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PREFACE 

With the boundaries of physical science expanding rapidly, 
present-day engineering students must necessarily assimilate 
information and knowledge of subjects that continue to become 
more and more complex. 

In the study of the nature and mechanical behavior of engi¬ 
neering materials, however, their knowledge seldom progresses 
beyond the level of the elementary theory of elasticity and 

strength. This approach to instruction, where all materials are 
considered to be homogeneous, isotropic, and linearly elastic 
continuous media, is most expedient, since, without it, practical 
stress analysis and the design of structural members and machine 
parts would be impossible. However, the implications and con¬ 
sequences of the approximations so introduced are easily for¬ 
gotten, and as a result, these extremely useful tools of definitely 
limited applicability are frequently accepted as a true reflection 
of the properties of all engineering materials. Furthermore, this 
acceptance by students in the early college years shows (consid¬ 
erable vitality in later years even when confronted with engi¬ 
neering reality. 

Perhaps it is not surprising then that the approach to many 
solutions of problems of strength and structural design does not 
transcend the concept of the resistance of the continuous elastic 
medium. Too often in engineering practice an attempt is made 
to interpret the mechanical behavior of real materials solely in 
terms of elastic theory rather than td consider the nature of the 
material and its actual response to forces as the manifestation 
of its heterogeneous internal structure. One example of such a 
misdirected attempt is found in the proposed extension of the 
concept of the elastic stress concentration around a hole to cracks 
of submicroscopic size, in order to explain the difference be¬ 
tween the theoretical (atomic) and the technical cohesive strength 
of materials. Moreover the discrepancy between the elabo¬ 
rate analysis in the aerodynamical phase of the design of modern 
airplanes, or the thermodynamical analysis in the design of gas 

vii 
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turbines, and the crudeness of the concepts and methods used 
in proportioning the parts of such machines, emphasizes the need 
for a more effective approach to the study of the behavior of 
real materials. 

Most of our knowledge concerning the mechanical behavior of 
engineering materials is derived from phenomenological (large- 
scale) observations and, frequently, an empirical interpretation 
of a large volume of partially coordinated observed facts. The 
shortcomings of this approach become more and more evident 
as the materials increase in complexity, as the conditions of 
service under which the materials will perform become more 
diversified, and, finally, as the number of “laws^’ that must be 
devised to express the interrelation between the relevant variables 
necessarily increases. In general, such ^^laws^^ are valid only 
within the range of the observations that serve as a basis for 
their derivation. 

Hence, the volume of experimental work required to provide 
the empirical ^Maws’^ needed to solve the increasingly complex 
problems of engineering design is becoming especially unwieldy. 
So much so, in fact, that experimental research is in danger of 
defeating its own purpose because the newly acquired factual 
knowledge can be neither coordinated with existing knowledge 
nor effectively distributed and utilized. Any worker in this 
field of engineering would be hard pressed indeed to keep abreast 
of what is being done in his special field, and still less in any 
neighboring field, in spite of its possible importance to his own 
work. Moreover, both research personnel and research facilities 
are heavily overtaxed. 

The most effective remedy for this condition would be the 
development of a more fundamental approach in the researcih 
of the behavior of engineering materials; an approach based 
on the analysis of the underlying unifying principles by which 
the relevant engineering concepts could be clarified, broadened, 
and developed; an approach with the purpose of providing the 
guiding principles for further experimental research which would 
advance organized knowledge rather than merely accumulate a 
rather uncoordinated mass of facts. It is this necessity for 
economy of thought leading automatically to economy of experiment 
that is expressed by the old saying that nothing is more prac¬ 
tical than a good theory.” 
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The unifying principles, by which the apparently complex 
phenomenological behavior of real materials can be interpreted 
in terms of a few basic concepts, are the laws governing the 
formation of matter from particles and larger structural elements 
at different levels of aggregation. Thus the deformational prop- 
erties of single crystals are closely related to the principles gov¬ 
erning the formation of the particular type of crystal out of 
atoms, ions, or molecules. Likewise, the response to applied 
toad of polycrystalline metal aggregates or of high polymers is 
essentially determined by the laws of formation of such materials 
from single crystals or giant molecules. 

The development of new engineering material, as well as the 
variation in service requirements of modern engineering machin¬ 
ery and structures, has created many problems which can only 
be handled by considering the internal structure of the materials 
and its response to applied forces and conditions. For example, 
the assumptions of homogeneity, isotropy, and time-independent 
elasticity are irreconcilable with the phenomena of fatigue, 
time- and temperature-sensitive cohesive strength, and creep of 
real materials. An analysis of the mechanical behavior of such 
materials requires a consideration of their structure and their 
phenomenological response interpreted in terms of stnictural 
changes under the applied forces and conditions. 

Thus, the large-scale behavior becomes predictable, at least 
qualitatively, from a knowledge of the internal structure. The 
laws governing the aggregation of matter, which are involved in 
the interpretation of its structure and of the resulting mechanical 
properties are few and relatively simple. They are concerned 
mainly with the inherent mobility of the constituent particles 
or structural elements and wdth the forces of interaction between 
them at the different levels of aggregation. The adoption by 
the engineer of structural considerations to supplement and 
amplify the purely phenomenological approach, which must 

remain the principal engineering procedure, will considerably 
simplify and advance the development of phenomenological (engi¬ 
neering) methods, by providing the necessary guidance for the 
establishment of real functional relations of rather broad validity 
between the relevant variables, rather than the empirical relations 
of strictly limited validity obtained in most engineering tests. 

In this book an attempt has been made to present an integrated 
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picture of the response to applied forces of engineering materials, 
through a combination of the structural (physical) and the phe¬ 

nomenological (engineering) approaches. A principal difficulty 
in preparing what is intended primarily as a textbook for graduate 
students but also should be useful for research workers and design¬ 
ers has been the huge volume of relevant material and its diver¬ 
sity. Moreover, the variety of existing factual information, as 

well as the variety of opinions and theories, could not be per¬ 
mitted to obscure the fundamental prin(*iples on which a unified 
presentation of the subje(?t matter could be based. Therefore, 
if the purpose of the book was to be achieved to any appreciabU^ 
extent, it was necessary to impose restrictions on both the 
breadth and depth of the treatment of the various phenomena 

and aspects. 
It is for the same reason that a detailed description and dis(ais- 

sion of the experimental techniques and specific conclusions of 
various experimenters have been omitted. As an introductory 
textbook rather than a n^feremee book, the main emphasis has 
been placed on the presentation of the physical response of engi¬ 
neering materials to forces, time, and temperature. Every effort 
has been made to present the information in a form comprehen¬ 
sible to a reader with an engineering ba(;kground. This point 
of view has also influenced the selecffion of the literature (ated 
in the text. References have been so selected as to enable the 
reader to find a few of the most important or most nqjresentative 

original publications concerning any particular topic. This 
sampling of the literature should provide sufficient further ref¬ 
erences if more intensive study is desired. 

An introductory chapter discusses the reason for studying 
mechanical behavior and examines the l)asic concepts and defi¬ 
nitions. Parts A and B develop the structural and phenomeno¬ 
logical framework of the theory of inelasticity, which is the theory 
of general deformational behavior of engineering materials. Part 
C deals with selected problems of the mechanics of the inelastic^ 
continuum, with the design of engineering structures, and with 
mechanical testing. 

This book is based essentially on mimeographed notes prepared 
for a two-semester course for graduate students at the University 
of Illinois and later repeated at Columbia University. It could 
not have been written without the generous and enthusiastic 
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support of Professor F. B. Seely, Head of the Department of 
Theoretical and Applied Mechanics, University of Illinois. His 

(mcouragement and criticism were a continuous source of inspira¬ 
tion during the work on the notes and on the manuscript. The 
author is (UHiply indebted to Professor Seely as well as to the 
members of tlu^ d(i]mrtment with whom many of the chapters 
were discussed and who offered valuable suggestions and criticism, 
lie also wishes to express his appreciation to the office staff of 
tlu^ department for their cooperation. 

May, 1960 

Alfred M. Fkeudenth.\l 
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INTRODUCTION 

1. Purpose of the Study of Mechanical Properties of Materials 

The formulation of the relations between the forces acting 
on a material body under various conditions and the resulting 

deformational response of the material constitutes the subject 

of the study of mechanical properties of materials. It is the 
main purpose of this book to treat this subject primarily with 

respect to the deformational response designated as inelastic. 

Technological progress depends on the development of new 
materials and on the more effective use of existing ones. No 

matter how rapid scientific progress is nor how significant new 

developments in science are, their technological impact depends 

on materials of required properties being available to build the 

necessary equipment. 
The most important group of properties are the mechanical 

properties. Although the properties essential to the purpose and 

the performance of a certain material or apparatus are frequently 
nonmechanical, the conditions of existence of such apparatus or 

material presuppose the presence of definite mechanical prop¬ 

erties. Thus in the manufacture of materials for whatever use— 
metals for load-carrying structures, armor plate, electric wire, 

or watchsprings; high polymers for tires, insulators, or photo¬ 

elastic studies; or highly deformable substances such as paints 

and glues—the creation of certain mechanical properties must 

be one of the principal objectives. No other properties, no 

matter how essential they may be to the purpose of the material, 

can become significant unless the mechanical properties that are 

required to resist the acting forces have been brought into 

existence. 
Frequently certain observed mechanical properties are not of 

direct importance, in controlling either the necessary resistance 

to fracture or the deformability under service loads. Neverthe- 
1 
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less, their relation to the desired nonmechanical properties may 
provide a relatively simple indirect indication of those properties. 
In other cases, the influence of the atomic or molecular structun^ 
of a material on certain mechanical properties is known from 
experiment; it may then be possible to derive information con¬ 
cerning the internal structure of the material from observation of 
its mechanical properties. For example, viscosity measure¬ 
ments of colloidal suspensions are used to obtain information 
concerning the form and concentration of the suspended par¬ 
ticles;* ^ such inference is based on theoretically established rela¬ 
tions between these structural characteristics and the coefficient 
of viscosity of the suspension. On the other hand, measurement s 
of the viscosity of lubricants have been found useful in classifying 
their performance in service, although no clear functional rela¬ 
tion between lubricating effect and viscosity has so far been 
established. 

The study of mechanical properties of materials may thus 
have one of three purposes: 

(a) To investigate mechanical properties that are or are 
assumed to be directly needed for the contemplated use of the 
material; 

(ft) By observing certain mechanical properties, to derive 
information about other properties, mechanical or nonmechanical, 
which cannot easily be observed directly, the assumption being 
that a correlation, functional or empirical, can be established 
between the observed and the inferred properties; 

(c) To correlate observed mechanical properties with theo¬ 
retical concepts concerning those properties, which are derived 
from the consideration of the atomic, molecular, or microscopic 
structure of the material; the aim of such study is to establish 
methods by which the character of the internal structure may 
be inferred from observations of mechanical properties and, 
vice versa, mechanical properties predicted from (or inter¬ 
preted^^ in terms of) the internal structure. 

Of the three purposes specified, the greatest difficulties are 
encountered in investigations of problems arising under purpose a, 
although, on first consideration, this group of problems appears 
to be the most simple. However, the selection of measurable 
mechanical properties which are relevant with regard to the 
contemplated use of the material, and their correlation with the 
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actual performance of the material in service are generally not 
easy problems. It is usually found easier to produce materials 
with certain specified properties than to specify the proper¬ 
ties or the measurable characteristics required for a given 
purpose. 

One of the principal difficulties encountered in the study of the 
mechanical properties of materials consists in making observa¬ 
tions of the properties under conditions in which the material 
is actually being used. This difficulty is created by the fact that, 
during the process of making the ^'observation” of a property 

in a mechanical test of the material, the "observed” property 
or characteristic is usually changed. Thus the observed and 
measured properties are those of the material changed by the 

test, not of the material in its initial condition or in its condition 
of service. Only the elastic properties are unaffected by the 
test; it is therefore within the elastic range only that the per¬ 

formance of materials in tests and under service conditions can 
be easily correlated. 

Problems that arise under purpose b include the majority 
of engineering problems. They are relatively simple if a definite 
relation exists between the investigated property and the actually 
observed property as, for example, between the "ultimate tensile 
strength” observed in the conventional tensile test and the 
"hardness” observed in the indentation test. The required 
reflation can be reliably established only if both properties can 
be directly observed and measured. In this case the problem is 
created by the fact that it is easier (or less expensive) to measure 
the related property than the property that is considered sig¬ 
nificant with regard to the contemplated use of the material. 
If both properties are not directly observable, the existence of the 
necessary relation between them can be deduced only from cir¬ 

cumstantial evidence or by logical inference; this relation is 
therefore considerably less reliable. 

Freciuently the derived property is not even well defined, as 
in the investigation of the "ductility” or the ‘‘toughness” of a 
metal. In spite of their frequent use in engineering practice, 
these terms designate rather vague characteristics of structural 
performance. The attempted correlation with an observable 
simple characteristic of the tension test, such as the elongation 
at fracture, must therefore remain unsatisfactory; such correla- 
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tion does not make the fundamental concept more definite. The 
principal difficulty in problems arising under purpose b is there¬ 
fore the establishment of the necessary relation. 

The problems arising under purpose c are those concerning 
the interrelation of the internal structure of materials with their 
mechanical behavior. Whereas problems under a and b aie 
essentially engineering problems, problems under c are on the 
border line between the fields of study of physics and physical 
chemistry on the one hand and that of engineering on the other. 

It is, however, on the satisfactory solution of this type of prob¬ 
lems that engineering progress in the development of new mate¬ 
rials largely depends. Unless the physical basis of the origin 
of mechanical properties is more thoroughly known, and this 
knowledge is correlated with the results of observations of the 
large-scale deformational response to loads, progress in the 
development of engineering materials and in their evaluation for 
various purposes will be extremely difficult. This statement 
becomes obvious if an interpretation of the results of such 
assumedly simple engineering tests as the creep-strength test or 
the fatigue test is attempted which would go beyond the simple 
establishment, by curve fitting, of the empirical relation between 
fracture stress and time or the number of load cycles sustained, 
valid for the particular conditions of the tests. Neither of those 
tests can be interpreted in terms that would make possible an 
extrapolation of the test results beyond these particular condi¬ 
tions. The general significance of the results is lost unless the 
interrelation between the observed large-scale behavior of the 
material and the internal structure in terms of atomic, molecular, 
or microscopic phenomena can be established. 

An understanding of the structure of matter is therefore not 
only of theoretical, but also of immediate practical importancje 
in all engineering problems concerned with materials, their manu¬ 
facture, development, testing, and use. Familiarity with the 

modern physical concepts of atomic structure, of statistical 
mechanics, and of the basically discontinuous (quantum) nature 
of all processes of energy transformation is a necessity for the 
engineer who is attempting to improve his materials and really 
to understand their properties. Unless the engineer knows how 
the material is built up, he will hardly be able to understand what 
makes it deform and break. And as the chemists have learned 



Art. 1 ] Purpose of the Study of Mechenicel Properties of Materials 5 

to understand that a chemical formula is not more than an 
empirical statement of observed facts unless it is interpret¬ 
able in structural terms, that is, in terms of the organiza¬ 
tion of the minute particles of matter, so the engineer must 
realize that mechanical properties of materials, such as deform- 
ability and resistance to fracture under various conditions, 
require for their real understanding an interpretation in terms of 
the internal structure of the material. This does not mean, 
however, that the large-scale or engineering^^ approach to the 
study of mechanical behavior is not very useful for certain pur¬ 
poses; it only means that this approach does not lead to such an 
interpretation of the observed behavior, which would make 
possible the prediction of the general behavior under various 
conditions. The relationships obtained in the engineering 
approach are empirical rather than functional; their validity is 
therefore limited to the specific testing conditions for which they 
have been established. 

In studying mechanical properties the factor of time must be 
taken into account. Although it is generally realized that 
mechanical properties vary with temperature, their change with 
time is frequently disregarded. However, the concept of the 
stability of mechanical properties is one of great practical 
importance. This stability which is a function of the (thermal) 
stability of the internal structure is governed by the second law 
of thermodynamics. The longer a material has existed, the 
nearer its structure has approached the conditions of maximum 
stability towards which it tends after infinite time. Thus, the 
older a material, the more homogeneous its internal structure, and 
the more stable are its mechanical properties. The mechanical 
properties of natural stone are therefore not appreciably affected 
by the passage of a time period that w«i.mld be sufficient to cause 
substantial changes in the mechanical properties of a metal and, 
still more, of a high polymer such as rubber. Every process by 
which the internal struc^ture of the material is changed in the 
direction of either higher or lower thermal stability, such as heat- 
treatment or permanent deformation imposed in the course of 
fabrication processes, affects therefore not only the mechanical 
properties themselves but also their rate of change with time. 
Under certain conditions, such as occur in creep and fatigue, 
this rate of change may be of engineering significance. 
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2. Basic Concepts and Definitions 

The mechanics of deformable bodies is concerned, in general, 
with the relations between the forces acting on a material body 
and the resulting deformational response (state of motion) in 

the body. In the mechanics of the ideally elastic material the 
deformational response is fully recoverable on release of the 
forces; the only material characteristic of the body is its elasticity. 

In the mechanics of the ideally viscous and the ideally plastic 
material the release of the forces is not accompanied by a deforma¬ 
tional response; the deformation caused by the forces is fully 

irrecoverable. In the mechanics of deformable bodies of general 
behavior both of these deformational responses are present in 
varying proportion, depending on the nature of the material, on 

the manner in which the forces are applied (especially as influ¬ 
enced by time), and on temperature. 

The relations between the acting forces and the resulting states 

of motion are derived from the observation and analysis of the 
deformational response of bodies of finite dimensions assumed to 
be homogeneous. This approach to the study of deformable? 
bodies is called phenomenological^ because the phenomena are 
treated as they appear in large-scale observation; it leads to 

phenomenological theories of mechanical behavior. 
The three fundamental physical concepts involved in the 

study of the mechanics of deformable bodies are those of (a) 
the material body, (6) the forces acting on it, and (c) the resulting 
motion or deformation. All other concepts can be derived from 

these three concepts, which therefore are discussed in greater 
detail. 

The material body. An aggregation of mattei* having a defi¬ 
nite spatially limited shape is usually called a material body. 
Such a body is defined by its geometrical and its material prop¬ 

erties; together they produce its mechanical properties. The 
body is limited by the surface, which determines its geometrical 
shape. 

A material body consists of structural elements. Each element 
may be considered to be a smaller body which, in turn, is buill 
up of still smaller bodies. These bodies of different order of 

magnitude represent the structural elements of consecutive orders 
of magnitude. For reasons of expediency this divisibility of 
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matter is arbitrarily limited at a certain level, in accordance 
with the purpose of the particular investigation. 

Thus in a study of the deformational behavior of a polycrystal¬ 
line metal body under the action of forces it will, in general, be 
sufficient to consider the crystals as the smallest ‘‘indivisible” 
elements, whereas in the study of changes of deformational 
behavior resulting from temperature or metallurgical conditions, 
such as precipitation, diffusion, or recrystallization, the atoms 
represent the “indivisible” elements. In the study of piezo¬ 
electric and dielectric properties even this division is insufficient; 
the particles that compose the atom (the nucleus and the elec¬ 
trons) have to be introduced as the “indivisible” elements of the 
body. Finally, if the effects of nuclear radiation on mechanical 
properties are investigated, the divisibility of the nucleus itself 
must be considered. 

The mechanical properties of the material body are made up 
of the geometrical and the material properties of the structural 
elements at the different levels of their aggregation. The geo¬ 
metrical properties are defined by the geometrical shape of the 
elements and by their arrangement in space, whereas the material 
properties are related to both their mass and the so-called “mass 
defect.” This is the mass “lost,” that is, transformed into the 
energy that binds the elements together when structural elements 
at any level of aggregation are combined into units of the next 
higher order of magnitude; the mass of the composite body is 
smaller than the sum of the masses of the individual elements 
forming it. The resulting “mass defect” is equivalent to the 
binding (cohesive) energy of the body.^ ^ The helium atom, for 
instance, has a mass of 4.004 atomic weight units, whereas the 
mass of the particles forming it is 4 X 1.008 = 4.032 atomic 
weight units. Thus the mass defect associated with the forma¬ 
tion of helium out of fundamental particles is 0.028 atomic weight 
units. The energy transformed into binding energy is obtained 
by multiplying the mass defect by the square of the velocity c of 
light, that is 0.028c^. 

The binding of elements at the different levels of aggregation 
requires energies of different orders of magnitude. The sum of 
these energies represents the energy content of the body, or the 
'potential energy of its internal structure. However, in the study 
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of mechanical properties only those energies need be considered 
that are of an order of magnitude that can be affected by mechan¬ 
ical forces and by external conditions relevant in this study, such 
as temperature. The amount of binding energy of the nuclei 
or of the electrons in the atom, although large in comparison 
with the binding energy of the atoms or molecules, is not directly 
relevant in forming the mechanical properties since it cannot 
be affected by forces applied to the body. The content of 
mechanical binding energy, that is, of cohesive energy, is repre¬ 
sented essentially by the binding energy of the structural ele¬ 
ments, which is of the order of magnitude of the energy that can 
be produced by mechanical forces, or of heat energy. The 
material properties of the body as a whole as well as of the ele¬ 
ments at the different levels of their aggregation are most con¬ 
cisely expressed in terms of this energy. 

In the disintegration processes of material bodies such as in 
dissolution, fracture, or explosion, the binding energies are 
^‘released’' at the levels at which the disintegration takes place. 
In order to produce disintegration of the body, energy must be 

supplied; in fracture the supplied energy is mechanical, in evap¬ 
oration the supplied energy is thermal, in explosion the supplied 

energy is chemical or thermal. 
Forces. When a system of external forces acts on a material 

body, a system of reacting forces is produced within the body. 
The reacting forces which are mobilized in response to the exter¬ 
nal forces in the course of the transformation of the body from 
its equilibrium position in the unloaded state to its equilibrium 
position under the acting forces are usually defined as the internal 
forces. In this sense, gravity, inertia, and magnetic forces are 
external forces, although their points of application are located 
within the body; internal forces act between points within the 
body. 

A body may retain its geometrical shape by virtue of the inter¬ 
nal forces, or a particular shape may be forced on it by external 
forces. Bodies that are unable to assume and retain indefinitely 
a given geometrical shape without the aid of external forces are 
usually defined as being liquid. Conversely, the ability to 
assume and retain indefinitely any given geometrical shape, 
independently of external forces, is the characteristic of a solid. 

The geometrical configuration of the body in the condition of 
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equilibrium under the acting forces, in particular the configura¬ 
tion of its surface, differs from that of the unloaded body. As 
a change occurs in the coordinates of the points of application 
of the external forces, work is done on the body; internal forces 
produce work only if individual points of the body are displaced 
with respect to each other. Motion of the body as a whole does 
not involve work of the internal forces. If in the course of a 

virtual displacement, that is, of an arbitrary variation of the 
coordinates compatible with geometrical constraints, no work 
should be done, the work of the external forces must likewise 
vanish. Thus, a deformed body can be in a state of equilibrium 
only if the applied external forces are in equilibrium. 

This equilibrium condition is valid for any body and for any 

part of it cut out of the original body. The forces acting across 
any surface created by a cut are the resultant forces of internal 
interaction across this surface prior to the cut; in the most gen¬ 
eral case they can be represented in space by one force and by 
one moment about the axis of the force. 

Deformation. The differences between the geometrical 
coordinates of individual points of the material body in the loaded 
and in the unloaded condition represent the displacements^ the 
entity of which makes up the deformation of the body. Since 
the internal forces represent the reactions associated with the 
deformation produced in response to the external forces, deforma¬ 
tion and internal forces are interdependent and cannot be 
treated independently. Laws describing this dependence can 
either be found empirically by observing the relations of applied 

forces and resulting deformations on material bodies of finite 
dimensions, or they may be derived theoretically from concepts 
concerning the internal structure of the material. 

A material body may be loaded by ifxternal forces only to such 

an extent that it is able to mobilize reactions (internal forces). 
If these reactions are not sufficient to support the system of 
external forces in a state of equilibrium, the deformations will 
not tend to reach finite values, and, hence, a state of motion or 
flow will ensue. This state cannot be described in terms of 
forces and deformations alone, since there is no longer a definite 
interrelation between them. The mechanical behavior must be 
described in terms of both the rate of deformation or of flow and 

the deformation. Conditions of flow for which the flow rate 
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changes from point to point of the medium but does not change 
with time are called stationary or steady. If the absolute values 
of the flow rates are very small, a state of steady motion may be 
approximated by a sequence of states of equilibrium, thus 
re-establishing the direct interrelation between forces and 

deformations. 
The deformation of a material body is accompanied by changes 

in the body which are mechanical, thermal, electrical, magnetic, 
optical, and chemical. The nonmechanioal changes are, how¬ 
ever, of interest in the study of mechanical properties only so 
far as they affect the relations between forces and deformations 
or indicate changes in those relations. Thus a change in dimen¬ 
sions is produced in certain crystals when they are subjected to 
an electric field (piezoelectricity) or to a magnetic field (magneto¬ 
striction) ; on the other hand, changes in magnetic permeability 
or electrical resistivity in certain metals have been correlated 
with changes in the mechanical damping or with the extent of 
internal damage to the cohesion produced by repeated loads. 

A certain part of the deformation occurs instantaneously, in 
step with the loading, whereas another part precedes with a time 
lag and may even go on after the load has been removed. On 
removal of the forces a partial reversal of the deformation takes 
place instantaneously, and a further part of the deformation is 
gradually recovered; the part remaining permanently after the 
external forces have been removed represents the truly irrecover¬ 
able or permanent deformation. 

The total deformation of a material body is made up of the 
change of its initial volume, that is, the change of density, and of 
the change of its initial shape, that is, the distortion. Thus the 
total deformation can always be split into its volumetric and its 
distortional components. 

In mechanical tests and in service, differences in the character 
of the deformation of bodies are usually determined from observa¬ 
tions made during the application of the external forces. It 
should be realized, however, that the characteristic shape of the 
load-deformation curves for fundamentally different types of 
materials, such as metals and high polymers, can, by the selec¬ 
tion of appropriate testing conditions, be made to look very 

much alike. Such similarity will hold for the loading range 
only; it is the behavior during the unloading of the material and 
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also after the complete removal of the forces that reveals the 
basic differences in the character of the deformation in materials 
that show similar behavior during the loading. 

Comparison of deformational behavior of different materials 
under different conditions requires the separate consideration of 
the volume change and of the distortion. Volume changes may 
be assumed to be instantaneously recoverable on removal of the 
acting forces; distortions consist of three different parts which 
must be considered separately: the instantaneously recoverable, 
the delayed recoverable, and the irrecoverable. While the forces 
are being applied, the three parts of the distortion appear as 
an entity; the difference between them becomes manifest only 
during and after the removal of the forces. Whereas the instan¬ 
taneously recoverable part of the deformation is usually desig¬ 
nated as the elastic dejormation, the delayed recoverable and the 
irrecoverable parts of the deformation are designated as the 
inelastic deformation, although the delayed recoverable deforma¬ 
tion is, in fact, a retarded elastic deformation. 

The relations between the forces applied to a material body and 
the resulting deformation, both elastic and inelastic, expressed 
and interpreted in terms of the basic concepts, and their implica¬ 
tions as briefly considered in the foregoing discussion, constitute 
the subject of the mechanics of general deformable bodies. 

3. Methods of Approach 

Levels of approach. The approach to the study of the 
mechanics of deformable bodies depends on the level of aggrega¬ 
tion of the structural elements at which the mechanical behavior 
is analyzed. The approach may be on each of three levels of 
aggregation of the elements, namely: 

1. The large-scale or phenomenological (engineering) level at 
which the material is considered to be continuous and homogene¬ 
ous, being made up of identical volume elements of finite dimensions. 

2. The structural level at which the material is still considered 
to be continuous but nonhomogeneous, being formed of elements 
of different properties and of finite (macroscopic or microscop¬ 
ically observable) dimensions, which fill the space continuously. 

3. The atomic or molecular level at which the material is 
considered to be discontinuous, being made up of discrete par¬ 
ticles of atomic or molecular size. 
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The lowest, atomic or molecular level, at which the element is 
the atom or the molecule and at which the interaction between 
atoms and between molecules produces the dominant mechanical 
effects, extends over a range from atomic and molecular dimen¬ 
sions of less than 10""^ cm up to dimensions of 10”“^ cm. This 
range of magnitude of structural elements can be experimentally 
studied by X-ray or electron diffraction, by observation of the 

infrared spectrum, and of the spectrum of mechanical vibrar 
tions, and by direct observation with the electron microscope. 
Theoretical analysis within this range is based on methods of 
statistical mechanics and on the analysis of suitable atomic 
models, which are simplified representations of the assumed 
atomic structure. It is at the atomic and molecular level of 

aggregation of elements that all phenomena originate that are 
responsible for the effects of time and temperature on mechanical 
properties and for the so-called ^^structure-sensitive” properties 

of materials. 
The structural level extends from the upper limit of the molec¬ 

ular level up to the phenomenological level. At this level the 
material is considered to be built up continuously but not homo¬ 
geneously of elements of dimensions varying from an order of 
magnitude of 10"“^ cm to several centimeters or even several 
inches. These elements are or can be made optically visible; 
their effect on mechanical properties can be studied by direct 
observation in mechanical tests and by observation of the spec¬ 
trum of mechanical vibrations. Theoretically, the effect of this 
level of aggregation of elements on the mechanical properties can 
be studied by methods of analysis of mechanical models of the 
structure and by methods of statistical summation over the 
behavior of individual elements forming the body. These ele¬ 
ments, usually of different size, are considered to be individually 
homogeneous and isotropic, but are distributed and oriented at 
random, that is, so that all positions and orientations are equally 
probable. 

There are two aspects of the analysis of mechanical properties 
at the structural level of approach: the synthetic approach 
attempts to deduce the phenomenological behavior of the struc¬ 
turally complex continuous material from the known behavior 
of the individual structural elements, whereas the analytical 
approach aims at obtaining a picture of the structure of the 
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material from observed relations in large-scale tests. In the 
latter approach a theoretical concept of the structure of 
the material is used to predict these relations; the accuracy of 
the prediction, evaluated by comparison with the test results, is 
assumed to provide an indication of the validity of the structural 
concept. The analytical approach has been extensively used in 
the study of structures of high polymers;® ^ the synthetic approach 
has been applied in the investigations of the viscosity of suspen¬ 
sions® ^ and in studies of the work hardening of metals.® ® 

It is at the structural level that properties originate which are 
expressions of structural changes produced by the action of 
forces, such as the hardening of metals under large strain (work¬ 
hardening), the softening of gels and of high polymers under 

the action of forces (thixotropy), and the stiffening'^ of fibrous 
materials under large strains (strain anisotropy). 

In the analysis of the mechanical behavior of material bodies 

at the phenomenological level the material is considered to con¬ 
sist of elements of macroscopic dimensions which have identical 
properties and are large enough to include all types of behavior 
in the average ratio. After the deformation of the body has 
occurred, initially adjacent elements remain adjacent. The 
mechanical behavior of a body can be determined from the behav¬ 
ior of the element by simple integration over space. The 
material is considered to be isotropic if, for every element, the 
various directions in space are mechanically equivalent. When, 
however, the continuous medium representing the material, or 
a finite part of it, cannot be mechanically described without its 
orientation being specified, the material is defined as anisotropic. 

The introduction of the concepts of homogeneity and isotropy 
in relation to real materials can only be justified on a statistical 
basis, considering the average shape ^d material properties of 
the elements making up the body. It is evident that in the 
case of such statistical homogeneity and isotropy the relations 
between the quantities describing average behavior and properties 
of the body and those describing individual behavior and prop¬ 
erties of the constituent elements can only be statistical relations. 
There is no more reason to assume a definite functional relation 
between the average mechanical properties of the large group 
of elements forming the body and the properties of any indi¬ 
vidual constituent element, than there would be to assume such 
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a relation between the life expectation of men in a certain age 
group specified on the basis of a statistical mortality table and 
the actual length of life of any particular individual in this group. 

Rheological theory. The assumption of statistical homo¬ 
geneity and isotropy of the continuous material body makes it 
possible to develop a general phenomenological theory of def orma- 
tional behavior of materials. This theory forms an organic 
part of the mechanics of deformable media and provides the 
transition between the classical theory of elasticity and classical 
hydrodynamics, both of which are included as limiting cases of 
the general theory of rheology (science of flow). 

Although the deformation of real materials is a rather complex 
phenomenon, it has been observed that similar processes of 
deformation can be produced in different materials by varying 
the intensity of the load, its character, its rate of application, the 
temperature and the shape and dimensions of the loaded body. 
On this basis it has been assumed that, phenomenologically, 
mechanical behavior of real materials is governed by a few char¬ 
acteristics only which, in different combinations, are present in 
all materials. On this assumption the mechanical response to 
external forces and temperature would be determined by the 
relative importance of the constituent phases^ each of which 
possesses certain of the basic characteristics. The term phase 
as used here refers to mechanical behavior only and defines dif¬ 
ferent parts of the material characterized by different types of 
response to imposed forces. As the medium is considered to be 
homogeneous, the different phases are not necessarily identifiable 
with different parts of the volume but represent rather the differ¬ 
ent types of mechanical response present in each volume element. 

