
, BIRLA CENTRAL LIBRARY | 
WLAN! (IiAJASTHAN) f 

iw No. 5-2, | •'5, I 

Hook No. /-/ 7/ S 

Accession No. €% ??o % 
000O0OOO00O0OOOO$OO0000O0000000000 

Book No. 







INTERMEDIATE MECHANICS 





INTERMEDIATE 

MECHANICS 

BY 

D. HUMPHREY, B.A., B.Sc. 
LATE DIRECTofToF EDUCATION, THE POLYTECHNIC, LONDON, Vf.l. 

(FORMERLY HEAD OF THE DEPARTMENT OF MATHEMATICS and physics). 

DYNAMICS 

WITH DIAGRAMS 

LONGMANS, GREEN AND CO. 

LONDON ♦ NEW YORK ♦ TORONTO 



Longmans, Green and Co Ltd 
6 & 7 CLIFFORD STREET, LONDON WI 

THIBAULT HOUSE, THIBAULT SQUARE, CAPE TOWN 
605-611 LONSDALE STREET, MELBOURNE Cl 

443 LOCKHART ROAD, HONG KONG 
ACCRA, AUCKLAND, IBADAN 

KINGSTON (JAMAICA), KUALA LUMPUR 
LAHORE, NAIROBI, SALISBURY (RHODESIA) 

Longmans, Green and Co Inc 
119 WEST 40TH STREET, NEW YORK 18 

Longmans, Green and Co 
. 20 CRANFIELD ROAD, TORONTO 16 

Orient Longmans Private Ltd 
CALCUTTA, BOMBAY, MADRAS 
DELHI, HYDERABAD, DACCA 

First published .... July 1930 

Reprinted by the Novographic Process 

November 1933 . . . July 1935 

November 1936 . . February 1938 

June 1939 . . . .August 1940 

February 1941 . . November 1941 

July 1942 . . . November 1942 

January 1944 . . October 1944 

November 1945 . . November 1947 

February 1948 

March 1954 . 

February 1957 

. January 1949 

• • -Jeuly '955 
. .FJecember 1958 



PREFACE. 

While engaged in teaching Mechanics to Senior Forms during 
a number of years, I have felt, especially in recent years, 
the need of a book dealing with harder applications of the 
principles of the subject, and filling the gap between the 
elementary book and the more advanced treatise written for 
degree students. 

At the present time the standard required for the various 
Higher Certificate and University Scholarship Examinations 
is undoubtedly high, and the student is expected to be able 
to apply fundamental principles to problems which require 
considerable thought and skill without introducing any great 
mathematical difficulties. 

To acquire the necessary skill necessitates a course of 
training which I feel is of considerable value in itself, apart 
altogether from the question of examinations, and the object 
of the present book is to provide such a course. It is 
intended to meet the requirements of students working for 
Intermediate B.Sc., various Higher Certificate and University 
Scholarship Examinations. The book is not intended for 
beginners, but I have tried to make the earlier chapters in 
both volumes complete enough to enable them to be used 
by those who have done even a short course in the elements 
of the subject. 

The methods of the Calculus have been used throughout. 
This subject is now taken in the Upper Forms of most 
schools, and the application to Mechanics can be used as 
a means of introducing and illustrating the fundamental 
ideas of the differential and integral calculus. 

The contents of each chapter have been arranged to 
depend, as far as possible, on the same mechanical principle, 
the harder examples being placed at the end of the chapter 
so that they may be left to a second reading. 



VI PREFACE 

The present volume covers the subject of Dynamics to 
the standard already mentioned, and includes two chapters 
on the motion of a rigid body. Statics and Hydrostatics 
are dealt with in a second volume. 

With such a large number of examples I can scarcely 
hope that there are no errors in the questions or answers, 
but shall be very grateful for any corrections, and also for 
any suggestions for improvement. 

I wish to express my thanks to the Syndics of the 
Cambridge University Press, the University of London, 
certain of the Cambridge Colleges, the Oxford and Cam¬ 
bridge Schools Examination Board, the Joint Matriculation 
Board and the Central Welsh Board, for permission to use 
questions set in various examinations. 

I am deeply indebted to Mr. F. J. Swan, B.A., for the 
very valuable assistance he has given me in correcting the 
proof-sheets and making a number of suggestions. 

My thanks are also due to Mr. P. Abbott for much 
assistance and advice both with the manuscript and while 
the book has been in the press. 

The Polytechnic, 
May, 1930. 

D. HUMPHREY. 
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CHAPTER I. 

SPEED, VELOCITY AND ACCELERATION. 

§ 1. When a point is changing its position it is said to be in 
motion, and the curve drawn through all the successive positions 
of the point is called its path. 

§ 2. The speed of a moving point is the rate at which it describes 
its path. The speed expresses the rate of motion without reference 
to the direction of motion. Speed is therefore a quantity having 
magnitude only, and is expressed completely when we know this 
magnitude. 

A quantity having magnitude and no direction is called a Scalar 
quantity, so that speed is a scalar. 

Other examples of scalar quantities are mass and density. 
§ 3. The speed of a point is said to be Uniform when it is moving 

through equal lengths of its path in equal times, however small these 
times may be. 

When uniform, the speed of a point is measured by the distance 
moved through in unit time. 

If s is the distance moved through in time t, then the speed v is 
given by 

s 
v = r 

.\ $ — vt. 

§ 4. When the speed is varying, its value at any instant is the 
distance the point would pass through in the next unit of time, if it 
continued to move with the speed which it has at that instant. 

§ 5. The average speed of a moving point in any given interval of 
time is the speed with which it would have to move uniformly to 
describe the same distance in the same time. The average speed is 
obviously obtained by dividing the whole distance by the whole 
time. Now, if the interval of time is at all large, it is clear that the 
speed may have varied at different times during the interval. Hence 
we cannot obtain the speed at any instant from the distance travelled 
in an interval of time of anv finite size. 

§«• The speed at any instant is measured by the rate of motion 
during a very short interval of time including that instant, this 
interval being so short that the speed will not have time to change. 
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In the notation of the differential calculus, if 8s is the length of 
path described in a very short interval of time ?tt including the given 
instant, the limiting value of 

8s 

87 
as 8/ o, i.e. 

dj 
dt' 

is the speed of the point at the instant considered. 
§ 7. The unit of speed is the speed of a point which moves uni- 

formly through unit distance in unit time. 
The English units of length and time most frequently used in 

dynamics are the foot and the second, and the unit of mass is the 
pound. These units are often called the foot-pound-second system, 
abbreviated to F.P.S. system. 

The metric units most commonly used are the centimetre, gram 
and second, and this is usually called the C.G.S. system. 

The units of speed in these systems will be 

i foot per second, abbreviated to i ft./sec. or i ft. per sec., and 
i centimetre per second, abbreviated to i cm./sec. or 
i cm. per sec. 

§ 8. Speeds are, of course, often expressed in other units, such 
as miles per hour (abbreviated to m.p.h.), and the unit of speed 
used in navigation is the knot, a speed of i nautical mile (6080 ft.) 
per hour. 

In most cases it is best to bring all speeds to feet per second 
(or centimetres per second) when working examples in dynamics, 
and it is convenient to remember that 

bo m.p.h. — 88 ft./sec. 

This relation is easily obtained as follows :— 

6q m.p.h. — i mile in i minute, 

-- — mile in i second, 
6o 

=- 5?.-° feet in i second, 
6o 

W 88 feet in i second. 

§9. Displacement. 

The displacement of a moving point is its change of position. 
Now we can fax the position of a point P in a plane in two ways, as 

follows : 
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(i) Let OX, OY (Fig. i) be two fixed straight lines in the plane, 
and let PM be drawn parallel to OY to meet OX in M, and 
let PN be drawn parallel to OX to meet OY in N. Then 
the lengths of PN and PM (or OM and ON) will determine 
the position of P. 

These lengths are the Cartesian co-ordinates of P, referred to 
the axes OX, OY. 

Usually the axes are taken at right angles to each other. 
(ii) The position of P is also determined if we know the length 

of the line OP and the angle XOP. 
These are the polar co-ordinates of P, referred to O as origin 

and OX as initial line. 

§ 10. In the second method the position of the point relative to 
O is determined by the length and direction of a straight line. Any 
quantity which involves magnitude and direction in this way, and 
is therefore capable of being represented by a straight line of certain 
length drawn in a certain direction, is called a vector quantity. 

The vector OP determines the position of P relative to O. 
—v 

The notation OP is used to show that the direction of the vector 
is from O to P. 

OP - - PO, 

§ 11. If P (Fig. 2) moves to Q, the position of Q with reference 

to O is represented by the vector OQ, and the change of position 
—^ 

or displacement of P is represented by the line (or vector) PQ. 

It is clear that to express completely the displacement of a 
point P in moving to another position Q we must state the magni¬ 
tude and direction of the line joining P to Q. 

By saying that the displacement is represented completely by 

the vector PQ we imply that the direction, as well as the length, of 
PQ is known. 

We also see that if the positions of the points P and Q are repre- 
—► —> 

sented by the vectors OP, OQ, the change in position, i.e. the dif- 
-^ -> _y 

ference between the vectors OQ, OP, is represented by the vector PQ. 
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If P has moved to Q, the difference of the vectors OP, OQ is 

OQ — OP, and this is equal to PQ. 

The difference OP — OQ is equal to QP. 
§ 12. If the point starts from O and moves to P, the displace¬ 

ment is OP, and if it then moves to Q the further displacement is PQ, 

the total displacement is OQ, 

... OP + PQ = OQ. 

—> —v —> 

OQ is called the vector sum of OP and PQ. 
It is clear that OQ is equal and parallel to the diagonal of the 

parallelogram having OP and PQ as adjacent sides. 
We thus obtain the parallelogram law for finding the resultant 

of two displacements. 
—>■ —v 

§ 18. If AB, AC (Fig. 3) represent two displacements of a point, 

the resultant displacement is represented by the diagonal AD of the 
parallelogram ABDC. 

We have AC + AB = AD, 

and BD + DC = BC, 

but BD = AC, and DC = — AB, 

i.e. AC — AB — BC, the other diagonal. 

§ 14. Velocity. 

The velocity of a moving point at any time is the rate of its 
displacement. Velocity must therefore possess both magnitude and 
direction, and is a vector quantity. 

The velocity of a point is said to be uniform or constant when it 
is moving in a constant direction with uniform speed. 

When a point is moving in a straight line its velocity and speed 
are the same, otherwise they are not the same. 

For example, suppose a point is describing a circle with uniform 
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speed, then, since its direction of motion is continually changing, its 
velocity is not constant. 

When uniform, the velocity of a moving point is measured by its 
displacement in unit time. 

§ 15. When the velocity of a moving point is variable its velocity 
at any instant is understood to mean the displacement it would 
undergo in the next unit of time if it continued to move with the 
velocity which it had at the instant considered. 

§ 16. Suppose a point P to move in a plane to the position Q, 
—^ 

we have seen that the displacement is PQ and that this is denoted by 

OQ - OP. 
If t is the time taken to go from P to Q, the average velocity 

during this interval is 

OQ - OP PO 
—-——-, or 

The velocity at P is given by taking the interval of time indefinitely 
small, so that the velocity at P is 

T. . OQ-OP . . 
Limit -..., or Limit 
t -> o 1 t —> o 

PQ 
t ' 

§ 17. The unit of velocity is the velocity of a point which under¬ 
goes a displacement equal to unit distance in unit time. 

Numerically this is the same as the unit of speed, and the magni¬ 
tude of the velocity of a point is the same as the magnitude of its 
speed. To express completely the velocity we must add a state¬ 
ment as to the direction of motion. 

§ 18. A point or body may have several different velocities simul¬ 
taneously, e.g. a person walking on the deck of a ship in motion. 
The single velocity which is equivalent to several other velocities is 
called their resultant, and the several velocities are called the com¬ 
ponents of this resultant. 

Velocities, like all vector quantities, can be compounded by the 
parallelogram law, as shown in the case of displacements. 

The resultant is the vector sum of the components. 
It is, however, more satisfactory to give a formal proof for each 

kind of vector as we deal with it. 

§d9. The Parallelogram of Velocities. 

If a moving point possess simultaneously velocities represented 
in magnitude and direction by the straight lines OA, OB, they are 
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equivalent to a velocity represented by the diagonal OC of the parallelo¬ 
gram OACB. 

B C 

For, if OA (Fig. 4) represents a velocity of magnitude u, and OB 
a velocity of magnitude v, we may imagine the point to move along 
OA with speed u while the line OA moves parallel to itself so that 
its end 0 describes the line OB with speed v. In unit time the point 
will have moved along OA to A, and the line OA will have moved 
into the position BC, so that the moving point will be at C. 

At any intermediate time t the point will have moved a distance 
ut along OA to D, say, while the line OA will have moved a distance 
vt parallel to itself. 

If DE is drawn parallel to AC to meet OC in E, 

DE AC v 
OD OA u 

DE = OD . - = «/- =vt, 
u u 

DE is the distance moved by the line OA; 

the point will be at E. 

Hence OC is the path described by the point, and OC represents in 
magnitude and direction the velocity which is equivalent to OA, 
OB, i.e. it represents their resultant. 

If the angle AOB = a, 

OC2 = OA2 + AC2 + 2OA . AC cos a. 

Hence, if the resultant OC is V, 

V2 = u2 + v2 + 2uv cos a. 

If the component velocities u and v are at right angles, 

V2 = u2 + r2. 

§ 20. Resolution of a Velocity. 

We can use the parallelogram law to resolve a given velocity 
into two components. It is obvious that this can be done in an 
infinite number of ways, for we can describe any number of parallelo¬ 
grams on a given straight line as diagonal. 
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In practice the directions of the components are given, and these 
directions are usually at right angles. 

In the latter case the values of the component velocities are 
easily obtained as follows :— 

Let OP (Fig. 5) represent the given velocity v, and suppose we 
wish to resolve it into two components, one along OX, and the 
other in a perpendicular direction OY. 

Draw PM perpendicular to OX and PN perpendicular to OY. 
Then OM, ON represent the components along OX and OY. 
If the angle XOP — 0, 

OM = v cos 6, and ON = v sin 0. 

Hence a velocity v is equivalent to a velocity v cos 0 along a line 
making an angle 0 with its own direction, together with a velocity 
of v sin 0 perpendicular to the direction of the first component. 

§ 21. If x, y are the co-ordinates of the point P at any instant 
referred to axes OX, OY, then OM = x, ON — y. 

The component velocities parallel to the axes are the rates of 
change of OM and ON, i.e. 

dx 
dt 

These are often denoted by x and y, i.e. x = y = By 

considering both components, we automatically take into account 
changes in the direction of motion of P. 

Changes in the values of x and y give us the change in position 
or displacement of P both in magnitude and direction, and the rates 
of change of x and y give us the rate of displacement of P. 

This method of considering component velocities is of great 
importance when we have to deal with cases of motion where the 
path is not a straight line. 

§ 22. When we speak of the component of a velocity in a given 
direction, it is understood that the other direction in which the 
velocity is to be resolved is perpendicular to this given direction. 

If we do require the components of a velocity v in directions 
making angles a and p with it, they can be found as follows:— 
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B C 

Fig. 6. 

Let OC (Fig. 6) represent v. Draw OA and OB, making angles 
a and ft with OC, and through C draw parallels to complete the 
parallelogram OACB. 

Then OA and OB, or OA and AC represent the required com¬ 
ponents. Hence, from the triangle OAC, 

OA = OC^ ^ OC 
sin £ sin A sin (a + p)’ 

.\ OA = 
v sin p 

sin (a + ft)’ 

C* *1 1 v sin a 
Similarly, OB = -—7— J sin (a + p) 

EXAMPLES I. 

1. Find the resultant of velocities of 8 ft./sec. and 6 ft./sec. at right 
angles. 

2. Find the resultant of velocities of 8 ft./sec. and 6 ft./sec. inclined at 
an angle of 6o°. 

3. A railway carriage is travelling at 30 ft./sec., and a person rolls a 
ball across the floor of the carriage at right angles to the direction of 
motion of the train at 16 ft./sec. Find the resultant velocity of the 
ball. 

4. A point is moving in a straight line with a velocity of 12 ft./sec. ; 
find the component of its velocity in a direction inclined at an angle 
of 30° to its direction of motion. 

5. A ball is moving at 60 ft./sec. in a direction inclined at 6o° to the 
horizontal; find the horizontal and vertical components of its 
velocity. 

§28. Triangle 0! Velocities. 

If a moving point possess simultaneously velocities represented by 
the two sides AB, BC of a triangle taken in order, their resultant is 
represented by AC. 

Fig. 7. 
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This follows at once from the parallelogram of velocities. 
—y —>■ —> 

The resultant of AB, BC (Fig. 7) is their vector sum, i.e. AC. 

§24. Polygon 0! Velocities. 

If a moving point possess simultaneously velocities represented by 
the sides AB, BC, CD, . . . LM, of a polygon taken in order, their 
resultant is represented by AM. 

For, by the triangle of velocities, the resultant of AB and BC 
(Fig. 8) is represented by AC, the resultant of AC, CD is represented 
by AD, and so on ; the resultant of all the velocities is therefore 
represented by AM. 

It is obvious that this result also holds if the sides of the polygon 
are not in one plane. 

§ 25. When a point possesses a number of given velocities we 
can find their resultant by resolving each of them in two fixed 
directions OX, OY at right angles, adding the components in each 
of these directions to obtain a single velocity along OX and another 
along OY, and then compounding these two perpendicular velocities 
into a single one. 

Example. 

A point has velocities of 2, 4 V2, 6, and 8 inclined at angles of 30 °, 

450, 6o°, and 120° respectively to a given direction. Find the magnitude 
and direction of their resultant. 

Let OX (Fig. 9) be the given direction, and OY perpendicular to it. 

The components along OX are 

2 cos 30°, 4 V2 cos 450, 6 cos 6o°, 8 cos 120°, 

or, V3, 4, 3, — 4. 

and their sum is 

v'5.+ 3. 
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V 

The components along OY are 

2 sin 30°, 4 V2 sin 45°, 6 sin 60°, 8 sin 120°, 

or 1, 4, 3V3, 4V3, 

and their sum is 

5 + 7'/3- 

The velocities are therefore equivalent to a velocity of 3 + V3 along 

OX and a velocity of 5 + 7^3 along OY. 

If V is the resultant, 

Vs - (3 + V3)* + (5 -f 7^3)* 

= 315*632. 

V = 17*76. 

If B is the angle made by this resultant with OX, 

tang = 3+.7.V3 = 17^24 = 6l8. 
3 + V 3 4*732 

.*. 6 ~ 74J° nearly. 

§26. Example (i). 

A boat is rowed with a velocity of 4 m.p.h. straight across a river which 
is flowing at 3 m.p.h. Find the magnitude and direction of the resultant 
velocity of the boat. If the breadth of the river is 400 feet, find how far 
down the river the boat will reach the opposite bank. 

The component velocities of the boat are 4 m.p.h. and 3 m.p.h. at 
right angles. If v is the resultant velocity 

— V9 -f 16 

Fig. 10. 

V = V3* + 4; 5 m.p.h. 
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If 0 (Fig. io) is the angle the direction of this velocity makes with 
the bank, 

cos $ = g, or 9 = cos 

To find how far down the river the boat reaches the opposite bank 
it is better to use the component velocities. 

The time taken to get across the stream is not affected by the current 
as the man keeps rowing at right angles to the bank. 

4 m.p.h. 
88 x 4 88 

6o 15 
ft./sec.. 

.*. the time taken to cross = ~ 
88 

T, , , ,, , . 88 x 3 88 
The speed of the current is ———- = — 

sec., 

ft./sec., 

hence, in the time taken to cross, the boat will be carried down stream 
a distance of 

88 ^ 400 x 15 
20 X 88 

300 ft. 

Example (ii). 

A stream is running at 3 m.p.h., and its breadth is 440 feet. If a man 
can row a boat at 5 m.p.h., find the direction in which he must row in order 
to go straight across the stream, and the time it takes him to cross. 

B 

Let A (Fig. 11) be the point from which the man starts, and AB 
perpendicular to the banks. 

Then the resultant of the stream’s velocity of 3 m.p.h. in direction 
AC and the man’s velocity of 5 m.p.h. has to be in the direction AB. 
If AC represents the velocity of the stream to scale, and AD the man’s 
velocity to the same scale, then the diagonal AE of the parallelogram 
whose adjacent sides are AC and AD must lie along AB, and AE — 

V57Z:3I = 4- 
Cos DAE = £, i.e. he must row in a direction making an angle 

cos~1 £ with AB. 
Also his resultant velocity is 4 m.p.h. or f£ ft./sec., 

the time to cross 
440 x 15 _ 40 x 15 

88 “ 8 
75 sec. 
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EXAMPLES II. 

1. A boat is rowed with a velocity of 5 m.p.h. straight across a river 
flowing at 3 m.p.h. If the breadth of the river be 500 feet, find how 

• far down the river the boat will reach the opposite bank. 
2. A man wishes to go straight across a river ; if he can row his boat 

with three times the velocity of the current, find at what inclination 
to the current he must keep the boat pointed. 

3. A boy is riding a bicycle at 10 m.p.h. ; in what direction must he 
throw a stone with a velocity of 22 ft./sec. so that its resultant 
motion may be at right angles to his own direction. 

4. A boat is moored at a place where a current is flowing eastwards 
at ij m.p.h. Two buoys are also moored, each 176 ft. from the 
boat, one due north, the other due east of it. Two equally fast 
swimmers, each capable of a speed of 2J m.p.h. in still water, start 
from the boat at the same time to swim one to each buoy and back 
to the boat. Which will reach the boat again first, and how much 
sooner ? 

5. A point which has velocities represented by 8, 9, and 13 is at rest ; 
find the angle between the directions of the two smaller velocities. 

6. A point has velocities of 3, 5, 4, and 6 in directions E., N.E., N., and 
N.W. respectively ; find the magnitude and direction of its resultant 
velocity. 

7. A point has equal velocities in two given directions ; if one of these 
velocities be halved, the angle which the resultant makes with the 
other is halved also. Show that the angle between the velocities 
is 120°. 

8. If a point has two velocities, ux and u% inclined at such an angle 
that the resultant velocity V — ul§ show that, if ux be doubled, 
the new resultant is at right angles to ut. 

9. A man who swims at 3 m.p.h. in still water wishes to cross a river 
176 yards wide, flowing at 5 m.p.h. Indicate graphically the 
direction in which he should swim in order to reach the opposite 
bank (a) as soon as possible, (6) as little down stream as possible. 
How long will he take to cross, and how far will he be carried down 
stream in each case ? 

10. A ship is steaming on a course 30° east of north at a speed of t2\ 
knots, and a man walks backwards and forwards across the deck 
in a direction perpendicular to the ship’s course at a speed of 
5 ft./sec. Find the actual directions in which the man moves. 

(H.C.) 

§ 27. Relative Velocity. 

When the distance between two points P and Q is altering, 
either in magnitude or direction, then either point is said to have 
a velocity relative to the other. 

The relative velocity is the vector difference of the velocities of 
P and Q. 

If the points are moving in parallel directions, this is the same 
as the algebraic difference of the velocities. 

—> —>> 

If AB (Fig. 12) of magnitude w, and CD, of magnitude v, represent 
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Fig. 12. 

the velocities of P and Q, AB being parallel to CD, the velocity of 
P relative to Q is 

u — v, 

and that of Q relative to P is 

v — u. 

In tjach case this is the resultant of the velocity of one point 
and that of the other reversed. 

Fig. 13. 

If AB, AC (Fig. 13) represent the velocities of P and Q, 
The velocity of P relative to Q is 

AB - AC = CB, 

The velocity of Q relative to P is 

AC — AB — BC. 

Here, again, it is clear that the velocity of P relative to Q is 
the resultant of the velocity of P and the velocity of Q reversed. 
Similarly, in the second case. 

Hence we may obtain the velocity of P relative to Q by com¬ 
pounding with the velocity of P a velocity equal and opposite to 
that of Q, and the point Q may then be regarded as at rest. 

§ 28, This can be expressed in another way. It is clear that the 
relative velocity, which is the difference between the velocities, 
of two points, will not be affected by impressing on each of them 
equal (and parallel) velocities. 

Hence, if we impress on both P and Q velocities equal and 
opposite to that of Q, the latter will be reduced to rest and the 
resultant velocity of P will be, as shown above, the velocity of P 
relative to Q. 

We can find all about the relative motion of P and Q (such as the 
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shortest distance between them) by considering P to move with 
this relative velocity while Q remains at rest. 

Most problems on relative velocity can be solved by this method 
of reducing one of the points to rest, as illustrated in the following 
examples. 

There are some, however (such as Example (iii), § 52), which 
require the use of the vector method. 

The usual method is as follows :— 
To find the velocity of P relative to Q, we compound with the velocity 

of P a velocity equal and opposite to that of Q by the parallelogram law. 

Example (i). 

A ship is steaming due east at 15 m.p.h., and another ship is steaming 
due south at 20 m.p.h. ; find the velocity of the second ship relative to the 
first. 

15 

If AB (P'ig. 14) represents the velocity of the second ship, we have 
to compound with it a velocity of 15 m.p.h. due west. If this is repre¬ 
sented by AC, the relative velocity is represented by the diagonal AD 
of the rectangle ABDC. 

AD* = AB* + DB* = 202 + 15* = 625, 
AD = 25. 

The relative velocity is therefore 25 m.p.h., and its direction makes an 
angle west of south whose tangent is }. 

Example (ii). 

A train is travelling along a horizontal rail at 45 m.p.h., and rain is 
falling vertically with a velocity of 22 ft./sec. Find the apparent direction 
and velocity of the rain to a person travelling in the train. 

The velocity of the train is 66 ft./sec. 

C r A 
1-<- -<- 

V 

) e 

Fig. 15. 
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Let AB (Fig. 15) represent the actual velocity of the rain. Draw AC 

horizontal and opposite to the direction of the train to represent the 

magnitude of the velocity of the train to the same scale. Complete 
the parallelogram ABI)C. 

Then AD represents the relative or apparent velocity of the rain. 

tan BAD — 
DB 66 g 

AB “ 22 3' 

The magnitude of the relative velocity is 

V66* -f 22* — 22 V9 -f- 1 — 22 Vio ft./sec. 

Example (iii). 

A battleship which can steam at 15 knots sights an enemy cruiser at 
a distance of 8 nautical miles due east of her. If the cruiser steams due 

north at 20 knots, find what course the battleship must steer in order to 

get as close to her as possible, and show that when they are as close as 

possible, the battleship will have gone 6 nautical miles relatively to the 

cruiser. 

Let B, C (Fig. 16) be the initial positions of the battleship and 

cruiser respectively. Reduce C to rest by applying a velocity of 20 

knots due south to each. Since the speed of B is only 15, it is obvious 

that its velocity relative to C, i.e. the resultant of 20 due S. and its 

own velocity of 15 must be in a direction south of BC. Now in order 

that B shall get as close as possible to C, its velocity relative to C must 

make as small an angle as possible with BC. 

If BD represent the velocity of B, and BE the relative velocity, 

the angle EBC will be a minimum when the angle ABE is a maximum. 

This is the case when AE (which equals BD) is perpendicular to 

BE, and then 

cos EBC — sin ABE = hi’, = J • 

and sin CBD = cos EBC = J. 
The required direction is therefore sin-1 J N. of E. 

The shortest distance between B and C is CF where CF is perpen¬ 

dicular to BE. 

BF == BC cos EBC = 8 x } = 6 miles, 

i.e. B has gone 6 miles relatively to C. 
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EXAMPLES III. 

1. Two trains are travelling on lines which cross at right angles, one 
at 40, and the other at 50 m.p.h. Find the velocity of the second 
train relative to the first. 

2. A passenger on the top of an omnibus feels a breeze which to him 
appears to blow directly across the bus at 10 m.p.h. If the omnibus 
is travelling at 15 m.p.h., what is the velocity of the wind ? 

3. Raindrops are falling through the air with a velocity of 10 ft./sec. 
If a north wind blow at 12 m.p.h., find the direction in which the 
drops appear to fall to a person walking north at 3 m.p.h. With 
what velocity would they hit his umbrella ? 

4. A steamship is travelling north at the rate of 10 m.p.h., and there 
is a north-east wind blowing at the rate of 20 m.p.h. In what 
direction will the smoke from the funnel appear to move to an 
observer on the ship ? 

5. One ship is sailing due east at 12 m.p.h., and another ship is sailing 
due north at 16 m.p.h. ; find the velocity of the second ship relative 
to the first. 

6. A steamer going N.E. at 14 m.p.h. observes at noon a cruiser 10 
miles away and S.E. of her, which is going N.N.E. at 25 m.p.h. 
Draw a diagram of the cruiser's course as it appears from the 
steamer. At what time are the vessels nearest to one another, 
and how far are they then apart ? 

7. Two ships are steaming in opposite directions at 20 and 25 knots 
respectively, and when they are directly abeam a shot is fired from 
one. If the gun at rest gives a muzzle velocity of 2660 ft./sec., 
find the direction in which it must be fired to hit the other ship, 
gravity being neglected. (A knot is 6080 ft./hour.) 

8. Two roads cross at right angles at P ; a man A, walking along one 
of them at 3 m.p.h., sees another man B, walking on the other 
road at 4 m.p.h., at P when he is 100 yards off. Find the velocity 
of A relative to B, and show that they will be nearest together 
when A has walked 36 yards. (I S.) 

9. Two motor cars are proceeding, one on each road, towards the point 
of intersection of two roads which meet at an.angle of 6o°. If their 
speeds are 12 J and 20 m.p.h., and they are respectively 350 and 200 
yards from the cross-roads, find their relative velocity, and the 
distances from the cross-roads when they are nearest together. 

(I.E.) 

10. To an observer on a ship travelling due west at 16 m.p.h. another 
ship 1 mile due south appears to be travelling north-east at 12 
m.p.h. Find the magnitude and direction of the true velocity of 
the second ship, and the distance apart of the two ships when 
nearest to each other. (I.S.) 

11. A battleship is steaming 15 knots due N. ; a cruiser, which steams 
25 knots, is 5 nautical miles S.W., and is ordered to line up 
1 nautical mile astern. Find graphically, or otherwise, the course 
the cruiser should steer to line up as quickly as possible. (I.E.) 

12. If a ship is moving N.E. at 15 knots, and a second ship appears to 
an observer on the first to be moving due E. at 7 knots, determine 
the ^actual direction and magnitude of the velocity of the second. 

(I.S.) 
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13. From their point of intersection two straight roads lie respectively 
due E. and 6o° N. of E. At the same instant that a motor travel¬ 
ling at 35 m.p.h. due E. is at the crossing, a second motor is 5 
miles from it, and is travelling at 30 m.p.h. towards it from 600 
N. of E. Find by a graphical construction (or by calculation) the 
relative velocity of the first to the second motor. Find also when 
they will be at their shortest distance apart. (I E.) 

14. Two sliips are sailing at speeds of ro and 12 m.p.h. along parallel 
lines in the same direction. When they are opposite one another 
and 2 miles apart, the faster ship turns its course through 30° in the 
direction of the other. Find how close they get to one another. 

(LE.) 

15. A ship A is steering S. at the rate of 8 m.p.h., and a ship B is 
steering E. at 10 m.p.h., the distance AB being 2000 yards and the 
line AB making an angle of 30° towards the west with the direction 
of motion of A. Calculate their relative velocity, and find how 
long it will be before they are closest together. (H.S.D.) 

16. A man can swim at 2 m.p.h. in still water. Find the time he 
would take to swim between two directly opposite points on the 
banks of a river 250 yards wide flowing at 1 m.p.h. (H.S.D.) 

17. A batsman is at the wicket W and a fieldsman is in the outfield at 
F. The batsman strikes the ball in a direction making 30° with 
the line WF with a speed i£ times that with which the fieldsman 
can run. If the fieldsman starts off at once, at top speed, so as 
to field the ball as soon as possible, determine, graphically or 
otherwise, the direction in which he must run ; and show that, if 
in doing this he has run 20 yards, he was standing about 39 yards 
from the wicket. (Assume that the ball travels along the ground 
with no diminution of speed.) (H.S.D.) 

18. A destroyer, steaming N. 30° E. at 30 knots, observes at noon a 
steamer which is steaming due N. at 12 knots, and overtakes the 
steamer at 12.45 P m- Find the distance and bearing of the 
steamer from the destroyer at noon. (H.C.) 

19. Find the true course and the true speed of a steamer travelling 
through the water at 12 knots and steering due north by the 
compass through a current of 3 knots which sets south-east. Find 
also the direction in which the steamer should steer in order to 
make its true course due north, and the true speed on that course. 

(H.C.) 
20. A cruiser which can steam at 30 knots receives a report that an 

enemy vessel, steaming due north at 20 knots, is 29 nautical miles 
away in a direction 30° north of east. Show (i) graphically, (ii) by 
calculation, that the cruiser can overtake the vessel in almost, 
exactly 2 hours. (A knot is a speed of 1 nautical mile per hour.) 

(H.C.) 
21. A ship leaves a certain port and steams N.E. at 15 knots ; 5 hours 

later another ship leaves the same port and steams due W. at 20 
knots. Their wireless instruments can maintain communication 
up to 225 nautical miles ; find to the nearest nautical mile the 
distance of the ships from the port when communication ceases. 

(H.C.) 
22. Two motor cars, A, B are travelling along straight roads at right 

angles to one another, with uniform velocities of 21 m.p.h. and 
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28 m.p.h., respectively, towards C, the point at which the roads 
cross. If AC is half a mile when BC is three-quarters of a mile, 
find the shortest distance between the cars during the subsequent 
motion. (C.S.) 

23. A steamer is going due west at 14 iri.p.h., and the wind appears 
from the drift of the clouds to be blowing at 7 m.p.h. from the 
N.W. Find its actual velocity, and make a geometrical construction 
for its direction. 

24. A ship A observes another B at a distance of 8 miles in a direction 
due north ; B is steaming south at 12 m.p.h. and A is steaming 
north-east at 15 m.p.h. Find (graphically or otherwise) the 
velocity of B relative to A ; and prove that the ships are nearest 
together about 17 minutes after B is first observed. (Q.E.) 

25. A branch road running N.W. joins a main road running due north. 
At a particular instant two motor cars, A and B, each travelling 
at 12 m.p.h., are approaching the junction, A being on the branch 
road and distant miles from the junction, and B being on the 
main road, and 1 mile from the junction. If the speeds of the cars 
remain constant, find (i) how close to one another they get; (ii) 
the distance of A from the junction when this occurs. (Q.E.) 

§29. Angular Velocity. 

If a point P be in motion in a plane, and if 0 be a fixed point in 
the plane and OA a fixed straight line through 0, the angular velocity 
of P about 0 is defined as the rate at which the angle AOP increases. 

Angular velocity is always measured in radians per second. When 
uniform, angular velocity is measured by the number of radians in 
the angle turned through by OP in 1 second. When variable, its 
value at any instant is measured by the angle through which OP 
would turn in 1 second, if it continued to turn at the same rate as 
at the instant considered. 

If 6 is the angle between OP and OA at any instant, the angular 

velocity is ~ or 6. 

§ 30. If the point P describe a circle with 0 as centre with uniform 
speed, its angular velocity about 0 is equal to its speed divided by the 
radius of the circle. 

Let P (Fig. 17) be the position of the point at any time, Q its 
position 1 second later. The angular velocity is the number of 
radians in the angle POQ. 
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But the number of radians in POQ == 
arc PQ 

~OP~* 
Also, the arc PQ is described in i second, and is therefore equal 

to the speed v. 
Hence, if co be the angular velocity, and r the radius of the circle, 

co — 
v 

? 
v — rco. 

If n is the number of revolutions which P makes in i second, the 

angular velocity is 27m. 
The rate at which a body is rotating is often given in revolutions 

per minute (abbreviated to R.P.M.). 
It should be noticed that the angular velocity of a point P 

about another point O is independent of the distance of P from 
O ; it is the same for all points in the line OP. The linear speed of 
a point in OP does, however, depend on its distance from O. The 
speed of the point equals the angular velocity multiplied by the 
distance of the point from O. 

§ 31. To find the velocity of any point on a circular disc which is 
rolling uniformly, without sliding, on a straight line. 

Fig. 18. 

Let O (Fig. 18) be the centre and r the radius of the disc, A its 
point of contact with the line AX, and let v be the velocity with 
which O moves. 

Now as the centre moves forward uniformly in a straight line 
the disc turns uniformly about the centre ; and, since each point of 
the rim in succession touches the ground, it is clear that each point 
of the rim describes the perimeter relative to the centre while the 
centre moves forward a distance equal to the perimeter. Hence 
the velocity of any point on the rim relative to the centre is equal 
in magnitude to the velocity v of the centre. 

The angular velocity (a>) of the disc about its centre is therefore 

equal to y 
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If B is the highest point of the disc, its velocity relative to O is 
v horizontally, and in the same direction as the velocity of O. 

velocity of B = v + v = 2v. 

The velocity of A relative to O is also v, but in the opposite direction 
to the velocity of O. 

.-. velocity of A = v — v — o, 

i.e. the point A is instantaneously at rest. 
If P is a point on the rim, such that the angle BOP — 6, the resul¬ 

tant velocity of P is obtained by compounding together its velocity 
relative to O, v along the tangent PT, and the velocity of O, i.e. 
v horizontally along PC. 

Now the angle CPT m 0, 
and if V is the resultant velocity of P, 

V2 — V2 + V2 + 2V2 cos 0, 

0 
= 2v2(i + cos 0) = 4z>2 cos2 ’ ; 

„ 0 
.*. V — 2V cos -. 

2 

The direction of this velocity is along PD bisecting the angle 
CPT, since the two components are equal. 

If AP is joined we see that 

angle OPA = 

n 

also angle TPD — 

angle APD = angle OPT == a right angle. 

Hence each point of the rim is moving perpendicular to the line 
joining it to A, the lowest point ; 

also AP = 2rcos-, 
2 

the angular velocity of P about A is 

0 
2V COS - 

2 __ V 

0~ r 
2 r cos - 

2 

the angular velocity of the disc. 

Since the disc is rigid, all points in AP must have the same angular 

velocity about A, and it follows that all points on the disc are at 
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this instant turning about A with angular velocity oj equal to that 
of the disc about its centre. 

The point A is called the instantaneous centre of rotation. 

§82. Example (i). 

An engine is travelling at 60 m.p.h., and its driving wheel is 6 feet in 
diameter: find the velocity and direction of motion of each of the two 

points of the wheel which are at a height of 4I feet above the ground. 

Fig. iq. 

Let C (Fig. 19) be the centre of the wheel, A the point of contact 

with the rail, B the highest point, and D, E the points at a height of 
4b feet. 

60 m.p.h. — 88 ft./sec. 

angle BCE = 6o°. 

The velocity of E is composed of its velocity relative to C, i.e. 88 ft./sec. 
perpendicular to CE downwards, and the velocity of C, i.e. 88 ft./sec. 

horizontal. These are inclined at an angle of 6o°, and the resultant 

velocity V bisects the angle between them, i.e. it is inclined at 30° 

below the horizontal. 

Also V - V88M- 88* -h~z~88*Tcos 60° - 88 V3 ft./see. 

- - 60 \/3 m.p.h. 

The component velocities of I) are 88 ft./sec. horizontal, and 88 ft./sec. 

perpendicular to CD and upwards. 

The resultant is 88 V3 as for E, but it is inclined at an angle of 

30° above the horizontal. 

Example (ii). 

Explain how to find the angular velocity of the line joining two points 
whose velocities are given. 

Let A and B (Fig. 20) represent the two points. Now it is evident 

that any component velocities of A and B parallel to AB will not affect 

the direction of AB, but the components perpendicular to AB will alter 

the direction of AB unless they happen to be equal and in the same 
direction. 

VOL. I.—2 
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To find the angular velocity of AB we therefore proceed as follows :— 

Resolve the velocities of A and B, along and perpendicular to AB. 

Let ult ut be the components for A and B respectively perpendicular to 
AB. 

Compound with each of these a velocity equal and opposite to that 
of one of them, say ux. 

Then A is reduced to rest and B has a velocity of — ux perpen¬ 

dicular to AB, 
tim - M] 

the angular velocity of AB — —. 

This is only the instantaneous angular velocity, for as the direction of 

AB changes the components perpendicular to AB will change and so 

will the length AB. 

Example (iii). 

Two small marbles A and B are moving in a clockwise direction in 

concentric circular grooves of 2 inches and 3 inches radii respectively. 

The velocity of A in its groove is 2 inches per second, and that of B is 

9 inches per second. At a given instant the marbles are 1 inch apart; 

what time will elapse before the distance between them is 5 inches ? 

Let O (Fig. 21) be the common centre of the grooves. The marbles 

can only be 1 inch apart when they are on a common diameter and on 

the same side of the centre as at A and B. They will be 5 inches 

apart when they are on a common diameter, but on opposite sides of 

the centre as at A', B', and then B will have described 180° more than A. 

It is easier to consider the angular velocities of the marbles than 

their linear speeds. 

Since A's speed is 2 inches per second, it describes 360° or 2n radians 

in — ■ - = 2w seconds. Hence its angular velocity is 1. 
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B describes 360° in =3 seconds, and its angular velocity is 

therefore 3. 
B’s angular velocity relative to A is 2 radians per second; 

the time B takes to gain 180° or it radians is ^ seconds ; 

they will be 5 inches apart after ^ or 15708 seconds. 

EXAMPLES IV. 

1. A wheel is making goo R.P.M. about its centre; calculate the angular 
velocity of any point on the wheel about the centre. Also find the 
speed of a point at a distance of 2 ft. from the centre. 

2. A point moves in a circle with uniform speed ; show that its angular 
velocity about any point on the circumference of the circle is con¬ 
stant. 

3. A train is travelling at 40 m.p.h., and the diameter of one of the 
wheels of the engine is 5 ft. Find the velocities of the two points 
on this wheel which are at a height of 4 ft. above the ground. 

4. A body travelling at right angles to the plane of a fly-wheel 30 inches 
in diameter, making 480 R.P.M. makes a mark across the rim of the 
wheel. The mark is found to make an angle of 6o° with the edge 
of the rim. Calculate the speed of the body. 

5. Compare the velocities of the extremities of the hour and minute 
hands of a clock, their lengths being 2 and 3 inches respectively. 

6. A wheel of 8 feet diameter is rolling along the ground with a vel >city 
of 20 ft./sec. ; find the angular velocity of the wheel and the majgni- 
tudes and directions of the velocities of the points at the extremities 
of the horizontal diameter. 

7. The wheels of a bicycle are 30 inches in diameter, each crank is 
7$ inches long, and is geared so as to make 1 revolution while the 
wheels make two. Find the actual velocity of the end of the crank 
(i) when at the highest, (ii) when at the lowest point of its path, 
when the bicycle is travelling at 10 m.p.h. Work out the same 
problem supposing that two revolutions of the crank correspond to 
one of the wheels. 

8. A circular ring moves uniformly in a straight line in its own plane, 
and a point on the ring moves uniformly round the ring. Find the 
actual velocity of the point when the line joining it to the centre 
of the ring makes angles of (i) 90°, (ii) 45°, (iii) o° with the direction 
of motion of the ring. (N.B.—There is not necessarily any connec¬ 
tion between the velocity of the ring and the velocity of the point.) 

9. A bicycle wheel is 28 inches in diameter and the pedal crank is 
7 inches long. If the pedals make one revolution to three revolutions 
of the wheels, and the speed of the bicycle is 14 m.p.h., find the 
velocity of each pedal when the top of the crank makes an angle 
9 with the vertical in a forward direction. (Q.E.) 
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Acceleration. 

§ 33. Change of Velocity. 

Since a velocity has both magnitude and direction, it will be 
changed if we alter either of these or both. 

Fig. 22. 

Thus, suppose AB (Fig. 22) represents the velocity of a point at 
any instant, and AC its velocity at a later instant. Then we know 
by the triangle of velocities that BC represents in magnitude and 
direction the change of velocity during the interval considered. 

If AC = AB, then the speed has remained the same, but there 
has still been a change of velocity represented by BC. In dealing 
with motion in a straight line we have only to consider changes of 
speed, but when the path is a curve we must remember that the 
velocity is continually changing, although the speed may remain 
constant. This case will be dealt with in a later chapter. 

§34. Acceleration. 

This term is used to denote the rate at which the velocity is 
changing. It may be either uniform or variable. If a point move 
so that the changes of velocity in any equal times, however small, are 

the same in direction and equal in magnitude, the acceleration is said 
to be uniform. The change of velocity in each unit of time measures 
the magnitude of the acceleration. 

§ 35. When the changes of velocity in equal times are unequal 
in magnitude or not in the same direction, the acceleration is said 
to be variable. When variable, the acceleration at any irr.tant is 
measured by the change of velocity which would occur in the next 
unit of time if the acceleration remained constant in magnitude 
and direction during that interval. 

§ 36. The magnitude of the unit of acceleration is the acceleration 
of a point which moves so that its velocity changes by the unit of 
velocity in each unit of time. 

E.g. 1 foot per second every second, usually written 1 ft./sec.2, 
or 1 f.s.s. 

1 centimetre per second every second, written 1 cm./sec.2 
It is clear that acceleration, like velocity, is a vector quantity, 
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and an acceleration expressed in these units only gives the change 
in magnitude of this vector. 

§ 87. Parallelogram of Accelerations. 

If a moving point have two accelerations represented in magnitude 
and direction by the straight lines OA, OB, they are equivalent to an 
acceleration represented by the diagonal OC of the parallelogram OACB. 

0 
Fig. 23. 

C 

This theorem follows at once from the parallelogram of velocities. 
For OA, OB (Fig. 23) represent the two velocities given to the 

point in unit time. By the parallelogram of velocities the diagonal 
OC represents the resultant change of velocity in unit time, and 
therefore represents the resultant acceleration. 

§ 38. It follows from the preceding paragraph that accelerations 
can be compounded and resolved in the same way as velocities, and 
propositions similar to the Triangle and Polygon of Velocities are 
true for accelerations. 

§ 39. Expressions for Acceleration. 

If s is the distance of a moving point from some fixed point of 
ds 

its path at time t, then its speed v is ~r. The speed-acceleration is 

dv d?s 
or the rate of change of v, i.e. . w 

. at at* 
Hence, if /is the speed-acceleration, 

also 

r_dv_d2s 
1 ~~Tt~ dt2' 
r ___ dv __dv ds 

^ dt ~~ ds ' dt 

dv 

Vds' 

It must be noted that, unless we use vector notation, expressions 
dv d?s 

like ^ only represent rates of change of speed, they do not take 

into account changes in direction of motion. 
When the motion takes place in a straight line there is no diffi¬ 

culty, as speed and velocity are the same. 
When the motion is not in a straight line, the difficulty is over 

come by considering component accelerations. 
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§ 40. Component Accelerations. 

If the co-ordinates of a moving point P (Fig. 24) be (x, y) at any 

Y1 

N P 

0 
M 

Fig. 24. 

X 

instant, the component velocities of P parallel to the axes OX, OY 
dx dy 

are ^ and the velocities of M and N, the projections of P on 

the axes. 
If the component accelerations of P are X, Y parallel to OX and 

OY, 

x _ &X v - dy 
~ W' 1 ~ dt1' 

d*x d*y 
and ^ are often denoted by x and y. 

By working with these components we take into account changes 
in direction as well as changes in the magnitude of the velocity of P. 

§41. Relative Acceleration. 
*■> —y 

If OA, OB (Fig. 25) represent the accelerations of two points P, 
Q at any instant, the relative acceleration of one point with respect 

—^ ^ 
to the other is the vector difference between OA and OB. 

B 

The acceleration of P relative to Q is 

OA — OB = BA, 

and the acceleration of Q relative to P is 

OB — OA = AB. 

The relative acceleration can be obtained, as in the case of rela¬ 
tive velocity, by compounding with the acceleration of one an 
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acceleration equal and opposite to that of the other, and the latter 
will then have no acceleration. 

If two points have accelerations which axe equal in magnitude 
and in the same direction, their relative acceleration is zero, and 
their relative motion is the same as if neither of them had any 
acceleration. 

This often enables us to simplify a problem on the motion of 
bodies subject to a common acceleration by ignoring this accelera¬ 
tion. 

It should be noticed that a point at rest may have acceleration, 
and that two points whose velocities at any instant are equal and 
parallel (i.e. they have no relative velocity) may have relative 
acceleration with respect to each other. 

§ 42. Velocity and Acceleration of the Centre of Mass of a System 
of Particles. 

It is proved in statics that if the co-ordinates of a number of 
particles m„ m2t etc., are (xlt yx), (x2, y2), etc., then if X, Y are the 
co-ordinates of their centre of mass, 

X = + m2X2 + ■ • . 

Now, the component velocities of the centre of mass are 

dX , dY 

ir and ir- 
and since tnx, m2t etc., are constants, we have by differentation, 

and similarly, 

dx, . dx2 
-t- • • • dX _ mi~dt 

dt Wj + mt -t- . . . 

dY 
m*yi 

_ m'!t 
4- «t dy* 
+ mt!i + • • • 

dt + W2 + 

but etc., etc., are the component velocities of the 
at at at at 

particles, say, ux, u2, etc., vx, v2l etc. 
.*. the component velocities of the centre of mass are 

mxux + m2u% + . . . 
tnx + m2 + . . . 

V = m'Vl + + — ■ 
mx + mt + . . . 

U 
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The component accelerations of the centre of mass are^j^and^f. 
at* at9 

Hence, differentiating the values for again with respect to t, 
CM CM 

it is easy to see that if fv fv etc., /,', /2', etc., are the component 
accelerations of the particles and F, F', those of the centre of mass, 

_ ^1/1 + ^2/2 + • • . 

m1 + m2 + . . . 9 

= ntJC + ntj2 + . . . 
m1 + m2 + . . . 

Motion in a Straight Line. 

§43. We shall now consider the case of a point moving in a 
straight line with constant acceleration. Speed and velocity are 
then the same, and acceleration refers only to change of speed. 

If the speed is increasing, the acceleration is said to be positive, 
if the speed is decreasing, the acceleration is negative. 

A negative acceleration is, of course, the same as a retardation. 

§44. Equations of Motion for Constant Acceleration. 

If s denote the distance of a point at time t from the point at 
which it starts, so that s = o when / = 0 ; then, if the acceleration 
is constant and equal to /, we have 

.-. integrating, 

d*s 
di2 =/• 

s~fi + A- 

Now A is obviously the value of ^ when t = o, i.e. A is the initial 

velocity, usually denoted by u. 

ds 
‘ dt 

= u ft. 

or v = u + f t 

Integrating again, 5 = ut + \ft2 + B, 
and since s = o when t = o, we have B — o, 

.-.s = ut + ift2 . 

From (i), v2 = u2 + 2uft +/^a = «2 + 2f(ut + \ft?) 
= u% + 2/s, from (ii), 

.\ v2 = u2 + 2fs . 

(i) 

(ii) 

(iii) 
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These three equations are the equations of motion for a point 
or particle moving in a straight line with constant acceleration. 
They do not apply in cases where the acceleration is variable. It 
should be noticed that each equation contains / and three of the 
four quantities u, v, t, s, one of these being absent from each equation. 
These equations are of fundamental importance, and must be re¬ 
membered. In working problems we select the equations which 
contain the quantities we are given and the one we want to find. 

Example (i). 

A train which is moving with uniform acceleration is observed to take 

20 and 30 seconds to travel successive quarter miles. How much farther 

will it travel before coming to rest if the acceleration remains uniform ? 

We do not know what the initial velocity of the train is, but we 
are given two distances and two times. 

The train goes £ mile, or 1320 feet, in 20 seconds, 

1320 = 20W -f i j . 400 . . (i) 

It also goes £ mile, or 2640 feet, in 50 seconds, 

.*. 2640 — 50u -{- J/. 2500 . . . (ii) 

2u + 20/= 132, 
5« 4- 125/= 264, 

whence / — ~ M ft /sec.*, 

and u = -- ft. /sec. 

We can now find the whole distance (including the two £ miles) travelled 
before coming to rest, 

o — 
374* 
25 

44 
25 

s. 
374 X 374 

44 
374 X 34 

4 
3179 it., 

the further distance travelled is 

3179 — 2640 = 539 feet. 

Note.—In cases like this where the times taken to travel successive 
distances are given, write down one equation for the first distance, 
and the second equation for the sum of the two distances. If we 
consider the second £ mile separately we have a different value 
for u. 

Example (ii). 

A train moves 2 miles from rest to rest in 4 minutes. The greatest 

speed is 45 rn.p.h. and the acceleration and retardation are uniform. Find 

the distance travelled at full speed. 
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It must be noticed that we are not told that the acceleration and 
retardation are equal. 

Let slt tx be the distance and time for which the acceleration is fx. 

Let s2, t2 be the distance and time for which the retardation is /2. 
Let s, t be the distance and time at uniform speed. 

45 m.p.h. ■= 66 ft./sec. 

66 =/,<„ and 5, = i/AJ = 33/,, 
66 — ^j/j, and — 66/, 

= 66/z - 33/, 

= 33*2. 
also s — 66/, 

^ 1- ** 1 Aa - 33^i 4- 66/ + 33/2 = 10560, 

• h 4 2/ 4- /, *= 320, 
also /1 4 / 4 /2 = 240, 

... / =» 80 seconds, 

.*. the distance travelled at full speed — 66 X 80 
— 5280 feet, 
= 1 mile. 

The data do not enable us to find /x> /8, etc., separately. 

Example (iii). 

If an express train reduced speed from 60 m.p.h. to 15 m.p.h. in half 

a mile, for how long were the brakes applied, and how much longer would 

it take to come to rest ? 

We must, of course, assume that the retardation due to the brakes 
is uniform, let this be /. 

60 m.p.h. = 88 ft./sec., and 15 m.p.h. = 22 ft./sec. 

Using v2 — u% -f* 2fs, 

222 = 88* + 5280/, 

88* — 22* no x 66 
~ 5280 ~ 5280 

= — ^ ft./sec.2 

Using v — u -f //, 

22 = 88 - ~t, 

66 X 8 

“ 11 
48 sec. 

To find the time taken to come to rest, we have 

0 — 22 

, 22 X 8 
16 sec. /' 

11 
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Example (iv). 

A cyclist riding at 12 tn.p.h. passes a motor car just as it begins to 

move in the same direction. The car maintains an acceleration of i^ft./sec* 

for 20 seconds, and then moves uniformly. How far will it have run before 
overtaking the cyclist ? 

The distance moved by the car during the 20 seconds is given by 

s — \ . . 400 = 300 ft. 

The velocity at the end of this time is given by 

v = $ . 20 = 30 ft./sec., 

and the distance moved by the cyclist in this time is 

HgM x 20 = 352 ft. 

The velocity of the car relative to the cyclist is 

30 — = V ft./sec. 

to gain 52 feet on the cyclist it takes Jseconds, and in this time 

c2 X *> X ^O 
it will have gone --—- = 1255 f feet, or 4255-f feet altogether. 

EXAMPLES V. 

1. A cage goes down a mine shaft 750 yards deep in 45 seconds. For 
the first quarter of the distance only, the speed is being uniformly 
accelerated, and during the last quarter uniformly retarded, the 
acceleration and retardation being equal. Find the uniform speed 
of the cage while traversing the centre portion of the shaft. (LA.) 

2. A train, starting from rest, is uniformly accelerated during the first 
J mile of its run, then runs J mile at the uniform speed acquired, 
and is afterwards brought to rest in J mile under uniform retarda¬ 
tion. If the time for the whole journey is 5 minutes, find the 
uniform acceleration and the uniform retardation in ft.-sec. units. 

(I.A.) 
3. A point starts from rest with a constant acceleration which ceases 

after an interval. It then moves uniformly at 15 ft./sec. for 10 
seconds, after which it is uniformly retarded and is brought to rest. 
If the whole motion occupies 16 seconds, prove that the distance 
traversed is 195 feet. The initial acceleration being 5 ft./sec.*, find 
the final retardation. (LE.) 

4. A body, moving in a straight line with constant acceleration, passes 
over distances a, b, and c in equal consecutive intervals of time t. 
Find (i) the relation between a, b, and c ; (ii) the acceleration of 
the body; (iii) its velocity at the start of the part a of its path. 

(H.S.D.) 

5. The cage of a pit performs the first part of its descent with uniform 
acceleration / and the remainder with uniform retardation 2/. 
Prove that, if h is the depth of the shaft, and t the time of descent 

h » i ft*. (I.E.) 

6. A particle moving in a straight line with uniform acceleration / 
passes a certain point with velocity u. Three seconds afterwards 
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another particle, moving in the same straight line with constant 
acceleration $/, passes the same point with velocity \u. The first 
particle is overtaken by the second when their velocities are respec¬ 
tively 27 and 31 ft. /sec. Find the values of u and /, and also the 
distance travelled from the point. (I.S.) 

7. The brakes of a train are able to produce a retardation of 3*5 ft./sec.1 
If the train is travelling at 60 m.p.h., at what distance from a 
station should the brakes be applied, if it is desired to stop at the 
station ? If the brakes are put on at half this distance, with what 
speed will the train pass the station ? (H.S.D.) 

8. A cyclist A riding at 10 m.p.h. is overtaken and passed by B riding 
at 12 m.p.h. If A immediately increases his speed with uniform 
acceleration, show that he will catch B when his speed is 14 m.p.h. 
If, when he has increased his speed to 13 m.p.h., he continues to 
ride at this speed and catches B after he has gone 200 yards, find 
his acceleration. (I.E.) 

9. Two points P and Q move in the same straight line, being initially 
at rest and Q being 50 feet in front of P. Q starts from rest with 
an acceleration of 10 ft./sec.2, and P starts in pursuit with a velocity 
of 29 ft./sec. and an acceleration of 6 ft./sec.2 Prove that P will 
overtake and pass Q after an interval of 2 seconds, and that Q will 
in turn overtake P after a further interval of ioj seconds. (H.S.D.) 

10. A lift ascends with constant acceleration /, then with constant 
velocity, and finally stops under a constant retardation /. If the 
total distance ascended is s, and the total time occupied is t, show 
that the time during which the lift is ascending with constant 
velocity is 

(<* - (H.S.D.) 

11. A point moving in a straight line describes 16 feet in the 2nd second 
of its motion, 28 feet in the 5th second, 52 feet in the nth second. 
Prove that these distances are consistent with the supposition that 
the motion of the point is uniformly accelerated ; also find the 
whole distance described in 10 seconds from the beginning of the 
motion. (H.C.) 

12. A point moving in a straight line covers 12 feet, 18 feet, and 42 feet 
in successive intervals of 3 seconds, 2 seconds, and 3 seconds. Prove 
that these distances are consistent with the supposition that the 
point is moving with uniform acceleration. (I.A.) 

13. A body starts with velocity u and moves in a straight line with 
constant acceleration /. 

If when the velocity has increased to the acceleration is 
reversed in direction, its magnitude being unaltered, prove that 
when the particle returns to its starting-point its velocity will be 
- 7u. (I.A.) 

14. The two ends of a train moving with constant acceleration pass a 
certain point with velocities u and v. Find in terms of u and v 
what proportion of the length of the train wjll have passed the 
point after a time equal to half that taken by the train to pass the 
point. (I.E.) 

15. A particle is moving in a straight line, and is observed to be at a 
distance a from a marked point initially, to be at a distance b 
after an interval of n seconds, to be at a distance 0 after 2n seconds, 
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and at a distance d after 3n seconds. Prove that if the accelera¬ 
tion is uniform 

d - a = 3(c - b), 

and that the acceleration is equal to 

c -f a — 2b 

«* ; 
find also the initial velocity. (I.S.) 

16. A train starts from A with uniform acceleration J ft./sec.*. After 
2 minutes the train attains full speed, and moves uniformly for 
11 minutes. It is then brought to rest at B by the brakes pro¬ 
ducing a constant retardation 5 ft./sec.*. Find the distance AB. 

(H.C.) 
17. A train approaching a station does two successive quarters of a 

mile in 16 and 20 seconds respectively. Assuming the retardation 
to be uniform, prove that the train runs a further distance of 
1761 feet 10 inches before stopping. (H.C.) 

18. A particle traverses a distance of 300 yards in a straight line at an 
average speed of 12 ft./sec., starting from rest and finishing at rest. 
It moves with a uniform acceleration for the first 10 seconds, and 
is brought to rest by a uniform retardation in the last 20 seconds 
of its motion, and moves at a uniform speed during the rest of its 
motion. Find the acceleration and retardation. (H.C.) 

19. Prove that, if a particle move with uniform acceleration, the spaces 
described in consecutive equal intervals of time are in arithmetical 
progression. 

It is observed that a particle describes 396*9 metres in 3 seconds, 
392*0 metres in the next 4 seconds, and 269 5 metres in the next 
5 seconds. Show that this is consistent with the particle moving 
with uniform retardation and find the time before it comes to rest. 

(I.S.) 

20. A train starting from rest travels the first part of its journey with 
constant acceleration /, the second part with constant speed v, and 
the third part with constant retardation /', being brought thereby 
again to rest. If the average speed for the whole journey is Ji/, 
show that the train is travelling at constant speed for three-quarters 
of the total time. Find also what fraction of the whole distance 
is described with constant speed. (LS.) 

21. A train is uniformly accelerated and passes successive milestones 
with velocities 10 m.p.h. and 20 m.p.h. respectively. Calculate 
the velocity when it passes the next milestone, and the times taken 
for each of these two intervals of 1 mile. (H.S.D.) 

22. A train, moving with uniform acceleration, is observed to cover two 
consecutive half-miles in 60 seconds and 40 seconds respectively. 
Find the acceleration of the train, and show that it started from 
rest 70 seconds before the first observation, and that during that 
time it covered 1078 feet. (Q.E.) 

23. A train passes another on a parallel track ; the first is running at a 
uniform speed of 40 m.p.h., and the second is running at a speed 
of 10 m.p.h., with an acceleration of $ ft./sec.*. How long will it 
be before the second train catches the first again, and how far will 
the trains run in the interval ? (Q.E.) 
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24. An electric car travelling between two stopping places 500 yards 
apart is uniformly accelerated for the first 10 seconds, during 
which period it covers 100 feet. It then runs with constant speed 
until it is finally retarded uniformly in the last 50 feet. Calculate 
the maximum speed and the time taken over the journey. (Q.E.) 

25. A particle moving in a straight line with constant retardation starts 
from a point O with such velocity that in 3 seconds it is 75 feet 
east of O, and in 5 seconds it is 45 feet east of O ; prove that it 
will have reached its most easterly position in 3^ seconds, and 
find its position 8 seconds after it leaves O. (N.U.3.) 

26. A train starts from rest and is uniformly accelerated for 2 minutes ; 
it then travels at constant speed for 56 minutes, and is subsequently 
uniformly retarded during a further 2 minutes, at the end of which 
time its velocity is one-third of the value of the constant speed 
with which it was travelling before retardation. If the total 
distance traversed during the hour is 42 miles, find the value of 
the constant maximum velocity, and draw a space-time diagram 
of the motion. (C.W.B.) 

§ 45. When the acceleration is variable, but follows some known 
law, we can obtain the equation of motion in the same way as for 

d2s 
the simple case of constant acceleration, i.e. by equating ^ to the 

expression for the acceleration, but integration is required to obtain 
the solution. 

These cases are harder, and will be postponed to a later chapter. 
In some cases of variable acceleration, especially those where, 
instead of a definite law, we are given a series of values of distances 
and times, or velocities and times, graphical methods may be used. 
We plot graphs connecting the quantities given, and obtain from 
them the other quantities connected with the motion. 

There are several graphs which can be used in this way. 

§ 46. Space-time Curve. 
If we plot successive intervals of time along OX (Fig. 26), and 

Fig. 26. 

the corresponding distances from some fixed point parallel to OY, 
we obtain a curve APB. 

If PM is the ordinate at P, then PM represents the distance of 
the point at the time represented by OM. 
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The slope of the curve ar P is and therefore represents the 

velocity at P, i.e. at the time represented by OM. 
Hence, by finding the slopes at different points on the curve we 

obtain the velocities (or speeds) at different times. 
If we then plot the speed and time as in the next paragraph, 

we get the speed-time curve, and from this we can find the accelera¬ 
tion and the distance travelled. 

§47. Speed-time Curve. 
If we plot successive intervals of time along OX (Fig. 27) and the 

corresponding velocities parallel to OY we shall obtain a curve 
APB. 

If PM is the ordinate at P, then PM represents the velocity at 
the time represented by OM. 

dv 
Since acceleration — ^, the slope of the curve APB at any point 

represents the acceleration at that point. 
When the acceleration is uniform, the curve is a straight line. 
If we take a point Q very close to P and draw the ordinate QN 

so that MN = 8/, then the area of the strip PMNQ is very nearly 
PM x 8/ = vU, where v is the value of the velocity at P, and this 
product represents the space described in the interval St. 

Hence, the space described between any two times t1 and t2— 1 vdt, 
Jti 

the area under the curve APB between the ordinates at tx and t2. 

Y 

A 
t 
V 

B 

0 M t 

Fig 28. 

X 
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When the acceleration is uniform and equal to /, the curve AB 
is a straight line (Fig. 28), and the space described in time t (= OM) 
is the area OMPA = PAL + rectangle OMLA. Now OA = w, the 
initial velocity, and PL = ft the increment in time t. 

.-. PAL = ift x t, 
and OMLA = at, 

space = ut -f- lft2. 

§ 48. Acceleration-time Curve. 

Y 
t 

i 

B 

IA 

MN t — 
Fig. 29. 

X 

If we plot time along OX (Fig. 29) and the corresponding values 
of the acceleration parallel to OY we get the acceleration-time curve 
APB. The ordinate PM gives the value of the acceleration / at 
time OM = t. If we take a point Q on the curve close to P and 
draw the ordinate QN so that MN = St, then the area PMNQ is 
very nearly equal to fSt, and this represents the change in velocity 
in the interval St. 

The change in velocity between any two times tx and t2 is 

the area under the curve APB between the ordinates at tx and t2. 

§40. Acceleration-space Curve. 

Y 

t 
/, 

nl-1-1-1-X 
0 L M N A 

Fig. 30. 

This curve is obtained by plotting acceleration against distance. 
The ordinate PM (Fig. 30) at any point P gives the acceleration / at 
distance OM from the starting-point. 
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Now we have seen that the acceleration at any instant is 

dv dv 

Tt or Vds’ 

and the area under the curve between any two ordinates AL and 
BN is 

| /*. 
taken between the limits OL and ON for s. 

But this is the same asjv^cfs, or \v2 taken between the values of 

v at A and B. 
i.e. the area under the curve gives the change in \v2. 

§ 50. Other Curves for Motion with Variable Acceleration. 

If we are given the velocities of a point at different distances 
from its starting-point, we can plot a velocity-space curve, but the 
area and slope of this curve do not represent anything in connection 
with the motion as they do in the previous cases. (The slope, of 
course, represents the rate of space change of the velocity, but this 
is not the acceleration.) 

dv 
Now, the acceleration is v-j-, and this is the same as 

ds 

Hence, if we plot %v2 against s, the slope of the resulting curve gives 
the acceleration at any distance. 
Again, since 

ds 

v ~ dV 

v ds* 

dl — 1ds. 
v 

Hence, if we plot ™ against s, the area under this curve gives the 

time required to describe a given distance. 
Since 

/= 
dv 

Tv 
i __ dt 

] ~~ dv' 
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Hence, if we plot j against v, the area under this curve gives the 

time required to cause a given change in velocity. 

§51. Example (i). 

Draw the velocity-time graph of a point describing a straight line with 

uniform acceleration, and deduce the formula vl = «*-}- 2 fs. 

If A (Fig. 31) represent the initial velocity, then, since the increments 

in velocity during equal intervals of time are the same, the graph is a 
straight line AB. 

The height of any point P above A is equal to the acceleration 
multiplied by the time represented by OM. 

The area under the graph gives the distance travelled. 

If B represents velocity v, then the area OABC represents the 

distance s. 

Now area 

and 

OABC - |(0A -F CB) . OC, 

CB - OA = / x OC, 

CB - OA, 
•. OC 

/ 
1 (CB -f OA)(CB - OA) 

2 • T 
1 (CB2 - OA2)_ it/2 — «2 

2 / 

. V* = M* 4- 2fs. 

Example (ii). 

A train starts from a station A to reach another station B, at a distance 
c from A ; the motion is at first uniformly accelerated for a given time t ; 

the velocity then remains constant for a given time t'; and is then uniformly 

retarded for a time t". Represent the motion in a diagram, and by means 

of the diagram find the values of the acceleration and the retardation. 

Let OABC (Fig. 32) represent the velocity-time graph, then AB is 

horizontal. 
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Draw AD, BE perpendicular to OT. 
Then c — area OABC, 

= AD/' + JAD(/ + t”), 

__ ad(/ + tr -f 2/') 

2 

AD = 

Now the acceleration 

/ -f t* 4- 2/' 

= the slope of OA, 

AD 

OD' 

2 C 

~ t(t + r + 2/') 

The retardation — the slope of BC, 

= BE 

EC' 

2 C 

~ r(/-f r + W) 

EXAMPLES VI. 

1. Explain how the acceleration and the space covered may be obtained 
from the velocity-time diagram of a particle moving in a straight 
line. 

The velocity-time diagram consists of two straight lines AB, 
BC, where the co-ordinates of A, B, C are (o, io), (io, io), (20, 25), 
the first co-ordinate in each case being the time in seconds and 
the second co-ordinate the velocity in ft./sec. Describe the motion 
of the particle and find the total distance covered. (H.C.) 

2. If a sprinter can start with a velocity of 20 ft./sec., and run with 
uniform acceleration, find, graphically, the greatest speed attained 
in running the 100 yards in 10 seconds, and the necessary accelera¬ 
tion. (LA.) 

3. A train approaching a station does two successive quarters of a 
mile in 16 and 20 seconds respectively. Assuming the retardation 
to be uniform, draw a graph to show the variation of the velocity 
with the time during this interval of 36 seconds. (H.C.) 
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4. The distance between two stations is 2000 yards. An electric train 
starts from rest at one station with a uniform acceleration of 1*5 
f.s. units ; it comes to rest at the other station with a uniform 
retardation of 2-5 f.s. units, and the speed for the intermediate 
portion of the journey is constant. Sketch the general form of the 
velocity-time graph, and find what the constant velocity must 
amount to if the journey is to be completed in 3 minutes. (Q.E.) 

5. A car is running steadily at 10 ft./sec. ; it then accelerates in such 
a way that for 200 feet the velocity increases by 1 ft./sec. for each 
10 feet traversed. The acceleration then ceases. Draw curves 
showing the relation of v to 5 and / to s. What does the area of 
the latter curve denote ? (Q.E.) 

6. A train starts from rest with an acceleration of 0 9 ft./sec.* which 
decreases uniformly with the time until the train is travelling at 
full speed after 3 minutes. The train is then pulled up with a 
uniform retardation, and is stationary after a further 12 minutes. 
Plot the acceleration-time, velocity-time and distance-time graphs. 
Record the values of the retardation, velocity, and distance from 
the starting-point, at the instant when the brakes are applied. 

(Q.E.) 

7. A train starts from a station, and for the first mile moves with a 
uniform acceleration, then for the next 2 miles with a uniform 
speed, and finally for another mile with uniform retardation, before 
coming to rest in the next station. The journey takes 8 minutes. 
Draw a graph showing how the speed varies with the time and from 
it find the maximum value of the speed. 

8. The speed of a train for the first minute of its motion is given by 
the following table :— 

Time in seconds 05 10 20 30 40 50 60 
Speed in ft./sec. o 8-5 14-6 23 29*2 33*6 37 39 

Find the distance travelled in the first minute and also the 
time in which the train travels the first half of that distance. (Q.E.) 

9. The relation between the velocity and the distance for a tramcar 
starting from rest is given in the following table :— 

Velocity in ft./sec. o 6 11 15 18 20-5 22-3 23 8 24-8 25-5 26 
Distance in feet . o 15 30 45 60 75 90 105 120 135 150 

Plot the velocity-distance curve, and show how to obtain the 
acceleration-distance curve from it. What is the acceleration in 
ft./sec. units at the mean distance ? (Q.E.) 

10. The relation between distance and time for a car starting from rest 
is given in the table :— 

Time in seconds .0 10 20 30 40 50 60 70 
Distance in feet .0 36 160 395 660 880 1040 1160 

Plot a distance-time curve, and deduce the velocity-time and 
acceleration-time curves for the first 60 seconds. 

11. A car starts from rest and its velocity at the end of intervals of 
10 seconds during the first minute is 13, 20-5, 25, 28, 29*5, and 
30 ft./sec. respectively. 

Plot the velocity-time graph and derive the velocity-distance 
graph. Thence obtain the mean values of the velocity during the 
first minute (i) with respect to time, (ii) with respect to distance. 

(Q.E.) 
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12. The speed of a train at intervals of i minute in a journey of 
8 minutes are o, n, 2it 28, 30, 30, 26, 15, o miles per hour respec¬ 
tively. Draw the velocity-time graph, and estimate in miles the 
total distance travelled. Find the retardation in ft. per sec. per 
sec. at the end of the journey. (N.IJ.3) 

13. The velocity, v ft./sec. of a car decreases with the time, t seconds, 
according to the formula 

v = 40 —• t%. 

Draw a velocity-time graph from / — o to t = 7. Find by 
graphical methods the distance travelled from / = 3 to t = 6 and 
the mean retardation in the same interval of time. (N.U.3) 

14. A train travelling at 37-5 ft./sec. has steam shut off and brakes 
applied ; its speed in feet per second after / seconds is given by 
the formula 

v = 37*5 “ i + 0 0051*. 

Draw a time-speed graph from t — o to t — 50. Find the 
mean retardation during the 50 seconds and the instantaneous 
retardation at t — o. (N.U.3) 

15. The motion of a car on a track is found to be as given in the following 
table, in which the distance corresponding to a given time t is 
recorded:— 

t (seconds) 345 678 
s (feet) .58 73 92 115 142 173 

Plot these values on a distance-time graph, and draw a smooth 
curve to represent this graph. 

Determine from this curve the velocity of the car at the end 
of the 4th, 5th, 6th, and 7th seconds, and draw the velocity-time 
graph for this part of the motion. (N.U.3) 

16. A graph is obtained by plotting the reciprocal of the velocity (v) 
of a moving point against the distance (5) measured from some 
fixed point. Prove that the time taken to travel between two 
given distances is represented by the area between the graph, 

the axis of s and the two ordinates of the i curve corresponding to 

the two given distances. 
If s and v are given by the following table :— 

s 0*25 1 1*44 4 6*25 8*41 1024 
v 1 2 2-4 4 5 5*8 6*4 

Find the time between the distances 1 foot and 8-41 feet. (N.U.3) 

17. Two engines A, B, each having constant acceleration, are moving 
in the same direction along parallel sets of rails. When A passes 
B the speeds are respectively 20 and 10 m.p.h. Two minutes later 
B passes A, and B is then moving at 45 m.p.h. Draw the speed¬ 
time graphs and determine (i) the distance between the two places 
at which the engines overtake each other, (ii) the speed of A when 
B overtakes it, (iii) the instant at which the engines are moving 
with equal speeds, and the distance between them at this instant. 

(N.u.3) 

18. A point moves on a line in such a way that its velocity v at time t 
is given by the following table :— 
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t (sec.) .0123456789 io 
v (in./sec.) o 29 55 62 68 63 55 52 40 32 30 

Plot these values on a suitable graph, and deduce the space- 
time graph of the motion. (C.W.B.) 

§52. Example (i). 

A tug leaves a port to intercept a liner, which is proceeding with uniform 

speed u m.p.h. on a straight course which, at the nearest point, is a miles 

from the port. The tug starts when the liner is h miles from the port, and 

has not yet reached the nearest point. Prove that the least uniform speed 

au 
the tug must have in order to reach the liner is — . 

b 

(au\ 
u > v > — )• the liner 

on a part of her course in which the tug can intercept her for 

2 Vb*v* — a*w* 

u* - v3 
hours. 

Let P (Fig. 33) be the position of the port, Q that of the liner, and 

QC the course, C being the nearest point to P. 

.Reduce Q to rest by applying velocities, equal and opposite to u, 
to Q and P. 

Then if the tug is to reach Q the resultant of its velocity v and u 

reversed must lie along PQ, and if PR represents this reversed velocity 

it is obvious that the least value of v in order that the resultant of PR 

and v may lie along PQ is RS where RS is perpendicular to PQ. 

Also RS = u sin RPS = 
b 

The resultant velocity of the tug is PS = u cos a, 

u - 
= l Vb* - a*. 

If v is greater than this value but less than u the tug can intercept 

the liner at any point within certain limits of its course, and we want 

to find the least and greatest times taken to meet it. These will be 

when the tug has its least and greatest velocities relative to the liner 

which are consistent with intercepting it. To find these we take R as 

centre and radius v and draw a circle to cut PQ. The circle will now 

cut PQ in two points, T and T't equidistant from S, and PT, PT' are 

the least and greatest relative velocities. 



HARDER EXAMPLES 43 

The difference in times required is given by 

b b 2ST.fr 

PT PT' “ PT PT' 

Now ST- RT- RS2 

a-u- 

r i’“ “ • 

and PT . PT' - PS2 - ST2 

- PR2 RT2 

— H- — l'1. 

,rr 2y/b-v£—a-u- 
difference in times - —- 

u- — Vs 

Example (ii). 

To a person travelling due E. the wind appears to come from a direction 

N. ol° W. ; when he travels due N. at the same speed as before, the wind 

apparently makes p° IV. with the N. Short> that the actual direction of the 

wind is N. 6° W. where 

tan 0 — 
tan a — i 

i - cot 0 
(H.S.C ) 

N 

Fig. 34. 

Let u be the velocity of the person and v that of the wind. The 

components of v are v sin 6 towards E. (Fig. 34) and v cos 0 towards S. 

The apparent velocity of the wind in each case is the resultant of 

v and u reversed. 
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Now, when u is due E., the components of apparent velocity are 
(v sin 0 — u) due E., and v cos 0 due S. 

v sin 0 — u 
ten a = Tw&6 ' • ' W 

When u is due N. the components of apparent velocity are v sin 0 
due E., and (v cos 0 -f- u) due S. 

v sin 0 y... 
••• tan P = rnel) -L- M ' (“) • ' ^ V COS 0 U ‘ 

These equations give 

v cos 0 tan a = v sin $ — u, 

and v cos 9 tan 0 = v sin 9 — u tan ft 

u 
cos 0 tan a = sin 9-, 

and cos 6 = sin $ cot 8-, 
v 

cos 0 (tan a — i) — sin 0(i — cot ft), 

tan a — i 

••tan 6 “ T-"coFJ- 

Example (iii). 

The relative velocity of the ends H and M of the hour and minute hands 
of a watch is calculated (i) relatively to the face, and (ii) relatively to the 
seconds hand. Prove that the values obtained are different, their vector 

7tX 
difference being — ftf sec. perpendicular to HM, if x feet is the length of 

HM. 3° 

Fig. 35. 

Let OM, OH (Fig. 35) represent the minute and hour hands. 

The angular velocities of the hands are 

for the seconds hand 
60 

for the minute hand 
3600 

for the hour hand-— 
12 x 3600 

The velocities of M and H relative to the face are 

OM perpendicular to OM, 

—^ 2 it 

OH i~2~x~36oo PerPendicular to OH- 
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Their relative velocity is 

OM 
27r 

- OH: (i) "3600 12 X 3600 

The angular velocities of OM and OH relative to the seconds hand 
are 

59 X 277 

3600 
and — 719 X 2ir 

12 x 3600 1 

hence the velocities of M and H relative to the seconds hand are 

—^ X 2tr 

— OM J ^600" PerPen(i^cu^ar *° OM, 

- OH Ypy^ioo Perpendicular to OH. 

Their relative velocity is 

OM 
59 x 2n 

3600 
f OH 

719 X 2n 

12 X 3600 

This value differs from (1) by 

or 

or 

OM 
60 X 277 

3600 
OH 

720 x 2IT 

12 X 3600' 

^-(OM - OH). 

(“) 

Now OM — OH — HM, and since the velocities are perpendicular 
to OH and OM their difference will be perpendicular to HM( and its 
value is 

~ ft./sec. 
30 

EXAMPLES VII. 

1. An express train, timed to run at a full speed of 60 m.p.h. over a 
certain section of its journey, is checked to 15 m.p.h. over a mile 
of road under repair. The train takes 1 mile from rest to get up 
full speed and J mile in which to reduce speed from 60 to 15 m.p.h. 
Assuming uniform acceleration and retardation, find how much 
time is lost by the check. (H.S.C.) 

2. The maximum possible acceleration of a certain body is 2 ft./sec.*, 
and its maximum possible retardation is 8 ft./sec.* What is the 
least time in which it can travel 1 mile from rest to rest ? (I.E.) 

3. A circular disc rotates in its own plane about its centre O with 
uniform angular velocity. Show that the relative velocity of any 
two points on the disc is proportional to the distance between them, 
and find that point on a given radius OA whose velocity relative 
to another given point B of the disc is least, considering both the 
cases when the angle AOB is less than a right angle, and when 
it is greater. (H.S.C.) 
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4. A man can swim at a speed u relative to the water in a river flowing 
with speed v. Prove that it will take him 

u 

Vu% — v* 

times as long to swim a certain distance up-stream and back as to 
swim the same distance and back perpendicular to the direction 
of the stream. What happens if v is greater than u ? (H.S.C.) 

5. A bullet is fired through three screens placed at equal intervals of 
a feet, and the times of passing the screens are tlt tt, t% seconds 
reckoned from the moment the bullet leaves the gun. Assuming 
that the retardation is uniform, prove that it is equal to 

2d(tz - 2tt + tx) 

(h - op. - *.)(*. - hy (h.s.c.) 

6. 

7- 

Three steamers, A, B, C, are travelling at the rates of 12 knots, 
9 knots, and 15 knots respectively. When they form a triangle 
in which AB = 4 miles, BC — 3 miles, CA = 5 miles, the velocity 
of C relative to A is along CB, and that of B relative to C is along 
BA. If it is known that A is actually moving in the direction AB, 
find the real directions of B and C, and the direction of A's motion 
relative to B. (Ex.) 
Two bodies move in concentric circles, of centre O and radii a, b, 
with uniform speeds u, v, in the same sense. If P, Q be the posi¬ 
tions of the bodies at a moment when their relative velocity is 
along the line joining them, obtain expressions for the ratios b : a 
and v : u in terms of the angles of the triangle OPQ ; and, if angle 
POQ — 0 show that 

cos 6 
au -f bv 

bu -f- av (I.S.) 

8. An aeroplane has a speed of v m.p.h. and a range of action (out 
and home) of R miles in calm weather. Prove that in a north 
wind of w miles per hour, its range of action in a direction 0 east 
of north is 

Rfo1 - w2) 

v(v* — wt sin* 0)i* 

Find also the direction in which its range is a maximum. (C.S.) 

9. Two stopping points of an electric tramcar are 440 yards apart. 
The maximum speed of the car is 20 m.p.h., and it covers the 
distance between stops in 75 seconds. If both acceleration and 
retardation are uniform and the latter is twice as great as the 
former, find the value of each of them, and also how far the car 
runs at its maximum speed. (C.S.) 

10. An aeroplane which travels at the rate of 80 m.p.h. in still air starts 
from A to go to B, which is 200 miles distant N.E. of A. If there 
is a wind blowing from the N. at 20 m.p.h., determine the direction 
in which the aeroplane must move, and the time required. 

If at the end of an hour the wind drops to 5 m.p.h., determine 
the position relatively to B of the aeroplane at the time it should 
have arrived at B. Prove that, provided the velocity of the wind 
remains fixed in direction and magnitude, all points attainable 
by an aeroplane in a given time lie on a circle whose radius is 
independent of the wind. (C.S.) 
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11. A submarine sights a steamer proceeding on a due west to east 
course. The submarine is proceeding in a due S.W. to N.E. course 
at io m.p.h., and the steamer bears N.W. of the submarine all the 
while. The submarine stops when she is 7 miles from the ship, 
and after a short interval, fires a torpedo whose velocity is 30 m.p.h. 
in a direction due north. How long after stopping must she fire 
to make a hit ? (Q.E.; 

12. Two racing boats are moving at 9! and 10 m.p.h. respectively, the 
nose of the faster boat being 15 feet from the rudder of the slower 
one in a direction at right angles to the latter's course. If both 
boats are following straight courses, find the angle between them 
in order that a collision may occur in the shortest possible time. 
Find also what angle would cause the nose of the faster boat to 
cross the track of the slower one 3 feet astern of it. (Q.E.) 

13. A tug leaves port to intercept a liner, which is proceeding at 15 
knots on a straight course which at the nearest point is 3 miles 
from the port, at the time when the liner is exactly 4 miles from 
the port and has not yet reached the nearest point. What is the 
minimum uniform speed which the tug must have in order to meet 
the liner ? If the tug can do 12 knots, for how long is the liner 
on a part of its course where the tug could intercept it ? (1 knot = 
1-152 m.p.h.) (Q.E.) 

14. A train, timed to run at a full speed of 54 m.p.h. has to reduce its 
speed to 18 m.p.h. over a mile of track under repair. The uniform 
retardation and acceleration of the train are the same as when 
stopping and starting. The train travels 1 mile in attaining full 
speed from rest, and a quarter of a mile in being brought to rest 
again. Calculate the time lost by the train owing to the track 
repair. Indicate (not to scale) the velocity-time and acceleration¬ 
time graphs. (Q.E.) 

15. The velocity of a body increases uniformly with the distance 
travelled, and is 15 m.p.h. at a distance of 60 feet from the start. 
Find, graphically, the time taken to travel the last 30 feet, and 
the acceleration at 60 feet. (Q.E.) 

16. A train passes a station A at 30 m.p.h., maintains this speed for 
4J miles, and is then uniformly retarded, stopping at B, which is 
5 miles from A. A second train starts from A at the instant the 
first train passes, and, being uniformly accelerated for part of the 
journey and uniformly retarded for the rest, reaches B at the same 
instant as the first train. What is the greatest speed on the 
journey ? 

If the second train, after a certain uniform acceleration, runs 
at constant speed for 1 mile, and is then uniformly retarded, so 
that it reaches B with the first train, what is the value of the con¬ 
stant speed ? (Q.E.) 

Vertical Motion under Gravity. 

§ 58. Acceleration of Falling Bodies. 
When a heavy body is falling towards the earth, it is well known 

that its speed increases as it falls, or that it moves with an acceleration. 
It has been shown by numerous experiments that, if the body is 

free from air resistance, this acceleration is always the same at the 



48 INTERMEDIATE MECHANICS 

same place, but that it varies slightly for different places. The 
acceleration is also independent of the mass of the body. 

The value of this acceleration, which is called the “ acceleration 
due to gravity,” is denoted by “ g" Its numerical value in foot- 
second units in the latitude of London is about 32*19. At the 
equator it is about 32*091. 

In centimetre-second units the value in London is about 981*17, 

and at the equator about 978. 
(In numerical examples, unless otherwise stated, the value of 

g may be taken as 32 ft./sec.2, or 981 cm./sec.® ; the motion may.be 

supposed to be in vacuo.) 

§ 54. Vertical Motion under Gravity. 

When a body is projected vertically upwards we regard the 
upward direction as the positive direction, and the body will experi¬ 
ence a retardation or negative acceleration g. If u is the initial 
velocity of projection, the equations for motion with constant 
acceleration thus become 

V — u —gt . . . . (i) 
s = ut- lg{* . . . (ii) 

v2 = u2 — 2gs .... (iii) 

§ 55. At the highest point it is clear that the velocity v must be 
zero, so that by putting v = o in equation (i) we get the time taken 
to reach the highest point, 

o = # — gt, or / = —. 
g 

Equation (iii) gives the greatest height, 

u2 
o = u2 — 2gs, or s = —. 

6 2g 

After reaching the highest point, the body begins to descend, 

and its speed increases. 

§ 56. The velocity on returning to the point from which it was 
projected is given by putting s = 0 in equation (iii), and then 

v2 = u2f 

i.e. v = ± u. 

The + sign gives the velocity on starting, and the — sign the 
velocity on returning to the point of projection. The magnitude is 
the same as that of the velocity of projection, but the body is now 

moving downwards. 

§ 57. The time of flight is obtained by putting s = 0 in equation 

(ii), and this gives 
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o = ut - \gt*, 

. . 2 U 
t = o, or / = —. 

g 
There are two values of t corresponding to the height $ = o, the 

value / = o obviously refers to the time of projection, while the 
2W 

value — gives the time required to return to the point of projection, 
g 

i.e. the time of flight. 
Notice that this is twice the time to the greatest height. 
For any given height (less than the greatest) above the point of 

projection equation (ii) will give two values of t, one the time taken 
to reach that height on the way up, the other the time on the way 
down. 

§ 58. If we require the time taken to reach a point below the point 
of projection (when the body is projected upwards), we need not 
find the time up and down to the point of projection, and then the 
time taken to reach the point below. We simply substitute the 
distance below the point of projection for s in equation (ii), giving 
it a negative sign, as in the following example :— 

A body is projected vertically upwards with velocity 24 ft,/sec.: 
how long will it take to reach a point 280 feet below the point of pro¬ 
jection ? 

Using s = ut — £g/2, 
s == — 280, u = 24, g = 32, 

.*. — 280 — 24/ — 16/2, 
.*. 162 — 24/ — 280 — o, 

2/2 - 3* — 35 = o, 
••• (21 + 7W ~ 5) = o, 

/ = 5, or t = — 

The latter value is obviously impossible, and the required time is 
5 seconds. (The value | is, as a matter of fact, the time that would 
be taken if the body were projected downwards.) 

§ 59. Velocity due to falling a given vertical height from rest. 
The positive direction is now downwards, and the equation of 

motion is 
v% = u2 + 2gs. 

If the height is A, then u == o, since the body starts from rest, and 
the velocity acquired is given by 

v% = 2ght 

... V == V2gh. 

This is also the velocity required to take the body to a height A when 
projected vertically upwards. 
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EXAMPLES VIII. 

1. A body is projected vertically upwards with a velocity of 60 ft./sec. ; 
find (i) how high it will go ; (ii) what times elapse before it is at a 
height of 36 feet. 

