Equation 8.20 becomes

^ = -
F,

[cos kx - sin kx -
1]

(8.21)

The position of maximum moment can be obtained by equating the

derivative of the moment to zero. However, from symmetry it is evi-
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dent that the maximum moment is at the center of the beam where

X Lf2. Thus,

w kL /cos kL —
1\ . kL ,1

F [COS Y ~
\ sin kJj

This moment may be expressed in terms of the half angle /rL/2 by using

the trigonometric relations

Therefore,

sin kL = 2 sin

cos kL — 2 cos

kL kL
2 2

2
^ _ 1
2

(8.22)

The maximum moment for a constant w is now a function of P so

if we let

then
1

0
00

and il/max —> 00
. This indicates that the beam has buckled, and the

axial load recpiired to buckle the beam is

EL L^

or P = the Euler load.

Therefore, if the stresses remain lower than the proportional limit,

the compressive load required to buckle the beam with a uniform beam
load is the same as the load to buckle the column without the transverse

load. This result is generally trug for beam columns.

Expanding the expression for the maximum moment into a series and

remembering that the maximum bending moment for a simply supported

beam carrying only a uniform load is

M = — —

^

u)(msx)
g

Mmax
we find that the ratio of can be expressed in terms of the ratio

u’(msx)

of the applied axial load and the buckling load Per. These ratios have

been plotted in Figure 8.10, and the curve indicates clearly the rapid

increase in bending moment with increase in axial load.
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The shear force in the beam is determined by means of the relation

or

V =
d̂x

V = ^ [sin kx + cos kx] (8.23)

If we know the bending moments and the axial load, we can deter-

Fig. 8.10. Effect of Axial Load on Maximum Bending Moment,

mine the stresses in the beam column from the relation

(8.24)

where c = the distance from the neutral axis of the beam to the fiber for

which the stress is being determined (in).

This formula is rigorously valid only for stresses below the proportional
limit, although sometimes it can be used up to the yield strength with
small error. should be remembered, however, that the axial load to
produce buckling is not the Euler load if the stresses are greater than
the proportional limit.
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8.10 General case of beam column with distributed transverse load.

The equation for the bending moment in a beam column with any dis-

tribution of transverse loading is set up easily although the solution of

the equation may be difficult in particular cases of specified distributions

of load.

From the previous analysis of the beam column in Article 8.9 it is

apparent that the bending moment in the beam column can be expressed

in terms of the usual beam bending moment due to the transverse load

and the moment due to the axial load. Thus,

M = Ml - Py (8.25)

where Ml ^ beam bending moment caused by transverse load and

neglecting the effect of the axial load, P.

Differentiating Equation 8.25, we have

But

dm ^ dmL _ pd^
dx^ dx^ dx^

dniL
dx'^

^

where p is the intensity of the distributed load at any section x

and

Therefore,

P d^y
^

dx^

dm
dx^-

+ km = p (8.26)

This equation then is solved when p as a function of x is known and

the conditions at the ends of the beam are used to determine the arbi-

trary constants resulting in the solution of the equation. If, for example,

there is a moment on the left end of Mi and a moment on the right end

of M 2 ,
then the end conditions will be

M = il/

1

at a: = 0

M = M2 Sit X = L

Example 8.2. For the wing shown in Figure 8.11 determine the

bending moment distribution, taking into account the effect of the axial

load. Assume that the wing spar carrying the load has a cross section

with a moment of inertia of 16.5 in^ and that the spar is made of spruce

with the modulus of elasticity of 1.3 X 10® psi. Determine the maximum
compressive stress if the distance from the neutral axis of the spar to the

outer compressive fiber is 3 inches and the area of the beam is 7 square

inches.

Solution. The reactions on the wing are determined similarly to
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those in

wing is

The

Example 4 . 1 . The axial load acting on the inboard portion of the

P =^ cot a =

moment due to the load on the outer portion of the wing at the

w = 12 Ib./in

MOMENT

Fis. 8.11. Bcndins Moments for Wins.

point where the strut joins the wing is

,, _ w{L - ly _ 12 X (72)2
o o = 31,080 lb in

Since the distributed load is uniform, the relation for the moment
according to Equation 8.26 is

dm + km = w

wM = A cos kx + B sin kx + 77,The solution is

Since M = Ml at X = 0

M = 0 at X = L
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Therefore,

cos kx —
sin kl

sin A’x + 1

Substituting numerical values, we find that

P 5340 = 0.2489 X 10-
E1 1.3 X 10« X 16.5

k = 0.01578

kl = 0.01578 X 144 = 2.272 rad = 130.2°

w 12

k^

M^k^

0.2489 X 10-*

31,080

= 48,200

= 0.645

sin kl = 0.7638

w 48,200

cos kl = —0.6455

Therefore,

.1/ = 48,2001-0.355 cos (0.01578x) - 1.610 sin (0.01578x) + 1]

The moment diagram is shown in Figure 8.11.

The maximum compressive stress is

, P
,

Me 5340 . 31,250 X 3 .f-j + -r-— +

8.11 Principle of superposition for beam columns. The principle of

superposition docs not apply in the sense that the moments for one

system of loading including the axial load can be superimposed or added

to the moments for a different system of loading with a dijferent axial

load in order to get the combined moments. It can be shown, however,

that the moments for two systems can be superimposed if the axial load

is the same for both.

Consider a beam to which an axial load Pi and a distributed load pi

are applied and then from which the loads are removed and to which an

axial load Pz and a distributed load pz are applied. The moments in

each case are

Ml = Mli - Piyi

M 2.

— M L'i — P 2yi

If the moments are superimposed, then

and

But

M = Ml -f" M2 = Mli
dm ^ ^
dx^

d^

Piyi + Ml 2 - P22/2

T>

dx^
(Mil -f Mil) = Pi + P2 = p
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and, if Pi = Pj and y

then

yi + 2/2 so that~ (2/1 + j/j) = ^
dm . P „
dx‘^ El ^

which is the equation for the beam column with loads superimposed.

This principle is very useful since, if the moment distribution is

known for two different loadings of beam columns, the moments for the

combined loading can be obtained by superposition.

It should be emphasized that bending moments for two geometrically

similar beam columns can be superimposed only when the axial loads are

the same for each. The final axial load is the original axial load acting

on either beam column.

8.12 Deflection of beam columns. The deflection of a beam column

can be determined from the equation for the equilibrium of the beam
column expressed in terms of the deflection. Therefore, if the moment
in the beam column is given by

M ^ Ml- Py

then since M = El^ it can be expressed as

_Ml
dx^ El y El (8.27)

This equation is then solved for y in a manner similar to the way Equation

8.26 is solved for M.
If the moment distribution has already been determined, however, it

is usually easier to solve for the deflection from the equation for the

moments:

M Ml - Py

so that y = — (8.28)

By using this method the deflection for the wing of Example 8.2 is the

moment represented by difference between the dashed and solid line

curves of Figure 8.11 divided by the axial load P.

8.13 Beam column with end moments. In order to develop some
expressions that will be useful in solving statically indeterminate beam
column problems, the rotations at the ends of a simply supported beam
column with end moments will be determined.

Consider the beam column shown in Figure 8.12. Since there is no

transverse load, the equation for the beam column is
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Therefore,

Now at a: = 0,

and at a; = L,

therefore,

M = A cos kx + B sin kx

M = Ma
M = 0

M = Ma{cos kx — cot kL sin kx)

The moment in the simply supported beam neglecting the axial load is

Ml = Ma(^1-

and from Equation 8.28

y
—

1 ^ ^ cos kx — cot kL sin

Therefore, ^ ~ (z
~ ^ kx — k cot kL cos A-x^

The rotation of each end of the beam can be determined from the

y

Fig. 8.12. Beam Column with End Moment.

equation for the slope. Thus, since the slope is negative at the left end,

«- - - (I).-. = T (i
-

® p \L sm kLj

These rotations may be written in the form

where

dEI
MaL

” ~ %EI ^

'I' = ^^2 (1 - IfP cot kL)

6 / kL _ \
^ “ (A-L)2 Vsin kL /

(8.29)

(8.30)

If a positive beam bending moment Mb is applied at the end B and

Ma = 0, then

MbL
6EI

,

MbL
,
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Therefore, if both end moments are applied simultaneously, then

according to the principle of superposition we have

Ob = ^jiMA<t> + 2MB^f') (8.31)

8.14 Beam column with end moment and one end fixed. Consider

the beam column shown in Figure 8.13 with an end moment at A of Ma
and the other end fixed against rotation.

P

Ma

A

Mb

Fig. 8.13. Beam Column with One End Fixed.

Since the rotation at B is zero, then by means of Equation 8.31 we
have

Ob = 0 = {2Mb^(^ +

Mb= - ^
Ma

I
(8.32)

It will be recalled in the development of the moment distribution

method .(Article G.5) that for an ordinary beam the moment induced

at the fixed end of a beam is one half the magnitude and opposite in

direction to the moment applied at the simply supported end. The
carry-over factor in this case is one half. In like manner, the carry-over

factor for the beam column as determined by Equation 8.32 is

c =
2xp

(8.33)

It is interesting to note that Mb becomes very large for the beam
shown in Figure 8.13 when i/' — 0.

Let ^ = 0 = v-,-rr«(l — kL cot kL)
\kL)^

or tan kL = kL

The smallest value of kL satisfying this condition, other than for kL = 0,

.is

Hence,

and

kL = 4.49

P = 2.025

20.16

ir^EI

L2
(8.34)

This is the initial buckling load. The corresponding end fixity factor

for a column with one-end fixed and the other end pinned is 2.025.
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8.16 Fixed-end beam column with uniform transverse load. The
fixed-end beam column with a uniform transverse load of intensity w is

resolved into two statically determinate systems, as shown in Figure 8.14.

The end moments will be determined by superimposing the two systems

so that the rotations at the ends are zero.

y

Fig. 8.14. Beam Column with Uniform Load.

The bending moment for a simply supported beam column with a

uniform transverse load was determined in Article 8.9 and found to be

M = — ^> cos kx — sin /rx — ll
L \ sm kL J J

The moment in the simply supported span, if the axial load is neglected, is

Ml = wLx wx^
2~ '

"X
Therefore,

Ml - My-—j^
1 \ wLUL

,

WX‘

2 ^ + -2

dy _ w
\ _ L

di~ P\~ 2

,
W [

, /COS /tL — . 1 )

r + F “ M)

X -
I

[sin frx + cos /rx]}

wU
El “

, 1 fl
,

1 /cos A-L — AT
where « - [2 ^ jtL \ sin kL /J

(8.35)
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From symmetry = 6'^

The rotation of the end of the simply supported beam column with

end moments as determined in Article 8.13 is

e
//

A
MaL
iSEI

(24/ + 0 )

In order to have the slope at the end of the beam zero corresponding

to a fixed end
= e:

or Ma ^ o

By means of the trigonometric half-angle relations this can be expressed

as

Mx = Mb = ^ cot (8-36)

If we know the moments at the ends of the beam we can determine

readily the moment at any section.

8,16 Equation of three moments for beam columns. The develop-

ment of the equation of three moments for beam columns is similar in

Fig. 8.1 5. Continuous Beam Column.

procedure to that for ordinary beams, as discussed in Article 6.2. The
continuous beam column is considered cut at the supports, and the

support moments are evaluated for the conditions that make the beam
continuous over the supports. The beam column resolved into two

statically determinate systems is shown in Figure 8.15.

Let Bbi and 0b2 be equal to the rotations of the simply supported

spans to the left and right of the support B due to only the axial loads

and transverse loads. These rotations can be evaluated in a manner
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similar to those in Article 8.15 for the beam column with the uniform

transverse load.

If e',, and $32 are the rotations to the left and right of support B
because of the moments Ma, Mb, and Me, when the spans are assumed

to be simply supported, then from Article 8.13,

e'm = + M^4>i)

~ We\l>
Mc<t>^

For continuity across the support B

Obi — Obi — — {6b2 “
or 6bi + ^'b2 ~ ^Bi + 0b 2

Assuming E is a constant for all spans and substituting the values for 6bi

and dB2 above equation, we have

MA j- <t>\ B (
y- H— ^2 1 “h Me y- <#>2 = QE{6bi ”1“ 0b2) (8.37)

^ I \i 1 ^ 2 / ^2

where Obi = rotation to left of B assuming span 1 is simply supported

and carries a transverse load and axial load only. This is the equation

Fig. 8 . 16 . Two Span Beam Column.

of three moments for beam columns. It may be used in the same way
that the ordinary equation of three moments is used for solving multi-

span beams.

l]xAMPLE 8.3. Determine the moments at the supports for the beam
analyzed in Example 6.1 except that an axial compressive load Pi of

24,000 pounds is added to the left span. The beam is shown in Figure

8.16.

Solution. The data given in Example 6. 1 are

Zn
m; = 10 Ib/in a = 5 in y- == 30

P = 300 lb /i = 1 in^

Li = 30 in h = 1.5 in* ^ = 24
i2

L 2 = 36 in El = E2 = 10.5 X 10® psi

In addition, Pi = 24,000 lb
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For span AB

k

kL

<t>i

'I'l

^1 — 24,000 _ Q QQ228
Eh

~
10.5 X 10“ X 1

0.0477

0.0477 X 30 = 1.431 rad = 82°

{kir
3

^ A _ 6 / 1.431

\sinA-L V (1.431)2 \0.9903 V
(1 — kL cot kL) =

(kL)^ (1.431)2

^2=1 since there is no axial load on span BC.

(1 - 1.431 X 0.1405) = 1.171

The rotation at B of span ( 1 ), if we consider that it is simply supported,

is given by Equation 8.35:

wL^ 1 fill/ *^'5® “ 1^1W 12^ H. V sin kL )\

10 X (30)» 1 fl
,

1 /0.1392 - l\] _ 14,-lGO

E X 1 (1.431)2 [2 1.431 \ 0.9903 /J E

The rotation at B of span (2) can be determined by means of the

methods given in Chapter 4.

PLl _ 300 X (36)2 _ 16 200

I 6F/2 16E X 1.5 E

Therefore, 6E(0bi + 0^ 2) = QE - —|^) = -12,240

and ilf
^ ^ + 23/b ^ 1^2

)
+ Me - 12,240

(125 X 30 X 1.304) + 2Mb[(30 X 1.171) + 24] + 0 = -12,240

ilfB = - 145 lb in

The bending moments at the supports are therefore

Mj. = 125 lb in

M„ = - 145 lb in

Me = 0

8.17 Additional considerations of beam columns. Only a few simpli-

fied cases of beam columns have been analyzed in the preceding articles.

It is seen easily that the solutions can become mathematically involved

for complicated loading conditions. For this reason it will be well for

the student who intends to work more intensively in this field to look up
the methods for graphically solving beam columns in the references given

at the end of the chapter.

Only the equation of three moments for solving continuous beam
columns has been considered here. Actually a method exists which is an
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extension of the moment distribution method and in which the modifica-

tion of the distribution factors and carry-over factors due to the axial

compression load is considered. For further information consult the

references at the end of the chapter.

Problems

8 . 1 . Assuming that the deflection curve of the strut shown in Figure 8.4 is a

parabola, determine the elastic buckling load by the elastic energy method.

8.2. Determine the Euler load for the aluminum pin-ended strut with vertical

end pins shown in Figure 8.17.

P.

END VIEW

Fis. 8.17. Strut with Variable Cross Section.

8 .3 . Using one of the tangent modulus curves for stainless steel given in the

ANC-5, determine the column curve for a pin-ended stainless steel column having

a cross-section area of 0.1 194 in~, a radius of gyration of 0.386 in, and a moment of

inertia of 0.0178 in'‘.

8 .4 . A pin-ended 1-0.035 24ST aluminum alloy tube 20 inches long carries

a compressive load of 2000 pounds. Determine the margin of safety. {Note:

refer to the ANC-5 for column formulas, curves, and tube data.)

8.6.

If there is a compressive load of 60,000 pounds on an engine mount strut

that has ends welded into the connecting structure so that the end fixity coefficient

is 2, determine the margin of safety for a 2^ — 0.095 4130 tubular strut 60 inches

long. Fty = 100,000 psi.

8.6. Determine the allowable load for the 17ST link shown in Figure 8.18.

{Note: The ends of the link are pin-connected in one plane and completely

restrained against rotation in the other.)

8.7. A 17ST aluminum alloy round tube 20 inches long is required to carry a

compressive load of 5000 pounds. If C = 1 and Fty — 40,000 psi, determine the

size of the tube for a small positive margin of safety. (Use standard sizes given

in the ANC-5.)

8.8. Determine the maximum bending moment for a uniform strut fixed at

one end and carrying a compressive load P at the other end along with a trans-

verse load of mP in which m is a constant.
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8.9 . A simply supported steel beam column 80 inches long, with a cross-

sectional moment of inertia of 0.4 in^ has an end moment at the left support of

10,000 lb in. If the direct axial compression is 3000 pounds, determine

( 1 ) location of maximum moment

(2) magnitude of maximum moment.

8 .10. Determine the moment at the center of a pin-ended beam column with

an axial compressive load P applied at each end and a transverse concentrated

load Q at midspan. {Note: the slope is zero at the midspan.) If the beam is a

1^-0.058 alloy steel tube 40 inches long, deter-

mine the maximum stress when P = 1000 pounds
and Q = 750 pounds.

8 .11 . Using the fonnulas for beam columns,

given in Roark Formulas for Stress and Strain^

and the principle of superposition, determine the

equation for the bending moment for a simply

supported beam column with a distributed trans-

verse load varying linearly from a value of w at

one end to 2w at the other.

8.12. A simplified landing gear strut shown
in Figure 8.19 is made of a continuous 2^-0.083

alloy steel tube pin connected at C and heat

treated to Fey — 165,000 psi. Determine

( 1 ) reaction at ends of strut BC
(2) maximum bending moment in strut

(3) margin of safety based on yielding.

8.13 . Under what conditions can the strength of a compression strut be
increased by heat treatment?

8.14. Determine the fixed-end moments for a beam column with a uniformly

varying transverse load which is zero at one end and has a value 50 at the other.
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CHAPTER 9

Compressive Strensth of Thin Sheet Members

9.1 Introduction. Many colunans and struts, as well as the covering

of the surface of the airplane, are composed of thin metallic sheets. The
combinations of surface sheets reinforced by longitudinal stiffener

members commonly used in present design are called sheet-stiffener

'panels. There is a trend in design away from the use of the sheet-stiffener

type of construction and toward a truly monocoque or shell-like construc-

tion. The strength of all of these various members depends, in varying

degrees, on the compressive strength of thin metallic sheet.

It was indicated in the previous chapter that many columns may fail

by local instability. This type of failure is most likely to occur in

columns with cross sections composed of thin sheet so that collapse of

the thin wall is possible. It is also likely that the surface of a wing or

fuselage will wrinkle locally, owing to the loads carried by the member.

The designer should be able to predict the loads required to buckle a

column locally or to wrinkle a surface, as well as to be able to determine

the maximum loads such members can carry.

Most of the methods used in calculating the compressive strength of

sections made up of thin material are semi-empirical because of the com-

plexity of the problem. However, the methods given in this chapter

have been correlated with tests and are considered to be sufficiently

accurate for preliminary design.

9.2 Flat sheet with edge compression. As in the analysis of columns,

the analysis of the buckling of sheet is divided into two groups: (1) elastic

stability and (2) inelastic stability. Elastic stability will be considered

first.

The closest correlation between flat sheet in compression and the

columns previously analyzed occurs when the sheet is unsupported along

its unloaded edges. In this case the only difference between the sheet

and the column is that the width of the sheet may be of the same order

of magnitude as the length, whereas in the column the cross section is

small as compared with the length. A sheet with edge compression is

shown in Figure 9.1.

Assume a uniformly distributed load, p, along the top and bottom
edges of the sheet. Consider a strip of sheet of unit width. As the

compression load causes the sheet to bend, the fibers on the compressive

side of the sheet tend to expand laterally because of Poisson^s effect, and
the fibers contract laterally on the tension side for the same reason.

The sheet therefore tends to dish inward, with a curvature in the vertical

144
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plane due to the direct bending, and a curvature in the horizontal plane

due to the Poisson effect. The latter is called anticlastic curvature,

y

Fig. 9.1 . Compression of Sheet with Unloaded Edges Free.

y

Fig. 9.2. Deformation of Flat Sheet Element.

However, since the sheet is wide, the material adjacent to the strip

tends to restrain the anticlastic curvature, so that a moment about the

vertical edges of the strip is induced.
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Consider a unit square cut from the strip with a direct moment M\
applied to the horizontal edges and an induced moment M^on the vertical

edges, as shown in Figure 9.2. By applying Mi alone first, the curvature

in the plane of the moment is 1/pi, and the induced curvature in the

horizontal plane is --m/pi* The minus sign denotes that the center of

curvature is on the side of the sheet opposite to the other center of

curvature. The same thing holds for only; the curvatures in the

same directions are and l/p2 . The curvature in the 1-1 direction

with both moments acting simultaneously is by superposition

and in the 2-2 direction

2 _
Pi

_
P2

X Ml
According to the flexure formula — = vfy-

Pi 1

Ry

R2

1

Since /i =

and

Therefore,

Pi

]_

P2

Ri

J?2

12Mi
Et^

12M2

Et^

Et^

22
Et^

P2

Pi

{Ml - PM2)

{M2 - pMi)

If the restraint of the sheet is sufficient to prevent the curvature in the

2-2 direction, then

Therefore,

or

where

™ = 0 and M 2 = pMi
tl2

Til

^ ~

Ri D

D = ....

12(1 - M*)

(9.1)

D for the sheet therefore replaces El for the ordinary bending case so that

Euler^s equation becomes

__ __ ir^Et^

P “ 17 “
12(1 - n^)L^

(9.2)

where p = load per unit length of loaded edge (Ib/in)

M = Poisson^s ratio.
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If the sheet has a width b, then the total load is

(9.3)

(9.4)

9.3 Flat sheet in compression with unloaded edges supported. If the

unloaded edges of the flat sheet shown

in Figure 9.1 are guided in F-grooves so

that the edges of the sheet can rotate but

not deflect, the edges are said to be simply

supported or guided. Edges in slots that

completely restrain the rotation of the

edge are fixed. The edge conditions influ-

ence the curvature across the sheet so

that the compressive load required to

produce buckling depends on the edge

conditions. •

The analysis of a sheet with various

edge conditions considers the moment in

the sheet in two directions as well as a

twist. This analysis is too complicated

to be discussed here, but the results will

be indicated.

Consider a sheet with all edges simply supported. As in the case of

columns, the buckling load can be expressed in terms of a fixity coefficient.

Equation 9.4 can thus be written

_
12(1 -

P _ p _
A 12(1

KiT^E

12(1 - (9.5)

/ V .

where Ki = I
“ fixity coefficient

m = an integer number of half-waves in buckled plate in direction

of load (see Figure 9.3).

The magnitude of Ki and hence of Fc depends on the ratio of L/b.

When L/b is less than one, that is when the sheet is wider than it is long,

then L^/mb^ is always less than m and the smallest value of iCi is when m
equals one. The sheet therefore buckles into one half-wave, and the

stress is
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By differentiation it can be shown that the factor in parentheses is a

minimum when L = 5. Therefore, a square sheet will require the least

stress to buckle it, and conversely a sheet that is not square will tend to

buckle into squares, as shown in Figure 9.3.

If Equation 9.5 is rewritten as

(9.6)

where
/ L . mtV TT^

12(1 - M“)

the value of K2 for ja equal to 0.3 and for various L/h ratios can be

plotted as shown in Figure 9.4. From these curves it is evident that a

Fig. 9.4. Fixity Factor for Sheet with All Edges Guided.

sheet with an L/b ratio slightly greater than one will buckle into one half-

wave because the load is less for forming one half-wave than two half-

waves. The variation of and hence the stress, is therefore given by
the solid curve.

It is common to include all the factors except E and t/b in the fixity

coefficient. Thus, for a value of m = 0.3, which is apprqximately correct

for steel and aluminum, the allowable stress for a sheet with any edge

condition is given as

F.^Ke{^J
(
9.7)

where K = fixity coefficient

t = thickness of sheet (in)

h = length of loaded side (in).

Values of K for various edge conditions are shown in Figure 9.5. The
peaks indicating the change in modes of buckling corresponding to the

change in the number of half-waves have been omitted. Coefficients for

other conditions are given in the ANC-6.
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The form of the equation for a panel in shear, that is, with shear

forces applied along the edges of the fiat panel, has the same form as for

the panel in compression. The value of K for a flat panel in shear with

all edges guided is given by the dashed line in Figure 9.5.

Example 9.1. Compare the loads required to buckle elastically,

similar sheets of steel and aluminum of the same weight.

2^3 4 5

b

Fig. 9.5. Fixity Coefficients for Flat Sheet. 1. All edges fixed/ 2. loaded edges

guided^ unloaded edges fixed; 3. all edges guided; 4. loaded edges guided, one unloaded

edge fixed and one free; 5. loaded edges guided; one unloaded edge guided and one free;

6. shear panel with all edges guided.

Solution. For panels of the same length, width, and weight, the thick-

nesses will vary inversely with the densities, w.

Equating weights gives = LhtaWa

then
ta ^ 0.283

is Wa O.lOO
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The aluminum sheet will carry about 8 times as much compressive

load before buckling as a similar sheet of steel of the same weight. Since

the aluminum is lighter per unit volume than steel, it is possible to use it

in greater thicknesses and thus obtain more stability strength.

9.4 Buckling of sheet stressed beyond the proportional limit. As for

the column, if the stresses exceed the proportional limit of the sheet, the

modulus of elasticity is no longer a constant and its variation with

the stress must be considered in determining the buckling load. The
buckling of the sheet is more complicated than the column since the sheet

involves restraint along four edges and curvatures in two directions. The
same idea of expressing the allowable compressive stress in terms of a

reduced modulus’' is used for the sheet as was used in the column so that

Equation 9.7 is modified for the inelastic range as follows:

F. = KEr
^0

'
(9.8)

where = rfE

17 = a factor for modifying E when the stress is greater than the

proportional limit.

Many investigators have suggested forms for rj based on test and

theory. Several of these forms involve the tangent modulus of the

material, and most are complicated and difficult to use. Hoff has sug-

gested a method for determining t? which although conservative is quite

simple, to use. Because of the simplicity and conservativeness of the

method, its use is recommended for preliminary design. Regardless of

what method is used, tests should be made on the structure before the

final design is determined. If test curves exist they should be used.

Hoff’s method is based on the fact that since the regular column curves

for a material really give the relation of E to Er as specified by the

licensing authority, the column curves can be used for determining the

allowable compressive stresses in flat sheet in the inelastic range. Figure

9.6 shows a column curve as given in the ANC-5 for tubes of 24ST. For
an ordinary column in which local failure is not considered, the allowable

stresses in the inelastic and elastic ranges are given by

V
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It follows therefore that if the stress is calculated on the assumption that

the material is elastic, the actual stress will be reduced by a factor r} from

the calculated elastic stress. If the stress in the sheet is assumed in the

elastic range and equated to the Euler column stress, then

or
U ^ T b

P VKt
(9.9)

The stress corresponding to this L'/p is then determined from the column

curve of the material. This stress is the allowable stress for the sheet.

The method is best illustrated by an example.

Example 9.2. Determine the buckling stress for a 3" X 3" X 0.091"

flat 24ST sheet, assuming that two edges are carrying a compressive load

and that all edges are guided.
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Solution. Assume that the material is elastic. Then

F. = 3.6 X 10.5 X 10« 34,800 psi

This stress is higher than the proportional limit; therefore the sheet will

buckle inelastically. Substituting this stress into the Euler equation

gives

L' ^ TT 6 ^ TT 3 ^
P VX ^ \/3.6 0.091

The column stress corresponding to this L'/p can be determined from the

column curves for the material, Figure 9.6, or from the equation given in

the ANC-5 for this material. Hence,

Fc = 50,000 - 421 — = 50,000 - 421 X 54.6 = 27,020 psi
P

9.6 Crippling strength—open sections of flat sheet elements. Sec-

tions such as angles, channels, and so on, that do not form completely

closed sections, such as cylinders, are called open sections.

It has been found that the load required to buckle short lengths of

open sections made up of flat sheet elements can be approximated closely

by summing up the loads required to buckle each element independently.

The total load thus determined divided by the area of the section is

called the crippling stress and corresponds to the stress required for local

buckling of the column. It has been substantiated also that the bend,
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where two elements join, supports the adjacent sheet elements as if the

edges of the sheet were guided.

The assumption that the buckling loads for the separate sheet ele-

ments can be added to obtain the total load has some logic. Consider a

channel section as shown in Figure 9.7. If a compressive load is applied

to the ends of the channel by two parallel crossheads in the testing

machine, the legs, being the weaker elements, will buckle first and thus

shirk taking additional load until the back finally buckles and general

collapse occurs.