Thus, an effective quantitative theory of deformation under 
external forces can be established, provided that the relations 
governing the deformational response of each of the constituent 
phases can be formulated in relatively simple mathematical 
terms, accessible to analytical treatment. These relations are 
generally expressed as functions of the variables specifying the 
dynamical conditions of the considered volume element (forces, 
stresses) and the variables specifying its kinematical conditions 
(displacements, strains). They can be formulated on the basis 

of the assumptions that within the homogeneous deformable 
medium the dynamical and the kinematical variables and 
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their derivatives are continuous and that the behavior of the 
medium at a certain point depends on the conditions at this 
point only, being independent of the conditions in the vicinity 
of the considered point, that is independent of the gradient of 
stress or strain. This latter assumption is one of expediency; 
its justification has not been proved. Without this assumption, 
however, a mathematical approach to problems of mechanical 
behavior would be practically impossible. 

The establishment of relatively simple mathematical relations 
describing the mechanical behavior of real materials requires a 
certain idealization of actual behavior. Classical mechanics 
of deformable materials, which has, so far, provided the basis of 
practically all engineering analysis concerned with strength and 
deformation, has been developed from two idealizations, namely 
that of the linear elastic or Hookean solid and that of the ideal 
viscous or Newtonian liquid; both materials are defined by a 
linear relation between the relevant mechanical variables. 
Originally these relations were introduced not as idealizations 
of real behavior but as laws expressing the deformational behavior 
of real materials, and they were accepted as such for a long time. 
However, the limitations of the classical theories of deformable 
media were increasingly realized as the consideration of mechan¬ 
ical behavior beyond the range previously considered as prac¬ 
tical^^ (within which the approximation provided by the classical 
theories is very close) became more important. Consequently, 
the need has been felt for a broadening of the underlying 
assumptions concerning the idealized types of deformational 
behavior which would lead to the development of a general 
theory of mechanical behavior of real materials. Although it 
was recognized that only the idealized materials are limited in 
their properties, because this is how they are defined, it was also 
found that idealized materials can be combined so as to represent 
real materials by different degrees of approximation.® ^ Rhe¬ 
ology constitutes an attempt to make use of this fact and to 
establish a phenomenological theory of general behavior of 
materials on the assumption that every real material possesses 
all basic deformational or, as the terminology is, all rheological 
properties in varying proportions. 

Mechanical behavior of groups of elements. In studying 

mechanical properties of real materials the most important con- 
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sideration is that such materials are neither continuous nor 
homogeneous or isotropic. Because they are built up of large 
numbers of discrete elements or particles, the observed large- 
scale properties are actually the result of the behavior of the 
aggregation or of the group of elements or particles that make up 
the material. Hence, the relation between the forces applied to 
the material body and its deformational response might be 
derived from the consideration of the response to these imposed 
forces of the discontinuous group structure of the body, thus 
expressing or interpreting the large-scale mechanical properties 
in terms of the group behavior of the elemenl^s or particles. In 
this manner the observable phenomena are deduced from non¬ 
observable processes, and the phenomenological laws are derived 

from more fundamental microphysical laws. This approach to 
problems of mechanical behavior leads to atomic or molecular 
theories of such behavior. 

The study of mechanical properties means the study of 
deformational behavior; it is through behavior that properties 
manifest themselves. Group behavior is made up of the char¬ 
acteristic behavior of the individual elements as well as of their 
behavior in the group, which is determined by their mutual inter¬ 
action. The group properties are therefore not identical with 
the sum of the properties of the individual elements. The 
group has an individuality of its own which is determined by the 
laws according to which it has been formed. The aggregation of 
elements thus produces a certain group pattern by which the 
group can be identified. For example, in the aggregation of 
atoms forming a crystal or in the aggregation of molecules forming 
a high polymer, the observable deformational response of the 
material body to imposed forces is made up of the responses of 
the atoms or molecules integrated into a group by the binding 
forces between them. In forming the total response, the laws 
according to which the binding forces between the particles are 
established and are changed with changing external conditions 
(and which thus represent the laws of group behavior) are 
considerably more important than the behavior and the intrinsic 
properties of the individual particles. 

Some properties of the material, however, are not affected by 
the group pattern. For example, the weight of the body is 
practically unaffected by the fact that the particles are bound; 
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it is simply the sum of the weights of the individual particles. 
In comparison with the total mass of the body, the ‘‘mass defect 
related to the binding energy (see Art. 2) is negligibly small. 

Thus, two types of properties must be distinguished: properties 
that are not affected by the group pattern, usually termed addi¬ 
tive, and properties essentially determined by the group pattern, 
usually termed constitutive. 

In considering a material body as made up of groups of ele¬ 
ments aggregated at different levels of organization, a certain level 
must be selected at which the concept of a group structure formed 
of discrete elements is replaced by the concept of the continuous 
medium. The concept of continuity is usually introduced at 
the level of aggregation at which the number of group elements 
that are simultaneously affected or simultaneously observed is so 
large as to make the individual contribution of an element to 
the behavior of the group unidentifiable. When this condition 
exists the concept of the statistical average effect, functionally 
unrelated to the effect produced by the individual element, must 
be introduced. 

Fundamentally, all physical processes and distributions are 
discontinuous. The appearance of continuity in space and time 
is created by the large number of individual discontinuous 
processes making up the phenomenon, as well as by the relation 
between the duration of the process and the duration of the 
observation. Apparent continuity of a process is therefore the 
effect of a space and time integration over the basically discon¬ 
tinuous processes. For example, a metal crystal that appears to 
be continuous produces a relation between force and deformation 
that for slow rates of deformation is markedly discontinuous. 
The slower the process and the closer the observation, the more 
discontinuous the observed deformation. On the other hand, the 
more rapid the deformation, the more cl^ntinuous will it appear. 
The deformation of a poly crystalline metal appears to be con¬ 
tinuous, even under close observation because of the large number 
of crystals involved, although the deformation is made up of a 
number of sharply discontinuous slip motions. The finer , the 
grain, that is, the larger the number of crystals involved in the 
process, the more continuous the observed deformation. 

Since the groups of elements at one level of aggregation repre¬ 
sent the individual elements at the next higher level, the laws of 
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group formation govern the mechanical behavior of materials 
and of structures at all levels of aggregation. The level may vary 
from that at which, for example, iron and carbon atoms are 
grouped into the geometrical crystal pattern to that at which 
polycrystalline steel shapes, assembled into structural members, 
are associated to form the geometrical pattern characteristic of a 
certain bridge truss. At all levels of aggregation the mechanical 
properties are determined essentially by the group pattern. 

The group pattern has a dual aspect: the geometrical and the 
material. The geometrical pattern defines the arrangement in 
space of the elements or particles of the group and the group 
boundaries, whereas the material pattern, being an expression 
of the distribution of the mass and of the ‘'mass defect'' of the 
particles, is directly related to the binding or potential energy of 
the group. It represents the distribution over the particles of 
the potential of the interacting forces, that is, of the energy 
expended in forming the group out of the isolated elements. 
The combination of the geometrical and the material pattern 
or energy pattern determines the mechanical response of the 
group, at any given moment, that is, its mechanical state. 

The geometrical and the energy pattern of a group of elements 
are not independent; in fact, the condition of stability, formulated 
in terms of a condition of minimum energy of the binding forces, 
determines the geometrical pattern of the group. Mechanical 
behavior is defined by the change of state of the group, that is, 
by the change of both the geometricial and the energy pattern. 

The larger the number of elements forming the group at a cer¬ 
tain level, the less is the group behavior affected by the properties 
of the individual element, and the more pronounced is the influ¬ 
ence of the laws of group formation. Thus the mechanical 
behavior of a material body consisting of a few large crystals 
can, with a certain approximation,' be deduced from the observed 
behavior of a single crystal. However, neither the single crystal 
nor the body consisting of a few large crystals can be expected to 
provide the basis for the study of the behavior of polycrystalline 
aggregates, since in such aggregates the group behavior, that is, 
the interaction between the crystals, is at least as effective in 
influencing the behavior of the aggregate as is the behavior of the 

single crystal. 
The considerable importance of chance fluctuations in the 
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observed large-scale mechanical properties of real materials is 
the result of the discontinuous internal structure of such mate¬ 
rials. Since the mechanical properties of a material on a phe¬ 
nomenological scale are determined by the behavior of the groups 
of elements forming it at the different levels of aggregation, the 
chance effects, which strongly influence the process of aggregation 
of elements, must necessarily have an influence on large-scale 
behavior. 

A material property which is the result of the combined action 
of a number of elements will, according to statistical principles, 
be the more uniform, the larger the number of elements involved 
in its creation. Therefore, if a group property depends on 
the behavior of a small number of selected elements in the 
group, the fluctuation of the values of this property will neces¬ 
sarily be considerably wider than that of a property that depends 
on the interaction of all or of a large number of elements. 
This consideration explains the observed difference in the range 
of fluctuation of the values of so-called structure-sensitive and of 
structure-insensitive properties. The structure-sensitive prop¬ 
erties, such as, for example, the fracture strength, are essentially 
determined by local imperfections in the group structure and, 
therefore, depend only on a small group of elements affected by 
these imperfections; consequently they show a considerably wider 
range of chance fluctuation than the structure-insensitive prop¬ 
erties, such as, for example, the elastic constants. Whereas the 
structure-sensitive properties depend on the selective contribu¬ 
tion of a small group of anomalous or anomalously located ele¬ 
ments within the large group, structure-insensitive properties 
are the result of the additive contribution of all elements to the 
average behavior of the group. 

Very few materials are built up# from a single sequence of 
groups. Frequently two or more sequences of different group 
structure are combined ‘^in parallel” to form the so-called skeUton 
structures. The simplest structures of this type consist of a 
spongelike continuous solid skeleton of one material the voids of 
which are filled by a different, usually viscous material or of a 
fiber-like continuous skeleton of one material embedded in a 
large volume of a different material. Because of the parallel 
group formation that has taken place, the mechanical behavior 
of such materials is the result of the interaction of the two groups 
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of elements. Since groups characterized by different response 
to the imposed forces have been termed phases^ materials of 
skeleton structure are frequently designated as two-phase or 
polyphase materials, according to the number of the different 
materials that have been combined. The concept of the two- 
phase structure in which one phase is solid and the other behaves 
essentially as a liquid of high viscosity is used extensively in 
later chapters dealing with the structure of technically important 

materials. 
Energy consideration. The study ot mechanical behavior 

and properties at the three different levels of the aggregation of 
elements that compose the material, namely, the phenomeno¬ 
logical, the structural, and the atomic or molecular, requires 
the consideration simultaneously and the correlation of the 
phenomenon on the different levels in order to develop a general 
integrated theory of mechanical behavior. 

On the phenomenological level the mechanical behavior of the 
continuous body is described in terms of the relations between 
stresses and strains and their derivatives. On the atomic or 
molecular level the behavior of the discrete particles is described 
by their relative positions in space, their velocities, and the 
forces of interaction between them. No correlation is possible 
between the stresses and strains in the volume element on the 
one hand and the atomic or molecular forces of interaction and 
the change of relative position in space of particles on the other. 
Correlation of behavior on the different levels is possible only in 
terms of a concept which on all levels has the same meaning in 
both Newtonian and statistical mechanics, the same dimension, 
and the same tensorial rank. 

This concept is energy. Being a scalar, that is, a tensor of 
rank zero, it is an algebraically additive quantity and has the 
same meaning on all levels of group formation. Hence, a descrip¬ 
tion of mechanical behavior in terms of energy provides a method 
by which the phenomena at the different levels of group forma¬ 
tion can be described in identical terms and correlated by the 
correlation of the processes of energy transformation at the 
respective levels. If mechanical and heat energy only are con¬ 
sidered as relevant in the study of mechanical behavior, the laws 
of energy transformation are expressed by the first and second 
law of thermodynamics. These two laws provide, therefore, the 
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basis for the analysis of the mechanical behavior of materials at 
all levels of aggregation of elements. 

The basic laws of thermodynamics have been formulated both 
in terms of classical (phenomenological) and of statistical 
mechanics and are therefore equally applicable in the analysis of 
the behavior of discontinuous systems containing large numbers 
of particles and in the analysis of the deformable continuous 
medium. This interrelation between classical thermodynamics 
and statistical mechanics provides the methods by which the 
laws of mechanical behavior at the different levels of investiga¬ 
tion can be correlated. Since the interrelation has been derived 
from the consideration that all conclusions of classical thermo¬ 
dynamics can themselves be obtained from statistical mechanics, 
the properties of matter, which enter the equations of classical 
thermodynamics merely as empirical constants to be determined 
l)y observation and measurement on a macroscopic scale, can 
frequently be derived from or interpreted in terms of atomic or 
molecular processes. 

4. Elastic and Inelastic Behavior 

In accordance with previous definitions, the mechanical 
l)eiiavior of a material body subjected to forces is called elastic 
if the deformations produced in the body are instantaneously 
recovered when the forces are removed. This is the meaning of 
the usual definition of elasticity as the existence of a one-valued 
time-independent relation between forces and deformations. 
The simplest form of this relation is Hookers “law^’ of linear 
elasticity. 

The mathematical theory of elasticity developed on the basis 
of Hooke’s law has provided the foundation for the procedures 
of engineering design. By the introductfbn of the linear relation 
between forces and deformations and the restriction to infini¬ 
tesimal deformations, elastic theory has been linearized and 
numerical analysis of the elastic response of a continuous homo¬ 
geneous medium to applied forces has been made practically 
possible. Because of the linearization of the basic differential 
equations, the resultant effects of imposed individual conditions 
can be obtained by algebraic summation (superposition) of the 

individual effects. 
The linear elastic body is a good model of the mechanical 
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behavior of engineering materials within a practically very impor¬ 
tant range. If this were not so, attempts to determine or to 
predict the behavior of engineering structures, even under service 
conditions, would be prohibitive because of the complexity of 
mathematical analysis of nonlinear behavior. 

Linear elasticity need not necessarily be considered an empirical 
property. As is shown in a later section, it represents, with very 
close approximation, the theoretically required behavior under 
load of any continuous solid homogeneous isotropic body of con¬ 
stant density of whatever material within the range of small (not 
only infinitesimal) deformations. The deviation of the behavior 
of real materials from the linear relation between forces and 
deformations within the range of small deformations is due only 
to the fact that the concept of the homogeneous medium is but an 
approximation of the real material and that for certain materials 
the influence of time may become important. 

The level of the elastic limit of behavior in terms of the applied 
force is a function of the accuracy of its observation; in fact, for 
an infinitely accurate observation this limit for real matei-ials 
would be at zero force since some irreversibility of the deformation 
process must always be expected in accordance with the second 
law of thermodynamics, although the deviation from elastic 
behavior may not be perceptible on the scale of observation or 
may be hidden because of the method of observation. Thus, 
for instance, for a certain metal observation of the force-deforma¬ 
tion diagram in simple tension may show perfect elasticity, 
whereas definite evidence of inelastic behavior within the same 
range of forces can be obtained from a vibration test. It is, 
however, this deviation from elasticity that is of principal 
importance in determining the significant properties that make 
up the structural performance under load of engineering materials. 
Elasticity or near elasticity of a material is but the condition 
for the application of comparatively simple design methods* it 
IS Its inelasticity however, which determines its mechanical 
properties as well as the range of its use and its safety in service 

The engineer usually considers elasticity of his materials to 
be the most important property on which to base his design for 
service. He realizes, however, that the actual performance of 

different from the assumed per¬ 
formance of the designed elastic structure, and that both the 
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differences and similarities in the behavior of the real and of 
the designed structures, as well as the safety of the real structure, 
are essentially results of the deviation of the behavior of real 
materials from the linear elasticity assumed in design. Hence, 
the interest of the engineer necessarily centers on the deviation 
from conditions instinctively considered ‘'normal,^’ that is, elastic, 
rather than on generally defined conditions of rheological behavior. 
This deviation from elastic conditions may be considerable, but 
its importance is still mainly in its relation to an elastic com¬ 
ponent. Thus, the term inelastic behavior or inelasticity is 
meant to define behavior ^U)eyond the elastic range,the impli¬ 
cation being that the elastic range remains of considerable if not 
of primary importance. 

The use of the term plasticity as synonymous with inelasticity 
is considered undesirable, because this term is used to define a 
specific type of ‘‘inelasticity'' which is characteristic of metals in 
the range of large deformations; its simultaneous use in the 
general sense in confusing. Recently Zener^ ^ has coined the 
term anelasticity to define another specific type of general 
inelastic behavior, a type that is characteristic of two-phase or 
polyphase materials in the range of small deformations and which 
before has often been referred to as after-effect. Both plasticity 
and anelasticity are subsequently used in the limited meaning 
referred to, whereas inelasticity is applied to designate any 
type of mechanical behavior that is not elastic. 

Elasticity and inelasticity of a one-phase material can be 
defined with reference to the changes in the geometrical and 
energy patterns produced in the elements of the material body 
by applied forces. The body is elastic if all changes that have 
been produced are instantaneously recovered on removal of the 
forces. If only part of the change can be recovered by removal of 
the forces whereas the remaining part is irrecoverable, the behav¬ 
ior is inelastic. The intermediate type of inelasticity defined 
by delayed recovery of the deformation is characteristic of the 

two- or polyphase material only; it does not occur in a material 
consisting of a single phase. 

Changes of mechanical behavior may be produced by changing 
primarily the geometrical pattern with unidentifiable changes of 
the energy pattern or by changing primarily the energy pattern 
of the body without identifiable change of the geometrical pat- 
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tern. Because of the interrelation between geometrical changes 
and changes of energy distribution there will always be a dual 
effect, whatever the character of the primary change. However, 
a classification of inelasticity may be based on the assumption 
that the character of the mechanical behavior depends on whether 
the produced changes are primarily in the geometrical pattern or 

primarily in the energy pattern. 
It may reasonably be expected that changes of geometrical 

pattern are important only when the existing pattern is unique, 
that is, identifiable, having a considerably higher stability of 
existence than any alternative pattern. Such stability would 
require that the probability of forming the existing pattern be 
appreciably higher than the probability of forming any alterna¬ 
tive pattern. If, however, a number of patterns of ecjual sta¬ 
bility, that is, of equal probability of existence, can be formed, 
the existing pattern is no longer unique^ as it is not recognizably 
different from any of the alternative patterns. In this cas(^ 
changes in the energy pattern will be the dominant effect govern- 

ing mechanical behavior. 
Perfect reversibility of the mechanical response on removal of 

the acting forces is possible only if the initial geometrical pattern 
is identifiable. If a large number of equally probable patterns 
can be formed, the probability that, on removal of the forces, 
the initial pattern, which is only one of the possible equivalent 
patterns, will be exactly re-established is relatively small. Thus, 
perfect reversibility of deformation is a characteristic of materials 
whose geometrical pattern is identifiable. Because of the very 
large number of particles involved, a pattern can be identified 
only by a definite geometrical periodicity, such as exists in the 
crystal structure. 

Only materials with an identifiable unique geometric pattern, 
such as crystals, can be truly elastic; thus the energy pattern is 
of less importance than the geometric pattern in determining the 
deformational behavior of the ordered material. On the other 
hand, in the unordered material many geometrical patterns can 
be associated with a given energy content; hence, the change in 
energy toward a lower value can proceed along a number of 
alternative paths and therefore becomes the dominant factor in 
controlling the deformational behavior; the geometric pattern 
has freedom to adjust itself to the energy pattern. This fact 
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explains why unordered (so-called amphorous) material is more 
sensitive to temperature and time than is ordered (crystalline) 
material. 

In most engineering materials inelasticity of deformation is 
observable under the action of very small loads if adequate 
testing conditions are selected; it becomes more pronounced with 
increasing load intensity, l^y imposing certain loading condi¬ 
tions, the inelasticity of behavior can be intensified so strongly 
that the deformation of a material usually considered brittle 
may resemble liciuid flow of high viscosity. Therefore classifica¬ 
tion of materials according to their apparent deformational 
behavior as ductile, tough, or brittle has no basic physical mean¬ 
ing; it may be useful only as an arbitrary specification limited to 

well-defined conditions. The material is not invariably brittle 
or ductile; brittleness^^ or ^‘ductilitydescribe but its momen¬ 
tary behavior, that is, its momentary response to a certain 

system of forces and conditions. Only as long as a material is 
assumed to be elastic can its mechanical behavior or response be 
considered invariable, because elasticity expresses the fact of 
invariability of mechanical behavior. It is the variability, with 
respect to the imposed forces, of mechanical behavior and 
properties that is the mark of inelasticity. 

Changes of the internal structure of materials resulting in 
inelastic behavior originate at the atomic level; an analysis of 
such behavior must therefore start from the consideration of the 
relevant phenomena taking place in the atomic structure of the 
material. The first part of this volume. Chapters 1-3, contains 
a discussion of the atomic constitution of matter and of the 
changes in atomic structure produced by external forces and 
temperature. The discussion of the basic physical concepts is 
somewhat more extensive than would 4>e absolutely necessary 
for the understanding of the following chapters; however, it is 
considered that a certain familiarity with modern concepts of 
the structure of matter may be helpful to the engineer interested 
in materials in furnishing the background for independent 
thought and for the study of advanced books in the field of the 
theory of solids.^ 

The second part of the book, Chapters 4-12, is an attempt to 
present an integrated theory of inelasticity of which the theories 
of elasticity, of plasticity, of work hardening, of creep and 
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relaxation, and of anelasticity constitute special cases. This 
general theory, although primarily phenomenological, is based 
on the structural concepts developed in the first part of the book. 
Chapter 11 contains a discussion of fracture as the terminal 
point of deformation. A short discussion of the behavior of 
suspensions and gels is included in Chapter 12. These materials, 
of primary importance to the chemical engineer, may not be of 
direct interest to the engineer concerned with load-carrying 
materials, unless he is interested in soil mechanics. However, 
an adequate understanding of the process of formation of solid 
materials requires some knowledge about the behavior of these 
semiliquids out of which many solids are formed. 

The last part of the book. Chapters 13-18, deals with the 
engineering applications of the theory of inelasticity, in particular 
with special problems of the theories of plastic equilibrium and 
of plastic flow, as well as of the theory of work hardening. 
Chapters 16 and 17 contain a discussion of the principles of 
design for plasticity, for work hardening, for creep, and for frac¬ 
ture. The analysis of the engineering significance of inelasticity 
is concluded (Chapter 18) by a discussion of the significance of 
mechanical testing of engineering materials. 

References 

11 M, Reiner and R. Schoenfkld-Reinek, KoUoid-Z. 65 (1933) 44. 

21 M. Born, Atomic Physics^ Blackie & Son, London (1945) 61. 
31 E. Guth and H. M. James, Ind, Eng, Chew. 33 (1941) 624; Phys. Rev. 

69 (1941) 111. 
3-2 G. B. Jeffrey, Proc. Roy. Soc. A 102 (1923) 161. 
3-3 A. M. Freudenthal and M. Reiner, J. Applied Mechanics 16 (1948) 

265. 
3- 4 M. Reiner, RheoL Bvll. 16 (1945) 53. 
4- 1 C. Zener, Elasticity and Anelasticity of Metals, Univ. of Ghioago 

Press (1948). 
4 -2 F. O. Rice and E. Teller, The Structure of Matter, John Wiley & Sons, 

New York (1949), 



PART 

A 

The Structural Aspect 

of Mechanical Behavior 





CHAPTER 

1 

GENERAL CONCEPTS OF THE STRUCTURE OF 

MATTER 

5. Oscillators and Quanta 

Oscillators: concept of atomic structure. The physical 
concepts by the aid of which the atomic structure of matter is 
described are based either on an admittedly fictitious, pictorial 
model of atoms and of atomic processes or on a realization that 

there is no possibility of pictorial representation of atomic hap¬ 
penings in terms of space, time, and causality and that, therefore, 
only abstract mathematical reasoning is adequate to describe 
what is assumed to take place on the atomic level. 

The study of the atomic structure of matter started from a 
rather crude pictorial model concept. In the course of time, this 
concept became increasingly complex, as it had to fit all the 
newly discovered experimental facts, until its inadequacy became 
so glaring that it could no longer be saved by further complicat¬ 
ing refinement. At this stage in the development, attempts to 
visualize atomic processes were abandoned in favor of the non¬ 
pictorial approach of quantum and wave mechanics which proved 
to be remarkably powerful and incisive. In spite of the com¬ 
plexity of the mathematical tools required for its application, 
this approach leads to an explanation of the basic nature of 
atomic phenomena which is of surprising universality and funda¬ 
mental simplicity. 

There is no doubt that the use of pictorial models will remain 
an important and legitimate approach in the interpretation of 

29 
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nonperceptible physical processes. However, the interpretation 
of the meaning of even the familiar looking model may require 
a redefinition of the model elements used. 

The simplest pictorial concepts of atomic structure of matter 
does not attempt to introduce any model of the structure of the 
atom itself. The atom visualized as a minute (rigid or elastic) 
sphere of matter is considered to be the elementary particle, 
subject to a combination of attractive and repulsive forces which 
determine its position within the group of surrounding atoms. 
The structure of the atom is not considered relevant at this level 
of the investigation. Each atom is thus Visualized as an ^^oscil¬ 

lator/' that is, a mass point which, 
following the laws of Newtonian me¬ 
chanics, oscillates about its equilib¬ 
rium position, in which it is elasti¬ 
cally’^ held by the electrostatic forces 
exerted by the surrounding atoms. 
Its total energy is made up of the 

energy of the electrostatic potential and of the kineth^ energy of 
its oscillating mass. 

The oscillator model of matter is not a conservative system, 
since in the process of oscillation particles are able to absorb or 
emit heat energy by oscillating more or less violently, that is, 
with a larger or smaller amplitude. The distribution of the 
binding or potential energy of the individual particles of the mate¬ 
rial centers around the mean potential energy. With a com¬ 
paratively small number of particles having potentials of the 
binding forces considerably higher or considerably lower than 
the mean value, the number of particles possessing a certain 
potential or energy content is assumed to decrease with increasing 
deviation of this energy from the mean value. J^efore the advent 
of the quantum concept, it was assumed that within the large 
number of oscillating particles forming the material body all fre¬ 
quencies of oscillation could exist. 

Two-oscillator model. The behavior of an oscillator can, 

in rough approximation, be made clear by the analysis of the 
simple mechanical mode! of a linear oscillating system with two 
degrees of freedom shown in Fig. 5 1, in which the two equal 
masses m represent the particles bound to each other and the 
surrounding particles by electrostatic forces (represented by 

Fig. 5 • 1 Two-particle os¬ 
cillator model. 
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springs). This model is based on the simplifying assumption 
that only neighboring particles interact. 

The most general motion of the system is made up of the super¬ 
position of two harmonic oscillations in which the two masses 
oscillate with the same frequency and in the same phase.® * 
The lower frequency represents the fundamental or symmetric 
mode, in which the two masses swing in the same direction with 
equal amplitudes (the coupling spring is not stressed). If such 
motion involves a line of particles in a crystal lattice, this lattice 
oscillates as an entity, that is, as if it were part of a continuous 
body. Such translatory motion of a line of particles is therefore 
associated with the propagation of the acoustic (elastic) vibrations 
of the continuous elastic medium. The higher frequency repre¬ 
sents the antisymmetric mode, in which the two masses move 
against each other with equal amplitudes. Motion of this type 
along a line of particles in a crystal lattice is the effect of different 
(positive and negative) electric charges of adjacent particles; it 
is thus typical for electrodynamic (optical) oscillations of the 
lattice. 

I'hc two modes of oscillation are not coupled; each of the 
motions can take place independently. Therefore, the behavior 
of a group of particles bound together into a lattice can be repre¬ 
sented by the behavior of a group of uncoupled oscillators. 

Kquations of beats result from the superposition of the two 
principal oscillations.® “ Each mass executes a rapid vibration 
with an amplitude that changes slowly. The masses move in 
opposite phases, so that the amplitude of the oscillation of one 
mass increases while the other decreases, reaching its maximum 
while the other is at rest. The beats are slow when the coupling 
is weak and become rapid as the strength of the coupling increases. 
The process represents an exchange oj energy between the two 
degrees of freedom and is of the same type as the well-known 
phenomenon taking place between two tuning forks on a com¬ 
mon base after one of them has been excited. 

The natural frequencies of the oscillators are identical with the 
frequencies of radiation at which energy is absorbed or emitted 
by them, as these frecjuencies may be considered the resonant 
frequencies with regard to the frequency of the emitted or the 
absorbed radiation. 

The natural frequencies of the oscillation of the particle within 
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the group do not represent the complete spectrum of frequencies 
of the individual oscillator. They only represent the frequencies 
associated with the interatomic or intermolecular bonds; the 
energy of the oscillators can be expressed as the heat content or the 
heat energy of the body since, as is shown later (Art. 10) the 
wave length of the radiation emitted or absorbed at the natural 
frequencies of the oscillations of the bound particles is in the 
infrared range. This is the radiation that has the temperature 
of the object that emits it. 

A number of natural frequencies of much higher order exist at 
which oscillators will emit or absorb radiation of light or radia¬ 
tion of still higher frequency, such as X-ray or nuclear radiation. 
These frequencies are, however, not directly related to the 
mechanical behavior of the material formed by the group of 
oscillators; only the infrared (thermal) radiation is associated 
with the behavior of the group. 

Quanta. Studying the energy distribution of the infrared 
radiation, Planck concluded that the observed facts of radiation 
could be explained only by assuming that, within the large num¬ 
ber of oscillators forming the material body, not all natural fre¬ 
quencies of oscillation or frequencies of radiation can exist, since 
energy is not emitted or absorbed continuously, but is containcnl 
in the oscillating particles only in \vhole multiples of energy units 
or energy quanta} ^ The units themselves vary with the natural 
frequency of oscillation of the particles; they are large for small 
wave lengths of radiation or large frequency and small for large 
Avave length or small frequency. 

According to this quantum concept, the Planck oscillator 
(unlike the previously considered Newtonian oscillator) can 
neither absorb nor emit heat or any other radiation energy con¬ 
tinuously. The acquisition or emission of energy can only take 
place in discrete amounts or bundles of energy, called quanta; it 
is therefore a discontinuous process. Thus, if heat is applied to 
a material body consisting of oscillators, it cannot uniformly 
increase the energy, that is, the amplitude of the particles oscil¬ 
lating about their equilibrium position; it can only increase the 
energy of the individual particle by an integral multiple of the 
discrete amount of energy, the energy quantum, which is a char¬ 
acteristic of the particle, or rather of the frequency at which it 
oscillates. The core of Planck^s quantum theory is the state- 
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merit, that the energy quantum e is related to the frequency y of 

the oscillations of the particle by the equation, 

e = hv (5 1) 

where h = G.62 X 10“”^^ erg-sec is a universal constant, known 
as the unit of action or Planck’s constant. 

Since the vibrational energy of the oscillating particle is 
absorbed or emitted only in whole numl;ers of energy quanta, 
this number is related to the radiation frequency. If Ei and E y 

denote two energy states of the oscillator, the relation holds 

Ex - E2 = AE = Anhv (5-2) 

where Ai? is the difference in the energy content of the two states 
and V denotes the frequency of the emitted {Ei > E2) or the 
absorbed {Ei < Ef) radiation. Hence 

_ 1 
h An h 

(5*3) 

where An, denoting the difference in quantum numbers between 
E\ and J?2, can only have discrete values, as AE is always an 
integral multiple of e. 

This conclusion is borne out by the existence of a certain 
limited number of spectral lines in the light spectrum of various 
chemical elements which had been observed long before the 
advent of quantum theor3^ However, quantum theory explained 
wh,y the spectral lines, which are important identifying marks of 
chemical elements and represent frecpiencies of absorption of 
radiation energy, appear only at certain frequencies; these are 
the differences between the consecutive frequencies of oscilla¬ 
tion in the quantum ladder” of frequencies defined by the con¬ 
secutive energy levels, which are wh#le multiples of the quantum. 

According to Planck’s quantum relation, absorption or emission 
of energy by particles oscillating at high frequencies proceeds by 
larger energy bundles than the bundles needed for absorption or 
emission of energy by particles oscillating at low frequencies. 
However, the higher the mean energy of the particles, that is, 
the larger the average number of energy quanta they hold in 
oscillating, the smaller the relative difference between consecu¬ 
tive energy levels and the less, therefore, the difference between 
a continuous (classical) distribution of energy levels and the 
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actual quantum distribution. This is only a different expression 
of the fact that at a mean energy level of a few quanta the jump 

by one quantum will be much less probable and therefore much 
more difficult than the same jump at a mean energy of many 
thousands of quanta, although the absolute step is identical, since 
this energy quantum will become the more easily available, the 
larger the mean energy. Being thus able to change its energy 
level with comparative ease, the particle in states of high mean 
energy, which are states of relatively high temperature, becomes 
increasingly ‘‘mobile’’ and less selective with regard to the par¬ 
ticular energy level it is willing to occupy. Thus, at a certain 
temperature the quantum-mechanical concept of the Planck 
oscillator approaches the classical concept of the Newtonian 
oscillator and the quantum-mechanical laws approach the laws 
of classical mechanics.®*^ 

This same consideration explains why the quantum concept 
loses its importance, though not its validity, in the description of 
the behavior of macroscopic bodies. If the energy associated 
with a process of a few seconds duration in which a macroscopic 
body is involved (for instance, a small swinging pendulum or a 
small piece of heated metal) is of the order of magnitude of a 
foot-pound or a few calories, that is, of an order of magnitude of 
10® to 10® erg or, in units of action, 10® to 10® erg-sec, a discon¬ 
tinuity in the energy change expressed in steps of an order of 
magnitude of hv = 6.6 X or about erg (if the fre¬ 
quency of heat radiation v = 10^^) can have no significance; there¬ 
fore, the process appears perfectly continuous. It is only when 
the energy associated with the process is of the oi-der of magnitude 
of a few quanta that the inherent discontinuity manifests itself. 

