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PREFACE. 

The necessity of a text book on the differential 

c Iculns suitable for the Indian University under- 
raduate has long been felt. An humble attempt 
as been made to make this book self-sufficient as 

ir as possible. The books usually consulted on 
le subject by the Indian student are either too terse 
r too elaborate. This treatise has been written 

or the undergraduate beginner, chiefly keeping in 
view the difficulties that he encounters in following 

an altogether new subject. Absolutely rigid 

proofs, which would not be intelligible to a young 
beginner, have been avoided, but there has not 

been, so far as possible, any sacrifice of rigour 
only for the sake of simplicity. 

Chapter XIV, which gives a short history of 

/he calculus, has been added, and the author hopes 
that it may serve a useful purpose. The questions 

have been mainly selected from examination papers 
and some of the standard books on the subject. 

My thanks are due to Dr. P. L. Srivastava, 

M.. A, D. Phil. (Oxon.) and Mr. R. N. Chowdhari, 

B. A. (Cantab.) for their kind help, and es])ecially to a 

friend of mine, (who has persistently chosen to remain 
anonymous in spite of my repeated requests to the 

contrary), in consultation with whom the idea of 
writing this book originated, particularly for the 

arrangement of the chapters. 
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The author will only be very glad to receive any 

suggestions or corrections. His thanks are also 

due to Lala Ram Narain Lai, Publisher, in 

undertaking to publish this book in spite of the 

difficulty usually felt in getting a mathematical 

book published at any press in India. 

November 1931. 1 
The University, V Y S. <0. TIWARI. 

Allahabad. J 
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Elementary Treatise 
ON 

Differential Calculus 
CHAPTER I 

Note. A. —Zero,—Zero is the number that divides 

the positive and negative numbers uniquely. It is in fact 

the negation of numbers and yet it is included in the 

category of numbers. It is qualitatively different from 

any other number and has a correspondingly unique char¬ 

acter. If we measure quantity of any material substance 

numerically, we realise that there is vast difference between 

a large and a small quantity of the substance, and there is 

yet another kind of difference between a small quantity of 

it and a zero quantity. It is of no importance what the 

substance is, if the quantity is zero, for it is nothing in all 

cases. No doubt we have included zciu ... _ ui 

numbers very conveniently, it does not admit of all the 

ordinary rules and properties of numbers. Consider the 

following fallacy : — 

IXO-^O, 2X0 = 0 

/. I X O = 2 X o 

and dividing both sides by o, we get 1=2. 

This brings heme the fact that this process is not 

justifiable and the fallacy is the outcome of the fact that 

both the sides are divided by zero. The fact of the matter 

is that we do not know what division by zero means. We 

know how to divide one rational number by any other but 

zero, We cannot assign any meaning for the process of 

dividing by zero and the formal rules of Arithmetic and 
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Algebra will lead to errors and meaningless results. Thus 

X X 
— has a meaning so long as y is not zero, but — has no 

meaning and so also — . 
o 

Note B,—Infinity.—Through the doctrine of geometri¬ 

cal continuity and the application of Algebra to Geometry 

arose the important notion of infinity as a “ localised space- 

conception,” so that mathematicians have come to speak 

of points at infinity, lines at infinity etc. It is said that 

parallel lines intersect at infinity, that all circles pass 

through two fixed points at infinity (the circular points) 

and so on. The symbol cx) is so freely spoken of and used, 

as if it represented a definite quantity, that the student is 

inclined to take it as such, and use it as such and thus 

have an altogether absurd notion. He thinks it to be a 

definite quantity or a definite place, whereas the conception 

of infinity is boundless or indefiniteness. 

When one has thoroughly grasped the real meaning 

that Is oy^'the arguments which treat of infinity as 

if it were in the category of definite numbers, one may take 

advantage of such “ compactness and better unity of ex¬ 

position as may thus be legitimately made possible.” But 

in the beginning, the only safe way to deal with the subject 

is to recognise that is not a definite quantity and does 

not represent any particular value. It implies greatness, 

becoming ever greater without restriction or possibility of 

finality. Consider the meaning of, that i becomes infinity 

when X equals zero. A better way of expressing the same 

thing will be:—the function i tends to infinity as x tends 
X 

to zero, the progress of the value of while x being 
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different from zero draws ever nearer to zero, knows no 

bound, and no limit can be set to its numerical value. 

means an operation giving a general notion of one of 

increasing algebraical greatness, and oo means without 

bound or limit. These verbal phrases are very cumber¬ 

some and it is convenient to have briefer phrases to use in 

their stead. Thus oo implies invariable increase, endless¬ 

ness, the absence of any effectual barrier in the increase 

and remaining ever greater. The circumference of a circle 

is also endless but it is not oo. Thus the chief character¬ 

istic is that of boundless increase and ever remaining so. All 

this notion is included in the simple phrase “ - tends to oo,” 



INDEPENDENT AND DEPENDENT VARIABLES 

AND FUNCTION. 

I. In Arithmetic we have to deal with particular 

known numbers, integral, fractional or irrational. Sometimes 

we take a typical number out of the above mentioned aggre¬ 

gate of numbers and denote it by x or y, etc., whose 

particular value does not affect the argument in which it 

occurs. In every problem of the infinitesimal Calculus, we 

have to deal with a number of magnitudes or quantities 

some of which may be constant, while others are regarded 

as variables and as admitting of continuous variation. 

A variable is a quantity or a symbol capable of assum¬ 

ing successively every numerical value from a given number 

* to another given number p (§ > a). 

(a, P) is called the domain* or the interval of the vari¬ 

able. 

The letter a,b,c, etc., generally denote constants and 

X, y, s, etc., denote variables. 

* An illustration will clear the idea of a domain. Consider 

the expression sin *.-r. Here x can only lie between — i 

and I, both inclusive. Thus the variable is not capable of 

assuming any value beyond these limits. The function sin 

can therefore be defined for the interval (—i, i) or any other 

interval within this interval, for instance, it can be defined 

for the interval (— i 1) or (o, i), etc, Next take e^ or 

tan X. All these can be defined for any interval. 
« 

If, on the other hand, the function sin'~''jr be defined for 

(o, i), it will be meaningless to speak of the value of the func¬ 

tion when X = I or any value beyond the interval given. 

When nothing is mentioned, the maximum domain is taken. 
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2. Let us now consider the expression 

+ + 5 + 3 ^ + 8 
which represents some opera¬ 

tion performed upon x. Such operations performed on x 

alone may be represented for shortness sake / (x) or F (x) 

or 4^ (4r); and is sometimes written as j/ ~ Thus 

if certain values admissible for x are assigned to it, :y will 

also change its value successively. Both x and are 

variables. But in their relation as herein stated, there 

is this difference between them, that any and all values 

may be assigned in succession to lying in the domain 

given, while j takes in each case the value which results 

from the operation of the formula upon the selected value 

of X. The variation in x is at our choice and independent ; 

the variation of ;y is limited by the relation between them. 

Thus X behaves as an independent variable and y as a 

dependent variable, but the value of the latj:er is also 

deternriined without doubt or ambiguity, when any value 

is assigned to x. The expression for which / (.^'), etc., 

stand are also said to be functions of x. 

3. // a and j3 de any two numbers^ where > a, and 

if to every value of x in the hiterval cl x there cor- 

respoftds one or more, definite values of y^ y is said to be a 

function of x in the interval {clfor x, a^id is written 

as y - f {x) or [x) or F {x)^ etc. 

If there corresponds to each value of ;r in (a, j3), one 

and only one definite value of yy y is said to be a single 

valued or uniform function of x In all what follows, we 

shall deal with single valued functions unless otherwise 

stated. Functions such as sin which may be any one 

of the functions 6^, tc ~ 2 tt -f etc., where sin B - Xy 
7C 

some restriction should be imposed such as — - ^ 

I TC 
sin V* ^ , in order to make it a uniform function. 
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If has a definite value, which depends upon the values 

of n independent variables having their // domains, y is said 

to be a function of n variables. 

4. Limit.—This is an extremely common word of 

frequent use, but the whole of the Differential Calculus is 

based on it and the importance of a rigourous and clear idea 

of it can never be too much emphasised. 

The function f {x) is said to have the Limit A, A being 

a definite number^ as x tends to a, if to every arbitrarily 

chosen positive number £ howsoever smalf there corresponds 

a positive tiitmber such that * | A - /* {x) | < e, ior 

every value of x^ for zvhich O < | ;r ~ ^ | -C V, and it is 

zvritte7t as Lt /(//’) = A, 
X a 

One advantage of arrow notation (instead of Lt f [x)^ 
X ^ a 

in which equality sign is rather misleading), is that it 

brings out clearly the fact that we say nothing about what 

happens when x is equal to a, and which the idea of Limit 

really means. In other words the Limit of f (ci?) as r a 

is not necessarily the value of the function when x — a. 

o < I ;r ~ a 1 <;i7 is expressly put to indicate the fact 

that I A — / (-r) I < £ for every value of ;ir in the interval 

( a ~ 17, + 1?) except x ==^ a. Thus we notice that a 

* Absolute value, A real number is either positive or nega¬ 

tive. The absolute value of any real number is its numercial 

value regardless of the sign. The absolute value of any real 

number is thus positive. | x | means the absolute value of or 

modulus of a?. We have thus | ® | = | 1 . Algebraically — 3 

< - 2, but I - 3 I '> I 2 I . 

N. B.—The absolute value of the algebraic sum of any 

number of terms is equal to or less than the sum of the abso¬ 

lute values of the separate terms This can evidently be 

seen by a student himself. 
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limiting value of a function/“(^r) is that quantity from 

which we may make f (x) differ as little as we please by 

making x approach nearer and nearer in magnitude to 

some particular value without actually becoming equal 

to it. 

Sometimes x tends to a from the right hand side only, 

i t.f X > ay and then in the definition we put o < (4: - a) 

<; rj (right hand only) instead of o < | r - ^ | < *7. This 

limit from the right hand side only is written as Lt f(x). 
X a o 

Similarly if x tends to a from the left hand side only, 

4r < O', we write o <C {a — x) 7 (left hand only) instead 

of o < I ^ I 7. The limit from the left hand side 

only is written as Lt f (x) . Thus Lt f(x) = A, means 
X ^ a - o X a 

that Lt/(^) = Lt / [x) -- A. f {x) is also sometimes said 
X a -V o X a — o 

to converge to A as a? ^ a. 

t^l) Lt sin X _ j 

lllustratioiis. 

X 

X 

If £ be chosen as by a reference to the table of sines, 

we can take 7 to be which case 1 — 
sin X 

X 
< 

10^’ 

for every value of x lying in the interval | | ex- 

cepting the value of a? = 0. 

sm X 
Here we say nothing about the value of -, when X = 0, 

X 

SlT*l 0 • 
and - takes the form which has no meaning. 

X 0 

Again if e be chosen to be still a smaller quantity, a cor¬ 

responding value of 7 can be found and thus I 1 — sin X 

X 
can 
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be made less than any positive quantity howsoever small. 

Thus Lt = 1. 
X 

i/(2) Lt x* = 9. 
X 3 

Here we have to shew that for any positive number e, how¬ 

soever small, a value for r) can always be found, such that 

1 1 <£ when 0 < | a: ~ 3 | ^ V- 

Since I a; — 3 I < 

•*. X ~ S + Or) where 0 < | 6^ | < t . 
Hence a? + 3 - 6 + 6^>; 

or I a? + 3 I < I 6 I + 17. 

Now (aj* — 9) ~ (a: 3) (a: + 3) 

or a;*~9| = Ia?~3l X la: + 3| 

< r) I a? + 3 I 

< J? (6 + r)). 

Hence | a?*—9 | will be less than £ when 0< | a?-3 | <v 

if 17 be chosen such that v (G + v) ^ 

Let £ be “j, therefore r) will either be equal to or less 

than the roots of 

or \ “ —3 + 3 

rejecting the negative value of A 

/i -f • JL H 
\ ^36 105/ 

Thus r) can be taken less than * 

.% I ic* — 9 1 < ^5 ^or every value of ^ when 0 < 

1 ^ - 3 I < 
6X10® 

Similarly we can shew that if we choose e = ’ can 

Hence 1 ** — 9 | /[I e for every 
6X10* 

be found to be ^ 
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value of Xj such that 0 < | x — B | <C V, howsoever small 

£ may be. Thus Lt = 9. 
X 3 

^ (B) Let us now consider the limit of the function 
X — a 

as X —^ a. 

Lt 
X a 

_1_ Lt __ 1___ 
^ — a h 0 a+ Zi — a 

Q file limiting value of 

which becomes numerically greater than any quantity howso¬ 

ever great. It can be possible, therefore that sometimes a 

function diverges to + oo or — co as x a. 

S. (/) If to any positive number A, howsoever large, 

there corresponds a positive number Vy such that /‘(;tr) > A 

for every value of x for which o < | at — ^ | ^ 17 

Lt f (x) ~ 00. 
X a 

{ii) If to any negative number — B howsoever large B 

may be, there corresponds a positive number 7, such that 

- B, for every value of x for which o < \ x —a \ 

Lt/(4r) = - 00. 
X a < 9, 

If however f 
X ^ a 

neither diverge to -f 00 nor to 00, it is said to oscillate, 

for example Lt sin x or Lt cos ^. 

X 00 X ^ o. 

Illustrations. 

1/ - (1) Lt e"*" is non-existent. 
X —^ 0 

L 1. 
Evidently Lt = 00 and Lt e"*" =0. 

X 0 + 0 X 0—0 

E. T. D. C —2 
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Hence as the limits from rifflit hand side and left hand side 
1 

are not equal to each otlier^ the limit of e‘^ as ^ 0 does 

not exist. The two limits exist separately and are different. 

Lt sin”^ X is non-existant. 
X 1 

Since Lt siri'^ ^ does not exist, for wo know no such value 
^ 1 0 

whose sine is ever greater than unity, hut Lt sin”^ .r exists and 
.r 1 — 0 

equals 
A 

Hence Lt sin'^.v and Lt sin""^ .r do not exist, althouijh 
X 1 X ^ 1+0 

Lt sin*"^ X = 
2 

^ 1 - 0 

Examples* 

1. If w is a positive integer, shew that 

(a) Lt = 0. 
X 0 

{h) Lt (a - xY - 0. 
X ot 

2. Prove that Lt cos- is non-existent. 
.r 

X —^ 0 

3. Shew that f{x) is zero or 1 according as .r is zero or 

different from zero if f{x^ — Lt- 
n X 

n 

4. Shew that ii) Lt 
X a 

ill) Lt - does not exist. 
X 

X —^ 0 

6. Before proceeding to consider the continuity or 

discontinuity of a function, it is desirable to lay down the 

three fundamental theorem^ on Limit. 
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I. Limit of a Sum. If Lt f{x) = A and Lt <A(;r)=rB, 
X —^ a X a 

to shew that Lt \f ix) -f ==. A -f- B. 
.r a 

Let the positive number s he chosen, as small as we 

please, and since Lt ftx) and Lt <\>{x) are both existent, 
A —> a X a 

then to £^2 there correspond say the positive numbers 

r]iy y)2 such that 

I /" W ~ A ! ^ s/ 2 when o Z. \ x - a \ Z. vi 

] ^ (;r) — B I ./ e/2 when O Z \ ^ - « | <' vj 

Thus if v is not greater than m or 72 

( fix) + <}> ix) - A - \ fix) - A ! 

+ , <f>ix) - B I 

/L t/2 + s/2 when o Z I ^ — a f Z V 

Zl £ when o | x-a 1 .< v- 

Therefore Lt [fix) -p ^(^)] = A + B. 
X —cZ 

This result can be extended to the sum of any finite 

number of functions. ‘ The Limit of a sum is equal to the 

sum of the limits.’ 

II. Limit of a Product. If Lt f ix) = A, and 

^ ^ ^ ^ 

Lt i>ix) - B, to shew that Lt fix). 0(.r) = AB. 
X a X a 

Let fix) == A + £1 where si o as x a 

since Lt fix) = A. 
X —d 

Similarly let ^ (;r) = B + £2 where ^2 x; a. 

A f (^) ^ (^) = AB + Bbi i A£2 + £1 £2. 

* Applying theorem I, we get 

* Since Lt A£2 - o Lt Bei — o , and also 
X a X a 

Lt £i £2 ~ o, for if we-suppose 
X ^ a 
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Lt f{x) <f> (x) = AB. 
X a 

This result can also be extended to any finite number 

of functions. The limit of a Product is equal to the 

Product of the Limits. 

III. Limit of a quotient. If Lt i>(x) B o 
X ^ a 

to shew that Lt — ~ 
B 

X ^ a 

- B + £i where si —^ 0 as X a. 

I I Si 

B B -|- si B (B + £,) 

I I £1 1 
eT B -j- £1 B* + Ber 1 

/ 
£1 1 
B* 1 

Lt / I _L \ 0 since sj —> o as 
\ B 1 

X a and is finite. 

Lt ] 
4>{x) 

I 

B 
X a 

Hence if Lt f{x) *= A and Lt (^(x) = B 4: o 
X —^ Ct X —^ Cl 

L t = - 4,ix) B 
X a 

I £1 — o I < when o <! \ x - a \ ^ 

I £2 — o I < a/s when o < \ x — a \ ^ V2 

and if ^ ^ 171 or V2, 

I Si £2 I < s when o <C. \ x — a \ ^ v 

/. Lt Si £2 ^ o. 
X ^ a 
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Exercises. 

(t) Lt 

X 0 

n or Lt 

X -^1 
1 

n 

(u) Lt (l + xY^ = e 
X 0 

(m) Lt —-i- = lo^Ter a 
X 

v 0 

These are very important limits and will be frequently 

used. 

7. Let us examine the curves of the figure t. 

Curve PQ is one line and continuous, that is there a^e 

no breaks, and we are able to trace it from point to point 

without any gap. Similarly, the curve RST is also trace¬ 

able continuously. Fiut the curve ABCD comes from 

A upto B, and then takes a big jump from B to C, and 

then again goes on from point to point without any jump. 

For the value of the abscissa equal to say jTi, the curve 

ABCD does not behave in the same way as it does for other 

values of or as the curve PQ or RST behaves for even 

X xi. In other words, the arc AB of the curve ABCD 



( 14 ) 

cannot be traced beyond B, and neither can the arc CD be 

continued beyond the left of C. 

8. f (x) is said to be "continuous when x ^ if to 

every arbitrarily chosen positive number s, howsoever smally 

there exists a positive number such that j f {x) - f {xf) | <£ 

when \ X’-Xi\ 

The definition is analogous to the definition of the limit 

of a function, with this difference that A in this case is the 

value of the function when x - xi u f {xf) ^ and instead 

oi \ X — Xi \ .C17, we have only \ x -- Xi \ <"77. I'hus 

a function f (x) is said to be continuous for x ~ Xi if f (x) 

has a limit when x —^ xi from either side and the limit 

equals f (xi) . In other words, for a function f (x) to be 

continuous for it is necessary that Lt f{x) and 
X Xi + o 

Lt f (x) both should exist and be equal to f (xi). 
X —^ Xi —^ o 

9- If f (x) be defined for an interval (a, p), f(x) is 

said to be continuous in that interval if it is continuous for 

every value of x^ such that a < at < p, and provided that 

Lt /O) - /-(a) and Lt f (x) = f{p), 
X a. + o X ^ - o 

Illustrations. 

'^{i) ^ is continuous for every value of x. 

Let us find Lt 
X Oi 

Lt U* - a» I = Lt I (a + A)* - a* i 
X a h —^ 0 

- Lt \ h (2a -f h) I 
A 0 

~ Lt \ \ \ 2a + h \ ^ which is 

less than any assignable quantity as h 0^ and h is deter¬ 

mined if e is given. Since a may be any real number, is 

eontitiuoUs for every value of 
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(i) continuous for every'value of jr. 

We can shew that correspondin^r to any arbitrarily chosen £, 

we can find rj, such that 

X XI 

e — e 
< £. When ’ X — .v VI 

Let XI *f h be any value of .v in the interval Cn — v, vi -f rj). 

XI + h Xi 

e 
A'l h 

e (e - 1) 

Now 1 + h + ^2 + ••• 

L? 

7t 1 X j 1 ++ Ij + 

...)| 

Z.\h\X 

I VI + h XI < 
e e \ ^ \ e, h» e 

Therefore (1) will be satisfied if v be so cliosen that 

< £ 

(2) 

VI V 
e, y]. e 

or 7/ < £ e 
XI 

and since yj e 0 as 77 0, we can find a value of 77 

satisfying this inequality for every value of £, howsoever small. 

Thus is continuous at Vj • and since vi is any finite value 

of V we see that is continuous for every value of v.'*^* 

Alternative Proof :— Lt |^vi+ ^vi j = o 

h —^ 0+0 

also Lt = /> • 
h o — o 

T 4 Vl + _ VI 4r. Li ^ ^ ‘ 
h o 

Hence f (v) is continuous for v — vi 
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xo. Discontinuous functions. If a function f ix) is 

not continuous when x = xi, it is said to be discontinuous 

when X — xi. 

Thus a function f (x) is discontinuous when x = Xt, if 

either (/) Lt / (x) and Lt / (x) both exist but are different. 
X Xi ^ O X Xi - o 

or (*V) None of the limits in (*) exists. 

or [in) One exists and the other does not exist. 

or (iv) Both exist, are equal to each other but do not 

equal / (xi). 

If the limit on one side exists and equals / (xi), it is 

said to be continuous on that side only. 

Illnstratious. 

'^(i) y === W meaning the greatest integral value less 

than X, 

Fig. 2. 

The curve is OA, BO, I)E, etc. 

The curve is discontinuous for all integral values of x, and 

continuous for other than these values. 

y (m) e® is discontinuous for x 0. 

The limits from both the sidei when a? —^ 0 exists but 

are difierent. 



( It ) 

i 
Lt = oo 
X —^ 0 "T 0 

I 1 

Lt e'^ = 0, hence is discontinuous at the origin. 
X ^ 0 — 0 

Sin X 

X 
is discontinuous when x — 0. 

The limit of the function wlien 0 exists but it is 

not equal to /*(0), for/* (O) in this case becomes q, which is 

meaningless. 

11. It is evident that although a function / (^r) may 

have a limit when x; it may not be continuous, since 

while speaking of the limit of a function when ;ir—we say 

nothing about its value when x = Xi; whereas while con¬ 

sidering the continuity, we say that the limit of the function 

when X xi exists and is equal to the value of the function 

when X = xi. 

Exercises. 

1. Prove that is continuous for all positive values of .r. 

Is it continuous when x ^ 0? 

2. Shew that ^ is discontinuous for x- == 0. 

3. Shew that sin x and cos x are continuous for all 

valueak* of x. 

4. For what values of x are tan x, cot .r, sec x and cosec x 

continuous or discontinuous. 

5. Discuss the continuity of 

1 /r-7 ~r- .1 . . 1 -— ^ y 1 t" sin Xy sin , and ^ sin . 
a cos^ x-rb sm^ x x x 

6. Shew that x — [x\ is discontinuous for all integral 

values of x. 

E, T. D. C —3 



Chapter ii. 
12. It y — f (x) is defined for a certain interval 

(a, P) , sometimes it is desirable to find the limiting value 

of the ratio of a change in f{x) , due to an indefinitely small 

variation in the independent variable x, to this change in x 

as this change tends to zero. This does not presuppose 

that such a limit must always exist. If the limit exists, it 

is called the First Differential Co-efficient or Derivative of 

the function /(;r) with respect to x. 

Generally a small change in the variable x is denoted 

by ^x and the corresponding change in the dependent vari¬ 

able by Sy. 

Thus y Oy ~ f{x -i- hx) 

Therefore hy ~ f (x -^r — f(x) 

Now if the Lt -exists it is denot- 
^ ^ ox 
ox —^ o 

eel as y f(x) or or ^ or f {x). 
ax ax dx 

It should be clearly noted here that is only a symbol 

or a short method of writing Here dy and dx 

are not separate quantities as ^x and oy denote, for we 

write only when the limit of the ratio ~ as ox —o 
dx ox 

has been attained. 

If the derivative exists, it has tacitly been assumed 

that the function is continuous also. For 

if 5;r O .- •= 

^ A + eo, where eo-?' 
as 5a:_^< 
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or /(*■ + 5ar) — f{x) ^ S;r (A + to) 

i.t., Lt /(;r + 5;r) = / (a*) 
dz' o 

Thus we suppose that the function is continuous if the 

derivative exists. But vice-versa is not true, i. e., it is not 

always possible to find the derivative if the function is 

continuous.* 

13* If the limit of rtexists when 
ox 

5;r o from the right hand side, i. r, tx ^ o through 

positive values alone, it is known as (he right hand or 

Regressive differential co-efficient of f{x). Similarly the 

- r /+ 5:r) — f {x) 5. 1 

limit of ^-=-- as o through negative 

values alone, /. e., from left hand side, is said to be the left 

hand or Progressive differential co-efficient of f{x), if it 

exists. If the two derivatives, progressive and regressive 

* After reading the article 45 , the student can understand 

this point by taking the case of two straight lines meeting at a 

point say at B in the figure 3. I’he tangent at B to the curve 

cannot be drawn. 

V f 

! / 

/. _e 

-, -- X 
o 

Fig. 3. 

A rigorous proof of this is beyond the scope of this volume. 

It may also be seen that 5y ^ o as hx ^ o simultaneously, 

and ^ is the limit of the ratio of these two infinitesimal 
ax 

quantities. 
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have the same value, it is only then and then alone that the 

function f{x) will be said to have a differential co-efficient 

dy 
-r-, and Its value will be either of the values of the two 
dx 

derivatives. If, however, the progressive and regressive 

derivatives of a function f{x), for any value of x are 

different, or only either of them exists or none of them 

exists it is meaningless to talk of the differential co-efficient 

of the function for that value of x. 

Illustration. 

Let 1/ = e’' . Thus = Lt 
dx 

X “f S.t 
— e 

or = Lt 
dx 

X / bx 
€ (e 

8x 0 

1) 

dx 

Ox 
5.r 0 

=- Lt 
e 
5^ 

dx ^ 0 

dx , (5.^)^ 1 

L2 L3 

dx -^0 

X e 

dx 

^x + (5^)* 
L2 

8.* 
L2 

, since 

5x 
L3 

+ 

+ 

dx = X a convergent series $ 

this tends to 0 as 6;^? —^ 0 
and 

Hence ~ 
dx 

Let y = c B, constant 

dy _ r .L c c 
dx 

- Lt 
5^ 

^ 0 

= 0 

A 
dx 

( constant ) =0. 
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14* Most of the ordinary functions which occur in the 

usual course of analysis can be reduced to a few standard 

forms. The remaining portion of this chapter will deal 

with the methods for finding the differentia] co-efficient of 

some of these standard forms. 

‘"i. Differential co-efficient of , 

Here y — x"* 

dy 

dx 
- Lt 

{x d hx)^ ~ x"* 

Bx 
bx o 

Lt 

ox —^ O 
Ox 

Lt *■ {(. + M' + I 
S^l\ X \_2 \x j J i 

OX o 

= Lt 

f n x" J I + >.-J) + 
L2 } 

^X 
> O 

- H X' n - 1 

Thus 

— (x^) ^ 
dx 

IL Differential co-efficient of sin x. 

Here y = sin x 

__ T 4- ^ 
dx~~ W 

5;r O 

= Lt 

/ , . 5x 
2 COS |;r H--1 sin — 

\ 2) 2 
6;r 

5;r o 
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sin 
S:tr 

Lt cos 

6r o 

cos jir. 

Sjtr 

2 

hr} 

Thus 

• --(sin;r = cos jr. 
ax 

^ III. Differential co-efficient of cos x. 

Here y = cos x. 

cos {x 5x) — cos X 

5x 
^x o 

dy 

dx 

2 sm 

Lt 
5;ir 

5^ —^ o 

Lt . / , ox \ 

2 ) 
Sin 

ox 

dx 

2 

•— sm X. 

dx 
(cos x) - sin X. 

IV. Differential co-efficient of tan x. 

Here y - tan x, 

^ ^ Lt 
dx S^r—>0 

dx 

dx Zx ' ' 

V- 1 

dx 
J-i-.r.'/ 

sin (x + S^r) cos x - cos 

dx cos (x -h dx) 

sin dx I 

cos xX cos (x i- dx) 

cos* X 
— sec* X 

sin X 
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(tan x) sec* r. 
dx 

^ V. Differential co-ef?icient of cot x. 

Here y -- cot x, 

Lt cot {x + hx) -cot;r 
• dx 5^ 

Lt sin X cos (^r + ox) • cns x sin (x f 5^:) 
5r —> o ox X sin X x sin {x f* ^x) 

^ Lt _ sin _ I 

5r —> o 0;ir sin X sin {x + 5r) 

■— - - [ - - cosec* X, 
sin* 

— (cot x) - cosec* X. 
dx 

VI. Differential co-efficient of sec ;ir. 

Here y - sec X, 

dy Lt sec (x f ox) - sec X 

dx 5;r 0 ^x 

Lt cos X — cos (x -f- ox) 
hx o ox X cos X X cos xr 1- ox) 

Lt 
sin T ’"f ^f) 

5a: o 5x cos X X cos (X + Ox) 

2 

~ ^ tan X sec x 
cos* X 

(sec x) = tan x sec x. 
dx 

Differential co-efficient of cosec x. 

Here >' — cosec x. 

, dy_ Lt cosec (x + ox) — cosecjr 

' ’ dx ^x o hx 
_ Lt *• - sin {x -f ^x) 

Zx -^o Sj^in X X sin {x + tx) 
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Lt 

o lx . 

/ , bx\ . hx 
— cos lx + — I sin — 

cos X. 

sin X X sin {x -r 5x) 

~ cot X cosec X 

. ^ 
(cosec x) ^ ~ cot X cosec x. 

VIII Differential co efficient of a’ . 

H ere y '' . 

. ay _ Lt ^ -a 
" dx 5;r-^o 6^: 

Lt ^ aO'^' ~ I = - 
ox o Ox 

= a-^log^ Uy by exercise iiti) pp. 13 

d 

dx 
{a^) = a ^' loge a 

Cor. I, f ' 

dx 

»^iX. Differential co-efficient of log« x. 

Here x 

. dy ^ Lt logg (x-\- ox) logg 4r 

-ztXo 

-,^Xo # 

= i log. e, by exercise («) pp. 13. 

loga e. 

dx (log« 
I 

X 
Cor. I. 
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Exercises* 

Piad the differential coefficieats of the followin#^ frorxi first 

principles, 

1, a; sin x. B. Lojor^^ (x + a), 

2. sec x^. 4. at”. 

5. Xf/x. 

15. Differential coefficient of a sum of functions is 

equal to the sum (4 the differential coefficients of tfje 

functions, provided all of these differential coefficients 

exist. 

Let / (x) + f2 {x)+fz (x) +- 

■ ' ~Sx-^o\ - s^r —J 

_ Lt f/i (x+Zx) - fi (x) fi'x t- 5:>^) - fi x) 
5jr->o\ hx .'5;r . 

=Xt^'WJ+it/K*]+. 

+ 
.} 

I6. (^) Differential co-efficient of a product of two 

functions. 

Let y^fi (4r). ft {x). 

dy _ Lt fi (x-hbx). ft (xj'Ox) - fi {x^ft(x) 

dx bx 

_ Lt A (£+3;^i^ 

/i (^) ft (x-^bx' - fi ^x)ft{x) 

bx 

Lt 
SjT-^O { j%!,x\-ox) 

fi (x-\rOx)-/ix) 

5x 
^A(x) X 

fi{x+^X,-/2 (x) 

Sx } 
= (^)]+/‘iW £u2 x)]. 

L £■., the differential coefficient of a product of two func¬ 

tions =■ (2nd function) X (Differential co-efficient of the 

E. T. D. 0.—4 
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1st function) + (ist function) X (Differential co-efficient 

of 2nd function) • 

{b) This result can be easily extended to the product 

of several functions. 

Let y - /i ix) f2 (x) /i (x) 

suppose/2 (x) f2<x) --=■ (x). 

Then y — /i (x) (x) 

<(> (x,^Jj\ (X)] + /, (;r) (X)].(i 

Again ^ (x)]-=-f, ix) £lf2(x]+f,ix)£[f,(x)l 

Substituting this result In (/), we have 

M (^)]+/i (^) /s J^[/» (a-) ]+ 

h (^) f% 

or * .;.r ^ [/l W] y [/i W] + 
;»/ dx /i (;tr) </;*• /2 W dx 

1/3 (^)]. 
/3 (4:) dx'- 

Thus if f{x) “A {x) ft (x) fz (x)../„ (x) 

rki’ A® atj)>• 

. 

Cor. I. ' 

*. e., the differential coefficient of the product of a 

constant and a function equals the product of the constant 

and the differential co-efficient of the function. 