If the legs of the channel, elements 1 and 3, are analyzed as flat sheets

with three guided edges and one free edge for which the allowable stresses

are Fc\ and Fc 3 ,
and if the back of the channel is analyzed as a flat sheet

with four edges guided with an allowable stress Fc2 ,
then the total load

carried by the section is

P == Fibiti -f- F2b2t2 “t“ Fsfy^ts (9.10)

and the crippling stress is

F -t-

where

Fcihih H~ Fc^b^h + FczhiU
bih + 62^2 + (9.11)

0.5

(0

0.75
(2)

0.032

bi, etc.. = centerline width of sheet element (in)

hy etc. = thickness of sheet element (in).

It is apparent that putting bends on the outstanding legs increases the

strength of the section since this tends to change

the restraint of the edge from a free condition to

a guided condition which thereby increases the

value of K used in the analysis.

Example 9.3. Determine the crippling stress

for the 24ST channel shown in Figure 9.8.

Solution. It will be assumed that L/b for each

sheet element is greater than three so that the

fixity factor K is essentially a constant.

Using centerline distances gives

b. = = 1^1 b = ^-11?
h 0.032 ' h 0.032

For the outstanding legs 1 and 3

F.i = K^E = 0.46 X 10.5 X 10» X = 21,200 psi

This stress is approximately the proportional limit so that it does not have

to be adjusted for change in modulus.

For the back element 2, the stresses will be higher than the propor-

tional limit. Using Equation 9.9

J3L

= 22.4
Fig. 9.8. Channel Sec-

tion.
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= -4=- ^ 22.4 = 37.1
p y/K.2 \/3.Q

Therefore, from Figure 9.6

34,500 psi

2Fci5i/i + Fcit>2t2

26 i^i -f~ 62^2

(2 X 21,200 X 0.485 X 0.032) + (34,500 X 0.718 X 0.032)

(2 X 0.485 X 0.032) + (0.718 X 0.032)

== 26,800 psi

The test stress for this section was 28,000 psi. Ratio of calculated to

test stress is = 0.957.

9.6 Crippling strength—open-section extrusions. Open-section ex-

trusions are analyzed similarly to the thin-sheet open sections. How-

ever, since the elements of the extrusion are usually thicker as compared
with their width and since the place where the elements join are usually

generously filleted, the effect of the extra metal is considered by measur-

ing the width of the flat element up to the beginning of the fillet radius.

This allows for a slightly smaller h/t ratio and therefore a higher allowable

stress on the element.

Example 9.4. Determine the crippling load and crippling stress for

the 24ST bulb Tee-section shown in Figure 9.9.

Solution. The h/t ratios are

Fc2 =

and Fee =

k
^=120-
0.05

’

h = 06375
t2 0.05

12.75

The elements 1 have one free edge; therefore,
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and from Figure 9.6

Fci = 26,500 psi

To be conservative, we assume that the bulb offers no additional

restraint to the edge of element 2. Therefore,

and

— = ^ = — X 12.75
P y/Kt <2 V0.46

Fc2 = 25,200 psi

59.1

The crippling stress is therefore

P — ~l~ ^c252^2

25 i^i -|- 62^2

(2 X 26,500 X 0.60) + (25,200 X 0.6375)

(2 X 0.6) + 0.6375

The crippling load is based on the whole area.

26,100 psi

P = = 26,100 X 0.145 = 3,780 lb

The test crippling stress for this section is 28,000 psi. Therefore, the

ratio of predicted stress to test stress is

26,100

28,000
0.932

9.7 Strength of columns of thin-walled open sections. Columns with

open sections made of thin sheet fail locally if the length of the column

is small. The upper limit of the column failure in the inelastic range is

therefore the crippling strength of the section. The problem of the failure

of such columns in the inelastic range is difficult to solve so that an

empirical method is often used. A semi-empirical method widely used

is to assume the allowable crippling stress Fee as the upper limit of the

allowable column stress for small L'/p. This is equivalent to replacing

the column yield stress, Fcoj used for solid sections, by the crippling stress,

Fccf since the section will buckle locally for small IJ!p'^. The column
curve in the inelastic range is assumed to be a parabola, and the Euler

curve is valid in the elastic range as before. Therefore, replacing Feo by
Fee in Equation 8.17, we have

and

= Fee 1 -
4x2^0 V

P

for - < TT

P V Fee

* C ' \ 2 ^ ^ ^
M* p

fij

4
'2CE
Fee

(9 . 12)

(9.13)

Tests performed on open-section columns with flat ends resting on the

crossheads of a testing machine indicate an average fixity factor of C = 2

to 3.
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Example 9.5. Determine the allowable column stress for a 24ST
column 12 inches long and with a channel cross section similar to the one

analyzed in Example 9.3.

Solution. The moment of inertia of the channel section will be least

about a principal axis parallel to the back. The distance from the center

line of the back to the principal axis can be determined by summing
moments of areas. If we call this distance then

ZyA
y =

.j

-

0,468 + 0.016^ 2 X 0.032

""
(2 X 0.468 X d'03^-n0.75 X 0.3^

= 0.139 in

(0.484 X 0.032) - 0.139y + ~ (0.484)» 0.032

The moment of inertia about the centroidal axis is

I = (0.718 X 0.032)(0.139)‘^

+ 2

= 0.00137 in"

and A = 0.0540 in^

Therefore, '^ = ^/|
= ™

L

p

12

0.159
75.5

But from Example 9.3, Fee — 26,800 psi so that

I2CE 12

""yiFec ’'x'

2 X 2 X 10.5 X 10'

26,800
= 124

Since = 75.5 < 124

the parabolic column Equation 9.12 will be used:

Fe = Fe.
Air'^EC \p

For C = 2 Fe = 26,800 - 0.868

= 26,800 - 0.868 X (75.5)=* = 21,900 psi

9.8 Ultimate strength of flat sheet. It has been determined experi-

mentally that flat sheet with guided or fixed edges will carry a higher

compressive load than the buckling load. Since the edges are restrained

by the supports, the sheet adjacent to the supports is in effect stiffer than

the middle portion of the sheet, and in some cases failure does not occur
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until the material along the supports reaches the yield point. Tests

conducted on flat sheet indicate that the stress distribution along the

loaded edges has a sinusoidal character, as shown in Figure 9.10. After

buckling occurs, the stress in the center of the loaded edges does not

increase and shirks taking additional load. The stiffer edge portions

take the additional load after buckling occurs.

Kdrmdn suggested that an approach to predicting the ultimate load

for flat sheet could be made by considering all the load to be carried by
the sheet adjacent to the restrained edges. The stress in this portion

of the sheet is assumed uniform and equal to the stress at the edge. The

AT BUCKUNG AFTER BUCKUNG

Fig. 9.10. Effective Width.

width of the sheet having the edge stress is called the effective width.

If we assume that the edge stress is given by an equation having the same

form as the buckling equation, then

where = edge stress (psi).

For a panel as shown in Figure 9.10 there are two widths effective in

carrying the load. If we call the effective width w so that hi = 2w and

assume that the edges are guided so that X = 3.6, theti

= 3.6E

w — 0.949^

It has been found that a factor of 0.85 agrees better with experimental

data. Therefore,

» - 0 ,85, (9 . 1 -
1
)
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This is the design equation used in the ANC-5. If failure occurs when
the edge stress is equal to the compressive yield stress of the material Fcyj

then the ultimate load of the sheet is

P = 2wtFcy = 1 .70^2 y/EF7y (9.15)

The effective width can be expressed in terms of the critical stress fcr

since

Solving for E and substituting into Equation 9.14 for K = 3.6, we have

w = 0.4486 (9.16)

where 6 = width of panel (in)

u = buckling stress for sheet (psi).

More recent experiments show that a closer approximation to the effective

width is given by

w = 0.50b (9.17)

This is known as Marguerre^s equation.

9.9 Strength of columns of thin-walled closed sections. In the case

of open sections, such as channels or angles, the buckling of the sheet

sections limits the maximum load that the column can carry because the

section is not sufficiently stabilized to take an increased load. In the case

of closed sections, however, the walls will carry more load than the load

required to buckle the walls so that the upper limit for the column load, as

L'/p approaches zero, is the ultimate strength of the column cross section.

The allowable column stress for columns with closed sections can be

approximated by substituting the ultimate stress of the section for the

crippling stress used in Equation 9.12.

9.10 Strength of curved sheet. There seems to be no completely

satisfactory analysis of curved sheet available which will predict the

buckling stress oi' crushing stress of curved sheet. Many empirical

formulas do exist which are suitable for calculating these stresses for

given ranges of values of radius, thickness, length, and edge fixity condi-

tions. Some of these equations are discussed in the references given at

the end of the chapter.

Tests have indicated some general results for sections made up of

straight and curved elements, as shown in Figure 9.11. For example, it

has been shown that if the edges of a curved sheet are supported, the edge

stress which can be carried is not much greater than the stress required

to buckle the center portion of the sheet. The following suggestions have
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been made by Sechler for estimating the crushing stress of sections having

curved sheet elements.

(1) If the buckling stress for the curved element is reached before any

straight element buckles, then the crippling stress for the entire section is

taken as equal to the buckling stress for the curved element.

(2) If the buckling stress for the weakest curved element is reached

after a flat element buckles, then the total load carried by the section is

Fig. 9.11. Sections with Curved Elements.

equal to the sum of the buckling loads of the buckled flat elements, and
the product of the buckling stress for the weakest curved element and the

area of the unbuckled element.

Since the buckling stresses of the curved elements must be known in

order to apply this method to sections with curved elements, it is desirable

to test the curved section directly unless experimental data for the curved

elements are available.

A method has been suggested for predicting the ultimate crushing

stress for a curved sheet having a

large radius of curvature as might

be used for covering on a fuselage.

By assuming that the edges are

guided by stiffeners or other means,

the ultimate stress is based on the

effective width concept similar to

that used for flat sheet. However,

since the curvature tends to

strengthen the sheet, the center por-

tion between the effective widths is

assumed to carry a stress

/c = 0.3£| (9.18)

where R = radius of curvature of

sheet (in)

i = thickness of sheet (in).

If we refer to Figure 9.12, we can

strength for the curved sheet by
express the ultimate compressive
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Fc
p 2f..wt + Q.2,E (6 - 2w)

A bt

0.3£' ^ .

.

VeW H -jj- {h - 2w)t
_ (9.19)

where w — effective width calculated in the same manner as for flat

sheet (in).

9.11 Compressive strength of sheet-stringer panels. It is common
practice in the design of modern aircraft structures to strengthen the

sheet carrying compressive loads by attaching stringers to the sheet

Fig. 9.13. Sheet-Stringer Panel.

that act as columns. Since the sheet lusually buckles at a lower stress

than the stringers, only the effective width of the sheet is assumed to act

with the stringers as load carrying elements, Figure 9.13. The load

carried by each stringer and its adjacent sheet is therefore

Pst = fst(Ast + 2wt.) (9.20)

where = allowable stringer stress (psi)

A,t == area of stringer (in^).
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Since the effective width is determined by the edge stress on the sheet

that is now the stringer stress and since the allowable stringer stress

depends on the sheet acting with it, the solution of this problem is one of

trial and error. The steps in the solution are:

(1) Determine the allowable column stress for the stringer alone.

(2) On the basis of this stringer stress, 4etermine the effective width

of sheet acting with the stringer. This changes the radius of gyration p

of the column.

(3) Determine the allowable column stress for the new section com-

posed of the stringer and effective sheet acting with it.

(4) Determine new effective width as in step (2) and repeat procedure.

An example will be used to illustrate the method.

Example 9.6! Determine the ultimate load carried by each stringer

and effective 24ST sheet adjacent to it for the panel shown in Figure 9.13

if the stringer has a channel section similar to the one analyzed in Exam-
ples 9.3 and 9.5 and if

h = 3.75 in

ts = 0.032 in

L = 12 in

pst = 0,159 in

Soiution. Assume an end fixity coefficient C — 2. The column

equation for the stringer is given in Example 9.5 as

Fc = 26,800 - 0.868

L 12
For the stringer alone — = q 159

“ 75.5; therefore,

Fc = 26,800 - 0.868(75.5)2 = 21,900 psi

The buckling stress for the sheet is

Asi = 0.0540 in2

= 0.00137 in^

pst = 0.155 in

and, since the stringer is an open section and torsionally weak, the edge

conditions of the sheet at the stringer will be assumed guided so that

K = 8.6. Then

/o
fer = 3.6 X 10.5 X 10«

{ 3 ^ )
= 2,760 psi

The effective width of sheet from Equation 9.17 is

I = 2iv = b

.

= 1.880 in

2;760

21,900
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The new column section is therefore composed of the stringer with

1.880 inches of sheet. Figure 9.14 shows the relation between the radius

of gyration of any stringer to the radius of gyration of the stringer plus

Jk
A»

Fig. 9.14. Determination of p/p,i.

the effective sheet acting with it. By using these curves when

1.

S = 2/»( +
S 0.171

_
,

0.032 _ .

0.155 H = 0.171 m

0.159
=

1.880 X 0.032

0.0540
= 1.11

then

and

The new

Pst

^ = 0.88
Pst

Pi = 0.159 X 0.88 = 0.140 in

L .

Pi
IS

L

Pi

12 = 85.7
0.140

and the column stress is

f,t
= 26,800 - 0.868(85.7)2 = 20,400 psi

The effective width is therefore

in
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By repeating previous steps,

^ = 0.875
pBt

P2 = 0.139

- = 86.3
pi

/., = 26,800 - 0.868(86.3)=' = 20,300 psi

Since the last step did not materially change the allowable column stress,

the process can be stopped. The load on each stringer and adjacent

sheet is therefore

P = fstiA.t + Us)

= 20,300(0.054 + 1.93 X 0.032) = 2,350 lb

9.12 Inter-rivet buckling. It has been assumed that there is a con-

tinuous line of attachment between the stringers and sheet for the panels

analyzed in the preceding article. When rivets are used for the attach-

ment, this assumption is true only as long as the sheet does not buckle

between rivets. Some idea of the rivet spacing required to prevent

sheet buckling between rivets can be determined from a consideration of

the column action of the sheet between rivets.

The sheet adjacent to the stringer and the stringer act together and

have the same strain. The stress in the sheet and stringer is the same

as long as the sheet and the stringer are the same material and the sheet

does not buckle between rivets. If buckling between rivets occurs, then

the sheet does not take its share of the increasing load as the strain is

increased. If we consider the sheet between rivets as a column of unit

width and of length equal to the rivet spacing, then if the sheet buckles

at a stringer stress we can give the relation by

^ Cir^Er

{t)‘

where d = rivet spacing (in)

.
^ -

-Ji
-

-JtI
0">

C ~ end fixity coefficient of sheet at rivets = 4, since sheet cannot

rotate at rivets.

Therefore, /.<
= IW
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If the stringer stress is less than the proportional limit, then Er = E,

If the stringer stress is greater than the proportional limit, the reduced

modulus Er must be used.

If we assume that the stringer stress of 20,300 psi as determined in

Example 9.6 is sufficiently close to the proportional limit, then E = 10.5

X 10® psi can be used. The maximum distance between rivets if inter-

rivet buckling is to be prevented is

d = 1.81 X 0.032
->^

^^20 300^
""

Fischel, in the reference given at the end of the chapter, des(5ribes how
the ultimate load for a sheet-stringer panel can be estimated when inter-

rivet buckling occurs.

9.13 Additional considerations of sheet-stringer panels. Stringers

with open sections are torsionally weak and do not offer much restraint

to the tendency for the sheet to rotate as it buckles. The probable

mode of deformation for a sheet-stringer panel with open-section stringers

(a)

(b)

Fis. 9.15. Panels with Open-Section and Closed-Section Strinsers.

is shown in Figure 9.15(a). For this reason when we calculate the

buckling stress for the sheet used in determining the effective width, we
assume that the sheet has guided edge conditions at the stringers, and
that an edge fixity coefficient of iC = 3.6 is used. Closed-section stringers

or stringers that form a closed section when attached to the sheet are

torsionally rigid and tend to restrain the sheet from rotating at the

stringers, as shown in Figure 9.15(b). For this reason it is better prob-

ably to determine the buckling stress of the sheet on the basis that the

edges attached to the stringers are restrained from rotating and are

therefore fixed. The edge fixity coefficient for this case, as determined

from Figure 9.5(2), is iC = 6.3.
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Sometimes the proportions of the sheet-stringer panel are such that

the effective widths of two adjacent stringers overlap. In such a case

it is apparent that the entire sheet between the stringers is effective in

carrying the stringer stress.

It is difficult sometimes to correlate test data for sheet-stringer panels

with calculated values because of the unknown fixity conditions at the

ends of the panel where the loads are applied. Measured stresses on

panels with flat milled edges resting against the flat surfaces of the testing

machine crossheads indicate that a fixity factor of about 3 gives good

agreement between test and calculated values. Panels supported at the

ends by ribs or other elastic structures are not as rigidly supported as in

the test machine. In such cases a fixity factor of 2 sometimes is used.

The analyses of the panels in the foregoing articles have been made on

the assumption that the stress-strain characteristics of the stringer and

sheet are the same. This is not always the case, however, since a varia-

tion in the materials may mean that the proportional limit of the sheet is

reached before the proportional limit of the stringer. The two materials

then have different compressive load-carrying characteristics after one

of the materials has reached the proportional limit. This problem is

considered in Fischeks article referred to at the end of the chapter.

Nothing has been said about curved sheet-stringer panels. The
analysis of a curved panel is most difficult because the curvature of the

sheet tends to support the stringer by the tangential tension or compres-

sion stresses in the sheet. The interaction of the sheet and stringer is

very complicated, and an analysis of a curved panel cannot be considered

here. The student is referred to articles on the subject.

It should be apparent from the analyses of sheet and sheet-stringer

panels and from the discussions, that there is still much to be learned

concerning the behavior of such structures. It should be emphasized

that the analysis for any given structure can be very inaccurate so that

whenever possible tests should be made to verify the analysis.

Problems

9 .1 . A flat aluminum 17ST sheet 10 inches wide, 20 inches long, and 0.032

inches thick has all edges guided. Compressive loads are applied to the 10-inch

sides. Determine

(1) buckling stress

(2) number of buckling waves lengthwise

(3) load carried by the sheet if the stress at the two supported unloaded

edges is 25,000 psi.

9 .2 . A 24ST clad sheet 3 inches wide, 10 inches long, and 0.064 inches thick

has the 3-inch edges guided and the 10-inch edges fixed. Determine the buckling

load for the sheet if the 3-inch edges carry a compressive load.
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9.3. Determine the crippling stress for the 24SRT Z section shown in Figure

9.16.

9.4. Determine the crippling stress for the Z section of Problem 9.3, if the

x-inch tips on the legs are missing.

Fig. 9.16. Z Section.

TOTAL AREA '0.354 In?

Fig. 9.17. Channel Extrusion.

9.6. For the 24ST extrusion shown in Figure 9.17, determine

(1) crippling stress

(2) allowable load for a section of short length

(3) allowable column stress for a column 16 inches long having an end fixity

coefficient of 2.

9.6.

P

r.5

0.708

Determine the ultimate load for a 24ST curved panel 3 inches wide,

12 inches long, 0.020 inches thick, with a radius of curvature

of 20 inches, assuming that all edges are guided and the

long edges fail by yielding. The 3-inch sides carry a com-

pressive load.

9.7. A 24ST sheet-stringer panel was tested, and the

strain of the stringer at failure was 0.0019 in/in. If the

thickness of the sheet was 0.032 inches and it was attached

to torsionally weak stringers spaced at 6 inches, determine

h-0.051

N.A.

>

*-0.687-4 (1) area of sheet carrying same stress as stringers

(2) maximum allowable rivet spacing to prevent inter-

rivet buckling.

9.8. 24ST stiffeners with section shown in Figure 9.18

are attached at 5-inch intervals to 0.040-inch 24ST sheet.

If the sheet-stiffener panel is 16 inches long, determine the

allowable load for each stiffener with its effective sheet.

The crippling stress for the stiffener alone is 30,500 psi. Assume an end fixity

C = 2.

9.9. A hat-stiffened panel is shown in Figure 9.19. If the hat stiffeners are

A,t« 0.150 In?

« 0.5651n.

Fig. 9.18. Bulb
Angle Stiffener.

Fig. 9.19. Hat-Stiffened Panel.
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24ST clad with a crippling stress of 43,900 psi, a moment of inertia = 0.218 in^,

an area of 0.280 in^, and a center of gravity located 0.466 inches from the flat

sides, determine the allowable stress for a panel 20 inches long when the skin

is 0.051 24ST clad sheet. Assume an end fixity C = 2.
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Part IV

STRESS ANALVSIS





CHAPTER 10

Bendins

10.1 Introduction. All previous analyses, with the possible exception

of some of the buckling problems, have been concerned with the forces

and moments acting at various sections of the structure. A study will

be made now of the details of the distribution of the forces and moments
on the sections of the structure in order to correlate them with the

strength properties of the material.

Whereas before, our interest was focused on the overall sections of the

structure, now we will be concerned with the conditions at each point

of the sections. The conditions at a point in a material are usually

given in terms of stress or the force per unit area, and therefore the

analytical procedures are called stress analyses.

Since bending is an important consideration in designing a structure

which involves the bending moments, the associated stress conditions will

be investigated in the following articles.

10.2 Bending stress. The bending stress distribution on the cross

section of a straight homogeneous elastic beam was discussed briefly in

Article 4.7. In this case the strain distribution is linear, and the stress

at any point a distance u from the line of zero strain is

where according to Equation 4.17

I

R

Therefore, /

M
El
Mu
I

In most texts the symbol y is used in place of u. This was not done

before because of the possible confusion with the deflection which was

denoted by y. Since there is not much possibility of confusion now, the

bending stress will be specified as

(10 . 1 )

where / = bending stress (psi)

M = bending moment (lb in)

y = distance from neutral axis to point where stress is to be

determined (y positive downward) (in)

E = modulus of elasticity (psi)

/ = moment of inertia of cross section about centroidal axis(in^).

171
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The bending stress distribution on the cross section of a beam is shown
in Figure 10.1. It should be noted that, when the moment is positive and

y is positive, the stress is positive, which denotes tension.

The moment of the forces acting on the cross section of the beam must

be equal to the applied moment for equilibrium. This is illustrated best

by considering a small element of the area of the cross section of depth

Ay and breadth h as illustrated in Figure 10.1(a). The force acting on

this area is

AP = fb Ay = b Ay = ^ y AA

The effect of the stresses therefore can be replaced by forces acting on

small increments of areas, as shown in Figure 10.1(b). Since in this case

Fig. 10.1. Bending Stresses, (a) Bending stress distribution/ (b) forces acting on elements

of area.

only a pure bending moment is considered, there is no axial resultant

force and therefore the sum of the forces on the section must equal zero.

X AP = 0 = M
I I y AA

or in the limit
j y dA =0. This condition is satisfied when the axis

from which y is measured is a centroidal axis.

The moment of the internal forces should equal the applied moment
or
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but L dA == / b}" definition so that

M = M
It is convenient sometimes to use the concept of the forces acting on

the elements of areas in order to approximate the values of the bending

stresses. For example, consider a beam with heavy flanges and a thin

web, as shown in Figure 10.2. Since the web is thin, the forces acting

Fig. 10.2. Flanged Beam.

on the web are small as compared with the flange forces as shown in

Figure 10.2(b). In this case

M = Pd

where d ~ distance between centroids of flanges (in)

P = force on flange (lb)

and , /^2-Td ““2)

where A — area of flange (in^)

/ = flange stress (psi).

10.3 Unsymmetrical bending. It has been assumed in the previous

analyses of bending stresses that the bending moment is applied about a

centroidal axis that is a principal axis of the cross section. The bending

moment is not always applied in this manner; and, when it is not, addi-

tional considerations must be made to determine the bending stresses.

To illustrate the difficulty, consider the four-flange beam shown in Figure

10.3(a) with a bending moment applied for which the direction is to be

interpreted by the right-hand rule. It will be assumed that only the
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flanges resist the bending moment. The load on flange number one is

therefore

and a similar expression is valid for the other flanges. Apparently,

flanges 1 and 2 are in tension and flanges 3 and 4 are in compression. If

the moments of the flange loads are determined about the y axis, we find

My = P\Zl + P2Z2 + P^Zz + P42J4

M
^ j- {yiZiAi + y^z<iA^ + yzZzAz + 2/4^4A 4)

2

However, there is no applied moment about the y axis; therefore, this

SKEW AXES

(b)
MOMENTS ABOUT
PRINCIPAL AXES

Fig. 10.3. Unsymmetrical Bending of Four-Flange Beam.

method is not correct unless the moment is applied about axes for which

yiZiAi + 2/222A 2 + 2/323A3 + 2/ 424A 4 = 0

Such a set of axes always can be determined. The sum

A

is called the product of inertia and denoted by lyt. The results of previous

analyses can be used when the moments are applied about axes for which

the product of inertia is zero. Such axes are called principal axes. Any
two perpendicular centroidal axes of symmetry are principal axes.

To illustrate how the difficulties can be overcome in this case, sup-

pose for simplicity that the flange areas are equal and that the y and z

axes are rotated to the position shown in Figure 10.3(b). It can be shown
easily that these are principal axes because for every area a given positive

distance to one side of the axes, there is a similar area a negative distance

to the other side of the axes. If we remember that, because of symmetry,
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j/i = 2/2 = “2/8 = “2/4 and Zi = — = —23 = ^4 and Ai = A 2 — A 3

= A iy then

XyzAA = yiZiAi + y2Z2A 2 + ysZsAz + 2/424A 4 = 0

A moment applied about one of these axes will not induce a moment
about the axis perpendicular to it. It is convenient therefore to resolve

the moment M into two components Mz and My. The stress at flange 1,

due to Mty is therefore

, _ M^yi
7
z

and the stress at flange 1, due to the moment about the y axis, is

/// _ MyZ\
“ 7

“

^ V

The stress on flange 1 is therefore

/;+/r = (10.3)

To illustrate the use of Equation 10.3 consider a beam of rectangular

cross section with bending moment M applied as shown in Figure 10.4.

Fig. 10.4. Unsymmetrical Bending of Rectangular Section.

Because of symmetry the y and z axes are principal axes. The compo-
nents of the moment in the y and z directions are

Mz = M cos </>

My = il7 sin 0

Then according to Equation 10.3 the stress at any poin^t yz is

(10.4)
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The stress distribution is composed of two parts: one, a stress distribution

due to Mz as shown in Figure 10.1(a); the other, a stress distribution due

to My which causes a similar condition about the y axis as Mz does about

the 2 axis.

The line along which the stress is zero is called the neutral axis. The

neutral axis can be determined easily by equating the stress given by

Equation 10.4 to zero and solving for the line in terms of y and z. Thus,

r rj Mzy MyZ

J — u
1 Z ly

y^
My Iz

Z ly Mz

This determines a straight line through the center of gravity of the sec-

tion which makes an angle a measured counterclockwise with the positive

z axis where

tan a = -
z ly Mz ( 10 . 5 )

It is necessary to know the location of the neutral axis in order to deter-

mine the fibers with the highest stresses. The most stressed fiber will be

farthest from the neutral axis. In the case of the rectangular section

shown in Figure 10.4, the highest tensile stress mil be at A and the

highest compressive stress at B.

It is difficult or inconvenient sometimes to determine the principal

axes of a section so that Equation 10.4 may be used directly. The
stresses in terms of the moment of inertia about any two perpendicular

centroidal axes and the product of inertia may be determined by trans-

forming the expression for stress in terms of the principal axes to the

corresponding expression in terms of axes which are not principal axes.

Xi this is done, then

_ (Mzly + Mylyz) {Mylz + Mzly.)

^ lylz - {lyrY ^ lyU " {Jy.Y
( 10 . 6 )

The vectors representing positive moments are taken in the positive

y and z directions as indicated in Figure 10.4. The angle of the neutral

axis measured counterclockwise from the positive z direction is given by

tan a — Mylz ~h Mglyz

Mzly + Mylyz
(10.7)

Example 10.1. Determine the maximum bending stress for an
aluminum beam with a Z section as shown in Figure 10.5 if the bending

moment about the z axis is 3600 lb in and d = 1-1 in, 6 = 1| in, t = in.

Solution. The solution will be made by two methods; one in which the

positions of the principal axes are not known and the other in which the

principal axes^ positions are known.
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The moment of inertia of the section about the z axis is determined

by summing the moments of inertia of the component rectangles con-

sisting of the top and bottom flange of length h and thicki^ss and the

web of length d — 2t and thickness t. The moments of inertia of the

flanges about their own centroidal axes will be neglected since they are

small.

(a) (b)

Fig. 10.5. Unsymmetrical Bending of Z Section.

= 2 X 1.75 X 0.188 X (1.375)’ = 0.442 in’

- + 1.75 X 0.188 X - 0.569 in‘

The product of inertia will be determined from the definition

lyr = yZ (iA

Since the web is symmetrical about the y and z axes, it will have no

product of inertia. The flanges will be taken as rectangles of length

h — t and thickness L If we take an element of area in the upper flange

of length dz and thickness then since the y distance for this flange is

— (d — t)/2 = —0.781 and +0.781 for the lower flange

6-1 i

ly. = f
^ - 0.78l2< dz+

^

0.78l2< dz

2 '’"I

= -2 / (0.781)(0.188)2(i2 = -0.401 in’

2
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The location of the neutral axis is given by Equation 10.7.

case My = 0

tan a = ^' = -

« = -35.2°

0.401

0.569
-0.705

For the

The axis is shown in the figure. The most stressed fibers are therefore

at A and B, The coordinates of point ^ are z = +//2 = 0.094 inches

and 2/ = +d/2 = 0.875 inches. Therefore, since My = 0,

^
Mzlyy MzlyzZ

" lyU - {lyz}^ Idy “

_ 3600[(0,569 X 0.875) + (0.401 X 0.094)]

( 0.569 X 0.442) - (0.401)2
= 21,250 psi (tension)

The stress at B will have the same value in compression.