2. A body is projected vertically upwards with a velocity of 80 ft./sec.; 
find (i) when its velocity will be 16 ft. /sec. ; (ii) how long it takes 
to return to the point of projection ; (iii) at what times it will be 
64 feet above the point of projection. 

3. A body falls from rest; find (i) how far it will fall in 10 seconds ; 
(ii) how long it takes to fall 100 feet; (iii) its velocity after falling 
100 feet. 

4. A body is projected vertically downwards from the top of a tower 
with a velocity of 40 ft./sec., and takes 3 seconds to reach the 
ground. What is the height of the tower ? 

5. A body is projected vertically upwards with a velocity of 96 ft./sec. 
Find (i) how long it takes to reach its highest point; (ii) the dis¬ 
tance it ascends during the third second of its motion. 

6. A body falls from rest from the top of a tower, and during the 
last second it falls ^ of the whole distance. Find the height 
of the tower. 

7. A body is projected vertically upwards with a certain velocity, 
and it is found that when it is 1344 feet from the ground it takes 
8 seconds to return to the same point again. Find the velocity of 
projection and the whole time of flight. 

8. A block falls from a mast-head, and is observed to take % second 
in falling from the deck to the bottom of the hold, a distance of 
25 feet. Calculate the height of the mast-head above the deck. 

(I-S.) 
9. A particle is projected vertically upwards, and t seconds afterwards 

another particle is projected vertically upwards with the same 
initial velocity. Prove that their velocities when meeting will be 
each £ gt. (H.S.D.) 

10. A particle is projected vertically upwards with a velocity of u 
ft./sec., and after t seconds another particle is projected upwards 
from the same point and with the same initial velocity. Prove 
that the particles will meet after a lapse of 

(| + seconds 

from the instant of projection of the first particle. (H.S.D.) 
11. A particle is projected vertically upwards with a velocity of u 

ft./sec., and after an interval of t seconds another particle is pro¬ 
jected upwards from the same point and with the same initial 
velocity. Prove that they will meet at a height Of 

4U* — g't* feet. (I.E.) 

12. If a stone falls past a window 8 feet high in half a second, find the 
height from which the stone fell. (H.C.) 

13. A ball is thrown vertically upwards with a velocity of 56 ft./sec. ; 
find its height when it is moving at the rate of 40 ft./sec., and find 
the time between the instants at which it is at this height. (H.C.) 
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14. A particle projected vertically downwards descends 300 feet in 
4 seconds. Show that it describes the last 100 feet in a little less 
than £ second. 

15. A particle is projected vertically upwards and at the same instant 
another is let fall to meet it. Show that, if the particles have 
equal velocities when they impinge, one of them has travelled 
three times as far as the other. (H.C.) 

16. A ball is thrown vertically upwards with a speed of 128 ft./sec. 
Find where it is after 5 seconds, and the total distance it has 
actually travelled. If it falls past the point of projection into a 
well of depth 120 feet, find when it strikes the bottom. (N.U.3) 

§ 60. Motion down a smooth Inclined Plane. 

A 

Fig. 36. 

Let ABC (Fig. 36) represent the vertical section of a smooth plane 
inclined at an angle a to the horizontal, and P a particle on the 
plane. The line AB represents a line of greatest slope on the plane. 
The vertical acceleration g of P can be resolved into two com¬ 
ponents :— 

(i) An acceleration g sin a down the plane ; 
(ii) An acceleration g cos a perpendicular to the plane. 

It is obvious that the plane prevents motion perpendicular to 
itself, so that the particle moves down the plane with acceleration 
g sin a. 

If l is the length of the plane AB, the velocity acquired in sliding 
from rest from A to B is obtained from the equation 

V% = U2 + 2/s, 

by putting u = 0, / = g sin a, and s = Z; 

v% = 2g sin a . / = 2gh, where h = AC, 
... v = V2git. 

It is therefore the same as the velocity acquired in falling freely 
through a vertical height equal to that of the plane. The time 
taken to slide down AB is not the same, however, as that taken to 
fall freely through AC. 
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The time taken to slide down AB is obtained from the equation 

s = ut + yt2, 
by putting s = l, u — o, f — g sin 

f = Jg sin a . 

V g sin a 

The time taken to fall from A to C is given by 

7 1 ,o , fah fal sin a 

If the particle is projected up the plane, we simply use the ordinary 
equations of motion (§ 44) and put / — — g sin a. 

If the particle is made to slide down the plane in a direction 
inclined to a line of greatest slope (e.g. in a smooth groove), the 
acceleration is no longer g sin a, but g sin a cos ft where p is the 
inclination of the direction of motion to the line of greatest slope. 

Example. 

A particle is projected (a) upwards, (b) downwards, on a plane inclined 

to the horizontal at 30° ; if the initial velocity be 16 ft./sec., in each case, 

find the distances described and the velocities acquired in 4 seconds. 

(а) For motion up the plane we have 

v = u — g sin 300*, 

s = ut = \g sin 300/*, 

.*. v = 16 — — . 4 — — 48 ft. /sec., 
2 

5 = 16 x 4 — —-2— . 16 = — 64 feet, 
2X2 

i.e. the body is moving down the plane with a velocity of 48 ft./sec., 
and is 64 feet below the point from which it started. 

(б) For motion down the plane 

v = u + g sin 300*, 

5 = ut + \g sin 30°**, 

.*. v — 16 4- — . 4 = 80 ft./sec., 
2 

s = 16.4 4- -A2.. 16 — 192 feet. 
2x2 

EXAMPLES IX. 

1. A particle is projected with a velocity of 60 ft./sec. up a smooth 
inclined plane of inclination 30°; find the distance described up 
the plane, and the time that elapses before it comes to rest. 

2. A particle sliding down a smooth plane, 12 J feet long, acquired a 
velocity of 20 ft./sec.; find the inclination of the plane. 
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3. A particle slides from rest down a smooth inclined plane which is 
40 feet long and 9 feet high. What is its velocity on reaching the 
bottom of the plane, and how long does it take to get there ? 

4. Two particles start together from a point O and slide down smooth 
straight wires inclined at angles 30°, 6o° to the vertical, and in the 
same vertical plane and on the same side of the vertical through O. 
Show that the relative acceleration of the second particle with respect 
to the first is vertical and equal to gj2. (I.S.) 

5. A smooth inclined plane of length / and height h is fixed on a hori¬ 
zontal plane. Find the velocity with which a particle must be 
projected down the plane from the top in order that it may reach 
the horizontal plane in the same time as a particle let fall vertically 
from the top. Show that if the particles are of equal mass their 
kinetic energies will increase by the same amount. (H.S.D.) 

6. A long hollow straight tube AB, smooth inside, lies fixed on an 
inclined plane at an angle 0 with the lines of greatest slope, these 
being at an angle a to the horizontal. A smooth particle is put in 
at the upper end A and allowed to slide down. Find the distance 
it travels in t seconds, and the locus of all such points for different 
values of 0, the end A always remaining at the same place. (H.S.C.) 

§ 61. The time taken by a body to slide down any smooth chord of 
a vertical circle, starting from the highest point, or ending at the lowest 
point of the circle, is constant. 

A 

Let AB (Fig. 37) be a diameter of a vertical circle, of which A 
is the highest point, and AC any chord. 

Let BAC — 0, and AB = d, then AC = AB cos 0 = d cos 0. 
The acceleration down AC is g cos 0, and the time t taken to 

slide down AC from rest is obtained from 

by putting 
s = ut + ift2, 

s = d cos 6, u — o, f — g cos 0, 

d cos 0 = \g cos 0 . /2, 

VOL. I—3 
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Now, this is independent of 6, and it is easy to show that it is 
the same as the time taken to fall vertically from A to B. 

The time taken to slide down all chords of the circle from A is 
therefore the same. 

Let DB be any chord ending at B, and ABD = a. 
The length of DB is d cos a, and the acceleration down DB is 

g cos a. 
The time taken to slide down DB is therefore given by 

d cos a = cos a . t2, 

t2 - 
2d 

g9 

t = 

the same value as before. 

§ 62. Lines of Quickest Descent. 

The line of quickest descent from a given point to a given curve 
in the same vertical plane is the straight line down which a body 
would slide from the point to the curve in the least time. It is not 
usually the shortest line geometrically. 

From the result in the last paragraph we can show that the line 
of quickest descent is obtained as follows :— 

The line of quickest descent from a given point P to a curve in the 
same vertical plane is PQ, where Q is a point on the curve where a 
circle, having P for its highest point, touches the curve. 

P 

Let a circle be drawn having its highest point at P (Fig. 38), and 
touching the given curve AB at Q. 

Take any point Q' on the curve and let PQ' meet the circle again 
at R. 

Then, since PQ' :> PR, time down PQ' > time down PR. 
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But time down PR = time down PQ, 
time down PQ' > time down PQ. 

Hence the time down PQ is less than that down any other line 
from P to the curve. 

Example (i). 

To find the straight line of quickest descent from a given point to a 

given straight line in the same vertical plane as the given point. 

A 

B 
Fig. 39. 

Let P (Fig. 39) be the given point, AB the given straight line. 

We have to describe a circle having P as its highest point and also 

touching AB. 

Draw PD horizontal to meet AB in D, then since P is the highest 

point of the circle PD is the tangent at P ; and since DB is also a 
tangent the point of contact will be at Q where DQ = DP. 

Then PQ is the required line of quickest descent. 

Example (ii). 

To find the line of quickest descent from a given vertical circle to a 

given point in the same plane as the circle. 

B 

Fig. 40. 

Let ABC (Fig. 40) be the circle, O its centre, and P the given point. 

We have to describe a second circle having P as its lowest point and 

touching ABC. Through P draw PD horizontal to meet the vertical 

through O in D and produce DO to meet the circle again in B. Then 

PD is a tangent to the required circle whose centre must lie on PE the 

perpendicular to DP at P. 
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Join PB, cutting ABC at C, join OC and produce it to cut PE at E. 

Then EPC — OBC, alternate angles, 

= OCB, since OC = OB, 

= ECP, vertically opposite. 

EP — EC, and EC passes through O, 
a circle with centre E and radius EP will touch ABC at C, 
CP is the required line of quickest descent. 

EXAMPLES X. 

1. A right-angled triangle is placed with the side BC horizontal, and 
the side BA pointing vertically down, give a geometrical construction 
for finding the line of quickest descent from B to the hypotenuse AC. 

(H.S.C.) 
2. A particle slides down a smooth chord of a vertical circle ending 

in the lowest point. Show that the velocity acquired varies as the 
length of the chord 

3. A particle slides down a smooth chord of a vertical circle, starting 
from one end of the horizontal diameter. Show that the time taken 
varies as the square root of the tangent of the inclination of the 
chord to the vertical. 



CHAPTER II. 

FORCE, MOMENTUM, WORK AND ENERGY. 

§ 68. In the last chapter we dealt with motion without consider¬ 
ing the cause of it. We have now to consider the cause of motion 
and changes of motion, and this introduces the idea of force. We 
recognise forces by the effects they produce, and among these is 
the tendency to alter the state of rest or uniform motion of bodies. 
It is this effect with which we are concerned in Dynamics, and we 
can give the following definition :— 

§ 64, Force is any cause which produces or tends to produce a 

change in the existing state of rest of a body, or of its uniform motion 

in a straight line. 
If one body A is acting on another B, the mutual action between 

them is a force. If we are considering only one of the bodies we 
say that this force is an external one, or an impressed force ; if we 
are considering both bodies wc say that the action is an internal 

force. When the bodies are in contact, their mutual action is 
called a pressure or a tension, when they are at a distance, the action 
is called a repulsion or attraction (e.g. the action between two 
electrified bodies). 

§ 66. For the present we shall consider the bodies to be particles, 
i.e. of such small dimensions that the distances between different 
portions of the bodies may be neglected, and that there can be no 
question of rotation of the body. The rotation of bodies of finite 
size will be dealt with later. 

We have now to consider (i) how a body A will move when left 
to itself ; (ii) how the motion is affected by the action of an external 
force ; (iii) if this external force is due to another body B, how the 
action of B on A is related to the reaction of A on B. 

The answer to these questions is given in Newton's Laws of 
Motion, but before enunciating these we require one or two defini¬ 
tions. 

§ 66. The Mass of a body is the quantity of matter in the body. 

The Momentum of a body, all the points of which are moving in 

parallel straight lines with equal velocities, is the product of the mass 

of the body and its velocity. 

57 
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In the case of a particle, if m is its mass and v its velocity, the 
momentum is mv. There is no special name for the unit of momen¬ 
tum ; if m is in lb. and v in ft./sec., we say that the momentum is 
mv lb.-ft. units of momentum. 

It should be noticed that momentum is a vector quantity, it 
possesses both magnitude and direction. 

In dealing with bodies of finite size we shall see later1 that we 
have to distinguish between linear momentum, due to the motion 
of translation of the centre of gravity of the body, and angular 
momentum, due to any rotation of the body about its centre of 
gravity. 

For the present, if the body is not a particle, we shall treat it 
as if all the mass were concentrated at the centre of gravity and the 
momentum will be the product of the mass and the velocity of the 
centre of gravity. 

§ 67. Newton’s Laws of Motion may be stated as follows :— 

1. Every body continues in its state of rest or of uniform motion in a 
straight line, except in so far as it be compelled to change that state 
by external impressed forces. 

2. Change of momentum per unit time is proportional to the impressed 
force, and takes place in the direction of the straight line in which 
the force acts. 

3. To every action there is always an equal and contrary reaction ; 
or, the mutual actions of any two bodies are always equal and 
oppositely directed. 

These laws were known in various forms before Newton’s time, 
but he was the first to put them into formal shape in his Principia, 
published in 1686. 

No strict proof of these law's, experimental or otherwise, can 
be given, but the arguments for their truth may be classified as 
follows:— 

(i) Common experience suggests their truth in a general way. 
We can never obtain the conditions to test Law I., but we can 
approximate to them, and wre find that the smaller the external 
forces acting against a moving body the longer it will continue to 
move in a straight line. We also know that bodies do not move 
from rest of their own accord. 

(ii) Assuming the laws to be true, the motions of various bodies, 
such as the moon*and planets, can be worked out and then compared 
with observation. The positions of planets, the time of eclipses, etc., 
are worked out and published in the Nautical Almanac several years 
beforehand. The predicted places and times are found to agree 
with observations. 
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§ 68. In many of these calculations the truth of another law 
enunciated by Newton is assumed. This is called Newton's Law of 
Gravitation, and can be stated as follows :— 

Every particle of matter attracts every other particle of matter with 
a force which varies directly as the product of the masses of the particles 
and inversely as the square of the distance between them. 

Numerous experiments have been made to verify this law by 
direct experiment, but the chief argument for its truth is the ac¬ 
curacy of the various calculations based on it. 

§ 89. The first law of motion implies what is sometimes called 
the Principle of Inertia, i.e. that a body has no power of itself to 
change its state of rest or motion, but goes on moving in the same 
direction with the same velocity, or continues in its state of rest 
when not acted upon by any external force. 

§ 70. The first part of the second law enables us to define units 
of force and establish the fundamental equation of dynamics. Let 
a force whose measure is P acting on a mass m produce an accelera¬ 
tion / in the mass. 

Then, by the second law, 

Pol rate of change of momentum, 
a rate of change of mv, 
ol m x rate of change of v (if m is constant), 
a mf, 

.*. P = kmf, where k is some constant. 

It is convenient to choose our unit of force so that k is equal to 
unity, i.e. P = i when m = i and/ = i, and if we do this our unit 
of force will be as follows :— 

The unit of force is that force which, acting on unit mass, generates 
in it unit acceleration. 

The fundamental equation then becomes 

P = mf. 

§ 71. When the unit of mass is the pound, and the units of space 
and time are the foot and second, the unit force is called a Poundal 
(abbreviated to pdl.). 

When the unit of mass is the gram, and the units of space and 
time are the centimetre and second, the unit force is called a Dyne. 

These units are called Absolute Units because their values are 
the same everywhere, and do not depend on the earth's attraction 
as the unit discussed in the next paragraph does. 

In using the equation P = mf, it is most important to remember 
that P must be in the absolute unit corresponding to the units used 
for m and /. 
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§ 72. The unit of force used by engineers is the Pound-weight 
(lb.-wt.), i.e. the force with which the earth attracts a pound of 
matter. This unit is not constant, but has different values at 
different parts of the earth's surface. 

It is known that bodies fall to the earth with an acceleration 
denoted by g. This has different values in different places, but in 
this country the value of g is about 32 in ft.-sec. units, or 981 in 
centimetre-second units. 

The weight of 1 lb. produces in it an acceleration of g ft./sec.2, 
and is therefore equal to g poundals. 

In foot-pound-second units, 

1 lb.-wt. = 32 poundals (approximately). 

In centimetre-gram-second units, 

1 gm.-wt. = 981 dynes (approximately). 

The poundai is therefore equal to the weight of about half an 
ounce. The dyne is equal to the weight of 1/981 gram, a little 
more than a milligram. 

§ 73. It is found by experiment that, at the same place, bodies 
of different masses fall in a vacuum with the same acceleration g. 

Hence, if and W2 be the weight of masses tn1 and m2 at the 
same place 

w I = Wj g, 

W2 mg, 

Nj-^i 
Wt ~ «,* 

i.e. the weight of bodies at the same place are proportional to their 
masses. 

This enables us to compare masses by comparing their weights 
with an ordinary balance, and if we take the same set of standard 
masses or weights to different places any given mass will be found 
to have the same value at all these places. 

A spring balance measures the force of the earth's attraction 
on a body, i.e. its weight, and such a balance will give different 
readings in different places with the same mass attached to it. 

Note that mg gives the weight of m in absolute units. 

§ 74. The second part of the second law implies the principle 
of the Physical Independence of Forces. The change of momentum 
produced by any force takes place in the direction of the straight 
line in which the force acts. If several forces act on a particle each 
will produce its own change of momentum quite independently of 
the others ; the resultant change of momentum will be the resultant 
of the separate changes produced by the individual forces. 
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§ 75. The Parallelogram of Forces. 

If two forces represented in magnitude and direction by two straight 
lines OA, OB act on a particle placed at 0, their resultant is represented 
in magnitude and direction by the diagonal OC of the parallelogram 
OACB. 

Since each force acts independently of the other, it will generate 
the same velocity in the particle in a given time whether the other 
acts or does not act. Also the velocity generated will be propor¬ 
tional to the force. Hence we may consider OA and OB (Fig. 41) 
to represent (to some scale) the velocities generated by the two 
forces, and at the end of the given time its resultant velocity will, 
by the parallelogram of velocities, be represented by OC. But this 
is also a measure of the force which would generate this velocity. 

Hence the two forces represented by OA, OB are together equiva¬ 
lent to the single force represented by OC. 

§ 76. The Third Law of Motion. 
This law tells us that any action between the component parts 

of a system of bodies, such as a number of particles, whether due to 
attraction or repulsion at a distance or to actual contact, cannot 
affect the momentum of the system as a whole. For if two of the 
bodies A and B act on each other, the reaction of A on B is equal 
and opposite to the action of B on A, the action and reaction there¬ 
fore generate equal and opposite amounts of momentum in the two 
bodies. Hence the total momentum reckoned in any fixed direction 
is unaltered. 

This constitutes a very important principle known as the 

Conservation of Linear Momentum. 

In any system of mutually attracting or impinging particles the 
linear momentum in any fixed direction remains unaltered unless there 
is an external force acting in that direction. 

This principle will be used in dealing with impulsive forces in 
the next chapter. 

§ 77. In the equation P — mf, the acceleration /, and the force 
P may be either constant or variable. 

For the present we shall consider cases where they are constant, 
and where the motion takes place in a straight line. 

3* 
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A more general form of this equation is 

P = 
d'x 

mw 
The product of the mass and the acceleration of a particle is 

called the effective force. 

d*x , d*y 

mwand 

are the Cartesian components of the effective force on the particle tn. 

§78. Friction. 

In many problems it is assumed that a particle is resting on a 

smooth surface, so that there is no force between the surface and the 
particle tending to prevent motion along the surface. This is, of 

course, an ideal case, in all actual cases when a particle is moved 

over a surface a force called friction is called into play which tends 

to prevent the particle moving. It is found by experiment that, 
when one body is moved over another in contact with it, the force 

of friction tending to prevent motion bears a constant ratio to the 

normal reaction between the two surfaces, the value of this ratio 

depending only on the nature of the surfaces in contact. This 

constant ratio is called the coefficient of dynamical friction for the 

given surfaces. If R is the normal reaction between the surfaces, 

F the force of friction, 

^ = n, or F = fiR, 

where /a is the coefficient of dynamical friction. 
If a particle is moving on a horizontal surface, and not acted on 

by any other force inclined to the horizontal, the normal reaction 

R =■= mg, 

and then F — pmg. 

If a particle is moving on an inclined plane of slope a, and not 

acted on by other forces except in directions parallel to the plane, 

the reaction between the plane and the particle is 

mg cos a, 

and then F = pmg cos a. 

If there is any force, such as the tension of a string, tending to 

pull the particle away from the surface, this reduces the normal 

pressure and consequently the friction. 
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§79. Example (i). 

What force in pounds weight will give a mass of 9 ions a velocity of 
25 m.p.h. in 1 minute ? 

As one of the chief sources of error in dynamical problems is the use 
of wrong units, it is safer always to reduce ail measurements to foot¬ 
pound-second or C.G.S. units. 

In this case we use F.P.S. units :— 

25 X 88 
25 m.p.h. = —— ft./sec. 

i minute = 60 seconds. 

We must first find the acceleration necessary to produce this velocity 
in 60 seconds. 

Using v = u -f- ft, 

25 x 88 
60 — 60/, 

25 x 88 
60 x 60 ft./sec.8 

The mass acted on is 9 x 2240 lb., and the force required to produce 
the acceleration /, using P = mf, is 

P = 
9 x 2240 x 25 x 88 

60 x 60 

224 x 25 x 88 

poundals, 

20 x 2 x 32 

= 385 lb. wt. 

lb. wt. 

Example (ii). 

An engine and train weigh 203 tons, and the engine can exert a pull of 
4 tons. The resistance to the motion of the train is 20 lb. wt. per ton, 
and the brake power is an additional 400 lb. wt. per ton. The train starts 
from rest and moves uniformly till it acquires a velocity of 40 m.p.h. ; 
steam is then shut off and the brakes are put hard on. Find the whole 
distance the train will have run before it comes to rest, and the whole time 
taken. (I.E.) 

While the engine is pulling the tractive force is 4 x 2240# poundals, 
and the resistance is 203 x 20g poundals, 

the resultant accelerating force is 

4 x 2240# — 203 x 20g, 
= (8960 — 4060)^, 
= 4900g poundals ; 

= — = —4922?— ft./sec.* 
m 203 x 2240 

.*. the acceleration 
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jo m.p.h. — — ft./sec., and we have to find how far the train goes in 
3 

10 
acquiring this velocity with acceleration ft./sec.*. 

Using v* = u% -h 2fs, 

1762 _ 20 

“9 TgS’ 

176 x 176 x 29 

To find the time taken we use 

I76 __ 10 t 
29 

... t = sec. 
3 x IO 

The retarding force is (203 x 20g -f- 203 x 400^) poundals 

= 203 x 420^ poundals. 

the retardation 

*°3 X ,4™ XJ2 = 6ft/sec., 

203 x 2240 

To find the distance travelled in losing the velocity of ft./sec., 

we have 
1762 

o = JL— — 12 s, 
9 

... s - I76xjlZ_6 ft. 
9 X 12 

To find the time to rest, we have 

o - L7.6 - 61. 
3 

• t = J7& 

The whole distance run 

176* x 29 176* _ 176* 87 4- 5 

9x20 '9 x 12 9* 60 

= *762 X 92 ft 
9 x 60 

= mile. 
2025 

The whole time 

= 1?6 x 29 + U* » ^6 X 92 seconds 
30 nr 90 

— 3 minutes, nearly. 
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Note.—When a train is running at uniform speed, the resultant 

force acting on it is zero, i.e. the pull of the engine must be just equal 

to the resistances. If the pull is greater than the resistances the train 

will accelerate. 

If a body slides down an incline with uniform speed, the component 

of its weight down the incline must be equal to the resistance. 

Example (in). 

A train travelling uniformly on the level at the rate of 48 m.p.h. begins 

an ascent of 1 in 75. The tractive force that the engine exerts during the 

ascent is the same as that exerted on the level. How far up the incline 

ivill the train go before coming to rest ? Assume that the resistance due to 

friction, etc., is the same on the incline as on the level. 

Since the train is moving uniformly on the level the pull of the 

engine is equal to the resistances. 

On coming to the incline these forces still balance, but we now have 

the component of the weight of the train down the slope retarding it. 

If m lb. is the mass of the train, the component of weight down the 

mg 
slope is — poundals, and as this is the resultant force acting parallel to 

75 
p 

the slope the retardation will be ~ ft./sec.2 The initial velocity is 

48 X 88 ft./sec. 
60 

The distance travelled before losing this velocity is given by 

0= /l8_Al8V. (^s, 
75 V 60 / 

88 x 88 x 16 

25 " 

88 x 88 x 3 -i : —--- D. mile, 
4 X 5280 

- 1-I mile. 

75 ft, 
64 

Example (iv). 

An engine of mass 105 tons is coupled to and pulls a carriage of mass 

30 tons ; the resistance to the motion of the engine is t }t 0 of its weight ; 

the resistance to the motion of the carriage is lJf) of its weight. Find 

the tension in the coupling if the whole tractive force exerted by the engine 

is equal to the weight of 6000 lb. 

We must first find the acceleration produced in the engine and 

carriage. 
The total resistance 

= (M+ §)tons wt- 
= J tons wt. 
— 2800 lb. wt. 
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The accelerating force 

The total mass 

.*. the acceleration 

= (6000 -- 2800) lb. wt. 

= 3200 lb. wt. 

— 135 x 2240 lb.. 

3200 x 32 

135 x 2240 

64 

189 ft-/sec-> 

ft./sec. 

The accelerating force on the carriage is 

30J<2^_x±4 poundals, 

22400 x 2 ti_ 
-j—- lb. wt. 

63 
711 ’ lb. wt. 

The accelerating force ~ tension in coupling — resistance, and the 

resistance to the carriage 

= 3° X.,jH° * 448 lb. wt.. 
150 

the tension in the coupling 

= (7i i,', + 448) lb- wt. 
= U59j lb. wt. 

Example (v). 

A body, of mass m lb., is placed on a horizontal plane which is moving 

with an upward vertical acceleration /. Find the pressure between the body 

and the plane. 

- R 

_1 \Hk_ 

'ina 

Fig. 42. 

Let R be the reaction between the body and the plane. Since the 
body is moving upwards with an acceleration, it is evident that R is 
greater than the weight mg. 

The resultant upward force acting on the body is R — mg, 

.*./? — mg — mf, 
... R *» m(g -{-/). 

If the plane be moving downwards with acceleration f, the weight 
mg is now greater than R. The resultant downward force acting on 
m is mg — Rt and 

mg — R = mf, 

••• R = m(g —/). 
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If in the latter case / ** g, then R = o, i.e. there is no pressure 
between the body and the plane. 

Exaj^le (vi). 

S^y/A rifle bullet passes through two planks in succession, and the average 
resistance of the second plank is 50 per cent, more than that of the first. 

The initial velocity is 2000 ft./sec., and the bullet loses 400 ft./sec. in 

passing through each plank. Show that the thicknesses of the planks are 

as 27 : 14. (I.E.) 
Since the resistance of the second plank is 50 per cent, more than 

that of the first, it will produce i| times the retardation produced by 
the first. 

Let/ ft./sec.* be the retardation produced by the first, then f/ is 
the retardation produced by the second. 

Let sa ft. be their thicknesses, then we have 

i5ooz = 20002 — 2fslt 

12002 i6oo2 — 3/52, 

2/s j m- 3600 x 400, 

.-. 3fst = 2800 X 400, 
. 2St __ 36 __ 9 

’ ’ 3^2 28 7' 
. £1 =27 
*‘s2 14' 

Note.—In problems similar to that in Example (vi), great care must 
be taken to distinguish the cases (i) when the body is moving hori¬ 
zontally, and (ii) vertically. 

In (i) if u is the initial velocity, m the mass, s the distance penetrated, 
R the average resistance, and / the retardation 

u* 
o = u* — 2/s, or / = —. 

2S 

In (ii) the first equation is the same, 

o — u% ~ 2/s, 

but now the weight of the body mg is acting vertically downwards, so 
that the resultant retarding force is not R but R — mg, so that 

R — mg — mf. 

The resistance is greater by the weight of the body than in the case 
where the motion is horizontal. 

EXAMPLES XI. 

1. Find the acceleration produced when (i) a force of 6 poundals acts 
on a mass of 12 lb.; (ii) a force of 6 lb. wt. acts on a mass of 12 lb. 

2. What force (in lb. wt.) acting on a mass of 12 cwt., will generate in 
it a velocity of 15 m.p.h. in 5 minutes ? 

3. A body of mass 100 tons is acted on by a force of 70 lb. wt. How 
long will it take to acquire a velocity of 15 m.p.h. ? 
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4. A ship of 10,000 tons slows, with engines stopped, from 6 knots to 
5 knots in a distance of 90 feet ; assuming the resistance to be 
uniform, calculate its value in tons weight. (A knot may be 
assumed to be a speed of * ft./sec.) (I.A.) 

5. A truck is found to travel with uniform speed down a slope which 
falls 1 foot vertically for every 112 feet length of the slope. If the 
truck starts from the bottom of the slope with a speed of 10 m.p.h., 
how far up will it travel before coming to rest ? (I.A.) 

6. Find in lb. wt. per ton the force exerted by the brakes of a train 
travelling at 60 m.p.h. which will bring it to rest in half a mile, 
and find the time during which the brakes act. (H.C.) 

7. A force equal to the weight of 10 gm. acts on a mass of 218 gm. 
for 5 seconds. Kind the velocity generated and the distance 
moved in this time. 

8. Find the magnitude of the force which, acting on a mass of 1 kilo¬ 
gram for 5 seconds, causes the mass to move through 10 metres 
from rest in that time. 

9. The resistance to the motion of a train due to friction, etc., is equal 
to the weight of 14 lb. per ton. If the train is travelling on a level 
road at 50 m.p.h. and comes to the foot of an incline of 1 in 150 
and steam is then turned off, how far will the train go up the incline 
before it comes to rest ? (H.S.D.) 

10. A train travelling uniformly on the level at the rate of 48 m.p.h. 
begins an ascent of 1 in 75. The tractive force that the engine 
exerts during the ascent is constant and equal to 2J tons wt., the 
resistance (due to friction, etc.) is constant, and equal to 30 cwt., 
and the weight of the whole train is 223 tons. Show that the train 
will come to a standstill after climbing for 1*65 miles. (H.C.) 

11. A body of mass 25 gm. is observed to travel in a straight line through 
369, 615, and 861 cm. in successive seconds. Prove that this is 
consistent with a constant force acting on the body. What is the 
value of this force ? 

12. Some trucks, starting from rest on an incline of 1 in 160, acquired a 
speed of 15 m.p.h. in 10 minutes. Calculate the resistance to the 
motion of the trucks in lb. wt. per ton mass of the trucks. (I.E.) 

T3. A force equal to the weight of 1 ton acts for 3 seconds on a mass of 
5 tons. Find the velocity produced and the space passed over, 
stating the units in which the results are measured. (I-S.) 

14. A mass of 10 lb. rests on a horizontal plane which is made to ascend 
(i) with a constant velocity of 5 ft./sec. ; (ii) with a constant 
acceleration of 5 ft./sec.2 ; find in each case the reaction of the 
plane. 

15. A man, of mass 10 stone, stands on a lift, which moves with a 
uniform acceleration of 12 ft./sec.2; find the reaction of the floor 
when the lift is (i) ascending, (ii) descending. 

16. A scale pan, on which rests a mass of 50 gm., is drawn upwards 
with a constant acceleration, and the reaction between the mass 
and the pan is found to be 30,000 dynes *, find the acceleration of 
the scale pan. 

17. A body whose true weight was 13 oz. appeared to weigh 12 oz. 
when weighed by means of a spring balance in a moving lift. 
What was the acceleration of the lift at the instant of weighing ? 

(I.A.) 
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18. A train of mass 160 tons starts from a station, the engine exerting 
a tractive force of 2 J tons in excess of the resistances until a speed 
of 37J m.p.h. is attained. This speed continues constant until 
the brakes, causing a retardation of 2\ ft./sec.2, bring the train to 
rest 5 miles away. Find the time taken (i) during acceleration ; 
(ii) during retardation ; (iii) altogether. (I S.) 

T9. The pull exerted by an engine is J() of the weight of the whole 
train, and the maximum brake force, which can be exerted is ./0 
of the weight of the train. Find the time in which the train travels 
from rest to rest up a slope of 1 in 240 and 3 miles long, the brakes 
being applied when steam is shut off. (H.S.C.) 

20. In a lift, accelerated upwards at a certain rate, a spring balance 
indicates a mass to have a weight of 10 lb. When the lift is ac¬ 
celerated downwards at twice the rate, the mass appears to be 
7 lb. in weight. Find the actual weight of the mass, and the 
upward acceleration of the lift. (I.C.) 

21. A vertical shield is made of two plates of wood and iron respectively, 
the iron being 2 inches, and the wood 4 inches thick. A bullet 
fired horizontally goes through the iron first and then penetrates 
2 inches into the wood. A similar bullet fired with the same 
velocity from the opposite direction goes through the wood lirst 
and then penetrates 1 inch into the iron. Compare the average 
resistance exerted by the iron and the wood. (I.E.) 

22. A 4-oz. bullet, travelling at 500 ft./sec., will penetrate 5 inches 
into a fixed block of wood. Find the velocity with which it would 
emerge, if fired through a fixed board inches thick, the resistance 
being supposed uniform and to have the same value in each case. 

(H.S.D.) 

23. A bullet weighing 30 gin. is fired into a fixed block of wood with a 
velocity of 294 metres per second, and is brought to rest in 1J0 
second. Find in dynes, and in grams weight, the resistance ex¬ 
erted by the wood, supposing it to be uniform. (H.C.) 

§ 80. In the last paragraph wc considered the motion of a single 
mass. We shall now consider some simple cases of the motion of 
two masses connected by a light inextensible string. In such cases 
we can apply the equation P = mf to each of the masses, as in 
the following examples :— 

Example (i). 

Two particles of masses mx and m2 are connected by a light inextensible 

string passing over a small smooth fixed pulley. To find the resulting 

motion of the system and the tension in the string. 

Since the pulley is smooth the tension is the same throughout the 

string, let this be T poundals, the masses mx and m% being in pounds. 

Suppose mx greater than m8, then m, will move downwards and m% 

upwards, and, since the string is inextensible, the upward acceleration 

of m% is equal to the downward acceleration of mx. Let this acceleration 

be /. 

Now, the forces acting on mx are mxg downwards and T upwards, 

the resultant force on mx is - T poundals downwards. 
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Hence, using 

- 

The resultant force on m* is 

T 

m2g m,g 

Fig. 43. 

P — *nf, 

T — mif.(i) 

T — m^g upwards, 

- = «i/ • • ■ • (ii) 

We now solve equations (i) and (ii) to find / and T. 

Adding, 
(mt - mt)g = (m, + mt)f. 

■ f = mi ~ my 
m, + *», 

The value of / can also be found as follows. The resultant force 
producing motion is (mx — w,)^, and the total mass moved is (mx + wt), 

• /•-,”»!- mta 

From (i) 

T = *»>(£-/), 

= m. (' 
»1 - „ 

-f w2/6’ 

~ 2wiwt g poundals. 
A mi + mt 

the parts of the string not in contact with the pulley hang verti¬ 
cally, the pressure on the pulley 

= 2T = ..V”1™*. g poundals. 
m, -4- 

Example (ii). 

A mass mt is placed on a smooth horizontal table, and connected by a 

light inextensible string passing over a small smooth pulley at the edge to 

a mass w„ hanging freely. Find the resulting motion and the tension 

in the string. 

2* 

t 

Fig. 44. 
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m1 will move downwards and m% along the table. Since the string is 

inextensible the accelerations oi mx and m2 are equal; let this accelera¬ 

tion be /. Let T poundals be the tension in the string. The forces 

acting on m1 are mg downwards and T upwards, 

the resultant force on mx is mg — T poundals, 

using P — mf, 

nig - T = mxf . . . (i) 

Since mt is resting on a smooth ^horizontal surface its weight has no 

effect as far as motion along the surface is concerned. The weight is 

balanced by the reaction of the plane (— w2g). The resultant force 

tending to produce motion horizontally is therefore the tension T 

poundals. Hence, for mZt we have 

T m m2f .... (ii) 

Adding (i) and (ii), mg = (m\^mt)f, 

The value of / may also be found directly by dividing the resultant 

force, tending to produce motion {mg) by the total mass moved (mx ~f~ mf). 

Substituting in (ii) 

T  --—~~ g poundals. 
w, 4- m2 

In this case R, the pressure on the pulley, is the resultant of two 

equal forces T at right angles, 

.-. R = Vf*'~+T* = ^2 . T, 

— poundals. 
mx 4- m% 

Example (iii). 

A particle of mass m% rests on' the surface of a smooth plane inclined at 

an angle a to the horizontal, and is connected by a light inextensible string, 

passing over a small smooth pulley at the top of the plane, to a mass m, 
hanging freely. Find the resulting motion and the tension in the string. 

fit?*! 

Fig. 45. 

The tension of the string is the same throughout, let this be T 

poundals. The accelerations of the masses are the same, let this be /. 

The forces acting on mx are its weight mg vertically downwards and T 

vertically upwards. If mx moves downwards 

mg - T = mj . . . . (i) 
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The forces acting on ms parallel to the surface of the plane are mg sin a 

down the plane and T up the plane, the resultant force tending to 
produce motion is therefore T — mg sin a, 

T — mg sin a = m2f .... (ii) 

Adding (i) and (ii) g(ml — m2 sin a) = (mt + w2)/, 

7 mx -f m2 

T is obtained by substituting for / in (i). 

Note.—In working numerical examples similar to those above, the 

results there given must not be used as formulae for substituting the 

numerical values. Each question should be worked as shown in 

Examples (i) to (iii), using the numbers given in the question instead 
of letters. 

Example (iv). 

A particle slides down a rough inclined plane of inclination a. // fi 

be the coefficient of friction, find the motion. 

Let m be the mass of the particle, and R the normal reaction of the 

plane, then the friction is pR. 

Now as there is no motion perpendicular to the surface of the plane 

the reaction of the plane must equal the component of the weight of 

the particle perpendicular to the plane, 

R = mg cos a. 

The resultant force acting down the plane is 

mg sin a — pR, 

= mg sin a — \img cos a. 

The acceleration down the plane is 

ms sin a — ums cos a . . . -2-“ 6-= g(sin a — fx cos a). 
m 

If sin a < /i cos a, or tan a < /a, 

there will be no acceleration down the plane, and as the particle ob¬ 

viously cannot move up the plane, this means that it will remain at 

rest. 
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If the particle is projected up the plane, the resultant retarding 
force down the plane is 

mg sin a + \*-mg cos a. 

Example (v). 

Tivo particles of masses mx and m2 rest on the rough faces of a double 

inclined plane and are connected by a light inextensible string passing over 

a small smooth pulley at the vertex of the plane. If the faces of the plane 

arc equally rough, find the resulting motion. 

Let the inclinations of the faces on which mx and m2 rest be a and 

respectively, and suppose that m1 moves downwards. 

Let T be the tension in the string. 

Since the particles do not move perpendicular to the faces, the 

reactions of the faces are equal to the components of the weights per¬ 

pendicular to the faces, i.e. mxg cos a for mlt and m^g cos j9 for m2. 

Since mt moves down, the friction on it acts up the plane. Hence 

the total downward force on mx is 

mxg sin a — T — umig cos a, 

and the total upward force on m2 is 

T — m.£ sin p — fimg cos j8, 

hence, if / is the common acceleration 

mxg sin a — T — fimxg cos a — mxf . . (i) 

T — m.tg sin jS — fimg cos /3 = m2f . . (h) 

Adding (i) and (ii), 

f(mi + mi) = g(mi sin a — mt sin jS — nml cos a — iimt cos /?), 

giving /. 

T is obtained by substituting for / in either (i) or (ii). 

Example (vi). 

Two masses 10 lb. and 3 lb. respectively are connected by a fine string 

whiclrpmses-ever-a smooth pulley fixed at the head of a smooth inclined 

plane 5 feet long and 1 foot high. The heavier particle is on tie plane and 

the lighter particle just hangs over the pulley, the string being 5 feet long. 

Find the acceleration of the masses and the tension of the string. How 

long will it be after the 3 lb. mass reaches the ground before the string is 

again taut ? (I-A.) 
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Let T poundals be the tension of the string, / the common accelera¬ 

tion. 
The resultant force downwards acting on the 3 lb. mass is 

3g — T poundals, 

the resultant force on the 10 lb. mass acting up the plane is 

T — 10 . jrg — T — 2g poundals, 

••• 3£ - T = 3/. 
T - ig = 10/; 

••• 13/ = g. or/ = ft./sec.! 
T - 2,? + 10/ = 2g + J = :;^g poundals. 

When the 3 lb. mass reaches the ground the masses will have moved 

1 foot from rest with acceleration 

their common velocity v is given by 

v* = 2 -i 
13 

Ji 

13' 
n b] 

I- T 

13 

8 

64 

13' 

1/ = ___ ft./sec. 
V13 

Now the 3 lb. mass is stopped by the ground, the string becomes 

slack and the 10 lb. mass moves on with velocity v, and subject to a 

retardation g 

The time taken to go up the plane and return to the point from 

which it began to move freely is given by 

- Sj-Ut\ 
2 5 

*. t 

V13 

5x8 
16VT3 

— -^3 seconds. 
26 

After this interval the string again becomes taut. 

Example (vii). 

A mass of M lb. rests on a smooth horizontal table and is attached by 

two inelastic strings to masses m, m' lb. (in' > m), which hang over smooth 
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pulleys at opposite edges of the table. Find the acceleration of the system 

and the tensions in the strings. 

mg m'g 

Fig. 49. 

If T be the tension in the string connecting m and M, T' that in 
the other string, we have, if / is the acceleration, 

For m', m'g — T' = m'f . . (i) 

„ m, T — mg — mf . . . (ii) 
,, M, T' — T — Mf . . . (iii) 

Adding the three equations 

(m' - m)g = {mf + m -f M)f, 

{ _ m' — m 

’ ' m' -f m -f 

The values of Tf and T are obtained by substituting in (i) and (ii). 

EXAMPLES XII. 

1. Two particles, of masses 6 and 10 lb., are connected by a light 
string passing over a smooth pulley. Find (i) their common ac¬ 
celeration, (ii) the tension in the string, (iii) the pressure on the 
pulley. 

2. Two particles, of masses 5 and 7 lb., are connected by a light string 
passing over a smooth pulley. Find their common acceleration 
and the tension in the string. 

3. Two particles, of masses 7 and 9 oz., are connected by a light string 
passing over a smooth pulley. Find their common acceleration 
and the tension in the string. 

4. Two particles, of masses 20 and 30 gm., are connected by a fine 
string passing over a smooth pulley. Find their common accelera¬ 
tion and the tension in the string. 

5. A mass of 9 lb. resting on a smooth horizontal table is connected by 
a light string, passing over a smooth pulley at the edge of the table, 
to a mass of 7 lb. hanging freely. Find the common acceleration, 
the tension in the string, and the pressure on the pulley. 

6. In the last question, if the 7 lb. mass starts from the level of the 
edge, which is 7 feet above the ground, and the string, which is 
14 feet long, is taut and perpendicular to the edge ; find (i) how 
long the 7 lb. mass takes to reach the ground ; (ii) how long after 
that the 9 lb. mass takes to reach the edge of the table. 

7. A mass of 5 lb. is placed on a smooth horizontal table 6 feet high 
i^/at a distance of 18 feet from the edge and connected by a light 

string 18 feet long to a mass of 3 lb. on the edge of the table. If 
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the 3 lb. mass is pushed gently over the edge, find (i) how long it 
takes to reach the ground ; (ii) how much longer the 5 lb. mass 
takes to reach the edge. 

8. A particle, of mass 5 lb., is placed on a smooth plane whose height 
is 4 feet and length 20 feet. The particle is connected by a light 
string passing over a smooth pulley at the top of the plane to a 
mass of 3 lb. hanging freely. Find the common acceleration and 
the tension of the string. 

9. If, in question 8, the 5 lb. mass is initially at the bottom of the 
slope and the 3 lb. mass hanging just over the pulley, find (i) how 
long the 3 lb. mass takes to reach the ground, (ii) the time that 
elapses after this happens before the string again becomes taut. 

10. Two masses of J oz. and 7J oz. connected by an inextensible string 
5 feet long, lie on a smooth table 2J feet high. The string being 
straight and perpendicular to the edge of the table, the lighter 
mass is drawn gently just over the edge and released. Find (i) 
the time that elapses before the first mass strikes the floor, and 
(ii) the time that elapses before the second mass reaches the edge 
of the table. (I.S.) 

11. A mass of 2 lb. lies at the bottom of an inclined plane 30 feet long 
and 10 feet high. It is attached by a light cord 30 feet long, 
which lies along the line of greatest slope of the plane, to a 
mass of 1 lb., which hangs just over the top of the plane. The 
system is allowed to move. Assuming that the hanging mass 
comes to rest when it reaches the ground, find the distance that 
the mass of 2 lb. will travel before it first comes to rest. (H.S.D.) 

12. A particle of weight 5 lb. resting on a smooth plane of inclination 
30°, is attached to a light string which passes over a smooth pulley 
at the highest point of the plane and carries a hanging weight of 
2 lb. Calculate the acceleration of each weight, assuming that 
the whole motion takes place in the vertical plane through the 
pulley and the line of greatest slope. Find also the tension in the 
string. (H.S.D.) 

13. A mass of 5 lb. rests on a rough horizontal table, and is connected 
by a light string with a mass of 3 lb. hanging freely. If the co¬ 
efficient of friction between the 5 lb. mass and the table is J, find 
the resultant acceleration and the tension in the string. 

14. A mass of 4 lb. rests on a rough horizontal table (coefficient of 
friction £), and is connected by a light string with a mass of 3 lb. 
hanging freely. Find the velocity acquired and the distance 
described by the masses in 7 seconds. 

15. A particle slides down a rough inclined plane, whose inclination 
to the horizontal is 45 °, and whose coefficient of friction is J ; 
show that the time of descending any distance is twice what it 
would be if the plane were smooth. 

16. Two rough planes, inclined at 30° and 6o° to the horizontal and of 
the same height, are placed back to back ; masses of 4 and 12 lb. 
are piaoed on the faces and connected by a light string passing 
over a smooth pulley at the top of the planes ; if the coefficient of 
friction is |, find the resulting acceleration. 

17. A rough plane is 50 feet long and 30 feet high, the coefficient of 
friction is £, and a particle slides down the plane from rest at the 
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highest point; find the velocity of the particle on reaching the 
bottom and the time taken. 

18. A light inextensible string, passing over a small smooth fixed pulley, 
carries at one end a weight of 4 oz., and at the other two weights 
each of 3 oz. If the system is allowed to move, find the accelera¬ 
tion with which the weight of 4 oz. ascends. 

If one of the 3 oz. weights falls off after the 4 oz. weight has 
ascended a distance of 2\ inches, how much farther will the 4 oz. 
weight ascend ? (H.C.) 

19. A particle held at rest on a smooth table is attached by a light 
inextensible string to a second particle, of the same mass as the 
first, which hangs over the edge of the table, the string being taut 
and at right angles to the edge of the table. If the particle on the 
table is released, find the acceleration with which it begins to move. 
If the string connecting the particles is 5 feet long and both particles 
are initially on the table, one 5 feet from the edge and the other at 
the nearest point of the edge from the first, and the particle at the 
edge is pushed gently over the edge, find the time that elapses 
before the other particle reaches the edge. (H.C.) 

20. A mass of 20 lb. slides from rest through a distance of 100 feet 
down a rough rail whose angle of inclination with the horizontal 
is tan-1 ;,q, the coefficient of friction being 0-25. Find in foot- 
poundals the work done on the mass by the forces acting on it. 
Also find the velocity acquired by the mass. 

21. An engine driver of a train at rest observes a truck moving towards 
him down an incline of 1 in 60 at a distance of half a mile. He 
immediately starts his train away from the truck at a constant 
acceleration of 0*5 ft./sec.2 If the truck just catches the train, 
find its velocity when first observed. Assume that friction oppos¬ 
ing the truck's motion is 14 lb, wt. per ton. (C.S.) 

22. A mass M is moving with velocity V. It encounters a constant 
resistance F; write down equations to determine the time before 
it is brought to rest and the distance it has travelled, stating the 
principles on which these equations depend. Two moving masses 
are brought to rest by equal constant resistances. If the one mass 
moves for twice as long as the other but goes only half the distance, 
find the ratio of the masses and also that of their velocities. (C.S.) 

23. A body of wreight Wx hangs vertically from a string which is tied 
to a body of weight on a horizontal table. The coefficient of 
friction between the second body and the table is /x, wrhile owing 
to the friction at the edge of the table the tension of the vertical 
part of the string must be n times that of the horizontal part. 
Find the acceleration and the tensions. Find the relation between 
Wlt Wit so that the tension of the horizontal part of the string 
may be equal to W2 (N.U.3) 

24. State the relation between force and acceleration in C.G.S. units. 
Two bodies of mass 1 and 1*1 kilos, hang from the ends of a light 
inextensible string, which passes over a smooth light pulley. Find 
the acceleration of the bodies and the tension in the string. 

The whole system is placed in a lift which has a downward 
acceleration of 98 cm./sec.2 Find the acceleration of each body 
relative to the lift. (N.U.3) 
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§ 81. Attwood’s Machine. 

Fig. 50. 

In the simplest form of this machine two equal masses (M), are 

connected by a light cord passing over a light pulley P, as in Fig. 50. 

The axis of the pulley is supported horizontally so that it can 
turn with very little friction. 

If the masses are set in motion they will move with a velocity 

which is very nearly constant for a short time, and by measuring 

the time taken by one of the masses to describe a given distance 
the value of this velocity can be obtained. 

The machine is used to verify the laws of motion and to obtain 

a rough value for g. [The best method of determining g is by means 

of the pendulum which will be described in a later chapter.] The 
masses are set in motion by placing a small rider of known mass (m) 

on one of the large masses which can be released from a platform A, 
attached to the stand which supports the pulley. 

A ring B is fixed to the stand vertically below A, and is of such 

size that M can pass through it, but the rider m remains 011 the ring. 
The masses will then move with uniform velocity and the time 

taken for the descending mass to go from B to a platform C at a 

known .distance below B is measured by a stop-watch. 

The distance from A to B is also known. 
Now until the rider is removed the acceleration of the system is 

mg 
2 M + m 

If AB = hv the velocity v on reaching the ring is given by 

2—-2— h 
2M + »i r 

If A2 is the distance BC, and i the time taken for the mass to go 
from B to C 
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h\' 2tneh, 

1*~ ~~ 2W+m’ 

•••^ = 5^(2M + w)- 
§ 82. The chief causes of inaccuracy in the experiment are as 

follows :— 

(1) The string may slip on the pulley, and, as this is not per¬ 
fectly smooth, friction is introduced. 

This cannot be avoided entirely, but can be partly 
allowed for as in (3) by means of an additional rider. 

(2) The pulley, although light, requires some force to make it 
rotate. 

Allowance can be made for this as explained in Chapter 
IX. 

(3) There is some friction at the axle of the pulley. This can be 
reduced by supporting the axle of the pulley on the edges 
of four light wheels called friction wheels, or by attaching 
a small rider to the mass which carries the rider m. The 
mass of this extra rider is adjusted until the masses (with¬ 
out m) run uniformly when set in motion. 

(4) It is difficult to measure accurately the time taken for the 
mass M to go from B to C. 

The error in measuring the time can be reduced by the device used 

in what is called the “ ribbon ” Attwoo^’s machine. 
In this type of machine the string supporting the masses is 

replaced by a tape. A fine brush is attached to the end of a spring, 
or vibrator, which is adjusted to make a given number of vibrations 
per second. 

The brush, which is inked, is placed so that it touches the tape 

where the latter passes over the top of the pulley. 
A lever is arranged so that, as it releases the mass with the rider 

from its platform, the vibrator is set in motion. The brush then 

traces a wavy line on the tape as it passes over the pulley. The 
distances between successive portions of the curve so traced are 
the actual distances moved by the masses, while the time taken to 
move any distance is known from the period of the vibrator. 

§ 88. The following examples are of a more difficult nature. If 

the accelerations of the various parts of the system are not the same 
it is essential to find what connections there are between them. 

The principle of the method, i.e. applying the equation P = mf to 
each part of the system, is the same as before. 
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Example (i). 

A string passing over a smooth fixed pulley supports at its two ends 

smooth movable pulleys of masses 5 lb. and 7 lb. respectively. Over the 

first of the movable pulleys passes a string having masses of 3 lb. and 

4 lb. at its ends, and over the second a string having masses of 2 lb. and 
3 lb. at its ends. Find the acceleration of the movable pulleys and of each 

of the masses. (H.S.D.) 

dJ 

*9 39 
3 9 *9 

Fip. |i. 

Let A (Fig. 51) represent the fixed pulley and B and C the movable 

pulleys. 

It is clear that the acceleration of B is the same as that of C, let this 
be F. \ 

The actual accelerations of the 2 lb. and 3 lb. masses hanging over 

B are not the same, but their accelerations relative to B are the same, 

i.e. the 2 lb. mass approaches B with the same acceleration as the 3 lb. 

mass goes away from it (this follows since the length of the string is 
unaltered). 

In problems of this kind it is essential to consider only the actual 

accelerations of the particles, otherwise we cannot apply the equation 

P = mf to them. 

Let T be the tension in the string passing over A, T, and Tz the 
tensions in those passing over B and C. 

Let flt /2 be the actual accelerations of the 2 lb. and 3 lb. masses 

over B, /, and fA those of the 3 and 4 lb. masses over C. Assume that 

C moves downwards and B upwards (it will not matter if this is incorrect, 
we shall merely get a negative value for F). 

The resultant forces acting on B, C, and the particles are as follows :— 

On B, t - 2 r, — yg, upwards. 
c, 5g + 2 r, — T, downwards. 

„ the 2 lb. mass of B, ?i ~ 2g, upwards. 

„ „ 3 lb- .. B, 3e - downwards. 

.. .. 3 lb. C, TI - 3g. upwards. 

„ „ 4 lb. .. C, 4€ ~ T»• downwards. 

Hence, applying P = mf to each of these masses, 
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T - 2T, - 7g = 7P . . . (1) 
5,? + 2T, - T = 5F . . . (ii) 

J\ -2g =* 2fx ■ ■ ■ (iii) 

3g - 1 \ *= 3fi • ■ • (»v) 
?« — 3S 3/.. (v) 
4A' — rz - 4/. ■ • • (vi) 

Also, since the accelerations of the masses relative to their pulleys 

are equal, 

/, - *' ** ft 4- F • • • (vii) 
/. + F * U- F ■ ■ ■ (viii) 

We have thus eight equations to determine the three unknown 

tensions and the five accelerations. 
These equations give 

F - 
414 

g; fi 
42 
207 

29 
207 

g; ft 

g; f4 

207 

SO 
—£ 
207 

Example (ii). 

aw*f /4a arc' /zeo fixed pulleys in the same horizontal line. A light 

string is placed over Ax and A2, and carries weights \\\ and W2 at its 

free ends. Another pulley B carrying a weight Hr3 is placed on the part 

of the string between Ay and A 2. If Al and A.z are so close together that 

all the portions of the string not m contact with the pulleys are vertical, 

prove that when all the weights are in motion the tension m the string is 

_4_ 
Wr1 4 HV1 + 4^s-l‘ 

Prove also that the condition that Wt shall remain at rest while IT, and 

Wt are in motion is 4W,W2 = WZ(IV1 + Wt). (H.S.D.) 

It is evident that the distance moved by B is equal to half the 

algebraic sum of the distances moved by W1 and IT,. For if IT, and 

Wt both move downwards through distances xx and x2t B will move up 

x —J~ x 
a distance —* ; if IT, moves down and W2 up through the same 

distance, B will move up a distance 
x 

VOL. I. 
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Hence, if /,, f ., /3 be the accelerations of IV,, W.,, W.it then 

, A 1 A 
7a “ ' • 

Suppose that IV, moves down, IV, and lVn move up, and let T be 

the tension in the string. 

Then /, - 

For IF,, 

.. 
IF,. 

IF,£ - T = H',/„ or ■ 

r-HV-H',/, or 7- -;=/, • 

2r - = if,/, ^ jir,/, - 4if,/., 

fjr ~ = 2£ - from (i) and (ii), 

T(IF, + IF, + IT,) ** 4^' 

7' 
_4£ 

IF,-1 + IF,-* 4 IF,-’ 
in absolute units, 

W;-r + in g™vitztion units. 

If IV, is to remain at rest, /3 must be zero. 

Now, from (iii) 

and this is zero if 

or 

2T 

TV, - g, 

Zg 
IF. W, 

IF, + IF, + 4 

4£ 
IF, 

IF/ 

IF, 

IF/ 

= IF, IF, 

pf! + if! +4 

IF, IF, 

IF/ + IF, = 4* 

4IFjIF, = tF,(IF, + IF,). 

0) 

(i*) 

(•ii) 

Example (iii). 

Particles of mass m and 2m are connected by a light string which passes 

over a pulley at the vertex of a wedge-shaped block, one particle resting on 

each of the faces which are smooth. The mass of the wedge being M, and 

the inclination of the faces to the horizontal being a, find the acceleration 

of the wedge and the particles when the wedge is placed on a smooth hori¬ 

zontal table. (H.S.C.) 
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Fig. 53- 

Let F be the acceleration of the wedge, and /, the components of 
the mdttaal acceleration of 2m parallel and perpendicular to the face of 
the wedge, /s and /4 those of m. Let Rlt i?2 be the reactions of the 
wedge on 2m and m (these will be perpendicular to the faces), and T 

the tension in the string. 
Consider the motions of the particles in directions perpendicular to 

the faces of the wedge. The resultant force on 2w in this direction is 
2mg cos a — Rlt and that on m is Rt — mg cos a, 

2mg cos a — R1 = 2mf2 ' . . (i) 
R2 — mg cos a =* mfit .... (ii) 

The horizontal force acting on the wedge is 
Rx sin a — i?2 sin a, 

.*. Rx sin a — i?2 sin a = MF . . (iii) 

Since the particles remain in contact with the faces, their accelera¬ 
tions perpendicular to the faces must equal the component accelera¬ 
tions of the wedge in these directions, 

•*•/«- F sin « ==/, .... (iv) 

Multiplying (i) and (ii) by sin a and adding to (iii), 

mg sin a cos a = 2 mf% sin a + m/4 sin a + MF, 

= 3wFsin* a -f- MF, from (iv) 

= (3m sin* a -+* M)F, 

j? _ ^ si11 a cos a . 
M -|- 3m sin* a * 

also/,=/« = Fsin a = sin> g 
Af -f- 3m sin* a 

To find the components of acceleration parallel to the faces, we 
consider the motion in this direction, this is unaffected by the motion 
of the wedge. 

For 2m, 2mg sin a — T — 2mflt . . . (v) 

„ m, T — mg sin a = m/3, . . . . (vi) 

mg sin a = 2mfx -f m/3. 

Now the accelerations along the faces relative to the faces must be 
equal, 

/1 4- F cos a = /3 -f F cos a . . . (vii) 

r __ r _ s*n a g sin a 
= T"' 
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The resultant accelerations of the particles can be obtained by 
compounding A and /2, /8 and ft. 

Example (iv). 

A man weighing 12 stone, and a weight of 10 stone, are suspended by 

a light rope over a smooth pulley. Find the acceleration of the man. If 

the man pull himself up the rope so that his downward acceleration is only 

half this value, find the upward acceleration of the weight, and show that 
g 

the upward acceleration of the man relative to the rope is —. 

If / is the acceleration when the man is not pulling 

12 g — T = 12/, 

T — 10g = 10f, 

22/= 2g, or f — g. 

When the man is pulling on the rope we must consider the force P 

he exerts on the rope ; his acceleration is now g. 

I2g - P = 12. 

P = I2g - >\g. 

If F is the acceleration of the weight 

P — log = 10 F, 

12g - {\g - log = 10F, 

F = ".g. 

The upward acceleration of the man relative to the rope is 

55^ 22^ 10* 

EXAMPLES XIII. 

1. A fine string passes over a smooth fixed pulley and carries at its 
ends masses of m and 5m lb. respectively. Find the acceleration 
of the masses and the tension of the string, stating clearly the 
units you employ. 

A string with one end fixed passes under a movable pulley A 
of mass m lb., over a fixed pulley and under a movable pulley B 
of mass ym lb., its other end being attached to the axle of the 
pulley A, and all the hanging parts of the string being vertical. 
Show that the tension of the string is the same as that of the string 
in the first part of the question, that the acceleration of the pulley 
A is equal to that of the mass m, but that the acceleration of the 
pulley B is half that of the mass ym. (I.S.) 

2. Two pulleys, of weights 12 lb. and 8 lb., are connected by a fine 
string hanging over a smooth fixed pulley. Over the former is 
hung a fine string with weights 3 lb. and 6 lb. at its ends, and over 
the latter a fine string with weights 4 lb. and x lb. Determine x 
so that the string over the fixed pulley remains stationary, and 
find the tension in it (I.E.) 
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3. Masses of 5 lb. and 2 lb. arc suspended from the ends of a string 
which passes over two fixed pulleys and under a movable pulley 
whose mass is m lb., the portions of the string not in contact with 
the movable pulley being vertical. Find the value of m in order 
that when the system is released, the movable pulley may remain 
at rest, and find in this case the accelerations of the other masses 
and the tension of the string. (H.S.C.) 

4. To one end of a light string passing over a smooth fixed pulley is 
attached a particle of mass M, and the other end carries a light 
pulley over which passes a light string to whose ends are attached 
particles of mass m% and m2. Find the accelerations of the particles, 

t yyi 

and show that if M m ——1-1 the mass M will remain at rest or 
mx |- mz 

move with uniform velocity. (Ex.) 

5. A particle of mass M on a smooth horizontal table is tied to one 
end of a string which passes over a fixed pulley at the edge and 
then under a movable pulley of mass m, its other end being fixed 
so that the parts of the string beyond the table are vertical. Show 

that m descends with acceleration _and find the hori- 
4M 4 

zontal and vertical components of the acceleration of the centre 
of mass of M and m. (FS.) 

6. A string with one end fixed passes under a movable pulley A, of 
mass m lb., and then over a fixed pulley, and carries at its free 
end a mass B of 3m lb. Find the tension of the string and the 
accelerations of A and B, stating clearly the units that you employ 
(All portions of the strings are to be regarded as vertical.) (FS.) 

7. A string is attached to a fixed point A. It passes round the lower 
part of a movable pulley B, to which a weight 2 IF is attached, 
then over a fixed pulley C, and a weight W 4 tv hangs from its 
extremity. The parts of the string not in contact with the pulleys 
are vertical. Neglecting friction and the mass of the pulleys, find 
the acceleration with which the system moves when left to itself. 

(IS.) 

8. Masses of 100 gm. and 60 gm. are attached to the ends of a fine 
string, which passes over a smooth fixed pulley, f ind the ac¬ 
celeration of the masses and prove that the tension of the string is 
equal to the weight of 75 gm. The pulley, whose mass is 50 gm., 
is now detached from its fastening, and attached by means of 
another fine string to a mass of 100 gm., which lies on a smooth 
table over whose edge the string passes. Prove that the pulley 
moves as if the original weights were removed and its own mass 
were increased by 150 gm. (H.C.) 

9. A, B are masses of 6 oz. and 3 oz. respectively resting on two smooth 
tables, placed with their edges parallel. They are connected by a 
fine string, which hangs between the tables with its hanging parts 
vertical and carries in its loop a smooth pulley C of mass 4 oz. 
The string lies in a vertical plane and crosses the edges of the 
tables at right angles to the edges. Find the tension in the string 
(i) when A and B are held fast, (ii) when B is held but A moves, 
(iii) when A and B both move ; and show that in the three cases 
the tensions are in the ratio 21 : 18 : 14. (H.C.) 

VOL. I—4 
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10. A light string ABCD has one end fixed at A, and passing under a 
movable pulley of mass M at B and over a fixed pulley at C, carries 
a mass M' at D. The parts of the string are supposed vertical. 
Show that M descends with acceleration 

M - 2 M' a 
M +^We 

(H.C.) 

ii. A string with one end fixed passes under a pulley A of mass M, 
then over a fixed pulley, then under a pulley B of mass M\ 
and its other end is attached to the axle of A. The string is taut 
and its hanging parts are vertical. Find the ratio of the velocities 
of A and B when the system is in motion, and show that the 
acceleration of A is 

4M - zM'a 
4M + M/g 

downwards. (I.S.) 

12. A particle of mass m is placed on the sloping face (angle of slope 
a to the horizontal) of a smooth wedge of mass M, whose base 
rests on a smooth table. Find the acceleration of the wedge and 
the horizontal and vertical components of the acceleration of the 
particle. (H.S.C.) 

13. A wedge of mass M and angle a is placed on a rough horizontal 
plane, the coefficient of friction being A smooth particle of mass 
m is placed gently on the inclined face of the wedge. Show that, 
if the wedge moves, its acceleration will be 

m cos a(sin a — ^ cos a) — r (H ^ C ) 
m sin a(sin a — fi cos a) + M 

14. A string passing over a smooth pulley carries a mass 4m at one 
end and a pulley of mass tn at the other. A string carrying masses 
m and 2m at its ends passes over the latter pulley. Find the 
acceleration of the mass 4m when the system is moving freely 
under gravity. (C.S.) 

15. A string, of which one end is attached to, a mass m lying on a smooth 
table, passes over the edge of the table, and after passing over a 
smooth fixed pulley close to the table and on a level with it has 
its other end attached to a mass m'; between the table and the 
pulley the string hangs in a loop and supports a smooth ring of 
mass M. The string lies in a vertical plane perpendicular to the 
edge of the table. Find the motion and the tension of the string, 
and show that the mass w' will remain at rest if 

M = 
4mm' 

2 m — m" (C.S.) 

16. A mass m lying on a smooth horizontal table is attached to a string 
which, after passing over the edge of the table, hangs in a loop on 
which a heavy smooth ring of mass M is threaded and then passes 
over a smooth fixed pulley and supports a mass m'. If the free 
portions of the string are vertical and the whole system lies in a 
vertical plane, determine the tension of the string, and show that 
the mass M will remain at rest provided that 
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17. On a smooth fixed inclined plane of angle a there is placed a smooth 
wedge of mass M and angle <x, in such a way that the upper face 
of the wedge is horizontal ; on this horizontal face is placed a 
particle of mass m. Prove that the resultant acceleration of the 
particle in the subsequent motion is 

(M + m)g sin2 a 

M m sin2 a * 

and evaluate the pressure between the wedge and the plane. (I.A.) 

18. A truck weighing 16 cwt. is pulled up a railway on an inclined 
plane by a rope which passes round a pulley fixed at the top of 
the incline, and is attached to a truck which weighs with contents 
40 cwt. and runs down a parallel railway. The speed of the trucks 
is controlled by a brake on the pulley which is operated when the 
speed reaches 30 ft./sec., and keeps the speed constant. The 
incline is 400 feet long, and the height of the upper end above the 
lower 100 feet. Neglecting friction, find the time during which 
the trucks run freely and the whole time of the journey. Find also 
the greatest tension of the rope. (I.E.) 

19. In a mountain railway, of uniform inclination 30°, the ascending 
and descending cars are connected by a rope which passes round a 
pulley at the top of the incline, and their masses are J M and M 
tons respectively; the ordinary resistances due to friction, etc., 
are 20 lb. wt. per ton mass for each car, and the brake resistance 
is Q lb. wt. per ton mass. Show that if motion can be prevented 
by applying the brakes to the descending car alone, Q must be 
at least 245. If Q has this value, calculate the retardation when 
the cars are in motion and the brakes are applied to both cars. 

(IE-) 
20. On a cable railway a car, of weight 2J tons, is drawn up a slope of 

1 in 10 from rest with an acceleration of 2 ft./sec.2 against a con¬ 
stant frictional resistance of J cwt. Find the tension in the cable. 

(H.S.C.) 

21. The angle of a smooth wedge of mass M is a. The wedge is placed 
with one face on a smooth horizontal table and a particle of mass 
m is allowed to slide down its face. Prove that a horizontal force 
mg sin a cos a must be applied to the wedge to keep it from moving, 
and that the reaction between the wedge and the table is 

(M + m cos 2 a)g (H.S.D.) 

22. A wedge of mass M, whose section ABC is a triangle right angled at 
A, is placed with the face BC on a smooth, horizontal table. The 
faces AB, AC are rough, the coefficient of friction being p. Two 
masses mlt m2, connected by a light inextensible string passing 
over a light frictionless pulley at A, rest on the faces AB, AC, 
respectively, and mx moves down AB with acceleration / relative 
to the wedge. Write down the equations necessary to find /, and 
the acceleration F of the wedge. (Ex.) 

23. A cord passing over a fixed pulley A carries pulleys B, C at its ends. 
A second cord with one end fixed to the ground passes over B and 
carries 20 lb. at the other end ; and a third cord with an end fixed 
to the ground passes over C and has 30 lb. at the other end. All 
parts of the cords are vertical except where they go round the 
pulleys. Neglecting friction and the weights of the cords and 
pulleys find the accelerations of the weights and the tensions in 
the cords. (H.S.C.) 
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24. A bucket can be raised from a well by a counterpoise of mass mt 
in t seconds, and by a counterpoise of mass m,2 in nt seconds. Show 
that the mass of the bucket is the positive root of the equation 

nz 1 
•*2 + (mi - >»t)p-zrjx ~ = °- 

and that the depth of the well is 

W*y. 
where y is the positive root of the equation 

v2 + v- 
*2, o 
-(”* (H.S.C.) 

25. Draw a velocity-time graph for the case of a body moving in a 
straight line, at first with uniform acceleration, secondly with 
uniform*velocity, and finally with uniform retardation. 

A train of 180 tons starts from rest with an engine pull of 
3 tons and makes a run of 1 mile from one station to rest at the 
next. At the instant of maximum speed, the steam is shut off 
and the brakes are applied, producing an effective coefficient of 
friction ^. Prove that the time occupied is about 172 seconds, 
and that the maximum speed is about 42 m.p.h. (Frictional resist¬ 
ances, other than those due to the brakes, are neglected.) (H.O.) 

2b. A body of mass M is lifted vertically from rest by means of a con¬ 
stant lifting force, which acts from the beginning of the ascent till 
a certain time before the end, when it is relaxed, and the body is 
brought to rest by gravity at height b. The time taken is n seconds. 
Find the force required. (H.S.D.) 

27. A particle P of mass m rests on a rough horizontal table whose 
coefficient of friction is /t, and is attached to one end of a fine in- 
extensible string which passes over a smooth fixed pulley A at the 
edge of the table. Hie string then passes under a smooth movable 
pulley H of mass m and over a smooth fixed pulley C, the other end 
of the string being attached to a particle D of mass m which hangs 
vertically. All the portions of the string not in contact with a 
pulley are horizontal and vertical. Prove that if \i > jj, P will 
not move, and that if \x < 2, D will move with acceleration 

(3 - m)£ 
6 

(C.S.) 

28. A particle of mass 2 lb. is placed on the smooth face of an inclined 
plane of mass 7 lb. and slope 30°, which is free to slide on a smooth 
horizontal plane in a direction perpendicular to its edge. Show 
that if the system start from rest the particle will slide down a 
distance of 15 feet along the face of the plane in 1-25 seconds. 

(C.S.) 

29. A man of to stone and a weight of 8 stone are suspended by means 
of a light rope over a smooth pulley. If the man pull himself up 

g 
the rope so that his downward acceleration is jg, find the acceleration 

of the weight, and the acceleration of the man relative to the rope. 

30. A man of 12 stone lets himself down one portion of a light rope 
hanging over a smooth pulley with an acceleration of 2 ft./sec.* 
Find with what uniform acceleration a man of 8 stone must pull 
himself up by the other portion so that the rope may. remain at rest. 
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31. A smooth wedge, weighing 5 lb., can slide on a smooth horizontal 
plane. A weight of 1 lb. is placed on the sloping face of the wedge, 
1 foot from the bottom edge, and allowed to slide down. If the 
angle of the wedge is 30°, and if the weight and wedge start from 
rest, prove that the weight reaches the bottom of the slope in 
about | second. (Q.E.) 

32. A weightless string passes over a smooth, fixed pulley of mass 1 lb., 
and has attached to it at one end a mass of 12 lb., and at the other 
end a mass of 8 lb. ; the moment of inertia of the pulley about its 
axis can be neglected. Find the acceleration of the weights. 

If the pulley, instead of being fixed, is pulled vertically upwards 
by a force of 21 lb. wt., find the accelerations of the pulley and of 
the string relative to the pulley. (N.U.3) 

33. Particles of masses m and m' lie at rest one on each of two rough 
tables, whose edges are parallel; p, p' are the respective coefficients 
between the particles and the tables. The particles are connected 
by a fine string which hangs between the tables and carries a 
smooth pulley, of mass M, in the loop formed by the hanging parts, 
which are parallel and lie in a plane perpendicular to the edges of 
the tables between which they lie. The system being let go, all 
the parts begin to move. Prove that the tension (T) of the string 
is given by the equation 

r(I + JL + 4) =g( 2 + ,M + S)- 
\m m M) 

Prove that if pm r> /Tw', the motion as described cannot take 
place unless 

m' ~ urn 

(N.U.3) 

34. A smooth hemispherical bowl, of mass M, with centre C, lies rim 
downwards on a smooth table, and a particle, of mass m, is placed 
on it at a point A, whose angular distance from the vertex V of 
the bowl is a. Show that if a horizontal force of suitable magni¬ 
tude is applied to the bowl in the plane VC A, the particle will 
remain at rest relatively to the bowl as it moves. (N.U.3) 

35. A wheel of radius 4a is fastened to an axle of radius a. A weight 
of mass-w* is suspended by a rope fastened to the axle and coiled 
round it, and another weight of mass m2 is suspended by a rope 
fastened to the wheel and coiled round its rim in such a way that 
m% descends when mr rises, and vice versa. If the system is left 
to itself, prove that the upward acceleration of mx is 

- mx 

16W2 -f Wj 

and find the tensions in the ropes. The inertia of the wheel and 
axle may be neglected. (C.W.B.) 

36. A long string fixed at one end to the ceiling passes down under a 
pulley of mass m which it supports, then up over a fixed pulley 
also attached to the ceiling, and finally down to a weight of mass 
m' which is hanging freely. Assuming that the hanging portions of 
the string are all vertical, prove that the upward acceleration of 
the mass m' is 

2 (>n — 2tn')o 

m -|- 4m* ^ 
(C.W.B.) 



90 INTERMEDIATE MECHANICS 

37. A wedge of mass M is at rest on a smooth horizontal plane, and a 
particle of mass m is placed gently on its smooth inclined face and 
allowed to fall down this face. Prove that when the particle has 
descended a vertical distance h the wedge has moved through a 
horizontal distance 

nth cot a 

m + M ’ 

where a is the inclination of the face of the wedge to the horizontal. 
(C.W.B.) 

§ 84. Work. 

When a force moves its point of application it is said to do work, 
and tlie measure of the work is the product of the force and the 
distance through which the* point of application moves in the direc¬ 
tion of the force. 

Let a force F move its point of application from A to B (Fig. 54), 
where the distance AB = s. 

Then, if the force is in the direction AB the work done is Fs. 

If the direction of the force is along AC, inclined at an angle 8 to 
AB, the work done is F X the projection of AB on AC, 

— Fs cos 8. 

If the force is variable, the work done for an infinitely small dis¬ 

placement ds, in which the force may be, considered constant, is 
Fds (or F cos 8 ds). The total work done is the integral of Fds 

(or F cos 8 ds) taken between the initial and final values of s, i.e. 

§ 86. The absolute unit of work in the F.P.S. system is the 
work done by a poundal in moving its point of application through 

1 foot in the direction of the force. 
This unit of work is called a Foot-Poundal. 
The absolute unit of work in the C.G.S. system is the work 

done by a force of 1 dyne in moving its point of application through 

1 centimetre in the direction of the force. 
This unit is called an Erg. 

§ 86. The unit of work used by engineers is called a Foot-Pound, 

it is the work done by a force of 1 lb. weight in moving its point 
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of application through i foot in the direction of the force, or the 
work done in raising a weight of 1 lb. vertically through i foot. 

Since i lb. wt. =■= g poundals, 
i ft. lb. = g ft. poundals. 

§ 87. Power is the rate of doing work, i.e. the work done in 

unit time. 
The British unit of power is the Horse-Power, which is 550 ft. lb. 

per second, or 33,000 ft. lb. per minute. 
The C.G.S. unit of power is the Watt, which is io7 ergs (= 1 Joule) 

per second. 
One horse-power is equivalent to about 746 watts. 

If a force of F lb. wt. keeps its point of application moving in 
the direction of the force with uniform speed v feet per second, 

Fv 
the work done per second is Fv ft. lb. and the H.P. is -. 

550 
In the case of a train running at a speed of v feet per second, 

the work done by the engine per second is equal to the pull multi¬ 
plied by v, and the H.P. of the engine is obtained by dividing this 
product by 550. If the speed v is uniform, then the pull of the 

engine is equal to the resistance R due to friction, etc., and the H.P. is 

equal to-. 
4 550 

If the train is accelerating the work per second is not Rv, as 
work is also being done in accelerating the train. 

§88. Example (i). 

The total mass of an engine and train is 200 tons, what is the H.P. of 

the engine if it can just keep the train moving at a uniform speed of 60 
m.p.h. on the level, the resistances due to fricticm, etc., amounting to 10 lb. wt. 
per ton ? 

Since the speed is uniform, the pull of the engine is equal to the 
total resistance, i.e. 200 x 10 or 2000 lb. wt. 

and the 

60 m.p.h. = 88 ft./sec. 
.•. the work per second = 2000 x 88 ft. lb. 

H.P. = 
2000 x 88 

550 
320. 

Example (ii). 

What H.P. is required to take a train weighing 200 tons at a uniform 

speed of 30 m.p.h. up an incline of 1 in 100, the resistance due to friction, 

etc., being 10 lb. wt. per ton ? 

The resistance = 2000 lb. wt., the component of weight down the 
slope = 2 tons = 4480 lb. wt. Since the speed is constant, the pull 
of the engine must be equal to the resistance + the component of the 
weight, 
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.-. the pull - 2000 -|- 4480 — (>480 lb. wt., 

the work per second = 6480 x 44 ft. lb., 

6480 X 44 __0„ 

~550 “ 5,8s' 

, the H.P. 

Example (iii). 

An engine of 200 H.P. is taking a train of mass 150 tons up an incline 

of 1 in 250, and the resistance is 5 lb. wt. per ton mass. What is the maxi¬ 
mum uniform speed of the train in m.p.h. ? 

The maximum work per second which can be done by the engine is 

200 x 550 ft. lb. 
The resistance is 150 x 5 -- 750 lb. wt. 

The component of weight down the slope 

150 x 2240 

* —1*- lb- wt” 

m *344 lb. wt. 

At uniform speed v ft./sec. the pull of the engine must equal the 

resistance -f- component of weight, 

.*. the pull — 1344 -f 75° — 2094 lb. wt., 
and the work per second — 20941; ft. lb., 

.-. 20942; — 200 x 530, 

200 x 550 

2094 

200 x 550 x 60 

2094 x 88 

285 
35 —- m.p.h. 

349 ^ 

ft. /sec. 

m.p.h. 

§ 89. Work done by a Couple. 

Let the forces of the couple be each P and let the aim AB be of 

length p. Suppose AB to move to the position A'B', where the 
angle between AB and A'B' is the small angle 80. 

WV may suppose the motion of AB (Fig. 55) to take place in 
two stages. First, suppose the forces to move parallel to them¬ 
selves so that AB conies to the position A'C. The work done by 
the equal and opposite forces P during this displacement is zero. 

Now- suppose the forces to turn through the angle 8d about A'. 
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The force P at A' does no work as its point of application does not 
move. The displacement of the point of application of the other 
force P at C is phd, and the total work done is thus PpS0, i.e. the 
moment of the couple multiplied by the elementary angle turned through. 

If the moment of the couple M remains constant, the work in 
turning through an angle 6 is 

f *Md0 - MO. 
•1 0 

If the moment is variable the work is still 

\°Mdd. 
•' o 

§ 90. Transmission of Power by Belts. 

Suppose a belt passes round a pulley which it turns without any 
slipping, 

Let Tv T2 lb. wt. be the tensions in the portions of the belt 
which are receding from and approaching the pulley (Tl > 7\>). 

These tensions both act away from the pulley, and the total work 
done by them when the belt moves through any distance will be the 
product of the difference of the tensions and the distance. 

If r feet is the radius of the pulley, n the number of revolutions 
per second, then the distance moved by the belt in i second is 
277rn feet. * 

The work done per second by the belt is therefore 

27rrn(T1 — T2) ft. lb., 

and this is the amount of work transmitted per second. The H.P. 
transmitted is 

27rrn 

550 
(7, - Tt). 

Example. 

Power is transmitted from one shaft to another by means of a single 
belt running at 6o ft. /sec. If the tensions in the two straight parts of the 
belt are in the ratio 0/5:2, and if the greatest power that can be transmitted 
without breaking the belt is 20 H.P., what is the tension which will just 
break the belt? (I.S.) 

4* 
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The actual tension on the tighter side is the limiting tension. 
If Tlt T2 are the tensions on the two sides in lb. wt., the work per 
second is 

(Tl - T2)60 ft. lb., 

(1\ - Tt)60 = 20 X 550, 

. 3 T - 550 

' * 5 3 

.-. T1 = 2Zg°- ~ 3055 lb. wt. 

A tension slightly over this will break the belt. 

§91. Tension in an Elastic String. 

It is found by experiment that the tension of an elastic string 
varies as the extension of the string beyond its natural length. This 
fact was discovered by Hooke, and is embodied in what is usually 
known as Hooke’s Law. This may be stated as follows :— 

If l is the natural length of an elastic string, and /' the stretched 

length, then the tension T is given by 

r = ~(i' -1), 

where E is a constant depending on the thickness and material of 
the string. E is usually called the Modulus of Elasticity of the String, 

and is often denoted by A. 
It is obvious that E is the tension required to stretch the string 

to double its natural length. 
Young’s Modulus is the value of E for a string of unit area cross- 

section. 

§ 92. Work done in Stretching an Elastic String. 

Let E be the modulus and l the natural length, then for an 
extension x, 

r = 

the work done in stretching the string through a further distance 
dx, so small that T may be supposed constant throughout dx, is 

E 
Tdx or -jxdx. 

Hence the work done in increasing the extension from x1 to x2 is 

C**E 
xdx 

r*i iU. 
_E x 22 

'2~]z2 
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Now ~r.r9 is the final tension, and is the initial tension, 
l 2 / 1 

£ *2 + *i 

l 2 

is the mean of the initial and final tensions. 
Also (x2 %) is the extension produced. 
Hence the work done is the product of the mean of the initial and 

final tensions and the extension. 

Example. 

An elastic string, of natural length 2 feet, is stretched i inch by a 
weight of i lb. hanging on it. Find the work done in stretching it from a 
length of i\ feet to 3 feet. 

The fact that 1 lb. wt. stretches the string 1 inch enables us to 

find E, 

for 1 = — . E — 24 lb. wt. 
2 12 

The tension for an extension of 6 inches is, 

7\ = - . 1 = 6 lb. wt. 
2 2 

The tension for an extension of 12 inches is, 

T% — ?. 1 = 12 lb. wt. 
2 

the mean of the initial and final tensions is 

T' ± T* = q lb. wt., 
2 

and the extension is 6 inches or J foot, 

the work done = 9 X J = 4J ft. lb. 

Note.—Care must be taken in using Hooke's Law to keep all length 

measurements in the same units, e.g. in the above example 1 inch 

must be brought to feet. 

§93. Energy. 

The energy of a body is its capacity for doing work. Since the 
energy of a body is measured by the work it can do, the units of 

energy will be the same as those of work. 
A body may possess energy owing to a variety of causes, e.g. 

heat and electricity are forms of energy, which can be converted 
into mechanical work. In dynamics, however, we are only con¬ 

cerned with purely mechanical energy which may be of two kinds, 
Kinetic or Potential. 

§ 94. The Kinetic Energy of a body is the energy it possesses in 
virtue of its motion, and is measured by the amount of work which it 

does in coming to rest. 
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Consider a particle of mass m moving with velocity v, and sup¬ 
pose it is brought to rest by a constant force P which produces in it 
a retardation /, then P — tnf. 

Let x be the space described by the particle before it comes to 
rest, then 

o =5= v2 — 2fx, 

f* = 

Now the work done by the particle is Px, = mfx, 

the work done = 
the kinetic energy of the body = \mv2. 

It should be noticed that \mv2 gives the kinetic energy in absolute 

units, e.g. ft./pdls. or ergs. 

§ 96. The Potential Energy of a body is the work it can do in 
moving from its actual position to some standard position. 

Examples of potential energy are : the energy of a weight above 

the ground (the standard position being the surface of the earth), 
compressed air (the standard position being the volume it would 
occupy at atmospheric pressure), a bent or compressed spring (the 
standard position being its natural shape). 

§ 96. A particle of mass m falls from rest at a height h> above the 
ground. Show that the sum of its potential and kinetic energy is 

constant throughout the motion. 
The potential energy at height h is the work the particle can do 

in falling to the ground, and this is equal to the work done in raising 
it to height h, viz. mgh absolute units. 

Let v be the velocity of the particle when it has fallen through 
a distance x to a point P, 
then v2 = 2gx. 

Its kinetic energy at P — \mv2 = mgx. 
Its potential energy at P = mg(h — x), 

the sum of its kinetic and potential energies at P is 

mgx + mgh — mgx = mgh. 

On reaching the ground the velocity V. is given by 

F* = 2ght 

the kinetic energy = \m Fa = mght 
= potential energy at height h. 

Hence, on reaching the ground, all the potential energy has been 
transformed into kinetic energy. 

§ 97. The example in the last paragraph is a simple illustration 
of the principle of the Conservation of Energy. In its most general 
form this principle states that— 
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The total amount of energy in the universe is constant, energy 
cannot he created or destroyed, although it may he converted into various 
forms, e.g. heat, light, sound. 

In the example of the last paragraph, when the particle hits the 
ground it apparently loses all its energy. Actually the kinetic 
energy has been converted into other forms of energy, mainly heat. 

Similarly, when a body is projected along a rough horizontal 
surface which reduces it to rest, its kinetic energy is gradually 
transformed into heat. In dynamics we are not concerned With 
the energy once it has been transformed, but it must be remem¬ 
bered very carefully that in all cases where there are sudden jerks 
or impacts in a system, or where there is motion against friction of 
any kind, some mechanical energy is always apparently lost; it is 
actually converted to other forms. 

If we exclude forces of this nature which cause conversion of 
energy to other forms, and consider a system of bodies acted on 
only by forces (such as gravity) which depend only on the positions 
of the various parts of the system and not on their motion, we can 
use a restricted form of the general principle applicable to mechanical 
energy alone (i.e. apart from other forms), and often called the 
Principle of Energy. 

In the case of forces such as gravity the work done in bringing 
a system from one position to another depends only on the initial 

and final positions and not on the manner in which the transition 
is made. Such forces are called Conservative, and the principle of 
energy so often used in dynamical problems may be stated as 
follows : 

If a system of bodies in motion he under the action of a conservative 
system of forces, the sum of the kinetic and potential energies of the 
bodies is constant. 

In most cases dealt with in dynamics the conservative system 
of force is that due to gravity. Other examples of conservative 
forces are (i) the attraction between two particles which is a function 

of their distance apart, (ii) any force which acts towards a fixed 
point, and is a definite function of the distance from that point. 

§ 98. The principle of energy is most commonly used when 
considering motion under gravity; it tells us that, in the absence of 
friction and impacts, for any loss in kinetic energy there must be an 
equal gain in potential energy and vice versa. 

Thus, for a body sliding down a smooth inclined plane the 
kinetic energy acquired is equal to the loss of potential energy, and 
depends only on the vertical distance descended. 

The kinetic energy, and therefore the velocity, acquired in sliding 

down the plane is the same as that acquired by falling vertically 
through the height of the plane. 



98 INTERMEDIATE MECHANICS 

If a ring threaded on a smooth vertical circle is projected up from 
the lowest point, the velocity at any point depends only on the 
vertical height of that point above the bottom of the circle. Simi¬ 
larly, for a particle sliding down any smooth curve ; the velocity at 
the bottom depends only on the vertical height descended. 

Great care must be taken never to use this principle in problems 
where there is any friction, or any sudden jerk or impact. In such 
cases energy is nearly always converted. 

§ 99. Example (i). 

A tramcar weighing 5 tons runs freely down an incline of 1 in 40, with 

a constant speed of 12 m.p.h. What horse-power is required to drive it at 
the same speed up the same incline, the frictional resistance being the same 

in each case ? (l.E.) 

Since the car runs down the incline with constant speed, the frictional 

resistance must equal the weight component, i.e. 

1 2240 „ 
g ton wt., or —g— — 280 lb. wt. 

In going up the incline, the total force to be overcome is therefore 

280 -j- 280 = 560 lb. wt., and this must be the tractive force. 

12 m.p.h. = Y ft./sec*> 

560 x 88 
the work per second = --- — 112 x 88 ft. lb., 

, 112 x 88 
.*. the H.P. required —-— = 17*92. 

Example (ii). 

A man is cycling at 10 m.p.h. up a slope of 1 in 30. If the man and 

machine weigh 180 lb., and frictional resistances are equivalent to 2 lb. wt., 

find the rate, in horse-power, at which the man is working. Assuming 

that the man exerts a constant vertical pressure on each pedal in its down¬ 

ward path, find this pressure when the cranks are 6£ inches long and the 

gear is 72 inches. (I.E.) 
The component of weight down the slope is 6 lb. wt.. 

