
BIRLA CENTRAL LIBRARY PILANI [Rajasthan]
Class No. 5/0. 9 54
BookNo. $B 2 \sigma H 62$
Accession No. 68638
000000000000000000000000000400000.

HISTORY OF HINDU MATHEMATICS

A SOURCE BOOK

Parts I and II

BY

BIBHUTIBHUSAN DATTA
 AND

AVADHESH NARAYAN SINGH

ASIA PUBLISHING HOUSE BOMEAY•CALCUTTA•NEWDELHI MADRAS • LONDON • NEWYORE

© 1935,1938 avadhesh narayan singh

Part I First Published: 1935

Part II First Published: 1938

Single Volume Edition: 1962

All Rights Feserved

Parf I: pp. 1-250
Part II: pp. 1-308

PRINTED IN TNDLA
BY SOMEBHWAR DAYAL AT THE MUDRAN KALA MANDIR, LUCXNOW AND PUBLISHED BY R. B. JAYASITGEE, ASLA PUBLISHETG HKOUSE, BOMBAY

TRANSLITERATION

Vowels

Short :
श्र इ उ 『 ल
$a \quad i \quad u \quad r \quad l$
Long: श्रा ई $ऊ$ ॠ तू ए ऐे श्रो ध्रौ
â $\hat{\imath} \hat{u} \quad l \quad e \quad a i \quad o \quad a u$

Anusvâra: $\quad \quad \therefore=\dot{m}$
Visarga : $\quad:=\emptyset$
Non-aspirant: $\quad s=$,

Consonants
Classified :

$\begin{array}{lllll}\text { च् } & \text { छ् } & \text { ज् } & \text { मृ } & \text { म् } \\ c & c b & j & j b & \tilde{n}\end{array}$
$\begin{array}{lllll}\text { ट् } & \text { ठ् } & \text { ड् } & \text { ढ् } & \text { एँ } \\ t & t b & d & d b & n\end{array}$
$\begin{array}{lllll}\text { त् } & \text { थ् } & \text { दू } & \text { ध् } & \text { च् } \\ t & t h & d & d b & n\end{array}$

प् फ् ब्ट भ् म्
p ph b bb $m, m=$ final म
Un-classified : य् र् ल् व् श् ष् स् है $y \quad r \quad l$ v f s $\quad b$

Compound :
च् ㅍ् 屄
ks tr $j n$
Pâlî :
$\bar{\infty}=l^{\prime}$

LIST OF ABBREVIATIONS

A	Aryabhaṭia
$A J$	Arṣa-Jyotiṣa
$A P S 1$	Apastamba Sulba
AV	Atharvaveda
BBi	Bijagaṇita of Bhâskara II
BCMS	Bulletin of the Calcutta Mathematical Society
BMs	Bakhshâlî Manuscript
BrSpSi	Brâhma-sphuṭa-siddhânta
BS'	Baudhâyana Sulba
$D b G r$	Dhyânagrahopadeśa
EI	Epigraphia Indica
GK	Gaṇita-kaumudî
GL	Graha-lâghava
GSS	Gaṇita-sâra-saṁgraha
GT	Gaṇita-tilaka
IA	Indian Antiquary
IHQ	Indian Historical Quarterly
$J A$	Journal Asiatique
$J A S B$	Journal of the Asiatic Society of Bengal
JIMS	Journal of the Indian Mathematical Society
JRAS	Journal of the Royal Asiatic Society of Great Britain and Ireland
KapS	Kapisthala Samhitâ
KK	Khaṇda-khâdyaka
KSt	Kâtyâyana Sulba
KtS	Kâthaka Samihitâ
L	Lîlâvatí
LBh	Laghu-Bhâskarîya

LIST OF ABBREVIATIONS

LMâ	Laghu-mânasa
MaiS	Maitrâyaṇî Samhitâ
MâSl	Mânava Sulba
MBh	Mahâ-Bhâskarîya
MSi	Mahâ-siddhânta
NBi	Bijagaṇita of Nârâyaṇa
PâSâ	Pâtị-sâra of Muniśvara
PLM	Prâcîna-lipi-mâlâ
PSi	Pañca-siddhântikâ
RV	Rgveda
$S B r$	Satapatha Brâhmaṇa
SiDVr	Sişya-dhî-vọddhida
SiSe	Siddhânta-sekhara
SiSi	Siddhânta-śiromani
SiTVi	Siddhânta-tattva-viveka
SûSi	Sûrya-siddhânta
TBr	Taittirîya Brâhmaṇa
Tris'	Triśatikâ
TS	Taittirîya Samitâ
YJ	Yâjuṣa-Jyotiṣa
ZDMG	Zeitschrift der deutschen morgenländischen Gesselschaft

HISTORY OF HINDU MATHEMATICS
 A SOURCE BOOK
 PART I
 NUMERAL NOTATION AND ARITHMETIC

HISTORY OF HINDU MATHEMATICS
 A SOURCE BOOK
 PART I
 NUMERAL NOTATION AND ARITHMETIC

BY

BIBHUTIBHUSAN DATTA
AND
AVADHESH NARAYAN SINGH

डदं नम ॠषिभ्य: पूर्वजेम्य: पूर्वेग्य: पथथकृ्भ्य:

$$
(R V, x .14 .25)
$$

To the Seers, our Ancestors, the first Path-makers

PREFACE

Little is known at present to historians of mathematucs regarding the achievements of the early Hindu mathematicians and our indebtedness to them. Though it is now generally admitted that the decimal placevalue system of numeral notation. was invented and first used by the Hindus, it is not yet fully realized to what extent we are indebted to them for our elementary mathematics. This is due to the lack of a relable and authentic history of Hindu mathematics. Our object in writing the present book has been to make up for this deficiency by giving a comprehensive account of the growth and development of the science of mathematics in India from the earliest known times down to the seventeenth century of the Christian era.

The subject is treated by topics. Under each topic are collected together and set forth in chronological order translations of relevant Sanskrit texts as found in the Hindu works. The texts have been elucidated, wherever necessary, by adding explanatory notes and comments, and also by illustrative examples culled from original sources. We have tried to avoid repetition as far as has been consistent with our aim. However, on several occasions it has been considered desirable to repeat the same rule in the words of different authors in order to emphasize the continuity or rather the gradual evolution of mathematical thought and terminology in India. Comparative study of this kind has helped us to throw light on certain obscure Sanskrit passages and technical terms whose full significance
had not been understood before. In translating the texts we have tried to be as literal and faithful as possible without sacrificing the spirit of the original. Sometimes it has not been possible to find exact parallels to Sanskrit words and technical terms in English. In all such cases we have tried to maintain the spirit of the original in the English version.

The above plan of the book has been adopted in pursuance of our intention to place before those who have no access to the Sanskrit sources all evidence, unfavourable as well as favourable, so that they can judge for themselves the claims of Hindu mathematics, without depending solely on our statements. In order to facilitate comparison with the development of mathematics in other countries the various topics have been arranged generally in accordance with the sequence in Professor D. E. Smith's History of Mathematics, Vol. II. This has sometimes necessitated divergence from the arrangement of topics as found in the Hindu works on mathematics.

In search of material for the book we had to examine the literature of the Hindus, non-mathematical as well as mathematical, whether in Sanskrit or in Prâkrit (Pâlî and Ardha Mâgadhî). Very few of the Hindu treatises on mathematics have been printed so far, and even these are not generally known. The manuscript works that exist in the various Sanskrit libraries in India and Europe are still less known. We have not spared labour in collecting as many of these as we could. Sanskrit mathematical works mentioned in the bibliography given at the end of this volume have been specially consulted by us. We are thankful to the authorities of the libraries at Madras, Bangalore, Trivandrum, Trippunithura and Benares, and those of the India Office (London) and the Asiatic Society of

Bengal (Calcutta) for supplying us transcripts of the manuscripts required or sending us manuscripts for consultation. We are indebted also to Dr. R. P. Paranjpye, Vice-Chancellor of the Lucknow University, for help in securing for our use several manuscripts or their transcripts from the state libraries in India and the India Office, London.

It would not have been possible to carry our study as far as has been done without the spade work of previous writers. Foremost among these must be mentioned the late Pandit Sudhakar Dvivedi of Benares; whose editions of the Lillâvatî, Brâbmaspbuta-siddbânta, Trisatikâ, Mabâsiddbânta, Siddbânta-tattva-vivelea, etc., have been of immense help. Colebrooke's translations of the arithmetic and algebra of Brahmagupta and Bhâskara II. Kern's edition of the Aryabbatiya and Rangacarya's edition (with English translation) of the Ganita-sâra-samigraba of Mahâvîra have also been of much use. The recent work of G. R. Kaye, however, has been found to be extremely unreliable. His translation of the Ganitapâda of the Aryabhatîya and his edition of the Bakhshâlî Manuscript are full of mistakes and are misleading.

It has been decided to publish the book in three parts. The first part deals with the history of the numeral notation and of arithmetic. The second is devoted to algebra, a science in which the ancient Hindus made remarkable progress. The third part contains the history of geometry, trigonometry, calculus and various other topics such as magic squares, theory of series and permutations and combinations. Each part is complete in itself, so that one interested in any particular branch of mathematics need not consult all of them.

Part I which is now being published contains two chapters. Chapter I gives an account of the various
devices employed by the Hindus for denoting numbers. The gradual evolution of the decimal place-value system of notation has been traced and all evidence relating to its use in India collected together for the first time. This evidence shows that the system was in use in India during the earliest centuries of the Christian era, if not earlier. We hope that the facts set forth in this chapter will finally set at rest the controversy about its place of origin. Considerations of space have prevented us from giving details regarding the introduction of the Hindu numerals into Arabia, Northern Africa and Europe. A brief account has, however, been included.

Chapter II deals with arithmetic in general. We have become so familiar with our methods of performing the fundamental arithmetical operations of addition, subtraction, multiplication, division and the extraction of roots that we seldom pause to think how and when these methods were invented. The problem, however, has deep interest for the teacher and historian of mathematics. And an account of the evolution of these methods in the land of their birth should be welcome. We have given details and illustrations of different methods of performing these operations on a pâtî, ("board"), as followed in India from the fifth century onwards. It has been shown that our present methods are simple variations of those of the ancient Hindus. The rule of three, the rules of supposition and false position, and rules relating to calculations involving interest, exchange of commodities, fineness of gold, etc., are all due to the Hindus. In fact, practically the whole of elementary arithmetic can be traced back to them. Thus the importance of chapter II cannot be over-emphasised.

The scheme of transliteration of Sanskrit words
and proper names has been indicated in the beginning. Arabic words and proper names that occur in the book have been taken down as found in various secondary sources consulted.

Acknowledgment has been made in footnotes to the texts of various sources from which we have derived assistance. Of the books which have been found specially helpful, we would mention Bühler's Indian Palæography and Ojha's Prâcîna Lipi Mâlâ (in Hindi). We are indebted to Mr. Ojha for permitting us to reproduce from his book the tables of Brâhmî and Kharosthî numerals. We have pleasure in expressing our obligation to Mr. T. N. Singh for his help in the revision of proof-sheets. He has caused the removal of many obscurities and has made many valuable suggestions of which we have availed ourselves. Our thanks are also due to Mr. R. D. Misra for preparing the index to this volume.

In conclusion we express our thanks to the Law Journal Press for their unfailing courtesy and for expediting the work of printing.

LUCKNOW
September, 1935

Bibhutibhusan Datta
Avadhesh Narayan Singh

CONTENTS

CHAPTER I

NUMERAL NOTATION

Page

1. A GLIMPSE OF ANCIENT INDIA 1
2. HINDUS AND MATHEMATICS 3
Appreciation of Mathematics-Mathematics in Hindu Education.
3. SCOPE AND DEVELOPMENT OF HINDU MATHEMATICS 7
4. NUMERAL TERMINOLOGY 9
Scale of Notation-Numerals in Spoken Language.
s. THE DEVELOPMENT OF NUMERICAL SYM- BOLISM 16Writing in Ancient India-Earliest Numerals.
5. KHAROŞṬHi NUMERALS 21
Early Occurrence-Forms and their Origin.
6. BRAHMI NUMERALS 25
Early Occurrence and Forms-Difference from other Notations-Theories about their Origin-Relation with Letter Forms-Indraji's Theory-Period of In- vention-Résumé.
7. THE DECIMAL PLACE-VALUE SYSTEM 38
Important Features-Forms-Nâgarî Forms-Epi- graphic Instances-Their Supposed Unreliability- Place of Invention of the New System-Inventor Unknown-Time of Invention.
8. PERSISTENCE OF THE OLD SYSTEM 52
Page
9. WORD NUMERALS 53Explanation of the System-List of Words-WordNumerals without Place-value-Word Numeralswith Place-value-Word Numerals in Inscriptions-Origin and Early History-Date of Invention.
ir. ALPHABETIC NOTATIONS 63
Alphabetic System of Aryabhaṭa I-Explanation- Katapayâdi Systems-Aksarpalli-Other Letter Sys- tems.
10. THE ZERO SYMBOL 75
Earliest use-Form of the Symbol-Other uses of the Symbol.
11. THE PLACE-VALUE NOTATION IN HINDU LITERATURE 83
Jaina Canonical Works-Purâņas-Works on Philo- sophy-Literary Works.
12. DATE OF INVENTION OF THE PLACE-VALUE NOTATION 86
13. HINDU NUMERALS IN ARABIA 88
14. HINDU NUMERALS IN EUROPE 9^{2}Boethius Question-Definite Evidence.
15. MISCELLANEOUS REFERENCES TO THE HINDU NUMERALS 95
Syrian Reference-Arabic References-The Tcrms Hindasi, etc.-European References.
16. TABLES105
CHAPTER II
ARITHMETIC
17. GENERAL SURVEY 123Terminology and Scope-Sources-Exposition andTeaching-Decay of Mathematics-The Fundamen-tal Operations.

CONTENTS

Page
2. ADDITION 130Terminology-The Operation-Direct Process-Inverse Process.
3. SUBTRACTION 132Terminology-The Operation-Direct Process-ln-verse Process.
4. MULTIPLICATION 134Terminology-Methods of Multiplication-Door-junction Method-Transmission to the West-Gelo-sia Method-Cross Multiplication Method-Multi-plication by Separation of Places-Zigzag Method-Parts Multiplication Method-Algebraic Method.
s. DIVISION
Terminology-The Operation-The Method of Long Division.
6. SQUARE 155
Terminology-The Operation-Minor Methods of Scuaring.
7. CUBE 162Terminology-The Operation-Minor Methods ofCubing.
8. SQUARE-ROOT 169
Terminology-The Operation.
9. CUBE-ROOT 175
Terminology-The Operation.
10. CHECKS ON OPERATIONS 180
if. FRACTIONS 189Early Use-Weights and Measures-Terminology-Writing of Fractions-Reduction to Lowest Terms-Reduction to Common Denominator-Fraction inCombination-Lowest Common Multiple-TheEight Operations-Addition and Subtraction-Mul-tiplication-Division-Square and Square-root-Cube and Cube-root-Unit Fractions.

CONTENTS

Page
12. THE RULE OF THREE 203
Terminology-The Method-Inverse Rule of Three -Appreciation of the Rule of Three-Proportion in the West-Compound Proportion-The Method- Illustration-The Rule of Three as a Particular Case.
13. COMMERCIAL PROBLEMS 218
Interest in Ancient India-Interest in Hindu Ganita Problem involving a Quadratic Equation-Other Problems-Miscellaneous Problems on Interest- Barter and Exchange-Other types of Commercial Problems.
14. MISCELLANEOUS PROBLEMS 230Regula Falsi-The Method of Inversion-Problemson Mixture-Problems involving Solution ofQuadratic Equations.
1s. THE MATHEMATICS OF ZERO 238
Zero in Arithmetic-Zero in Algebra-Zero as anInfinitesimal-Infinity-Indeterminate Forms.
BIBLIOGRAPHY 247
INDEX 251

Chapter I

NUMERAL NOTATION

A GLIMPSE OF ANCIENT INDIA

The student of ancient Indian History is struck by the marvellous attainments of the Hindus, both in the Arts and the Sciences, at a very early period. The discoveries at Mohenjo-daro reveal that as early as 3,000 B.C. the inhabitants of the land of the Sindhuthe Hindus-built brick houses, planned cities, used metals such as gold, silver, copper and bronze, and lived a highly organised life. In fact, they were far in advarice of any other people of that period. The earliest works available, the I'edas (c. 3,000 B.C. or probably much earlier), although consisting mainly of hymns of praise and poems of worship, show a high state of civilisation. The Brâbmana literature (c. 2,000 B.C.) which follows the Vedas, is partly ritualistic and partly philosophical. In these works are to be found well-developed systems of metaphysical, social and religious philosophy, as well as the germs of most of the sciences and arts which have helped to make up the modern civilisation. It is here that we find the beginnings of the science of mathematics (arithmetic, geometry, algebra, etc.) and astronomy. This Brâbmana period was followed by more than two thousand years of continuous progress and brilliant -achievements. Although during this period there were several foreign invasions as well as internal wars and many great kingdoms rose and fell, yet the continuity of intellectual progress was maintained. The constitution
of Hindu society was mainly responsible for this. The foreign invaders, instead of being a hindrance, contributed to progress and the strengthening of Hindu society by bringing in new blood. They settled in the land, adopted the religion and customs of the conquered and were completely absorbed into Hindu society. There were a class of people-the Brâhmanas-who took the vow of poverty, and devoted themselves, from one gencration to another, to the cultivation of the sciences and arts, religion and philosophy. The Brâhmaṇas, thanks to their selflessness and intellectual attainments, were highly respected by the kings and the people alike. They were the law-givers and advisers of the kings. In fact, this body of selfless thinkers and learned men were the real rulers of the land.

The great Epic, the Ramâyuna, was composed by Valmiki, the father of Sanskrit poetry, about 1,000 B.C., Pânini, the grammarian, perfected Sanskrit grammar about 700 B.C. and Suśruta wrote on the sciences of medicine and surgery about 600 B.C. ${ }^{1} \quad \Lambda$ century later, Mahâvira and Buddha taught their unique systems of religious and moral philosophy, and the doctrine of Nirvana. With the spread of these religions evolved the Jaina and Buddhist literatures. Some of the earlier Purânas and Dharma-sástras were written about this time. The period 400 B.C. to 400 A.D., however, seems to have been a period of great activity and progress. During this period flourished the great Jaina metaphysician Umâsvâti, Patañjali, the grammarian and philosopher, Kautilya, the celebrated politician, Nâgârjuna, the chemist, Caraka, the physician, and the immortal poets Aśvaghoṣa, Bhâsa and Kâlidàsa. "The great.

[^0]astronomical Siddloantas, the Sior ${ }^{\prime} a$, the Pitamalut, the I'asistloc, the Parasura and others were written during this period and the decimal place-value notation was perfected.u-

2 HindUS AND mathematics

\longrightarrowAppreciation of Mathematics. It is said that in ancient India no science did ever attain an independent existence and was cultivated for its own sake. Whatever of any science is found in Vedic India is supposed to have originated and grown as the handmaid of one or the other of the six "members of the Veda," and consequently with the primary object of helping the Vedic rituals. It is also supposech, sometimes, that any further culture of the science was somewhat discouraged by the Vedic Hindus in suspicion that it might prove a hindrance to their great quest of the knowledge of the Supreme by diverting the mind to other external channels. That is not, indeed, a correct view on the whole. It is perhaps true that in the earlier Vedic Age, sciences grew as help to religion. But it is gencrally found that the interest of people in a particular branch of knowledge, in all climes and times, has always been aroused and guided by specific reasons. Religion being the prime avocation of the earlier Hindus, it is not unnatural that the culture of other branches of knowledge grew as help to it and was kept subsidiary. But there is enough evidence to show that in course of time all the sciences outgrew their original purposes and were cultivated for their own sake. Λ new orientation had indeed set in in the latter part of the Vedic Age.

There is a story in the Cbandogya Upanisad ${ }^{1}$ whose

[^1]value in support of our view cannot be over-estimated. It is said that once upon a time Nârada approached the sage Sanatkumâra and begged of him the Brabmaridj'â or the supreme knowledge. Sanatkumâra asked Nầrada to state what sciences and arts he had already studied so that he (Sanatkumara) might judge what still remained to be learnt by him. Thereupon Nârada enumerated the various sciences and arts studied by him. This list included astronomy (naksatra-nidy \hat{a}) and arithmetic (râsi-vidy \hat{u}). Thus the culture of the science of mathematics or of any other branch of secular knowledge, was not considered to be a hindrance to spiritual knowledge. In fact, Aparâ-lidyâ ("secular knowledge") was then considered to be a helpful adjunct to Parâ-pidy \hat{l} ("spiritual knowledge")."
\rightarrow Importance to the culture of Ganita (mathematics) is given by the Jainas. Their religious literature is generally classified into four branches, called anuyoga ("exposition of principles"). One of them is g_{u} "itânu$y 0 g a$ ("the exposition of the principles of mathematics"). The knowledge of Samikbyana (literally, "the science of numbers," meaning arithmetic and astronomy) is stated to be one of the principal accomplishments of the Jaina priest." In Buddhist literature too, arithmetic (gananâ, samkbyana) is regarded as the first and the noblest of the arts. ${ }^{3}$ All these will give a fair idea of the importance and value set upon the culture of ganita in ancient India.

The following appreciation of mathematics, although belonging to a much later date, will be found to be interesting, especially, as it comes from the pen

[^2]of Mahâvîra (850 A.D.), one of the best mathematicians of his time:
"In all transactions which relate to worldly, Vedic or other similar religious affairs calculation is of use. In the science of love, in the science of wealth, in music and in drama, in the art of cooking, in medicine, in architecture, in prosody, in poetics and poetry, in logic and grammar and such other things, and in relation to all that constitutes the peculiar value of the arts, the science of calculation (ganita) is held in high esteem. In relation to the movements of the sun and other heavenly bodies, in connection with eclipses and conjunctions of planets, and in connection with the triprasina (direction, position and time) and the course of the moon-indeed in all these it is utilised. The number, the diameter and the perimeter of islands, oceans and mountains; the extensive dimensions of the rows of habitations and halls belonging to the inhabitants of the world, of the interspace between the worlds, of the world of light, of the world of the gods and of the dwellers in hell, and other miscellancous measurcments of all sorts-all these are made out by the help of ganitu. The configuration of living beings therein, the length of their lives, their eight attributes, and other similar things; their progress and other such things, their staying together, etc.-all these are dependent upon ganita (for their due comprehension). What is the good of saying much? Whatever there is in all the three worlds, which are possessed of moving and nonmoving beings, cannot exist as apaif from winitu (measurement and calculation). 4
"With the help of the accomplished holy sages, who are worthy to be worshipped by the lords of the world, and of their disciples and disciples' disciples, who constitute the well-known series of preceptors,

I glean from the great ocean of the knowledge of numbers a little of its essence, in the manner in which gems are picked from the sea, gold is from the stony rock and pearl from the oyster shell; and give out according to the power of my intelligence, the Sara-samigraba, a small work on !!r!it, which is (however) not small in valuc." "
\rightarrow Mathematics in Hindu Education. The elementary stage in Hindu education lasted from the age of five till the age of twelve. This period slightly differed in the case of sons of kings and noblemen. The main subjects of study were lipi or lekellâ (alphabets, reading and writing), râpa (drawing and geometry) and gananâ (arithmetic). It is said in the Arthasástra of Kautilya (400 B.C.) that having undergone the ceremony of tonsure, the student shall learn the alphabets (lipi) and arithmetic (suniklisumini). ${ }^{2}$ We find in the Hâthîgumphà Inscription ${ }^{3}$ that king Khâravela (163 B.C.) of Kalinga spent nine years (from the age of sixteen to the age of 25) in learning lekhio, rîpa and ganonâ. Prince Gautama began his education when he was eight years of age "firstly (with) writing and then arithmetic as the most important of the 72 sciences and arts." ${ }^{4}$ Mention of lekbâ, ruipa and ganamâ is also found in the Jaina canonical works. ${ }^{5} \leftarrow$

[^3]
SEPR AND DEXEれORAENTYFHHND MATHEMATICS.

 Ganita literally means "the science of calculation" and is the Hindu name for mathematics. The term is a very ancient one and occurs copiously in Vedic literature. The l'edâniga Jyotiṣa (c. 1,200 B.C.) gives it the highest place of honour among the sciences which form the Vedâiga: "As the crests on the heads of peacocks, as the gems on the hoods of snakes, so is ganita at the top of the sciences known as the lredaniga." ${ }^{1}$ In ancient Buddhist literature we find mention of three classes of ganita: (1) mudrâ ("finger arithmetic"), (2) gananâ ("mental arithmetic") and (3) samikthyana ("higher arithmetic in general"). One of the earliest enumerations of these three classes occurs in the Digha Nikaya, ${ }^{2}$ and it is also found in the l inaya l'itaka, ${ }^{3}$ Dinyâvadâna ${ }^{4}$ and Milindapañbo. ${ }^{5}$ The word samiklyyâna has been used for ganita in several old works. ${ }^{6}$ At this remote period ganita included astronomy, but geometry (ksetra-ganita) belonged to a different group of sciences known as Kalpasûtra.It is believed that some time before the beginning of the Christian era, there was a renaissance of Hindu Ganita. ${ }^{7}$ The effect of this revival on the scope of

1 "Yathâ sikhâ mayurânâm nâgânâm manayo yathâ Tadvadvedâñgaśâstrânâm gaṇitam mûrdhani sthitaṇ."
${ }^{2} \mathrm{l}, \mathrm{p} .5 \mathrm{x} . \quad$ Vedânga lyotiṣa, 4.
${ }^{3}$ IV, p. 7.
${ }^{4}$ Divyâvadâna, ed. by E. B. Cowell and R. A. Neil, Cambridge, 1886, pp. 3, 26 and 88.
${ }^{5}$ Milindapanibo, Eng. trans. by Rhys Davids, Oxford, 1890, p. ${ }^{11}$.
${ }^{\text {" E.g., Kalpasûtra of Bhadrabâhu, ed. by H. Jacobi, Lcipzig, }}$ 1897; Bhagavat̂̂-sîtra, Bombay, 1918, p. 112; Arthasâstra, i. s. 2.
"Bibhutibhusan Datta, "The scope and development of Hindu Gaṇita," Indian Historical Quarterly, V, 1929, pp. 479-512.
ganita was great. Astronomy (jyotisa) became a separate subject and geometry (kesetra-ganita) came to be included within its scope. The subjects treated in the Hindu Ganita of the early renaissance period consisted of the following: ${ }^{1}$ Parikarma ("fundamental operations"), Vyavahâra ("determinations"), Rajju ("rope," meaning geometry), Râśs ("rule of three"), Kalâsavarna ("operations with fractions"), Yâvat tâvat ("as many as," meaning simple equations), V'arga ("Square," meaning quadratic equations), Gbana ("Cube", meaning cubic equations), Varga-varga (biquadratic equations) and Vikalpa ("permutations and combinations").

Thus ganita came to mean mathematics in general, while 'finger arithmetic' as well as 'mental arithmetic' were excluded from the scope of its meaning For the calculations involved in ganita, the use of some writing material was essential. The calculations were performed on a board ($p a t i t \hat{c}$) with a piece of chalk or on sand (dlivili$)$ spread on the ground or on the pattî. Thus the terms pâtî-ganita ("science of calculation on the board") or Thûlî-karma ("dust-work"), came to be used for higher mathematics. Later on the section of ganita dealing with algebra was given the name Bija-ganita. The first to effect this separation was Brahmagupta (628), but he did not use the term Bija-ganita. The chapter dealing with algebra in his Brâbma-spbuta-siddbânta is called Kuttaka. Srîdharâcârya (750) regarded Pâtî-ganita and Bija-ganita as separate and wrote separate treatises on each. This distinction between Pâtitganita and Bîjaganita has been preserved by later writers. $\$$
γ^{γ} Having given a brief survey of the position and scope of mathematics in Ancient India, we turn to the

[^4]purpose in hand-that of giving a connected account of the development and growth of the different branches of mathematics. The numeration system of the Hindus will engage our attention first.

3 NUMERAL TERMINOLOGY

\rightarrow Scale of Notation. We can definitely say that from the very earliest known times, ten has formed the basis of numoration in India. ${ }^{1}$ In fact, there is absolutely no trace of the extensive use of any other base of numeration in the whole of Sanskrit literature. It is also characteristic of India that there should be found at a very early date long series of number names for very high numerals. While the Greeks had no terminology for denominations above the myriad (10^{4}), and the Romans above the mille (10^{3}), the ancient Hindus dealt freely with no less than eighteen denominations. In modern times also, the numeral language of no other nation is as scientific and perfect as that of the Hindus.

In the Yajurveda Sanibitâ (Vajasaneyî) ${ }^{2}$ the following list of numeral denominations is given: Eika (r), dása (10), sata (100), sabasra (1000), ajuta (10,000), niyuta (100,000), prayuta ($\mathrm{x}, 000,000$), arbuda ($10,000,000$), nyarbuda (100,000,000), samudra ($1,000,000,000$), madhya (10,000,000,000), anta (100,000,000,000), parârdba ($1,000,000,000,000$). The same list occurs at two places in the Taittirîya Sambitâ. ${ }^{3}$ The Maitrâyani i^{4}
${ }^{1}$ Various instances are to be found in the Rgveda; noted by Macdonell and Keith, Vedic Index, Vol. I, p. 343.
${ }^{2}$ Yajurveda Sàmbitâ, xvii. 2.
${ }^{3}$ iv. 40. 11. 4; and vii. 2. 20. 1.
*ii. 8. 14; the list has ayuta, prayuta, then again ayuta, then nyarbuda, samudra, madbya, anta, parârdba.
and Kâthaka ${ }^{1}$ Sambitâs contain the same list with slight alterations. The Pañcavimisa Brâbmana has the Yajurveda list upto nyarbuda inclusive, and then follow nkharva, vâdara, aksiti, etc. The Sânkbyâyana Srauta Sutra continues the series after nyarbuda with nikbaria, samudra, salila, antya, ananta ($=10$ billions). Each of these denominations is to times the preceding, so that they were aptly called dasagunottara saimjñ \hat{a}^{2} ("decuple terms").

Coming to later times, i.e., about the sth century B.C., Successful attempts friade to continue the series of number names based on the centesimal scale. ${ }^{\text {² }}$ We quen a welliknown Buddhist work of the first century B.C.,, between Arjuna, the mathematician, and Prince Gautama (Bodhisattva):
"The mathematician Arjuna asked the Bodhisattva, ' O young man, do you know the counting which goes beyond the koti on the centesimal scale?

Bodhisattva: I know.
Arjuna: How does the counting proceed beyond the koti on the centesimal scale?

Bodhisattva: Hundred kotis are called ayuta, hundred ayutas niyuta, hundred niyutas kanikara, hundred kankearas vivara, hundred vivaras kṣobbya, hundred kṣobhyas vivâba, hundred vivâhas utsaniga, hundred utsangas babula, hundred babulas nâgabala, hundred nâgabalas titi-

[^5]lambha, hundred titilambbas vyavastbâna-prajñapti, hundred vyavasthâna-prajñaptis betubila, hundred betubilas karabu, hundred karabus betvindriya, hundred betvindriyas samaptalambha, hundred samâpta-lambbas gananâgati, hundred gananâgatis niravadya, hundred niravadyas mudrâ-bala, hundred mudrâ-balas sarva-bala, hundred sarva-balas visamijnâagati, hundred risamijnâa-gatis sarvajñâ, hundred sarvajñâs vibbutangamâ, hundred vibbutangamâs tallaksana. ${ }^{1 "}$

Another interesting series of number names increasing by multiples of 10 millions is found in Kâccâyana's Pali Grammar." 'For example: dasa (10) multiplied by dasa (10) becomes sata (100), sata (ioo) multiplied by ten becomes sahassa (1,000), sabassa multiplied by ten becomes dasa sabassa (10,000), dasa sabassa multiplied by ten becomes sata sabassa ${ }^{8}$ (100,000), sata sabassa multiplied by ten becomes dasa sata sahassa ($1,000,000$), dasa sata sabassa multiplied by ten becomes $k=0 t i$ ($10,000,000$). Hundred-hundredthousand kotis give pakoti. ${ }^{4}$ In this manner the further terms are formed. What are their names? handred hundred-thousands is koti, hundred-hundred-
${ }^{1}$ Thus tallaksana $=10^{53}$.
This and the following show that the Hindus anticipated Archimedes by several centuries in the matter of evolving a series of number names which "are sufficient to exceed not only the number of a sand-heap as large as the whole earth, but one as large as the universe."

Cf. 'De barenae numero' in the 1544 edition of the Opera of Archimedes; quoted by Smith and Karpinski, Hindu Arabic Numerals, Boston, 19ir, p. 16.
" "Grammaire Pâlie de Kâccâyana," Journ. Asiatique, Sixieme Serie, XVII, 1871, p. 411. The explanations to sûtras $\rho 1$ and 52 are quoted here.
${ }^{3}$ Also called lakkba (laksa).
${ }^{4}$ Also called koti-koti, i.e., $(10,000,000)^{2}=10^{14}$. The following numbers are in the denomination koti-koti. Compare the Anujogadvâra-sû̀ra, Sûtra 142.
thousand kotis is pakoti, hundred-hundred-thousand pukotis is kotitippakoti, hundred-hundred-thousand kotippock:otis is nellutu, hundred-hundred-thousand nabutas is mimnalutita, hundred-hundred-thousand ninnabutas is ak-k:loblhini; similarly we have bindu, abbuda, nirabbuda, chachloc, ababa, atatı, sousandlika, uppalu, kumuda, pundarika puduma, kutlicinu, malkâkathâna, asañkl.lyeya."1

In the - Inuyogadrâra-sutra ${ }^{2}$ (c. 1oo B.C.), a Jaina canonical work written before the commencement of the Christian era, the total number of human beings in the world is given thus: "a number which when expressed in terms of the denominations, koti-koti, etc., occupies twenty-nine places (stbina), or it is beyond the 24th place and within the 3 2nd place, or it is a number obtained by multiplying sixth square (of two) by (its) fifth square, $\left(\right.$ i.e., $\left.2^{96}\right)$, or it is a number which can be divided (by two) ninety-six times." Another big number that occurs in the Jaina works is the number representing the period of time known as Sirsuprabelika. According to the commentator Hema Candra (b. 1089) ${ }^{3}$, this number is so large as to occupy 194 notational places (anika-sthanehir). It is also stated to be $(8,400,000)^{28}$. $\mathbb{4}$

Notational Places. Later on, when the idea of place-value was developed, the denominations (number names) were used to denote the places which unity would occupy in order to represent them (denominations) in writing a number on the decimal scale. For instance, according to Āryabhatta I (499) the denominations are the names of 'places'. He says: "Eka (unit) daśa (ten), śata (hundred), sabasra (thousand), ayuta (ten thousand), nijuta (hundred thousand), prayuta (million),

[^6]koti (ten million), arbuda (hundred million), and vrnda (thousand million) are respectively from place to place each ten times the preceding." ${ }^{1}$ The first use of the word 'place' for the denomination is met with in the Jaina work quoted above.

In most of the mathematical works, the denominations are called "names of places," and eighteen of these are generally enumerated. Srîdhara (750) gives the following names: ${ }^{2}$ eka, daśa, śata, sabasra, ayuta, laksa, prayuta, koti, arbuda, abja, kbarva, nikharva, mabâsaroja, satixx, saritâ-pati, antya, madhya, parârdba, and adds that the decuple names proceed even beyond this. Mahâvîra (850) gives twenty-four notational places: ${ }^{3}$ eka, daśa, śata, sahasra, dása-sabasra, laksa, daśa-laksa, koti, dasa-koti, sata-koti, arbuda, nyarbuda, kbarva, mabâkbarva, padma, mahâ-padma, ksoni, mabâ-ksoni, śanikha, mabâ-sanikha, kssiti, mabâ-ksiti, ksobba, mabâksobba.

Bhâskara II's (inso) list agrees with that of Srîdhara except for mahâsaroja and saritâpati which are replaced by their synonyms mahapadma and jaladbi respectively. He remarks that the names of places have been assigned for practical use by ancient writers. ${ }^{4}$

Nârâyana (1356) gives a similar list in which abja, mabâsaroja and saritapati are replaced by their synonyms saroja, mabâbja and pârânâra respectively.

Numerals in Spoken Language. The Sanskrit names for the numbers from one to nine are: eka, dui, tri, catur, pañca sat, sapta, aṣta, nava. These with the
${ }^{1} A$, ii. 2.
${ }^{2}$ Tris, R. 2-3; the term used is dasagunâb samijinâạ, i.e., "decuple names."
${ }^{3}$ GSS, i. 63-68; "The first place is what is known as elea; the second is dasa" etc.
${ }^{4}$ L, p. 2.
numerical denominations already mentioned suffice to express any required number. In an additive system it is immaterial how the elements of different denominations, of which a number is composed, are spoken. Thus one-ten or ten-one would mean the same. But it has become the usual custom from times immemorial to adhere to a definite mode of arrangement, instead of speaking in a haphazard manner.
\checkmark ln the Sanskrit language the arrangement is that when a number expression is composed of the first two denominations only, the smaller element is spoken first, but when it is composed also of higher denominations, the bigger elements precede the smaller ones, the order of the first two denominations remaining as before. Thus, if a number expression contains the first four denominations, the normal mode of expression would be to say the thousands first, then hundreds, then units and then tens. It will be observed that there is a sudden change of order in the process of formation of the number expression when we go beyond hundred. The change of order, however, is common to most of the important languages of the world. ${ }^{1}$ Nothing definite appears to be known as to the cause of this sudden change.

The numbers 19, 29, 39, 49, etc., offer us instances of the use of the subtractive principle in the spoken language. In Vedic times we find the use ${ }^{2}$ of the terms ekânna-vimísati (one-less-twenty) and ekânnacatvârimśsat (one-less-forty) for nineteen and thirty-nine respectively. In later times (Sûtra period) the ekânna was changed to eleona, and occasionally even the prefix eka
${ }^{1}$ Only in very few languages is the order continuously descending. In English the smaller elements are spoken first in the case of numbers upto twenty only.
${ }^{2}$ Taittiriya Sambitâ, vii. 2. 11.
was deleted and we have ûna-vimisati, una-trimisat, etc.forms which are used upto the present day. The alternative expressions nava-daśa (nine-ten), nava-vimisati (nine-twenty), etc., were also sometimes used. ${ }^{1} \downarrow$

Practically the wholc of Sanskrit literature is in verse, so that for the sake of metrical convenience, various devices were resorted to in the formation of number expressions, the most common being the use of the additive ${ }^{2}$ method. The following are a few examples of common occurrence taken from mathematical works:

Subtractive: (1) the number 139 is expressed as $40+100-1 ;{ }^{3}$
(2) 297 is expressed as $300-3 .{ }^{4}$

Multiplicative:
(1) the number eighteen is expressed as 2×9; ${ }^{5}$
(2) twenty-seven is expressed as 3×9 and 12 as $2 \times 6 ;{ }^{6}$
(3) 28,483 is expressed as $83+400+$ (4000×7).
${ }^{1}{ }^{1} 9=$ nava-daśa (Vâjasaneyî Sà̀bitâ, xiv. 23; Taittirìya Sàmbitâ, xiv. 23. 30).
$29=$ nava-vimisati (Vâjasaneyî Sàmbitâ, xiv. 31).
$99==$ nava-navati (Rgveda, i. 84. 1.3).
${ }^{2} 3339=$ trịni satâni trisabasrâni trimisa ca nava ca, i.e., "three hundreds and three thousands and thirty and nine." (Rgveda, iii. 9. 9; also x. 52. 6.)
h GSS, i. 4: caitvarimisáscailkona satâdbika ("forty increased by one-less-hundred').
${ }^{4}$ L, p. 4, Ex. 1: Trihinasya śata-trayasya ("three less three hundred").
${ }^{5} \hat{A}$, ii. 3: dvi-navaka.
"Tris, Ex. 43: tri-navaka ("three nines"), dvi-sat ("two sixes").
${ }^{7}$ GSS, i. 28: tryasîtimiśrậ̂i catuśsatâni catussabasraghna naganvitâni ("cighty-three combined with four hundred and four thousand multiplied by seven").

The expression of the number 12345654321 in the form "beginning with I upto 6 and then diminishing in order" is rather interesting. ${ }^{1}$

What are known as alphabetic and word numerals were generally employed for the expression of large numbers. A detailed account of these numerals will be given later on.

s. THE DEVELOPMENT OF NUMERICAL SYMBOLISM

Writing in Ancient India. It is generally held that numerical symbols were invented after writing had been in use for some time, and that in the early stages the numbers were written out in full in words. This seems to be true for the bigger units, but the signs for the smaller units are as old as writing itself.

Until quite recently historians were divided as to the date when writing was in use in India. There were some who stated that writing was known even in the Vedic age, but the majority following Weber, Taylor, Bühler and others were of opinion that writing was introduced into India from the West about the eighth century B.C. These writers built up theories deriving the ancient Indian script, as found in the inscriptions of Λ śoka, from the more ancient writing discovered in Egypt and Mesopotamia. The Semitic origin was first suggested by Sir W. Jones, in the year 1806, and later on supported by Kopp (1821), Lespius (1834), and many others. The supporters of this theory, however, do not completely agree amongst themselves. For, whilst W. Deccke and I. Taylor derive the Indian script from a South-Semitic script, Weber and Bühler derive

[^7]it from the Phoenician or a North-Semitic script. ${ }^{1}$ Bühler rejects the derivation from a South-Semitic script, stating that the theory requircs too many assumptions, and makes too many changes in the letter forms to be quite convincing. He, however, supports Weber's derivation from a North-Semitic script and has given details of the theory. ${ }^{2}$ Ojha" has examined Bühler's theory in detail and rejects it stating that it is fanciful and that the facts are against it. He states that only one out of the twenty-two letters of the Phoenician (North-Semitic) script resembles a phonetically similar Brâhmî letter. He supports his argument in a most convincing manner by a table of the two alphabets, with phonetically similar letters arranged in a line. He -further shows that following Bühler's method of derivation almost any script could be proved to be the parent of another. ${ }^{4}$

Other scholars, who held that writing was known in India as early as the Vedic age, based their conclusion upon literary evidence. The l'asistso Dharmasutra, which originally belonged to a school of the Kgveda offers clear evidence of the use of writing in the Vedic pcriod. Vaśisṭha (xvi. 10, 14-15) mentions written documents as legal evidence, and the first of these sûtras
${ }^{1}$ For minor differences in the theories set up by different writers and also for several other theories, see Bühler, Palaeography, p .9 ; the notes give the references.
${ }^{2}$ Bühler, l.c., pp. 9 f .
${ }^{8}$ PLM, pp. 18-31.
${ }^{4}$ Recently several other eminent historians have exprecsed their disagreement with Bühler's derivation. See Bhandarkar, "Origin of the Indian Alphabet," Sir Asutosh Mukerji Jubilee Volumes, Vol. III, 1922, p. 493; H. C. Ray, "The Indian Alphabet," "IA, III, 1924, p. 233; also Mobenjo-daro and the Indus Valley Civilisation, 1931, p. 424, where the following remark occurs: "I am convinced that all attempts to derive the Brâhmî alphabet from Semitic alphabets were complete failures."
is a quotation from an older work or from traditional lore. Another quotation from the Rgveda itself (x. $\quad 6 \mathbf{2}$. 7), which refers to the writing of the number eight is: Sabasrami me dadato astakarnyah, meaning "gave me a thousand cows on whose ears the number eight was written." The above interpretation, although doubted by some scholars, seems to be correct, as it is supported by Pânini. ${ }^{1}$ Moreover, the practice of making marks on the ears of cows to denote their relation to their owners, seems to have been prevalent in ancient India. ${ }^{2}$

At another place in the Rgveda (x. 34), we find mention of a gambler lamenting his lot and saying that "having staked on one, ${ }^{3}$ he lost his faithful wife...." Again, in the Atharvaveda (vii. so, ($s 2$), s) we find the mention of the word "written amount"." Pânini's grammar (c. 700 B.C.) contains the terms yavanâni ("Semitic writing") and the compounds lipikâra and libikara (iii. 2. 21) (writer), which show that writing was known in his time. In addition to these passages, the Vedic works contain some technical terms, such as aksara (a letter of the alphabet), kânda (chapter), patala, grantha (book), etc., which have been quoted as evidence of writing. These specific references to written documents when considered with the advanced state of Vedic civilisation, especially the high development of trade and complicated monetary transactions, the use of prose in the Brâbmanas, the collection, the methodical arrangement, the numeration, the analysis of the Vedic texts

[^8]and the phonetic and lexicographic researches found in the Vedanigas, form sufficient grounds for assigning a very early date to the use of writing in India. ${ }^{1}$ Although these arguments possess considerable weight, they were not generally recognised, as will always happen if an argumentum ex impossibili is used. R. Shamasastry (1906) has published a derivation based upon ancient Indian hieroglyphic pictures which he believes to be preserved in the tântric figures. His learned article has not attracted the attention it deserves.

Recent discoveries have however, sounded the death knell of all theories deriving the Indian script from foreign sources. Pottery belonging to the Megalithic ($c .1,5 \infty 0$ B.C.) and Neolithic (6,000 B.C.- 3,000 B.C.) ages, preserved in the Madras Museum, has been found to be inscribed with writing. And according to Bhandarkar ${ }^{2}$ five of these marks are identical with the Brâhmî characters of the time of Aśoka. The excavations at Mohenjo-daro and Harappa have also brought to light written documents, seals and inscriptions, dating from before 3,000 B.C. Thus it would be now absurd to trace the Brâhmî to any Semitic alphabet of the eighth or ninth century B.C.
Earliest Numerals. The numerical figures contained in the seals and inscriptions of Mohenjo-daro, have not been completely deciphered as yet. The vertical stroke and combinations of vertical strokes arranged side by side, or one group below another, have been found. The numbers one to thirteen seem to have been written by means of vertical strokes, probably, as in the figures given below: ${ }^{\text {s }}$

[^9]| 1 | 1 | III | III | III II | \|1111 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IIIII | 1 | i | III | IIII | IIIII |
| IIIIII | if | ii) | \% | ${ }^{\prime \prime \prime}$ | ":3 |

It is not yet quite certain whether there were special signs for greater numbers such as 20,30 , the bundreds and higher numbers. There are numerous other siens which are believed to represent such numbers, but there seems to be no means of finding, out the true values of these signs at present.

Between the finds of Mohenjo-daro and the jnseriptions of Asoka, which contain numerals, there is a gap of 2,700 years or more. aritten documents containing numerals and belonging to whis intervening period have been so far disct The litury evideme, however, points to the use of numerical symbols at a very carly date.] Therence to the writing of the number eight in the Reprede and the use of namerical denominations as big, as 10^{13} in the J'ajurvedel Sambita and in several other Vedic works, quoted before, offer sufficient grounds for concluding that, even at that remote period, the llindus must have possessed a well developed systen of numerical symbols. The conclusion is supported by the fact that the Greek and the Ronzan numerical terminologies did not go beyond 10^{4}, even after writing and a satisfactory numerical symbolism had been in use for several centuries.

The writings on the inscriptions of Asoka show that in his time the use of numerical symbols in India
was quite common.' The variations in the forms of the numerical signs suggest that the symbols had been in use for a long time.

Most of the inscriptions of λ soka and the following period are written in ay script which has been called Brâlmi, whilst some are in a different script known as Kharosthin. The forms of the numerical symbols in the two scripts are different. consider them separately.

3.2.1 kHaroṣṭî numerals

\rightarrow Farly Qecurcesed 'The Klurosthî lipi is a script written from right to left. The majority of the Kharosthì inscriptions have been found in the ancient province of Gàndhâra, the modern castern Afghanistan and the northern Punjab. It was a popular script meant for clerks and men of business. The period during which it seems to have been used in India extends from the fourth century B.C. to the third century A.D. In the Kharosthî inscriptions of λ śoka only four numerals have been found. These are the primitive vertical marks for one, two, four, and five, thus:

1	2	4	5
$/$	$/ / / /$	$/ / I / I$	

More developed forms of these numerals are found in the inscriptions of the Sakas, of the Pârthians and

[^10]of the Kuṣanas, of the ist century B.C. and the ist and 2nd centuries A.D., as well as in other probably later documents. The following are some of the numerals of this period:

1	2	3	4	!	6	7	8
1	1	1	x	IX	IIX	IIIX	$x \times$
10	20	40	50	60	70		80
7	3	33	733	333	2333		3333
	100	200	300	122		274	
	て1	\} 1	Y 11	11311		3335	14

Forms and their Origin. It cannot be satisfactorily explained why the number four, which was previously represented by four vertical lines came to be represented by a cross later on. The representation of the numbers five to eight follows the additive principle, with four as the base. This method of writing the numbers 4 to 8 is not met with in the early records of the Semites. We do not know how the number nine was written. It is very probable that it was written
as $1 \times \times$, i.e., $4+4+1$ (reading from right to left, the order being the same as that of the script). The number 10 has an entirely new sign. The question why it was not written as $\| X X$, or why the base X (4) was abandoned cannot be satisfactorily answered.

It is accepted by all that the Kharosthhî is a foreign script brought into India from the west. The exact period at which it was imported is unknown. It might have been introduced at the time of the conquest of the Punjab by Darius (c. 500 B.C.) or earlier. ${ }^{1}$ The numerals given above undoubtedly belong to this script as they proceed from right to left.

The old symbols of the inscriptions of Asoka, however, seem to have undergone modification in India, especially the numbers from 4 to 19 . The symbols for four and ten seem to have been coined in India, in order to introduce simplification and also to bring the Kharosṭhì numeral system in line with the Brâhmî notation already in extensive use. The
symbol X seems to have been derived by turning the

Brâhmî symbol \uparrow which represents 4 in the inscriptions of Asoka. The inclined cross to represent 4 is found in the Nabatean numerals in use in the earlier centuries of the Christian Era. ${ }^{2}$ The Nabatean numerals resemble the Kharosṭhî also in the use of the scale of twenty and in the method of formation of the hundreds. It is possible that the Semites might have borrowed the Kharosthî symbol for 4, although it is not unlikely, as Bühler thinks, that the symbol might have been invented independently by both nations.

[^11]The numeral (io) closely resembles the letter a of the Brahmi alphabet. The symbol for twenty 3 3 appears to be a cursive combination of two tens.

It resembles one of the carly Phoenician forms found in the papyrus Blacas ${ }^{1}$ (5 th century B.C.). The mode of expressing the numbers 30,40 , etc., by the help of the symbols for 10 and 20, is the same as amongst the carly Phocnicians and Aramacans.

The symbel for 100 resembles the letter tia or the of the Brẩhmi script, to the right of which stands a vertical stroke.

The symbols for 200,300 , etc., are formed by writing the symbols for 2,3 , cte., respectively to the right of the symbol for 100 . This evidently is the use of the multiplicative principle, as is found amongst the early Phoenicians."

The formation of other numbers may be illustrated by the number 274 which is written with the help of the symbols for $2,100,20$, 10 and 4 arranged as

$x 7333\} 11$

in the right to left order. The 2 on the right of 100 multiplies 100 , whilst the numbers written to the left are added, thus giving 274 .

The ancient Kharoṣthî numérals are given in Table I.

[^12]
BRÂHMÎ NLIMERALS

- Dasky ©ecurcence and Fermer. The Brahmin inscriptions are found distributed all over India. The Brahme script was, thus, the national script of the ancient Ilindus. It is undoubtedly an invention of the Brahmanas. The carly grammatical and phonctic researches seem to have resulted in the perfection of this script about r,ooo B.C. or carlicr. The Brabmin numerals are likewise a purdy Indian invention. Antempts have been made by seaeral writers of note to coolve a theory of a foreign orign of the numerals, but all thase attenpts were utter failures.' 'These theorics will !e dalt with at their proper places. Due (1) the lack of carl! documonts, we are not in a pesition "to say what exatly wew the original forms of the Brahmî symbols. (our knowledge of these symbols goes back to the time of King Isoka (c. 300 B.C..) whose vast dominions included the whole of India and extended in the north upto Central Asi:t. The forms of these symbols are:
4
6
so

200)

t E,b G.j d.N.TA

The next important inscription containing numerals is found in a cave on the top of the Nânâghât hill in Central India, about seventy-five miles from Poona. The cave was made as a resting place for travellers by order of a King named Vediśrî, a descendant of King Sâtavahana. The inscription contains a list of gifts made on the occasion of the performance of several yajnas or religious sacrifices. It was first deciphered
${ }^{1}$ Cf. Langdon's opinion in Mobenjo-daro and the Indus Valley' Civilisation, ch! xxiii.
by Pandit Bhagavanlal Indraji who has given the interpretation of the numerical symbols. ${ }^{1}$ These occur at about thirty places, and their forms are as below:

1		4	6	7	9	10
-		¢.7	4	$?$	$?$	\propto, \propto
20	80	100	200	300	400	700
0	©	($\%$	17	27	ชา
	1,000	4,000	6,000	10,000	20,000	
	T	7	Fp	FCo	To	

A number of inscriptions containing numerals and dating from the first or the second century A.D. are found in a cave in the district of Nasik in the Bombay presidency. These contain a fuller list of numerals. The forms ${ }^{2}$ are as follows:

1	2	3	4	s	6	7	8
-	$=$	¥	*,*	P3	5	9	4,y
9	10	20	40	70	100	200	s00
?	©.o6	θ	\times	x	7	/	\%
	1,000	2,000	3,000	4,000	8,000	70,000	
	9	9	9	7	98	91	

${ }^{1}$ "'On Ancient Nâgarî Numeration; from an inscription at Nânâghât," Journ. of the Bombay Branch. of the Royal Asiatic Society, 1876, Vol. XII, p. 404.
${ }^{2}$ E. Senart, "The inscriptions in the caves at Nasik," EI, Vol. VIII, pp. s9-96; "The inscriptions in the cave at Karle," EI, Vol. VII, pp. 47-74.

Even after the invention of the zero and the placevalue system, the same numerical symbols from i to 9 , continued to be employed with the zero to denote numbers. Thus the gradual development of these forms can be easily traced. This gradual change from the old system without place-value to the new system with the zero and the place-value is to be met with in India alone. All other nations of the world have given up their indigenous numerical symbols which they had used without place-value and have adopted the zero and a new set of symbols, which were never in use in those countries previously. This fact alone is a strong proof of the Hindu origin of the zero and the placevalue system.

The numbers 1, 2 and 3 of the Brâhmî notation were denoted by one, two and three horizontal ${ }^{1}$ lines placed one below the other. These forms clearly distinguish the Brâhmî notation from the Kharosṭhî and the Semitic systems.

It cannot be said why the strokes were horizontal in Brâhmî and vertical in Kharosṭhî and Semitic writings, just as it cannot be said why the writing proceeded from left to right in Brâhmî and from right to left in Kharosṭhî and Semitic writings. It appears to us that the Brâhmî and the Kharoṣthî (Semitic) numerals have always existed side by side and it cannot be definitely said which of these is the earlier. The difference in writing the symbols 1 to 3 , seems to be due to the inherent difference between the two systems of writing. The principles upon which numerical signs are formed in the two systems are quite different. 4

Difference from other Notations. In the Brâhmî

[^13]there are separate signs for each of the numbers 1,4 to 9 and $10,20,30,40,50,60,70,80,90,100,200,300, \ldots$ 1000,2000 , etc., while in the oldest Kharosthî and in the earliest Semitic writings, the Hieroglyphic and the Phoenician, the only symbols ate those for $1,10,20$ and 100.

The Hieratic and the Demotic numerals, however, resemble the Brâhmî in having nineteen symbols for the numbers from I to 100 , but the principle of formation of the numbers $200,300,400,2,000,3,000$ and 4,000 are different, as will appear from 'Table $11(c)$. The method of formation of intermediate and higher numbers is also different in the two systems. While the Bràhmî places the bigger numbers to the left, the arrangement is the reverse of this in the Kharosthit and Semitic writings. Thus the number 274, is written in Brahmî with the help of the symbols for 200,70 and 4 as (200) (70) (4), while in the Kharostht and the Semitic numerals it is written as (4) (70) (200). ${ }^{1}$

Theories about their Origin. Quite a large number of theories have been advanced to explain the origin of the Brâhmî numerals. Points of resemblance have been imagined between these numerals and those of other nations. Recourse has been taken by writers to the turning, twisting, adding on or cutting off of parts of the numerals of other nations to fit their pet theories. It is needless to say that each of these theories had its own supporters who were quite convinced of the correctness of their explanations. We give below the outlines of some of these theories:

1. Cunningham ${ }^{e}$ belicved that writing had been known in India from the earliest known times, and

[^14]that the earliest alphabet was pictographic. He suggested that the Brahmi script was derived from the carly pictographic writing. The theory is cevidently capable of extension to the numerical signs. Later epigraphists, however, discarded the hypothesis as it appeared too fanciful to them. Cunningham's bold hepothesis regarding the antiquity of writing in India has been mone than justified by the recent discovery of the use of a quasi-pictographic soript on certain seals and in inseriptions belonging to the fourth millenium B.C. found amongst the excavations at Mohenjo-daro and Harappa. His theory has been revived by Langdon who is of opinion that the Brahmi alphane could be derived from the pienographs of Mohenjo-daro. ${ }^{1}$ The theory is incomplete as the writings of Mohenjo-dato have not been completely deciphered as yet. It can be called a guess only. As regards the evolution of the Brâhmit numerals, it may be stated that it is at present extremely difficult to differentiate the numerical symbols from the Mohenjo-daro script. If the surmise that the figures, given on $p .19$, are numerical symbols be correct, it will not be possible to develop a theory deriving the Brâhmî numerals from them.
2. Bayle ${ }^{2}$ asserted that the principles of the Brâhmi system have been derived from the hieroglyphic notation of the legyptians, and that the majority of the Indian symbols have been borrowed from Phoenician, Bactrian, and Akkadean figures or letters. As has been already remarked ${ }^{3}$ the principles of the Brâhmi and the hicroglyphic systems are entirely diffetont and
${ }^{1}$ Mobenjo-daro etc., Chap. xii. This view is strongly supported by Hunter, l.c., p. 490.
${ }^{2}$ Journal of the Royal Asiatic Soc., XV, part I, reprint, London, $1882, \mathrm{pp} .12$ and 17 . The theory was supported by Taylor, The Alpluabel, London, 1883, Vol. 11, pp. 265-66.
${ }^{3}$ See pages 27-8.
unconnected. The reader will find the hieroglyphic and the Brâhmî systems shown together in Tables II $(a),(b)$, (c), and convince himself of the incorrectness of Bayley's assertion. Moreover, the assumption that the Hindus borrowed from four or five different, partly very ancient and partly more modern, sources, is extremely difficult to believe. Regarding the resemblance between the Bactrian and Akkadean numbers and the Brâhmî forms postulated by Bayley, Bühler ${ }^{1}$ remarks that in four cases (four, six, seven and ten) the facts are absolutely against Bayley's hypothesis. Some writers have also criticized Bayley's drawings as being affected by his theory. ${ }^{2}$ Under these circumstances his derivation has to be rejected.
3. Burnell ${ }^{3}$ pointed out the general agreement of the principles of the Indian system with those of the Demotic notation of the Egyptians. He asserted a resemblance between the Demotic signs for 1 to 9 and the corresponding Indian symbols, and put forward the theory that the Hindus borrowed these signs and later on modified them and converted them into aksaras (letter forms).
4. Bühler ${ }^{3}$ has put forward a modification of Burnell's theory. He states, "It seems to me probable that the Brâbma numerals are derived from the Egyptian Hieratic figures, and that the Hindus effected their transformation into Aksaras, because they were already accustomed to express numerals by words."

The above theories like the one examined before are not well founded. Tables II (a), (b), (c), show the Hieratic and Demotic symbols together with those of the Brâhmî. An examination of the Tables will reveal

[^15]that out of the nineteen symbols to represent the numbers from I to 100 , only the nine of the Brâhmî resembles the corresponding symbol of the Demotic or the Hieratic. There is absolutely no resemblance between any of the others. To base the derivation on a resemblance between the Hieratic s and the Brâhmî 7, as is sought to be done, is absurd. Likewise the changing and twisting of the Demotic and Hieratic forms to suit the theory is unacceptable.

That there is some resemblance between these systems in the fact that each employs the same number of signs, i.e., nineteen, for the representation of numbers upto hundred, cannot be denied. There is, however, a difference in the method of formation of the hundreds and the thousands. In the Brâhmî the numbers 200 and 300 or 2,000 and 3,000 , are formed by adding one matrkâ and two mâtreâs to the right of the symbol for hundred or thousand respectively, thus

$$
\begin{array}{ll}
\mathcal{Y}=100, & \mathcal{F}=200, \quad \mathcal{F}=300 \\
\boldsymbol{q}=1,000, \quad \boldsymbol{q}=2,000, \quad \boldsymbol{F}=3,000 .
\end{array}
$$

The numbers 400 and 4,000 are formed by connecting the symbol for 100 and 1,000 to the number y (4), thus

$$
\text { MA }=400 \text { and } 97=4,000
$$

In the Hieratic the corresponding symbols are:

$$
\begin{aligned}
& 4=2 \\
& 4=3 \\
& 4=4
\end{aligned} \quad \quad \begin{aligned}
& 4=100,
\end{aligned} \quad \text { y }=200,
$$

$$
\begin{aligned}
\text { 业 } & =300, \quad \text { III }=400, \quad \text { 峈 }=3,000, \quad=4,000 .
\end{aligned}
$$

It will be observed that in the Hieratic system the sign for one thousand is not used in the formation of the other thousands. The similarity in principle, even if it were complete, would not force us to conclude that one of these nations copied the other. The use of nineteen signs afforded the easiest and "probably the best method of denoting numbers. It is not beyond the limits of probability that what appeared easy to the Egyptians might have also independently occurred to the Hindus.

There are on the other hand some considerations which make us suggest that the Egyptians borrowed the principles of the Hieratic and the Demotic systems from outside, and probably from India-a hypothesis which is not a priori impossible as it has been shown that the numeration system of the ancient Hindus based on nineteen signs might have been perfected about 1,000 B.C. It is known that the ancient Egyptian system employed only four signs, those for $1,10,20$ and 100 . Why should there be a sudden change from the old system to one containing nineteen signs cannot be adequately explained except on the hypothesis of forcign influence. Further, the cursive forms for the numbers 2, 3 and 4 are unsuited to the right to left Hieratic or Demotic script. Although these figures are connected with the earlier hieroglyphic and Phoenician figures, yet it is possible that the cursive combinations might have been formed to obtain the nineteen signs necessary for the new system, under the influence of a people with a left to right script. It may be, however, asserted that the hypothesis of an Indian origin of the Hieratic system
is a mere suggestion. The two points noted above, by themselves, would not be enough, unless backed by other facts, to put forward a theory. It is expected that further discoveries will throw light on this point.

Relation with Letter Forms. It was suggested by James Princep, ${ }^{1}$ as early as 1838 , that the numerals were formed after the initial letters of the number names. But knowing the pronunciation of the number names, we find this not to be the case. Other investigators have held that the numeral signs were formed after the letters in the order of the ancient alphabet. Although we find that letters were used to denote numbers as early as the 8 th century B.C., ${ }^{2}$ and that many systems of letter-numerals were invented in later times ${ }^{8}$ and came into common use, yet we are forced to reject this hypothesis as resemblance between the old numerical forms and the letters in the alphabetic order cannot be shown to exist.

A peculiar numerical notation, using distinct letters or syllables of the alphabet, is found to have been used in the pagination of old manuscripts as well as in some coins and a few inscriptions. The signs are, however, not always the same. Very frequently they are slightly differentiated, probably in order to distinguish the signs with numerical values from those with letter values. The fact that these symbols are letters is also acknowledged by the name alesarapalli which the Jainas occasionally give to this system, in order to distinguish it from the decimal notation, the aikeapalli.4

[^16]The use of the letter system, the aksarapalit, suggests that the old Brâhmî numerals also might have been fashioned after the letters or the syllables of the Brâhmî alphabet.

A detailed examination of the numerals and the letter-forms has been made, and the result is tabulated below: ${ }^{1}$

The numerals 1,2 and 3 which were represented by horizontal strokes do not resemble any letter. They may have been derived from the mâtrkâ signs.
4. The earliest form of this numeral in the inscriptions of Asoka resembles the letter ka; the Nânâghât and Nâsik cave forms resemble the syllable plea. While this seems to have been the case with most of the later inscriptions, forms resembling the syllables pna, lka, $t k a, p k r$ are also to be met with.

5 . In most of the inscriptions it resembles the syllable $t r$, whilst forms resembling $t a, t a, p u, b u, r u, t r$, $t r a ̂, n a ̂, n a, b r, b r a$, and $b a$ are also found.
6. In most of the inscriptions it resembles phra, and in a few $p b r a \hat{a}, p h a, p h a \hat{a}, j a$ and $b \hat{a}$. The resemblance in this case is, however, not close enough.
7. In most of the inscriptions it resembles gra or $g u$, whilst n some it is like $g a$.
8. In most cases it resembles the syllable bra or brâ. In some inscriptions the form of this numeral cannot be said to resemble any letter or syllable.
9. The oldest forms of this numeral, those in the Nânâghât, the Kuṣâna and the Kṣatrapa inscriptions, cannot be said to resemble any letter or syllable. The later forms, however, resemble the letter u or om.

[^17]10. The oldest forms of this too do not resemble any letter or syllable, although later forms may be said to resemble $r y a, b a, b r, k b a$, and $t b u$ or $t b a .^{1}$
20. In all cases it resembles the letter tha.
30. Resembles the letter $l a$ in all cases.
40. Resembles pta or $s a$ in all cases.
so. It may be said to resemble the anunâika.
60. Resembles $p u, p a$ and $p r a$.
70. Resembles pu, pta, pra, pna, pnâ, or bra.
80. Resembles the upadbmânìya sign.
90. Resembles the upadhmanîya sign with a central cross.
100. Resembles the syllable $s u$ in most of the inscriptions. In some it resembles a.
Indraji's Theory. The above details show that,
I. No phonetical value can be assigned to the ancient forms of the numerals 6 and 10 , and 1,2 and 3;
2. There is a great deal of variation in the phonetical values of the other units, excepting the cases of 7 and 9; and
3. The phonetical values of the tens are determinate excepting that of 70 which offers great variation.

Thus leaving aside the symbols for 1,2 and 3 , we find that out of the 16 symbols, no resemblance to letterforms can be satisfactorily shown in the case of two (i.e., 6 and 10), ${ }^{2}$ and that in the case of three others (i.e., 7, 9 and 70) there are too many variations in the phonetical values, whilst in the case of the remaining II symbols, the phonetical values are more or less determinate. These facts led Pandit Bhagavanlal Indraji
${ }^{1}$ According to Bühler, l.c., p. 80.
${ }^{2}$ The resemblance to $j a$, sa, phra, etc. and thu, tha, etc., respectively, stated by Bühler (l.c., p. 80), does not appear to us to be close enough.
to put forward the hypothesis that the Brâhmi numerals are derived from the letters or syllables of the Brâhmi script. The Pandit, however, admitted his inability to find the key to the system, nor has it been found by any other scholar upto this time. The problem, in fact, appears to be insoluble, unless further epigraphic material is discovered to show the forms of the numerical symbols anterior to Aśoka. The Aśokan forms as well as those of later inscriptions are in a too well developed state, and are too far away from the time of invention of those symbols, to give us the desired information regarding their origin.

But of all the theories that have been advanced from time to time, that of Pandit Indraji seems to us to be the most plausible. The Hindus knew the art of writing in the fourth millennium B.C. They used numbers as large as 10° about 2,000 B.C., and since then their religion and their sciences have necessitated the use of large numbers. Buddha in the sixth century B.C. is stated to have given number names as large as 10^{53} and this number series was continued still further in later times. ${ }^{1}$ All these facts reveal a condition that would have been impossible unless arithmetic had attained a considerable degree of progress. It is certain that the Hindus must have felt the necessity of some method of writing these numbers from the earliest known times. It would not be, therefore, against historical testimony to conclude that the Hindus invented the Brâhmî number system. The conclusion is supported by the use, in writing numbers, of the matreâ, the anunâsika and the upadbmaniyu signs which are found only in the Sanskrit script and in no other script, whether ancient or modern. It is further strengthened by Indian tradition, Hindu, Jaina as well as Buddhist, which

[^18]ascribes the invention of the Brâhmî script and the numeral notation to Brahmâ, the Creator, and thereby claims it as a national invention of the remotest antiquity. ${ }^{1}$

Period of Invention. The invention of the system may be assigned to the period 1,000 B.C. to 600 B.C. As the Asokan numerical figures indicate that the system was common all over India, ${ }^{2}$ and that it has had a long history, the lower limit 1,000 B.C. is certainly not placed too early. On the other hand general considerations, such as the high development of the arts and the sciences, the mention of numerical signs and of 64 different scripts in ancient Buddhist literature, ${ }^{3}$ and the use of large numbers at a very early period, all point to the date of the invention of the system as being nearer to $\mathrm{I}, 000 \mathrm{~B} . \mathrm{C}$., if not earlier.

Resume. The strength of Pandit Indraji's hypothesis lies in the fact that out of the nineteen signs, eleven definitely resemble the letters or the signs of the Brâhmî alphabet. The resemblance is too striking to be entirely accidental. Moreover, it has been found that the numerical forms closely followed the changing forms of the letters from century to century. This is especially true in the case of the tens and shows that the writers of the ancient inscriptions knew the phonetical values of these symbols. The divergence from letter forms in the case of the signs for the units may be due to the

[^19]fact that they were the first to be invented and were in more common use, so that they acquired special cursive forms and did not follow the changes in the forms of the corresponding letters. We may now summarize the discussion given in this section by saying that (I) the Brâhmî numerical forms were undoubtedly of Indian origin, (2) the form of the tens were derived from certain letters or signs of the alphabet, and (3) the origin of the forms of the units is doubtful. It is probable that they, too, were fashioned after the letters of the alphabet, but there appears to be no means of justifying this assertion unless the forms of these numerals anterior to Asoka are discovered.

THE DECIMAL PLACE-VALUE SYSTEM

Important Features. The third and most important of the Hindu numeral notations is the decimal place-value notation. In this system there are only ten symbols, those called arika (literally meaning "mark") for the numbers one to nine, and the zero symbol, ordinarily called sûnya (literally, "empty"). With the application of the principle of place-value these are quite sufficient for the writing of all numbers in as simple a way as possible. The scale is, of course, decimal. This system is now commonly used throughout the civilised world. Without the zero and the place-value, the Hindu numerals would have been no better than many others of the same kind, and would not have been adopted by all the civilised peoples of the world. "The importance of the creation of the zero mark," says Professor Halsted, "can never be exaggerated. This giving to airy nothing, not merely a local habitation and a name, a picture, a symbol, but helpful power, is the characteristic of the Hindu race whence it sprang.

It is like coining the Nirvana into dynamos. No single mathematical creation has been more potent for the general on-go of intelligence and power." ${ }^{1}$

Forms. A large number of scripts differing from each other are in use in different parts of India today. The forms of the numerical signs in these scripts are also different. Although all the Hindu scripts are derived from a common source-the Brâhmî Script-yet the differences in the forms of the various modern Indian scripts are so great that it would have been difficult to establish any relation between them, if their previous history had not been known. The above remark applies to the numerical signs also, as will appear from a study of the numerical signs in the various vernaculars of India given in Table XV. The great divergence in the forms of the numerical symbols shows that in India, people already knew the use of the zero and the placevalue principle before the different scripts came into being, and that the numeral forms were independently modified in various parts of India, just as the letters of the alphabet were modified. And as the changes in the forms in different localities were independent of each other, so there has come about a great divergence in the modern forms. That this divergence already existed in the eleventh century is testified to by AlBîrûnî who says, "As in different parts' of India, the letters have different shapes the numerical signs, too, which are called anika, differ." ${ }^{2}$

Nagari Forms. The most important as well as the most widely used of the different symbols are those belonging to the Nâgari script. The present forms of these symbols are:
${ }^{1}$ G. B. Halsted, On the foundation and technique of Arithmetic, Chicago, 1912, p. 20.
${ }^{2}$ Alberuni's India, I, p. 74.
१, २, ३, ૪, ५, ६, ७, ८, ९, ○.

The gradual development of these figures from the Bfâhmî numerals is shown in Table XIV.

Epigraphic Instances. The following is a list of inscriptions and grant plates upto the middle of the tenth century, which contain numerals written in the decimal place-value notation. The numerals in the inscriptions and plates after this period, are always given in decimal figures.
I. 595 A.D. Gurjara grant plate from Sankheda, (EI, II, p. 19). The date Samvat 346 is given in the decimal placevalue notation.
*2. 646 A.D. Belhari Inscription, ($J A, 1863$).
*3. 674 A.D. Kanheri Inscription, ($J A, 1863$, p. 392).
4. 8th Century Ragholi plates of Jaivardhaṇa II, (EI, IX, p. 4I). The number 30 is written in decimal figures.
s. 725 A.D. Two Sanskrit Inscriptions in the British Museum, (IA, XIII, p. 250). The dates Samvat 78I ($=723$ A.D.) and Samivat 783 ($=725$ A.D.) are given in decimal figures.
*6. 736 A.D. Dhiniki copper plate grant, (IA, XII, p. iss). The date Vikrama Samvat 794 is given in decimal figures.
7. 753 A.D. Ciacole plates of Devendravarmana, (EI, III, p. 133). The number 20 is written in decimal figures.
8. 754 A.D. Râstrtrakûṭa grant of Dantidurga, (IA, XI, p. 108). The date Samvat 675 is given in decimal figures.
9. 791 A.D. Inscription of Sâmanta Devadatta, ($I A, \mathrm{XIV}, \mathrm{p} .35 \mathrm{r}$). The date Vikrama Samvat 847 is given in decimal figures.
10. 793 A.D. Daulatabad plates of Sarikargana, (EI, IX, p. 197). The date Saka 715 is given in decimal figures.
*II. 813 A.D. Torkhede plates, (EI, III, p. 53; also $I A, \mathrm{XXV}, \mathrm{p} .345)$. The date Saka Samvat 735 is given in decimal figures.
12. 8is A.D. Buchkalâ inscription of Nâgbhaṭa, ($E I$, IX, p. 198). The date Samivat 872 is given in decimal figures.
13. 837 A.D. Inscription of Bâuka (Rajputana Museum, PLM, p. 127; EI, XVIII, p. 87). The date Vikrama Samivat 894 is given in decimal figures.
14. 843 A.D. The inscriptions from Kanheri, No. 43 b., (IA, VIII, p. 133). The date Samvat 765 is given in decimal figures.
15. 851 A.D. The inscriptions from Kanheri, No. is, (Ibid). The date ${ }^{1}$ Samvat 775 is given in decimal figures.
16. 853 A.D. Pâṇ̣ukeśvara Plates of Lalitasuradeva, (IA, XXV, p. 177). The date Samvat 2I of the King's reign is given in decimal figures.
17. 860 A.D. Ghatiyala Inscription of Kakkuka (EI, IX, p. 277). The date Vikrama Samvat 918 is given in decimal figures.
${ }^{1}$ For correction of date see $I A, \mathrm{XX}, \mathrm{p} .42 \mathrm{I}$.
18. 862 A.D. Deogarh Jaina Inscription of Bhojadeva, (EI, IV, p. 309). The dates Vikrama Samvat 919 and the corresponding Saka Samvat 784 are both given in decimal figures.
19. 870 A.D. Gwalior inscription of the reign of Bhojadeva (Archaeological Survey of India, Report, 1903-4, plate 72). Although the date is not given, the slokas are numbered from 1 to 26 in decimal figures.
20. 876 A.D. Gwalior inscription of Allah, of the reign of Bhojadeva (EI, I, p. 159). The date Vikrama Samvat 933, as well as the numbers 270,187 and 50 are given in decimal figures.
21. 877 A.D. The inscriptions from Kanheri, No. 43a, (IA, XIII, p. 133). The date Samivat 799 is given in decimal figures.
22. 882 A.D. Pehava inscription (EI, I, p. 186). The date Samvat 276 (Srî Harṣa Era) is given in decimal figures.
23. 893 A.D. Grant plate of Balavarmana, ($E I$, IX, p. i). The date Vallabhî Samvat 574 is given in decimal figures.
24. 899 A.D. Grant plate of Avanîvarmana, ($E I$, IX, p. 1). The date Vikrama Samvat 956 is given in decimal figures.
25. 905 A.D. The Ahar stone inscription (Journ. United Provinces Hist. Soc., 1926, pp. 83 ff) contains several dates written in decimal figures.
26. 910 A.D. Râṣtrakûta grant of Krishna II (EI,

I, p. 53). The date is given in decimal figures.
27. 917 A.D. Sanskrit and old Canarese inscriptions, No. ${ }^{170}$, (I A, XVI, p. 174). The date Samvat 974 is given in decimal figures. The number 500 also occurs.
28. 930 A.D. Cambay plates of Govinda IV, (EI, VII, p. 26). The date Saka Samvat 852 is given in decimal figures.
29. 933 A.D. Sangli plates of Râștrakûta Govindarâja IV, (IA, XII, p. 249). The date Samvat 855 is given in decimal figures.
30. 951 A.D. Sanskrit and old Canarese inscriptions, No. 135, (IA, XII, p. 257). The date Samvat 873 is given in decimal figures.
31. 953 A.D. Inscription of Yaśovarmana, (EI, I, p. 122). The date Samvat iori is given in decimal figures.
32. 968 A.D. Siyadoni stone inscription (EI, I, p. 162). The inscription contains 2 large number of numerals expressed in decimal figures.
33. 972 A.D. Râștrakûta grant of Amoghavarṣa, (IA, XII, p. 263). The date Saka 894 is given in decimal figures.
Palaeographic evidences of the early use of the decimal place-value system of notation are found in the Hindu colonies of the Far East. ${ }^{1}$ The most important ones among these are the three inscriptions of

[^20]Srîvijaya, two found at Palembang in Sumatra, and the third in the island of Banka. These contain the dates 605,606 and 608 of the Saka Era (corresponding respectively to A.D. 683, 684 and 686) written in numerical figures. Another instance giving the date 605 Saka is the inscription of Sambor in Cambodia. In an inscription at Po Nagar in Champa, occurs the date 735 Saka ($=813$ A.D.).

Their Supposed Unreliability. The above list contains more than thirty undoubted epigraphic instances of the use of the place-value notation in India. G.R.Kaye, ${ }^{1}$ who believes in the theory of the nonHindu origin of the place-value notation, states that all the early epigraphic evidences of its use in India are unreliable. On the basis of the existence of a few forged grant plates he asserts that in the eleventh century "there occurred a specially great opportunity to regain confiscated endowments and to acquire fresh ones" and thereby concludes that all early epigraphic evidences must be unreliable. Such reasoning is obviously fallacious and needs no refutation.

Most of the copper plates are legal documents recording gifts made by rich persons or kings to Brâhmanas on religious occasions. The plates contain details as to the occasion for making the gifts, the niames of the donor and the donee, the description of the movable and immovable properties transferred by the gift, and the date of the gift which is always written out in full in words and very often in figures also. The forgeries may be of two kinds: (1) In the original documents, parts relating to either the names of the donor or the donee, or the description of the immovable property may have been obliterated by being beaten out and new

[^21]names or descriptions substituted. All such forgeries are easily detected, because of the uneven surface of the part of the plate that is tampered with and the difference in the writing. (2) An entirely new document may be forged. Such cases, though rare, are also easily detected, because there is obvious divergence as to the date recorded in the document, and that inferred on the basis of the forms of the characters used in the writing. Such forgeries are also marked by an obvious inferiority in execution, and inaccuracies in the statement of genealogies and other historical facts.

Epigraphists have so far found little difficulty in eliminating the spurious grant plates. It might be mentioned that the genuineness of the grant plates included in our list has not been questioned by any epigraphist. ${ }^{1}$

Kaye, in his article quoted above, has given a list of eighteen inscriptions and grant plates and eliminates all but the last two as forgeries. The arguments he has employed and the assertions of facts that he has made are in most cases incorrect and misleading, so that his conclusions cannot be accepted. As an instance of his method, we quote his criticism about the Gurjara grant plate, No. I in our list. He writes: "Dr. Bühler quotes this Gurjara inscription of the Chedi year 346 or A.D. 594 as the earliest epigraphic instance of the use of the decimal notation in India. (i) An examination
${ }^{1}$ If any of them is forged, the forgery is so good that it cannot be detected. The writing in such cases, if any, is so well forged as to be indistinguishable from that used in the period to which the plate is said to belong. Therefore, the evidence of these plates as to the method of writing numbers, cannot be rejected, even if they be proved to be spurious at some future date-a contingency which is very unlikely to use. It may also be noted that the list contains several stone inscriptions which cannot be spurious.
of the plate (Ep. Ind., II., p. 20) suggests the possibility that the figures were added some time after the plate was engraved. The date is engraved in words as well as in figures. It is 'three hundred years exceeded by forty-six.' The symbols are right at the end of the inscription from which they are marked off by a double bar in a most unusual manner. (ii) The figures are of the type of the period, but they were also in use much later, and in no other example are such symbols used with place-value. (iii). Also there are nine dates written in the old notation (Ep. Ind., V), e.g., there is another grant of the Gurjara of Bharoch in which the date Samvat 391 (i.e., A.D. 640) is given in the old notation. Again, there is no other Chedi date, at least before the eleventh century A.D., given in the modern (place-value) notation. (iv) There cannot be the remotest doubt as to the unsoundness of this particular piece of evidence of the early use of the modern system of notation in India."

The following remarks will show to the reader that Kaye's criticism and his conclusion are unfounded and invalid:
(i) An examination of the plate, (EI, II, p. 19), will convince every one about its genuineness. The writing is bold and clear, the numerical figures occur at the end, as they ought to be, immediately after the words 'three hundred years exceeded by forty-six.' They are separated from the written words by bars, just as they ought to be. There is absolutely nothing suspicious about this method of separation, as it is common custom in India to do so and occurs frequently. That it was the practice to write the date at the end of a document is well known. ${ }^{1}$ In fact, the numeral

[^22]figures of the date occasionally mark the end of the document. ${ }^{1}$ The double vertical bar, $\|$, is a sign of interpunctuation. Although punctuation marks have been in use in India from the earliest known times, yet their use did not become either regular or compulsory till very recent times. ${ }^{2}$ Different writers used the various marks differently. In inscriptions, the double vertical bar has been found at the end of sentences, half verses, verses, larger prose sections and documents. In the Junâr inscriptions it occurs after numerals and once after the name of the donor. ${ }^{3}$ In manuscripts, the practice of separating numbers by vertical bars is common. It is found in the Bakhshâlî Manuscript ${ }^{4}$ and in several others. Thus the occurrence of the numerals at the end and the inter-punctuation mark of the double vertical bar cannot form valid grounds for suspecting the document. The suggestion that the figures were added some time after the plate was engraved is absurd, as there appears to us no reason why one should take the trouble to add the figures when the date was already written in words.
(ii) Kaye admits that the figures are of the type of the period. His remark that they were in usé much later is incorrect. The Tables III-V and XII show that the use of three horizontal bars to represent 3 is not
${ }^{1}$ This is so in the Chârgâon plates of Huviṣka (Arch. Surve) Report, 1908-9, plate 56), in the Inscription of Rudradamana ($I A$, VIII, p. 42) and in others.
${ }^{2}$ There are some copper plate grants which do not contain any punctuation marks; see Būhler, l.c., p. 90.
${ }^{3}$ Bühler, l.c., p. 89.
${ }^{4}$ E.g., | $5|, 21 \mathrm{r} ;|2558|, 2 \mathrm{~V} ; 1330|, 17 \mathrm{v}$; instances such as these: |1|4|9|16|,16v; and |2|,|4|, etc., sv. are very common. Very often, isolated numbers are not separated. The double vertical bar also occurs before and after the words $u d \hat{a}$, satram, etc.
found after the eighth century. The figure for 4 used in our grant plate is not found after the sixth century, and the same is true for the figure for 6 . The forms of the numerical signs alone fix the date of the writing to the sixth century and not later.
(iii) The Cbedi Samuat is one of the thirty-four eras, whose use has been discovered in inscriptions and grant plates. The occurrence of nine dates in the Chedi Samvat, written in the old notation after this plate, does not prove the unsoundness of this particular piece of evidence, as Kaye would like us to conclude. It simply shows that in India too, the new system had to fight for supremacy over the older one just as in other countries. In Arabia the new system was introduced in the eighth century, but it did not come into common use until five or six hundred years later. In Europe we find that it was exceptional for common people to use the new system before the sixteenth century-a good witness to this fact being the popular almanacs. Calendars of 1s 57-96 have generally Roman numerals, while Koebel's Calendar of 1578 gives the Hindu numerals as subordinate to the Roman. ${ }^{1}$

We may, therefore, conclude that the Gurjara grant plate offers us a genuine instance of the use of the new system (with place-value) in India.

Kaye's criticisms regarding the genuineness of some other plates included in our list (marked with asterisks) have been found to be baseless.

Place of Invention of the New System. It has been already stated that the same numeral forms for the numbers 1 to 9 , as were in use in India from the earliest known times, have been used in the new system of notation with the place-value. Another noteworthy fact

[^23]regarding the new system is the arrangement of the anika (digits). It will be observed that the arrangement in the old system was that the bigger numbers were written to the left of the smaller ones. ${ }^{1}$ This same arrangement continues in the new system with placevalue, where the digits to the left, due to their place or position, have bigger values. The gradual change from the old system to the new one using the same numerical signs, is to be found in India alone, and this, in our opinion, is one of the strongest arguments in favour of the Hindu origin of the new system. The earliest epigraphic instance of the use of the new system is 594 A.D. No other country in the world offers such an early instance of its use. Epigraphic evidence alone is, therefore, sufficient to assign a Hindu origin to the modern system of notation.

Inventor Unknown. It is not known who the inventor of the new system was, and whether it was invented by some great scholar, or by a conference of sages or by gradual development due to the use of some form of the abacus. Likewise, it is not known to which place, city, district or seat of learning belongs the honour of the invention and its first use. Epigraphic evidence cannot help us in this direction. For the system was used in inscriptions, a very long time after its inventioh, in fact, when it had become quite popular all over Northern India.

Time of Invention. The grant plates were legal documents. They were written by professional writers. The existence of such writers is mentioned in the southern Buddhist canons and in the Epics. ${ }^{2}$ They have
${ }^{1}$ Showing thereby that the place assigned to a numeral depended upon its value. This has been incorrectly thought to be a sort of place-value system by some writers.
${ }^{2}$ Bühler, l.c., p. s.
been called lekbaka, lipikara and later on divira, karana, kâyastha, etc. According to Kalhana, ${ }^{1}$ the Kings of Kashmir employed a special officer for drafting legal documents. He bore the title of pattopadhyâya, i.e., the teacher (charged with the preparation) of title deeds. The existence of manuals such as the Lekhapañcâsileâ, the Lekhaprakấsa, which give rules for drafting letters, land grants, treaties, and various kinds of bonds and bills of exchange, show beyond doubt that the writing of grant plates was a specialised art and that the style of writing those documents must always have been centuries behind the times, just as it is even to-day with respect to legal and state documents. The time of invention of the new system must, therefore, be placed several centuries before its first occurrence in a grant plate in the sixth century A.D. The exact period of invention may be roughly deduced from the history of the growth of numerical notations in other countries.

According to Heath, ${ }^{2}$ the Greek alphabetic notation was invented in the 7 th century B.C., but it came into general use only in the second century A.D. Thus it took about eight hundred years to get popular. In Arabia the new notation was introduced in the 8th century A.D., but it came into common use about five or six hundred years later. The same was the case in Europe. The Arabs got the complete decimal arithmetic, including the method of performing the various operations, at a period when intellectual activity in Arabia was at its greatest height, but they could not make the decimal system common before about five or six hundred years had elapsed. ${ }^{3}$ In legal documents
> ${ }^{1}$ Râjataraṅginî, V, pp. 397f.
> ${ }^{2}$ Heath, History of Greek Mathematics, I, Oxford, 1921, p. 34.
> ${ }^{8}$ The arithmetic written by Al-Kharki in the eleventh century does not use the decimal system, showing that at the time there were two schools amongst the Arab mathematicians, one favouring
and in recording historical dates, the Arabs even now use their old alphabetic notation.

Epigraphic evidences show that the new system was quite common in India in the eighth century and that the old system ceased to exist in Northern India by the middle of the tenth century. This would, therefore, place the invention of our system in the period between the first century B.C. and the third century A.D.

The exact date of the invention, however, would be nearer to the ist century B.C. or even earlier, because for a long time after its invention, the system must have been looked upon as a mere curiosity and used simply for expressing large numbers. A still longer time must have elapsed before the method of performing the operations of addition, subtraction, multiplication, division and the extraction of roots, could be perfected. It would be only after the perfection of the methods of performing the operations that the system could be used by mathematicians. And then after this it would take about five hundred years, as in Arabia, to become popular. There should, therefore, be a gap of about eight centuries between the time of invention and its coming into popular use, just as was the case with the Greek alphabetic notation. Therefore, on epigraphic evidence alone, the invention of the place-value system must be assigned to the beginning of the Christian era, very probably the rst century B.C. This conclusion is supported by literary and other evidences which will be given hereafter.

[^24]
9. PERSISTENCE OF THE OLD SYSTEM

The occurrence of the old system of writing numbers, with no place-value, is found generally in inscriptions upto the seventh century A.D., after which it was gradually given up in favour of the new system with place-value. Occasional use of the old system, however, is to be met with in Nepal and in some South Indian inscriptions upto the beginning of the tenth century A.D., but after this period the old system seems to -have been forgotten, and completely gone out of use. In the seventh century the new system was in general use, but the old system seems to have been given preference in inscriptions. There are a number of grant plates of the eighth century A.D., in which the dates, although written in the old notation, are incorrectly inscribed, showing thereby that people had already forgotten the old system. In a grant plate of Sillâditya VI, ${ }^{1}$ dated the Gupta year 441 (c. 7 Go A.D.), the sign for 40 , instead of the sign for 4 , has been subjoined to the sign for 100 to denote 400 , i.e., 4,000 has been incorrectly written for 400 . There is another grant plate, dated the Gângeya year 183 (c. 753 A.D.), in which the figure 183 . is wrongly written. ${ }^{2}$ This plate is of special interest as it exhibits the use of the old and the new systems in the same document. ${ }^{3}$ Another very interesting instance of the use of the old and the new systems in one and the same document is the Ahar stone
${ }^{1} I A$, VI, p. 19, (plate).
${ }^{2}$ EI, III, p. 133, (plate). In this the sign of 8 is written for 80 and that of 30 for 3 . The number 20 has been written by placing a dot after 2 .
${ }^{3}$ For other instances showing admixture of both the old and the new systems, see Fleet Gupta Inscriptions, Corpus Inscriptionum Indicarum, III, p. 292; also IA, XIV, p. 351, where (8no) (4) (9) $=849$.
inscription. ${ }^{1}$ The document records gifts made on several occasions ranging over thirty-seven years, the last entry corresponding to 905 A.D. In this inscription the old notation is used in the first six lines whilst in the following lines it has been discarded and the new place-value notation appears. It is evident from the forms that the writer did not know the old system. For instance, 200 is written by adding the subscript 2 to the letter $s u$ (100), instead of using a mâtrkâ sign as in the old system. In the same way the sign for 10 is incorrect in so far as a small zero has been affixed to the usual sign for ten. The inscription shows that although the old system had gone out of use completely, yet people tried to use it in inscriptions, probably for the same reason that makes us use the Roman numerals in giving dates, in numbering chapters of books, and in marking the hours on the face of a clock, even upto the present day.

WORD NUMERALS

Explanation - of the System. A system of expressing numbers by means of words arranged as in the place-value notation was developed and perfected in India in the early centuries of the Christian era. In this system the numerals are expressed by names of things, beings or concepts, which, naturally or in accordance with the teaching of the Sastras, connote numbers. Thus the number one may be denoted by anything that is markedly unique, e.g., the moon, the earth, etc.; the number two may be denoted by any pair, e.g., the eves, the hands, the twins, etc.; and similarly others. The zero is denoted by words meaning void, sky, complete, etc.

[^25]The system is used in works on astronomy, mathematics and metrics, as well as in the dates of inscriptions and in manuscripts. The ancient Hindu mathemaricians and astronomers wrote their works in verse. Consequently they strongly felt the need for a convenient method of expressing the large numbers that occur so often in the astronomical works and in the statement of problems in mathematics. The word numerals were invented to fulfil this need and soon became very popular. They are used even upto the present day, whenever big numbers have to be expressed in Sanskrit verse.

The words denoting the numbers from one to nine and zero, with the use of the principle of place-value, give us a very convenient method of expressing numbers by word chronograms. To take a concrete case, the number 1,230 may be expressed in many ways:
I. kba-guna-kara-âdi,
2. Kiba-loka-karna-candra,
;. âkâsa-kâla-netra-dluarâ, etc.
It will be observed that the same number can be expressed in hundreds of ways by word chronograms. This property makes the word numerals specially suitable for inclusion in metre. To secure still greater variety, the numbers beyond ten are also sometimes denoted by words. \&

List of Words. The following is a list of words commonly used in this system to denote numbers:

- is expressed by sûnya, ka, gayana, ambara, âkâsa, abbra, viyat, vyoma, anturiksa, nabba, jaladbarapatha, pûrna, randbra, viṣupada, ananta, etc.
1 is expressed by audi, sasin, indus, vidbu, candra, kalat. adhara, bimagu, sílàm'ı́s, ksupâkara, bimâmisu, sitaraśmi, prâleyuimsís, soma, sasánika, mreânika, bimakara, sudbâmisu, rıjanikara, śasadbara, şveta, abja, bbû,
bljâmi, ksiti, dharâ, urvarâ, go, vasundharâ, prtbvî, ks:mâ, dharanî, vasudbâ, ilâ, ku, mab̂̀, rûpa, pitàmaha, nâyaka, tanu, etc.
2 is expressed by yama, yamala, aśvin, nâsatya, dasra, locana, netra, aksi, drṣti, caksu, ambaka, nayana iksana, paksa, bâbu, kara, karṇa, kuca, os!tha, gulpha, jânu, janigba, dvaya, dvanda, yugala, yugma, ayana, kutumba, ravicandrau, naya, ${ }^{1}$ etc.
3 is expressed by râma, guna, triguna, loka, trijagat, bbuvana, kâla, trikâla, trigata, trinetra, baranetra, sabodarâh, agni, anala, vabni, pâvaka, vaišvânara, dabana, tapana, butâsana, jvalana, sikbin, kr rânu, botr, pura, ratna ${ }^{2}$ (Jaina), etc.
4 is expressed by veda, śruti, samudra, sâgara, abdhi, ambhodha, ambbodhi, jaladhi, udadhi, jalanidhi, salilâkara, wịsanidhi, vâridhi, payodhi, payonidbi, ambudhi, kendra, varna, âśrama, yuga, turya, krta, aya, âya, diṣ, bandbu, koṣtha, gati, kasâya, etc.
s is expressed by bâna, sara, sastra, sâyaka, iṣu, bbûta, pàrva, prâna, pavana, ${ }^{3}$ pạndava, artha, viṣaya, mabâbbûta, tatva, bbâva, indriya, ratna, karanîy,, ${ }^{4}$ vrata, etc.
6 is expressed by rasa, aniga, kâya, rtu, mâââdha, darśana, râga, ari, sâstra, tarka, kâraka, lekhya, dravya, ${ }^{\circ}$ khara, kumâravadana, śanmukba, etc.
7 is expressed by naga, aga, bbûbḅ̣t, parvata, śaila, acala, adri, giri, rṣi, muni, yati, atri, vâra, svara,
${ }^{1}$ Method of comprehending things from particular stand-points-drayyârthika and paryâyärtbika.
${ }^{2}$ Used by Mahâvira only; others take it for five.
${ }^{3}$ See SiSe, i. 27; SiSi, ganitâdhłầa, x. 2. Used also for 7 (See the quotations by Bhattotpala in his commentary on Brhatsamibitā, ch. ii). In Al-Birrûni's list it is erroneously put for 9 .
${ }^{4}$ That which ought to be done; according to the Jainasabimisâ, sumrta, asteya, brabmacarya, and aparigraba.
${ }^{5}$ Used by Mahâvirra.
dbâtu, as̀ra, turaga, vâji, baya, cbandab, dhi, kalatra, tatva, ${ }^{1}$ duípa, pannaga, ${ }^{2}$ bbaja, ${ }^{3}$ mâtrkâa, vyasana, etc.
8 is expressed by vasu, abi, nâga, gaja, danti, dvirada, diggaja, Jastin, ibba, mâtaniga, kuñjara, dvìpa, puskarin, sindbura, sarpa, taksa, siddbi, bbûti, anuṣtubba, mañgala, anika, karman, ${ }^{4}$ durita, tanu, ${ }^{5}$ dik,, ${ }^{6}$ mada, ${ }^{7}$ etc.
9 is expressed by anka, nanda, nidbi, graba, randbra, cbidra, dvâra, go, ${ }^{8}$ upendra, keśaua, târksyadbvaj, durgâ, padârtha, ${ }^{9}$ labdba, labdbi, etc.
10 is expressed by diś, dik, disûa, âsâ, anigulit, panikti, kakubh, râvanasiría, avatâra, karman, etc.
II is expressed by rudra, îstara, mrḍa, bara, îsa, bhava, bharga, sulin, mahâdeva, aksaubinị̂, etc.
12 is expressed by ravi, sûrya, ina, arka, martanda, dyumani, blânu, âditya, divâkara, mâsa, râsi, vyaya, etc.
13 is expressed by viśvedevâb, viśva, kâma, atijagatî, aghosa, etc.
14 is expressed by manu, vidy \hat{a}, indra, sakera, loka, ${ }^{10}$ etc.
Is is expressed by titbi, ghasra, dina, aban, paksa, ${ }^{17}$ etc.
16 is expressed by nrpa, bbûpa, bhûpati, asti, kalâ, etc.
${ }_{17}$ is expressed by atyasti, etc.

[^26]18 is expressed by dbrti, etc.
19 is expressed by atidbrti, etc.
20 is expressed by nakba, krti, etc.
21 is expressed by $u t k r t i$, prak!ti, svarga, etc.
22 is expressed by krti, jâti (?), etc.
23 is expressed by vikrti.
24 is expressed by gâyatrî, jina, arbat, siddba, etc.
25 is expressed by tatva, ${ }^{1}$ etc.
27 is expressed by naksatra, udu, bba, etc.
32 is expressed by danta, rada, etc.
33 is expressed by deva, amara, tridasa, sura, etc.
48 is expressed by jagati, etc.
49 is expressed by tâna, etc.
Word Numerals without Place-value. In the Veda we do not find the use of names of things to denote numbers, but we do find instances of numbers denoting things. For instance, in the Rgveda the number 'twelve' has been used to denote a year ${ }^{2}$ and in the Atharvaveda the number 'seven' has been used to denote a group of seven things (the seven seas, etc.). ${ }^{3}$ There are instances, however, of fractions having been denoted by word symbols, e.g., kalâ $=1_{1}^{1}$, kus!tha $=\frac{1}{1} 2$, sapha $=\frac{1}{4}$.

The earliest instances of a word being used to denote a whole number are found about 2,000 B.C., in the Satapatba Brâbmana ${ }^{4}$ and Taittirîya Brâbmana. ${ }^{5}$ The
${ }^{1}$ Generally used for 5 ; also for 7 by Mahâvîra.
2 "Deva hitim jugupurdvâdaśasya rtum narona praminantyete." (vii. 103,1).
${ }^{3}$ "Om ye trisapta pariyante..."" (i. 1, 1).
${ }^{4}$ The word kerta has been used for 4 .
"catuṣtomena kertena ayânây. ..." (xiii. 3. 2. 1).
${ }^{s}$ "Ye vai catvârab stomâb kertam tat...." (i. S. In. i).

Cbândogya Upanisad also contains several instances. In the Vedaniga Jyotişa (1,200 B.C.) words for numerals have been used at several places. The Srauta-sûtras of Kattyâyana ${ }^{2}$ and Lâtyâyana* have the words gâyatrí for 24 and jagatî for 48.

At this early stage, however, the word symbols were nothing more than curiosities; their use to denote numbers was rare. Moreover, we find evidences of a certain indefiniteness in the numerical significance attached to certain words. For instance, in the same work, the Aitareya Brâbmana, the word virât has been used to denote 10 at one place and 30 at another. The principle of place-value being unknown, the word symbols could not be used to denote large numbers, which were usually denoted in terms of the numerical denominations or by breaking the number into parts. ${ }^{4}$ The use of the word symbols without place-value is found in the Pingala Cbandab-sûtra composed before 200 B.C. The principle of place-value seems to have been applied to the word numerals between 200 B.C. and 300 A.D.

Word Numerals with Place-value. The earliest instance of the use of the word numerals with placevalue in its' current form is found in the Agni-Purana, ${ }^{\text {s }}$

[^27]a work which belongs to the earliest centuries of the Christian cra. Bhattotpala in his commentary on the Brlat-sambita has given a quotation from the original Pulisa-siddbanta ${ }^{1}$ (c. 400) in which the word system is used. The number expressed in this quotation is $k b a$ (0) kba (0) aṣta (8) muni (7) râma (3) aśvi (2) netra (2) asta (8) śara (5) râtrīâb $(\mathrm{I})=1,582,237,800$. There are in this work ${ }^{2}$ several other quotations from the Pulisa-siddbânta, which contain word numerals. Later astronomical and mathematical manuals such as the Sûrva-siddbâta (c. 300), the Pañca-siddhantikáa (505), the Mäbâ- and Lagbu-Bhâskarîya (s22), the Brâbma-sphutasiddbânta ${ }^{5}$ (628), the Trisatikâa (c.750), and the Ganita-sara-samgraha ${ }^{7}$ ($8 \mathrm{5O}$), all make use of the word notation. ${ }^{8}$

Word Numerals in Inscriptions. The earliest epigraphic instances of the use of the word numerals are met with in two Sanskrit inscriptions ${ }^{8}$ found in Cambodia which was a Hindu colony. They are dated 604
be later than the earliest centuries of the Christian era." (JRAS, 1912, pp. 254-55). The Agni-Purâna is admitted by all scholars to be the earliest of the Purânas.
${ }^{1}$ Brbat-sanibitâ, ed. by S. Dvivedi, Benares, p. 163.
${ }^{2}$ Ibid, pages 27, 29, 49, 51 , etc. We are, however, not sure whether those quotations are from the original work or from a later redaction of the same.
${ }^{3}$ i. 8; viii. 1 , etc.
${ }^{4}$ See $M B b$, ch. 7 and LBh, ch. 1.
${ }^{5}$ i. si-5s, etc.
${ }^{6}$ R. 6, Ex. 6, etc.
${ }^{7}$ ii. 7,9 , etc.
${ }^{8}$ In the face of the evidence adduced here, G. R. Kaye's assertion, (Indian Mathematics, Calcutta, 1915, p. 31) that the word numerals were introduced into India in the ninth century from the east, shows his ignorance of Indian mathematical works, or is a deliberate misrepresentation.
${ }^{9}$ R. C. Mazumdar, Ancient Indian colonies in the far east,Campa, Vol. I, Lahore, 1927; see inscriptions Nos. 32, 39; also 40, 41,43 and 44.
A.D. and 625 A.D. Their next occurrence is found in a Sanskrit inscription of Java, belonging to the 8th century. ${ }^{1}$

In India proper, although they were in use amongst the astronomers and mathematicians from the 3 rd or $4^{\text {th }}$ century A.D. onwards, it did not become the fashion to use them in inscriptions till a much later date. The earliest Hindu inscriptions using these numerals are dated 813 A.D. ${ }^{2}$ and 842 A.D. ${ }^{3}$ In the following century they are used in the plates issued by the Eastern Chalukya Amma II, in 943 A.D. ${ }^{4}$ In later times the epigraphic instances become more frequent. The notation is also found in several manuscripts in which dates are given in verse. ${ }^{5}$
\rightarrow Origin and Early History. It should be noted that the arrangement of words, representing the numbers zero and one to nine, in a word chronogram is contrary to the arrangement that is followed when the same number is written with numerical signs. This fact has misled some scholars to think that the decimal notation and the word numerals were evolved at two different places. G. R. Kaye has gone so far as to suggest that the word numerals were imported into India from the east. This suggestion is incorrect for the simple reason that in no language other than Sanskrit do we find any early use of the word system. Moreover, in no country other than India do we find any trace of the use of a word system of numeration

[^28]as far back as the fourth century A.D., at which period it was in common use amongst the astronomers and mathematicians of India.

During the earlier stages of the development of this system, we find that instead of the word symbols, the number names were used, being arranged from left to right just as the numerical signs. An instance of this is found in the Bakhshâlî Manuscript ${ }^{1}$ (c. 200), where the number

$$
2653296226447064994 \ldots 83218
$$

is expressed as

> Sadvimísaśca (26) tripañcâśa (53) ekonatrimísa (29) evacha Duậa [sti](62) saḍvimísa (26) catubcatuârimśa (44) saptati (70) Catubsasti (64) na[vanavati] (99) ... misanantaram Trirasiti (83) ekavimisa (21) aṣta (8) ... pakam

In the same manuscript, however, the contrary arrangement is used when the number 54 is expressed as catụb (4) pañca (s). ${ }^{\natural}$ Jinabhadra Gaṇi (575) has used word symbols with the left to right arrangement to express numbers. ${ }^{3}$ It seems, therefore, that in the beginning opinion was divided as to which method of arrangement should be followed in the word system.

The extensive use of the word numerals by early mathematicians such as Puliśa, Varâhamihira, Lalla and others appears to have set the fashion to write the word numerals with a right to left arrangement, which was generally followed by later writers.
${ }^{1}$ Folio 88 , recto. The dots indicate some missing figures. The problem apparently required the expression of a big number in numerical denominations. We do not find a problem of this type in any of the later works. Cf. B. Datta, "The Bakhshālī Mathematics." BCMS, XXI, p. 21.
${ }^{2}$ Folio 27, recto.
${ }^{3}$ Brhat-kesetra-samâsa, i. 69ff.

No explanation as to why the right to left arrangement was preferred in the word system is to be found in any of the ancient works. The following explanation suggests itself to us, and we believe that it is not far from the truth: The different words forming a number chronogram were to be so selected that the resulting word expression would fit in with the metre used. To facilitate the selection the number was first written down in numerical figures. The selection of the proper words would then, naturally, begin with the figure in the units place, and proceed to the left just as in arithmetical operations. This is in accordance with the rule "anikânâm vâmato gatib,", i.e., 'the numerals proceed to the left,' which seems to have been very popular with the Indian mathematicians. The right to left arrangement is thus due to the desire of the mathematicians to look upon the process of formation of the word chronogram as a sort of arithmetical operation.

Date of Invention. The use of the word numerals in the Agni-Purâna which was composed in the 4th century A.D. or earlier, shows that the word system of numerals must have become quite common in India at that time, the Puranas being works meant for the common folk. That it was a well developed system in the fourth century is also shown by its extensive use in the Sûrya-siddbânta and the Puliśa-siddbânta. Its invention consequently must be placed at least two centuries earlier. This would give us the period, 100 A.D. to 200 A.D., as the time of its invertion. This conclusion is supported by the epigraphic use of the word notation in 60 A.D., in Cambodia, which shows that by the end of the 6th century A.D., the knowledge of the system had spread over an area roughly of the size of Europe.

It must be pointed out here that the decimal placevalue notation and the word numerals were not invented
at the same time. The decimal notation must have been in existence and in common use amongst the mathematicians long before the idea of applying the place-value principle to a system of word names could have been conceived. Thus we find that in the beginning (c.200), the place-value principle, as is to be expected, was used with the number names. The word symbols were then substituted for the number names for the sake of metrical convenience. The right to left procedure was finally adopted because of the mathematicians' desire to look upon the formation of the word numeral as a sort of mathematical operation.

The above considerations place the invention of the decimal place-value notation at a period, at least two or three centuries before the invention of the word system. The word notation, therefore, points to the ist century B.C. as the time of invention of the placevalue notation. This conclusion agrees with that arrived on epigraphic evidence alone.
hi. ALPHABETIC NOTATIONS
The idea of using the letters of the alphabet to denote numbers can be traced back to Pânini (c. 700 B.C.) who has used the vowels of the Sanskrit alphabet to denote numbers. ${ }^{1}$ No definite evidence of the extensive use of an alphabetic notation is, however, found
${ }^{1}$ In Pânini's grammar there are a number of sûtras (rules) which apply to a certain number of sûtras that follow and not to all. Such sûtras are marked by signs according to Pâṇini. Patañjali commenting on sûtra i. 3. Ir, says that according to Kâtyâyana (4th century B.C.) a letter (varna), denoting the number of sûtras upto which a particular rule is to apply, is written over the sûtra. Kaiyyata illustrates this remark by saying that the letter i is written above Pânini's sûtra, v. 1. 30 to show that it applies only to the next two sûtras. Thus according to Pânini $a=1, i=2, u=3, \ldots \ldots$
upto the s th century A.D. About this period a number of alphabetic notations were invented by different writers with the sole purpose of being used in verse to denote numbers. The word numerals gave big number chronograms, so that sometimes a whole verse or even more would be devoted to the word chronogram only. This feature of the word system was naturally looked upon with disfavour by some of the Indian astronomers who considered brevity and conciseness to be the main attributes of a scientific composition. Thus the alphabetic notations were invented to replace the word system in astronomical treatises. The various alphabetic systems ${ }^{1}$ are simple variations of the decimal place-value notation, using letters of the alphabet in the place of numenical figures. It must be noted here that the Hindu alphabetic systems, unlike those employed by the Greeks or the Arabs, were never used by the common people, or for the purpose of making calculations; their knowledge was strictly confined to the learned and their use to the expression of numbers in verse.

Alphabetic System of Aryabhata I. Ảryabhaṭa I (499) invented an alphabetic system of notation, which has been used by him in the Dasagitika \hat{a}^{2} for enumerating the numerical data of his descriptive astronomy. The
${ }^{1}$ Some alphabetic systems used for the pagination of manuscripts do not use the place-value principle. These systems were the invention of scribes who probably wanted to be pedantic and to show off their learning. Their use was confined to copyists of manuscripts.
${ }^{2}$ The Dasagîtikâ as the name implies ought to contain ten stanzas, but actually there are thirteen. Of these the first is an invocation to the Gods, the second is the paribbâsâ ("definition") given above and the thirteenth is of the nature of a colophon. These three stanzas are, therefore, not counted. Cf. W. E. Clark, "Hindu-Arabic Numerals," Indian Studies in Honour of Charles Rockwell Lanman, (Harvard Univ. Press), 1929, p. 231.
rule is given in the Dasagitikâ thus:
Vargâksarâni varge'varge'vargâkssarâni kât nimau yab Khadvinavake svarâ nava varge'varge navântyavarge vâ
The following translation gives the meaning of the rule as intended by the author:
"The varga" letters beginning with k (are used only) in the varga" places, the avarga letters in the avarga3 places, (thus) ya equals nimau (na plus ma); the nine vowels (are used to denote) the two nines of zeros of varga and avarga (places). The same (procedure) may be (repeated) after the end of the nine varga places." \checkmark

This rule has been discussed by Whish, ${ }^{4}$ Brockkhaus, ${ }^{5}$ Kern, ${ }^{6}$ Barth, ${ }^{7}$ Rodet, ${ }^{8}$ Kaye, ${ }^{\text {, }}$ Fleet, ${ }^{10}$ Datta, ${ }^{11}$ Ganguly, ${ }^{12}$ Das, ${ }^{13}$ Lahiri ${ }^{14}$ and Clark. ${ }^{15}$

The translation of kba by "place" (Clark) or by "space" (Fleet) is incorrect. We do not find the word $k b a$ used in the sensc of 'notational place' anywhere in Sanskrit literature. Its meanings are 'void', 'sky', etc., and it has been used for zero, in the mathematical and
${ }^{1}$ Varga here means "classed," i.e., the classed letters of the alphabet. The first twenty-five letters of the alphabet are classed in groups of five, the remaining ones are unclassed.
${ }^{2}$ Varga here means odd.
${ }^{3}$ Avarga here means even.
${ }^{4}$ Transactions of the Literary Society of Madras, I, 1827, p. 54.
${ }^{5}$ Zeitschrifte für die kunde des Morgenländes, IV, p. 81 .
${ }^{6} J R A S, 1863$, p. 380.
${ }^{7}$ Oexures, III, p. 182.
${ }^{8} \mathrm{~J} A,{ }^{1880}$, II, p. 440.
${ }^{9}$ JASB, 1907, p. 478; Indian Mathematics, Calcutta, 191 1, p. 30;
The Bakbsbäli Manuscript, Calcutta, 1927, p. 81.
${ }^{10} J A R S, 1911, \mathrm{p} .109$.
${ }^{11}$ Säbitya-Parisad-Patrikâ, 1929, p. 22.
${ }^{12}$ BCMS, 1926, p. 195.
${ }^{13} \mathrm{IHQ}$, III, p. rio.
${ }^{14}$ History of the World (in Bengali), Vol. IV, p. 178.
${ }^{15}$ Aryabbatiya of Aryabbata, Chicago, 1930, p. 2.
astronomical works. We thus replace "the two nines of places" in the translation given by Clark by "the two nines of zeros." Clark has given the following reason for not translating kba by zero: "That is equivalent to saying that each vowel adds two zeros to the numerical value of the consonant. This, of course, will work from the vowel i on; but the vowel a does not add two zeros. It adds no zero or one zero depending on whether it is used with varga or avarga letters. It seems to me, therefore, more likely that a board divided into columns is implied rather than a symbol for zero, as Rodet thinks." The vowels do not add zeros. The explanation will not work for any of the vowels; for instance, i, according to this interpretation, would add two zeros to g but three zeros to y. What really is implied by $k b a$ is explained by the commentator Sûryadeva as follows: "khâni súnvyopalaksitâni, sanikhyâvinyâsasthânâni tesâm duinavakam, khadvinavakam, tasmin khadvinavake sûnyopalakesitdsthânạstâdaśa (18) ityarthab;" that is, " $k h a$ denotes zero; the places for putting (writing) the numbers are two nines (dvinavakam), therefore, khadvinavake means the eighteen places denoted by zeros." It may be mentioned here that the Hindus denote the notational places by zeros. Bhâskata I (\$22), commenting on Ganitapâla, 2, which gives the names of ten notational places, says:

$$
\text { "nyâsasca stbânânâm } 0000000000 . "
$$

i.e., "writing down the places we have 0000000000 ." Bhâskara I is more explicit in the interpretation of kha by zero, for in his comments on the above rule, he states: "kbadvinavake svarâ nava varge: kba means zero (súnya). In two nines of zeros (kba), so khadvinavake; that is, in the eighteen (places) marked by zeros;"1

[^29]Thus kha must be translated by zero, although the $k b a$ (zero) here is equivalent to the 'notational places.' ${ }^{1}$ What is implied here is certainly the symbol for the zero and not a board divided into columns.

Clark finds great difficulty in translating navantyavarge va. The reading bau instead of vâ suggested by Fleet is not acceptable. The translation given by us accords with the several commentaries (by Bhâskara I, Sûryadeva, Parameśvara and Nîlakaṇtha) consulted by us. They all agree.

Explanation. Arayabhata's rule gives the method of expressing the alphabetic chronogram in the decimal place-value notation, and vice versa. The notational places are indicated as follows:

where v stands for varga and a for avarga.
It will be observed that the eighteen places are denoted by zeros and they are divided into nine pairs, each pair consisting of a varga place and an avarga place, i.e., odd place and even place. ${ }^{2}$ The varga letters k to m^{3} are used in varga places, i.e., odd places only, and denote the numbers $1,2, \ldots \ldots \ldots, 25$ in succession. The
${ }^{1}$ Nillakantha says: "kbadvinavake, that is, there are eighteen places, the nine varga places and the nine avarga places" Sce Aryabhatîya, ed. by K. Sambasiva Sastri, Trivandrum, 1930, p. 6.
${ }^{2}$ The later Indian treatises use the terms visama and sama for varga and avarga respectively. Varga is also used for a square number or the figure.
${ }^{8}$ These are called varga or classified letters, because they are classified into groups of five each.
avarga letters y to b are used in the avarga places, i.e., even places only, and denote the numbers $3,4, \ldots \ldots$, 10 successively. The first varga and avarga places together constitute the first varga-avarga pair, and so on. Nine such varga-avarga pairs are denoted by the nine vowels in succession. Thus the first varga-avarga pair, i.e., the units and the tens places are denoted by a; the second varga-avarga pair, i.e., the hundreds and thousands places by i; and so on. The vowels thus denote places -zeros according to the Indian usage of denoting the places-and have by themselves no numerical value. When attached to a 'letter-number' a vowel simply denotes the place that the number occupies in the decimal place-value notation. For instance, when the vowel a is attached to y, it means that the number 3 which y denotes is to be put in the first avarga place, i.e., the tens place. Thus $y a$ is equal to 30 . On the other hand when a is attached to one of the classed letters, it refers it to the first varga place, i.e., the units place. Thus $\dot{n} a$ is equal to s and $m a$ is equal to $2 s$ and nima ${ }^{1}$ is equal to 30 . Similarly $y i$ denotes that the number 3 is to be put in the thousands place whilst $g i$ would mean that the number 3 which g represents is to be put in the hundreds place (g being a varga letter). Thus $y i=3,000$, whilst $g i=300$. It is possible that the zeros already written were rubbed out and the corresponding numerical figures as obtained from a given letter chronogram were substituted in their places. This would automatically give zeros in the vacant places. When this is not done and the numbers are written below the zeros indicating the places, then zeros have

[^30]to be written in the places that remain vacant. ${ }^{1}$ The same procedure can be applied to express numbers occupying more than eightcen places, by letting the vowels with anusvâra denote the next eighteen places, or by means of any other suitable device.