The second method of solution involves the use of the principal axes.

The moments of inertia about the principal axes of a section in terms of

the moments of inertia about any other two perpendicular axes with

origin at the centroid are given by

L, = ( 10 -8)

where the angle between the z axis and the principal axis measured

counterclockwise from the z axis is

tan 2e = Y^^r- (10.9)

If the moment of inertia about the z axis is greater than that about the

y axis, then the angle 6 is measured to the principal axis about which the

moment of inertia is a maximum.
Substitution into Equations 10.8 and 10.9 of the values for /*, 7^, and

lyz gives

Iz' = 0.0996 in^

ly^ = 0.911 in^

e = -40.5°

In order to determine the stress at A, the coordinates of point A in terms

of the new axes y' and z' must be known. These values and the com-
ponents of the moment along the y' and 2 ' axes are determined by trigo-

nometry and found to be

Mz' = 2740 lb in

My> = 2340 lb in

= —0.496 in

y'j, = 0.726 in.
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The stress at point A according to Equation 10.3 is

_ My^z'

_ 2740 X 0.726 2340 X 0.496

0.0996 0.911
21,250 psi

It is apparent that the second method is more difficult to use if the

location of the principal axes cannot be determined by inspection. The
product of inertia must be determined for both methods, and the second

method requires some additional calculations.

10.4 Nonlinear stress distribution. The condition of linear stress

distribution in bending depends on two assumptions

(a) linear strain distribution

(b) stress proportional to strain.

These assumptions are valid for the straight homogeneous elastic beams
analyzed previously but there are other cases of importance in design

where one or both of these assumptions cannot be made, such as for

(1) composite beams

(2) inelastic bending

(3) curved beams.

Each of these will be discussed.

(1) Composite beams, A beam with a section composed of two or

more different materials is called a composite beam. Plane sections

remain plane during bending; and, if the beam is initially straight, the

strain distribution will be linear. However, since the modulus of elastic-

ity may vary from point to point on the section due to the variation in

material, the stress distribution will be nonlinear.

Consider a beam with cross section as shown in Figure 10.6(a) com-

posed of a plastic core to which is bounded an aluminum sheet on the

bottom surface. Since the plastic is more flexible than the aluminum, it

is apparent that if the plastic is replaced by aluminum so as to give the

equivalent resistance to bending, a smaller area of aluminum is required

than the original area of the plastic. Figure 10.6(b) shows the plastic

replaced by aluminum r this section is called the trayisformed section.

This transformed section must fulfill the conditions of the original sec-

tion, namely that the strain distribution be linear and that the bending

moment be the same for the original and the transformed section. In

order to meet these requirements the strain at the same distance from

the neutral axes of the two sections must be equal and the force acting

on an element of area must remain the same in magnitude and distance

from the neutral axis. Using the subscript 1 for referring to the original
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section and subscript 2 for the transformed section, then for the region

of the plastic, we obtain

y APi = y APi

yEifibi Ay = yE^b^ Ay

h = ^br = nbi (10 . 10)
Jtli2

, modulus of elasticity of plastic
wnere ti ~ :—:— —

•

modulus of elasticity of aluminum

The problem thus is reduced to determining the stresses in a homo-

geneous section. It should be remembered, however, that after the stress

ORIGINAL SECTION TRANSFORMED SECTION

Fis. 10.6. Composite Section.

is determined in the transformed section, say at point A, the stress in the

original section corresponds to a stress in the plastic material. Since

the strain at corresponding points of the two sections is the same, the

stress in 2 must be multiplied by the ratio n to determine the stress in 1

.

/i = n/2 (10.11)

for the region transformed.

» Example 10.2. Determine the maximum tension stress and com-
pression stress in a section similar to that shown in Figure 10.6(a) if the

beamissubjectedtoabendingmoment of lOMbin, 6 = 5in,/i = 10 in, and

t = 0.064 in. The modulus of elasticity for the plastic is Ep = 500,000

psi and for the aluminum, Ea — 10 X 10® psi. The moment is applied

so as to produce compression in the top fiber.

n

h

500,000

loonos -
,

nbi = 0.05 X 5 = 0.25 in

Solution,
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The centroidal axis of the transformed section is obtained by taking

the moments of the areas about the base.

(10 X 0.25) (5 + 0.0G4) + (5 X 0.0()4)().032 _ , .

^ (10 X 0.25) + (5 X 0.064)

The moment of inertia is

('lO'iB y 0 25
/ = + (5 - 4.49)’^(10 X 0.25) + (4.49 - 0.032)2(5 X 0.064)

= 27.84 in^

The maximum ten.sile stre.ss is

Me, _ 10^ X 4.49

I “27.84
16,100 psi

The maximum compressive stress is

. Mcc 0.05 X 105 X (10.064 - 4.49)

27^4
= 1000 psi

(2) Inelastic bending. Another example of nonlinear stress distribu-

tion in bending occurs when the stress at any point of the cross section

of the beam exceeds the proportional limit of the material. Thus,

although the strain distribution is linear, the stress is not directly pro-

portional to the strain so that the stress distribution is nonlinear. This

is called inelastic bending and is important in determining the moment
carried by a beam when the stresses are greater than the proportional

limit.

For the beam with rectangular cross section shown in Figure 10.7

assume that the strain distribution is linear. Suppose the strain at

point a on the cross section corresponds to the strain oa on the stress-strain

diagram of the material. The stress corresponding to this strain is

greater than the proportional limit of the material and is denoted by /«.

The stress at each point therefore can be determined, and the shape of the

stress distribution will be similar to the shape of the stress-strain curve.

The same conditions of equilibrium must apply for the case of inelastic

bending as for ordinary bending; namely, the axial load must be zero

Ijja . 0

and the moment of the stresses must equal the applied moment

fjydA = M

It is apparent that the stress is now a nonlinear function of y so that it is

difficult to determine analytically the stress conditions to satisfy the
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above relations. Many schemes have been proposed for solving this

difficulty, such as empirically expressing the stress as a function of strain.

However, the method most commonly used for determining the moment
to produce the ultimate stress of the material is the one which uses a

quantity called the bending modulus of rupture.

STRAIN
DISTRIBUTION

The bending modulus of rupture is a fictitious stress based on the

assumption that the stress distribution is linear up to the rupture point.

Hence, if the moment applied to the beam in Figure 10.7 is the ultimate

moment, the bending modulus of rupture corresponds to the stress Fh.

The bending modulus of rupture is determined experimentally for beams

of various material and cross section, and the data usually is presented

in the form of curves, as shown in Figure 10.8. The ultimate bending

moment that the beam can withstand is simply

M = Fi- (10.12)
c

For sections not subject to buckling the bending modulus of rupture is

usually greater than the allowable ultimate stress. Since tubes may fail

by buckling if the walls are too thin, the bending modulus of rupture

given in Figure 10.8 is less than the allowable ultimate stress of the

material for high D/t ratios.
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(3) Bending of curved beams. The stress distribution caused by the

bending of a beam with an initial curvature such as the one shown in

Figure 10.9 is nonlinear, and the departure from linearity increases as the

curvature of the beam increases. Although plane sections of the beam
remain plane during bending, the strain distribution is not linear because

t

0 » DIAMETER OF TUBE (In)

t«WALL THICKNESS (in)

Fis. 10.8. Bendins Modulus of Rupture for Circular Tubing. (Courtesy, Army-Navy
Civil Committee on Aircraft Design Criteria of the Aeronautical Board.)

of the initial difference in length between the inner and outer fibers of the

beam.

Since plane sections remain plane, the elongation of any point a dis-

tance y from the neutral axes is given by

8 = Kiy

The distance between two points on the original undistorted sections

measured along a curve a distance y from the neutral axis is

L = {r - y)e
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The strain is therefore

STRESS ANALYSIS

which corresponds to a hyperbolic distribution. If the proportional limit

of the material is not exceeded, then the stress is proportional to the

DISPLACEMENT OF C

RELATIVE TO b

#

Fig. 10.9. Curved Beam.

strain and

f = Ee = EKi
r - y

The two conditions of equilibrium, namely

jjdA-O

jjydA = M

are sufficient to locate the position of the neutral axis and to determine

the stress in terms of the bending moment, the geometric properties of

the cross section, and the radius of curvature of the neutral surface

of the cross section. Since it is usually difficult to evaluate the stress in

particular cases, the student is referred to the references for graphical

and analytical methods. The general effect of the curvature, however,

is to displace the neutral axis from the centroidal axis toward the center

of curvature and to increase the stress on the concave side and decrease

the stress on the convex side of the curve as compared with the cor-

responding stresses for a straight beam.
It is possible to express the stress in the curved beam in terms of the

stress that would exist in the corresponding straight beam by multiplying

the expression for the stress in the straight beam by a stress factor.
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(10 . 13 )

V K = curved beam stress factor

Some stress
to.lO. It should be no

^..^dius

of curvature of tue ce

I
Z

P,q 10.TO. ,

. .U Stress in straight beams
can be

u „t the eouation for the stress m

which indicates r

choose
little error.

-cte doeigrrer
.oreettae*

10.6 Section to u«i tor • sections so

Vor a beam m in l Is

stress noerriing to E<i»«“ '“
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where c is the distance from the neutral axis to the most stressed fiber.

The bending moment the beam can resist for a given stress is therefore

M=f^ (10.14)

where I/c is the section modulus. It is apparent therefore that the higher

the section modulus the liigher the bending moment for an allowable

stress.

Figure 10.11 shows 3 sections having the same area and height. It is

assumed that all the area for the flanged beam is concentrated at the

Fig. 10.11. Section Moduli for Sections of Same Area.

flanges. If the section modulus for the flanged beam is unity, then the

section modulus for the circular tube is 0.5 and the section modulus for

the rectangle is 0.33. In other words, for the same bending stress and

weight the flanged beam can rcvsist twice as much moment as the tube

and three times as much as the rectangle.

Other factors such as buckling and shear will modify the efficiencies

of the sections. These factors will be discussed later.

Problems

10.1 . A standard aluminum channel section has a depth from top to bottom
flange of 7 inches and a moment of inertia about the axis of symmetry z of

21.27 in^. Determine the maximum tension stress if a bending moment of

100,000 lb in is applied about the z axis.

10.2. Assuming each flange of the channel section in Problem 10.1 is 2.09

inches wide and 0.210 inches thick, d(?termine the tensile load carried by the

flange.

10.3 . A 5 X 3 aluminum angle section as shown in Figure 10.12 has a moment
of 4000 lb in applied about .the centroidal axis. Determine the location and
magnitude of the maximum tension and compression stresses.

10.4. Determine the maximum tension and compression stresses in the box
beam shown in Figure 10.13, assuming that only the angles are effective in

resisting bending and that a moment of 144,000 lb in is acting about an axis

parallel to the base of the box so as to produce compression in the bottom angles.

The distances given are to the centroids of the angles. Ai = 2 sq in, A 2 = 1.5

sq in, A 3 — A 4 = 0.45 sq in, A 3 — 0.75 sq in, A e = 1.2 sq in.
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Fis. 10.13. Box Section.

10.6. An aluminum beam with cross section as shown in Figure 10.14 acts

as a guide for a flap extension mechanism. The flap mechanism rolls along the

top of the bottom flange, and a steel surface is provided to prevent wear of the

rollers on the aluminum beam. If the moment
of inertia of the symmetrical aluminum beam
section about its own horizontal centroidal

axis is 12.26 in^ the area is 2.92 sq in, and the

other dimensions are as shown in the figure,

determine the maximum tension stress in the

steel and aluminum when the bending moment
about the horizontal axis is 95,000 lb in so as

to produce tension in the bottom fibers.

10.6. Compare the ultimate bending mo-
ment that a uniform straight beam with a rec-

tangular cross section can carry, with the

moment required to produce yielding in the

same beam, assuming that the stress-strain

curve of the material is linear up to the yield

point and then that the stress is constant

with strain until the ultimate strain is reached.
Fis. 10.14. Composite Beam.

The strain at the yield point is to be considered negligible compared with the

ultimate strain.
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10.7. Compare the weight of the lightest standard 2-inch outside diameter

tube of 4130 with the lightest standard 2-inch O.D. tube of 24ST if each is to

carry an ultimate bending moment of 13,900 lb in. Use table on page 8-1 of

the ANC-5 for determining standard sizes and weights.

10.8. Considering only bending stresses, determine the size of the section at

A-A for a small margin of safety on yielding of the nose fork shown in Figure 10.15

if the limit load P is 960 pounds. The cross section at A-A is circular, and the

material is 24ST with a yield strength of 43,000 psi.

P

Fis. 10.15, Nose-Wheel Fork.
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CHAPTER 11

Combined Bending and Shear

11.1 Introduction. In the previous chapter the stress^ in beams
caused by bending moments were considered. However, in most struc-

tures the bending moments are usually accompanied by shear forces

caused by the transverse forces acting on the beam. In fact, it has been

shown that the rate of change of moment s^ong a beam is equal to the

shear force so that bending moments and shear forces usually occur

simultaneously.

This chapter will be concerned with the distribution of the shear

stresses on the cross sections of structural elements and the relation of

these stresses with the shear forces producing them. The combination

of bending stresses and shear stresses will be studied so as to be able to

determine the effect of bending moments and shear forces on various

types of structural members,

11.2 Shear stresses in webs. In order to start with the simplest

type of shear-stress distribution, consider the portion of the symmetrical

(a) (b)

Fig. 11.1. Web Shear.

thin web beam with heavy flanges shown in Figure 11.1. Only a short

portion of the beam of length Ax is shown. Since shear forces are pres-

ent, the bending moments at the two sections Ax apart are not equal.

The relation of shear force to bending moment has been shown previously

to be

Ax

If We assume that the web will not buckle under the action of the forces

189
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and that all the bending moment is carried by the flange forces, then the

flange forces on the two ends of the bottom flange will differ by an amount

AP. This unbalanced force is held in equilibrium by the horizontal

shear force in the web adjacent to the flange. If the web is cut hori-

zontally just above the flange, it is apparent that a horizontal force is

needed for equilibrium. Assuming that the shear force in the web is

uniformly distributed, we find then that the force per unit length of

web is g; g is called the shear flow. For equilibrium

DF, = 0= P + AP-P-gAx
or g = ^ ^ in the limit (H I)

where q = shear flow (Ib/in).

In this case, the shear flow is the rate of change of the flange force with

respect to x. The shear stress is simply the shear flow divided by the web
thickness or

/. = f . (11-2)

It is more useful usually to express the shear flow directly in terms of

the shear force. The flange force is the flange stress times the area of the

flange. Hence,

P =fA

But f _ My
^ I

so that II

and ^ _dMyA _
dx dx 1 ^

But
dM „
dx ^

Therefore, II (11.3)

where y = distance from neutral axis to flange (in)

V = shear force (lb)

A = flange area (in^)

I = moment of inertia of cross section (in^).

The question arises now of how this horizontal shear flow is related

to the vertical shear flow. Consider the shear flows acting on a small

rectangular element, as shown in Figure 11.1(c). In order to have
equilibrium of the horizontal forces, it is apparent that the shear flow

on the upper and lower sides of the element will have to be equal and
opposite. The same reasoning applies to the two vertical sides. For
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equilibrium of moments, the sum of the moments about any point, for

example the lower right-hand corner, must be zero.

SAf = 0 = — A^i Ax2 + q2 Ax2 Ayi

qi == q2

The shear flows on perpendicular planes at a point will always be equal

in magnitude and will occur in equal and opposite pairs.

The sum of the forces due to the shear flows should be equal to the shear

force producing them. Since we have assumed that the flange forces are

the only axial forces acting, the horizontal and the vertical shear flows

will be constant and

qd=V
Substituting the value of q from Equation 11.3, we obtain

VjyAd^V

But for this case 2/ = ^
and / = 2 f

~

A, so that

The results of the analysis for the two-flange beam can be extended

easily to a beam with many flanges or a beam with irregular cross section.

(a) (b)

Fis. 1 1 .2. Four-Flange Beam.

Consider the symmetrical four-flange beam shown in Figure 11.2. For

equilibrium

q2 Ax = APi + AP2

Then by direct analogy with the previous case. Equation 11.3 becomes

Y
?a = j (ViAi + 2/2^2)
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In general, the shear flow adjacent to any flange n is

n

t-1

The shear flow on a beam in which all the area is effective in resisting

bending is therefore

ydA (11.4)

where fy dA is the moment of the area about the neutral axis of all the

areas from the outside fiber of the beam to the point where the shear flow

is to be determined.

ho.io

h K

iiEsssssssssssi:

1
a

J

10

>^12 %Qmax.

I-BEAM SHEAR FLOW DISTRIBUTION

IN WEB

Fig. 11.3. Web Shear Flow.

Another useful relation exists between the shear flow on one side of an
internal flange and the shear flow on the other side. B'lange number two
is shown isolated in Figure 11.2(b). If the shear flow on the bottom of

the flange is qi, it is evident that the shear flow on the top is

or, in general.

q2 = qi + dP2

dx

qn — qn-l +
dx

(11.5)

Example 11.1. Determine the amount of variation of shear flow
in the web of the symmetrical beam, shown in Figure 11.3, between the
maximum value which occurs at the neutral axis and the value at a point

adjacent to the flange.



COMBINED BENDING AND SHEAR 193

Solution. Using Equation 11.4 gives

The value of the integral for all the material below the neutral axis can

be determined by taking the moment of the area below the neutral axis

about the neutral axis.

Thus, iy dA = aAi + hA^
= 4.75(3 Xh) + 2.25(4.5 X 0.10)

= 7.13 + 1.01 = 8.14 in*

The shear flow at the neutral axis is therefore

^n = 8.14y

The shear flow adjacent to the flange can be determined from the first

term of evaluation of the integral or

V
Qf
= 7.13 j

The variation in shear flow is therefore

gn - qf ^ 8J4 - 7.13 ^ „

gn 8.14

This solution does not take into account any stress increases caused by

sharp corners.

11.3 Proportion of shear taken by web in thin-web beam. The
assumption has been made previously that most of the shear force is

carried by the web in thin-web non-tapering beams. This assumption

should be investigated.

If the total shear force is divided into two parts, the web shear and

the flange shear, then

F = F. + Vf

By assuming that the shear flow in the web is constant, which seems justi-

fied when the section is proportioned as in the previous example, then

VIff — Qwhw

where Qw is the average shear flow in the web

Therefore,

Qw — j y

F10 hv) ( f J >1 1T = T vi
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[(3
X 0 (4. 73.8 in<

If we use the data from Example 11.1, we obtain

/= ^'^2 + 2 [(3
X 0 (4.75)* + = 73.8 in‘

The average value of fy d

A

for the web will be approximated by tak-

ing the average of the maximum and minimum values from Example 11.1.

Thus,

ff ^a\ 8.14 + 7.13
( / ydAjav=

2

9X7.63

= 7.63 in®

= 93%

Therefore, 93% of the shear force is carried by the web and 7% by the

flanges in this case.

It has been shown that for thin-web flanged beams the vertical shear

flow in the web is essentially a constant and that the web carries most of

the shear force. If it is assumed therefore that all the shear force is

carried by the web and that the shear flow is constant, then the shear flow

in the web is

= ^ ( 11 .6 )

where

and the shear stress is

where V = total shear force (lb)

hw = effective height of web (in)

t == thickness of web (in).

11.4 Tapered beam. If a beam is tapered, the flanges will carry

more of the shear load because the flange (bending) forces will have

components in the direction of the shear force.

Consider a thin-web tapered beam as shown in Figure 11.4. The
flange forces Pi and P2 are acting along the flanges as shown in the

figure. These forces can be resolved into vertical and horizontal com-

ponents Pv and Ph. For equilibrium in the horizontal direction

2PH = 0 = P2 H — PlH
P IH = p2H = Ph

For equilibrium of moments

= 0 = M - Pnh

prH r-

cos ai h cos ai

Ph ^ M
COS a2 h cos a2

Therefore,
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and Piv = Pi sin ai = ^ tan ai
h

r> D • ^ ^
1 2v = P 2 Sin a2 =

"T~ ^3*1^ ^2
h

The total shear force carried by the flanges because of the inclination of the

flange loads is

M
Vf — P \v P 2 v — (tan oti 4“ tan (11.8)

The shear carried by the web is

Vw=V— Vf=V — ^ (tan ai + tan a2 ) (11-9)

This derivation is based on the assumptions that the web does not

take any bending stresses and that the shear flow in the web is uniform.

Fis. 11 .4 . Tapered Beam.

These assumptions are reasonable for moderately tapered beams with

thin webs.

11.6 Beam with buckled web. For the thin-web beams previously

studied, it has been assumed that the web did not buckle under the action

of the loads. Such a web is said to be shear resistant. It is not unusual

in aircraft construction to design a thin-web beam which is known to

buckle when the load is applied. This is the so-called tension-field web.

The reason such a beam is used is because under some conditions the

tension-field web beam is lighter than the beam with shear resistant web
for the same strength. Of the two types, however, the tension-field web
beam is usually the more flexible.
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Since the rigorous analysis and design of a tension-field beam is very

complicated and still undergoing development, only a simplified analysis

presenting the essentials will be discussed. The same assumptions will

be made in considering the tension-field beam as for the thin-web beams

studied previously, namely:

(1) The total bending moment is carried by the flanges.

(2) The total shear force is carried by the web.

Figure 11.5 shows a thin-web beam with heavy flanges supporting an

end load V which produces a shear force and bending moment ati each

cross section of the beam. A square element of the web is shown isolated

in Figure 11.5(b). The distortion of this element due to the shear

stresses, as shown by the dashed lines, indicatfes that the same effect

on the element could be produced by tension and compression stresses

acting on the corners. As a matter of fact, it can be shown that such

stresses do exist. Consider the equilibrium of the 45° isosceles triangular

shaped element of Figure 11.5(c). From symmetry and equilibrium of

the forces in the horizontal direction it is evident that ft = /c. There

are no shear stresses on the sloping sides because equilibrium of moments
must be maintained. By remembering that for a vertical side of unit

length the sloping sides have a length of 0.707, then the force on a sloping

side i&O.707tft and the vertical component of this force is {0,707)Hft == 0.5^/t.
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Therefore,

= 0 = U - 0.5U - O.bfct

But ft = fc

Therefore, ft = fc = fs (11.10)

In other words, the tension and compression stresses on planes making

an angle of 45° with the shear stress are equal in magnitude to the shear

stress. These normal stresses are called the principal stresses.

If the diagonal compression stress exceeds the critical buckling stress

of the web, the web will buckle. After the web buckles the compression

stress will not increase materially, so that any restraint to increasing load

must be resisted by an increase in the diagonal tension. The maximum
amount of diagonal compression present depends on the proportions of

the beam. Two cases in the design of beams with buckled webs are

usually considered:

(1) pure diagonal tension-field web (The web is assumed to buckle at

such a low load that the diagonal compression is neglected

altogether.)

(2) incomplete diagonal tension-field web (The small amount of

diagonal compression is considered in the analysis.)

Pure diagonal tension-field web. A beam in which only the diagonal

tension is considered sometimes is

called a Wagner beam because Pro-

fessor Wagner was the first investi-

gator of the phenomenon.

A portion of the beam with diag-

onal tension web is shown in Figure

11.6. The section on the right is a

distance x from the end where the

load V is applied. The total force

Pw produced by the diagonal tension

is equal to the stress times the area or

Pw = ftlh cos a

Fig. 11.6. Element Showing Diagonal

Tension.

For equilibrium in the vertical direction

or

and

XFv = 0 = sin a -

Pw = V
sin a

ft
= V

th sin a cos a

V

(11 . 11 )

If a is assumed to be 45® (tests show it is between 40® and 42® due to the

effect of the stiffeners), then

th
(11 . 12)
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where
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V = shear force (lb)

h = effective height (in)

t = web thickness (in).

The loads and stresses in the flanges are determined from moment
equilibrium.

SM = 0 = Vx — Pch + P«,
^
cos a

But II9
sin a

so that j,
Vx V

+ -2
cot a (11.13)

Similarly, T>
Vx V

.

= T “ 2
“

For a = 45®

(11.14)

The stresses on the flanges are determined by dividing the flange loads

by the flange areas.

L— d —-J

Fig. 11.7. Force on Stiffeners.

The diagonal tension acting along the flanges or spar caps tends to

draw the top and bottom flanges together. In order to hold the flanges

apart, vertical stiffeners must be provided at suitable intervals along



COMBINED BENDING AND SHEAR 199

the beam. By assuming that each stiffener transmits the vertical load

between the top and bottom flanges, the load being caused by the diagonal

tension from the center of the interval to the left of the stiffener to the

center of the interval to the right of the stiffener, then the forces acting

will be as shown in Figure 11.7. The vertical force due to the diagonal

tension acting along a length d of the flange is

Pv = ftid sin^ a

But from Equation 11.11

f
y

ih sin a cos a

Therefore, Pv = ^ tan a (11.15)

For a = 45° P. = ^ (11-16)

This force produces a compressive stress in the stiffener. The allow-

able load for the stiffener usually is based on its column strength. The

problem of the column strength of the stiffener is complicated, however,

by the fact that the web adds

some lateral restraint to the stiff-

ener since it helps prevent the

stiffener from buckling out of the

plane of the web. Another factor

influencing the design of the strut

is the fact that the stiffener load

Pv may be eccentrically applied at

the ends of the strut which thus

produces a bending moment.
Professor Wagner in his paper (see

references) developed some correc-

tion factors for evaluating the

support of the web on the stiff-
pjg -J i g_ Bending Loads on Spar Cap.

ener. The eccentric loading effect

is evaluated by considering the stiffener as a beam column.

The vertical component of the diagonal tension action along the

flanges between the stiffeners tends to bend the flanges. If the stiffeners

are spaced uniformly along the span and the vertical component of the

diagonal tension is assumed uniformly distributed, then the flanges are

similar to continuous beams carrying uniform loads as shown in Figure

11.8. As a matter of fact, the deflection of the flanges between stiffeners

causes the diagonal tension to be nonuniform so that for a rigorous

analysis this effect also must be considered. In the following analysis

the diagonal tension will be considered uniform along the flange.
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The vertical component of the diagonal tension per unit length of

flange is determined by dividing the total force for an interval d, as given

by Equation 11.15, by the length d. Hence,

and for a = 45°

Pt = ^ tan a

(11.17)

Since we have assumed uniform stiffener spacing, the ends of the flange

at the stringers will not rotate and the portion of the flange between

stiffeners may be analyzed as a fixed-end beam carrying the uniform load

Pv, The maximum bending moment for such a beam may be determined

by means of the methods developed in Article 4.12. The maximum bend-

ing moment is

Mf p^ ^
12 12h

(11.18)

This of course ignores any beam-column action. The maximum stress

in the flange is determined then by adding the stress caused by the bend-

ing moment and the axial stress in the flange caused by the diagonal

tension previously determined (Equation 11.14):

(11.19)

where A/ = area of flange (in^)

1/ = moment of inertia of flange about its own centroidal axis

(in<)

c = distance frona neutral axis of flange to extreme fiber (in).

Incomplete tension-field web. It was assumed in the previous analysis

of the tension-field beam that the diagonal compression in the web was
so small that it could be neglected. The vertical component of the

diagonal tension therefore carried all the shear load. Actually there is

always some diagonal compression present, which as a minimum cor-

responds to the buckling strength of the web, so that some of the vertical

shear load is carried by the vertical component of the diagonal compres-

sion. A web with an appreciable amount of diagonal compression is

said to be an incomplete tension-field web.

The amount of shear force carried by the diagonal compression varies

with the physical properties of the beam and the loading. Several

investigations, both experimental and analytical, have been made to

evaluate the influence of the diagonal compression (see references). The
influence of the diagonal compression is taken into account usually by
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reducing the shear force taken by the diagonal tension by the amount

carried by diagonal compression. Thus, if V

m

is the vertical component

of the diagonal tension, then

Vdc = KV (11.20)

When K = 1 all the shear force is carried by the diagonal tension as in

the case previously analyzed, and when K = 0 the web is shear resistant

(does not buckle). If the value of K is known, the results of the previous

analysis can be used by replacing V by KV in most of the formulas. The

actual value of K to use in a specific design is usually based on a semi-

empirical relation, and the student is referred to the references for further

information.

Additional comments on tension-field webs. At the beginning of Article

11.5 a statement was made to the effect that beams with tension-field

webs are more flexible than beams with shear-resistant webs. A com-

parison of the flexibilities of these two types of beams will now be made.

For the beam shown in Figure 11.9 it will be assumed that all the shear

force is carried by the web and all the bending moment is resisted by the

flanges. For simplicity the flange areas are assumed equal. The deflec-

tion of the end of the beam in the direction of the applied end load will be

determined by considering the elastic energy of the flanges and the web.