When the particle passes from one quantum (energy) state to 
another, the laws of conservation of energy and of momentum 
must hold. This conclusion is based on the statistical considera¬ 
tion that the macroscopic behavior of the group of particles, for 
which the conservation laws are known to hold, requires that 
these laws be true, at least statistically, for the individual par¬ 
ticle. As long as no particular mechanism of the transition from 
one quantum state to another is conceived, conclusions concerning 
the frequency of such transition can only be derived from the 
probabilities of spontaneous emission of a certain energy by a 
particle under a given set of external conditions. The frequency 
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of transition of a particle from a higher to a lower energy level 
depends on the number of existing alternative states of lower 
energy to which the particle in the excited state (that is, in a 
state of eiier;.;v above the stable mean energy level) can jump 
spontaneously, emitting the energy difference. If pji denotes 
the probability per second of a spontaneous change from the 
quantum stated to the lower state /, the ^‘mean life’^ of a particle 

in the excited state is t = 1/Pi» sec. In case there is not one, 
but a number of possible lower states t, the ^^mean life’^ is reduced 
to r = 1/Xpji, Thus, the higher the momentary quantum 
state of the particle above that of mean energy, that is, the larger 
the number of intermediate energy or (piantum levels to which the 
particle can jump, the shorter the ^^mean life” of the particle 

in the excited stat(‘ and the higher therefore its rate of transition 
to a lower state. 

6. Bohr*s Model of the Atom 

The ‘^soL.\u-SYSTE^^' model. The reason for the introduc¬ 
tion of the atomic model is the necessity of explaining and 
accounting for the existcuice of interatomic bonds. With the aid 
of the atomic model the forces of interacton between atoms can 
be related to the energy contained in the structure of the atoms 
which, according to the theory of matter, is electric energy. The 

consideration of th(^ structure of the atom and of the real nature 
of the interatomic; bond is not only of theoretical but also of 
immediate practical interest in the study of large-scale mechanical 
behavior. All large-scale fracture phenomena, for instance, are 
initiated on the atomic or molecular scale and are essentiall}^ 
governed by atomic or molecular processes. Unless the nature 
of the atomic* bond and the conditions for its formation and dis¬ 
ruption are understood, fracture phenomena cannot be generally 
interpreted and explained. 

Pictorial concepts of the structure of the atom are based on the 
solar system” atcnnic model proposed by Rutherford and per¬ 

fected by Bohr.® ^ Rutherford, realizing the electric nature of 
matter, showed that in the atom the whole positive charge and 
almost all the mass must be comment rated in a single compact 
heavy nucleus, surrounded in some way by moving negatively 
charged particles, the electrons, the combined negative charges 
of which just balance the positive charge of the nucleus. The 
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whole system thus resembles a minute solar system; its operative 
forces are the electrostatic attraction between charges of opposite 
sign and the centrifugal forces of the electron, resulting from its 
mass and acceleration. 

That Rutherford’s atomic model, which is the basis of all 
modern ideas of the structure of the atom, was inadequate, 
became evident when it was realized that a Rutherford atom 
would emit energy of all frequencies; such behavior could not 
reproduce the observed definite spectral lines. It would, more¬ 
over, emit this radiation at a rate considerably higher than the 
rate observed and therefore disintegrate rapidly. 

The Rutherford model was perfected by Bohr who applied 
Planck’s quantum concept to the ^‘planetary” motion of the 

electrons. Bohr’s two conditions by which the unstable Ruther¬ 
ford model is transformed into the perfectly stable Bohr model 
require that 

1. Among the infinite number of possible orbits, the electrons 
rotate continuously, that is, without the emission of energy, only 
within certain orbits designated as stationary state orbits; theso 

are elliptical with the nucleus at the focus of the ellipse. 
2. The stationary orbits are defined by the condition that elec¬ 

trons moving along them may possess only integral multiples 
of energy quanta hv where v denotes the frequency of rotation. 

The angular momentum of an electron of mass m in a sta¬ 
tionary state of circular motion, which is the simplest type of 
orbital motion, is obtained by dividing the energy of the rotating 
electron by 2wp and is therefore an integral multiple of h/2T, 
that is, nhf2T. By passing from one stationary energy orbit to 
another, the electron absorbs or emits a number of energy quanta 
equal to the difference of the quantum states of the electron in 
the respective orbits. 

The analogy of the solar system and of Bohr’s atomic model 
breaks down at the point where the characteristic discreteness of 
the stationary orbits and of the associated quantum states in the 
Bohr model is realized. 

According to the laws of electrostatics the attractive force 
between charges e of opposite sign is (e^/r^). Hence the centrif¬ 

ugal force mv^/r required to balance an electron attracted by 
the nucleus in its orbit of radius r is obtained from the relation 
mv^/r = e^/r^; hence, mv^ = e^/r. Since, according to this rela- 
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tion, the velocity v of the electron decreases with increasing radius 
of the orbit, its kinetic energy decreases with increasing distance 
from the nucleus, whereas, its potential energy increases; at an 
infinite distance from the nucleus the potential energy is neces¬ 
sarily zero. At the same time, it must reach there a maximum 
as the work done by the forces of attraction increases with 
increasing radius of the orbit; the potential energy of the electron 
for all finite distances from the nucleus r > 0 must therefore be 
negative. Hence the total, that is, potential and kinetic energy 
E = — e^/r. Because of the equilibrium condition mv^ = 
e“/r, the energy E = 

Periodic tahlk of elements, pauli's exclusion principle. 

There is a close and very important interrelation between the 

Rutherford-Bohr atomic model and the periodic table of ele¬ 
ments (Table 61).'' ^ The nucleus charge, which is equal to 
the unit charge e of the electron multiplied by the number Z 
of electrons surrounding the nucleus, known as the atomic 
number, increases in regular uniform steps on passing from one 
element to the next in order of atomic weight. Thus, hydrogen 
and helium with atomic numbers 1 and 2 consist of a nucleus 
of, respectively, one and two positive unit charges surrounded 
by the same number of electrons. As the atomic number 
increases, both the positive charge and the number of electrons 
increase. 

It might be assumed that the normal state of an atom is such 
that all electrons would occupy positions of lowest energy, that 
is, orbits of lowest quantum number. However, this is not the 
case; the actual distribution of electrons over the stationary 
state orbits is governed by Faults exclusion principled ^ 

Considering the manner in which the electrons of the various 
elements occupy the possible stationary-state orbits of the model, 
it is evident that, in the case of the hydrogen atom, the single 
electron, following the principle that the stable state is one of 
lowest energy, will occupy the energy level defined by the quan¬ 
tum number n = 1. This is, however, not the only quantum 
number required to identify the state of the electron; having two 
degrees of freedom, the motion of the electron is determined by 
the energy and the angular momentum, both of which are 
quantized^ that is, can only change discontinuously. Whereas 
the first or principal quantum number n determines the energy 
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level which is an integral multiple of e, the second, angular- 
momentum or orbital quantum nurnber I is related to the angular 
momentum of the motion of the electron relative to the nucleus; 
it is an integral multiple of h/2Tr and expresses the ^^ellipticity 
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of the orbit, that is, the ratio of the major to the minor axis. 
As the first quantum n varies from n = 1 to n = <», the second 
quantum number/varies from / = 0 (circular orbit) to / = n — 1. 
Thus in the simple Bohr model the lowest quantum state of the 
electron is described by the two quantum numbers: /i = 1, 
1 = 0. The next higher orbit of quantum number n ~ 2 (which 
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would be occupied l)y the single hydrogen electron only in an 
unstable excited state) is associated with two possible quantum 
states of angular momentum; / = 0 and 1=1; similarly for 
n = Sj the angular-momentum quantum number can take the 
three values: / = 2, / = 1, and I = 0. The number of electrons 
iie(;essary to complete an orbit of principal quantum number n 
(‘onsisting of (n — 1) subgroups defined by the quantum number 
/ is thus 2fr. 

It has bei^n found that two additional quantum numbers are 
required to describe the orbital motion of atoms consisting of 
more than ona (ilectron since the simple Bohr model with two 
degrees of frecHiom of electron motion is no longer adequate for 
their representation. These two numbers are called the magnetic 
quantum number and the spin quantum number.^ ^ The former 
defines the deviation from the assumed elliptical orbital motion 
because of the precession of the elliptical orbits, resulting from 
the relativistic^ change of mass of the electrons with changing 
velocity. The latter defines the rotatory motion or spin, super¬ 
imposed on the orliital motion, which is associated with the 
motion of (jvery type of particle considered to have a finite 
extension. As the spin is described by the direction of the 
angular momentum, the spin (luantum number can have only 
two values, one positive and one negative. The magnetic 
(luantum number, on the other hand, can take all values between 
+ / and — / including zero. 

With the aid of all four quantum numbers and Paulies exclusion 
principle the occupation of the stationary state orbits by any 
number of electrons can be explained. This principle simply 
stipulates that no two electrons belonging to any individual 
nucleus may have the same set of four quantum numbers. After 
one orbit has been occupied by the maximum number of electrons 
that can be accommodated according to the exclusion principle, 
additional electrons occupy orbits of greater radii and smaller 
binding energy. Thus the impenetrability of matter which is 
manifested by the small compressibility of solids is essentially 
a consequence of the exclusion principle. 

Since both the magnetic moment and the spin have a very 
small influence on the energy level, and the spin quantum number 
can take only two values of opposite sign, a satisfactory approach 
to many problems concerning the quantum states of electrons 
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is possible by using only the first two quantum numbers n and 1. 
In terms of these two quantum numbers the maximum number 
of electrons that may simultaneously occupy a suborbit of any 
given momentum quantum number I is given by the expression 
2(2Z + 1) where (2Z + 1) denotes the number of possible values 

of the magnetic (third) quantum number for each successive 
value of I and the factor 2 expresses the double value of the spin 
quantum number. Hence for n = I and / = 0, the number of 
electrons occupying the lowest orbit is 2. The two electrons of 

Fig. 61 Schematic representation of electron orbits of sodium atom, 
defined by quantum numbers (n, /). 

the helium atom will therefore both occupy the same orbit with 
= 1, Z = 0. The third electron of lithium (atomic number 3) 

can, however, no longer be accommodated in this orbit and must 
enter the next higher orbit of principal quantum number 7t = 2, 
with which two different quantum numbers of angular momen¬ 
tum Z = 0 and Z = 1 are associated. Since the orbit defined by 
(n = 2, Z = 0) can be occupied by 2 electrons, the orbit defined 
by (n = 2, Z = 1) by 2(2 + 1) =6 electrons, the energy level 
defined by the principal quantum number n = 2 can be occupied 

by 6 + 2 = 8 = 2n^ electrons. Hence, the atom of the element 
with 2 + 8 = 10 electrons which, according to the periodic table 

is neon, fills both energy levels n = 1 and n = 2 completely. 
Figure 6 • 1 is a schematic illustration of the orbits of sodium 
(atomic number 11) in two-dimensional projection. 

The stable or inert character of both neon and helium, as well 
as of such other elements of higher atomic numbers whose elec- 
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irons completely occupy all orbits defined by a principal quan¬ 
tum number, such as argon with atomic number 18, krypton 
with atomic number 36, xenon with atomic number 54, all of 
which are called inert gases, is the result of the stability of the 
grouping of electrons in what are usually called closed electron 
shells formed by the completely occupied electron orbits of quan¬ 
tum number n in accordance with Pauli’s exclusion principle. 

The order of succession in which the electrons occupy the 
various orbits is determined by the energy expended in the process 
of binding successive electrons. Thus, if, after the completion 
of a secondary shell of angular momentum number I < (n — 1) 
within the total group of such shells associated with the principal 
quantum number n, the binding energy of an electron in the first 
I shell of the (n -f- 1) level is higher than that of the successive I 
shell in the n level, the first / shell of the {n + \) level will be 
occupied by electrons before the still unoccupied I shells of the n 
level will be completed. This consideration explains the apparent 
irregularities in the filling of orbits appearing in Table 6 • 2, which 
indicates the configuration of the electron shells of atoms in their 
order in the periodic table. 

Electrons that occupy orbits outside of closed secondary or 
I shells and whose number is always less than 8 which is the 
minimum number of electrons forming a closed secondary shell, 
are called valence electrons. Of all the electrons of the atom only 
the valence electrons determine the interaction between atoms, 
and thus the chemical and mechanical properties of the material. 
The similarity of chemical and mechanical properties of various 
elements is intimately related to the similarity of the structure 
of their outer electron shell, that is, to the identity of the number 
of their valence electrons. This is the explanation of the occur¬ 
rence of periods in the system of el^hients. Thus, for instance, 
the alkali metals (lithium, sodium, potassium, rubidium, cae¬ 
sium) being all chemically and mechanically similar, (they are, 
for instance, more compressible than other solids) all have one 
electron more than the preceding inert gas, that is, have one 
electron outside of the last closed shell. Similarly, the halogens, 
(fluorine, chlorine, bromine, iodine) showing all nearly identical 
chemical reaction, have one electron less than the inert gas that 
follows them in the periodic table, that is, each has an outside 
shell to the completion of which one electron is lacking. The 
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inert gases, on the other hand, have all closed shells of 8 electrons; 
there is therefore no atomic interaction in inert gases. 

According to Paulies exclusion principle, individual stable 
groupings of electrons in orbits of nearly equal energy are made 
up of 2, 8, 18, and 32 electrons (see Table 6 2). These are 

TABLE 6.2 

Filling of Electrons Shells of Elements 

1 
P

e
ri

o
d
 

I 

Quantum 
Numbers 

n »» 1 2 3 4 5 6 7 

/ = 0 0 1 0 1 2 0 1 2 3 0 1 2 0 1 « ■ 

IH - 2He 1-2 

1 3Li -lONe 2 1-2 1-6 

2 llNa-18Ar 2 2 6 1-2 1-6 

19K -20Ca 2 2 6 2 6 1-2 

3 21Sc -28Ni 2 2 6 2 6 18 1-2 

2yCu-36Kr 2 2 6 2 6 10 1-2 16 

37Rb-38Sr 2 2 6 2 6 10 2 6 1-2 

39Y -40Zr 2 2 6 2 6 10 2 6 1-2 2 

4 41 Cb -45Rh 2 2 6 2 6 10 2 6 4-8 1 

46 Pd 2 2 6 2 6 10 2 6 10 
_J 

! 

47Ag~54Xe 2 2 6 2 6 10 2 6 10 1-2 1-6 

55C.S -»56Ba 2 2 6 2 6 10 2 6 10 2 6 1-2 

e 
57-71 (R.E) 2 2 6 ! 2 6 10 2 6 10 0-14 2 6 1 2 

O 

72Hf -78Pt 2 2 6 2 6 10 2 6 10 14 2 6 2-8 2 

79Au 86Rn 2 2 6 2 
i_ 

6 10 2 6 10 14 2 6 10 1-2 ,1-6 

6 87 -92 U 2 2 6 2 6 10 2 6 10 14 2 6 10 2 1 6 1—6 

therefore the numbers of electrons that make up the closed elec¬ 
tron shells; they are very significant in the formation of the 
chemical and mechanical properties, as they determine the 
number of valence electrons. 

The forces which two atoms exert on each other are the result 
of the electric charges of their valence electrons. The orbits of 
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electrons in closed shells remain practically unaltered by the 
influence of neighboring atoms. When two atoms approach 
each other closely enough, the valence electrons which are at 
the largest distance from their own nuclei take up new common 
orbits around the nuclei of both atoms, thus establishing an 
atomic bond. The strength of this bond is the e.xpression of the 
mutual influence between the valence electrons and the nuclei 
of the bound atoms. 

The incomplete outer shell of an atom can be closed by the 
addition of the required number of electrons; or the valence elec¬ 
trons outside the closed shell, which are rather loosely connected 
with the nucleus, can be removed from the atom by the supplying 
of a certain amount of energy. The value of this energy is an 
indication of the ease with which the atom of the considered ele¬ 
ment lends its valence electrons in chemical reactions. As a 
result of the loss of the valence electrons, the electrically neutral 
atom becomes positively charged; as a result of the completion 
of the outer shell by the occupation of the still available orbits 
by electrons, it becomes negatively charged. Being electrically 
charged, the atom becomes able to move or “wander’^ within 
an electric field. (Charged atoms with closed electron shells are 
therefore called ions (Greek for ^Svanderer^’); the positively 
charged ions are known as cations, the negatively charged as 
anions. 

7. Quantum Statistics and "Wave Particles" 

Thk wavk Fi N(n'U)N. The Bohr model in its classical form 
is inadequate to describe atoms more complex than the hydrogen 
atom, unless additional concepts are introduced, such as the 
spin and Pauli’s exclusion principle. These two concepts are, 
however, less a refinement” of the initial Bohr model than an 
expression of the fact that this model is intrinsically inadequate 
to describe the structure of a complex atom. Although originally 
introduced to support the Bohr theory, these concepts actually 
form part of the modern quantum-statistical theory of atomic 
structure, which has supplanted the Bohr model. 

The inadequacy of Bohr’s model is due to the fact that it 
represents a rather arbitrary fusion of classical and quantum- 
mechanical concepts. It treats the rotating electrons by methods 
of classical dynamics of moving bodies, into which the quantum 
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concept of selective orbits is injected axiomatically from the 
outside. 

The new quantum-statistical theory of matter is based on the 
realization that 

1. A simple extension of classical mechanics to the description 
of ph’enomena involving physical entities of very small order of 
magnitude is not possible, since only in classical mechanics can 

a particle be exactly defined by its position and velocity. 
2. The condition of quantization of frequencies or states of 

energy must be contained in the concept of atomic structure and 
not arbitrarily imposed on it. 

The first consideration is contained in the concepts of (luantum 
statistics and in Heisenberg^s “uncertainty principle”; the con¬ 
dition of automatic quantization is fulfilled by the de Broglicv- 
Schrodinger-Dirac “wave-particle” theory.^ ’ 

In the wave-particle theory every attempt at a pictorial repre¬ 
sentation of the atom has been abandoned. The representation 
of an elementary particle as a minute mass or a store of energy^ 
defined by its position in space and by its velocity, has been 
replaced by an unpicturable embodiment of particle and wave 
characteristics, by the aid of which the dual particle-wave char¬ 
acter of matter can be described and the particle and wave 
theories unified. Because of this dual character of matter, light 
behaves in certain respects as if it were made up of electrically 
neutral moving, electron-like light particles, called photons, 
whereas in other respects it behaves as if it were a wave. On 
the other hand, particles of matter, such as electrons and nuclei, 
have a wave nature as well as that of a particle, since they 
show the same phenomena of diffraction and interference that 
are characteristic of light waves. This fact has been proved in 
various ways, the most important of which is the electron micro¬ 
scope in which the bombardment of a crystal surface with 
electrons produces the wave-diffraction pattern characteristic of 
X rays and light beams.^ ^ Thus, observation of radiation 
phenomena tends to support the assumption of the particle 
character and observation of interference phenomena that of the 
wave character of light as well as of matter. 

Light and matter are linked together by the fact that they are 
both forms of energy; the observed dual character of light has a 
parallel in the same dual character of matter. These observa- 
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tions provide the basis for the picture of a “particle” which, 
pulsating rhythmically, spreads this pulsation in the form of a 
wave. These wave particles have a wave length X associated with 
them, which is given by the de Broglie equation X = h/mv^ where 
mv is the momentum of the particle of mass m and relative 
velocity v. Thus, a beam of light is regarded as a stream of 
moving photons; its intensity is expressed by the density of these 
photons, which can be described in terms of a wavelike function. 
A similar function describes the density of an electron shower 
by which a metal surface is bombarded in the electron micro¬ 

scope. It is in terms of mch wave functions that the diffraction 
phenomena associated both with the photons and with the elec¬ 
trons can be described, although no perceptible vibrating medium 
is involved. From the consideration that every particle is 
accompanied by a wave without attempting to form a definite 
picture of either the particle or the wave or even of the nature of 
the medium in which this wave is propagated, it follows that the 
motion, that is, the displacement y of whatever is vibrating is 
governed by a wave equation^ the solution of which gives the 
wave function. 

The simplest one-dimensional form of a wave equation is the 
well-known expression governing oscillations of a single degree 
of freedom ]/' + c^y = 0 where c denotes a constant. The solu¬ 
tion of this equation is the wave function, 

y = A sin ex + B cos cx (7 1) 

livery solution of this forni satisfies the wave equation; it does 
not, however, describe the behavior of any particular system, 
as such a system must have definite boundaries. If, as in the 
vibration of a string of length s, the conditions i/ = 0 for .r = 0 
and X = s are introduced as the ^oundary conditions of the 
vibrating system, the values of the constants become i? = 0 
and .1 0 if the trivial solution y — 0 m to be avoided. The 
constant A, however, can take only a number of definite discret<' 
values; because of the imposed second boundary condition 
y = A sin (cs) must be zero for x = s or, since A ^ 0, sin (cs) = 0. 
Hence cs = nic or c = (nx/s). The possible waves are therefore 
expressed by the equation y = A sin //tt, where n can take all 
integral values. This last equation is the condition of quanti¬ 
zation of frequencies; it follows directly from the wave character 
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of the phenomenon and the necessity of fulfilling given boundary 
conditions. 

The quantum condition of the Bohr model can also be easily 
interpreted in terms of the wave picture. Considering the 
circular motion of an electron around a nucleus, the quantum 
condition of angular momentum is given by the expression mvr = 
nh/2Tr, If instead of the revolving electron a revolving wave is 
considered, the previous quantum condition of the particle is O transformed into the quantum condition 

of the wave by introduction of the de 
Broglie equation mv = h/\. Hence, 
n\ = 2irr, which is the expression of the 
requirement that the stable motion of a 
wave along a circular orbit is only possible 
when the circumference of the circle is an 
integral multiple of the wave length 
(Fig. 7 1). Thus, the quantization fol- 

around a circle, automatically from the wave char¬ 
acter of the electron. 

Schrodinger’s wave equations^ ^ of the electron or rather of the 
vibrating essence are of a similar form with energy as the 
constant. Their solutions will therefore be those that correspond 
to discrete values of the energy for which the boundary conditions 
of the considered space are fulfilled; the possible energy levels of 
the electron are thus quantized. When Schrodinger’s wave 
equation is applied to the hydrogen atom, the quantized energies 
of the Schrbdinger waves correspond to the discrete energy levels 
(orbits) of the Bohr model. Higher energy levels correspond 
with waves of shorter lengths. The frequencies at which energy 
is emitted or absorbed are the heat or interference frequencies of 
consecutive wave functions. 

The statistical concept. So far no attempt has been made 
to attach any physical meaning to the vibrating essencewhich 
is associated with the electron and is described by the wave 
equation. The interpretation of the wave function ^ requires 
the introduction of statistical concepts expressing the limitations 
in the validity of the concept of causality. 

The validity of this concept, that is, the existence of causal 
relations is implied in the use, in Newtonian mechanics, of differ¬ 
ential equations, by which the unknown relations between certain 
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(juantities at a certain moment are derived from the known rela¬ 
tions at a preceding moment. As long as the principle of 
causality is valid, the final state of a system must follow unam¬ 
biguously from its original conditions. In spite of the general 
validity of the laws of Newtonian mechanics, their practical 
applicability is restricted to the analysis of phenomena for which 
the momentary conditions as well as all acting influences not 
only are known in principle, but also can at any moment be 
actually described. Therefore, if the investigated phenomenon 
is the resultant effect of a large number of phenomena, which, 
although individually governed by Newtonian mechanics, can¬ 
not be described in terms of Newtonian mechanics, the causal 
approach must be abandoned. In phenomena of this type 
which are called mass phenomena, the influences governing indi¬ 
vidual phenomena are so varied and complex that any attempt 
to study each phenomenon separately would be impracticable; 

practical methods of approach to the analysis of the resultant 
phenomenon can therefore only be statistical. 

A good illustration of a mass phenomenon and of the implica¬ 
tions of the statistical approach in mechanics is provided by the 
Gallon hoard. This is a vertical board, studded with a large 
number of parallel rows of metal pins which are staggered by one 

half of the pin distance. Small steel balls, released from a cer¬ 
tain height on the center pin of the top row, will, on hitting this 
pin, be deflected to either the right or the left. Each ball, after 
being so deflected proceeds vertically on its downward way 
until it hits a pin of the second row and must again choose between 
right and left, and so on. When the ball has thus traversed all 
X rows, it has made this choice x times and as a result finds itself 
at a certain horizontal distance to the right or left of the center. 
This procedure is repeated either with a large number of similar 
balls or a large number of times with the same ball, the number 
of balls at a certain distance from the center or the various posi¬ 
tions of the single ball being recorded. 

The assumption that the actual distribution of balls or the 
various positions of one ball at the bottom of the Galton board 
can be explained in a causal way, because the motion of each 
individual ball is governed by Newtonian mechanics, is an illu- 
sipn. In attempting to follow every motion of an individual 
ball, considering all effects during the fall and in the collisions 
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with the pins, where extremely small force components decide 
about the future course of the ball to the right or left of the pin, 
the individual phenomenon will become too complex to be 
analyzed. However, the probability that the ball will be 
diverted to the left or to the right by the individual pin that it 
strikes can be assessed beforehand by purely logical argument 
to be 1/2, if the conditions (distances of pins, size of balls, and 
the like) are considered to be perfectly uniform. From this 
assumption the distribution of a large number of balls at the 
bottom of the board, or the probability of a certain position of 
an individual ball, can be derived by the theory of probability.^ ^ 

With increasing number of balls their distribution at the 
bottom will be bell-shaped, tending towards the distribution 
described by the normal or Gaussian curve. This curve repre¬ 
sents the distribution function for a practically infinite number 
of balls; the ordinates express the actual number or the per¬ 
centage of balls that, passing through all the pin rows, aggregate 
at a certain number of unit distances from the center. This 
percentage also represents the theoretical probability of finding 

an individual ball at the respective distance. 
It is only in the form of probabilities and distribution functions 

that results of statistical theories can be represented. These 
functions express the probability of finding any one of the large 
number of elements involved in the considered process or phe¬ 
nomenon in a certain state, or the number or percentage of 
elements that can be expected to be in this state. Statistical 
theories are unable to predict the exact behavior of a particular 
single element and are meaningless in this respect. Information 
with respect to an individual element is thus represented eithei- 
by the a priori probability of a definite behavior, obtained by the 
consideration of the list of the various possible behaviors, or by 
the probability of a certain behavior derived from a previously 
obtained experimental distribution function involving a large 
number of observations or elements. 

Suppose the picture of the ball falling on the Galton board is 
replaced by the picture of a particle moving in space and char¬ 
acterized at any moment by its position and its momentum 
(which is proportional to its velocity). Heisenberg has pointed 
out that it is impossible to observe or measure simultaneously 
and with the same accuracy both the position and the velocity 
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of such a particle, since the act of observation itself interferes 
with one of the coordinates. Light of a wave length sufficiently 
short to determine accurately the position of a particle of electron 
size has also enough energy to deflect the electron from its course 
during the observation, when it is hit by photons. It is thus 
given an additional momentum in an unspecified direction, in 
the same way in which the impact of the observation of the posi- 
tion of the falling ball on the Galton board, that is, the hitting 
of the pin, produces the individually unpredictable deviation 
from its path. Increasing the wave length of the light, that is, 
decreasing the momentum of the photons, in order to produce less 
interference with the electron under observation, necessarily 
reduces the accuracy in the observation of its position. Thus, 
the conditions that favor the accurate measurement of the posi¬ 
tion produce the gi*eatest uncertainty in the velocity, and vice 

versa. 
J^oth the impact of the light radiation on the electron and of 

the collision with the pin on the falling ball are purely statistical 
phenomena. The chance*' effects of these impacts on the 

motion, therefore, cannot be eliminated by additional safe¬ 
guards or additional accuracy. They illustrate the indeterminate 
nature of all problems of observation and of measurements in 
microphysics, which is expressed by Heisenberg's uncertainty 
principle. This principle also follows directly from the wave- 
particle concept of matter. If, under certain conditions, the 
wave particle is observed as a wave, it can have more than one 
I)ossible location. On the other hand, if it is observed as a 
particle in a definite location, its wave length and thus its 
velocity, which is related to the wave length by the de Broglie 
ecpiation, cannot be measured. 

The uncertainty relation is not ccgifined to location and 
velocity; it is also valid in the coordination of energy and time. 
Conditions that produce the greatest accuracy in the measure¬ 
ment of energy are those that produce the greatest uncertainty 
in time. Thus the measurement of the energy of a particle at a 
certain instant is associated with an uncertainty which is the 
larger the shorter the time of measurement. 

As a result of Heisenberg's uncertainty principle no particle 
of atomic or subatomic size can be visualized, since it cannot 
have a definite position and a definite velocity at the same time. 
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These variables can only be expressed in terms of the probability 
of finding the particle within a certain range of locations or 
velocities. 

Because of the large number of electrons involved, their loca¬ 
tion can only be defined by the probability of finding a certain 
percentage of them in a definite location. It is this large number 
of electrons, the positions of which are given in terms of a proba¬ 
bility function, that produce the wave pattern of behavior, 
described by Schrodinger's equation. Thus, the wave function 
^ is a probability function^ and the waves are the waves of the 
probability of finding a particle in a definite position or at a cer¬ 
tain energy level. 

In the case of light the interference between different wave 
patterns produces different light intensities, which are measured 
by the square of the amplitude of the resultant wave. Similarly, 
in the case of probability waves, the intensity of the particle dis¬ 
tribution, that is, the relative density of particles in a certain 
location, which is proportional to the probability of a particle 
being in this location, is measured by the square of the wave 
function. Thus the probability-distribution function for the 
position of the electron, or the electron density in a certain volume 
dF, is obtained as the product dV. It is a measure of the 
probability of finding the electron in the volume dF, or of the 
volume density of electrons or of the distribution of their charge. 

For the Bohr model of the hydrogen atom the probability 
of finding the electron between the distances r and (r + dr) from 
the nucleus is expressed by 47rr^^^ dr. This function has a 

maximum at r = ro which is identical with the Bohr radius of 
the orbit n = 1. However, according to the quantum-statistical 
concept the electron is not restricted to this distance alone but 
can take other though less probable positions. 

Suppose the probability of finding the electron at a certain dis¬ 
tance r from the nucleus or the specific density of electrons or the 
electron charge at this distance is considered as a cloud; the 
density of this cloud varies. The cloud density for the hydrogen 
atom would increase from the nucleus to a maximum beyond 
which it would thin out rather rapidly, although even at a large 
distance a very slight ‘^probability haze” would still exist. For 
atoms of more than one electron, each cloudy taken as a whole, 

represents a single, fully occupied energy level of electrons. 
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which forms a closed shell. These clouds are not actually sepa¬ 
rated from each other, but rather form one cloud of fluctuating 
density, as illustrated in Fig. 7 • 2, which shows the distribution 
of the electron density or electron charge in the hydrogen atom 
and in the two shells of a sodium atom, as a function of the dis¬ 
tance from the nucleus. 

The Bohr model of atomic structure can thus be reinterpreted 
in the light of quantum statistics by considering that the elec¬ 
trons move in and out about the nucleus, remaining usually 

Fig. 7-2 Distribution of electron density around nucleus of hydrogen and 

of sodium atom. 

within a distance that does not differ appreciably from the Bohr 
orbit; however, the probability that electrons may be found at 
appreciably different distances is finite, no matter how small. 
The velocity of the motion is not constant; however, it is of the 
order of magnitude of the constant Bohr velocity. Over a period 
of time, long enough to permit a large number of cycles of the 
motion of the electrons around the nucleus to take place, the 
atom can thus be visualized as consisting of the nucleus, sur¬ 
rounded by a spatial electron cloud, wj;iich actually represents the 
positions of the individual electrons, that is the electrons blurred 
by the ‘‘time exposureof their rapid motion in the period of 
observation. The density of this “photograph'' of the electron 
cloud will be highest at the location at which the probability of 
finding an electron is largest. 

The retention of the essential Bohr picture is very helpful in 
visualizing the atomic structure of matter for which this model 
has so far provided the best illustration. The statistical picture 
of the atom is, however, no longer the planetary system with 
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fixed orbits around the nucleus, but a nucleus surrounded by 
cloudlike shells of electrons or, rather, of electron densities. 
Although the density of this (statistical) cloud does not abruptly 
drop to zero beyond a certain radius but decreases gradually 
towards the exterior, this decrease is rapid enough to justify the 
representation of atoms and of ions as nuclei surrounded by 
electronic clouds, which, in very rough approximation, can be 

assumed to be of spherical shape. Thus the external radius of 
the cloud represents the ionic or the atomic radius. 