.*. the total force overcome — 6 -f- 2 = 8 lb. wt., 

the work per second 

.-. the H.P. 

8 X 88 
ft. lb., 

16 

& X 550 ^ 75' 

6 

8 x 88 

The gear being 72 inches means that for each revolution of the 

crank the bicycle moves forward a distance 72n inches. 
The external work done in one revolution — 8 x On ~ 4877 ft. lb. 

In one revolution the man exerts a pressure P through a distance of 

4 x 6£ inches ft., 

.*. the work he does = Y P ft. lb,, 

... \£>P = 487r. 

•. P = 
6 x 48 x 22 

69*6 lb. wt. 
13 X 7 
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Example (iii). 

A mass of 12 lb. is attached to one end of an elastic string of natural 

length 4 feet, whose other end is fixed at a point A. The modulus of the 

string is such that the 12 lb. mass hanging vertically would stretch the 

string 6 inches. The mass is held at A and allowed to fall vertically. 
How far below A will it come to rest ? 

Since 12 lb. wt. stretches the string 6 inches or £ foot, 

12 g = 
E 

4 
or E — 96g poundals. 

When the mass has fallen 4 feet its velocity is V2g x 4 = 16 ft./sec., 

and its kinetic energy is $ . 12 x 162 ft. poundals. 

The mass now begins to stretch the string, and the extension will 

go on until the work done in stretching is equal to the loss of kinetic 

and potential energy of the 12 lb. mass. 

If the extension produced when the mass comes to rest is x feet, 
E 

the final tension is — . x poundals, and the initial tension is zero. Hence 

the work done in stretching 

E 
= gX2 ft. poundals 

9 6g 
x* = 12gx2 ft. poundals. 

The loss of kinetic energy of the mass is 6 X i6a poundals, and the 

loss of potential energy of the mass is 12 gx ft. poundals. 

.-. 12gx* — 6 x 162 -f 12gx, 

12X* = 48 4* I2X, 

x2 — x — 4 — o, 

1 4- Vi + 16 

2 
2-56 ft. 

Hence the distance below A at which the mass comes to rest is 

6*56 feet. 

Note (i).—It is important to remember that as the mass descends 

and stretches the string it loses both kinetic and potential energy. In 

solving the quadratic for x, the root with the negative sign in front of 

the radical can be ignored as it would be negative. 

Note (ii).—After the mass comes to rest the string will contract 

and pull it up again, and, assuming that no energy is dissipated in the 

stretching, when it reaches the point 4 feet below A it will have the 

same velocity as it had when going down, and this will be just sufficient 

to take it up to A again. 

§ 100. In problems where a mass loses velocity owing to the 
action of a retarding force, e.g. a bullet passing through a plank, 

or a train being pulled up by its brakes, we can obtain a measure 

of the retarding force in two ways :— 



100 INTERMEDIATE MECHANICS 

(1) If we know the time during which the force acts, and the 
initial and final velocities u and v of the mass m, then if F is the 

average force, 
Ft = m(u — v). 

(2) If we know the distance s travelled during the retardation 

we can obtain the average force by equating the work done to the 

loss of kinetic energy, 
Fs =* im(u2 - v2). 

It must be clearly understood that the measure of the force thus 
obtained is an average value. In the first case it is a time average, 
and in the second a space average. 

If the force is constant the two methods will give the same 

value, but if the force is not constant the values will be different. 
For if 

m(u2 — v2) __ m(u — v) 

2s ~~ t ’ 

U + v __ 5 
2 “ V 

i.e. the average velocity (^j is equal to the means of the initial and 

final velocities. Now, this is not necessarily the case unless the 
acceleration is constant, i.e. unless the force is constant. 

EXAMPLES XIV. 

1. A vessel of 30,000 tons, whose engines are of 30,000 H.P., is steaming 
at the rate of 15 m.p.h. Find the resistance per ton of the vessel’s 
mass. (I.S.) 

2. A motor car, of total weight 30 cwt., is running on a level road at a 
uniform speed of 30 m.p.h. On reaching a hill, which descends at 
a uniform gradient of 1 in 20, it is allowed to free-wheel, and the 
speed is observed to remain the same as before. Calculate the resis¬ 
tance of the road, and the horse-power exerted on the level. (I.S.) 

3. A train whose mass is 250 tons runs up an incline of 1 in 200 at a 
uniform rate of 20 m.p.h., the resistance due to friction, etc., is 
equal to the weight of 3 tons. At what horse-power is the engine 
working ? (I.S.) 

4. A train of mass 100 tons acquires uniformly a speed of 30 m.p.h. 
from rest in 400 yards. Assuming a resistance of 7 lb. wt. per 
ton mass of the train, find the tension in the coupling between 
the engine and the train, and the maximum horse-power at which 
the engine is working during the 400 yards run. The mass of 
the engine may be neglected. (I.S.) 

5. A locomotive of 896 H.P. and weight 90 tons is dragging a train of 
weight 120 tons up a slope of 1 in 84. The frictional resistances 
amount to 80 lb. wt. per ton. Find the maximum uniform speed 
at which the train can travel up the incline, (I.S.) 
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6. A train of total mass 250 tons is drawn by an engine working at 
560 H.P. If at a certain instant the total resistance is 16 lb. wt. 
per ton, and the speed is 30 m.p.h., what is the train's acceleration 
measured in m.p.h. per second ? (I.S.) 

7. A load of 3 tons is being hauled by a rope up a railway line which 
rises 1 in 140. There is a retarding force, due to friction, etc., of 
50 lb. wt. per ton of load. At a certain instant the speed is 10 
m.p.h. and the acceleration is 2 ft./sec.2 Find the pull in the rope, 
and the horse-power exerted at that instant. (I.A.) 

8. A motor car of mass 2 tons arrives at the bottom of a hill half a 
mile long, which rises 1 in 112, with a speed of 20 m.p.h., and 
reaches the top of the hill with a speed of 10 m.p.h. If there is a 
retarding force, due to friction, of xo lb. wt., calculate the number 
of foot-pounds of work done by the engine in getting the car up 
the hill. (I.A.) 

9. Find the ratio of (i) the momenta, (ii) the kinetic energies, of a 
mass of 8 oz. moving at i£ miles a minute, and a mass of 10 
kilograms moving at 2 metres per second. (1 lb. — 454 gm., 
1 ft. = 30-5 cm.) (I.A.) 

10. A car weighing 2\ tons is accelerating at 2 ft./sec.2 up an incline 
of 1 in 50, the resistance being 30 lb. wt. per ton. Find the horse¬ 
power exerted when the speed is 20 m.p.h. (I.S.) 

11. A man with his bicycle weigns 200 lb. He begins to ascend an 
incline of 1 in 10, with a speed of 25 m.p.h., and with uniform 
retardation. He has to dismount when his speed is not greater 
than 5 m.p.h. If he works at an average of 1\> H.P., how far will 
he ascend ? How far would he have ascended if he had not worked 
at all ? (I.E.) 

12. A particle is set moving with kinetic energy E straight up a rough 
inclined plane, of inclination a and coefficient of friction /*. Prove 
that the work done against friction before the particle comes to 
rest is 

En cos a 

sin a + /x cos a 

What is the condition that the particle, once reduced to rest, 
shall remain at rest ? (I.S.) 

13. Express in ft. lb. the kinetic energy of 5 cwt. moving at 6 m.p.h. 
A mass of 10 tons is drawn up a slope of 1 in 96 against a resistance 
of 125 lb. wt. If 43 H.P. is used, find the greatest speed that the 
mass can have. (I.A.) 

14. Find the uniform force that will move a 1 lb. mass from rest through 
1 foot in 1 second. If this force is exerted while the mass moves 
through 100 yards from rest, find the number of ft. lb. of work 
done by the force and the maximum horse-power attained. (I.A.) 

15. A train is running at 30 m.p.h. when it is at a distance of £ mile 
from a station. Steam is then shut off and the train runs against 
a uniform resistance equal to 1J0 of the weight of the train. If the 
uniform brake force that can be exerted on the train provides a 
resistance equal to X of the weight of the train in addition to the 
above resistance, find how far from the station the brake must be 
applied so that the train may be brought to rest at the station. 

(LA.) 
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16. Calculate the number of ft. lb. of energy which are required to 
raise a 16 lb. shot to a height of 7 feet, and then project it with an 
initial velocity of 36 feet per second. What is the horse-power 
required for a motor car, which weighs 3000 lb. and can travel at 
30 m.p.h., against an air resistance equal to of its own weight ? 

(I.A.) 

17. A man lifts a stone weighing 12 02. from the ground to a height of 
5 feet 8 inches, and then throws it away horizontally with a velocity 
of 20 ft./sec. How many ft. lb. of work has to be done on the 
stone ? If the man does this twenty times a minute, find the 
average rate in horse-power at which he is working, neglecting the 
work he does in moving himself. (l.A.) 

18. Express 1 II.P. in (<a) gravitational, (6) absolute units, when the 
units of mass, length, and time are 1 ton, 1 mile, and 1 hour respec¬ 
tively. A motor car engine, working at a uniform rate of 7-5 H.P., 
can drive a car at a uniform speed of 18 m.p.h. against a uniform 
resistance. The car weighs 30 cwt. At what speed will the 
engine drive the car up a slope of 1 in 10, if it works at the same 
power and meets the same resistance ? (l.S.) 

19. A man and his cycle are of total mass ni ; he can work at a uniform 
horse-power of Ii ; his least speed consistent with remaining on his 
machine is V. What is the inclination of the steepest hill he can 
ascend at a constant speed, assuming that there is a constant 
frictional resistance R to be overcome ? What is the average 
pressure on his pedal at right angles to the crank if the gear multi¬ 
plication is n ? Find numerical results if mm 150 lb., V ----- 4 m.p.h., 
H - A, R m 5 lb. wt., n 10. (I.S.) 

20. A bicycle is geared up to 70 inches, and the length of the pedal 
cranks is 6 inches. Calculate the velocity of the pedal (a) at its 
highest point, (b) at its lowest point, when the bicycle is going at 
10 m.p.h. If the bicycle and rider weigh 160 lb., find the pressure 
on the pedals in climbing a hill of 1 in 50. (I.E.) 

21. An engine draws a train of weight 230 tons along a level track at 
a speed of 35 m.p.h. against resistances which may be taken at 
12 lb. wt. per ton. Find the horse-power necessary to draw the 
train at the same speed up an incline of 1 in 160. (I.S.) 

22. f ind the horse-power required to enable a 200-ton train to travel 
up a slope of 1 in 80 at 30 m.p.h., frictional resistances being 20 lb. 
per ton. What is the maximum speed (in m.p.h.) which it could 
maintain on the level ? (Ex.) 

23. An engine draws a load weighing half a ton out of a pit 300 feet 
deep by means of a rope which cannot bear safely a load greater 
than three-quarters of a ton. Find the least time required to raise 
the load to rest at the surface, and the greatest horse-power exerted 
by the engine. (Ex.) 

24. The weight of an engine and train is 250 tons ; what is the least 
horse-power of the engine if it is capable of increasing the speed 
of the train from 20 m.p.h. to 50 m.p.h. in a distance of half a mile 
on the level ? The total resisting force is 14 lb. wt. per ton, and 
the pull of the engine is assumed to be constant. (H.S.C.) 

25. f ind the horse-power of an engine which pulls a train of 150 tons 
at a speed of 40 m.p.h. on the level, the resistance due to friction 
being 16 lb. per ton. Also find the maximum speed at which the 
engine could draw the train up a slope of 1 in 200. (H.S.D.) 
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26. A train, of weight 250 tons, meets with a constant frictional and 
air resistance of 16 lb. per ton of its weight. When the engine 
is doing 600 H.P. on the level and the train is running at 25 m.p.h., 
what is the acceleration of the train ? What would be the greatest 
possible speed for the train at this rate of working, if the resist¬ 
ances did not alter ? (H.S.D.) 

27. A train travelling uniformly on the level at 60 m.p.h. begins an 
ascent of 1 in 50. The tractive force due to adhesion has a maxi¬ 
mum value of 3 tons, the resistances due to friction, etc., are 30 
cwt., and the weight of the whole train is 200 tons. Show that it 
cannot surmount the incline if this exceeds y miles in length, and 
find the horse-power exerted by the engine, (i) just before beginning 
the ascent, (ii) just after. (I.S.j 

28. Assuming that the frictional and other resistances to the motion 
of a train on the level are 10 lb. wt. per ton in a route which ascends 
660 feet in 10 miles, and then descends through the same height 
in the same distance ; show that if a detour on the level, avoiding 
the incline, would not exceed in total distance 38 miles there would 
be economy in running, supposing that in descent steam is shut off. 

(l.E.) 

29. A force ccpial to the weight of 5 lb. acts on a mass of 30 lb., origin¬ 
ally at rest, for 10 seconds. Find, in feet, the distance travelled 
by the mass, and in ft. lb. the kinetic energy generated in it. (H.C.) 

30. Find the horse-power required to pump 500 gallons of water per 
minute from a depth of 100 feet, the water being delivered through 
a circular pipe 3 inches in diameter. (Assume that 1 cubic foot of 
water is 6J gallons, and that 1 gallon of water weighs 10 lb., and 
neglect friction.) (H.C.) 

31. Find the horse-powder of an engine which can fill a cistern 200 feet 
above the level of a river, with 30,000 gallons of water in 24 hours ; 
assuming that a gallon of water weighs 10 lb., and that only two- 
thirds of the work actually done by the engine is available for 
raising the water. (H.C.) 

32. An engine is raising water from a depth of 55 feet and discharging 
16 gallons a second with a velocity of 44 feet per second. Taking 
the weight of a gallon of water to be 10 lb., find separately in 
ft. lb. the potential energy and the kinetic energy of the w ater dis¬ 
charged per second, and find the horse-powTer at which the engine 
is working. (H.C.) 

33. Calculate the horse-power of an engine which can pull a train of 
400 tons up an incline of 1 in 100 at a uniform speed of 40 m.p.h. 
against a track resistance of 9 lb. wt. per ton. (H.S.D.) 

34. The horse-power developed by a locomotive going at 25 m.p.h. is 
20, the weight is 40 tons, and the resistance 7 lb. per ton ; if the 
acceleration be constant, find the tractive force, the time taken, 
and the distance gone from rest. The maximum horse-power that 
can be developed being 35, find the greatest distance that can be 
gone in 3 hours from rest. (I.E.) 

35. A train of mass 300 tons is ascending a slope of 1 in 120 with an 
acceleration of 0-5 ft./sec.2 At a speed of 15 m.p.h. the horse¬ 
power developed is 1225. Find the magnitude of the resistances, 
apart from gravity, acting on the train. (H.S.C.) 

36. If a body move in a straight line under the action of a constant 
force, prove that the increase in the kinetic energy of the body 
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during any interval is equal to the work done by the force. A lift 
weighing 5 cwt. rises from rest through a height of 50 feet in 
5 seconds, with a uniform acceleration. Find the average horse¬ 
power exerted during this time. (H.S.D.) 

37. A motor car weighing a ton is travelling on the level at 20 m.p.h. 
Coming to a slope of 1 in 20 the car is allowed to free-wheel, and 
runs down the slope at this same uniform speed. At what horse¬ 
power was its engine working on the level ? (H.S.D.) 

38. A motor lorry weighing 2 tons runs down an incline of 1 in 200 with 
a uniform velocity of 15 m.p.h., the engine being cut off. What is 
the resistance of the road in lb. wt. per ton ? What horse-power 
would the engine require to maintain the same speed on the level ? 

(H.S.C.) 

Express an acceleration of 15 m.p.h. per minute, in feet per second 
per second. Find the force which would produce this acceleration 
in a 160-ton train on the level, neglecting frictional resistance, and 
find the final horse-power needed to continue this acceleration for 
4 minutes from rest. (H.S.C.) 

40. Find the horse-power required to draw a train of 200 tons on the 
^ level at 50 m.p.h. if the resistance is 10 lb. wt. per ton. A train 

is drawn on the level at a certain constant speed by using horse¬ 
power H ; if H' is the horse-power required to draw the train at 
the same speed up an incline of 1 in 100, the resistance being 
10 lb. wt. per ton in each case, show that H' = 3*24 H. (H.S.D.) 

41. An engine of 748 h.p. is taking a train of 200 tons total weight up 
a slope of 1 in 100, road resistances being 15 lb. per ton. Find 
the greatest steady speed in m.p.h. which can be maintained. 

(H.S.C.) 

42. Find the horse-power required to pump 1000 gallons of water per 
^ minute from a depth of 50 feet and deliver it through a pipe of 

6 square inches cross-section. (Assume that 1 cubic foot of water 
is 6£ gallons, and that a gallon of water weighs 10 lb., and neglect 
the effects of friction.) (H.S.C.) 

43.' A particle is projected with velocity V up a line of greatest slope 
of a rough inclined plane of a0 slope, the angle of friction being 
A° (A less than a). Show that it reaches the point of projection 
again with a velocity 

V V sin (a — A) cosec (a + *)» 

after a time, 

j cos A £cosec (« + A) + V cosec (a + A) cosec(a — A) J. 

K4. What must be the horse-power of an engine which is to fill a reser- 
^ voir 500 yards long and 300 yards wide to a depth of 11 feet by 

pumping water from a river a mile away and 500 feet lower in 
level, in fifteen days working day and night. (1 cubic foot of water 
weighs 62*5 lb.) (I.S.) 

45. Express the weight of a pound in dynes, supposing that 1 lb. — 453'6 
gm., 1 metre = 39*37 inches, and g — 32*2 ft. sec. units. 

Find the horse-power of an engine that can pull a train of 300 
tons up an incline of 1 in 200 at a steady rate of 45 m.p.h., the 
resistance to motion being 12 lb. wt. per ton. (I.S.) 
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46. 

47- 

48. 

40- 

An engine of horse-power 550 and weight 40 tons pulls a train of 
280 tons against a resistance of 14 lb. wt. per ton. Find the 
maximum speed on the level. Find also the maximum speed up 
an incline of 1 in 156 ; and calculate what is the slope of the 
incline down which the train can run at constant speed without 
the use of steam or brakes. (H.S.D.) 

Two engines of weights 50 tons and 40 tons and of horse-powers 
600 and 500, respectively, pull a train of weight 460 tons against 
a resistance of 12 lb. wt. per ton, the heavier engine being in front, 
hind the maximum speed on the level, and the tension in the 
coupling between the two engines when this speed is attained. 

(H.S.D.) 

A car weighing 3 tons will just run down a slope of 1 in 20 under 
its own weight. Assuming that the forces resisting its motion 
remain constant, and that the engine exerts a constant tractive 
force, find to the nearest unit the horse-power of its engine if it 
can attain a velocity of 30 m.p.h. in 4 minutes on the level. (C.S.) 

A 20 H.P. motor lorry, weighing 5 tons, including load, moves up 
a hill with a slope of 1 in 20. The frictional resistance is equivalent 
to 13 lb. wt. per ton, and may be supposed independent of the 
velocity. Find the maximum steady rate at which the lorry can 
move up the slope, and the acceleration capable of being developed 
when it is moving at 6 m.p.h. (C.S.) 

A particle is projected with velocity V directly up a rough plane 
of inclination a. Show that when it again has velocity V it will 
be at a distance 

V2 cos a sin 2A 

g * cos 2A — cos 2a 

from the point of projection, A being the angle of friction which is 
less than a. (H.S.D.) 

51. An engine in 7 seconds has raised a load of 1 ton through a height 
of 3 feet, and has communicated to it a speed of 10 ft./sec. At 
what average horse-power has it been working ? (H.C.) 

52. A dock 600 feet long and 120 feet wide, with a depth of water 36 
feet, has to be pumped dry in 6 hours, all the water being lifted 
to a level of 2 feet above the original water level in the dock. If 
the useful horse-power exerted by the pumping engines is con¬ 
stant, calculate what it must amount to, and show that it takes 
1} hours to empty the last 6 foot of water in the dock. (Q.E.) 

53. A car weighing 1 ton has climbed a height of 100 feet in going 
1 mile ; it started from rest and is proceeding at 40 m.p.h. at 
the end. The frictional resistance of the road is 50 lb. wt. What 
is the ratio of the gains of kinetic and potential energy, what 
fraction of the total work done is stored, and what is the average 
horse-power exerted if the climb took 3 minutes ? (Q.E.) 

54. A car weighing 7 tons moves from rest along a horizontal track 
under a uniform tractive force on the wheels, the horse-power 
after 1 minute being 20. How long will the car take to acquire a 
velocity of 15 m.p.h., and what will be the horse-power at that 
moment ? (Q.E.) 

55. A car weighing 2 tons is accelerating at ij ft./sec.* up a 10 per cent, 
gradient, the resistance being 35 lb. per ton. When the car is 
running at 25 m.p.h. what is the horse-power ? (Q.E.) 
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56. A jet of water issues from a pipe, of cross-section equal to 5 square 
inches, at the rate of 400 gallons per minute. If the whole of its 
energy could be used, show that it would be doing work at the 
rate of i*8 H.P. nearly, given that a gallon of water weighs 10 lb., 
and that its volume is 277J cubic inches. (I S.) 

57. A belt is 6 inches wide and J inch thick, and the diameter of the 
pulley is 3 feet, the safe stress for the belt is 1000 lb. per square 
inch, and it runs at 12 ft./sec. ; find the maximum horse-power 
that can be transmitted to the pulley when the approaching part 
of the belt is quite slack. Determine the angular speed of the 
pulley, and the torque or moment transmitted to it. (I.E.) 

58. A pulley j£ feet in diameter receives 10 H.P. when revolving 180 
times per minute, and the tension of the belt on the tight side is 
i\ times that on the slack side. Find the tension on the tight 
side, and the width of the belt required if its thickness is £ inch, 
and the greatest tension it can support is 330 lb. per square inch 
of cross-section. (H.S.C.) 

59- An engine erf Af tons, working at horse-power H, draws n carriages, 
each of mass M' tons, at a uniform rate of v m.p.h. Assuming the 
resistance on the engine and on each carriage to be proportional 
to the weight, prove that the tension of the coupling between the 
engine and the nearest carriage is equal to 

75 HnM' 

448 (M+nWjv tonS‘ 
(I.C.) 

60. A weight of 4 kilos will compress a spring through 2*5 cm. A 
model truck, weighing 250 gm., runs into the spring, used as a 
butler, with a velocity of 90 cm./sec. How far will the spring be 
compressed before the truck is brought to rest ? (H.C.) 

61. A mass of 160 lb. is attached to one end of a light rope, the other 
end of which is made fast at a point A. The rope is elastic, obeying 
Hooke’s law , and its breaking tension is 2000 lb. wt. If the rope 
does not break when the mass is dropped freely from A, prove that 
the elongation of the rope under its breaking tension must exceed 
19 per cent. (C.S.) 

62. A truck weighing 1000 lb. is hauled up a slope of 1 in 20 measured 
along the slope. The truck starts from rest. The acceleration is 
uniform and the velocity after 10 seconds is 15 ft./sec. Prove that 
the pull on the truck is about 97 lb. wt., and draw the graph 
showing the rate of working in horse-power in terms of the time. 

(Q.E.) 
63. Two men exerting together a force of 90 lb. wt. put a railway 

wagon into motion. The wagon weighs 6 tons, and the resist¬ 
ance to motion is 10 lb. per ton. How far does the wagon advance 
in 1 minute ; and at what rate, in horse-power, are the men working 
at the end of the minute ? If the men can at most do work at the 
rate of o-8 H.P., at what constant speed can they keep the wagon 
moving ? (Q.E.) 

64. Three equal weights are attached to the middle and ends of a light 
cord which is placed over two smooth pulleys at the same level, 
so that the central weight hangs symmetrically between the pulleys 
and the others hang vertically. If the central weight is pulled 
down until its connecting cord makes angles of 50° with the hori- 
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zontal, and is then let go, find what the angles will be when next 
the weights come to momentary rest. (H.S.C.) 

65. A car of weight 10 tons is ascending an incline of 1 in 25, the fric¬ 
tional and other resistances being 17 lb. wt. per ton. If the 
maximum speed is 15 m.p.h., find the horse-power of the engine. 

Calculate the maximum speed on the level with the same resist¬ 
ances. (N.U.3) 

66. Determine the relation between the power exerted on a body and 
its velocity and acceleration, using lb. w't., ft., sec., units. 

A body which weighs W lb. is subject to a constant resistance 
0*1 W lb. wt., and is moving down a slope of 1 in 20 under a con¬ 
stant tractive power kW. ft. lb. per second. By considering the 
power used, prove that when the speed is 10 k ft./sec., the 
acceleration is about i*6 ft./sec.2 (N.U.3) 

67. Define work and average power. State the relation between the 
work done by the forces acting on a body for any interval and the 
kinetic energy of the body at the beginning and at the end of the 
interval. 

A car weighing 20,000 lb. is moving with constant acceleration, 
anti its speed increases from 15 to 20 ft./sec. in 50 seconds. Find 
the average horse-power used to produce this acceleration. 

(N.U.3) 

68. Find the rate at which work is being done by a couple of moment G 
acting on and in the plane of a lamina rotating with angular 
velocity a> about a fixed point in it. 

A 10 H.P. electric motor is getting up speed from rest against 
a resisting couple whose moment is 320 poundal-feet. bind the 
maximum angular velocity of the rotating part and the time taken 
to attain it, if the acceleration is constant and equal to 40 radians 
per second per second. (N.U.3) 

69. An aeroplane propeller is performing 1800 R.P.M. when the engine 
of 200 H.P. is exerting its full power. What is the magnitude of 
the couple exerted by the engine on the shaft of the propeller ? 

(N.U.3) 

70. A train of 375 tons is being drawn up an incline of 1 in 168 with a 
uniform acceleration of | ft./sec.2 by two engines, each weighing 
75 tons. If the frictional resistance is 16 lb. wt. per ton, and both 
engines are working at the same rate, show that when the speed 
of the train is 30 m.p.h., each engine is working at 983 £ H.P. 

Also find the pulls in the couplings (i) between the second engine 
and the train, (ii) between the engines. 

[Note.—The slope of the track is sin-1 - l ake g m- 32.] 
(N.U.3) 

71. The engine of a goods train weighs 80 tons, and it is working at 
500 H.P. while drawing at 20 m.p.h. a train of forty trucks, each 
weighing 13 tons. If the resistance to the motion of the engine 
and each truck is proportional to its weight, find the tension in 
the coupling between the engine and the first truck. 

If the coupling between the thirtieth and thirty-first trucks 
breaks, show' that if the engine continues to work at the same 
rate the front portion of the train will have an acceleration which 
continually decreases, and find the greatest speed which it can 
attain. (N.U.4) 
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72. An engine working at 600 H.P. pulls a train of 250 tons along a 
level track, the resistances to the motion amounting to 16 lb. wt. 
per ton. What is the acceleration of the train when its velocity 
is 30 m.p.h. ? 

At what steady speed, with the same horse-power, can the 
train travel up an incline of 1 in xoo against the same resistances ? 

(C.W.B.) 

§ 101. Force-space Curve. 

This curve is obtained by plotting the distance 5 moved by the 
point of application of the force along an axis OX, and the values 
of the force for different values of s parallel to a perpendicular 
axis OY. 

Let APB (Fig. 57) be a curve obtained in this way. 
The area of a strip PQ of breadth ds is PQds, or Fds, where F 

is the value of the force when s = OQ. 

Now the work done by the force is taken between the 

initial and final values of s. 
If OM — sv ON == s2, the work done between these limits is 

['Fds, 
J 8l 

but this is the area under the curve APB. 

Hence the area under the force-space curve gives the work done 
by the force. 

We have assumed here that the curve AB is traced in the direction 

from A to R, i.e. that s is increasing. If it is traced in the opposite 
direction, so that s is decreasing, the work given by the areas 
ABNM is done against the force (by other forces), and we must then 
reckon it as negative work as far as the force F is concerned. 

§ 102. Suppose the force-space curve is closed, as in Fig. 58, 
and traced in the direction shown by the arrows. 

Starting from A, the upper portion of the curve APB represents 

the magnitude of the force as its point of application moves in the 
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Fig. 58. 

direction of the force a distance represented by MN ; and the area 
APBNM represents the positive or useful work done by the force. 

The lower portion of the curve BQA represents the magnitude of 
the force as its point of application is being pushed back through 
the distance represented by MN ; the area AQBNM represents 
the work done against the force. 

The total positive or useful work done by the force while its 
point of application has moved from M to N and back is represented 
by the difference between the areas APBNM and AQBNM, i.e. by 

the &rea of the closed curve APBQ. 

§ 108. Indicator Diagrams. 

To obtain a measure of the amount of work done by the steam 
pressure in a steam engine during a complete stroke of the piston 
an indicator is attached to the cylinder of the engine. The indicator 
consists of a small cylinder containing a light piston controlled by a 

spiral spring, so that the vertical displacement of the piston is pro¬ 
portional to the steam pressure in the main cylinder. The indicator 
piston actuates a pencil which traces a curve on a sheet of paper 

placed on a rotating drum. 
The engine is thus made to trace its own force-space diagram. 

The curve is a closed one. and its area gives a measure of the work 
done by the engine at each stroke. 

§ 104. The following examples are of a rather harder type, and 

include cases where the resistance to motion is not constant. 

Example (i). 

The resistance which a train experiences, when moving at V m.p.h., is 
equal to 

lb. ivt. per ton weight of the train. If a train of weight 150 tons is drawn 
up a slope of 1 in 140 by an engine of 372 horse-power, show that the 
maximum speed attainable is 30 m.p.h. Also find the maximum speed 
down the s(ope with steam shut off\ (Ex.) 
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At speed V m.p.h. the resistance is 

6 + ~) IOO/ 
150 lb. wt.. 

the component of weight is 

150 x 2240 lb ^ 

140 

The total force resisting motion is 

15° (6 + + ~~) lb-wt. 

The work per second is 

/* , r , V2 \ 88V 1K 
150/ 6 4- 16 + — ) -ft. lb., 

V 100/ 60 

V2 \ 88V 

f^)^= 372 X 55°’ 

V-- 

••• 150 

\ioo 

V3 -j- 2200 V 

-f 

+ 22 )V = m X 550 X 60 ; 
/ 150 x 88 930. 

93000 

and it can be seen that V = 30 satisfies this equation. 

The factors of the left-hand side are 

(V — 30) (F* + 30F 4- 3100). 

so that the other roots of the equatioh are imaginary. 

In running down the slope, with steam shut off, the resistance 

increases with the speed until it becomes equal to the weight component 

down the slope, and then 

6 + -) 100/ 
150 

150 X 2240 

140 9 

v% .•.64-— - 16, 
IOO 

V% 
— = 10, 
100 

.-. V2 = 1000, or V = 10V10 m.p.h. 

Example (ii). 

A cyclist and his machine together weigh 200 lb. Riding along a 
certain road he observes that, when he is free-wheeling down a slope of 
1 in 40, his speed, when it has become uniform, is 20 m.p.h., and is 30 

m.p.h. when he is free-wheeling down a slope of 1 in 20. If the air resist¬ 
ance varies as the square of the speed, and other resistances remain constant, 
find in horse-power the rate at which he must work to maintain a speed of 
15 m.p.h. on the level. (H.C.) 

Let the air-resistance be kv* lb. wt. where v is the speed in feet per 
second, and k is a constant; and let the other resistances be R lb. wt. 
In free-wheeling down a slope at uniform speed the total resistance 
must equal the component of weight down the slope. 
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Now, 20 m.p.h. == 
Hence we have 

** ft./sec., and 30 m.p.h. == 44 ft./sec. 

R + = 5 . • (i) 
9 40 

and R + k . 442 = ??? = 10 . 
20 ■ (») 

whence 

Substituting in (ii), 

k = _ 9 
44 

R — io — 9~ i. 

Hence the resistance at a speed of v ft./sec. is 

91/2 

15 m.p.h. = 22 ft./sec., and at this speed the total resistance is 

1 + = U lb. wt 
44* 4 

The work per second = . 22 ft. lb.r 

Example (iii). 

.*. the horse-power — 1AJ?. 22 = *iq. 
4 X 550 

The pressure in the boiler of a two-cylinder locomotive is p lb. wt. 
per square inch ; the diameter of the piston is a inches, and the diameter 
of the driving wheel is b inches ; prove that if the length of the stroke is 
l inches, the tractive power of the engine is not more than 

pan 
~b" (I.E.) 

In one revolution the driving wheel moves rib inches, and if F is the 
tractive force, the work done is 

F-nb in. lb. 

nazp 
Now the pressure on the piston is —- lb. wt., and since there are 

4 
two cylinders, the total distance travelled by the pistons is 4/ inches, 

the work done = ira%pl in. lb., 

F = lb. wt., 
b 

and this is the maximum value for F. 

EXAMPLES XV. 

1. A motor-cycle and its rider together weigh 412 lb, and the cycle 
is being driven up a gradient of 1 in 10 at 30 m.p.h. If the air 
resistance is 0*005V2 lb. wt., where V is the speed in ft. sec. units, 
and if the resistance of the road surface is o-oi of the total weight, 
iind the effective horse-power developed by the engine. 



112 INTERMEDIATE MECHANICS 

2. A cyclist riding on a level road at 15 m.p.h. is working at the rate 
of 01 H.P. Assuming that the resistance in lb. wt., apart from 
gravity, varies as the square of the speed in ft./sec., find the 
steepest gradient on the same road up which he can ride at 
m.p.h., working at the same rate, the cyclist and his machine 
weighing together 245 lb. (H.S.C.) 

3. The resistance to the motion of a train is K (speed)2; the maximum 
power of the engine is H, and the maximum speed is V. Show that 

H 
the resistance at unit speed is ~. 

If V = 60 m.p.h., H = 700 H.P., the total weight 500 tons, and 
the tractive force constant, find the starting acceleration, an,d show 
that it is of the value at half-speed. 

u and v being two speeds and / the average acceleration during 
the change, show that the distance is given approximately by 

u2 — v2 
TJ 

(I.E.) 
4. A train of total weight 400 tons is travelling on the level at 60 

m.p.h., the engine working at 800 H.P. If the resistances, apart 
from air resistance, are 10 lb. wt. per ton, find in lb. wt. the magni¬ 
tude of the air resistance. 

If air resistance varies as the square of the speed, find the rate 
at which the engine is working when drawing the same train up a 
gradient of 1 in 200 at a steady rate of 30 m.p.h. ; and find the 
acceleration which the train would have on this gradient at this 
speed if the engine were working at 800 H.P. (H.C.) 

5. A motor car is running at a constant speed of 60 ft./sec. It is 
found that the effective horse-power at the road wheels is 18. 
Find the resistance to motion. 

Assuming that the resistance varies as the square of the speed, 
and that the effective horse-power at the road wheels remains 
constant and equal to 18, prove that the distance required for the 
car to accelerate from 20 ft./sec. to 40 ft./sec. is 

6. 

7- 

750 log, f«- ft. 
The car weighs 3300 lb., and in both cases the road is level. (C.S.) 
An engine of weight W tons can exert a maximum tractive effort 
of P tons weight and develop at most H H.P. The resistances to 
motion are constant and equal to R tons weight. Show that, 
starting from rest, the engine will first develop its full horse-power 
when its velocity is 

jg^ft./sec. 

after at least 
55WH 

seconds. 
224Pg(P - R) 

What is the greatest velocity which the engine can attain ? 
(C.S.) 

An engine weighing 96 tons, of which 40 tons are carried by the 
driving wheels, exerting a uniform pull gives a train a velocity of 
25 m.p.h. after travelling for 50 seconds from rest against a resist¬ 
ance of 10*5 lb. wt. per ton. If the friction between the driving 
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wheels and the rails is o-2 times the pressure, find the tension in 
the coupling between the engine and the first carriage. (Tractive 
force — friction between driving wheels and rails.) (C.S.) 

8. A motor bicycle which with its rider weighs 3 cwt. is found to run 
at 30 m.p.h. up an incline of 1 in 20, and at 50 m.p.h. down the 
same incline. Assuming that the resistance is proportional to the 
square of the velocity, and that the engine is working at the same 
horse-power, find the speed that would be attained on the level, 
and show that the horse-power is 2J nearly. (C.S.) 

9. A train weighing 300 tons drawn by an engine weighing 100 tons 
attains a speed of 60 m.p.h. on the level when the engine is work¬ 
ing at the rate of 1200 H.P. Determine the resistance. Assuming 
that the resistance varies as the square of the velocity, and that 
the engine is working at the same rate, determine the retardation 
when the speed of the train up an incline of 1 in 100 has dropped 
to 40 m.p.h. (C.S.) 

10. A locomotive weighing 40 tons can pull 210 ten-ton trucks at 20 
m.p.h. on the level. The trucks will just run at 20 m.p.h. down 
an incline of 1 in 320. How many trucks can the locomotive pull 
at that speed up the same incline ? 

If the frictional resistance of the engine is 300 lb. wt., what is 
its horse-power ? (C.S.) 

11. An engine moves at a steady velocity v along level ground when 
working at a constant horse-power H. When moving up a plane 
inclined at a small angle to the horizontal its steady velocity under 
the same horse-power is v'. 

If the engine starts down the same incline with velocity v' and 
moves for t seconds with a constant acceleration until it reaches 
its steady velocity down the plane corresponding to the same horse¬ 
power H, show that the distance travelled in these t seconds is 

v,%t 

2V' — V 

Assume that the frictional resistance is constant throughout. 
(C.S.) 

12. A motor car weighing 1* ton attains a speed of 40 m.p.h. when 
running down an incline of 1 in 20 with the engine cut off. It can 
attain a speed of 30 m.p.h. up the same incline when the engine is 
working. Assuming that the resistance varies as the square of the 
velocity, find the horse-power developed by the engine. (C.S.) 

13. An engine of mass 100 tons is allowed to run down a bank, whose 
slope is 1 in 30, with steam shut off, and is observed to attain a 
maximum speed of 80 m.p.h., air and frictional resistances being 
assumed proportional to the square of the speed. 

If the engine can develop 1000 H.P., show that its maximum 
speed up the bank, under its own steam, is 40 m.p.h. (= 59 ft./sec.) 
nearly. (Q.E.) 

14. .A fast cruiser is propelled at a speed of 40 m.p.h. by means of 
engines whose effective horse-power is 40,000. Calculate the re¬ 
sistance to the motion of the ship, and assuming that the resistance 
varies as the square of the speed, what horse-power would be 
required for a speed of 45 m.p.h. (Q.E.) 
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15. A 10-ton electric tramcar runs on a 12-mile route which rises 
uniformly to a height of 200 feet above the starting-point. The 
average frictional resistance is 25 lb. per ton, and the car has fifteen 
stops from a speed of 15 m.p.h. The stops are effected by first 
cutting off the current and then bringing the car to rest in too feet 
by applying the brakes. Find the energy consumed in horse¬ 
power hours on the run. (Q.E.) 

16. A uniformly loaded goods train of mass 400 tons is being hauled 
up a gradient of 1 in 161, by an engine of mass 100 tons in front, 
assisted by an engine of mass 80 tons at the rear. When the speed 
is 15 m.p.h., the front and rear engines deliver 500 and 300 H.P. 
respectively at their wheels. If the frictional resistance to motion 
be taken as 12 lb. wt. per ton, find the acceleration of the train 
and the tension in the coupling at the centre of the train. (Q.E.) 

17. A motor lorry, when loaded, weighs 5 tons, and is designed just 
to attain a maximum speed of 15 m.p.h. up a hill of 1 in 20. The 
road and wind resistance at this speed is 32 lb. per ton. Find 
the maximum horse-power required by the lorry. If the resist¬ 
ance to motion varies as the square of the speed, what would be 
the speed of the lorry on a level road for the same horse-power ? 

(Q.E.) 
18. A railway wagon weighing 10 tons is pulled along a straight level 

track by a horse, the direction of the pull being horizontal, and 
inclined to the track at an angle of 30°. If the pull is constant and 
equal to 200 lb. wt. and the resistance to motion 100 lb. wt., find 
the horse-power being supplied by the horse when the wagon 
has moved 20 feet from rest. (Q.E.) 

19. It is found that to drive a car at a uniform speed of (i) 20, (ii) 40, 
(iii) 60 ft./sec. on a level road the engine must work at (i) 2, (ii) 5, 
(iii) 10 H.P. Show that these facts are consistent with the assump¬ 
tion that the forces which retard the motion of the car are a con¬ 
stant force, together with a force proportional to the square of the 
speed. Regarding this assumption as correct, find the horse-power 
for a speed of 80 ft./sec. (H.S.D.) 

20. The diameter of the low-pressure cylinder of a marine engine is 
46 inches, the average speed of the piston is 800 feet per minute, 
and the average pressure of the steam on the piston is 32 lb. wt. 
per square inch. What is the indicated horse-power of the engine ? 

(LE.) 
21. An engine, whose mass is 100 tons, and of 1500 H.P., draws a train 

of mass 350 tons. The resistance to motion being 0-009 E* lb. wt. 
per ton at speed V m.p.h., find the greatest speed of the train on 
the level. (Q.E.) 

22. A train, of weight 200 tons, is running at 24 m.p.h., and accelerating 
at i ft./sec.2, the resistances to motion being at that moment 
14 lb. per ton. Find the rate of working of the engine in horse¬ 
power, and*if the engine continues to work at that rate while the 
resistance increases proportionally to the speed, find the maximum 
speed of the train. (Ex.) 

23. The resistance to the motion of a cyclist may be assumed to be 
8 -f 0-006 v% lb. wt. when his speed relative to the air is v miles per 
hour. If he can work at 0*15 H.P., and the least speed at which he 
can ride is 2 m.p.h., show that the gradient of the steepest incline 
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up which he can ride against a head wind blowing at 20 m.p.h. is 
about 1 in 11, the total weight of the cycle and the rider being 
190 lb. (N.U.4) 

§ 105. The following examples depend on the same principles as 
those in the preceding paragraphs, but require the use of the calculus 
for their solution. 

In the cases considered so far the accelerating force has either 

been constant, or, if the resistance has depended on the velocity, 
we have not found the time taken to describe a certain distance or 
acquire a certain velocity. 

For a variable acceleration we have the expressions 
d2x dv 

dt2’ Tt' 

and , the last two being those most commonly used in problems 

of the kind we are dealing with. 

The fundamental equation mf — P, now becomes 

m 
dv 
dt 

accelerating force, 

or mV<Js = acce^era^nS force. 

The accelerating force is usually some function of v, s, or t, and 
after inserting its value in the right-hand side of one of these equa¬ 

tions, we have to integrate and find v. 

Suppose the tractive force of an engine is constant, but the 

resistance is proportional to the square of the speed. 

Then if P is the constant tractive force, and kv2 the resistance, 

= P — kv2, 
at 

Or WVy — P — kv2. 
ds 

The first equation enables us to find the velocity acquired after 

a given time. We write the equation 

dt, 

and integrate both sides, adding a constant to the right-hand side 
and determining its value from the initial conditions. (Example 

(iii).) 
The second equation enables us to find the velocity acquired 

after travelling a given distance. The equation is written 

vdv 
m~—r~o 

P — kv2 
ds, 
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and both sides are integrated, a constant being added and its value 
determined from the initial condition. 

If the tractive force p decreases uniformly with the distance 

s travelled 

*p _ _ k 
ds ~ • 

... p = — ks + c, 

the value of c is obtained as the value of p when s ~ o, i.e. at the 

start. 
If p decreases uniformly with the time l, 

d±- _ b 
dt ~ ’ 

•••/>= -ki + c, 

and c is the initial value of p. 
If the horse-power is constant, then if p is the tractive force 

(in lb. wt.) and v the speed (in ft./sec.) 

(> = //, and P=”). 

Example (i). 

Two particles, moving in straight lines, the first acted on by a constant 
force, the second acted on by a force doing work at a constant rate, each 
have their velocities increased from V to 2V, after traversing a distance a. 
Show that the time taken by the second is of that taken by the first. 

Show also that the velocity acquired by the second after traversing a 
distance x, less than a, is greater than that acquired by the first after tra¬ 
versing the same distance. (H.C.) 

Let / be the constant acceleration of the first particle, then 

4F* = V* + 2fa, 

ia' 

Also, if tx be the time taken, 

2V = V -f ftv 

, V 2 a 

•vl~r~w 
In the case of the second, if p is the force, v the speed, and H the 

constant rate of working, 

pv = H, or p H 
” v ’ 

dv H 
Is 

= P == 
v' 

. v%dv as 
H 

ds, 
m 

= 
H 
m 

s + c; 

and now 
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now when s = o, v = V, 

c = ■ F3, 

and when s = a, 

U
 

N
 

II 

H , , 
** — « + •; m 

v\ 

H 
— Z F3, or 

H _ 7 F3 
m 3* 

Also dv . 
m<n ~ ft ~ 7/ * 

vdv = _ dt, 
m 

• •• = - t + c ; 
m 

now when t = o, 7; — F, 

c = JF2, 

and when / -- t2f v — 2 F, 

m 

■ t = ?Z* _ 3^* Of. 
" 1 2 ' H 2 ' 7Fa 14F’ 

• b = _2£ 3_^ _ £7 
’ /, 14 F * 2a 28* 

The velocities acquired after traversing a distance x are, for the first, 

t/,* = F* + 2/* = F» + 3^“*, 

and for the second, 

3 3 3<* 3 

or v,» - 7F,jr + F». 
a 

Now l-,> w, if (1>(,+V)‘. 

i.c, if 
(■+?)'>(■+?)■• 

or 
14# 49*2 9* 27** 

1 + ~5~ + ~P“ > 1 + T + “Sr + 
27 X* 

21X* 2 2 at* 5# 
or ~ ~ “jr - % C °. 

or 27^ — 22a# — 5a1 < o, 

or (27* -f 5a) (x — a) < o, 

and this is the case when x < a. 

VOL. I.—5 
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Example (ii). 

A horse pulls a wagon of 10 tons from rest against a constant resistance 
of 50 lb. The full exerted is at first 200 lb., and decreases uniformly 
with the distance until it falls to 50 lb. after a distance of 167 feet has been 
covered. Show that the resulting velocity of the wagon is very nearly 
6 ft./sec. (C.S.) 

If p is the pull (in lb.) then, since it decreases uniformly with the 
distance, we have 

-k. 

p — — ks -f c; 

Now, p — 200g poundals when s = o, .-. c = loog, 
and p = 50g poundals when 5 = 167, 

... 50^ = — i6jk -f 200g, 

... k = £5^. 
167 

The accelerating force is 

— ks + 200g — 50# = — ks -f 150^, 

dv , 
224002;—- = — ks + 150^. 

112001;* = — J&s* -f 150gs, 

and when s = 167, 

112001;* = — £ . . 167* + 150# . 167, 

whence v* = 35-8, 

v = 6 ft./sec. nearly. 

Example (iii). 

77ie propulsive horse-power required to drive a ship of mass 16,500 tons 
at a steady speed of 50 ft./sec. is 18,000. Assuming that the resistance is 
proportional to the square of the speed, and that the engines exert a constant 
propulsive force on the ship at all speeds, prove that the initial acceleration, 
when the ship starts from rest, is f ft./sec * ; and that it attains a speed of 
20 ft./sec. in | loge 5 minutes. (C.S.) 

If P lb. wt. is the propulsive force 

30P = 18000 x 550, 
P = 600 x 550g poundals. 

Since resistance is proportional to the square of the speed, it may 
be taken as kv*, and when v — 30 the resistance is equal to P, 

k x 900 = 600 x 550g, 
••• k = f X 55<>£. 

The resultant accelerating force at speed v is 

600 x 550g — kv2, 
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dv 2 16500 X 2240^ » 600 X 550^ — -550# X l/a, 

^ 2 x 559g 
3 

16500 X 2240 X 3 
2 X 550 X 32 

900 x 7/ I 
2 \3Q — V ' 

(900 — Va), 

dv 
* 900 

1 

= d/, 

\ dv 

30 -f Z//60 
: dt, 

105 30 + » 
— log- ———— — / -J- c, 

2 30 — V 1 ' 

and v = o, when / = o, 

hence when v — 20, 

o. 

t — iogc ?? = ^ Joge 5 seconds, 

= A l«gc 5 minutes. 

When v = o, the accelerating force is 600 x 550^, and the accelera¬ 

tion is 
600 x 550 x 32 

16500 x 2240 ft./sec.2 

Example (iv). 

Show that, by plotting a curve connecting the reciprocal of the accelera¬ 

tion of a body with its velocity, it is possible to estimate the time required 

for a given change in velocity. 
The acceleration of a iramcar starting from rest decreases by an amount 

proportional to the increase of speed, from 1*5 ft./sec.* at starting to 0-5 
ft./sec.* when the speed is 5 m.p.h. Find the time taken to reach 5 m.p.h. 
from rest. (C.S.) 

1 
If we plot v along OX (Fig. 59) and dv along OY, the area of an 

dt 

jv . dv = dt. 

Si 

elementary strip PQ is 
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If vx and are the velocities corresponding to the points A and B, 
the area under the curve is 

— time when velocity is v% — time when velocity is 
= time required for increase from vx to vt. 

Since the acceleration is proportional to speed, and is 1-5 ft./sec.2 at 
starting 

r-5. 

, , .88 22 
and when v is — or —. 12 3 1 

dv 
Si = °-5’ 

••• °'5 : -A + i-5, 

When v — 
22 

A = 2 ; 
22 

:dv = 3 _ 
"Ht 2 22 * 

dv 
11 — v 22 

c 

ldtt 

log. = 2*, 
II — V 22 

and v = o when t = o, 

,\ c = II, 

.*. * = 5? iogtf —LL-. 
3 11 - v 

t a*s ?? loge 3 — 8*o6 seconds nearly. 

EXAMPLE XVI. 

1. The resistance to the motion of a train is 160 lb. wt. per ton mass 
at all speeds. It is moving on the level with uniform speed V, and 
comes to an incline of 1 in 70. The engine continues to work at 
the same rate as before ; prove that if v is the velocity, and x the 
distance described up the incline in time /, then 

V* = F* - —g(6x -5 Vt). 

35 (H.C.) 
2. A car is travelling at its maximum speed of 40 m.p.h. on the level, 

the resistance being 160 lb. wt. per ton, assumed to be independent 
of the speed. It then climbs a hill of 1 in 25, and the speed falls 
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3- 

4- 

5- 

6. 

7- 

until it is steady, the engine then working at the same effective 
horse-power as before. Find the steady speed up the hill. 

If the tractive force increases uniformly with the distance 
travelled up the hill, find the distance travelled before the uniform 
speed is attained. (C.S.) 
Show that in rectilinear motion the time taken for any change in 
velocity is given by the area of the curve connecting the reciprocal 
of the acceleration and the corresponding velocity. 

A tramcar starts from rest with an acceleration of 3 ft./sec.*, 
the relation between acceleration and speed is linear, and the 
acceleration is 1 ft./sec.* when the speed is 5 m.p.h. Prove graphic¬ 
ally or otherwise that the time taken to reach this speed is 4-03 
seconds (\ogl0e = 0-4343). (C.S.) 
A motor car is travelling along a level road with a constant speed 
of V ft./sec., the resistance to motion being equivalent to a con¬ 
stant back pull of a lb. wt. The car then comes to a hill where 
the resistance to motion (including gravity) is b lb. wt., and after 
the velocity has again become constant, the engine works at the 
same constant power as on the level. If, while the velocity is 
varying, the tractive pull alters uniformly with the distance from 
its first constant value to its next constant value, show that the 
distance travelled along the hill before the velocity becomes 
constant is 

a + b MV* 
feet, 

b! g 
where M is the mass of the car in lb. (C.S.) 

A locomotive of mass m tons starts from rest and moves against a 
constant resistance of P lb. wt. The driving force decreases uni¬ 
formly from 2P lb. wt. at such a rate that at the end of a seconds 
it is equal to P. Find the velocity and the rate of working after 
t seconds (/< a), and show that the maximum rate of working is 

1-54 X 10 ~8aP*H p 

(C.S.) 
The force acting on a body of mass 1 lb., which is initially at rest, 
varies as the square of the time, and is 10 lb. wt. at the end of 10 
seconds. Neglect resistances and gravity. Prove that the time- 
average and the space-average of the force during the first 10 
seconds are 3$ lb. wt. and 6§ lb. wt. respectively, (C.S.) 
A train of weight M lb. moving at v ft./sec. on the level is pulled 
with a force of P lb. against a resistance of P lb. Show that in 
accelerating from v0 to vt ft./sec., the distance in feet described by 
the train is 

Mp vdv 

*kp-R' 
If the resistance R = a -f bva, find an expression for the distance 

described when the power P is shut off and the velocity decreases 
from vx to t/0. (C.S.) 

8. The acceleration of a certain racing motor car at a speed of v ft./sec. 
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Find the maximum speed of the car, and prove that from a 
standing start a speed of 150 ft./sec. is acquired in 1 minute after 
travelling 1800 yards. Assume that 

loge 6~i-8 and logc 11 — 24 (C.S.) 

9. The resistance to an aeroplane when landing is 

a 4* bv2 

per unit mass, v being the speed, a, b, constants. For a particular 
machine, b = io~8 ft. lb. sec. units, and it is found that if the 
landing speed is 50 m.p.h., the length of run before comifig to rest 
is 150 yards. Calculate the value of the constant a. (C.S.) 

10. The engine of a train of 300 tons can just attain a speed of 60 m.p.h., 
on the level. Assuming that the resistance varies as the square 
of the speed and that the horse-power is constant and equal to 
1000 units, show that the train starting from rest will attain a 
speed of 30 m.p.h. after moving through a space of 386 yards ap¬ 
proximately. 

(log, 2 = 01335). (C.S.) 

n. Show that a motor car, for which the retarding force at V m.p.h. 
when the brakes are acting may be expressed as 

(1000 4 008F2) lb. wt. 

per ton of car, can be stopped in approximately 57 yards from a 
speed of 50 m.p.h. (log,, 10 — 2*30). (C.S.) 

12. The tractive effort of a tractor weighing 6 tons is 1100 lb. wt. 
when at rest, and 900 lb. wt. at 10 m.p.h. ; between these values 
the effort varies linearly with the speed. It is proceeding up a 
grade of 1 in 25, and is accelerating at £ ft./sec.2 Find the speed 
and the horse-power at that moment, taking the frictional resist¬ 
ances as 40 lb. wt. per ton. (Q.E.) 

13. A car moves from rest with uniformly decreasing acceleration, the 
initial value of which is 1-5 ft./sec.8 The car would attain its 
maximum velocity in 60 seconds, but after running for 40 seconds, 
brakes are applied in such a way that the retardation increases 
uniformly from 0-5 ft./sec.2, and the car is brought to rest in 32 
seconds. Find the retardation at the moment the car stops. (Q.E.) 

14. The tractive force exerted by an engine hauling a train along a 
horizontal track, starting from rest, is constant for the first 30 
seconds and equal to 16,000 lb. wt. The tractive force then 
diminishes uniformly with the time at a rate which would give 
3000 lb. pull at 4 minutes from the start. The train resistance 
from all causes increases uniformly with the time, starting at 
2000 lb. wt., at a rate which would give 6000 lb. wt. at the end of 
4 minutes. The maximum velocity attained was 45 m.p.h. Plot 
the velocity-time and acceleration-time curves for the motion from 
the start until the maximum velocity is attained. What distance 
is passed over during the period ? (Q.E.) 

15. The maximum speed attained by an empty truck weighing 2 tons 
10 cwt. when running down an incline of 1 in 120 is found to be 
30 m.p.h. If the resistance to motion from all causes is propor¬ 
tional to the square of the speed and is independent of the load, 
what would be the maximum speed of the truck when carrying a 
load of 6 tons down the same incline ? 
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Obtain in the form of an integral the time taken to acquire a 
given velocity by the empty truck, starting from rest on this 
incline. (Q.E.) 

16. A body has a constant resistance to motion of 10 lb. per ton. It is 
subjected to a force which increases uniformly from zero for 30 
seconds and then decreases to zero at the same rate. If the greatest 
value of the force is such that the velocity of the body is the same 
at the beginning and end of this time, find the greatest change of 
velocity of the body. (Q.E.) 

17. A body weighing 1 ton, starting with a velocity of 10 m.p.h., moves 
in a straight line, the power applied (tending to increase its velocity) 
being constant, namely r H.P. Find the time that will elapse be¬ 
fore the acceleration will be reduced to £ of its initial value. Find 
also the ratio of the initial acceleration to that of gravity. (Q.E.) 

18. A weight of 100 lb. hangs freely from the end of a rope. The weight 
is hauled up by means of a windlass. The pull in the rope starts 
at 150 lb., and then diminishes uniformly at the rate of 1 lb. for 
every foot of rope wound in. Find the velocity of the weight after 
50 feet of rope has been wound. The weight of the rope may be 
neglected. (Q.E.) 

19. A car weighing 1 ton starts from rest on a level road. The tractive 
force acting on it is initially 80 lb., and this falls, the decrease being 
proportional to the distance travelled, until its value is 30 lb. at the 
end of 200 yards, after which it remains constant. There is a con¬ 
stant frictional resistance of 30 lb. Find the speed of the car at 
the end of the 200 yards, and plot a curve, on a distance base, 
showing the gradual rise of the speed from the start. (Q-E.) 

20. The relation between the time and the acceleration of a train is as 
given below. The train weighs 300 tons and the tractive force 
required when the speed is uniform is 7500 lb. Deduce the speed¬ 
time curve, and find the total distance traversed, and the horse¬ 
power ii minutes after the start. 

Time in minutes . o 0 25 0 5 0*75 10 1-25 1-5 2 0 2*5 
Acceleration in ft./sec.2 o 0-17 0-26 0-31 0*33 0-33 0*3 0-2 0*14 

Time in minutes . . 3-0 3 5 4 0 4-3 5*0 
Acceleration in ft./sec.8 0-09 0-07 0*03 0 04 0*035 

(Q.E.) 
21. Show that if V be the speed and S the distance travelled from some 

fixed point in the path of a moving body, the slope of the graph of 
V* 
— plotted to a base of 5 gives the acceleration of the moving body 

along its path. 
Observations of speed and distance from the starting-point of 

a car are as follows :— 
V o 12*6 16*7 19 21*4 23*2 23*6 ft./sec. 
S o 36 65 100 160 250 300 ft. 

Find the initial acceleration, and the horse-power being exerted at 
160 feet from the start if the car weighs 1 ton and resistance to motion 
is 100 lb. wt. (Q.E.) 

22. Find the measure of a force when expressed (i) by the time rate of 
change of momentum, and (ii) by the space rate of change of kinetic 
energy respectively. A shot weighs 10 lb., and its velocity changes 
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from 1500 ft./sec. to 500 ft./sec. in passing through a non-homo- 
geneous target 6 inches thick in seconds. What are the two 
values for the average force exerted, and how can they be reconciled ? 

(Q.E.) 
A train of mass 500 tons commences to climb a gradient at a speed 
of 25 m.p.h. The engine exerts a constant pull of 10,000 lb. wt., 
and the total resistance R due to all causes, including gravity, rises 
with time in accordance with the following table :— 

R 2,500 3,500 5,000 7,000 9,500 12,000 16,000 lb. wt. 
t o 0*5 i*o i*5 2-0 2*5 3*0 min. 

Determine the speed of the train at the end of three minutes. (Q.E.) 
The speed of a train of mass 100 tons varies with time in accordance 
with the following table :— 

Time in seconds o 10 20 30 40 50 60 
Speed in m.p.h. o 17 27 33 37 39 39 5 

The train is running down an incline of 1 in 448. Find the horse¬ 
power being exerted by the engine at the end of the first half-minute 
if the frictional and air resistance to motion at that instant amounts 
to 10 lb. wt. per ton. (Q.E.) 

A car weighing 6 tons starts from rest under the action of a force 
given by the following table :— 

t in seconds o 2 4 6 8 10 12 14 16 18 20 
F in lb. wt. 780 750 708 620 495 420 365 324 300 280 270 

If the resistances to motion are equivalent to a constant force of 
40 lb. wt. per ton, draw the acceleration-time curve, and find the 
velocity of the car at the end of the time. (Q.E.) 
A truck starting from rest and weighing 15 tons is drawn along the 
level against a constant resistance of 30 lb. wt. per ton. The draw¬ 
bar pull is found to vary with the distance travelled according to the 
following table :— 

Distance travelled in feet o 10 20 30 40 50 
Draw-bar pull in lb. wt. 900 890 868 822 763 679 

Find (i) the kinetic energy of the truck, (ii) the velocity of the 
truck, (iii) the work done by the force, when the truck has travelled 
the first 50 feet. (Q.E.) 
A mass of 1 ton is drawn from rest up an incline of 1 in 224 by a 
force parallel to the ground and varying with the distance according 
to the following table :— 

Distance in feet o 50 100 150 200 250 300 350 400 
Force in lb. wt. 115 145 150 130 100 65 35 25 10 

If the frictional resistance to the motion is 25 lb. wt. per ton, find 
the velocity of the body after passing over 400 feet. (Q.E.) 

A car whose mass is 2000 lb. starts from rest, and the resistance to 
the motion is equal to 50 lb. wt. When it has travelled a distance 
s feet the force exerted by the engine is F lb. wt. where 

5 o 10 20 30 40 50 60 
F 644 634 622 607 587 565 537 

Construct the acceleration-space graph of this (continuous) motion, 
and find the speed of the car when it has travelled 60 feet. 

(N.U.3) 
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29. A particle of mass 8 lb. starts from rest and is acted on by a force 
which increases uniformly in 5 seconds from zero to 1 lb. wt. Prove 
that / seconds after the body starts, its acceleration is o-8t ft./sec.*. 
Find the distance the particle moves during the first five seconds, 
and show that, when it has moved x feet, its speed is v ft./sec., 
where 

— i8,r2. (N.U.3) 

30. Assuming that the acceleration of a motor car is a — bv* when the 
speed is v, where a and b are positive constants, prove that the speed 
tends to a certain maximum value V ; and that, when the car is at 
a distance x from its starting-point, its speed is tVi — e -zbjr. If a 
speed p is attained in a distance / after starting, and a speed q after 
a further distance /, prove that the maximum speed is 

v5F^?- (NU-' 

§ 106. Units and Dimensions. 

The units of mass, length, and time are called fundamental units, 

since the units of other quantities, such as speed, force, etc., can be 
expressed in terms of them. The unit of speed is a speed of unit 
distance in unit time, e.g. 1 ft./sec, or 1 cm./sec.; the unit of accelera¬ 
tion is an increase of unit speed in unit time, 1 ft./sec.2 or 1 cm./sec.2 

The unit of force is the product of unit mass and unit acceleration. 
If we denote the units of length, mass and time by L, M, T, the 

unit of speed will be ~, 

,, . r . * unit of velocity L 
the unit of acceleration —-r-—--- = 

unit of time 72 

the unit of force — . 

the unit of work = unit of force X unit of distance 

ML2 
“ 7"2 • 

§ 107. Now the unit of area is the product of two unit lengths 
or Lz, and is said to be of two dimensions in length. A volume is 
said to be of three dimensions in length. 

This idea of dimensions is extended to include mass and time, 
and the powers to which the fundamental units are raised to pro¬ 
duce the unit of any quantity are called the dimensions of that 
quantity. Thus the dimensions of speed are said to be 1 in length 
and — 1 in time, those of work are 1 in mass. 2 in length, and 
— 2 in time. 

§ 108. The dimensions of any physical quantity are easily ob¬ 
tained by writing down the formula for its unit in terms of M, L and 
T &s aboye, by considering the way in which the quantity is defined. 

5* 
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Momentum is defined as the product of mass and velocity and its 
dimension formula is therefore 

ML 

T ‘ 

Angular velocity is obtained by dividing an angle in radians 

(which is merely a ratio of lengths and independent of units) by 
time, and its dimension formula is 

i 

T 

Power is obtained by dividing work by time, and its dimension 
formula is therefore 

MU 
J'Z * 

There are two important uses of dimensions which will now be 
considered. 

§ 109. In any equation between physical quantities each term 
must be of the same dimensions in the fundamental units. Just 

as it is impossible in ordinary arithmetic to add, say, pence and 
feet, so it is impossible to add any two terms of different dimensions. 
This often gives a useful check as to whether a formula is a possible 

one. 
Thus, take the equation of motion 

v2 = u2 -f 2/s, 

L2 
the dimensions of v2 are 

2 L2 
» M ” f2* 

L _ L2 
2/s ,, 

L2 
so that all the terms are of the same dimensions, namely 

In § 8o we obtained a formula for the tension in a string over 

a pulley connecting two masses, 

_ 2m,m 2 
T — 1— 

m\ + m2 

The dimensions of the right-hand side are that of a mass multi- 

ML 
plied by an acceleration or —, and are therefore those of a force, 

as they should be. 
If the formula had only one mass in the numerator it could not 
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represent a force, as its dimensions would be p those of an accelera¬ 

tion. 
In § 83 Example (iii) we obtained an expression for the accelera¬ 

tion of a wedge 

mg sin2 a cos a 

M + 3m sin2 a* 

Now the dimensions of a trigonometrical ratio are zero, and as 
each term in the numerator and denominator contains a mass, the 
dimension in mass is zero. Hence the dimensions of the whole 
expression are those of g, an acceleration, and this is correct. 

If the mass were missing from any one of the terms, the expres¬ 
sion could not represent an acceleration. 

V2 
A result, such as —, where V is a velocity, is of dimensions 

U 
T2 I! - L, 

and therefore represents a length. 

V L T2 
— is of dimensions ~ . T- 
£ T L 

and therefore represents a time. 

T, 

§ 110. Dimensional formula1 can also be used to find the change 
in a unit due to changes in the fundamental units. 

Let Af, L, T be the units of mass, length, and time in one system, 
AT, L', T' those in a second system. 

Then if the units of, say, force in these two systems are F and F', 

_ ML . M'L' 
r . r y,2 . j,,2 , 

F MLT2 
0r F ~ M'L’T•• 

Thus, if Af, L, T are F.P.S. units, and AfL, T are C.G.S. units, 
taking 1 lb. — 453 gm. and 1 foot = 30-5 cm., we have 

1 poundal 

1 dyne 

.*.1 poundal 

= 453 X 30*5 = 13816*5, 

13816*5 dynes. 

If either of the quantities is given in gravitational units it must 
be expressed in absolute units before applying this method. 1 lb. wt. 
is the unit obtained by taking 32 lb. as the unit of mass, and in 

the above example the ratio Af to M' would become 32 X 453. 
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Example. 

Taking i lb. = 453 gm., 1 foot — 30-5 cm., and g = 32 ft./sec*, find 

the number of ergs in a foot-pound. 

The dimensions of work are, 

MLa 
j'a ’ 

where TV/ is 32 lb., L is i foot, and T is 1 second, 

i ft. lb. ML*T'2 

•** 1 erg“ 5=5 

where TVf', //, T' are 1 gm., 1 cm., and 1 second, 

1 ft. lb. zx, 
x erg = 3* X 453 X (3°*5)2, 

— 1*348 x io7, 

i ft. lb. == 1*348 x io7 ergs. 

EXAMPLES XVII. 

1. If the units of mass, length, and time be 100 lb., 100 feet, and too 
seconds respectively, find the units of force and work. 

2. Given that 1 lb. = 453 gm., 1 foot — 30-5 cm., and g = 32 ft./sec.*, 
find the number of watts in a horse-power. 

3. If the unit of mass be 1 cwt., the unit of length 42 inches, and the 
unit of time 7 seconds, find the unit of force. 

4. If 1 cwt. be the unit of mass, a minute the unit of time, and the unit 
of force the weight of 1 lb., find the unit of length. 

5. If the units of length, velocity, and force be each doubled, show that 
the units of time and mass will be unaltered, and that of energy will 
be increased in the ratio 1:4. 

6. (i) Given that 1 cm. — *3937 inches, and 1 kilo. = 2*205 lb., find the 
number of dynes in a poundal. 

(ii) If a second be the unit of time, the acceleration due to gravity 
(981 in C.G.S. units) the unit of acceleration, and a kilogram the 
unit of mass, find the unit of energy in ergs. (I.S.) 

7. If w is the mass of a body in lb., V its velocity in ft./sec., in what 
units is its kinetic energy expressed when we say that this energy is 
measured by JmV2 ? If the units of length and mass be each 
multiplied by 10 and the unit of time divided by 10, how will the 
following units be affected, (a) acceleration, (6) energy, (c) force, 
(d) power ? (I.S.), 

8. The kilowatt is a power which can produce io10 C.G.S. units of 
energy per second; prove that it is rather more than 1J H.P. [1 ft. 
= 30*48 cm., 1 lb. = 453 6 gm., and the acceleration of gravity is 
981 C.G.S. units.] (I.A.) 

9. Given that 1 kilo. = 2*204 lb., 1 metre — 3*281 feet, 1 H.P. = 33,000 
ft. lb. per minute, g = 981 cm./sec.*, show that 3 H.P. is approxi¬ 
mately 2*24 X io10 ergs per second. (H.S.D.) 

10. Taking 1 year of 365J days to be the unit of time, the Earth's dis¬ 
tance from the Sun (92,900,000 miles) to be the unit of length, and 
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the mass of the Earth to* be the unit of mass, find the kinetic energy 
of the Sun relative to the fixed stars, its velocity relative to them 
being n miles per second, and its mass 332,000 times that of the 
Earth. (I.C.) 

11. State the dimensions of force, power, angular velocity, pressure at a 
point in a fluid. 

. If the force of attraction between two masses m and mlf distant 

r apart, is find the dimensions of k, and its numerical value 

when C.G.S. units are employed. [g = 981 cm./sec.®, radius of 
earth — 6*37 X io* kilometres, mass of earth = 6*14 X io24 
kilograms.] (H.S.C.) 

12. A body has mass M and volume V when the units are the foot, pound, 
and second. State its weight, density, and specific gravity. 

State also what these become when the units are changed to the 
centimetre, gram, and second. 

[Take 1 foot = 30-5 cm., 1 lb. = 454 gm.f mass of 1 cu. foot of 
water = 62*3 lb ] (Ex.) 



CHAPTER III. 

IMPULSIVE FORCES. IMPACT OF ELASTIC BODIES. 

§111. Impulse. 

The term impulse of a force is defined as follows :— 

When the force P is constant, the impulse is the product of the 

force and the time during which it acts, i.e. Ft. 
When the force P is variable it is the integral of the force with 

respect to the time, i.e. 

where t is the time during which the force acts. 

When P is variable, 

The impulse is 

P = 

!nTidt 
t 

0 

= m(v — u). 

When P is constant Pt = m(v — u). 
Hence in both cases. 

Impulse ol force — change of momentum produced. 

§ 112. Impulsive Forces. 
Suppose the force P is very large, but acts only for a very short 

time. The body will only move a very short distance whilst the 

force is acting, so that the change of position of the body may be 

neglected. The total effect of the force is measured by its impulse, 

or the change of momentum it produces. 

Such a force is called an impulsive force. 

Theoretically the force should be infinitely great and the time 

during which it acts infinitely small. This is, of course, never 

realised in practice, but approximate examples are the blow of a 

hammer, the impact of a bullet on a target, the collision of two 

billiard balls. 

130 
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§ 118. Impact of Two Bodies. 

If two bodies A and B impinge, then, from Newton's third law, 
the action of A on B is, at any rate during their contact, equal and 

opposite to that of B on A. 
Hence the impulse of A on B is equal and opposite to that of B 

on A. It follows that the changes in momentum of A and B are 
equal and opposite, and the sum of the momenta of the two bodies, 

measured in the same direction, is unaltered by their impact. 
This is an example of the Principle of Conservation of Linear 

Momentum (para. 78) which is used in dealing with problems in 
which impacts or impulsive forces occur. 

If a mass m, moving with velocity vt strike a mass AT, which is 
free to move in the direction of m’s motion, and the two move on 
as a single body, there is no loss of momentum. 

Now the momentum of the mass m before impact is mv, and 
this is shared between the two masses. Hence, if V is the velocity 

of the two together after the impact, 

(M -f m)V ~ mv, 

r/ m . V =r - V. 
M + m 

It should be noted that, although there is no change in momen¬ 

tum due to the impact, there is a loss of kinetic energy. 
The kinetic energy before impact is \mv2. 
The kinetic energy after impact is 

m 

m 
and this is obviously less than Jmv2 since is less than unity. 

Since kinetic energy is lost in nearly all cases of impact the 
principle of energy must never be used in dealing with cases where 

impulsive forces occur. 

§ 114. It is also most important to realise that the principle of 
momentum can only be applied in a direction in which there is no 

external impulsive force acting. 

Thus, if a bullet strikes a fixed target perpendicularly all the 
momentum of the bullet is, of course, destroyed. If the bullet hits 
a smooth target obliquely, there is no change in momentum parallel 
to the surface of the target, but all momentum perpendicular to 

the target is destroyed. 
If a bullet moving horizontally hits perpendicularly the face of 

a block whose section is CDEF (Fig. 6o), resting on a smooth 
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inclined plane AB, and becomes embedded in it; then the only 
direction in which we can apply the principle of momentum is 

parallel to the face of the inclined plane AB. The component of 
the bullet's momentum parallel to AB is shared between the bullet 
and the block. The component of momentum perpendicular to AB 

is destroyed by the impulsive reaction of the plane. 

§ 115. Motion of a Shot and Gun. 

When a gun is fired the explosive charge forms a large volume 
of gas at very high pressure. This pressure acts equally on the 
shot and gun in the direction of the barrel and drives the shot out. 

If the gun is free to move in the direction of the barrel the 

forward momentum generated in the shot at the instant it leaves 
the barrel is equal to the backward momentum generated in the gun. 

If the gun is placed on a smooth horizontal plane with the 

barrel horizontal we can say that the momenta of the shot and gun 
are equal and opposite (both will be horizontal). If, however (as 
is usually the case), the barrel of the gun is elevated, the momentum 

of the gun is not equal and opposite to that of the shot. 
The horizontal momentum of the gun is equal to the horizontal 

momentum of the shot, but any vertical momentum imparted to 

the gun is at once destroyed by the impulsive pressure of the plane 
on which it stands. 

Any apparatus (such as a spring) for preventing the horizontal 
recoil of the gun does not introduce an impulsive force at the instant 
of firing, and does not prevent the principle of momentum being 

applied. In such a case we calculate the momentum and velocity 

of recoil as if the spring were absent. 

The spring does not exert any force until it is compressed so 
that, neglecting the time taken for the shot to leave the gun, we 

consider the gun to start moving back with the velocity it would 

have if the spring were absent. The spring then gradually reduces 
the gun to rest. 

In the same way the action of gravity is neglected in cases of 

impact, this again is not an impulsive force, and the impact is over 
before it has time to act. 
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§ 116. Impact of Water on a Surface. 

To find the pressure due to a jet of water impinging against a 
fixed surface, or a continuous fall of rain on the ground, we have 

only to calculate the amount of momentum destroyed per second. 
Here wc are dealing with a succession of impacts or impulsive 

forces. The amount of momentum destroyed per second gives us 

the average force on the surface, this force acting for one second 
would produce or destroy the given amount of momentum. 

§117. Example (i). 

A bullet weighing x oz. is fired with a velocity of 500 jt./sec. into a 

block of wood weighing 4 lb., and lying on a smooth table. l;ind the 

velocity with which the block and bullet move after the bullet has become 

embedded in the block. (I.S.) 
The momentum of the bullet before impact is lb. ft. units ; no 

momentum is lost by the impact as there is no external horizontal 
force acting, and as the total mass in motion is now 4^ lb., if V is 
the common velocity of the two. 

V = = 71"", ft./sec. 
16 65 

Example (ii). 

A shot, of mass 200 lb., is fired with a velocity of 1600 ft. I sec. from a 

gun of mass 50 tons, which is free to recoil in the direction of the barrel ; 

find the resulting velocity of the gun. 

The forward momentum of the shot = 200 x 1600 lb. ft. units. The 
backward momentum of the gun is equal to the forward momentum 
of the shot. 

Hence, if V ft./sec. is the velocity of the gun, 

50 x 2240 V = 200 x 1600, 

1 r 200 X l600 . 
V —-= 2I* ft./ sec. 

50 X 2240 

Example (iii). 

If, in the last example, the gun is resting on an incline of 3 in 5, and 

the shot is fired horizontally, find the velocity of recoil of the gun. 

In this case some of the horizontal momentum imparted to the gun 
is destroyed by the inclined plane on which it rests, and we can only 
say that the momentum of the gun parallel to the plane is equal to 
that of the shot parallel to the plane. 

Now the momentum of the shot parallel to the plane is 

200 x 1600 x the cosine of the slope = 200 x 1600 x jj. 
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Hence, if V is the velocity of recoil of the gun, 

50 x 2240 V = 40 x 1600 X 4, 

40 x 1600 x 4 

50 x 2240 
= 2 f ft. /sec. 

,E£xample (iv). 

\ A gun, of weight W, is mounted on a smooth railway, and is fired in 

the direction of the track. It fires a shell, of weight w, with velocity V rela¬ 

tive to the ground. If the angle of elevation of the gun is a, prove that the 

initial direction of the motion of the shell is inclined to the ground at an 

angle. 

cot* 
l/W cot a\ 

\W+*) 
(H.S.C.) 

Let AB (Fig. 61) represent the barrel of the gun. 

As the shot leaves the barrel the gun is moving backwards, and this 
imparts a backward horizontal component of velocity to the shot. 
The direction of the initial motion of the shot is therefore inclined to 
the horizontal at an angle greater than a. Let this angle be 0, and let 
the velocity of the gun be U. 

The horizontal momentum of the gun is equal to the horizontal 

momentum of the shot, 

... WU — wV cos 0 . . (i) 

Also V is the resultant of a velocity in the direction of the barrel AB, 
and the horizontal velocity of the gun U. 

If BD represents V, then if DC is drawn horizontal to meet AB 
produced in C, CD will represent U by the triangle of velocities. 

Angle DCB = a, angle DBC = 0 — a, 

CD BD 
an sin (0 — a) ““ sin a' 

sin (0 — a) sin a 
u = ~V~.(») 

Multiplying this equation by (i) 

W sin (0 — a) — w sin a cos 0, 

.\ lF(sin 0 cos a — cos 0 sin a) == w sin a cos 0, 

W(tan 0 cos a — sin a) w sin a. 
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w , 
tan 0 cos a = sm a -j- jy sm a, 

Example 

.-. tan 0 = 

cot 0 — 

(V). 

IF + w . 
= —JF Sin a, 

IF H- 

—IF~ tan a’ 

IF cot a 

IF -f 10 

IFater (o/ wAicA i cubic foot weighs 62J lb.) issues from a circular 
pipe of 3 inches diameter with a velocity of 15 ft.)sec. ; find the weight of 

water discharged per minute. If the water impinges directly upon a 
plane, and its momentum is thereby wholly destroyed, what is the pressure 

of the jet upon the plane ? (I.A.) 

The area of the cross-section of the pipe is - X square feet, and a 

column 15 feet long is discharged every second. 

The volume per minute 

and its mass 

- Z x i 5 X 60 cu. feet, 
64 

n X 15 X 60 X 125 

=-- lb' 

= 2762 lb. nearly. 

The mass discharged per second 

=JLAii2ii£5ib. 
128 

and its velocity is 15 ft./sec. 

.*. the momentum destroyed per second 

The pressure 

n X 15 X 15 X 125 

128 
lb. ft. units. 

poundals = 21-58 lb. wt. 

Example (vi). 

A pile driver of mass 3 tons falls through a height of 16 feet on to a 

pile of n^ass 1 ton ; if the pile is driven 6 inches into the ground, find the 

resistance of the ground {supposed uniform) in tons weight. 

The velocity of the pile driver after falling 16 feet is 

V2 x 32 x 16 = 32 ft./sec., 

and its momentum is 3 x 2240 x 32 lb. ft. units. 

After the impact the total mass in motion is 4 tons, and if V is the 

common velocity of the driver and pile, 

4 x 2240 V = 3 X 2240 x 32, 

... V ** 24 ft./sec. 
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Now this velocity is destroyed in £ foot, and if / is the retardation, 

o = 24* — 2/. J, 
.*./ = 24* ft./sec.*. 

and the retarding force is 4 X 2240 x 24* poundals, 

= 4 X 70 x 24* lb. wt. 

The resistance of the ground R must equal the retarding ‘force + 
the weight of the driver and pile, 

... R = (4 X 70 x 24* -f 4 X 2240) lb. wt., 
(a x 70 x 24* \ J 
f ~ -f 4I tons wt., -0 2240 

— 76 tons wt. 

EXAMPLES XVIII. 

1. A bullet of mass J oz. is fired with a velocity of 2568 ft./sec. into a 
block of wood weighing 10 lb. and resting on a smooth horizontal 
table. Find the common velocity of the bullet and block after the 
bullet has become embedded in the block. 

2. A bullet of mass 20 gm. is fired with a velocity of 4020 cm./sec. 
into a block of wood weighing 4 kilograms and resting on a smooth 
horizontal table. Find the common velocity of the bullet and block 
after the bullet has become embedded in the block. 

3. A gun of mass 10 tons free to recoil in the direction of the barrel, 
fires a shot of mass 200 lb. with a velocity of 1400 ft./sec. Find the 
velocity of recoil of the gun. 

If the recoil is resisted by a constant force so that the gun only 
moves back 5 inches, find the magnitude of this force in tons weight. 

4. A gun of mass 20 tons, resting on an inclined plane of slope 30°, 
fires a shot of mass 400 lb. horizontally with a velocity of 2100 
ft./sec. Find the velocity of recoil of the gun, and the distance it 
moves up the incline before coming to rest. 

5. Find the average pressure per square foot on the ground due to a 
rainfall of J inch in 2 hours. The velocity of the rain on striking 
the ground is equal to that acquired in falling freely through 900 
feet, and 1 cu. foot of rainwater weighs 62£ lb. 

6. A pile driver of mass 5 tons falls from a height of 9 feet on to a 
pile weighing 1 ton ; if the pile is driven in 3 inches, find the 
average resistance of the ground in tons weight. 

7. An inelastic vertical pile weighing £ ton is driven 2 feet into the 
ground by 30 blows of a hammer, weighing 2 tons, falling through 
5 feet. Show that the resistance of the ground, supposed uniform, 
is 122I tons. (I.S.) 

8. A hammer weighing 2 lb., moving with a Velocity of 20 ft./sec., 
drives a nail weighing 1 oz. 1 inch into a fixed piece of wood. Find 
the common velocity of the nail and hammer just after impact, the 
percentage loss of energy, the time of motion of the nail, and the 
force of resistance of the wood assuming it to be constant. (I.E.) 

9. A pile driver falls through h feet on to a pil#of weight W tons ; if 
the resistance to penetration be R tons, and the desired penetration 
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10. 

n. 

h inches, find the proper weight of the driver. How much energy is 
lost each fall if h = 6, W = 2, R = 30 ? (I.E.) 

If a gun of mass M fires horizontally a shot of mass m, find the ratio 
of the energy of recoil of the gun to the energy of the shot. If a 
J-ton gun discharges a 50-lb. shot with a velocity of 1000 ft./sec., 
find the uniform resistance necessary to stop the recoil of the gun 
in 6 inches. (I S.) 

A shot of mass m is fired from a gun of mass M, placed on a smooth 
horizontal plane and inclined at an angle a to the horizontal. If 
v is the velocity of the gun’s recoil at the instant when the shot 
leaves it, prove that the horizontal component of the impulsive 
pressure on the shot is Mv, and that the component at right angles 
to the gun’s length is mv sin a. (It is assumed in each case that the 
impulsive pressure is resolved into two components at right angles.) 

Prove that the initial direction of the shot’s motion is inclined 
m\ at tan -1 (1 -f tan a to the horizontal. (H.C.) 

A shot weighing 18 lb. is fired horizontally from a gun weighing 
9 cwt. If the muzzle velocity of the shot is 1680 ft./sec., calculate 
that of the gun. 

Calculate the total kinetic energy produced (in the shot and gun) 
in foot-tons ; and if the distance travelled along the bore of the gun 
is 7 feet, prove that the average force applied to the shot is a little 
over 51 tons. How far will the gun have moved when the shot 
leaves the muzzle ? (H.C.) 

13. A shot of mass m is fired from a gun of mass M which is suspended 
by ropes of length l. If the total kinetic energy is the same as it 
would be if the shot left the muzzle of a fixed gun with velocity v, 
find the actual velocities of the shot and gun at the moment of 
separation, and find to what height the gun will rise at the recoil. 

(H.E.) 
14. In making a steel stamping a weight of 200 lb. falls on to the steel 

through a distance of 4 feet, and is brought to rest after traversing 
a further distance of | inch. 

Assuming that a uniform resistance is exerted by the steel, find 
the magnitude of this resistance in lb. wt. (H.S.C.) 

15. A bullet of mass m lb. is fired horizontally with a velocity of v ft./sec. 
into a block of wood of mass M lb. suspended by a light cord. It is 
noted that the wood and embedded bullet swing until a height of 
h feet above the original position is reached. Show that mv — 
(M -f- m) V2l*h ; it being given that the whole motion takes place 
in one vertical plane. If an aeroplane rises vertically at 20 ft./sec. 
and drops an object weighing 18 lb. from a height of 600 feet, 
calculate the magnitude of the impulse with which the object strikes 
the ground, stating clearly the unit of impulse employed. (H.S.D.) 

16. A bullet of mass m, moving with velocity v, strikes a block of mass 
M, which is free to move in the direction of the motion of the bullet, 
and is embedded in it. Show that the loss of kinetic energy is 

Mmv* 
2(M 4~ m)‘ 

If the block is afterwards struck by an equal bullet moving in the 
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17- 

V8- 

same direction with the same velocity, show that there is a further 
loss of energy equal to 

MHnv* 

2 (M -f 2 m) (M -f m) * 
(I.S.) 

A block of wood weighing i lb. is placed on a rough horizontal floor, 
the coefficient of friction between the block and floor being 0-4. A 
bullet of mass 1 oz. is fired with a velocity of 510 ft./sec. into the 
block. Find (a) the velocity with which the block and bullet begin 
to move together after the impact; (b) the distance which the block 
moves along the floor ; (c) the ratio of the energy lost during the im¬ 
pact to that lost through friction with the floor. (I.S.) 

From a gun of mass M lb., which can recoil freely on a horizontal 
platform, is fired a shell of mass m lb., the elevation of the gun being 
a. Show that the angle (<£) which the path of the shell initially 
makes with the horizontal is given by the equation 

tan <f> — (^ 1 -f tan a ; 

and further, assuming that the whole energy of the explosion is 
transferred to the shell and the gun, show that the muzzle energy 
of the shell is less than it would be if the gun were fixed in the ratio 
M: {M + m cos2</>). (Q.E.) 

19. A jet of water issues vertically at a speed of 30 ft./sec. from a nozzle 
o-i sq. inch section. A ball weighing 1 lb. is balanced in the air 
by the impact of the water on its underside. Show that the height 
of the ball above the level of the jet is 4 6 feet approximately. (Q.E.) 

20. The penetration of a half-ounce bullet, fired at 1000 ft./sec., into 
a fixed block of wood is 3 inches. 

If the bullet is fired at the same speed into a block of the same 
wood 2 inches thick (weighing 3 lb.) which is free to move, prove 
that the block will be perforated ; and find the velocity with which 
the bullet emerges. (Q.E.) 

"'Si. A fire engine is directing a horizontal jet through a nozzle 1 inch in 
diameter fixed to the engine. It is delivering 60 cu. feet of water 
per minute. What is the reaction in lb. wt. on the fire engine ? 

(Q.E.) 
22. A racing motor offers 16 sq. feet of area to wind pressure. If the 

density of air is 0*078 lb. per cu. foot., calculate the horse-power 
absorbed in overcoming wind resistance when the car is travelling 
at 70 m.p.h. against a head wind of 10 m.p.h. (Q.E.) 

23. A machine gun is fired backwards from the rear of an armoured car 
at the rate of 600 rounds per minute. The mass of each bullet is 
£ oz. and the muzzle velocity 2200 ft./sec. Find the driving power 
added to that of the car when the car is travelling at 40 m.p.h. 

(Q-E.) 
4S24T~A railway truck of mass 10 tons moving with a velocity of 6 m.p.h. 

strikes, and is at the same moment coupled to, another truck of mass 
5 tons previously at rest. The second truck has its wheels locked 
by brakes, the coefficient of friction between the wheels and the rails 
being 0*2. Find how far the trucks move after the impact. (Q.E.) 

25. A pile weighing 1 ton is being driven into the ground by blows from 
a weight of 10 cwt. which falls freely a distance of 8 feet on to the 
pile without rebounding. The pile is driven in 6 inches by one blow. 
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If the resistance of the ground is uniform, what is the amount of 
this resistance, and what is the time of penetration ? (Q.E.) 

26. A shell of mass m is fired from a gun of mass M which can recoil 
freely on a horizontal base, and the elevation of the gun is a. Prove 
that the initial inclination of the path of the shell to the horizon is 

27. 

tan-*[(i + |f)tan«]. 

Prove also that the energy of the shell on leaving the gun is to that 
of the gun as 

[M2 -j~ (M 4- tn)2 tan* a] : Mm, 
assuming that none of the energy of the explosion is lost. (I.S.) 

A shell, lying in a straight smooth horizontal tube, suddenly explodes 
and breaks into two portions of masses m and m'. If s is the dis¬ 
tance apart, in the tube, of the masses after a time t, show that the 
work done by the explosion is 

1 mm' 5* 

2 m -f m' * f** 
(H.S.D.) 

28. Prove that if a horizontal jet of water could be made to issue 
through a nozzle of 1 sq. inch orifice at the rate of 170 cu. feet 
per minute, it would exert a force about equal to the weight of a ton 
against an obstacle placed in its path ; and find the horse-power 
required to produce the jet. (A cubic foot of water weighs 62*3 lb.) 

(H.S.C.) 

29. A target of mass M is moving in a straight line with uniform velocity 
V. Shots of mass m are fired with velocity v in the opposite direc¬ 
tion so as to strike the target, becoming embedded in it. Find how 
many shots must be fired in order to make the target begin to move 
back. Find also the kinetic energy lost when the first shot strikes 
the target. (I.S.) 

30. A train of trucks is being started from rest, and just before the last 
coupling becomes taut the front part has acquired a velocity of 15 
m.p.h. If the part of the train now in motion weighs 72 tons and 
the last truck weighs 6 tons, find the jerk in the coupling in 
ft.-lb.-sec. units. (I.S.) 