17. Differential Co-efficient of a quotient of two 

functions.. 
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Let f {x) ■ fi (*•) 

'ft w 
^ r/i (x+ Zx) _ fi (jr)1 I 

j^VT K ;J 54r^o[/-j (4r+64r) /i V) J 5. 

Lt F/ii (.y) /i (x hbx) - /i (jr) ft (x+5x^ i 

5x-^o y {^x). ft {x^ 5r) JSar 

* [A w /» {x + lx)-fi jx) ft (x) 
^ Lt I f^{^x)ft{x->tlx) + 

5ar-»0 /’, (;lf) A W /"t _(£+ 5^) 1 I 
fi x)ji{x-\r^x) JS^r 

/ / ix) , , fi{xA-c>x)-fi{xi 

54r-^0 fi{x). ft {x+ox) 

U W (^)]-/i W ^[A W] 

L/i W ' 

^ flAffUi “ /? JfLA! ^5^ 
[A (^)]* 

i. e,^ the differential co-efficient of the quotient of two 

functions is 
(Denomtr ) (Diff. Coeff. of Numtr.)~_(Numtr ) (Diff. Coeff. of Demtr). 

Square of Denominator 

Illustrations* 

*'"(1) y ~ yX tan X. sin x, 

t’L <■/”> + £ ’■• *"■ 

-y^ - j 

and (tan x., sin x) = sin - (tan x) + tan x (sin xK Sill .X xj T lan x 

^in X, sec*£r + tan x. cosyr 

tan X sec x + sin x 

r= 4" tan X sec x +- sin x. 
X 

tan X 
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dxi ^ ~ 

tan^ ^ 

o ,y^ tan x — x^ sec^jc 

tan*t: 

= x^ (5 cot X — X coscc^v)- 

c'- • 

1 -+- ;r 

dy_(1 4- jr) 

dx (1 + .r)® 

.r 
__ ^ 
" (T +\r)« 

Exercises* 

1. Find the differential coefficients witli respect to .?c of 

the following ;— 

(i) tanV, ^ log j cos (x + h) j, x^ log f~p 

(tl) T 1 ~ 9 'l 1 ) /. • 
tan X cos* x 1 — sin .r jr — tan x 

2 

2, Differentiate the following’ with respect to x. 

~ 1 jr cos X — 
-. e — 
.r" 1 cos 

X — sill X. r ^1 
—y- . , lo^r .r. a 
X 4“ sin X ‘ Jj 

* X tan X 
X sec jr, 

sec X + cos X 

18. Differential co-efficient of a function of a function. 

Let y - fit), when t = <f> (x) 

dy _ Lt ^ Lt rS^ ^^1 
dx~ h X O |5/‘ S^rJ 

_ Lt Lt 
bx 0 5/ ^ ^ O Sar 

Now as / = </> (x), / + 5/ = <f>ix + ^ x) hence 8 / -» o 

as 5 *• -» o, since / is a continuous function. 

, ^ _ Lt /M Lt / M 
' </*r“S/-=»o\5//' Sar-^o \hxl 
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_dy dt 

- dt dx' 

Cor- If y — fi{t) 

t — fz {2) 

2 = fz {u) 

u = y; [v) 

= h (^) 
dy dy dt dz du dv 

7 = - X , X , X ^ X . 
dx dt dz du dv ax 

Thus ihe theorem can be extended to any number of 

such functional relations. 

llliistraiions* 

ixi. 

Putting 

^ sin X 

t ^ a sin X, we have 

. = I 

dy _ X 
dx dt dx 

'^2. y - tan |loK sin 

sin - - V and ^ ~ u, we have 
X 1 x 

y tan / 

, dy = X 
dx dt dv 

= sec*/. X 

\ c X a cos X. 
\ 

- a cos .r X e" ^ . 

Putting log sin ^ - i 
X / r 

dt ^ dy ^ du 

dv du dx 

^ X cos w X 

- X cos - X —i— X sec* (log sin ^1 

Wi • ^ sec*|logsin )• 
\ */ 
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Exercit^es. 

1, Differentiate the following with respect to x: 

(i) X tan (bx 4- c), x cos 
X 

(ii) sin |sin ij, log (cos .r), log |tan log ^log- 

, f / r\ (1 4" •^*) tan c^' 
Kill) sin X X <? ), -5-• 

x‘‘ 

^9^ Inverse functions. 

I. Differential co-efficient of sin"*^ x, 

y — sin "'^ X or sin y ^ x 

. d f . . dy ^ 
, (sin >') = I or cos = i 

dx ax 

dy I 

dx ^ 

2. Differential co-efficient of cos"'^ x 

y = cos“^ X or cos y ^ x 

••• (“»■>')=' 

dy 

dx 

dy _ j 

or 
yr-p 

Differential co-efficient of tan”* x. 

y ■= tan"*;ror tan y - x 

dy ^ I 2 dy scc^y -f = I 
dx 

or 
dx l -f x^ 

4. Differential co-efficient of cof* x. * 

y =. cot"^ X 

or y - ~ ^ tan ^ x 
2 

. ^ _ _I_ 
dx I + 4r* 



I. 

( 33 ) 

Illastxatioiis. 

Taking logarithm log y == ^ (x) log f (x). 

Differentiating with respect to x, 

= log /■(*). 

1 
.*. £==[/■ (*)f ^ j • 
n. y — tA^)] ["i^ ix)] [^ (*)]. 

Taking logarithm log y — log f (.x) + log ^ (x) + 

log lA («) +. 
Differentiating with respect to x^ 

i ^ 4- ^'(x) J. Jl(x) , . 
y dx f(x} Hx) ^ x) 

m. 
i+- 

y — X 

IV. 

log J/ = |l + -| log X. 

1 * = - ‘ ios,+ (i + hi. 
^ dx X \ XI X 

S = ( "'')j|(‘+:)4‘-4 

. -1 . 
Ism X 1/ = (s 

log y = yi ~ ** log |sin"*jc j + ^ log x. 

. J ^ - 
• * y dx- * sin"^ * J\ - )? 

log |sin ^x I + *• ^ + I®® X. 

J\- 
■X 

E. T. D. C.—5 
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Vl- X* 

X X 

{sin“^* («« M+iog*+i|. 

21. Differentiation ol a function with respect to an¬ 

other function. 

Let y - fix) 

and u ~ {x) 

dy 
To find 

— 

^ ^ ^ du . (^) 
dx * * du du 

dx 

lllastration* 

To differentiate tan x with respect to cos x. 

y = tan x, 

u = cos jy. 

dy dx secV 
^ ^ ^ “sin ^ ~ ^ 

dx 

22. Sometimes the function to be differentiated gets 

simplified by a suitable substitution for x in terms of an¬ 

other variable, as illustrated below. 

I. ;/ = tan 
I 2 ;r 

Put X = tan 

tan (tan 2O). 

s= 26. 

2 tan X. 

ux i + x^ 
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2. ^ = sin * (^ /1 — JX J \ - 

Put Jx = C03 e. 
and X — cos ^ 

y — sin ^ j^cos ^ sin fi> - sin ^ cos 6>j 

=! sin * sin (f> — 4) 

=.0-4,. 

= cos~* — cos~**-. 

^ _ * „ 
•’dx ^Jx-x^' yi - 

EXAMPLES ON CHAPTER II, 
Differentiate the following :• 

1 A +■■*./ 
•/ 1 - X 

2. /l + X- 

d 1 - X 

+ sin X 

+ 
3__ 

(1 - x)J\ - x' 

4. y> + J1 -A. 
y # + y 1 + 

(a* - ■ 

1 

7    —-. 
’ 4- ir 

8. ■ ^. 
ya* - 

9, cot** AT. 

10. ^ cot* X, 

11. J sin X* 
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12. sin X X tan (x + a). 

13. sin*(ajtr + b) 
co3^(bx + a) 

14. cot mx 
1 + sec^nx' 

16. sin 2x 
• 

16. (a — h cos x) 
a + h cos x 

17. 
1 + tan ^ 

1 - tan ? 
2 

18. log ^ *. 
X 

19. tan X + ^ tan* x^ 

20. 1 

1 •+• 8^1**^^* 

21. 1 — sin* 2 X 
i + sin* 2 x‘ 

22. sin 3 ^ X cos® S x. 

23. X sin”"' (1 — x). 

24. fiin“*' X + sin“*^ 

26. C08-» 

26. tan-> P±-S^. 
q - px 

27. tan-' 
1 + sec a cos x 

28. tau““^ (a + ^ cos x). 

29. 2 tir-'f A - ^ 
</ a® — ^ ^9/ a + ft 

30. 
tan' a 

sec a + cos x 

31. X sin X 
J + cos* 
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32. 1 + <59.® 
X + sin X 

33. cosec""^ [x sec""* x]. 

34. log X + 

86. 
^og*. 

36. € 
—1 

87. 

38. tan- p* 7 
e* + 11 

39. 

L. -1 
j X ^ 1 
log --. 

X 
40. log (x tan x) 

41. 
1 1 + «in M 1 

Find in the following:— 
ax 

42, y - x^ log X (sin ^ . 

43. y = tan~* ^ “ ■** •** 
i/t + x*~yi — X* 

44. y ^ (tan a:)**"* + (cos x)'^’^. 

4B. y = sin X X ain 2x X ain Sat, 

tan“» y - *! 
46. X = e 

47. y = 

48. Xf, Xjf As***** A‘2, A*a being functions of x 

and ^. 
Ml X X M3.Mu 

X A, X X,.A.r s"-" 1 

dx X fA2 X /43*..r../t«||[ ^*Ar dx '•"^A^r dx 

49. If fix) == —-—, find the differential co-efficietit of 
1 — X 

flfifM}]. 

Find — in 
dx 

the following:— 

60. x^ X = (* + 
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to 

J » 
61. y = tan-^ [a“ X 

1+x^ 

52. y = log*:» whore log* means log log log-- 
n times. 

63. (r +2/2/ 

54. differentiate lo^« x with respect to x^. 

55. Differentiate cos with respect to sin x. 

56. Differentiate log« 

1 

a + S tan - 
9 

P tan ? 
2 

with respect to 

a* sin*? - P* cos*? 
2 2 

67. Differentiate tan “ ^ --with respect to 

tan ~ ^ :»r. 

58. Differentiate 

1 + y 1 + i* 

yrT~a^~* 4- /i~^' 

yr+~a*^* - /i - p= 
if* with res¬ 

pect to y 1 ~ P* x^. 

59. Differentiate cos~' (2x^ — 1) with respect to sin"^ x. 

60, Differentiate ^r’^log (cot” * x) with respect to cos 

61. Differentiate ~y=====r==^ with respect to tan x. 
</1 + tan X 

62. Differentiate with respect 
/ - a) (§ - x) 

/— I “ J X cos* 

Find ^ in the following:— 
dx 

68. 4 i = 
nr Jr 
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at* \ 
y - 2at J ■ 

67. ~ $ } where 6* = a* (1 — e*), (e < 1). y = 0 sin <p] /I V ^ / 

X ^ a sin^ t 1 
68. _ I (Cissoid of Diodes). 

y ^ ‘ j I 

69. Find —^ where, 
as 

5 - 

Find in the following :— 
dx 

.1. = a cos < + I log tan* ± j 

y — a sin t 

J I sin a sin ^ 
^ = cos 0 -h --i-f 

= sin 0 

1 — cos* a sin* </> 
sin <x cos 0 

1 — cos* a sin* 0 

(Tripos 1904.) 

where a is a constant, 

„cy X — a(2 cos y + cos 2 6)\ 
* 1/ = a (2 sin + sin 2 6^) /’ 

_ 3 at ] 

3 ^t* (Folium of Descartes). 
y^ 

= (a *4" ^) cos 0 h cos 

y = (a + i>) sin B h sin 
)| 

|a + j ^ Epicycloid. 

76. Ify a/ Jr 

Jx 

shew that x ^ ^ r--• 
2 — ylo^x 
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76. ^ 4/cOS X 0/|j(jg PQ ^^ -f-,.,00 

dy ^ sin x 
shew that 

dx 1- 2y 

>y 77. 1{ y = tan x 

cot X 
I + • 

1 +. 
tan X 

x + - 
cot X 

dy 

1 +••• 00. 

4 (sin^^ + y) 
Shew that ^.^2 2^ _j_ 2 y -j* cot x ■“ tan jp^ 

a y X 
, 78. If y = 

1 + • 
a y x 

i + - 
a y X 

Shew that -r 
dx 

1 -h.00. 

a 

2/x^ 
4: a X 

1 4- 

a y X 

1 + 
a y X 

1 +.,00. 

J 79. Jiy^x^+ 

jr* + 

x^ •~j~ •. •. 00, 

Shew that ^ 
dbc 

4* 

4 
4IP*4 •••«>* 
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80, If ^ == 
jc + c' 

X "f" e 
X -f* oo. 

Shew that —- == — . 
ax 1 ^ 

81. If y =^a 

Prove that ^ — 
ax 

y loff y 
[l 2/ lo^? ^ X lo^ y] 

82. If Sn is the sum of P. to n terms of which r is 

the common ratio, prove that, 

(r - 1) 
d Sn 

dr 
(n 1) S/I — w Srt — 1 [coll. Ex.]. 

'fit Vt 
83. If y = , where mj, etc., are functions of x^ 

shew that 

dui 

dx + 
.4 

dx 
du% di^2 

~dA 
dx 

84. Prove that if x be less than unity 

^ 4- I 
+ , I „t + •• I .4 + 

8a:’ 
1+a: 1 + r* l+AP^ 1 + a:® 

1 

+ ...to oo. 

1 — X 
[coll. Ex.] 

85. If X be less than unity, prove that 

l-2x , 2 ^ - 4 

1 X + x^ 1 — 1 — X* x^ 

_ 1 + 2.y 

+ •to oo 

1 “h a: + .X* 
[Edwards]. 

where ^ oo. 

aa rt r, - , /.I »'*cos 2 e . r®cos 3 0 , 
Ob. If C = 1 +r cos & H-r-j— +  -h 

L» 

o • /I -1_ 2 , >-®sin 3 6', 
and S = r sin o' + —— + — ^-3— +. 

E. T. D. C.—6 
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Shew that 

dC 
G'^ + S (C*+ S^)cosff. 

dr dr 

- S - (C* 4- 8*) sin 0. [Coll. Ex.] 
dr dr 

87. Determine the co-efficients Aiy A2.so that 

.*’"-1 4- - .+ (-ir A* } e"' I 

= x'” , 

ni being: a positive inte^jer. (Loudon 1890.) 

(>-§■). 
Shew that 

-AJ — TZ coin u 1 = 2 —t. + /S* ^ ~ 2, + 
u I M 1^(1* — «*) (2* — ?<*; 

( (.3* - ) ' [ 

89. Shew that — (cot u) — A 4* 2 
d?i {u — m Tt 

where the summation is extended for all integ:ral values of m 

excepting zero. 

^ 90. Tf 
sin X Lt X X ^ X 

^ ^ -7:^ cos 
n rio 2 2* 2® 

cos 
2” 

Prove that i tan ^ -f* 
2* 

tan 
2* 

4- 
2* 

tan 
23 

= — cot X 
X 

andA^ sec*-J + ^ + 

1 2 .1. = cosec* X — A 1* 



CHAPTER HI. 

SUCCESSIVE DIPFERENTIATIOK. 

23- In the preceding chapter we dealt with the methods 

of finding the first differential co-efficient of a function. 

In general, this derived function will itself be capable of 

differentiation. Thus \l y = f (x) has a derivative /'(x) 

and if /'(^) is differentiable, »>., Lt ~ 
ox 

hx -^o 

exists, it is called the first differential co-efficient of 

with respect to x, or the second differential co-efficient of f{x) 

with respect to x and is generally denoted as 

or ^ or f"{x). Again, if the function f"{x) has 
dx^ 

in its turn a differential co-efficient, it is denoted as f"\x) 

V 
or —— and is known as the third differential co-efficient 

dx^ 

of f{x) with respect to x. 

Similarly the differential co-efficient of / {x), if 

d'^v 
it exists, is denoted by —— or/"(x) or y^. 

dx'' 

Thus 
dx* tx 

Zx -» o 

These several differential co-efficients of a function with 

respect to x are known as the successive differential co¬ 

efficients of the funetion. 

24. The following standard results will be found of 

great use in subsequent treatment. 

I. li y = x''^ yi = nx’‘~\ y^ = ^ 

etc., and yn * L«* 
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II. li y =• o®, >'1 = a® X log, a, 

y, * a* (log, a) * 

yn = (log. «) " • 

III. If y = <?‘'® , yt = <w*® , 

yn 

IV. If 

J'l 

yn 

V. If ;/ 

.’. yz 

VI. If sin d X. 

ax . r , i. ax , 
y\ ^ a e sm a x + a e cos i 

Putting a — r cos and ^ « r sin then r «= 

Ja^ ^ ^ and ^ = tan*^ 

;^i = sin X + 4) 

= ^a:’* sin ^ax + n~j. 

= cos ax 

— a sin a X — a cos 

— a* sin (^^ + ■“1 ~ ^ y) 

a 



( 45 ) 

= (a* -f ^ sin I + tan ^ ~ j 

Similarly y% ~ (a* + d*) ^ sin r -h 2 tan 

In general, = (c? + b^sin ^bx + n tan ^ ^ j 

VIL It y =: cos b X 

y\ ~ a cos b x -b sin b x^ 

Putting a ^ r cos 0, and b ^ r sin we have as 
in VI, 

y\ = -f b^^ cos r f tan ^ j. 

Similarly 1?'*"' cos|^ :r + 2 tan~^ ^ | 

VIII. If 

In general y^ = (a^ + b^,^ ^'*-^cos 

I 

tan ) ^ / 

JT + ^ 

L» >-*=( - i)* 

= (—i)^ 

(X + o)’ 
I 3 j L 

(r -h 

In general, ;/,= . . 

Examples. 

Find y. in the following ;— 

(1) sirf« sin 2 sin 3^. (2) cos 4 x. 

(3) 
(2 X + a)* 
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(5) 11 y — sin m x cos m x, shew, that 

yr ~ w*" |l + (— iX sin 2 

25. Leibnitz’s Theorem —If y — f{x). <t>{x) be 

defined for a certain interval {a, b), and if all the n succes¬ 

sive differential co-efficients of /(r) and ^^e existent, 

then the differential co-efficient of y is given by 

yn /“ {x) i>:x) + "C, f'-Kx) 4,'ix) + V2 /—*(^^) 
4>''ix) + . . . . + "r„_i f {x) (x, + f{x} 

r 'x). 

Let y = fix) 4>[x), 

differentiating yi = f'ix) i>{x) -f f{x) 0' (x). 

Similarly = /" (x) i>',x) -f 2 f'{x) <t>'(x) + f(x) 

and y^ ^ f" {x) <f>[x) -f- 3 f"(^) <b\x) -f 3 f’ix) 

^"{x) + fix) r'ix). 

and so on. 

Here it is evident that the co-efficients of the successive 

terms in >^2, /3, etc., are formed in the same way as the 

co efficients in the expansion of the binomials {x -f a)* and 

(x + a)®, etc. Hence assuming generally this law of the 
formation of the co-efficients, let 

Jl'm = ' (X) (X) +% (X) 

+.W + 
fix)<l>”' ix) . 

Differentiating this, 

>'m + 1 =/'” ^ + (i + ’Vi) f^ix) <f>'ix) +- 

+ ) /”+*"■ (x)<b'' ix) + .... 
+fix) rb’^ + Hx). 

^fm+l^^) ^ m + <b'ix) 

+ ”‘-^^^,f”'-^ix)<b’'ix) + .... 
”' + W/”'^^-’-ix)<f>'-(x) + .. . 

: +/(;r) + 
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[Since 

Thus assuming the theorem for the derivative, it is 

observed that by actual differentiation, it is also true for 

the {m + i/** derivative. It was true in the case of 

||econd, and third derivatives, hence it holds good for the 

fourth, for the fifth, and hence so on universally 

'i^hus = /" (;tr; <56 x) + **£1 /"“* (x) (x) + 

"C2 (x) <l>"{x:) +_ 

+ *c, /"■’■ (ar (ar) -}- .... + / (x) ^"(ar) 

Illustrations. 

r. Let y 
sin bx 

, to find yn . 

Here supposing: f(x) = sin bx^ 4^{x) — 

/. f^(x) ~ sin Ibx -r w —) and (.r) ~ (-1)" -1= . 
\ 2/ x^^ ^ 

Hence by Leibnitz Theorem, yn ~ 2^’‘sin|6.r -f /i ^ 

*sin I bx + u — 1 

+ "c, ^**~'^sin [bx + t} 

f) -- 

sin ^ (~ 1)” . + 

JI. Differentiate n times y ~ sin ^ .r X cos^ x. 

Put cos X + i sin x = z. 

cos X — ^ sin X 

2 cos ^ = 2: + . 

2 i sin ^ z 

U‘ *»)’ C0S’:¥ 



( 48 ) 

*i"‘« - - *-)*■ 

= + 2 «"> 10 + bz* + 20 z' t ^ 

20 5 
4~ 

10 . 4 2 1 
««“ + 2>® ■ 

+ 2 |,10 _ 
.1.)- > - ^)- 

1 

1 ' 
1 20 (e*- 

1 
-S’ ( )1- 

Again sii\( e *2 cos n x ~ + 

;ui(l 2 / sill n .r — 

/. y “ 2 1 {sin 12 :r + 2 sin 10 ^ — 4 sin 8 x 

— 10 sin 6 Ji: + 5 sin Ax +20 sin 2 } j. 
= ^l^sin 12 .r + 2 sin 10 ^ — 4 sin 8 jr— 10 sin 6 x 

+ 5 sin 4 ^ 4" 20 sin ^ 

-*• 2/rt ~ {l2 ^ + n + 2. lO" sinjlO x 4* 

4. 8** sin |8 10. 6^ sinjo ^ + n 

+ B. 4” sin|4 x 4- n g|+ 20, 2** sin|2 x + n 

III, Differentiate n times y = tan 
—1 JC 

a ^ If 1 _ 1 ) 
a* + 2iXx - ia X ^ ia]* 

if I 1 1 
LU-ta>* (*+ja)"J' 
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Putting X = r cos 6f ^ 

a = r sin 6^. 

r* = + a^, tan & = - . 

yn 
^ (-ir 

(-ly 

2 i 

n-l 

11^1 
i. [< 

n — 

2 iXr^ 

(cos & —i sin 6^)* 

__ 1 1 
(cos6^ + isin 6^)*^ |’ 

(cos 0 — i sin 6^) * (cos^+t sin) ' 

cos n 0 --r-—1 cos nd + i sin nO — 
2iXr^ [ 

i sin n 0 j. 

(^l)n-r 1 
sin n 0 

sin n <9, where 

-1 0 - tan 
X 

IV. DifTerentiate « times y = y 

Breaking them into partial fractions, 

= 1 1 , 1 _ 1 

y (a-P)(,a-Y) ^-a (p-a)(P-Y) 
_1_ 1 

(Y-a)(Y-p) a:-y’ 

(-1)" L«.^_I_Izl 
(-at 

+ 

(«-p) (P-Y)(X- 

V. y 

|(jc- a) * + * 

3 — a 
(^_Y)« + i 

— sin“‘x Vi = e 

u-p) •• + 1 

’ /I - 

squaring, (1 — a:*) yi* = y*, 

differentiating and dividing by 2 yj, 

il-x*) yz - X yi - y - 0. 

E. T. D. C.—7 
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Differentiating n times each term by Leibnitz theorem, we get 

(1 ~ 2/n + 2 “ 2 n X yn+ I ~ n (w —1) | 
-x yn +1 - rtyn}-^ 0, 

___ _r~ y^J_ 
(1 — x^) yn 2 — (2 w “h 1) .1: ?/» f I — (w* +1) yf% =0. 

EXAMPLES ON CHAPTER III. 

1. Find «/4 when y - sin"*^ x^. 

2. Find y$ when y - tan‘* ^ 

3. Find yi when y cos2jtr. 

4. li y = L sin a jt: *F M cos a shew that y2 + 

aV - 0. 

5. If y = P + Q , shew that y^ — y ~ 0. 

'' 6. If y =“ a sin (log x), prove that x^ y2 'i' x yi + 

y = 0. 

7. If "5* = 1 P 2 y2 prove that yz = y y^ 

+ 1) (7 / ~ 1). [Oxford 1889 J. 

8. If 2/ — sin .r, prove that 4 = 105 sin 4 .v. 
dy^ 

[Oxford 1890]. 

9. If ^ = tan”^ rr, prove that (1 + x'^) 2/2 + 2 xyi ^ 0. 

10. If 2/ = a sin“' b x, prove that (1 ~ b^ x^) yi - b^ x y\ 

=* 0. 

11. If 2/ = cos b A‘, prove that ijz — 2 a yi + 

(a* + 2/ ^ 0. 

12. Find the differential co-efficient of 

. {a^x"^— 2nax-hn {n + 1) } [j. 0. S.]. 

13. If y == sin"^ X. prove that 

(1 - x^) yn +2 - {2 n + 1) X yn — w* 2/» ~ 0. 

14. If 2/ ” e~^ sin x^ prove that ^4 -f 4 ^ = 0. 

15. If y ^{x ± ^ i)"'*, 

^ prove that {x^ - l) yn-^2 + (2w + l)^/ « 4. j -f 

(w* - m*J yn 0, 
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»/l6. If Pn ( /’a:*"!)’* } 1 prove that 
- rtx* ' 

f- ( (a;* —1)~* I - M (m + 1) = 0. 
dx t dx ^ 

17. If Y — s X, Z — t and aJl the letters denote 

functions of x, then 

X Y Z 
Xi YxZi = ** ‘ 
Xi Yi Zi ** 

where the suffixes denote the derivatives with respect to x. 

[Math. Tripos 1906|. 

ylS, If y — tan~^ 

yz = 2/1 {1 + 12 2/1 } {I -f 4 yi^\. 

[Math. Tripos 1907]. 

-1 

iO. If ly = shew that 

(0 (1 + x^) y2 + {2 X - <i) 2/1 = 0. 

{a) (1 + x^) yn + 2 + [2 {n + 1) X — a} yn \ \ + 

n {n + 1) 2/» = 0. 

20. If y = sin (m sin"^ x), shew that 

(0 (1 - x^) 2/2 — xyi + m* y = 0. 

(u) (1 — x^) 2/n + 2 — (2n + 1) xyn-k-1 — (n*~ m*)x 

yn = 0. 
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23. 

24. 

26. 

26. 

27. 

^ (T + ^ -f X*)' 

„ - X ,„g (■ ±.i) 

y ~ a positive intep:er. 
X 

y ^ {i + X + and shew 

that 

yn “ i (— 1)" L" sin " ' 6>{sin (w 4* l)^ "" 

cos (n 1) 6^ 4- (sin B 4- cos 

[Math. Tripos]. 

28. Shew that if x = cot y. 

x^ \ 
d~^ = LtL sin yhin y - cos y sin 2 y 

4- oos*2/ sin 3 •• |, [Oxford 1890.] 

29. If y = ^3 _ g3> prove that 

_ (rJ)"L- 

3 a* 

30. If n Atk 

(--_-")«■+1 + 

2 cos|(«-|-l) ^ I 

y • « I 
(^*4* d x-^a^) 2 

^ /b 
where tan B = -T- 

2 x + a 

rr —2 ^ 4 1) 

(-1)” L» 
3 a* 

Shew that 

,2^ nA,t (2^)-“ [F**-* U*)], 

the series continuing until a zero co-efficient occurs, and 

wAo - 1, the indices of F denoting (Jerivatives with respect 

to JP*. 
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[Here show thatwAg^ “H 2 (n — 2 k + 2)/?Ai’* -2 

= (n-hl) A2i and deduce the result by induction]. 

Find 2/ft in the followiri^?. 

31. 2/ == 

82. y = sin (^®). 

oti 13 - i5i3# Jl Yl^DT^k ™ j_ 

Shew that 

dn 

dx 

\%j 

\y.x) 

the summation ooiitiiiuiiiK until a zero co-elfirient occurs and 

nBo is unity, the indices of F denoting derivatives with respect 

to yx. 

[Here shew that nB2it + mB2A- —2 2 (?? -f A: ~ 1) ~ (k i l)B2^]. 

31. Prove that 

!^..(eVar) (_ 

I 1 i 
71-0 [Lr — r ~ 1 yXI 

[Math. Tripos. 1883]. 

85. Prove that if ac !> I? 

.+ ... \ 
dx^ a ^ 2 b X + c x^ 

\a 2 h x 
cos 1 F1 tan -1 ~ 

b cx J 
[Loudon 1890]. 

36» If -“-"JY be differentiated A: tiines, the denominator c X 

of the result will be (e^ Y \ and the sum of the co-effi¬ 

cients of the several powers in the numerator will be 

(-1/1.2.3.k. 
[Caius coJJ.]. 

^37, Shew that tan 12/ ~jsin m x - tan/i my X cos mx. 

[Oxford 1888]. 
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B8. Establish that if w be a positive, 

sin n X 
1 /a . 5 ,.7.......(‘2 7~i) 

, 2n - 1 

(siT; 7) 
89. Prove | j a** a''-* |7)" ' 

[Orei^ory^s Examples]. 

40. Prove that sin“* x -- “i 7* *_*:*X I A- n—1 n —• 1 I 

1 + 2 ( - ly c*Ti- 
* 1 j 

. „ 1.8.5.(2/c-l) /i—■^V' 
where 1 a ' {2 n~i^) (2 n—5)-..{2 n~ 2 k ~ l)\i- + xj 

[Erenet], 

41. If X + y — 1, prove that 

W .r* - 0 

[ Murphy,.-Electricity], 

(loc .xy+ -i, I’f’ OoK x) j 

o(£) p (i«r7}+. 

to n 4 I ter«,s = (log a)"" } . 

[Math. Tripos 1889]. 

42. Prove that 

X lo^ .r 4- X 

+ 



CHAPTER IV. 
EXPANSION. 

26. 'Ro\\€s theorem. -- If a function f{x) is continu¬ 

ous over a?i interval a ■ x \ b and va7iishes at the ends^ 

and has a derivative at each interior point a <i x <C which 

is continuousy there is at least 07ie value of x^ say xi, 

a <C ttri <. by such that j' (xi) c. 

Since / {x) is continuous over the given interval 

and vanishes for the values oi x ^ a and x - b, it must 

do so either by increasing or decreasing from zero to a 

certain quantity, and then decreasing or increasing to zero 

respectively, at least once in the interval {a^ b)^ unless the 

function is zero throughout the region The point at 

which the function ceases to increase and begins to 

decrease, or ceases to decrease and begins to increase, is 

known as the maximum or minimum value of the function 

in the neighbourhood of that point. 

Suppose the funciicm has a maximum value at x ~~ x\^ 

then f {x y hx) ~ f\x) cannot be positive if S x < or > o 

and 
f {x \ 0 x) i {xi . . . .... 

■—— cannot be positive ii o x ^ o, 
S X 

and it cannot be negative if 5 ;r < o. Hence in the limit 

when S o, 

(0 
Lt / {x x) - f [x) 

5 X —^ o ^ X 
, cannot be posi- 

and {ii) 

tive if 6 r > o, 

Lt f{x 5 x) - [x) 

b X o \ 5 X 
cannot be 

negative if 5 < o. 

Clearly (/) and {ii) are the regressive and progressive 

differential co-efficients (§ 13) of/(^) at at — 4ri and by 

Michel Rolle was born in 1652 and died in 1719. 
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hypothesis these must exist and be the same; and this 

cannot be the case unless both of them be zero. Hence 

f (^i) = o 

Similar reasoning will show that y' (;ri) = o if the 

function has a iniriirnum value at x ~ Xi. 

27. Rolle’s theorem does not apply to cases where the 

function or its derivative is discontinuous. 

Case {i). When the function is discontinuous: — 

Fig. 4. 

Fig- (4) Shows that the function ./ x) is discontinuous 

at X ™ c. Although / {x) vanishes at x - a and x - b 

its derivative does not vanish. 

Case {ii) when the derivative is discontinuous :— 

Fid. 5. 

Fig* (5) shows that although/(rr) and f {b) are zero, 

f (x) does not vanish for any value of x between a and b. 

In this case/' (x) is discontinuous at x ~ its values 

being 00 and — co according as we approach from the 

left hand side or the right hand side of L, 
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28. Mean Value theorem.-If a function /(.*;) de¬ 

fined for a X has a derivative at each interior 

point and which is continuous also, there exists some point 

xi, within [a, l>] such that, 

fW ~ f (a) 

b — a 

Let us suppose that ^ - \ 
b a 

or / {b) - f {a) — • a, \ ^ o.(/) 

Let (r) =/ (x) - f (a) - {x - a) \.(it) 

Therefore <b (b) == o, by (i), 

And also (a) ~ o, by putting x ~ a in {ti) 

Therefore by Rollers theorem (x\) --- o, where x^ is 

some value of x within \a^ b]^ as «/> (x) satisfies all condi 

tions of Rolle’s theorem. 