This picture of the atom shows a striking resemblance to the 
old picture of the atoms considered as elastic spheres out of 
which material is formed in the same manner in which such 
spheres are packed together. Although the substanceof the 
sphere has greatly changed, and its size, electric charge, and 
manner of interaction with other spheres can now be derived 
from quantum statistics, the simple outward picture has remained 
almost unchanged. 

8. The Size of Atoms and Molecules 

The size of particles forming the material is a most important 
characteristic, since both the intensity of thermal motion and 
the order of magnitude of the interacting forces are associated 
with particle size which, in turn, determines the particle distances 
in the group formation. The whole range of particle sizes, the 
ranges of applications of observation methods, and the ranges of 
different types of motion are represented in Fig. 8 1. 

Comparison of the order of magnitude of the atomic nucleus 
(10"^^ micron) and of electrons (10“"^® micron) with the diameter 
of the hydrogen atom (10”'^ micron) confirms the dimensional 
adequacy of the solar-system” atomic model. The diameter 
of the orbit of the motion of the electron about the nucleus is 
about 10® times its own size. The fadii of ions are derived from 
the interatomic spacing and represent the radii of the outer 
closed electron shells (or rather clouds); they are of an order of 
magnitude of 0.5 to 2.5 A. If considered in the order of their 
atomic numbers, these radii show a periodic variation, in con¬ 
formity with the periodicity of their electron structure as 

expressed by the periodic table; the largest volume in each 
sequence is occupied by the inert gas. This fact can be explained 
by a consideration of the relative charges of the nucleus and of 
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the electrons of the respective ions. If for instance the third 
sequence (quantum number n = 3) is considered, starting with 

argon (atomic number 18) the electrons of which are distributed 
over three shells, it is clear that in the ion of potassium (atomic 
number 19), which is obtained by the removal of 1 valence elec¬ 
tron and has therefore only 18 electrons and a positive charge, 
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Fig. 8*1 Sizes of material particles, types of motion, and methods of 

observation. 

the nucleus has one positive excess unit charge. This produces 
a stronger bond between nucleus and electrons than exists in the 
neutral argon atom, in which the electric charges are balanced. 
The increased bond manifests itself b^ a decrease of the volume 
occupied by the electrons. For the same reason the ion of cal¬ 
cium, with atomic number 20, 18 electrons, a positive charge, 
and a difference of two units between the charge of the nucleus 
and of the electrons, will occupy a still smaller volume, and so 
on. When the shell is again closed in the formation of an inert 
gas, the difference between the charges of nucleus and electrons 
becoming zero, the volume of the ion which is identical in this 
case with that of the atom, suddenly expands. 

The radii of the atoms are larger than the radii of the respective 
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ions by roughly the thickness of the outer electron shell in 
which the valence electrons are located (Fig. 8-2). The varying 
tendency of the relation between atomic radius and atomic 
number within the periodic sequences, which differs from the 
definitely falling trend in the relation between the ionic radius 
and the atomic number, is due to the charges of the ion. The 
single-valence electron of potassium, which makes the radius 

0 10 20 30 40 50 60 70 80 90 100 
Z — 

Fig. 8-2 Radii of atoms as a function of atomic number Z (after Zwikker*'V). 

of the potassium atom larger than that of argon, is bound by one 
positive unit charge to the ion; the two valence electrons of cal¬ 
cium, while occupying the same orbit are, however, attracted 
by two unit charges; they will be more closely bound and there¬ 
fore will occupy a smaller volume. Thus, within the first part 
of every sequence the atomic radii decrease, in spite of increasing 
number of electrons; the atomic volume reaches a minimum for 
elements in the middle of the periodic sequences. In the second 
half of this sequence, however, the repulsive forces between the 
swarming electrons apparently counteract the tendency towards 
decreasing volumes. 
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Figure 8 • 3 represents the relation between the specific density 
and the atomic number of elements and is easy to interpret on 
the basis of Fig. 8-2. It illustrates the close relation between 
atomic radius and specific density in solids and tends to justify 
the rather simple picture of the solid, consisting of a more or less 
closely packed aggregation of atoms or of ions of spherical shape; 
this is true at least for solids in which the structure is neither the 
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Fig. 8*3 Specific density of elements as function of atomic number Z 

(after Zwikker*'^. 

result of nor affected by the formation of structurally identifiable 
molecules. This concept of a material formed by packing 
together of spheres of the size of ions or atoms is very useful for 
understanding the crystalline structure. It is supported by 
many observations, both in metals and nonmetals, in which the 
additivity of the atomic radii in forming the interatomic distance 
was fairly well confirmed. The atomic radius is not however 
the sole influence in forming the interatomic distances; substantial 
and consistent deviations from the additivity of atomic radii 
must be expected as a consequence of the influence of the nature 
of the binding forces and of the fact that the electron clouds are 
not strictly impenetrable. However, even these deviations do 
not invalidate the concept of the packed spheres, both for 

spheres of equal and of unequal radii. 
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According to this picture of the crystal structure the particles 
with the smallest radii would be the easiest to arrange between 
more or less closely packed atoms of larger radii. Since it can 
generally be observed that decreasing interatomic distances are 
accompanied by increasing strength of interatomic bonds, these 
small particles would form the strongest bonds but would at the 
same time be the most mobile within the packing of atomic 

spheres of larger diameter. Ions or atoms of such small size 
could thus escape or diffuse out of the closely packed larger 
atoms, without disturbing the stability of their arrangement. 

Figure 8 • 2 shows that the smallest particles are those of hydrogen 
boron, carbon, nitrogen, and oxygen. These are, therefore, the 
elements easiest to fit into or to diffuse out of a stable arrange¬ 
ment of other atoms and most likely to form the strongest bonds. 
Their atomic radius is of the order of magnitude of 0.5 A, whereas 
the atomic distances of most of the metals are between 1.5 and 
3.0 A. 

If spheres of uniform radius r are packed v^ery loosely so that 
each layer of spheres lies immediately above the one below in 
cubical arrangement in which the spheres touch each other in 
0 points, the maximum radius ri of the spheres that can be intro¬ 
duced into the voids between those spheres is Vi = (\/3 — l)r = 
0.73r. In the most densely packed aggregate of spherical par¬ 
ticles of cubical type, in which the interstices between the spheres 
are bounded by six spherical surfaces and in which the spheres 
touch each other in 12 points, smaller particles of a radius 
r\ = (\/2 — l)r = 0.41r can be introduced into the interstices 
without disturbing the original arrangement of spheres.^ - 
In experimental studies of a number of alloys it was found how¬ 
ever®’® that a limit of rx/r = 0.59 could be reached; apparently 
the lattice is capable of a certain adjustment by expansion or by 
a slight deformation of the electron shells, the‘‘impenetrability” 
of which is not absolute. The relatively high radius ratio rx/r 
of the closely packed structures explains the relatively high 
mobility of the small atoms of carbon, nitrogen, and oxygen 
within most of the crystalline materials, particularly metals, as 
observed in diffusion processes. Thus the interstices of closelv 
packed iron atoms with an interatomic distance of 2r = 2.50 A 
can be filled by spheres of a radius n =0.41 X 1.25 = 0.5 A. 
The radii of carbon and nitrogen arc larger than this figure, 
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whereas the radius of oxygen atoms is slightly smaller; thus a 
certain expansion will accompany the insertion of carbon or 
nitrogen into the iron lattice, whereas oxygen can diffuse in and 
out of the lattice without affecting it. 

For radius ratios exceeding 0.59, simply packed structures no 
longer exist. The existing structures are more complex and, in 
fact, form transitions from the structures in which the alloying 
atoms are absorbed into the interstices to those in which they 
are substituted for particles of the original lattice. Iron-carbon 
alloys form actually borderline cases since the radius of the 
carbon atom slightly exceeds the limiting value of ri = 0.59 X 
1.25A = 0.74 A. This is the reason for the complex transforma¬ 
tions taking place at the ^^austenitizing’’ temperature of 720°C 
below which a perfect substitution alloy (“austenite”) does not 
exist. These transformations arc responsible for the hardening 
of steel. 

It should be noted that the atomic radius of a particular ele¬ 
ment in different crystals is not constant but depends on the 
type of atomic forces present. Thus, for instance, the radius of 
an ion of the same metal will be smaller in an ionic crystal than 
in a metal crystal. Hence, in specifying the atomic radius the 
type of crystal from which it has been obtained must be known, 
and a comparison of atomic radii is limited to crystals with the 
same type of binding forces. There is, however, also a depend¬ 
ence on the crystal lattice such that the atomic radius increases 
with increasing coordination number. 

The differences of atomic radii of different metals are relatively 
small. Also where a metal can exist in various lattices (allot- 
ropy), the difference in spacing between the different modifica¬ 
tions is small. Thus, the different modifications have all about 
the same energy, which is the explanation of the fact that allot¬ 
ropy is very common among metals. 

The relative magnitude of atomic radii is thus a very important 
effect in the formation of metal alloys, since, in order to form 
alloys, metal atoms either must be of such relative dimensions 
as to produce a structure in which the interstices of the packed 
larger atoms are filled by smaller atoms {interstitial alloys) or 
must be nearly the same size {substitutional alloys). It has been 
found that in the latter case the radii must not differ by more than 
15 percent;® ^ the smaller this difference, the easier the formation 
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of the alloy. No substitutional alloys are formed of elements if 
the diameter of atoms differs by more than 15 percent. 

If the electron clouds of two or more atoms lose their character 
as isolating shells and, penetrating each other, form a stable 
group in which the charges of the valence electrons are neutral- 

Fio. 8-4 Quantum-statistical model of four-atomic ammonia molecule 
NH3 (courtesy American Institute of Physics*’^). 

ized in binding the atoms together, such a group is called a 
molecule (Fig. 8*4). Because of the neutralization of the charge 
of the individual group of atoms, the forces of interaction between 
the molecules will be relatively small, whereas the atomic bond 
forces forming the molecule will be large. Although molecules 
are thus electrically inert, they form a sort of temporary or 
permanent magnet called a dipole as a result of the fact that, 
within the formed molecule, the centers of gravity of the positive 
and the negative charges of the ions do not coincide. Such oscil¬ 
lating dipoles, whose magnetic or dipole moment is equal to the 
pole charge times the distance between the centers of the charge, 
attract each other and form intermolecular bonds. 
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In defining the molecule in the solid state as a specific chemical 
entity, the structural aspect of the group formation is neglected. 
In many cases the formation of a specific chemical entity is not 
associated with the formation of a specific structural entity and 
thus is irrelevant in those considerations where only the fact of 
the existence of a structural entity is of consequence. Thus, 
the formation of chemical molecules in all crystalline substances 
is usually irrelevant in rela¬ 
tion to their mechanical 
behavior. The crystal lattice 
is formed by the ions occupy¬ 
ing the lattice points, not by 
the chemical molecules theo¬ 
retically formed by these ions. 
These chemical molecules are 
interconnected within the 
crystalline structure by strong 
interatomic bonds and have 
therefore no structural iden¬ 
tity. In the sodium chloride 
lattice, for instance (Fig. 8-5), 
atoms of sodium and of chlo¬ 
rine are assumed to form Fig. 8-5 Sodium chloride lattice, 

molecules of sodium chloride 
which are considered chemically identifiable; such identification 
is, however, structurally meaningless, since the structure consists 
of the undivided crystal lattice. Thus, molecules should be con¬ 
sidered as separate ‘‘particles’^ in a structural sense only if they 
form definite structural groups in such a manner that the mechan¬ 
ical separation of the individual groups (molecules) from each 
other is considerably easier, than the reparation of individual ele¬ 
ments (atoms) from the groups. According to this definition, 
only the “organic” or carbon compounds, and materials in which 
atoms aggregate into small groups before building up the struc¬ 
ture, such as a number of silicon compounds and sulphur, form 
real structural molecules in solids. 

Only in the liquid state has the chemically defined molecule 
also a structural identity, since in solutions the atoms have no 
independent stable existence outside of a structurally identifiable 
molecule. 

The magnitude of molecules varies widely with the number of 
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atoms forming them. It is therefore meaningless to define the 
intermolecular distances in terms of particle size, since these dis¬ 
tances will be characteristic of the individual molecular structure 
rather than of the molecule itself. The dimensions of single 
molecules are usually of the order of magnitude of 1.5 to 5 A. 
However, the so-called giant molecules or macromolecules form¬ 
ing the high polymers and fibers attain considerably larger 

dimensions. The number of atoms forming a molecule varies 
between 2 and 10^ for single molecules of an order of magnitude 
<10’"^ cm, to 10^ for macromolecules whose order of magnitude 
reaches 10~*^ cm. 

The mechanical properties of materials built up of structurally 
identifiable molecules are affected not only by the size, but also 

by the particular shape of the molecules. This influence of the 
shape of the constituent molecules on the phenomenological 
behavior increases with increasing size of the molecules; it is 
relatively small if the shape of the molecules does not deviate too 
much from the sphere, but becomes predominant where fiber¬ 
like macromolecules are formed by interconnected oriented 
molecules of elongated shape. 
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CHAPTER 

2 

THE STRUCTURE OF MATTER 

9. Forces of Interaction 

'rvpES OF BONDS. The energy of cohesion of a solid is repre¬ 
sented by the energy absorbed in forming the solid out of atoms 
or molecules and is equivalent to the “mass defect.’’ It is 
therefore equal to the heat of sublimalian, that is the heat energy 
required to dissociate the unit (juantity of the solid into isolated 
free atoms or molecules. The forces of interaction between the 
particles form the interatomic and intermolecular bonds in which 
t he cohesive energy of the material is contained. 

The unit quantity of a substance is usually defined either as a 
mole or as a gram-atom, that is the quantity the weight in grams 
of which is equal to the molecular or to the atomic weight of the 
substance; these are, respectively, the weights of a molecule or 
of an atom of the substance. These weights are, however, not 
measured in grams but with reference to a standard gas, the 
atomic weight of which is designated as unity and which is 
defined in such a manner that the atomic weight of oxygen is 16. 
.\ mole of diatomic oxygen molecules thus weighs 32 grams. 
From the definition of the mole and the gram-atom it follows 
that the unit quantity always contains, respectively, the same 
number of molecules or of atoms. This number is a physical 
constant known as Avogadro’s number, and has the value N - 
6.02 X 102». 

It is convenient to consider four principal types of bonds, 
although such classification is not rigorous. In fact the transi¬ 
tion from one type of bond to another is so gradual that bonds 

61 
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of intermediate types, combining the characteristics of some of 
the principal types, must necessarily exist. The four principal 

types of bonds are: 

1. Ionic or electrostatic* bcmds, also calU^l hetoropolar bonds. 
2. Atomic bonds, also called valence, covalent, oi* hornopolar 

bonds. 
3. Metallic bonds. 
4. Intermolecular bonds, formed by dipole or \'an der Waals’ 

forces. 

The intermolecular bonds should not be grouped together with 
the three other bond types, since by acting between individual 
molecules they are acting at a different level of association of 
particles. To distinguish them from the other three types, 
known as the primary bonds between atoms or ions, intermolecular 
bonds are usually referred to as secondary bonds. It has already 
been pointed out that, as a result of the neutralization of the 
electric charges of the ions in the formation of molecules, and 
because of the comparatively large intermolecular distances, the 
intermolecular forces have a considerably lower energy content 
than the interatomic or interionic forces and are therefore much 
weaker. 

The energy content of bonds is generally an inverse, though not 
linear, function of the distance between the particles. The dif¬ 
ference in energy content between primary and secondary bonds 
is approximately of two orders of magnitude, whereas the differ¬ 
ence between interatomic and intermolecular distances is not 
more than one order of magnitude. 

Not all bonds between molecules are intermolecular or second¬ 
ary bonds. The molecular segments out of which the long chain 
or macromolecules of high polymers are formed are connected 
by bonds formed between adjoining'atoms of two molecules and 
are therefore primary bonds. Only the bonds between moleculai- 
chains themselves are secondary, with the result that the trans¬ 
verse strength of high polymers of fibrous structure made up of 
parallel macromolecules is only a fraction of its strength in the 
direction of the molecular chains. 

All four types of bonds may be responsible for the cohesion of 
crystalline solids, although two basically different types of forma¬ 
tion can be distinguished. In the first type, structurally identi- 
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liable molecules are formed by primary bonds, and grouped into 
a lattice in which they are held together by secondary bonds; 
these are the so-called molecular crystals or molecular lattices. 
In the second type of solid no molecules are formed, or the mole¬ 
cules are only chemically, not structurally, identifiable; their 
separation from each other thus requires the application of 
energy of the same order of magnitude as the separation of the 
bonds between the individual atoms. Formations of this type 
are called coordination lattices. 

P^ither amorphous substances are formed by primary bonds 
alone, the chemical molecules being structurally unidentifiable, 
as in most of the strong glasses; or chemically and structurally 
identifiable molecules are held together by secondary bonds, as in 
most of the organic compounds, such as high polymers. 

The study of interacting forces between particles in liquids has 
not yet led to any well-established concept. It is, however, 
assumed that forces of a similar type are responsible for the 
formation of a material both in the solid and in the liquid states. 
Thus, the melt of materials of ionic-lattice structure is probably 
formed by the same electrostatic (primary) forces of interaction 
that are responsible for the solid lattice formation. The same is 
apparently true for atomic lattices, although the operative 
mechanism of the interatomic forces in the liquid is not known. 
There are, however, some cases where the transition from the 
solid to the liquid state is accompanied by a definite change of 
the type of operating bonds, as in a number of complex chemical 
compounds. Most liquids, however, retain their molecular 
structure after solidification. 

Ionic bonds, Ionic bonds result from the electrostatic inter¬ 
action (('’oulomb attraction) between (positive) cations and 
(negative) anions. They produce the ionic crystals or anorganic 
salts, the formation of which is based on a one-to-one relation 
between heteropolar neighboring particles. Since the atoms of 
metallic elements lose their valence electrons very easily, at 
least as long as the number of electrons outside the closed shell 
is very small, whereas atoms of nonmetallic elements with very 
nearly closed outer shells have a strong tendency to complete 
this shell by absorbing electrons, stable cations and anions are 
formed by the association of metal and nonmetal atoms. These 
ions of opposite charge are mutually attracted and form ionic 
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bonds, which are of considerable strength. The energy content 
or heat of sublimation of ionic crystals is of the order of magnitude 
of 100 to 500 kg cal per mole. Ionic-bond formation is the easier, 
the smaller the number of valence electrons of the constituent 
atoms; it is therefore particularly frequent between the mono¬ 
valent alkali metals and the halogens, which lack one electron 
in their outer shell; sodium chloride is a typical example of an 

ionic crystal. Evidently, ionic bonds are formed only between 
atoms of different chemical elements. 

In order for atoms of the same elements to be combined, they 
must have incomplete shells; otherwise, only molecular bonds are 
formed, as illustrated by the behavior of the inert gases. Between 
atoms of the same element both covalent and metallic bonds may 
be formed. The nature of the bond that is actually formed 
depends on the number of valence electrons. 

Covalent bonds. Covalent bonds form the valence crystals^ 
which are monatomic substances of high cohesive energy, great 
hardness, and very low conductivity. Diamond, carborundum, 
and quartz are prototypes of such crystals. The heat of sub¬ 
limation of the ideal valence crystals is of an order of magnitude 
similar to that of ionic crystals. Atomic or covalent bonds are 

formed by the sharing'^ of valence electrons by neighboring 
atoms which attempt by this process to complete their outer 
electron shells, thereby becoming negatively charged. Accord¬ 

ing to Paulies exclusion principle, a 
stable electron shell, beyond that asso¬ 
ciated with the quantum number n = 1 
(hydrogen and helium) contains at least 
8 electrons. If there are, for instance, 
7 electrons in the outer shell, as in the 
halogens (fluorine, chlorine, bromine, 
iodine), one electron is shared or ex¬ 
changed by both atoms. These atoms 
have therefore alternately 6 and 8 elec¬ 
trons in their outer shells, becoming in 

alternation positively and negatively charged. Through the s/iar- 
ing process which produces an exchange of electric charge, the 
atoms form a closely knit two-atom or diatomic molecule. 
Because the mutual interaction within the diatomic molecules 
extends to pairs of atoms only (Fig. 9 1), the cohesive strength 

Fig. 9 • 1 Structure of ma¬ 

terial formed of diatomic 

molecules. 
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of such materials is small; in crystal formation they are held 
together by weak molecular bonds. 

In elements with 6 electrons in the outer shell such as sulphur, 
selenium, or tellurium, one electron of each atom is shared with 
the two nearest neighboring atoms, so that a '^roving pair’^ of 
electrons is exchanged among three atoms forming a molecule. 
Since each atom can thus 
form a bond with only two 
neighboring atoms, a linear 
chain of atoms can be formed 
(Fig. 9-2), producing mole¬ 
cules that may become very (a) Tellurium (6) Sulphur 

large. Such one-dimensional 9.2 (spiral or ring) 

fiber-, ring-, or spiral-shaped molecules, 

giant molecules resulting in a 

“threadlike’^ structure are characteristic of crystalline sulphur, 
selenium, and tellurium. As with diatomic molecules, only 
molecular interaction is possible between the linear molecules; 
the cohesive strength of materials in this formation is therefore 
relatively small, unless the molecules are oriented in the direction 
of the force. 

If there are 5 electrons in the outer shell, as in arsenic, anti¬ 
mony, and bismuth atoms, the stable 8-electron shell of an atom 

is completed by the sharing of one 
electron each with the three closest 
neighbors, so that each atom in the 
four-atom group is alternately sur¬ 
rounded by 8 electrons. In this 
way, plane or wavelike giant “sheet ” 
molecules are formed which consist 
of layers of atoms which are usually 
connected by molecular bonds (Fig. 
9-3). The molecular interaction 
produces a rather weak cohesion of 
the material in the direction per¬ 
pendicular to the planes of the 
molecules, resulting in a two-di¬ 

mensional “sheetlike” structure, strong only in the planes of the 

sheets. 
Atoms of elements with 4 electrons in the outer shell, such as 

Fig. 9-3 Nearly plane giant 

molecules of antimony or 

graphite of hexagonal struc¬ 

ture. 
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carbon, silicon, and germanium share one electron each with the 
four closest neighbors, producing a three-dimensional formation 
in which the atoms occupy the center and the corners of a tetra¬ 
hedron (Fig. 9 4). Because in this formation, unlike the other 
formations discussed so far, the forces of interaction in all three 
directions of space are interatomic forces, the rigidity and strength 
of such substances are very high, as exemplified by the diamond 

and silicon crystals. More¬ 
over, the fact that the 4 
shared electrons, by alter¬ 
nately closing the outer shells 
of the constituent atoms, pro¬ 
duce configurations charac¬ 
teristic of the electrically inert 
gases (carbon atoms with 
atomic number 6, and 4 shared 
electrons are transformed into 

Fig. 9-4 Ihree-dimojisioiml dia- 10-electron neon-like con- 
inond structun*. ... , 

figuration; silicon atoms with 
atomic number 14 are ti ansformed into the 18-electron argon-like 
configuration and germanium with atomic number 32 into the 30- 
electron krypton-like configuration) is responsible for the poor 
electric conductivity of the materials which form the so-called 
diamond-like atomic structures. 

In general, if N denotes the actual number of valence electrons 
in the incomplete shell, (8 — N) will be the number of electrons 
to be shared by neighboring atoms, so as to complete the shell 
alternatively in any one of the neighboring atoms, connected by 
covalent bonds. Thus, the number of unshared electrons is 
N — {S — N) = {2N — 8); this number can evidently not be 
less than zero, as otherwise each atom would have to share 
more electrons than it possesses. Hence, iV ~ 4 is the minimum 
number of valence electrons leading to covalent bonds; this 
means that only materials consisting of atoms having at least 
4 electrons in the outer incomplete shell can form covalent bonds. 

The electrons that are jointly held or shared by the bound 
atoms are assumed to be effective in alternatingly completing 
the closed shell for each atom by some mechanism of ‘^multiple- 
duty performance^^ or of “mutual interchange.^^ Since ions 
formed by the momentary completion of the outer electron shells 
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are negatively eharged, atom groups formed by covalent bonds 
are homopolar. 

It has been shown that the cohesive strength and the deforma- 
tional behavior of materials formed by covalent bonds are essen¬ 
tially determined by the number of bonds one atom can form with 
its neighbors. The larger this number, the higher becomes the 
total cohesive energy of the material, and the nearer does the 
atomic structure approach the rigid three-dimensional diamond¬ 
like configuration. 

Covalent bonds also form the molecules of the organic com¬ 
pounds. These structurally identifiable molecules are very 
tightly knitted and form the structural units of an immense 
number of organic compounds including the high polymers. 
They are built up of the three electronegative (that is, elec¬ 
tron-hungry) elements: carbon, nitrogen, and oxygen, with a 
ballast of hydrogen. Covalent bonds are also responsible for 
the building of molecules into long parallel or intertwined chains 
or fil)ers by a process of spontaneous intermolecular combination, 
(ialled 'polymerization, as well as for combining them into three- 
dimensional strongly interlinked skeleton structures, such as the 
cross-linked polymers and the silicates (glasses). 

The nature of the covalent bond has been pictured as the taking 
up by the shared valence electrons of orbits common to all atoms 
participating in the bond. This picture docs not consider the 
quantum-statistical concepts of the structure of matter. In 
terms of quantum statistics sharing of electrons could be expressed 

by specifying either definite probabilities of finding the shared 
electrons in the space around the bound ions or a definite density 
distribution of a valence-electron cloud surrounding the partici¬ 
pating ions. Considering a covalent bond between two atoms, 
that is, a single pair of valence electrons shared by two atoms, 
the density distribution of the valence-electron cloud surrounding 
the bound atoms is obtained by coordinating the electron clouds 
of individual atoms in such a w'ay that the shared electrons 
can take positions around either of the nuclei. Since the density 
of any electron cloud is given by a wave function associated with 
a certain energy level, it is necessary to find a combined wave 
function compatible with the normal states of both atoms which 
corresponds to a minimum value of the total energy, that is, to 
an energy value lower than the energy of the wave functions of 
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the isolated atoms and also lower than the energy of any alter¬ 
native wave function. This combined function is in fact a coordi¬ 
nation of the two wave functions into a resonant system.®*^ 

Thus the establishment of a covalent bond is associated with a 
resonance between the probability or electron-density waves 
around both ions, by which the valence-electron cloud is made to 
move periodically between the ions. This is a phenomenon 
somewhat like the interchange of vibration energy within the 
system of two resonating oscillators discussed in Art. 5. The 
energy exchange between the oscillators is analogous to the 
exchange in charge associated with the interchange of electrons 
between the atoms. The picture of the tuning forks referred to 
in Art. 5 gives an approximate idea of the quantum-statistical 

concept of resonance and of the nature of the covalent bond 
between two atoms. 

If more than two atoms are connected, resonance is established 
between the wave functions of all atoms participating in the 
bond. 

Metallic bonds. If the number of valence electrons of an 
atom is not large enough (N < 4) to form covalent bonds, and 
if the electrostatic charges of the ions are not of opposite sign, 
so that the formation of ionic bonds is excluded, the only remain¬ 
ing possibility of interaction is by a common ‘‘pool^’ of the 
valence electrons. The ions have given up their valence elec¬ 
trons and have thereby acquired a positive excess charge, whereas 
the electrons have lost their connection with individual ions and 
have become free. Hence, according to the free-electron theory, 
a metal is composed of a regular array of positive ions which are 
immersed in a ‘‘gas” of free electrons (Fig. 9-5). These elec¬ 
trons, being no longer confined to the individual ions, move 
freely between them. Since in this formation the ions have no 
direct link with one another, metal atoms are nondiscriminating 
and therefore very versatile in the formation of bonds. Any 
single atom will therefore act on as many neighboring atoms as 
can be crowded into the space around it. Thus metal atoms will 
always attempt to have as many neighbors as possible, a tendency 
that must lead to densely packed structures. This conclusion 
is borne out by the fact that the characteristic metal structures 
are formed by the two possible types of closest packing of spherical 
ions. 
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Usually metals are divided with regard to their chemical com¬ 
position into the monatomic metals and the alloys. Another 
significant division is with respect to the filling of secondary 
electron shells of orbital quantum number I = 2 into simple 

metals with completely filled or completely vacant shells, and 
into transition metals with partly filled shells (see Table 6-2). 
The structure and properties of the transition metals are usually 
more complex than those of the simple metals; moreover, their 

Fio. 9-5 Metallic structure of (A) sodium and (fi) copper (after 
Shockley®'2). 

cohesive energy (heat of sublimation) is markedly higher. The 
heat of sublimation of monatomic simple metals is of the order 
of magnitude of 10 to 150 kg cal per mole; that of the monatomic 
transition metals varies between 70 and 220 kg cal per mole. 
The fact that the I = 2 shell below the level of the valence 
electrons is incompletely filled is responsible for many of the 
chai^acteristic .properties of the transition metals. Thus, for 
instance, the ferromagnetism of iron, cobalt and nickel, which are 
transition metals (see Table 6 *2), is attributed to the existence 
of the incompletely filled Z = 2 shell in the n = 3 level; it has 
also been found that other elements containing unfilled I = 2 
shells are either ferromagnetic or strongly paramagnetic. In 
elements in which these levels are filled, as in copper, which 
follows nickel in the periodic table, ferromagnetic properties do 

not exist, 
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Most of the monatomic metals crystallize in the simple densely 
packed structures. Complex structures that involve mainly atoms 
of higher valence are very similar to those of the valence crys¬ 
tals, discussed previously. Thus, there is a gradual transition 
from the covalent to the metallic binding. The most character¬ 
istically metallic elements have, in general, not more than 2 valence 
electrons. With increasing number of valence electrons the truly 
metallic binding is gradually replaced by covalent binding. , In 
certain elements, therefore, both types of bond exist simultane¬ 
ously. Examples are lead with 4 valence electrons, which never¬ 
theless forms a densely packed cubic structure of predominantly 
metallic type, and tin, [also with 4 valence electrons, which, at 
low temperature, forms a nonmetallic diamond-type (covalent) 
structure (‘‘grey tin’O; at room temperature, an essentially metal¬ 
lic structure of relatively dense packing (“white tin’O- In such 
cases it is assumed that only part of the bound atoms is fully 
ionized^ that is, has given up all its valence electrons to the free 
electron fog, while others have retained part of their valence 
electrons, which form covalent bonds. 

The versatility in establishing metallic bonds and the lack 
of the restrictions with regard to the number of bonds and 
direction of bond formation between individual atoms, charac¬ 
teristic of the ionic and covalent bonds, produce the typical 
metal properties of ductility and malleability. In ionic and 
covalent formation irrecoverable changes in the relative location 
of ions interfere permanently with the established atomic bonds; 
however, bonds in metals are easily reformed, as no particular 
relative position of atoms is favored in the bond formation, and 
no stabilization of bonds by the completion of electron shells 
or by the sharing of electrons has taken place. 

A model of the crystal structure of a metal has been developed 
by Bragg,® ® in which the metal is represented by an assembly 
of soap bubbles, approximately one millimeter in diameter, 
floating on the surface of a soap solution. The model represents 
the behavior of a metal very closely, because the bubbles are 
uniform in size, are held together by the surface tension of the 
soap solution which represents the binding forces of the free 
electrons, and the bubbles glide past each other practically 
without friction if a shearing force is applied. Most of the 
effects characterizing the metal structure can be simulated 
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with the aid of this model, such as grain boundaries, dislocations, 
and lattice defects, slip, crystal fragmentation, and the influence 

of foreign atoms. This can be seen from Fig. 9 • 6 in which a photo¬ 
graph of an ideally regular assembly of bubbles is reproduced; 
Fig. 9-7 is a model of the real arrangement of atoms in the 
vicinity of boundaries between individual crystals. 

Fkj. 9-6 Soap-bubble model of regular metallic structure (courtesy Sir 

Lawrence Bragg® *). 

-# 

Complex bonds. So far it has been assumed that only one 
type of bond exists in any material. Actually several types of 
bonds may exist simultaneously, for example covalent and 
ionic, or metallic bonds: some of the valence electrons may form 
covalent bonds, whereas the rest forms ionic or metallic bonds. 
The properties of such materials are very much affected by this 
mixed type of bond formation. Graphite, mica, talcum, asbestos, 
and textile fibers are examples of materials formed by mixed 
bonds. Thus, while a diamond which is chemically identical 
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with graphite is formed by all 4 valence electrons entering into 
covalent bonds, only 3 valence electrons are so connected in 
graphite, whereas the fourth forms a metallic bond between the 
trivalent carbon ions having a positive unit charge. The inter¬ 
atomic distances associated with the covalent bonds is about 
1.42 A. As a result of the particular type of bond, the molecule 
formation of graphite should be similar to that of a chemical 
element with 5 valence electrons, such as antimony. The simi- 

Fig. 9-7 Soap-bubble model of metallic structure including boundaries 

between crystals (courtesy Sir Lawrence Bragg® *). 

larity is immediately evident if the graphite lattice is compared 
with the antimony lattice (Fig. 9*3). The covalent bonds pro¬ 
duce the strength of the sheetlike molecules of the graphite 
which is almost the same as that of diamond; the remaining 
free electrons are responsible for easy deformability and low 
strength between the molecular layers spaced at about 3.4 A, 
which makes the use of graphite as a lubricant possible. Mica 
is formed of sheetlike molecules built by covalent bonds from 
silicon and oxygen atoms, which are held together by ionic bonds, 
whereas the sheetlike talcum molecules formed by covalent 
bonds from the same atoms are held together by intermolecular 
bonds producing the particularly large spacing of 18.8 A. 