31. A gun weighing 64 tons fires a shell weighing 800 lb. with a horizontal 
muzzle velocity of 2100 ft. /sec. What is the kinetic energy in 
ft. lb. of the gun as the shot leaves the muzzle ? What uniform 
retarding force in lb. wt. is required to check the recoil of the gun 
in 6 feet ? (H.S.D.) 

32. A jet of water of cross-section 3 sq. inches and velocity 40 ft./sec., 
impinges normally on a plane inelastic wall, so that the velocity of 
the water is destroyed on reaching the wall. Calculate in lb. wt. 
the thrust on the wall. (I S.) 

33. A bullet weighing 0 025 lb., when fired from a gun weighing 20 lb., 
has a muzzle velocity of 2400 ft./sec. What is the velocity of 
recoil of the gun and what is the total energy of the gun and bullet ? 

If the same bullet were fired from a gun weighing 10 lb., and 
if the total energy were the same as in the previous case, show that 
the muzzle velocity of the bullet would be about 1*5 ft./sec. less 
than before. (LE.) 

34. A bullet of mass m is fired with velocity v at a body of mass M, which 
is retiring from it with velocity V ; the bullet perforates the body 
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and emerges with velocity u. Show that the subsequent velocity 
of the body is 

„ , >n(v - «) 
^ + M • 

35- 

Find also the energy liberated and the resistance of the body to 
penetration, assuming this to be uniform and the thickness of the 
body to be a. (H.S.D.) 

A gun of mass M fires a shell of mass m horizontally, and the energy 
of the explosion is such as would be sufficient to project the shell 
vertically to a height h. Show that the velocity of recoil of the 
gun is 

2 m*gh i 

M(M -f m) 
(C.S.) 

36. A block of mass M rests on a smooth horizontal table and a bullet 
of mass m is fired horizontally into it. The penetration of the bullet 
is opposed by a constant resisting force. If the experiment is re¬ 
peated with the block firmly fixed, show that the depth of pene¬ 
tration of the bullet and the time whicli elapses before the bullet 
is at rest relatively to the block are in each case increased in the 

,. . tn 
ratio 1 +„. 

37. A pile weighing 1 ton is driven into the bed of a river by means of 
a falling weight of 112 lb., which is allowed to fall through 8 ft. If 
the pile penetrates 4 inches at each blow, find the mean resistance 
to penetration of the bed of the river. 

38. A shell of mass m is ejected from a gun of mass M by an explosion 
which generates kinetic energy E. Prove that the initial velocity 
of the shell is 

V( 2 ME \ 

(M -f m)m) 

[You may assume that at the instant of explosion the gun is free to 
recoil.] (N.U.3) 

§ 118. Impulsive Tensions in Strings. 

Suppose two particles, A and B (Fig. 61 a), to be connected by an 
inextcnsible string and to lie on a smooth horizontal table. 

Fig. 6i«. 

Then, if an impulse P is applied to one of them (say B), we 
cannot tell at once in what direction B will move (unless the direc¬ 
tion of P is along or perpendicular to AB), as an impulsive tension 
is produced in the string and this also acts on B, which is therefore 
subject to two impulsive forces. We do know, however, that A must 
start to move in the direction of the string AB, and that its velocity 
is equal to the component of B's velocity in this direction. 
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We know also that the resultant momentum of A and B in the 
direction of the blow is equal to P, while the resultant at right 
angles to this direction is zero. 

Example. 

Two balls A and B of masses 4 lb. and 2 lb. respectively, lie on a 

smooth horizontal plane and are connected by a taut inextensible string ; 

B is due E. of A. B is struck in such a manner that, if it were free, it 

would move N.E. with a velocity of 21 ft.,sec. Prove that B actually 

moves ivith a velocity of about 15*65 ft.jsec. in a direction about 

710 34' N. of E. Also compare the magnitude of the impulsive tension in 

the string with that of the bloiv. (I.E.) 

Fig. 62. 

The magnitude of the blow is 42 units of impulse, and its direction 

N.E. Let u, v be the components of B’s velocity along and perpen¬ 

dicular to AB (Fig. 62). The velocity of A is then u along AB. 

The momentum in the direction AB is equal to the component of 

the blow in that direction, i.e. , 
Vz 

4« + 2U = JL, 

V2 

the momentum perpendicular to AB is equal to the component of the 

blow perpendicular to AB, i.e. 

42 

Vz 

2V mm il, 
V2 

u Z_ ft./sec. 
Vi 

v =* ft./sec. 
Vz 

It V is the resultant velocity of B, 

K* = 4? + 44? « 4?o _ 
222 

.*. V == 15*65 ft./sec. 

If 9 is the angle the direction of V makes with the east, 

tan 0 — - =3, 
u 

0 « 710 34' nearly. 
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The impulsive tension in the string generates a velocity u in A, i.e. 

7 a velocity of “ ft./sec. in a mass of 4 lb. : 

28 
the tension is — units of impulse, 

V2 

impulsive tension 28 __ \/2 

blow ~~ 42 v'2 3 

§ 119. When two masses, connected by an inextensible string 
passing over a smooth pulley, are in motion, and the descending one 

is stopped, we know that the other goes on moving freely under 
gravity until the string again becomes taut. This was illustrated 
by examples in the last chapter. We have now to consider what 
happens after the string becomes taut again. The common velocity 
of the two masses after the jerk is less than that of the single mass 
which was moving before the string became taut, since the momen¬ 
tum of this mass has to be shared between the two. 

We can also calculate the change in velocity produced when one 
of the masses picks up an extra mass previously at rest. 

§ 120. Example (i). 

Two masses oj m and 2m lb. are connected by a light inextensible string 

passing over a smooth pulley. Find the acceleration of the system. If 

the mass 2m hits the ground (without rebounding) after the masses have 

been moving for 3 seconds, find how much time elapses from the instant 

this happens until the system is instantaneously at rest with the string taut. 

If / be the common acceleration, and T the tension in the string, 

2 mg — T = 2mf, 

T — mg — mf, 

3m/= mg, or / = |. 

After 3 seconds the common velocity v is given by 

v 
!•» 

32 ft./sec. 

The m lb. mass moves freely under gravity, starting with this velocity, 
and the time (/) taken to go up and return to its initial position is 
given by 

o = 32/ . 32/*, 

t = 2 seconds. 

When the string again becomes taut its velocity is again 32 ft./sec., 
and its momentum is 32m. 

Hence, if V is the common velocity after the jerk, 

3 mV — 32 w, 

V = —2 ft./sec. 
,3 
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The system starts moving with this velocity, but, as the heavier 
0 

mass is moving upwards, there will be a retardation of - equal to the 

original acceleration. 
Hence the time t' taken to come to rest is given by 

o = 31-it'. 
3 3 

/' = i second. 

Hence the total interval between the impact of the 2m mass and 
the system coming to rest is 

t -j- /' = 3 seconds. 

Note.—If the masses are left to themselves, the heavier one will 
descend and hit the plane again and the motion will be repeated in¬ 
definitely. The time taken for it to hit the plane the second time is, 
however, only J of the original time, since it has only to acquire ^ of 
the velocity it had in the first case. When the heavier mass is jerked 
up again the common velocity is again divided by 3, and so the time 
to rest will also be divided by 3. The interval from the instant when 
the heavier mass begins to descend until the system is again at rest in 
each repetition of the motion is J of that in the preceding case. The 
total time until the heavier mass remains in contact with the ground 
is an infinite G.P. of common ratio \. 

Example (ii). 

Two weights of 9 and 7 lb. are fastened to the ends of a light thread 

which passes over a smooth pulley, the two portions of the string being 

vertical. The system is released from rest, and after moving for 2 seconds, 

a weight of 5 lb. at rest is suddenly attached to the 7 lb. weight. Find when 

the system will come to rest again. How far will the original weights have 

moved altogether ? (I.S.) 
Let / be the acceleration of the system, and T the tension in the 

string, then 
9g - T = 9f, 

T - 7g = 7f> 

16/ = 2 g, 

•••/= te- 

After 2 seconds the velocity v is 

v = \g . 2 = 8 ft./sec. 

The momentum is 

16 x 8 = 128 lb. ft. units. 

If V is the common velocity after picking up the 5 lb. mass, 

21V = 128, 

... v = — ft./sec. 
21 
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The masses are now 9 and 12 lb., and if F is the retardation, 

12g — T' — 12 F, 

T' — 9g = 9 F. 

21F = 3g, 

■■■ F = Iff. 

The time, i, taken for the system to come to rest is given by 

0 - 128 
21 7 

X — — 21 32 

During the first 2 seconds the original weights move s, feet where 

si = - X If X 4 = 8 feet. 
2 o 

During the last i- seconds, they move st feet where, 

128 4 1 32 16 , , , 

s* = ^rx3 5XVx 9 

Hence the total distance moved is i2B4n feet. 

Example (iii). 

A body of weight W lb., moving due N. at u ft. /sec., is suddenly caused 

to move N.W. at a speed of v ft. /sec. What is the blow or impulse it has 

received ? If the change in velocity had been gradual under a constant 

force and had taken a time T to effect the change, find the acceleration, and 
u 

show that, if v — and x and y be the displacements N and W at any 

time, (y -f x)2 = 4uTy. (I*E«) 
In this problem it will be best to consider the components of the 

impulse in directions N. and W. 

W-^0 
Fig. 63. 

Let ON (Fig. 63) represent north and OW west. 

The velocity v in direction north-west has components north 
y/2 

and — west. 
V2 

The change in velocity in direction ON is —-u, and in direction 
\'2 

owis 4-. 
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Hence the components of impulse are, 

\ AW v u \ and 
W ( v 

g W2 

The resultant impulse is 

g V 2 

* V* 

2UV Vs 

' V~2 + 2* 

£ x 
>8 _ 2UV 

V* 

If Fa, Fa are the components of the constant force along ON and 
OW respectively, 

W( _v_ 

'. ' ~ £ 
FXT 

g W2 
- , and Far : 

W v 

V~2 
The component accelerations are 

Fig F*g 
W , and 

±(JL. 
T\V 2 -) 

and ^ . 
t; 

Vi* 

The resultant acceleration is 

1 lv8 
?V *+ 

2M^ l>2 

~y/2 2’ 

I 

TA 

V2UV 

At time t the displacements x and y are given by 

i i / v \ 

x = ut + fT\v~2~U)1- 
I I 

and if 

y 2 * t * \/ 2 

u 

t*. 

v — —T”, # 
V2' 

= ttf 

« 
4^ 

*2, 
v - 4r‘ 

V + * ass 

(y -f x)% = w2/2 =s 4wTy. 

EXAMPLES XIX. 

1. Two masses of io oz. and 8 oz. are connected by a light string passing 
over a smooth fixed pulley. The system starts from rest and the 
8 oz. mass, after it has risen 3 inches, passes through a fixed ring on 
which rests a bar of mass 4 oz., and so carries the 4 oz. mass on with 
it. Show that the 4 oz. mass will be carried nearly 2 J inches above 
the ring. (I.A.) 

2. Two particles mx and m, (mx > mg), connected by a light inextensible 
string passing over a smooth fixed pulley, are left free. If the 
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heavier particle reaches the ground after descending a distance 
a feet, after how many seconds will it be jerked off the ground, 
and with what velocity will it begin to rise ? (I.S.) 

3. Two masses, each of 2 lb. connected by a string passing over a 
smooth pulley, are moving vertically with a velocity of 2 ft./sec. 
The ascending mass passes through a fixed ring without touching 
it, and removes from the ring a mass of 4 oz. which it carries with it. 
hind the height to which the 4 oz. mass is carried, and the time that 
elapses before it is again left on the ring. (I.A.) 

4. Two masses 3 M and M are connected by a cord passing over a pulley, 
and the whole is at rest with the former on the ground. A third 
mass M falls through a height h, strikes the second mass, adheres to 
it, and sets the whole in motion. Prove that the mass 3M will rise 

from the ground to a height (I.A.) 

5. Two masses of 3 lb. and 5 lb. are tied to the ends of a string 13 feet 
long. The string passes over a smooth peg 8 feet above a horizontal 
table, the 5 lb. mass lying on the table, the 3 lb. mass being held 
close to the peg. If the 3 lb. mass is allowed to fall, show that it 
will not reach the table. 

Find also the greatest height reached by the 5 lb. mass and the 
time it is in motion before it reaches the table a second time. (I.A.) 

6. Two masses m and M are connected by a light string passing over a 
smooth weightless pulley vertically above a smooth inelastic hori¬ 
zontal plane, M being held so as to prevent motion. If M is released 
and takes t seconds to reach the plane, show that the system will 
first be at rest instantaneously (with the string taut) after a time 

3 Mt 
M ~f m 

and that the system will be finally at rest with M on the plane 
after a time 3/. (Ex.) 

7. Two particles of masses 3 oz. and 5 oz. are connected by an inexten- 
sible string of length 14 feet which passes over a small smooth pulley 
at a height of 10 feet above a table on which the heavier particle 
rests, vertically beneath the pulley. The other particle is raised 
to the pulley and allowed to fall. Find the velocity of the system 
after the jerk, and the time at which it will first come to rest. (I.S.) 

8. Two masses of 2 lb. and 3 lb. are fastened to the ends of a light string 
of length 2 feet, and placed on a smooth horizontal shelf 5 feet above 
the ground. The 2 lb. mass is placed at the edge of the shelf, and 
the 3 lb. mass 1 foot away from the edge, the line joining the two 
masses being perpendicular to the edge. If the 2 lb. mass is gently 
pushed over the edge, find the time that elapses before the 31b. mass 
strikes the ground. (H.S.D.) 

9. Two equal masses (M) are connected by a light inextensible string 
which passes over a smooth peg, the masses hanging freely under 
gravity. A rider of mass m is placed on one of these masses. When 
this mass has descended through a distance h the rider is raised off 
the mass. At the same instant the other mass picks up from rest 
a precisely similar rider. Show that the system will next come to 
rest when the first mass has descended a further distance 

4M2/» 
(2M -f m)*' 

(H.S.C.) 
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10. Masses A, of 3 lb. and B, of 2 lb., are connected by an inelastic string 
2 feet long, which passes over a small smooth pulley fixed at the top 
of a smooth inclined plane of length 2 feet (measured along the slope) 
and height 4 inches ; A being on the plane at its highest point and 
B on the ground vertically below the pulley with the string slack. 
Prove that, if A is let go, the system will come to rest again when A 
has reached the bottom of the inclined plane. (H.S.D.) 

11. A mass A of weight W lb. lying on a smooth table, a feet from the 
edge, is pulled off by means of a light inextensible cord, attached to 
it and passing over the edge (at right angles to the edge) and having 
a mass B of weight w lb. hanging from its lower end. Find the 
velocities of the weights when the edge is just reached and also just 
after A has left the table. (H.S.C.) 

12. A particle of 2 oz. mass moving at 5 ft./sec. in a given direction is 
struck by a blow which deflects its direction of motion through 6o° 
and doubles its velocity. If a particle at rest, of 9 oz. mass, were 
struck an equal blow, in what direction relative to the direction of 
the first particle, and with w hat velocity would it begin to move ? 
Also, if the velocity of the former particle were reversed before the 
blow, what would be its velocity and direction after the blow ? (I.E.) 

13. A mass M rests on a smooth table and is attached by two inelastic 
strings to masses m, m' (m' > m), which hang over smooth pulleys 
at opposite edges of the table. The mass m', after moving a distance 
x from rest, comes in contact with the floor (supposed inelastic). 
Show that m will continue to ascend through a distance y given 
by 

y (m' — m)(M -f m) 

x ~ m(M -f 1H T «*') 

Show further that when m' is jerked into motion again as m falls it 
will ascend a distance 

x(M + m)2 

(M -f m-f w')2’ 
(C.S.) 

14. A battleship of symmetrical form and mass 30,000 tons is moving at 
10 m.p.h. and fires a salvo of all its eight guns in a direction perpen¬ 
dicular to its motion. If the shells weigh 15 cwt. each, have a 
muzzle velocity of 2000 ft./sec., and are fired at an elevation of 30°, 
show' that the motion immediately after firing makes an angle of 
about i° 21' with that before. (C.S.) 

15. A train consists of an engine and tender, of mass M tons, and two 
coaches, each of mass m tons. At the start the buffers are in con¬ 
tact, and when the coupling chains are tight the buffers are a feet 
apart. The train starts with the engine exerting a constant tractive 
force F tons weight. Neglecting resistance, show that the second 
coach starts with velocity v ft./sec., where 

v2 = 2 ga . 
F(zM + m) 

(M ~b 2m)1' 
(C.S.) 

16. Three equal particles A, B, C of mass m are placed on a smooth 
horizontal plane. A is joined to B and C by light threads AB, AC, 
and the angle BAC is 6o°. 

An impulse I is applied to A in the direction BA. Find the 
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initial velocities of the particles and show that A begins to move in 
a direction making an angle 

tan-1^, 
7 

with BA. (C.S.) 

17. A particle of mass m lies on a smooth horizontal plane and is con¬ 
nected by smooth light inextensible strings, both taut, with particles 
of masses m' and m* lying on the plane, the angle between the 
strings being 2a. A blow is given to m in a direction bisecting the 
angle 2a so as to jerk the other masses into motion. Show that the 
mass m begins to move in a direction 

- m*) sin a cos a“] 

(m' 4 m") sin2 aJ 

with the bisector of the angle between the strings. Also find the 
kinetic energy of the system. (C.S.) 

18. Four equal particles of mass m at the corners of a square are con¬ 
nected by light strings forming the sides of the square. If one par¬ 
ticle receives a blow P along a diagonal outwards, show that its 
initial velocity is 

P 

tan -1 
f- Ln 

and find the initial velocities of the other particles. (C.S.) 

19. A mass m is connected by a string passing over a smooth pulley with 
a mass m' which is also joined by a string of length c to a mass m* ; 
the system is at rest and is released when m" is in contact with m' 
so that m* begins to fall freely and the masses m and m' move as 
in Attwood’s machine ; show that the velocity with which all the 
masses will move after both strings become taut is 

20. 

22. 

m 4 m' 4 m ■V go 
m 4 m' 

given that m > m' 4 m*. (H.S.D.) 

Three masses mlt m2, and tnz lie at points A, B, and C upon a smooth 
horizontal table ; A and B, B and C are connected by light inexten¬ 
sible strings, and the angle ABC is obtuse. An impulse / is applied 
to the mass m9 in the direction BC ; find the initial velocities of the 
masses and show that the mass mt begins to move in a direction 
making an angle 0 with AB where 

m2 tan 0 4 (»h 4 w*a) tan B ~ o. (C.S.) 

21. Three small bodies of masses 4, 5, 6 oz. respectively lie in order in 
a straight line on a large smooth table, the distance between con¬ 
secutive bodies being 6 inches. Two slack strings, each 2 feet in 
length, connect the first with the second, and the second with the 
third. The third body is projected with a speed of 15 ft./sec. 
directly away from the other two. Find the time which elapses be¬ 
fore the first begins to move and the speed with which it starts. 
Find also the loss of kinetic energy. (H.C.) 

A set of n trucks with s feet clear between them are inelastic and are 
set in motion by starting the end one with velocity V towards the 
next. Find how long it takes for the last truck to start, and the 
value of the final velocity. (C.S.) 



IMPACT OF ELASTIC BODIES 149 

23. Two particles of masses 8 lb. and 6 lb. are lying on a smooth table 
and are connected by a slack string. The first particle is projected 
along the table with a velocity of 56 ft./sec. in a direction directly 
away from the second particle. Find the velocity of each particle 
after the string has become taut, and also find the difference between 
the kinetic energies of the system when the string is slack and when 
it is taut. 

If the second particle is attached to a third particle of unknown 
mass by another slack string, and if the velocity of the system after 
both strings have become taut is 28 ft./sec., find the magnitude 
of the unknown mass. (N. U. 3) 

24. What do you understand by the statement “momentum is a vector “ ? 
In a square ABCD, the middle point of CD is X. Bodies whose 
masses are 3, 2, 4, 1 lb. moving along AX, BX, CX, DX respectively 
with speeds 5, 6, 3, 8 ft./sec. collide simultaneously at X and re¬ 
main united. Determine, preferably by graphical methods, the 
new velocity and also the loss of kinetic energy. 

If only the first three bodies remain united after the collision, 
and the fourth moved off in the direction BD with a speed 6 ft./sec., 
find the final velocity of the composite body. (N.U.4) 

§ 121. Impact of Elastic Bodies. 

When two spheres of any hard material collide they separate 
ag&in, and, in many cases, if they are moving in opposite directions 
before impact, the velocity of one of them is reversed. 

The balls are slightly compressed, and, as they generally tend 
to return to their original shape, they rebound. 

The time during which they are in contact may be divided into 
two parts, (i) the period of compression, and (ii) the period of 
restitution, during which they are recovering their shape. The 
property which causes bodies to recover their shape and here causes 
the rebound after collision is called Elasticity. If a body does not 
tend to recover its shape it will cause no force of restitution, and 
such a body is said to be Inelastic. 

In dealing with the impact of elastic bodies we shall consider 
that they are smooth, so that the only mutual action they can 
have on each other will be along the common normal at the point 
where they touch. 

Usually the bodies are considered to be smooth spheres, and the 
mutual action between them is then along the line joining their 
centres. 

When the direction of motion of each body is along the common 
normal at the point where they meet the impact is said to be 
direct. 

When the direction of motion of either, or both, is not along 
the common normal, the impact is said to be oblique. 

Suppose two bodies of masses ml and m2, moving with velocities 
ut and u2 respectively, impinge directly. 

vol. 1.-6 
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If vx and v2 are the velocities after impact, the principle of 
momentum gives us the equation 

mlvl + m2v 2 = + m2u2 . . (i) 

In the cases dealt with previously, the bodies have kept together 
after impact, so that v1 = v2, and one equation is sufficient to de¬ 
termine this velocity. 

When the bodies separate after impact this one equation is not 
sufficient to determine vx and v2. 

This is only to be expected as the values of v1 and v2 will depend 
on the material of the bodies, and the principle of momentum takes 
no account of this. 

There is no way of calculating the effect of the elasticity of the 
bodies, and we have to fall back on the results of experiments. 
Newton investigated the rebound of elastic bodies experimentally, 
and the result of these experiments is embodied in the following 
law:— 

§ 122. Newton’s Experimental Law. 

When two bodies made of given substances impinge directly, the 

relative velocity after impact is in a constant ratio to the relative velocity 

before impact, and in the opposite direction. If the bodies impinge 

obliquely, the same result holds for the component velocities along the 

common normal. 

Hence, if ul9 u2 be the velocities before, and vlf v2 the velocities 

after impact, all measured in the same direction, 

vi - vz _ c 

«1 - U2 

where e is a constant depending on the material of which the bodies 

are made, and is called the coefficient of restitution (sometimes called 

the coefficient of elasticity). 
This law, therefore, gives us a second equation, 

v, -v2= - e(u, — «2) . . . (ii) 

and by means of this and equation (i) (§ 121) we can find vx and v2. 

The value of e differs considerably for different bodies ; for two 
glass balls it is about 0-9 ; for ivory o*8 ; whilst for lead it is 

about 0-2. 
Bodies for which e is zero are said to be inelastic, whilst for 

perfectly elastic bodies e = 1. 
Note.—Newton’s Law, like many experimental laws, is not 

accurately true. The value of e for given bodies does alter slightly 
for very large velocities, and in any case the law must only be 

regarded as an approximate one. 
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§ 128. Direct Impact of Two Spheres. 

Let mv m2 be the masses, uv u2 the velocities before impact, 

vv v2 the velocities after impact, and e the coefficient of restitution. 

Fig. 64. 

We then have as above, 
by the principle of momentum, 

myOY -f m2v2 = mxu} + m2u2 . . (i) 

by Newton's Law, 

vx — v2 » — e(ux — u2) . . . (ii) 

Multiplying (ii) by m2, and adding, 

(ml + m2)vx = (m1 — em2)u1 + m2(i + e)u2- 

Multiplying (ii) by mlt and subtracting, 

(m1 + m2)v 2 = mx( 1 + e)ut + (m2 — emt)u2. 

These equations give vx and v2. 
If one sphere, say m2, is moving originally in a direction opposite 

to that of mv we must change the sign of u2 in each of the equations 
(i) and (ii). 

It is most important, however, that we should assume that vx 
and v2 are in the same direction. We fix on the direction we are 
going to call positive, usually that in which the body with greater 
momentum is moving, and then assume that both tq and v2 are in 
this direction. 

If either of them is really in the opposite direction, the value 
obtained for it will have a negative sign. 

In writing down equation (ii) great care must be taken to sub¬ 
tract the velocities in the same order on both sides. It is best to 
draw a diagram showing clearly the positive direction and the 
directions of the velocities of both bodies. 

Example (i), 

A ball of mass 10 lb., moving at 5 ft. jsec., overtakes another of mass 

4 lb., moving at 2 ft.jsec. in the same direction. If e — find the velo¬ 

cities after impact. 
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Pos/tire cf/recthn 

Fig. 65. 

Let vt be the velocities of the 10 lb. and 4 lb. spheres respec¬ 
tively after impact. By the principle of momentum, 

1014 + 4t<, = 10 x 5 + 4 X 2 = 58, 

and by Newton's Law, 

vt — V, = - i(5 - 2) = - y ; 

.*. 1414 = 52, or vx — 35 ft./sec., 
and i4«a = 73, or v. = 5,*, ft./sec. 

Example (ii). 

If the 4 lb. ball in thr previous question be moving in a direction 

opposite, to that of the 10 lb. ball, find the velocities after impact. 

Fig. 66. 

The equations now become, 

1074 -f 414 = 10 X 5 — 4 X 2 = 42, 
— V, = — J(5 + 2) = - l. 

.*. 1414 — 28, or 14 = 2 ft./sec., 

and 141/, — 77, or vt = ft./sec. 

Example (iii). 

6a// 0/ mass 8 lb., moving with a velocity of 10 ft./sec., impinges 

directly on another of mass 24 lb.t moving at 2 ft./sec. in the opposite 

direction. If e = find the velocities after impact. 

Fig. 67. 

The equations here are, 

8vj + 241;* = 8 x 10 — 24 x 2 = 32, 
vx — v%^ — £(10 4- 2) = — 6, 
/. 3214 = 32 — 144 = — 112, 

... 1/4= — = — 3i ft./sec., 
also 32t/a = 32 4- 48 = 80, 

... vt — = 2$ ft./sec. 

The negative sign of 14 shows that the direction of motion of the 
8 lb. ball is reversed, as we took the direction left to right as positive. 
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and assumed vx to be in this direction. Since vt is positive, the 24 lb. 

sphere moves from left to right after impact, so that its direction of 

motion is also reversed. 

Example (iv). 

Three smooth spheres A, B, C, of masses 3m, m, 2m respectively, lie 

on a smooth table with their centres in a straight line. A is projected to 

impinge on B ; show that, if the coefficient of restitution is \, B is reduced 

to rest after its first impact with C ; and further, that impacts will cease 

with the second impact of B on C. (I.S.) 

Let u be the initial velocity of A, vx and v2 the velocities of A and 

B after impact, then 
3mvx -f mvt — 3ww, 

Vi - vt = - \u ; 
41^ = 2\u, or vx — %u, 

also, 4^, — !Ju, or v2 — J*u ; 

B moves on faster than A, and strikes C. If v/, v/ be the velocities of 

B and C after impact, 

mv/ -f 2mv/ = %ntu, 

v/ - v«' = - i. lu» 
... 3v/ = o, 

i.e. B is reduced to rest, 

also 3*V = (li + r‘V)M = Uu> 

■■■ v,' = ,V «• 

After the first impact A moves on with velocity \u, and strikes 13 
again after the latter has been reduced to rest. If Vlt Vs be the velo¬ 

cities of A and B after impact, 

3mVt -f- mV2 — 3m . fu, 
Vx - Vt = - i. 

These equations give, 

Vi — 

and V2 = u. 

The latter is greater than the velocity of C u), so that B overtakes 

C again, if V/t V/ be their velocities after impact, 

mV/ -f 2mV/ = 4- T^2mu = yjww, 
Vf Va = 

These equations give 

V/ = and V/ — 

The velocities of A, B, C are now 

or A°s«- Hu' °r and 
in the same direction, and no more ithpacts can occur. 

§ 124. Loss 0! Kinetic Energy due to Direct Impact. 
Let mv mt be the masses, ux and «2, vt and v2 their velocities 

before and after impact, and e the coefficient of restitution. 
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Wo have, as before, 

m1v1 + m2v2 = mlul + m2u2 . . . (i) 

vi ~~ v2 = ““ *(«i “ «a) • • • (“) 

Square both equations, multiplying the square of the second by 
m1m2, and add the results ; we get 

(Wj2 + + (m22 + = (imxux + w2w2)2 

+ £2m1w2(«1 — w2)2. 

ml(m1 + m2)^2 + m2(m2 + mx)v22 = (m^ + w2w2)2 

+ m1m2(ul — w2)2 + — «2)2 — mjn2(ux —u2)2, 
(Wj -f wJfWjV!* + m2v22) — (wj + ^(WjWj2 + w2w22) 

— w1m2(«1 — w2)2(i — <?2), 

+ |m2^22 = IwjV + im2w22 — - «2)- 
Wj m2 

and Jw^2 + \m2v 22 

is the kinetic energy after impact, while 

\*njWj2 + |w2w22 

is the kinetic energy before impact, 
the loss in kinetic energy is 

m1m2 
mx f m («i — “a)2!1 — «2)- 

We see that there is always a loss unless e — i, when this ex¬ 

pression vanishes. 
In many numerical examples it is easier to find the velocities 

after impact, and subtract the kinetic energy after impact from 
that before. The above is the shortest way of obtaining the value 
for the loss in the general case. 

Example (i). 

A sphere of mass i lb., moving at to ft./sec., overtakes another sphere 
of mass 5 lb. moving in the same line at 3 ft./sec. Find the loss of kinetic 
energy during impact, and show that the direction of motion of the first 
sphere is reversed. (Coefficient of restitution = 0*75.) (H.S.C.) 

+ 

Fig. 68. 

If vx and v, be the velocities of the 1 lb. and 5 lb. spheres after 

impact, 

Vi + 5vt = 10 -F 15 = 25, 

- i(io - 3) = - V. 
... 6vt = 25 — = — J, or vx as — ^ ft./sec., 

6vt = 25 + y — or v% » ^ ft./sec. and 
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The value of vx is negative, showing that the direction of motion 

of the first sphere is reversed. 

It must be remembered that the direction of motion does not affect 

the value of the kinetic energy. In this case the kinetic energy after 

impact is the same as if both spheres were moving in the original direc¬ 

tion. Algebraically, the value of v* is the same whether v is positive or 

negative. 

The kinetic energy before impact is 

i . i . io> + $ . 5 . 3* = 50 + = id# ft. pdls. 

The kinetic energy after impact is 

i1 • pi + i • 5 • = --3 (5 + 14641) = 63^? ft. pdls. 
24* 24* 2 . 24* 192 

The loss 

= 72J — 63I2? = 8122 ft. pdls. 
192 192 

Example (ii). 

Two masses, m and n, are moving in the same straight line, prove that 

their kinetic energy is 

Hm + n)V' + 
m 4- n 

where V is the velocity of their centre of mass, and v is their relative velocity. 

If there is a direct impact between the masses, prove that their loss of 

kinetic energy is 

i m -f nK 
e*)v*. 

where e is their coefficient of restitution. (LS.) 

If ux and ut are the velocities of m and n, the velocity V of their 

centre of mass is given by 

mux + nu8 

m -b n ‘ 

and their relative velocity v = ux — u%. 

If E is their kinetic energy 

E = \mux% -f \nu%*, 

.-. (m 4- n)E — tyn*ux* -f 4- tynn(ux* 4~ wa*), 

— \{mux + nut)% + \mn{u^ 4- «22) — ntnuxuit 

= i(wMj 4- nut)1 4- \mn(ux — ut)*, 

.*. (m + n)E = \(m 4- n)*V* + \mnv%, 
mn 

Now the velocity of the centre of mass is unaffected by impact 

between the masses, hence the first term remains unaltered. By 

Newton's Law the relative velocity v is multiplied by e and reversed, 

i.e. it becomes — ev. 
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Hence, the second term becomes, after the impact. 

i; 1 m -f n 

and the loss in kinetic energy is 

e*v*. 

\ v* (i - e*) 2 m -f- n v ' 

EXAMPLES XX. 

1. A sphere of mass 6 lb., moving at 4 ft./sec., overtakes another sphere 
of mass 4 lb., moving in the same direction with velocity 2 ft./sec. 
If e — £, find the velocities after impact. 

2. A ball of mass 10 lb., moving at 8 ft./sec., overtakes another of 
mass 8 lb., moving in the same direction at 5 ft./sec. If e = £, 
find the velocities after impact. 

3. A ball of mass 10 lb., moving at 8 ft./sec., impinges directly on a 
ball of mass 8 lb., moving in the opposite direction at 4 ft./sec. If 
e = i, find their velocities after impact. 

4. A ball of mass w, moving at 7 ft./sec., overtakes another of mass 2w, 
moving in the same direction at 1 ft./sec. If e = J, show that the 
first ball will remain at rest after impact. 

5. If two perfectly elastic spheres, of equal mass and moving in opposite 
directions, impinge directly, show that they will exchange velo¬ 
cities. 

6. Two spheres of masses m and tn\ and coefficient of restitution e, 
impinge directly. Prove that the momentum transferred from one 
sphere to the other is 

-f e) (relative velocity before impact). (I.S.) 

7. A ball of mass mXt moving with velocity vlt impinges directly on a 
ball of mass mt lying at rest, and the second ball then impinges 
directly upon a third ball of mass ms, which is also at rest. If the 
coefficient of restitution of the first pair is e$ and that of the second 
pair is e't find the velocities of all three balls immediately after these 
impacts. (I.E.) 

8. Two spheres of masses 2 and 3 oz. are moving in their line of centres 
towards each other with velocities of 24 ft./sec. and 30 ft./sec., 
and their coefficient of restitution is f. Find their velocities after 
impact, and the amount of kinetic energy transformed in the 
collision. (I. A.) 

9. If the velocities of two spheres before direct impact are given, show 
that the impulse which each sphere receives varies as 

(1 -f e)mm' 
m + m' ’ 

where e is the coefficient of restitution, and w, m' are the masses of 
the spheres. (I.A.) 

10. Two particles are moving in the same straight line. Express their 
kinetic energy in terms of their masses, their relative velocity, and 
the velocity of their centre of gravity ; and hence, or otherwise, 
show that, if the particles are inelastic, kinetic energy is always 
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lost by their impact. Two particles of masses m and 14m are 
moving with velocities 6u and u respectively, and the coefficient of 
restitution between them is 0-5. Show that, after impact, the 
kinetic energy gained by one equals half that lost by the other. 

(I.S.) 

11. A mass of 4 lb.f moving at 20 ft./sec., overtakes a mass of 3 lb. 
moving in the same direction at 15J ft./sec. Five seconds after 
the impact the 3 lb. mass encounters a fixed obstacle, which reduces 
it to rest. Assuming the coefficient of restitution between the 
masses to be £, find the further time that will elapse before the 4 lb. 
mass strikes the 3 lb. mass again. (H.S.D.) 

12. A truck weighing 10 tons, moving at 8 ft./sec., impinges on another 
truck at rest which weighs 5 tons, and after impact the speed of the 
second truck relative to the first is 2 ft./sec. Determine in ft. lb. 
the loss of kinetic energy due to the impact. (I E ) 

13. A sphere of mass 3 lb., moving with a velocity of 7 ft./sec., impinges 
directly on another sphere, of mass 5 lb., at rest; after the impact 
the velocities of the spheres are in the ratio of 2:3. Find the 
velocities after impact and the loss of kinetic energy. (H.S.C.) 

14. Three balls A, B, C, of masses 3w, 2w, 2m, and of equal radii, lie on 
a smooth table with their centres in a straight line. Their coeffi¬ 
cient of restitution is J. Show that, if A is projected with velocity V 
to strike B, there are three impacts, and that the final velocities 
are 

(50. 57. 60) y (H.C.) 

15. Two trucks, weighing respectively 5 tons and 3 tons, are standing, 
on the same level set of rails. If the heavier truck impinges on the 
lighter, which is at rest, with a speed of 5 ft./sec., and the velocity 
of the lighter relative to the heavier after they separate is 3 ft./sec., 
find the actual speeds of the two trucks after they separate, and 
calculate the number of foot-pounds of kinetic energy lost by the 
impact. (H.C.) 

16. A, B, C are three exactly similar small spheres at rest in a smooth 
horizontal straight tube. A is set in motion and impinges on B. 
Show that A will impinge on B again after B has impinged on C, 
and show that there will be no more impacts, if e, the coefficient of 
restitution between the spheres, is not less than 3 — \/8. (H.C.) 

17. Three small exactly similar spheres A, B, C are at rest in a smooth 
straight horizontal tube. The coefficient of restitution between 
any two of the spheres is 0*5. A is projected towards B with a 
velocity u. 

Determine the velocities of the three spheres after B has impinged 
on C, and A has impinged a second time on B, and show that there 
will be no more impacts. (H.C.) 

18. A truck weighing 5 tons is moving on a set of level rails at the rate 
of 5 ft./sec., and impinges on a second truck weighing 10 tons, 
which is standing at rest on the same rails. If after the impact the 
second truck moves on at the rate of 2 ft./sec., find the rate at which 
the first truck moves after the impact, and calculate in ft. lb. the 
amount of kinetic energy lost by the impact. (H.C.) 

6# 
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19. The velocities of two spheres before impact are represented in magni¬ 
tude and direction by lengths OP and OQ, those after impact by 
Op, Oq (the points O, P, Q, p, q, being in a straight line). 

Prove that the ratio of Qq to Pp is equal to the ratio of the masses, 
and that the ratio QP to pq is the coefficient of restitution. (I.S.) 

20. Two spheres impinge on each other directly, and the impulse between 
them is R. Just before impact the velocity of their common centre 
of gravity is U, and the velocity of the faster moving sphere relative 
to this centre of gravity is Ux. Show that the kinetic energy lost 
by this sphere is 

iR[2U -{- (1-*)£/,]. 

where e is the coefficient of restitution between the spheres. (I S.) 

21. Two smooth spheres of masses m and m' impinge directly, their 
relative velocity just before impact being v, and the coefficient of 
restitution e. 

Prove that the loss of kinetic energy due to the impact is 

1 wV(i-e*) (H.S.D.) 
2 m -f- m' 

22. A ball overtakes another ball of m times its mass, which is moving 

with -th of its velocity in the same direction. If the impact reduces 
n 

the first ball to rest, prove that the coefficient of restitution is 

m -f- n 

mn — m 

and that m must be greater than —. (H.S.D.) 
n — 2 

23. Two equal spheres A, B lie in a smooth horizontal circular groove at 
opposite ends of a diameter. A is projected along the groove and 
at the end of time tQ impinges on B. Show that the second impact 
will occur at a further time 

2^o 

e * 

where e is the elastic coefficient. (C.S.) 

24. Two equal spheres of mass 9m are at rest, and another sphere of mass 
m is moving along their line of centres between them. How many 
collisions will there be if the spheres are perfectly elastic ? (C.S.) 

25. A railway truck is at rest at the foot of an incline of 1 in 70. A second 
truck of equal weight starts from rest at a point 1000 feet up the 
incline, and runs down under gravity. The trucks collide at the foot 
of the incline, the coefficient of restitution being jL Find how far 
each truck travels along the level, the frictional resistance for each 
truck being 16 lb. wt. per ton, both on the incline and on the level. 
Where the incline meets the level, the rails are slightly curved, each 
in a vertical plane, so that there is no vertical impact, and at the 
instant of collision both trucks are on the level. (C.S.) 

26. Two imperfectly elastic spheres, of weights W and 2 W, collide 
directly. Just before the impact the lighter sphere is moving with 
velocity 9 ft./sec., and the heavier with velocity 2 ft./sec. in opposite 
directions. The smaller sphere is brought to rest by the impact. 
Find the coefficient of restitution, and the velocity of the larger 
sphere after the impact, (H.S.D-,) 
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27. Three spheres of equal mass lie in a straight line. If the first sphere 
be given a velocity u, show that the velocities of the spheres, after 
two impacts have taken place, are 

£(1 — e)u, J(i — e2)u, and }(i + e)*u, 

where e is the coefficient of restitution. (I.S.) 

28. A, B, C are three small beads of equal mass threaded on a smooth 
horizontal circular wire, B and C being at rest and separated by J4 of 
the circumference. A is projected along the wire and strikes B, which 
is driven forward along the wire and strikes C. If the coefficient 
of restitution between any two beads is ft, show that the next impact 
takes place simultaneously by A overtaking B at the same instant 
that C overtakes A, and that C has travelled a distance equal to § 
of the circumference before this happens. (Ex.) 

29. Two uniform spheres of equal radii rest on a perfectly smooth hori¬ 
zontal table. The first, of mass m, is struck by a horizontal impulse 
7, whose line of action passes through the centre. After moving for 
a time it collides directly with the second sphere, which is of greater 
mass M, and which is initially at rest. Show that the loss of kinetic 
energy due to the impact between the spheres is 

id - .»> M1% 
i( m(M + m)’ 

where c is the coefficient of restitution. 

30. Three bodies of masses a, b, c lie in a straight fine on a smooth hori¬ 
zontal plane. The first is projected with a velocity u along the 
straight line so as to strike the second, which in turn strikes the third. 
If the coefficient of elasticity for each pair of bodies is e, find the 
velocity with which the third body is made to move. Also find the 
ratios a : b : c so that the first and second bodies may remain at 
rest after the first and second impacts respectively, and in this case 
show that the final energy is e2 times the original energy. (Ex.) 

31. A ball is dropped, and after falling for 1 second meets another equal 
ball which is moving upwards with speed of 48 ft./sec. Calculate the 
velocity of each ball after the collision, given that the coefficient of 
restitution is f. 

Find the percentage loss in kinetic energy due to the impact. 
(N.U.3) 

32. Two spheres of masses mL and m%, travelling with velocities v1 and 
v% in the same direction, collide directly and rebound. Determine 
the amount of momentum wThich is transferred between the spheres 
during the impact when the coefficient of restitution is e. If the 
velocities after impact are ult u%, show that each sphere loses the 
same energy if 

V\ T- vt + ui + uz — °* (C.W.B.) 

§ 125. Impact of a Smooth Sphere on a Fixed Smooth Plane. 

Let AB (Fig. 69) be the fixed plane, P the point at which the 
sphere impinges. Then if C is the centre of the sphere, CP is the 

normal to the plane at P. Let the velocity of the sphere at impact 

be u, and the direction of motion of its centre make an angle a 
with CP. 
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Since the plane and sphere are smooth, there is no force parallel 
to the plane; hence the component of the sphere's velocity in this 
direction, viz. u sin a, is unaltered. 

By Newton’s experimental law, the relative velocity along the 
normal after impact is — e times that before impact measured in 
the same direction. 

if v is the normal velocity after impact 

v — o = — e(u cos a — o) or v — — eu cos a, 

i.e. the normal velocity is reversed and multiplied by e. 

The velocity after impact has therefore two components, 
u sin a parallel to AB, and eu cos a parallel to the normal PC. 

The resultant velocity after impact = uVsin2 & + e2 cos2 a. If 

8 be the angle between the direction of motion and the normal, 

or 

, a u sin a i 
tan 8 =-= - tan a. 

eu cos a e 
cot 8 — e cot a. 

The impulse on the plane due to the impact is measured by the 

change of momentum along the normal. If m is the mass of the 
sphere, this is 

mu cos a + me cos a = mu(i + e) cos a. 

If the impact be direct there is no component of velocity parallel 
to the plane, the sphere rebounds along the normal with velocity eu. 

If e = i, the velocity after impact is w, and 8 — a, the sphere 
after impact rebounds so that the angle of reflection is equal to the 
angle of incidence. 

If e = o there is no velocity along the normal after impact, 
and the sphere slides along the plane with velocity u sin a. 

Example (i). 

A ball, moving with a velocity of 20 ft./sec., impinges on a smooth 
fixed plane in a direction, making an angle of 30° with the plane ; if the 
coefficient of restitution is find the velocity and direction of motion of 
the ball after the impact. 
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The component of velocity parallel to the plane is 20 cos 30°, or 
10^/3 ft./sec., and this is unaltered by the impact. 

The component of velocity perpendicular to the plane is 20 sin 30°, 
or 10 ft./sec., and this is reversed and multiplied by jj. 

The components of velocity along and perpendicular to the plane 
after impact are, therefore, 

io\/3» and 4 ft./sec. 

If V is the resultant velocity, 

V2 = 300 4- 16 = 316, 

V = V316 = 177 ft./sec. 

The direction makes an angle 

tan-1—-—— 
10 V3 

or tan 
15 

with the plane. 

Example (ii). 

A particle falls from a height h upon a fixed horizontal plane ; if e be 
the coefficient of restitution, show that the whole distance described before 
the particle has finished rebounding is 

and that the whole time taken is 

. L±i. 
V g ' 1 — e 

Let u be the velocity of the particle on first hitting the plane, so 
that 

wa = 2 gh. 

The particle rebounds with velocity eu. The velocity when it hits 
the plane the second time is again eu, and the velocity after the second 
rebound is e*u. Similarly, the velocities after the third, fourth, etc., 
rebounds are e*u, e*u, etc. 

The height to which the particle rises after the first rebound is 

and after the second 
(e*u)* 

and so on. 
Also u* == 2gh, so that these distances are e%h, eKh, etc. Hence the 

whole distance described is 

h -f 2(e%h 4- e*h 4- . . . to infinity), 

h 1 4- e* 

1 — e2* 
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The time of flight after the first impact is —, after the second 

-, and so on, and the time of falling originally is 

v? 
Hence, the whole time of motion 

= + y (tf -f e% + ez + . . . to infinity). 

= Vf+^j(‘ + * + - ■ •). 

= v/2i/l + 2 -JL_) = V- • — 
> g \ i ~ej ' g i ~e 

Example (iii). 

/4 sphere of mass tn lies on a smooth table between a sphere of mass 

mf and a fixed vertical plane. It is projected towards the other sphere ; 

show that, if the coefficient of restitution between the two spheres and 

between m and the plane is g in both cases, m will be reduced to rest at its 

second impact with m' if m* = 15m. (I.S.) 
Let u be the velocity of projection of m, and vlt v% the velocities of 

m and m' after impact, then 

mvx + m'vt — mu, 

Vi - vs= - 

(m + m')vl — u(m — £m'), 

and (m m)vz — ^mu. 

Putting m' = 15W, these becomie 

16mvx = u(m — 9m) — — Smu, or vx ~ . 
2 

i6mvt = |mu, or v% = 

The velocity of m is therefore reversed, and it hits the plane, re¬ 
bounding with velocity 

3.“ or lu. 
52 10 

which enables it to catch m' again. 
If V, V' be the velocities of m and m' after their second impact, 

mV -f- m'V' = f^mu + fom'u, 

V - v = - *(*)« = - A«. 

(m + m') V = j’jjWM + 
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or putting m' = 15m, 

16 mV — 

= o, 

m is reduced to rest. 

Example (iv). 

A billiard ball moving with velocity u strikes the side of a smooth 

billiard table, its direction making an angle a with the side of the table ; it 

then strikes the next side, and so on, striking each side in succession. 

Show that the various portions of the path are parallel to the sides of a 

parallelogram, and that if cx is the length of the path between the first and 

second impacts, c2 that between the second and third, and so on, 

C2n + J — e C2n — 1 ~ Sec a’(& ~ a COt a), 

where e is the coefficient of restitution, b the length of the side at ivhich the 

first impact takes place, a the next side, and a' the angle between the 

direction of the path after the first impact and the side of length b. (H.S.C.) 

D 
a 

B 

Let A (Fig. 70) be the point of the first impact, B, C, D those of 
the second, third, and fourth impacts. The velocity parallel to the 
cushion is u cos a, and is unaltered. The velocity perpendicular to the 
cushion is u sin a, and after impact — eu sin a, 

, , eu sin a „ . 
tan a = - = e tan a. 

u cos a 
Similarly, 

tan a# =* e cot a' == cot a, 
BC is parallel to PA. 

Also 
tan a"' = e cot a" = e tan a = tan a', 

... a"' ~ a', and CD is parallel to AB. 

In the same way the path after the impact at D will be parallel to 
CB or PA. 

A b 

C 

Fig. 70. 
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Projecting AB and BC on to the side a, and BC, CD on to b, 

and 
cx sin a' -f c2 cos a" = a, 

cz sin a" + cz cos a"' = b, 

.*. Cj sin a' -f ca sin a = a, 
ea cos a + c, cos a' = 6, 

.*. c3 cos a' sin a — c1 sin a' cos a — b sin a — a cos a, 
tan a/ , / , , 

c3 — Ci-— b sec a — a sec a cot a, 
tan a 

.*. cz — ec1 — sec a'(6 — a cot a) ; 

and a similar relation evidently holds for cz and cs, by projecting cZt 

cit cz on to a and b. 

EXAMPLES XXI. 

1. A particle falls from a height of 25 feet upon a fixed horizontal 
plane, the coefficient of restitution being J^. Find the height to which 
the particle rises after impact, and the time it takes to reach the 
plane again. What is the velocity after the second rebound ? 

2. A ball falls from a height of 25 feet upon a fixed horizontal plane ; 
if it rebounds to a height of 16 feet, find the coefficient of restitution. 

3. A ball moving at 40 ft./sec. impinges on a smooth fixed plane so that 
its direction of motion makes an angle of 30° with the plane ; if 
the coefficient of restitution is £, find the magnitude and direction 
of the velocity of the ball after impact. 

4. A ball fails from a height of 25 feet upon an inclined plane, the coeffi¬ 
cient of restitution being Find the magnitude and direction of 
the velocity of the ball after impact, when the inclination of the plane 
is (1) 450, (2) 6o°. 

5. A billiard ball of mass 7 oz. strikes a smooth cushion when moving 
at 8 ft./sec. in a direction inclined at 30° to the cushion. If the 
coefficient of restitution is find the loss of kinetic energy due to 
the impact. (I.A.) 

6. A marble dropped on a stone floor from a height of 12 feet is found 
to rebound to a height of 10 feet. Find the coefficient of restitution 
to the nearest hundredth. (I.A.) 

7. A billiard table is 6 feet by 8 feet. Find the position of a point in the 
shorter side and the direction of projection, such that a ball thus 
struck off will describe a rectangle and return to the same spot after 
rebounding at each of the other three cushions, the ball being smooth, 
and the coefficient of elasticity being $. (I S.) 

8. A sphere of mass m moving with velocity u impinges on a fixed plane, 
the direction of motion making an angle a with the plane. If e 
is the coefficient of restitution between the sphere and the plane, find 
(i) the magnitude and direction of the velocity of the sphere after 
impact; (ii) the loss of momentum; (iii) the loss of kinetic energy. 

(I.S.) 
9. A smooth elliptical tray is surrounded by a smooth vertical rim ; 

prove that a perfectly elastic particle projected from a focus along 
the tray in any direction will after two impacts return to the focus. 

(H.S.P.) 
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ii 

If sheets of paper are placed on a table, the coefficient of restitution 
is reduced by an amount proportional to the thickness of the paper. 
When a ball is dropped on to the bare table it rises after impact to 
three-quarters of the height of fall. When the thickness of the 
paper is i inch it rises to only one-half of the height of fall. What 
thickness of paper is required in order that the rebound shall be 
one-quarter of the height of fall ? (I.S.) 

The line joining the centres of two equal smooth balls P and Q lying 
on a smooth table is perpendicular to a smooth vertical plane ; the 
ball P farthest from the plane slides towards Q, which is at rest, 
with velocity u ; after the impact Q meets the plane and a second 
impact occurs and so on. If e is the coefficient of restitution between 
the balls and e' that between Q and the plane, find the velocities of 
P and Q after the first impact of Q with the plane. Show that there 

will necessarily be a third impact of P and Q if e' < (i 
(i +e)‘ 

(H.S.D.) 

A bullet of mass 2 oz. is fired horizontally into a fixed block of wood 
striking it with a speed 1200 ft./sec. If the bullet penetrates to a 
distance 6 inches, find in lb. wt. the average force of resistance of 
the wood to the motion. 

If the block were of metal, and the bullet rebounded instead 
of penetrating, find the kinetic energy which would be lost at the 
impact if the coefficient of restitution between the bodies were 0-3. 
State the units in which you give your result. (N.U.3) 

§ 126. Oblique Impact of Two Spheres. 

Fig. 71. 

Let Clt C2 (Fig. 71) be the centres of the spheres, mx, m2 their 
masses, and let their velocities ux and u2 be inclined at angles a 

and ft to the line of centres CjC2 at the moment of impact. 
The components of velocity perpendicular to CXC2 are ux sin a, 

«2sin /?, and these are unaltered by the impact. 
Considering the motion along CjC2, if vx and v2 are the velocities 

along this line after impact, we have 

by the principle of momentum, 

mxVx + ^2V2 = miUl COS a + m2U2 cos P (i) 

by Newton's Law, 

vx — v2 = — e(ux cos a — u2 cos fi) . tii) 
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1 hcse t'(]it;ilions give 

(m, — emt)u cos a + m2«2 cos /J(i e) 

1 ’ + W2 

_ w,«l cos a(l + tf) + «2 C0S ~ eml) 
- ; . 

m1 + m2 

The resultimt velocity of each sphere and its direction of motion 
can be found from these components and the components perpen¬ 
dicular to CjCo, viz. ul sin a and //2 sin f$. 

If //rj ;«2 and c - i, r, u2 cos /J and v2 “ wi cos <*, 
i.e. the spheres interchange their velocities in the direction of the 
line of centres. 

In many problems one of the spheres is at rest. Now, if u2 -- o, 
thi' equations (i) and (ii) of the last paragraph reduce to 

vi 

myuy -|- m2v2 ~ m1ul cos a, 

iq - - v2 — ~ eui cos a* 

nx cos a('Wj — 67m2) ^ cos a(i + e) 

ml + w2 Wj + 

The second sphere has no velocity perpendicular to the line of 
centres, so that it moves off along that line. 

The sphere mx has velocity ux sin a perpendicular to CXC2, so 
that if 6 is the angle made by its direction of motion with CjC2 

„ ux sin a (ml + m2) sin a 
tan 6 m --=*§ -1—--—-c. 

vx cos a(Wj — m2) 

If also m% =- w2, fhe results simplify still further, and we have 

vi \ux cos a(i — 

tan 0 = 

<?), cos a(i + c), 

2 sin a 

(i — e) cos a’ 

§ 127. Loss of Kinetic Energy in Oblique Impact. 
The velocities perpendicular to the line of centres are unaltered. 

The loss of kinetic energy is therefore the same as in the case of 

direct impact (§ 124) if we substitute w, cos a and u2 cos for ux 
and 112 respectively. 

Thi‘ loss is therefore 

i (ux cos a — «2 cos jS)*(i — e2). 
j 1 m1 + 1 2 t'f \ / 

-ttbs: Example (i). 

A ball of mass 8 lb., moving with velocity 4 ft./sec., impinges on a ball 

of mass 4 lb., moving with velocity 2 ft./sec. If their velocities before 

impact be inclined at angles 30° and 6o° to the line joining their centres 

at the moment of impact, find their velocities after impact when e — 
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Let Cx and C8 (Fig. 72) be the centres of the balls. 

The components of velocity perpendicular to CjC2 are 4 sin 30° and 

2 sin 6o°, or 2 and \/3 ft./sec. These are unaltered by the impact. 

If vx and vt be the velocities along C^C* after impact, we have 

by momentum 

8t»j -f = 8x4 cos 30° + 4x2 cos 60 0 ■■ ibv’3 + 4, 

and by Newton’s Law, 

vx — v% = — £(4 cos 30° — 2 cos 6o°) =. — ^(2 \/3 — 1), 

or 

.*. 21/n -f v, = 4V3 + L 
2V! — 27/j = - 2V3 + I. 

.*. $v2 --= 6^3, or = 2^/3. and 6vx = 6^3 + 3> 

2^3 -f- 1 
— . v J - 

2 

The velocity of the 8 lb. sphere 

= yj77(*^±Jy - ft-/sec- 

and if 0 be the inclination to C,C2, 

tan 0 = 2 x 2 = 4(2 V3 ~ 1) 
2^3 + I II 

The velocity of the 4 lb. sphere 

= + 12 = V15 ft./sec. 

and if <f> be the inclination to QC, 

tan <f> = V 3 _ 1 
2V3 2 

Example (ii). 

sphere of mass M, travelling with velocity u, impinges obliquely on 

a stationary sphere of mass M', the direction of the bloiv making an angle 

a with the line of motion of the impinging sphere. If the coefficient of 

restitution is e, prove that the impinging sphere is deflected through an 

angle ft, such that 

+Q„ a - M'U + e) tan a 
P‘ (M - eW) + (M + W) tan* a’ 
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Find the subsequent velocities if u — io ft,/sec., a = 30°, M' = 2M, 
and e == 0-5. (Ex.) 

Fig. 73. 

Let and C2 (Fig. 73) be the centres of M and M'. 

The component velocities of M along and perpendicular to QC* are 

u cos a and u sin a. and the latter is unaltered by the impact. 

If vx and vt are the velocities along CjC* after impact, 

Mvt 4 M'vt Mu cos a.(i) 

— v2 = — eu cos a ... (ii) 

{M -I- M,)v1 = u cos ol(M — eM'), 

__ (M — eM')ucosol 

Vl M -f M7 

To find the angle of deflection we resolve vx and u sin a perpen¬ 

dicular to and along the original direction of motion. 

The sum of the components perpendicular to the original direc¬ 
tion is 

u sin a cos a — vt sin a, 

— ~ ~ (M -- eM')u sin a cos a u sin a cos a(i 4 e)W 

M 4 M M 4 M' 

The sum of the components along the original direction is 

. _ . , , (M — M'e)u cos2 a 
u sin* a -f cos a = w sin2 a H--' 

__ u(M 4 M'sin2a — eM' cos* a) 

tan p = 

M + M' 

u sin a cos afi 4* e)M' 

u[M sin2 a 4 M' sin2 « 4 ^ cos2 a — eM' cos2 a] 

M' tan ot(i 4 A 

fM 4 M') tan2 a 4 (Af — eM')' 

If u — 10, a = 30°, M' — 2M, e = 0-5, 

„ _ (Af — \ 2M)u cos a _ 

1 " -M’T’iM-' 

and u sin a = 10 x \ = 5 ft./sec., 

the velocity of M is 5 ft,/sec. perpendicular to the line of centres- 
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Also from (i) and (ii), 

(M 4- M')v1 = Mu cos ot(i -f- e)t 

io . Vj 3 
... = Mu cos ot<1 + i\ =_5_2 = ? V3 ft /sec 

I + F 3 2 

Example (iii). 

sphere is suspended from a fixed point by an inextcnsible string. 4 
second sphere of small radius and equal mass m, moving downwards in 

a direction making an angle of 30° with the vertical, impinges directly on 

the first sphere with speed T\ If the coefficient of restitution between the 

spheres is prove that the initial velocity of the first sphere after impact 
is j| r. 

Calculate also the impulsive force in the string at the moment of impact. 

(H.S.D.) 
In this problem, although the impact is direct, the suspended sphere 

is not free to move along the line of centres. It is only free to move 

perpendicular to the string, i.e. horizontally, and wc can apply the principle 

of momentum in this direction only. 

Newton’s Law is applied, as usual, along the line of centres. 

Fig. 74. 

Let A (Fig. 74) be the point of suspension, and C the centre of the 

first sphere. 
Let v be the horizontal velocity of this sphere after impact, u the 

velocity of the impinging sphere. 

As the blow on the latter is along the line of centres, u is in the same 

straight line as the original direction of motion. 
Equating horizontal momenta after and before impact, 

mv -f* cos 6o° = mV cos 6o° . . (i) 

From Newton’s Law, along the line of centres, 

u ~ v cos 600 — — \ V . . . (ii) 

.-. v + \u — \ V, 

u — = — J F, 

V - |K. 

| u ass — J V, or u = — l V. Also 
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The vertical momentum before impact was mV cos 30° 

The vertical momentum after impact is 

— ImV cos 30° = — —^mV. 
* 0 10 

The impulsive tension in the string is equal to the change of momen¬ 

tum it produces, and is therefore 

—mV + -»K= ~imV. 
2 10 5 

EXAMPLES XXIL 

j. A sphere of mass 2 lb., moving at 10 ft./sec., impinges obliquely on 
a sphere of mass 4 lb. which is at rest, the direction of motion of the 
first sphere making an angle of 6o° with the line of centres at the 
moment of impact. Find the velocities of the spheres after impact, 
the coefficient of restitution being J. 

2. A sphere of mass 8 lb., moving at 6 ft./sec., impinges obliquely on a 
sphere of mass 4 lb. which is at rest, the direction of motion making 
an angle of 30° with the line of centres. Find the velocities of the 
spheres after impact, the coefficient of restitution being J. 

3. A sphere of mass 2 lb., moving with velocity 8 ft./sec., impinges on a 
sphere of mass 4 lb., moving with velocity 2 ft./sec.; if their velocities 
before impact be in like parallel directions and inclined at an angle 
of 30° to the line of centres at the moment of impact, find the velo¬ 
cities after impact, the coefficient of restitution being J. 

4. If, in the last example, the spheres are moving in opposite parallel 
directions, find their velocities after impact. 

5. Two equal balls, moving with equal speeds, impinge so that their 
directions of motion are inclined at 30° and 6o° to the line of centres 
at the moment of impact ; if the balls are perfectly elastic, find their 
directions of motion after the impact. 

6. If, in question 5, the coefficient of restitution is J, find the velocities 
of the balls after impact. 

7. A sphere of mass m impinges obliquely on a sphere of mass Af, 
which is at rest. Show that, if m ~ eMt the directions of motion 
after impact are at right angles. 

8. A smooth billiard ball impinges on another equal ball at rest in a 
direction that makes an angle a with the line of centres at the mo¬ 
ment of impact, and e is their coefficient of restitution. Prove that 
the angle, through which the direction of motion of the impinging 

ball is deviated, is tan - t Q tan (I.S.) 
L1 — e + 2 tan* aJ ' ’ 

9. Two equal smooth billiard balls, whose coefficient of restitution 
is et moving with equal velocities in opposite directions, impinge 
obliquely, the line of centres on impact being inclined at 450 to the 
direction of motion. Prove that the loss of kinetic energy is half 
what it would have been had the impact been direct. (I.S.) 
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10. A smooth sphere, moving with velocity u, impinges on an equal 
smooth sphere at rest, the direction of u just before impact being 
inclined at an angle a to the line of centres. Find the magnitude 
and direction of the velocity of each sphere after impact in terms 
of u, a and the coefficient of restitution e. if tan2 a ~ ,."7, and e ~~ 
show that the velocity of the first sphere is halved by the impact. 

(H.S.l).) 

u. A smooth sphere of mass m impinges obliquely on a sphere of mass 
M which is at rest. If after the impact the first sphere is moving 
in a direction perpendicular to that of its original motion, show that 
m <eM, where e is the coefficient of restitution. Show also that 
the kinetic energy of the two spheres is reduced by the impact in 
the ratio i : e. (H.S.D.) 

12. Two equal spheres impinge obliquely, one being originally at rest 
and the other moving in a direction making an angle 6 with the 
line of centres at the moment of impact Show that the direction 
of motion of the second sphere is deflected through an angle a 
where 

, (i -f e) tan 6 

i — t 2 tan2 6 

e being the coefficient of restitution. 
Show that d may be so chosen that a has any given value such 

that 

tan a <C J 1—L~— (H S D ) 
Vi{i ~ e) 

13. A billiard ball is at rest and another equal ball is aimed at the first 
so that the direction of motion of the centre (when produced geomet¬ 
rically) just touches the first; if the coefficient of restitution is i, 
find the directions in which the balls travel after impact, and prove 
that the amount of kinetic energy transferred to the first ball is 
about o*61 of the energy of the other before impact, wni the other 
has about 0-26 of its original energy left. (I.S.) 

14. Two smooth spheres, masses M and m, impinge obliquely, and the 
latter is brought to rest. Prove that the gain of kinetic energy of 
the former is 

WW2Me + m{c ~,)]' 
where e is the coefficient of restitution, and T the kinetic energy of 
the sphere w before the impact. (LA.) 

15. Prove that, if the effect of an impact between two smooth spheres 
is to turn their relative velocity through a right angle, the relative 

velocity just before the impact must make an angle tan-xVe with 
the line of centres ; e being the coefficient of restitution. (LS.) 

16. Show' that if a perfectly elastic sphere collides with another at rest, 
and their lines of motion after impact are at right angles, their 
masses must be equal. (C.S.) 

17. Two smooth spheres of equal mass whose centres are moving with 
equal speeds in the same plane, collide in such a way that at the 
moment of collision the line of centres makes an angle 90° — 
with the direction bisecting the angle a between the velocities 
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before impact. Show that after impact the velocities are inclined 
at an angle tan-1 (tan at cos 2jS), the collision being perfectly elastic. 

(C.S.) 

18. A smooth sphere of mass M is suspended from a fixed point by an 
inelastic string, and another sphere of mass m impinges directly 
on it with a velocity v in a direction making an acute angle a with 
the vertical. Show that the loss of kinetic energy due to the im¬ 
pact is 

1 mM(i — e2)v2 

2 M 4- *n sin* a’ 

where e is the coefficient of elasticity. (C.S.) 

tq. Show that if a smooth sphere of mass mx collides with another sphere 
of mass mt at rest, and is deflected through an angle Q from its 
former path, the sphere of mass w2 being set in motion in a direction 
<f> with the former path of mlt then 

tan 6 m. 
mt sin 2 <f> 

ml — m2 cos 2 4> 

both spheres being perfectly elastic. (C.S.) 

20. A sphere of mass 4m in motion collides with a sphere of mass m at 
rest. Assuming the spheres to be smooth and perfectly elastic, 
show that the direction of motion of the more massive sphere 
cannot be deflected by the collision through an angle greater than 
14° 2C) (C.S.) 

21. A ball A impinges on an equal ball B which is at rest. If the direc¬ 
tion of motion of A before and after impact makes angles 6 and 6' 
respectively with the line of centres of the balls, find 6' in terms of 
$ and e, the coefficient of restitution between the balls. 

Show that when the deviation of A is greatest, 

= 90°. (H.C.) 

22. Two uniform smooth spheres A, B, of equal radii are set in motion on 
a smooth horizontal table and collide with one another. Prove that 
if ut u* are the components of their velocities relative to the centre 
of gravity, resolved along the line of centres before impact, and 
v, v' the corresponding velocities just after impact, then 

mu -f- m'u' -- o = mv mV, 

where w, m' are the masses of the spheres. 
Prove also that if e is the coefficient of resilience, 

v' — — eu', and v — — eu, 

and the total energy lost in the collision is 

£(1 — e2) (mu2 -f m'u'*). (I-C.) 

§ 129. The following examples are of a rather harder type than 

those in the preceding paragraphs. 

&3cami AMPLE (i). 

A sphere of mass m is let fall on a smooth hemisphere of mass M resting 

with its plane face on a smooth horizontal table, so that at the moment of 

impact the line of centres makes an angle a with the vertical. Find equations 

for determining the velocities of the bodies after impact, the velocity of the 
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sphere just before impact being u, and e the coefficient of restitution. Show 

that, when a = 450, the speed of the hemisphere after impact will equal that 

of the sphere just before impact if 2M — ern. (Ex.) 

Let O (Fig. 75) be the centre of the hemisphere, and C that of the 

sphere. 

Since the hemisphere is standing on a horizontal table we can only 

apply the principle of momentum horizontally. 

Newton's Law is applied along the line of centres. 

If V be the velocity of the hemisphere after impact (V is horizontal), 

v1 and vt the components of the velocity of the sphere along and perpen¬ 

dicular to the line of centres, then, since there is no horizontal momentum 

initially, 

MV + mvx sin a — mv2 cos a = o . . (i) 

Applying Newton’s Law along the line of centres, 

vx — V sin cl — — eu cos a (ii) 

and since the velocity of the sphere perpendicular to the line of centres 

is unaltered, 

vt — u sin a .... (iii) 

These three equations are sufficient to determine V, vx and vt. 

If « = 45°. 

from (i), 
„Tr mV\ mVt 

MV + Vi - vi ~ ”■ 
mvt m V meu 

from (ii), 
V2 T = 2 * 

mvt mu 
and from (iii) 

V2 ^ 

m\ rr mU, , , 
• •• (M+-jF = — (1 +e) 

and V — u, 

if 2M -f* m = m (1 + e), 

or zM == em. 
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ExAMPL^r(njT" 

Two equal balls are lying in contact on a smooth table, and a third equal 

ball, moving along their common tangent, strikes them simultaneously. 

Prove that j£(i — e1) of its kinetic energy is lost by the impact, e being the 

coefficient of restitution for each pair of balls. (C.S.) 

Fig. 76. 

Let A (Fig. 76) be the centre of the moving ball, B and C the centres 

of the others. 

Since the balls are equal, ABC is an equilateral triangle. 

Let v be the velocity of A before impact, v% its velocity after impact, 

vx the common velocity of B and C after impact. 

vt will be in the same line as v, B and C will move off along AB 

and AC. 

We must apply the principle of momentum along the direction of A's 

motion for all three balls. 
Newton’s Law is applied along the line of centres for A and one of the 

others. 

By the principle of momentum, 

2VX COS 30° 4* Vt ass vt 

and by Newton’s Law for A and C, 

vt cos 30° — = — ev cos 30°; 

these equations give 

V 3vi + = v . . (1) 

V— 2vx * — -v/3 ev . . (li) 

••• 3^1 + = WW, from (i), 

••• 5vi = V3v(* + *). 

V. = ^(1 + e)v. 

Multiplying (i) by 2, and (ii) by \/3 and adding, 

5vt = (2 - y)v. 

•••v* = U2 - 3«) V, 
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The loss of kinetic energy is 

- m^(i + e)*v\ 

4 — I2£ -f gea 6 4 I2e + fe*~) 

25 " 25 J’ 

= i*»t)»[-15 -1—]= }mv* . - «*). 

Hence the lOvSs of kinetic energy is ^(i — e*) of the original kinetic 

energy. 

Example (iii). 

A particle of mass m is placed in a smooth straight tube, of mass M, 

which is closed at both ends and lies on a smooth horizontal table. The 

particle is projected from one end of the tube with velocity u and proceeds to 

rebound from each end alternately, the coefficient of resilience being e. 

Prove that the velocity of the tube is 

mu{i 4* e*n~l) 

m 4 M 
after 2n — i impacts, and 

mu(i — ein) 

m -f- M 

after 2n impacts. (Ex.) 

Let ult vlt ut, vt, etc., be the velocities of the particle and tube after 

the first, second, etc., impact. 

The total momentum is unaltered so that 

mun -f- Mvn — mu, for all values of n. 

Also the relative velocity after each impact is — e times that before 

the impact, 

ul — vx = — eu, 

ut — vt = 4* e%u> 

- »»*-l = - ein~lu • • (i) 

u2» - Hn = + «*"« . (ii) 

Also + Mvin-1 = mu ■ • (iii) 

mu2n + n = mu • (iv) 

Hence from (i) and (iii), 

(M 4 m) v2n^i = mu(i 4 e2n~l), 

__ wim(i 4 ein -1) . 
*’* vin - i ~~ --—;—tHt-» 

(M 4 m)v2n “ mu(1 ~~ 

^in = 
mu( i — e*n) 

w + I 

from (ii) and (iv). 
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EXAMPLES XXIII. 

1. An inelastic sphere of mass m is dropped with velocity V on the face 
of a smooth inclined plane of mass M and slope a which is free to 
move on a smooth horizontal plane in a direction perpendicular to 
the edge. Show that the loss of kinetic energy due to the impact is 

i mMV2 cos* a (C S ) 
~z (M -f m sin* a)‘ 

2. Three equal smooth balls A, B, C are placed in order on a smooth 
floor with their centres in a line perpendicular to a smooth wall 
which is perfectly elastic, the centre of the ball A being at a dis¬ 
tance from the wall which is small in comparison with the distance 
of B. If the ball C is projected towards the wall, prove that A 
comes to rest temporarily after two collisions with B, independently 
of the coefficient of elasticity between a pair of balls. 

Prove further that, if the coefficient of restitution is nearly unity, 
A comes permanently to rest after its fourth collision with B. (C.S.) 

3. A ball is projected on a pocketless billiard table. Show that if the 
effect of friction and rotation be neglected, it will travel always 
parallel to one of two fixed directions so long as it strikes the four 
cushions in order ; and that the velocity is decreased in the ratio 
e*: 1 after each complete circuit, e being the coefficient of restitution. 

(C.S.) 

4. Two equal smooth spheres A, B lie in contact on a smooth hori¬ 
zontal plane ; a third equal sphere C is projected with a given 
velocity along the table so as to strike A and B simultaneously. 
Find the velocities of each sphere after impact and show that the 
sphere C passes through and beyond the two spheres A and B if 
the coefficient of restitution between the spheres is less than }r 

(C.S.) 

5. A smooth inclined plane of slope a and mass M is free to move on 
a smooth horizontal plane in a direction perpendicular to its edge. 
A sphere of mass m is dropped on it. Prove that the sphere will 
rebound in a direction inclined to the horizontal at an angle 0, 

where 
^ _ (M -h *w) sin* a — Ale cos* a 

M(i -f e) sin a cos a ' 

where e is the coefficient of restitution. (C.S.) 

6. Two equal scale pans are suspended by inextensible string passing 
over a smooth pulley so that each remains horizontal. An elastic 
sphere falls vertically, and when its velocity is u it strikes one of the 
scale pans and rebounds vertically. Show that the sphere takes 
the same time to come to rest on the scale pan as it would if the 
scale pan were fixed. (C.S.) 

7. A spherical ball of mass m suspended by a string from a fixed point 
is at rest, and another spherical ball of mass m' which is falling 
vertically with velocity u impinges on it so that the line joining the 
centres of the balls makes an angle a with the vertical. Prove that 
the loss of kinetic energy is 

1 (1 — e%)fnmful cos* a 
2 m -f- m' sin* a ' 

where e is the coefficient of restitution. (C.S.) 
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8. Four particles, each of mass m, are connected by equal inextensible 
strings of length a and lie on a smooth table at the corners of a 
rhombus the sides of which are formed by the strings. One of the 
particles receives a blow P along the diagonal outwards. Prove 
that the angular velocities of the strings after the blow are equal to 

Ps-in-a where 2a (a < 13^ is the angle of the rhombus at the particle 
2 ma \ 4/ 

which is struck. (C.S.) 

9. Two equal smooth spheres of mass m, perfectly elastic, collide ob¬ 
liquely. Initially one is at rest. Prove that the velocities of the 
two spheres after impact are at right angles, and express the final 
velocities in terms of the initial velocity V and the angle ^ between 
the line of centres at impact and the direction of motion of the moving 
sphere before impact. (C.S.) 

10. A small smooth sphere of mass m impinges on a small smooth sphere 
of mass m' at rest, and m' starts moving with velocity V. If e is 
the coefficient of restitution, prove that, whether the impact is 
direct or oblique, the kinetic energy dissipated is 

m'(m -f m')( 1 — e)V* ^ . 

2m(i 4- e) 

11. A particle falls vertically on a fixed rough elastic plane inclined at 
an angle a to the horizon. Show that if the direction of motion of 
the particle immediately after impact is horizontal, 

tan* a — /i(i -f e)ta.n a — e = o, 

where e is the coefficient of resilience, and ju that of friction. 
(H.S.C.) 

12. A smooth wedge ABC of mass M and with angle ABC = a, is placed 
with the face AB on a smooth horizontal plane. A particle of mass 
m, moving with velocity u inclined at (a — p) to the horizontal 
strikes the face BC at an angle p. If e is the coefficient of elasticity, 
show that the horizontal velocity of the particle after the impact 
will exceed that of the wedge if 

(M -f- m) (cos a cos p — e sin a sin p) > m cos* a cos (a — p). 
(Ex.) 

13. If a ball is projected from a point on a smooth billiard table so as to 
strike in succession a side cushion, the top cushion, the other side 
cushion, and bottom cushion, show that the rectilinear portions of 
its path are parallel in pairs, assuming the cushions smooth and 
equally resilient. 

Within what area on the table must the point of projection be 
in order that at the fourth impact as described above the ball when 
projected in the right direction may fall into a bottom pocket, 
a, b, being the lengths of the sides of the table measured along the 
inside edges of the cushions, c the radius of the ball, and e the 
coefficient of resilience between each cushion and the ball. (Ex.) 

14. A smooth inelastic sphere of mass M lies on a smooth horizontal 
plane ; a second smooth inelastic sphere of mass m falls on it. At 
the moment of impact the line of centres makes an angle a with the 
vertical, and the velocity of the falling sphere is U. Prove that the 
subsequent velocity of the lower sphere is 

m sin a cos all 

M *f w sin* a 
(H.C.) 
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15. What is meant by the impulsive tension of a string and in what 
units can it be measured ? 

Two particles of equal mass, 2 gm., are connected by a smooth 

light straight string which passes through a hole in a block of mass 
8 gm. The system is placed on a smooth horizontal table with 

the block at rest, while the two particles are given the same velocity 
10 cm./sec. in the direction of the string. If the coefficient of resti¬ 

tution between particle and block is find the velocity of the block 

after impact by one of the particles. Find also the impulsive ten¬ 
sion of the string at the impact. (N.U.3) 

16. A body is placed at rest on an inclined inelastic plane of inclination 

io° and coefficient of friction A second body of equal mass falls 
vertically on to it with a speed of 16 ft./sec. and coalesces with the 
first body. 

Find the initial velocity of the two bodies together down the 

plane, and the distance travelled before they come to rest. 
(N.U.3) 



CHAPTER IV. 

PROJECTILES. 

§ 180. We have now to consider the motion of a particle when 

projected under gravity in any direction. In doing this we shall 

assume, as before, that the acceleration due to gravity is constant. 

We shall also neglect the resistance of the air to the motion. The 

following terms are used in connection with projectiles :— 

The Angle of Projection, is the angle that the direction in which 

the particle is projected makes with a horizontal plane through 

the point of projection. This angle is also called the angle of 
elevation. 

The Trajectory is the path described by the particle. 

The Range is the distance between the point of projection and 

the point where the trajectory meets any plane through the point 

of projection. 

The downward acceleration due to the earth’s attraction causes 

the path to be curved, and we shall show later that this curve is 

always a parabola. 

Many important results, however, can be obtained without 

assuming any knowledge of the nature of the path. 

§ 181. The principle of the method employed is to consider the 

vertical and horizontal components of the motion separately. Since 

gravity acts vertically, it has no effect on the velocity of the particle 

in a horizontal direction. 

The horizontal velocity therefore remains constant throughout 

the motion. 

If the particle is projected with velocity u at an elevation a, the 

horizontal and vertical components of the initial velocity are u cos a 

and u sin a respectively. 
The horizontal velocity throughout the motion is therefore 

u cos a. The vertical motion is dealt with in the same way as 

in paragraphs 54-58 taking u sin a for the initial velocity of 

projection. 

§ 182. Suppose the particle projected from P (Fig. 77) with 

velocity u at an angle a to the horizontal PX through P. 

179 
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Let A be the highest point of the path, and Q the point where 
it again meets the horizontal plane through P. 

1. To Find the Greatest Height Attained. 
When the particle has reached the highest point A of its path 

it will have lost all its vertical velocity, hence using the formula 

V2 = U2 — 2 gS, 

since u is now replaced by u sin a, we have, if h is the greatest 

height, 
o — w2 sin2 a — 2gh, 

h — u2 s*n8 a 

“ 2 g 

2. To Find the Time taken to reach the Greatest Height. 

Using the formula v = u — gt, 
we have o = u sin a — gt, 

t — u s^n a 
“ g 

8. To Find the Time of Flight, i.e. the Time taken to return to 
the same Horizontal Level as P. 

Using s = ut ~ $gt2, and putting s = o, 
o — u sin a T — gT2, 

T — 2U s^n a 

This is twice the time taken to reach the highest point, 

4. To Find the Range on the Horizontal Plane through P. 
During the time T the particle has been moving horizontally 

with uniform velocity u cos a, 

.\ horizontal distance described 

2ul sin a cos a 
== u cos a . T --, 

g 
the range 

n 2wa sin a cos a u2 sin 2a 

g g 
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For a given velocity of projection u, this expression for the 
range is a maximum when 2a = 90°, or a — 45°. 

Hence for a given velocity of projection, the horizontal range is 

greatest when the angle of projection is 45 °. 

5. To Find the Velocity and Direction of Motion after a Given 
Time. 

We know that the horizontal component of the velocity is con¬ 
stant and equal to u cos a. 

The vertical component v after a time t is given by 

v ~ u sin a — gt, 

if V is the resultant velocity, 

V2 = uz cos2a +(w sin a — gt)z, 
— u2 — 2ugt sin a + g2t2. 

If 0 be the angle, which the direction of motion makes with the 
horizontal, 

vertical component of velocity u sin a — gt 
tan 0 = r—•-—~r-7—7—j—r— = -. 

horizontal component of velocity u cos a 

§ 183. For a given velocity of projection there are, in general, two 
possible angles of projection to obtain a given horizontal range. 

We have seen that the range 

M2 
R = — sin 2a, 

g 
HR and u are given 

gR 
sin 2a = . 

Now for a given value of the sine of the angle 2a, there are two 
values of the angle less than 180°. If 20 is one value the other is 
1800 — 20. 0 and 90° — 0 are two possible angles of projection 

pR 
unless ^ = i, when only one value is possible, viz. 90° for 2a, or 

45° for a. 
This is the case when the range is a maximum for the given 

velocity u. 

The directions 0 and 90° — 0 are equally inclined to the horizontal 
and vertical respectively, so that the direction for maximum range 
bisects the angle between them. 

§ 184. Example (i). 

A particle is projected with a velocity of 960 ft, j sec., at an elevation of 

30° ; find (i) the greatest height attained, («) the time of flight and the range 

on a horizontal plane through the point of projection, (in) the velocity and 

direction of motion at a height of 528 feet. 

VOL. I.—7 
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The initial horizontal velocity — 960 cos 30 - 960 X -—, 

= 480 \/3 ft./sec. 

The initial vertical velocity 960 sin 30° if 480 ft./sec. 

(i) If h be the greatest height, then at this height the particle has lost 

all vertical velocity, 

o = 4808 — 2gh 

...h = 480XJ80 = ooft 
2x3-2 

(ii) If t be the time of flight, the vertical height at that time is zero. 

.-. o = 480/ — \ gt2, 

.-. t m = 30 seconds. 
32 

The horizontal range is the distance travelled horizontally in 30 

seconds with uniform velocity 480 \/3 ft./sec. 

= 480 V3 X 30 14,400^3 feet, 
-= 24,941 feet approximately. 

(iii) If v is the vertical velocity at a height of 528 ft. 

v2 = 48oa — 2g . 528, 

— 4802 — 64 x 528 = 64 x 3072 

v = 8 x 32 V3 ft./sec. 

** 256v/3 ft./sec. 

The horizontal velocity is 480 v 3. and if 6 is the inclination of the 

direction of motion to the horizontal. 

tan $ ~ 256 V3 ^ 3f = 
480 V3 bo 

8 

15* 

The resultant velocity V is given by 

V2 = 8* x 32s X 3 i* 4802 x 3 = 8a x 42 X 867, 

V = 32 x 17 y/3, 

- 544 V3 ft./sec. 

Example (ii). 

A particle is projected with a velocity of 48 ft./sec. : find the maximum 

range on a horizontal plane through the point of projection and the two 

directions of projection to give a range of 36 ft. 

If the angle of projection is a, the horizontal and vertical components 

of the initial velocity are 48 cos a and 48 sin a. 

The time of flight t, is given by 

o = 48 sin a . t 

f __ 9b sin a __ 

- i gt\ 
3 sin a. 

In this time the horizontal range is 

3 X 48 sin a cos a, 

— 72 sin 2a. 
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This is a maximum when 2a = 90°, or a — 450, and then the value 

is 72 feet. 

When the range is 36 feet we have 

72 sin 2a =5 36, 

sin 2a = $, 

.-. 2a = 30°, or 156°, 

a = 150 or 750. 

Example (iii). 

A particle is projected out to sea with a velocity of 192 ft. /sec. from the 

top of a cliff 256 feet high at an angle of 30° with the horizontal : find how 

far from the bottom of the cliff the particle hits the water. 

The initial vertical velocity is 192 cos 6o° = 96 ft./sec. 

The initial horizontal velocity is 192 cos 30° — 96 V3 ft./sec. 
The time t to reach a point 256 feet below the point of projection is 

given by 
— 256 — 96^ — i6*2, 

t2 — 6/ — 16 m o, 

... (/ _ 8) (t 4- 2) = o, 

/ = 8 seconds. 

In this time the horizontal distance travelled is 

8 x 96 \/3 -- 768 V3 feet, 

§?f 1330 feet approximately. 

Example (iv). 

A bullet is fired with a velocity whose horizontal and vertical components 

are u, v ■ find its position at lime t. If the horizontal velocity is 2000 

ft./sec., find the elevation at which it must be fired if it is to hit a mark 6 feet 

above the muzzle at a distance of 500 yards. 

If x, y are the horizontal and vertical distances from the muzzle after 

time t, 

x = utt.(i) 

y =S Vt — J gt2 . . . . (ii) 

When u = 2000 ft./sec. and x — 1500 feet, 

/ = ? = — 1 second. 
u 2000 4 

The height at this time has to be 6 feet, and substituting y — b, t — J 

in equation (ii), 
6 = |^ — 16 X T^, 

Jv = 6 + 9 = 15. 

v = 20 ft./sec. 

If 0 is the angle of elevation initially 

tan $ = 
v 

u 
20 _ 1 

2000 ~ IOO* 

.*. 0 = about 3J minutes. 
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Example (v). 

If r be the horizontal range of a projectile, and h its greatest height, prove 

that the initial speed is 

0(‘ + rei)]‘ 

Let u be the initial speed, and a the angle of projection. 

The horizontal range 
2u* sin a cos a 

The greatest height 
g 

u% sin *a 

2T~ 

(i) 

(ii) 

Now the value of u given in the question does not contain a, so that 

it must be obtained by eliminating a between equations (i) and (ii). 
U2 

From (ii) we have cosec* a ——. 
2gh 
r r 

Dividing (i) by (ii), 4 cot a = 7, or cot a = —. 
h 4 n 

Now 

Example (vi). 

cosec* a = 1 + cot* a, 

A projectile is fired from a point on a cliff to hit a mark 200 feet hori¬ 

zontally from the point and 200 feet vertically below it. The velocity of 

projection is that due to falling freely under gravity through 100 feet from 

rest. Show that the two possible directions of projection are at right angles, 

and that the times of flight are approximately 2*7 and 6*5 seconds. 

The velocity v acquired in falling 100 feet is given by 

v1 = 2g . 100 — 64 x 100, 

v = 80 ft./sec. 

If a is the angle of elevation at which the projectile is fired, 

— 200 — 80 sin a . t — i6f2, . . (i) 

also 200 = 80 cos a. t . . (ii; 

From (ii) we get 

t = | sec. a. 

Substituting in (i), 

— 200 ~ 200 tan a — 100 sec2 a, 

= 200 tan a — 100 — 100 tan2 a, 

tan a = Y* * = 1 ± V2. 
Z 
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One of these values is negative, and this means that one of the direc¬ 

tions is below the horizontal. 

The product of the two tangents is 

(l -j- V2)(l — V2) = — I, 

and this, by a well-known result in geometry, shows that the directions 

are at right angles. 

If 
tan otj = 1 + V2, 

and 

tan a2 = 1 — V2, 

SeC* ttj = 1 -f 3 -f 2-y/2» 

= 6-828, 

sec* a, = 1 +3 — 2 V2, 

= 1*172, 

sec ax — 2-6, 

and 
sec a, = 1-08, 

the times are | x 2-6 = 6*5 seconds, 

and | X 1 08 = 2*7 seconds, approx. 

Example (vii). 

A vertical post subtends an angle a at a point A in the same horizontal 

plane as the foot of the post. Two particles are projected at the same in¬ 

stant from A, in directions making angles 6l and d2 with the horizontal, so 

that the former strikes the top of the post at the same moment that the latter 

strikes the bottom of the post. Prove that 

tan Qx — tan 6% ~ tan a. 

Let ult ut be the velocities of projection, h the height of the post PQ 

(Fig. 78) and a its horizontal distance from A. 

Since the particles describe the same horizontal distance in the same 

time, their horizontal velocities are equal, 

ux cos 9X = ut cos 6%. 

If / be the time taken to reach the post, 
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also 
ux sin 0, . / — £ gt%, 

Wj, sin 02 . t — £ g/3, 

/(Wj sin 0t — sin 02), 

/ (tan 0! — tan 0a), 

-?-(tan 0. — tan 0*), 
Ux cos 0i 

a (tan 0X — tan 02), since h — a tan a, 

tan 0, — tan 02. 

EXAMPLES XXIV. 

1. A particle is projected with a velocity of 96 ft./sec. at an elevation 
of 30° : find (i) the greatest height reached, (ii) the time of flight and 
the horizontal range, (iii) the velocity and direction of motion at a 
height of 11 feet. 

2. Find the greatest range on a horizontal plane when the velocity of 
projection is (i) 64, (ii) 60, (iii) 96 feet per second. 

3. A man can just throw a stone 200 feet : with what velocity does he 
throw it and how long is it in the air ? 

4. A projectile is fired horizontally from a point 200 feet above a hori¬ 
zontal plane with a velocity of 2000 ft./sec. 

How far will it be horizontally from the point of projection when 
it reaches the plane ? 

5. A shot is fired from a gun on the top of a vertical cliff, 400 feet high, 
with a velocity of 768 ft./sec., at an elevation of 30°. Find the 
horizontal distance from the foot of the cliff of the point where the 
shot strikes the water. 

6. Find the velocity and direction of projection of a particle which 
passes in a horizontal direction just over the top of a wall which 
is 32 yards distant and 12 yards high. 

7. Find, to the nearest yard, the range on a horizontal plane of a rifle 
bullet fired at ail elevation of 30 with a muzzle velocity of 1000 
ft. /sec. (I.S.) 

