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PREFACE 

The aim of aerofoil theory is to explain and to predict the 
force experienced by an aerofoil, and a satisfactory theory 
has been developed in recent years for the lift force in the 
ordinary working range below the critical angle and for that 
part of the drag force which is independent of the viscosity 
of the air. Considerable insight has also been obtained into 
the nature of the viscous drag and into the behaviour of 
an aerofoil at and above the critical angle, but the theory 
remains at present in an incomplete state. The problem of 
the airscrew is essentially a part of aerofoil theory, since the 
blades of an airscrew are aerofoils which describe helical 
paths, and a satisfactory theory of the propulsive airscrew 
has been developed by extending the fundamental principles 
of aerofoil theory. 

The object of this book is to give an account of ^rofoil and 
airscrew theory in a form suitable for students who do not 
possess a previous knowledge of hydrodynamics. The first 
five chapters give a brief introduction to those aspects of 
hydrodynamics which are required for the development of 
aerofoil theory. The following chapters deal successively with 
the lift of an aerofoil in two dimensional motion, with the 
effect of viscosity and its bearing on aerofoil theory, and with 
the theory of aerofoils of finite span. The last three chapters 
are devoted to the development of airscrew theory. 

In accordance with the object of the book, complex mathe¬ 
matical analysis has been avoided as far as possible and in 
a few cases results have been quoted without proof, the reader 
being referred for further details to standard text-books or to 
original papers on the subject. 

My thanks are due to my wife for her assistance in pre¬ 
paring a number of the figures and in reading the proof sheets, 
and to the Cambridge University Press for their care and 
vigilance in passing the book through the proof stage. 

Famborough, April 1926* 

H.G. 



PREFACE TO SECOND EDITION 

Great advances in the theory of aeronautics have taken place 
since the first edition of this book by my late husband 
appeared in 1926, but the more fundamental parts of the 
theory, which are the subject of this book, remain in large 
measure imchanged. Particularly important advances have 
been made in the theory of viscous motion and of the flow in 
the boundary layer. At my request Mr H. B. Squire of the 
Royal Aircraft Establishment, Famborough, who was a 
colleague of my husband, has prepared a set of notes which 
appear as an Appendix to the present edition and these notes 
indicate where important developments have taken place and 
where further information on the subject matter can be 
found. I am most grateful to Mr Squire for his assistance and 
desire to tender him my sincere thanks. 

In preparing this second edition tho opportunity has been 
taken to replace the non-dimensional k coefficients by the 
now more generally accepted C coefficients and my son, 
M. B. Glauert, has imdertaken the necessary revision. One or 
two other minor changes have been made and a bibliography 
of some of the more important modem books on aero¬ 
dynamics has been added. 

Cambridge 1946 

M. G. 



CONTENTS 

Chap. I Introduction.page 1 

II Bernoulli’s Equation . . . . . 10 

III The Stream Function . . . . 18 

IV Circulation and Vorticity .... 33 

V The Velocity Potential and the Potential 

Function.48 

VT The Transformation of a Circle into an 

Aerofoil.68 

VII The Aerofoil in Two Dimensions . . 80 

VIII Viscosity and Drag.94 

IX The Basis of Aerofoil Theory . . .117 

X The Aerofoil in Three Dimensions . . 126 

XI The Monoplane Aerofoil . . . .137 

XII The Flow round an Aerofoil . . .166 

XIII Biplane Aerofoils.171 

XrV Wind Tunnel Interference on Aerofoils . 189 

XV The Airscrew: Momentum Theory . . 199 

XVI The Airscrew: Blade Element Theory . 208 

XVII The Airscrew: Wind Tunnel Interference . 222 

227 

230 

Appendix 

Bibliography 

Index . 231 



REFERENCES 

The following abbreviations are used: 

RM = Reports and Memoranda of the Aeronautical Research Committee. 

NACA -Reports of the National Advisory Committee for Aeronautics 

(U.S.A.). 

ZFM - Zeitschrift fur Flugtechnik und Motorluftschiffahrt. 

ZAMM = Zeitschrift fHr angeuxindte Mathematik und Mechanih 

FD ■» Modem Developments in Fluid Dynamics. 



CHAPTER I 

INTRODUCTION 

1»1. It is a fact of common experience that a body in 
motion through a fluid experiences a resultant force which, 
in most cases, is mainly a resistance to the motion. A class 
of body exists, however, for which the component of the 
resultant force normal to the direction of motion is many 
times greater than the component resisting the motion, and 
the possibility of the flight of an aeroplane depends on the 
use of a body of this class for the wing structure. 

A wing or aerofoil has a plane of symmetry passing 
through the mid-point of its span, and the direction of motion 
and the line of action of the resultant force usually lie in this 
plane. The section of an aerofoil by a plane parallel to the 
plane of symmetry is of an elongated shape with a rounded 
leading edge and a fairly sharp trailing edge. The chord line 
of an aerofoil is defined as the line joining the centres of 
curvature of the leading and trailing edges and the projection 
of the aerofoil section on this line is defined as the chord 
length. Aerofoil sections which are used on airscrews are flat 
over most of the lower surface and the chord line of these 
sections is usually taken along the flat under-surface of the 

aerofoil. The angle of incidence a of an aerofoil is defined as 
the angle between the chord and the direction of motion 
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relative to the fluid, and the centre of pressure C of an aerofoil 
is defined as the point in which the line of action of the 
resultant force R intersects the chord (fig. 1). The resultant 
force is resolved into two components, the lift L at right 
angles to the direction of motion and the drag D parallel to 
that direction but opposing the motion. It is customary to 
use the leading edge A of the chord as a point of reference and 
the resultant force has a moment M about this point, whose 
sense is such that a positive moment tends to increase the 
angle of incidence*. The magnitude of this moment is 

= — AC (L cos a -f -D sin a), 

where AG is the distance of the centre of pressure behind the 
leading edge of the chord. 

The resultant force on an aerofoil of a given shape at a 
definite angle of incidence depends mainly on the density 
p of the fluid, the relative velocity F of the aerofoil and the 
fluid, and some typical length I of the aerofoil. These three 
quantities can be combined in the unique form l^pV^ to give 
the dimensions of a force, and non-dimensional coefficients 
of lift and drag may be defined by dividing the force com¬ 
ponents by this product. The standard lift and drag coefficients 
of an aerofoil are defined by the equations 

where 8 is the maximum projected area of the aerofoil which, 
in the case of a rectangular aerofoil, is the product of the 
chord and the span. The corresponding definition for the 
moment coefficient is 

M^C^.ipV^Sc, 

where c is the chord of the aerofoil. These definitions are not 
unique and the older British practice is to use pV^ instead of 
the dynamic pressure ipV^, This gives coefficients and 
k^ half as large as those above. 

The lift and drag coefficients of an aerofoil are functions 
of the angle of incidence and fig. 2 shows the curves for a 
typical aerofoil, the drag being drawn to five times the scale 

* See Note 1 of Appendix. 
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of the lift. The lift coefficient varies linearly with the angle 
of incidence for a certain range and then attains a maximum 

Fig. 2. 

value at the critical angle of incidence. The important work¬ 
ing range of an aerofoil is represented by the linear part of 
the lift curve and in this range the drag is small compared 
with the lift, but on approaching the critical angle the drag 
increases rapidly. 

Fig. 3 shows the variation of the position of the centre of 
pressure, the distance of the centre of pressure behind the 
leading edge of the aerofoil being expressed as a fraction of 
the chord. Analytically this centre of pressure coeflScient is 

Zb - - Ci Cosa + C'^sin«= -^(approximately). 

and theory and experiment agree in showing that the moment 
coefficient varies in a linear manner with the lift coefficient 
below the critical angle. The centre of pressure of an aerofoil 
section normally moves backwards as the angle of incidence 
decreases and tends to infinity at the negative angle of in¬ 
cidence for which cos a -|- Cq sin a) vanishes, i.e. when 
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the resultant force on the aerofoil is parallel to the chord. 
This angle of incidence is approximately equal to the angle 
at which the lift vanishes. 

Fig. 3. 

The main object of aerofoil theory is to explain and to 
predict the lift and drag experienced by an aerofoil, and a 
satisfactory theory has been developed in recent years for 
the ordinary working range below the critical angle. The 
determination of the maximum lift of an aerofoil and of the 
critical angle at which it occurs is not yet possible, although 
some insight has been obtained into the cause of the 
phenomenon. 

1*2. The devdopfmnt of aerofoil theory. 
The explanation of the lift force of an aerofoil depends 

essentially on the nature of the fluid, and the difficulty of 
obtaining a satisfactory theory is associated with the difficulty 
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of defining the essential characteristics of the fluid in a simple 
and reliable manner. 

An early attempt to develop a theory of the force on an 
inclined flat plate is due to Newton, who assumed that the 
fluid consisted of a large number of solid corpuscles. These 
corpuscles were assumed to be inelastic and, on striking the 
plate, the component of their velocity normal to the plate 
would be destroyed. The mass of fluid meeting a plate of 
area S at an angle of incidence a in unit time is SpV sin a and 
the velocity normal to the plate is V sin a. Hence the plate 
would experience a force normal to its surface of magnitude 

R = SpV^ sin^a. 

If the corpuscles are assumed to be perfectly elastic, this 
force is doubled, but in either case the force given by this 
theory at small angles of incidence is too small. The estimate 
of the drag of a flat plate set normal to the direction of 
motion is more satisfactory and is of the correct order of 
magnitude. 

A better definition of the characteristics of a fluid was 
obtained by regarding the fluid £is a continuous homogeneous 
medium. An essential characteristic of a fluid is that it 
cannot support tangential stresses in a state of equilibrium, 
but when adjacent layers of the fluid are in relative motion 
tangential stresses exist and oppose the motion. This charac¬ 
teristic is due to the internal friction or viscosity of the fluid. 
The viscosity of the air is small and may be neglected in a 
large number of problems, but at times the viscosity is of 
fundamental importance and in all cases it appears to exert 
a determining influence on the type of motion which occurs, 
even when the motion proceeds exactly as in a non-viscous 
fluid. Another characteristic of a fluid is its compressibility, 
which is negligible for a liquid but important for a gas. The 
density of the air must be regarded in general as a function 
of the pressure and temperature, but the variations of the 
pressure in the flow past a body are sufficiently small to 
justify the assumption that the density of the air is constant. 
This assumption, however, ceases to be valid when the 
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velocity of the flow becomes comparable in magnitude with 
the velocity of sound and allowance must then be made for 
the compressibility of the air. 

These considerations led to the conception of the air as a 
perfect fluid, i.e. as a continuous incompressible non-viscous 
medium. The development of the theory of fluid motion has 
been based on this conception and the results deduced from 
the theory are of great value in many cases. Unfortunately 
the theory led to the astonishing conclusion that a body in 
motion through a perfect fluid does not experience any 
resultant force. 

An attempt to surmount this discrepancy between theory 
and fact was made by Helmholtz and Kirchhoff by assuming 
that the flow past a body, instead of passing round the whole 
surface, leaves a wake or dead-water region behind the body. 
This method of discontinuous flow* has been applied to an 
inclined flat plate in two dimensional motion, which is 
equivalent to an aerofoil of infinite span, and gives a resultant 
force normal to the surface of magnitude 

22 = 
TT sin a 

4 + 'H* sin a 
SpV\ 

This force is of the correct order of magnitude for small 
angles of incidence and also for a flat plate set normal to 
the direction of motion, but the actual numerical values are 
not in good agreement with experimental results. 

A lift force can also be obtained in a perfect fluid if the 
flow is assumed to have a tendency to circulate round the 
body, and modem aerofoil and airscrew theory is based on 
this conception. The development of the theory for an aerofoil 
of infinite span, which corresponds to motion in two dimen¬ 
sions, is due in the first place to Kuttaf and JoukowskiJ, and 

• For the development of the theory see Lamb, Hydrodynamics, 
§ 73 et Bcq, 

t “Auftriebskrafte in strdmenden Flussigkeiten,” lllust, aeronaut, 
MiUeilungen, 1902. “tJber eine mit den Grundlagen des Flugproblems in 
Beziehung stehende zwei dimensionale Stromung,** Sitzb, d, k, Bayr, 
Alcad, d. Wise, 1910. 

X '*t)ber die Konturen der Tragfl&ohen der Draohenfiieger,” ZFM, 
1910. 
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the extension to the general case in three dimensions, which 
follows the general lines suggested by Lanchester*, is due to 
Prandtlf. The theory gives results in close agreement with 
experiment but there remains the difficulty of explaining the 
origin of the circulation. In a perfect fluid this circulation 
could not develop and it must be ascribed to the action of 
the viscosity in the initial stages of the motion. 

The general aerofoil theory indicates that there is a drag 
force (induced drag) associated with the lift of an aerofoil, 
but for motion in two dimensions this induced drag becomes 
zero and it is again necessary to turn to the viscosity of the 
fluid for the explanation of the small drag force (profile 
drag) which actually exists. The development of the theory 
of an aerofoil is therefore based in the first place on the 
assumption that the air is a perfect fluid, and the viscosity 

is introduced at a later stage to explain the origin of the 
circulation and the existence of the profile drag. 

1*3. Atmospheric relationships. 

Although the compressibility of the air can be neglected 
in most problems of the flow past a body, the density of the 

air cannot be regarded as an absolute constant but must be 
determined as a function of the pressure and temperature of 
the undisturbed air according to the physical law 

£ = £.1 
Po Po ^0 * 

where p is the pressure, p the density and 9 the absolute 
temperature. 

In the atmosphere the pressure and density are connected 
with the height above the ground by the equation 

dp 
dh' -9py 

but to determine the conditions at any height it is necessary 

to know also the relationship between the temperature and 

* Aerodynamics, 1907. An account of his theory in a less developed 
form was given by Lanchester to the Birmingham Natural History and 
Philosophical Society in 1894. 

t “Tragfliigeltheorie,’* Oditingen Nachrichten, 1918 and 1919. 
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the height. This relationship will vary at different places 
and at different times, but a standard atmosphere has been 
adopted by many countries as a basis of comparison. The 
standard atmosphere is defined by a pressure of 760 mm. of 
mercury (14-7 lb. per sq. in.) at ground level and by the 
temperature law 

where T is the temperature in degrees centigrade and z is the 
height in metres. This law represents the average conditions 
in western Europe and is vaUd up to the height where the 
temperature ceases to fall on approaching the isothermal 
layer. The variation of pressure and density with height for 
the standard atmosphere is given in table 1. 

When a change of pressure occurs so rapidly that there is 
no exchange of heat between adjacent fluid elements, the 
pressing and density are related by the adiabatic law 

Vo Vpo/ 

where y is the ratio of the two specific heats of the gas and 
has the numerical value 1-4 for air. The adiabatic law would 
be satisfied in the atmosphere if the temperature gradient 
were 3° C. per 1000 ft., and whenever the temperature 
gradient rises above this value the atmosphere is in an 
unstable condition which gives rise to convection currents. 

Table 1. 

Standard Atmosphere. 
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1*4. Units. 
It is customary in aeronautics to express numerical values 

in British Engineering units and to take the second as the 
unit of time, the foot as the unit of length and the pound as 
the unit of force. A new unit of mass becomes necessary, 
defined by the condition that unit force acting upon unit 
mass produces unit acceleration. This imit of mass is called 
the sltig and is such that a body which weighs W lb. has a 
mass of Wig slugs (y = 32-2, approx.). 

Continental writers use a similar engineering system in 
which the second is the unit of time, the metre is the unit of 
length and the kilogram is the unit of force. The name 
newton has been proposed for the corresponding unit of mass. 

The principal relationships between the two systems of 
units are as follows: 

Length 1 m. = 3-281 ft.. 
Force 1 kg. = 2-204 lb.. 
Mass 1 newton = 0-672 slug, 

and the standard density of the air at ground level is 0-00238 
slug per cubic foot or 0-125 newton per cubic metre. 



CHAPTER n 

BERNOULLI’S EQUATION 

2*1. Streamliner and stecdy motion. 

When a body moves through a fluid with uniform velocity 
F in a definite direction, the conditions of the flow are 
exactly the same as if the body were at rest in a uniform 
stream of velocity F, and it is usually more convenient to 
consider the problem in the second form. In general therefore 
the body will be regarded as fixed and the motion of the fluid 
will be determined relative to the body. A representation of 
the flow past a body at any instant can be obtained by 
drawing the stream lines, which are defined by the condition 
that the direction of a stream line at any point is the direction 
of motion of the fluid element at that point. In general, the 
form of the stream lines will vary with the time and so the 
stream lines are not identical with the paths of the fluid 
elements. Frequently, however, the flow pattern does not 
vary with the time and the velocity is constant in magnitude 
and direction at every point of the fluid. The fluid is then in 
steady motion past the body and the stream lines coincide 
with the paths of the fluid elements. The stream lines which 
pass through the circumference of a small closed curve form 
a cylindrical surface which is called a stream tube, and since 
the stream lines represent the direction of motion of the fluid 
there is no flow across the surface of a stream tube. The 
theory of the flow past an aerofoil or airscrew is developed 
almost entirely as a problem of steady motion and, except 
where otherwise specified, the fluid is regarded as incom¬ 
pressible and non-viscous. 

2-2. Bernoulli's equation. 

In steady motion it is possible to obtain a simple relation¬ 
ship connecting the pressure and velocity at any point of a 
stream line. The dynamical equation for the motion of a 
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small element of fluid forming part of a stream tube is 

„dv „dp 

where S is the cross sectional area of the stream tube at the 
point under consider¬ 
ation and 5 is a co¬ 
ordinate measured a- 
long the stream tube. 
On integrating along 
the stream tube Fig. 4. 

ii;2 ^ constant 
J P 

in general, and for an incompressible fluid 

p -{- = H, 

This result is known as Bernoulli’s equation and the 
quantity //, which is constant along a stream line, is called 
Bernoulli’s constant or the total pressure head of the fluid. 
In general, H may have different values for different stream 
lines, but if the stream lines originate in a region of constant 
pressure and velocity, it is evident that H will have the same 
value throughout the fluid. The variation of the value of H 
for different stream lines, when it occurs, is associated with 
the presence of vorticity in the fluid (see 4*32), and changes 
in the value of H may be produced in a real fluid by the 
action of viscosity. 

Bernoulli’s equation shows that the pressure of the fluid 

is greatest where the velocity is least and that H is the 
maximum pressure which can be attained at any point. This 
maximum pressure always occurs at some point on the nose 
of a body where the fluid is brought to rest and the stream 
divides to pass along the surface of the body. The measure¬ 
ment of the speed of an aircraft depends on this result, since 
the standard pressure head instrument measures the differ¬ 
ence between the total pressure head H and the fluid pressure 
p. The instrument must be placed with its axis parallel to 
the direction of the local stream lines and it will then deter¬ 
mine the local relative velocity. This velocity may, however, 
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differ from that of the aircraft owing to the disturbance of 
the general stream caused by the aircraft. 

The cross sectional area 8 oi a, stream tube is related to 
the velocity by the condition that pvS must be constant, 
since there is no flow across the surface of the stream tube. 
Hence for an incompressible fluid S is inversely proportional 
to V, and the stream tube contracts as the velocity increases. 
The velocity cannot, however, increase indefinitely since the 

pressure will become negative when the velocity exceeds the 

value V2HIp and a fluid cannot sustain a negative pressure. 
To obtain a numerical estimate of this limiting velocity in 
the air under normal conditions, the value of H may be taken 
as that of the standard atmospheric pressure (14*7 lb. per 
sq. in.) and the limiting velocity is then 1340 ft. per sec. This 

velocity is greater than the velocity of sound and the as¬ 
sumption that the air can be regarded as an incompressible 
fluid breaks down at a considerably lower velocity. 

2*3. The velocity of sound. 

If a disturbance, such as a sudden increase of pressure, 
occurs at some point of an incompressible fluid, the disturb¬ 
ance is transmitted instantaneously to all parts of the fluid, 
but in a compressible fluid the disturbance travels through 
the fluid in the form of a pressure wave at a definite velocity, 
which is in fact the velocity of sound in the fluid. 

Consider the motion in one dimension along a straight 

tube of uniform cross sectional area 8, If f denote the dis¬ 
placement at time t of the particles whose undisturbed 
position is determined by the coordinate a;, then the fluid 
originally between the limits x and x + dx will at time t lie 
between the limits 

x-\-^ and a: -f ^ + (1 + 

The equation of continuity, which expresses the condition 
that the mass of an element of fluid remains constant, is 
therefore 
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where po is the density of the fluid in the undisturbed state. 
Now let /) = Po (1 + «) and then for small disturbances the 
equation of continuity becomes 

dx 

The dynamical equation for the motion of the fluid along 
the tube is . g 

Now the pressure is a function of the density and so for small 
disturbances , 

Vo + spo 

Po dt^ ~ 

02| 0S 
Hence Po^^i- 

which may be written as 

dt^ 

(dp\ /dp\ 

\dp)o 
~dx^Po \dpl 

-da- 
The solution of the differential equation for ^ is 

^ = f - ct) + F (x + ct), 

which represents two waves travelling in opposite directions 
with the velocity c. This velocity c is independent of the type 
or periodicity of the disturbance and is the velocity of sound 
in the fluid. 

If the temperature of a gas remains constant, the pressure 
and density are related by Boyle’s law 

P ^ P ^ 
Po Po 

The velocity of sound is thenVpo/po for standard atmo¬ 
spheric conditions the numerical value is 945 ft. per sec. 
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This is considerably below the value determined experi¬ 
mentally and the discrepancy is due to the fact that the 
temperature does not remain constant during the disturb¬ 
ance. The changes in pressure occur so rapidly that there is 
no exchange of heat between adjacent fluid elements, and in 
consequence the pressure and density are related by the 
adiabatic law , ^ 

P = (E-) 
Po \Po' ’ 

where y = 1-4 for air. The velocity of sound is therefore 

VyPqIpo and the corresponding numerical value is 1120 ft. per 
sec., which agrees well with the experimental determinations. 

In general Po/Po proportional to the absolute temperature 
6 and the numerical value of c corresponds to the standard 
ground temperatui*e of 15"^ C. For any other temperature 

c = 6d\/0 ft. per sec., 

where 6 is the absolute temperature on the centigrade scale. 

2*4. Bernoulli's equation in a compressible fluid. 

The general form of Bernoulli’s equation is 

f^= 
J p 

constant, 

and in a compressible gas the pressure and density are re¬ 

lated by the adiabatic law 

£ 
Po 

On integrating, Bernoulli’s equation becomes therefore 

+ Y P 
y-lp IV + 

y - 1 Po ■ 

Consider first the pressure which occurs at a stagnation 
point, where the fluid is brouglit to rest at tlie nose of a body. 
Putting Vo = 0, the stagnation pressure po is determined by 

the equation . i « 
PoP _1 I 1 y - 1 
Ppo 2 y p 
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where c is the velocity of sound corresponding to the pressure 
p and density p of the undisturbed stream, and 

Also Po P _ //JoVv 

PPo \pj 
and hence finally 

Po = P 
y_- 

2 cV 

This equation takes the place of the simpler form 

Po = P + 
which was obtained for an incompressible fluid. 

When the velocity v is small compared with the velocity 
of sound c, the expression for the stagnation pressure can 
be expanded in the series 

showing that the stagnation pressure is greater than in an 
incompressible fluid. Now the velocity of an aircraft is de¬ 
termined by a standard pressure head instrument in the form 

2 (2>o - P) 

and so the velocity will be over-estimated slightly if the 
compressibility of the air is neglected. The extent of this 
error is shown by table 2 and it appears that the error is less 
than 1 % for ordinary aeroplane speeds and is only 2 % for 
a speed of 300 m.p.h. 

Table 2. 

vjc 01 0-2 • 0-5 1-0 

PoIp 1007 1028 M87 1-893 
v'Jv 1 001 1-005 1-032 1-129 

The variation of the cross sectional area of a stream tube 
is determined by the equation of continuity 

pv8 = constant, 
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i^ + 14 + l.o 
Sdv pdv^ V 

which gives 

Also by differentiating Bernoulli’s equation 

^Idp p\dp 
v + _Z_ fl 

-Up dp p^J dv 
0. 

or v + 
c^dp 
p dv 

0, 
if c is the local velocity of sound. Hence 

d^ S/' 
dv 

This equation shows that the stream tube contracts as the 
velocity increases if the velocity is less than the local velocity 

of sound, and expands if the velocity is greater than this 
value. It follows that the flow pattern past a body must 
change very considerably as the velocity approaches and 
exceeds the velocity of sound. 

The cross-sectional area of the stream tube has a minimum 
value when the velocity is equal to the local velocity of sound. 
The characteristics at any point of the stream tube can be 
expressed conveniently in terms of their values at the minimum 
section, which will be denoted by the suffix m. The pressure, 
density and velocity of sound are connected by the equations 

and the relationship between the velocity and the local 
velocity of sound, obtained from Bernoulli’s equation, is 

(y~l)t^* + 2c*=(y+l)c,„«. 

Finally, the cross sectional area of the stream tube is 
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These equations lead to the interesting conclusion that there 
is an upper limit to the velocity 

V (max) 
45, 

corresponding to the condition when the pressure, density 
and local velocity of sound have all fallen to zero. At the 
other extreme, when the velocity is zero, the equations give 
the values 

Cm 

y -h 1 
= 1-095, 

Pm V 2 ; 
1 

po ^ 

Pm \ 2 ) 

1-893, 

1-577. 

In aeronautical problems the velocity is in general suf- 
liciently low to justify the assumption that the air may be 
regarded as an incompressible fluid, but in the case of an 
airscrew rotating with high angular velocity, and possibly in 
certain other special cases, it is necessary to take account of 
the compressibility of the air. The compressibility may also 
modify the flow past a body moving with low velocity 
relative to the fluid, if the local velocity in any region rises 
to a high value. 

o 9 



CHAPTER III 

THE STREAM FUNCTION 

3-1. The determination of the flow past any body depends 
on the determination of the magmtude and direction of the 
velocity at all points of the fluid, and this velocity vector 
may be conveniently expressed by its three components 
{Uf V, w) parallel to a set of orthogonal coordinate axes 
(x, y, z). The problem assumes a simpler form when the body 
is an infinite cylinder whose generators are normal to the 
direction of the undisturbed stream, and the flow has no 
component parallel to the generators. Choose the axis of z 
parallel to the generators of the cylinder, so that = 0 at 
all points, and the flow will then be identical in all planes 
parallel to the plane 2 = 0. It is sufficient therefore to con¬ 
sider the flow in any plane normal to the generators of the 
cylinder and the problem is simplified to a motion in two 
dimensions only. In order to retain physical reality, this 
plane is assumed to have unit thickness parallel to the axis 
of z and curves drawn on the plane represent cylindrical 
surfaces of unit length in that direction. 

The steady motion 
of a perfect fluid in V 
two dimensions can 
be determined con¬ 
veniently by drawing 
the stream lines of 
the motion and by 

the introduction of 
the stream function ijj. 
Take any origin 0 
and let 0 be the flow 
in unit time across 
the curve OAP (fig. 5) 
joining the origin to 
any point P of the fluid. The flow is taken to be positive in 
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the clockwise sense about O, i.e. from left to right across the 
curve from the point of view of an observer at 0 looking along 
the curve towards P. The value of 0 does not depend in general 
on the curve which is drawn between O and P, for if OBP be 
another such curve, the flow across OBP must be equal to the 
flow across OAP unless fluid is appearing or disappearing in 
the region enclosed by the two curves. Hence is a function 
of the coordinates of P, and its value will vary with the 
position of P. The choice of a different origin 0' would merely 
increase the value of ^ at all points by a constant amount 
equal to the flow across any curve O'O, 

Now let P' be any other point on the stream line which 
passes tlnough P, and take OAPP' as the curve joining P' 
to the origin. There is no flow across the stream line PP' and 
hence the flow across the curve OAPP' is equal to the flow 
across the curve OAPy and the value of ip at P' is the same 
as its value at P. It follows that the value of tp is constant 
along a stream line and tp is therefore called the stream 
function. The motion of the fluid is completely determined 
when the value of ip is known as a function of the coordinates 
for all points of the fluid. The equation of any stream line 
is ^ = (7 and the stream lines can be drawn by giving different 
values to the constant C, For this purpose it is best to give 
ip OT C values which rise by uniform increments, so that the 

same quantity of fluid 
flows between each ad¬ 
jacent pair of stream 
lines. The normal dis¬ 
tance between adjacent 
stream lines is then in¬ 
versely proportional to 
the velocity and the close 
approach of the stream 
lines in any region indi¬ 
cates high velocity. 

3-11. The velocity of ^ Fi 6 ^ 
the fluid at any point is 
determined simply by means of the stream function. If P and 

2-2 
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P' are two adjacent points on different stream lines (fig. 6), 
the flow across the element PP' is equal to the flow across 
PN and JVP' and can be expressed as 

dtjj = udy ~ vdx 

in accordance with the definition of the stream function. But 

and hence 

dx 

In general the component of the velocity in any direction is 
obtained by differentiating the stream function ip in the 
direction at right angles to the left. In polar coordinates, 
therefore, the radial and / 
circumferential velocity 
components are respec- \ 

timely 1 p)./, p>r 

It is convenient to use 
both the Cartesian and - 

o X 
the polar system of co- ^ 

j- 4. • 7. ordinates m many cases, 
and results will in general be given in both forma. 

3-12. The simplest examples of the stream function corre¬ 
spond to uniform flow parallel to one of the coordinate axes. 
For a velocity XJ parallel to the axis of x and for a velocity 
F parallel to the axis of j/, the stream functions are respec¬ 

tively ^ _ XJy ^ i7r sin 0, 

and ^ — Fa; — Fr cos 0. 

Fig. 8 shows the stream lines for the uniform flows parallel 
to the axes for the case IJ » 1*5 F, and the numbers on the 
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lines are the values of The broken lines are drawn through 
the points which give a constant value to the sum of the two 

2 1 0 -1 -2 -3 

Fig. 8. 

stream functions and represent a uniform flow inclined to 
the coordinate axes. Two stream functions can always be 
added in this manner, either analytically or graphically, and 
the method is equivalent ^o combining the velocity vectors 

at each point of the fluid. By the combination of certain 
simple flow patterns in a suitable manner it is possible to 
derive a number of interesting results and in particular the 
flow past a circle, from which the flow past any aerofoil 
section can be derived by another analytical process. 

3*2. Sources and Sinks, 

The development of different types of flow is facilitated by 
the conception of sources and sinks. A source is a point at 
which fluid is appearing at a uniform rate, and a sink is a 
negative source or a point at which fluid is disappearing. If 
there is no disturbance to the flow the fluid will pass out¬ 
wards from a source equally in all directions along the radial 
lines, and if m is the strength of the source or the volume of 
fluid which appears in unit time, the radial velocity at 
distance r from the source will be 
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The stream lines are the lines radiating from the source and 
the stream function ip will have a constant value along each 

of these lines. Choose 
any radial line OA as 
the stream line i/r = 0. 
Then if P be a point on 
the radial line at angle 
6 to OA, the flow across 

the arc AP will be ^ 0 

and this is the value of 
the stream function for 
the line OP. Hence 

0 = — 0 = arc tan 
^ 277 277 X 

The case of a source 
is an exception to the 
general rule that the 
stream function at any point P has a unique value, since 
by choosing a curve which completely encircles the source 
several times it is possible to increase the value of 0 by 
any multiple of m. The addition of a constant to the stream 
function does not modify the flow pattern and the value of 
0 can be made unique by the convention that 6 shall always 
lie between the limits ± tt. 

3*3. Source in a uniform stream. 

Consider next the flow which occurs when there is a source 
of strength m at the origin in the presence of a uniform stream 
of velocity — U parallel to the axis of x. The stream function 
for this flow is 

which is the sum of the stream functions of the two separate 
flows. Writing m = 2Uh, the stream function becomes 

involving the two parameters XJ and h, U is the velocity of 
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the uniform stream and A is a leiigth whose significance will 
appear in the course of the analysis. 

The stream lines of the two separate flows are the lines 
parallel to the axis of x and the lines radiating from the origin 
respectively, and the stream lines of the combined flow can 
be drawn at once as the curves which pass through the points 
where the sum of the two stream functions has a constant 
value. This geometrical method is illustrated in fig. 10 for 

Fig. 10, 
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the numerical values = A = 1. The stream line ^ = 0 
consists of the positive part of the axis of x and of a curve 
BAB' of parabolic type. The flow from the source lies wholly 
within the curve BAB' and the uniform stream divides at 
the vertex A and flows above and below the curve. Now 
any stream line may be replaced by a rigid boundary without 
modifying the flow and an interesting inteipretation of the 
flow is obtained if the curve xAB is taken as this boundary. 
The uniform stream is then passing over a level plain or sea 
until it meets the cliff AB, over which it is deflected in the 
manner indicated by the stream lines of fig. 10. With this 
interpretation the source no longer occurs in the region of 
the fluid and may be regarded simply as a mathematical 
device for representing the effect of the cliff. 

The shape of the cliff is given by the equation 0 = 0 and 

hence ^ 

r sin 0 = V = ^ > 
7T 

where 6 varies from 0 to tt. The parameter 1i represents the 
maximum height of the cliff when r tends to infinity and 6 
tends to tt. Thus the parameters U and h determine the 
velocity of the wind and the height of the cliff respectively, 
and the cliff is always of the same shape. Other forms, how¬ 
ever, can be obtained by using a number of sources and sinks 
suitably distributed in place of the single source at the origin. 

The flow may also be considered by means of the velocity 
components parallel to the coordinate axes. For the source 
these velocity components are 

m ^ m X 
- cos0= 

2717* 277 

V 
m 

27rr 
sin 0 

m y 
277 r‘2’ 

and hence for the flow past the cliff 

u « 
A 

t;a: 
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It is now possible to determine the position of the vertex A, 
which is the stagnation point of the flow (u = v = 0), The 
coordinates of A are therefore 

h 
X = - 

7T 
2/ = 0. 

The expressions for the velocity components can also be used 
to determine the curves of constant vertical velocity, of 
constant inclination of the flow or of any other similar 
characteristic. The curves of constant vertical velocity v are 
chosen as an example, since they represent the region in 
which soaring flight is possible. These curves are the circles 

+ y 2 _ l^h 
V TT ' 

which pass through the origin and have their centres on the 
axis of y. A few of these circles are drawn with broken lines 
in fig. 10, and these curves determine the best region for 
soaring flight. The maximum vertical velocity occurs on the 
surface of the cliff and may be determined as follows. The 
vertical velocity at any point is 

Uh sin 9 

and hence on the surface of the cliff 

v^U 
sin^ 6 
~~e'~ ’ 

which has the maximum value u = 0-725 at the point 
e = 60°-8, y = 0-37A. 

This example has been discussed in some detail in order 
to illustrate the method of combining two flow patterns and 
of interpreting the result as the flow past a rigid boundary. 
The sources and sinks then become simple analytical devices 
for representing the effect of the rigid boundary, and this 
boundary must always be chosen to enclose all the sources 
and sinks. 

3*4. The method of images. 

The flow due to two sources of equal strength illustrates 
another analytical method of some importance. The stream 
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lines due to two equal sources at the points and A2 are 
derived very simply by the usual graphical method and are 
shown in fig. 11. In this case the stream lines can be shown 
to be hyperbolae passing through the points A^ and A^y but 

Fig. 11. 

the most important feature is that the line PQ which bisects 
.^1.42 at right angles is a stream line and can be replaced by 
a rigid boundary. The stream lines to the right of the line 
PQ then represent the flow due to a source in the presence 
of a straight Une boundary, and the interference of this 
boundary on the flow due to the source A^ has been repre¬ 
sented analytically by the introduction of the image A2 of 
the source in the line PQ, 

This method of images can be used in more complex cases. 
In place of the single source 4i, it is possible to take any 
system of sources and sinks or any closed curve representing 
a body. The flow past this system in the presence of a straight 
line boimdary PQ can then be derived by introducing the 
image of the system in the line PQ, since the resulting flow 
will clearly be symmetrical about the line PQ and will have 
this line as one of its stream lines. The method of images 
can therefore be used to obtain the flow past a body near 
the ground. 
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3*6. Source and sink in a uniform stream. 