The bending moment at any distance x from the end of the beam is

Px, and the shear force is a constant equal to P. When we assume that

the web does not buckle, the flange force in the top flange is

"FX Px
Pc r- r- (compression)

h n

and in the bottom flange

= = (tension)
n n
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According to Castigliano’s theorem

Si =
dU
dP

Si

Since I

Si

j:
dPc dx

dP EAj + f p 4- f
Jo ' dP EAf ^ jo

^ y dV dx

( Pa;\ / x\ dx /Pci\ x dx
,

f

jo \ hj\ ~h) EA~r ^ jo \h)l EAf ^ jo

dx

Ght

2PU PL
ZEh'^Af Ght

h^Af

2

PL 3 PL
SEI Ght

The first term represents the contribution of the bending moment to the

deflection, and the second term shows the effect of the web shear.

If the web is assumed to be buckled, then the forces in the flanges are

given by Equation 11.14 or

The diagonal tension in the web according to Equation 11.12 is

th th

In order to determine the elastic energy in the web, consider a strip of

web making an angle of 45° with the flanges and of width 0.707 dx. If

Pi is the tensile force in the strip so that Pi = /lAi, where Ai is the cross-

section area of the strip and Li = 1.41, h = length of strip, then

dUi = PiLi

2EAi
rtLiA ,

2E
2P2 ,

Therefore, the total energy of the web is

Jo Eht
dx

Considering the energy of the web and flanges, we have

dU
dP

<2L*

dPc dx

'WE'A
dx

EA,'^

APL
Eht

iPL

L 4. r P ^^ 4. ±
Jo ‘ dP EAf dP Jo Eht

/>(x-0
dx

EAf /:
4P
Eht

0+ o I +

A -
,

PL
* ZEI 2EAf Eht ( 11 .21 )
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By comparing the value of deflection 62 of the beam with the buckled

web and the beam with the shear-resistant web it is evident that the

beam with the buckled web has the greater deflection. Both the flanges

and the web of the buckled-web beam contribute more oO the deflection

than they do in the shear-resistant web beam.

If we consider the contribution of only the web in the two cases the

ratio of deflections is

Siw Eht / Ghi E

G 2
For aluminum 7;, is about hence,

b 5

52ii> _ 8

5ij(> 5
( 11 .22 )

In other words, the shear flexibility of the buckled web is about f the

flexibility of the unbuckled web of the same dimension. The thickness

of a tension-field web would have to be about f times the thickness of the

unbuckled web in order to have the same rigidity.

The question often arises in design concerning the choice between a

beam with a tension-field web and a beam with a shear-resistant web.

From the standpoint of weight, Wagner has indicated that it is preferable

to use the tension-field web if

a/F
< 7 (11.23)

and, if ^ — >11
h

the shear web is better. For the region between 7 and 11 there seems to

be little choice. If rigidity is a determining factor, the shear web should

be used.

It should be emphasized again that the analyses of beams with tension-

field webs presented here are of only the most elementary type. Such
factors as inclined stiffeners, beam taper, and allowance for rivet holes

and lightening holes have not even been discussed. The design of beams
with tension-field webs is an art in itself and the student should acquaint

himself with the design practice of the particular company with which

he becomes associated.

Example 11.2. For the 24ST aluminum beam shown in Figure 11.10

carrying a limit load of 12,000 pounds at the end, determine

(a) diagonal tension stress in web
(b) margin of safety of web in tension

(c) stiffener load

(d) axial flange loads

(e) stresses in flanges.
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The web is assumed to be a pure tension-field web. The solution is to be

considered only approximate.

The sum of the areas of the two angles comprising the top flange is

2.94 in^, and the moment of inertia of the flange about its own centroidal

12,000 lb.

axis is 1.68 in^. Corresponding values for the bottom flange are A — 1 .44

in^ and I = 0.54 in^ The effective height of the web is 20 inches.

Solution.

Diagonal tension stress in web.

2F _ 2 X 12,000

ht 20 X 0.040
30,000 psi

Margin of safety of web. The allowable tension yield stress of clad

24ST sheet given in the ANC-5 is 37,000 psi. Therefore,

MS F, 37,000

Stiffener load.

Pv = Vd

30,000

12,000 X 8

20

1 = 23%

= 4800 lb

Axial force on flanges. The maximum forces in the flanges will occur

at the fixed end where the moment is greatest.

For the tension flange

^ (i - 5) 0
-
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For the compression flange

+ 0 - ‘2.«)o(g + 0 - 54.0001b

. Stresses in flanges. The effect of the bending of the flanges between

stiffeners will be considered in determining the maximum flange stresses.

The flange loads are a maximum at the fixed end, and the stresses

will be determined there. The stress in the top fiber of the lower flange is

But

MfCi
A,-

^

_ _ 12,000 X (8)*

I2h 12 X 20
3200 lb in

and

d'herefore,

Cl = 2 - 0.50 = 1.44

_ 42,000 3200 X 1.44
•'‘““1744' 0.54

= 20,050 psi (tension)

The stress in the bottom fiber of the lower flange is

h = ^ ,
Mjc,

Af^ If

42,000 3200 X 0.56

1.44 0.54
= 32,500 psi (tension)

The stress in the bottom fiber of the upper flange is

h = Pc
,
MfCi

Af If

54,000 3200 X (2.5 - 0.73)

2.94 1.68
= 21,750 psi (compression)

'rhe stress in the top fiber of the upper flange is

f _ Pc MfCi
~ Af If'

_ 54,000 3200 X 0.73

2.94 1.68
= 16,950 psi (compression)

11.6 Flange shear. It has been shown that for the flanged beam
with thin web the amount of vertical shear force carried by the flange is

small. The shear flow and the shear stress were determined on horizontal

planes. A study now will be made of the shear conditions on the vertical

planes of the flanges. Although the shear stress on the vertical planes

of the flange of a conventional beam is seldom critical from the strength

standpoint, we will see that it has implications which affect the design

and manner of loading.
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A portion of length dx of a thin-web I beam is shown in Figure 11.11.

A vertical cut in the flange a distance s from the outside free edge is shown.

Since the bending moment differs on the two end sections of the portion

of length dXj the bending stresses mil be different at the ends of the

element ah'cd. The difference in the force on the end ah' and the end cd

must be balanced by a force due to the shear flow along the edge b'c.

TOP VIEW end view

Fis, 11.11. Flange Shear.

This is analogous to the situation that existed in determining the shear

flow in the web so that Equation 11.4 can be directly applied. Hence,

ydA

By assuming a symmetrical beam of depth A, then the value of 2/ is a

constant and equal to A/2. The integral in the preceding equation is equal

to the moment about the neutral axis of the area from the outside of the

flange where the shear flow is zero to the cut section h'c. Thus,

ydA =
I

s<
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Substituting this value and the value for I in the equation for q gives

g
= 7s

h h
(11.24)

The shear flow along the flange therefore varies linearly, as shown in

Figure 11.11(b). Th^ shear flow -along the flanges and web of the cross

section of the beam is shown in Figure 1 1 . 1 1 (c) . It should be noticed that

for this case the shear seems to flow inward on the top flange and outward

on the bottom.

The same reasoning applies in determining the shear flow in the curved

web of the beam with cross section shown in Figure 11.12. In this case,

CURVED WEB RESULTANT OF FORCES

Fig. 11.12. Beam with Curved Web.

if the bending moment is resisted by the flange areas, then the shear flow

in the web is

ydA = V

2A

__ ^ 4 =
h"-2

In other words the shear flow for the case of the curved web is the same
as for the straight web. The shear flow is shown in Figure 11.12(b).

The component of shear force in the vertical direction can be determined

by summing the vertical components of the shear forces caused by the

shear flow along the curve. Force equilibrium shows that

qh= V

The horizontal forces are balanced since the shear flow starts and ends

on the same vertical line. However, there is some question about the

moment equilibrium, and this will be discussed in the following article.

11.7 Shear center. The shear flow in the flanges may have hori-

zontal force resultants which produce a couple. This couple may cause

a twisting of the beam about a longitudinal axis so that for equilibrium,
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the location of the reactions supporting the beam may not lie necessarily

on the longitudinal axis passing through the centers of gravity of the

cross sections. The position of the reactions, and hence the position

of the resultant shear forces on the cross section of the beam, is called the

shear center.

The location of a shear center is shown best b^ a consideration of the

shear forces acting on the cross section of the channel beam shown in

Figure 11.13. The reaction at one end .of the beam and the forces at a

cross section are shown in the figure.

Fis. 11.13. Shear Flow in Channel Section.

The shear flow is obtained by the methods developed in the last

article. The shear flow on the flange is

(1

Y
dA = ^ hts

1'his is a maximum when s = 6 or

V
Qo

2^
hth

Since this shear flow varies linearly from the outside edge of the flange

to the web, the horizontal shear force in the top flange is

j? _
2 47“

There is a similar shear force on the bottom flange but in the opposite

direction. These two shear forces form a couple

Rh = VhHb'^

M
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For torque equilibrium of all the forces as shown in Figure 11.13(b) we
have

SM = 0 = Fc -

or e
41

(11.25)

Hence, the line of action of the resultant shear force which determines

the location of the shear center is actually outside the section. The shear

center is sometimes called the elastic center or center of twist. It can be

shown, for example, that if a torque is applied about the center of twist,

the beam will twist without bending. Conversely, if the transverse

beam loading is applied so that the line of action of the loading is through

the elastic center, the beam will bend without twisting. It follows there-

fore that, if it is desirable to have the channel beam bend without twist-

ing, the loading will have to be applied on a shelf or fitting sticking out of

the back of the section.

As another example of determining the shear center, consider the beam
section with the curved web shown in Figure 11.12. If the beam section

is symmetrical about a horizontal axis and the web is a semicircle of

radius R, then the shear force for an arc length of R dd is qR dd. The sum
of the moments of these forces about 0 is

T = jj
qR^ dd = qR^T

0

If the reaction to the resultant shear

force V is a distance e to the left of 0,

then for equilibrium of moments

But

so that

Ve = qR^T

= 1 = 1-
^ h 2R

ttR
(11.26) Fig. 11.14. Split Tube.

Example 11.3. Determine the shear center of the circular split tube

shown in Figure 11.14.

Solution. Since the tube is symmetrical about the horizontal axis

passing through the center of the tube, the shear center will be somewhere

on this axis. By assuming bending about this horizontal axis and a shear

force applied perpendicular to the axis, the shear flow in the shell can be

determined. It is apparent that the shear flow will not be constant since

there are no heavy flanges to take the bending load.

The shear flow at any radial section of the shell is given by

V
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where Jy dA is the moment about the horizontal axis of all the area from

the split in the tube where the shear flow is zero to the section on which

the shear flow is to be determined. Thus,

dA = Rt do

y = 72 sin 0

The torque of the shear flow about the center of the tube is

r2x yp r2x

T= do = ~ (1 - cos 6) dO = 2RV
Jo Jo

This must be balanced by the reacting torque Ve.

Hence, 6 = 2/2

A split tube would therefore have to be loaded a distance 2/2 from the

center of the tube on the side opposite the split in order to have bending

without twisting.

11.8 Shear lag. It has been assumed in determining the shear

stresses and bending stresses on beam sections subjected to shear and

bending that the bending stress at a fiber depends only on the distance

of the fiber from the neutral axis and not on the position of the fiber

along a line parallel to the neutral axis. Thus, the bending stress at the

outside edge of the flange of an I beam has been considered equal to the

bending stress on the flange at a point near the web when both of these

positions are the same distance from the neutral axis. For a wide-

flanged beam this assumption of constant flange bending stress along a

line parallel to the neutral axis is not always valid. The flange shear

stresses, being related to the bending stresses, do not correspond therefore

to those calculated by means of the elementary theory. This phenome-

non is known as shear lag. Fortunately, the effect of shear lag is usually

minor except for very wide flanged beams or wide box beams.

The nature of shear lag is probably illustrated most easily by a con-

sideration of a wide box beam of the type indicated in Figure 11.15.

This beam is fixed solidly to a wall on the left end of the beam, and vertical

loads are applied to the side spars at the right end. The loads

cause the side spars to bend downwards, which thus elongates the

top spar caps and contracts the bottom ones. Shear flows along the

edges of the top sheet of the box adjacent to the spar caps will be induced
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as illustrated in Figure 11.15(b). By considering the top of the box as a

sheet loaded along its long edges by the shear flows, it is apparent that

the elongation along the edges may be greater than the elongation in the

central region of the sheet. The longitudinal strain notx^ the center of the

sheet therefore may be less than the longitudinal strain along the edges.

By considering only the effect of the longitudinal strains, it is apparent

that the longitudinal stresses will be lower at the center than at the sides,

as indicated in the figure. Since the longitudinal stresses are not uni-

formly distributed as assumed in the elementary theory, the shear flows

(q)

Fig. 11.15. Shear Lag.

do not correspond to those predicted by elementary theory. This

phenomenon is called shear lag.

The analysis required to predict the actual stresses for structures in

which shear lag occurs is too complicated to develop here. However,

the general effect of the shear lag is to increase the stresses at the edges

of the sheet and decrease the stresses in the central portion as compared
with the stresses determined by ordinary beam theory.

Problems

11 .1 . A portion of a four-flange beam 10 inches long and similar to the one
shown in Figure 11.2 has a bending moment on the left end of 50,000 lb in and a

bending moment on the right end of 70,000 lb in. The flange areas are equal
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and the flanges are equally spaced with 5 inches between centers. Determine
the flange forces and the shear flows in the web. What is the vertical shear force?

11 .2 . The / section shown in Figure 11.3 carries a vertical shear load of

10,000 pounds and a horizontal shear load of 5,000 pounds. Determine the shear

flows in the web and flanges. Determine the maxi-
mum shear stress in the web and the flanges, neglect-

ing any stress concentrations.

11 .3. A beam with a channel section as shown in

Figure 11.16 is loaded with a shear force of 10,000

pounds so that bending occurs about the horizontal

centroidal axis. Assuming the web does not buckle,

determine

(1) flange and web shear flow distributions

(2) percentage of vertical shear carried by web
(3) location of the line of action of vertical shear

force.

Fi 9 11 16 Channel Sec-
A thin circular tube with a mean radius R

and a wall thickness t carries a transverse shear load

V with line of action through the center of the tube.

Determine the shear flow distribution. {Hint: In determining d

A

use an
area symmetrical about the line of V.)

11 .6 . A 24ST cantilever beam similar to the one shown in Figure 11.10

carries an end load of 10,000 pounds. The beam is 50 inches long with stiffeners

UPPER FLANGE LOWER FLANGE

Fig. 11.17. Beam Flanges.

spaced at 10 inches. The effective height of the web is 30 inches and the flanges

are the 24ST extrusions shown in Figure 11.17. Determine

(1) stress in web
(2) maximum stresses in flanges

(3) stiffener load.

If the allowable column strength of the stiffener is 12,200 psi and all other
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allowable stresses are taken as the ultimate stress for the material given in the

ANC-5, determine the margin of safety for each of the beam components.

11 .6. A taper beam similar to the one shown in Figure 11.4 carries an end

load of 10,000 pounds and has a cross section at the loaded end that is 12 inches

between flanges, equal flange areas of 2.1 square inches, and a web thickness of

0.064 inches. If the flanges are uniform in area throughout their length but

slope 1.5 inches per foot, determine the flange loads and shear stress in the web
at a distance of 5 feet from the end where the load is applied. (Assume web
does not buckle.)

11 .7. Determine the location of the shear center for the beam sections shown
in I'igure ll.lcS. All flange areas = / unless otherwise noted.

Fig. 11 .18 . Beam Sections.

11 .8 . If the section shown in Figure 11.18(b) carries a vertical shear load at

the shear center of 5,000 pounds, and 5 = 4 inches, A = 12 inches, A = 0.5

inches^, determine the shear flows.

11 .9 . What are the shear flows in the section used in Problem 11 .8 if a hori-

zontal shear load of 1,000 pounds acting at the shear center is added to the vertical

shear load already present?
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CHAPTER 12

Torsion

12.1 Introduction. At the close of the last chapter it was indicated

that if the resultant shear forces do not pass through the shear center

of the beam cross sections, the forces will cause a twisting of the beam
about some longitudinal axis. The couple causing a twisting about a
longitudinal axis usually is called a torque. The torque acting on beams
induces shear stresses on the cross sections in the plane of the torque.

The simplest conditions of shear stresses caused by torque occur when
only a pure torque is acting without transverse shear forces or beam bend-

ing moments and when the end sections of the torsion members are free

to move in the axial direction. This latter condition occurs, for example,

when no restraints, such as end plates or heavy fastenings to other struc-

tures, are present to prevent the end cross section of the torsion member
from warping out of plane. This type of torsion will be discussed first.

12.2 Torsion of members with circular cross sections. Many mem-
bers such as machine shafts, propeller shafts, and so on, have either solid

(a) (b) (c)

Fis. 12.1. Torsion of Circular Section.

or hollow circular cross sections and are designed for transmitting torque.

Our attention will be directed first to the analysis of uniform shafts of

solid circular cross sections, and the following assumptions will be made:

(1) Sections remain circular after application of the torque

(2) Diameters remain straight

(3) Material is homogeneous, isotropic, and elastic.

In Figure 12.1 is shown a portion of a circular shaft of length dx with

a torque T applied at one end and resisted at the other. Under the action

of the torque, the left end will rotate counterclockwise relative to the

right end. This rotation is denoted by The point h will rotate up
214
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to point 6' so that the element of the cylinder be will assume the position

h'c after the torque is applied. If 7 is the angle between be and b'c

on the surface of the cylinder, the corresponding angle a distance p

from the center of the cylinder will be proportional to p or

y = Kp

However, 7 is the change in the right angle or the shearing strain. The
shear stress is

fs = yG = KpG

The force on a small element of area a distance p from the center as shown

in Figure 12.1(b) is/, dAj and the sum of the moments of all these forces

must be equal to the torque or

T = f.p dA = KG p2 dA

= KGJ

where = polar moment of inertia of cross section (in^).

T
Therefore, ^ =GJ

and f
J

(12.1)

f
•'*(max) J

(12.2)

where r = radius of shaft (in).

The shear stress distribution is shown in Figure 12 . 1 (c). The shear

stresses along the longitudinal elements of the cylinder are present since

we know that the shear stresses must exist in equal and opposite pairs

at a point.

The angle of twist of the shaft can be determined easily since

= Kdx = ^dx
p CrV

fL rp

Therefore, 0 =
/ 777 dx
Jo

and, if G, and J are constant,

rpT
=
yj (

12 .3 )

where <t>
= angle of twist in shaft (rad)

L = length of shaft (in)

T = torque (lb in)

G = shear modulus of rigidity (psi)

J = polar moment of inertia of cro3S section (in^).
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The angle of twist per unit length is

(12.4)

It should be emphasized that these formulas are correct only for

torsion members with circular cross sections.

12.3 Torsion of members with non-circular cross sections. Unfortu-

nately the formulas developed in the previous article cannot be applied

to noncircular shafts. This lack of correspondence can be illustrated

easily. According to the analysis of the circular shaft, the maximum
shear stress is located at the fiber most distant from the axis of rotation

(0 (d)

CHANNEL SECTION. DEVELOPED LENGTH

Fi3. 12,2. Torsion of Rectangular Sections.

and is perpendicular to the radius vector connecting the center of twist

and the stressed fiber. If these conditions are applied to a shaft of

rectangular cross section, as shown in Figure 12.2(a), the most stressed

fiber would be at one of the corners and the stress would be directed as

shown. This stress then would have a component normal to surface

with the corresponding shear stress along the surface, which is untrue.

As a matter of fact, when a shaft of rectangular cross section is analyzed

according to the methods of the theory of elasticity, it is found that the

maximum shear stress occurs at the center of the long sides and the

stresses at the corners are zero.

Only the results of the analysis of torque members with rectangular

sections will be presented here since the rigorous analysis is complicated
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and requires the use of the theory of elasticity.

Venant theory for rectangular sections,

(max)

<t>
=

T
abt^

TL

According to the Saint

(12.5)

The value of the coefficients oc and are shown in Figure 12.3. It is

0 1234 56789 10

1
t

Fi9. 12.3. Coefficients for Torsion of Bars with Rectansular Cross Section.

evident that for b/t > 10, a and ^ are appro.ximatcly i so that

= ^
•'•(mai)

ZTL
<t>
=

for - > 10
t

( 12 .6 )

btHi

where b — breadth of rectangle (in)

t = thickness of rectangle (in).

It is interesting to note that these Equations can be used for solving

open sections made up of rectangles by replacing the breadth b by the

developed length of the section determined by placing the rectangles

end to end. Thus, if we refer to Figure 12.2, the maximum shear stress

and angle of twist for the channel section are

f = 3^
'•(mM) (2a + h)t^

. _ STL
*

(2o + h)tH}
(12.7 )
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The reason for this will be apparent after studying the membrane analogy.

If the wall thicknesses are not the same for the rectangles composing

the section, then it can be shown that the angle of twist per unit length is

{2ai\ + ht\)G
( 12 .8)

where h = thickness of rectangle of length a (in)

h = thickness of rectangle of length h (in).

The stress for this case is

= Get (12.9)

The maximum stress occurs on the rectangle having the greatest thickness.

12.4 Membrane analogy. The shear-stress distribution for non-

circular torsion members is complicated and difficult to determine

analytically. It was pointed out by Prandtl, however, that the equation

for the torsion of a bar and the equation for the deflection of a membrane
subjected to a uniform pressure have the same form. It is therefore

possible to determine the shear stress in a torsion member by performing

an experiment and measuring certain quantities on a soap film or other

thin membrane deflected by a uniform pressure. Careful techniques

make it possible to determine the shear stresses accurately. However, the

main advantage of the membrane analogy is that it provides a method of

visualizing the stress conditions of a complicated torsion member.

Suppose the shear-stress distribution for a twisted bar of rectangular

cross section is to be studied. Imagine a soap film stretched over a

rectangular hole in a flat plate with the outline of the hole the same as the

shape of the cross section of the twisted bar. If a slight pressure is

applied on one side of the soap film, the film will bulge. The membrane
analogy establishes the following relationships between the deflected

membrane and the twisted bar:

(1) The slope of the membrane at any point is proportional to the

magnitude of the shear stress at the corresponding point of the twisted

bar.

(2) The tangent to a contour line at any point of the deflected mem-
brane is the direction of the maximum shear stress at the corresponding

point in the twisted bar.

(3) The volume included between the membrane and the plane of the

flat plate is proportional to the applied torque on the bar required to

produce a given angle of twist per unit length.

The contour lines for a soap film representing the conditions on a

torsion member of rectangular cross section are shown in Figuie 12.4(a).

According to the membrane analogy, the shear stress across any section

a-a is proportional to the slope a of the membrane. By referring to

Figure 12.4(b) it is seen that the slope of the membrane is a maximum at
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the edge and decreases to zero at the center line so that the shear stress

is a maximum along the edge and zero at the center, as previously indi-

cated. The direction and magnitude of the shear stresses along the

horizontal and vertical center line of the rectangular ^ross section are

indicated in Figure 12.4(c).

The effect of keyways, notches, and other stress concentrations can be

determined qualitatively by imagining the effect on the slopes that these

factors cause on the deflected membrane. The membrane analogy indi-

(a) (b) (c)

CONTOUR LINES SECTION 0-0 SHEAR STRESS

Fig. 12.4. Membrane Analogy for Rectangular Section.

cates also why it is permissible to determine the shear stresses in sections

such as channels and angles by assuming that the sections are made up of

rectangles placed end to end. Comparing the shape of the membrane

of the channel section with the membrane of a straight rectangle of the

same width and the same overall length indicates that except for points

of stress concentration, the maximum slope of the membrane and conse-

quently the shear stress is about the same for the two cases.

12.6 Torsion of thin-walled cylinders. Equation 12.1 for the shear

stress in solid circular sections is also applicable for hollow circular sec-

tions. Since the shear stress decreases linearly from the outside of the

section to zero at the center, it would seem that weight can be conserved

by moving some of the material in the region of the low stresses to the

outside region of high stresses. This results in the hollow shaft which is

often used for torque members. Of course, if this procedure is followed

indefinitely, eventually the wall of the tube becomes so thin that it fails

by buckling so that there is a minimum thickness to which the walls can

be made and still increase the strength.

Figure 12.5(a) shows the effect of changing the wall thickness of the

tube while the cross section area, and hence the weight, is kept constant.

It will be noticed that as the wall thickness is decreased the difference
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in the value of the stress on the outside and inside of the wall becomes

smaller. For thin tubes the assumption usually is made that the stress

is constant across the wall.

For a cylinder with any cross-sectional shape having thin walls it can

be shown that the shear flow is constant everywhere on the periphery.

Consider the cylinder of irregular cross section shown in Figure 12.5(b).

EFFECT OF DECREASING WALL THICKNESS

SHEAR FLOW

Fis. 12.5. Torsion of Noncircular Tube.

By assuming that the shear flow at point 1 is gi and that the shear flow

at point 2 is q^y then the shear flow along the cylindrical element 11' is gi

and along 22' it is q2 . Since there are no axial forces acting on the cyl-

inder, then for equilibrium in the axial direction we have

= 0 = q\L — qzL

or qi = q2 (12.10)

By calling the shear flow along the periphery g, its value can be

expressed in terms of the torque producing it. For an element of length

ds of the periphery, the shear force is q de. The torque about any point 0

due to this force is the force times the perpendicular distance h between

the force and 0. But h times ds is twice the area dA of the shaded tri-
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angle. Hence, the torque contribution dT of the shear flow along a

length ds is

dT = qhd8 = 2q dA

and the total torque is T = j^2qdA

Since q is constant, T = 2qA

Q
=
2A (12 . 11 )

where A is the enclosed area of the mean periphery of the tube. The shear

stress at any section is the shear flow divided by the thickness at that

section or

T
2At ( 12 . 12)

The deformation of the thin-walled tube due to torque is determined

most easily by use of Castigliano's theorem. Consider the element of

unit length of the tube surface shown in Figure 12.5(b). The force on the

left side of the element is q ds, and this force moves a distance 7 X 1

where 7 is the change in the slopes of the horizontal elements of the tube.

The elastic energy in this element is therefore

dU

But 7 is the shear strain so that

q ds

2
y

and

Therefore,

Gt

J12
U

SAK^t
ds

The integral is the line integral around the closed periphery of length c.

In* accordance with Castigliano’s theorem

( 12 . 13 )

Since t is the only variable around the periphery. Equation 12.13 can be

written in the following alternate forms

9 =

ds
(r\

4A^G,

q I ds

2AG

/ ds

Tel
Ji ds

To t
(12.14)

9 == angle of twist per unit length (rad/in).where
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If necessary, the integral can be approximated by the sum of the quotients

of the small elements of length As and the average thickness t for the

intervals As. If the thickness is constant, the value of the integral is

simply the length of the periphery divided by the thickness.

In each case for both open and closed sections the angle of twist per

unit length can be expressed in terms of the torque, the geometric proper-

ties of the cross section, and the shear modulus of the material. It is

convenient sometimes to combine the geometric properties of the cross

section into one coefficient C. Thus,

where C = —r for thin-walled tubes
X ds

9 1
ht^

C = "g" rectangles, and so on.

12.6 Coiuparison of open and closed sections in torsion. A com-

parison of the strength and rigidity characteristics of open-section and

Fis. 1 2.6. Open and Closed Sections.

closed-section torsion members having the same cross-sectional area will

indicate why, whenever possible, the open section is avoided for the

transmission of torque.

A circular split tube and a closed tube of the same material, diameter,

and wall thickness are shown in Figure 12.6. By assuming that the ends

of each tube are free to warp. Equations 12.6, 12.12, and 12.14 previously

developed can be used.

The stress in the open section is

3T ^ ST
bt^

T_ _ T
2At 2nrRH

3K
t

and for the closed section

/.c =

fjo _Hence,
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If, for example, R — 2 inches and t = 0.10 inches, then f,o/fsc = 60. In
other words, the stress in the split tube is 60 times the stress in the closed

tube for the same torque.

The angle of twist per unit length of the open section is

Bo =

and for the closed section

ST
btH}

ST
2irRt^G

Therefore,

T I ds _ T2tR
" 4A^Grc t ^{irR’^yGt

Bo _
Be

For the case R — 2 inches and t
— 0.10 inches. Bo/ Be — 1200. The open

tube is 1200 times more flexible than the closed tube.

Since open sections are weak in torsion, the effect of open-section

stringers such as angles and channels on the torsional strength of closed

boxes such as wings and fuselages is usually neglected.

12.7 Torsion of two-cell torque box. In many instances torque

members used in aircraft construction are thin-walled tubes having two

(b)

Fig. 12.7. Two-Cell Torque Box.

or more compartments or cells. An example is the wing section shown in

Figure 12.7.

It is apparent that for equilibrium in the longitudinal direction the

shear flow is constant in any wall, as indicated by Equation 12.10. The
shear flow, however, may have a different value in each of the walls.