Even simple ionic bonds such as those forming brittle sodium 
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chloride crystals may be transformed into a complex structure 
of ionic and covalent or metallic bonds if, for instance, the 
sodium atoms are replaced by silver atoms with partially filled 
I = 2 shells in the formation of ductile silver chloride. 

Intermolecular bonds. Intermolecular (secondary) bonds, 
in general, are produced by the magnetic interaction between 
dipoles, which may be rapidly changing and due to the motion of 
the electrons, or permanent and characteristic of the individual 
molecule, or temporarily induced in electrically neutral molecules 
by an external electric field surrounding an ion or another dipole. 
Intermolecular bonds produce loosely bound lattices of saturated 
molecules. In the solidified inert gases the bound lattice ele¬ 
ments are atoms, but the interacting forces are of the order of 
magnitude of the intermolecular forces, as no other bond is 
possible. 

Intermolecular bonds are responsible for the formation of 
molecular crystals, such as paraffin, or crystallized rubber, and 
of the organic compounds, such as polymers, or gels. The heat 
of sublimation of the truly molecular compounds is of the order 
of magnitude of a few kilogram calories per mole. In those sub¬ 
stances the shape of the molecules, which are usually macro¬ 
molecules, is the principal factor influencing their mechanical 
behavior and properties. 

Interatomic and intermolecular forces. Independently 
of the character of the possible bonds between particles, as pre¬ 
sented in the foregoing discussion, a general schematic approach 
may be applied to the treatment of the interatomic or intermolec¬ 
ular forces by considering any type of bond to be produced by 
the interaction of two potential fields of repulsive and attractive 
energy, or of two fields of repulsive and attractive electrostatic 
charges. In ionic bonds these attractive forces are the result 
of the opposite charges; in covalent bonds they may be considered 
the result of sharing of valence electrons; in metallic bonds they 
may be considered produced by the general attraction of the 
positive ions for the negatively charged ‘‘free-electron fog'^ 
which holds the ions together. The repulsive forces resisting 
the too close approach of ions may be considered as arising from 
the impenetrability and the resulting small compressibility of the 
closed electron shells or from the electrostatic repulsion between 
charges of the same sign. An additional source of repulsion is 
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the thermal oscillation of particles around their equilibrium 
position. At room temperature the amplitude of the thermal 
oscillations is of an order of magnitude of less than of the 
atomic distance; it increases, however, appreciably (two- to 

threefold) at elevated temperatures. 
Under the assumption that the variation of the potentials of 

the attractive and repulsive forces with the distance from a par¬ 
ticle may be expressed in the general form (const/r^), the resulting 
potential energy of interaction <t>{r) has the form,^ 

«(r) = -^+^„ (91) 

n > m since the repulsive potential (b/r^) must decrease more 
rapidly with increasing distance r than the attractive potential 

(a/r"^), as otherwise no equilibrium would be possible. The 
negative sign of the attractive energy potential is due, as explained 
in Art. 6, to the fact that the value of the energy potential must 

be negative for r > 0. 
The actual values of m and n vary with the nature of the bond. 

For electrostatic attraction the potential ( — a/r"*) is equal to 
( —ehiV2/r)j where and V2y respectively, denote the number of 
valence electrons of charge e in the two bound atoms. Thus 
m = 1 is generally introduced for primary bonds. The value of 
n varies between 9 and 11 for ionic and covalent bonds, and 
between 6 and 9 for metallic bonds, although for alkali metals 
this value may be as low as 3. For secondary bonds the expo¬ 
nents usually introduced are m = 6 and n between 9 and 12, 
or even larger. ’ ’ 

If eq. 91 represents the combined potentials of the attractive 
and repulsive forces, these interacting forces are given by the 
expressions: 

^ W ” dr ~ ^(n+l) (9’2) 

The equilibrium position of the two interacting particles is 
attained at the distance of maximum stability, that is, of mini¬ 
mum (negative) energy at the bottom of the ‘^potential trough 
drawn schematically in Fig. 9-8. At the point where 4>{r) 
reaches a minimum, its first differential F{r) = 0, indicating 
equilibrium between the interacting forces (Fig. 9-9). 
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The equilibrium position is defined by the minimum (negative) 
potential energy or maximum bond energy uq; the change of 
potential with the displacement of one particle from that posi¬ 
tion is schematically illustrated by the diagram of the energy 
potential (pir). The energy required to remove the particle out 
of the field of mutual interaction is given by the area of the 
function F{r), which thus 
represents the bond energy. 
From a consideration of 
this function it is evident 
that any displacement from 
the equilibrium position 
gives rise to restoring forces 
which, for small displace¬ 
ments, may be assumed to 
increase linearly with the 
displacement. The linear¬ 
ity fails, though, as soon 
as the displacements are 
appreciable. The restor¬ 
ing forces differ for both 
directions of the displace¬ 
ment. Figure 9 8 shows 
that the restoration or elas¬ 
tic constant, which is deter¬ 
mined by either the slope 
of the tangent to the F{r) 
curve, or the curvature of 
the <t>{r) curve at the equi¬ 
librium position r = ro, in- 

Fio. 9-8 Diagram of bond energy ^(r) 

(after Houwink*'®). 

Attractive 
force 

-r'- ^ 
Distance r 

Fio. 9-9 Diagram of interatomic force 

F{r) (after Houwink* ®^. 

creases rapidly if the particles are croWed together but decreases 
gradually with increasing separation. The maximum force 
required to separate the particles is given by the maximum ordi¬ 
nate of the F{r) curve. This ordinate represents the theoretical 
or atomic cohesive strength of an elastic substance of perfectly 
regular atomic arrangement. 

Although for small displacements the deviation from linearity 
of the relation between displacement and restoring force is small, 
the asymmetry of the F{r) curve with regard to its zero ordinate 
is sufficient to produce the thermal expansion of materials by 



76 Tht Structure of Matter [Art. 9 

producing, for the same restoring force, a larger amplitude of the 
outward vibration than of the inward vibration, thus shifting 
outward the center of vibration, that is, the equilibrium position 
of the particles. Since the difference between the amplitudes 
producing the outward shift increases with increasing amplitudes, 
that is, with increasing temperature, the coefficient of thermal 
expansion necessarily increases with temperature, a conclusion 

that is borne out by observation.^ ® 

10. Thermal Oscillations 

In groups built up of interacting atoms or of interacting mole¬ 
cules the individual atom or molecule behaves like a Planck oscil¬ 
lator. The oscillations that are important with regard to the 
mechanical behavior of materials, usually called the thermal 
oscillations^ are the oscillations of the particles bound by the 
forces of interaction. The oscillations of the atoms within 
crystalline regions are also designated as lattice vibrations. The 
oscillations of molecules which are due to the intermolecular 
forces and to the oscillations of the atoms in the molecule are 
made up of translational and rotational components. The 
latter are the more important, the larger the molecule. The 
general interrelation between the coupling forces and the mode 
and frec^uency of oscillations has been illustrated by the two- 
oscillator model (Art. 5). In this model two modes of oscilla¬ 
tion have been found to exist: the symmetric mode in which the 
oscillators move in the same direction, and the asymmetric mode 
in which they move against each other. These two modes 
represent limiting cases of the lattice vibrations obtained under 
the assumption that the length of the standing wave, in which 
the lattice vibrates, is infinite. 

The vibrations of a lattice built up of a large number of oscil¬ 
lators, however, cannot be adequately discussed in terms of the 
two-oscillator model. It is the interrelation between the wave 
length of the vibration of the lattice and the angular frequency 
of the particles oscillating around their positions of equilibrium 
that determines the character of the lattice vibration and the 
frequencies of radiation emitted by the lattice. 

The characteristic behavior of the three-dimensional lattice 
can be illustrated by the analysis of the model of a one-dimen¬ 
sional lattice.^ This model consists of a regular array of mass 
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points uniformly spaced along a line at distances d (Fig. 10-1), 
oscillating about their equilibrium positions with the angular 
frequency co = 2Trv, The mass points are acted on by forces 
between the centers of particles, which tend to restore the 
equilibrium positions whenever particles have been displaced; 
it is assumed that only neighboring particles interact. 

(b) Optical vibration 

Fig. 10*1 One-dimensional models of vibrating crystal lattices. 

For small displacements the force of restoration acting on any 
particle may be assumed proportional to the relative displace¬ 
ment of particles, thus replacing the curved shape of the F{t) 

function by its tangent at r = ro, as shown in Fig. 9 • 9. Hence, 
the restoring force acting on any particle k depends on the 
momentary difference between the amplitude yu of the particle 
and the amplitudes yk+i and yk-i of the neighboring particles. 

The relation between the natural frequencies of the lattice 
vibrations and their wave length is obtained by solving the 
simultaneous equations of motion of all particles k of mass m*. 
subject to a restoring force Fk which is proportional to the differ¬ 
ence of amplitudes. Hence, 

Fk = oL{yk^i — 2/A; + 2/J-i Vk) (10; 1) 
and 

m = a(2/ifc+i + Vk-i - 2yi) (10-2) 

which is identical with the differential equation of the vibrating 
string loaded with point masses nik. 

Two different types of eq. 10-2 can be set up by assuming 
either that the masses nik are all equal or that the lattice consists 
of alternating light and heavy particles. With the first assump¬ 
tion neighboring particles will, at an average, move in the same 
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direction, whereas with the second assumption two types of 
motion are possible: one which is of the same type as before, and 
the second in which the motion of neighboring particles is, at 
an average, in opposite directions. This can be shown by solving 
the set of differential eqs. 10-2 for = mjc = nik^i and for 

== rrik+i mfc. In the first case one set of equations exist 
for all points mjc whereas in the second case two different sets 
exist for nik^i and for mjc. 

In order to obtain the velocity of propagation c along the 
linear array of masses m* = of any disturbance of angular 
frequency co a general solution of eq. 10 2 is introduced in the 
form, 

Vk = (2Tfcd/\)i (103) 

where X denotes the length of the propagating wave. By intro¬ 
ducing eq. 10'3 into 10*2 the following relation is obtained 
between the frequency w and the wave length X: 

2 1*2 mo3 = 4a sin - 
X 

(10-4) 

Because of w = 2tv = 27r -» eq. 10-4 can be written 
X 

«) 

sin“ — 
X 

(10.5) 

For values of X which are large in comparison with d the sine can 
be replaced by the argument; hence, 

and 

2ird 
(I0(») 

^ m X 

II = Co (10-7) 

Co denotes the velocity of propagation for infinite wave length 
X = 00. The relation between co and X and between c and X for 
finite wave length, according to eq. 10-4, can be written in the 
form, 

2co 

~d 
0) (10-8) 



Art. 10] Thermal Oscillations 79 

or, because of eq. 10 0, 

c Co 

Td 
sin — 

X 

vd 

X 

(10 9) 

The angular frequency o) thus varies with l/X as indicated in 
Fig. 10 2, with a maximum. 

d ^ m 
(10-10) 

for the wave length X = 2r/, which propagates at a velocity 

2 
C = - Co. 

TT 

In the material body the maximum velocity of propagation of 
a mechanical disturbance is the velocity of sound in the material 

Fig. 10-2 Relation between angalar frequency and wave length of vibra¬ 

tion of linear lattice. 

which, different for longitudinal and transversal vibrations, 
t aries for metals between 300 and 600 meters per second. By 
introducing this value into eq. 10 • 10 and assuming that a value 
of d = 3 A represents the average atoftiic diameter, a frequency 

of the order of magnitude of = 2 
300 X lO^’^ ^ 600 X 10^® 
---to 2--- 

= 2 to 4 X 10^^ is obtained as the order of magnitude of the 
frequency of lattice vibrations. 

Oscillators vibrating at this frequency send out electrodynamic 
radiation of a wave length equal to the period of oscillation 
l/w times the velocity of light, which is 3 X 10^® cm per sec. 
The wave length of the radiation emitted by the vibrating lattice 
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is therefore of the order of magnitude 10“^ cm or 100 microns. 
This is the infrared range, which extends from a wave length of 

a few microns to about 200 microns. 
The very short infrared waves of length up to about 15 microns 

result from oscillations of the atoms within small molecules; 
they are not characteristic of the crystal lattice. The very long 
waves near the extreme infrared range of about 200 microns are 
essentially the result of rotational molecular oscillations. The 
intermediate wave length of 50 to 150 microns is associated with 
lattice oscillations as well as with oscillations of atoms around 
the mass center of complex large molecules.*'^ ^ 

The frequencies of the infrared radiation are strongly affected 
by applied heat which changes both the frequencies of the radia¬ 
tion and its amplitude. It has been observed that the effect 
of applied heat is considerably stronger within the range of the 
relatively long waves than within the range of the short waves. 

When, with increasing heat application the amplitudes of the 
lattice oscillations increase so much and so rapidly that they attain 
the order of magnitude of the interatomic or the intermolecular 
distances, that is, their kinetic energy attains the level indicated 
by the depth uq of the potential trough (Fig. 9 -8) the energy 
barriers betw'een adjacent equilibrium positions can be momen¬ 
tarily overcome by heat vibrations; the particles thus activated by 
heat energy can either leave their respective equilibrium positions 
and occupy vacant positions of lower energy, or transmit energy 
by impact with and displacement of neighborhood particles. In 
the latter case the initial order of particles breaks down rapidly 
and the material melts. It is the essential difference between the 
solid and the liquid state that excessive thermal oscillations have 
destroyed the order in the lattice, facilitating place changes of 
particles. Although the interacting forces still tend to maintain 
a certain pattern of order, this' tendency can not assert itself 
over any but the shortest range. This short-range order dis¬ 
tinguishes the fluid from the gaseous state in which no tendency 
to create an ordered state exists because of the complete absence 
of attractive forces. 

Melting starts at the lower temperature, the smaller the heat 
energy required to excite the oscillations to the amplitude at 
which place changes and displacements of particles by impact 
with other particles become possible. The start of melting 
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will also be the more abrupt, the more uniform the size and 

the more perfect the initial arrangement of particles in the 
crystal lattice. The less uniform the particles and the larger 
the differences between particle distances within the initial con¬ 
figuration of particles, the greater the possibilities of purely local 
breakdowns starting at points of least stability and spreading 
gradually over the whole structure, thus producing a very 
gradual start of the melting process. These considerations 
explain the lower and less well-defined melting points of amor¬ 
phous materials in comparison with crystalline materials, as 
well as of materials of truly molecular structure in comparison 
with materials of atomic or ionic structure. The gradual change 
during melting of all mechanical properties within a relatively 
wide range of temperatures is a characteristic phenomenon of 
the so-called amorphous solids, by which they can be distinguished 
from crystalline solids, in which such changes are discontinuous. 

The molecules oscillate and rotate around their positions of 
equilibrium in which they are held by the relatively weak inter- 
molecular forces. Because of their comparatively larger masses 
and because of the considerably w^eaker forces of interaction, 
they oscillate at lower frequencies than atoms; these oscillations 
are also less regular. Their amplitudes are much larger than 
those of atomic oscillations because of the larger intermolecular 
distances. Because of the weak forces of interaction, which are 
easily overcome by heat vibrations, intensification of the thermal 
oscillations leads more easily to disintegration of the ordered 
arrangement in the molecular than in the atomic lattice. 

Although the mode of oscillation of small compact nearly 
round molecules resembles to a certain extent that of the thermal 
oscillation of atoms, the modes of oscillation of long macromole¬ 
cules will necessarily be different in the longitudinal and in the 
transversal direction. Because of the comparative ease of the 
transverse motion of the fiber-like molecules, such oscillations 
have the character of a wavelike wriggling motion rather than 
of an oscillation and rotation of a compact mass around a center. 
This mode of vibration governs the formation of chains of organic 
molecules by polymerization, which is the effect of chance con¬ 
tacts between vibrating molecules, as a result of which covalent 
bonds between atoms belonging to different molecules are 
established. As polymerization proceeds, the frequency of such 
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contacts decreases, because less reactive material, consisting of 
activated molecules is available. Polymerization thus proceeds 
at a decreasing rate; theoretically, it should not cease before all 
reactive molecules have been combined into chain molecules; 
however the increasing mechanical interference with the thermal 
motion of the individual molecules by already formed long chains 
stops the polymerization process long before the theoretical limit 
has been reached. Thus materials are obtained which consist 
of macromolecules in different stages of polymerization, that is, of 

different length and thermal activation. 
For materials built up of atoms or small molecules the changes 

of properties in the melting process are reversible on solidifica¬ 
tion; melting of materials built up of chain molecules is associ¬ 
ated however with a disruption of the long chains into shorter 
ones, which may produce irreversible changes of properties, 
though dissolution into individual molecules will only take place 
at temperatures exceeding the melting temperature. 

The potential energy of the particles within any group forma¬ 
tion is associated with the interacting forces in the position of 
equilibrium; the thermal or kinetic energy is the energy of the 
oscillations around this equilibrium position. From considera¬ 
tions concerning the possible degrees of freedom of the oscillating 
atoms and from the so-called equipartition theorem of statistical 
mechanics^^’^ (according to which each degree of freedom of the 
oscillating particle is associated with a mean potential energy of 

and with the same amount of kinetic energy) the total 
energy content of a particle in space possessing three degrees of 
freedom is w = 3fcT, where k = 1.39 X 10”^® erg per °C is the 
Boltzmann constant, and T denotes the absolute (Kelvin) 
temperature. The total energy content per mole is C/ = ^RT 
where R = 1.96 cal per °C is the ‘‘gas constant.^’ The in¬ 
crease of energy of the particles per degree centigrade which is 
the heat required to increase the temperature of the material 
by one degree, represents the specific heat of a solid; it is therefore 
3 X 1.96 or approximately 6 cal per mole. 

In solids the total energy content is made up of potential and 
of kinetic energy; the energy of a monatomic gas, consisting only 
of the kinetic energy of the three degrees of freedom of transla- 
tory motion is only one-half that of a solid. The energy differ¬ 
ence of 1.5/Zr is expended in producing structure or order. The 
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total energy content or the specific heat of a material thus pro¬ 
vides an indication of the actual state of transformation of the con¬ 
figuration of a group of particles from a state having structure/’ 
that is, a certain degree of order, to a state characteristic of a 
statistically isotropic (monatomic) gas. The established fact, 
that the specific heat of molten and of solid metals does not 
differ appreciably from 3/2, whereas the specific heat of metal 
vapor is about one-half this value, indicates that the amount of 

0 0.5 L0r« 
Homologus temperature 0 = T/T^ 

Ficj. 10-3 Truf necking stn'ss s — Finnx/A for various metals at 

homologous temporat\ires (after Ludwik^®’^). 

^‘structure” is not considerably changed by the melting and that 
therefore the internal structure of the melt is very different from 
statistical isotropy, provided no appreciable density changes have 
occurred in the transformation from the solid to the liquid state. 
This is in agreement with the modern theory of liquids according 
to which a liquid is made up of ‘‘flow-units” and “holes.^ 
Thus the difference between the fluid and the solid state could be 
visualized as a difference between the mobile, loose packing and 
the stable dense packing of spherical particles, without appreci¬ 
able change in the order of magnitude of the forces of interaction. 

Because as a result of local thermal oscillations the mean par¬ 
ticle energy may be momentarily exceeded, local melting and 
flow will take place before the temperature of the entire body 



84 The Structure of Matter lArt. 11 

has reached the melting point Tm- A particle will remain stable 
in its potential trough only as long as the energy impulse of its 
largest heat oscillation does not attain the amount uq. Since 
by an impulse which exceeds this limiting value, the particle is 
activatedy wo is called the activation^ energy. 

The interrelation between activation and melting appears to 
be the explanation of the so-called homologous temperatures, a 
concept introduced by Ludwik'® ® in order to compare the 
mechanical behavior of several metals having different melting 
points (Fig. 10-3). Ludwik found a fair similarity of mechanical 
behavior of metals at the same homologous temperatures 6 = 
T/Tm- More recent investigations have shown that the con¬ 
cept of homologous temperature is valid only if the compared 
metals are of similar atomic radius. 

11. Ordered and Unordered State 

According to the previously developv'd concepts, matter is con¬ 
sidered as an aggregation of a large number of discrete particles 
in space; the behavior of the particles is governed by their con¬ 
tent of potential and kinetic energy. 

In attempting to classify such assemblies of discrete particles, 
the principal characteristic is the existence of a certain repetitive¬ 
ness of pattern, that is, of a periodicity in the geometrical pat¬ 
tern. The state of an assembly of particles in which there? is a 
complete lack of periodicity is usually defined as unordered or 
disordered, whereas the existence of a single perfectly repetitive 
pattern throughout the assembly is the criterion for the state of 
ideal order. 

It should be realized, however, that the probability of finding 
an assembly of interacting particles in a state of complete lack of 
order is as small as that of finding it in a state of perfect order; 
perfection, both of order and of disorder, refers to certain arrange¬ 
ments the number of which is very small compared with the 
almost infinite number of possible arrangements of imperfect 
order. In the limiting cases atoms are arranged either in a single 
perfectly repetitive pattern or in a group in which no repetitive 
pattern, no matter how limited, ever occurs. Both the peri¬ 

odicity and the randomness must be perfect in all three dimen¬ 
sions of space. Particles of real materials exist in neither of the 
limiting states, but in some intermediate state within the range 
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of possible combinations of order and disorder {order-disorder 

spectrum). A certain component of order in the arrangement of 
particles must be expected to exist in any intermediate state 
between the perfectly ordered ideal crystalline solid and the 
unordered monatomic gas. It is this component of order that 
is indicated by the potential energy content of the structure. 

There is considerable experimental evidence, particularly from 
X-ray diffraction patterns of fluids,^ to suggest that particles 
of amorphous solids and of liquids are not in the same perfectly 
unordei'ed state that characterizes the monatomic gas, but that 
only the dimension over which the order extends distinguishes 
the atomic or molecular arrangement of amorphous materials 
and of fluids from that of the crystalline solid. Whereas in the 
crystal the repetitive pattern extends over many thousands of 
atomic or molecular distances, in the liquid and in the amor¬ 
phous material (freciuently considered to be an undercooled liquid 
since the crystalline material is the only possible type of real 
solid) there is only local order, which extends over small groups 
of part ides. The local structure in the vicinity of and in relation 
to an individual particle is very similar to the ordered crystal 
structure, whereas at a distance from this particle the arrange¬ 
ment with reference to it appears completely random. This 
arrangement can therefore be considered to exhibit local or 
short-range order but long-range disorder. 

This can, for instance, be illustrated by the probability distri¬ 
bution curve of the atoms around any considered atom in liquid 
mercury; this distribution which has been observed by Debye 
is shown in Fig. 111. Mercury 
does not form molecules, and, 
hence, the particles in the liquid 
are atoms. Whereas the abscis¬ 
sas indicate the distance of an 
atom from the considered atom 
located at p = 0, the ordinates 
give the relative probabilities, to 
a certain scale, of finding an atom 
at a certain distance p. The dis¬ 
tribution function shows that, within small distances from the 
considered atom, the probable location of neighboring atoms 
shows a definite periodicity which, however, vanishes for larger 

p-10 , cm 

F'ig. 11 1 Distribution fupotion 

of liquid mercury (after Debye). 
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distances. Thus the probability of finding an atom at a distance 
3 is about four times as high as that of finding it at 4, a fact 
that indicates the existence of ordered patches around each 
atom. Similar curves have been established for molecular 

liquids. 
The presence of interatomic or intermolecular forces probably 

causes temporary formation of particles into cohering small 
ordered groups or flow units. These local groups, however, are 
not correlated with each other and have no sharp boundaries. 
Therefore, the arrangement in the neighborhood of group bound¬ 
aries is less regular and also less stable than in the interior of 
the group, where the forces of interaction between particles 
are strongest. Consequently, interaction along the group 
boundaries is broken up more easily than the interaction between 
the molecules in the interior of the groups. Thus, in moving 
under the action of an external force, groups sliding over each 
other will be continuously broken up and re-formed, as the mole¬ 

cules along the circumference of the groups, which are entering 
and leaving spheres of mutual attraction of different groups, are 
changing over between various groups. A certain amount of 
potential energy is thus continuously stored up and dissipated 
in the course of the formation, motion, and subsecpient destruc¬ 
tion of the flow units. It is the amount of this energy, expressed 
by the resistance to the motion, that is, by the coefficient of 
viscosity, that provides an indication of the position of the con¬ 
sidered liquid within the order-disorder spectrum. 

An ordered or crystalline arrangement of particles in which 
each particle is surrounded by neighbors according to a definite 
geometrical pattern repeating itself around every similar particle 
is called a space lattice. In the particular case of all particles 
being atoms or ions, it is known as a coordination lattice, of which 
thus two types exist; the atomic lattice and the ionic lattice. 
The number of nearest neighbors in the lattice is the coordination 
number. When the particles in the regular arrangement are 
molecules, the lattice is a molecular lattice. 

The grouping of particles according to any possible geometrical 
pattern that repeats itself periodically in three dimensions results 
in the creation of differences between certain directions in space. 
The crystalline substance is therefore intrinsically anisotropic. 
By rigorous definition only an ideal continuum could be isotropic. 
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This becomes evident in any attempt to arrange particles accord¬ 
ing to the definition of isotropy, that is, so that they show 
identical configurations in all directions. Since this is an 
impossibility, the isotropy of a discontinuous assembly can only 
be statistical^ which means that directional differences in the 
arrangement around any particular point exist but vary statisti¬ 
cally from point to point. Thus, in the classification of the 
discontinuous arrangement of particles of solid or pseudosolid 
matter the limiting states are the perfectly ordered anisotropic 
crystal and the disordered statistically isotropic amorphous sub¬ 
stance. In the intermediate states along the order-disorder 
spectrum the inherent local anisotropy of the discontinuous 
structure of matter is more important in the solid than in the fluid 
state; in the solid state the equilibrium position of the particles 
does not change with time, so that the inherent directional 
differences in the local arrangement can be smoothed out by 
^^averaging’’ of behavior over space only, whereas in fluids the 
‘ ^averaging is done over both space and time. 

The arrangement of particles into a perfect three-dimensional 
space lattice can be considered as homogeneous, if the concept 
of the equivalence of all points is restricted to the lattice points. 
Rigorous homogeneity as well as rigorous isotropy would only 
be possible in the perfect continuum. However, if equivalent 
coordinate systems can be set up with any of the lattice points 
as origin, the space lattice may be defined as homogeneous. 

Among all possible arrangements of atoms or ions into a coordi¬ 
nation lattice, the actually formed lattice will be distinguished 
by maximum stability, that is, by a minimum content of (nega¬ 
tive) potential energy or a maximum value of bond energy, or at 
least by a tendency to reach such a conjuration spontaneously 
after infinite time. 

It has been tacitly assumed, so far, that the atoms in the space 
lattice are of the same kind. The terms order and disorder 
referred to the existence or nonexistence of a periodic arrange¬ 
ment in space of those particles. However, a different definition 
of order and disorder is used by metallurgists in relation to the 
ordered arrangement in a space lattice of atoms of different 
elements such as, for instance, of atoms in metal alloys. In this 
case either the atoms of the various elements may occupy definite 
periodic positions within the lattice, forming so-called super- 



88 The Structure of Matter I Art. 12 

lattices, in the lattice points of which one type of atoms is segre¬ 
gated, or the different atoms may be distributed at random over 
the whole lattice, forming solid solutions of one chemical element 
in the other. The formation of superlattices is due to the tend¬ 
ency of the various types of atoms to take up regular positions 
of minimum energy, thus creating a lattice that consists of several 
space lattices of various periodicities. The opposing tendency 
is the result of the thermal oscillations, which tend to produce h 
random arrangement of particles over the lattice points. The 
existence of stable homogeneous superlattices, whose potential 
energies are a minimum, u usually defined as metallurgical order; 
the solid-solutio7i random distrilmtion of the various atoms over 
the lattice as metallurgical disorder. Thus, order requires that 
all particles be in the right” location, whereas in the condition 
of disorder or solid solution all particles are located at random. 
In order to transfer one particle from its ''right” to the "wrong” 
position, energy must be expanded, since the superlattice with 
all positions "right” represents the state of minimum energy. 
Methods of statistical mechanics based on the simple considera¬ 
tion of the number of particles in "right” and "wrong” positions 
may thus be applied to the analysis of the energy changes in 
the so-called order-disorder transformations in metal alloys. 
These transformations are very important with regard to the 
mechanical properties of metal alloys produced by various heat 
treatments. Since the application of elevated temperatures 
increases the component of disorder as a result of the intensified 
thermal oscillations, the existence of a superlattice is the less 
probable, the higher the temperature. On the other hand, the 
slower the cooling rate after the application of such a tempera¬ 
ture, the more probable is the formation of a superlattice. This 
fact has been confirmed by experiment. “ ^ 

12. Structural Geometry of the Ordered State 

All atoms or ions in coordination lattices are surrounded by 
neighbors in a regular arrangement, and the arrangement around 
each atom is identical. Thus, periodic patterns of atomic 
arrangement are developed in the three dimensions of space. 

The ways in which points can be arranged in space in a three- 
dimensional periodicity, so that each point is surrounded by other 
points in an identical arrangement, are not unlimited. Studies 
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of the geometry of such arrangements'^ i have shown that only 

32 different point groups exist forming the 32 crystal classes. 
However, among the 32 classes there are only 14 different 
translation groups defining unit cellsy that is, smallest lattice 
units that fully represent the lattice type, out of which the 14 
space lattices can be built. Of these 14 space lattices only 7 
have different axes, and these 7 systems of axes are the basis for 
the classification of crystals into the triclinic, monoclinic, rhombic, 
tetragonal, rhomhohedral, hexagonal, and cubic crystal systems. 
The cubic system has 3 orthogonal axes of equal length, the 
tetragonal 3 orthogonal axes of which 2 are of equal length, the 
rhombic 3 orthogonal axes of unequal length, the monoclinic 2 
orthogonal and 1 inclined axis, the triclinic system has 3 axes 
inclined to each other, and the rhombohedral and hexagonal 
systems have both 3 axes in one plane normal to the fourth 
axis. Of these 7 systems only the last 3 are particularly impor¬ 
tant in the study of the behavior of technical metals. 

In order to identify a set of parallel planes in a lattice of rec¬ 
tangular axes the so-called Miller indices are used.'^ ^ They 
are obtained by finding the intercepts of any of the group of 
parallel planes with the three orthogonal axes, taking the recip¬ 
rocals of these values, reducing them to the three smallest integers 
of the same ratio, and putting them 
into parentheses (Fig. 121). If a 
plane is parallel to an axis, the cor¬ 
responding index is zero, since the 
intercept is infinite. Thus the (111) 
plane specifies the plane inclined 
under 45 degrees to all three axes, 
whereas the index (100) specifies 
planes perpendicular to the Xi axis. 
In order to specify a direction, the 
coordinates of a point located on a 
vector in this direction through the 
origin are specified in the smallest integers of units and put into 
square brackets. Thus, for instance [100], [010] and [001] define 
the xi, X2y and Xs axes, respectively, whereas [111] denotes the 
body diagonal of the unit cell. 

The purely geometrical concept of the possible periodic divi¬ 
sions of space leads to the most general classification of crystal- 

Fig. 12* 1 Miller indices 

(h fc /) of a plane. 
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line structures. However the discussion of the formation of 
crystal structures in terms of the packing of the nearly spherical 
atoms or ions and the possible arrangements of neighboring 
spheres provides a concept of the crystal structure that is more 
useful in the interpretation of mechanical behavior of crystalline 
matter.' It also illustrates the effect of differences in atomic 
radii of the constituent particles on the geometry and the sta¬ 
bility of the crystalline structure. 

There are a number of possible regular arrangements of “near¬ 
neighbor” atoms or ions, that is, of atoms connected by equiva¬ 
lent bonds and pictured as spheres of equal size, around any 
considered spherical atom or ion: 

(a) 2 symmetrical neighbors on a straight line through the atom. 
(b) 3 neighbors in the corners of an equilateral triangle, the center 

of which is occupied by the atom (Fig. 9-3). 
(c) 4 neighbors in the corners of a tetrahedron, the center of which is 

occupied by the atom (Fig. 9*4). 

The foregoing three arrangements result in the rather loose pack- 
ing typical of crystal structures formed by covalent bonds. In 
their formation the so-called (8 — N) rule,’’^ ^ which has been 
derived in Art. 9 from Pauli’s exclusion principle, is usually 
followed. These arrangements are not limited to nonmetals; 
there arc certain metals whose crystal structures are of the 2-, 3-, 
and 4-neighbor type, respectively, for instance: tellurium with 
2 neighbors, antimony with 3 neighbors, and silicon with 4 
neighbors (see Art. 9). These metals most closely resemble the 

nonmetallic elements which form covalent bonds. 
The 3-neighbor arrangement is also characteristic 
for the hexagonal structural formation of a large 
number of organic compounds (benzene-ring). 