One advantage of this notation is that it gives very brief chronograms. This advantage is, however, more than counterbalanced by two very serious defects. The first of these is that most of the letter chronograms formed according to this system are very difficult to pronounce. In fact, some of these ${ }^{2}$ are so complicated that they cannot be pronounced at all. The second defect is that the system does not allow any great variety in the letter chronograms, as other systems do. \checkmark Katapayadi System. In this system the consonants of the Sanskrit alphabet have been used in the place of the numbers 1-9 and zero to express numbers. $\sqrt{ }$ The conjoint vowels used in the formation of number chronograms, have no numerical significance. It gives brief chronograms, which are generally pleasant sounding words. Skilled writers have been able to coin chronograms which have connected meanings. It is superior to that of Aryabhaṭa I, and also to the word system. Four variants of this system are known to have been used in India. It is probably due to this nonuniformity of notation that the system did not come into general use.
${ }^{1}$ Some examples from the Aryabbatîya (i. 3):
khyugbr
cayagiyinusuchlr

${ }^{2}$ For instance nisisunlkhs!r, bbadliknukbr, etc.

First Variant: The first variant of the Katapayâdi system is described in the following verse taken from the Sadratnamalâ:

Nañâracaśra súnnyani samikbyâ katapayâdayab
Miśre tûpânta bal sam̀kbyâ na ca cintyo balasvarab " n, \tilde{n} and the vowels denote zeros; (the letters in succession) beginning with k, t, p, and y, denote the digits; in a conjoint consonant only the last one denotes a number; and a consonant not joined to a vowel should be disregarded." According to this system, therefore, I is denoted by the letters k, t, p, y.

2 "	"	"	kh, th, ph, r.
3 "	"	"	g, d, b, l.
4	"	"	gh, dh, bh, 1 .
5 "	,	"	\dot{n}, n, m,
6 "	"	"	c, t, s.
"	"	"	ch, th, s.
8 ",	"	"	j, d, b.
9 "	"	"	$j h, d h$.
"	"	"	\dot{n}, n and vowels

The consonants with vowels are used in the places of of the numerical figures just as in the place-value notation. Of conjoint consonants only the last one has numerical significance. A right to left arrangement is employed in the formation of chronograms, just as in the word system, i.e., the letter denoting the units figure is written first, then follows the letter denoting the tens figure and so on. The following examples taken from inscriptions, grant plates and manuscripts will illustrate the system:

[^31]

The origin of this system can be traced back to the fifth century A.D. From a remark ${ }^{5}$ made by Sûryadeva in his commentary on the Aryabhatîya, it appears that the system was known to Aryabhata I (499). Its first occurrence known to us is found in the Lagbu-Bhâskarîya of Bhâskara I ($\mathbf{2 2}$). ${ }^{\circ}$

Second Variant: Aryabhaṭa II (950) has used a modification of the above system. In this variant, the consonants have the same values as above, but the vowels whether standing by themselves or in conjunction with consonants have no numerical significance. Also unlike the first variant, each component of a conjoint consonant has numerical value according to its
${ }^{1}$ IA, II, p. 360.
${ }^{2}$ EI, III, p. 229.
${ }^{8}$ EI, III, p. 38.
4The date of the commentary of Saḍguruśisya on Sarvânukeramani is given by this chronogram in the Kaliyuga Era: It corresponds to 1184 A.D.
${ }^{5}$ Comments on the paribhâsââ-sûtra of the Dasagìtieâ. The author remarks :
"Vargâksarânâm̀m sam̀kbyâ pratipâdane, katapayâditvam nañayośca sûnyäpi siddbami tannirâsârthàm kât grabanam."
That is, "the letters kât have been used to distinguish it (the method of Âryabhata I) from the Katapayâdi system of denoting numbers by the help of the varga letters, where n and n are equal to zero."
${ }^{6} L B b$, i. 18.
place. The letters are arranged in the left to right order just as in writing numerical figures. ${ }^{1}$ The difference between the two variants may be illustrated by the chronogram $d b a-j a-b e-k u-n a-b e-t-s a-b b a a^{12}$ According to Aryabhata II it denotes 488108674, whereas according to the first variant it would denote 47801884.

Third Variant: A third variant of this system is found in some Pâlî manuscripts from Burma. ${ }^{3}$ This is in all respects the same as the first variant except that $s=5, b=6$ and $l^{\prime}=7$. The modification in the values of these letters are due to the fact that the Pâlî alphabet does not contain the Sanskrit s and s.

Fourth Variant: A fourth variant of the system was in use in South India, and is known as the Kerala System. This is the same as the first variant with the difference that the left-to-right arrangement of letters, just as in writing numerical figures, is employed.

Aksarapalli. Various peculiarities are found in the forms as well as the arrangement of the numerical symbols used in the pagination of old manuscripts. These symbols are known as the aksarapalli, i.e., the letter system. ${ }^{4}$ In this system the letters or syllables of the script in which the manuscript is written are used to denote the numbers. The following list gives the phonetic values of the various numerals as found in old manuscripts: ${ }^{5}$
> ${ }^{1}$ The notation is explained in $M S i$, i. 2: Rupât katapayapurvâ varnâ varnakramâdbbavantyanikâb Nñau sunnyam prathamarthe â chede e trtịyârthe.
> ${ }^{2}$ MSi, i. 10.
> ${ }^{8}$ L. D. Barnet, JRAS, 1907, pp. 127 ff.
> ${ }^{4}$ For forms see Tables.
> ${ }^{5}$ See PLM, pp. 107f.
$\mathrm{I}=e$, sva, rûm.
$2=$ dvi, sti, na.
$3=$ tri, srî, mah.
$4=$ ñka, rñka, ñkâ, ṇka, rṇka, ṣka, rṣka,
एक. (pke), 田, 各. rphra, pu.
$s=\mathrm{tr}, \mathrm{rtr}, \mathrm{rtrâ}, \mathrm{hr}, \mathrm{nr}, \mathrm{rnr}$.
$6=$ phra, rphra, rphru, ghna, bhra, rpu, vyâ, phla.
$7=$ gra, grâ, rgrâ, rgbhrâ, rggâ, bhra.
$8=$ hra, rhra, rhrâ, dra.
$9=0 \dot{m}$, rum, ru, umi, ûm, a, fnum.
$10=1$, la, nṭa, da, a, rpta.
$20=$ tha, thâ, rtha, gha, rgha, pva, va.
$30=1 a$, lâ, rla, rlâ.
$40=$ pta, rpta, ptâ, rptâ, pna.

$60=\mathrm{cu}, \mathrm{vu}, \mathrm{ghu}$, thu, rthu, rthû, thû, , rgha, rghu.
$70=\mathrm{cu}, \mathrm{cu}$, thû, rthü, rghû, rmta.
so $=$ e.,, , O. O. pu.

$100=\mathrm{su}, \mathrm{su}, \mathrm{lu}$, a.
$200=$ sû, â, l̂u, rghû.
$300=$ stâ, sûâ, ñûâ, sâ, su, sum̀, sû.
$400=$ sû̀o, sto, stâ.

It will be observed that to the same numeral there correspond various phonetical values. Very frequently the difference is slight and has been intentionally made, probably to distinguish the signs with numerical values from those with letter values. In some other cases there are very considerable variations, which (according to Bühler) have been caused by misreadings of older signs or dialectic differences in pronunciation. The symbols are written on the margin of each leaf. Due to lack of space they are generally arranged one below the other in the Chinese fashion. This is so in the Bower manuscript which belongs to the sixth century A.D. In later manuscripts the pages are numbered both in the aksarapalli as well as in decimal figures. Sometimes these notations are mixed up as in the following: ${ }^{1}$

The aksarapalli has been used in Jaina manuscripts upto the sixteenth century. After this period, the decimal figures are generally used. In Malabar, a system resembling the aksarapalli is in use upto the present day. ${ }^{2}$

$$
\begin{aligned}
& { }^{1} \text { Cf. PLM, p. } 108 . \\
& { }^{2}{ }_{1}=\text { na, } \quad 2_{2}=\text { nna, } \quad 3=\text { nya, } \quad 4=\text { ṣkra, } \\
& \text { s }=\text { jhra, } 6=\text { hâ(ha), } 7=\text { gra, } 8=\text { pra, } \\
& 9=\operatorname{dre}(?), \quad 10=\mathrm{ma}, \quad 20=\text { tha, } \\
& 30=\mathrm{la}, \quad 40=\mathrm{pta}, \quad 50=\mathrm{ba}, 60=\mathrm{tra}, \\
& 70=\mathrm{ru}(\mathrm{tru}), 80=\mathrm{ca}, 90=\mathrm{na}, 100=\text { ña. }
\end{aligned}
$$

(Cf. JRAS, 1896, p. 790)

Other Letter Systems. (A) A system of notation in which are employed the sixteen vowels and thirty-four consonants of the Sanskrit alphabet is found in certain manuscripts from Southern India (Malabar and Andhra), Ceylon, Burma and Siam. The thirty-four consonants in order with the vowel a denote the numbers from one to thirty-four, then the same consonants with the vowel \hat{a} denote the numbers thirtyfive to sixty-eight and so on. ${ }^{1}$
(B) Another notation in which the sixteen vowels with the consonant k denote the numbers one to sixteen and with $k b$ they denote the numbers seventeen to thirty-two, and so on, is found in certain Pâlî manuscripts from Ceylon. ${ }^{2}$
(C) In a Pâlî manuscript in the Vienna Imperial Library a similar notation is found with twelve vowels and thirty-four consonants. In this the twelve vowels ${ }^{3}$ with k denote the numbers from one to twelve, with $k b$ they denote the numbers from thirteen to twentyfour, and so on.

These letter systems do not appear to have been in use in Northern India, at least after the third century A.D. They are probably the invention of scribes who copied manuscripts.

THE ZERO SYMBOL

Earliest Use. The zero symbol was used in metrics by Pingala (before 200 B.C.) in his Cbandab-sûtra. He gives the solution of the problem of finding the total number of arrangements of two things in n places, repetitions being allowed. The two things considered are

[^32]the two kinds of syllables "long" and "short", denoted by l and g respectively. To find the number of arrangements of long and short syllables in a metre containing n syllables, Pingala gives the rule in short aphorisms :
"(Place) two when halved;"" "when unity is subtracted then (place) zero;": "multiply by two when zero;"3 "square when halved.""

The meaning of the above aphorisms will be clear from the calculations given below for the Gâyatrî metre which contains 6 syllables. ${ }^{5}$

Place the number
Halve it, result
3 cannot be halved, therefore, subtract I , result
Halve it, result I cannot be halved, therefore, subtract 1 , result

A			B
6			
3	Separately place	2	
2	$"$	$"$	0
1	$"$	$"$	2
0	$"$	$"$	0

The calculation begins from the last number in column B. Taking unity double it at o , this gives 2; at 2 square this (2), the result is 2^{2}; then at zero double $\left(2^{2}\right)$, the result is $2^{\prime \prime}$; ultimately, at 2 square this $\left(2^{3}\right)$, the result is $2^{\prime \prime}$, which gives the total number of ways viii. 28.
${ }^{2}$ Ibid, viii. 29.
${ }^{3}$ Ibid, viii. 30.
${ }^{4}$ Ibid, viii. 31 .
${ }^{5}$ For 7 syllables, the steps are :

giving 2^{7} as the result.
in which two things can be arranged in 6 places. ${ }^{1}$
It will be observed that two symbols are required in the above calculation to distinguish between two kinds of operations, viz., (1) that of halving and (2) that of the 'absence' of halving and subtraction of unity. These might have been denoted by any two marks arbitratily chosen. ${ }^{2}$ The question arises: why did Pingala select the symbols "two" and "zero"? The use of the symbol two can be easily explained as having been suggested by the process of halving-division by the number two. The zero symbol was used probably because of its being associated, at the time, with the notion of 'absence' or 'subtraction.' The use of zero in either sense is found to have been common in Hindu mathematics from early times. The above reference to Pingala, however, shows that the Hindus possessed a symbol for zero (sunya), whatever it might have been, before 200 B.C.

The Bakhshâlî Manuscript (c. 200) contains the use of zero in calculation. For instance, on folio 56 verso, we have:

$"$	880	964	multiplied become	848320
	84	168		

The square of forty different places is $\lfloor 1600 \mid$. On subtracting this from the number above (numerator), the remainder is $\left|\begin{array}{l}846720 \\ 14112\end{array}\right|$. On removal of the common factor, it becomes 60|."

[^33]There are a large number of passages of this kind in the work. It will be noticed that in such passages the sentences would be incomplete without the figures, so the figures must have been put there at the time of the original composition of the text, and cannot be suspected of being later interpolations. For an explicit reference to zero and an operation with it, we take the following instance from the work :

"	\bigcirc	2	3 1		4 1		isible 200	Adding ${ }^{2}$ unity	
			1	2		3	" ${ }^{\text {s }}$		

In the Pañca-siddbantikâ (sos) zero is mentioned at several places. The following is an instance:
"In Aries the minutes are seven, in the last sign six; in Taurus six (repeated) thrice; five (repeated) twice; four; four; in Gemini they are three, two, one, zero (sûnya) (each repeated) twice." "

Zero is here conceived as a number of the same type as three, two or one. It cannot be correctly interpreted otherwise. Addition and subtraction of zero are also used in expressing numbers in this work for the sake of metrical convenience. For instance :
"Thirty-six increased by two, three, nine, twelve, nine, three, zero (sunya) are the days." ${ }^{5}$

Instances of the above type all occur in those
${ }^{1}$ The zeros given here are represented in the manuscript by dots. The statement in modern symbols is equivalent to the equation,

$$
x+2 x+3 x+4 x=200
$$

${ }^{2}$ The Sanskrit word is yutain meaning literally "adding", but what is meant is "putting" unity for the unknown (zero).
${ }^{3} B M s$, folio 22 , verso.
${ }^{4}$ PSi, vi. 12.
${ }^{5} P S i$, xviii. 35 ; other instances of this nature are in iii. 17; iv. 7; iv. 8; iv. 11; xviii. 44; xviii, 45; xviii. 48; xviii. 9 I.
sections of the Pañca-siddhântikâ which deal with the teachings of Pulisa. It seems, therefore, that such expressions are quotations from the Puliśa-siddbânta. As it is known that the word numerals were employed by Pulisa (c. 400), it can be safely concluded that he was conversant with the concept of the zero as a numeral.

The writings of Jinabhadra Gani ($529-589$), a contemporary of Varâhamihira, offer conclusive evidence of the use of zero as a distinct numerical symbol. While mentioning large numbers containing several zeros, he often enumerates, obviously for the sake of abridgement, the number of zeros contained. For instance: $224,400,000,000$ is mentioned as "twenty-two forty-four, eight zeros;" ${ }^{1} 3,200,400,000,000$ as "thirtytwo two zeros four eight zeros." ${ }^{2}$ At another place in his work

$$
241960 \frac{407150}{483920}=241960 \frac{40715}{48392}
$$

is described thus :
"Two hundred thousand forty-one thousand nine hundred and sixty; removing (apavartana) the zeros, the numerator is four-zero-seven-one-five, and the denominator four-eight-three-nine-two." ${ }^{3}$

It should be noted that the term apavartana means what is known in modern arithmetic as the reduction of a fraction to its lowest terms by removing the common factors from the numerator and the denominator. Hence the zero of Jinabhadra Gani is certainly not a mere concept of nothingness but is a specific numerical symbol used in arithmetical calculation.

[^34]Another contemporary mathematician, Bhâskara I (c. 525), refers to the subtraction of zero in his Mabâbbâskariya. In his commentary on the Aryabhatìya he uses the place-value numerals with zero. As has been pointed out before (p. 66) zero is also used by him to denote the notational places.

Siddhasena Gani who lived in the sixth century, has, in his commentary on the Tattvarthâdhigama-sûtra of Umâsvâti, used zero in calculation, as is evidenced by the following two typical instances taken from his work: ${ }^{1}$
". . . .the remainder is this, 3,534,400,000,000. The square-root of this is extracted; balf of the eight zeros are four zeros; The root of the ramaining portion is one-eight-eight; hence the resulting root is this, $1,880,000$."
"On removing the four zeros, the quotient obtained after that is 100,000 ."

All known Hindu treatises on arithmetic and algebra contain a section dealing with the fundamental operations with zero, including involution and evolution. Details regarding these operations will be given later on; but it must be pointed out here, that these arithmetical operations with zero, certainly presuppose its existence as a numeral denoted by some specific symbol. ${ }^{2}$
${ }^{1}$ Tattvârthädhigama-sûtra of Umâsvâti, with his own gloss, elucidated by Siddhasena Gaṇi, ed. by H. R. Kapadia, Bombay, 1926, iii. II (com.).
${ }^{2}$ Smith and Karpinski (Hindu-Arabic Numerals, p. 53) state, ". .the Gaṇita-Sảra-Saṅgraha of Mahâvirâchârya (c. 830 A.D.), while it does not use the numerals with place value, has a similar discussion with zero." The first part of the statement is incorrect, because Mahâvirra has always used numerals with place-value. In fact, no trace of numerals without place-value is to be found in the Ganita-sâra-sam̀graba. J. Tropfke's statement (Geschichte d. Elemen-tar-Mathematik, Bd. II, 1926, p. 56) that zero was not regard-

Eonnof the Symbel The sber from ancient works prove conclusively that the Zero has been considered as a number in India from the earliest centuries of the Christian era, and that there existed some symbol to denote this number. What exactly was the form of this symbol is doubtful. The Bakhshâlî Manuscript employs a dot for zero, but as the present copy of the work dates from probably the eighth or the ninth century, it cannot be said whether the form of the symbol was the same when the Bakhshâlî work was written, i.e, in the third century A.D. or earlier. Evidence as to the use of the dot for zero is also furnished by the writings of Subandhu, a poet litterateur who flourished about the close of the sixth century. In the Vâsavadattâ of Subandhu we meet with the following metaphor :
"And at the time of the rising of the moon with its blackness of night, bowing low, as it were, with folded hands under the guise of closing blue lotuses, immediately the stars shone forth, like zero dots (sunya-bindu), because of the nullity of metempsychosis, scattered in the sky as if on the ink-blue skin rug of the Creator who reckoneth the sum total with a bit of the moon for chalk." ${ }^{1}$

The term bindu ("dot") has been used for zero in word numerals as well as in later literature, ${ }^{2}$ when a small circle was in use to denote zero, the dot having
ed as a number before the seventeenth century A.D., is incorrect. Cf. B. Datta, "Early literary evidence of the use of the zero in India," American Math. Monthly, XXXVIII, 1931, p. 569.
${ }^{\prime}$ Vâsavadattâ of Subandhu, edited by F. Hall (Calcutta, 1859 , p. 182) and translated into English by Louis H. Gray (New York, 1913, Pp. $99 f$).
${ }_{2}$ E.g., the Hindi poet Bihârî in one of his couplets remarks: "The dot on her forehead is increasing her beauty ten-fold, just as a dot increases a number ten-fold."
been given up long before. The quotation from Subandhu cannot, therefore, be taken as a definite proof of the use of the dot as a symbol for zero in his time. All that we can infer is that at some period before Subandhu, the dot was in use. We may go further and state that very probably, the earliest symbol for zero was a dot and not a small circle.

The earliest epigraphical record of the use of zero is found in the Ragholi plates ${ }^{1}$ of Jaivardhana II of the eighth century. The Gwalior inscriptions of the reign of Bhojadeva ${ }^{2}$ also contain zero. The form of the symbol in these inscriptions is the small circle. This is the form that has been in common use from quite early times, probably from before the eighth century.

Other Uses of the Symbol. In the present elementary schools in India, the student is taught the names of the several notational places and is made to denote them by zeros arranged in a line. These, zeros are written as
..........○○○○○○○○○

The teacher points out the first zero on the right and says 'units', then he proceeds to the next zero saying 'tens' and so on. The student repeats the names after the teacher. This practice of denoting the notational places by zeros can be traced back to the time of Bhâskara I, who, as already pointed out on page 66, in his commentary on the Aryabbatîya, Ganita-pada, $\mathbf{2}$, says:
'Writing down the places, we have

$$
\bigcirc \circ \bigcirc \circ \circ \circ \circ \circ \circ \circ \text { ०." }
$$

In all works on arithmetic (pâtîganita) zero has

[^35]been used to denote the unknown. This use of zero can be traced back to the third century A.D. It is used for the unknown in the Bakhshâlî arithmetic. In algebra, however, letters or syllables have been always used for the unknown. It seems that zero for the unknown was employed in arithmetic, really to denote the absence of a quantity, and was not a symbol in the same sense as the algebraic $x(y \hat{a})$, for it does not appear in subsequent steps as the algebraic symbols do. This use of zero is mostly found in problems on proportion-the Rule of Five, Rule of Seven, etc. The Arabs also under Hindu influence used zero for the unknown in similar problems. Similar use of zero for the unknown quantity is found in Europe in a Latin manuscript of some lectures by Gottfried Wolack in the University of Erfürt in 1467-68. ${ }^{2}$ The dot placed over a number has been used in Hindu Ganita to denote the negative. In this case it denotes the 'absence' of the positive sign. Similar use of the dot is found in Arabia and Europe obviously under Hindu influence. ${ }^{2}$

13. THE PLACE-VALUE NOTATION IN HINDU LITERATURE

Jaina Canonical Works. The earliest literary evidence of the use of the word "notational place" is furnished by the Anuyogadvâra-sûtra, ${ }^{3}$ a work written before the Christian era. In this work the total number
${ }^{1}$ Smith and Karpirski, l.c., pp. 53-54.
${ }^{2}$ The occasional use by Al-Battani (929) of the Arabic negative lâ, to indicate the absence of minutes (or seconds), noted by Nallino (Verbandlungen des s congresses der Orientalisten, Berlin, 1882, Vol. II, p. 271), is similar to the use of the zero dot to denote the negative.
${ }^{3}$ The passage has been already quoted in detail (vide supra p. 12).
of human beings in the world is given by "a number which when expressed in terms of the denominations, koti-koti, etc., occupies twenty-nine places (sthâna)." Reference to the "places of numeration" is found also in a contemporary work, the Vyavabâra-sûtra. ${ }^{1}$

Puranas. The Purânas which are semi-religious and semi-historical works, also contain references to the notational places. These works were written for the purpose of spreading education on religious and historical matters amongst the common people. Reference to the place-value notation in these works shows the desire of their authors to give prominence to the system. The Agni-Purâna ${ }^{2}$ says:
"In case of multiples from the units place, the value of each place (sthâna) is ten times the value of the preceding place."

The Viṣnu-Purâna ${ }^{3}$ has similarly:
"O dvija, from one place to the next in succession, the places are multiples of ten. The eighteenth one of these (places) is called parârdba."

The Vâyu-Purậáa observes:
"These are the eighteen places (stbâna) of calculation; the sages say that in this way the number of places can be hundreds."

The above three works are the oldest among the Purânas and of these the Agni and the Vâyu Purânas in their present form are certainly as old as the fourth century A.D. The Agni-Purâna is referred by some scholars to the first or second century A.D.

[^36]Works on Philosophy. The following simile has been used in Vyâsa-Bbâsya ${ }^{1}$ on the Yoga-sûtra of Patañjali :
"Thus the same stroke is termed one in the units place, ten in the tens place, and hundred in the hundreds place........." ${ }^{2}$

The same simile occurs in the Sâriraka-Bhâsya of Sañkarâcârya :
"Just as, although the stroke is the same, yet by a change of place it acquires the values, one, ten, hundred, thousand, etc...."s

The first of the above works cannot be placed later than the sixth century whilst the second one not later than the eighth. The quotations prove conclusively that in the sixth century, the place-value notation was so well known that it could be used as an illustration for a philosophical argument.

Literary Works. A passage from the Vâsavadattâ of Subandhu comparing the stars with zero dots has already been mentioned. Several other instances of the use of zero are found in later literature, but they need not be mentioned here. ${ }^{*}$
${ }^{1}$ iii. 13.
${ }_{2}$ The translation is as given by J. H. Woods, The Yoga System of Patanjali, p. 216. 'In a foot-note, it is remarked: "Contrary to Mr. G. R. Kaye's opinion, the following passages show that the place-value system of decimals was known as early as the sixth century A.D." The above passage is also noted by Sir P. C. Ray in his History of Hindu Chemistry, Vol. II, p. 117.
${ }^{\text {s }}$ III. iii. 17; cf. B. Datta, American Math. Monthly, XXXIII 1926, pp. 220-1.

* E.g., the use of the sinnya-bindu in Naisadba-carita of Srîharṣa (c. 12th century). Cf. B. Datta, Ibid, pp. 449-454.

14. DATE OF INVENTION OF THE PLACE-VALUE NOTATION

We may now summarise the various evidences regarding the early use of the place-value notation in India :
(1) The earliest palaeographic record of the use of the place-value system belongs to the close of the sixth century A.D.
(2) The earliest use of the place-value principle with the word numerals belongs to the second or the third century A.D. It occurs in the Agni-Purana, the Bakhshâlî Manuscript and the Puliśa-siddlbanta.
(3) The earliest use of the place-value principle with the letter numerals is found in the works of Bhâskara I about the beginning of the sixth century A.D.
(4) The earliest use of the place-valuc system in a mathematical work occurs in the Bakhshâlî Manuscript about 200 A.D. It occurs in the Aryabbatiya composed in 499 A.D., and in all later works without exception.
(5) References to the place-value system are found in literature from about 100 B.C. Three references ranging from the second to the fourth century A.D. are found in the Purâṇas.
(6) The use of a symbol for zero is found in Pingala's Chandab-sûtra as early as 200 B.C.

The reader will observe that the literary and nonmathematical works give much earlier instances of the use of the place-value system than the mathematical works. This is exactly what one should expect. The system when invented must have for some time been used only for writing big numbers. A long time must have elapsed before the methods of performing arithmetical operations with them were invented. The system cannot be expected to occur in a mathematical
work before it is in a perfect form. Therefore, the evidences furnished by non-mathematical works should, in fact, be earlier than those of mathematical works.

Mathematical works are not as permanent as religious or literary works. The study of a particular mathematical work is given up as soon as another better work comes into the field. In fact, a new mathematical work is composed with a view to removing the defects of and superseding the older ones. It is quite probable that works employing the place-value notation were written before Áryabhata I, but they were given up and are lost. It will be idle to expect to find copies of such works after a lapse of sixteen hundred years.

In Europe and in Arabia it is still possible to find mss. copies of works using the old numerals or a mixture of the old numerals with the new place-value numerals, but in India absolutely no trace of any such work exists.

In Europe the first definite traces of the placevalue numerals are found in the tenth and eleventh centuries, but the numerals came into general use in mathematical text books in the seventeenth century. In India Åryabhaṭa I (499), Bhâskara I (522), Lalla (c. 598), and Brahmagupta (628), all use the place-value numerals. There is no trace of any other system of notation in their works. Following the analogy of Europe, we may conclude, on the evidence furnished by Hindu mathematical works alone, that the placevalue system might have been known in India about 200 B.C.

As the literary evidence also takes us to that period, we may be certain that the place-value system was known in India about 200 B.C. Therefore we shall not be much in error, if we fix 200 B.C. as the probable date of invention of the place-value system and
zero in India. It is possible that further evidence may force us to fix an earlier date.

1s. HINDU NUMERALS IN ARABIA ${ }^{1}$

The regular history of the Arabs begins after the flight of Mohammad from Mecca to Medina in A.D. 622. The spread of Islam succeeded in bringing together the scattered tribes of the Arabian Peninsula and creating a powerful nation. The united Arabs, within a short space of time, conquered the whole of Northern Africa and the Spanish Peninsula, and extended their dominions in the east upto the western border of India. They easily put aside their former nomadic life, and adopted a higher civilisation.

The foundations of Arabic literature and science were laid between 750-850 A.D. This was done chiefly with the aid of foreigners and with foreign material. The bulk of their natrative literature came to the Arabs in translation from Persian. Books on the science of war, the knowledge of weapons, the veterinary art, falconry, and the various methods of divination, and some books on medicine were translated from Sanskrit and Persian. They got the exact sciences from Greece and India.

Before the time of Mohammad the Arabs did not possess a satisfactory numeral notation. The numerous computations connected with the financial administration of the conquered lands, however, made the use of a developed numeral notation indispensable. In some localities the numerals of the more civilised conquered nations were used for a time. Thus in Syria, the Greek notation was retained, and in Egypt the

[^37]Coptic. To this early period belongs the Edict of Khalif Walid (699) which forbade the use of the Greek language in public accounts, but made a special reservation in favour of Greek letters as numerical signs, on the ground that the Arabic language possessed no numerals of its own. ${ }^{1}$ The Arabic letters gradually replaced the Greek ones in the alphabetic notation and the abjad notation came to be used. It is probable that the Arabs had come to know of the Hindu numerals from the writings of scholars like Sebokht, and aslo of their old ghobâr forms from other sources. But as their informants could not supply all the necessary information (e.g., the methods of performing the ordinary operations of arithmetic) these numerals had to wait for another century before they were adopted in some of their mathematical works.

During the reign of the Khalif Al-Mansûr (753774 A.D.) there came embassies from Sindh to Baghdad, and among them were scholars, who brought along with them several works on mathematics including the Brâbma-sphuta-siddhânta and the Khanda-khâdyaka of Brahmagupta. With the help of those scholars, Alfazârî, perhaps also Yâkub ibn Târik, translated them into Arabic. Both works were largely used and exercised great influence on Arab mathematics. It was on that occasion that the Arabs first became acquainted with a scientific system of astronomy. It is believed by all writers on the subject that it was at that time that the Hindu numerals were first definitely introduced arnongst the Arabs. It also seems that the Arabs at first adopted the ghobar forms of the numerals, which they had already obtained (but without zero) from the

[^38]Alexandrians, or from the Syrians who were employed as translators by the Khalifs at Baghdad. Al-Khowârîzmî (825), one of the earliest writers on arithmetic among the Arabs, has used the ghobâr forms. ${ }^{1}$ But not long afterwards, the Arabs reaiised that the ghobâr forms were not suited to their right-to-left script. Then there appears to have been made an attempt to use more convenient forms. But as people had got accustomed to the ghobâr forms, they did not like to give them up, and so we find a struggle ${ }^{2}$ between the two forms, which continued for about two centuries (roth and inth) until at last the more convenient ones came into general use. The west Arabs on the other hand did not adopt the modified forms of the east Arabs, but continued to use the ghobâr forms, and were thus able to transmit them to awakening Europe. This, perhaps, explains in a better way the divergence in the forms of modern Arabic and modern European numerals, than any theory yet propounded.

In a theory that was advanced by Woepcke, this divergence is explained by assuming that (1) about the second century after Christ, before zero had been invented, the Hindu numerals were brought to Alexandria, whence they spread to Rome and also to west Africa; (2) that in the eighth century, after the notation in India had been already much modified and perfected
${ }^{3}$ Smith and Karpinski, l.c., p. 98.
${ }^{2}$ One document cited by Woepcke is of special interest since it shows the use of the ordinary Arabic forms alongside the ghobâr at an early date (970 A.D.). The title of the work is "Interesting and Beautiful Problems on Numbers" copied by Ahmed ibn Mohammed ibn Abdaljalîl Abû Sa'id, al-Sijzî, (95i-1024) from a work by a priest and physician, Nazif ibn Yumn, al-Qass (died 990). Sprenger also calls attention to this fact (in Zeit. d deutschenmorgenländischen Gesselscbaft, XLV, p. 367). Ali ibn Ahmed Al-Nasâvî (c. 1025) tells us that the symbolism of numbers was unsettled in his day (Smith and Karpinski, l.c., p. 98).
by the invention of zero, the Arabs at Baghdad got it from the Hindus; (3) that the Arabs of the west borrowed the Columbus-egg, the zero, from those in the east but retained the old forms of the nine numerals, if for no other reason, simply to be contrary to their political enemies of the east; (4) that the old forms were remembered by the west Arabs to be of Hindu origin, and were hence called ghobar numerals; (s) that, since the eighth century, the numerals in India underwent further changes and assumed the greatly modified forms of modern Devanàgarî numerals.

Now, as to the fact that these figures might have been known in Alexandria in the second century A.D., there is not much doubt. But the question naturally arises: Why should the Alexandrians use and retain a knowledge of these numerals? As far as we know, they did possess numeral notations of their own; why should they give preference to a foreign notation? These questions cannot be satisfactorily answered unless we assume that along with the nine symbols the principle of place-value and probably also the zero was communicated to them. But as they were unprepared for the reception of this abstract conception, they adopted the nine numerals only and used them on the apices. These numerals were then transmitted by them to Rome and to west Africa.

The second assumption that the Hindu numeral figures of the eighth century were adopted by the Arabs is not supported by fact. The figures that are found in the old Arabic manuscripts resemble either the ghobar numerals or the modern Arabic more than the Hindu numerals of the eighth century. In fact, we have every reason to believe that the Arabs knew these ghobâr forms, perhaps without the principle of place-value and zero, long before they had direct contact with India, and that they adopted zero only about 750 A.D.

16. HINDU NUMERALS IN EUROPE

Boethius Question. It cannot be definitely said when and how the Hindu numerals reached Europe. Their earliest occurrence is found in a manuscript of the Geometry of Boethius (c. 500), said to belong to the tenth century. There are several other manuscripts of this work and they all contain the numerals. Some of these contain the zero whilst the others do not. If these manuscripts (or the portions of them that contain the numerals) be regarded as genuine, it will have to be acknowledged that the Hindu numerals had reached Southern Europe about the close of the fifth century. There are some who consider the passages dealing with the Hindu numerals in the Geometry of Boethius to be spurious. Their arguments can be summarised as below :
(1) The passages in question have no connection with the main theme of the work, which is geometry. The Hindu numerals have not been mentioned in the Arithmetic of Boethius. They have not been used by him anywhere else. Neither Boethius' contemporary Capella (c. 475), nor any of the numerous mediaeval writers who knew the works of Boethius makes any reference to the numerals.
(2) The Hindu numeral notation was perfected in India much later than the fifth century, so that the numerals, even if they had been taken to Europe along the trade routes, had no clim to any superiority over the numerals of the west, and so could not have attracted the attention of Boethius.

Of the above arguments, the second is against facts, for it is now established that the Hindu numeral notation with zero was perfected and was in use in India during the earliest centuries of the Christian eta. The numerals could have, therefore, easily reached

Europe along the trade routes in the fifth century or even earlier. The first argument is purely speculative and throws doubt on the authenticity of the occurrence of the numerals in Boethius' Geometry. It does not prove anything. It seems to us unfair to question the genuineness of the occurrence of the numerals, when they are found in all manuscripts of the work that are in existence now. Their occurrence in the Geometry can be easily explained on the ground that Boethius' knowledge of those numerals was very meagre. He had obtained the forms from some source-from the NeoPythagoreans or direct from some merchant or wandering scholar-but did not know their use. He might have known their use in writing big numbers by the help of the principle of place-value and zero, but he certainly did not know how the elementary operations of arithmetic were to be performed with those numerals. Hence he could make no use of them in his arithmetic or any other work. The writings of Sebokht (c.650) show that the fame of the numerals had reached the west long before they were definitely introduced there. The question of the introduction of the Hindu numerals through the agency of Boethius may, therefore, be regarded as an open one, until further investigations decide it one way or the other.

Definite Evidence. The first writer to describe the ghobar numerals in any scientific way in Christian Europe was Gerbert, a French monk. He was a distinguished scholar, held high ecclesiastical positions in Italy, and was elected to the Papal chair (999). He had also been to Spain for three years. It is not definitely known where he found these numerals. Some say that he obtained them from the Moors in Spain, while others assert that he got them from some other source, probably through the merchants. We find that Gerbert did not appreciate these numerals (and rightly, for there
was neither zero nor the place-value), and that in his works, known as the Regula de abaco computi and the Libellus, he has used the Roman forms. We thus see that upto the time of Gerbert (died 1003) the principle of place-value was not known in Europe.

As early as 711 A.D., the power of the Goths was shattered at the battle of Jarez de le Frontera, and immediately afterwards the Moors became masters of Spain, and remained so for five hundred years. The knowledge of the modern system of notation which was definitely introduced at Baghdad about the middle of the eighth century must have travelled to Spain and from there made its way into Europe. The schools established by the Moors at Cordova, Granada, and Toledo were famous seats of learning throughout the middle ages, and attracted students from all parts of Europe. Thus although Europe may not be directly indebted to the Moors for its numerical symbols, it certainly is for that important principle which made the ordinary ghobar forms superior to the Roman numerals.

Several instances of the modern system of notation are to be found in Europe in the twelfth century, but no definite attempt seems to have been made for popularizing it before the thirteenth century. Perhaps the most influential in spreading these numerals in Europe was Leonardo Fibonacci of Pisa. Leonardo's father was a commercial agent at Bugia, the modern Bougie, on the coast of Barbary. It had one of the best harbours, and at the close of the twelfth century was the centre of African commerce. Here Leonardo went to school to a Moorish master. On attaining manhood he started on a tour of the Mediterranean and visited Egypt, Syria, Greece, Italy and Provence, meeting with scholars and merchants and imbibing a knowledge of the various systems of numbers in use in the centres of trade. All these systems, he
however says, he counted as errors compared with that of the Hindus. ${ }^{1}$ Returning to Pisa he wrote his Liber Abaci in 1202, rewriting it in $1228 .{ }^{2}$ In this the Hindu numerals are explained and used in the usual computations of business. At first Leonardo's book met with a cold reception from the public, because it was toc advanced for the merchants and too novel for the universities. However, as time went on people began to realise its importance, and then we find it occupying the highest place among the mathematical classics of the period.

Among other writers whose treatises have helped the spread of the numerals may be mentioned Alexander de Villa Die (c. 124c) and John of Halifax (c. 1250).

A most determined fight against the spread of these numerals was put up by the abacists who did not use zero but employed an abacus and the apices. But the writings of men like Leonardo succeeded in silencing them, althougn it took two or three centuries to do so. By the middle of the fifteenth century we find that these numerals were generally adopted by all the nations of western Europe, but they came into common use only.in the seventeenth century.

17. MISCELLANEOUS REFERENCES TO THE HINDU NUMERALS

Syrian Reference. The following reference to a passage ${ }^{s}$ in a work of Severus Sebokht (662) shows that the fame of the Hindu numerals had reached the banks of

1 "Sed hoc totum et algorismum atque arcus pictagore quasi errorem computavi respectu modi indorum."
${ }^{2}$ Smith and Karpinski, l. c., p. 131.
${ }^{3}$ Attention was first drawn to this passage by F. Nau. $J A$, II, 1910, pp. 225-227; also see J. Ginsburg, Bull. American Math. Soc., XXIII, 1917, p. 368.
the Euphrates in the beginning of the seventh century. Sebokht was a learned Syrian scholar who lived in the convent of Kenneshre on the Euphrates, in the time of the patriarch Athanasius Gamenale (died 631) and his successor John. ${ }^{1}$ Sebokht seems to have been hurt by the arrogance of certain Greek scholars who looked down on the Syrians, and in defending the latter, he claims for them the invention of astronomy. He asserts that the Greeks were merely the pupils of the Chaldeans of Babylon and claims that these same Chaldeans were the very Syrians whom his opponents condemned. It is in this connection that he mentions the Hindus by way of illustration, using the following words:
"I will omit all discussion of the science of the Hindus, a people not the same as the Syrians, their subtle discoveries in the science of astronomy, discoveries that are more ingenious than those of the Greeks and the Babylonians; their computing that surpasses description. I wish only to say that this computation is done by means of nine signs. If those who believe because they speak Greek, that they have reached the limits of science should know these things, they would be convinced that there are also others who know something."

This fragment clearly shows that not only did Sebokht know something of the numerals but that he understood their full significance, and may even have known the zero as Rabbi ben Ezra did (vide infra p. 103), in spite of the fact that he too speaks of nine numerals. In fact even today, we speak of nine numerals only, zero not being recognised a numeral.

Arabic References. Ibn Wabshiya (855). In his work, Ancient alphabets and bieroglyphic characters explained, etc., Ibn Wahshiya gives three forms of

Hindu numerals as three species of Hindu alphabets. ${ }^{1}$ It seems that the forms were well known in his time in Arabia. In the first set of these forms, dots are used as zeros in the now customary way among the Arabs; in the second set the dots are superposed, " while in the third loops are attached to the ordinary symbols for the units. ${ }^{3}$ Karpinski thinks that the use of loops was probably the invention of Wahshiya.
Djâbiz (died 869)
The Arab philosopher Djâhiz calls the numerals "figures of Hind" and observes that with these numerals large numbers can be represented with great facility. He asks, "Who is the inventor of the figures of Hind, who are the authors of the Sindhind and of the Arkband and the methods of calculation with the ciphers?" "

Abul Hasan Al-Masûdî (943)

The Arab historian Al-Masûdî writes, "A congress of sages at the command of the Creator Brahmâ invented the nine figures and also their (the Hindus') astronomy and other sciences." ${ }^{5}$ Al-Masûdi's evidence is important as he had first-hand information of India. He was in Multan in 912 A.D. and in Cambay in 916 A.D.
${ }^{1}$ Karpinski, Bibl. Math., XIII, 1912-13, Pp. 97-8.
${ }^{2}$ Similar use of dots is found in certain manuscripts in India. Vide R. L. Mitra, Notices of Sanskrit MSS., V, p. 299, MS. No. 1976, Plate No. I; India Office Catalogue, MS. Nos. 1946, 1947 and 1871.
${ }^{3}$ This form is similar to the use of ligatures in India when the numerals were written without place-value, (vide supra).
${ }^{4}$ Djâhiz's work is available in French translation (Caire, Du rond et du carré, 1324). Cf. Carra de Vaux, Scientia, XXI, 1921, pp. 273-282.
${ }^{5}$ Reinaud, Mémoire sur l'Inde, Paris, 1894, p. 300. This shows that the Hindus in the tenth century had forgotten the inventor or inventors of the numerals, as a very long time had elapsed.

Aba Sabl Ibn Tamim (950)

Ibn Tamim, a native of Kairwân, a village in Tunis in the north of Africa, wrote in his commentary on the Sefer Yesirâb: "The Indians have invented the nine signs for marking the units. I have spoken sufficiently of them in a book that I have composed on the Hindu calculation, known under the name of Hisâb al-ghobâr." ${ }^{1}$

Al-Nadim (987)

In the Fibrist, the author Al-Nadîm includes the Hindu numerals in a list of some two hundred alphabets of India (Hind.) These numerals are called bindisab. ${ }^{2}$
Al-Birûn̂̀ (1030)
Al-Bîrûnî resided in India for nearly thirteen years (1017-1030) and devoted himself to the study of the arts and sciences of the Hindus. He had also a remarkable knowledge of the Greek sciences and literature, so he was more qualified than any contemporary or even anterior Arab writer to speak with authority about the origin of the numerals. He wrote two books, viz., Kitâb al-arqam ("Book of Ciphers") and Tazkira fi al-bisâb w'al-madd bi al-arqam al-Sind w'alHind ("A treatise on arithmetic and the system of counting with the ciphers of Sindh and India"). In his Tarikh al-Hind ("Chronicles of India"), he says: "As in different parts of India the letters have different shapes, the numerical signs too, which are called anika, differ. The numerical signs which we use are derived from the finest forms of the Hindu signs." ${ }^{8}$ At another place he remarks: "The Hindus use the

[^39]numeral signs in arithmetic in the same way as we do. I have composed a treatise showing how far possibly, the Hindus are ahead of us in this subject." ${ }^{1}$ In his Athâr-ul-Bakiya" ("Vestiges of the Past," written in 1000 A.D.) Al-Bîrûnî calls the modern numerals as al-argam al-bind, i.e., "the Indian Ciphers" and he has incidentally referred to their distinction from two other systems of expressing numbers, viz., the sexagesimal system and the alphabetic system (Harûf al-jumal).

Abenragel (1048)

It has been stated by Ali bin Abil-Regal AbulHasan, called Abenragel, in the preface to his treatise on astronomy that the invention of reckoning with nine ciphers is due to the Hindu philosophers. ${ }^{3}$
Saraf-Eddin (1172)
Mahmûd bin Qajid al-Amûnî Saraf-Eddin of Mecca wrote a treatise, entitled Fi al-bandasa w'al arqam albindi ("On geometry and the Indian ciphers")."

Alkalasâdî (died 1486)

In his commentary of the Talkhis of Ibn Albanna, Abul Hasan Ali Alkalasâdî states: "These nine signs, called the signs of the gbobâr (dust), are those that are employed very frequently in our Spanish provinces and in the countries of Maghrib and of Africa. Their origin is said to have been attributed by tradition to a man of the Indian nation. This man is said to have taken some fine dust, spread it upon a table and taught

[^40]the people multiplication, division and other operations." ${ }^{1}$

Behâ Eddin (c. 1600)
Referring to the numerals Behâ Eddin observes: "The Hindu savants have, in fact, invented the nine known characters." ${ }^{2}$

In the quotations from Arab scholars given above, the term Hind has been used for India, and Hindi for Indian. Hind is the term generally used in Arabic and Persian literature for India. In early writings distinction was sometimes made between Sind and Hind. Thus Al-Masûdî and Al-Bîrûnî used Sind to denote the countries to the west of the river Indus. This distinction is clearly in evidence in Ibn Hawkal's map, reproduced in Elliot and Dawson's History of India. There were others who did not make this distinction. Thus Istakri (912) uses Hind to denote the whole of India. ${ }^{\text {B }}$ Again in the Shâbnâmâ of Firdausi, ${ }^{4}$ Sind has been used for a river as well as for a country, and Hind for the whole of India. In later times this distinction disappeared completely. According to the lexicographers Ibn Seedeh (died 1066) and Firouzâbàdi (1328-1413), Hind is "the name of a well known nation" and according to El-Jowharee (1008) it denotes "the name of a country." Instances of the use of Hind to denote India in the literature of the Arabs can be multiplied at pleasure.

Carra de Vaux ${ }^{5}$ has suggested that the word Hind

[^41]does not probably mean India but is really derived from ènd (or bènd) signifying "measure," "arithmetic" or "geometry." He concludes that the expression "the signs of bind" means "the arithmetical signs" and not "the signs of India." As regards the use of the adjective bindi by certain scholars in connection with the numerals, he conjectures that it has probably been employed through confusion for bindasi.

Carra de Vaux's derivation of the word bind from ind or bend cannot be accepted. It has no support from Arabic lexicography. Moreover, the word bind is a very ancient one. It occurs in the Avesta both in the earlier Yasna and in the later (Sassanian) Vendidad. The word also occurs in the cuneiform inscriptions of Darius Hystaspes. The Pehlavi writings before the Arab conquest of Iran also show the word bind. In all those cases it means India.

The word bindi is an adjective formed from bind and means "Indian". The fact that in a few isolated cases, it has been confused with the word bindasi, cannot make us conclude that this has happened in all cases.

The terms Hindasa, etc. The words bindasa, bindisa, handasa, bindasi, bandasi, etc., have been stated by competent authorities to be adjectives formed from bind, meaning "Indian". Kaye and Carra de Vaux ${ }^{3}$ oppose this interpretation. Relying on the lexicon of Firouzâbâdi they assert that these terms are derived from the Persian andâzah, meaning "measure." There is no doubt that the word bindasi denotes "geometrical" in the Arabic language. But

[^42]when this term is used in connection with an explanation of the rule of "double false position" or the method of "proof by nines" or in connection with the "numeral notation," we have to admit that it had some other significance also. As the arithmetical rules designated by the term bindasi are found in Hindu arithmetic prior to their occurrence in Arabia, it follows that bindasi also means Indian. The term bindasi, bindasa or bandasa has, therefore, two meanings, one "geometrical" and the other "Indian". The controversy regarding the meaning of this term which was set at rest by Woepcke, ${ }^{1}$ has arisen again because Kaye and Carra de Vaux have refused to recognise both meanings of this term. ${ }^{2}$ It may be pointed out here that as one of the meanings of bindasi is synonymous with bindi, there is no wonder that the two words were sometimes confused with each other, especially by scribes who did not understand the text.

European References. Isidorus of Seville. The nine characters (of the ghobar type), without zero, are given as an addition to the first chapter of the third book of the Origines by Isidorus of Seville in which the Roman numerals are under. discussion. Another Spanish copy of the same work (of 992 A.D.) contains the numerals in the corresponding section. The writer ascribes an Indian origin to them in the following words: "Item de figuris arithmetice. Scire debemus in Indos subtilissimum ingenium habere et ceteris gentes eis in arithmetica et geometria et ceteris liberalibus disciplinis concedere. Et hoc manifestum
${ }^{1}$ Woepcke, $J A, \mathrm{I}, 1863$, pp. 27f. See also Suter's article on handasa in the Encyclopaedia of Islam and Rosen's Algebra of Mohammad Ben Musa, London, 1831, pp. 196f.
${ }^{2}$ It will not be difficult to point out in any literature words having more than one meaning. Occasionally these meanings have no connection. Whenever such a word is used, the appropriate meaning has to be deduced from the context.
est in nobem figuris, quibus designant unum-quemque gradum cuinslibet gradus. Quarum hec sunt forma." ${ }^{1}$

Rabbi ben Exra (1092-1167)
Rabbi Abraham ibn Meir ibn Ezra in his work, Sefer ba-mispar ("the Book of Number"), gives the Hindu forms of the numerals. He knew of the Hindu origin of the numerals for he states: "that is why the wise people of India have designated all their numbers through nine and have built forms for the nine ciphers." ${ }^{2}$
Leonardo of Pisa
Leonardo of Pisa in his work, Liber Abaci (1202), frequently refers to the nine Indian figures. At one place he says: "Ubi ex mirabili magisterio in arte per novem figuras indorum introductus" etc. In another place, as a heading to a separate division, he writes "De cognitione novem figurarum yndorum" etc., "Novem figure indorum he sunt 98765432 I.":
Alexander de Villa Dei
Alexander de Villa Dei (c. 1240) wrote a commentary on a set of verses called Carmen de Algorismo. In this commentary he writes: "This boke is called the boke of algorim or augrym after lewder use. And this boke tretys of the Craft of Nombryng, the quych crafte is called also algorym. Ther was a kyng of Inde the quich heyth Algor $\&$ he made this craft...... Algorisms, in the quych we use teen figurys of Inde." "
${ }^{1}$ Quoted by Smith and Karpinski, l.c., p. 138.
${ }^{2}$ Sefer ba-Mispar, Das Buch der zabl, ein bebraisch-arithmetisches Work des R. Abrabam ibn Esra, Moritz Silberberg, Frankfurt a M., 1899, p. 2.
${ }^{8}$ Liber Abaci, Rome, 18s7; quoted by Smith and Karpinski, l.c., p. 10.
${ }^{\text {4 }}$ Smith and Karpinski, l.c., p. 11.

Maximus Planudes states that "the nine symbols come from the Indians." ${ }^{1}$

TABLE I—Kbaroṣtbî Numerals

Saka, Parthian and Kuṣâna Inscriptions			Asoka Inscs.	
33	40	1		
733	so	11	//	
333	60	III		
フ333	70	X	IIII	
3333	80	$1 \times$	Inill	,
て1	100	IIX		6
	200	IIIX		7
SII)	300	$x \times$		8
113 र1	122	2		10
x7333511	274	3		20

TABLE II（a）－Semitic and Brâbmî Numerals

	Hieroglyphic	Phoenician	Hieratic	Demotic	Aśoka Ins－ criptions	Nânâghât Inscrip－ tions	Kuṣâna Inscrip－ tions	Ksatrapa \＆Andhra Inscrip－ tions tion
1	1	1	2？．1．	1		－	－	－
2	II	11	4,4	4		$=$	$=$	$=$
3	111	III	24.4	4			\pm	\equiv
4	IIII		द xamy	$\bigcirc 4$	＋	7 F	77	7才
5	IIII	IIII	3，9	1			ヶちFP	rfh
6	IIIII		\％r	5	$\varepsilon ¢$	φ	Gく\＆	le
7	M1／m	1 ｜ 1 O	～14	$7{ }^{7} 4$		η	$7 ? 1$	？
－	｜｜1｜｜｜｜	W MIII	\rightarrow व	2				7
9	mma	＊＊＊＊	22	P p				3
10	月	\square	万＜λ	1λ		$\propto \propto$	¢cを	人0co

TABLE II（b）－Semitic and Brâbmî Numerals

	Hieroglyphic	Phoenician	Hieratic	Demotic	Aśoka Ins－ criptions	Nânâghât Inscrip－ tions	Kuṣâna Inscrip－ tions	Kṣatrapa \＆Andhra Inscrip－ tions
18	1 n	\cdots	I					
19	If minn	MIMA \rightarrow	2λ					
20	An	$a, 3,3, \Rightarrow$	2λ	43		0	$\theta \theta \theta$	8
3.0	InR	$\rightarrow H$					U21	
40	nnon	HH	－	2			$y y y$	
50	MAMM	$\rightarrow H H$	$\}$	$\{$	67		B66	
60	ก10 10n	HHY	24	\underline{y}			VYV	
70	non nann	THHH	3	3			$x y$	1
80	namarnan	4yy4	14.	2		（1）	（1）	
90	MAMAM AM	ТНタササ	$\xrightarrow{\boldsymbol{n}}$	4			（ \square^{4}	
100	9	$\mathcal{Y}\|,\| \alpha, N$	3	1		H		7

TABLE III－Brâbmí Numerals

	$\begin{aligned} & \text { III } \\ & \text { Cent. } \\ & \text { B. C. } \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { Cent. } \\ & \text { B. C. } \end{aligned}$	I \＆II Centuries A．D．	II Century A．D．	II to IV Century A．D．	$\begin{aligned} & \text { IV Century } \\ & \text { A.D. } \end{aligned}$
	Asoka Inscs．	Nânâ－ ghât Inscs．	Kușâna Inscriptions	Kṣatrapa \＆Andhra Inscriptions	Ksatrapa Coins	Jaggayapeta Inscs． and Sivaskanda Varmana Plates
8		－	－	－－	－－	-7
2		二	$=$	$=$	$=$	ニニスソフ」
3			$\equiv \equiv$	三	三	NNNN
4	t	77	77	¢77 \％	yy $7 x y$ y	$\text { y } 4 x y y$
5			H下¢F	rtr	か入なが	HFFJ
6	$\varepsilon 6$	φ	¢ ¢ ¢	φ	φ	$9599)$
7		7	77	77	33	993
0			Y4055	7	55555	yyuyu
9		p		3	333	

TABLE IV-Brâbmî Numerals

TABLE V-Brâbmi Numerals

TABLE VI－Bräbmi Numerals

		II Century B．C．	$\begin{gathered} \text { I \& II Centuries } \\ \text { A. D. } \end{gathered}$	$\begin{aligned} & \text { II Century } \\ & \text { A. D. } \end{aligned}$	$\begin{array}{\|c\|} \text { II to IV Century } \\ \text { A. D. } \end{array}$	$\begin{aligned} & \text { IV Cent. } \\ & \text { A.D. } \end{aligned}$
	$\begin{aligned} & \text { 送宮 } \\ & \text { 品 } \end{aligned}$	Nânâghât Inscriptions	Kuṣâna Inscriptions	Kṣatrapa \＆Andhra Inscriptions	Kṣatrapa Coins	$\begin{aligned} & \hline \text { Jaggaya- } \\ & \text { peta \& } \\ & \text { Pallava } \\ & \text { Grants } \\ & \hline \end{aligned}$
10		$\propto \propto \alpha$	$\propto \alpha \not \subset \square$ \＆\＆cc	$\alpha \propto$ $\rightarrow \infty$	$\propto \alpha \ll$	$\begin{aligned} & \mathscr{\sim} \propto \\ & \sim \sim \end{aligned}$
20		0	$\theta \theta \theta$	8	$\theta 1$	cra
30			山		NN入	
40			yyy \times	x	HKK	
50	63		PG6		\checkmark	
60			VソY			
70			$\times \mathcal{L}$	7	なヶxぁお	
80		©	$\bigcirc \boldsymbol{0}$		（1）000	
90			$\oplus \oplus$		$\oplus \boldsymbol{\oplus}$	

TABLE VII-Bräbmî Numerals

TABLE VIII-Brâbmi Numerals

TABLE IX-Brâbmi Numerals

TABLE X—Brábmi Numerals

	viII to IX Cent．A．D．	$\begin{array}{\|c\|} \hline \text { vir to viII } \\ \text { Cent. } \\ \text { A.D. } \\ \hline \end{array}$	IX to X Century ${ }^{\text {A }}$ A．D．	$\begin{array}{\|c\|} \hline \text { V-VIIII } \\ \text { Cent. } \\ \text { A.D. } \end{array}$	Manus	scripts
	Inscs．from Nepal	Grants of the Garigâ Dynasty	Pratihâra Grants	Misc． Inscrip－ tions	Buddhist Manuscripts	Jaina Manuscripts
	H $\begin{aligned} & \text { 2f } 3 x \\ & \text { सf } 4 y \\ & \text { उF } \end{aligned}$	\hat{y}		Э み JY 7_{5} ± 2 a 5	अ ल य Fु 工 ज्ञा	78 সु取级 取 स

TABLE XI-Brâbmî Numerals

		歺 ж										
$\begin{array}{\|l\|} \hline \dot{\vec{U}} \dot{\text { O }} \\ > \end{array}$		TV		TV								
\|r												
نِ نِ				号				18				
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \vdots & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}$												

TABLE XII-Early Hindx Numeral Forms

TABLE XIII—Early Hindu Numeral Forms

TABLE XIV-Development of Nagari Numerals

TABLE XV—Nuserral Forms in Modern Hindu Scripts

	1	2	3	4	s	6	7	8	9	-
Nâgarî	9	2	3	γ	\underline{x}	ε.	9	τ	\bigcirc	0
Śáradâ	2	3	3	Σ	4	3	1	5	\checkmark	\bigcirc
Tâkarî	\bigcirc	3	2	8	4	ข	9	5	6	0
Gurumukhî	8	2	3	\succ	4	t	2	t	2	0
Kaithî	8	2	3	γ	4	Σ	v	[\sim^{\sim}	-
Bȧngâlâ	δ	2	v	8	0	(4)	9	\forall	ఎ	0
Maithils	d	2	3	8	N	J	7	\downarrow	v	-
Uriyâ	l	9	on	γ	8	9	9	r	N	0
Gujarâti	9	2	3	γ	4	δ	S	c	5	0
Mârạthî	1	2	3	8	r	ε	\bigcirc	F	a	-
Telegu	n	\checkmark	3	γ	\boldsymbol{H}	2	2	v	E	0
Kanâdị	7	\bigcirc	2	8	4	e	2	\checkmark	F	0
Malayâlam	0	2	\cdots	σ	(3)	\cdots	9	Υ	\cdots	0
Burmese	2	\downarrow	1	9	9	(1)	9	0	-	-
Siamese	$\stackrel{9}{2}$	\cdots	m	$\frac{\pi}{4}$	${ }_{6}^{6}$	b	\cdots	$\underset{\infty}{\sigma}$	$\underset{r}{r}$	\bigcirc
Tibetan	r	-	7	e	\checkmark	${ }^{\circ}$	d	p	6°	\bullet

Chapter II

ARITHMETIC

1. GENERAL SURVEY

Terminology and Scope. Arithmetic forms the major part of the Hindu works on pattiganita. The word pâtiganita is a compound formed from the words patti, meaning "board," and ganita, meaning "science of calculation;" hence it means the science of calculation which requires the use of writing material (the board). ${ }^{1}$ It is believed that this term originated in a non-Sanskrit literature of India, a vernacular of Northern India. The oldest Sanskrit term for the board is phalaka or patta, not pâtit. The word pâtî seems to have entered into Sanskrit literature about the beginning of the seventh century A.D. ${ }^{2}$ The carrying out of mathematical calculations was sometimes called dbûli-karma ("dust-work"), because the figures were written on dust spread on a board or on the ground. Some later writers have used the term vyakta-ganita ("the science of calculation by the 'known'") for pattiganita to distinguish it from algebra which was called avyakta-ganita ("the science of calculation by the 'unknown' "). The terms pâtitganita and dbûli-karma were translated into Arabic when Sanskrit works were rendered into that language. The Arabic equivalents are ilm-hisâb-al-takht ("the science of

[^43]calculation on the board") and bisâb-al-ghobâr ("calculation on dust") respectively.

Bayley, Fleet and several others suspect that the origin of the term patti in Hindu Mathematics lies in the use of the board as an abacus. This conjecture, however, is without foundation, as no trace of the use of any form of the abacus is found in India.

According to Brahmagupta ${ }^{1}$ there are twenty hoperations and eight determinations in pattiganita. He says:
"He who distinctly and severally knows the twenty logistics, addition, etc., and the eight determinations including (measurement by) shadow is a mathematician."

The twenty logistics, according to Prrthudakasvâmî, are: (1) sanikalita (addition), (2) vyarakalita or vyutkalita (subtraction), (3) gunana (multiplication), (4) bhâgahâra (division), (s) varga (square), (6) varga-mûla (square-root), (7) ghana (cube), (8) ghana-mûla (cube-toot), (9-13) pañca jâti (the five rules of reduction relating to the five standard forms of fractions), (14) trairâsikea (the rule of three), (is) vyasta-trairaśika (the inverse rule of three), (16) pañcarấsika (the rule of five), (17) saptarâsika (the rule of seven), (18) navarâsika (the rule of nine), (19) ekâdasarấsika (the rule of eleven), and (20) bhânda-pratibhânḍa (barter and exchange). The eight determinations are: (1) misraka (mixture), (2) średhi (progression or series), (3) kesetra (plane figures), (4) kbâta (excavation), (5) citit (stock), (6) krâkacika (saw), (7) râsi (mound), and (8) châyâ (shadow).

Of the operations named above, the first eight have been considered to be fundamental by Mahâvîra and later writers. The operations of duplation (doubling)

[^44]and mediation (halving), which were considered fundamental by the Egyptians, the Greeks and some Arab and western scholars, do not occur in the Hindu mathematical treatises. These operations were essential for those who did not know the place-value system of notation. They are not found in Hindu works, all of which use the place-value notation.

Sources. The only works available which deal exclusively with pâtîganita are: the Bakbshâli Manuscript (c. 200), the Trisatikâ (c. 750), the Ganita-sâra-sam̀graha (c. 850), the Ganita-tilaka (1039), the Lîlâvatí (1150), the Ganita-Kaumudî (1356), and the Pâtî-sâra (1658). These works contain the twenty operations and the eight determinations mentioned above. Examples are also given to illustrate the use of the rules enunciated.

Besides these there are a number of astronomical works, known as Siddhânta, each of which contains a section dealing with mathematics. Áryabhata I (499) was the first to include a section on mathematics in his Siddbânta, the Aryabhatîya. Brahmagupta (628) followed Aryabhata in this respect, and after him it became the general fashion to include a section on mathematics in a Siddbânta work. ${ }^{1}$ The earlier Siddbânta works do not possess this feature. The Suirya-siddhânta (c. 300) does not contain a section on mathematics. The same is true of the Vâsis!tha, the Pitâmaba and the Romaka Siddhântas. Bhâskara I and Lalla, ${ }^{2}$ although zealous followers of Aryabhaṭa I, did not emulate him in including a section on mathematics in their astronomical works.

[^45]Exposition and Teaching. In India conciseness of composition, especially in scientific matters, was highly prized. The more compact and brief the composition, the greater was its value in the eyes of the learned. It is for this reason that the Indian treatises contain only a brief statement of the known formulx and results, sometimes so concisely expressed as to be hardly understandable. This compactness is more pronounced in the older works; for instance, the exposition in the Aryabbatiya is more compact than in the later works.

This hankering after brevity, in early times, was due chiefly to the dearth of writing material, the fashion of the time and the method of instruction followed. The young student who wanted to learn pâtigganita was first made to commit to memory all the rules. Then he was made to apply the rules to the solution of problems (also committing the problems to memory). The calculations were made on a pattı on which dust was spread, the numbers being written on the dust with the tip of the fore-finger or by a wooden style, the figures not required being rubbed out as the calculation proceeded. Sometimes a piece of chalk or soap-stone was used to write on the pâtî. Along with each step in the process of calculation the sûtra (rule) was repeated by the student, the teacher supervising and helping the student where he made mistakes. After the student had acquired sufficient proficiency in solving the problems contained in the text he was studying, the teacher set him other problems-a store of graded examples (probably constructed by himself or borrowed from other sources) being the stock-in-trade of every professional teacher. At this stage the student began to understand and appreciate the rationale of the easier rules. After this stage was reached the teacher gave proofs of the more difficult formulæ to the pupil.

It will be observed that the method of teaching pursued was extremely defective in so far as it was in the first two stages purely mechanical. A student who did not complete all the three stages knew practically nothing more than the mere mechanical application of a set of formulx committed to memory; and as he did not know the rationale of the formula he was using, he was bound to commit mistakes in their application. It may be mentioned that not many teachers themselves could guide a pupil through all the stages of the teaching, and the earnest student, if he had a genuine desire to learn, had to go to some seat of learning or to some celeberated scholar to complete his training.

Mathematics is and has always been the most difficult subject to study, and as a knowledge of higher mathematics could not be turned to material gain there were very few who seriously undertook its study. In India, however, the religious practices of the Hindus required a certain amount of knowledge of astronomy and mathematics. Moreover, there have always been, from very early times, a class of people known as ganaka whose profession was fortune-telling. These people were astrologers, and in order to impress their clients with their learning, they used to have some knowledge of mathematics and astronomy. Thus it would appear that instruction in mathematics, upto a certain minimum standard, was available almost everywhere in India. As always happens, some of the pupils got interested in mathematics for its own sake, and took pains to make a thorough study of the subject and to add to it by writing commentaries or independent treatises.
X Decay of Mathematics. All this was true when the times were normal. In abnormal times when there were
foreign invasions, internal warfares or bad government and consequent insecurity, the study of mathematics and, in fact, of all sciences and arts languished. Al-Bîrûnî who visited north-western India after it had been in a very unsettled state due to recurrent Λ fghan invasions for the sake of plunder and loot complains that he could not find a pandit who would explain to him the principles of Indian mathematics. Although Al-Bîrûnî's case was peculiar, for no respectable pandit would agree to help a foreigncr, especially one belonging to the same class as the invaders and the despoilers of temples, yet we are quite sure that in the Punjab there were very few good scholars at that time. We, however, know of at least one very distinguished mathematician, Sripati, who probably lived in Kashmir at that time.

It is certain, however, that after the 12 th century very little original work was done in India. Commentaries on older works were written and some new works brought out, but none of these had sufficient merit as regards exposition or subject matter, so as to displace the works of Bhâskara II, which have held undisputed sway for nine centuries (as standard text books).

The Fundamental Operations. The eight fundamental operations of Hindu ganita are: (1) addition, (2) subtraction, (3) multiplication, (4) division, (5) square, (6) square-root, (7) cube and (8) cube-root. Most of these elementary processes have not been mentioned in the Siddhânta works. Aryabhaṭa I gives the rules for finding the square- and cube-roots only, whilst Brahmagupta gives the cube-root rule only. In the works on arithmetic (patituganita), the methods of addition and subtraction have not been mentioned at all or mentioned very briefly. Names of several methods of multiplication have been mentioned, but the methods
themselves have been either very briefly described or not described at all. The modern method of division is briefly described in all the works and so are the methods of squaring, square-root, cubing and cuberoot.

Although very brief descriptions of these fundamental operations are available, yet it is not difficult to reconstruct the actual procedure employed in performing these operations in ancient India. These methods have been well-known and taught to children, practically without any change, for the last fifteen hundred years or more. They are still performed in the old fashion on a pattî ("board") by those who have obtained their primary training in the Sanskrit pâthaśâlà and not in the modern primary school. The details of these methods are also available to us in the various commentaries, viz., the commentary of Pṛthudakasvâmî and the several commentaries on Bhâskara's Lillâvatî.

As already mentioned, the calculations were performed on sand spread on the ground (dhûli-karma ${ }^{1}$) or on a pâtî ("board"). Sometimes a piece of chalk or soap-stone (pându-lekba or svetavarnì) was used to write on the pattî. ${ }^{2}$ As the figures written were big, so several lines of figures could not be contained on the board. Consequently, the practice of obliterating figures not required for subsequent work was common. Instances of this would be found in the detailed method of working (the operations) given hereafter.

That all mathematical operations are variations of the two fundamental operations of addition and subtraction was recognised by the Hindu mathematicians

[^46]from early times. Bhâskara I (c. 525) states: ${ }^{1}$
"All arithmetical operations resolve into two categories though usually considered to be four. ${ }^{2}$ The two main categories are increase and decrease. Addition is increase and subtraction is decrease. These two varieties of operations permeate the whole of mathematics (ganita). So previous teachers have said: 'Multiplication and evolution are particular kinds of addition; and division and involution of subtraction. Indeed every mathematical operation will be recognised to consist of increase and decrease.' Hence the whole of this science should be known as consisting truly of these two only."

ADDITION

Terminology. Aryabhaṭa II (950) defines addition thus:
"The making into one of several numbers is addition." ${ }^{3}$

The Hindu name for addition is samkalita (made together). Other equivalent terms commonly used are samikalana (making together), miśrana (mixing), sammelana (mingling together), praksepana (throwing together), samyojana (joining together), ekikarana (making into one), yukti, yoga (addition) and ablyyasa, ${ }^{4}$ etc. The word samkalita has been used by some writers in the general sense of the sum of a series. ${ }^{5}$

The Operation. In all mathematical and astronomical works, a knowledge of the process of addition is

[^47]taken for granted. Very brief mention of it is made in some later works of elementary character. Thus Bhâskara II says in the Lilânatí:
"Add the figures in the same places in the direct or the inverse order."

Direct Process. In the direct process of addition referred to above, the numbers to be added are written down, one below the other, just as at present, and a line is drawn at the bottom below which the sum is written. At first the sum of the numbers standing in the units place is written down, thus giving the first figure of the sum. The numbers in the tens place are then added together and their sum is added to the figure in the tens place of the partial sum standing below the line and the result substituted in its place. Thus the figure in the tens place of the sum is obtained; and so on. An alternative mathod used was to write the biggest addend at the top, and to write the digits of the sum by rubbing out corresponding digits of this addend. ${ }^{2}$

Inverse Process. In the inverse process, the numbers standing in the last place (extreme left) are added together and the result is placed below this last place. The numbers in the next place are then added and so on. The numbers of the partial sum are corrected, if necessary, when the figures in the next vertical line are added. For instance, if 12 be the sum of the numbers in the last place, 12 is put below the bottom line, 2 being directly below the numbers added; then, if the

[^48]sum of the numbers in the next place is 13 (say), 3 is placed below the figures added and I is carried to the left. Thus the figure 2 of the partial sum 12 is rubbed out and substituted by $3 .{ }^{1}$

The Arabs used to separate the places by vertical lines, but this was not done by the Hindus. ${ }^{2}$ \&

$\longrightarrow 6$ SUBTRACTION

Terminology. Áryabhaṭa II (950) gives the following definition of subtraction:
"The taking out (of some number) from the sarvadhana (total) is subtraction; what remains is called sesa (remainder)." ${ }^{3}$

The terms vyutkalita (made apart), vyutkalana (making apart), sodbana (clearing), pâtana (causing to fall), viyoga (separation), etc., have been used for subtraction. The terms sesa (residue) and antara (difference) have been used for the remainder. The minuend has been called sarvadbana or viyojya and the subtrahend viyojaka.

The Operation. Bhâskara II gives the method of subtraction thus:
"Subtract the numbers according to their places in the direct or inverse order." ${ }^{4}$
${ }^{1}$ The Manorañjana explains the process of addition thus:
Example. Add 2, 5, 32, 193, 18, 10 and 100.

Sum of units	$2,5,2,3,8,0,0$	20
Sum of tens	$3,9,1,1,0$	14
Sum of hundreds	$1,0,0,1$	2
Sum of sums		360

The horizontal process has been adopted by the commentator so that both the 'direct' and 'inverse' processes may be exhibited by a single illustration. It was never used in practice.
${ }^{2}$ Cf. Taylor, Lîlâwatî, Bombay, 18 I 6 , Introduction, p. 14.
${ }^{2}$ MSi, p. 143.

- L, p. 2.

Direct Process. Sûryadâsa ${ }^{1}$ explains the process of subtraction with reference to the example.

$$
1000-360
$$

thus:
"Hence making the subtraction as directed, six cannot be subtracted from the zero standing in the tens place, so taking ten and subtracting six from it, the remainder (four) is placed above (six), and this ten is to be subtracted from the next place. For, as the places of unit, etc., are multiples of ten, so the figure of the subtrahend that cannot be subtracted from the corresponding figure of the minuend is subtracted from ten, the remainder is taken and this ten is deducted from the next place. In this way this ten is taken to the last place until it is exhausted with the last figure. In other words, numbers upto nine occupy one place, the differentiation of places begins from ten, so it is known 'how many tens there are in a given number' and, therefore, the number that cannot be subtracted from its own place is subtracted from the next ten, and the remainder taken."

The above refers to the direct process, in which subtraction begins from the units place.

Inverse Process. The inverse process is similar, the only difference being that it begins from the last place of the minuend, and the previously obtained partial differences are corrected, if required. The process is suitable for working on a pattì (board) where figures can be easily rubbed out and corrected. This process seems to have been in general use in India, and was considered to be simpler than the direct process. ${ }^{2}$

[^49] addition.

Terminology. The common Hindu name for multiplication is gunana. This term appears to be the oldest as it occurs in Vedic literature. The terms banana, vadha, keraya, etc. which mean "killing" or "destroying" have been also used for multiplication. These terms came into use after the invention of the new method of multiplication with the decimal place-value numerals; for in the new method the figures of the multiplicand were successively rubbed out (destroyed) and in their places were writen the figures of the product. ${ }^{1}$ Synonyms of banana (killing) have been used by Aryabhata 1: (499), Brahmagupta (628), Stîdhara (c. 750) and later writers. These terms appear also in the Bakhshâlî Manuscript. ${ }^{3}$

The term ablyyasa has been used both for addition and multiplication in the Sulba works (800 B.C.). This shows that at that early period, the process of multiplication was made to depend on that of repeated addition. The use of the word parasparakrtam (making together) for multiplication in the Bakhshâlî Manuscript ${ }^{4}$ is evidently a relic of olden times. This ancient terminology proves that the definition of multiplication was "a process of addition resting on repetition of the multiplicand as many times as is the number of the multiplicator." This definition occurs in the commentary of the Aryabhatîya by Bhâskara I. The commentators of the Lílâvatî give the same explanation of the method of multiplication. ${ }^{5}$

[^50]The multiplicator was termed gunya and the multiplier gunaka or gunakâra. The product was called gunana-phala (result of multiplication) or pratyutpanna (lit. "reproduced," hence in arithmetic "reproduced by multiplication"). The above terms occur in all known Hindu works.

Methods of Multiplication. Āryabhata I does not mention the common methods of multiplication, probably because they were too elementary and too wellknown to be included in a Siddhânta work. Brahmagupta, however, in a supplement to the section on mathematics in his Siddhânta, gives the names of some methods with very brief descriptions of the processes:
"The multiplicand repeated, as in gomûtrika, as often as there are digits ${ }^{1}$ in the multiplier, is severally multiplied by them and (the results) added (according to places); this gives the product. Or the multiplicand is repeated as many times as there are component parts ${ }^{2}$ in the multiplier." ${ }^{3}$
"The multiplicand is multiplied by the sum or the difference of the multiplier and an assumed quantity and, from the result the product of the assumed quantity and the multiplicand is subtracted or added." ${ }^{4}$

Thus ${ }^{6}$ Brahmagupta mentions four methods: (i) gomûtrikâ, (2) kbanda, (3) bbeda and (4) iṣta. The common and well-known method of kapáta-sandbi has been omitted by him.
${ }^{1}$ khanda, translated as "integrant portions" by Colebrooke.
${ }^{2}$ bbeda, i.c., portions which added together make the whole, or aliquot parts which multiplied together make the entire quantity.
\because BrSpSi, p. 209; Colebrooke, l.c., p. 319.
${ }^{4}$ BrSpSi, p. 209. Colebrooke (l.c., p. 320) thinks that this is a method to obtain the true product when the multiplier has been taken to be too great or too small by mistake. This view is incorrect.

Srîdhara mentions four methods of multiplication: (1) kapâta-sandlji, (2) tastha, (3) rûpa-vibbâga and (4) stbâna-vibljâga. Mahâvîra mentions the same four. Aryabhata 11 mentions only the common method of kapatu-sandhi. Bhâskara Il, besides the above four, mentions Brahmagupta's method of ista-gunana. The five methods given by Bhâskara II were mentioned earlier by Srîpati in the Siddbinta-sékbara. Ganeśa ${ }^{1}$ (1945) mentions the gelosia method of multiplication under the name of kapatta-sandbi and adds that the intelligent can devise many more methods of multiplication. The method is also given in the Ganita-mañari. We have designated it as kapata-sandbi (b). \&

Seven ${ }^{2}$ distinct modes of multiplication employed by the Hindus are given below. Some of these are as old as 200 A.D. These methods were transmitted to Λ rabia in the eighth century and were thence communicated to Europe, where they occur in the writings of medixval mathematicians.

Door-junction Method. The Sanskrit term for the method is kapâta-sandhi. Srîdhara ${ }^{3}$ describes it thus:
"Placing the multiplicand below the multiplicr as in Kapâta-sandhi,4 multiply successively, in the direct or inverse order, moving the multiplier each time. This method is called kapâta-sandhi."

Aryabhaṭa 11^{5} (950) gives the following without name:

[^51]"Place the first figure of the multiplier over the last figure of the multiplicand, and then multiply successively all the figures of the multiplier by each figure of the multiplicand."

Sripati ${ }^{1}$ (1039) gives the name kapâta-sandbi and states:
"Placing the multiplicand below the multiplier as in the junction of two doors multiply successively (the figures of the multiplicand) by moving it (the multiplier) in the direct or inverse order."

Mahâvîra refers to a method known as kapâtasandhi, but does not give the details of the process. ${ }^{2}$ Bhâskara II gives the method but not the name, while Nârâyana (1356) gives the method in almost the same words as Srîdhara, and calls it kapâta-sandbi.

The main features of the method are (i) the relative positions of the multiplicand and the multiplier and (ii) the rubbing out of figures of the multiplicand and the substitution in their places of the figures of the product.)/ The method owes its name kapata-sandbi to the first feature, and the later Hindu terms meaning "killing" or "destroying" for multiplication owe their origin to the second feature. The occurrence of the terms banana, vadba, etc., in the works of Aryabhaṭa I and Brahmagupta, and in the Bakhshâli Manuscript show beyond doubt that this method was known in India about 200 A.D.

The following illustrations ${ }^{3}$ explain the two processes of multiplication according to the kapata-sandhi plan:
${ }^{1}$ SiSe, xiii. 2; GT, 15.
${ }^{2}$ GSS, p. 9.
${ }^{3}$ The illustrations are based on the accounts given in the commentaries on the Lâlâlatî, especially the Manorañiana which gives more details.

Direct Process: This method of working does not appear to have been popular. It has not been mentioned by writers after the 1 ith century, Sripati (1039) being the last writer to mention it.

Example. To multiply 135 by 12.
The numbers are written down on the patt \hat{i} thus:

12

135
The first digit of the multiplicand (s) is taken and multiplicd with the digits of the multiplier. Thus $5 \times 2=10$; \circ is written below 2, and 1 is to be carried over. ${ }^{1}$ Then $\rho \times 1=5$; adding 1 (carried over), we get 6 . s which is no longer required is rubbed out and 6 written in its place. Thus we have

$$
\begin{array}{r}
12 \\
1360
\end{array}
$$

The multiplier is then moved one place towards the left, and we have

$$
\begin{gathered}
12 \\
1360
\end{gathered}
$$

Now, 12 is multiplied by 3. The details are: $3 \times 2=6$; this 6 added to the figure 6 below 2 gives 12. 6 is rubbed out and 2 substituted in its place. 1 is carried over. Then $3 \times 1=3 ; 3$ plus 1 (carried over) $=4 . \quad 3$ is rubbed out and 4 substituted. After the multiplier 12 has been moved another place towards the left, the figures on the pâtit stand thus:

12

1420
Then, $\mathbf{1} \times \mathbf{2}=\mathbf{2 ;} ; \mathbf{2}+\mathbf{4}=6 ; 4$ is rubbed out and 6 substituted. $1 \times 1=1$, which is placed to the left of 6 .
${ }^{1}$ For this purpose it was probably noted in a separate portion of the patit by the beginner.

As the operation has ended, 12 is rubbed out and the pâtî has

1620

Thus the numbers 12 and 135 have been killed ${ }^{1}$ and a new number 1620 is born (pratyutpanna). ${ }^{2}$

The reader will note that the position of the multiplier and its motion serve two important purposes, viz., (i) the last figure of the multiplier indicates the digit of the multiplicand by which multiplication is to be performed and, (ii) the product is to be added to the number standing underneath the digit" of the multiplicr multiplied.

Sometimes the product of a digit of the multiplicand and the multiplier extends beyond the last place of the multiplier. In such cases, the last figure of the partial product is noted separately. The reader should note this fact in the case, 135×99, by performing the operation according to the above process.

The beginner was liable to commit mistakes in such cases, (i) of not correctly taking into account the separately noted number, or (ii) of rubbing out the digit of the multiplicand beyond the last digit of the multiplier. For these reasons, this process was not in general use and the inverse process was preferred.

Inverse Method: There appear to have been two varieties of the inverse method.
(a) In the first the numbers are written thus:

12

135

Multiplication begins with the last digit of the multiplicand. Thus $1 \times 2=2$; 1 is rubbed out and 2 substi-

[^52]tuted; then $\mathrm{I} \times \mathrm{I}=\mathrm{I}$, this is written to the left; ${ }^{1}$ the multiplier 12 is moved to the next figure. The work on the pâtî stands thus:

12

1235

Then, $3 \times 2=6 ; 3$ is rubbed out and 6 substituted; then $3 \times 1=3$ and $3+2=5 ; 2$ is rubbed out and 5 substituted in its place. The multiplier having been moved, the work on the pâtî stands thus:

$$
\begin{array}{r}
12 \\
1965
\end{array}
$$

Now, $s \times 2=10$; s is rubbed out and \circ substituted in its place; then $s \times 1=5 ; \quad s+1=6 ; 6+6=12 ; 6$ is rubbed out and 2 substituted, and 1 is carried over; then $\mathrm{r}+5=6$, 5 is rubbed out and 6 substituted in its place. The pâtit has now,

$$
1620
$$

as the product (pratyutpanna). The figures to be carried over are noted down on a separate portion of the pâtî and rubbed out after addition.
(b) In the second the partial multiplications (i.e., the multiplications by the digits of the multiplicand) are carried out in the direct manner. These partial multiplications, however, seem to have been carried out in the inverse way, this being the general fashion. The following example will illustrate the method of working:

Example. Multiply 324 by 753
The multiplier and the multiplicand are arranged thus:

753
324
${ }^{1}$ Or the alternative plan: $1 \times 1=1$ and then $1 \times 2=2$, thus giving 12 in the place of 1 in the multiplicand, etc.

Multiplication begins with the last place of the multiplier. 3×7 gives 2 I ; I is placed below the 7 of the multiplier and 2 to its left, thus:

753
21324
Then 3×5 gives $15 ; 5$ is placed below the s of the multiplier and a carried to the left; the 1 obtained in the previous step is rubbed out and $(1+1)=2$ is substituted, giving

753
225324
Then 3×3 gives 9 ; the 3 of the multiplicand is rubbed out and 9 substituted. The work on the patiti now stands thus:

753
225924
The multiplier is now moved one place to the right giving

753
225924
Then multiplying 7 by 2 we get 14 . This 14 being set below the 7 gives

753
239924
Multiplying s by 2 and setting the result below it, we obtain

753
240924
Finally multiplying 3 by 2 and rubbing out 2 , which is required no longer, and substituting 6 in its place, we get

The multiplier is then moved one step further giving

$$
\begin{array}{r}
753 \\
240964
\end{array}
$$

Multiplying by 4 the digits of the multiplier 753, and setting the results as before we obtain

$$
\begin{equation*}
753 \tag{i}
\end{equation*}
$$

243764 multiplying 7×4 and setting the result;
(ii)

753
243964 multiplying 5×4 and setting the result;
(iii)

753
24397^{2} multiplying 3×4 and setting the result.
It may be again remarked that the position and motion of the multiplier play a very important part in the above process. The digits of the multiplier are also successively rubbed out in order to avoid confusion, thus 7 is rubbed out at stage (2), 5 at (ii) and 3 at (iii).

The following variation of the above process is also found: ${ }^{1}$
"Multiplicand 135, multiplier 12; the multiplier placed at the last place of the multiplicand gives

I 2

135

According to the rule 'the numerals progress to the left' the last figure of the multiplicand (the figure 1) is multiplied by 12 . Then after moving (12) we get

I 2

1235

Again, the figure 3 next to the last of the multiplicand being multiplied by the multiplier 12 gives

$$
\begin{gathered}
12 \\
1265 \\
3
\end{gathered}
$$

[^53]Then after moving (i2) we get

$$
\begin{array}{r}
12 \\
1265
\end{array}
$$

$$
3
$$

Again, multiplying the first figure s of the multiplicand with the multiplier 12 , we get

> 12
> 1260
> 36

Then rubbing out the maltiplier, the numbers

$$
\begin{gathered}
1260 \\
36
\end{gathered}
$$

being added according to places give 1620."
Transmission to the West. The kapatitu-sandhi method of multiplication was transmitted to the Arabs who learnt the decimal arithonetic from the Hindus. It occurs in the works of Al-Khowàrizmî (825), Al-Nasavî ${ }^{1}$ (c. 1025) Al-Haṣṣ̂rí (c. 1175), Al-Kalasâcî̉" (c. 1475) and many others. The following illustration is taken from the work of Al-Nasavì who calls this method al-amal al-bindi and tärik: al-lindi ("the method of the Hindus"):

Example. To multiply 324×753

$$
43
$$

${ }^{2}$ H. Suter, Bibl. Math., II (3), p. 16.
${ }^{3}$ Ibid, p. 17.

In the above the arrangement of the multiplicand and multiplier is just the same as in the Hindu method. The multiplier is moved in the same way. As the work is performed on paper, the figures are crossed out instead of being rubbed out.

It may be mentioned that in Europe, the method is found reproduced in the work of Maximus Planudes.

Gelosia Method. The method known as the 'gelosia', ${ }^{1}$ has been described in the Garita-mañarî (I6th century) as the kapâta-sandhi method. " It appears also in Ganesa's commentary on the Lilavati. As the description of the kapatta-sandbi given by the older mathematicians is incomplete and sketchy, it is difficult to say whether Ganeśa is right in identifying the gelosia method with the kapatata-sandhi of older writers. In our opinion Ganesesa's identification is incorrect. ${ }^{2}$

We are at present unable to say definitely whether this method is a Hindu invention or was borrowed from the Arabs who are said to have used it in the 13th century. ${ }^{3}$ It occurs in some Arab works of the 14th century, and also in Europe about the same time. Ganeśa was undoubtedly one of the best mathematicians of his time and the fact that he identified this method with the kapata-sandbi which is the oldest known method show's that the gelosia method must have been in use in India from a long time before him.

The only available description of the method runs as follows:
. "(Construct) as many compartments as there are places in the multiplicand and below these as many

[^54]as there are places in the multiplier; the oblique lines in the first, in the one below, and in the other (compartments) are produced. Multiply each place of the multiplicand, by the places of the multiplier (which are) one below the other and set the results in the compartments. The sum taken obliquely on both sides of the oblique lines in the compartments gives the product. This is the kapatata-sandbi." ${ }^{1}$

The following illustration is taken from Ganeśa's commentary on the Lilalavatí:

To Multiply 135 by 12

I

Cross Multiplication Method. This method has been mentioned by Srîdhara, Mahâvîra, Srîpati and some later writers as the tastba method. These writers, however, do not explain the method. Srîdhara simply states: "The next (method) in which (the multiplier) is stationary is the tastha." 2 The method is algebraic and has been compared to tiryak-gunana or vajrâbbyâsa (cross multiplication) used in algebra. ${ }^{3}$ It has been explained by Gaṇeśa (c. 1545) thus:
${ }^{1}$ Translated from the Ganita-mañjarî of Ganeśa, son of Dhunḍhirâja.
${ }^{2}$ Triś, p. 3.
${ }^{3}$ Colebrooke, l.c., p. 171, fn. s.
"That method of multiplication in which the numbers stand in the same place, ${ }^{1}$ is called tasthagunana. It is as follows: after setting the multiplier under the multiplicand multiply unit by unit and note the result underneath. Then as in vajrâbbyâsa multiply unit by ten and ten by unit, add together and set down the result in the line. Next multiply unit by hundred, hundred by unit and ten by ten, add together and set down the result as before; and so on with the rest of the digits. This being done, the line of results is the product." ${ }^{2}$

This method was known to the Hindu scholars of the 8 th century, or earlier. The method seems to have travelled to Arabia and thence was transmitted to Europe, where it occurs in Pacioli's Suma ${ }^{3}$ and is stated to be "more fantastic and ingenious than the others." Ganeśa has also remarked that "this (method) is very fantastic and cannot be learnt by the dull without the traditional oral instructions."

Multiplication by Separation of Places. This method of multiplication known as stbana-kbanda, is based on the separation of the digits of the multiplicand or of the multiplier. It has been mentioned in all the works from 628 A.D. onwards. Bhâskara II describes the method as follows:
"Multiply separately by the places of figures and add together." ${ }^{*}$

With reference to the example 135×12, Bhâskara II explains the method thus:

[^55]"Taking the digits separately, viz., I and 2, the multiplicand being multiplied by them severally, and the products added together according to places, the result is 1620 ."

Various arrangements appear to have been employed for writing down the working. Some of these are given below:
(i) ${ }^{1}$

$$
135
$$

12
12

$(i i)^{2}$
121212

$(i i i)^{3}$

$$
135135
$$

$1 \quad 2$
270

$\frac{135}{1620}$
Zigzag Method. The method is called gomutrika..* It has been described by Brahmagupta. It is in all
${ }^{1}$ In a manuscript used by Taylor, see his Lîlâwatî, pp. 8-9.
${ }^{2}$ This arrangement is found in the commentary of Gangâdhara on the Lilavati, in the library of the Asiatic Society of Bengal, Calcutta.
${ }^{8}$ Found in Garigâdhara, l.c.

* The word gomutrika, means "similar to the course of cow's urine," hence "zigzag." Colebrooke's reading gosûtrikâ is incorrect. The method of multiplication of astronomical quantities is called gomatrikâ even upto the present day by the pandits.
essentials the same as the sthâna-kbanda method. The following illustration is based on the commentary of Pṛthudakasvâmi.

Example. To multiply 1223 by 235
The numbers are written thus:

2	1223
3	1223
5	1223

The first line of figures is then multiplied by 2 , the process beginning at the units place, thus: $2 \times 3=6 ; 3$ is rubbed out and 6 substituted in its place, and so on. After all the horizontal lines have been multiplied by the corresponding numbers on the left in the vertical line, the numbers on the patti stand thus:

$$
\begin{array}{rrrrrr}
244 & 6 & & \\
36 & 6 & 9 & \\
& 6 & 1 & 1 & 5 \\
2 & 8 & 7 & 4 & 0 & 5
\end{array}
$$

after being added together as in the present method.
The sthâna-khanda and the gomintrika methods resemble the modern plan of multiplication most closely. The sthana-k:banda method was employed when working on paper.

Parts Multiplication Method. This method is mentioned in all the Hindu works from 628 A.D. onwards. Two methods come under this head:
(i) The multiplier is broken up into two or more parts whose sum is equal to it. The multiplicand is then multiplied severally by these and the results added. ${ }^{1}$
(ii) The multiplier is broken up into two or more aliquot parts. The multiplicand is then multiplied by

[^56]one of these, the resulting product by the second and so on till all the parts are exhausted. The ultimate product is the result. ${ }^{1}$

These methods are found among the Arabs and the Italians, having been obtained from the Hindus. They were known as the "Scapezzo" and "Repiego" methods respectively among the Italians. ${ }^{2}$

Algebraic Method. This method was known as istagunana. .Brahmagupta's description of the method has been already quoted. Bhâskara II explains it thus:
"Multiply by the multiplicator diminished or increased by an assumed number, adding or suttracting (respectively) the product of the multiplicand and the assumed number." ${ }^{3}$

This is of two kinds according as we (i) add or (ii) subtract an assumed number. The assumed number is so chosen as to give two numbers with which multiplication will be easier than with the original multiplier. The two ways are illustrated below:

$$
\begin{align*}
135 \times 12 & =135 \times(12+8)-135 \times 8 \tag{i}\\
& =2700-1080=1620
\end{align*}
$$

$$
\begin{align*}
135 \times 12 & =135 \times(12-2)+135 \times 2 \tag{ii}\\
& =1350+270=1620
\end{align*}
$$

This method was in use among the Arabs* and in Europe ${ }^{5}$, obviously under Hindu influence.
${ }^{1}$ Thus $12 \times 135=3 \times 135 \times 4$.
${ }^{2}$ Smith, History, II, p. 117.
${ }^{5}$ L, p. 3.
${ }^{4}$ E.g., Behâ Eddin (c. 1600). See G. Eneström, Bibl. Math., VII (3), p. 95 .
${ }^{5}$ E.g., Widman (1489), Riese (1522), etc. See Smith, l.c., p. 120.

ARITHMETIC

8 DIVISION

$\vec{~}$Terminology. Division seems to have been regarded as the inverse of multiplication. The common Hindu names for the operation are bbâgabâra, bbâjana, barana, chedana, etc. All these terms literally mean "to break into parts," i.e., "to divide," excepting barana which denotes "to take away." This term shows the relation of division to subtraction. The dividend is termed bbâjya, bârya, etc., the divisor bbâjaka, bbâgabara or simply bara, and the quotient labdbi "what is obtained" or labdha.

The Operation. Division was considered to be a difficult and tedious operation by European scholars even as late as the 15 th and 16 th centuries; ${ }^{1}$ but in India the operation was not considered to be difficult, as the most satisfactory method of performing it had been evolved at a very early period. In fact, no Hindu mathematician seems to have attached any great importance to this operation. Aryabhaṭa I does not mention the method of division in his work. But as he has given the modern methods for extracting square- and cube-roots, which depend on division, ${ }^{2}$ the "conclude that the method of division was well-known in his time and was not described in the Aryabbatiya as it was considered to be too elementary. Most Siddhânta writers have followed Áryabhata in excluding the process of division from their works, e.g., Brahmagupta (628), Sripati (1039), and some others.

A method of division by removing common factors, seems to have been employed in India before the invention of the modern plan. This removal of common

[^57]factors is mentioned in early Jaina works. ${ }^{\text {r }}$ It has been mentioned by Mahâvîra who knew the modern method, probably because it was considered to be suitable in certain particular cases:
"Putting down the dividend and below it the divisor, and then, having performed division by the method of removing common factors, give out the resulting (quotient)." ${ }^{2}$

The modern method of division is not found in the Bakhshâlî Manuscript, although the name of the operation is found at several places. The absence of the method may be due to the mutilated form of the text, although it is quite possible that the method was not known at that early period (200 A.D.). 4.

The Method of Long Division. The modern method of division is explained in the works on pâtîganita, the earliest of which, Srîdhara's Trisatikâ, gives the method as follows: ${ }^{3}$
"Having removed the common factor, if any, from the divisor and the dividend, divide by the divisor (the digits of the dividend) one after another in the inverse ${ }^{4}$ order."

Mahâvîra says: ${ }^{5}$
"The dividend should be divided by the divisor (which is) placed below it, in the inverse order, after having performed on them the operation of removing common factors."

[^58]Āryabhata II gives more details of the process: ${ }^{1}$
"Perform division having placed the divisor below the dividend; subtract from (the last digits of the dividend) the proper multiple of the divisior; this (the multiple) is the partial quotient, then moving the divisor divide what remains, and so on."

Bhâskara II, ${ }^{2}$ Nârâyanana ${ }^{3}$ and others give the same method.

The following example will serve to illustrate the Hindu method of performing the operation on a patiti:

Example. Divide 1620 by 12.
The divisor 12 is placed below the dividend thus :
1620
12
The process begins from the extreme left of the dividend, in this case the figure 16 . This 16 is divided by 12 . The quotient I is placed in a separate line, and 16 is rubbed out and the remainder 4 is substituted in its place. The subtraction is made by rubbing out figures successively as each figure of the product to be subtracted is obtained. Thus, the partial quotient 1 , being written, the procedure is

$$
\begin{array}{ll}
1620 \\
12 & \text { line of quotients }
\end{array}
$$

$\mathrm{I} \times \mathrm{I}=\mathrm{I}$, so I of the dividend is rubbed out (as $\mathrm{r}-\mathrm{I}=0$); then $\mathrm{I} \times \mathbf{2}=\mathbf{2}$, so 4 is substituted in the place of 6 (as $6-2=4)$. The figures on the patti are:

420
12
line of quotients

${ }^{1}$ MSi, p. 144.

${ }^{2}$ Bhâskara gives the process briefly as follows: "That number, by which the divisor being multiplied, balances the last digit of the dividend gives the (partial) quotient, and so on." (L, p. 3) ${ }^{8} G K$, i. 16.

The divisor 12 is now moved one place to the right giving

420
12
$\frac{1}{\text { line of quotients }}$
42 is then divided by 12 . The resulting quotient 3 is set in the "line of quotients," 42 is rubbed out and the remainder 6 substituted in its place. The figures now stand thus:

60
12
line of quotients

Moving the divisor one place to the right, we have 60

I 2
On division being performed, as before the resulting quotient s is set in the "line of quotients" and 60 is rubbed out leaving no remainder. The line of quotients ${ }^{1}$ has

$$
135
$$

which is the required result.
The above process, when the figures are not obliterated and the successive steps are written down one below the other, becomes the modern method of long division.

The method seems to have been invented in India about the 4 th century A.D., if not earlier. It was transmitted to the Arabs, where it occurs in Arabic works from the $9^{\text {th }}$ century onwards. ${ }^{2}$ From Arabia the method travelled to Europe where it came to be known as the galley (galea, batello) method. ${ }^{s}$ In this variation

[^59]of the method, the figures obtained at successive stages are written and crossed out, for the work is carried out on paper (where the figures cannot be rubbed out). The method was very popular in Europe from the isth to the 18th century. ${ }^{1}$ The above example worked on the galley plan would be represented thus:

I	$\stackrel{4}{1620}$	1
	122	1
	1	
II	1	
	46	
	1620	13
	1222	
	11	
III	11	
	46	
	1620	135
	1222	
	1	

Comparing the successive crossing out of the figures in I, II and III, with the rubbing out of figures in the corresponding steps according to the Hindu plan, it becomes quite clear that the galley method is exactly the same as the Hindu method. The crossing out of figures appears to be more cumbrous than the elegant Hindu plan of rubbing out.

The Hindu plan of moving the divisor as the digits of the quotient were evolved, although not essential, was also copied and occurs in the works of such well-known Arab writers as Al-Khowârîzmî (825), Al-Nasavî (c. 102s) and others. The mediæval Latin writers called this feature the antirioratio.

[^60]
6. SQUARE

Terminology. The Sanskrit term for square is varga or kerti. The word varga literally means "rows" or "troops" (of similar things). But in mathematics it ordinarily denotes the square power and also the square figure or its area. Thus Āryabhaṭa I says: ${ }^{1}$
"A square figure of four equal sides ${ }^{2}$ and the (number representing its) area are called varga. The product of two equal quantities is also varga."

How the word varga came to be used in that sense has been clearly indicated by Thibaut. He says: "The origin of the term is clearly to be sought for in the graphical representation of a square, which was divided in as many vargas or troops of small squares, as the side contained units of some measure. So the square drawn with a side of five padas length could be divided into five small vargas each containing five small squares, the side of which was one pada long." ${ }^{3}$ This explanation of the origin of the term varga is confirmed by certain passages in the Sulba works. ${ }^{4}$

The term krti literally means "doing," "making" or "action." It carries with it the idea of specific performance, probably the graphical representation.

Both the terms varga and krti have been used in the mathematical treatises, but preference is given to the term varga. Later writers, while defining these terms in arithmetic, restrict its meaning. Thus Sridhara says: ${ }^{5}$
${ }^{1} A$, ii. 3.
${ }^{2}$ The commentator Parameśvara remarks: "That four sided figure whose sides are equal and both of whose diagonals are also equal is called samacaturaśra ("square")."
${ }^{3}$ Thibaut, Sulba-sûtras, p. 48.
4 ApSl, iii. 7; KŚl, iii. 9; cf. B. Datta, American Math. Monthly, XXXIII, 1931, p. 375.
${ }^{5}$ Tris, p. s.
"The product of two equal numbers is varga."
Pṛthudakasvâmî ${ }^{1}$, Mahâvîra ${ }^{2}$ and others give similar definitions.

The Operation. The occurrence of squaring as an elementary operation is characteristic of Hindu arithmetic. The method, however, is not simpler than direct multiplication. It was given prominence by the Hindu writers probably because the operation of square-root is the exact inverse of that of squaring. Although the method first occurs in the Brâbma-spbuta-siddhânta, there is no doubt that it was known to Àryabhaṭa I as he has given the square-root method.

Brahmagupta gives the method ${ }^{3}$ very concisely thus:
"Combining the product, twice the digit in the less" (lowest) place into the several others (digits), with its (i.e., of the digit in the lowest place) square (repeatedly) gives the square."

Srîdhara (750) is more explicit: ${ }^{5}$
"Having squared the last digit multiply the rest of the digits by twice the last; then move the rest of the digits. Continue the process of moving (the remain-
${ }^{1}$ Cf. Colebrooke, l.c., p. 279.
${ }^{2} G . S S$, p. 12.
${ }^{3}$ The method is not mentioned in the chapter on Arithmetic, but seems to have been mentioned as an afterthought in the form of an appendix, (BrSpSi, p. 212).
${ }^{*}$ Râserinnann has been translated by Colebrooke as "the less portion." This translation is incorrect. He says that "the text is obscure" (p. 322, fn. 9), for according to his translation the rule becomes practically meaningless. The term râserûnam must be translated by "the digit in the lowest place." Dvivedi agrees with the above interpretation (p. 212). The method taught here is "the direct method of squaring."
${ }^{5}$ Tris', p. 5. The translation given by Kaye and Ramanujacharia is incorrect. (Bibl. Math., XIII, 1912-I3).
ing digits after each operation) to obtain the square."
Mahâvîra ${ }^{1}$ (850) gives more details:
"Having squared the last (digit), multiply the rest of the digits by twice the last, (which is) moved forward (by one place). Then moving the remaining digits continue the same operation (process). This gives the square."

Bhâskara II^{2} writes:
"Place the square of the last (digit) over itself; and then the products of twice the last (digit) and the others (i.e., the rest) over themselves respectively. Next, moving the number obtained by leaving the last digit (figure), repeat the procedure."

He has remarked that the above process may be begun also with the units place. ${ }^{3}$

The following is the method of working on the patt \hat{i}, the process beginning from the last place, according to Srîdhara, Mahâvîra, Bhâskara II and others:

To square 125 .
The number is written down,

125

The last digit is I . Its square is placed over itself.

I

125
Then twice the last digit $2 \times 1=2$; placing it below the rest of the figures (below 2 or below 5 according as the direct or inverse method of multiplication is used)

$$
\begin{aligned}
& { }^{1} \text { GSS, p. } 12 . \\
& { }^{2} L, \text { p. } 4 . \\
& { }^{3} L, \text { p. } 5 .
\end{aligned}
$$

and rubbing out the last digit 1 , the work on the pâti appears as

I

Performing multiplication by 2 (below) and placing the results over the respective figures, we get

150
25
One round of operation is completed. Next moving the remaining digits, i.e., 25 , we have

150
25
Now, the process is repeated, i.e., the square of the last digit (2) is placed over itself giving

154
25
Then, placing twice the last digit (i.e., $2 \times 2=4$) below the rest of the digits and then rubbing out 2 , we have

1 54
4
Performing multiplication, $4 \times 5=20$, and placing it over the corresponding figure s, (i.e., o over s and 2 carried to the left), the work on the pâtî appears as

$$
\begin{gathered}
1560 \\
5
\end{gathered}
$$

Thus a second round of operations is completed.
Then moving s we have

Squaring s we get 25 , and placing it over 5 (i.e., s over s and 2 carried to the left) we have

$$
15625
$$

5
As there are no 'remaining figures' the work ends. s being rubbed out, the pâti has

$$
15625,
$$

the required square.
According to Brahmagupta and also Bhâskara II, the work may begin from the lowest place (i.e., the units place). The following method is indicated by Brahmagupta:

To square 125 .
The number is written down
I 25
The square of the digit in the least place, i.e., $s^{2}=25$ is set over it thus:

25
125
Then, $2 \times 5=10$ is placed below the other digits, and five is rubbed out, thus:

$$
25
$$

12
10
Multiplying by 10 the rest of the digits, i.e., 12 , and setting the product over them (the digits), we have

1225
12
1a
Then rubbing out io which is not required and moving the rest of the digits, i.e., 12 , we have

Thus one round of operations is completed.
Again, as before, setting the square of 2 above it and $2 \times 2=4$ below 1 , we have

$$
\begin{aligned}
& 1625 \\
& 1 \\
& 4
\end{aligned}
$$

Multiplying the remaining digit I by 4 , and setting the product above it, we have

$$
\begin{aligned}
& 5625 \\
& 1
\end{aligned}
$$

Then, moving the remaining digit 1 , we obtain

$$
5625
$$

I

Thus the second round of operations is completed.
Next setting the square of 1 above it the process is completed, for there are no remaining figures, and the result stands thus:

$$
15625
$$

Minor Methods of Squaring. The identity
(i) $\quad n^{2}=(n-a)(n+a)+a^{2}$
has been mentioned by all Hindu mathematicians as affording a suitable method of squaring in some cases. For instance,

$$
15^{2}=10 \times 20+25=225 .
$$

Brahmagupta says:
"The product of the sum and the difference of the number (to be squared) and an assumed number plus the square of the assumed number give the square." ${ }^{1}$ Srîdhara (750). gives it thus:
"The square is equal to the product of the sum and the difference of the given number and an assumed

[^61]quantity plus the square of the assumed quantity."
Mahâvîra, Bhâskara II, Nârâyaṇa and others also give this identity.

The formula
(ii)

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b
$$

or its general form

$$
(a+b+c+\ldots . .)^{2}=a^{2}+b^{2}+c^{2}+\ldots .+2 a b+\ldots
$$

has been given as a method of squaring. Thus Mahâvira ${ }^{2}$ says:
"The sum of the squares of the two or more portions ${ }^{3}$ of the number together with their products each with the others multiplied by two gives the square."

Bhâskara II^{*} gives:
"Twice the product of the two "parts plus the square of those parts gives the square."

The formula
(iii)

$$
n^{2}=1+3+5+\ldots \text { to } n \text { terms }
$$

has been mentioned by Srîdhara and Mahâvira.
Srîdhara ${ }^{5}$ says:
"(The square of a number) is the sum of as many terms in the series of which one is the first term and two the common difference."
${ }^{1}$ Tris, p. s.
${ }^{2}$ GSS, p. 13.
${ }^{8}$ The word sthâna has been used in the original. This word has been generally used in the sense of 'notational place.' Following the commentator, we have rendered it by "portion." As a given number, say, 125 , can be broken into parts as $90+40+35$ or as $100+20+5$, and as the rule applies to both, it is immaterial whether the word 'stbâna' is translated by 'place' or 'portion.' This rule appears to have been given as an explanation of the Hindu method of squaring used with the place-value numerals.

$$
{ }^{*} L, \text { p. } 4 .
$$

${ }^{5}$ Tris, p. s.

Mahâvîra uses a similar expression:
"The sum of as many terms of the series of which one is the first term and two the common difference is the square (of the given number)." ${ }^{1}$

Nârâyaṇa ${ }^{2}$ has also given the above series. He adds the formula. ${ }^{8}$

$$
A^{2}=(a+b)^{2}=(a-b)^{2}+4 a \dot{b}
$$

to find the square of the given number A.
It should be observed that all the above methods of squaring are applied to whole numbers only. The methods of squaring fractions are dealt with in the section on fractions.

7. CUBE

Terminology. The Hindu term for the cube is ghana. This term occurs in all the mathematical works. It has been used in the geometrical as well as the arithmetical sense, i.e., to denote the solid cube as well as the continued product of the same number taken three times. Thus Ãryabhaṭa I says:
"The continued product of three equals and also the solid having twelve (equal) edges are called ghana." " Srîdhara, ${ }^{5}$ Mahâvîra ${ }^{8}$ and Bhâskara $I I^{7}$ each state:
"The continued product of three equal numbers is ghana."
${ }^{1}$ GSS, p. 12.
${ }^{2}$ GK, i. 17-18.
${ }^{3}$ He says: "The square of the difference plus four times the product is the square of the sum."
${ }^{4} A$, ii. 3 .
${ }^{5}$ Tris, p. 6.
${ }^{6}$ GSS, p. 14.
${ }^{7}$ L, p. 5.

Another term for the cube is brnda, but it is seldom used.

The Operation. A method of cubing applicable to numbers written in the decimal place-value notation, has been in use in India from before the fifth century A.D. Aryabhata I (499) knew the method, although he did not consider it to be as important as the inverse operation of extracting the cube-root which he has explained.
Brahmagupta gives the method in these words:
"Set down the cube of the last; ${ }^{1}$ then place at the next place from it, thrice the square of the last multiplied by the succeeding; then place at the next place thrice the square of the succeeding multiplied by the last; and (at the next place) the cube of the succeeding. This gives the cube."
Srîdhara ${ }^{2}$ says:
"Set down the cube of the last; then set down at the next place ${ }^{3}$ the square of the last multiplied by
${ }^{1}$ The commentator Pṛthudakasvâmî takes 'last' (antya) to mean the figure or figures on the extreme left. The number to be cubed is divided into portions of which the cubes are found successively by the application of the process. (See illustration). Thus 'succeeding' would mean here the figure to the right of the 'last.' It does not, however, make any difference if we take 'last' to mean the figure in the units place. The words used by Brahmagupta are 'antya,' for last and 'uttara' for succeeding. The rule is:

Sthäpyo'ntya ghano'ntya kertistrigunottarsarigunâ ca tatprathamât 1 Uttarakrtirantyagunâ trigunâ cottaragbanasca ghanab "I
${ }^{2}$ Tris', p. 6.
${ }^{\text {s }}$ Sthânâdbikyam, lit. "increasing one place." This increase is to be made by placing the result one place to the right of the previously noted figures (see illustration). Brahmagupta uses the word tatpratbamat, i.e., "before that."
thrice the succeeding; ${ }^{1}$ then (at the next place) the product of the square of the succeeding and last multiplied by three; and then (at the next place) the cube of the succeeding."
Mahâvîra states: ${ }^{2}$
"The cube of the last, the product of thrice its square and the remaining, the square of the remaining multiplied by thrice the last; placing of these, each one place before the other, constitutes here the process." Bhâskara II is more explicit: ${ }^{3}$
"Set down the cube of the last; then the square of the last multiplied by three times the succeeding; then the square of the succeeding multiplied by three times the last and then the cube of the succeeding; these placed so that there is difference of a place between one result and the next, ${ }^{4}$ and added give the cube. The given number is distributed into portions according to places, one of which is taken for the last and the next as the first and in like manner repeatedly (if there be occasion). Or the same process may be begun from the first place of figures for finding the cube."

The method may be illustrated by the following example:
${ }^{1}$ Pûrva, âdi, lit. "preceding". We have rendered them by "succeeding" to be in conformity with the general convention so as to aroid confusion.
${ }^{2}$ GSS, p. is (47).
It will be observed that the "addition of the cube of the remaining" does not occur in the rule. This has to be understood from the previous stanza which says that the cubes of all the parts are to be added. See the translation of the previous stanza given on pp. 166 .
${ }^{3} L, \mathrm{p}, 5$.
4 Sthânântaratvena has been translated by Colebrooke by "according to places." This translation is incorrect and does not give the true significance of the term.

Example. To cube 1234.
The given number has four places, i.e., four portions. First we take the last digit I and the succeeding digit 2, i.e., 12 , and apply the method of cubing thus :
(i) Cube of the last $\left(\mathrm{I}^{3}\right)=1$
(ii) Thrice the square of the last ($3 \cdot \mathrm{I}^{2}$) multiplied by the succeeding (2) gives $\left(2.3 \cdot \mathrm{I}^{2}\right)=6 \underset{\substack{\text { (placing } \\ \text { place) }}}{ }=6$ the next
(iii) Thrice the square of the succeeding multiplied by the last gives $\left(3.2^{2} .1\right)=12 \quad$ (placing at the next place)
(iv) Cube of the succeeding $\left(2^{3}\right)$

$$
\begin{array}{r}
8 \\
\frac{8728}{172}
\end{array}
$$

After this we take the next figure 3, i.e., the number 123, and in this consider 12 as the last and 3 as the succeeding. Then the method proceeds thus:
(i) The cube of the last $\left(12^{3}\right)$ as already obtained $=1728$
(ii) Thrice the square of the last multiplied by the succeeding, i.e., $3.12^{2} .3$
$=1296$ (placing at the next place).
(iii) Thrice the square of the succeeding multiplied by the last, i.e., $3.3^{2} .12$ \square
324 (placing at the next place)

Thus 12^{3} is the sum

Now the remaining figure 4 is taken, so that the number is 1234 , of which 123 is the last and 4 the succeeding. The method proceeds thus:
(i) Cube of the last, i.e., $(123)^{3}$ as already ob-
tained $=1860867$
(ii) Thrice the square of
the last into the suc-
ceeding, i.e., $3 .(123)^{2} .4=181548 \quad$ (placing at the next place)
(iii) Thrice the square of the succeeding into the last,
i.e., $3.4^{2} .123=5904$
(iv) Cube of the last i.e., $4^{3}=$

Thus (1234) ${ }^{3}$ is the sum

64
1879080904

The direct process-that in which the operation begins with the units place-can be similarly performed.

Minor Methods of Cubing. The formula
(i)

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

and the corresponding result

$$
\begin{aligned}
(a+b+c+\ldots)^{3}=a^{3} & +3 a^{2}(b+c+\ldots)+3 a(b+c+\ldots)^{2} \\
& +(b+c+\ldots)^{3}
\end{aligned}
$$

are implied in the Hindu method of cubing given above. Mahâvîra ${ }^{1}$ gives the following explanation:
"The squares of the last place ${ }^{2}$ and the next ${ }^{3}$ are taken, and each (square) is multiplied by the other and by three. The sum of these products and the cubes of both (lit. all) the places is the cube; the
${ }^{1}$ GSS, p. is.
${ }^{2}$ Sthanna, meaning the number represented by the figure standing in that place.
${ }^{3}$ Arya, lit. "other," meaning the number represented by the figures standing in the other places.
procedure is repeated (if necessary). ${ }^{1}$
Srîpati and Bhâskara II^{2} state the formula in the form

$$
(a+b)^{8}=a^{8}+3 a b(a+b)+b^{3}
$$

"Thrice the given number multiplied by its two parts, added to the sum of the cubes of those parts, gives the cube."
Nârâyaṇa ${ }^{8}$ says
"Thrice the (given) number multiplied by both parts, added to the cubes of the parts, is the cube of the sum."

The formula
(ii)

$$
n^{3}=n(n+a)(n-a)+a^{2}(n-a)+a^{3}
$$

has been mentioned by Mâhâvîra ${ }^{4}$ in these words:
"The continued product of the given number, the sum and the difference of the given number and an arbitrary quantity, when added to the smaller of these multiplied by the square of the arbitrary number, and the cube of the arbitrary number, give the cube (of the given number)."

Expressions for n^{3} involving series have been given by Srîdhara, Mahâvîra, Srîpati and Nârâyaṇa. The formula

$$
\begin{equation*}
n^{\mathrm{s}}=\sum_{\mathrm{I}}^{n}\{3 r(r-\mathrm{I})+\mathrm{I}\} \tag{iii}
\end{equation*}
$$

```
\({ }^{1}\) Thus (234) \({ }^{3}\) is considered as
\((200+30+4)^{3}=(200)^{3}+3.200^{2}(30+4)+3.200(30+4)^{2}\)
\(+(30+4)^{3}\)
```

Then the procedure is repeated for obtaining $(30+4)^{3} . C f$. English translation, p. 17, note.
${ }^{2} G T, 27 ; L$, p. 5.
${ }^{3} G K$, i. 23.
${ }^{-}$GSS, p. 15.
is given by Srîdhara in these words:
"The cube (of a given number) is equal to the series whose terms are formed by applying the rule, 'the last term multiplied by thrice the preceding term plus one,' to the terms of the series whose first term is zero, the common difference is one and the last term is the given number."

Mahâvira gives the above in the form

$$
n^{3}=\stackrel{n}{3 \sum r(r-1)+n}
$$

$$
2
$$

He^{2} says:
"In the series, wherein one is the first term as well as the common difference and the number of terms is equal to the given number (n), multiply the preceding term by the immediately following one. The sum of the products so obtained, when multiplied by three and added to the last term (i.e., n) becomes the cube (of n)." Nârâyaṇa ${ }^{3}$ states:
"From the series whose first term and common difference are each one, (the last term being the given number) the sum of the series formed by the last term multiplied by three and the preceding added to one, gives the cube (of the last term)."