8. What is the least velocity of projection required to obtain a hori¬ 
zontal range of 100 yards, and what will be the time of flight ? 

(I.A.) 

9. Show that a particle starting with a velocity of 100 ft./sec. at an 
angle tan-1 f to the horizon will just clear a wall 36 feet high at a 
horizontal distance of 80 yards from the point of projection. (LA.) 

10. A body is thrown from the top of a tower 96 feet high with a velocity 
of 80 ft./sec. at an elevation of 30° above the horizontal : find the 
horizontal distance from the foot of the tower of the point where it 
hits the ground. (I-A.) 

11. A bullet is fired out to sea in a horizontal direction from a gun situated 
on the top of a cliff 280 feet high. 

Calculate the distance out to sea at which the bullet will strike 
the water, given that the initial velocity of the bullet is 800 ft./sec. 

Calculate also the inclination to the horizontal at which the bullet 
will strike the surface of the water. (H.S.D.) 

h = 

o — 

.-. h = 
h 

’ ul COS 0! 

h 
* ’ ux cos Bx 

.-. a tan a — 

.-. tan a = 
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12. A bullet is fired with an initial velocity of 2000 ft./sec. in a direction 
making 250 with the horizontal. 

Calculate how far from the starting-poipt the bullet will strike 
the ground again. (H.S.D.) 

13. If a particle is projected inside a horizontal tunnel which is 16 feet 
high with a velocity of 200 ft./sec., find the greatest possible range. 

(I-S.) 

T4. A ball is thrown from a height of 3 feet above the ground to clear a 
wall, 35 feet away horizontally, and 15 feet high. 

Show that the velocity of projection must not be less than that 
acquired by falling under gravity through 24\ feet, and, when this 
is the velocity of projection, find how far beyond the wall it will 
reach the ground. (I.S.) 

15. A body is projected at such an angle that the horizontal range is 
three times the greatest height, bind the angle of projection, and 
if, with this angle the range is 400 yards, find the necessary velocity 
of projection and the time of flight. (I. A.) 

r6. A ball is thrown with a velocity whose horizontal component is 40 
ft./sec. from a point 4 feet 3 inches above the ground and 20 feet 
away from a vertical wall 16 feet 3 inches high in such a way as just 
to clear the wall. At what time will it reach the ground ? (I.E.) 

17. A ball is thrown from a point A in a horizontal plane so as just to 
pass over a wall standing on the same plane, the horizontal com¬ 
ponent of the ball's velocity being equal to the velocity it would 
acquire in falling from rest through a distance equal to the hori¬ 
zontal distance of A from the wall. Prove that the ball pitches 
behind the wall at a distance from it equal to 4 times the height 
of the wall. (I.E.) 

18. Find the least initial velocity which a projectile may have, so that 
it may clear a wall, 10 feet high and 13 feet distant, and strike the 
horizontal plane through the foot of the wail at a distance 7 feet 
beyond the wall, the point of projection being at the same level as 
the foot of the wall. (H.S.D.) 

10. The greatest range of a gun is 16 miles : find the muzzle velocity of 
the shot, and prove that, when the shot has travelled 4 miles hori¬ 
zontally it has risen 3 miles. (H.C.) 

20. A bullet is fired from a point O with a velocity whose horizontal and 
vertical components are u and v respectively : find the direction in 
which it is moving after a time/. If u = 96 ft. /sec. ,v = 288 ft./sec., 
prove that at two points the direction of the bullet’s motion is at 
right angles to the line joining the bullet to O, and find the positions 
of these points. (H.C.) 

2 t . A shell is observed to explode at the level of the gun from which it 
is fired after an interval of 10 secs. : and the sound of the explosion 
reaches the gun after a further interval of 3 secs. Find the elevation 
of the gun and the speed with which the shell is fired. (Assume the 
velocity of sound to be 1100 ft./sec.) (H.C.) 

22. Show that, if R be the maximum horizontal range for a given velocity 
of projection, a particle can be projected to pass through the point 
whose horizontal and vertical distances from the point of projection 
are £R and JJ? respectively, provided that the tangent of the angle 
of projection is either 1 or 3, and that in the second case the range 
on the horizontal plane is j} R. (I.S.) 
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^5. A shot projected with velocity v can just reach a certain point on 
the horizontal plane through the point of projection. Show that, 
in order to hit a mark h feet above the ground at the same point, 
if the shot is projected at the same elevation, the velocity of pro¬ 
jection must be increased to 

v* 

(v'-gh)* 
(I.S.) 

^ 24. Prove that the time of flight T, and the horizontal range AT of a 
projectile are connected by the equation 

gT2 = 2X tan a, 

where a is the angle of elevation. 
Show that when the maximum horizontal range is 100 miles, the 

time of flight ;s about 3 minutes, and determine the muzzle velocity 
and the height of the trajectory. (I.E.) 

25. A body is projected so that on its upward path it passes through 
a point x feet horizontally and y feet vertically from the point of 
projection. Show that, if R feet is the range on a horizontal plane 
through the point of projection, the angle of elevation of projection 

«is-> 
26. A particle projected from a point meets the horizontal plane through 

the point of projection after describing a horizontal distance a, and 
in the course of its trajectory attains a greatest height b above the 
point of projection. Find the horizontal and vertical components 
of the velocity of projection in terms of a and b. 

Show that when it has described a horizontal distance x, it has 
attained a height of 4bx(a — x)/a2. (H.C.) 

27. If the horizontal range of a particle projected with velocity V is a, 
show that the greatest height x attained is given by the equation 

16gx% — 8V*x + ga% — o. 

Explain why two values of # are to be expected. (I.S.) 

28. Show that the relative velocity of two bodies moving in any direc¬ 
tion under the acceleration of gravity remains constant. A stone 
is projected horizontally from the top of a tower 180 feet high with a 
velocity of 50 ft./sec., and at the same instant another stone is pro¬ 
jected in the same vertical plane from the foot of the tower with a 
velocity of 100 ft./sec. at an elevation of 6o°. Show that the stones 
will meet, and find the height above the ground, and £he distance 
from the tower at the instant of meeting. (I.E.) 

29. A ball is projected from a point on the ground distant a from the 
foot of a vertical wall of height b, the velocity of projection being V 
at an angle a to the horizontal. Find how high above the wall the 
ball passes it. 

If the ball just clears the wall prove that the greatest height 
reached is 

1 a% tan* a 

4 (a tan a — b)‘ 
(N.U.3) 

30. A body of weight W falls through a height h from rest under gravity. 
Find the momentum added to the body during the fall. 
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From an aeroplane flying horizontally at 120 m.p.h. at a height 
of 2 miles above the ground, a bullet is fired horizontally backwards 
at 960 ft./sec. Find the direction in which the bullet is moving 
when it reaches the ground, ignoring air resistance. (N.U.3) 

^31. Two projectiles P, Q are fired with the same speed V, and at the same 
inclination, a, to the horizontal from the same point, one being fired 
one second after the other. Prove that their horizontal separation 
remains constant while their vertical separation t seconds after the 
second is fired is 

. F sin a — gt — \g. {N.U.3) 

-^J2. A particle is projected from a point O with elevation a and speed V. 
Prove that the horizontal range is given by the formula 

„ V* . 
R = — sin 2a. 

8 
If a — 30°, find in terms of R the height of the projectile when it 
has moved a horizontal distance equal to J7?. (N.U.3) 

33. An aeroplane is flying at a height of 3000 feet in a straight horizontal 
course at a speed of 150 m.p.h., the direction of the course being such 
as to carry it vertically over a fort, on which the pilot has to drop a 
bomb. Find the angle between the vertical and the straight line 
joining the aeroplane to the fort at the moment when the bomb 
should be released. (N.U.3) 

34. A particle is projected with a velocity of 50 ft./sec. up a smooth 
inclined plane of angle tan-1! and length 50 feet ; on leaving the 
plane at its upper edge it describes a parabola under gravity. Find 
the greatest height attained, and the time taken to attain it after 
leaving the plane. (N.U.3) 

35. If two particles move freely under the action of gravity, show that 
their relative velocity remains constant. 

A particle is projected from a point A with a velocity v along AB, 
and simultaneously a particle is projected from B with a velocity 
V along BA, the line AB having any direction. Show that the 
particles will collide at a point vertically below the point which 
divides AB in the ratio v : V. 

§ 185. Range on an Inclined Plane through the Point of Projection. 

Let a particle be projected from a point P (Fig. 79) on a plane 
of inclination with velocity u, at an elevation a to the horizontal, 
the direction of projection being in the vertical plane through the 
line of greatest slope PQ of the inclined plane. Let PQ be the range, 
and QN the perpendicular on the horizontal plane through P. 

7* 
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To obtain the time of flight we consider the motion perpendicular 
to the plane. 

The initial velocity perpendicular to the plane is u sin (a — P) 
and the acceleration in this direction is g cos p. 

The time of flight T is therefore given by 

o u sin (a --- p)T - £g cos p . Tz, 

j 2u sin (a_— P) 

The horizontal velocity during this time is constant and equal 

to it cos a, and the horizontal distance PN described is 

and PO -- PN sec p, 

2u2 sin (a — P) cos a 

ycoT/f ■ 

range - 
2 u2 sin (a — p) cos a 

g cos2 p 

§ 136. The maximum value of the range for given values of 
u and p is obtained as follows :— 

T> 2u2 sin (a — p) cos a u2 r . , • o^ r-\ 

g cos2 B g cos2 /r v r/ rj v 

Now since P and // are given, the quantity outside the bracket 

\g cos2 P) 

is constant, and the value of the expression in the bracket is a 
7T 

maximum when sin(2a — p) is a maximum, i.c. when 2a — P — 

for maximum range, 

We see also that 

w , P 
a = - + c- 

4 2 

CL - P 

or the direction of projection bisects the angle between the plane 

and the vertical. 
'1'he value of the maximum range is 

-_(I — sm P) = -7-:---bT . . (ill) 
g cos2 /T r/ g(i + sm p) v 

§ 137. Eor a given value of the range (other than the maximum 

value) with a given velocity of projection, we obtain from (ii) a 
value for sin (2a — p). 
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Now for a given sine there are two angles less than i8o°, so that 
we get two values for 2a — ft, if 9 is one value the other is tt 9, 

so that 2a — ft — 9, 

and 
0 , P 

* ~ 2 f 2’ 

or 

and 

2a — p — tt — 9, 

7T 8 6 a — _ . _ l —. 
2 2 2 

There are thus two angles of projection for a given range. The 
TT 8 

angle of projection for a maximum is - -f- 
4 ^ 

also 
2 \2 2 2 2 

W I P 
2/ 4^2’ 

.-. the two directions of projection for a given range are equally 

inclined to the direction for maximum range. 

§ 138. Jn the preceding paragraphs the direction of projection was 
expressed as an elevation to the horizontal. 

We can also take the elevation relative to the inclined plane. 
In working problems care must be taken in reading the question 

to see which of these angles is given. 
If 0 is the inclination of the direction of projection to the line 

of greatest slope of the plane, the initial velocities perpendicular 
and parallel to the plane are u sin 9 and u cos 9. 

The time of flight T is given by 

o u sin 9 .T — \g cos ft . T2, 

j—2u s^n a 
~ Jc os P (iv) 

The range can be found as before, remembering that the hori¬ 

zontal velocity is now u cos (ft + 0). or by considering the motion 
parallel to the plane. 

In time T the distance (2?) travelled parallel to the plane is 

R = u cos 6 . T — sin ft . T2 . . . (v) 

The relations (iv) and (v) are useful in problems where the times 
of flight for a given range are required. It is easy to eliminate 9 
from these two equations. 

§ 139. Example (i). 

A particle is projected with a velocity of 900 ft. /sec. at an elevation of 
6o° to the horizontal from the foot of a plane of inclination 30°. Find the 
range on the inclined plane and the time of flight. 

Let PQ (Fig. 80) represent the inclined plane. 
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The component of velocity perpendicular to the plane is 

900 sin 30° = 450 ft./sec. 

The acceleration perpendicular to the plane is 

V3 
g cos 30° g m 16V3 ft./sec.* 

The time of flight t is given by 

o = 450/ — 4 . 16^3 /*, 

t — .152. = Z5_2^5 -- 32-5 sec. nearly. 
«V3 4 

In 7-5vj gec par^ide travels a horizontal distance 
4 

x 430 feet. 
4 

The distance up the plane is obtained by multiplying this by 

2 
sec 30°, or 

*. range on the plane 
V3 

— Z5a2? x 152 x — — 16,875 it. 
4 1 V3 

Example (ii). 

A particle is projected with a velocity of 64 ft.)sec. at an angle of 450 

to the horizontal. Find its range on a plane inclined at 30° to the hori¬ 

zontal when projected (i) up, (ii) down the plane. 

(i) The component of velocity perpendicular to the plane is 

64 sin 150 ft./sec. 

The acceleration perpendicular to the plane is 

32 cos 30° = 16V3 ft./sec.* 

The time of flight is given by 

o = 64 sin 150 . / 

t = 64 sin 150 _ 

- 8V'3 /*, 

1*2 sec. 
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64 
The horizontal velocity is —^ ft./sec. and the horizontal distance in 

8 sin 150 
time--sec. is 

v 3 
64 x 8 sin 150 

76 
The range up the plane is obtained by multiplying this by sec 30°, 

2 
or —, 

V3 
range up the plane 

64 x 8 sin 150 2 g. r. y = —t---x — = 62-5 ft. nearly. 
V6 V3 

(ii) The component of velocity perpendicular to the plane is 64 sin 750. 

The time of flight is given by 

o — 64 sin 750 — 8^3** 

.*. t = ^ — 4*5 sec. nearly. 

64 
The horizontal velocity is — ft./sec. and the horizontal distance in 

. 8si„75- . v2 
time -sec. is 

V3 
64 x 8 sin 750 

V6 ft.. 

the range down the plane is 

64 x 8 sin 750 v 2 

V6 V3 

= 233 ft. nearly. 

Example (iii) .* 

Show that for a given velocity of projection, the maximum range down an 
inclined plane of inclination a is greater than that up the plane in the ratio 

1 + sin a 
1 — sin a 

Let u be the given velocity of projection and 6 the angle the direction 
of projection makes with the plane. 
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When projected up the plane from A (Fig. 81) the time of flight is 

given by 

o — u sin 0 . t — $g cos a . 

2u sin 0 
t 

g cos a 

The range up the plane is 

zu sin 

g cos a 
. u cos (0 + a) . sec a 

2M* sin 8 cos (0 -f a) 

g cos* a 

This is a maximum when sin (2 0 + a 

u 

g cos2 a 

[sin (2 0 a) — sin a]. 

i, and then 

range — _(i — sin a). 
* a g cos* a 

When projected down the plane from B at the same angle to the 

plane the time of flight has the same value 

zu sin 0 

g cos a 

The horizontal velocity is now, however, u cos (0 — a), the horizontal 
. ... zu sin 0 • 2M2 sin 0 cos (0 — a) 

distance m time-is--:- 
g cos a g cos a 

and the range down the plane is 

2u% sin 0 cos (0 - a) ul 

g cos* a g cos2 a 
[sin (2 0 — od 4~ sin a]. 

This is a maximum when sin (2 0 — a) m i, and then 

w2 
range = -— (i 4- sin a). 

g cos* a 

Hence the ratio of the maximum ranges down and up the plane is 

i 4- sin a 

i — sin a’ 
Example (iv). 

If tY and t% be the two times of flight on an inclined plane through the 

point of projection corresponding to any given range short of the greatest, 

and a the inclination of the plane, prove that 

V + V + 2Va sin a 
is independent of cl, the velocity of projection being given. 

Let V be the velocity of projection, and 0 the inclination of the initial 

direction to the plane. 

The velocity perpendicular to the plane is V sin 0, and the time of 
flight t, is given by 

o — V sin 0 . t — £g cos a . t% . . . (i) 

The velocity parallel to the plane is V cos 0, the acceleration down the 

plane is g sin a, and the range in time t is 

R = V cos 8 . t — \g sin a . /* . (ii) 
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From (i) and (ii), V sin 0 . t = \g cos a . t2, 

V cos 0 . / = R + ig sin a . t2. 

Squaring and adding, 

l 

g* 

V't* = /?* + eft sin a . <* + ^ /\ 
4 

-f /*(g# sin a — V2) -f- A>a ~ o. 

This is a quadratic in t2, and if tx2, tz2 arc its roots, 

V -f <t* =4 
g 

2# . 

£ 

4^ • , 4L2 ^ sm a -f -—, 

*. /p T /a* -f -2/^2 sin a sin a -f 'til sin a, 
g g* g 

= ti^ , and is independent of a. 

EXAMPLES XXV. 

1. A particle is projected with a velocity of 300 ft./sec. at an elevation 
of 6o° from the foot of a plane of inclination 30°. The motion being 
in the vertical plane through a line of greatest slope of the plane, 
find the range on the plane and the time of flight. 

2. A particle is projected with a velocity of 1280 ft./sec. at an elevation 
of 750. Find the range on a plane of inclination 450 when the par¬ 
ticle is projected (i) up, (ii) down, the plane. 

3. A particle is projected from a point on a plane of inclination 30° with 
a velocity of 4000 cm./sec. at right angles to the plane. Find its 
range on the plane. 

4. The greatest range, with a given velocity of projection, on a hori¬ 
zontal plane is 3000 metres. Find the greatest ranges up and down 
a plane inclined at 30° to the horizon. 

5. A bullet is fired from the foot of an inclined plane with velocity 2000 
ft./sec. at an elevation of 6o°. Find the range if the inclination of 
the plane is (i) 30°, (ii) 450. Find also the maximum ranges which 
can be obtained on these planes with the given initial velocity. 

6. Show that the range up a plane of inclination p through the point 
of projection of a projectile fired at an elevation a relative to the plane 
is R sec /3(i — tan a tan P) where R is the range on a horizontal 
plane, the relative elevation a, and the velocity of projection being 
the same. (I S.) 

7. A heavy particle is projected from a point on an inclined plane, in¬ 
clined at 2 p to the vertical, and moves towards the upper part of the 
plane in the vertical plane through a line of greatest slope of the 
inclined plane : the initial velocity of the particle is u cos p and its 
initial direction of motion is inclined at p to the vertical. Prove that 
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U U* 
the time of flight of the particle is —, its range on the plane is 

the velocity with which it strikes the plane is u sin p, and its direction 
of motion has then turned through a right angle. (H.C.) 

8. A particle is projected with speed u so as to strike at right angles a 
plane through the point of projection inclined at 30° to the horizon. 
Show that the range on this inclined plane is 

9. 

10. 

11. 

A particle is projected with velocity V at an elevation a on a line 
through the point of projection making an angle p with the horizon. 
Prove that during the flight the direction of motion of the particle 
turns through an angle whose cotangent is 

£ cos p sec a cosec (a — p) — tan a (I.A.) 

A projectile is to pass through a point whose angular elevation from 
the point of projection is 0, and at that point to impinge perpen¬ 
dicularly on an inclined plane of slope p to the horizontal. Show 
that the angle of elevation a at which it must be projected is given 
by 

tan a = cot p -f- 2 tan 6. (H.C.) 

If R is the maximum range on an inclined plane through the point 
of projection of a particle, and T the corresponding time of flight, 
show that 

R = \g T* (H.C.) 

12. A shot is fired from a gun in a horizontal direction with a velocity of 
1000 ft./sec. The gun is on the side of a hill of inclination tan~l | 
to the horizontal. Find how far along the hill the shot will strike, 
and determine its velocity then in magnitude and direction. (I.C.) 

13. A particle is projected with a velocity of 1600 feet per sec., at an 
elevation of 30°, from a point on the side of a hill inclined at 30° 
below the horizontal. Find the range measured along the side of 
the hill, and the time of flight. (I.C.) 

14. Find the range on an incline a of a shot fired with velocity V from 
a point on it at an elevation a -f 0 so as to move in a vertical plane 
through a line of greatest slope. 

If the shot hits the slope horizontally, show that 

tan 0 — 
sin a cns a 

1 -f sin2 a ’ 
(C.W.B.) 

§ 140. Example (i). 

A particle is projected with a velocity whose horizontal and vertical 

components are u, v, so as to pass through a point whose horizontal and 

vertical distances from the point of projection are h, k. Prove that 

2u*k -f gh1 =* 2uvh. 

A particle is projected so as to pass through two points whose horizontal 

and vertical distances from the point of projection are (36, 11) and (72, 14) 

feet. 
Find the velocity and direction of projection. (I.S.) 

h 
The time taken to describe a horizontal distance h is 

u 
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In time - the vertical height is h, 
u 

. h h* 
...k = V- - 

2u*k -f gh* = 2uvh. 

If h ss= 36, £ = 11, 2u* .11 4- 32 . 36* == 2W . 36 

If h = 72, A =* 14, 214* . 14 4- 32 . 72* = 2MI/ . 72 

Multiplying (i) by 2, 2«*. 22 4* 64.36* = 2uv . 72, 

2«*(22 — 14) 4- 32 x 36*(2 — 4) = O, 

1614* — 64 X 361, 

... u = 72 ft./sec. 

Substituting for u in (i) we get 

v = 30 ft./sec. 

The velocity of projection is 

Vw* 4- 1/1 = V721 4- 301 = 78 ft./sec. 

The inclination to the horizontal is 

v 
tan-1 - u 

30 
ten-' 72 tan ~1 

12 

(i) 

CO 

Example (ii). 

A ball thrown from a point P with velocity V, at an inclination a 

to the horizontal, reaches a point Q after t seconds. Find the horizontal 
and vertical distances of Q from P, and show that if PQ is inclined at 0 

horizontal the direction of motion of the ball when at Q is inclined 
horizontal at an angle tan~'{2 tan 0 — tan a). (I.E.) 
x, y be the horizontal and vertical distances of Q from P 

x = V cos a . t, 
y = V sin a . t — Jg/V 

u, v be the horizontal and vertical components of velocity when 

u — V cos a, 
v — V sin a — gt. 

„ y * si 
tan 0 - - = tan a - 

The direction of motion at Q is inclined to the horizontal at 

tan-^ = tan->(tan«- K-^). 

gt F-2-— 2 tan a — 2 tan B, 
cos a 

v 
tan-1 - == tan-1 (tan a — 2 tan a 4- 2 tan 0), 

= tan-1 (2 tan 0 — tan a). 

to the 
to the 

If 

If 

at Q 

Now 

but 
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EXAMPLES XXVI. 

1. Show that if two particles are simultaneously projected from the 
same point, the direction of the line joining them is unaltered 
throughout the motion. (I-A.) 

2. A gun is fired from the top of a cliff of height h, and the shot attains 
a maximum height of (h -f b) above sea-level and strikes the sea 
at a distance a from the foot of the cliff. Prove that the angle of 
elevation of the gun is given by the equation 

a* tan* a — 4ab tan a — 4bh — o (I.E.) 

3. A projectile, starting from A, passes through B and C. If the hori¬ 
zontal and vertical distances of B from A are a, b respectively, and 
AC is horizontal and equal to c, find the angle of elevation and the 
greatest height reached by the projectile. (Ex.) 

4. A rifle is sighted to hit a mark on a level with the muzzle at an 
estimated distance of 1200 yards. If the muzzle velocity of the 
bullet is 1800 ft./sec., find the direction in which the rifle must be 
pointed. 

If the true distance of the mark is 1150 yards, find how high 
above the mark the bullet will pass. (H.S.D.) 

5. If, with the same velocity of projection, the range of a projectile is 
half the greatest range, show that there are two possible angles of 
projection and find them. Compare the greatest height reached in 
these two possible paths. (H.S.D.) 

6. A particle is projected from a point at a height 3h above a horizontal 
plane, the direction of projection making an angle a with the horizon. 
Show that, if the greatest height above the point of projection is 
h, the horizontal distance travelled before striking the plane is 

6 h cot a. (I.S.) 

7. Two shells are projected simultaneously from the same point with 
the same initial velocity so as to move in the same vertical plane, 
their initial directions of motion making angles a and a' respectively 
with the horizontal. Prove that the shells move so that the line 
joining them makes the same constant angle 

« + «' 
2 

with the vertical. (I.E.) 

8. A projectile is thrown over a double inclined plane from one end of 
the horizontal base to the other, and just grazes the summit in its 
flight. Taking the motion to be in a vertical plane through the line 
of greatest slope, prove that the angle of projection is 

tan**1 (tan a + tan P), 
where a, p are the slopes of the faces. (I.S.) 

9. A particle is projected from a point A, and is viewed from a point B 
of its path,, against the vertical through A : show that the particle 
appears to rise along this vertical at a uniform rate £ gt0, where 
is the time taken by the particle to reach B. (H.C.) 

10. A ball is projected so as just to clear two walls, the first of height a 
at distance b from the point of projection, and the second of height 
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b at a distance a from the point of projection. Show that the range 
on a horizontal plane is 

a8 + ab 4* b8 

a -f b 

and that the angle of projection exceeds tan-1 3. (Ex.) 

ir. Two particles A and B are projected simultaneously in the same 
vertical plane from the same point with the same speed but in per¬ 
pendicular directions. Prove that, as long as they are both in motion, 
the line joining them moves parallel to itself and the distance between 
them increases at a constant rate. Prove also that, if A reaches the 
ground first, B has then travelled a horizontal distance equal to 
4 times the greatest height of A. (H.S.D.) 

12. Two particles are projected simultaneously from the two points 
A and B (which are not in the same horizontal line) with the same 
initial velocity V and at the same inclination a to the horizon, so 
as to move towards each other. Prove that their distance from 
each other will be a minimum after a time 

2 V cos a 

14- 

15- 

where h is the horizontal distance between their points of projection. 
Prove also that this minimum distance will be k, where k is the initial 
difference of their vertical heights. (H.S.D.) 

Two particles are projected simultaneously with the same speed V 
in the same vertical plane, but at different inclinations 0lt 6t. 

Prove that their velocities are parallel after a time 

*1 ~ 

V 
cos, 

g 0\ 4- 02 
2 ~ (H.S.D.) 

A projectile is aimed at a mark on a horizontal plane through the 
point of projection and falls 20 feet short when its elevation is 30° 
but overshoots the mark by 30 feet when its elevation is 450. Show 
that the correct elevation is about 330 26'. (I.E.) 

If a man were projected from the earth with velocity V and elevation 
a and if at the same instant a stone were projected with the same 
velocity but elevation show that the stone would appear to the 
man to be travelling with constant velocity in a certain fixed 
direction. 

Show further that if /J — a — 600 the apparent velocity of the 
stone would be V. (I.E.) 

16. If the minimum kinetic energy of a projectile during its flight is i 

of its initial value, prove that the direction of projection makes an 
angle sec-1 n\ with the horizontal. 

Prove that the curve obtained by plotting the kinetic energy 
against the time is a parabola. (N.U.3) 

17. Show that it is not possible for a body to be projected from a point 
A so as to pass through another point B unless the speed of pro¬ 
jection is^uch that if the particle were projected vertically it would 
rise to a height at least J(AB -j- BN), where BN is the perpendicular 
from B on the horizontal plane through A. (N.U.4) 



200 INTERMEDIATE MECHANICS 

§ 141. The Path of a Projectile (neglecting air resistance) is 
a Parabola. 

Let «,abe the velocity and angle of projection from P (Fig. 82). 
Taking PX horizontal and PY vertical as co-ordinate axes, we have, 
after time t, 

x = u cos a . t . 

y = u sin a . t — \gt2 . 

Substituting for t in (ii), 

y = x tan a 
gx* 

2ul cos2 a 

(i) 

(ii) 

(iii) - 

This equation represents a parabola with its axis vertical. 
When y — o, equation (iii) gives 

2<*2 sin a cos a 
x = 0, or x =-. 

g 
The first of these values corresponds to P, and the second to 

P' where PP' is the horizontal range. 

§ 142. 

Fig. 83. 

We can obtain the equation of the path in a simpler form by 
taking the horizontal and vertical through the highest point A 

(Fig- £3) as axes. We know that the horizontal and vertical velo¬ 
cities at A are u cos a, and zero. 
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Hence in time if x is measured vertically downwards, and 
y horizontally, 

y = u cos a . t, 

gy* 
W* 

2u2 cos2 a ' 

2 u2 cos2 a 

£ 
. 

This represents a parabola with vertex at A and axis AB vertical. 
T. . , , . 2u2 cos2 a 
Its latus rectum is 

If S is the focus, 

AS: 

g 

u* cos38 a 

2£ 

The directrix HXH' is horizontal and at a height 

above A. 
u2 sin2 a 

u* cos* a 

2g~~ 

The height of A above P is 
2£ 

the height of the directrix above P is 

u2 cos2 a u2 sin2 a __ «2 
2g 2g 2g‘ 

This shows that the height of the directrix above the point of 
projection depends only on the initial velocity, it is the same for all 
possible paths with this particular velocity. 

We see also that the height of the directrix above the point of 
projection is the height to which the particle would rise if projected 
vertically upwards. 

The vertical velocity at a point Q is given by 

v* =r u* sm* a 2g ■ QM, 

the horizontal velocity is u cos a, 

the resultant velocity at Q is Vu2 — 2g . QM.w— 
The velocity acquired by falling to Q from the directrix, a 

height of 
2£ 

QM 

IS V2^(20 — QM) = Vu* — 2g. QM. 

The velocity at any point is therefore equal to the velocity 
acquired by falling freely from the directrix to that point. It should 

2u2 COS2 0L 
be noticed that the latus rectum --- depends only on the 

horizontal velocity. 
g 
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§ 143. To shoiv how to project a particle with given velocity u from 
one given point P to pass through another given point Q. 

Fig, 84. 

Let HK (Fig. 84) be the common directrix for paths from P 

with the given velocity u, and let PH, QK be perpendicular to HK. 

HK is at a height — above P. 
2g 

With centres P, Q and radii PH, QK describe circles. 

If these circles cut at S and S', these points are the foci of the 
two possible paths from P to Q. 

For, SP - PH, and SQ - QK. 
Similarly for S'. 

Now the tangent to the path at P is the required direction of 
projection, and we know that the tangent to a parabola at any 

point P bisects the angle between the line joining P to the focus 
and the perpendicular from P on the directrix. 

Hence the required directions of projection bisect the angles 
SPH and S'PH. 

We also see that there are, in general, two possible directions 
of projection. 

If the circles touch (instead of cutting), their point of contact 
will be a point S in PQ (Fig. 85), and in this case there is only one 

Fig. 85. 

possible path from P to Q with the given velocity of projection, 
and its focus is at S. In this case the particle can just reach Q. 

The range on the line PO is thus a maximum for the given 
velocity of projection, and we see that the direction of projection 

bisects SPH, i.e. it bisects the angle between PQ and the vertical. 
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Thi$ is the result already obtained in determining the maximum 
range on an inclined plane. 

If the circles do not meet‘it is impossible to project a particle 
from P to Q with the given initial velocity. 

144. The Bounding Parabola. 
We can easily find the locus of all points Q which can just be 

readied by projecting a particle from P with given velocity u. 

Fig. 86. 

Let HK (Fig. 86) be the common directrix for all paths from P 
with velocity u. 

If Q is one of the points which can just be reached, we have 
seen that the focus of the path is at S, where PS — PH and QS ~QK. 

Draw H'K' horizontal, and at a height above HK equal to PH. 
Then QK' == OK + KK' - QS + HH' - QS + PH = QS + SP 
- PQ. 

Q lies on a parabola having P as focus and H'K' as directrix. 
The vertex of this parabola is obviously at H, and its latus rectum 

r»rr 2U2 is 4PH or —. 
g 

If referred to HP and HK as axes of x and y, its equation is 

A 

T X. 

A particle projected from P with velocity u can reach any point 
within or on this curve, which is therefore called the bounding para¬ 
bola. 

We may use this curve to find the maximum range on any plane. 
For, suppose we want the maximum range on a horizontal plane 
at a depth h below P. The depth below H is 

u2 

and the equation ot the horizontal line at this depth is 

* w 
h + 0 n 
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This cuts the parabola 

where 

2 U* 

Y X, 

145. Motion on the Surface of a Smooth Inclined Plane. 

D C 

Suppose a particle projected with velocity u on the surface of 

a smooth inclined plane ABCD (Fig. 87) of slope in a direction 
inclined at an angle a to the line of greatest slope of the plane. 

The acceleration due to gravity has components g sin ft in the 

direction of the line of greatest slope of the plane, and g cos per¬ 
pendicular to the plane. 

The latter is destroyed by the reaction of the plane, so that 

the particle moves with an acceleration g sin /} parallel to the line of 
greatest slope. 

The motion relative to the plane is therefore the same as in 

paragraph 132 if we use g sin ft for the acceleration instead of g. 

Example. 

A particle is projected up an inclined plane (of slope 30°) at an angle 
of 30° with the line of greatest slope, with initial velocity V. Write down 
the equations of motion and find the equation of the path on the plane, and 
its distance from the starting-point when it again reaches that level. 

Taking the horizontal line and the line of greatest slope through 
the starting-point as axes of x and y, then at time t, 

x = V sin 30° . t,.(i) 
y = V cos 30° . t — \g sin 30° . t% . . . . (ii) 

These are the equations of motion, and substituting the value of 
t obtained from (i) in (ii), 

£ X% 
>> = * cot 30° - 4 . sin, 30a, 

or y = V3 * - e£„ 

and this is the equation of the path. 

gx% 
jr, = V3.X, 

v/3 7* r = o or 2L2.IL . 

When y o, 
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The latter is the distance from the starting-point when it again 
reaches that level. 

$146. The following examples are of a rather more difficult 

nature:— 

Example (i). 

Show that the magnitude of the velocity of a projected particle at any 
point of its path is that which would result from falling freely under gravity 
from a certain fixed line. A projectile is fired from a point A on a hori¬ 
zontal plane. If t is the time from A to any point P of its path, and t + t' 
the whole time of flight, show that the height of P is i.gtt'. (H.S.C.) 

Let u and a be the velocity and angle of projection. At a height h 
the horizontal and vertical components of velocity vx and vt are given 

by 

vx% = u* cos* a, 

vt* * u* sin* a — 2gh. 

If V is the resultant velocity at this height 

V == Vul — 2 gh. 

Now the velocity acquired by falling from height x to height h is 

V 2g(x — h) = V 2gx - 2gh, 

and this is the same as V if 

2 gx = u\ 

Hence the velocity at any height is equal to that acquired by falling 

to that height from a fixed line at height 

above the point of projection. 

The whole time of flight T is given by 

o = u sin a . T — \gT*, 

If h is the height of P, 

u sin a . t — \gt*, 

f (t + n 
* = tgt* + U# 

- w- 

but 
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Example (ii). 

A tennis ball is projected from a point whose height above the ground 

is h feet, and which is a horizontal distance a from the net which is also 

of height h. The direction of projection makes an angle a with the hori¬ 
zontal, and is in a vertical plane perpendicular to the net. If the ball 
strikes the ground within a distance b on the other side of the net, show 

that for a given value of a the velocity of projection must lie between two 

limits, and that in order that this may be possible tan a must exceed the 

value 

wi i) • <H-SC-) 

If u is the velocity of projection, the time taken to reach the net is 

Now at this time the ball must be at least h feet from the ground, 

or on a level with its point of projection in order to get over the net. 

u sin a . 

a tan a — 

u cos a 

ga 

g __ 
2 * u2 cos2 a < °> 

-S-5— <£ o, 
2u2 cos2 a ^ 

g<* 
(i) or u% <£ 

2 sin a cos a 

If t is the time taken to reach the ground 

— h — u sin a . t — £gt2, 
. gt* — 2« sin a . t — 2h — o, 

u sin a -f \/u2 sin2 a -f 2gh 
^ _ - 

The horizontal distance described in this time must not be greater 

than a -f b, 

u2 sin a cos a -f « cos a Vu2 sin2 a -j- 2gh g(a -f- 6), 

u* sin2 a cos* a -f 2«2 cos2 a . gh > g2(a -f 6)2 -f u* sin2 a cos2 a 
— 2gu2 sin a cos a . (a -f b), 

2U%g cos a[h cos a + (a -f fc) sin a] > g2(a -f ft)2, 

...«■>_ill ± . . (hi 
2 cos a[A cos a -f- (a -f 6) sin a] 

Now a will be a minimum when u has the maximum value given 
by (ii), also, as above. 

a tan a <£ ga*_ 
2u2 cos2 a' 

. a tan a < a% cos cos a + (a -f &) sin a] 
cos2 a(a -f 6)2 ' 

(a + 6)2 sin a < ah cos a + a(a -f 6) sin a, 

(ab + b%) tan a <£ ah, 

ah 
tan a < 

b(a -f 6)* 
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Example (iii). 

A particle on a smooth plane, of inclination a, is distant a from a 
small hole in the plane, on a higher level than the hole, in a direction in¬ 

clined at p to the line of greatest slope. If the particle is projected along 
the plane with velocity v so as to fall into the hole, show that the time t 
is given by the equation 

g* sin* a . t4 — 4(v* -f ag sin a cos p)t* 4~ = o. 

But if the particle is projected into the air with the same velocity v so 
as to fall into the hole, the time t is given by 

gHA — 4(v* + ag sin a cos p)t* -f 4a2 == o. (Ex.) 

A 

Let A (Fig. 88) represent the point of projection, B the hole, AC 

the line of greatest slope, CB being horizontal and D the projection of 

A on the horizontal plane through CB. 

The co-ordinates of B referred to the horizontal line through A and 

the line of greatest slope are a sin p, and — a cos p. 
If 0 is the angle to the horizontal line through A at which the par¬ 

ticle is projected, then since the acceleration down AC is g sin a, 

a sin ft — v cos 6 . t, 

— a cos p = v sin 0 . / — \g sin a . t*, 

v cos 0 . t — a sin p, 

v sin 0 . t = — a cos p + \g sin a . t2. 

Squaring and adding, 

vH* = a2 sin2 p 4- a'1 cos- p -j- — sin2 a . /4 — ag sin a cos p . t2, 
4 

g% sin2 a . t* — ^(v* -f ag sin a cos P)t2 4- 4a2 = o. 

The horizontal and vertical distances of B from A are DB and AD, 

also AD = AC sin a — a cos p sin a, 

DB* = AB* — AD2 = a2 — a1 cos* P sin* a. 

If 0 is now the angle of projection to the horizontal plane 

DB = V cos 0 . t, 

— a cos p sin a — v sin 6 . t — igt*, 

v cos 0 . t = DB, 
a 

1/ sin 0 . t — — a cos p sin a -f - t2, 
2 

pt 

vH* = a* — a* cos* p sin* a 4* a2 cos* p sin* a 4t* — ag sin a cos p . /*. 
4 

41/*/* = 4a% -j- g*tA — 4ag sin a cos p . t*, 

^*f4 — 4(v* 4- sin a cos p)t* 4- 4^* = o. 
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Example (iv). 

A particle is projected with velocity V from a point whose perpendicular 

distance from an inclined plane of slope a is h, in a direction making an 

angle $ with the line of greatest slope and in the same vertical plane with it. 

If the particle strikes the plane perpendicularly, prove that 

, . . . F* / F* cos a \ 
tan* 6 H—=—=— tan 0 -f ( i-i—y~ ) = o, 

gh stn a \ 2gh stn* a/ 

it being assumed that the whole motion takes place in the vertical plane 

containing the point from which the particle is projected. Prove also that 

in order that it may be possible for the particle to strike the plane perpen¬ 
dicularly, F* must be greater than 

gh (V4 — 3 cos1 a — cos a). 

The velocity perpendicular to the plane is F sin B. 
The time of flight t is given by 

— h — V sin 6 . / — cos a . /* . . (i) 

Since the particle strikes the plane perpendicularly, it must have 
lost all velocity parallel to the plane. 

Now the initial velocity parallel to the plane is F cos B, and the 
acceleration down the plane is g sin a, 

o = V cos 6 — g sin a . t, 

t — ^cos & 
~~ g sin a * 

Substituting this value for t in equation (i), 

- h = 
V* sin 6 cos B 

h sec* B + 

g sin a 

F* 

g V* cos* 6 cos a 

2 

g sin a 

V* 
tan* 0 -f if 

tan 6 — 

gh sin a 
tan 0 

gx sin* a 

F* cos a __ 

2g ’ sin* a ~~ 

F* cos a 

o, 

o. 
tan* 8 + 

F* 

gh sin a 

2gh sin* a 

, . . / F* cos a \ 
tan B + (i-r-t— y--) = o. 

V 2gh sm* a/ 

If this relation is possible the value of tan B must be real, 

F4 4 V* cos a 

g%hx sin* a 2gh sin* a 

F4 , 2 F* cos a ^ 
_ J-> At 
g*h% sin* a gh sin* a 

/ F* ^ cos a\ * ^ cos* a 

\gh sin a "r sin a/ * sin* a* 

^ 4 — 3 cos* a 

sin* a ' 

F* cos a ^ V4 — 3 cos* a 

gi sin a sin a sin a 

F* > — 3 cos* a — cos *]• 
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EXAMPLES XXVII. 

i. A and B are two points, such that the co-ordinates of B referred to 
A as origin, the axis of x being horizontal in the vertical plane through 
AB and the axis of y being the upward-drawn vertical, are a and b. 

It is required to project a particle from A to pass-through B, the 
magnitude of the velocity of projection being V. Show that this is 
impossible if V* is less than 

g(b + Va* + br), 

but that, if 
V2 >- g(b -f V a2 f- ba) 

there are two possible directions of projection. (H.C.) 

2. A projectile is aimed with velocity u at a vertical wall whose dis¬ 
tance from the point of projection is a. Prove that the greatest 
height above the level of the point of projection at which the pro¬ 
jectile can hit the wall is 

u* — g2a* 

2gu* “ ‘ 

(H.C.) 

3. A shot fired at an object a feet distance from the gun and on the 
same level, goes b feet beyond the object when the elevation of the 
gun is a. Find an expression for the change in elevation required to 
hit the object. The resistance of the air is to be neglected. If 
a is small, find the simplest approximate expression for the required 
change of angle, and calculate the change when a — 2°5/, a = 5280, 
b = 720. (Ex.) 

4. A particle is projected along a smooth straight tube of length l and 
inclination a from the lower end with velocity u, more than sufficient 
to carry it right through the tube. Find the length of the latus 
rectum of the parabolic path described by the particle after leaving 
the tube, and the equation of the path referred to the upper end of 
the tube as origin. 

Compare the greatest height to which the particle rises with that 
to which it would have risen if the tube had been of infinitesimally 
small length. (Ex.) 

5. A particle is projected under gravity along the face of a smooth 
inclined plane from a given point at its foot, with varying velocity 
and direction so as just to reach the top of the plane. If l is the 
length of the face along the line of greatest slope, and a its inclination 
to the horizon, show that the time taken to reach the top is the same 
for all paths and equal to 

( —)*• \g sin a/ 

Show also that the locus of the focus of the path is a parabola of 
latus rectum 4/. (H.S.C.) 

6. A particle is projected with velocity V2ga from a point at a height 
h above a level plain. Show that the tangent of the angle of elevation 
for maximum range on the plain is 

and that the maximum range is 2 \' a(a + h). 

VOL. I. 

(C.S.) 
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7. A particle is projected with a velocity whose horizontal and vertical 
components are u and v. Show that if it rises higher than h above 
the plane of projection it will be at a height h at two points of its 
path, the distance between which is 

8. 

-=»*)*• 

If two particles are projected from a point at the same instant 
with velocities whose horizontal and vertical components are ult vl 
and ut, vt respectively, show that the interval between their passing 
through the other common point of their paths is 

2(V{Ut — UXV») (c.s.; 
£(«. + «») 

Two vertical posts of heights a, b stand on level ground at a distance 
c apart ; a stone is projected from the ground level with the least 
possible velocity consistent with its just clearing the two posts. 

c* 
Prove the latus rectum of this parabolic trajectory is ^ where 

ci2 m (a — b)2 + c2 and that the range on the ground level is 

c[d2 -f 2(a 4- b)d -f (a — &)2]* 

2d * 
(C.S.) 

9 

II. 

A shot is fired with initial velocity V at a mark in the same horizontal 
plane ; show that if a small error is made in the angle of elevation 
and an error of 2e° in azimuth, the shot will strike the ground at a 
distance from the mark 

eVJ 

90'g 

Show also that if the angle of elevation is less than about 31 J°, 
an error in elevation will cause the shot to miss the mark by a greater 
amount than an equal error in azimuth. (C.S.) 

A particle is projected with a given velocity v from the foot of an 
inclined plane of slope a. The direction of projection lies in a plane 
containing the line of greatest slope and makes an angle $ with the 
face of the plane. Prove that if the particle strikes the plane per¬ 
pendicularly cot 0 — 2 tan a. 

Show that, for different values of a, the range on the plane when 
the particle strikes it perpendicularly cannot be greater than 

gV3 
(C.S.) 

A particle is projected with velocity u at an elevation a. Show that 
u 

after a time j cosec a its direction will be at right angles to its 

direction of projection, and that its distance from the point of 
projection will be equal to that below a horizontal line at a height 

g 
above the point of projection. (C.S.; 

A stone is projected from a point P on the ground over a house so as 
just to clear the top of the walls and the ridge of the roof : the breadth 
of the house is 2a, the height of each wall is /, and the height of the 
ridge is h -f /. Find the position of P and the velocity of pro¬ 
jection. (C.S.) 
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13. Prove that if the difference in level between two points A and B is 
L, the velocity of projection from A in order that B may be just 
within range of A is 

Vg(AB ± L) 
according as B is above or below A. (C.S.) 

14. Show that all points in a vertical plane, which can be reached by 
shots fired with velocity v from a fixed point at a distance c from the 

21'2 
plane, lie within a parabola of latus rectum — whose focus is at 

a distance vertically below the foot of the perpendicular on the 

plane from the point of projection. (C.S.) 
15. A fort is on the edge of a cliff of height h. Show that there is an 

annular region in which the fort is out of range of a ship, but the 
ship is not out of range of the fort, of area 8nkht where V2gk is the 
velocity of the shells used by both. (C.S.) 

/16. A gun fires a shell with a muzzle velocity of 1040 feet per second. 
Neglecting the resistance of the air, what is the furthest horizontal 
distance at which an aeroplane at a height of 2500 feet can be hit 
and what gun elevation is required ? Show that the shell would 
then take approximately 44-2 seconds to reach the aeroplane. (C.S.) 

17. A ball is dropped from the top of a tower 100 feet high. At the 
same instant a ball of equal mass is thrown from a point on the ground 
50 feet from the foot of the tower so as to strike the first ball when 
just half-way down. Find the initial velocity and the direction of 
projection of the second ball. If the two balls coalesce, how long will 
they take to reach the ground ? (C.S.) 

18. Particles are projected simultaneously from a point under gravity 
in various directions with velocity V. Prove that at any subse¬ 
quent time t they will all lie on a sphere of radius Vt, and determine 
the motion of the centre of this sphere. (C.S.) 

19. Show that all the points in a vertical plane which can be reached 
by a projectile thrown from a given origin in the plane with given 
velocity lie within or on a parabola, and show that this parabola 
touches all the trajectories. 

Prove that the time to reach a point on the enveloping parabola 
at a distance r from the origin is 

Vf- <c-s-> 
§ 147. The following examples involve impacts of projected 

particles:— 

^liXAM] XAMPLE (i). 

A ball is thrown from a point distant a from a smooth vertical wall against 
the wall, and returns to the point of projection. Prove that the velocity 
u of projection and the elevation a of projection are connected by the equation 

u* sin 2a = ag(i -f 

where e is the coefficient of restitution between the ball and the wall. 
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Since the wall is smooth the vertical motion is unaffected by the 

impact, i.e. the time of flight is still 

2 u sin a 

~~g 

The ball approaches the wall with horizontal velocity u cos a, and 

rebounds with horizontal velocity eu cos a. 

Hence the times taken to reach the wall and rebound a horizontal 

a a 
distance a are - and - respectively, 

u cos a eu cos a 

2W sin a 

* * g 

2M sin a 

‘ ’ ~~g 

w*sin 2a = ag{i 4* -)• 
e 

u cos a eu cos a' 

ajj ± e) 
eu cos a' 

Example (ii). 

A particle projected from a point on a smooth inclined plane at the 

rth impact strikes the plane normally, and at the nth impact is at the point 

of projection. If e is the coefficient of restitution, prove that 

en — 2er +i = o. (C.S.) 

Let a be the inclination of the plane, 8 the angle between the direc¬ 

tion of projection and the plane, v the velocity of projection. 

Consider the motion perpendicular to the plane. 

The time to the first impact is 

2V sin 8 

g cos a 

The particle reaches the plane again with the same normal velocity 

v sin 8, and rebounds with velocity ev sin 8. At the second impact it 

rebounds with normal velocity eh) sin $, and so on. 

Hence the time T to the rth impact is given by 

2v sin 8, 
- i 
g cos a 

+ e 4- e* 4- • ■ • 4- cr -*) = 
2V sin 8 

g cos a 

i — er 

i — e * 

The time T' to the nth impact is given by 

__ 2v sin 8 i — en 

g cos a ’ ~i~— e * 

Now coiisider the motion parallel to the plane. 

After time T the particle has lost all the velocity parallel to the plane. 
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After time T' its distance up the plane from the point of projection 

is zero, 

o = v cos $ . T' — sin a . T 

2V COS & 
T' = 

.-. T' 

i — en 

g sin a 

2 r, 
I — 6r 

e i — e 

.•. i — en = 2 — 2er, 

en — 2er 4-1=0. 

EXAMPLES XXVIII. 

i. A particle of mass m is projected with velocity v at an angle a to the 
horizontal, and at the same instant a particle of mass 3m is dropped 

v* sin8 a . v% sin a cos a 
from a height---, at a horizontal distance of --- from 

the point of projection of the first particle. Show that the particles 
will collide. If the particles now coalesce, find the position of the 
point at which the particles strike the ground, and the time which 
elapses before they reach it. (I.E.) 

2. A particle is projected in a vertical plane perpendicular to a smooth 
wall so as to return to the point of projection after striking the wall. 
Show that the angle between the direction of projection and the 
horizontal is given by 

tan 6 
egt* 

2a(i + e)p 

where t is the time of flight, a the distance from the wall of the point 
of projection, and e the coefficient of restitution. (H.S.C.) 

3. A body slides from rest down a smooth plane of length l and inclina¬ 
tion a, and at the bottom impinges on a smooth horizontal plane ; 
show that the range on the horizontal plane after the first rebound 
is 2el sin a sin 2a, where e is the coefficient of restitution between 
the body and the horizontal plane. (I.A.) 

4. A mass of 10 oz. moving horizontally at a point A, 56 feet above the 
ground with a velocity of 44 ft./sec., is struck at A by a mass of 1 oz. 
moving vertically upwards with a velocity of 550 ft./sec., and the 
two masses unite ; find the position of the point at which- the com¬ 
bined mass strikes the ground. (I. A.) 

5. From a point distant a from a smooth wall a particle, whose initial 
height above the ground is h, is projected with horizontal velocity 

llh 
u towards the wall. If a < show that the particle strikes 

the ground at a point distant e — aj from the wall, e being 

the coefficient of restitution between the wall and the particle. 

VOL. I.—8 (H.S.D.) 
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6. A ball is thrown with a speed of 64 ft. /sec. at an angle of elevation of 
450. It strikes a vertical wall 32 feet away and returns to the point 
of projection. Find the coefficient of restitution between the ball 
and the wall. (H.S.D.) 

7. An elastic particle is projected with velocity u, at an inclination to 
the horizontal, from a point on the ground distant a from a smooth 
vertical wall towards the wall. Prove that, after rebounding from 
the wall, it can strike the ground again at a point further from the 
wall than the point of projection if 

1 4- e 
ui > _—agt 

where e is the coefficient of restitution. 

8. A particle is dropped from a height h on to a smooth and perfectly 
elastic inclined plane and rebounds. Find how far down the plane 
is its next point of impact. (H.S.C.) 

9. Find the maximum range on a plane, inclined at an angle a to the 
horizontal of a particle projected with velocity u from the lowest 
point of the plane in a vertical plane through a line of greatest slope 
of the plane. Find also the maximum range that can be obtained 
at the end of the second impact on the plane after rebounding, the 
coefficient of restitution between the plane and the particle being e. 

(H.S.C.) 

10. A particle is dropped from a vertical height a upon the highest 
point of a plane, of length b and inclination a, and reaches the bottom 
at the fourth impact. Show that 

b — 4«c(i -f e)(i 4- e2)(i -f- e -f e2) sin a, 

where e is the coefficient of -restitution. 

11. A particle is projected from the foot of a plane of inclination a in a 
direction making an angle 0 with the plane, and at the wth impact 
rebounds vertically, show that 

cos (a -f 0) “ sin 6 sin a — cn)t 

where e is the coefficient of restitution. 

12. A ball is projected from the ground at an angle a to the horizontal 
and rebounds from a smooth vertical wall to the point of projection. 
If the line joining the point of projection to the point of impact 
makes an angle 0 with the horizontal, prove that. 

(1 -j~ e) tan 0 — tan a, 

where e is the coefficient of restitution. 

13. In a certain game a ball is rolled along a horizontal plane until it 
strikes an inclined plane from which it rebounds. The object of 
the game is to make the ball after rebounding fall into a hole in the 
inclined plane. If 0 be the inclination of the plane, e the coefficient 
of restitution between the ball and the plane, and if the hole be 
situated at a distance d from the junction of the planes, show that 
in order that the ball may enter the hole, its velocity of projection 
V must be given by 

dg — 26 F* sin 0 (1 — e tana0). (H.S.D.) 
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14. A particle is projected with a velocity of magnitude V from a point 
of a plane, inclined to the horizontal at an angle a, in the vertical 
plane through the line of greatest slope through the point of projec¬ 
tion. The direction of projection is up the plane and makes an 
angle p with the plane. The coefficient of restitution between the 
plane and the particle is e. Prove that the range of the particle on 
the plane at the moment of its second impact with the plane 
is greatest when cot 2)3 — (1 + e) tan a, and that this greatest 
range is 

F2(i -f e) tan p 

g cos a 

where P has the value given by the first equation. (H.C.) 



CHAPTER V. 

MOTION IN A CIRCLE. 

§ 148. In the present chapter we shall consider the motion of 
a particle moving in a circle with uniform speed, and also certain 
points in connection with the motion of a particle in a vertical 
circle under gravity. 

It is evident from Newton's First Law of Motion that, if a par¬ 
ticle is describing a circle with uniform speed, there can be no force 
acting on it in the direction of the tangent to the circle, otherwise 
the speed would alter. At is also clear that there must be an inward 
force acting to cause the particle to describe a curved path. This 
means that there must be an inward acceleration along the normal 
to the path, and we shall now find what the magnitude of this 
acceleration must be. v / 

§ 149. If a particle is moving in a circle of radius r with constant 
D2 

speed v, its acceleration is ~ and is directed towards the centre of the 

circle. 

Let 0 (Fig. 89) be the centre of the circle, P the position of the 
particle at any instant, and Q its position after a short interval of 
time 81. 

Let the small angle POQ be 80, and the small arc PQ be 8s. 
The velocity at P is v along the tangent PT, and the velocity at Q 
is v along the tangent TQ, and Z.QTX — 80. 

Resolving the velocity at Q along and perpendicular to PX, the 
components are 

v cos 80 along PX, and v sin 80 perpendicular to PX. 
216 
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The change in velocity along the tangent PX is v cos 80 — v. 
Hence the acceleration along the tangent PX is 

. , 80 
, . — 2v s:n* — 

T w(cos 80 — i) . 2 
U ^ =Ll-g 

= Li 
61 

= o. 

The change in velocity along the normal PO is v sin 80. 
The rate of change of velocity is therefore 

Lt 
v sm 

W = Li 
v sin 80 80fA 

80 ‘8/ 
V- 

dO 
dt' 

and is directed towards O. 
d6 

Now -jg is the angular velocity of P in the circle, so that, de¬ 

noting this by a), the acceleration is vw towards the centre. 
Since v = rw, we have the following values for the acceleration, 

v2 2 
— or rw*. 
r 

§ 160. If the mass of the particle is m, the force required to 

produce this acceleration is — or mrco2, and it must act contin¬ 

uously towards the centre of the circle. 
This force may be produced in various ways, e.g. the particle 

may be connected to O by an inextensible string, or it may be 
threaded on a smooth circular wire ; in the first case the tension 
of the string, and in the second case the reaction of the wire provides 
the necessary central force. 

It must be noticed carefully that although (in the case of a 
particle swinging round in a circle at the end of a string) the string 
is in a state of tension, there is no tendency for the particle to move 
outwards along the radius of the circle. If the string breaks the 
particle continues to move straight on along the tangent to the 
circle. 

In the case of a train going round a curve the necessary inward 
force is provided by the pressure of the outer rail against the flanges 
of the wheels. In the case of a motor car the force is provided by 
the friction between the wheels and the ground. In both cases it 
is possible to make the weight of the train or car provide this force 
by banking up the track so that the outer wheels are above the 
inner oneg. This will be considered later. 
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Example (i). 

A mass of 5 lb. moves on a smooth horizontal plane with a speed of 
8 ft./sec., being attached to a fixed point on the plane by a string of length 

4 ft. ; find the tension of the string. 

Here v — 8, r = 4. 

The acceleration towards the fixed point is — — 16 ft./sec.8, 

the tension must be 5 x 16 = 80 pdls. = 2\ lb. wt. 

Note.—The force given by or mroj1 is always in absolute units, 

i.e. in F.P.S. units the force is in poundals, in C.G.S. units it is in dynes. 

Example (ii). 

A particle of mass 8 lb., resting on a smooth table and attached to a 

fixed point on the table by a string 4 feet long, is making 300 revolutions 

per minute ; find the tension in the string. 

300 R.P.M. = 5 rev. per sec., 

.-. the angular velocity = 10n radians per sec. 

The tension is mra>2 —8.4. io27ra pdls. 

— I OOtt* lb. wt. 

= 1000 lb. wt. nearly. 

Example (iii). 

An engine, of mass 80 tons, is moving in an arc of a circle of radius 

800 fed, with a speed of 30 m p.h. ; \what force must be exerted by the rails 

towards the centre of the circle ? 

30 m.p.h. — 44 ft./sec. 

80 tons = 80.2240 lb., 

the force is 

80.2240.44 • 44 pdls 
800 F 

= 6 ,/n tons wt. 

Example (iv). 

A particle is tied by an elastic string of length 1 foot to a fixed point 

on a smooth horizontal table, upon which the particle is describing a circle 

round the point at a constant speed. If the modulus of elasticity of the 

string is equal to the weight of the particle and the number of revolutions 

per minute is 20, show that the extension of the string is nearly 2 inches. 

[Take g = 32 ft./secA, and n* = 10.] (I.S.) 

Let m be the mass of the particle. 

20 R.P.M. = J rev. per sec. 

.*. the angular velocity is — radians per sec. 

If x feet is the length of the string, the tension (mrw2) is 

mx tIL pdls. 
9 
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Now the extension of the string is (x 

E = mg, the tension T is given by 

i) ft., and since the modulus 

T = ^{x - i) pdls. 

mg(x 
4*-» 

I/, ft. 

The extension is ft. or nearly 2 ins. 

EXAMPLES XXIX. 

1. A particle of mass 5 lb. rests on a smooth horizontal plane, and is 
attached by a string 4 feet long to a fixed point on the plane. If 
the particle describes a horizontal circle at 8 ft./sec., find the tension 
in the string. 

2. A string 2 feet long can just sustain a weight of 40 lb. without 
breaking. A mass of 4 lb. is attached to one end of the string and 
revolves uniformly on a smooth table, the other end of the string 
being fixed to a point on the table ; find the greatest number of 
complete revolutions the mass can make in a minute without 
breaking the string. 

3. An engine, of mass 60 tons, is moving in an arc of a circle of radius 
800 feet at 60 m.p.h. What force must be exerted by the rails 
towards the centre of the circle ? 

4. A motor car, weighing 2 tons, is rounding a curve of radius half a 
mile on a level track at 60 m.p.h. ; what force of friction is necessary 
between the wheels and the ground ? 

5. One end of an elastic string, 2 feet long, is attached to a fixed point 
on a smooth table, and the other end to a mass of 4 lb. resting on the 
table. If the 4 lb. mass were suspended vertically by the string the 
extension would be 4 inches. The mass is made to describe a circle 
round the fixed point at 40 R.P.M. Calculate* the extension of 
the string. 

6. An elastic string of unstretched length /, fixed at one end, can just 
support a mass of m lb. when hanging vertically and extended by 
half its length. The mass and string are now placed on a smooth 
horizontal table with one end of the string fixed. The string is 
stretched to double its length and the mass is projected along the 
table with such velocity that it describes a horizontal circle about 
the fixed point as centre. Find the time of revolution of the mass. 

(H.S.D.) 

7. Two equal particles are connected by a string passing through a hole 
in a smooth table, one particle being on the table, the other under¬ 
neath. How many revolutions per minute would the particle on 
the table have to perform in a circle of radius 6 inches, in order to 
keep the other particle at rest. (I.S.) 

8. A rough horizontal table can rotate about a vertical axis, and a weight 
is placed on the table at a distance of 2 feet from the axis. The 
table is made to rotate with gradually increasing velocity ; if the 
coefficient of friction between the weight and the table is £, show that 
the weight will not move as long as the number of revolutions per 
minute is less than 19. (H.S.C.) 
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9. A plane horizontal circular disc is constrained to rotate uniformly 
about its centre, describing two complete revolutions per second. 
Show that the greatest distance from the centre of the disc at which 
a small object can be placed so as to stay on the disc is very nearly 
2 *43 fi inches, where is the coefficient of friction between the object 
and the disc. (H.C.) 

10. The wheels of a bicycle are 30 inches in diameter, the gear-ratio 
between the crank axle and wheel axle is 2J, and the length of the 
crank is 8 inches. Find the velocity of the end of the crank and the 
magnitude and direction of its acceleration, when at its highest 
point, the bicycle travelling at the rate of 30 ft./sec. (Q.E.) 

§ 151. The Conical Pendulum. 

If a particle be tied by a string to a fixed point O, and move 
in a horizontal circle, so that the string describes a cone whose 
axis is the vertical through 0, the string and particle form what is 
called a conical pendulum. 

Let P (Fig. 90) represent the particle of mass m, and OP the string 
of length /, and let ON be the vertical through 0. Then if PN 
is perpendicular to ON, N is the centre of the horizontal circle 
described by P. 

Let T be the tension in the string, 6 its inclination to the vertical, 
and a> the angular velocity of the particle about N. 

The only forces acting on the particle are the tension of the 
string and its own weight mg. 

It is obvious that P must be below O so that the tension has 
an upward vertical component to balance the weight mg. 

The horizontal component of the tension must provide the 
central force necessary to keep the particle moving in its circle. 
The value of this central force is wPN . o>2 or ml sin $ . o>2, 

T sin 6 = ml sin 6 . o>2 (i) 

Since there is no vertical acceleration, the vertical component 
of T must equal the weight mg., 

T cos 8 = mg . . . . (ii) 
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From (i) T = tnlw2 = 47r2n2ml pdls., 

where n is the number of revolutions made by P per second. 
Substituting for T in (ii), 

cos 0 ■ . - g 
mlo)2 lw2 

Now ON = l cos 0, 

.-.ON 

i.e. the vertical depth of P below O is independent of the length of 
the string, and varies inversely as the square of the angular velocity. 

If we use the speed v of P instead of its angular velocity <*>, 
v = PN . <0 = / sin 6 . w; 

equation (i) then becomes 

T sin 0 = ml sin 9 . v mv 
l2 sin2 0 l sin 0' 

and, dividing by (ii), 

tan 0 = -j—;— 
g/ sin 0 

v2 — g/ sin 0 tan 0. 

§ 152. Governors of Steam-engines. 

The fact that, when a weight is swung round as a conical pen¬ 
dulum, the depth of the weight below the point of suspension 
depends only on the angular velocity, is made use of in governors 
for regulating the supply of steam to an engine which is required 
to rotate a shaft at a constant rate. 

C 

Two light rods are hinged at C (Fig. 91) to a vertical shaft which 
is rotated by the engine, and at the other ends of these rods are 
weights A and B. Two other rods DF, EF are hinged to AC and BC 
and also to a collar F which can slide up and down the shaft. 

A lever is attached to F wThich can open or close a valve admitting 
steam to the engine. This is arranged so that when F rises it closes 
the valve. 

8* 
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When the speed of rotation of the shaft increases, the weights 
A and B rise and pull F up, thus shutting off some of the steam 
so that the engine is slowed down. If the speed decreases too 
much, F is lowered and lets in more steam. 

§ 168. Example (i). 

A small body, attached by a string to a fixed point, describes a hori¬ 

zontal circle at the uniform angular speed of one revolution per second. 

Prove that its distance below the fixed point does not depend on the length 

of the string, and find the tension of the string when the mass of the body 

is 2 lb., and the length of the string is 14 inches. (H.S.D.) 

0 

Let O (Fig. 92) be the fixed point, P the body, OP the string in¬ 
clined at an angle 9 to the vertical ON, and PN perpendicular to ON. 

Then, if m is the mass, T the tension of the string, and to the angular 

velocity of P, 
T sin 9 — mPN . to* — ml sin 9 . to2 . . (i) 

T cos 9 = mg.(ii) 

From (i) T = mlto2 ...... (iii) 

,.icose= 
ma>* co2 

but / cos 9 is the depth of P below O, which is therefore equal to 
g 
—, and is independent of the length of the string. 
to* 

When P is making one revolution per second, to = 2-n, and if m = 2 lb., 
I = feet, we have, from (iii), 

T = 2 . J . 47T* — n2 pdls. 

Taking n2 = 10, 
~ 280 ,, 280 ,, 
T — — pdls. or - lb. wt. 

3 3 X 32 

i-e* 93^ pdls. or 2J J lb. wt. 

Example (ii). 

If the mass of the bob in a conical pendulum is 4 lb., and the length of 

the string is 2 feet, find the maximum number of revolutions per second 

of the pendulum when the greatest tension that can with safety be allowed 
in the string is 40 lb. wt. (I.S.) 
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O 

N 

4y 

Fig. 93. 

Let T be the tension in the string, w the angular velocity, and $ 
the inclination of the string to the vertical. 

In Fig. 93, O is the point of suspension, P the bob, PN the perpen¬ 

dicular on the vertical ON through O. 

T sin 0 = 4PN . o>a = 4 . 2 sin 0.47r*w8, 

where n is the number of revolutions per second, 

... T = 327t8«2 pdls., 

m lb. wt. 

The maximum value of T is 40 lb. wt. 

.*. 7r*n2 = 40, 

... n2 -- 12 = 4, taking tt2 — 10. 
7T* 

Hence the greatest number of revolutions per second is 2. 

Example (iii). 

An elastic thread, whose unstretched lenqth is 20 inches, has a mass of 

5 lb. at one end and makes 60 R.P.M. as a conical pendulum. The string 

is then 24 inches long ; find the tension in the string and express in ft. lb. 

the kinetic energy of the mass and the potential energy due to stretching 

the thread. (LS.) 

60 R.P.M. = 1 per sec., and the angular velocity is 2n. 

If T is the tension, and 0 the inclination of the string to the vertical, 

T sin 0 = 5 X 2 sin 0 x 4**, 

.*. T =* 407T* = 400 pdls. nearly, or 12*5 lb. wt. 

Also T cos 0 = 5g, 

,.costf = f = = 
T 400 80 5 

. sin 0 = V21 

If v is the speed of the mass, 

v = 2 sin 0. ft./sec. 
5 

5 i6tt* x 21 _ r , 
=* ^ -- — 16 x 21 ft. pdls. nearly, 

=a IOj ft. lb. 

.*. its kinetic energy is 
25 
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The potential energy due to stretching the thread is equal to the 

work done in stretching it from its natural length, 20 inches, to 24 inches, 

i.e. by J foot. The mean of the initial and final tensions is 

— — 15? — 200 pdls., 
22 

the work done in stretching is ^52 ft. pdls., or ft. lb. 
3 96 

The potential energy is therefore 2 vV ft. lb. 

Example (iv). 

A mass m at C is freely jointed to two equal light rods CA and CB ; 

the end A of CA is pivoted to a fixed point A, and the end B is freely 

jointed to a heavy bead of mass m which slides on a smooth vertical bar 

AB. If the mass C rotates in a horizontal circle with uniform angular 

velocity w, prove that the inclination of the rods CA and CB to the vertical 
3g 

is cos~l ~—where l is the length of either rod. (I.E.) 

Let Tlt Ts be the tensions in AC, BC (Fig. 94), and 6 the angle BAC. 

Resolving vertically for the weight at B, 

Tt cos 6 — mg.(i) 

Resolving vertically for the weight at C, 

Tj cos 6 — mg + T% cos $ = 2 mg . . . (ii) 

Now since the mass at C is describing a horizontal circle of radius 

/ sin B about AB, the two tensions must exert a force of ml sin B. o>#, 

towards AB and in a direction bisecting the angle ACB. 

Tt sin B + r, sin B f= ml sin B . cof, 

-f- jT4 = mica*. 

Hence, from (i) and (ii), 

2 mg mg 

cos B ~ cos 6 
= mlo)*, 

cos e 
cos 0 = . 

lu)* 
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Example (v). 

A horizontal rod of length 20 feet is pivoted about a vertical axis at its 
centre. Equal heavy bodies hang, one from each end of the rod, by chains 
12 feet long, of negligible weight. Prove that if the whole system rotates 
steadily at n R.P.M., and if the angle of inclination of each chain to the 
vertical is small this angle is approximately equal to 

rr*n* 

90g ' 
(n.u.3.) 

The chains will be inclined to the vertical so that the bodies are 
more than 10 feet from the axis. 

Since the bodies are rotating steadily, i.e. with uniform speed, the 
chain will not be inclined forward so that there is a component of 
tension along the tangent to the path ; the vertical plane through the 
rod will contain both chains. 

Fig. 94A. 

Consider the plan shown in Fig. 94a, where O is the plan of the axis, 
A the plan of one end of the rod and B the body attached to that end. 

OA = 10 feet, AB =12 sin 6 feet, where 6 is the inclination of the 
chain to the vertical. (AB is the horizontal projection of the chain.) 
The body is describing a circle of radius (10 -f- 12 sin $) feet. Let T 
be the tension in the chain, to the angular velocity, and m the mass 
of each body. 

Resolving horizontally and vertically, we have 

T sin 0 = m(io + 12 sin 0)co*, 
T cos 6 = mg, 

(10 4- 12 sin 0)<o* 
tan $ = 1--- as 

(10 -f *2 sin $) 4 
g • 60* • 

Now since 0 is small, n is small, and the term 12 sin 0 (which is 
divided by 60%g) can be neglected; also tan 0=0 approximately. 

Hence 
40trt»* n*n* 

= 6o'g ““ 9og‘ 

EXAMPLES XXX. 

1. A particle of mass m is describing a circle on a smooth plane at the 
end of a horizontal string of length a. If the particle make n com¬ 
plete revolutions a minute, compare the tension of the string with 
the weight of the particle. A man holds one end of a string, 

VOL. T. 
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io inches long, to the other end of which a weight is attached, and 
swings the weight round so as to make it describe a horizontal circle 
at a uniform rate of 80 R.P.M. Show that the inclination of the 
string to the vertical is very nearly 570. (I.S.) 

2. A particle moves as a conical pendulum at the end of a string of 
length 16 inches. If the string is inclined at 6o° to the vertical, 
show that the particle is making approximately eleven revolutions 
in 10 seconds. (I.A.) 

3. A small heavy body is attached by a string 4 feet long to a fixed 
point A, and is caused to move with uniform speed in a horizontal 
circle. If the tension in the string is twice the weight of th‘e body, 
show that the angular velocity is 4 radians per second. (H.S.D.) 

4. An elastic string, of unstretched length 3 feet, has one end attached 
to a fixed point and the other to a mass of 8 lb. which revolves as a 
conical pendulum, making 40 R.P.M. If the length of the string is 
then 3\ feet, find what the extension will be when the weight hangs 
at rest. (I.S.) 

5. A mass of 1 lb., suspended by a cord 5 feet long, is revolving as a 
conical pendulum at 80 R.P.M. ; find the radius of the circle it 
describes, and the tension of the cord. (I.A.) 

6. Show that in the conical pendulum, the inclination of the string to 
rco2 

the vertical being 0, sec 6 — —, where r is the length of the string, 

and o) the angular velocity. If the string is extensible, so that its 

tension is equal to ^ -—-, where r is the stretched and a the natural 

length, find the cosine of the angle which the string makes with the 
maco2 

vertical and show that —t— must be less than unity. (H.S.D.) 

7. A particle of mass 4 lb. is whirled round at the end of a string 20 
inches long, so as to describe a horizontal circle, making 60 R.P.M. ; 
calculate the tension in the string (in lb. wt.) and prove that the 
fixed end of the string is a little 3ess than 10 inches above the centre 
of the circle. (H. C.) 

8. A particle suspended by a fine string from a fixed point describes 
a circle uniformly in a horizontal plane. If it makes 3 complete 
revolutions every 2 seconds, show that its vertical depth below the 
fixed point is 4*3 inches approximately. [Take n = \2.] (H.C.) 

9. A particle, attached to a fixed point by a string one yard long, 
describes a horizontal circle. The string can only support a tension 
equal to 15 times the weight of the particle. Show that the greatest 
possible number of revolutions per second is just over two. 
[„ = Xf.-] (H.C.) 

10. Two small weights, of 2 oz. and 1 oz. respectively, are connected by 
a light inextensible string, a foot long, which passes through a 
smooth fixed ring. The 2 oz. weight hangs at a distance of 9 inches 
below the ring, while the 1 oz. weight describes a horizontal circle. 
Show that the plane of this circle is ij inches below the ring, and 
show also that the 1 oz. weight makes very nearly 153 R.P.M. (H.C.) 

11. Two unequal masses are connected by a string of length / which 
passes through a fixed smooth ring. The smaller mass moves as 
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a conical pendulum while the other mass hangs vertically. Find 
the semi-angle of the cone, and the number of revolutions per second 
when a length a of the string is hanging vertically. (C.S.) 

12. A heavy particle is attached to the middle point of a string of length 
2/, one end of which is fastened to a fixed point O, and the other end 
is tied to a ring of the same weight as the particle, which slides on 
a vertical rod through O. Show that if the particle moves in a hori¬ 
zontal plane with uniform angular velocity co about the rod, the 
inclination of both portions of the string to the vertical is 

“-■(*.)- <cs> 
J3. A particle is attached by means ot two equal strings to two points 

A and B in the same vertical line, and describes a horizontal circle 
with uniform angular speed. Prove that, in order that both strings V2g 

-j-, where 

12% 
h — AB, and that, if the speed is 2a / the ratio of the tensions of 

the strings is 5 : 3. (H.S.D.) 

14. A light arm CB, of length a, is freely pivoted at its end C which is 
fixed, and carries at B a mass m ; the arm is maintained in a hori¬ 
zontal position by a string attached to B and to a point A fixed 
vertically above C at a distance b from it. Find the magnitude and 
direction of the stress in CB when CB is revolving about the vertical 
at the uniform rate of n revolutions per second. (N.U.3) 

15. A particle of mass m moving in a horizontal circle is kept in its path 
by a string tied to a point at a height h above the centre of the circle. 
Find the period of rotation. 

If m — 4 oz., h — \ inch, and the length of the string is 2 feet, 
find the tension of the string in lb. wt. (N.U.3) 

16. A smooth hemispherical bowl of internal radius a is held with its 
rim horizontal, and a particle describes in it a horizontal circle of 
radius c, less than a. Find the period of rotation. 

A particle of mass m describes a horizontal circle of radius 24 cm. 
inside a smooth hemispherical bowl of internal radius 25 cm. which 
is held with its rim horizontal. A fine weightless thread tied to the 
particle passes through a small smooth hole at the bottom of the 
bowl and supports another particle of mass m which hangs at rest. 
Show that the speed of the first particle is a little less than 4 metres 
per second. (N.U.4) 

§ 154. Motion of a Railway Carriage or Motor Car round a 
Curved Track. 

Let ABCD (Fig. 95) represent a section of a railway carriage 
or car in the vertical plane passing through its centre of mass G 
and the centre of the circle which it is describing, A and B being 
the points where the wheels meet the ground and A on the inside 
of the curve. 
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A B 
Fig. 95. 

Let v be the speed, r the radius of the circle, and m the mass. 

The central force necessary to cause the circular motion should 
r 

really be applied at G, the centre of mass, but it can, of course, 
only be applied in practice at the points of contact with the rails 
or ground. 

In the case of a railway carriage the flanges of the wheels are 
on the insides of the rails so that, unless a second (or check) rail is 
placed on the inside of the curve with the inner flanges between 
the two rails, all the inward thrust is supplied by the outer rail. 

In either case, if the curve is at all sharp, there is a considerable 
side thrust on the rails, and this is usually eliminated by banking 
the track as explained below. 

A level track has another disadvantage, due to the fact that the 
central force is applied at the ground instead of at the centre of 
gravity. It is well known that a car rounding a curve at high speed 
tends to tilt up on its outer wheels. 

The force applied horizontally at B or A, is equivalent to 

an equal horizontal force at G together with a couple which tends 
to make the carriage rotate in the direction ADCB, i.e. to lift the 
inner wheel off the ground. The only force present to prevent this 
rotation is the weight mg, acting vertically through G. 

If h is the height of the centre of gravity, and 2a the lateral 
distance between the rails, i.e. the gauge, the moment of the couple 

tnv*h 
tending to tilt the carriage about B is—-—, while the moment of 

the weight about B (assuming that the centre of gravity is mid¬ 
way between A and B), is mga. 

it 

the carriage will upset. 

§ 156. We can obtain this result in another way by considering 
the vertical pressures at A and B. 
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Let R, S be the vertical pressures at A and B. The total hori¬ 

zontal force along BA is hence, taking moments about G, 

* - *.(« - £). 
It is evident that the vertical pressure S on the outer rail is 

always greater than that on the inner rail, and also that, when 
v2h 
— — g, K = o, or the vertical pressure on the inner rail vanishes. 

At this point the carriage begins to tilt about B. 

§ 156. Suppose a car or carriage is placed on an inclined track, 
sloping downwards towards the centre of the curve which is being 
described at an angle 6, as shown in Fig. 96. 

We now have the component of the weight, mg sin 6t acting at 
G down the slope. 

The component of the central force f~- down the slope is 

mv* 
-cos 6, so that if 
r 

mg sin 6 = —. cos 0, 

v2 
or tan 0 = -, 

P 
the component of the weight is sufficient to supply the necessary 
central force down the slope, the component perpendicular to the 
slope being supplied by the reaction of the track. 
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In this case there will be no side thrust on the track, and as the 
weight component acts through G there will be no tendency to up¬ 
set. The normal thrusts of the wheels on the track will also be 
equal. The value of 6 for a given value of r depends on v. 

In the case of a railway track the angle is chosen for the average 
speed at which trains take the curve. At higher speeds than this 
there is a side thrust on the outer rail outwards, at lower speeds 
there will be an inward thrust on the inner rail, the weight com¬ 
ponent being greater than is necessary. 

In the case of a motor track the banking is graduated, getting 
steeper towards the outside of the track. As the speed of the car 
increases it skids or is steered on to the steeper part. 

§ 157. Motion of a Bicyclist riding in a Curve. 

In this case the centre of gravity, if the cycle and rider are upright, 
is vertically above the lint' of contact of the wheels with the ground. 
The weight has therefore no moment about this point and cannot, 
therefore, counteract the upsetting couple. For this reason the 
rider has to lean inwards on rounding a corner. 

B 

Ltd AB (Fig. 97) represent the bicycle anti rider, and G their 
centre of mass. The friction of the ground F acts inwards at A, 
and the other forces acting are the weight mg, vertically through G, 
and the normal reaction of the ground (R) at A. 

Since there is no vertical motion 

R - mg. 

Alst) R and F have to produce a force through G which has a hori- 
tyiv2 

zontal component of -, so that the resultant of R and F must 

pass through G. 
If 9 is the angle made by AB with the vertical, 

tan 0 ~ ^ 
K 
fill'2 

r ’ 

tan Q — 
mvr 

mgr1 & 

but 
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This is the same as the angle of banking necessary to prevent 
any tendency to skid. 

§ 158. Example (i). 

A train is running at 45 m.p.h. on a curve of mean radius 1200 feet, 

and the distance between the rails is 4 feet inches. Find how much 

the outer rail must be raised in order that there may be no side thrust on 

the rail. (I.S.) 

45 m.p.h. — 66 ft./sec. 

Let m lb. be the mass of the train, and 0 the angle the plane of the 

rails makes with the horizontal. 

m x 662 
The horizontal inward force required is-pdls., and the com- 

1200 

ponent of this parallel to the plane of the rails is 

m x 662 
1200 

cos 0, 

the component of the weight in this direction is mg sin 0 ; 

the required value of 0 is given by 

• /, mx 662 
mg sin 0 — —--cos 0, 

... tan 0 = gL = 363 
32 x 1200 3200 

The height to which the outer rail should be raised is 56^ sin 0 ins. 

Now as 0 is small we may take sin 0 = tan 0, 

the height required 

“3 
2 

X 363 

320° 
= 6*4 ins. 

Example (ii). 

A railway truck weighing 10 tons travels round a curve, of k mile 

radius, at 15 m.p.h. The distance between the rails is 5 feet, and the 

centre of gravity of the truck is 6 feet above the rails. If the rails are at 

the same level, find the vertical pressure upon each, and the horizontal 

pressure between the flange and the rail. How much should the outer rail 

be raised to avoid pressure on the flange ? (I E ) 

To centre 

R> 
6' , 

W 

/ F B 

Fig. 98. 

Let A (Fig. 98) represent the inner and B the outer point of contact 

with the rails, and let R and 5 be the vertical pressures at A and B, 

F the horizontal thrust at B. 
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- mv* 22400 x 22* „ 
t — — — —z—_- pdls. 

r 2640 r 

— JLi tons wt. 
192 

and R + S = 10 tons wt. 

Taking moments about G, 

2 iS - 2 iR = 6F, 

... S - R = - F, 
5 

c , 12 r 8ll 

5 80 

5 — ?ii tons wt., 
160 

R = 10 — 5L1 = tons wt. 
160 160 

If 9 is the slope of the track necessary to prevent side thrust, 

mg sin 6 = — cos 0, 
r 

... tan f) = ~ — 22 *Jt2 = IL. 
gr 32 x 2640 1920 

The height to which the outer rail must be raised is 

5 sin 9 = 5 tan 0 = ft. 
1920 

= | inch nearly. 

Example (iii). 

An aeroplane weighing 1 ton flies at 90 m.p.h. Find the angle at 
which it must bank in order to turn without side-slipping in a horizontal 
circle of 200 yards radius, assuming that its design enables it to do this, 
and that the line of the resultant air pressure lies in the, plane of symmetry 
of the machine. (Q.E.) 

B 

Let AB (Fig. 99) represent the section of the wings, G the centre 
of gravity, and CGD the horizontal line through G, the centre of the 
circle described being in the direction of C. 

The air pressure may be taken as a force P acting through G per¬ 
pendicular to AB. Let Z.BGD = 6. 
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Now P has to support the weight of the plane mg, and also provide 

the central force along GC. 

Here v = 90 m.p.h. = '.ff = 132 ft./sec., 

and 

r — 200 yards = 600 ft., 

P cos 0 — mg, 

P sin e = 
600 

... tan 9 = *32 J33 = 3^3 
32.600 4OO 

0 = 420 13' approximately. 

EXAMPLES XXXI. 

1. The gauge of a railway is 4 feet 8J inches, and the line runs along an 
arc of a circle of radius half a mile. The average speed of the trains 
on the line is 45 m.p.h. What should be the height of the outer 
above the inner rail ? (I.S.) 

2. A motor track describes a curve of 250 feet radius, and is sloping 
downwards towards the inside of the curve at an angle tan-1 l. At 
what speed must a car run along it so that there should be no ten¬ 
dency to side-slip ? (I.S.) 

3. Explain clearly the advantage of raising the outer rail above the 
inner on a curved railway track. Calculate by how much the outer 
rail should be raised on a circular track of radius r, if b is the breadth 
between the rails and v is the speed of a train on the track. (I.A.) 

4. If the radius of a curved railway track is 1000 yards, and a train has 
to travel round the track at 30 m.p.h., by how much should the outer 
rail be raised above the inner if the distance between the rails is 
57 inches ? (I.A.) 

5. A motor car is rounding a curve of 50 yards radius on a level road. 
Find the maximum speed at which this is possible, if the distance 
between the wheels is 4^ feet, and the centre of gravity is 2 feet from 
the ground and midway between the line of the wheels. Find also 
the least coefficient of friction between the road and tyres which will 
prevent side-slip at the maximum speed. (H.S.C.) 

6. A motor car is moving round the curve of a track at 75 m.p.h., the 
radius of the curve being no yards. Calculate the angle which the 
track makes with the horizon, if the total pressure exerted by the 
car on the track is normal to the plane of the track. If the weight 
of the car is ij tons, calculate the total pressure on the track. 

(H.S.D.) 

7. Assuming that the height of the centre of gravity of a locomotive 
above the rails is 6 feet, and the width of the rails is 4$ feet, find the 
greatest speed at which it could travel on a curve of radius 150 yards 
without toppling over. (I E ) 

8. A train is travelling at 35 m.p.h. round a curve of radius 200 yards. 
If the width of the rails is 5 feet, calculate how much the outer rail 
must be raised above the inner, if lateral pressure on the rails is to 
be avoided. (H.S.D.) 
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9. A bicyclist is describing a curve of 50 feet radius at a speed of 10 
m.p.h. ; find the inclination to the vertical of the plane of the bicycle. 
What is the least coefficient of friction between the bicycle and the 
road that the bicycle may not side-slip ? [Assume the rider and his 
machine to be in one plane.] (H.C.) 

10. The shape of a cycle track at a corner is that of a circle whose radius 
is 100 yards. Find the angle at which the track should be inclined 
to the horizontal in order that a rider can take the corner at 30 m.p.h. 
without any lateral reaction between his bicycle and the track. If a 
motor-cyclist can take the corner safely at 60 m.p.h., find the 
least possible value of the coefficient of friction between the track 
and his tyres. (H.C.) 

11. A motor car is rounding a curve of radius 150 feet on a level road. 
What is the maximum speed at which this is possible without over¬ 
turning when the distance between the wheels is 4 feet, and the 
centre of gravity of the car and its load is midway between the wheels 
and 3 feet from the ground ? (Q.E.) 

1 z. An aeroplane is describing a horizontal circle of 100 yards radius at 
\ 75 m.p.h. Assuming that the air pressure on it acts through its 

centre of gravity at right angles to the planes, determine the angle 
at which they must be inclined to the vertical. (H.S.D.) 

13. The sleepers of a railway line at a point where the curve of the track 
has a radius of 60 yards have such a slope that a train moving at 30 
m.p.h. exerts no lateral force on the rails. What lateral force would 
an engine of weight 100 tons exert on the rails at this point if it 
were at rest ? (I.E.) 

nA A car takes a banked corner of a racing track at a speed V, the lateral 
gradient a being designed to reduce the tendency to side-slip to zero 
for a lower speed U. Show that the coefficient of friction necessary 
to prevent side-slip for the greater speed V must be at least 

(V2 -- U2) sin a cos a {^ <? \ 

V* sin2 a + U2 cos2 a 'C,S*) 

15. A railway track round a curve of 440 yards radius is laid so that 
there is no lateral pressure on the rails when a train travels round at 
40 m.p.h. Determine the lateral pressure, in terms of the weight 
of the train, when the speed is 20 m.p.h. (Neglect the length of the 
train.) (EC.) 

16. A railway truck is loaded so that the pressure on each wheel is 5 tons, 
and the centre of gravity of the loaded truck is 6 feet above the rails, 
and the distance from centre to centre of the wheels on an axle is 
5 feet. Find the alteration due to centrifugal action in the vertical 
pressure on the rails when the truck is going on the level round a 
track of 1200 feet radius at a speed of 15 m.p.h. (I.C.) 

17. A curve on a railway line is banked up so that the lateral thrust on 
the inner rail due to a truck moving with speed vt is equal to the 
thrust on the outer rail when the truck is moving with speed vt 
(v9 > vt). Show that there will be no lateral thrust on either rail 
when the truck is moving with speed, 

[£(V + »,•)]*. (H.C.) 

18. A car travels round a curve on a track of 50 yards radius at a speed 
of 30 m.p.h. Show that if there is no side pressure between the car 
and the track, the track must be banked at an angle of approximately 
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220. What would be the component of force on the car across the 
track, if a car weighing i ton went round this curve at 45 m.p.h, ? 

(QK) 

19. A motor car makes a quick turn on the level round a circle of 30 feet 
radius. If the centre of gravity of the car be midway between the 
wheels and at a height of 3 feet 2 inches, and if the wheel gauge is 
4 feet 8 inches, find the speed at which the car will overturn, assum¬ 
ing that no side-slipping occurs. (Q.E.) 

20. In a conical pendulum the speed of the bob is v, and the radius of 
the circle in which it moves is r, while the string makes an angle a 
with the vertical. Prove that v2 -- r g tan a. 

A cyclist travels on a level track of radius 220 feet, and the coeffi¬ 
cient of friction between the tyres and the ground is 0 32. Find the 
greatest speed at which he may travel. (N.U.3) 

21. A car travels at v ft. /sec. along a curved track of radius R feet. Find 
the inclination of the track to the horizontal if there is to be no 
tendency for the car to slip sideways. 

Prove that if v — 30 R, - 1000 and the inclination of the track 
is 1 in 100, the total sideways frictional force on the wheels must be 
about i-8 per cent, of the weight of the car. (N.U.3.) 

§ 159. Equilibrium of a Smooth Ring on a Rotating Wire. 

If a smooth ring is threaded on a wire in the form of a plane 

curve which is caused to rotate, with uniform angular velocity, 
about a vertical axis in its plane, the ring can usually remain at 
rest relatively to the wire at points other than the lowest point of 
the wire. 

We will consider the case where the curve is a circle rotating 
about a vertical diameter. 

B 

Let the diameter AB (Fig. 100) be the axis of rotation, C the 
centre, r the radius, and co the angular velocity. 

Let P be the position of a smooth ring threaded on the circle, 
PN the perpendicular on AB, and let Z.PCN =. $. 