Thus <f>' (xi) = /' (jti) ~ \ — o 

or \ ^ f (xi). 

Hence/*(/) = f (a) + (b - a f {x\) 

or 
o — a 

{Hi) 

(tv) 

Cor. 1.—Let b = a + 5 therefore b — a d a 

/. xi ~ a -i- 6^ 5 a, where O < < i. 

Equation (m) then becomes 

f {a + h a) ==^ f {a) + S ^ /' (^^ + Ola), 

This is another form of the Mean Value theorem. 

29. Mean Value theorem extension.— Let m be 

defined by the following equation 

f(b) - f {a) - {b - a) f’ (a) - 

\ (b — a)* IX — o.(*■) . 

Now consider the function 

'b (x) ^ f (x) - f (a) ~ (x - a) f (a) - 

i (x — a)‘ /X.(m) 

E. T. D. 0.—8 
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4> ib) = o, by (i) 

and ^ {a) is also identically equal to zero. 

under the proper* suppositions, by § 26 

<f,' {x) = f {x) - /■'(«) — (4r -<»)/« — O-{«») 

for a certain value oi x = xi within [a, b\ 

»• t, /' {xi) - f (a) - (xi - a) = o. 

Again (^1'' = o and 0' (a) is also = o. 

Hence by § 26 under proper* suppositions, (x) 

must vanish for some value of x — xt within [a, xi], 

i. e. 0" {xt) s (xt) - /* = O 

or M = /" {xt). 

Equation (i) therefore becomes 

/ {b) — f {a) + (b - a) f {a) + 

J (^ - a)* f" (xt).(iv). 

This can be re-written if ^ = a + 5 a as 

f (a + 5 a) — / (a) + 5a f' (a) -f 

h 5 a* f" (a -f- <>2 5 a) where o < &2 < i. 

Cor. I.—Similarly defining v by the equation 

i{b) - f {a) - (b - a) r (a) - L ^ «)*/,/ («) _ 

-i - a)* r o 

We can shew that v /*'" (x^) where a < xz < Xi and 

hence/* {6) — f (a) + {d - a) f {a) + ~ (b — af 

/*" (a) + ~ {b — af /*"' (xi^. Continuing this process 

I, i e., <b{x) has a continuous derivative at each interior 

point. 

a, /. e,, W has a continuous derivative at each interior 

point or in other worda <b{x) has first and second derivatives 

existent and continuous in the interval. 
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we get the general result 

f{b) -fa +{b - a) r {a) 

-V - «*)/"(«) + iV («) + 

+ (b - «)•-* (a) + 

(b - a)' 
r(^n), 

where a •< ^« < ^n—t, etc., ^ lies between a and b. 

30. Taylor’s Theorem.—In the preceding article we 

proved that 

fi^) '“= /(^) + - a) fUa) + . 

4- where ,r„ lies between 

and fi. 

Putting a ^ X and b — x A we have 

f{x + h) = f {X) + hf' (x) + /" (x) +. 

+-^ r (x + Ob) .(*•) 

where o < 0 < i. 

This is known as Taylor's theorem. The last term 

h* 
- /" (x + 0 h) IS known as the remainder \a Taylor's 
L« 

theorem after n terms. If this remainder tends to zero as 

« CO, Taylor’s theorem can be written as 

f{X^k)^f{x)+hf' ix) + f» {X. + 

.+ f* (x) + -to 00-{it) 

which is known as Taylor’s series. 

31. The two series of § 30 are of great importance in 

the theory of differential calculus, and far reaching in 

their effect. The series (#) shows that the sum of the 

expression on the right hand side will be exactly equal 
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to f (x i- h)^ whatever be the value of the Remainder 

/” (^ + 6* h), whereas in the case of (//), the sum of 

the infinite convergent series on the right hand side can 

be made to differ from f {x + k) by as small a quantity 

as we please as « oo. 

The infinite series {it) represents the function for those 

values of the variable and those only for which the remain¬ 

der approaches zero as the number of terms increases in¬ 

definitely. 

32. Maclaurin’s Theorem.—Putting x = o, and then 

writing x for h in the Taylor’s theorem, we get 

f (^) “ /■(o) X f (o) + /' (o) . f 

^ /“ 

where o < <» < i. This form of f {x) is called Maclaurin's 

x'^ 
theorem. If the value of /” '^cnds to zero as 

n —^ 00 

/’(^) = / (o) + X f' (o) + (o) 4--4 

(o) + .to infinity, 
L** 

where (o) means that x is put equal to zero after 

differentiating fix) n times. This is known as the Maclaurin’s 

series and gives the expansion of / {x) in powers of x with 

constant co-efficients. The statements made concerning the 

remainder and the convergence of Taylor’s series, apply 

with equal force to Maclaurin's series, the latter being 

merely a special case of the former. 

33. As both Taylor’s and Maclaurin’s series ate of 

fundamental importance in the development of functions, 

it would be advisable to recapitulate the conditions under 
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which both the series give an intelligible meaning. From 

the method of proof, it follows that all the limitations of 

Rollers and Mean value theorems are also the limitations 

of these series together with the conditions of convergency 

of the remainder after the first n terms. They may be 

enumerated as follows :— 

(1) f {x) and all its derivatives must be finite with¬ 

in the domain given or under consideration 

and must be continuous as well." 

(2) The reminder after the first n terms must con¬ 

verge to zero as « 00. 

In the case of these theorems the limitation No. 2. 

changes. The remainder in theorems must converge to a 

finite limit only. 

Example. 

I. To expand sin {x -j- h) in powers of h and deduce 

the expansion of sin x in powers of x. 

Here f (x) ~ sin x 

f — cos .r 

f" (.v) = sin ^I = — ^iii X 

f \x) = sin ^x ^ ^ j ~ ~ ^ 

(x) = sin ^ 2 ) ~ 

/*“ (jr) - sin j 

/• *sin (x -i- h) ~ sin x ^ h cos x — —- sin x — cos a: 

+ - sin X “f. 
L3 

+ sin h + + m]. 
L" \ 2 / 

* Here none of the derivatives are either infinite or dis- 

continuous in any interval. 
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sin 
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terms h 

h"T )■ 

But A" 
sin (* + + Oh \ < 

A* 

L" \ 2 / L" 

and Lt --~ 0 , since h is finite. 
L" 

n oc 

/, The Remainder converges to zero. 

Hence sin -h h) = sin x ■{' h sin “f* 

(« + 2 j)+.+ *V (- + 
Now putting = 0 and h = x, we get 

.7 

Sin 

sin X — X ^3 -t* ~ |7+' 

since AO) = f"(0) = f*(0) =... = /-»«(0) = 0. 

II. To Expand *' * in powers of h, and hence deduce 

the series for . 

Here f(x) ~ 

fix) = 

f*ix) = e* 

e* + A = + /, -1- +• 
L* L» 

Putting 0 for x and x for we have ~ 1 + at 

+ 
x^ , x^ , . 

L* + L® 
4...,4. 
~ I I n 

III. Expand (a: + /») ^ in powers of h. 

fix) — jri 

fix) = I .* i 

f ix) - 

r'u)«-4- -3 
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2* ■ 

A. 

Ax) = - 
3*x^ 

2« 
1 

We can write (x + h)^ = + | h{x + Oih)^...(a.) 

or (jc + ■= x^ + f /i yx + I X 

ix + Oi hy. 

or (x + h)^ ^ x^ + ^ h yx -i f i f A* I3 ^ 

x^ 
, , * 2 3 X 3 X 5 X 7...f2 w-5). 

. 

V - y - 

U + a„ h) -V'. 

Also tho series form will be {x + h)i 

^ + f A +...-K-i)'> 

A _ *» 
2 n 3 X - j-.(u). 

X 2 L" 

If we substitute = 0 in {ii) the ri^ht hand expression 

becomes infinite, whereas the left hand assumes a definite 

value . Hence the expansion of (x + by Taylor’s series 

becomes impossible when jc = 0, But (a) gives 

= I h {&i h)^ and ((3) gives =| 

for jx: ~ 0. 

Both these give an intelligible meaning, for &i and 6^2 can 

be properly chosen, such that the expressions on the right 

may equal that on the left. 

Thus we find that here Taylor’s theorem is true upto the 

second derivative only. 
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Examples. 

1. Discuss the possibility of expanding sin in powers 

of X, 

2. Shew that Maclaurin’s theorem fails to give the expan- 

sion of e ^ in powers of x, 

3. Expand in powers of k, by Taylor’s theorem, 

and shew that the remainder after n terms vanishes 

in the limit when ^ oo. 

4. Expand and find tlie remainder alter n terms of the 

expansion of 6"“^ sin b x. 

EXPANSION. 

34. The importance of expanding a function in powers 

of the variable cannot be loo greatly emphasised. The 

student must already be familiar with certain class of 

algebraical and trignometrical infinite series. Most of these 

can be readily deduced by means of Taylor’s or Maclau- 

rin's series, which are almost of universal application to 

functions which admit of such expansions. We now 

proceed to apply these theorems to expand a few well- 

known functions. As both Taylor's and Maclaurin’s series 

give the expansion of a function in terms of the successive 

derivatives, our efforts will be mainly directed towards 

finding these derivatives either by actual differentiations 

or by the formation of a differential equation. Another 

method, which, however, is sometimes found to be more 

convenient in developing a function consists of integration 

or differentiation of a known series. 

Illustrations. 

Expand y - x. 

^ _== i_ r 1 
* 1 2^ Ljc — I 

Differentiating («—1) times we get 

1.1 X + ij 

V’* 
1 

2i 
I—i__1—1. 

— i )" + i)’' I {x + ir 
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Putting ^ = r cos ^ r sin 6 

Vn = [(cos n 0 + i sin n O) — 

(cos n 0 — i sin n 0) [by De Moivre’s Theorem] 

= (-1)**"^ gifi ryi 

= (—1)**“^ sin” 6^ sin n 0^ where cot 0 

2. Expand y == [log {x + J ^ '^2)]* 

2/1=2 ]og {x + yi -tic*). . :^--r = ^-pLl-- • 
yi + y yi + X* 

Squaring both the sides w© get 

il + X*) yi^ — i y - 0. 

Differentiating once more and dividing by 2y\, we get 

(1 + «*) yi + xyi - 2 = 0. 

Differentiating n times by Leibnitz theorem, we get 

(1 + **)2/n+2 + n. 2x. y»+\ + n (n—1) yn 

_-h X yn + 1 + n yn_ = 0 
(1 + x^) yn+ 2 + (2« + 1) X yn + 1 -t- n* yn = 0 

Putting X = 0, (yn + 2)4; ■= o = — w* (yn ):rm, 0. 

(y)o = (t/i)o = (f/3)o = - 

(y2)o = 2. 

(yOo = - 2*. 2. 
E. T. D. C.—9 

= 0. 
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Mo = 4*. 2*. 2. 

(s/8)o = - 6*. 4*. 2*. 2. 

[log * + /r+*]* = - 2. 2* ^ + 2. 2*4* - 

2. 2». 4». 6*. ^3 + . 
L® 

3. Expand y — sin (m sin * :r), and deduce the series 

COS m 0 
for 

cos B 

Here yi ~ cos (m sin ^ x) y—— 
yi - 

SquaririK and siibstitutiafi; the value of cos (m sin ^ x) 

(1 - x^) J/I® = w* (1 - 2/*). 

Differentiating again, and dividing by 2 yi. we have 

(1 — x^) y2 x yi + ^ = 0. 

Differentiating this n times by Leibnitz’s theorem, 

(1 — X^) 2 — (2 n + l) A,' + 1 + 

(m* — n^) ijn == 0. 

Putting A ~ 0, 

(!/n+ 2)4: - 0 ~ — (m^ — w*) (2/n X' - 0. 

{y)o ^ (2/2)0 = (2/4)0 = . 0 

(2/1)0 = m 

(2/3)0 = - (^^* ~ 1^) 

(2/5)0 = m (m* — 1*) (m* -- 3^) 

(2/7)0 — — m (m* - 1*) (m* — 3*) (m* - 5*). 

Whence, 

Sin (m sin**^ a) = m a — ^ ) ^3 4- 

m (m* — 1*) (m* — 3*) 6 _ ___ ^ 
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Putting X = sin ^ 

sin wi 6^ = w sin 6^ — ^ ^ 

. 

Difierentiating with respect to 6^ 

cos m 6» _ ^ (m* — 1*) . j ,. , 

cos 0 L* 

U* - 1*) U* - 3»> . * .. 
-[<-”"•»- 

EXAMPLES ON CHAPTER IV. 

1. rf ^ = A sin m + B cos m x. 

Prove that ^2 + ^ = 0 

^ x^ 

L» * “L* ■ 

+ B |l - - 

2. Ji y = a X sin x, 

prove that (2/«)x_=o = - (yn-2)x=o 
tl £u 

als 2/ ~ A I wr — m 

Also 

y *= a 11 
or + 

L» 

3. Expand log (r + }C) in powers of h and deduce the 

expansion of log (1 + x), 

4. Expand log [x -h y± 4- in powers of x, 

5. Expand tan x in powers of x. 

6. Expand sin""^ x in powers of x. 

7. Prove by Taylor’s theorem that 

tan”'^ (.X + A) «= tan““^ x + (h sin (f) sin 6 — 

(h sin . o xj -L. • on -^^ Sin 2 ft' i- — ~—sin Sff—. 
2 3 

where x = cot 0. 
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8. Deduce from (7) that 

TL = ^ + cos 0, sin 6 + ^ sin 2 6^ + 

cos® 8 
sin 3 6^+- 

9. Deduce from (7) that 

^ ^ ZJ 1 + sin 8 + ^ sin 2 8 ^ sin 3 + 

10. Deduce from (7) 

7C _ sin 6^ , , sin 2 6^ . , sin 3 6^ , t 

2 ~ co?6r +. 

11. Prove 
f{x + h) 4- fix'-Ji) 

fix) + rix) 

+ r"w+...+ ^/•%*)+... 

12. Shew that 

f{x)-f{0) + X fix)- ya rif "W *•* 

[Bernoullij. 

13. Prove that 

/ *_V ru) ^ 
\1+Ar; L* \1+^/ L® 

- . Tj ^ sin ^r ... 14. liy~e , prove that 

(2/»+2)a«-0 = (a* + w*) iyn )r—0. 

15. Prove that 

^«sin a(a« + l)^« 

L* ^ L* 

, a* (o® + **) , , «(o* + l) (o* + 3*) bl 
-r j-4— + -jj-X +... 

16. From question (15) deduce the expansions 

sin"*.* 
of (t) ~j"i— 
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and (Hi 

, * fsin 
{ii) j-2 

17. Expand (f in powers of x* 

18. If y = [x+ yii- .y] ^ 

(^«-f2)r.-o ~-(n*-a*) («/h)^-0 

Hence find the expansion of 

(/) ]og [x -h J\ -h 

. [lofx (x -f y! + ^*)]2 
and [it) -1 i-- 

(1 + x)^ 
19. From the relation w ~ -obtain a linear differ- 

1 — ^ 

ential equation with rational algebraic co-efficients and by 

means of it, find the expansion of y in ascending powers of x, 

(I. c. SO 
20. If tan y~ 1 + ax + ax^^ expand y in powers of x 

as far as x^. 

(1. C. SO 

oi xt sin m X cos m x ,, , 
21. If ?/ ~ e , prove that 

(«/n + l)o*==m j(^n)o + ^ (?/n-r)o X 

^cos r ^ — sin r ^ 

22. 11 y ~ , shew that 

(I. C. SO 

• i (tan““ xY _ x^ 
(1 + P r + 

h)% +••• 

(tan'-xY' 1 f , , lx® 
.u) -^^3 - - i ~3 ~ I i i (1 4- P I g 

+ {l + Hi + P + Hi + i+ p} ~ +... 



( 70 ) 

23. If y -= A{x 4- /,**.+i- R (.x + /ar^-fa*)-" 

Prove that {ym + 2).r-.o = — (w* — «*) («/n )x_(i. 

Hence expand y in powers of .r. 

24. Prove tliat 

(Fermat). 



CHAPTER V. 
PARTIAL DIFFERENTIATION. 

35. So far the functions treated of were of a single 

independent variable. It is proposed now to give an 

account of functions of two or more independent variables. 

Thus if w = /(Xy y) , be defined for an interval {a x by 

c<y<d) and if Lt iyl^~exists*-, 
OX 

ox o 

it is called the first partial differential co-efficient of f{Xy y) 

with respect to x and is written as or simply fx . And 

f{x y M — /(^> y) 

oy 
- exists, it is similarly if Lt 

5;/ —> o 

called the first partial differential co-efFicient of f{Xyy) with 

respect to and is denoted by 
dy 

or simply 4 • 

The reason why these derivatives have been called 

partial is clear enough, for while finding the derivative with 

respect to Xy the change in the function f{Xy y) is due to a 

change in the variable by a quantity ox, while y does not 

change. Thus the variation in the function is partial here 

due to the variable x alone. Similarly if y is varying, and 

X does not vary, the change in the function is due to the 

variation in y alone. 

I. Continuity of functions of two or niore independent 

variables, say y) is defined as follows : — 

If fix, y) is defined for a certain interval and if 

Lt f(x, y) ~ f(ay h)y where of course a and b are values 
X ^ a 
y —> h 

within the defined interval. Or in other words a'very small 

change in one or some of or all the independent variables shall 

produce a very small change in the value of the function. 



( n ) 

Illustrations. 

1. If w — ax^ + by^ 

Ox 
+ ey ' 

d U T 2 
A 6y 

"h CX < 

2. Tf n tan - 1 J/ 
X 

d,, _JJ_ 
A * At i/ 

X 

+ t/ 

B. If t( - x’J 

^ a 

<ix ' 
yx’-' - 

<3« 
A *' lojc; 

36* Consider a function of two variables ii ^ f{x, y) 

both of which depend on a single independent variable say 

i. Let t have a small increment 5/ and let 5r, ^y and hu 

be the corresponding changes of y and u. Then 

fix ■\-hx,y\‘Zy) -f (x, y + dy) +f(x, y + Zy) -/ {x, y) 

= f~/{f' y 
bx 

Zy •• • \ / 

Now f X + b X, y + by ) - f jx, y + f^y) 
S r O S 

= + 5 y) 
ax 
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»*=where vi o as 5 jl' o. 

. f [x 5 X, y 8 y) — f {Xf y -{- 0 y) 
■ fx" 

== / + m + £i, where 
Ox 

?7i o as S y o and £i o as 5 ;ir o. 

■Similarly f ^y + ^ y) ~ f (y, y) ^ + 

where >72 o as 5 o. 

Thus the equation (r) becomes 

+ + £1 

d;r ^^2 

+ ^72 5 / , 

where vi o and rj2 o ^,s 8 y o; and 

£1 o as 5 ;r —^ o. 

Dividing both the sides of (2) by 5 /, we get 

8u _ 

8t 6x 
Vi +lei ^ 

If+4 6/ bf J 

* Thid is because continuity of the functions fx and fy 

are assumed. 

Alternative: We can get this from the application of the 

Mean Value theorem. Since /(v + Ox) — / (x) -f- 8x-^ X 
dx 

Cr 4- Ox) t,c., f{x + 8x, y + Oy) — fix, y 4- Sy) — 

~ 8x ix + 61 hx, y 4- 5/) 

(y 4~ 8y lemains con'^tant and hence the partial derivative). 

Similarly/(jr, y 4- 5y) — / (x, y) - } + ^2^y) 

and from continuity of /> and fy , in the limit 

(}f ^ ^ff\ 
-J- ix + OiOx, y 4-Oy;becomes » y) and so also 
Ox Ox 
J ^ J - 

-s~(x, y + H 5j/) becomes-jA {x, y). 
Ox ' Ox 

E. T. D. C—10 
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Proceeding to the limit when S/ c, and therefore ox 

and 5^ both simultaneously tend to zero, we have 

du ^ d/ dx ^ dy , 

dt dx dt 6y dt 

Provided both and are existent, 
dt dt 

di4, 
is called the Total differential co efficient of ti with re¬ 

spect to 

Now if t X, we get 

^ 4/. + 4/. dy_. 
dx 6x Oy dx 

an expression for the total differential co-efficient of u with 

respect to x. 

Cor. — This can be extended to functions of more than 

two variables viz. If n ^ / (x, y, z) 

du ^ 6f dx df dy ^ df 6.z 

dt 6x dt ^y dt 64 

and - y + 
^x dy dx dz dx 

and so on. 

Note 1.—Similarly 

The proof of this is 

d,.- ^ 6f d_v 6f d- 
d/ d/ dy d/ d^ §/ 

beyond the scope of this volume. 

37- Uu^f{xy) = o 4“ 
dx 

Hence from (B) of § 36, 

+ ^Lly 
dy dx 

dy ^ _ dx 
dx df 

= o 

==o. 

we have 

or 
(0 
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Here tf ^ / (:ir, y) is called an implicit function of 

and j/ and (z) gives us the means to find at any point 
ax 

(^. y) • 

Illustrations. 

1. « ^ sin""' = 0 
X 

■ - y 4- 1 _ ji'.'/ = 0 

- j/* - i/ 'lx 

'[y. r. Jj 
(lx X 

2. u ^ x^ + ~~ 3 a xy ~ 0 

— a.T 

38. Differentials. So far we have been treating of 

differential co-efficients. Let a new notation called 

differentials, which is of great use in the applications of 

Differential Calculus, be now introduced. By the differ¬ 

ential of f {x) , written as df (;r), we mean the differential 

co-efficient of f {x) multiplied by ox, where tx is an arbi¬ 

trarily small quantity. 

Hence d f {x) = f^ (x) 5 x. 

In particular if f (x) ~ x^ f {x) = i 

d {x) = I. 5 X 

/. d f (x) ~ f (x) d X. 

Hence the differential of / (x) equals the differential 

co-efficient of /(x) multiplied by the differential of x. 

Now if y - f {x), 

dy = f\x) dx. 

or f{x). 
dx 

Here dy and dx are the differentials of y and x 

respectively, and are such that their ratio is always equal to 
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f{x), dy and dx need not necessarily be small quantities 

tending to zero in the limit, for we have taken no account of 

limit whatsoever. All that can be said about them is that 

they are finite quantities, such that depend- 
dx 

ing on our choice. 

39- If « = f{x, y)^ and dx and dy be the differentials 

of X and y^ the partial differential of u with respect to x 

and y are defined by 

Dx u = -L dx 
Ox 

DyU = 
6y 

and the total differential of u, ie , du is defined as 

du = DjcU + DyU 

= ^/. dx-\- dy. 
6x Oy 

Cor. If « = ftx,y,z..) be defined for a given inter- 

Val, ,, 

Successive Partial Differential Co-efficients. 
df df 

40. If « = f{x, y\ in general and ^ will be func¬ 

tions of X and y. If these derivatives can be further 

differentiated, the successive partial differential co-efficients 

df dV dy 
of with respect to x are denoted by jj^2’ ' ' 

d*f 

Similarly successive partial differential co-efficients 

df dy dy 
of with respect to y are denoted by -gp > * • • 
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df 
If however is partially differentiated with 

6 I 6f\ 
respect to it is written as \ niore shortly 

7^-/-; and similarly if is differentiated with respect 
OyGx Oy 

6 I \ dy 
to X, it is written as ^ ^yj or more shortly 

In general, differentiating partially u, first with respect 

to X, m times and then with respect to y, n times, it is 

written as 

41 

dy^dx” 

A f provided both are existent and 
dyox 

continuous. 

Let u ~ f y) be defined for a given interval, 

regarding y as constant and varying x alone, we get 

f {x + 5;r, y) - f y) ox {x 4- ox, y), 

where o Z. Z ^.(0- 

Now changing to / -f hy and maintaining x and 5 x 

as constant, the total increment of the left hand side of 

{i) is 

f {x ox^ y -h oy)-f {x, y 4- B/) — [/* ix + Ox, y) 

y)]. 
and fhe total increment of the right hand side is 

5 X [4 S^r, y -4- by)~ fx {^ + ffi ^ y ] 

= 5^ oy f,jx {x + Bi bx, y + ff2 ^y\ .' 

where o / 6*2 i. 

Thus f (x + b x,y + §/)-/■ (x, >' + 5_y) — [ f{x + 

^x, y)-f(x,y)]^5x5y fyx ix-\-ei b x, y+Oz by)-(«). 

Similarly starting first with x as constant and y as 

varying, we get 

f (x + b X, y + by) -f {x-\-bx, y) - \f{x, y + by) - 
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f (^, ox f:,y (x + ds Bx, y + By) .(«0 

where o Z (^3 A J, and o Z ^*4 Z i. 

Thus from («) and (/«) we have (x + 6/3 5x, y + 

6*4 5y) = /J,.r (x + #1 5x, y + &2 By). Proceeding to the 

limit when Sx o and By o (x, y) — f,,,- (^. y)^ 

since the functions are assumed continuous. 

dy _ dV 
That IS 

d»y 
42. j—2 of an implicit function f {x, y) =0. 

By § 37 Bx 

dy 

dx 
.(0. 

DifferentiatiTig {i) totally with respect to x, and pro¬ 

vided /jx ) ,4y and are all existent; and further f.ry is 

continuous and finite, we have 

dy 

d;r' 
+ dy dy 

<ix6y dx \ 6x6y 

d^y 

6Y dy \dy 

dx Idx 

dx^ 
^o. {it). 

dy 

Substituting for from (r) in («), 

-h 2 
dy 

6x6y 

or 
'l^f \* , _f/_/ \ (AC\ 
'\y. f dxdy \ 3^ j ydy 1 

6^f 1 
'ItY + =0 

d/ \ \^x j y dyjdx' 

d^y f.rx.fy' - 2/x, 4 . 

dx' 
= ~ yr 8 

fy 

-f- 

u 
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43 Euler's Theorem.—If is a homogeneous func¬ 

tion of m variables x, 7, .s', etc., of degree, defined for a 

given interval of the variables and u^r Uy Ut , etc., are all 

existent and finite, 

du , , 

Let 7^ — Ao y + Aix^^ y s 

Ai 
<^2 P2 .r .where ol ■0 -f Po + To +. 

- a, + p, + Ti + • • = ..... _= n. 

- ^0*0 I /o ... + 
A at — I 

A\ OLi X 

pi .. "h A 2 '^2 
a2- 

X 

6u 

dy 
= Ao po 

ao 
X >-i .To . + pi x"^^ 

/' 
- I „T1 ... 4- A2 P2 P! 

r 
- I J2 

dr = ^0 To ;r y 
Po To - I 

r + Ti 

/■< ‘ . . + ^2 Y2 *2 p2 T2—I 
X y ‘ s ^ .... 

and so on. 

6u d// 
i jr 

6x d;. +^d^ + •• = ~ 

(ao + Po To “t~ • •) ^ ° .... 

+ (ai + pi -f Yi 4- ...) Ji y^^ +(a2-f“ 

p2 + T2 + .. ) ^2 ...+. 

- 7777. 

44. Taylor’s Theorem.—For functions of two vari¬ 

ables. 

f {X -v h, y -Y h) = f {x, y) + + k j 
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+ 4 h) ^ 
under the limitations that the function f (x, y) together 

with all its partial derivatives up to a certain order «, are 

existent and continuous.* 

Maclaurin’s Theorem : — 

/ \ I 
0.0)+(* ■*’’ ij),., + L‘ 

I / d I 

+ t>r >)* ^ 

+ Lif-3^ +/ a“)V 

If the remainder after the first 7i terms tends to zero, 

the theorems convert into convergent series, and then 

they become 

f {x + k,y + k) = f(x,y) + |/^ + 

/ d d \* 

P +'^’ ly) . 

f (^, y) ~ f o) + p +y -jyf f°o 
I I d d \* 

+ "[T r di +^d^) /"oo + . 

1. 

dw 

Verify ^ 
y 

m X m—1 

Illustrations. 
_. __ 

“" y^*“+1/* 

y^ 

-h 

4“ 

* The proof of this is beyond the scope of this volume. 
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_ y^) — 

{x^ + 2/*)^ 

^ fa -1) ^ y^ m 

fa* + 2/*)^ 

fy^x ~ 1 [«fa~ ‘ ^ + ^(^ + 2^’*"*“ ‘2/*“^ ' ] X 

fa*-f 3fa^4-«/*j^ y X 

u^+y*//* 
-f- w(n - ifa^” - 1 yn -<- 3 

U* + 2/*/^' 

Again 

nx^y^ t/x^ + y^ — jc”*2/” ''" ^ " —. 

_ * *y x^ -{'tr 
x^ ^y^ 

= ^ fa^ + y^) — x^y^ ^ 

(x*+i/*) '^* 

_ (w-.l)^”‘y"+^ 4- wjT^ + ^y"- ^ 

= [[w(n-l)^”—‘j/"+»+n(w+2)*'” + »j/’—i]X 

(^* + I/*) ^* — 3 (x* + y*)^ ;c X 

{{n— 1) x^ y'^ + n x^ ^ y^ ^ X —^i_ 
fa* + 2/*)* 

_ n fa — 1) ^ 2/” ~ ^ ^ n — m— w-h3) 

fa* -f 2/*) 

4- 
m (n — 1) x^ ' ^ <9#** H" 3 

d*e« d*M 
= ^-J-. 

(a:* + J/*) ,2'»■'/* 

E. T. D. C—11 
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EXAMPLES ON CHAPTER V. 

1. 
2. 
B. 

Find the derivative with respect to t in the following. 

u = 4- 2/* where, x ^ a cos t, y b sin t. 

'll — sin“”^ where, x ^ S t, y — 4 

u — cos 2 a: «/, where x = tan“”^ U y oot“~^ t. 

Verify that in the following. 

4. u — sin"*^ y~, 
x 

5. n '-= y^- 

6, u = loK { :*• tan * f/^ X* + "j/* } . 

7. If u ~ f(x + at) + <f> (^ —at), prove that 

a 6^u 

^x^ d<*- 

8. If t/. II 4
- 1 , prove that 

X * . 
oV* 

d
 

1) i*0 
99 

Find in the following. 

9. -+ ■ = S a X y 

10. a a:* + 2 h X y + b y' ̂ + 2 f y + 2 gf jr + c = 0. 

11. (cos xy — (sin yy . 

12. xy 
^ X oos y 
X y = X ^ + j,log 

Find 
ay 
^“2 111 fli® following. 

IS. y^ 'i' ^ X y 0. 

14. Sin ( X + y) = tan * (x — y). 

15. IL* + i <s
i 

Vw
' 

(! o
 

• 

16. If:*: ~ x'^ cos B-- y' sin B^y ^ x sin B + y' cos (f, 

/ ^f\ 
shew that l-g^i iw) 
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17. If w = sin 2^ 4- sin x, prove that, 

mA'4i 2x + e ,22/ 

18. 

19. 

2 sin (x + y). 

If M = log (tan X + tan y + tan z)y prove that 

. ^ ^ ^ ___ 
sin 2x + sin 2 y + sin 2 2 3" - 

If f Cn, X2i xz, >»xn) be any homofreneous function 

which becomes jP (JTi, X2, X3,*-*Xn) by any linear substitu¬ 

tion for the variables xi^ .jr2,**-in terms of X\, X2, Xa,***, 

prove that 

fri + x^ fcti 4- xz fx% = Fxi + Xz Fxz'^xz 

3 H-...where .r'l, 3)***^nd JC'i, X^z^ X'3,*..are simulta¬ 

neous values of the two systems. 

22 2 

20- /+« + 6* + « C*“V« = prove that 

ttx * + My * + * = 2 (jc Ml + y % + ). 

A[ Oxford 1888]. 

211 -2. 



CHAPTER VI. 

TANGENTS AND NORMALS. 

45- Geometrical meaning’ of Let AB be the 
ax 

curve — f{x). Take any two points P{x,y) and <22 

{x + Sxj, y + 8^2), and let the straight line PQ^ make an 

angle ip2 with the axis of x. 

Fio. 6. 

Let the point Qt approach P along the curve, then for 

different positions of Q, 

an .A, . 
tan = ^"^^and so on. Clearly as the point Q 

approaches P, 5y and hx are each tending to zero, but in 

a definite ratio given by above equations. Ultimately in 

the limit when P, tan lA = *Lt and the 
bx dx 

ix O 

Straight line becomes the tangent to the curve at P. Thus 

S;; also o, as the function f{x) is taken to be 
continuous. 
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^ at any point (ar, y) is equal to the tangent of the angle, 
dx 

which the tangent at that point to the curve makes with 

the axis of x^ in other words is the slope of the curve 
dx 

at the point {x^ y). 