Mahâvira has also mentioned the results,
(iv) $x^{3}=x+3 x+5 x+\ldots$ to x terms,
(v) $x^{3}=x^{2}+(x-1)\{1+3+\ldots+(2 x-1)\}$,
${ }^{1}$ Tris, p. 6. The translation given by Kaye and Ramanujacharia (Bibl.Math., III, 1912-13) is incorrect. They admit their inability to follow the meaning (see p. 209, note). S. Dvivedi has misinterpreted the rule, and gives an incorrect explanation in a note on p. 6. The reading saike is incorrect.
${ }^{2}$ GSS, ii. 45 .
${ }^{8} G K$, i. 22.
in these words: ${ }^{1}$
"The cube (of a given number) is equal to the sum of the series whose first term is the given number, the common difference is twice that number, and the number of terms is (equal to) that number.
"Or the square of the given number when added to the product of that number minus one (and) the sum of the series in which the first term is one, the common difference two and the number of terms (is equal to) that number, gives the cube."

8. SQUARE-ROOT

Terminology. The Hindu terms for the "root" are mula and pada. The usual meaning of the word mûla in Sanskrit literature is "root" of a plant or tree; but figuratively the foot or lowest part or bottom of anything. Its other meanings are "basis," "foundation," "cause," "origin," etc. The word pada means "the lower part of the leg" (figuratively the lower.part or basis of anything), "foot," "part," "portion," "side," "place," "cause," "a square on a chess-board," etc. The meanings common to both terms are "foot," "the lowest part or basis of anything," "cause" or "origin." It is, therefore, quite clear that the Hindus meant by the term varga-mûla ("square-root") "the cause or origin of the square" or "the side of the square (figure)." This is corroborated by the following statement of Brahmagupta: ${ }^{2}$
"The pada (root) of a kerti (square) is that of which it is the square."

Of the above terms for the "root," mûla is the oldest. It occurs in the Anuyogadvâra-sûtra (c. 100 B.C.),

[^62]and in all the mathematical works. The term pada seems to have come into use later on, i.e., from the seventh century A.D. lt occurs first in the work of Brahmagupta (628).

The term mûla was borrowed by the Arabs who translated it by jadbr, meaning "basis of square." The Latin term radix also is a translation of the term mula ${ }^{1}$.

The word karani is found to have been used in the Sulba works and Prâkrta literature as a term for the square-root. In geometry it means a "side." In later times the term is, however, reserved for a surd, i.e., a square-root which cannot be evaluated, but which may be represented by a line.

The Operation. The description of the method of finding the square-root is given in the Aryabbatîya very concisely thus:
"Always divide ${ }^{2}$ the even place by twice the square-root (upto the preceding odd place); after having subtracted from the odd place the square ${ }^{3}$ (of the quotient), the quotient put down at the next place (in the line of the root) gives the root." ${ }^{4}$
The method may be illustrated thus:
Example. Find the square-root of 54756 .

[^63]The odd and even places are marked by vertical and horizontal lines. The different steps are then as indicated below:

Subract square	$\begin{aligned} & 1-1-1 \\ & 54756 \\ & 4 \end{aligned}$	root $=2$
Divide by twice the root	4) 14 (3	Placing quotient at the next place, the root
Subtract square of quotient	$\begin{array}{r} 27 \\ 9 \end{array}$	
Divide by twice the root	$\text { 46) } \begin{gathered} 189 \\ 184 \\ \hline \end{gathered}$	Placing quotient at the next place, the root $=234$
Subtract square of quotient	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	

The process ends. The root is 234 .
It has been stated by G. R. Kaye ${ }^{1}$ that Aryabhata's method is algebraic in character, and that it resembles the method given by Theon of Alexandria. Both his statements are incorrect. ${ }^{2}$

The following quotations from Siddhasena Gaṇi (c. 550) in his commentary on the Tatvârthâdbigamasûtra ${ }^{3}$ will prove conclusively that the Hindu method of extracting the square-root was not algebraic. In connection with the determination of the circumference of a circle of roo,000 yojanas, he says:
"The diameter is one hundred thousand yojanas; that multiplied by one hundred thousand yojanas becomes squared; this is again multiplied by 10 and then
${ }^{1} J A S B$, III and IV, in the papers entitled "Notes on Indian Mathematics, I and II."
${ }^{2}$ See Singh, l.e., for details: also Clark, Aryabbatîya, pp. ${ }^{2}$ f.
${ }^{5}$ iii. 1 .
the square-root (of the product) extracted. The root will be the circumference of the circle. Now to find the number of yojanas (by extracting the square-root) we obtain in succession the figures $3,1,6,2,2$ and 7 of the root, the number appearing below (that is, as the last divisor) is 632454 . This being halved becomes the number three hundred thousand sixteen thousands two hundred and twenty seven. The number in excess as the remainder is this $484471 ; \ldots$.
"Then on multiplication by 4 will be obtained 7560000000000 . The square-root of this will be the chord. In finding that (root) will be obtained in succession the figures $2,7,4,9,5$ and $4 ; \ldots$ "

It is evident that Aryabhata's plan of finding the square-root has been followed in the above cases as the digits of the root are evolved successively one by one.

Later writers give more details of the process. Thus Srîdhara says:
"Having subtracted the square from the odd place, divide the next (even) place by twice the root which has been separately placed (in a line), and after having subrracked the square of the quotient, write it down in the line; double what has been obtained above (by placing the quotient in the line) and taking this down, divide by it the next even place. Halve the doubled quantity (to get the root)." ${ }^{1}$

Mahâvîra, ${ }^{2}$ Áryabhata $I I^{8}$ and Srîpati* give the rule in the same way as Srîdhara. Bhâskara II, however, makes a slight variation, for he says:

[^64]"Subtract from the last odd place the greatest square number. Set down double the root in a line, and after dividing by it the next even place subtract the square of the quotient from the next odd place and set down double the quotient in the line. Thus repeat the operation throughout all the figures. Half of the number in the line is the root." ${ }^{1}$

The method of working on the pâtî may be illustrated as below:

Example. Find the square-root of 54756
The given number is written down on the patti and the odd and even places are marked by vertical and horizontal lines thus:

$$
\begin{gathered}
1-1-1 \\
54756
\end{gathered}
$$

Beginning with the last odd place 5 , the greatest square number 4 is subtracted. Thus 4 subtracted from 5 gives 1. The number s is rubbed out and the remainder 1 substituted in its place. Thus after the first operation is performed, what stands on the patt $\hat{\imath}$ is

$$
\begin{gathered}
-1-1 \\
14756
\end{gathered}
$$

Double the root 2, i.e., 4 , is permanently placed in a separate portion of the pâtî which has been termed pankti ("line"). Dividing the number upto the next even mark by this number in the line, i.e., dividing 14 by 4 we obtain the quotient 3 and remainder 2. The number 14 is rubbed out and the remainder 2 written
${ }^{1}$ L, p. 4. The line in Bhâskara II's method contains the doubled root, whilst in that of Âryabhata I, it contains the root. See Singh, l.c.
in its place; thus on the pâti we have now
$\frac{4}{\text { line of root }}$
$\begin{array}{rl}17 \\ 27 & 6\end{array}$
(3 quotient

The square of the quotient $3^{2}=9$ is subtracted from the figures upto the next odd mark. This gives (27 -9) $=18.27$ is rubbed out and 18 substituted in its place. Double the quotient 3 is now set in the line giving 46. The figures on the patiti stand thus:
46
line of root

$-18,6$ | The quotient 3 |
| :--- |
| been rubbed out. |

Dividing the numbers upto the next even mark by the number in the line, i.e., dividing 18; by 46 , the quotient is 4 and remainder I . 185 is rubbed out and the remainder I substituted in its place. The figures on the patti are now
$\frac{46}{46} \quad 1^{\frac{1}{6}} \quad$ (4 quotient

Subtracting square of the quotient the remainder is nil, so that 16 is rubbed out. The quotient 4 is doubled and set in the line. The pâti has now

468
line of root
The quotient 4 having been rubbed out.
Half the number in the line, i.e., $\frac{468}{2}=234$ is the root.
Along with the Hindu numerals, the method of extracting the square-root given above, seems to have been communicated to the Arabs about the middle of the eighth century, for it occurs in precisely the same form in Arabic works on mathematics. ${ }^{1}$ In Europe
${ }^{1}$ E.g., Al-Nasavì (102 s); see Suter, Bibl. Math., VII, p. 114 and Woepcke, $J A(6)$, t. 1, 1863.
it occurs in similar form in the writings of Peurbach (1423-1461), Chuquet (1484), La Roche (is20), Gemma Frisius (1540), Cataneo (1546) and others. ${ }^{1}$

9. CUBE-ROOT

Terminology. The Hindu terms for the cuberoot are ghana-mula, ghana-pada. These terms have already been discussed before.

The Operation. The first description of the operation of the cube-root is found in the Aryabhatiya. It is rather too concise:
"Divide the second aghana place by thrice the square of the cube-root; subtract from the first aghana place the square of the quotient multiplied by thrice the preceding (cube-root); and (subtract) the cube (of the quotient) from the ghana place; (the quotient put down at the next place (in the line of the root) gives the root)." ${ }^{2}$

As has been explained by all the commentators, the units place is ghana, the tens place is first aghana, the hundreds place is second aghana, the thousands place is ghana, the ten-thousands place is first aghana and so on. After marking the places as ghana, first aghana and second aghana, the process begins with the subtraction of the greatest cube number from the figures upto the last ghana place. Though this has not been ex-
${ }^{1}$ See Smith, History, II, pp. 144-1 48.
${ }^{2} A$, ii. s. Translations of this rule have been given by Rodet, Kaye, Singh, Clark, Sengupta and others. Kaye's translation is entirely inaccurate. Other translations, though free, give the correct result. Clark's use of the words "the (preceding) ghana" is somewhat misleading. The portion at the end, within brackets, is common to this and the preceding rule for the extraction of the square-root.
plicitly mentioned in the rule, the commentators say that it is implied in the expression "ghanasya mulla vargena" etc. ("by the square of the cube-root" etc.) The method may be illustrated as below:

Example. Find the cube-root of 1953125.
The places are divided into groups of three by marking them as below:

Subtract cube
Divide by thrice square of root, i.e. 3. 1^{2}
Subtract square of quotient multiplied by thrice the previous root, i. e., 2^{2}. 3. I.

Thus the cube-root $=125$
It will be evident from the above illustration that the present method of extracting the cube-root is a contraction of Áryabhaṭa's method.

The method given above occurs in all the Hindu mathematical works. For instance, Brahmagupta says:

[^65]"The divisor for the second aghana place is thrice the square of the cube-root; the square of the quotient multiplied by three and the preceding (root) must be subtracted from the next (agbana place to the right), and the cube (of the quotient) from the ghana place; (the procedure repeated gives) the root." ${ }^{1}$

Srîdhara gives more details of the process as actually performed on the patti, thus:
"(Divide the digits beginning with the units place into periods of) one ghana place and two aghana places. From the (last) ghana digit subtract the (greatest possible) cube; then taking down the remainder and the third pada (i.e., the second aghana digit) divide it by thrice the square of the cube-root which has been permanently placed in a separate place; place the quotient in the line; subtract the square of this (quotient) multiplied by thrice the last root from the next (aghana) digit. Then as before subtract the cube (of the quotient) from its own place (i.e., the ghana digit). Then take down again the third pada (i.e., second agbana digit), and the rest of the process is as before. (This will give) the root." ${ }^{2}$

Aryabhaṭa II follows Srîdhara and gives details as follows:
"Ghana (i.e:, the place from which cube is subtracted), bbâjy (i.e., the "dividend" place) and sodbya (i.e., the "minuend" place) are the denominations (of the places). Subtract the (greatest) cube from its own place (i.e., from the numbers upto the last ghana digit); bring down the bbâjya digit and divide it ${ }^{3}$ by thrice the square of the cube-root which has been permanently

[^66]placed. Place the quotient in the line (of the root). The square of this (quotient) multiplied by thrice the previous root is subtracted from its own place (i.e., the sodbya place) and its cube from the ghana place. If the above operations be possible then this (i.e., the number in the line) is the root so far. Then bringing down the bbajija digit continue the process as before (till it ends)."

The component digits of the number whose cuberoot is to be found are divided into groups of three (one ghana and two aghanas) each. The digits upto the last ghana place (proceeding from left to right) give the first figure of the root (counting from the left). The following period of three digits (to the right) gives the second figure of the root and so on. While working on the patti, the digits of the number whose root is to be found are first marked and the method proceeds as follows:

Example. Find the cube-root of 1953125.
The number is written thus:

From the last ghana digit (marked by a vertical stroke), the greatest cube is subtracted. Here r^{8} being subtracted from 1 gives zero. So 1 is rubbed out. The cube-root of I^{3} is placed in a separate line. The figures on the pâtî stand thus:

Then to obtain the second figure of the root, the second aghana (i.e., 9) is taken below and divided by
${ }^{1} M S i$, p. 14s. The interpretation given by Dvivedi of line 2 of the rule as printed in his edition (p . 145) is incorrect.
thrice the square of the root (i.e., the number in the line). Thus we have

The quotient is taken to be 2 , because if it were taken to be 3 , the rest of the procedure cannot be carried out. This quotient (2) is set in the line. The first aghana is then brought down and we have, on subtracting the square of the quotient multiplied by thrice the previous root, the following:

On bringing down the ghana digit 3, and then subtracting the cube of the quotient we get 225 as below, and the process on the period formed by the digits 953 is completed and the figure 2 of the root is obtained:

$$
2^{3}=\begin{array}{r}
\frac{12}{233} \\
\hline 225
\end{array}
$$

The figures 953 are then rubbed out and the remainder 225 is substituted. After this the process is as before, i.e., thus

	$\begin{array}{r} --1 \\ 225125 \end{array}$	
$12^{2} \cdot 3=$	$\begin{array}{ll} \hline 432) & 2251 \\ 2160 \end{array}$	$\frac{12}{\text { line of root }}$
	912	
$5^{2} \cdot 12 \cdot 3=$	900	
	125	
$5^{3}=$	125	125
	\bigcirc	line of root

The process ends as all the figures in the number are exhausted. The root is 125 , the number in the line of root. As there is no remainder, the root is exact.

The necessity for rubbing out figures arises, as the pâtî is not big enough to contain the whole of the working. The three digits constituting a period are considered together. - The figures upto the next second aghana have to be brought down and the operation of division performed separately, because the quotient is obtained by trial. As has been already explained, this division is performed by rubbing out the digits of the dividend (and not as in the working given above). If the operations were carried out on the figures of the original number, and if the quotient taken were found to be too big, then it would not be possible to restore the original figures and begin the work again, as will have to be done in case of failure.

10. CHECKS ON OPERATIONS

The earliest available description of a method of checking the results of arithmetical operations, the
direct as well as the inverse, is found in the Mabâiddbânta ${ }^{1}$ (c. 950). It says:
"Add together the own digits of the numbers forming the multiplicand, multiplier, and product upto one place; ${ }^{2}$ such should be done with the dividend, divisor, quotient and remainder, etc. Then if the number (of one digit) obtained from the product of those numbers (that have been already obtained) from the multiplicand and the multiplier be equal to that obtained from the product, the multiplication is true. If the number, which results from the product of those obtained from the quotient and the divisor, added to that from the remainder, be equal to that obtained from the dividend, the division is true. Add together the digits of a number, its (nearest) square-root (in integers) and of the remainder. If the number, obtained from the square of that (number) which is obtained from the square-root plus the number obtained from the remainder, be equal to that which results from the given number, the root-extraction is true. If the number, resulting from the cube of the number obtained by adding the digits of the cube-root plus the number obtained from the remainder, be equal to the number resulting from the given number, then the operation is correct. Such are the casy tests for correctness of multiplication etc."

The rationale of the above rules will be clear from the following: Let

$$
n=d_{m} d_{m-1} \ldots \ldots d_{2} d_{1}
$$

be a number of m digits written in the decimal placevalue notation. Let S_{1} denote the sum of its digits,

${ }^{1} \mathrm{MSi}, \mathrm{p} .4$ ² 2.

${ }^{2}$ That is, the digits of the number should be added together; the digits of the sum thus obtained should be again added and the process should be continued until there remains a number of one digit only.

ARITHMETIC

S_{2} the sum of the digits of S_{1}, and so on.
Then

$$
\begin{aligned}
& n=d_{1}+10 d_{2}+\ldots \ldots \ldots+10^{m-1} d_{m} \\
& S_{1}=d_{1}+d_{2}+d_{3}+\ldots \ldots \ldots+d_{m}
\end{aligned}
$$

so that

$$
n-S_{1}=9\left(d_{2}+r 1 d_{3}+\ldots \ldots \ldots\right)
$$

Therefore,

$$
n \equiv S_{1} \quad(\bmod .9)
$$

Similarly

$$
\begin{array}{rr}
S_{1} \equiv S_{2} \quad(\bmod .9) \\
S_{2} \equiv S_{3} \quad(\bmod .9), \\
\ldots \ldots \ldots \ldots \ldots \cdots \cdots \\
\ldots \cdots \cdots \cdots \cdots \cdots \\
\left.S_{k-1} \equiv S_{k} \quad \text { (mod. } 9\right),
\end{array}
$$

where S_{k} is a number of one digit only, say n^{\prime}, which is certainly less than or equal to 9 .

Adding the congruences, we obtain

$$
n \equiv n^{\prime} \quad(\bmod .9)
$$

Thus the number obtained by adding the digits of a number repeatedly is equal to the remainder obtained by dividing that number by nine.

Now, if there be a number N which is equal to the continued product of p other numbers $n_{1}, n_{2}, n_{3}, \ldots, n_{p}$ plus or minus another number R, then we write

$$
N=n_{1}, n_{2}, n_{3} \ldots n_{p} \pm R
$$

Now, let

$$
\begin{aligned}
& n_{1} \equiv n_{1}^{\prime} \quad(\bmod .9) \\
& n_{2} \equiv n_{2}^{\prime} \quad(\text { mod. } 9) \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& \cdots \cdots \cdots \cdots \cdots \\
& n_{v} \equiv n_{v}^{\prime} \quad(\bmod .9)
\end{aligned}
$$

Multiplying the congruences, we obtain

$$
n \cdot n_{2} \ldots n_{p} \equiv n_{1}^{\prime} \cdot n_{2}^{\prime} \ldots n_{p}^{\prime}(\bmod .9)
$$

Further let

$$
R \equiv r^{\prime} \quad(\bmod .9)
$$

Therefore

$$
n_{1}, n_{2} \cdot n_{3} \ldots n_{p} \pm R \equiv n_{1}^{\prime} \cdot n_{2}^{\prime} \ldots . n_{p}^{\prime} \pm r^{\prime}(\bmod .9)
$$

Hence

$$
N \equiv n_{1}^{\prime} \cdot n_{2}^{\prime} \ldots \ldots n_{p}^{\prime} \pm r^{\prime}(\bmod .9)
$$

In particular, if

$$
n_{1}=n_{2}=\ldots \ldots \ldots=n_{p}=n, \text { say }
$$

then will

$$
n_{1}^{\prime}=n_{2}^{\prime}=\ldots \ldots \ldots=n_{p}^{\prime}=n^{\prime} .
$$

Therefore,
and

$$
\begin{aligned}
& N=n^{p} \pm R \\
& N \equiv n^{p} \pm r^{\prime}(\bmod .9) .
\end{aligned}
$$

From the above follow easily the rules of the Mabâsiddbânta.

The following rule for testing multiplication is given by Nârâyaṇa ${ }^{1}$ (1356):
"The remainders obtained on division of each of the multiplicand and the multiplier by an optional number are multiplied together and then divided by the optional number. If the remainder so obtained be equal to the remainder obtained on dividing the product (of the multiplicand and the multiplier) by the optional number, then, it is correct."

It must be noted here that a complete set of rules for checking by nines is first found in India. Methods for testing multiplication and division were probably

[^67]known to the Hindus much earlier. But as these tests were not considered to be among the fundamental operations, they were not mentioned in the works on paṭtiganita. ${ }^{1}$ Nârâyana seems to be the first Hindu mathematician to give rules for testing operations by the casting out of any desired number.

In the works of early Arab writers the methods of testing multiplication, and division without remainder, by the check of nines are given, while a complete set of rules for testing all operations is found first in the works of Avicenna ${ }^{2}$ (c. 1020) who calls his method the "Hindu" method. Maximus Planudes ${ }^{3}$ also ascribes an Indian origin to the check of nines.

There is thus no doubt as to the Hindu origin of the check of nines. Before Aryabhata II, it was probably used to test multiplication and division only. It was perhaps in this imperfect form when it was communicated to the Arabs. Thereafter, the method was probably perfected independently both in Arabia and India. This would account for the difference in the formulation of the rules by the Arabs and by Aryabhaṭa II, the author of the Mabâsiddhânta.* It is, however, certain that the Hindus did not borrow the method from the Arabs, because Aryabhata II wrote before Avicenna. Behâ Eddîn ${ }^{5}$ (c. 1600) gives the check of nines in exactly the same form as Aryabhaṭa II.

[^68]
ir. FRACTIONS

Early Use. In India, the knowledge of fractions can be traced back to very early times. In the oldest known work, the Rgveda, the fractions one-half (ardba) and three-fourths (tri-palda ${ }^{1}$) occur. In a passage of the Maitrâyani Sambitata 2 are mentioned the fractions onesixteenth (kalâ), one-twelfth (kustba), one-eighth (saphz) and one-fourth ($p a \hat{d} a$). In the earliest known mathematical works, the Sulba-sîtra, fractions have not only been mentioned, but have been used in the statement and solution of problems. ${ }^{3}$

The ancient Egyptians and Babylonians are known to have used fractions with unit numerators, but there is little evidence of the use by these people of what are called composite fractions. The occurrence of the fraction three-fourths in the Rgveda is probably the oldest record of a composite fraction known to us. The Sanskrit compound tri-pâda literally means "threefeet." Used as a number it denotes that the measure of the part considered bears the same ratio to the whole as three feet of a quadruped bear to the total number of its feet. The term pâda, however, is a word numeral for one-fourth, and the compound tri-pâda is formed exactly on the same principle as the English term threefourths.* In the Sulba, unit fractions are denoted by the use of a cardinal number with the term bhâga or aḿsa; thus pañca-dasa-bhâga ("fifteen-parts") is equivalent to one-fifteenth, ${ }^{5}$ sapta-bbâga ("seven-parts") is equivalent to one-seventh, ${ }^{6}$ and so on. The use of ordinal numbers

```
1}RV, x. 90. 4.
2 iii. 7. 7.
8 B. Datta, Sulba, pp. }212\mathrm{ ff.
* tri=three and pâda=fourth.
' }ApSl, x. 3; KSl, v. 8.
"
```

with the term bbagga or àmsa is also quite common, e.g., pañcama-bbâga ("fifth part") is equivalent to one-fifth. ${ }^{1}$ Sometimes the word bbâga is omitted, probably for the sake of metrical convenience. ${ }^{2}$ Composite fractions like 3/8 and 2/7 are called tri-astama ("three-eighths") and dvi-saptama ("two-sevenths") respectively. In the Bakhshâli Manuscript the fraction $3 / 8$ is called tryasta ("threeeighths") and $3 \frac{8}{8}$ is called trayastrayasta ("three-threeeighths"). ${ }^{3}$ Instances of the formation of fraction names on the above principle are too numerous in later works to be mentioned here. The present method of expressing fractions is thus derived from Hindu sources and can be traced back to 3,000 B.C.

Weights and Measures. The division of the units of length, weight, money, etc., into smaller units for the sake of avoiding the use of fractional quantities has been common amongst all civilised peoples. It is an index of commercial activity and the development of commercial arithmetic. The Hindus have used systems of weights and measures from the earliest times. The Satapatha Brâbmana4 (c. 2,000 B.C.) gives a very mintute subdivision of time. According to it there are 30 mubûrta in a day, is kṣipra in a mubûrta, is itarbi in a kesipra, is idânî in an itarbi and is prâna in an idâni. Thus one prâna is approximately equivalent to oneseventeenth of a second. It is improbable that the ancient Hindus had any appliance for measuring such small intervals of time. The subdivision is entirely theoretical, and probably made for philosophical reasons. It, nevertheless, shows that the Hindus must
${ }^{1}$ Ap $\dot{S} l$, ix. 7, x. 2; $K S \dot{l}$, v. 6.
${ }^{2}$ When the fractions have unit numerators, only the denominators are mentioned. This practice is quite common in later works also, e.g., sasta (sixth) $=\frac{1}{6}$ in L, p. 7 etc.
${ }^{3} B M s$, io verso.
${ }^{4}$ xii, 3. 2. 1.
have been in possession of a satisfactory arithmetic of fractions even in those early times. The Arthasâstra of Kautilya ${ }^{1}$ contains a section dealing with weights and measures which were in use in India in the fourth century B.C. In the Lalitavistara ${ }^{2}$ Buddha is stated to have given the following system of linear measures:

7	paramânu raja	=	renu	
7	renu	$=$	truti	
7	truti	$=$	vâtâyana raja	
7	vâtâyana raja	$=1$	sasa raja	
7	sasáa raja	$=1$	edaka raja	
7	edaka raja	$\underline{1}$	go raja	
7	go raja	$=1$	liksá raja	
7	likesâ raja	$=1$	sarsapa	
7	sarsapa	$=1$	yava (breadth	of barley)
7	yava	$=1$	aṅgulî parva	$\begin{aligned} & \text { (breadth of } \\ & \text { finger) } \end{aligned}$
12	anguli parva	1	vitasti	
2	vitasti	1	basta (cubit)	
4	basta	1	dhanu	
000	dbanu	$=1$	krośa	
4	krośa	$=$	yojana	

According to the above table, the smallest Hindu measure of length, a paramâru ${ }^{3}=1 \cdot 3 \times 7^{-10}$ inches.

All the works on patitiganita begin with definitions of the weights and measures employed in them. The earlier ones contain a special rule for the reduction of a chain of measures into a proper fraction. ${ }^{*}$ It may be mentioned that the systems of weights and measures

[^69]given in different works are different from each other. They are the ones current at the time and in the locality in which the book was composed.

Terminology. The Sanskrit term for a fraction is bbinna. It means "broken." The European terms fractio, fraction, roupt, rotto, or rocto etc., are translations of the term bhinna, having been derived from the Latin fractus (frangere) or ruptus meaning "broken." The Hindu term bbinna, however, had a more general meaning in so far as it included numbers of the form, $\left(\frac{a}{b} \pm \frac{c}{d}\right),\left(\frac{a}{b}\right.$ of $\left.\frac{c}{d}\right),\left(\frac{a}{b} \pm \frac{c}{d}\right.$ of $\left.\frac{a}{b}\right)$ or $\left(a \pm \frac{b}{c}\right)$. These forms were termed jati, i.e., "classes," and the Hindu treatises contain special rules for their reduction to proper fractions. Srîdhara and Mahâvîra each enumerate six jâtis, while Brahmagupta gives only five and Bhâskara II following Skandasena reduces the number to four. The need for the division of fractions into classes arose out of the lack of proper symbolism to indicate mathematical operations. The only operational symbol used by the Hindus was a dot^{1} for the negative sign.

The other terms employed for the fraction are bbagga and aimśs, meaning "part" or "portion." The term kala which originally, in Vedic times, denoted onesixteenth came to be later on employed for a fraction. Its earliest use as a term for fraction occurs in the Sulba works.

Writing of Fractions. From very early times (c. 200 A.D.) the Hindus wrote fractions just as we do now, but without the dividing line. When several fractions occurred in the same problem, they were in general separated from each other by vertical and

[^70]horizontal lines. Illustrations of the Hindu method of writing groups of fractions will be found in the examples that will be given hereafter.

Reduction to Lowest Terms. Before performing operations with fractions, it was considered necessary to reduce them to lowest terms. The process of reduction was called apavartana, but was not included among the operations. It is not given in the Hindu works, but seems to have been taught by oral instruction. That the method has been in use in India from the earliest centuries of the Christian era, cannot be doubted; for it is mentioned in a non-mathematical work, the Tattvârthâdlligama-sûtra-blậ̧̣a by Umâsvâti (c. 150) as a simile to illustrate a philosophical discussion:
"Or, as when the expert mathematician, for the purpose of simplifying operations, removes common factors from the numerator and denominator of a fraction, there is no change in the value of the fraction, so

Reduction to Common Denominator. The operation of reduction to a common denominator ${ }^{2}$ is required when fractions are to be added or subtracted. The process is given a prominent place and is generally mentioned along with addition and subtraction. Brhmagupta ${ }^{3}$ gives the reduction along with the processes of addition and subtraction thus:
"By the multiplication of the numerator and denominator of each of the (fractional) quantities by the other denominators, the quantities are reduced to a common denominator. In addition, the numerators are united. In subtraction their difference is taken."

[^71]Srîdhara ${ }^{1}$ says:
"To reduce to a common denominator, multiply the numerator and denominator of each (fraction) by the other denominators."

All other works also contain this rule.
Fractions in Combination. It has already been remarked that due to the lack of proper symbolism, the Hindu mathematicians divide combinations of fractions into four classes. They are:
(x$)^{2}$ Bhâga, i.e., the form $\left(\frac{a}{b} \pm \frac{c}{d} \pm \frac{e}{f} \pm \ldots\right)$.
usually written as

$$
\begin{array}{|l|l|l|}
\hline a & c & e \\
b & d & f \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
a & c & e \\
b & d & f \\
\hline
\end{array}
$$

where the dots denote subtraction.
(2) ${ }^{s}$ Prabbâga, i.e., the form ($\frac{a}{b}$ of $\frac{c}{d}$ of $\frac{e}{f} \ldots \ldots$), written as

a	c	e
b	d	f

(3)4 Bhâgânubandha, i.e., the form

$$
\text { (i) }\left(a+\frac{b}{c}\right)
$$

or (ii) $\frac{p}{q}+\frac{r}{s}$ of $\frac{p}{q}+\frac{t}{u}$ of $\left(\frac{p}{q}+\frac{r}{s}\right.$ of $\left.\frac{p}{q}\right)+\ldots$.
${ }^{1}$ Tris, p. ro. The translation given by Kaye is incorrect.
${ }^{2}$ BrSpSi, p. 175; Tris, p. 10; GSS, p. 33 (SS, 56); MSi, p. 146; L, p. ${ }^{6}$.
${ }^{3}$ Tris, p. 10; GSS, p. 39 (99); MSi, p. 146; L, p. 6.
${ }^{4}$ Tris, p. 10; GSS, p. 41 (${ }^{113}$); MSi, p. 148; L, P. 7. These forms are termed rapa-bbaganuubandba ("association of an integer and a fraction") and bbaga-bbagânubandha ("association of fractions of fractions") respectively.
written as

$$
\text { (i) } \left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { or (ii) } \begin{array}{|c}
p \\
q \\
\hline r \\
s \\
\hline t \\
u
\end{array}\right]
$$

(4) ${ }^{1}$ Bhâgâpavâba, i.e., the form
(i) $\left(a-\frac{b}{c}\right)$
or (ii) $\frac{p}{q}-\frac{r}{s}$ of $\frac{p}{q}-\frac{t}{u}$ of $\left(\frac{p}{q}-\frac{r}{s}\right.$ of $\left.\frac{p}{q}\right)-\ldots$.
written as

$$
\text { (i) }\left[\begin{array}{c}
a \\
-b \\
c
\end{array}\right] \text { or (ii) } \begin{array}{|c|}
\hline p \\
g \\
\hline r \\
s \\
\hline t \\
u \\
\hline
\end{array}
$$

Besides the above four forms, Srîdhara, Mahâvîra, and some others give two more.
$(s)^{2}$ Bbagaa-bbâga, i.e., the form

$$
\left(a \div \frac{b}{c}\right) \text { or }\left(\frac{p}{q} \div \frac{r}{s}\right)
$$

There does not appear to have been any notation for division, such compounds being written as,
${ }^{1}$ BrSpSi, p. 176; GSS, p. 43 (126); MSi, p. 148; L, p. 7.
These forms are termed rapa-bbâgäpavâaba and bhâga-bbâgâpavâba respectively.
${ }^{2}$ Tris, p. 11; GSS, p. 39 (99).

$$
\left.\begin{array}{|c|}
\hline a \\
b \\
c
\end{array}\right] \text { or } \begin{array}{|c|}
p \\
q \\
\hline r \\
s \\
\hline
\end{array}
$$

just as for bhâgânubandba. That division is to be performed was known from the problem; ${ }^{1}$ e.g., $1 \div \frac{1}{6}$ was written as saḍ-bhâga-bbâga," i.e., "one-sixth bbâgabbalga" or "one divided by one-sixth.""
(6) Bhâga-mâtr, i.e., combinations of forms enumerated above. Mahâvîra remarks that there can be twenty-six variations of this type. ${ }^{5}$ The following example is given by Sridhara. ${ }^{6}$
"What is the result when half, one-fourth of onefourth, one divided by one-third, half plus half of itself, and one-third diminished by half of itself, are added together?"

In modern notation this is

$$
\frac{1}{2}+\left(\frac{1}{4} \text { of } \frac{1}{4}\right)+\left(1 \div \frac{1}{8}\right)+\left(\frac{1}{2}+\frac{1}{2} \text { of } \frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{2} \text { of } \frac{1}{3}\right)
$$

In the old Hindu notation it was written as

1	1	I	1	1	I
2	4	4	I	2	3
			3	1	1
				2	2

[^72]The defect of the notation is obvious:

1	1
4	4

The rules for the reduction of the first two classes are those of addition or subtraction, and multiplication. The rule for the reduction of the third and fourth classes (from ii) are given together by Brahmagupta:
"The (upper) denominator is multiplied by the denominator and the upper numerator by the same (denominator) increased or diminished by its own numerator." ${ }^{1}$

The rule for bhâgânubandba is given by Srîdhara ${ }^{2}$ as follows:
(i) "In bbâgânubanidha, add the numerator to the product of the whole number and the denominator."
(ii) "Multiply the denominator by the lower denominator and (then) the numerator by the same lower denominator increased by its own numerator."

Other writers give similar rules for reduction in the case of bbâgânubandba.

The following example ${ }^{8}$ will explain the process of working:
${ }^{1}$ BrSpSi, p. 176. The reduction of the form $a \pm \frac{b}{c}$ has been given separately (p. 173).
${ }^{2}$ Tris, p. 1o. Rule (i) is for the reduction of $a+\frac{b}{c}$ and rule (ii) is for the reduction of the form

$$
\frac{a}{b}+\frac{c}{d} \text { of } \frac{a}{b}+\frac{c}{f} \text { of }\left(\frac{a}{b}+\frac{c}{d} \text { of } \frac{a}{b}\right) .
$$

$$
{ }^{3} \text { Tris, p. } 11 .
$$

Reduce to a proper fraction:

$$
\begin{array}{r}
3 \frac{1}{2}+\frac{1}{4} \text { of } 3 \frac{1}{2}+\frac{1}{6} \text { of }\left(3 \frac{1}{2}+\frac{1}{4} \text { of } 3 \frac{1}{2}\right)+\frac{1}{2}+\frac{1}{3} \text { of } \frac{1}{2}+\frac{1}{4} \text { of } \\
\left(\frac{1}{2}+\frac{1}{3} \text { of } \frac{1}{2}\right) .
\end{array}
$$

This was written as

3	
I	I
2	2
I	I
4	3
I	I
6	4

Adding denominators to numerators of the lower fractions, and applying rule (i) to left-hand top compartment to reduce it to a proper fraction, we get

7	1
2	2
5	4
4	3
7	5
6	4

Now performing multiplication as directed, i.e., multiplying the denominator of the first fraction by all the lower denominators and the numerator by the sum of the numerators and denominators of the lower fractions, we get

$$
\frac{7}{2} \times \frac{5}{4} \times \frac{7}{6}=\frac{245}{48}, \text { and } \frac{1}{2} \times \frac{4}{3} \times \frac{3}{4}=\frac{20}{24}
$$

i.e.,

245	20
48	24

Then making denominators similar (savarnana), we have

249	40
48	48

performing the addition we have $\frac{285}{48}$ or $s t \frac{5}{8}$ as the result.

The rule for bhâgaparabba is given in all the works on patitiganita. It is the same as that for bhägâmubandha, except that "addition" or "increase" is replaced by "subtraction" or "decrease" in the enunciation of the rule for bhâgâpavâba.

Lowest Common Multiple. Mahâvîra ${ }^{1}$ was the first amongst the Indian mathematicians to speak of the lowest common multiple in order to shorten the process. He defines niruddha (L. C. M.) as follows:
"The product of the common factors of the denominators and their resulting quotients is called niruddba."

The process of reducing fractions to equal denominators is thus described by him: ${ }^{2}$
"The (new) numerators and denominators, obtained as products of multiplication of (each original) numera- ${ }^{\circ}$ tor and denominator by the (quotient of the) niruddha (i.e., L. C. M.) divided by the denominator give fractions with the same denominator."

Bhâskara II^{3} does not mention niruddha but observes that the process can be shortened. He says:
"The numcrator and denominator may be multiplied by the intelligent calculator by the other denominator abridged by the common factor."

The Eight Operations. Operations with fractions were known in India from very early times, the method of performing them being the same as now.

$$
\begin{aligned}
& \left.{ }^{1} \text { GSS, p. } 33 \text { (} 56\right) . \\
& \left.{ }^{2} \text { GSS, p. } 33 \text { (} 56\right) . \\
& \text { L, p. } 6 .
\end{aligned}
$$

Although Aryabhaṭa does not mention the elementary operations, there is evidence to show that he knew the method of division by fraction by inverting it. All the operations are found in the Bakhshâli Manuscript (c.200).

Addition and Subtraction. These operations were performed after the fractions were reduced to a common denominator. Thus Stîdhara says: ${ }^{1}$
"Reduce the fractions to a common denominator and then add the numerators. The denominator of a whole number is unity."

Brahmagupta and Mahâvîra give the method under Bbâgajâti. Mahâvîra differs from other writers in giving the methods of the summation of arithmetic and geometric series under the title of addition (samkalita). ${ }^{2}$ Later writers follow Srîdhara.

Multiplication. Brahmagupta says: ${ }^{8}$
"The product of the numerators divided by the product of the denominators is the (result of) multiplication of two or more fractions."

While all other writers give the rule in the same way as Brahmagupta, Mahâvira refers to cross reduction in order to shorten the work:
"In the multiplication of fractions, the numerators are to be multiplied by the numerators and the denominators by denominators, after carrying out the process of cross reduction, ${ }^{5}$ if that be possible."

```
    \({ }^{1}\) Tris, p. 7.
    \({ }^{2}\) Cf. GSS, pp. 28 (22) ff.
    \({ }^{3}\) BrSpSi, p. 173.
    - GSS, p. 25 (2).
\({ }^{\text {}}\) Vajrâpavartana-vidbi, i.e., "cancellation crosswise," thus
```

Division. Although the elementary operations are not mentioned in the Aryabbatiya, the method of division by fraction is indicated under the Rule of Three. The Rule of Three states the result as $\frac{f \times i}{p} .{ }^{1}$ When these quantities are fractional, we get an expression of the form $\frac{\frac{a}{b} \times \frac{c}{d}}{\frac{m}{n}}$, for the evaluation of which Aryabhaṭa I states:
"The multipliers and the divisor are multiplied by the denominators of each other."

As will be explained later on (p. 204) the quantities are written as

a	m
b	n
b	
d	

Transferring the denominators we have

a	m
n	b
c	d

Performing multiplication, the result is $\frac{a n c}{m b d}$.
The above interpretation of a rather obscure line ${ }^{2}$ in the Aryabhatiya is based on the commentaries of Sûryadeva and Bhâskara I. Thus Sûryadeva says:
 requisition" p " $=$ pramâna, i.e., "argument."
${ }^{2} A, \mathrm{p} .43$. Previous writers seem to have been misled by the commentary of Paramesvara which is very vague; $c f$; Clark (p. 40) and P. C. Sengupta (p. 2.s).
"Here by the word gunakâra is meant the multiplier and multiplicand, i.e., the phala and iccbâ quantities that are multiplied together. By bbagabâra is meant the pramana quantity. The denominators of the phala and icchâ are taken to the pramana. The denominator of the pramana is taken with the ppbala and iccbâ. Then multiplying these, i.e., (the numerators of) the plala and iccbâ and this denominator, and dividing by (the product of) the numbers standing with the pramana, the result is the quotient of the fractions."

Brahmagupta ${ }^{1}$ gives the method of division as follows:
"The denominator and numerator of the divisor having been interchanged, the denominator of the dividend is multiplied by the (new) denominator and its numerator by the (new) numerator. Thus division of proper fractions is performed."

Sridhara" adds the following to the method of multiplication:
"Having interchanged the numerator and denominator of the divisor, the operation is the same as before." ${ }^{3}$

Mahâvîra ${ }^{4}$ explains the method thus:
"After having made the numerator of the divisor" its denominator (and vice versa) the operation is the same as in multiplication."
" Or^{6}, when (the fractions constituting) the divisor
${ }^{1}$ BrSpSi, p. 173.
${ }^{2}$ Tris, p. 8.
${ }^{3}$ i.e., the same as that of multiplication.
${ }^{1}$ GSS, p. 26 (8).
${ }^{5}$ Mahâvîra uses the term pramâna-râsi for divisor, showing thereby its connection with the 'rule of three.'
${ }^{6}$ This is similar to the way in which Âryabhaṭa I expresses the method.
and dividend are multiplied by the denominators of each other and these products are without denominators, (the operation) is as in the division of whole ${ }^{1}$ numbers."

Square and Square-root. Brahmagupta ${ }^{2}$ says:
"The square of the numerator of a proper fraction divided by the square of the denominator gives the square."
"The square-root of the numerator of a proper fraction divided by the square-root of the denominator gives the square-root."

Other works contain the same rules.
Cube and Cube-root. Srîdhara ${ }^{3}$ gives the rule as follows:
"'The cube of the numerator divided by the cube of the denominator gives the cube, and the cube-root of the numerator divided by the cube-root of the denominator gives the cube-root."

Other works give the same rules.
Unit Fractions. Mahâvîra has given a number of rules for expressing any fraction as the sum of a number of unit fractions. ${ }^{4}$ These rules do not occur in any other work, probably because they were not considered important or useful.
(1) To express I as the sum of a number (n) of unit fractions.

The rule for this is: ${ }^{5}$
"When the sum of the different quantities having
${ }^{1}$ The term for whole number is sakala.
${ }^{2}$ Br $S p$ Si, p. ${ }^{174 .}$
${ }^{3}$ Tris, p. 9.

- There is no technical term for unit fraction. The term used is râpämsaka-rấsi, i.e., "quantity with one as numerator."
${ }^{5}$ GSS, p. 36 (7s).
one for their numerator is r , the (required) denominators are such as, beginning with 1 , are in order multiplied by 3, the first and the last being multiplied again by 2 and $\frac{2}{3}$."

Algebraically the rule is

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{8}}+\ldots+\frac{1}{3^{n-2}}+\frac{1}{2 \cdot 3^{n-2}} .
$$

(2) To express 1 as the sum of an odd number of unit fractions.

The rule for this is stated thus: ${ }^{1}$
"When the sum of the quantities (fractions) having one for each of their numerators is one, the denominators are such as, beginning with two, go on rising in value by one, each being further multiplied by that which is (immediately) next to it and then halved."

Algebraically this is

$$
1=\frac{1}{2 \cdot 3 \cdot \frac{1}{2}}+\frac{1}{3 \cdot 4 \cdot \frac{1}{2}}+\ldots+\frac{1}{(2 n-1) \cdot 2 n \cdot \frac{1}{2}}+\frac{1}{2 n \cdot \frac{1}{2}}
$$

(3) To express a unit fraction as the sum of a number of other fractions, the numerators being given. ${ }^{2}$

The rule for this is:
"The denominator of the first (of the supposed or given numerators) is the denominator of the sum, that of the next is this combined with its numerator and so on; and then multiply (each denominator) by that which is next to it, the last being multiplied by its own numerator. (This gives the required denominators)."

$$
\begin{aligned}
& 1 \text { GSS, p. } 36(77) . \\
& { }^{2} \text { Each may be one. GSS, p. } 36(78) .
\end{aligned}
$$

Algebraically this gives:

$$
\begin{aligned}
\frac{1}{n}= & \frac{a_{1}}{n\left(n+a_{1}\right)}+\frac{a_{2}}{\left(n+a_{1}\right)\left(n+a_{1}+a_{2}\right)}+\cdots \\
& +\frac{a_{r-1}}{\left(n+a_{1}+a_{2}+\ldots+a_{r-2}\right)\left(n+a_{1}+a_{2}+\ldots+a_{r-1}\right)} \\
& +\frac{a_{r}}{a_{r}\left(n+a_{1}+a_{2}+\ldots+a_{r-1}\right)}
\end{aligned}
$$

By taking $a_{1}=a_{2}=\ldots=a_{r}=1$, we get unit fractions. When these are not unity, the fractions may not be in their lowest terms.
(4) To express any fraction as the sum of unit fractions. The rule is: ${ }^{1}$
"The denominator (of the given fraction) when combined with an optionally chosen number and then divided by the numerator so as to leave no remainder, becomes the denominator of the first numerator (which is one); the optionally chosen quantity when divided by this and by the denominator of the sum is the remainder. To this remainder the same process is applied."

Let the number i be so chosen that $\frac{q+i}{p}$ is an integer $=r$; then the rule gives

$$
\frac{p}{q}=\frac{1}{r}+\frac{i}{r \cdot q}
$$

of which the first is a unit fraction and a similar process can be employed to the remainder to get other unit fractions. In this case the result depends upon the optionally chosen quantities.

$$
{ }^{1} \text { GSS, p. } 37(80) .
$$

(s) To express a unit fraction as the sum of two other unit fractions.

The following two rules are given: ${ }^{1}$
(i) "The denominator of the given sum multiplied by a properly chosen number is the (first) denominator, and this divided by the previously chosen number minus one gives the other; or (ii) the two denominators are the factors ${ }^{2}$ of the denominator of the sum, each multiplied by their sum."

Expressed algebraically the rules are:
(i) $\frac{\mathrm{I}}{n}=\frac{\mathrm{I}}{p \cdot n}+\frac{\mathrm{I}^{3}}{\frac{p \cdot n}{p-\mathrm{I}}}$
(ii) $\frac{1}{a . b}=\frac{1}{a(a+b)}+\frac{1}{b(a+b)}$
(6) To express any fraction as the sum of two other fractions whose numerators are given.

The rule for this is: ${ }^{4}$
"Either numerator multiplied by a chosen number, then combined with the other numerator, then divided by the numerator of the sum so as to leave no remainder, and then divided by the chosen number and multiplied by the denominator of the sum gives rise to one denominator. The denominator corresponding to the other (numerator), however, is this (denominator) multiplied by the chosen quantity."
${ }^{1}$ GSS, p. $37(8 \mathrm{~s})$.
${ }^{2}$ bära-bara-labdba, lit. "the divisor and quotient by that divisor."
${ }^{3}$ The integer p is so chosen that n is divisible by ($p-1$).

[^73]Algebraically the rule is

$$
\frac{m}{n}=\frac{a}{\frac{a p+b}{m} \times \frac{n}{p}}+\frac{b}{\frac{a p+b}{m} \times \frac{n}{p} \times p}
$$

A particular ${ }^{1}$ case of this would be

$$
\frac{m}{n}=\frac{a}{\frac{a n+b}{m}}+\frac{b}{\frac{a n+b}{m} \times n}
$$

provided that $(a n+b)$ is divisible by m.
(7) To express a given fraction as the sum of an even number of fractions whose numerators are previously assigned.

The rule for this is: ${ }^{2}$
"After splitting up the sum into as many parts, having one for each of their numerators, as there are pairs (among the given numerators), these parts are taken as the sum of the pairs, and (then) the denominators are found according to the rule for finding two fractions equal to a given unit fraction."

12. THE RULE OF THREE

Terminology. The Hindu name for the Rule of Three terms is trairâsika ("three terms," hence "the rule of three terms"). The term trairâsika can be traced back to the beginning of the Christian era as it occurs in the
${ }^{1}$ Evidently, the chosen number p must be a divisor of n, and such that $\frac{a p+b}{m}$ is an integer.

The solution given does not hold for any values of a and b, but only for such values as allow of an integer p to be so chosen as to satisfy the required conditions.
${ }^{2}$ GSS, p. $3^{8(89)}$.

Bakhshâlî Manuscript, ${ }^{1}$ in the Aryabbatîya and in all other works on mathematics. About the origin of the name Bhâskara I (c. j2s) remarks:" "Here three quantities are needed (in the statement and calculation) so the method is called trairâsilika ("the rule of three terms")."

A problem on the rule of three has the form:
If p yields f, what will i yield?
In the above, the three terms are p, f and i. The Hindus called the term p, pramâna. ("argument"), the term f, phala ("fruit") and the term i, icchâ ("requisition"). These names are found in all the mathematical treatises. Sometimes they are referred to simply as the first, second and third respectively. Âryabhaṭa II differs from other writers in giving the names mâna, vinimaya and icchâ respectively to the three terms. It has been pointed out by most of the writers that the first and third terms are similar, i.e., of the same denomination.

The Method. Aryabhata I (499) gives the following rule for solving problems on the Rule of Three:
"In the Rule of Three, the phala ("fruit"), being multiplied by the icchâ ("requisition") is divided by the pramâna ("argument"). The quotient is the fruit corresponding to the icchâ. The denominators of one being multiplied with the other give the multipliet (i.e., numerator) and the divisor (i.e., denominator)."s
${ }^{1}$ The term rási is used in the enumeration of topics of mathematics in the Sthânâriga-sâtra (c. 300 B.C.) (Ŝ̂tra 747). There it probably refers to the Rules of Three, Five, Seven, etc.
${ }^{2}$ In his commentary on the Aryabbatîya.
${ }^{8}$ The above corresponds to $a \operatorname{ry} \hat{a} 26$ and the first half of $\hat{a} r y a \hat{a}$ 27 of the Ganitapaida of the Aryabbatiya; compare the working of Example I, where the interchange of denominators takes place. See also pp. 19sf.

Brahmagupta gives the rule thus:
"In the Rule of Three pramâna ("argument"), phala ("fruit") and icchâ ("requisition") are the (given) terms; the first and the last terms must be similar. The $i c c b \hat{a}$ multiplied by the phala and divided by the pramâna gives the fruit (of the demand)."1

Srîdhara states:
"Of the three quantities, the pramâna ("argument") and icchâ ("requisition") which are of the same denomination are the first and the last; the phala ("fruit") which is of a different denomination stands in the middle; the product of this and the last is to be divided by the first." ${ }^{2}$

Mahâvîra writes:
"In the Rule of Three, the $i c c h a \hat{a}$ ("requisition") and the pramâna ("argument") being similar, the result is the product of the pbala and icchâ divided by the pramâna." ${ }^{3}$

Åryabhata II introduces a slight variation in the terminology. He says:
"The first term is called mâna, the middle term vinimaya and the last one iccha. The first and the last are of the same denomination. The last multiplied by the middle and divided by the first gives the result." ${ }^{4}$

Bhâskara II, Nârâyana and others give the rule in the same form as Brahmagupta or Srîdhara.

The Hindu method of working the rule may be illustrated by the following examples taken from the Trisatikâ:

[^74]Example I. ${ }^{1}$ "If one pala and one karṣa of sandal wood are obtained for ten and a half pana, for how much will be obtained nine pala and one karsa?"

Here 1 pala and 1 kars $a=1 \frac{1}{4} p a l a$, and $9 p a l a$ and I karsa=9 $\frac{1}{\frac{1}{4}}$ pala are the similar quantities. The "fruit" $10 \frac{1}{2}$ pana corresponding to the first quantity ($1 \frac{1}{4}$ pala) is given, so that

$$
\begin{aligned}
& \text { pramana (argument) }=1{ }^{\frac{1}{4}} \\
& \text { phala (fruit) } \\
& \text { icchâ (requisition) }=10 \frac{1}{2} \\
&=9^{\frac{1}{4}}
\end{aligned}
$$

The above quantities are placed in order as

1	10	9
1	1	1
4	2	4

Converting these into proper fractions we have

5	21	37
4	2	4

Multiplying the second and the last and dividing by the first, we have

21	5
2	4
37	
4	

$$
\equiv \frac{\frac{21}{8} \times \frac{37}{4}}{\frac{5}{4}}
$$

Or transferring denominators | 21 | 5 |
| ---: | :--- |
| 4 | 2 |
| 37 | 4 |$\equiv \frac{21.4 .37}{5.2 .4}$ palu

$=4$ purậạa, 13 pasa, 2 kâkinịi and 16 varâtaka.
In actual working the intermediate step

$$
\frac{\frac{22}{2} \times \frac{37}{4}}{\frac{3}{4}}
$$

${ }^{1}$ Tris, p. $1 s$.
was not written. The denominators of the multipliers were transferred to the side of the divisor and that of the divisor to the multipliers, thus giving at once

$$
\frac{21.4 .37}{5.2 .4} .
$$

Example II." "Out of twenty necklaces each of which contains eight pearls, how many necklaces, each containing six pearls, can be made?"

Firstly, we have

I	8	20

The result (performing the operation of the Rule of Three) is 160 pearls.

Secondly, perform the operation of the Rule of Three on the following:

If 6 pearls are contained in one necklace, how many necklaces will contain 160 pearls?

Placing the numbers, we have

6	1	160

Result: necklaces 26, part of necklace $\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Inverse Rule of Three. The Hindu name for the Inverse Rule of Three is vyasta-trairấitea (lit. "inverse rule of three terms"). After describing the method of the Rule of Three the Hindu writers remark that the operation should be reversed when the proportion is inverse. Thus Srîdhara observes:
"The method is to multiply the middle term by the first and to divide by the last, in case the proportion is different." ${ }^{2}$
${ }^{1}$ Tris, p. 17.
${ }^{2}$ Tris, p. 18.

Mahâvîra says:
"In the case of this (proportion) being inverse, the operation is reversed." ${ }^{1}$

Bhâskara II writes:
"In the inverse (proportion), the operation is reversed." ${ }^{2}$
He further observes:
"Where with increase of the icchâ (requisition) the phala decreases or with its decrease the phala increases, there the experts in calculation know the method to be the Inverse Rule of Three." ${ }^{3}$
"Where the value of living beings is regulated by their age; and in the case of gold, where the weight and touch are compared; or when heaps are subdivided, let the Inverse Rule of Three be used."

Example: Example II given under the Rule of Three above has been solved also by the application of the Inverse Rule as follows:

"Statement | 8 | 20 | 6 |
| :--- | :--- | :--- |

Here if the iccbâ, i.e., the number of pearls in a necklace, increases, the phala, i.e., the number of necklaces, decreases, so that the Inverse Rule of Three is applied.

Appreciation of the Rule of Three. The Rule of Three was highly appreciated by the Hindus because
${ }^{1}$ GSS, p. $88(2)$.
${ }^{2} L$, p. 17.
${ }^{2} L, \mathrm{p} .17$.
" "When heaps of grain, which have been meted with a small measure, are again meted with a larger one, the number decreases" (Com. of Sûryadâsa).
${ }^{5}$ L, p. 18.
of its simplicity and its universal application to ordinary problems. The method as evolved by the Hindus gives a ready rule which can be applied even by the "ignorant person" to solve problems involving proportion, without fear of committing errors. Varâhamihira (sOs) writes:
"If the sun performs one complete revolution in a year, how much does he accomplish in a given number of days? Does not even an ignorant person calculate the sun in such problems by simply scribbling with a piece of chalk?" ${ }^{1}$

Bhâskara II has eulogised the method highly at several places in his work. His remarks are:
"The Rule of Three is indeed, (the essence of) arithmetic." ${ }^{2}$
"As Lord Sri Nârâyana, who relieves the sufferings of birth and death, who is the sole primary cause of the creation of the universe, pervades this universe through His own manifestations as worlds, paradises, mountains, rivers, gods, men, demons, etc., so does the Rule of Three pervade the whole of the science of calculation.Whatever is computed whether in algebra or in, this (arithmetic) by means of multiplication and division may be comprehended by the sagacious learned as the Rule of Three. What has been composed by the sages through the multifarious methods and operations such as miscellancous rules, etc., teaching its easy variations, is simply with the object of increasing the comprehension of the duller intellects like ourselves."

On another occasion Bhâskara II observes:

$$
\begin{aligned}
& \text { :PSi, iv. }{ }^{37 .} \\
& { }^{2} \mathrm{~L} \text {, p. 15. The same remark occurs in SiSi, Golâdhyâya, } \\
& \text { Prasnadbyăya, verse } 3 \text {. } \\
& { }^{3} \mathrm{~L}, \mathrm{p} .76 \text {. }
\end{aligned}
$$

"Leaving squaring, square-root, cubing and cuberoot, whatever is calculated is certainly variation of the Rule of Three, nothing else. For increasing the comprehension of duller intellects like ours, what has been written in various ways by the learned sages having loving hearts like that of the bird cakora, has become arithmetic." ${ }^{1}$

Proportion in the West. The history of the Hindu rules of proportion shows how much the West was indebted to India for its mathematics. The Rule of Three occurs in the treatises of the Arabs and mediæval Latin writers, where the Hindu name 'Rule of Three' has been adopted. Although the Hindu names of the terms were discarded, the method of placing the terms in a line, and arranging them so that the first and last were similar, was adopted. Thus Digges (1572) remarked, "Worke by the Rule ensueing Multiplie the last number by the seconde, and diuide the Product by the first number," ... "In the placing of the three numbers this must be observed, that the first and third be of one Denomination." The rule, as has been alteady stated, was perfected in India in the early centuries of the Christian era. It was transmitted to the Arabs probably in the eighth century and thence travelled to Europe, where it was held in very high esteem ${ }^{3}$ and called the "Golden Rule."

Compound Proportion. The Hindu names for compound proportion are the Rule of Five, the Rule of

[^75] given.

Seven, the Rule of Nine, etc., according to the number of terms involved in the problems. These are sometimes grouped under the general appellation of the "Rule of Odd Terms." The above technical terms as well as the rules were well-known in the time of Aryabhata I (499), although he mentions the Rule of Three only. That the distinction between the Rule of Three and Compound Proportion is more artificial than real was stressed by Bhâskara I (c. 525) in his commentary on the Aryabhatîya. He says:
"Here Acârya Aryabhaṭa has described the Rule of Three only. How the well-known Rules of Five, etc. are to be obtained? I say thus: The Acârya has described only the fundamentals of anupâta (proportion). All others such as the Rule of Five, etc., follow from that fundamental rule of proportion. How? The Rule of Five, etc., consist of combinations of the Rule of Threc In the Rule of Five there are two Rules of Three, in the Rule of Seven, three Rules of Three, and so on. This I shall point out in the examples."

Remarks similar to the above concerning the Rules of Five, Seven, etc., have been made by the commentators of the Lilầvatî, especially by Gaṇeśa and Sûryadâsa. ${ }^{1}$

In problems on Compound Proportion, two sets of terms are given. The first set which is complete is called pramâna paksa (argument side) and the second set in which one term is lacking is called the icchâ pakesa (requisition side).

The Method. The rule relating to the solution of problems in compound proportion has been given by Brahmagupta as follows:
"In the case of odd terms beginning with three

[^76]terms ${ }^{1}$ upto eleven, the result is obtained by transposing the fruits of both sides, from one side to the other, and then dividing the product of the larger set of terms by the product of the smaller set. In all the fractions the transposition of denominators, in like manner, takes place on both sides." ${ }^{2}$

Srîdhara says:
"Transpose the two fruits from one side to the other, then having transposed the denominators (also in like manner) and multiplied the numbers (so obtained on each side), divide the side with the larger number of terms by the othet (side)." ${ }^{\text {a }}$

Mahâvîta ${ }^{4}$ and \AA ryabhaṭa $I I^{8}$ have given the rule in the same way as Srîdhara. Bhâskara Il has given it thus:
"In the rules of five, seven, nine or more terms, after having taken the phala (fruit) and chid ${ }^{8}$ from its
${ }^{1}$ It should be observed that, as stated above, the Rule of Three is a particular case of the above Rule of Odd terms. Brahmagupta is the only Hindu writer to have included the Rule of Three also in the above rule. Some Arab writers have followed him in this respect by not writing the terms of the Rule of Three in a line, but arranging them in compartments, as $f{ }_{c}$. the other rules of odd terms.
${ }^{2} \mathrm{BrSpSi}$, p. 178.
${ }^{3}$ Tris', p. 19.
${ }^{4}$ GSS, p. 62 (32).
${ }^{5}$ MSi, p. 1so, rules 26 and 27 (repeated with a slight variation).
${ }^{6}$ The commentators differ as regards the interpretation of this word. Some take it to mean "divisor," i.e., "denominator," while others say that it means "the fruit of the other side." The rule is, however, correct with either interpretation. The first interpretation, however, brings Bhâskara's version in line with those of his predecessors. It may be mentioned here that Aryabhaṭa II repeats the rule twice. At first he does not direct the transposition of denominator, and at the second time he does so.
own side to the other, the product of the larger set of terms divided by the product of the smaller set, gives the result (or produce sought)." ${ }^{i}$

Illustration. We shall illustrate the Hindu method of working by solving the following example taken from the Lilavati:
"If the interest of a hundred in one month be five, what will be the interest of 16 in 12 months? Also find the time knowing the interest and principal; and tell the principal knowing the time and interest." To find interest.

The first set of terms (pramâna pakesa) is:
100 niṣka, I month, s nişa (phala)
The second set (icchâ paksa) is:

$$
\text { I6 niska, } 12 \text { months, } x \text { niscka }
$$

The terms are now written in compartments ${ }^{2}$ as below:

100	16
1	12
5	0

${ }^{1} L, \mathrm{p} .18$.
${ }^{2}$ The terms of the same denomination are written in compartments in the same horizontal line.
${ }^{3}$ The figures are written in compartments in order to facilitate the writing of fractions and also to denote the side which contains more terms after transposition of fruits. Sometimes, the compartment corresponding to an absent term is left vacant as we find in à copy of Munísivara's Pâtîàara (in the Government Sanskrit Library at Benares). When the terms are written in compartments, the symbol o. to denote the unknown or absence of a term is unnecessary. In some commentaries on the Lîlàvatí (Asiatic Society of Bengal manuscripts) we find the numbers written without compartments, but in such cases the symbolo is used to denote the absence of a term. After transposition, the side on which o occurs contains a smaller number of terms than the other.

In the aboves (written lowest) is the "fruit" of the first side, and there is no "fruit" on the second side. Interchanging the fruits we get

100	16
1	12
0	5

The larger set of terms is on the second "side." The product of the numbers is 960 . The product of the numbers on the side of the smaller set of terms is 100. Therefore, the required result is $\frac{960}{100}=\frac{48}{5}$, written as $\left|\begin{array}{ll}4 \frac{8}{3} \\ \hline\end{array}\right|$ or 9 niska, fraction $\left|\begin{array}{l}3 \\ 3\end{array}\right|$
To find Time:
Here the sides are
and 100 nişka, I month, s niscka

The terms are written as

100	16
1	0
5	48
	5

Transposing the fruits, i.e., transposing the numbers in the bottom compartment, we get

100	16
1	0
48	5
5	

Transposing the denominators we have

100	16
1	0
48	5
	5

Here, the larger set of terms is on the first side and their product is 4800 . The product of the numbers on the side of the smaller set is 400 . Therefore, the result is

$$
\left|\begin{array}{r}
4800 \\
400
\end{array}\right| \equiv \frac{4800}{400}=12 \text { months. }
$$

To know the principal:
The first side is
Ioo niscka, i month, s niska

The second side is

$$
x \text { nişka, } 12 \text { months, } \frac{48}{3} \text { niscka }
$$

This is written as

100	0
1	12
5	48

After transposition of fruits (i.e., the terms in the bottom cells) we have

100	0
1	12
48	5
5	

Transposing denominators we get

100	0
1	12
48	5
	5

The product of the numbers in the larger set divided by the product of the numbers in the smaller set, gives

$$
\left|\begin{array}{r}
4800 \\
500
\end{array}\right|=16 \text { niska. }
$$

Rule of Three as a Particular Case. According to Brahmagupta, the above method may be applied to the Rule of Three. Taking the first example solved under the Rule of Three, above, and placing the terms we have

21	0
2	
5	37
4	4

Transposing the fruits, we have

21	0
2	
37	5
4	4

Transposing denominators, we get

21	0
	2
37	5
4	4

Therefore, the result is $\frac{21.37 .4}{2.5 .4}$ as before.
If we consider the term corresponding to the unknown as the fruit, the terms should be set as below:
${ }^{1}$ Here, we consider $\frac{5}{4}$ pala of sandal wood as the "fruit" of $\frac{21}{2}$ pana (money). The previous method forces us to consider is pana as the "fruit" or the middle term, because the "first" and "third" are directed to be alike. It will be observed that any of the terms may be considered to be the fruit in the alternative method given heré.

5	37
4	4
21	
2	0

Hence, as before, ${ }^{1}$ the result is $\frac{37 \cdot 4 \cdot 2 \mathrm{I}}{5 \cdot 4.2}$
The above method of working the Rule of Three is found among the Arabs, ${ }^{2}$ although it does not seem to have been used in India after Brahmagupta. This points to the indebtedness of the Arabs to Brahmagupta especially, for their knowledge of Hindu arithmetic.

Written as above the method of working the Rule of Three appears to be the same as the method of proportion. In the same way the rule of other odd terms, when properly translated into modern symbolism, is nothing but the method of proportion. It has been stated by Smith ${ }^{3}$ that the Hindu methods of solution "fail to recognize the relation between the Rule of Three and proportion." This statement appears to have been made without sufficient justification, for the solutions have been evidently obtained by the use of the ideas of proportionality and variation. The aim of the Hindu works is to give a method which can be readily used by common people. For this very reason, the cases in which the variation is inverse have been enumerated. Considered as a method which stimulated the student to think for himself, the method is certainly
${ }^{1}$ The product of the numbers on the side of the larger set is divided by the product of the numbers on the side of the smaller set. \circ in this case is not a number. It is the symbol for the unknown or absence.
${ }^{2}$ 'Thus Rabbi ben Ezra wrote ${ }^{\mathbf{4} 7}{ }_{7}^{\mathbf{6 3}} \mathbf{0}$ for $47: 7=63: x$. See Smith, l.c., p. $4^{89 f}$.
${ }^{3}$ l.c., p. 488.
defective, but for practical purposes, it is, in our opinion, the best that could be devised.

13. COMMERCIAL PROBLEMS

Interest in Ancient India. The custom of taking interest is a very old one. In India it can be definitely traced back to the time of Pânini (c. 700 B.C.) who in his Grammar lays down rules validating the use of the suffix $k a$ to number names in case of "an interest, a rent, a profit, a tax or a bribe given." 1 The interest became due every month and the rate of interest was generally given per hundred, ${ }^{2}$ although this was not always the case. The rate of interest varied in different localities and amongst different classes of people, but an interest of fifteen per cent per year seems to have been considered just. Thus in Kautilya's Arthasâstra, a work of the fourth century B.C., it is laid down: "an interest of a pana and a quarter per month per cent is just. Five pana per month per cent is cornmercial interest. Ten pana per month per cent prevails in forests. Twenty pana per month per cent prevails among sea traders." ${ }^{\text {s }}$ The Gotama Sûtra states: "an interest of five mâsâ per twenty (kârṣâpana) is just.""

Interest in Hindu Ganita. The ordinary problems relating to the finding out of interest, principal or time etc., the other quantities being given, occur in the section dealing with the Rule of Five. The Hindu

${ }^{1}$ Pâṇini's Grammar, v. i. 22, 47, 49.

${ }^{2}$ It has been pointed out by B. Datta that the idea of per cent first originated in India. See his article in the American Mathematical Monthly, XXXIV, p. 530.
${ }^{3}$ Arthasástra, edited and translated into English by R. Shamsastry, Mysore, III, ii, p. 214.
${ }^{4}$ Gotama Sûtra, xii. 26. Since 20 mâṣá equal a kârṣappana, the rate is is per cent annually.
works generally contain a section called misraka-yyayahâra ("calculations relating to mixed quantities") in which occur miscellaneous problems on interest. The contents of this section vary in different works, according to their size and scope. Thus the Aryabbatiya contains only one rule relating to a problem on interest, whilst the Ganita-sâra-samigraba has a large number of such rules and problems.

Problem involving a Quadratic Equation. Aryabhata I (499) gives a rule for the solution of the following problem:

The principal sum $p(=100)$ is lent for one month (interest unknown $=x$). This unknown interest is then lent out for $t=s i x)$ months. After this period the original interest (x) plus the interest on this interest amounts to $A(=$ sixteen $)$. The rate-interest (x) on the principal (p) is required.

The above problem requires the solution of the quadratic equation

$$
\begin{gathered}
t x^{2}+p x-A p=0 \\
\text { which gives } \quad x=\frac{-p / 2 \pm \sqrt{(p / 2)^{2}+A p t}}{t}
\end{gathered}
$$

The negative value of the radical does not give a solution of the problem; so the result is

$$
x=\frac{\sqrt{A p t+(p / 2)^{2}}-p / 2}{t}
$$

This is stated by Áryabhata I as follows:
"Multiply the sum of the interest on the principal and the interest on this interest (A) by the time (t) and by the principal (p). Add to this result the square of half the principal $\left\{(p / 2)^{2}\right\}$. Take the square-root of this. Subtract half the principal $(p / 2)$ and divide the
remainder by the time (t). The result will be the (unknown) interest (x) on the principal." ${ }^{1}$

Brahmagupta (628) gives a more general rule. His problem is:

The principal (p) is lent out for t_{1} months and the unknown interest on this $(=x)$ is lent out for t_{2} months at the same rate and becomes A. To find x.

This gives the quadratic

$$
x^{2}+\frac{p t_{1}}{t_{2}} x-\frac{A p t_{1}}{t_{2}}=0
$$

whose solution is

$$
x= \pm \frac{\sqrt{A p t_{1}}}{t_{2}}+\left(\frac{p t_{1}}{2 t_{2}}\right)^{2}-\frac{p t_{1}}{2 t_{2}} .
$$

The negative value of the radical does not give a solution of the problem, so it is discarded.

Brahmagupta states the formula thus:
"Multiply the principal (p) by its time $\left(t_{1}\right)$ and divide by the other time $\left(t_{2}\right)$ (placing the result) at two places. Multiply the first of these by the mixture (A). Add to this the square of half the other. Take the squareroot of this (sum). From the result subtract half the other. This will be the interest (x) on the principal." ${ }^{2}$

Other Problems. Mahâvîra (850) gives two other types of problems on "mixture" requiring the solution of simultaneous equations. As an example of the first type may be mentioned the following: ${ }^{3}$
"It has been ascertained that the interest for $1 \frac{1}{2}$ months ($t=$ rate-time) on 60 ($c=$ rate-capital) is $2 \frac{1}{2}$ ($i=$

[^77]rate-interest). The interest (on the unknown capital P) for an unknown period (T) is $24(=I)$, and $60(=m$ $=P+T$) is the time combined with the capital lent out. What is the time (T) and what is the capital (P)?"

The problem gives:

$$
\begin{aligned}
i P T & =I \ldots \cdot(1) \\
c t & =m \ldots \text { (2) } \\
P+T & =m \\
\therefore P-T & = \pm V^{m^{2}-\frac{c t}{i} \times 4 I}
\end{aligned}
$$

Hence

$$
P=\frac{1}{2}\left(m \pm \sqrt{m^{2}-\frac{c t}{i} \times 4 I}\right)
$$

and

$$
T=\frac{1}{2}\left(m \mp \sqrt{m^{2}-\frac{c t}{i} \times 4 I}\right)
$$

The above result is stated by Mahâvira thus:
"From the square of the mixture (m) subtract the rate-capital (c) divided by the rate-interest (i) multiplied by the rate-time (t) and four times the given interest (4I). Then the operation of sanikramana ${ }^{1}$ is performed in relation to the square-root of this and the mixture (m)." ${ }^{2}$

The second type of problems may be illustrated by the following example:
"The interest on $30(P)$ is $s(I)$ for an unknown
${ }^{1}$ Given the numbers a and b, the process of sanikramana is the finding out of half their sum and difference i.e. $\frac{a+b}{2}$ and $\frac{a-b}{2}$. ${ }^{2}$ GSS, p. 68(29). It should be noted that both the signs of the radical are used.
period (T), and at an unknown rate of interest (i) per 100 (c) per $\mathrm{I} \frac{1}{2}$ month (t). The mixture ($m=i+T$) is $12 \frac{1}{2}$. Find i and T." ${ }^{1}$

The solution is given by

$$
T=\frac{1}{2}\left(m \pm \sqrt{m^{2}-\frac{c t I \cdot 4}{P}}\right)
$$

and consequently

$$
i=\frac{1}{2}\left(m \not \mp^{\sqrt{ }} \frac{m^{2}-\frac{c t I \cdot 4}{P}}{}\right)
$$

Mahâvirra states the solution thus:
"The rate-capital (c) multiplied by its time (t) and the interest (I) and the square of two ($=4$) is divided by the other capital (P). Then perform the operation of sankeramana in relation to the square-root of the remainder (obtained as the result of subtracting the quotient so obtained) from the square of the mixture (m) and the mixture." ${ }^{2}$

Miscellaneous Problems on Interest. Besides the problems given above various other interesting problems are found in the Hindu works on patitiganita. Thus Brahmagupta gives the solution of the following problem:

Example. In what time will a given sum s, the interest on which for t months is r, become k times itself?

The rule for the solution of the above is: ${ }^{3}$
"The given sum" multiplied by its time and divided

$$
\begin{aligned}
& \text { 'GSS, p. 69(34). } \\
& { }^{2} \text { GSS, p. 69(33). } \\
& { }^{3} B r S p S i, \text { p. } 18 \mathrm{r} . \\
& { }^{4} \text { The Sanskrit term used is pramậa (argument). }
\end{aligned}
$$

by the interest, ${ }^{2}$ being multiplied by the factor ${ }^{2}$ less one, is the time (required)."

The Ganita-sâra-sam̀graba (850) contains a large number of problems relating to interest. Of these may be mentioned the following:
(1) "In this (problem), the (given) capitals are ($c_{1}=$) 40, $\left(c_{2}=\right) 30,\left(c_{3}=\right) 20$ and ($\left.c_{4}=\right) 50$; and the months are $\left(t_{1}=\right) 5,\left(t_{2}=\right) 4,\left(t_{3}=\right) 3$ and $\left(t_{4}=\right) 6$ (respectively). The sum of the interests is $(m=) 34$. (Assuming the rate of interest to be the same in each case, find the amounts of interest in each case)." ${ }^{8}$

Here, if the rate of interest per month for 1 be r, then

$$
r=\frac{x_{1}}{c_{1} t_{1}}=\frac{x_{2}}{c_{2} t_{2}}=\frac{x_{3}}{c_{8} t_{3}}=\ldots \ldots .
$$

where $x_{1}, x_{2}, x_{32}, \ldots \ldots$ are the interests earned on the capitals $c_{1}, c_{2}, c_{3}, \ldots \ldots$ in $t_{1}, t_{2}, t_{3}, \ldots \ldots$ months res pectively.

Therefore,

$$
\begin{aligned}
\frac{x_{1}}{c_{1} t_{1}}=\frac{x_{2}}{c_{2} t_{2}}=\frac{x_{3}}{c_{3} t_{3}}=\ldots= & =\frac{x_{1}+x_{2}+x_{3}+\ldots}{c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{8}+\ldots} \\
& =\frac{m}{c_{1} t_{2}+c_{2} t_{2}+c_{3} t_{3}+\ldots .}
\end{aligned}
$$

or

$$
x_{1}=\frac{m c_{1} t_{1}}{c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{3}+\ldots}, \text { etc. }
$$

This formula is given by Mahâvîra for the solution
$/^{1}$ The Sanskrit term used is phala (fruit).
${ }^{2}$ The Sanskrit term used is guna (multiple).
${ }^{3}$ GSS, p. 70(38).
of the above problem. ${ }^{1}$
(2) "(Sums represented by) $10,6,3$ and is are the \checkmark (various given) amounts of interest, and $5,4,3$ and 6 are the (corresponding) months (for which the interests have accrued); the sum of the (corresponding) capital amounts is seen to be 140 . (Assuming the rate of interest to be the same in each case, find out these capital amounts)." ${ }^{2}$
(3) "Here (in this problem) the (given) capital amounts are $40,30,20$ and 50 ; and $10,6,3$ and is are the (corresponding) amounts of interest; 18 is the quantity representing the mixed sum of the respective periods of time. (Find out these periods separately, assuming the rate of interest to be the same in each case)." ${ }^{3}$
(4) "The interest on 80 for 3 months is unknown; $7{ }^{4}$ is the mixed sum of that (unknown quantity taken as the) capital lent out and of the interest thereon for a year. What is the capital here and what the interest?"*
(s) "The mixed sums (capital+interest) are 50,58 and 66, and the months (during which interests have accrued) are 5, 7 and 9 (respectively). Find out what
${ }^{1}$ GSS, p. 70(37). The formula clearly shows that Mahâvira knew the algebraic identity

$$
\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots=\frac{a+c+e+. .}{b+d+f+. .} .
$$

${ }^{2}$ GSS, $\mathrm{p} .70(40)$. The solution is given by Rule 39 on the same page.

${ }^{3}$ GSS, p. 70(43). The solution is given by Rule 42 on the same page.

*GSS, p. 71 (46). This is similar to Aryabhata's problem given before (p. 287).
the interest is (in each case, the capital being the same)?" ${ }^{1}$
(6) "The mixed sums of the capital and periods of interest are 21,23 , and 25 ; here (in this problem) the amounts of interest are 6, 10 and 14. What is the common capital?" ${ }^{2}$
(7) "Borrowing at the rate of 6 per cent and then lending out at the rate of 9 per cent, one obtains in the way of differential gain 81 at the end of 3 months. What is the capital (utilised here)?"3
(8) "The monthly interest on 60 is exactly 5 . The capital lent out is 35 ; the (amount of the) instalment (to be paid) is is in (every) 3 months. What is the time of discharge of that debt?",
(9) "The mixed sum (of the capital amounts lent out) at the rates of 2,6 and 4 per cent per mensem is 4400. Here the capital amounts are such as have equal amounts of interest accruing after 2 months. What (are the capital amounts lent, and what is the equal interest)?" ${ }^{5}$
(10) "A certain person gives once in 12 days an instalment of 23 , the rate of interest being 3 per cent (per mensem). What is the capital amount of the debt discharged in io months?"
(11) "The total capital represented by 8520 is invested (in parts) at the (respective) rates of 3,5 and 8 per cent (per month). Then, in this investment, in 5
${ }^{1}$ GSS, p. 71 (48). The solution requires the use of the identity

$$
\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d} .
$$

${ }^{2}$ GSS, p. 72 (S_{2}).
${ }^{3}$ GSS, p. 72 (ss).
${ }^{4}$ GSS, p. 73 (59).
${ }^{5}$ GSS, p. 73 (6r).
${ }^{6}$ GSS, p. 73(65).
months the capital amounts lent out are, on being diminished by the respective amounts of interest, (found to be) equal in value. (What are the respective amounts invested thus?)" ${ }^{1}$
(12) "The total capital represented by 13740 is, invested (in parts) at the (respective) rates of 2,5 and 9 per cent (per month), then, in this investment, in 4 months the capital amounts lent out are, on being combined with the (respective) amounts of interest, (found to be) equal in value. (What are the respective amounts thus invested?)" ${ }^{2}$
(13) "A certain man borrows a certain (unknown) sum of money at an interest of s per cent per month. He pays the debt in instalments, due every $\frac{3}{3}$ of a month. The instalments begin with 7 and increase in arithmetical progression, with 7 as the common-difference. 60 is the maximum amount of instalment. He gives in the discharge of his debt the sum of a series in arithmetical progression consisting of $\frac{60}{7}$ terms. After the paymont of each instalment, interest is charged only on that part of the principal which remains to be paid. What is the total payment corresponding to the sum of the series, what is the interest (which he paid), what is the time of the discharge of the debt, (and what is the principal sum borrowed)?"s

Barter and Exchange. The Hindu name for barter is bbânda-prati-bbậ̣̆a ("commodity for commodity"). All the Hindu works on pâtiganita contain problems relating to the exchange of commodities. It is pointed out in these works that problems on barter are cases of compound proportion, and can be solved by the
${ }^{2}$ CSS, p. 74(67).
${ }^{2}$ GSS, p. 74(67).
${ }^{3}$ GSS, pp. 74f, (72-73 $\frac{1}{2}$). The text of the problem is verv obscure. The translation given here is after Rangacarya.

Rule of Five, etc. A typical problem on barter is the following:
"If three hundred mangoes be had in this market for one dramma, and thirty ripe pomegranates for a pana, say quickly, friend, how many (pomegranates) should be had in exchange for ten mangoes?" 1

Other Types of Commercial Problems. Of various other types of commercial problems found in the Hindu works may be mentioned (1) problems on partnership and proportionate division, and (2) problems relating to the calculation of the fineness of gold. ${ }^{2}$ Most of these problems are essentially of an algebraic character, but they are included in pâtiganita (arithmetic). The formulx giving the solution of each type of examples precede the examples. These formulx are too numerous to be mentioned. The following examples, however, will illustrate the nature and the scope of such problems:
(1) A horse was purchased by (nine) dealers in partnership, whose contributions were one, etc., upto nine; and was sold by them for five less than five hundred. Tell me what was each man's share of the saleproceed.
(2) Four colleges, containing an equal number of pupils, were invited to partake of a sacrificial feast. A fifth, a half, a third and a quarter (of the total number of pupils in the college) came from the respective colleges to the feast; and added to one, two, three and four, they were found to amount to eighty-seven; or, with those deducted, they were sixty-seven. Find the actual number of the pupils that came from each college.

[^78](3) Three (unequal) jars of liquid butter, of water and of honey, contained thirty-two, sixty and twenty-four pala respectively: the whole was mixed together and the jars filled again. Tell me the quantity of butter, of water and of honcy in each jar. ${ }^{1}$
\checkmark (4) According to an agreement three merchants carried out the operations of buying and selling. The capital of the first consisted of six purana, that of the second of eight purana, but that of the third was unknown. The profit obtained by these men was 96 purana. In fact the profit obtained by him (the third person) on his unknown capital happened to be 40 purana. What was the amount thrown by him into the transaction and what was the profit of each of the other two merchants??
(5) There were four merchants. Each of them obtained from the others half of what he had with him (at the time of the respective transfers of money). Then they all bečame possessed of equal amounts of money. What was the measure of money each had to start with? ${ }^{3}$
(6) A great man possessing powers of magical charm and medicine saw a cock fight going on, and spoke sepdatately in confidential language to both the owners of the cocks. He said to one, "If your bird wins, then you give the stake-money to me. If, however, your bird loses then I shall give you two-thirds of that stake-money." He went to the owner of the other cock and promised to give three-fourths (of his stake-money on similar conditions). In each case the gain to him could be only 12 (gold-pieces). Tell me, O ornament

[^79]on the head of mathematicians, the money each of the cock-owners had staked. ${ }^{1}$
(7) The mixed price of 9 citrons and 7 fragrant wood-apples is 107; again the mixed price of 7 citrons and 9 fragrant wood-apples is 1or. O arithmetician, tell mc quickly the price of citron and of a woodapple, having distinctly separated those prices. ${ }^{2}$
(8) Pigeons are sold at the rate of s for 3 (pana): sarasa birds at the rate of 7 for s (pana), swans at the rate of 9 for 7 (pana) and peacocks at the rate of 3 for 9 (pana). A certain man was told to bring at these rates 100 birds for 100 (pana) for the amusement of the king's son, and was sent to do so. What (amount) does he give for each (of the various kinds of birds that he buys)? ${ }^{3}$
(9) There are I part (of gold) of I varna, i part of 2 varna, I part of 3 varna, 2 parts of 4 varna, 4 parts of 5 varna, 7 parts of 44 varna, and 8 parts of is varna. Throwing these into the fire, make them all into one (mass), and then (say) what the varna of the mixed gold is. This mixed gold is distributed among the owners of the foregoing parts. What does each of them get?*
\checkmark (io) Three pieces of gold, of 3 each in weight, and of 2, 3 and 4 varna (respectively), are added to (an unknown weight of) gold of 13 varna. The resulting varna comes to be io. Tell me, O friend, the measure (of the unknown weight) of gold. ${ }^{\text {s }}$

[^80]
14. MISCELLANEOUS PROBLEMS

Regula Falsi. The rule of false position is found in all the Hindu works. ${ }^{1}$ Bhâskara II gives prominence to the method and calls it istca-karma ("rule of supposition"). He describes the method thus:
"Any number, assumed at pleasure, is treated as specified in the particular question, being multiplied and divided, increased or diminished by fractions (of itself); then the given quantity, being multiplied by the assumed number and divided by that (which has been found) yields the number sought. This is called the process of supposition." ${ }^{2}$

Srîdhara takes the assumed number to be one. ${ }^{3}$ Mahâvîra gives a large variety of problems to which he applies the rule. ${ }^{4}$ Ganeśa in his commentary on the Lîlâvatî remarks, "In this method, multiplication, division, and fractions only are employed." The following examples will illustrate the nature of the problems solved by the rule of supposition:
(r) Out of a heap of pure lotus flowers, a third, a fifth, a sixth were offered respectively to the gods Siva, Viṣ̣̣u and Sûrya and a quarter was presented to Bhavânî. The remaining six were given to the vencrable preceptor. Tell quickly the number of lotuses. ${ }{ }^{\circ}$
(2) The third part of a necklace of pearls, broken in
${ }^{1}$ The method originated in India and went to Europe through Arabia. There is a medixval MS., published by Libri in his Histoire, I, 304 and possibly due to Rabbi ben Ezra in which the method is attributed to the Hindus. For further details and references, see Smith, History, II, p. 437, foot-note I.
${ }^{2} L, \mathrm{p}$. ${ }^{\circ}$.
${ }^{3}$ See the rule on stambboddesa, Tris, p. 13.
${ }^{4}$ These problems occur in chapters iii and iv of the Ganita-sâra-samigraba.
${ }^{5}$ L, p. ı1. Cf. GSS, p. 48 (7).
an amorous struggle, fell to the ground; its fifth part rested on the couch; the sixth part was saved by the wench; and the tenth part was taken by her lover: six pearls remained strung. Say, of how many pearls was the necklace composed? ${ }^{1}$
(3) One-twelfth part of a pillar, as multiplied by $\frac{1}{30}$ part thereof, was to be found under water; $\frac{1}{20}$ of the remainder, as multiplied by $\frac{3}{16}$ thereof, was found buried in the mire below; and 20 basta of the pillar were found in the air (above the water). O friend, give out the length of the pillar. ${ }^{2}$
(4) A number of parrots descended on a paddy field, beautiful with crops bent down through the weight of ripe corn. Being scared away by men, all of them suddenly flew off. One-half of them went to the east, one-sixth went to the south-east; the difference between those that went to the east and those that went to the south-east, diminished by half of itself and again diminished by half of this (resulting difference), went to the south. The difference between those that went to the south and those that went to the south-east diminished by two-fifths of itself went to the south-west; the difference between those that went to the south and those that went to , the south-west, went to the west; the difference between those that went to the south-west and those that went to the west, together with three-sevenths of itself went to the north-west; the difference between those that went to the north-west and those that went to the west together with seven-eighths of itself, went to the north; the sum of those that went to the north-west and those that went to the north, diminished by two-thirds of itself went to the north-east; and 280 parrots were found to

$$
\begin{aligned}
& { }^{1} \text { Tris, p. 14, cf. GSS, p. } 49(17-22) \text { for a similar example. } \\
& { }^{2} \text { GSS, p. ss(60). Cf. Tris, p. 13. }
\end{aligned}
$$

remain in the sky above. How many were the parrots in all? ${ }^{1}$

The Method of Inversion. The method of inversion called vilomagati ("working backwards") is found to have been commonly used in India from very early times. Thus Aryabhaṭa I says:
"In the method of inversion multipliers become divisors and divisors become multipliers, addition becomes subtraction and subtraction becomes addition." ${ }^{2}$

Brahmagupta's description is more complete. He says:
"Beginning from the end, make the multiplier divisior, the divisor multiplier; (make) addition subtraction and subtraction addition; (make) square squareroot, and square-root square; this gives the required quantity." ${ }^{3}$

The following examples will illustrate the nature of problems solved by the above method:
(1) What is that quantity which when divided by 7, (then) multiplied by 3 , (then) squared, (then) increased by s, (then) divided by $\frac{3}{5}$, (then) halved, and then reduced to its square-root happens to be the number s?
(2) The residue of degrees of the sun less three, being divided by seven, and the square-root of the quotient extracted, and the root less eight multiplied by nine, and to the product one being added, the amount is

[^81]a hundred. When does this take place on a Wednesday? ${ }^{1}$
Problems on Mixture. The Hindu works on pâtíganita contain a chapter relating to problems on mixture (miśraka-vyavahâra). Miscellaneous problems on interest, problems on allegation, and various other types of problems, in which quantities are to be separated from their mixture, form the subject matter of miśraka-lyavabâra. A chapter "on mixture" ($D e^{\prime}$ mescolo) is found in early Italian works on arithmetic, evidently under Hindu influence. ${ }^{2}$

Some of the problems of this chapter are determinate and some are indeterminate. A few relating to interest and allegation have already been given. ${ }^{3}$ The following are some others:
(1) In the interior of a forest, 3 heaps of pomegranates were divided (equally) among 7 travellers, leaving 1 fruit as remainder; 7 (of such heaps) were divided among 9 , leaving a remainder of 3 (fruits), again s (of such heaps) were divided among 8, leaving 2 fruits as remainder. O mathematician, what is the numerical value of a heap?*
(2) On a certain man bringing mango fruits home, his elder son took one fruit first and then half of what remained. The younger son did similarly with what was left. He further took half, of what was left thereafter; and the other took the other half. Find the number of fruits brought by the father? ${ }^{5}$
${ }^{1}$ Colebrooke, cha, p. 333 (18).
${ }^{2}$ Smith, History, II, p. s88, note 4.
${ }^{3}$ See commercial problems, pp .216 ff ; also problems on proportionate division (praksepa-karana): Tris, p. 26; GSS, p. 75(7912); MSi, pp. 154-15s.
${ }^{4}$ GSS, p. 82 ($128 \frac{1}{2}$). Such problems are given under the rule of vallikâ-kuttîkâra by Mahâvira.
${ }^{5}$ GSS, p. 82 ($131 \frac{1}{2}$).
(3) A certain lay follower of Jainism went to a Jina temple with four gate-ways, and having taken (with him) fragrant flowers offered them in worship with devotion (at each gate). The flowers in his hand were doubled, trebled, quadrupled and quintupled (respectively in order) as he arrived at the gates (one after another). The number of flowers offered by him was sixty ${ }^{1}$ at each gate. How many flowers were originally taken by him?
(4) The first man has 16 azure-blue gems, the second has ro emeralds, and the third has 8 diamonds. Fach among them gives to each of the others 2 gems of the kind owned by himself; and then all three men come to be possessed of equal wealth. What are the prices of those azure-blue gems, emeralds and diamonds??
(s) In what time will four fountains, being let loose together, fill a cistern, which they would severally fill in a day, in half a day, in a quarter and in a fifth part of a day? ${ }^{3}$

Problems involving Solution of Quadratic Equations. The solution of the quadratic equation has been known in India from the time of $\overline{\text { Aryabhata a }}$ I (499). Problems on interest requiring the solution of the quadratic equation have already been mentioned. Mahâvîra and Bhâskara Il give many other problems. Mahâvîra divides these problems into two classes: (i) those that involve square-roots (mula) and (ii) those
${ }^{1}$ GSS, p. 79 (112 $\frac{1}{2}-113 \frac{1}{2}$). The printed text has pañca ("five"). According to it the answer is $43 / 12$ which appears absurd. There are some other problems in the printed edition which give such absurd results. All those are, we presume, due to the defects of the mss. consulted by the editor. So here we have made the emendation 'sixty.'

$$
\begin{aligned}
& { }^{2} \text { GSS, p. } 87 \text { (165-166). } \\
& { }^{3} \text { BrSpSi, p. } 177 \text { (com.); L, p. } 23 .
\end{aligned}
$$

that involve the square (varga) of the unknown. The first type gives a single positive answer, while the second type has two answers corresponding to the two roots of the quadratic. Bhâskara II deals with the first type of problems only in his patiganita, the Lilâvati. The second type of problems, involving the square of the unknown has been treated by him in his Bijaganita (algebra). The following examples will illustrate the nature and scope of such problems:
Problems involving the square-root:
(i) One-fourth of a herd of camels was seen in the forest; twice the square-root of that had gone to mountain slopes; and three times five camels were found to remain on the bank of a river. What was the numerical measure of that herd of camels? ${ }^{1}$
(2) Five and one-fourth times the square-root (of a herd) of elephants are sporting on a mountain slope; five-ninths of the remainder sport on the top of the mountain; five times the square-root of the remainder sport in a forest of lotuses; and there are six elephants then (left) on the bank of a river. How many are the elephants? ${ }^{2}$
(3) In a garden beautified by groves of various kinds of trees, in a place free from all living animals, many
${ }^{1}$ GSS, p. si (34). The problem belongs to the type of the mûla-jäti, and leads to an equation of the form $x-(b x+c \sqrt{x}+a)=0$. The method of solution is given in GSS, p. 50 (33).
${ }^{2}$ GSS, p. $\varsigma 2(46)$. The problem is of the sesa-mula variety. It gives the equation
$\left.x-\frac{21}{4} \sqrt{x}-\frac{5}{8}\left(x-\frac{21}{4} \sqrt{x}\right)-5 \sqrt{x-\frac{21}{4} \sqrt{x}-\frac{3}{8}\left(x-\frac{21}{4} \sqrt{x}\right.}\right)=6$. Mahâvîra reduces it by putting $Z=x-\frac{21}{4} \sqrt{x}-\frac{8}{y}\left(x-\frac{21}{4} \sqrt{x}\right)$. to $z-5 \sqrt{ } z=6$. In the general case a similar equation is again obtained, which is again reduced, and so on till the equation is reduced to the form, $x-b \sqrt{x}=d$, from which x can be easily obtained.
ascetics were seated. Of them the number equivalent to the square-root of the whole collection were practising yoga at the foot of a tree. One-tenth of the remainder, the square-root (of what remained after this), \quad (of what remained after this), then the squareroot (of what remained after this), $\frac{1}{8}$ (of what remained after this), the square-root (of what remained after this), $\frac{1}{7}$ (of what remained after this), the square-toot (of what remained after this), $\frac{1}{6}$ (of what remained after this), the square-root (of what remained after this), $\frac{1}{5}$ (of what remained after this), the square-root (of what remained after this)-these parts consisted of those who were learned in the teaching of literature, in religious law, in logic, and in politics, as also of those who were versed in controversy, prosody, astronomy, magic, rhetoric and grammar, as well as of those who possessed an intelligent knowledge of the twelve varieties of the anjsa-sâstra; and at last 12 ascetics were seen (to remain without being included among those mentioned before). O excellent ascetic, of what numerical value was this collection of ascetics? ${ }^{1}$
(4) A single bee (out of a swarm of bees) was seen in the sky; $\frac{1}{5}$ of the remainder (of the swarm), and $\frac{1}{4}$ of the remainder (left thereafter) and again $\frac{1}{3}$ of the remainder (left thereafter) and a number of bees equal to the square-root of the numerical value of the swarm, were seen in lotuses; and two bees were on a mango tree. How many were there? ${ }^{2}$
(s) Four times the square-root of half the number of a collection of boars went to a forest wherein tigers
${ }^{1}$ GSS, p. ${ }^{2}(42-45)$. The problem is of the same variety as the above one. The substitution will have to be made 6 times to reduce the resulting equation.
${ }^{2}$ GSS, p. 53 (48). This problem is of the dviragra-sesa-mula variety.
were at play; 8 times the square-root of $\frac{1}{10}$ of the remainder went to a mountain; and 9 times the square-root of $\frac{1}{2}$ of the (next) remainder went to the bank of a river; and boars equivalent in (numerical) measure to 56 were seen to remain in the forest. Give the numerical measure of all those boars. ${ }^{1}$
(6) The sum of two (quantities, which are respectively equivalent to the) square-root (of the numerical value) of a collection of swans and (the square-root of the same collection) as combined with 68, amounts to 34 . How many swans there are in that collection? ${ }^{2}$
(7) Pârtha (Arjuna), irritated in fight, shot a quiver of arrows to slay Karna. With half his arrows, he parried those of his antagonist, with four times the square-root of the quiver-full, he killed his horses; with three he demolished the umbrella, standard and bow; and with one he cut off the head of his foe. How many were the arrows, which Arjuna let fly?
(8) The square-root of half the number of a swarm of bees is gone to a shrub of jasmin; and so are cightninths of the whole swarm; a female is buzzing to one remaining male that is humming within a lotus, in which he is confined, having been allured to it by its
${ }^{1}$ GSS, p. $\varsigma 4(\rho 6)$. This problem is of the amंsa-mûla variety, wherein fractional parts of square-roots are involved. The problems give equations of the form

$$
\begin{aligned}
& x-a_{1} \sqrt{b_{1} x}-a_{2} \sqrt{b_{2}\left(x-a_{1} \sqrt{b_{1} x}\right)} \\
&-a_{3} \sqrt{b_{3}\left[\left(x-a_{1} \sqrt{\left.b_{1} x\right)}\right.\right.}-a_{2} \sqrt{b_{2}\left(x-a_{1} \sqrt{b_{1} \cdot x}\right)}-\ldots=k
\end{aligned}
$$

By repeated substitutions Mahâvîra reduces the equation to the form $x-A \sqrt{B x}-c=0$.
${ }^{2}$ GSS, p. 56 (68). This problem is of the mula-misra variety, wherein the sum of square-roots is involved. It gives an equation of the form $\sqrt{x}+\sqrt{x \pm d}=m$.
${ }^{3} L$, p. ${ }^{16}$.
fragrance at night. Say, lovely woman, what is the number of bees. ${ }^{1}$
Problems involving the square of the unknown:
(9) One-twelfth part of a pillar, as multiplied by $\frac{1}{30}$ part thereof, was found under water; $\frac{1}{20}$ of the remainder, as multiplied by $\frac{3}{16}$ thereof, was found buried in the mire, and 20 basta of the pillar were found in the air. O friend, give the measure of the length of the pillar. ${ }^{2}$
(10) A number of elephants (equivalent to) $\frac{1}{0}$ of the herd minus 2, as multiplied by the same ($\frac{1}{10}$ of the herd minus 2), is found playing in a forest of sallaki trees. The remaining elephants of the herd equal in number to the square of 6 are moving on a mountain. How many are the elephants? ${ }^{3}$

19. THE MATHEMATICS OF ZERO

It has been shown that the zero was invented in India about the beginning of the Christian era to help the writing of numbers in the decimal scale. The Hindu mind did not rest satisfied till it evolved the complete arithmetic of zero. The Hindus included zero among the numbers (sanikbyâ), and it was used
${ }^{1} L$, p. 16.
${ }^{2}$ GSS, p. 55 (60). The problem gives the equation

$$
\left(x-\frac{x^{2}}{12.30}\right)-\frac{1.3}{20.16}\left(x-\frac{x^{2}}{12.30}\right)^{2}=20 .
$$

Also solved by regula falsi. Mahâvîra puts $\left(x-\frac{1}{12.30} x^{2}\right)=\tau$, and then solves the quadratic

$$
z-\frac{3}{320} z^{2}=20
$$

The roots of this are then used to get the values of x.
${ }^{3}$ GSS, p. ss (63).
in their arithmetic at the time when the original of the Bakhshâlî Manuscript was written, about the third century A.D. The operation of addition and subtraction of zero are incidentally mentioned in the Pañasiddhântika of Varâhamihira (sos). The complete decimal arithmetic is found in the commentary of Bhâskara I (c. 525) on the Aryabbatîya. The results of operations by zero are found stated in the work of Brahmagupta (628) and in all later mathematical treatises. The treatment of zero in the arithmetic of the Hindus is different from that found in their algebra. In order, therefore, to bring out this difference clearly, we give separately the results found in pâtiganita (arithmetic) and in bîjaganita (algebra).

Zero in Arithmetic. The Hindus in their arithmetic define zero as the result of the operation

$$
a-a=0
$$

This definition is found in Brahmagupta's work ${ }^{1}$ and is repeated in all later works. It is directly used in the operation of subtraction. In carrying out arithmetical operations, the results of the operations of addition, subtraction and multiplication of zero and by zero are required. The Hindus did not recognise the operation of division by zero as valid in arithmetic; but the division of zero by a number was recognised as valid. Nârâyana in his pâtîganita (arithmetic) has clearly stated this distinction:
"Here in pâtîganita, division by zero is not recognised, and therefore, it is not mentioned here. As it is of use in bîjaganita (algebra), so I have mentioned division by zero in my Bîjaganita." ${ }^{2}$

[^82]The following are the results of the operations in relation to zero mentioned in Hindu works on pâtiganita:

Srîdhara says:
"In addition cipher makes the sum equal to the additive; when cipher is subtracted (from a number), there is no change in the number. In multiplication. and other ${ }^{1}$ operations on zero the result is zero. Multiplication of a number by cipher also gives zero." ${ }^{2}$

Aryabhata II, in the chapter on pâtínunita in his Mabû-siddhanta, writes:
"If zero is added to a number, the number is unchanged; the same is true when zero is subtracted. In the operation of multiplication or division of zero (by another number) or in evolution and involution (of zero), the result is zero."s

Nàrâyaṇa in his pattiganita states:
"When zero is added to or subtracted from a number, it (the number) remains unchanged; that (number) multiplied by zero becomes zero. In the multiplication and other operations en zero, the result is zero. When a quantity is added to zero the result is that which is added." ${ }^{4}$

Mahâvîra in his Ganitu-sâra-sanigraha writes:
" A number multiplied by zero is zero, and that number remains unchanged when it is divided by, combined with, or diminished by zero. Multiplication

[^83]and other operations on zero give rise to zero and in the operation of addition, zero becomes the same as what is added to it." ${ }^{1}$

Mahâvîra's statement that a number remains unchanged when divided by zero is obviously incorrect. The correct result of the operation was known to Brahmagupta who preceded him by more than two centuries. It is, therefore, strange to find Mahâvîra making such a statement. He probably thought that, so far as arithmetic was concerned, division by zero was no division at all.

Zero in Algebra. The earliest treatment of zero in algebra is found in the Brâbma-sphuta-siddbanta ${ }^{2}$ (628):
"Negative less cipher is negative; positive (less cipher is) positive; cipher (less cipher is) nought....
"The product of cipher and negative, or of cipher and affirmative, is cipher; of two ciphers is cipher.
"Cipher, divided by cipher is nought.... Positive or negative divided by cipher is taccloeda (a fraction with that for denominator), or cipher divided by negative or affirmative (is either zero or is expressed by a fraction with zero as numerator and the finite quantity as denominator)."3

Bhâskara II in the Lilavatî as well as in his Bîjaganita gives the result of the operations with zero. In the Lillâvatî he writes:
"In addition cipher makes the sum equal to the additive. In involution and evolution the result is
${ }^{1}$ GSS, p. 6. (49).
${ }^{2} \mathrm{BrSpS}$ i, pp. 309-310, rules 31-35. These rules contain also, the rules of the operations with the positive and the negative in algebra. The results relating to zero only are mentioned here.
${ }^{3}$ The result of the operation given in the bracket is according to the interpretation of S. Dvivedi.
cipher. A number divided by zero is kha-hara (that number with zero as denominator). The product of (a number and) zero is zero, but it must be retained as a multiple of zero (kha-guna), if any further operations impend. Zero having become a multiplier (of a number), should zero afterwards become a divisor, the number must be understood to be unchanged. So likewise any number, to which zero is added, or from which it is subtracted (is unaltered)." ${ }^{1}$

In the Bîjaganita, the same results are given with the addition that if a quantity is subtracted from zero, its sign is reversed, while in the case of addition the sign remains the same.

Zero as an Infinitesimal. It will be observed that Brahmagupta directs that the results of the operations $x \div 0$ and $0 \div x$ should be written as $\frac{x}{0}$ and ${ }_{x}^{0}$ respectively. It is not possible to tell exactly what he actually meant by these forms. It seems that he did not specify the actual value of these forms, because the value of the variable x is not known. Moreover, the zero seems to have been considered by him as an infinitesimal quantity which ultimately reduces to nought. If this surmise be correct, Brahmagupta is quite justified in stating the results as he has done.

The idea of zero as an infinitesimal is more in evidence in the works of Bhâskara II. He says: "The product of (a number and) zero is zero, but the number must be retained as a multiple of zero (kba-guna), if any further operations impend." He further remarks that this operation is of great use in astronomical calculations. It will be shown in the section on Calculus, that Bhâskara II has actually used quantities which ultimately tend to zero, and has successfully evaluated the differential coefficients of certain functions. He has, moreover,

$$
{ }^{1} L, \text { p. } 8 .
$$

used the infinitesimal increment $f^{\prime}(x) \delta x$ of the function $f(x)$, due to a change δx in x.

The commentator Krṣna proves the result $0 \times a=0$ $=a \times \circ$ as follows:
"The more the multiplicand is diminished, the smaller is the product; and, if it be reduced in the utmost degree, the product is so likewise: now the utmost diminution of a quantity is the same with the reduction of it to nothing; therefore, if the multiplicand be nought, the product is cipher. In like manner, as the multiplier decreases, so does the product; and, if the multiplier be nnught, the product is so too."

In the above zero is conceived of as the limit of a diminishing quantity.

Infinity. The quotient of division by zero of a finite quantity has been called by Bhâskara II as kbabara, which is synonymous with kba-cheda (the quantity with zero as denominator) of Brahmagupta. Regarding the value of the kba-bara, Bhâskara II remarks:
"In this qua'ntity consisting of that which has cipher for its divisor, there is no alteration, though many may be inserted or extracted; as no change takes place in the infinite and immutable God, at the period of the destruction or creation of worlds, though numerous orders of beings are absorbed or put forth." ${ }^{1}$

From the above it is evident that Bhâskara II knew that $\stackrel{a}{o}=\infty$ and $\infty+k=\infty$.

[^84]Ganeśa remarks that ${ }_{-}^{\frac{a}{o}}$ is "an indefinite and unlimited or infinite quantity: since it cannot be determined how great it is. It is unaltered by the addition or subtraction of finite quantities: since in the preliminary operation of reducing both fractional expressions to a common denominator, preparatory to taking their sum or difference, both numerator and denominator of the finite quantity vanish."

Kṛ̣̣na remarks:
"As much as the divisor is diminished, so much is the quotient increased. If the divisor is reduced to the utmost, the quotient is to the utmost increased. But, if it can be specificd, that the amount of the quotient is so much, it has not been raised to the utmost: for a quantity greater than that can be assigned. The quotient, therefore, is indefinitely great, and is rightly termed infinite."

$$
\text { Regarding the proof of }{ }_{-}^{a} \pm k=\frac{a}{o} \text { Krṣṇa makes }
$$

the same remarks as Ganeśa. He, however, goes a step further when he says that

$$
\frac{a}{o}=\frac{b}{o}
$$

This is illustrated by him through the instance of the shadow of a gnomon, which at sun-rise and sun-set is infinite; and is equally so whatever height be given to the gnomon, and whatever number be taken for the radius. "... Thus, if the radius be 120 ; and the gnomon be $1,2,3$ or 4 ; the expression deduced from the proportion, as sine of sun's altitude is to sine of zenith distance, so is gnomon to shadow, becomes $\frac{120}{0}, \frac{240}{6}, \frac{360}{6}$ or $\frac{480}{6}$. Or, if the gnomon be, as it is usually framed, 12 fingers, and radius be taken
as $3438,120,100$ or 90 , the expression will be $41 \frac{256}{0}$, $\frac{1440}{0}, \frac{1200}{0}$ or $\frac{1080}{0}$, which are all alike infinite." ${ }^{1}$

Indeterminate Forms. Brahmagupta has made the incorrect statement that

$$
\stackrel{o}{0}=0
$$

Bhâskara II has sought to correct this mistake of Brahmagupta. According to him

$$
\operatorname{Lim}_{\varepsilon \rightarrow 0} \frac{a \cdot \varepsilon}{\varepsilon}=a
$$

His language, however, in stating this result is defective, for he calls the infinitesimal ε zero, not being in possession of a suitable technical term. That, in the above case, he actually meant by zero a small quantity tending to the limiting value zero, is abundantly clear from the use he makes of the result in his Astronomy. Taylor ${ }^{2}$ and Bapu Deva Sâstrî ${ }^{3}$ are also of this opinion.

Bhâskara has given three illustrative examples. They are:

$$
\text { (i) Evaluate } \frac{\left(x \times 0+\frac{x \times 0}{2}\right)}{0}=\sigma_{3} .
$$

From this he derives the result $x-14$, which is correct if we consider $o=\varepsilon$, a small quantity tending to zero. His other examples are:
(ii) $\left\{\left(\frac{x}{0}+x-9\right)^{2}+\left(\frac{x}{0}+x-9\right)\right\} \circ=90$
giving $x=9$; and

[^85](iii) $\left.\left\{\left(x+\frac{x}{2}\right) \times 0\right\}^{2}+2\left\{\left(x+\frac{x}{2}\right) \times 0\right)\right\} \div 0=15$,
giving $x=2 .{ }^{1}$
Bhâskara II's result
$$
\frac{a}{0} \times 0=a
$$
is, however, not quite correct, as the form is truly indeterminate and may not always have the value a. His attempt, however, at such an early date to assign a meaning to the form \div, and his partial solution of the problem are very creditable, seeing that in Europe mathematicians made similar mistakes upto the middle of the nineteenth century A. D. ${ }^{2}$

[^86]
BIBLIOGRAPHY

OF SANSKRIT MATHEMATICAL WORKS

1. Apastamba Sulba Sûtra by Âpastamba (c. 400 в.c.). Edited with the commentary of Kapardisvâmî, Karavindasvâmî and of Sundararâja by D. Srinivasachar and V.S. Narasimhachar, University of Mysore Sanskrit Series, 1931; by A. Bürk, with German translation and note and comments in Zeitscbrift der deutschen morgenländischen Gesselschaft, LV, 1902, pp. 543-591; LVI, 1903, pp. 327-391.
2. Arṣa Jyotisa. Edited by Sudhakara Dvivedi with his own commentary, Benares, 1906.
3. Aryabbatîya by Âryabhaṭa I (499). Edited with the commentary, entitled Bhatadìpiká, of Parameśvara (1430) by H. Kern (Leiden, 1875); by Udai Narayan Singh, with explanatory notes in Hindi (Muzaffarpur, 1906); with the commentary, entitled Mabâbbâsya, of Nilakanṭha (1500) on the last three chapters by K. Sambasiva Sastri (Trivandrum, Part I, 1930; Part II, 1931; Part III, in press). Translations: by P. C. Sengupta ("The A ryabhatîyam," in the Journal of the Department of Letters in the University of Calcutta, XVI, 1927); by W. E. Clark (The Aryabbatîya of Aryabbata, Chicago, 1930). The second chapter of the book has been translated also by L. Rodet ("Leçons de calcul d'Âryabhata," in Journal Asiatique, XIII (7), 1878; reprint, Paris, 1879) and by G. R. Kaye ("Notes on Indian Mathematics, No. 2-Âryabhata," in Journal of the Asiatic Society of Bengal, IV, 1908). Other commentaries in MSS: (i) by Bhâskara I (s22); (ii) Bhataprakấsikâ by Sûryadeva Yajvâ (i2th century).
4. Atharvan Jyotiṣa. Edited by Bhagvad Datta, Lahore, 1924.
5. Bakbshâlî Manuscript-A Study in Mediaval Mathematics, Parts I, II and III edited by G. R. Kaye, Calcutta, 1927, 1933.
6. Baudhâyana Śulba Sûtra by Baudhâyana (c. 800 B.c.). Edited by G. Thibaut, with English translation, critical notes and extracts from the commentary of Dvârakânâtha Yajvâ, in
the Pandit (Old Series, IX and X, 1874-5; New Series, I, 1877). The text appears in the edition of the Baudhâyana Srauta Suitra (as its 3 oth chapter) by W. Caland (in 3 volumes, Calcutta, 1904, 1907, 1913).
7. Bijaganita of Bbâskara II (1150). Edited by Sudhakara Dvivedi (Benares) and revised by Muralidhara Jha (Benares, 1927); with the commentary, entitled Navânkura, of Krṣna (c. 1600) by D. Apte (Anandasrama Sanskrit Series, Poona, 1930). English translation by H. T. Colebrooke (Algebra nith Arithmetic and Mensuration from the Sanscrit of Brabmegupta and Bhascara, London, 1817). Other commentaries in MSS: (i) Bijaprabodba by Râmak ṛ̣̣̣a (c. 1648); (ii) by Sûryadâsa (born 1 108). References to this treatise in our text are by pages of Muralidhara Jha's revised edition.
8. Bï̀aganita of Jñânarâja (1503). MS.
9. Bijaganita of Nârâyaṇa (1350). MS. (incomplete).
10. Brâbma-sphuta-siddbanta by Brahmagupta (628). Edited with explanatory notes by Sudhakara Dvivedi, Benares, 1902. Chapters xii and xiii of the work dealing respectively with arithmetic and algebra have been translated into English by H. T. Colebrooke (.Algebra nith -Arithmetic and Mersuration etc.). Commentary by Pṛthudakasvâmî (860). MS. (incompletc).
II. Brbajjâtakea of Varâhamihira (sos). Edited with the commentary of Bhattotpala (966) by Rasikmohan Chattopadhyaya (Calcutta, 1300, b.s.); by Sitaram Jha (Benares, 1923).
11. Brbat-samibitâ by Varâhamihira (sos). Edited by H. Kern (Calcutta, 1865); by Sudhakara Dvivedi, with the commentary of Bhattotpala (Vizianagram Sanskrit Series, 2 Vols., Benares, 1895). English translation by H. Kern (See his collected works).
12. Dhyânagrahopadesa of Brahmagupta (628). Edited by Sudhakara Dvivedi and published as an appendix to his edition of the Brâbma-spbuta-siddbânta.
13. Ganita-kaumudî of Nârâyaṇa ($13 ; 6$). MS.
14. Ganita-mañjarî by Gaṇeśa, son of Dhuṇ̣hirâja (1958). MS.
15. Ganita-tilaka by Sripati (1039). Edited with the commentary of Simhatilaka Surî (c. 1275) by H. R. Kapadia (Gaikwad Sanskrit Series, Baroda, 1935).
16. Ganita-sâra-sam̀graba by Mahâvîra (850). Edited with English translation and notes by M. Rangacarya, Madras, 1912.
17. Graba-lâgbava of Gaṇeśa Daivajña (c. 1545). Edited with the commentaries of Mallâri, Viśvanâtha and his own by Sudhakara Dvivedi, reprinted, Bombay, 1925.
18. Karana-kutûhala by Bhâskara II (IIso). Edited with the commentary of Sumatiharṣa by Madhava Sastri, Bombay, 1901.
19. Karana-paddbati by Pathumana Somayâji (1733). MS.
20. Kâtyầana Śulba Sûtra by Kâtyâyana (c. 400 b.c.). Edited with explanatory notes by Vidyadhar Sharma, Benares, 1928.
21. Kbanḍa-kbâdyaka by Brahmagupta (628). Edited with the commentary of Àmarâja (c. 1250) by Babua Misra (Calcutta, 1925). English translation with notes and comments by Prabodh Chandra Sengupta (Calcutta, 1934). Other commentaries in MSS: (i) by Prthudakasvâmî (incomplete); (ii) by Varuṇa; (iii) by Bhattotpala.
22. Lagbu-Bhâskarìla by Bhâskara 1 (s22). Commentary by Sankaranâràyaṇa. MSS.
23. Lagbu-niânasa by Mañjula (932). Commentaries by (i) Pṛthudakasvâmï (964); (ii) Parameśvara (1430). MSS.
24. Lîlâvatî by Bhâskara II (1150). Edited with notes by Sudhakara Dvivedi, Benares, 1910. Translations: (i) by H. T. Colebrooke (Algebra with Aritbemtic and Mensuration etc.); (ii) by J. Taylor (Lilanati, Bombay, 1816). Colebrooke's translation has been re-edited with critical notes by Haran Chandra Bancrji (Lillavati, 2nd ed., Calcutta). Commentaries in MSS: (i) Buddhivilâsini by Ganeśa (1545); (ii) Ganitâmrtasâgarî by Gañgâdhara (1432); (iii) Ganitâmrtalaharî by Râmakrṣ̣na (1339); (iil) Manorañjana by Râmakrṣnadeva; (י) Ganitàmrtakûpikâa by Sûryadâsa (1ヶ41); (vi) Cintàmani by' Lakṣmîdâsa (i soo); (vii) Nisrsṣtadûti by Munî́vara (1608). References to Lilâavati in our text are by the pages of Dvivedi's edition.
25. Manava Sulba Sûtra by Manu, MS. English translation by N. K. Mazumdar (in Journal of the Department of Letters in the University of Calcutta, VIII, 1922).
26. Mahâ-Bhâskarîya by Bhâskara I (922). Commentary by (i) Sûryadeva (12 th century); (ii) Parameśvara (1430). MSS.
:8. Mabâ-siddbânta by Âryabhaṭa II (950). Edited with explanatory notes by Sudhakara Dvivedi, Benares, 1910.
27. Pañca-siddbântikâ by Varâhamihira (50 s). Edited with a commentary in Sanskrit, translation into English and critical notes by G. Thibaut and Sudhakara Dvivedi, Benares, 1889.
28. Pâtî-sâra by Muniśvara (born 1603). MS.
29. Sadratnamâla by Sañkaravarman. MS.
30. Siddbânta-śekbara by Srîpati (1039). Edited by Babua Misra, Calcutta, Vol. I (1932), containing chapters i-xii of the text, with the commentary of Makkibhatta (1377) on chapters $\mathrm{i}-\mathrm{iv}$ and that of the editor on the rest.
31. Siddhânta-Siromani by Bhâskara II (1190). Edited with the author's own gloss (Vâsanâbbâşya) by Bapu Deva Sastri, Benares); by Muralidhara Jha with the commentaries, Vâsanárârtika of Nṛsimha (1621) and Marîci of Muniśvara (1635), Vol. I (containing chap. i of the Ganitâdbyâya) (Benares, 1917); by Girija Prasad Dvivedi, with original commentaries in Sanskrit and Hindi, Vols. I and II (Lucknow, 1911, 1926). English translation of the text only by Bapu Deva Sastri and Wilkinson (Calcutta, 1861).
32. Siddbânta-tattva-viveka by Kamalâkara (1698). Edited with the Sesa-i'àsanâ of the author, by Sudhakara Dvivedi, Benares, 1889.
33. Sisya-dhî-trddbida by Lalla (59^{8}). Edited by Sudhakara Dvivedi, Benares, 1886. Commentary by Mallikârjuna Surì (i179). MS.
34. Sûrya-siddhânta. Edited by F. E. Hall and Bapu Deva Sastri with the commentary of Ranganâtha (Calcutta, 1859); by Sudhakara Dvivedi with an original commentary in Sanskrit (Calcutta, 1909-11). Translation into English, with critical notes by E. Burgess and W. D. Whitney; into Bengali with critical notes by Vijñânânanda Svâmî.
35. Tantra-samigraba by Nilakantitha (i $\varsigma 00$). Commentary by an unknown writer. MS.
36. Trisatiká by Srîdhara (750). Edited by Sudhakara Dvivedi, Benares, 1899 . The principal rules in this text leaving the illustrative examples and their solutions, have been translated into English by N. Ramanujachariar and G. R. Kaye and published with notes and comments ("Triśatikâ of Śrîdharâcârya," Bibl. Math., XIII (3), 1912-13, pp. 203ff.). Dvivedi's text is apparently incomplete. The manuscript in our collection, though not perfect, contains a few more rules and examples.