If the ring is to remain at P it must be acted on by a force 
m . PN . o)2 along PN since it is moving in a horizontal circle about 
N as centre. This force must be provided by the horizontal com¬ 
ponent of the reaction of the wire on the ring, and the vertical 
component of this reaction must balance the weight mg. 
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Now since the wire and ring are smooth the reaction of the wire 
must be along the radius PC, and if its value is R, then for P to 
remain stationary relative to the wire, we must have 

R sin 6 — wPN . co2 = mr sin 6 . to2 . (i) 

and R cos 6 = mg.(ii) 

The first equation gives 

R — mra>2, unless sin 6 = o, 

and this value of R will satisfy the second equation if 

cos 6 = 
ra>* 

The value sin 6 = o, gives the positions A and B, the lowest 
and highest points of the circle. 

a 

The value cos 0 — gives a possible inclined position pro¬ 

vided that 

~^~2 < i, or oj > toj2 >r 

If to is less than this value no inclined position such as P is 
possible. In this case the lowest and highest points are the only 
possible positions of equilibrium, and of these the highest one is 
unstable. 

When an inclined position is possible, it is the only stable one. 

§ 160. Effect of the Earth’s Rotation on Gravity. 

The weight of a body is due to the earth's attraction on it. The 
force of attraction varies inversely as the square of the distance 
from the centre of the earth (for bodies outside the surface of the 
earth), and hence is greater at the poles, where it is nearer the centre, 
than at the equator. 

When a body is at relative rest on the earth’s surface the pressure 
of the earth on the body must balance what we call its weight. 

At the poles, where there is no rotation, this pressure is an actual 
measure of the earth’s attraction. 

But consider a body of mass m at the equator. It is carried 
round in a circle of radius r (about 3960 miles) in a day. 

[Strictly this day is not the mean solar day of 24 hours, but the 
sidereal day of 23 hours 56 minutes 4 seconds, or 86,164 seconds.] 

Taking the number of seconds in the day as 86,400, the angular 

velocity w is therefore 

Now owing to this circular motion there must be a force wrco2 
towards the centre of the earth, and this must equal the resultant 
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. T86 = mr2<o28dt 

.-. T = mr2a>2 — mv2, 

where v is the linear velocity of a point on the ring. 
If m is in lb. and r in feet, T is in poundals. 
If I'm is the maximum tension the wire can bear, the maximum 

value of to is 
/Tm 

Smr2 
The maximum tension which a wire or belt can bear is usually 

stated as a force per unit cross-section. 

If the cross-section of the wire is A, T0 the maximum tension it 
can bear per unit area, and p the density, then 

tn — pA, 

and Tm = T0A. 

The maximum angular velocity to is then given by 

and is independent of A. 

EXAMPLES XXXII. 

3 

4- 

5 

6. 

A uniform circular wire of small cross-section is rotating in its own 

plane about its centre with uniform speed v. If the wire weighs 

490 lb. per cu. ft., and can just stand a strain of 90,000 lb. wt. per 

sq. in., show that the greatest value of v is about 920 ft./sec. (I.E.) 

Prove that if we take the radius of the earth as 3960 miles, gravity 

at the equator is diminished by the earth's rotation by -00343 °f 

itself. (I.A.) 

A circular hoop rotates with uniform angular velocity w about a 

vertical diameter AOB, O being the centre. A smooth ring P of 

weight W can slide on the hoop. If a be the angle of inclination of 

the radius OP to the vertical when the ring is in equilibrium with 
a 

respect to the hoop, prove that cos a where a is the radius 

of the hoop. 

Obtain also the reaction between the ring and the hoop. (H.S.D.) 

A uniform circular wire, of radius 10 feet and mass 1 lb., rotates 

uniformly about its centre 10 times per second ; show that the wire 

will break unless it will stand a tension of 196 lb. wt. 

A smooth parabolic tube, of latus rectum 4a and vertex downwards, 
revolves uniformly about its axis, which is vertical. Show that if 

the angular velocity be^/ljL a particle will rest anywhere in the tube. 

Assuming the earth to be a sphere rotating uniformly about the polar 
axis, whose attraction per unit mass is the same at all points of the 
surface, prove that a pendulum, which beats seconds at the poles, 
will lose approximately 30 k cos8 A beats per minute in latitute A, 
the ratio of the weight of the body at the poles to its weight at the 
equator being 1 + k : 1. (H.S.C.) 



240 INTERMEDIATE MECHANICS 

Motion in a Vertical Circle. 

§ 168. The complete investigation of the motion of a particle 
constrained to move on a curve in a vertical plane is beyond the 
scope of this book. When the curve is smooth we can, however, 
find the velocity of the particle at any point by means of the principle 
of energy. The time taken to describe a given length of arc or 
to acquire a certain velocity cannot be found easily, and in the 
case of the circle it is impossible to obtain an exact value for it. 
We shall deal more fully with the motion of a particle on a cycloid 
in a later chapter, but for the present shall consider certain results 
which can be obtained from a knowledge of the velocity in any 
position. 

When a particle is sliding down a smooth curve, we know from 
the principle of energy that the kinetic energy gained is equal to 
the potential energy lost, since the reaction of the curve is perpen¬ 
dicular to the direction of motion and therefore does no work. The 
same applies to a particle suspended by a string and swinging in a 
vertical plane about a fixed point. 

If m is the mass of the particle, u the initial and v the final 
velocity, and h the vertical height descended, 

\mv* — \mu2 = mgh, 

v2 — u2 = 2gh, or v% = u% + 2gh. 

If the particle is moving up the curve 

v2 = «2 — 2 gh. 

§ 164. In dealing with motion in a vertical circle there are 
differences in the nature of the problem according to whether the 
particle is, or is not, able to leave the circle. If a ring is threaded 
on the circle it cannot leave the curve, but if a particle is sus¬ 
pended by a string, this may go slack when it gets above the hori¬ 
zontal position. Similarly a particle moving down the outside of 
a vertical circle, or projected up the inside can come away from the 
curve. In these cases the usual problem is to find where it will 
leave the curve. 

We shall consider first the case of a ring or bead threaded on 
the circle. 

§ 166. Motion o! a Bing threaded on a Smooth Vertical Girdle. 

Let C (Fig. 1.03) be the centre of the circle, A the lowest point, 
B the highest point, and a the radius. 

Let the mass of the ring be m, and V its velocity of projection 
from the lowest point. 
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B 

When it reaches a position P, such that ZBCP = 9, it has risen 
a vertical distance a + a cos 0, and its velocity v is given by 

v2 = V2 — 2ga (i + cos 0). 

If V is just large enough to take the particle up to B, we must 
have 

o = V2 — 4 ag, 

V = V4ag, 

and with this value of V the ring will just come to rest at B. 
In the position P, the force along PC required for the circular 

tHV2 
motion is —and the component of the weight in this direction 

is mg cos 6. 

T, n mv2 o A 
If mg cos d > —or vl < ag cos 6, 

a 

the weight is more than sufficient to provide the central force, and 
there is an inward pressure on the circle equal to 

Q mv2 
mg cos v —-. 

a 

If v2 > ag cos 9, 

the weight component is not sufficient to provide the central force, 
and there is an outward pressure on the circle equal to 

7)2 mv* 

a 
mg cos 9. 

When P is below the centre, the weight component along the 
radius always acts away from the centre, and there is always an 
outward pressure on the curve. 

§ 166. Motion oi a Suspended Particle in a Vertical Circle. 

Let a particle of mass m be suspended at A (Fig. 104) from a 
point C by a light string of length a. 

Let the particle be projected at right angles to the string with 

VOL. I. 
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B 

velocity V. Let v be the velocity at any point P of its path below 
the level of the centre, and draw PN perpendicular to CA. 

Then the particle has risen a vertical distance AN, and 

AN = a — a cos a = a (i — cos a). 
... v*=V* -2g. AN 

n = V2 — 2ag (i — cos a) (i) 
} ' 

Now the component of the weight along CP is mg cos a and acts 
outwards; also, since the velocity in the circular path is v, a force 

towards C equal to is required. The tension (T) in the string 

must therefore balance the weight component and also provide 
this central force, 

'T . my2 ... T = mg cos a + —, 

mV2 
= mg cos a H—— — 2mg(i — cos a), 

mV2 
= — + mg(3 cos a - 2) . . . . (n) 

when the particle is at A, cos a == i, and 

T = 
mV2 
— + Mg. 

It is clear that as long as P is below the horizontal radius CD, 
the weight component acts outwards and the string can never go 
slack. 

If V is just large enough to take the particle to the level of the 
centre at D, then from (i) 

o ~ V2 — 2 ag 

... V — N 

If V is greater than this value, the particle will go above the 
level of the centre, and in this case it is better to consider the angle 
made by the string with CB (Fig. 105). Let this angle be 6. 
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B 

The height of P above A is a + a cos 9 = a(i + cos 6). 
Hence, if v is the velocity at P, 

v2 = V2 — 2ag(i + cos 6). 

Now the weight component along the string is mg cos 9, and acts 
towards C. The central force necessary owing to the motion in a 

circle with velocity v is ~~~- 

_r „ mi)2> 
If mg cos 9 >-, 

or v2 < ag cos 9, 

the weight component is greater than the force required owing to 
the motion, and the string will become slack, the particle leaving 
the circular path and moving as a free projectile. 

It will leave the circle when 

7>2 = ag cos 0, 

but v2 — V2 — 2ag(i + cos 9), 
V2 — ag cos 9 + 2ag(i + cos 9), 

= ag(2 + 3 cos 9). 

This equation gives the value of 9 at which the string becomes 
slack with a given initial velocity V. 

If the string is to remain tight up to the highest point, i.e. where 
9 = o, we must have 

V2 = 

or V — V5ag. 

This is the minimum velocity required for the particle to describe 
a complete circle. 

The tension T in the string when the particle is at P is given by 

mv2 a 
T = — — mg cos 9, 

a 

mV2 
= — mg cos 9 — 2mg(i + cos 6) 

mV2 
— mg(2 + 3 cos 9). 

a 
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The whole of the above argument applies to the case of a particle 
projected up the inside of a smooth vertical circular hoop. In this 
case the tension of the string is replaced by the pressure of the hoop. 

§ 167. Motion on the Outside of a Smooth Vertical Circle. 

B 

Let C (Fig. 106) be the centre, B the highest and A the lowest 
point of the circle, and a its radius. 

Let a particle of mass m at B be slightly displaced so that it 
slides down the circle. Let v be its velocity when at a point P such 
that L BCP — 0. Draw PN perpendicular to CB. 

The particle has descended a vertical distance, 

BN — a — a cos 0 = a(i — cos 0), 
.-. v2 = 2ag(i — cos 0). 

Let R be the pressure of the curve on the particle, then, since 
the component of the weight along the radius is mg cos 0, the re¬ 
sultant force acting on the particle in the direction PC is 

mg cos 0 — R. 

But since the particle is moving in a circle about C with velocity 

v, the central force towards C must be-, 
a 

mv2 a n 
-= mg cos 0 — R, 

a 

•*. R = mg cos 0 — 
a 

= mg cos 0 — 2mg(i — cos 0), 
= mgfo cos 0 — 2). 

If 3 cos 0 > 2, there is a pressure between the curve and the 
particle. 

If 3 cos 0 < 2, the pressure R becomes negative, which means 
that the particle has left the curve. 

The pressure R becomes zero, and the particle leaves the curve 
when 

or 
3 COS 0a= 2, 

cos 0 = f. 
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The particle then moves as a free projectile, its initial velocity 
v being given by 

v* — 2ug(i - g) = ^ag, 

Its initial direction of motion is inclined downwards at an angle 
cos-1 § to the horizontal. 

§ 168. Example (i). 

A particle of mass m lb. is suspended from a fixed point by a string 

a ft. long. It is projected horizontally with a velocity of 2 V ag ft. fsec. 
Find the height of the particle above the point of suspension when the 
string becomes slack, Find also the tension in the string when the particle 

a 
is at a depth - below the point of suspension. 

Fig. 107. 

Let C (Fig. 107) be the point of suspension, and A the lowest point 
from which the particle is projected. 

If CP is the position of the string when it becomes slack, and 
/_BCP = 0, then if v is the velocity of the particle at P, 

v* — 4ag — 2ag{i + cos 0), 

= 2 ag(i — cos d). 

Now since the string becomes slack in this position, 

—* = mg cos 0, 
a 

or v* — ag cos 0, 

ag cos $ = 2ag(i — cos 0), 

cos 0 — f, 

the height above C is a cos 0 or \a. 

In the position Q where CM — AMJ= ~, /1ACQ == 6o°, and the 

velocity v is given by 

v% = \ag — 2g . - = 3ag. 
2 

The tension in the string is 

mg cos 6o° 4- —, 

\mg -f* yng « \mg pdls. 

VOL. 1.—9 
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Example (ii). 

Show that the velocity with which a particle hanging from a fixed point 

by a string of length a must be started so as to describe a complete vertical 

circle must not be less than V $ag. The particle is started with a velocity 

2 Vag, and when the string is horizontal is held at such a point that 

the particle just completes the circle. Where must the point be situated 

on the string ? (I.E.) 

The result in the first part of the question was obtained in the 

general discussion in § 166. We can, however, obtain it without con¬ 

sidering the intermediate inclined positions of the string. 

B 

Fig. 108. 

Let A (Fig. 108) be the lowest and B the highest points of the circle 

whose centre is C the point of suspension. 

Let V be the velocity at A, and v that at B, then 

v2 = V2 — 4 ag. 

Now if the particle is to describe the complete circle, the string 

must be just taut when the particle reaches B, 

VHHL must not be less than mg, 
a 

or v3 <£ ag, 

■ ■■ v* - tag < ag. 

■■■ V* < 5<*g- 

If V — 2Vag, the velocity v when the particle is level with the 

centre at D is given by 

v2 = 4 ag — 2 ag — 2 ag. 

If the string is now held at a point O distant x from D, and the 

particle is just to complete the vertical circle about O as centre, the 

string must be just taut when the particle is vertically over O, i.e. at 

a height x above O. Now at this height its velocity u is given by 

u2 = v2 — 2 gx, 

= 2 ag — 2 gx. 

and as the string is just taut, 
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or u2 = gx, 

gx = lag - igx, 

3£* = 

* = fa. 

Example (iii). 

A particle is hanging from a fixed point by a light cord 3 feet long, and 
is started moving with an initial horizontal speed such that the cord slackens 
when the particle is 5 feet above its lowest point. Find how much higher 
it will rise. 

Fig. 109. 

Let C (Fig. 109) be the point of suspension, A the lowest point of 

the vertical circle with C as centre. 
The cord slackens in the position CP where cos 6 — $. 

Now if v is the velocity at P, then, since the cord slackens, 

mg cos 0, 

3g cos 6 = 2 g, 

Vig = 8 ft./sec. 

The particle now moves as a free projectile, its initial velocity being 
8 ft./sec. along the tangent PT, and inclined to the horizontal at an 

angle cos_1§. 

The vertical component of its velocity is 

8 sin 8 = $V5 ft./sec. 

If h is the height it rises, 

o = V • 5 - 2£A, 
••• * = t ft- 

mvi 

T~ ~ 

.*. V2 = 

.*. v — 

Example (iv). 

A particle attached to a fixed point 0 by an inelastic string of length r 

is let fall from a point in the horizontal through O at a distance r cos 0 

from O. Show that the velocity of the particle, when it is vertically below 

O, is Vigr(i — sin80). (H.S.D.) 
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B 
Fig. iio. 

Let OA (Fig. iio) be horizontal and equal to r, OB vertical and 

equal to r, and let P be the .point in OA from which the particle is 
let fall. 

Then, since OP = r cos 6, the particle reaches the circle through A 

and B whose centre is O, at a point Q such that Z.POQ = B. 

At this point the particle has fallen a vertical distance PQ, which 
is equal to r sin B, hence its velocity u is given by 

■u2 — 2gr sin B. 

Now when the string becomes taut, all velocity in the direction of 

th6 string is destroyed, and the particle begins to move along the arc 

QB with a velocity equal to the component of u perpendicular to OQ, 
i.e. u cos B. 

Hence, if v is the velocity in the circle at Q after the jerk, 

v2 — 2gr sin $ cos* B. 

When the particle reaches B it has descended a further vertical 
distance r — r sin B = r(i — sin B), and its velocity V is given by 

V1 = v% -j- 2gr(i — sin B), 

= 2gr sin B cos 2B -f zgr(i — sin 6), 

— 2gy(sin 6 — sin3 B 4- i — sin B), 

~ 2gr(i — sin3 B). 

V = V2gr(x — sin3 B). 

EXAMPLES XXXIII. 

1. A mass of 2 oz. is attached by a string 4 feet long to a fixed point, 
and is describing a circle in a vertical plane round that point. Find 
the least velocity at the lowest point in order that the mass may 
make complete revolutions. Find also the tension of the.string in 
this case when the mass is 2 feet below the horizontal diameter of 
the circle. (I S.) 

2. A heavy particle is free to move in a vertical circle of radius /; the 
particle is projected with velocity u from the lowest point A of the 
circle, and just reaches a point B ; show by applying the principle 

of energy that u — . AB. (I.S.) 

3. A mass of 1 gm., hanging by a string 1 metre long, is swinging as a 
pendulum through an arc of total magnitude 1 radian. Find the 
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central acceleration and the tension of the string when the mass is 
passing through its lowest point. (I.S.) 

4. A weight, attached to an inextensible string, is whirled in a vertical 
circle of 2 feet radius. If the greatest and least tensions of the 
string are in the ratio of 11 : 1, calculate the least velocity of the 
weight (approximately). (I.A.) 

5. A mass of 0-5 lb. is attached by a light string 3 feet long to a fixed 
point. The string is held taut and horizontally, and file mass is 
allowed to fall. Find the speed of the mass when the string makes 
an angle 0 with the horizontal. Find also the tension of the string 
when it is vertical, and when it makes an angle of 30° with the 
vertical. 

On passing through the lowest point the mass catches up a ring 
of mass 0*25 lb. at rest and carries it on. How high will the two 
masses rise ? 

6. A weight of 2 lb. is whirled round in a vertical plane with a constant 
speed of 20 ft./sec., at the end of an elastic cord. The natural 
length of the cord is 6 feet, and it extends 1 foot for every 7 lb. of 
tension. Find the length of the cord at the top and bottom of the 
path of the weight. (I.E.) 

7. A heavy particle at the end of a tight 4 foot string, the other end of 
which is fixed, is let fall from a horizontal position of the string ; 
when the string is vertical it encounters an obstruction at its middle 
point so that the particle continues in a circle of 2 feet radius. Find 
how high the particle will go before the string becomes slack. 

(H.S.C.) 

8. A motor car, weighing 1 ton, runs under a bridge at 30 m.p.h., the 
roadwa}r being in the form of an arc of a circle of radius 63 feet. 
Find the reaction between the car and the road at the lowest point 
of the arc. (H.S.C.) 

9. The roadway of a bridge over a canal is in the form of a circular arc 
of radius 50 feet. What is the greatest speed (in m.p.h.) at which 
a motor cycle can cross the bridge without leaving the ground at 
the highest point ? (I S.) 

1 o. A particle, of mass m, oscillates through 18o° on the inside of a smooth 
circular hoop of radius a fixed in a vertical plane. If v is the speed 
at any point, prove that the pressure on the hoop at that point is 

3^*. (H.C.) 
2 a 9 

11. A ball of weight W hanging at the end of a cord of length a is given 
a horizontal velocity v. Find the tension in the cord immediately 
the ball starts moving. 

If the cord is 8 feet long, what initial velocity would double the 
original tension ; how far would the ball rise in that case ; and what 
would be the tension in the cord at the moment when the ball reached 
its highest point ? (H.S.C.) 

12. A heavy particle hangs by a string of length a from a fixed point O 

and is given an initial horizontal velocity V2gh. Prove that, if the 

particle makes complete revolutions, h is at least equal » that 
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if the string becomes slack h is between a and 5?; and that in this 
2 

latter case the greatest height reached above the lowest point is 

(4a — h)(a -f 2h)2 

27 a2 ™ ‘ 
(H.S.C.) 

13. A stone of mass 1 lb. is whirled round in a horizontal circle at the 
end of a string 3 feet long, whose other end is fixed. If the string 
can only stand a tension of 8 lb. wt., what is the greatest velocity 
which the stone can have and how many revolutions does it'make 
per second in this case ? 

If the stone is whirled round in a vertical circle what is the great¬ 
est velocity that the stone can have at the highest point of its path 
in order that it may describe the complete circle without the string 
breaking ? (I E ) 

14. A rope 20 feet long has one end A attached to a fixed point and at the 
other end B carries a small mass of 100 lb. The rope is held taut 
and horizontally and the mass allowed to fall. Calculate the tension 
when the rope is vertical. In the vertical position the rope catches 
against a peg 12 feet below A, so that the mass begins a new path 
of radius 8 feet. Show that the tension in the rope is thereby doubled 
and find whether or no the mass will describe a complete circle 
about the peg as centre. (Q.E.) 

15. A smooth circular tube is held fixed in a vertical plane. A particle 
of mass nt, which can slide inside the tube, is slightly displaced from 
rest at the highest point of the tube. Find the pressure between 
the particle and the tube when it is at an angular distance 0 from 
the highest point of the tube. Also find the vertical component of 
the acceleration of the particle when 0 = 120°. (C.S.) 

16. 

T7- 

A particle hanging by a light string of length l from a fixed point O 
is projected horizontally from its lowest position with velocity 

Prove that the string slackens after swinging through 120°. 

(C.S.) 

A heavy particle P is attached by two unequal light inextensible 
strings to fixed points A, B in the same horizontal line, and is pro¬ 
jected so as just to describe a vertical circle. When P is in its lowest 
position the string PB breaks, and P then describes a horizontal 
circle. Prove that the angle PAB is \ cos~x f. Prove also that, if 
the tension of the string PA is unchanged when the string PB breaks, 
the angle APB is a right angle. (C.S.) 

18. A mass of 1 lb. is attached to the end of a string which is 20 inches 
long and is tied to a fixed point A. Initially the string is horizontal 
and the mass allowed to fall. Determine the tension in the string 
when the mass is vertically below A. 

If the string catches against a peg B vertically below A so that 
the mass begins to describe a circle about B, find the least depth of 
B belpw A in order that the mass may describe a complete circle 
about B. (C.S.) 

19. A particle slides, from rest at a depth t below the highest point, down 

the outside of a smooth sphefe of radius r ; prove that it leaves the 
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Y 
sphere at a height - above the centre. Show further that when the 

3 
particle is at a distance r y/i from the vertical diameter of the sphere 
it is at a depth 4r below the centre of the sphere. (C.S.) 

20. A string with equal heavy particles at the ends lies over a smooth 
fixed pulley. In the position of equilibrium each particle is level 
with the centre of the pulley. One particle is slightly displaced 
downwards, so that the system moves under gravity. Find the 
pressure exerted by the second particle on the pulley as it passes the 
highest point, and prove that it leaves the pulley when it has 
traversed an arc of about io8|°. (H.S.C.) 

21. A smooth wire circle of given radius is in a vertical plane and a par¬ 
ticle is projected with velocity u upwards along the wire (1) inside at 
an angular distance a, with the vertical, (2) outside at an angular 
distance a2 with the vertical. Show that, if the particle does not 
leave the wire at starting, 

ga cos a2 > w2 > ga cos 0q. 

If 0lt 02 are the angular distances at which the particle leaves the 
wire in the two cases, show that 

cos — cos 02 ~ | (cos a, -- cos a2). (H.S.C.) 

22. Two particles m and m' begin simultaneously to slide down a smooth 
circular tube whose plane is vertical, starting from the extremities 
of a horizontal diameter, so that they collide at the lowest point. 
Show that the vertical heights to which they rise after impact are 
in the ratio [(2e -J- i)m' — m]2 : [(2e -f i)m — m']2, where e is the 
coefficient of restitution between the masses. (FA.) 

23. CA is a cord 10 feet long, fixed at C, having a weight of 10 lb. attached 
at A. When the cord is horizontal the weight is let go, and when 
the cord becomes vertical it strikes against a peg 6 feet below C. 
Show that the tension in the cord just after striking the peg is double 
what it was just before striking. Show also that the weight will 
complete the circle about the peg. (C.S.) 

24. A heavy particle is tied to one end of an inelastic string 6 feet long, 
the other end of which is attached to a fixed point O. The particle 
is held, with the string tight, at a point 3 feet above O and then let 
fall ; find the velocity of the particle immediately after the string 
again becomes tight, and the height above O to which it subsequently 
rises. 

25. A heavy particle is suspended as a simple pendulum by a string of 
length a. When in its lowest position it is projected horizontally with 
a velocity equal to that which it would acquire by falling freely 
through a height h. Show that, if the string becomes slack during 
the subsequent motion, it does so when the particle is at a vertical 
height § (h — a) above the fixed end of the string. 

26. A particle is attached by a string 2 feet long to a point O, and it is 
projected horizontally with a velocity of 12 ft./sec. from a point 2 feet 
vertically above O. Prove that the string will remain tight while 
the particle describes complete vertical circles. But if the string 
will not stand a tension of more than 5 times the weight of the par¬ 
ticle, prove that it will break and find the vertical distance below O 
of the particle when the string breaks. (Ex.) 
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27. A particle, suspended from a fixed point by a string of length a, is 
projected horizontally so as to describe part of a circle in a vertical 
plane ; show that if the parabolic path of the particle after the string 
becomes slack passes through the original point of projection, the 

velocity of projection is (Jga)*. Show that in the subsequent 
motion the particle oscillates between two points at vertical height 

above its original position. (H.C.) 

28. A smooth semi-circular rim is in a vertical plane with the diameter 
AB vertical. A particle is projected along the rim from the lowest 
point A with velocity u. Find the angle the radius to the particle 
makes with the vertical when the particle leaves the rim. Also, 
find the value of u in order that after leaving the rim the particle 
may describe a parabola with latus rectum equal to the diameter of 
the semi-circle. In that case, where is the focus ? (Ex.) 

29. A particle describes a circle of radius a in a vertical plane, moving 
round at the end of a taut string fastened at the centre. If the 
velocity of the particle as it swings past the lowest point of the circle 
is v0, prove that the tension in the string when it is inclined at an 
angle d to the radium to the lowest point is 

W^3£COS e - 2g + 

II > V > 2ga, prove that the string becomes slack before 
the particle reaches its highest point. 

What happens (i) when z/02 > $ga, and (ii) when v0* < iga ? 

(N.U.3) 

30. A smooth circular cylinder is fixed with the axis horizontal, and a 
string placed over the cylinder at right angles to the axis has particles 
m, M tied to its ends. These particles rest against the cylinder ; 
the radius to the first is horizontal, that to the second makes an 
angle a with the vertical, and they are on opposite sides of the axis. 

If m < M sin a, find the speed of the particles in any position 
after they have been released from rest and while they are both 
still in contact with the cylinder ; and prove that when M leaves 
the cylinder the radius to it has turned through an angle 6 which 
satisfies the equation 

sin 0[($M + m) sin a — zm] cos a [(3M -f m) cos 0 — zM]. 

(N.U.4) 



CHAPTER VI. 

SIMPLE HARMONIC MOTION. 

§ 169. In the case of bodies such as a tight string, a weight 
hanging from a spiral spring, or the prong of a tuning-fork, it is 

found that, when the body is disturbed from its equilibrium position, 

it moves in such a manner that each part of the body has an accelera¬ 

tion which is always directed towards the equilibrium position and 
varies in magnitude as the distance of the particle from that position. 

The result is that the body oscillates to and fro about its equilibrium 

position. 

§ 170. This kind of motion is very common in nature, and since 

it is the kind which produces all musical notes it is called Simple 

Harmonic Motion (abbreviated to S.H.M.), which may be defined 

as follows — 
When a particle moves so that its acceleration along its path is 

directed towards a fixed point in that path, and varies as its distance 

from this fixed point, the particle is said to move with simple harmonic 

motion. 

Let x be th‘e displacement from a fixed point O in the path, and 

w2x the magnitude of the acceleration towards O at this distance, 

where co is some constant, then, since the acceleration is in the 
opposite direction to that in which x increases, we have 

d*x 

dt2 
= — co2X (i) 

This is the fundamental equation representing a simple harmonic 

motion. 

§ 171. We shall consider first the case when the motion takes 

place in a straight line, but it may be pointed out at once that any 
motion which can be represented by an equation like (i), where x 

is a displacement from a fixed position, is simple harmonic. For 
example, x may be the distance of a point P on a curve measured 

from a fixed point on the curve along the curve, and then P will 
move along the curve with simple harmonic motion. 

Again, x may be the angle made by a line fixed in a body, which 
is moving about a fixed point 0 as axis, with some line through O 

9* 253 
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fixed in space. The body will then move about O with simple 
harmonic motion. 

Mathematically, the solution of equation (i), i.e. the value of x 

in terms of /, is always of the same form, and when x represents a 
displacement of any kind from a fixed position, the equation re¬ 
presents the same kind of motion whether % is a straight, curved, or 

angular d i splacemen t. 

§ 172. Simple Harmonic Motion in a Straight Line. 

A* O P A 

Fig. iii. 

Let O (Fig. iii) be a fixed point in a straight line A'OA, and let 

a point P move along the line with S.H.M. about O. 
Then, if OP x, the acceleration of P is towards O and equal 

to a>2.v, where w is some constant, 

dbc 

' ' dfi 
— U)2X 

dv 9 
or v — — ajzX 

dx 

Integrating equation (ii) we get 

\v2 - - ioj2x2 4 C . 

Now, if x -- a when v - o, 
C - icoW, 

and v2 m oj2(a2 — x2), 

or v m wV a2 — x2 . 

(i) 

(») 

(iii) 

This equation gives the value of the velocity v for any displacement 
x. The maximum value of x is a, i.e. the maximum displacement 
from O is equal to a, and this is called the amplitude of the motion. 

When x a, v is zero. Also when x == — a, v is zero. 

Hence, if OA ~ a, P moves between A and a point A' on the 
other side of O, such that OA' — OA ~ a ; it then stops and returns 

to A. The maximum velocity is when x o, i.e. at 0, and then 

V = <x)(l. 

The maximum values of the acceleration are when x 4: 0, i-c. 
when P is in its extreme positions. 

The values of the maximum accelerations are i 

§ 173. To find the connection between x and t we have to solve 
dx 

equation (i), or put v -^-in equation (iv) and solve the resulting 

equation. 
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The method of doing this is explained in the next paragraph, 
and it is found that the result depends on whether we measure t 
from the instant when P is in its extreme position A, or in its central 

position O. If t is measured from the instant when P is at A, the 

solution is 
x = a cos cot ... (v) 

If/ is measured from the instant when P is at O, the solution is 

x — a sin cot . . . . (vi) 

It can easily be verified by differentiation that either of these 
values of a: satisfies equation (i), and they also satisfy the initial 
conditions stated. 

The first gives x “ a when t = o; the second gives a; m o when 

t = o. 
2 7T 

If t is increased bv — in either (v) or (vi) we get the same 
co 

value of x again, for cos(cu/ f 27r) cos aU, and sin(a>/ -)- 2tt) — sin 

cot. 

d X 
This increment in t also gives the same values again for 

2tt 
Hence, after successive intervals of time the point P is in 

CO 

the same position moving with the same velocity. 

— is therefore called the Period of a complete oscillation. 
co 

It should be noticed that this is independent of a, the amplitude 

of the motion ; it depends only on the value of the constant co. 

The time taken to move from the initial position to that given 
by the displacement x is 

i ^ , x I . , x 
— cos 1 - or sin"1 
co a co a 

according as the initial position is the extreme or central one. 

The point is, of course, in the same position after any further 

interval of time , where n is a whole number. 
CO 

d*x 
§174. Solution of the Equation ~2 — COlX. 

In § 172 we obtained the value of v or yj by using Vj for the 

acceleration instead of 
dH 

dt2’ 

dx 

dt ^ 
coy/ a1 — xl. 
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To integrate this equation we write it 

dx 

Va2 
todt. 

The integral of the left-hand side is sin~l 

sin~ cut + A, 

when1 A is a constant to be determined from the initial conditions. 

I f v a when t -- o, 

. a 7r 
A = sin-1 - = -, 

a 2' 

. 7T 
sin^1 - — - = wt, 

a 2 

7T X 
but - less than the angle whose sine is - is the angle whose cosine 

is 

cos-1 - = cut, 

x — a cos wt. 

If x -- o when / f;o, A = o, and then 

sin”1 — o>/, 

a sin cut. 

§ 175. If the time is measured from an instant t' seconds after 
the particle is in its extreme position, we have x — a when t — — t't 

7T 
and the constant A of the last paragraph becomes A = - -j~ cut'. 

2 

. 1 X TT 
Sin-1 - — - — cut + cot, 

a 2 ' 

cos-1 - = cut + e, where c — cut', 

. •. x ~ a cos (cut + c). 

Similarly, if * =-= o when t ^ A m cut', and 

x 
sin”1 - — cut -f cul't 

x = a sin (a>/ -f e). 

'Hie quantity e is called the Epoch. 
The phase of the motion is the time that has elapsed since the 

particle was at its maximum distance in the positive direction. 
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Taking x ~ a cos (cot -f- c), 

x is a maximum at time tQ where 

cotQ | 6 ~ o, 

.... 6 Ojt —€ 

.-. the phase at time / is / — L — t -|— =-. 
co co 

For two harmonic motions of the same period given by 

x = a1 cos (cot -f- 

^ — a2 cos (cot -f €2), 

the difference in phase is —-—. 
CO 

If — e2 the motions are in the same phase. If €l — e2 --- n, 
they are in opposite phases. 

§ 176. It should be noted that the equation 

dbc 
dt2 " 

co2x + h, 

also represents S.H.M., although not about the origin from which 
x is measured. 

If we move the origin to the point x = —r the new co-ordinate 

x' becomes x — 
CO2 

’** dt2 dt2' 
and — co2x + h = -- co2x' — h + h — co2x\ 

. 2^ 

and the motion is harmonic about the new origin. 

§ 177. The results obtained in the preceding paragraphs are of 
great importance as, although we obtained them for motion in a 
straight line, they hold, as already explained, whatever kind of 
displacement x represents. 

The results are collected below for reference. 
If a is the amplitude of a simple harmonic motion, x the dis¬ 

placement from the central position at time /, v the velocity at this 
displacement, 

v — co \/ ci2 — X2 

x = a cos cot (if t = o when x — a) 

x = a sin cot (if t = o when x = o). 

The period T = —. 
w 

VOL. I. 
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<d is the square root of the constant which when multiplied by the 
displacement gives the magnitude of the acceleration. 

§178. Example (i). 

If the period of a simple harmonic motion is 8 seconds, and the particle 

oscillates through a distance of 4 feet on each side of the central position, 

find the maximum velocity, and also the velocity when the particle is 2 feet 

from the central position, giving each result to the nearest t\tth. (I.S.) 

Since the period 

T 
2 IT 

(JO* 

The amplitude 

~ r 8 ~ 4' 

a = 4 ft. 

The velocity at displacement x is 

v = ai V a2 — xl. 

The maximum velocity is when x = o, and then 

co a 

When x 2 ft.. 

~ V16 
4 

x 4 = 3-1 ft./sec. 

Vi2 -= 27 ft./sec. 

Example (ii). 

If the displacement of a moving point at any time be given by an 

equation of the form 

x — a cos cot -f b sin cot, 

show that the motion is a simple harmonic motion. 

If a — J, b = 4, <0 ~ 2, determine the period, amplitude, maximum 

velocity and maximum acceleration of the motion. (I.S.) 

We have to show that the acceleration varies as the displacement. 

Differentiating the value given for x with respect to 

dx . , , 
= — a co sin tot -f- 0co cos cot . . 

dt 

Differentiating again, 

d'x 

(i) 

dt* = — aoo% cos cot — bco* sin cot, 

~ — cos cot -f b sin <ot) 
= — cu*x .... (ii) 

Hence the motion is simple harmonic. 

The period = 
co 

and if to 2, this is equal to v ~ 3-14 seconds. 
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The amplitude is the value of x when 
dx 

di 
o, and then from (i). 

— aw sin wt 4- bw cos tut = o, 
b 

tan ojt = - = 

sec2 ojt = i -f \,K = , 
cos co/ = ;; and sin to/ = I. 

Substituting in the expression for x, 

x ~ a cos cot 4- b sin wt 

= S + V = 5 ft- 

Also ~ is a maximum when the differential coefficient of the right- 

hand side of (i) is zero, i.c. when 

or 

a cos wt |- b sin wt = o, 

tan cot - — y — — | 
b 

In this case 

and 

or 

sin to/ 

3# _ 

37 ~ 

± J, cos wt m. r i, 

- 6 . g - 8 . * -= - 10, 

= 6.;'4-8.i = 10. 

The maximum acceleration is when x is a maximum, i.e. when 

x ~ 5, and then 
d1x 

dt* 
— (J02X — 20. 

Example (iii). 

At the ends of three successive seconds the distances of a point moving 

with S.H.M. from its mean position, measured in the same direction, arc 

1, 5 and 5. Show that the period of the complete oscillation is 

—™— seconds. (H.S.C.) 
COS"1£ 

Using x = a sin wt, 

we have 1 = a sin wt, 

5 = a sin (co/ -f w) = sin wt cos co 4- cos to/ sin co, 

5 - a sin (wt 4* -o*) — a sin wt cos 2w 4- a cos co/ sin 2co. 

Substituting for a sin to/ in the last two equations, 

cos to 4 a cos wt sin w =~~ 5 

cos 2ct> 4" ci cos to/ sin 2co = 5 

.-.sin 2to cos w 4- a cos wt sin w sin zw = 5 sin 2w 

sin w cos 2w 4- a cos wt sin zw sin w — 5 sin w, 

sin 2w cos co — cos 2eo sin co = 5 sin 2co — 5 sin w, 

sin co 5 sin 2co - 5 sin to, 
6 sin co = 10 sin co cos co. 

This gives sin w — o, or cos w = %. 

0) 
(ii) 
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If sin a) = o, co must be zero or a multiple of it, and these values 

do not satisfy equations (i) and (ii) so that they may be rejected. 

The other value gives co — cos-1 g, 

and the period = ~ = ——— . 
co cos-1 

Example (iv). 

A point P moves in a circle with uniform angular velocity co about 

the centre O. If Q be the orthogonal projection of P upon a fixed diameter, 

show that Q moves along the diameter with simple harmonic motion. 

Let AOA' (Fig. 112) be a diameter of the circle, a the radius, and 

suppose that P is moving in the direction APA'. 

The velocity and acceleration of Q must be the same as the compon¬ 

ents, parallel to AA', of the velocity and acceleration of P. 

Now the acceleration of P is aco2 in the direction of PO. 

Hence, if Z.POQ = 6, the component parallel to AA' is aco2 cos 0, 

the acceleration of Q = aco* cos 0 towards O. 

If OQ = at, cos 0 == 

.*. the acceleration of Q — co2x towards O. 

Hence the motion of Q is a simple harmonic motion along AA'. 

The various formulae for S.H.M. obtained in the preceding para¬ 

graphs can be deduced from the motion of Q. 

The velocity of P is aw along the tangent PT, and the component 

parallel to AA' is a<o sin 0, hence, if v is the velocity of Q, 

aco sin 
/ x% 

sin 0 — aco \ i — a* ~ co Va8 

It is evident that as P moves round the circle from A to A' and back 

to A, Q moves from A through O to A' and back to A. 

The time taken from A to A' and back to A is the same as that 

t^ken by P to describe the circle, i.e. — ; hence, if T is the period of a 

complete oscillation of Q, 
2 ft 
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The time, t, taken for Q to move from A to a point distant x from 
9 

O is the time taken by OP to move through the angle 9, i.e. 

EXAMPLES XXXIV. 

1. A particle moves in a straight line with simple harmonic motion ; 
find the time of a complete oscillation when (i) the acceleration at 
a distance of 4 feet is 8 ft./sec.2, (2) the acceleration at a distance of 
9 inches is 12 ft./sec.8. 

2. The amplitude of a particle moving with S.H.M. is 5 feet, the accelera¬ 
tion at a distance of 2 feet from the mean position is 4 ft./sec.2, find 
the velocity when the particle is in its mean position, and also when 
it is 4 feet from this position. 

3. A particle, moving with S.H.M., has a velocity of 6 ft./sec. when 
passing through its mean position, and the acceleration at 2 feet from 
the mean position is 8 ft./sec.8. Find the amplitude and the period 
of the oscillation. 

4. A point, moving with S.H.M., has velocities of 4 ft./sec. and 3 ft./sec. 
when at distances of 3 feet and 4 feet from its central position. Find 
the period, and the maximum acceleration. 

5. A particle is moving with S.H.M. of period n seconds, and the maxi¬ 
mum velocity is 8 ft./sec. Find the amplitude and the velocity at a 
distance of 3 feet from the central position. 

6. If a particle is making simple harmonic oscillations, the period being 
2 seconds, and the amplitude being 3 feet, find the maximum velocity 
and the maximum acceleration. (H.S.D.) 

7. A particle starts from rest, and moves with S.H.M. with a period of 
2 T. Show that it describes £ of the distance before it next comes to 
instantaneous rest in £ of the time T, and attains half of its maximum 
velocity in £ of the time T. (I.S.) 

8. A particle moving with S.H.M. passes through two points A and B, 
22 inches apart, with the same velocity, having occupied 2 seconds in 
passing from A to B ; after another 2 seconds it returns to B. Find 
the period and amplitude of the oscillation. (I.A.) 

9. A particle performs 150 complete simple harmonic oscillations per 
minute, and its greatest acceleration is 10 ft./sec.8; find its greatest 
velocity and the distance between the extreme positions. (I.S.) 

10. A point is moving in a straight line with S.H.M. about a fixed point O 
of the line. The point has a velocity vt when its displacement from 
O is xlt and a velocity vt when its distance from O is xt. Show that 
the period of the motion is 

11. The velocity of a particle moving in a straight line is given by the 
equation 

v — k Va2 — x*, 

where k and a are constants, and x is the distance of the particle from 
a fixed point in the line ; prove that the motion is simple harmonic, 
and find the amplitude and the periodic time of the motion. (l.E.) 
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12. A particle is performing a simple harmonic motion of period T about 
a centre O, and it passes through a point P with velocity v in the 
direction OP ; prove that the time which elapses before its return 
to P is 

tan -1 
vT 

ITT OP* 
(I-S.) 

13. If the speeds of a point moving with S.H.M. at distances xx and xt 
from the centre of motion be vx and vit find the periodic time, the 
amplitude, and the maximum speed and maximum acceleration. 
Calculate the numerical values if xx ~ 2 feet, xt — 3 feet, vx -- 5 
ft./sec., — 4 ft./sec. (I.K.) 

14. Prove that, in S.H.M., if / is the acceleration and v the velocity at 
any moment and T is the periodic time, then /2Xa -f 4is constant, 
and find the numerical value of this constant for a motion whose 
periodic time is 2 seconds and in which the amplitude is 2 feet. 

(H.S.D.) 

15. A body, moving in a straight line GAB with has zero velocity 
when at the points A and B whose distances from O are a and b 
respectively, and has velocity v when halfway between them. Show 
that the complete period is 

~ a). (H.S.D.) 
V 

16. A point P describes a circle of radius a and centre O, with uniform 
angular velocity oj ; show that a point O which describes a diameter 
AOB of the circle, so that PQ is always perpendicular to AOB, has an 
acceleration which is proportional to OQ. 

If Q,, Q2 are points bisecting OA, OB, find the time the point Q 
takes to travel from Qx to Q±, and the velocity of the point Q at Qa 
and at * (I.S.) 

17. In a particular S.H.M. the number of complete oscillations is 45 per 
minute. The velocity at a point 1 inch away from the mean 
position is 1 ft./sec. Calculate the greatest distance reached 
measured from the mean position. If A and B are two points 
distant 1 inch and 2 inches from the centre of motion respectively, 
find the time occupied in going from A to B. (Q.E.) 

18. A point moving with S.H.M. is making 3 complete oscillations per 
second. The extent of the motion on either side of the mean position 
is 2 inches. Calculate the maximum velocity and maximum accelera¬ 
tion. Find also the velocity and acceleration when the point is 
1 inch distant from the centre. (Q.E.) 

19. Show that in S.H.M. the mean velocity (during motion from one end 

of the path to the other) with respect to the distance is - x the 
4 . 

maximum velocity, and with respect to the time is 5 x the maximum 
rr 

velocity. (Q.E.) 

20. A particle is moving v/ith S.H.M., and while making an excursion 
from one position of rest to the other, its distances from the middle 
point of its path at three consecutive seconds are observed to be xXt 
xt, x$; prove that the time of a complete oscillation is 
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21. A particle moving with acceleration — fix has co-ordinates xv and 
x2, and velocities vx and vt at any two moments. At the moment 
midway in time between them its co-ordinate and velocity are x 
and v ; show that 

X j X 2 V 

v% — Vx ~ /I%' 
and that 

*1 + X% _ X 

v\ + V% ~~ V 
(H.C.) 

22. If a be the amplitude and n the number of complete oscillations per 
second in S.H.M., find the velocity in any position in terms of (i) 
the distance from the centre, and (2) the time that has elapsed since 
the moving particle was at rest. Show that the time that elapses as 
the particle moves from the position of maximum velocity to the 

position in which the velocity is half the maximum is ~L seconds. 

23. A circle of radius a rolls with uniform angular speed on the inside of 
a fixed circle of radius 2a. Prove that any point on the circum¬ 
ference of the moving circle describes a straight line with S.H.M. 

(I.E.) 

24. A piston weighing 20 lb. has a stroke of 4 feet. Using the line of 
motion as the axis of x, make graphs to show the value of the 
velocity and of the accelerating force at any point of the stroke, 
assuming the motion to be S.H.M. (I.E.) 

25. A point P moves in a straight line through a fixed point O in such a 
manner that its acceleration at each instant is towards O and equal 

to ft, OP ; prove that the velocity is Vfi(OA2 — OP2), where A is 
one of the points where P comes to rest. 

If Q is the point on OA such that 2 OQ* = OA*, show that the 
time from O to Q is the same as the time from Q to A. (I.S.) 

26. A heavy smoked glass plate is dropped past the end of a vibrating 
tuning-fork, making n complete simple harmonic oscillations per 
second, and by means of a light style attached to the fork a rippling 
trace is obtained on the plate. The vertical length of a certain 
10 consecutive ripples is found to be l cm., and of the next 10 is 
found to be V cm. Deduce that the value of g is 

fill,, cm./sec.2 (I.A.) 

27. A particle performs 150 complete simple harmonic oscillations a 
minute and its greatest acceleration is 10 ft./sec.*; find (1) its 
greatest velocity, (2) its mean velocity during the motion from one 
extreme position to the other. (Q.E.) 

28. A point is moving in a straight line with S.H.M. Its velocity has 
the values 3 ft./sec. and 2 ft./sec. when its distances from the mean 
position are 1 foot and 2 feet respectively. Find the length of its 
path and the period of its motion. Find also, correct to the third 
significant figure, what fraction of the period is occupied in passing 
between the specified points. (Q.E.) 

29. A particle describing S.H.M. does 100 complete vibrations per 
minute, and its velocity in passing through its mean position is 
15 ft./sec. What is the length of its path ? 
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What is its velocity (i) when it is half-way between its mean 
position and an extremity of its path, (ii) at a time after leaving its 
mean position equal to half the time required to reach an extremity 
of its path ? (Q.E.) 

30. If x = a sin (cot 4- e), where a, 00, e are constants, prove that x = — 
to*x. Conversely, if x = — co*x prove that x = a sin (cot 4- €), 
where a and e are arbitrary constants. 

In particular solve x = — 16#, given that x = o, x — 20 when 
/ - o. (I.C.) 

31. A point is moving in a straight line with S.H.M. Its velocity has 
the values 5 ft./sec. and 4 ft./sec. when its distances from theunean 
position are 2 feet and 3 feet respectively. Find the length of its 
path and the period of its motion, taking rr = 3*1416. 

Determine what fraction of the period is occupied in passing 
between the two points if they are on opposite sides of the mean 
position. (N.U.3) 

32. A particle oscillates in S.H.M. o#i a line 6 inches long with a frequency 
of 2000 oscillations per minute. Calculate the greatest velocity and 
the greatest acceleration of the point each in ft./sec. units. [Take 
- « 3-1416.] (N.U.3) 

§ 179. Force necessary to prodace Simple Harmonic Motion. 
Since the force P required to produce an acceleration of / in a 

mass m is measured by tnf, it follows that (if m is constant) P must 
obey the same law as /. Hence, in the case of simple harmonic 
motion, the force must be always directed towards the central or 
equilibrium position, and its magnitude must be proportional to 
the displacement from that position. 

The force tending to restore an elastic body to its natural shape 
or size is generally of this nature, e.g. the force exerted by a spiral 
spring when extended or compressed. 

§ 180. The simplest case is that of a particle on a smooth hori¬ 
zontal plane attached by a spring to a fixed point in the plane, 
the particle being displaced in the direction of the length of the 
spring. 

A C' B P C 
----•—3B-'-' 

Fig. 113. 

Let A (Fig. 113) be the fixed point, AB the natural length of 
the spring (/), and A the modulus of elasticity of the spring. 

If a particle of mass m is attached to the end B, then B is the 
equilibrium position, and if the particle is displaced along the line 
AB it will oscillate about B. 

If P is any displaced position of the particle, where BP = x, 
the tension, acting towards B, is 
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and this is the only force acting on m which tends to produce 
motion along the line AB. 

dH A 

dt* 

dH Av 

'*■ dt* ml' 

The motion about B is therefore simple harmonic, and the 

constant to2 in the standard form of the equation is replaced by — . 
tnl 

The period of oscillation is therefore 

„ I ml 
Wt- 

It is evident that the constant, and therefore the period of the 
motion, depends only on the material and length of the spring and 

the mass of the particle, and not on the amplitude of the oscillation. 

If the particle is pulled out to a point C(BC ~ a) and then let go, it 
will move through B to a point (7 at an equal distance on the other 
side of B and then back again to C and so on. The amplitude is 

equal to the distance from the equilibrium position at which the 
particle is released from rest. 

§ 181. Particle suspended by a Spiral Spring. 

AT 

B 

O 
P*- 

Fig. 114. 

Suppose that a particle of mass m is suspended from a fixed 
point A (Fig. 114) by a spring of natural length l and modulus A. 
If AB = /, then when the particle is hanging in equilibrium it 
will extend the spring and be at a point O, where OB (~ d) is 

given by 

A. 
mg = jd. 

If the particle is displaced vertically from O it will oscillate in 

a vertical line about O, and we can show that the motion is simple 

harmonic. This case is not so simple as that in the last paragraph,. 
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since the weight of the particle is acting as well as the force due 
to the spring. 

If P is any displaced position of the particle, and OP ~ x, the 

tension of the spring is given by 

T = j(d + x). 

The resultant force acting towards O is 

T — mg = X{d x) — mg, 

but mg ~Xd, 

the restoring force towards () is 

and is therefore proportional to the displacement from O. 

Hence the particle moves with S.H.M. about O. 

Also m 
&H 
dt2 
dhc 

dt2 

A 

l X' 

ml 

The constant is again ^ and the period will be 

i 

2iT\j ml 

A * 

The amplitude will depend on the initial displacement. If the 

particle is pulled down a distance a below O and released it will 
rise to this distance above O and then descend again. 

Note.—It is most important to notice that the motion is har¬ 
monic about the equilibrium position O, and not about B. 

In the case of a spring it does not matter if the particle rises 
above B as the law for compression of the spring is the same as 

that for extension, and the motion is harmonic throughout. 
If the particle is suspended by an elastic cord instead of a spring, 

the working above holds as long as the particle is below B, i.e. as 
long as the string is stretched. 

If the particle rises above B the part of the motion above B is 
simply free vertical motion under gravity. 

The particle will rise above B if it is pulled down below O through 
a distance greater than the permanent extension OB. 
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§ 182. Example (i). 

A spiral spring is found to extend \ an inch for each additional pound 

of loading. It is hung up carrying a mass of 4 lb.t and put in vibration. 

Find the period. (I.E.) 

A] 

B 

O 

P1 

Fig. 115. 

Let AB (Fig. T15) represent the natural length (/) of the spring. 

The mass of 4 lb. will extend it 2 inches or J foot, so that in equilibrium 

the mass would hang at O where OB — J foot. 

If A be the modulus of elasticity, 

A 1 

^ r 24’ 

A 
•••7= 24 g- 

If P represent any displaced position of the mass, and OP — x, 

the tension T is given by 

T = ^ (* + x) 

= + x), 

the restoring force is T — 4g 

- + 24g* - 4g 

^ 24g*. 

.*. the acceleration is 

i£r 
4 

the period is 

Example (ii). 

A light elastic string is stretched by e0 when a certain weight is suspended 

by it. Prove that, if the weight is displaced in a vertical line any distance 

not greater than eQt and set free, it will return to the initial position in time 

.\* 

= 6gx, 

2 it V . 
— -—— =a —- seconds. 

8V3 t* 
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Let m be the mass attached, A the modulus and / the natural length 
of the string. Since the weight mg stretches it a distance e0, 

A 
mg «-j e* 

. am 
l e0 

For a further extension x, the tension is 

j(ea -f- x) '■ 
me 

™g -f ~x> 
C II 

and the restoring force is 
mg 
~xt 
&0 

g 
the acceleration is -x, and the motion is S.H.M. 

eo 
The time taken to return to the initial position from which the 

weight is released is a complete period and is therefore 2 n 

Note.—It is stipulated in the question that the displacement is not 

greater than e0, the permanent extension, so that the motion is simple 
harmonic throughout. 

Example (iii). 

A particle of mass m on a smooth table is attached to two points A 
and B of the table by means of two exactly similar stretched elastic strings. 
Prove that if the particle is displaced in the direction of the line AB, through 

such a distance that neither siring goes slack, and is then released, it will 

perform simple harmonic oscillations. (I.E.) 

A CP B 
1-^—« 

Fig. 116. 

Let /© be the natural length of each string, A its modulus, and l the 

stretched length. 
The equilibrium position of the particle is at C (Fig. 116), the middle 

point of AB, and AC = CB = /. 

Suppose the particle in a displaced position P, towards B, where 

CP = x. 
The tension in AP is 

T, = j(l -lt + x), 

and the tension in PB is 

T, =!(/ -I,- X). 

the resultant force tending to bring the particle back to C is 

the restoring force is proportional to the displacement, and the 

motion is simple harmonic. 
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The acceleration is 

and the period is 

x, 
ml„ 

“Vi- 
Note.—If the particle is displaced so far that one string goes slack, 

then for the part of the motion when both strings are tight the accelera¬ 

tion is as above, but for the part of the motion when one string is slack 

the acceleration is —r*. 
m!n 

The complete motion is then made up of two simple harmonic Vml0 
— 

being described, but only a portion of the other. 

Example (iv). 

An elastic thread is fixed at one end to a point O in a smooth horizontal 

table. It passes through a fixed ring C, where OC is the unstretched length 

of the thread, and is attached to a small mass m which can slide on a fixed 

smooth horizontal wire. It is held at a point A on this wire and then re¬ 

leased. Show that it will perform simple harmonic oscillations and con¬ 

struct the other extremity of the path. (I.S.) 

Let D (Fig. 117) be the point where the perpendicular from C meets 

the wire. Then D is the equilibrium position of m. 

If P is any displaced position of m, the extension of the string is 

CP, and if / is the natural length and A the modulus of the string, the 

tension T is given by 

T^jCP, 

If DP = x, and Z.DPC = 6, the component of T along the wire is 

T cos $ — ^ CP cos d ~ j x. 

The force tending to move m towards 1) is therefore proportional 

to the displacement from D, and the motion is S.H.M. about D. The 

other extremity of the path will be at A' on the other side of D, where 

DA' = DA. 
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EXAMPLES XXXV. 

1. A spiral spring supports a carrier weighing 2 lb., and when a 10 lb. 
weight is placed on the carrier the spring extends 2 inches. The 
carrier with its load is then pulled down another 3 inches and let 
go. How high does it rise, and what is the period of its oscillation ? 

(I.S.) 

2. A spring loaded with a certain weight is extended 1 inch when in 
equilibrium. Find the time of oscillation if the load is pulled ver¬ 
tically downwards through a further distance of half an inch and then 
let go. Find also the velocity and acceleration when the weight is 
at a distance of ] inch below its equilibrium position. (I.S.) 

3. A body weighing 12 lb. is suspended by a spring and makes three 
complete vertical oscillations per second, bind how far the spring 
would be stretched by a load of-io lb. hanging at rest. (I.S.) 

.4 A particle' of mass 1 lb. is acted upon by a variable force which makes 
it move with S.ll.M. The maximum speed attained is 5 ft./sec. and 
the complete period is 2 seconds, bind (a) the amplitude of the 
motion, and (b) the maximum rate at which the applied force does 
work (in ft. lb. per sec.). (I.S.) 

5. A mass is suspended from a fixed point by a spiral spring and set 
in vertical oscillation. Show that the period of an oscillation is 

Zn \j where / feet is the extension of the spring produced by the 
SI 

weight of the attached mass. (I.S.) 

J (>. An elastic string of natural length za can just support a certain 
weight when it is stretched till its whole length is 3a. One end of 
the string is now attached to a point in a smooth horizontal table, 
and the same weight is attached to the other end and can move on 
the table. Prove that, if the weight is pulled out to any distance 
and then let go, the string will become slack again after a time 

7. If a particle describes a harmonic oscillation of amplitude a in 
complete period T, prove that it will be at a distance x from the 

$T 
centre, from which it started, in a time—, and be moving with a 

2 7T 

mV a2 — x% 
speed-j,-, where a sin 0 - x. 

An clastic thread is stretched between two points on a smooth 
horizontal table. A particle of given mass is fastened to the middle 
point, and after being drawn towards one of the points, the string 
remaining taut, is .set free. Show that it will describe its oscillations 
in a period independent of the original extent of displacement. (I.S.) 

8. A particle is attached to the middle point of an elastic string which is 
stretched between two points A and H on a smooth table 9 feet 
apart, and displaced a distance of 1 inch in the direction of the string. 
If the initial tension of the string is twice the weight of the particle, 
find the periodic time and the maximum velocity attained by the 
particle. 

9. A spiral spring 2 feet long is hung up at one end. Its length would 
be doubled by a steady pull of 0 lb. wt. A weight of 3 lb. is hung to 
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the lower end, and let go. Find how far it falls before first coming 
to rest and the time of a complete oscillation. (H.S.C.) 

10. If two unequal weights are hanging together at one end of an elastic 
string whose other end is fixed, and one of them falls oft, show that 
the other will perform simple harmonic oscillations or not according 
as the one which falls oft is the lighter or the heavier of the two. 

(H.S.C.) 

11. A weight of i lb. suspended by a spring extends it i inch when in 
equilibrium. If a mass of 3 lb. be attached to the spring and re¬ 
leased from rest with the spring extended 5 inches, find the number 
of oscillations per minute and the maximum velocity in the course 
of an oscillation. (I.C.) 

12. A weight of 10 lb. is suspended from a spring, causing an extension of 
10 inches. If the weight is pulled down a further distance of 1 inch 
and then released, find the periodic time of the motion, the velocity 
when the weight is £ inch above the lowest point, and the tension 
in the spring at the top of the path. (Q.E.) 

13. A light spiral spring is carrying a weight of 12 lb. ; it extends 
2 inches w^hen an extra weight of 3 lb. is placed on it. The extra 
weight is removed suddenly. Find the period of oscillation of the 
12 lb. weight, the tension in the spring and the velocity of the w'eight 
when it is 1 inch above its lowest point. (Q.E.) 

14. A light helical spring hangs vertically and carries a load of 10 lb. ; 
it extends 1 inch per extra pound of load. It is extended 2 inches 
and released. Drawf graphs for the kinetic and potential energies 
at different phases of the subsequent motion. (Q.E.) 

15. A certain spring has attached to it a mass of 25 in certain unknown 
units ; on increasing the load by 6 of these units it extends 1 inch. 
What is the time of oscillation under the original load ? What will 
be the velocity and acceleration when it is midw^ay between its 
lowest and mean positions if it is loaded as at first, pulled down 
2 inches and let go ? (Q.E.) 

iG. A scale pan weighing 1 lb. is attached to a light spiral spring and 
causes it to extend 2 inches. A 2 lb. weight is then placed in the 
pan and released. Find to w'hat depth the pan will fall, the tension 
of the spring w’hen the pan is at its lowest point and the period of 
the oscillation. (Q.E.) 

17. A mass of 5 lb. hangs at rest on a light spring, extending it 2 inches. 
Another mass of 3 lb. is attached to the first without moving it and 
the two together are then released. Find the amplitude, period, and 
maximum velocity of the resulting motion. (Q.E.) 

18. A weight of 10 lb. is suspended by means of an elastic string which is 
extended 2 inches when the weight is hanging at rest. If the upper 
end is suddenly jerked upwards a distance of 1 inch, and then held 
fixed, find the greatest velocity attained by the weight and the period 
of the oscillation set up. (Q.E.) 

19. A spring of length 25 cm., whose stiffness is such that a weight of 
1 kilogram would double its length, hangs vertically from a fixed 
point and has attached to its lower end a scale pan of mass ioo gm. 
Show that, if the pan is pulled downwards from its equilibrium 
position and then released it will execute simple harmonic oscillations 
and find their period. Show also that, if the total amplitude of the 
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oscillations exceeds 5 cm., a small particle in the scale pan will not 
remain in contact with it during the whole oscillation, but will 
repeatedly rebound from it. (H.S.D.) 

20. A particle is attached to the middle point of an elastic string stretched 
between two points A and B on a smooth horizontal table. If the 
particle be displaced through a small distance perpendicular to AB, 
and then released, show that its subsequent motion is approximately 
a simple harmonic one. (The displacement is so small that the ten¬ 
sion of the string is supposed to be constant.) If AB — 9 feet, the 
tension of the string is twice the weight of the particle, and the 
original displacement is \ an inch, find the periodic time, and the 
maximum velocity attained by the particle. (Ex.) 

21. A particle is moving with S.H.M. in a straight line, and takes 
3 seconds to perform a complete oscillation. Its furthest distance 
from the centre of force is 4 feet. Find its maximum acceleration 
and its maximum velocity. If, when at its furthest point, it receives 
a blow which drives it in with an initial velocity of u ft./sec., find its 
new amplitude. What value of u will make the amplitude 5 feet 
instead of 4 feet ? (H.S.C.) 

22. A weight is hanging at one end of a light inextensible string, and the 
uppermost end of the string is made to move vertically up and down 
with S.H.M. of amplitude 3 inches. Find the least period for which 
the string will never become slack. (H.S.C.) 

23. A particle P of mass m is attached to the middle point of an elastic 
/ string AB, whose unstretched length is 2a and whose modulus of 

elasticity is equal to the weight of the particle. A and B are attached 
to fixed points on a smooth horizontal table at a distance 3a apart. 
AP is initially equal to 2a, PB is equal to a. Prove that, when P 
is let go, it will perform simple harmonic oscillations whose period 

is 27t/V^> anc* oscillate through a distance a. (H.S.C.) 

24. A mass m hangs from a fixed point by means of a light spring, which 
obeys Hooke’s law. The mass is given a small vertical displace¬ 
ment, and n is the number of oscillations per second in the resulting 
harmonic motion. If / is the length of the spring when the system 
is in equilibrium, find the natural length of the spring, and show 
that, when the spring is extended to double its natural length, the 
tension is m{^TT2n2l — g). (C.S.) 

25. A particle of mass 10 lb. moving with S.H.M. has a maximum 
velocity of 10 ft./sec., and performs its complete oscillation in 
2 \ seconds. Calculate the complete range of the oscillation, and the 
maximum value of the force applied to the particle. (Q.E.) 

26. A mass m is suspended from a spring causing an extension a. If a 
mass M is added to m, find the periodic time of the ensuing motion, 
and the amplitude of the oscillation. (C.S.) 

27. A fine elastic string OAB, whose modulus of elasticity is A and 
unstretched length a, has one end fixed at O, and passes over a 
smooth pulley fixed at A, where OA — a. A particle of mass m 
hangs in equilibrium at B. Show that if a horizontal impulse I 
is applied to the particle, it will move in a horizontal line with S.H.M, 

of amplitude . (H.C.) 

28. A spiral spring supports a carrier weighing 1 lb., and when a 5 lb. 
weight is placed on the carrier the spring extends 2 inches. The 
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carrier with its load is pulled down a further distance of 2 inches 
and is then let go. How far does it rise, and what is the greatest 
velocity it attains ? (Q.E.) 

29. Given that the amplitude of a S.H.M. is a, and the greatest speed 
is V, find the period of an oscillation, and the acceleration at dis¬ 
tance b from the centre of the oscillation. 

A body lies on a horizontal platform which describes a S.H.M. 
vertically of amplitude 3 inches and complete period 1 second. 
Compare the greatest and least pressures of the body on the plat¬ 
form. (N.U.3) 

30. Prove that if the displacement x of a particle is related to the time 
t by the formula 

x -= o-i cos 37H 

the motion is simple harmonic. 
State the values of (a) the initial velocity, (6) the initial accelera¬ 

tion. If the maximum force on the particle during the motion is 
80 dynes, prove that the mass of the particle is nearly equal to, 
9 grams. (N.U.3) 

§ 183. The Simple Pendulum. 
This consists of a heavy particle or bob attached to a fixed point 

by a weightless string and swinging in a vertical plane. It is thus 
a case of motion in a vertical circle, but we shall now consider more 
fully the details of the motion when the displacement of the string 
from the vertical is very small. 

Let O (Fig. 118) be the point of suspension, OA the vertical 
position of the string, / the length of the string, and m the mass 
of the particle. 

If P is any displaced position of the particle, where the angle 
AOP (— d) is small, the force tending to bring m back to A along 
the circle is mg sin 6. 

the acceleration of P along the circle 

= g sin $ gd, approximately, 
s 

= gr 
where s is the length of the arc AP. 

VOL. I. 
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The acceleration along the circle is therefore proportional to 
the displacement along the circle measured from A, the equilibrium 
position. 

The motion is therefore simple harmonic, and the period of a 
complete oscillation is 

2 tta/L 
yg 

It must be remembered that the motion is only harmonic when 
the angle of swing is so small that sin 6 is very nearly equal to 0, 
and that even then it is only approximately harmonic. The approxi¬ 
mation is fairly accurate for angles up to about 40. 

§ 184. The Seconds Pendulum. 

A seconds pendulum is one which vibrates from rest to rest 

(i.e. makes half a complete oscillation) in 1 second. 
The period of a seconds pendulum is therefore 2 seconds. 
If l is the length of the seconds pendulum, 

The unit of length for / will depend on the units used for g. 
Taking g --- 32 ft./sec.* and n — 

1 = 3-24 ft. 

Taking g ~ qSi cm./sec.2 and tt =? 

/ — 99*5 cm. 

§ 185. Since the time of oscillation of a pendulum of given 
length depends on the value of g, this time will vary in different 
places, and will also vary with the height above or below the earth's 

surface. 
If the whole pendulum is subject to some other acceleration, 

such as that due to being in a lift moving with uniform acceleration, 

or in a train going round a curve, the apparent value of g is altered 
and so is the time of oscillation. 

If T seconds is the period of oscillation of any pendulum, and 

n the number of oscillations per second, n — i. 

A seconds pendulum should beat 86,400 times a day, and the 

time for a half oscillation is . 
86400 
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If the pendulum gains v seconds a day, the time of a half oscilla¬ 
tion is 

86400 

86400 -f- x 

If it loses .v seconds a day the time is ~ 
86400 

86400 — x 

These expressions are useful in problems where the number 
seconds lost or gained by a seconds pendulum is required. 

The following examples illustrate variations in period due 
different causes. 

to 

Example (i). 

If a seconds pendulum be lengthened by 1 0th of Us length, how many 

seconds will it lose in a day ? 
101 

If / is the length of the seconds pendulum, the new length is 

If # is the number of seconds lost in the day, 

86400 _ !F 
86400 ~ 71 \ g 

86400 ,IOI / 
and ,,,-— 7r\ --» 

86400 — x \ 100 g 

86400 — x /100 

86400 “ \ 101* 

Instead of working out by taking the square root or using 

logarithms, it is better to write it or ^ 1 -f- ) . and ex¬ 

pand by the Binomial Theorem. 

We have 

(1 -f —* — 1 — ~X—, approximately, 
V 100/ 200 

86400 — x __ x __ 1 

86400 200' 

x 1 

864OO 200* 

* = 432- 

Example (ii). 

A seconds pendulum gains 10 seconds a day in one place and loses 
to seconds a day in another ; compare the values of g in the two places. 

Let l be the length of the seconds pendulum, gx and g2 the values 

of g at the two planes, then 
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. £* 
"gt 

• \lii = 86410 = 1 + _i_ 'g, 86390 8639 

(* + g^)’ = 1 + 8-61? aPPrOXlmate‘y’ 

= ^43 
§639’ 

Example (iii). 

A seconds pendulum is in a lift which is ascending with a uniform 

acceleration of 1 ft./sec * Show that it will gain at the rate of a little over 

56 seconds per hour. 

The upward acceleration of the lift increases the effective value of 

g by 1 ft./sec.® 

Hence if x is the number of seconds gained per hour 

&?=nj±, 
3boo \ 32 

36°% - *v 3600 -f 

1 + 
3600 Vg = ( 1 + — ) 

32/ 

l 

33' 

i + 
*4 

x 1 

’ 3600 64* 

— 5^>h approximately. 

Example (iv). 

A pendulum suspended from the roof of a railway carriage travelling 

at speed V round a curve of radius a makes n oscillations per second. 

Prove that if nx is the number of oscillations per second when the carriage 

is stationary, 

V, = ag\I^L—i. (Ex.) 

Since the point of suspension and the bob of the pendulum are 

moving in a circle of radius a with speed V, they are subject to a central 
V8 

acceleration equal to —. The force necessary to produce this accel¬ 

eration in the bob must be provided by the tension in the string, which 

therefore becomes inclined to the vertical as in a conical pendulum. 

The effect of the circular motion on the bob is therefore the same as 
mV% 

if it were at rest (except for its oscillation) and an outward force of — 

yt 
were applied to it, i.e. a horizontal acceleration equal to — outwards. 
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The resultant of this and the acceleration due to gravity is the effec¬ 
tive value of g as far as oscillations of the pendulum are concerned. 

If g' is the resultant of these accelerations. 

Also 
i 

n\ 

«■ - V*’+5- 

4 'g 

fl* 

’ 

n4 

' V 
F4 

' a*g* 

F* 

and i 
n 

- £ - i. 

2ir 
4 

= = I + 
F4 

o*jp' 

In4 

Example (v). 

.4 seconds pendulum at the bottom of a mine, J wife deep, loses 
io seconds a day ; a/ /At* top of a mountain £ mite A/g/i, s/iote; Ma/ te m/»7/ 
/os<? a&o«2 15*4 seconds a dav, assuming that the radius of the earth is 
4000 miles. 

[Inside the earth the weight of a body varies directly as its distance 
from the centre ; outside the earth the weight vanes inversely as the square 
of its distance from the centre.] (I.S.) 

Let glt g, gt be the values of the acceleration due to gravity at the 
bottom of the mine, at the surface, and at the top of the mountain 
respectively. 

gi 4000 - j and _ 4000* 

g 4000 * g (4000 -f l)1’ 

gj __ 40003 _ 1 

' gi 

Then 

-( 

(4000 4- i)*(4°°° ~ i) 

i + JU ' 
80OO/ 

Also 
86400 

<■ 
and 

86390 

86400 - * _ ( 

86390 Sg, v 

-( 

J-Y(i - 1 \ 
V ' 8000/ \ 8000/ 

_Lr‘ 
8000 / 

_16J2£_ = rrJI, 
86400 — X ' gt 

1 X'Vr-0—V 
\ 8OOO/ 

I \ 

1 ^ SOOo) 

>00/ V 8000 

I 

I 4- 
16000/ 

, approximately; 

86400 — x 

16000 
G 

86390 

= 10 4- 5*4 = 15^ seconds 

IS=86390 - 5'4> 

VOL. I.—10 
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EXAMPLES XXXVI. 

1. A pendulum beats seconds accurately at a place where the accelera¬ 
tion of gravity is 32 ft./see.* If taken to a place where the value of 
this acceleration is 32*2 ft./sec.*, will it gain or lose, and how many 
seconds in 24 hours ? (I.S.) 

2. Calculate the length of a seconds pendulum at a place where g is 981 
cm./sec.* If a pendulum clock loses 9 minutes per week, find in 
millimetres what change is required in the length of the pendulum 
in order that the clock may keep correct time. (I.S.) 

3. Show that an incorrect seconds pendulum of a clock which loses x 
x 

seconds a day must be shortened by — per cent, of its length in order 
43* 

to keep correct time. (H.S.C.) 
4. A seconds pendulum is correct at a place where the value of g is 

32 ft./sec.1 How many seconds a day will it gain or lose if taken to 
a place where the value of g is 32 3 ft./sec.* ? 

5. A seconds pendulum is correct at a place where g — 32*2 ft./sec.1 
By what percentage of its length must it be altered in order to keep 
correct time at a place where g = 32 ft./sec.* ? 

6. A seconds pendulum is carried down with a lift at a uniform accelera¬ 
tion of 2 ft./sec.* At the rate of how many seconds an hour will it 
lose ? 

7. A pendulum clock gains 20 seconds each day. Calculate the re¬ 
quired alteration in the length of the pendulum. 

At what height above the earth's surface would the clock with 
the uncorrected pendulum give correct time ? (The earth’s radius 
is 4000 miles, and the force of gravity varies inversely as the square 
of the distance from the earth's centre.) (H.S.D.) 

8. A pendulum, which at the surface of the earth gains 10 seconds a day, 
loses 10 seconds a day when taken down a mine ; compare the acceler¬ 
ation due to gravity at the top and bottom of the mine and find its 
depth. 

9. Prove that if a pendulum swings from rest to rest n times per second, 
then g = n*ir*/, where / is the length of the pendulum. 

In old French measure the length of the seconds pendulum (for 
which n = 1) at Paris is 3 06 French feet; calculate the value of g 
in these units. (LA.) 

10. A simple pendulum making small oscillations is allowed to swing 
from a position in which it makes a° with the vertical. If v is the 

45 v 
maximum speed, show that the complete period is-seconds. 

(g = 32 ft./sec.*). (H.S.C.) 

11. A pendulum bob weighing 1 lb. is hung from the roof of a railway 
carriage by a 3-foot string. The carriage is moving at 45 m.p.h. 
round a curve of radius J mile. Find the distance of the bob from 
the vertical through the point of support and the tension in the 
string. Find also the approximate time of a small oscillation 
whilst the train is moving round the curve. (I *E.) 

12. Find the formula for the time of a small oscillation of a simple 
pendulum. 

A simple pendulum is swinging through a small angle and it is 
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found that when it is vertical the tension of the string is i per cent, 
greater than the weight of the bob. Find the complete angle of 
swing to the nearest tenth of a degree. (N.U.3) 

13. If the time of oscillation of a simple pendulum is 20 seconds, find the 
length of the pendulum ; and if the velocity of the bob at its lowest 
position is 2 ft./sec., find the amplitude of the swing. (C W.B.) 

§ 186, Composition ol two Simple Harmonic Motions of the same 
Period and in the same straight Line. 

Let the displacements for the separate motions be given by 

ax cos (cat + *j) and at cos (cat + €2), 

then, if x is the resultant displacement, 

x = ax cos (oat + €x) + *% cos (0at 4 c2) 
= cos cat(ax cos ex 4 aa cos e2) — sin cat(ax sin ex + a2 sin e2). 

If ax cos + a« cos c2 = a cos c, 
ax sin €x -f *% sin c2 = a sin €, 

x — a cos a>t cos € — a sin cat sin c, 

= a cos (cat + e). 

This represents a simple harmonic motion with 

amplitude a = Vax* + af + 2axat cos — c2), 

and epoch e such that 

tan € = *i sin €i + sin 
CLX COS €j ~f* #2 COS €| 

The result is therefore a similar motion of the same period whose 
amplitude and epoch are known. 

Note.—We cannot compound two S.H.M.'s of different periods, 
i.e. the result is not S.H.M. When the periods are nearly equal, 
however, we can get an approximate result. 

§ 187. Let the displacements be given by 

ax cot (caxt + ex) and at cos (ca2t + e2), 

where cat — cax is small and equal to k. 

Then x = ax cos (caxt + CjJ + at cos (caxt + c'), 

where € = kt 4 e2. 

From the last paragraph, 

x = a cos (cat 4* e) . . . . (i) 

where a% — ax% + 4- 2*1*2 cos (ex -- c'), 

= *i + *% + 2*1*2 C0S (€1 — — *0, 
ax sin €x 4- *% sin 

ax cos €x 4~ o2 cos €n 

ax sin €x + at sin (c2 4- kt) 

ax cos €, 4- *1 cos (c2 4- ^0 

and 
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The quantities a and c are now not constant, but vary slowly 
with the time, since k is very small. 

The greatest value of a is when €x — ct — kt is equal to any 
even multiple of n, and the value is then the sum of the amplitudes 
(a, + a,). 

The least value of a is when €x — c* — kt is equal to any odd 
multiple of 77, and the value is then the differences of the amplitudes 

(ai - «*)• 
The resulting motion may be regarded as S.H.M. of approxi¬ 

mately the same period as either of the component motions, but 
with its amplitude and epoch gradually changing from definite 
minimum to definite maximum values. 

This occurs in the phenomenon known as “ beats " in sound. 

§ 188. Composition of two Simple Harmonic Motions of the 
same Period at Right Angles. 

Let the displacements of the particles along the axes of x and y 
be given by 

x = a cos cot . . . (i) 
y = b cos (cot -f c) . . . . (ii) 

The path of the particle is obtained by eliminating t from these 
equations. 

Now (ii) gives 

cos ait cos c — sin cot sin c, 

cos € - sin i — “sing (»)• 

(y x \ * X* 

b ~ a cos e) = sin* * ~ sin* * a*’ 

. 2. _ cos € + ^jcos* « + T sin* e = sin* e, 
ab a* a* 

...*;_2i£cos«+£=sin** . . 
a2 ab b% 

• P) 

This equation always represents an ellipse which is inscribed 
in the rectangle y = ±& (ABCD, Fig. 119). 

B J A 

* 
A 

b s' 
* 

✓ 
✓ 

* 
* * _1 

CL 
X X 

< t c > 
Fig. 119. 
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If c = o, the equation (iii) becomes, 

i.e. the straight line AC. 

If c = tt, it becomes 

i.e. the straight line BD. 

If c B «f it becomes 
2 

i.e. an ellipse whose axes are in the directions of the component 
motions. 

If, in addition to this, the amplitudes are the same and b — a, 
the path is a circle 

x* +y% = a2. 

x y 

a b 

a* + P ’ 

§ 189. Motion of two Particles on a Smooth Horizontal Plane 
connected by a Spring. 

#t>/ T 
Bar**.■j.rr: 
A O 

Fig. i2i. 

T m* 
mz 

B 

Let mx, nt2 be the masses of the particles, and suppose that they 
are pulled apart to positions A and B (Fig. 121) so that the spring 
is elongated, and then released. 

Since they are released from rest their centre of mass is initially 
at rest, and will therefore remain at rest throughout the motion. 

If 0 is the centre of mass, it always divides the spring in the 
same ratio mx to tnt> so that this point of the spring is always 
at rest. 

Let av a3, be the natural lengths of OA and OB, xv x2, the 
elongations at time l, so that the total elongation is xx + x2 and the 
tension T is given by 

T = k(xx + x2), where k = —^- 
ax + a2 

fi ^ ft and a*+Xl = a* + x* 
m2 mx tn2 mx * 

xi _ x% __ xx + x2 
mt~ tnx mx + m2 

+ xt)=kt^±ahx1, 
m2 

tn. 

Now 
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Hence for », the acceleration is 

and for mt it is 

k »»i + Y 
mlm2 

km!±.m>xr 
mlm2 

The motions of the two particles are therefore S.H.M.’s of the 
same period 

2WV; tnxmt 

h(mx + mi) 

If one or both the particles be started with any velocity in the 
line joining them, the centre of mass will move with uniform velocity. 
The motion of each relative to the centre of mass is, however, exactly 
the same as if the centre of mass were at rest. 

The acceleration of either particle is the resultant of its accelera¬ 
tion relative to the centre of mass and the acceleration of the centre 
of mass ; and the latter is zero. 

This is illustrated in the following example :— 

§ 190, Two equal particles connected by an elastic string which is 
just taut lie on a smooth table, the string being such that the weight 
of either particle would produce in it an extension a. Prove that, if 
one particle is projected with velocity u directly away from the other, 

each will have travelled a distance un when the string first returns 

to its natural length. (C.S.) 
Let m be the mass of each particle. 
The momentum imparted to the system is mu, hence, as the 

total mass is the same as 2m at the centre of mass, the velocity 

of that point will be a uniform one of 

As the masses are equal their centre of mass is always midway 
between them so that the middle point of the string moves with 

uniform velocity 

Relative to the centre of mass the motion is the same as if that 
point were at rest. 

If the natural length of the string be 2/, and x the elongation of 
each half at time f, the tension T is given by 

T = k . zxt where k = 
A# 
2/ 
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For each particle 

and the period is 

But mg = ka, 

the acceleration is — 

■VI 2na 

m 

zkx 

m’ 

* g 
. . the period 

and the string will return again to its natural length after half a 

period, i.e. after ~~ seconds. 

Hence the centre of mass, and therefore each particle will have 
moved a distance 

2\2g 

$191. The following examples are of a rather more difficult 
nature:— 

Example (i). 

A light spiral spring is fixed at its lower end with its axis vertical; 
a mass, which would compress the spring a distance d when at rest, is 

dropped on the spring from a height h ; show that it will be shot off on 

the rebound after remaining on the spring for a time. 

+2 tan(CS’) 

B 

0 

C 

a 
Fig. 122. 

Let AB (Fig. 122) represent the initial position of the spring, and 
O the point to which the mass would compress it when at rest. When 
the mass falls on it the spring will be compressed to some point C below 
O, and will then recover. The mass will leave on the upward journey 
when the downward acceleration of the spring becomes equal to g. 

Let wt be the mass, and k the modulus of the spring divided by 
its natural length, then 

mg = kd, or k a ^ 
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The motion is harmonic, and if x is measured from O, 

d'x 

mwr=~kx- 

or 

Also 

d'x g 

dt:»-d x ' 

x — a sin t, where a is the amplitude 

W 

(«> 

It is obvious from (i) that the acceleration is g downwards when 
x ~ — d, i.e. when the mass returns to B. 

Now the kinetic energy of m on striking the spring is mgh, and when 

the spring comes to rest with m at C, the work done in compressing is 
equal to the loss of kinetic and potential energy of m. 

mgy 
If v is the maximum compression, the final tension is — and 

a 
yyi 

the work done is i —•, 
d 

mgy2 
• i —j- = mgh + mgy, 

= 2 h. 

The amplitude a = y — A. 

The time from O to C and back is half a period or rr 

The time from O to B is given by 

^/- sin -l 

Now if 

y — d 
— 0, sin $ — 

cot2 $ 
(y - d)2 

d2 

y — d’ 

y% _ 2yd _ 2dh _ 2h 

" J' 

the 

to O and O to B is 

d' IT* 

I'd lid 
time from O to B is A/-taii-1A/-T, and the time from 

yg y*h' 

Vjtan-Vl- 
B 

Hence the time the mass remains on the spring is 

V|[’r + 2tan-,V^]' 
Example (ii). 

A railway wagon of mass 21 tons is shunted on to a siding, and reaches 

a hydraulic buffer at a speed of 8 ft. jsec. This buffer is such that it exerts 
a constant force of 35 tons weight while being pushed in, but exerts only a 

negligible force while recovering. The wagon buffer springs obey Hooke’s 

law and require a total force of 7 tons weight to compress them 1 inch. 
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Prove that the wagon moves 9*7 inches after striking the buffer before 
coming to rest, and that it leaves the buffer at about 4-7 ft./sec. (C.S.) 

Since the force exerted by the hydraulic buffer on compression is 

35 tons weight, the wagon springs will have to be compressed 5 inches 

before the buffer begins to go in. 
The work done in compressing the springs is 

i 35 X 2240 X ft. lb., 

and this equals the loss of kinetic energy of the wagon. 

Hence, if v is the speed of the wagon when the hydraulic buffer 

begins to move in, 

J 21 X 2240(8* — V9) - J X 35 X 2240 X — 

... 8* - v* - 35 x 5 X 32 = ^oo# 

12 X 21 9 

„ , 200 376 
... V2 = 64 — - AS_ 

9 9 

The wagon springs are not compressed any further, and the force 
retarding the wagon is now a constant one of 35 tons weight. 

If x is the distance the hydraulic buffer moves in, the work done 
by it is 33 X 2240 x 32* ft. pdls., and this is equal to the further loss 

of kinetic energy of the wagon, 

• 35 X 2240 x 32* ^ \ 21 x 2240 x 2Z5, 
9 

... x — ft. = 4-7 ins. 
120 

Hence the total distance moved by the wagon before coming to 
rest is 9*7 inches. 

The wagon rebounds under the force of its own springs, and will 
leave the buffer when the springs have extended to their natural length, 
i.e. by 5 inches. 

The work done by the springs in recovering is 

J 35 X 2240 x X 32 ft. pdls., 

and this will equal the kinetic energy of the wagon as it leaves the 
hydraulic buffer. 

Hence, if v is the speed of the wagon on leaving, 

i 21 x 22401?* = £ 35 x 2240 x ^ x 32, 

... v = 4*7 ft./sec. 

Example (iii). 

An clastic string is stretched between two points A and B in the same 
vertical line, B being below A. Prove that if a particle is fixed to a point 

P of the siring and released from rest in that position it will oscillate with 

S.H.M. of period tV f±, and amplitude fxa, where t is the period and a the 
4AP.PB 

amplitude when P coincides with the middle point of A B, and /x — —jffi—’ 

The string may be considered taut throughout. (C.S.) 

IO* 
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Let m be the mass of the particle, /0 the natural length of the string, 
A its modulus, and / the length of AB. 

When the particle is attached to the mid-point of AB, the equili¬ 
brium position will be at a depth d below the mid-point given by 

or 
A 

U 
d = mg. 

mg. 

For a displacement x from the equilibrium position the tension is 

1! 1? 
2 2 

and the restoring force is 
A A X mg 

4 r,d+4r, *-ms = y*’ 
the acceleration is 

•••1 = 

When the particle is released from rest it will descend a distance d 
below the equilibrium position, so that d is the amplitude, i.e. d = a. 

Now when P is not at the mid-point, the actual and natural lengths 
of AP and PB are 

A P PB AP PB 

Hence the equilibrium position is at a depth d below P given by 

AP PB 

A -jp A pg — mg, 

IB1* JBl* 

AB A j,ABA 

■TPT, a + FE T, d as 

A . AB* 
mg, 

mg, 

d = mg /. 
X • 

AP.PB „aAP.PB 

IB*-^ 
the new amplitude. 

Also for a displacement x from the equilibrium position, the restoring 
force is 

A AB* - 

r. ■ jp-pB* 
4a 

/3o 

2w Vf - 

and the period is, 
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EXAMPLES XXXVII. 

1. A ring slides on a smooth straight wire. It is attached by an 
elastic string, of modulus A and natural length L, to a fixed point 
in the same horizontal plane as the wire and at distance l from it, 
where / > L. If the ring be drawn along the wire through a small 
distance from its position of equilibrium and then released, show 
that it will perform a simple harmonic motion, and find the period. 

(C.S.) 
2. Two masses m, and m, are connected by a light spring and placed 

on a smooth horizontal table. When mx is held fixed, mt makes 
n complete vibrations per second. Show that if mt is held fixed, 

m. will make nxl^, and if both are free they will make 
' tnt ^ mt 

vibrations per second, the vibrations in all cases being in the line 
of the spring. (C.S.) 

3. A heavy particle of mass m is attached to the end of an elastic string 
of natural length a and modulus A, the other end of the string being 
fixed to a point A. The particle is released from rest at A and fails 
under gravity ; prove that the string will be extended during the 
interval of time 

2[*- tan- 

~T 

ma 

4. A particle is suspended from a fixed point by a light elastic string. 
Show that the period of vertical oscillations is that of a simple 
pendulum of length / — l0, where / is the equilibrium length of the 
string and l9 its natural length. 

If the oscillations are of amplitude / — /0 and if when the partr 
icle is at the lowest point of its path it receives a downward blow 
which gives it a velocity u, show that the time from the lowest 
to the highest point of the new path is 

i + - tan"‘( (C-s-} 
5. Two equal particles A, B are attached to the ends of a spring which is 

held by its ends vertically and unstretched, A being uppermost. B 
is released and at the moment at which it first comes to rest A is also 
released. Describe fully the subsequent motion, and show that B 
comes to rest again once. (C.S.) 

6. A spring, whose natural length is l9, is free to vibrate horizontally, 
one end being fixed. The force required to shorten the spring by 
an amount x is Ex. The mass of the spring is M, and its centre of 
gravity may be supposed always at its middle point. The spring is 
compressed by an amount x0, a mass m is placed at the end, and that 
end is released. Find the velocity of the particle when it leaves the 
spring. (C.S.) 

7. An elastic string hangs vertically from a fixed point. To the lower 
end is attached a heavy particle, which is then allowed to fail. When 
the particle reaches its lowest point half of it drops off. Show that 
the other half will rise to a height 2a above the starting-point, where 
a is the extension of the string which the heavy particle would pro¬ 
duce when hanging at rest. (C.S.) 
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8. A heavy particle hangs on the end of a light elastic string which is 
such that the period of a small vertical oscillation of the particle 
is 2nT. The string is moving vertically upwards with uniform 
velocity gT0 and the particle is in relative equilibrium. Show that, 
if the upper end of the string is suddenly fixed, the string will 
become slack if T9 > T, and that in this case the new motiqn has a 
period 

- COS-^Jr + 2(2V - r*)»- (C.S.) 

IO. 

Two stationary railway trucks of equal mass m are connected by a 
spring coupling which is initially just unstressed. For each truck it 
is assumed that the starting resistance and the running resistance are 
both equal to R. A constant force 3R is applied to the first truck. 