(d) 6 neighbors in the corners of an octahedron. 
Fig. 12-2 Sim- the center of which is occupied by the atom (Fig. 
pie cubic lattice. 12-2). 

This type of packing produces the simple cubic lattice. No ele¬ 
ment is known to crystallize in this form, which is however char¬ 
acteristic for some more complex compounds, for instance the 
pyrites. It is actually a transition structure between the loosely 
packed lattices produced by covalent bonds and the closely 
packed ionic and metal lattices. 
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(e) 8 neighbors in the corners of a cube, the center of which is occu¬ 
pied by the atom (Fig. 12*3). 

This is the body-centered cubic 
structure, in which a number of , 
metals crystallize. • * 

FIo. 12*4 
Face-coiiterod 

cubic lattice. 

(/') 12 neighbors in the closest -kr 1:^—— 
'packed structure of spheres of ^ ^ ^ 12-3 F i o 12*4 
identical size (Fig. 12-4). ..^nt^red Face-ccntercd 

This arrangement leaves the ctdiK- lattice. cubic lattice, 

minimum of space between the 
spheres and may have either cubical symmetry, resulting in the 
face-centered cubic structure, or hexagonal symmetry, resulting 
in the hexagonal closest packing which is slightly less regular than 
the cubic form of closest packing. The individual atom in the 
hexagonal closest packing is in contact with a hexagon of spheres 
arranged in the same plane and with two triangles of spheres 
above and below. 

Closest packing is characteristic of the structure of the majority 
of metals and a number of ionic crystals. It expresses the tend¬ 
ency of the atoms to form the most stable structure, that is, 
the structure with the maximum bond energy, positive ions sur¬ 
rounding themselves with the maximum number of negative 
ions, as in ionic crystals or being crowded together by the attrac¬ 
tive forces exerted by the free electrons surrounding them, as 
in the metal struct ure. 

Actually the 8 neighl)or (cubic body-centered) structure is also 
rather closely packed since, in addition to the 8 nearest neighbors 
connected by strong bonds, there are 0 neighbors at only slightly 
larger distances, connected by weaker bo^ids. For certain metals 
the total bond energy, and thus the stability of the structure 
resulting from the 14 bonds of unequal strength, appears to be 
higher than that produced by the 12 bonds of equal strength of 
the face-centered group. 

Only as long as the structure is made up of spheres of equal 
size are the cubic and hexagonal closest packings the two alterna¬ 
tives of maximum stability. An infinite variety of arrangements 
is possible for the closest packing and therefore for maximum 
stability of spheres of two or a number of dilTerent diameters.^ ^ 
In such structures, mostly metal alloys, intormetallic compounds, 
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and ionic crystals, the number of closest neighbors can be 

increased considerably beyond 12. Several packings are known 
with as many as 20 neighbors. This refers particularly to com¬ 

pounds of metals with the nonmetallic light atoms of smallest 
size, such as carbon, nitrogen, and hydrogen. In this case the 
metal ions are themselves arranged in closest packings and the 

carbon or nitrogen atoms inserted in the interstitial spaces of 

the metal lattice (see Art. 8). Such arrangements are called inter- • 
stitial solid solutions (distinguishing them from the substitutional 

solid solutions involving ions of equal or ncarh equal size and 
referred to in Art. 11 in the order-disorder discussion) or inter¬ 
stitial compounds and require usually a slight expansion of the 

surrounding metal lattice to tit the light atoms into the inter¬ 

stices between the ions. Because of the high density of this 
arrangement and the large number of bonds formed, these com¬ 

pounds are unusually strong and hard and have extremely high 
melting points (nitrides, carbides) 

In the modern processes of surface hardening of steel parts by 
nitridingj cyaniding^ and carburizing^ hard interstitial compounds 
are formed within a thin surface layei*. In addition, since the 

slight volume expansion associated with the introduction of the 

carbon or nitrogen atoms into the metal lattice near the surface 
is prevented by the adjoining metal unaffected by the treatment, 
relatively high compressive stresses are introduced into the sur¬ 

face layer. Thus, both the high strength and the high endurance 

of surface-treated steel parts are interpretable in terms of simple 
changes in the atomic structure conceived as densely packed 
spheres. 

Substances that are built up of identical atoms do not neces¬ 
sarily form one type of structure that is stable under all condi¬ 

tions. On the contrary, many materials, particularly metals, 

form different structures under different conditions, that is, at 
different temperatures and under different external pressure, and 
for different volume concentrations of the various constituent 
substances in a complex substance. The formation of alterna¬ 

tive structural configurations with identical atoms is called 
allotropy. 

Allotropic modifications are associated with a different geo¬ 

metrical arrangement of atoms or with a different structure of 
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molecules, as in the formation of graphite and of diamond out 
of carbon atoms, of the rhombic and monoclinic modifications 
of sulphur, or of the cubic (gray) and tetragonal (white) modifica¬ 
tions of tin. Either the allotropic modifications are stable at 
all temperatures or pressures and therefore coexistent, or only 

one modification is stable within a certain temperature range or 

at a certain pressure, and transformations from one structure into 
another occur at definite temperatures or pressures. Such 

transformations depend very markedly on the rate at which the 
external conditions are changed. 

Allotropic modification of a metal structure can also be pro¬ 
duced or affected by deformation producing forced geometrical 

changes in the existing lattice. Therefore the deformation 

history of a metal may greatly affect its allotropic transformation 
under changing temperature. The interrelation between change 

of temperature and prior deformation in changing the structure 

and thus the properties of a material are of greatest importance 

in metallurgical design of alloys, particularly steel.^ 

Allotropic transformation is the result of an instability of the 
existing structure brought about by changing external conditions. 

The changes extend therefore not only to the form of the lattice, 
but also to the lattice constants. Thus, in the transformation 
of iron with increasing temperature from the body-centered 

cubic a modification to the face-centered cubic 7 modification, 
the lattice constant, that is, the dimension of the unit cell, 

increases from 2.9 to 3.6 A. A unit cell of the face-centered 7 

iron contains 14 atoms, whereas that of the body-centered a iron 
contains only 9 atoms; however the corner atoms are shared by 

eight cells and the atoms in the faces by two cells. Hence, the 
atom density per cell is 2 for a iron and^4 for 7 iron. Since the 

ratio of the volumes of the unit cells is only about 1:1.9, the 
transformation from 7 iron to a iron is necessarily associated with 

an abrupt volume expansion accompanied by internal forces or 

stresses by which the mechanical properties of a polycrystalline 
aggregate consisting of randomly oriented groups of crystals may 

be considerably affected. 

Only materials that form allotropic modifications under 
changing conditions, particularly under changing temperature, 

can be changed by heat treatment. Thus, for instance, pure 
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copper whose structure is stable at all temperatures, cannot be 
hardened by a heat treatment, by which the mechanical proper¬ 
ties of iron can be very strongly modified. 

13. Finite Groups. Formation of Real Materials 

The energy of a pai ticle located at the surface of a lattice of 
finite dimensions is higher than the energy of an identical particle 
located inside the group. This follows from the different equilib¬ 
rium conditions of particles completely surrounded by interacting 
particles and of particles in free surfaces, where the one-sided 
attraction of the particles below the surface must be balanced by 
tangential forces (surfu.ce tensiem) within the slightly deformed 
surface and by reduced interatomic distances next and normal to 
the surface. Hen(;e the total energy of a group of finite number 
of particles tends to decrease with decreasing relative number of 
particles at the surface, that is, with increasing size of the group. 
The most stable group of lowest energy content would therefore 
be the perfect space lattice of particles extending over the total 
volume that can be formed. 

However, the existence of stnictiire-sensitive properties in the 
so-called ‘^single crystal,” which is assumed to be an ideal crystal 
of finite dimensions, can only be explained by the existence of 
local inhomogeneitics in the space lattice. Although so few in 
number that the}^ cannot perceptibly influence the additire prop¬ 
erties (see Art. 3), the effects of the inhomogeneities are sufficient 
to produce the difference by several orders of magnitude between 
the observed values of the constitutive (structure-sensitive) 
properties and the values these properties would necessarily 
attain in the perfect crystal structure. These inhomogeneities 
in the ordered arrangement could be imperfections within the 
space lattice, involving isolated particles, such as an occasional 
missing particle or the occupation of a lattice point by a foreign 
atom; these chance defects are randomly spaced and they aie 
unavoidable in the building up of any real structure consisting 
of a large number of elements. Or the inhomogeneities could be 
concentrated along certain definite planes; this arrangement 
would produce an approximately periodic subdivision of the pri¬ 
mary coordination lattice. Within this subdivision the ordered 
arrangement of particles would be perfectly homogeneous. 

These two assumptions concerning the probable nature of the 
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imperfections within the ordered structure form the basis of the 
two large groups of theories concerning the behavior of real 
crystals as distinguished from the perfectly homogeneous ideal 
crystals. The lattice-defect and dislocation theories are derived 
from the first assumption; the mosaic or block-structure theories 
are based on the second. 

The lattice-defect theory has first been developed by SmekaP® ^ 
who attempted to explain the discrepancy between the atomic 
bond-strength and the ^^technicaT’ cohesive strength of solids. 
According to this theory the existence of an ideal crystal lattice 
of any size is highly improbable, since there is alwa3"s a proba¬ 
bility, no matter how small, of encountering a defect at any 
location. The dislocation theories amplify the lattice defect 
theories by introducing a more detailed concept of the “defect/' 
the nature of which in Smekal’s theory remains rather vague. 
The concept of dislocations has been introduced by PrandtP^ - 
and developed by Dehlinger*^ it has been applied to the 
explanation of the discrepanc}^ between the atomic slip resistance 
and the observed values of the shear resistance in crystals by 
Taylor,^ Orowan,^^ ^ and Polanyi.*^ ® A dislocation is assumed 
to be a line discontinuity in the atomic lattice such that there is 
one atom more in the atomic array above this line than below 
(Fig. 13 1). At the “center of the dislocation” the vertical 
atomic lines are one-half the atomic distance out of step, whereas 
they are again in step at considerable distances to the left and 
right of this center. Thus, the region above the center of the 
dislocation is under compression; the region below it under ten¬ 
sion. Because of the distortion created within the atomic lattice 
a dislocation contains a certain amount of excess energ.v so that 
dislocations constitute points of energy" concentration. The 
assumed density of dislocations varies between 10^ per cm“ for 

annealed and 10^‘^ per cm“ for heavily cold-worked metal," 
considering planes one atomic distance thick. These figures are 
equivalent to the volume concentration of defects assumed in 
the lattice-defect theory of between 1:10^ and 1:10^, which is 
also the probability of encountering a defect anywhere in the 

lattice. 
It must be assumed that dislocations are formed both during 

solidification of the crystal out of the melt and as a result of 
“unfinished slip,” that is, as the result of a slip motion along an 
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atomic plane which does not pass through the whole crystal but 
is arrested in its interior by the formation of the dislocation; it 
is further assumed that the defects associated with the formation 
of crystals out of the melt are essentially the same type as the 
dislocations produced by unfinished slip, so that the same mathe¬ 
matical concepts can be applied to the analysis of all dislocations, 

A Single dislocation. 

B Row of dislocations. 

Fig. 13-1 Soap-bubble modeKs of dislocations in regular array of atoms 

(courtesy Sir Lawn*nce Hragg® *). 

irrespective of their origin. The mathematical theory of dis¬ 
locations has been developed by Koehler. 

The mosaic-structure theory has first been proposed by 
Zwicky,^3 9 attempted to explain the discrepancy between 
the atomic and the technical cohesive strength of solids by the 
assumption of secondary lattice planes in which the forces of 
interaction between the atoms are much smaller than in the 

primarylattice planes. Although the theoretical basis of 
Zwicky^s theory was considered untenable, sufficient experi¬ 
mental evidence became available from X-ray investigations of 
assumedly perfect single crystals to justify the conclusion that 
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an annealed crystal is composed of blocks of perfect atomic 
arrangement of linear dimension of 1000 to 10,000 A (one-tenth 
of a micron to one micron), tilted against each other by about 
10 to 15 arc min.^® Because of the perfection of the atomic 
arrangement within the blocks, their properties could not be 
structure-sensitive. Contrary to the original mosaic-structure 
theory, the block theory does not postulate the necessity of the 
existence of blocks or the impossibility of the formation of ideal 
crystals. It only concludes from the interpretation of the avail¬ 
able evidence that practically all assumedly perfect crystals show 
evidence of a certain degree of disorder, which would suggest 
the existence of blocks of the afore-mentioned size and relative 
inclination. 

There is, in fact, no real contradiction between the dislocation 
and the block theory. Roth theories can be unified by consid¬ 
ering the block boundaries as planes of concentrated dislocations, 
at least as long as the crystal has not yet undergone any deforma¬ 
tion under the action of external loads. Thus, the smallest 
concentration of dislocations would reciuire that one out of every 
lO'* atoms be located within a block boundary. 

Although the ideal perfectly homogeneous space lattice repre¬ 
sents the state of lowest energy, it cannot be assumed that all 
particles participating in the formation of the lattice will suc¬ 
ceed in reaching positions of perfect stability at the moment 
of solidification, as perfect stability represents a limiting state. 
The fact that in the case of the existence of blocks the material 
would actually be in a state of higher energy than that associated 
with perfect stability is irrelevant; it would only indicate that 
such existence could theoretically not be stable and that the 
arrangement would therefore tend to^ change spontaneously, 
that is, by place changes of individual particles in the course of 
their thermal oscillations towards the final state of lowest energy; 
it will however take infinite time to reach this state. 

As previously pointed out, there is sufficient experimental evi¬ 
dence that can be interpreted in favor of the existence, in real 
crystals, of a higher periodicity than that of the ideal homo¬ 
geneous coordination lattice. Such higher periodicity, as 
expressed by the block structurcy is due to the fact that group 
phenomena involving finite groups of particles are operative 
within the association made up of a practically infinite number 
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of particles. The size of those groups, which are agglomerations, 
in ordered condition, of a limited number of particles, is a physical 
characteristic of the considered material. The experimental evi¬ 
dence tends to show that since groups or blocks are formed during 
the solidification of the crystalline material out of the melt, 
solidificaton is a group phenomenon, that can be described neither 
in terms of the single particle nor in terms of an infinite number 
of particles, but only in terms of groups of finite size the forma¬ 
tion of which is initiated by nucleatioyi. 

In the solidification process the formation of groups of finite 
size apparently precedes the formation of the solid domains; 
particles arrange themselves into smaller groups according to 
the configuration of the solid space lattice while still in the liquid 
state. Conversely, in the melting process such groups persist 
in formation for several degrees above the melting point. The 
existence of this par aery stalUne formation in the melt has been 
inferred from the persistence, after reheating to several degrees 
above the melting point, of certain effects of crystal anisotropy 
observed on previous cooling, if the melt was well protected from 
outside disturbances. 

The particles, which subsequently form the crystal, have con¬ 
siderable freedom to move individually in the melt. As the 
temperature is lowered, this mobility is gradually restricted, 
since the tendency to cohere is intensified as a result of the 
decreasing amplitudes of the thermal oscillations of the particles. 
Because of the heat fluctuations in the melt solidification does 
not proceed in accordance with the concept of a crystal built up 
by the accumulation of particles along the expanding solid 
boundaries into a three-dimensional continuum. It takes place 
in a discontinuous manner by the formation, from nuclei, of 
small solid domains or blocks of particles at locations of the 
least intense thermal motion. Subsequently, and if given suffi¬ 
cient time, these blocks attempt to form larger units by mutual 
realignment and by absorption into their group order of indi¬ 
vidual particles caught between neighboring solidified groups. 

If, because of the competing claims as to the order to be fol¬ 
lowed from adjacent solidified blocks on particles located along 
the block boundaries, these particles cannot be absorbed into 
the order of either of the blocks, such particles are kept in 
positions of excessive potential energy and unstable equilibrium 



Art. 13] Finite Groups. Formation Real Materials 99 

by a system of forces of interaction connecting these particles 
simultaneously to the competing ordered block regions. It is 
doubtful, however, whether such a system has any resemblance 
to a “dislocation.^’ The position of high energy or high quantum 
states of parti(*les within the block boundaries are characterized 
by interatomic distances exceed¬ 
ing the stable equilibrium dis¬ 
tances in the adjoining block lat¬ 
tices. In the real crystal lattice, 
consisting of an assembly of small 
perfectly ordered blocks of im¬ 
perfect mutual alignment (Fig. 
13 -2) these positions of high en¬ 
ergy are therefore positions of 
least stability. They are also po¬ 
sitions of slight disorder, since 
they result from the fact that two 
or a number of competing claims 
as to the order to be followed 
have been imposed simultaneously. The character of the sub¬ 
stance forming block boundaries is therefore different from its 
character within the crystallite blocks. 

The angular deviation in alignment between adjacent blocks 
of the same crystal must necessarily be very small, as otherwise 
the disturbance produced in the whole space lattice would be so 
considerable as to affect seriously the properties that depend on 
the lattice as a whole; this, however, does not occur. For the 
same reason the distortion of the atomic arrangement producing 
the thickness of the block boundaries cannot extend over more 
than a few atomic distances. Hence tb^ inhomogeneity in the 
lattice resulting from the block structure is actually very slight. 
Its considerable importance in determining the behavior of the 
lattice under applied forces, however, lies in the fact that these 
slight irregularities are sufficient to concentrate the initial 
response to the action of applied forces entirely within the regions 
where they occur. It is therefore the initial resistance of those 
boundaries to deformation and separation and not the resistance 
of the regular lattice that determines the behavior of the real 
crystal preceding any permanent deformation. 

The building up of a perfectly aligned crystal out of small 

Fig. 13*2 Blockformation in 

crystals (mosaic structure). 
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blocks, theoretically, might be possible if sufficient time were 
available for such realignment of the blocks to take place before 
the mutual interference of the blocks formed and the freezing 
of the remaining narrow liquid regions between blocks practically 
stopped any further free motion. Since the infinitely slow cool¬ 
ing rate necessary for the formation of an ideal crystal out of the 
blocks cannot practically be imposed, building of the perfectly 
ordered arrangement of an ideal crystal is impossible. Thus 
the grade of perfection of the single crystal will depend on the 
duration of the solidification process. 

The formation even of an imperfect single real crystal directly 
out of the melt can only be achieved under exceptional conditions. 
Because of the considerable component of “thermal’^ disorder in 
the liquid state, the probability of formation of a large number of 
randomly oriented blocks, which, in the time given, are unable 

to align themselves into one single’^ real crystal, is much more 
probable. In this case relatively small numbers of blocks of 
suitable orientation will tend to form ^^singlc’^ crystals of smaller 
size, the orientation of which will be essentially random. In this 
formation of statistically isotropic polycrystalline aggregates out 
of the liquid state, the alignment of blocks forming individual 
crystals will be the more perfect, and the individual crystals 
therefore the larger, the slower the (tooling process has been; 
conversely, the crystals will be the smaller, the more rapidly 
cooling has proceeded. This latter tendency does, however, 
stop at the limiting order of magnitude of the blocks \vhich con¬ 
stitutes the lower limiting size of the stable associations of 
particles. 

Tl:e magnitude of blocks or domains termed crystallites by 
Wood^^ ^Ms of the order of 0.1 cubic micron; it is a character¬ 
istic of the material at a certain temperature and depends on its 

chemical constitution. Thus, a crystallite size of about 0.3 
micron for pure iron is reduced to about 0.1 micron by the addi¬ 
tion of 0.8 percent carbon.^* Because of the high energy 
within the interfaces of the blocks, groups of atoms of smaller 
than crystallite size are thermally unstable and cannot exist. 
Crystallites therefore cannot be broken up permanently into 
smaller units since such units are rather rapidly re-formed into 
the stable crystallite size. 

As previously noted, the imperfect alignment of blocks into a 
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single crystal creates along the block boundaries instable positions 
of particles of higher potential energy associated with large 
interatomic distances. In the same manner the formation of a 
group of relatively small crystals by solidification causes iso¬ 
lated atoms along the boundary regions between crystals to 
remain in unstable positions of equilibrium associated with high 
potential energy of the interatomic forces. These intercrystal¬ 
line regions or crystal boundaries differ from the block boundaries 
by the larger number of particles involved, by the much more 
pronounced disorder of the atomic structure and by the greater 
thickness of the disordered regions. Whereas the disorder in the 
block boundaries is very slight, being due to differences of several 
minutes in the angular alignment of blocks, the differences in 
the orientation of the space lattices of adjoining crystals are com¬ 
paratively large, so that a large number of particles remains 
within the boundary region, unabsorbed into the order of either 
neighbor, as long as the number of such particles is not suffi¬ 
ciently large to produce a tendency towards the independent 
formation of isolated crystallites between the adjoining crystals. 

The deformational and strength properties of the poly crystal¬ 
line aggregate are largely governed l)y the behavior of the inter- 
crystalline (boundary) regions; those regions are actually respon¬ 
sible for the group behavior of the aggregate. 

The initial inhomogeneity of the atomic arrangement within 
the boundary and block regions due to the varying grain orienta¬ 
tion and the imperfect block alignment is further intensifie;! 
in the course of the solidification process, as a result of differences 
in the coefficients of thermal expansion in the different directions 
of the same crystal, as well as for the different constituent 
elements making up the material. The grain boundaries are 
thus associated with a high intensity of the interatomic force field, 
or, as it is usually called, the field of microstresses or textural 
stresses. The term textural stresses, introduced by Orowan,^*^ 
is used in reference to all inhomogeneous fields of interatomic 
forces arising from the inhomogeneous structure, atomic, molec¬ 
ular, and microscopic, of real materials. 

The behavior of the intercrystalline regions is also strongly 
affected by foreign atoms which, being strangers to the groups 
in formation and thus not easily absorbed, tend to agglomerate 
along the group boundaries. That this is the case may be 
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inferred from the observation, that a critical concentration of 
foreign admixtures (alloys and impurities) exists below which 
the specific effect of a foreign particle is 10 to 100 times larger 
than it is above that limit. The existence of such a limit is 
an indication of a sharply differential surface and volume effect 
of foreign particles. Below the critical limit of concentration 
the particles agglomerate within the disordered boundary regions; 
above it they must be absorbed into the volume of the crystals. 
The critical concentration is very small, but it is exceedingly w^ell 
defined, particularly at low temperatures; it is reached when the 
intercrystalline regions or ^^block-interfaces^’ are saturated by 
foreign particles, so that all additional particles are absorbed by 
the crystals. 

The fitting of foreign particles into both the crystal boundaries 
and the crystal volume is usually associated with the creation of 
highly localized fields of textural stresses around those particles. 
Thes(^ stresses result from the differences between the atomic 
diameters of the foreign particles and the diameters of the ‘^holes’’ 
in the existing atomic arrangement in the grain boundary or 
within the crystal lattice, into which these particles or groups of 
particles are being fitted.^^'^^ 

In the discontinuous assembly of particles the tendency toward 
an ordered arrangement is essentially produced by electrostatic 
and valence forc.es; the tendency toward disorder is due to the 
thermal motion of the particles. Therefore, the stronger the 
forces of interaction between the particles, the stronger the 
tendency to crystal formation, and the less can this tendency be 
interfered with by thermal motion. A certain balance between 
the two opposing tendencies is, however, required for the actual 
formation of crystal structure from the essentially random dis¬ 
tribution of particles in the melt, since the thermal agitation of 
the particles provides their mobility to follow the electrostatic 
attraction. It is the sharp reduction of this mobility in the 
cooling process before the electrostatic forces have been able to 
overcome the disordering tendencies that produces the amorphous 
structures. 

The existence, particularly in metals, of a lower limiting size of 
ordered crystal arrangement (crystallites), the rapid and dis¬ 
continuous solidification process leading to block structure, and 
the paracrystalline formation in the melt are probably interre- 
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lated phenomena, all of which are due to the combined thermal 
and time effects governing the transition from the liquid to the 
solid state. These effects are the result of the momentary rela¬ 
tion between the velocities of individual particles in the melt 
under the action of the ordering (interatomic) and disordering 
(thermal) influences. 

Whereas with decreasing temperature the disordering tendency 

becomes gradually less violent and the group-forming ordering 
tendency more pronounced, the reduction of the thermal motion 
at the same time reduces the mobility of the particles under 
the influence of the ordering tendency. There can be only 
a very narrow range of temperatures in which such a relation 
between the ordering and the disordering tendencies exists that 
the particles not only have the definite tendency to follow 
the ordering forces but also are still mobile enough to do so. 
The maximum distance over which a particle in the melt is 
free to move within this temperature range probably determines 
the characteristic size of the crystallite of a particular material. 
Crystalline materials are thus formed by solidification in a 
rather discontinuous manner; the melting process is necessarily 
of similar discontinuous character. The ordering process how¬ 
ever, is, not terminated on solidification; it continues for very 
long periods even in the solid state, as a result of occasional 
activation by thermal-energy fluctuation of particles in instable 
positions. Following the ordering tendency, these particles 
move or diffuse through the lattice to more stable positions of 
lower energy. In fact, it has been observed that the perfection 
of the lattice of single crystals increases with time over very long 

periods. 
Amorphous materials, on the other han^, are formed by gradual 

solidification, since the ordering tendency (which is operative 
before the reduction of temperature prevents further motion of 
particles) is comparatively weak, being caused by molecular 
forces. Although a very small-grained polycrystalline aggregate 

and an amorphous molecular substance show considerable simi¬ 
larities in their mechanical behavior, they still belong to two 
basically different states. The statistical isotropy of the poly¬ 
crystalline aggregate and the statistical isotropy of the amorphous 
substance pertain to different levels of association of particles. 
Since that part of the behavior determined by the character of 
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the element on each level is invariable, deformational behavior of 
a crystalline aggregate, however small-grained, will retain its 
characteristics to such an extent as to be distinctly different from 
that of an intrinsically amorphous substance, the statistical 
isotropy of which is created at a level of association at which the 
element is the atom or the small molecule. 

It has been mentioned previously that transformation from 
the liquid into the solid state can be achieved not only by cooling 
but also by polymerization. The solid chain molecular structure 
formed by polymerization either may be so thoroughly inter¬ 
linked that its rigidity is high and, within a certain range, prac¬ 
tically unaffected by temperature, or it may consist of linear 
chains with a comparatively small number of weak cross links 
and therefore manifest high deformability and temperature 
sensitivity. In the formation of high polymers, it is the size 
and shape of the reacting molecules that determines the structure, 
and thus the mechanical properties. 

A few materials can exist in either the ordered or the unordered 
state, (piartz being an example. In this case the amorphous 
state is not entirely stalde; it is generally possible to transform 
the amorphous into the crystalline state by long periods of mod¬ 
erate heating, during which the mobility of the particles is so 
intensified that, at least over long periods of time, they tend to 
follow the ordering forces. Such transformations can be speeded 
up by the introduction of special ordering effects, such as strains, 
by which the ordering forces are intensified. In those materials 
a very slow cooling process increases the probability of achieving 
ordered formation, whereas rapid cooling increases the proba¬ 
bility that the state of disorder existing in the melt will be 
preserved in the solid. This preservation of the disorder of the 
melt which results in the umiercooled liquid formation of the 
glasses depends upon the existence in the melt of groups of 
poymerized cations. These groups, the elements of which form 
in the solid state ionic bonds with the anions present, must be 
so large or so irregular that they cannot be simply added to a 
growing crystal lattice. Thus the glass-forming tendency is 
intensified by increasing dimensions or irregularity of the poly¬ 
merized groups and vanishes when such groups do not exist. 

Simultaneous existence in either of the two states is a phe¬ 
nomenon occurring also in the formation of polycrystalline aggre- 
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gates out of the melt; however, in this process the unordered 
state, which is developed in the interstitial regions between the 
crystals, can survive only as a result of the conflicting ordering 
claims concerning the position of individual particles in the 
licjuid held between the solidified crystals and the extent of dis¬ 
order is restricted to layers of thickness of a few atomic distances. 

14. Microscopic and Macroscopic Structure 

On the microscopic scale of observation, the structure of engi¬ 

neering materials is either truly amorphous or ^technically 
amorphous” or polycrystallirie. 

Fig, 14 -1 Structure of cement-sand mortar. 

Truly amorphous structures are those of materials of the 
undercooled liquid type such as glass, some asphalts, and some 
nonhardening resins. Their mechanical behavior is determined 
by the interaction of molecules. 

All ‘technically amorphous” materials are two- or multiple- 
phase systems, consisting of a continuous spatial network of a 
certain material, the spaces of which are filled by other materials 
in molecular or microscopic distribution. Either the network 
is a statistically isotropic rigid skeleton sometimes crystallized, 
held together by primary bonds, such as the silicate skeleton of 
the ceramic materials, the calcium-aluminum skeleton of Portland 
cement or materials containing additional microscopic particles, 
such as the cement-sand mixtures (Fig. 14 * 1); or it may be a 
flexible network of very large molecules, which show preferred 
orientation leading to a definitely anisotropic inhomogeneous 
structure, as in textile fibers. 
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Substances filling the spaces within the network range from 
molecularly distributed water in clay, ceramic materials, and 
gelatin, to oily or very viscous gluelike liquid phases such as are 
present in asphalts, synthetic resins, and hardened cement. In 
the analysis of the mechanical behavior of the ‘‘technically 
amorphous’^ materials, both the interactions on the molecular 
scale and the behavior resulting from the presence of two or 
more constituent phases of different molecular structure have’ 
to be considered. The order of magnitude of the structural 
assembly is intermediate between the molecular and the micro¬ 
scopic; it depends on the victual dimensions of the constituent 
particles. 

Statistically isotropic polycrystalline materials such as min¬ 
erals and metals consist of an assembly of crystal grains of an 
order of magnitude ranging between several microns and several 
millimeters. The initial sizes of the crystal grains within the 
aggregate depend primarily on the duration of the solidification 
process; they may, however, be subsequently modified by tem¬ 
perature and deformation. Since the stable size of a crystal 
grain is a function of temperature, there probably exists an 
equilihriurn vdate of distribution of crystal sizes within the aggre¬ 
gate, toward which the actual distribution tends with time. 

The mechanical behavior of polycrystalline aggregates is built 
up from that of the single grains under the mutual restrictions 
imposed on their deformation by the existence of adjacent grains 
and of grain boundaries. The structure of the polycrystal can 
be considered as a tAvo-phase system consisting of randomly 
oriented crystalline regions forming a continuous spatial aggre¬ 
gate held together along the boundaries by a very thin layer of 
unordered material. 

Some technically important materials cannot be considered 
homogeneous, even on a microscopic scale, but are built up of 
two or more different materials, each one providing certain 
properties. Such materials are either statistically isotropic or 
definitely anisotropic. 

The majority of materials of this type, which may be termed 
macroscopically heterogeneous, are two-phase systems, containing 
one solid phase and one fluid (viscous) phase. Frequently this 
viscous phase is itself a two- or multiple-phase substance, such 
as cement, certain types of asphalts, or glues and high-polymer 
bonding materials. 
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Tlie most important examples of macroscopically heterogeneous 
materials are concrete (consisting of a rigid skeleton formed by 
the aggregate, filled by the highly viscous cement paste), tech¬ 
nical asphalt mixtures (where the viscous phase is formed by the 
bituminous material, the solid phase by the stone filler), and the 
laminated plastics (built up of wood, glass, or high-polymer layers 
bonded by adhesives). The mechanical behavior of heterogene¬ 
ous materials is determined by the proportion of the different 
materials present. In statistically isotropic materials, such as 
concrete, the characteristic deformational behavior will be that of 
the phase that is continuously distributed: when the solid skeleton 
is continuous, the mechanical behavior is that of a solid, as in a 
rather lean concrete; when the viscous phase is continuous, the 
behavior is essentially that of a fluid, as in a rich asphalt mixture 
or a very rich concrete. By the re-establishment of the con¬ 
tinuity of the solid phase in the course of the deformation (inter¬ 
locking of stones in concrete), an initially viscous behavior may 
be blocked and transformed into that of a solid. 

Evidently the forces of interaction between the different phases 
are as important a factor in determining the mechanical proper¬ 
ties of the material as are the forces of interaction within each 
phase. Forces between phases are the surface forces building 
up the adhesion between the solid particles and the viscous phase, 
or between the bonded material and the adhesive. The relative 
influence of the two phases is therefore determined not only by 
their proportion in volume, but also by the relation between the 
internal forces within each phase and the forces of interaction 
between the phases. Thus the performance of laminates is 
essentially governed by the relative resistance to deformation 
and fracture of the bonded sheets and oj^ the adhesive, and not 
by the strength of the bonded material alone. 
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CHAPTER 

3 

STRUCTURAL THEORIES OF DEFORMATION 

15. Statistical Aspect of the Behavior of an Assembly of Particles 

The change of mechanical state of a material is the expression 

of changes within its structure or in the group pattern formed by 

the structural elements at the {considered level of aggregation. 