I N D E X

A

Ababa, 12
Abbuda, 12
Abenragel, 99
Abhyâsa, 130, 134
Abja, 13
Abû Sahl Ibn Tamim, 98
Addition, 130 ; direct process, 131 ; inverse process, 131 ; terminology, 130; the operation, 130
Aghana, 175, 177, 178, 179, 180
Ahaha, 12
Akkhobhini, 12
Akṣarapallî, 33, 34, 72, 74
Akṣiti, 10
Al-Amûnî Saraf-Eddin, 99
Al-Battani, 83
Al-Bîrûnî, 39, 55, 98, 99, 100, 128, 210
Alexander de Villa Die, 95, 103
Al-Fazârî, 89
Al-Haṣâr, 143
Al-hindî, 143
Alibin Abil-Regal Abul-Hasan, 99
Alkalasâdî, 99, 143
Al-Kharki, so
Al-Khowârîzmî, 90, 143, 153, 154
Al-Masûdí, 97, 100
Al Nadìm, 98
Al Nasavî, 90, 143, 153, 154, 174
Alphabetic Notations, 63; akṣarapallî, 72; explanation, 67; kaṭapayâdi system, 69;
other letter systems, 75; system of Âryabhaṭa I, 64
Al-Qass, 90
Al-Sijzî, 90
Aḿśa, $185,186,188$
Ananta, 10
Ankapallí, 33
Anta, 9
Antya, 10, 13, 163
Anuyogadvâra-sûtra, $11,12,83$, 169
Apavartana, 189
Arbuda,-9, 13
Archimedes, II
Arithmetic, 123; exposition and teaching, 126 ; fundamental operations, 128 ; general survey, 123 ; sources, 125 ; terminology and scope, 123
Arjuna, 10
Arkhand, 97
Arthaśâstra of Kauṭilya, 6, 7, 21, 187, 218
Âryabhaṭa I, 12, 69, 71, 87, 125, 128, 134, 135, 137, 150, 155, 156, 162, 163, 173, 197,
198, 204, 211, 219, 232, 234 Âryabhaṭa II, 71, 72, 130, 132, 136, 152, 172, 177, 184, 204, 209, 212, 240
Âryabhatîya, 65, 67, 69, 71, $80,82,86,125,126,130$, 134, 150, 170, 171, 175, 197, 204, 211, 217, 219, 239
Asañkhyeya, 12
Aśvaghoṣa, 2

Atata, 12
Athanasius Gamenale, 96
Atharvaveda, 18, 57
Avarga, 65, 66, 67, 69
Avesta, ioi
Avicenna, 184
Ayuta, 9, 10, 12, 13

B

Bahula, io
Bakhshâli Manuscript, 47, 61, $65,77,81,86,134,137$, 151, 186, 192, 204, 239
Bapudeva Sastri, 245
Barnet, L.D., 6, 72
Barter and exchange, 226
Barth, 65
Bayley, 29, 30, 124
Behâ Eddin, 100, 149, 184
Bhâga, 185, 186, 188 , 190
Bhâga-bhâga, 191
Bhâgahâra, 124, 150,198
Bhâgajâti, 196
Bhâgamâtr, $19{ }^{2}$
Bhâgânubandha, 190, 192, 193, 195
Bhàgâpavâha, 19r, 195
Bhagavatî-sûtra, 4, 7
Bhấjaka, 150
Bhâjana, iso
Bhâjya, 150, 177, 178
Bhâṇda-pratibhâṇḍa, 124, 226
Bhandarkar, 17, 19
Bhâsa, 2
Bhâskara I, 66, 67, 80, 82, 86, 87, 125, 130, 134, 170, 197, 204, 211, 239
Bhâskara II, 10, 13, 125, 128, 129, 131, 132, 136, 137, 146, $149,192,157,159,161,162$, $164,167,172,184,188,195$, 205, 208, 209, 212, 230, 234, 239, 241, 242, 243, 245, 246

Bhattotpala, $s 5$
Bhinna, 188
Bihârî, 8 I
Bîjadatta, 184
Bíjagaṇita, 8, 235, 239, 241, 242, 245
Bindu, 12, 8i
Bodhisattva, 10
Boethius, geometry, 93; question, 9^{2}
Bower manuscript, 74
Brahmagupta, 8, 87, 89, 124, $129,128,134,135,137,147$, 149, $150,156,159,160,163$, $169,170,176,188,189,196$, 198, 199, 205, 211, 212, 217, 220, 222, 232, 239, 241, 242, 243,245
Brâhmana, Aitereya, 58 ; Pañcavimíśa, 10; Satapatha, 57 , 186; Taittirîya, 57
Brâhma-sphuṭa-siddhânta, 8,59 , 89, $156,228,241$
Bráhmî numerals, 25; early occurrence and forms, 25; period of invention, 37; relation with letter forms, 33; résumé, 37; theories about their origin, 28
Bṛhat-ksetra-samâsa, 79
Bṛhat-samhitâ, 5s, 59
Brnda, I_{3}
Brockkhaus, 65
Buddha, 2, 36, 187
Bühler, 16, 17, 19, 21, 23, 24, 30, $33,35,37,45,47,49,60,74$
Burnell, 30, 75

C

Caire, 97
Cajori, 88
Capella, 92
Caraka, 2

Carra de Vaux, 97, 100, 101, 102 Cataneo, 175
Catur, 13
Chandaḥ-sûtra, 58, 75, 76, 77, 86
Chatterjee, C.D., $\{3$
Châyâ, 124
Checks on operations, 180
Chedana, 150
Chid, 212
Chuquet, 175
Citi, 124
Clark, W.E., 64, 65, 66, 67, 170, 171, 175, 197
Coedis, G., 43
Colebrooke, 134, 135, 145, 147, 156, 164, 177, 211, 233, 245
Commercial Problems, 218; barter and exchange, 226; interest in ancient India, 218; interest in Hindu ganita, 218; other problems, 220; other types of, 227; problem involving a quadratic equation, 219
Cowell, E.B.; and Neil, R.A., 7
Cube, 162 ; minor methods of, 166; terminology, 162; the operation, 163
Cube-root, 175; terminology, 175; the operation, 175
Cullaniddesa, 4
Cunningham, 28, 29

D

Dantidurga, 40
Darius, 23
Darius Hystaspes, ion
Daśa, 9, 12, 13
Daśagîtikâ, 64, 65, 66, 71
Daśaguṇâḥ samjiñà, 13
Daśaguṇottara samijnâa, so
Dasa-koṭi, 1_{3}
Daśa-lakṣa, 13

Daśa-sahasra, 13
Datta, B., 7, 61, 65, 81, 84, 85, 123, 155, 170, 184, 185, 218, 243
Deccke, W., 16
Decimal place-value system, 38; epigraphic instances, 40; forms, 39; important features, 38; inventor unknown, 49; place of invention of the new system, 48; their supposed unreliability, 44; time of invention, 49
Delambre, 184
Devendravarmana, 40
Dharma-sûtra, ${ }^{1} 7$
Dhûlî, 8; karma, 8, 123, 129
Digges, 210
Dîgha-Nikâya, 7
Division, 1 sO ; terminology, 150 ; the method of long, 151; the operation, iso
Divyâvadâna, 7
Djâhiz, 97
Dramma, 227
Dvivedi, S., $59,129,131,156$, $168,178,183,241$

E

Ekâdaśa-râśika, 124
Ekânna-catvârimísat, 14
Ekânna-vimśati, 14
Ekîkaraṇa, 130
Ekona, 14
El-jowharee, 100
Elliot, 100
End, ioi, see hend
Eneström, G., 149
Euting, J., 23

F

Fihrist, 9^{8}
Firdausi, 100

Firouzâbâdi, roo, ror
Fleet, $52,60,65,67,124$
Flügel, G., 98
Fractions, 185 ; addition and subtraction, 196; cube and cuberoot, 199; division, 197; early use, 185 ; lowest common multiple, 195; multiplication, 196; reduction in combinations, 190; reduction to common denominator, 189; reduction to lowest terms, 189; square and square-root, 199; terminology, 188; the eight operations, 195; unit fractions, 199 ; writing of, 188 Frisius, Gemma, 175

G

Gaṇaka, 127
Gaṇeśa, 136, 145, 146, 211 , 230, 244
Gangâdhara, 131, 133, 147
Ganguli, 6s
Gaṇita, 4, $5,6,7,8,83,128,130 ;$ avyakta, 123; vyakta, 123
Gaṇita-kaumudí, 129
Ganita-mañjarî, 136, 144, 14s
Gaṇitânuyoga, 4
Gaṇita-sâra-samigraha, 80, 125 , 219, 223, 227, 230, 240
Ganita-tilaka, 125
Gerbert, 93, 94
Ghana, 8, 124, 162, 177, 178, 179; pada, 175
Ginsburg, J., 95
Gomûtrikà, 135, 147, 148
Gotama-sûtra, 218
Guṇaka, 135
Guṇakâra, 135, 198
Guṇana, 124, 134; iṣta, 136, 149; phala, 135; tastha, 146; tiryaka, 145;

Guṇya, 135

H

Halifax, John of, 95
Hall, F., 81
Halle, 104
Halsted, G.B., 38, 39
Hanana, 134, 139
Handasa, 102
Handasi, 101, 102
Hara, 150
Haraṇa, 150
Hârya, 150
Heath, so
Hemcandra, 12
Hend, ior
Hetuhila, 11
Hetvindriya, II
Hind, 100, 101
Hindasa, 101, 102
Hindasi, 10 I
Hindi, 100, 101, 102
Hindisah, 98, 101
Hindu Numerals in Arabia, 88; Arabic reference, 96 ; definite evidence, 93; European references, 102; in Europe, 92; miscellaneous references, 95 ; Syrian reference, 95; the terms hindasa, etc., $10 i$
Hisâb-al-ghobâr, 98, 124
Hunter, G.R., 19, 29

I

Ibn Albanna, 99
Ibn Hawkal, 100
Ibn Seedeh, 100
Ibn Târik, 89
Ibn Wahshiya, 96
Icchâ, 198, 204-208; pakṣa, 2 II, 213
Idânî, 186
Ilm-hisâb-altakhta, 123

Indraji, Bhagvanlal, 6, 26, 35-37 Infinity, 243
Inscription, Ahar Stone, 42, 52; at Po Nagar, 44; Belhari, 40; Buchkalâ-of Nâgbhaṭa, 41; Deogarh Jaina-of Bhojadeva, 42; Dholpur, 6o; from Dhauli, 33; from Girnâr, 33; from Kanheri, 41, 42; Ghatiyala-of Kakkuka, 41; Gurjara-45; Gwalior-of Allah, 42; Gwalior-of the reign of Bhojadeva, 42, 82; Hâthîgumphâ, 6; Hindu, 60; Junâr, 47; Kanheri, 40; Kharosṭhî, 21; Kṣatrapa, 34; Nânâghât, 25, 26; of Aśoka, 16, 20, 21, 23, 28, 34; of Bauka, 41 ; of the Kuṣannas, 22, 34; of Rudradaman, 47; of the Parthians, 21; of the Sakas, 21; of Sâmanta Devadatta, 41; of Sambor, 44; of Srîvijaya, 44; of Yaśovarmaṇa, 43; Pehava, 42; Sanskrit and old Canarese, 43; Siyadoni stone, 43; stone, 45; word numerals in, 59
Isidorus of Seville, 102
Ista, 135
Ișṭakarma, 230
Istakri, 100
Itarhi, 186

J

Jacobi, H., 7
Jadhr, 170
Jaivardhaṇa II, 40, 82
Jaladhi, 13
Jarez de le Frontera, 94
Jâti, 188
Jinabhadra Gaṇi, 6i, 79
John, 96

Jones, Sir W., 16
Jyotiṣa, 8

K

Kâccâyana's Pali Grammar, in
Kaiyyata, 63
Kâkinî, 206
Kalâ, 185,188
Kalâsavarṇana, 8
Kalhaṇa, so
Kâlidâsa, 2
Kalpasûtra, 6, 7
Kâṇda, 18
Kankara, 10
Kapadia, H.R., 80, 1 § 1
Kapâṭasandhi, 134, 135, 136, 137, 143, 144, 145
Karahu, 11
Karaṇa, so
Karaṇa-kutûhala, 184
Karanî, 170
Karpinski, 97; see Smith
Karṣa, 206
Kaṭapayâdi system, 69; first variant, 70 ; second variant, 71; third variant, 72; fourth variant, 72
Kathâna, 12
Kâtyâyana, 58,63
Kauṭilya, 2; Arthaśâstra of, see Arthaśâstra
Kâyastha, so
Kaye, G. R., 44, 45, 46, 47, $48,59,60,65,85,101,102$, $156,168,170,171,175,190$
Keith, see Macdonell
Kerala system, 72
Kern, 65
Kha-cheda, 243; -hara, 242, 243, 244; -guna, 242
Khalif al-Mansûr, 89
Khalif Walid, edict of, 89
Khaṇ̣a,13s

Khaṇ̣a-khâdyaka, 89
Khâravela, 6
Kharoșṭ̂î numerals, 2i; early occurrence, 21 ; forms and origin, 22; lipi, 21
Kharva, 13; mahâ, 13
Khâta, 124
Kopp, 16
Koṭi, 10, 11, 12, 13
Koṭi-koti, 11,12
Koṭippakoti, 12
Kràkacika, 124
Krama, 131
Krṣna, 243, 244
Krti, 155, 169
Kṣetragaṇita, 7, 8
Kṣipra, 186
Kṣiti, I3; mahâ, 13
Kṣobha, 13 ; mahâ, 13
Kșobhya, io
Kṣoṇi, 13; mahâ, 13
Kumuda, 12
Kusṭha, 185
Kuțtaka, 8

L

Labdha, iso
Laghu-Bhâskarîya, 59
Lahiri, 69
Lakkha, II
Lakṣa, II, 13
Lalitavistara, 10, 37, 187
Lalla, 61, 87, 125
Langdon, 25, 29
La Roche, 175
Lâtyâyana, 88
Lekhapañcâśikâ, 50
Lekhaprakâśa, so
Leonardo Fibonacci of Pisa, 94, 103
Lespius, 16
Lîlâvatî, 129, 131, 132, 133, 134, 136, 137, 144, 145,

146, 147, 211, 213, 227, 229, 230, 235, 241, 245;
Ganeśa's commentary, 144, 145, 146
Lowest Common Multiple, 195

M

Macdonell and Keith, 9
Madhya, 9, 13
Mahâ-Bhâskarîya, 59,80
Mahâbja, 13
Mahâkathâna, 12
Mahâsaroja, 13
Mahâvîra, 5, 13, 59, 56, 57, $77,8 \mathrm{c}, 136,137,145,151$, 156, 157, 161, 162, 164, 166, $167,168,172,188$, 191, 192, 195, 196, 198, 199, 205, 208, 212, 220, 222, 224, 230, 233, 235, 237, 238, 240, 241
Mahmûd bin Qajid al-Amûni Saraf-Eddin, 99
Maitrâyaṇî Samhitâ, 9, 18, 185
Majjhima Nikâya, 4
Malayagiri, 79
Mâna, 204, 205
Manorañjana, 132, 137
Marre, A., 100, 184
Marshall, 19
Martin, Ohm, 246
Mâṣâ, 218
Mathematics, appreciation of, 3; decay of, 127 ; Hindus and, 3 ; in Hindu education, 6; of zero, 238 ; scope and development of Hindu, 7
Maximus Planudes, 104, 144, 184
Mazumdar, R.C., 59
Measures, see weights
Megasthenes, 21, 37
Mihir Yast, 101
Milindapañho, 7

Mille; 9
Miscellaneous problems, 230; problems involving solution of quadratic equations, 234; problems involving the square of the unkown, 238; problems involving the square-root, 235; problems on mixture, 233; regula falsi, 230 ; the method of inversion, 232
Miśraka, 124; vyavahâra, 219, 233
Miśraṇa, 130
Mitra, Rajendra Lal, 10, 97, 187 Mohammad, 88
Mohammad Ben Musa, 102
Mohenjo-daro, 19; and Harappa, 19, 23, 29; and the Indus Valley civilization, 17; discoveries at, r ; finds of, 20
Montucla, J.F., 99
Mudrâ, 7
Mudrâbala, 1 I
Muhûrta, 186
Mukerjee, Sir Asutosh, 17
Mûla, 169, 170, 220, 234; amiśa, 237; dviragra seṣa, 236; ghana, 124, 175; jâti, 235; miśra, 237; śeṣa, 235; varga, 124, 169
Multiplication, 134; algebraic methods, 149 ; Brahmagupta's method, 136; by separation of places, 146; cross-multiplication method, 145 ; direct process, 138 ; doorjunction method, 136; gelosia method, 144; inverse method, 139; methods of, 135: partsmethod, 148; terminology, 134: transmission to the west, 143; zigzag method, 147

Muniśvara, 213
Myriad, 9

\mathbf{N}

Nâgabala, 10
Nâgarî script, 39
Nâgârjuna, 2
Nahuta, 12
Naisadha-carita, 85
Nallino, 83
Nârada, 4
Nârâyaṇa, 13, 137, 192, 161, 162, 167, 168, 183, 184, 205, 240
Nau, F., 95
Nava, 13;-daśa, 1 ; --vimśati, 1 s
Nava-râśika, 124
Neil, R.A., see Cowell
Nikharva, 10,13
Nîlakaṇṭha, 67, 170
Ninnahuta, 12
Nirabbuda, 12
Niravadya, II
Niruddha, 195
Niṣka, 213, 214, 215, 216
Niyuta, 9, 10, 12
Notation, abjad, 89; decimal place-value, 3 ; difference from other, 27; epigraphic instances of decimal placevalue, 40; Greek alphabetic, so; places of, 12 ; scale of, 9
Numeral, ghobàr, 89, 90, 91, 93, 94; Hieratic and Demotic, 28; Hindu, 38; Kharoṣṭî and Semitic, 28
Numeral notation, 1; Brâhmî, 25; earliest, 19; in spoken language, 13; Kharosthî, 21; terminology, 9
Numerical, Aśokan-figures, 37; development of symbolism, 16

Nyarbuda, 9,10, 13

0

Ojha, 17, 24
Oldenburg, 4
Operations, checks on, 180

\mathbf{P}

Pacioli, 146
Pada, 155, 169, 170, 177
Padma, 13 ; mahâ, 13
Paduma, 12
Paṇa, 206, 216, 218, 227, 229
Pañca, 13
Pañca-râśika, 124
Pañca-siddhântikâ, $59,78,79$, 239
Pâṇini, 2, 18, 33, 63, 218
Pankti, 173
Pannavanâ-sûtra, 37
Papyrus Blacas, 24
Parameśvara, 67, 155, 197
Parârdha, 9, 13
Parasparakrtam, 134
Pargiter, 58
Parikarma, 8
Paṭala, 18
Pâṭana, 132
Patañjali, 2, 63, 85
Pâtî, 8, 124, 126, 129, 138, 139, 140, 141, 148, 152, 157, 158, 159, 173, 174, 177, 178, 180
Jâṭ̂gaṇita, 8, 82, 123, 126, 128 , 151, 184, 187, 195, 222, 226, 227, 233, 235, 239, 240
Pâtịisàra, 125,213
Parṭa, 123
Patṭopâdhyâya, so
Peurbach, 175
Phala, 198, 204, 205, 206, 208, 212, 216, 220, 223, 228
Phalaka, 123

Phoenician forms (of numerals), 24
Phoenician script, 17
Pingala, 75, 76, 77
Place-value, date of invention of the notation, 86 ; in Hindu literature, 83 ; in Jain canonical works, 83; in literary works, 85 ; in works on philosophy, 85 ; invention of system, 1 ; new notation, 53; principle, 39; the decimal notation, 40 ; the decimal system, 43
Plate, Cambay-of Govinda, 43; Chargaon-of Huviṣka, 47; Ciacole, 40; Daulatabad -of Sankargaṇa, 41; Dhiniki Copper, 40; Grant of Avanívarmaṇa, 42; Grant of Balavarmana, 42; Gurjara Grant, 40, 45, 48; Kaḍab, 6o; Pâṇ̣ukeśvara-of Lalitasuradeva, 41; Ragholi, 40, 82; Sangli-of Râstrakûṭa Govindarâja, 43; Torkhedi, 41
Prabhâga, 190
Prakeṣpa karaṇa, 233
Prâkṛta, 170
Prakṣepaṇa, 130
Pramâṇa, 198, 204, 205, 223 ; râśi, 198; pakṣa, 211, 213
Pratiloma, 191
Pratyutpanna, 135, 139, 140
Prayuta, 9, 12, 13
Princep, James, 33
Pṛthudakasvâmî, 77, 124, 129, $148,156,163,228$
Puliśa, 61, 79
Pundarîka, 12
Purâṇa, 2, 84, 96, 206, 228; Agni, s8, 59, 62, 84, 86 ; Vầyu, 84; Viṣṇu, 84

Pûrva, 164

\mathbf{R}

Rabbi ben Ezra, 96, 103, 217, 230
Radix, 170
Râjatarañginî, so
Rajiu, 8
Ramanujacaria, 156,168
Râmâyaṇa, 2
Rangacarya, 191,226
Râśi, 8, 124; rupâmísaka, 199
Ray, H.C., 17
Ray, Sir P.C., 85
Regula falsi, 230, 238
Reinaud, 97, 98
Rgveda, 9, 19, 17, 18, 20, 57, 189
Rhys Davids, 7
Riese, 149
Rodet, 65, 66, 170, 175
Rosen, 102
Rule of Three, 203 ; appreciation of, 208; as a particular case, 216 ; compound proportion, 210; illustration, 213; inverse, 207; proportion in the west, 210; terminology, 203; the method, 204, 211
Rûpa, 6
Rûpa-vibhâga, 136

S

Sachau, E.C., 98, 99
Sadguruśiṣya, 71
Sadratnamâlâ, 70
Sahasra, 9, 12, 13
Sakala, 199
Salila, io
Samacaturaśra, 155
Samâpta-lambha, il
Samavâyâṅga-sûtra, 6, 37
Samkalana, 130
Samkalita, 124, 130, 196

Samikhyâ, 238
Samkhyâna, 4, 6, 7
Sammelana, 130
Samudra, 9, 10
Samyojana, 130
Sanatkumâra, 4
Sañkarâcârya, 85
Sankha, I3
Sânkhyâyana śrauta sûtra, 10
Sankramana, 221, 222
Sanku, 13
Sapha, 185
Sapta, 13
Sapta-râśika, 124
Saritâpati, 13
Sarvabala, if
Sarvadhana, 132
Sarvajñà, iI
Sarvânukramaṇí, 71
Sastri, Madhava, 184
Sastri, Sambasiva, 67
Sata, 9, 12, 13; koṭi, 13
Sâtavâhana, 25
Satottara gananâ, 10 ; samjiñâ, 10 Savarnana, 194
Script, Indian, 16; Nâgarî, 39; North Semitic, 17; Phoenician, 17; South Semitic, 16. 17
Sebokht, 89, 93, 95, 96
Sefer ha-Mispar, 103
Sefer Yesîrâh, 98
Senart, E., 26
Sengupta, 175, 197
Śeṣa, 132
Shamasastri, R., 6, 19, 187, 218
Siddhânta, $3,125,128$, 135, 150; Brâhma-sphuṭa, 8, $59,89,156,228,241$; Mahâ, 129, 181, 183, 184, 240; Parâśar, 3; Pitâmaha, 3, 125 ; Puliśa, 59, 62, 79, 86; Romaka, 125; Sekhara, 125 ,

136; Sûrya, 3, 59, 62, 125 ; Tattva-viveka, 125 ; Vaśiștha, 3, 125
Siddhasena Gaṇi, 80, 171
Silâditya VI, 52
Silberberg, Moritz, 103
Sindhind, 97
Singh, A.N., 170, 171, 172, 173, 175
Sîrṣaprahelikâ, 12
Sitanath, Sri, 76
Skandasena, 188
Smith, 144, 146, 149, 150, 153, $154,175,210,217,230,232$, 233; and Karpinski, 11, 27, $30,48,80,83,88,89,90$, 95,103
Sodhana, 132
Sodhya, 177,178
Sogandhika, 12
Square, 155 ; minor methods of squaring, 160 ; terminology,
155 ; the operation, 156
Square-root, 169; terminology, 169 ; the operation, 170
Srauta-sûtra, ${ }^{8} 8$
Sredhî, 124
Srîdhara, 8, 13, 134, 136, 145, 155, 156, 157, 160, 161, 162, 163, 167, 168, 172, 177, 188, 190, 191, 192, 193, 196, 198, 199, 205, 207, 212, 230, 240
Srîdharâcârya, see Srîdhara
Stîharṣa, 85
Stipati, 128, 136, 137, 138, 144, 145, 150, 167, 172
Stambhoddeśa, 230
Sthâna, 12, 161, 166;-khaṇda, 146, 148
Sthânâinga-sûtra, 8, 204
Subandhu, 81, 82, 85
Subtraction, 132; direct process,

133; inverse process, 133; terminology, 132 ; the operation, 132
Sulba 130, 134, 155, 170, 185, 188
Sumatiharṣa, 184
Sûnya, 38, 54, 77;-bindu, 81, 8 ;
Sûryadâsa, 133, 197, 208, 211
Sûryadeva, 67, 71
Suśruta, 2
Suter, H., 51, 99, 102, 143, 174
Sûtra, 4
§vetavarṇí, 129

T

Taccheda, 241
Taittirîya Samhitâ, 9, 14, 15;
Brâhmaṇa, see Brâhmaṇa
Talkhis, 99
Tallakṣaṇa, it
Tântric, 19
Tarik al-hindî, 143
Tastha, 136, 145; guṇana, see guṇana
Tattvârthâdhigama-sûtra, 80, 151, 171
Taylor, 16, 29, 132, 147, 245
Theon of Alexandria, 171
Theophanes, 89
Theory, Indraji's, 35
Thibaut, iss
Tiṭilambha, II
Trairâsika, 124, 203, 204;
vyasta, 124, 207, 210
Tri, 13; pâda, 189
Tripraśna, s
Triśatikâ, 59, 125, 151, 187, 205, 227, 229
Tropfke, 80

U

Umâsvâti, 2, 80, 151, 189
ûna-vimśati, 15 ; trimsat, 15

Upaniṣad, Chândogya, 3, 58; Mundaka, 4
Uppala, 12
Utkrama, 131
Utsariga, 10
Uttara, 163
Uttarâdhyayana-sûtra, 4
V
Vâdava, 10
Vadha, 134
Vâjasaneŷi samhitâ, 9, is
Vajrâbhyâsa, 145,146
Vajrâpavartana-vidhi, 196
Vallikâ-kuttîkâra, 233
Vâlmîki, 2
Varâhamihira, 61, 79, 209, 239
Varâtaka, 206
Varga, 8, 65, 66, 67, 69, 124, I55, 156, 235; múla, see mula; --varga, 8
Varna, 63, 229
Vâsavadattâ, $8 \mathrm{I}, 89$
Vaśiṣṭha, ${ }_{1} 7$
Vedầǹga, 7, 19;-jyotiṣa, 7, 58
Vediśrî, 25
Vibhûtângama, II
Vidyâ, aparâ, 4; Brahma, 4; nakṣatra, 4; parâ, 4; râśi, 4
Vikalpa, 8
Vinaya Pitaka, 4, 7
Vinimaya, 204, 205
Visamjn̂â-gati, in
Vivâha, ıo
Vivara, 10
Viyoga, 132
Viyojaka, 132
Viyojya, 132
Vṛnda, 13
Vyâsabhâṣya, 8s
Vyavahâra, 8;--sûtra, 84
Vyavakalita, 124
Vyavasthâna-prajñapti, iI

Vyutkalana, 132
Vyutkalita, 124, 132

$$
\mathbf{w}
$$

Wahshiya, 97
Warner, A.G., and Warner, E., 100
Wäschke, 104
Weber, $16,17,37,58$
Weights and Measures, 186
Whish, 6s
Widman, 149
Woepcke, F., 90, 102, 143, 174, 184
Wolack, Gottfried, 83
Woods, J.H., 85
Word-numeral, 53; date of invention, 62; explanation of the system, 53 ; in inscriptions, 59 ; list of, 54 ; origin and early history, 60; without place-value, s7; with placevalue, 58 ;
Wright, W., 96
Writing in ancient India, 16

Y

Yajurveda, 9, 10, 20
Yâkub ibn Târik, 89
Yâvat tâvat, 8
Yoga, 130, 236;-sûtra, 8 5
Yojana, 171, 172
Yukti, 130

Z

Zero, as an infinitesimal, 242, 243; earliest use, 75 ; form of the symbol, 8 r ; in algebra, 241; in arithmetic, 239; indeterminate forms, 245 ; other uses of the symbol, 82; the mathematics of, 238; the symbol, 75

HISTORY OF HINDU MATHEMATICS
 A SOURCE BOOK

PART II

ALGEBRA
.

HISTORY OF HINDU M A T HEMATICS

 A SOURCE BOOKPART II

ALGEBRA

BY
BIBHUTIBHUSAN DATTA
AND
AVADHESH NARAYAN SINGH

COPY RIGHT, I935, BY AVADHESH NARAYAN SINGH ALL RIGHTS RESERVED

इदं नम ॠष्टभ्य: पूर्वजेम्यः पूर्वेभ्य: पथिकृद्भ्य:

$$
(R V, \text { x. 14. 25) }
$$

To the Seers, our Ancestors, the first Patb-makers

PREFACE

The present work forms Part II of our History of Hindu Mathematics and is devoted to the history of Algebra in India. It is intended to be a source book, and the subject is treated topicwise. Under each topic are collected together and set forth in chronological order translations of relevant Sanskrit texts as found in the Hindu mathematical works. This plan necessitates a certain amount of repetition. But it shows to the reader at a glance the improvements made from century to century

To gather materials for the book we have examined all the published mathematical treatises of the Hindus as well as most of the important manuscripts available in Indian libraries, a list of the most important of which has already been included in Part I. We have great pleasure in once more expressing our thanks to the authorities of the libraries at Madras, Bangalore, Trivandrum, Tripunithura, Baroda, Jammu, and Benares, and those of the India Office (London) and the Asiatic Society of Bengal for supplying transcripts of manuscripts or sending them to us for consultation. We are indebted also to Dr. R. P. Paranjpye, Vice-Chancellor of the Lucknow University, for help in securing for our use several manuscripts or their transcripts from the State libraries in India and the India Office.

In translating Sanskrit texts we have tried to be as literal and faithful as possible without sacrificing the spirit of the original, in order to preserve which we have at a few places used literal translations of Sanskrit tech-
nical terms instead of modern terminology. For instance, we have used the term 'pulveriser' for the equation $a x+b y=1$, and thie term 'Square-nature' for the equation $N x^{2}+c=y^{2}$.

The use of symbols-letters of the alphabet to denote unknowns-and equations atc the foundations of the science of algebra. The Hindus were the first to make systematic use of the letto. .r in mphabet to denote unknowns. They were also the first to classify and make a detailed study of equations. Thus they may be said to have given bitth to the modern science of algebra.

A portion of the subject matter of this book has been available to scholars through papers by various authors and through Colebrooke's flgelira with Arithmetic and Mensuration from the Sanscrit of Bralbmegupta and Bbascara, but about half of it is being presented here for the first time. For want of space it has not been possible to give a detailed comparison of the Hindu achievements in Algebra with those of other nations. For this the reader is referred to the general works on the history of mathematics by Cantor, Smith, and Tropfke, to Dixon's History of the Theory of Numbers and to Neugebauer's Mathematische Keilschrift-T'exte. A study of this book along with the above standard works will reveal to the reader the remarkable progress in algebra made by the Hindus at an early date. It will also show that we are indebted to the Hindus for the technique and the fundamental results of algebra just as we owe to them the place-value notation and the elements of our arithmetic.

We have pleasure in expressing our thanks to Mr. T. N. Singh and Mr. Ahmad Ali for help in correcting proofs and to Mr. R. D. Misra for preparing the index to this volume.

Bibhutibhusan Datta Avadhesh Narayan Singh

CONTENTS

CHAPTER III

ALGEBRA

Page

1. GENERAL FEATURES I
Name for Algebra-Algebra defined-Distinction fromArithmetic-Importance of Algebra-Scope of Al-gebra-Origin of Hindu Algebra.
2. TECHNICAL TERMS 9
Coefficient-Unknown Quantity-Power-Equation- Absolute Term.
3. SYMBOLS 12
Symbols of Operation-Origin of Minus Sign-Sym- bols for Powers and Roots-Symbols for Unknowns.
4. LAWS OF SIGNS 20
Addition-Subtraction-Multiplication-Division- Evolution and Involution.
5. FUNDAMENTAL OPERATIONS 25
Number of Operations-Addition and Subtraction- Multiplication-Division-Squaring-Square-root.
6. EQUATIONS 28
Forming Equations-Plan of writing Equations-Pre- paration of Equations-Classification of Equations.
7. LINEAR EQUATIONS IN ONE UNKNOWN 36Early Solutions-Rule of False Position-Disappear-ance from later Algebra-Operation with an OptionalNumber-Solution of Linear Equations."
8. LINEAR EQUATIONS WITH TWO UNKNOWNS 43
Rule of Concurrence-Linear Equations.
Page
9. LINEAR EQUATIONS WITH SEVERAL UN- KNOWNS 47
A type of Linear Equations-Solution by False Posi- tion-Second Type-Third Type-Brahmagupta's Rule-Mahâvîra's Rule-Bhâskara's Rule.
10. QUADRATIC EQUATIONS 59
Early Treatment-Bakhshâlî Treatise-Âryabhaṭa I- Brahmagupta's Rules-Srîdhara's Rule-Mahâvîra- Âryabhaṭa II-Śrîpati's Rules-Bhâskara II's Rules- Elimination of the Middle Term-Two roots of the Quadratic-Known to Mahâvîra-Brahmagupta.
ir. EQUATIONS OF HIGHER DEGREES 76
Cubic and Biquadratic-Higher Equations.
11. SIMULTANEOUS QUADRATIC EQUATIONS 8 I
Common Forms-Rule of Dissimilar Operations- Mahâvîra's Rules.
12. INDETERMINATE EQUATIONS OF THE FIRST DEGREE ${ }^{87}$General Survey-Its Importance-Three Varieties ofProblems-Terminology-Origin of the name-Preliminary Operations-Solution of $b x-a y= \pm c-$Âryabhaṭa I's Rule-Bhâskara I's Rules-Brahma-gupta's Rules-Mahâvîra's Rules-Aryabhaṭa II-Srippati's Rule-Bhâskara II's Rules-Solution of $b y=$$a x \pm \mathrm{r}$-Constant Pulveriser-Bhâskara I's Rule-Brahmagupta's Rule-Bhâskara II's Rule-Solution of$b y+a x= \pm c$-Brahmagupta's Rule-Bhâskara II'sRule - Nârâyaṇa - Il'ustrative Examples - ParticularCases.
13. ONE LINEAR EQUATION IN MORE THAN TWO UNKNOWNS 125
14. SIMULTANEOUS INDETERMINATE EQUA- TIONS OF THE FIRST DEGREE 127Srîpati's Rule-Bhâskara II's Rule-Special Rules-General Problem of Remainders-Conjunct Pulveriser-Generalised Conjunct Pulveriser-Alternative me-thod.
Page
15. SOLUTION OF $N x^{2}+\mathrm{r}=y^{2}$ 141Square-nature-Origin of the Name-TechnicalTerms-Brahmagupta's Lemmas-Description bylater writers-Principle of Composition-GeneralSolution of the Square-nature-Another Lemma-Rational Solution-Srîpati's Rational Solution-Illus-trative Examples-Solution in Positive Integers.
16. CYCLIC METHOD 16I
Cyclic Method-Bhâskara's Lemma-Bhâskara's Rule -Nârâyaṇa's Rule-Illustrative Examples.
17. SOLUTION OF $N x^{2} \pm c=y^{2}$ 173Form $M n^{2} x^{2} \pm c=y^{2}$-Form $a^{2} x^{2} \pm c=y^{2}$-Form $c-N x^{2}$$=y^{2}$-Form $N x^{2}-k^{2}=y^{2}$.
18. GENERAL INDETERMINATE EQUATIONS OF THE SECOND DEGREE: SINGLE EQUATIONS I8ISolution-Solution of $a x^{2}+b x+c=y^{2}$-Solution of$a x^{2}+b x+c=a^{\prime} y^{2}+b^{\prime} y+c^{\prime}$-Solution of $a \lambda^{2}+b y^{2}+c=$$z^{2}$-Solution of $a^{2} x^{2}+b y^{2}+c-z^{2}$-Solution of $a x^{2}+$$b x y+c y^{2}=z^{2}$.
19. RATIONAL TRIANGLESEarly Solutions-Later Rational Solutions-IntegralSolutions-Mahâvîra's Definitions--Right Triangleshaving a Given Side-Right Triangles having a GivenHypotenuse-Problems involving Areas and Sides-Problems involving Sides but not Areas-Pairs ofRectangles-Isosceles Triangles with Integral Sides-Juxtaposition of Right Triangles-lsosceles Triangleswith a Given Altitude-Pairs of Rational IsoscelesTriangles-Rational Scalene Triangles-Triangleshaving a Given Area.
20. RATIONAL QUADRILATERALS 228Rational Isosceles Trapeziums--Pairs of IsoscelesTrapeziums-Rational Trapeziums with Three EqualSides-Rational Inscribed Quadrilaterals-InscribedQuadrilaterals having a Given Area-Triangles andQuadrilaterals having a Given Circum-Diameter.

CONTENTS

Page
22. SINGLE INDETERMINATE EQUATIONS OF HIGHER DEGREES 24)Mahâvîra's Rule-Bhâskara's Method-Nârâyaṇa'sRule-Form $a x^{2 n+2}+b x^{2 n}=y^{2}$-Equation $a x^{4}+b x^{2}+c$$=u^{3}$.
23. LINEAR FUNCTIONS MADE SQUARES OR CUBES 250
Square-pulveriser-Cube-pulveriser-Equation $b x \pm c$
$=a y^{2}$-Equation $b x \pm c=a y^{n}$.
24. DOUBLE EQUATIONS OF THE FIRST DEGREE 258
25. DOUBLE EQUATIONS OF THE SECOND DEGREE 266
First Type-Second Type.
26. DOUBLE EQUATIONS OF HIGHER DEGREES 278
Double Equations in several Unknowns.
27. MULTIPLE EQUATIONS 283
28. SOLUTION OF $a x y=b x+c y+d$ 297
Bakhshâlî work-An Unknown Author's Rule- Brahmagupta's Rule-Mahâvirra's Rule-Srípati's Rule-Bhâskara II's Rule-Bhâskara's Proofs.
INDEX 309

Chapter III

ALGEBRA

1. GENERAL FEATURES

Name for Algebra. The Hindu name for the science of algebra is bijaganita. Bîja means "element" or "analysis" and ganita "the science of calculation." Thus bíjaganita literally means "the science of calculation with elements" or "the science of analytical calculation." The epithet dates at least as far back as the time of Prthûdakasvâmî (860) who used it. Brahmagupta (628) calls algebra kuttaka-ganita, or simply kuttaka." The term kuttaka, meaning "pulveriser", refers to a branch of the science of algebra dealing particularly with the subject of indeterminate equations of the first degree. It is interesting to find that this subject was considered so important by the Hindus that the whole science of algebra was named after it in the beginning of the seventh century. Algebra is also called avyakta-ganita or "the science of calculation with unknowns" (avyak:ta=unknown) in contradistinction to the name vyakta-ganita or "the science of calculation with knowns" (vyakta = known) for arithmetic including geometry and mensuration.

Algebra Defined. Bhâskara II (iifo) has defined algebra thus:
"Analysis (bija) is certainly the innate intellect assisted by the various symbols (parna), which, for the

[^87]instruction of duller intellects, has been expounded by the ancient sages who enlighten mathematicians as the sun irradiates the lotus; that has now taken the name algebra (bijaganita)." ${ }^{1}$

That algebraic analysis requires keen intelligence and sagacity has been observed by him on more than one occasion.
"Neither does analysis consist in symbols, nor are there different kinds of analyses; sagacity alone is analysis, for wide is imagination." ${ }^{2}$
"Analysis is certainly clear intelligence." ${ }^{3}$
"Or intelligence alone is analysis."4
In answer to the question, "if (unknown quantities) are to be discovered by intelligence alone what then is the need of analysis ?" he says:
"Because intelligence is certainly the real analysis; symbols are its helps. The innate intelligence which has been expressed for the duller intellects by the ancient sages, who enlighten mathematicians as the sun irradiates the lotus, with the help of various symbols, has now obtained the name of algebra."5

Thus, according to Błâskara II, algebra may be defined as the science which treats of numbers expressed by means of symbols, and in which there is scope and primary need for intelligent artifices and ingenious devices.

Distinction from Arithmetic. What distinguishes algebra from arithmetic, according to the Hindus, will be found to some extent in their special names. Both deal with symbols. But in arithmetic the values of the symbols are vyakta, that is, known and definitely determinate,

```
\({ }^{1} \mathrm{BBi}, \mathrm{p} .99\). \({ }^{2} \mathrm{BBi}\), p. 49; SiSi, Gola, xiii. 5.
\({ }^{3}\) L, p. 1 s; SiSi, Gola, xiii. 3.
    - BBi, p. 49.
\({ }^{5}\) BBi, p. 100.
```

while in algebra they are avyakta, that is, unknown, indefinite. The relation between these two branches of ganita is considered by Bhâskara II to be this:
"The science of calculation with unknowns is the source of the science of calculation with knowns." ${ }^{1}$ He has put it more explicitly and clearly thus:
"Algebra is similar to arithmetic in respect of rules (of fundamental operations) but appears as if it were indeterminate. It is not indeterminate to the intelligent; it is certainly not sixfold, ${ }^{2}$ but manifold.' ${ }^{3}$

The true distinction between arithmetic and algebra, besides that of symbols employed, lies, in the opinion of Bhâskara II, in the demonstration of the rules. He remarks:
"Mathematicians have declared algebra to be computation attended with demonstration: else there would be no distinction between arithmetic and algebra." ${ }^{4}$

The truth of this dictum is evident in the treatment of the guna-karma in the Lillâvatî and the madbyamâbarana in the Bijaganita. Both are practically treatments of problems involving the quadratic equation. But whereas in the former are found simply the applications of the well-known formulæ for the solution of such equations, in the latter is described also the rationale of those formulæ. Similarly we sometimes find included in treatises on arithmetic problems whose solutions require formulæ demonstrated in books on algebra. The method of demonstration has been stated to be "always of two kinds: one geometrical (kesetragata) and

[^88]the other symbolical (râsigata)." ${ }^{1}$ We do not know who was the first in India to use geometrical methods for demonstrating algebraical rules. Bhâskara II (1150) ascribes it to "ancient teachers." ${ }^{2}$

Importance of Algebra. The early Hindus regarded algebra as a science of great importance and utility. In the opening verses of his treatise ${ }^{3}$ on algebra Brahmagupta (628) observes:
"Since questions can scarcely be known (i.e., solved) without algebra, therefore, I shall speak of algebra with examples.
"By knowing the pulveriser, zero, negative and positive quantities, unknowns, elimination of the middle term, equations with one unknown, factum and the Square-nature, one becomes the learned professor (âcârya) amongst the learned."4

Similarly Bhâskara II writes:
"What the learned calculators (sâmkbyậ) describe as the originator of intelligence, being directed by a wise being (satpurusa) and which alone is the primal cause (bija) of all knowns (vyakta), I venerate that Invisible God as well as that Science of Calculation with Unknowns... Since questions can scarcely be solved without the reasoning of algebra-not at all by those of dull perceptionsI shall speak, therefore, of the operations of analysis." 5

$$
{ }^{1} B B i \text {, p. } 125 . \quad{ }^{2} B B i, \text { p. } 127 .
$$

${ }^{3}$ Forming chapter xviii of his Bräbma-spbuta-siddhânta.
${ }^{4} \mathrm{Br} S p S i$, xviii. 1-2.
${ }^{5}$ In the first part of this passage every principal term has been used with a double significance. The term sâmikbyab (literally, "expert calculators") signifies the "Sâmkhya philosophers" in one sense, "mathematicians" in the other; satpurusa "the selfexistent being of the Sâmkhya philosophy" or " 2 wise mathematician"; vyakta "manifested universe" or "the science of calculation with knowns."

Nârâyaṇa (1350) remarks :

"I adore that Brahma, also that science of calculation with the unknown, which is the one invisible rootcause of the visible and multiple-qualitied universe, also of multitudes of rules of the science of calculation with the known." 1
"As out of Him is derived this entire universe, visible and endless, so out of algebra follows the whole of arithmetic with its endless varieties (of rules). Therefore, I always make obeisance to Siva and also to (avyakta-) ganita (algebra)."'2

He adds :
"People ask questions whose solutions are not to be found by arithmetic; but their solutions can generally be found by algebra. Since less intelligent. men do not succeed in solving questions by the rules of arithmetic, 1 shall speak of the lucid and easily intelligible rules of algebra." 3

Scope of Algebra. The science of algebra is broadly divided by the Hindus into two principal parts. Of these the most important one deals with analysis (bija). The other part treats of the subjects which are essential for analysis. They are : the laws of signs, the arithmetic of zero (and infinity), operations with unknowns, surds, the pulveriser (or the indeterminate equation of the first degree), and the Square-nature (or the so-called Pellian equation). To these some writers add concurrence and dissimilar operations, while others include them in arithmetic. ${ }^{4}$ At the end of the first section of his treatise on algebra Bhâskara II is found to have

[^89]observed as follows :
"(The section of) this science of calculation which is essential for analysis has been briefly set forth. Next I shall propound analysis, which is the source of pleasure to the mathematician." ${ }^{1}$

Analysis is stated by all to be of four kinds, for equations are classified into four varieties (vide infra). Thus each class of equations has its own method of analysis.

Origin of Hindu Algebra. The origin of Hindu algebra can be definitely traced back to the period of the Sulba ($800-500$ B.C.) and the Brâbmana (c. 2000 B.C.). But it was then mostly geometrical. ${ }^{2}$ The geometrical method of the transformation of a square into a rectangle having a given side, which is described in the important Sulba is obviously equivalent to the solution of a linear equation in one unknown, wiz.,

$$
a x=c^{2}
$$

The quadratic equation has its counterpart in the construction of a figure (an altar) similar to a given one but differing in area from it by a specified amount. The usual method of solving that problem was to increase the unit of measure of the linear dimensions of the figure. One of the most important altars of the obligatory Vedic sacrifices was called the Mabâvedi (the Great Altar). It has been described to be of the form of an isosceles trapezium whose face is 24 units long, base 30 and altitude 36 . If x be the enlarged unit of measure taken in increasing the size of the altar by m units of area, we must have

$$
36 x \times \frac{(24 x+30 x)}{2}=36 \times \frac{(24+30)}{2}+m
$$

[^90]or
$$
97^{2 x^{2}}=97^{2}+m .
$$

Therefore

$$
x=\sqrt{1+\frac{m}{97^{2}}} .
$$

If m be put equal to $972(n-1)$, so that the area of the enlarged altar is n times its original area, we get

$$
x=\vee n
$$

some particular cases of which are described in the Sulba. The particular cases, when $n=14$ or $14 \frac{3}{3}$, are found as early as the Satapatba Brâbmana ${ }^{1}$ (c. 2000 B.C.).

The most ancient and primitive form of the "Firealtar for the sacrifices to achieve special objects" was the Syenacit (or "the altar of the form of the falcon").

Fig. 1.
Its body $(A B C D)$ consists of four squares of one square purusa each; each of its wings ($E F G H, E^{\prime} \eta^{\prime} C^{\prime} H^{\prime}$) is a rectangle of one purusa by one purusa and a prâdeśa ($=1 / \mathrm{I} 0$ of a purusa). This Fire-altar was enlarged in
${ }^{1} \mathrm{SBr}, \mathrm{X} \cdot \mathbf{2 . 3 . 7 f f}$.
two ways: first, in which all the constituent parts were affected in the same proportion; second, in which the breadth of the portions $L F G M$ and $L^{\prime} F^{\prime} G^{\prime} M^{\prime}$ of the wings were left unaffected. If x be the enlarged unit for enlargement in the first case we shall have to solve the quadratic equation

$$
2 x \times 2 x+2\left\{x \times\left(x+\frac{x}{5}\right)\right\}+x \times\left(x+\frac{x}{10}\right)=7 \frac{1}{2}+m,
$$

where m denotes the increment of the Fire-altar in size.
Therefore

$$
x^{2}=1+\frac{2 m}{15} .
$$

In particular, when $m=94$, we shall have

$$
x^{2}=13 \frac{8}{15}=14 \text { (approximately) }
$$

which occurs in the Satapatha Brâbmana.
In the second case of enlargement the equation for x will be

$$
\begin{aligned}
& 2 x \times 2 x+2\left\{x \times\left(x+\frac{1}{5}\right)\right\}+x \times\left(x+\frac{1}{10}\right)=7 \frac{1}{2}+m, \\
& \text { or } \quad 7 x^{2}+\frac{1}{2} x=7 \frac{1}{2}+m,
\end{aligned}
$$

which is a complete quadratic equation.
The problem of altar construction gave rise also to certain indeterminate equations of the second degree such as,
(1)

$$
x^{2}+y^{2}=z^{2}
$$

$$
\begin{equation*}
x^{2}+a^{2}=z^{2} \tag{2}
\end{equation*}
$$

and simultaneous indeterminate equations of the type

$$
\begin{array}{r}
a x+b y+c z+d w=p, \\
x+y+z+w=q .
\end{array}
$$

Further particulars about these equations will be given later on.

2. TECHNICAL TERMS

Coefficient. In Hindu algebra there is no systematic use of any special term for the coefficient. Ordinarily, the power of the unknown is mentioned when the reference is to the coefficient of that power. In explanation of similar use by Brahmagupta his commentator Pṛthûdakasvâmî writes "the number (ainka) which is the coefficient of the square of the unknown is called the 'square' and the number which forms the coefficient of the (simple) unknown is called 'the unknown quantity.' '1 However, occasional use of a technical term is also met with. Brahmagupta once calls the coefficient samkbya ${ }^{2}$ (number) and on several other occasions gunaka, or gunakâra (multiplier). ${ }^{3}$ Pṛthûdakasvâmì (860) calls it anika ${ }^{4}$ (number) or prakerti (multiplier). These terms reappear in the works of Srîpati (1039) ${ }^{5}$ and Bhâskara II (1150). ${ }^{6}$ The former also used rûpa for the same purpose. ${ }^{7}$

Unknown Quantity. The unknown quantity was called in the Sthânânga-sûtra ${ }^{8}$ (before 300 B.C.) yâvat-tâvat (as many as or so much as, meaning an arbitrary quantity). In the so-called Bakhshâlî treatise, it was called yadrcchâ, vânchâ or kâmika (any desired quantity). ${ }^{9}$ This term was originally connected with the Rule of False Position. ${ }^{10}$ Aryabhata I (499)
${ }^{1}$ BrSpSi, xviii. 44 (Com).
${ }^{2}$ BrSpSi, xviii. 63.
${ }^{3}$ BrSpSi, xviii. 64, 69-71.
${ }^{5}$ SiSe, xiv. 33-5.
${ }^{7}$ SiSe, xiv. 19.
${ }^{8}$ Sitra 747; cf. Bibhutibhusan Datta, "The Jaina School of Mathematics," BCMS, XXI, 1929, pp. 115-145; particularly pp. 122-3.
${ }^{9} B M s$, Folios 22, verso; 23, recto \& verso.
${ }^{10}$ Bibhutibhusan Datta, "The Bakshshâlî Mathematics," BCMS, XXI, pp. 1-60; particularly pp. 26-8, 66.
calls the unknown quantity gulika (shot). This term strongly leads one to suspect that the shot was probably then used to represent the unknown. From the beginning of the seventh century the Hindu algebraists are found to have more commonly employed the term aryakta (unknown). ${ }^{1}$

Power. The oldest Hindu terms for the power of a quantity, known or unknown, are found in the Uttarâ-dbyayana-sûtra (c. 300 B.C. or earlier). ${ }^{2}$ In it the second power is called varga (square), the third power ghana (cube), the fourth power varga-varga (square-square), the sixth power ghana-varga (cube-square), and the twelfth power gbana-rarga-varga (cube-square-square), using the multiplicative instead of the additive principle. In this work we do not find any method for indicating odd powers higher than the third. In later times, the fifth power is called varga-ghana-gbata (product of cube and square, ghata=product), the seventh power varga-varga-ghana-ghata (product of square-square and cube) and so on. Brahmagupta's system of expressing powers higher than the fourth is scientifically better. He calls the fifth power pañca-gata (literally, raised to the fifth), the sixth power sad-gata (raised to the sixth); similarly the term for any power is coined by adding the suffix gata to the name of the number indicating that power. ${ }^{3}$ Bhâskara II has sometimes followed it consistently for the powers one and upwards. ${ }^{4}$ In the Anuyogudvâra-sûtra ${ }^{5}$, a work written before the commencement of the Christian Era, we find certain interesting terms for higher powers, integral as well as fractional, particularly successive squares (rarga) and square-roots (varga-minla). According to it the term prathama-rarga

[^91](first square) of a quantity, say a, means a^{2}; dvitiyavarga (second square) $=\left(a^{2}\right)^{2}=a^{4} ;$ trtîya-varga (third square) $=\left(\left(a^{2}\right)^{2}\right)^{2}=a^{8}$; and so on. In general,
nth varga of $a=a^{2 \times 2 \times 2 \times} \ldots$ to n terms $=a^{2^{n}}$.
Similarly, prathama-varga-mûla (first square-root) means $\sqrt{ } a$; duitîya-varga-mûla (second square-root) $=\sqrt{ }(\sqrt{ } \bar{a})$ $=a^{1 / 4}$; and, in general,
nth varga-mûla of $a=a^{1 / 2^{n}}$.
Again we find the term trtiya-varga-mala-ghana (cube of the third square-root) for $\left(a^{1 / 2^{3}}\right)^{3}=a^{3 / 8}$.

The term varga for "square" has an interesting origin in a purely concrete concept. The Sanskrit word varga literally means "rows," or "troops" (of similar things). Its application as a mathematical term originated in the graphical representation of a square, which was divided into as many varga or troops of small squares, as the side contained units of some measure. ${ }^{1}$

Equation. The equation is called by Brahmagupta (628) sama-karana ${ }^{2}$ or sami-karana ${ }^{3}$ (making equal) or more simply sama ${ }^{4}$ (equation). Pṛthûdakasvâmî (860) employs also the term sâmya (equality or equation); and Srîpati (1039) sadrsî-karaṇa (making similar). Nârâyaṇa (1350) uses the terms samí-karana, sâmya and samatva (equality). ${ }^{7}$ An equation has always two paksa (side). This term occurs in the works of
${ }^{1}$ G. Thibaut, Sulba-sütras, p. 48. Compare also Bibhutibhusan Datta, "On the origin of the Hindu terms for root," Amer. Math. Mon., XXXVIII, 1931, pp. 371-6.
${ }^{2} \mathrm{BrSpSi}$, xviii. 63.
${ }^{3} B r S p S i$, xviii, subheading for the section on equations.
4 BrSpSi, xviii. 43.
${ }^{5} \mathrm{BrSpSi}$, xii. 66 (Com).
${ }^{6}$ SiSe, xiv. i.
${ }^{7} \mathrm{NBi}, \mathrm{II}, \mathrm{R} .2-3$.

Srîdhara (c. 750), Padmanâbha ${ }^{1}$ and others. ${ }^{2}$
Absolute Term. In the Bakhshâlî treatise ${ }^{3}$ the absolute term is called drsya (visible). In later Hindu algebras it has been replaced by a closely allied term rup a^{4} (appearance), though it continued to be employed in treatises on arithmetic. ${ }^{5}$ Thus the true significance of the Hindu name for the absolute term in an algebraic equation is obvious. It represents the visible or known portion of the equation while its other part is practically invisible or unknown.

3. SYMBOLS

Symbols of Operation. There are no special symbols for the fundamental operations in the Bakhshâlî work. Any particular operation intended is ordinarily indicated by placing the tachygraphic abbreviation, the initial syllable of a Sanskrit word of that import, after, occasionally before, the quantity affected. Thus the operation of addition is indicated by $y u$ (an abbreviation from yuta, meaning added), subtraction by + which is very probably from kesa (abbreviated from Essaya, diminished), multiplication by gu (from guna or gunita, multiplied) and division by bbâ (from bbaga or bbájita, divided). Of these again, the most systematically employed abbreviation is that for the operation of subtraction and next comes that of division. In the case of the other two operations the indicatory words

[^92]are often written in full, or altogether omitted. In the latter case, the particular operations intended to be carried out are understood from the context. We take the following instances from the Bakhshâlì Manuscript :

means
\[

$$
\begin{aligned}
& x\left(\mathrm{r}+\frac{3}{2}\right)+\left\{2 x\left(\mathrm{x}+\frac{3}{2}\right)-\frac{5 x}{2}\right\}+\left\{3 x\left(1+\frac{3}{2}\right)-\frac{7 x}{2}\right\} \\
& +\left\{4 x\left(1+\frac{3}{2}\right)-\begin{array}{c}
9 x \\
2
\end{array}\right\} . \\
& \text { (iv) } \left.{ }^{4}\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & b b a ̂ \\
1+1 & 1 & 1 \\
2 & 3 & 4+6
\end{array}\right| \begin{array}{l}
36 \\
\hline
\end{array} \right\rvert\, \text { means } \frac{36}{\left(1-\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(\mathrm{I}+\frac{1}{6}\right)} . \\
& (\mathrm{v})^{5} \left\lvert\, \begin{array}{c||c|c||}
40 & b b a \hat{a} & 160 \\
1 & 13 & 1 \\
& 1 & \text { means } \frac{160}{40} \times 13 \frac{1}{2} . \\
&
\end{array}\right.
\end{aligned}
$$
\]

In later Hindu mathematics the symbol for subtraction is a dot, occasionally a small circle, which is placed above the quantity, so that $\dot{7}$ or 7 means -7 ; other operations are represented by simple juxtaposition.
${ }^{1}$ Folio 59 , recto. $\quad{ }^{2}$ Folio 47, recto.
${ }^{2}$ Folio 2s, verso. The beginning and end of this illustration are mutilated but the restoration is certain.
${ }^{4}$ Folio 13, verso.
${ }^{5}$ Folio 42 , recto.

Bhàskara ll (inso) says, "Thosc (known and unknown numbers) which are negative should be written with a dot (bindu) over them."' A similar remark occurs in the algebra of Nârâyana (1350). ${ }^{2}$ Their silence about symbols of other fundamental operations proves their non-existence.

Origin of Minus Sign. The origin of \cdot or ${ }^{\circ}$ as the minus sign seems to be connected with the Hindu symbol for the zero, o. It is found tc have been used as the sign of emptincss or omission in the early Bakhshâlî treatise as well as in the later treatises on arithmetic (ride infra). ${ }^{3}$. It is placed over the number affected in order to distinguish it from its use in a purely numerical significance when it is placed beside the number. The origin of the Bakhshâlî minus sign $(+)$ has been the subject of much conjecture. Thibaut suggested its possible connection with the supposed Diophantine negative sign A (reversed ψ, tachygraphic abbreviation for $\lambda \varepsilon i \psi i s$ meaning wanting). Kaye believes it. The Greck sign for minus, ho wever, is not k, but \uparrow. It is even doubtful if Diophantus did actually use it; or whether it is as old as the Bakhshâlî cross. ${ }^{4}$ Hoernle ${ }^{5}$ presumed the Bakhshâlî minus sign to be the abbreviation ka of the Sanskrit word kanita, or $n u$ (or $n \hat{u}$) of nyuna, both of which mean diminished and both of which abbreviations in the Brâhmî characters would be denoted by a cross. Hoernle was right, thinks Datta, ${ }^{6}$ so far as he sought for the origin of + in a tachygraphic abbreviation of some Sanskrit word. But as neither the word kanita nor nyuna is found to have been used in the Bakhshâlî work in connection with the subtractive

${ }^{1}$ BBi, p. 2.
${ }^{2} \mathrm{NBi}$, I, R. 7.
${ }^{3}$ р. 16.
${ }^{5}$ I A, XVII, p. 34.
${ }^{6}$ Datta, Bakh. Math., (BCMS, XXI), pp. 17-8.

operation, Datta finally rejects the theory of Hoernle and believes it to be the abbreviation ksa, from ksaya (decrease) which occurs several times, indeed, more than any other word indicative of subtraction. The sign for ksa, whether in the Brâhmî characters or in Bakhshâlî characters, differs from the simple cross (+) only in having a little flourish at the lower end of the vertical line. The flourish seems to have been dropped subsequently for convenient simplification.

Symbols for Powers and Roots. The symbols for powers and roots are abbreviations of Sanskrit words of those imports and are placed after the number affected. Thus the square is represented by $v a$ (from varga), cube by gha (from ghana), the fourth power by $v a-v a$ (from varga-varga), the fifth power by va-gha-ghâ (from varga-ghana-ghâta), the sixth power by gha-va (from ghana-varga), the seventh power by va-va-gha-ghâ (from varga-varga-gbana-ghata) and so on. The product of two or more unknown quantities is indicated by writing $b b_{i} \hat{\imath}$ (from bbâvita, product) after the unknowns with or without interposed dots ; e.g., yâva-kâgha-bhâ or yâvakâgbabhâ means $(y \hat{a})^{2}(k \hat{a})^{3}$. In the Bakhshâlî treatise the squareroot of a quantity is indicated by writing after it $m \hat{u}$, which is an abbreviation for mula (root). For instance, ${ }^{\mathbf{1}}$
and $\quad\left|\begin{array}{rrrrr}11 & y u & 5 & m \hat{u} & 4 \\ 1 & & 1 & & 1\end{array}\right|$ means $\sqrt{\sqrt{1 I+5}}=4$

In other treatises the symbol of the square-root is ka (from karani, root or surd) which is usually placed before the quantity affected. For example, ${ }^{2} k a 9 \mathrm{ka} 45 \mathrm{O}$

[^93]$k a 75 k a \leqslant 4$ means $\sqrt{9}+\sqrt{450}+\sqrt{75}+\sqrt{54}$.
Symbols for Unknowns. In the Bakhshâlî treatise there is no specific symbol for the unknown. Consequently its place in an equation is left vacant and to indicate it vividly the sign of emptiness is put there. For instance, ${ }^{1}$

The use of the zero sign to mark a vacant place is found in the arithmetical treatises of later times when the Hindus had a well-developed system of symbols for the unknowns. Thus we find in the Trisatik \hat{a}^{2} of Srîdhara (c.750) the following statement of an arithmetical progression whose first term ($\hat{a} d i \underline{b}$) is 20 , number of terms (gachab) 7, sum (ganitam) 245 and whose common difference (uttarab) is unknown:

This use of the zero sign in arithmetic was considered necessary as algebraic symbols could not be used there. Lack of an efficient symbolism is bound to give rise to a certain amount of ambiguity in the representation of an algebraic equation especially when it contains more than onc known. For instance, in ${ }^{3}$

$$
\left[\left.\begin{array}{lllll|lllll}
0 & 5 & y u & m \hat{u} & 0 & \text { sa } & 0 & 7+ & m u & 0 \\
1 & 1 & & 1 & 1 & 1 & & 1
\end{array} \right\rvert\,\right.
$$

which means

$$
\sqrt{x+5}=s \text { and } \sqrt{x-7}=t
$$

different unknowns have to be assumed at different vacant places.
${ }^{1} \mathrm{BM}$ s, Folio 22, verso.
${ }^{2}$ Tris, p. 29.

To avoid such ambiguity, in one instance which contains as many as five unknowns, the abbreviations of ordinal numbers, such as pra (from prathama, first), $d v i$ (from drititya, second), tr (from trtîya, third), ca (from caturtha, fourth) and pam (from pañcama, fifth), have been used to represent the unknowns; e.g., ${ }^{1}$

9 pra	$7 d v i$	10 tr	8 ca	11 pam	yutam jâtam pratyaika(kramena)
7 dvi	10 tr	8	11 pani	9 pra	${ }_{16} 617\|18\| 19 \mid 20$

which means
$x_{1}(=9)+x_{2}(-7)=16 ; x_{2}(=7)+x_{3}(=10)=17 ;$
$x_{3}(=10)+x_{4}(=8)=18 ; x_{4}(=8)+x_{5}(=11)=19 ;$
$x_{5}(=11)+x_{1}(=9)=20$.
Aryabhaṭa I (499) very probably used coloured shots to represent unknowns. Brahmagupta (628) mentions varna as the symbols of unknowns. ${ }^{2}$ As he has not attempted in any way to explain this method of symbolism, it appears that the method was already very familiar. Now, the Sanskrit word varna means "colour" as well as "letters of the alphabet," so that, in later times, the unknowns are generally represented by letters of the alphabet or by means of various colours such as kâlaka (black), nilaka (blue), etc. Again in the latter case, for simplification, only initial letters of the names are generally written. Thus Bhâskara 11 (IISO) observes, "Here (in algebra) the initial letters of (the names of) knowns and unknowns should be written for implying them. ${ }^{\prime 3}$ It has been stated before that at one time the unknown quantity was called yârat-târat (as many

[^94]as, so much as). In later times this name, or its abbreviation $y \hat{a}$, is used for the unknown. According to the celebrated Sanskrit lexicographer Amarasimina (c. 400 A.D.), yâvat-tâvat denotes measure or quantity (mâna). He had probably in view the use of that term in Hindu algebra to denote "the measure of an unknown" (avyakta mana). In the case of more unknowns, it is usual to denote the first by yâvat-tâvat and the remaining ones by alphabets or colours. Pṛthûdakasvâmî (860) says:
"In an example in which there are two or more unknown quantities, colours such as yâvat-tâvat, etc., should be assumed for their values." ${ }^{1}$
He has, indeed, used the colours kâlaka (black), nilaka (blue), pitaka (yellow) and baritaka (green).

Stîpati (1039) writes;
"Yâvat-tâvat (so much as) and colours such as kâlaka (black), nilaka (blue), etc., should be assumed for the unknowns." ${ }^{2}$

Bhâskara II (II 1 O) says:
"Yâvat-tâvat (so much as), kâlaka (black), nîlaka (blue), pita (yellow), lobita (red) and other colours have been taken by the venerable professors as notations for the measures of the unknowns, for the purpose of calculating with them." ${ }^{3}$
"In those examples where occur two, three or more unknown quantities, colours such as yâvat-tâvat, etc., should be assumed for them. As assumed by the previous teachers, they are: yâvat-tâvat (so much as), kâlaka (black), nìlaka (blue), pìtaka (yellow), lobitaka (red), barîtaka (green), sivetaka (white), citraka

[^95](variegated), kapilaka (tawny), pinigalaka (reddish-brown), dbûmraka (smoke-coloured), pätalaka (pink), savalaka (spotted), śyâmalaka (blackish), mecaka (dark blue), etc. Or the letters of alphabets beginning with ka, should be taken as the measures of the unknowns in order to prevent confusion." ${ }^{1}$

The same list with a few additional names of colours appears in the algebra of Nârâyaṇa. ${ }^{2}$ This writer has further added,
"Or the letters of alphabets (varna) surch as $k a$, etc., or the series of flavours such as madbura (sweet), etc., or the names of dissimilar things with unlike initial letters, are assumed (to represent the unknowns)."

Bhâskara II occasionally employs also the tachygraphic abbreviation of the names of the unknown quantities themselves in order to represent them in an equation. For example, ${ }^{3}$ in the following

$\bigcirc m a \hat{a}$	1 nî	1 mu	1 la
1 mâ	$7 n \hat{i}$	1 mu	12
1 ma	$1 \hat{i}^{\text {a }}$	97 mи	1
1 ma	$1 \mathrm{n} \hat{\imath}$	1 mu	

$m a ̂$ stands for mânikya (ruby), nî for (indra-) mìla (sapphire), $m u$ for muktâphala (pearl) and va for (sad)vajra (diamond). He has observed in this connection thus:
"(The maxim), 'colours such as yâvat-tâvat, etc., should be assumed for the unknowns,' gives (only) one method of implying (them). Here, denoting them
${ }^{1} \mathrm{BBi}, \mathrm{pp} .76 \mathrm{f}$.
${ }^{2} \mathrm{NBi}, \mathrm{I}, \mathrm{R} . \mathrm{r}^{-8}$. These verses have been quoted by Muralidhara Jha in his edicion of the Bîjaganita of Bhâskara II (p. 7, footnote s).
${ }^{3} B B i$, p. 50 ; compare also p. 28.
by names, the equations may be formed by the intelligent (calculator)."

It should be noted that yâvat-tâvat is not a varna (colour or letter of alphabet). So in its inclusion in the lists of varna, as found enumerated in the Hindu algebras-though apparently anomalous-we find the persistence of an ancient symbol which was in vogue long before the introduction of colours to represent unknowns. To avoid the anomaly Muralidhara Jha ${ }^{1}$ has suggested the emendation yâvakastâvat (yâraka and also; yâvaka $=$ red) in the place of yâvat-tâ'at, as found in the available manuscripts. He thinks that being misled by the old practice, the expression yâvakastâvat was confused by copyists with yâvat-tâvat. In support of this theory it may be pointed out that yâvaka is found to have been sometimes used by Prthû lakasvâmî to represent the unknown. ${ }^{2}$ Bhâskara II has once used simply yâvat. ${ }^{3}$ Nârầyana used it on several occasions. The origin of the use of names of colours to represent unknowns in algebra is very probably connected with the ancient use of differently coloured shots for the purpose.

4. LAWS OF SIGNS

Addition. Brahmagupta (628) says:
"The sum of two positive numbers is positive, of two negative numbers is negative; of a positive and a negative number is their difference." 4 Mahâvîra (850):
"In the addition of a positive and a negative number

[^96](the result) is (their) difference. The addition of two positive or two negative numbers (gives) as much positive or negative numbers respectively." ${ }^{1}$
Srîpati (ro39):
"In the addition of two negative or two positive numbers the result is their sum; the addition of a positive and a negative number is their difference. ${ }^{\circ}{ }^{2}$
"The sum of two positive (numbers) is positive; of two negative (numbers) is negative; of a positive and a negative is their difference and the sign of the difference is that of the greater; of two equal positive and negative (numbers) is zero." ${ }_{3}$
Bhâskara II (1150):
"In the addition of two negative or two positive numbers the result is their sum; the sum of a positive and a negative number is their difference." ${ }^{4}$
Nârâyaṇa (1350):
"In the addition of two positive or two negative numbers the result is their sum; but of a positive and a negative number, the result is their difference; subtracting the smaller number from the greater, the remainder becomes of the same kind as the latter." ${ }^{5}$

Subtraction. Brahmagupta writes:
"From the greater should be subtracted the smaller; (the final result is) positive, if positive from positive, and negative, if negative from negative. If, however, the greater is subtracted from the less, that difference is reversed (in sign), negative becomes positive and positive becomes negative. When positive is to be subtracted from negative or negative from positive,

${ }^{1}$ GSS, i. so-1.	2 SiSe, xiv. 3.
${ }^{3}$ SiSe, iii. 28.	
${ }^{5} \backslash B B, I$, R. 8.	$B B i$, p. 2.

then they must be added together." 1
Mahâvîra:
" Λ positive number to be subtracted from another number becomes negative and a negative number to be subtracted becomes positive.'"
Sripati:
"A positive (number) to be subtracted becomes negative, a negative becomes positive; (the subsequent operation is) addition as explained before." ${ }^{3}$ Bhâskara II:
"A positive (number) while being subtracted becomes negative and a negative becomes positive; then addition as explained beforc." 4
Nârâyaṇa:
"Of the subtrahend affirmation becomes negation and negation affirmation; then addition as described before." 5

Multiplication. Brahmagupta says:
"'The product of a positive and a negative (number) is negative; of two negatives is positive; positive multiplied by positive is positive." ${ }^{8}$

Mahâvîra:

"In the multiplication of two negative or two positive numbers the result is positive; but it is negative in the case of (the multiplication of) a positive and a negative number." ${ }^{7}$
Sripati:
"On multiplying two negative or two positive

rrspsi, xviii. 31-2.	${ }^{2}$ GSS, i. si.
${ }^{3}$ SiSe, xiv. 3.	${ }^{4}$ BBi, p. 3.
${ }^{3}$ NBi, I, R. 9.	- BrSpli, xviii. 33.

numbers (the product is) positive; in the multiplication of positive and negative (the result is) negative." ${ }^{1}$
Bhâskara II:
"The product of two positive or two negative (numbers) is positive; the product of positive and negative is negative." ${ }^{2}$
The same rule is stated by Nârâyaṇa. ${ }^{3}$
Division. Brahmagupta states:
"Positive divided by positive or negative divided by negative becomes positive. But positive divided by negative is negative and negative divided by positive remains negative." ${ }^{4}$
Mahâvîra:
"In the division of two negative or two positive numbers the quotient is positive, but it is negative in the case of (the division of) positive and negative." ${ }^{5}$ Srîpati:
"On dividing negative by negative or positive by positive, (the quotient) will be positive, (but it will be) otherwise in the case of positive and negative." 6

Bhâskara II simply observes: "In the case of division also, such are the rules (i.e., as in the case of multiplication)." ${ }^{7}$ Similarly Nârâyaṇa remarks, "What have been implied in the case of multiplication of positive and negative numbers will hold also in the case of division." ${ }^{8}$

Evolution and Involution. Brahmagupta says:
"The square of a positive or a negative number is

$$
\begin{aligned}
& { }^{1} \text { SiSe, xiv. } 4 . \\
& { }^{2} \mathrm{NBi} \text {, I, R. } 9 . \\
& { }^{5} \mathrm{GSS} \text {, i. so. } \\
& { }^{7} \mathrm{BBi} \text {, p. 3. }
\end{aligned}
$$

${ }^{2} B B i$, p. 3.
4BrSpSi, xviii. 34.
${ }^{6}$ SiSe, xiv. 4 .
${ }^{8} \mathrm{NBi}$ I, R. ${ }^{10}$.
positive. . . . The (sign of the) root is the same as was that from which the square was derived." 1

As regards the latter portion of this rule the commentator Prthûdakasvâmî (860) remarks, "The squareroot should be taken either negative or positive, as will be most suitable for subsequent operations to be carried on."

Mahâvîra:
"The square of a positive or of a negative number is positive: their square-roots are positive and negative respectively. Since a negative number by its own nature is not a square, it has no square-root." ${ }^{2}$
Srîpati:
"The square of a positive and a negative number is positive. It will become what it was in the case of the square-root. A negative number by itself is nonsquare, so its square-root is unreal; so the rule (for the square-root) should be applied in the case of a positive number."3
Bhâskara II:
"The square of a positive and a negative number is positive; the square-root of a positive number is positive as well as negative. There is no square-root of a negative number, because it is non-square." 4
Nârâyaṇa:
"The square of a positive and a negative number is positive. The square-root of a positive number will be positive and also negative. It has been proved that a negative number, being non-square, has no squareroot." ${ }^{5}$

${ }^{1} \mathrm{BrSpSS}$, xviii. 35.	${ }^{2}$ GSS, i. 52.
${ }^{3}$ SiSe, xiv. 5.	${ }^{\text {- }} \mathrm{BBi}, \mathrm{p} .4$.
${ }^{5} \mathrm{NBi}, \mathrm{I}, \mathrm{R} .10$.	

5. FUNDAMENTAL OPERATIONS

Number of Operations. The number of fundamental operations in algebra is recognised by all Hindu algebraists to be six, viz., addition, subtraction, multiplication, division, squaring and the extraction of the square-root. So the cubing and the extraction of the cube-root which are included amongst the fundamental operations of arithmetic, are excluded from algebra. But the formula

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}, \\
& \text { or } \quad(a+b)^{3}=a^{3}+3 a b(a+b)+b^{3},
\end{aligned}
$$

is found to have been given, as stated before, in almost all the Hindu treatises on arithmetic beginning with that of Brahmagupta (628). By applying it repeatedly, Mahâvîra indicates how to find the cube of an algebraic expression containing more than two terms; thus

$$
\begin{aligned}
& (a+b+c+d+\ldots)^{3} \\
& =a^{3}+3 a^{2}(b+c+d+\ldots)+3 a(b+c+d+\ldots)^{2} \\
& \quad+(b+c+d+\ldots)^{3}, \\
& =a^{3} \\
& \quad+3 a^{2}(b+c+d+\ldots)+3 a(b+c+d+\ldots)^{2} \\
& \quad+b^{3}+3 b^{2}(c+d+\ldots)+3 b(c+d+\ldots .)^{2} \\
& \quad \\
& \quad+(c+d+\ldots)^{3} ;
\end{aligned}
$$

and so on.
Addition and Subtraction. Brahmagupta says: "Of the unknowns, their squares, cubes, fourth powers, fifth powers, sixth powers, etc., addition and subtraction are (performed) of the like; of the unlike (they mean simply their.) statement severally." ${ }^{1}$ Bhâskara II:
"Addition and subtraction are performed of those ${ }^{1}$ BrSpSi, xviii. 41.
of the same species (jâti) amongst unknowns; of different species they mean their separate statement." ${ }^{1}$ Nârâyaṇa:
"Of the colours or letters of alphabets (representing the unknowns) addition should be made of those which are of the same species; and similarly subtraction. In the addition and subtraction of those of different species the result will be their putting down severally." ${ }^{2}$

Multiplication. Brahmagupta says:
"The product of two like unknowns is a square; the product of three or more like unknowns is a power of that designation. The multiplication of unknowns of unlike species is the same as the mutual product of symbols; it is called bbâvita (product or factum)." ${ }^{3}$
Bhâskara II writes:
"A known quantity multiplied by an unknown becomes unknown; the product of two, three or more unknowns of like species is its square, cube, etc.; and the product of those of unlike species is their bbâvita. Fractions, etc., are (considered) as in the case of knowns; and the rest (i.e., remaining operations) will be the same as explained in arithmetic. The multiplicand is put down separately in as many places as there are terms in the multiplier and is then severally multiplied by those terms; (the products are then) added together according to the methods indicated before. Here, in the squaring and multiplication of unknowns, should be followed the method of multiplication by component parts, as explained in arithmetic." ${ }^{\prime 4}$

The same rules are given by Nârâyana. ${ }^{5}$ The fol-

lowing illustration amongst others, is given by Bhâskara II:
"Tell at once, O learned, (the result) of multiplying five yâvat-tâvat minus one known quantity by three yâvat-tâvat plus two knowns.
"Statement: Multiplicand $y \hat{a}{ }^{\prime} r \hat{u} \mathrm{i}$; multiplier $y \hat{a} 3$ râ 2; on multiplication the product becomes yâ va is yâ 7 rû $\dot{2}$." ${ }^{1}$

The detailed working of this illustration is shown by the commentator Krṣna (c. 1580) thus:

Division. Bhâskara II states:
"By whatever unknowns and knowns, the divisor is multiplied (severally) and subtracted from the dividend successively so that no residue is left, they constitute the quotients at the successive stages." ${ }^{2}$

Nârâyana describes the method of division in nearly the same terms. ${ }^{3}$ As an example of division, Bhâskara II proposes to divide $18 x^{2}+24 x y-12 x z$ $-12 x+8 y^{2}-8 y z-8 y+2 z^{2}+4 z+2$ by $-3 x$ $-2 y+z+1$. He simply states the quotient without indicating the different steps in the process. Krṣna supplies the details of the process which are substantially the same as followed at present.

Squaring. Only one rule for the squaring of an algebraic expression is found in treatises on algebra. It is the same as that stated before in the treatises on arithmetic, niz.,

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b ;
$$

${ }^{1} B B i$, p. 8.
${ }^{2} B B i$, p. 9.
${ }^{3} \mathrm{NBi}, \mathrm{I}$, R. 23.
or, in its general form,
$(a+b+c+d+\ldots)^{2}=a^{2}+b^{2}+c^{2}+d^{2}+\ldots+2 \sum a b$.
Square-root. For finding the square-root of an algebraic expression Bhâskara Il gives the following rule:
"Find the square-root of the unknown quantities which are squares; then deduct from the remaining terms twice the products of those roots two and two; if there be known terms, proceed with the remainder in the same way after taking the square-root of the knowns." ${ }^{1}$
Nârâyaṇa says:
"First find the root of the square terms (of the given expression); then the product of two and two of them (roots) multiplied by two should be subtracted from the remaining terms; (the result thus obtained) is said to be the square-root here (in algebra)." ${ }^{2}$
Jñânarâja writes:
"Take the square-root of those (terms) which are capable of yielding roots; the product of two and two of these (roots) multiplied by two should be deducted from the remaining terms of that square (expression); the result will be the (required) root, so say the experts in this (science)."

6. EQUATIONS

Forming Equations. Before proceeding to the actual solution of an equation of any type, certain preliminary operations have necessarily to be carried out in order to prepare it for solution. Still more preliminary work is that of forming the equation (samikaraṇa, sami-kâra or sami-kriyâ; from sama, equal and

[^97]${ }^{2} N B i, I, R .24$.
$k r$, to do; hence literally, making equal) from the conditions of the proposed problem. Such preliminary work may require the application of one or more fundamental operations of algebra or arithmetic. The operations preliminary to the formation of a simple equation have been described by Pṛthûdakasvâmî (860) thus:
"In this case, in the problem proposed by the questioner, yâlat-tâvat is put for the value of the unknown quantity; then performing multiplication, division, etc., as required in the problem the two sides shall be catefully made equal. The equation being formed in this way, then the rule (for its solution) follows."
Bhâskara II's descriptions are fuller: He says :
"Let yâvat-tâlat be assumed as the value of the unknown quantity. Then doing precisely as has been specifically told-by subtracting, adding, multiplying or dividing ${ }^{2}$ - the two equal sides (of an equation) should be very carefully built." ${ }^{3}$
Nârâyaṇa says:
"Of these (four classes of equations), the linear equation in one unknown (will be treated) first. In a problem (proposed), the value of the quantity which is unknown is assumed to be yavat, one, two or any multiple of it, with or without an absolute term, which again may be additive or subtractive. Then on the value thus assumed optionally should be performed, in

${ }^{1}$ BrSpSi, xviii. 43 (Com).

${ }^{2}$ In his gloss Bhâskara II explains: "Every operation, such as multiplication, division, rule of three, rule of five terms, summation of series, or treatment of plane figures, etc., according to the statement of the problem should be performed......" See BBi, p. 44 .
${ }^{3}$ BBi, p. 43.
accordance with the statement of the problem, the operations such as addition, subtraction, multiplication, division, rule of three, double rule of three, summation, plane figures, excavations, etc. And thus the two sides must be made equal. If the equality of the two sides is not explicitly stated, then one side should be multiplied, divided, increased or decreased by one's own intelligence (according to the problem) and thus the two sides must be made equal." 1

Plan of Writing Equations. After an equation is formed, writing it down for further operations is technically called nyâsu (putting down, statement) of the equation. In the Bakhshâlî treatise the two sides of an equation are put down one after the other in the same line without any sign of equality being interposed. ${ }^{2}$ Thus the equations

$$
\sqrt{x+5}-5, \sqrt{x-7}=1
$$

appear as^{3}

$$
\begin{array}{|ccccc|cccccc|}
0 & 5 & y u & m \hat{u} & 0 & s a & 0 & 7+ & m \hat{u} & 0 \\
\mathrm{I} & \mathrm{I} & & & \mathrm{I} & & \mathrm{I} & \mathrm{I} & & & \mathrm{I} \\
\hline
\end{array}
$$

The equation

$$
x+2 x+3 \times 3 x+12 \times 4 x=300
$$

is stated as ${ }^{4}$

0	2	1	3	3	12	4	drijus	300.
1	1	1	1	1	1	1		

This plan of writing an equation was subsequently abandoned by the Hindus for a new one in which the two sides are written one below the other without any
${ }^{1}$ NBi, II, R. 3 (Gloss).
${ }^{2}$ Datta, Bakh. Math., (BCMS, XXI), p. 28.
${ }^{8}$ Folio 59, recto. $\quad{ }^{4}$ Folio 23, verso.
sign of equality. Further, in this new plan, the terms of similar denominations are usually written one below the other and even the terms of absent denominations on either side are expressly indicated by putting zeros as their coefficients. Reference to the new plan is found as early as the algebra of Brahmagupta (628). ${ }^{1}$ Prthûdakasvâmî (860) represented the equation ${ }^{2}$

$$
10 x-8=x^{2}+1
$$

as follows:

$$
\begin{array}{cccccc}
y^{\prime} a \hat{a} v a & \circ & y^{\prime} a \hat{a} & \text { 10 } & r \hat{u} & 8 \\
y^{\prime} a \hat{r^{\prime}} a & 1 & y^{\prime} \hat{a} & \circ & r \hat{u} & 1
\end{array}
$$

which means, writing x for $y \hat{a}$

$$
\begin{gathered}
x^{2} 0+x .10-8 \\
x^{2}+x .0+1 \\
\text { or } \quad 0 x^{2}+10 x-8=x^{2}+0 x+1
\end{gathered}
$$

If there be several unknowns, those of the same kind are written in the same column with zero coefficients, if necessary. Thus the equation

$$
197 x-1644 y-z=6302
$$

is represented by Pṛthûdakasvâmî thus: ${ }^{3}$

$y \hat{a}$	197	$k \hat{a}$	$164 \dot{4}$	$n \hat{i}$	$r \hat{u}$	\circ
$y \hat{a}$	\circ	$k \hat{a}$	\circ	$n \hat{i}$	\circ	$r \hat{u}$
6302						

which means, putting y for $k \hat{a}$ and z for $n \hat{i}$,

$$
197 x-1644 y-z+o=o x+o y+o z+6302
$$

The following two instances are from the Bijaganita of Bhâskara II (11 50): ${ }^{4}$

$$
\begin{array}{llll}
y \hat{a} 5 & k \hat{a} 8 & n \hat{i} 7 & r \hat{u} 90 \tag{I}\\
y \hat{a} 7 & k \hat{a} 9 & n \hat{i} 6 & r \hat{u} 62
\end{array}
$$

${ }^{1} B r S p S i$, xvii. 43 (vide infra, p. 33). Compare also $B B i$, p. 127.
${ }^{2}$ BrSpSi, xviii. 49 (Com). ${ }^{3} \mathrm{BrSpSi}$, xviii. 54 (Com).
${ }^{4}$ BBi, pp. 78, 10 I.
means (writing x for $y \hat{a}, y$ for $k \hat{a}$ and z for $n \hat{i}$)

$$
5 x+8 y+7 z+90=7 x+9 y+6 z+62 .
$$

(2) yâgha 8 yầ'a 4 kâ va yâ. bbâ 10 yâ glaa 4 yâ va \circ kâ va yâ. bbâ 12
means $\quad 8 x^{3}+4 x^{2}+10 y^{2} x=4 x^{3}+0 x^{2}+12 y^{2} x$,
or

$$
8 x^{3}+4 x^{2}+10 y^{2} x=4 x^{3}+12 y^{2} x
$$

In the above plan it will be noticed that the terms are ordered according to descending powers of the unknowns. Numerical coefficients are placed after the unknowns; if the coefficient be unity it is noted particularly and if the coefficient be fractional it is kept distinct from the unknown, that is, its denominator is so written as not to come under the unknown; ${ }^{1}$ the minus sign is put over the numerical coefficient rather than on the unknown; and the absolute term is invariably put last on either side. As has been observed by Professor Smith, ${ }^{2}$ this plan "in one respect was the best that has cver been suggested." For "it shows at a glance the similar terms one above the other, and permits of easy transposition."

The use of the old plan of writing equations is sometimes met with in later works also. For instance, in the MS. of Prthû lakasvâmi's commentary on the Brâbma-sphuta-siddbânta, an incomplete copy of which is preserved in the library of the Asiatic Society of Bengal (No. I B6) we find a statement of equations thus: "first side yâvargab 1 yâvakab $200 r \hat{r} \mathrm{o}$; second side jâvargaḅo yâvakab $\circ r \hat{u} \mathrm{i} 500 .{ }^{\prime \prime}{ }^{3}$ 'That is to say,

$$
x^{2}+200 x+0=0 . x^{2}+0 x+1500
$$

[^98]Preparation of Equations. The operation to be performed on an equation next to its statement (nyâsa) is technically known as samasodbana (from sama, meaning equal or complete, and sodhana, clearance; hence literally meaning, equi-clearance or complete clearance ${ }^{1}$) or simply sodbana. The nature of this clearance varies according to the kind of the equation. In the case of an equation in one unknown only, whether linear, quadratic or of higher powers, one side of it is cleared of the unknowns of all denominations and the other side of it of the absolute terms, so that the equation is ultimately reduced to one of the form

$$
a x^{2}+b x=c,
$$

where a, b, c may be positive or negative; some of them may be even zero. Thus Brahmagupta observes:
"From which the square of the unknown and the unknown are cleared, the known quantities are cleared (from the side) belon that."' ${ }^{2}$
Pṛthûdakasvâmî explains:
"This rule ${ }^{3}$ has been introduced for that case in which the two sides of the equation having been formed in accordance with the statement of the problem, there are present the square and other powers of the unknown together with the (simple) unknown. The absolute terms should be cleared off from the side opposite to that from which are cleared the square (and other powers) of the unknown and the (simple) unknown. When perfect clearance (samasodhana) has
${ }^{1}$ Colebrooke's rendering of the term as "equal subtraction", though not literally inaccurate, is technically so; at least it is not happy.
${ }^{2}$ BrSpSi, xviii. 43.
${ }^{\mathbf{3}}$ The reference is to Brahmagupta's rule for the solution of a quadratic equation.
been thus made..."1
Srîpati says:
"From one (side) the square of the unknown and the unknown should be cleared by removing the known quantities; the known quantities (should be cleared) from the side opposite to that.' ${ }^{2}$
Similarly Bhâskara II:
"Then the unknown on one side of it (the equation) should be subtracted from the unknown on the other side; so also the square and other powers of the unknown; the known quantitics on the other side should be subtracted from the known quantities of another (i.e., the former) side." ${ }^{3}$

Here we give a few illustrations. With reference to the equations from the commentary of Pṛthudakasvâmî, stated on page 31, the author says:
"Perfect clearance (samasodbana) being made in accordance with the rule, (the equation) will be
yâ va I yâ io
i.e.,

$$
r \hat{u} \dot{g}^{\prime \prime}
$$

The following illustration is from the Bijaganita of Bhâskara II: ${ }^{4}$
"Thus the two sides are

$$
\begin{array}{lllll}
y \hat{a} v a & 4 & y \hat{a} & 3 \dot{4} & r \hat{u} \\
72 \\
y a ̂ v a & 0 & y a ̂ & \circ & r \hat{u} \\
90
\end{array}
$$

On complete clearance (samasodbana), the residues of the two sides are
${ }^{1}$ BrSpSi, xviii. 44 (Com).
${ }^{3} B B i$, p. 44.
${ }^{2}$ Si S_{e}, xvi. 17.
${ }^{4} B B i$, p. 63.

$$
\begin{aligned}
& \text { yâva } 4 \text { yâ } 3 \dot{4} \text { r̂̂ } \\
& y a ̂ v a \circ y \hat{a} \circ r \hat{u} 18 \text { " } \\
& \text { i.e., } \quad 4 x^{2}-34 x=18 \text {. }
\end{aligned}
$$

Classification of Equations. The earliest Hindu classification of equations seems to have been according to their degrees, such as simple (technically called yâ'attâvat), quadratic (varga), cubic (ghana) and biquadratic (varga-varga). Reference to it is found in a canonical work of circa 300 B. C. ${ }^{1}$ But in the absence of further corroborative evidence, we cannot be sure of it. Brahmagupta (628) has classified equations as: (1) equations in one unknown (eka-varna-samikarana), (2) equations in several unknowns (aneka-varna-samikarana), and (3) equations involving products of unknowns (bhavita). The first class is again divided into two subclasses, viz., (i) linear equations, and (ii) quadratic equations (avyaketa-varga-samikarana). Here then we have the beginning of our present method of classifying equations according to their degrees. The method of classification adopted by Pṛthûdakasvâmî (860) is slightly different. His four classes are: (1) linear equations with one unknown, (2) linear equations with more unknowns, (3) equations with one, two or more unknowns in their second and higher powers, and (4) equations involving products of unknowns. As the method of solution of an equation of the third class is based upon the principle of the elimination of the middle term, that class is called by the name madhyamâbarana (from madhyama, "middle", âbarana "elimination", hence meaning "elimination of the middle term"). For the other classes, the old names given by Brahmagupta have been retained. This method of classification has been followed by subsequent writers.

[^99]Bhâskara II distinguishes two types in the third class, viz., (i) equations in one unknown in its second and higher powers and (ii) equations having two or more unknowns in their second and higher powers. According to K ṛṣna (1580) equations are primarily of two classes: (1) equations in one unknown and (2) equations in two or more unknowns. The class (1), again, comprises two subclasses: (i) simple equations and (ii) quadratic and higher cquations. The class (2) has three subclasses: (i) simultaneous linear equations, (ii) equations involving the second and higher powers of unknowns, and (iii) equations involving products of unknowns. He then observes that these five classes can be reduced to four by including the second subclasses of classes (1) and (2) into one class as madlyyamâbarana.

7. LINEAR EQUATIONS IN ONE UNKNOWN

Early Solutions. As already stated, the geometrical solution of a linear equation in one unknown is found in the Sulba, the earliest of which is not later than 800 B.C. There is a reference in the Stbânâniga-sûtra (c. 300 B.C.) to a linear equation by its name (yavat-tâlat) which is suggestive of the method of solution ${ }^{1}$ followed at that time. We have, however, no further evidence about it. The carliest Hindu record of doubtless value of problems involving simple algebraic equations and of a method for their solution occurs in the Bakhshàlì treatise, which was written very probably about the beginning of the Christian Era. Onc problem is: ${ }^{2}$
"The amount given to the first is not known. The second is given twice as much as the first; the third

[^100]thrice as much as the second ; and the fourth four times as much as the third. The total amount distributed is 132 . What is the amount of the first ?"

If x be the amount given to the first, then according to the probelm,

$$
x+2 x+6 x+24 x=132
$$

Rule of False Position. The solution of this equation is given as follows:
"'Putting any desired quantity in the vacant place'; any desired quantity is $\|\mathrm{I}\|$; 'then construct the series'

$$
\left|\begin{array}{l|llll|ll}
1 & 2 & 2 & 3 & 6 & 4 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right|
$$

'multiplied' || $1|2| 6|24| ;$ 'added' 33. 'Divide the visible quantity' $\left.\begin{gathered}132 \\ 33\end{gathered} \right\rvert\,$ (which) on reduction becomes

4 . (This is) the amount given (to the first)." 1

The solution of another set of problems in the Bakhshâlî treatise, leads ultimately to an equation of the type ${ }^{2}$

$$
a x+b=p
$$

The method given for its solution is to put any arbitrary value g for x, so that

$$
a g+b=p^{\prime}, \text { say }
$$

Then the correct value will be

$$
x=\frac{p-p^{\prime}}{a}+g
$$

The above method of solution of a linear equation was known in the middle ages, amongst Arab and European algebraists, by the name of the Rule of False Position. It is noteworthy that the terms yaddrcch \hat{a}, vâñcchâ, and kâmika of the Bakhshâlî treatise are equivalent to the term yâtat-tâlat. So the origin of this latter term seems to be connected with the Rule of False Position. It is interesting to find that the rule was once given so much importance in Hindu algebra that the section dealing with it was named after it.

Disappearance from Later Algebra. The Rule of False Position bespeaks of an early stage of development of the science of algebra when there was no symbol for the unknown. It naturally disappears with the introduction of a system of notations. ${ }^{1}$ This will account for the complete disappearance of the Rule of False Position from the later Hindu treatises on algebra beginning with that of Aryabhata I (499). There are found, however, very limited applications of it in the arithmetical treatises of Srîdhara (c. 750), Mahâvîra (850) and Bhâskara II (1150). This can be accounted for easily. The problems which have been solved by those writers with the help of the Rule of False Position are really of algebraic nature, though incorporated into arithmetical treatises. But as the use of algebraic symbols and notations is not permissible in arithmetic, recourse had to be taken to that Rule. For instance, we take the following problem from the Ganita-sâra-saṅgralisa of Mahâvîra:
"The sum of $\frac{1}{8}, \frac{1}{4}$ of $\frac{3}{3}, \frac{1}{3}$ of $\frac{1}{2}, \frac{1}{5}$ of $\frac{3}{4}$ of $\frac{1}{6}$, of a certain number is equal to $\frac{1}{2}$. What is that unknown (number) ?" ${ }^{2}$

Mahâvirra gives the following rule for finding out

${ }^{1}$ Smith, History, II, p. $437 . \quad{ }^{2}$ GSS, iii. 108.

the unknown in a problem of this kind:
"Put down one for the value of the unknown; then in accordance with the previous rule (find) the sum (of its parts) ; divide the known (number) by that (sum) ; the quotient will be (the value of) the unknown in compound fractions." ${ }^{1}$

Operation with an Optional Number. Bhâskara II describes a method called Ista-karma or "operation with an optional number." This may be illustrated by the following example :
"What is that number which multiplied by five, diminished by its third part and (then) divided by ten, will become, together with its one-third, half and onefourth parts, equal to seventy"minus two ?" ${ }^{2}$
i.e., $\quad \frac{5 x-5 x / 3}{10}+\frac{x}{3}+\frac{x}{2}+\frac{x}{4}=70-2$.

Bhâskara assumes $x=3$ and then calculates

$$
\frac{5 \times 3-5 \times 3 / 3}{10}+\frac{3}{3}+\frac{3}{2}+\frac{3}{4}=\frac{17}{4} .
$$

He then states

$$
x=68 \times 3 \div \frac{17}{4}=48
$$

He observes: "Similarly, in every example, by whatever the (required) number is multiplied or divided, by whatever fraction of the number it is found to have been increased or diminished, assuming an optional number, on it perform the same operations in accordance with the statement of the problem; by that, which results, divide the known number multiplied by the assumed number; the quotient will be the (required) number." ${ }^{3}$

$$
\begin{aligned}
& 1 \text { GSS, iii. 107. } \\
& { }^{3} \text { L, p. i1. }
\end{aligned}
$$

Solution of Linear Equations. Aryabhaṭa I (499) says :
"The difference of the known "amounts" relating to the two persons should be divided by the difference of the coefficients of the unknown. ${ }^{1}$ The quotient will be the value of the unknown, if their possessions be equal." ${ }^{2}$

This rule contemplates a problem of this kind: Two persons, who are equally rich, possess respectively a, b times a certain unknown amount together with c, d units of money in cash. What is that amount ?

If x be the unknown amount, then by the problem

$$
a x+c=b x+d .
$$

Therefore $\quad x=\frac{d-c}{a-b}$.
Hence the rule.
Brahmagupta says :
"In a (linear) equation in one unknown, the difference of the known terms taken in the reverse order, divided by the difference of the coefficients of the unknown (is the value of the unknown)."3
Sripati writes :
"First remove the unknown from any one of the sides (of the equation) leaving the known term ; the reverse (should be done) on the other side. The difference of the absolute terms taken in the reverse order
${ }^{1}$ The original is gulikântara which literally means "the difference of the unknowns." But what is implied is "the difference of the coefficients of the unknown." As has been observed by Prthûdakasvâmî, according to the usual practice of Hindu algebra, "the coefficient of the square of the unknown is called the square (of the unknown) and the coefficient of the (simple) unknown is called the unknown." BrSpSi, xviii. 44 (Com).
${ }^{2} A$, ii. 30 .
${ }^{3}$ BrSpSi, xviii. 43.
divided by the difference of the coefficients of the unknown will be the value of the unknown." ${ }^{1}$
Bhâskara II states :
"Subtract the unknown on one side from that on the other and the absolute term on the second from that on the first side. The residual absolute number should be divided by the residual coefficient of the unknown; thus the valuc of the unknown becomes known." ${ }^{2}$ Nârâyaṇa writes :
"From one side clear off the unknown and from the other the known quantities; then divide the residual known by the residual coefficient of the unknown. Thus will certainly become known the value of the unknown." ${ }^{3}$

For illustration we take a problem proposed by Brahmagupta:
"Tell the number of elapsed days for the time when four times the twelfth part of the residual degrees increased by one, plus eight will be equal to the residual degrees plus one." ${ }^{4}$

It has been solved by Pṛthûdakasvâmî as follows:
"Here the residual degrees are (put as) yâvat-târat, $y \hat{a}$; increased by one, $y \hat{a} \mathbf{1}$ r $\hat{u} \mathrm{x}$; twelfth part of it, $y a \hat{a} \quad r \hat{l} \mathrm{I}$; four times this,,$y_{n} \mathrm{I} \quad r \hat{i} \mathrm{I}$; plus the abso12 ; 3 lute quantity eight, $\frac{y \hat{a} \times r \hat{1} 25}{3}$. This is equal to the residual degrees plus unity. The statement of both sides tripled is

$$
\begin{array}{llll}
y \hat{a} & \mathrm{I} & r \hat{u} & 25 \\
y \hat{a} & 3 & r \hat{u} & 3
\end{array}
$$

${ }^{1}$ SiSe, xiv. 15.
${ }^{2}$ BBi, p. 44.
${ }^{3} \mathrm{NBi}, \mathrm{II}, \mathrm{R}$. s.
${ }^{4}$ BrSpSi, xviii. 46.

The difference between the coefficients of the unknown is 2. By this the difference of the absolute terms, namely 22, being divided, is produced the residual of the degrees of the sun, in. These residual degrees should be known to be irreducible. The elapsed days can be deduced then, (proceeding) as before."

In other words, we have to solve the equation
which gives

$$
\begin{gathered}
1^{4}(x+1)+8=x+1 \\
x+25=3 x+3 \\
2 x=22 .
\end{gathered}
$$

Therefore

$$
x=11 .
$$

The following problem and its solution are from the Bijaganita of Bhâskara 11 :
"One person has three hundred coins and six horses. Another has ten horses (each) of similar value and he has further a debt of hundred coins. But they are of equal worth. What is the price of a horse ?
"Here the statement for equi-clearance is :

$$
6 x+300=10 x-100 .
$$

Now, by the rule, 'Subtract the unknown on one side from that on the other etc.,' unknown on the first side being subtracted from the unknown on the other side, the remainder is $4 \times$. The absolute term on the second side being subtracted from the absolute term on the first side, the remainder is 400 . The residual known number 400 being divided by the coefficient of the residual unknown $4 x$, the quotient is recognised to be the value of x, (namely) 100. ."

There are a few instances in the Bakhshâlî work where a method similar to that of later writers appears

[^101]to have been followed for the solution of a linear equation. One such problem is: Two persons start with different initial velocitics (a_{1}, a_{2}); travel on successive days distances increasing at different rates $\left(b_{1}, b_{2}\right)$. But they cover the same distance after the same period of time. What is the period?

Denoting the period by x, we get

$$
\begin{aligned}
a_{1}+ & \left(a_{1}+b_{1}\right)+\left(a_{1}+2 b_{1}\right)+\ldots \text { to } x \text { terms } \\
& =a_{2}+\left(a_{2}+b_{2}\right)+\left(a_{2}+2 b_{2}\right)+\ldots \text { to } x \text { terms }, \\
& \left\{a_{1}+\left({\underset{2}{1}-1}_{2}^{1}\right) b_{1}\right\} x=\left\{a_{2}+\binom{x_{2}^{1}}{2} b_{2}\right\} x ;
\end{aligned}
$$

whence

$$
x=\frac{2\left(a_{2}-a_{1}\right)}{b_{1}-b_{2}}+1,
$$

which is the solution given in the Bakhshâli work:
"Twice the difference of the initial terms divided by the difference of the common differences, is increased by unity. The result will be the number of days in which the distance moved will be the same." ${ }^{1}$

8. LINEAR EQUATIONS WITH TWO UNKNOWNS

Rule of Concurrence. One topic commonly discussed by almost all Hindu writers goes by the special name of sañkramana (concurrence). According to Nârâyana (1350), it is also called sanikrama and sañkrama. ${ }^{2}$ Brahmagupta (628) includes it in algebra while others consider it as falling within the scope of arithmetic. As explained by the commentator Gangâdhara (1420), the subject of discussion here is "the investigation of two quantities concurrent or grown together in the form of their sum and difference."

[^102]${ }^{2} G K$, i. 3 r.

Or, in other words, sanikramana is the solution of the simultaneous equations

$$
\begin{aligned}
& x+y=a, \\
& x-y=b .
\end{aligned}
$$

So Brahmagupta and Srîpati are perfectly right in thinking that concurrence is truly a topic for algebra.

Brahmagupta's rule for solution is :
"The sum is increased and diminished by the difference and divided by two; (the result will be the two unknown quantities) : (this is) concurrence." 1

The same rule is restated by him on a different occasion in the form of a problem and its solution.
"The sum and difference of the residues of two (heavenly bodies) are known in degrees and minutes. What are the residues? The difference is both added to and subtracted from the sum, and halved; (the results are) the residues." ${ }^{2}$

Similar rules are given also by other writers. ${ }^{3}$
Linear Equations. Mahâvîra gives the following examples leading to simultaneous linear equations together with rules for the solution of each.

Example. "The price of 9 citrons and 7 fragrant wood-apples taken together is 107; again the price of 7 citrons and 9 fragrant wood-apples taken together is ror. O mathematician, tell me quickly the price of a citron and of a fragrant wood-apple quite separately."4

If x, y be the prices of a citron and of a fragrant
${ }^{2}$ BrSpSi, xviii. 96.
${ }^{3}$ GSS, vi. 2 ; MSi, xv. 21 ; SiSe, xiv. 13 ; L, p. 12 ; GK, i. 3 1. 4 GSS, vi. $140 \frac{1}{2}-142 \frac{1}{2}$.
wood-apple respectively, then

$$
\begin{aligned}
& 9 x+7 y=107 \\
& 7 x+9 y=101 .
\end{aligned}
$$

Or, in general, $\quad a x+b y=m$,

$$
b x+a y=n .
$$

Solution. "From the larger amount of price multiplied by the (corresponding) bigger number of things subtract the smaller amount of price multiplied by the (corresponding) smaller number of things. (The remainder) divided by the difference of the squares of the numbers of things will be the price of each of the bigger number of things. The price of the other will be obtained by reversing the multipliers."

Thus $x=\frac{a m-l n}{a^{2}-b^{2}}, \quad y=\frac{a n-b m}{a^{2}-b^{2}}$.
Example. "A wizard having powers of mystic 'incantations and magical medicincs sceing a cock-fight going on, spoke privatcly to both the owners of the cocks. To one he said, 'If your bird wins, then you give me your stake-money, but if you do not win, I shall give you two-thirds of that.' Going to the other, he promised in the same way to give three-fourths. From both of them his gain would be only 12 gold pieces. Tell mc, O ornament of the first-rate mathenaticians, the stakemoney of each of the cock-owners." ${ }^{2}$

$$
\text { i.e., } \quad x-\frac{3}{4} y=12, \quad y-\frac{2}{3} x=12 .
$$

Or, in general,

$$
x-\frac{c}{d} y=p, \quad y-\frac{d}{b} \cdot x=p
$$

$$
{ }^{1} \text { GSS, vi. } 139 \frac{1}{2} . \quad \text { º } G S S \text {, vi. } 270-2 \frac{1}{2} .
$$

Solution: ${ }^{1}$

$$
\begin{aligned}
& x=\frac{b(c+d)}{(c+d) b-(a+b) c} p, \\
& y=\frac{d(a+b)}{(a+b) d-(c+d) a} p .
\end{aligned}
$$

The following example with its solution is taken from the Bîjaganita of Bhâskara II:

Example. "Onc says, 'Give me a hundred, friend, I shall then become twice as rich as you.' The other replies, 'If you give me ten, I shall be six times as rich as you.' Tell me what is the amount of their (respective) capitals ?" ${ }^{2}$

The equations are

$$
\begin{align*}
& x+100=2(y-100), \tag{I}\\
& y+10=6(x-10) . \tag{2}
\end{align*}
$$

Bhâskara II indicates two methods of solving these equations. They are substantially as follows :

First Method. ${ }^{3}$ Assume

$$
x=2 z-100, y=z+100
$$

so that equation (I) is identically satisfied. Substituting these values in the other equation, we get

$$
z+110=12 z-660 ;
$$

whence $z=70$. Therefore, $x=40, y=170$.
Second Metbod. ${ }^{4}$ From equation (1), we get

$$
x=2 y-300,
$$

and from equation (2)

$$
x=\frac{1}{6}(y+70)
$$

${ }^{1}$ GSS, vi. $268 \mathrm{~d}-9 \mathrm{~d}$.
${ }^{2} B B i$, p. 41.
${ }^{3} B B i$, p. 46.

- BBi, pp. $7^{8 f}$.

Equating these two values of x, we have

$$
\begin{array}{ll}
& 2 y-300=6(y+70), \\
\text { or } \quad & 12 y-1800=y+70 ;
\end{array}
$$

whence $y=170$. Substituting this value of y in any of the two expressions for x, we get $x=40$.

It is noteworthy that the second method of solution of the problem under consideration is described by Bhâskara II in the section of his algebra dealing with "lincar cquations with several unknowns," while the first method in that dealing with "linear cquations in one unknown." In this latter connection he has observed that the solution of a problem containing two unknowns can sometimes be made by ingenious artitices to depend upon the solution of a simple linear equation.
9. LINEAR EQUATIONS With SEVERAL UNKNOW'NS

A Type of Linear Equations. The earliest Hindu treatment of systems of linear equations involving several unknowns is found in the Bakhshâli treatise. One problem in it runs as follows:
"[Three persons possess a certain amount of riches each.] The riches of the first and the second taken together amount to 13 ; the riches of the second and the third taken together are 14; and the riches of the first and the third mixed are known to be is. Tell me the riches of each." ${ }^{1}$

If $x_{1}, x_{2}, \lambda_{3}$ be the wealths of the three merchants respectively, then

$$
\begin{equation*}
x_{1}+x_{2}=13, x_{2}+x_{3}=14, x_{3}+x_{1}=15 . \tag{I}
\end{equation*}
$$

Another problem is
${ }^{1}$ BMs, Folio 29, recto. The portions within [] in this and the following illustration have been restored.
"[Five persons possess a certain amount of riches each. The tiches of the first] and the second mixed together amount to 16 ; the riches of the second and the third taken together are known to be 17 ; the riches of the third and the fourth taken together are known to be 18 ; the riches of the fourth and the fifth mixed together are 19 ; and the riches of the first and the fifth together amount to 20 . Tell me what is the amount of each.' ${ }^{1}$
i.e., $\quad x_{1}+x_{2}=16, x_{2}+x_{3}=17, x_{3}+x_{4}=18$,

$$
\begin{equation*}
x_{4}+x_{5}=19, x_{5}+x_{1}=20 \tag{2}
\end{equation*}
$$

There are in the work a few other similar problems. ${ }^{2}$ Every one of them belongs to a system of linear cquations of the type

$$
\begin{equation*}
x_{1}+x_{2}=a_{1}, x_{2}+x_{3}=a_{2}, \ldots, x_{n}+x_{1}=a_{n}, \tag{I}
\end{equation*}
$$ n being odd.

Solution by False Position. A system of linear equations of this type is solved in the Bakhshâlî treatise substantially as follows:

Assume an arbitrary value p for x_{1} and then calculate the values of x_{2}, x_{3}, \ldots corresponding to it. Finally let the calculated value of $x_{n}+x_{1}$ be equal to b (say). Then the truc value of x_{1} is obtained by the formula

$$
x_{1}=p+\frac{1}{2}\left(a_{n}-b\right) .
$$

In the particular case (1) the author ${ }^{3}$ assumes the arbitrary value s for x_{1}; then are successively calculated the values $x_{2}^{\prime}=8, x_{3}^{\prime}=6$ and $x_{3}^{\prime}+x_{1}^{\prime}=11$. The correct values are, therefore,

$$
x_{1}=5+(15-11) / 2=7, x_{2}=6, x_{3}=8
$$

[^103]Rationale. By the process of elimination we get from equations (I)

$$
\left(a_{2}-a_{1}\right)+\left(a_{4}-a_{3}\right)+\ldots+\left(a_{n-1}-a_{n-2}\right)+2 x_{1}=a_{n} .
$$

Assume $x_{1}=p$; so that

$$
\left(a_{2}-a_{1}\right)+\left(a_{4}-a_{3}\right)+\ldots .+\left(a_{n-1}-a_{n-2}\right)+2 p=b, \text { say. }
$$

Subtracting $\quad 2\left(x_{1}-p\right)=a_{n}-b$.
Therefore $\quad x_{1}=p+\frac{1}{2}\left(a_{n}-b\right)$.

- Second Type. A particular case of the type of equations (I) for which $n=3$, may also be looked upon as belonging to a different type of systems of linear equations, viz.,
$\Sigma x-x_{1}=a_{1}, \Sigma x-x_{2}=a_{2}, \ldots, \Sigma x-x_{n}=a_{n}$, (II) where $\sum x$ stands for $x_{1}+x_{2}+\ldots+x_{n}$. But it will not be proper to say that equations of this type have been treated in the Bakhshâlî treatise. ${ }^{1}$ They have, however, been solved by Âryabhaṭa (499) and Mahâvîra (850). The former says:
"The (given) sums of certain (unknown) numbers, leaving out one number in succession, are added together separately and divided by the number of terms less one; that (quotient) will be the value of the whole." ${ }^{2}$

$$
\text { i.e., } \quad \sum x=\sum_{r=1}^{n} a_{r} /(n-1) \text {. }
$$

Mahâvira states the solution thus:
"The stated amounts of the commodities added together should be divided by the number of men less
${ }^{1}$ The example cited by Kaye (BMs, Introd., p. 40, Ex. vi) which conforms to this type of equations is based upon a misapprehension of the text.
${ }^{2} A$, ii. 29.
one. The quotient will be the total value (of all the commodities). Each of the stated amounts being subtracted from that, (the value) in the hands (of each will be found)." ${ }^{1}$

- In formulating his rule Mahâvîra had in view the following example:
"Four merchants were each asked separately by the customs officer about the total value of their commodities. The first merchant, leaving out his own investment, stated it to be 22; the second stated it to be 23 , the third 24 and the fourth 27; each of them deducted his own amount in the investment. O friend, tell me separately the value of (the share of) the commodity owned by each." ${ }^{2}$

Here $x_{1}+x_{2}+x_{3}+x_{4}=22+23+24+27=32$.
Therefore $\quad x_{1}=10, x_{2}=9, \quad x_{3}=8, \quad x_{4}=5$.
Nârâyaṇa says:
"The sum of the depleted amounts divided by the number of persons less one, is the total amount. On subtracting from it the stated amounts severally will be found the different amounts." ${ }^{3}$

The above type of equations is supposed by some modern historians of mathematics ${ }^{4}$ to be a modification of the type considered by the Greek Thymaridas and solved by his well known rule lipanthema, namely, ${ }^{5}$

$$
\begin{gathered}
x+x_{1}+x_{2}+\ldots+x_{n-1}=s \\
x+x_{1}=a_{1}, x+x_{2}=a_{2}, \ldots, x+x_{n-1}=a_{n-1} .
\end{gathered}
$$

${ }^{1}$ GSS, vi. is9. ${ }^{2}$ GSS, vi. 160-2.
${ }^{3} G K$, ii. 28.
${ }^{4}$ Cantor, Vorlestungen uiber Gescbicbte der Mathematik (referred to hereafter as Cantor, Geschichte), J, p. 624; Kaye, Ind. Math., p. 13; JASB, 1908, p. 135.
${ }^{5}$ Heath, Greek Math., I, p. 94.

The solution given is

$$
x=\frac{\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)-r}{n-2} .
$$

But that supposition has been disputed by others. ${ }^{1}$ Sarada Kanta Ganguly has shown that it is based upon a misapprehension. It will be noticed that in the Thymaridas type of linear equations, the value of the sum of the unknowns is given whereas in the Aryabhata type it is not known. In fact, Aryabhaṭa determines only that value.