By assuming shear flows in each of the three walls where they join and
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isolating a length of the joint dx as indicated in Figure 12.7(b), then for

equilibrium in the x direction we have

2F* = 0 = ^1 dx — ^2 — gs dx

= ?2 + ^8 (12.15)

The shear flow out of the connection equals the shear flow in. The torque

of the shear flows around any point 0 is equal to twice the swept area

times the shear flow or

T = 2q\{A\ + A 20)
— 2q^A2a + ^q^A^b

But ^3 = — q2

Therefore, T — 2qi{Ai A 2a) — 2^i^2a + 2^2^20 ^(l2A 2h

= 2qiAi + 2^2^2 (12 . 16 )

where A 2 = ^ 2a + ^26

This equation has two unkno^vns, q\ and g2 ,
so that an additional condi-

tion is required for a solution. This condition is obtained from a con-

sideration of the twist of the cells.

Since the cells are connected together, the twist of cell number one

must equal the twist of cell number two. The two cells have the vertical

wall in common. By considering the left cell as composed of the nose

section and the vertical wall and using the second form of Equation

12.14, then

. _ 1

2AiG
f“

ds

Jo t

and similarly II
to

<12

f”ds
Jo T-^\ f"'

ds

lo t

Let ai
0

II

€L2
f’^ds

jo t

ai2
f”ds
jo t

where s is taken positive in the direction of the assumed shear flow. By
substituting qz = qi — q2 into the above equations, the condition Bi — 62

gives

2^ + (91 - 92)«i2l = -2A^ ^9202 - {qi - g2)ai2] (12 . 17 )

The solution of the simultaneous Equations 12.16 and 12.17 for results

in

T (1\A 2 "h CI 12A
2 aiA\ + + aiA\

(12.18)

A = A\ -f" A 2where
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Knowing ^ 2 ,
then qi and can then be determined by means of Equations

12.16 and 12.15.

Example 12 . 1 . A two-cell torque box similar to the one shown in

Figure 12.7 carries a torque of 120,000 lb in. Determine the shear flow

and shear stress in each wall, assuming that the wall thickness is constant

for each cell.

Thickness of nose section h = 0.025 in

Thickness of web tz = 0.051 in

Thickness of aft cell = 0.032 in

A I
= 170 in2

A 2 = 390 in^

51 = 36 in

52 = 70 in

53 = 15 in

Solution. Since the wall thickness is constant for each cell

f‘'ds 5l 36
ai =

jo ii h ~ 0.025
= 1440’

f‘'-ds S2 70
02 —

jo h h ~ 0.032
= 2188

f‘ds _ Sz 15
ai2 =

jo /j
~

Tz 0.051
= 294

From Equation 12.18

^ r (i\A2 “1“ (112A

2 YaiAl + anA'^ + cl^AI

_ 120,000 r (1440 X 390) + 294(170 + 390)
” 2^

[1^^40(390)2 + 294(170 + 390)2 + 2188(170)2

= 116 Ib/in

From liquation 12.16

T - 2q2A2 120,000 - ( 2 X 116 X 390)=—
217
“ ^

27070
=

By using Equation 12.15

Q'a
= “ ^2 = 87 — 116 = —29 Ib/in

The minus sign on the value of qz indicates that the shear flow is opposite

to the direction assumed. Therefore, the shear flow in the web is

downward.

The values of the shear stresses are

1
^

S = 0^2 = 3-^25 psi

1 0^ ""
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12.8 Multi-cell torque box. In some cases there may be more thaln

two cells in a torque box. The analysis of a multi-cell torque box is

essentially the same as for,the two-cell box. There \vill be one equation

for the torque in terms of the n unknown shear flows and n — 1 equations

relating the angles of twist of the adjacent cells. These equations then

are solved simultaneously for the unknown shear flows.

0* 1^,

1
O 1 @ 1 @ ©1 © ]

q,-S q,-q.D
,

1

Fi3. 12.8. Multi-Cell Torque Box

Figure 12.8 schematically indicates a torque box with n cells. The
shear flow in each web can be expressed in terms of the shear flow in the

skin of the adjacent cells by applying the rule that the shear flow going

into a joint is equal to the shear flow going out. Thus, the shear flow

on the web between 1 and 2 is — ^ 2 . The torque is therefore

2qiA, + 2^2^2 + • • • 2qnAn (12.19)

and the angle of twist for cells one, two, three, and so on, is

2G^i = [qiai + (qi
-

^2)012]

2GB2 = [^2^2 — (qi — g'2)ai2 + (q2 — ^ 3 ) 023] (12.20)

2G0n — -j [O'nUn (^n— 1 Q'n)U(n— l)n]
An

There are n —
• 1 equations which result when the angles of twist are

equated.

Oi = $2 (12.21)

Bn-l = Bn

Equations 12.19 and 12,21 are then solved simultaneously for the

unknown shear flows.

12.9 Nonuniform torsion. It has been shown that open-section mem-
bers are very much more flexible and weaker than closed-section members
subjected to torque. The suggestion has been made that open-section

members are to be avoided wherever possible for torque-carrying struc-

tures. However, open-section members cannot always be avoided. For

example, although a fuselage is mainly a closed member, there are always

access openings, bomb-bays, and other openings whose covers cannot

always be designed to carry the load across the opening in the same
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manner as the load is carried in a completely closed section. Fortunately,

there are other considerations which effectively stiffen the structure in

these weak regions.

In all the torque analyses made thus far it has beer assumed that the

ends of the torque members are unrestrained so that the end cross sections

can move in the longitudinal direction in any manner whatsoever. If a

piece of paper is rolled up to form a tube and one end rotated with respect

to the other, it will be noticed that the ends which are originally in a

plane perpendicular to the longitudinal axis of the tube will not lie in a

plane after the tube is twisted. In fact, the corners of the paper may
move a considerable distance in the longitudinal direction. If the ends

are restrained from warping by heavy end plates, then it will be found

Fig. 12.9. Warping of C Section.

that the tube is stiffened considerably. We will call this restrained

torsion.

An analysis of an open section with consideration of the warping will

be made. This analysis is not rigorous, but it will show the nature of the

problem. Consider the thin-walled (7-section cylinder shown in Figure

12.9. The curved line representing the end section is the median line

between the sides of the thin wall. If a torque is applied at each end

so as to rotate the right end clockmse relative to the left, then since the

shear stress is zero along the median line the net deformation due to

shear strain will be zero. However, the right end will rotate as a rigid

body about the center of twist 0, and the cylinder will distort, as shown

in Figure 12.9(a).

A point p on the right end will rotate to its new position p'. The

amount this point moves in a plane tangent to the shell surface and con-

taining the line pc is ph. If a tangent is drawn perpendicular to
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the cylindrical element cp and a similar tangent at p' constructed, then

the amount p moves in the tangential direction is 6'p". Now if p is the

perpendicular distance from 0 to the tangent pV then 6'p" == Op and

pb = Bp

pb
The angle P between cp and c'6 is ^

^ = Bp

Since ce is a tangent at c on the left end before distortion and c'c' is a

tangent at the corresponding point c' after distortion, then ce is perpen-

dicular to cp and c'e' is perpendicular to c't which makes the angle

between ce and c'e' equal to

(a) (b) (c)

Fis. 12.10. Swept Areas.

If we refer now to Figure 12.10, it is evident that the longitudinal

distance c has moved is cc' and this is called the warp at c. The change

in warp between point c' and a point on the periphery of the shell a

distance ds from it will be called dw. If we assume that the angle

is a constant for the small distance dsj then

dw = P ds ^ Bp ds (12.22)

But p ds is twice the area of the shaded portion shown in Figure 12.10(b).

If this small shaded area is called da, then

dw = 2B da (12.23)

In other words, the change in warping between two adjacent points a

distance ds. apart on the periphery is twice the area swept by the radius

vector from the center of twist in moving a distance ds.
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The warp at any point on the periphery is

w ^ 26f da

= 26a -}- B

where B = an arbitrary constant of integration.

If the swept area is measured from a point where the warp is zero, such

as point then the warp is

w = 2da (12.24)

where a is measured from the point of zero warp to the point where the

warp w is to be determined. It should be pointed out that the swept

area is positive for the radius vector moving counterclockwise and

negative for the radius vector moving clockwise. Thus, the swept area

to point/ in Figure 12.10(c) is the algebraic sum of the positive area (1)

and the negative area (2). The double-crosshatched area is positive

when the radius vector is moving counterclockwise and negative when
the radius vector is moving clockwise so that these areas cancel.

The ends of the cylinder are eventually to be restrained from warping.

This does not mean that the warp of every cross section will be zero.

Therefore, it is reasonable to assume that the warp at corresponding

points of two different cross sections will be different. Let

w = 62a = 6wi (12.25)

where Wi = the warp at any point per unit angle of twist; Wi is the same

for similar points on different cross sections and is a geometric property

of the sections. The rate of change of w along the longitudinal direction

is

dw _ d6

dx dx

But ^ is the longitudinal strain in the x direction and if there are no

lateral stresses, the stress in the x direction is

/ = = (^2 .26)

If the stress is different at corresponding points on two different cross

sections, then the force on an area dA of the right end of an element of the

cylinder of length dx shown in Figure 12.11 is (/ + df) dA and the force

on the left end for the same area is f dA, The shear flows on the two
longitudinal sides of the element are q and q + dq. For equilibrium in the

X direction

(/ + df) dA + q dx — f dA — (g + dq) dx = 0
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But df „ dH

Therefore, dq — E ^2 dA (12.27)

The torque on any cross section of the cylinder is the sum of the shear

flow times twice the area swept out by the radius vector from any con-

venient point such as the center of twist or

Ti = f q2 da = f q dwi
JAx jAi

(12.28)

where A i is the total swept area. Integrating this by parts, we have

Ti = qwi\ — f Widq (12.29)
|Ai JAx

For a section symmetrical about the z axis the value of the summation

of qwi for the whole swept area A i is zero since there is as much area swept

out in the positive direction as in the negative direction and q has the

same sign at corresponding points above and below the z axis. There-

fore, qw\ of Equation 12.29 is zero. Hence, for symmetrical sections
i>ii

the torque due to the variation in warping between sections is

^ /J Ax
wi dq

But

Therefore,

^ Tpd^d
d<l = E -^^WidA

Ti = - E d^e f ,

dx^ Ja
dA

The integral of w\ dA is a geometric property of the cross section which
we will call F. Thus,

(12.30)
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The total torque on the cylinder will consist of the torque due to the

variation of warping between sections and the Saint Venant torque due
to the usual open-section shear-stress distribution. Since the Saint

Venant torque is Tj = GC6, the total torque is

T = GCe - ET (12.31)

where GC = torsional rigidity of the open section with ends free to warp

r = w\ dA

From Equation 12.26 the axial stress at any point of the cross section

is

i* T?

where wi = j
2 da

If the applied torque is known, the angle of twist per unit length can be

determined from Equation 12.31.

Equation 12.31 can be used for the case of a torsion member with

restrained ends as well as for members for which the torque varies along

the length. When T is variable, the solution of the equation is more

difficult than the solution that follows for the case of constant torque.

It can be shown in general that if the torque is not constant, axial tension

and compression stresses of considerable magnitude are developed even

though the ends of the member are not restrained from warping.

Equation 12.31 will be rewritten as

where

e - d^e

dx^

=

T
GC

GC (12.32)

The solution of this equation for constant applied torque is

e =
GC

1 + D\e 2) 2^ (12.33)

where 2)i and D 2 are arbitrary constants to be evaluated by the bound-

ary conditions. Since sinh y = i{e^ — e~^) and cosh y = i{e^ + e""*'),

Equation 12.33 can be written also in a form that is sometimes more

convenient.

0 = ^ cosh
1
+ Bi sinh

|j
(12.34)

where again Bi and B 2 are arbitrary constants.

It will be shown in the example that follows that considerable axial

stresses can exist in open-section torque members if the ends are com-
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pletely restrained from warping. In actual practice complete restraint

of the ends is seldom realized since very rigid end plates are required.

In the case of a fuselage, for example, the portion of the fuselage adjacent

to the cutout comprising the open section is usually reinforced with a

bulkhead, a stiffening around the opening, or by means of a stiffener

ring. These stiffening members are not completely rigid so that an
analysis assuming complete fixity of the ends of the cutout portion gives

only an indication of the stresses. The actual stresses in members of

this type are extremely complicated; and, although the methods given

here are suitable for preliminary stress checks, tests should be made
before the final design is completed.

Except for the uniform circular section that does not warp, the same
type of stress condition exists in closed members subjected to torque

where the ends are restrained from warping. Thus, we would expect

axial stresses to develop where the wing joins the fuselage when the

wing is subjected to torque. The axial stresses due to restrained warp-

ing for the closed section are usually of more of a local character than

for the open section. This so called '‘root effect'^ should be investigated

for critical conditions.

Example 12.2. An aluminum I beam 3 feet long and with the cross

section shown in Figure 12.12, has heavy end plates to prevent the ends

from warping. If a torque T is applied at one end while the other end
is held fixed, determine

(1) expression for angle of twist per unit length, B

(2) maximum axial stress at fixed end

(3) shear stress in flange at fixed end.

The dimensions of the cross section are = 12in, 6 = 5 in, = 0.544

in, and h = 0.175 in.

Solution. If we consider the cross section composed of three rec-

tangles, the torsional constant C is

^ _ 2btl + hA _ 2 X 5(0.544)^ + 10.91(0.175)^ _ ^C — — jz — U.uoo in^

The center of twist is at the midpoint of the web. The warp per unit

angle ofTwist of any point on the median line of the flange is

= 2a = 2 = 5.728s

r = f^wldA = i (6.728s)'<2rf5 = 371.84 in*

= EV 10.5 X 10* X 371.84

GC 3.8 X 10* X 0.556

h = 42.98 in

L _ 36

2k 2 X 42.98

= 1848

= 0.419

and
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By using the solution in the form of Equation 12.34, the part con-

taining the sinh term can be omitted since 6 is symmetrical about

X = 0 . That is for x < 0, 0 > 0, and for a; > 0, ^ > 0; and the only

(0 W)

Fis. 12.12. Torsion of I-Beam with Ends Restrained from Warpins.

functions satisfying these conditions are the constant term and the cosh

term. Therefore,

^ i]

At the fixed end where ^ ^
warp at every point is zero.

Therefore,

Then

and
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Now

so that

cosh^ = 1.089

= 1 “ 0.918 coshy
GC L

The maximum angle of twist per unit length is at the midsection where

X = 0. Therefore,

^ [1 - 0.918] = 0.082^
The angle of twdst per unit length for the beam without end restraints

would be TjGC. Therefore, restraining the ends reduces the maximum
value of B about 92%.

The axial stress is given by Equation 12.26:

r TP
do

But
dx

A.
dx

T k

GCk TT
cosh^

At the fixed end ^ — 2

TE
^
,L

^ ' GCk 2k

Substituting Wi = 5.728s for the left side of top flange gives

T X 10.5 X 106 X 5.728s X 0.397/= -
3.8 X 10® X 0.556 X 42.98

0.262TS

Therefore, the stress varies uniformly across the flange, and the stress

at the left corner of the upper flange where s = 2.5 in is

/ = —0.6557^ (compression)

The axial stress distribution is shown in Figure 12.12(d).

From Equation 12.27
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Therefore,

But

= E d^e

~dx^ /
Wi dA

d^d

dx^

T
GCk^^

cosh

cosh
2k

and at the fixed end where x
L
2

g =

Q =

E7
GCk

'JL f
^k^ J

f‘ (5
J2.,

^

W\ dA

7286)^2 ds

-0.004197V
2..

5

- 0.0041 9 (s'^ 6.25) r

12.10 Allowable stresses for torsion members. Unfortunately few

data are available of a general nature concerning the ultimate allowable

stresses for torsion members. The data that are available are in scattered

references and usually are based on test results for specific types of mem-
bers such as D sections, circular tubes or rods, boxes, and so forth. If

the allowable load is based on an allowable stress that does not exceed

the proportional limit of the material, then since the equations for the

stresses in torsion members are based on the assumption that the material

is elastic, the equations can be used directly unless buckling occurs.

However; if the design load produces stresses that exceed the proportional

limit of the material, then the allowable stress may be based on rupture,

buckling, or a specified permanent set, and the elementary equations for

predicting the stresses are not valid.

The data for the allowable stresses for the ultimate load of circular

tubes are expressed usually in terms of a modulus of rupture in a manner
similar to the allowable stresses for a beam in bending. The torsional

modulus of rupture is the fictitious stress at which failure would occur if

the stress distributions for the elastic material were valid up to the rup-

ture point. Thus, for a circular rod or tube the torsional modulus of

rupture is

TMR = (12.35)

where Tm»x is the maximum torque the member can withstand without

rupture or buckling failure. The maximum torque is determined by
means of tests. Curves for the torsional modulus of rupture for circular

tubes are given in the ANC-5.
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Problems

12 . 1 . A hollow steel propeller shaft is transmitting a torque of 3000 lb ft. If

the shaft is 4 feet long and has an outer diameter of 3 inches and an inner diameter

of inches, determine

(a) maximum shear stress

(b) angle of twist.

12.2. A channel beam with cross section as shown in Figure 11.16 is loaded

at the ends with forces of 100 pounds. If the line of action of the loads is along

the center line of the web and the ends are not restrained from warping, determing

(a) torque

(b) maximum shear stress caused by torque. (Neglect stress concentrations.)

12 .3 . Determine the thickness of a 1-inch 4130 alloy-steel circular-control

tube to carry a limit torque of 5,000 lb in if the allowable shear stress is 40,000 psi.

12 .4. Determine the size of the lightest standard 4130 circular tube, 24 inches

long, to carry an ultimate torque of 50,000 lb in. The ends of the tube are hinged.

12 . 6 . Three shafts ha\dng the same weight and length and made of the same

material are subjected to the same torque. The cross sections of the shafts are

a solid circle, a square, and a rectangle for which the length is ten times the

thickness. Determine

(a) strongest shaft

(b) most flexible shaft.

12 .6 . Determine the location of the maximum shear stress for a torsion mem-

,
6"

1 6" ^

her having an elliptical cross section

I

and for one having an equilateral tri-

I angular cross section.
. 4

r t n
0.032"

0.051"
""0.051"

0.032"
L i A

r ‘-i

^ 0.05l"_^

L J.

- (

12.7. Determine the shear flows

in the walls and the angle of twist per

, „ unit length of the aluminunf 2-cell rec-
^ tangular torque box shown in Figure

12.13 if the applied torque is 9,000

lb in.

1
12.8. A 2-cell wing section similar

3.. to the one shown in Figure 12.7,
*4*4 ^®t.ES except that it is symmetrical about a

r. T IT horizontal line, is to transmit a torque
F.g. 12.13. Two-CcIl^RecUnguUr Torque

skin around the nose is 30 inches and
has a thickness of 0.025 inches, whereas the distance measured along the top skin

of the aft cell from the front web to the rear web is 30 inches and the skin thick-

ness is 0.032 inches. The height of the front web is 16 inches and it is 0.051

inches thick. The height of the rear web is 10 inches and it is 0.032 inches

thick. The enclosed area of the front and rear cells respectively are 150 in^ and
381 in^ Determine the shear flows and shear stresses in the walls.

12 .9 . If another web 0.051 inches thick is added to the wing section of prob-

lem 12.8 midway between the front and rear webs, determine the shear flows and
shear stresses.

12 .10. The I beam of Example 12.2 but of very long length is to be fixed at

one end but free at the other. If a torque of 10,000 lb in is applied at the free
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end, determine the maximum axial stress. {Hint: Use the exponential form of

the solution and the fact that as the distance from the fixed end becomes large

e T/GC.)

12 .11 . An aluminum beam with the cross section as show" in Figure 11.16

is 48 inches long and has ends restrained from warping. If the beam transmits a

torque T, determine the maximum axial stress and the shear flow at the juncture

of the web and flange at one end.

12 .12 . Half of a circular-arc fuselage-section model is shown in Figure 12.14.

The stringers are spaced every 15° and have an area of 0.0382 square inches.

The area of the hat section is 0.360 square inches. The thickness of the skin is

0.016 inches. If the section is 40 inches long and the ends are restrained from
warping, determine the axial stress in each stringer at the fixed end and the

shear flow between each stringer for an applied torque T, Assume that the

shear flow is constant between stringers.
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CHAPTER 13

Combined Torsion, Bendins, and Shear

13.1 Introduction. It is not unusual for an aircraft structural mem-
ber to transmit torsion, bending, and shear simultaneously. A wing is

an example of such a member.

The stress distribution on a section of a member with this combined

loading consists of the shear stresses, due to the torsion together with the

shear stresses caused by the shear force, and the bending stresses. In

the case of nonuniform torsion, the axial stresses caused by the restraint

of the warping or varying torque will add algebraically to the bending

stresses.

13.2 Bar with rectangular cross section. A bar with a rectangular

cross section carrying an eccentric end load is shown in Figure 13.1.

If the load P is a distance d from the center of twist, then the torque at

each section of the bar is Pd. The bending moment on any section a

distance x from the end where the load is applied is Px, and the shear

force on the section is P. The shear force and the torque cause shear

stresses each of which may be determined by means of equations previ-

ously developed. Hence, the vertical shear stress along the horizontal

line z-z due to the shear force is

h

, V n 3P

838
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and the shear stress at the midpoint of the long sides due to the torque is

aht^ aht^

Since these two stresses are in the same direction and act on the same area

at the center of the long side nearest the load and each is a maximum at

this point, the maximum shear stress on the cross section is

3 P Pd
2bh'^ aht^

(13.1)

The shear stresses at other points of the section can be determined

separately and added vectorially, as indicated in Figure 13.1(b).

The bending stresses are not shown, but they are linearly distributed

about the horizontal axis as in the case for pure bending. Axial stresses

due to restraint ot warping have not been considered in this case.

13.3 Closed section with flanges (approximate method using shear

center). The most obvious manner of analyzing the stress conditions

for a member transmitting shear, bending, and torque is to consider the

effect of each of these actions separately and then to combine them for the

final result, as indicated in the preceding article. In order to determine

the applied torque caused by a shear loading, however, the position

of the shear center must be known since the torque is the shear force

times the perpendicular distance to the shear center. The position of

the shear center for open sections having heavy flanges usually is deter-

mined easily, but in the case of closed sections the determination of the

center of twist sometimes becomes difficult. Two methods will be devel-

oped for analyzing the shear stresses caused by the shear force: one

involving the use of the shear center, the other using a reference axis

other than the one through the shear center.

The first development involving the use of the shear center gives an

approximate solution. Later, the exact solution will be indicated so

that the significance of the approximation can be evaluated.

Consider the beam with a rectangular box section symmetrical about

a horizontal axis and having heavy flanges as shown in Figure 13.2.

Let a shear load V be applied a distance d from the left side of the box.

By assuming that the shear center is located a distance e from the left

side, then the shear force V can be considered as acting at the shear

center along with a torque T which is equal to V{e — d). The shear

force at the shear center will cause only bending, and the torque will

cause only twisting.

Consider now the effect of the shear force at the shear center. The
shear flows on a section a distance x from the end are assumed in the direc-

tions indicated in Figure 13.2(b). The shear flow in the vertical web is
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assumed constant as in previous analyses. The shear flow on any side

is unknown, and we will assume that the shear flow is go at the center

of the top sheet. Since the shear flow varies linearly across the top and

bottom side, the average shear flow is go. The shear flow on any other

side consists of the shear flow go plus, algebraically, any•other shear flows

required to satisfy the conditions of the problem. It is apparent that for

equilibrium of the forces in the horizontal direction the average shear flow

on the bottom side must equal go in magnitude. It is apparent also

SHEAR FLOW FOR SHEAR FLOW FOR

BENDING ONLY TORQUE AND BENDING

Fig. 13 . 2 . Closed Section with Flanges.

that, since go forms a closed circuit, it has no force resultant but it does

provide a torque.

The values of the shear flows gi and g2 which are present on the side

webs along with go can be determined from a consideration of the equi-

librium of a flange element of length dx. Consider the upper right flange

and half of the top sheet shown in Figure 13.2(c). The force on the

flange and sheet changes by an amount dP in the distance dx because of

the change in bending moment dM. As indicated before

dP = A df = (^lAi + 2 ^82/1^
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Equilibrium of the forces in the x direction demand that

SFx = 0 = P — (P + dP) qndx — qo dx + qi dx

Similarly for the left web

<?2
=

-y ^^2^2 + I
hy^ (13.3)

where 44.2 = flange area of flange No. 2 (in^)

h = length of top sheet (in)

tz = thickness of top sheet (in)

y2 — distance of flange No. 2 and top sheet from neutral axis (in).

The shear flow in the left or front web is

and for the rear web
Q/ — Q2 Qo

Qr = Qi — Qo

(13.4)

Although ^1 and q2 can be evaluated since V, /, y, and A are known,

Qo is still unknown. The angle of twist per unit length for a closed

section has been stated previously as

(13.5)

where A = enclosed area of section.

Since in this case the shear force is applied at the shear center, the beam
will bend without twisting. Early investigators thus assumed that 6 = 0

and therefore

= 0 (IS.G)

for the case of bending without twisting. By using this relation the value

of Qo then can be determined.

h
,

h

Qo =

^2 tz

(13.7)

Equations 13.2, 13.3, 13.4, and 13.7 therefore make it possible to evaluate

the shear flows.

If the shear flows are known, the location of the center of twist can be

determined. The moment of the applied shear force V about any point
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such as the lower left flange is equal to the moment of the shear flows

on the section. Referring to Figure 13.2(b) we find that

Fe = -2 ^ + 2 (gi - ?„) = -2Aqo + Aq^

The torque on the box is V{e

torque is

— d). The shear flow caused by this

- (13.9)

Therefore, the shear flows on the front and rear webs of the box due to

the original shear loading acting eccentric to the shear center are

q/ = + qi + qr ..o in\
— ^0

(13.10)

and on the top and bottom sides the shear flows are

qs = qQ + qr (13.11)

13.4 Closed section with flanges^ (accurate method using shear

center). The determination of the unknown shear flow qo in the previous

analysis depending on equating the angle of twist per unit length 9 to

zero for the case of bending without twisting. Thus,

0 = 0 = (13.12)

Goodier has shown, however, (reference at end of chapter) that the

average angle of twist per unit length for a beam carrying both bending

and torsion is given by

2GAe =

where (see Figure 13.3) A = enclosed area of section (in^)

M = Poisson^s ratio

V = shear force in direction of vertical principal

axis of section (lb)

Zc = z coordinate of centroid of A measured from

the center of gravity of the section (in)

I = moment of inertia of section about hori-

zontal principal axis z (in^).

The condition for zero twist in the case of bending without torsion there-

fore becomes

instead of the relation 13.12 previously assumed.
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The development of Goodier’s theorem depends on a knowledge of the
theory of elasticity which is beyond the scope of this text. However, the
use and significance of the theorem will be indicated.

The analysis of the last article is correct up to the uetermination of

the shear flow in Equation 13.7. By using Goodier’s theorem this

relation becomes

By using this corrected value of qa, the analysis proceeds as before. It is

apparent that if the first term of the numerator is small compared with

Fi 3 . 13.3. Coordinate System.

the other terms, the analysis of Article 13.3 can be used with little error.

A comparison of these methods will be made in an example.

13.6 Closed section with flanges (approximate method without the

use of the shear center). Before comparing the methods developed in

the last two articles for a specific case, a third method will be developed

which gives the same results as the first approximate method in a simpli-

fied form.

In this method the shear force is not moved to the shear center so that

the separate effects of bending and torsion can be evaluated and then

combined, but both actions are considered simultaneously. It is not

necessary to know the location of the shear center.

Consider the section shown in Figure 13.4 similar to the section

analyzed in the previous article. A constant shear flow qc on all the

sides and additional shear flows and q\ on the front and rear webs will

be assumed as before. The values of qi and q2 are given by Equations

13.2 and 13.3. Equating the torque of the shear flows on the section
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about a reference point such as the lower left flange to the torque of the

Fis. 13.4. Shear Flows on Closed Section.

applied shear load about this point, we have

Vd = -2Aqc + Aqi

-Vd + Aqi
or qc = (13.16)

Therefore, the total shear flow in the front web is

q/ = q 2 + qc q2 +
-Vd + Aqi
" 2A

and in the rear web

qr = qi - qc qi
- -Vd + Aqi

2A
(13.17)

2 ^
Vd
2A

where 7i = y (^i^i + 2

q2 = Y ^2/2^2 + I

Example 13.1. Determine the shear flows on the sides of an alumi-

num rectangular box section similar to that shown in Figure 13.2 if the

vertical shear load V is acting along the left web and

Ai = 2 in^ = 0.06 in

^2 = 1 in^ t 2 = 0.04 in

= 10 in /3 = 0.04 in

b —• 30 in

The section is the same as that used by Hatcher (see reference at end of

chapter). Everything but the webs are assumed to carry the bending.

The solution will be made by the three methods given in Articles 13.3,

13.4, and 13.5.
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Solution.

/. Approximate method using shear center.