46. The geometrical interpretation of ^ given in the 
dx 

last article, furnishes us an easy method of finding the 

equations of tangents and normals to a curve at any point 

on it. Thus if / {x, y) ~ o is any curve, the equation of 

any secant through (r, y) ^ whose slope is m is given by 

V — y - m (X — x) 

dy 
If the secant becomes the tangent, m becomes . 

dx 

Hence the equation of the tangent at {x, y) is given by 

V - y ^ {X - x) .(I) 
dx 

ie., Y - y ~ h {X - x) 
Iff 

or Xf^ + yfv ^ + yfy.(2) 

Now suppose f{x. y) = o to be made homogeneous by 

the introduction of suitable powers of any linear parameter z, 

then, xf^ + yfy + zf, = nf{x,y,z) = o-(3) 

combining (3) with (2) we get 

Xf. + Yf, + Zf, ^ o 

This represents the equation of the tangent at the 

point {x, y), in which z is to be put equal to unity after the 

differentiation 

46. Normal. Since the normal at any point is per¬ 

pendicular to the tangent at that point, its equation will 

be 
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ax 
- r) . .(I) 

(Y - y) „ (X - x) 
.(2) 

fy fz 

47- Angle of intersection of two curves. ~ The angle 

of intersection is the same as the angle between the two 

tangents to both the curves at the point of their inter¬ 

section. 

Let the curves be 

f{X, Y) = o 

<t> {X, V) = o. 

The tangents at (x, y), the point of intersection, are 

Xf.. + Yfy - o.(t) 

X -f- Y 4*y -j- Z ~ o.(r?) 

The angle between these two straight lines is 

e = tan ‘ 

■ — j. ^ 

fy_ 

or 6 = tan * 
fy ~ 4>y fx 

fz 4>x + fy 

Cor. (/) If ^ ^, the curves touch each other. 
'h fy 

(«) If fx 4>x + fy ^y = o, the curves cut ortho¬ 
gonally. 

Some Geometrical results. 
48. Let AB be the curve f{X, Y) = o, and at any point 

P (*■, y), FT, and PG be drawn tangent and normal to 

the curve, cutting the axis of at T and G respectively. 

Let P T cut the axis of y at S. Also let O Q and 

O R be perpendiculars from the origin upon P T and 

P G. 
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Fig. 7. 

The equation of the tangent at P (r, ;y) is 

where this cuts the r axis, K = o. 

y 
Hence the intercept on the praxis, OT ^ • *(0 

dx 

Similarly when X= Oy 

the intercept on the y axis, i e,y 0^=^-(H) 
ax' * ^ ' 

The length of the tangentV T — y cosec 

^y y i + 

/i -f tanV 

^ tamA 

dx 

The length of the normal.—P G^y sec 
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Sub-tangent. — Le. T N cot 

^ y. 
dy 

dx 

Sub-normal.—N G = 7 tan 

dy 

^ dx''' 

O Q - O T sin 

OR-PT + TQ. 

= p T + O T cos ^ 

dx 

.. {v) 

(vi) 

(vii) 

Illustration. 

1. Find equations of tangent and normal, lengths of 

subtangent and subnormal to the ellipse, 

a* + ft* - 
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Her© 
dx 

X 

y 

Thus the tangent at y) is given by 

(y - (X- x). 
^ a* y 

The norma] at (^, i/) is given by 

(r- ,■) 
Y - y _ X - X 

~~a^y - b^x ‘ 

The subtangent 
dy 

dx 

a^y^ 

X 

dy 
The sub-normal = y 

b^ 
= ~~ ,,2 X, 

Examples. 

In the following curves, find lengths of subtangent, sub¬ 

normal, tangent and normal at any point :— 

1. X ~ A a 
^ = 4 a siri^^ 

2. X ^ a (cos f -h t sin t) 

y = a (sin t — t cos t) 

o - 3. ^ 

3 

^ “l + 

4. Find the equation of the tangent to the curve 
X 

y ^ b e ~ Or where it cuts the y axis. 

Find the condition that the conics ~ « -h 
a* 

r 
b^ 1 and 

E. T. D. C,—12 
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_X 

a 
-V ^ 

Tf + ^72 = 1 inay cut orthojg^onally. 

6. Fiiul the an^^le between the parabolas 

- 8 .r, = 4 y— 12. 

7. Find the an^le between y- x^^ ai.d G — x^ at the 

point (1, l). 

8. It' .r cos a “|- y sin ol — touch the curve, 

~ 1, prove that 

/ ^ / /i • \ni - l w - 1 
{a cos a; sin a) ~ p 

f). Shew tliat in the curve jil ii^~(x + a)^, the square of 

the subtan^reiit varies as the sub-normal. 

10. Show that the length of the tangent to the curve 

- j < 

is of constant len^^th. 

ds ds 
dx ’ dy 

Let A P Q be a curve y ~ f {^) and P (x^ y) and Q 

{x 0 x^ y -\- 0 y) be any two points on it. 

Draw P N the tangent at P making an angle ^ with 

the faxis of x. Also let the arc of the curve be measured 
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from some fixed point A on it, so that A P is S, and let 

A P Q be s + 5j. Hence P Q is os. 

Thus when Q-^P, chord P Q < arc P Q < P M + 

M .. 

where M is the point of intersection of the tangent 

P N with the ordinate of Q. 

Again P Q -= y§ar* + S/. 

P M + M Q — hx sec 4i + (L Q-LM) 

=» ox sec if/ + by —ox tan 

/. »/o + Z y’^ /^Zs ox sec if/ ^ oy — ox tan 

oryx + 1 
3v)‘ ■- £ - ^ 

Zy 

Zx 

Taking the limit when 0 ;r-^o and since^^ - 
dx 

tan 

we have/i + J^ +| 
fdy.^ 
[dx) 

which is impossible unless 

(is dy ds 
Again ^ dx dx 

= sec ^ 

ds y- - 0 
• • - ~ 

dy 
= ■ " y; t.e., cosec >1/- 

dx 

tani^. 

.(2) 

(3) 

dx dy 
Note 1.—If ^ and ^ are both existent and none of 

the m is either zero or infinite, 
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dy dx (dy 5^\ 
dx dy 5x--^o \bx 

dx I , dx I 

dy ~ dy 
dx 

under similar restrictions 

dx I 

ds ~ ds 

dx 

h I 

ds ~dJ 

dy 

cos 

= sin 

ldx\^ ldy\^ 
Note II.— y^\ +(= I ; regarding dx, dy and 

ds as differentials 

idxf + {dy)^ 

Hence the differential of the chord is equal to the 

differential of the arc 

Lt PQ 
O' R ^ R = '• oj —> o os 

50. Polar Co-ordinates.—Let P be any point (f, ^') 

on the curve r=f {(f) and Q another point close to P, 

having {r+^r, 8 + 56») as its co-ordinates. 

Fig. 9. 
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Let PT, the tatigent to the curve at P make an angle 

with O P and Q L be the perpendicular from Q on O P. 

Now tan Q P L ^ 

QL 

O L~OP 

ir + o r sin oB 

(r-i 0 r) cos oB ~ r 

or tan Q P L - 
5^)|^ oO - (0^,* 

r _ » 
cos 

L L* 

where o Ai i. and also o < X2 < i- 

Thus in the limit whea 5 and so also or —>0, 

we have 

tan</>- , neglecting or x 06^ and 
0 c»—^ 

terms of higher order. 

dB 
Thus tan <t> - r 

dr (I) 

5L 
ds 
d? 

ds 

Let r -•= / [B) be a given curve, and let P r, 0) and Q 

{r or^ B tB) be any two points close to each other, 

and also let P R be the perpendicular on O Q, O being 

the pole. 

Fig. 10. 
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Then (chord P Q)* = P ll* + R Q* 

= ir sin 561)* + 

{/' + Zr — r cos 56*)*.(i) 

Dividing both the sides by (Z&)* we gel 

/chord PQ\*_ j / sin 56* \* , / y f i - cos^B6'A* 

\ 5fr“ '| \ 5(5* 7 \5<^ ^ ~ W ) 

Lt / chordJPQ ^ _5j\* ^ 
00^ o \ OS 00 I 

■ 9 00 

Lt /sin 56*\* I or ->n 3 I 
66*-^ o +1 00 s» 1 

2 

S being measured from some 6xed point on the curve. 

or 
ds 

r d 0 

by § 49 note II, 

^ J ^ + i IT ^ ^-(3) ^ \d0l 

Similarly dividing (i) by (or)* and proceeding to the 

limit we have 
^2 /ds\^ , 2 

Ur) U) 
■u> 

= I + tan*^, 

= sec* (fi 

ds 

[by § 50, 

(5) 

Thus 
dr 

ds 
== cos </>, and r 

d^ 

ds 
= sin 

Illustrations. 
2 2 

I. Prove for the ellipse ~ 1, 
a* Ir 

- = a J\ — ^* cos* ^ ^ being the eccentric angle. 
d4» 
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X = a cos <f> 

y — b sin 0 

dx • j dy 
= — a sin 0, 

r/0 ri0 
h cos 0 

J I \ d<f>t 
— Jo?' sin* 0 -r cos* 0 

~ a/sin* 0 -i- a* (1 — c*) cos* 0 

= a y" 1 - c* cos^ 0 

JJ. To find 0 and ' in r’* ^ a” sec (//, 6^ + a). 
dr 

Taking? the logarithmic differential co-efi'icient witli respect 

to r, we ^et 

^ ■= tan {‘tf/i f~ a) 
r dr 

/. tan 0 = cot -{“ a) 

or 0 — ^ ~ i- a) 

ft/ 1 “h cot* 4" a) 

- cosec {nf^ + a), .(2) 

52. Polar subtangent and subnormal.- Let AB be 

the given curve r - f {(^) and PT the tangent at P on it, 

Also let PT^ be drawn the normal at P. Through (\ the 

pole, draw TOT" at right angles to the radius vector OP, 

Fio. 11. 
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Cutting the tangent and the normal at T and respec- 

tively. 

Then OT is called the polar stibtangent and OT^ the 

polar subnormal. 

OT - r tan 

= ^2 

or 

db 

dr 

r cot ^ 

dr 

~dd 

(0 

.(2) 

Sometimes it is desirable to use u = that is the 

reciprocal of the radius vector instead of r in the equa¬ 

tion. 

du _ I dr 
Then 

dd do 

or 1 du _ 

de 

Thus from (i) and (2) 

Polar subiangeni = 

dr 

dii 

de 

~dr 
or — 

dd 

Polar subnormal = dr 

dd 
or-“ 

du 

i uu 

S3. Polar equation of the tangent.—Let the polar 

co-ordinates of the point of contact be (ri, 6*1). The equa¬ 

tion of any straight line can be put down as 

= A cos (0 - ffi) + B sin (i? - 6»,).(i) 

where A and B are arbitrary constants. Let this represent 

the tangent at (ri, &i). 

Differentiating with respect to &, 

1 dr 

dti 
sin (6^ ^1) "f- 

B cos (6* ~ (>1),_ (2) 
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Since the tangent touches the curve, the value of-—^ at 

the point of contact (^i, 6i) is the same for the curve as 

for the tangent. Hence substituting 0 ~ Ox and r == n in 

equations (i) and (2), we have 

,4 = -L and 5 - - A 
n* do 

whence the required equation will be 

-L. =: J_ cos (0 — Ox) — — sin (6» — 6^1) 
r ri dO 

or tL ^ cos {0 - 0{) — ^ sin {0 - Ox).(3) 
r do 

Changing r into «, we get the equation of the tangent 

at («i, Ox) as 

u ~ Ui cos {0 — Ox) + sin {0 — 6^1) , (4) 
do 

54. Polar equation of the normal.—The equation 

of any straight line perpendicular to the tangent given by 

equation (3) of § 53 may be written as 

^ ^ \ dT_ .. r. \ — - rx sin {0 — Ox) cos ,0 - Ox)' 

where c is an arbitrary constant. This should pass 

through (ri, Ox) if this is to be the normal at the point of 

contact. 

Therefore S = 
rx 

Thus the required equation of the normal is 

dr 

cos {p — Ox) + rx sin {0 ~ 6^1). ,(i) 

* Putting ^ 2 

E. T, D. 0—13 
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Changing r into u, we get the equation of the normal at 

(«i, 6'i) as 

* _ u — cos (9 — 6i) — ui sin (6* ffi), 
ui lit) (19 

.(2) 

55- If p denotes the length of the perpendicular OY 

from the origin on the tangent at P, (see figure ii, 

§ 52), 

OY ~ p ~ r sin (p 

I 1 

p*^ si 11^ </» 

72 [ I + cotV] 

Pedal Equation. 

56. A r equation.—The relation between the per¬ 

pendicular on the tangent and the radius vector of the point 

of contact from the pole is known as the pedal equation. 

If the equation is given in cartesian co-ordinates say 

f {x,y)=^o.(i) 

The tangent is given by X /;. + Y f„-\- Z /; = o,. .(2) 

where s is put equal to unity after differentiation^ 

If p be the perpendicular from the origin upon (2) 

2 .0) 

.(4) Also ..2 ^ ^2 

■fi /?/ 

+ 7*. 

Eliminating and from equations (i), (3) and (4), 

we get the desired relation between p and which gives 

the pedal equation 
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as 

Illttstraiion. 

L Find the pedal equation o£ 

x'^ ...(1) 

Equation of the tarif^ent at (a*, //) is 

-V + J = 0. 

Perpendicular from the origin is ^]^iven by 
5J 

_ 

' ^ y+ y 
^ 7/^ 

_ a*i ?/3 

y 7/1 

or p ~ y xii 7/3...^2) 

Also 7’^ - X^ 4- 7/^ .(^'0 

Now any point on the curve caii he expressed 

X ~ a cos^ i>, 7/ ~ a sin^</» 

p ^ a sin 4i cos 4^.. *(4) 

and [''(‘os* </>)^ + (sin^ </»)^] 

- [(cos^ 4y cos^ 0 sin^ 0 F (sin^ 0)*] 

- [(cos^ 0 P sin^ 0)* — B sin^ 0 cos^ 0] 

- [1 — B sin^ 0 cos^ 0] 

or 11 - B ^ | by (4), 

'' or — B 

^ Alternative proof :— 

from (i) and (2) ^ ^ — 4 j" 

y M ~ 2 /> 
” i 

Similarly = ^£.-~b 44^ 

A- = I •/a + 2 fi + »/a ~ 2 /> T and 
L 2 rt:6 j 
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57. If the equation be given in polar co-ordinates say 

/^ o, eliminating $ between the equation (i) of § 55 

and / (ry 0) = o, we get the required relation in and r, 

which is the same thing as follows ; — 

f(ry 6^; = o.(i) 
Also we know p = r sin .(2, 

and tan = r — .(3 

Eliminating 0 and ^ between the equations (i), ^2) 

and (3) we get the pedal equation of the curve. 

Illustrations. 
I. Find the pedal equation of the curve 

L 
= 1+6 cos 0. 

Putting ^ = u 
r 

L w = 1 +6 cos By differentiating with respect to By 

we get L = — 6 sin B. 
dB 

Again from (2) of § 55 

11/ a ^ 2 p_a 2 p 

L % 

■3 

2® ^ r* = {(Ja ^ 2 p + Ja - 2 p)^Y + 

{(^a + 2/> J a -- 2 p )*}* 

— (>A, a {0? % p^) 

or r* = ~ 3 />*. 
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u* + (c* — L* M* — 1 + 2 L u) 
\j 

or J, ^ ^L-iA + 2ji 
P L2 L 

or ^ ~ ^ 1 -f ^_ 
Jj Lr 

Tn the case of a parabola e == 1 and L = 2 a. Hence its 

pedal equation isjp* - ar. 

II. Find the pedal equation of r*” ~ cos m^. 

Taking logarithmic differentiation with respect to 

we have 

m dr 

r~” 

sin mO 

cos mO 

cot 0 tan mO 

- cot ( mO + 

/. - m6' -f 

Again^ = r sin 0 - r sin | mB + ~ | 

~ r cos mB 

Examples. 

Find the pedal equation of the following : — 

«/2 
1. 4- "2 = 1, both with regard to the centre and 

or lr 

with regard to a focus as pole. 

2. «/* == 4 ax^ with regard to vertex. 

3. r == d cos 

4. r — a e 
0 cot a 
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5. r* ~ a® cos 26. 

6. r® sin 26 + a® = 0. 

7. r sin 6 a ~ 0. 

58* First positive Pedal curve.—If O be any fixed 

point, the locus of the foot of the perpendicular from O on 

the tangent to a curve is called the first positive pedal oi the 

given curve with regard to the given point. 

Let/(;r, y) = o,.(l) 

be any curve. 

Suppose X cos CL ¥ y sin a - />,.(2) 

touches the given curve; also the tangent to (i) is 

given by 

^ fx 4“ y ^ fz = o.(3) 

If (2) and ^3) represent the same line 

^ A, say.(4) 
cosa sina —p 

Eliminating y and A from ecjuations (i) and (4), we 

get a relation between p and a only, which is the recjuired 

locus, since p and a are the polar coordinates of the foot 

of the perpendicular, [see fig. ii § 52]. 

Putting therefore, r and 6 for p and a respectively, 

we get the equation of the first positive pedal in polar 

coordinates. 

59* When the ecpiation of the curve is given in polar 

co-ordinates, the first positive pedal can be found in the 

following way. 

Fig. 12. 
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Let P be any point on the curve / (r, B) — 0, and OY 

the perpendicular on the tangent at P. The polar coordi¬ 

nates of Y are (r\ O') say. 

We have / = r sin </>.(i) 

^ r -, -- tan </>.(2) 
dr 
; - tanc/».(2) 
dr 

Also 0 ~ ^ 

- 61' + '^ - <f> .(4) 
2 

Eliminating r, 0 and 0 from these equations and the 

equation of the curve, we get a relation between / and 0' 

the polar coordinates of T. Thus removing the dashes, 

we get the locus of V i. e , the first positive pedal of the 

given curve. 

T1 lustrations. 

1. Find tl)e first positive pedal of 4 ax. 

Tangent to the curve at (a/ 1/) is ^iveri by 

yfj — 2n {x -r x') ~ 0.(1) 

Also X cos a d" y sin (x — p ^ 0.,.(2) 

touches the curve if (l) and (2) represent the same line. 

sin a cos a p 

/. X = — —-— , and y' = —2a tan a 
cos a 

Also y^^ - 4 ax' 

4 a* tan* a = - 
COS a 

the required equation is 

a sin* 0 sec 6^ •+* r = 0. 
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II. Find the first positive pedal of r** — sin nO, 

Taking the logarithmic differentiation with respect to 6^, 

we have 

n dr 
r do 

n cot n6 

cot - cot nO ■ 

<(> nff (1) 

Also if r' and be the co-ordinates of the foot of the per¬ 

pendicular from the pole on the tangent, 

& = - <f> 

= ^- + 0' - nd 

_ Tt +/2 0' 
2 (n + 1) 

Also - r sin 0 

™ r sin n B 

n 1 

~ a sin * n h [from the equation of the 

curve. 

” t j I TZ + 2 B' ] 
.. r = a sin n I n ~ -. I 

L 2 {n ^ 1) J 

■■ (f + ")} 
or r 

6o. Inversion.—If O be the pole and P be any given 

point, and a second point P' be taken on OP or OP 

produced, such that OP OP' = where A is a constant, 

P' is said to be the inverse of the point P with respect to 

a circle of radius k and centre O. 

If P describes a curve, the curve described by P' is 

known as the inverse curve of the curve described by P. 
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r 
•% 

r 

O p P' 

Fjg. 13. 

Thus if {r^ 6) be the coordinates of P, the coordinates 

of P' will be 3,& r r — 

Hence if the locus of P be /“ (r, o) ~ o. 

The locus of P' will be /* | ^- o. 

Examples. 

1. Find the inverse curve of f (xy y) = 0, with regard to 

a circle of radius k and centre origin, 

2. Find tlie inverse curve of the straight line x a 

with regard to a circle of radius k and centre at ilie origiii. 

61. Polar Reciprocal.—If OY be the perpendicular 

from the pole upon the tangent to a given curve, and if 

any point P be taken on OY or OY produced such that 

OY. OP = i^y the locus of P is called the polar reciprocal 

of the given curve with regard to a circle of radius k and 

centre at O. It is thus quite clear from this definition that 

the polar reciprocal of any given curve is the inverse curve 

of the first positive pedal. 

Illustration. 

I. Find the polar reciprocal of «/* == 4 ax. 

The first positive pedal is r + a sin* 6^ sec 6^ = 0 

The inverse of this will be given by 

E. T. D. C ”14 
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+ a sin* 0 sec & ~ 0 
r 

e*, + ar sin* 0 sec 0 ~ 0, is 

the polar reciprocal with regard to a circle of radius k and 

centre at the origin. 

Application to Mechanics. 

62. Since ^ is the limiting value of the rate of in- 
dx 

crease of y with respect to at, it gives us a measure 

of the rate of increase of the original function 

per unit increase of the independent variable. Consider 

the rectilinear motion of a point. Now the distance of a 

moving point from a fixed point in its path is a function 

of the time. If s denotes the distance from the fixed point, 

t will be also reckoned from some fixed time i <?., when 

the point coincided with the fixed point. If in time S/, 

the space described is os. the ratio ^ is called the mean 
ot 

velocity during the interval ot. In the limit when 5/ —>o 

and therefore Os also lends to zero, this mean velocity 

ds 
tends to a definite limit '—, which is adopted as the 

dt 

measure of the “ velocity at the instant Thus velocity 

V ~ • Similarly if v be the velocity, is the 

mean acceleration during interval 5/ and its limit - is 
dt 

the rate of change of velocity that is the acceleration at 

time /. Thus acceleration at any instant 
dt at^ ^ 

Similarly and represent velocities in the 
dt dt 

directions of x and / axes respectively; and and 
dt* 
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represent accelerations in the directions of x and y 

axes. 

63 Suppose a particle has u as its initial velocity, v 

the velocity at any time s the space described in time 

/, as it is moving in a straight line with f as acceleration. 

d^s 
t. e., 

d? 
- / 

conditions 

, * ds 

“ dt 
- ft k, and from the given 

V u ^ ft.(i) 

Also s - ut + ^ ft^ + r, 

/. reckoning s = o when t — o, s ut ^ ft^. . , .(2) 

Eliminating t between (i) and (2) we have 

^ // -f 2 fs.(3) 

(i), (2) and (3) are well known equations in 

dynamics. 

1. 

y 
a -f- .r 

X 

EXAMPLES ON CHAPTER VL 

(is 
For the parabola fj^ - Aax^ prove that is equal to 

and the subnormal is of oon.staiit length. 

2. Find - for the curve 9/ ~ x^. 
dy 

ds ^ ^ I 
B. Eind for the curve x^ ~r , and shew that 

dx 

the portion of the tangent intercepted between the axes is 

constant. 

4. Find -f- for the curve cos x ~ 1. 
dx 

For this simple integration the student is referred to 

any book on integral calculus. 
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B. Find for the curve y ~ a log sec - , and shew 
dx a 

that X — a\ff. 

6. Find ^ and ~ for the cycloid 
dx dB 

2/ = a (1 — cos 6>), 

^ ~ a (6^ + sin 6), 

w f p   B cot CL 
7, It r = a € , 

shew that (i) <fi ~ a, 

{ii) — = cos a, 
ds 

8. 

9. 

10. 

11. 

(m) p ~ r sin a 

If 6» = */^* ~ - COS ^ , prove that cos 
a r 

If r = , find . 
do 

If r* ■= a* cos 2 6*, find and tan <t>. 
do 

For the cardioicle r a (1 — cos 6^), prove 

(«•) = ! 

.3 

iii)p> = {- 
2a 

12. 

13. 

(Hi) p = 2 a sin^ 
2 

B B 
(iv) PoJar subtangrent - 2a tan — sin^ . 

2 2 

If r = tan B + sec B^ find ™. 
’ dB 

In the parabola = 1 — cos B^ shew that 
r 

(e) = 71 
2 • 

(it) p - a cosec —. 
2 

a 

r 



( 109 ) 

(in) ~ ar. 

(iv) Polar suhtan^jent - 2a cosec 6. 

14. If r** sin prove that 
(is 

do 

and p 
y.n+l 

n -1 

n 

a cosec nd 

15. Shew that each of tlie curves 

/ .N m d 
(i) r ~ ae 

(ii) rd -- a 

(iii) r sin nd ~ a 

(iv) r sin/i nd ~ a 

lias its pedal equation of tlie form ^ + B. 

16. Prove that the locus of the extremity of the polar sub- 

tan^jent of the curve a -f f(d) = 0 

is u f{^ 

17. Prove that the locus of the extremity of the polar 

subnormal of the curve r - f (d) is 

Hence shew that the locus of the extremity of tlie polar 

subnormal in the equian^rular .spiral r (m^' ^ is another 

equianffular spiral. 

18. Tn the curve r 

1 4- tan 
2 

yyi + n tan ~ 

the locus of the 

2 

extremity of the polar suhtan^rent is a cardioide. 

[Prof. Wolstenholme.] 

19. Find the pedal equation of ?/* (3 a ~ x) - {x — a)^ 

[Oxford 1889]. 



( no ) 

20. X ~ (a 4- &) cos 0 — h cos ^ 0 
b 

y ~ (d 4“ b) sin b — h sin - 0, 

Shew that p ~ {a + 2 b) sin 0^ 

a -f 2 /> 
0, and that the pedal equation 

is r* - «* + 4 .,2 
(ff + 2 /?)* ^ 

21. If n and rj be tlie distances of any point P on the 

lemniscate (,r* + //*)* = (i^ (.v* - //*! from the points 

1+ ® V Pi', Pt porpondiciilars on tho tan- 

^xent at P from tliese poinis, prove tliat 

PA + _£l = / o / . 1 ~ ^ \ 
n* ra* r,) 

I? 
22. F^nd the polar reciprocal of the ellirise « -f — 1 

(r Ir 

with rei^ard to a circle whose centre is the ori^^in. 

Pind tlie first positive pedal with regard to tlie ori^Lrin of, 

28. }/ ~~ 4 a (.r + a) 

24. r ~ a (1 + cos b) 

25. (i) ~ cos n b (ji)A - (j? COS 2 b 

26. (0 x^ + if (l^. {a.) r = 
b cot a. 

a e 

{Hi) A + B 2/“^ -= 1. (iv) A + J3 

27. Find the polar reciprocal of the curve 

2/^ ~ ^with regard to a circle whose centre is at 

the origin and shew that it is of the same kind. 

28. Find the polar reciprocal of the curve r’* a” sin nO 

with regard to a circle of radius k. 

I I 
29. Prove that the polar reciprocal of (a xY + (& 2/)® “ 1 
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with respect to the circle of radius J whose centre 

4.1 ... a* , ft* 
IS the origin is —-s- - 1 

^ r 

HO. Shew that the polar reciprocal of a circle with re¬ 

spect to a circle with any point as centre is a conic having the 

centre as focus. 

31. Shew that tlie first positive pedal of a circle with 

regard to any point is a Limacon r a +■ ft cos 0^ wliich 

becomes a cardioide r ™ a (1 -f cos 0)^ when tlie point is on 

the circumference. 



CHAPTER VII. 

UNDETERMINED FORMS. 

64- It is sometimes found in the course of mathema¬ 

tical analysis that a function assumes a form which is 

apparently meaningless, when a certain value is assigned 

sin X 
to the independent variable For instance, - when x 

is zero assumes the form —, which has no meaning; 
o 

•^) when X ^ \ has no meaning as it be- again 

j - X 

comes of the form ^ . But we know that =r i 
cxj X o X 

and the 
• Lt 

X ^ i 

log (l - x) 

1 

I - X 

o. The aim of this 

chapter is to investigate a systematic method for finding the 

true values of such and other ^undetermined forms \ as they 

are usually called, as the independent variable tends to a 

certain quantity. These undetermined forms can he any 

one of the following type : — 

O CiQ Q Q OO 
, O X cx; - oo^ o , co"", or 1 

65- Form . 
o ^ (r) 

be the function where 

f{a) - o and ^ (a) - o. 

It is required to find the value of t when x’ a 
<f> (x) 

Lt / (x) _ Lt /{a + h) 

X tj, a + k) 
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_ Lt / (a) + ^ /' (a + 0i/i)* 
~ k-^o <f, (aj + k V W^^tk) ’ 

where O < 6*1 < i and o < 6(2 < i. 

Thus ^ /■' (a + 6>i //) 
X -^a i. x) o la -f- 6»2 >4) 

_ <*) 
a) ’ 

Irom the continuity of these functions being assumed. 

Thus if a function assumes the form —, we differentiate 
o 

the numerator and denominator separately, and then sub¬ 

stitute the value of the variable. If, however, f {a) and 

(//(a) are also zero, 

Lt fix) ^ Lt 
.*• —^ [x) h ^ o 

h f a , +-— f" (a 4 

-- ^ 

/i4>' {a) + + <^4/^, 

where o < O3 < i and o <6»4 < i 

f ^ 
“ X a 0 (4r) <//' {a) 

Thus if / (a) — f (a) = .... = /’’ (a) ^ o 

and (p {a) = {a) — [a] — o 

Lt / ^ . ,M„ 
X a 0 (;r) 

co-cfficients of these functions exist and are c ntinuous. 

Illustration. 
j;^|. __ 

^ sill X 

fix) ^ 

0 (a") X — sin .r. 

I. 

i) differential 

[Form “ 

Lt fj^) Lt 
4> (x) ^ 

Lt c;^;_ 
X 0 

e — 00s X e .sin 5 

K 1 ~ cos X 

+ sin a: f;"'*" — cos^ x e" 

sin X 

0) 
0) 0 

0 

0 

* By Taylors theorem with all its limitations. 
E. T. D. C —15 



( 114 ) 

lit ^ + cos X ^ 4“ sin X cos ^ g --^ ...1- 

= 1 

Lt ^ ■' = 1. 
• * X ^ 0 ^ — sin ^ 

c/v m ^ To find ~ when 66. Form — . To tmd ^ ^ ^ ^ 

f (a) - ^ and ^ (a) — ^• 

Lt /■jr. 
X a (ji (XI 

Lt (f) {X) 
X a I 

JTx) 

<f/ (x) 

Lt , [4> (xy^ 

X a fix) 

[/•M* 
ix) U.LMV 1 

41 rw n4>(x) f J 

raap I If is neither zero nor 
Case 1. a 4, {x} 

infinite, dividing both the sides of (i) 

by ZifL we have 

__ Lt 4,'(X‘ Lt fj.xi 
^ X a f {x)‘ X a ^[x] 

Lt / (x) _ Lt / W 
X a <f> (X) X a 4,' (xj 

, Lt /(x) + <f> <r) ^ j 
“ X a <f> (x) 

' Thus ^ is neither zero nor 
X a <t> (x) 

infinite and therefore by case I 
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or 

Lt f(x) + ,t>'x)_ Lt / {x) + {x) 

Xa 4, (x) ' Xa V U) 

Lt fix) _ f jx) 

X a <p'X) (j> {x) ' 

Case III. If ^ 
x-^ a4> (x) 

Lt 4> <x/ _ . 
Then 

by case II 

X a f X ) 

Lt it ix) Lt jt jx) 

x-^af(x) x-^af'yx) 

* Hence in every case 

Lt fix) _ Lt /' ix) 
X (x) X a 0' (x) 

Illustration. 

Lt 
X a 

Find 
X 

Lt 
.UK j 

a 
cot* 

1 

)‘ 

a 

log (1 - 
X 

\ a , I 
cot^ - 

TZX 

a 
2 hH II a — X 

X —^ a 
— 2 ~ 

, n X 9 
cot - cosec^ 

a a 

Lt 
sin® TC ^ 

a a 
X a TZ 

{a - cos TZ ^ 
a 

Lt 
3 — . siir TC 

a a 
X a TZ IZ . TZX , 

- Sin ' a 
a a 

= 0. 

* The method of proof assumes the existence and the 
continuity of every function used. 

O
iO
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67* Form o '< To fincl ^ ^ [/ (^')* ^ 

when f (a) - o and f/> {a^ - oo. 

^ a lf{x). 4> -4r)] 
Lt 

<3: 

which becomes of the form ^ and can thus be treated as in 
o 

§ 65. 

68. Form 00 00. To find [/ (x) - <#> ix)], 

f (a) — 00 and <f> (a) = fxj. 

X a [/ 'x) — (x)] Lt 
X 

Two cases arise :— 

(r) If I, (0 takes the form 
x-^a f [X) 

^ ^ o, which can be treated as in § 67. 

x^a from unity 

l\^) I - is clearly infinite. 