Third Type. A more generalised system of linear equations will be

$$
\begin{gather*}
b_{1} z x-c_{1} x_{1}=a_{1}, b_{2} z x-c_{2} x_{2}=a_{2}, \ldots, \\
b_{n} z x-c_{n} x_{n}=a_{n} . \tag{III}
\end{gather*}
$$

Therefore

$$
\bar{\Sigma} x=\frac{\bar{z}(a / c)}{z(b / c)-1}
$$

Hence

$$
\begin{array}{r}
x_{r}=\frac{b_{r}}{c_{r}} \cdot \frac{\Sigma(a \mid c)}{2(b / c)-1}-\frac{d_{r}}{c_{r}}, \quad(\mathrm{I}) \\
r=\mathrm{I}, 2,3, \ldots, n .
\end{array}
$$

A particular case of this type is furnished by the following example of Mahâvîra:
"Three merchants begged money mutually from one another. The first on begging 4 from the second and s from the third became twice as rich as the others. The second on having 4 from the first and 6 from the third became thrice as rich. The third man on begging s from the first and 6 from the second became five times as rich as the others. O mathematician, if you know
${ }^{1}$ Rodet, Lefons de Calcul d'Aryabbata, JA, XIII (7), 1878; Sarada Kanta Ganguly, "Notes on Aryabhata," Jour. Bibar and Orissa Research Soc., XII, 1926, pp. 88ff.
the citra-kultuka-miśra, ${ }^{1}$ tell me quickly what was the amount in the hand of each.'" ${ }^{2}$

That is, we get the equations

$$
\begin{aligned}
& x+4+5=2(y+\approx-4-5) \\
& y+4+6=3(z+x-4-6) \\
& z+5+6=5(x+y-5-6) \\
& 2(x+y+z)-3 x=27 \\
& 3(x+y+z)-4 y=40 \\
& 5(x+y+z)-6 z=66
\end{aligned}
$$

a particular case of the system (111). Substituting in (I), we get

$$
x=7, \quad y==8, \quad ₹=9 .
$$

In general, suppose $u_{r, 1}, a_{r, 2}, \ldots a_{r, r-1}, i_{r, r+1} \ldots$ $a_{r, n}$ to be the amounts begged by the rthi merchant from the others; and x_{r} the amount that he had initially. 'Then

$$
\begin{gathered}
x_{1}+\Sigma^{\prime} a_{1, m}=b_{1}\left(\Sigma x-x_{1}-\Sigma^{\prime}\left(a_{1, m}\right)\right. \\
x_{2}+\Sigma^{\prime} a_{2, m}=b_{2}\left(\Sigma x-x_{2}-\Sigma^{\prime} a_{2, m}\right) \\
\left.\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots x_{n}\right) \\
x_{n}+\Sigma^{\prime} a_{n, m}=b_{n}\left(\Sigma x-x_{n}^{\prime}-\Sigma^{\prime} a_{n, m}\right)
\end{gathered}
$$

where $\Sigma^{\prime} a_{r, m}$ denotes summation from $m=1$ to $m=n$ excluding $m=r$. Therefore

$$
\begin{gathered}
\Sigma x+\left(b_{1}+1\right) \Sigma^{\prime} a_{1, m}=\left(b_{1}+1\right)\left(\Sigma x-x_{1}\right), \\
\Sigma x+\left(b_{2}+1\right) \Sigma^{\prime} a_{2, m}=\left(b_{2}+1\right)\left(\Sigma x-x_{2}\right), \\
\cdots \cdots \cdots \cdots \cdots+\cdots \sum_{n}+\cdots \sum_{n, m}=\left(b_{n}+1\right)\left(\Sigma x-x_{n}\right) . \\
\Sigma x+\left(b_{n}+1\right) \Sigma^{\prime} a_{r, m}, r=1,2,3, \ldots, n .
\end{gathered}
$$

Let
${ }^{1}$ This is the name given by Mahâvira to problems involving equations of type (III).
${ }^{2}$ GSS, vi. $253 \frac{1}{2}-5 \frac{1}{2}$.

Then dividing the foregoing equations by $b_{1}+1$, $b_{2}+1, \ldots$, respectively, and adding together, we get

$$
\begin{aligned}
& \bar{z} \cdot x\left(\frac{\mathrm{x}}{b_{1}+\mathrm{I}}+\frac{\mathrm{I}}{b_{2}+1}+\cdots+\frac{\mathrm{I}}{b_{n}+\mathrm{I}}\right) \\
& +\left(\frac{k_{1}}{b_{1}+1}+\frac{k_{2}}{\left.b_{2}+1+\ldots+\frac{k_{n}}{b_{n}+1}\right)=(n-1) \geq x .}\right. \\
& \therefore \quad=x=\left(\frac{k_{1}}{b_{1}+\mathrm{I}}+\frac{k_{2}}{b_{2}+\mathrm{I}}+\ldots+\frac{k_{n}}{b_{n}+\mathrm{I}}\right) \\
& \div\left(\frac{b_{1}}{b_{1}+1}+\frac{b_{2}}{b_{2}+1}+\ldots+\frac{b_{n}}{b_{n}+1}-1\right) .
\end{aligned}
$$

Whence

$$
\begin{aligned}
x_{r}=\{ & \left\{\frac{k_{r}+b_{r} k_{1}}{b_{1}+1}+\frac{k_{r}+b_{r} k_{2}}{b_{2}+1}+\ldots+\frac{k_{r}+b_{r} k_{r-1}}{b_{r-1}+1}\right. \\
& \left.+\frac{k_{r}+b_{r} k_{r+1}}{b_{r+1}+1}+\ldots+\frac{k_{r}+b_{r} k_{n}}{b_{n}+1}-(n-2) k_{r}\right\} \\
& \div\left(b_{r}+1\right)\left(\frac{b_{1}}{b_{1}+1}+\frac{b_{2}}{b_{2}+1}+\ldots+\frac{b_{n}}{b_{n}+1}-1\right) .
\end{aligned}
$$

Mahâvîra describes the solution thus:
"The sum of the amounts begged by each person is multiplied by the multiple number relating to him as increased by unity. With these (products), the amounts at hand are determined according to the rule Istagunaghana etc. ${ }^{1}$ They are reduced to a common denominator, and then divided by the sum diminished by unity of the multiple numbers divided by themselves as increased by unity. (The quotients) should be known to be the amounts in the hands of the persons." 2

Problems of the above kind have been treated also by Nârâyaṇa (1357). He says:
${ }^{1}$ The reference is to rule vi. 241 .
${ }^{2}$ GSS, vi. $251 \frac{1}{2}-2 \int 2 \frac{1}{2}$.
"Multiply the sum of the monies received by each person by his multiple number plus unity. Then proceed as in the method for "the purse of discord." Divide the multiple number related to each by the same as increased by unity. By the sum diminished by unity of these quotients, divide the results just obtained. The quotients will be the several amounts in their possession." ${ }^{1}$

One particular case, where $b_{1}=b_{2}=\ldots b_{n}=\mathbf{1}$ and $c_{1}=c_{2}=\ldots=c_{n}=c$, was treated by Brahmagupta (628). He gave the rule:
"The total valuc (of the unknown quantities) plus or minus the individual values (of the unknowns) multiplied by an optional number being severally (given), the sum (of the given quantities) divided by the number of unknowns increased or decreased by the multiplier will be the total value; thence the rest (can be determined).' ${ }^{2}$
$\Sigma x \pm c x_{1}=a_{1}, \Sigma x \pm c x_{2}=a_{2}, \ldots, \Sigma x \pm c x_{n}=a_{n}$.
Therefore $\Sigma x=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n \pm c}$.
Hence

$$
x_{1}=\frac{1}{c}\left(\pm a_{1} \mp \frac{a_{1}+a_{2}+\ldots+a_{n}}{n \pm c}\right) ;
$$

and so on.
Brahmagupta's Rule. Brahmagupta (628) states the following rule for solving linear equations involving several unknowns:
"Removing the other unknowns, from (the side of) the first unknown and dividing by the coefficient of the first unknown, the value of the first unknown (is obtained). In the case of more (values of the first unknown),

$$
{ }^{1} G K \text {, ii. } 33 \text { f. }
$$

${ }^{2}$ BrSpSi, xiii. 47.
two and two (of them) should be considered after reducing them to common denominators. And (so on) repeatedly. If more unknowns remain (in the final equation), the method of the pulveriser (should be employed). (Then proceeding) reversely (the values of other unknowns can be found)." ${ }^{1}$

Pṛthûdakasvâmî (860) has explained it thus:
"In an example in which there are two or more unknown quantities, colours such as yavat-tâvat, ctc., should be assumed for their values. Upon them should be performed all operations conformably to the statement of the example and thus should be carefully framed two or more sides and also equations. Equi-clearance should be made first between two and two of them and so on to the last: from one side one unknown should be cleared, other unknowns reduced to a common denominator and also the absolute numbers should be cleared from the side opposite. The residue of other unknowns being divided by the residual coefficient of the first unknown will give the value of the first unknown. If there be obtained several such values, then with two and two of them, equations should be formed after reduction to common denominators. Proceeding in this way to the end find out the value of one unknown. If that value be (in terms of) another unknown then the coefficients of those two will be reciprocally the values of the two unknowns. If, however, there be present more unknowns in that value, the method of the pulveriser should be employed. Arbitrary values may then be assumed for some of the unknowns."

It will be noted that the above rule embraces the indeterminate as well as the determinate equations. In fact, all the examples given by Brahmagupta in illustra-

[^104]tion of the rule are of indeterminate character. We shall mention some of them subsequently at their proper places. So far as the determinate simultaneous equations are concerned, Brahmagupta's method for solving them will be easily recognised to be the same as our present one.

Mahâvira's Rules. Certain interest problems treated by Mahâvîra lead to simple simultaneous equations involving several unknowns. In these problems certain capital amounts ($c_{1}, c_{2}, c_{3}, \ldots$) are stated to have been lent out at the same rate of interest (r) for different periods of time $\left(t_{1}, t_{2}, t_{3}, \ldots\right)$. If (i_{1}, i_{2}, $\left.i_{3}, \ldots\right)$ be the interests accrued on the several capitals,

$$
i_{1}=\frac{r t_{1} c_{1}}{100}, \quad i_{2}=\frac{r t_{2} c_{2}}{100}, \quad i_{3}=\frac{r t_{3} c_{3}}{100}, \ldots
$$

(i) If $i_{1}+i_{2}+i_{3}+\ldots=I, c_{r}$ and t_{r} be known (for $r=1,2, \ldots$), we have

$$
i_{1}=\frac{I c_{1} t_{1}}{c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{3}+\ldots .}
$$

with similar values for i_{2}, i_{3}, \ldots
(ii) Or, if $c_{1}+c_{2}+c_{3}+\ldots=C, i_{r}$ and t_{r} be known (for $r=\mathrm{I}, 2, \ldots$), we have

$$
c_{1}=\frac{C i_{1} / t_{1}}{i_{1} / t_{1}+i_{2} / t_{2}+\ldots \ldots},
$$

and so on.
(iii) Or, if we are given the sum of the periods $t_{1}+t_{2}$ $+\ldots=T, c_{r}$ and i_{r}, then

$$
t_{1}=\frac{T i_{1} / c_{1}}{i_{1} / c_{1}+i_{2} / c_{2}+\ldots \ldots}
$$

with similar values for t_{2}, t_{3}, \ldots
Mahâvira has given separate rules for the solution
of problems of each of the above three kinds. ${ }^{1}$
Bhâskara's Rule. Bhâskara Il has given practically the same rule as that of Brahmagupta for the solution of simultaneous linear equations involving several unknowns. We take the following illustrations from his works.

Example 1. "Eight rubies, ten emeralds and a hundred pearls which are in thy ear-ring were purchased by me for thee at an equal amount; the sum of the price rates of the three sorts of gems is three less than the half of a hundred. Tell me, O dear auspicious lady, if thou be skilled in mathematics, the price of each. ${ }^{\prime \prime}{ }^{2}$

If x, y, z be the prices of a ruby, emerald and pearl respectivcly, then

$$
\begin{aligned}
& 8 x=10 y=100 z \\
& x+y+z=47
\end{aligned}
$$

Assuming the equal amount to be w, says Bhâskara II, we shall get

$$
x=w / 8, y=w / \mathrm{o}, z=w^{\prime} / \mathrm{x} 00 .
$$

Substituting in the remaining equation, we easily get $\nu=200$. Therefore

$$
x=25, y=20, z=2
$$

Example 2. "Tell the three numbers which become equal when added with their half, one-fifth and oneninth parts, and each of which, when diminished by those parts of the other two, leaves sixty as remainder.'" ${ }^{3}$

Here we have the equations

$$
\begin{gather*}
x+x / 2=y+y / 5=z+z / 9 \tag{I}\\
x-\frac{y}{5}-\frac{z}{9}=y-\frac{z}{9}-\frac{x}{2}=z-\frac{x}{2}-\frac{y}{5}=60 \tag{2}
\end{gather*}
$$

$$
\begin{aligned}
& 1 \text { GSS, vi. } 37,39,42 . \\
& { }^{1} B B i \text {, p. } 52 .
\end{aligned}
$$

Bhâskara puts w for each of the equal quantities in (1), so that

$$
x=\frac{2}{3} w, y=\frac{5}{6} w, z={ }_{1}^{9} \eta v .
$$

Substituting these values in (2), any one of them will give

$$
{ }_{5}^{2} \nu=60 ;
$$

whence $\nu=150$. Therefore

$$
x=100, y=125, z=135 .
$$

It should be noted that the equations (2) are sufficient for the determination of the unknowns.

Example 3. Another type of problem is: Three portions (x, y, z) of a sum of money (c) were lent out at three different rates of intcrest (r_{1}, r_{2}, r_{3} per cent per month) for three different periods (t_{1}, t_{2}, t_{3} months). The interests accrued on them severally were the same. What were those portions? 1

$$
\begin{gather*}
x+y+z=c, \\
\frac{x r_{1} t_{1}}{100}=\frac{y r_{2} t_{2}}{100}=\frac{z r_{3} t_{3}}{100}=I . \tag{1}
\end{gather*}
$$

From (2)

$$
x=\frac{100 I}{r_{1} t_{1}}, \quad y=\frac{100 I}{r_{2} t_{2}}, \quad z=\frac{100 I}{r_{3} t_{3}} .
$$

Substituting in (I , we get

$$
100 I\left(\frac{1}{r_{1} t_{1}}+\frac{1}{r_{2} t_{2}}+\frac{1}{r_{3} t_{3}}\right)=c .
$$

Therefore

$$
I=\frac{c}{100\left(\frac{1}{r_{1} t_{1}}+\frac{1}{r_{2} t_{2}}+\frac{\mathrm{I}}{r_{3} t_{3}}\right)} .
$$

${ }^{1}$ L, p. 22.

Hence

$$
x=\frac{\frac{100 \times 1}{r_{1} t_{1}} \times c}{\frac{100 \times 1}{r_{1} t_{1}}+\frac{100 \times 1}{r_{2} t_{2}}+\frac{100 \times 1}{r_{3} t_{3}}},
$$

with similar values for y and z. Bhâskara II says:
"The arguments multiplied by their respective times are divided by the fruit taken into elapsed times. They being divided by their sum and multiplied by the total amount give the portions severally lent out." ${ }^{1}$

10. QUADRATIC EQUATIONS

Early Treatment. It has been shown before that the altar-construction of the Vedic Hindus involved the solution of the complete quadratic equation

$$
\begin{equation*}
a x^{2}+b x=c, \tag{I}
\end{equation*}
$$

as well as of the pure quadratic $a x^{2}=c$. The equation that had to be solved was

$$
7 x^{2}+\frac{1}{2} x=7 \frac{1}{2}+m
$$

which gives

$$
x=\frac{1}{2}(\sqrt{841+112 m}-1),
$$

or $\quad x^{2}=\frac{1}{\mathrm{~N}^{8}\{ }\left\{84^{2}+112 m-2 \sqrt{84 \mathrm{I}+112 m}\right\}$.
Simplifying and neglecting higher powers of m, we get

$$
x^{2}=1+\frac{4 m}{29}, \text { approximately }
$$

Kâtyâyana gives the value ${ }^{2}$

$$
x^{2}=1+\frac{m}{7}
$$

${ }^{1}$ L, pp. 21f. See also $G T,{ }_{123}$. If the rate of interest be given as r per p per t months, then p is the argument, t the time and r the fruit. Cf. Part I, p. 204; also pp. $22 \rho-226$.
${ }^{2}$ Datta, Sulba, p. 167.

The geometrical solution of the simple quadratic equation

$$
4 b^{2}-4 d b=-c^{2}
$$

is found in the early canonical works of the Jainas ($; 00-$ 300 B. C.) and also in the Tattvarthâlhigama-sîtra of Umâsvâti (c. iso B. C.), ${ }^{1}$ as

$$
b=\frac{1}{2}\left(d-\sqrt{d^{2}-c^{2}}\right) .
$$

Bakhshâlî Treatise. The solution of the quadratic equation was certainly known to the author of the Bakhshâlî treatise (c. 200). In this work there are some problems of the following type: A certain person travels syojana on the first day and b yojana more on each successive day. Another who travels at the uniform rate of S yojana per day, has a start of t days. When will the first man overtake the second?

If x be the number of days after which the first overtakes the second, then we shall have
or

$$
\begin{gathered}
S(t+x)=x\left\{s+\left(\frac{x-1}{2}\right) b\right\}, \\
b x^{2}-\{2(S-s)+b\} x=2 t S .
\end{gathered}
$$

Thercfore

$$
x=\frac{\sqrt{\{2(S-s)+b\}^{2}+8 b t 5}+\{2(S-s)+b\}}{2 b},
$$

which agrees exactly with the solution as stated in the Bakhshâlî treatise.
"The daily travel [S] diminished by the march of the first day [s] is doubled; this is increased by the commun increment [b]. That (sum) multiplied by itself is designated \{as the ksepa quantity \}. The product of the daily

[^105]travel and the start [t] being multiplied by eight times the common increment, the kesepa quantity is added. The square-root of this $\{$ is increased by the $k s c p a$ quantity; the sum divided by twice the common increment will give the required number of days \}."1

Nearly the whole of the detailed working of the particular example in which $S=5, t=6, s=3$ and $b=4$, is preserved. ${ }^{2}$ It is substantially as follows:

$$
\begin{aligned}
& S t=30 ; S-s=\{-3=2 ; \quad 2(S-s)+b=8 ; \\
& \{2(S-s)+b\}^{2}=64 ; 8 S t=\frac{240 ;}{} 8 S t b=960 ;\{2(S-s) \\
& +b\}^{2}+8 . t b=1024 ; \quad \sqrt{1024}=32 ; \quad 32+8=40 ;
\end{aligned}
$$ $40 \div 8=5=x$.

For another probleni ${ }^{3} S=7, t=s, s=s, b=3$; then

$$
x=\frac{7+\sqrt{88}}{6} .
$$

The formula for determining the number of terms (n) of an A.P. whose first term (a), common difference (b) and sum (s) are known, is statcd in the form

$$
n=\frac{\sqrt{8 b s}+(2 a-b)^{2}-(2 a-b)}{2 b}
$$

The working of the particular cxample in which $s=60$. $a=\mathrm{I}, b=\mathrm{I}$ is preserved substantially as follows : ${ }^{4}$
$8 b s=480 ; 2 a=2 ; 2 a-b=1 ; \quad(2 a-b)^{2}=1 ;$
$8 b s+(2 a-b)^{2}=481 ; n=\frac{1}{2}\left(-1+\sqrt{4^{81}}\right)$, etc.
Âryabhata I. To find the number of terms of an A.P., Âryabhatal (499) gives the following rulc:
${ }^{1}$ BMs, Folio 5, recto.
${ }^{2}$ BMIs, Folic 5, verso; Compare also Kaye's Introduction, Pp. 37, 4s.
${ }^{3} B M s$, Felio 6, recto and verso.
${ }^{4}$ BMs, Folio $6 s$ verso. Working of this example has been continued on folios 56 , verso and recto, and 64, recto.
"The sum of the series multiplied by eight times the common difference is added by the square of the difference between twice the first term and the common difference; the square-root (of the result) is diminished by twice the first term and (then) divided by the common difference: half of this quotient plus unity is the number of terms." ${ }^{1}$

That is to say,

$$
n==\frac{1}{2}\left\{\frac{\sqrt{8 b s+(2 a-b)^{2}}-2 a}{b}+1\right\} .
$$

The solution of a certain interest problem involves the solution of the quadratic

$$
t x^{2}+p x-A p==0
$$

Aryabhata gives the value of x in the form ${ }^{2}$

$$
x=\frac{\sqrt{-1 p t+(p / 2)^{2}}-p / 2}{t}
$$

Though Aryabhata I has nowhere indicated any method of solving the quadratic, it appears from the above two forms that he followed two different methods in order $t \cdot$ make the unknown side of the equation $a x^{2}+b x=c$, a perfect square. In one case he multiplied both the sides of the equation by $4 a$ and in the other simply by a.

Brahmagupta's Rules. Brahmagupta (628) has given two specific rules for the solution of the quadratic. His first rule is as follows :
"The quadratic: the absolute quantities multiplied by four times the coefficient of the square of the unknown are increased by the square of the coefficient of the middle (i.e., unknown); the square-root of the result being diminished by the coefficient of the middle

$$
\begin{aligned}
& { }^{1} A, \text {, ii. } 20 . \\
& { }_{2}^{A} \text {, ii. } 25 \text {; vide Part I, pp. } 219 \text { f. }
\end{aligned}
$$

and divided by twice the coefficient of the square of the unknown, is (the value of) the middle.' ${ }^{1}$

$$
\text { i.e., } \quad x=\sqrt{4 a c+b^{2}}-b
$$

The second rule runs as:
"The absolute term multiplied by the coefficient of the square of the unknown is increased by the square of half the coefficient of the unknown; the square-ront of the result diminished by half the coefficient of the unknown and divided by the coefficient of the square of the unknown is the unknown." ${ }^{2}$

$$
\text { i.e., } \quad x=\sqrt{a c}+\left(1^{2}\right)^{2}-(b / 2) .
$$

The above two method: if Brahmagupta are identical with those employed before him by Aryabhaṭa I (499). 'The root of the quadratic equation for the number of terms of an A.P. is given by Brahmagupta in the first form: ${ }^{3}$

$$
n=\frac{\sqrt{8 b s+(2 a-b)^{2}}-(2 a-b)}{2 b} .
$$

For the solution of the quadratic Brahmagupta uses also a third formula which is similar to the one now commonly used. Though it has not been expressly described in any rule, we find its application in a few
${ }^{1}$ Br. $S p S i$, xviii. 44. It will be noted that in this rule Brahmagupta has employed the term mathya (middle) to imply the simple unknown as well as its coefficient. The original of the term is doubtless connected with the mode of writing the quadratic equation in the form

$$
a x^{2}+b x+0=0 x^{2}+o x+c,
$$

so that there are three terms on each side of the equation.
${ }^{2} B r S p S i$, xviii. $45 . \quad{ }^{3} B r S p S i$, xii. 18.
instances. One of them is an interest problem: A certain sum (p) is lent out for a period $\left(t_{1}\right)$; the interest accrued (x) is lent out again at this rate of interest for another period $\left(t_{2}\right)$ and the total amount is A. Find x.

The equation for determining x is

$$
\frac{t_{2}}{p t_{1}} x^{2}+x=A
$$

Hence, we have

$$
x=\sqrt{\left(\frac{p t_{1}}{2 t_{2}}\right)^{2}+\frac{A p t_{1}}{t_{2}}-\frac{p t_{1}}{2 t_{2}}} ;
$$

which is exactly the form in which Brahmagupta states the result. ${ }^{1}$

There is a certain astronomical problem which involves the quadratic equation ${ }^{2}$

$$
\left(7^{2}+a^{2}\right) x^{2} \mp 24 a p x=144\left(\frac{\mathrm{R}^{2}}{2}-p^{2}\right)
$$

where $a=\operatorname{agra} \hat{a}$ (the sine of the amplitude of the sun), $b=$ palabba (the equinoctial shadow of a gnomon 12 anguli long), $\mathrm{R}=$ radius, and $x=$ konaśaniku (the sine of the altitude of the sun when his altitude is 45°). Dividing out by $\left(7 x+a^{2}\right)$, we have

$$
x^{2} \mp 2 m x=n \text {, }
$$

where

$$
m=\frac{12 a p}{7^{2}+a^{2}}, n=\frac{144\left(\mathrm{R}^{2} / 2-p^{2}\right)}{7^{2}+a^{2}}
$$

Therefore, we have

$$
x=\sqrt{m^{2}+n} \pm m,
$$

as stated by Brahmagupta. This result is given also in the Sûryasiddbânta ${ }^{3}$ (c. 300) and by Srîpati (1039). ${ }^{4}$

[^106]Srî̀dhara's Rule. Srîdhara (c. 750) expressly indicates his method of solving the quadratic equation. His treatise on algebra is now lost. But the relevant portion of it is preserved in quotations by Bhâskara $1 I^{1}$ and others. ${ }^{2}$ Srîdhara's method is :
"Multiply both the sides (of an equation) by a known quantity equal to four times the coefficient of the square of the unknown; add to both sides a known quantity equal to the square of the (original) coefficient of the unknown: then (extract) the root." ${ }^{3}$

That is, to solve $a x^{2}+b x=c$, we have

$$
4 a^{2} x^{2}+4 a b x=4 a c
$$

or
'Thercfore

$$
(2 a x+b)^{2}=4 a c+b^{2}
$$

$$
2 a x+b=\sqrt{4 a c}+b^{2}
$$

Hence

$$
x=\frac{\sqrt{4 a c+b^{2}}-b}{2 a}
$$

An application of this rule is found in Sridhara's Trisatika, in connection with finding the number of terms of an A.P. ${ }^{4}$
i.e., $\quad n=\sqrt{ } 8 b s+(2 a-b)^{2}-2 a+b$,
${ }^{1} \mathrm{BBi}$, p. 61.
${ }^{2}$ Jñânarâja (1503) in his Bíjagunita and Súryadâsa (1541) in his commentary on Bhâskara's Bîjaganitu.

3 "Caturàhatavargasamai rûpaị̣ pakṣadvayam guṇayet, Avyaktavargarûpairyuktau pakṣau tato mûlam.".
This is the reading of Srîdhara's rule as stated by Jinânarâja and Súryadâsa and accepted also by Sudhakara Dvivedi. But according to the reading of Krṣna (c. 1580) and Râmakrṣna (c. 1648), which has been accepted by Colebrooke, the second line of the verse should be
"Pûrvàvyaktasya kṛteh samarûpâṇi kṣipet tayoreva"
or "add to them known quantities equal to the square of the original coefficient of the unknown."
${ }^{4}$ Tris', R. 4 I.
where a is the first term, b the common difference and s the sum of n terms.

Mahâvira. The only work of Mahâvira (850) which is available now is the Ganita-sàra-samंgraba. As it is admittedly devoted to arithmetic we cannot expect to find in it a rule for solving the quadratic. But there are in it several problems whose solutions presuppose a knowledge of the roots of the quadratic. One problem is as follows:
"Onc-fourth of a herd of camcls was seen in the forest; twice the square-root of the herd had gone to the mountain-slopes; three times five camcls were on the hank of the river. What was the number of those camels?" ${ }^{1}$

If x be the number of camels in the herd, then

$$
\frac{1}{4} x+2 \sqrt{ } x+15=x
$$

Or, in general, the equation to be solved is

$$
\begin{aligned}
& \frac{a}{b} x+c \sqrt{x}+d=x \\
& \left(1-\frac{a}{b}\right) x-c \sqrt{x}=d
\end{aligned}
$$

Mahâvîra gives the following rule for the solution of this equation:
"Half the coefficient of the root (of the unknown) and the absolute term should be divided by unity minus the fraction (i.e., the coefficient of the unknown). The square-root of the sum of the square of the coefficient of the root (of the unknown) and the absolute term (treated as before) is added to the coefficient of the root (of the unknown treated as before). The sum squared is the (unknown) quantity in this mûla type of problems." ${ }^{2}$

$$
{ }^{1} \text { GSS, iv. } 34 . \quad 2 \text { GSS, iv. } 33
$$

i.e., $\quad x=\left\{\frac{c / 2}{1-a / b}+\sqrt{\left(\frac{c / 2}{1-a / b}\right)^{2}+\frac{d}{1-a, b}} i^{2}\right.$,
which shows that Mahâvîra employed the modern rule for finding the root of a quadratic. His solution for the interest problem treated by Brahmagupta is exactly the same as that of the latter. ${ }^{1}$ We shall presently show that he knew that the quadratic has two roots.

Āryabhaṭa II. The formula for the number of terms (n) of an A.P. whose first term (a), common difference (b) and sum (s) are known is given by Aryabhaṭa II (c. 950) as follows : ${ }^{2}$

$$
n=\sqrt{2 b s+(a-b / 2)^{2}-a+b / 2},
$$

which shows that for solving the quadratic he followed the second method of A ryabhaṭa I and Brahmagupta.

Srîpati's Rules. Srîpati (1039) indicates two methods of solving the quadratic. There is a lacuna in our manuscript in the rule describing the first method, but it can be easily recognised to be the same as that of Srîdhara.
"Multiply by four times the coefficient of the square of the unknown and add the square of the cocfficient of the unknown; (then extract) the square-root......... divided by twice the coefficient of the square of the unknown, is said to be (the value of) the unknown."
"Or multiplying by the coefficient of the square of the unknown and adding the square of half the coefficient of the unknown, (extract) the square-root. Then (proceeding) as before, it is diminished by half the coefficient of the unknown and divided by the coefficient

[^107]of the square of the unknown. This (quotient) is said to be (the value of) the unknown." ${ }^{1}$

> i.e.,
$a x^{2}+b x=c$,
or

$$
a^{2} x^{2}+a b x+(b / 2)^{2}=a c+(b / 2)^{2}
$$

Therefore
Hence

$$
\begin{aligned}
& a x+b / 2=\sqrt{a c+(b / 2)^{2}} \\
& x=\frac{\sqrt{a c+(b / 2)^{2}}-b / 2}{a} .
\end{aligned}
$$

Bhâskara II's Rules. Bhâskara II (1150) says :
"When the square of the unknown, etc., remain, then, multiplying the two sides (of the equation) by some suitable quantities, other suitable quantities should be added to themso that the side containing the unknown becomes capable of yielding a root (pada-prada). The equation should then be formed again with the root of this side and the root of the known side. Thus the value of the unknown is obtained from that equation." ${ }^{2}$

This rule has been further elucidated by the author in his gloss as follows:
"When after perfect clearance of the two sides, there remain on one side the square, etc., of the unknown and on the other side the absolute term only, then, both the sides should be multiplied or divided by some suitable optional quantity; some equal quantities should further be added to or subtracted from both the sides so that the unknown side will become capable of yielding a root. The root of that side must be equal to the root of the absolute terms on the other side. For, by simultancous equal additions, etc., to the two equal sides the equality remains. So forming an equation again with these roots the value of the unknown is found." ${ }^{3}$

[^108]It may be noted that in his treatise on arithmetic Bhâskara II has always followed the modern method of dividing by the coefficient of the square of the unknown. ${ }^{1}$

Jñânarâja (1503) and Gaṇeśa (1545) describe the same general methods for solving the quadratic as Bhâskara 1 I.

Elimination of the Middle Term. The method of solving the quadratic was known amongst the Hindu algebraists by the technical designation madbyamâbarana or "The Elimination of the Middle" (from madly yama $=$ middle and âbarana $=$ removal, or destroying, that is, elimination). The origin of the name will be easily found in the principle underlying the method. By it a quadratic equation which, in its general form, contains three terms and so has a middle term, is reduced to a pure quadratic equation or a simple equation involving only two terms and so having no middle term. Thus the middle term of the original quadratic is eliminated by the method generally adopted for its solution. And hence the name. Bhâskara II has observed, "It is also specially designated by the learned teachers as the madhyamâbarana. For by it, the removal of one of the two ${ }^{2}$ terms of the quadratic, the middle one, (takes place). ${ }^{\prime 3}$ 3 The name is, however, employed also in an extended sense so as to embrace the methods for solving the cubic and the biquadratic, where also

${ }^{1}$ L, pp. 1 fff.

${ }^{2}$ Referring to the two terms on the unknown side of the complete quadratic. Or the text varga-râsầeleasya may be rendered as "of one out of the unknown quantity and its square." According to the commentators Sûryadâsa (1541) and Krṣna (1580), it implies "of one between the two square terms," wiz., the square of the unknown and the square of the absolute number.
${ }^{8}$ BBi, p. 59.
certain terms are eliminated. It occurs as early as the works of Brahmagupta (628). ${ }^{1}$

Two Roots of the Quadratic. The Hindus recognised early that the quadratic has generally two roots. In this connection Bhâskara II has quoted the following rule from an ancient writer of the name of Padmanâbha whose treatise on algebra is not available now:
"If (after extracting roots) the square-root of the absolute side (of the quadratic) be less than the negative absolute term on the other side, then taking it negative as well as positive, two values (of the unknown) are found." ${ }^{2}$

Bhâskara points out with the help of a few specific illustrations that though these double roots of the quadratic are theoretically correct, they sometimes lead to incongruity and hence should not always be accepted. So he modifies the rule as follows:
"If the square-root of the known side (of the quadratic) be less than the negative absolute term occurring in the square-root of the unknown side, then making it negative as well as positive, two values of the unknown should be determined. This is (to be done) occasionally." ${ }^{3}$

Example 1. "The eighth part of a troop of monkeys, squared, was skipping inside the forest, being delightfully attached to it. Twelve were seen on the hill delighting in screaming and rescreaming. How many were they ?" ${ }^{4}$
> ${ }^{1}$ BrSpSi, xviii. 2.
> 2 "Vyaktapakşasya cenmûlamanyapakṣarnarûpatah
> Alpam dhanarnagam krttvâ dvividhotpadyate mitih" $-B B i$, p. 67.
${ }^{8} B B i$, p. 59 ; also compare the author's gloss on the same (p. 6r).
${ }^{4}$ BBi, p. 6 g .

Solution. "Here the troop of monkeys is x. The square of the eighth part of this together with 12, is equal to the troop. So the two sides are ${ }^{1}$

$$
\frac{1}{64} x^{2}+0 x+12=0 x^{2}+x+0
$$

Reducing these to a common denominator and then deleting the denominator, and also making clearance, the two sides become

$$
x^{2}-64 x+0=0 x^{2}+0 x-768
$$

Adding the square of 32 to both sides and (extracting) square-roots, we get

$$
x-32= \pm(0 x+16)
$$

In this instance the absolute term on the known side is smaller than the negative absolute term on the side of the unknown; hence it is taken positive as well as negative; the two values of x are found to be 48,16 ."

Example 2. "The fifth part of a troop of monkeys, leaving out three, squared, has entered a cave; one is seen to have climbed on the branch of a tree. Tell how many are they ?" ${ }^{2}$

Solution. "In this the value of the troop is x; its fifth part less three is $\frac{1}{3} x-3$; squared, $\frac{1}{25} x^{2}-\frac{6}{3} x+9$; this added with the visible (number of monkeys), $\frac{1}{25} x^{2}-\frac{6}{3} x+10$, is equal to the troop. Reducing to a common denominator, then deleting the denominator and making clearance, the two sides become

$$
x^{2}-55 x+0=0 x^{2}+0 x-250 .
$$

Multiplying these by 4 , adding the square of 55 , and
${ }^{1}$ We have here followed the modern practice of writing the two sides of an equation in a line with the sign of equality interposed, at the same time, preserving the other salient feature of the Hindu method of indicating the absent terms, if any, by putting zeros as their coefficients.
${ }^{2} B B i, p p .6 ; \mathrm{ff}$.
extracting roots, we get

$$
2 x-55= \pm(0 x+45)
$$

In this case also, as in the previous, two values are obtained: 50,5 . But, in this case, the second (value) should not be accepted as it is inapplicable. People bav'e no faith in the known becoming negative."

The implied significance of this last observation is this: If the troop consists of only 5 monkeys, its fifth part will be i monkey. How can we then leave out 3 monkeys? Again, how can the remainder be said to have entered the cave? It seems to have also a wider significance.

Example 3. "The shadow of a gnomon of twelve fingers being diminished by a third part of the hypotenuse, becomes equal to fourteen fingers. O mathematician, tell it quickly."

Solution. "Here the shadow is (taken to be) x. This being diminished by a third part of the hypotenuse becomes equal to fourteen fingers. Hence conversely, fourteen being subtracted from it, the remainder, a third of the hypotenuse, is $x-14$. Thrice this, which is the hypotenuse, is $3 x-42$. The square of it, $9 x^{2}-252 x+1764$, is equal to the square of the hypotenuse, $x^{2}+144$. On making equi-clearance, the two sides become

$$
8 x^{2}-252 x+0=0 x^{2}+0 x-1620
$$

Multiplying both these sides by 2 and adding the square of 63 , the roots are

$$
4 x-63= \pm(0 x+27)
$$

On forming an equation with these sides again, and (proceeding) as before, the values of x are $45 / 2,9$.

[^109](Thus) the value of the shadow is $45 / 2$ or 9 . The second value of the shadow is less than 14, so, on account of impracticability, it should not be accepted. Hence it has been said 'twofold valucs occasionally.' This will be an exception to what has been stated in the algebra of Padmanâbha, viz..."

Known to Mahâvîra. It has been stated bcfore that Mahâvîra (850) knew that the quadratic has two roots. We shall now substantiate it by the following rules and illustrations from his work.
"One-sixtecnth of a collection of peacocks multiplied by itself, was on the mango trec ; $\frac{1}{9}$ of the remainder multiplied by itself together with 14 were on the tamala tree. How many were they ?" ${ }^{1}$

If x be the number of peacocks in the collection, the problem leads to the quadratic equation

$$
\frac{x}{16} \times \frac{x}{16}+\frac{15 x}{16 \times 9} \times \frac{15 x}{16 \times 9}+14=x .
$$

This is a particular case of the type of equations contemplated by the author

$$
\frac{a}{b} x^{2}-x+c=0
$$

The following rule has been given for its solution.
"The quotient of its denominator divided by its numerator, less four times the remainder, is multiplied by that denominator (as divided by the numerator). The square-root of this should be added to and subtracted from that denominator (as divided by the numerator); half that is the total quantity."

Thus

$$
x=\frac{b / a \pm \sqrt{(b / a-4 c) b / a}}{2} .
$$

$$
{ }^{1} \text { GSS, iv. } 59 . \quad{ }^{2} \text { GSS, iv. } 57 .
$$

Certain other problems ${ }^{1}$ lead to equations of the type

$$
\left(\begin{array}{l}
a \\
b
\end{array} x \mp d\right)^{2}+c=x .
$$

The solution is given as
"Half the denominator divided by its numerator is increased or diminished by the quantity to be subtracted or added. The square of this is diminished by the square of the quantity to be subtracted or added and by the remainder. The square-root of the result added to or subtracted from the square-root (of the square obtained before) and divided by the fractional part, will be the value (of the unknown)."2
i.e., $\left.x=\left\{\left(\frac{b}{2 a} \pm d\right) \pm \sqrt{\frac{b}{2 a}} \pm d\right)^{2}-d^{2}-c\right\} \div \frac{a}{b}$.

We need not add further instances to prove that Mahâvîra recognised both the roots of a quadratic equation. ${ }^{3}$ There are, however, a few problems in which he has taken into consideration only one of the roots. ${ }^{4}$ For instance, take the equation on page 66,

$$
\begin{aligned}
& \frac{1}{4} x+2 \sqrt{x}+15=x \\
& \frac{3}{4} x-2 \sqrt{x}=15
\end{aligned}
$$

or
Therefore

$$
\begin{aligned}
\sqrt{x} & =\left\{\frac{4}{3} \pm \sqrt{\left(\frac{4}{3}\right)^{2}+\frac{4.15}{3}}\right\} \\
\sqrt{x} & =\left(\begin{array}{l}
4 \\
3
\end{array} \frac{13^{4}}{}\right)=6 \text { or }-3_{3}^{0} . \\
x & =36 .
\end{aligned}
$$

The root can not be negative, hence the negative value of the radical is neglected in the rule.

Brahmagupta. The existence of two roots of a

[^110]quadratic equation appears to have been known also to Brahmagupta (628). In illustration of his rules for the solution of the quadratiz, he has stated two problems involving practically the same equation.
(1) "The square-root of the residue of the revolution of the sun less 2 is diminished by 1 , multiplied by 10 and added by 2 : when will this be equal to the residue of the revolution of the sun less 1 , on Wednesday ?"
(2) "When will the square of one-fourth the residue of the exceeding months less three, be equal to the residue of the exceeding months ?"2

Following Prthûdakasvâmî let us take in Example I the residue of the revolution of the sun to be $x^{2}+2$; then by the question

$$
\left.\begin{array}{rl}
10(x-1)+2 & =x^{2}+1 \\
\text { or } & x^{2}-10 x
\end{array}\right)=-9 .
$$

In Example 2, put $4 x$ for the residue of the exceeding months; then

$$
\begin{aligned}
& (x-3)^{2}=4 x \\
& x^{2}-10 x=-9
\end{aligned}
$$

Now, by the second rule of Brahmagupta, retaining both the signs of the radical, we get

$$
x=s \pm \sqrt{25-9}=9 \text { or } \mathrm{I}
$$

As shown by Prthûdakasvâmî, the first value is taken for Exampie I and second value for Example 2. Thus it appears that Brahmagupta uses sometimes the positive and at other times the negative sign with the radical. Hence it seems that Brahmagupta knew that a quadratic equation has two roots, though from considerations of utility in his problems, he retains only one of them.

[^111]
ir. EQUATIONS OF HIGHER DEGREES

Cubic and Biquadratic. The Hindus did not achieve much in the solution of the cubic and biquadratic equations. Bhâskara II (IISO) attempted the application of the method of the madhyamâbarana (elimination of the middle) to those equations also so as to reduce them by means of advantageous transformations and introduction of auxiliary quantities to simple and quadratic equations respectively. He thus anticipated one of the modern methods of solving the biquadratic. "If, however," observes Bhàskara II, "due to the presence of the cube, biquadrate, etc., the work (of reduction) cannot proceed any further, after the performance of such operations, for want of a root of the unknown side (of an equation), then the value of the unknown must be obtained by the ingenuity (of the mathematician)." ${ }^{1}$ He has given two examples, one of the cubic and the other of the biquadratic, in which such reduction is possible.

Example I . "What is that number, O learned man, which being multiplied by twelve and increased by the cube of the number, is equal to six times the square of the number added with thirty-five.

Solution. "Here the number is x. This multiplied by twelve and increased by the cube of the number becomes $x^{3}+12 x$. It is equal to $6 x^{2}+35$. On making clearance, there appears on the first side $x^{3}-6 x^{2}$ +12x; on the other side 35. Adding negative eight to both the sides and extracting cube-roots, we get

$$
x-2=0 x+3 .
$$

And from this equation the number is found to be $9 .{ }^{\prime 2}$ Example 2. "What is that number which being

$$
{ }^{1} \mathrm{BBi}, \text { p. } 61 .
$$

${ }^{2} B B i$, p. 64.
multiplied by 200 and added to the square of the number, and then multiplied by 2 and subtracted from the fourth power of the number will become one myriad less unity? Tell that number if thou be conversant with the operations of analysis.

Solution. "Here the number is x; multiplied by 200 it becomes $200 x$; added to the square of the number, becomes $x^{2}+200 . x$; this being multiplied by two, $2 x^{2}+400 x$; by this being diminished the fourth power of the number, namely, this x^{4}, becomes $x^{4}-2 x^{2}$ - 400x: This is equal to a myriad less unity. Equiclearance having been made, the two sides will be

$$
x^{4}-2 x^{2}-400 x=0 x^{4}+0 x^{2}+0 x+9999
$$

Here on adding four hundred x plus unity to the first side, the root can be extracted, but on adding the same to the other side, there will be no root of it. Thus the work (of reduction) does not proceed. Hence here ingenuity (is called for). Here adding to both the sides four times the square of x, four hundred x and unity and then extracting roots, we get

$$
x^{2}+0 x+1=0 x^{2}+2 x+100 .
$$

Again, forming equation with these and proceeding as before, the value of x is obtained as II. In similar instances the value of the unknown must be determined by the ingenuity of the mathematician." 1

Higher Equations. Mahâvìra considered certain simple equations of higher degrees in connection with the treatment of the geometric series. They are of the type
(i) $a x^{n}=q$,
(ii) $a \frac{x^{n}-1}{x-1}=p$;
where a is the first term of a G. P., q its gunadbana, i.e., $(n+1)$ th term, p its sum and x the unknown common ratio.

To solve equation (i) Mahâvîra says, "That which on multiplication by itself as many times as the number of terms becr,mis equal to the gunadbana divided by the first term, is the common ratio." 1

$$
\text { i.e., } \quad x=\sqrt[n]{q} \bar{p}
$$

In other words x is the nth root of gip. But how to find such a root he does not attempt to indicate. His rule for solving an equation of the type (ii) is as follows:
"That by which the sum divided by the first term is divisible again and again, subtracting unity every time, is the common ratio."'

The method will be better understood from the solution of the following example:
"(Of a certain series in G. P.) the first term is 3, number of terms 6 and sum 4095. What is the common ratio ?"3

Thus
or

$$
\begin{gathered}
3 x^{x^{6}-1}=4095 \\
3\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)=4095
\end{gathered}
$$

a quintic equation. Here dividing 4095 by 3 we get 1365. Now let us try with the divisor 4; we have $(1365-1) / 4=34 \mathrm{I} ;(34 \mathrm{I}-1) / 4=85 ;(85-1) / 4=21$; $(21-\mathrm{I}) / 4=5 ;(5-\mathrm{I}) / 4=1 ;(\mathrm{I}-\mathrm{I}) / 4=0$. So the number 1369 is exhausted on 6 successive divisions by 4 , in the way indicated in the rule. Hence $x=4$. What suggested the method is clearly this:
$a^{\lambda^{n}-1} \underset{x-1}{x-1}=\frac{\lambda^{n}-1}{x-1} ; \frac{x^{n}-1}{x-1}-1=x\binom{\lambda^{n-1}-1}{x-1} ;$
${ }^{1}$ GSS, ii. 97.
${ }^{3}$ GSS, ii. ${ }^{2}$ GSS, i02; compare also Rangacarya's note thereto.
which is divisible by x. However, the solution is obtained in every case by trial only.

Mahâvîra has treated some equations of the following general type :

$$
\begin{aligned}
& a_{1} \sqrt{b_{1} x}+a_{2} \sqrt{b_{2}\left(x-a_{1} \sqrt{b_{1} x}\right)} \\
& \quad+a_{3} \sqrt{b_{3}\left\{\left(x-a_{1} \sqrt{b_{1} x}\right)-a_{2} \sqrt{\left.b_{2}\left(x-a_{1} \sqrt{ } b_{1} x\right)\right\}}\right.} \\
& \quad+\ldots+R=x ; \\
& \text { or }\left(x-a_{1} \sqrt{ } b_{1} x\right)-a_{2} \sqrt{b_{2}\left(x-a_{1} \sqrt{b_{1} x}\right)} \\
& \quad-a_{3} \sqrt{b_{3}\left\{\left(x-a_{1} \sqrt{b_{1} x}\right)-a_{2} \sqrt{\prime} b_{2}\left(x-a_{1} \sqrt{b_{1} x}\right)\right\}} \\
& \quad-\ldots=R .
\end{aligned}
$$

If there be r terms on the left hand side, then on rationalisation, we shall have an equation of 2^{τ} ch degree in \therefore By proper substitutions, the equation will be ultimately reduced to a quadratic equation of the form

$$
X-A \sqrt{B X}=R
$$

whose solution is given by Mahâvîra as

$$
X=\left\{\frac{A+\sqrt{A^{2}+4 R / B}}{2}\right\}^{2} \times B .
$$

This result has been termed by him, the "essence" (sircu) of the general equation. ${ }^{1}$ Mahâvîra gives two problems involving equations of the above type.
(1) "(Of a herd of elephants) nine times the squareroot of the two-thirds plus six times the square-root of the three-fifths of the remainder (entered the deep forest) ; (the remaining) 24 clephants with their round temples wet with the strcam of exuding ichor, were seen by me in a forest. How many were the elephants (in

[^112]the herd) ?" ${ }^{1}$
If x be the number of clephants in the herd, then by the statement of the problem

Put $y=x-9 \quad \sqrt{\frac{2 x}{3}}$; then the equation becomes

$$
y-6 \sqrt{3 y / 5}=24
$$

Therefore

$$
y=60 \text { or } 43^{8} .
$$

Hence

$$
x-9 \sqrt{\frac{2 x}{3}}=60
$$

whence

$$
N=150,24 .
$$

Again

$$
x-9 \sqrt{\frac{2 x}{3}}=48,
$$

whence

$$
x=\frac{8}{5}(61 \pm 3 \sqrt{385}) .
$$

Of the four values of x obtained above, only the value $x=150$ can satisfy all the conditions of the problem; others are inapplicable. 'That will explain why Mahâvira has retained in his solution only the positive sign of the radical.
(2) "Four times the squarc-root of the half of a collection of boars went into a forest where tigers were at play; twice the square-root of the tenth part of the remainder multiplied by 4 went to a mountain; 9 times the square-root of half the remainder went to the bank of a river; boars numbering seven times eight were seen in the forest. Tell their number." ${ }^{2}$

If x be the total number of boars in the collection,
$\left.4 \sqrt{x / 2}+8 \sqrt{1_{\delta}^{1}(x-4} \sqrt{x / 2}\right)$

$$
\begin{aligned}
& +9 \bigvee \frac{1}{\frac{1}{2}\left\{(x-4 \sqrt{x / 2})-8 \sqrt{1_{\sigma}^{\prime}(x-4 \sqrt{ } x / 2)}\right\}} \\
& +56=x .
\end{aligned}
$$

Put $y=x-4 \sqrt{ } x / 2$; then

$$
y-8 \sqrt{y / 10}-9 \sqrt{ }(y-8 \sqrt{y / 10}) / 2=56 .
$$

Again put $z=y-8 \sqrt{ } y / \mathrm{IO}$; then

$$
z-9 \sqrt{z / 2}=56
$$

Therefore $z=\left(\frac{9+\sqrt{81}+4.2 .56}{2}\right)^{2} \times \frac{1}{2}=128$.
Then

$$
y-8 \sqrt{y / 10}=128 ;
$$

whence $y=\binom{8+\sqrt{64}+10.4 .128}{2}^{2} \times{ }_{10}{ }_{0}=160$.
Again

$$
x-4 \sqrt{ } x / 2=160
$$

hence

$$
x=(4+\sqrt{16+4 \cdot 2 \cdot 160})^{2} \times \frac{1}{2}=200 .
$$

Note that according to the problem the positive value of the radical has always to be taken.

12. SIMULTANEOUS QUADRATIC EQUATIONS

Common Forms. Various problems involving simultaneous quadratic equations of the following forms have been treated by Hindu writers :

$$
\left.\left.\begin{array}{rlrl}
x-y & =d \tag{ii}\\
x y & =b
\end{array}\right\} \ldots \text { (i) } r \begin{array}{rlr}
x+y & =a \\
x^{2} y & =b
\end{array}\right\} \ldots(i i)
$$

For the solution of (i) Aryabhata I (499) states the following rule :
"The square-root of four times the product (of two quantities) added with the square of their difference, being added and diminished by their difference and halved gives the two multiplicands." 1
i.e., $\quad x-\frac{1}{2}\left(V^{\prime} d^{2}+4 b+d\right), y \cdots \frac{1}{2}\left(\sqrt{d^{2}+4} b-d\right)$.

Brahmagupta (628) says:
"The square-root of the sum of the squate of the difference of the residues and two squared times the product of the residues, being added and subtracted by the difference of the residues, and halved (gives) the desired residucs severally." ${ }^{2}$

Nârâyaṇa (1357) writes:
"The square-root of the square of the difference of two , quantitics plus four times their product is their sum." ${ }^{3}$
"The square of the difference of the quantities together with twice their product is equal to the sum of their squares. The square-root of this result plus twice the product is the sum." ${ }^{4}$

For the solution of (ii) the following rule is given by Mahâvîra (850) :
"Subtract four times the area (of a rectangle) from the square of the semi-perimeter; then by saikerambani ${ }^{5}$ between the square-root of that (remainder) and the semi-perimeter, the base and the upright are obtained." ${ }^{6}$
${ }^{1} A$, ii. 24.
${ }^{2}$ BrSpSi, xviii. 99.
${ }^{8}$ GK, i. 35.
4 GK, i. 36 .
${ }^{5}$ Given a and b, the process of sanikramana is the finding of half their sum and difference, i.e., $\frac{a+b}{2}$ and $\frac{a-b}{2}$ (see pp. 43f).
${ }^{3}$ GSS, vii. $129 \frac{1}{2}$.
i.e., $\quad x=\frac{1}{2}\left(a+\sqrt{a^{2}-4 b}\right), y=\frac{1}{2}\left(a-\sqrt{a^{2}-4 \bar{b}}\right)$.

Nâràyaṇa says:
"The square-root of the square of the sum minus four times the product is the difference." ${ }^{1}$

For (iii) Mahâvîra gives the rule :
"Add to and subtract twice the area (of a rectangle) from the square of the diagonal and extract the squareroots. By sankramana between the greater and lesser of these (roots), the side and upright (are found)." ${ }^{2}$

$$
\text { i.e., } \quad \begin{aligned}
\quad x & =\frac{1}{2}(\sqrt{c}+2 b+\sqrt{c-2 b}), \\
& y=\frac{1}{2}(\sqrt{ } c+2 b-\sqrt{c-2}-2 b) .
\end{aligned}
$$

For equations (iv) Aryabhaṭa I writes:
"From the square of the sum (of two quantities) subtract the sum of their squares. Half of the remainder is their product." ${ }^{3}$

The remaining operations will be similar to those for the equations (ii); so that

$$
x=\frac{1}{2}\left(a+\sqrt{2 c-a^{2}}\right), y=\frac{1}{2}\left(a-\sqrt{2 c-a^{2}}\right) .
$$

Brahmagupta says :
"Subtract the square of the sum from twice the sum of the squares; the square-root of the remainder being added to and subtracted from the sum and halved, (gives) the desited residues." 4

Mahâvira, ${ }^{5}$ Bhaskara 11^{6} and Nàrâyana ${ }^{7}$ have also treated these equations.

Nârâyana has given two other forms of simul-
${ }^{1}$ GK, i. 39.
${ }^{2}$ GSS, vii. $127 \frac{1}{2}$.
3 A, ii. 23.
${ }^{6}$ GSS, vii. $125 \frac{1}{2}$.
${ }^{4} \mathrm{BrSpSi}$, xviii. 9^{8}.
${ }^{7}$ GK, i. 37.
tancous quadratic cquations, namely,

$$
\left.\begin{array}{rl}
x^{2}+y^{2} \therefore c \\
x-y=d
\end{array}\right\} \cdots(v) \quad x^{2}-y^{2}=m, ~(v i)
$$

For the solution of (ν) he gives the rule :
"The square-root of twice the sum of the squares decreased by the square of the difference is equal to the sum." ${ }^{1}$

$$
\text { i.e., } \quad x+y=\sqrt{2} c-d^{2}
$$

Thercfore
$x=\frac{1}{2}\left(\sqrt{2 c}-d^{2}+d\right), \quad y=\frac{1}{2}\left(\sqrt{2 c-d^{2}}-d\right)$.
For (wi) Nârâyaṇa writes :
"Suppose the square of the product as the product (of two quantities) and the difference of the squares as their difference. From them by sutikrama will be obtained the (square) quantities. Their square-roots severally will give the quantities (required)."2

We have

$$
\left.\begin{array}{r}
x^{2}-y^{2}=m \\
x^{2} y^{2}=b^{2}
\end{array}\right\}
$$

These are of the form (i). Therefore

$$
x^{2}=\frac{1}{2}\left(\sqrt{m^{2}+4 b^{2}}+m\right), \quad y^{2}=\frac{1}{2}\left(\sqrt{m^{2}+4 b^{2}}-m\right) .
$$

Whence we get the values of x and y.
Rule of Dissimilar Operations. The process of solving the following two particular cases of simultaneous quadratic equations was distinguished by most Hindu mathematicians by the special designation visamakerrma ${ }^{3}$ (dissimilar operation):
${ }^{1} G K$, i. $33 . \quad{ }^{2}$ GiK, i. 34.
${ }^{3}$ The name visama-karma originated obviously in contradistinction to the name saikeramana. This is evident from the term rísama-sañkramanu used by Mahâvîra for visama-karma.

$$
\left.\left.\begin{array}{rl}
x^{2}-y^{2} & =m \\
x-y^{\prime} & =n
\end{array}\right\} \ldots \text { (i) } \begin{array}{rl}
x^{2}-y^{2} & =m \\
x+y & =p
\end{array}\right\} \ldots \text { (ii) }
$$

These equations are found to have been regarded by them as of fundamental importance. The solutions given are:

$$
\begin{aligned}
& \text { for (i) } \quad x=\frac{1}{2}\left(\begin{array}{l}
m \\
n
\end{array}+n\right), \quad y=\frac{1}{2}\left(\frac{m}{n}-n\right) \text {; } \\
& \text { for (ii) } \quad x==\frac{1}{2}\left(p+\frac{m}{p}\right), \quad y=\frac{1}{2}\left(p-\frac{m}{p}\right) .
\end{aligned}
$$

Thus Brahmagupta says:
"The difference of the squares (of the unknowns) is divided by the difference (of the unknowns) and the quotient is increased and diminished by the difference and divided by two; (the results will be the two unknown quantities); (this is) dissimilar operation." ${ }^{1}$

The same rule is restated by him on a different occasion in the course of solving a problem.
"If then the difference of their squares, also the difference of them (are given): the difference of the squares is divided by the difference of them, and this (latter) is added to and subtracted from the quotient and then divided by two; (the results are) the residues; whence the number of elapsed days (can be found)." ${ }^{2}$

Mahâvîra states:
"The sankramana of the divisor and the quotient of the two quantities is dissimilar (operation); so it is called by those who have reached the end of the ocean of mathematics." ${ }^{3}$

Similar rules are given also by other writers. ${ }^{4}$
${ }^{1}$ BrSpSi, xviii. 36.
${ }^{2}$ BrSpSi, xviii. 97.
${ }^{3}$ GSS, vi. 2.
4 MAi, xv. 22; Si Se, xiv. 13; L, pp. 13, 37; GK, i. 32.

Mahâvîra's Rules. Mahâvîra (890) has treated certain problems involving the simultaneous quadratic cquations :

$$
\begin{array}{ll}
u+x=a, & u r w=a x, \\
u+y=\cdots . & u s w=a y .
\end{array}
$$

Hcre

$$
\frac{r}{s}=-\frac{a}{y} \quad b-u
$$

Therefore

$$
u=\frac{r b}{r-s}=s
$$

Hence $x=\binom{a-b}{r-s} r, y^{\prime} \cdots\left(\frac{a-b}{r-s}\right) s, n^{\prime} \ldots\left(\frac{a-b}{r b-s b}\right) \alpha$.
In the above equations x, y are the interests accrucd on the principal 4 in the periods r, s sespectively and z^{\prime} is the rate of interest per α.

Mahâvira states the result thus:
"The difference of the mixed sums $[a, h]$ multiplied by each other's periods $[r, s]$, being divided by the difference of the periods, the quotient is known as the principal [4$]$." ${ }^{1}$

Again, there are problems involving the equations:

$$
\begin{array}{ll}
u+x=p, & u x w=\alpha m, \\
u+y=q . & u y=\alpha,
\end{array}
$$

Where x, y are the periods for which the principal z is lent out at the rate of interest w per α and m, n are the respective interests.

Here

$$
\frac{m}{n}=\frac{x}{y}=\frac{p-u}{q-u}
$$

Therefore

$$
u=\begin{gathered}
m q-n p . \\
m-n
\end{gathered}
$$

Hence

$$
\begin{aligned}
& x=\left(\frac{p-q}{m-n}\right) m, \quad y=\left(\frac{p-q}{m-n}\right) n, \\
& u=(m-n)^{2} \\
& u^{2}=(p-q)(m q-n p) .
\end{aligned}
$$

Mahâvîra gives the rule :
"On the difference of the mixed sums multiplicd by each other's interests, being divided by the difference of the interests, the quotient, the wise men say, is the principal."

13. INDETERMINATE EQUATIONS OF THE FIRST DEGREE

General Survey. The earliest Hindu algebraist to give a treatment of the indeterminate equation of the first degree is Aryabhaṭa I (born 476). He gave a methed for finding the general solution in positive integers of the simple indeterminate equation

$$
b y-a x=c
$$

for integral values of a, b, c and further indicated how to extend it to get positive integral solutions of simultaneous indeterminate equations of the first degrec. His disciple, Bhâskara I ($\varsigma 22$), showed that the same method might be applied to solve $b y-a x-\cdots-c$ and further that the solution of this equation would follow from that of $b y-a x=-1$. Brahmagupta and others simply adopted the methods of Aryabhaṭa I and Bhaskara 1. About the middle of the tenth century of the Christian Era, Aryabhata II improved them by pointing out how the operations can in certain cases be abridged considerably. He also noticed the cases of failure of the methods for an equation of the form

$$
{ }^{1} \text { GSS, vi. } \varsigma \mathrm{I} .
$$

$b y-a x= \pm c$. These results reappear in the works of later writers. ${ }^{1}$

Its Importance. It has been observed before that the subject of indeterminate analysis of the first degree was considered so important by the ancient Hindu algebraists that the whole science of algebra was once named after it. That high estimation of the subject continued undiminished amongst the later Hindu mathematicians. Aryabhata II enumerates it distinctively along with the sciences of arithmetic, algebra, and astronomy. ${ }^{2}$ So did Bhâskara 11 and others. As has been remarked by Ganeśa, ${ }^{3}$ the separate mention of the subject of indeterminate analysis of the first degree is designed to emphasize its difficulty and importance. On account of its special importance, the treatment of this subject has been included by Bhâskara II in his treatise of arithmetic also, though it belongs particularly to algebra. ${ }^{4}$ It is also noteworthy that there is a work exclusively devoted to the treatment of this subject. Such a special treatise is a very rate thing in the mathematical literature of the ancient Hindus. This work, entitled Kuttâkâra-síromani, ${ }^{5}$ is by onc Devarâja, a commentator of Aryabhaṭa I.
${ }^{1}$ For "India's Contribution to the Theory of Indeterminate Equations of the First Degree," see the comprehensive article of Professor Sarada Kanta Ganguly in Journ. Ind. Math. Soc., XIX, 1931, Notes and Questions, pp. 110-120, 129-142; sce also XX, 1932, Notes and Questions. Compare also the Dissertation of D. M. Mehta on "Theory of simple continued 1...ctions (with special reference to the history of Indian Mathematics)."
${ }^{2} M S i$, i. ..
${ }^{3}$ Vide his commentary on the Lílâratí of Bhâskara II
${ }^{4}$ Bhâskara's treatment of the pulveriser in his Bîjaganita is repeated nearly word for word in his Lâlârafi.
${ }^{5}$ There are four manuscript.copies of this work in the Oriental Library, Mysore.

Three Varieties of Problems. Problems whose solutions led the ancient Hindus to the investigation of the simple indeterminate equation of the first degree were distinguished broadly into three varieties. The problem of one variety, is to find a number (N) which being divided by two given numbers (a, b) will leave two given remainders $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$. Thus we have

$$
N=a x+\mathrm{R}_{1}=b y+\mathrm{R}_{2} .
$$

Hence

$$
b y-a x=\mathrm{R}_{1}-\mathrm{R}_{2} .
$$

Putting
we get

$$
c=R_{1} \sim R_{2},
$$

the upper or lower sign being taken according as R_{1} $>$ or $<R_{2}$. In a problem of the second kind we are required to find a number (x) such that its product with a given number (α) being increased or decreased by another given number (γ) and then divided by a third given number (β) will leave no remainder. In other words we shall have to solve

$$
\frac{\alpha \dot{N}+\gamma}{\beta}=y
$$

in positive integers. The third variety of problems similarly leads to equations of the form

$$
b y+a x= \pm c .
$$

Terminology. The subject of indeterminate analysis of the first degree is gencrally called by the Hindus kuttaka, kuttâkâra, kuttîkâra or simply kutta. The names kuttâkâra and kutta occur as early as the Mabâ-Bhâskarija of Bhâskara I (522). ${ }^{1}$ In the commentary of the $\overline{\text { robabluatigya }}$ by this writer we find the terms kuttaka and kuttâkâra. Brahmagupta has used kuttaka, ${ }^{2}$ kuttâkâra, ${ }^{3}$ and kutta. ${ }^{4}$ Mahâvíra, it appears, had a

[^113]preferential liking for the name kuțtikâra. ${ }^{1}$
In a problem of the first variety the quantities (a, b) are called "divisors" (bhâgabaira, bbajake, cheda, ctc.) and ($\mathrm{R}_{1}, \mathrm{R}_{2}$) "remainders" (agra, sesa, etc.), while in a problem of the second variety, β is ordinarily called the "divisor" and γ the "interpolator" (ksepa, kerepakia, etc.); here a is called the "dividend" (halajya), the unknown quantity to be found (x) the "multiplier" (.gunuki, gunukira, ctc.) and y the quotiont (phala). The unknown (.x) has been sometimes called by Mahâvîra as ràsi (number) implying "an unknown number." ${ }^{2}$

Origin of the name. The Sanskrit words kutta, kuttaka, keuttûkâra and kuttikatara are all derived from the root keytt "to crush", "to grind," "to pulverise" and hence ctymologically they mean the act or process of "breaking", "grinding", "pulverising", as well as an instrument for that, that is, "grinder", "pulveriser". Why the subject of the indeterminate analysis of the first degree came to be designated by the term kuttaka is a question which will be naturally asked. Gaṇeṣa (1545) says: "Kuttaka is a term for the multiplier, for multiplication is admittedly called by words importing 'injuring,' 'killing.' A certain given number being multiplied by another (unknown quantity), added or subtracted by a given interpolator and then divided by a given divisor leaves no remainder; that multiplier is the kuttaka: so it has been said by the ancients. This is a special technical term." ${ }^{3}$ The same explanation as to the origin of the name kuttaka has been offered by Sûryadâsa (1538), Kṛ̣ṇa ($c .11580$) and Ranganâtha (1602). ${ }^{4}$

[^114] síromani.

But it is one－sided inasmuch as it has admittedly in view a problem of the second variety where we have indeed to find an unknown multiplier．But the rules of the carlier algebraists such as $\overline{\text { ryabhata }}$ I and Brahma－ gupta were formulated with a view to the solution of a problem of the first varicty．So the considerations which led those early writers to adopt the name kutt takad must have been different．Mahâvira has once，stated that，according to the learned，kuttikara is another name for＂the operation of praksepake＂（lit．，throwing，scatter－ ing，implying division into parts）．${ }^{1}$ In fact，his writ－ ing led his translator to interpret kut！ikara as＂propor－ tionate division＂，＂a special kind of division or distribu－ tion．＂ 2 Bhaskara I，who had in view a problem of the second varicty，once remarked，＂the number is obtained by the operation of pulverising（Eutfona），when it is desired to get the multiplier（inunckiru）．．．．＂3 It will be presently shown that the llindu method of solving the equation $b y-a x= \pm c$ is essentially based on a process of deriving from it successively other similar equations in which the values of the coefficients（ a, b ）become smaller and smaller．${ }^{4}$ Thus the process is indeed the same as that of breaking a whole thing into smaller pieces．In our opinion，it is this that led the ancient mathematicians to adopt the name kuttaka for the opera－ tion．

Preliminary Operations．lt has been remarked by most of the writers that in order that an equation

[^115]of the form
$$
b y-a x= \pm c \text { or } b y+a x= \pm c
$$
may be solvable, the two numbers a and b must not have a common divisor; for, otherwise, the equation would be absurd, unless the number c had the same common divisor. So before the rules adumbrated hereafter can be applied, the numbers a, b, c must be made prime ($d r d b a=$ firm, niccheda $=$ having no divisor, nirapavarta $=$ irreducible) to each other.

Thus Bhâskara I observes:
"The dividend and divisor will become prime to each other on being divided by the residue of their mutual division. The operation of the pulveriser should be considered in relation to them.'"

Brahmagupta says:
"Divide the multiplier and the divisor mutually and find the last residue; those quantitics being divided by the residue will be prime to cach other." ${ }^{2}$

Aryabhata II has made the preliminary operations in successive stages. These will be described later on. ${ }^{3}$

Srîpati states:
"The dividend, divisor and interpolator should be divided by their common divisor, if any, so that it may be possible to apply the method to be described." ${ }^{4}$
"If the dividend and divisor have a common divisor, which is not a divisor of the interpolator then the problem would be absurd."5
Bhâskara II writes:
"As preparatory to the method of the pulveriser,

> 1 1 MBb, i. 4x.
> 3 Vide infra, p. 104.
> 3 SiSe, xiv. 26 .

${ }^{2}$ BrSpSi, xviii. 9.
- SiSe, xiv. 22.

.the dividend, divisor and interpolator must be divided by a common divisor, if possible. If the number by which the dividend and divisor are divisible, does not divide the interpolator then the problem is absurd. The last residuc of the mutual division of two numbers is their common divisor. The dividend and divisor, being divided by their common divisor, become prime to each other." ${ }^{1}$

Rules similar to these have been given also by Nârâyana, ${ }^{2}$ Jñânarâja and Kamalâkara. ${ }^{3}$ So in our subsequent treatment of the Hindu mothods for the solution in positive integers of the equation by $\pm a x$ $== \pm i$, we shall always take, unless otherwise stated, a, b prime to each other.

$$
\text { Solution of by }-a x-1-c
$$

Āryabhata Ms Rule. The rule of \bar{A} ryabhata I (499) ${ }^{4}$ is rather obscure inasmuch as all the operations intended to be carried out have not been described fully and clearly. So it has been misunderstood by many writers. ${ }^{5}$ Following the interpretation of the rule by Bhâskara I ($\$ 25$), a direct disciple of Aryabhata I, Bibhutibhusan Datta has recently given the following translation: ${ }^{6}$
${ }_{3}^{1} L$, p. 76; BRi, pp. 24 f.
${ }^{3}$ SiTVi, xiii. 179ff.
${ }^{2}$ NBi, I, R. 53-4.
4 A, ii. $32-3$.
${ }^{5}$ L. Rodet, "Leçons de calcul d'Âryabhatta," JA, XIII, 1878, pp. 303 ff; G. R. Kaye, "Notes on Indian Mathematics. No. 2-Aryabhata," $J A S B$, IV, 1908, pp. 111ff; BCMS, IV, p. s5; N. K. Mazumdar, "Aryyabhatta's rule in relation to Indeterminate Equations of the First Degree," BCMS, III, pp 11-9; P. C. Sen Gupta, "Âryabhatiyam," Jour. Dept. Let. Cal. Univ., XVI, 1927; reprint, p. 27.; S. K. Ganguly, BCMS, XIX, 1928, pp. 170f; W. E. Clark, ATryabbatîya of Aryabhata, Chicago, 1930, pp. 42 ff .
${ }^{0}$ Bibhutibhusan Datta, "Eldcr Âryabhata's rule for the solution of indeterminate equations of the first degree," BCMS, XXIV, 1932 , pp. $35-53$.
"Divide the divisor corresponding to the greater remainder by the divisor corresponding to the smaller remainder. The residuc (and the divisor corresponding to the smaller remainder) being mutually divided, the last residue should be multiplied by such an optional integer that the product being added (in case the number of quotients of the mutual division is even) or subtracted (in case the number of quotients is odd) by the difference of the remainders (will be exactly divisible by the last but one remainder. Place the quotients of the mutual division successively one below the other in a column; below them the optional multiplier and underneath it the quotient just obtained). Any number below (i.e., the penultimate) is multiplied by the one just above it and then added by that just below it. Divide the last number (obtained by doing so repeatedly ${ }^{1}$) by the divisor corresponding to the smaller remainder; then multiply the residue by the divisor corresponding to the greater remainder and add the greater remainser. (The result will be) the number corresponding to the two divisors."

He has further shown that it can be rendered also as follows:
"Divide the divisor corresponding to the greater remainder by the divisor corresponding to the smaller remainder. The residue (and the divisor corresponding to the smaller remainder) being mutually divided (until the remainder becomes zero), the last quotient should be multiplied by ani optional integer and then added (in case the number of quotients of the mutual division is even) or subtracted (in case the number of quotients is odd) by the difference of the remainders. (Place the other quotients of the mutual division succes-

[^116]sively one below the other in a column; below them the result just obtained and underncath it the optional integer). Any number below (i.e., the penultimate) is multiplied by the one just above it and then added by that just below it. Divide the last number (obtained by doing so repatedly) by the divisor corresponding to the smaller remainder; then multiply the residue by the divisor corresponding to the greater remainder and add the greater remainder. (The result will be) the number corresponding to the two divisors."

A ryabhata's problem is : 'To find a number (N) which being divided by two given numbers (a, b) will leave two given remainders $\left(R_{1}, R_{2}\right) .^{1}$ This gives:

$$
N=a x+R_{1}=b y+R_{2}
$$

Denoting as before by c the difference between R_{1} and R_{2}, we get
(i) $b y=a x+c$, if $K_{1}>K_{2}$,
or
(ii) $a x=b y+c$, if $R_{2}>R_{1}$
the cquation being so writtion as to keep calways positive. Hence the problem now reduces to making either

$$
\frac{a x+c}{b} \text { or } \frac{b y+c}{a}
$$

according as $R_{1}>R_{2}$ or $R_{2}>R_{1}$, a positive integer. So Aryabhata says: "Divide the divisor corresponding to the greater remainder etc."
${ }^{1}$ It has already been stated (p. 90) that in a problem of the first varicty which gives an equation of the above form (and in which $K_{1}>R_{2}$).
$a==$ divisor corresponding to greater remainder,
$b:=$ divisor corresponding to lesser remainder,
$\mathrm{K}_{1}=$ greater remainder,
$\mathrm{K}_{\mathrm{s}}==$ lesser remainder.

ALGEBRA

Suppose $R_{1}>R_{2}$; then the equation to be solved will be

$$
\begin{equation*}
a x+c=b y \tag{I}
\end{equation*}
$$

a, b being prime to each other.
Let

$$
\begin{aligned}
& \text { b) }{ }^{\text {a }} \text { (} q \\
& b q \\
& \left.r_{1}\right) b \quad\left(q_{1}\right. \\
& r_{1} q_{1} \\
& \begin{array}{c}
\left.r_{2}\right) r_{1}\left(q_{2}\right. \\
r_{2} q_{2} \\
r_{3}
\end{array} \\
& \left.\hat{r}_{m-1}\right)_{r_{m-2}} \quad\left(q_{m-1}\right. \\
& \begin{array}{r}
r_{m-1} q_{m-1} \\
\left.r_{m}\right) \\
\frac{r_{m-1}}{}\left(q_{m}\right. \\
\frac{r_{m} q_{m}}{r_{m+1}}
\end{array}
\end{aligned}
$$

Then, we gct^{1}

$$
\begin{aligned}
a & =b q+r_{1}, \\
b & =r_{1} q_{1}+r_{2}, \\
r_{1} & =r_{1} q_{2}+r_{3}, \\
r_{2} & =r_{3} q_{3}+r_{4}, \\
\cdots & \cdots \\
r_{m-2} & =r_{m-1} q_{m-1}+r_{m}, \\
r_{m-1} & =r_{m} q_{m}+r_{m+1} .
\end{aligned}
$$

Now, substituting the value of a in the given equaion (I), we get

$$
b y=\left(b q+r_{1}\right) x+c .
$$

Therefore

$$
y=q x+y_{1}
$$

${ }^{1}$ When $a<b$, we shall have $q=0, r_{1}=a$.

$$
\begin{equation*}
\text { SOLUTION OF } b y-a x= \pm c \tag{97}
\end{equation*}
$$

where

$$
b y_{1}=r_{1} x+c .
$$

In other words, since $a=b q+r_{1}$, on putting

$$
\begin{equation*}
y=q x+y_{1} \tag{1}
\end{equation*}
$$

the given equation (l) reduces to

$$
\begin{equation*}
b_{1}-r_{1} x+c . \tag{I.I}
\end{equation*}
$$

Again, since $\quad b \ldots r_{1} q_{1}+r_{2}$,
putting similarly $\quad x=q_{1} y_{1}+x_{1}$
the equation (l. i) can be further reduced to

$$
\begin{equation*}
r_{1} \cdot r_{1}=r_{2} y_{1}-c \tag{I.2}
\end{equation*}
$$

and so on.
Writing down the successive values and reduced equations in columns, we have
(1) $\quad y^{2}=a x+y_{1}$,
(2)
$x=a_{1} y_{1}+x, 1$
(3) $r_{1} \cdots q_{2} x_{1}+y_{2}$,
(4) $x_{1}=q_{3} y_{2} x_{2}$,
(s) $y_{2}=q_{4} x_{2}+y_{3}$,
(6) $x_{2}=q_{5} y_{3}+x_{3}$,

$$
\begin{array}{ll}
b y_{1}=r_{1} x+c, & \text { (I. I) } \\
r_{1} x_{1}=r_{2} y_{1}-c, & \text { (I. 2) } \\
r_{2} y_{2}^{\prime}-r_{3} x_{1}+c, & \text { (I. }+3) \\
r_{3} x_{2}-r_{4} y_{2} \cdots c, & \text { (I. } 4) \\
r_{4} y_{3}^{\prime}=r_{5} x_{2}+c, & \text { (I.s) } \\
r_{5} x_{3}=r_{6} y_{3}-c, & \text { (I. (1) } \tag{1.6}
\end{array}
$$

$(2 n-1) y_{n-1}^{\prime}=q_{2 n-2} x_{n-1}+y_{n} ; r_{2 n-2}^{\prime} y_{n}:=r_{2 n-1} x_{n-1}+c,($ I. $2 n-1)$
(2n) $\quad x_{n-1}=q_{2 n-1} y_{n}+x_{n}, \quad r_{2 n-1} x_{n}=r_{2 n} y_{n}^{\prime} \cdots c, \quad$ (I. 2n)
$(2 n+1) y_{n}=q_{2 n} x_{n}+y_{n+1}, \quad r_{2 n} y_{n+1}=r_{2 n+1} x_{n}+c, \quad(\mathrm{I} .2 \overline{2 n+1})$
Now the mutual division can be continued cither (i) to the finish or (ii) so as to get a certain number of quotients and then stopped. In either case the number of quotients found, neglecting the first onc (q), as is usual with Aryabhata, may be even or odd.

Case i. First suppose that the mutual division is continued until the zero remainder is obtained. Since a, b are prime to each other, the last but one remainder is unity.

Subcase (i. 1). Let the number of quotients be even. We then have

$$
r_{2 n}=1, r_{2 n+1}=0, q_{2 n}=r_{2 n-1}
$$

The equations (I. $2 n$) and (I. $\overline{2 n+1}$), therefore, become

$$
\begin{aligned}
y_{n} & =q_{2 n} x_{n}+c \\
y_{n+1} & =c
\end{aligned}
$$

respectively. Giving an arbitrary integral value (t) to x_{n}, we get an integral value of y_{n}. From that we can find the value of x_{n-1} by (2n). Proceeding backwards step by step we ultimately find the values of x and y in positive integers. So that the equation (I) is solved.

Subcase (i. 2). If the number of quotients be odd, we shall have

$$
r_{2 n-1}=1, r_{2 n}=0, q_{2 n-1}=r_{2 n-2} .
$$

The equations $(2 n+1)$ and (I. $2 n+1$) will then be absent and the equations (I. $2 n-\mathrm{I}$) and (I. $2 n$) will be reduced respectively to
and

$$
\begin{aligned}
x_{n-1} & =q_{2 n-1} y_{n}-c \\
x_{n} & =-c .
\end{aligned}
$$

Giving an arbitrary integral value $\left(t^{\prime}\right)$ to y_{n} we get an integral value of x_{n-1}. Then proceeding backwards as before we can calculate the values of x and y.

Case ii. Next suppose that the mutual division is stopped after having obtained an even or odd number of quotients.

Subcase (ii. 1). If the number of quotients obtained be evin, the reduced form of the original equation is

$$
\begin{aligned}
r_{2 n} y_{n+1} & =r_{2 n+1} x_{n}+c, \\
y_{n+1} & =\frac{r_{2 n+1} x_{n}+c}{r_{2 n}} .
\end{aligned}
$$

Giving a suitable integral value (t) to x_{n} as will make

$$
y_{n+1}=\frac{r_{2 n+1} t+c}{r_{2 n}}=\text { an integral number, }
$$

we get an integral value for y_{n}^{\prime} by $(2 n+1)$. The values of x and y can then be calculated by proceeding as before.

Subcase (ii. 2). If the number of quotients be odd, the reduced form of the quotient is

$$
\begin{array}{r}
r_{2 n-1} x_{n}=r_{2 n} y_{n}-c, \\
x_{n}=\frac{r_{2 n} y_{n}-c}{r_{2 n-1}} .
\end{array}
$$

Putting $y_{n}=t^{\prime}$, where t^{\prime} is an integer, such that

$$
x_{n}=\frac{r_{2 n} t^{\prime}-c}{r_{2 n-1}}=\text { a whole number }
$$

we get an integral value of x_{n-1} by (2n). Whence can be calculated the valucs of x and y in integers.

If $x=\alpha, y=\beta$ be the least integral solution of $a x+c=b y$, we shall have

$$
a \alpha+c=b \beta .
$$

Therefore

$$
a(b m+\alpha)+c=b(a m+\beta),
$$

m being any integer. Therefore, in general,

$$
x=b m+\alpha
$$

But we have calculated before that

$$
\begin{aligned}
x & =q_{1} y_{1}+x_{1} ; \\
\therefore \quad q_{1} y_{1}+x_{1} & =b m+\alpha .
\end{aligned}
$$

Thus it is found that the minimum value α of x is equal to the remainder left on dividing its calculated value by b. Whence we can calculate the minimum value of $N\left(=a \alpha+R_{1}\right)$. This will explain the rationale of the operations described in the latter portion of the rule of Aryabhata I.

Bhâskara I's Rules. Bhâskara I (522) writes:
'Sct down the dividend above and the divisor below. Write down successively the quotients of their
mutual division, one below the other, in the form of a chain. Now find by what number the last remainder should be multiplied, such that the product being subtracted by the (given) residue (of the revolution) will be exactly divisible (by the divisor corresponding to that remainder). Put down that optional number below the chain and then the (new) quotient underncath. Then multiply the optional number by that quantity which stands just above it and add to the product the (new) quotient (below). Proceed afterwards also in the same way. Divide the upper number (i.e., the multiplier) obtained by this process by the divisor and the lower one by the dividend; the remainders will respectively be the desired ahargana and the revolutions." ${ }^{1}$

The equation contemplated in this rule is ${ }^{2}$

$$
\frac{a x-c}{b}=a \text { positive integer. }
$$

This form of the equation seems to have been chosen by Bhâskara I deliberately so as to supplement the form of Àryabhata 1 in which the interpolator is always made positive by necessary transposition. Further b is taken to be greater than a, as is evident from the following rule. So the first quotient of mutual division of a by b is always zero. This has not been taken into consideration. Also the number of quotients in the chain is taken to be even.

${ }^{1}$ MBh, i. 42-4.

The above rule has been formulated with a view to its application in astrongmy.
${ }^{2}$ As already stated on p. 90, when the equation is stated in this second form

$$
\begin{aligned}
a & =\text { dividend } \\
b & =\text { divisor, } \\
c & =\text { interpolator } \\
x & =\text { multiplier, } \\
y & =\text { quotient } .
\end{aligned}
$$

He further observes:
"When the dividend is greater than the divisor, the operations should be made in the same way (i.e., according to the method of the pulveriser) after deleting the greatest multiple of the divisor (from the dividend). Multiply the (new) multiplier thus obtained by that multiple and add the (new) quotient; the fresult will be the quotient here (required)." ${ }^{1}$

That is to say, if in the equation

$$
a x \pm c=b y,
$$

$a=m b+a^{\prime}$, we may neglect the portion $m b$ of the dividend and proceed at once with the solution of

$$
a^{\prime} x \pm c=b y .
$$

Let $x=\alpha, y=\beta$ be a solution of this equation. Then

$$
\begin{aligned}
& a^{\prime} \alpha \pm c=b \beta ; \\
& \left(m b+a^{\prime}\right) \alpha \pm c=b(m \alpha+\beta), \\
& a \alpha \pm c=b(m \alpha+\beta) \text {. }
\end{aligned}
$$

Hence $x=\alpha, y=m \alpha+\beta$ is a solution of the given equation.

Brahmagupta's Rules. For the solution of Aryabhata's problem Brahmagupta (628) gives the following rule:
"What remains when the divisor corresponding to the greater remainder is divided by the divisor corresponding to the smaller remainder-that (and the latter divisor) are mutually divided and the quotients are severally set down one below the other. The last residue (of the reciprocal division after an even namber of quotients has been obtained.) is multiplied by

${ }^{1}$ MBb, i. 47.

${ }^{2}$ Compare the next rule: "Such is the process when the quotients (of mutual division) are even etc."
such an optional integer that the product being added with the difference of the (given) remainders will be exactly divisible (by the divisor corresponding to that residue). That optional multiplier and then the (new) quotient just obtained should be set down (underneath the listed quotients). Now, proceeding from the lowermost number (in the column), the penultimate is multiplied by the number just above it and then added by the number just below it. The final value thus obtained (by repeating the above process) is divided by the divisor corresponding to the smaller remainder. The residue being multiplied by the divisor corresponding to the greater remainder and added to the greater remainder will be the number in view."

He further obscrves:
"Such is the process when the quotients (of mutual division) are even in number. But if they be odd, what has been stated before as negative should be made positive or as positive should be made negative." 2

Regarding the direction for dividing the divisor corresponding to the greater remainder by the divisor corresponding to the smaller remainder, Pṛthûdakasvâmî (860) observes that it is not absolute, rather optional; so that the process may be conducted in the same way by starting with the division of the divisor corresponding to the smaller remainder by the divisor corresponding to the greater remainder. But in this case of inversion of the process, he continues, the difference of the remainders must be made negative.

That is to say, the equation

$$
b y=a x+c
$$

can be solved by transforming it first to the form

$$
a x=b y-c,
$$

[^117]${ }^{2} B r S p S i, x v i i i .13$.
so that we shall have to start with the division of b by a.
Mahâvîra's Rules. Mahâvîra (8,0) formulates his rules with a view to the solution of
$$
\frac{a x \pm c}{b}=y
$$
in positive integers. He says:
"Divide the coefficient of the unknown by the given divisor (mutually); reject the first quotient and then set down the other quotients of mutual division one below the other. When the residue has become sufficiently small, multiply it by an optional number such that the product, being combined with the interpolator, which if positive must be made negative (and pice versa) in case (the number of quotients retained is) odd, will be exactly divisible (by the divisor corresponding to that residue). Place that optional number and the resulting quotient in order under the chain of quotients. Now add the lowermost number to the product of the next two upper numbers. The number (finally obtained by this process) being divided by the given divisor, (the remainder will be the least value of the unknown)." ${ }^{1}$

This method has been redescribed by Mahâvîra in a slightly modified form. Here he continues the mutual division until the remainder zero is obtained and further takes the optional multiplier to be zero.
"With the dividend, divisor and remainder reduced (by their greatest common factor the operations should be performed). Reject the first quotient and set down the other quotients of mutual division (one below the other) and underneath them the zero ${ }^{2}$ and the given remainder

[^118](as reduced) in succession. The remainder, being multiplied by positive or ncgative as the number of quotients is even or odd, should be added to the product of the next two upper numbers. The number (finally obtained by the repeated application of this process) whether positive or negative, being divided by the divisor, the remainder will be (the least value of) the multiplicr." ${ }^{1}$

Âryabhata II. The details of the process adopted by Aryabhata II (950) in finding the general solution of $(a, \pm c)^{\prime} h=y$ in positive integers have been described by him thus:
"Set down the dividend, interpolator and divisor as stated (in a problem): this is the first operation.
"Divide them by their greatest common divisor so as to make them without a common factor: this is the second operation.
"Divide the dividend and interpolator by their greatest common divisor: the third operation.
"Divide the interpolator and divisor by their greatest common divisor: the fourth operation.
"Divide the dividend and interpolator, then the interpolator (thus reduced) and divisor by their respective different greatest common divisors: the fifthoperation.
"On forming the chain from these (reduced numbers), if the remainder becomes unity, then the object (of solving the problem) will be realised; but if the remainder in it be zero, the questioner does not know the method of the pulveriser.
"Divide the (reduced) dividend and divisor reciprocally until the remainder becomes unity. (The quotients placed one below the other successively will form)
${ }^{1}$ GSS, vi. $136 \frac{1}{2}$ (first portion). Our interpretation differs from those of Rangacharya and Ganguly.
the (auxiliary) chain. Note down whether the number of quotients is even or odd. Multiply by the ultimate the number just above it and then add unity. The chain formed on replacing the penultimate by this result is the corrected one. Multiply by the un-destroyed (i.e., corrected) penultimate the number just above it, then add the ultimate number; (now) destroy the ultimate. On procceding thus (repeatedly) we shall finally obtain two numbers which are (technically) called kutta. I shall speak (later on) of those two quantities as obtained in the case of an odd number of quotients. If on dividing the dividend by the divisor once only the residue becomes unity, then the quotient is known to be the upper kutta and the remainder (i.e., unity) the lower kutta.
"The upper and lower kextta thus obtained, being both multiplied by the interpolator of the given equation and then divided respectively by its dividend and divisor, the residues will be the quotient and multiplier respectively.
"In the case of the third oper tion (having been performed before) multiply the upper kutfa by the interpolator of the question and the lower kutta by the interpolator as reduced by the greatest common divisor. The same should be done reversely in the case of the fourth operation. In the case of these two operations, the kert to after being multiplied as indicated should be divided respectively by the dividend and divisor stated by the questioner, the residues will be the quotient and multiplicr respectively.
"In the fifth operation, multiply the upper Eutta by the greatest common divisor of the dividend and the interpolator, and the lower one by the other (i.e., the greatest common divisor of the given divisor and the reduced interpolator). The products are the inter-
mediate quotient and multiplier. Multiply the divisor of the question by the intermediate quotient and also its dividend by the intermediate multiplier. Difference of these products is the required intermediate divider. The intermediate quotient and multiplier are multiplied by the interpolator of the question and then divided by the intermediate divider. The quotients thus obtained being divided respectively by the dividend and divisor of the question, the residues will be the quotient and multiplier (required).
"The quotient and multiplier are obtained correctly by the process just described in the case of a positive interpolator when the chain is eyen and in the case of a negative interpolator if the chain is odd. In the case of an even chain and negative interpolator, also of an odd chain and positive interpolator, the quotient and multiplier thus obtained are subtracted respectively from the dividend and divisor made prime to each other and the residues give them correctly." ${ }^{1}$

The rationale of these rules will be easily found to be as follows:
(i) It will be noticed that to solve

$$
\begin{equation*}
b y=a x \pm c \text {, } \tag{r}
\end{equation*}
$$

in positive integers, Aryabhata II first finds the solution of

$$
b y=a x \pm 1
$$

If $x=\alpha, y=\beta$ be a solution of this equation, we get

$$
\begin{aligned}
b \beta & =a \alpha \pm \mathbf{1} \\
b(c \beta) & =a(c \alpha) \pm c .
\end{aligned}
$$

Therefore $x=c \alpha, y=c \beta$ is a solution of (1).
(ii) Let $a=a^{\prime} g, c=c^{\prime} g$; then (1) reduces to

$$
b y^{\prime}=a^{\prime} x \pm c^{\prime},
$$

where $y^{\prime}=y / g$.
Let $x=\alpha, y^{\prime}=\beta$ be a solution of

$$
b y^{\prime}=a^{\prime} x \pm 1
$$

so that we have

$$
b \beta=a^{\prime} \alpha \pm \mathbf{1}
$$

Hence

$$
\lg o^{\prime} \beta=a^{\prime} g c^{\prime} \alpha \pm c^{\prime} g ;
$$

or

$$
b(\alpha \beta)=a\left(c^{\prime} \alpha\right) \pm c .
$$

Therefore $x=\alpha^{\prime} \alpha, \quad y=c \beta$ is a solution of ($\mathbf{1}$). (iii) Let $b=g^{\prime} b^{\prime}, c=g^{\prime} c^{\prime \prime}$; then (1) reduces to

$$
b^{\prime} y=a x^{\prime} \pm i^{\prime \prime},
$$

where $x^{\prime}=x / g^{\prime}$. If $x^{\prime}=\alpha, y=\beta$ be a solution of

$$
b^{\prime} y=a x^{\prime} \pm \mathrm{x}
$$

we have

$$
b^{\prime} \beta=a \alpha \pm \mathbf{1}
$$

Therefore

$$
b^{\prime} g^{\prime} c^{\prime \prime} \beta=a g^{\prime} c^{\prime \prime} \alpha \pm g^{\prime} c^{\prime \prime}
$$

or

$$
b\left(c^{\prime \prime} \beta\right)=a(c \alpha) \pm c .
$$

Hence $x=c \alpha, y=c^{\prime \prime} \beta$ is a solution of (1).
(iv) Let $a=a^{\prime} g, c=c^{\prime} g, b=b^{\prime \prime} g^{\prime \prime}$ and $c^{\prime}=c^{\prime \prime} g^{\prime \prime}$.

Then the given equation $b y=a x \pm c$ reduces to

$$
b^{\prime \prime} y^{\prime}=a^{\prime} x^{\prime} \pm c^{\prime \prime}
$$

where $\quad x^{\prime}=x / g^{\prime \prime}, y^{\prime}=y / g$. Now, if $x^{\prime}=\alpha, y^{\prime}=\beta$ be a solution of

$$
b^{\prime \prime} y^{\prime}=a^{\circ} x^{\prime} \pm 1,
$$

we shall have, multiplying both sides by $g g^{\prime \prime}$,
or

$$
\begin{aligned}
b^{\prime \prime} g g^{\prime \prime} \beta & =a^{\prime} g g^{\prime \prime} \alpha \pm g g^{\prime \prime} \\
b(g \beta) & =a\left(g^{\prime \prime} \alpha\right) \pm g g^{\prime \prime}
\end{aligned}
$$

or

$$
b\left\{\frac{c(g \beta)}{g g^{\prime \prime}}\right\}=a\left\{\begin{array}{c}
c\left(g^{\prime \prime} \alpha\right) \\
g g^{\prime \prime}
\end{array}\right\} \pm c .
$$

Since $\quad g g^{\prime \prime}=a\left(g^{\prime \prime} \alpha\right) \sim b(g \beta)$, we get

$$
b\left\{\frac{c(g \beta)}{a\left(g^{\prime \prime} \alpha\right) \sim b(g \beta)}\right\}=a\left\{\frac{c\left(g^{\prime \prime \alpha}\right)}{a\left(g^{\prime \prime} \alpha\right) \sim b(g \beta)}\right\} \pm c .
$$

Therefore

$$
x=\frac{c\left(g^{\prime \prime} \alpha\right)}{a\left(g^{\prime \prime} \alpha\right) \sim b(g \beta)}, \quad y==\frac{c(g \beta)}{a\left(g^{\prime \prime} \alpha\right) \sim b(g \beta)},
$$

is a solution of the given equation $b y=a x \pm c$. Since $c=c^{\prime \prime} g g^{\prime \prime}=c^{\prime \prime}\left\{a\left(g^{\prime \prime} \alpha\right) \sim b(g \beta)\right\}$, both these values are integral.

In each of the above cases the minimum values of x, y satisfying the equation $b y=a x \pm c$ are given by the residues left on dividing the values of x, y as calculated above by b and a respectively, provided the two quotients are equal.

Let $x=P, y=Q$ be the solution as calculated above; further suppose that

$$
P=m b+p, Q=n a+q ;
$$

where m, n are integers such that $p<b, q<a$.
If $m \neq n$, the minimum solution is either

$$
\left.\left.\begin{array}{l}
x=p, \\
y=(n-m) a+q
\end{array}\right\}(\mathrm{r}) \quad \text { or } \quad \begin{array}{l}
x=(m-n) b+p \\
y=q
\end{array}\right\}(2)
$$

according as $m<$ or $>n$. Now, if the interpolator c is positive, it can be shown that (2) is not a solution. For, if it were,

$$
\begin{aligned}
\frac{b q-c}{a} & =x, \text { an integer } \\
& =(m-n) b+p>b
\end{aligned}
$$

But $q<a$, therefore,

$$
\frac{b q-c}{a}<b,
$$

which is absurd. Therefore, (x) must be the minimum solution in this case, not (2).

Similarly, if the interpolator c is negative, it can be shown that (2) is the minimum solution, not (1).

Hence the following rule of Aryabhata II :
"If the quotients (m, n) obtained in the case of any proposed question be not equal; then the (derived) value for the multiplier should be accepted and that of the quotient rejected, if the interpolator is positive. On the other hand when the interpolator is negative, then the (derived) value for the quotient should be accepted and that for the multiplier rejected. How to obtain the quotient from the multiplier and the multiplier from the quotient correctly in all cases, I shall explain now. Multiply the (accepted) value of the multiplier by the cividend of the proposed question, add its interpolator and then divide by the divisor of the proposed question; the quotient is the corrected one. The product of the proposed divisor and the (accepted) quotient being added by the reverse of the interpolator and then divided by the dividend of the proposed question, the quotient is the (correct) multiplier."

He has further indicated how to get all positive integral solutions of the equation by $=a x \pm c$ after having obtained the minimum solution.
"The (minimum) quotient and multiplier being added respectively with the dividend and divisor as stated in the question or as reduced, after multiplying both by an optional number, give various other values." ${ }^{2}$

That is to say, if $x=\alpha, y=\beta$ be the minimum solution, the general solution will be

$$
x=b m+\alpha, y=a m+\beta
$$

[^119]Srípati's Rule. Srîpati (1039) writes:
"Divide the dividend and divisor reciprocally until the residue is small. Set down the quotients one below the other in succession; then underneath them an optional number and below it the corresponding quotient, the optional number being determined thus: (the number) by which the last residue must be multiplied such that the product being subtracted by the interpolator and then divided by the divisor (corresponding to that residue), leaves no remainder. It is to be so when the number of quotients is even; in the case of an odd number of quotients the interpolator, if negative, must be first made positive and conversely, if positive, must be made negative; so it has been taught by the learned in this (branch of analysis). Now multiply the term above the optional number by it (the optional number) and then add the quotient below. Proceeding upwards such operation should be performed again and again until two numbers are obtained. The first one being divided by the divisor, (the residue) will give (the least value of) the multiplier; similarly the second being divided by the dividend, will give (the least value) of the quotient."

Bhâskara II's Rules. Bhâskara II (iiso) describes the method of the pulveriser thus:
"Divide mutually the dividend and divisor made prime to each other until unity becomes the remainder in the dividend. Set down the quotients one under the other successively; beneath them the interpolator and then cipher at the bottom. Multiply by the penultimate the number just above it and add the

1 SiSe, xiv. 22-25.

This rule is the same as that of Bhâskara I and holds under the same conditions. (See pp. 99f).
ultimate; then reject that ultimate. Do so repeatedly until only a pair of numbers is left. The upper one of these being divided by the reduced dividend, the remainder is the quotient; and the lower one being divided by the reduced divisor, the remainder is the multiplier. Such is precisely the process when the quotients (of mutual division) are even in number. But when they are odd, the quotient and multiplier so obtained must be subtracted from their respective abraders and the residues will be the true quotient and multiplier." 1

Bhâskara'II then shows how the process of solving a problem by the method of the pulveriser can sometimes be abbreviated to a great extent. He says:
"The multiplier is found by the method of the pulveriser after reducing the additive and dividend by their common divisor. Or, if the additive (previously reduced or not) and the divisor be so reduced, the multiplier found (by the method) being multiplied by their common measure will be the true one.
"Such is the process of finding the multiplier and quotient, when the interpolator is positive. On subtracting them from their respective abraders will be obtained the result for the subtractive interpolator." ${ }^{2}$

Krṣna (c. 1580) gives the following rationale of these rules:

We shall have to solve in positive integers

$$
\begin{equation*}
b y=a x \pm c . \tag{1}
\end{equation*}
$$

(i) Suppose g is the greatest common measure of a and c, so that $a=a^{\prime} g, c=c^{\prime} g$. Then
or

$$
\begin{align*}
& b y=a^{\prime} g x \pm c^{\prime} g \\
& b y^{\prime}=a^{\prime} x \pm c^{\prime} \tag{1.1}
\end{align*}
$$

where $y^{\prime}=y / g$. If $x=\alpha, y^{\prime}=\beta$ be.a solution of (1.1),

$$
{ }^{1} B B i, \text { pp. } 25 \text { f; L, p. } 77 . \quad{ }^{2} B B i, \text { p. } 26 ; \text { L, pp. } 78,79
$$

then clearly $x=\alpha, y=g \beta$ is a solution of (1).
(ii) Let $b=g^{\prime} b^{\prime}, c=g^{\prime} c^{\prime \prime}$; then equation (i) reduces to

$$
\begin{equation*}
b^{\prime} y=a x^{\prime} \pm c^{\prime \prime} \tag{1.2}
\end{equation*}
$$

where $x^{\prime}=x / g^{\prime}$. If $x^{\prime}=\alpha^{\prime}, y=\beta^{\prime}$ be a solution of (I .2), then clearly $x=g^{\prime} \alpha, y=\beta^{\prime}$ is a solution of (i).
(iii) Let $a=a^{\prime} g, c=c^{\prime} g$; also $b=b^{\prime \prime} g^{\prime \prime}, c^{\prime}-c^{\prime \prime} g^{\prime \prime}$; then equation (I) reduces to

$$
b^{\prime \prime} y^{\prime}=a^{\prime} x^{\prime}+c^{\prime \prime}
$$

where $x^{\prime} \cdots x / g^{\prime \prime}, y^{\prime}=y / g$. Then if $x^{\prime} \ldots \alpha, y^{\prime}=\beta$ be a solution of (1.3), we shall have $\left.\lambda=g^{\prime \prime} \alpha,\right)^{\prime} \cdots, k \beta$ as a solution of (1).

Now, let the minimum solution of $b y=a x+c$ be $x=\alpha, y=-\beta$. Then

$$
l \beta=a \alpha+c .
$$

Hence

$$
b(a-\boldsymbol{\beta})=a(b-\alpha)-c .
$$

Therefore, $\quad x=b-\alpha, y=a-\beta$ is a solution of $b y=a x-c$. Since $\alpha<b, \beta<a$, provided $c<a, b$, this solution is positive. Thus we find that the minimum solution of the equation $b y=a x-c$ can be derived from that of the equation $b y=a x+c$, as has been stated by Bhâskara II.

Bhâskara II further observes: ${ }^{1}$
"In abrading the (calculated values of) the multiplier and the quotient (by the divisor and the dividend respectively) the intelligent should take out the same multiple (of them).
"The multiplicr and quotient may be found as bafore after abrading the interpolator by the divisor; the quotient (obtained), however, must be increased by the abrading quotient in case the interpolator is positive, but, if it is negative, the abrading quotient

$$
{ }^{1} \text { BBi, p. } 26 ; \text { L, pp. 79, 81. }
$$

must be subtracted.
"Or the multiplier may be found as before after abrading both the dividend and the interpolator by the divisor; from (this multiplier) the quotient may be found by multiplying (it) by the dividend, adding (the interpolator) and then dividing (the sum by the divisor). ${ }^{1}$
"Those (minimum values of) the multiplier and the quotient being added by any (optionally chosen) multiple of their respective abraders become manifold."

We take the following illustrative example with the different methods of its solution from Bhâskara II:

To solve, in positive integers,

$$
\frac{100 x+90}{63}=y .
$$

First Method. Statement :
$\begin{aligned} \text { Dividend } & =100 \quad \text { Additive }=90 \\ \text { Divisor } & =63\end{aligned}$
Dividing mutually roo by 63, we have
63) $100(1$ 63
37) $63(1$

$$
37
$$

$$
\text { 26) } 37(1
$$

$$
26
$$

$$
\text { II) } 26(2
$$

$$
22
$$

$$
\frac{2}{4)}_{\text {II }(2}
$$

$$
8
$$

$$
\text { 3) } 4 \text { (1 }
$$

$$
\frac{3}{1}
$$

${ }^{1}$ i.e., by substituting the value of the multiplier in the original equation.

Then, forming the chain as directed in the rule, we get
1
1
1
2
2
1
90
0

By the rule, "Multiply by the penultimate the number just above it ctc.," the two numbers obtained finally are 2430 and $1530 .{ }^{1}$ Dividing these by 100 and 63 respectively, the remainders are 30 and 18 . Hence $x=18, y=30$.

Second Metbod. Reducing the dividend and the additive by their greatest common divisor (10), we have the statement:
Dividend $=10$
Divisor $=63$
$63) 10(0$
$\frac{0}{10)} 63(6$
$\left.\frac{60}{3}\right) 10(3$
$\frac{9}{1}$ Additive $=9$
${ }^{1}$ Successive operations in the application of the rule are :

1	1		1		1		1		\pm	2430
1	1		1		1		7	1530	7	1530
1	1		1		7	900	1	900	1	900
2	2		2	630	1	630	2	639	2	63Q
2	2	270	2	270	2	200	2	2×0	2	2×1
790	7	90	7	9	7	90	7	90	7	9Q
90	9 9		90		90		90		90	
,	Q		Q		Q		Q		Q	

we get the chain

By the rule, "Multiply by the penultimate ctc.," we obtain finally the numbers 27 and 171. Dividing them respectively by 10 and 63 , we get the residues 7 and 45 . Since the number of quotients of the mutual division is odd, subtracting 7 and 45 from the corresponding abraders 10 and 63, we get 3 and 18 . In this case we neglect 3 . So $x=18$; whence by the given equation $y=:=30$. Or, multiplying the quotient 3 as obtained above by the greatest common divisor 10 , we get the same result $y=30$.

Third Method. Reducing the divisor and the additive by their greatest common divisor (9), the statement is :

$$
\begin{aligned}
\text { Dividend } & =100 \\
\text { Divisor } & =7
\end{aligned} \quad \text { Additive }=10
$$

Since

$$
\text { 7) } \begin{gathered}
100 \\
\frac{98}{}(14 \\
2) \\
7(3 \\
6 \\
1
\end{gathered}
$$

we get the chain
14
3
10
0
By the tule, "Multiply by the penultimate etc.," we obtain the two numbers 430 and 30. Dividing them by 100 and 7 respectively, the residues are 30 and 2 .

Multiplying the latter by the greatest common divisor 9 , we get $x=18$ and $y=30$.

Fourth Method. Dividing the divisor and the additive by their common measure (9) and again the dividend and the reduced additive by their common measure (io), we have

	$\begin{aligned} \text { Dividend } & =10 \\ \text { Divisor } & =7 \end{aligned}$	Additive $=\mathbf{1}$
Since	7) 10 (1	
	7	
	3) 7 7 7	
	\cdots	

we get the chain

$$
\begin{aligned}
& I \\
& 2 \\
& I \\
& O
\end{aligned}
$$

By the rule, "Multiply by the penultimate etc.," we have finally the numbers 3 and 2. Dividing them by 10 and 7 respectively, the residues are the same. Multiplying them respectively by the common measure 10 of the dividend and reduced additive, and 9 of the divisor and additive, we get as before $x=18$ and $y=30$.

Adding to these minimum values $(18,30)$ of (x, y) optional multiples of the corresponding abraders $(63,100)$, we get the general solution of $100 x+90=63 y$ in positive integers as $x=63 m+18, y=100 m+30$, where m is any integer.

Rules similar to those of Bhâskara II have been given by Nârâyaṇa, ${ }^{1}$ Jñânarâja and Kamalâkara. ${ }^{2}$

$$
{ }^{1} N B i, \text { I, R. } 5 s-60 .
$$

[^120]$$
\text { Solution of } b y=a x \pm 1
$$

Constant Pulveriser. Though the simple indeterminate equation $b y=a x \pm \mathbf{1}$ is solved exactly in the same way as the equation $b y=a x \pm c$ and is indeed a particular case . f the latter, yet on account of its special use in astronomical calculations ${ }^{1}$ it has reccived separate consideration at the hands of most of the Hindu algebraists. It may, however, be noted that the separate treatment was somewhat necessitated by the physical conditions of the problems involving the two types. In the case of $b y=a x \pm c$ the conditions are such that the value of either y or x, more particularly of the latter, has to be found and the rules for solution are formulated with that object. But in the case of the other ($b y=a x \pm 1$) the physical conditions require the values of both y and x.

The equation by $=a x \pm 1$ is generally called by the name of sthira-kuttaka or the "constant pulveriser" (from sthira, meaning constant, steady). Pṛthûdakasvâmî (860) sometimes designates it also as drdba-kuttaka (from drdha $=$ firm). But that name disappeared from later Hindu algebras because the word drdha was employed by later writers ${ }^{2}$ as equivalent to niccheda (having no divisor) or nirapavarta (irreducible). The origin of the name "constant pulveriser" has been explained by Prttł ûdakasvâmî as being due to the fact that the interpolator (± 1) is here invariable. Gaṇeśa ${ }^{3}$ (1545) explains it in detail thus: In astronomical problems involving
${ }^{1}$ Thus Bhâskara II observes, "This method of calculation is of great use in mathematical astronomy." ($B B i, \mathrm{p} .3 \mathrm{z}$). He then points out how the solutions of various astronomical problems can be derived from the solution of the same indeterminate equation. ($\mathrm{BBi}, \mathrm{p} .3^{2} ; L, \mathrm{p} .81$).
${ }^{2}$ This special technical use of the word $d r d b a$ occurs befcre Brahmagupta (628) in the works of Bhâskara I (522).
${ }^{3}$ Vide his commentary on the Lílâvatî of Bhâskara II.
equations of the type $b y-a x= \pm c$, the physical conditions are such that the dividend (a) and the divisor (b) are constant but the interpolator (c) always varies; so for their solution different sets of operations will have to be performed if we start directly to solve them all. But starting with the equation $b y-a x= \pm 1$, we can derive the necessary solutions of all our equations from a constant set of operations. Hence the name is very significant. A similar explanation has been given by K ṛṣa (c. 1580).

Bhâskara I's Rule. Bhâskara l(s22) writes:
"The method of the pulveriser is applied also after subtracting unity. The multiplier and quotient are respectively the numbers above and underneath. Multiplying those quantities by the desired number, divide by the reduced divisor and dividend; the residucs are in this case known to be the (clapsed) days and (residues of) revolutions respectively."

In other words, it has been stated that the solution of the equation

$$
\frac{a x-c}{b}=y \text {, }
$$

can be obtained by multiplying the solution of

$$
\frac{a x-1}{b}=y,
$$

by c and then abrading as before. In gencral, the solution of the equation $b y=a x \pm c$ in positive integers can be easily derived from that of $b y=a x \pm 1$. If $x=\alpha, y=\beta$ be a solution of the latter equation, we shall have

Then

$$
b \beta=c \alpha \pm \mathrm{I} .
$$

$$
b(c \boldsymbol{\beta})=a(c \boldsymbol{\alpha}) \pm c .
$$

[^121]Hence $x=c \alpha, y=c \beta$ is a solution of the former. The minimum solution will be obtained by abrading the values of x and y thus computed by b and a respectively, as indicated before.

Brahmagupta's Rule. To solve the .cquation $b y=a x-1$, Brahmagupta gives the following rule :
"Divide them (i.e., the abraded coefficient of the multiplier and the divisor) mutually and set down the quotients one below the other. The last residue (of the reciprocal division after an even ${ }^{1}$ number of quotients has been obtained) is multiplied by an optional integer such that the product being diminished by unity will be exactly divisible (by the divisor corresponding to that residue). The (optional) multiplier and then this quotient should be set down (underneath the listed quotients). Now proceeding from the lowermost term to the uppermost, by the penultimate multiply the term just above it and then add the lowermost number. (The uppermost number thus calculated) being divided by the reduced divisor, the residue (is the quantity required). This is the method of the constant pulveriser." ${ }^{2}$

Bhâskara II's Rule. Bhâskara II (1 1) 0) writes :
"The multiplier and quotient determined by supposing the additive or subtractive to be unity, multiplied severally by the desired additive or subtractive and then divided by their respective abraders, (the residues) will be those quantities corresponding to them (i.e., desired interpolators)." ${ }^{3}$

This rule has been reproduced by Nàrâyaṇa. ${ }^{4}$ We take the following illustrative example with its solution

[^122]from Bhâskara II : ${ }^{1}$
$$
\frac{221 x+65}{195}=y
$$

On dividing by the greatest common divisor 13 , we get

$$
\underset{15}{17 x+5}=y
$$

Now, by the method of the pulveriser the solution of the equation

$$
\frac{17 x+1}{15}=y
$$

is found to be $x=7, y=-8$. Multiplying these values by 5 and then abrading by is and 17 respectively, we get the required minimum solution $x:=5, y \ldots 6$.

Again a solution of

$$
\frac{17 \cdot x-1}{15}=y
$$

will be found to be $x=8, y=9$. Multiplying these quantities by s and abrading by is and 17 , we get the solution of

$$
\frac{17 x-5}{15}=y
$$

to be $x=10, y=11$.

$$
\text { Solution of by }+a x= \pm c
$$

An equation of the form $b y+a x= \pm c$ was gencrally transformed by Hindu algebraists into the form $b y=-a x \pm c$ so that it appeared as a particular case of $b y=a x \pm c$ in which a was negative.

Brahmagupta's Rule. Such an equation seems to
${ }^{1} B E i$, pp. 28, 31 ; L, pp. 77, 8 1.
have been solved first by Brahmagupta (628). But his rule is rather obscure: "The reversal of the negative and positive should be made of the multiplier and interpolator." ${ }^{1}$ Prthûdakasvâmi's explanation does not throw much light on it. He says, "If the multiplier be negative, it must be made positive; and the additive must be made negative: and then the method of the pulveriser should be employed." But he does not indicate how to derive the solution of the equation

$$
\begin{equation*}
b y=-a x+c \tag{1}
\end{equation*}
$$

from that of the equation

$$
\begin{equation*}
b y=a x-c \tag{2}
\end{equation*}
$$

The method, however, seems to have been this:
Let $x=\alpha, y=\beta$ be the minimum solution of (2). Then we get
or

$$
t \beta-=\measuredangle \alpha-c
$$

Hence $x=\alpha-b, y=a-\beta$ is the minimumsolution of (1). This has been expressly stated by Bhâskara II and others.

Bhâskara II's Rule. Bhâskara II says:
"Those (the multiplier and quotient) obtained for a positive dividend being treated in the same manner give the results corresponding to a negative dividend." ${ }^{2}$

The treatment alluded to in this rule is that of subtraction from the respective abraders. He has further elaborated it thus :
"The multiplier and quotient should be determined by taking the dividend, divisor and interpolator as positive. They will be the quantities for the additive interpolator. Subtracting them from their

[^123]${ }^{2} B B i$, p. 26.
respective abraders, the quantities for a negative interpolator are found. If the dividend or divisor be negative, the quotient should be stated as negative." 1

Nârâyaṇa. Nârâyaṇa (1350) says :
"In the case of a negative dividend find the multiplier and quotient as in the case of its being positive and then subtract them from their respective abraders. One of these results, either the smaller one or the greater one, should be made negative and the other positive." ${ }^{2}$

Illustrative Examples. Examples with solutions from Bhâskara II : ${ }^{3}$

Example 1. $\quad 13 y=-60 x \pm 3$.
By the method described before we find that the minimum solution of

$$
13 y=60 x+3
$$

is $x=11, y=51$. Subtracting these values from their respective abraders, namely 13 and 60 , we get 2 and 9 . Then by the maxim. "In the case of the dividend and divisor being of different signs, the results from the operation of division should be known to be so," making the quotient negative we get the solution of

$$
13 y=-60 x+3
$$

as $x=2, y=-9$. Subtracting these values again from their respective abraders (13,60), we get the solution of

$$
13 y=-60 x-3
$$

as $x=11, y=-\mathrm{s}$.
Example 2. - $11 y=18 x \pm 10$.
Proceeding as before we find the minimum solution of

$$
11 y=18 x+10
$$

${ }^{1}$ BBi, p. 29.
${ }^{2}{ }^{N B B}$, I, R. 63.
${ }^{3} \mathrm{BBi}, \mathrm{pp} .29,30$.
to be $x=8, y=14$. These will also be the values of x and y in the case of the negative divisor but the quotient for the reasons stated before should be made negative. So the solution of

$$
-11 y=18 x+10
$$

is $x=8, y=-14$. Subtracting, these (i.e., their numerical values) from their respective abraders, we get the solution of

$$
-11 y=18 x-10
$$

as $x=3, \quad y=-4$.
"Whether the divisor is positive or negative, the numercial values of the quotient and multiplier remain the samc: when either the divisor or the dividend is negative, the quotient must always be known to be negative."
'I'he following example with its solution is from the algebra of Nârâyana : ${ }^{1}$

The solution of

$$
7 y=-30 x \pm 3
$$

$$
7 y=30 x+3
$$

is $x=2, y=9$. Subtracting these values from the respective abraders, namely 7 and 30 , and making one of the remainders negative, we get $x=5, y=-21$ and $x=-5, y=21$ respectively as solutions of

$$
7 y=-30 x \pm 3 .
$$

Particular Cases. The Hindus also tound special types of general solutions of certain particular cases of the equation $b y+a x=c$. For instance, we find in the Ganita-sâra-sanigraba of Mahâvìra (850) problems of the following type:
"The varna (or colours) of two pieces of gold weighing 16 and io are unknown, but the mixture of
them has the varna 4; what is the varna of each piece of gold ?"