(Tanges of state which are reflected in the shape of the stre.ss- 

strain or of the strain-time diagrams observed in engineering 

t('sts arc cither the result of the momentary atetion of external 

forces or independent of this action, being the result of the 

“spontaneous,” thermal motion of the atoms or molecules, 

'riiermal motion, however, can lead to “spontaneous" changes in 

the structural pattern only when the existing pattern is not per¬ 

fectly stable; such changes would therefore not be possible 

either within the ideal crystal lattice or within materials of per¬ 

fectly unordered, that is, statistically isotropic arrangement of 

partiedes, since both types of grouping of particles represent, at 

different levels of temperature, limiting conditions of perfect sta¬ 

bility. The possibility of a “spoiitanecnis” change of state 

within a matccrial would therefore depend on the existence of a 

certain amount of disorder within the essentially ordered struc¬ 

ture, or of a certain amount of order within the essentially 

unordered structure; since the energy content of the existing 

structural pattern would thus not be a minimum, a tendency of 

“spontaneous” change of the grouping of particles toward a more 

stable arrangement of lower energy would establish itself. The 

stability of the structural pattern, however, may be considerably 

changed in the course of changes produced by external forces 

109 
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alone; a certain interrelation must therefore always be expected 

to exist between the force-dependent and the “spontaneous” 

changes of state in that the momentary intensity or rate of the 

“spontaneous” change of state will be a function of the preceding 

force-dependent change if such change has been associated with 

identifiable changes in the structure of the material and thus in 

its thermal stability. 

In any case of change of the atomic or molecular pat tern, par¬ 

ticles have to be loosened from their equilibrium position in the 

structure, in which they are held by the bond forces, and trans¬ 

ferred into a new position. The energy required for this local 

loosening of the structure by thermal activation of the particles 

must be at least equal to the activation energy. This energy 

Q = qN cal per mole, where ?/o = ^ is the activation energy per 

particle and N the Avogadro number. 

The sources of supply for the energy necessary to overcome 

the potential barrier of the interacting forces, which prevents the 

es(!ape of a particle from its equilibrium position, are the exter¬ 

nal forces and the thermal oscillations of the particles. Spon¬ 

taneous change of energy and position of a single particle within 

a group thus tlepends on the local accumulation, during the time 

necessary for the “escape” or activation of the particle, of suffi¬ 

cient thermal energy to overcome the potential barrier repre¬ 

sented by the activation energy. The rearrangement, by such 

changes, of the position of particles in a group thus depends on 

the distribution, at any moment, of the heat energy within the 

group. 

The problem of evaluating the frequency (or the probability) 

of any part icle in the group attaining a state of energy in which 

it is free to migrate from its equilibrium position is a problem of 

classical statistical mechanics. It is the problem of finding, 

among all possible configurations or “patterns” of an assembly 

of particles, possessing a finite total amount of energy and 

enclosed within an isolated part of space, that pattern which has 

the highest probability. This pattern, therefore, will not only 

occur most frequently but, if disturbed, will also spontaneously 

re-establish itself because, being more probable than any other 

configuration, it is also more probable than the disturbed con¬ 

figuration. It represents therefore the configuration with the 

highest stability. 
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In order to apply probability considerations to the distribu¬ 

tion of particles in space and to the energy distribution over the 

particles, it must be assumed that there is no coupling of the 

states, that is, of the distributions at different times and that each 

state represents a mean value over a considerable period of time, 

which is independent of the selected period and corresponds to 

the mean value deducted from the most probable state by con¬ 

siderations of probability. This so-called quasiergodic hypothesis 

asserts, in short, that, whatever the initial state, a stationary 

state which is the state of greatest probability is attained in 

time. 

By computing by statistical methods the most probable 

geometrical distribution of particles within a finite volume, 

divided into cells of different size, it can be easily shown that the 

number of particles in the individual cell is proportional to the 

size of the cell; the particles in the stable state are therefore uni¬ 

formly distributed. It is towards this distribution that any 

random distribution will tend in time. Similar considerations 

applied to the distribution of a finite amount of energy E over 

the particles lead to a different condition of stability because of 

the subsidiary condition that the total amount of the energy of 

the particles is finite and that therefore E must be ecpial to the 

sum of alt component amounts of energy e/ associated with the 

individual particles.^*’ ‘ If Ni denotes the number of particles 

in the energy state u, the total energy, 

t 

(15 1) 

where a definite distribution of energy states is described by 

the number iVi, N2 • • • Ni , . . etc., of particles in each state. 

Evidently 

SAT,. = AT "" (15-2) 

where N denotes the total number of particles. The fraction 

of particles occurring in a state of energy characterized by the 

subscript i defines the probability pi of finding an individual 

particle in this state; hence. 

and, because of eq. 15-2, (15.3) 
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If we introduce, instead of the number Ni, the fraction dN of par¬ 
ticles falling within an infinitesimal range of energy €, the energy 
increase per particle, eq. 15-3 becomes 

P N 
(15-4) 

The energy distribution of highest stability and thus of maxi¬ 
mum probability under the auxiliary conditions 15 1 and 15 -2 
can be derived by applying the calculus of variations to the 
probabilities of the possible energy distributions. The problem 
has been dealt with by Boltzmann and by Gibbs, who has called 
the resulting distribution a “canonical distribution,^’ in which 
the number of particles in various states of energy i is given by 
the equation: 

Ni = Ne^ (15-5) 

The values and 0 in this expression are determined in accord¬ 
ance with the subordinate conditions 15-1 and 15-2. It can 
be shown that the modulus of the energy distribution d is the mean 
energy €o of the oscillating particles for each degree of freedom, 
which is €o = /cT, whereas <^) is a constant, characteristic of the 
potential energy of the distribution of particles. 

The probability Pi of finding an individual particle in the state 
of energy Cj can thus be expressed in the form, 

p. = ^ Ce-'^i/kT 

or, according to eq. 15-4, 

P = 
dN 

N 
(15-7) 

Equation 15 -6 is the basic equation governing the energy dis¬ 
tribution within stable systems of discrete particles and is usually 
referred to as the Maxwell-Boltzmann^® ^ distribution. It is 
widely used in the analysis of all processes for the initiation or 
the progress of which the necessary energy has to be supplied by 
fluctuations of thermal energy, since it relates the thermal 
energy or, if written in the form of eq. 15 -7, the energy increase 
€ per particle to the expected probability of attaining it. This 
probability in turn defines the expected number of times per 
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second that any particle will experience an energy fluctuation e, 
if the frequency i/ of the energy oscillations is known. With 
€ = uq = q for the atom or with c = jYg = Q for the mole, eq. 
15-7 expresses the probability of activation. If € or Q is expressed 
in thermal units, Boltzmann's constant k is replaced by the gas 
constant It. 

A formula of similar type has first been proposed by the 
chemist Arrhenius to describe the rate at which processes of 
chemical reaction take place at various temperatures; in this 
form it is being widely used in the theory of the so-called “rate 
processes."^®'^ 

The expression for the mean energy 6o of an oscillating particle 
as obtained from eq. 15*6, 

- E 
N 

= C f te—■d( = kT 
Jo 

(15-8) 
confirms the assumption introduced previously. 

Equation 15-7 has been derived on the basis of classical (non¬ 
quantum) statistical mechanics. However, the processes both 
of energy absorption by which the particles reach the activated 
state and of energy emission associated with the subsequent 
adjustment in finding a new position of higher stability are 
“quantized” and can take place only if the absorbed and emitted 
energies are multiple integers of the “quantum” of the particle; 
they can be described by classical mechanics only if the amounts 
of energy involved are so large that the increase in the successive 
energy levels by quantum steps can be regarded as practically 
continuous. Equations 15 • 6 and 15 7 may therefore be assumed 
to describe adequately the energy distribution over the particles 
occurring at temperatures at which the mean energy of the indi¬ 
vidual particle is relatively high. To d^cribe changes at tem¬ 
peratures, however, where the quantum effect is pronounced, the 
Maxwell-Boltzmann energy distribution must be modified to 
give a distribution law consistent with the possible quantum 
states. According to this modification^^ ^ the probability that 
a particle will find itself in the quantum state n is 

n 

(15-9) 
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where, according to Planck’s relation en = nhu. According to 
the modified eq. 15-8, 

hv 

““ (1 4- "^-'^'' kr ~j^'^-2hv/kr 4_ . . ‘ ^hy/kr _ ^ 

' = kTP(x) (15 10) 

Equation 15-10 is Planck’s expression for the average energy 
That the difference between 
the energy content of a 
Planck oscillator and that of 
a classical (Newtonian) os¬ 
cillator Co = kT is consider¬ 
able can be shown by plot¬ 
ting the Planck function 
P{x) = x/{e^ — 1) where x = 
hu/kT (Fig. 15 1). This di¬ 
agram shows that the mean 
thermal energy of Planck 
oscillators is considerably 
lower for small values of 7" 
(that is, small values of 1/x) 
than the energy of a classical 

oscillator kT. For large values of T however the mean energy of 
the Planck oscillator approaches the classical value eo = kl\ as 
P(x) approaches unity. 

The difference between the mean energy of the classical and 
of the Planck oscillator is important with regard to the mechan¬ 
ical behavior of materials at low temperatures. Thus, for 
instance, the separation of a cohesive bond which initiates fracture 
within the atomic structure is a “stabilizing” process, that is, a 
process associated with a decrease of potential energy (since 
otherwise it would not take place); it occurs only if the instability 
of the momentary position produced by the action of forces 
cannot be resolved by an alternative stabilizing process, such as 
the “spontaneous” migration of the unstable particles to a more 
stable position. Because of the considerably lower mean energy 
and because of the quantization of both the activation and the 
subsequent stabilization process, the possibilities of place change 

0 5 
9 

Fi(}. 15-1 Planck’s function 
Debye’s function Dix). 
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of particles are less numerous, and migration by activation there¬ 
fore less probable than they would be according to the classical 
relation. With decreasing temperature, the alternative stabiliz¬ 
ing mechanism of bond disruption becomes, therefore, relatively 
more probable and thus more frequent. 

So far the energy considerations apply to a one-dimensional 
oscillator. In a solid every particle can be regarded as a three- 
dimensional oscillator. Hence, by the rules of classical statistics 
the mean energy of the particle is 3/c7' or, for one mole of the 
substance, E'o = = ZR7\ Since the gas constant R is 
approximately 2 cal per degree, the specific heat c = dEo/dT = 

3/? is about 6 cal per degree (see Art. 10). Experiments, how¬ 
ever, show considerable deviation from this figure, which are 
the greater, the more firmly the particles arc held in their equilib¬ 
rium positions, that is, the stronger the interatomic forces and 
the lower the temperature. It has been found, for instance, that 
the specific heat per mole for diamond at room temperature is 
only about 1 cal per degree. The deviations from the classical 
figure are due to the quantization of the vibrational energy. 
Hence, the mean thermal energy of the oscillators per mole of 
the substance, and thus the true specific heat, can be obtained 
by integrating eq. 15-10 over the 3A" degrees of freedom of the 
.V oscillators, considering that the oscillators are coupled 
and cannot all perform oscillations of tlu' same frecpiency. 
Therefore, 

Eo = kT P(.r) ds = dRT D{x) (15 -11) 

where ds denotes the number of oscillations per unit volume 
between the frequency v and {v + dp) and D{x) represents 
the so-called Debye function which, like the Planck function, 

approaches unity for small value of x (Big. 15-1). The absolute 
temperature T = 0 associated with a: = 1 is known as the Debye 
or characteristic temperature. It indicates the temperature below 
which the material no longer behaves even nearly in accordance 

with classical concepts. If this temperature appreciably exceeds 
room temperature, quantum considerations may influence the 
mechanical behavior of the material even at room temperature. 
Table 15* 1 shows approximate values of the Debye temperatures 
of several elements; this temperature can be computed by differ- 
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ent methods which lead to slightly different results; the given 
values represent averages. 

TABLE 15* 1 

Pb 

O in () in °K 

90 C^i ;B5 

Na. 150 A1 395 

Zn 210 i Fe 450 

Ag 215 Be 1000 

Mg 
i 

290 (dianioiul) I860 

According to Table 15 1, it appears that quantum effects with 
regard to large-scale (engineering) behavior are negligible for 
lead, zinc, and silver only: for other metals these effects may 
become important in the atomic interpretation of results of 
mechanical tests performed at low temperatures. 

The maximum mean frequenc^y of thermal oscillations is 
related to the Debye temperature by the relation, 

lA) 
J'O.uax ^ (15 12) 

Below this temperature the frcHiuency may be assumed to vary 
roughly with kT/h. 

16. ''Spontaneous'* Changes of State. 

All changes of the geometrical pattern of the internal structure 
of a material resulting from changes of the energy pattern that 
are ^^spontaneous'’, that is, independent of the momentary value 
of the applied external forces, are produced by the tendency of 
the structural elements to assume finally a position or a shape 
of maximum stability. This tendency can assert itself in spite 
of the solidification of the material, because the incessant 
thermal activation of the atoms and molecules oscillating about 
their positions of equilibrium produces a finite probability of 
occurrence of a thermal-energy fluctuation sufficient to loosen 
individual particles from their momentary equilibrium position, 
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enabling them to move into more stable locations associated 
with lower potential energy. The intensity of the resulting 
migration of particles within the solid structure determines the 
characteristic diffusion rates of particles of various elements. 
The diffusion process, the progress of which is essentially not 
different from a true chemical reaction, is thus necessarily gov¬ 
erned by the probability of activation of individual particles, and 
the momentary diffusion rate D can therefore be expressed by a 
function of the form of eq. 15-7, 

D = (16-1) 

where A denotes a structure-dependent constant and Q the 
activation energy or the loosening energy of the structure. It is 
usually assumed that both constants depend only on the existing 
structure and are independent of temperature, the temperature 
dependence being expressed entirely by the exponential function. 
This assumption is only approximately true since the constant A 
is a linear function of the frequency of the thermal oscillations of 
the particles which is temperature-dependent, and the constant Q 
is necessarily a function of the volume expansion of the structure 
produced by temperature: this latter temperature effect is, 
however, not very significant in the solid state. 

Equation 15 -7 only expresses the probability of occurrence of 
an energy fluctuation sufficient to enable a particle to migrate 
from its present position. The rate of migration is defined by 
the expected number of particles migrating per second into alter¬ 
native positions and is therefore given as the number v of success¬ 
ful trials in the number of total attempts to reach the activation 
level which is represented by the mean frequency vq of the 
thermal oscillations of the particles. Since the frequency of 
thermal oscillations within the range of “nonclassicaE’ behavior 
{T < 0) of the material can be expres^d by (see Art. 15) 

kT 
(16-2) pq = const — 

h 

eq. 16-1 can be written in the form. 

kT 
D = A, — 

h 
(16-3) 

which is the form known in rate processes. The new constant 
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^4i is now dependent on structure only. For 7' > 9 the factor 
kT/h in this formula is replaced by the constant j'omax, according 

to eq. 15* 12. 
Both constants A i and Q will necessarily change with chang¬ 

ing structure, no matter whether the structural changes are 

caused by external forces or by the spontaneous^^ temperature 
effects themselves. The effect of such changes is different, 
however, on either of the constants: it has been found^ that Q 
is apparently more affected by changes in the atomic structure 
and its inhomogeneities whereas Ai is more sensitive to changes 
in the microscopic structure. Thus, changes in the size of 
crystals in polj^crystalline aggregates must be expected probably 
to influence Ai considerably more than Q. 

Migration of particles within the solid structure to more stable 
positions as a consequence of their momentary unstable position 
and of their actiA^ation by thermal-energy fluctuations is usually 
referred to as diffusion only as long as the number of particles 
involved in the process is relatively small. If the particles 
migrating are of the same nature as the particles of the solid 
structure, the process is defined as self-diffusion. As the number 
of particles migrating increases, the self-diffusion process is 
gradually transformed into a process of large-scale breakup 
and re-formation of the existing stru(;ture as, for instance, 
recrystallization in polycrystalline metals. If the intensified 
diffusion process involves particles of various elements, the result¬ 
ing structural changes are considered as phase transformations. 
If, after diffusion, the chemically different particles aggregate 
within preferred locations, usually block and grain boundaries, 
the process is referred to as precipitation. In both the phase 

transformation and the precipitation processes true chemical 
reactions may occur by the formation of new molecules. Hence, 
the transformation from either process to a genuine chemical 

reaction is gradual, and the classification of a process as precipita¬ 
tion, phase transformation, or chemical reaction may, to a cer¬ 
tain extent, become arbitrary. 

Diffusion of particles within a crystal lattice is associated with 
the coexistence of particles of widely different size, with the 
existence of imperfections in the lattice, or with such distribution 

of atoms of different elements that the energy of the real lattice 
is raised above the minimum associated with the distribution of 
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atoms in the lattice of an ideal crystal. There are in a crystal 
lattice three possible types of migration or of place change: 

1. Mutual place change of two particles of different chemical 
character without structural change, for instance the place 
change of particles of two metals in solid solution in the process 
of establishing a superlattice. This process involves the simul¬ 
taneous activation of two particles; it is usually called substitu¬ 
tional diffusion, 

2. Diffusion of small particles through the interstices between 
the large particles forming the lattice. This process, called 
interstitial diffusion^ mostly involves atoms of C, N or O which, 

because of their small atomic radii are the most mobile particles 
within the lattice (see Art. 8). Since interstitial diffusion depends 
on the activation of individual particles, it is more probable and 
therefore more rapid than substitutional diffusion. 

3. Diffusion into vacant lattice points which usually takes 
place along internal surfaces^ that is, along planes of distorted 
lattice arrangement in which the interference with the movement 
by the other particles is relatively small, such as block boundaries. 
Because of the reduced interference this is the most rapid type of 
crystalline diffusion. 

As a result of the disturbed ecpiilibrium of particles within the 
surface of a crystal lattice, the stability of their position is lower 
than the stability of particles in the interior. Hence surfaces 
are thermally less stable, and surface particles more easily acti¬ 
vated and more freely mobile than particles in the interior of the 
lattice. Therefore diffusion processes involving surface particles 
are more rapid than diffusion of particles from the interior. The 
total rate of diffusion in a crystal lattice or a polycrystal must 
thus be expected to increase with increasing surface or interface 
areas, that is, with decreasing size of individual crystals. This 
fact explains the observed inverse relation between the intensity 
of various diffusion processes and crystal size in polycrystalline 
metals. 

Because of the fluctuation of the thermal energy of the oscil¬ 
lating particles the internal structure of every material must be 
considered as being continually involved in a process of spon¬ 
taneous change which, as the structural pattern approaches 
conditions of maximum stability, proceeds at a decreasing rate, 
becoming finally so slow as to be no longer perceptible. A 
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multitude of technologically most important phenomena such as 
polymorphous transformations, aging, precipitation, oxidation, 
metallurgical order-disorder transformations, recovery, and 
recrystallization are results of diffusion processes. Although the 
activation energies and the constants of proportionality differ 
widely in the different processes, changing even in the course of 
the same process, the temperature dependence of the rate at 
which these processes take place is invariably governed by eq. 
16* 1 and, for low temperatures, eq. 16 *3. 

The changes produced in the atomic or molecular structure of 
the material by diffusion processes may considerably affect the 
subsequent behavior of the material under the action of external 
forces, even if the diffusion process has not resulted in a phase 
transformation, or in a definite change of the size or shape of 
the larger structural elements, as in reerystallization or poly¬ 
merization processes. By diffusion of particles into certain 
positions within the structure of crystals or polycrystalline 
aggregates or from such positions, elastic energy is either stored 
up within the matrix surrounding those particles or released. 
In either case the response to a subse(piently applied force is 
necessarily changed. The stored-up elastic energy can be con¬ 
sidered as the strain energy created in the lattice by expansion 
or contraction due to the migrating atoms attempting to fit 
into the positions between the stable atoms. If the considered 
body is free of stresses produced by external loads, this energy is 
due entirely to the elastic resistance of the matrix surrounding 
the migrating atoms. If, however, the body is subjected to 
external forces, the atoms in expanding the lattice do work against 
the forces. The stored-up elastic energy will therefore vary with 
the position of the atom in a nonhomogeneous stress field, and 
unstable atoms will migrate in such a way that a maximum 
amount of elastic energy is dissipated. Thus the diffusion 
processes going on in the material do not only influence its 
subsequent response to external forces but are themselves affected 
by the simultaneously acting stress field and, still more, by irre¬ 
coverable changes in the structure produced by such stresses. 
Thus, the interrelation between changes of state due to primarily 
force-independent changes of the structure and changes of state 
produced by the action of external forces is necessarily rather 
complex, and it must be expected that the velocity of the forced 
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change of state will not be Independent of the rate of diffusion 
of the particles whose migration to new positions produces or 
releases stored-up elastic energy within the material. This con¬ 
clusion is borne out by a number of investigations** ^ in which 
definite relations could be established, for instance, between the 
velocity of the forced deformation of steel and the diffusion rate 
of particles of certain elements, such as carbon and nitrogen 
within the iron lattice. 

The significance of the diffusion rate of such foreign particles 
may become especially pronounced if deformations proceed 
under sustained load, as in creep tests, or under very small stress 
rates. In such cases a certain load level will produce an imme¬ 
diate elastic response only but no irrecoverable deformation if 
applied rapidly enough. If the load is sustained, however, a 
rather sudden irrecoverable deformation may start after a suffi¬ 
ciently long waiting period, proceeding during a certain time at a 
decreasing rate, until it is again stopped. Both the length of 
the waiting period and the duration and rate of the delayed'^ 
deformation can be assumed to be the result of diffusion processes 
of particles which, initially blocking this deformation, are first 
induced by changes in their potential due to the applied forces to 
migrate and thus to unblock the path of the deformation, but 
are subsequently drawn back into the region where the deforma¬ 
tion proceeds, and precipitate on the path of the motion, as a 
result of the increasing amount of disorder and, therefore, 
increasing instability of the structure along this path. Since 
the rate at which the particles migrate into the distorted struc¬ 
ture increases with increasing extent of the distortion, a certain 
equilibrium position will establish itself when the rate at which 
the deformation is being retarded by the diffusion of the blocking 
particles into the deformed regions attains the rate at which it 
is forced to proceed, thus resulting y;i a new blocking of the 
deformation. 

The response of metals to loads applied at very high rates, 
such as impact loads, may also be strongly affected by diffusion 
processes of foreign particles in the lattice of the material. 
When the rate at which the force-induced diffusion, unblocking 
the path of the irrecoverable deformation, proceeds, is higher 
than the rate at which the elastic deformation increases under 
the action of the applied forces, the resulting total deformation 



122 Structural Theories of Deformation [Art. 17 

will have an appreciable inelastic component. This component 
can be sharply reduced or even practically eliminated by reducing 
the diffusion rate (for instance, by lowering the temperature) 
or by increasing the load rate. 

The changes in mechanical properties due to diffusion of 
foreign particles into previously deformed regions is usually 
termed strain aging. Because of the underlying mechanism of 
this process, both the time and the temperature dependence of 

strain aging are closely related to the time and temperature 
dependence of the diffusion process expressed by eqs. lO l and 

17. Forced Chanse of State (Inelastic Deformation) 

Changes of the structural pattern produced by the application 
of external forces remain reversible as long as no particle acquires 
sufficient energy to migrate from its momentary position of 
eciuilibrium to one of lower energy. In the case of a forced 
change of state the necessary energy is provided by the applied 
forces in addition to the energy of thermal oscillation of the 
particles. Thus the changes of structural pattern occurring 
under the action of the applied forces are the result of the com¬ 
bination of forced and spontaneous changers; therefore, the change 

of state due to external forces must also l)e governed by equations 
of the type of eq. 15 -6. 

Change of place of an individual particle requires the activation 
of the particle by the combined action of external forces and 
thermal energy fluctuations. The activation energy qi of the 
particle in position i must therefore be provided by the energy 
of the external forces €., and the energy of the thermal oscillations 
ti. With qi = €s + €^, the thermal energy required to activate 
the particle ti = qi — €«. Hence, according to eq. 15-6 the 
probability that the individual pai;ticle will attain this energy 
as the result of a thermal energy fluctuation can be expressed in 
the form, 

Equation 17 1 expresses the probability that an individual 
particle will be displaced from its equilibrium position under the 
combined action of a force and of the thermal energy. After 
having been helped by the thermal energy to remove the particle 
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from its stable position, the acting force will displace it in its 
direction until the particle drops into a new equilibrium position 
with an activation energy qj higher than + e^). In this case 
a thermal energy €y = qj — €« > ti would be required to continue 
the displacement of the particle at the rate defined by the proba¬ 
bility Pi. Under a constant force and, therefore, invariable e.,, 
the motion will thus be suddenly slowed down or practically 
stopped, as the probability pj that the particle will attain the 
energy level {qj — eg) becomes a fraction of pi. 

Irreversible deformation of a body under the action of external 
forces is produced by the permanent displacement of a suffi¬ 
ciently large number of individual particles to produce a per- 

Fig. 17-1 Pot(iiiiial-onorgy field along an array of ordered particles. 

ceptible change of shape of the material body. The displacement 
of every single particle is governed by equations of the type of eq. 
17 1, but the deformation of the material body necessarily 
depends on the arrangement of the particles within the body. 
This arrangement determines the field of potential energy of the 
group of particles and thus their mutual interaction in the course 
of the deformation. 

The potential field in space of an association of particles is 
built up from the potential fields of each pair of interacting par¬ 
ticles. If the array in space of particles is periodic, their field 
of potential energy will show a periodic pattern; if the particles 
are arranged at random, the pattern of the potential field will 
be irregular. Thus, in the ideal crystalline state of matter, 
potential troughs may be assumed to be regularly spaced and 
congruent along a lattice plane (Fig. 17 • 1); along a random sec¬ 
tion of an amorphous material, on the other hand, the spacing 
of the troughs, which are of various depth, is irregular (Fig. 17 *2). 
From this rather simplified schematic picture of the difference 
of the potential energy fields in the ordered and the unordered 
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state, the fundamental difference between the deformational 
behavior of crystalline and amorphous materials can be deduced. 

Because of the periodicity and congruence of the potential 
troughs in the ordered crystalline state, the energy {qi — €«) 
necessary to free a particle from its position of equilibrium and 
to transfer it into an adjacent one will be identical for all par¬ 
ticles. Therefore, if a certain amount of energy is applied, 
particles along one lattice plane may be lifted from their ecpiilib- 
rium positions with regard to the particles of a parallel neighbor- 

Reiative position along the plane 

Fig. 17-2 Fotoiitial-enerKV lield along an array of particlos of random 

distribution. 

ing plane, shifted parallel to this plane and on removal of the 
force deposited in new equilibrium positions which they fit as 

closely as the initial ones; this motion along crystal planes is 
characteristic of the ordered state of matter. Under a constant 
level of applied energy it goes on until its progress is blocked 

by imperfections in the lattice or by crystal boundaries; it is 
called slip and is characteristic of the type of deformational 
behavior usually referred to as plasticity. 

Although after the termination of a finished slip process one 
layer of atoms has slipped over a parallel layer, the total force 
required to initiate this slip process is not the sum of the atomic 
forces resisting the motion along the plane of slip. It is assumed 
that the slip process starts locally, at/ a point of lattice imperfec¬ 
tion (dislocation) or within a block boundary, by the displace¬ 

ment of an individual atom in the direction of the shear force 
and that this glide step is subsequently propagated through the 
crystal along the slip plane. Thus the resistance to slip of the 
atoms within a plane is overcome by overcoming the individual 
resistances one at a time, with the result that the force required 

to produce slip is only a fraction of the force that would be neces¬ 
sary to overcome simultaneously the sum of the resistances of all 
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the atoms involved in the slip process. This assumption con¬ 
cerning the propagation of slip by the “propagation of a dis¬ 

locationis supported by the observation of the process of gliding 
of layers of soap bubbles in Bragg's model of the metallic struc¬ 
ture (see Art. 9). 

In the course of the slip process the applied energy is dissipated 
into heat. Below the level of energy €, sufficient to initiate slip 
within a finite period of time no irrecoveral)le deformation occurs; 
particles that have been displaced from their equilibrium position 
by the applied force have not been shifted over the potential 
energy barrier (activation energy) between adjacent equilibrium 
positions. Therefore, on removal of the force, they move back 
into their initial positions. 

The mechanism of slip in real crystals is more complex than 
the hypothetical mechanism along one slip plane considered in 
the foregoing discussion. This complexity is due to the fact that 
slip actually extends over more than the two adjacent lattice 
planes and is accompanied by rotation of the slip planes, which 
involves additional distortion of the ordered lattice and that such 
distortion intensifies the diffusion processes within the crystal. 
These effects are discussed in the following articles. 

In an amorphous substance the energy necessary to lift a par¬ 
ticle out of its potential trough varies considerably from particle 
to particle because of the varying depth of the potential troughs 
along any one section. If the force provides only a small amount 
of energy, this may yet be sufficient to move some of the particles 
out of the shallowest troughs and thus to produce a certain 
amount of irrecoverable local deformation; the number of par¬ 
ticles so affected evidently increases with increasing energj^ level 
applied. Since some of the potential troughs are certain to be 
very shallow, energy is actually di^ipated and irrecoverable 
deformation produced locally by very small forces although at 
this early stage the process may be so localized as not to lead to 
perceptible change of shape of the body. Amorphous materials 
have therefore no definite limit, in terms of the applied force, 
between the ranges of recoverable and irrecoverable deformation, 
whereas in crystalline materials this limit, though not rigorously 
defined, is rather sharply marked. 

The probability that any individual particle will leave its 
position of equilibrium within a group at the bottom of a poten- 
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tial trough in response to the action of a force depends on the 
length of time during which this force is applied. As the place 
change is accompanied by the dissipation through heat radiation 
of the thermal energy fluctuation, the amount of dissipated energy 
increases with the period of load application. Therefore the 
shorter this period, the lower the amount of energy that can be 
dissipated. Increasing temperatures, by intensifying the thermal 

oscillations, tend to reduce the waiting time lequired for a 
fluctuation of an intensity sufficient to produce activation. 
Hence, a pronounced influence must be expected of the period 
of application of the forces and of temperature on the deforma- 
tional behavior of amorphous materials. 

The irregular potential energy pattern of amorphous substances 
also provides an explanation of their brittleness under rapidly 
applied forces or at low temperatures. If it were attempted to 
enforce, at a rate exceeding that of energy dissipation, a certain 
motion along a random section of the body, the enforced separa¬ 
tion between some of the particles in this section, which have no 
alternative equilibrium position to fit into, would produce atomic 
bond disruption instead of stabilization of the equilibrium posi¬ 
tions of the particles by place change. Such disruption is pre¬ 
vented, however, at higher temperat ures or under slowly applied 
forces, because the particles of an amorphous solid which are 
always loosely packed, can change place with comparative ease, 
if the temperature is high enough to supply frequent thermal 
energy impulses of sufficient intensity. The rate of spontaneous 
place changes of particles is thus an important factor in determin¬ 
ing the extent of the forced change of state of an amorphous 
substance. Hence, the rate of inelastic deformation of an 
amorphous material is as temperature-sensitive as the rate 
of spontaneous place change of particles, that is, the rate of 
self-diffusion. 

The influence of activation by thermal energy in the ordered 
(crystalline) structure is comparatively small, because the atoms 
in a crystal are tightly packed; shifting is possible only if it 
involves a considerable area of the lattice plane. This, however, 
would require a large thermal energy impulse extending simul¬ 
taneously or propagating rapidly over the whole area of slip. 
Since the probability of occurrence of an energy fluctuation of 
the required intensity simultaneously or consecutively in a very 
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large number of particles along a potential slip plane is extremely 
small, deformation by slip will not be substantially facilitated 
by thermal lattice oscillations. Hence, in nonmetallic (ionic and 
homopolar) crystals, atomic bond disruption will as a rule occur 
without appreciable deformation, since the atoms cannot be 
transferred into new equilibrium positions without permanent 
disruption of the interatomic bonds unless the thermal activation 
is extremely high (high temperature, high pressure). In metals, 
however, the ease with which these bonds are re-established in 
the course of the deformation (see Art. 9) makes the help of 
the thermal energy in preventing bond separation much less 
important. This explains why in metals the influence of the 
rate of force application is relatively small and why most metals 
retain appreciable ductility even at very low temperatures. 

Since the deformational character of a material is essentially 
determined by the type of its internal structure, the decisive 
influence in forming this character in materials in whicdi ordered 
and unordered phases exist simultaneously is the relative sig¬ 
nificance of these phases. The most important example of such 
a material is the polycrystallirie metal. In discussing the forma¬ 
tion of polycrystalline solid metals out of their melts (see Art. 
13), it has been pointed out that, along the boundaries of ran¬ 
domly oriented ordered regions as represented by blocks and 
crystal grains, some particles will exist in a state of relative dis¬ 
order because they do not belong to the order of either of the 
lattices of adjacent domains, being affected simultaneously by 
the forces exerted by particles in the nearest lattice planes of 
both domains. Because of their particular state, particles in 
those boundary regions necessarily produce the deformation 
effects associated with “viscous'' or “relaxing" boundaries 
for the same reason slip planes will, after formation, show a cer¬ 
tain amount of viscosity,’’*^ expressing the disorder introduced 
into the adjacent lattice structure by the rotation and elastic 
distortion associated with slip in real crystals (see Art. 18). It 
should be understood that the “disorder" associated with the 
arrangement of particles in grain boundaries and slip planes is, 
in fact, only an intermediate state in the order-disorder spec¬ 
trum; it can be considered as disorder only in comparison with 
the almost perfect order existing within the crystal grains. 