The combination of a source and a uniform stream led to 
a rigid boundary extending indefinitely in one direction, but 
a closed curve can be obtained by using a source and sink 
of equal strength. Take as origin of coordinates the point 
midway between the source and the sink take 

the line A2A1 as axis of x. The stream function at any point 
P due to the source and sink is 

^-£(9.-6.) = = #, 
where 61 is the angle xA^P, 62 is the angle XA2P and is the 
angle A1PA2* The stream lines (tp = constant) are therefore 
the system of co-axial circles passing through the points Ai 
and ^2* A.lso if 2s is the distance between the source and 

sink 
tan 01 = y 

x — s’ 

tan 02 = y 
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and hence 
tan (j) = tan {di — flj) = 

2ys 

m 

— 8^ * 

2ys 
^ arc tan „ - „ 
277 -\-y^ — 8 2’ 

Now superimpose a uniform flow of velocity — U parallel 
to the axis of x, and the stream function of the combined 
flow will be 

t rr . ^ A 
ff2* 

The stream lines of tliis flow can be obtained by the usual 
graphical method and are shown in fig. 12 for a typical case. 
The stream line j/f = 0 consists of the axis of x, excluding the 
segment AiA2y and of an oval curve which may bo regarded 
as a rigid boundary. The equation of this oval curve is 

x^ + y^ — 8^ = 2ys cot y. 

The length b of the semi-minor axis of the oval curve is 
obtained at once from this equation as the value of y when 
X is zero, and hence 

^2 _ ^2 — 2bs cot b, 
m 

which can be reduced to the simpler form 

b ,7TUb ^7tU8 b 
- == cot-= cot-. -. 
s m ms 

The length a of the semi-major axis is determined by the 
condition that the point (a, 0) is a stagnation point of the 
flow. Now at this point the velocity is the sum of the uniform 
velocity — U and of the components due to the source and 
sink, and hence 

u ■■ 
277 \a — 

ms 

---) a+ SJ 

7T{a^-s^y 
At the stagnation point « = 0, and hence 

a* , . OT 
1 + - 

IT Ue' 
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The shape of the oval curve depends on the single para¬ 
meter Usim and table 3 shows the relationships between the 
various quantities. The calculations are made by starting 
with a suitable series of values of J76/m, and it appears that 

Table 3. 

Ubim Ua/m aja bja alb 

0-4 1-231 1-122 0-325 3-45 
0-3 0-413 1-331 0-727 1-83 
0-2 0-145 1-786 1-376 1-30 
01 0-032 3-285 3-078 1-07 

the ratio of the lengths of the axes of the oval curve tends 
to the limit unity as the parameter Uslm tends to zero. This 
limiting condition corresponds to the case when the source 
and sink approach indefinitely close to one another. 

3*6. Circular cylinder. 

Consider the case when the source and sink approach one 
another while the product of the source strength and the 
distance separating source and sink retains a constant finite 

value. Writing ^ ^ 2ma. 

the stream function for the source and sink is 

0 = --- arc tan 
4:7TS X'i 4- — ^2’ 

and as a tends to zero, the stream function tends to the limit 

0 = 
y 

2tt -h 
^ sin 6. 

2iTr 

This combination of a source and a sink, for which s tends 
to zero while /x remains finite, is called a doublet of strength 
/i, and the line joining the sink to the source is called the 
axis of the doublet. The stream lines due to a doublet are 
the circles which pass through the doublet and are tangential 
to its axis. 

Now superimpose on this flow a uniform stream of velocity 
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— U parallel to the axis of ar, and the stream function of the 
combined flow will be 

The stream line ip — 0 consists of the axis of x and the circle 

a;* + y* = 
277 C7‘ 

Writing (i = ^-na^U, 

the stream fimction becomes 

and represents the flow past a circular cylinder of radius a 
with centre at the origin of coordinates in a uniform stream 
U parallel to the axis of x in the negative sense. The stream 
lines of this flow can be obtained by the usual graphical 
method and are shown in fig. 13. 

The velocity at any point is expressed most, conveniently 
in polar coordinates, and the radial and circumferential 
components are respectively 
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On the circumference of the circular cylinder the radial 
component u' is zero and the circumferential component v' is 

v' = 2U sin 0, 
TT 

which has the maximum value 2U when 0 — 
Jit 

The pressure at any point of the fluid is given by Bernoulli’s 

equation as ^ ^ ^ 

and on the circumference of the circular cylinder 

p = Po + (1 — 4 sin^ 0). 

The pressure is symmetrical with respect to the axes of x and 
y, and hence there can be no resultant force on the cylinder 
due to the pressure distribution over its surface. This con¬ 
clusion is in conflict with actual experience and fig. 14 shows 

Fig. 14. 

the theoretical pressure distribution compared with that 
given by an experimental determination on a fairly large 
scale*. The observed and calculated pressure distributions 

* Q. I. Taylor, “Pressure distribution round a cylinder,** RM, 191, 
1916. The results shown in the figure refer to a cylinder of 0*5 ft. diameter 
at a speed of 55 f.p.s. 
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agree over the front of the cyhnder but are widely different 

in the rear. This discrepancy is due to the flow breaking 
away from the surface of the cylinder and forming a wake of 
eddying motion (see chapter vm). The theoretical solution 
is of importance, however, as the basis from which the flow 

past an aerofoil is derived by a suitable analytical trans¬ 
formation. 



CHAPTER IV 

CIRCULATION AND VORTICITY 

4-1. Circulation, 

The analysis of the preceding chapter led to the determina¬ 
tion of the theoretical flow past a circular cylinder in a uni¬ 
form stream, but another type of flow is possible in which 
the fluid circulates 
round the cylinder. 
The simplest form 
of circulating flow 
is that in which 
the velocity has no 

radial component 
at any point while 
the circumferential 
component v' is in¬ 
dependent of the 
angular position 6 
and depends solely 
on the radial dis¬ 
tance r. By con¬ 
sidering the equi¬ 
librium of a small element of fluid, it appears that 

v'2 
dp = p — dr, 

in order that the pressure on the boundary of the element 
shall balance the centrifugal force. If, in addition, the total 
pressure head H in Bernoulli’s equation 

p 4- Ipv'a = H 

is to have the same value throughout the fluid, it is necessary 
that the product vV shall have a constant value and this 
condition determines the fundamental type of circulating 
motion. 

o 3 
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To determine the stream function of this circulating motion 
round a circular cylinder there are the equations 

1 dij) 
rde ' 

w' = 0, 

where X is a constant 
function is 

dip , K 
dr'^^ ■“277r’ 

Hence it follows that the stream 

^=-^logr. 

The stream lines of this flow are the circles concentric with 
the circular cylinder and the in tegral of the velocity taken round 
the circumference of any of these stream lines has the constant 
value Ky which is 
called the circulation 
of the flow. More gen¬ 
erally the circulation 
round any closed curve 
is defined as the in¬ 
tegral of the tangential 
velocity component 
taken round the curve. 
If q is the resultant 

velocity at any point P of the closed curve C and if a is the 
angle between the direction of the velocity q and the element 
ds of the curve at P, then the circulation K round the curve 

qQOsa.ds, 
c 

The circulation will be regarded as positive in the counter¬ 
clockwise sense. For the special type pf circulating motion 
defined by the stream function 

the oiroulation has the value K for all curves enclosing the 
cylinder and is zero for all other curves (of. 4-33). 
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4-2. Circular cylinder with circulation. 

If the circulating flow is superimposed on the uniform flow 
past a circular cylinder (3*6), the stream function becomes 

and the form of the stream lines for a comparatively small 
value of K is as shown in fig. 17. The effect of the circulation 
is to increase the velocity above the cylinder and to decrease 
the velocity below it. In consequence there is a reduction of 

pressure above the cylinder and an increase of pressure below 
it, and the cylinder experiences an upward force or lift 
parallel to the axis of y. 

The radial and circumferential components of the velocity 
at any point are respectively 

Idijj / 
u 

rd9 

dr 

= - (i - ^) cos e, 

(l + “2) sin e + K 
'27rr' 

and at a point on the surface of the cylinder w' = 0 and 

K 
V* = 2C/ sin 9 + 

27ra 

The circulation causes the stagnation points to move down¬ 
wards from A and A' towards and the two stagnation 
points coalesce at the point B' when the circulation K has 

3-2 
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the value inaU, If the circulation rises above this value the 
flow is of the type shown in fig. 18 and there is a stagnation 

Fig. 18. 

point in the fluid at C. In this case a certain part of the fluid 
continues to circulate round the cylinder and does not pass 
down stream with the general mass of the fluid. 

The pressure at any point of the fluid is determined from 
Bernoulli’s equation as 

V-H-\p + v'% 

and hence at a point on the surface of the cylinder 

^ sin* e. 

Now the components of the 
resultant force experienced 
by the cylinder due to the 
pressure distribution over 
its circumference are 

X ■■ — pa cos OdO^ 

f2tr 

7 «= —I 'paBinOdO, 
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and on integration X = 0, 

Y = pUK, 

Thus by combining the circulation K with the uniform flow 
JJ a lift force pUK has been obtained, and this result is of 
fundamental importance in the development of aerofoil 
theory. 

4*21. Further insight into the mechanism of the lift force 
is obtained by exam¬ 
ining the conditions at 
a great distance from 
the cylinder. Consider 
the equilibrium of the 
fluid contained be¬ 
tween the surface of 
the cylinder and a 
large circle of radius r 
concentric with it. If 
q is the velocity at 
any point of the large 
circle, the pressure will 
be given by the equa¬ 
tion 

p — H ip(f 

and the pressure over this outer boundary will exert on the 
enclosed fluid a force whose components are 

Xq ^ —f pr cos Odd = Ipl q^r cos Odd, 
Jo Jo 

1^0 = pr sin Odd = qh sin OdO, 
Jo Jo 

0 

Now 

ga = M'a + v'a = [/a cos^ 0 (l - "J)" + sin0 (l + “*) + , 

but if r is large and tends to infinity, it is sufficient to retain 

only the term independent of r and that proportional to - 
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in order to determine the force components Xq and Yq, To 
this order tt rr • 

UK sin 0 

and hence 
Ttr 

Xq — 0, 
Yo = ipUK, 

To these components must be added the components of the 
force exerted on the fluid by the pressure distribution over 
the surface of the cylinder, and hence the resultant force on 
the fluid contained between the cylinder and the large circle 
has the components 

= Xo X - 0, 

Yi = To - y = ~ ipUK. 
This resultant force on the fluid is normal to the direction 

of the undisturbed stream U and must be equal to the rate 
of change of momentum of the fluid. The rate at which fluid 
is crossing the boundary of the large circle outwards at the 
point P is pu'rdO and the components of the momentum 
carried across the boundary in unit time are therefore 

r2ir 

Mg.= \ pu'vrdO, 

M, 
r2ir 

"1. vrdd. 

To the order -, the expressions for the velocity components 

are u' = — U cos 9, 
K 

v'= U&inO-]---, 
27Tr 

ti = w' cos 0 — v' sin 0 = — f/ — -— sin 0, 
2i7TV 

K 
v = sin 0 + v' cos Q — ^— cos 6. 

27rr 

Hence on integration 

M^=-\pUK, 

which are identical with the expressions for the components 
of the resultant force acting on the fluid. 
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This analysis of the conditions at a great distance from 
the cylinder shows that the lift force pUK experienced by 
the cylinder appears in the fluid at a great distance from 
the cylinder half as a change of momentum and half as the 
pressure distribution round the large circle*. 

4-3. Vorticity, 

The circulation round any 
closed curve has been defined 
as the integral of the tangential 
component of the velocity round 
the curve. If the curve is chosen 
to bo a small rectangle with sides 
parallel to the coordinate axes, 
the value of the circulation is 

dykv 
vU 

OX 

dx 

Fig. 21. 

Now put 

and if dS is the area of the element the circulation becomes 

dK — 2a) dS. 

In this form the equation is valid for an element of any shape 
and on applying it to a small circle of radius r 

dK — 2a>.7Tr^ = 2Trr,o)r, 

from which it follows that oj is the angular velocity of the 
element about its centre. Thus the value of co at any point 
P of the fluid is the angular velocity of a small element 
surrounding the point P. The vorticity at any point of the 
fluid is defined as the value of 2a>, and the circulation round 
any small element is then the product of the vorticity and 
the area of the element. A fluid element which has vorticity 
is called a vortex element and the strength of a vortex element 
is defined as the circulation round it. 

In terms of the stream function 

t;=: — 
35’ 

♦ See Note 2 of Appendix. 
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and hence the vorticity 2oi is 

2a) ■■ 
dv du 
dx dy 

or 

Pl'l'. 4.1 j. 1 
(3r* ^ r dr r^dd-y 

vv d^ip \difj 1 d^tjj 
dr- r dr'^r^ dO'^ ’ 

The surface enclosed by any closed curve can bo divided 
into a large number of small elements by a double series of 
intersecting lines which form 
a network over the surface. 
The sum of the circulations 
round all these elements, 
taken in the positive sense, 
is equal to the circulation 
round the boundary of the 
surface, since the flow along 
any line which is common 
to two elements comes in 
twice with opposite signs 
and disappears from the re¬ 
sult. There remains only the flow along the boundary of the 
surface which is the circulation round the closed curve. Now 
for any small element the circulation is equal to the product 
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of the vorticity and the area of the element, and hence for 
any simple closed curve the eircuiation is 

where the double integral is taken over the surface enclosed 
by the curve. This result shows that the circulation round 
any closed curve is equal to the sura of the strengths of the 
vortices enclosed by the curve. 

4*31. Constancy of circulation and vorticity. 

The vorticity of any small element of a perfect fluid re¬ 
mains constant throughout the motion. The vorticity at any 
point P of the fluid is twice the mean angular velocity of a 
small element surrounding the point, and if this element is 
chosen as a small circle with centre at P it is evident that the 
pressure on the boundary of the element cannot exert any 
moment about the point P tending to change the angular 
velocity of the element. Hence, as the fluid element surround¬ 
ing the point P moves with the fluid, its vorticity remains 
unaltered. Changes of vorticity can be produced only by 
tangential forces at the boundary of a fluid element and these 
do not occur in a perfect fluid. In a real viscous fluid tan¬ 
gential forces occur, particularly where the fluid is in close 
proximity to a rigid body, and so vorticity may arise. 

Since the vorticity of tJie fluid elements in a perfect fluid 
is constant, it follows that the circulation round any closed 
curve moving ivith the fluid is also constant. As the curve 
moves with the fluid it remains continuous and unbroken 
and must always enclose the same fluid elements, for no fluid 
element can cross the curve witliout making a breach in its 
continuity. Now the circulation round the curve at any time 
is the sum of the strengths of the vortices enclosed within 
its circuit and the vorticity of all the fluid elements remains 
constant throughout the motion. Hence the circ\ilation 
round any closed curve moving with the fluid remains con¬ 

stant throughout the motion. 
If a closed curve moves through the fluid its circulation 

will not be constant but wiU be equal to the sum of the 
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strengths of the vortices enclosed within its circuit at any 
moment, and the increase of circulation in any interval will 
be equal to the sum of the strengths of the vortices which 
have crossed the boundary of the curve in that interval. 

4-32. Bernoulli's equation. 

The variation of Bernoulli’s constant or the total pressure 
head H between different stream lines is closely associated 
with the vorticity of the fluid. Con¬ 
sider a fluid element PQQ'P' whose / 
sides PQ and P'Q' are elements of /y 
adjacent stream lines while PP' r// 
and QQ' are normal to them. Let / / 
PQ *= dSy PP' = dn and let R he . / j 
the radius of curvature of the Nv \ p'/ / 

stream line. / ' 
Bernoulli’s equation is obtained 

by considering the motion along the 
stream line, and if F is the velocity 
of the fluid element Fig. 24. 

pdsdn V -gj 

„T, 

— ^ dsdn, 
OS 

and hence p + JpF^ = //, 

where H is constant along the stream line. 
Resolving also normally to the stream line to obtain the 

balance between pressure and centrifugal force 

F^ dv 
pdsdn= — ^^dnds, 

dp pV^ 
S+V-"- 

Now the circulation round the element is 

2u)dsdn = Vda — + -^dnjds', 

It — dn 
—g—, where 
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from which it follows that 

2oj 
TT 
r 

R 
dv 
dn * 

Hence, on eliminating the radius of curvature 

|? + pF(2a, + ||) = 0, 

9 
or 

dn (P + == - 2a)/)F, 

i.e. 
clH 
dn 

— 2a)/) F. 

43 

This equation determines the variation of the total pressure 
head //, and it appears that a constant value of H implies 
zero vorticity and conversely. 

4*33. Irrotational motion. 

When the vorticity is zero at all points of the fluid, the 
motion is said to be irrotational^ since the angular velocity 
of any small fluid element is zero. This type of motion is of 
special importance, since it has been shown that vorticity 
cannot arise in a perfect fluid and that if the motion is 
irrotational at any time it will remain so always. 

In irrotational motion the total pressure head H has a 
constant value throughout the fluid and the stream function 
ip satisfies the equation = 0 at all points of the fluid. The 
types of motion considered in chapter iii are all irrotational 
since the stream functions satisfy this condition. 

When the vorticity is zero at all points of the fluid the 
circulation round any closed curve or circuit, enclosing fluid 
only, must be zero also, but the case of a circuit enclosing 
a body requires some special attention. In developing the 
theory of the circulating motion round a cylinder the con¬ 
dition was imposed that the total pressure head H had a 
constant value throughout the fluid and it follows therefore 
that the motion is irrotational. The circulation round any 
circuit enclosing fluid only is zero, but the circulation round 

any circuit enclosing the cylinder has the value K. Now 



CIRCULATION AND VORTICITY 44 [CH. 

suppose that the circular cylinder is replaced by fluid 
rotating with the uniform angular velocity 

K 
~ 27ra2’ 

where a is the radius of the cylinder. The fluid velocity will 
be continuous at the boundary of the cylinder and the motion 
outside the cylinder will be unaltered. The solid body, how¬ 
ever, has been replaced by rotating fluid which has the 
vorticity 2aj at all points. Thus any circuit enclosing the 
cylinder will have the circulation 

K — 2a}.7Ta^y 

which is the total vortex strength, while any circuit wliich 
does not enclose the cylinder will have zero circulation. 

From this discussion it appears that it is possible to have 
irrotational flow past a body involving circulation of the 
flow round the body and that this flow will possess the 
following characteristics. The total pressure head II has a 
constant value and the vorticity is zero at all points of the 
fluid, the circulation is zero for all circuits enclosing fluid 
only and has a constant value for all circuits enclosing the 
body, and the stream function satisfies the equation = 0. 

4*34. Point vortices. 

The circulation round a small fluid element has been 
expressed in the form ^ 

where 8 is the area of the element and cd is its mean angular 
velocity. The conception of a 'point vortex is obtained by 
imagining the area 8 to decrease to zero while the angular 
velocity oj increases and the circulation K remains constant. 
The strength of the point vortex is defined simply as the 
circulation K round it. 

The stream function of a point vortex is derived at once 
from the circulating flow round a circular cylinder 

^=_-^logr. 

This expression does not involve the radius of the cylinder 
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and therefore remains valid when the whole vorticity repre¬ 
sented by the cylinder is concentrated at the centre. The 
stream lines of a point vortex are the concentric circles with 
the vortex as centre and the motion is irrotational at all 
points of the fluid except the vortex itself. 

The velocity at any point is normal to the line joining the 
K 

vortex to the point and has the magnitude Although 

the vortex and the velocity are intimately related, neither 
can be strictly described as caused by the other. The general 
distribution of velocity associated with a vortex will be 
called the velocity field of the vortex and the velocity at any 
point will be called the induced velocity at the point due to 
the vortex. 

Point vortices may be used to build up more complex 
flow patterns in the same manner as sources and sinks, and 
any suitable stream line may then be replaced by a rigid 

Fig. 25. 
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boundary. This boundary should enclose all the point vortices 
and the external flow will then be irrotational throughout the 
fluid. As an example, consider two equal vortices of opposite 
sign (a vortex pair) situated on the axis of y at the points 
t/ = ± 5. The stream function of the flow is 

A, A^P 

and the stream lines are the co-axial circles whose limiting 
points are and A^. Now proceed to a doublet, as in the 
case of a source and sink, by making $ tend to zero while 
2K8 retains a constant value /a. The limiting value of the 

stream function is 
/ P y 
^ 27t 

which is identical with the value obtained from a source 
and sink (3*6). By imposing a uniform stream on a vortex 
pair, a series of oval bodies can be obtained, similar to those 
discussed in 3*5 but with their major axes normal to the 
stream, and on passing to the case of a doublet the flow past 
a circle is derived. The circulation round the circle (4*2) is 
obtained by adding a point vortex at the origin. 

4*35. Surf ace of discontinuity, 

The conception of a surface of discontinuity of velocity 
was introduced by Helmholtz and Kirchhoff (cf. 1*2) to 
explain the resultant force experienced by a body. The shape 
and position of the surface of discontinuity remain fixed 
relative to the body and the flow is tangential to the surface 
but the velocity has different values on the two sides of the 
surface. In two dimensional motion 
the surface of discontinuity becomes 
a curve of discontinuity PQ, 

Consider a small rectangle with two 
sides AB and A'B* of length ds parallel 
to an element of the curve of discon- ^ 
tinuity and on opposite sides of it. If 
q and q* are the velocities on the two sides of the curve of 
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discontinuity, the circulation round the elementary rectangle 
will be ,j, , j 

dK = {q — q ) ds, 

since there is no flow along the sides A A' and BB'. The sides 
A A' and BB' may be made indefinitely small and it follows 
that the curve of discontinuity PQ must consist of a distribu¬ 
tion of point vortices of strength (q — q') per unit length. 
These point vortices will move with the general mass of the 
fluid and will have the velocity ^ -f- q') along the stream 
line PQ. The velocity due to the vortices at a point adjacent 
to the curve of discontinuity will have equal and opposite 
values ± ^ {q — q') on opposite sides of the curve. 

It follows from this discussion that a surface of discon¬ 
tinuity of velocity is equivalent to a vortex sheet and the 
distribution of point vortices which form this vortex sheet 
acts in the manner of roller bearings between the two fluid 
streams of different velocity. The type of discontinuous flow 
suggested by Helmholtz and liirchhoff involves the as¬ 
sumption that vortex sheets spring from the sides of the 
body and enclose a dead-water region. 



CHAPTER V 

THE VELOCITY POTENTIAL AND 
THE POTENTIAL FUNCTION 

5‘1. The Velocity Potential, 

Consider any curve OAP joining the origin 0 to a point 
P of the fluid and let be the 
integral of the tangential component 
of the velocity taken along the curve 
from 0 to P. If q is the resultant 
velocity at a point of the curve and 
if a is the angle between the direction 
of the velocity q and the element ds 
of the curve, then 

H OAP 
q COB ads. 

In general the value of ^ will depend on the curve con¬ 
necting the points 0 and P, for if OBP be another such curve, 
the circulation round the closed curve OAPBO is 

K = <f>OAP — 4>0BP, 

and this circulation, in turn, is equal to the sum of the 
vortex strengths enclosed by the curve. In irrotational 
motion, however, when the vorticity is zero at all points of 
the fluid, (j) has a unique value at the point P and is then 
called the velocity 'potential, A change of origin 0 will merely 
increase the value of by a constant amount at all points. 

The integral for ^ can be expressed in the alternative form 

^ = f {udx + vdy)^ 
Jo 

where u and v are the components of the velocity q measured 
parallel to orthogonal coordinate axes, and it follows that 
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But in terms of the stream function 
dxb dJs 

dx’ 

and hence the velocity potential ^ must satisfy the equation 
^'U‘ dv_ 

dxdy~ ’ 

This equation is a direct consequence of the continuity of 
the flow and is known as the equation of continuity. 

The case of irrotational circulating motion round a body 
forms an exception to the rule 
that the velocity potential has 
a unique value at every point 
of the fluid. The circulation is 
zero for any circuit enclosing 
fluid only, but has a constant 
value K for all circuits wliich 
enclose the body once. Hence 
on passing round the circuit 
PABP (fig. 28) the value of (f> 
will increase by K and will be a cyclic function. Tliis 
special case may be compared with the similar behaviour of 
the stream function 0 in the case of a source (see 3*2). 

6-11. The various types of flow discussed in chapter ni 
can be analysed in terms of the velocity potential instead of 
the stream function and any such flow is completely deter¬ 
mined if either of these functions is known. The expressions 
for the velocity potential and stream function for the funda¬ 
mental types of flow are summarised below. 

Uniform flow parallel to the axis of x: 
<f> ^ UXf iff ^ Uy. 

Uniform flow parallel to the axis of y: 

^ = Ft/, iff ^^Vx. 

Source at the origin: 

logr, 

o 4 
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Doublet at the origin with axis along the axis of x: 

._/i * ,u- ftU. 
277)*’ ^ l-rrr^’ • 

Point vortex at the origin: 

. K „ . A\ 

Flow parallel to the negative branch of the axis of x with 
circulation past a circle of radius a with centre at the origin: 

These expressions for the stream function have been 
developed at an earlier stage, and it can easily be verified 
that the corresponding expressions for the velocity potential 
lead to the same values of the velocity components u and v 
at all points and satisfy the equation of continuity. 

5* 12. Equipotential lines can be drawn for constant values 
of the velocity potential and these lines will intersect the 
stream lines at right angles. 
If dn is an element of the 
normal to the stream line 
at any point P and if 
is the corresponding in¬ 
crement of the velocity 
potential, then the velocity 
of the fluid along the 

normal line will be 
on 

But there is no component 
of the velocity normal to a stream line by definition. Hence 
there can be no increment of velocity potential along the 
normal line and the element dn is an element of an equi¬ 
potential line. 

If da is an element of the stream line and dn is an element 
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of the equipotential line at the point P, the velocity q of the 
fluid is along the stream line and of magnitude 

and if the stream lines and equipotential lines are drawn for 
equal increments of if/ and the intercepts ds and dn between 
consecutive lines will be of equal length. It follows therefore 
that the stream lines and equipotential lines of any flow, 
drawn for equal small increments of iff and will divide the 
whole fluid region into a network of small squares. When 
the increments are finite, these elementary squares will be 
distorted and their sides will be curved but the angles of the 
elementary areas will remain right angles. 

Fig. 30 shows the system of orthogonal lines for a source 
and sink at the points and A^, the equipotential lines being 

represented by broken curves. The figure may also be inter¬ 
preted as the flow duo to a vortex pair at the points Ai 
and A2 by interchanging the stream lines and equipotential 
lines. This example illustrates the general principle that any 
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system of orthogonal lines represents two possible flows, 
since either set of lines may be taken to be the stream lines 
of the flow. It is necessary, however, to adjust the boundary 
conditions to fit in with the flow. Fig. 31 shows the system 
of orthogonal lines for a circle in a uniform stream, and, if 

the broken lines are taken to be the stream lines, it is necessary 
to assume a distribution of sources and sinks over the upper 
and lower halves of the circumference in order to satisfy the 
boundary condition, since the fluid has a definite velocity 
normal to the circumference of the circle. 

Fig. 31 also illustrates another important point. In general 
the stream lines and equipotential lines intersect at right 
angles, but this condition breaks down at the points A and 
B, which are the stagnation points of the flow. The proof that 
stream lines and equipotential lines intersect at right angles 

is no longer valid, the value of is zero in all directions and 

the stream line may turn through a sharp angle at a stagna- 
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tion point. It will be shown at a later stage that the equi- 
potential line makes an equal angle with the two branches 
of the stream line in this special case. 

5*2. The complex variable. 

The coordinates of a point P have been expressed either 
in Cartesian or in polar co- 
ordinates, but it is possible to 
combine the two coordinates 
required in either of these 
systems into a single complex 
coordinate z defined by the 
equation 

z = x-{-iy (cos d -\-i sin 0), 

where i represents V—1 and 
obeys the ordinary algebraic rules. Now 

d 
gg (cos 0 + i sin 9) = — sin 9 + i cos 9 

= i (cos 9 + i sin 9), 
d 

or 

^ (cos 9 + i sin 9) 
du 

cos 9 + i sin 9 

and on integrating again 

log (cos 9 -h i sin 9) = i9, 

or cos 0 -f i sin 0 = e^\ 

The complex coordinate of the point P can therefore be 
expressed in the form _ 

The coordinates {x, y) or (r, 9) define the position of the 
point P relative to the origin 0 and the axis OA (fig. 32), but 
the complex coordinate z may be interpreted more suitably 
as representing the vector OP. The length of this vector is 
equal to r, which is called the modulus of z and is written in 
the alternative forms 

r = modz \z\. 

The angle 0, which defines the direction of the vector, is 

called the argument of z. 
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When z is expressed in the form (x + iy), x and y are called 
the real and imaginary parts of z respectively, and the 

modulus of z is equal to + y^. If the modulus is zero, it 
is evident that x and y must both be zero. Now any function 
/ (z) of the complex variable z can be separated into its real 
and imaginary parts, and can be expressed in the form 
(X + iY)y where X and Y are real. It follows that any 
complex equation f (z) = 0 is equivalent to the two equa¬ 
tions obtained by equating to zero separately the real and 
imaginary parts off{z). 

The multiplication of two complex numbers gives 

which represents a vector whose modulus is the product of 
the moduli and whose argument is the sum of the arguments 
of Zi and Hence if any complex number or vector is 
multiplied by z, the length of the vector is increased by the 
factor I z I or r and the direction of the vector is rotated 
through the angle 0. The factor rotates a vector through 

the angle 6 and putting 0 = - it follows that the factor i 

rotates a vector through a right angle. 

6- 3. The potential function. 
Consider any function of the complex variable z which has 

a single-valued differential coefficient at every point. Let 
/ (z) = ^ + ir], 

and ^ = P + ^3- 

The differential coefficient may be expressed in the alterna- 

tive forms .dr, 

” dz dx 

i dy 

dx^ dy^ 

dri 

dx 

p. 

dx 

dr, 

w 
and hence 
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Also from these last equations it follows that 

= 0. 

Comparing these results with the equations which connect 
the velocity potential the stream function ifj, and the 
velocity components u and v in any irrotational motion (6*1), 
it appears that ^ and rj may be replaced by (f> and tp, and that 
p and q may be replaced by u and — v respectively. Hence 
if (f> and ip are the real and imaginary parts of any complex- 
function / (z) they will represent possible forms of the velocity 
potential a:id stream function of an irrotational motion. It is 
customary to write 

w = ^ + i>f)=f (z), 

and then ~ — u — iv. 
dz 

The complex function w is called the potential function of the 
flow and any irrotational motion is represented completely 
by this function. 

6*31. The fundamental types of flow summarised in 5* 11 
can be expressed at once in terms of the potential function, 
which assumes the following rimple forms: 

Uniform flow parallel to the axis of xi 

w = Uz. 

Uniform flow parallel to the axis of y\ 

u) — iVz, 

Source at the origin: 
m , 

Doublet at the origin with axis along the axis of xi 

,K 

Point vortex at the origin: 
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Flow parallel to the negative branch of the axis of x with 
circulation past a circle of radius a with centre at the origin: 

These types of flow are expressed in terms of the three 

simple functions z, - and log z of the complex variable, and 
z 

other types of flow can be obtained by suitable expressions 
for the potential function iv. Consider, as an example, the 
flow represented by the potential function 

w = — Uz^ = — U {{x'^ — y’^) 4- 2ixy}. 

The stream lines are the scries of rectangular hyperbolae 
whose asymptotes are the 
axes of X and y, and by ^ 
regarding these asymp¬ 
totes as rigid boundaries 
the flow in the angle be¬ 
tween two perpendicular 
walls is obtained. 

More generally, assume 
that the potential function 
is 

w = — Uz^ = — ?7r” (cos nO 
-f i sin nd), 

and the irrotational flow ^ ^ 
is obtained between two 

straight walls which meet at the angle ct == -. Fig. 34 illus- 
Th 

trates the flow for ri == 4 and n = f, which represent the 
flow in a sharp angle and round the outside of a right angle 
respectively. 

Any complex function can be interpreted as the potential 
function of an irrotational motion, but the cases of practical 
importance are those in which the flow at a great distance 
from the origin approximates to a uniform stream. The 
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potential function will then be such that, for large values of 
I z I, it can be expressed as the series 

w = Az + B\ogz , 

where the coefficients A, By An may be complex numbers. 

Fig. 34. 



CHAPTER VI 

THE TRANSFORMATION OF A CIRCLE 

INTO AN AEROFOIL 

0-1. Conformal transformation. 

Consider a function / {z) of the complex variable z which 
has a unique value and a unique finite differential coefficient 
at every point of the 2 plane, and let ^ and rj be the real and 
imaginary parts of this 
function: V 

The curves of constant 
values of ^ and rj re¬ 
spectively can be drawn 
on the z plane and will 
form a double series 
of lines intersecting at 
right angles, since it has 
been shown previously 
(see 6*3) that ^ and r) 
may represent the ve- 

Fig. 35. 

V3 

locity potential and stream function of an irrotational motion. 
Alternatively ^ and 
7) may be regarded 
as the abscissa and 
ordinate of a new 
system of coordin¬ 
ates, for which ^ is 
the complex vari¬ 
able, and any curve 
C of the z plane may 
be transferred to this 
new $ plane. In this 
process the network 
of curved lines of the Fig. 30. 
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z plane is transformed into a network of orthogonal straight 
lines and the curve 0 of the z plane will therefore appear in 
a distorted form (7' on the ^ plane. 

Fig. 37. 

Let PQi? be an elementary triangle of the z plane and let 
P'Q'R be the corresponding triangle of the C plane obtained 
by a transformation of this type. Also let 

f-=f{z) = aeK 

Then the elementary vectors PQ {dz) and P'Q' {dQ will be 
related by the equation 

di = ae*^dz, 

and hence | | = o | dz |, 

arg dl = a + arg dz. 

The effect of the transformation is therefore to increase the 
Tf V I 

length of the vector PQ by the factor a or ^ and to 

7 y 

rotate the vector through the angle a or arg ™. The impor¬ 

tant point, however, is that the transformation experienced 
by the elementary vector PQ does not depend on its direction 
but only on the position of the point P. It follows that the 
elementary triangle PQR will be transformed into a similar 
triangle, increased in size by the factor a and rotated through 

the angle a. A transformation of this type, which does not 



60 THE TRANSFORMATION OF A CIRCLE [CH. 

alter the shape of elementary figures, is called a conformal 
transformation, 

6-11. The condition has been imposed on the function / (z) 
that it shall have a unique value at every point of the z plane, 
and in consequence every point will be represented uniquely 
on the J plane. It is possible, however, that two or more 
points of the z plane may be represented by the same point 
of the ^ plane. Consider, for example, the transformation 

t = 2®, 
which wiU give the same point of the ^ plane corresponding 
to the two points ± z oi the z plane. In this case it is con¬ 
venient to consider only the top half of the z plane, which 
will be transformed into the whole of the ^ plane. The 
transformation is illustrated in fig. 38, where the same letters 
denote corresponding points, and it wiU be seen that the 
real axis AOA' of the z plane has bent back on itself to form 

iB z plane ^ plane 

Fig. 38. 

only the positive branch of the real axis of the ^ plane. It 
can easily be shown also that the straight lines parallel to 
the coordinate axes of the z plane are transformed into 
parabolae whose axes coincide with the real axis of the 
^ plane. 

The transformation function / (z) may now be generalised 
by removing the restriction that it must have a unique value 
at all points of the z plane, for it is possible to consider the 
transformation of a limited region of the z plane into a 
limited region of the ^ plane, and the condition to be satisfied 
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by the function / (z) is that it shall give a unique relationship 
between z and ^ in these limited regions. 

6*12. Singular 'points. 