2,3

I = 2['^) (4i + A2) + 2(5) + j2
(<1 + <2) = 2X25(2+ 1)

(10)3+ (2 X 25 X 30 X 0.04) + (0.04 + 0.06) = 218 in^

+ = 6/1 = 30 X 10 = 300 in*

2/1 = 2/2 = I
= 5 in

h ^ JX)
ti 0.06

h ^ iO

ti 0.04

b ^ ZO

<3 0.04

= 166.6

= 250

= 750

From Equations 13.2 and 13.3

V
</i = j (2/.^. + I

<32/

.)
= 21^

^ ^ ^ = 0.0596F

q2 = j (2/2^2 + I <32/2) = ^ [(5. X 1) + (15 X 0.04 X 5)] = 0.0367F

Using Equation 13.7

qo = h <2 0.0596F(166.0) - 0.0367F(250)

h
,

h ^
<1 <2 <3

_ 166.6 + 250 + (2 X 750)

<3

= 0.00040F

The location of the shear center is given by Equation 13.8

A{qi - 2<7o) 300(0.0596F - 2 X 0.00040 F)
« - V ~ V
= 17.65 in

The shear flow due to the torque is obtained by means of Equation

13.9.

=
- d) ^ F(17.65 - 0) ^ ^ 0294F
2A 2 X 300

Therefore, the final shear flow in the front web is

9/ = 9o + 92 + 9r = (0.00040 + 0.0367 + 0.0294)F
= 0.0665F
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The shear flow on the rear web is

gr = - go - = (0.0596 - 0.00040 - 0.0294) F
= 0.02987

The shear flows on the top and bottom panels are

g« = go + gr = (0.00040 + 0.0294)7 = 0.02987

II. Goodier method. By referring to Figure 13.3, the location of the

centroid of the section will be found by taking the moments of the areas

of the flange areas and skin about the right web.

_ 2^42^ -f" h^tz “f" hht2

2(^2 + ^4i) + 2btz + hit\ + h)

_ (2 X 30) + (W X 0.04) + (10 X 30 X 0.04)

2(1 + 2) + (2 X 30 X 0.04) + 10(0.04 + 0.06)

= 11.49 in

Therefore, Zc = ^
- z = 15 - 11.49 = 3.51 in

The shear flows gi and g2 are the same as before, but go is now deter-

mined by means of Equation 13.15.

go =

<1 <2 ^ h

ll ^ + 0.0590(106.6) F - 0.0307(250)

F

160.6 + 250 + (2 X 750)

= 0.00098

F

The location of the shear center is therefore

- 2qo) _ 300(0.0596 - 2 X 0.00098) F _— — ^ f .oU in

The shear flow caused by the torque is

qr
V{e - d) _ F(17.30 - 0)

2A 2 X 300
0.0288F

The final shear flows are

qf — qo A" q^ qr — (0.00098 ( 0.0367 -jr 0.0288) F
= 0.0665F

qr =- qi - qo - qr = (0.0596 - 0.00098 - 0.0288)F
= 0.0298F

g. = go + 9 t = (0.00098 + 0.0288)F = 0.0298F

In this particular case the shear flows determined by the Goodier

method do not differ significantly from those obtained by the approximate
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method. It should be pointed out, however, that the position of the shear

center is somewhat different and that the shear flows considering bending

only without the torque are different. It is apparent that the greater the

distance between the centroid of the section and the centroid of the

enclosed area, the greater the error in qo as determined by the approxi-

mate method.

Ill, Approximate method without use of shear center. By using Equa-

tion 13.16

. _-Vd + Aq, __ -V(0) + 300(0.0596)7 _
~ 2A 2^000

Then q/ = q 2 + qc = 0.03677 + 0.02987 = 0.06657

qr = qi- qc = 0.05967 - 0.02987 = 0.02987

13.6 Single-cell box with stringers. The method developed in

Article 13.5 will be used in all the analyses of combined bending, torsion.

and shear that follow. It should be emphasized that this method

assumes that the correction involving Poisson^s ratio indicated by

Goodier is not considered. For a rigorous analysis this effect and the

variation of shear flow in the webs should be taken into account.

Consider the single-cell section shown in Figure 13.5. A vertical

shear force and a torque are applied at some point so as to produce

bending of the section about the horizontal principal axis of the section
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and a torsion about a longitudinal axis. Any convenient point on the

horizontal principal axis such as 0 may be selected as a reference point.

The shear flows are assumed composed of a flow go that is constant on

all the skin and a pa^t that is constant between stringers but may
vary between one set of stringers and the next. The shear flow go is

taken as the shear flow in the web in this case. The varying shear flow

gi between flange 1 and stringer 2 is determined from the equilibrium

conditions at flange 1 and is found to be

3i = jOi (13.18)'

where = area of stringer or flange No. 1 and effective skin area acting

with it (in^)

yi = distance from principal axis to (in)

I — moment of inertia of whole section about principal axis (in^).

This shear flow is assumed to act so that it has a component in the direc-

tion of the shear load producing it. A similar analysis of the equi-

librium of stringer 2 (Figure 13.5(c)) indicates that

V V
g2 = gi + y 2/2A,2 =

-j (Qi + Q 2 )

The varying shear flow between any stringers k and A; -f 1 is therefore

(13.19)

where Q* = yiAsi for any stringer i.

The total shear flow between any two stringers must include also the

constant part go. Hence, the total shear flow between any two stringers

is

gr = go + Qk (13.20)

The torque of the applied loads about the reference point is equal to

the torque of the shear flows about the same point. If the swept area

between stringers 1 and 2 is Ai, and so on, and there are n stringers not

including the bottom flange of the spar, then

n

But Ak = A,

Vd + T = 2go ^ + 2 ^ A,q^

k-\

total enclosed area so that

?o —
vd+T

1 y2A A
t-i

Ak.qh (13.21)
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k

1-1

Example 13.2. A symmetrical single-cell box beam with stringers

similar to the one shown in Figure 13.5 carries a vertical shear load of

500 pounds 8 inches to the left of the vertical web, and a clockwise torque

of 2,000 lb in. The thickness of the skin around the nose is 0.040 inches,

and the web thickness is 0.064 inches. Other dimensions for the section

are given in Table 13.1. Assuming that the bending is resisted only by

the stringer areas, determine the siiear flows.

Table 13.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Stringer

no.

Ai =
area of

str.

Vi Qi Vi^Ai 20. qk Ak Akqk q (total)

See Fig.

13.5
given

meas-
ured

(2) X
(3)

(3) X (4) 2(4)
V
jX(6) meas-

ured
(7) X
(8)

+ (7)

O {\0 5 75 3 5G5 20 49
34,5 14.38 496

1

9 ^ no 0 700 ^ PiO

O . clUi/ 1 o . o

VI . o . uu
1

U . 1 uu O 0\J

4.265 41 3 17.05 704 25.6
O n 1

A

1 ^ 0 p»07 1 R4O 1/ . O . V/ . OKJ i

A 779 46 2 52 20 2412 30 5
A — fV? —0 ^07 1.84

*± * i i c

0.14: O - O . «JO 1

4.265 41 3 17.05 704 25 6
K n ^ A — Pi no —0 7nn PiOO 0,14 —

. \j\j 0.1 oo O . til/

3 565 34 5 14.38 496 18 .

8

n K 7K o cp. r 90 d.0
i

O U . DZ — 0.40 — o , OOO ZO . 417

Totals T = 51.66 115.1 4812

Solution. The solution is indicated in the columns of Table 13.1.

By using Equation 13.21

The minus sign indicates that the flow is upward on the web.

The shear flows are shown in Figure 13.6.

13.7 Two-cell box with stringers. The method of determining the

shear distribution in a two-cell box is similar to the method used in the
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previous article except that instead of one unknown shear flow there are

now two unknown shear flows to be determined. Equating the angles

of twist for each cell gives the additional condition required for solution.

A two-cell box with stringers is shown in Figure 13.7. The vertical

shear loads are resolved into a vertical shear force, F, acting normal to the

horizontal principal axis of the section and a torque, T, about the refer-

ence point, 0, which is at the intersection of the front web and the

horizontal principal axis. Constant shear flows qa in the nose and qn

in the aft cell are assumed to be acting as shown; qa is the total shear flow

in the skin just to the left of the top flange of the front spar, and q^ is

the shear flow just to the right of the same point. The shear flow between

V

any two stringers in the nose or the aft cell other than the first panel is

made up of two components, the constant part and a variable part which

represents the change in shear flow due to the stringer load. By num-
bering the stringers on the aft cell clockwise from the top flange of the

front spar which we will call 1, then the total shear flow between stringers

2 and 3 is

Qr — qh — q2b (13,22)
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but q2h = y Q^h

Qih = yibAs2b

where A, 26 = area of stringer No. 2 and effective skin acting with it on

cell h (in^)

2/26 = distance from horizontal principal axis to A, 26 (in).

Between any two stringers k and A: + 1

k

9.6 = j ^ Qii (13.23)

i = 2

A similar expression is valid for the shear flow between the stringers of

the nose cell

k

Qka = 7 ^ Qi- (13-24)

t = 2

A free body diagram of flange No. 1 indicates that the additional

shear flow in the front web is

<?i = j yiA.i (13.25)

Since the total torque about the reference point 0 is T, we have

n

aAka ” 2 qkhAkh (13.2(5)

where Aka = area swept out by radius vector from 0 between any stringer

k and stringer k + \ (in^)

Ao = total enclosed area of nose cell (in^)

Ab — total enclosed area of aft cell (in^)

m = number of stringers on cell (a), not including the bottom

flange of front spar

n = number of stringers on cell (6), not including the bottom
flange of front spar.

Equation 13.26 gives one relation with two unknowns, Qa and qb.

Another relationship can be determined by equating the angle of twist

of the front and rear cells.

= 2^5 {[X S] ^ 1
*-2

T = 2qaAa + 25'6A6 + 2 2 Qk
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where Ska = distance measured along skin between any stringer k and
A; + 1 on cell (a) (in)

tka = thickness of skin between stringer k and A; + 1 on cell (a) (in)'

h — height of front spar (in)

tu, = thickness of web of front spar (in).

Since da = Oby we have another equation which can be solved simul-

taneously with Equation 13.26 to determine qa and qb. If we know Qa

and qtf the total shear flow between any two stringers can be determined

by means of a relation of the type of Equation 13.22.

Example 13.3. Determine the shear flows in the skin and the angle

of twist per unit length of an aluminum section similar to the one shown
in Figure 13.7 except that there are no stringers and all the bending is

resisted by the flanges on the front and rear spars. The top flange of the

front spar is number 1; the top flange of the rear spar is number 2; and

the bottom flanges of the rear and front spars are numbered 3 and 4

respectively. Also

Aa = 392 in2

Ab = 990 in^

^26 = 440 in^

/i = 24 in

sia = 51 in

sib = 44 in

526 = 20 in

536 = 44 in

T — — 230,000 lb in (counterclockwise)

V = 5,000 lb

Solution. The moment of inertia of the section is

I = 2ylAsi + 2ylA.2 = 2(12)n.85 + 2(10)21.65 = 863 in^

From Equation 13.25

qi = j yiA.x = X 12 X 1.85 = 128.6 Ib/in

and by means of Equation 13.24

y 2/ 2A ,2 = X 10 X 1.65 = 95.6 Ib/in

V
y {y2Aa2 + y^Asz) = 0

A,i = = 1.85 in2

As2 = A.,3 = 1.65 iii2

L = 0.051 in

tia = 0.020 in

^16 = 0.073 in

^26 “ 0.036 in

tsb = 0.030 in

2/1 = -y.i = 12 in

2/2
= -2/3 = 10 in
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or

Equation 13.26 becomes

T — 2iqaAa + 2,qhAh — 2

3

A; = 2

-230,000 = 2^„(392) + 2^6(990) - 2 X 9.16 X 440

qa + 2.53(76 = — 186 (a)

By means of Eciuation 13.27

m

= i; { [X S] t]
k = 2

1 r 51 24 1

^2 ^ o;'()20

~
OMIJ

and 2(706 -

1.1 hja - 1.20^6 - 154.3

1

990

20 44

0.030

20 44
^ 0.073

+ {qb + 128.6 — 5a) Q-^

24

051

- -0.485a + 3.1356 + 7.48

Equating 6a to 06, we have

8,195a - 4.3356 = 161.9 (b)

Solving Equations (a) and (b) simultaneously gives

5a = — 15.8 Ib/in

56 = —67.4 lb/in

Therefore, shear flow in nose skin is

5a = —15.8 Ib/in

Shear flow in front web is

5/- = 5i + 56 — 5a = 128.6 — 67.4 + 15.8 = 77.0 Ib/in (upward)

Shear flow in rear web is

5r = 526 — 56 = 95.6 + 67.4 = 163.0 Ib/in

The shear flow" in the top and bottom skin of the rear cell is

56 = —67.4 Ib/in

The angle of twist per unit length is

06 — ^ (
— 0.485a + 3.1356 + 7.48)

= i^3.^ iO^
[-0.48(-15.8) + 3.13(-67.4) + 7.48]

= —25.8 X 10~® rad/in (counterclockwise)
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13.8 Single-cell box with shear force inclined to a principal axis. In

the previous analyses it has been assumed that the applied shear loads

could be resolved into a shear force acting normal to a principal axis of

the section. In the general case this is not always possible since the

resultant shear force may be inclined to the principal axes of the section.

Such a shear load always can be divided into two components, each acting

along a principal axis. The shear flows on the section thus will be

composed of the shear flows due to the two shear forces at right angles

to each other and the shear flow due to the torsion about a reference

point.

A single-cell, three-flange section is shown in Figure 13.8. The
resultant shear force V has been divided into two components in

the principal axis directions and a torque about the reference point 0.

The shear flow between any two flanges is assumed to be composed of a

constant shear flow and variable shear flows qy and Qz, where Qy is the

shear flow due to the shear load Vy and is the shear flow caused by Vz.

Considering the equilibrium of flange 1, it can be shown that the shear

flow qiy is

V
Qiy ^ ~j~ yi-^Bi (13.28)

z

where Iz = moment of inertia about principal axis z (in*)

2/1 = distance to Agi from z axis (in)

A,i = area of flange 1 and effective skin (in).

k

is* 1

For stringer k = 2
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where Qn = static moment of area of flange i about the z axis.

Similarly, q^, = ^ ziA.i (13.29)
-*

1/

\

and qt, =
ly

The total shear flow between flange 1 and 2 is therefore

=
<l\v + qiz + ^0

The applied torque about 0 is equal to the torque of the shear flows or

n

T = 2qoA + 2 ^ A,.iq,y + (13.30)

where Ak = swept area between flange k and flange k + 1 and referen(;e

point 0

A = total enclosed area of section

n = number of flanges not including the bottom flange of the

spar.

For the three-flange beam shown in Figure 13.8, Equation 13.30 becomes

T = 2qoA + 2[.4i(^iy -h qiz) + A2{q2y ^2«)] (13.31)

Therefore, go = (13.32)

The shear flow at any point can then be determined by the algebraic

addition of the component parts qo, qyy and q^.

In this particular case of the three-flange cell, the shear flows could

have been determined more easily by assuming unknown shear flows

qiy q2 f
and qs between each of the flanges and applying the conditions of

equilibrium 2F* = 0, 2Fy = 0 and XT = 0. However, when there are

more than three flanges, the method developed in this article will be

found useful. This method can be extended also to the multicell box

by adding the shear flows caused by the additional shear load in the z

direction to the shear flows considered in Article 13.7.

13.9 Additional comments. The determination of the bending stresses

and shear stresses in non-tapering box sections and thin-web beams with

heavy flanges has been based usually on the assumptions that the flange

or stringer areas together with their effective skin area carry all the

bending moment and the skin carries all the shear force. Because of

these assumptions the shear flow between stringers is constant and the

moments of inertia of the cross section is the sum of the moments of

inertia of the stringer and flange areas with the effective skin about the

principal axes of the section. Actually, of course, the skin does con-
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tribute to the bending resistance of the section and the flanges do resist

some of the shear load. Since the skin on the compression side usually

buckles at low loads, the length of effective skin acting with the stringers

is usually taken between 10 and 30 times the skin thickness or the effec-

tive width formulas are used. This skin is then assumed to act with the

stringer at the center of gravity of the combination of the two. All

the skin on the tension side is assumed effective. Sometimes it is

assumed also that up to one sixth the area of the web of beams acting with

the flange area is effective in resisting bending.

Including skin and web areas in determining shear flows means that

the assumption of constant shear flow between stringers or flanges is not

vahd. We have seen, for example, that the shear flow distribution is

parabolic for a beam for which all the web is effective. It can be shown

that shear flow in the skin parallel to the neutral axis of a box beam
varies linearly. These variations of shear flow are often neglected in the

design of beams.

Problems

13.1.

A hollow, steel propeller shaft is transmitting a torque of 3200 lb ft.

The shaft is subjected also to a shear force of 500 pounds acting perpendicular

to the axis of the propeller shaft and passing through the center of tlie shaft.

If the outer diameter of the shaft is 3 inches and the inner diameter is 2-2- inches,

determine

(a) maximum shear stress

(b) angle of twist of shaft per unit

length.

13.2.

For the channel section of Prob-

lem 11.3 assume that the vertical shear

force is acting along the web, and
determine

(a) applied torque

(b) maximum shear stress neglecting

stress concentrations at corners.

13.3.

An aluminum four-flange rec-

tangular box section similar to the one
shown in Figure 13.2 carries a vertical

shear load of 2500 pounds 10 inches to the left of the left web. Assuming that

the shear flow is constant between flanges, determine

(a) shear center by Goodier method
(b) shear flows in skin by Goodier method
(c) shear flows by approximate method.

when A 2 = 2.5 in^ A = 12 in h = t 2 = 0.040 in

Ai = 1 in^ 6 = 10 in U = 0.064 in

13.4.

A non-tapering, four-flange D section is loaded as shown in Figure 13.9.

If the thickness of the nose skin is 0.025 inches and the thickness of the web is

0.052 inches, whereas 6 = 3 inches, J? = 5 inches, Ai = A i = 2 square inches,

and A 2 = Aa = 0.5 square inches, determine
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(a) shear stresses in skin

(b) axial stresses in flanges and stringers at a section 24 inches along the beam
from which the loads are applied.

13*6. A circular fuselage section has 16 equispaced stringers around the
periphery, each having an area of 0.10 square inches. The skin is 0.025 inches
thick, and the radius of the shell is 15 inches. The sect! n carries a bending
moment of 200,000 lb in about the horizontal axis and a vertical shear load of

2500 pounds 4 inches to the left of the center line of the fuselage. Assuming
that only the stringers resist bending determine

(a) shear flows

(b) stringer stresses.

Also determine these same quantities, assuming that all the skin on the tension

side is effective in resisting bending and that the length of effective skin with

each stringer is 30i on the compressive side.

13.6. A symmetrical non-tapering wing section is shown in Figure 13.10.

The vertical load acting perpendicular to the horizontal principal axis of the

Fis. 13.10. Wins Section.

section is 100 pounds per inch of span distributed along the load axis which is

parallel to the leading edge of the wing. The distributed moment along the load

axis is 100 pound inches per inch of span. Determine the shear flows and shear

stresses in the skin and the axial flange and stringer stresses at a section of the

wing 40 inches inboard of the station where the distributed load begins.

All external skin thickness = 0.032 in

Front and rear web thickness = 0.051 in

Length of nose skin = 50 in

Enclosed area of nose = 150 in

Assume that skin line is straight between stringers of rear cell.
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CHAPTER 14

Combined Stresses and Allowable Stresses

14.1 Introduction. The various types of loading such as tension,

compression, bending, torsion, and shear have been considered separately

and in certain combinations in the preceding chapters. In each case, a

normal stress acting perpendicular to an area and a shear stress acting

along a surface have been determined on a somewhat arbitrarily oriented

plane, such as the cross section of a beam or column. There is no reason

to suppose that stresses on such sections are necessarily the maximum
stresses induced by the loads at a given point. In fact, it is usually

possible to determine a stress in some direction which is greater in magni-

tude than the stress determined in the arbitrarily chosen direction. It

becomes necessary therefore to investigate the stresses in various direc-

tions at a point in the material. Stresses that arise from combinations

of simple normal and shearing stresses are called combined stresses.

After determining the combined stresses, the value of the limiting

stresses to prevent structural failure should be considered. Of course,

this depends to some extent on the criteria chosen for engineering failure

of the structure. Engineering failure may be based on any number of

factors such as yielding, rupture, buckling, or fatigue. In each case the

stresses .that can be permitted are called the allowable stresses^ and the

determination of the allowable stresses for complicated, induced-stress

conditions is usually difficult.

There are a number of theories of failure of material that have been

proposed in an effort to correlate the properties of a material, such as can

be determined from a simple tension test, with the failure of the same
material subject to more complicated loading. Two of the many theories

are the maximum normal-stress theory and the maximum shear-stress

theory. The maximum normal-stress theory is based on the assumption

that failure by rupture occurs when the maximum combined normal stress

in a member is equal to the maximum normal stress in a tensile specimen

at rupture. This theory is used sometimes for predicting fracture of

brittle material. In the maximum shear-stress theory it is assumed that

when the maximum shear stress reaches a limiting value as determined

by a tensile or shear test, the member fails. This theory is used some-

times for ductile materials.

Another method Tvidely used in the aircraft industry for specifying

the allowable stresses is that of interaction curves. The interaction curve

is a means of indicating how much of each of two or more loadings, such

as tension and torque, the member can withstand before it fails.

258



COMBINED STRESSES AND ALLOWABLE STRESSES 259

14.2 Combined shear stress and normal stress. Many times in the

preceding chapters, the stress conditions have been determined at

various points on the cross section of a structural member, and these

stresses have been composed of a shear stress and a normal tension or

compression stress acting on the same surface. The stress condition

in the web on the cross section of a beam is an example. Another example

(d) (c)

NORMAL STRESS SHEAR STRESS

DISTRIBUTION DISTRIBUTION

Fis. 14.1. Combined Stresses.

is shown in Figure 14.1 of a propeller shaft carrying a torque load and a

tensile load.

The stresses induced by the tensile load and torque on the sides of an

elemental block ahcd of the propeller surface are shown in Figure 14.1(b).

The thickness of the block, /, is assumed small enough so that the stress

distribution can be considered uniform across the depth. The problem

is to determine the stresses on some plane inclined at an angle to the plane

of the applied stresses. The stresses on the inclined plane are composed

of a normal component /n and a shear component These stresses will
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be determined by a consideration of equilibrium of the triangular element

aeg. Since in dealing with stresses the area is involved, the ^tresses

eannot be added together vectorially. Stresses can be added only

directly when the stresses act along the same axis so that the area on

which they act is the same for each. For this reason the stresses are

expressed in terms of the forces on the sides of an element before they are

added. If we refer to Figure 14.1(c) and remember that the force on the

side of the block is the stress times the area on which it acts, then for

equilibrium of the forces in the direction x' normal to inclined plane, we
have

= 0 = fni As + fst Ay sin 9 + fst Ax cos 9 — fit Ay cos 9

But Ay = As cos 9; Ax = As sin 9

Therefore, /n + 2/« cos 0 sin ^ — ft cos^ 0 = 0

Since 2 cos 0 sin 0 = sin 20

and cos^ 0 = 1 + cos 20

2

then (1 + cos 20) ” fs sin 20 (14.1)

From a similar consideration of the forces in the y' direction along the

inclined plane we obtain

/' =
*^ sin 20 + f, cos (14.2)

For the special case where

=

/«, the distribution of the normal and shear

stresses for various directions of the inclined plane are shown in Figure

14.1(d) and (e).

It is evident that the normal stress attains a greater value than the

applied stress ft. The orientation of the inclined plane on which /n

becomes a maximum can be determined by the usual methods. Thus,

It is interesting to note that if the value of 0 for maximum normal stress is

substituted into the Equation 14.2 for the shear stress on that plane, the

value of the shear stress is zero. The maximum normal stress always

occurs on a plane where the shear stress is zero. The maximum normal

stress and the normal stress at right angles to it are called principal

stresses

i
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The orientation of the inclined plane for maximum shear stress can be
determined by differentiating the expression for the shear stress,

(If = 0 = ft cos 28 - 2f, sin 28

tan 28 = ^ (14.5)

The expression for the maximum shear stress is therefore

(14.6)

14.3 Mohr’s circle. The stress conditions in any direction for the

case of stresses in a plane easily can be represented graphically by a

diagram known as Mohr’s circle. The diagram makes it possible to

determine the principal stresses and the maximum shear stress at a point.

The main value of the diagram, however, is the means it provides for

visualizing the combined stress conditions in various directions in the

material.

The method of constructing Mohr's circle for the case of applied

tension and shear stress considered in the preceding article will be indi-

cated first. Proof that the diagram is a graphical representation of the

stress relations given in Equations 14.1 and 14.2 will then be made.

The construction of Mohr's circle shown in Figure 14.2(a) which

represents the stress system of combined shear ^nd tension is as follows:

(1) Construct as coordinate axes, a horizontal normal-stress axis and

a vertical shear-stress axis.

(2) Lay off to scale along the normal-stress axis a line OE represent-

ing the value of the applied stress ft,

(3) From E parallel to the shear-stress axis construct the line ED
representing the applied shear stress/, on plane cd of Figure 14.1(b).

(4) From the origin construct a line OF opposite in direction to ED
and equal in length. This line represents the shear stress on plane cb

of Figure 14.1(b).

(5) Connect points F and D, This line intersects the normal-stress

axis at B.

(6) With B as a center, describe a circle through F and D,

The location of points on the circle indicates the values of the stresses

on various planes of the material. Thus, for example, point D' repre-

sents the values of the combined stresses on a plane making an angle 0

with the plane on which the stress /< acts. The horizontal distance from

the vertical axis to D' is the value of the normal stress, and the vertical

distance is the shear stress. The angle p is the angle between the plane

on which ft acts and the plane of the maximum principal stress, since OC
represents the value of the maximum normal stress for the system.
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Fis. 14.2. Mohr’s Circle Diagram.

The correspondence between the circle and the equations for the

stresses can now be shown.

/„ = {OB) + (BE') = I + cos {29 + 20)

where R = the radius of the circle =

cos {29 + 20) = cos 29 cos 20 — sin 29 sin 20

A
2R

sin 20
{DE) ^ f.

R R

But

and
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Therefore, /^ == ^ cos 26 - /. sin 29 (14.7)

which corresponds to Equation 14.1. A similar process shows that

Mohr^s circle gives the value for the shear stress /' ^corresponding to

Equation 14.2.

Maximum combined shear stress is represented by the radius of the

circle which is

and the maximum combined normal stress, which is the principal stress,

is determined by the intersection of the circle with the normal-stress axis

or

Mohr’s circle for the case of biaxial stress consisting of two applied

normal stresses and shear stresses on planes at right angles to each other

is shown in Figure 14,2(b). The construction is the same in principle

as for the uniaxial stress case previously discussed. The stress condition

on the plane on which acts is indicated by point D on the circle, and

the stress condition on the plane where fy acts is indicated by point F.

The stress conditions on other planes making an angle 6 with the plane on

which fx acts can be determined by the position of the points on the circle

an angle 26 from D. By means of the circle the normal stress on any

plane can be shown to be

/n =-^^+-^^^cos20-/.sin20 (14.8)

and the shear stress to be

f’.
= sin 2d + /. cos 2e (14.9)

The maximum normal stress and shear stress are

^ S4.10)

>"<1 +n (1411 )

The angle between the stress in the x direction and the maximum principal

stress is given by

tan 2j3 = — .

V

/* }v
(14.12)
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In constructing Mohr’s circle the applied tension stresses which are con-

sidered positive are laid on the positive normal-stress axis. Compression

stresses are laid off in the iiegative normal-stress axis direction.

Combined stresses for other applied stress conditions are special cases

of the biaxial system shown in Figure 14.2(b). Thus, for the case of

applied pure shear stress, fx=fy = 0, and Mohr’s circle becomes a circle

with center at the origin and with radius /*. Mohr’s circle for the case of

applied pure tension for which /y = /s = 0 is a circle tangent to the /«

axis and of radius ft/2.

Example 14.1. On the cross section of a beam the stresses at a point

on the web are found to be 46,800 psi tension and 27,600 psi shear. If

the allowable tensile stress for the material is 60,000 psi and the allowable

shear stress is 37,500 psi, determine the margin of safety in tension and

shear.

Solution. The maximum normal stress at the point in accordance

with Equation 14.4 is

/n (max) +p.

46,800
+ A- + (27,600)2 59 (joo psi

Then MS = Ft

U

8ooy

(max) 59,600

From Equation 14.6

Aj(46’|00y + (27,600)2 = 36,200 psi

Therefore, MS = F,

77,max)

14.4 Interaction curves. Many theories have been proposed to

explain the failure of material under combined stresses. No single

theory seems to be adequate to explain the failure of all types of material

under all possible combined stress conditions. Such theories will not be

discussed here, but a method of presenting data pertaining to the failure

of material under various types of combined loading and combined
stresses will be considered. These data are given in the form of inter-

action curves for which the parameters are stress ratios.

A stress ratio is defined as

« = I (14.13)

where / = applied stress

F = allowable stress.
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For example, if a member is subjected to bending for which the applied

bending stress is/b and the allowable bending stress is the modulus of rup-

ture Fft, then the stress ratio is

and the margin of safety is

1

It is reasonable to suppose that the strength of a member under one

type of loading is influenced by the addition of another type of loading.