00 

69» Forms. 0°, 00''’, 1 : —When a function assumes 

any of these forms, the method of procedure is to take the 

logarithmic differentiation of the functions, which will 

reduce to the form o x oo^ already discussed in § 67. 

n lustration. 

I. Find the value of ^ ^ ^ (cos ^, 

Here the form is 1^. 

Let y (cos ^ 

y = cot^ ^ loja:e (cos x) 
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or IjL 1ok« ?/~ IjI cot* .t lo«f (('OS .r) 

.T —^ 0 X 0 

_ Lt lo^.? fcos x) 

X 0 tan* X 

— sin X 

^ lit _ 
X 0 2 tan x ser* x 

__ Lt _ cos* X 
.V —> 0 2 

or lit y ^ h 
X 0 

* * X 

i. e., 

Lt 

Lt 
X 0 

= e 

/ NCOt* X 
(cos x) 

EXAMPLES ON CHAPTER VII. 

Find the limit in the following :— 

1. 
Lt, 

.r —^ 1 
X — 1 
x^ ~i' 

2. Lt 
X 0 

log (1 + X*) 
log cos X 

3. 
Lt 

.r —^ 1 
log 

.r — 1 

4. Lt - ^-jr 

X -^0 sin X 

5. 
X —^ 

4 
1 — tan X 

1 - ^'2 sin X 

(L 
Lt 

X —^ 0 
(1 +<)"-! 

t 

7. 
Lt 

X —^ 0 
(1 L x) X, 

8. 
Lt 

^ 0 
- 1 

X 

9. 
Lt 4" sin «/ — 1 

y —> 0 log (X + y) 

X oo 

[2 
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Lt ]o^ cos (.tr - 1) 
X 1 

1 - sin • 
2 

11. 
T.t 

X —^ 0 

lo^sin j: cos X 

lo^sln 5’ COS ^ 
2 2 

12. 
Lt 

X —^ 0 
.r lo^ sin .v. 

18. Lt 
X 0 

« beiiifr positive. 

14. 
Lt 

a 
(r«* — 4?) tan . 

2a 

15. 
Lt 

0 

cot y 1 tan''^ (m tan 0)— m cos*-^j 

/I 

16. n - 
.r —^ 1 

r ^ _ tn 
17. ^ Q (x) ' , WJ being positive. 

IQ ^■'1 ^/l ■ X ~ yi + X* 

" 1 /r^r - /i ---T* 

Lt (1 + 
X ^ 0 

1 ex 
(1 4 x)^ — e + 2 

0 

Lt ^ / 2 4 cos X — sin x 

2 ^ X sin 2x r x cos x 

[t: - 2xY 
2 sin 2x ■ 

Lt ^gg (1l (1 ^ -t- x"^) 

X 0 sec X - cos X 

28. Given x^ 4 t -= ^^axy^ find the values 

of / when x — y <*• 
ax 
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24. Find the values of at the origin for the 
dx 

curve ^ Qaxy. 

25. Prove that 

is equal to 

^ sin X 
X 0 sill X \ cos .r - 

sin h X 

cos b X r 

log a. 

Lt 
26. Prove that ^ ^ q + (^ 4" 

1 hr] 

‘ = h. 

, when 

(rt + 2hY‘ +. + (ffl + » 

where 
m i~ 1 ^ 

, , Lt <ih 
27. Find the value ot ^ q ^ 

and B ~ cos ^ (1 x\ 
sin 

then will 

28. Prove that if jc is infinite and <f> (x) - 

^ ^ (x + 1) - <i> ix)]. Lt 
^ ^ oo 

[Todhunter. 

29. If 4* (r) - when x is inlinite 

Shew that 

( -IT* = 
^ » oo .X O® <f> (x) 

[Todhunter. 

BO. Prove that 
Lt 

[Todhunter. 



CHAPTER VIII. 

CURVATURE. 

70. Let APQ be any curve, defined for a certain inter¬ 

val and any point P on it. 

y 

Moving along the curve in the direction of PQ, we 

notice that as P moves, the tangent PM to the curve at P 

also changes its direction Thus the direction of the 

tangent gives an indication of the bending of the curve, 

and the angle turned through by the tangent between any 

two positions of P seems a fit measure for the bending of 

the curve, if the bending has been regular. 

Let AP = s and AQ ~ .y r os and be angle 

turned through by the tangent in moving from PtoQ. 

Then if the portion of the curve in the neighbourhood of 

P lies on one side of the tangent z, e.y P is not a point of 
p? / 

inflexion*, the ratio ^ is called the average curvature 
Os 

of the arc PQ and i e., 4“- called the 
^ s o 0$ ds 

curvature uf the curve at the point P.f 

* Refer to § 94. 

t Since the shape of a curve becomes defined if we know. 
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ThQ radius of cur vat i0'e diny point on the curve is 

defined as i. e.. —or the reciprocal of the 
0 o 5,/< ^ ^ 

curvature, and is written as p. T he circle of radius p is 

given by j — p <1/ and the curvature of this circle is 

the reciprocal of its radius i. e ^ ^ , the same curvature-^- 
P 

as the curve has at P. Thus the radius of curvature at 

any point P, is also defined as the radius of the circle which 

would have the same curvature as the given curve has at P. 

71. Let P,Q and R be any three points close together 

on the curve APQRT. Let a circle LPOR pass through 

P,Q and R, where R Q and P Q- 

L 

RQ and PO both become tangents in the limit to the 

circle as well as the curve. Hence the angle between 

the acrual distance of any point from some fixed point 

on the curve and also the direction of the tangent to the curve 

at that point 5 hence a relation between s and ^ is sufficient 

to define the shape of a curve, and consequently we can 

regard s — f {ip) as the equation to any curve. This is 

known as the intrinsic equation of the curve. For a fuller 

discussion of the subject the student is advised to consult any 

text'book on integral calculus- 

* A circle has a constant curvature, /, reciprocal of the 
radius throughout. 

E. T. B. C —16 
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these two tangents to the ( irde, and the curve as well, is 

the same, say Also the chord PQ of the circle, is 

also the chord of the curve ; if therefore we measure the 

arcs of the circle and the curve by / and .v' respectively, 

by note II of § 49 ds' — ds : and therefore 
d^ dw 

ds 
Now is the radius of the curvature for the curve and 

d^ 

ds' 
y is the radius :>[ curvature for the circle the radius 

d^ 

of the circle itself. Such a limiting circle through any 

point on a curve, and which has the same radius as the 

radius of curvature for the curve, is called the circle of 

curvaturcy and its centre is called the centre of curvature. 

Any chord of the circle of curvature drawn through 

the point of contact in any direction is called the chord of 

curvature. Geometrically speaking the centre of curvature 

can be regarded as the point of intersection of two con¬ 

secutive normals. 

72. 

p in Cartesian Coordinates. 

We know that ~ tan .... 
dx 

(0 

Differentiating (i) with respect to we have 

d}y dx 2 f 

SP-di * ♦ 
ax 

or 
d^ 

sec* ^ 

dx^ 

(2) 

A dx 

/. from (2) 

dx 

ds 

ds _ 

ds 

d^ 

sec^ ^ ds 

dfy * dx 

dx^ 
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secV 
d*y 

or p = ± .J-lilT 
(i*y 

dx^ 

(3) 

73- X and y as functions of s We know that 

dx , dv . 
-j = cos ^ and / = sin i*. 
as ds (I) 

c^x , d4> 

d? ’ ~ * " 

and = cos if/ 
ds* ds 

or p =- 

0 J, we have 

sin ^ 
. . -(2) 

P 

ds 

~ Wi. ..(3) 

d^s 

cos if/ 

p 
..(4) 

dx 

ds 
..(5) d^y . 

d^ 

Squaring and adding (2) and (4), we get 

74* Implicit Functions. —Let the curve be given by 

fix,y) = o. 

we know that = o.(i) 

Differentiating again with respect to x, we get 

f,. + /w g + (/„ + f„ g) g + /, -g; o 
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or/,, + ./„,& + /„ 2-0 

„r ^ + (-^ 
d^2 = - - -y-- ....(2) 

/ y 
Substituting these values we get 

. ( 
1 

o> 
f-fy 

/r./ 4“ 2 f ry /A' 
\ f, , 

+
 

1 

or = -f- 
U^fv 

(4^+//)^ _ 
- 2 f^y fa: fy + fyy fa: * 

75. Sometimes the equation is expressed more con¬ 

veniently when the coordinates are given as functions of a 

single parameter, say, 

X - f {t) 

y " {n 

we know that will be equal to 
dx 

dy 

~dt 

dx 

dt 

t. e. 
dy 

dx r {t) 

Again 
d^y 

dx^ 

d 

ax 

dt 

d^y 

dt^' 

m 



or 

di^ ‘ dt dt^ dt 

^ ^ where dashes 
yif x' - y 

denote the differentia] co-efficients with respect to the 

parameter 

p can be also expressed as 

[{/(/)}^ -H y 0}']! 
9i" (/)./'(^) -/"(/).?(/)• 

Illustration. 
T. 7^''ind p when .r ~ a cos^ and u ^ (i sin^ /. 

Here - - Ba sin / cos^ i 

(U 

B a [covS^ i — 2 sin^ i cos i] 
dt^ 

^ ~ B a cos / sin^ ^ 
(H 

and 5 = B a sin^ ^ -j- 2 cos* ^ sin 
dr 

. _ (‘^ cl)^ [sin* t cos^ ^ -f cos* ^ sin^ ^]l 

(B fl)* [sin* ^ cos* f (sin* t — 2 cos* i) 

-f- sin* f cos* t (cos* ^ - B sin* <)| 

or p ~ B a. sin t. cos 
j. 

or p = 3 (a .r tjY . 

76, p for Pedal Equation. The equation of the 

tangent at any point (x, y on a curve is given by 

Y - {X ~ x).(I) 
dx 

The perpendicular from the origin, upon (i) is 

given by 
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.(2) 

dy 
^ dr y 

. 

Taking the logarithmic differentiation with regard 

to X 

^ dp _ 
p dr 

d*y 
dr' 

dy d^y 

dr dx^ 
dy 

X f - y 
dx 

t + 7^\* 
\dxj 

. ( 
dy d^y 
dx\ dx^ 

\dxj j 

Also + y^ 

■■ ' > £■ 

Dividing (4) by (3) we get 

pr 
dr 
dp 

_ (■ - ^ 
d^y 

or , *. L* ©T , 
dp d*y 

dx* 

p = r 
dr 
dp' 

■<■3) 

.(4) 

. .by-(2) 

•(3) 

77. p in Polar Coordinates. We have by equation (i) 

of § 55. 

I 

r* \d»/ (I) 
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Differentiating with respect to 

~ ^ ^ A 4. 
dp \de^ dp 

2 dr d^r d6 

r^ de dp 

78- When a curve passes through the origin and 

either of the axes is a tangent to it at the origin, it is 

interesting to apply Newton’s method for finding p. This 

method is equally applicable if we transform the equation 

referred to any other given point on the curve as origin, 

and choosing the axes in such a way, that one of them 

becomes the tangent to the curve at the new origin* 

Suppose the axis of 4: is a tangent at the origin to the 

curve. The y axis is then the normal and the centre of 

curvature lies upon it. 

Let R Q P O be the circle of curvature at O, and P be 

a point (-r, y) lying on this circle and the curve, ultimately 

tending to coincide with the origin. 
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Fjo 1G. 

X 
Then (2 o - y ~ or 2 p - y - 

y 
Proceeding to the limit when / —> o, p becomes the 

radius of curvature at O. 

And p = i — .(1) 

Similarly if y axis is the tangent 

Lt / 
.(2) 

79.* By the theory of envelopes we know that any 

curve can be regarded as the envelope of its tangents, Let 

the tangent to the curve at any point f;ir, y) be 

X cos OL ^ y sin a — p.(i) 

Also ^ - a 4- —.(2) 
2 ' 

For different values of a, the different members of the 

family of tangents will be given by (iL 

Hence if a second member be given by 

^ 4. 5^ = cos (a “h Sa; + y sin (a + Sa);.(3) 

* This article is to be read along with the chapter on 

envelopes. 
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. N 

Fig. 17. 

at the point of intersection of (i) and (3) in the limit when 

Sa-^O 

^ ^ X sin CL -V y cos a,. (4) 
dCL 

must be satisfied, i. e., the limiting point of intersection 

of (i) and (3) must be upon the curve, as well as upon (4). 

Comparing (i) and (4), we notice that (4) is at right 

angles to (i) . Thus (4) represents the normal at P i,e., PT 

/. = OR 
dot, 

d^if 
Similarly —4 — — x cos a, — y sin a . (5) 

uair 

is the line perpendicular to the straight line PT and passing 

through say T, the point of intersection of the normals at 

P and say Q, a point in the neighbourhood of P ultimately 

tending to coincide with it. Evidently this point of 

intersection of two normals to a curve at any two ultimatelv 

E. T. D. 0.—17 
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coincident points is the centre of curvature to the curve. 

Hence (s) passes through the centre of curvature of the 

curve at P and is perpendicular to the normal at P. (5) 

therefore represents T N and let it intersect OY at 

Therefore OY' = 

p = PT = OY + OY' 

. . = V. 4. 

Again 
_ dp 

dip doL 

d^ ^ d^p 
d(x? dip^"^ 

from (2) 

Illustration. 

Find p at (r, 6) of the curve r" = a** cos and 

,11 _ _j _±__1- j.i_-_ shew that the chord of curvature through the pole is 
n h 1 

Fig. 18. 
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We have from the equation of the curve 

n dr _ 
r did 

= ~ n tan by differentiating 

logarithmically with respect to B. 

or = — r tan nB 
dJB 

•• -5? " 
tan nB- — rn sec*w6^ 

dB 

= r ian^nB — rn sec^nB 

Thus p = _[r* + r»tan*w6ij*'^*_ 
r* -f S!>"*tan*n6^ — r*tan^n6^ + r*nsec*w^ 

_ _r sec^ 
sec*w6# (« + 1) 

or p =? 
\n + 1) 

chord of curvature PQ = 2p cos CPQ 

~ 2p sin <l> 

From (l) tan — ^ot nB 

■ (I + n6» 

i> = — + n (Ji. 
2 

Thus PQ = 2p sin + n 6>j 

= 2p cos n 

w -f 1 
, from (2). 

J II. Shew that for the curve t/ == c cosh , p varies as 

/ -che square of the ordinate and is equal to the part of the 

normal intercepted between the curve and the axis of x. 

Here -- == sinh — 
dx c 

J!]l = 1 — cosh 
C € 
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P 

sink* 
c 

cosh 
c 

or p = c cosh* — 
c 

ordinate. 

Let PL be the intercept required. 

PL == y sec ^ = y 1 + tanV 

or PL ^ y / 1 + sink* ^ 
^ c 

= y cosh -~- 
c 

c 

/. p - PL. 

80. Curvature at the origin. If the curve passes 

through the origin, the method of finding the radius of 

curvature at the origin can be simplified by the use of 

Maclaurin’s theorem instead of using Newton’s methods. 
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or 

\l y z=^ f {x) be the curve 

y = f (0).^+/" (O) + 

writing p for and q for 
dx dx^ 

we have y - P ^ q 
x^ + 

substituting this for y in the equation of the curve and 

equating the co*efficients of the like powers of x in the 

identity we get the values of p and q determined, and 

which can then he substituted in 

Illustration* 

1, Find the radii of curvature at the origin for both the 

branches of the curve a/® (a — x) ~ (a + x). 

x^ 
Substituting p x q ’ ^ 

^ j (a - x) == x^ (a x) 

or x^ + y q x^ 'h ^ ^ ~ 

/. equating co-efficients of like powers we have, 

p* ~ 1, apq ~ p* = 1. 

Thus ^ = ± 1 and q = ± 
a 

Thus p = ± f/2a. 

Exercises. 

Find p in the following :— 

1. = 4 at the point (a, 2a). 

2. s = a secV. 
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3. . = ^ 
4 

y ~, at the point i. 
6 

4. X = at* 

^ = 2 at, at the point t. 

5. X == a (0 + sin 6) 
y — a (1 — cos 6^), at the point 6>. 

6. X == 

y ~ at the point t. 

7, r == a (l + cos (f) ; also find the chord of curvature 

through the pole. 

8. r* = a* cos26^. 

9. 
, 3 e 

r — a sirr - . 
3 

10. h i i x^ -r y — 

11. X == a* (1 x)y at the point {a, 0). 

12. (y — xy = x^j at (0, 0). 

18. y = b c x^ y at (0, 0) 

14. x^ -h y^ = 3a xy at (0, 0), for both the branches. 

15. xy = 

16. Prove that in a parabola the radius of curvature is 

equal to twice the part of the normal intercepted between the 

curve and the directrix. 

17. For any curve, prove that 

sin (?( 1 + 
\ d»’ 

where p — r sin 

18. Shew that in a parabola, the chord of curvature 

through the focus and the chord of curvature parallel to the 

axis are each four times the focal distance of the point. 

19. Prove that the chord of curvature parallel to the axis 

of y in the curve y ^ a log sec — is of constant length. 
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20. In the conic ax^ -i- 2A xy ~|- — 1, prove that the 

radius of curvature varies inversely as the cube of the central 

perpendicular on the tangent. 

21. If p and p' be the radii of curvature at the extre¬ 

mities of two conjugate diameters of the ellipse + = 1 

prove that 

(p^ + p'^ ) {ab)^ = a* + ft*. 
22. Prove that for the curve r ^ a sec 2 b 

23. Shew that the chord of curvature through the pole of 

the equiangular spiral r ~ ae^ ^ is 2r. 

24. Shew that the chord of curvature through the pole of 

the curve p = f{r)^ is given by 

firY 

Apply it in the case of p^ = . 
2a 

25. Find by Newtords method the radius of curvature at 

the origin for the curve 

x + xy — 2y ^ 0. 

26. If on the tangent at each point of a curve a constant 

length be measured from the point of contact, prove that the 

normal to the locus of the points so found passes through 

the corresponding centre of curvature of the given curve. 

[Bertrand], 

27. If on the tangent at each point of a curve, a constant 

length c be measured from the point of contact, shew that 

the radius of curvature of the locus of such points is 

given by 

..._. , . . . 
p* + c* 

where p and ^ refer to the 

corresponding point of the original curve. 
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Centre of Curvature. 

Fio. 20. 

81. Let P Q R be the circle of curvature at P (4:, y) 

on the curve APB and C (a,p) be the centre of curvature. 

To find (a, 

Here a = OM - NM 

= 4: - LP 

— X - p sin 1^ 
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Again 

P - P -f LC 

= y + p cos 

dx^ 

Evoliites and Involute!*;, 

82. The locus of the centre of curvature of a given 

plane curve is called the evolute of the curve. If the 

evolute itself be regarded as the original curve, a curve 

of which it is the evolute, is called an involute. 

It the equation of the given curve be 

^ o,.(i) 
and (a, be the coordinates of the centre of curvature 

dx* 

Eliminating x and y between the equations (i), (2; and 

(3). we get the locus of (a, P) which will be the evolute 

of the curve f {x, y) — o. A better way of finding the 

evolute of a curve is by regarding it as the envelope of the 

normal to the curve, for the discussion of which see § 85. 

E. T. D. C.—18 
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Illustration. 

I. Find the evolate of 2/ == c cosh . 
0 

Here ^ ~ sinh ~ , and = - cosh — 
ax c dx^ c c 

\ If (a, P) be the co-ordinates of the centre 

curvature 

sinh 

of 

dnh^l^l + sinh* 

I £ cosh — 
c C 

X — c sinh ~ cosh — 

and P ~ 2/ + c cosh — 
c 

2 y.. 

X — 

X — 

c cosh - / cosh* — - 1 
c </ c 

.(1) 

.•(2) 

or a c cosh ^ y 2/* c*. 
c 

.2/ 

" ' ‘ & - i/f - «•. by (2)- 

a+t/1 
4 

or P -c3C uusii_* ^ j 

4c* 
/, The evolute required is driven by 

. y ^2c cosh + yy?~^» 
4c* 

_= c cosh 
4c 2c 

2c cosh 4 a c + P y p»_ 4ct 

4(? 
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EXAMPLES ON CHAPTER VIII. 

Find the evolute of :— 

1. y* = iax. 

2. ^ i = 
a* ft* 

3. x~a cos t + 2, log tan —I 
2 > 

y — a sin t, J 

4. Prove that the evolute of the equiangular spiral 

r = ae^ ^ is also an equiangular spiral. 

5. Prove that the evolute of the cardioide r = a 

(l + cos 6) is another cardioide. 

6. Prove that the distance between the pole and the 

centre of curvature corresponding to any point on the curve 

r" = a" cos n 6^ is 

7. In the equiangular spiral r — ^ , prove that the 

centre of curvature is the point where the perpendicular to the 

radius vector through the pole intersects the normal. 



CHAPTER IX. 
ENVELOPES. 

83. Geometrical meaning.—If there be a straight 

line r cos y sin a - its position and direction will 

be determined by a and p. For the same value of ^ if 

we vary a, we shall get different straight lines. Any sys¬ 

tem of straight lines (or curves) formed in this way is 

called a family of curves, and a, which is a constant for any 

one of these straight lines, but varies as we pass from one 

line to another is called a variable parameter. Thus in 

the equation of a curve or a surface, we have some arbitrary 

constants besides the current co-ordinates. The shape and 

size of the curve in question will depend upon the value 

of the arbitrary constants. In the example quoted above, 

there is only one variable parameter. We may however, 

have two or more variable parameters entering into the 

equation. In order to give prominence to the parameter, 

it is generally indicated in the equation as 

/ {x, y, a) = o. 

Again as a changes, the straight lines given by 

ar cos a + >/ sin a - /> always remain tangent to the circle 

+ y* = and the point of contact traces the circle. 

The circle is known as the envelope of the system of curves 

given by r cos a + >/ sin a = ;> when the variable 

parameter is a. In general, “ zf tJure is a curve to which 

the curves of a family / {x, y, a.) ~ o are tangent and if the 

point of contact describes that curve as a varies, the curve 

is called the envelope (or part of the envelope if there are 

several such curves) of the family f {x, y, a) = o.”* 

It is thus clear that the envelope is touched by some mem¬ 

ber of the family of curves of which it is the envelope, at 

* This definition is adapted from ‘ Advanced Calculus ' 

by E. B. Wilson, 
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every point on it, or which is the same as saying that 

every member of the family of curves given by 

/ = o, touches its envelope at some point. 

84. Envelope equation.—Let the family be given by 

/ (^» y'> ~ o, where a is the variable parameter, and let 

the equation of the envelope be 

X == <t> ipL), y ^ e {a) together with f {x, y, ol) = o. . (i) 

The first set of equations indicates that the points on 

the envelope depend upon a, and the last equation ex¬ 

presses the fact that each point on the envelope lies on 

some curve of the family. 

Differentiating f y^ cl) o with respect to the vari¬ 

able parameter a, we have, 

A 
dx f dy f 
y- ^ IV -j- ^ fa 

aCL aCL 
Az) 

i. e , fx4‘' (<^) + .4 e' (a) 4- A =0.(3) 

Now if the point of contact on the envelope is identi¬ 

cal with the point on a certain member of the family, 

for that member is the same as that of the envelope. 
dx 

• 

*’ dx <^'(a) 

along the envelope. 

(4) 

Also 

along the curv 

^ _ A 
UK f<! 

From (4) and (5) we get 

- A 
» ^ (“) 

or A («) + fv ^ ~ ° 

Comparing (3) and (6) we find that 

f'a ~ O. 

(5) 

(6) 
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Thus for points on the envelope we have the equations 

/(^f y, and — o. 

satisfied. These two therefore give the parametric 

equations of the envelope. 

If a be eliminated between these two equations, we get 

the cartesian equation of the envelope. 

Tkus to -find the envelope of any family of curves given 

by y^ a) = o, differentiate the equation with respect to 

the variable parameter a, treating all other quantities in¬ 

volved in the equation as constantSy and then find the elimi- 

nant betzveen these two equatiofis with respect to that variable 

parameter. 

85. Evolutes as envelopes of Normals.—The equa¬ 

tion of the normal to the curve y - f {x)y at the point 

{x, y) is 

(X- x) + ^UY- y)^o.(I) 
dx 

We have to find the envelope of (ij for different values 

of X and y^ where they are related by the equation 

y - fix),.(2) 

since the point {x, y) lies on the curve given. 

Hence y and ~ can be treated as functions of x. In 
dx 

other words we have to find the envelope of (i) regarding 

X as the variable parameter. 

Differentiating (i) with respect to x. 

dx* 
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Also from (i) and (3) we get 

(4) 

Eliminating x and y between equations (2), (3) and (4) 

we get the envelope required i a relation between X 

and F, which are clearly the co-ordinates of the centre of 

curvature, [§ 82], Thus an evolute can be regarded as the 

envelope of the normals 

86. The centre of curvature for any point y) on the 

curve A B is given by 

X ^ X — p sin ^ 

Y - y + p cos ^ 

Here y, p and being functions of x, X and Y can be 

regarded as a function of x. 

ax dx ds dx 

== — sin lA 
dx 
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And ^ tan ^ — p sin ^ cos ^ 
ax ds dx dx 

'= cos ^ 
dx 

•■• (")’ + (IT - (f.<■> 

where X and Y are the co-ordinates of the corresponding 

point on the evolute Also we have 

the arcual distance along the evolute being measured 

as /. 

. _ dp . _ 

dx dx * dp 

or ds' - dp. 

87* Geometrical interpretation.—If P', P and P'^ be any 

3 points on the planer curve A PT P' B, and the curvature 

Fia. 22. 

of the arc P' P P'' be regular, the ultimate points of inter¬ 

section of the normals to the curve at P' and P when 

P' P is the centre of curvature at P'. 
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Thus O' and O the centres of curvature at P' and P, 

both lying upon the normal at P will try to coincide if 

P' —^ P as well as P" P. Thus the normal at P will try 

to become the tangent at O to the locus of O, Hence the 

ovolute touches each and every member of the normal to 

the curve. 

88 Two parameters,—In certain problems it is con¬ 

venient to use two parameters which are connected by an 

equation. Thus let the curve by given by 

J'. P) =o..(l) 
where (a, P) = c'...(2) 

In reality there is only one parameter and one of these 

parameters could be eliminated from the equation (i) by 

means of the equation (2) and then the envelope can be 

found by the method already discussed. This procedure 

may at times not be convenient, and the elimination 

tedious. 

In that case one of these parameters say P could be 

treated as a function of a by means of (2). 

And therefore we have 

dp da. 

d(f, _ dp 

(^P da. 
and 

% + = o 

= o 

(3) 

(4) 

Eliminating a, p and between (i), (2), (3) and (4) 

we shall be getting the envelope equation. 

89. Indeterminate multiplier.—Sometimes it is con¬ 

venient, to introduce A an indeterminate multiplier, the pro¬ 

cess of solution remaining quite analogous to, § 88. From 

the equations (3) and (4) of § 88, we have by eliminating 

da 

R T. D. C.—19 
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d/- 
da dp 

d^ 
Sol dp 

or 
"d<^ 

-dp 

• 

= X 
da 3a 

and 
«>/ 
dp - " dpj 

= o 

X say. 

(I) 

“ Indeterminate Multi- 

X between the equa- 

The quantity X is known as the 

plier." Eliminating now a, p and 

tiona (i) and (2) of § 88 and (i) we have the required 

envelope. 
Illastrations. 

I. Find the envelope of d" ^ = 1; where ab = c. 

The curve is ^ j 
a r 

and the relation between the parameters is 

ah = .... 

Differentiating both with respect to a, we have 

•d) 

•(2) 

dh 
o» + ^ ^ ^ 0 

and b + = 0 
da 

(3> 

I by eliminating 
_L da 

•Applying directly the method of ladetermiaate Multi¬ 

plier we can get the equation (j) ». e., ss X. d and 
a* 



( 147 ) 

o* 1 

od ab 2c 

** = i. «nd 
a* 2 ’ 

g = 2 and & 

2 

y •/a 
Substituting: these in (2) we get 

'^xy = c, which is the required envelope. 

II. Find the evolute of 
6* 

1. 
The equation to the normal at any point whose eccentric 

angle is 0 is 

cos 0 sin *f> 
.(1) 

Differentiating (2) with respect to ^ the variable parameter, 

we get 

g .y sin ^ b y cos _ q 
cos* 0 sin* 

or 

X. e. 

sm* ^ . cos* 0 _ n 
by ax 

sin <p _ cos _ 

Vby y^x + {by)X 
•C?) 

Substituting the values of sin <b and cos from (2) in (1) 

we have 

J(a x)^ + (6 l(a x)^ + (Jb y)^ ] = a* — ft* 

or (a + (6 y)^ - (a* — fe*)^ . 

Ill, Find the envelope of circles drawn on radii vectors 
^ yt 

of t + % - 1, as diameter, 
a* ft* 
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I, 

Any point on the curve is given by (a cos b sin <A), the 

middle point of OP, if 0 is the centre origin, will be 

(a cos 0 b sin <^\ 
2 ’ 2 

i.. 

The equation of the circle is therefore 

I a oos , / b . A* 
(*■ -2~) + r" 2™ V 

a* COS* -f ft* sin* </> 

or ^* + «/*■” a AT cos ^ — by sin ^ ^ O . 

Differentiating with respect to we have 

ax sin — by cos 0 = 0 

sin 0 _ cos 0 ^ 1 
ax 

.(1) 

...(2) 

Bubslituting for from (2) in (1) we have 

+ =0 
a/(a ^)* -f (ft 2/)* 

or (jc* + ^*>* = (a ^)* + (6 y)* 

Putting X — r cos B and y = r sin B we get the equation 

of the envelope as 

r* = a* cos* B + ft* sin* B. 

rV. Find the envelope of circles drawn on radii vectors of 

r =» a (1 4* cos B) as diameter. 

If (d, a) be any point on the curve, d = a (l + cos a)...(l) 

The equation of the circle on OP aS diameter is 

r = d cos{B — a) ..(2) 

Substituting for d from (l) in (2) we have, 

r = a (1 + cos a) cos (B — a)... ••(3) 

Differentiating (3) with respect to a 

— cos — a) sin cc + (1 + cos a) sin (6^ — a) — 0 

sin a 
1 4 cos C6 

. a 
i. e., tan ^ 

= tan (B ~ a) 

= tan (B — a) 

or 
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a a 1 

or a = f e.(4) 
1 

Substituting in (3) we have 
n 

The envelope as r = a (1 +• cos f 6^)cos ^ 
3 

n 

i. e., r ~ 2a cos* 
3 

90. Envelope of an equation quadratic in a 
parameter. 

Let A a* + Ba + C = obe the equation to a curve 

where A, B and C are functions of x and and a is the 

variable parameter. We have here, 

2Aa + B = oora=- —. 
2A 

Substituting in the equation to the curve we get 

— 4 AC - o as the envelope. 

Thus when the equation of the curve is a quadratic in 

the variable parameter, the discriminant of the parameter is 

the envelope. 

EXAMPLES ON CHAPTER IX. 

Find the envelopes of 

1. = + —,m being the parameter. 
m 

2. 4- ^ 1 when = c*. a constant, 
a b 

3. = 2 a (x — a), a being the parameter. 

4. 2/ ~ ^ 4- ^^2 q. ^2 m being the parameter. 

i 
O’ ^ ~ ^ being the parameter. 

6. ix — a)* + cc being the parameter. 
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rr X' , tr 
=• 1, a bomg 4to parameter, 

8. Find the envelope of — 4- ^ = 1 
a h 

«• n m + n 

where \i) a b = c , a constant 

(u) a + ft = c, a constant 

/...N ” * 
\iii) a -f- ft = c , a constant. 

m m 

9. Find the envelope of -h = 1 

a ft 
mm 8m 

where (i) aft =* li: 

m m m 
(ii) a + ft = c 

10. Shew that the envelope of 

n 

• »* 
COS n a 4- ^ sin n oc - a cos m oc^ oc 

m tn m 
, . ,, , . n - m i» - m COS n - m 6^, 
bein^? the parameter is r = a 

11. Find the envelope of a line of constant length a, 

whose extremities move along two fixed rectangular axes. 

12. Shew that evolute of the parabola 

2/* = 4 is 27 = 4, (x — 2 a)* 

13. Find the envelope of the circles which pass through 

the origin and have their centres on the hyperbola 

** - S/« = a* 

14. Find the envelope of the circles described on the 

radii vectors of the following curves as diameter. 