The simple example of conformal transformation repre¬ 
sented in fig. 38 illustrates another important point. In a 
conformal transformation the angle between two intersecting 
lines remains unaltered after transformation, but in this 

particular transformation the angle ^ between the Knes OA 

and OB of the z plane has increased to tt on the ^ plane. Thus 
the transformation has ceased to be conformal at the point 0, 

The ratio of elementary lengths on the two planes is ^ , 

which has in general a finite value. If ^ is zero, a small 

but finite length of the z plane contracts to zero on the f 
jy 

plane, and conversely when tends to infinity. A point 

at which ~ is zero or infinite is called a singular point of 

the transformation and at such a point the transformation 
ceases to be conformal. 

dV Consider the case when is zero at the point Zq, If 

is the corresponding value of the transformation may be 
written in the form 

C - Co = (2 - 2o)" ^ (2). 
where F (z) does not vanish or become infinite at the point 

Zq and where n is greater than unity in order that 1^-1 may 

z plane 

Fig. 39. 
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be zero at this point. Now let the characteristic point of the 
z plane move on the small circle 

2 = 2o *f 

and then the corresponding variation of ^ will be given by 
the equation 

^ (2!o). 

Thus the characteristic point of the ^ plane also describes 
a circular arc of small radius, but an angle 6 of the z plane 
corresponds to a larger angle nd of the ^ plane. 

/IT 
The case when ~ becomes infinite can be treated in a 

az 
similar manner, and in this case an angle 9 of the z plane 
transforms to a smaller angle of the ^ plane. 

A singular point which occurs on the boundary of the 
region under consideration may be excluded by an arc of a 
small circle as indicated in fig. 38, and the transformation 
then becomes conformal at all points of the region. More¬ 
over, the circular arc may be made indefinitely small and 
hence in effect a singular point on the boundary of the region 
will not necessarily destroy the validity of the transformation. 
It is important, however, that no singular point shall occur 
in the region to be transformed, and any singular point on 
the boundary must satisfy certain conditions. 

Consider the special case of the transformation of a circle 
into an aerofoil section and assume that a singular point 

z-plane ^plane 

Fig. 40. 
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occurs on the circumference of the circle at If the trans¬ 
formation near this point is of the form 

the exterior angle tt of the circle at Zq will be transformed into 
the exterior angle nrr of the aerofoil at ^q. It is evident at 
once that the value of n must not exceed 2 and that to obtain 
a typical aerofoil shape n should be only slightly less than 
this value. If t is the angle at wliich the upper and low’er 
surfaces of the aerofoil meet at the trailing edge, the value 
of n is determined by the equation 

r = (2 — n) TT. 

In the particular case ?^ = 2, the aerofoil section will have a 
cusp at the trailing edge. 

6-13. Transformation of the flow pattern. 

The flow past any body or simple closed curve C of the 
z plane is determined by the potential function w == (f) iif) 
and is represented by the equipotential and stream lines. 
These characteristic lines form an orthogonal system and 
after any conformal transformation of the z plane they will 
form an orthogonal system on the ^ plane associated with 
a simple closed curve (7'. Henee the conformal transformation 
which transforms the curve G into the curve C\ also trans¬ 
forms the flow past C into the flow past O'. 

The velocity components u' and v' at any point of the 
I plane are given by the equation 

u 
. , dw 
IV = == di 

d w dz , , .dz 

and the resultant velocities g' and q at corresponding points 
of the two planes are related by the equation 

, \dz\ 

In general 

dl 
has a finite value differing from zero, but at 

a singular point a finite velocity in one plane may correspond 
to an infinite velocity in the other plane. Thus in fig. 40 a 
finite value of the velocity q at the point Zq will lead to an 

infinite velocity g' at the point fo of the aerofoil. 
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The irrotational flow past a circle is known and it is 
possible to transform a circle into any given shape of aerofoil. 
Hence the flow past any aerofoil section can be determined 
by the method of conformal transformation, and the problem 
of determining this flow directly may be replaced by the 
problem of determining the conformal transformation from 
the aerofoil section to a circle. 

6*2. Straight line and circle. 

An interesting and important example of the conformal 
transformation of a flow pattern is the application of the 
transformation « 

to the circle | 2; | = a. The general point z = re^^ transforms 
to the point whose coordinates are 

^ = (>• + ^) cos 0, 

and it follows at once that the circle r = a of the z plane is 
transformed into the part of the real axis extending between 
the points ^ = ± 2a. 

The transformation has a simple geometrical interpretation. 
The complex vari¬ 
able z represents 
the vector OP of 
length r at angle 9 
to the real axis. 

q2 

Similarly ~ or 

a^ 
— (cos 0 ~ i sin 9) 

represents the vec¬ 

tor OPi of length y 

at angle — 0 to the 
Fig. 41. 

real axis, and the position of Pj may be obtained from that 
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of P by the double process of inversion with respect to the 
circle r = a and reflection in the real axis. Finally, the vector 
OP' representing the complex variable ^ is obtained by the 
addition of the vectors OP and OPj, or by completing the 
parallelogram POP^P'* 

By this geometrical method or by direct use of the trans¬ 
formation equations, the stream lines of the flow past the 
circle can be transformed to those of the corresponding flow 
past the straight line. 

6*21. The potential function for uniform flow in the ^ 
plane parallel to the negative branch of the real axis is 

- Ul, 
and this represents the flow along the line AB. On trans¬ 
forming to the z plane, the line AB opens out to a circle and 
the uniform stream past this circle has the potential function 

Thus the method of conformal transformation gives at once 
a result which was obtained previously by a more tedious 
process. 

0*22. The vertical flow past the circle can be obtained 
from the horizontal flow by the transformation 

z' = iz^ 

Q 

Fig. 42, 

5 
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which is equivalent to rotating the axes backwards through 
a right angle. The potential function becomes 

and hence the potential function for a uniform stream V 
parallel to the negative branch of the imaginary axis of the 
original system will be 

w=iv 

6*23. By transforming the circle back to a straight line 
the potential function for a uniform stream normal to the 

line is obtained in the form 

7V = iVVe^ — 4a2. 

This result can be expressed more conveniently by means 

of the substitution ^ • n 
4 = 5 sin (A + ^/x), 

where s is equal to 2a and is the semi-span of the line. With 

this substitution . • \ i 
f = 5 sin A cosh fly 
7] = s cos A sinh /x, 

and the periphery of the line is represented by /x = 0 and 
A = 0 to 27t. The potential function becomes 

w ~ — Vs cos (A + ifi), 

and the stream function is 

0 = Ks sin A sinh /x. 

The stream lines of this flow are shown in fig. 43 and 
represent the flow relative to the straight line. The flow 
relative to the general mass of the fluid can be derived simply 
by adding the vertical velocity V at every point, and the 
resulting flow pattern is shown in fig. 44. These stream lines 
represent the motion which is caused in the fluid when the 
line moves normal to itself with the velocity F. 

6-3. Aerofoil and circle. 
In order to obtain the flow pattern past an aerofoil it is 

necessary to determine the conformal transformation which 
converts the aerofoil section into a circle in such a manner 
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that the region at infinity is unaltered*. For a given aerofoil 
section in the ^ plane there is a unique conformal transforma- 

♦ The general theory has been developed by R. v. Mises, “Zur Theorie 
des TragflAchenauftriebes,” ZFM, 1917 and 1020. 

5-2 
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tion which transforms the region external to the aerofoil into 
the region external to a circle in the z plane, and this circle 
is uniquely determined in magnitude and position. The con¬ 
formal transformation is of the type 

where the coefficients A^y A^y ... are complex numbers in 
general. 

Conversely a circle of the z plane can be transformed into 
an aerofoil section in the ^ plane by a conformal transforma¬ 
tion of the type 

Y ^ _L- J_ , 

Z 

and by suitable choice of the coefficients Ug, ... and of the 
circle it is possible to obtain any given aerofoil shape. No 
limitations exist on the choice of the coefficients, but the circle 
must enclose within its circumference all the singular points 

lY 

of the transformation at which ™ is zero or infinite. The 
dz 

general transformation gives 

^ ^ _ Oj _ Sag _ 
dz z^ z^ 

which can become infinite only at the origin, but may be 
zero at a number of points v^yV^y etc. 

6*31. JoukowskVs hypothesis. 

The general flow past a circle contains one arbitrary 
parameter, the circulation K of the flow round the circle, 
and this arbitrary parameter will remain when the flow is 
transformed to the flow past an aerofoil. Now an aerofoil 
usually has a very small radius of curvature at the trailing 
edge and in developing the theory of an aerofoil it is con¬ 
venient to make the assumption that the upper and lower 
surfaces of the aerofoil meet at a sharp angle at the trailing 
edge. The point B of the circle which transforms into the 

trailing edge of the aerofoil will then be a zero of and if the 
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velocity q at the point B of tiie circle has a finite value, the 
corresponding velocity at the trailing edge of the aerofoil 
will become infinite, since 

In order to avoid this infinite velocity at the trailing edge 
Joukowski suggests that the circulation K should be chosen 
so that the point J5 is a stagnation point of the flow past the 
circle and the velocity q is zero. The flow past the aerofoil is 
then such that it leaves the trailing edge tangentially and 
the velocity remains finite at all points. 

Joukowsld’s hypothesis determines the circulation K 
uniquely when the aerofoil has a sharp trailing edge, and the 
aerofoil section will be assumed always to possess this 
characteristic. The critical discussion of Joukowski’s hypo¬ 
thesis is reserved to a later chapter (see 9*3). 

6-32. If the transformation formula is the finite series 

C - Z + - + 1 + + 

the singular points are determined from the equation 

1 - - 1) 

dz 

1 - 

where = 0, 
^1) etc. 

The equation Si; = 0 shows that the origin 0 of the system 
of coordinates has been chosen at the centroid of the singular 
points, but the direction of the axes is still undetermined. 

Now the circle which is to be transformed into an aerofoil 
must enclose all the singular points within its circumference 
in order that the transformation shall be conformal. On the 
other hand the trailing edge of an aerofoil approximates to 
a sharp edge and to obtain this feature of the aerofoil it is 
necessary that one of the singular points B shall lie on the 
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circumference of the circle. The real axis may be chosen 
conveniently as the 
line BO. 

The process for ob- 
taining an aerofoil N. 
section may now be / \ 
laid down in general / \ 
terms. Choose?! points j X ^ \ 
in the z plane which 1 j ^ 
are to be the zeros --O-- 

of the transformation \ ^ / 
and take the origin O X 
at the centroid of 
these points. Draw 
any circle which 
passes through one of j,. 
the zeros, J5, and en- ’ 
closes the remainder within its circumference. Then if BO 
is taken as the axis of x and if ... are the complex 
coordinates of the n zeros, the transformation will be 

By choosing different circles and different sets of zeros of 
the transformation, an infinity of different aerofoil shapes 
can be derived. In each case the point B of the circle will 
transform into the trailing edge of the aerofoil and by 
reference to 6-12 it will be seen that the upper and lower 
surfaces of the aerofoil will meet in a cusp at the trailing edge. 

6*33. In the most general case the transformation formula 
is the infinite series 

S = 2 + 7 + ,. + -.m 

di , Oi 202 

The circle to be transformed into an aerofoil must be such 

that ^ does not vanish or become infinite at any point out- 
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side the circle, and if the aerofoil is to have a sharp trailing 
AY 

edge one zero of ^ must lie on the circumference of the 

circle at the point B {z = v). The transformation may then be 
written in the form 

where / (z) has a finite value other than zero at all points 
on and outside the circumference of the circle. In the neigh¬ 
bourhood of the zero B the transformation will be of the 
form V. , N XI / V 

+(z), 

and from 6*12 it follows that the upper and lower surfaces 
of the aerofoil will meet at the trailing edge at the angle 

T ~ {2 ~ n) TT. 

To obtain aerofoils of conventional shape it is necessary 
therefore to choose n to be slightly less than 2, while if n 
rises to this limiting value the aerofoil has a cusp at its 
trailing edge, 

6-4. The JoukowsJci transformation. 

The simplest type of transformation formula involves two 

Fig. 46. 
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zeros A and B, and in accordance with the general theory 
the line joining these two points is taken as the real axis and 
the origin 0 is taken at the mid-point of AB. The coordinates 
of the zeros are then z= ±c and the transformation formula is 

Some special applications of this transformation have been 
considered previously in G*2, whore it was shown that the 
circle on AB as diameter transforms into the part of the real 
axis extending between the points ^ ^ ± 2c. More generally 
the transformation may be applied to any circle which en¬ 
closes the points A and B within its circumference, but in 
order to obtain an aerofoil section with a sharp trailing edge 

the circle C must be chosen to pass through the point B. If 
the circle is slightly larger, so that the point B falls just inside 
the circumference, an aerofoil section is obtained with a 
rounded trailing edge but it is no longer possible to determine 
the circulation uniquely by means of Joukowski’s hypothesis. 

The circle G will be defined by its radius a and by the 
angle between the real axis and tlie line joining the point 
B to the centre M of the circle. In order to obtain an aerofoil 
section of conventional shape the angle jS must be small and 
the radius a only slightly greater than c sec jS. The position 
of the centre of the circle may also be specified by the lengtli 
m of the line OM and by the angle 8 which this lino makes 
with the real axis. The complex coordinate of the centre M 
may then be expressed in the alternative forms 

z = mc*^ = — c. 

G*41. Circular arcs*. 

Consider first the case when the centre M lies on the axis 
of y so that the circle C passes through both the zeros A and 
B and the radius of the circle is a = c sec jS. 

♦ Circular arc aerofoils have been discussed by W. M. Kutta, “ Auftriebs- 

krafte in stromenden Flussigkeiten,”aeronaut. Mitteilungeny 1902; 

“t)ber eine mit den Grundlagen des Flugproblems in Beziehung stehende 

zwei dimensionale Stromung,” Ber. d. Bayer. Akad. d. Wiss. 1910. 
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The general point P of the circle has the complex coordinate 
z = and after transformation this point becomes 

f \ 
^\ 7 j 
’? = (»•- 7) sin e. 

Eliminating r from those equations, 

sin^ 0 — rf cos^ d — 4c^ sin^ 0 cos^ 0. 

But from the triangle 0PM 

sec* jS = a* == r* -f c* tan* /3 — 2rc tan j3 sin 0, 

or r* — c* = 2rc tan p sin 0, 
^•2 _ ^2 

and hence t] •= —-— sin 0 == 2c tan p sin* 6. 

Finally, on eliminating the angle d, the equation of the 

transformed curve C" becomes 

^2 4. + 2c cot 2j3)* = (2c cosec 2p)\ 

This is the equation of a circle, but since rj has been shown 
to be proportional to sin* 0, it follows that the curve C" 
consists only of the circular arc which lies above the real 
axis. The upper and lower parts of the circumference of the 
circle C form respectively the upper and lower surfaces of this 



74 THE TRANSFORMATION OF A CIRCLE [CH. 

circular arc. The end points A' and B' of the circular arc are 
the points | = ± 2c and the maximum ordinate is 7; = 2c tan j3, 
which is exactly double 031. The camber of the circular arc, 
defined as the maximum ordinate divided by the chord A'B', 
is therefore ^ tan jS. 

6-42. Symmetrical aerofoils. 

If the centre 31 of the circle C is chosen on the axis of x 
and if the radius a is slightly greater than the fundamental 

length c, the circle transforms into a symmetrical aerofoil 
section. 

Writing a = c (1 + €), where c is a small quantity, the 
coordinate of the leading edge of the aerofoil is 

^ = C (1 + 2€) + = 2c (1 + 2e* + ...), 

and as the trailing edge of the aerofoil is the point ^ — 2c, 
the chord of the aerofoil is 4c (1 -f c^) to a close approxima¬ 
tion and for most purposes it is sufficiently accurate to neglect 
the square of e and to take the chord to be 4c. 
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At the general point P of the circle 

-f- (a — c)^ — 2r (a — c) cos 0, 

and retaining only the first power of e, 

r = c {1 4- € (1 -f cos 0)}. 

Hence ^ j 0 = 2c cos 0, 

7^ = ~ j sin 6 = 2c£ (1 -f cos 0) sin 0. 

The form of the symmetrical aerofoil may be constructed by 
means of these equations. The thickness of the aerofoil at 

the centre is equal to twice the value of 17 when 0=2 

hence <c = 4c.e. 

Also the maximum thickness occurs where cos 0 = i.e. at 
the point which is one-quarter of the chord from the leading 
edge, and has the value 

3\/3 
^max — 4c. —€. 

The straight line of length 4c considered in 6-2 may be 
regarded as the centre line or skeleton of the symmetrical 
aerofoils. The thickness of the aerofoils is proportional to e 
and a value c = 0-1 gives a maximum thickness of 0-13 times 
the chord. This value is not often exceeded in practice and 
hence the neglect of in the expression for the chord will 
in general give an error of less than 1 %. 

6*43. Joukowski aerofoils'^. 

In general the centre M of the circle C must be taken as 
in fig. 46 or fig. 49. Now if BM cuts the axis of y at , the 
circle with centre Mq and radius M^B will transform into 
a circular arc while the circle C transforms into an aerofoil. 
The circular arc will be the centre line or skeleton of the 
aerofoil, and the aerofoil may be regarded as one of the 
symmetrical type whose skeleton has been bent into a circular 

* This type of aerofoil was introduced by Joukowski, “Uber die 

Konturen der Tragflftchen der Drachenflieger,” ZFM, 1910. 
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arc of camber | tan p. The thickness of the aerofoil will be 
proportional to the 
length MqM, and 
the shape of a 
Joukowski aerofoil 
will therefore de¬ 
pend on the two 
parameters jS and 

which deter- 
c 
mine respectively 
the camber of the 
centre line and the 
thickness of the 
aerofoil. 

The shape of a 
Joukowski aerofoil 
can be obtained by 
a simple geometrical construction*. The method of deriving 
the point P' corresponding to any point P has been developed 

Fig. 60. 

* E. Treflftz, **Graphische Konatruktion Joukowskischer Tragflftchen,” 
ZFM, 1913. 
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in 6-2. A subsidiary point Pj is first obtained by inversion 
with respect to the circle on as diameter and by reflection 
in AB, and P' is then obtained by completing the parallelo¬ 
gram POPiP'. Now the inverse of the circle C is another 
circle with centre on the line MO produced, and after reflection 
the centre of the auxiliary circle will lie on the line which 
is the reflection of OM in AB or in the axis of y. By con¬ 
sidering the conditions near the point B it also follows that 
the auxiliary circle must touch the original circle C at 

P, and hence the centre of the auxiliary circle is the point 
of the line BM such that OM and OM^ make equal angles 
with the axis of y. 

Corresponding points P and P^ on the circles C and are 
now obtained by drawing lines from the origin 0 at equal 
angles on opposite sides of the axis of a:, and the point P' of 
the aerofoil is obtained by completing the parallelogram 
POPjP'. The form of the aerofoil can be obtained by this 
method by taking a suitable number of points on the circum¬ 
ference of the circle G. 

6*6. The general transformation» 

The Joukowski transformation involves two zeros and 
leads to a doubly infinite series of aerofoils. A more general 
transformation formula, involving three or more zeros, leads 
to a greater variety of aerofoils and the types which can be 
derived in this manner have been discussed by R. v. Mises* 
and W. Mlillerf. This t3^pe of transformation, however, leads 
essentially to aerofoils which have a cusp at the trailing edge, 
and a more important generalisation of the Joukowski trans¬ 
formation is that which leads to an aerofoil section whose 
upper and low^er surfaces meet at a finite angle at the trailing 

edge. 
The Joukowski transformation 

♦ “Zur Theorie des Tragfl&chenauftriebes,” ZFM, 1920. 

t “Zur Konstruktion von TragMchenprofilen,** ZAMM, 1924. 
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may be written in the form 

^ — 2c \z — c) * 

and near the zero B this transformation becomes approxi- 
mately 

^ + 2c = - 
c 

In order to obtain a finite angle r at the trailing edge of the 
aerofoil the transformation must be of the form 

in that region (cf. 6*12) and n must have the value 

n-2--. 
TT 

This form is obtained by generahsing the Joukowski trans¬ 
formation in the form 

C nc _ /z -h cy 
I — nc ~ [z — cj 

This transformation has the two zeros z = ± c, but the 

skeleton of the aerofoils is now formed by two circular arcs* 
which meet at the angle t and the chord of the aerofoils is 

♦ The double circular arc as the skeleton of an aerofoil was suggested 
by W. M. Kutta, “tJber ebene Zirkulationstromungen,” Ber. d. Bayer, 
Akad, d. Wi88, 1911. The transformation has been investigated by T. v. 
Karman and E. Trefftz, “Potentialstromung um gegebene Tragfiftchen- 
querschnitte,” ZFM, 1918, and by W. Muller, “Zur Konstruktion von 
Tragfl&chenprofilen,” ZAMM, 1924. 
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2nc. The transformation may also be written as an infinite 
series of which the first terms are 

i£! + 
Z 

There is no simple geometrical construction for aerofoils 
of this type and the calculation of the shape of even a sym¬ 
metrical aerofoil is rather complex*. The aerofoils of this 

Jot^kowski Aerofoils 

Fig. 52. 

generalised Joukowski type involve three arbitrary para¬ 
meters, determining respectively the camber, thickness and 
trailing edge angle, and a wide range of aerofoil sections can 
bo designed by this method, which are suitable for use as 
aeroplane wings. Some typical aerofoil sections of the 
Joukowski and extended types are shown in fig. 52. 

♦ For details of the method of calculation see H. Glauert, “A generalised 

type of Joukowski aerofoil,” 911, 1924. 



CHAPTER VII 

THE AEROFOIL IN TWO DIMENSIONS 

7*1. General formulae for lift and moment. 

When the potential function w of the flow past any 
body is known in terms of the complex variable z, it is 
possible to obtain simple analytical expressions for the force 
and moment acting on the body. Consider the motion of the 
fluid contained between the surface of the body and any 
simple closed curve C surrounding the body. If X and Y 

Fig. 53. 

are the components of the resultant force acting on the body, 
the fluid will experience an equal and opposite reaction from 
the surface of the body in addition to the pressure which 
acts normally to the bounding curve G, These force com¬ 
ponents balance the rate of increase of momentum of the 
fluid passing out of the region under consideration, and hence 

— A — 'pdy = pu (udy — vdx), 
Jo Jo 

— y -t- pdx = pv {udy — vdx), 
Jo Jo 
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where the integrals are taken round the perimeter of the 
curve O, 

If the motion is irrotational, the total pressure head will 
have a constant value H at all points of the fluid and the 
pressure at any point will be 

Then also 

p = II — Ip -h 

X — iY — J p {dy -f idx) —jp{u — iv) {udy — vdx) 

= \p {{u^ + v^){dy 4- idx) — 2 {u — iv)(udy — vdx)} 
JC 

= ip [ — 2iuv) {idx — dy). 

But 
dio 
dz 

U — IV, 

and so finally X — iY = Ipij dz. 

The moment about the origin of the resultant force acting 
on the body can be determined in a similar manner by con¬ 
sidering the rate at wliich angular momentum is passing out 
of the region. If is the moment on the body, the equation 
for the motion of the fluid is 

-- Mq 4- p {xdx 4- ydy) = p {vx — uy) {udy — vdx), 
'g ' c 

and hence 

Mq = — ^PJ {u^ -h v^) {xdx 4- ydy) — pj {vx — uy) {udy — vdx) 

= — Ip {{u^ — v^) {xdx — ydy) 4- 2uv {ydx 4- xdy)}. 

But 

f ^ f — 2mv) {x 4- iy) {dx 4- idy). 

and the real part of this integral is identical with the integral 
wliich occurs in the expression for Mq. Hence 

i„pf 
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These integral expressions for the force and moment about 
the origin are valid for any number of bodies enclosed within 
the curve C and may be evaluated for any simple curve 
surrounding the bodies. Expressing the square of the 
differential of the potential function as the series 

for large values of z, the values of the integrals become at once 

X — iY ~ ^pi = — 'jrpAi 

and Mq = — \pR (27riA2) = — npR 

as may be verified by choosing as the curve C a circle of 
large radius with centre at the origin of coordinates. In 
these final expressions, the coefficients Ai and Az will be 
complex quantities in general and so X, Y and Mq will all 
have finite values. 

7*2. Lift and moment of an aerofoil. 

In order to apply this method of calculation .to an aero¬ 
foil which has been derived from a circle by the conformal 
transformation ^ = f (z), it is necessary in the first place to 
determine the potential function of the flow past the circle. 
In the general case the origin of coordinates 0 is chosen at 

Fig. 64. 
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zeros except one within its circumference. The remaining 
zero B lies on the circumference of the circle and is trans¬ 
formed into the trailing edge of the aerofoil. The real axis is 
chosen to pass through the point B, whose complex coordinate 
is then taken to be 2: = — c. The circle will be assumed to be 
of radius a and to have its centre at the point 

2 = — c + 

as indicated in the figure. 
Now suppose that the undisturbed flow is of velocity V 

inclined at angle a to the negative direction of the real axis, 
and that the circulation K is chosen in accordance with 
Joukowski’s hypothesis (see 6*31) to be such that the rear 
stagnation point of the flow occurs at the point B of the 
circle. In terms of the complex coordinate z', with origin at 
the centre of the circle and real axis opposed to the direction 
of the stream F, the potential function of the flow past the 
circle is (from 5-31) 

and the coordinate of B is 2' 
For this flow 

dw T//i 

dz' - - ^ "-2; - 2^7^ 

and the circulation K must be determined so that this ex¬ 
pression vanishes at the stagnation point B. Hence 

iK 

^ ^ 27ra ’ 

which leads to the value of the circulation 

K = ^rraV sin (a -f- j8). 

7-21. The aerofoil is derived from tlic circle by the general 
conformal transformation 

2 2“ 

where the coefficients are complex in general. To determine 
the force on the aerofoil, it is necessary to obtain the value 

6-a 



84 THE AEROFOIL IN TWO DIMENSIONS [OH. 

of ^ for the flow. Now the variables z and z' are related by 

the equation / . _ ,„e») eo, 

and so dw _ dw dz' dz 
di dz'' dz 'di 

/ rr . Tr iK \ , 

Substituting for z' in terms of z and expanding in descending 
powers of z, this expression becomes 

dw Tr / iK I /err ■ rr ■ iK ,A 1 
^ .- + (me'^ j -5 + ..., 

dl 27t z \ ‘ 2tt J z^ Fen-2,-,+ (»’ 

from which it follows that 

(sr- 
where Aq = FV*®, 

Ay, = e“, 
7T 

iVKm A., = 2aiFV- - 2a2F2 + ^ ^ 
TT 477^ 

7-22. The general expression for the force on a body now 
gives for the aerofoil 

-Wo(l)’2^ 

- {pilJylo + 4' + 3 + ■■•)(* " 5 “ ••■) * 

■= |pi (27TiAj), 

whence X — iY = — ipVKe*'^, 

(X^pVK Bio a, 
\Y = pVKcoBa, 
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which are the components of a force pVK at right angles to 
the stream F. Thus the aerofoil experiences simply a lift force 

L = pVK = 47rapF2 sin [a + j8). 

7-23. The moment of the lift force about the origin of 
coordinates is determined as 

= — \pR (277-1^2)> 

so that Mq is the imaginary part of 7rp^2* Now put 

in the expression for and the value of Mq becomes 

Mq == 27Tb^pV‘^ sin 2 {a + y) + pVKm cos {a + 8). 

This expression represents the moment about the origin 
of coordinates, and the moment about the centre of the circle 
can be derived at once as 

Me == Mq — Lni cos {a + S) 

= 27T62pF^ sin 2 (a 4- y). 

The value of this moment depends on the value of the 
complex coefficient in the transformation formula which 
defines ^ in terms of 2. The lift force vanishes at the angle 
of incidence — j8 and the moment then has the value 

Mq = 27Tb'^pV^ sin 2 (y — jS). 

If the aerofoil is to have a constant position of the centre of 
pressure, i.e. if the line of action of the lift force always 
passes through a definite point, it is necessary that this 
moment should be zero. Hence the necessary and sufficient 
condition for a constant position of the centre of pressure 
of an aerofoil is that j3 == y, or that the coefficient of the 
conformal transformation should be of the form == bh^*^. 
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7*24. The general expressions for the lift and moment 
assume simple forms for the Joukowski aerofoils which are 
derived by means of the conformal transformation 

z 

For aerofoils of small camber and thickness, tbe chord is 
approximately equal to 4a and the lift coefficient may there¬ 
fore be taken as 

Cl = Stt (a 4- ^). 

This form is also valid for the majority of aerofoils which are 
not of the Joukowski type (see also 7*3) and is confirmed by 
the experimental evidence available. The theoretical slope of 
the curve of lift coefficient against angle of incidence is 27r per 
radian or 0-110 per degree, but the average slope determined 
experimentally is slightly less than this value, due to de¬ 
parture of the flow from the ideal form, and a slope of 6 per 
radian can be regarded as the normal value for a good aerofoil. 

In the Joukowski transformation the coefficient has the 
value and the moment about the centre of tlie circle is 

Me = 27rc2pF2 sin 2a. 

The moment round the leading edge of the aerofoil is to a 
very close approximation 

M Me — 2cL, 

and to derivp the corresponding coefficient it is sufficiently 
accurate to neglect the small difference in magnitude between 
a and c. Hence 

= + iS) 

This formula also has been fully confirmed by experimental 
results and in general the moment coefficient of an aerofoil 
can be expressed with good accuracy as 

where is the moment coefficient at zero lift. The position 
of the centre of pressure, as a fraction of the chord measured 
from the leading edge of the aerofoil, is obtained by dividing 
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the moment coefficient by the lift coefficient, and it follows 
that a large value of (7^^^ implies a rapid movement of the 
centre of pressure. Also if is zero, the aerofoil has a 

constant centre of pressure at a distance of one-quarter of 
the chord from the leading edge. 

7‘3. 2^hin aerofoils. 

The preceding analysis determines the lift and moment 
on any aerofoil when the conformal transformation, by means 
of which the aerofoil is derived from a circle, is known. More 
generally, however, the shape of the aerofoil is known but 
the determination of the appropriate conformal transforma¬ 
tion is of considerable difficulty. A method of solving this 
problem in the case of a tliin aerofoil has been proposed by 
Munk*. The aerofoil is replaced by the curved fine wliich is 
the mean of the upper and lower surfaces, and this curve is 
regarded as a small deviation from a straight line. A more 
convenient method, however, is that introduced by Birn- 
baumj and the following analysis is the result of applying 
the method of Fourier series to Birnbaum's conception of the 
aerofoil problem. 

Choose the origin of coordinates at the leading edge of the 

♦ “(general theory of thin wing sections,” NACA, 142, 1922. See also 
H. Glauert, “A theory of thin aerofoils,” RM, 910, 1924. 

t “Die tragende Wirbelflftche alsHilfsmittelzurBehandlung desebenen 

Problems der Tragflugeltheorie,” ZAMM, 1923. 
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aerofoil, with the axis of x backwards along the chord and 
the axis of y upwards, and consider the flow when the aerofoil 
is in a stream of velocity V inclined at a small angle a to the 
chord. There will be a circulation K round the aerofoil, 
corresponding to a distribution of vorticity along the surface 
of the aerofoil. Let kdx be the vorticity at the element dx of 
the aerofoil, so that 

K = I kdx. 
Jo 

In estimating the velocity field of this system of vorticity, 
the approximation will be made that the vorticity is situated 
on the chord of the aerofoil, and then the induced velocity at 
the point x' of the aerofoil is determined as 

/ /\ kdx 
v{x) (a; —a:')* 

This induced velocity is calculated for a point on the chord 
but may be taken to be the same as the induced velocity at 
the corresponding point of the aerofoil itself. The direction 
of the resultant velocity adjacent to the aerofoil must be 
parallel to the surface and so at each point of the aerofoil 

^ ,v _dy 

These equations are sufficient to provide a complete 
solution of the problem in terms of the shape of the curved 
line which represents the aerofoil. The analysis in the general 
case depends on the introduction of a new coordinate 6 for 
points of the aerofoil, defined by the relationship 

X ^ \c {\ — cos 0), 

so that 0 varies from 0 to tt along the chord of the aerofoil. 
It is then assumed that the vorticity may be expressed as 
the series 

k = 2V cot -f 2 sin nO^, 

or kdx = cF \Aq (1 + cos 0) + S sin nO sin dO, 

where the first term represents the vorticity which occurs 
with a straight line aerofoil and the coefficients of the sine 
series depend on the shape of the aerofoil*. 

* See note on p. 229, 
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The lift force and the moment about the leading edge of 
the aerofoil can be expressed simply in terms of the coefficients 
of this series. The lift force is 

= I pVkdx 
Jo 

= 1* cpV^ 1^0 (1 + cos 0) + ^ An sin n9 sin dO 

^ TTCpV^ (Aq + 

giving a lift coefficient 

Cl = 27r (^Iq H- 

Similarly the moment about the leading edge is 

if = — I pVkxdx 
Jo 

= — j" |.4o(l — cos2 0)-f S^„sin7i6(8in0 —Jsin20)|d0 

giving a moment coefficient 

^1(A,-A,)-ICl- 

These expressions contain only the first three coefficients of 
the series for the vorticity, and the remaining coefficients 
correspond therefore to changes in the shape of the aerofoil 
which have no effect on the lift force or moment. 

With the assumed value of the vorticity, the induced 
velocity at the point x' or 6' of the aerofoil is 

v{x') = ^ 
TT 

4o(l + coaO) 4- J„{cos(n—1)0 —cos(»+1)0} 
-}.-----— de 

0 cos 0 — cos 0 

Aq + \^An 
1 

sin {n -f 1) — sin {n — 1)0' 
sin 0' 
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COS nO 

[CH. 

f- JoC ] 0 cos 0 — cos ^ sin 

and the induced velocity at the point 6 of the aerofoil is finally 

V 
—Aq-\-It An cos nO, 

y 1 

The condition that the flow is tangential to the surface of 

the aerofoil gives the relationship 

~ = a — .4o 4- 2 cos nd, 
clx \ 

and then the coefficients An are determined from the shape 

of the aerofoil by evaluating the integrals 

sin ^ 

a - An 
7T, 0 dx 

TTJd 

% 
dx 

cos nOdd, 

The determination of the value of each coefficient is not 

necessary in general, since it is possible to obtain simple 

expressions for the lift force and moment about the leading 

edge directly in terms of the shape of the aerofoil by means 

of the following two integrals: 

_ 2 dd 
' TrJoC 1 4- cosd 

A dy dx /1 

dx d9 V 1 

(1) 

_2 Ty /l - cos0> _2 pi 

77 C V 14- COS 0 0 TJ’.'oC 

cos 6 

4- COS0 
de, 

and the first term vanishes if y tends to zero at the trailing 

edge of the aerofoil more rapidly than Vc X, Then 

eo = — - [ (1 — cos 0) d0 = ^0 + i^i "" c:. 
77/0 dx 

(2) /ifl = [ - cos dd9 = - sin 0I — f - 
Jac ic Jo JoC dxdd 

sin 6d6 

Idy 
4:dx 

(1 — cos 20) d9 

77 
(a-Ao-iA^). 

♦ See note at end of chapter. 
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Thus in terms of the two integrals €q and fiQ 

Cl = 27r (a 4- ^o)> 

2 “ 4 ^ Ql > 

and the determination of the lift and moment coefficients of 
any thin aerofoil has been reduced to the evaluation of the 
two simple integrals Co fhe coefficients are of the 
same form as for a Joukowski aerofoil (cf. 7-24). 

7*31. When the form of an aerofoil is a simple analytical 
expression, the values of €q and fiQ can be obtained by direct 
integration. An example of some interest is the aerofoil 
whose form is defined by the equation 

which represents an aerofoil with reflex curvature towards 
the trailing edge when the value of A lies between 1 and 2. 
On integration the values of /aq are found to be 

eo = gA(4-3A), 

1^0- 64 
h\ 

7T 

and hence ^ 32^ 

Thus an aerofoil with constant centre of pressure is obtained 
when A has the value 

The evaluation of the integrals in the general case is best 
performed by graphical methods. For this purpose the 
integrals are expressed in Cartesian coordinates with the 
aerofoil chord as unit length, and tlien 

^0 = f yfi (^) Q'nd )Lto = [ 17/2 {x) dx, 
Jo Jo 

_ 

77 (1 — x)\/x (1 ~ x)* 

h (^) = 
1 - 2x_ 

Vx{\ — x) 

where 
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The numerical values of these functions at suitable points 
of the aerofoil chord are given in table 4 below. 