For example, if a tube is subjected to bending so that it is carrying one half

of its allowable bending load, the addition of a sufflcieiit torcjue load will

Fig. 14 . 3 . Interaction Curve for Combined Bending and Torsion of Tubing.

cause the members to fail although neither of the loadings acting alone

are sufTicient to cause failure. The relative proportion of each type of

loading required to cause failure is indicated by the interaction curve.

The interaction curve is usually determined by test. Figure 14.3 shows

an interaction curve for tubing under combined bending and torsion.

This curve is determined in the following manner. A bending load

less than that required to produce failure is applied and then a torque

load is applied until the tube fails. This determines a point on the

curve. This process is repeated until a set of points is obtained which

spans the region of failure from pure bending moment, represented by the

stress ratio = 1 on the horizontal axis, to failure by a pure torque

loading, represented by = 1 on the vertical axis. A curve is then
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fitted through these test points. For the case considered, it is found

that an arc of a circle closely fits the test points. Analytically, therefore,

the curve can be expressed as

Rl + Rl = I (14.14)

where Rb =

R. =

_ applied bending stress

allowable bending stress

applied torsional shear stress

allowable torsional shear stress

It is evident that if the member is carrying a bending and torque load

so that the sum of the squares of the stress ratios is less than unity, the

member does not fail. The region between the coordinate axes and the

interaction curve therefore represents combinations of stress ratios that

are safe.

The margin of safety for given values of stress ratios can be deter-

mined. Suppose the stress ratios are such as to determine point A in

Figure 14.3. If both the bending load and torque load are increased

simultaneously by proportional amounts, point A will move out along a

radial line until it lies on the interaction curve, Indicating failure of the

member. If we denote Rba and R»a the stress ratios at failure, then the

margin of safety is

Rba t _ RsaMS = - 1

whichever is most convenient. From similar triangles

Rba _ VRla + fiL

Rb VRl + Rl

But Rba and R^a determine a point on the curve so that Rl^ + R]a = 1-

Therefore,

MS
VRI + Rl

(14.15)

14.6 Interaction curves for other combined loading conditions. The
interaction curve for two combined loadings can be expressed mathe-

matically as

Ri + Rl= I

where Ri, R2 = stress ratios for simple loading

a,b ^ coefficients that determine the shape of the curve.

Typical interaction curves are shown in Figure 14.4 together with the

equations for the curves. The different values of the coefficients a and b

determine various types of curves. For example, if a = 5 = 1, the curve

is a straight line, and if a = 6 = 2 the curve is the arc of a circle. As the

values of a and b become greater, the curve bulges more and more toward
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the axes = 1 and R 2 = 1. If the curve actually fits the axes Ri = R 2

= 1, it means that the strength of the member with the loading Ri is

not influenced by adding R 2 . In other words, there is little interaction

between the loading when a and b are large. Conversely, when a and b

are small, there is considerable interaction between thr' loadings. This

is the case of combined bending and compression for which a bending

R. '

Fi3. 14.4. Typical Interaction Curves.

deflection increases the effect of the axial loading, which thus increases

the bending deflection, and so on, as in beam columns.

Some equations of interaction curves for specific cases of combined

loading taken from the ANC-5 are cited below.

Conditions for buckling of flat panels.

Combined compression and bending: = 1

Combined compression and shear: R]’^ /2c = 1

Bending and shear: RI R] — ^

Thin-walled cylinders.

Combined transverse shear and bending: RI R] — 1

Combined bending and compression : Rc + Rt = I

Combined bending and torsion: RI + R^, = I

Interaction curves were developed first for determining the failure of

members by buckling. The method is being extended now for other

types of failure, such as the rupture of bolts under combined tension and

shear. Until more is understood about the failure of material under

combined loading so that failure can be predicted analytically, the
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interaction curve presents a useful means of presenting experimental

data.

An extension of the method showing the interaction between two load-

ings can be made for the case of three loadings. Thus,

Rl + + Rl = l

defines an interaction surface.

Problems

14.1 . Draw Mohr’s circle diagram for the data given in Example 14.1, and
then plot the polar diagram for the normal-stress distribution at a point.

/ 14 .2 . A 1-0.049 4130 tube 5 inches long is fixed at one end and carries a

500 pound shear load and a 3000 pound inch torque at the other. Determine the

maximum combined normal stress and shear stress in the tube.

14.3 . Prove that the sum of the maximum and minimum principal stresses is

equal to the sum of the applied normal stresses acting on two planes at right

angles to each other.

14.4. A tension member with a cross-sectional area of 6 square inches carries

a tensile load P. The normal stresses on two planes at right angles to each other

are 6,000 psi and 12,000 psi. Determine

(a) load P
(b) shear stress on planes on which the given normal stresses act

(c) angle between axis of bar and direction of 12,000 psi stress.

14.6

.

The beam section shown in Figure 11.3 carries a vertical shear load of

35,000 pounds, and a bending moment about the^horizontal axis of 130,000 lb in.

Assuming that the web carries all the shear but that the web takes its part of

the bending stress, determine the direction and values of the maximum com-
bined compression and tension stresses at the neutral axis and at the point where
the web joins the flange.

14 .6 . In a forming operation a sheet is subjected to a 10,000 psi compressive

stress in one direction and a 25,000 psi tensile stress at right angles to it. Deter-

mine the maximum shear stress. Draw Mohr’s circle.

14.7. A test is performed on a thin-walled cylinder, and it is found that the

allowable stress is 10,000 psi in compression and 20,000 psi in torsion. If failure

of the cylinder under combined loading occurs at the following values, plot the

interaction curve and select a typical interaction curve from Figure 14.4 that

most nearly fits the data.

Stress in torsion is stress in compression is

18,400 psi when 2,000 psi

16,600 4,000

14,000 6,200

12,000 7,800

8,000 9,200

4,000 9,800

14.8. The failure for a member is given hy Ri + R 2 - 1. Determine the
expression for the margin of safety.

14.9. A 2j-0.065 4130 tube has a modulus of rupture in torsion of 38,600 psi

and a modulus of rupture in bending of 98,000 psi. If the tube carries a bending
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moment of 9,400 lb in and a torque of 10,900 lb in, determine the margin of

safety.
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CHAPTER 15

Connections

16.1 Introduction. From a structural standpoint it would be desira-

ble to make the airplane from one continuous material similar to a cast-

ing or an extrusion. If this were possible, whole wings could be produced

as a unit. However desirable this might be structurally, production

procedure, accessibility for repair, and maintenance require that the

aircraft be made up of a composite structure in which the various parts

are assembled into subassemblies and the subassemblies fitted and joined

together for the complete structure.

The three main methods of joining structural units are those depending

on mechanical, fused, or cemented connections. Among mechanical

fastenings are riveted or bolted joints and fittings, tie rods, and so on.

Fused connections depend on the joining of the parts by fusion such as

welding, brazing, and so on. Cemented connections depend on the

adhesive action of such materials as glue or plastic for joining the units.

All three types are commonly used in the aircraft structure, although the

mechanical connection is most common especially for detachable fasten-

ings such as may be used for joining together large units, for example, the

wing and fuselage. A mechanical fastening designed for joining together

two or more units is sometimes called a fitting.

16.2 Riveted and bolted connections. Four types of failure of simple

riveted or bolted connections are shown in Figure 15.1. Of these four

types of failure, the shear tearout, Figure 15.1(b), can be prevented by
selecting a proper minimum edge distance e. This edge distance for

riveted connections is usually at least twice the rivet diameter. Tearing

of the sheet between rivets, Figure 15.1(d), is prevented by limiting the

minimum distance between rivets (rivet spacing) to three times the rivet

diameter. This leaves only failure due to rivet shear and the crushing

of sheet or rivet to consider in the design of a riveted connection. For

maximum efficiency it is desirable to have the strength of the connection

in shear and crushing about the same since the connection fails at the

weaker of the two, and it is undesirable to have excess strength which
implies excess weight.

Regardless of the type of failure the allowable load per rivet or

bolt is

Pa = AF (15.1)

where F = allowable stress (psi)

A = critical area on which stress acts (in^).

270
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RIVET SHEAR

—* » L.

S ^

,

(C) (<J)

CRUSHING OF SHEET FAILURE OF SHEET BETWEEN
OR RIVET RIVETS

Fis. 15,1. Types of Failure of Riveted Joints.

Thus, for failure of the sheet between rivets

A = net area between rivets.

For shear tearout

A = 2et

where e — edge distance (in)

t = sheet thickness (in).

For bearing of sheet or rivet

A = projected area of rivet = td

d =* diameter of rivet (in).where
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For rivet shear

STRESS ANALYSIS

A = total shear area

4

where K = number of surfaces in shear.

Very often data are given for the allowable load on a standard rivet in

shear or the allowable load for a rivet and sheet in crushing. A table for

shear and bearing strengths of aluminum alloy rivets and sheet will be

found in section 5 of the ANC-5. When these values are available, they

are easier to use than the equivalent expression of the allowable stress

times the area.

If the load per linear inch to be transmitted by a single lap joint is JP,

then the number of rivets required per inch is

n
P
Pa

The spacing between rivets is therefore

(15.2)

Example 15.1. Determine the rivet size and spacing for a simple lap

joint between two 0.032 24ST aluminum-alloy sheets if the load is

500 pounds per inch and 17ST rivets are to be used.

Solution, This problem will be solved by using the data in section 5

of the ANC-5 (Revised 1946).

Consulting pages 5-26 and 5-26a of ANC-5, we find that for i" rivets

allowable load in single shear = 494 X 0.964 = 476 lb

allowable crushing load = 411 X 1.29 == 530 lb

and for rivets

allowable load in single shear = 275 X 1 = 275 lb

allowable bearing load = 307 X 1.29 = 396 lb

Since the allowable loads are more nearly equal for the two types of

failure for the i" rivets, this size will be used. The design will be based

on the allowable shear value since this is the smaller of the two allowables.

Thus,

Pa 476 ^ . 15 .

" = P
= = use^m

Since this spacing is greater than 3d, the sheet between the rivets will

not fail first. The edge distance should be at least 2d.

Example 15.2. Determine the rivet size and spacing for the butt

joint shown in Figure 15.2 if the applied load is 1200 pounds per inch.

The design requires the use of 17ST rivets in 24ST sheet.
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Solution, In this example the rivets are in double shear, and the bear-

ing is considered on the combined thicknesses of the splice plates or the

main plate, whichever is smaller.

Fis- 1 5.2 Butt Joint.

From the ANC-5 for rivets

allowable shear = 2 X 494 X 0.935 = 924 lb

allowable bearing = 822 X 1.29 = 1000 lb

Pa 924 11.
I hen s = -p

=
2200

~
lO

16.3 Eccentrically loaded connection. An eccentrically loaded con-

nection is shown in Figure 15.3. Since the load is applied at some
distance from the rivet group, it is apparent that the load tends to rotate

the member on which it acts. The point about wliich the arm rotates

is called the rivet group center.

If the load is resolved into a force and a couple at the group center,

then the rivets must resist the effects of the direct load and the couple.

The total force on a rivet is the sum of the forces due to the direct load

and the couple, as indicated in Figure 15.3(c).

The amount of load carried by each rivet depends upon its resistance

to deformation, which may in turn be based on its cross-sectional area or

its minimum strength in shear or bearing. For example, in considering

only the effect of the couple, if there are two rivets located at distances

ri and r^ from the group center respectively, then for a given rotation

of the arm the deformation of the rivets are proportional to their distance

from the group center. For the case of elastic deformation, the stress in a

rivet is proportional to its deformation and the modulus of elasticity.

The load carried by the rivet is the stress times its cross-section area.

Therefore, for rivets having the same deformation and modulus of elastic-

ity, the loads are proportional to the cross-section areas. A viewpoint

more commonly accepted in designing aircraft joints is based on the

assumption that the resistance to deformation is proportional to the allow-

able loads. Thus, for two rivets having the same deformation, the one

with the higher allowable load is assumed to carry the greater load

in proportion to the ratio of the allowable loads for each. If the areas

and material of the rivets in a group are the same, both of these assump-

tions produce the same results. Neither of these assumptions is strictly
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true, but the latter one seems to give the best results as compared with

tests.

Consider the forces on the rivets or bolts due to the couple M. If

rotation is assumed about point 0 of Figure 15.3(d), then the force on

ECCENTRIC FORCES AT GROUP
CONNECTION CENTER

^FORCE DUE TO
COUPLE

3

DIRECT
FORCE-^:

|y

(0 (d)

FORCES ON RIVETS COMPONENTS OF FORCE
ON RIVET NO. 3 DUE TO

COUPLE

Fig. 15.3. Eccentrically Loaded Connection.

each rivet is perpendicular to the line between the rivet center and the

group center. In accordance with the assumption that the force on the

rivet is proportional to its distance from the group center and its allow-

able load, then the load on rivet number 3 is

Pa — KrJ^az

where K = constant^^of proportionality

ra == distance from group center to rivet No. 3 (in)

Po8 = allowable load for rivet No. 3 (lb).
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Selecting point 0 as an origin for the x and y coordinates makes the forces

on rivet number three in the x and y directions become

Pax = Pa cos e =
rs

Psv = Ps sin d = —Ps —
^3

and Pax = Kr^Paz^ = KPazVz
^3

Pzy = —KPazXz

Similar forces on the other rivets can be determined in a like manner.

Since these forces produce a couple, the summations of the forces in the x

and y directions are zero.

Plx + P2x + Psx = 0

KPaiyi + KPa2y2 + KPaZVz = 0

or ^yPa = 0

similarly, SxPa = 0 (15.3)

These conditions are satisfied if the origin is located at the centroid of the'

allowable rivet loads.

Equating the moment of the rivet loads to the applied moment, we
have

Therefore,

and

M = Piri + P2r2 4- PzTz

K =

Kr\Pax + KrlPa2 + KrlPaz

M
tr^Pa

Pz = MrzPaz
Xr^^Pa

- and so forth

In terms of the distances x and y, the x and y components of force on any

rivet n are

p MPanyn

p — 05 4 )

2;(x2 + y^)Pa ^
^ ^

The direct loads on the rivets will be distributed also in proportion to

their allowable loads or

PL = (15.5)

pf _ P

y

Pno
~ SPa

where P^* = force on rivet in x direction due to direct load P* in x

direction.
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The total load on any rivet determined by force resolution is

Pn = \/(Pnx + + (P«;+ (15.6)

The equations are considerably simplified if the allowable loads for

all the rivets are the same. In this case

Myr,

2(X2 + 2/2)

Px
number of rivets

(15.7)

Example 15.3. A riveted connection similar to the one shown in

Figure 15.3 is held together by 3-i^" 17ST rivets in 0.064" 24ST clad sheet.

A vertical load of 500 pounds acting downward is supported on an arm
3" to the right of the right rivet. In the figure, a = 2" and h = 1".

Determine the margin of safety for the rivet group.

Solution, Since all the rivets are the same, Equation 15.7 is used for

the solution.

The centroid of the rivet group lies on a horizontal axis through the

right rivet because of symmetry. The position of the centroid from the

left rivet is

The moment on the rivet group is therefore

M == 500 X 3.67 = 1835 lb in (clockwise)

From the conditions of the problem, the applied loads are

= 0 Py == -500 lb

It is convenient sometimes to set up a table to determine the required

My P
values. If we remember that Pnx = ov and P'nx — A—

>

2(a;2 + 2/
2

) no. rivets

and so on, then

Rivet No. X y x2 yt Pnx Pnv Plx P'ny Pn

1 0.67 0 0.45 0 0 -460 0 -167 627
2 -0.33 -1.0 0.11 1.0 -686 226 0 -167 688

3 -0.33 +1.0 0.11 1.0 686 226 0 -167 688

2x2 = 0.67 21/2 = 2.00

Rivet numbers 2 and 3 carry the highest loads. From the ANC--5

the allowable loads are found to be

allowable shear = 1090 X 1 = 1090 lb

allowable bearing = 1220 X 1.25 = 1526 lb
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Therefore, the margin of safety is

MS = ^ - 1 =^ - 1 = 0.58 or 58%

16.4 Fused joints. Welding by electric arc or gas is the most com-
mon method of joining structural units by fusion.

The allowable load on the weld metal in welded seams according to

the ANC-5 is

P = 32,000 Lt for low carbon steel

P = 0.48 Lts for chrome-molybdenum steel (15.8)

where L = length of welded seam (in)

t — thickness of thinnest material joined by the weld in the case

of lap welds between two steel plates or between plates and

tubes (in)

t — average thickness of the weld metal in the case of tube

assemblies. This cannot exceed 1.25 times the thickness of

the welded stock (in)

s = 90,000 psi for material not heat-treated after welding.

Whenever possible the weld should be placed so that it is in compres-

sion or shear.

16.6 Fitting design conditions. A fitting is usually designed and a

minimum margin of safety specified for two loading conditions, limit

load and ultimate load. The limit load is the load that the aircraft

components may be subjected to during the normal operation of the

airplane. The ultimate load, usually a certain factor (1.5) times the

limit load, is the maximum load the aircraft components are expected to

withstand without failure. On application of the limit load the parts

of the aircraft structure should not experience excessive permanent set.

likewise, the structural components must be able to carry the ultimate

load without rupture or collapse.

Because of the importance of fittings and the difficulty of analysis, a

generous margin of safety is usually allowed in their design. A minimum
margin of safety of 15% for military aircraft and 20% for commercial

planes is required, although it is not unusual to have a margin of safety

of 50% on major fittings. A fitting such as a wing attachment is called

a major jitting because its failure would cause destruction of the airplane

structure. A minor fitting is one Avhose purpose is to support equipment

or to join less vital parts of the structure. Another reason for using a

high margin of safety for fittings is because of the uncertainty of the load

conditions and their effect on the material of the fitting. For example,

there may be shock, vibration, or impact conditions which would modify

the assumed applied loads an unknown amount.
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16.6 EflBiciency and economy. A fitting used in joining two structural

members must transmit the forces from one member to the other. Since

the fittings usually overlap the structural members to provide adequate

attachment, there is some duplication of material. This duplication, as

well as the necessary parts for attachment such as rivets or bolts, makes
the fitting assembly involve considerable weight. For economy of weight

and cost it is essential that the number and size of fittings be held to a

minimum. At the same time efficiency of the fitting in transmitting

forces should be high.

There are some general rules in fitting design that may be formulated

in order to increase the fitting strength and decrease the weight required.

They are:

(1) Whenever possible, a fitting should be located where the forces to

be transmitted are relatively small.

(2) Avoid application of eccentric loads through the fitting. An
eccentric load introduces a bending moment that will cause additional

stresses in the fitting and the member to which it is attached.

(3) Use generous fillets and gradually tapered sections to avoid stress

concentrations.

(4) Avoid changes in direction of the load carrying member. A
fitting joining such members at a ‘^kink^^ must be very strong to provide

proper restraint.

16.7 Fitting stress analysis. After the loads to be transmitted by a

fitting are known, it may be the designer's problem either to strength

check an existing fitting design or to determine the size and shape of.

material for a new design. The principles of analysis are the same for

either case. For simplicity, only the strength check procedure will be

discussed.

Very few general rules for stress analysis can be formulated because

of the complexity and variety of fittings. The designer's experience is

usually relied upon to determine the critical (weak) points of a fitting.

While considering the distribution of load in the fitting it is helpful to

remember that the total load being transmitted by the fitting is equal

to the applied load.

The following are a few considerations to be made when strength

checking a fitting:

(1) tension on net sections

(2) shear on net sections, bolts, and rivets

(3) crushing or bearing of net sections

(4) bending of net sections

(5) torsion of net sections

(6)

.
effect of a combination of two or more of the above acting simul-

taneously

(7) effect of variation in loading, stress concentration, and fatigue.
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Example 15.4. A fitting attachment for a streamline strut is shown
in Figure 15.4. The fitting is made of 24ST bar stock and is attached

to the streamline tubing by 24ST rivets. The ultimate load in

tension is 27,000 pounds. If the load is applied without shock but the

fitting has small relative motion about the connecting ] olt, stress check

the fitting.

The margin of safety for the fitting is to be at least 20%.
Solution. The stress check will begin at the load application point

and include all possible modes of failure.

The following data taken from the ANC-5 pertain to the fitting

material and load conditions.

2J^ST Bar. Ftu = 64,000 psi \

I<\u = 38,000 psi I (page 5-8 ANC-5)
Fbr = 122,000 psi

j

Steel Bushing. Use steel bushing heat treated to F^ = 100,000 psi.

Then Fhr = 140,000 psi (page 4-13)

For infrequent relative rotation the bearing factor is

B = 2.0 (page 4-5)

Rivets. Allowable loads for 24ST rivets in 0.083 24ST sheet are

double shear = 3360 X 2 X 0.688 = 4630 lb (page 5-26)

double bearing = 2 X 2620 X 1.29 = 6760 lb (page 5-26a)
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BoU. Strength of AN bolt heat treated to Ftu. = 125,000 psi

single shear = 23,000 lb (page 4-43)

bearing, Fi^ = 175,000 psi (page 4-13)

1. Strength of bolt in shear. Since the bolt is in double shear,

Pa = 2 X 23,000 = 46,000 lb

, 46,000 ,0 70MS - 1 - 0.70

2. Strength of holt in hearing.

p — projected area X stress _ tdFbr

bearing factor B

= = 41,000 lb

41,000 , „ _MS =
27,000

1 = 0.52

3.

Bearing of bolt on bushing.

D _ _ I X I X 140,000

MS = - 1 = 0.21

= 32,800 lb

1 = 1.54

27,000

4. Bearing of bushing on fitting lug. Since there is no motion between

the bushing and the lug, the bearing factor is one. Then

Pa = tdFi„ = 1(1 -f 1)122,000 = 68,600 lb

= 27)500
- ' = 1 -5^

5. Shear tearout of bolt end.

Edge distance c = (1 -|- ^) — (*1^ -f- iV) cos 40*^

- [I - vrf? - + Sin^ 40°]

= 0.611 in

Net area in single shear = 0.611 X 1 = 0.458 in*

Pa = 2AF.U = 2 X 0.458 X 38,000 = 34,800 lb

6. Tension at net section at holt hole. Section a-a

Area of net section = (1^ — | — 2X tV)t = 0.562 in^

= FtuA = 64,000 X 0.562 = 36,000 lb

7. Strength of rivets. Since the rivets are critical in shear, the failure

in shear only will be considered. There are eight rivets.
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Pa

MS

= 8 X 4630 = 37,040 lb

^3Wp_
27,000

8. Failure of bar at net section of first rivets. Section 6-6

A
Pa

MS

= (1| - 2 X fVlH = 1.12 10==

= 1.12 X 64,000 = 71,600 lb

_ 71,600

27,000
1 = 1.65

9. Failure of first six rivets in shear and end of bar in shear tearout.

Load carried by six rivets in shear

Pi = 6 X 4630 = 27,780 lb

3
*

Edge distance on last rivets = s ~ ? cos 40° = 0.255 in
o L

Area in tearout = 2 X 2 X 0.255 X li = 1.53 in^

P 2 = 1.53 X 38,000 = 58,000 lb

Pa = Pi + P2 = 27,780 + 58,000 = 85,780 lb

This type of failure obviously will not occur.

Since the margin of safety is least for the bushing in bearing, the

margin of safety for the fitting is 0.21.

Problems

16.1. A 0.072-inch 24ST aluminum-alloy sheet is fastened to the spar cap

of a beam with a single row of 17ST rivets. If the horizontal shear load on the

sheet is 1550 pounds per inch, determine the size and spacing of the rivets.

16.2. A double strap butt joint similar to the one shown in Figure 15.2 is

carrying a tension load of 1250 pounds per inch. If the main sheet is 0.091 -inch

24ST clad and the splice plates are 0.040-inch 24ST clad, determine the size and
spacing of the rivets.

16.3. The fitting shown in Figure 15.5 is attached to a 0.064-inch 24ST clad

bulkhead by four 17ST rivets. If the fitting is 0.125-inch 24ST aluminum alloy

Fi3. 15.5. Bulkhead Fittins.



Fig. 15.7. Elevator Horn.
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and the two top rivets are yq inch in diameter and the two bottom rivets are

-g- inch in diameter, determine the loads on the rivets.

16.4. Fastenings 1, 2, and 3 of Figure 15.6 are i^-inch A-17ST rivets bearing

in 0 064-inch 24ST clad; whereas 4, 5, and 6 are i-inch bolts bearing in 0.081 plus

0.064 24ST clad. Determine the margin of safety for each rvet and bolt.

16.6. Strength check the elevator control horn shown in Figure 15.7. The
limit load transmitted by the control wire is 810 pounds for either moving the

elevator up or down. The fitting is required to have a minimum margin of

safety of 20% based on the ultimate load for all parts except the main horn

lever. Since this latter part should be very rigid, it is required to have a margin

of safety on yielding of at least 20% based on the limit load.

The control wire ends of the horn are fitted with steel bushing.



CHAPTER 16

General Design Considerations

16.1 Introduction. After the fundamentals of analysis of aircraft

structures have been mastered, there is still much to learn before an
efficient structural design can be made or stress checked. Most of this

latter knowledge is obtained through experience in the industry and
through a continuing day by day study of the problems and latest

developments. Many of the attributes of a good designer, such as the

ability to estimate the size and shape of a structure because it looks

right, the ability to devise ingenious devices for performing complicated

functions, the ability to simplify complex structures, and a comprehension

of the interrelation of the functions of design, production processes, and
so forth, can be achieved only after considerable experience in the

industry. The judgment required to separat-e the significant and the

negligible factors in an analysis also develops with experience.

Some of the important considerations the designer should bear in

mind are discussed in the following articles.

16.2 Stress concentration. One of the most important factors a

designer must continually bear in mind pertains to the problem of stress

concentration.

In local regions of some structural members, the stresses are not

distributed as indicated by the elementary theory. Localized variations

in stress distribution called stress concentrations are caused by sharp

discontinuities in the shape of the member, by nonhomogeneity of struc-

ture of the material, or by strain incident to processing.

The localized stresses are frequently of comparatively large magnitude
and, under the action of the loads, may cause a crack at the region of the

localized stresses. Such a crack usually leads to failure of the member
by rupture.

Some of the causes of stress concentration are:

(1) Variation in properties of materials from point to point in a member.

Some examples are (a) internal cracks and flaws, (b) cavities in welds, (c)

air holes in steel, and (d) nonmetallic inclusions.

(2) Internal strains due to processing. Some examples of this type of

stress concentration are (a) shrinkage in casting, (b) cold working, (c)

overstraining, and (d) improper heat treatment.

(3) Pressures at points or areas at which loads on a member are applied.

Some examples of this type of stress concentration are (a) contact between

a pulley and rope, (b) contact between the balls and races of a ball bear-

iiig) (c) contact between a beam and its supports, and (d) contact between

gear teeth.

284
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(4) Abrupt changes of section. There are two classes of this type of

stress concentration. One involves surface condition, such as scratches

due to machining errors or roughness in handling, and scratches incident

to machining operations. In machining, the dimensions of the scratches

or irregularities vary from very large in roughing operations, to micro-

scopic in fine finishing. The other stress concentration may be caused

by abrupt changes in form of a member. Stress concentration of this

kind may be extremely serious, and its prevention lies solely within the

designer's responsibility.

16.3 Stress concentration due to holes and notches, (a) Tension

member with a transverse hole. In a prismatic bar as shown in Figure

16.1 (a) subjected to a tensile load, the stress is uniformly distributed

over a cross section A-A of the bar.

(a) (b) (c)

Fis- 16 . 1 . Effect of Hole on Stress Distribution in Tension Member.

If the same bar has an elliptical hole as shown in Figure 16.1(b), the

stress at a section C-C remote from the hole will be uniformly distributed

over the section. However, the stress over the cross section B-B through

the hole will not be uniformly distributed over the net section carrying

the load. The maximum stress will be induced at the edge of the hole,

and it may have a value several times that of the stress at the section

C-C. The value of the maximum stress in terms of the stress at the sec-

tion C-C is given by the expression

U,=fo(l + ‘2-^ (16.1)

in which fo is the stress at the section C-C and b and c are the semiaxes

of the ellipse perpendicular and parallel respectively to the line of the load

as shown in the figure.

It may be seen from Equation 16.1 that for large values of b/c, which

represent an ellipse approaching the form of a transverse slit, /ma* reaches

a very high value.
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For small values of 6/c, which represent an ellipse approaching a longi-

tudinal slit, /toax is not markedly increased over /o.

For the case of a circular hole, 6 = c, /max = 3/o. The stress distribu-

tion for this case is shown in Figure 16.1(c).

(b) Tension member with notches. The
stress concentration in the notched tension

member in Figure 16.2 is influenced by the

depth h of the notch and the radius r at the

bottom of the notch. The maximum stress

may be calculated by the following equation,

which applies to members having notches

which are small in comparison with the width

of the bar.

Fis. 16.2. Notch in Edge
of Tension Member.

(16.2)

in which /o is the uniformly distributed stress at a section remote from the

notch.

16.4 Seriousness and mitigation of stress' concentration. Stress con-

centration should not be overlooked by the designer. It is evident from

the preceding discussion that very high concentration of stresses may
exist in certain regions in machine and structural members. Since a

crack which may form at a region of stress concentration usually leads

to failure of the member, it is important that the designer reduce the

concentration to the practicable minimum. The designer can reduce

stress concentration effectively in most cases by simple expedients, such

as the use of gradual transition curves and generous fillets.