Prove that the second truck will start after a time , where A 
3 y A 

is the force in absolute units needed to produce unit extension in the 
spring. (C.S.) 
A particle of mass m is moving in the axis of x under a central force 
fitnx to the origin. When t — 2 seconds it passes through the origin, 
and when t = 4 seconds its velocity is 4 ft. /sec. Determine the 
motion and show that, if the complete period is 16 seconds, the semi¬ 

amplitude of the path is 3^! ft. (C.S.) 

11. Two masses M and tn, connected by a light spring obeying Hooke's 
law, fall in a vertical line with the spring unstretched until M strikes 
an inelastic horizontal table. Prove that M will after an interval 
of time rise from the table if the distance through which M has 

fallen exceeds l where / is the extension that would be 

produced in the spring by a force equal to the weight of M. (C.S.) 

12. A spring balance consists of a horizontal disc of mass 4 oz., carried 
on a light vertical spring which is compressed J inch by the weight 
of the disc. An inelastic mass of 8 oz. is dropped from a height of 
2 inches on to the disc ; find its velocity when it leaves the disc in 
the subsequent ascent. (C.S.) 

13. A heavy particle is attached to one point of a uniform light elastic 
string. The ends of the string are attached to two points in a verti¬ 
cal line. Show that the period of a vertical oscillation in which 

Itnh the string remains taut is 2 n\—, where A is the coefficient of elas- 
2 A 

ticity of the string, and h the harmonic mean of the unstretched 
lengths of the two parts of the string. (C.S.) 

14. A railway truck of mass 10 tons, moving at a speed of 4 ft./sec., 
collides with a similar stationary truck free to move. The buffer 
springs, which obey Hooke's law, are such that a force of 5 tons wt. 
between the trucks decreases their distance apart by 9 inches. Find 
the greatest compression produced in the springs. 

15. Two masses mx and m, lb. are connected by a light elastic string 
passing over a smooth pulley. The string stretches 1 foot under a 
tension of P poundals. The masses are supported so that the two 
sides of the string are vertical and just slack, and the mass m% is 
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then released, 
time 

Prove that the mass tnt will begin to rise after a 

(C.S.) 

16. Two light elastic strings are fastened to a particle of mass m and 
their other ends to fixed points so that the strings are taut. The 
modulus of each is A, the tension T, and the lengths a and b. Show 
that the period of an oscillation along the line of the strings is 

[mab 
<T + A) (a + b) ]*• 

(C.S.) 

17. A light helical spring hanging from a fixed point is shch that a force 
of 10 lb. produces an extension of 1 inch. When the spring is not 
extended, a mass of 15 lb. is hooked on to the lower end and suddenly 
released. 

Determine (i) the distance the mass will descend ; (ii) the force 
in the spring when the maximum extension is reached ; (iii) the 
time of oscillation of the mass; (iv) the length of the simple 
equivalent pendulum. (C.S.) 

18. A body, of weight W, moves in a straight line under a force always 
directed to a fixed point O in the straight line and equal to kx, where 
x is the distance of the body from O at any instant. Prove that the 
work done on the body as it alters its distance from xx to x% is 
fo(x » _ x tv 
-U-!_/, and that, if its greatest velocity is v, the body moves 

jw 
to and fro through a distance 2v\i~l. 

y gk 
(H.S.C.) 

19. A particle is moving with S.H.M. of amplitude a and periodic time 
T; find the velocity and acceleration when at a distance x from the 
centre. 

If, when at the point of greatest velocity, the body collides 
directly with a stationary body of twice its own mass, what is the 
amplitude of the ensuing motion of the first body ? The law of 
force is supposed to remain the same and the bodies are perfectly 
elastic. (H.S.C.) 

20. A particle of mass m is attached to two points A and B, distant 12a 
apart on a smooth horizontal table, by two similar elastic strings 
each of natural length 5a and modulus of elasticity A. If the particle 
is pulled from its position of equilibrium as far as A and then 
released, discuss the subsequent motion and find how long it takes to 
reach B. (H.S.D.) 

21. A simple pendulum of length l is at rest in a vertical position. If 
the point of suspension is made to move horizontally from rest with 
a small constant acceleration a, describe the subsequent motion of 
the bob of the pendulum relative to the point of suspension ; and 
find how far the point of suspension moves before the pendulum 
again becomes vertical. (Ex.) 

22. Two inelastic particles, of masses m and m', are attached to the ends 
of an elastic string of natural length a, whose modulus of elasticity 
is equal to the sum of the weights of the particles. They are placed 
on a smooth horizontal plane with the string stretched to double its 
length and are then let go. Determine the point at which they 

VOL* I. 
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meet, and show that the impulse between them when they meet is 
(mm'ga)\ units of momentum. (H.S.D.) 

23. An elastic string AB of length / is fixed at A and would be stretched 
to double its length if a weight W were fastened to B and gently 

W lowered. A weight — is fastened to B and let fall from A. Find 
10 

the distance it will fall and prove that the period of the subsequent 
movement is 

(Ex.) 

24. A body of mass m hangs from an elastic spring of negligible mass and, 
in equilibrium, extends its length by an amount a. If the top of 
the spring is held fast, prove that the vertical oscillation has a period 
equal to that of a simple pendulum of length a. 

If the top of the spring is forced to move up and down according 
to the formula 

f ~ € COS pt, 
where f is the vertical displacement, prove that the forced oscil¬ 
lation of the mass is of amplitude 

*PM-g 
when this fraction is positive. Find also the relation between the 
phases of the forced oscillation of the mass and the oscillation of the 
top of the spring. (N.U.4) 

25. A particle of mass m is tied to the middle point of an elastic string of 
natural length / and modulus A. The string is stretched until its 
length is a and its ends A, B are then fastened to two points on a 
smooth table. Show that, for small oscillations of the particle in 

2 TT 4A 
the line AB, the period is —, where n1 = 

The end B is now moved in the direction AB in such a way that 
at time t the length AB is a -f b sin 2nt. If the particle is at rest 
at the middle point of AB at time t — o, show that its displacement 
at time t is 

} b sin nt sin* \nt> 

it being assumed that the string is always taut. (N.U.4) 
26. In an Attwood’s Machine the lighter mass m is tied to the floor by 

a vertical weightless elastic thread of natural length l and modulus 
A. Show that if the inertia and the friction of the pulley can be 
neglected, the system can oscillate about the equilibrium position 
with a period 

2w^tW+*)' 



CHAPTER VII. 

MOTION OF A PARTICLE IN TWO DIMENSIONS. 

§ 192, We have dealt with some special cases of motion in two 
dimensions in the last three chapters, and shall now consider the 
matter in a more general manner. 

To fix the position of a point in a plane we require two co¬ 
ordinates, and to determine completely the motion of the point we 
require its component velocities and accelerations in two different 
directions. The choice of these directions depends on the nature 
of the problem, and there are three methods of resolving which are 
commonly used. 

§ 198. Components of Velocity and Acceleration Parallel to two 
Fixed Axes. 

This method has been mentioned already (paras. 21 and 40). 

Y 

Let P, P' (Fig. 123) be the positions of a point moving in a 
curve APP' at times t and t + & respectively. 

Take OX, OY as axes, and let OM = x, ON = y, be the co¬ 
ordinates of P; OM' = x + 8x, ON' = y + By, those of P' 

Let PL, parallel to OX, cut P'M' in L, then 

PL = 8*, LP' = By. 

By the triangle of velocities the sides PL, LP' of the triangle 
PLP' will ultimately, when PP' is very small, represent the compo¬ 
nents of velocity parallel to the axes on the same scale that PP' 
represents the resultant velocity. 

Hence the component velocities are the limiting values of 

** —4 &y 
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i.e. -i-. or # parallel to OX, 
at 

^ or y parallel to OY. 
at 

These are the velocities of M and N along the axes, and, the 
velocity of P is the resultant of the velocities of M and N. 

The acceleration of P is the resultant of the accelerations of 
M and N, and the component accelerations of P are 

^ or x parallel to OX, 

^ or >> parallel to OY. 

Usually the axes OX and OY are at right angles. 
This method of resolving is used when we know the components 

of the forces acting on a particle parallel to two fixed directions, 
e.g. in the motion of a projectile. 

§ 194. Components of Velocity and Acceleration along and perpen¬ 
dicular to the Radios Vector. 

Let P, P' (Fig. 124) be the positions of a point moving in a 
curve APP' at the times i and t + St respectively. 

Let OX be the initial line, and r, 9 the polar co-ordinates of P, 
so that OP = r, angle XOP = 9; POP' = S9. 

If PH is drawn perpendicular to OP', 

PH = rS9, and HP' = Sr. 

The sides PH, HP' of the triangle PHP', when PP' is very small, 
will ultimately represent the component velocities of P along and 
perpendicular to the radius vector OP, PP' representing • the re¬ 
sultant velocity. 

Hence the component velocities along and perpendicular to the 
radius vector are the limiting values of 

Sr 
St 

and 
rS6 

IT9 

or 
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If we call these u and v, then at P' the components along and 
perpendicular to OP' are u + Su, and v + Sv. 

Since POP' = SB, the component of velocity at time t + St 
in the direction OP is 

(u + Su) cos SB — (r + Sv) sin SB, 

hence the acceleration along OP is 

Lt (u + 8«) cos 80 — (v + Sv) sin 80 — u 
St -* o St 

__ du __ d$ __ d2r __ (dB\2 

“ Jt vTt~~di2 \ It)' 

The component of velocity at time t + St perpendicular to 
OP is 

(u + Su) sin SB + (v + Sv) cos SB, 

hence the acceleration perpendicular to OP' is 

Lt (u + Su) sin SB + (v + 8z>) cos SB — v 
St -> o St 

— ^B , dv _ dr dB , d ( dB\ 
Udt dt dt ' di dt\ dt) 

= 1 i (r^-\ 
r dt\ dt)' 

This method of resolving is used when the acting force is always 
directed to a fixed point O. Such a force is called a Central Force. 

§ 195. Components of Velocity and Acceleration along the Tangent 
and Normal to the Path. 

It is obvious that the component of velocity along the normal to 
the path is zero. 

Let P, P' (Fig. 125) be the positions of a point describing a curve 
APP' at the times t and / + St respectively. 

O 

Let the arc AP = s, then the velocity v at P is along the tangent 
at P and 
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The velocity at P' is equal to v + &v> and is along the tangent 
at P'. If PO, P'O are the normals at P and P\ then if the angle 
between the tangents at P and P' is 80, angle POP' = 80. 

The components of velocity at time t -f- St along the tangent 
and normal at P are 

(v + 8v) cos 80, and (v + 8v) sin 80, 

Hence the acceleration along the tangent at P is 

Lt (v + Sv) cos 80 — v 

8/ -> o Ft ' 

__ dv 
to' 

The acceleration along the normal at P is 

Lt (v + Sv) sin 80 __ tdp 

St o Ft vlt* 

v* 
* 

P 

where p is the radius of curvature at P. 

<f0 dip ds 

sdt ds dt 

I 
> 

P 

This method of resolving is used in cases where a particle is 
constrained to move along a curve. 

Motion in a circle (Chapter V.) is a special case. The radius of 
curvature is then the radius of the circle and the normal accelera- 

. . v2 
tion is —. 

r 

§ 196. Angular Momentum. 

If a particle of mass m is moving in a plane with velocity v, its 
linear momentum is mv. If p is the-length of the perpendicular 
from a point 0 in the plane on the direction of motion of the particle, 
the product pmv is called the Moment of Momentum or Angular 
Momentum of the particle about 0. 

If we use polar co-ordinates the velocity of the particle perpen- 
dO 

dicuiar to the radius vector joining it to 0 is r ^, hence its angular 

momentum about 0 is mrl 
(U 

If there is no force acting on the particle perpendicular to the 
radius vector, then, since the acceleration in this direction is 

x d (rt d6\ 
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we have = o, 

= constant. 

i.e. the angular momentum about O is constant. 

This corresponds to the Principle of Conservation of Linear 
Momentum, and is very useful in cases where a particle is moving 
so that the only external force acting on it is directed towards a 
fixed point. The force has then no moment about the fixed point 

and the angular momentum about that point is constant. 
The examples in the following paragraphs illustrate the use of 

the preceding methods. 

$ 197. Example (i). 

A smooth straight tube rotates in a horizontal plane about a point in 
itself with uniform angular velocity oj. At time t — o a particle is inside 
the tube, at rest relatively to the tube, and at a distance a from the point 
of rotation. Show that at time t the distance of the particle from the point 
of rotation is 

a cosh (wt). 

Find the force the tube is then exerting on the particle. (C.S.) 
To find the motion along the tube we require only the acceleration 

along the radius vector. 
Now there is no force acting on the particle in this direction, 

d*r 
' W9 

= o, and 
d$ 
Jt = w' 

d*r 
w‘ = o- 

The solution of this equation is 

r = Ae"* + Be-"*, 

where A and B are constants to be determined from the initial con¬ 
ditions. 

r = a when t = o, 

A -f B = a. 

Now 

Also 
dr 
~ &X o, when t — o, 

A 

A 

B * O, 

, r = -(e* + e~»*) = a cosh (cot). 

To find the force R exerted by the tube we require the acceleration 
perpendicular to the radius vector. 
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Now this is 

and 

=s 2o> 
dr 
If 

dr 

Tt 
aw sinh(cof), 

Hence if m is the mass of the particle, 

R ~ m . — — 2mao>* sinh(a»0* 

Example (ii). 

A light string passing through a smooth ring at O on a smooth hori¬ 

zontal table has particles each of mass m attached to its ends A and B. 
Initially the particles lie on the table with the portions of the string OA and 

OB straight, and OA = OB. An impulse P is applied to the particle A 
in a direction making 6o° with OA. Prove that when B reaches O its 

velocity is — . (C.S.) 

The components of the impulse along and perpendicular to the 

string are - and ^P. 
2 2 

Hence the initial velocities in these directions are 

L ,„d '/J!. 
4 m 2 m 

(In the direction of the string the total mass set in motion is 2W.) 
If r is the distance of the particle A from O at time t> when it has 

moved to A' (Fig. 126), $ the angle turned through by OA, and T the 
tension in the string at that instant, 

db _ /d$\* _ _ 

dt% f \dt) ~~ m (i) 

Also the acceleration of B towards O is equal to that of A along 
the radius vector. Hence for B we have 

using (i), 

db _ r 
dt* ~ m’ 

2 
db 

dP ~ 
(«) 
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Now the angular momentum about O remains constant, 

4 
It 

\ wr*^ = a—Pf 

hence from (ii), 

/dB\% 3 a* P* 

dV 
23T» “ 

^a'P* i 

and when 

P» 
i6w* 

hence when r = 20, 

SirF • F' + C’ 

dr _ P 

= dt ~ 4m’ 

3P‘ + C 
" SST* + C' 

or C sas 7 
16 

P1 

' m1 

7 P' 3*” 11 P* 

i6m* 32m1 32 m*’ 

. dr _P v/ 22 

dt m ~8 
Example (iii). 

A particle of mass m moving in a plane is subject to a constant 

force mf in the direction of the x-axis and to a force mkv in the direction 

of the normal to its path, where v is its speed and k is a constant coefficient. 
Write down the equations of motion and prove that they are satisfied by 

the special solution 

x — a(i — cos kt), y — a(kt — sin kt), 

where a is a constant expressible in terms of f and k. 

Determine the solution if x = o, x — o, y == o, y — V, when t —o. 

where V is any constant value. (N.U.4) 

Fig. 126a. 

The accelerations produced by the forces are / and kv. 

Let x, y be the co-ordinates of the particle P (Fig. 126a) at any 
instant referred to rectangular axes x and y, PT the tangent to its path 

. sec*^ 

v = Vd* *f y*t 

y 

y* i 
1 + a-fld cos ^ sin ^ 

tan ift = 3, 
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The accelerations, x and y, parallel to OX and OY are given by 

$ = / — k Vf* -f y1 sin 

f = k Vx* -f y* cos t/i, 

. *=f-m 
'y = k* ) 

0‘) 

With the special solution given in the question, 

x = a[i — cos kt], x — ak sin kt, and x = ak* cos Af, 

y t= a[A* — sin kt], y = ak — ak cos kt, and f — aA* sin kt. 

It is clear that these values satisfy equations (i) if 

ak* cos kt = / — aA* -f <*A* cos kt. 

The special solution satisfies the conditions x = o, y — o, and 
x ~ o when t — o. 

The condition y = V when t = o is not satisfied by this special 
solution. We must therefore find the general solution of the equations 
of motion and determine the constants by using the given conditions. 

Integrating the equations once, we have 

x = ft - ky + tx, 

y = kx -f- ct. 

Since x — o, and y = o when t — o, 

cx = o, 

and since y = V and x — o when t — o, 

ct = V. 

x=ft-ky\ 

' ' y = kx + VJ 

Also y = kx — kft — k*y, 

(D* + A*)y = A//, 

y =s* A cos kt + B sin kt -1- 

(«) 

Since y — o when t — o, A — o, 

and 

.-.y = B sin kt -f p 

= BA cos kt -f 
K 

and since y — V when f = o. 
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From the second of equations (ii), we have 

kx=*y-V, 

.•.*»= ^ V — j^cos kt + j — V, 

■■■ * = j(j - Ej(i - cosAt). 

Thesfe values of y and x satisfy all the given conditions. 

Note.—We can avoid solving the differential equations by assuming 
that the solution is of the same form but that the constant a is replaced 
by three different constants, i.e. we assume 

x a* A (i — cos kt) and y = Bkt — C sin kt. 

From these, we have 

£ = Ak sin kt and x = Ak% cos kt, 

.-. Ak1 = / — *F, or f). 

Also y ~ Bk — Ck cos Af and y = CA* sin A/, 

.*. CA* sin Af * Ak* sin A/, 

C « A. 

Since y V when t — o, 

Bk = V + CA « V + Ak, 

y.f r_/ 

(J 

y-’i Hi- r) ” 

A** 

003 Af), 

sin A/. 

§ 198. Motion under the Action of a Central Force. 

Taking the centre of force as origin, and using polar co-ordinates, 

let F be the force at any point measured positively towards the 
origin. 

Then 

d*r /d6\* F 
lF 

/dB\* F 

~r\dt) ~~m 

id/, d$\ _ n 

fdt\rTt)~° 

The second equation gives by integration 

r'ie-h 
v n~h ■ • 

(*) 

(«) 

(iii) 

where A is a constant whose value depends on the initial con¬ 

ditions. 
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We have seen that mr2 •— is the angular momentum so that mh 
at 

is the angular momentum and is constant throughout the motion. 
Let v be the velocity of the particle at any instant, and p the 

perj>endicular from the origin on the direction of motion (i.e. the 
tangent to the path) at that instant. 

The angular momentum is equal to pmv, 

pv = ht. 

and v = 
P 

Let A be the polar area bounded by the path, the moving 
radius vector r, and any fixed radius vector. 

Let P, P' (lug. 127) be the positions of the particle at times t 
and t 4 dt, and let POP' — dd. 

The area POP' — \r2dQ or \pds, where p is the perpendicular 

from O on the tangent at P and PP' = ds. 

.-. rHd 

2d0 
r2 — : 

dt 

. dA 
'** dt 

2 dA 

dA 
dt 

\h. 

~ pds, 

. ds 
=<’i,=rv 

This shows, by integration, that th* polar area traced out by the 
radius vector is proportional to the time of describing it. 

§ 198a. To find the polar equation of the path we have to 
eliminate t between equations (i) and (ii) of the last paragraph. 

The elimination is simplified by putting r = 

then 
dr _ 

dt = 

d2r 

u 

1 du dd 

* •dQ ' dt : 

d‘lu dd 

du 
hJ6’ usinS (iii) 

dt* z=~hd8l ■ dt 

dPr 

h2u2 
dlu 

W 

d0 
Substituting this value for and the value hu% for ^ 

equation (i), we have 

in 
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or 

d*u F 
- hw jp - hh*> — 

dHt F 
d$* + u- mhW • 

When given F as a function of r, this differential equation, on 
integration, will give the equation of the path. 

If the polar equation of the path is given, we can find the value 

d*u 
of ^ and hence determine F in terms of u and 6. 

(Ur 

If we use the tangential and normal components of acceleration 
we have 

dv F v* F 

v ds ~~ mcosJ = mshl+’- ■ ■ 

where </> is the angle between the tangent and radius vector. 

Now cos <f> = and the first of these equations becomes 

dv _ F dr 
v ds mds* 

t>2 = C — 

Putting v = and differentiating with respect to r, 
P 

This expression for the force F is very useful for finding F when 
we can get the equation of the path in the form p — f(r). 

The further treatment of this subject will be found in more 
advanced books. The most important case is when F is a gravi¬ 
tational force varying as the inverse square. 

§ 199. Motion on a Smooth Cycloid under Gravity. 

Let the cycloid be placed with its vertex 0 downwards, and its 
axis OD vertical (Fig. 128). Let A, A' be the cusps. 

Let $ be the length of the arc OP measured from O, then it is 

known that 
s=4a sin 

where a is the radius of the generating circle (JOD), and p is the angle 
made by the tangent at P with the tangent at O. 
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If a particle of mass m, free to slide on the cycloid, be at P, its 
accelerations along the tangent and normal are 

. vM 
dp' d y 

••• ~ — *ng sin >p = — *^S s 
at* 4a 

and m mg cos </* + R, 
r 

where R is the pressure of the curve on the particle 
Equation (i) gives 

i*s 

It* 4 « 
s. 

(i) 

(«) 

The motion is therefore S.H.M. about O, and the period is 

2'Vr°r "4 
It should be noticed that this is not an approximate S.H.M. as 

in the case of an ordinary circular pendulum, and it is not necessary 
for the arc of oscillation to be small. 

Also the motion is determined completely by equation (i). 
Equation (ii) merely gives the pressure on the curve. “ 

If c is the semi-arc of oscillation, then on solving equation (i) 
we get 

s=£™(V£'> 

The velocity v at any point can be obtained in terms of s by 
integrating equation (i) once 

i*1™ — + A, 

v — o when * = c, A = H c*. 
8a 

... v* « £(c* - ,*). 

and if 
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The value of v can also be obtained by the Principle of Energy 
from the vertical height descended by the particle. 

§ 800. A bead moves on a smooth parabolic wire whose axis is 
vertical and vertex upwards. Show that the pressure between the wire 
and the bead varies inversely as the radius of curvature p. 

Let A (Fig. 129) be the vertex of the parabola, and y* — +ax its 
equation referred to its axis and the tangent at A, x being measured 
vertically downwards. 

The angle p made by the tangent at P with the axis is given by 

tan p = 2a 

~y 

2 a 

V4ax 

... % = a cot* p, 

and x is the vertical depth of P below A. 
If c is the depth below A when the velocity is zero, the velocity 

v at P is given by 

Now 

v* = 2g(a cot* p — c). 

sin p = P 
ds 

dp 
since is negative. 

Also sec1 
^3s y* 

2 a • i 
= -78111 f 

y% 

sec* p = 2at 

P 

y% sec* p 
zap 

sin p' 
^a% cot* p sec* p 

zap ' 

2a cosec* p 

P 



INTERMEDIATE MECHANICS 804 

Resolving along the normal 
mjt 

m — = mg sin 0 — R, 
P 

2g(a cot* iff — c) _ , 2ag cosec2 $ _ R 

P ~~ P ™ 

cosec2 \f> — a cot2 + c) 
w p 

_ 2g(a + c) —. . t 

. R - + g) 

P 

varies inversely as />. 

EXAMPLES XXXVIII. 

1. The velocities of a particle along and perpendicular to a radius 
vector from a fixed origin are Xr* and /x0f; find the polar equation 
of the path of the particle and also the component accelerations in 
terms of r and 6. (C.S.) 

2. Masses m, m' are attached to the ends of a weightless inextensible 
string AOB and rest on a smooth horizontal table. The string is 
in contact with a smooth fixed peg at O, and the portions OA ( — a), 
and OB ( — b) of the string are in a straight line. The mass m is 
now projected horizontally with velocity u perpendicular to OA. 
If the string remains in contact with the peg, and all the motion 
takes place in a horizontal plane, prove that the mass m' reaches the 
peg with velocity 

u A jmb(2a b) 

a + b' m 4- m' 
(C.S.) 

3. A particle on a smooth table is attached by a string passing through 
a small hole in the table and carries an equal particle hanging 
vertically. The former particle is projected along the table at right 
angles to the string with velocity V2gh when at a distance a from 
the hole. If r is the distance from the hole at time /, prove the 
results 

(1) 2 (2?) *= 2eh {1 - £) + 2*(a ~ f)> 
(2) the lower particle will be pulled up to the hole if the total 

length of the string is less than 

a + J* + VaT+Jh*. 
(2&*h\ 

1 H—raass 

of each particle. (C.S.) 
x 

4. A particle moves on the curve y = a log sec - in such a way that the 

tangent to the curve rotates uniformly ; prove that the resultant 
acceleration of the particle varies as the square of the radius of 
curvature. (C.S.) 
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5. A bead threaded on a rough fixed circular wire whose plane is hori¬ 
zontal is projected with velocity V. Show that it will come to rest 
when the arc traversed is 

6. 

— sinh -1 
2M 

where a is the radius of the wire and p is the coefficient of friction. 
(C-S.) 

A number of particles lie on the equiangular spiral r — Ae*tan* and 
are in motion. Prove that, if the particles continue to lie on an 
equiangular spiral, p (the component of velocity of a particle normal 
to the curve) is of the form 

M = r(P + q log r), 
where pt q are functions of t only. 

If pt q are both constant, find the relations connecting p, q$ A 
and a with t. (C.S.) 

7. A point moves in a circular path of radius a so that its angular velocity 
about a fixed point in the circumference of the circle is constant and 
equal to w ; show that the resultant acceleration of the point at 
every point of the path is of constant magnitude 400**. 

[Use the polar equation of a circle r = 2a cos B, and resolve 
along and perpendicular to the radius vector.] (C.S.) 

8. If the co-ordinates x, y of a moving point are given by 

x = a (cos 6 -f B sin 6), y — a( sin B — B cos 0), 

and B increases at a uniform rate w, prove that the velocity of the 
point is aBw ; and find the inclination of the velocity to the axis of x. 

9. A smooth horizontal tube OA of length a is movable about a vertical 
axis OB through the extremity O. A particle placed at the extremity 
A is suddenly projected towards O with velocity aw, while at the 
same time the tube is made to rotate about OB with angular velocity 
co. Show that the particle will have travelled half-way down the 

tube after a time log* 2, and will not reach O in any finite time. 

10. The ends of a straight rod move in two straight grooves intersecting 
at right angles, and one end is constrained to describe its groove 
with uniform velocity. Show that the acceleration of any definite 
particle of the rod is perpendicular to this groove and is inversely 
proportional to the cube of its distance from it. 

11. A straight line of constant length moves with its ends on two rec¬ 
tangular axes Ox, Oy, and P is the foot of the perpendicular from O 
on the straight line. Show that the velocity of P perpendicular to 
OP is cu . OP and along OP is 2a>. CP, where C is the middle point of 
the line and w is the angular velocity of C about O. 

12. Two rings, P and Q, each of weight w, are connected by flexible 
joints to the ends of a light rod of length a, whose weight may be 
neglected. P moves on a smooth vertical wire OA, and Q on a 
smooth horizontal wire OB. 

At starting, Q is close to O, and P above it; Q is given a small 
impulse to enable the rings to begm to slide. Show that, when 
PQ makes an angle B with the vertical, the velocity of Q is 

acosflgp 

VOL. I. 
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with a similar expression for the velocity of P; and by means of the 
d9 . 

equation of energy, or otherwise, find the value of ^ in terms of 9, 

and prove that 
d'Q . . 

°3iT =*sm *■ 

Prove also that the stress in the rod is w($ cos 9 — 2). (H.S.C.) 
13. A point moves in a plane in such a way that its co-ordinates x, y are 

given at any time t by 

x ~ a cos uit. 
y — b sin tot. 

Show that the path is an ellipse, and find the acceleration in 
terms of the distance from the origin ; also determine the direction 
of the acceleration at any time t. (I.G.) 

14. A particle moving in a plane is subject to a force towards the *-axis 
and proportional to its distance from that axis. If, initially, it is 
projected from the origin with a velocity V in a direction making an 
angle a with the *-axis, prove that it will cross the *-axis again at this 
angle. 

Find the time before this occurs and prove that the maximum 
displacement from the *-axis is proportional to V sin a. (N.U.4) 

15. A particle starting from the origin at time t = o moves in the para¬ 
bola y* = 2x with a velocity constant in magnitude and equal to 
unity. Prove that the time it takes to reach the point (x, y) is 
given by the equation 

y — sinh [2/ — y V1 + y*], 

and determine the components of the acceleration as rational 
functions of the ordinate of its position. (N.U.4) 

16. Two particles of masses m and *»', lying on a smooth table, are 
connected by an elastic string of natural length l and modulus of 

elasticity ; they are initially at rest with the string un- 
[m -f- m ) 

stretched. By using the principles of conservation of linear mo¬ 
mentum and conservation of energy, or otherwise, show that, if m 
is projected directly away from m' with velocity U, the velocity (R) 
of m relative to m', when the string is stretched to a length l H- x, 
is given by the equation 

*■ + 
g*% 
T 

U*. (N.U.3) 

§ 801. We have considered cases of motion in a straight line 
under a constant force and under a force tending to a fixed, point 
in the straight line and proportional to the distance from that point 
(S.H.M.). 

We shall now consider some cases of other laws of force, and 
also cases where there is a resistance to the motion, the resistance 
being some function of the velocity. 

The method of working is the same in all cases, we equate 
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°r to the resultant force acting on the particle and so obtain 

the equation of motion. 
This equation must then be solved, and the main difficulty in 

problems of this nature is in the solution of the equation of motion. 
For this reason we shall only deal with cases involving equations 

which are more easily solved. 

§ 202. Motion of a Particle falling Vertically under Gravity in a 
Medium whose Resistance Varies as the Velocity. 

To simplify the working we will consider the mass m as unity. 
Let the resistance = kv, where k is a constant and v is the velocity. 
The equation of motion is 

dv r 
w-g-kv. 

Now when v reaches the value L, where 

kL=g, 

the acceleration becomes zero, and the particle continues to descend 
with uniform velocity L. This velocity is called the Limiting 

a 
Velocity, and it is convenient to use the value ^ for k. 

The equation of motion then becomes 

:g(l - y =1(L-V), 

log C — log (L — v) = C*. 

o when t — o, 

log C = log L, 

i L & 
l0sr=T“Z’ 

• . -V- * £ » 

Notice that gets smaller as t increases, but it only becomes 
negligible after an infinite time, i.e. v becomes equal to L after an 
infinite time. 
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Writing ^ for v, we have 
at 

ds 

/ r ~gt\ 
s = Lyt + --e + C ; 

and if s = o when t = o, 

C = - 

s = 

I* 

T L t 
‘+i‘ , 

§ 203. Motion of a Particle falling Vertically in a Medium whose 
Resistance Varies as the Square of the Velocity. 

If the resistance is kv2, then, taking the mass as unity, 

dv 

The limiting velocity L is now given by 

kU = g. 

Hence, writing ~-2 for k, the equation of motion becomes 

dv 

dt 

dv 

• • L* - w* — L*di’ 

■••2(rb+rb)*-f»* 

•••(rb+rb)*-¥*- 
log C + log (L + v) — log (L — v) = J 

and if v = o when / = o, log C — o, 

... log £±-V _ ^ 

2gf . 

V 

L + v 

•L 

*0. 

L ’ 

r 

J4-‘ 

i + e f 
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To find v in terms of s, we have 

dv L% 

VdV g dc 
^=r*ds’ 

log C - I log (L2 - v2) = 8~ 

and if v — o when s — o, 

log C \ log L2, 

2gS 
•••logp- 

L2 

L2 

L2’ 
2gS 

L2 

v2 = L2(i 
2gS 

' L* 1 

§204. Example (i). 

/i particle is moving in a straight line under the action of a force 

mu)%x towards a fixed point in the line, and subject to a resistance 2kv 
per unit mass, where m is the mass, x the distance from the fixed point, 

and k < co. Determine the motion. 

d2x „ . dx 

m ~ 
mw2x — 2mk 

at 

dH , , dx 

di> +2k ar + “* = °- 
The solution of this equation is 

x = “ kl sin (£* -f- £), 

where p2 = a>9 — £*, and ^4, B are constants depending on the initial 

conditions. 

It should be noticed that the period of oscillation (^jpj is still con¬ 

stant, but is longer than if there is no resistance. 

Example (ii). 

A particle describes a distance x along a straight line in time t, where 

t = ax2 -f bx, and a, b are positive numbers. Show that the retardation 

is proportional to the cube of the velocity. 

If the initial velocity is 2000 ft./sec., and is reduced to 1975 ft.lsec. 

in 100 feet, show that the initial resistance is about 15*8 times the weight 

of the particle. 

VOL. X.—II 



310 INTERMEDIATE MECHANICS 

Since ax% -f bx = 

differentiating with respect to t, 

dx , ,dx 

2adi+bdT 
I, 

dx 

*'• dt 

d*x 

* ' W 

b -f 2 ax 

2 a 

, giving the velocity v 

_ dx 

(b -f 2 ax)1 * dt1 
2 a 

(b -f 2ax)9 = — 2 av* 

the retardation varies as the cube of the velocity. 
If v = 2000 when x — o, 

and if v 1975 when x 

b + 200a = 

200a = 

b —-, from (i), 
2000 

= 100, 

1 

*975* 

1 1 
1975 2000 

1 

25 

1975.2000 

(i) 

(ii) 

1975 • 2000.8’ 

Hence, from the value of the acceleration in (ii), when x = o. 

dlx 

dP 
= — 2av* 

2 . 20008 

1975.2000.8 

io* 

1975 
ft. /sec.* 

or 

Hence the initial retarding force is m 

io# 

1975 • 32 

1975 

15-8 of the weight of the particle. 

Example (iii). 

A particle is released from rest at a distance a from a centre of force 
am 

whose attraction is —, where m is the mass of the particle, /x a constant, 

and x the distance of the particle from the centre. Find the time taken to 

reach the centre. 

The equation of motion is 

vdv f±M 
m • j — —~ a ■ 

dx x% 

and v = o when x = a, C , 
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Since ^ is initially negative we take the negative sign. 

The equation is then written 

Putting x = a cos* 0, dx = — 2a cos 6 sin 6 d6, 

and the equation becomes 

dt = . 2 cos* 0dBt 

••• < = i sin 2#) : 

no constant is needed since x = a and 0 = o, when t — o. 

When x = o, 0 = and 
2 

Example (iv). 

,4 particle falls from rest at a point A whose altitude above the surface 

of the earth is equal to the radius. Show that the velocity on arriving at 

the surface is equal to that acquired by a particle falling from rest through 

half that distance under a constant force g, where g is the acceleration at 
the earth's surface, 

am 
Let — be the attraction of the earth on a mass m at distance x 

from the centre of the earth, 
Then if the radius of the earth = a, 

Hence, when x = a. 
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and this is the same as the velocity acquired by falling a distance - 

with constant acceleration g. 
Note.—The expression “ a constant force g ” used in the question 

is understood to mean the force which would produce this acceleration. 
It is the value of the force for unit mass. 

EXAMPLES XXXIX. 

1. A particle moving in a straight line describes a distance x in time t 
given by the equation 

t = ax% -f- bx ; 

where a and b are constants. Find the velocity yasa function of x, 
and prove that the retardation of the particle is 2av3. 

Determine a and b from the following observations ; and find 
the value of v at the second observation. 

x in feet o 150 300 
t in seconds o 6 15 (C.S.) 

2. A point moves in a straight line so that its distance x feet from an 
origin in this line is given by 

x — 2** — 3^ — 12/ -f- 18, 

where t is the time in seconds. 
Find the times at whicli the point is at the origin. Also find the 

times at which the point is at rest, and its distance from the origin 
then, and also its acceleration at this time. Give the units through¬ 
out. (I.C.) 

3. A particle has acceleration at time t seconds given by x — 2t — 1. 
At t = 4 seconds the speed is 6 ft./sec., and the displacement at t — o 
is 5 feet. Find the displacement at time t. When will the particle 
be at rest, and what will be the displacement then ? (I.C.) 

4. A particle starts from rest at a distance a from a centre of attracting 
force varying as the direct distance and subject to a resistance 
per unit mass equal to k times the velocity. Prove that before 
coming finally to rest at the centre it travels a distance 

a coth (J kT), 

where T is the period of the damped oscillation. (C.S.) 

5. A particle is projected in a medium whose resistance is proportional 
to the cube of the velocity and no other forces act on the particle ; 
while the velocity diminishes from vx to vt the particle traverses a 
distance d in time t. Show that 

d _ 2VxVt 

1 
6. A particle is projected in a medium in which the resistance varies 

as the cube of the velocity, and the effect of other forces may be 
neglected ; the time T is observed which the particle takes to 
travel from P to Q, prove that the velocity at the middle point of 

PQ is ^ where D is the length of PQ. 
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7. If a particle moves in a straight line towards a centre of force which 
attracts according to the inverse square of the distance, starting 
from rest at a distance 2a from the centre, show that the time of 
motion from the distance za to the distance a is to the time from the 
distance a to the centre in the ratio n -f- 2 : n — 2. 

8. A smooth circular wire of radius a is fixed in a horizontal position. 
A small ring, attached to a point of the wire by an elastic string of 
natural length a, is placed at the point of the wire opposite to the 
point of attachment and slightly disturbed. Show that the hori¬ 
zontal component of the pressure of the wire on the ring will be out¬ 
wards until the extension of the string is Ja, and will afterwards 
be inwards. 

9. Form the equation of motion of a particle moving in a straight line 
against a resistance varying as the cube of the velocity ; and show 
that the distance described in any time is the same as if the particle 
moved uniformly with its velocity at the mid-point of that distance. 
The particle passes three points at distances du dt apart at equal 
intervals of time ; show that its velocities at these points are in¬ 
versely in the ratios 

d>* - 2dS : df -f d* : d8a - zdt\ 

where d2 == dx + d2. (H.C.) 

10. The action of a large mass fixed at the origin of co-ordinates on a 
small particle of mass m free to move along the axis OX is of a 
twofold character. There is an attractive force whose amount is 
Am times the distance of m from the origin and a repulsive force 
varying inversely as the square of the same distance and equal to 
/am when the distance is unity. Find the position of equilibrium of 
the particle. Prove that it is a position of stable equilibrium, and 
that when the particle executes small oscillations about this position 
it does so in the period in which it would oscillate about the origin if 

'the attractive force were three times its strength and the repulsive 
force did not exist. (N.U.4) 

11. A particle of mass m is projected in a resisting medium in a direction 
making an angle a with the horizontal, the horizontal component of 
its velocity being v. If the resistance is mk times the velocity, 
where k is small, prove that the equation of the path can be written 
in the approximate form 

y = x tan a 

when squares and higher powers of k are neglected. (N.U.4) 

§ 205. The Hodograph. 

Let a point move on any curve and let P (Fig. 130) be its position 
at time t. From any point O draw a straight line OH to represent 
in direction and magnitude the velocity of the point, v, at P. 

Then OH is parallel to the tangent to the path at P, and its 
length is kvt where k is a constant depending on the scale on which 
OH represents v. 
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along its path, H describes another curve which is called the,hodo¬ 

graph of the first curve, i.e. of the path of P. 
If P' represent the position of the point at time t + dt, and H' 

be the corresponding point on the hodograph, then, since OH' 

represents the velocity at P', the third side HH' of the triangle 
OHH' represents the change in velocity during the time dt. 

HH' 
Hence represents the rate of change of velocity during this 

time, and when dt is very small this is the acceleration of the point 
at P. But when dt is very small HH' becomes the arc of the hodo- 

HH' 
graph and represents the velocity of H. 

Hence the velocity of H in the hodograph represents, in magni¬ 
tude and direction, the acceleration of P. 

§ 206. If the speed of the point P is constant the hodograph is a 
circle with O as centre, and in this case the tangent to the hodograph 

at H is perpendicular to OH, i.e. it is perpendicular to the tangent 
to the path of P. 

Hence the acceleration of P is along the normal to its path. 
Also, if ds' is the length of an element of arc of the hodograph, 

But 

ds* 
the acceleration of P = -3-. 

dt 

ds' _d$' dd __ Qjjdd __ ? dO 

Tt ~ le * It ~ m ~v ~d( 

where dO is the angle between two consecutive normals to the 
path of P; hence, if ds is the element of arc of the path, 

dO __ d$ ds 

dt ds dt* 

and ^ — v, where p is the radius of curvature of the path 

at P. 

Hence the acceleration of P is — along the normal to the path 

at P. 
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§ 207. If ^ are component velocities of a moving point 

P, the co-ordinates x', yf of the corresponding point H of the hodo- 
graph are 

x' -hdx v'-kdy 
Ify ~~ dt’ 

where k is an arbitrary constant. 
dx dv 

If we know the values of 3- and —■ in terms of t, then, by elimina- 
at at 

ting t we obtain a relation between x' and y' which is the equation 
of the hodograph. 

EXAMPLES XL. 

1. What is meant by the hodograph of a moving point ? A truck 
moves with the uniform speed of 12 m.p.h. along a horizontal 
circular track of mean radius 128 feet. Draw the hodograph of its 
motion over the quadrant beginning due east, and ending due north 
of the centre. 

Assuming that the track is of 2 feet gauge, find the elevation of 
the outer rail above the inner in order that lateral thrust on the 
rails may be avoided. (H.S.D.) 

2. A flywheel of radius 4 feet rotates in a vertical plane so that its rim 
has the uniform linear speed of 8 ft./sec. A small weight is placed 
on the rim at its highest point ; show that, if there is no slipping, 
it travels with the wheel through £ of a revolution, and then leaves 
the wheel and moves freely under gravity. Draw the hodograph 
of the motion of the weight and insert the vector line which represents 
its velocity when it reaches the level of the centre of the wheel. 

3. Prove that the hodograph of the path of a projectile is a vertical 
straight line. 

4. Find the hodograph of (i) a uniform circular motion ; (ii) the para¬ 
bolic motion of a projectile moving under gravity ; (iii) the motion 
of a point whose rectangular co-ordinates at time t are given by 

x - y = \t\ (C.W.B.) 

5. Find the hodograph of the motion of a point whose rectangular 
co-ordinates at time / are given by 

* = 4. tt y =* /*. 

6. A line turns round a fixed end O with uniform angular velocity a>, 
and a point P moves along the line with uniform velocity v away 
from O. Find the magnitude and direction of the velocity of P 
when it is at a distance r from O, and prove that the hodograph of 
its motion is a spiral curve, i.e. a curve in which the polar radius 
continually increases with the vectorial angle. (C.W.B.) 



CHAPTER VIII. 

MOTION OF A RIGID BODY ABOUT A FIXED AXIS. 

§ 208. A rigid body is one whose shape and size are invariable, so 
that the distance between any two points of it is always the same. 

Such a body is said to be moving in two dimensions when all 
points in the body move in parallel planes, e.g. a cube swinging about 
one of its edges, or sliding on a horizontal plane with the same face 
always in contact with the plane. 

We shall consider first the case where some line in the body is 
fixed and the body rotates about this line as axis. 

§ 209. Kinetic Energy of a Body Rotating about a Fixed Axis. 

Let the Fig. (131) represent a section of the body which is rotat¬ 
ing about an axis through 0 perpendicular to the plane of the 
paper with angular velocity to. 

(x) 

Consider a particle of the body of mass m at P, where OP = r. 
The velocity of P is rco, and the kinetic energy' of the particle m is 
therefore \mr2oo2. 

The kinetic energy of the whole body is the sum of the kinetic 
energies of all its particles, i.e. 2fynr2co2t the 2 denoting summation 
for the whole of the body, both in the plane shown in the figure 
and for parallel planes, the value of r for each particle being its per¬ 
pendicular distance from the axis of rotation. 

Now 00 is the same for all the particles, 

2\mr2oo2 = \a)2Emr2. 

The quantity Emr2 is of great importance, and occurs in all 
316 
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problems involving the rotation of a rigid body. It is called the 
Moment of Inertia of the body about the axis from which r is measured 
and is usually denoted by I or K. 

The moment of inertia of a body about any axis is thus obtained 
by multiplying the mass of each particle of the body by the square 
of its distance from that axis, and adding the results for all the 
particles of the body. 

If the body consists of a finite number of particles, the value 
of Umr2 is obtained by ordinary addition. In the case of a rigid 
body, where the number of particles is infinitely great, the summa¬ 
tion is effected by integration. 

If a body is rotating with angular velocity oj about a fixed axis, 
and its moment of inertia about that axis is I, the kinetic energy 
of the body is 

|IaA 

This expression corresponds to the bnv2 for a particle, the moment 
of inertia I taking the place of the mass m, and the angular velocity 
o> replacing the linear velocity v. 

§ 210. If the whole mass M of a body be supposed concentrated 
at a point distant k from the axis such that Mk2 has the same value 
as the moment of inertia about that axis, i.e. Mk2 = Umr2, the length 
k is called the Radius of Gyration about the axis. 

The form Mk2 is the one in which moments of inertia are usually 
expressed. For a given body, M is the same for all axes, but the 
value of k differs for different axes. If M is in pounds and k in 
feet the moment of inertia is said to be in pound-foot squared or 
lb./ft.2 units. 

§ 211. Moment of Inertia of a Thin Uniform Rod about an 
Axis through its Centre Perpendicular to its Length. 

Y 

P 
___i_i— 

0 JC doc 

Y* 
Fig. 132. 

Let AB (Fig. 132) be the rod, 2a its length, O its middle point, 
and m the mass per unit length. 

The mass of an element of length dx at P is mdx, and if OP xy 
the moment of inertia of the element about YY' in mx2dx. 

To obtain the moment of inertia of the whole rod we have to 
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sum this expression by integration for the whole length of the rod, 

i.e. we have to evaluate the integral 

jmx2dx. 

slant, and j xHx — Jt3, 

-fa a 

jmx2dx — J = 

Also, if M is the mass of the rod, M = 2am, 

d2 
.*. the moment of inertia =- M — 

3 

If the axis is perpendicular to the rod through one end, the 
expression mx2dx has to be integrated from o to 2a, 

and mx2dx = m [?j: 8a3 

3 

r 4az 

This is the moment of inertia about a perpendicular axis through 
one end. 

§ 212. Moment of Inertia of a Rectangular Lamina about an 
axis through its centre parallel to one of the sides. 

A 
Y 

3 

n n r 

X G X1 

1 D 17 C 

Fig. 133. 

Let ABCI) (Fig. 133) be the rectangle, AB = 2a, BC = 2b, and 
G the centre. 

To obtain the moment of inertia about YY', parallel to BC, 
we divide the rectangle into elementary strips, as PQ, perpendicular 
to YY'. From the last paragraph, the moment of inertia of each 

a2 
strip is equal to its mass multiplied by —. 
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Hence the moment of inertia of the rectangle, which is the same 
as the sum of the moments of the strips, is 

M 3’ 

where M is the mass of the whole rectangle. 
Similarly the moment of inertia about XX', parallel to AB, is 

3 

§ 213. Homent of Inertia of a Thin Uniform Rod about an 
axis through its centre inclined at an angle 8 to the rod. 

Let AB (Fig. 134) be the rod of length 2a, O its middle point, 
and YOY' the axis. If m is the mass per unit length, the mass of 
an element dx at P is mdx, and if OP = x, the distance from the 
axis YOY' is x sin 6. 

Hence the moment of inertia of the element about YOY' is 

mx2 sin2 8 dx, 

The moment of inertia of the whole rod is 

m sin2 8 

+a 

e^dx = m sin2 8. 
2a3 

3 ' 

- M- sin2 8, 
3 

where M is the mass of the rod. 

§ 214. Homent of Inertia of a Parallelogram about an axis 
through its centre parallel to one of the sides. 

Let ABCD (Fig. 135) be the parallelogram, AB = 2a, BC = 2b, 
G the centre, and let ADC — 8. 

If we divide the parallelogram into elementary strips (as PQ) 
parallel to AB, the moment of inertia of each strip about YY' is 

u2 
equal to its mass multiplied by ~ sin2 0. 
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Y 

Fig. 135. 

Hence the moment of inertia of the parallelogram, which is 
equal to the sum of the moments of the strips, is 

M - sin2 d. 

Similarly the moment of inertia about XX' is 

b2 
M sin2 6. 

3 

§ 215. Moment of Inertia of a Circular Ring about an axis 
through its centre perpendicular to the plane of the ring. 

Let the radius of the ring be a, then each particle of the ring is 
at the same distance a from the axis, 

hence Emr2 -- Emar --- a2Em 

m Mar, 

where M is the mass of the ring. 

§ 216. Moment of Inertia of a Circular Disc about an axis 
through its centre perpendicular to the plane of the disc. 

Fig. 136. 

Let O (Fig. 136) be the centre of the disc, a its radius, and m 
the mass per unit area. 

Divide the disc into concentric rings of breadth dx. 
The mass of a ring of radius x is 2nmxdx, and its moment of 

inertia is 2nmx*dx. 
The moment of inertia of the whole disc is obtained by integrating 

this expression between the limits 0 and a. 
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Now 
la 

2nmx*dx = 27Ttn 
0 

27rma* _ uma4 

4 ~ ^”2“’ 

and if M is the mass of the disc, 

7mia1 — M ; 

the moment of inertia = M 

The moment of inertia of a circular cylinder about its axis is of 
the same form, i.e. if M is the mass of the cylinder and a its radius, 

r a2 
the moment of inertia is M - For if we divide the cylinder into 

slices perpendicular to the axis, the moment of inertia of each slice 

is equal to its mass multiplied by —. The moment of inertia of 

the whole cylinder, which is equal to the sum of the moments of 
#2 

the slices, is therefore equal to the total mass multiplied by —. 

§ 217. Moment of Inertia of a Solid Sphere about a diameter. 
A 

Fig. 137. 

Let O (Fig. 137) be the centre of the sphere, a its radius, m the 
mass per unit volume, and AB any diameter. 

Divide the sphere into circular slices of thickness dx perpendicular 
to AB. 

For a slice PQ, distant x from O, the volume is 77(a2 — x2)dx, and 
the moment of inertia about AB is 

(a2 - x2)2, 
7Ttn--- dx. 

2 

The moment of inertia of the whole sphere is the integral of 
this between the limits — a and + a, but, as the value of the integral 
is evidently the same for the upper and lower halves of the sphere, 
this is the same as twice the integral from 0 to a. 

VOL. I. 
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‘7i'fn 

2—j (a2 — x2)2dx = ?rm (a4 — 2tf2#2 -f 
2 Jo Jo 

— ttw^4% — talx* + 

= Trm jVl6. 

Now if M is the mass of the sphere, 

M = }.7ra*m, 
the moment of inertia — M'^a2. 

§$M. We shall now prove two theorems which are very useful 
for calculating the moments of inertia of a body about other axes 
when we know the moments of inertia about certain standard axes. 
In this way a large amount of integration is avoided. 

§219. Theorem of Parallel Axes. 

If the moment of inertia of a body, of mass M, about an axis 
through its centre of mass is I, the moment of inertia about a parallel 
axis at a distance a from the first axis is I 4- Ma2. 

Fig. 138. 

I-et the Fig. (138) represent a section of the body through its 
centre of mass G, and let the moment of inertia about an axis 
through G perpendicular to the plane of the paper be I. We 
require the moment of inertia about a parallel axis through O where 
GO - a. 

Let P be any particle of the bodv of mass m, GP = r, and 
L OGP s* 6. 

The moment of inertia about the axis through O is 

Em . OP2 Em(r2 + a2 — 2ar cos 0), 
= Emr2 + Ema2 — zaEmr cos 0. 

Now Emr2 I, Ema2 = Ma2, and Emr cos 6 = o. 
The last result follows from the formula for finding the centre 

of mass of a body. The distance of the centre of mass from a plane 

through G perpendicular to GO is -C)Sand, as G is the centre 
m 

of mass, this must be zxro, so that Emr cos 6 = o. 
Hence the moment of inertia about the parallel axis through 

O is 

/ + Ma2. 
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For example, the moment of inertia of a thin rod, of length za, 
az 

about a perpendicular axis through its centre is M 
3 

Hence the moment of inertia about a perpendicular axis through 
one end is 

This is the result arrived at by integration in paragraph 2x1. 

§220. If the moments of inertia of a lamina about two perpendicular 
axes in Us plane which meet at 0 are A and B, the moment of inertia 
about an axis through 0 perpendicular to the plane of the lamina is 
A + B. 

Let OX, OY (Fig. 139) be the two perpendicular axes in the 
plane of the lamina, and OZ an axis perpendicular to the lamina. 

If m is the mass of a particle of the lamina at P, where OP rr 
the moment of inertia about OZ is Emr2. 

But, if x, y are the co-ordinates of P referred to OX, OY as axes, 

r2 — x2 + y2, 

Emr2 Emx2 -1- Emy2. 

Now Emx2 is the moment of inertia about OY B), and Emy2 

is the moment of inertia about OX (= A), therefore the moment of 
inertia about OZ =-• A + B. 

§ 221. In § 212 we proved that the moments of inertia of a 
rectangular lamina of sides za, zb about the axes through its centre 

a* b2 
parallel to the sides zb, 2a are M — and M — respectively. 

From the theorem of the last paragraph the moment of inertia 
about an axis through the centre of the rectangle perpendicular to 
its plane is 

a2 + b2 

3 
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From the theorem of parallel axes the moment of inertia about 
one of the sides of length 2a is 

+ Mb* = M^b*. 
3 3 

In § 216 we proved that the moment of inertia of a circular disc 

Now by the theorem of the last paragraph this is equal to the sum 
of the moments of inertia about two perpendicular diameters. But 
the moment of inertia is the same about all diameters, hence the 
moment of inertia about a diameter is half that about the perpen¬ 
dicular axis through the centre, 

the moment of inertia about a diameter = M —. 
4 

From the theorem of parallel axes we see that the moment of 
inertia about a tangent line is 

a2 Sa2 
4 4 

§ 222. Products of Inertia. 

If we take two axes OX, OY in the plane of a lamina, and 
multiply the mass of every particle of the lamina by the product of 
its two co-ordinates x and y, then Zhnxy is called the product of 
inertia with respect to these two axes. 

If the product of inertia about the two axes OX, OY is zero, 
the axes are called Principal Axes of the lamina at O. 

It is evident that the product of inertia will vanish if either 
axis is an axis of symmetry of the lamina ; for, if it is symmetrical 
about OX, say, then corresponding to any terms mlxly1 in Smxy 
there will be another term — y-y), and these will cancel on 
summation, 

§ 228. To find the relation between the moments and products of 
inertia of a lamina about different pairs of rectangular axes in its 
plane drawn through the same point. 

Y 

Fig. 140, 
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Let A, B be the moments of inertia about the rectangular axes 
OX, OY (Fig. 140), and F the product of inertia about these axes. 

A = Emy2, B = Emx2, F = Emxy. 

If y are the co-ordinates of a point P referred to new rec¬ 
tangular axes OX', OY', where XOX' = 0, then 

%’ = x cos 0 + y sin 0, 
y = y cos 0 — x sin 0. 

Hence the moment of inertia about OX' is 

Emy'2 — 27m(jy cos 0 — x sin 0)2, 
— cos2 0 27my2 + sin2 6 Emx2 — 2 sin 6 cos 0 Emxy, 
= A cos2 0 + B sin2 0 — 2F sin 0 cos 0 (i) 

The moment of inertia about OY' is 

Emx’2 = 27m (* cos 0 -f- v sin 0)2, 

~ cos2 0 Emx2 y sin2 0 Emy2 + 2 sin 0 cos 0 Emxyt 
= .4 sin2 0 + B sm2 0 + 2F sin 0 cos 0 . . . (ii) 

The product of inertia about OX', OY' is 
Emx'y’ = 27m (x cos 0 + jy sin 0)(y cos 0 — # sin 0), 

= 27mQy2 sin 0 cos 0 — x2 sin 0 cos 0 -f jry(cos2 0 — sin2 0)], 
— (A — B) sin 0 cos 0^-f- F cos 20 ... (iii) 

If OX, OY are principal axes, F =? o, and these values become 

A cos2 0 + B sin2 0, 
A sin2 0 + B cos2 0, 
(A — B) sin 0 cos 0. 

Example. 

Fiwd moment of inertia of a square of side 2a about a diagonal, 
its product of inertia about the two diagonals. 

V Y X* 

Fig. 141. 

The moments of inertia about the axes through the centre O (Fig. 
Ma% 

141) parallel to the sides are each equal to -. 
3 

A sss B ssss 

3 
Hence 
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The angle between the two axes of x is 450, so that 0 =* 450. 

The moment of inertia about the new axis of x is 

A cos* 0 4- B sin* 6 = i + i) - Mj- 

It is obvious that the moment of inertia is the same about each 

diagonal. 

Since A — B, the product of inertia about the diagonals, which is 

equal to (A — B) sin 0 cos 0, is zero. 

§ 224. Moment ol Inertia of a Rectangular Priam about an 
aids through its centre perpendicular to a pair of faces. 

Let the length of the sides be 2a, 2bt 2ct and the axes Ox, Oy, 
Oz perpendicular to the faces as shown in Fig. 142, 0 being the 
centre of the prism. 

To find the moment of inertia about Ox we divide the prism 
into slices perpendicular to this axis. The edges of each of these 

rectangular slices are 2b and 2c, and the moment of inertia of each 

b2 + c2 
slice about Ox is the product of its mass and-. 

Hence the moment of inertia of the whole prism is 

M 

Similarly for the axis Oy perpendicular to the faces whose 

edges are 2a and 2b, the moment of inertia is 

M 
3 

If the prism is a cube of edge 2a, then b — c = a, and the. moment 

of inertia about any of the three axes through the centre perpen¬ 
dicular to a pair of faces is 
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EXAMPLES XLI. 

1. Find the moment of inertia of a circular ring of mass M and radius a, 
about an axis through a point of the ring perpendicular to its 
plane. 

2. Prove that the moment of inertia of a uniform rod of length 2a about 
an axis intersecting the rod at right angles at a distance b from its 
centre is M -J- b*), where M is the mass of the rod. (H.C.) 

3. Show that the moment of inertia of a cube, of mass M and edge 2a, 
about one of its edges is §Ma2. 

4. Find the moment of inertia of a square lamina, of mass M and side 
2a, about an axis through one corner perpendicular to the plane of 
the lamina. 

5. Find the moment of inertia of a rectangular lamina, of mass M and 
sides 2a, 2b, about an axis through one corner perpendicular to the 
plane of the lamina. 

6. Find the moment of inertia of a circular ring, of mass M and radius 
a about a diameter. 

7. Prove that the radii of gyration of (i) a circular disc of radius a, (ii) 
a circular ring of radius a, about a tangent line are respectively 

y^a and ^a. 
2 2 

8. Show that the moment of inertia of a square lamina, of mass M and 
side 2a, about any line through its centre in the plane of the lamina 

is 
3 

q* Show that the moment of inertia of a rectangular lamina, of mass M 
and sides 2a and 2b, about a diagonal is 

n/r 2 a*b* 
M—-—. 

3(*2 + *>2) 

10. Prove that the moment of inertia of a solid cone about its axis is 
^Ma2, where M is the mass of the cone and a the radius of the base. 

11. In a uniform circular plate, of 5 feet diameter, is punched a hole of 
1 foot diameter, the centre of the hole being 18 inches from the centre 
of the plate. Find the moment of inertia of the plate (i) about the 
diameter which passes through the centre of the hole, (ii) about the 
diameter which is perpendicular to this. (I.E.) 

§ 225. Moment of Inertia ot a Thin Hollow Sphere about a 
diameter. 

Let a be the radius of the sphere, m the mass per unit area of 

surface, and 0 its centre (Fig. 143). 
To find the moment of inertia about a diameter AB we divide 

the surface into elementary circular bands, such as PQ, perpen¬ 

dicular to AB. 
[Care must be taken not to assume that the width of the band 

is the same as its thickness measured in the direction OA.] 
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A 

B 
Fig. 143. 

If the angle QOA = 9, the band subtends an angle d$ at 0 and 
its breadth is add. 

The radius of the band is a sin 9, so that its mass is 27rma2, sin Odd, 
? its moment of inertia about AB is 

27rma2 sin 9 . dO . a2 sin2 9, 
= 27Ttna* sin* 9 . d9. 

The moments of inertia of the lower and upper halves of the sur¬ 
face are obviously equal. Hence to obtain the moment of inertia 

of the whole surface we integrate the above expression from 0 to - 
2 

and double the result. 

ir v tr 

Now f3 sin3 Odd — p — sin2 9d(cos 9) = f3 (cos2 9 — i)i(cos 9), 
Jo Jo Jo 

v 

= [i cos3 e - cos 9]2o = - I + x = §. 

IT _ 
/•- Q 

2 I3 277wa4sin8 9d9 = -7rmaA. 
Jo 3 

But if M is the mass of the sphere, M = ^irma2, 

.\ the moment of inertia = Mfa2. 

§ 238. Moment of Inertia of a Solid Circular Cylinder about a 
diameter of an end face. 

Fig. 144. 
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Let AB (Fig. 144) be a diameter of an end face, a the radius and 
l the length of the cylinder, m the mass per unit volume. 

Divide the cylinder into circular slices, as PQ, of thickness dx 
perjxmdicular to the axis. 

The mass of a slice is 7rma2dx, and its moment of inertia about 
its own diameter parallel to AB is 

o j a2 7Tina1 , 
7Ttna2dx-~, or-dx. 

y 4 
If the distance of the slice from AB is x, the moment of inertia 

about AB (by the Theorem of Parallel Axes) is 

1 i) n 1 
-dx f 7rmazx2dx. 

4 

Hence the moment of inertia of the whole cylinder about AB 
is obtained by integrating this expression from % -- o to x — l. 

Now, f —■—dx f f nma2x2dxf 
Jo 4 Jo 

7TtnaH 
4- \irma2l2. 

The volume of the cylinder is naH, and if its mass is M, 

M — irmaH. 

Hence the moment of inertia about AB is 

l2 
M-+M 

4 3 
M 

The moment of inertia about an axis through the centre of 

gravity perpendicular to the axis of the cylinder, i.e. parallel to 
AB is 

EXAMPLES XLII. 

1. Show that the moment of inertia of a hollow sphere, whose external 
and internal radii are a and b, about a diameter is 

2 M a* — b5 

• T ' 

where M is the mass of the sphere. 

2. A solid flywheel of 18 inches diameter and 4 inches thick is keyed on 
to the end of a shaft of 4 inches diameter whose whole length is 
2 feet 4 inches. 

Find the moment of inertia of the wheel and shaft about a 
diameter of the outer face of the flywheel. 
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3. Show that the moment of inertia of a hollow circular cylinder, whose 
length is A, and external and internal radii R and r, about an axis 
through its centre at right angles to its length, is 

R* + r* + - 

M---5. (Q.E.) 
4 

4. Show that the moment of inertia of a paraboloid of revolution about 
M 

its axis is — X the square of the radius of its base. 
3 

5. Three rectangular areas, 2 feet by 2 inches, 3 feet by 2 inches, and 
1 foot by i\ inches, are fitted together to form a T figure, the longest 
and shortest areas forming the cross-pieces. Find the moment of 
inertia of the figure about the outer edge of the shortest area. (I.E.) 

6. A sledge hammer consists of an iron rectangular block 6 inches X 2 
inches X 2 inches. A central circular hole of 1 inch diameter is bored 
through it at right angles to one of its longer faces and a light shaft 
3 feet long of wood is fitted into it. Find the moment of inertia of 
the hammer about a line drawn through the mid-point of the far end 
of the shaft normal to the axis of the shaft and parallel to the small 
face of the block. (Take the density of iron as 437J lb. per cubic 
foot.) (C.S.) 

7. Find the moment of inertia of a thin hemispherical bowl (i) about 
the radius through the centre of gravity ; (ii) about a perpendicular 
line through the centre of gravity. 

§ 227. A number of results in connection with the motion of a 
rigid body about a fixed axis can be deduced from the principle of 
energy. We have seen that if the moment of inertia of a body 
about the fixed axis is I and co is its angular velocity, its kinetic 
energy is Jico2. Hence if the body is released from rest in any posi¬ 
tion we can find its angular velocity in any other position by equating 
\Ico2 to the loss of potential energy. This loss is equal to the pro¬ 
duct of the mass of the body and the distance the centre of gravity 
has descended. 

Again, if a weight is connected to a fine string wound round a 
flywheel which is suspended so that it can rotate on a horizontal 

axis, and the weight is allowed to run down ; the sum of the kinetic 
energies of the flywheel and the weight in any position must be equal 
to the loss of potential energy of the weight (assuming that there is 
no loss of energy due to friction). 

This method is illustrated in the following examples:— 

Example (i). 

A uniform rod, of length 2a, can turn freely about one end ; if it be 
let fall from a horizontal position, find its angular velocity when it first 
becomes vertical. 

Let M be the mass of the rod, AB (Fig. 145) its initial position, 

A being the fixed end and G the centre of gravity. 
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Its moment of inertia about the axis at A is j\Ma2. 

When it has descended to the position A'G'B' where ^ BAB' = 0, 
the centre of gravity has descended a vertical distance a sin 0, and 
the loss of potential energy is Mga sin 6. 

d8 fdd\ 2 
The angular velocity is and the kinetic energy is \ {jfi) • 

Hence the angular velocity is given by 

Mga sin 

When the rod is in the vertical position AC, 0 = ~f 

and the angular velocity 

Example (ii). 

The weight of a solid flywheel is 0-45 tons, its diameter is 2 feet, the 

axle is of diameter 4 inches and weight 0-05 ton. The wheel and axle 
are set in motion by means of a string wound round the axle and carrying 

a weight of 20 lb. Find the kinetic energy of the wheel and axle when 

the weight reaches the floor 10 feet below the starting-point. 

The moment of inertia of the wheel — 45 x 2240 x J lb. ft.* 

,, ,, „ ,, axle = *05 x 2240 x f., lb. ft.* 
The total moment of inertia 

When the 20 lb. mass has descended 10 feet, the loss of potential 

energy is 2oog ft. pdls. 

If w is the angular velocity of the wheel and axle when the weight 

reaches the ground, the velocity of the weight is ft./sec. 
The kinetic energy of the wheel and axle is |/o>* ft. pdls., and that 

of the weight is 
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i . 2.0—= -~a»2 ft. pdls., 
30 10 

5 o . 5iio , 
+ V" = 20°^ 

5115 • 
= 200 x 32, 

200 X 32 X iB 

5115 

The kinetic energy of the wheel and axle is 

200 X 32 x 18 

18 

5110 5110 

~w = 18" 

= 365 
" 4092 

5ii5 

ft. tons. 

, ft. pdls. 

§ 228. Determination of the Moment of Inertia of a Flywheel. 
The method of the last example can be modified to determine 

the moment of inertia of a flywheel. 
The axle of the wheel is mounted horizontally on ball bearings 

to reduce friction. There is usually a small peg on the axle over 
which a loop in one end of the string, to which the weight is attached, 
is placed. This peg is also useful in counting the number of revolu¬ 
tions made by the wheel in any time. The height h of the position 
from which the weight is to be released is measured carefully, and 
the number of revolutions made by the wheel while the weight is 
descending is obtained by placing the weight on the ground and 
counting the number of turns of the wheel required to wind it up 
to its starting-point, say nv The length of the string is adjusted so 
that the loop comes off the peg as the weight reaches the ground. 

The weight is released from rest and the number of revolutions 
made by the wheel after the weight strikes the ground is measured, 
and also the time taken for the wheel to come to rest; let these be 

n2 and t. 
The friction in the bearings and the rate of retardation of the wheel 

may be assumed constant, so that the average angular velocity 

taken over the whole time required to come to rest will be half the 
initial angular velocity w. 

The average angular velocity = 

The velocity v of the weight on reaching the ground is given by 

v = cor, 

where r is the radius of the axle of the flywheel. 
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If m is the mass of the weight and I the moment of inertia of the 
flywheel, their kinetic energies when the weight reaches the ground 
are \mv% and 

The loss of potential energy is mgh. 
Now some work has been done against friction. Let / be the 

amount done in one revolution, then in nx revolutions the work is 

nx /, and this is the amount done while the weight is descending. 

mgh = \mv2 + \Io>2 + nxf. 

But the kinetic energy of the wheel, llu)2 is destroyed by the 
friction in n2 revolutions. 

n2f = \Iio2) 

-i- i'-‘. 

... mgh = \mv* + i + 

All the quantities in this equation, except /, are known, and / 
can be calculated. 

If m is in lb., the radius of the axle r, and the height h must be 
expressed in feet. 

I will then be obtained in lb. ft.2 units. 
If m is in grams r and h must be measured in centimetres. 
I will then be obtained in gm. cm.2 units. 

EXAMPLES XLIII. 

1. A heavy circular disc of mass 20 lb. and radius 1 foot is capable of 
rotation about its centre in a vertical plane. A mass of 10 lb. is 
attached to the rim at the highest point, and the whole slightly 
displaced. Find the angular velocity when the mass of 10 lb. is at 
the lowest point. (I.E.) 

2. A wheel has a cord of length 10 feet coiled round its axle ; the cord 
is pulled with a constant force of 25 lb. wt. and when the cord leaves 
the axle, the wheel is rotating 5 times a second. Calculate the mo¬ 
ment of inertia of the wheel and axle. (I.E.) 

3. A straight uniform rod 4 feet long can turn freely in a vertical plane 
about a horizontal axis through the rod at a distance of 1 foot from 
one end. The rod is held in a horizontal position and then let go. 
Find the velocity of the lower end when the rod is vertical, and the 
kinetic energy of the rod measured in ft. lb. The mass of the rod 
is 20 lb. (Q.K.) 

4. A circular hoop of small section and 3 feet radius weighs 10 lb. and 
has a weight of 5 lb. attached to a point on the rim. It is pivoted 
about a horizontal axis on the rim exactly opposite the weight. 1 f 
it be turned until the weight is at the highest point and then let go. 
find the angular velocity with which the weight passes its lowest 
point. (Q.E.) 
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5. A uniform circular disc weighs 100 lb. and has a radius of 2 feet ; 
it is pivoted about a horizontal axis through its centre perpendicular 
to its plane, and a weight of xoo lb. is fixed to a point on the disc 
1J feet from the axis. The whole is held with that point of attach¬ 
ment level with the axis, and is then let go. What will be the maxi¬ 
mum velocity of the rim of the disc in the subsequent motion ? 

(Q-E.) 
0. The horse-power of a machine is 5, a shearing operation has to be 

performed every 10 seconds which absorbs o*8 of the whole energy 
supplied during that time. If the number of revolutions may only 
vary between 100 and 130 per minute, find the least moment of inertia 
of the flywheel. (I.E.) 

7. Three equal uniform rods, each of length / and mass m, form the sides 
of an equilateral triangle ABC. Paid the moment of inertia of the 
frame about the axis through A perpendicular to the plane of the 
triangle. (Assume that the moment of inertia of each rod about an 
axis through its middle point perpendicular to the rod is 11,. ml2.) 
The triangular frame is attached to a smooth hinge at A about which 
it can rotate in a vertical plane. The frame is held, with AB hori¬ 
zontal, and C below AB, and then let go from rest. Find the maxi¬ 
mum angular velocity of the triangle in the subsequent motion. 

(I.E.) 

8. A torpedo is driven by expending the energy stored in a flywheel, 
initially rotating at 10,000 R.P.M. If the mass of the flywheel is 
200 lb. and it is regarded as a uniform circular disc of diameter 2 feet, 
show that it will be rotating at half the initial rate after about 685 
yards run at 30 m.p.h., assuming that the average power necessary 
for this speed is 50 H.P. (I.E.) 

9. Two cog-wheels, having respectively 30 and 100 teeth and moments 
of inertia 10 and 50 lb. ft.2 units, are in gear. The larger wheel is 
driven by a light spiral spring which exerts a torque of 0-5 lb. feet 
per revolution through which it is twisted. 

If the spring is wound up through 10 turns initially, and the 
system is then let go, find the maximum speeds which the wheels 
would attain if they ran smoothly and without friction. (Q.E.) 

10. A flywheel, 2 feet in diameter and weighing 20 lb., is keyed on to a 
shaft of b inches diameter, which can turn freely in smooth hori¬ 
zontal bearings ; a long fine string is attached to and wrapped round 
the axle and carries at its other end a mass of 10 lb. The wheel is 
turned until it acquires a speed of 480 R.P.M., and is then left 
running. Prove that it will come to rest after about 33 more revolu¬ 
tions. [Neglect the masses of the axle and string, and assume the 
mass of the wheel to be concentrated in and uniformly distributed 
round its rim.] (H.C.) 

11. A uniform wire in the form of a circle of radius a swings in a vertical 
plane about a point A in the circumference.' It starts from rest 
with the diameter AB horizontal. Find its angular velocity when 
AB is vertical. 

12. Calculate the energy in ft. lb. of a disc of 3 feet diameter and J inch 
thick, of material weighing 500 lb. per cu. foot, rotating about an 
axis through its centre at right angles to its plane and making 2000 
R.P.M. r (Q.E.) 
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13. A uniform straight rod 6 feet long swings in a vertical plane about 
one end ; if V is the velocity of the free end of the rod in its lowest 
position, find the least value of V consistent with the rod making 
a complete revolution. 

Compare this with the case of a weight hung by a cord of the 
same length as the rod, and making a complete revolution in a 
circle. (Q.E.) 

14. A circular disc of uniform thickness, of radius a feet and mass M lb., 
is rotating with angular velocity w about a fixed axis at right angles 
to its plane, at a distance b feet from its centre ; find its kinetic 
energy in ft. lb. (Q.E.) 

15. A flywheel, of mass 100 lb. and diameter 4 feet, is fixed to the end of 
a light horizontal axle of 1 foot diameter. A long light cord wround 
round and fastened to this axle carries at its free end a weight of 
20 lb. The flywheel is turning at the rate of two revolutions per 
second in the direction to wind up the weight, when it is suddenly 
left to itself. How many revolutions will the wheel make before 
coming to instantaneous rest ? (N.U.3) 

§ 229. D’Alembert’s Principle. 

It was mentioned in paragraph 77 that, for a particle of mass 
d2x 

tn, the quantity m— is called the effective force acting on the particle 

in the direction of the 2:-ax is, i.e. this is the force required to give 
the particle its actual acceleration in that direction. In the same 

cPy 
way is the effective force in the direction of the v-axis, and, if 

(Xb** 

d2z 
the motion is taking place in three dimensions, is the effective 

force parallel to the z-axis. 
If / is the resultant acceleration of the particle at any instant, 

then mf is the resultant effective force at that instant. 

Now when the particle is part of a rigid body it is acted 
on by external impressed forces (such as gravity), and also by 
the reactions of the neighbouring particles of the body. Let F 
be the resultant of the impressed forces, R the resultant of the 

internal forces acting on the particle. Then mf is the resultant 
of F and R. Hence, if mf be reversed, it will be in equilibrium with 
F and R. The same reasoning applies to every particle of the 

body, so that we have a group of forces similar to R, a group similar 
to F, and a group of effective forces similar to mf, and if all the 
forces of the last group are reversed they will be in equilibrium with 
the other two groups. But, by Newton's third law, the forces of 
group R must be in equilibrium among themselves, since they are 

internal reactions between the particles. 
It follows that the group F, i.e. the impressed forces, must be 

in equilibrium with the group mf reversed. 
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This is D'Alembert’s Principle, which may be stated as follows:— 
The reversed effective forces for all the particles of the body and the 

external impressed forces are in equilibrium. 
This really reduces the solution of a dynamical problem to that 

of a statical problem. 
We resolve the impressed forces into components parallel to the 

axes and equate each component to the sum of the reversed effective 
forces in the direction of that axis. 

The sum of the moments of the impressed forces about any 
axis is also equal and opposite to the sum of the moments of the 

reversed effective forces about that axis. 
In the case of a rigid body rotating about a fixed axis, we choose 

the axis of rotation as the axis about which we take moments. In 
this way we avoid introducing the impressed forces due to the axis. 

We shall now show how to find the moment of the effective 
forces for all the particles of the body about the axis. 

§ 230. A rigid body is rotating about a fixed axis, to find the moment 
of the effective forces about the axis of rotation. 

Let any plane fixed in space, and passing through the axis of 

rotation, be taken as the plane of reference, and let 6 be the angle 
which any other plane through the axis and fixed in the body makes 
with the first plane. Then 6 is the angular velocity of the body 
about the axis of rotation, and this will also be the angular velocity 

of any particle m of the body. If r is the distance of a particle 
m from the axis, the velocity of the particle is r8 perpendicular to 
the plane containing the axis and the particle. 

The moment of momentum is obviously mr2&. 

Hence the moment of the momenta of all the particles is Emr2$, 
i.e. the moment of inertia of the body about the axis multiplied by the 
angular velocity. 

The accelerations of the particle m are r8 and — r82 perpendicular 
to, and along the direction in which r is measured. Hence the 
moment of the effective force for m about the axis is mr2S, and the 
moment of the effective forces for all the particles is Emr28, or 
(Emr2)S, i.e. the moment of inertia of the body about the axis multiplied 
by the angular acceleration. 

§ 231. Motion of a Body about a Fixed Axis. 

-Let L be the moment of the impressed forces about the axis. 
Taking moments about the axis, we have, 

dfd 

dt2 
Emr2 = L, 

d26 _ moment of forces about axis 
IF moment of inertia about axis' 
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This equation, when integrated, will give the value of -- and 0 
at 

at any time. The constant introduced at each integration is deter- 
d0 

mined from the initial values of ^ and 0. 

We shall now consider a special case, the motion of a rigid body 
about a fixed horizontal axis under the action of gravity. Such a 
body is often called a Compound Pendulum. 

§ 282. The Compound Pendulum. 

Take the vertical plane through the axis of rotation as the plane 
of reference, and the plane through the axis and the centre of gravity 
of the body as the plane fixed in the body. 

A| 
Fig. 146. 

Fig. 146 represents a section perpendicular to the axis of rotation 
through the centre of gravity G, cutting the axis in O. 

OA is the vertical through O. 
Let AOG = 0, OG = h, and let the moment of inertia about 

an axis through G, parallel to the axis of rotation, be Mk%. 
The moment of inertia about the axis of rotation is therefore 

M(k2 + h%). In the position shown, the moment of the impressed 
forces about the axis through O is Mgh sin 0, 

d20 __ _ Mgh sin 0 

M{k2 + W)' 

or 
d20 

dt2 
& 

k1 + h* 
sin 0 

If 8 is small we have, approximately, sin 0 
becomes 

8, and the equation 

d*0 

dt2 ' 
gk 

k% + A2 («) 

This represents a simple harmonic motion of period T, where 

■r „ /FT*5 
T “ y~he~‘ 

VOL. I. 
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In the case of a simple pendulum, of length /, the period is 2tta/-; 

£2 i /j2 ^ 

hence —-- corresponds to l, and a simple pendulum of length 

k2 + hz 
would have the same period of oscillation as the compound 

k2 4- h2 
j>endulum. The expression -^—- is theiefore called the length 

of the simple equivalent pendulum. 
Equation (i) can be integrated once and the result is 

(in) 

where C is determined by the initial value of ^. 

Equation (iii) gives the value of the angular velocity for any value 
of 0, but this is obtained more easily from the principle of energy, 
as explained in § 227. 

Equation (iii) cannot be integrated again to give 0 in terms of t 
without introducing what are called Elliptic Functions. 

The study of these is a branch of advanced mathematics, and 
we can only deal here with the connection between 0 and the time 
when 0 is small, i.e. we must use equation (ii). 

This equation gives 

0 — A cos (cot 4 B), 

where u> V gh 
k2 + h2 

, and A, B arc constants depending on the 

dd 
initial values of and 9. 

at 

§ 283. Centre of Oscillation. 

The point O where the plane through the centre of gravity 
perpendicular to the axis of rotation cuts this axis is called the 
centre of suspension. 

If l is the length of the simple equivalent pendulum, then, as in 
the last paragraph, 

1 h ' 

Produce OG (Fig. 147) to C, so that OC = l. Then C is called 
the Centre of Oscillation. If the whole mass were collected at the 
centre of oscillation and suspended by a thread to the centre of 
suspension, its angular motion and time of oscillation would be 
the same as that of the body under the same initial conditions, 
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0 

A 

G 

Cl 
Fig. 147. 

Tf the body is suspended at 0, then since CG / — //, the length 
of the simple equivalent pendulum V is now given by 

,, k2 4- (/ - *)* 
7 - h ' ’ 

but k2 Hi - /i*. 

,, /// - //2 I- /2 ~ 2//1 f- /r /(/ - h) , 
... / „ h ^ 7 - h ““ly 

r - /. 

Hence the period of oscillation about C is the same as that about 
O, and if we can find two points, on a line through the centre of 
gravity, about which the periods of oscillation are equal, the distance 
between these points is the length of the simple equivalent pendulum. 

This is made use of in Rater’s pendulum, which consists of a bar 
with two knife edges and a movable mass which slides on the bar. 
The mass is adjusted so that the times of oscillation about the two 
knife edges arc equal. The distance between the knife edges then 
gives /, and 

r 
- 2ttv-, 

T and l being known, we can calculate g. 
This is the most accurate method of determining g. 

§ 234. Minimum Time of Oscillation of a Compound Pendulum. 
We have seen that the period T is given by 

'= 2*\/ 
& + 

hS 
£2 _L_ /j2 

Now, this will be a minimum when --or h + -r is a mini- 
n ft 

mum. This is the case when 

or 

i.e. when 

In this case l ~ 2h. 

1 
k2 - 
h2 ~~ 

h = 

0, 

k. 
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The period is therefore a minimum when the distance between 
the axis of suspension and the centre of gravity is equal to the 
radius of gyration about a parallel axis through the centre of gravity. 

This only gives the minimum value for axes drawn in a given 
direction. To get the absolute minimum we should have to find 
the direction of the axis through the centre of gravity for which the 
radius of gyration is least. 

§ 286. Example (i). 

A heavy uniform rod AB of length 2l and mass M has a mass m 

attached to it at B. The whole oscillates freely about a horizontal axis 
through A. Prove that the time of a small oscillation is 

4* 

/ (M + 3m)/ 
’ 3 (M + 2 m)g 

(I.E.) 

Fig. 148. 

Let AB (Fig. 148) represent the rod, G its centre of gravity. 

The moment of inertia of the rod about A is * Ml1, and that of the 

mass m is 4ml9. 
The moment of inertia of the rod and mass is therefore 

4 

The moment of the restoring force about A when the angular dis¬ 

placement from the vertical is 8 is 

Hence 

Mgl sin 0 -f- 2mgl sin 0 — (M -f 2m)gl sin 0. 

d28 

dF~~ 

(M 4- im)gl 

\{M 4- 3m)/2 
sin 6, 

3(M + 2 m)ga 
4(M + im)l 

if 0 is small. 

The period of oscillation is therefore 2n 

Example (ii). 

A cylindrical rod 2 feet long and 2 inches in radius is free to stving 

about a horizontal axis at right angles to its geometrical axis and inter- 
secting it. Find the position of the axis of suspension if the length of 

the simple equivalent pendulum is a minimum. (I.E.) 
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If k is the radius of gyration about an axis through the centre of 
gravity parallel to the axis of suspension, h the distance of the centre 

of gravity from the axis of suspension, and L the length of the simple 

equivalent pendulum, 

r _ A* + h* 
L-j—. 

and L is a minimum when h = k (§ 234). 
Now we found (§ 226) that the moment of inertia of a solid cylinder 

about an axis through its centre of gravity perpendicular to the axis 

of the cylinder is 
../a* . /*\ 

where a is the radius and l the length of the cylinder. 

/a2 , /2\ / 1 , 4 \ 
(- + - ) = = ( r— ~f* ~ ) 
\ 4 12/ \I44 I2/ 

Hence the axis of suspension for the minimum period of oscillation 
must be ^ feet, or 7 inches from the centre of gravity. 

§236. Motion of a Flywheel acted on by a Couple. 

If Mk2 is the moment of inertia of the wheel about its axis, and 
L is the moment of the couple, 

dt* ~ =*= Mk*’ 

according as L tends to increase or diminish the angular velocity. 

Example (i). 

A flywheel of weight 1 ton and radius of gyration 3 feet 6 inches is rotating 

once every second. What is its kinetic energy and how long will it take to 

cqme to rest under a frictional torque round the axis of 40 lb. ft.? 

The moment of inertia is 2240 x 449 lb. ft.2, and the angular velocity 
is 2 it radians per sec. 

The kinetic energy is 

$ . 22^° x 49 fo pC]is _ 7.5(3 ft. tons. 
4 

The equation of motion is 

560 x 49 
d*e 

dt2 
- 40 x 32, 

dfQ 

*'* dt2 

d$ 

dt 

- 32 
14 x 49 ’ 

- — * + C; 
343 

l6 

343* 

VOL. I.—12 
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and 
de 
dt 

C = 

. 1? - 
‘ dt ~~ 

2n when t = 

2tt; 

o when 

o, 

or 

16/ 

343 
2tt, 

f = — 134} seconds. 
7 16 

Example (ii). 

The moment of inertia of a pulley of 6 inches diameter is 0-14 lb. ft* 

units. A long cord with a mass of 1 lb. suspended from its end, is wound 

round the pulley. Through what angle will the pulley turn in 2 seconds 

from the instant when the weight is released ? What will then be the com¬ 

bined kinetic energy of the pulley and weight ? (Q.E.) 
Let 0 be the angle turned through by the pulley, x ft. the distance 

descended by the 1 lb. mass in time t. 

Then # = £0, * = £0, * = £0. 
Let T be the tension in the string. 
The equations of motion for the pulley and the mass are 

■140 = IT.(i) 
% = g - T.(ii) 

Since x = £0, the second equation gives 

i6 = g- T, 

••• (-I4 + = ig. 

.*. *20250 = 8, 

.*. *20250 = 8/, no constant since 0 = o when t — o ; 

.*. *2025^ ~ 41*, ,, ,, ,,0 = o when / = o. 

Hence, when / = 2, 

0 — = 79 radians, nearly. 

Also 0 — —— — 70, and the combined kinetic energy is 

'°t6* + 3^* = ^6' 

_ 3 2^(79) ft. pdls. = 197 ft. lb. 

This problem can also be solved by using the principle of energy, 
if we assume that, since the force producing motion (1 lb. wt.) is constant, 
the acceleration of the mass is constant. 

If 0 and x are the velocities of the pulley and mass when the latter 
has descended a distance x, the kinetic energy of the two is 

•070* -f l X* 1*12 x* -f £ i* = 1*62 **. 
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But the loss of potential energy is gx, 

.*. 1*62 x2 — gx. 

The acceleration, /, is given by 

x2 — 2fx, 

3*24/A' = gx, 

The distance moved by the mass in 2 seconds is therefore 

-. JL . 4 = _i_ ft. 
2 3*24 T 1*62 

The angle tuffied through by the pulley is 

— 79 radians, nearly. 

Also, when t = 2, the velocity of the mass is ft. /sec. 
3‘24 

The total kinetic energy is therefore 

1-62 x2 = ft. pdls. = —4~ ft. lb. — 197 ft. lb. 
1*62 r 1 62 ' 

Note.—The assumption mentioned above, although frequently made, 

really needs justification. It amounts to assuming that a constant 

force, applied to a rigid body capable of rotation about a fixed axis, will 

produce in the body a cqpstant angular acceleration. 

In the first place, the fprce will not produce any acceleration at 

all unless it has a moment about the fixed axis. Also, it does not follow 

that, because a constant force acting on a particle produces a constant 

acceleration in that particle, a torque of constant moment will produce 

a constant angular acceleration in a rigid body. This latter fact re¬ 

quires proof, as in § 231, by the aid of D’Alembert's Principle. 

EXAMPLES XLIV. 

1. A rod AB of length l and negligible weight has two equal weights w 
attached to the end B and to a point M distant J l from B. Find the 
period of small oscillations about a horizontal axis through A. 

(IE.) 

2. A uniform bar of length 2a oscillates about a horizontal axis distant 
c from the centre of the bar ; prove that the length of the simple 

a* 
equivalent pendulum is c -f $—. 

Assuming that a simple pendulum one metre long beats seconds 
(in swinging from rest to rest), prove that the least period of com¬ 
plete oscillation for a bar one metre long is about ij seconds, 
and that the horizontal axis is then placed about 29 cm. above the 
centre. (Q.E.) 

3. The pendulum of a clock consists of a light rod with a small ball of 
mass 4 oz. at each end, the distance between the centres of the balls 
being 3 inches. The axis of oscillation passes through the centre of 
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the rod at right angles to its length. To disturb the balance a small 
mass is fixed on the rod at a distance of i inch from the axis of 
oscillation. Find the value of the mass in order that the pendulum 
may beat seconds. (Q.E). 

4. Two equal circular wheels, each of mass 200 lb., and radius 1J feet, 
are rotating freely in the same horizontal plane about their centres. 

A connecting rod of mass 80 lb. is pin-jointed to the rim of each, 
and is always parallel to the line of centres of the wheels. Show 
that the angular velocity of the wheels is constant in the absence of 
friction, and find the kinetic energy of the whole system if each 
wheel makes 50 R.P.M. and its mass is concentrated in its rim. 

If the system is reduced to rest in 60 revolutions by the action of 
equal retarding torques on each wheel, find the torques, assuming 
that they are constant. (Q.E.) 

5. A solid flywheel of diameter 2 feet, bored for shaft and weighing 
o*45 ton, is keyed on to a horizontal shaft of diameter 4 inches and 
weighing 0*05 ton. What is the kinetic energy of the flywheel and 
shaft at 1200 R.P.M.? What uniform retarding couple would 
reduce the flywheel to rest in 2 minutes, and through what angle 
would it turn in this time ? (Q.E.) 

6. A trap door, 4 feet square and of uniform thickness, is hanging 
vertically by its hinges. If the door is set swinging through a small 
angle find the periodic time, neglecting the friction of the hinges. 