The determination of in this manner presents no difficulty 

jz/a (^) tends to zero at both ends of the aerofoil in 
general although /g (x) tends to infinity. In the case of 6o, 
however, the value of yfi {x) generally tends to infinity at 
the trailing edge of the aerofoil, but this difficulty can be 
avoided by performing the graphical integration from the 
leading edge to the point x == 0*95 and by estimating the 
additional part analytically on the assumption that this last 
section of the aerofoil is a straight line. The additional con¬ 
tribution to the value of cq can easily be shown to be 2-92/', 
where y' is the ordinate at the point x = 0-95. 

This theoretical method of determining the angle of in¬ 
cidence and moment coefficient at zero lift leads to results 
which are in close agreement with experimental determina¬ 
tions of these quantities. If the experimental values are not 
given relative to the line joining the leading and trailing edges 
of the aerofoil a slight correction is required in making a 
comparison between theory and experiment. 

Table 4. 

X /.w /aW X /i w AW 

0025 209 6*10 0*50 1-27 0 
005 1-54 413 0-60 1-62 -0-41 
010 M8 2-67 0-70 2-31 -0*87 
0-20 100 1-50 0-80 3-98 -1-60 
0-30 0-99 0-87 0-90 106 -2*67 
0-40 108 0*41 0-95 29-2 -413 

Note. The value of the integral 

r cos 710 

Jo cos 0 — cos (p 

The evaluation of this integral requires some special care, 
since the denominator of the integrand vanishes at the point 
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0 = <l> ot the range of integration. It is necessary therefore 
to obtain the value of In by integrating from 0 to (<^ — €) 
and from -f e) to tt and by taking the limit as € tends to 

zero. 
Considering first the value of /q, 

Jo cosfl>-cos</> ^sin J ((/► — i9)Jo 

f' _^__ r_i__ j ein + 4,)1 - 
J,^+,cos 0 — cos ^ L®^n (f> ® sin J (9 — 

1 /-I • 1 • t I . % 
{log sin Je - log sin (^ + Je)}, 

and hence Iq = Urn 
1 , sin (^ — ie) 

sin^ ^^8in(^ + ^e) 

_ ["_coa 0 
j 0 cos 9 — cos <!> 

= [7i +_.-' 
J 0 \ COS 0 — cos (/> 

= TT + Iq ^ 

and more generally if n > 1 

J , J _ f’"cos(n+l)0-f cos(n-1)0 
in+l + in-l-j^-- - ooB0^^S<f> 

_ f”^2cos0cosn0^^ 
Jo cos 0 — cos (f) 

rfo a ^ 2 COS (J) COS n9\ 

Jo\ cos 0 —cos 0/ 

= 2 cos <l> In- 

The solution of this recurrence formula 

In+l - 2 cos <f>In + In-1 = 0, 

with the initial conditions /q = 0 and /j == tt, leads to the 
final result 

p cos 710 

Iocos0 — cos^ 

sin 

sin ^ * 



CHAPTER Vm 

VISCOSITY AND DRAG 

8* 1. The drag of a bluff body. 

The theory of the two-dimensional motion of a perfect 
fluid has led to the determination of the lift of an aerofoil 
by means of the assumption of a circulation of the flow, but 
the solution is incomplete in several respects. The conditions 
which cause the circulation to develop at the commencement 
of the motion have not been investigated and the magnitude 
of the circulation is indeterminate except in the case of an 
aerofoil with a sharp trailing edge. Joukowski’s hypothesis 

that the circulation must be such that the flow leaves the 
trailing edge smoothly also requires critical examination. 
Finally, the theory has not indicated the existence of any 
drag force on the aerofoil. 

To examine these problems fully it is necessary to depart 
from the simple assumption of a perfect fluid and to deter¬ 
mine the effects of the viscosity or internal friction, but some 

insight into the drag of a body can be obtained without 
introducing this complication. In developing the theory of 
the lift force it was convenient to consider the class of bodies 
which give a large lift force associated with a relatively small 
drag force, so that the latter might be neglected without 
modifying the essential conditions of the problem. Similarly 
in examining the drag force it is convenient to consider in 
the first place bodies of bluff form, symmetrical about the 
direction of motion, so that the lift force is zero and the 
drag force is large. The motion will be assumed to proceed 
in two dimensions as before. 

The simplest form of bluff body is a flat plate at right 
angles to the general stream, which is represented in two 
dimensions as a line AB oi breadth 6. The irrotational flow 
of a perfect fluid past this line is shown in fig. 43, but this 
type of flow gives zero drag and is unsatisfactory also because 
the fluid velocity becomes infinite at the edges of the plate. 
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An alternative type of flow was suggested by Kirchhoff and 
Helmholtz to overcome these difficulties and is represented 
in fig. 66. Curves 
of discontinuity 
of velocity are as¬ 
sumed to spring 
from the points 
A and B and to 
pass down stream 
enclosing a dead- 
water region. In 
consequence the 
plate experiences greater pressure on the front than on the 
rear face, and there is a drag force* 

4 TT 
bpV^ 

corresponding to a drag coefficient 

On — 

277 

4-1-77 
== 0-88. 

This value of the drag coefficient is approximately half that 
obtained from experimental determinations of the drag of a 
flat plate, but the conception that the flow breaks away from 
the surface at the edges of the plate is in accordance with 
fact and can be used as the basis for developing a theory of 
drag. 

8-11. Vortex streetsf. 

The curves of discontinuity of velocity AA' and BB' which 
spring from the edges of the plate are essentially vortex 
sheets (cf. 4-35) and may be conceived as a succession of 
point vortices which act as roller bearings between the dead- 
water region and the general stream. Now a single row of 
equal point vortices evenly spaced along a straight fine can 
be shown to be unstable. In the equihbrium position all the 
vortices will be at rest, since the induced velocity compo¬ 
nents at any vortex due to two vortices at equal distances on 

* See Lamb, Hydrodynamics, § 76. t See Note 3 of Appendix. 
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opposite sides are equal and opposite. If, however, one vortex 

Fig. 67. 

receives a small displacement (x, y) it will experience the 
induced velocity components 

y_y_ 
27r -00 \na — xY -f 2/2» 

K ^ na — X 

^ ^ {na-xY + y-^’ 

where K is the strength of each vortex, a is the distance 
between successive vortices and the summations extend over 
all integral values of n other than zero. For a small disturb¬ 
ance these expressions may be replaced by the approxima¬ 

tions 

277 -00 

27r -on na\ 

Hence the equations of motion of the point vortex under 
consideration are , 

4- Ax == 0, 

where 

and on eliminating y — \^x = 0. 

The solution of this differential equation is 

x = -f 

which represents an unstable motion, since the first term 
increases indefinitely with the time and the vortex departs 
more and more from its equilibrium position. 

The conditions behind a bluff body are more complex since 
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there are two vortex rows, and in order to discuss the stability 
fully it is necessary to give a small disturbance to each of the 

vortices. Far be- a, .Aa 
hind the body the ^-a~~^- 
vortices must lie 

<— 
on two straight ^ 
lines parallel to - 
the general direc¬ 
tion of motion, 

B, Ba 
Fig. 58. 

and it can easily be shown that there are only two possible 
configurations. In order that the vortices may retain their 
positions on the two parallel lines, the induced velocity at 
any vortex must be parallel to the lines. This condition is 
satisfied if any vortex of one row is exactly opposite a 
vortex of the other row, or if it is opposite the mid-point 
between two vortices and A^ of the other row; each 
vortex will then experience the same induced velocity u in 
the sense shown in fig. 58. This velocity u is the velocity of 
the vortices relative to the general mass of the fluid. For 
any other configuration the induced velocity has a component 
normal to the vortex rows and the configuration will not be 
maintained. 

The stability of these two systems has been examined by 
Karman and Rubach*, and it appears that the first con¬ 
figuration with the vortices in pairs is essentially unstable, 
but that the second configuration with alternate vortices is 
stable provided the distance h between the rows and the 
distance a between successive vortices of each row are re¬ 
lated by the equation 

sinh = 1, 

or 

a 

h = 0*281a. 

A double vortex row of this stable type will be called a 

♦ Karman, “ t)ber den Mechanismus des Widerstandcs den ein bowegter 
Korper in Fliissigkeit orfahrt,” Gottingen Nachrichteny 1911. Karman and 
Rubach, “t)ber den Mechanismus des Flussigkeits und Luftwiderstandes,** 
Phya. Zeitschrift, 1912. The analysis is given by Lamb, Hydrodynamics, 

§156. 

G 7 
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Karman vortex street. The strength K of each point vortex 
will be called the strength of the street and the distance h 
between the rows will be called the breadth of the street. 
The distance a separating successive vortices of each row is 
a constant multiple of the breadth h, and the induced velocity 
u of each of the vortices is given by the equation 

K = 2 \'2au. 

8-12. The form drarj. 

A fully developed Karman vortex street exists far behind 
a bluff body but there must be an intermediate stage, shown 

Fig. 59. 

by the broken lines ot fig. 59, connecting the body and the 
vortex street. As the flow proceeds, the vortices pass down 
stream with the velocity {V — u) relative to the body and 
new vortices must be formed alternately at the two sides of 
the body, which is in accordance with the observed flow 
past a bluff body. The frequency with which the vortices are 
formed at one edge of the body will be 

The formation of these vortices, combined with the general 
pressure distribution of the flow pattern, causes a drag force* 

and on inserting the values of a and K in terms of h and w, 
this equation becomes 

D = VF*|2-83(^)-M2(^)*|, 

♦ Karman, loc. ciU 
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The drag force due to the shedding of vortices from the 
sides of the body and the formation of a Karman vortex 
street will be called the form drag, to distinguish it from the 
drag due to tangential forces and skin friction on the surface 
of the body. Karman’s theory appears to be in accordance 
with the actual conditions of flow, and if the values of u and 
h are determined experimentally the equation for the drag 
leads to a value in good agreement with the observed drag*. 
The theory is, however, incomplete and further investigation 
of the flow between the body and the vortex street is re¬ 
quired to determine the values of u and h theoretically. 

The form drag depends on the shape of the body. As a 
first rough approximation the drag coefficient may be taken 

and to this order of approximation the drag is simply pro¬ 
portional to the strength of the vortices wliich are shed at 
the sides of the body. A body of bluff form, particularly if 
it has sharp edges like a flat plate, will shed strong vortices 
and will have a large form drag, but for a body of “good** 
shape, such as a symmetrical aerofoil section, the form drag 
appears to be negligibly small and the drag experienced is 
due mainly to the tangential forces or skin friction. 

8-2. Viscosity,' 

All real fluids possess the property of internal friction or 
viscosity by virtue of which tangential stresses may occur 
at the surface of separation of two adjacent fluid elements. 
These tangential stresses are zero when the fluid is at rest, 
and in general they depend on the relative velocity of the 
adjacent fluid elements. The viscosity of a fluid may be 
defined conveniently by considering the steady motion in 
layers normal to the axis of y. The layer of fluid between the 
planes y and {y -{- dy) will have a velocity u at all points and 

* Karman, loc. cit. 

7'3 
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u will be a function of y only. When the fluid moves 
in layers in this 
manner, it is said 
to be in laminar ^ 

motion. The re- _ > u I 

lative velocity ^ dy ^ 
of two adjacent _^ 

layers is ™ dy 

and the tangen- ^ 
tial force at tlie 
surface of separa- 

, . du ^ 
tion IS /X g- per Fig. 60. 

unit area, where /x is the coefficient of viscosity of the fluid. 
This definition of the tangential force due to viscosity is based 
on the conception that the frictional force depends on the 
relative velocity of the adjacent fluid elements and is justified 
by the accuracy of the results which can be deduced from it. 

When two parallel layers of fluid are moving in the same 
direction with different velocities, the surface of separation 
is a vortex sheet and the elementary vortices of this sheet 
act as roller bearings between the two layers of the fluid. 
The tangential stress at the surface of separation is intimately 
related to this vortex sheet and the work which must be 
done against the tangential stress is represented by the 
dissipation of energy which occurs in the vortices. 

To complete the definition of the nature of a viscous fluid 
it is necessary to consider the conditions at a solid boundary. 
The motion of the fluid over the surface of a body will cause 
a finite tangential force on the surface and it follows that the 
layer of fluid immediately in contact with the surface must 
be at rest relative to the surface, for if this condition were 

not satisfied would tend to infinity at the surface and the 

tangential force would also tend to infinity unless the co¬ 
efficient of friction between solid and fluid were indefinitely 
small compared with that between two fluid layers. This 
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condition of zero slip at a solid boundary is confirmed by 
experiment and by the accuracy of the results deduced from it. 

The frictional force at the surface of separation of two 

fluid layers in laminar motion has been defined as /x per 

Fig. 61. 

unit area, and hence the force on a fluid element of thickness 
dy and of area S normal to the axis of y will be 

(du d'^u 

\dy di/ 
dy)8- 

du ^ d^u ^ 

d^u 
'^y dif 

wliich is /X volume. It is customary, however, to 

work in terms of the force per unit mass of the fluid, and 
hence for the laminar flow under consideration 

where v is the coefficient of viscosity divided by the density 
of the fluid and is called the kinematic coefficient of viscosity, 

8* 21. Laminar flow between flat plates. 

It is now possible to determine the laminar flow between 

Fig. 62. 
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two parallel flat plates, which is the same as the two-dimen¬ 
sional flow in a channel between two parallel straight lines 

AB and A'B'. The equation of motion of the fluid is 

_ dp 
^ ap “ da; ’ 

which expresses the fact that the viscous force must be 
balanced by the pressure difference on any fluid clement. 
The velocity w is a function of the coordinate y and the 
pressure p of the coordinate x. 

On integrating the equation of motion 

f ^ dp ^ 
27, 

and if the origin 0 is chosen midway between the two 
boundaries which are at distance 2h apart 

The pressure decreases uniformly along the stream and the 
velocity distribution is parabolic across the channel. The 
mean velocity V of the stream is determined by the equation 

I and hence 

The frictional drag on length I and breadth 5 of the two 
walls of the channel may be estimated from the pressure 
gradient as . . o 

where S is the “wetted” surface 2bl, Alternatively the drag 
may be estimated directly from the tangential force on the 
surface as .. 

01/6 
where the suffix indicates that the value of must be taken 

oy 
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at the boundary with dy measured into the fluid. Now 

du_3 Vy 

(: 
du\ _ 3F 

dy) ~ 
and hence i - 

/o 

which leads to the same value of the drag as that which was 
obtained from the pressure gradient. 

8-22. Numerical values. 

By inspection of the formulae for the viscous force on a 
fluid element it can be seen that the dimensions of the two 
coefficients of viscosity are respectively 

IM 

V L^T-\ 

and in particular the kinematic coefficient of viscosity v has 
the dimensions of a length multiplied by a velocity. In the 
following tables the values of fx and v are given in the c.o.s. 
and in the British Engineering systems of units. 

The coefficient of viscosity /x of a gas is independent of the 
pressure and increases with the temperature somewhat less 
rapidly than the increase of the absolute temperature. 

Table 5. 

Values of ix for 

Temperature gm./cm. see. slug/ft. sec. 

0° C. X
 o
 1 0-358 X 10-® 

15 1-81 0-378 
100 2-21 0-4G1 

When the density p is known, the value of the kinematic 
coefficient of viscosity v can be deduced at once from this 
table, since v = /a/p. The values of v for air at the standard 
pressure of 760 mm. of mercury are given in table 6, and in 
general the value of v is inversely proportional to the pressure 
at a given temperature. 

* Kaye and Laby, Physical and Chemical Constants, 
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Table 6. 

Values of v for air at standard pressure. 

Temperature cm.^/sec. ft.78ec. 

0° C. 0133 1-43 X 10-* 
15 0148 1-50 

100 0-234 2-52 

Finally, the values of the kinematic coefficient of viscosity v 
for water are given in table 7 for comparison with the corre¬ 
sponding values for air. 

Table 7. 

Values of V for water. 

Temperature cm.^sec. ft.^/sec. 

0° C, 0-0179 1-92 xlO-s 
6 0-0152 1-63 

10 0-0131 1-41 
15 0-0115 1-23 
20 0-0101 1-08 
25 0-0090 0-97 

8*23. Dimensional theory. 

In a perfect fluid the force acting on a body has been 

expressed in the form p ^ ]/2;2 

where p is the density of the fluid, V the velocity of the body 
relative to the fluid and I some typical length of the body. 
The coefficient k is non-dimensional and depends only on the 
shape and attitude of the body. This form of expression is 
the only possible combination of the three fundamental 
parameters p, V and I wliich will give the dimensions of a 
force and it can therefore be established without any reference 
to the flow pattern past the body. 

In the case of a viscous fluid there is an additional para¬ 
meter, the kinematic coefficient of viscosity v, which has the 
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dimensions of a length multiplied by a velocity. It is now 
possible to form the non-dimensional function 

r. IV 

and the general expression for the force on a body must be 
taken to be 

This general expression for the force retains the correct 
dimensions whatever form is given to the function /. In a 
perfect fluid the viscosity is zero and the function assumes 
the value , .r 

Also in the special case of laminar flow considered in 8-21, 
the drag force was shown to be proportional to ^Vl and 
hence the function / is of the form 

/(‘-n-rr 
The usual procedure is to retain the original expression 

for the force F ^ kpVH\ 

and to regard the non-dimensional coefficient A; as a function 
IV 

of the non-dimensional parameter — or R, which is called 

the Reynolds' number of the flow. If the forces are deter¬ 
mined on similar bodies of different size, as for example on 
an aeroplane and its model in a wind tunnel, the correspond¬ 
ing values of the coefficient h will not have the same values 
unless the tests are made at the same Reynolds’ number. 
This course is usually impossible, since v has the same value 
in both cases while I and V are both smaller in a wind 
tunnel than in free flight of an aeroplane. It is necessary 
therefore to investigate the variation of the coefficient k 
with the Reynolds’ number and to establish, if possible, a 
sound method of extrapolating from the model to the full 
scale. Variation of the coefficient k with the Reynolds’ 

number is frequently called ‘‘scale effect.’^ 
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Fig. 63 shows the drag coefficient of a long circular 
cylinder as a function of the Reynolds’ number. The drag 
coefficient is defined by the equation 

where S is the normal projected area, the product of the 
length and diameter of the cyfinder, and the Reynolds* 
number is taken to be , 

R = -, 
V 

where d is the diameter of the eylinder. Tiiis example shows 

that sudden and important changes in the drag coefficient 
of a body may occur as the Reynolds’ number increases. On 

the other hand, variations of this magnitude are not universal 
and for many types of body, including aerofoil sections, the 
drag coefficient is found to tend to a limiting value at an 
early stage. The variation of the drag coefficient with in¬ 
creasing Reynolds’ number is associated with a variation in 
the flow pattern, and an abrupt change in the drag coefficient 
implies an abrupt change in the type of flow past the body. 
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8-24. Flow in circular pipes. 

The flow along a straight pipe of uniform circular section 
provides another example of the importance of the Reynolds’ 
number. If r is the radial distance of a cylindrical layer of 
fluid from the axis of the pipe and if x is the coordinate 
measured along the axis, the equation of motion for laminar 
flow will be , , , , , 

a au\ ^ dp 
dx' 

r dp 
dx* 

dr 

or 

- 

\ dr) 

d 
dr 

Integrating this equation and inserting the boundary con¬ 
dition of no slip, the velocity is found to be 

“--vS 
where o is the radius of the pij»e. The mean velocity V of the 
flow’ is . „ j 

F — — f 2TTrudr — — 
^~7Tayo^ ^ 8fidx' 

r2\ 
and hence 2F (-S)- 
Finally, the drag of length I of the pipe is 

D = ^ - 
dxj 

4.11V 
S 

where S is the wetted surface 27Tal. 
The pressure gradient down the pipe in laminar flow is 

dp _ _ 8^F _ _ f v \ ^ 
dx \aV) a * 

and this result is used to determine the coefficient of viscosity 
of a fluid from the observed pressure drop along a pipe. It is 
found by experiment that the laminar flow always establishes 

aV 
itself in a pipe provided the Reynolds’ number — is less than 

the critical value 1160, but by suitable precautions to avoid 
turbulence of the fluid entering the pipe the laminar flow 
may be continued to far greater values of the Reynolds’ 
number. 
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. For large values of the Reynolds’ number the flow is 
turbulent and the pressure gradient, deduced from a large 
number of experiments, then obeys the empirical law* 

dp 
0-06G 

/ V p 

\aV) a • 

The frictional drag of the surface in turbulent flow is pro¬ 
portional to contrasting with the case of laminar flow 
when it is simply proportional to V f. 

This empirical law for the turbulent flow in a circular pipe 
has been used by Karman J to deduce the law of variation of 
velocity with distance from the wall of a pipe. In general 
the surface traction r, i.e. the force per unit area of the surface, 
must be of the form .70 

'T = p r 7 W* 

aV 
where R is the Reynolds’ number ~ for the flow, and the 

velocity at distance y = ar] from the wall of the pipe must 
be of the form , 7., 

u= VF (r;, R). 

Near the wall, however, the velocity u can be expressed also 
in terms of p, v, y and t independently of a and F, and by 
considering the dimensions of these parameters, the form of 
the velocity must be 

u = 

Finally, by equating the two expressions for the velocity u 
and by eliminating the surface traction t, an equation is 
obtained connecting the parameters R and k] : 

(’j-K v/) iV’ ^)- 
In order to obtain a solution of this general equation 

Karman assumes that the velocity distribution across the 
pipe is independent of the value of the Reynolds’ number R 
for the range in which Blasius’ empirical law is valid. Then 

<f> iv^Vf) = (’?). 

♦ Blasius, Forschungaarbeiten der V.D.I, 1913. 
t See Note 4 of Appendix. 

% “t)ber laminare und turbulente Roibung,” ZAMMy 1921. For a 

more general treatment, see also Prandtl, “ Bericht iiber Untersuchungen 

zur ausgebildeten Tuxbulenz,” ZAifif, 1926. 
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and near the wall it is sufficient to retain only the lowest 
power of 7] in the expansions of the functions 9 and F. Hence 

TjRr]^, 

or fee R i+n. 

But the empirical law is of the form 

/oc R-\ 

and so finally n = 

The velocity near the wall varies as and the value of 
n varies with the empirical value of k as follows: 

^ ~ 1> i > 4 > 

n - 1, 1, I, 0. 

In laminar flow A: = 1 and the velocity varies linearly with 
the distance from the wall. In the turbulent state Blasius 

gives A; = J and the velocity varies as the one-seventh power 
of the distance from the wall. If the value of k decreases 
further at higher values of the Reynolds’ number, then the 
velocity will rise more rapidly near the wall, and in the limit 
when the surface traction r is proportional to pV^ simply 
(A: = 0), the velocity is uniform across the whole pipe. 

The law of variation of velocity with distance from the 
wall breaks down in the immediate proximity of the wall, 

Bii 
since it suggests an infinite value of ^ instead of the true 

finite value —. This discrepancy is due to the fact that the 

fluid layer in immediate contact with the wall is always in 
laminar motion and that the empirical law for the turbulent 
flow applies only as far as the outer boundary of this laminar 

layer. Thus the curve ucc should be accepted down to 
7" 

the point where — = — and should then be continued to the 
dy pv 

origin by the tangent to the curve. 

8‘3. The general equations of motion. 

Hitherto the simple laminar motion of a viscous fluid has 
been considered, and to discuss the more general t3^es of 
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motion it is necessary to develop the equations of motion of 
the fluid. In two-dimensional motion the velocity of the 
fluid at any point is defined by its components u and v 
parallel to orthogonal axes, and these velocity components 
must satisfy the equation of continuity (5*1) 

9w 02; _ 
dx dy 

The velocity components u and v define the velocity of 
the fluid element at the point (x, y). After a small interval 
of time dt, the fluid element will be at the point (x + udt, 
y -f vdt), and the components of the velocity of the fluid 
element will then be respectively 

0a 0 a du 
u -h dt + ^ udt -f ^ vdty 

vt dx dy 

dv - dv . dv 
V + V., dt + udi + vdl. 

dt dx dy 

In a perfect fluid the only force acting on the fluid element 
is the pressure on its boundary which has the components 

and 

per unit volume, and hence the equations of motion of the 
fluid element are 

0a _ 1 
ft~^^dx'^^dy~'^ydx^ 

dv dv dv 1 dp dv dv dv 1 dp 
dt ^ ^ dx^ ^ dy pdy' 

In a viscous fluid the element also experiences tangential 
forces on its boundary, depending on its motion relative to 
the adjacent fluid elements, and additional terms v^hi and 
v^^v respectively occur on the right-hand side of the equations 
of motion. The development of these expressions from first 
principles will be found in a standard text-book on hydro- 
dynamics* and the following discussion is intended only to 
indicate the physical meaning of the expressions. 

If u is the velocity component parallel to the axis of x at 

♦ E.g. Lamb, Hydrodynamics^ chapter xi. 
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the point {Xy t/), then the corresponding velocity component 
at an adjacent point {x + ^y y r/) may be written as 

u u + 
du du\ 
dx ^ dy) 2 

0V 

dy‘ 

if higher powers of f and 7} than the second are ignored. The 
mean value of this velocity component at the four points 
(x±^,y±7})ia 

IV^ dyV’ w' = w 4- 

and for a circular ring of points surrounding the point {Xy y) 
the mean values of and 17^ are equal. Thus 

d^u d^u 

“ -^^dx^-^dy^ 

oc 

But in the laminar flow considered in 8*2 in defining the 
viscous force between adjacent fluid elements the velocity 
component u was a function of y only and the force on unit 
mass of the fluid was found to bo 

X^v 
d^u 

This force depends on the relative motion of the adjacent 
fluid elements and hence in the general case the viscous force 
per unit mass of the fluid may be expected to be 

X - P^^Uy 

with a corresponding expression for the component parallel 
to the axis of y. 

The complete equations of viscous motion in two dimen¬ 
sions are « ^ ^ ^ 

du , du ^ du Icp , r72 

S+“3i + '’8j“-pS + ''^^' 

di dx dy p dy 

du 
and in steady motion the terms and 

dv 
di 

are zero. The 

solution of these equations for the flow past a body, at whose 
surface the boundary condition of no slip (w = v = 0) must 
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be satisfied, presents almost insuperable difficulties except 
in a few special cases, and it is necessary to adopt some method 
of approximation. The conception of a perfect fluid is based 
on the fact that the viscosity of a fluid is small and that the 
viscous terms involving u are negligible in comparison with 
the dynamic terms involving the square of the velocity. At 
the other extreme it is possible to consider a slow steady 
motion of a viscous fluid in which the dynamic terms are 
negligible in comparison with the viscous terms. The left- 
hand sides of the equations of motion then disappear, and 
on eliminating the pressure and expressing the velocity com¬ 
ponents in terms of the stream function i//, a single equation is 
obtained: 

Solutions of some problems have been obtained on tliis basis 
but they apply only to extremely low velocities. More 
generally an approximation is required which includes both 
the dynamic and the viscous terms but reduces the equations 
to a simpler form. 

8-4. The boundary layer theory. 

Prandtrs approximation to the general equations of viscous 
motion* is based on the fact that the viscosity of a fluid is 
small and that it exerts a noticeable effect only where the 
velocity is changing rapidly from point to point. Now rapid 
changes of velocity occur only in close proximity to the 
surface of a body where the velocity rises from zero at the 
surface to its value in the general stream, and in consequence 
PrandtFs conception of the problem is that the effect of the 
viscosity is important only in a narrow boundary layer 
surrounding the surface of the body and that the viscosity 
may be ignored in the free fluid outside this layer. In the 
boundary layer the velocity of the fluid rises rapidly from zero 
to its value in the free stream, and however small the vis¬ 
cosity may be the viscous force retains its importance in this 
layer. 

♦ Verhandl. d. Ill intern, math. Kongress (Heidelberg, 1904). 
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Turning now to the general equations of motion as applied 
to the boundary layer, the coordinate x will be assumed to 
be measured along a flat surface and the quantities z, u and 
p will be finite while y and v will be small of the order e. 

In the first equation of motion is small compared with 

d^u 

dtf 
and the equation becomes 

du , du , du 1d^u 

pdx ^ dy^ ’ 

where the last term is of the order —. If V is small compared 

with the last term disappears and the equation becomes 
that of a perfect fluid. If v is large compared with €^, the 
dynamic terms involving the square of the velocity are 
negligible and the equation is approf>riato to very slow motion. 
More generally v must be of the same order as and the 
ordinates of the boundary layer are then proportional to 
s/v. 

The second equation of motion leads to the very simple 
result , ^ 

pdy’ 

since all the other terms are small in comparison with this 
pressure term. This equation shows that the pressure is 
transmitted normally through the boundary layer without 
change and hence that the pressure in the boundary layer is 
a function of the coordinate x only. 

The equations governing the flow in the boundary layer 

du du du 1 dp , d^u 
dt ^ ^ dx^^dy ~ pdx ^dy^' 

These equations have been developed for the flow along a 
flat surface, but the identical form can be obtained more 
generally for a curved surface if the coordinate z is measured 
along the surface and the coordinate y normal to it. 

G 8 
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8*41. Drag of a flat plate. 

The boundary layer theory has been applied by H. Blasius* 
to the determination of the laminar flow along a flat plate and 
of the resulting 
frictional drag. 
Measuring the | 
coordinate x a- 
long the plate 
from the lead¬ 
ing edge, the Fig. G4. 
thickness of the /— 
boundary layer is shown to be proportional to y and the 

frictional drag of both surfaces of a plate of length c to be 

1-328 

per unit breadth. Thus the drag is proportional to and 
the drag coefficient of the flat plate, regarded as an aerofoil, is 

2-656 

The thickness of the boundary layer cannot be determined 
exactly, as the velocity u in the boundary layer tends 
asymptotically to the velocity V of the free stream, but if 
the outer surface of the layer is defined by the condition 
that u has risen to a value differing from V by two per 
cent., the thickness of the boundary layer may be taken to be 

s-4.5/;. 

The value cV = W v marks the division between the model 
and “full scale’’ range for an aerofoil and with this value the 
maximum thickness of the boundary layer is 0*0046c. 

Blasius’ solution corresponds to laminar flow along the 
plate and will represent the actual flow at low values of the 
Reynolds’ number only. Karmanf has obtained a solution 

* “ Grenzschichten in Fliissigkeiten mit kloiner Rcibung,” Zeitschrifif, 
Math. u. Phys. 1908. 

t “tJber laminare und turbulente Rcibung,” ZAMM^ 1921. 
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for the turbulent flow along a flat plate by analysing Blasius’ 

empirical law for the turbulent flow in a pipe (8*24) and has 

obtained the drag coefficient* 
/ p \0-2 

Thus the drag is proportional to and the thickness of 

the boundary layer to a:®*®. Karman’s result may be compared 

with the experimental determinationf 

/ p \0'15 
Cj5=0'075^^j , 

and for the range of the experiments (jR = S x 10® to 7 x 10®) 

the numerical values given in table 8 show good agreement. 

The numerical values given by Blasius’ formula are added 

for comparison and show that the change from laminar to 

turbulent flow causes an increase of drag. 

Table 8. 

Frictional drag coefficient of a flat plate. 

R=-- 3 X W 10® 7 X 10« 

Experimental 00114 00094 00070 
Karman 00116 00090 00061 
Blasius 0 0048 0 0026 0 0010 

8*42. The boundary layer theory can also be used to 

explain the phenomenon of 

the flow breaking away from 

the surface of a body to 

form an eddying wake. In a 

perfect fluid the streams pass¬ 

ing above and below a body 

unite behind the body and 

there is a stagnation point S 
on the surface. While passing 

from ^ to /S the velocity of 

the fluid decreases and the pressure increases, and the fluid 

* See Note 5 of Appendix. 
•f Ergebnisse der aerodynamischen Versuchsanstalt zu Oottingen, i, 1921. 

8-a 
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elemeDts lose kinetic energy in forcing their way along the 
surface against the increasing pressure. When viscous forces 
also occur in the boundary layer adjacent to the surface, the 
fluid elements will lose 
energy more rapidly and 
will be brought to rest 
before reaching the point 
/S, and a reverse flow will 
set in from S towards A 
as indicated in fig. 6G. 
Tlie same process will 
occur on the lower sur¬ 
face of the body and 
thus two surfaces of dis- 

Fig. 66. 

continuity will arise, as assumed in the Helmholtz-Kirchhoff 
theory. These sm^faces of discontinuity are unstable and lead 
to the development o^ a Karman vortex street behind the 
body. 

The condition for the flow to break away from the surface 
is associated with an increase of pressure along the surface, 
and for a given pressure distribution along the surface it is 
possible to calculate the point at which the flow breaks away 
by means of the equations of the boundary layer. Unfortu¬ 
nately it is not sufficiently accurate to assume the pressure 
distribution given by the perfect fluid solution, and even 
when the points of origin of the surfaces of discontinuity 
have been determined, a further advance of the theory is 
required to determine the strength and breadth of the 
resulting vortex street. The problem of the form drag of a 
body therefore remains to be solved, although the theory 
indicates the formation of the surfaces of discontinuity and 

the nature ctf the final vortex street*. 
* See Note C of Appendix. 



CHAPTER IX 

THE BASIS OF AEROFOIL THEORY 

9-1. The theory of the lift force given by an aerofoil in 
two-dimensional motion has been developed by considering 

the flow of a perfect fluid governed by Joukowski’s hypo¬ 
thesis that the flow leaves the trailing edge of the aerofoil 
smoothly. It is necessary now to examine the fundamental 
basis of this theory and the extent to which the assumed 
motion represents the actual conditions which occur with a 

viscous fluid. 
All real fluids possess the property of viscosity and the 

conception of a perfect fluid should be such that it represents 

the limiting condition of a fluid whose viscosity has become 
indefinitely small. Now it is well known that the limit of a 
function / (a:) as x tends to zero is not necessarily equal to 
the value of the function when x is equal to zero, and hence, 
to obtain the true conception of a perfect fluid, it is not 
sufficient to assume simply that the coefficient of viscosity 
is zero. The viscosity must be retained in the equations of 

motion and the flow for a perfect fluid must bo obtained by 
making the viscosity indefinitely small. 

9*2. on the boundary. 

The first point to be considered is the motion of the fluid 
at the surface of a body. In a viscous fluid the relative 
velocity at the surface of a body is zero and the body is 
surrounded by a narrow boundary layer in which the velocity 
rises rapidly from zero to a finite value. The thickness of this 
boundary layer, which is essentially a region of vorticity, is 
proportional to and tends to zero with the viscosity. Thus 
in the limit the boundary layer becomes a vortex sheet 
surrounding the surface of the body and the vortices of this 
sheet act as the roller bearings between the surface of the 
body and the general mass of the fluid. The assumption of a 
perfect fluid with a vortex sheet surrounding the surface of 
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the body therefore represents the limiting condition of a 
viscous fluid when the viscosity tends to zero, and the 
existence of the vortex sheet implies that the perfect fluid 
solution need not satisfy the condition of zero slip at the 
boundary. If q is the velocity at the surface in the perfect 

fluid solution, then the strength of the vorticity of the vortex 
sheet will be q per unit length. If this vortex sheet is assumed 
to surround the surface of the body, the condition of zero 
slip at the boundary is satisfied, but the velocity rises from 
zero to the value q in passing through the indefinitely thin 
vortex sheet, and the conditions external to the boundary 
layer are identically the same as if the vortex sheet were 
ignored and the condition of zero slip at the boundary were 
abandoned. The sum of the strengths of the vortices com¬ 
posing the vortex sheet is equal to the magnitude of the 
circulation round the body in the perfect fluid solution. 

The boundary layer transmits the pressure through itself 
normally without alteration and hence the actual pressure 
distribution on the surface of the body will be identical with 
that obtained from the perfect fluid solution by means of 
Bernoulli’s equation*. 