(1) I/* = 4 a (* + a) 

ft n 

(2) r == a cos n 0, 

IB. Find the envelope of the circle which moves in such 

a way that its centre always lies on the parabola j/* = 4 axy 

and its circumference passes through the vertex of the para¬ 

bola. 
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16. Find the evolute of a^' 

17. Shew that the envelope of the family of curves 

A A.* 4“ 3 B X* 4" 3 C X + D = 0, where X is the arbitrary 

parameter and A, B, C, D are functions of x and y is 

(BC - AD)* - 4 (BD - C*) (AC - B*) 

18. A variable parabola is drawn having? its vertex on a 

given parabola, the two curves having the same focus ; prove 

that the envelope of its directrix is the curve 

r cos* Q ~ ^ referred to the common focus as pole, 
o 

Trace the curve. 

[Oxford 1890.] 

19. Shew that the envelope of the common chords of the 

jr* I/* 
ellipse '-i 4“ ^ = 1, and its circles of curvature is the 

a* 6* 

curve 

(£ + K)t + (£ - = 2. 
'a b f 'a bf 

[Math. Tripos 1884.] 

20. The envelope of the catenary y — c cosh 2, c being 
c 

the parameter, consists of two straight lines. 

21. Shew that the radius of curvature of the envelope of 

the line 

X cos a + y sin a = /'(a) 

is f (a) 4- f' (a), and that the centre of curvature is 

at the point 
X - f (a) sin a — f" (a) cos a 

y = f' (a) cos ct — (a) sin a. 

22. Shew that the envelope of all cardioides described on 

radii vectors of the cardioide r — a (1 4" cos 6^), as axes and 

having their cusps at the pole is r* = (2 o)* cos - . 



CHAPTER X. 
CONVEXITY, CONCAVITY AND DOUBLE POINTS, 

91. It is soraetiraes necessary that quite a large and 

sufficient member of properties about the form and the 

nature of a curve should be known, in order to trace it. 

Thus it is desirable to treat the nature of some special points 

on a curve. 

Convexity and Concavity, 

92. A curve is said to be convex (or concave) at any 

point on it with respect to the foot of the ordinate of 

that point, according as the part of the curve in the im¬ 

mediate neighbourhood of that point lies on the other side 

(or the same side) of the tangent at that point than the 

foot of the ordinate. 

Thus the curve is convex at P with respect to M in 

Figure 2Z{a) and concave at P with respect to M in Figure 

23 (^). 

Y 

X 

Fio 23 (a). 
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Y 

Second Definition. A curve is said to he convex (or 

concave) at any point on it with respect to any given straight 

line according as the part of the curve in the immediate neigh¬ 

bourhood of that point lies within the obtuse (or the acute) 

angle made by the tangent to the curve at that point and the 

given line. 

Y 

Fiq. 24 (a), Fig. 24 (ft). 

The curve is convex in Figure 24 (a) at P with respect to 

the straight line OX, and in Figure 24(ft) it is concave. 

93. Test for Convexity and Concavity.—Let P (;r, y) 

and Q{x ^ y S;') be any two points on the curve 

E. T. D. 0.—20 
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APQ given by / = /’(.r) .(i) 

The equation of the tangent at P is 

V- = x).(2) 

Let NQ" the ordinate of Q intersect (2) at Q\ 

y 

Fig. 25. 

Here NQ' = / -j- ^ ox by (2) where X = jt -j- ox. 

^ /* (^) + ox f (x) from (i). 

Also NQ - f (x -j- ox) ~ f {x^ 0 xf (x) 

ox^ 
+ -Qj f" (x + 6»i ox), where o < 6*1 < i. 

So that NQ - NQ' - ~ 5 x).(3) 

Again if S^r o the sign of/" (x + 6»i S x) will be 

the same as (x)* Hence the sign of (NQ — NQ') will be 

the same as the sign of /" (x) irrespective of the sign of dx. 

Case If/'" {x) is positive> NQ' that is, the 

curve is convex at P. 

Case (//) If p' {x) is negative NQ < NQ' that is, 

the curve is concave at P. 

* From the continuity of /*" (x). 
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If the curve lies below the axis of both NQ and NQ' 

will be negative, the curve will therefore be convex (or 

concave) according as f' 'x) is negative (or positive) 

We can however combine both these cases into one 

i. e,^ f {^) y' {^) for convexity^ and f [x) P' (x) 

is—v£ for concavity. 

94. If f" (^) = O and {x) 4= o, the point P *x y) 

is known as the point of inflexion on the curve. 

Here NQ - NQ^ = f"' {x ■¥ (^20 x ^ which will clearly 

change sign with 6 x. 

/. at a point of inflexion the curve changes from 

convexity to concavity or from concavity to convexity, 

according as (NQ - NQ') changes sign from ve io - ve 

or from - ve to + ve^ as we take hx from negative to 

positive. The tangent to the curve crosses it at such 

points. 

Fig. 26 (a). Fig. 26 (6). 

In figure 26 {a) the curve changes from convexity to 

concavity and in figure 26 (d) it changes from concavity to 

convexity. 

Hence at a point of inflexion(.r) i. e., - o and 
dx^ 

it must change sign as the curve passes through that point 

* Another from of y . 
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i. with If ^-^does not change sign with 5;r, (x) 
dx^ 

must be equal to zero. 

/' Thus if fff (x) ™ o and (x) o, the point P is called 

a point of undulation, and the convexity or concavity is 

d^v 
determined by the sign ot y ^ * Similarly if higher de- 

dx^ 

rivatives at any point vanish, the point will be one of a 

higher order of singularity, 

95 Geometrical interpretation of a point of inflexion 

or undulation.—The form of the curve in the figure 26 

(a) can be seen on a magnified scale in figure 27, where it 

is changing from convexity to concavity. The tangent PT 

here can be regarded as the limiting form of the straight 

line PQRT, which clearly cuts the curve in three points, 

all coinciding in the limit as in figure 26 (a). Thus the 

tangent to the curve at a point of inflexion accounts for 

three ultimately coincident points on the curve. Similarly 

at the point of undulation the tangent can be regarded as 

the limiting case of a straight line through four ultimately 

the coincident points on the curve. See figures 28 (a) 

and (6). 

^ The discussion is beyond the scope of this volume. 



Fig. 28 (6). 

(Point of Undulation). 

96. convexity and Concavity in Polar Coordinates. 

To find a test of convexity or concavity at a point on a 

curve with respect to the pole. 

Let the curve be r = / {^) or « = F (<*). 



( 1B8 ) 

In the figure 29, the curve is convex at P, R and 

each tending to P as 5 o ^ OQR > A OQP -l- 

OPR e. sin 2 S6' > /'i sin ZO + r sin 56* or 

2 ri rt cos 5 6* > r (n + ^2).(i) 

Fio. 29. 

Similarly if the curve is concave as in Fig. 30. 

2 ri rj cos Z 0 <C, r (ri rt).(2) 

Pro. 30. 

0
» <1 
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It r — ^ etc., the curve is convex or concave at P, 
u 

according as 

2 2^ cos 0 & or K. (ui 4 U2) 

Again = ¥ (0 — 0 B) 

- F {») - 5 61 F' (6») + F" + A, 0 a), 

where o < Ai < i 

Similarly U2 = F (ff) -1-5 6' F' (&) 

F" {0 F Aj 6 6'), where o < A2 < i 

Hence the curve is convex or concave according as 

2 F (ff i cos 8 6* > or < 2 F ((f) -I- 
(5 6')* 

L* 

[F" (6* -f Ai 5 6») -f F" ^(f -F X20 &)] 

or4F(., 

[F" (6* F Ai 5 61) -f F" (6> -h At 5 (f)]. 

Proceeding to the limit when 

8 6* o, - 2 F (^) > or < 2 F" {&) 

Hence the curve is conv ex or concave with respect to 

the pole according as 

F" (6») -I- F (d) < or > o 

^“ + « < or > o. 

Note. —If this is equal to zero, it should change sign 

as the curve possess through P, if the point P is a point of 

inflexion. 

Exercises, 

1. Shew that the origin is a point of inflexion on the 

curve a^y ^ b xy ¥ cx^ + dx^. 
3C 

2. Shew that the curve y = e is convex at every point 

with respect to the foot of the ordinate of that point. 
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3. Find the coordinates of the point of inflexion on the 

curve — 3 ax^ + b^y ~ 0. 

4. Shew that the points, in which the curve 

y — c cos ^ , cuts the axis of x^ are all points of inflexion. 
a 

5. Shew tliat the points of inflexion of the curve 

y^ ~ {x — a)* {x ~ b) lie on the line 

3 X ii ~ ^b. 

6. Find the convexity or cancavity for any value of x on 

the curve y ~ 2 y ax. 

7. Has the curve .jc = + 3 y* a point of inflexion ? 

Double Points. 

97. Let us consider the curve in the Figure 31, drawn 

on a magnified scale. At such a point as P, there can be 

Fig. 31. 

drawn two tangents one to each branch of the curve pass¬ 

ing through it. Each tangent cuts the curve in two 

ultimately coincident points on one branch and incidently 

cuts the other branch also at a point, which also ultimately 

coincides in the limit with the point of contact. In the 

Fig. 31. PQ, the tangent at P, can be supposed as inter¬ 

secting the curve at P and Q the branch to which it is the 

tangent and also cuts the other branch at R Each tangent 

therefore at such a point intersects the curve in three points 

ultimately coinciding in the limit, and this is due to the 

fact that two brances of the curve pass through P. Such 

points are known as double points. If three branches pass 
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through any point, it is said to be a triple point or a 

multiple point of the third order, and so on. 

98- Tangents at the Origin. —If the equation of a 

curve be rational and algebraic it can be written in the 

following form. 

a 

+ b\ X bi y 

Cl c\ X y + c% 

+ ... 

+ A V +. 
4 + i>'" = o.(i) 

If this be converted into polar co-ordinates, it becomes 

a 

+ r {b, COS b bf sin 0) 

+ {a cos* e + a cos b sin b + cz sin* b) 

+. 

+ (A cos"6^ + A cos" ' ^b sin b +. 

+ 4 + ism"6») -= o.(2) 

Let O be the pole and OA the initial line, and let a radius 

vector at an angle b cut the curve given at the points Pi, 

P2 etc. The roots of the equation (2), will then be OPi, 

OP2, etc., and there will be n such roots. 

Case 1. li a = o, it is clear that the curve passes 

through the origin; and in this case one root of (2) is 

zero, and say Pi coincides with O. 

Case 11. Again if in addition to this, b is so taken 

that 

bi cos 6^ 4 ^2 sin 6^ = o,.(3) 

a second root of the equation (2) will also be zero, and 

therefore we get a straight line, making an angle given 

by (3) with the initial line, and intersect¬ 

ing the given curve in two coincident points at the origin, 

B. T. D. C.—21 
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and thus it is the tangent at the origin. Converting (3) 

into cartesian equation we have, 

bix y — o. 
Hence if the curve passes through the origin the terms of 

the iirst degree equated to zero gives the tangent at the 

origin. 

Case III If a ^ o, b\ = o, and b^ — o, in general 

it is possible to find the value of 6^ such that 

c\ cos* 0 + Cl cos 0 sin 0 c% sin* 0 = o.(4) 

and then three roots of (2j will be zero. Thus we get a 

pair of lines given by 

ct r* -h C2ry + ^3 / = O,.(S) 

such that each of them cuts the curve at three coincident 

points at the origin. Thus there are two branches of the 

curve at the origin. The origin is a double point on the 

curve and the terms of the lowest degree equated to zero i, e , 

equation (5) gives the tangents at the origin. 

Case IV. li a ^ o, bi = o, bi ~ o, ci-o, - o, and 

Cl = o, the origin is a triple point, and the tangents at the 

origin will similarly be given by the lowest degree terms, 

i.e., third degree terms in equation of the curve equated to 

zero. 

Thus in general, if the lowest degree terms existent in 

the equation of any curve, passing through the origin, are 

of the degree, the origin is a multiple point of the 

order on the curve, and the terms of the degree equa¬ 

ted to zero give the m tangents at the origin. 

99. Species of Double Points.—Double points on a 

curve can be defined as points at which two tangents real, 

coincident or imaginary can be drawn to the curve. 

Case I. If the tangents are real and different, there are 

two branches of the curve which pass through the point, 

and it is called a node, as in Fig. 32. 
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Fig. 32. 

Case 11. If the tangents be imaginary, there are in 

reality no points on the curve in the neighbourhood of that 

point and we are unable to trace the curve in any direction 

beyond that point. Such a point is only an isolated point, 

whose co-ordinates do satisfy the equation to the given 

curve, but no branch of the curve exists in the vicinity of 

that point. Such a point is called a conjugate point. 

Case III. It the tangents are real but coincident, the 

two branches at the double point touch each other. The 

point is then called a cusp. 

Two Species of Cusps. 

100. In the figure 33 the two branches PQ and PR of 

Fig, 33. Fig. 34. 

the curve lie on opposite sides of the tangent at P. This 

point is said to be a Cus^ of the first species In the 

figure 34, the two branches PQ and PR lie on the same side 
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of the tangent at P. This point is said to be a Cusp of the 

second species. 

lot. Analytical condition of a double point. Let 

the equation of a straight line be 

> -J . r,.(!) 

which intersects a curve of nth degree, whose rational 

algebraic equation is / (^r, y) = o, say. 

The ^ 1 .(2) 
y = ^ + ntr ], 

and these represent the coordinates of any point on the 

given straight line. If the point is common to the curve 

as well, they will satisfy the equation of the curve i. e., 

/(a, + /r,P 4- mr) = o.(3) 

By § 44, we have 

/(«.« + >•(/3/+ ” dp)V 

+ ” 7^'f+ . 

L>(' T, + " Tp) 
which gives « values of r i. e., the co-ordinates of n 

points of intersection of the straight line with the curve. 

L If/‘(a, p) = o, one root of the equation (3) is 

zero and the point (a,p) lies on the curve. 

11. If / : »* be now so chosen that 

' ^ + ." 

Two roots of (3) will be zero, and (5) gives the direction 

in which the straight line will become the tangent at 

(«, P) to the curve and its equation is 

(r - a) ^ - P) = O, 
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which is found by eliminating I and nt from equations (i) 

and 15). 

III. If t- = o and o along with the condition So. - " dp 
that /(a, P) = o, every straight line through (a, ji) intersects 

the curve in two coincident points irrespective of the values 

of I and w. If now /: w be so chosen that 

+ 2 / «»3p2 

£ 
m 

We have in general two values of 

.(6) 

2. the two direc¬ 

tions in which if the straight line be drawn through (a, P), it 

will intersect the curve in three coincident points. The point 

(a, P) is then a double point on the curve, since two branches 

of the curve pass through it. The equation of the two 

tangents is 

+ (>'-? 
2^7 _ 

' df* ~ (7) 

found by eliminating / and m from equations (i) and (6). 

102, Species of Double points.—The equation of 

the tangents at a double point is given by 

^ A. ^ ^ a\ _ «>! .^y_ 

+ . (I) 

The angle between these two straight lines is the same 

as the angle between the two straight lines parallel to those 

given by (i) and passing through the origin i. the 

angle between the straight lines given by* 

™ Jlf. 4-... !!y . I f t / I a ^ i 

2 Tadp ^ 3pt (2) 

* Only second degree terms equated to zero. 
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Thus the angle B between the tangents is given by 

The tangents are real or coincident or imaginary accord¬ 

ing as tan B is different from zero or zero or imaginary i 

according 

as > or or < 
dy dy 
da2' 

Thus the point (a, is a node or a conjugate point 

according as 

> or < 
cjy 
da*- 

and is in general a cusp if 
/ dy \* ^ dV dy 
\dadp} dp* * 

We say in general a cusp, as it will be noticed that in 

certain cases when this condition is satisfied, the curve 

becomes imaginary in the neighbourhood of that point, 

and which therefore is really a conjugate point. Thus 

further investigation should be made in this case to find 

out whether the point in question is really a cusp or a 

conjugate point. 

Summing up we notice that if /* (a, p) = o and 

^ o as well as 
OOL 

the point (a, p) is a node, or a conjugate point or a cusp 

in general according as 

> or < or = y 
da* ' 

Thus the rule to search for double points on a given 

curve, /(x, y) = o is to find the solution of 
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6f . 6f 
= o andv^ = o, 

Ox °y 

and ascertain which values satisfy f [x, y) = o. 

values find whether 

/ dy \* 
> or = or < d*/’ 

For these 

Note. It should be noted here that 

\6x^yj djf* 

gives the curve which passes through all the cusp points 

on the curve / {x,y) ^ o, and ^ = o passes 

through all the nodes of the curve f {x^y) = o, at which 

the tangents are at right angles. 

103. Species of a cusp. - Let the condition 

/ d2/’ \2 _ 6\f dy 

(jadp/ da* ' 3^ 

be satisfied with the other pieliminary conditions 

6f dr 
/la, p) == o and ^ = o as also - o. t. e ^ the 

/ ^, 

point 

(a, jj), in general, is a cusp. Transfer the origin to the 

point (a, p). The transformed equation will be of the 

following form : — 

(ax -h dy) ^ “f U3 -h U4 -h Us 4- .... = o.(T) 

Where ax + dy ~ o is the tangent at the new origin 

and U3, U4 etc., are homogeneous rational algebraical functions 

of X and y of degree 3, 4 etc. 

Let P be the length of the perpendicular from a point 

(x^'j contiguous to the new origin (t. e,y the cusp point) 

upon the tangent ax + dy - o. 

p == 
Ja^ + >* 

(2) 
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Since (x'y) lies on (i) we have 

(a x' -f- dy H“ u'z + uU +.~ o.(3) 

Where uz, u\ etc. denote the expressions uz, m etc., 

after substituting (x\ y) for (x, y) • Eliminating / be¬ 

tween {2) and (3) and rejecting higher powers of P than 

the second, we shall have a quadratic in P say, 

AP* 4- BP + C - o,.(4) 

Where A,B and C are functions of x\ We retain 

only upto P* because we have to consider only the two 

small perpendiculars from points on the curve very near 

the origin z, <?., when x' o, and hence in comparison 

with P* we can neglect higher powers of P /. P®, P^ as 

also PV etc. 

If the roots of (4) be imaginary when x' is very small, 

the branches of the curve near the origin are non existent 

and hence the origin is a conjugate point. If the roots be 

real but of opposite signs, the two perpendiculars will lie 

on opposite sides of the tangent and hence the origin is 

a cusp of the first species If the roots be real and of like 

sign, the two perpendiculars will lie on the same side of 

the tangent and hence the origin is a cusp of the second 

species. 

Like or unlike signs of the roots are determined by 

C 
Pi P2 = 

c 
I. — should be + ve if both are of like sign and - ve 

if they are of unlike sign. If they are of like sign we have 

to find again the sign of Pi + P2, which will be -f ve \{ 

both are positive or will be — if both are negative If 

Pi + Pj is then 4- ve the second species cusp is such that 

the two branches of the curve lie above the tangent and 

if Pi 4- P2 is — ve^ both of them lie below the tangent. 
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Complete information is afforded by the equation (4) 

whether the cusp is single or double i. whether the 

branches of the curve extend only in one direction of the 

tangent from the cusp or extend towards both the direc¬ 

tions of the tangent. If it is single, the roots of (4) will 

depend upon the sign of x\ on the other hand if it is 

double, the roots of (4) will be independent of the sign of 

x\ It is also possible, in the case of a double cusp, that 

on one side it may be of one species and on the other side 

of the other species, such a point is called by Cramer a 

point of OscuMnflexion. All the possible five cases are 

drawn in the annexed figures. 

Fig. 35 single casp, first species. Fig. 36 single cusp, second species. 

Fig. 37 double cusp, first species. 

Fig. 88 doable cusp, second species. 

E. T. D. 0—22 
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Fig. 39 doable caup—Oacal-inflexion. 

Illustrations. 

I. Find the double points on ~ Saxy. 

Here = 3:*:^ — *6aij = 0 

^ = 32^* - 3ax = 0 
Oy 

Solving these and finding? which of the values satisfy the 

equation of the curve, we get (0, 0) as the coordinates of a 

double point i. e,, the origin is a double point. 

gun ~rh 

% - ^ 

and , 4 = - 3a. 
OxOy 

I d2/ \2 d^f . / N 
Here I x”-r—I ^ j 9* when we substitute (0, 0) for 

\OxOy I Ox^ Oy^ 

(x, y). Thus the origin is a node. The tangents at the origin 

are given by xy = 0. 

II. Find the double points on the curve 

4- j/)* - y2 (x ~ y + 2)^ - 0. 

Here tC ^ 3 (.x + y)* - 2 ^2 - V + 2) = 0 
^X 

= 3 (jc + j/)* + 2 ^2 (* - + 2) = 0 
y 
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i. e., X y ^ 0 

and a: ~ 2/ 4- 2 — 0 

which ^ives jc = — 11 
2/ = 1 I 

This point lies on the curve and is therefore a double 

point. 

Affain = 6 4- ?/) - 2 J2 ~ — 2 J2 (~ 1, 1). 
GX^ 

— 6 (^ + ?/) - 2 y2 = - 2 y 2 

and xA +|/) + 2y2 = 2 y2 „ 
OafOj/ 

/ dV\* dV dV 
Hence I | = at this point. 

In general (— 1, 1) is a cusp. 

Shifting the origin to (— 1, 1), the equation becomes 

{x 4" yY - f/2 ?/)* ^ 0. ..(1) 

Thus X — y ~ 0 is the tangent. Dropping perpendicular 

p from (x' y') on X — y — 0 
/ _ f 

we have -—~ p or x' — y ^ p' .(2) 
4/2 

Eliminating y\ we get 

(2 X - p'y - J2 ^ ^ 

or [8 x'^ — 12 x'^ p + 6.jc' p^ — p^\ — t/2P'^ ™ 

or rejecting unnecessary terms, 

y 2 p'* + 12 - 8 - 0 

or p'* + 6 y2 * p' — 4: J2 x^ == 0. 

The roots are real if 9 4- 2 y2 x^ > 0. 

Rejecting x^ in comparison with x^^ as x is very small, the 

sign of this will be governed by the sign of a-'^, and we have 

the roots real if x be positive. The point (— 1,1) is therefore 

a single cusp. 

Again pi pit == — 4 y2 x'^ i, e., — ve when x is 4- ve, 

and thus the cusp is one of the first species. 
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EXAMPLES ON CHAPTER X. 

Find the double points in the following :— 

1. {ax — by)* — (x — c)®. 

2. y* — X (x + k)*. 

3. jc* — xy ~ 2y* + x* — 8 y* = 0. 

4. y* (1 - y*) = 

5. cy* ~ X*. 

6. {x - 2f y{y - 1)*. 

7. {2y X + 1)* = 4 (1 - xf. 

8. y* = .r* sin 
^ c 

9. y* (a* + X*) — X* (a* - x*). 

10. a*y* — bx* — x® = 0. 

11. xy* + 2a*y — ax* — 3a*x — 3a® = 0. 

12. X® + 2x» + 2xy - y* + 5x - 2y = 0. 

13. Shew that the origin is a conjugate point on the curve 

— cx^y + cxy^ + = 0, 
14. Shew that the origin is a conjugate point on the curve 

2/* = 2x^y + x^y ~ 2x^. 

15. In the curve = 2ahx^y + x^^ the origin is an 

OscuHnflexion. 

[Cramer], 
8 

16. Shew that for the cissoid jr = —--, origin is a 
2a - X 

cusp of the single first species. 

17. Shew that the curve j/* = 2x^y + x^y + has a 

double first species cusp at the origin. 

18. Shew that the origin is a single second species cusp 

on the curve 

x^ ^ 2co?y — cx'^ + = 0, 



CHAPTER XI. 

MAXIMA AND MINIMA. 

104. Before defining what a maximum or a minimum 

value of a function of one independent variable is, let us 

examine the curve in the figure 40. 

t 

It should be noticed that A, B, C, D, E, F, G and H 

are points where the tangents are either parallel to x axis 

or y axis. A, D, F and H are such values of the function 

that they are least in their respective vicinity, and C, E 

and G are greatest values in their respective vicinity. This 

does not mean that these are the least and the greatest val¬ 

ues of the function in the region for which it is defined. In 

other words these are only maximum and minimum values 

of the function in the neighbourhood of those points. At 

B it will be noticed that although the tangent, is parallel 

to X axis the function has neither a maximum nor a mini¬ 

mum value, the point being a point of inflexion with which 

the student is already familiar- Thus there can be more 

than one maximum or minimum value of a function, and 

if so they occur alternately. A maximum or a minimum 

value does not necessarily mean the greatest or the least 

value of the function. Also it should be noticed that the 
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minimum value at D is greater than the maximum value 

at G. 

105. / (x), defined for a certain interval (a, p) is 

said to have a maximum (or a minimum) value, when 

X ~ a, if it is possible to find a positive number s o, 

such that 

/ (^) - /(^) < (or >) o 

for every value of;r, o< \ x - a \ <;£ 

106 Suppose / {x) has a maximum when x ^ a 

f (x) — f (a) <C o for every value of x given 

by O < \ X — a \ where e o. 

f(^) - / (a) i. e.. < o or > o 
X — a 

according as {x — a) is positive or negative. 

^ ^ O, if the limit 
X a -h o X a 

exists, 

and 
Lt 

X a o 
/ (x) - f (a) 

X - a 
o, if the limit 

exists. 

If now f (a) exists, these two right hand and left 

hand limits must be equal to each other, and since one 

of them o and the other o, hence f' (a) = o. A 

similar reasoning will prove that f' la) = o if the function 

has a minimum when x = a. 

Thus for a maximum or a minimum value f {x) =* o. 

107- If/ (^) and its first n derivatives are continuous 

and itfia) ==/' {a) ».= /" ^ (<?) = o and 

f (a) =1= o, / (x) will have a maximum or a minimum if n 

is even according as f'ia) <0 or >0, and neither a 

maximum nor a minimum if n is odd. 
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Here f {a h) — f (a) = {a + d h), 

where o < 6' < I and o < | j -< e. 

Again since ,/“ (a 0 h) will have the same sign 

as /” (o) . 
I 

If — /" (^) < o / {x) has a maximum 

when X — a 

and if ^ (a) > o / (x) has a minimum when 

X ^ a. 

Now when n is odd, q- /« {a ) changes sign with h, and 

therefore there will be neither a maximum nor a minimum. 

But if n is even, f {a h) — f {a) has the same sign 

as /« (a). Hence / (x) has a maximum or a minimum 

when X - a according as /“ {a) < o or > o. 

Cor. I. If only /' (a) ^ o and f^' (a) 4^ o. /* (x) 

has a maximum when x ^ a if f” (a) < o and a minimum 

iff' {a) > O. 

Cor 2. At a maximum or minimum point /' [x) must 

change sign. Suppose f {x) has a maximum or minimum 

when X ~ a. We know that 

/ {a ^ h) ^ / (a ) ^ h f {a ^ 0 h) 

Since f (a) = o 

f (a + h) ^ h r {a + 6 h). 

The sign of the right hand depends upon the sign of 

h {a) , which changes with h. And (a) is — 7:/e for 

maximum and + ve for minimum. 

Thus f {a' changes from 'i- ve to - ve through the maxi¬ 

mum point and f a) changes from-to-f through 

the minimum point. 



( 176 ) 

log. The maximum and minimum values of a given 

function of a single variable can now be investigated. 

Let y - f be the given function. 

f {X) ~ o, will give the values of ;r, for which f [x) is 

maximum or minimum. Suppose the roots of this equation 

to be ^2,.. . I.etc. 

If /" {x,n) is -h vCy f (x) has a minimum when x = x^n 

and if f" {Xyr^ is - vcy f (x) has a maximum 

when X = x^n- 

If however {x„,) - o and /*'" (x^) 4= o,. 

X — Xm will give a point of inflexion t e.y neither maximum 

nor minimum and then the maxima and minima will be 

given by P {x) = o, (x) - o and (x) = o and the 

sign of /■" (x) will indicate whether the function is a maxi¬ 

mum or a minimum. 

Illustration. 

I. Find the maximum and minimum values of 2x^ 9^* 

-+■ I2x ~ 9. 

Here f (x) = 2x^ ~ 9^* h 12^ - 9 

and f (x) “ 6 {x^ — + 2) 

- 6 (:x: — l) (a: — 2) 

(i) when ^ - 1, {x) = 6 [2x — Bj is — ve i, e., 

f(l) ^ 14 is a maximum value 

(u) when x — 2y f' (x) is + ve, (?., f (2) s — 6, is a 

minimum value. 

109. If it be required to find the maxima and minima 

of a functon of two variables, they being connected by a 

certain relation, the following procedure may be adopted. 

Let u = fi^yy)... .(i) 

where ^ {x, y) o 

or y = (x) .(2) 

Substituting for ^ in (i) we get 

u = (x)],. (3) 
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a function in x alone, whose maxima and minima can be 

found as in the previous article. 

The elimination of from (i) and (2) may sometimes 

be difficult and in such cases, the following method of 

determination may be more conveniently used. 

Here 
du _ du , 

—i— "T* 
du dy 

.(4) 
dx dx dy dx 

Also from (2), 
64, 

<ix + 
dll, 

dy 

6 II .(5) 

Eliminating ~ we get 

64, 
du du du dx 
ax Jx dy dll, 

dy 

Hence for a maximum or a minimum of u 

ir~ * ~ j • /T" — ^. Ox 

The values of x and y found from (2) and (6) may now 

be substituted in , which will show whether is a 
dx^ 

maximum or a minimum. 

Illustration. 

I. To find maxima and minima of 
cos X 

1 "h cot X 

Here y - cos X 

1 "f cot X 

• sin ^ (1 + cot x) + cos x cosec^ x _ q 
dx (1 4’ cot xY 

or — sin (1 + cot x) + cos x cosec* = 0 

i. e., sin^jf = cos ^ (1 — sin^jt:) 

or tan^^ == 1 

i. e.j X n n r 
4 

E. T< D. C.—23 
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Again 
r — sin^ X + cos^ X 1 

L (sin X -h cos j?)* J 

_[- 3 sin* X cos :3k: ~ B sin.r cos* 

[l -h sin 2 ,3k:]* 

_ 2 cos 2 .3K: [ — sin* ^ic 

[l + sin 2 : 

/ 1 
-- 1 sin 2 X (sin x + cos x)! 

1 L (1 “h sin 2 x) J 

(l + sin 2 x) 

,71 
where x — w 7t -r , 

4 

as cos’x - sin® * will be zero, and so will be cos 2 x. 

^ sin( 
2 \ 

2 nix + 

1 + sin |2 nn + j 

A r,i„(„,+ i) 

+ COS 

= — I cos 

(”” +1)] 

(„* + ?)[ 1 + tan (“" +!)] 

- ~ §(- D" 
1 

y2 

or ~ 3 i)n + 1 _ 1 which is -h ve when n is odd 
dx^ ^ ^ ^ y2 

and negative when n is even. 

ii X — 2m TZ + —, y is a maximum and if 
4 

7X 
x^ (2w + 1)71-f —, 2/ is a minimum. 

4 

II. Given - + ^ - 1, find the maximum and the mini- 
a 0 

mu m values of xy and + |/* respectively. 
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(0 Let u — xy where ^ ^ =r i 
a b 

A^ain 
d^u 

dx^ 
2b 
a 

, which is — ve for every value of x 

and y. gives the maximum value of xy as ab 
4* 

(u) Let « = jtr* + 2/* where ? -f ^ = i 
a b 

u = X* + t^ |i - l)* 

and 

. . d^u 
Again ^ 

_ a*^ 
^ a* + &* 

which is always -r ve whatever 
- (-5) 

if X and y, 

Rives the minimum value of 

be the values of x and y, 

t I • » fflV ^ » as 
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no. Lag^range’s Method of undetermined multi¬ 

pliers.* The method is only illustrated here.f 

Let « = flb (xi, .) .(l) 

be a function of « variables, which are connected say by 

m equations 

A (^1, ^t,^a-•*^») = ol 
ft (xi, Xt, Xs-Xn) = 01 

.(2) 

/m (^1, ^2,^3,-) = oj, so that 

only n ~ m ol the variables are independent. When « is a 

maximum or a minimum 

du = ^J^dx, + ^dxt + 
OXi 

Also dfi = ^dxi + °^dxi + 
°Xl 0X2 

ih 

df, = ^p~dx, + '^dxt + 
6/2 

+ pLdx. 

+ -j " dx^ = O 
■^n 

+ P-dx^ -=o 
dXn 

dfm = P^dxx + ^pdX2'\--+ ^pdx^ =0 
°Xi 6x2 6x^ 

Multiplying these equations by i, \i, A* etc., respective- 

ly and adding we get 

.(3) 

. . ^A i V . . 6/^ 

+ ••••+ ^^jdxt ^X2 

which can be written as 
= 0, 

* Mecanique Analytique Vol. I. 

t A rigorous proof of this is beyond the scope of the 
present yolqme, 
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Pi + P, </ar,+-+ P, t/if, +-+ P, </a:« = o-(4) 

where Pr = -r— + Xi + A* +.... + \m- — +x -^+ X ^ + 
dXr * dXr * 

<3/m 

Let us choose A.i, A2, A3 etc., in such a way as to satisfy 

the m linear equations Pi = P2 = P3 =.= P^^ == o. 