(Q.E.) 
7. A wheel has a diameter of 2 feet and a mass of 50 lb. which may be 

regarded as distributed uniformly round the rim. Calculate the 
number of foot-pounds of energy stored in the wheel when it is 
making 600 R.P.M. If the wheel is to be stopped in 50 seconds by 
a brake pressing on the rim, calculate the pressure required, assuming 
that the coefficient of friction is o* 1 between the brake-block and the 
rim. (H.C.) 

8. A uniform circular disc of radius a has a particle of mass equal to 
that of the disc fixed to a point of its circumference. The disc can 
turn freely about a fixed horizontal axis through its centre at right 
angles to its plane. Assuming that the radius of gyration of the 

a 
disc about this axis is ^7^, show that the length of the simple equi¬ 

valent pendulum for small oscillations of the system about its 
'id 

position of stable equilibrium is (K.C.) 

9. Calculate the period of small oscillations of a uniform rod, 6 feet 
long, about a horizontal axis through one end, when a particle of 
weight equal to that of the rod is attached to its middle point. 

(H.C.) 
10. Two equal solid flywheels, each of mass m and radius a, are in the 

same vertical plane and free to move in that plane about their 
centres, which are fixed. A connecting rod, of mass M and length 
equal to the distance between the centres of the wheels, is smoothly 
jointed to each wheel at a point on its rim, so that as the wheels 
revolve it is always parallel to the line of their centres. Show that, 
as the system moves under gravity, the angular motion of the wheels 
is the same as that of a simple pendulum of length 
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11. A flywheel has a horizontal shaft of radius rt the moment of inertia 
of the system about the axis of revolution is K. A string of negligible 
thickness is wound round the shaft and supports a mass M hanging 
vertically. Find the angular acceleration of the wheel when its 
motion is opposed by a constant frictional couple G. 

If the string is released from the shaft after the wheel has turned 
through an angle 6 from rest, and if the wheel then turns through a 
further angle <j> before it is brought to rest by the frictional couple, 
show that 

_ KMgrd 

K0 + (K + Mr2) f 

12. A flywheel has a light cord coiled round its axle, and the cord is 
pulled with a constant force of m lb. wt. until a length / ft. has un¬ 
wound, when the cord slackens and comes off. It is found that the 
wheel is then rotating n times a second ; prove that its moment of 

inertia in foot-pound units If a constant frictional force is 
r 2tl2n2 

now applied at a distance a feet from the axis equal to the weight of 
m' lb., show that the wheel will stop after 

—seconds. (B.Sc.) 
mnan ' 

13. A uniform circular cylinder of mass M, can rotate freely about its 
axis, which is fixed in a horizontal position ; a light inextensible 
string is coiled round the cylinder and carries at its free end a particle 
of mass m. If the system is allowed to move, show that the par¬ 
ticle will descend with uniform acceleration 

2 mg 

M -f 2YH 
(B.Sc.) 

14. An Attwood’s machine has a pulley whose moment of inertia is I, 
and whose radius is a ; the masses attached at the ends of the string 
are each M, and the rider is of mass m, Prove that the acceleration 
of the masses is /, where 

g t M 4= 1 + 2 —b 
/ m 

I 
ma*' 

assuming that the string does not slip on the pulley and neglecting 
axle friction. 

15. Show that for a bar equal in length to the seconds pendulum the 
least time of a beat (from rest to rest), for different points of sus¬ 
pension, is about f of a second. 

16. A pendulum, of mass M, consists of a heavy bob attached to the end 
of a light rod, and makes n oscillations per minute when turning 
about a fixed point O of the rod ; also k is its radius of gyration 
about O and h is the distance of its centre of inertia from O. On 
the rod above O slides a small mass m ; when this mass is fixed at 
a distance x from O, show that the number, of oscillations per 
minute is given by 

17. The mass of a flywheel is 100 lb. and a mass of 10 lb. hangs by a 
string wrapped round the axle, which is horizontal and has a radius 
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of 2 inches. If the mass of io lb. falls through 20 feet from rest in 
16 seconds, show that the radius of gyration of the flywheel is a 
little over 9 inches. (B.Sc.) 

18. The centre of gravity of a bicycle wheel is in its axis. When a small 
valve of mass m is fixed to the rim at a distance h from the axis, and 
the axis is held horizontally, the wheel oscillates in the same period 
as a simple pendulum of length /. What is the moment of inertia 
of the wheel (apart from the valve) about the axis ? (B.Sc.) 

19. A bucket of mass m hangs at the end of a light rope which is coiled 
round a wheel of mass M. If the wheel can rotate freely about its 
axis, which is horizontal, and if its entire mass is supposed concen¬ 
trated in its rim, find the speed of the bucket when it has fallen a 
distance x from rest. (I.S.) 

20. A thin uniform rod of mass m and length 2a can turn freely about 
one end, which is fixed. A uniform bar, whose mass is -gw and 
length 3a, can be clamped to the rod so that its centre occupies any 
position on the rod. Show that the length of the simple equivalent 
pendulum for oscillations in which the bar and the rod remain in a 
vertical plane lies between %a and 2a. (H.C.) 

21. A cylindrical drum weighing 40 lb. and having a radius of 1 foot and 
a radius of gyration of 9 inches, can turn without friction about its 
axis, which is horizontal and in fixed bearings. A weight of 10 lb. 
is attached to one end of a string which is coiled round the drum. 
The drum is held with the weight hanging freely and is then let go 
so that the weight falls, causing the string to unwind and the drum 
to turn. Find the angle through which the drum turns in the first 
second after the drum is let go. (Q.E.) 

22. A flywheel is mounted on a horizontal axle ij inches in diameter. 
A thin cord wrapped round the axle carries a mass of 5 lb. which is 
allowed to fall from rest. The mass is observed to fall a distance of 
5 feet in 15 seconds. Find its velocity and the angular velocity 
of the flywheel at the end of this time. Also determine the moment 
of inertia of the flywheel. (Q.E.) 

23. A thin rod OA, 2 feet in length, is suspended at O and is fixed at A 
to the rim of a circular disc, of diameter 1 foot, so that OA pro¬ 
duced passes through its centre. Find the time of a small oscillation 
of the pendulum so formed. The motion takes place in the plane 
of the disc, and the mass of the rod may be neglected in comparison 
with that of the disc. (Q.E.) 

24. A mass of 10 lb. hangs at the end of a light cord which is wrapped 
many times round the circumference of a pulley of 3 feet diameter. 
The pulley is mounted upon a horizontal axis, about which it is 
free to turn. On starting from rest the mass is found to descend 16 
feet in 5 seconds. Show that if there is no friction at the bearing, 
the moment of inertia of the pulley must be 540 lb. ft.* units. (Q.E.) 

25. A flywheel of weight 200 lb. is rotating about its axis at 150 R.P.M., 
and it is acted on by a constant frictional couple, so that after 10 
seconds it is rotating at 100 R.P.M. Find how many more revolu¬ 
tions it will make before it is brought to rest. If the value of the 
couple is 40 lb. ft., find the radius of gyration of the wheel. 

(N.U.3) 

26. A uniform thin magnet of length 2/ and mass M can turn freely 
about a smooth vertical axis through its mid-point, and there is a 



PRESSURES ON THE AXIS OF ROTATION 347 

force F at each end, one to the north and the other to the south. 
The magnet is placed with its length east and west. Prove that it 
reaches the north and south direction with angular velocity 

27. A uniform rod AB of mass m and length 21 is hinged about a hori¬ 
zontal axis perpendicular to the rod through its centre and carries 
at one end, A, a particle of mass m. If the rod is at rest with A ver¬ 
tically below B and A is given a velocity just sufficient to bring the 
rod to a horizontal position, prove that 

va = [\gl. 

Kind what horizontal impulsive force acting at A is necessary to 
give A this initial velocity if / = 3 feet, m = 2 lb. (N.U.3) 

28. A wheel spins about a fixed axle and a constant frictional couple is 
exerted on it by the bearings. If the wheel is set spinning at 200 
R.P.M. and comes to rest in 1J minutes, find how many revolutions 
it makes in this time. 

If the moment of inertia of the wheel about the axle is 50 cwt. 
ft.*, find in lb. wt. ft. the moment of the frictional couple. (N.U.3) 

§ 237. Pressures on the Axis of Rotation of a Compound 
Pendulum. 

Let O (Fig. 149) be the centre of suspension, G the centre of 
gravity, and OG — Jt. 

X 

Let X, Y be the components of the force exerted by the axis on 
the body along and perpendicular to GO, Mk2 the moment of inertia 
about an axis through G parallel to the axis of suspension. Taking 
moments about O, 

d*6 Mgh ^ 9 

dt*-M(k* + h*) Mn (i) 

The motion of the centre of gravity is the same as if all the 
forces acted at that point. Since it describes a circle about O, 

we have, resolving along and perpendicular to GO, 
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Mh(~iy = X - Mg cos e . . . (ii) 

~ Y — Mg sin 6 . . . (iii) 

d26 
Y is obtained directly by substituting for — in (iii) from (i). 

If (i) is integrated once and the resulting constant determined 

from the initial value of we then, by using (ii), obtain X. 

Example. 

A thin uniform rod of length 2a, attached to a smooth hinge at one 

end O, is allowed to fall from a horizontal position ; show that the hori¬ 

zontal strain on the hinge is greatest when the rod is inclined at an angle 

of 450 to the vertical, and that the vertical strain is then 1H1 times the 
weight of the rod. 

X 

Let G (Fig. 150) be the centre of gravity of the rod. 
aa 

Let M be the mass of the rod, then h% = —, h = a, and the moment 
3 

4a2 
of inertia about O is M—. The moment of the weight about O is 

Mga sin 0. 

Taking moments about O, 

d*0 

dt* : 

Mga sin 0 -Msin, 
4 a 

(i) 

Resolving perpendicular to GO, 

d%6 „ 
Ma^y = Y — Mg sin $, 

.-. Y ~ Mg sin $ — fMg sin 6 = \Mg sin 6. 

Resolving along GO, 

Maffff = X - Mg cos B . . (ii) 
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Integrating (i). 

(S'- 2—+ 
™ o, when 0 — C — o, 
dt 2 

(^r) * — — cos 5; 
/ 2a 

from (ii) 

X = cos 0 -f %Mg cos 0 «= f Af# cos 6. 

The horizontal pressure at O is 

X sin 0 — Y cos 0 = |A/£ cos 0 sin 0 — sin 0 cos 0 
= JMg cos 0 sin 0 
= l Mg sin 2 0, 

and this is obviously a maximum when 2 0 — 90°, i.e. when 0 — 450. 
The vertical pressure at 0 is 

X cos 0 + y sin 0 — cos *0 -f sin *0, 

and when 0 = 450, this becomes 

-f \Mg = V 

§ 238. Impulsive Forces. 

In the case of an impulsive force the total change in the moment 
of momentum about the fixed axis is equal to the moment of the 
impulsive force about that axis. 

If &>, to are the angular velocities before and after the blow, 

Smr2 .w — Etnr2 . to = moment of impulse, 

, moment of impulse about axis 
U) — CO = ---. 

moment of inertia about axis 

Let a rod OA (Fig. 151), of length 2a and mass M, be suspended 
freely from O, and struck a horizontal blow P at a point C, where 
OC~ x. 

A 
Fig. 151. 

Let co' be the instantaneous angular velocity communicated to 
the rod, and X the impulsive reaction at 0 caused by the blow. 
This reaction will be parallel to the direction of the blow. 

12* 
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The moment of inertia about 0 is %Ma2, and the moment of P 
about 0 is Px, 

' Px /*\ 
’to “pro* ‘ ‘ ‘ ' ® 

Also the velocity of the centre of gravity G is aw, and this is 
caused by the two impulses P and X, 

Met P \ X (H) 

From (i) 

from (ii) 

p 4 Ma2w' 

3* ’ 

.Y - Maw - U) , 

Maw 

If x =#¥ £a, there is no impulsive reaction at O. 
In this case the point C is called the centre of percussion. 
It is easily seen that the length a is the length of the simple 

equivalent pendulum /, for 

/ = 
4- ** 

4* 

3* 

If we consider the more general case where OG = h, and the 
moment of inertia about an axis through G parallel to the axis of 
suspension is Mk2, equations (i) and (ii) become 

, _ Px 

m M(k* + A®)’ 

and Mhw’ ----- P} I 

X = Mhw' - Mj*l±JQw' = Mw'(lt - k^~ ) ; 

k2 _L 7*2 
and if this is zero x = —Z—, 

h 

i.e. # is equal to the length of the simple equivalent pendulum. 

EXAMPLES XLV. 

i. A fine circular hoop of weight W is free to move about a fixed hori¬ 
zontal tangent. It falls over from the position in which it is vertical 
so that its centre describes a circle in a vertical plane perpendicular 
to the tangent. Show that, in the positions when the hoop is 
vertical, the stress on the support is y W or W. (H.C.) 
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2. Two lines of shafting with a common axis have moments of inertia 
40 and 20 lb. ft.2 units respectively. The former is rotating at 250 
R.P.M. when it is clutched on to the latter which was previously 
at rest. Find the amount of energy wasted in the process of clutching. 

(Q.E.) 
3. A thin uniform rod, of length 2 feet and weight 5 lb., is pivoted freely 

at one end about a horizontal axis. The rod is slightly displaced 
from the position of unstable equilibrium. With what angular 
velocity will it reach the horizontal position ? What will be the 
impulsive blow on a stop which catches the end and prevents the rod 
moving past that position. (Q.E.) 

4. A pendulum consisting of a light rod, of length /, and a heavy bob 
hangs freely. The point of support is suddenly made to move hori¬ 
zontally with uniform velocity v. Show that the pendulum will 

describe a complete revolution if v > 2 (g/)*. (C.S.) 

5- 

6. 

A uniform solid circular cylinder makes complete revolutions under 
gravity about a horizontal generator. Show that the supports 
must be able to bear at least y times the weight of the cylinder. 

(C.S.) 
The lock of a railway carriage door will only engage if the angular 
velocity of the closing door exceeds oj. The door swings about 
vertical hinges and has a radius of gyration k about a vertical axis 
through the hinges, whilst the centre of gravity of the door is at a 
distance a from the line of the hinges. Show that if the door be 
initially at rest and at right angles to the side of the train, which 
then commences to move with uniform acceleration /, the door will 
not close unassisted unless 

Q)*kX 

a 

7. A rigid pendulum OG swings about a horizontal axis through O, its 
centre of gravity being at G. The pendulum is released from rest 
when OG is horizontal. When OG becomes vertical, the pendulum 
is brought to rest by an inelastic buffer B which is such that the line 
of the reaction between B and the pendulum is horizontal and at a 
distance l below O. The mass of the pendulum is w, its moment of 
inertia about a horizontal axis through G is mkx, and OG = h. 

Show that, if the impulse of the force exerted by B upon the 
pendulum during the impact is P, 

P » jV2gh(h2 + k*). 

Deduce the impulse Q of the horizontal force exerted on the 
pendulum during the impact by the axis at O, and show that it 
vanishes when l is equal to the length of the simple equivalent 
pendulum. 

8. A thin uniform rod of mass m and length 2a can turn freely about one 

end which is fixed, and a circular disc of mass 12m and radius - can 
3 

be clamped to the rod so that its centre is on the rod. Show that, 
for oscillations in which the plane of the disc remains vertical, the 

2 a 
length of the simple equivalent pendulum lies between 2a and —, 
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9. A uniform cube is free to turn about one edge which is horizontal. 
Show that the length of the simple equivalent pendulum is 
where a is the length of a diagonal of one of the faces. Also show that 
if the cube starts from rest in its highest position, the vertical com¬ 
ponent of pressure on the fixed edge vanishes when the cube has 
turned through an angle cos-^J). (S.) 

10. A uniform circular lamina of weight W can turn in a vertical plane 
about an axis at right angles to its plane through a point in its cir¬ 
cumference. If it starts from rest from the position in which the 
diameter through this point is horizontal, prove that the horizontal 
and vertical components of the pressure on the axis, when this 
diameter makes an angle 0 with the horizontal are 

W sin 26 and ^^+(4 — 3 cos 26). (B.Sc.) 

11. A uniform cube swings about one of its edges, which is horizontal, 
and in the highest position the centroid is level with the axis of 
rotation. Find the stress on the axis in any position, and show that 
it varies between \W and %W, where W is the weight of the cube. 

[The moment of inertia of a cube, of mass M and edge 2a, about 
an axis through its centroid parallel to an edge is f Afa*.] (B.Sc.) 

12. A uniform lamina in the form of a square ABCD of side 2a, oscillates 
in its own plane about a horizontal axis through A perpendicular to 
its plane. In the extreme position a side of the square is directed 
vertically downwards. Show that the greatest velocity of the corner 

C is [6ga( V2 — i)]I. Prove that the stress on the axis, when AC is 
vertical, is very nearly 1-44 times the weight of the lamina. (B.Sc.) 

13. A uniform rod of weight W, free to turn about a fixed smooth pivot 
at one end, is held horizontally and released. Prove that when, in 
the subsequent motion, the rod makes an angle 6 with the vertical, 

the pressure on the pivot is VT +99 cos80. 

14. A rifle is fixed to a heavy block which can swing about a fixed hori¬ 
zontal axis, the line of the barrel being at right angles to this axis. 
The discharge of the rifle produces such recoil that the block swings 
through an angle 0 from its equilibrium position. If in a series of 
experiments the same bullet is used but different charges of powder, 

0 
prove that the muzzle velocity of the bullet is proportional to sin -. 

(QE.) 
15. A mass of 15 lb. is bolted to one of the spokes of a flywheel, its centre 

of gravity being 3 feet from the centre of the wheel. Another mass 
of 10 lb. is bolted to another spoke, with its centre of gravity 2 feet 
from the centre of the wheel. The angle between the two spokes is 
1200. Find the resultant force on the bearings of the flywheel, due 
to the inertia of these masses, when the wheel is rotating uniformly 
at 240 R.P.M. (Q.E.) 

16. A uniform circular disc of mass M gm. and radius a cm. moves in its 
own plane about a fixed horizontal axis perpendicular to its plane 
through its centre O. A small body of mass m gm. is rigidly attached 
to it at P at a distance x cm. from the centre. The disc is released 
from rest with OP horizontal. Prove that when P passes through 
the bottom point of its path it is moving with the speed v cm./sec. 
given by the formula 

4f*g*\ __ 
2m** + Mar 

V* SSS 
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An equal disc and particle is free to rotate about the same axis 
and suddenly becomes connected rigidly with the first disc when 
both particles are vertically below the axis. Find the height to 
which the two particles will rise if the second disc were at rest before 
the connection was made. (N.U.3) 

T7. Two flywheels in the same plane are free to rotate about horizontal 
parallel frictionless axles. A light cord has one end attached to the 
first wheel, is wound round it, passes over to the second wheel, is 
wound round that, and has its other end attached to the second wheel. 
A couple of moment G acts on the first wheel so as to make the cord 
start coiling up on the first wheel and uncoiling from the second. 
Prove that the angular acceleration of the second wheel is 

Gab 

Jb* -}- 

where a and b are the radii of the wheels, and 1 and J are their 
moments of inertia about their respective axles. 

Find also the tension of the cord. (N.U.3) 
18. Two cog-wheels of radii a, b are spinning about parallel axes with 

angular velocities to, to' in the same sense. If the wheels suddenly 
become enmeshed, show that the speed of points on their rims 
becomes 

ab(Ibu) ~ raw') 

lb* -f Va* ' 

where I, /' are the moments of inertia of the wheels about their axes. 
(N.U.4) 

19. A lamina of mass M is free to turn in its own plane which is vertical 
about an axis through a point O at a distance c from its mass-centre 
G. If the lamina just makes complete revolutions, prove that the 
greatest reaction at O is 

Mg(k*+sc*) 
k* 4- c* ' 

where k is the radius of gyration about the axis through G normal 
to the lamina. Find also the time taken by G in describing the 
lower half of its path. (N.U.4) 

20. If a uniform rectangular lamina ABCD can move about AB as a hori¬ 
zontal axis, and is allowed to fall from rest in a horizontal position, 
find the velocity at any point in CD when the lamina reaches the 
vertical position. 

If the lamina is brought to rest in the vertical position by an 
impulse applied to the mid-point of CD, find the resulting impulse 
on the hinge. (C.W.B.) 

VOL. I. 



CHAPTER IX. 

MOTION OF A RIGID BODY IN TWO DIMENSIONS. 

§ 288. Instantaneous Centre. 

A body can be moved in one plane from any one position into any 

other by rotation about some point in the plane without any translation. 

During any motion let two points A, B (Fig. 152) of the body 
move into the positions A', B' respectively, 

A’ 

B1 
B 

Fig. 152. 

Bisect AA', BB' and erect perpendiculars to meet in O, so that 

OA = OA', and OB = OB'. 

Then, since AB = A'B', the triangles AOB, A'OB' are congruent, 

.-. Z AOB = Z A'OB', 

.-. Z AOA' = Z BOB', 

and Z OBA = Z OB'A'. 

But if any other point C of the body has moved to C', 

Z CBA = Z C'B'A', 

.-. by subtraction of the third equation above, 

Z OBC = Z OB'C'. 
Also OB = OB', and BC = B'C', 

the triangles OBC, OB'C' are congruent, and we have 
OC = OC', 

and Z COB = Z C'OB', 

• .-. Z COC' = Z BOB' = Z AOA', 

Hence the rotation about O, which brings A to A', and B to B', 
also brings any other point C to its new position C'. 

35-1 
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The point 0 always exists unless AA' is parallel to BB\ i.e. 
when the motion is one of pure translation ; the centre of rotation 

O is then at infinity. When the displacement is very small the 
point O is called the Instantaneous Centre, and in general the body 

may be moved into the successive positions it occupies by successive 
instantaneous rotations about some centre or centres. 

In the case of a circle rolling along a straight line, the instan¬ 
taneous centre at any moment is the point of contact of the circle 
and the straight line. 

§ 240. The instantaneous centre has two loci according to 
whether we consider its position with regard to the body or in space. 

Thus, in the case of the rolling circle, the successive points of 
contact are the points on the circle, i.e. their locus with regard to 

the circle is the circle itself. Their locus in space is the straight 
line on which the circle rolls. 

These two loci are called the Body-Locus or Body-Centrode, and 

the' Space-Locus or Space-Centrode. 

To find the position of the instantaneous centre at any moment 
we select two points A and B of the body and draw lines at these 
points perpendicular to the directions in which they are moving 

at that moment. The point of intersection of these perpendiculars 
is the instantaneous centre. 

Example. 

A rod AB is sliding with its ends on two perpendicular straight lines 

CX, CY. Find the instantaneous centre. 

Y 

A and B are moving along CX and CY, hence we draw perpendiculars 
to CX and CY at A and B to meet in O (Fig. 153), then O is the in¬ 
stantaneous centre for the position shown. 

Since Z BOA is always a right angle, the locus of O with respect 
to the rod is the circle on AB as diameter. 

Also, since CO = AB, the locus of O in space is a circle with C as 
centre and radius equal to the length of the rod. 

It should be noticed that the instantaneous centre is the point of 
contact of the space and body centrodes. 
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§ 241. We can find the co-ordinates of the instantaneous centre 
in terms of the component velocities of the centre of gravity and 

the angular velocity of the body about the centre of gravity. 
Let u, v be the velocities of the centre of gravity G parallel to 

the axes GX, GY through G, and co the angular velocity of the body 
about G (Fig. 154). 

Fig. 154. 

Then the velocities of any point P, whose co-ordinates referred 
to GX, GY are x and y, and such that PG is inclined at an angle 6 
to GX, are 

u — PG co sin 6 = u — ya>, parallel to the #-axis, 

v + PG co cos 6 = v + *<o, parallel to the y-axis. 

V u 
Now these are zero if % =-, y = —, 

CO CO 

and these are the co-ordinates of the instantaneous centre referred 
to G as origin. 

§ 242. Centre of no acceleration. 

With the notation of the last paragraph the accelerations of 
P relative to G are PG . co2 along GP, and PG . co perpendicular to 
PG. 

Hence the component acceleration of P parallel to the axis of 
x is 

u — PG . co2 cos 6 — PG . co sin d = u — x co2 — y co, 

and its acceleration parallel to the axis of y is 

v — PG . co2 sin 6 + PG . co cos ^ = v — y ai2 + ^ co. 

If these are both zero, 

xcj* + y<b — u9 

— x oj + y co2 == if, 

#(co4 + <*>2) ~ u co2 — V CO, 

u CO2 — Vw 

co4 + to2 
and 

V CO2 + U w 

4” CO2 
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EXAMPLES XLVI. 

1. The centre of a disc falls vertically with constant acceleration, while 
the disc rotates in its own plane (which is vertical) with constant 
angular velocity. Prove that the locus in space of the instantaneous 
centre is a parabola. 

2. Prove that if w be the angular velocity of a lamina, the angular velocity 
PN 

of a point P of the lamina about a fixed point O is co p^, where N is 

the foot of the perpendicular from the instantaneous centre upon PO. 

3. A rod AB moves with its ends on two fixed lines OA, OB ; show that 
if the rod turns with uniform angular velocity co the velocity of any 
point P of the rod is equal to w . IP perpendicular to IP, where I A, 
IB are drawn perpendicular to the fixed lines. Prove also that the 
acceleration of P is equal to w2 . OP towards O. 

4. A disc moves in a plane in such a way that a point O on it describes 
a straight line in this plane with an acceleration /, whilst the disc 
itself is rotating about O with a constant angular velocity co. Find 
th6 acceleration in magnitude and direction of any point of the disc. 
Hence prove that the locus of points whose accelerations have the 
same magnitude is a circle. (N.U.3) 

5. A large sheet of paper lies on a table. The paper is moved without 
rotation so that a point in the paper which lies above a point A in 
the table takes up its position above a point B in the table ; the 
paper is then rotated about B through an angle 6. Show that there 
is a point C of the paper (if the sheet is large enough) whose position 
on the table is unaltered, and show how to find this point. 

Show also that the paper might have been brought into its new 
position by a rotation about C through an angle 6. (N.U.3) 

6. A bar AB slides with its ends one on each of two perpendicular lines 
OX, OY. Show that the speeds of A and B are in the ratio OB : OA. 
Prove that at any instant there is one point P on the rod which is 
moving in the direction AB, and that AP: PB=OB*: OA.* (N.U.4) 

§ 243. In dealing with the motion of a body in one plane, when 

no point in the body is fixed, it is clear that the body can be brought 
from any one position to any other position by first moving some 
chosen point of it (say its centre of gravity) to its new position 
without any rotation, and then rotating the body about that point. 
This is also true for motion in three dimensions. 

The working of problems is much simplified by considering the 

motion of a body to be made up of two parts in this manner, i.e. 
as a motion of translation of the centre of mass and a motion of 
rotation about the centre of mass. 

We shall now prove two theorems which enable us to treat these 
motions separately. 

I. The motion of the centre of mass of a rigid body, acted on by 
any forces, is the same as if all the mass were collected at the centre of 
mass, and all the forces were applied at that point parallel to their 

former directions. 
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II. The motion of a rigid body, acted on by any forces, about its 
centre of mass is the same as if this point were fixed and the same forces 
acted on the body. 

§244. Let x, y, z be the co-ordinates of a particle m of a body at 
time t referred to any set of fixed rectangular axes, and X, Y, Z the 
components of the impressed forces on this particle parallel to the 
axes. 

Then, by D’Alembert's Principle, the forces 

together with similar forces for every other particle of the body, will 
be in equilibrium 

Hence 
„ d2x __ ... 
~,mdfi = .w 

and two similar equations for y and z. 

If x, y, z are the co-ordinates of the centre of mass, and M the 
mass of the body, then Mx = Unix, My = Emy, and Mi = Emz, so 
that 

M 
dy 
dfi 

Em 
d2y 

It2’ 

d2z _ d2z 

M dt* “ Em dt*• 

For motion in two dimensions we are only concerned with the 
equations in x and y, so that we have 

rdH 
M 

dt2 
EX, 

d2y 
M-£2 - £Y (ii) 

But these are the equations giving the motion of a mass M 
acted on by forces EX, EY, parallel to the axes. 

This proves Theorem I. 

Let (x\ y) be the co-ordinates, relative to the centre of mass, 
of a particle m whose co-ordinates referred to the original axes 
were (x, y). 

Then x = x + x'. y = y + y\ 
d2x d2x d2x' d2v _ d2y d2y* 

3f ” dt2 + ~d¥‘ W* = d¥ + ~d¥■ 

Taking moments about the axis of z, D’Alembert's Principle 

gives 
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r [,» , ,J*y ^ *V\ , «p*v 
+ * )\dl* + dfl ) (y + -v \dl* + dt2 ) 

=» [n* ; *')V' - (f i /).*] 

Now the first expressions on the left and right-hand sides of this 
equation are equal from equations (ii) above. 

d2 v' 
The third expression on the left is zero since Emx , Em --y> 

etc., are zero. 

Hence Em(x*= E(x'Y — y'X) . . (iii) 

But this is the equation we should get if the centre of mass were 
fixed. 

This proves Theorem II. 

§ 245. In dealing with the motion of a rigid body in two dimen¬ 
sions we therefore write down the equations of motion for the 
centre of mass by considering all the impressed forces to act on the 

whole mass concentrated at that point. We then write down the 
equations for the motion about the centre of mass by taking moments 
about it as if it were a fixed point. 

§ 246. Angular Momentum and Kinetic Energy of a Rigid Body 
moving in Two Dimensions. 

If x, y be*the co-ordinates of a particle m, then the moment of 
momentum, or angular momentum, about the axis of 2 for this 

particle is m(4t ~ yft)’ 

and for the whole body Em(^Jj~ — y-j^J • • (i) 

Now, if x, y are the co-ordinates of the centre of mass, and x\ y' 

the co-ordinates of m referred to parallel axes with the centre of 
mass as origin, 

x = x + x\ y = y +/• 

Em 

Emxf 

dxf 

o, and Ztny' -~ 

di 
■ o, and Em 

dy' 
tr 0. 

Also, 
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On substituting for x and y in (i) we get 

2m (' 
Ay' 
It 

,dx' 

■yit 

__/ dy _dx\ 

f Mvit ~yit) 

dx\ 

+ xZm 
dy' 

dt 

„ dx' dy _ dx „ 
ySmdi + itEmx - iiEmy ■ 

Now the four quantities in the second line arc each zero. 
The first term is the angular momentum about the centre of 

mass, and the second is the angular momentum about the origin 
of the whole mass collected at the centre of mass. 

The kinetic energy of the body is equal to 

W+ (IT \Em 

Substituting x — x + x', v ~ y -}- y', this becomes 

dx „ dx' dy dy9 

+ it lmdt- + itEm dt 

Now the terms in the second line vanish. 
The first term is the kinetic energy due to motion about the 

centre of mass. The second term is the kinetic energy of the whole 
mass Em collected at the centre of mass. 

We see therefore that. 
The angular momentum about the origin is equal to the angular 

momentum about the centre of mass, together with the angular momentum 

about the origin of the whole mass collected at the centre of mass, 
and also that— 

The kinetic energy is equal to the kinetic energy due to motion 
about the centre of mass, together with the kinetic energy of the whole 
mass collected at the centre of mass. 

§ 247. Let M be the mass of the body, V the velocity of its centre 
of mass, co the angular velocity about an axis through its centre of 
mass, and Mk2 the moment of inertia about that axis. 

The angular momentum about a point 0 is 

MVp -j~ Mk2co, 

where p is the length of the perpendicular from C) on the direction 

of motion of the centre of mass. 
The kinetic energy of the body is 

\MV2 + \Mk*w*. 
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§ 248. Example (i). 

A wheel with a diameter of 3 feet, and a mans of 70 lb., which may be 

regarded as distributed uniformly round the rim, is rolling along a hori¬ 

zontal road at a speed of 10 m.p.h. Calculate the number of ft. lb. of 

energy stored in the wheel. 
If it comes to a hill rising 1 in 5 along the road, how far will it go 

before it stops ? (In a rolling motion no work is done against friction.) 

(H.C.) 
The moment of inertia of the wheel about its centre is 

70 X 9 

4 
lb. ft.2 

Since the centre is moving at 4..4 ft./sec., the angular velocity is 
-- | radians per second. 

The kinetic energy due to rotation — ~ . ft. pdls. 

The kinetic energy due to translation = i . 70 . pdls. 

The total kinetic energy = — + 1 Jft. pdls. 

35 X 442 X 2 

9 X 32 ” 
ft. lb. = 470f; ft. lb. 

It will run up the hill until the gain of potential energy is equal to 

the kinetic energy on the level (assuming that no change in speed occurs 

when it begins to mount the hill). 

Hence, if x is the vertical height it rises. 

yox — 

x = 

35 X 442 _ 35 X 121 

9 X 16 9 

35 X 121 = 121 

9 x 70 18 

The distance it goes up the slope is 

5 X 121 
18 331 i ft. 

Example (ii). 

A uniform solid sphere of mass M and radius a rolls down an inclined 
plane, rough enough to prevent sliding ; find the motion. 

Let a be the inclination of the plane, O (Fig. 155) the point of con¬ 

tact when the sphere was initially at rest, C the centre of the sphere, 
A the point on the sphere which was originally in contact with O, and 
N the point of contact at time t. 

Take O as origin, ON as axis of xt CA as the line fixed in the body, 

and the normal to the plane as the line fixed in space for measuring 
the angular velocity, and let Z.ACN == 9. 
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Fig. 155. 

The external forces acting on the sphere are the friction F up the 

plane, the reaction R perpendicular to the plane, and the weight of the 

sphere vertically downwards. 

Considering the motion of the centre of mass parallel and perpen¬ 

dicular to the plane, 

Mx — Mg sin a — F . . (i) 

My = R — Mg cos a . (ii) 

Taking moments about the centre of mass C, 

Mk*Q == Fa.(iii) 

Now since the sphere remains in contact with the plane 

y — o, 

R — Mg cos a. 

Since there is no slipping, 

x -- a6, 

x = a(f.(iv) 

Also k2 r'a2, and from (iii) and (iv) 

F = zMaQ = z Mx, 

from (i) IMx = Mg sin a, 

ar 5^ sin a. 

From (i) F = jMg sin a, 

and ~ Mg cos a, 

j = s tan a. 

The coefficient of friction necessary to prevent sliding is therefore 

not less than = tan a. 

EXAMPLES XLVII. 

1. Show that the acceleration of a uniform circular disc, rolling down a 
plane of inclination a which is rough enough to prevent sliding, is 
fg sin a. 

2. Show lhat the acceleration of a thin uniform circular ring, rolling 
down a plane of inclination a which is rough enough to prevent 
sliding, is %g sin a. Show also that the least coefficient of friction 
necessary to prevent sliding is £ tan a. 
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3. One end of a thread, which is wound on to a reel, is fixed, and the 
reel falls in a vertical line, its axis being horizontal and the unwound 
part of the thread vertical. If the reel is a solid cylinder of radius 
a and mass M, show that the acceleration of the centre of the reel is 
fg and that the tension of the thread is \Mg. 

4. A girder is being pushed horizontally on three rollers at a speed of J 
m.p.h., the diameter of each roller being 6 inches ; find the speed of 
their forward motion if there is no slipping. If the girder weighs 
1 ton, and each roller 2 cwt., find the kinetic energy of the system 
in foot-pounds. (I.E.) 

5. The total weight of a railway truck was 2 tons. It had two pairs of 
wheels, each pair weighing with the attached axle 0*24 ton. The 
radius of gyration of each wheel was 0 84 foot, and the distance 
from the centre of the axle to the rail was 1-2 feet. Calculate the 
kinetic energy of the truck when travelling at 60 ft./sec. If it can 
be brought to rest by the brakes in 80 seconds, without slipping of 
the wheels on the rails, find the retarding force, supposed constant, 
exerted by the rails. (I.E.) 

6. Prove that the moment of inertia of a uniform cylindrical tube of 
mass M, about its axis, is equal to \M{a2 T b2), where a and b are 
the internal and external radii of the tube. 

The tube starts from rest and rolls, with its axis horizontal, 
down an inclined plane of inclination a. Show that T, the time 
occupied in travelling a distance l along the plane, is given by 

*(3 + p) = gT'1 sin a. 

7. A wheel of radius a is formed of a thin uniform rim of mass M and n 
uniform spokes of length a — b, each of mass m, which are fastened 
to the rim and to an axle of radius b and mass ni\ The wheel 
rolls down an inclined plane of inclination a. Find the acceleration 
of its centre. (H.C.) 

8. Find the moment of inertia of a uniform circular cylinder 3 feet 
long, 1 foot in diameter, and weighing 40 lb., about (1) its axis, 
(2) a diameter of one of its ends. A roller of the above dimensions 
and mass rolls down a plane inclined at 30° to the horizontal, and 
rough enough to prevent slipping. The handle of the roller, whose 
mass may be neglected, is parallel to the plane and is attached to a 
cord also parallel to the plane, which passes over a smooth fixed 
pulley attached to the highest point of the plane and carries a 
weight of 10 lb. at its other end. Find the acceleration of the 
weight as the roller rolls down the plane. (H.C.) 

9. At a point P of a uniform circular hoop there is attached a particle 
of mass equal to that of the hoop. The hoop rolls, in a vertical 
plane, on a perfectly rough horizontal table. Prove that if the 
system starts from rest when P is at the highest point, the angular 
velocity w, when the radius to P makes an angle 6 with the down¬ 
ward vertical, is given by 

,= 8 I + cos e 
a ' 2 — cos 0* 

io. A heavy particle of mass m is attached to the highest point of a 
uniform sphere of mass M and radius a, which rests on a perfectly 
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rough horizontal plane. If the equilibrium is just disturbed, find 
the angular velocity of the sphere in terms of the angle through 
which T will have rolled at any time, and the direction of the 
plane’s reaction when it has rolled through 90°. (S.) 

11. A plane lamina of mass M in the form of a square of side 2a is placed 
with a diagonal almost vertical and its lowest point in contact 
with a smooth horizontal plane, and falls from this position, re¬ 
maining in a vertical plane. Find its angular velocity when the 
diagonal that was vertical makes an angle B with the vertical. 

12. A uniform rod of length 2a is swinging as a pendulum about one 
end, its greatest angular deviation from the downward vertical 
being a. At an instant when the rod is vertical its fixed end 
is suddenly released ; find how far the centre of the rod descends 
before it is again vertical. 

13. A uniform rod, of length 2a, hinged at one end to a fixed point O, 
is let fall from the horizontal position ; when it becomes vertical 
the hinge breaks. Prove that, when the rod is next horizontal, 
the horizontal and vertical distances of its middle point from O 

are ~ and a 4- respectively. 

14. A small ring of mass M can slide on a fixed smooth horizontal wire, 
and a particle of mass m is attached to the ring by a light rod of 
length /. The particle is held in contact with the wire and is let 
fall. What is the path described by the centre of gravity of the 
ring and the particle ? Also show that the path of the particle m 
is a semi-ellipse, and that, if a> denotes the greatest angular velocity 
attained by the rod, 

MUm>* = 2 (M + m)g. (H.S.D.) 

15. A circular cylinder of radius r has its centre of mass in its axis, and 
has a radius of gyration k about this axis. Prove that, when it 
rolls down a plane of inclination a, the acceleration is 

r2g sin a. 

r* + F * 
(N.U.3) 

16. Prove that if the rotational velocity of a rigid body is zero the sum 
of the moments of the forces acting on it about its centre of mass 
must be zero, even if the body has an acceleration of translation. 

The centre of gravity of a table is 4 feet above a smooth hori¬ 
zontal floor and midway between the front and back pair of legs 
which are 5 feet apart. The table, which weighs W lb., is being ac¬ 
celerated by a force \ W lb. wt., acting horizontally 3 feet above the 
floor in a direction from the middle of the back to the middle of 
the front pair of legs. Find the upward thrust of the floor on each 
pair of legs. (N.U.3.) 

§ 249. Impulsive Forces. 

When a rigid body, free to move in a plane, is struck by a blow 
in that plane, we can obtain the resulting motion from the following 
considerations. The change in the linear momentum is in the direc¬ 
tion of the blow, and equal to the impulse of the blow. 
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The change in the angular momentum about the centre of mass 
is equal to the moment of the blow about the centre of mass. 

Instead of considering the angular momentum about the centre of 

mass, it is often convenient to use the fact that the change of angular 
momentum about any point in the line of action of the impulse is 

zero. 

These principles are illustrated in the following examples:— 

Example (i). 

A uniform rod A B, of length 2a, is lying on a smooth horizontal plane 
and is struck by a horizontal blow, of impulse P, perpendicular to the 
length of the rod at a distance x from the centre. Find the motion and the 
point about which the rod begins to turn. 

A O G C B 

Fig. 156. 

The centre of mass G (Fig. 156) will begin to move in the direction 
of P, and the rod will begin to turn about G. 

Let u be the velocity of G, M the mass of the rod, and w the angular 
velocity, then 

Mu = P.(i) 

and (ii) 

These equations give u and co. 
Let O be the point about which the rod begins to turn, where 

GO = y. The velocity of O relative to G is yw in the opposite direction 
to that in which G moves, hence the velocity of 0 is 

yw — u, 

and this is zero if 

y = - = —, from (i) and (ii). 
O) 3#' v 7 x 7 

The distance between 0 and the line of action of P is 

a* + 3*f 
3* 

This is the length of the simple equivalent pendulum when the rod 
is suspended at C or O. 

The points O and C are the same as those in § 233, where O was 
called the centre of suspension and C the centre of oscillation. 
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Example (ii). 

A light rigid rod has particles, each of mass m, attached at A, B 
and C, where AB — a, BC — b. A blow P perpendicular to the rod is 
applied at the middle point of AC ; show that the angular velocity ac¬ 
quired is 

P a b 
4m ' a3 -f ab -f 

(C-S.) 

Cb O B b C 

P1 
Fig. 157- 

Let 0 (Fig. 157) be the middle point of AC, G the 
of the three particles. 

Then 

OB a 
a -f b 

2 
", GB = 

centre of mass 

a — b 

AG = 
a ~f b 

2 
2a 4- b 

3 
, GC = -f* 6 = 

a-f 2& 

3 

Hence the moment of inertia about G is w(v4G 3 4- G2?3 4- GC3) 

4a3 -f + b* a3 
5 ~ 

2ab 4- fc3 a* 4- 406 4- 4&3H 
+ 

= ^tn(a* 4- ab 4- 63). 

The centre of mass G moves parallel to P, and taking moments 
about G, if to is the angular velocity, 

jgm(a3 4- ab 4- &*)<«* = -P ~g~» * 

_ P a-b 
',w 4m * a3 4- ab 4- £>3* 

Example (iii). 

-4 circular hoop of radius a, rolling on a rough horizontal plane, im¬ 
pinges on a rough peg of height %a fixed in the plane. Find the angular 
velocity with which the hoop begins to turn about the peg. If V be the 
velocity of the centre before the impact, prove that if 81F3 < 80ga, the hoop 
leaves the peg immediately. (H.C.) 

Fig. 158. 
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Since V is the velocity of the centre, the angular velocity is —. 

Let C (Fig. 158) be the centre, P the point of contact with the peg. 

The angular momentum about P is unaltered by the impact. 

Now the angular momentum about P before impact is 

Ma'-a + %MaV = »MaV, 

and if w is the angular velocity after impact, the angular momentum 

about P is 2Ma*a). 
2Ma*a) — IMaV, 

lv 

Resolving along CP after the impact, since the velocity of C is aw 

perpendicular to CP, we have, if R is the pressure on the peg. 

Mg cos 9 — R — M —- 
a 

.\ R = — Maw*, 

= fMg - Ma 81 

and R becomes negative, i.e. the hoop leaves the peg immediately, 

unless 

Ma < iMg, 
100a* * 6 

or 81V* < 8oga. 

EXAMPLES XLVriI. 

1. Two masses m, m't connected by a weightless rod, lie on a smooth 
horizontal table. The rod is struck at right angles to its length 
by an impulsive force F ; find the velocities of the masses, and show 
that the kinetic energy is least if F is applied at the centre of gravity 
of the masses. (C.S.) 

2. Two particles A, B, each of mass m, are attached to the ends of a 
light rod of length a. The rod is horizontal and instantaneously 
at rest when A receives an upward vertical impulse mv. Prove 
that, in the subsequent motion, the vertical component of B's 

v* 

velocity will always be downwards if is less than the least positive 

root of the equation 

x sin (x -f- Vx* — 1) = 1. (C.S.) 

3. Two particles A, B of masses 2tn and m respectively are connected 
by a light rod and lie on a smooth horizontal table. If the mass 
A is struck a blow in a direction tan-1 ^ with AB, prove that the 

initial velocity of A is V5 times that of B. (C.S.) 

4. Two equal heavy particles A, B are connected by a light wire, and 
lie on a smooth table. If A is struck a blow at right angles to 
AB, so that it starts with velocity V, determine the subsequent 
motion. (H.S.C.) 



868 INTERMEDIATE MECHANICS 

5. A uniform heavy rod, of length 21, lias attached to it at one end a 
small ring which is free to move on a smooth horizontal wire. If 
the rod is let go from a horizontal position in which it lies along 
and under the wire, prove that when it becomes vertical the velocity 

of either end is Vblg. (H.S.C.) 

6. A cube of side 2a slides down a smooth plane inclined at an angle 
2 tan-1 l to the horizontal, and meets a fixed horizontal bar placed 
perpendicular to the plane of the motion and at a perpendicular 

distance - from the plane. Show that, if the cube is to have 
4 

sufficient velocity to surmount the obstacle when it reaches it, it 
must be allowed first to slide down the plane through a distance 
yo0"a. The obstacle may be taken to be inelastic and so rough 
that the cube does not slip on it. 

7. A uniform rod of mass m and length 2a is lying on a smooth hori¬ 
zontal table and is struck a blow P perpendicular to its length at 
one extremity. Find the velocities with which the two ends begin 
to move. 

8. A four-wheeled railway truck has a total mass M, the mass and 
radius of gyration of each pair of wheels and axle are m and k 
respectively, and the radius of each wheel is r. Prove that, if the 
truck is propelled along a level track by a force P, the accelera¬ 
tion is 

P 

M + 
2mk%t 

~~r*~ 

and find the horizontal force exerted on each axle by the truck. 
(Axle friction and wind resistance are to be neglected.) (M.T.) 

9. A solid uniform circular cylinder of mass m and radius r rolls 
(under the action of gravity) inside a fixed hollow cylinder of 
radius R, the axes of the cylinders being parallel to each other and 
also horizontal. At any time t during the motion the plane con¬ 
taining the axes of the cylinders makes an angle 0 with the vertical. 
Show that the potential energy of the moving cylinder is 

mg(R — r) (1 — cos $), 

and that its kinetic energy is 

-O’ 
Hence, or otherwise, show that the time I of a small oscillation is 

t=(mt-) 

10. An impulse is applied at a point P in the rim of a uniform circular 
disc in such a manner that P starts to move along the tangent to 
the rim at P. Prove that the initial velocity of the centre of the 
disc is $ that of P. 

11. A uniform circular hoop lying on a smooth table receives a blow 
at a point P, the direction of the blow lying in the plane of the 
hoop and making an angle a with the radius through P. Show that 
P begins to move in a direction inclined to the radius through P 
at an angle tan~1(2 tan a). 
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12. A uniform square lamina of mass M lying on a smooth horizontal 
table has a particle of mass m attached to one corner by an inex- 
tensible string. The particle is projected with velocity V along 
the table in a direction along one of the sides through the point 
of attachment. Prove that the loss of energy of the system when 
the string becomes taut is 

*”"'•/ (■ + £)• 
13. A uniform rod AB hangs vertically from a fixed point A. At B is 

attached freely an equal rod BC which also hangs vertically. At 
a point D in BC a horizontal blow of given magnitude is applied. 
Prove that if BD is g of BC, then the initial angular velocity of 
BC is zero. (S.) 

14. Two uniform rods AB, BC, alike in all respects, are freely jointed 
at B and lie on a smooth horizontal plane with AB and BC in one 
straight line. AB receives a horizontal blow at its middle point 
at right angles to its length. Show that the two rods begin to move 
with the same angular velocity. 

15. A lamina at rest on a smooth horizontal table receives a horizontal 
blow at a given point. Prove that, whatever be the magnitude 
and direction of the blow, the instantaneous centre of rotation 
lies upon a fixed straight line. 

16. A billiard ball, whose diameter is 2 inches, moving with a velocity 
of 10 ft./sec. and having an angular velocity about a vertical axis 
through the centre of 100 radians a second, is made to rebound 
off the side cushion of the table in such a way as will ensure its 
path being deflected through a right angle. The sense of the spin 
and disposition of the cushion are shown in Fig. 159, and it may 

Fig. 159. 

be assumed (i) that there is no slip at the impact, (ii) that the im¬ 
pulsive reaction is in a horizontal plkne passing through the centre 
of the ball, and (iii) that the coefficient of restitution is 075. Find 
the angle that the initial path must make with the cushion. (N.U.4) 

17. A lamina of mass M moving in its own plane has angular velocity 
(it, and its mass-centre G has a velocity V. Prove that its momen¬ ta, 
turn can be represented by a vector MV at a distance -p- from G. 

Two equal uniform rods AB, BC, each of length 2a, are smoothly 
jointed at B and rest in a straight line on a smooth table. The 
rod AB is smoothly pivoted to the table at a point distant x from 
B. If a blow is given to C in a horizontal direction perpendicular 
to the rods, prove that their initial angular velocities are in the 
ratio 

lax : 12a* — 9*a — 8a2 (N.U.4) 





ANSWERS TO THE EXAMPLES. 

(1) io ft. /sec. 
(2) 12*16 ft./sec. 
<3) 34 ft./sec. 

EXAMPLES I. (p. K) 

I (4) 6V3 or IO'39 ft-/sec. 
(5) 30 ft./sec. ; 51*96 ft./sec. 

EXAMPLES II. (p 12) 

(1) 300 ft- 
(2) At cos-1 } with the bank up stream. 
(3) At 131° 48" with his direction of 

motion. 
(4) The one who swims north ; i min. 

sooner 
(5) 8o° 25'. 

(6) 12 nearly ; about 790 N. of E. 
(9) (i) straight across ; 2 mins. ; * 

mile ; 
(ii) at tan-1 * with bank up 

stream ; 2| mins. ; 704 ft. 
(10) 16'’ 41' E. of N. ; 430 iq7 E. of N. 

EXAMPLES III.(p. 16) 

(1) 64*03 m.p.h. at 38° 40' with direc¬ 
tion of second. 

(2) 18*03 m.p.h. at 33' 41 with direc¬ 
tion of 'bus. 

(3) tan~l with horizontal ; 24*17 
ft./sec. 

(4) tan ->2 t-Mfs. of W. 

(5) 20 m.p.h. ; tan-1 $ W. of N. 
(6) After 0*55 hour * 6*9 miles. 
(7) Sin-1 .,l in front of ship. 
(8) 5 m.p.h. ; tan-1 $ with A's direc¬ 

tion. 
(9) 17^ m.p.h. : 202 yds. and 367 

yds. 

(10) 11J m.p.h. ; t.an"1 5'i^-- W. 

of N. ; miles. 

(11) 26° 97 E. of N. 
(12) 31° 5' N. of E. ; 20-55 knots. 
(13) .56*35 m.p.h. ; 270 28' N. of E. ; 

about 4.} mins. 
(14) 0*13 mile. 
{15) 12*8 m.p.h. ; nearly 5 mins. 
{16) 4*92 mins. 
(17) 48° 36' with FW. 
{18) 15*4 nautical miles ; 470 E. of N 
(19) iot knots; 120 7' E. of N. ; 

ro° ii7 W. of N. ; 9*7 knots. 
(21I 147 and 90 nautical miles nearly. 
(22^ *\, mile. 
(23) 10-36 m.p.h. 
(24) 24*97 m.p.h. 
(25) (i) 019 mile; (ii) J mile. 

EXAMPLES IV. (P- 23) 

(1) 10ir ; 62*8 ft./sec. 
(3) 7*'55 m.p.h. at 26° 33' above and 

below the horizontal. 
(4) Nearly 109 ft./sec. 
(5) is •• i.. 

(6i 5 ; 28*28 ft./sec. at 45” above and 
below the horizontal. 

(7; 

(«) 

(9) 

371 

12 j m.p.h. ; 7$ m.p.h. ; 20 m.p h.: 
zero. 

u -j- v ; \/?<8 4- t/* -f V 2uv 

Vu* r2; where u is the velocity 
of the wheel and v that of the 
point. 

IV1813 + 588 cos $ m.p.h. 



372 INTERMEDIATE MECHANICS 

EXAMPLES V. (,>. 31) 

(1) 25 yds. per sec. 
(2) 0*264 ft./sec.2 3 4 5 ; 0*528 ft./sec.2 

(3) 5 ft./sec.2 
. . , , c — b 3a—b 
(4) 2b = a + c ;/= -p-; « = — 

(6) w = 3 ft./sec. ; / — * ft./sec.2; 
720 ft. 

(7) AV mile ; 44- 62*2 ft./sec. 
(8) Hi ft./sec.2 
(11) 300 ft. 

,I4) 3* ± v_ 
' 4) 4(« + *')' 

(15) « 
4b — c - 3 a 

2n 
(16) 8J miles. 

(18) I ft./sec.2 ; l ft./sec. 
{19) 3 secs. more. 
(20) f. 

2 

(21) iOy/j m.p.h. ; 4 mins. ; 
mins. 

{22) H ft./sec.2 
(23) 176 secs. ; i|£ mile. 
(24) 20 ft. /sec. ; 821 secs. 
(25) 120 ft. W. of O. 
(26) 43* m.p.h. 

2*58 

EXAMPLES VI. (p. 39.) 

(1) Uniform speed for the first 10 
secs., then an acceleration of 14 
ft./sec.2; 275 ft. 

(2) 40 ft./sec. ; 2 ftJsec.2 

(4) 37* ft./sec. 
(5) The increase in *r2. 

(6) £ ft./sec.2 ; 8i ft. /sec. ; 3240 yds. 
(7) 66 ft./sec. 
(8) 1571 ft. ; 38 secs. 

(9) 2*8 ft./sec.2 
(11) 23*2 ft./sec. ; 25 ft./sec. 

12) 2 7 miles; * ft./sec.2 
13) 57 It. ; 9 It./sec.2 

(14) 0*975 ft./sec.2 ; 1 ft./sec.2 

(15) ML 2°> 3°» 30 ft./sec. 
(16) About 19 sec. 
f 17) jlmtle; 35 m.p.h. ; 1 min. 

EXAMPLES VII.(p 45) 

(1) 3-{U mins. 
(2) 81*24 secs. 
(3) (i) The foot of the perpendicular 

from B on OA ; 
(ii) the centre O. 

(4) He cannot swim up stream. 
(6) B, in direction CB; C at tan-1/, 

with CB ; tan-1 £ with AB. 
. b sin OPQ v _ _ cos OPQ 

a "" sin OQP ’ u cos OOP' 

(«) • = l- 

(9) li ; ii : 44° ft- 
(10) 340 48' E. of N. ; 3 hrs. 6 mins. 7 

31*5 miles to N. 
(11) 11-i mins. 
(12) cos-1 ll or 120 49" ; 28° 17'. 
(13) n| knots ; 21* mins, nearly. 
(14) 2j$ mins. 
(15) 2 secs, nearly ; 8ys ft./sec.2 
(16) 54 m.p.h. ; 49V, m.p.h. 

EXAMPLES VIII. (p.50) 

(1) (i) 56^ ft. ; (ii) I sec. and 3 secs. 
(2) (i) After 2 secs. ; (ii) 5 secs. ; (iii) 

1 sec. and 4 secs. 
(3) (i) 1600 ft. ; (ii) 2* secs. ; (iii) 80 

ft./sec. 
(4) *264 ft. 
(5) (1) 3 secs. ; (ii) 16 ft. 

(6) 400 ft. 
(7) 320 ft./sec. ; 20 secs. 

(8) 49-17 ft. 
(12) 1 ft. above the top of the window. 
(13) 24 ft. ; zb sec. 
(16) 240 ft. ; 272 ft. ; 8*8 secs. 

(1) ii2* ft. ; 3J secs. 
(2) 30°. 
(3) 24 ft./sec. ; 3} secs. - 

/ 
h* 

EXAMPLES IX. (p. 52) 

(6) sin a cos 0. 
A circle of diameter sin a with 

A as highest point. 

EXAMPLE X.(p. 56) 

(1) Let the bisector of BCA cut BA in D, and let the circle with centre 
D and radius B touch CA at E, then BE is the required line. 
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EXAMPLES XI. (i>. <>7) 

(1) J ft./sec.® ; 16 ft./sec.® 
(2) H lb. wt. 
(3) . 36$ mins. 
(4) 53AV tons wt. 
<5) 188® ft. 
(6) 1021 lb. wt. per ton ; 1 min. 
(7) 225 cm./sec. ; 562^ cm. 
(8) 80,000 dynes. 
(9) 1*23 mile, 
(11) 6150 dynes. 
(12) 111-}| lb. wt. per ton. 
(13) i9£ ft./sec. ; 28* ft. 
(14) (i) 10 lb. ; (ii) n & lb. wt. 
(15) W 192^ lb. wt. ; (ii) 87^ lb. wt. 

(16) 19 cm. /sec.2. 

(17) — downwards. 
13 

(18) (i) no secs.; 
546 secs. 

(19) 220^3 secs. 

(ii) 22 secs. ; (iii) 

(20) 9 lb.; J. 

(21) 2 : i. 
(22) 250y/2 ft /sec. 
(23) 1323 x io3 dynes ; 134862-4 gm. 

wt. 

EXAMPLES XII. (p. 75) 

(1) (i) 8 ft./sec.2 ; (ii) 7^ lb. wt. ; (iii) 
15 lb. wt. 

(2) (i) 5i ft./sec.2 (ii) 5J lb. wt. 
(3) (i) 4 ft./sec.2 ; (ii) 7J oz. wt. 
(4) (i) 196I cm./sec.2 ; (ii) 24 gm. wt. 
(5) (i) 14 ft./sec.2; (ii) 3]^ lb. wt. ; 

(iii) lb. wt. 

(6) (i) 1 sec. ; (ii) J sec. 
(7) (i) 1 sec. ; (ii) 1 sec. 
(8) (i) 8 ft./sec.8 ; (ii) 2\ lb. wt. 
(9) (i) 1 sec. ; (ii) 2\ secs. 

(10) (i) V5 secs. i (ii) — secs. 

(11) i3Ht- 
(12) 2f ft./sec.2; 21 lb. wt. 
(13) 8 ft./sec.2 ; 2| lb. wt. 
(14) 32 ft./sec. ; 112 ft. 

(16) 7-32 ft./sec.2 

(17) SV10 ft./sec. ; secs. 
4 

(18) 6*4 ft./sec.8 ; 3J ins. 
(19) 16 ft./sec.2; 0*79 sec. 
(20) 17920 and 15360 ; 16 ft./sec. 
(21) 4^55 ft./sec. 

(22) 

(23) 

M E* - 
M 

8 : 1 and 1 : 4. 
WxWt{i + **)*. 4-filg. 

fP,-f*lP2 ' + ’ 

(24) i.1, kilo; 42 cm./sec.® 

EXAMPLES XIII. (p 84) 

(1) 
<a) 
(3) 

(4) 

(5) 

(6) 

<7) 

(8) 
<9) 

21J ft./sec.®; j>« lb. wt. 
12 lb. ; 20 lb. wt. 
5f lb. ; 134 ft./sec.®; 26 lb. wt. 

For M. 4"W - g. 
4WjW2 -f M(ml -f- «i,)° 

1 4^1^, 4- M\mx -j- m2) ° 

lor m, ^(-— 4m, w, 
* 4w1>»j -f M{ml -f- m2) 
2Mmg _mtg 

(tn4-4M) (m-f M) ’ 
Pdls. ; A, A? : B, Hg. 

wg 
- for (IP -b w) ; a# 

3^P -f 2W 
for 2 IP. 

£ 
4' 
(i) 2 oz. wt. ; (ii) 
(iii) ij oz. wt. 

) 2 ; I. 

VOL. I.^-T3 

3lP -f 2W 

oz. wt. 

, . tng sin oc cos q sin g cos a t 
JkT -f w sin8 a ’ M -f fn sin2 a ' 

(M 4- fn) sin2 a 
M 4- nt sin2 a 

a 
(14) — downwards. 

23 
(15) Acceleration of m, 
_3 Mm'g_ 
M(tn -j- tn') -f 4mm'' 

Acceleration of m', 
M{m' — 2m) -f 4mm' 

M(m -f m') -j- 4mm' ° ’ 
Acceleration of M, 

M(m ->- wP) — 2mm' 

M(m + m') -f 4mm'g’ 

Tension.- 

(i6) 

M(m fn') d- 4ww'’ 
3 Mmnt'g 

M(m + m') 4- 4mm" 
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. M {M -f- m)g cos oc 

*7' M -f- m sin* a 
(18) 8£ secs. ; 17^ secs. ; 10 cwt. 
(19) r| ft./sec.2 
(20) 966 lb. wt. 
(23) ig - 24 lb. wt. . 48 lb. wt. 

(26) Mg nig ... 2b' 

(29) ft*; iff- 
(30) 13 ft./sec. 2 

(32) 

(.35) 

£■ J£ • 

5 ’ 101 ' 101' 

5mxnt2g 20 

16m2 + ' i6m2 + m,’ 

EXAMPLES XIV. (j). 100) 

(1) 25 lb. wt. per tori. 

(2) 168 lb. wt. ; 13 44 H.P. 

(3) 507U H P. 
(4) 63465 lb. wt. ; 50751 H.P. 

(5) 15 ni.p.h. 

(b) 77- 
(7) 618 lb. wt. ; 10-48 H.P 

(8) 86820f 
(0) (i) 0-46 ; (ii) 9*2 

(10) 28-64 H.P. 

(11) 230V{ ft. ; 20if ft 

(12) tan a < n 
(13) 677-6 ft. lb ; 45 rri.p.h. 

(14) j pdls , iSf ft. lh. , ^ H P. 

(15) 170J ft. 

(16) 436 ft. lb. ; 8 II P. 

(17) SHft. lb. ; H P. 
(18) (a) 68-4. (b) 5*7 m.p.h. 

. x mV 550 Hn 
<ig> 1111 -&H-=rvR- 

1 in 347 ; 93J lb. wt 

(20) (1) nf m.p.h ; (ii) 8: m.p.h. ; 

i8§ lb. wt 

(21) 6065 H.P. 

(22) 768 H.P. ; 72 m.p.h. 

(23) 75 secs. ; 244/1 H.P. 

(24) 2462^ H.P. 

(25) 256 H.P. ; 23,p7 m.p.h. 

(26) | ft./sec.2; 565 m.p.h. 

(27) (i) 537 6 H.P. ; (ii) 1075-2 H.P. 

(29) 2665 ft. ; 13335 ft. lb. 

(30) 16*9 H.P. 

(31) i*9 H.P. 

(32) 8800 ft. lb. ; 4840 ft. lb. ; 24-8 

H.P. 

(33) 13391! H.P. 
(34) 3°° lb. wt. ; 85$ mins. ; 17//'* 

miles ; 78 miles. 
(35) 14.525 lb. wt. 
(36) 11A H.P. 
(37) 5.98 H.P. 
(38) lb. wt. per ton ; }4£ H.P. 
(39) 35 ft. /sec.2 ; 41065 lb. wt. ; 6574 

HP. 
(40) 266} H.P. 
U0 37i ni.p.h. 
U2) 3411 H.P. 
(44) 658^ H.P, 
(45) 4*45 x io6 ; 835• H.P. 
(46) 46TV» m*p b.; 22-73 m.p.h.; 1 

in 160. 
(47) 624 m.p.h. ; 3000 lb. wt. 
(48) 29*96 H.P. 
(49) 12 m.p.h. ; 1 j] ft./see.2 
(51) 2|| H.P. 
(52) 272-/, H.P. 
(53) 121 : 225 ; iVVnr i b*i H.P. 
(54) 35'96 secs. ; n*9Q H.P. 
(55) 48-5 H P. 
(57) 32/v H.P. ; 8 ; 2250 lb. wt. ft. 
(58) 648^ lb. wt. ; 3*9 ins. 
(60) 1*136 cm. 
(6^) ia8f ft. ; H.P. ; 75 ft./sec. 
(64) 5° 8V. 
(65) 42*6 H.P. ; 94,’- m.p.h. 
(67) iUH.P. 
(68) 550; 135 secs. 
(69) 583i lb. ft. 
(7°) 17,5625 lb, wt. ; 87815 lb. wt. 
(71) 8125 lb. wt. ; 25‘f m.p.h. 
(72) i ft./sec.* ; 23^ m.p.h. 

EXAMPLES XV.(p. Ill) 

(1) 41 H.P. 

(2) 1 in. 56. 

(3) i ft./sec.2 
(4) 1000 lb. wt. ; 6981 H.P. ; ffifaft.} 

sec 2 

(5) 1651b. wt. 

<6> iStft/scc 
(7) 5*35 tons wt. 
f8) 40 m.p.h. nearly. 

(9) 7500 lb. wt. ; t&Y,, ft./sec.2 

(10) 103 ; 800 H.P. 

(T2) 14 H.P. 

(14) 375,000 lb. wt. ; 56,953} H.P. 

(15) ii*3 nearly. 

(16) 0*12 ft./sec.2; 2160 lb. wt. 

(17) 28$ H.P. ; 24*8 m.p.h. 

(18) 0*644 H.P. 

(19) 18 H.P. 

(20) 1289. 

(21) 51*8 m.p.h. 

(22) 6274 H.P. ; 45 m.p.h. nearly. 
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EXAMPLES XVI. (p. 120) 

(2) 25-6 m.p.h. 

Pg 
15S4 ft. 

(5) " - 

p v 
2240m 

(1 - -- 
\ 2 a 

ft./sec. 1 

(■-=X- 
a -f fa^1 2 

2240m 

^ 2 fa? o H- fay 
(81 180 ft./sec. 
(9) 3-08. 
(12) 5*6 m.p.h. 
(13) 2 ft./sec.2 
(14) 17 mile. 

- ) ft. lb. per sec. 

ft. 

4-84 H.P. 

(15) 55*3 m.p.h. ; 7260 Jr 
dv 

936 

(16) 2j ft. /sec. 

(17) 41 secs. ; *y?.- 
(18) 20yj2 ft./sec. 

(19) 207 ft./sec. 
(20) 1*7 miles ; 603*4 H.P. 
(21) 2*2 ft./sec.2 ; 5*6 H.P. 
(22) 2*5 x io7pdls. ; 2 x io7 pdls. 

(23) 33 m.p.h. 
(24) 506 H.P. 

(25} 27*4 ft./sec. 
(26) (i) 8*3 ft. tons ; (ii) 0 ft./sec. 

(iii) 18*5 ft. tons. 

(27) Nearly 25 ft. /sec. 
(28) Nearly 32 ft./sec. 
(29) 16J ft. 

EXAMPLES XVII. (p 12S) 

(1) 1 pdl. ; 100 ft. pdls. 
(2) 741-6. 
(3) 8 pdls. 
(4) I028| ft. 
(6) (i) 1*382 x 104 ; (ii) 9812 x io3. 
(7) Ft. pdls. (i) x 1000 ; (ii) x io5 ; 

(iii) X jo4 ; (iv) x io8 * 10 * * * 14 15. 

(10) 2,319,000. 

{ll)~WT> '' 6'482 x IO'" 

M 
(12) 32M pdls. ; — lb. per cu. ft. ; 

M 
02*3 F 

. 016M 
443,100 M dynes ; —y— gm. per 

M 

623F' 

(1) 8 ft./sec. 
(2) 20 cm./sec. 
(3) 12^ ft./sec. ; nearly 58-0 tons wt. 

(4) = 16*2 ft./9ec. ; 8 2 ft. 

(5) aV* pdls. 
(6) 156 tons wt. 
(8) 19*4 ft./sec. ; 3^ per cent. ; 

sec. ; 145A lb. wt. 
R - 2W+ VR*+ 48RW — 48IV*~. 

26 
7*47 ft./tons. 

(10) 31*15 tons wt. 

(12) 30 ft./sec. ; 361 ft. tons ; 7- ft. 

, v AT m I M 
M + mV ’ MiM + mV ' 

tnzv2 

2Mg(M -f m)' 
(14) i9.4<>oJk. wt* 
(15) 360*^97 lb. ft. units of impulse. 

(ii) 35*3 It. 
(iii) 16 . 1. 

(20) 575*8 ft./sec. 
(21) 715*8 lb. wt. 
(22) 100*2 H.P. 
(23) Nearly 22 lb. wt. 
(24) ft. 

(-5) 4i tons wt. ; sec. 

(28) 834-5 H.P. 32 
f,ol 1 Mm{V + r)« 
1 w mv 1 2 (M + m) ‘ 
(3°) 27,300 lb, ft. units. 
(31) 3°7»7°° ft- lb. ; 51,270 lb. wt. 
(32) 65^ lb. wt. 
(33) 3 ft./sec. ; 72,090 ft. pdls. 

(34) —m) -f n—2 F ~ —j; 

-V] 
(37) tons wt. 

EXAMPLES XVIII. (p 18b) 

I (!7) (i) 3° ft./sec. ; 
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(*> 2 4 
2 a(mi —- m3) 

J(Mi + ni3J 

r 

EXAMPLES XIX. (p. 145) 

(i6) A,2 3 * * * * 8-^;B. 
' ' I5?ft I5m 

2ga(ml - m2) 

;Wj -f Wj f«! -f- w2 

(3) ft. ; 2 secs. 

(5) 24? ft. ; AVj. sees. 
4 

(7) b ft./sec. ; | sec. 
(8) o*c)6 sec., assuming that edge of 

table is rectangular. If the 
edge is assumed to be rounded 
the time is 0-870 

(11 
Vir^-n'rW 

al ; 
t v 
md 

v 

2aw£ 
-j- a/ 

vertical ; A has a vertical com¬ 
ponent velocity equal to that 
of B and a horizontal compon 

ent of 
MW + w 

(12) Perpendicular to the original 
direction of the first particle at 

T?A-3 ft 'sec.; 10 ft./sec. at bo° 
9 

to its direction before the blow. 

2L;C.lL 

(27) 

(18) 

(20) A, 

15 m 
1 P*fw-f (w' -f w") sin2 a] 
2 [w*+«(m/4- w04-4m'w"sin2acos*a] 

P P 

2VTm 2V™' Zer°' 
w2/ cos a 

B, 

w,(ml-fm2-+-m8) -f-n^raj, sin2 a ’ 

7 Vm22-fwl2 sin2 «-f 2w1w, sin2 a 

w2(wrf w2-f-m3) + WjWj, sin2 a ' 

(wg-f-^i sin2 a)/ C_ 
’ m2(m1-hw3-f m3) 4-mjtWg sin2 a' 

(21) H sec. ; 6 ft./sec.; £?# ft. lb. 

n(n — 1) 5 V 

: V' « * 
(22) 

(23) 32 ft./sec. ; 168 ft. lb. ; 2 lb. 
(24) 2 4 ft./sec. ; 94 ft. pdls. ; 2-12 ft./ 

sec. 

EXAMPLES XX.(p. 15b) 

(1) 3 ft./sec. ; 3£ ft./sec. 
(2) 6 ft./sec. ; 7^ ft./sec. 
(3) 5 ft. /sec. ; 4g ft./sec. reversed. 
. , f/iK-gfflji). m9e'){i -f g). 

(/ ’ (Wj-fw2)(w2-fm3) ’ 
m^ntv!(i 4- g)(i+ g#) 
{ml -h w,)(w2 -f ms)‘ 

(8) 32-7 ft./sec. and 7*8 ft./sec., both 
reversed ; 47-8 ft. pdls. 

(11) secs. 
(12) 7000 ft. lb. 
(13) 2 ft./sec. ; 3 ft./sec ; 45 ft. pdls. 

(15) 2 ft. /sec. ; 5 ft./sec. ; 1050 ft. lb. 
(17) H”; tt**; inw- 
(18) 1 ft./sec. ; 2800 ft. lb. 
(24) Three. 
(25) 160 ft. ; 360 ft. 
(26) -fo ; 21 ft./sec. 
. . * a6(i 4- a 6 
(30) ^ 6)(6 + c)«; s**i = e- 
(31) 38 ft./sec. ; 22 ft./sec., both re¬ 

versed ; 42*07 per cent. 

(32) mim»(l + «H»i - v*)_ 
mi 4* 

EXAMPLES XXI. (p. 164-) 

(I) i ft. ; $ sec. ; 1*6 ft./sec. 

(*> £• 

(3) 10V13 ft./sec. at tan-1 ^ 

with the plane. 

(4) (i) 8V13 ft./sec. at tan -* (i) 
below the horizontal; 

(ii) SVTg ft./sec. at tan -1 ^ 

below the horizontal. 

(5) 0 0256 ft. lb. 

(6) 0*91. 

(7) 11 ft. from the corner at tan~~1 (f). 
(8) (i) uV cos* a 4- 0* sin* a at tan“l 

(* tan a) ;_ 
(ii) mu(i — V cos* * + «* sin* a) 

(iii) £mw2sin2a(i — e%). 
(10) 2-3 ins. 

(11) —Lmfj towards the wall; 
v ' 2 

U(I A,.-)?- away from the wall. 

(12) 5625 lb. wt.; 2559} ft. lb. 



ANSWERS TO THE EXAMPLES 377 

EXAMPLES XXII. (p. 170) 

(1) 8*66 ft./sec. perpendicular to the 
line of centres ; 2} ft./sec. along 
the line of centres. 

(2) 3*7 ft./sec. at cot -1 S'x/j, to line of 
12 

centres ; 6-i ft./sec. along the 
line of centres. 

(3) 4-62 ft./sec. at 6oc to the line of 
centres; 4-16 ft./sec. at tan-1 

to the line of centres. 

(4) 4*07 ft./sec. at tan-1 (— 3-\/3) to 
the line of centres ; 6-43 ft./sec. 

at tan -l ^ to the line of 

centres. 

(5) 
V* 
2 

u and each at 4s0 to the 
2 

line of centres. 
(b) o-Su ft./sec. and i-i6m ft./sec. at 

40° 12' and 48° 12' to the line 
of centres._ 

(10) u^i 9in2 a + cos2 gli ~ g)2 * 
2 

u cos al l at tan -ipjEL? 
2 L I - e 

to, and along the line of centres. 

(13) Along the line of centres ; at 

tan-1 4 ^ ) to the line of 

centre. 

EXAMPLES XXIII. (p 17(>) 

(4) Aand B, -f e) ; C, ^(2-3*). 

(9) V sin if> and V cos <f>. 
(15) 5 ft./sec. : 20 gm. cm. units of 

impulse. 

(16) The impulsive friction is greater 
than the momentum down the 
plane, and the bodies will remain 
at rest. 

EXAMPLES XXIV.(p. 186) 

(1) (i) 36 ft. ; (ii) 3 secs., 144ft. ; 

5Vj\ 
18 ) 

(2) (i) 128 ft. ; (ii) 1124 ft. ; (iii) 288 
ft. 

(3) 80 ft./sec.; '—l Sec. 

(4) SOQOy/2 ft. 
(5) 9600V3 ft. 
(6) 80 ft./sec. at tan-1!!) to the hori¬ 

zontal. 
(7) 1088 yds. 
(8) 97>96 ft./sec. ; 4-33 secs. 
(10) 277-12 ft. 
(11) 1115-6 yds.; 9|° to the hori¬ 

zontal. 
(12) 1813 miles. 
(13) 394-7 ft. 
(14) 13-4 ft. 
(15) tan_,(4) ; 200 ft./sec.; 10 secs. 

(iii) 92-24 ft. /sec. at tan 

to the horizontal. 

(16) secs. 
(18) 29-14 ft ./sec. 

(19) 64V660 ft./sec. 
(20) Horizontal and vertical distances 

from O are 1152 ft., 1152 ft. ; 
1440 ft., 720 ft. 

(21) tan_1(J}) ; 366-7 It./sec. 
(24) 4110 ft./sec. ; 25 miles. 

(26) f 
(28) noft ft. ; 60V3 ft. 

(29) a tan a-r?/- »-b. 
2 F* cos8 a 

(30) tan-1 (1-05) to horizontal. 

(32) 

(33) taa-i('2^22). 

(34) 315 ft.; 0-45 sec. 

EXAMPLES XXV. (p. 195) 

(1) Sec. ; 1875 ft. 
4 

(2) (i) Nearly 8834 yds. ; (ii) nearly 

I5*3°° yds. 
(3) 217-5 metres. 
(4) 2000 metres ; 6000 metres. 

(5) 27,777' yds. ; 21,566} yds. 
27»771% yds. ; 24,408 yds. 

{12) 64,030 ft., 1887 ft./sec. at tan- 
(i-6) to the horizontal. 

(13) 160,000 ft. ; 100 secs. 
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EXAMPLES XXVI. (p. 19K) 

<3> tan-*[a-srb)]: 4(5) I5"and 75>; 
(4) A little over 1° ; 20 ft. 

t + Vi 

EXAMPLES XXVII. (p. 209) 

. , , . ./nsinza) b , f ll + h \ 
(3) a-isin ^ ~ + j ■ 15 ' (,2) a\/\~%-1 J from foot of wall; 

2 cos- <x(n* - 2«l sin g) . ig{at ... ^ 

" . ’ V 2k 

x tan a-_ , f*. -;; (l6> 3Lioo ft. ; tan-1 (H). 
2 cos2 ot(w2 2gl sin at) (17) 63-24 ft,/sec. at tan-1 (2); 1-09 

, zgl cos2 oc ,. . sec 1 4. - times as great. 
m4* sin a 

EXAMPLES XXVIII. (p. 213) 

. , at/* sin a cos a :> sin a 
1 256 ’ 64 

(4) 160 ft. horizontalIv from A. 
(6) i 
(8) 8A sin a, where a is the inclination 

of the plane. 

K»(i + £) tan 9 where F is the 
' £ cos a 

velocity of projection, and 
cot 2 0 — (i -f- *?) tan a. 

(1) 2$ lb. wt. 
(2) 120. 
(3) 18*15 tons wt. 
(4) 41 of lb. wt. 
(5) 0 45 ft. 

(1) 
v ‘ 900g 

(4) £tt. 

(5) 4*98 ft. ; 10*96 lb. wt. 
g(A - maw1) 

EXAMPLES XXIX. (p 219) 

(6) 2 

(7) *-£■ 

[ (io) 36*4 ft./sec. ; 6i^J ft./sec.2 

EXAMPLES XXX. (p 225) 

I (7) lb. wt. 

,/M ■ Lx I Ml 
\M) ’ 2v \ m(l - a)' 

(14) 

(15) 12 lb. wt. 

(1) 2*92 ms. 
(2) 40 ft./sec. 
. \ bv* 
<3> 
(4) I-I5 in. 

(5) 5°-1 m.p.h. ; i 
(6) 48° 54'; 2*28 tons wt. 

(7) 51 m-P-h- 
(8) 8 ins. 
(9) 7C4Q/; q,J345- 
(10) ii° 24' ; 0*52. 

EXAMPLES XXXI. (p. 233) 

(it) 38*5 m.p.h. 
(12) 38° 27'* 
(13) 31*87 tons wt. 
(15) o*o6 of wt. 
(16) 0*15 ton wt. nearly. 
(18J 1047 lb. wt. 
(19) 18*1 m.p.h. 
(20) 47*36 ft./sec. 

(2I) tan-1^ 

EXAMPLES XXXII. (p. 239) 
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EXAMPLES XXXIII. (v 248) 

(r) 25*3 ft./sec. ■ 9 oz. wt. 
(3) 239 cm./sec.2 ; 1-24 gm. wt. 
(4) lo-12 ft./sec. 

(5) 8V3 sin 0 ft./sec. , jA lb. wt. ; 

J ft. ; 1^1 lb. wt. 
3 -4 

(0) Ot ft. ; <>-8 ft. 
(7) 3>: «. 
(8) i + tons wt. 
(9) 27X m.p.h 

(11) w(^i it> ft./sec.; 4 ft.; 

W 

(13) i6v 3 ft./'sec. ; —12V2 
3^ 

ft. /sec. 

(14) 300 lb. wt. ; just. 

(13} mg(3 cos 0 — 2) outwards ; 

(18) 3 lb. wt. ; t ft. 
(20) 0*43 of its wt. 

(24) 12 V2 ft./sec ; il ft 
(zb) b ins. 

(28) V5ag ] ~z vertically below top of 

semicircle. 
(29) (i) The particle describes complete 

circles. 
(ii) The particle does not reach the 

level of the point of suspen¬ 
sion. 

EXAMPLES XXXIV. (p. 261) 

(I) V7t7 ; ~* 

(2) 5V2 ft./sec. ; 3V2 ft./sec. 
(3) 3 ft. ; 77 sec. 
(4) 2rr sec. ; 5 ft./sec.2 

(5) 4 ft- ; 1 V7 ft./sec. 
(6) 377 ft.,'sec. ; 37r8 ft./sec.2 

(8) 8 secs. ; ~ Vr ft. or 11V2 ins. 

(9) - ft. /sec. ; — ft. 
it 37r2 

, v 277 

(II) a: T‘ 

(13) 2W'' 

V 

'V- V. !V - t;22'rl2 
V- v22 ' \ T;l2 - 
/w ~ W 

*2* —V 
„ 2 _ 91 A . - 

* Z _ r 2 l "1 • 

2775 V16l ^ /l6l t 3V16I 

3 3’ ' 5“* • 

(14) Nearly 1600. 
, . . 77 V 3 
' 16) — sec. ; —-«fa. 

3<a 2 
(17) 2*72 ins. ; 0*003 sec. 

(t8) 77 ft./sec. ; Oo ft./sec 3; —A? ft./ 

sec. ; 30 ft./sec.2 

(22) (i) 2irnVa2 - .r2 ; (11) zttwa sin 

iTTYlt, 

(27) (i) - ft. /sec. ; (ii) ft. /sec 
77 77 x 

(28) ft.; iirVjj sec. ; 0 080 sec. 

(29) ^ft.: (i) ft./sec.; (ii) 

ft./sec. 
(30) # — 5 sin 4?. 
(31) 8*4 ft. ; 4*683 secs. ; 0*204. 
(32) 52*36 ft./sec. ; 10966 ft./sec.2 

. X . . ffV IO 
(1) b ins. ; - sec. 

EXAMPLES XXXV.(p 270) 

V 277 

(2) sec. ; ft./sec. ; 8 ft./sec.2 

(3) About £ in. 

(4) (i) - ft. ; (ii) ft. lb. per sec. 
77 04 

ft./sec. 

(9) 2 ft.; 

(11) 2—-C^2 per min. : ““ ft. /sec. 

77 / 5 
-A/- sec.; 
4 > 3 

(12) 

/ ^ ffV 3 
(i3) sec. 

V“5 
ft. /sec. ; 9 lb. wt. 

13i lb. wt. ; 1 ft./sec. 
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(15) — sec.; ft./sec.; 
' 24 5 

sec.1 2 * 

192 

25 
ft./ 

(16) 8 ins. ; 5 lb. wt.; ~ sec. 

(17) in. ; sec. ; ft./sec. 

(18) ft./sec. ; sec. 

(19) sec., taking ^ - 980. 
H 

(20) ^ sec. ; £ ft./sec. 
o 

(21) ft./sec.2; — ft./sec. 
9 ' _ 3 

v 
, , 9WS 

16 + 7T5 I 2tt. 

. ir V^2 
(22) sec. 

47T“ 

(25) ^ ft. ; lb. wt. 
7T ^ 

(26) 2tM 
’V- 

aM 

m 
(M -f- w) 
--sec.; 

mg__ 
(28) 4 ins. ; $V 10 ft./sec. 
. . ~ 2xra 
(29) L = ~ ; -^r * T I nearly. 

(30) zero ; 9-0 nearly. 

EXAMPLES XXXVI.(p. 27X) 

(1) Gains 270 secs. 
(2) 99-4 cm. , i*775 mm. shorter. 

(4) 4°5 secs. 
(5) UA- 
(b) 120 secs. 

(7) sL, in. ; 48882 it- 

(8) 1*0005 : 1 ; 1-852 mile. 
(9) 30*2. 
(11) i-86 in. ; 1 lb. wt. ; 1-92 sec. 
(12) ii-4°. 
(13) Nearly 320 ft. ; i°. 

ml L 

L)' 

EXAMPLES XXXVII.(p 2X7) 

(i) _ 
(6) zx,,J ...f.—... 

\ M + 4W/ 
(12) 1-9 ft./sec. 

(X4> 7*35 ms. 
(17) (i) 3 ins. ; (ii) 30 lb. wt. ; 

(iii) ^ sec. ; (iv) 1 h ins. 

(19) &■ 

(20) 

(21) 

M- 

27r2a/ 

/ _ 
V7sin->yjfl 

(22) At a point a 

(23) 

7« 4“ w 
middle point of the string. 

(11 4- V21)/ 

7 from the 

EXAMPLES XXXVIII. (p. 3(H) 

(I) i=£ + c: 2AV 
k2#4 

A^r02 4- 
2jtX2^8 

(8) 

(12) ^ __ , M1 
- V 

— cos 0) 

(13) aiV ; tan-1^ ~ tan <0^ with^r-axis. 

(M) 

(15) 
O'* (y* + i)2' 

EXAMPLES XXXIX.fp. 312) 

(1) -— ; a — -, b ■= — ; 
v 2a# 4- 6 15,000 100 

v — 20. ^ 

(2) f sec. ; iVb secs. : 2 secs., — 1 
sec. ; — 2 ft., 25 ft. ; 18 ft./sec.2, 

— 18 ft./sec.2 

(3) 3 secs, or — 2 secs.; 8$ ft. or 12 £ ft, 

(10) from O. 



ANSWERS TO THE EXAMPLES 381 

EXAMPLES XL.(p 315) 

(i) The hodograph is a quadrant of a 
circle beginning due N. and end¬ 
ing due W. of the origin, and of 
radius proportional to Y- About 
i-8 in. 

(2) Velocity — 8-^/3 ft./sec. The vec¬ 

tor makes an angle cos"1^-1--^ 

with the horizontal. 
(4) (i) a circle ; (ii) a vertical straight 

line ; (iii) the parabola — x. 
(5) The parabola y — i2(# — 1)*. 

(1) iMa2. 
(4I §Ma2. 
(5) $M{a* + b*). 

EXAMPLES XLI. (p. 327) 

(6) IMa2. 
(11) (i) yikf, where M - mass of re¬ 

mainder of plate ; (ii) 

EXAMPLES XLII. (p 329) 

(-2) {IWM* where M is the mass of (6) 48-4 lb./ft.* 
wheel and shaft. (7) (i) fMa2 ; (ii) ,\A/a*. 

(5) VW-Af, wrhere M is the total mass. 

EXAMPLES XLIII. (j> 333) 

(1) 8 radians per sec. 
(2) 16 lb./ft.2 nearly. 

24ft./sec. ; 20 ft. lb. 

H V3 radians per sec. 

\$Y 102 ft./sec. 
18,365 lb. /ft.2 

(9) 101 and 202 R.P.M. nearly. 

(11) V! radians per sec. 

(12) 28,380 ft. lb. 

(13) t>Vg : V3og. 

(14) 

(15) 8-05. 

EXAMPLES XLIV. (p. 343) 

(3) o-o6 oz. 
(4) ^7r* ft. ib. ; 0-614 lb. ft. 
(5) 57*9 ft./tons ; 17 lb. wt./ft. ; 1200 

revolutions. 

(6) AllZT sec. 
3 

(7) 3I25 ft. lb. nearly ; lb. wt. 
‘4 

(9) 5V7 sec. 

(11) 

(18) 

(19) 

(21) 

(22) 

(23) 

(25) 
(27) 
(28) 

Mgr — G 

A + Mr2 ’ 
m*(/ - A). 

j_2mgx_ 
Mm + m 
ff radians. 
| ft./sec. ; V radians per sec. ; 
\W lb. /ft.2 

i6| revolutions ; 3-49 ft. 
32 lb. ft. units of impulse. 
150 revolutions ; 40^ lb. wt./ft. 

EXAMPLES XLV.(|>. 350) 

(2) 142-8 ft. lb. 

(3) 4^5; 42*5 lb. ft. units. 

(7) myj 
*g>> [h h' + *'i 

> k* 4- h* lh 1 J 
(15) 781 lb. wt. 

(17) 

(19) 2 

aOJ 
Ib2 4- Ja* 

Sc 
loge( V2 -f 1). 

(20) V6ag, where 2a is the length of 
M_ 
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EXAMPLES XLVI. (p 357) 

(4) Accel. — Vf* — 2fxw* 4 (** 4- ya)<*>4, where v are the co-ordinates of 
the point referred to 0 as origin and the given lines as axis of x. 

The circle {x% 4- y2)a>4 — 2/*a>2 4- /* — F% — o, where F is the given 
magnitude. This is a circle fixed relatively to the disc, and not a 
circle in space. 

(5) C is the point x — y ^ TTT~7^~a\ • referred to A as origin and AB 

as *-axis, and a ~ 
2 

AB. 
2(1 — cos $)' 

EXAMPLES XLVII.(i). 362) 

(4) 1*3 ft. lb. 
(5) 281,635-2 ft. lb. ; 117-3 lb. wt. 

^ &*g{M + nm -f in') sin a 

2 Ma* H kw 
/ 

\ 

ad 4- b*\ 4- w' 

(2a2 4- b2). 

(S) (i) 5 (ii) I22i lb./ft.* : 5 

(10) Vl 
iomg(i — cos 9) 

(jM 4 iow 4 iow cos 0)a ’ 

T4 189MW 4- 205w2~| 

L 5w(7M 4 i3»0 J 
the horizontal. 

to 

cos 0) 

4- 3 sina 9) 

(12) -7-———-- 
3(1 — cos a) 

(14) A vertical straight line. 
(16) jl W lb. wt. on back ; 

wt. on front. 
IP lb. 

EXAMPLES XLVIII.(p 367) 

' \m l m-hm / \ ml m~\-m J 
where x is the distance of F from 
the centre of gravity. 

(4) The mid-point of the wire moves 
V 

with uniform velocity —, and the 
■ 2 

wire rotates with angular velocity. 

(7) 

y 
—, where 2a is the length of the 
2 a * 
wire. 

4 and 4 
m rn 

,os m(A* 4 r*)P 

[ } Mr* 4 2tnk*' 
(16) cos"1 (I)* approximately. 