In proceeding to the limit of zero viscosity it is necessary 
to retain the actual type of flow which occurs with a viscous 
fluid. Thus in the case of a circular cylinder the flow breaks 
away from the surface in two vortex sheets which develop 
into a Karman vortex street and this type of flow must be 
retained in the limiting case. The type of flow considered in 
3-6, where the flow passes smoothly to the rear of the 
cylindei:, is clearly inadmissible and does not represent even 
an approximation to the actual flow except possibly near the 
nose of the cylinder (cf. fig. 14). The position on the cylinder 

♦ See Note 7 of Appendix. 
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at which the flow breaks away from the surface and the 
nature of the resulting vortex street will depend on the 
magnitude of the viscosity*, but it can easily be seen that 
this characteristic of the flow cannot disappear as the vis¬ 
cosity tends to zero. Referring to fig. 67, where the surface 
of the body is supposed to be surrounded by a vortex sheet, 
the vortex element at P has the velocity \q along the surface 
(cf. 4-35) and hence fluid elements in vortex motion are 
continually passing along the surface of the body from front 
to rear. These vortex elements must leave the body eventually 
and pass down stream in a vortex wake which is the Karman 
vortex street of the body. The breadth and strength of this 
vortex street will depend on the shape of the body, but in 
all cases it is necessary to presume the existence of a vortex 
wake of this type. 

9*3. JoukowslcVs hypothesis. 

The motion of a perfect fluid past an aerofoil can be 
determined with any arbitrary circulation of the flow round 
the aerofoil, but in the development of the theory the circu¬ 
lation round an aerofoil with a sharp trailing edge was 
determined by means of Joukowsld’s hypothesis that the 
flow must leave the trailing edge smoothly. With any other 
value of the circulation the velocity of the fluid would become 
infinite at the trailing edge and the viscous force at this point 
could not be neglected even when the viscosity became 
indefinitely small, for however small a value were assigned 
to V it would always bo possible to find a region close to the 
trailing edge of the aerofoil where the product of v and the 

rate of change of velocity 
dq 
dn 

was large. Hence it follows that 

the only perfect fluid solution which can be regarded as the 
limit of the true viscous fluid solution is that which avoids 
an infinite velocity at the trailing edge, and this solution is 
defined by Joukowski’s hypothesis. 

The conception that the fluid velocity must be finite at 
all points can be applied more generally as a criterion of the 

validity of any perfect fluid solution. Thus the flow past a 

♦ See Note 8 of Appendix. 
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line shown in fig. 43 is clearly impossible as the limit of a 
real viscous fluid solution as the viscosity tends to zero, and 
the actual motion must be of the type where the flow breaks 
away from the surface at the ends of the line (fig. 56). 

The magnitude of the circulation round an aerofoil deter¬ 
mined by Joukowski^s hypothesis is not quite accurate, since 
it ignores the influence of the vortex wake which is formed 
behind the aerofoil. The flow on the under surface of the 
aerofoil, along which the pressure decreases towards the 
trailing edge, will pass continuously to the trailing edge and 
leave it smoothly, but the flow on the upper surface, along 
which the pressure increases towards the trailing edge, will 
break away from the surface before reaching the trailing 
edge to form the upper boundary of the vortex wake*. In 
consequence the true circulation will be slightly less than 
that determined by Joukowski’s hypothesis. It appears, 
however, that aerofoils of good shape at small angles of 
incidence have an extremely small form drag (see 9*5) and 
the vortex wake must be too weak and too narrow to exert 
a noticeable effect on the circulation. At large angles of 
incidence the vortex wake is more important since the flow 
breaks away from the upper surface of the aerofoil at an 
earlier stage. Joukowski’s hypothesis then breaks down 
completely, the lift ceases to rise with the angle of incidence 
and the aerofoil reaches its critical angle. In this region the 
aerofoil theory of chapter vii is no longer valid, the aerofoil 
must be regarded as a bluff body and the most important 
feature of the flow is the vortex wake rather than the 
circulation. 

In the ordinary worldng range of an aerofoil Joukowski’s 
hypothesis can be used to determine the magnitude of the 
circulation with good accuracy, and this determination is 
independent of the exact value of the viscosity, which has 
merely been assumed to be very small. Hence no appreciable 
scale effect on the lift of an aerofoil is to be anticipated in 
this range. On approaching the critical angle, however, the 
flow breaks away from the upper surface of the aerofoil to 
form a broad vortex wake, and there may be an important 

♦ See Note 9 of Appendix. 
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scale effect on the lift of the aerofoil since the nature of the 
vortex wake will depend on the Reynolds’ number of the 
flow. 

9*4. Origin of the circulation. 

The process by which the circulation round an aerofoil 
develops as the aerofoil starts from rest presents certain 
theoretical difficulties, since this process would be impossible 
in a perfect fluid, and it is again necessary to consider the 
limiting condition as the viscosity tends to zero. At extremely 
low speeds when the aerofoil is starting from rest the 

(6) 
Fig. 08. 

flow near the trailing edge will be of the type shown in 
fig. 68 (a), with a stagnation point S on the upper surface at 
some small distance from the trailing edge. As the forward 
velocity of the aerofoil increases, the stream lines along the 
under surface are no longer able to turn round the trailing 
edge owing to the large viscous forces brought into action 
by the high velocity gradient, the flow breaks away from the 
trailing edge, and a vortex is formed between the trailing 
edge and the old stagnation point S as shown in fig. 68 (6). 
When this vortex has developed to a certain stage, it breaks 
away from the aerofoil and passes down stream in the vortex 
wake. Now the circulation round any large contour ABCD 
(fig. 69) which surrounded the aerofoil initially was and 

B 

Fig. 69. 
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must remain zero, and as this contour includes the vortex 
E there must be a circulation K round the aerofoil which is 
exactly equal and opposite to the circulation round the 
vortex E. In the course of time the vortex E passes far 
down stream where it can no longer influence the flow round 
the aerofoil, and the aerofoil is then in steady motion with 
a circulation of the flow round it. 

The existence of the vortex E in the early stages of the 
motion can be verified experimentally in a very simple 
manner by dipping a flat plate into water and moving it 
briskly in a direction inclined at a small angle to its surface. 
If the motion develops gradually instead of impulsively, a 
succession of vortices will be shed from the trailing edge of 
the aerofoil, but the previous argument remains valid and 
the resulting circulation round the aerofoil is equal in mag¬ 
nitude to the sum of the strengths of the vortices which have 
left the aerofoil*. 

The general magnitude of the circulation round an aerofoil 
is determined by the strength of the vortices which were 
shed in the initial stages of the motion or at any time when 
the speed or attitude was changed, but in addition the 
magnitude of the circulation is subject to a small fluctuation. 
The vorticity of the boundary layer passes down stream in a 
vortex wake which develops into a Karman vortex street and 
to maintain this system vortices of opposite sign are shed 
alternately from the upper and lower surfaces of the aerofoil j*. 
Since the sum of the circulation round the aerofoil and of the 
strengths of all the vortices of the wake must be zero, it 
follows that the circulation round the aerofoil will oscillate 
between the limits K ± ^k, where K is the mean circulation 
and k is the strength of the vortex street. For a good aerofoil 
section at a small angle of incidence the vortex wake is 
narrow and weak, and the circulation round the aerofoil is 
sensibly constant, but as the attitude of the aerofoil ap¬ 
proaches and passes its critical angle the oscillation in the 
magnitude of the circulation may become an important 
fraction of the mean circulation. 

* See Note 10 of Appendix. j* See Note 3 of Appendix, 
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9*6. The drag of an aerofoil. 

In developing the theory of the lift of an aerofoil, the drag 
was neglected completely, and this method is justified solely 
by the fact that the drag is so small a fraction of the lift 
that the modification of the flow necessary to explain the 
drag does not exert a noticeable influence on the character¬ 
istics of the flow which determine the lift. The method will 
clearly break down near the critical angle where the drag 
increases rapidly owing to the development of a strong 
vortex wake, and also near the angle of no lift where the lift 
and drag are of the same order of magnitude. Since the drag 
depends on the viscosity and varies with the Reynolds’ 
number of the flow, scale effect on the lift may be anticipated 
in the neighbourhood both of no lift and of the critical angle. 

The drag of an aerofoil in two-dimensional motion is called 
the profile drag, since it depends essentially on the shape of 
the aerofoil section or profile. The profile drag may be con¬ 
sidered in two parts, the form drag associated with the vortex 
street behind the aerofoil and the frictional drag on the surface 
of the aerofoil*. A measurement of the pressure distribution 
over the surface of an aerofoil can be used to determine the 
lift and the form drag, but the frictional drag cannot be 
determined by this method. 

The profile drag coefficient of a good aerofoil section is 
extremely low, and the following table gives the values of 
the minimum profile drag coefficients of a few aerofoil 
sections for the value of the Reynolds’ number B — 2-5 x 10^, 
at which the frictional drag coefficient of a flat plate is 0*0116. 
In the case of a thin symmetrical section, Gottingen 443, a 
profile drag coefficient as low as 0-0054 has been obtained 
at ii = 4 X 10^, and this value is only half the frictional drag 

Table 9. 

Minimum profile drag coefficients. 

JRAF 15 00116 
RAF 25 0-0080 

RAF SO 0-0112 

♦ See Note 3 of Appendix. 
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coefficient of a fiat plate at the same value of the Reynolds’ 

number*. 
These experimental values justify the assumption, made in 

developing the theory of an aerofoil, that the drag is negligibly 
small compared with the lift over the ordinary working range 
of incidence. It also appears that the profile drag of an aero¬ 
foil section may be less than the frictional drag of a flat 
plate of the same chord. The form drag of the aerofoil must 
therefore be extremely small and the existence of the vortex 
wake can be ignored with safety in determining the mag¬ 
nitude of the circulation by Joukowski’s hypothesis. 

♦ Sec Note 11 of Appendix. 



CHAPTER X 

THE AEROFOIL IN THREE DIMENSIONS 

10* 1. Circulation and vorticity. 

The definition of the circulation round a closed curve in 
two dimensions (see 4*1) as the integral of the tangential 
component of the velocity round the circumference of the 
curve can be extended at once to the more general case of 
motion in three dimensions by removing the restriction that 
the curve must lie in a single plane. Also by dividing any 
surface bounded by this curve into a network by a series of 
intersecting lines it can be shown that the circulation round 
the curve is equal to the sum of the circulations round the 
elementary areas formed by the network. 

The vorticity of a fluid element in two-dimensional motion 
was defined (see 4-3) as twice the angular velocity of the 
element. This definition is retained in the more general case 
of three-dimensional motion but the axis of rotation of the 
fluid element may now point in any direction. By following 
the direction of the axis of rotation of successive fluid elements 
it is possible to construct a curved line whose direction 
coincides at every point of its length with the axis of rotation 
of the corresponding fluid element. Such a line is called a 
vortex line. 

The vortex lines which pass through 
the points of the circumference of a 
small closed curve G will form the 
surface of a vortex tube^ of which the 
curve (7 is a cross section. If 2a> is 
the vorticity at this section of the 
vortex tube and if the section is taken 
at right angles to the axis of the tube, 
the circulation K round the curve G 
will be equal to 2ojS, the product of the vorticity and the 
area of the cross section. If the section is taken so that its 
normal is inchned at angle 0 to the axis of the tube, the 
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area of the section will be increased to S sec d, but the 
component of the angular velocity about the normal to the 
section will be reduced to a> cos 6, and the circulation which 
is equal to twice the product of these two quantities is un¬ 
altered. Also the circulation round any small curve which 
lies on the surface of the vortex tube will be zero, since the 
component of the angular velocity normal to the surface of 
the tube is essentially zero. 

If a curve of the type shown in 
fig. 71 is drawn on the surface of a 
vortex tube, the circulation round the 
curve will be zero. Now if F (AB) 
denotes the flow along the curve AB^ 
this result can be expressed in the 
form 

F {PQR) + F {RE') -h F (R'Q'P') 
+ F (P'P) = 0, 

and when PP' coincides with RR' this equation becomes 

F (PQR) = F (P'Q'R'), 

showing that the circulation has the same value for all 
curves embracing the vortex tube. The value of this circula¬ 
tion K is called the strength of the vortex tube. 

10-11. The conception of a line vortex is derived from that 
of a vortex tube by making the area of cross section of the 
tube tend to zero while the strength K remains unaltered. 
The line vortex in three-dimensional motion corresponds to 
the point vortex in two-dimensional motion, but whereas the 
latter represents a straight line of infinite length normal to 
the plane in which the two-dimensional motion occurs, a line 
vortex may in general be a curve of any shape. The circulation 
round any closed curve C is equal to the sum of the strengths 
of the line vortices which cut any surface bounded by this 
curve, and from this fact it follows that a line vortex cannot 
come to an end in the fluid. It must form a closed curve or 
have its ends on a solid boundary. A line vortex is exactly 
analogous to a wire carrying an electric current, the strengtli 
of the line vortex corresponds to the strength of the electric 
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current, and the induced velocity at any point of the fluid 
corresponds to the magnetic force due to the electric current. 

10*12. The induced 
velocity of an ele¬ 
ment of a line vortex 
at a point P is deter¬ 
mined by the equa¬ 
tion* 

dq^ 
Kds 
47rr2 

sin 9, 

where K is the strength and ds is an element of length of the 
line vortex, r is the distance of the point P from the element, 
and 6 is the angle between the direction of the element and 
the line joining the clement to the point P. The velocity dq 
is normal to tlie plane containing r and ds, and its sense is 
the same as that of the circulation K about the line vortex. 

An element ds of a line vortex cannot exist independently 
and the formula sliould be used only for integrating the 
effect of a complete line vortex. Frequently, however, a line 
vortex may be built up of a number of straight lines and it 
is useful therefore to determine the induced velocity of a 
straight line vortex of finite length AB, If PN, the normal 

p 

from any point P to the line AB, is of length h, and if Q is 
any point of the line vortex, the induced velocity at the 
point P due to the element ds at Q is 

dq == 
Kds . . Khds 

* Cf. Lamb, Hydrodynamics, § 149, 
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and this velocity is normal to the plane PAB. Now if <j) is 
the angle NPQ, the element of length ds may be expressed as 

ds = d{h tan ^) = A sec^ <l}d<l>, 

and hence dq = 

The total induced velocity of the line vortex AB is obtained 

by integration from ^ to ^ , where 

a and jS are the angles PAB and PBA respectively. Thus 
finally ^ 

q = (cos a + cos ^). 

If the line AB is of infinite length, tliis result reduces to 

K 

which agrees with the formula for the induced velocity of a 
point vortex in two-dimensional motion. 

It is also important to note that the induced velocity of 
a line, which starts at the ^ 
point N and extends to 
infinity in one direction 
only, is ^ ^ 

as this result is used re- N 
peatedly in the develop¬ 
ment of aerofoil theory. 

Fig. 74. 

10‘2. The vortex system of an aerofoil. 

In dealing with the problem of an aerofoil of finite span 
in three-dimensional motion the assumptions will be made 
that the chord of the aerofoil is small compared with the 
span, that the span may be regarded as a straight line at 
right angles to the direction of motion, and that the aerofoil 
is symmetrical laterally about the mid-point of its span. 
Apart from these restrictions the chord, angle of incidence 
and shape of the aerofoil section may vary in any manner 
across the span of the aerofoil. 
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If the aerofoil experiences a lift force there must be a 
circulation of the flow round the aerofoil sections and there 
fore in effect there is a line vortex or a set of line vortices 
running along the span of the aerofoil. These line vortices, 
which move with the aerofoil, are called the bound vortices 
of the aerofoil, and are formed by the boundary layer or 
vortex sheet which surrounds the surface of the aerofoil. In 
accordance with the general theory of vortex motion, these 
line vortices cannot end at the tips of the aerofoil but must 
continue in the fluid as free line vortices. Also any element 
of the fluid, which is set in vortex motion by coming into 
contact with the bound vortex system of the aerofoil, will 

pass down stream with the general mass of the fluid, and free 
line vortices will therefore start at the surface of the aerofoil 
and pass down stream along the stream lines of the flow as 
indicated in fig. 75. These line vortices are called the trailing 
vortices of the aerofoil. 

The vortex system is completed far behind the aerofoil by 
a transverse vortex parallel to the span of the aerofoil, which 
is the vortex shed from the trailing edge at the commence¬ 
ment of the motion (cf. 9-4). For all practical purposes, 
however, the trailing vortices may be assumed to extend 
down stream indefinitely. 

10-21. The simplest type of vortex system occurs when the 
circulation round the aerofoil sections has a constant value 
K across the span of the aerofoil. The bound vortex system 
can then be conceived as a single line vortex of strength K, 

G 9 
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and the trailing vortices will bo two line vortices of the same 
strength which spring from the tips of the aerofoil and pass 
down stream in the direction 
of the stream lines. These line 
vortices will be curved owing to 
the variation in the downward 
component of the velocity at 
different distances behind the 
aerofoil, but for most purposes 
it is sufficiently accurate to assume that they arc straight 
lines parallel to the direction of motion. In this way the 
simple conception of a “horseshoe” vortex system, shown in 
fig. 76, is obtained. 

Tlie actual vortex system of an aerofoil is more com¬ 
plicated than this simple system owing to the fact that the 

Fig. 77. 

circulation is not constant across the span of an aerofoil but 
generally has a maximum value at the centre and decreases 
to zero at the tips. Any distribution of circulation across the 
span can be built up by superimposing a number of the simple 
“horseshoe” systems, and hence it appears that the free 
vortex system of an aerofoil will in general consist of a sheet 
of trailing vortices, springing from the trailing edge of the 
aerofoil. 

10-22. The origin of the trailing vortex system may be 
considered also from a slightly different point of view. If 
the distribution of lift across the span of an aerofoil has 

a maximum value at the centre, there will be a large increase 

Fig. 76. 
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of pressure below the centre of the aerofoil and a large reduc¬ 
tion of pressure above it, and these pressure differences will 
decrease towards the tips of the 
aerofoil (fig. 78). As a consequence 
of this pressure distribution, the 
stream lines passing above the aero¬ 
foil tend to flow inwards towards 
the centre and those passing below the aerofoil tend to flow 
outwards. As these streams leave the trailing edge of the 
aerofoil they form a surface of discontinuity (fig. 79) and the 
trailing vortices of the aerofoil represent the vorticity of this 
surface of discontinuity. 

Fig. 79. 

10*23. The surface of discontinuity represented by the 
sheet of trailing vortices is unstable and will roll up into a 
pair of vortex tubes which extend down stream at a distance 

apart rather less than the span of the aerofoil (see 12*4). The 
trailing vortex system is therefore of the type* shown in 
fig. 80. The influence of the trailing vortex system near the 

• This type of vortex system was predicted by Lanchoster, Aero- 
dymmics, 1908. 

9-2 



132 THE AEROFOIL IN THREE DIMENSIONS [CH. 

aerofoil is represented with sufficient accuracy by assuming 
that the individual line vortices, which spring from the trailing 
edge of the aerofoil, extend down stream as straight lines. 
For points of the wake it is more accurate to assume a vortex 
system of the “horseshoe’’ type with span rather less than 
that of the aerofoil, and for points distant from the aerofoil 
and its wake either representation may be used with equal 
accuracy. 

10-3. The induced velocity. 

The flow at any section of the aerofoil differs from the flow 
which would occur round the section in two-dimensional 
motion owing to the influence of the trailing vortex system. 
The induced velocity of this vortex system is normal to the span 
of the aerofoil and to the direction of motion, and is directed 

downwards in general. The normal induced velocity at a 
point of the aerofoil will be denoted by w and will be assumed 
to be small in comparison with the velocity V of the general 
stream of the fluid. The effect of the induced velocity is then 
equivalent to a reduction of the angle of incidence of the 

w 
aerofoil section by the small angle y (fig. 81), and if a is the 

geometrical angle of incidence of the aerofoil section, the 
effective angle of incidence will be 

w 
ao = a--p. 

More accurately the induced velocity should be regarded 
as variable along the chord of the aerofoil section, resulting 
in a change of effective camber of the aerofoil section, but 
the theory of an aerofoil of finite span can be developed with 
sufficient accuracy by assuming the ohord of the aerofoil 
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section to be small and by assuming a constant value of the 
induced velocity along the chord. The component of the 
velocity parallel to the span of the aerofoil is also neglected 
in developing the theory, since this component is small and 
unimportant, except possibly at the tips of the aerofoil. 

The aerofoil section behaves exactly the same as if it 
formed part of an aerofoil of infinite span at an angle of 
incidence Oq, and gives the lift coefficient (7^ and the profile 
drag coefficient corresponding to two-dimensional motion 
at this angle of incidence. The lift force is, however, inclined 

to 
backwards at the small angle y (fig. 81) and therefore gives 

a component in the direction of the drag force. This com¬ 
ponent is called the induced drag, since it is caused by the 
induced velocity of the trailing vortices. The induced drag 
coefficient of the aerofoil section is 

ft n 

and the total drag coefficient of the aerofoil section as part 

of the monoplane aerofoil is 

The work done on the fluid by the induced drag of the aerofoil 
appears as the kinetic energy of the trailing vortex system, 
which increases in length as the motion proceeds. 

Since the aerofoil section behaves exactly as in two 
dimensional motion there is no change in the moment 
coefficient or in the position of the centre of pressure at any 
definite value of the lift coefficient. 

The characteristics of a monoplane aerofoil are determined 
by finding the normal induced velocity w and the effective 
angle of incidence ocq at each point of the span, by calculating 
the corresponding elementary lift and drag forces, and by 
integrating across the span of the aerofoil. The first stage of 
the calculation of the characteristics of a finite monoplane 
aerofoil is therefore the determination of the normal induced 
velocity at a point of the aerofoil in terms of the strength of 

the trailing vortices. 
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10*31. The simplest type of trailing vortex system occurs 
when the circulation has a constant value K across the span 
of the aerofoil. This case of uniform loading and the simple 
“horseshoe” vortex system do not represent the true con¬ 
ditions for any actual aerofoil, and the system is considered 
here only as a simple example of the calculation of the normal 
induced velocity. 

The lift of the aerofoil of area S and semi-span s can be 
expressed in the alternative forms 

L=^C^^.lpV^S = 2spVK, 

and hence K = ~Cjy=V, 

where c is the mean chord of the aerofoil. The trailing vortex 
system consists simply of two trailing vortices of strength K 
springing from the tips of the aerofoil, and using the standard 
system of coordinate axes as shown in fig. 82 with origin at 
the centre of the aerofoil, the normal induced velocity at a 
point of the aerofoil is 

K K K 8 
^ -- I-- ^- 

47r (s — y) 47r (s + y) 27t s^ — y^* 

V 27rA8^ — y^* 
or 
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2s 
where A is the aspect ratio — of the aerofoil. The induced 

velocity w in this case has a minimum value at the centre 
and rises to infinity at the tips of the aerofoil, and it is on 
account of this excessive velocity that the simple “ horseshoe ” 
vortex system cannot represent the true conditions for any 
aerofoil. 

10-32. In general the circulation K round an aerofoil will 
vary across the span, being symmetrical about the centre 
and falling to zero at the tips. Between the points y and 

z 
Fig. 83. 

{y-\-dy) of the span of the aerofoil the circulation falls by the 

amount — ^ dy and hence a trailing vortex of this strength 
ay 

springs from the element dy of the span as shown in fig. 83. 
There is therefore a sheet of trailing vortices extending across 
the span of the aerofoil and the normal induced velocity at 
any point of the span must bo obtained as the sum of the 
effects of all the trailing vortices of this sheet. The normal 
induced velocity at the point y^ of the aerofoil is 

w(y^)=^ 

dX 
dy 

dy 

-a 477 {y-yi) 

477 

s 

-S 2/1-2/ 
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The evaluation of the integral needs some special care 
since the integrand becomes infinite at the point y — yx. 
The value of the integral must be determined by integrating 
from —8 to j/i —e and from i/i + e to 8, and by proceeding 
to the limit as e tends to zero. 



CHAPTER XI 

THE MONOPLANE AEROFOIL 

11*1. The fundamental equations. 

If K is the circulation round any section of an aerofoil, 
the normal induced velocity at a point of the span is 
determined by the equation 

dK , 
dy 

w (yi) 
I 

47r 

dy 

^-sVi-y 

and the typical aerofoil section experiences the lift force 
corresponding to two dimensional motion at the effective 
angle of incidence 

an = a- 
w 
F- 

The direction of the line of action of this force component 
w 

is rotated backwards through the small angle y (cf. fig. 81) 

and hence the drag of the aerofoil section is tlie profile drag 
w 

increased by the induced drag, the product of y and the lift 

of the aerofoil section. 
Now if the angles of incidence a and are measured from 

the attitude of no lift, the lift coefficient of the aerofoil 
section under these conditions will be 

where Uq is the slope of the curve of lift coefficient against 
angle of incidence for the aerofoil section in two-dimensional 
motion. Also the circulation K round the aerofoil section 

will be 
K = ^ClcV == ^aoC (Fa - w), 

and this is a second equation connecting the circulation K 

and the normal induced velocity w. By means of these two 
equations it is possible to determine the circulation and the 
normal induced velocity for any aerofoil in terms of the chord 
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and angle of incidence of the aerofoil sections, which may of 
course vary across the span of the aerofoil. 

Strictly the quantity Uq should be regarded as a variable 
depending on the shape of the aerofoil section, but the theory 
of an aerofoil in two-dimensional motion has shown that Uq 
is approximately equal to 27r for all practical aerofoil sections, 
and hence the variability of % may be neglected without 
any appreciable loss of accuracy. Nevertheless, since. an 
aerofoil section may fail to realise the theoretical value 
Uq = 27r, the theory of the aerofoil of finite span will be de¬ 
veloped in terms of Gq as the slope of the curve of lift coefficient 
against angle of incidence in two-dimensional motion, and 
the theoretical value Gq = 277 will be used only in numerical 
illustrations of the general formulae. 

When the circulation K and the normal induced velocity 

w of any monoplane aerofoil have been determined, the lift 
and induced drag are obtained by evaluating the integrals 

L = j\VKdy, 

= [ pwKdy, 
J -8 

11-2. Method of solution. 

A convenient method of attacking the problem of any 
monoplane aerofoil is to replace the coordinate y, measured 
to starboard along the span .of the aerofoil from its centre, 
by the angle d defined by the equation 

y = — s cos 6y 

so that 0 varies from 0 to tt across the span of the aerofoil 
from port to starboard. The circulation K, which is a function 
of y, may then be expressed as the Fourier series 

K = Yi An sin n0, 
n -1 

and the values of the coefficients must be determined in 
accordance with the two fundamental equations connecting 
K and w. The series chosen for the circulation K satisfies the 
condition that the circulation falls to zero at the tips of the 
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aerofoil, and since the aerofoil is symmetrical about its mid¬ 
point odd integral values only of n will occur in the series. 

The normal induced velocity at the point or di of the 
aerofoil now becomes 

~ -tt J 0 cos 6 — cos 01 ^ 

Sin 01 
cos nOdO sin n(f> 

?ii i ^.I • 
, . I Dill 

Since* --.=TT~r T. 
] 0 cos 0 — cos (f> sin (p 

Thus at the general point 0 of the aerofoil 
w sin 0 — V^nAn sin n9. 

The second equation connecting the circulation and the 
normal induced velocity becomes 

4aFS^„8inri0= 4aFS^„ sin nO = ^a^cV\ai - 

liA^^ sin nd (n/x -f sin 0) = fioL sin 0, 

where 

This is the fundamental equation for determining the values 
of the coefficients A^ for any monoplane aerofoil. The 
equation must be satisfied at all points of the aerofoil, but 
since the aerofoil is symmetrical about its mid-point it is 

sufficient to consider values of 0 between 0 and The 

parameter /x, which is proportional to the chord c, and the 
angle of incidence a must be regarded as functions of 0 in 
the most general case. 

11*21. Lift and induced drag. 

The lift and induced drag of a monoplane aerofoil are 
determined very simply in terms of the coefficients A^ of 
the series for the circulation. The lift of the aerofoil is 

L= r pVKdy 

= [ 4ts^pV^ siii sii^ 
Jo 

:= 27r52pFMi, 

♦ See page 92. 
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or, in terms of the lift coefficient, 

A - ^ G 

It appears that the lift of the aerofoil is determined by the 
value of the coefficient and that the other coefficients of 
the series for the circulation modify the shape of the load 
grading curve across the span of the aerofoil without altering 
the total lift. 

S 
The expression which occurs in the equation con¬ 

necting and Cj^ can be expressed in an alternative form. 
The mean chord of an aerofoil is defined as the area divided 
by the span, and the aspect ratio A is defined as the span 
divided by the mean chord. Hence for a monoplane aerofoil 

A ^ and -—. = • 
S 47tS^ ttA 

The theoretical formulae, which involve this parameter, will 

normally be expressed in terms of , but the alternative 

form ^ is useful in a few special cases and for numerical 

computation. 
The induced drag of the aerofoil is 

Di == I pwKdy 

= [ {T,nAn^innQ)(LAnWin6)dd 
J 0 

= 27rs^pV^linAJ^. 

It is convenient to write 

1+8 = 

where 8 is a positive quantity whose value is usually small, 

•odthen ._(l+8)i> 

2ns^pV^ ’ 

or 
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The total drag of the aerofoil is obtained by adding the in¬ 
duced drag and the profile drag. If the aerofoil has a consiant 
aerofoil section across its span and if the effective angle of 

incidence is also constant, then the profile drag coefficient of 
each section will have the same value Cj)^ and the total drag 
coefficient of the aerofoil will be 

CjO = ^L^- 

More generally the aerofoil section and the effective angle of 
incidence will vary across the span of the aerofoil and the 
profile drag coefficient of the aerofoil must be obtained as 
the value of the integral 

Tliis refinement, however, is necessary only when the shape 
of the aerofoil section varies considerably across the span of 

the aerofoil. 

11*22. Angle of incidence. 

Owing to the normal induced velocity the effective angle 
of incidence of any section of an aerofoil is less than the 
geometrical angle of incidence a, and the aerofoil section gives 
less lift than it would in two-dimensional motion at the same 
angle of incidence a. The values of the coefficients and in 
particular that of A^^ are determined from the fundamental 

equation ^A^ sin nO {nfi 4- sin 6) = ixa sin 9 

as functions of the angle of incidence of the aerofoil, and 
since Ai is also proportional to the lift coefficient Cl, a re¬ 
lationship is obtained between the lift coefficient and the 
angle of incidence of the aerofoil. The slope a of the curve of 
lift coefficient against angle of incidence determined from this 
relationship is less than the value Uq which occurs in the two- 
dimensional motion of an aerofoil section. 

The relationship between the lift coefficient and angle of 
incidence has a simple form when the aerofoil has a constant 
angle of incidence across its span. The coefficients An are 
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then simply proportional to the angle of incidence a, and the 
equation 

q 1 

gives at once 

ttA 

ttA Ai 

The angle of incidence a of the aerofoil exceeds the angle of 
incidence Oq in two-dimensional motion, which would give the 

same lift coefficient, by the angle 

and it is convenient to write this result in a form similar to 
the equation for the drag coefficient of the aerofoil. Thus 

. S .. . _ 

where 
S \a aj 

In the more general case of a twisted aerofoil the angle of 
incidence a varies across the span of the aerofoil and may be 
expressed in the form 

«=«+/ 

where d is the angle of incidence at the centre of the aerofoil. 
The values of the coefficients A^ are then obtained from the 

fundamental equation in two parts, the first being pro¬ 
portional to and the second independent of a. The lift 
coefficient of the aerofoil is therefore of the form 

Ci^=: ad + k. 

11 • 3. Elliptic loading. 

The lift and induced drag of an aerofoil have been obtained 
in thn form. ^ 

If an aerofoil of a definite span gives the lift L at the speed 
F, the coefficient bets a definite value which is independent 
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of the shape of the aerofoil, and the induced drag will be a 
minimum when all the other coefficients A„ in the series for 
the circulation are zero. The distribution of circulation across 
the span of the aerofoil is then simply 

K = 4:sVAi sin d = ^sVAj^ ^I 
V 5“ 

The magnitude of the circulation at any point of the span is 
proportional to the ordinate of an ellipse with the span as 
major axis, and this type of load distribution is therefore 
called elliptic loading. 

The elliptic distribution of circulation or lift across the 
span of an aerofoil is important, firstly because it leads to 
the minimum possible induced drag for a given total lift, 
and secondly because the load grading curves of most aero¬ 
foils of conventional shape do not differ greatly from the 

elliptic form. The results deduced from the hypothesis of 
elliptic loading are therefore the best which can possibly 
occur and are also a good first approximation to those actually 

obtained. 
With elliptic loading the normal induced velocity has the 

constant value 

FA = 
.9 

4775^ 

across the span of the aerofoil, and the induced drag coefficient 

of the aerofoil has the value 

C, ^ ri 2 

47752^^* 

If a is the geometrical angle of incidence at any point of 

the span, the effective angle of incidence will be 

and a constant geometrical angle of incidence will imply a 
constant effective angle of incidence. Hence the lift coefficient 
also will have the same value for all sections of the aerofoil. 
But the circulation K round any section is equal to ^Gj^cV, 
and as the circulation varies elliptically across the span, so 
also will the chord. Thus the elliptic loading will be obtained 
from a monoplane aerofoil of elliptic plan form and constant 
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angle of incidence. In this case the geometrical and effective 
angles of incidence are connected by the equation 

8 

Elliptic loading across the span can also be obtained from 
aerofoils of other plan form by suitable variation of the angle 
of incidence across the span, but any such twisted aerofoil 
will give the elliptic loading for one attitude only, -since 
the necessary angle of twist depends on the mean angle of 
incidence of the aerofoil. 

11 • 31. Effect of aspect ratio. 

The formulae which have been developed for the angle of 
incidence and drag coefficient of an elliptic aerofoil can bo 
used to calculate the effect of a change of aspect ratio. If 
the aspect ratio is reduced from A to A', the changes in the 
angle of incidence and drag coefficient at a given value of 
the lift coefficient are respectively 

For the standard aspect ratio {A = 6) of model experiments 

the factor has the value 0-053, and if the angle of in¬ 

cidence is measured in degrees this factor becomes 3-05°. 
The transformation formula for the drag coefficient applies 

only to aerofoils with elliptic loading, but the lift distribution 
curves for rectangular aerofoils and for the majority of 
aeroplane wings do not differ greatly from the elliptic form, 
and the transformation formula may therefore be used more 
generally to calculate the effect of a small change of aspect 
ratio. The accurate formulae for rectangular and tapered 
aerofoils are developed in 11-4 and 11-5 respectively. 

The transformation formula for the angle of incidence 
applies only to aerofoils of elliptic plan form with constant 
angle of incidence across the span and cannot be used for 
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aerofoils of other plan form except as a rough approximation. 
The formula for the angle of incidencft also leads to a simple 
determination of the slope of the lift curve. If is the slope 
in two-dimensional motion and a is the slope for an elliptic 
aerofoil of aspect ratio A, then the formula 

. 1 ^ 

gives by differentiation 
1 1 1 
- 

a^ ^ IT A * a 

a A 
77 77 . * 

1 + -A 
«o 

Now the theory of an aerofoil in two dimensions gives the 
value = 27r approximately and the corresponding values of 
a are given in the following table. The values of a, when a is 
measured in degrees, are added for comparison with experi¬ 
mental results which are usually quoted in this form. 

Table 10. 

Slope of lift curve for elliptic aerofoils. 

A 00 10 8 6 4 

a (per radian) 

a (per degree) 
0-28 

0110 

5-24 

0092 

5-02 
0-088 

4-70 
0-082 

4-18 
0-074 

11*4. Rectangular aerofoils. 

When the circulation round an aerofoil is expressed in the 

K==^sVI,An^mn9 

the coefficients A^ must be chosen to satisfy the fundamental 

equation XA^ sin nO {np, -f sin 0) == pa sin 0, 

where ^ ’ 

The successive coefficients Ai, A^, A^ ... decrease rapidly in 
magnitude and it is sufficient to retain only the first three or 

10 
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four coefficients in order to obtain a good determination of 
the lift and drag of the aerofoil. The method of solution, 
when 'p coefficients are retained, is to determine the coefficients 

to satisfy the fundamental equation at the p points 

0 = 1,2,3 ...p. 