The equation (4) then becomes 

P»n + l 4* 1 ^ Pm 4- 2 4-2 "i"...."i'Pn ^ 
It is indifferent which n - m oi the variables are indepen¬ 

dent. Let then 4. i, 4-2»-• •> be the independent 

variables. Then since dxm 4-1, 4. 2 * • • - are all indepen¬ 

dent we have Pm 4-1 “ Pm 4.2 = • • • • = Pn = o. 

Thus the m n equations in (2) and 

p, » P3_ p^ p^_o 

are sufficient to determine the multipliers Xj, At.Am, 

and the values of 4ri, , for which the maxima and 

minima of u are possible. 

Illustration. 

Find the maxima and minima oi u ^ 4- 

where hy^+ cz^ -l ~ 0| 

and lx + my + nz = 0 J 
By Lagrange’s method. 

xdx 4" ydy + zdz = 0  (2) 

axdx ~r bydy + czdz = 0 .(3) 

Idx 4“ mdy + ndz =0 .  (4) 

Multiplying (2), (3) and (4) by 1, Ai and A2 and then adding 

we get 

f jc 4“ Aiax 4- \%l)dx 4- (j/ 4- Xihy 4- \2m)dy + (£: + A1C2; 4- A2m)d^ ~ 0 

Again equating to zero the co-efficients of dx^ dy and dz^ 

we have 

X 4* Aiajc 4- Ai^ = 0 .••(6) 

y 4- kihy 4- \%m = 0  (6) 

z 4* Aicy 4- A2W = 0 .(7) 

Multiplying (5), (6) and (7) by Xy y and z respectively and 

using the relations in (l), we have 
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+ Ai = 0 /. Ai == — M 

/. from (6), (6) and (7) we get 

Kil 
X =-^- 

aw — 1 

\%m 
y = ~ ■ -r 

hu 1 

cu — 1 

Again since lx -h my nz ~ 0 

we get --—r: 
, w* , n* 

>f ___= 0 
{au — 1) {hu — 1) (cm — 1) ’ 

a relation giving maximum and minimum values of u. 

EXAMPLES ON CHAPTER X. 

Find the maxima and minima values of— 

1. — 6a:* ■+■ 11 a: — 6 

2 2a:* + 3a:* + 8 
a:* 

o 7Ar^ ~ 30a:* + 11a:* - B 5-. 

4 3:«:» - g* 
(a* + 

5. 4 cos a: “h cos 2a:. 

6. If a: + 2/ = A, a constant, find the maximum value 

of a;*^*, all the quantities being positive. 

7. Find the maximum and minimum value of a:* -f 

where 

aA:* + 2 Aa:?/ + fei/* = 1. 

8, The portion of a tangent to the ellipse ^ ^ =1, 

intercepted between the axes is a minimum ; find its length. 

9. Shew that the shortest normal chord of the parabola 
y^ — 4iax is 6a 
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10. Divide a given into two parts such that the pro¬ 

duct of the power of one and the power of the other 

shall be a maximum. 

11. Given the length of an arc of a circle find the radius 
of the circle when the corresponding segment has a maximum 

or a minimum area. 

12. Find the maximum cone of given slant height. 

13. Shew that the altitude of the cylinder of maximum 

2r 
volume that can be inscribed in a sphere of radius r is —> . 

4/3 

14. Shew that the curved surface of a cylinder inscribed 

in a sphere of radius r is a maximum when the altitude of the 

cylinder is ^2 r, 

I 15. A cylinder is to be constructed and its total surface 

is to be A square inches. Shew that the altitude of the cylinder 

of greatest volume is twice the radius of its base. 

16. Two particles move uniformly along the axes of x and 

tj with velocities u and v. They are initially at distances a 

and h from origin ; shew that the least distance between the 

,. 1 . av — hu 
particles is -. 

17. From a fixed point A on the circumference of a circle 

of radius <7, the perpendicular AY is let fall on the tangent at 

P.. Prove that the greatest area that APY can have 

is L/? 
8 

18. If the sum of the edges of a rectangular parallelepiped 
1% 

is I and the sum of the areas of the faces is ; shew that 

when the excess of the volume of the parallelepiped over that 

of a cube whose edge is its smallest edge is maximum, the, 

smallest edge must be ,4 , and find the lengths of the other 

edges. 
[Tripos 1903J. 
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19. The circle of curvature at a point P of a parabola 

meets the curve ag^ain at Q, and its centre is C. Prove that 

the area of the trian^rle CPQ is a maximum when CP makes 

with the axis an angle tan ' 

[Tripos 1901]. 

20. Find the maximum and minimum values of 

- "*^4 + + -4, when 
or b* c’ 

lx my nz — Q 

+ y' 
+ . - 1. 

[Oxford 1888]. 

21. Find the minimum value of 

M = .** + «/* + 2*, with the conditions 

ax + by -+■ cz = 1 

a'x + b'y + cz ~ 1. 



CHAPTER XII. 
ASYMPTOTES. 

IIX. Rectilinear asymptotes.—An asymptote to a 

curve is the limiting position of a tangent, whose point of 

contact tends to an infinite distance from the origin. 

Thus it is clear that the line cannot wholly lie at 

infinity i>e.y it must pass within a finite distance from the 

origin. 

Also a curve which has no infinite branch cannot have 

a real asymptote. 

112. To find the asymptotes of f (x. y) ^ o, where 

/ {x^ y) is a polynomial of degree u in x and y. 

Let the equation of any line be 

y — mx + c.(i) 

Where (i) cuts the curve, f(x^ mx + ^r) — o.(2) 

Suppose (2) arranged in descending powers of x^ say 

A„ + A„., + A„.2 . 

+ Ao = O.(3) 

Which gives in general n points of intersection of (i) 

with the curve. 

If two roots of (3) are infinite 

A„ = o, and A„_, = o.(4) 

A„ will be a function of m of degree n and A»_i a 

function of tn and c, the degree of c being unity. The values 

of nt derived from A, = o, and the corresponding values 

of c from A»_i =- o when substituted in (i) will give the 

equations of asymptotes. 

Thus y = mi X c\ 

y = mt X ct 

E. T. D. 0.—24 

are the asymptotes. 
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Cor. I. It is evident that a curye of degree can 

have only i» asymptotes all real, or all imaginary, or some 

real and some imaginary. But since imaginary roots occur 

in pairs, if If be odd there is at least one root real, i. e., one 

asymptote real or in other words, the curve must extend to 

infinity and thus cannot be altogether a closed one. 

113. If however any value of m, say mi derived from 

An — o, makes identically zero, every straight line 

parallel to ^ = ntxx^ will cut the curve in two points in¬ 

finitely removed from the origin. In such cases the value 

of c is obtained by equating An-2 to zero. 

i e., An-2 ” o, corresponding to the value mi. This 

in general being a quadratic in c will give two values of c 

and thus the lines say 

y ^ mi X ^ 
and y = mi X ^ c%)^ '' 

each will cut the curve at three points infinitely removed 

from the origin. The nan^e asymptote then is confined to 

these two lines only. 

If however, An-.2 = o fails to give c:, we find it from 

An-5 = o and so on. 

Illustration. 

To find the asymptotes of 

“ -f ^ = 0..(1) 

Let y = mx + c...(2) 

be an asymptote. 

Substituting for y in (1) and arranging in descending 

powers of Jt, we get 

{nfi — m) x^ + c — c + 2m*) x^ 

+ (3mc* + 4mc + 4m + 1) jc + c* + 2c* + 

4c = 0. 

Thus m* — m = 0 i. c., m = 0, or 1, or — 1 

and 3m*c — c + 2m* = 0 i, e., c = 0, or — 1, or *“ 1. 
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Thus the asymptotes are 

y 0 
y — X + 1 — 0 L 
^ ^ + 1 _ 0 

114- Another method which is more practicable can be 

adopted.* 

Let the equation of any curve of the degree be so 

arranged that the homogeneous sets of terms be expressed 

together, say, 

+ .=o.(i) 

Let the equation of an asymptote be 

y = M ar + ..(2) 

Substituting a* + ^ ^ 'n (i), we get 
° X X 

This gives the n points of intersection. 

Applying Taylor’s theorem, the equation (3) can be 

arranged as 

iP” (/“) + [P + ^« -1 (/*)] + 
[l^ P M - 2(1“) j 

+ •••• = o.(4) 

Thus i>niy‘) = o...(5) 

and p 4>'n (f*) + 1 (^) =® o.(6) 
If Ml, Mt, MS... ./*« are the « roots of (5), the corres¬ 

ponding values of p are given by_ 

^ Edwardmethod. 
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R _ <^—1 (-“I^ 

Pi = ~ *;j-r‘v *?-■ “li so O”- 
9n(M2) 

The « asymptotes are 

7 == m ^ + pi ] 
j|/ = /lAt ;r + p2 I 

y = pr. .j 

115. This method is adopted, as <^n (/jl) and ^n-i (/u) 

etc., can be very easily found out without actually substi¬ 

tuting the value of ;/ in the equation of the curve and thus 

avoiding a laborious process. Thus assuming the result 

of the § X14, we may adopt the following procedure: — 

In the highest degree terms put = i, and y = fi, 

the object of this is to form (m), and equate it to zero. 

Form 1 in the same way / e, substitute x =::z i and 

;^ = M in the {n ~ i)*'* degree terms. Differentiating 

fx) with respect to a*, the values of p are determined by 

substituting the values of /x in the formula 

(h) 
^n(M) 

(I) 

Illustration. 

Find the asymptotes of 

— xy^ + 2x^y — 2y^ — x^ -- ^x 

— 4?/ ~ 5 = 0. 

Here ^3 (/x) = 1 + 2 /x -- - 2 /x^ = 0 

i, e., (/X + 1) (^ — 1) (2 /X + 1) = 0 

i, e., AX = ~ 1, 1, and — i. 
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Hence if /w = — 1, P ~ 0, 

if ft ==« 1, [3 == 0 

and if ft — — P = 4 

The asymptotes are ^ = 0 | 
2/ + ~ 9 1. 

and 2f/+jic: — l = 0j 

116. I* Suppose two roots of the equation 0;, (h) — o 

to be equal to each other i. say ftj = ft2, then ^'n (/^i) — O- 

If 1 (h) does not contain — fti) as one of its factors, p 

becomes infinite. 

The line >' == fti ;r + pi therefore makes an infinite in¬ 

tercept on the axis of i. e., the line lies wholly at infinity. 

This is not an asymptote, although it will form as one of 

the n theoretical asymptotes of the curve. 

II. If fft) ~ o has two equal roots i, e,y fti == ft2, and 

thus (/^i) “ o also, and if -.i(m) also contains (ft — fti) 

as one of its factors, the value of p cannot be determined 

by (i) of § 114 We may select p so that the co-efficient 

of 

i. e.f (m) + P ^'n~i (m + (m) “ o, 
2 

and from which two values of p may be deduced, getting 

two parallel asymptotes 

y = ^ + Pi 

and = Ml :r -f p2. 

Compare (i) of § 113. 

117. Assyraptotes parallel to the axes.—If there is 

no such term as y"* in the given equation, the term in 

An = O will be missing and consequently An = o will 

give one root infinite and only (n — i) finite roots 

of fHf i. e y the asymptote corresponding to the infinite 

value of will be parallel to the axis of y^ and hence its 
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equation will be of the form x ~ d. § iii fails to give the 

equation of such asymptotes. 

Let the equation of a given curve of degree n be 

arranged in the following manner;— 

flo ar" ~ + ^2 ar” “ y +.+ 
+ ;r"-' + ^2 ar" “ V +- .+ bny” ‘ 

+ Cj x''~^ + C3 x" “V + • 
.... . . . . .. . .etc.,. 

+ K 0. .(1) 

Arranging it in descending powers of x, we get 

<?(, ar" + (ai / + b]) ;v“ - ' + (^2 /* + ~ * 
+.+ K = O.(2) 

If ao = o, and y be so chosen that ai y + bi = o, two 

roots of (2) will be infinite and hence ai y + bi = o, is 

an asymptcjfe to the curve parallel to the axis of x. If 

however ao = o, ai = o and bi — o, y can be so chosen 

that at y* + bt y -}■ Ct — 0. Then three roots of (2) will be 

infinite and hence the two parallel asymptotes given by 

aty^ + bt y + ct = o, will represent a pair of real or im¬ 

aginary asymptotes parallel to the axis of x. 

In the same way arranging (i) in descending powers of 

y, and if = o, = o is an asymptote parallel 

to the axis of y. Again if _ 1 is also equal to zero, as 

well as bn, 
a,_2 + bn-ix + Cn o, gives a pair of real 

or imaginary asymptotes parallel to the axis of y. 

If however ao — ai = bi = 02= bt — ct — O 

(or a, — On — i — b„ =z bn — I = dn - 2 = — O), 

the asymptotes will be given by equating to zero the co¬ 

efficient of a:" “ * (or y* ~ ® '. 

Thus the asymptotes parallel to the axes are found by 

equating to zero the coefficients of the highest powers of x 

and y, in the given equation of th» curve, 
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Illustration. 

Pind the asymptotes of 

== a* {x^ 4- ?y^). 

The highest power of x is and that of y is y^. 

The co-efficient of is y^ — and that of is x^ — 

/. The asymptotes are ^ ~ 4: a) 
?/ = + a]’ 

The equation bein^ of 4*^* de^?ree, all the asymptotes to the 

curve have been found. 

Exercises. 

Find the asymptotes of :— 

1. y^ — ijxy^ +■ llx^y — i\x^ -f x 'h y 0. 

2. + 2.x2/y + xy^ - x^ xy 2 -- 0. 

3. x^i/ = (x^ — y^). 

4. {x^ — y^)^ — 2a^ ix^ 4 y^) -h a^x - ^ 0. 

5. y^ — f 8 x^y — Ax^ — Hy^ ]- Oa'// 

- 6a:2 4 2^ - 2 ^ - 1 - 0. 

Hg. If the equation of the curve f (x^ y) — o can be 

put in the form 

P, + F,_.2 =o.(I) 

where Fn—2 is a function of x and 7, and of degree 

n — 2» and is a polynomial in x and y of degree «, and 

if P« can then be broken into linear factors, all different, 

each of the factor equated to zero will give an asymptote 

to the curve. Since the degree of f (x, y) will be lowered 

by two, each of these lines will cut the curve in two points 

infinitely removed’ from the origin. 

Cor. Each of the asymptotes given by P^ == o will 

cut the curve again in — 2) other points which will satisfy 

both Pn == o and Pn + F,»_ 2 == o. 

F„-.2= o gives the locus of H{n^2) points of 

intersection of the asymptotes and the curve. 
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Illustration. 

Find the asymptotes of 

4“ 2/ + 1) (2-^ 4- 3?/ 4- 4) {x - y) (x + 2y — 1) 

- Sx^ - 4j/ - 3je - 5 = 0. 

Here the asymptotes are 

.r 4" ^ 4~ 1 == 0 
2^ 4- 3^ + 4 - 0 

X - y - 0 
X 4“ 2y “1 — 0 

lip. Let f {x, y) = o be arranged, if possible, into 

the form 

{ax + 4- ^:) P„ _ 1 4- F'n - 1 - o 

Any straight line parallel to ^;r 4“ = o cuts the 

curve at one point infinitely removed from the origin. 

We have to find that particular line out of all these parallel 

lines, which cuts the curve at a second point also infinitely 

removed from the origin To find this we make x and 

y of the curve become larger and larger in the ratio 

^ ~ ^ and we get 
y a 

ax by ^rc-\- Lt 
r -4 OO 

(H 
= o..(i) 

in which if the limit exists, it gives the ultimate linear 

form to which the curve approximates as we travel along 

the curve farther and farther away from the origin. The 

equation (i) then represents an asymptote. It will be 

more convenient to substitute x - ^ and y 
a 
t 

and 

then make / o in the limit in the equation (i). 

Illustratiou. 

To find the asymptotes of 

{x + y) (x* -h y^) — a (x^ 4- a^) = 0 

^ x^ 4- 
X + &- U > ^4 

t/ — — X oo 

= 0. 
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Putting X = -j aud ?/ ~ 
t 

, we have 

X y Lt IT + «« 
=0. 

or 2x 2y — a 0. 

120. The same reasoning will show that if the curve 

is of the form 

{ax + d)> + c)* P„ ^2 + F, _2 = o 

ax + + c = ±: /Lt ——, where x and y 
P« - 1 

y Cl 
tend in the limit to infinity in the ratio ^ - 

X b 

Cor. I. Similarly if the form be 

{ax + by)^ Vn -^2 + _2 + -2 *=* o. 

Taking the limit in the direction ax -j- by - o, we have 

(a;r + dy)* + (ax + dy). Lt + Lt^"- - * « o 
Pf» —2 Pfi — 2 

we thus get a pair of parallel asymptotes 

ax by — ri 

and ax by rt 

where n and n are the roots of the equation 

r* + y Lt 5^--? + Lt '^-=^ « o. 
^ P, .2 P„_2 

121. Curvilinear Asymptotes, If there be two curves 

which continually approach each other so that for a common 

abscissa, the limit of the difference between the ordinates 

is zero; or for a common ordinate, the limit of the differ¬ 

ence between the abscissae is zero, when the common 

abscissa or common ordinate tends to infinity, each curve 

is said to be a curvilinear asymptote of the other. For 

instance if, 

E. T. D. C.—2& 
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a X 

and ^ = —.(2) 
a 

be two curves, for any value of x the difference between 

the ordinates is —, which vanishes in the limit when 
X 

X ^ 00. Hence the curves are asymptotic. 

122. If however the equation of a curve can be put 

in the form 

y=^Ax+B+^ + ^ +. 
X x^ 

y = A X •¥ B is evidently a rectilinear asymptote. This 

method of finding the asymptote also indicates on which 

side of the asymptote the curve lies. 

123* Polar Coordinates:—Let the equation of a 

curve be 

r^fn (P) + + W = o.(i) 

Or Putting r «« i, 
u 

fnW +ufn^lW + U^ fn -,W+..+ fo W ^ O. .(2) 

The directions in which r becomes infinite or u zero, 

are given by 

/n W - O.(3) 

and let the roots be ^3 etc. 

Fig. 41. 

Let the angle XOA = 0i, the point where the asymptote 

PA meets the curve will lie in the direction OA. Let 

OT be drawn at right angles to the asymptote from the 
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origin. Since OT is at right angle to PA and hence to 

OA also, OT is the polar subtangent 

/. OT = - p say, 

If therefore the angle XOT = a and P (r, ff) any point 

on the asymptote, its equation is 

p — r cos {0 — tt) .(5) 

Again = ^.(6) 

Also we have to find the value of p i.e. — — when 
du 

« = o. 

Differentiating (2) with respect to ff, and then putting 

u — Of i.e., B = Bi, we get 

f\ (Bi)~ + fn-l (Bt) = o 

i , .dB „ U^B{) 

■ ■’ du ~ f\ (^iT. 
Substituting the values from (6) and (7) in (5) we get 

r cos [b - Bi->r 
2/ fnW 

or r sin (Bt - B) = 
T n Wl/ 

The remaining asymptotes are 

Cor. Z. If the equation is 

+ /o W = o, the asymptotes are 

giyen by 

etc. 

where Bt, Bf, etc., are the va^ee found from/i (B)-^ o. 
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nn 

2 

(i) when n ~ 0 

• z, r sin o' = - 
2 

(ii) when w ~ 1, 6^ = -, 
'2 

For other integral values of n we get the same two straight 

lines. 

Hence the two asymptotes are 

61 = E and r sin 
2 2 

124. If r tends to a constant say c, when ff oo, the 

limiting equation of the curve, which takes the form r — c, 

is called an asymptotic circle of the curve. 

Thus is an asymptotic circle of the curve 

_ ae 

^ i ■¥ 0 

EXAMPLES ON CHAPTER X. 
Find the asymptotes of 

1. ** + ?/*= Saxy. 

2. x^y + 23^y* + xy^ = o*x* + 6*y*. 

3. y*{x - 1)(« - 2) = ** + 3. 

4. (*• — y*)* = 2 (jf* + y*). 

Illustration. 
Find the asymptotes of 

r sin 29 — a cos 39 — 0 

Here /j (9) ^ sin 26* = 0 

29 = 0, u, 27t etc., 

i. e,f e = 
2 

The asymptote is 

/nn 1 1 a cos 
—1 r sin 1 — & 

\ 2 1 12 cos 2 9 y> = 
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6. xy* = a* (0 + x). 

6. _ AT* + ax* + a* 
y 2 2* x^ — a* 

7. x^ — 5a*^*«/* ^ 0. 

8. xy^ = 4a^ (2a — x) (Witch). 

9. 1/* (2a — x) = x^. (Cissoid). 

10. 
a 

' B* ~ \ 

11. r 0 cos 0 ~ a cos 2& [Oxford 1889]. 

12. sin n 0 - . 

13. 
e. 

r & cos d ^ ae 

14. r = 2a sin 0 tan 0. 

15. r — a -)r h cot {n 6). 

16. Shew that there is an infinite series of parallel asymp- 

totes to the curve r ~ ^7-^?—j. -h h ; and shew that their dis- 
0 sin 

tances from the pole are in Hormonical progression. Find also 

the asymptotic circle. 

17. Shew that all the asymptotes of the curve 

rtan n6> = a, touch the circle r ~ 
n 

18. If M — be the equation of a curve and f {0) — 0 

gives a root - a, the corresponding asymptote is 

, , sec a 
y = xUn a + 

19. Prove that the curve 

(x^ d* a*) 
y ~ X "4- , lies above its oblique asymtote 

—— 

in the first quadrant. 

20. Find the asymptotes of 
r (sin a — 6^) - a sin a cos 

and axamine the case wlien a is a right angle. 

(Wolstenholme.). 



CHAPTER XIII. 
CURVE TRACING. 

125- Experience will tell how to trace any given curve 

by an easiest possible way and without going through any 

laborious processes. But the following general method 

may be adopted in cartesian equations. 

Let us find out.— 

I. Symmetry in the curve :— 

(1) If there are all even powers of x, the curve is 

symmetrical about the axis of y. 

(2) If there are all even powers of y, the curve is 

symmetrical about the axis of x. 

(3) If all the powers of x and y both, are even, the 

curve is symmetrical about both the axes. 

(4) If for X and y, we substitute — x^ and — y, and 

the equation of the curve does not change, 

there is symmetry in opposite quadrants. 

f5) If ar and ^ are interchanged and the equation of 

the curve does not change, there is symmetry 

about the straight line y - x. 

II. If the curve passes through the origin, find the 

tangents there. Also the points of intersection with the 

axes, or any point which obviously seems to be lying on 

the curve. 

III. Find the rectilinear asymptotes if any. 

IV. Find the double points if any and their nature, 

and also points of inflexion if any. 

dv 
V. Find at what points vanishes or becomes in- 

dx 

finite. 

VI. Find the region, if possible, within which the 

curve exists. 

126. Before proceeding to investigate any curve, it 

will be sometimes found more useful to apply Newton's 
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method of finding the nature of the curve at the origin, 

which is stated here without proof. 

Let the curve be given by 

+ IBsXy^ = o.(i) 

There is no constant term, since the curve is to be 

taken as passing through the origin. Also all the powers of 

X and y are taken positive which is always possible to 

take. Let us plot all the points corresponding to the 

indices of the terms in (i). That is let us plot the points 

(4f i) I (3» o), (i, i), (o, 3) and (1,4), and let these points 

be called P, Q, R, S and T on the graph. Now let us draw 

a straight line through any two points out of those points, 

such that the origin may be on the other side of this straight 

line than the remaining points. That is, the origin may be on 

one side and the remaining, (in this case three), points may 

Y 

be on the other side. Care must be taken that we do not 

take that straight line into account which passes through 
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the origin. In the present case we get two such straight 

lines i. RQ and SR. Let us take RQ first. Taking 

the terms corresponding to the points R and Q i. e.^ 

-j- Cxy, we equate this to zero and this will give the 

nature of the curve in the neighbourhood of the origin. The 

student should note that this is not the form of the curve, 

but this is the curve to which the given curve approxi¬ 

mates in the vicinity of the origin. Thus -f Cxy ~ o 

gives us the nature of the curve i. e.^ -f Cy o. 

Similarly (Cx f D>/*) ^ o also gives the nature of the 

curve. 

Y 

This is a very conveniSit way of finding the directions 

in which the curve deviates from the origin. 

Cor. I. If the curve does not pass through the origin, 

we can shift the origin to any point^ing on the curve 

and then find out the nature of the curv^at that point. 

127, In order that Newton’s method may be very 

easily applied the student is advised to be familiar with 

the following curves, as one of these or mdre may be the 

natures found in the case of any given curve. 
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Y 

(11) y* — X (12) = X* 

Cabical parabola Seiui-cnbioal parabola 

ioflezion at 0. otnp at 0. 

Fig, 44. 
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The student will be well advised to trace all the twelve 

curves given above himself. 

Illustrations. 

T. To trace the curve ' 

— 2ab x^y — ~ 0. 

1, It passes through the origin. 

2. = --- y and x^ = 2aby give the natures at the 
2b 

origin, 

B, Jt does not cross the axes at any other point. 

~ ^ ^ X is~tve infinity, y 

has two infinite values. 

5. There is no real value of ^ if .it? <C f.c., the 

curve does not exist beyond = — 

6. No real asymptotes. 

Thus the curve is as in figure 45. 

Y 

Fig. 45. 
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11. Trace the curve x (y — 1) («/ — 2) (j/ — 3). 

1. It does not pass through the origin, but cuts the axis 

of at 1, 2, 3, and the axis of a: at — 6. 

2. If y lies between 0 and 1, is — ve. 

If y lies between 1 and 2, x is + ve. 

If y lies between 2 and 3, a: is — ve. 

If y is greater than 3, at is + ve 

and if ^ > c>o, x —^ cxd, as also if ?/ x 

also — oo. 

3. There are no real asymptotes. 

4. There is a point of inflexion at (0, 2). 

dx 
5. —- vanishes for values of y given by 

dy 

Sy^ — 12^ + 11 == 0, i. e., one value is between 1 and 2 and 

the other value is between 2 and 3. 

The curve is therefore as in Figure 40. 

V 

Fig. 46. 

III. Trace the curve a:^ — 3axy = 0. 

1. The curve is symmetrical about the line y — x. 

2. A:+y+a — 0 is the only real asymptote. 

3. The curve lies above the asymptote. 
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4. The curve passes through the origin and the nature is 

given by 

- Say\ 
= Sax j . 

f). It does not cross the axes at any other point. 

6. vanishes at points where it is intersected by the 
ax 

curve ~ « v, and is infinite where it is intersected by the 
ax 

curve ?/* *= ax, 

7. It intersects the line y ~ x where the 

tangent to the curve is at right angles to ^ ^ 

8. Transforming to polar coordinates, we notice that the 

3a 
radius vector is never greater than in the first quadrant 

^2 

and it is zero when 6^ is 0 or — * 
o 

Thus the curve has a loop in the first quadrant. 

The curve is as in Figure 47. 

Y 

IV. To trace the curve 

a?J^ = x^y 4- x^. [A. U. B. Sc. 1930]. 



( 206 ) 

1. There is no symmetry. 

2. ^ - a is the asymptote. 

3. The curve passes through the origin, intersects the 

asymptote at |j. 

4. Inhere is a cusp of hrst species at the origin. 

5 y ^*~**^_^* and thus we find that the 
2a 

curve does not exist between tiie ordinates x - 0 and 

+ 4 a = 0. 

(i. The curve passes through tlie point ( “ 4a, Ba), 

where if we sliift the origin, we find the nature of the curve as 

+ 16a = 0. 

7. ^ is zero at ( - |a>“~aV 
dx ' 2 4 f 

The curve is as below. 

V 

126- Polar coordinates.—The following general 

method may be adopted :— 

I. Form a table of corresponding values of r and ff, 

which satisfy the curve. 
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II. If possible find maximum and minimum values 

of Sometimes the limits of ^ or 6^ are ascertained. 

III. Notice symmetry if there is any :— 

(1) If 6^ is changed to - 0, and the equation does 

not change, the curve is symmetrical about 

the initial line. 

(2) If only even powers of r exist in the equation, 

the curve is symmetrical about the Pole, 

IV. Find tan and thus the points where a tangent 

to the curve is perpendicular to the radius vector or the 

radius vector itself is the tangent to the curve. The 

conditions will be tan ^ ^ 00 or tan <t> ^ o respectively. 

V, Find rectilinear asymptotes if any. 

VI. Find if there is an asymptotic circle. 

VII. Find points of inflexion if any. 

Illustratious* 
1. Trace the curve, r = a cos B 6, 

1. The curve is symmetrical about the initial line. 

2. r a and it passes throup^h the origin. 

B. 

r for negative values of 0 need not be found out as the curve 

is symmetrical about the initial line. 

TZ 3tc brc 
4, Radius vactor is tangent when 0 = —, ~, and 

0 o b 

it is at right angles to the tangent when 

5. It has no asymptotes. 
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The curve is as shown in figure 49. 

There are 3 loops in the curve. 

Y 

Fig. 49. 

X 

Note.—r COR 3 6^ — a is the inverse carve of ra 00886^. 

The student is advised to draw it himself as well as 

r — a cos 2 0^ in which it will be noticed that there are 4 loops. 

II. Trace the curve r — 7 . 
6^+1 

1. The curve is symmetrical about the initial line. 

2. There is an asymptotic circle r ~ a within which the 

curve lies. 

3. There is a cusp of the first species at the origin, and 

the initial line is the tangent at the origin. 
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The curve is as shown in the Fiprure 60. 

Y 

128- Cycloid.—When a circle rolls in a plane along 

a given straight line, the locus traced out by any point on 

the circumference of the rolling circle is called a cycloid. 

y 

Let a circle of radius a roll on the straight AB in plane 

of (;r, y), and A be the point where P, which traces the 

locus, was in contact when it started, and next time P 

comes in contact with AB say at B. It is clear that A 

E. T. D. C.—27 
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and B are points of contact and that at A, B, the curve 

will have cusps. But we shall coniine ourselves with the 

portion between AB only which is generally called the 

cycloid. Let O be the position of P when the diameter 

of the circle through P is at right angles to AB. This is 

also evident that O is the middle point of the curve 

between AB. Let P be any position of the moving point. 

Take a straight line OX through O parallel to AB as the 

axis of X and another straight line OY perpendicular to 

OX at O, as the axis of y. The circle thus moves between 

the rails AB and OX. 

Let OD be the diameter of the fixed circle OTD, whose 

centre is C. 

Again AB = length of the circumference of the circle. 
= 2no. 

AD = TUI, semi circumference, and GA = arc 
GP 

DG = arc PN = arc TO. 

Also DG = TP = ON. 

If X and y denote the coordinates of P, 

xr = ON + NL 

= arc OT + MT 

= <*<* + « sin 6*, if the angle TCM is 9, 

measured from CO. 

Again y = LP 

= OC - CM 

» a — <i cos B 

Thus the curve is given by 

X = a (B + 8in'<») \ 
y ~ a (l — cos B) j (I) 
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= a* (I + cos 6>)» + a* sin* 9 

= 2 a* (I + cos 9) 

— 4a* cos* ~ 
^ 2 

= 2a cos - d9 
2 

61 
or f - 4a sin . 

if s be measured from 

= Again 
dx a (i 

o. 
a sin 9 

+ cos^) 

= tan 
9 

2 

(2) 

i. e., PN is the tangent to the curve at P and the 

intrinsic equation of the cycloid is j = a sin 4'- 

Examples. 

Trace the following curves :— 

1, j/* (a* — X*) ~ X* (0* + 3^). 

2. X* + y* = 0*. 

3. ** + j/* = 2a**. 

4. op* — 2a*p + X* = 0. 

6. xy* — 4o* (2o — *). (The Witch). 

6. *p* = 4o* (* — 2o). 

7. p* (2o - *) = X*. (Cissoid of Diodes). 

8. p = «* (« — 1). 

9. P (** — 0*) = ** + ax* -h 0*. 

10. -f* P* ~ bo?x*y = 0. 

It. + p® — Bo***p* = 0. 

12. o*P ®= ** — 0*. (The Trident). 

18. 0*p* =» (6 + #). 
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14. cy* == (jT - a) (x &)* 

IB. a*2/* “ X® (2a ~ x). 

16. aV - (a« - X*). 

18. r == a (l + cos 6). 

19. r = a + & cos dj when a > or < b. 

(Pascal’s Limacon) 

20. r = a 6». 

21. r B ^ a. 

22. m B 
r - ae 

23. r = a sin 2 6^. 