The seriousness of stress concentration depends on the properties of

the material and on the type of loading, namely whether the load is

static or repetitive.

(a) Static loading. It was noted in Article 16.3 that the stress at the

edge of a small transverse circular hole in a tension member has a value

three times that in the sections remote from the hole. The distribution

of stresses across the section including the hole is indicated in Figure 16.1.

If the material of which the member is made has a stress-strain dia-

gram which is a straight line up to rupture, the shape of the stress-

distribution diagram in Figure 16.1(c) will not be altered as the load on

the member is increased. This is true because the stresses increase

proportionally imtil the maximum stress in the member reaches the break-

ing stress of the material. At this stage a crack forms at the edge of the

hole. The crack has the effect of introducing additional stress concentra-

tion and of decreasing the section carrying the load. Both of these

effects cause very rapid failure of the member.
Brittle materials like cast iron undergo relatively little yielding; there-

fore a member made brittle material with stress concentration will
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fail as described above since the concentration of stress as indicated by
Figure 16.1(c) remains in the member until failure occurs.

In considering tlie failure of a member made of a ducMe material

having a stress concentration, it is necessary to note that the stress-strain

diagram for the material includes a region which involves considerable

plastic flow. The plastic flow occurs beyond the yield point and allows

considerable strain to take place before failure occurs. The stress-

distribution diagram in Figure 16.1(c) is valid if the stresses are below

STRESS

STRAIN

IDEALIZED STRESS-STRAIN DIAGRAM
FOR DUCTILE MATERIAL

(b) (C) (d)

(e) (f) (g)

Fi3. 16.3. Redistribution of Stress in Ductile Material.

the proportional limit; however, beyond the yield point, plastic flow at the

region of stress concentration will cause the stresses to be redistributed.

The redistribution of stresses tends to produce a uniform distribution.

To illustrate this change in distribution, one half of the section in Figure

16.1(c) is drawn as shown in Figure 16.3. Figure 16.3(a) shows an

idealized stress-strain diagram for a ductile material, and (b) represents

a portion of the bar adjacent to the hole and the stress-distribution dia-

gram for low stresses in the member. Figure 16.3(c) represents the

diagram for increased stresses, and (d) the stage when the maximum or

peak stress is just equal to the yield point. Figure 16.3(e) shows the

diagram for an increased load on the member, and the corresponding

cross-sectioned area indicates the region which has undergone plastic
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flow, leading to the next state (f), and finally (g) indicates the condition

at the time the peak stress reaches the breaking stress of the material,

when a crack forms and the member fails.

From the above sequence of diagrams, it is apparent that plastic flow

in ductile materials will lessen the seriousness of stress concentration.

Frequently this plastic flow takes place in machine and structural mem-
bers when the working loads are applied. As examples of this kind of

reduction of stress concentration may be mentioned structural members
with rivet holes, keyways in shafting, and riveting or welding.

In conclusion, it may be stated that stress concentration in static load-

ing is very serious in brittle materials, and is less serious in ductile

materials due to the relieving of stress concentration by plastic flow.

However, the designer should reduce stress concentration wherever pos-

sible without regard to the class of material of which the member is made.
(b) Repeated loading and fatigue failure. In the preceding discussion

it was noted that in static loading, stress concentration is especially

serious in members made of brittle materials and somewhat less serious

in members made of ductile materials. In the latter case it has been

found that the seriousness of stress concentration is lessened by the local

plastic flow which results in a more favorable distribution of stresses.

In many instances in the aircraft structure a structural member is not

subjected to a single application of load, but to a continual variation of

load. F.very time an airplane hits a gust or changes its flight attitude

the loads vary. This repetition of load sometimes will cause a member
to fail at a lower load than would be required to produce failure for a

single application of the load, much as a paper clip will break eventually

if it is bent back and forth enough. The lowest stress a member can

withstand without failure under repeated loading is called the endurance

limit. Stress concentration is always serious in members subjected to

repeated loading since the ductility of the material is not effective in

relieving the concentration of stress caused by cracks, flaws, surface

roughness, or any sharp discontinuity in the geometrical form of the

member or in the metallurgical structure of the material. If the stress

at any point in a member is above the endurance limit of the material, a

crack will develop under the action of the repeated load and the crack

will, in all probability, lead to failure of the member. It is important to

realize that even though the region subjected to the peak stress is of

extremely small size, the crack is likely to form, and once formed will

lead quickly to failure of the member.
The last statement is emphasized by a report that approximately 90%

or more of the load cycles necessary to produce failure of a member are

undergone before the crack may be detected by laboratory means. It

is evident then that the opportunity for an inspector to detect a crack

under service conditions in time to prevent failure is relatively slight.

Figure 16.4 shows^the effect of surface condition on the endurance
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limit of test specimens. The figure illustrates the marked reduction in

endurance limit due to small scratches and grooves inherent in finishing

operations. The figure indicates also that the higher strength alloy

steels are more sensitive to stress concentration. The lower ductility

of the high strength alloy steels is probably partly responsible for the

increased sensitivity; however, it is not generally true that high ductility

is the best insurance against stress concentration in fatigue failure.

40 60 80 100 120 140 160 180 200 220

ULTIMATE TENSILE STRENGTH IN 1000 RS.I.

Fig. 16.4. Effect of Surface Conditions on Endurance Strength.

The gain in endurance limit because of polishing is one of the reasons

for the practice of polishing aircraft engine connecting rods and link

rods. The overall polish is a very expensive operation, although justified

by the resulting increase in safety.

16.6 Stress concentration factors. The stress concentration factor

is defined as

^ _ actual maximum stress

stress calculated by elementary theory

The stress concentration factor is always greater than one and may some-

times be as high as twenty.

Analytical methods have been used for determining the stress concen-

tration factor in many cases, but it is necessary generally to resort to

experimental methods. Stress concentration factors for flat plates in

tension are given in Figure 16.5. Notice that the stress concentration

factor, and therefore the maximum stress, becomes high as the fillet

radius is decreased. We should always remember to use generous fillets

and smooth transition sections in any design.

16.6 Standard parts. Whenever possible, in order to save time and

expense, standard parts should be used. Dimensions should usually be

rounded out^' from calculated values to a standard size. Standard

parts are carried in stock by the suppliers of aircraft materials, and there-
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fore no time is lost in making up a special order. Many standard sizes

of tubing, extruded sections, angles, tees, Z sections, bolts, and rivets are

found in the many handbooks published by various manufacturers.

fC
o
I-
o
<

Fig. 16.5. Static Stress Concentration Factors for Flat Plates in Tension or Compression.

Remember also that the airplane probably will be serviced a long way
from the factory and that it is easier to obtain a standard part than a

special one.

16.7 Weight reduction. The importance of weight reduction in air-

craft cannot be overemphasized. The designer constantly must con-

sider means for saving weight consistent with sufficient strength.

It has been estimated that one pound of weight saved in a commercial

two-engined airplane would save in manufacturing, investment, and

operating costs, and in increased revenue, about $230, based on an air-

plane life of six years. Suppose an airline is using 100 of these airplanes

and 100 pounds of excess weight is eliminated on each. The saving for a

six-year period would be $2,300,000, a tidy sum.
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A
Acceleration

:

angular, 10
correlation with load factor, 10
in gust, 15
human tolerance of, 11
in landing, 24
in maneuvers, 10, 11

linear, 9
Accelerometer, 10
Aerodynamic center, 13
Aerodynamic forces:

drag, 13, 22
lift, 13, 22
moment, 13. 22
on airfoil, 13, 22
on wing with sweepback, 52

Aileron load distribution, 24
Airfoil:

center of pressure, 13
chord of, 13
coefficients for, 13, 22
forces on, 13, 22
pressure distribution on, 13

Airload distribution:

on control surfaces, 23
spanwise, 22

Airplane:
forces in reference direction, 20
longitudinal axis of, 18
reference axes for, 18

Airplane balance, 18
Airplane classifications, 6
Airplane coefficients, 18

relation of, 20
Allowable column load, 117
Allowable column stress, 117
Allowable load on weld joint, 277
Allowable stress:

beams in bending, 182
column:

channel section, 127, 156
thin-walled closed section, 158
thin-walled open section, 155

compression of flat sheet, 147-148
beyond proportional limit, 150
ultimate for, 156

crippling:
definition of, 152
of open-section extrusion, 154

curved sheet, 159
definition of, 38, 258
sheet-stringer panel, 160-164
tubes

:

combined bending and torsion, 265
torsion, 235

ANC-5, 38, 40, 124, 148, 150, 152, 158,
204, 235, 267, 272, 276, 277, 279

Angle of attack, 13
effect of gust on, 15

Angle of principal stress, 260
by Mohr’s circle, 261
for biaxial stress, 263

Angle of twist:

m combined bending and torsion, 242
in nonuniform torsion, 231
in torsion:

channel section, 217
circular section, 215
comparison of open and closed sec-

tions, 223
multi-cell box, 226
rectangular section, 217
restrained I-beam, 233
thin-walled cylinder, 221
two-cell box, 224

in torsion and shear, 251
two-cell box with stringers, 253

Angle of web buckling, 197
Anticlastic curvature, 145
Axial stress:

in nonuniform torsion, 229
of I-beam, 234

Axis:

neutral, 176
principal, 174
reference for airplane, 18

Ayers, J., 290

B

Balance load on stabilizer, 24
Balancing the airplane, 8, 18
Barton, M. V., 237, 290
Basic load condition, 8
Beam:

continuous, 85
curved, 99, 183
definition of, 41
multiple span, 41, 85
neutral axis of, 176
single span, 41 •

statically determinate, 41

statically indeterminate, 41, 62

tapered, 59, 194
with buckled web, 195

Beam analysis:

area-moment method, 58
beam with buckled web, 195-205

bending stress, 171

composite section, 179

curved beam
,

1 83
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Beam analysis (cont):
bending stress (cont.):

inelastic bending, 181
unsymmetrical bending, 173

cantilever with elastic support, 83
continuous beam, 85, 90

effect of end fixity, 90, 95
effect of support deflection, 94

deflection

:

curved beam, 99
of shear, 79
tapered beam, 59
uniform beam, 54

equation of three moments, 85
external reactions, 42, 87
fixed end beam:

concentrated load, 66
distributed load, 68
uniformly var^ung load, 68

load, shear, and moment relationships,

44
moment distribution method, 90
shear stresses, 189-211
shear in w(‘b and flange, 194
strain in pure bending, 55
stresses in composite sections, 180
stresses in curved beam, 183
supported cantilever:

concentrated load, 63
distributed load, 64
end moment, 65

tapered beam, 59
flange forces, 195
shear force in web, 195

Beam column:
comparist)n with beam, 129
continuous, 138
definition of, 127
general case, 131

statically indeterminate, 136
Beam column analysis:

deflection, 134
distributed transverse load, 131
end moments, 134
equation of three moments, 138
moment distribution method, 141
principle of superposition, 133
wing with axial load, 131

Bending:
beyond the proportional limit, 181

elastic epergy of, 74
section efficiency, 186
ultimate moment. 182

Bending modulus ot rupture:
definition of, 182
for tubes, 183

Bending moment:
beam column:

continuous, 139
distributed load, 131
fixed end, 138
uniform load, 128

bulkhead ring, 108
cantilever beam, 43
circular frame, 100

Bending moment {cont.):

continuous beam, 85
fixed-end beam, 67
sign convention for, 43
simplified wing, 47
square frame, 105
support deflection, 95
supported cantilever, 64
wing with axial load, 131
wing with dihedral and sweepback, 50,

52
Bending stress:

composite section, 180
equation for, 171

Bending stress distribution

:

curved beam, 184
inelastic bending, 181
I section, 173
rectangular section, 172
unsymmetrical section, 175
Z section, 172

Biaxial stress, Mohr’s circle for, 262
Black, P. IT., 290
Bruhn, K. F., 269
Buckling:
between rivets, 163
channel section, 152
columns, 115-127
flat sheet, 144
sections with (*urved elements, 159
sheet beyond proportional limit, 150
thin web, 197

Bulkhead ring:

forces and moments in, 108
pressure cabin, 107

C

Carry-over factor:

beam column, 136
uniform beam, 92

Castigliano’s theorems, 77, 81
Center of gravity for airplane, 7
Center of pressure:

definition of, 13
for airfoil, 12

Center of redundants, 104
Center of rivet group, 273
Center of twist, 51, 209
Centroidal axis, composite section, 181
Chien, Wei-Zang, 237
Chordwise Airload Distribution, ANC-

1(2), 29
Chordwise load distribution, 13
Christonsen, II. B., 237
Circular frame, 100
Civil Aeronautics Manual 04, 29
Civil Air Regulations, CAR ()3--04, 6, 10,

12, 15, 23, 26, 29
Coefficient

:

airplane in reference directions, 20
drag, 13
end fixity:

beam, 96
column, 118, 136, 155
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Coefficient {cont.)\

end fixity (corit.):

sheet buckling, 148
sheet-stringer panel, 164

influence

:

definition of, 72
relation between, 76

landing loads, 26
lift, 13
local aerodynamic, 22-23
moment, 13
reduction for sheet stressed beyond

proportional limit. 150
stress factor for curvecl beam, 185
torsion, 217, 222
torsion-bending:

channel section, 127
definition of, 230

Column

;

energy in, 110
nonuniform, 119
strength of open section, 155
thin-walled closed section, 158

Column analysis, I15-i27
coefficients for end conditions, 118, 136,

155
double modulus theory, 122
reduced modulus theory, 122
strength of chaniK'l section, 156
stresses above proportional limit, 122
tangent modulus theory, 122
torsion-liending stability, 125
variable cross section, 119

Column curves:
Euler, 123
parabola, 125
reduced modulus, 123
24ST round tubing, 151

straight line. 125
tangent mociulus, 123

Column yield stress, 124
Combined bending and torsion, interac-

tion curve for, 265
Combined loading, interaction curves for,

267
Combined stress:

biaxial stress, 263
definition of, 258
Mohr's circle for, 261-264
tension and shear, 259-260

Combined torsion and shear:

rectangular box section, 239-247
single-cell box with inclined forc(‘, 254
single-cell box with stringers, 247
two-cell box with stringers, 249-253

Composite beam, 179
Compression

;

elastic energy of, 74
sheet-stringer panel, 160-163
strength of thin sheet, 144

Connections

:

butt joint, 272
cemented, 270
eccentrically loaded, 273
fused, 270

Connections (conL):
lap joint, 272
mechanical, 270
types of failure in, 271

Considcre, A., 122
Continuous beams (see Beams)
Control surfaces, airloaa distribution for,

23
Cozzone, F. P., 188
Crippling strength:

channel section, 152
open-section extrusions, 154

Crippling stress

:

curved sheet, 159
definition of, 152

Critical load:
beam column, 129
column, 116
flat sheet. 146

Cross, Hardy, 90, 98
Crushing strength, (see Crippling)
Curvature:

h(*ani, 54
sheet, 146

Curved beam

:

deflection of, 99
stresses in, 183

D
Deflection:
area-moment method, 58
beam

:

assumptions for, 54
curved, 99
pure bending, 54
shear and bending, 79
tapered, 59

,
beam column, 134

fixed end, 137
with end moments, 135

Castigliano’s theorem for, 77
comparison of tonsion-fiekl b(^am and

shear beam, 201
curvature of beam in pure bending, 55
end of column, 119
landing gear strut, 80
load, shear, moment, slope, and deflec-

tion relationships, 56
of supports of beam, 94

Density, air, 13
Design

:

compromise in, 4

conditions of flight, 17
considerations of, 284
requiri'ments for, 1-5

specifications of, 3

Design cruising speed, 15, 18
Design dive speed, 15, 17—18
Diagonal tension

.

incomplete, 197
pure, 197
Wagner beam, 197

Distribution factor:

definition of, 92
nonuniform beam, 96
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Dive pull-out, acceleration in, 9
Donell, L. H., 167
Drag coefficient, 13, 22
Drag force, 13, 22, 52

E

Ebner, H., 167, 257
Eccentrically loaded connection, 273
Edge conditions of sheet, 147
Effective width:
curved sheet, 160
determination of, 157-158
effect in torsion and shear, 255
flat sheet, 157-158
sheet-stringer panel, 160-163

Elastic axis, definition of, 35

Elastic axis of wing, 50
Elastic center, relation to shear center,

209
p]lastic energy:

assumptions of, 72
bending, 74
column analysis, 119
determination of redundants, 81
modulus of resilience, 38
shear, 75
tension-compression, 74
tension-field beam, 202
theorem for deflection, 77
torsion, 75

in thin-walled cylinder, 221
Elastic stability:

columns, 115-122
flat sheet, 144-150

Empirical column formulas, 124
End fixity factor:

beam, 96
column, 118, 136, 155
sheet buckling, 148
sheet-stringer panel, 164

Endurance limit, 38, 288
Engesser, F., 122
Equation of three moments:
beam column, 138
continuous beam, 85

Equilibrium, flight forces, 7—8
Euler load, 116

F

Factor of safety, 12
Failure of brittle and ductile material,

258
Fatigue failure, 38

effect of stress concentration on, 288
Fischel, J. R., 164, 165, 167
Fitting:

definition of, 270
design considerations. 277
for streamline strut, 279
rules for design of, 278
stress analysis of, 278

Fixed edge condition for sheet, 147

Fixity coefficient;

beam, 96
column, 118, 136, 155
sheet buckling, 148
sheet-stringer panel, 164

Flange force:

four-flange beam, 174
I section, 173
tapered beam, 195
tension-field beam, 198

Flange shear:
analysis of, 205-207
proportion in thin-web beam, 194

Flange stress:

bending, 173-179, 200
nonuniform torsion, 234

Flat sheet buckling, 144-156
Flight condition:

dive pull-out, 9
inverted, 8
level, 7

Flight design conditions, 17
Flight loads:

airplane in reference directions, 18-22
basic load condition, 8
chordwise distribution, 13
definition of, 6
dive pull-out, 9
drag, 7
gust, 14
inertia couple, 9
inertia forces, 8
inverted flight, 8
lift, 7
load factor for. 10
maneuver load factor for, 10
stabilizer, 7
straight level flight, 7
sudden pull-up, 16

Frame analysis:
circular frame, 100
pressure cabin, 107
rt^dundant center location, 104
square frame, 105

Fused joints, 277

G

Goodier, J. N., 142, 143, 237, 242, 246,
257

Goodier' s theorem, 242
Ground loads:

definition of, 6
level landing condition, 25
load factor for, 24
table for various conditions of landing,

26
tail down landing, 25

Guided edges of sheet, 147
Gust:

effect on angle of attack, 16
load factor for, 15-16
velocity load factor diagram, 17
velocity of, 15
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H

Hatcher, R. S., 257
Hoff, J. N., 150, 167, 213, 237
Holt, M 167
Hookers law, 72
Howland, L., 167

I

Impact of landing, 24
Incomplete tension-field web, 200-201
Inelastic bending, 181
Inelastic stability, 115
Inertia forces in maneuvers, 8
Influence coefl5cients:

definition of, 72
relation between, 76

Instability, (see Buckling)
Interaction curve:
combined bending and torsion, 265
determination of, 265
typical types, 267
use of, 258

Interaction surface, 268

J

James, B. W., 143
Joints, 270

K

Kappu^ R., 143
Kuhn, P., 213, 237, 257

L

Landing attitudes, 24-26
Landing loads:

level landing^ 25
table for various conditions, 26
tail down landing, 25

Leary, J. R., 167
Least work, principle of, 83
Levin, L. R., 213
Lift coefficient, 13
Lift force, 13, 22
Limit load, definition of, 12
Load, shear, and moment relationships,

44
Load factor:

definition of, 10
flight determination, 10-11
gust, 15
landing, 24
limit, 12
maneuver, 10, 17
sudden pull-up 16
ultimate, 12
velocity diagram, 17

Lundquist, E. E., 167

M
Maneuver;

limitations on, 11, 12
load factor, 17
stabilizer load, 24

Margin of safety;

combined bending and torsion, 266
definition of, 39
for castings, 40
for fittings, 40

Marguerre, I., 158, 167
Marin, J., 269
Materials, physical properties of, 33
Maximum combinea normal stress, 260
Maximum combined shear stress, 260
Maximum normal-stress theory, 258
Maximum shear-stress theory, 258
Membrane analogy for torsion, 218
Modulus of elasticity:

definition of, 36
secant, 37
tangent, 37

Modulus of resilience, 38
Modulus of rupture, 183, 235
Moggio, E. M., 237
Mohr’s circle, 261-264
Moment (see Bending moment)
Moment distribution method:

carry-over factor for, 92
distribution factor for, 92
fixity factor in, 95
for beam columns, 141
for nonuniform beams, 96
for uniform beams, 90
sign convention for, 91
stiffness factor in, 92

Moment of inertia, definition of, 56
Monocoque structure, 144
Multi-span beams, 41, 85

N

Negative angle of attack condition, 17
Nelson, D. H., 213
Neutral axis:

curved beam, 183
definition of, 176
unsymmetrical bending, 176
Z section, 178

Nonlinear stress distribution:

composite beam, 179
curved beam, 1^
inelastic bending, 181

Nonuniform torsion, 226-235

O
Open section, definition of, 152
Osgood, W. R., 188

P

Panel instability, 160
Parabolic curve for columns, 125
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Parasite drag, 7
Payne, J. H., 237
Perkins, H. C., 188 •

Permanent set, 33
Pilot, force on, 11
Plastic deformation, 33
Plastic material, 180
Plates, {see Sheet)
Poisson's ratio, definition of, 36
Polar moment of inertia, 127, 215
Positive angle of attack condition, 17-18,

23
Prandtl, 218
Pressure cabin, analysis of, 107
Principal stress, definition of, 174-260
Principle of least work^ 83
Principle of superposition:

conditions for, 73
for beam columns, 133
for beam loads, 43

Product of inertia:

definition of, 174
for Z section, 177

Properties of materials, 33-30
Proportional limit:

definition of, 35
effect on column failure, 122

effect on sheet failure, 150
Pure bending in beams, 171-186

R

Radius of curvature:
in beams, 55
in sheet, 146

Radius of gyration:
columns, 117
sheet-stringer panel, 162

Reactions:
cantilever beam, 42
cantilever with elastic support, 83
continuous beam, 87
fixed-end beam, 67-68
square frame, 106
supported cantilever, 63-65

Reduced modulus:
columns, 122
sheet. 150

Redunaant center: ,

definition of, 102
determination of, 103

Redundant force:

definition of, 100
determination by elastic energy, 82

Reissner, E., 213
Relaxation method, 90
Restrained torsion, 227
Rigidity:

comparison of open and closed sections

in torsion, 222
modulus of, 215

Rivet bearing, 271
Rivet connection:

butt joint, 272
eccentric, 273

Rivet connection (cont.):

lap joint, 272
types of failure, 271

Rivet group center, 273
Rivet shear, 272
Rivet spacing, 163, 272
Roark, R. J., 143
Ryder, E. I., 269

S

Secant modulus, 37
Sechler, E. E., 150, 167
S(‘ction modulus, relative efficiency* in

bending, 185-186
Shanley, V. R., 188, 269
Shear center:
beam with curved web, 209
chanmd section, 126, 209
definition of, 208
rectangular box section, 242, 245, 246
split tube, 210

Shear deflection:
beam with buckled w^eb, 201
beam with rectangular section, 79

Shear flow:

adjacent to flange, 192
on arbitrary cross section, 192
combined torsion and sluair:

rectangular box section, 141, 243-
247

single-cell box with stringers, 248-
249

three-flange box, 255
two-cell box with stringers, 251, 253

curved wcib, 207
definition of, 190
flange of channel section, 208
flange of I beam, 207
four-flange beam, 191
nonuniform torsion, 230
relation between vertical and horizon-

tal, 191
thin-web beam, 190
torsion

:

multi-cell box, 226
restrained I beam, 235
thin-walled cylinder, 221
two-cell box, 224 -225

variation in thin-web beam, 193
Shear force:

beam column with uniform load, 130
cantilever beam, 43
circular frame, 100
effect on deflection of beam, 79
clastic energy of, 75
proportion carried by thin web, 194
relation to load and moment in beam,

45
sign convention for, 43
simplified wing, 47
square frame, 106
wing with dihedral and sweepback,

50, 52
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Shear lag;

box beam, 211
definition of, 210

Shear modulus, 215
Shear strain, circular bars in torsion, 215
Shear stress:

combined torsion and shear, 238-239
definition of, 34
maximum in combined, 261, 263
thin-web beam, 190
torsion

:

bar with rectangular section, 217
channel section, 217
comparison of open and closed

sections, 222
correlation with membrane analogy,

218
solid circular^section, 215
thin-wall cylinder, 221

Shear tearout , 270
Sheet:

buckling of, 144-160
curvature of, 146

*

effective width of, 157-158
ultimate strength of, 156

Sheet-stringer panel

:

analysis procedure, 161-163
correlation with test, 165
definition of, 144
determination of radius of gvration for,

162
effect of open- and clo.s(‘d-s(*ction

stringers, 164
load in, 160

Sibert, H. W., 213
Slenderness ratio, definition of, 117

Slope of beam Deflection)

Soutluvell, H. V., 84, 98
Spanwise airload distribution, 22
Spanwise Airload Distribution ANC-

(1)1, 22, 29
Specifications of design, 3
Speed

:

design cruising speed, 15, 18
design dive speed, 15, 17-18
gust, 15
stalling, 14

Stablizer load, 23-24
Stalling speed, 14
Standard parts, 289
Stiffener:

compression panel, 160-163
tension-field beam, 198

Stiffness factor:

definition of, 92
nonuniform beams, 96

Straight line equation for columns, 126
Strain :

definition of, 34
distribution in curved beam, 184
pure bending, 55
shear, 215

Strain energy {see Elastic energy)
Strain gage, 33

Strength of Metal Aircraft Elements
ANC-5, 38, 40, 124, 148, 150, 152,
158, 204, 235, 267, 272, 276, 277,
279

Stress

:

allowable, 38, 258
combined, 258
critical column, 117
definition of, 34
normal, 34
principal, 260
shear, 34
ultimate, 36
yield, 36

Stress analysis, definition of, 171
Stress concentration:

brittle material, effect on, 286
causes of, 284
ductile material, effect on, 287
holes and notches, effect of, 285
membrane analogy, 219
repeated loading, effect of, 288
static loading, effect of, 286
surface finish, effect of, 289

Stress concentration factor:
definition of, 289
for flat plates, 290

Stress ratio, definition of, 264
Stress-strain diagram, 34-35
Struts {see ('olurnns)

Superposition, principle of, 43, 73, 133

T

Tail wheel load, 25-26
Tangent modulus:

definition of, 37
in column analysis, 122-123

Tension

:

diagonal in Wagner btiam, 197, 199
elastic energy of, 74

Tension-field beam

:

analysis of, 195-205
assumptions of analysis, 196
criteria for design, 203
deflection of, 202
flange bending, 200
flange forces in, 198
flange stresses in, 200
stiffener force in, 199
web buckling in, 197

Tension-field web, 195
Thrust:

in circular frame, 100
propeller, 7

Timoshenko, S., 84, 111, 143, 167, 188,

235, 237
Torque:

distributed loads, 49
for wing with dihedral and sweepback,

50, 53
Torsion

:

assumptions of analysis, 214
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Torsion (corU.):

bar:
circular section, 214
open section, 217
rectangular section, 216

combinea with bending and shear,

23^256
comparison of open and closed sections

in, 222
determination of warp in open section,

228
effect of variation of warping, 229
elastic energy of, 75
I beam with ends restrained, 232
membrane analogy for stresses in,

218-219
multi-cell box, 226
nonuniform, 226
thin-walled cylinder, 219
two-cell box, 223

Torsion-bending constant:
channel section, 127
definition of, 230-231
I beam, 232

Torsion-bending instability, 122
Torsional modulus of rupture, definition

of, 235
Transformed section, definition of, 179
Transition slenderness ratio, 124

U

Ultimate load, definition of, 12

Ultimate stress, definition of, 36
Unit warping, 229
Unsymmetrical bending, 173-179

four-flange section, 174
rectangular section, 175
Z section, 176-179

V
Van Den Broek, J. A., 84, 111
Velocity:

design cruising, 17
design dive, 15, 18
gust, 15
level flight, 14
stall, 14

Velocity load factor diagram, 17
von K^mdn, Th., 157, 167, 237

W
Wagner, H., 143, 199, 213
Wagner beam, 197
Warp:

in torsion, 227
thin-walled section, 228, 229

Web buckling angle, 197
Weight:
comparison of beam sections, 186
comparison of sheet compression, 149
distribution of, 26

Weight reduction, importance of, 5, 290
Westergarrd, H. B., 143
Wheel loads, 25-26
Williams, H. A., 98
Wing

:

bending moment in, 47, 52
load on, 7-23, 51-53
shear force in, 47, 52
torsion of, 53

y

Yachter, M., 188
Yield stress, definition of, 36
Young, Dana, 143
Young, D. H., 143
Young's modulus, 36
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