The numerical values given in the subsequent tables are 
found by retaining the first four coefficients ^a, A^, A^) 
and by satisfying the fundamental equation at the four points 

0 = 22J, 45, 071, 90 degrees, 

^ = 0-924, 0-707, 0-383, 0. 
s 

When these four values of d are inserted in turn in the funda¬ 
mental equation, four linear equations are obtained to 

determine the four coefficients. The correct values of [x and 
a depending on the value of 0 must bo inserted in these four 
equations. 

The simplest case to consider is that of a rectangular 
aerofoilwith constant chord c and angle of incidence a across 
the span. The parameter /x has the constant value 

and the coefficients ^3 ... can bo determined conveniently 
as multiples of /xa. The slope of the curve of lift coefficient 
against angle of incidence for the aerofoil is then 

a _7T Ai 

Uq 4 /xa’ 

and the angle of incidence and drag coefficient corresponding 
to the lift coefficient are 

a=ao + ^(l +'r)C£, 

^ 

♦ The solution for a rectangular aerofoil was obtained first by A. Betz 

by a different and far more laborious process: Beitrdge zur Tmgjlugeltheorie 

mil besonderer Beriicksichtigung des einfachen rechteckigen Flilgds, Got¬ 

tingen dissertation, 1919. 
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1 + T: 
1 

1+8 = 

'LnAn 
~A^ 

The numerical values obtained by this method are given 
in table 11 and the values of the monoplane coefficients t 

and 8 are also shown in fig. 85. The values of 8 are small 

A/ag 

Fig. 85. 

and a good first approximation to the induced drag coefficient 
can be obtained by ignoring 8 and by using the elliptic 

Table 11. 

Rectangular aerofoils. 

10-2 
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loading formula. The values of r are not so small and it is 
necessary always to retain this coefficient in determining the 
angle of incidence of a rectangular aerofoil. 

11-41. Accuracy of results. 

In order to illustrate the accuracy of the results obtained 
when only four coefficients (A^y A^y A^y A^) are retained in 
the series for the circulation, the calculations have been made 

in one case {A=^a^ retaining in turn one, two, three and 

four terms of the series. The results are given in table 12 and 
show that the values of t and 8 have almost reached their 
limiting values when four terms are retained. For rapid 

calculations three terms should be sufficient to give a fair 
approximation to the true values. 

Table 12. 

Successive approximations. 

No. of 
terms 

AJixa AJfJia AJfia A^lfia r 6 

1 •800 _ _ _ •86 0 
2 •917 •084 — — •22 •025 

3 •92G •110 •016 •18 •044 

4 •928 •115 •023 •004 •17 •049 

11-42. Effect of aspect ratio. 

The conversion formulae for a change of aspect ratio from 
A th A' for rectangular aerofoils are 

^1 + t' 1 + t\ 

"A' A~ j* 

a + S' 1 + S^ 
A' A 

> 1/1 a — a = - — 
7r\ . 

\Cr. 

Cj}. 

Table 11 or fig. 85 gives the values of r and 8 in terms of 
Aja^. The relationship between Aja Mid A/a^ can be obtained 
from the same table or from fig. 86, and approximates closely 
to the linear law . 

- = 0-33+1-04^. 
a an 
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The experimental determination of the characteristics of a 
rectangular aerofoil of aspect ratio A gives the value of A Ja and 

Fig. 86. 

the corresponding values of A fa^, and t and 8 can be obtained 
from the figures. The value of is then known and the values 
of t' S' for any other aspect ratio A' can be found at once 

from fig. 86. 
If a<, = 277, the values of t and S for the standard aspect 

ratio 6 are 
T = 0-163, 8 = 0-046, 

and then, if the angle of incidence is expressed in degrees, 

a = oo + 3-65°C'i, 

Cd = C-n, + 0-0555(7;^2. 
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These numerical values should be compared with the corre¬ 
sponding values 3*05° and 0*063 for an eUiptic aerofoil of the 

same aspect ratio. 
Finally, the slope of the lift curve for rectangular aerofoils 

of different aspect ratio, on the assumption that = 27r, is 
given in table 13. These values are all slightly less than the 
corresponding values for elHptic aerofoils given in table 10. 

Table 13. 

Slope of lift curve for rectangular aerofoils. 

A 00 10 8 6 4 2 

a (per radian) 
a (per degree) 

6-28 
0110 

504 
0-088 

4-84 
0-084 

4-64 
0-080 

4-04 
0-070 

3-04 
0-054 

11*43. Pitching moment. 
The relationship between the moment coefficient and the 

hft coefficient of a uniform rectangular aerofoil is the same 
as for the aerofoil section in two-dimensional motion and is 

of the form CW = Wo + mi(7i, 

where mg and are both negative in general. For, if this 
equation represents the moment coefficient of the aerofoil 
section in two-dimensional motion, the pitching moment of 
the rectangular aerofoil about its leading edge will be 

Cm ■ \P = \ j* ^ (mo + VHy, 

where 2KjcV has been written for the hft coefficient of the 
aerofoil section. Putting 

y = — s cos 9, 
8 = 2sc, 
K = 4sySj4„ sin nd, 

the equation gives 

Cjf = I j sin ddO 

1 2’’’^ A = m„ + mi — 

mo + viiCl, 
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■ 47762' 

A — ^ p ^ ^ p ^1- . 

11*6, Tapered aerofoils. 

Another important type of aerofoil is that in which the 
chord decreases uniformly from a maximum value Cq at the 

centre of the aerofoil to Cq (1 — A) at the tips. In general this 
change of chord is associated with a change of the aerofoil 
section, but it will be assumed in the first place that the 
aerofoil has no aerodynamic twist, i.e. that the angle of 
incidence measured from the no lift line of the sections is 
constant across the span of the aerofoil. 

Solutions are obtained as before from the fundamental 

equation sin nO (n/x + sin 6) = fxa sin 6, 

and the solution follows the same lines except that /x now 
has different values at the four typical points 

0 = 22\, 45, 6790 degrees. 

For this range c = Cq (1 — A cos 9), 

^ = Ijlq(1 — X cos 6), 

where /^o 86 ’ 

The area of the aerofoil is 

S = {2 - X) 6Co 

and the aspect ratio is 
46 

(2 — A) Cq 2(2— A) fXQ 

Numerical results illustrating the effect of taper are given 
in table 14 for the aspect ratio A = aQ, and the corresponding 
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values of the monoplane coefficients r and S are shown in 
fig. 88. It appears that the best results are obtained when 

the tip chord is from one-third to one-half of the central 
chord, for it is desirable that ^ 8 should both be as small 
as possible. 

Table 14. 

Tapered aerofoils (A = Oq)- 

X AJa AJa. AJa. AJa a/a© T a 

0 •232 •029 •006 •001 729 •17 •049 
0-26 •236 •020 •008 0 742 10 •026 
0-50 •240 •007 •010 -•001 •764 •03 •on 
0-75 •241 -•012 •010 -•002 •767 •01 •016 
1-00 •232 -•050 •002' -•004 729 •17 •141 

11-6. Tmisted aerofoils. 

If the zero lift lines of the sections of an aerofoil are not 
parallel to one another along the span, the aerofoil is twisted 
aerodynamically. This twist may be due to variation of 
camber along the span, with the chord lines of the sections 
remaining parallel to one another, or it may be due to varia- 
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tion of the setting of the chord lines of the sections. If the 
incidence at the tips is less than the incidence at the centi e the 
aerofoil is said to have a “wash-out” towards the tij)s. 

As an illustration of the method of calculating the charae- 
teristics of a twisted aerofoil, consider a rectangular aerofoil 
of constant section whose geometrical angle of incidence 
decreases uniformly from the centre to the tips. Let a be 
the angle of incidence at the centre of the aerofoil and e the 
decrease from the centre to either tip. Then for the port half 
of the aerofoil the angle of incidence is 

a = a — € cos 0, 

and the fundamental equation for the coefficients 
of the series for the circulation becomes 

HAn sin nd {nfx 4- sin 0) = /x sin 0 (a — c cos 9). 

The solution for the first four coefficients of the series 
proceeds as before, but each coefficient is now determined 
in two parts, the first being proportional to /xa and the second 
to /x€. Numerical values for the case A = are 

Ai ~ 0*928j^ta — 0*408^e, 

A^ ^ 0*115pa - 0-242jue, 

= 0-023/xa I- O-OlOfte, 

A^ = 0*004pa ~ 0-023/X6. 

The hft coefficient of the twisted aerofoil is 

= 4-56a - 2 ()2e, 

whose slope is the same as for the corresponding untwisted 

rectangular aerofoil. 
The induced drag coefficient of the aerofoil may still be 

written in the form 
S 

but the coefficient 8 now varies with the angle of incidence 
of the aerofoil. Thus if e is equal to 0*1 radian (5*7°), the 
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characteristics of the aerofoil at different angles of incidence 
are as follows: 

a Cl 5 

010 0-256 0-205 
0*15 0-484 0-027 
0-20 0-712 0-009 
0-25 0-940 0-003 

These values of S should be compared with the value 0*049 
for the corresponding untwisted rectangular aerofoil, and it 
appears that the twisted aerofoil with “wash out” towards 
the tips has the lower induced drag except at very low lift 
coefficients. 

The more general case of a twisted tapered aerofoil can 
be solved along similar lines, the only modification being 
that the parameter /x must now be regarded as a function 
of the coordinate 0 as in 11*5. 

11*7. Load grading curves. 

The solution of the problem of a monoplane aerofoil in 
the form of a Fourier series for the circulation can also be 
used to determine the shape of the load grading curve across 
the span of the aerofoil, since the lift on any element of the 
span of an aerofoil is proportional to the circulation round 
that element. In general the first four terms only of the 
Fourier series have been determined and the corresponding 
load grading curve is of a sinuous nature. The solution, 
however, is exact only at the four points of the semi-span 
(0 = 22^, 45, 67|, 90 degrees) which are used in determining 
the coefficients of the Fourier series, and the load grading 
curve should therefore be drawn as a smooth curve through 
the values determined at these points. 

Fig. 89 shows the load grading curves for various aerofoil 
shapes determined in this manner, the scale of the ordinates 
being chosen so that each aerofoil carries the same total load. 
A wing of elliptic plan form gives a load grading curve of the 





CHAPTER Xn 

THE FLOW ROUND AN AEROFOIL 

12* 1. The flow pattern. 

The deviation of the velocity at any point of the fluid from 

the undisturbed velocity V is due to the vortex system created 
by the aerofoil and can be calculated as the velocity field of 
this vortex system. The general nature of the vortex system, 
comprising the circulation round the aerofoil and the trailing 
vortices which spring from its trailing edge, has been dis¬ 
cussed in 10-2, and the analysis of chapter xi provides a 
method of determining the strength of the vortex system 

associated with any monoplane aerofoil. The analysis is based 
on the assumption that the aerofoil can be replaced by a 
lifting line, and calculations based on this assumption will 

clearly be inadequate to determine the flow in the immediate 
neighbourhood of the aerofoil where the shape of the aerofoil 
sections will modify the form of the flow pattern. Also in 

the neighbourhood of the vortex wake it is necessary to 
consider the tendency of the trailing vortex sheet to roll up 
into a pair of finite vortices. Apart from these two limitations 

it is possible to obtain a satisfactory account of the flow 
pattern round an aerofoil from the simple assumption of a 
lifting line and of straight line vortices extending indefinitely 
down stream. Finally, at large distances from the aerofoil 
and its wake, the velocity field will depend only on the lift 
carried by the aerofoil and will be independent of the span 
of the aerofoil and of the shape of the load grading curve. 

In determining the flow pattern round an aerofoil the 
standard system of axes will be used with origin at the mid¬ 
point of the aerofoil. The axis of x extends forwards in the 
direction of motion of the aerofoil relative to the air, the 
axis of y is along the span of the aerofoil to starboard, and 
the axis of z is normal to the first two axes as in fig. 90. The 
velocity field of the vortex system, which represents the 
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disturbance created by the aerofoil in the uniform stream F, 
will be expressed by the velocity components {u, v, w) 
parallel to these axes. 

It follows at once from the simple form assumed for the 
vortex system that the longitudinal velocity component u 
depends only on the circulation round the aerofoil, and that 
the lateral velocity component v depends only on the system 
of trailing vortices, whereas the normal velocity component 
w depends on the complete vortex system. 

The flow pattern will be examined first on the assumption 
of uniform loading across the span of the aerofoil and 
attention will be directed mainly to the normal velocity 
component lo. The effect of other forms of load grading 
curve will bo considered only in a few regions of special 
importance. 

12*2. Uniform loading. 

The vortex system of an aerofoil with uniform loading 
across the span consists of the aerofoil AA^ and the two 
straight trailing vortices AB and A'B\ the strength of the 
circulation being K for the whole system. The typical point 
P at which the induced velocity is to be determined will 
be chosen for convenience as in fig. 91 with negative values 
of the coordinates x and z. Let PL, PM and PN be the 
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perpendiculars from P to the plane Oxy and to the lines Oy 
and AB respectively. Then 

ML = —x = x', 

OM = j/, 

PL=-z = z', 

OA = OA' = s. 

The induced velocity at P due to the circulation K roimd 
the aerofoil AA' is normal to the plane P3IO and has the 
value 

?i = (cos PA'A + cos PA A') 

= ^ f y + ^ _ __y -«_) 
AnVx'^ + z'^iVx'^ + z'^ + {y + s)^ Vx'^ + 2'*T(y — «)*]’ 

and the components of this velocity are 

» _I___y) 
^ 47ra:'2 + z'* ('v/a:'2 + z'* + (y + s)* Vi'Hz'M-(j/-«)*J ’ 

Vi = 0, 
_ K x' (■_y + 8_y — s 

An x’^ + jvx'^ + z'* + {y + a)* Va;'* + z'* + (j/ — aj* ’ 
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The induced velocity at P due to the circulation K round 
the trailing vortex AB is normal to the plane PAB and has 
the value 

_ _K 
“ IttPN 

(1 4- cosPJjB) 

_K 

477 + (2/ — ^ + (2/ — 
> 

and the components of this velocity are 

«2 = 0. 
z' J, ^_^_' 

4tT z'2 4. (2/ _ s)2 I + 2'2 .j. (y _ 5)2 

Wi= - 
K y-S 
477 Z'2 + (2/ — 5)^ 

1 + 
X 

Va;'^ -f: 

Similarly the velocity components at P due to the circula¬ 
tion K round the trailing vortex A^B' are 

^3 = 

__f. , 1 
* 47r z'2 + (y + sY ( ^/x'^ + z'a + (y + sf] 

, = ^ . |i + - - _' 
* 47r 2'2 + {y + 5)21 vV2 + z'2 + (y + sf. 

The components of the induced velocity at P, due to the 
aerofoil and its trailing vortices, are obtained as the sums of 
the expressions given above: 

== ^/^, 

w = Wi-\- W^-^- 1^3. 

The detailed examination of these expressions will be con¬ 
fined to the regions of special interest, i.e. to points lying in 
the lateral plane {x = 0) and to points on the axis of x. 

The induced velocity is proportional to the circulation Jf, 
which is related to the lift of the aerofoil by the equation 

2spVK^L^Cl,\pV^S, 
K S 
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This last expression is equal to the normal induced velocity 
at an aerofoil with elliptic loading (cf. 11*3) and it is 

convenient to express the induced velocity components at 
the general point P as multiples of this velocity . 

12*21. The lateral 'plane. 

The longitudinal component of the induced velocity at a 
point of the lateral plane {x ^ 0) is 

u=Ai___y-^ 1 
4772 (V2j2 ^ + (y — 5)^1 ’ 

and for points on the axis of z the expression reduces further 
to 

K 8 
R = -- 

277 2 -f 

”” 2z\/zr‘ + 8^ 477^9^ 

The longitudinal component of the velocity of the air relative 
to the aerofoil is (F — \i) and is therefore increased above the 
aerofoil, where z and u are negative, and is decreased below 
it. The variation of the correction to the longitudinal velocity 
is shown by the following numerical values: 

~ = 1*42 0*62 0*35 0*11. 

For an aerofoil of aspect ratio 6 the velocity has the value 
0*053 FC^,. Thus the correction to the longitudinal velocity 

is only of the order of 2 % at a depth below the aerofoil 
equal to the semi-span when the lift coefficient has the large 

value 0*5. 

12*22. The lateral and normal components of the induced 
velocity at a point of the lateral plane {x = 0) are respec- 

“y _K_iayz_ 
^ 27r (y* + 2* + 5*)* — 

U) = — 
K 8{y^-z^- «*) 

277 (y* + 2* + a*)*® - 
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The denominator of these two expressions is essentially 
positive and hence the lateral component of the velocity is 
directed inwards above the aerofoil and outwards below it, 
while the sign of the normal component depends on that of 
(i/2 - 2:2 _ ^2)^ 

At large distances from the aerofoil the expressions tend 
to the values 

^ ~ 277 (i/2 -}- ~ (y2 -j- 22)2 Stt * 

K s (y2 -^2) ^ ^ y2_^i s 

277 (y2 4- 22)2 ^y2 2;2)2 877 

Also on the axis of z the normal component of the induced 
velocity is , 

W ^ ^ - -r 
277 + 6‘2 2 z2 4- ^2 

and has the following numerical values: 

I f 12. 

- = 0-45 0-35 O-aS 0-10. 
Wo 

For an aerofoil of aspect ratio 6 the velocity has the value 
0*053FCx, and at a depth below the aerofoil equal to the 
semi-span the downward velocity is 0*013276^^, representing 
an angle of downwash of O'TS^C^^. 

12*23. The longitudinal axis. 

At a point on the axis oi x {y ^ z — 0), the longitudinal 
and lateral components of the induced velocity are zero and 
the normal component has the value 

K s ^ K \ ] 

xVx^ -f 52 27tS \ Vx^ + 52J 

K f Vx^^T^) 

‘^2775!^ X r 

In front of the aerofoil the normal velocity is negative and 
the air is flowing upwards to meet the aerofoil. Behind the 



THE FLOW ROUND AN AEROFOIL 162 [oh. 

aerofoil the normal velocity is positive, and at a distance I 
behind the aerofoil the angle of downwash e is 

e = Tr = 

w 
V 27tsF 

1 X ^ - I + ; - 

Writing 

u 
2| ' r 

_s 
4775* 

for the angle of downwash corresponding to the standard 
induced velocity Wg, the expression for the angle of down- 

wash behind the aerofoil becomes 

If,. 5* 
' == ^ A + 2 ' I 

and has the following numerical values: 

^0 
= 2-08 1-40 

1 

1-21 

2, 

106. 

12-3. Elliptic loading. 

The flow pattern has been considered hitherto on the 
assumption that the circulation has a constant value across 
the span of the aerofoil. This condition is not satisfied by 
any aerofoil, but the actual distribution of circulation across 
the span can always be built up by superimposing a number 
of simple “horseshoe'' systems (cf. 10*21 and fig. 77). In 
order to derive the corresponding values of the induced 
velocity at any point it is necessary to replace the length 
8 in the formulae of 12*2 by a coordinate tj measured along 
the span of the aerofoil, to replace the circulation K by 

— dr), and to integrate the expressions from ry = 0 to 

7) ^ 8. This integration is however extremely complex in 
general. 
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In the case of elliptic loading (cf. 11*3), the circulation at 
any point of the aerofoil is 

and the normal induced velocity at the aerofoil is 

Wq = VA^. 

Hence K = 4wqV s- — 

dK __ 4,WqT] 

dr) Vs^-r)-' 

12-31. Tlie normal axis. 

The normal induced velocity at a point on the axis of z 
1 the cas 

the form 
in the case of uniform loading has been obtained in 12-22 in 

w ■■ 
K 8 
27T 

and hence for elliptic loading 

J 0 

W ■■ JJ - dn 
J 0 StT — 7)'^ -f- 

which can be integrated simply by means of the substitution 
7) = s sin 6 and gives 

w = Wq(i- 
V Vz2-fs2/ 

The numerical values given by this formula are: 

^ = 0-68 0-45 0-29 0-11 
Wo 

and a comparison with the values given in 12-22 for uniform 
loading shows that at a depth below the aerofoil equal to 
the semi-span the difference in the induced velocity is 
0-042/;o. This difference is negligible, for it corresponds to a 
difference of only in the angle of downwash for an 

aerofoil of aspect ratio 6. 
11-2 
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When the distance from the aerofoil is large, the normal 
induced velocity tends to the value 

both for uniform and for elliptic loading, illustrating the 
general theorem that at large distances from an aerofoil and 
its wake the induced velocity depends only on the total lift 
and is independent both of the span ai\d of the form of the 
load grading curve. 

12*32. The lateral plane. 

In the case of elliptic loading the flow in the lateral plane 
(x = 0) can be obtained from the fact that the normal in¬ 
duced velocity has a constant value Wq across the span of 
the aerofoil. The flow is therefore identical with the two 
dimensional motion caused by a line of length 2^ moving 
normally to itself with the velocity Wq. The stream function 
of tliis flow is given in 6*23 and the flow is illustrated in 
fig. 44, Writing . . , 
° ® 5 sin A cosh fly 

z ^ s cos A sinh /x, 

the normal velocity to can be shown to be 

f - sinh II cosh ii ) 
= U’o i 1-, 2 --2. y. 

( cosh^ fi — Bin^ Aj 

Fig. 92. 
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The numerical values of w deduced from this formula for 
points in the neighbourhood of the aerofoil are given in 
table 16 below and are shown in fig. 92. 

Far from the aerofoil the following limiting values are 
obtained: i i y = ^sef^ sin A, 

z = ^se>^ cos A, 

^ ; 2e~^ (cos* A — sin* A) 
M’n 

s* ?/* 

or w= — 

2 (2/* + 2*)*’ 
2/*-2* SVCr^ 

(V^ + 2*)* 'Stt ’ 

which is the same as the limiting value obtained in 12-22 
from the assumption of uniform loading. 

Table 16. 

Values of wjwft- 

vh = 0 0-25 050 0-75 0*90 MO 1*25 1*50 

2:/5=» 0 100 1*00 100 100 1*00 1*40 0*67 0*34 
0-1 0-90 0-89 0*85 0-68 0*20 - 0*92 0*60 -0*33 
0*2 0*80 0*79 0*71 0*47 0*07 -0*49 -0*45 -0*30 
0-3 0*71 0*69 0*60 0*35 007 -0*27 -0*32 -0*25 
0-4 0*63 0*60 0*50 0*29 0*09 -0*14 -0*21 -0*21 
0-6 0*65 0-53 0*43 0*25 0*10 -0*07 -014 -0*16 

12-33. The longitudinal axis. 
The angle of downwash at a point on the axis of x in the 

case of uniform loading has been obtained in 12-23 in the 
form 

K 
e =; 2nsV 

and hence for elliptic loading 

4wo 

1 + r 

J ( 

1 
1 + 

0 2TrV '>/— 7]^ 

f* f, . Vz^*) 

Vz*-f ■ 
l 

drj 

di) 
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Substituting = s cos d, 

1 -ifc® 

this integral becomes 

e _ 2 fi ^ /l —l:®sin®0 

ro~wjo( V \~k^ 
dd 

= 1 + 
E 

wVl -/k*’ 

where E is the complete elliptic integral 
TT 

E ^ [ Vl — P sin^ Odd, 
Jo 

Numerical values of the angle of downwash deduced from 
this formula are: 

J S 1 2 

- = 3-23 2-43 2-22 2-06 
«o 

These values are consistently larger than those deduced from 
the assumption of uniform loading and tabulated in 12-23. 
Moreover, they tend to the limit 2^0 instead of cq as Z tends 
to infinity. Neither of these sets of values can be regarded 
as satisfactory. They are based on the assumption that the 
trailing vortices extend backwards indefinitely as straight 
lines, and to obtain a reliable estimate of the angle of down- 
wash behind an aerofoil it is necessary to take account of the 
fact that the sheet of trailing vortices is unstable and rolls 
up into a pair of vortices. 

12-4. Angle of doumwash. 

The formulae for the normal induced velocity to on the 
longitudinal axis, which have been developed in the pre¬ 
ceding paragraphs 12-23 and 12-33, are based on the assump¬ 
tion that the trailing vortices extend backwards indefinitely 
as straight lines. Actually the trailing vortex sheet is un¬ 
stable and rolls up into a pair of vortices whose distance 
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apart (2^') is rather less than the span (2s) of the aerofoil. 
The strength of each of the resulting vortices will clearly be 
equal to the magnitude of _ 
the circulation K round r__ 
the centre of the aerofoil. ^ 
At points distant from the _ I 
aerofoil and its wake this ^ I 
modified vortex system will ^ _ 
be equivalent to that of an 
aerofoil of span 2^' with Fig. 93, 
uniform circulation K and 
hence the distance s' can be determined from the equation 

L = 28'pVK. 

Now any form of load distribution across the span of an 
aerofoil can be represented as in 11*2 by the series 

K = ^sVYiAn sin nd, 

and then 

Hence 

L = 27t5VFMi, 

5' __ 2/ _ TT Ai 

's “■ 2spVR " i (A~^ A AA)* 

The normal induced velocity w; at a point on the longi¬ 
tudinal axis at some distance behind the aerofoil will be 
estimated more accurately by the use of this modified vortex 
system than by the assumption which ignores the rolling up 
of the sheet of trailing vortices. Thus the vortex system is 
assumed to^e that of an aerofoil of span 2^' with constant 
circulation K, and the normal induced velocity, according to 
12-23, become. ^ 

=_f 1 + ^ 
47r5'2pFV ^ 

The angle of downwash is therefore 

I }’ 

Is*/, , VZ* + 5'*\ 
i / 
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where 

and the limiting value of the angle of downwash as the 
distance I tends to infinity is 

The values of — for rectangular aerofoils can be calculated 

from the results given in table 11 of chapter xi and are 
recorded in table 16 below together with the corresponding 

values of ^ at the point I == s and the limiting values as I 
^0 

tends to infinity. 
Finally, the rate of change of the angle of downwash with 

angle of incidence is 

S dCr^ 
doL 25'2\ I J doL 

€Q7rA' 

and the value of this expression at the point I ^ s is also 
given in table 16. 

The definition of the length I is somewhat uncertain since 
the calculations are based on the assumption that the aerofoil 
can be replaced by a lifting line and the position of this line 

Table 16. 

Angle of downwash. 

Aerofoil s'js c/6o (limit) c/Cq {1 -~s) de/doL (l = s) 

Ellipse . 0-785 1-62 1-84 0-44 {A = Oo) 

Rectangle: Aja^ « 0-5 0-844 1-40 1-62 0-61 
0*75 0-862 1-35 1-57 0-45 
10 ' 0-875 1-31 1-52 0-35 
1-25 0-887 1-27 1-48 0-29 
1-5 0-896 1-25 1-46 0-25 
1*75 0-903 1-23 1-44 0-21 
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in the aerofoil has not been defined. Clearly, however, the 
lifting line should pass through the centre of pressure of the 
aerofoil and the length I is therefore the distance behind the 
centre of pressure of the aerofoil. 

The variation of the angle of downwash with the distance 
behind the aerofoil is shown in fig. 94, where the curves are 
drawn for an elliptic aerofoil and for a rectangular aerofoil 
of aspect ratio A = aQ. The broken curves represent the 
corresponding values for uniform and elliptic loadings when 
the rolling up of the sheet of trailing vortices is ignored. 

Angle of Downwash 

The results given in this chapter refer in all cases to a 
monoplane aerofoil, but the flow pattern for a biplane system 
can be derived by adding the effects due to the two separate 
aerofoils. In particular the angle of downwash behind a 
biplane system consisting of two rectangular aerofoils of 
aspect ratio A will be nearly double that behind a monoplane 
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aerofoil of the same aspect ratio at the same lift coefficient. 

On the other hand, the value of ^ will not be doubled owing 

dC 
to the decrease in the value of for a biplane. Using the 

numerical values given in 11'42 and 13-24 for rectangular 

aerofoils of aspect ratio 6, the value of ^ is found to be 

roughly 0-35 for the monoplane and 0-55 for the biplane. 



CHAPTER XIII 

BIPLANE AEROFOILS 

13‘1. Ttvo-dimensional motion. 

The problem of the two dimensional flow past a pair of 
aerofoils forming a biplane system is very complex and 
complete solutions have been obtained only for the case when 
the aerofoil sections are straight lines. A brief outline only 
is given here to indicate the method of analysis and the general 
nature of the results obtained. 

13*11. Tandem aerofoils. 

Consider first a tandem system formed by two equal 

segments AB y 
and A'B’ of 
the real axis j 
with their ex¬ 

tremities at ^ ^^_? 
the points — ^ ^ 1 ? P 

Fig. 95. 

x==±p, ±q. 

The most gen¬ 
eral type of ir- 

. rotational flow past this system can be expressed in the form 

dw — m^ 
U — tv = ~y- = U + U 

dz V(p^ — z^) {z^ — q^) 

C_2 ^_n_ 
^ V{p^ - z^) {z^ - q^y 

where the four terms represent respectively the flow due to 
a uniform velocity U parallel to the axis of x, a uniform 
velocity [/' parallel to the axis of y, equal circulation C 
round each aerofoil, and positive circulation C' round the 
first aerofoil and negative circulation C' round the second 
aerofoil. The quantities m and n are constants whose values 
are determined later as functions of p and q. 

The general expression represents a possible irrotational 
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motion since the potential function is a function of the 
complex variable 2, it has the correct limiting value as z 
tends to infinity, and it gives zero normal velocity at the 
surface of the aerofoils and finite velocity at all points except 
the ends of the aerofoils. The sign of the radical 

V(p2 - - (f) 

must be chosen in accordance with the vectorial interpreta¬ 
tion of the expression. The sign is positive on the lower surface 
of AB and on the upper surface of A'B\ and is negative on 
the opposite surfaces. 

The value of the constant m is determined from the con¬ 
dition that there is no circulation round either aerofoil for 
the simple vertical flow f/', and the value of the constant 
n from the condition that the circulation round the aerofoil 
AB is equal to G' for the fourth type of flow. These values are 

m = V 

n = 
TT P 

2 IV 
where E and K are the complete elliptic integrals for the 
modulus defined by the equations 

p^ 

E 
— k'^x^ , ^dx, 

dx 

)V(i ■x^){\-h'^x^) 

The points a: = ± m are the stagnation points of the simple 
vertical flow on the surface of the aerofoils. 

Fig. 96. 
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To obtain the flow for angle of incidence a which leaves 
the trailing edges B and B' smoothly, it is necessary to write 

U = — V cos U' = V sin 

and to choose the values of G and C' so that the numerator 
over the radical in the general expression for {u — iv) is zero 
at the points B and B'. Hence 

(7 = 77 (p — ^) 7 sin a, 

C' - 2 {pE - qK) V sin a. 

The resultant force on the tandem system is the lift 

L = 2pVC ^ 2tt {p — q) pV^ sin a, 

corresponding to the total circulation 20, and the tandem 
system therefore gives the same total lift as a single aerofoil 
of the same total chord 2 (p — r/). 

The forces on the individual aerofoils can be determined 
by evaluating the integral 

round the surface of each aerofoil in turn. By applying this 
method it is found that the front aerofoil AB experiences a 
greater lift force than the rear aerofoil A'B\ and that the 
rear aerofoil experiences a drag force which is balanced by 
an equal forward force on the front aerofoil. 

13-12. The unstaggered biplane. 

An imstaggered biplane system, formed by two equal 
parallel lines, can be derived from the tandem system by the 
conformal transformation 

dz ^ - » 

z pla ^ plane 

B'- ivT 
aM. 

M . 

m'- 
lA' 

M- 
|A 

Fig. 97. 
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and the position of the corresponding points in the two planes 
is shown in fig. 97. In particular the extremities of the bi¬ 
plane aerofoils correspond to the stagnation points z = ± m 
of the tandem system, and the mid points of the biplane 
aerofoils to the extremities 2 = ± p, ± q of the tandem 
aerofoils. The gap h of the biplane system is obtained as the 

/jy 
integral of from B to A\ and the chord c as twice the 

jy 

integral of from M to A. The respective values are ex¬ 

pressed in elliptic integrals in the form 

where k' 
V jr — 

E {k, t) = 
JqV l-x^ ’ 

F{k,r)= r _. . 
Jo V{1 -k^x^) 

Far from the aerofoils the transformation is ^ == — tz and 
hence to obtain the flow inclined at angle a to the chord of 

Fig. 98. 
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the biplane the limiting value of the potential function must 

— V (cos a -f i sin a) $ 

= — F (sin a — i cos a) z. 

The general flow in the z plane which will convert into the 
desired flow in the f plane is now 

dw 
dz 

— F sin a — F cos a 
2:2 _ ^2 

~q^) 

^ 1 Gz C n 
7r \/_ 2:2) (2;2 _ q^) ’ 

wliere m and n have the values determined previously. In 
order to obtain finite velocity at the trailing edges M and M' 
of the biplane aerofoils, the numerator over the radical must 
bo zero at the points M and M' of the tandem system. 
Allowing for the change of sign of the radical from M to M\ 
this condition gives 

C’ = 0, C = —®-~ 
tn 

and the circulation has the same value round both aerofoils. 
The resultant force on the biplane system is the lift force 

2pFG- 27rpF2sina 
V(p2 — m^) (m^ — q^) 

m 

and the lift coefficient of the biplane may therefore be written 

in the form ^ . 
Ci^ = 2B7r sin a, 

where 
^ V{p^ — m2) (m2 — q^) 

me 

The factor B represents the reduction of the lift coefficient 
of an unstaggered biplane compared with that of a mono¬ 
plane at the same angle of incidence, and values of B are 
given in table 17 below. For small angles of incidence the 
result may be expressed in the alternative form of the increase 
of the angle of incidence required with a biplane to obtain 
the same lift coefficient as that of a monoplane. If a is the 
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angle of incidence of the biplane and that of the mono¬ 
plane, it can easily be shown that 

a = otfl -f 

where 

0-075 

0-050 

0-025 

0-50 0-75 1-00 

h/c 

Fig. 99. 

1-25 1-50 

The forces on the individual aerofoils of the biplane system 
can be determined by the same method as in the case of the 
tandem aerofoils, and it appears that the upper aerofoil 
experiences a greater lift force than the lower aerofoil. 

Table 17. 

Correction factors for a biplane. 

h/c B p 

0-50 0-730 0-059 
0-75 0-800 0039 
1-00 0-855 0-027 
1-25 0-895 0-019 
1-60 0-920 0-014 
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13*13. The general biplane. 

A staggered biplane system, formed by two equal parallel 
lines, can be derived from the tandem system by the con¬ 
formal transformation 

dz 
— sin 0 4- cos 0 

V— 2^) (2;2 — * 

where Q is the angle of stagger of the biplane. More generally 
also a biplane system with two unequal parallel aerofoils can 
be obtained by starting with a tandem system with aerofoils 
of unequal length and by applying a suitable conformal 
transformation. 

The analysis in these more general cases becomes highly 
complex and in all cases the results obtained apply only to 
straight line aerofoils. It is useful therefore to develop an 
approximate method of solving the problem of a biplane 
system which will give a clearer insight into the mechanism 
of the interference between the two aerofoils and will provide 
a method of estimating the effect of the shape of the aerofoil 

section. 
The interference experienced by one aerofoil is due to the 

distortion of the flow caused by the other aerofoil, and an 
approximate method of attacldng the problem may be based 
on the conception of replacing the disturbing aerofoil by a 
point vortex of the correct strength at the centre of pressure 
of the aerofoil. This method should be satisfactory for large 
values of the gap-chord ratio and its accuracy in general can 
be tested by comparing the results which it gives for straight 

line aerofoils with the ac¬ 
curate results of table 17. 

13*14. Approximate solu¬ 

tion. 