If x, y denote the required varna, then we shall have

$$
16 x+10 y=4 \times 26 ;
$$

or in general

$$
a x+b y=c(a+b) .
$$

Therefore
$a(x-c)=b(c-y) ;$
whence
$x=c \pm m|a, y=c \mp m| b$,
where m is an arbitraty integer.
Hence the following rule of Mahâvîra :
"Divide unity (severally) by the weights of the two ingots of gold. The resulting varna being set down at two places, increase or decrease it at one place and do reversely at the other place, by the unity divided by its own quantity of gold (the results will be the corresponding varna)." ${ }^{2}$

He has also remarked that "assuming an arbitrary value for one of the varna, the other can be found as before." ${ }^{3}$

A variation of the above problem is found in the Lilâvatî of Bhâskara II :
"On mixing up two ingots of gold of varna 16 and 10 is produced gold of varna 12 ; tell me, O friend, the weights of the original ingots." 4

That is to say, we shall have to solve the equation

$$
16 x+10 y=12(x+y)
$$

or in general

$$
a x+b y=c(x+y) .
$$

Hence

$$
x=m(c-b), \quad y=m(a-c)
$$

where m is an arbitraty integer.

$$
\begin{array}{ll}
1 \\
{ }^{1} \text { GSS, vi. } 188 . & { }^{2} \text { GSS, vi. } 187 .
\end{array}
$$

Hence the rule of Bhâskara II :
"Subtract the resulting varna from the higher varna and diminish it by the lower varna; the remainders multiplied by an optional number will be the weights of gold of the lower and higher varna respectively." ${ }^{1}$

In the above example $c-b=2, a-c=4$. So that, taking $m=1,2$, or $1 / 2$, Bhâskara 11 obtains the values of (x, y) as $(2,4),(4,8)$ or (1,2). He then observes that in the same way numerous other sets of values can be obtained.

14. ONE LINEAR LQQUATION IN MORE THAN TWO UNKNOWNS

To solve a linear cquation involving more than two unknowns the usual Hindu method is to assume arbitrary values for all the unknowns except two and then to apply the method of the pulveriscr. Thus Brahmagupta remarks, "The method of the pulveriser (should be employed), if there be present many unknowns (in an equation)." ${ }^{2}$ Similar directions have been given by Bhâskara 11 and others. ${ }^{3}$

One of the astronomical problems proposed by Brahmagupta ${ }^{4}$ leads to the equation :

$$
\begin{gathered}
197 x-1644 y-z=6302 \\
x=\frac{1644 y+z+6302}{197}
\end{gathered}
$$

The commentator assumes $z=131$. Then

$$
x=\frac{1644 y+6433}{197} ;
$$

${ }^{1}$ L, p. 25.
${ }^{3} B B i$, p. 76.
${ }^{2}$ BrSpSi, xviii. s1.
${ }^{4}$ BrSpSi, xviii. ss.
hence by the method of the pulveriser

$$
x=4 \mathrm{r}, \quad y=\mathrm{I}
$$

The following example with its solution is from the algebra of Bhâskara II :
"The numbers of flawless rubies, sapphires, and pearls with one person are respectively 5,8 and 7 ; and O friend, another has 7,9 and 6 respectively of the same gems. In addition they have coins to the extent of 90 and 62. They are thus equally rich. Tell quickly, O intelligent algebraist, the price of each gem."1

If x, y, z represent the prices of a ruby, sapphire and pearl respectively, then by the question

$$
5 x+8 y+7 z+90=7 x+9 y+6 z+62
$$

Therefore

$$
x=\frac{-y+z+28}{2}
$$

Assume $z=1$; then

$$
x=\frac{-y+29}{2}
$$

whence by the method of the pulveriser, we get

$$
x=14-m, y=2 m+1
$$

where m is an arbitrary integer. Putting $m=0,1,2,3, \ldots$ we get the values of (x, y, z) as $(14,1,1),(13,3,1)$, ($12,5,1$), ($11,7,1$), etc. Bhâskara II then observes, "By virtue of a variety of assumptions multiplicity of values may thus be obtained."

Sometimes the values of most of the unknowns present in an equation are assumed arbitrarily or in terms of any one of them, so as to reduce the equation to a simple determinate one. Thus Bhâskara II says :
"In case of two or more unknowns, x multiplied by 2 etc. (i.e., by arbitrary known numbers), or divided,

[^124]increased or decreased by them, or in some cases (simply) any known values may be assumed for the other unknowns according to one's own sagacity. Knowing these (the rest is an equation in one unknown)." ${ }^{1}$

The above example has been solved again by Bhâskara II in accordance with this rule thus : ${ }^{2}$
(1) Assume $x=3 z, y=2 \chi$. Then the equation reduces to

$$
38 z+90=45 z+62
$$

Therefore $z=4$. Hence $x=12, y=8$.
(2) Or: assume $y=5, z=3$. Then the equation becomes

$$
5 x+151=7 x+125 .
$$

Whence $x=13$.

19. SIMULTANEUUS INDETERMINATE EQUATIONS OF THE FIRST DEGREE

Srípati's Rule. We have described before the rule of Brahmagupta for the solution of simultancous equations of the first degree. ${ }^{3}$ In the latter portion of that rule there are hints for the solution of simultaneous indeterminate equations by the application of the method of the pulveriser. Similar rules have been given by later Hindu algebraists. Thus Srîpati (1039) says :
"Remove the first unknown from any one side of an equation leaving the rest, and remove the rest from the other side. Then find the value of the first by dividing the other side by its coefficient. If there be found thus several values (of the first unknown), the same (opera-

[^125]$$
\text { 2 BBi, p. } 46 .
$$
tions) should be made again (by equating two and two of those values) after reducing them to a common denominator. (Proceed thus repeatedly) until there results a single value for an unknown. Now apply the method of the pulveriser ; and from the values (determined in this way) the other unknowns will be found by proceeding backwards. In the pulveriser the multiplier will be the value of the unknown associated with the dividend and the quotient, of that with the divisor." 1

Bhâskara II's Rule. Bhâskara II (1150) writes :
" Remove the first unknown from the second side of an equation and the others as well as the absolute number from the first side. Then on dividing the second side by the coefficient of the first unknown, its value will be obtained. If there be found in this way several values of the same unknown, from them, after reduction to a common denominator and then dropping it, values of another unknown should be determined. In the final stage of this process, the multiplier and quotient obtained by the method of the pulveriser will be the values of the unknowns associated with the dividend and the divisor (respectively). If there be several unknowns in the dividend, their values should be determined after assuming values of all but one arbitrarily. Substituting these values and proceeding reversely, the values of the other unknowns can be obtained. If on so doing there results a fractional value (at any stage), the method of the pulveriser should be employed again. Then determining the (integral) values of the latter unknowns accordingly and substituting them, the values of the former unknowns should be found proceeding reversely again." ${ }^{2}$

A similar rule has been given by Jñânarâja.

$$
{ }^{1} \text { SiSe, xiv. } 15-6 . \quad 2 B B i, \text { p. } 76
$$

Example from Bhâskara II:
" (Four merchants), whe have horses $5,3,6$ and 8 respectively; camels 2, 7, 4 and 1 ; whose mules are 8 , 2,1 and 3 ; and oxen 7, 1,2 and 1 in number; are all owners of equal wealth. Tell me instantly the price of a horse, etc." ${ }^{1}$

If x, y, z, y denote respectively the prices of a horse, a camel, a mule and an ox, and W be the total wealth of each merchant, we have

$$
\begin{align*}
& s x+2 y+8 z+7 w=W \tag{1}\\
& 3 x+7 y+2 z+w=W \tag{2}\\
& 6 x+4 y+z+2 w=W \tag{3}\\
& 8 x+y+3 z+w=W \tag{4}\\
& x=\frac{1}{2}(5 y-6 z-6 w), \text { from (1) and (2) } \\
& =\frac{1}{3}(3 y+z-w), \quad \text { from (2) and (3) } \\
& =\frac{1}{2}(3 y-2 z+w), \text { from (3) and (4) }
\end{align*}
$$

From the first and second values of x, we get

$$
y=\frac{1}{9}(20 z+16 \nu) ;
$$

and from the second and third values, we have

$$
y=\frac{1}{3}(8 z-5 w)
$$

Equating these two values of y and simplifying,

$$
20 z+16 y=24 z-15 \nu y
$$

Therefore

$$
z=\frac{31 \eta}{4}
$$

Take $\quad v=4 t$; then

$$
z=31 t, \quad y=76 t, \quad x=85 t .
$$

Special Rules. Bhâskara II observes that the physical conditions of problems may sometimes be such that the ordinary method of solving simultaneous in-

$$
\begin{aligned}
& 1 \text { BBi, p. } 79 . \\
& 9
\end{aligned}
$$

determinate equations of the first degree, which has been just explained, will fail to give the desired result. One such problem has been described by him as follows:
"Tell quickly, O algebraist, what number is that which multiplied by 23 and severally divided by 60 and 80 leaves remainders whose sum is 100. ."

Let the number be denoted by x; the quotients by u, v; and the remainders by s, t. Then we have

$$
\begin{gathered}
\frac{23 x-s}{60}=u, \quad \frac{23 x-t}{80}=v ; \\
s+t=100 .
\end{gathered}
$$

also
Therefore

$$
x=\frac{60 u+s}{23}=\frac{80 v+t}{23} .
$$

Hence
or

$$
\begin{aligned}
& x=\frac{60 u+80 v+s+t}{46} \\
& x=\frac{30 u+40 v+50}{23}
\end{aligned}
$$

For the solution of the above he observes:
"Here, (although) there is more than one quotient (u, v) in the dividend, the value of any should not be arbitrarily assumed; for on so doing the process will fail." " "In a case like this," continues he, "the (given) sum of the remainders should be so broken up that each remainder will be less than the divisor corresponding to it and further that impossibility will not arise ; then must be applied the usual method."

In the present example we thus suppose $s=40$, $t=60$. Hence we have

$$
160 u+40=80 v+60
$$

${ }^{1} \mathrm{BBi}, \mathrm{p} .9 \mathrm{~m}$.
${ }^{2} B B i$, p. gif.
or

$$
u=\frac{80 v+20}{60}=\frac{4 v+1}{3}
$$

whence by the method of the pulveriser, we get

$$
\begin{gathered}
v=3 w+2, u=4 w+3 \\
x=\frac{240 w+220}{23}
\end{gathered}
$$

Again, applying the method of the pulveriser in order to obtain an integral value of x, we have

$$
n=23 m+1, x=240 m+20 .
$$

If we take $s=30, t=70$, we shall find, by proceeding in the same way, another value of x as $240 m+90$.

General Problem of Remainders. One type of simultaneous indeterminate equations of the first degree is furnished by the general problem of remainders, $v i z$., to find a number N which being severally divided by $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ leaves as remainders $r_{1}, r_{2}, r_{3}, \ldots, r_{n}$ respectively.

In this case, we have the equations

$$
\begin{aligned}
N=a_{1} x_{1}+r_{1}=a_{2} x_{2}+r_{2}=a_{3} x_{3}+ & r_{3}=\ldots \\
& =a_{n} x_{n}+r_{n} .
\end{aligned}
$$

The method of solution of these equations was known to Aryabhata I (499). For this purpose the term dvicchedâgram occurring in his rule for the pulveriser must be explained in a different way so that the last line of the translations given before (pp. 94-s) will have to be replaced by the following: "(The result will be) the remainder corresponding to the product of the two divisors." ${ }^{1}$ This explanation is, in fact, given by Bhâskara I, the direct disciple and earliest commentator of Aryabhaṭa I. Such a rule is expressly stated by

[^126]
Brahmagupta. ${ }^{1}$

The rationale of this method is simple: Starting with the consideration of the first two divisors, we have

$$
N=a_{1} x_{1}+r_{1}=a_{2} x_{2}+r_{2}
$$

By the method described before we can find the minimum value a of x_{1} satisfying this equation. Then the minimum value of N will be $a_{1} \alpha+r_{1}$. Hence the general value of N will be given by

$$
\begin{aligned}
N & =a_{1}\left(a_{2} t+\alpha\right)+r_{1}, \\
& =a_{1} a_{2} t+a_{1} \alpha+r_{1},
\end{aligned}
$$

where t is an intcger. Thus $a_{1} \alpha+r_{1}$ is the remainder left on dividing N by $a_{1} a_{2}$, as stated by Λ ryabhata I and Brahmagupta. Now, taking into consideration the third condition, we have

$$
N=a_{1} a_{2} t+a_{1} \alpha+r_{1}=a_{3} x_{3}+r_{3},
$$

which can be solved in the same way as before. Proceeding in this way successively we shall ultimately arrive at a value of N satisfying all the conditions.

Pṛthûdakasvâmî remarks:
"Wherever the reduction of two divisors by a common measure is possible, there 'the product of the divisors' should be understood as equivalent to the product of the divisor corresponding to the greater remainder and quotient of the divisor corresponding to the smaller remainder as reduced (i.e., divided) by the common measure. ${ }^{2}$ When one divisor is exactly divisible by the other then the greater remainder is the (required) remainder and the divisor corresponding to
${ }^{1}$ BrSpSi, xviii. 5.
${ }^{2}$ i.e., if p be the L.C.M. of a_{1} and a_{2}, the general value of N satisfying the above two conditions will be
instead of

$$
\begin{aligned}
& N=p t+a_{1} \alpha+r_{1} \\
& N=a_{1} a_{2} t+a_{1} \alpha+r_{1} .
\end{aligned}
$$

the greater remainder is taken as 'the product of the divisors.' (The truth of) this may be investigated by an intelligent mathematician by taking several symbols."

Examples from Bhâskara I:
(1) "Find that number which divided by 8 leaves 5 as remainder, divided by 9 leaves 4 as remainder and divided by 7 leaves 1 as remainder." 1

That is to say, we have to solve

$$
N=8 x+5=9 y+4=7 z+1
$$

The solution is given substantially thus: The minimum value of N satisfying the first two conditions

$$
N=8 x+5=9 y+4
$$

is found by the method of the pulveriser to be 13. This is the remainder left on dividing the number by the product 8.9. Hence

$$
N=72 t+13=7 Z+1
$$

Again, applying the same method we find the minimum number satisfying all the conditions to be 85 .
(2) "Tell me at once, O mathematician, that number which leaves unity as remainder when divided by any of the numbers from 2 to 6 but is exactly divisible by 7 ."

By the same method, says Bhâskara I ($\varsigma 22$), the number is found to be 72 I . By a different method Sûryadeva Yajvâ obtains the number 30r. It is interesting to find that this very problem was afterwards treated by Ibn-al-Haitam (c. 1000) and Leonardo Fibonacci of Pisa (c. 1202). ${ }^{2}$

To solve a problem of this kind Bhâskara II adopts

[^127]two methods. One is identical with the method of Aryabhata I and the other follows from his gencral rule for the solution of simultaneous indeterminate equations of the first degree. They will be better understood from his applications to the solution ${ }^{1}$ of the following problem which, as Pṛthûdakasvâmî (860) observes, ${ }^{2}$ was popular amongst the Hindus:

To find a number N which leaves remainders s, 4, 3, 2 when divided by $6,5,4,3$ respectively.

$$
\text { i.e., } \quad N=6 x+5=5 y+4=4 z+3=3 n+2 \text {. }
$$

(I) We have

$$
x=\frac{5 y-1}{6}, y=\frac{4 z-1}{5}, z=\frac{3 w-1}{4} .
$$

Now by the method of the pulveriser, we get from the last equation

$$
w=4 t+3, \quad z=3 t+2,
$$

where t is an arbitrary integer. Substituting in the second equation, we get

$$
y=\frac{12 t+7}{5}
$$

To make this integral, we again apply the method of the pulveriser, so that

$$
t=55+4, \quad y=12 s+11 .
$$

This value of y makes x a whole number. Hence we have finally

$$
y=205+19, z=155+14, y=12 s+11, x=105+9 .
$$

$$
\therefore N=60 s+59 .
$$

(2) Or we may proceed thus:

Since

$$
N=6 x+5=5 y+4,
$$

[^128]we have
$$
x=\frac{s y-1}{6}
$$

But x must be integral, so $y=6 t+5, x=s t+4$.
Hence

$$
N=30 t+29
$$

Again

$$
\begin{gathered}
N=30 t+29=4 Z+3 . \\
t=\frac{2 Z-13}{15}
\end{gathered}
$$

Since t must be integral, we must have $z=15 s+14$; hence $t=2 s+\mathrm{I}$. Therefore

$$
N=60 s+59 .
$$

The last condition is identically satisfied. Prtthûdakasvâmî followed this second method to solve the above problem.

Conjunct Pulveriser. The foregoing system of indeterminate equations of the first degree can be put into the form ${ }^{1}$

$$
\left.\begin{array}{l}
b y_{1}=a_{1} x \pm c_{1} \tag{x}\\
b y_{2}=a_{2} x \pm c_{2} \\
b y_{8}=a_{3} x \pm c_{3} \\
\cdots \cdots \cdots \cdots \cdots \cdots
\end{array}\right\}
$$

On account of its important applications in mathematical astronomy this modified system has received special treatment at the hands of Hindu algebraists from Aryabhata II (950) onwards. It is technically called
${ }^{1}$ For, we have
Then

$$
\begin{aligned}
a_{1} x_{1}+r_{1} & =a_{2} x_{2}+r_{2}=a_{3} x_{3}+r_{3}=\ldots=a_{n} x_{n}+r_{n} \\
a_{2} x_{2} & =a_{1} x_{1}+\left(r_{1}-r_{2}\right), \\
a_{2} x_{3} & =\frac{a_{1} a_{2}}{a_{2}} x_{1}+\frac{a_{2}}{a_{3}}\left(r_{1}-r_{3}\right), \\
a_{2} x_{4} & =\frac{a_{1} a_{2}}{a_{4}} x_{1}+\frac{a_{2}}{a_{4}}\left(r_{1}-r_{4}\right),
\end{aligned}
$$

samंslistakuttaka or the "conjunct pulveriser" (from, kuttaka $=$ pulveriser and samislista $=$ joined together, related).

For the solution of the above system of equations Aryabhaṭa II lays down the following rule:
"In the solution of simultaneous indeterminate equations of the first degree with a common divisor, the dividend will be the sum of the multipliers ${ }^{1}$ and the interpolator the sum of the given interpolators." ${ }^{2}$

A similar rule is given by Bhâskara II. He says :
"If the divisor be the same but the multipliers different then making the sum of the multipliers the dividend and the sum of residucs the residue (of a pulveriser), the investigation is carricd on according to the foregoing method. This true method of the pulveriser is called the conjunct pulveriser." ${ }^{3}$

Rationale. If the equations (1) are satisficd by some value a of x, then the same value will satisfy the equation
$b\left(y_{1}+y_{2}+\ldots\right)=\left(a_{1}+a_{2}+\ldots\right) x+\left(c_{1}+c_{2}+\ldots\right)(2)$.
Thus, if we can find the general value of x satisfying equation (2), one of these values, at least, will satisfy all the equations (1).

To illustrate the application of the above Bhâskara II gives the following example : ${ }^{4}$

$$
\left.\begin{array}{l}
63 y_{1}=5 x-7 \tag{A}\\
63 y_{2}=10 x-14
\end{array}\right\}
$$

Adding up the equations and dividing by the common factor 3, we get

$$
2 \pi Y=5 x-7
$$

${ }^{1}$ In the equations (1), a_{1}, a_{2}, \ldots are called multipliers.
${ }^{2} \mathrm{MSi}$, xviii. $48 . \quad{ }^{3} \mathrm{BBi}, \mathrm{p} .33$; L, p. 82.

- BBi, p. 33 ; L, p. 82.
where $Y=y_{1}+y_{2}$. By the method of the pulveriser the least positive value of x satisfying this equation is $x=14$. This value of x is found to satisfy both the equations (A).

Generalised Conjunct Pulveriser. A generalised case of the conjunct pulveriser is that in which the divisors as well as the multipliers vary. Thus we have

$$
\begin{aligned}
& b_{1} y_{1}=a_{1} x \pm c_{1}, \\
& b_{2} y_{2}=a_{2} x \pm c_{2}, \\
& b_{3} y_{3}=a_{3} x \pm c_{3},
\end{aligned}
$$

Simultaneous indeterminate cquations of this type have been treated by Mahâvîra (850) and Sripati (r039). Mahâvîra says :
"Find the least solutions of the first two equations. Divide the divisor corresponding to the greater solution by the other divisor (and as in the method of the pulveriser find the least value of) the multiplier with the difference of the solutions as the additive. That multiplied by the divisor (corresponding to the greater solution) and then added by the greater solution (will be the value of the unknown satisfying the two equations)." ${ }^{1}$ A similar rule is given by Sripati :
"Find the least solutions of the first two equations. Dividing the divisor corresponding to the greater solution by the divisor corresponding to the smaller solution, the residue (and its divisor) should be mutually divided. Then taking the difference of the numbers as the additive, determine (the least value of) the multiplier of the divisor corresponding to the greater solution in the manner explained before. Multiply that value by the

[^129]latter divisor and then add the solution (corresponding to it). The resulting number (severally) multiplied by the two multipliers and divided by the corresponding divisors will leave remainders as stated." 1

The rationale of these rules will be clear from the following :

Taking the first two equations, we have

$$
\begin{aligned}
& b_{1} y_{1}=a_{1} x \pm c_{1} \\
& b_{2} y_{2}=a_{2} x \pm c_{2}
\end{aligned}
$$

Suppose α_{1} to be the least value of x satisfying the first equation as found by the method of the pulveriser. Then $b_{1} m+a_{1}$, where m is an arbitrary integer, will be the general value of x satisfying that equation. Similarly, we shall find from the second equation the general value of x as $b_{2} n+\alpha_{2}$. If the same value of x satisfies both the equations we must have

$$
\begin{aligned}
& b_{2} n+\alpha_{2}=b_{1} m+\alpha_{1} \\
& b_{2} n=b_{1} m+\left(\alpha_{1}-\alpha_{2}\right) ;
\end{aligned}
$$

supposing $\alpha_{1}>\alpha_{2}$. Solving this equation, we can find the value of m and hence of $b_{1}{ }^{n \prime}+a_{1}$ of \times satisfying both the equations. The general value of x derived from this may be equated to the value of x from the third equation and the resulting equation solved again, and so on.

In illustration of his rule Mahâvirra proposed several problems. One of these has already been given (Part I, p. 233). Here are two others:
(1) "Five (heaps of fruits) added with two (fruits) were divided (equally) between nine travellers; six (heaps) added with four (fruits) were divided amongst cight ; four (heaps) increased by one (fruit) were divided

[^130]amongst seven. Tell the number (of fruits in each heap)." ${ }^{1}$

This gives the equations:
$9 y_{1}=5 x+2,8 y_{2}=6 x+4,7 y_{3}=4 x+1$.
(2) "The (dividends) are the sixteen numbers beginning with 35 and increasing successively by three; divisors are 32 and others successively increasing by 2 ; and I increasing by 3 gives the remainders positive and negative. What is the unknown multiplier? ?"

This gives the equations :
$32 y_{1}=35 x \pm 1, \quad 34 y_{2}=38 x \pm 4, \quad 36 y_{3}=41 x \pm 7, \ldots$
Alternative Method. In four palm-leaf manuscript copies of the Lìlavatî of Bhâskarall Sarada Kanta Ganguly discovered a rule describing an alternative method for the solution of the generalised conjunct pulveriser. ${ }^{3}$ There is also an illustrative example. The genuineness of this rule and example is accepted by him; but it has been questioned by A. A. Krishnaswami Ayyangar ${ }^{4}$ who attributes them to some commentator of the work. His arguments are not convincing. ${ }^{5}$ The chief points against the presumption, which have been noted also by Ganguly, are: (1) the rule and example in question have not been mentioned by the earlier commentators of the Lilavati and (2) they have not been so far traced in any manuscript of the Bijaganita, though the treatment of the pulveriser occurs nearly word for

$$
\text { GSS, vi. } 129 \frac{1}{2} \text { :GSS, vi. } 138 \frac{1}{2} .
$$

${ }^{2}$ S. K. Ganguly, "Bhâskarâcârya and simultaneous indeterminate equations of the first degree," $B C M S$, XVII, 1926, pp. 8998.

- A. A. Krishnaswami Ayyangar, "Bhâskara and samslishta Kuttaka," JIMS, XVIII, 1929.
${ }^{6}$ For Ganguly's reply to Ayyangar's criticism see JIMS, XIX, 1931.
word in the two works. Still we are in favour of accepting Ganguly's conclusion. ${ }^{1}$ The rule in question is this :
"If the divisors as well as the multipliers be different, find the value of the unknown answering to the first set of them. That value being multiplied by the second dividend and then added by the second interpolator will be the interpolator (of a new kenttaka); the product of the second dividend and first divisot will be the dividend there and the divisor will be the second divisor. The value of the unknown multiplier determined from the kuttaka thus formed being multiplied by the first divisor and added by the previous value of the unknown multiplier will be the value (answering to the two divisors). The dividend (for the next step) has been stated to be equal to the product of the two divisors. So proceed in the same way with the third divisor. And so on with the others, if there be many."

The rationale of this rule is as follows: Let α_{1} be the least value of x satisfying the first equation of the system, viz.,

$$
b_{1} y_{1}=a_{1} x \pm c_{1} .
$$

Hence the general value is $x=b_{1} t+a_{1}$, where t is any integer. Substituting this value in the second equation, we get

$$
b_{2} y_{2}=a_{2} b_{1} t+\left(a_{2} \alpha_{1} \pm c_{2}\right) .
$$

If $t=\tau$ be a solution of this equation, a value of x
1 Of the four manuscripts containing the rule and example in question two are from Puri, in Oriya characters, with the commentary of Srîdhara Mahâpàtra (1717); the other two, in Andhra characters and without any commentary, are preserved in the Oriental Libraries of Madras and Mysore. So these four manuscript copies do not appear to have been drawn from the same source. This is a strong point in favour of the genuineness of the rule and example.
satisfying both the equations will be $a_{2}=b_{1} \tau+a_{1}$ as stated in the rule. Now the general value of t will be $t=b_{2} m+\tau$, where m is an integer. Hence $x=b_{1} t+\alpha_{1}=b_{1} b_{2} m+b_{1} \tau+\alpha_{1}=b_{1} b_{2} m+\alpha_{2}$. Substituting this value in the third equation we can find the least value of m and hence a value of x answering to the three equations. And so on for the other equations.

The example runs thus :
"'Fell me that number which multiplied by 7 and then divided by 62, leaves the remainder 3. That number again when multiplied by 6 and divided by 101 leaves the remainder 5 ; and when multiplied by 8 and divided by 17 leaves the remainder 9 . Also (give) at once the process of the pulveriser for (finding) the number with the remainders all positive."

Symbolically, we have
(1) $62 y_{1}=7 x-3$, $101 y_{2}=6 x-5,17 y_{3}=8 x-9$;
(2) $62 y_{1}=7 x+3, \operatorname{101} y_{2}=6 x+5,17 y_{3}=8 x+9$.
16. SOLUTION OF $N x^{2}+x=y^{2}$

Square-nature. The indeterminate quadratic equation

$$
N x^{2} \pm c=y^{2}
$$

is called by the Hindus Varga-prakrti or Krti-prakrti, meaning the "Square-nature." Bhâskara II (1150) states that the absolute number should be rupa, ${ }^{2}$ which means "unity" as well as "absolute number" in general. Kamalâkara (1698) says :

[^131]"Hear first the nature of the varga-prakerti: in it the square (of a certain number) multiplied by a multiplier and then increased or diminished by an interpolator becomes capable of yielding a square-root." ${ }^{1}$

It was recognised that the most fundamental equation of this class is

$$
N x^{2}+1=y^{2},
$$

where N is a non-square integer.
Origin of the Name. As regards the origin of the name varga-prakrti, Kṛ̣na (1580) says: "That in which the varga (square) is the prakerti (nature) is called the varga-prakrti; for the square of yavat, etc., is the prakerti (origin) of this (branch of) mathematics. Or, because this (branch of) mathematics has originated from the number which is the prakerti of the square of yavat, etc., so it is called the varga-prakerti. In this case the number which is the multiplicr of the square of yatat, etc., is denoted by the term prakerti. (In other words) it is the coefficient of the square of the unknown." 2 This double interpretation has been evidently suggested by the use of the term prakerti by Bhâskara II in two contexts. He has denoted by it sometimes the quantity N of the above equation as in "There the number which is (associated) with the square of the unknown is the prakrti;" ${ }^{3}$ and at other times x^{2}, as in "Supposing the square of one of the two unknowns to be the prakerti." 4 Other Hindu algebraists have, however, consistently
${ }^{1}$ SiTVi, xiii. 208.
${ }^{2}$ See his commentary on the Bíjaganita of Bhâskara II.
${ }^{3}$ "Tatra varṇavarge yo'nikah sâ prakṛtih" ($B B i$, p. 100). Compare also "Tatra yâvattâvadvarge yo'n̉kah sâ prakṛtih" (p. 107); "Istamín hrasvaḿ tasya vargah prakrtyâ ksuṇno..." (p. 33).
" "Tatraikâm varnakṛtim prakrtim prakalpya..." (BBi, p. 106). Compare also "Sarûpake varṇakṛti tu yatra tatrecchaikâm̉ prakrtim prakalpya..." (p. ıos).
employed the term prakerti to denote N only. ${ }^{1}$ Brahmagupta (628) uses the term gunaka (multiplier) for the same purpose. ${ }^{2}$ This latter term, together with its variation guna, appears occasionally also in later works. ${ }^{3}$

We presume that the name varga-prakrti originated from the following consideration: The principle (prakerti) underlying the calculations in this branch of mathematics is to determine a number (or numbers) whose nature (prakrti) is such that its (or their) square (or squares, varga) or the simple number (or numbers) after certain specified operations will yield another number (or numbers) of the nature of a square. So the name is, indeed, very significant. This interpretation seems to have been intended, at any rate, by the earlier writers who used the term in a wider sense. ${ }^{4}$ It is perhaps noteworthy that we do not find in the works of Brahmagupta the use of the word prakrti either in the sense of N or of x^{2}.

Technical Terms. Of the various technical terms which are ordinarily used by the Hindu algebraists in connection with the Square-nature we have already dealt with the most notable one, prakerti, together with its synonyms. Others have been explained by Pṛthûdakasvâmî (860) thus :
"Here are stated for ordinary use the terms which
${ }^{1}$ For instance, Prthûdakasvâmi (860) writes: "The multiplier (of the square of the unknown) is known as the prakerti;" Sripati (ro39): "Kṛter-guṇako prakrtirbhṛ́soktaḥ" (SiSe, xiv. 32); Kamalâkara: "Guṇo yo râsi-vargasya saiva prakṛtirucyate."
${ }^{2} \mathrm{BrSpSi}$, xviii. 64.
${ }^{3}$ For instance, Sripati employs the term guyaka (SiS $S_{e, ~ x i v . ~ 32) ; ~}^{\text {n }}$) Bhâskara II and Nârâyaṇa use gug̣a (BBi, p. $42 ; N B i, I, R .84$).
${ }^{4}$ For instance, Brahmagupta seems to have considered the scope of the subiect wide enough to include such equations as

$$
x+y=x^{2}, x-y=v^{2}, x y+1=w^{2},
$$

amongst others (cf. BrSpSi, xviii. 72).
are well known to people. The number whose square, multiplied by an optional multiplier and then increased or decreased by another optional number, becomes capable of yielding a square-root, is designated by the term the lesser root (kanistha-pada) or the first root (âdya-mala). The root which results, after those operations have been petformed, is called by the name the greater root (jyestha-pada) or the second root (anva-mûla). If there be a number multiplying both thesc roots, it is called the augmenter (udvartaka); and, on the contrary, if there be a number dividing the roots, it is called the abridger (apavartaka)."1

Bhâskara ll (i 1 j 0) writes:
" $A \mathrm{n}$ optionally chosen number is taken as the lesser root (brasva-mûla). That number, positive or negative, which being added to or subtracted from its square multiplied by the prakerti (multiplier) gives a result yielding a square-root, is called the interpolator (ksepaka). And this (resulting) root is called the greater root (jyestha-mûla)."2

Similar passages occur in the works of Nârâyana, ${ }^{3}$ Jñânaràja and Kamalâkara. ${ }^{4}$

The terms 'lesser root' and 'greater root' do not appear to be accurate and happy. For if $x=m, y=n$ be a solution of the equation $N x^{2}+c=y^{2}, m$ will be less than n, if N and c are both positive. But if they are of opposite signs, the reverse will sometimes happen. ${ }^{5}$

[^132]Therefore, in the latter case, where $m>n$, it will be obviously ambiguous to call m the lesser root and n the greater root, as was the practice in later Hiniu algebra. This defect in the prevalent terminology was noticed by Krsna (1580). He explains it thus: "These terms are signiticant. Where the greater root is sonnctimes smalle: than the lesser root owing to the interpolator being negative, there also it becomes greater than the lesser root after the application of the Principle of Composition." The carlict terms, 'the first row' (adyo-mithi) for the value of x and 'the second ront' or 'the last root' (anty-mild) for the valuc of y, are quite free from ambiguiry. Their use is found in the algebra of Brahmagupta (628 . ${ }^{-}$. The later terms appar in the works of his commentator Prthûdakasvâmi (860).

The interpolator is called by Brahmagupta kisefou, prakisepta or prakestakici ${ }^{3}$ Sripati occasionally employs the syonym Esipti. When nequativ, the interpolator is sometimes distinguished as 'the subtractive' (sodbak'a).

$$
13 x^{2}-13=-y^{2} .
$$

One solution of it is given by the author as $x=1, y=0$; so that here the lescer root is greater than the greater roor. The same is the case in the solution $x-2, y==1$ of his exansple ($B B 2$, p. 43)

$$
-5 x^{2}+21=y^{2} .
$$

Brahmagupta gives the example (Br:Spsi, xviii. 77)

$$
3 x^{2}-800=y^{2},
$$

which has a solution $(x=20, y=20)$ where the two roots are equal.
${ }^{1}$ For example, by conposition of the solution (1,0) of the equation $13 x^{2}-13=y^{2}$ with the solution ($3, \frac{11}{2}$) of the equation $13 \cdot x^{2}+1=x^{2}$, we obtain, after Bhaskara II, a new solution ($\frac{1}{2}$, 33^{3}) of the former, in which the greater root is greater than the lesser root. Similarly, by composition of the solution (2,1) of the equation - $5 x^{2}+21=y^{2}$ with the solution ($k, \frac{\eta}{n}$) of the equation $-5 x^{2}+1=-y^{2}$, we get a new solution (1,4) of the former satisfying the same condition.
${ }^{2} \mathrm{Br}, \mathrm{St}, \mathrm{Si}$, xviii. 64, G6f.
${ }^{3}$ BrSpsi, xviii. 6s.
${ }^{4} \mathrm{Si}_{i} \mathrm{~S}_{\ell}$, xiv. 32.

The positive interpolator is then called 'the additive.'
Brahmagupta's Lemmas. Before procecding to the general solution of the Square-nature Brahmagupta has established two important lemmas. He says:
"Of the square of an optional number multiplied by the gunaka and increased or decreased by another optional number, (extract) the square-root. (Proceed) twice. The product of the first roonts multiplied by the gunaka together with the product of the second roots will give a (fresh) second root; the sum of their crossproducts will be a (fresh) first root. The (corresponding) interpolator will be equal to the product of the (previous) interpolators." ${ }^{2}$

The rule is somewhat cryptic because the word duidbâ (twice) has been employed with double implication. According to one, the earlier operations of finding roots are made on two optional numbers with two optional interpolators, and with the results thus obtained the subsequent operations of their composition are performed. According to the other implication of the word, the eatlicr operations are made with one optionally chosen number and one interpolator, and the subsequent ones are carried out after the repeated statement of these ronts for the second time. It is also implied that in the composition of the quadratic roots their products may be added together or subtracted from each other.

That is to say, if $x=\alpha, y=\beta$ be a solution of the equation

$$
N x^{2}+k=y^{2},
$$

and $x=\alpha^{\prime}, y=\beta^{\prime}$ be a solution of

$$
N x^{2}+k^{\prime}=y^{2},
$$

then, according to the above,

[^133]$$
x=\alpha \beta^{\prime} \pm \alpha^{\prime} \beta, y=\beta \beta^{\prime} \pm N \alpha \alpha^{\prime}
$$
is a solution of the equation
$$
N x^{2}+k k^{\prime}=y^{2}
$$

In other words, if

$$
\begin{aligned}
N \alpha^{2}+k & =\beta^{2} \\
N \alpha^{\prime 2}+k_{1}^{\prime} & =\beta^{\prime 2}
\end{aligned}
$$

then

$$
\begin{equation*}
N\left(\alpha \beta^{\prime} \pm \alpha^{\prime} \beta\right)^{2}+k k^{\prime}=\left(\beta \beta^{\prime} \pm N \alpha^{\prime}\right)^{2} . \tag{I}
\end{equation*}
$$

In particular, taking $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$, and $k=k^{\prime}$, Brahmagupta finds from a solution $x=\alpha, y=\beta$ of the equation

$$
N x^{2}+k=y^{2},
$$

a solution $x=2 \alpha \beta, y=\beta^{2}+N \alpha^{2}$ of the equation
That is, if

$$
N x^{2}+k^{2}=y^{2}
$$

$$
N \alpha^{2}+k=\beta^{2}
$$

then

$$
\begin{equation*}
N(2 \alpha \beta)^{2}+k^{2}=-\left(\beta^{2}+N \alpha^{2}\right)^{2} \tag{II}
\end{equation*}
$$

This result will be hereafter called Brabmagupta's Corollary.

Description by Later Writers. Brahmagupta's Lemmas have been described by Bhâskara II (1150) thus :
"Sct down successively the lesser root, greater root and interpolator; and below them should be set down in order the same or another (set of similar quantities). From them by the Principle of Composition can be obtained numerous roots. Thercfore, the Principle of Composition will be explained here. (Find) the two cross-products of the two lesser and the two greater roots; their sum is a lesser root. Add the product of the two lesser roots multiplied by the prakerti to the product of the two greater roots; the sum will be a greater root. In that (equation) the interpolator will be
the product of the two previous interpolators. Again the difference of the two cross-products is a lesser reot. Subtract the product of the two lesser roonts multiplied be the prokerti from the product of the two greater roots; (the difference) will be a greater root. llere also, the interpolator is the product of the two (previous) interpolators." ${ }^{1}$

Statements simblar to the above are found in the works of Narayana (1350), Jranaràa (1503) and Kamalakata ${ }^{3}(1658)$.

Principle of Composition. The above results are called by the techncal name, Bhâranâ (demonstration or prowt, meaning anything demonstrated or proved, honce theorem, lemma; the word also means composition or combination). They are further distinguished as Samása Biticaná (Addition Lemma or Additive Composition) and -Antara Bhalidná (Subtraction Lemma or Subtractive Composition). Again, when the Bhatrana is made with twor equal sets of roots and interpolators, it is called Tulw Bharana (Composition of Equals) and when with two uncqual sets of values, Atulya Bhârana (Composition of Unequals). Kṭ̣na has observed that when it is desired to derive ronts of a Square-nature, larger in value, one should have recourse to the Addition Lemma and for smaller roots one should use the Subtraction Lemma.

Brahmagupta's Lemmas were rediscovered and recognised as important by Eulcr in 1764 and by Lagrange in 1768.

Proof. The proof of Brahmagupta's Lemmas has been given by Kṛina substantially as follows:

[^134]\[

$$
\begin{equation*}
\text { SOLUTION OF } N x^{2}+1=y^{2} \tag{149}
\end{equation*}
$$

\]

We have

$$
\begin{gathered}
N \alpha^{2}+k=\beta^{2} \\
N \alpha^{\prime 2}+k^{\prime}=\beta^{\prime 2} .
\end{gathered}
$$

Multiplying the first equation by $\beta^{\prime 2}$, we get

$$
N u^{2} \beta^{\prime 2}+k \beta^{\prime 2}=\beta^{2} \beta^{\prime 2} .
$$

Now, substituting the value of the factor β^{2} of the interpolator from the second equation, we get

$$
\begin{aligned}
& N \alpha^{2} \gamma^{\prime 2}+E\left(N \alpha^{\prime 2}+k_{1}^{\prime}\right)=\beta^{2} \beta^{\prime 2} \\
& N \alpha^{2} \beta^{\prime 2}+N k \alpha^{\prime 2}+k E^{\prime}=\beta^{2} \beta^{\prime 2} .
\end{aligned}
$$

Again, substituting the value of K from the first equation in the second term of the left-hand side expression, we have

$$
N a^{2} \beta^{\prime 2}: N^{\prime} a^{2}\left(\beta^{2}-N a^{2}\right)+k \cdot k^{\prime}=\beta^{2} \beta^{\prime 2},
$$

or $\quad N\left(\alpha^{2} \beta^{\prime 2}+a^{\prime 2} \beta^{2}\right)-k k^{\prime}=a=\beta^{2} \beta^{\prime 2}+N^{2} a^{2} a^{2}$ 。

$$
\begin{aligned}
& \text { Adding } \pm 2 N \alpha \beta \alpha^{\prime} \beta^{\prime} \text { to both sides, we get } \\
& N\left(\alpha \beta \beta^{\prime} \pm \alpha^{\prime} \beta\right)^{2}+k k^{\prime}=\left(\beta \beta^{\prime} \pm N \alpha a^{\prime}\right)^{2} .
\end{aligned}
$$

Brahmagupta's Corollary follows at once from the above by putting $\alpha^{\prime}=\alpha, \beta^{\prime}=\beta$ and $k^{\prime}=k$.

General Solution of the Square-Nature. It is clear from Brahmagupta's Lemma (1) that when two solutions of the Square-nature,

$$
N x^{2}+\mathbf{1}=y^{2},
$$

are known, any number of other solutions can be found. For, if the two solutions be (a, b) and $\left(a^{\prime}, b^{\prime}\right)$, then two other solutions will be

$$
x=a b^{\prime} \pm a^{\prime} b, \quad y=b b^{\prime} \pm N a a^{\prime} .
$$

Again, composing this solution with the previous ones, we shall get other solutions. Further, it follows from Brahmagupta's Corollary that if (a, b) be a solution of the equation, another solution of it is $\left(2 a b, b^{2}+N a^{2}\right)$. Hence, in order to obtain a set of solutions of the

Square-nature it is necessary to obtain only one solution of it. For, after having obtained that, an infinite number of other solutions can be found by the repeated application of the Principle of Composition. Thus Sripati (1039) observes: "There will be an infinite (set of two roots)." Bhâskara II (iso) remarks: "Here (i.e., in the solution of the Square-nature) the roots are infinite by virtue of (the infinitely repeated application of) the Principle of Composition as well as of (the infinite variety of) the optional values (of the first roots)."'2 Nârấyaṇa (1350) writes, "By the Principle of Composition of equal as well as unequal sets of routs, (will be obtained) an infinite number of roots." ${ }^{3}$

Modern historians of mathematics are incorrect in stating that Fermat (1657) was the first to assert that the equation $N x^{2}+1=y^{2}$, where N is a non-square integer, has an unlimited number of solutions in integers. ${ }^{4}$ The existence of an infinite number of integral solutions was clearly mentioned by Hindu algebraists long before Fermat.

Another Lemma. Brahmagupta says :
"On dividing the two roots (of a Square-nature) by the square-root of its additive or subtractive, the roots for the interpolator unity (will be found)." 5

That is to say, if $x=\alpha, y=\beta$ be a solution of the equation

$$
N x^{2}+k^{2}==y^{2},
$$

then $x=\alpha / k, y=\beta / k$ is a solution of the equation

$$
N x^{2}+1-y^{2} .
$$

This rule has been restated in a different way thus:

[^135]"If the interpolator is that divided by a square then the roots will be those multiplied by its squareroot." ${ }^{1}$

That is, suppose the Square-nature to be

$$
N_{\Lambda^{2}} \pm p^{2} d==y^{2},
$$

so that its interpolator $p^{2} d$ is exactly divisible by the square p^{2}. Then, putting therein $u=x / p, v=y / p$, we derive the equation

$$
N u^{2} \pm d=v^{2}
$$

whose interpolator is equal to that of the original Square-nature divided by p^{2}. It is clear that the roots of the original equation are p times those of the derived equation.

Bhâskara II writes:
"If the interpolator (of a Square-nature) divided by the square of an optional number be the interpolator (of another Square-nature), then the two roots (of the former) divided by that optional number will be the roots (of the other). Or, if the interpolator be multiplied, the roots should be multiplied." 2

The same rule has been stated in slightly different words by Nàrâyaṇ ${ }^{3}$ and Kamalâkara. ${ }^{4}$ Jñânarâja simply observes:
"If the interpolator (of a Square-nature) be divided by the square of an optional number then its roots will - be divided by that optional number."

Thus we have, in general, "if $x=\alpha, y=\beta$ be : solution of the equation

$$
N \lambda^{2} \pm k=y^{2},
$$

${ }^{1} \mathrm{BrSpSi}$, xviii. 70.
${ }^{2}$ BBi, p. $3+$.
${ }^{8} \mathrm{NBi}, \mathrm{I}$, R. $7^{6-76 \frac{1}{2}}$.
SiTVi, xiii. 21 s .
$x=\alpha / m, y=\beta / m$ is a solution of the equation

$$
N x^{2} \pm k_{j}^{\prime} m^{2}=y^{2} ;
$$

and $x=n \alpha, y=n \beta$ is a solution of the equation

$$
N x^{2} \pm n^{2} k=y^{2}
$$

where m, n are arbitrary rational numbers.
By this Lemna, the solutions of the Square-natures

$$
\begin{aligned}
& \text { (i) } 6 x^{2}+12=y^{2} \\
& \text { (ii) } 6 x^{2}+75=y^{2}, \\
& \text { and } \text { (iii) } 6 x^{2}+300=y^{2},
\end{aligned}
$$

can be derived, as shown by Bhâskara $11,{ }^{1}$ from hose of

$$
6 x^{2}+3-y^{2},
$$

rince $12=2^{2} \cdot 3,75=5^{2} .3$, and $300=10^{2} .3$. How to onlve this latter equation will be indicated later on.

Rational Solution. In order to obtain a first olution of $N x^{2}+1=\cdots y^{2}$ the Hindus generally suggest he following tentative method: Take an arbitrary imall rational number α, such that its square multiplied by the gunaka N and increased or diminished by a iuitably chosen rational number k will be an exact square. In other words, we shall have to obtain empirically a relation of the form

$$
N \alpha^{2} \pm k=\beta^{2}
$$

where α, k, β are rational numbers. This relation will be hereafter referred to as the Auviliary Equation. Then by Brahmagupta's Corollary, we get from it the relation

$$
\begin{aligned}
& N(2 \alpha \beta)^{2}+k^{2}=\left(\beta^{2}+N a^{2}\right)^{2}, \\
& N\left(\frac{2 \alpha \beta}{k}\right)^{2}+1=\left(\frac{\beta^{2}+N \alpha^{2}}{k}\right)^{2} .
\end{aligned}
$$

${ }^{1}$ BBi, p. 4 I .

Hence, one rational solution of the equation $N \lambda^{2}+1$ $=y^{2}$ is given by

$$
\begin{equation*}
x=\frac{2 \alpha \beta}{k}, \quad y=\frac{\beta^{2}+N \alpha^{2}}{k} . \tag{A}
\end{equation*}
$$

Srîpati's Rational Solution. Stîpati (1039) has shown how a rational solution of the Squatc-nature can be obtaincd more easily and directly without the intervention of an auxiliary equation. He says:
"Unity is the lesser root. Its square multiplied by the prakerti is increased or decreased by the prakerti combined with an (optional) number whose square-root will be the greater root. From them will be obtained two toots by the Principle of Composition." ${ }^{1}$

If m^{2} be a rational number optionally chosen, we have the identity

$$
\begin{array}{ll}
N \cdot 1^{2}+\left(m^{2}-N\right)==m^{2}, \\
\text { or } \quad & N \cdot 1^{2}-\left(N-m^{2}\right)=m^{2} .
\end{array}
$$

Then, applying Brahmagupta's Corollary to cither, we get

$$
\begin{align*}
& N(2 m)^{2}+\left(m^{2} \sim N\right)^{2}=\left(m^{2}+N\right)^{2} ; \\
& N\left(\frac{2 m}{m^{2} \sim N}\right)^{2}+1=\binom{m^{2}+N}{m^{2} \sim}^{2} . \\
& \text { Hence } \quad x=\frac{2 m}{m^{2} \sim N}, y=\frac{m^{2}+N}{m^{2} \sim N}, \tag{B}
\end{align*}
$$

where m is any rational number, is a solution of the equation

$$
N x^{2}+1=y^{2} .
$$

The above solution reappears in the works of later Hindu algebraists. Bhâskara II says :

[^136]"Or divide twice an optional number by the difference between the square of that optional number and the prakerti. This (quotient) will be the lesser root (of a Square-nature) when unity is the additive. From that (follows) the greater root." ${ }^{1}$
Nârâyaṇa states :
"Twice an optional number divided by the difference between the square of that oprional number and the gunuked will be the lesser root. From that with the additive unity determine the greater root." ${ }^{2}$

Similar statements are found also in the works of Jñânarâja and Kamalàkara. ${ }^{3}$

If m be an optional number, it is stated that $\frac{2 m}{m^{2} \sim N}$ is a lesser root of $N x^{2}+1=y^{2}$. Then, substituting that value of x in the equation, we get

$$
\begin{aligned}
y^{2} & =N\left(\frac{2 m}{m^{2}} \sim N\right)^{2}+1 \\
& =\left(\frac{m^{2}+N}{m^{2} \sim N}\right)^{2}
\end{aligned}
$$

Hence the greater root is

$$
y=\frac{m^{2}+N}{m^{2} \sim N}
$$

The same solution will be obtained by assuming

$$
y=m x-\mathbf{1}
$$

Krṣna points out that it can also be found thus :

$$
\begin{aligned}
& \quad 4 N m^{2}=\left(m^{2}+N\right)^{2}-\left(m^{2} \sim N\right)^{2}, \text { identically. } \\
& \therefore \quad 4 N m^{2}+\left(m^{2} \sim N\right)^{2}=\left(m^{2}+N\right)^{2}, \\
& \begin{array}{ll}
\text { 1 } B B i, \text { p. } 34 . & \\
\text { a SiTVi, xii.. } 216 . & N B i \text {, I, R. } 77 \text { f. }
\end{array}
\end{aligned}
$$

or

$$
N\left(\frac{2 m}{m^{2} \sim N}\right)^{2}+1 \cdots\left(\frac{m^{2}+N}{m^{2} \sim N}\right)^{2}
$$

His remark that this method does not require the help of the Principle of Composition shows that Bhâskara 11 and others obtained the solution in the way indicated by Srîpati.

The above rational solution of the Square-nature has been hitherto attributed by modern historians of mathematics to Bhâskara II. But it is now found to be due to an anterior writer, Srîpati (ro39). It was rediscovered in Europe by Brouncker (1657).

Illustrative Examples. In illustration of the foregoing rules we give the following examples with their solutions from Bhâskara II.

Examples. "Tell me, O mathematician, what is that square which multiplied by 8 becomes, together with unity, a square; and what square multiplied by 11 and increased by unity, becomes a square."1

That is to say, we have to solve
(1) $8 x^{2}+1=y^{2}$,
(2) $11 x^{2}+1=y^{2}$.

Solutions. "In the second example assume I as the lesser root. Multiplying its square by the prakrti, namely II, subtracting 2 and then extracting the square-root, we get the greater root as 3 . Hence the statement for composition is ${ }^{2}$

$$
\begin{array}{llll}
m=\mathbf{1 1} & l=\mathbf{1} & g=3 & i=-\mathbf{2} \\
& l=\mathbf{1} & g=3 & i=-\mathbf{2}
\end{array}
$$

${ }^{1}$ BBi, p. 35.
${ }^{2}$ The abbreviations are: $m=$ multiplier, $l=$ lesser root, $g=$ greater root and $i=$ interpolator. In the original they are respectively pra, ka, jye, and kse, the initial syllables of the corresponding Sanskrit terms.

Proceeding as before we obtain the roots for the additive $4: l=6, g=20$, (for) $i=4$. Then by the rule, 'If the interpolator (of a Square-nature) divided by the square of an optional number etc.,'1 are found the roots for the additive unity: $l=3, g=10$ (for) $i=1$. Whence by the Principle of Composition of Equals, we get the lesser and greater ronts: $l=60, g=199$ (for) $i=:$ 1. In this way an infinite number of roots can be deduced.
"Or, assuming a for the lesser root, we get for the additive s: $l=\mathrm{r}, g=4$, (for) $i=5$. Whence by the Principle of Composition of Equals, the roots are $l=8$, $g=27$, (for) $i=25$. Then by the rule, 'If the interpolator (of a Square-nature) divided by the square of an optional number etc.,' taking s as the optional number, we get the roots for the additive unity: $l=8 / \mathrm{s}, \quad g=27 / \mathrm{s}$, (for) $i \ldots \mathrm{x}$. The statement of these for composition with the previous roots is

$$
\begin{array}{cccc}
m=1 \mathrm{I} & l=8 / 5 & g=27 / 5 & i=1 \\
& l=3 & g=10 & i=1
\end{array}
$$

By the Principle of Composition the roots are obtained as: $l=161 / 5, g=534 / \mathrm{s}$ (for) $i=1$.
"Or composing according to the rule, 'The difference of the two cross-products is a lesser root etc.,' we get the roots : $l=\mathrm{I} / 5, g=6 / 5$ (for) $i=\mathrm{I}$. And so on in many ways.
"The two roots for the additive unity will now be found in a different way by the rule, 'Or divide twice an optional number by the difference between the square of that optional number and the prakerti etc.' Here, in the first example, assume the optional number to be 3 . its square is 9 ; multiplier is 8 ; their difference is 1 ;

[^137]dividing by this twice the optional number, namely 6 , we get the lesser root for the additive unity as 6 . Whence, proceeding as before, the greater root comes out as 17.
"In the same way, in the second cxample also, assuming the optional number to be 3 , the lesser and greater roots are found to be (3, ro $)$.
"Thus, by virtue of (the infinite varicty of) the optional valucs as well as of the infinitely repeated application of) the Principle of Additive and Subtractive Compositions, an infinite number of roots (may be found)."

Solution in Positive Integers. As has been stated before, the aim of the Hindus was to ohtain solutions of the square-nature in positive integers; so jts first solution must be integral. But neither the tentative method of Brahmagupta nor that of sripati is of much holp in this direction, ion they do not alaroys yield the desired result. These authors, however, discovered that if the interpolator of the auxiliary equation in the tentative method be ± 1, 上 2 or ± 4, an integral solution of the equation $N x^{2}+1=y^{2}$ can always be found. Thus Srípati (ro39) expressly observes, "If r, 2 ot 4 be the additive or subtractive (of the auxiliary equation) the lesser and greater roots will be integral (abbinna). ${ }^{2}$
(i) If $k= \pm 1$; then the auxiliary equation will be ${ }^{3}$

$$
N \alpha^{2} \pm \mathrm{I}=-\beta^{2},
$$

[^138]where α, β are integers. Then by Brahmagupta's Corollary, we get
$$
x=2 \alpha \beta, y=\beta^{2}+N \alpha^{2}
$$
as the required first solution in positive integers of the equation $N^{2} \cdot 2+1=y^{2}$.
(ii) Let $k= \pm 2$; then the auxiliary equation is
$$
N \alpha^{2} \pm 2=\beta^{2} .
$$

By Brahmagupta's Corollary, we have

$$
\begin{aligned}
& N(2 \alpha \beta)^{2}+4 \\
\text { or } \quad & =\left(\beta^{2}+N \alpha^{2}\right)^{2}, \\
N(\alpha \beta)^{2}+1 & =\left(\frac{\beta^{2}+N \alpha^{2}}{2}\right)^{2} .
\end{aligned}
$$

Hence the required first solution is

$$
x=\alpha \beta, \quad y=\frac{1}{2}\left(\beta^{2}+N a^{2}\right) .
$$

Since

$$
N \alpha^{2}=\beta^{2} \mp 2,
$$

we have $\quad \frac{1}{2}\left(\beta^{2}+N \alpha^{2}\right)=\beta^{2} \mp 1=$ a whole number.
(iii) Now suppose $k=+4$; so that

$$
N \alpha^{2}+4=\beta^{2} .
$$

With an auxiliary equation like this the first integral solution of the equation $N x^{2}+1=y^{2}$ is

$$
\begin{aligned}
& x=\frac{1}{2} \alpha \beta \\
& y=\frac{1}{2}\left(\beta^{2}-2\right) ;
\end{aligned}
$$

if α is even; or

$$
\begin{aligned}
& x=\frac{1}{2} \alpha\left(\beta^{2}-1\right), \\
& y=\frac{1}{2} \beta\left(\beta^{2}-3\right)
\end{aligned}
$$

if β is odd.
Thus Brahmagupta says :
"In the case of 4 as additive the square of the second root diminished by 3, then halved and multiplied by the second root will be the (required) second root; The square of the second root diminished by unity and
then divided by 2 and multiplied by the first root will be the (required) first root (for the additive unity). ${ }^{1}$

The rationale of this solution is as follows:

$$
\begin{equation*}
\text { Since } \quad N^{\top} \alpha^{2}+4:=\beta^{2} \text {, } \tag{I}
\end{equation*}
$$

we have

$$
\begin{equation*}
\wedge\binom{\alpha}{2}^{2} \left\lvert\,-1 \therefore\binom{\beta}{2}^{2}\right. \tag{2}
\end{equation*}
$$

Then, by Brahmagupta's Corollary, we get

$$
N\binom{\alpha_{1}^{\beta}}{2}^{2}+1=\left(\frac{\beta^{2}}{4}+N \frac{\alpha^{2}}{4}\right)^{2} .
$$

Substituting the value of N in the right-hand side expression from (1), we have

$$
\begin{equation*}
N\binom{\alpha \beta}{2}^{2}+1=\left(\frac{\beta^{2}-2}{2}\right)^{2} . \tag{3}
\end{equation*}
$$

Composing (2) and (3),

$$
N\left\{\frac{\alpha}{2}\left(\beta^{2}-1\right)\right\}^{2}+I=\left\{\frac{\beta}{2}\left(\beta^{2}-j\right)\right\}^{2} .
$$

Hence

$$
x=\frac{1}{2} \alpha \beta, \quad y=\frac{1}{2}\left(\beta^{2}-2\right)
$$

and

$$
x=\frac{1}{2} \alpha\left(\beta^{2}-1\right), \quad y=\frac{1}{2} \beta\left(\beta^{2}-3\right) ;
$$

are solutions of

$$
N x^{2}+\mathrm{x}=y^{2} .
$$

If β be even, the first values of (x, y) are integral. If β be odd, the second values are integral.
(iv) Finally, suppose $k=-4$; the auxiliary equation is

$$
N \alpha^{2}-4=\beta^{2}
$$

Then the requited first solution in positive integers of $N x^{2}+1=y^{2}$ is

$$
\begin{aligned}
& \lambda=\frac{1}{2} \alpha \beta\left(\beta^{2}+3\right)\left(\beta^{2}+1\right) \\
& y=\left(\beta^{2}+2\right)\left\{\frac{1}{2}\left(\beta^{2}+3\right)\left(\beta^{2}+1\right)-1\right\}
\end{aligned}
$$

${ }^{1} \mathrm{BrSpSi}$, xviii. 67 .

Brahmagupta says :
"In the case of 4 as subtractive, the square of the second is increased by three and by unity; half the product of these sums and that as diminished by unity (are obtained). The latter multiplied by the first sum less unity is the (required) second root; the former multiplied by the product of the (old) roots will be the first root corresponding to the (new) second root."

The rationale of this solution is as follows:

$$
\begin{equation*}
N x^{2}-4=\beta^{2} . \tag{1}
\end{equation*}
$$

$$
N\left(\frac{\alpha}{2}\right)^{2}-\mathrm{x}=\left(\frac{\beta}{2}\right)^{2} .
$$

Hence by Brahmagupta's Corollary, we get

$$
\begin{align*}
N\left(\frac{\alpha^{\beta}}{2}\right)^{2}+1 & =\binom{\beta^{2}+N \frac{\alpha^{2}}{4}}{4}^{2} \\
& =\left\{2\left(\beta^{2}+2\right)\right\}^{2} . \tag{2}
\end{align*}
$$

Again, applying the Corollary, we have

$$
\left.N\left\{\frac{1}{2} \alpha \beta\left(\beta^{2}+2\right)\right\}^{2}+1=\{ \}\left(\beta^{4}+4 \beta^{2}+2\right)\right\}^{2} .
$$

Now, by the Lemma, we obtain from (2) and (3)

$$
\begin{aligned}
& N\left\{\frac{1}{2} \alpha \beta\left(\beta^{2}+3\right)\left(\beta^{2}+1\right)\right\}^{2}+1 \\
&=\left[\left(\beta^{2}+2\right)\left\{1\left(\beta^{2}+3\right)\left(\beta^{2}+1\right)-1\right\}\right]^{2} . \\
& x=\frac{1}{2} \alpha \beta\left(\beta^{2}+3\right)\left(\beta^{2}+1\right), \\
& y=\left(\beta^{2}+2\right)\left\{\frac{1}{2}\left(\beta^{2}+3\right)\left(\beta^{2}+1\right)-1\right\},
\end{aligned}
$$

Hence
is a solution of $N x^{2}+1=y^{2}$.
It can be proved easily that these values of x, y are integral. For, if β is even, $\beta^{2}+2$ is also even. Therefore, the above valucs of x, y are integral. If on the contrary β is odd, β^{2} is also odd; then $\beta^{2}+1$ and $\beta^{2}+3$ are even. Hence in this case also the above values are integral.
${ }^{1}$ BrSp.Si, sviii. 68.

Putting $p==\alpha \beta, q=\beta^{2}+2$ we can write the above solution in the form

$$
\begin{aligned}
& x:=\frac{1}{2} p\left(q^{2}-1\right), \\
& y \cdots \frac{1}{2} q\left(q^{2}-3\right),
\end{aligned}
$$

in which it was found by luler.

17. CYCLIC METHOD

Cyclic Method. It has been just shown that the most fundamental step in Brahmagupta's method for the general solution in positive integers of the equation

$$
N^{2} \cdot x^{2}+1==y^{2},
$$

where N is a non-square integer, is to form an auxiliary equation of the kind

$$
N a^{2}+k=b^{2},
$$

where a, b are positive integers and $k= \pm 1, \pm 2$ or + 4. For, from that auxiliary equation, by the Principle of Composition, applied repeatedly whenever necessary, onc can derive, as shown above, one positive integral solution of the original Square-naturc. And thence, again by means of the same principle, an infinite number of other solutions in integers can be obtained. How to form an auxiliary equation of this type was a problem which could not be solved completely and satisfactorily by Brahmagupta. In fact, he could not do it otherwise than by trial. But Bhâskara Il succeeded in evolving a very simple and elegant method by means of which one can derive an auxiliary equation having the required interpolator $\pm \mathrm{r}, \pm 2$ or +4 , simultaneously with its two integral roots, from another auxiliary equation enpirically formed with any simple integral value of the interpolator, positive or negative. This method is called
by the technical name Cakran'ala or the "Cyclic Method.'"
The purpose of the Cyclic Method has been defincd by Bhâskara Il thus: "By this method, there will appear two integral roots corresponding to an equation with $\pm 1, \frac{1}{2} 2$ or $\pm .4$ as interpolator." ${ }^{2}$

Bhâskara's Lemma. The Cyclic Method of Bhâskara II is based upon the following lemma :

If

$$
N a^{2}+k=b^{2},
$$

where a, b, k are integers, K being positive or negative, then

$$
N\left(\frac{a m+b}{k}\right)^{2}+\frac{n^{2}-N}{K}-\left(\frac{b m+N a}{k}\right)^{2},
$$

where m is an arbitrary whole number.
The rationale of this Lemma is simple: We have

$$
\begin{aligned}
& \quad N_{1} l^{2}+k-\because b^{2}, \\
& \text { and } \quad N .1^{2}+\left(m^{2}-N\right)=m^{2}, \text { identically. }
\end{aligned}
$$

I hen by Brahmagupta's Lemma, we get

$$
\begin{aligned}
& N(a m+b)^{2}+k\left(m m^{2}-N\right)=(b m+N a)^{2} . \\
\therefore \quad & N\left(\frac{(l m m}{k}\right)^{2}+m^{2}{ }^{2} N=\left(\frac{b m+N}{k}\right)^{2} .
\end{aligned}
$$

Bhâskara's Rule. Bhâskara Il (iiso) says:
"Considering the lesser root, greater root and interpolator (of a Square-nature) as the dividend, addend and divisor (respectively of a pulveriser), the (indeterminate) multiplier of it should be so taken as will make the residue of the prakerti diminished by the square of that multiplier or the later minus the prakerti (as the case
${ }^{1}$ The Sanskrit word Cakrarâla means "circle," especially "horizon." The method is so called, observes Sûryadâsa, because it proceeds as in a circle, the same set of operations being applied again and again in a continuous round.
${ }^{2} B B i, p .38$.
may be) the least. That residue divided by the (original) interpolator is the interpolator (of a new Squarenature); it should be reversed in sign in case of subtraction from the prakerti. The quotient corresponding to that value of the multiplier is the (new) lesser root; thence the greater root. The same process should be followed repeatedly putting aside (each time)the previous roots and the interpolator. This process is called Cakeravala (or the 'Cyclic Method'). ${ }^{1}$ By this method, there will appear two integral roots corresponding to an equation with $\pm 1, \pm 2$ or ± 4 as interpolator. In order to derive integral roots corresponding to an equation with the additive unity from those of the equation with the interpolator ± 2 or ± 4 the Principle of Composition (should be applied)."

Suppose we have an equation of the form

$$
\begin{equation*}
N a^{2}+k=b^{2}, \tag{1}
\end{equation*}
$$

where a, b, k are simple integers, relatively prime, k being positive or negative. Then by Bhâskara's Lemma

$$
\begin{equation*}
N\left(\frac{a m+b}{k}\right)^{2}+\frac{m^{2}-N}{k}=\left(\frac{b m+N a}{k}\right)^{2}, \tag{2}
\end{equation*}
$$

where m is an arbitrary integral number. In the above rule, m has been styled the indetcrminate multiplier. Now, by means of the pulveriser, its value is determined so that

$$
\frac{a m+b}{k} \text { is a whole number. }
$$

${ }^{1}$ The original text is cakravâlamidamं jagub. The commentator Krṣṇa explains, "âcâryầ etadganitam cakravâlamiti jaguh" or "The learned professors call this method of calculation the Cakravala." So Bhâskara II appears to have taken the Cyclic Method from earlier writers. But it is not found in any work anterior to him so far known.
${ }^{2}$ BBi, pp. 36 ff .

Again, of the various such values, Bhâskara II chooses that one which will make $\left|m^{2}-N\right|$ as small as possible. Let that valuc of m be n. Now let

$$
\begin{aligned}
& a_{1}=\frac{a n+b}{k}, \\
& b_{1}=\frac{b n+N a}{k}, \\
& k_{1}=\frac{n^{2}-N}{k} .
\end{aligned}
$$

The numbers a_{1}, b_{1}, k_{1} are all integral. The equation (2) then becomes

$$
\begin{equation*}
N c_{i_{1}}{ }^{2}+K_{1}=b_{1}{ }^{2} . \tag{3}
\end{equation*}
$$

Procecding exactly in the same way, we can obtain from (3) a new equation of the same kind,

$$
N a_{2}{ }^{2}+k_{2}:=b_{2}^{2},
$$

where again a_{2}, b_{2}, k_{2} are whole numbers. By repeating the process, we shall ultimately arrive at an equation, states Bhâskara II, in which the interpolator k will reach the value $t \mathrm{I}, \perp 2$ or +4 , and in which (a, b) will be integers.

Nârâyaṇa's Rule. The above rule of Bhâskara II has been reproduced by Nàrâyaṇa (1350). He writes:
"Making the lesser root, greater root and interpolator (of a Square-nature) the dividend, addend and divisor (respectively of a pulveriser), the (indeterminate) multiplier of it should be determined in the way described before. The prakerti being subtracted from the square of that or the square of the multiplier being subtracted from the praketi, the remainder divided by the (original) interpolator is the interpolator (of a new Square-nature); and it will be reversed in sign in case
of subtraction of the square of the multiplier. The quotient (corresponding to that value of the multiplier) is the lesser root (of the new Square-nature); and that multiplied by the multiplier and diminished by the product of the previous lesser root and (new) interpolator will be its greater root. By doing so repeatedly will be obtained two integral roots corresponding to the interpolator $\pm 1, \pm 2$ or ± 4. In order to derive integral roots for the additive unity from those answering to the interpolator ± 2 or ± 4, the Principle of Composition (should be adopted)."

It will be noticed that Nârâyana docs not expressly state that the value of the indeterminate multiplier m should be so chosen as will make $\left|m^{2}-N\right|$ least. It is perhaps particularly noteworthy that he recognised the relation

For

$$
\begin{aligned}
b_{1} & =a_{1} n-k_{1} a . \\
b_{1} & =\frac{b n+N a}{k}, \\
& =\frac{n\left(a_{1} k-a n\right)+N a}{k}, \quad\left[\because a_{1} k=a n+b\right] \\
& =a_{1} n-\left(\frac{n^{2}-N}{k}\right) a, \\
& =a_{1} n-k_{1} a, \\
\therefore \quad a & =\frac{a_{1} n-b_{1}}{k_{1}} .
\end{aligned}
$$

Similarly, it will be found that

$$
b=\frac{b_{1} n-N a_{1}}{k_{1}} .
$$

For

$$
b_{1} n=a_{1} n^{2}-k_{1} a n,
$$

${ }^{1} \mathrm{NBi}, \mathrm{I}, \mathrm{R} .79-82$.

$$
\begin{array}{rlrl}
& =a_{1}\left(N+k k_{1}\right)-k_{1} a n, & \\
& & {[\because} & \left.k k_{1}=n^{2}-N\right] \\
& =a_{1} N+k_{1} b, \quad[\because & \left.a_{1} k=a n+b\right] \\
\therefore \quad b & =\frac{k_{1} n-N a_{1}}{k_{1}} .
\end{array}
$$

Illustrative Examples. In illustration of the Cyclic Method, Bhâskara II works out in detail the following examples :
"What is that number whose square multiplied by 67 or 61 and then added by unity becomes capable of yielding a square-root? Tcll me, O friend, if you have a tharough knowledge of the method of the Squarenature." ${ }^{1}$

That is to say, we are to solve

$$
\begin{aligned}
& \text { (i) } 67 x^{2}+1=y^{2}, \\
& \text { (ii) } 6 \mathrm{r} x^{2}+1=y^{2} .
\end{aligned}
$$

Leaving out the details of the operations in connection with the process of the pulveriser, Bhâskara's solutions are substantially as follows :

$$
\text { (i) } \quad 67 x^{2}+x=y^{2}
$$

We take the auxiliary equation

$$
67 \cdot \mathrm{I}^{2}-3=8^{2} .
$$

Then, by the Lemma,

$$
\begin{equation*}
67\left(\frac{1 . m+8}{-3}\right)+\frac{m^{2}-67}{-3}=\left(\frac{8 m+67.1}{-3}\right)^{2} . \tag{I}
\end{equation*}
$$

By the method of the Kuttaka the solution of

$$
\frac{m+8}{-3}=\text { an integer }
$$

${ }^{1} B B i$, p. ${ }^{88}$.

It is remarkable that the equation $61 x^{2}+1=y^{6}$ was proposed by Fermat to Frénicle in a letter of February, 1697. Euler solved it in 1732.
is $m=-3 t+1$. Putting $t=-2$, we get $m=7$ which makes $\left|m^{2}-67\right|$ least. On substituting this value, the equation (r) reduces to

$$
67.5^{2}+6=41^{2} .
$$

Again, by the Lemma, we have

$$
\begin{equation*}
67\left(\frac{5 n+4 I}{6}\right)^{2}+\frac{n^{2}-67}{6}=\left(\frac{41 n+67 \cdot 5}{6}\right)^{2} . \tag{2}
\end{equation*}
$$

The solution of

$$
\frac{5 n+41}{6}=a \text { whole number, }
$$

is $n=6 t+5 .\left|n^{2}-67\right|$ will be least for the value $t=0$, that is, when $n=5$. The equation (2) then becomes

$$
67 \cdot 11^{2}-7=90^{2}
$$

Now, we form

$$
\begin{equation*}
67\left(\frac{11 p+90}{-7}\right)^{2}+\frac{p^{2} \cdots-67}{-7}=\left(\frac{90 p+67.11}{-7}\right)^{2} . \tag{3}
\end{equation*}
$$

The solution of

$$
\frac{11 p+90}{-7}=\text { an integral number }
$$

is $p=-7 t+2$. Taking $t=-1$, we have $p=9$; and this value makes $\left|p^{2}-67\right|$ least. Substituting that in (3) we get

$$
67.27^{2}-2=221^{2} .
$$

By the Principle of Composition of Equals, we get from this equation

$$
\begin{aligned}
67(2.27 .221)^{2}+4 & ==\left(221^{2}+67.27^{2}\right)^{2}, \\
\text { or } \quad 67(11934)^{2}+4 & =(97684)^{2} .
\end{aligned}
$$

Dividing out by 4 , we have

$$
67(5967)^{2}+1==(48842)^{2}
$$

Hence $x=5967, y=48842$ is a solution of (i).

$$
\text { (ii) } \quad 61 x^{2}+1=y^{2}
$$

Here we start with the auxiliary equation

$$
6 \mathrm{x} \cdot \mathrm{I}^{2}+3=8^{2}
$$

By the Lemma, we have

$$
\begin{equation*}
6 \mathrm{I}\left(\frac{m+8}{3}\right)^{2} \cdot \frac{m^{2}-61}{3} \cdot\left(\frac{8 m+6 \mathrm{I}}{3}\right)^{2} . \tag{I}
\end{equation*}
$$

Now the solution of

$$
\frac{m+8}{3}=\text { an integer }
$$

is $m=3 t+1$. Putting $t=2$, we get the value $m-7$ which makes $\left|m^{2}-61\right|$ least. On substituting this value in (1), it becomes

$$
61.5^{2}-4=39^{2} .
$$

Dividing out by 4 , we get

$$
\begin{equation*}
61\binom{5}{2}^{2}-1 \quad\binom{3}{2}^{9} \tag{2}
\end{equation*}
$$

By the Principle of Composition of Equals, we have

$$
61\left(2 \cdot \frac{5}{2} \cdot \frac{3}{2}\right)^{2}+1=\left\{\left(\frac{39}{2}\right)^{2}+61\left(\frac{5}{2}\right)^{2}\right\}^{2},
$$

or

$$
\begin{equation*}
6 \mathrm{I}(195)^{2}+1=\left(152^{23}\right)^{2} \tag{3}
\end{equation*}
$$

Combining (2) and (3),

$$
61(3805)^{2}-1:=(29718)^{2}
$$

Composing this with itself, we get

$$
61(226153980)^{2}+1-(1766319049)^{2} .
$$

Hence $x=226193980, y=1766319049$ is a solution of (ii).

The following two examples have been cited by Nârâyaṇa:
(iii) $103 x^{2}+1=y^{2}$,
(iv) $\quad 97 x^{2}+1=y^{2}$.

Their solutions are given substantially as follows:
For (iii) we have the auxiliary equation

$$
103.1^{2}-3=10^{2}
$$

By the Lemma, we get

$$
103\left(\frac{m+10}{-3}\right)^{2}+\frac{m m^{2}-103}{3} \quad\left(\frac{10 m+103}{-3}\right)^{2} .
$$

The general solution of

$$
\frac{m+10}{-3} \text { an integer, }
$$

is $m=-3 t+2$. Putting $t \cdots-3$, we get $m \cdots$ 1. 'Then

$$
103.7^{2}-6=-71^{2}
$$

Again, by the Lemma,

$$
103\binom{7 n+7^{1}}{-6}^{2}+n^{2}-103-6\left(\frac{71 n+103 \cdot 7}{-6}\right)^{2} .
$$

The solution of

$$
\frac{7 n+71}{-6}-\therefore \text { a whole number, }
$$

is $n=-6 t+1$. Taking $t=1$, we get

$$
103.20^{2}+9=203^{2} .
$$

Next, we have

$$
103\left(\frac{20 p+203}{9}\right)^{2}+\frac{p^{2}-103}{9}=\left(\frac{203 p+103.20}{9}\right)^{2} .
$$

Now, $\quad \frac{20 p+203}{9}=$ an integral number
for $p=9 t+2$. When $t=1, p=1$. On taking this value we find

$$
103.47^{2}+2=477^{2}
$$

Applying the Principle of Composition of Equals, we get

$$
\begin{aligned}
103(2.47 .477)^{2}+4 & =\left(477^{2}+103.47^{2}\right)^{2}, \\
\text { or } \quad \operatorname{lo3}(44838)^{2}+4 & =(455056)^{2} .
\end{aligned}
$$

Hence

$$
103(22419)^{2}+1=(227528)^{2},
$$

which gives $x=22419, y=227528$ as a solution of (iii).
For the solution of (iv) the auxiliary equation is

$$
97 \cdot 1^{2}+3=10^{2}
$$

Therefore

$$
97\left(\frac{m+10}{3}\right)^{2}+\frac{m^{2}-97}{3} \cdot\left(\frac{10 m+97}{3}\right)^{2} .
$$

The solution of

$$
\frac{m+10}{3}=\text { an integer },
$$

is $m=3 t+2$. Taking $t=3$, we have $m \ldots$ ir. Then

$$
97 \cdot 7^{2}+8=69 .^{2}
$$

Next, we have

$$
97\left(\frac{7 n+69}{8}\right)^{2}+\frac{n^{2}-97}{8}=\left(\frac{69 n+97 \cdot 7}{8}\right)^{2} .
$$

The solution of

$$
\frac{7 n+69}{8}=\text { an integer, }
$$

is $n=8 t+\mathrm{s}$. Taking $t=1$, that is, $n=13$, we get
Whence

$$
97 \cdot 20^{2}+9=197^{2} .
$$

$$
97\left(\frac{20 p+197}{9}\right)^{2}+\frac{p^{2}-97}{9} \cdots(197 p+97 \cdot 20)^{2}
$$

The solution of

$$
\frac{20 p+197}{9}=\mathrm{a} \text { whole number, }
$$

is $p=9 t+s$. Putting $t=1$, we get $p=14$. With this value of p we have

Whence

$$
97\left(\frac{53 q+522}{11}\right)^{2}+\frac{q^{2}-97}{11}=\left(\frac{522 q+97.53}{11}\right)^{2} .
$$

The solution of

$$
\frac{53 q+522}{11}=\text { an integer, }
$$

is $q=11 t+8$. The appropriate value of q is given by $t=0$. So, taking $q=8$, we have

$$
97.86^{2}-3=847^{2} .
$$

Next, we find

$$
97\left(\frac{86 r+847}{-3}\right)+\frac{r^{2}-97}{-3}=\left(\frac{847 r+97.86}{-3}\right)^{2}
$$

The solution of

$$
\frac{86 r+847}{-3}=\mathrm{a} \text { whole number, }
$$

is $r=3 t+\mathbf{1}$. Putting $t=-3$, we get $r=10$. Taking this value, we have

$$
97.569^{2}-1=5604^{2}
$$

By the Principle of Composition of Equals, we find $97(6377352)^{2}+1=(62809633)^{2}$.
Hence $x=63773$ s $2, y=62809633$ is a solution of (iv). Proofs. It has been stated by Bhâskara II that:
(1) when a_{1} is an integer, k_{1} and b_{1} are each a whole number;
(2) his Cyclic Method will in every case lead to the desired result.

He has not adduced proofs. We presume that he
knew a proof at least of the first proposition. For he must have recognised the simple relation

$$
b_{1}=a_{1} n-k_{1^{a}},
$$

which has been expressly stated by Nârâyaṇa (1350). This shows at once that b_{1} will be a whole number, if k_{1} is so. This is also evident from the equation, $N a_{1}{ }^{2}+k_{1}=b_{1}{ }^{2}$, itsclf. Hence, it now remains to prove that k_{1} is an integral number.

Eliminating b between
and

$$
c_{1}=\frac{a n+b}{k}
$$

$$
b_{1}=\frac{b n+N a}{6},
$$

we have

$$
k\left(a_{1} n-b_{1}\right) \cdot a\left(n^{2}-N\right),
$$

or

$$
\underset{a}{k}\left(a_{1} n-b_{1}\right)=n^{2}-N .
$$

Therefore

$$
\frac{k_{1}}{a}\left(a_{1} n-b_{1}\right) \text { is an integcr. }
$$

Since k and a have no common factor, a must divide $a_{1} n-b_{1}$; that is

$$
\frac{a_{1} n-b_{1}}{a}=\frac{n^{2}-N}{K}=k_{1}-\text { an integer. }
$$

Hence b_{1} also is a whole number. ${ }^{1}$
${ }^{1}$ Hankel's Proof: Hankel proves these two results thus:
Since

$$
a_{1} k=a n+b \text { and } k=b^{2}-N a^{2},
$$

we get

$$
a_{1}\left(l^{2}-N a^{2}\right)=a n+b,
$$

or

$$
\frac{b}{a}\left(a_{1} b-1\right)=\left(n+N a a_{1}\right) .
$$

Since a, b have no common factor, a must divide $a_{1} b-1$; that is,

$$
a_{1} b-1=\text { an integer } .
$$

18. SOLUTION OF $N x^{2} \pm c=y^{2}$

The general solution of the indeterminate quadratic equation

$$
N x^{2} \pm c=y^{2}
$$

in positive integers was first given by Brahmagupta(628). He says:
"From two roots (of a Square-nature) with any given additive or subtractive, by making (combination) with the roots for the additive unity, other first and second roots (of the equation having) the given additive or subtractive (can be found)."1

Eliminating n between

$$
a_{1} k=a n+b, \quad b_{1} k=b n+N a
$$

we get

$$
a_{1} b-a b_{1}=1
$$

Hence

$$
b_{1}=\frac{a_{1} b-1}{a}=\text { a whole number. }
$$

Now

$$
\begin{aligned}
n^{2}-N & =\frac{\left(a_{1} k-b\right)^{2}-N a^{2}}{a^{2}} \\
& =\frac{a_{1}{ }^{2} k^{2}-2 b k a_{1}+k}{a^{2}} \\
& =\frac{k^{\prime}\left(a_{1}{ }^{2} k-2 b a_{1}+1\right)}{a^{2}}
\end{aligned}
$$

Therefore

$$
\frac{k}{a^{2}}\left(a_{1}^{2} k-2 b a_{1}+1\right) \text { is a whole number. }
$$

Since a, k have no common factor, it follows that

$$
\frac{a_{1}^{2} k-2 b a_{1}+1}{a^{2}}=\frac{n^{2}-N}{k}=k_{1}=\text { an integer. }
$$

Also $\quad k_{1}=\frac{n^{2}-N}{k}=\frac{a_{1}^{2} k-2 b a_{1}+1}{a^{2}}$

$$
\begin{aligned}
& =\frac{a_{1}^{2}\left(b^{2}-N a^{2}\right)-2 b a_{1}+1}{a^{2}} \\
& =\left(\frac{a_{1} b-1}{a}\right)^{2}-N a_{1}^{2}
\end{aligned}
$$

${ }^{1}$ BrSpSi, xviii, 66.

Thus having known a single solution in positive integers of the equation $N \lambda^{2} \pm c=y^{2}$, says Brahmagupta, an infinite number σ_{i} other integral solutions can be obtained by making use of the integral solutions of $N x^{2}+1=y^{2}$. If (p, q) be a solution of the former equation found empirically and if (α, β) be an integral solution of the latter then, by the Principle of Composition,

$$
x=p \beta \pm q \alpha, \quad y=q \beta \pm N p \alpha
$$

will be a solution of the former. Repeating the operations we can easily deduce as many solutions as we like.

This method reappears in later Hindu algebras. Bhâskara II says :
"In (a Square-nature) with the additive or subtractive greater (than unity), one should find two roots by his own intelligence only; then by their composition with the roots obtained for the additive unity an infinite number of roots (will be found)."

Nârâyaṇa writes similarly :
"When the additive or subtractive is greater than unity, two roots should be determined by one's own intelligence. Then, by combining them with the roots for the additive unity, an infinite number of roots can be obtained.'"

We take the following illustrative examples with solutions from Nârâyaṇa:

Example. "Tell me that square which being multiplied by 13 and then increased or diminished by 17 or 8 becomes capable of yielding a square root.," ${ }^{3}$

[^139]That is, solve

$$
\begin{aligned}
& \text { (1) } 13 x^{2} \pm 17=y^{2}, \\
& \text { (2) } 13 x^{2} \pm 8=y^{2} .
\end{aligned}
$$

Solution. "In the first example it is stated that the multiplier $=13$ and interpclator $=17$.
"Now the roots for the interpolator 3 are (1,4). And for the interpolator $\rho 1$, the roots are (1,8). For the composition of these with the previous roots $(1,4)$ the statems t will be

$$
\begin{array}{rlll}
m=13 & l=1 & g=8 & i=51 \\
& l=1 & g=4 & i=3
\end{array}
$$

So, by the Addition Lemma, we get the roots corresponding to the intetpolator 153 as (12,45). The rule says, 'If the interpolator (of a Square-nature) be divided by the square of an optional number etc.' Now take the optional number to be 3, so that the interpolator may be reduced to 17 . For $3^{2}=9$ and $153 / 9=17$. Therefore, dividing the roots just obtaincd by the optional number 3, we get the required roots (4,15).
"Applying the Subtraction Lemma and procceding similarly we get the roots for the interpolator 17 as ($4 / 3,19 / 3$).
"In the second example the statement is: multiplier $=:=13$, interpolator $=-17$. Procecding as before we get (hy the Addition Lemma) the roots (147,530); and (by the Subtraction Lemma), the roots (3,10)." ${ }^{1}$

Form Mn" $\mathbf{x}^{2}+\mathbf{c}-\mathbf{y}^{2}$. Brahmagupta says :
"If the multiplict is that divided by a square, the first root is that divided by its root." ${ }^{2}$

[^140]That is to say, suppose the equation to be

$$
\begin{equation*}
M n^{2} x^{2}+c=y^{2} \tag{I}
\end{equation*}
$$

so that the multiplier (i.e., coctficient of x^{2}) is divisible by n^{2}. Putting $n=u$, we get

$$
\begin{equation*}
M u^{2}+c=y^{2} . \tag{2}
\end{equation*}
$$

Then clearly the first root of (1) is equal to the first toot of (2) divided by n. The corresponding second root will be the same for both the equations.

The same rule is taught by Bhàska a 11^{1} and Nàrâyana. The latter says:
"Divide the multiplic" (of a Square-nature) by an arbittary square number so that there is left no remainder. Take the quotient as the multiplier (of another Square-nature). The lesser ront (of the reduced equation) divided by the square-root of the divisor will be the lesser root (of the original equation)."'2

Form $\mathbf{a}^{2} \mathbf{x}^{2} \mathbf{c}=\mathbf{y}^{2}$. For the solution of a Square-nature of this particular form, Brahmagupta gives the following rule :
"If the multiplier be a square, the interpolator divided by an optional number and then increased and decreased by it, is halved. The former (of these results) is the second root; and the other divided by the squarcroot of the multiplier is the first root.' 3

Thus, it is stated that

$$
\begin{aligned}
& x=\frac{1}{2 a}\left(\begin{array}{c}
\pm c \\
m
\end{array} m\right), \\
& y=\frac{1}{2}\left(\begin{array}{c}
\square \\
m \\
m
\end{array}\right),
\end{aligned}
$$

1 BBi, p. 42.
${ }^{2}$ BrSp.Si, xviii. 69.
${ }^{2} \mathrm{NBH}, 1$, R. 84.

$$
\begin{equation*}
\text { SOLUTION OF } N x^{2} \pm c=y^{2} \tag{177}
\end{equation*}
$$

where m is an arbitrary number, is a solution of the equation

$$
a^{2} x^{2} \pm c=y^{2}
$$

The same solution has been given by Bhâskara II and Nârâyaṇa. ${ }^{1}$ Bhâskara's rule runs as follows :
"The interpolator divided by an optional number is set down at two places; the quotient is diminished (at one place) and increased (at the other) by that optional number and then halved. The former is again divided by the square-root of the multiplier. (The quotients) are respectively the lesser and greater roots." ${ }^{2}$

The rationale of the above solution has been given by the commentators Sûryadâsa and Kṛ̣ṇa substantially as follows :

$$
\begin{aligned}
\pm c & =y^{2}-a^{2} x^{2} \\
& =(y-a x)(y+a x)
\end{aligned}
$$

Assume $y-a x=m, m$ being an arbitrary rational number. Then

$$
y+a x=\frac{ \pm c}{m}
$$

Whence by the rule of concurrence, we get

$$
\begin{aligned}
& x=\frac{1}{2 a}\left(\frac{ \pm c}{m}-m\right) \\
& y=\frac{1}{2}\left(\frac{ \pm c}{m}+m\right)
\end{aligned}
$$

Form $\mathbf{c}-\mathbf{N x}^{2}=\mathbf{y}^{2}$. Though the equation of the form $c-N x^{2}=y^{2}$ has not been considered by any Hindu algebraist as deserving of special treatment, it occurs incidentally in examples. For instance, Bhâskara II has proposed the following problem :

$$
\text { 3BBi, p. } 42 .
$$

"What is that square which being multiplied by $-s$ becomes, together with 21, a square? Tell me, if you know, the method (of solving the Square-nature) when the multiplier is negative. ${ }^{\prime 1}$

Thus it is required to solve

$$
\begin{equation*}
-5 x^{2}+2 \mathrm{I}=y^{2} \tag{I}
\end{equation*}
$$

Nârâyaṇa has a similar example, vǐz., ${ }^{2}$

$$
\begin{equation*}
-11 x^{2}+60=y^{2} \tag{2}
\end{equation*}
$$

Two obvious solutions of (1) are (1,4) and (2,1). Composing them with the roots of

$$
-5 x^{2}+1=y^{2}
$$

says Bhâskara II, an infinite number of roots of (1) can be derived.

Form $\mathbf{N x}^{2}-\mathbf{k}^{\mathbf{2}}=\mathbf{y}^{\mathbf{2}}$. Bhâskara II observes :
"When unity is the subtractive the solution of the problem is impossible unless the multiplier is the sum of two squares." ${ }^{3}$

Nârâyaṇa writes :
"In the case of unity as the subtractive, the multiplier must be the sum of two squares. Otherwise, the solution is impossible." ${ }^{4}$

Thus it has been said that a rational solution of

$$
N x^{2}-1=y^{2}
$$

and consequently of

$$
N x^{2}-k^{2}=y^{2}
$$

is not possible unless N is the sum of two squares.
${ }^{1}$ BBi, p. 43.
${ }^{8}$ "Rûpasuddhau' khiloddiṣtam vargayogo guṇo na cet"-BBi,
P. ${ }^{40}{ }^{4}$ NBi, I, R. 8_{3}.

For, if $x=p / q, y=r / s$ be a possible solution of the equation, we have

$$
\begin{aligned}
& N(p / q)^{2}-k^{2}=(r / s)^{2} \\
& N=(q r / p s)^{2}+(q k / p)^{2}
\end{aligned}
$$

Bhâskara II then goes on :
"In case (the solution is) not impossible when unity is the subtractive, divide unity by the roots of the two squares and set down (the quotients) at two places. They are two lesser roots. Then find the corresponding greater roots at the two places. Or, when unity is the subtractive, the roots should be found as before."

Thus, according to Bhâskara II, two rational solutions of

$$
N x^{2}-1=y^{2},
$$

where $N=n^{2}+n^{2}$, will be

$$
\left.\begin{array}{ll}
x=\frac{1}{m} \\
y=\frac{n}{m}
\end{array}\right\}, \quad x=\frac{1}{n},
$$

So two rational solutions of

$$
\left(m^{2}+n^{2}\right) x^{2}-k^{2}=y^{2},
$$

will be

$$
\left.\left.\begin{array}{ll}
x=\frac{k}{m} \\
y=\frac{k n}{m}
\end{array}\right\}, \quad \begin{array}{c}
x=\frac{k}{n} \\
y=\frac{k m}{n}
\end{array}\right\} .
$$

The following illustrative example of Bhâskata II ${ }^{1}$ is also reproduced by Nârâyaṇa : ${ }^{2}$

$$
13 x^{2}-1=y^{2}
$$

${ }^{1} B B i$, p. 41. ${ }^{2} N B i, I, E x . j 8$.

The former solves it substantially in the following ways:
(1) Since $13=\mathbf{2}^{2}+\mathbf{3}^{\mathbf{2}}$ two rational solutions are ($1 / 2,3 / 2$) and ($1 / 3,2 / 3$).
(2) An obvious solution of

$$
13 x^{2}-4=y^{2}
$$

is $x=1, y=3$. Then dividing out by 4 , as shown before, we get a solution of the equation $13 x^{2}-1=y^{2}$ as $(1 / 2,3 / 2)$.
(3) Again, since an obvious solution of

$$
13 x^{2}-9=y^{2}
$$

is $x=1, y=2$, we get, on dividing out by 9 , a solution of our equation as ($1 / 3,2 / 3$).
(4) From these fractional roots, we may derive integral roots by the Cyclic Method. Since

$$
13\left(\frac{1}{2}\right)^{2}-1=\left(\frac{3}{2}\right)^{2}
$$

we have, by Bhâskara's Lemma, m being an indeterminate multiplier,

$$
13\left(\frac{m / 2+3 / 2}{-1}\right)^{2}+\frac{m^{2}-13}{-1}=\left(\frac{3 m / 2+13 / 2}{-1}\right)^{2}
$$

or $\quad 13\left(\frac{m+3}{-2}\right)^{2}+\frac{m^{2}-13}{-1}=\left(\frac{3 m+13}{-2}\right)^{2}$.
The suitable value of n which will make $(m+3) / 2$ an integer and $\left|m^{2}-1_{3}\right|$ minimum is 3 . So that we have

$$
13 \cdot 3^{2}+4=11^{2} .
$$

From this again we get the relation

$$
13\left(\frac{3 n+11}{4}\right)^{2}+\frac{n^{2}-13}{4}=\left(\frac{11 n+13 \cdot 3}{4}\right)^{2} .
$$

The appropriate value of the indeterminate multiplier in this case is $n=3$. Substituting this value, we have

$$
13.5^{2}-1=18^{2} .
$$

Hence an integral solution of our equation $13 x^{2}-1=y^{2}$ is $(5,18)$.
"In all cases like this an infinite number of roots can be derived by composition with the roots for the additive unity."1

Nârâyana states the methods (2) and (3) only.

19. GENERAL INDETERMINATE EQUATIONS OF THE SECOND DEGREE: SINGLE EQUATIONS

The carliest mention of the solution of the general indeterminate equation of the second degree is found in the Bijaganita of Bhâskara II (inso). But there are good grounds to believe that he was not its first discoverer, for he is found to have taken from certain ancient authors a few illustrative examples the solutions of which presuppose a knowledge of the solution of such equations. ${ }^{2}$ Neither those illustrations nor a treatment of equations of those types occurs in the algebra of Brahmagupta or in any other extant work anterior to Bhâskara II.

Bhâskara II distinguishes two kinds of indeterminate equations: Sakrt samikarana (Single Equations) and Asakit samikaraṇa (Multiple Equations). ${ }^{3}$

Solution. For the solution of the general indeterminate equation of the second degree, Bhâsiara II (inso) lays down the following rule:

[^141]"When the square, etc., of the unknown are present (in an equation), after the equi-clearance has been made, (find) the square-root of one side by the method described before for it, and the root of the other side by the method of the Square-nature. Then (apply) the method of (simple) equations to these roots. If (the other side) does not become a case for the Square-nature, then, putting it equal to the square of another unknown, the other side and so the value of the other (i.e., the new) unknown should be obtained in the same way as in the Square-nature ; and similarly the value of the first unknown. The intelligent should devise various artifices so that it may become a matter for (the application of) the Square-nature." ${ }^{1}$

He has further elucidated the rule thus :

"When, after the clearance of the two sides has been made, there remain the square, etc., of the unknown, then, by multiplying the two sides with a suitable number and by the help of other necessary operations as described before, the square-root of one side should be extracted. If there be present on the other side the square of the unknown with an absolute term, then the two roots of that side should be found by the method of the Square-nature. There the number associated with the square of the unknown is the prakrti ('multiplier'), and the absolute number is to be considered as the interpolator. What is obtained as the lesser root in this way will be the value of the unknown associated with the multiplier (prakrti); the greater root is (again) the root of that square (formed on the first side). Hence making an equation of this with the square-root of the first side, the value of the unknown on the first side should be determined.

[^142]"But if there be present on the second side the square of the unknown together with (the first power of) the unknown, or only the (simple) unknown with or without an absolute number, then it is not a case for the Square-nature. How then is the root to be found in that case? So it has been said: 'If (the other side) does not become a case for the Square-nature etc.' Then, putting it equal to the square of another unknown, the square-root of one side should be found in the way indicated before, and the two roots of the other side should then be determined by the method of the Squarenature. There again the lesser root is the value of the unknown associated with the prakerti and the greater root is equal to the square-root of that side of the equation. Forming proper equations with the roots, the values of the unknowns should be determined.
"If, however, even after the second side has been so treated, it does not turn out to be a case for the Square-nature, then the intelligent (mathematicians) should devise by their own sagacity all such artifices as will make it a case for the method of the Squarenature and then determine the values of the unknowns."

Having thus indicated in a general way the broad outlines of his metiod for the solution of the general indeterminate equation of the second degree, Bhâskara 11 discusses the different types of equations severally, explaining the rules in every case in greater detail with the help of illustrative examples.

$$
\text { (i) Solution of } a x^{2}+b x+c=y^{2}
$$

For the general solution of the quadratic indeterminate equation

$$
\begin{equation*}
u x^{2}+b x+c=y^{2} \tag{1}
\end{equation*}
$$

${ }^{1} B B i, \mathrm{p} .100$.

Bhâskara II gives the following particular rule :
"On taking the square-root of one side, if there be on the second side only the square of the unknown together with an absolute number, in such cases, the greater and lesser roots should be detcrmined by the method of the Square-nature. Of these two, the greater root is to be put equal to the square-root of the first side mentioned before, and thence the value of the first unknown should be determined. The lesser will be the value of the unknown associated with the prakrti. In this way, the method of the Square-nature should be applied to this case by the intelligent." 1

As an illustration of this rule Bhâskara II works out in detail the following example:
"What number being doubled and added to six times its square, becomes capable of yielding a squareroot? O ye algebraist, tell it quickly." ${ }^{2}$

Solution. "Here let the number be x. Doubled and together with six times its square, it becomes $6 x^{2}+2 x$. This is a square. On forming an equation with the square of y, the statement is

$$
6 x^{2}+2 x+o y^{2}=o x^{2}+o x+y^{2}
$$

On making equi-clearance in this the two sides are $6 x^{2}+2 x$ and y^{2}.
"Then multiplying these two sides by 6 and superadding r , the root of the first side, as described before, is $6 x+1$.
"Now on the second side of the equation remains $6 y^{2}+1$. By the method of the Square-nature, its roots are : the lesser 2 and the greater 5 , or the lesser 20 and the greater 49. Equating the greater root with the square-root of the first side, viz., $6 x+1$, the value of

[^143]${ }^{2} B B i, p .101$.
x is found to be $2 / 3$ or 8 . The lesser root, 2 or 20 , is the value of y, the unknown associated with the prakrti. In this way, by virtue of (the multiplicity of) the lesser and greater roots, many solutions can be obtained.' ${ }^{1}$

In other words the method described above is this :
Completing the square on the left-hand side of the equation $a x^{2}+b x+c=y^{2}$, we have

$$
\left(a x+\frac{1}{2} b\right)^{2}=a y^{2}+\frac{1}{4}\left(b^{2}-4 a c\right) .
$$

Putting $\quad z=a x+\frac{1}{2} b, k=\frac{1}{4}\left(b^{2}-4 a c\right)$, we get

$$
\begin{equation*}
a y^{2}+k=z^{2} . \tag{I.1}
\end{equation*}
$$

If $y=l, z=m$ be found empirically to be a solution of this equation, another solution of it will be

$$
\begin{aligned}
& y=l q \pm m p \\
& z=m q \pm a l p
\end{aligned}
$$

where $a p^{2}+\mathrm{r}=q^{2}$. Hence a solution of (I) is

$$
\begin{aligned}
& x=-\frac{b}{2 a}+\frac{1}{a}(m q \pm a l p) \\
& y=l q \pm m p
\end{aligned}
$$

Now suppose $x=r$, when $z=m$; that is, let $m=a r+b / 2$. Substituting in the above expressions, we get the required solution of (1) as

$$
\left.\begin{array}{l}
x=\frac{\mathrm{I}}{2 a}(b q-b)+q r \pm l p \tag{1.2}\\
y=l q \pm\left(a p r+\frac{1}{2} b p\right)
\end{array}\right\}
$$

where $a p^{2}+1=q^{2}$ and $a r^{2}+b r+c=l^{2}$.
Thus having known one solution of $a x^{2}+b x+c$ $=y^{2}$, an infinite number of other solutions can be
${ }^{1}$ BBi, p. ior.
easily obtained by the method of Bhâskara II. The method is, indeed, a very simple and elegant one. It has been adopted by later Hindu algebraists. As the relevant portion of the algebra of Nârâyaña (1350) is now lost, we cannot reproduce his description of the method. Jñânarấja (1503) says :
"(Find) the square-root of the first side according to the method described before and, by the method of the Square-nature, the roots of the other side, where the coefficient of the square of the unknown is considered to be the prakerti and the interpolator is an absolute term. Then the greater root will be equal to the previous square-root and the other (i.e., the lesser root) to the unknown associated with the prakerti."

The above solution (1.2), but with the upper sign only, was rediscovered in 1733 by Eluer. ${ }^{1}$ His method is indirect and cumbrous. Lagrange's (1767) method begins in the same way as that of Bhâskara II. by completing the square on the left-band side of the equation. ${ }^{2}$
(ii) Solution of $a x^{2}+b x+c=a^{\prime} y^{2}+b^{\prime} y+c^{\prime}$

Bhâskara Il has treated the more general type of quadratic indeterminate equations :

$$
\begin{equation*}
a x^{2}+b x+c=a^{\prime} y^{2}+b^{\prime} y+c^{\prime} . \tag{2}
\end{equation*}
$$

His rule in this connection runs as follows :
"If there be the square of the unknown together with the (simple) unknown and an absolute number, putting it equal to the square of another unknown its root (should be investigated). Then on the other side (find)

[^144]SOLUTION OF $a x^{2}+b x+c=a^{\prime} y^{2}+b^{\prime} y+c^{\prime}$
the roots by the method of the Square-nature, as has been stated before. Put the lesser root ${ }^{1}$ equal to the root of the first side and the greater root equal to that of the second." ${ }^{2}$
He further elucidates the rule thus :
"In this case, on taking the square-root of the first side, there remain on the other side the square of the unknown and the (simple) unknown with or without an absolute number. In that case forming an equation of the second side with the square of another unknown, the roots (should be found). Of these (roots just determined), making the lesser equal to the root of the first side (of the given equation) and the greater to the root of the second side, the values of the unknowns should be determined."

Example. "Say what is the number of terms of a series (in A. P.) whose first term is 3 , the common difference is 2 ; but whose sum multiplied by 3 is equal to the sum of a different number of terms." 3

Solution. "Here the statements of the series are: first term $=3$, common difference $=2$, number of terms $=x$; first term $=3$, common difference $=2$, number of terms $=y$. The two sums are (respectively) $x^{2}+2 x, y^{2}+2 y$. Making three times the first equal to the second, the statement for clearance is

$$
3 x^{2}+6 x=y^{2}+2 y
$$

After the clearance, multiplying the two sides (of the equation) by 3 and superadding 9 , the square-root of the first side is $3 x+3$. On the second side of the
${ }^{1}$ The meaning of the terms 'lesser root', 'greater root', etc., as used here, will be clear from the illustration and the general solution given below.
${ }^{2}$ BBi, p. 104.
${ }^{3} B B i$, p. 104.
equation stands $3 y^{2}+6 y+9$. Forming an equation of this with z^{2}, and similarly multiplying the sides by 3 and superadding - 18, the root of it is $3 y+3$. Then the roots of the other side, $3 z^{2}-18$, by the method of the Square-nature are the lesser $=9$ and greater $=15$, or the lesser $=13$ and greater $=57$. Equating the lesser root with the square-root of the first side, namely, $3 x+3$, and the greater root with the square-root of the second side, namely, $3 y+3$, the values of x, y are found to be $(2,4)$ or (10,18). So in every case."

In general, on completing the square on the lefthand side, equation (2) becomes

$$
\begin{align*}
& \quad\left(a x+\frac{1}{2} b\right)^{2}=a a^{\prime} y^{2}+a b^{\prime} y+a c^{\prime}+\left(\frac{1}{4} b^{2}-a c\right), \\
& \text { Put } \\
& a x+\frac{1}{2} b=z \tag{2.1}
\end{align*}
$$

and then complete the square on the right-hand side. Thus the given equation is finally reduced to

$$
\begin{equation*}
a a^{\prime} z^{2}-\beta=w^{2} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
w=a a^{\prime} y+\frac{1}{y} a b^{\prime}, \tag{2.3}
\end{equation*}
$$

and

$$
\beta=a^{2} a^{\prime} c^{\prime}+\left(\frac{1}{4} b^{2}-a c\right) a a^{\prime}-\left(\frac{1}{2} a b^{\prime}\right)^{2} .
$$

Now, if $z=l, w=m$ be a solution of the equation (2.2), another solution will be

$$
\begin{aligned}
& z=l q \pm m p \\
& w=m q \pm a a^{\prime} l p
\end{aligned}
$$

where $a^{\prime} a p^{2}+\mathbf{1}=q^{2}$. Substituting in (2.1) and (2.3), we get

$$
\left.\begin{array}{l}
x=-\frac{b}{2 a}+\frac{1}{a}(l q \pm m p), \tag{2.4}\\
y=-\frac{b^{\prime}}{2 a^{\prime}}+\frac{1}{a a^{\prime}}\left(m q \pm a a^{\prime} l p\right) .
\end{array}\right\}
$$

Now, let $l=a r+\frac{1}{2} b$ and $m=a a^{\prime} s+\frac{1}{2} a b^{\prime}$. Substituting in the above expressions, we get the required

SOLUTION OF $a x^{2}+b x+c=a^{\prime} y^{2}+b^{\prime} y+c^{\prime}$
solution of (2) in the form:

$$
\left.\begin{array}{l}
x=\frac{1}{2 a}\left(q b \pm p a b^{\prime}-b\right)+q r \pm p a^{\prime} s \tag{2.5}\\
y=\frac{1}{2 a^{\prime}}\left(q b^{\prime} \pm p a^{\prime} b-b^{\prime}\right)+q s \pm p a r
\end{array}\right\}
$$

where

$$
a a^{\prime} p^{2}+1=q^{2}
$$

and

$$
a r^{2}+b r+c=a^{\prime} s^{2}+b^{\prime} s+c^{\prime}
$$

The form (2.5) shows that having found empirically one solution of $a x^{2}+b x+c=a^{\prime} y^{2}+b^{\prime} y+c^{\prime}$ Bhâskara could find an infinite number of other solutions of it.

Jñânarâja (1503) says:
"If on the other side be present the square as well as the lincar power of the unknown together with an absolute term, put it cqual to the square of another unknown and then determine the lesser and greater roots. The lesser root will be equal to the first squareroot and the greater to the second square-root."

He gives with solution the following illustrative example :
or

$$
\begin{aligned}
3\left(x^{2}+4 x\right) & =y^{2}+4 y^{\prime} \\
(3 x+6)^{2} & =3 y^{2}+12 y+36
\end{aligned}
$$

Putting $3 x+6=z$, where \approx is the "first squareroot" of Jñânarâja, we get

$$
\begin{aligned}
z^{2} & =3 y^{2}+12 y^{2}+36 \\
3 z^{2} & =(3 y+6)^{2}+72
\end{aligned}
$$

Now put $3 y+6=w$, where w is the "second square-root." Then

$$
3 z^{2}-7^{2}=2 v^{2}
$$

Therefore, by the method of the Square-nature, $z=18, w=30$. Whence $x=4, y=8$, is a solution.

$$
\text { (iii) Solution of } a x^{2}+b y^{2}+c=z^{2}
$$

Bhâskara II followed several devices for the solution of the equation

$$
\begin{equation*}
a x^{2}+b y^{2}+c=z^{2} . \tag{3}
\end{equation*}
$$

In every case his object was to transform the equation into the form of the Square-nature. He says :
"In such cases, where squares of two unknowns with (or without) an absolute number are present, supposing either of them optionally as the prakerti, the rest (of the terms) should be considered as the interpolator. Then the roots should be investigated in the way described before. If there be more equations than one (the process will be cspecially helpful)." ${ }^{1}$
He then explains further:
"Where on finding the square root of the first side, there remain on the other side squares of two unknowns with or without an absolute number, there consider the square of one of the unknowns as the prakerti; the remainder will then be the interpolator. Then by the rule: 'An optionally chosen number is taken as the lesser root, etc.,' ${ }^{\prime 2}$ the unknown in the interpolator multiplied by one, etc., and added with one, etc., or not, according to one's own sagacity, should be assumed for the lesser root ; then determine the greater root." ${ }^{3}$

There are thus indicated two artifices for solving the equation (3). They are:
(i) Set $x=m y$; so that equation (3) transforms into
${ }^{1}$ BBi, pp. 10 f.
${ }^{2}$ The reference is to the rule for solving the Square-nature (vide supra p. 144) (BBi, p. 33).
${ }^{3} B B i$, p. 106.

$$
\begin{aligned}
z^{2} & =\left(a m^{2}+b\right) y^{2}+c \\
& =\alpha y^{2}+c
\end{aligned}
$$

where $\alpha=a m^{2}+b$. Hence the required solution of $a x^{2}+b y^{2}+c=z^{2}$ is

$$
\begin{aligned}
& x=m y=m(r q \pm p s) \\
& y=r q \pm p s \\
& z=s q \pm \alpha p r
\end{aligned}
$$

where $s^{2}=\alpha r^{2}+c$ and $q^{2}=\alpha p^{2}+1$.
(ii) Set $x=m y \pm n$; then the equation reduces to

$$
z^{2}=\alpha y^{2} \pm 2 a m n y+\gamma
$$

where $\alpha=a m^{2}+b$ and $\gamma=a n^{2}+c$.
Completing the square on the right-hand side of this, we get

$$
\alpha z^{2}-\beta=w^{2}
$$

where $\quad w=\alpha y \pm a m n$ and $\beta=\gamma \alpha-a^{2} m^{2} n^{2}=a\left(b n^{2}\right.$ $\left.+c m^{2}\right)+b c$.

If $\chi=s, w=r$ be a solution of this equation, another solution will be

$$
\begin{aligned}
& \mathfrak{z}=s q \pm r p \\
& w=r q \pm u s p
\end{aligned}
$$

where $q^{2}=\alpha p^{2}+1$. Hence the solution of $a x^{2}+b y^{2}$ $+c=z^{2}$ is

$$
\begin{aligned}
& x=\frac{m}{\alpha}(r q \pm \alpha s p \mp a m n) \pm n \\
& y=\frac{1}{\alpha}(r q \pm \alpha s p \mp a m n) \\
& z=s q \pm r p
\end{aligned}
$$

where $q^{2}=\alpha p^{2}+1, r^{2}=\alpha s^{2}-\beta, \alpha=a m^{2}+b$ and $\beta=a\left(b n^{2}+c m^{2}\right)+b c$.

In working certain problems, Bhâskara II is found to have occasionally followed other artifices also for the solution of the equation (3). For instance :
(iii) ${ }^{1}$ Set $w^{2}=b y^{2}+c$. Then equation (3) becomes

$$
z^{2}-u^{\prime 2}=a x^{2} .
$$

Whence

$$
z=\frac{1}{2}\left(\frac{a}{m}+m\right) x
$$

and

$$
v=\frac{1}{2}\left(\frac{a}{m}-m\right) x ;
$$

where m is an arbitrary number. Therefore

$$
\begin{aligned}
& x=\frac{2 m v}{a-m m^{2}} \\
& z=\left(\frac{a+m^{2}}{a-m^{2}}\right) w .
\end{aligned}
$$

Now, if $y=l, w=r$ be a solution of

$$
w^{2}=b y^{2}+c,
$$

another solution of it will be

$$
\begin{aligned}
& y=l q \pm p r \\
& y=r q \pm b l p
\end{aligned}
$$

where $a p^{2}+1=q^{2}$. Therefore, the solution of (3) will be

$$
\begin{aligned}
& x=\frac{2 m}{a-m^{2}}(r q \pm b l p), \\
& y=l q \pm p r, \\
& z=\frac{a+m^{2}}{a-m^{2}}(r q \pm b l p) ;
\end{aligned}
$$

where $a p^{2}+\mathbf{1}=q^{2}$ and $b l^{2}+c=r^{2}$.
(iv) ${ }^{2}$ Suppose $c=0$; then the equation to be solved will be

$$
a x^{2}+b y^{2}=z^{2}
$$

In this case set $x=u y, z=z y$; so that u, v will be given by

$$
a u^{2}+b=v^{2}
$$

which can be solved by the method of the Squarenature. Some of these devices were followed also by later Hindu algebraists, for instance, Jnânarâja (1503) and Kamalâkara (16;8). ${ }^{1}$

Example from Kamalâkara: ${ }^{2}$

$$
7 x^{2}+8 y^{2}=z^{2}
$$

This is one of a double equation by Bhâskara II. ${ }^{3}$
To solve $a x^{2}+b y^{2}+c=z^{2}$, Kamalâkara observes:
"In this case, suppose the coefficient of the square of the first unknown as the prakerti and the coefficient of the square of the other unknown together with the absolute number as the interpolator to that. The two roots can thus be determined in several ways."4 And again :
"(Suppose) the coefficient of the square of one of the unknowns as the prakerti and the rest comprising two terms, the square of an unknown and an absolute number, as the interpolator. Then assume the value of the lesser root to be equal to the other unknown together with an absolute term."5

He secms to have indicated also a slightly different method:
"Or assume the value of the lesser root to be equal to another unknown plus or minus an absolute number

```
\({ }^{1}\) SiTVi, xiii. 260-1.
\({ }^{3}\) BBi, p. 106.
\({ }^{8}\) SiTVi, xiii. 267 f.
```

```
2 SiTVi, xiii. 298.
```

2 SiTVi, xiii. 298.
4 SiTVi, xiii. 264.

```
    4 SiTVi, xiii. 264.
```

and similarly also the value of the greater root. The remaining operations should be performed by the intelligent in the way described by Bhâskara in his algebra." ${ }^{1}$

That is to say, assume

$$
x=m v \pm \alpha, \quad z=n v \pm \beta
$$

Substituting in the equation $a x^{2}+b y^{2}+c=\chi^{2}$, we get

$$
\begin{aligned}
\left(a m^{2}-n^{2}\right) \boldsymbol{v}^{2} \pm 2 \boldsymbol{v}(a m \alpha & \mp n \beta)+b y^{2} \\
& +\left(c+a \alpha^{2}-\beta^{2}\right)=0 .
\end{aligned}
$$

Putting $\lambda=a m^{2}-n^{2}, \mu=a m a \mp n \beta, v=c+a \alpha^{2}-\beta^{2}$, this equation can be reduced to

$$
-\lambda b y^{2}+\left(\mu^{2}-v \lambda\right)=u^{2},
$$

where $u=\lambda \boldsymbol{v} \pm \mu$.
Kamalàkara gives also some other methods which are applicable only in particular cases.

Case i. Suppose that b and c are of different signs. ${ }^{2}$ Two sub-cases arise:
(1) Form $a x^{2}+b y^{2}-c=z^{2}$.

First find u, v, says Kamalâkara, such that

$$
\begin{aligned}
& a u^{2}-c=v^{2} \\
& \quad x=\sqrt{\frac{b}{a c}} v y+u
\end{aligned}
$$

we have

$$
\begin{aligned}
a x^{2}+b y^{2}-c= & \frac{b}{c} v^{2} y^{2}+2 \sqrt{\frac{a b}{c}} u v y+b y^{2} \\
& +\left(a x^{2}-c\right) \\
& =\frac{b}{c}\left(a u^{2}-c\right) y^{2}+2 \sqrt{\frac{a b}{c}} u v y+b y^{2}+v^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a b}{c} u^{2} y^{2}+2 \sqrt{\frac{a b}{c}} u y y+v^{2} \\
& =\left(\sqrt{\frac{a b}{c}} u y+\imath^{\prime}\right)^{2} .
\end{aligned}
$$

Hence

$$
z=\sqrt{\frac{a \dot{b}}{c} u y+v .}
$$

The following illustrative example and its solution are given ${ }^{1}$

Its solution is

$$
5 x^{2}+16 y^{2}-20=z^{2}
$$

$$
\begin{aligned}
& x=\frac{2}{3} v y+u \\
& z=2 u y+v
\end{aligned}
$$

where $s u^{2}-20=v^{2}$. An obvious solution of this equation is given by $u=3, v=5$. Hence, we get a solution of the given equation as

$$
\begin{aligned}
& x=2 y+3 \\
& z=6 y+5
\end{aligned}
$$

Therefore

$$
(x, y)=(5,1),(7,2),(9,3),
$$

(2) Form $a x^{2}-b y^{2}+c=\tau^{2}$.