24. r = a sin 3 

25. cos 2 B. (Bernoulli’s Lemniscate). 

26. Show that the curve 

x*y* = a* (x* - y*) 

[ entirely between its asymptotes y = ± a. 

27. In the tractrix 

X = a (cos t + lofi: tan 

y ^ a sin t, 

prove that s = a log - , s being measured from the cusp. 
y 

28. Trace the strophoid 

a (jT* - y^) — X (jr* + y^) 

and prove that it is the pedal of the parabola j/* == 4ax with 

respect to the point (— <7, 0\ 

29. Shew that there are two linear asymptotes and an 

a 0^ 

6/* - 1' 

Also shew that there is a cusp of the first species at the 

origin and a point of inflexion where 6^* *= 3. 

30. Prove that the linear as3nnptote of the curve 

^ ^ , touches its asymptotic circle, and that the point 

asymptotic circle in the curve r 

r = 
i + e 

of inflexion is given by the real root of + tf* + 2 *** 0. 
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31. Trace the curves 

(i) 2ay* x(x - a)* (A. U. B. Sc. 1928) 

(ii) a*i/ ^ x^ (2 a- x) (A. U. B. Sc. 1928). 

32. Trace the curve 

(y* - 2)U» + y* - 1)= 1 - 2^ 

(A. U. B. Sc. Hons. 1928). 



CHAPTER XIV. 
A SHORT HISTORY OF CALCULUS. 

There are certain epochs in History towards which 

the rays of the past advancement converge and from 

which radiate the advances of the future/' Such in the 

history of Mathematics was the period 1650-90. During 

the first half of the seventeenth century, many eminent 

mathematicians had applied their energies in a direction, 

which finally led to the discovery of the infinitesimal 

calculus. So considerable was the advance achieved and 

so near were they to the threshold of the infinitesimal 

analysis, that it was not so much an individual discovery 

as the logical result of a succession of discoveries by 

different mathematicians. At the same time, be it said to 

the credit of the founders of calculus that their achievement 

in this subject does not lie in the usj of the method of infini¬ 

tesimally small quantities as employed by Archimedes,* 

Cavalierijt Wallis,! €tc ; nor in the use of the differential 

triangle as done by Pascal,§ P'ermatll and others, nor in the 

^ Archimedes (287 .^—212 B. C.), the greatest mathemati¬ 

cian of antiquity was born in Syracuse. According to tradi 

tion, when the Romans took possession of the city, and a 

soldier approached him he called out, “ Don’t spoil my 

circles.’' Thereupon the soldier feeling insulted killed him. 

t Cavalieri (1598—1647), professor at Bologna is celebra¬ 

ted for his Geometria indivisibilibus continuorum nova qua dam 

ratione promota^ ^^35- 

I John Wallis (1616—1703), a Cantab, was appointed 

Savilian professor of geometry at Oxford in 1649. 

§ Blaise Pascal (1623—1662) was born at Clermont in 

Auvergne. 

II Pierre de Fermat (1601—1665) studied at Toulouse. 

“ He has left the impress of his genius upon all branches of 

mathematics then known. 
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method Df determining Tatkalika gati i. e.y instantaneous 

motion of a planet, by Bhaskaracharya/ and which exactly 

corresponds to the differential of the longitude of the planet. 

Neither does it lie in infinite summations embodied in the 

principle, that area was formed either by the parallel motion 

of a straight line or as the sum of an infinite number of 

small triangles or rectangles ; norf ‘'in Newton’s method 

of series which demanded no more than integration of a 

power of the independent variable (except in the case of 

an index equal to—l), or its differentiation and which 

did not give an exact result, except when the resulting 

series happened to be a known one.” 

Nor lastly, in the invention of suitable notation by Leib¬ 

niz. The discovery lies principally in the complete recogni¬ 

tion that differentiation and integration are inverse opera¬ 

tions, i. €.y the drawing of the tangent and the finding of 
areas are inter-related, and the presentation of the subject 

in a systematic and logical way as a new and definite 

branch of science, in other words giving the differentials 

and integrals of the usual functions of a dependent variable, 

without the necessity of expressing these as series, as 

well as rules for dealing with products, quotients and powers 

of such functions. 

Calculus, as originally conceived and without modern 

considerations of analysis, could be divided into two por¬ 

tions, Firstly, an analytical one, which gave a definite 

Bhaskaracharya was born in 1036 Salivahana era or 1114 

A. D. Majority opines that he died in 1179 L. at the age 
of sixty-five. Mahamahopadhyaya Pandit Bapudeo Shastri in 
hi* article in the journal of the Asiatic society of Bengal Vol. 
XXVII—1858 says that his methods indicate that Bhaskara¬ 
charya was fully acquainted with the principle of differential 
calculus. 

t Prof. J. M. Child. 
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and systematic treatment for differentiating known functions 

of a dependent variable of suras or products etc., together 

with the recognition of the fundamental idea that differen¬ 

tiation is the inverse of integration and thus to enable 

integration without recourse to first principles etc., etc; 

secondly a geometrical synthesis, embodying the same 

principles and methods. Before proceeding to discuss who 

were the real founders, let us follow hurriedlly, so far as 

it concerns our subject, the lives of three great mathema¬ 

ticians, Isaac Barrow (1630—1677), Isaac Newton (1642 — 

1727) and Leibniz (1646 —1716). 

Isaac Barrow was professor of Mathematics in London 

and later in Cambridge. He had prepared his Lectiones 

Geametricae during the period 1663 —69 and entrusted it 

to the care of Newton and Collins for publication in 1669, 

and which was published as a supplement to the second 

edition of his Lectiones Opticae in 1670. Lectiones Geome- 

tficae is divided into :— 

(/) Lectures I—V, five preliminary Lectures. 

{ii) Lectures VI—XII, seven Lectures. 

{Hi) Several supplements which were included at 

the insistence of Newton, together with New¬ 

ton’s five examples of the use of the ^-and e- 

method. 

[iv) Lecture XIII—connected with Algebra. 

It is the seven lectures VI—XII that form the basic 

of calculus. From these lectures it is quite evident that, 

not only did he possess a full knowledge of the subject, 

but was convinced of the importance of the inverse* nature 

* Lecture X Prop. ii. Let ZGE be any curve of which 

the axis is AD, and let ordinates applied to this axis, AZ, PG, 

DE continually increase from the initial ordinate AZ. Also 

let AIF be a line, such that if any straight line EDF be drawn 
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of differentiation and integration. He was also convinced 

that he was in possession of knowledge, which will throw 

a new light on the sciences and will form a science by 

itself. But in 1669, be resigned his chair in favour of 

perpendicular to AD, cutting the curves in E and F, and AD 

in D, the rectangle contained by DF and a given line R is 

equal to the intercepted area ADEZ; also let 

DE : DF = R : DT, then will TF touch the curve AIF.*' 

Translated into modern notations it will read like :— 

“ Let the equation of ZGE be y = /’(^), so that the area 

ADEZ = / f{x)dx. 

Also let the equation of AIF be >» = 0 (^), and let 
/ fix) dx = 4>ix) R, then if FT is the tangent to AIF, so 

that DF : DT = we have 
dx 

(^) = DE ^ / (£) 
dx R R ■ 

E. T. D. C28 
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his rising pupil and friend Isaac Newton. Canon Overton 

gives a quotation (source not stated) in the “ Dictionary 

of National Biography/’ pointing out that Barrow's vanity 

and pride was offended at the neglect accorded to his 

work, and this made him give up for ever his mathematical 

investigations and turn to divinity in 1669. He had 

entrusted the publication of his lectures to the care of 

Newton and Collins, who got them printed as a supplement 

to the second edition of Lectio7ies Oplicae in 1670. 

Isaac Newton in 1664, while yet a subsizer of Trinity 

College, Cambridge, and who had also appeared for scho¬ 

larship, came under the notice of Barrow, who becomes 

bis tutor and practically incharge of Newton’s education. 

In 1665 Newton retired to Woolsthorpe, his birth-place, 

where, professor Child suggests that Newton had retired 

with probably some instructions on the use of infinitesimals. 

In his retirement, he developed fluxions to such a pitch, 

that he uses them for tangents and radii of cvurature. 

He could differentiate an explicit function in the form of 

a polynomial and also integrate the same by the use of 

Wallis’s method. During the period 1667—69, when he 

came back to Cambridge, he was more a friend than anyth¬ 

ing else, under the influence of Barrow, but he was chiefly 

engaged on optics and revised Barrow's work on the subject. 

In 1669, he completed his Dc Analysi and presented it 

to Barrow. The treatise, which was not published, even 

though Barrow insisted on it» till forty two years later, 

If R == I. It states that if 

f f (x) dx - (jr). 

Then = /•(*) 
ax 

In lecture IX Prop. 12, lecture VIII prop 9, and lecture 

IX prop. 3, Barrow gives the differentiation of a product, a 

quotient and power -f ve, —ve, integral or fractional. 
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shows that Newton was still using first principles for 

differentiation and integration. After the retirement of 

Barrow from the field of mathematics, Newton is consi¬ 

dered to have carried on the work of Barrow and had 

calculus complete within the next two or three years. 

Leibniz visited Paris in 1672, on a political mission 

and till then he had very little knowledge of higher ma¬ 

thematics. There he was initiated into higher mathematics 

by C. Huygens. In January 1673, Leibniz visited London 

and remained there till March. In a manuscript, he made 

a note under the heading geometry, “ Tangents to all 

curves,*' probably referring to Barrow's work and had 

purchased a copy of it After his return to Paris, Huygens 

advised him to read Pascal and others. 

He apparently did much work on integration, using 

the idea of ‘ Moments’ during 1674-75. In October 1675, 

he finds integrals of and and some more theorems 

and from November ii and onwards, he is using figures 

reminiscent of Barrow for the first time with some success. 

This is the year given by Leibniz for reading Barrow, 

He returned to Hanover in October, 1676 by way of London, 

and even up till now, Leibniz was in possession of the most 

elementary rules of formulae of the infinitesimal calculus. 

But now onwards, the progress is fairly rapid. The 

chief point to be noticed here is that it is not till after he 

has really studied Barrow that he does anything substantial. 

The first memorable day found from the manuscripts of 

Leibniz for giving the notation / is October 29th, 1675, “ a 

notation which contributed enormously to the rapid growth 

and perfect development of the calculus/'* 

♦ Cajori—A Hiblory of Matbemetics. 
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Leibniz has his 6rst paper on differential calculus 

published in 1684 in the Acta eruditomm^ “ nine years 

after the new calculus dawned upon the mind of Leibniz, 

and nineteen years after Newton first worked at fluxions. 

Leibniz notified to H. Oldenburg, the then secretary 

of the Royal Society, in 1676, that he knew very general 

analytical methods, by which he had found theorems of 

great importance on quadrature of the circle by means of 

series. Oldenburg replied that Newton and Gregory were 

also in possession of methods of quadratures, which ex¬ 

tended to circle. Leibniz desired to have these methods 

communicated to him, and Newton at the request of 

Oldenburg and Collins, wrote to the former the first of the 

celebrated letters on June 13th, 1676. It did not contain 

any exposition on the method of fluxions, but on binomial 

theorem and all the rest of it. Leibniz spoke in the highest 

terms of what Newton had done and requested further 

explanation. Newton in his second letter dated October 

24, 1676, explains how he found the binomial theorem and 

mentions in the form of an anagram his method of fluxions and 

fluents—meaning, “ Having any given equation involving 

never so many flowing quantities, to find the fluxions and 

vice versa.'’f Surely this afforded no hint. Leibniz wrote a 

reply to Collins, in which he explained the principle, notation 

and the use of differential calculus. The death of Oldenburg 

brought this correspondence to a close. It is alleged that 

Oldenburg communicated to Leibniz a copy of Newton’s 

letter of December lo, 1672, giving fluxions method in detail. 

In 1850, it was shown that what Oldenburg sent to 

Leibniz was not Newtons’ letter referred to above, but only 

excerpts from it, which omitted Newtons’ method of drawing 

* Founded in Berlin i68a. 

i* Cajori. 
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tangents, etc., and could not possibly convey an idea of 

fluxions. Oldenburg’s letter was found among Leibniz’* 

manuscripts in the Royal Library at Hanover. 

Thus Leibniz was never in possession of what was alleged 

to have been sent to him and which was not recognised by 

him. Newton also wrote in his Principia (First Edition 

1687,) “ In letters which went between me and that most 

excellent geometer, G. G. Leibniz ten years ago, when 

I signified that I was in the knowledge of a method of 

determining maxima and minima, of drawing tangents and 

the like, and when I concealed it in transposed letter* 

involving this sentence (Data acquatione etc., meaniiig 

“ Having any given equation etc.,”) that most distinguished 

man wrote back that he had also fallen upon a method 

of the same kind and communicated his method, which 

hardly differed from mine, except in his forms of words and 

symbols.” 

Newton was afterwards weak enough as De Morgan 

suggests, “ First to deny the plain and obvious meaning 

and secondly to omit it entirely from the third edition of the 

Principia” after the controversy had started between 

Newton and Leibniz. One thing is plain, that both were in¬ 

debted to Barrow for their idea and early training and both 

were working independently. Leibniz, though he started 

late, had gained much because of his notations and he was 

the first to give the full benefit of the calculus to the world. 

Professor J. M. Child very well sums up the fact that 

Barrow, Newton and Leibniz each of them should be taken 

as the founder of calculus in the following sentence. 

“ Although in the Mathematical Marathon, Barrow haff 

breasted the tape before Newton had arrived at the stadium, 

while Leibniz was a non-starter; nevertheless some years 

later, when Barrow’s running days were over, Newton 



and Leibniz had so profited by his training hints, that 

they made a dead-heat of it, beating Barrow’s record time 

by minutes, not seconds.” 



NOTE C. 

HYPERBOLIC FUNCTIONS. 

I. Hyperbolic functions are defined as follows :— 

Cosh X ^ 
2 

Tanh x ~ -—and so. 

Thus it is clear that 

cosh* X — sinh* x =1.(l) 

1 — tanh* X = .(2) 

coth* X — 1 — cosech ^x.(3) 

These three formulae being analogous to the well known 

three formulae of the circular functions. 

Also 2 sinh x cosh x - 2 ^-— . — — ^— 
2 2 

2 

= sinh 2 

and cosh* X + sinh* x = (^J + 

2 

= cosh 2 X. 

Similarly sinh (jc + y ) — sinh x cosh y + cosh x sinh y 

and cosh (x + y) — cosh x cosh y + sinh x sinh y. 

II. Let y - sin A” ^ - 

/. ~ = sinhy 
a 
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2 

ae^ - 2xe« - a = 0 
Taking only the positive sign 

gV — ^ «/ a;* + o* 

a 

ory = log 

i. e,, sin h~ ^ * = log x* ~k a \ 
a ' a ' 

Similarly 

cos 
X = log 

(- 
+ / £ 

a a 

tan r-i X 1 
log 

a j;k 
a 2 a x 

cot X ^ 1 
log ?- ± a 

a 2 X a 

III. Derivative of sinh x and cosh x 

sinh X - - 
2 

/. = cosh;. 
ax 

.1 1 d cosh , 
Similarly--- ~ sinh x. 

ax 

IV. The student will be well advised to deduce the 

following derivatives himself. 

y = tanh at, 

y == coth jr, 

= sech* X, 
ax 

== — cosech* X. 
ax 

y ~ sech x^ 

y == cosech x. 

dy ^ 
dx 

* 

dx 

tanh X sech x. 

coth X cosech x* 
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y — sinh ” * 

y =* cosh ~ * 

y = tanh “ * 

y = ooth ' ^ 

y = sech “* * 

y = cosech 

e
-
^

 

II 1 

yi + *»• 

X, 

II 

'^
1
'^

 

1 

y^- 1 

X, 
dx 

, (» < 1). 
1 — 

X, dy ^ 
dx 

- -pi—(*>i) 
AT* — 1 

X, 

II 

1 

1 i 

H
 

II 1 

«y jc* +1' 

E. T. D. C.—29 



ANSWERS. 

CHAPTER II 

Page 28. 

1. (t) 3 tan* X sec* x, log ex, e® + “ [cos (* + 6) + 

sin (jc + fc)j, 

x^ - ‘ \r log + 1 + « tan « + 
L 1 i- sin X 

_5—- -_1. 

tan .jc (1 + sin a^)J 

(») - rV-4 Ltan X tan* x I 

cos 

—— fl + cos X + X sin x], 
4 f 

2 

2 sec* ^ + tan 
2\_ 

(i -1.„ i)’ 

[I ^ ^ ^ 1 
X ~ tan X I 

2. 

X ~ tan X 

(m — *— m x*^ ^ ^ + n x^ " ^ 
~ D* 

(cos 2 .jc ~ 2), 
1 i- sin 2x 

i (1 + ^ logc a), a: sec a: (2 + ^ tan Ji;) 

sin X X cos jc ^ 2 ^ cos jf sin* ^ 

1 *+• cos* (1 -f- CO? X/^ 

Page 35. 

1. ^ - 
(1 - x) y i - X* 

___ _ f 14- cos X 

2 (1 — * + X*) \y 1 + ^ + sin X 

(2 a: — l)\/l -4- a; + sin Ji:\ 

yi — X + X* ) 

2. 



4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
12. 

13. 

14. 

16. 

16. 

17. 

18. 

19. 

^ a/ 1 j a/ ^ "t" a/ 1 'T 

f 1 + yr^r* 

yX y 1 + x^\jX -f- y 1 + x^ 

2 n X 
(a* - x^)^ + 

f _^_ 

(a» ~ x^r 

n x'^~ ^ {1 — x^) 
(1 + x^)^ ^ 

(2a* -- ^^) jc 

(a* — 

~ n (cot” ’ ^ X i cot” ^ * x), 

cot* — 2 cc cot 0? — 2 a? cot* x, 

oc'* ' ^ y sin~x 2 

cos a: tan (a: -1- a) + sin x sec* {x + a). 

^} ( a cos (ax + 6) cos (bx 4- a^ + 
COS'* {bx *i- <?) 

b sin {ax + b) sin (ftx + a) } . 

~ m cosec* mx _ 2n cot mx sec* nx tan nx 
1 4- sec* nx (1 ■+• sec* nx)^ 

\ [2x cos 2x ~ 3 sin 2x]. 

2ab sin x 
{a + b cos x)*' 

[1 ^ COS X 

X 1 — sin X 

sec^x. 
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20. - n sin’ * cos X 

21. 

22. 

23. 

24. 

26. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

(1 + sin" x)^ 

4 sin 4 X 
(1 + sin* 2xy 

3 cos* 3x (4 cos* 3* — 3). 

Jx 
/2 - * 

sin 

0. 

‘ (1 - *) 

1+ x^' 

1 
1 + **■ 

tan tt 
sec a + cos x 

_~ h sin X_ 
1 -f a* 4- fe* cos* X + 2a2> cos x 

1 
a 4" 6 cos X 

tan a sin x 

(sec a 4- cos ^)* 

^ ^ cos x I 2 x sin* x cos x 
1 4- cos* X (14- cos* x)^ 

— ^ ^4-2 cos X 2 
{x 4“ sin x)^ 

Jl? - 1 sec*" ^ ^ + 1 

^ yx^ 1 sec“ ^ X y{x sec““^ jip)*— 1 

1 + h 
j x' 

lx e 
-X* 

i / 
.log X log X 
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/ 1 
U i- 

log (tan x) + -7—TT-j 
X* sm 2 ATj 

-f e' 

^ (1 + x) 

tan X + X sec^ x 

X tan X 

2 sec 

log X (sin ^ |l 4- Ic 

+ cos X log sin 

1 4- log^t + —r- + cos X 
X log X 

a/I - 

(tan (l + log tan a:) sec* a:— (cos 

(1 -h log cos x) sin at. 

sin X sin 2a: sin Ba: (cot a: -j- 2 cot 2a: + 3 cot Sx), 

K + 2^- a:* 

_y log y ll + log X log 

1 - xlogy \ a: log a: /’ 

^»io X ^ox \Qg^a 4- *^ 4- cos X log a:| JX 

r+1 + 

4- tan*"^ [a® ^ain X J _1_ 

2 y» (1 + (1 + 
1 1 

Iog*“ ‘ log*~*fl: 
1 1 

log X ' x‘ 
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sin e -X* 

53. 
(i^) [('- 

cos e •* . e ^ 2x) 

+ 
. -X* 

2 y X (l + */ .*)_ 

64. logo e 
3*3 ■ 

55. ya* + b* e^cos (bx + <t>) sec x, where 

-lb 
^ = tan 

56. 

67. 

58. 

g p 
|a*sin*~ - P® cos* 

(g* + P*) sin I cos* | (a* - p* tan* || 

(2”+ **) Vl + **■ 

(g* + p*) yjrrfry* 

{/i +~g* ** ~ a/i- p^}* (1 - P* (-1 

59. - 2. 

60. 

_ _m (1 -h a^) cot*^ log cot" ^ X - X 1 

^ L cot~^ (1 4- X*) {2x sin + 6 cos i/x) J 

1 r j ^ (g* + 

sec* * [o* + ** 1 + tan *J yi + tanT 

62. -i£-.■(?.±i) see** 

{(* - g) (P - *)}^ 2 
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63. 

64. 

66. 

66. 

67. 

68. 
69. 

70. 

71. 

72. 

73. 

74. 

1. 

2. 

3. 

— ^ ^ 

— tan 6>. 

- tan -. 

1 
r 

— - cot 0. 
a 

i tan t (sec* ^ 4- 2). 

sin ip. 

tan t. 

[l ^ cos*a sin*0]* “ sin a tan <f> [cos*a fl + cos*<^)~ 1] 

sin a [i -f- cos*a sin*^J— tan [l — cos*a sin*<^]* 

t (2 - fi) 
1 - 2 <* • 

2^ 
4 

CHAPTER III. 

Page 45* 

[sin ^2^ + n + 2" sin (4^1^ + n 

4 3" sin 4 n 

(4. + n i). 4" (2)3^ e*^ cos 

(- 2)- 

2» + *L! 
« + » 

3 * 

I n 4-1 

{2a: + o)" + * 

sin" + ‘ 6> sin (n +1)6», where ff - cot = ?*±i 
ys"' 4. 
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1. 

2. 

3, 

12. 

22. 

23. 

Page 50. 

12 (5 + 14 + x^) 

(1 - 

—2^(1 + + 
8 A 

(1 - jcWl-f 6^)1 

x{l + x)^ J 

2-3.S-x cos2jk:+3'4.8(2-7*.r*) cos |2;r+-^| 

+ 4*5.8 (2135^)' 2* • cos|2a: + 

+. .. 

+ 8-7-*’-2’ cos |2a: + 7 

(-!)• + * L" 

+ (-1)"4 L? 

8 , 7{n + 1) 
(a: + 2)" + * (!+:¥)" + * 

, (n 4- 1) (» + 2) (n 4- 3) 
(1 + :c)* + * 

2_ (w + 1) (n + 2) 
(i’'+ x)’* + * (1 + ar)”+^ 

~—4^sin" + ‘6*sin(«+l)6', where6* = cot“* ^7-"4 
/S 

( — 1)* *Ll I sin* sin (w4-1)6* 

^ 1 
« + a 

a~T 

1 j. - 1_ 1 11 
2ya 1 (x—i/a)"*' (* + /o)" + '; I J’ 

where tan & = 
X 

“ i {1 + » ■*■ 1 -^} 

+ -«T 
1 (-!)■ 'i 1 
[ (1 + xj* 

X^ + -c,fj ( (-1)* 1 u. 
1 (1 + x)^ (1 - x)^j 
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^ M 1(1 + jc)* ) J 
26. If n be even 

y„=(-l)«L^ 1 _ 
a"-‘ L(*-a)» +• {x (a: + a)"+* 

4- 2 s 
" - 1 
2 COS 

/2 r 7t 
\ n 

+ n+ 1 

i /to 2rTC. 2\**w-- (^*—2 a X cos - + a^) 2 

, 2 r n _ X 2 r TZ 
where cot &r + cot ^ ~ cosoc - , 

and if n be odd 

U = f-1')" I_I_ 

(,. -2«. C05t|^!+»<P 

j^ft"(2*)’*+ ft"-‘(2^)**-' + 

w(w —l)(n —2) (w —3) ^>-2(9 + etc. 1 
If) J 

- 1 
cos n -f" 1 

(x^ — 2 a X cos 

31. e 

. L2 

2. 1^ (2a:)" sin| (at* + w^I + 

O ^)n-2 gin 

»(n — 1) (» - 2) (w - 3) . 
(2a:)"-‘‘ X 

+ w—2 o I + etc. 

CHAPTER IV. 
Page 64, 

4. K. - 

in powers of x, 

E. T. D. C.—30 

aN 
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Page 67. 

4. - i |- + *. i 5 . 

5, X "j" -f" ..... 

, j x^ l.B 1.B.5 x'^ 
b. X-i + 2.4 5 + 2.4.6 7~ 

X* 
17. 1 + a: loffea + Qi (loff,a)* +.. 

18. (i) as answer No. 4. 

a;* X* »r* 
Hi) L3 - 2* ^4 + 2*. 4* [e-. 

CHAPTER V. 

Page 82. 

1. (ib* - a*) sin 2t. 

2. . 
/l - <* 

3. —■^—2[(t.au~ * t — cot” *0 sin 2 (tan~ * t. cot” '<)]• 

q - ay 
XV __ 

10. ^ ± J 
hx + by + f 

11 y ^ y 
log cos X -- X cot y' 

12. 
yX + l + *» . J/* log y _221£. *«o.» _ jjcg* logjf 
_ X_ X 

+ 1 y* - 14-^v . y*log af+a:®“* log x. sin «**'* 
V 

13. %?*-p + ^). 
(y* + a**)* 
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14. 

4 sec* [sin(* + y)] tyj]. 
[sec^ [sin {x *+- y)j — 1]^ 

16. 0. 

CHAPTER VI. 

1. 

2. 

3. 

Page 89. 

(0 — y cos ty 

(m) y cosec 

(i) y cot 

(iu) y cosec 

(i) ■■■■■? Aji z^l\. 

Hi) — y tan 

(iv) y sec ty 

(ii) y tan ty 

(iv) y sec t. 

^ (1 + C*) (1 - 2<®)’ 

(Hi) 

(iv) 

(1 -I- <3) (2 - <»)’ 

_BJ_. /(I - 2?)*'T‘<*~(F-T»)* 
1 + (2 - <>) 

:-i <* ya 
i + 

2 <»)» -r <*(2 - <*)* 

4. ^ = 1. 
a ^ 

5. rt* — 6* = a'* — 6^*. 

6. Touch at (2, 4). 

7. Right angle. 

Page 101. 

1. + r* = a* + 6*, (centre). 
P 

** = ?«- 1. (focus). 
pi ^ 

2. o* (r* — p*>* = P* (»^ + 4®*) (p* 
3. pd = r*. 

4. p = r sin a. 

6. a*p = r®. 

6. pr =* o*. 

7. p ~ a. 
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Pajfe 107. 

2- iy4~+~%. 

4. sec x» 

5. sec 
a 

n ds ^ ^ ds 0 o. - = sec - ; — = 2a cos -. 
dx 2 d.e 2 

^ y 1 i- (lo^# a)*- 

10. a y^ec 2 & ; tan - cot 2 
dff * 

^ + sec* 6^. 

19. p* = H?* ~ 
r* + 15a* 

22. a*x* + 

28. tangent at the vertex. 

24, r = 2a cos^ ^ . 
B 

25. (i) r = a cos —6^. 

(u) cos | 6^. 

26. (i) (x^ + ?/*)^ = {x^ *f 2/ 

(iOr-. >m . ^ . 

m 
cos""* 0 

(ii) 

m 
(iii) r" " * 

(»V) 

m 
sin” ~ ^ 

+ -r— 
A” - ‘ B”- 

„* _ cos* 0 , sin* 0 r* = . 
A B A 
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_2 H _n_ 

28. A" ^ = (ar)" *'* sin - ” {& + ?) 
Iw + 1 2 

CHAPTER VII. 

Page 117. 

1. 
1 

n 
2. - 2. 

3. 1. 4. 2. 

5. 2. 6. n. 

7. e. 8. lo^Tg a. 

9. 2. 1 

d
 

pH 

11. 4. 12. 0. 

13. 0. 14. i«‘. 
7t 

If). 

C
O
 * 1 16. e. 

17, 1. 18. 0. 

19. 
_ e 

2 * 
20. . 

24 

21. 
1 

4‘ 
22. 1. 

23. 
1 ±/y3 

2 
24. 0 ami oo. 

CHAPTER VIII. 

Page 133. 

1. 4: ^2 2. 3 a sec* >t> tan ip 

S. 4 (1 + t*) 4. 1. 

5. A ^ 4 a cos - . 
2 

6. 6. 
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' i y 2 a r ; 

9. f a sin* - . 

Br 

10. - 
2(x + y)^ 

11. a 
12. 1 

2 ‘ 2 ‘ 

13. a* 
14. 8a 

2 b ’ 2 

16. Z 24. 4r 
2Ar* ‘ 8 

25. 1. 

Page 139. 

1. 27 aj/* = 4 ~ 2a)*. 

2. (a^y)* + (by)^ ■■ = (rt* 6»)i 

3. y = a cosh 

CHAPTER IX. 

Page 149. 

1. 2/* = 4«.r. 

2. 4^2/ = = c*. 

8. 
^-*y2 

4. 
a:* 

a* 

II 

5. (a* - 6*)* + 

6. 22 = ± o. 

7. 1+
 

= ±&. 

8. (i) a:'" y" = 7- 
m" tr f^„ + „ 

(ii) yx + /y = /c. 

jn_ n w 

(m) ;^' + " + 
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9. (i) 4^"‘= fc*"*- 

w m m 

{ii) X ^ + 2/^ =c^. 

11. + «/^ = «® • 

13. 4a* (a:* - ?/) «= (a;* + ly*)*. 

14. (1) a: + a = 0. 

M (f 
(2) r» + * = a" + ‘ cos ^ ^ ^ 

16. 2ay* + x (a:* + «/*) = 0. 

16. (x + ijV + (x — y)^ = 2a^ . 

CHAPTER X. 

Pa^c 159- 

6. Concave for all -f- ve values of .v to the foot of the 

ordinate. Negative of values of x are inadmissible. 

7. yes, (2, - 1). 

Page 172. 

1. First species, single cusp at |c, 

2. Conjugate point at (— k, 0). 

3. Origin is a node; tangents are x + y =* 0, and 

X - 2y == 0. 

4. Origin is a node \ y ~ ± are the tangents. 

5. Origin is a cusp of first species single. 

6. Node at (2, 1), tangents are (jc — 2) == ± ~ 1). 

7. Single first species cusp at (1, -- 1). 

8. Single first species cusp at (0, 0). 

9. Node at (0, 0), «/ == it are the tangents. 

10. First species double cusp at (0, 0). 
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11. Single first species cusp at (— a, a). 

12. Single first species cusp at (— 1, -■ 2). 

CHAPTER XI. 

Page 182. 

6-/3 or x= - 
3 

1. Max. 

min. —^ for ^ 
9 3 

2. Min. for ,x ~ 2. 

3. Max. 20, for x ~ 1, 

Min. ~ 28, for.^r = 2. 

4. Max. when x ^ zt 

Min. when x = 0. 

5. Max. when x = 2n 7t, 

Min. when x = (2;/ + 1) 

6 A'® b. A . 

7. {ab p*) — t {a -k- h) ^ 1 =0, the roots of this 

give the values required. 

8. a ^ h, 

10 An 
m + n m + n 

11. Max. semi—circumference. 

Min. radius —> oo. 

12. radius = A X slant height. 

18. Each is A. 

to
 

p
 

2, .-=«• 1 — a* «* 

u 1 1 
21. 1 Sa« Saa' 

1 Sao' Sa'* 
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CHAPTER XII. 

Page 191. 

1. y ^ X, y ^ 2 

2. jc ~ 0, y + X 

B. a: == ± a. 

4. y = X ± a, y- 

5. y = X, y 2x 

1. jc + ?/4*a== 

2. ^ = 0, 2/ ^ 0, 

3. ^ ± 1, ^ = 

4. ^ = ± ± 1. 

5. X = 0, y = a. 

6. X = ± a, ^ == 

7. t/ + ^ = 0. 

8. 

9, .r = 2a. 

10, r sin — 1) 

r sin (0 -f 1) 

11. r sin 6^ = a, r 

12. y ^ 
n 

IB. r sin (9 = a, r 

14. r sin 6> » 2a. 

16. r sin {o — k 

1. 

Page 196. 

2 
a 

2 

2rr, 

(2w + 1) TC 

2 n -f 1 — 
2a e ~~2~~ ^ 
(2;/ -j- l) 7C 

' m 

THE END, 
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