The circulation K round 
the lower aerofoil of the 
biplane system is assumed 
to be concentrated at the 
centre of pressure O, The 
flow in the neighbourhood 

I 

I 

4l1!< 

Fig. 100. 
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of the upper aerofoil due to this circulation K and to the 
uniform stream V will be curved downwards. At the point 
P of the upper aerofoil, at distance x behind the point G' 
which is vertically above the point (7, the normal induced 
velocity due to the circulation K is 

_K ^ 
^ 277 + 0:2’ 

and the radius of curvature R of the stream lines due to the 
circulation K and the uniform stream V can be obtained in 
the form 

R dx 277 {h^ + 

by equating the alternative forms 
j/2 dw 

by equating the alternative forms and V of the 

normal acceleration. There is also an increase of the longi¬ 
tudinal velocity in the neighbourhood of the upper aerofoil, 
but the effect of tins increase on the characteristics of the 
biplane is exactly balanced by an equal decrease for the 
lower aerofoil, and hence the variation of the longitudinal 
velocity may be ignored. 

The interference experienced by the upper aerofoil will 
now be represented by the normal induced velocity at the 
centre of the aerofoil and by the curvature of the stream 
lines in its neighbourhood, and in developing approximate 
expressions for this interference the gap-chord ratio of the 
biplane will be assumed to be large. If 0 denotes the centre 
of pressure coefficient of the lower aerofoil, the normal in¬ 
duced velocity at the centre of the upper aerofoil may be 
taken to be jr 

and the radius of curvature to be 

V ^ K 
R 277^2- 

The lower aerofoil experiences the same interference effects 
due to the circulation round the upper aerofoil and these 
expressions may therefore be applied to the biplane as a 
whole. 
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The circulation round an aerofoil section is equal to JC^cF 
and the centre of pressure coefficient can be replaced by the 
moment coefficient, Cj^ = — dCi^. Hence the normal induced 
velocity becomes 

and to obtain the same lift as a monoplane, the angle of 
incidence of the biplane must bo increased by the small 

angle 

A further correction is required on account of the curvature 
of the stream lines. A circular arc aerofoil of radius 2?, 

chord c and camber ^ would behave in the curved 

flow exactly as a straight line aerofoil in a uniform flow, and 
hence the curvature of the flow is equivalent to a reduction 
yo of the effective camber of the aerofoils. But for a circular 
arc aerofoil of camber y, 

Cl = 277 (a + 2y), 

Cm-^ICl-^Y. 

and hence to maintain the same lift coefficient the angle of 
incidence must be increased by 2yo and there will be a corre¬ 
sponding increase of nyg in the moment coefficient. Also the 
value of yo is 

c _ Kc 1 
3277- 

Adding these two corrections, the angle of incidence of the 
biplane must exceed that of the monoplane by 

“s© 
where is the value of the moment coefficient at zero 
lift. Also the slope of the curve of moment coefficient against 

12-3 
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lift coefficient for the individual aerofoils of the biplane 

will be 

These expressions are only approximations to the true values 
and have been obtained on the assumption that the gap- 
chord ratio is large. A comparison with the accurate values 
for straight line aerofoils, for which CVo is zero, is obtained 
by comparing the values of j3 from table 17 with the approxi¬ 

mate expression . 

Table 18. 

hjc 1 (clhf 
OTT 

0-50 0059 0159 
0*75 0039 0-071 
1-00 0027 0-040 
1-25 0019 0-026 
1-50 0014 0-018 

The approximate formula gives values which are too large 
for the ordinary type of biplane system, but it may possibly 
be used to indicate the effect of a change of aerofoil section. 

On this basis the angle of incidence of a biplane will be taken 

to be « = a„ + iS + 2C,j^) 

= 00+^ (fC/. + 
This correction from monoplane to biplane is quite im¬ 

portant. For a gap-chord ratio of unity the slope of the 
curve of hft coefficient against angle of incidence is reduced 
from 6-28 to 6*36, and that of the moment coefficient against 
lift coefficient from 0*250 to 0*219. 

13*2. Biplane of finite span. 

When the biplane system consists of two aerofoils of finite 
span, each aerofoil behaves in a manner similar to a mono¬ 
plane aerofoil and gives rise to a sheet of traihng vortices. 
The disturbance at any point is then the induced velocity 
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due to the circulation round the aerofoils and to the two 
sheets of trailing vortices, and the normal induced velocity 
at any section of one aerofoil 
exceeds that which would occur 
for a monoplane aerofoil by the 
induced velocity of the vortex 
system of the second aerofoil. 
In calculating this additional 

induced velocity, the trailing 
vortices may be assumed to 
extend down stream as straight 
lines in the same manner as Fig. 101. 

for a monoplane aerofoil. 
The determination of the induced drag of a biplane system 

is simplified by Munk’s equivalence theorem for stagger*, 

which states that the total induced drag of any multiplane 
system is unaltered if any of the lifting elements are moved 
in the direction of motion, provided that the attitude of the 
elements is adjusted to maintain the same distribution of lift 
among them. The truth of this theorem follows at once from 
the fact that the work done by the induced drag is equal to 
the rate of increase of kinetic energy in the trailing vortex 
system (see 10*3), and this kinetic energy is unaffected by 
a geometrical transformation of the type considered in the 
theorem. By virtue of this theorem any staggered system 
can be replaced by a corresponding system of zero stagger 
which will have the same relationship between total lift and 
drag. The distribution of drag between the aerofoils will be 
different in the two cases. In a biplane system with forward 
stagger the upper aerofoil will have less drag and the lower 

aerofoil will have more drag than in the corresponding 

biplane system with zero stagger and with the same dis¬ 
tribution of lift between the two aerofoils. 

In an unstaggered biplane system the induced drag of one 
aerofoil due to the influence of the trailing vortices of the 
second aerofoil is equal to the induced drag of the second 

♦ Isoperimetrische Ausgaben aus der Theorie des Fluges, Gottingen dis¬ 
sertation, 1918: translated as NACA, 121, 1921, 
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aerofoil due to the trailing vortices of the first aerofoil. For 
each aerofoil can be divided into a large number of small 
elements, each of wliich carries the same small lift force SJD, 
and if and Pg are two such 
elements on the two aerofoils 
the normal induced velocity 
at Pj due to the trailing 
vortices of Pg will be equal to 
the normal induced velocity 
at Pj due to the trailing 
vortices of . Since the lift 
forces on the elements are equal, so also will be the induced 
drag forces due to the element of the other aerofoil. This 
relationship is true for every pair of elements and by adding 
the effects of all the elements of the first aerofoil on the 
element Pg, it appears that the induced drag of the element 
Pj due to the trailing vortex system of the first aerofoil is 
equal to the induced drag of the first aerofoil due to the 
trailing vortices of the element Pg. Finally by adding the 
effects of all the elements of the second aerofoil the truth of 
the theorem is established. 

13*21. The induced drag. 

By virtue of Munk’s equivalence theorem for stagger it is 
sufficient to consider the case of a biplane of zero stagger. 
Also the lift of each aerofoil will be assumed to be distributed 
elliptically across the span of each aerofoil, since the load 
grading curves of most aerofoils approximate closely to this 
form and the mutual interference of the two aerofoils will 
be determined with sufficient accuracy by this method. 

Let h be the gap of the biplane, and the semi-spans of 
the two aerofoils, and the lift forces on the two aerofoils. 
Then the induced drag forces on the two aerofoils due to 
their own trailing vortices are respectively 

W 
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and the induced drag of each aerofoil due to the trailing 
vortices of the other aerofoil will be of the form 

T) — ^^1^2 
27TS,s^pV^^ 

where a is a function of the lengths A, and S2. 
The values of the coefficient a can be determined by a 

simple graphical method. Fig. 92 shows the normal velocity 
at any point above or below a wing with elliptic loading, and 
therefore determines the normal induced velocity which 
occurs at any point of the first aerofoil due to the trailing 
vortices of the second aerofoil. The mutual induced drag D^2 

can then be determined by evaluating the integral 

across the span of the first aerofoil. Without any loss of 
generality the length may be assumed to be less than or 
equal to the length S2. The values of the coefficient a are then 

y(s,+s2) 
Fig. 103. 
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h 
determined as a function of the two parameters — and ———, 

which are the ratio of the spans of the two aerofoils and the 
ratio of the gap to the mean span. Numerical values* of a 
are given in table 19 and fig. 103. 

Table 19. 

Values of a. 

7t/{«i + s,) = 0 0-05 0-10 0*15 0-20 0-30 0-40 

1-000 0-780 0-655 0-561 0-485 0-370 0-290 
OS 0-800 0-690 0-600 0-523 0-459 0-365 0-282 
0-6 0-600 0-540 0-485 0-437 0-394 0-315 0-255 

The induced drag forces of the two aerofoils of the un¬ 
staggered biplane are respectively 

Dn — .^22 ^12 — 
I _ 

S,sJ> 27rpV^ 

and the total induced drag of the biplane is 

D = 
2ttpV^ Ui* + ■ 

For a given total lift (L, + L^) the induced drag is a 
minimum when , / v 

h: = ^1 - g'^2) 

* L2 ^2 (^2 — ^^1) 

and this equation defines the best distribution of lift between 
the two aerofoils. The corresponding minimum induced drag 
is 

£> = 
1 

277/3 F® — 2aai52 + s^' 

* L. Prandtl, “Tragfliigeltheorie," QoUingen Nachrichten, 1919. 
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13-22, Aerofoils of equal span. 

For a biplane with aerofoils of equal span the minimum 
induced drag occurs when each aerofoil carries the same hft 

and is given by the equation 

1 + 0“ 
D = 

2^s^pV^ 2 

or Cj)~ 
S -{• a 

Now for a biplane the aspect ratio A is defined as the value 

of ~ in order to agree with the definition for a monoplane 

when the two aerofoils have the same dimensions. The formula 
for the induced drag coefficient may therefore be written in 
the alternative form 

The induced drag coefficient is increased by the factor 
(1 + or) above its value for a monoplane aerofoil of the same 

aspect ratio. 
This formula for the induced drag coefficient can be used 

with good accuracy over a wider range than that to which 
it strictly appUes. The effect of a small change in the distribu¬ 
tion of the lift force between the two aerofoils is quite un¬ 
important, for if Li = XL2 the general formula for the induced 
drag of a biplane with aerofoils of equal span may be ex¬ 
pressed in the form 

L2 

2775 V F2 

1 -f a 1 — a 

2 ^ 2” 

Even with the rather extreme values x = 1-25 and a = 0-4 
the additional term represents an increase of only 0-5 % 
in the induced drag over its minimum value, and it is suf¬ 
ficiently accurate therefore to use the expression for the 
minimum induced drag in most practical cases. 

The formulae have been developed on the basis of elliptic 
loading across the span of each aerofoil, which should be 
sufficiently accurate for estimating the mutual interference, 
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but it may be desirable to retain the correcting factor (1 + S) 
for the induced drag of the aerofoils due to their own trailing 
vortices, which occurs in the theory of monoplane aerofoils 
(see 11‘21). The induced drag coefficient of a biplane with 
aerofoils of equal span will then be expressed in the form 

C'z, = ;^(l + 8+a)<7i2. 

The total drag coefficient of a biplane exceeds the induced 
drag coefficient by the profile drag coefficient of the aerofoil 
section, and hence the total drag coefficient of a biplane with 
aerofoils of equal span is finally 

Cd = ^ (1 + 8 + a) Cj^, 

and exceeds that of a monoplane aerofoil of the same aspect 
ratio by the amount 

13*23. Angle of incidence. 

In order to obtain the same lift coefficient from a biplane 
system as from a monoplane of the same aspect ratio, it is 
necessary to use a larger angle of incidence, partly on account 
of the extra induced velocity and partly on account of the 

direct interference between the aerofoils which occurs in two- 
dimensional motion. For a biplane with aerofoils of equal 

span the increase in the drag coefficient over the monoplane 

aerofoil of the same aspect ratio is oCif, and the corre- 

spending increase in the angle of incidence will be simply 

correction for the direct interference 

between the aerofoils has been obtained previously (13* 14) in 
the form p (fCjr, + 2(7^^), and hence the total increase in the 
angle of incidence is 
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Finally, the angle of incidence of the biplane may be 
expressed in the form 

a = Oq + (1 + Qd + ^ (fCjr, + 2Cj^), 

where is the angle of incidence of the aerofoil section in 
two-dimensional motion which gives the lift coefficient Cl, 
and T is the factor which occurs for a monoplane aerofoil in 
the general case (see 11*22). 

13*24. Summary, 

The characteristics of an unstaggered biplane with aerofoils 
of equal span are given by the equations 

a == ao + (1 + T + a) ^ (fCj^ + 2(7^), 

C!d = (1 + S 

where Oq and are the characteristics of the aerofoil 
section in two-dimensional motion corresponding to the lift 
coefficient Cjr, ^ is the aspect ratio, j8 and a are the biplane 
coefficients given in tables 17 and 19, and t and S are the 
monoplane coefficients of chapter xi depending on the plan 

form of the aerofoils. 
In rough calculations r and 8 may be ignored and Cj^f may 

be taken to be equal to — \Ci^, so that the expressions for 

the angle of incidence and drag coefficient of the biplane 

become approximately ^ 

+ + cr)(7^ + 

Cd=C'z>, ++ 

These formulae for the characteristics of an unstaggered 
biplane with aerofoils of equal span are valid only over the 
normal worldng range of incidence, since the biplane attains 
a lower maximum value of the lift coefficient than the corre¬ 
sponding monoplane. The reduction of lift at a given angle 
of incidence in two-dimensional motion is represented by the 

factor B of table 17, and this factor gives a rough estimate 
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of the reduction which may also be expected in the maximum 
lift coefficient. 

For a biplane formed by two rectangular aerofoils of aspect 
ratio 6 and with gap-chord ratio unity, the values of the 
various coefficients are 

T= 0-163, 8 = 0-046, 

j8 = 0-027, a = 0-535, 

and hence, if Cj,; is taken to be equal to — -JCx,, the formulae 

Co = Co, + 0-084(7J,^ 

a = Og -h 0-117Ci, 

or, if the angle of incidence is measured in degrees, 

a = oo -i- Q-rCo. 
The slope of the curve of lift coefficient against angle of 
incidence is 3-62 per radian instead of 6-28 for the aerofoil 
section in two-dimensional motion and 4-54 for a monoplane 
rectangular aerofoil of the same aspect ratio. 



CHAPTER XIV 

WIND TUNNEL INTERFERENCE 

ON AEROFOILS 

14*1. The limited extent of the stream of air in a wind 
tunnel, whether of open or of closed working section, imposes 
certain restrictions on the flow past an aerofoil or other body 

under test, and the determination of the magnitude of this 
interference is of considerable importance, since it is found 
that certain corrections must be applied to the aerodynamic 
characteristics of an aerofoil tested in a wind tunnel before 
they are applicable to free air conditions. This interference 
correction is independent of and additional to any correction 
which may be necessary to allow for the change of scale from 
a model aerofoil to an actual aeroplane wing. 

The theory of the interference has been developed by 
Prandtl in his second aerofoil paper* by considering the 
conditions which must be satisfied at the boundary of the 
stream. The continental wind tunnels usually have an open 
working section and the condition of constant pressure must 

be satisfied at the boimdary of the stream. British wind 
tunnels, oh the other hand, have a closed working section 
of square or rectangular cross section, and the boundary 
condition takes the form that the component of the velocity 
normal to the tunnel walls must be zerof.This boundary 
condition can be satisfied analytically by the introduction 
of a suitable series of images of the model, and the inter¬ 
ference experienced by the model is the induced velocity 
corresponding to the vortex systems of these images. The 
problem of wind tunnel interference is tlaerefore the choice 
of the appropriate system of images and the determination 
of the corresponding induced velocity experienced by the 

model. The analysis is simplified by the fact that, when the 
span of the model aerofoil does not exceed three-quarters of 

* “Tragfliigolthoorio,” Gottingen Nachrichteny 1919. 
•j- See Note 12 of Appendix. 
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the breadth of the wind tunnel, it is sufficiently accurate to 
assume that the lift is distributed uniformly across the span 
of the aerofoil and that the whole aerofoil experiences the 
induced velocity which occurs at the centre of the wind 
tunnel. 

14-2. Tunnel of circular section. 

Consider an aerofoil of semi-span s and of area aS in a wind 
tunnel with closed circular section of radius B, On the 
assumption of uniform lift distribution across the span of the 
aerofoil, there will be two trailing vortices only, each of 
strength K, the circulation round the wing. In the cross 
sectional plan (fig. 104) these vortices will be situated at A 
and J? on a diameter of the circle representing the boundary 
of the tunnel and will be at distance s from the centre of the 

Fig. 104. 

circle. The images A' and B' will lie outside the circle on the 
jR2 

same diameter at distance — from the centre. The strength 

of the images will be the same as that of the original vortices 
but the sen^e of the circulation will be reversed. This image 
system depends on the faut that the circle is a stream line 
for the vortex pairs A, A' and B, B\ 

The induced velocity experienced by the aerofoil is the 
sum of the effects due to the vortices A' and B\ and is readily 
calculated as 

2 w ^ 
K 

4^.0 A' 
Ks 

The negative sign occurs because the normal velocity w is 
reckoned positive downwards and the effect of the images 
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is to cause an upward induced velocity at 0. By virtue also 
of the equation for the lift of the aerofoil 

= 2spVK, 

the result takes the form 
__C^SV 

^ S-nW' 

Denote by C the cross sectional area of the tunnel and by 
cj the upward inclination of the stream due to the interference 
of the boundary or of the images, and then 

w IS 

The interference effect is equivalent to an upward inclina¬ 
tion of the stream through the angle cj and in consequence 
the lift force is inclined forwards by the same angle, causing 

a reduction of the drag compared with free air conditions. 
At the same time the true angle of incidence of the aerofoil 
will be greater than the inclination of the aerofoil chord to 
the axis of the tunnel by this same angle It follows that 
the corrections which must be applied to the wind tunnel 
observations on the aerofoil to allow for the constraint of the 

tunnel walls are of the form 

AC'^ = 8§0^^ 

and, for a tunnel of circular cross section, S has the numerical 
value O'125. The angle of incidence in this formula is, of 
course, to be taken in circular measure. It will be noticed 
that the correction is proportional to the lift of the aerofoil 
and does not depend on the plan form or aspect ratio. The 
correction can therefore be applied to any wing system, 

whether monoplane or biplane. 
A more detailed analysis of the problem has been given 

by Prandtl*, in which he assumes elliptic distribution of lift 

• loe. cit. 
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etcross the span of the aerofoil and obtains the value of the 
coefficient 8 in the form 

Even when the span of the aerofoil is as large as three- 
quarters of the diameter of the tunnel, the second term 
represents a correction to the value of 8 of only 6 % ajud is 
quite negligible in practice. 

Prandtl also considers the case of a tunnel of open working 
section and finds exactly the same form for the correction 
but with the opposite sign. It appears therefore that the 
angle of incidence and the drag coefficient, at any definite 
value of the lift coefficient, are measured too high in a tunnel 
with open working section and too low in a tunnel with closed 
working section. 

14-3. Vertical and horizontal boundaries. 

In considering the case of a tunnel of rectangular cross 
section’*' it will be assumed that the aerofoil is placed in the 
centre of the tunnel with its span horizontal. The origin of 
coordinates wiU be taken at the centre of the aerofoil with 
the y axis horizontal to starboard and with the z axis down¬ 
wards. Before considering the rectangular tunnel, however, 
it is instructive to consider the effect of the vertical and 
horizontal boundaries separately. 

The system of images for vertical boundaries at distance 
6 apart is illustrated in fig. 105. The images are all identical 
with the original aerofoil and form an infinite series, uni¬ 
formly spaced along the y axis at the points y = ± mb, where 

k- - 

^^ 

Fig 105. 

♦ H. Glauerfc, “The interference of wind channel walls on the aero¬ 
dynamic characteristics of an aerofoil,” RM, 867, 1923. 
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m assumes all positive integral values. This system will 
clearly give zero velocity component normal to the vertical 
boundaries and so satisfies the conditions of the problem. 

Now from 12-22 it appears that the induced velocity far 
out along the span of an aerofoil can be taken to be 

w= — GtV, 

and to obtain the effect of the system of images, y must be 
replaced by mb and the summation made for all positive 
and negative integral values of m. The upward inclination 
of the stream due to the constraint of the boundary walls is 

therefore ^ i o 
^ ^ s ^ ^ 

V 4776^ 1771^ 246^ Cr. 

The case of horizontal boundary walls above and below 
the aerofoil is treated on similar lines. An infinite series of 
images is again required, situated on the z axis at the f)oints 
2j = i nhj but these images are of alternate sign, being 
positive like the original aerofoil when n is even, and negative 
when n is odd. The induced velocity far out along the z axis 
of an aerofoil is (from 12-22) 

and hence the effect of the whole system of images is 

A comparison of this result with the previous one shows that 
the lateral vertical boundaries exert a greater interference 
on the aerofoil than the horizontal boundaries parallel to the 
span. In each case the effect of the interference is to reduce 
the angle of incidence and drag coefficient in a wind tunnel 
compared with free air conditions. 

14-4. Tunnel of rectangular section. 

For a rectangular tunnel of breadth 6 and height Ji, a 
doubly infinite series of images is required, situated at the 
points {y = mb, z = nh), where m and n assume all positive 

r. 13 
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and negative integral values except the pair (0, 0). The lift 
of the image is positive when n is even, and negative when n 
is odd. 

The induced velocity at the point (y, z) far from an aerofoil 
is (from 12-22) 

w— — 
1 
- Ji_V 

and hence the effect of the whole system of images is to 
cause an upward inclination of the stream 

_ ^ V V / 1 \n 

^ {m^6^Tn^¥)^ 

Y V ( l)n 

where h = A6. The double summation extends over all the 
images, i.e. over all integral values of m and n except the 
pair (0, 0). No simple form has been found for the sum of 
this series, but the following method of reduction can be 
employed. Starting from the expansion* 

cot z = - + 2z 
z 

00 2 

* Hobson, Plane Trigonometry, p. 834. 
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Z = iXrTX 
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1 2Xx ^ 1 
and obtain coth Xttx = v-1-^ — \ o~^ • 

Attx 7t 1 

Then directly and by differentiation with respect to x 

QO I 

1 m* + 

2A*a;* 
f (S «•)< - A‘i» - 1& 

and by addition 

A“X“ 1 
1 (m2 + "■ 2A2a:2 2 

This result leads to the summation 

cosech^ Xttx, 

S S (—1)»», ,-r-7, = L ^ ~ — 'V ^ (— 1) cosech^ Xnn 
11 (m2 -f- Xhi^ 2A2 1 ^2 2 1 ^ ' 

= -2^,-27r^S2(-l)"pe-*^-» 

TT* 
24A2 

+ 27t2S 

and then finally 

\2y)2 00 oo 

1 1 +£2^”’’’ 

jn® — A%* 
(m* + A^w^)* 

A'^ 1 n* 

from which numerical results can be rapidly obtained, since 
it is sufficiently accurate to retain only the first term of the 
last exponential series. 

Expressing the angle of deviation of the stream in the 
form 

€i = 8^Cj^, 

13-2 
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where C is the cross sectional area of the wind tunnel, the 
following numerical values are obtained: 

Rectangular Tunnels 

h/b 
8 

1/4 

0-262 

1/2 

0-137 

1/V2 
0-119 

1 

0137 

2 

0-2G2 

4 

0-524 

These numerical values show the curious result that, for the 
range of values considered, the interference is unaltered if a 
tunnel of breadth b and height h is replaced by one of breadth 

V2A and height The best ratio of breadth to height, 

for a given cross sectional area, is ^/2 and the interference is 
then slightly less than that in a tunnel of circular section for 

which 8 has the value 0‘125. 

14*6. Dovmwash and tailsetting. 

The preceding analysis relates to the interference ex¬ 

perienced by an aerofoil or system of wings due to the con¬ 
straint of the tunnel walls, and leads to corrections which 
must be applied to the angle of incidence and drag coefficient 
measured in a wind tunnel. The interference was found to be 
of the form of an upwash angle ci and this interference will 
be increased* by an additional angle eg in the neighbourhood 
of the tailplane of a model aeroplane. In consequence the 
downwash angle e and the tailsetting aT to trim the aeroplane 
will be measured smaller in a wind tunnel than in free air 
and will require the correctioas 

Ac = + Cg, 

Aay = €g. 

To calculate the angle cg it is necessary to determine the 
induced velocity due to the system of images in the neigh¬ 
bourhood of the tailplane of the model. Consider iBrst the 
effect of a single aerofoil with uniform lift distribution across 

* Glauert and Hartshorn, “The interference of wind channel walls on 
the downwash angle and tailsetting,’* EM, 947, 1924. 
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the span at the general point {x, y,z), where x is measured 
downstream, y to starboard and z downwards. The complete 
expression for the normal induced velocity is (from 12*2) 

^ { 2/ + ^ _y _] 

K Wly + sy^ 4- x^^ H- ^{y — 

+ {l +__1 
(y + s)* + 24 VCy + sY + + zV 

_ ^JL-±^\i+-. -__1 
{y - «)* + 2^ ( ^/(y _ sy + x^ + zV ’ 

but this expression can be simplified by the assumption that 

X is of the same order as s and thatVy* + z^ is large compared 
with s. To the first order of approximation, as used in the 
preceding analysis, the value of w then becomes 

w_qp _ 1 *(2/1-22^) e/^ 
V~ 8n(y^ + z^Y ^ Stt {y^ + z^Y 

S 
where K has been replaced by C^F. 

The first of these terms is independent of x and is the 

expression which has been used previously to calculate the 
value of . The second term represents the additional inter¬ 
ference €2 experienced by the tailplane of a model aeroplane, 
and hence the value of ^2 for a tunnel of rectangular section 
must be calculated as 

_ xSCf^ V V / nn 
8776=* ZJ ^ (w^+AV)*’ 

where h — A6 as before. This result can be written in the form 

and the following numerical values have been calculated for 

the coefficient 8': 
A = 8' - 0*293, 
A == 1, 8' - 0*240. 

14*6. Summary. 

The aerodynamic characteristics of a model aeroplane 
obtained from tests in a wind tunnel with closed working 
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section require the following corrections to allow for the 

interference of the tunnel walls; 

Angle of incidence Aa = cj, 

Tailsetting Aaj- = €2, 

Downwash angle Ae = ej + 

Drag coefficient A(7^ = 

where and are defined by the equations 

ei = 8§(7i, 

xS 
8 

and S = total wing area of the model, 

X = distance of tailplane from centre of gravity, 

G = cross sectional area of the tunnel, 

h — height of the tunnel, normal to the wing span. 

AU angles are to be taken in circular measure and the 

coefficients 8 and 8' have the following values in typical 
cases: 



CHAPTBK XV 

THE AIRSCREW: MOMENTUM THEORY 

15-1. An airscrew normally consists of a number of equally 
spaced identical radial arms, and the section of a blade at any 
radial distance r has the form of an aerofoil section whose 
chord is set at an angle d to the plane of rotation. The 
blade angle 0 and the camber of the aerofoil section decrease 
outwards along the blade. If the airscrew moved through the 
air as through a solid medium, the advance per revolution 
would be 27Tr tan 6 and this quantity would define the pitch 
of the screw. Actually this quantity will not have the same 
value for all radial elements of the blade and so it is customary 
to define as the geometrical pitch of the airscrew the value of 
27rr tan 0 at a radial distance of 70 per cent, of the tip radius. 
An airscrew rotates in a yielding fluid and in consequence the 
advance per revolution is not the same as the geometrical 
pitch and may in fact assume any value. The value of the 
advance per revolution for wliich the thrust of the airscrew 
vanishes is called the experimental mean pitch, and in many 
respects the characteristics of an airscrew are defined by the 
ratio of the experimental mean pitch to the diameter. 

An ordinary propulsive airscrew experiences a torque or 
couple resisting its rotation and gives a thrust along its axis. 
The thrust T and the torque Q are expressed as functions of 
the axial velocity F, the number of revolutions in unit time 
n (or the angular velocity fi) and the diameter D, The state 
of operation of the airscrew is defined by the advance per 
revolution, but it is preferable to express this parameter in 
the non-dimensional form 

The standard British non-dimensional coefficients for the 
thrust and torque of an airscrew are 

. T Q 
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but it is convenient at times to use the alternative coefficients 

Other forms of these coefficients are used by continental 
writers and a variety of forms can be obtained by using the 

angular velocity O instead of n, the disc area ^ instead 

of D^, and the dynamic pressure instead of pV^. These 
coefficients are all simple numerical multiples of those defined 
above and each form has its own merits in particular cases. 

Airscrews are used for a variety of purposes, of which the 
following may be mentioned: 

(1) Propeller. An airscrew used for propulsion, as on an 
aircraft, and designed to give a high thrust power TV for 
a given torque power Q.Q. 

(2) Windmill. An airscrew used to obtain torque power 
from its axial motion relative to the air. A distinction must 
be drawn between a windmill mounted on an aeroplane, 
where the drag is of importance and the axial velocity is 
high, and one fixed on the ground, where the drag is unim¬ 
portant and the axial velocity is low. 

(3) Fan. An airscrew used to obtain a current of air. 

(4) Anemometer. An airscrew used to determine the rela¬ 
tive axial velocity by means of the rate of rotation. 

The theory of the behaviour of an airscrew follows the same 
lines, whatever the purpose for which it is intended. The 
design will vary, however, and apart from aerodynamic con¬ 
siderations, limitations are also imposed by considerations of 
strength and size. Other types of instrument may serve the 
same purpose as an airscrew and, in particular, hemispherical 
cups mounted at the end of radial arms are used both as 
windmills and as anemometers, but these instruments form 
a separate class distinct from airscrews. 

When an airscrew has a large diameter or high rate of 
rotation, the tip velocity may rise to the same order of 
magnitude as the velocity of sound and the compressibility 

of the air will then modify the forces experienced by the blade 
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elements. This effect docs not become of importance until 
the tip velocity (ttuD) exceeds 800 f.p.s. and in developing 
the theory of an airscrew it will be assumed that the effect 
of the compressibility of the air may be neglected. No theory 
has been developed, as yet, which takes account of the com¬ 
pressibility effect and the modification to the characteristics 
of an airscrew due to high tip speed must be estimated from 
special experimental investigations. 

15*2. Simple momentum theory, 

A simple method of considering the operation of an air¬ 
screw, based on the work of Rankine and Froude, depends 
on a consideration of the momentum and kinetic energy of 
the system. The airscrew is assumed to have a large number 
of blades, so that it becomes effectively a circular disc, and 
it is further assumed that the thrust is uniformly distributed 
over this disc. The rotation of the slipstream due to the 
action of the torque is ignored* and the axial velocity of the 
fluid must be continuous in passing through the airscrew 
disc in order to maintain continuity of the flow. On the 
other hand, the pressure of the fluid receives a sudden in¬ 
crement p', equal to the thrust on unit area of the disc, and 
a slipstream of incrciased axial velocity is formed behind the 
airscrew. The term “actuator disc'’ has been given to this 
simplified conception of an airscrew and a number of interest¬ 
ing results can be derived by considering the momentum and 
energy of the slipstream. 

Fig. 107. 

♦ An extension of the momentum theory of an airscrew including the 
rotation has been given by A. Betz, “Fine Erweiterung der Schrauben- 
strahl-Theorie,” ZFM, 1920. 
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Consider an actuator disc in a stream of velocity V, for 
which the general type of flow will be as shown in fig. 107. 
On approaching the disc the axial velocity rises to (V + v) 
and the pressure falls from Pq to p. The axial velocity is 
constant in passing through the disc but rises to (F 4- ^i) in 
the final slipstream, and the pressure rises to (p + p') im¬ 
mediately behind the disc and then falls to its original value 
Po. The whole flow is regarded as irrotational except for the 
discontinuity of pressure in passing through the airscrew 
disc, and hence it is legitimate to apply Bernoulli’s equation 
to the motion before and behind the disc separately. The 
total pressure head in these two regions has the values 

ffo = Po + kpV'’‘ = P + ip (V + vY, 

= y (V + = p + p' \p {V + vY, 

Slfld h©nC0 f WJ JJ . rr ^ I 

p' ^ H,- = p(V + 
Also by considering the rate of increase of axial momentum 
it appears that the thrust is 

T == Ap (V + v) Vi, 

where A is the area of the actuator disc, and since p’ is the 
thrust on unit area of the disc 

p' = p (F + v) Vi. 

By comparing the two expressions for p', it follows that 

v = K- 

Thus half the added velocity in the slipstream occurs 
before the airscrew and half behind it, and the thrust of the 

airscrew becomes „ n a ,Tr . x 
T = 2Ap (V + v)v. 

The increase of kinetic energy of the fluid in unit time is 

E = \Ap{V + v) {(F + VyY - F*} 

= 2Ap{V + vYv 

= T(F + t;), 

which is the work done on the fluid by the thrust of the 

airscrew. Also if O is the angular velocity and Q is the torque 
of the airscrew, the total work done on the airscrew is OQ, 

and it follows that m / rr » 
Q.Q = T (F + v). 
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Consider next the case when the general mass of the fluid 
is at rest and the airscrew is advancing with velocity F, The 
relationship between the thrust and the velocity is unaltered 
but the work done by the thrust is now TF on the airscrew 
and Tv on the fluid, and this second term is equal to the rate 
of increase of kinetic energy of the fluid 

E = \Ap (V -\~v) 

= 2Ap(V + v) 

~ Tv. 

15-21. Ideal efficiency. 

The efficiency of propulsion of the airscrew, defined as the 
ratio of the useful work to the total work, is 

_TF_ F 
' V + v’ 

and it is customary to write v = aF, so that the efficiency 
becomes ^ 

’?=lTa- 

This expression represents the ideal efficiency of an air¬ 
screw which is never fully realised in practice. The ideal 
efficiency has been obtained on the assumption that the only 
loss of energy is represented by the kinetic energy of the 
axial velocity in the slipstream, but the following additional 

sources of loss of energy exist: 

(1) frictional drag of the airscrew blades, 

(2) kinetic energy of the rotation of the slipstream, 

(3) periodicity of flow and loss of thrust towards the blade 
tips, so that the thrust is not uniformly distributed over the 
airscrew disc. 

The most important of these additional effects is usually 
the frictional drag of the airscrew blades, and under ordinary 
worldng conditions of an airscrew the actual efficiency is 
about 85 % of the ideal efficiency. An examination of the 
ideal efficiency is therefore a useful guide to the actual 
efficiency which may be anticipated from an airscrew. 
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2ApV^(\ + a) a, 

^72/>a = 2 +a)a, 

1 l+~Tc 
7T 

V 77 J2 ’ 
where that root of the quadratic equation has been taken 
which makes a vanish with the tlirust. When F is zero, a 
becomes infinite but the velocity of flow through the airscrew 
has the finite value 

V _ aV _ A 
nD ” nD ~ V 7 nD nD V 77 

Now suppose that power P is put into an airscrew of diameter 
D. Equating rjP to the work done by the thrust 

r,P^TV =^'^D^pV^(l + a)a, 

1 -1J _ 2 P 
~-npVHP' 

which is an equation to determine the ideal efficiency in 
terms of the power, airscrew diameter and speed. The power 
must be expressed in units which are consistent with those 
of the other quantities, and in British Engineering units the 
power is to be expressed in ft. lb. per sec. The relationship 
between the efficiency and the power coefficient is given in 
table 20 and fig. 108. The efficiency falls rapidly as the power 
coefficient increases and this fall represents the loss entailed 
by putting a large power througli an airscrew of small 
diameter. 

Table 20. 