In this case first solve

$$
a u^{\prime 2}+c=v^{\prime 2}
$$

Then the required solution is

$$
\begin{aligned}
& x=\sqrt{\frac{\bar{b}}{a c}} v^{\prime} y+u^{\prime} \\
& z=\sqrt{\frac{a b}{c}} u^{\prime} y+v^{\prime}
\end{aligned}
$$

Example from Kamalâkara : ${ }^{2}$

$$
5 \lambda^{2}-20 y^{2}+16=z^{2}
$$

${ }^{1}$ SiTVi, xiii. 279.
${ }^{2}$ SiTVI, xiii. 279 .

Then

$$
\begin{aligned}
& x=\frac{1}{2} \nu^{\prime} y+u^{\prime}, \\
& z=\frac{3}{2} u^{\prime} y+v^{\prime} ;
\end{aligned}
$$

where $5 u^{\prime 2}+16=v^{\prime 2}$. One solution of this equation is $u^{\prime}=2, v^{\prime}=6$. The corresponding solution of the given equation is

$$
\begin{aligned}
& x=3 y+2 \\
& z=5 y+6 .
\end{aligned}
$$

Therefore

$$
(x, y)=(5,1),(8,2),(11,3), \text { etc. }
$$

Case ii. Let the two terms of the interpolator be of the same sign and positive.

Example from Kamalâkara: ${ }^{1}$

$$
5 x^{2}+8 y^{2}+23=z^{2} .
$$

Assume arbitrarily a value of x or y and then find the other by the method of the Square-nature. ${ }^{2}$
(iv) Solution of $a^{2} x^{2}+b y^{2}+c=z^{2}$

Let the coefficient of x^{2} (or y^{2}) be a square number. The equation is of the form

$$
a^{2} x^{2}+b y^{2}+c=z^{2} .
$$

For this case Bhâskara II observes :
"If the prakrti is a square, then obtain the roots by the rule: 'The interpolator divided by an optional number is set down at two places, etc.' "3

Thus, according to Bhâskara II, the solution of the above equation is

$$
x=\frac{1}{2 a}\left(\frac{b y^{2}+c}{m}\right)-m,
$$

[^145]$$
z=\frac{1}{\Sigma}\left(\frac{b y^{2}+c}{m}+m\right)
$$
where m is an arbitrary number.
Kamalâkara divides equations of this form into two classes according as c is or is not a square. ${ }^{1}$
(1) Let c be a square ($=d^{2}$, say). That is to say, we have to solve
$$
a^{2} x^{2}+b y^{2}+d^{2}=z^{2}
$$

The solution of this particular case, says Kamalâkara, is given by

$$
x=\frac{b}{2 a d} y^{2} .
$$

For, with this value, we have

$$
\begin{aligned}
z^{2} & =\frac{b^{2} y^{4}}{4 d^{2}}+b y^{2}+d^{2} \\
& =\frac{1}{4 d^{2}}\left(b y^{2}+2 d^{2}\right)^{2}
\end{aligned}
$$

Hence

$$
z=\frac{b y^{2}}{2 d}+d
$$

(2) When c is not a square, Kamalâkara first finds $\boldsymbol{\alpha}, \boldsymbol{\beta}$ such that

$$
\alpha^{2}+c=\beta^{2} .
$$

He next obtains n such that the value of

$$
\frac{a \beta n-b / 2}{a^{2} \cdot \alpha / a}
$$

is also n; and then says that

$$
x=n y^{2}+\frac{a}{a} ;
$$

${ }^{1}$ Vide his gloss on SiTVi, xiii. 275.
whence will follow the value of z.
Since

$$
\frac{a \beta n-b / 2}{a \alpha}=n,
$$

we get

$$
n=\frac{b}{2 a(\beta-\alpha)}
$$

so that

$$
x=\frac{b y^{2}}{2 a(\beta-\alpha)}+\frac{\alpha}{a} .
$$

Therefore $\quad z^{2}=a^{2} x^{2}+b y^{2}+c$

$$
\begin{aligned}
& =\frac{b^{2} y^{4}}{4(\beta-\alpha)^{2}}+\alpha^{2}+\frac{\alpha / y^{2}}{(\beta-\alpha)}+b y^{2}+c \\
& =-\frac{b^{2} y^{4}}{4(\beta-\alpha)^{2}}+\frac{\beta b y^{2}}{(\beta-\alpha)}+\beta^{2} \\
& =\left\{\frac{b y^{2}}{2(\beta-\alpha)}+\beta\right\}^{2} .
\end{aligned}
$$

Hence $\quad z=\frac{b v^{2}}{2(\beta-\alpha)}+\beta$.
Example from Kamalâkara:

$$
4 x^{2}+48 y^{2}+20=z^{2}
$$

Since $4^{2}+20=6^{2}$, and the solution of

$$
\frac{12 n-24}{8}=n
$$

is $n=6$, we get the required solution of the given equation as

$$
\begin{aligned}
& x=6 y^{2}+2, \\
& z=-12 y^{2}+6 .
\end{aligned}
$$

It may be noted that the solution stated by Kamalâkara follows casily from that of Bhaskara II, on putting thercin III - β, α, where $\alpha^{2}: c=-\beta^{2}$.

$$
\begin{equation*}
\text { SOLUTION OF } a x^{2}+b x y+c y^{2}=z^{2} \tag{199}
\end{equation*}
$$

In particular, if we put $c=0$ and $a=1$, Bhâskara's solution reduces to

$$
\begin{aligned}
& x=\frac{1}{2}\left(\frac{b}{m} y^{2}-m\right), \\
& z=\frac{1}{2}\left(\frac{b}{m} y^{2}+m\right)
\end{aligned}
$$

where m is arbitrary.
If $b=\alpha \beta$, taking $m=2 \beta p^{2}$, we easily arrive at

$$
\begin{aligned}
& x=\alpha q^{2}-\beta p^{2} \\
& y=2 p q \\
& z=\alpha q^{2}+\beta p^{2}
\end{aligned}
$$

where p, q are arbitrary integers, as the solution in positive integers of $z^{2}=x^{2}+b y^{2}$. This solution was given by A. Desboves (1879). ${ }^{1}$

Taking $m=2 v^{2}$, we can derive Matsunago's (c. 1735) solution of $z^{2}=x^{2}+b y^{2}$, viz.,

$$
\begin{aligned}
& x=b \mu^{2}-v^{2} \\
& y=2 \mu v, \\
& z=b \mu^{2}+v^{2}
\end{aligned}
$$

where μ, ν are arbitrary integers.

$$
\text { (v) Solution of } a x^{2}+b x y+c y^{2}=z^{2}
$$

For the solution of the equation

$$
\begin{equation*}
a x^{2}+b x y+c y^{2}==z^{2} \tag{s}
\end{equation*}
$$

Bhâskara II lays down the following rule :
"When there are squares of two unknowns togethor with their product, having extracted the square-root of one part, it should be put equal to half the difference of the remaining part divided by an optional number
${ }^{1}$ Dickson, Numbers, Il, p. 405.
and the optional number." ${ }^{1}$
It has been again elucidated thus:
"Where there exists also the product of the unknöwns (in addition to their squares), by the rule, 'when there are squares etc.,' the square-root of as much portion of it as affords a root, should be extracted. The romaining portion, divided by an optional number and then diminished by that optional number and halved, should be put equal to that square-root." 2

The above rule, in fact, contemplates a particular case of equation (s) in which a or c is a square number.
(i) Suppose $a=p^{2}$. The equation to be solved is then

$$
\begin{equation*}
p^{2} x^{2}+b x y+c y^{2}=z^{2} \tag{5.1}
\end{equation*}
$$

Therefore $\quad\left(p x+-\frac{b y}{2 p}\right)^{2}+y^{2}\left(c-\frac{b^{2}}{4 p^{2}}\right)=z^{2}$.
Putting $p x+\frac{b y}{2 p}=w$, we get

$$
z^{2}-z^{2}=y^{2}\left(c-\frac{b^{2}}{4 p^{2}}\right)
$$

Whence

$$
\begin{aligned}
& z-y=\lambda, \\
& z+\nu=\frac{y^{2}}{\lambda}\left(c-\frac{b^{2}}{4 p^{2}}\right),
\end{aligned}
$$

where λ is an arbitrary rational number. So

$$
y=\frac{1}{2}\left\{\frac{y^{2}}{\lambda}\left(c-\frac{b^{2}}{4 p^{2}}\right)-\lambda\right\},
$$

as stated in the rule. Therefore,

$$
x=\frac{1}{2 p}\left\{\frac{y^{2}}{\lambda}\left(c-\frac{b^{2}}{4 p^{2}}\right)-\lambda\right\}-\frac{b y}{2 p^{2}},
$$

[^146]$$
\text { SOLUTION OF } a x^{2}+b x y+c y^{2}=z^{2}
$$
and
$$
z=\frac{1}{2}\left\{\frac{y^{2}}{\lambda}\left(c-\frac{b^{2}}{4 p^{2}}\right)+\lambda\right\} .
$$

Now, if we suppose $y=m / n$, where m, n are arbitrary integers, we get the solution of (5.1) as

$$
\begin{aligned}
& x=\frac{1}{8 \lambda p^{2} n^{2}}\left\{m^{2}\left(4 c p^{2}-b^{2}\right)-4 \lambda^{2} p^{2} n^{2}-4 \lambda b m n\right\} \\
& y=\frac{m}{n} \\
& \tau=\frac{1}{8 \lambda p^{2} n^{2}}\left\{m^{2}\left(4 c p^{2}-b^{2}\right)+4 \lambda^{2} p^{2} n^{2}\right\}
\end{aligned}
$$

Since the given equation is homogeneous, any multiple of these values of x, y, z will also be its solution. Therefore, multiplying by $8 \lambda p^{2} n^{2}$, we get the following solution of the equation $p^{2} x^{2}+b x y+c y^{2}=z^{2}$ in integers :

$$
\left.\begin{array}{l}
x=m^{2}\left(4 c p^{2}-b^{2}\right)-4 \lambda^{2} p^{2} n^{2}-4 \lambda b m n \\
y=8 \lambda m n p^{2} \tag{5.2}\\
z=m^{2}\left(4 c p^{2}-b^{2}\right)+4 \lambda^{2} p^{2} n^{2}
\end{array}\right\}
$$

where m, n, are arbitrary integers.
In particular, putting $a=b=c=1$, and $\lambda=p$ $=1$ in (5.2), we get

$$
\begin{aligned}
& x=3 m^{2}-4 n(n+m) \\
& y=8 m n \\
& z=3 m^{2}+4 n^{2}
\end{aligned}
$$

as the solution of the equation

$$
x^{2}+x y+y^{2}=z^{2}
$$

Dividing out by $8 n$, the above solution can be put into the form

$$
x=\frac{1}{2}\left(\frac{3 m^{2}}{4 n}-n-m\right)
$$

$$
\begin{aligned}
& y=m, \\
& z=\frac{1}{8 n}\left(3 m^{2}+4 n^{2}\right) ;
\end{aligned}
$$

as has been stated by Nârâyaṇa :
"An arbitrary number is the first. Its square less by its (square's) one-fourth, is divided by an optional number and then diminished by the latter and also by the first. Half the remainder is the second number. The sum of their squares together with their product is a square." ${ }^{1}$

It is noteworthy that in practice Nârâyana approves of only integral solutions of his equation. For instance, he says :
" 'Any arbitrary number is the first.' Suppose it to be 12. Then with the optional number unity, are obtained the numbers ($12,95 / 2$). For integral values, they are doubled (24, 95). With the optional number 2 , are obtained (12,20). It being possible, these are reduced by the common factor 4 to $(3,5)$. In this way, owing to the varieties of the optional number, an infinite number of solutions can be obtained. ${ }^{2} 2$
(ii). If neither a nor c be a square, the solution can be obtained thus :

Multiplying both sides of the equation (s) by a and then completing a square on the left-hand side, the equation transforms into

$$
\left(a x+\frac{1}{2} b y\right)^{2}+\left(a c-\frac{1}{4} b^{2}\right) y^{2}=a z^{2} .
$$

Putting $\quad a x+\frac{1}{2} b y=\nu$ and $\beta=\frac{1}{4}\left(b^{2}-4 a c\right)$,
we get $\quad w^{2}=d \chi^{2}+\beta y^{2}$.
${ }^{2} G K$, i. 55.
${ }^{2}$ See the example in illustration of the same.

$$
\begin{equation*}
\text { SOLUTION OF } a x^{2}+b x y+c y^{2}=z^{2} \tag{203}
\end{equation*}
$$

The method of the solution of an equation of this form, according to Bhâskara II, has been described before.

Assume $u=u y, z=u y$; so that the values of u, v will be given by

$$
\begin{equation*}
v^{2}=a u^{2}+\beta \tag{5.4}
\end{equation*}
$$

If $u=m, v \doteq n$ be a solution of (5.4), another solution will be

$$
\begin{aligned}
& u=m q \pm p n \\
& v=n q \pm a m p
\end{aligned}
$$

where $a p^{2}+1=q^{2}$. Therefore, a solution of (s) is

$$
\begin{aligned}
& x=\frac{y}{2 a}\{2(n q \pm a m p)-b\} \\
& z=y(m q \pm p n)
\end{aligned}
$$

where $a p^{2}+1=q^{2}$ and $a m^{2}+\beta=n^{2}$.
Put $n=a r+\frac{1}{2} b$ and $y=\frac{s}{t}$; then we have

$$
\begin{aligned}
& x=\frac{s}{2 a t}\{q(2 a r+b) \pm 2 a m p-b\} \\
& y=\frac{s}{t} \\
& z=\frac{s}{2 t}\{2 m q \pm p(2 a r+b)\} .
\end{aligned}
$$

Multiplying by $2 a t$, we get the following solution of $a x^{2}+b x y+c y^{2}=z^{2}$ in integers:

$$
\begin{aligned}
& x=s\{q(2 a r+b) \pm 2 a m p-b\} \\
& y=2 a s \\
& z=a s\{2 m q \pm p(2 a r+b)\}
\end{aligned}
$$

where $a p^{2}+1=q^{2}$ and $m^{2}=a r^{2}+b r+c$.

20. RATIONAL TRIANGLES

Rational Right Triangles: Early Solutions. The earliest Hindu solutions of the equation

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tag{I}
\end{equation*}
$$

are found in the Sullba. Baudhâyana (c. 800 B.C.), Apastamba and Kâtyâyana (c. soo B.C.) ${ }^{1}$ give a method for the transformation of a rectangle into a square, which is the equivalent of the algebraical identity

$$
m n=\left(m-\frac{m-n}{2}\right)^{2}-\left(\frac{m-n}{2}\right)^{2}
$$

where m, n are any two arbitrary numbers. Thus we get

$$
(\sqrt{m n})^{2}+\left(\frac{m-n}{2}\right)^{2}=\left(\frac{m+n}{2}\right)^{2} .
$$

Substituting p^{2}, q^{2} for n, n respectively, in order to eliminate the irrational quantities, we get

$$
p^{2} q^{2}+\left(\frac{p^{2}-q^{2}}{2}\right)^{2}=\left(\frac{p^{2}+q^{2}}{2}\right)^{2}
$$

which gives a rational solution of (I).
For finding a square equal to the sum of a number of other squares of the same size, Kâtyâyana gives a very elegant and simple method which furnishes us with another solution of the rational right triangle. Kâtyâyana says:
"As many squares (of equal size) as you wish to combine into one, the transverse line will be (equal to) one less than that ; twice a side will be (equal to) one more than that ; (thus) form (an isosceles) triangle. Its arrow (i.e., altitude) will do that." ${ }^{2}$

[^147]Thus for combining n squares of sides a each, we form the isosceles triangle $A B C$, such that $A B=A C=(n+1) a / 2$,

Fig. 2
and $B C=(n-1) a$. Then $A D^{2}=n a^{2}$. This gives the formula

$$
a^{2}(\sqrt{n})^{2}+a^{2}\left(\frac{n-1}{2}\right)^{2}=a^{2}\left(\frac{n+1}{2}\right)^{2} .
$$

Putting n^{2} for n in order to make the sides of the rightangled triangle free from the radical, we have

$$
m^{2} a^{2}+\left(\frac{m^{2}-\mathrm{I}}{2}\right)^{2} a^{2}=\left(\frac{m^{2}+\mathrm{I}}{2}\right) a^{2}
$$

which gives a rational solution of (1).
Tacit assumption of the following further generalisation is met with in certain constructions described by Apastamba : ${ }^{1}$

If the sides of a rational right triangle be increased by any rational multiple of them, the resulting figure will be a right triangle.

In particular, he notes

$$
\begin{gathered}
3^{2}+4^{2}=s^{2} \\
(3+3 \cdot 3)^{2}+(4+4 \cdot 3)^{2}=(s+5 \cdot 3)^{2} \\
(3+3 \cdot 4)^{2}+(4+4 \cdot 4)^{2}=(s+5 \cdot 4)^{2}
\end{gathered}
$$

${ }^{1}$ ApSl, v. ;, 4. Also compare Datta, Sulba, pp. 6,f

$$
\begin{gathered}
5^{2}+12^{2}=13^{2} \\
(5+5.2)^{2}+(12+12.2)^{2}=(13+13.2)^{2}
\end{gathered}
$$

Apastamba also derives from a known right-angled triangle several others by changing the unit of measure of its sides and vice versa. ${ }^{1}$ In other words, he recognised the principle that if (α, β, γ) be a rational solution of $x^{2}+y^{2}=z^{2}$, then other rational solutions of it will be given by ($l \alpha, l \beta, l \gamma$), where l is any rational number. This is clearly in evidence in the formula of Kâtyâyana in which a is any quantity. It is now known that all rational solutions of $x^{2}+y^{2}=z^{2}$ can be obtained without duplication in this way.

Later Rational Solutions. Brahmagupta (628) says:
"The square of the optional (ista) side is divided and then diminished by an optional number; half the result is the upright, and that increased by the optional number gives the hypotenuse of a rectangle." ${ }^{2}$

In other words, if m, n be any two rational numbers, then the sides of a right triangle will be

$$
m, \frac{1}{2}\left(\frac{m^{2}}{n}-n\right), \frac{1}{2}\left(\frac{m^{2}}{n}+n\right) .
$$

The Sanskrit word ista can be interpreted as implying "given" as well as "optional". With the former meaning the rule will state how to find rational right triangles having a given leg. Such is, in fact, the interpretation which has been given to a similar rule of Bhâskara II. ${ }^{3}$

```
\({ }^{1}\) Datta, Sulba, p. \(179 . \quad{ }^{2}\) BrSpSi, xii. 35.
```

${ }^{3}$ Vide infra p. 211 ; H. T. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanscrit of Brabmegupta and Bhascara, London, 1817, (referred to hereafter as, Colebrooke, Hindu Algebra), p. 6i footnote.

A similar rule is given by Srîpati (ro39):
"Any optional number is the side; the square of that divided and then diminished by an optional - number and halved is the upright; that added with the previous divisor is the hypotenuse of a right-angled triangle. For, so it has been explained by the learned in the matter of the rules of geometry."

Karavindasvamí a commentator of the Apastamba Sulba, finds the solution

$$
m,\left(\frac{n^{2}+2 n}{2 n+2}\right) m,\left(\frac{n^{2}+2 n+2}{2 n+2}\right) m
$$

by generalising a rule of the Sulba. ${ }^{2}$
Integral Solutions. Brahmagupta was the first to give a solution of the equation $x^{2}+y^{2}=z^{2}$ in integers. lt is

$$
m^{2}-n^{2}, 2 m n, m^{2}+n^{2}
$$

m, n being any two unequal integers. ${ }^{3}$
Mahâvîra (850) says :
"The difference of the squares (of two elements) is the upright, twice their product is the base and the sum of their squares is the diagonal of a generated rectangle."4
He has re-stated it thus :
"The product of the sum and difference of the elements is the upright. The sanikramana ${ }^{5}$ of their squares gives the base and the diagonal. In the operation of generating (geometrical figures), this is the process." ${ }^{8}$
${ }^{1}$ SiSe, xiii. 41 .
${ }^{2} A p S /$, 1.2 (Com.); also see Datta, Sulba, pp. 14-16.
${ }^{2}$ BrSpSi, xii. 33 ; vide infra, p. 222 . GSS, vii. $90 \frac{1}{2}$.
${ }^{6}$ For the definition of this term see pp. 43 f.

- GSS, vii. 931

Bhâskara II (if 1) writes:

"Twice the product of two optional numbers is the upright ; the difference of their squares is the side; and the sum of their squares is the hypotenuse. (Each of these quantities is) rational (and integral)."1

It has been stated before that the early Hindus recognised that fresh rational right triangles can be derived from a known one by multiplying or dividing its sides by any rational number. The same principle has been used by Mahâvîra and Bhâskara II in their treatment of the solution of rational triangles and quadrilaterals. Gaṇeśa (1545) expressly states:
"If the upright, base and hypotenuse of a rational right-angled triangle be multiplied by any arbitrary rational number, there will be produced another rightangled triangle with rational sides."

Hence the most general solution of $x^{2}+y^{2}=z^{2}$ in integers is

$$
\left(m^{2}-n^{2}\right) l, 2 m n l,\left(m^{2}+n^{2}\right) l
$$

where m, n, l are integral numbers.
Mahâvîra's Definitions. A triangle or a quadrilateral whose sides, altitudes and other dimensions can be expressed in terms of rational numbers is called jany. (meaning gencrated, formed or that which is generated or formed) by Mahâvîra. ${ }^{2}$ Numbers which
${ }^{1}$ L, p. ${ }_{3} 6$.
${ }^{2}$ GSS , introductory line to vii. $90 \frac{1}{2}$. The section of Mahâvira's work devoted to the treatment of rational triangles and quadrilaterals bears the sub-title janya-vyavabâra (janya operation) and it begins as "Hereafter we shall give out the janya operations in calculations relating to measurement of arcas." Mahâvîra's treatment of the subject has been explained fully by Bibhutibhusan Datta in a paper entitled: "On Mahâvîra's solution of rational triangles and mindrilaterals," BCMS, XX, 1928-9, pp. 267-294.
are employed in forming a particular figure are called its bîja-samkhyâ (element-numbers) or simply bîja (element or seed). For instance, Mahâvîra has said: "Forming O friend! the generated figure from the bija 2, 3,"1 "forming another from half the base of the figure (rectangle) from the bija $2,3, "{ }^{2}$ etc. Thus, according to Mahâvîra, "forming a rectangle from the bîja m, n " means taking a rectangle with the upright, base and diagonal as $m^{2}-n^{2}, 2 m n, m^{2}+n^{2}$ respectively. It is noteworthy that Mahâvîra's mode of expression in this respect very closely resembles that of Diophantus who also says, "Forming now a right-angled triangle from 7, 4," meaning "taking a right-angled triangle with sides $7^{2}-4^{2}$, 2.7.4, $7^{2}+4^{2}$ or $33,56,65 .{ }^{\prime 3}$ It should also be noted that Mahâvîra never speaks of "rightangled triangle." What Diophantus called "forming a right-angled triangle from m, n," Mahâvira calls "forming a longish quadrilateral or rectangle from m, n."

Right Triangles having a Given Side. In the Sulba we find an attempt to find rational right triangles having a given side, that is, rational solutions of

$$
x^{2}+a^{2}=z^{2}
$$

In particular, we find mention of two such right triangles having a common side a, viz., ($a, 3 a / 4$, sa/4) and $(a, 5 a / 12,13 a / 12) .{ }^{4}$ The principle underlying these solutions will be easily detected to be that of the reduction of the sides of any rational right triangle in the ratio of the given side to its corresponding
${ }^{1}$ "Bîje dve triṇi sakhe kṣetre janye tu samsthâpya"-GSS, vii. 92 2.

2 "He dvitribijakasya kşetrabhujârdhena cânyamutthâpya"GSS, vii. $11 \frac{1}{2}$.
${ }^{3}$ Arithmetica, Book III, 19 ; T. L. Heath, Diophantus of Alexandria, p. 167.
${ }^{2}$ Datta, Sulba, p. 180.
side. This principle of finding rational right triangles having a given side has been followed explicitly by Mahâvîra (8 ; O). ${ }^{1}$

It has been stated before that one rule of Brahmagupta ${ }^{2}$ can be interpreted as giving rational solutions of $x^{2}+a^{2}=\chi^{2}$ as

$$
a, \frac{1}{2}\left(\frac{a^{2}}{n}-n\right), \frac{1}{2}\left(\frac{a^{2}}{n}+n\right),
$$

where n is any rational number. In fact, he has used this solution in finding rational isosceles triangles having a given altitude. ${ }^{3}$ This solution has been expressly stated by Mahâvìra (850). He says :
"The sanikramana between any optional divisor of the square of the given upright or the base and the (respective) quotient gives the diagonal and the base (or upright)."4

He has restated the solution thus:
"The sanikramana between any (rational) divisor of the upright and the quotient gives the clements; or any (rational) divisor of half the side and the quotient are the elements." ${ }^{5}$

The right triangles formed according to the first half of this rule are: :

$$
a, \frac{1}{2}\left(\frac{a^{2}}{p^{2}}-p^{2}\right), \frac{1}{2}\left(\frac{a^{2}}{p^{2}}+p^{2}\right)
$$

${ }^{1}$ Vide infra, p. 213	2 Vide supra, p. 206.
${ }^{3}$ Vide infra, P. 223	- GSS, vii. 971.
S, vii. 9st.	
The "elements" he	$(a / p-p)$, where p is

and those according to the second half are: 1

$$
\frac{a^{2}}{4 q^{2}}-q^{2}, a, \frac{a^{2}}{4 q^{2}}+q^{2} .
$$

Bhâskara II gives two solutions one of which is the same as that of Brahmagupta. He says:
"The side is given: from that multiplied by twice an optional number and divided by the square of that optional number minus unity, is obtained the upright ; this again multiplied by the optional number and diminished by the given side becomes the hypotenuse. This triangle is a right-angled triangle.
"Or the side is given: its square divided by an optional number is put down at two places; the optional number is subtracted (at one place) and added (at another) and then halved; these results are the upright and the hypotenuse. Similarly from the given upright can be obtained the side and the hypotenuse." ${ }^{2}$

That is to say, the two solutions are
and

$$
\begin{aligned}
& a, \frac{2 n a}{n^{2}-1}, n\left(\frac{2 n a}{n^{2}-1}\right)-a, \\
& a, \frac{1}{2}\left(\frac{a^{2}}{n}-n\right), \frac{1}{2}\left(\frac{a^{2}}{n}+n\right) .
\end{aligned}
$$

Bhâskara II illustrates this by finding four right triangles having a side equal to $12, v i z .,(12,35,37),(12$, $16,20),(12,9,15)$ and ($12,5,13$). ${ }^{3}$

The rationale of the first solution has been given by Sûryadâsa (1538) thus: Starting with the rational right triangle $n^{2}-1,2 n, n^{2}+1$, he obscrves that if x, y, z

[^148]be the corresponding sides of another right triangle, then
$$
\frac{x}{n^{2}-1}=\frac{y}{2 n}=\frac{z}{n^{2}+1}=k \text { (say). }
$$

Hence

$$
x=k\left(n^{2}-1\right), y=2 n k, z=k\left(n^{2}+1\right)
$$

Therefore

$$
x+z=2 k n^{2}=n y .
$$

If now we have $x=a$, then

$$
k=\frac{a}{n^{2}-\mathrm{I}} .
$$

Hence

$$
\begin{gathered}
y=\frac{2 n a}{n^{2}-1}, \\
z=n y-a=n\binom{2 n a}{n^{2}-1}-a .
\end{gathered}
$$

and
The second rule has been demonstrated by Sûryadâsa, Gaṇeśa and Rañganâtha thus:

Since

$$
x^{2}+a^{2}=\mathfrak{\imath}^{2},
$$

we have

$$
a^{2}=z^{2}-x^{2}=(z-x)(z+x) .
$$

Assume $z-\lambda=n$, where n is any rational number; then

$$
\begin{aligned}
z+x & =\frac{a^{2}}{n} \\
\therefore \quad z=\frac{1}{2}\left(\frac{a^{2}}{n}+n\right), x & =\frac{1}{2}\left(\frac{a^{2}}{n}-n\right) .
\end{aligned}
$$

Generalising the method of the Apastamba Sulba the commentators obtained the solution ${ }^{1}$

$$
a,\left(\frac{m^{2}+2 m}{2 m+2}\right) a,\left(\frac{m^{2}+2 m+2}{2 m+2}\right) a .
$$

${ }^{1}$ Datta, Sulba, p. 16.

Right Triangles having a Given Hypotenuse. For finding all rational right triangles having a given hypotenuse (c), that is, for rational solutions of

$$
x^{2}+y^{2}=c^{2}
$$

Mahâvîra gives three rules. The first rule is:
"The square-root of half the sum and difference of the diagonal and the square of an optional number are they (the elements)."

In other words, the required solution will be obtained from the "elements" $\sqrt{\left(c+p^{2}\right) / 2}$ and $\sqrt{\left(c-p^{2}\right)^{2}}$, where p is any rational number. Hence the solution is

$$
p^{2}, \sqrt{c^{2}-p^{4}}, c
$$

The second rule is :
"Or the square-root of the difference of the squares of the diagonal and of an optional number, and that optional number are the upright and the base." ${ }^{2}$

That is, the solution is

$$
p, \sqrt{c^{2}-p^{2}}, c
$$

These solutions are defective in the sense that $\sqrt{c^{2}-p^{4}}$ or $\sqrt{c^{2}-p^{2}}$ might not be rational unless p is suitably chosen. Mahâvira's third rule is of greater importance. He says :
"Each of the various figures (rectangles) that can be formed from the elements are put down; by its diagonal is divided the given diagonal. The perpendicular, base and the diagonal (of this figure) multiplied by this quotient (give rise to the corresponding sides of the figure having the given hypotenuse)."3

$$
\begin{aligned}
& 1 \text { GSS, vii. } 99 \frac{1}{2} . \\
& { }^{3} \text { GSS, vii. } 12 \frac{1}{2} .
\end{aligned}
$$

Thus having obtained the general solution of the rational right triangle, viz., $m^{2}-n^{2}, 2 m n, m^{2}+n^{2}$, Mahâvîra reduces it in the ratio $c /\left(m^{2}+n^{2}\right)$, so that all rational right triangles having a given hypotenuse c will be given by

$$
\left(\frac{m^{2}-n^{2}}{m^{2}+n^{2}}\right) c,\left(\frac{2 m n}{m^{2}+n^{2}}\right) c, c .
$$

By way of illustration Mahâvîra finds four rectangles (39,52), $(25,60),(33,56)$ and $(16,63)$ having the same diagonal $65 .{ }^{1}$

This method was later on rediscovered in Europe by Leonardo Fibonacci of Pisa (1202) and Victa. It has been pointed out before that the origin of the method can be traced to the Sulba.

Bhâskara II (iI So) says :
"From the given hypotenuse multiplied by an optional number and doubled and then divided by the square of the optional number added to unity, is obtained the upright ; this is again multiplied by the optional number; the difference between that (product) and the given hypotenuse is the side.
"Or divide twice the hypotenuse by the square of an optional number added to unity. The hypotenuse minus the quotient is the upright and the quotient multiplied by the optional number is the side." 2

Thus, according to the above, the sides of a rightangled triangle whose hypotenuse is c are :

$$
\frac{2 m c}{m^{2}+1}, m\left(\frac{2 m c}{m^{2}+1}\right)-c, c ;
$$

or

$$
\frac{2 m c}{m^{2}+1}, \quad c-\frac{2 c}{m^{2}+1}, c
$$

[^149]By way of illustration Bhâskara II finds two right triangles (51,68) and (40,75) having the same hypotenuse $89 .{ }^{1}$

Sûryadâsa demonstrates the above substantially thus :

If (x, y, z) be the sides of the right triangle, we have

$$
\frac{x}{m^{2}-1}=\frac{y}{2 m}=\frac{z}{m^{2}+1}=k(\text { say }),
$$

where m is any rational integer. Then

$$
x=k\left(m^{2}-1\right), y=2 m k, z=k\left(m^{2}+1\right) .
$$

Therefore

$$
x+z=2 \mathrm{~km}^{2}=m y
$$

Since $₹$ is given to be equal to c, we have

$$
k=\frac{c}{m^{2}+1}
$$

Hence

$$
y=\frac{2 m c}{m^{2}+1}
$$

and

$$
x=m y-z=m\left(\frac{2 m c}{m^{2}+1}\right)-c .
$$

Problems Involving Areas and Sides. Mahâvîta proposes to find rational rectangles (or squares) in which the arca will be numerically (samkhy(y) \hat{u}) equal to any multiple or submultiple of a side, diagonal or perimeter, or of any linear combination of two or more of them. Expressed symbolically, the problem is to solve

$$
\left.\begin{array}{rl}
x^{2}+y^{2} & =z^{2} \tag{1}\\
m x+n y+p z & =r x y ;
\end{array}\right\}
$$

m, n, p, r being any rational numbers $(r \neq 0)$. For the solution of this problem he gives the following rule:
${ }^{1}$ L, pp. 35 f.
"Divide the sides (or their sum) of any generated square or other figure as multiplied by their respective given multiples by the area of that figure taken into its given multiple. The sides of that figure multiplied by this quotient will be the sides of the (required) square or other figure." ${ }^{1}$

That is to say, starting with any rational solution of

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}=z^{\prime 2} \tag{2}
\end{equation*}
$$

we shall have to calculate the value of

$$
\begin{equation*}
m x^{\prime}+n y^{\prime}+p z^{\prime}=Q, \text { say } \tag{3}
\end{equation*}
$$

Then the required solution of (1) will be obtained by reducing the values of $x^{\prime}, y^{\prime}, z^{\prime}$ in the ratio of $Q / r x^{\prime} y^{\prime}$. Thus

$$
\left.\begin{array}{l}
x=x^{\prime} Q\left|r x^{\prime} y^{\prime}=Q\right| r y^{\prime}, \tag{4}\\
y=y^{\prime} Q\left|r x^{\prime} y^{\prime}=Q\right| r x^{\prime}, \\
z=z^{\prime} Q \mid r x^{\prime} y^{\prime} .
\end{array}\right\}
$$

Mahâvîra gives several illustrative examples some of which are very interesting:
"In a rectangle the area is (numerically) equal to the perimeter ; in another rectangle the area is (numerically) equal to the diagonal. What are the sides (in each of these cases) ?"?

Algebraically, we shall have to solve

$$
\left.\begin{array}{r}
x^{2}+y^{2}=z^{2}, \tag{I.I}\\
2(x+y)=x y,
\end{array}\right\}
$$

and

$$
\left.\begin{array}{r}
x^{2}+y^{2}=z^{2}, \tag{1.2}\\
x y=z
\end{array}\right\}
$$

Starting with the solution $s^{2}-t^{2}, 2 s t, s^{2}+t^{2}$ of (2) and putting $m=n=2, p=0, r=1$ in (4), we get

[^150]the solution of (1.1) as
\[

$$
\begin{aligned}
& \frac{2\left(s^{2}-t^{2}\right)+4 s t}{2 s t}, \frac{2\left(s^{2}-t^{2}\right)+4 s t}{s^{2}-t^{2}}, \\
&\left\{\frac{2\left(s^{2}-t^{2}\right)+4 s t}{2 s t\left(s^{2}-t^{2}\right)}\right\}\left(s^{2}+t^{2}\right) .
\end{aligned}
$$
\]

And putting $m=n=0, p=r=1$, in (4), we have the solution of (1.2) as

$$
\frac{s^{2}+t^{2}}{2 s t}, \frac{s^{2}+t^{2}}{s^{2}-t^{2}}, \frac{\left(s^{2}+t^{2}\right)^{2}}{2 s t\left(s^{2}-t^{2}\right)} .
$$

Bhâskara II solves a problem similar to the second one above:

Find a right triangle whose area equals the hypotenuse. ${ }^{1}$

He starts with the rational right triangle ($3.1 ; 4 x$, $s x$) ; then by the condition, area $=$ hypotenuse, finds the value $x=s / 6$. So that a right triangle of the required type is $(5 / 2,10 / 3,25 / 6)$. He then observes: "In like manner, by virtue of various assumptions, other right triangles can also be found." 2 The gencral solution in this case is

$$
\frac{s^{2}+t^{2}}{s t}, \frac{2\left(s^{2}+t^{2}\right)}{s^{2}-t^{2}}, \frac{\left(s^{2}+t^{2}\right)^{2}}{s t\left(s^{2}-t^{2}\right)} .
$$

Another example of Mahâvîra runs as follows:
"(Find) a rectangle of which twice the diagonal, thrice the base, four times the upright and twice the perimeter are together equal to the area (numerically)." 3

Problems Involving Sides but not Areas. Mahâvîra also obtained right triangles whose sides multiplied

$$
\begin{aligned}
& 1 \text { BBi, p. }{ }^{1} 6 . \\
& { }^{1} \text { "Evamistavasâdanye'pi"- } B B i \text {, p. s } 6 . \\
& { }^{3} \text { GSS, vii. } 117 \frac{1}{2} \text {. }
\end{aligned}
$$

by arbitrary rational numbers have a given sum. Algebraically, the problems require the solution of

$$
\left.\begin{array}{r}
x^{2}+y^{2}=z^{2} \\
r x+s y+t z=A ;\}, ~
\end{array}\right\}
$$

where r, s, t, A are known rational numbers. His method of solution is the same as that described above. Starting with the general solution of

$$
x^{\prime 2}+y^{\prime 2}=z^{\prime 2}
$$

we are asked to calculate the value

$$
r x^{\prime}+s y^{\prime}+t z^{\prime}=P, \text { say }
$$

Then, says Mahâvira, the required solution is

$$
x=\lambda^{\prime} A / P, y=y^{\prime} A / P, z=z^{\prime} A / P
$$

One illustrative problem given by Mahâvîra is :
"The perimeter of a rectangle is unity. Tell me quickly, after calculating, what are its base and upright." ${ }^{1}$

Starting with the rectangle $m^{2}-n^{2}, 2 m n, m^{2}+n^{2}$, we have in this case $P=2\left(m^{2}-n^{2}+2 m n\right)$. Hence all rectangles having the same perimeter unity will be given by

$$
\frac{m m^{2}-n^{2}}{2\left(m^{2}-n^{2}+2 m n\right)}, \frac{m n}{m^{2}-n^{2}+2 m n} ;
$$

m, n being any rational numbers.
The isoperimetric tight triangles will be given by

$$
\left(\frac{m-n}{2 m}\right) p, \quad \frac{n p}{m+n}, \quad\left\{\begin{array}{c}
m^{2}+n^{2} \\
2 m(m+n)
\end{array}\right\} p ;
$$

where p is the given perimeter.
Another example is :
"(Find) a rectangle in which twice the diagonal, thrice the base, four times the upright and the perimeter together equal unity.' ${ }^{2}$

$$
{ }^{1} \text { GSS, vii. } 118 \frac{1}{2} . \quad \quad 2 \text { GSS, vii. } 119 \frac{1}{2} .
$$

Pairs of Rectangles. Mahâvîra found "pairs of rectangles such that
(i) their perimeters are equal but the area of one is double that of the other, or
(ii) their areas are equal but the perimeter of one is double that of the other, or
(iii) the perimeter of one is double that of the other and the area of the latter is double that of the former."
These are particular cases of the following general problem contemplated in his rule :

To find (x, y) and (u, v) representing the base and upright respectively of two rectangles which are related, such that

$$
\left.\begin{array}{rl}
2 m(x+y) & =2 n(u+v), \tag{A}\\
p \cdot x y & =q u r ;
\end{array}\right\}
$$

where m, n, p, q are known integers.
His rule for the solution of this general problem is :
"Divide the greater multiples of the area and the perimeter by the (respective) smaller oncs. The square of the product of these ratios multiplied by an optional number is the upright of one rectangle. That diminished by unity will be its base, when the areas are cqual. Otherwise, multiply the bigger ratio of the areas by that optional number and subtract unity; three times the upright diminished by this (difference) will be the base. The upright and base of the other rectangle should be obtained from its area and perimeter (thus determined) with the help of the rule, 'From the square of half the perimeter, etc.,' described before.'"
${ }^{1}$ GSS, vii. $131 \frac{1}{2}-133$. The reference in the concluding line is to rule vii. $129 \frac{1}{2}$.

In other words, to solve (A), assume
$y=s\{\text { (ratio of perimeters)(ratio of areas) }\}^{2}$,
and $x=y-\mathrm{I}$, if $p=q$,
or $x=3[y-\{s$ (ratio of areas) - x$\}]$, if $p \neq q$, ($\mathbf{2}^{\prime}$) where s is an arbitrary number, and the ratios are to be so presented as always to remain greater than or equal to unity.

Let $m \geqslant n, q \geqslant p$. Then we shall have to assume

$$
\left.\begin{array}{l}
y=s \frac{m^{2} q^{2}}{n^{2} p^{2}} \tag{3}\\
x=3\left(s \frac{m^{2} q^{2}}{n^{2} p^{2}}-s \frac{q}{p}+\mathrm{r}\right) \cdot
\end{array}\right\}
$$

Substituting these values in (A), we get

$$
\begin{align*}
u+v & =\frac{m}{n}\left(4 s \frac{m^{2} q^{2}}{n^{2} p^{2}}-3 s \frac{q}{p}+3\right) \tag{4}\\
u v & =3 s-\frac{m^{2} q}{n^{2} p}\left(s \frac{m^{2} q^{2}}{n^{2} p^{2}}-s \frac{q}{p}+1\right)
\end{align*}
$$

Then

$$
(u-v)^{2}=\frac{m^{2}}{n^{2}}\left\{\left(4 s \frac{m^{2} q^{2}}{n^{2} p^{2}}-\frac{9 s q}{2 p}+3\right)^{2}+\frac{3 s q}{4 p}\left(\frac{s q}{p}-4\right)\right\} .
$$

Now, if the arbitrary multiplier s be chosen such that

$$
\begin{equation*}
\frac{s q}{p}=4 \tag{s}
\end{equation*}
$$

we have

$$
\begin{equation*}
u-v=\frac{m}{n}\left(4 s \frac{m^{2} q^{2}}{n^{2} p^{2}}-\frac{9 s q}{2 p}+3\right) \tag{6}
\end{equation*}
$$

Erom
(4) and (6) we get

$$
\left.\begin{array}{l}
u=\frac{m}{n}\left(4 s \frac{m^{2} q^{2}}{n^{2} p^{2}}-\frac{15 s q}{4 p}+3\right) \tag{7}\\
\nu=\frac{3 s m q}{4 n p} .
\end{array}\right\}
$$

Substituting the value of s from (5) in (3) and (7) we have finally the solution of (A), when $m \geqslant n$, $q \geqslant p$, as

$$
\left.\begin{array}{ll}
y=4 \frac{m^{2} q}{n^{2} p}, & v=3 \frac{m}{n}, \\
x=3\left(4 \frac{m^{2} q}{n^{2} p}-3\right), & u=4 \frac{m}{n}\left(4 \frac{m^{2} q}{n^{2} p}-3\right)
\end{array}\right\}
$$

Mahâvîra has observed that "when the areas are equal" we are to assume ${ }^{1}$

$$
\begin{aligned}
& y=s \frac{m^{2}}{n^{2}} \\
& x=s \frac{m^{2}}{n^{2}}-1
\end{aligned}
$$

${ }^{1}$ Bibhutibhusan Datta has shown that this restriction is not necessary. In fact, starting with the assumption

$$
\left.\begin{array}{l}
y=s \frac{m^{2} q^{2}}{n^{2} p^{2}} \\
x=s \frac{m^{2} q^{2}}{n^{2} p^{2}}-1 ;
\end{array}\right\} m \geqslant n, q \geqslant p
$$

and proceeding in the same way as above, he has obtained another solution of (A) in the form

$$
\left.\begin{array}{ll}
y=2 \frac{m^{2} q}{n^{2} p}, & v=\frac{m}{n} \tag{II}\\
x=2 \frac{m^{2} q}{n^{2} p}-1, & u=\frac{m}{q}\left(4 \frac{m^{2} q}{n^{2} p}-2\right)
\end{array}\right\}
$$

Datta finds two general solutions of $(A), v i z$.

$$
\left.\begin{array}{l}
y=\frac{r m^{2} q^{2}}{n^{2} p^{2}}+t \\
x=\frac{r m^{2} q^{2}}{t n^{2} p^{2}}\left(\frac{r m^{2} q^{2}}{n^{2} p^{2}}-\frac{r q}{p}+t\right), \tag{III}\\
v=\frac{r m q}{n p}, \\
u=\frac{m}{n t}\left(\frac{r m^{2} q^{2}}{n^{2} p^{2}}+t\right)\left(\frac{r m^{2} q^{2}}{n^{2} p^{2}}-\frac{r q}{p}+t\right) ;
\end{array}\right\}
$$

Isosceles Triangles with Integral sides. Brahmagupta says :
"The sum of the squares of two unequal numbers is the side ; their product multiplied by two is the altitude, and twice the difference of the squares of those two unequal numbers is the base of an isosceles triangle." ${ }^{1}$

Mahâvira gives the following rule for obtaining an isosceles triangle from a single generated rectangle:
"In the isosceles triangle (required), the two diagonals (of a generated rectangle ${ }^{2}$) are the two sides, twice its side is the base, the upright is the altitude, and the area (of the generated rectangle) is the area." ${ }^{3}$

Thus if m, n be two integers such that $m \neq n$, the sides of all rational isosceles triangles with integral sides are :
(i) $m^{2}+n^{2}, m^{2}+n^{2}, 2\left(m^{2}-n^{2}\right)$;
;or (ii) $m^{2}+n^{2}, m^{2}+n^{2}, 4 m n$.
and

$$
\left.\begin{array}{ll}
y=\frac{r m^{2} q^{2}}{n^{2} p^{2}}-t, & v=\frac{m}{n}\left(\frac{r q}{p}-t\right), \tag{IV}\\
x=\frac{r m^{2} q^{2}}{n^{2} p^{2}}\left(\frac{r q}{t p}-1\right), & u=\frac{r m q}{n p}\left(\frac{r m^{2} q^{2}}{t n^{2} p^{2}}-1\right)
\end{array}\right\}
$$

where $m \geqslant n, q \geqslant p$ and r, t are any two integers.
See Datta, "On Mahâvirra's solution of rational triangles and quadrilaterals," $B C M S, \mathrm{XX}, 1928-9$, pp. 267-294; particularly p. 285 .
${ }^{1}$ BrSpSi, xii. 33.
${ }^{2}$ A rectangle generated from the numbers m and n has its sides equal to $m^{2}-n^{2}$ and $2 m n$ and its diagonal equal to $m^{2}+n^{2}$. Cf. pp. 208-9.
${ }^{3}$ GSS, vii. 108 2.

The altitude of the former is $2 m n$ and of the latter $m^{2}-n^{2}$ and the area in either case is the same, that is, $2 m n\left(m^{2}-n^{2}\right)$.

Juxtaposition of Right Triangles. It will be noticed that the device employed by Brahmagupta and Mahâvîra to find the above solutions is to juxtapose two rational right triangles-equal in this case-so as to have a common leg. It is indeed a very powerful device. For, every rational triangle or quadrilateral may be formed by the juxtaposition of two or four rational right triangles. So, in order to construct such rational figures, it suffices to know only the complete solution of $x^{2}+y^{2}=z^{2}$ in integers. The beginning of this principle is found as early as the Baudbayana Sulba ${ }^{1}$ (800 B.C.) wherein is described the formation of a kind of brick, called ubbayî (born of two), by the juxtaposition of the eighths of two suitable rectangular bricks of the same breadth (and thickness) but of different lengths.

Isosceles Triangles with a Given. Altitude. Brahmagupta gives a rule to find all rational isosceles triangles having the same altitude. He says :
"The (given) altitude is the producer (karanî). Its square divided by an optional number is increased and diminished by that optional number. The smaller is the base and half the greater is the side." ${ }^{2}$

That is to say, the sides and bases of rational isosceles triangles having the same altitude a are respectively,

$$
\frac{1}{2}\left(\frac{a^{2}}{m}+m\right), \frac{1}{2}\left(\frac{a^{2}}{m}+m\right) \text { and }\left(\frac{a^{2}-m}{m}\right),
$$

where m is any rational number.

[^151]In particular, let the given altitude be 8. Then taking $m=4$ Prthûdakasvâmî (860) obtains the rational isosceles triangle (10; 10, 12).

Pairs of Rational Isosceles Triangles. Mahâvîra gives the following rule for finding two isosceles triangles whose perimeters, as also their areas, are related in given proportions :
"Multiply the square of the ratio-numbers of the perimeters by the ratio-numbers of the areas mutually and then divide the larger product by the smaller. Multiply the quotient by 6 and 2 (severally) and then diminish the smaller by unity : again (find severally) the difference between the results, and twice the smaller one: these are the two sets of clements for the figures to be generated. From them the sides, etc., can be obtained in the way described before." ${ }^{1}$

If (s_{1}, s_{2}) and ($\triangle_{1}, \triangle_{2}$) denote the perimeters and areas of two rational isosceles triangles, such that

$$
\begin{equation*}
s_{1}: s_{2}=m: n, \quad \triangle_{1}: \triangle_{2}=p: q, \tag{I}
\end{equation*}
$$

where the ratio-numbers m, n, p, q are known integers, then the triangles will be obtained, says Mahâvîra, from the rectangles generated from
$\left(6 \frac{n^{2} p}{m^{2} q}, 2 \frac{n^{2} p}{m^{2} q}-1\right)$ and $\left(4 \frac{n^{2} p}{m^{2} q}+1,4 \frac{n^{2} p}{m^{2} q}-2\right)$,
where $n^{2} p>m^{2} q$, when the dimensions of the first are multiplied by m and those of the second by n.

The dimensions of the isosceles triangle formed from the first set of bija are :

$$
\text { side }=m\left\{\left(6 \frac{n^{2} p}{m^{2} q}\right)^{2}+\left(2 \frac{n^{2} p}{m^{2} q}-1\right)^{2}\right\}
$$

[^152]\[

$$
\begin{aligned}
\text { basc } & =24 m \frac{n^{2} p}{m^{2} q}\left(2 n^{n^{2} p} m^{2} q-1\right) \\
\text { altitude } & =m\left\{\binom{n^{2} p}{m^{2} q}^{2}-\left(2 \begin{array}{c}
n^{2} p \\
m^{2} q
\end{array}\right)^{2}\right\}
\end{aligned}
$$
\]

and from the second set

$$
\begin{aligned}
& \text { side }=n\left\{\left(4 \frac{n^{2} p}{m^{2} q}+1\right)^{2}+\left(4 \frac{n^{2} p}{m^{2} q}-2\right)^{2}\right\}, \\
& \text { base } \quad=-4 n\left(4 \frac{n^{2} p}{\left.m^{2} q+1\right)\left(4 \frac{n^{2} p}{m^{2} q}-2\right),}\right. \\
& \text { altitude }=n\left\{\left(4 \frac{n^{2} p}{m^{2} q}+1\right)^{2}-\left(4 \frac{n^{2} p}{m^{2} q}-2\right)^{2}\right\} .
\end{aligned}
$$

It can be easily verified that the perimeters and areas of the isosceles triangles thus obtained satisfy the conditions (1).

In particular, putting $m=n=p-q=1$, we have two isosceles triangles of sides, bases and altitudes (29, 40,21) and ($37,24,35$) which have equal perimeters (98) and equal areas (420). This particular case was treated by Frans van Schooten the Younger (1657), J. H. Rahn (1697) and others. ${ }^{1}$

It is evident that multiplying the above values by $m l^{4} q^{2}$ we get pairs of isosceles triangles whose dimensions are integral.

Rational Scalene Triangles. Brahmagupta says:
"The square of an optional number is divided twice by two arbitrary numbers; the moieties of the sums of the quotients and (respective) optional numbers are the sides of a scalene triangle; the sum of the moieties of the differences is the base." ${ }^{2}$

[^153]That is to say, the sides of a rational scalene triangle are

$$
\frac{1}{2}\left(\frac{m^{2}}{p}+p\right), \frac{1}{2}\left(\frac{m^{2}}{q}+q\right), \frac{1}{2}\left(\frac{m^{2}}{p}-p\right)+\frac{1}{2}\left(\frac{m^{2}}{q}-q\right)
$$

where m, p, q are any rational numbers. The altitude (m), area and segments of the base of this triangle are all rational.

Mahâvîra gives the rule :
"Half the base of a derived rectangle is divided by any optional number. With this divisor and the quotient is obtained another rectangle. The sum of the uprights (of these two rectangles) will be the base of the scalene triangle, the two diagonals, its sides and the base (of either rectangle) its altitude.' 1

If m, n be any two rational numbers, the rational rectangle $\left(A B^{\prime} B H\right)$

Fig. 3

Fig. 4
formed from them is

$$
m^{2}-n^{2}, 2 m n, m^{2}+n^{2}
$$

If p, q be any two rational factors of $m n$, that is, if $m n=p q$, the second rectangle $\left(A C^{\prime} C H\right)$ is

$$
p^{2}-q^{2}, 2 p q, p^{2}+q^{2} .
$$

[^154]Now, juxtaposing these two rectangles so that they do not overlap (Fig. 3), the sides of the rational scalene triangle are obtained as

$$
p^{2}+q^{2}, m^{2}+n^{2},\left\{\left(p^{2}-q^{2}\right)+\left(m^{2}-n^{2}\right)\right\},
$$

where $m n=p q$. Evidently the two rectangles can be juxtaposed so as to overlap (Fig. 4). So the general solution will be

$$
p^{2}+q^{2}, m^{2}+n^{2},\left\{\left(p^{2}-q^{2}\right) \pm\left(m^{2}-n^{2}\right)\right\}
$$

The altitude of the rational scalene triangle thus obtained is $2 m n$ or $2 p q$, its area $p q\left(p^{2}-q^{2}\right) \pm m n\left(m^{2}-n^{2}\right)$ and the segments of the base are $p^{2}-q^{2}$ and $m^{2}-n^{2}$.

In particular, putting $m=12, p=6, q=8$ in Brahmagupta's general solution, Prthûdakasvâmî derives a scalene triangle of which the sides (13, 15), base (14), altitude (12), area (84) and the segments of the base $(5,9)$ are all integral numbers.

In order to get the above solutions of the rational scalene triangle the method employed was, it will be noticed, the juxtaposition of two rational right triangles so as to have a common leg. In Europe, it is found to have been employed first by Bachet (1621). The credit for the discovery of this method of finding rational scalene triangles should rightly go to Brahmagupta (628), but not to Bachet as is supposed by Dickson. ${ }^{1}$

Triangles having a Given Area. Mahâvîra proposes to find all triangles having the same given area A. His rules are :
"Divide the square of four times the given area by three; The quotient is the square of the square of a side of the equilateral triangle. ${ }^{2}$
${ }^{1}$ Dickson, Numbers, II, p. 192.
${ }^{2}$ GSS, vii. 194 d.
"Divide the given area by an optional number; the square-root of the sum of the squares of the quotient and the optional number is a side of the isosceles triangle formed. 'Twice the optional number is its base and the area divided by the optional number is the altitude." ${ }^{1}$
"The cube of the square-root of the sum of eight times the given area and the square of an optional number is divided by the product of the optional number and that squarc-root; the quotient is diminished by half the optional number which is the base (of the required triangle). The sankeramana between this remainder and the quotient of the square of the optional number divided by twice that square-root will give the two sides." ${ }^{2}$

The last rule has been re-stated differently. ${ }^{3}$

2I. RATIONAL QUADRILATERALS

Rational Isosceles Trapeziums. Brahmagupta has shown how to obtain an isosceles trapezium whose sides, diagonals, altitude, segments and area are all rational numbers. He says :
"The diagonals of the rectangle (generated) are the flank sides of an isosceles trapezium; the square of its side is divided by an optional number and then lessened by that optional number and divided by two; (the result) increased by the upright is the base and lessened by it is the face." 4

That is to say, we shall have (Fig. 5)

$$
C D=\frac{1}{2}\left(\frac{4 m^{2} n^{2}}{p}-p\right)+\left(m^{2}-n^{2}\right)
$$

[^155]\[

$$
\begin{aligned}
& A B=\frac{1}{2}\left(\frac{4 m^{2} n^{2}}{p}-p\right)-\left(m^{2}-n^{2}\right), \\
& A D=B C=m^{2}+n^{2}
\end{aligned}
$$
\]

also

$$
\begin{aligned}
& D H=m^{2}-n^{2}, \\
& H C=\frac{1}{2}\left(\frac{4 m^{2} n^{2}}{p}-p\right), \\
& A C=B D=\frac{1}{2}\left(\frac{4 m^{2} n^{2}}{p}+p\right), \\
& A H=2 m n,
\end{aligned}
$$

area

$$
A B C D=m n\left(\frac{4 m^{2} n^{2}}{p}-p\right) .
$$

By choosing the values of m, n and p suitably, the values of all the dimensions of the isosceles trapezium can be made integral. Thus, starting with the rectangle ($5,12,13$) and taking $p=6$, Pṛthûdakasvâmì finds, by way of illustration, the isosceles trapezium whose flank sides $=13$, base $=14$, and face $=4$. Its altitude (12), segments of base (5,9), diagonals (15) and area (108) are also integers.

Mahâvîra writes :
"For an isosceles trapezium the sum of the perpendicular of the first generated rectangle and the perpendicular of the second rectangle which is generated from any (rational) divisor of half the base of the first and the quotient, will be the base; their difference will be the face; the smaller of the diagonals (of the generated rectangles) will be the flank side; the smaller perpendicular will be the segment; the greater diagonal will be the diagonal (of the isosceles trapezium); the greater area will be the area and the base (of either rectangle) will be the altitude." ${ }^{1}$

[^156]The first rectangle ($\left.A .1^{\prime} D H\right)$ generated from m, n is

$$
m^{2}-n^{2}, 2 m n, m m^{2}+n^{2} .
$$

If p, q be any two rational factors of half the base of this rectangle, that is, if $p q \cdots m$, the second rectangle ($A B^{\prime} C H$) from these factors will be

$$
p^{2}-q^{2}, 2 p q, p^{2}+q^{2}
$$

By judiciously juxtaposing these two rectangles, we s.all obtain an isosccles trapezium of the type required (.1BC(D) :

Fig. 5

$$
\begin{aligned}
& C D=\left(p^{2}-q^{2}\right)+\left(m^{2}-n^{2}\right), \\
& A B=\left(p^{2}-q^{2}\right)-\left(m^{2}-n^{2}\right), \\
& A D=B C=m^{2}+n^{2}, \text { if } m^{2}+n^{2}<p^{2}+q^{2}, \\
& D H=m^{2}-n^{2}, \quad \text { if } m^{2}-n^{2}<p^{2}-q^{2}, \\
& A C=B D=p^{2}+q^{2}, \text { if } p^{2}+q^{2}>m^{2}+n^{2}, \\
& A H=2 m n=2 p q,
\end{aligned}
$$

area $A B C D=2 p q\left(p^{2}-q^{2}\right)$,

$$
\text { if } 2 p q\left(p^{2}-q^{2}\right)>2 m n\left(m^{2}-n^{2}\right)
$$

The necessity of the conditions $m^{2}+n^{2}<p^{2}+q^{2}$, $m^{2}-n^{2}<p^{2}-q^{2}$, etc., will be at once realised from a glance at Figs. s and 6. The above specifications of the dimensions of a rational isosceles trapezium will give Fig. 5. But when the conditions are reversed so that
$m^{2}+n^{2}>p^{2}+q^{2}, m^{2}-n^{2}>p^{2}-q^{2}, \quad 2 p q\left(p^{2}-q^{2}\right)$ $<2 m n\left(m^{2}-n^{2}\right)$, the dimensions of the isosceles trapezium (Fig. 6) are :

Fig. 6

$$
\begin{aligned}
C D & =\left(m^{2}-n^{2}\right)+\left(p^{2}-q^{2}\right), \\
A B & =\left(m^{2}-n^{2}\right)-\left(p^{2}-q^{2}\right), \\
A C & =B D=p^{2}+q^{2}, \\
D H & =m^{2}-n^{2}, \\
A D & =B C=m^{2}+n^{2}, \\
A H & =2 m n=2 p q, \\
\text { area } A B C D & =2 m n\left(m^{2}-n^{2}\right) .
\end{aligned}
$$

Pairs of Isosceles Trapeziums. Mahâvîra gives the following rule for finding the face, base and equal sides of an isosceles trapezium having an area and altitude exactly equal to those of another isosceles trapezium whose dimensions are known :
"On performing the visama-sanikramana between the square of the perpendicular (of the known isosceles trapezium) and an optional number, the greater result will be the equal sides of the (required) isosceles trapezium; half the sum and difference of the smaller result and the moieties of the face and base (of the known figure) will be the base and face (respectively of th: required figure)." ${ }^{1}$
${ }^{1}$ GSS, vii. 173 .

Let a, b, c, b, denote respectively the face, base, equal sides and altitude of the known isosceles trapezium and let $a^{\prime}, b^{\prime}, c^{\prime}, b^{\prime}$, denote the corresponding quantities of the required isosceles trapezium. Then, since the two trapeziums are equal in area and altitude, we must have

$$
\begin{align*}
b^{\prime} & =b \\
b^{\prime}+a^{\prime} & =b+a \tag{I}
\end{align*}
$$

and

$$
c^{\prime 2}-\left(\frac{b^{\prime}-a^{\prime}}{2}\right)^{2}=b^{2}
$$

or

$$
\left\{c^{\prime}+\left(b^{\prime}-a^{\prime}\right) / 2\right\}\left\{c^{\prime}-\left(b^{\prime}-a^{\prime}\right) / 2\right\} \cdots b^{\prime},
$$

whence $c^{\prime}-\left(b^{\prime}-a^{\prime}\right) / 2=r$,
and

$$
c^{\prime}+\left(b^{\prime}-a^{\prime}\right) / 2=b^{2} \mid r,
$$

r being any rational number. Then

$$
\begin{align*}
c^{\prime} & =\frac{1}{2}\left(b^{2} / r+r\right), \tag{2}\\
b^{\prime}-a^{\prime} & =\left(b^{2} / r-r\right) . \tag{3}
\end{align*}
$$

From (1) and (2), we get

$$
\begin{align*}
& b^{\prime}=(b+a) / 2+\left(b^{2} / r-r\right) / 2, \tag{4}\\
& a^{\prime}=(b+a) / 2-\left(b^{2} / r-r\right) / 2 . \tag{s}
\end{align*}
$$

If $a=4, b=14, c=13, b=12$, taking $r=10$, we shall have $a^{\prime}=34 / 5, b^{\prime}=56 / 5, c^{\prime}=6 \mathrm{I} / \mathrm{s}$.

It has been stated above that, if m, n, p, q are rational uumbers such that $m^{2} \pm n^{2}<p^{2} \pm q^{2}$, we must have

$$
\begin{aligned}
& a=\left(p^{2}-q^{2}\right)-\left(m^{2}-n^{2}\right), \\
& b=\left(p^{2}-q^{2}\right)+\left(m^{2}-n^{2}\right), \\
& c=m^{2}+n^{2}, \\
& b=2 m n=2 p q .
\end{aligned}
$$

${ }^{1}$ GSS, vii. $174 \frac{1}{2}$.

Substituting these values in (2), (4), (5) we get the dimensions of the equivalent isosceles trapezium as

$$
\begin{aligned}
& a^{\prime}=\left(p^{2}-q^{2}\right)-\left(4 p^{2} q^{2} / r-r\right) / 2, \\
& b^{\prime}=\left(p^{2}-q^{2}\right)+\left(4 p^{2} q^{2} / r-r\right) / 2, \\
& c^{\prime}=\left(4 p^{2} q^{2} / r+r\right) / 2 .
\end{aligned}
$$

If $m^{2} \pm n^{2}>p^{2} \pm q^{2}$, the sides of the pair of isosceles trapeziums equal in area and altitude will be

$$
\begin{aligned}
& a=\left(m^{2}-n^{2}\right)-\left(p^{2}-q^{2}\right), \\
& b=\left(m^{2}-n^{2}\right)+\left(p^{2}-q^{2}\right), \\
& c=p^{2}+q^{2} ; \\
& a^{\prime}=\left(m^{2}-n^{2}\right)-\left(4 m^{2} n^{2} / r-r\right) / 2, \\
& b^{\prime}=\left(m^{2}-n^{2}\right)+\left(4 m^{2} n^{2} / r-r\right) / 2, \\
& c^{\prime}=\left(4 m^{2} n^{2} / r+r\right) / 2 .
\end{aligned}
$$

These two isosceles trapeziums will also have equal diagonals.

Rational Trapeziums with Three Equal Sides. This problem is ncarly the same as that of the rational isosceles trapezium with this difference that in this case one of the parallel sides also is equal to the slant sides. Brahmagupta states the following solution of the problem :
"The square of the diagonal (of a generated rectangle) gives three equal sides; the fourth (is obtained) by subtracting the square of the upright from thrice the square of the side (of that rectangle). If greater, it is the base; if less, it is the face.' ${ }^{1}$

The rectangle generated from m, n is given by

$$
m^{2}-n^{2}, 2 m n, m^{2}+n^{2}
$$

[^157]If $A B C D$ be a rational trapezium whose sides $A B, B C$, $A D$ are equal, then

$$
\begin{aligned}
& A B=B C=A D=\left(m^{2}+n^{2}\right)^{2} \\
& C D:=3(2 m n)^{2}-\left(m^{2}-n^{2}\right)^{2}=14 m^{2} n^{2}-m^{4}-n^{4}
\end{aligned}
$$

or $C D=3\left(m^{2}-n^{2}\right)^{2}-(2 m n)^{2}=3 m^{4}+3 n^{4}-10 m^{2} n^{2}$.
In particular, putting $m=2, n=1$, Prtthûdakasvâmî deduces two rational trapeziums with three equal sides, viz., $(25,25,25,39)$ and ($25,25,25,11$).

The first solution is also given by Manâvira who indicates the method for obtaining it. He says :
"For a trapezium with three equal sides (proceed) as in the case of the isosceles trapezium with (the rectangle formed from) the quotient of the area of a generated rectangle divided by the square-root of its side multiplied by the difference of its elements and divisor; and that (formed) from the side and upright." 1

That is to say, from any rectangle ($m^{2}-n^{2}, 2 m n$, $m^{2}+n^{2}$), calculate

$$
\frac{2 m n\left(m^{2}-n^{2}\right)}{\sqrt{2 m n}(m-n)}=\sqrt{2 m n}(m+n)
$$

Then from $\sqrt{2 m n}(m-n), \sqrt{2 m n}(m+n)$ form the rectangle

$$
\begin{equation*}
8 m^{2} n^{2}, 4 m n\left(m^{2}-n^{2}\right), 4 m n\left(m^{2}+n^{2}\right) \tag{I}
\end{equation*}
$$

Again from $2 m n, m^{2}-n^{2}$ form another rectangle

$$
\begin{equation*}
6 m^{2} n^{2}-n^{4}-n^{4}, 4 m n\left(m^{2}-n^{2}\right),\left(m^{2}+n^{2}\right)^{2} \tag{2}
\end{equation*}
$$

By the juxtaposition of the rectangles (1) and (2) we get Brahmagupta's rational trapezium with three

[^158]equal sider:
$C D=8 m n^{2}+\left(6 m^{2} n^{2}-m^{4}-n^{4}\right)=14 m^{2} n^{2}-m n^{4}-n^{4}$, $\left.A B=8 m^{2} n^{2}-\left(6 m^{2} n^{2}-m^{4}-n^{4}\right)=\left(m^{2}+n^{2}\right)^{2}=A l\right)$
$$
==B C \text {, if } m^{2}+n^{2}<4 m n .
$$

The segment (CH), altitude ($A H$), diagonals (AC , $B D)$ and area of this trapezium are also rational, for

$$
\begin{aligned}
C H & =6 m^{2} n^{2}-m^{4}-n^{4}, \\
A H & =4 m n\left(m^{2}-n^{2}\right), \\
A C & =B I)=4 m n\left(m^{2}+n^{2}\right), \\
\text { area } \quad A B C I & =32 m^{3} n^{3}\left(m^{2}-n^{2}\right) .
\end{aligned}
$$

Rational Inscribed Quadrilaterals. Brahmagupta formulated a remarkable proposition: To tind all quadrilaterals which will be inscribable within circles and whose sides, diagonals, perpendiculars, segments (of sides and diagonals by perpendiculars from vertices as also of diagonals by their intersection), areas, and als, the diameters of the circumscribed circles will be expressible in integers. Such quadrilaterals are called Brahmagupta quadrilaterals.

The solution given by Brahmagupta is as follows :
"The uprights and bases of two right-angled triangles being reciprocally multiplied by the diagonals of the other will give the sides of a quadrilateral of uneq tal sides: (of these) the greatost is the base, the least is the face, and the other two sides are the two flanks."

Taking Brahmagupta's integral solution, the sides of the two right triangles of reference are given by

$$
\begin{aligned}
& m^{2}-n^{2}, 2 m n, m^{2}+n^{2} \\
& t^{2}-q^{2}, 2 p q, p^{2}+q^{2}
\end{aligned}
$$

13.Spriz, xi. ar.
where m, n, p, q are integers. Then the sides of a Brahmagupta quadrilateral are

$$
\left.\begin{array}{c}
\left(m^{2}-n^{2}\right)\left(p^{2}+q^{2}\right),\left(p^{2}-q^{2}\right)\left(m^{2}+n^{2}\right), \tag{A}\\
2 m n\left(p^{2}+q^{2}\right), 2 p q\left(m^{2}+n^{2}\right) .
\end{array}\right\}
$$

Mahâvîra says:
"The base and the perpendicular (of the smaller and the larger derived rectangles of reference) multiplied reciprocally by the longer and the shorter diagonals and (each again) by the shorter diagonal will be the sides, the face and the base (of the required quadrilateral). The uprights and bases are reciprocally multiplied and then added together; again the product of the uprights is added to the product of the bases; these two sums multiplied by the shorter diagonal will be the diagonals. (These sums) when multiplied respectively by the base and perpendicular of the smaller figure of reference will be the altitudes; and they when multiplied respectively by the perpendicular and the base will be the segments of the base. Other segments will be the difference of these and the base. Half the product of the diagonals (of the required figure) will be the area." 1

If the rectangle generated from m, n be smaller than that from p, q, then, according to Mahâvîra, we obtain the rational inscribed quadrilateral of which the sides are

$$
\begin{array}{cl}
\left(m^{2}-n^{2}\right)\left(p^{2}+\dot{q}^{2}\right)\left(m^{2}+n^{2}\right), & \left(p^{2}-q^{2}\right)\left(m^{2}+n^{2}\right)^{2} \\
2 m n\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right), & 2 p q\left(m^{2}+n^{2}\right)^{2}
\end{array}
$$

whose diagonals are

$$
\begin{aligned}
& \left\{2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right)\right\}\left(m^{2}+n^{2}\right), \\
& \left\{\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)+4 m n p q\right\}\left(m^{2}+n^{2}\right)
\end{aligned}
$$

${ }^{1}$ GSS, vii. 103 ${ }^{2}$.
whose altitudes are

$$
\begin{aligned}
& \left\{2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right)\right\} 2 m n, \\
& \left\{\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)+4 m n p q\right\}\left(m^{2}-n^{2}\right) ;
\end{aligned}
$$

whose segments are

$$
\begin{aligned}
& \left\{2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right)\right\}\left(m^{2}-n^{2}\right), \\
& \left\{\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)+4 m n p q\right\} 2 m n ;
\end{aligned}
$$

and whose area is

$$
\begin{aligned}
\frac{1}{2}\left\{2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right)\right\} & \left\{\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)\right. \\
& +4 m n p q\}\left(m m^{2}+n^{2}\right)^{2}
\end{aligned}
$$

Srîpati writes :
"Of the two right triangles the sides and uprights are reciprocally multiplied by the hypotenuses; of the products the greatest is the base, the smallest is the face. and the rest are the two flank sides of a quadrilateral with unequal sides." ${ }^{1}$

Bhâskara II gives the rule :
"The sides and uprights of two optional right triangles being multiplied by their reciprocal hypotenuses become the sides : in this way has been derived a quadrilateral of unequal sides. There the two diagonals can be obtained from those two triangles. The produdt of the uprights, added with the product of the sides, gives one diagonal; the sum of the reciprocal products of the uprights and sides is the other." ${ }^{2}$

Bhâskara 11^{3} illustrates by taking the right triangles ($3,4,5$) and ($5,12,13$) so that the resulting cyclic quadrilateral is $(25,39,60,52)$. The same example was
${ }^{1}$ SiSe, xiii. 42.
${ }^{2}$ L, p. gr .
${ }^{3}$ L, p. 52.
given before by Mahâvîra ${ }^{1}$ and Pṛthûdakasvâmî. ${ }^{2}$ This cyclic quadrilateral also appears in the Trisatika of Sridhara ${ }^{3}$ and in the commentary of the Aryabbatitya by Bhàskara I (522). The diagonals of this quadrilatcral are, states Bhâskara II, $56(=3.12+4.5)$ and $63(=-4.12+3.5)$ (Fig. 7). He then observes:
"If the figure be formed by changing the arrangement of the face and flank then the second diagonal will be equal to the product of the hypotenuses of the two right triangles (of reference), i.e., 6s." (Fig. 8).

Fig. 7

Fig. 8

By taking the right triangles ($3,4,5$) and ($15,8,17$) Bhâskara II gets another cyclic quadrilateral ($68,51,40$, 75), whose diagonals are (77,85), altitude is $308 / 5$, segments are $144 / 5$ and $231 / 5$, and area is $3234 .{ }^{4}$ (Fig. 9). With the sequence of the sides $(68,40,51,75$) the

$$
\begin{array}{ll}
{ }^{1} \text { GSS, vii. } 104 \frac{1}{2} . & { }^{2} \text { BrSpSi, xii. } 38 \text { (Com.). } \\
{ }^{3} \text { Tris, Ex. } 80 . & { }^{2} \text { L, PP. } 46 \mathrm{HI} .
\end{array}
$$

diagonals are (77, 84) (Fig. 10), and with ($68,40,75,51$) they are (84, 85). (Fig. 11).

Fig. 9

Fig. 10

Fig. II
The deep significance of Brahmagupta's results has been demonstrated by Chasles ${ }^{1}$ and Kummer. ${ }^{2}$
${ }^{1}$ M. Chasles, Aperçu bistorique sur l'origine et development des méthodes en géométrie, Paris, 1875, Pp. 436 ff .
${ }^{2}$ E. E. Kummer, "Uber die Vierecke, deren Seiten und Diogonalen rational sind," Journ. für Math., XXXVII, 1848, Pp. 1-20.

In fact, according to the sequence in which the quantities (A) are taken, there will be two varieties of Brabmagupta quadrilaterals having them as their sides :. (1) one in which the two diagonals intersect at right angles and (2) the other in which the diagonals intersect obliquely. The arrangement (A) gives a quadrilateral of the first variety. For the oblique variety, the sides are in the following order:

$$
\begin{array}{cc}
\left.\begin{array}{cc}
\left.p^{2}-q^{2}\right)\left(m m^{2}+n^{2}\right), & \left(m^{2}-n^{2}\right)\left(p^{2}+q^{2}\right), \\
2 m n\left(p^{2}+q^{2}\right), & 2 p q\left(m^{2}+n^{2}\right) ; \\
\left(p^{2}-q^{2}\right)\left(m^{2}+n^{2}\right), & 2 m m n\left(p^{2}+q^{2}\right), \\
\left(m^{2}-n^{2}\right)\left(p^{2}+q^{2}\right), & 2 p q\left(m^{2}+n^{2}\right) .
\end{array}\right\}, ~
\end{array}
$$

Bhâskara II points out that the diagonals of the Brahmagupta quadrilateral are in the (A) varicty,
$2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right), 4 m n p q+\left(p^{2}-q^{2}\right)\left(m^{2}-n^{2}\right) ;$ in (B),

$$
2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right), \quad\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right) ;
$$ and in (C),

$$
4 m n p q+\left(p^{2}-q^{2}\right)\left(m^{2}-n^{2}\right), \quad\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right)
$$

The diameter of the circumscribed circle in every case is $\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right)$.

Ganeśa (1545) shows that the quadrilateral is formed by the juxtaposition of four right triangles obtained by multiplying the sides of each of two rational right triangles by the upright and base of the other. He writes :
"A quadrilateral is divided into four triangles by its intersecting diagonals. So by the juxtaposition of four triangles a quadrilateral will be formed. For that purpose the four triangles are assumed in this manner: Take two right triangles formed in the way indicated

Compare also L. E. Dickson, "Rational Triangles and Quadrilaterals," Amar. Matb. Mon., XXVIII, 1921, pp. 244-2 9 .
before. If the upright, base and hypotenuse of a rational right triangle be multiplied by any arbitrary rational number, there will be produced another right triangle with rational sides. Hence on multiplying the sides of each of the two right triangles by an optional number equal to the base of the other and again by an optional nnmber equal to the upright of the other, four right triangles will be obtained by the judicious juxtaposition of which the quadrilateral will be formed." He then shows with the help of specific examples (sec Figs. $12,13 \& 14$) that we can obtain in this way

Fig. 12

Fig. 13

Fig. 14
from the same set of two rational right triangles two varieties of rational convex quadrilaterals: One in which the diagonals intersect each other perpendicularly; and the other in which they do so obliquely.

Inscribed Quadrilaterals having a Given Area. Mahâvîra proposes to find all rational inscribed rectangles having the same given area (A, say). He says :
"The square-root of the exact area is a side of the square. The quotient of the area by an optional number and that optional number will be the base and upright of the rectangle."

For finding all inscribed rational isosceles trapeziums having the same area A his rule is :
"The given area multiplied by the square of an optional number is diminished by the area of a generated rectangle and then divided by the base of that rectangle ; the quotient divided by the optional number is the face; the quotient added with twice the upright and divided by the optional number gives the base; the base (of the generated rectangle) divided by the optional number is the altitude ; and the diagonal divided by the optional number gives the two flank sides." ${ }^{2}$

That is to say, if $m^{2}-n^{2}, 2 m n, m^{2}+n^{2}$ be the upright, base and diagcnal of a rectangle formed from m, n, the dimensions of the isosceles trapezium will be

$$
\begin{aligned}
\text { face } & =\frac{s^{2} A-2 m n\left(m^{2}-n^{2}\right)}{2 m n s} \\
\text { base } & =\frac{1}{s}\left\{\frac{s^{2} A-2 m n\left(m^{2}-n^{2}\right)}{2 m n}+2\left(m^{2}-n^{2}\right)\right\} \\
& =\frac{s^{2} A+2 m n\left(m^{2}-n^{2}\right)}{2 m n s},
\end{aligned}
$$

[^159]\[

$$
\begin{aligned}
& \text { altitude }=\frac{2 m n}{s}, \\
& \text { side }=\frac{m^{2}+n^{2}}{s} ;
\end{aligned}
$$
\]

where s is an arbitrary rational number chosen such that $s^{2} A>2 m n\left(m^{2}-n^{2}\right)$.

For the construction of an inscribed trapezium of three equal sides Mahâvîra gives the following rule:
"'The square of the given area is divided by the cube of an optional number and then increased by that optional number; half the result gives the (equal) sides of a generated trapezium of three equal sides (having the given area) ; twice the optional number diminished by the side is the base ; and the given area divided by the optional number is the altitude." ${ }^{1}$

In other words, the dimensions of an inscribed trapezium of three equal sides having a given area A will be
side $=\frac{1}{2}\left(\frac{A^{2}}{s^{3}}+s\right)$,
base $=2 s-\frac{1}{2}\left(\frac{A^{2}}{s^{3}}+s\right)$,
altitude $=\frac{A}{s}$.
To find inscribed quadrilaterals having a given area Mahâvîra gives the following rule :
"Break up the square of the given area into any four arbitrary factors. Half the sum of these factors is diminished by them (severally). The remainders are the sides of an (inscribed) quadrilateral with unequal sides." ${ }^{2}$

${ }^{1}$ GSS, vii. 1 so.

${ }^{2}$ GSS, vii. 1s2. This result follows from the fact that the area of a cyclic quadrilateral is $\sqrt{(s-a)(s-b)(s-c)(s-d)}$.

Triangles and Quadrilaterals having a Given

 Circum-Diameter. Mahâvîra proposes to find all rational triangles and quadrilaterals inscribable in a circle of given diameter. His solution is :"Divide the given diameter of the circle by the calculated diameter (of the circle circumscribing any generated figure of the required kind). The sides of that generated figure multiplied by the quotient will be the sides of the required figure."1

In other words, we shall have to find first a rational triangle or cyclic quadrilateral ; then calculate the diameter of its circum-circle and divide the given diameter by it. Dimensions of the optional figure multiplied by this quotient will give the dimensions of the required figure of the type.

It has been found before (p. 227) that the sides of a rational triangle are proportional to

$$
m^{2}+n^{2}, p^{2}+q^{2},\left(p^{2}-q^{2}\right) \pm\left(m^{2}-n^{2}\right)
$$

and its altitude is proportional to $2 m n$ (or $2 p q$), m, n, p, q being any rational numbers such that $m n=p q$. The diameter of the circle circumscribed about this triangle is proportional to

$$
\frac{\left(m^{2}+n^{2}\right)\left(p^{2}+q^{2}\right)}{2 m n} .
$$

Then the sides of a rational triangle inscribed in a circle of diameter D will be

$$
\frac{2 m n D}{p^{2}+q^{2}}, \frac{2 m n D}{m^{2}+n^{2}}, 2 m n D \frac{\left(p^{2}-q^{2}\right) \pm\left(m^{2}-n^{2}\right)}{\left(m^{2}+n^{2}\right)\left(p^{2}+q^{2}\right)} ;
$$

and its altitude will be

$$
\frac{D(2 m n)^{2}}{\left(m^{2}+n^{2}\right)\left(p^{2}+q^{2}\right)} .
$$

${ }^{1} G S S$, vii. 22 I $\frac{1}{2}$.

The dimensions of a rational inscribed quadrilateral, as stated by Mahâvira, have been noted before (p. 236). The diameter of its circum-circle is

$$
\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right)^{2} .
$$

Then, according to Mahâvîra, the sides of a rational quadrilateral inscribed in a circle of diameter D, are

$$
D\left(\frac{2 m n}{m^{2}+n^{2}}\right), D\left(\frac{m^{2}-n^{2}}{m^{2}+n^{2}}\right), D\left(\frac{2 p q}{p^{2}+q^{2}}\right), D\left(\frac{p^{2}-q^{2}}{p^{2}+q^{2}}\right) ;
$$

its diagonals are

$$
\begin{aligned}
& \left\{2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right)\right\} \frac{D}{\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right)}, \\
& \left\{\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)+4 m n p q\right\} \frac{D}{\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right)}
\end{aligned}
$$

and its area is

$$
\begin{aligned}
\frac{D^{2}}{2\left(p^{2}+q^{2}\right)\left(m^{2}+n^{2}\right)} & \left\{2 p q\left(m^{2}-n^{2}\right)+2 m n\left(p^{2}-q^{2}\right)\right\} \\
& \times\left\{\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)+4 m n p q\right\} ;
\end{aligned}
$$

so that the sides, diagonals and area are all rational.

22. SINGLE INDETERMINATE EQUATIONS OF HIGHER DEGREES

The Hindus do not seem to have paid much attention to the treatment of indeterminate equations of degrees higher than the second. Some interesting examples involving such equations are, however, found in the works of Mahâvîra (850), Bhâskara II (irso) and Nârâyaṇa (1350).

Mahâvira's Rule. One problem of Mahâvîra is as follows:

Given the sum (s) of a series in A.P., to find its
first term (a), common difference (b) and the number of terms (n).

In other words, it is required to solve in rational numbers the equation

$$
\left\{a+\left(\frac{n-\mathrm{I}}{2}\right) b\right\} n=s,
$$

containing three unknowns a, b and n, and of the third degree. The following rule is given for its solution :
"Here divide the sum by an optional factor of it ; that divisor is the number of terms. Subtract from the quotient another optional number; the subtrahend is the first term. The remainder divided by the half of the number of terms as diminished by unity is the common difference." ${ }^{1}$

Bhâskara's Method. Bhâskara II proposes the problems :
"Tell those four numbers which are unequal but have a common denominator, whose sum or the sum of whose cubes is equal to the sum of their squares." ${ }^{2}$

If x, y, z, w be the numbers, then

$$
\begin{equation*}
x+y+z+w=x^{2}+y^{2}+z^{2}+w^{2} \tag{I}
\end{equation*}
$$

(2) $x^{3}+y^{3}+z^{3}+w^{3}=x^{2}+y^{2}+z^{2}+\nu^{2}$.

Let the numbers be $x, 2 x, 3 x, 4 x$, says Bhâskara II. That is, suppose $y=2 x, z=3 x, y=4 x$ in the above

${ }^{1}$ GSS, vii. 78.

There are also other problems where instead of s, the given quantity is $s+a, s+b, s+n$ or $s+a+b+n$. (GSS, ii. $83 ; c f$. also vi. 80). For such problems also the method of solution is the same as before, i.e., to assume suitable arbitrary values for two of the unknowns so that the indeterminate cubic equation is thereby reduced to a determinate linear equation in one unknown. (GSS, ii. 82; vi. 317).

[^160]equations. Then by (1) we get
\[

$$
\begin{aligned}
10 x & =30 x^{2} . \\
\therefore \quad x & =\frac{1}{3} .
\end{aligned}
$$
\]

Hence

$$
x, y, z, w y=\frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3},
$$

is a solution of (r .
Again, with the same assumption, the equation (2) reduces to

$$
\begin{aligned}
100 x^{3} & =30 x^{2} . \\
\therefore \quad x & =\frac{3}{10} .
\end{aligned}
$$

Hence

$$
x, y, z, 2 y=\frac{3}{10}, \stackrel{8}{10}, 1^{9}, \frac{12}{12},
$$

is a solution of (2).
The following problem has been quoted by Bhâskara II from an ancient author:
"The square of the sum of two numbers added with the cube of their sum is equal to twice the sum of their cubes. Tell, O mathematician, (what are those two numbers)." ${ }^{1}$

If x, y be the numbers, then by the statement of the question

$$
(x+y)^{2}+(x+y)^{3}=2\left(x^{3}+y^{3}\right) .
$$

"Here, so that the operations may not become lengthy," says Bhâskara II, "assume the two numbers to be $u+v$ and $u-v$." So on putting

$$
x=u+v, y=u-v,
$$

the equation reduces to

	$4 u^{3}+4 u^{2}=12 \pi v^{2}$,
or \quad	$4 u^{2}+4 u=12 v^{2}$,
or $\quad(2 u+1)^{2}=12 v^{2}+1$.	

${ }^{1}$ BBi, p. xor.

Solving this equation by the method of the Squarenature we get values of u, v. Whence the values of (x, y) are found to be $(5,1),(76,20)$, etc.

Nârâyaṇa's Rule. Nârâyaṇa gives the rule :
"Divide the sum of the squares, the square of the sum and the product of any two optional numbers by the sum of their cubes and the cube of their sum, and then multiply by the two numbers (severally). (The results) will be the two numbers, the sum of whose cubes and the cube of whose sum will be equal to the sum of their squares, the square of the sum and the product of them." ${ }^{1}$

That is to say, the solution of the equations
(1) $x^{3}+y^{3}=x^{2}+y^{2}$,
(4) $(x+y)^{3}=x^{2}+r^{2}$,
(2) $x^{3}+y^{3}=(x+y)^{2}$,
(s) $(x+y)^{3}=(x+y)^{2}$,
(3) $x^{3}+y^{3}=x y$,
(6) $(x+y)^{3}=x y$,
are respectively

(1.1)	$\left\{\begin{array}{l} x=\frac{\left(m^{2}+n^{2}\right) m}{m^{3}+\overline{n^{3}}} \\ y=\frac{\left(m^{2}+n^{2}\right) n}{m^{3}+n^{3}} \end{array}\right.$	(4.1)	$\left\{\begin{array}{l} x \quad \frac{\left(m^{2}+n^{2}\right) m}{(m+n)^{3}}, \\ y=\frac{\left(m^{2}+n^{2}\right) n}{(m+n)^{3}} ; \end{array}\right.$
(2.1)	$\left\{\begin{array}{l} x=\frac{(m+n)^{2} m}{m^{3}+n^{3}}, \\ y=\frac{(m+n)^{2} n}{m^{3}+n^{3}} ; \end{array}\right.$	5.1)	$\left\{\begin{array}{l} x=\frac{(m+n)^{2} m}{(m+n)^{3}}, \\ y=\frac{(m+n)^{2} n}{(m+n)^{3}}, \end{array}\right.$
(3.1)	$\left\{\begin{array}{l} x=\frac{m^{2} n}{m^{3}+n^{3}} \\ y=\frac{m n^{2}}{m^{3}+n^{3}} \end{array}\right.$		$\left\{\begin{array}{l}x=\frac{m^{2} n}{(m+n) 3^{3}} \\ y=\frac{m n^{2}}{(m+n)^{3}}\end{array}\right.$

${ }^{1} G K$, i. ${ }^{8}$.
where m, n are rational numbers.
It will be noticed that the equation (2) can be reduced, by dividing out by $x+y$, to

$$
x^{2}-x y+y^{2}=x+y
$$

and similarly (s) can be reduced to

$$
x+y=\mathrm{I}
$$

With $m=1, n=2$ Nârâyana gives the following sets of particular values :

$$
\begin{array}{ll}
\text { (1.2) } x, y=\frac{5}{9}, \frac{1}{9} & \text { (4.2) } x, y=\frac{5}{2}, \frac{1}{2} \frac{0}{7} \\
\text { (2.2) } x, y=1,2 & \text { (5.2) } x, y=\frac{1}{3}, \\
\text { (3.2) } x, y=\frac{2}{8}, \frac{4}{5} & \text { (6.2) } x, y=\frac{2}{27}, \frac{4}{2} r
\end{array}
$$

He then obscrves: "In this way one can find by his own intelligence two numbers for the case of difference, etc."

Form $\mathbf{a} \mathbf{x}^{2 n+2}+\mathbf{b} \mathbf{x}^{2 n}=\mathbf{y}^{2}$. For the solution of an equation of the form

$$
a x^{2 n+2}+b x^{2 n}=y^{2}
$$

where n is an integer, Bhâskara II gives the following rule :
"Removing a square factor from the second side, if possible, the two roots should be investigated in this case. Then multiply the greater root by the lesser. Or, if a biquadratic factor has been removed, the greater root should be multiplied by the square of the lesser root. The rest of the operations will then be as before." ${ }^{\prime}$

Suppose $a x^{2}+b=\tau^{2}$; then the cquation becomes $y^{2}=x^{2 n} ₹^{2}$.

$$
\therefore \quad y=x^{n} z
$$

The method of solving $a x^{2}+b=\chi^{2}$ in positive integers has been described before.
${ }^{1}$ BBi, p. 102.

Two examples of equations of this form occur in the Bijaganita of Bhâskara II : ${ }^{1}$
(I) $5 x^{4}-100 x^{2}=y^{2}$,
(2) $8 x^{6}+49 x^{4}=y^{2}$.

It may be noted that the second equation appears in the course of solving another problem.

Equation $\mathbf{a x}^{4}+\mathbf{b} \mathbf{x}^{2}+\mathbf{c}=\mathbf{u}^{\mathbf{3}}$. One very special case of this form arises in the course of solving another problem. It is ${ }^{2}$
or

$$
\begin{aligned}
\left(a+x^{2}\right)^{2}+a^{2} & =u^{3} \\
x^{4}+2 a x^{2}+2 a^{2} & =u^{3} .
\end{aligned}
$$

Let $u=x^{2}$, supposes Bhâskara II, so that we get

$$
\begin{gathered}
x^{6}-x^{4}=2 a^{2}+2 a x^{2} \\
x^{4}\left(2 x^{2}-1\right)=\left(2 a+x^{2}\right)^{2}
\end{gathered}
$$

which can be solved by the method indicated before.
Another equation is ${ }^{3}$

$$
\rho x^{4}=u^{3} .
$$

In cases like this "the assumption should be always such," remarks Bhâskara II, "as will make it possible to remove (the cube of) the unknown." So assume $u=m x$; then

$$
x=\frac{1}{3} m^{3}
$$

23. LINEAR FUNCTIONS MADE SQUARES OR CUBES

Square-pulveriser. The indeterminate equation of the type

$$
b x+c=y^{2}
$$

${ }^{1} \mathrm{BBi}$, pp. ro3, $107 . \quad{ }^{2} \mathrm{BBi}$, p. 103 ; also vide infra, p. 280.
${ }^{3} \mathrm{BBi}$, p. 50 ; also vide infra, p. 278.
is called varga-kuttaka or the "Square-pulveriser," ${ }^{\text {inas- }}$ much as, when expressed in the form

$$
\frac{y^{2}-c}{b}=x
$$

the problem reduces to finding a square (varga) which being diminished by c will be exactly divisible by b, which closely resembles the problem solved by the method of the pulveriser (kut!aka).

For the solution in integers of an equation of this type, the method of the earlier writers appears to have been to assume suitable arbitraty values for y and then to solve the equation for x. Brahmagupta gives the following problems :
"The residue of the sun on Thursday is lessened and then multiplied by s, or by 10 Making this (result) an exact square, within a year, a person becomes a mathematician." ${ }^{2}$
"The residue of any optional revolution lessened by 92 and then multiplied by 83 becomes together with unity a square. A person solving this within a year is a mathematician." ${ }^{3}$

That is to say, we are to solve the equations :
(1) $5 x-25=y^{2}$,
(2) $10 x-100=y^{2}$,
(3) $83 x-7635=y^{2}$.

Prthûdakasvâmî solves them thus :
(1.1) Suppose $y=10$; then $x=125$. Or, put $y=5$; then $x=10$.
(2.1) Suppose $y=10$; then $x=20$.
(3.1) Assume $y=1$; then $x=92$.
${ }^{1} \mathrm{BBi}, \mathrm{p} .122$.
${ }^{2}$ BrSpSi, xviii 76.
${ }^{2} \mathrm{BrSpSi}$, xviii. 79.

He then remarks that by virtue of the multiplicity of suppositions there will be an infinitude of solutions in every case. But no method has been given either by Brahmagupta or by his commentator Pṛthûdakasvâmî to obtain the general solution.

The above method is reproduced by Bhãskara II. ${ }^{1}$ He has also given the following rule:
"If a simple unknown be multiplied by the number which is the divisor of a square, etc., (on the other side) then, in order that its value may in such cases be integral, the square, etc., of another unknown should be put equal to (the other side). The rest (of the operations) will be as described before." ${ }^{2}$

His gloss on this rule runs as follows :
"In those cases, such as the Square-pulveriser, etc., where on taking the root of one side of the equation there remains on the other side a simple unknown multiplied by the number which was the divisor of the square, etc., the square, etc., of another unknown plus or minus: an absolute term should be assumed for (the value of this other side) in order that its value may be integral. The rest (of the operations) will be as taught before."

Bhâskara has also quoted from an ancient author the following rule:
"(Find) a number whose square is exactly divisible by the divisor, as also its product by twice the squareroot of the absolute term. An unknown multiplied by that number and superadded by the square-root of the absolute term should be assumed (for the unknown on the other side). If the absolute term does not yield a square-root, then after dividing it by the divisor, the

$$
{ }^{1} \text { Vide infra, p. } 25 \text { sf. }
$$

[^161]remainder should be increased by so many times the divisor as will make a square. If this is not possible, then the problem is not soluble." 1

Case i Let c be a square, equal to β^{2}, say. Then we have to solve

$$
b x+\beta^{2}=y^{2} .
$$

The rule says, find p such that

$$
p^{2}=b q, \quad i p \beta=b r .
$$

Then assume

$$
y=p u+\beta
$$

whence we get

$$
x=q u^{2}+r u .
$$

Bhâskara II prefers the assumption

$$
y=b v+\beta,
$$

so that we have

$$
x=b v^{2}+2 \beta v .
$$

Case ii. If c is not a square, suppose $c=b m+n$. Then find s such that

$$
\begin{aligned}
& n+s b=r^{2} \\
& y=b u \pm r
\end{aligned}
$$

Substituting this value in the equation $b x+c=y^{2}$, we get

$$
\begin{aligned}
b x+c & =(b u \pm r)^{2} \\
& =b^{2} u^{2} \pm 2 b r u+r^{2}
\end{aligned}
$$

$$
b x+c-r^{2}=b^{2} u^{2} \pm 2 b r u
$$

$$
b x+b(m-s)=b^{2} u^{2} \pm 2 b r u
$$

$$
x=b u^{2} \pm 2 r u-(m-s)
$$

Example from Bhâskara II : ${ }^{2}$

$$
7 x+30=y^{2}
$$

On dividing 30 by 7 the remainder is found to be 2; we also know that $2+7.2=4^{2}$. Therefore, we

[^162]assume in accordance with the above rule
$$
y=7 u \pm 4
$$
whence we get $\quad x=7 u^{2} \pm 8 u-2$,
which is the general solution.
Cube-pulveriser. The indeterminate equation of the type
$$
b x+c=y^{3}
$$
is called the gbana-kuttaka or the "Cube-pulveriser." For its solution in integers Bhâskara II says :
"A method similar to the above may be applied also in the case of a cube thus: (find) a number whose cube is exactly divisible by the divisor, as also its product by thrice the cube-root of the absolute term. An unknown multiplied by that number and superadded by the cube-root of the absolute term should be assumed. If there be no cube-root of the absolute term, then after dividing it by the divisor, so many times the divisor should be added to the remainder as will make a cube. The cube-root of that will be the root of the absolute number. If there cannot be found a cube, even by so doing, that problem will be insoluble." ${ }^{2}$

Case i. Let $c=\beta^{3}$. Then we shall have to find p such that

$$
p^{3}=b q, \quad 3 p \beta=b r .
$$

Now assume

$$
y=p v+\beta .
$$

Substituting in the equation $b x+\beta^{3}=y^{3}$ we get

$$
\begin{array}{rlrl}
b x+\beta^{3} & =(p v+\beta)^{3} \\
& =p^{3} v^{3}+3 p v \beta(p v+\beta)+\beta^{3}, \\
\text { or } & & b x & =b q v^{3}+b r v(p v+\beta) . \\
\therefore \quad & x & =q v^{3}+r v(p v+\beta) .
\end{array}
$$

or
${ }^{1}$ BBi, p. 122.
${ }^{2} B B i$, p. 12 1.

Or, if we assume $\quad y=b y+\beta$, we shall have

$$
x=b^{2} \nu^{3}+3 \beta v(b v+\beta) .
$$

Case ii. $c \neq$ a cube. Suppose $c==b m+n$; then find s such that

$$
n+s b=r^{3}
$$

Now assume $\quad y=b v+r$, whence we get .

$$
x=b^{2} v^{3}+3 r v(b v+r)-(m-s),
$$

as the gencral sclution.
Example from Bhâskara 11 : ${ }^{1}$

$$
5 x+6=y^{3} .
$$

Since
we assume

$$
6=5.1+1 \text { and } 1+43.5=6^{3}
$$

$$
y=s v+6
$$

Therefore

$$
x=25 v^{3}+18 v(5 v+6)+42
$$

is the general solution.
Equation $\mathbf{b x} \pm \mathbf{c}=\mathbf{a y}^{2}$. To solve an equation of the type

$$
a y^{2}=b x \pm c,
$$

Bhâskara II says :
"Where the first side of the equation yields a root on being multiplied or divided ${ }^{2}$ (by a number), there also the divisor will be as stated in the problem but the absolute term will be as modified by the operations." ${ }^{3}$
${ }^{1} B B i$, p. 122.
${ }^{2}$ The printed text has bitvâ $k_{\text {siptâ }}$ (subtracting or adding). After collating with several copies Colebrooke accepted the reading batvâ keiptá (multiplying or adding). But we think that the correct reading should be batvâ hrtvà (multiplying or dividing) For in his gloss Bhâskara II has employed the terms gunito vibbakto va (multiplied or divided). Our emendation is further supported by the rationale of the rule.
${ }^{3}$ BBi, p . 12 I.

What is implied is this: Multiplying both sided of the given equation by a, we get

$$
a^{2} y^{2}=a b x \pm a c
$$

Put $u=a y, v=a x$. Then the equation reduces to

$$
u^{2}=b v \pm a c,
$$

which can be solved in the way described before.
We take the following illustrative example with its solution from Bhâskara II: ${ }^{1}$

$$
s y^{2}+3=16 x
$$

Multiplying by s, and putting $u=5 y, v=5 x$, we get

$$
u^{2}=16 v-15 .
$$

The solution of this is

$$
\begin{aligned}
& u=8 w \pm \mathrm{x} \\
& v=4 w^{2} \pm \nu+\mathrm{r}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \text { (1) } \quad s y=8 w+\mathrm{I} \\
& \text { or } \quad \text { (2) } s y=8 w-\mathrm{I} .
\end{aligned}
$$

Now, solving by the method of the pulveriser, we get the solution of (I) as

$$
\begin{aligned}
& y=8 t+s \\
& w=s t+3
\end{aligned}
$$

and that of (2) as

$$
\begin{aligned}
& y=8 t+3 \\
& w=s t+2
\end{aligned}
$$

where t is any rational number.
Equation $\quad \mathbf{b x} \pm \mathbf{c}=\mathbf{a y}^{\boldsymbol{n}}$ After describing the above methods Bhâskara II observes, ityagre'pi yojyamiti sesab or "the same method can be applied further on

[^163](i.e., to the cases of higher powers) "' Again at the end of the section he has added evam buddbimadbhiranyadapi yathâsambbavain yojyam, ie, "similar devices should be applied by the intelligent to further cases as far as practicable." ${ }^{2}$ What is implied is as follows :
(1) To solve $\frac{x^{n} \pm c}{b}=y$.

Put $x=m z \pm k$. Then
$\frac{x^{n} \pm c}{b}=\frac{1}{b}\left\{m^{n} z^{n} \pm n m^{n-1} z^{n-1} k+\frac{n(n-1)}{2} m^{n-2} z^{n-2} k^{2} \pm\right.$ $\left.\ldots+n m z(\pm k)^{n-1}+(\pm k)^{n} \pm c\right\}$
$=\frac{1}{b}\left\{m^{n} z^{n} \pm n m^{n-1} z^{n-1} k+\cdots+n m z(\pm k)^{n-1}\right\}$ $+(\pm)^{n}\left(\frac{k^{n} \pm c}{b}\right)$
Now, if

$$
\frac{k^{n} \pm c}{b}=a \text { whole number }
$$

$\frac{x^{n} \pm c}{b}$ will be an integral number when (1) $m=b$ or (2) b is a factor of $m^{n}, n m^{n-1} k$, etc. Or, in other words, knowing one integral solution of (x) an infinite number of others can be derived.
(2) To solve $\frac{a x^{n} \pm c}{b}=y$.

Multiplying by a^{n-1}, we get

$$
\frac{a^{n} x^{n} \pm c a^{n-1}}{b}=y a^{n-1}
$$

${ }^{1} B B i$, p. 121.
${ }^{2} B B i$, p. 122.

Putting $u=a x, v=y a^{n-1}$, we have

$$
\frac{u^{n} \pm c a^{n-1}}{b}=v
$$

which is similar to case (r).

24. DOUBLE EQUATIONS OF THE FIRST DEGREE

The earliest instance of the solution of the simultaneous indeterminate quadratic equation of the type

$$
\left.\begin{array}{l}
x \pm a=u^{2}, \\
x \pm b=v^{2},
\end{array}\right\}
$$

is found in the Bakhshâlî treatise. The portion of the manuscript containing the rule is mutilated. The example given in illustration can, however, be restored as follows :
"A certain number being added by five \{becomes capable of yielding a square-root $\}$; the same number \{being diminished by\} seven becomes capable of yielding a square-root. What is that number is the question." ${ }^{1}$

That is to say, we have to solve

$$
\sqrt{x+s}=u, \quad \sqrt{x-7}=v
$$

The solution given is as follows :
"The sum of the additive and subtractive is \mid I2|; its half $|6|$; minus two $|4|$; its half is $|2|$; squared $|4|$. 'Should be increased by the subtractive'; \{the subtractive is $\}|7|$; adding this we get $\lfloor 11 \mid$. This is the number (required)." "

From this it is clear that the author gives the

[^164]solution of the equations
\[

$$
\begin{aligned}
& x+a=u^{2}, \quad x-b=v^{2} \\
& x=\left\{\frac{1}{2}\left(\frac{a+b}{m}-m\right)\right\}^{2}+b,
\end{aligned}
$$
\]

as
where m is any integer. ${ }^{1}$
Brahmagupta (628) gives the solution of the general case. He says:
"The difference of the two numbers by the addition or subtraction of which another number becomes a square, is divided by an optional number and then increased or decreased by it. The square of half the result diminished or increased by the greater or smaller (of the given numbers) is the number (required)." ${ }^{2}$

$$
\begin{array}{ll}
\text { i.e., } & x=\left\{\frac{1}{2}\left(\frac{a-b}{m} \pm m\right)\right\}^{2} \mp a, \\
\text { or } & x=\left\{\frac{1}{2}\left(\frac{a-b}{m} \mp m\right)\right\}^{2} \mp b,
\end{array}
$$

where m is an arbitrary integer.
The rationale is very simple. Since

$$
\begin{aligned}
& u^{2}=x \pm a, v^{2}=x \pm b, \\
& u^{2}-v^{2}= \pm a \mp b \\
& u-v=m \\
& u+v=\frac{ \pm a \mp b}{m}
\end{aligned}
$$

we have
Therefore
and
where m is arbitrary. Hence

$$
u=\frac{1}{2}\left(\frac{ \pm \mp b}{m}+m\right)= \pm \frac{1}{2}\left(\frac{a-b}{m} \pm m\right) .
$$

${ }^{1}$ In the above solution m is taken to be 2 .
${ }^{2} B r S p S i$, xviii. 74 .

Since it is obviously immaterial whether u is taken as positive or negative, we have

$$
u=\frac{1}{2}\left(\frac{a-b}{m} \pm m\right) .
$$

Similarly

$$
v=\frac{1}{2}\left(\frac{a-b}{m} \mp m\right) .
$$

Therefore

$$
\begin{aligned}
x & =\left\{\frac{1}{2}\left(\frac{a-b}{m} \pm m\right)\right\}^{2} \mp a, \\
\text { or } \quad x & =\left\{\frac{1}{2}\left(\frac{a-b}{m} \mp m\right)\right\}^{2} \mp b,
\end{aligned}
$$

where m is an arbitrary number.
Brahmagupta gives another rule for the particular case :

$$
\begin{aligned}
& x+a=u^{2}, \\
& x-b=v^{2} .
\end{aligned}
$$

"The sum of the two numbers the addition and subtraction of which make another number (severally) a square, is divided by an optional number and then diminished by that optional number. The square of half the remainder increased by the subtractive number is the number (required)." ${ }^{1}$

$$
\text { i.e., } \quad x=\left\{\frac{1}{2}\left(\frac{a+b}{m}-m\right)\right\}^{2}+b .
$$

Nârâyaṇa (1357) says :
"The sum of the two numbers by which another number is (severally) increased and decreased so as to make it a square is divided by an optional number and then diminished by it and halved; the square of the result added with the subtrahend is the other number." ${ }^{2}$ He further states :

[^165]"The difference of the two numbers by which another number is increased twice so as to make it a square (every time), is increased by unity and then halved. The square of the result diminished by the greater number is the other number." ${ }^{1}$
$$
\text { i.e., } \quad x=\left(\frac{a-b+1}{2}\right)^{2}-a
$$
is a solution of
$$
x+a=u^{2}, x+b=v^{2}, a>b
$$
"The difference of the two numbers by which another number is diminished twice so as to make it a square (every time), is decreased by unity and then halved. The result multiplied by itself and added with the greater number gives the other." ${ }^{2}$
$$
\text { i.e., } \quad x=\left(\frac{a-b-1}{2}\right)^{2}+a
$$
is a solution of
$$
x-a=u^{2}, x-b=v^{2}, a>b
$$

The general case

$$
\left.\begin{array}{l}
a x+c=u^{2} \tag{I}\\
b x+d=v^{2}
\end{array}\right\}
$$

has been treated by Bhâskara II. He first lays down the rule :
"In those cases where remains the (simple) unknown with an absolute number, there find its value by forming an equation with the square, etc., of another unknown plus an absolute number. Then proceed to the solution of the next equation comprising the simple unknown with an absolute number by substituting in it the root obtained before." ${ }^{3}$

[^166]He then proceeds to explain it further :
"In those cases where on taking the square-root of the first side, there remains on the other side the (simple) unknown with or without an absolute number, find there the value of that unknown by forming an equation with the square of another unknown plus an absolute number. Having obtained the value of the unknown in this way and substituting that value (in the next equation) further operations should be proceeded with. If, however, on equating the root of the first with another unknown plus an absolute number, no further operations remain to be done, then the equation has to be made with the square, etc., of a known number."
(i) Set $u=m w+\alpha$; then substituting in the first equation, we get

$$
x=\frac{1}{a}\left(m^{2} w^{2}+2 m \omega \alpha+\alpha^{2}-c\right) .
$$

Substituting this value of x in the next equation, we have

$$
\begin{equation*}
\frac{b}{a}\left(m m^{2} 2 \nu^{2}+2 m \nu \alpha+\alpha^{2} \cdots-c\right)+d=v^{2} \tag{I.I}
\end{equation*}
$$

which can be solved by the method of the Square-nature.
(ii) In the course of working out an example ${ }^{1}$ Bhâskara Il is found to have followed also a different procedure, which was subsequently adopted by Lagrange. ${ }^{2}$

Eliminate x between the two equations. Then

$$
b u^{2}+(a d-b c)=a v^{2},
$$

or

$$
\begin{equation*}
a b u^{2}+k=w^{2}, \tag{1.2}
\end{equation*}
$$

where $\nu=a v, k=a^{2} d-a b c$.

[^167]If $u=r, v=s$ be a solution of this transformed equation, another solution of it will be

$$
\begin{aligned}
& u=r q \pm p s \\
& w=q s \pm a b r p
\end{aligned}
$$

where $a b p^{2}+\mathrm{x}=q^{2}$. Therefore, the general solution of (x) is

$$
\begin{aligned}
x & =\frac{1}{a}(r q \pm p s)^{2}-\frac{c}{a}, \\
u & =r q \pm p s \\
\nu & =\frac{1}{a}(q s \pm a b r p)
\end{aligned}
$$

where $a b p^{2}+\mathrm{I}=q^{2}$ and $a b r^{2}+a^{2} d-a b c=s^{2}$.
Now, a rational solution of the equation $a b p^{2}+1=q^{2}$ is

$$
p=\frac{2 t}{t^{2}-a b}, \quad q=\frac{t^{2}+a b}{t^{2}-a b},
$$

where t is any rational number. Therefore, the above general solution becomes

$$
\begin{align*}
& x=\frac{1}{a\left(t^{2}-a b\right)^{2}}\left\{r\left(t^{2}+a b\right) \pm 2 s t\right\}^{2}-\frac{c}{a} \\
& u=\frac{1}{\left(t^{2}-a b\right)}\left\{r\left(t^{2}+a b\right) \pm 2 s t\right\} \tag{1.3}\\
& v=\frac{1}{a\left(t^{2}-a b\right)}\left\{s\left(t^{2}+a b\right)^{2} \pm 2 a b r t\right\}
\end{align*}
$$

where $a b r^{2}+a^{2} d-a b c=s^{2}$.
(iii) Suppose c and d to be squares, so that $c=\alpha^{2}$, $d=\beta^{2}$. Then we shall have to solve

$$
\begin{aligned}
& a x+\alpha^{2}=u^{2}, \\
& b x+\beta^{2}=v^{2} .
\end{aligned}
$$

The auxiliary equation $a b r^{2}+a^{2} d-a b c=s^{2}$ in this case becomes

$$
a b r^{2}+\left(a^{2} \beta^{2}-a b \alpha^{2}\right)=s^{2}
$$

The same equation is obtained by proceeding as in case (i) with the assumption $\nu=b y+\beta$.

An obvious solution of it is $r=\alpha, s=a \beta$. Hence in this case the general solution (I .3) becomes

$$
\begin{aligned}
& x=\frac{1}{a\left(t^{2}-a b\right)^{2}}\left\{\alpha\left(t^{2}+a b\right) \pm 2 a \beta t\right\}^{2}-\frac{\alpha^{2}}{c}, \\
& u=\frac{1}{\left(t^{2}-a b\right)}\left\{\alpha\left(t^{2}+a b\right) \pm 2 a \beta t\right\}, \\
& v=\frac{1}{\left(t^{2}-a b\right)}\left\{\beta\left(t^{2}+a b\right) \pm 2 b \alpha t\right\},
\end{aligned}
$$

where t is any rational number.
Putting $\alpha=\beta=1, t=a$, and taking the positive sign only, we get a particular solution of the equations

$$
\left.\begin{array}{l}
a x+1=u^{2} \\
b x+1=v^{2}
\end{array}\right\}
$$

as

$$
x=\frac{8(a+b)}{(a-b)^{2}}, \quad u=\frac{3 a+b}{a-b}, \quad v=\frac{a+3 b}{a-b}
$$

This solution has been stated by Brahmagupta (628):
"The sum of the multipliers multiplied by 8 and divided by the square of the difference of the multipliers is the (unknown) number. Thrice the two multipliers increased by the alternate multiplier and divided by their difference will be the two roots." 1

It has been described partly by Nâtâyaṇa (1357) thus:
${ }^{1} B r S p S i$, xviii. 71.
"The two numbers by which another number is multiplied at two places so as to make it (at every place), together with unity, a square, their sum multiplied by 8 and divided by the square of their difference is the other number. ${ }^{\prime \prime}$

We take an illustrative example with its solution from Bhâskara II :
"If thou be expert in the method of the elimination of the middle term, tell the number which being severally multiplied by 3 and 5 , and then added with unity, becomes a square." ${ }^{2}$

That is to say, we have to solve

$$
\left.\begin{array}{l}
3 x+1=u^{2}, \\
5 x+1=y^{2} .
\end{array}\right\}
$$

Bhâskara II solves these equations substantially as follows :
(1) Set $u=3 y+1$; then from the first equation,

$$
x=3 y^{2}+2 y .
$$

Substituting this value in the other equation, we get

$$
15 y^{2}+10 y+1=v^{2}
$$

or

$$
(15 y+5)^{2}=1 \varsigma v^{2}+10 .
$$

By the method of the Square-nature we have the solutions of this equation as

$$
\left.\left.\begin{array}{rlrl}
v & =9 \\
15 y+s & =35
\end{array}\right\}, \begin{array}{rl}
v & =71 \\
15 y+s & =275
\end{array}\right\} \cdots,
$$

Therefore

$$
y=2,18, \ldots
$$

Hence

$$
x=16,1008, \ldots
$$

(2) Or assume the unknown number to be

$$
x=\frac{1}{3}\left(u^{2}-1\right),
$$

${ }^{1} G K$, i. s .
${ }^{2} B B i$, p. 118.
so that the first condition of the problem (i.e., the first equation) is identically statisfied. Then by the second condition

$$
\begin{array}{ll}
& \frac{5}{3}\left(u^{2}-1\right)+1=v^{2}, \\
\text { or } \quad & (5 u)^{2}=15 v^{2}+10 .
\end{array}
$$

Now, by the method of the Square-nature, we get the values of (u, v) as $(7,9),(5 s, 71)$, etc. Therefore, the values of x are, as before, 16,1008 , ctc.

The following example is by Nârâyaṇa :
"O expert in the art of the Square-nature, tell me the number which being severally multiplied by 4 and 7 and decreased by 3 , becomes capable of yielding a squareroot." ${ }^{1}$

That is, solve :

$$
\left.\begin{array}{l}
4 x-3=u^{2}, \\
7 x-3=v^{2} .
\end{array}\right\}
$$

Nârâyaṇa says: "By the method indicated before the number is 1,21 , or ros 7 ."

29. DOUBLE EQUATIONS OF THE SECOND DEGREE

First Type. The double equations of the second degree considered by the Hindus are of two general types. The first of them is

$$
\left.\begin{array}{r}
a x^{2}+b y^{2}+c=u^{2}, \\
a^{\prime} x^{2}+b^{\prime} y^{2}+c^{\prime}=v^{2} .
\end{array}\right\}
$$

Of these the more thoroughly treated particular cases are as follows :

Case i. $\quad\left\{\begin{array}{l}x^{2}+y^{2}+1=u^{2}, \\ x^{2}-y^{2}+1=v^{2} ;\end{array}\right.$
${ }^{1}$ GK, p. 40.

Case ii. $\left\{\begin{array}{l}x^{2}+y^{2}-1=u^{2}, \\ x^{2}-y^{2}-1=v^{2} .\end{array}\right.$
It should be noted that though the earliest treatment of these equations is now found in the algebra of Bhâskara II (ilso), they have been admitted by him as being due to previous authors (âdyodabaranam).

For the solution of (i) Bhâskara II assumes ${ }^{1}$

$$
x^{2}=5 z^{2}-1, y^{2}=4 z^{2}
$$

so that both the cquations are satisfied. Now, by the method of the Square-nature, the solutions of the equation $5 Z^{2}-1=x^{2}$ are (1,2$),(17,38), \ldots$ Therefore, the solutions of (i) are

$$
\left.\left.\begin{array}{l}
x=2 \\
y=2
\end{array}\right\}, \quad \begin{array}{l}
x=38 \\
y=34
\end{array}\right\}, \quad \cdots
$$

Similarly, for the solution of (ii), he assumes

$$
x^{2}=s z^{2}+1, \quad y^{2}=4 z^{2}
$$

which satisfy the equations. By the method of the Square-nature the values of (π, x) in the equation $s \chi^{2}+1=x^{2}$ are (4, 9), (72, 161), etc. Hence the solutions of (ii) are

$$
\left.\left.\begin{array}{l}
x=9 \\
y=8
\end{array}\right\}, \quad \begin{array}{l}
x=161 \\
y=144
\end{array}\right\}, \quad \cdots
$$

Bhâskara II further says that for the solution of equations of the forms (i) and (ii) a more general assumption will be

$$
x^{2}=p z^{2} \mp 1, \quad y^{2}=m^{2} z^{2}
$$

where p, m are such that

$$
p \pm m^{2}=\text { a square }
$$

${ }^{1}$ BBi, p. 108.
the upper sign being taken for Case i and the lower sign for Case ii. Both the equations are then identically satisfied. Suppose

$$
\begin{gathered}
p+m^{2}=s^{2}, \\
p-m^{2}=t^{2} \\
s=\frac{1}{2}\left(\frac{2 m^{2}}{n}+n\right), \\
t=\frac{1}{2}\left(\frac{2 m^{2}}{n}-n\right),
\end{gathered}
$$

Whence
where n is any rational number. Therefore

$$
p=\frac{1}{4}\left(\frac{4 m^{4}}{n^{2}}+n^{2}\right) .
$$

Here he observes that m^{2} should be so chosen that p will be an integer.

Hence

$$
\left.\begin{array}{l}
x^{2}=\frac{1}{4}\left(\frac{4 m^{4}}{n^{2}}+n^{2}\right) z^{2} \mp_{1} \tag{I}\\
y^{2}=m^{2} z^{2}
\end{array}\right\}
$$

the upper sign being taken for Case i and the lower sign for Case ii.

Whence

$$
\begin{aligned}
& u=\frac{1}{2}\left(\frac{2 m^{2}}{n}+n\right) z \\
& v=\frac{1}{2}\left(\frac{2 m^{2}}{n}-n\right)
\end{aligned}
$$

Or, we may proceed in a different way, says Bhâskara II :

Since

$$
\left(p^{2}+q^{2}\right) \pm 2 p q
$$

is always a square, we may assume

$$
\begin{aligned}
& x^{2}=\left(p^{2}+q^{2}\right) w^{2} \mp \mathrm{I}, \\
& y^{2}=2 p q w^{2} .
\end{aligned}
$$

For a rational value of $y, 2 p q$ must be a square. So we take

$$
p=\mathbf{2} m^{2}, q=n^{2} .
$$

Hence we have the assumption

$$
\left.\begin{array}{l}
x^{2}=\left(4 m^{2}+n^{4}\right) w^{2} \mp 1, \tag{2}\\
y^{2}=4 m^{2} n^{2} w^{2} ;
\end{array}\right\}
$$

the upper sign being taken for Case i and the lower sign for Case ii.

Whence

$$
\begin{aligned}
u & =\left(2 m^{2}+n^{2}\right) w, \\
v & =\left(2 m^{2}-n^{2}\right) w .
\end{aligned}
$$

It will be noticed that the equations (1) follow from (2) on putting $\nu=z / 2 n$. So we shall take the latter as our fundamental assumption for the solution of the equations (i) and (ii). Then, from the solutions of the subsidiary equations

$$
\left(4 m^{4}+n^{4}\right) w^{2} \mp \mathrm{I}=x^{2}
$$

by the method of the Square-nature, observes Bhâskara II, an infinite number of integral solutions of the original equations can be derived. ${ }^{1}$

Now, one rational solution of

$$
\left(4 m^{4}+n^{4}\right) w^{2}+1=x^{2}
$$

is

$$
\begin{aligned}
& \nu=\frac{2 r}{\left(4 m^{4}+n^{4}\right)-r^{2}} \\
& x=\frac{\left(4 m^{4}+n^{4}\right)+r^{2}}{\left(4 m^{4}+n^{*}\right)-r^{2}}
\end{aligned}
$$

Therefore, we have the general solution of

$$
\left.\begin{array}{l}
x^{2}+y^{2}-1=v^{2} \\
x^{2}-y^{2}-1=u^{2}
\end{array}\right\}
$$

${ }^{1}$ Cf. BBi, p. 110.
as

$$
\left.\begin{array}{ll}
x=\frac{\left(4 m^{4}+n^{4}\right)+r^{2}}{\left(4 m^{4}+n^{4}\right)-r^{2}}, \quad u=\frac{2 r\left(2 m^{2}+n^{2}\right)}{\left(4 m^{4}+n^{4}\right)-r^{2}} \tag{A}\\
y=\frac{4 m n r}{\left(4 m^{4}+n^{4}\right)-r^{2}}, \quad v=\frac{2 r\left(2 m^{2}-n^{2}\right)}{\left(4 m^{4}+n^{4}\right)-r^{2}}
\end{array}\right\}
$$

where m, n, r are rational numbers.
For $r=s / t$, we get Genocchi's solution. ${ }^{1}$
In particular, put $m=2 t, n=1, r=8 t^{2}-1$ in (A). Then, we get the solution

$$
\left.\begin{array}{ll}
x=\frac{1}{2}\left(\frac{8 t^{2}-\mathrm{I}}{2 t}\right)^{2}+\mathrm{I}, & u=\frac{64 t^{4}-\mathrm{I}}{8 t^{2}} \tag{a}\\
y=\frac{8 t^{2}-\mathbf{1}}{2 t}, & v==\frac{1}{2}\left(\frac{8 t^{2}-\mathrm{I}}{2 t}\right)^{2}
\end{array}\right\}
$$

Putting $m=t, n=1, r=2 t^{2}+2 t+1$ in (A), we have ${ }^{2}$

$$
\left.\begin{array}{ll}
x=t+\frac{1}{2 t}, & u=t+\frac{1}{2 t} \tag{b}\\
y=\mathrm{I}, & v=t-\frac{1}{2 t} .
\end{array}\right\}
$$

Agdin, if we put $m=t, n=1, r=2 t^{2}$ in (A), we get

$$
\left.\begin{array}{ll}
x=8 t^{4}+\mathrm{I}, & u=4 t^{2}\left(2 t^{2}+\mathrm{I}\right) \tag{c}\\
y=8 t^{3}, & y=4 t^{2}\left(2 t^{2}-\mathrm{I}\right) .
\end{array}\right\}
$$

These three solutions have been stated by Bhâskara II. in his treatise on arithmetic. He says,
${ }^{1}$ Nouv. Ann. Math., X, 1851 , pp. 80-85; also Dickson, Numbers, II, pp. 479. For a summary of important Hindu results in algebra see the article of A. N. Singh in the Archeon, 1936.
${ }^{2}$ Here, and also in (c), we have overlooked the negative sign of x, y, μ and ν.
"The square of an optional number is multiplied by 8 , decreased by unity, halved and then divided by that optional number. The quotient is one number. Half its square plus unity is the other number. Again, unity divided by twice an optional number added with that optional number is the first number and unity is the second number. The sum and difference of the squares of these two numbers minus unity will be (severally) squares." ${ }^{1}$
"The biquadrate and the cube of an optional number is multiplied by 8, and the former product is again increased by unity. The results will be the two numbers (required)." ${ }^{2}$

Nârâyaṇa writes:
"The cube of any optional number is the first number; half the square of its square plus unity is the second. The sum and difference of the squares of these two numbers minus unity become squares." ${ }^{3}$

That is, if m be an optional number, one solution of (ii), according to Nârâyaṇa, is

$$
\begin{array}{ll}
x=\frac{m^{4}}{2}+1, & u=\left(m^{2}+2\right) \frac{m^{2}}{2}, \\
y=m^{3}, & v=\left(m^{2}-2\right) \frac{m^{2}}{2} .
\end{array}
$$

It will be noticed that this solution follows easily from the solution (c) of Bhâskara II, on putting $t=m / 2$. This special solution was found later on by E. Clere (1850). ${ }^{4}$
${ }^{1}$ L, p. 13.

$$
{ }^{2} \text { L, p. } 14 .
$$

${ }^{3}$ GK, i. 46.

4 Nouv. Ann. Math., IX, 1850, pp. 116-8; also Dickson, Numbers, II, p. 479 ; Singh, l. c.

Now, let us take into consideration the equation

$$
\left(4 m^{4}+n^{4}\right) y^{2}-1=x^{2} .
$$

Its solutions are known to be

$$
\left.\left.\begin{array}{ll}
\nu=\frac{1}{n^{2}} \\
x=\frac{2 m^{2}}{n^{2}}
\end{array}\right\}, \quad \begin{array}{l}
\nu=\frac{1}{2 m^{2}} \\
x=\frac{n^{2}}{2 m^{2}}
\end{array}\right\}
$$

From these, by the Principle of Composition, we get respectively two other solutions

$$
\left.\left.\begin{array}{l}
\nu=\frac{16 m^{4}+n^{4}}{n^{6}} \\
x=\frac{32 m^{6}+6 m^{2} n^{4}}{n^{6}}
\end{array}\right\}, \quad \begin{array}{l}
\nu=\frac{m^{4}+n^{4}}{2 m^{6}} \\
x=\frac{n^{6}+3 n^{2} m^{4}}{2 m^{6}}
\end{array}\right\}
$$

Therefore, the general solutions of

$$
\left.\begin{array}{rl}
x^{2}+y^{2}+1 & =u^{2}, \\
\lambda-y^{2}+1 & =v^{2} ;
\end{array}\right\}
$$

are

$$
\left.\begin{array}{l}
x=\frac{2 m^{2}}{n^{2}}, \quad u=\frac{2 m^{2}+n^{2}}{n^{2}}, \\
y=\frac{2 m}{n}, \quad v=\frac{2 m^{2}-n^{2}}{n^{2}} ; \\
x=\frac{1}{n^{6}}\left(32 m^{6}+6 m^{2} n^{4}\right), \\
y=\frac{2 m}{n^{5}}\left(16 m^{4}+n^{4}\right), \\
u=\frac{1}{n^{6}}\left(16 m^{4}+n^{4}\right)\left(2 m^{2}+n^{2}\right), \\
v=\frac{1}{n^{6}}\left(16 m^{4}+n^{4}\right)\left(2 m^{2}-n^{2}\right) ;
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
x=\frac{n^{2}}{2 m^{2}}, \quad u=\frac{2 m^{2}+n^{2}}{2 m^{2}} \\
y=\frac{n}{m}, \quad v=\frac{2 m^{2}-n^{2}}{2 m^{2}}
\end{array}\right\}
$$

and

$$
\begin{align*}
& x=\frac{1}{2 m^{6}}\left(n^{6}+3 n^{2} m^{4}\right), \\
& y=\frac{n}{m^{5}}\left(m^{4}+n^{4}\right), \\
& u=\frac{1}{2 m^{6}}\left(m^{4}+n^{4}\right)\left(2 m^{2}+n^{2}\right), \\
& \nu=\frac{1}{2 m^{6}}\left(m^{4}+n^{4}\right)\left(2 m^{2}-n^{2}\right)
\end{align*}
$$

Putting $n=1$ in $\left(a^{\prime}\right)$ and $\left(a^{\prime \prime}\right)$, we have the integral solutions

$$
\left.\begin{array}{ll}
x=2 m^{2}, & u=2 m^{2}+1, \\
y=2 m, & z=2 m^{2}-1 ; \tag{1}
\end{array}\right\}
$$

and

$$
\left.\begin{array}{rl}
x & =2 m^{4}\left(16 m^{2}+3\right) \\
y & =2 m\left(16 m^{4}+1\right), \\
u & =\left(16 m^{4}+1\right)\left(2 m^{2}+1\right), \\
v & =\left(16 m^{4}+1\right)\left(2 m^{2}-1\right) .
\end{array}\right\}
$$

Similarly, if we put $m=1$ in (b^{\prime}) and ($b^{\prime \prime}$), we get

$$
\left.\begin{array}{ll}
x=\frac{1}{2} n^{2}, & u=\frac{1}{2}\left(n^{2}+2\right), \\
y=n, & v=\frac{1}{2}\left(n^{2}-2\right) ;
\end{array}\right\}
$$

and

$$
\left.\begin{array}{ll}
x=\frac{1}{2} n^{2}\left(n^{4}+3\right), & u=\frac{1}{2}\left(n^{4}+1\right)\left(n^{2}+2\right), \\
y=n\left(n^{4}+1\right), & v=\frac{1}{2}\left(n^{4}+1\right)\left(n^{2}-2\right) .
\end{array}\right\}\left(b^{\prime \prime} . \mathrm{I}\right)
$$

${ }^{1}$ This solution was given by Dromond (Amer. Math. Mon., IX, 1902, p. 232).

The solution (b^{\prime}. I) is stated by Nârâyaṇa thus :
"Any optional number is the first and half its square is the second. The sum and difference of the squares of these two numbers with unity become capable of yielding a square-root." ${ }^{1}$

Case iii. Form

$$
\left.\begin{array}{r}
a x^{2}+b y^{2}=u^{2}, \\
a^{\prime} x^{2}+b_{0}^{\prime} y^{2}+c^{\prime}=a^{\prime 2} .
\end{array}\right\}
$$

For the solution of double equations of this form Bhâskara II adopts the following method:

The solution of the first equation is $x=m y$, $u=n y$; where

$$
a m^{2}+b=: n^{2} .
$$

Substituting in the second cquation, we get

$$
\left(a^{\prime} m^{2}+b^{\prime}\right) y^{2}+c^{\prime}=v^{2},
$$

which can be solved by the method of the Squarenature.

Example from Bhâskara II : ${ }^{2}$

$$
\left.\begin{array}{rl}
7 x^{2}+8 y^{2} & =u^{2} \\
7 x^{2}-8 y^{2}+1 & =v^{2}
\end{array}\right\} .
$$

He solves it substantially as follows :
In the first equation suppose $x=2 y$; then $u=6 y$. Putting $x=2 y^{\prime}$, the second equation becomes

$$
20 y^{2}+\mathrm{I}=v^{2} .
$$

By the method of the Square-nature the values of y satisfying this equation are 2,36 , etc. Hence the solutions of the given double equation are

$$
\begin{aligned}
& x=4,72, \ldots \\
& y=2,36, \ldots
\end{aligned}
$$

${ }^{1} G K$, i. 45.
${ }^{2} B B i$, p. 119.

Case iv. Form

$$
\left.\begin{array}{l}
a\left(x^{2} \pm y^{2}\right)+c=u^{2}, \\
a^{\prime}\left(x^{2} \pm y^{2}\right)+c^{\prime}=v^{2} .
\end{array}\right\}
$$

Putting $x^{2} \pm y^{2}=₹$ Bhâskara II reduces the above equations to

$$
\left.\begin{array}{l}
a z+c=u^{2}, \\
a^{\prime} z+c^{\prime}=v^{2} ;
\end{array}\right\}
$$

the method for the solution of which has been given before.

Example with solution from Bhâskara II :1

$$
\left.\begin{array}{l}
2\left(x^{2}-y^{2}\right)+3=u^{2} \\
3\left(x^{2}-y^{2}\right)+3=v^{2}
\end{array}\right\} .
$$

Set $\quad x^{2}-y^{2}=z ; \quad$ then

$$
\begin{aligned}
& 2 z+3=u^{2}, \\
& 3 z+3=v^{2} .
\end{aligned}
$$

Eliminating z we get
or

$$
\begin{aligned}
3 u^{2} & =2 v^{2}+3 \\
(3 u)^{2} & =6 v^{2}+9 . \\
v & =6,60, \ldots
\end{aligned}
$$

Whence

$$
3 u=15,147, \ldots
$$

Therefore

$$
u=5,49, \ldots
$$

Hence $\quad x^{2}-y^{2}=z=11,1199, \ldots$
Therefore, the required solutions are

$$
\left.\left.\begin{array}{l}
x=\frac{1}{2}\left(\frac{11}{m}+m\right) \\
y=\frac{1}{2}\left(\frac{11}{m}-m\right)
\end{array}\right\}, \begin{array}{l}
x=\frac{1}{2}\left(\frac{1199}{m}+m\right) \\
y=\frac{1}{2}\left(\frac{1199}{m}-m\right)
\end{array}\right\}, \cdots
$$

where m is an arbitrary rational number.
${ }^{1} \mathrm{BBi}, \mathrm{p} .119$.

For $m=1$, the values of (x, y) will be $(6,5)$, (600,599), ...

For $m=11$, we get the solution $(60,49), \ldots$
Case v. For the solution of the double equation of the general form

$$
\left.\begin{array}{r}
a x^{2}+b y^{2}+c=u^{2} \\
a^{\prime} x^{2}+b^{\prime} y^{2}+c^{\prime}=v^{2}
\end{array}\right\}
$$

Bhâskara II's hint ${ }^{1}$ is: Find the values of x, u in the first equation in terms of y, and then substitute that value of x in the second equation so that it will be reduced to a Square-nature. He has, however, not given any illustrative example of this kind.

Second Typé. Another type of double equation of the second degree which has been treated is

$$
\left.\begin{array}{r}
a^{2} x^{2}+b x y+c y^{2}=u^{2}, \\
a^{\prime} x^{2}+b^{\prime} x y+c^{\prime} y^{2}+d^{\prime}=v^{2} .
\end{array}\right\}
$$

The solution of the first equation has been given before to be

$$
\begin{aligned}
& x=\frac{1}{2 a}\left\{\frac{y^{2}}{\lambda}\left(c-\frac{b^{2}}{4 a^{2}}\right)-\lambda\right\}-\frac{b y}{2 a^{2}}, \\
& u=\frac{1}{2}\left\{\frac{y^{2}}{\lambda}\left(c-\frac{b^{2}}{4 a^{2}}\right)+\lambda\right\},
\end{aligned}
$$

where λ is an arbitrary rational number. Putting $\lambda=y$, we have
where

$$
\begin{aligned}
& x=\frac{y}{2 a}\left(c-\frac{b^{2}}{4 a^{2}}-\mathrm{x}\right)-\frac{b y}{2 a^{2}}=\alpha y, \\
& u=\frac{y}{2}\left(c-\frac{b^{2}}{4 a^{2}}+1\right) ;
\end{aligned}
$$

$$
\alpha=\frac{1}{2 a}\left(c-\frac{b^{2}}{4 a^{2}}-1\right)-\frac{b}{2 a^{2}} .
$$

${ }^{1}$ Vide supra, pp. $190 f$.

Substituting in the second equation, we get

$$
\left(a^{\prime} \alpha^{2}+b^{\prime} \alpha+c^{\prime}\right) y^{2}+d^{\prime}=v^{2}
$$

which can be solved by the method of the Square-nature. This method is equally applicable if the unknown part in the second equation is of a different kind but still of the second degree.

Bhâskara II gives the following illustrative example together with its solution: ${ }^{1}$

$$
\left.\begin{array}{l}
x^{2}+x y+y^{2} \doteq u^{2} \\
(x+y) u+1=v^{2}
\end{array}\right\}
$$

Multiplying the first equation by 36 , we get

Whence

$$
\begin{array}{r}
(6 x+3 y)^{2}+27 y^{2}=36 u^{2} \\
6 x+3 y=\frac{1}{2}\left(\frac{27 y^{2}}{\lambda}-\lambda\right) \\
6 u=\frac{1}{2}\left(\frac{27 y^{2}}{\lambda}+\lambda\right)
\end{array}
$$

where λ is an arbitrary rational number. Taking $\lambda=y$, we have

$$
\begin{array}{lrl}
& 6 x+3 y & =13 y, \\
\text { or } & x & =\frac{5}{3} y, \\
\text { and } & u & =\frac{7}{3} y .
\end{array}
$$

Substituting in the second equation, we get

$$
s 6 y^{2}+9=9 v^{2}
$$

By the method of the Square-nature the values of y are $6,180, \ldots$

Hence the required values of (x, y) are (10,6), (300, 180), ...
${ }^{1} \mathrm{BBi}$, pp. 107f.
26. DOUBLE EQUATIONS OF HIGHER DEGREES

There are a few problems which involve double equations of degrees higher than the second. 'The following examples are taken from Bhâskara II:

Example 1. "The sum of the cubes (of two numbers) is a square and the sum of their squares is a cube. If you know them, then I shall admit that you are a great algebraist." ${ }^{1}$

We have to solve the equations

$$
\left.\begin{array}{l}
x^{2}+y^{2}=u^{3} \\
x^{3}+y^{3}=v^{2} .
\end{array}\right\}
$$

The solution of this problem by Bhâskara II is as follows :
"Here suppose the two numbers to be $\chi^{2}, 2 \chi^{2}$. The sum of their cubes is $9 z^{6}$. 'This is by itsclf a square and its square-root is $3 z^{3}$.
"Now the sum of the squares of those two numbers is $\rho \tau^{4}$. This must be a cube. Assuming it to be equal to the cube of an optional multiple of $5 \approx$ and removing the factor z^{3} from both sides (we get $z=2 s p^{3}$, where p is an optional number); so, as stated before, the numbers are (putting $p=1$) 625, 1250. The assumption should be always such as will make it possible to remove (the cube of) the unknown." ${ }^{2}$

In general, assume $x=m z^{2}, y=n \chi^{2}$; substituting in the second equation, we have

If

$$
\begin{aligned}
& x^{3}+y^{3}=\left(m m^{3}+n^{3}\right) \chi^{6}=v^{2} \\
& m^{3}+n^{3}=\text { a square }=p^{2}, \text { say }
\end{aligned}
$$

then

$$
v=p z^{3}
$$

${ }^{1}$ BBi, p. ${ }^{6} 6$.
${ }^{2} B B i, p p .56 f$.

Now, from the first equation, we have

$$
\left(m^{2}+n^{2}\right) \varkappa^{4}=u^{3}
$$

Assume $u=r z$; then

$$
z=\frac{r^{3}}{m^{2}+n^{2}}
$$

Hence we get

$$
x=\frac{m r^{6}}{\left(m^{2}+n^{2}\right)^{2}}, \quad y=\frac{n r^{6}}{\left(m^{2}+n^{2}\right)^{2}}
$$

where r is any integer and m, n are such that

$$
m^{3}+n^{3}=\text { a square }
$$

One obvious solution ${ }^{1}$ of this equation is $m=\mathbf{x}, n=\mathbf{2}$. Hence we get the solution

$$
x=\frac{r^{6}}{2 \varsigma}, \quad y=\frac{2 r^{6}}{25}
$$

This particular solution has been given by Nârâyana, who says:
"The square of the cube of an optional number is the one and twice it is the other. These divided by 2 's will be the two numbers, the sum of whose squares will
${ }^{1}$ Now $m^{3}+n^{3}$ can be made a square by putting

$$
m=\left(p^{3}+q^{3}\right) p, \quad n=\left(p^{3}+q^{3}\right) q
$$

so that

$$
m^{3}+n^{3}=\left(p^{3}+q^{3}\right)^{4}
$$

Hence the solution of our equation will be

$$
\begin{aligned}
& x=\frac{p r^{6}}{\left(p^{2}+q^{2}\right)^{2}\left(p^{3}+q^{3}\right)^{8}} \\
& y=\frac{q r^{6}}{\left(p^{2}+q^{2}\right)^{2}\left(p^{3}+q^{3}\right)^{2}}
\end{aligned}
$$

Putting $\quad r=\left(p^{2}+q^{2}\right)\left(p^{3}+q^{3}\right) s$, we have the solution in positive integers as

$$
\begin{aligned}
& x=p\left(p^{2}+q^{2}\right)^{4}\left(p^{3}+q^{3}\right)^{3} s^{6} \\
& y=q\left(p^{2}+q^{2}\right)^{4}\left(p^{3}+q^{3}\right)^{8} s^{6}
\end{aligned}
$$

where p, q, s are any integral numbers.
be a cube and the sum of whose cubes will be a square." ${ }^{1}$ He then adds by way of illustration :
"With the optional number r , we get the two numbers ($1 / 25,2 / 25$); with $2,(64 / 25,128 / 25)$; with 5 , (625,1250) ; with $1 / 2,(1 / 1600,1 / 800$); with $1 / 3$, ($\mathrm{I} / \mathrm{I} 8225,2 / \mathrm{I} 8225$). Thus by virtuc of (the multiplicity of) the optional number many solutions can be found."

Example 2. "O most learned algebraist, tell me those various pairs of whole numbers whose difference is a square and the sum of whose squares is a cube." ${ }^{2}$

That is to say, solve in positive integers

$$
\left.\begin{array}{r}
y-x=-u^{2}, \\
y^{2}+x^{2}=v^{3} .
\end{array}\right\}
$$

Bhâskara Il's process of solving this problem is as follows :
"Let the two numbers be x, y. Putting their difference, $y-x$, equal to u^{2}, we gct the valuc of x as $y-u^{2}$. Having thus found the value of x, the two numbers become $y-u^{2}, y$.
"The sum of their squares $=2 y^{2}-2 y u^{2}+u^{4}$. This is a cube. Making it equal to u^{6} and transposing we get

$$
u^{6}-u^{4}=2 y^{2}-2 y u^{2}
$$

Multiplying both sides by 2 and superadding u^{4}, we get the square-root of the second side $=2 y-u^{2}$, and the first side $=2 u^{6}-u^{4}$. Dividing out by u^{4} (and putting w for $2 y / u^{2}-1$), we get

$$
2 u^{2}-\mathrm{I}=w^{2} .
$$

By the method of the Squate-nature the roots of this equation are

$$
\begin{aligned}
& u=5,29 \\
& w=7,41,
\end{aligned}
$$

${ }^{1}$ GK, i. so.
${ }^{2} \mathrm{BBi}$, p. 103.
"Then by the rule, 'Or, if a biquadratic factor has been removed, the greater root should be multiplied by the square of the lesser root,' ${ }^{1}$ we get

$$
\begin{aligned}
& 2 y-25=175 \\
& 2 y-841=3448 \mathrm{I} .
\end{aligned}
$$

or
Therefore

$$
y=100,17661, \ldots
$$

"Finding the respective values of the numbers, they $\operatorname{arc}(75,100),(16820,17661)$, ctc."

Example 3. "Bring out quickly those two numbers of which the sum of the cube (of one) and the square (of the other) becomes a square and whose sum also is a square." ${ }^{2}$

That is to say, solve

$$
\left\{\begin{align*}
x^{3}+y^{2} & =u^{2} \tag{I}\\
x+y & =v^{2} .
\end{align*}\right.
$$

This problem has been solved by Bhâskara II in two ways, which are substantially as follows :

First method. From (1) we get

$$
u=\frac{1}{2}\left(\frac{x^{3}}{\lambda}+\lambda\right), \quad y=\frac{1}{2}\left(\frac{x^{3}}{\lambda}-\lambda\right),
$$

where λ is an arbitrary number. Putting $\lambda=\lambda$, we get

$$
\text { - } u=\frac{1}{2}\left(x^{2}+x\right), \quad y=\frac{1}{2}\left(x^{2}-x\right) .
$$

Substituting this value of y in (2), we get
or

$$
\begin{aligned}
x^{2}+x & =2 v^{2} \\
(2 x+1)^{2} & =8 v^{2}+1
\end{aligned}
$$

[^168]By the method of the Square-nature we have

$$
\left.\left.\begin{array}{rl}
v & =6 \\
2 x+1 & =17
\end{array}\right\}, \quad \begin{array}{r}
v=35 \\
2 x+1=99
\end{array}\right\}, \ldots
$$

Whence the values of (x, y) are $(8,28),(49,1176), \ldots$
Second Method. Assume $x=2 w^{2}, y=7 w^{2}$. Then

$$
x+y=9 w^{2}=(3 w)^{2} .
$$

So the equation (2) is satisfied. Now, substituting those values in (1) we get
or

$$
\begin{aligned}
8 w^{6}+49 w^{4} & =u^{2} \\
w^{4}\left(8 w^{2}+49\right) & =u^{2} \\
8 w^{2}+49 & =\tau^{2},
\end{aligned}
$$

If
then

$$
u=z^{2 w^{2}} .
$$

Now the values of m making $8 \nu^{2}+49$ a square are $2,3,7 \ldots$ Hence the required numbers (x, y) are $(8,28),(18,63),(98,343), \ldots$

Example 4. "What is that number which multiplied by three and added with unity becomes a cube; the cube-root squared and multiplied by three becomes, together with unity, a square."1

That is to say, solve

$$
\left\{\begin{array}{l}
3 x+1=u^{3}, \tag{x}\\
3 u^{2}+1=v^{2} .
\end{array}\right.
$$

It has been solved by Bhâskara II thus: ${ }^{*}$
From (2), by the method of the Square-nature, we get the values of (u, v) as (1,2), $(4,7),(15,26), \ldots$ Whence the values of x are $21,3374 / 3, \ldots$
${ }^{1} B B i$, p. 119. This problem is admittedly taken by Bhâskara II from an earlier writer.

Alternatively ${ }^{1}$ we assume $u=3 y+\mathrm{I}$; then from the equation (1) we get

$$
x=3 y\left(3 y^{2}+3 y+1\right) .
$$

Also from (2) we have

$$
\begin{aligned}
27 y^{2}+18 y+4 & =v^{2} \\
& =(m y-2)^{2}, \text { say. }
\end{aligned}
$$

Hence

$$
y=\frac{18+4 m}{m^{2}-27}
$$

Therefore, the required value of x is

$$
x=9\left(\frac{18+4 m}{m^{2}-27}\right)^{3}+9\left(\frac{18+4 m}{m^{2}-27}\right)^{2}+3\left(\frac{18+4 m}{m^{2}-27}\right),
$$

where m is a rational number greater than s.
The first of the previous solutions is given by $m=9$.
Double Equations in Several Unknowns. 'To solve a double equation involving several unknowns, Bhâskara 1 I gives the following hints:
"When there are square and other powers of three or more unknowns, leaving out any two unknowns at pleasure, the values of others should be arbitrarily assumed and the roots investigated." 2

For the case of a single equation, he says :
"But when there is only one equation, the roots should be determined as before after assuming optional values for all the unknowns except one."

27. MULTIPLE EQUATIONS

There are some very elegant problems in which three or more functions, linear or quadratic, of the unknowns have to be made squares or cubes. The
following example occurs in the Lagbu-Bbâskarîya of Bhâskara I^{1} ($\mathbf{5 2 2}^{22}$:

Example 1. To find two numbers x and y such that the expressions $x+y, x-y, x y+1$ are each a perfect square.

Brahmagupta gives the following solution :
"A square is increased and diminished by another. The sum of the results is divided by the square of half their difference. Those results multiplied (severally) by this quotient give the numbers whose sum and difference are squares as also their product together with unity." ${ }^{2}$

Thus the solution is :

$$
\begin{gathered}
x=P\left(m^{2}+n^{2}\right), \\
y=P\left(m^{2}-n^{2}\right), \\
\text { where } P=\frac{\left(m^{2}+n^{2}\right)+\left(m^{2}-n^{2}\right)}{\left[\frac{1}{2}\left\{\left(m^{2}+n^{2}\right)-\left(m^{2}-n^{2}\right)\right\}\right]^{2}}, m, n \text { being }
\end{gathered}
$$ any rational numbers.

Nârâyaṇa (1357) says:
"The square of the square of an optional number is set down at two places. It is decreased by the square (at one place) and increased (at another), and then doubled. The sum and difference of the results are squares and so also their product together with unity."3

That is,

$$
\begin{aligned}
& x=2\left(p^{4}+p^{2}\right), \\
& y=2\left(p^{4}-p^{2}\right),
\end{aligned}
$$

where p is any rational number.
${ }^{1}$ LBb, viii. 17.
${ }^{2} B r S p S i$, xviii. 72.
${ }^{3}$ GK, i. 47.

The rationale of this solution is as follows :
Suppose

$$
x=2 \chi^{2}\left(m^{2}+n^{2}\right), \quad y=2 \chi^{2}\left(m^{2}-n^{2}\right)
$$

so that $x \pm y$ are already squares. We have, therefore, only to make

$$
x y+1=4 z^{4}\left(m^{2}+n^{2}\right)\left(m^{2}-n^{2}\right)+1=\text { a square. }
$$

Now

$$
4 Z^{4}\left(m^{4}-n^{4}\right)+1=\left(2 \chi^{2} m^{2}-1\right)^{2}+4 Z^{2}\left(m^{2}-Z^{2} n^{4}\right) .
$$

Hence, in order that $x y+1$ may be a square, one sufficient condition is

$$
m^{2}=\tau^{2} n^{4} .
$$

Therefore

$$
2 z^{2}=\frac{2 m^{2}}{n^{4}}=\frac{\left(m^{2}+n^{2}\right)+\left(m^{2}-n^{2}\right)}{\left[\frac{1}{2}\left\{\left(m^{2}+n^{2}\right)-\left(m^{2}-n^{2}\right)\right\}\right]^{2}} .
$$

Again

$$
x=2 z^{2}\left(m^{2}+n^{2}\right)=2\left(z^{4} n^{4}+z^{2} n^{2}\right),
$$

or

$$
x=2\left(p^{4}+p^{2}\right), \text { if } p=z^{n} .
$$

Therefore

$$
y=2\left(p^{4}-p^{2}\right) .
$$

Example 2. "If thou be expert in mathematics, tell me quickly those two numbers whose sum and difference are squares and whose product is a cube." ${ }^{1}$

That is, solve

$$
\left.\begin{array}{r}
x \pm y=\text { squares }, \\
x y=\text { a cube. }
\end{array}\right\}
$$

Bhâskara II says :
"Here let the two numbers be $5 z^{2}, 4 \chi^{2}$. They are assumed such as will make their sum and difference both squares. Their product is $20 \chi^{4}$. This must be a cube. Putting it equal to the cube of an optional multiple ${ }^{2}$ of 10χ and removing the common factor χ^{3} from the sides as before, (we shall ultimately find) the numbers to be 1000 , 12500."
${ }^{1} B B i$, p. 56.
${ }^{2}$ G.K, i. 49.

In general, let us assume, as directed by Bhâskara II,

$$
x=\left(m^{2}+n^{2}\right) z^{2}, \quad y=2 m n \chi^{2}
$$

which will make $x \pm y$ squares. We have, therefore, only to make

Let

$$
\begin{aligned}
& 2 m n\left(m^{2}+n^{2}\right) z^{4}=\text { a cube } \\
& 2 m n\left(m^{2}+n^{2}\right) \tau^{4}=p^{3} \tau^{3}
\end{aligned}
$$

Then

$$
z=\frac{p^{3}}{2 m n\left(m^{2}+n^{2}\right)} .
$$

Therefore

$$
\begin{aligned}
& x=\frac{\left(m^{2}+n^{2}\right) p^{6}}{\left\{2 m n\left(m^{2}+n^{2}\right)\right\}^{2}}, \\
& y=\frac{2 m n n p^{6}}{\left\{2 m n\left(m m^{2}+n^{2}\right)\right\}^{2}},
\end{aligned}
$$

where m, n, p are arbitrary.
This general solution has been explicitly stated by Nârâyaṇa thus:
"The square of the cube of an optional number is divided by the square of the product of the two numbers stated above and then severally multiplied by those numbers. (Thus will be obtained) two numbers whose sum and difference are squares and whose product is a cube." ${ }^{1}$

The two numbers stated above ${ }^{2}$ are $m^{2}+n^{2}$ and $2 m n$ whose sum and difference are squares.

In particular, putting $m=1, n=2, p=10$, Nâtâyana finds $x=12500, y=10000$. With other values of m, n, p he obtains the values ($3165 / 16,625 / 4$), ($62500 / 117,250000 / 507$), ($15625 / 1872,15625 / 2028$); and observes: "thus by virtue of (the multiplicity of) the optional numbers many values can be found."

[^169]Example 3. To find numbers such that each of them severally added to a given number becomes a square; and so also the product of every contiguous pair increased by another given number.

For instance, let it be required to find four numbers such that

$$
\begin{array}{ll}
x+\alpha=p^{2}, & x y+\beta=\xi^{2}, \\
y+\alpha=q^{2}, & y z+\beta=-=\eta^{2}, \\
z+\alpha=r^{2}, & z^{n}+\beta=\zeta^{2} . \\
n+\alpha=s^{2}, &
\end{array}
$$

The method for the solution of a problem of this kind is indicated in the following rule quoted by Bhâskara II (II50) from an earlier writer, whose name is not known:
"As many multiple (guna) as the product-interpolator (radhco-ksepna) is of the number-interpolator (râsi-ksepa), with the squarc-root of that as the common difference are assumed certain numbers; these squared and diminished by the number-interpolator (severally) will be the unknowns."

In applying this method to solve a particular problem, to be stated presently, Bhâskara Il observes by way of explanation:
"In these cases, that which being added to an (unknown) number makes it a square is designated as the number-interpolator. The number-interpolator multiplied by the square of the difference of the squareroots pertaining to the numbers, is equal to the productinterpolator. For the product of those two numbers added with the latter certainly becomes a square. The products of two and two contiguous of the squareroots pertaining to the numbers diminished by the

[^170]number-interpolator are the square-roots corresponding to the products of the numbers." ${ }^{1}$

Since $x=p^{2}-\alpha, y=q^{2}-\alpha$, we get

$$
\begin{aligned}
x y+\beta & =\left(p^{2}-\alpha\right)\left(q^{2}-\alpha\right)+\beta \\
& =(p q-\alpha)^{2}+\left\{\beta-\alpha(q-p)^{2}\right\} .
\end{aligned}
$$

In order that $x y+\beta$ may be a square, a sufficient condition is
or

$$
\alpha(q-p)^{2}=\beta
$$

Then

$$
q=p \pm \sqrt{\beta / \alpha}=p \pm \gamma, \text { where } \gamma=\sqrt{\beta / \alpha .}
$$

Then $\quad x y+\beta=(p q-\alpha)^{2}$.
Hence

$$
\xi=p q-\alpha
$$

Similarly

$$
r=q \pm \gamma, \quad s=r \pm \gamma
$$

Thus, it is found that the square-roots p, q, r, s form an A.P. whose common difference is $\gamma(=\sqrt{\beta / \alpha})$. Further, we have

$$
\begin{aligned}
x & =p^{2}-\alpha, \\
y & =(p \pm \gamma)^{2}-\alpha, \\
z & =(p \pm 2 \gamma)^{2}-\alpha, \\
u^{\prime} & =(p \pm 3 \gamma)^{2}-\alpha,
\end{aligned}
$$

as stated in the rule.
These values of the unknowns, it will be easily found, satisfy all the conditions about their products. For

$$
\begin{aligned}
& x y+\beta=\{p(p \pm \gamma)-\alpha\}^{2} \\
& y z+\beta=\{(p \pm \gamma)(p \pm 2 \gamma)-\alpha\}^{2} \\
& z w+\beta=\{(p \pm 2 \gamma)(p \pm 3 \gamma)-\alpha\}^{2}
\end{aligned}
$$

${ }^{1}$ BBi, p. 67.

Thus we have

$$
\begin{aligned}
& \xi=p(p \pm \gamma)-\alpha, \\
& \eta=(p \pm \gamma)(p \pm 2 \gamma)-\alpha, \\
& \zeta=(p \pm 2 \gamma)(p \pm 3 \gamma)-\alpha ;
\end{aligned}
$$

as stated by Bhâskara II.
It has been observed by him that the above principle is well known in mathematics. But we do not find it in the works anterior to him, which are available to us.

It is noteworthy that the above principle will hold even when all the β 's are not equal. For, suppose that in the above instance the second set of conditions is replaced by the following :

$$
\begin{aligned}
& x y+\beta_{1}=\xi^{2}, \\
& y z+\beta_{2}=\eta^{2} \\
& z n+\beta_{3}=\zeta^{2} .
\end{aligned}
$$

Then, proceeding in the same way, we find that
and

$$
\begin{gathered}
q=p \pm \sqrt{ } \overline{\beta_{1} / \alpha}, \quad r=q \pm \sqrt{\beta_{2} / \alpha}, \quad s=r \pm \sqrt{\beta_{3} / \alpha} \\
\mathrm{d} \\
\xi=p q-\alpha, \quad \eta=q r-\alpha, \quad \zeta=r s-\alpha .
\end{gathered}
$$

It should also be noted that in order that $x y+\beta$ or $p^{2} q^{2}-\alpha\left(p^{2}+q^{2}\right)+\alpha^{2}+\beta$ may be a square, there may be other values of q besides the one specified above, namely $q=p \pm \sqrt{\beta / \alpha}$. We may, indeed, regard

$$
p^{2} q^{2}-\alpha\left(p^{2}+q^{2}\right)+\alpha^{2}+\beta=\xi^{2}
$$

as an indeterminate equation in q. Since we know one solution of it, namely $q=p \pm \gamma, \xi=p(p \pm \gamma)-\alpha$, we can find an infinite number of other solutions by the method of the Square-nature.

Now, suppose that another condition is imposed on the numbers, viz.,

$$
w x+\beta^{\prime}=\mu^{2} .
$$

On substituting the values of x and ν this condition transforms into
$p^{4} \pm 6 \gamma p^{3}+\left(9 \gamma^{2}+2 \alpha\right) p^{2} \pm 6 \alpha \gamma p+\alpha^{2}-9 \beta+\beta^{\prime}=\mu^{2}$, an indeterminate equation of the fourth degree in p.

In the following example and its solution from Bhâskara II we find the application of the above principle:

Example. "What are those four numbers which together with 2 become capable of yielding squareroots ; also the products of two and two contiguous of which added by 18 yield square-roots; and which are such that the square-root of the sum of all the roots added by in becomes 13. Tell them to me, O algebraist friend." ${ }^{1}$

Solution. "In this example, the product-interpolator is 9 times the number-interpolator. The square-root of 9 is 3. Hence the square-roots corresponding to the numbers will have the common difference 3. Let them be

$$
x, x+3, x+6, x+9
$$

"Now the products of two and two contiguous of these minus the number-interpolator are the squareroots pertaining to the products of the numbers as increased by 18. So these square-roots are

$$
\begin{aligned}
& x^{2}+3 x-2 \\
& x^{2}+9 x+16 \\
& x^{2}+15 x+52
\end{aligned}
$$

"The sum of these and the previous square-roots all together is $3 x^{2}+31 x+84$. This added with II

[^171]becomes equal to 169 . Hence
$$
3 x^{2}+31 x+95=0 x^{2}+0 x+169
$$
"Multiplying both sides by 12 , superadding 961 , and then extracting square-roots, we get
\[

$$
\begin{aligned}
6 x+31 & =0 x+43 . \\
\therefore \quad x & =\mathbf{2} .
\end{aligned}
$$
\]

"With the value thus obtained, we get the values of the square roots pertaining to the numbers to be 2, s, 8, II. Subtracting the number-interpolator from the squares of these, we have the (required) numbers as 2 , 23, 62, 119 ."

Example 4. To find two numbers such that

$$
\begin{aligned}
x-y+k & =u^{2} \\
x+y+k & =v^{2} \\
x^{2}-y^{2}+k^{\prime} & =s^{2} \\
x^{2}+y^{2}+k^{\prime \prime} & =t^{2}
\end{aligned}
$$

Bhâskara II says :
"Assume first the value of the square-root pertaining to the difference (of the numbers wanted) to be any unknown with or without an absolute number. The root corresponding to the sum will be equal to the root pertaining to the difference together with the square-root of the quotient of the interpolator of the difference of the squares divided by the interpolator for the sum or difference of the numbers. The squares of these two less their interpolator are the sum and difference of the numbers. From them the two numbers can be found by the rule of concurrence." ${ }^{1}$
${ }^{1} \mathrm{BBi}, \mathrm{pp} .1 \mathrm{Iff}$.

That is to say, if w is any rational number, we assume

$$
u=w \pm \alpha
$$

where α is an absolute number which may be o. Then

$$
\begin{aligned}
v & =(v \pm \alpha)+\sqrt{k^{\prime} \mid k} \\
\text { Now } x^{2}-y^{2}+k^{\prime} & =(x-y)(x+y)+k^{\prime} \\
& =\left(u^{2}-k\right)\left(v^{2}-k\right)+k^{\prime} \\
& =u^{2} v^{2}-k\left(u^{2}+v^{2}\right)+k^{2}+k^{\prime}
\end{aligned}
$$

One sufficient condition that the right-hand side may be a square is

$$
\begin{array}{rlrl}
k(v-u)^{2} & =k^{\prime} \\
\text { or } & v & =u+\sqrt{k^{\prime} / k,}
\end{array}
$$

which is stated in the rule. Therefore,

$$
\begin{aligned}
& x-y=(\nu \pm \alpha)^{2}-k, \\
& x+y=\left(\nu \pm \alpha+\sqrt{k^{\prime} \mid k}\right)^{2}-k .
\end{aligned}
$$

Hence $\quad \lambda=\frac{1}{2}\left\{(\nu \pm \alpha)^{2}+\left(\nu \pm \alpha+\sqrt{k^{\prime} \mid k}\right)^{2}-2 k\right\}$,

$$
y=\frac{1}{2}\left\{\left(w \pm \alpha+\sqrt{k^{\prime} / k}\right)^{2}-(w+\alpha)^{2}\right\} .
$$

Now, if γ denotes $\sqrt{k^{\prime} / k}$, we get

$$
\begin{aligned}
x^{2}+y^{2}=u^{4} & +2 \gamma u^{3}+\left(3 \gamma^{2}-2 k\right) u^{2} \\
& +2 \gamma\left(\gamma^{2}-k\right) u+\frac{1}{2} k^{2}+\frac{1}{2}\left(\gamma^{2}-k\right)^{2} .
\end{aligned}
$$

So it now remains to solve

$$
\begin{aligned}
u^{4}+2 \gamma u^{3}+\left(3 \gamma^{2}-2 k\right) u^{2} & +2 \gamma\left(\gamma^{2}-k\right) u \\
& +\frac{1}{2} k^{2}+\frac{1}{2}\left(\gamma^{2}-k\right)^{2}+k^{\prime \prime}=t^{2}
\end{aligned}
$$

which is an indeterminate equation in u.
Applications. We take an illustrative example with its solution from Bhâskara II.
"O thou of fine intelligence, state a pair of numbers, other than 7 and 6 , whose sum and difference
(severally) added with 3 are squares; the sum of their squares decreased by 4 and the difference of the squares increased by 12 are also squares; half their product together with the smaller one is a cube; again the sum of all the roots plus 2 is a square.'"

That is to say, if $x>y$, we have to solve

$$
\begin{gathered}
x-y+3=u^{2} \\
x+y+3=v^{2} \\
x^{2}-y^{2}+12=s^{2} \\
x^{2}+y^{2}-4=t^{2} \\
\frac{1}{2} x y+y=p^{3} \\
u+v+s+t+p+2=q^{2}
\end{gathered}
$$

This problem has been solved in two ways :
First Method. As directed in the above rule, assume

$$
u=w-\mathrm{x}
$$

Then

$$
\begin{aligned}
& x-y=(w-1)^{2}-3=w^{2}-2 w-2, \\
& x+y=(p-1+2)^{2}-3=w^{2}+2 w-2 .
\end{aligned}
$$

Therefore

$$
x=w^{2}-2, \quad y=2 w .
$$

Now, we find that

$$
\begin{aligned}
x^{2}-y^{2}+12 & =\left(w^{2}-4\right)^{2}, \\
x^{2}+y^{2}-4 & =w^{4}, \\
\frac{1}{2} x y+y & =w^{3} .
\end{aligned}
$$

So all the equations except the last one are already satisfied. This remaining equation now reduces to

$$
2 w^{2}+3 w-2=q^{2} .
$$

Completing the square on the left-hand side of this equation, we get

$$
(4 \nu+3)^{2}=8 q^{2}+25
$$

${ }^{1} B B i$, p. 115.

By the method of the Square-nature its solutions are

$$
\left.\left.\begin{array}{rl}
q=5 \\
4 w+3=15
\end{array}\right\}, \quad \begin{array}{r}
q=175 \\
4 v+3=495
\end{array}\right\}, \cdots
$$

Therefore

$$
w=3,123, \ldots
$$

Hence the values of (x, y) are (7,6), (19127, 246), \ldots
Second Method. Or assume ${ }^{1}$
then

$$
x-y+3=w^{2}
$$

$$
x+y+3=w^{2}+4 w+4=(y+2)^{2}
$$

Whence

$$
x=w^{2}+2 w-1, \quad y=2 w+2
$$

Now, we find that

$$
\begin{aligned}
x^{2}-y^{2}+12 & =\left(w^{2}+2 w-3\right)^{2}, \\
x^{2}+y^{2}-4 & =\left(w^{2}+2 w+1\right)^{2}, \\
\frac{1}{2} x y+y & =(w+1)^{3} .
\end{aligned}
$$

Then the remaining condition reduces to

$$
2 w^{2}+7 w+3=q^{2} .
$$

Completing the square on the left-hand side, we get

$$
(4 y+7)^{2}=8 q^{2}+25
$$

Whence by the method of the Square-nature, we get

$$
\begin{array}{r}
q=5 \\
\left.4 v+7=15, \quad \begin{array}{r}
q=175 \\
4 v=2,
\end{array}\right\}, \ldots \\
\left.\begin{array}{c}
q v=495
\end{array}\right\}, \ldots \\
(x, y)=(7,6),(15127,246), \ldots
\end{array}
$$

Therefore
Hence
Another very interesting example which has been borrowed by Bhâskara II from an earlier writer is the following: ${ }^{2}$
${ }^{1}$ This is clearly equivalent to the supposition, $u=y$, $v=w+2$.
${ }^{2}$ The text is kasyâpyudâbaranam ("the example of some one"). This observation appears to indicate that this particular example was borrowed by Bhâskara II from a secondary source; its primary source was not known to him.
"Tell me quickly, O sound algebraist, two numbers, excepting 6 and 8 , which are such that the cube-root of half the sum of their product and the smaller one, the square-root of the sum of their squares, the square-roots of the sum and difference of them (each) increased by 2, and of the difference of their squares plus 8 , all being added together, will be capable of yielding a squareroot." ${ }^{1}$

That is to say, if $x>y$, we have to solve

$$
\begin{aligned}
\sqrt[3]{\frac{1}{2}(x y+y)} & +\sqrt{x^{2}+y^{2}}+\sqrt{x^{2}-y^{2}+8} \\
& +\sqrt{x+y+2}+\sqrt{x-y+2}=q^{2}
\end{aligned}
$$

In every instance of this kind, remarks Bhâskara II, "the values of the two unknown numbers should be so assumed in terms of another unknown that all the stipulated conditions will be satisfied." In other words, the equation will have to be resolved into a number of other equations all of which have to be satisfied simultaneously. Thus we shall have to solve

$$
\begin{aligned}
& x-y+2=u^{2}, \\
& x+y+2=v^{2}, \\
& x^{2}-y^{2}+8=s^{2}, \\
& x^{2}+y^{2}=t^{2}, \\
& \frac{1}{2}(x y+y)=p^{3}, \\
& u+v+s+t+p=q^{2} .
\end{aligned}
$$

The last equation represents the original one.
There-have been indicated several methods of solving these equations.
(i) Set $x=w^{2}-1, y=2 w$; then we find that

$$
\begin{aligned}
& x-y+2=(\nu-1)^{2}, \\
& x+y+2=(\nu+1)^{2},
\end{aligned}
$$

${ }^{1}$ BBi, p. 110.

$$
\begin{aligned}
x^{2}-y^{2}+8 & =\left(w^{2}-3\right)^{2} \\
x^{2}+y^{2} & =\left(w^{2}+1\right)^{2} \\
\frac{1}{2}(x y+y) & =w^{3} .
\end{aligned}
$$

So all the equations except the last one are identically satisfied. This last equation now becomes

$$
2 w^{2}+3^{v}-2=q^{2} .
$$

Completing the square on the left-hand side, we get

$$
(4 w+3)^{2}=8 q^{2}+25
$$

Solutions of this are

Therefore, we have the solutions of our problem as

$$
(x, y)=(8,6),(1677 / 4,41),(19128,246), \ldots
$$

Or set
(ii) $\left\{\begin{array}{l}x=w^{2}+2 w, \\ y=2 w+2 ;\end{array}\right.$
(iii) $\left\{\begin{array}{l}x=w^{2}-2 w, \\ y=2 w-2 ;\end{array}\right.$
or (iv) $\left\{\begin{array}{l}x=w^{2}+4 w+3, \\ y=2 w+4 .\end{array}\right.$
In conclusion Bhâskara II remarks : "Thus there may be a thousandfold artifices; since they are hidden to the dull, a few of them have been indicated here out of compassion for them." ${ }^{1}$

It will be noticed that in devising the various artifices noted above for the solution of the problem, Bhâskara II has been in each case guided by the result that if $u=v \pm \alpha$, then, $v=\boldsymbol{v} \pm \alpha+\sqrt{k \prime} / k$. He has simply taken different values of α in the different cases.
${ }^{1} B B i$, p. 110.
28. SOLUTION OF $a x y=b x+c y+d$

Bakhshâlî Treatise. The earliest instance of a quadratic indeterminate equation of the type $a x y=b x$ $+c y+d$, in Hindu mathematics occurs in the Bakhshâlî Treatise (c. 200). ${ }^{1}$ The text is very mutilated. But the example that is preserved is

$$
x y=3 x+4 y \mp 1
$$

of which the solutions preserved are

$$
\begin{aligned}
& x=\frac{3.4-1}{1}+4=15 \\
& y=1+3=4
\end{aligned}
$$

and

$$
\begin{aligned}
& x=1+4=5 \\
& y=\frac{3.4+1}{1}+3=16 .
\end{aligned}
$$

Hence, in general, the solutions of the equation

$$
x y=b x+c y+d,
$$

which appear to have been given are :

$$
\left.\left.\begin{array}{l}
x=\frac{b c+d}{m}+c, \\
y=m+b ;
\end{array}\right\} \quad \text { or } \quad \begin{array}{l}
x=m+c \\
y=\frac{b c+d}{m}+b ;
\end{array}\right\}
$$

where m is an arbitrary number.
An Unknown Author's Rule. Brahmagupta (628) has described the following method taken from an author who is not known now. ${ }^{2}$
${ }^{1}$ BMs, Folio 27, recto; compare also Kaye's Introduction §82.
${ }^{2}$ Prthûdakasvàmi (860) says that the method is due to a writer other than Brahmagupta. This is further corroborated by Brahmagupta's strictures on it (vide infra, p. 299).
"The product of the coefficient of the factum and the absolute number together with the product of the coefficients of the unknowns is divided by an optional number. Of the optional number and the quotient obtained, the greater is added to the lesser (of the coefficients of the unknowns) and the lesser to the greater (of the coefficients), and (the sums) are divided by the coefficient of the factum. (The results will be values of the unknowns) in the reversc order." ${ }^{1}$

As has been observed by Pṛthûdakasvâmî, this rule is to be applied to an equation containing the factum after it has been prepared by transposing the factum term to one side and the absolute term together with the simple unknown terms to the other. Then the solutions will be, m being an arbitrary rational number,

$$
\begin{aligned}
& x=\frac{1}{a}(m+c), \\
& y=\frac{1}{a}\left(\frac{a d+b c}{m}+b\right),
\end{aligned}
$$

if $b>c$ and $m>\frac{a d+b c}{m}$. If these conditions be reversed then x and y will have their values interchanged.

The rationale of the above solutions can be easily shown to be as follows:

$$
a x y=b x+c y+d
$$

or

$$
a^{2} x y-a b x-a c y=a d,
$$

or

$$
(a x-c)(a y-b)=a d+b c .
$$

Suppose

$$
a x-c=m, \text { a rational number }:
$$

then

$$
a y-b=\frac{a d+b c}{m}
$$

${ }^{1}$ BrSpSi, xviii, 60.

$$
\begin{equation*}
\text { SOLUTION OF } a x y=b x+c y+d \tag{299}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& x=\frac{1}{a}(m+c), \\
& y=\frac{1}{a}\left(\frac{a d+b c}{m}+b\right) .
\end{aligned}
$$

Or, we may put $\quad a y-b=m$;
then we shall have $\quad a x-c=\frac{a d+b c}{m}$;
whence

$$
\begin{aligned}
& x=\frac{1}{a}\left(\frac{a d+b}{m}+c\right), \\
& y=\frac{1}{a}(m+b)
\end{aligned}
$$

It will thus be found that the restrictive condition of adding the greater and lesser of the numbers m and $(a d+b c) / m$ to the lesser and greater of the numbers b and c respectively as adumbrated in the above rule is quite unnecessary.

Brahmagupta's Rule. Brahmagupta gives the following rule for the solution of a quadratic indeterminate equation involving a factum :
"With the exception of an optional unknown, assume arbitrary values for the rest of the unknowns, the product of which forms the factum. The sum of the products of these (assumed values) and the (respective) coefficients of the unknowns will be absolute quantities. The continued products of the assumed values and of the coefficient of the factum will be the coefficient of the optionally (left out) unknown. Thus the solution is effected without forming an equation of the factum. Why then was it done so? ${ }^{1}$

The reference in the latter portion of this rule is to the method of the unknown writer. The principle

[^172]underlying Brahmagupta's method is to reduce, like the Greek Diophantus (c. 275), ${ }^{1}$ the given indeterminate equation to a simple determinate one by assuming arbitrary values for all the unknowns except one. So it is undoubtedly inferior to the earlier method. Brahmagupta gives the following illustrative example :
"On subtracting from the product of signs and degrees of the sun, three and four times (respectively) those quantities, ninety is obtained. Determining the sun within a year (one can pass as a proficient) mathematician." ${ }^{2}$

If x denotes the signs and y the degrees of the sun, then the equation is

$$
x y-3 x-4 y=90
$$

Thus this problem, as that of Bhâskara II (infra), appears to have some relation with that of the Bakhshâlî work. Prthûdakasvâmî solves it in two ways. Firstly, he assumes the arbitrary number to be 17 , then

$$
\begin{aligned}
& x=\frac{1}{1}\left(\frac{90.1+3.4}{17}+4\right)=10, \\
& y=\frac{1}{1}(17+3)=20 .
\end{aligned}
$$

Secondly, he assumes arbitrarily $y=20$. On substituting this value in the above equation, it reduces to

$$
20 x-3 x=170 ;
$$

whence $x=10$.
Mahâvira's Rule. Mahâvîra (850) has not treated equations of this type. There are, however, two problems in his Ganita-sâra-saìigraha which involve similar equations. One of them is to find the increase or

[^173]ciecrease of two numbers (a, b) so that the product of the resulting numbers will be equal to another optionally given number (d). Thus we are to solve
\[

$$
\begin{aligned}
(a \pm x)(b \pm y) & =d \\
x y \pm(b x+a y) & =d-a b .
\end{aligned}
$$
\]

The rule given for solving this is :
"The difference between the product of the given numbers and the optional number is put down at two places. It is divided (at one place) by one of the given numbers increased by unity and (at the other) by the optional number incteased by the other given number. These will give in the reverse order the valucs of the quantitiés to be added or subtracted." ${ }^{1}$

That is to say,

$$
\left.\left.\begin{array}{l}
x=\frac{d \sim a b}{d+b} \\
y=\frac{d \sim a b}{a+1}
\end{array}\right\}, \quad \text { or } \quad \begin{array}{l}
x=\frac{d \sim a b}{b+1} \\
y=\frac{d \sim a b}{d+a}
\end{array}\right\}
$$

Thus the solutions given by Mahâvîra are much cramped. The other problem considered by him is to separate the capital, interest and time when their sum is given: If x be the capital invested and y the period of time in months, then the interest will be $m x y$, where m is the rate of interest per month. Then the problem is to solve

$$
m x y+x+y=p
$$

Mahâvìra solves this equation by assuming arbitrary values for $y^{2}{ }^{2}$

S̈ripati's Rule. Sripati (1039) gives the following rule :
"Remove the factums from one side, the (simple) unknowns and the absolute numbers from the other. The product of the coefficients of the unknowns being added to the product of the absolute quantity and the coefficient of the factum, (the sum) is divided by an optional number. The quotient and the divisor should be added arbitrarily to the greater or smaller of the coefficients of the unknowns. These divided by the coefficient of the factum will be the values of the unknowns in the reverse order." 1

$$
\text { i.e., } \left.\left.\begin{array}{rl}
x & =\frac{1}{a}(m+c) \\
y & =\frac{1}{a}\left(\frac{a d+b c}{m}+b\right)
\end{array}\right\}, \begin{array}{l}
x=\frac{1}{a}\left(\frac{a d+b c}{m}+c\right) \\
y=\frac{1}{a}(m+b)
\end{array}\right\},
$$

where m is arbitrary.
Bhâskara II's Rule. Bhâskara II (iI 50) has given two rules for the solution of a quadratic indeterminate equation containing the product of the unknowns. His first method is the same as that of Brahmagupta:
"Leaving one unknown quantity optionally chosen, the values of the other should be assumed arbitrarily according to convenience. The factum will thus be reduced and the required solution can then be obtained by the first method of analysis." ${ }^{2}$

Bhâskata's aim was to obtain integral solutions. The above method is, however, not convenient for the purpose. He observes :
"On assuming in this way an arbitrary known value for one of the unknowns, the integral values of the

[^174]two unknowns can be obtained with much difficulty." So he describes a second method "by which they can be obtained with little difficulty."
"Transposing the factum from one side chosen at pleasure, and the (simple) unknowns and the absolute number from the other side (of the equation), and then dividing both the sides by the coefficient of the factum, the product of the coefficients of the unknowns together with the absolute number is divided by an optional number. The optional number and that quotient should be increased or diminished by the coefficients of the unknowns at pleasure. They (results thus obtained) should be known as the values of the two unknowns reciprocally."2

This rule has been elucidated by the author thus:
"From one of the two equal sides the factum being removed, and from the other the unknowns and the absolute number; then dividing the two sides by the coefficients of the factum, the product of the coefficients of the unknowns on the other side added to the absolute number, is divided by an optional number. The optional number and the quotient being arbittarily added to the coefficients of the unknowns, should be known as the values of the unknowns in the reciprocal order. That is, the one to which the coefficient of the kallaka (the second unknown) is added, will be the value of the yavat-tâvat (the first unknown) and the one to which the coefficient of the yavat-târat is added, will be the value of the kâlaka. But if, after that has been done, owing to the magnitude, the statements (of the problem) are not fulfilled, then

[^175]from the optional number and the quotient, the coefficients of the unknowns should be subtracted, and (the remainders) will be the values of the unknowns in the reciprocal order."

Thus Bhâskara's solutions are

$$
\left.\left.\begin{array}{l}
x=\frac{c}{a} \pm m^{\prime} \\
y=\frac{b}{a} \pm n^{\prime}
\end{array}\right\} \quad \begin{array}{l}
x=\frac{c}{a} \pm n^{\prime} \\
y=\frac{b}{a} \pm m^{\prime}
\end{array}\right\}
$$

where m^{\prime} is any arbitrary number and $n^{\prime}=\frac{1}{m^{\prime}}\left(\frac{b c}{a^{2}}+\frac{d}{a}\right)$.
The rationale of these solutions is as follows:

$$
\begin{aligned}
& a x y=b x+c y+d \\
& \text { or } \quad x y-\frac{b}{a} x-\frac{c}{a} y=\frac{d}{a}, \\
& \text { or } \quad\left(x-\frac{c}{a}\right)\left(y-\frac{b}{a}\right)=\frac{d}{a}+\frac{b c}{a^{2}}=m^{\prime} n^{\prime}, \text { say. }
\end{aligned}
$$

Then, either

$$
\left.\left.\begin{array}{l}
x-\frac{c}{a}= \pm m^{\prime} \\
y-\frac{b}{a}= \pm n^{\prime}
\end{array}\right\} \quad \text { or } \begin{array}{ll}
x-\frac{c}{a}= \pm n^{\prime} \\
& y-\frac{b}{a}= \pm m^{\prime}
\end{array}\right\}
$$

whence the solutions.
Bhâskara's Proofs. The same rationale of the above solutions has been given also by Bhâskara II with the help of the following illustrative example. He observes that the proof "is twofold in every case : one geometrical (ksetragata), the other algebraic (râsigata)." ${ }^{1}$

Example. "The sum of two numbers multiplied by four and three, added by two is equal to the product
${ }^{1} \mathrm{BBi}, \mathrm{p} .125$.
of those numbers. Tell me, if thou knowest, those two numbers." 1

Solution. "Having performed the operations as stated, the sides are

$$
x y=4 x+3 y+2 .
$$

The product of the coefficients of the unknowns plus the absolute term is 14 . Dividing this by an optional number (say) unity, the optional number and the quotient are 1 , 14. To these being arbitratily added 4, 3, the coefficients of the unknowns, the values of (x, y) are $(4,18)$ or $(17,5)$. (Dividing) by (the optional number) 2 , (other values will be) $(5,11)$ or $(10,6.){ }^{2}$

Geometrical Proof. "The second side of the equation is equal to the factum. But the factum is the area of an oblong quadrilateral of which the base and upright are the unknown quantities. Within this figute (Fig. 15) exist four x 's, three y 's and the absolute number 2. From this figure on taking off four x 's and y minus four multiplied by its own coefficient, (i.e., 3), it becomes this (Fig. 16).

Fig. 15

Fig. 16

The other side of the equation being so treated there

${ }^{1} \mathrm{BBi}, \mathrm{pp} .123,125$.

results 14. This must be the area of the figure remaining at the corner (see Fig. 16) within the rectangle representing the factum, and is the product of its base and upright. But these are (still) to be known here. Therefore, assuming an optional number for the base, the upright will be obtained on dividing the area 14 by it. One of thesc, base and upright, being increased by 4 , the coefficient of x will be the upright of the figure representing the factum, because when four x 's were separated from the factum-figure, its upright was lessened by 4. Similarly the other being increased by 3 , the coefficient of y, will be the base They are precisely the values of x and $y .{ }^{\prime \prime}$

Algebraic Proof 'This is also geometrical in origin. In this the values of the base and upright of the smaller rectangle within the rectangle whose base and upright are x and y respectively, are assumed to be two other unknowns u and $\nu .{ }^{2}$ One of them being increased by the coefficient of x will be the value of the upright of the outer figure and the other being increased by the coefficient of y will be taken to be the value of the base of the outer figure. Thus $y=u+4$, $x=v+3$. Substituting these values of the unknowns x, y, on both sides of the equation, the upper side will be $3 u+4 v+26$ and the factum side will be $u v+3 u$ $+4 \nu+12$. On making perfect clearance between these sides, the lower side becomes $2 v$ and the upper side 14. This is the area of that inner rectangle and it is equal to the product of the coefficients of the unknowns plus the absolute number. How the values of the unknowns are to be thence deduced, has been already explained." ${ }^{3}$

[^176]Bhâskara II further observes:
"Thus the proof of the solution of the factum has been shown to be of two kinds. What has been said before-the product of the coefficients of the unknowns together with the absolute number is equal to the area of another rectangle inside the rectangle representing the factum and lying at a corner-is sometimes otherwise. For, when the coefficients of the unknowns are negative, the factum-rectangle will be inside the other rectangle at one corner; and when the coefficients of the unknowns are greater than the base and upright of the factum-rectangle, and are positive, the other will be outside the factum rectangle and at a corner, as (Figs. 17, 18).

Fig. 17
When it is so, the coefficients of the unknowns lessened by the optional number and the quotient, will be the values of x and y."
${ }^{1} B B i$, p. 127.
-33; Quadratic-59; simultaneous quadratic-81
Euler 148, 166, 186, 262

F

Fermat 150, 166
Fibonacci, Leonardo 214
Frénicle 166

G

Gaccha 16
Gaṇesa 69, 88, $90,117,208,212$, 240
Gangâdhara 43
Ganguly, Sarda Kanta 51, 88, 93, 104, 139, 140
Gaṇita, 1, 3, 16 ; kuṭtaka-1; avyakta-I ; vyakta-I.
Gaṇita-sâra-sam̀graha 38, 66, 123,300
General indeterminate equations of the second degree : single equations 181
General problem of remainders 131
General solution of Squarenature 149
Genocchi 270
Ghana 10, 15, 35;-Varga 10, 15; -varga-varga 10
Ghâta 10
Gulikâ 10
Gulikântara 40
Guṇadhana 78
Guṇaka 9
Guṇakâra 9
Guna-karma 3

H

Harítaka 18
Heath so
Hewlett, John 186

Hrasva mûla 144
Hoernle 14, Is

I

Indeterminate equations 87, general survey 87, its importance 88, of the first degree 87, three varieties of problems 89, preliminary operations 91 ; simultaneous-of the first degree 127, Sripati's solution 127 ; single-of higher degrees 245, Bhầskara's method 246, Mahâvîra's rule 245, Nârâyana's rule 248
Ibn-al-Haitam 133
Isosceles trapeziums 228 ; ratio-nal-228; pairs of-23I
Isosceles triangles,-with a given altitude 223; with integral sides 222 ; pairs of rational224
Iștaguṇaghna 33
Ista-karma 39

J

Jha, Murlidhara 19, 20
Jũânaraja 28, 65, 69, 93, 116, 128, 144, 148, 151, 154, 186, 189, 193
Jyeṣtha pada 144

K

Kalaka 17
Kamalâkara 93, 116, 141, 143, 144, 148, 151, 154, 193, 194, 195, 196, 197, 198
Kâmika 9, 38
Kanisṭha pada 144
Karavindasvâmí 207
Kâtyâyana 59, 204, 206
Kaye 14, 48, 49, so, 6x, 93 ;-297
Konasániku 64

Kṛṣna 27, 36, 69, 69, 90, 111, $118,142,148,154,163,177$
Krti-prakṛti 141
Kșaya 12
Kșepaka 144
Kṣetragata 3
Kummer 239
Kuṭaka 1,89 , 91 ; citra-miśra S2; dṛ̣ha-117;-ganita 1; origin of the name 90 ;Siromaṇi 88 ; sthira- 117
Kuṭ̣ikâra 89

L

Laghubhâskarîya 284
Lagrange 148,186
Laws of signs 20
Lemma IfO; Brahmagupta's 146 ; Bhâskara's 162
Lîlâvatî $3,88,90,117,124,139$
Linear equations 36,44 ; early solutions 36 ; in more than two unknowns 125 ;-in one unknown 36 ; rule of false position 37 ; solution of 40 ; -with several unknowns 47 ;
-with two unknowns 43
Lohita 18

M

Madhura 19
Madhyamâharaṇa 3, 35, 36, 69, 76
Maha-Bhâskarîya 89
Mahâvedi 6
Mahâvîra 20, 22, 23, 24, 25, 38 , 44, 49, $50,51,52,53,56$, $66,67,73,74,77,78,79$, $82,83,84,85,87,89,91,137$, 138, 207, 208, 209, 210, 213, 214, 215, 216, 217, 218, 219

221, 222, 223, 224, 226, 227, 229, 231, 234, 236, 238, 242, 243, 244, 245, 301 ;--'s definitions 208 ;-'s rules 56,86 , 103, 300 ; rule of- 124 .
Matsunago 199
Mazumdar, N. K. 93
Mehta, D. M. 88
Mikami, Y. 200
Mûla 15 ; varga-10; dvitîya-varga-1I; $n^{\text {th }}$ varga-II; prathama-varga-II; tritìya-varga-ghana II.
Multiple equations 283
Multiplication 22, 26

\mathbf{N}

Nâtâyaṇa s, 11, 14, 19, 20, 21, $22,23,24,26,27,28,29$, $41,43,50,52,53,82,83$, 84, 93, 116, 119, 122, 143, 144, 148, 150, 151, 154, 164, 165, 168, 174, 176, 177, 178, 179, 181, 186, 202, 245, 248, 249, 260, 264, 266, 271, 274, 279, 284, 286 ;-'s rule 164,248
Nîlaka 17
Nyâsa 30, 33
Nyûna 14

0

Operations, fundamental-2s; number of-25;-with an optional number 39
Origin of minus sign 14

\mathbf{P}

Padmanâbha 12,70
Pairs of rectangles 219
Pakṣa 11
Palabhâ 64

Pañca gata 10
Pellian equation s
Pitaka 18
Power 10
Prâdeśa 7
Prakrti 9
Principle of Composition 145, 147, 148, 150
Pṛthûdakasvâmî 1, 9, 11, 18, 20, 24, 29, 31, 32, 33, 34, 35, 40, 41, 59, 75, 102, 117, 121, 132, 134, 135, 143, 144, 145, 224, 227, 229, 234, 238, 251, 252, 297, 298, 300 .
Puruṣa 7

Q

Quadratic, two roots of 70 , known to Mahâvîra 73.
Quadrilaterals, rational-228; inscribed-having a given area 242

R

Rahn, J. H. 225
Râmakrṣṇa 6s
Rangacarya 78, 104
Rañganâth 90, 212
Râśigata 4
Rational, inscribed quadrilaterals 235 ;-isosceles trapeziums 228 ;-quadrilaterals 228 ;right triangles having a given hypotenuse 213 ;-right triangles having a given side 209 ;-scalene triangles 225; -triangles 204, early solutions 204, integral solutions 206, juxtaposition of-223, later rational solutions 207
Rodet 51, 93
Rule,-of concurrence 43 ;-of false position 37, 38 ; dis-
appearance from later algebra 38
Rûpa 9, 12, 141
S
Sadgata 10
Sadṛ́si-karaṇa in
Sama II
Sama-karaṇa ili
Samaśodhana 33, 34
Samatva II
Samîkaraṇa 11, 28 ; aneka-varṇa -35; avyaktavarga-35; asakrt-181; ekavarna-35; sakrt-181
Samśl stakuṭtaka 136
Sâmya ir
Sankkramaṇa 43, 44, 82, 84
Satpuruṣa 4
Schooten, Fras van 225
Sen Gupta, P. C. 93
Siddhânta-śiromaṇi 90
Siva ${ }^{5}$
Singh, A. N. 270, 271
Smith 14, 32, 38, 190
Sodhana 33
Spécial rules 129
Squaring 27
Square pulveriser 250
Square-root 28
Srîdhara 12, 16, 38, 65, 67, 238 ; -'s rule 65
Srîdhara Mahâpâtra 140
Srípati $5,11,18,21,22,23,24$, $34,40,44,64,92,137,143$, 145, 150, 155, 157, 207, 237, 302 ;-'s rule 67, 110, 127, 302
Sthânâñga-sûtra $9,35,36$
Subtraction 2I; addition and25
Sulba 6, 7, 36, 59, 204
Sûryadâsa $65,69,90,162,177$, 211, 212, 219

Sûryadeva Yajvâ 91, 133
Sûryasiddhânta 6_{4}
Symbols 12 ;-for powers and roots is ;-for unknowns 16 ; -of operation 12

T

Tattvârthâdhigama-sûtra 60
Technical terms 9,143
Terminology 89
Thibaut, (i. 11, 14
Thymaridas 50,51
Trapeziums 228; rational-228; rational-with threc equal sides 233
Triangles, having a given area 227 ;-mand quadrilaterals having a given area 244
Trisatikâ 16, 69, 238
U
Umâsvâti 60

Unknown quantity 9
Uttarâdhyayana-sûtra 10

V

Vâñchâ 9,38
Varga 10, 11, 15, 35;-ghanaghâta, 10,15 ;-mûla 10 ;-prakrti 141, 142 ;-varga 10 , 15, 35 ;--varga-ghana ghâta 10, 15; dvitîya-11; prathama
-10; tritîya-11
Varṇa 17, 19
Vieta 214
Viṣamakarma 84
Vyakta 1, 2, 4;-gaṇita I

Y

Yadṛcchâ 9, 38
Yâvakastâvat 20
Yâvat-tâvat $9,17,18,19,29535$, 36, 38
Yuta 12

[^0]: ${ }^{1}$ There is considerable divergence of opinion regarding the dates of the pre-historic works and personalities mentioned in this section. We have given those dates that appear most plausible.

[^1]: ${ }^{1}$ Cbândogya Upaniṣad, vii. 1, 2, 4.

[^2]: ${ }^{1}$ Mundakopanisad, i. 1, 3-5.
 ${ }^{2}$ Bhagavatî-sûtra, Sûtra 90; Uttarâdhyayana-sûtra, xxv. 7, 8, 38.
 ${ }^{3}$ Vinaya Pitaka, ed. Oldenberg, Vol. IV, p. 7; Majjbima Nikâya, Vol. I, p. 85 ; Cullaniddesa, p. 199.

[^3]: ${ }^{1}$ GSS, i. 9-19.
 ${ }^{2}$ Artháástra, ed. by R. Shamasastri, i. 5, 2; Eng. trans., p. 10.
 ${ }^{3}$ Hathigumpha and three other inscriptions, ed. by Bhagavanlal Indraji, p. 22.
 ${ }^{4}$ Antagada-dasâo and Anuttarvavâiya-dasâo, Eng. trans. by L. D. Barnett, 1907, p. 30; cf. Kalpasûtra of Bhadrabâhu, Sûtra 211.
 ${ }^{5}$ E.g., Samavâyânga-sûtra, Sûtra 72.

[^4]: 1 '"Parikammam vavahâro rajju râsî kalâsavanne ya । Jâvantâvati vaggo ghano tataha vaggavaggo vikappo ta "" Sthânängasátra, Sûtra 747.

[^5]: ${ }^{1}$ xvii. 10; the list is che same with the exception that niyuta and prayuta change places. In xxxix. 6, after nyarbuda a new term l'âdala intervenes.
 ${ }^{\text {T Cf. Bhâskara II, L, p. } 2 .}$
 ${ }^{3}$ Satottara gananâ or Satottara samijña (names on the centesimal scale).
 ${ }^{1}$ Lalitavistara, ed. by Rajendra Lal Mitra, Calcutta, 1877,

[^6]: ${ }^{1}$ Thus asanikbyeya is $(10)^{140}=(10,000,000)^{20}$.
 ${ }^{2}$ Sûtra 142.
 ${ }^{3}$ The figures within brackets after the names of authors or works denote dates after Christ.

[^7]: ${ }^{1}$ GSS, i.27: ekeâdisadantâni krameṇa binnâni.

[^8]: ${ }^{1}$ Karno varna laksanât (vi. 2. 112) and also (vi. 3. 115) support the interpretation.
 ${ }^{2}$ Athariaveda (vi. 141) mentions the method of making mithouna marks on the ears. In (xii. 4. 6) the practice is denounced. The Maitrâjani Sanibbitá has a chapter dealing with this topic. The method of making such marks is dealt with in iv. 2. 9.
 ${ }^{3}$ Here 'one' refers to the number stamped on the dice.

 * Ajaisann trầ saǹlikhitamajaisamuta sam̈rudhan.

[^9]: ${ }^{1}$ Cf. Bühler, l.c., p. 3. ${ }^{2}$ l.c.
 ${ }^{8}$ Marshall, l.c., Pp. 450-s 2. See also "Mohenjo-daro-Indus Epigraphy" by G. R. Hunter (JR.AS, April, 1932, pp. 470, 478 ff.) who is more pronounced about the numerical values of some of the signs.

[^10]: ${ }^{1}$ Megasthenes speaks of mile-stones indicating the distances and the halting places on the roads. The distances must have been written in numerical figures (Bühler, l.c., p. 6; also Indika of Megastbenes, pp. 125-26). The complicated system of keeping accounts mentioned in the Arthasáastra of Kauṭilya confirms the conclusion.

[^11]: ${ }^{1}$ The theory of the foreign origin of the script has to be revised in the light of the discoveries at Mohenjo-daro and Harappa, especially in view of the fact that the Mohenjo-daro alphabet ran from right to left.
 ${ }^{2}$ J. Euting, Nabatäische Inscbriften aus Arabien, Berlin, 1885, pp. 96-97.

[^12]: ${ }^{1}$ Bühler, Palaeograpby, p. 77; Ojha, l.c., p. 128; see Table II(b). ${ }^{2}$ See Table $11(c)$.

[^13]: ${ }^{1}$ It has been incorrectly stated by Smith and Karpinski that the Nânâghât forms were vertical. See 11indu Arabic Numerals, p. 28.

[^14]: ${ }^{1}$ Compare the same number written in Kharosthî, p. 24.
 ${ }^{2}$ Inscriptions of Aśoka, Corpus Inscriptionum Indicarum, Vol. I, p. $\varsigma 2$.

[^15]: ${ }^{1}$ Bühler, On the Origin of the Indian Bräbma Alphabet, Strassburg, 1898, pp. S2, 53 foot-note.
 ${ }^{2}$ Cf. Smith and Karpinski, Himds Arabic Numerals, pp. 30-1. ${ }^{8}$ Bühler, l.c., p. 82.

[^16]: 1 "Examination of inscriptions from Girnar in Gujerat, and Dhauli in Cuttack," JASB, 1838.
 ${ }^{2}$ The method seems to have been used by Pânini. See p. 63.
 ${ }^{8}$ Vide infra, pp. 64ff.
 ${ }^{4}$ Bühler, l.c., p. 78. The details of the akesarapallî are given later on (pp. 72 ff).

[^17]: ${ }^{1}$ For the varying forms of the numerals see Tables III -XIII.

[^18]: ${ }^{1}$ Cf. pp. 10-12.

[^19]: ${ }^{1}$ Bühler (l.c., p. 1, foot-note,) quotes several authorities. Of these the Nârada Smrti and the Jaina canonical work, the Samavâ-yaniga-sûtra, belong to the fourth century B.C.
 ${ }^{2}$ Megasthenes speaks of mile-stones indicating distances and the halting places on the roads. Indika of Megasthenes, pp. 125-126; Bühler, l.c.
 ${ }^{8}$ Related in the Lalitavistara, both in the Sanskrit text and the Chinese translation of 308 A.D. The Jaina Samavâyầnga-sûtra (c. 300 B.C.) and Pannavanâ-sûtra (c. 168 B.C.) each gives a list of 18 scripts; see Weber, Indische Studien, 16, 280, 399.

[^20]: ${ }^{1}$ G. Coedès, "A propos de l'origine des chiffres arabes," Bell. Scbool of Oriental Studies (London), VI, 1931, pp. 323-8.

[^21]: I"Notes on Indian Mathematics," JASB, (N. S., 1907), III, pp. 482-87.

[^22]: ${ }^{1}$ Many of the plates mentioned in our list contain the date at the end.

[^23]: ${ }^{1}$ Smith and Karpinski, l.c., p. 133.

[^24]: the Hindu numerals, while the other stuck to the old notation. See the article on "Hisâb" by H. Suter in the Encyclopaedia of Islam.

[^25]: ${ }^{1}$ C. D. Chatterjee, "The Ahar stone inscription," Journ. United Provinces Hist. Soc., 1926, pp. 8;-119.

[^26]: ${ }^{1}$ Used by Mahâvira because the Jainas recognise seven tatras; used for five by others.
 ${ }^{2}$ Used by Mahâvîra.
 ${ }^{3}$ Used by Mahâvîra.

 * Used by Mahârvirra for 8 and by others for 10.
 ${ }^{5}$ Used by Mahâvîra.
 ${ }^{6}$ This word has been used for 8 as well as for 10 . The use of dis or dik for 4 also occurs.
 ${ }^{7}$ Used by Mahâvira only.
 ${ }^{8}$ This has been used for 1 also.
 ${ }^{0}$ Used by Mahâvîra only.
 ${ }^{10}$ Also used for 3.
 ${ }^{11}$ Also used for ${ }^{2}$,

[^27]: ${ }^{1}$ rûpa $=1$, aya $=4$, guna $=y$ uga $=12$, bbasamûba $=27$. See (YJ. 23, AJ. 31), (YJ. 13, AJ. 4), (AJ. 19), (YJ. 25) and (YJ. 20) respectively.
 ${ }^{2}$ Weber's edition of Kátyâyana Śrauta Sûtra, p. 1015.
 ${ }^{3}$ ix. 4. 3 I .
 ${ }^{4}$ E.g.,
 Dasáyutânâmayutam̀ sabasrâni ca vimisatiob
 Kotyab sartisca sat caiva yo'smin rajan-mriḍbe batâb
 that is, $10(\mathrm{r} 0000)+10000+20(1000)+60(10,000,000)+$ 6 (10,000,000)-Mabäbhârata, Strîparıa, xxvi. 9.
 "Agni-Purâna, Bañgabâsî ed., Calcutta (1314 B.S.), chs. $122-$ 23, 131, 140, 141, 328-335. According to Pargiter, probably the greatest Puranic scholar of modern times, "the purânas cannot

[^28]: ${ }^{1} I A, \mathrm{XXI}, \mathrm{p} .48$.
 ${ }^{2}$ The Kaḍab plates, $I A$, XII, p. 11; declared by Fleet to be suspicious (Kanarese Dynasties, Bombay Gazatteer, I, ii, 399, note 7); cf. Bühler, l.c., p. 86, note 4.
 ${ }^{3}$ The Dholpur Inscription, Zeitschrift der Deutschen Morgenländischen Gesellschaft, XL, P. 42.
 ${ }^{*}$ I $A, \mathrm{VII}, \mathrm{p} .18$.
 ${ }^{5}$ Bühler, l.c., p. 86, note 7 .

[^29]: ${ }^{1}$ Commentary on the Dasagitikâ by Bhâskaıa I, "khadwinavake svarâ nava varge kbâni sûnyâmi, kbânạm dvinavakam tasmin kbadvinavake aṣtâdaśa sûnyâkşiteṣu."

[^30]: ${ }^{2}$ When two consonants are together joined to a vowel, the numbers representing both are referred to the same varga-avarga pair. They are added together as in this case, ima $=\dot{n} a+m a=$ $s+2 s=30$.

[^31]: ${ }^{1} E I$, VI, p. 121.

[^32]: ${ }^{1}$ Burnell, South Indian Palaeography, London, 1878, p. 79.
 ${ }^{2}$ Ibid.
 ${ }^{s}$ The vowels r, r, l, l, are omitted.

[^33]: ${ }^{1}$ This method of calculation is not peculiar to the Pingala Cbandab-sûtra. It is found in various other works on metrics as well as mathematics. The zero symbol has been similarly employed in this connection in later works also. Vide infra.
 ${ }^{2}$ E.g., Pṛthudakasvâmî uses va (from varga, "square") and gu (from guna, "multiply"), while Mahâvîra uses the numerals I and o. Vide infra.

[^34]: ${ }^{1}$ Brhat-kesetra-samâsa, ed. with the commentary of Malayagiri, Bombay, i. 69.
 ${ }^{2}$ Ibid, i. 71 . Other such instances are in i. 90, 97, 102, 108, 113,119 , etc.
 ${ }^{8}$ Ibid, i. 83.

[^35]: ${ }^{1}$ No. 4 in the list of inscriptions given before.
 ${ }^{2}$ Nos. 19 and 20 in the list.

[^36]: ${ }^{1}$ Ch. i.; cf. B. Datta, Scientia, July, 1931, p. 8.
 ${ }^{2}$ The Agni-Purana contains also the use of the word numerals with place-value (vide supra p. 58).
 ${ }^{3}$ vi. 3 .
 ${ }^{4}$ ci. 102 f .

[^37]: ${ }^{1}$ For details consult Cajori's History of Mathematics, and Smith and Karpinski's Hinds Arabic Numerals.

[^38]: ${ }^{1}$ Theophanes (758-818 A.D.), "Chronographia;" Scriptores Historiae Byzantinae, Vol. XXXIX, Bonnane, 1839, p. 575; quoted by Smith and Karpinski, l.c., p. 64, note.

[^39]: ${ }^{1}$ Reinaud, l.c., p. 399.
 ${ }^{2}$ Kitâb al-Fibrist, ed. G. Flügel, II, pp. 18-19.
 ${ }^{3}$ Alberuni's India, English translation by E. C. Sachau, London 2nd ed., 1910, Vol. I, p. 74.

[^40]: ${ }^{1}$ Ibid, I, p. 177.
 ${ }^{2}$ The Cbronology of Ancient Nations, ed' by Sachau, London, 1879, pp. 62 and 132.
 ${ }^{8}$ J. F. Montucla, Historie des Mathématiques, vol. I, p. 376 . *. ${ }^{4}$ H. Suter, Die Matbematiker und Astronomer der Ararbe and ibre Werke, Leipzig; 1900, p. 126.

[^41]: ${ }^{1}$ JA, I, 1863, pp. 59 f.
 ${ }^{2}$ Kbolasât al-bisâb, translated into French by A. Marre, Nowv. Ann. Math., V, 1864, p. 266.
 ${ }^{3}$ Elliot and Dawsan's History of India, II, p. 412.
 ${ }^{4}$ English translation by A.G. Warner and E. Warner, London, 1906.
 ${ }^{5}$ Carra de Vaux, Scientia, XXI, 1917, p. 273.

[^42]: ${ }^{1}$ Yasna, x. 141; Yt., x. 104 (Mibir Yast).
 ${ }^{2}$ Kaye, JASB, III, 1907, p. 489, also JASB, VII, 19II, pp. 81 of .
 ${ }^{3}$ Carra de Vaux, l.c.

[^43]: ${ }^{1}$ Paper being scarce, a wooden board was generally used for making calculations even upto the 19th century.
 ${ }^{2}$ B. Datta, American Math. Montbly, XXXV, p. 526.

[^44]: ${ }^{1}$ BrSpSi, p. 172.

[^45]: - ${ }^{1}$ Amongst such works may be mentioned the Mabä-siddbânta (950), the Siddbânta-selehara (1036), the Siddbânta-tattia-viveka (1698), etc.
 ${ }^{2}$ It is stated by Bhâskara II that Lalla wrote a separate treatise on pâtîganita.

[^46]: ${ }^{1}$ Bhâskara II, SiSi, candragrahanâdbikâra, 4.
 ${ }^{2}$ Bhâskara II: kbatikâyâ rekbâ ucchádya..., i.e., "having drawn lines with a chalk...," quoted by S. Dvivedi in his History of Matbematics (in Hindi), Benares, 1910, p. 41.

[^47]: ${ }^{1}$ The quotation is from his commentary on the Aryabbatiya.
 ${ }^{2}$ i.e., addition, subtraction, multiplication and division.
 ${ }^{3}$ MSI, p. 143.
 ${ }^{4}$ This word has been used in the sense of addition in the Sulba only. It is used for multiplication in later works.
 ${ }^{5}$ E.g., Tris', p.2; GSS, p. 17.

[^48]: ${ }^{1}$ L, p. 2; direct (krama), i.e., beginning from the units place; inverse (utkrama), i.e., beginning from the last place on the left. The commentator Gangâdhara says: ankainam vàmatogatirili vitarkena ekastbinâdi yojanam kramab ulkeramastu antyasthänüdi yojanam, i.e., "According to the rule 'the numerals increase (in value) towards the left', the addition of units first is the direct method, the addition of figures in the last place first is the inverse method."
 ${ }^{2}$ Dvivedi, History of Mathematics, Benares, 1910, p. 60.

[^49]: ${ }^{1}$ In his commentary on the Lilàvali.
 ${ }^{2}$ According to Gangâdhara, the inverse process of working is easier in the case of subtraction, and the direct in the case of

[^50]: ${ }^{1}$ See the kapâta-sandbi method of multiplication, pp. 138 ff .
 ${ }^{2} \cdot A$, ii. 19, 26, etc.
 ${ }^{3} B M s, 6 s$ verso.
 ${ }^{4} B M s, 3$ verso.
 ${ }^{5}$ Colebrooke, Hindu Algebra, p. 133.

[^51]: ${ }^{1}$ Commentary on the Lîläratî, MSS No. I. B. 6. in the Asiatic Soc. of Bengal, Calcutta, pp. 17, 18. In this work only two methods are given, (i) kapâta-sandhi and (2) kapâta-sandbi (b).
 ${ }^{2}$ Or ten if we count also the sub-divisions under each head.
 ${ }^{3}$ Tris, pp. 3 f.
 "kapâta means "door" and sandbi means "junction"; hence kapâta-sandbi means "the junction of doors."
 ${ }^{5} \mathrm{MSi}$, p. 143; the inverse method only has been given.

[^52]: ${ }^{1}$ This explains the use of the' term banana (killing) and its synonyms for multiplication.
 ${ }^{2}$ Hence the product was termed pratyutpanna.

[^53]: ${ }^{1}$ Lîlâvatyudâbarana by Kṛpârâma Daivajña, Asiatic Society of Bengal, Calcutta, Ms. No. III. F. iro. A.

[^54]: ${ }^{1}$ We shall designate it as kapata-sandbi (h) method.
 ${ }^{2} C f$. the quotation from Sripati given before, p. 137.
 ${ }^{8}$ Smith, History, II, p. 115.

[^55]: ${ }^{1}$ In contra-distinction to the method in which the multiplier moves from one place to another.
 ${ }^{2}$ Gaṇeśa's commentary on the Lîlâvatî, i, 4-6.
 ${ }^{3}$ Smith (l.c., II, p. 112) quotes from this work.
 ${ }^{4}$ L, p. 3.

[^56]: ${ }^{1}$ Thus $12 \times 135=(4+8) \times 135=(4 \times 135)+(8 \times 135)$.

[^57]: ${ }^{1}$ Smith, l.c., p. 132.
 ${ }^{2}$ He has used the technical term labdha for the quotient.

[^58]: ${ }^{1}$ Tatvârthâdhigama-sûtra, Bbâsya of Umâsvâti (c. 160, ed. by H. R. Kapadia, Bombay, 1926, Part I, ii. 52, p. 225.
 ${ }^{2}$ GSS, p. II. The method would not give the quotient unless the dividend be completely divisible by the divisor.
 ${ }^{3}$ Tris', p. 4.

 - Pratiloma.
 ${ }^{5}$ GSS, p. in; cf. Rangacarya's translation.

[^59]: ${ }^{1}$ The "line of quotients" was usually written above the dividend.
 ${ }^{2}$ Al-Khowârîzmî (c. 825), Al-Nasavî (c. 1025); cf. Smith, l.c., pp. 138-139.
 ${ }^{3}$ Also called the 'scratch method'.

[^60]: ${ }^{1}$ For details see Smith, l.c., pp. 136-139.

[^61]: ${ }^{1} B r S p S i$, p. 212.

[^62]: ${ }^{1}$ GSS, ii. 44.
 ${ }^{2}$ BrSpSi, xviii. 35.

[^63]: ${ }^{1}$ For further details see Datta, American Math. Monthly, XXXIV, pp. 420-423, also XXXVIII, pp. 371-376.
 ${ }^{2}$ In dividing, the quotient should be taken as great as will allow of the subtraction of its square from the next odd place. This is the force of the Sanskrit text as pointed out by the commentators Bhâskara I, Nilakantha and others.
 ${ }^{3}$ The "square" is mentioned and not the "square of the quotient," as in the beginning the greatest possible square is to be subtracted, there being no quotient.
 $4 A$, ii. 4. Translations of the rule have been given before by Rodet ($J A, 1880$, II), Kaye (JASB, 1907 and 1908, III and IV resp.), Singh (BCMS, 1927, XVIII), Clark (Aryabhatiya) and others. Of these Kaye's translation is entirely incorrect.

[^64]: ${ }^{1}$ Tris', p. s. For an illustration of the method of working on a pâtî, see A. N. Singh, BCMS, XVIII, p. 129.
 ${ }^{2}$ GSS, p. 13.
 ${ }^{3} M S i$, p. 145.
 *SiSe, xiii. s; GT, 23.

[^65]: ${ }^{1}$ The quotient in division is to be taken as great as will allow the two subsequent operations (b) and (c) to be carried out.

[^66]: ${ }^{1}$ BrSpSi, p. 175; of. Colebrooke, l.c., p. 280.
 ${ }^{2}$ Tris, pp. 6 f.
 ${ }^{3}$ Literally, its own place.

[^67]: ${ }^{1}$ Quoted by S. Dvivedi, History of Mathematics (in Hindi), Benares, 1910, p. 79.

[^68]: ${ }^{1}$ Besides the above works, the check of nines is also quoted by Sumatiharṣa (1618) from an anterior writer Bijadatta, in his commentary on the Karana-kutabala of Bhâskara II, ed. by Mâdhava Sâstrî, Bombay, 1901, i. 7.
 ${ }^{2}$ F. Woepcke, $J A(6), \mathrm{I}, 1863, \mathrm{pp}$. s 00 et sq.
 ${ }^{3}$ Vide Delambre, Histoire de l'Astronomie Ancienne, t. I, Paris, 1817 , pp. 188 ff .
 ${ }_{4}^{4}$ Noted by B. Datta, JASB, XXIII, 1927, p. 265.
 ${ }^{5}$ Kbolâsat al-bisäb, French translation by A. Marre, Nouvelles Annales d. Math., t. v, 1846, p. 263.

[^69]: ${ }^{1}$ The Arthasástra of Kautilya, ed. by R. Shamsastri, Bangalore, 1919.
 ${ }^{2}$ Lalitavistara, ed. R. Mitra, Calcutta, 1877, p. 168.
 ${ }^{3}$ Paramậus is the smallest particle of matter. Thus according to the Hindus, the diameter of a molecule is 1.3×7^{-10}.
 ${ }^{4}$ The process is called valli-savarnana and occurs in the Trisatika (p. 12) and the Ganita-tilaka (p. 39) and not in later works.

[^70]: ${ }^{1}$ Generally placed over the number to be subtracted.

[^71]: ${ }^{1}$ ii. $\{2$.
 ${ }^{2}$ Kalà-sararnana or savarnanu, or samachbeda-vidbi.
 ${ }^{3}$ BrSpSi, p. 172.

[^72]: ${ }^{1}$ It is only in the Bakhshâlî Manuscript that the term bbâ is sometimes placed before or after the quantity affected.
 ${ }^{2}$ Cf. Tris, p. 11.
 ${ }^{3}$ GSS, p. 41 (112) gives $2 \div \frac{3}{4}$ as tripâda bbaktam dvikam, i.e., "two divided by three-fourths."
 ${ }^{4}$ Tris, p. 12; GSS, p. 45 (138).
 ${ }^{5}$ As there are five primary classes enumerated by Mahâvira, so the total number of combinations is
 ${ }^{6}$ Tris, p. 12.

 $$
 { }^{5} C_{2}+{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{5}=26
 $$

[^73]: ${ }^{4}$ GSS, p. $38(87)$.

[^74]: ${ }^{1}$ BrSpSi, p. 178.
 ${ }^{2}$ Tris, p. 15.
 ${ }^{3}$ GSS, p. 58(2).
 ${ }^{4}$ MSi, p. 149.

[^75]: ${ }^{1}$ SiŚi, Golâdbyâya, Praśnâdbyâya, verse 4.
 ${ }^{2}$ Quoted by Smith, l.c. p. 4^{88}.
 ${ }^{3}$ The Arabs, too, held the method in very high esteem as is evidenced by Al-Birûni's writing a separate treatise, Fi rasikat al-hind ("On the rasike of the Hindus") dealing with the Hindu Rules of Three or more terms. Compare also India (I. 313) where

[^76]: ${ }^{1}$ Noted by Colebrooke, l.c., p. 35, note.

[^77]: ${ }^{1} A$, p. 41. The Sanskrit terms are: mala=principal, phala $=$ interest.
 ${ }^{2} B r S p S i$, p. 183. This rule is also given by Mahâvîra, GSS, p. 71 (44).
 ${ }^{3}$ GSS, p. 69(32).

[^78]: ${ }^{1}$ L, p. 20.
 ${ }^{2}$ Such problems are found in the Lilâvati, the Ganita-sârasaṁgraba, the Trisatiká, etc.

[^79]: ${ }^{1}$ This and the two previous examples are given by Prthudakasvâmî to illustrate Rule 16 of the ganitâdbyâya of the Brâbma-sphutasiddbânta.
 ${ }^{2}$ GSS, p. 94(223-5).
 ${ }^{3}$ GSS, p. $99\left(267 \frac{1}{2}\right)$.

[^80]: ${ }^{1}$ G.SS, pp. 99-100(270 ${ }^{\left.\frac{1}{2}-2 \frac{1}{2}\right) .}$
 ${ }^{2}$ GSS, p. $84\left(140 \frac{1}{2}-2 \frac{1}{2}\right)$.
 ${ }^{3}$ GSS, p. 8 ;(152-3).
 ${ }^{4}$ GSS, p. 88 (170-1 ${ }_{2}$).
 ${ }^{5}$ GSS, p. 89(181). Similar examples occur in the Trisatika (p. 26) and the Lîlâvati (p. 25).

[^81]: ${ }^{1}$ GSS, pp. 48f (12-16).
 ${ }^{2}$ A, Ganitapáda, 28.
 ${ }^{3}$ BrSpSi, p. 301. The method occurs also in GSS, p. 102 (286); MSi, p. 149; L, p. 9; etc.

 4 GSS, p. 102 (287). Examples of this type are very common in Hindu arithmetic. They were also very common in Europe. Smith in his History, II, quotes two such problems from an American arithmetic of the 16 th century.

[^82]: ${ }^{1}$ BrSpSi, p. 309. Cf. B. Datta, BCMS, XVIII, pp. 165-176 for some other details regarding operations with zero.
 ${ }^{2} G K$, remark subjoined to i 30 .

[^83]: ${ }^{1}$ By other operations are meant: (1) division of zero by a number, (2) squaring and square-root of zero, (3) cubing and cube-root of zero-in the sequence in which these operations are mentioned in Hindu arithmetic.
 ${ }^{2}$ Tris, p. 4. It should be noted that distinction is made between $a \times \circ$ and $\circ \times a$, although the result in each case is zero.
 ${ }^{3}$ MSi, p. 146.
 ${ }^{*}$ GK, i. 30.

[^84]: ${ }^{1} B B \hat{z}$, pp. 5-6. G. Thibaut (Astronomie, Astrology und Mathematik,, Strasbourg, 1899, p. 72) thought that this passage was an interpolation. There appears no justification for considering this as an interpolation, as the passage occurs in the oldest known commentary and in all copies of the work so far found. Cf. Datta, l.c., p. 174.

[^85]: ${ }^{1}$ All the above passages are taken from the respective commentaries. They have been noted by Colebrooke, l.c.
 ${ }^{2}$ Lîlâwati, Bombay, 1816 , p. 29.
 ${ }^{3}$ His Bịia-ganita (in Hindi), Pt. I, Benares, 1875, p. 179 et sq.

[^86]: ${ }^{1}$ The answers of this and the previous example are incorrect because 0^{2} has been taken to be equal to 0 .
 ${ }^{2}$ Martin Ohm (1828) says: "If a is not zero, but b is zero, then the quotient a / b has no meaning" for the quotient "multiplied by zero gives only zero and not a, as long as a is not zero." Lebrbuch der niedern Analysis, Vol. I, Berlin, 1828, pp. i10, 112.

[^87]: ${ }^{1}$ See Bibhutibhusan Datta, "The scope and development of the Hindu Ganita," IHQ, V, 1929, pp. 479-s12; particularly pp. 48 gf .

[^88]: ${ }^{1} B B i$, p. 1.
 ${ }^{2}$ The reference is to the six fundamental operations recognised in algebra as well as to the six subjects of treatment which are essential to analysis.

 $$
 { }^{3} L \text {, p. } 15
 $$

 - BBi, p. 127.

[^89]: ${ }^{1} \mathrm{NB} i, \mathrm{I}, \mathrm{R} . \mathrm{I}$.
 ${ }^{2} N B i$, II, R. 1.
 ${ }^{3} \mathrm{NB} i, \mathrm{I}, \mathrm{R}$. 5-6. $^{\text {. }}$
 ${ }^{4}$ All writers, except Brahmagupta and Srípati, are of the latter opinion.

[^90]: ${ }^{1} B B i$, p. 43.
 ${ }^{2}$ Bibhutibhusan Datta, The Science of the Sulba, Calcutta, 1932.

[^91]: ${ }^{1} B r: S p S i$, x viii. 2, 41 ; SiŚe, xiv. 1-2; $B B i, p p .7 f f$.
 ${ }^{2}$ Chapter xxx, 10, in.
 ${ }^{3} \mathrm{BrSpSi}$, xviii. 41, 42.
 ${ }^{4} B B i$, p. ${ }^{6} 6$.
 ${ }^{5}$ Sûtra 142.

[^92]: ${ }^{1}$ The algebras of Srîdhara and Padmanâbha are not available now. But the term occurs in quotations from them by Bhâskara II (BBi, pp. 61, 67).
 ${ }^{2}$ BrSpSi, xviii. 43 (Com); SiSe, xiv. 14, 20; BBi, pp. 43-4.
 ${ }^{3} B M s$, Folio 23, verso; Folio 70, recto and verso (c).
 ${ }^{4}$ BrSpSi, xviii. 43-4; SiSe. xiv, 14, 19; etc.
 ${ }^{5}$ Triś, pp. 11, 12.

[^93]: ${ }^{1}$ Folio 59, recto; compare also folio 67, verso.
 ${ }^{2}$ BBi, p. 15.

[^94]: ${ }^{1}$ Folio 27, verso. ${ }^{2}$ BrSpSi, xviii. 2, 42, 51 , etc.
 ${ }^{3} B B i$, p. 2; see also $N B i$, I, R. 7.

[^95]:
 ${ }^{3} B B i$, p. 7.

[^96]: ${ }^{1}$ See the Preface to his edition of Bhaskara's Bijaganita.
 ${ }^{1}$ BrSpSi, xii. is (Com); xii. 18 (Comm).
 ${ }^{2} B B i$, p. so. ${ }^{3} B r S p S i$, xviii. 30 .

[^97]: ${ }^{1} B B i$, p. 10 .

[^98]: ${ }^{1}$ For instance, see $B B i, p p .47 \mathrm{ff}$.
 ${ }^{2}$ Smith, History, II, pp. $425,426$.
 ${ }^{2} \mathrm{BrSpSi}$, xii. Is (Com).

[^99]: ${ }^{1}$ Sthânâniga-sîtra, Sûtra 747. For further particulars see Datta, Jaina Math., (BCMS, XXI), pp. ingf.

[^100]: ${ }^{1}$ Datta, Jaina Math., (BCMS, XXI), p. 122.
 ${ }^{2} \mathrm{BM}$ s, Folio 23, recto.

[^101]: ${ }^{1} \mathrm{BBi}, \mathrm{pp} .44$ f.

[^102]: ${ }^{1}$ BMs, Folio 4, verso.

[^103]: ${ }^{1} B M s$, Folios 27 and 29, verso.
 ${ }^{2}$ BM , Folio 30, recto ; also see Kaye's Introduction, p. 40. ${ }^{3}$ BMs, Folio, 29, recto.

[^104]: ${ }^{1}$ BrSpSi, xviii. s .

[^105]: ${ }^{1}$ Datta, "Geometry in the Jaina Cosmography," Quellen und Studien Zur Ges. d. Math., Ab. B, Bd. I (1931), pp. 245-254.

[^106]: ${ }^{1}$ BrSpSi, xii. 19. Vide Part I, p. 220.
 ${ }^{2}$ Brspsi, iii. 54-5s.
 ${ }^{4}$ SiSe, iv. 74.

[^107]: ${ }^{1}$ GSS, vi. 44.
 ${ }^{2}$ MISi, xv. so.

[^108]: ${ }^{1}$ SiŚe, xiv. 17-8, 19.
 ${ }^{2}$ BBi, p. 59.
 ${ }^{3} B B i, p .6$.

[^109]: ${ }^{1} B B i$, pp. 66 f.

[^110]: ${ }^{1}$ GSS, iv. 62-4.
 ${ }^{2}$ GSS, iv. 6 r.
 ${ }^{8}$ More instances will be found in GSS, vi. 2gff.

 - See GSS, iv. 33-52.

[^111]: ${ }^{1}$ BrSpSi, xviii. 49.
 ${ }^{2}$ BrSpSi, xviii. 50.

[^112]: ${ }^{1}$ GSS, iv. $\mathrm{si}, \mathrm{s} 2$.

[^113]: ${ }^{1} M B b$, i. $4 \mathrm{x}, 49$.
 ${ }^{3}$ BrSpsi, xviii. 6, 15, etc. •
 ${ }^{2} B r S p S i$, xviii. 2, II, etc.
 ${ }^{4}$ BrSpSi, xviii. 20, 2 , etc.

[^114]: ${ }^{1}$ GSS, vi. $79 \frac{1}{2}$, etc. $\quad{ }^{2} G S S$, vi. $115 \frac{1}{2} f f$.
 ${ }^{3}$ Vide his commentary on the Lîlavati of Bhâskara II.
 4 Vide the commentaries of Sûryadâsa on Lâlâvatî and Bijaganita, of Kṛ̣̣na on Bíjaganiita, and of Rañganâtha on Siddbânta-

[^115]: 1 ＂Prakṣcpaka－karaṇamidaṁ．．．．．kuttîkâro budhaissamuddiṣ－ țam＂＂－GSS，vi．79⿳亠口冋口 ．
 ${ }^{2}$ Vide GSS（English translation），pp．117， 300.
 3 ＂Krta－kuṭana－labdha－rásımesâm Gunakâraṃ samuśanti．．．．．．＂$-M B b$, i． 48.
 ${ }^{4}$ It has been expressly stated by Sûryadeva Yajvâ that the process must be continued＂yâvaddharabhâjyayoralpatâ．＂

[^116]: ${ }^{1}$ The process implied here is shown in detail in the working of the example on pages inff.

[^117]: ${ }^{1} B r S p S i$, xviii. 3-s.

[^118]: ${ }^{1}$ GSS, vi. ins $\frac{1}{2}$ (first portion).
 ${ }^{2}$ We have emended sâgra of the printed text to Rhägra.

[^119]: ${ }^{1}$ MSi, xviii. 1 s-8.
 ${ }^{2}$ MSi, xviii. 20.

[^120]: ${ }^{2}$ SiTVi, xiii. 183-190.

[^121]: ${ }^{1} M B b$, i. 45 .

[^122]: ${ }^{1}$ In view of the rule in $B r S p S i$, xviii. 13.
 ${ }^{2}$ BrSpSi, xviii. 9-1ı.

 - NBi, I, R. 69.

[^123]: ${ }^{1} B r S p S i$, xviii. 13.

[^124]: ${ }^{1} B B i, p .77$.

[^125]: ${ }^{1} B B i$, p. 44.
 ${ }^{8}$ See Pp. 54 f.

[^126]: ${ }^{1}$ See Bibhutibhusan Datta, BCMS, XXIV, 1932.

[^127]: ${ }^{1}$ See his commentary on A, ii. 32-3.
 ${ }^{2}$ L.E. Dickson, History of the theory of Numbers, Vol. II, referred to hereafter as Dickson, Numbers II, pp. 59, 60.

[^128]: ${ }^{1}$ BBi, pp. 8 f.
 ${ }^{2}$ Vide his commentary on BrSpSi, xviii. 3-6.

[^129]: ${ }^{1}$ GSS, vi. $115 \frac{1}{2}, 136 \frac{1}{2}$ (last lines).

[^130]: ${ }^{1}$ SiSe, xiv. 28.

[^131]: ${ }^{1}$ Vargu $=k_{r} t i=$ "square" and \quad praketi = "nature," "principle," "origin," etc. Colebrooke has rendered the term rargapraketi as "Affected Square."

 2 "Tatra rûpakṣepapadârtham tâvat"-BBi, p. 3.3 .

[^132]: ${ }^{1}$ See Prfthûdakasvâmî's commentary on BrSpSi, xviii. 64. In the equation $N x^{2} \pm c=y^{2}, x=$ lesser root, $y=$ greater root, $N=$ multiplier, and $c=$ interpolator.
 ${ }^{2}$ BBi, P. 33.
 ${ }^{2}$ NBi, I, R. 72.

 - SiTVi, xiii. 209.
 ${ }^{6}$ For instance, take the following example from Bhâskara II (BBi, p. 43):

[^133]: ${ }^{1}$ BrSpSi, xviii. 64-5.
 ${ }^{2}$ BrSpSi, xviii. 64-s.

[^134]: ${ }^{1} B B i, \mathrm{p} .34$.
 ${ }^{3}$ SiTV1, xiii. 210-214.

 ${ }^{2} \mathrm{NBi}, \mathrm{I}, \mathrm{R} .72-75 \frac{1}{2}$.

[^135]: 1 SiSe, xiv. 33.
 2 "Ihânantyami bhâvanâbhistathestatah"- $B B$ ', p. 34 .

 - NBi, I, R. 78. Compare also SiTVi, xiii. 217.
 ${ }^{4}$ Smith, Hislory, II, p. $453 . \quad{ }^{5}$ BrSpSi, xviii. 69.

[^136]: ${ }_{1}$ SiŞe, xiv. 33 .

[^137]: ${ }^{1}$ Vide supra, p. isi.

[^138]: ${ }^{1}$ The original is, "Evamisṭavaśât samâsântarabhâvanâbhyâm ca padânâmânantyam." (BBi, p. 3^{6}).

 2 "Dvyekâmbudhikṣepaviśodhanâbhyâṃ
 Syâtâmabhinne laghuvṛddhamûle."-SiSe, xiv. 32. The Sanskrit word abbinna literally means "non-fractional."
 ${ }^{3}$ The special treatment of the equation $N x^{2}-1=y^{2}$ is given later on.

[^139]: ${ }^{1} B B i$, p. 42.
 ${ }^{2} N B i$, I, R. 86.
 ${ }^{3}$ NBi, I, Ex. 44 .

[^140]: ${ }^{1}$ Our MS. does not contain the solution of the equations $13 x^{2}: 8=y^{2}$.
 ${ }^{2}$ BrSpSi, xviii. 70.

[^141]: 1 'Iha sarvatra padânâm rûpakṣepapadâbhyâm bhâvanayâ'-nantyam"- $B B i$, p. 41.
 ${ }^{2}$ Vide infra, pp. 267f.
 ${ }^{3} \mathrm{BBi}, \mathrm{pp} .106,110$.

[^142]: ${ }^{1}$ BBi, p. 99 .

[^143]: ${ }^{1} B B i, \mathrm{pp} .100-\mathrm{I}$.

[^144]: ${ }^{1}$ Leonard Euler, Opera Mathematica, vol. II, 1915, pp. 6-17; Compare also pp. 576-6ir.
 ${ }^{2}$ Additions to Elements of Algebra by Leonard Euler, translated into English by John Hewlett, sth edition, London, 1840, pp. $537 f f$.

[^145]: ${ }^{1}$ SiTVi, xiii. 296.
 ${ }^{3} B B i$, p. 106.

[^146]: ${ }^{1}$ Y. Mikami, The Development of Mathematics in Cbina and Japan, Leipzig, 1913, p. 231.
 ${ }^{2} B B i$, p. 106.

[^147]: ${ }^{1} B S l$, i., 8 ; $A p S l$, ii. $7 ; K S l$, iii. 2. For details of the construction see Datta, Sulba, pp. 83 f , 178 f .
 ${ }^{2} \mathrm{KS} l$, vi. s ; Compare also its PariSiṣta, verses $40-1$.

[^148]: ${ }^{1}$ The "elements" here are $q, a / 2 q$, where q is an optional number.
 ${ }^{2} L$, p. 34. $\quad{ }^{3} L$, pp. 34 f.

[^149]: ${ }^{1}$ GSS, vii. 123-124 $\frac{1}{2}$.
 ${ }^{2}$ L, pp. 35, 36.

[^150]: ${ }^{1}$ GSS, vii. 112d.

[^151]: ${ }^{1}$ BSI, iii. 122 ; Compare Datta, Sulba, p. 45, where necessary figures are given.
 ${ }^{2}$ BrSpSi; xviii. 37.

[^152]: ${ }^{1}$ GSS, vii. 137.

[^153]: ${ }^{1}$ Dickson, Numbers, II, p. 201.
 ${ }^{2} B r S p S i$, xii. 34.

[^154]: ${ }^{1}$ GSS, vii. $110 \frac{1}{2}$.

[^155]: ${ }^{1}$ GSS, vii. $156 \frac{1}{2}$.
 ${ }^{2}$ GSS, vii. 1582.
 ${ }^{3}$ GSS, vii. 160 $\frac{1}{2}-16 \mathrm{I}$. .
 ${ }^{4} B r S p S i$, xii. 36 .

[^156]: ${ }^{1}$ GSS, vii. $99 \frac{1}{2}$.

[^157]: ${ }^{1} \mathrm{BrSpSi}$, xii. 37.

[^158]: ${ }^{1}$ GSS, vii. $101 \frac{1}{2}$.

[^159]: ${ }^{1}$ GSS, vii. 146.
 ${ }^{2}$ GSS, vii. 148.

[^160]: ${ }^{2} \mathrm{BBi}, \mathrm{p}$. 5 s.

[^161]: ${ }^{2} B B i$, p. 120.

[^162]: ${ }^{1} B B i$, p. 121.
 ${ }^{2} B B i$, pp. 120, 121.

[^163]: ${ }^{1} B B i, p .121$.

[^164]: ${ }^{1}$ BMs, Folio 59, recto.

[^165]: ${ }^{1}$ BrSpSi, xviii. 73.
 ${ }^{2}$ GK, i. s2.

[^166]: ${ }^{1}$ GK, i. 93 .
 ${ }^{8} B B i, \mathrm{pp} .1^{1} 7-8$.

 $$
 { }^{2} G K, \text { i. } 54
 $$

[^167]: 1 Vide infra, p. 265.
 ${ }^{2}$ Addition to Euler's Algebra, p. 547.

[^168]: ${ }^{1}$ The reference is to the rule on p. 249.
 ${ }^{2}$ BBi, p. 107.

[^169]: ${ }^{1}$ GK, i. 49.
 2 The reference is to rule i. 48 .

[^170]: ${ }^{1} B B i$, p. 68.

[^171]: ${ }^{1} \mathrm{BBi}$, p. 67.
 It will be noticed that by virtue of the last condition the problem becomes, in a way, determinate.

[^172]: ${ }^{1}$ BrSpSi, xviii. 62-3, vide supra, p. 29.7.

[^173]: ${ }^{1}$ Heath, Diophantus, pp. 192-4, 262.
 ${ }^{2} \mathrm{BrSpSi}$, xviii. 6ı.

[^174]: ${ }^{2} B B i$, p. 123.

[^175]: 1 "Evamekasmin vyakte râsau kalpite sati bahûnâyâsenabhinnau râsí jinâycte"-BBi, p. 124.
 ${ }^{2} \mathrm{BBi}, \mathrm{pp} .124 \mathrm{f}$.

[^176]: ${ }^{1}$ BBi, p. 126.
 ${ }^{2}$ In the original text they are respectively $n \hat{i}$ (for nilaka) and $p \boldsymbol{f}$ (for pitake).
 ${ }^{3}$ BBi, p. 127.