Power and Ideal Efficiency, 

V PjpV^D^ V PIpV^D^ -n 

100 0 90 0*216 80 0*614 
97J 0042 87^ 0*294 11^ 0*759 
95 0092 85 0*384 75 0-932 
92i 0*149 m 0*490 72i 1*133 
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The power given by an engine is a simple function of 
tlie rate of revolution for given conditions of pressure and 

temperature, and so it is convenient for some purposes to 
write the expression for the ideal efficiency in the modified 

1-, 2 1 P 
rf 'IT pn^J)^' 

where n is the number of the airscrew revolutions per sec., 
which differ from those of the engine when gearing is em¬ 
ployed. It is now possible to draw the curve of rj against J 

for any definite value of > and this curve will represent 

the ideal efficiency of an airscrew which is adjusted to run 
at a constant rate of revolution by altering the pitch of the 
blades. Typical curves are given in fig. 109 which show the 
variation of the ideal efficiency with the rate of advance of 
the airscrew. The ideal efficiency increases with J, rapidly 
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at first and then more slowly, and approaches unity as a 
limit. 

Fig. 109. 

16*22. Windmills, 

The simple momentum theory can also be applied to the 
problem of a windmill designed to take power from its motion 
relative to the fluid. The windmill experiences a negative 
thrust or drag and the fluid in the slipstream is retarded, so 
that it is convenient to write v' = — v. The equation con¬ 
necting this velocity with the drag R is 

R = 2Ap (V — v') v\ 

Consider first the case of a windmill on an aeroplane. The 
energy put into the air by the windmill in unit time is 

i?; = 2^p (F ~ v') 

while the work done by the aeroplane on the windmill is RV, 
It follows that the power which can be taken from the wind- 

P^CIQ^RV-E=^2Ap{V - vy v', 



207 XV] THE AIRSCREW: MOMENTUM THEORY 

and the efficiency of the windmill can be defined as 

, _ QQ _ V — v‘ 
V - Jiv- ~~v ~ ‘ 

This is exactly the inverse of the efficiency of propulsion of 
an airscreV. 

The relationship between the efficiency and power output 

of the windmill is op 

For a given speed and diameter, the power is a maximum 
when ^' == § and v* — \ and the maximum power has the 
value 

P (max) - 
lii 

The case of a windmill on the ground exhibits different 

features since the drag is now unimportant. The power given 
by the windmill has the same value as in the previous case, 
but the efficiency requires a new definition. If the windmill 
created no disturbance of the flow, the energy of the air 
passing through the windmill disc in unit time would be 

E == |.4pF^ 

and the efficiency may suitably be defined as the ratio of the 
power given by the windmill to this quantity. The efficiency 
then is , , 

,, i:{V-v Yv 
ri _ > 

which has the maximum value 

7j" (max) - = 0*593. 



CHAPTER XVI 

THE AIRSCREW: BLADE ELEMENT 

THEORY 

16*1. In order to obtain a more detailed knowledge of the 
behaviour of an airscrew than is given by the simple mo¬ 
mentum theory, it is necessary to investigate the forces 
experienced by the airscrew blades and to regard each element 
of a blade as an aerofoil element moving in its appropriate 
manner. It is convenient, in developing the theory, to con¬ 
sider an ordinary propulsive airscrew under ordinary working 
conditions. The conditions for other types of airscrew and 
for other working conditions can then be examined as 
modifications of the main theory. 

The airscrew will be assumed to have an angular velocity 
Q about its axis and to be placed in a uniform stream of 
velocity V parallel to the axis of rotation. The sections of the 
blades of the airscrew have the form of aerofoil sections and 
the lift force experienced by a blade element in its motion 
relative to the fluid must be associated with circulation of the 
flow round the blade. Owing to the variation of tliis circula¬ 
tion along the blade from root to tip, trailing vortices will 
spring from the blade and pass downstream with the fluid 
in approximately helical paths. These vortices are con¬ 
centrated mainly at the root and tips of the blades and so 

the slipstream of the airscrew consists of a region of fluid in 
rotation with a strong concentration of vorticity on the axis 
and on the boundary of the slipstream. From the analogy 
of the general aerofoil theory it follows that the blade element 
should be regarded as an aerofoil in two dimensional motion, 
subject to the interference flow represented by the velocity 
field of the system of trailing vortices. The exact evaluation 
of the interference flow is of great complexity owing to the 
periodicity of the flow, but for most purposes it is sufficiently 
accurate to replace the actual periodical flow by its mean 
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value. This step is equivalent to assuming that, for the 
purpose of estimating the interferouce flow due to the system 
of trailing vortices, the thrust and torque carried on the 
finite number of blade elements at any radial distance from 
the axis may be replaced by a uniform distribution of thrust 
and torque over the whole circumference of the circle of the 
same radius. 

In developing the theory it will also be assumed that the 
angular velocity of the airscrew does not become so great 
that the rotational velocity of the blade tips approaches too 
closely to the velocity of sound. Little is known of the effect 
of the compressibility of the air on the characteristics of an 
aerofoil moving with high velocity and further progress, both 
in theory and in experiment, is necessary before the theory 
of the airscrew can be modified to take account of this effect. 

16*11. In discussing the nature of the flow past an air¬ 
screw it is convenient to use the following terms: 

Inflow, The flow immediately in front of the airscrew. 

Outflow, The flow immediately behind the airscrew. 

Wake, The flow in the slipstream far behind the airscrew. 

Interference flow. The velocity field of the system of trailing 
vortices which acts as an interference on the blade elements. 

Considering first the rotational motion, it is evident that 
the torque of the airscrew will cause a rotation about the 
axis of the flow in the slipstream and that no rotation of this 
nature can occur in front of the airscrew* or outside the 
boundary of the slipstream. This rotational motion is to be 
ascribed partly to the system of trailing vortices and partly 
to the circulation round the blades. Due to the trailing 
vortices the flow in the plane of the airscrew will have an 
angular velocity co in the same sense as the rotation of the 
airscrew, and the circulation round the airscrew blades will 
cause equal and opposite angular velocities of the inflow and 
outflow. The sum of these two components must be zero in 

♦ This result follows at once from the general theorem of 4*31. See also 
G. I. Taylor, “The rotational inflow factor in propeller theory,” R3I, 765, 

1921. 
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the inflow, since no rotation is possible until the flow has 
reached the vortex system generated by the airscrew. Hence 
it follows that the angular velocity of the outflow is 2a> and 
that the interference flow, which is due solely to the system 
of trailing vortices, will have the angular velocity a>. 

The angular momentum of the outflow is closely related 
to the torque of the airscrew. Consider the blade elements 
dr at radial distance r from the axis, let dQ be the torque of 
these elements and let u be the axial velocity through the 
airscrew annulus. Then, by equating the torque to the rate 
of increase of angular momentum, it appears that 

dQ = 27Trdr.pu,2ajr^, 

or = 4:7Tr^p VQ, (1 + a) a\ 

where u — F (1 + a), 

oj = Q,a\ 

The quantities a and a' represent the interference flow and 
are called the interference factors for the axial and rotational 
motion respectively. 

16*12. The axial velocity must be continuous in passing 
through the airscrew disc and will have the same value u in 
the inflow and outflow. The increment of u above the un¬ 
disturbed stream velocity V is due wholly to the system of 
trailing vortices and the axial interference velocity is (u — V) 
or aV. In estimating the magnitude of this axial interference 
flow, it is assumed that the trailing vortices pass downstream 
in regular helices. This assumption is equivalent to neglecting 
the contraction of the slipstream diameter which actually 
occurs, and may require modification when the interference 
factor a ceases to be small. The induced velocity of this ideal 
vortex cyhnder at a point of the wake will be double the 
induced velocity at the airscrew disc which is the end of 
the cylinder, and hence the axial velocity in the wake is 
F (1 + 2a). This result is in agreement with the conclusion 
drawn from the simple momentum theory. 
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The axial momentum equation for the blade elements can 
now be written down directly as 

rIT 

w ^ 

This equation is not exact. It is based on the assumption 
of no contraction of the slipstream in estimating the inter¬ 
ference velocity and it also neglects the fact that reduced 
pressure occurs in the wake owing to the rotational motion. 
The error introduced by these simphfications appears to be 
negligible for a propulsive airscrew under ordinary working 
conditions, but it may bo necessary to replace this momentum 
equation by a more accurate relationship in certain special 
cases, as for example when an airscrew is rotating at zero 
rate of advance. 

16-13. A consideration of the system of trailing vortices 
leads to the interesting conclusion that the interference flow 
experienced by the blade elements at radial distance r from 
the axis depends solely on the forces experienced by these 
elements, and is not influenced by the blade elements at 
greater or less radial distance. Consider the action of the 
blade elements dr at radial distance r when the remainder of 
each airscrew blade is inoperative. The trailing vortices which 
spring from the ends of the element lie on the surfaces of 
two circular cylinders of radius r and r dr respectively, 
and the vorticity may be resolved into two components, one 
having its axis parallel to the airscrew axis and the other 
being circumferential and similar to a succession of vortex 
rings. The first component of the vorticity acts as the roller 
bearings between the rotating shell of air bounded by the 
cylindrical surfaces and the general mass of air. Now the 
general mass of air cannot acquire any circulation about the 
axis 4.nd hence the rotation due to the torque of the blade 
elements is confined to the region between the two cylindrical 
surfaces. Hence also the rotational interference due to the 
vortex system is experienced only by those blade elements 
which gave rise to the vorticity. 

A similar argument can be applied to the second component 
14*2 
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of the vorticity and thus the independence of the blade 
elements at different radial distances from the axis of the 
airscrew is established. This theoretical result is of great 
importance and has been confirmed for the principal working 
sections of an airscrew blade by certain special experiments*. 
Towards the tips of the airscrew blades the conditions may 
be modified by the radial flow of the air which is neglected 
in developing the theory. 

16-2. Consider next the aerodynamic forces experienced 
by the blade element at radial distance r. The blade element 

F((+a) 

Fig. 110. 

is subject to an axial velocity F (1 + a) and a rotational 
velocity rQ (1 — a'), so that the resultant velocity W is 
inclined at angle (f) to the plane of rotation, where 

. V I +a 
tan 9— -r\* -> • ^ rl2 1 — a 

If B is the blade angle, the element will work at an angle of 
incidence a = 0 — ^ and will give the corresponding lift and 
drag coefficients, and Cj^, appropriate to the aerofoil 
section in two-dimensional motion. The components of these 
force coefficients, resolved in the direction of the thrust and 
torque, are respectively 

Xi = Cj^ cos ^ — Cj) sin 
Ag = C2, sin ^ -f Cjy cos (f>, 

and the elements of thrust and torque given by the blade 
element of area edr are 

dT^WpWHdr, 
dQ^X^\pWHrdr. 

* Lock, Bateman and Townend, “Experiments to verify the independ¬ 
ence of the elements of an airscrew blade,** RM, 963, 1924. 
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These expressions are multiplied by N, the number of 
blades, to obtain the elements of thrust and torque for the 
whole airscrew, and in place of the chord a non-dimensional 
quantity s is introduced, defined by the equation 

Nc 
^ 27rr‘ 

This quantity s represents the ratio of the area of the blade 
elements to the area of the annulus at the radial distance r, 
and may be termed the solidity of the blade element. 

The elements of thrust and torque of the airscrew can now 
be expressed in the following forms: 

dT 
= TTsrp (1 + a)2 cosec^ ^ 

= TTsr^pOP' (1 — a')^ Aj sec^ <^, 

^ = TTsr’^p F^ (1 + aY \ cosec^ ({> 

= TTsr^pQ^ (1 — a')2 A2 sec^ (f>. 

Expressions for the elements of thrust and torque ha\ e been 

obtained earlier in the chapter by considering the axial and 
rotational momenta, and by equating the alternative forms 
the following equations are obtained for tlie axial and 

rotational interference factors: 

a __^Ai_ 
i + a 1 — cos 2(f} ’ 

(i 

1 - a' sin 2<l> * 

Finally, the rate of advance of the airscrew is given by the 

equation y ^ y ri_a' 

and the elements of thrust and torque can be expressed in 

the non-dimensional forms 

«(l-aT\sec2^, 
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16-21. The method of calculating the characteristics of an 
airscrew is to choose a number of elements along the blade, 

V 
for each of which the values of s, 9 and the aerofoil 

characteristics (a, Cj^) are known. Starting with a series 
of values of a for each element, it is possible to calculate 
in turn the corresponding values of a, a', J, dk^ and dkg. 

Details of the calculation for a typical blade element are 
given in table 2L Curves of dkT and dkg against J are then 

Table 21. 

Calculations for a blade element, 

r/i? = 0-70, 5 = 0-10, 0 = 24°. 

a 0 a' J R [dk-ildr) R (dkjdr) 

4° -•012 •036 -003 ■003 •80 -•004 •0038 
6 18 •204 •088 •056 •007 •67 •069 •0089 
8 16 •410 •132 •150 •012 •64 •115 •0130 

10 14 •610 •164 •353 •017 •40 •166 •0166 
12 12 •780 •178 •820 •021 •25 •207 •0166 
14 10 •964 •186 400 •026 •08 •250 •0169 
16 8 1-136 •180 -313 •032 -•14 •288 ) •0160 
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drawn for each element, and finally the values of dhr and 
dkQ for the various blade elements at any chosen value of 
J are plotted against the radial distance to obtain the thrust 
and torque grading curves along the blade. The integration 
of these curves gives the total thrust and torque of the air¬ 
screw, but a slight empirical correction is necessary to the 
thrust to allow for the drag of the airscrew boss. 

16-22. Owing to the variation of the blade angle, chord 
and aerofoil section along the blade, it is not possible to 
obtain any simple analytical expressions for the thrust and 
torque of an airscrew, but the general nature of the airscrew 
characteristics can be examined by considering a typical 
blade element. 

At zero rate of advance {J = 0) the axial interference factor 
a tends to infinity, since the axial velocity through the air¬ 
screw disc remains finite while the velocity V tends to zero. 
This occurs when 

sXi = 4 sin^ 0, 
and as is a small angle, this equation is approximately 

sCj^ = 4^^, 
where Cj^ is to be taken at an angle of incidence (0 — 
This state corresponds to a positive value of (f> for an ordinary 
propulsive airscrew. 

The other end of the working range of an airscrew occurs 
where the thrust vanishes at the point given by the equation 

— Cj) tan (f), 
so that the blade element is still carrying a small positive 
hft force. The torque is positive at this point, but vanishes 
at a slightly higher rate of advance, corresponding to the 
condition (7^^ = _ (7^ cot <^. 

Between these two points the airscrew is acting as a brake, 
and beyond the point where the torque becomes negative, 
the airscrew acts as a windmill. 

The efficiency of the blade element is 
_ F. dT _ JT Aj 1 — a' tan ^ 

^ ^ il,dQ rQ’Ag 1-fa tan {<^ -f y) * 
C/j[) ~ tan y. where 
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This expression may be compared with the ideal efficiency 

deduced from the simple momentum theory of an 

airscrew and it appears that there are additional sources of 
loss of energy represented by 

(1) a', the effect of the rotation of the slipstream, 

(2) y, the effect of the profile drag of the blades. 

The first of these effects is small over the principal working 
range of an airscrew but the profile drag becomes of great 

importance, particularly as the blade element approaches the 
attitude of no lift. Fig. 112 shows the efficiency of the blade 
element whose characteristics are given in table 21 and the 
broken curve represents the efficiency which would occur if 
the profile drag were zero. 
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The loss of efficiency can also be illustrated by considering 
the balance of energy for the blade element. The work done 
on the blade element in unit time is ^IdQ and this energy is 
distributed in the following parts: 

V ,dT, the useful work of the thrust, 

aV,dT, the kinetic energy of the axial motion, 

a'fi. dQy the kinetic energy of the rotational motion, 

dEy the loss of energy due to the drag of the blades. 

The value of dE is obtained as 

dE - (1 - a') a.dQ ~{l+a) V.dT 
= IpW^Ncdr {(1 - a') - (1 -f a) V\^} 

= ^pW^Ncdr. W (Ag cos ^ sin (f>) 

= Cjj.ipWmcdr.Wy 

which is clearly the work done against the drag of the blade 

elements moving with the velocity W relative to the fluid. 
The relationshiji between the circulation round the blade 

elements and the rotation of the slipstream is also of interest. 
The circulation round a blade element must be equal to 

\CicW and the corresponding circulation of the slipstream is 

K - \NcWCl - TTsrWCj^y 

while the total circulation of the slipstream is 

K' = 27rr.212a'r 

Hence 

— 27rr^Q, (1 — a') ^Ag cosec 2(f> 

- TTsrW (Cj^ 4* cot ^). 

K' _ Cf^ sin (f) 4 C[y cos cf) 

The circulation of the slipstream is due partly to the circula¬ 
tion round the blade elements which is associated with the 
lift force, and partly to the drag of the blade elements which 
tends to drag the air in the direction of motion of the blade. 
These two effects will be in the same ratio as the elements of 
torque contributed by the lift and by the drag respectively, 
i.e. in the ratio of Cf^ sin </> to cos <^, and this action of the 
drag of the blade elements accounts for the difference between 

the circulations K and K\ The vorticity of the airscrew disc 
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is therefore of a complex nature, consisting partly of the 
circulation round the blades and partly of free vortex lines 

associated with the drag of the blades. 

16-23. Calculations for a typical blade element can also 
be used to illustrate the variation of the characteristics of an 
airscrew with the experimental mean pitch. Fig. 113 gives 

the efficiency curves for a blade element when the blade angle 
is increased or decreased 4° from its original value, and shows 
that an increase of pitch is accompanied by an increase of 
maximum efficiency. Aerodynamic considerations therefore 
indicate the advantage of using airscrews of large diameter 
and high pitch, but structural considerations limit the 
possibility of improvement in these directions. An airscrew 

is designed to absorb a definite torque at a definite rotational 
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speed, and so an increase of diameter or blade angle must be 
accompanied by a corresponding decrease of the blade width. 
This process is clearly limited by the necessity for the air¬ 

screw blade to possess sufficient strength to resist the centri¬ 
fugal and torsional stresses imposed on it, and the airscrew 
diameter is also limited by the fact that it is desirable to 
keep the tip velocity considerably below the velocity of 
sound. These difficulties can be avoided in part by the intro¬ 
duction of gearing between the engine and airscrew, so that 
the airscrew runs at a slower rate of revolution than the 
engine. The problem is, however, complicated by the weight 
and efficiency of the gearing, and a full discussion of the 
choice of the best airscrew in any given case is beyond the 
scope of the present treatise. 

16-3. The aerodynamic theory has been developed for the 

case of a propulsive airscrew which gives a thrust in the 
direction of its axial motion, and it is necessary to examine 
whether the theory is also applicable to other working con¬ 
ditions of an airscrew. Fig. 114 shows diagrammatically the 
different types of flow which may occur with an ordinary 
propulsive airscrew at different positive and negative rates of 
advance. Type (2) represents the normal working condition, 
and as the axial velocity F increases the airscrew passes to 
the condition of type (1), where it acts first as a brake and 
then as a windmill. A different type of motion occurs when 
the airscrew has a negative rate of advance. Type (3) repre¬ 
sents the flow for zero rate of advance which is a limiting 
case of the normal type (2), but as soon as the axial velocity 
V becomes negative a vortex ring will be formed round the 
airscrew as indicated by type (4) in the figure. For greater 
negative velocities the flow may correspond to type (5) or 
(6). The former represents the case when the airscrew gives 
rise to an eddy motion such as occurs behind a bluff body, 
and the latter represents a return to the initial typo (1), but 

in the opposite direction. 
The theory assumes the existence of a slipstream of con¬ 

ventional type and will be applicable to the types of motion 
(1) and (2). In the vortex ring state the momentum equations 
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will break down both for the axial and for the rotational 
motion, and the thrust and torque of the airscrew will depend 
mainly on the rate of 
dissipation of energy 
in the vortex ring 
motion. The theory 
also breaks down for 
the motion repre¬ 
sented by type (5) 
and will probably be 
only a rough ap¬ 

proximation to the 
truth for type (3), 
which is the tran¬ 
sition from the vor¬ 
tex ring state to 
the normal working 
condition. The final 
state (6) is similar 
to type (1) and the 
theory should be ap¬ 
plicable to this case, 
but certain modifi¬ 
cations are required 
to the momentum 
equations to allow 
for the fact that 
the direction of flow 
through the airscrew 
disc is reversed. In 
developing these 
equations the velo¬ 
city u OT V {I + a) 
represents the ve¬ 
locity of flow through the airscrew disc and must be re¬ 
garded as essentially positive. Hence for negative rates 
of advance the sign of the momentum expressions for the 
thrust and torque must be changed and this is equivalent 
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to changing the sign of the expressions for y-— and 

in 16-2. With this simple modification the theory may be 
applied to an airscrew with a negative rate of advance, 
provided that the conditions are such that a slipstream of 
conventional type is formed behind the airscrew. The con¬ 
dition for the validity of the theory is therefore that the value 
of the axial interference factor a shall satisfy the inequality 
a > — J. With this limitation the theory may be applied to 
any type of airscrew, irrespective of the purpose (propeller, 
windmill, fan, etc.) for which it is designed. 



CHAPTER XVIT 

THE AIRSCREW: WIND TUNNEL 

INTERFERENCE 

A model airscrew rotating in a wind tunnel disturb^ the 
uniform flow produced by the tunnel fan and causes variations 

of velocity which extend to a considerable distance from the 

airscrew. This flow is constrained by the presence of the 
tunnel walls and the uniform axial velocity V which occurs 
at a sufficient distance in front of the airscrew in the tunnel 
differs from that which would occur in free air. It is necessary 
therefore to determine an equivalent free airspeed V\ corre¬ 
sponding to the tunnel datum velocity F, at which the air¬ 
screw, rotating with the same angular velocity as in the 
tunnel, would produce the same thrust and torque*. A 
theoretical solution of this problem can be obtained by ex¬ 
tending the simple momentum theory to the case of an air¬ 
screw rotating in a wind tunnel. The equivalent free airspeed 
is defined as that which gives the same axial velocity through 
the airscrew disc as occurs in the tunnel, since this condition 
will maintain the same working conditions for the airscrew 
blades, provided the interference effects of the rotational 
velocity are negligible. The equivalent free airspeed for an 
airscrew in a closed jet wind tunnel is normally less than the 
tunnel datum velocityf. 

The assumption that there is no interference effect on the 
rotational velocity appears to be sound, but the representation 
of the interference effect by a change from the tunnel datum 
velocity to the equivalent free airspeed depends on the 
existence of the same axial velocity over the whole airscrew 
disc. This condition is satisfied approximately over the 
principal working part of the airscrew blades but fails to¬ 
wards the blade tips. In consequence the shape of the thrust 

♦ Wood and Harris, “Some notes on the theory of an airscrew working 
in a wind channel,** RM, 662, 1920. 

t See Note 13 of Appendix. 
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and torque grading curves along the airscrew blade may be 
slightly different near the tip in free air and in a wind tunnel, 
although the method of correction is sufficiently accurate for 
the total thrust and torque of the airscrew. The method of 
correction would also appear to bo unreliable near zero rate 
of advance of the airscrew, since the conventional type of 
slipstream assumed in the theory no longer occurs. 

—> Uc 

^ 
Fig. 116. 

The type of flow assumed in the analysis is shown in fig. 
115. V is the tunnel datum velocity, u the velocity through 
the airscrew disc, the slipstream velocity and Uq the 
velocity in the tunnel outside tne slipstream. The pressure 
rises from the original value p to the value in the region 
of the slipstream. 

Let A be the airscrew disc area, fS the cross sectional area 
of the slipstream and C that of the tunnel. Then by con- 

Su, - Au, 
(0-S)u,~CV-Au, 

and by use of Bernoulli’s equation 

2 = (Pi + -(P + ipV^) 

= (Pi + - (Pi + ipuo^) 
= ip « - O- 

Finally, the equation of axial momentum gives 

T-= 8pui{v^ - V) + (G - S)puo{uo- V) + C{pi-p) 

- 8pu {uj-V) + {G- 8)pUo («o - »") + iCp{V^ - V). 
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Now put T = 
ApV^ 

and on eliminating Ui and by means of the equations of 
continuity, the two expressions for the thrust become 

2tS^ (C - 8)^ F2 = (C - 8)^ J V - 8^ (CV - Au)^ 
= 20 {C- 8) Ah (Au-8V)-C^(Au-8F)S 

and 

2rA8 (0 -8)^ F* = 2 (C - 8)^ Au {Au - 8V) 
-28{0- 8) {CV - Au) {Au - ^F) 
+ 08 {{0 - 8)^ F* - ((7F - Au)'^} 

= 2C{C- 8)Au {Au-8V)-C8{Au-8 F)*, 

from which it follows at once that 

2t8 {A -8){0-8)V» = 0 {Au - 8V)\ 

t8 {OA - 8^) F* = OAu {Au - 8V). 

The equivalent free airspeed F' is such that it gives the 
same values to u and T. But in free air 

T = 2Apu {u - V'), 

or 
IT 

(2m - F')* = ^ + 

= 2tF* + V'\ 

Put F = AF', 

= 1 + 2tAS 

obtaining for the free air condition 

(a; + 1) F 
M-- 2^—. 

Also put A — aC, 
8=^aA, 

where a is generally small and a lies between unity and 0-5, 
and the two wind tunnel equations become 

4 {x^ - 1) a (1 - o) (1 - (fff) = (a: + 1 - 2(tA)S 

2 (x - 1) a (1 - au^) = (x + 1 - 2aX), 

from which A can be eliminated at once to give an equation 
for X in terms of a and a, while the second equation then 
determines the value of A. 
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The problem of determining the equivalent free airspeed 
has now been reduced to that of determining the value of 
A for given values of a and r by means of the subsidiary 
quantities x and a. For this purpose the three equations are 
written in the form 

i _ (1Z ^^1 
X^l~ ct(1 

A = 1 -h (a; - \)aa^ - - -, 

{x -f 1) (a: - 1) 
2A2 ■ » 

and a method of successive approximation may be used, 
trying different values of a until the correct value of r is 
obtained. As a guide to the value of a, it may be noted that 
in free air a would be determined by the equations 

x^= I 2t, 
X I 

In these equations a is the ratio of the airscrew disc area 

f5 o 



226 THB AIRSCREW [OH. XVH 

A to the cross sectional area C of the tunnel, and t is the 
observed quantity TjpAV*. The equivalent free airspeed is 
obtained finally by dividing the tunnel datum velocity V by 
the quantity A. Curves of VjV' against TjpAV^ for a range 
of values of AjG are given in fig. 116. The usual size of model 
airscrew tested in a wind tunnel corresponds to a value of 
A jO oi 0‘15 approximately. 

The theoretical correction can be used for tests of model 
airscrews in a wind tunnel, but it is not possible to extend 
the theory to the case of an airscrew mounted in front of 
a body of any considerable size. Experimental work* has 
shown, however, that if the axial velocity is explored along 
radial lines just before and just behind the plane of rotation 
of the airscrew, the velocity tends to a limiting value which 
is equal to the equivalent free airspeed given by the theory 
when no body is present. This experimental method has 
therefore been adopted for the case of an airscrew-body 
combination and has been checkedf by special tests in 4 ft. 
and 7 ft. tunnels. 

* Fage, Lock, Bateman and Williams, “Experiments with a family ol 
airscrews,” part 2, RM, 830, 1922. 

f Lock and Bateman, “The effect of wind tunnel interference on a 
combination of airscrew and tractor body,” RM, 919, 1924. 



APPENDIX 

Note 1. (See p. 2.) It is now more usual to use the 
“quarter-chord point” as the point of reference for the 
measurement of moments. “The quarter-chord point” is the 
point on the chord line one quarter of the chord length from 

the leading edge. 

Note 2. {See p. 39.) The contribution of the pressure and 
momentum integrals to the lift depends upon the shape of the 
large contour and the conclusion given on page 39 is not true 
for all shapes of contour; see Prandtl and Tietjens, Applied 
Hydro- and Aeromechanics^ § 106. 

Note 3. {See p. 95.) Since the pubhcation of the first 
edition of this book a great deal of information on viscous 
flow and drag has been collected. This seems to show that 
vortex streets occupy a less significant place in the general 
picture than is indicated in Chap. viii. For example, the 
wake of a circular cylinder takes the form of a vortex street in 

the range of Reynolds’ numbers between 10^ and 10^, but at 
higher Reynolds’ numbers the flow in the wake is turbulent 
but not periodic. Similarly, for aerofoils below the stalling 
incidence, a vortex street is only present in the wake for 
Reynolds’ numbers below 10^, which is outside the practical 
range. An account of modern work on this subject is given in 
Modem Developments in Fluid Dynamics (referred to else¬ 
where as FD). 

Note 4. {See p. 108.) Blasius’ empirical law for pipe flow 
is in good agreement with experimental results for Reynolds’ 
numbers up to 10®. It has however been superseded by a 
logarithmic resistance formula derived by Karman which has 
a sounder theoretical basis and gives results in better agree¬ 
ment with experiment for Reynolds’ numbers above 10®; see 
FD, § 164. 
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Note 6. {See p. 115.) This formula for the drag of a flat 
plate has been superseded by the formula 

Cj^ = 0-91 
-2*58 

which is based on a logarithmic resistance formula derived 
by Karman; see FD, § 163. 

Note 6. {See p. 116.) It is implied in the paragraph in the 
text that a vortex street is always formed beliind a bluff 
body, but it is now known that this is not the case. {See 
Note 3.) 

Note 7. {See p. 118.) Actually there are small changes of 
pressure across the boundary layer on a curved surface; see 

FD, § 45. Also, due to the presence of the boundary layer, 
the pressure at the trailing edge of an aerofoil with a finite 
trailing edge angle does not rise to the full theoretical 
stagnation pressure. 

Note 8. {See p. 119.) For laminar boundary layers and 
specified pressure distribution the position of the separation 
point is independent of the Reynolds’ number; see FD, § 49. 

Note 9. {See p. 120.) For aerofoils at small incidences the 
pressure on both upper and lower surfaces increases towards 
the trailing edge; this does not cause a breakaway, which 
only develops on the upper surface at high incidence. 

Note 10. {See p. 122.) The motion of an aerofoil starting 
from rest is well illustrated by Plates 17-22 of Applied Hydro- 
and Aeromechanics by Prandtl and Tietjens. 

Note 11. {See p. 124.) The drag of an aerofoil depends on 
the extent of the laminar boundary layer, and the drag 
coefficient can only be less than the frictional drag coefficient 
of a flat plate at the same Reynolds’ number if the laminar 
boimdary region is more extensive on the aerofoil than on the 

flat plate. 



APPENDIX 229 

Note 12. (See p. 189.) There are now wind tunnels with 

both open and closed working sections at most of the larger 

aeronautical research establishments. 

Note 13. (See p. 222.) For an airscrew working in an open 

jet wind tunnel it is usual to assume that the tunnel inter¬ 

ference effect is negligible. The absence of any correction to the 

equivalent free air speed is an advantage and for this reason 

airscrew tests are now generally made in open jet wind tunnels. 

Note. (See p. 88.) The vorticity which occurs for the 

straight line aerofoil is assumed to be proportional to cot 

in the text without any proof being given. The validity of 

this expression is verified by the result that it produces 

a constant induced velocity along the chord of the aerofoil. 

A direct proof of the result is given in Aerodynamic Theory 

(edited by Durand), Vol. ii, Division E, pp. 37-39. 
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Adiabatic law, 8 
Aerofoil and circle, 66 

„ , flow pattern of, 166 
„ , vortex system of, 128 
„ , wind tunnel interference on, 
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Aerofoils, biplane, 171 

„ , circular arc, 72, 78 
„ , Joukowski, 75, 79, 86 
„ , monoplane, 137 
„ , rectangular, 145 
„ , symmetrical, 74, 79 
„ , tandem, 171 
„ , tapered, 161 
„ , thin, 87 
„ , twisted, 152 

Airscrew, blade element theory of, 208 
„ , momentum theory of, 199 
„ , wind tunnel interference on, 
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Anemometer, 200 
Aspect ratio of an aerofoil, 135 

„ „ , effect of, 144, 148 
Atmosphere, standard, 8 

Bernoulli’s constant, 11, 42 
„ equation, 10, 14, 42 

Biplane aerofoils, 171 
Blade elements, independence of, 211 

„ „ , solidity of, 213 
Boundary layer theory, 112 

„ , slip on, 100, 117 

Centre of pressure, 2 
Chord of an aerofoil, 1 

„ , mean, 134 
Circle and aerofoil, 66 

„ and straight line, 64 
Circular arc aerofoils, 72, 78 

„ cylinder, 29, 36, 60, 66, 66, 
106, 118 

„ pipes, 107 
Circulation, 33, 126 

„ , constancy of, 41 
„ , lift due to, 37, 82 
„ , origin of, 121 

Coefficients, non-dimensional, 2, 104, 
199 

Complex variable, 53 
Compressibility, 5, 12 

Conformal transformation, 58 
Continuity, equation of, 49 
Critical angle, 3, 120, 123 

Dimensional theory, 104 
Discontinuity, surface of, 46, 95 
Discontinuous flow, 6, 95, 115 
Doublet, 29, 40, 60, 55 
Down wash, angle of, 162, 165, 166, 

190 
Drag coefficient, 2, 106 

„ , form, 98, 123 
„ , frictional, 114, 123 
„ , induced, 7 133, 139, 182 
„ , profile, 7, 122, 141 

Efficiency, airscrew, 215 
„ , ideal, 203 
„ , windmill, 206 

Elliptic loading, 142, 162 
Equipotential lines, 50 

Fan, 200 
Flat plate, flow normal to, 66, 94, 119 

„ „ , frictional drag of, 114 
„ „ , inclined, 6 

Fluid, perfect, 6, 117 

Images, method of, 25 
Dicidence, angle of, 1, 132, 141, 179, 

186 
Induced drag, 7, 133» 139, 182 

„ velocity, 45, 127, 132, 156 
Inflow, 209 
Interference factors, 210 

„ flow, 209 
Irrotational motion, 43 

Joukowski’s aerofoils, 75, 79, 86 
„ hypothesis, 68, 119 
„ transformation, 71, 77 

Laminar flow, 100, 107 
Lift coefficient, 2 

„ due to circulation, 37, 82 
„ , general formula for, 80 
„ of an aerofoil, 2, 82, 91, 139 

Load grading curves, 154 
Loading, elliptic, 142, 162 

„ , uniform, 134, 157 
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Moment at zero lift, 86, 91 
„ coefficient, 2 
„ , general formula for, 80 
„ of an aerofoil, 2, 82, 91, 150, 

179 
Monoplane aerofoils, 137 
Motion, equations of, 109 

Outflow, 209 

Pipes, flow in, 107 
Pitch, experimental mean, 199, 218 
Potential function, 54 

„ , velocity, 48, 55 
Pressure, centre of, 2 

„ , dynamic, 2 
„ , total head, 11, 42 

Profile drag, 7, 123, 141 
Propeller, 200 

Reynolds' number, 105 

Scale effect, 105, 120, 123 
Singular points, 61 
Sink, 21 
Slip on boundary, 100, 117 
Slipstream, airscrew, 201, 208 
Slug, 9 
Solidity of blade elements, 213 
Sound, velocity of, 12 
Source, 21, 49, 55 

„ and sink, 27, 51 
Speed, equivalent free air, 222 

„ , measui-ement of, 11, 15 
Stagger, equivalence theorem for, 

181 
Stagnation point, 14 

Steady motion, 10 
Straight line and circle, 64 

„ „ , flow past, 66, 94, 119 
Stream function, 18, 49, 55 

„ line, 10, 50 
„ tube, 10, 15 

Tailsetting, angle of, 196 
Thrust and torque coefficients, 199 
Transformation, conformal, 58 

„ , Joukowsld’s, 71, 77 
„ of flow pattern, 63 

Turbulent flow, 108, 115 
Two-dimensional motion, 18 

Uniform loading, 134, 157 
Units, 9 

Velocity field, 45 
„ , induced, 45, 127, 132, 156 
„ potential, 48, 55 

Viscosity, 5, 99 
„ , coefficient of, 100, 103 

Vortex, bound, 129 
„ , induced velocity of, 45, 127 
„ , line, 126 
„ , point, 44, 50, 55 
„ sheet, 47, 117 
„ street, 95, 116, 119 
„ strength, 39, 126 
„ , trailing, 129 
„ tube, 125 

Vorticity, 39, 125 
„ , constancy of, 41 

Windmill, 200, 206 
Wind tunnel interference, 189, 222 
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