The viscous or relaxing intercrystalline boundary regions and 
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slip planes are very thin and, because of their comparative dis¬ 
order, thermodynamically less stable than the interior of the 
crystal grains; their response to external forces therefore, is much 
more sensitive with respect to both temperature and rate of 
force application than is that of the crystals. The comparative 
rigidities under the action of forces of the crystalline and the 
intercrystalline regions will, therefore, change with temperature 
and rate of loading. At temperatures and loading rates, at 
which the rate of energy dissipation by thermal activation within 
the intercrystalline boundaries is higher than, or of the same 
order of magnitude as, the rate of energy produced by the applied 
force, the boundaries will appear soft in comparison to the crystal 
areas; however, if the rate of energy dissipation within the bound¬ 
aries is negligibly small in comparison to the rate of energy 
application, the intercrystalline spaces will appear rigid in com¬ 
parison to the crystalline region. This interrelation of loading 
rate, temperature, and the relative deformational responses of 
the crystals and intercrystalline regions (boundaries and slip 
planes) appears to be the most important single factor determin¬ 
ing the deformational character and the facture of polycrystalline 
metals. 

The distorted block- and grain-boundary regions and slip 
planes are the natural locations where foreign particles and 
impurities tend to aggregate as a result of diffusion processes; 
this aggregation necessarily affects the deformational behavior of 
the boundaries as well as their temperature sensitivity. By 
influencing the thermal stability of the boundary regions foreign 
particles may be beneficial if the thermal stability is increased 
(alloying elements), or they may be damaging if the cohesive 
bonds are weakened by the formation of new molecules (sul¬ 
phides, oxides), 

18. Geometrical Aspect of Plastic Deformation 

The principal feature of the plastic deformation of crystals 
is its well-defined geometrical character. Plastic deformation 
consists of the motion of lamellas of the crystals over each 
other, along planes parallel to simple crystallographic planes. 
In this motion the lattice dimensions and the density of the 
crystals remain practically unchanged. Thus, plastic deforma¬ 
tion is concentrated in a succession of parallel slip planes, along 
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which the motion takes place in certain directions in the planes. 
The direction of slip has been found to coincide with a crystallo¬ 
graphic direction of maximum linear atomic density (that is, 
maximum number of lattice points per unit length). The slip 
planes are, in general, parallel to those crystallographic planes 
containing the slip direction, on which the atomic density (that 
is, the number of lattice points per unit area) exceeds or is equal 
to that of any other crystallographic plane containing the same 
slip direction. Although the rule regarding the slip direction 
has been observed to hold invariably, the rule of the slip planes 
is not entirely reliable. In lattices of highest coordination num¬ 
ber, that is, in the closest cubic and hexagonal packing, slip 
directions and planes are determined by this rule. Thus in the 
face-centered cubic lattice slip occurs on the (111) planes, which 
are the planes of greatest atomic density, and in the direction 
[110] , which are the directions of greatest atomic density. In 
the body-centered cubic lattice, however, slip can occur on sev¬ 
eral planes, all of which are among the most densely packed ones, 
such as the (110), (112), and (123) planes; the slip direction 
however, remains invariably the [111] direction. The variation 
in the slip planes is probably due to the fact that in the body- 
centered lattice with coordination number 8 the energy content 
of the bonds of the 0 less near neighbors is of considerable influ¬ 
ence in determining the stability of the atomic arrangement 
within the crystal planes; the energy distribution is, therefore, 
less definite than in the case of the 12 equivalent nearest neigh¬ 
bors of the face-centered lattice. Several metals such as alu¬ 
minum and magnesium have different slip planes at low and at 
high temperature; the slip directions, however, are independent 

of temperature. 
A slip plane and a slip direction in ^hat plane constitute an 

operative slip system. Face-centered cubic crystals with four 
(111) planes and three slip directions in each plane such as 
7-iron thus possess 12 slip systems. Body-centered cubic metals, 
such as a iron have 12 equivalent slip planes for each of the 
four [111] directions, making a total of 48 slip systems. 

Among the equivalent slip systems in a crystal the system 
that actually becomes operative is determined by the critical 
resolved shear stress in the slip plane and in the slip direction.^*'* 
If an axial force F is applied to a crystal of section A, the resolved 
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shear stress ts is obtained as the force per unit area of the slip 
plane {F/A) sin xo = sin xo, where xo denotes the angle 
between force and slip plane, resolved in the slip direction. 

Hence ts = tso sin xo cos Xo, where Xo is the angle between force 
and slip direction. 

The critical resolved shear stress at which slip actually starts 
is different for different crystallographic planes of the same 
crystal and for different temperatures. Since the initiation of 
slip depends on the activation energy of the particles in the 
potential slip plane, which is defined by the depth of the poten¬ 
tial troughs between neighboring particles, that is, by the atomic; 
density in the plane, slip along crystallographic planes of different 
atomic density will necessarily start at a different critical resolved 
shear stress. Moreover, the critical shear stress differs widely 
for different materials, as it depends on the magnitude of the 
interatomic forces. If two plan(;s of equal critical shear stress 
are subject to the same stress, slip will occur on both planes 
simultaneously. 

Not all slip planes of any one slip system operate simul¬ 
taneously; the slip motion is essentially concentrated within a 
number of favored planes so that glide laminas are produced. 
Studies of the slip process in pure aluminum crystals by the elec¬ 
tron microscope and by electron diffraction^®'^ have led to the 
conclusion that the thickness of individual glide laminas is about 
200 A and that the maximum relative displacement of two adja¬ 
cent laminas along their common slip plane does not exceed 
2000 A. After such displacement has occurred, a new parallel 
slip plane becomes operative, producing a similar relative 
displacement, and so on. Thus the number of laminar slip 
planes increases with increasing total deformation, as indicated 
in Fig. 18-1, the slip process resembling that of the shearing of a 
pack of cards with limited relative displacement of any pair of 
adjacent cards. The limitation of the relative displacement in 
laminar slip may be due to the slight rotation of the slip laminas 
in the deformation process by which the slip resistance in the 
operating plane is increased, or to the blocking of slip as a result 
of newly formed dislocation or of intensified diffusion into the 
regions around such dislocations (see Art. 16). 

The operative slip planes are usually not uniformly distributed 
over wide regions of the deformed body; slip tends to develop in 
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clusters of closely spaced laminas, with regions of apparently 
undistorted or only slightly distorted material between them 
(Fig. 18-1). Although the formation of individual slip laminas 

Schomatic illustration of slip hand dovelopmont. 

B Electron micrograph of field of laminas in aluminum crystal. 
Fio. 18*1 Dovclopment of laminar slip and glide lamellas with increasing 
deformation (after Ileidenreich and Shockley/*'* courtesy Dr. R. D. 

Hoidenreich). 

by relative displacement along one slip plane cannot be optically 
resolved by any instrument with a smaller resolving power than 
the electron microscope, the formation of the clusters of laminas 
is visible, first under the microscope and in an advanced stage 
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by the eye, as the apparent formation of slip bands or glide lines 
(Lueders lines). The smallest distance between these visible 
glide lines, which is the thickness of the thinnest glide lamella^ 
(the apparently undistorted region between glide lines) has been 

found to be of the order of magnitude of 10~^ cm, which is the 
magnitude of the smallest thermally stable ordered domain 
(crystallite or block). 

The relatively high energy content of the atoms in the dis¬ 
torted block boundaries reduces the energy €« which has to be 
provided by the external forces before slip is initiated there. 
Since, according to eq. 17 I, the rate of slip is governed by the 
exponential of {q — €«), the effect of a small increase of the 
potential energy of the particle as expressed by an apparent 
reduction of Qi may very considerably increase the probability 
of the particle being permanently displaced by the action of a 
force if qi and €« are of the same order of magnitude. The slip 
initiation is, therefore, not governed by the properties of the 
ideal crystal but by the existing imperfections within the lattice. 

Because the operative slip planes are not uniformly distributed 
but tend to develop in clusters of closely spaced laminar planes, 
forming slip bands with slightly distorted lamellar regions between 
them, the appearance of such slip bands must be associated with 
the creation of a certain amount of disorder in the structure, 
which is the reason for the observed viscous behavior of the 
material in the slip bands.^ 

Visible slip bands are not necessarily made up of slip planes 
belonging to the same slip system. If, as in the bod3^-centered 
cubic lattice, the number of nearly equivalent slip systems is 
large, slip will usually proceed simultaneously or alternately 
along a number of slip systems. Thus the observable slip bands 
will not always follow a sharply defined crystallographic plane 
but may contain slip planes associated with various slip systems. 

Since a crystal possesses, in general, several slip systems, dif¬ 
ferent systems may become operative under different conditions, 
either alternately or simultaneously. It is the number of opera¬ 
tive slip systems in a crystal that determines the ease with which 
plastic deformation proceeds. 

In case of slip along different slip systems the final state of 
deformation is, in general, not independent of the sequence of 
slip on different planes; the difference in the final shape reached 
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by different slip sequences is, however, the smaller, the smaller 
the movements in the individual slip processes along the different 
slip systems by which the final shape is reached. 

It can be shown by a purely geometrical analysis of the pos¬ 
sible combinations of slip motions that any small general deforma¬ 
tion of a crystal can be produced by slip along five independent 
slip systems, under the assumption that slip proceeds uniformly 
along all potential slip planes, that is, withoyt the formation of 
definite glide lamellas.^*^ '^ In crystal lattices with less than five 
independent slip systems a general deformation cannot be pro¬ 
duced without rotation, elastic distortion, and bending of the 
lamellas. Since slip in real crystals is not uniformly distributed 
over all planes of one slip system, but is associated with the 
formation of glide lamellas, the general plastic deformation of a 
real crystal invariably involves clastic distortion of the rotating 
glide lamellas, by which the simple character of the pure slip 
process is destroyed even if five independent slip systems exist. 
However, the appearance of glide lamellas does not alter the fact 
that crystals with five or more slip systems such as cubic crystals 
are more easily defoi’ined than crystals with a smaller number of 
slip systems, for instance hexagonal crystals, which have only 
one slip plane. In the case of five or more slip planes the 
distortion and bending of glide lamellas is but a secondary 
effect, whereas for less than five slip planes the final deformation 
is the result of the combination of slip and of elastic distortion 
and bending of the lattice. 

I n crystals with more than five slip systems, for instance in the 
cubic lattice, the deformation can take place along different 
combinations of five independent slip planes. The number of 
these combinations is very large, although not all possibilities 
of selecting 5 out of a larger number of slip systems result in 5 
systems that are mutually independenf; there are, for instance, 
only two independent slip directions in any one slip plane, 
whereas all the possible directions are automatically considered 
in forming the possible combinations of slip systems. 

Pure slip without rotation of slip planes can be produced only 
if the external forces act in the direction of the slip planes; the 
setting up of such conditions requires an elaborate arrangement 
of crystal and applied force. In the cases of axial tension or 
compression the slip planes rotate; however, as they are not bent, 
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these are conditions of practically pure slip, unless the glide 
lamellas become exceptionally thick. 

When the active slip planes rotate away from the direction of 
the acting force, as in axial compression (Fig. 18*2). the resolved 

shear stress on the slip 
planes diminishes; at the 
same time the resolved shear 
stress on a potential alter¬ 
native slip system increases, 
until the slip motion is trans¬ 
ferred from the first slip 

i 
j D ,.mi 

Fig. 18*2 Compression of crystal. 

system to the second. After rotation of the second plane, the 
reverse transfer takes place, so that slip proceeds alternately on 
both planes. In tension, on the other hand, the operative slip 
planes rotate into the direction of the acting force (Fig. 18*3), 
and slip must be expected to proceed along 
the initial planes, resulting finally in the 
formation of preferred orientation in the 
direction of the force. This relation be¬ 
tween the direction of the force and the 
formation of slip planes leads to different deformational behavior 
of the single crystal in tension and in compression. 

Translatory slip is not the only possible type of plastic deforma¬ 
tion in which no change in the periodicity and symmetry of the 
lattice takes place. Under certain conditions a particular slip 

Fig. 18-3 Extension of 
crystfil. 

(a) (b) 

Fig. 18-4 Schematic representation of twinning, (a) —> (h). 

plane may become a mirror plane, one part of the crystal having 
become in the course of the deformation the mirror image of 
the other part from which it is separated by a sharp line (Fig. 
18 *4). This process, which is called twinning^ is usually rather 
abrupt and frequently accompanied by a sharp sound (^‘crying 
of tin in bending). In plastic deformation the direct influence 
of twinning, in general, is relatively insignificant; it may, how- 
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ever, become a major indirect factor initiating extensive slip, 
particularly in crystals with less than five slip systems (such as 
zinc and tin), where the operation of a twinning plane suddenly 
produces favorable conditions for the operation of new slip 
systems which were unfavorably oriented before the twinning 
occurred. The movement of atoms in the lattice, in general, is 
identical in both translatory slip and in twinning. The critical 
resolved sliear at which twinning starts, however, has been 
found to be higher than the critical resolved shear stress. 

Under certain conditions slip can lead to a phase transforma¬ 
tion, the most important example of such a process being the 
martensitic transformation of steel. This is a transformation 
from the face-centered cubic (austenitic) y structure to the body- 
centered tetragonal (martensitic) structure produced by slip 
along one of the (111) planes of the y phase, in which the carbon 
atoms occupying the centers of the cube do not move and, there¬ 
fore, block the slip process before the body-centered cubic 
(ferritic) a structure is reached.^®* ^ This blocking effect of the 
carbon atoms is achieved, however, only if the cooling rate 
accompanying the deformation is so high that the carbon atoms 
cannot diffuse out of the transformed lattice. The prematurely 
arrested slip produces the characteristic tetragonal lattice of 
martensite which appears in the form of sharp ^‘needles” repre¬ 
senting shapes of minimum energy with respect to the textural 
stresses set up by the transformation both in the martensite and 
in the adjacent untransformed austenite, by which the mar¬ 
tensitic hardening effect of the steel is caused. Similar trans¬ 
formations by arrested slip occur in other metals; they are all 
based on similar mechanisms. 

19. Structural Theory of Inelastic Deformation 

Attempts to derive eciuations descriWng inelastic deformation 
in terms of atomic structure are based on the assumption that 
the energy distribution over the atoms can be expressed by 
the Boltzmann-Maxwell-Gibbs distribution function. Thus the 
probability of occurrence within the atomic structure of spon¬ 
taneous changes of thermal energy which initiate place changes 
of atoms is given by eq. 15 *7 in which c = g. 

In the absence of external forces the probability of spontaneous 
place changes of particles, or the number of changes per second 
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expressed by I'oP, will necessarily be the same in all directions, 
as there is no reason for any directional preference. However, if 
an external force is applied in one direction, the number of plac(* 
changes or the rate of activation in this direction will not remain 
the same as before, since the energy level a particle must attain 
momentarily in order to be able to move in the direction of the 
acting force across the potential barrier into an alternative posi¬ 
tion of equilibrium has been reduced by the potential energy €., 
of the applied force, whereas it has been increased by the same 
amount with respect to the possible movement in the opposite 
direction. The momentary energy level required for activa¬ 
tion in the direction of the applied force has thus been reduced to 

"" whereas it has been increased with respect to activation 
in the opposite direction to {q + €«). Hence, the rate of activa¬ 
tion in the direction of the applied force for one mole of the 
substance is given by 

Uy = • e*"'"’ (19 -1) 

in the opposite direction, 

ao = (19 -2) 

if €s is assumed to denote the energy of the external force per 
mole. Hence, the resulting rate of deformation in the direction 
of the applied force, 

== const sinh {ejRT) (19 -3) 

At temperatures below the Debye temperature this equation 
takes the form, 

kT 
u = const — • sinh {ts/RT) (19-4) 

h 

Equations 19-3 and 19-4 will now be considered under two 
limiting conditions: 

1. If the potential energy of the applied force €« is relatively 
small in comparison with the thermal energy RT so that {ts/RT) 

is small, the function sinh {t^/RT) can be approximated by 
{iJRT), Hence, the velocity of deformation, according to eq. 
19-3, 

u == const (19*5) 
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If eq. 19 -5 is written in the form, 

€s = const = lyw (19*6) 

the coefficient of viscosity ^ = const expresses the resistance 
to deformation. Hence a straight-line relation should exist, 
log rj = const l/T; the existence of such a relation has been veri¬ 
fied by experiment. It is evident that the stress required to 
produce inelastic deformation at a given elastic strain cq depends 
on the velocity of deformation and on temperature only through 
the combined velocity-temperature parameter (const and 
not on velocity of deformation and temperature independently. 
The relation between the velocity of deformation and the tem¬ 
perature producing a given stress s at a given elastic strain is, 
therefore, 

= const s (19 7) 

The expression, 

yXconst — log u) = Tm (19 -8) 

defines a velocity-modified temperature on which depends 
the stress response s in mechanical tests performed at certain 

constant strain rates, or 5 = /(7 m, ^o)- 
Equations 19 -5 to 19 -8 describe the type of temperature and 

velocity-sensitive deformational behavior that is usually desig¬ 
nated as viscosity, relaxation or, more generally, thermal inelasticity, 

2. If the energy of the applied force is much larger than 
the thermal energy RT facilitating the motion, the function 
sinh {^a/RT) may be replaced by and eq. 19 -4 be written 

in the form, 

kT kT 
u = const — = const — (19*9) 

h h 

which defines the so-called plasticity or athermal inelasticity in 
which the influence of thermal activation is very small and most 
of the energy necessary to produce the deformation must be 

supplied by the external force. 
The presented derivation of eqs. 19*5 and 19 *9 shows that 

thermal inelasticity and athermal inelasticity represent both 
limiting cases of general inelasticity governed by eqs. 19*3 and 
19-4. Under conditions for which the potential energy of the 
applied forces and the thermal-energy fluctuations within the 
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structure are of comparable magnitude, the deformational 
behavior must be described by the hyperbolic sine relation of 
general inelasticity. Equation 19-5 shows that, as long as the 
applied energy €« is small or the temperature high, the rate of 
deformation increases directly with €«; on the other hand, when 
the applied energy is relatively large or the temperature low, 
eq. 19-9 expresses the fact that a small change in the applied 
energy €« produces a considerable change in the velocity of the 
deformation. 

Theoretically eq. 19-4 gives a finite value of the velocity a for 
all values of however, this velocity will be observable only if 
the resulting deformation is within the range of observation of 

the optical instruments used. The deformation within finite 
time becomes imperceptible when the energy of the applied 
force drops below a critical limit. This energy limit, which 
represents the potential energy associated with the critical 
resolved shear stress at which slip starts, is called resilience; it 
cannot be defined in absolute terms, however, but only in terms 
of a value of the velocity of deformation u designated as observ¬ 

able, Since only at absolute zero temperature or at zero force 
could the velocity of deformation become zero, these are the two 
limiting conditions for which an absolute elastic limit defining 
the ranges of reversible and irreversible deformation could pos¬ 
sibly exist. Hence, for any temperature 7^ > 0 and loading of 
relatively long duration, a theoretical elastics limit could only 
be associated with zero stress. For short loading periods, how¬ 
ever, the designated or conventional elastic limit can be defined 
in terms of the critical shear stress .so or of the resilience ego 

producing an arbitrarily small measurable permanent deforma¬ 
tion; the pertaining velocity of deformation uo is obtained from 
eq. 19-9 in the general form, 

= Q — HT [const — log (uq/T)] (19 -10) 

Thus, the stress so at a definite elastic strain eo is again a function 
of a velocity-modified temperature rfl — const log (z^/T)] = Tm- 

The general relations between resilience and velocity of deforma¬ 
tion at constant temperature and between resilience and tempera¬ 
ture at constant velocity of deformation are obtained from eq. 
19* 10, in the form. 

€«0 = Cl + C2 log Uo (19* in 
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and 
€30 = C3 - C^T (19* 12) 

Since the resilience eao is proportional to the square of the critical 
shear stress, the relations between the yield limit sq (critical 
shear stress) and either velocity of deformation at constant 
temperature or temperature at constant velocity of deformation 
can be written in the form, 

So = Cl + C2 “x/iog ^0 (19 13) 
and 

So = cs — C4 ‘s/t (19 14) 

The validity of these two relations has been confirmed by the 
experimental results obtained for a number of metal crystals.*^ ^ 

if the process of contimiing inelastic deformation itself is 
considered, not only its initialiori^ the applied shear stress must 

always act through a distance equal to one-half the interatomic 
distance d before any particle is brought into the intermediate 
state of high energy at which the ^^spontaneous” movement of 
tlie particle into the adjacent potential trough can take place. 
In order to repeat this process continually and thus to produce 
deformation at a certain velocity u, the energy per mole of the 
applied stress s ic., = ^Nds = as. If this expression is introduced 
into eq. 19 -3 the general ecpiation of flow is obtained, 

u const sinh (as/RT) (19-15) 

where a is a constant which depends on the atomic or molecular 
structure. At constant temperature, 

u = C sinh cs (19* 16) 

where both constants C and c deper^ on temperature and on 
structure. 

For small stresses eq. 19 -16 is transformed into the Newtonian 
relation of linear viscous flow, 

w = const 5 (19 17) 

for large stresses into the well-known logarithmic relation, 

u = const or log u = const + cs (19 *18) 

A hyperbolic sine relation between u and s has been derived 
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from a model of a dislocation by PrandtP® ’ and suggested on a 
purely empirical basis by Nadai.**^'^ It has recently been devel¬ 
oped from the theory of rate process by various investigators.^®*^ 

20. Complex Types of Deformation 

The simple mechanisms of deformation—elasticity, viscosity 
(relaxation), and slip—are limiting types associated with idealized 
materials. The deformation of real materials is in general pro¬ 
duced by all three mechanisms of simple deformation, combined 
with the complex mechanisms that are brought into play by the 
changes of internal structure associated with large inelastic 
deformation, and that are modified in the course of this deforma¬ 
tion by the temperature-induced processes of diffusion and 
thermal changes in the structure; these processes, going on simul¬ 
taneously with the deformation, are themselves modified as a 
result of the preceding deformation. 

Texture formation. Change in molecular structure. 

Force-induced changes of the internal structure in metals may 
be the result of extensive slip by which the dimensions of the 
undistorted crystal domains are reduced {crystal fragmentation)^ 

considerable disorder is introduced into the structure as a result 
of bending and distortion of fragments, and the resistance to 
further deformation is increased {strain hardening). With 
increasing deformation the fragmentation process gradually 
changes into a process of development of preferred orientation 
of the crystal fragments in the direction of the maximum velocity 
of deformation {texture formation); such process, however, would 
be impossible without the help of thermal activation and thus 
constitutes in fact a combination of fragmentation, recrystalliza¬ 
tion, and the development of texture. Even the fragmentation 
process itself is associated with simultaneous thermal changes in 
the fragmented structure: since slip planes are about 200 A 
apart, slip along two or three operative slip svstems would 
produce laminar rods or laminar blocks of 200 A side length; 
rods or blocks of such dimension, however, are thermally unstable 
as the high interfacial energy produces rapid recrystallization of 
those blocks to the minimum stable size of ordered domains at 
the given temperature. Thermal changes which cannot be 
optically resolved are usually termed recovery. 

Force-induced changes of internal structure in molecular sub- 
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stances are readily identifiable only in macromolecular materials, 
such as polymers; in the micromolecular monomerSy which are 
substances built up of small molecules, such as glass, the changes 
are of a statistical nature producing the simple deformation 
mechanism of viscosity. Changes of internal structure after 
considerable deformation in polymers, particularly in the weakly 
cross-linked rubber-like substances, fibers, and filaments may 
lead to the development of a preferred orientation by stretching 
of the chain molecules in the direction of the maximum velocity 
of deformation. Because of the ordered arrangement of the 
stretched parallel chain molecules the process by which this 
structure is produced is termed crystallizations^'-^ ^ Since 
the unstretched molecules of materials in which crystallization 
may be produced by large deformation are assumed to have the 
shape of coiled springs and are, in this shape, interlinked by 
weak secondary bonds, the stretching process must be preceded 
by the loosening or disruption under the action of the applied 
forces of those molecular bonds which prevent the molecules 
from uncoiling. The change of configuration which is initiated 
by the disruption of the intermolecular bonds may start abruptly 
if all or most of the bonds are broken simultaneously; it is then 
accompanied by the same abrupt change of the deformational 
response to the applied forces that is characteristic of the sharp 
yield point observed in metal crystals and certain polycrystals; 
in other materials the change is more gradual, indicating a suc¬ 
cessive loosening and breakdown of the molecular bonds. In 
both cases the material appears to soften'^ during the change of 
configuration, until the effects of the orientation of the molecules 
in the direction of the deformation produce an apparent stif¬ 
fening or hardening of the substance, as indicated by the char¬ 
acteristic shape of the stress-strain ^diagrams of rubber and 
textile fibers (Fig. 20 -1). In certain high polymers, for instance, 
in polystyrenes and methacrylates (Lucite, Plexiglas), the appar¬ 
ent softening at low strain rates proceeds until fracture occurs 
after substantial deformation at constant or even decreasing 
stress, without any ‘‘stiffening.’^ In this case the bond disrup¬ 
tions probably extend to interatomic bonds, and the deformation 
proceeding at a small strain rate and at decreasing or constant 
stress represents in fact a progressive fracture process. This 
conclusion is borne out by the observation, at this stage, of a 
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net of very fine cracks covering the most highly stressed parts 

of the surface (‘‘crazing*')- 
The apparent softening of molecular substances produced by 

the breakdown of secondary bonds under the action of forces is 
usually known as thixotropy; after the forces have been released 
new molecular bonds establish themselves in time as a result of 
thermal activation and the reaction between the molecules; the 
weakly bound molecular structure thus tends to revert to its 
initial configuration. 

Fig. 20' 1 Schematic stross-strain diagrams of various fibers. 

Crystallization of high polymers constitutes a permanent change 
of structure and thus a change of state only if the stretching 
force is sustained long enough for new cross links to be formed 
between the stretched macromolecules before the force is removed, 
stabilizing their new shape. The ordered configuration of the 
crystallized structure will necessarily be the more stable, the 
lower the temperature. The intensified molecular diffusion and 
chemical reactions taking place at elevated temperatures, by 
dissolving the cross links that stabilize the crystallized structure, 
cause necessarily a more or less rapid loss of order and thus a 
randomization of the anisotropic structure. Under certain con¬ 
ditions and at certain temperatures the thermal activation and 
the resulting chemical reactions become strong enough to pro¬ 
duce a breakup of the long molecular chains into smaller segments 
{depolymerization) y thus extending the randomization process 
from the molecular network to the individual macromolecules. 

Strain hardening. Texture formation in crystalline sub¬ 
stances is invariably preceded by plastic slip, crystal fragmenta¬ 
tion, and distortion of the fragmented structure. Since slip is 
not uniformly distributed over all possible slip planes but con¬ 
centrated within a limited number of planes and therefore pro- 
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duces glide lamallas of finite thickness, plastic deformation of a 
crystal is always associated with rotation, bending, and elastic 
distortion of the glide lamallas, even in the case of the existence 
of 5 or more slip systems. Thus, even in the single crystal the 
velocity of deformation u cannot be sustained by the same force 
or stress at which it is initiated but requires a gradually increasing 
stress. When the force is removed and subsequently reapplied, 
slip at the previous velocity will start at the stress at which the 
test was interrupted if no load-independent changes occur in the 
structure. This phenomenon is known as strain hardening^ work 
hardening, or cold working; it is measured by the difference 
between the resilience, or the difference As between the critical 
shear stress of the crystal in the hardened and in the initial state, 
associated with the same velocity of deformation u. The amount 
of strain hardening is related to the deviation of the real deforma¬ 
tion of the crystal from ideal conditions of pure slip proceeding 
simultaneously or alternately on 5 slip systems. Strain harden¬ 
ing, therefore, will be the more pronounced, the smaller the 
number of existing slip systems; the less uniform the distribution 
of slip, that is, the thicker the glide lamellas; and the less homo¬ 
geneous the field of the forces producing the deformation. 

Retardation of slip by work hardening, however, will consider¬ 
ably affect even the progress of deformation under homogeneous 
stress, proceeding by slip on alternately operating slip planes. 
Since slip on any one slip system is blocked by work hardening, 
unless the hardening effect is compensated by the increase of the 
resolved shear stress resulting from the rotation of the slip planes 
into the direction of the acting force, slip on alternating planes 
will usually take place both in tension and in compression. 
Because of this alternation the development of preferred orienta¬ 
tion in tension will be delayed, and the difference between the 
inhomogeneous plastic deformation iff tension and in compres¬ 
sion, which is considerable in metals without work hardening, 
will be partly eliminated. 

The increased resilience Ae, is the excess energy in the slip 
planes, associated with the elastic distortion of the glide lamellas. 
Thus, for instance, in the bending of a crystal the critical shear 
stress at which slip takes place along the slip planes forming the 
glide lamallas (Fig. 20-2) is made up of the critical shear stress 
of the undistorted planes and the additional stress necessary to 
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produce the distorted shape of the lamellas and to sustain the 
slip within the bent slip planes. The distortion produces, 
morever, an additional effect on the atomic arrangement within 
the slip planes, which is illustrated in Fig. 20-3. The different 

density of the atomic lat¬ 
tices of bent lamellas on 
both sides of a slip plane 
(extension on the convex 
side, compression on the 

Fig. 20 *2 Bending of crystal. concave) causes displace¬ 
ment relative to each other 

of atoms on either side of the slip planes and thus creates dislo¬ 
cations in the planes. These dislocations produce the atomic 
hardening effect which, however, is usually small in comparison 
with the hardening due to elastic bending and distortion of glide 
lamellas. In polycrystalline metals the 
hardening effects due to slip retardation on 
bent glide planes and to distortion and ro¬ 
tation of glide lamellas within an individual 
crystal are probably less important than 
the effects of slip interference at and near 
grain boundaries. Moreover, the effect of 
the fragmentation of the crystal structure 
by extensive slip introduces into this structure a system of 
highly inhomogeneous textural stresses on the microscopic and 
atomic scale (dislocations), the potential of which is an indication 
of the hardening of the material. In order to conform easily 
with the deformations of neighboring grains, crystals making up 
the aggregate should have at least five and, preferably, more slip 
systems. Therefore, in an aggregate of crystals which have less 
than five slip systems, such as hexagonal crystals, slip will, in 
general, start at a stress many times higher than that producing 
slip in a single crystal of average orientation, which itself is 
higher than the critical shear stress on the slip plane. Hence, 
the difference in the hardening effect between the polycrystalline 
aggregate and the single crystal is much more pronounced in 
hexagonal crystals, such as zinc, than in cubic crystals with 
12 or 48 slip systems, such as iron and aluminum (Fig. 20 *4). 

The amount of strain hardening, which is produced by a certain 
stress, is evidently not independent of time nor of the temperature 

T T 

I'lG. 20 • 3 Atomic dis¬ 

location along glid(^ 
plane in bending. 
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during the application as well as after the removal of the force. 

A deformed single crystal is actually no longer a single crystal, 
as it has lost its character of a single crystal after the first slip 
has introduced distorted slip planes. Since the energy content 
of the distorted lattice is higher than that of the undisturbed 
lattice, it is thermodynamically unstable. Because of the 

Fig. 20 -4 Comparison of stress-strain curves for single crystal and poly- 
crvstalline specimen of zinc (after Elam*® *) and aliimimim (after Karnop 

and Sachs*® *). 

^^spontaneous” changes going on within the structure at any 
temperature above absolute zero, the excess energy of the par¬ 
ticles associated with previous slip and strain hardening is 

gradually dissipated by place change of particles in unstable 
positions. Hence the stress or energy necessary to produce and 
sustain further plastic slip decreases: the hardening decreases as 
the initial resilience c,o or critical shear stress sq is gradually 
restored or recovered. Since the rate^ of thermal activation 
depends on temperature according to eq. 16 • 1 the extent of 

recovery will increase with time and with increasing temperature. 
The rate of recovery is proportional to the number v of place 

changes per second and to the momentary number of particles 
existing in states of energy above the stable state, to which they 
have been transferred in the course of the hardening process. If 
no denotes the total number of such particles and n the number 
of particles that have already been restored to a stable state of 
energy in the course of the recovery process, the rate (dn/dt) at 
which particles recover their stable condition is proportional to 
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Poe where pq is given by eq. 

n) const Poe'^^^'^ (20• 1) 

or , 

-———- = const Poe'^^^’^' dt 
(no - n) 

By integration, 
(no - n) = 

or 
hT 

Tl -const-r-e 

— = 1 — C ^ 

no 

Equation 20*4 indicates the extent of recovery in terms of the 
ratio n/rio of particles restored to a stable energy level and the 
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Fig. 20-5 Recovery of zinc crystals (after Haase and Bchnii(P°’^). 

dependency of recovery on time and temperature. Although 
theoretically complete recovery with n == no requires infinite 
time, the times required for extensive recovery to take place in 
metal crystals at room temperature are relatively short; they can 
be considerably shortened by the application of elevated tempera¬ 
tures. For zinc crystals for instance, complete recovery at room 
temperature was observed after 24 hr (Fig. 20 -5). 

Obviously, recovery takes place not only after but also during 
the hardening process itself; therefore, the observed hardening is 
actually the resultant of the true hardening effect as well as of 
the other diffusion processes going on simultaneously, including 

(20*2) 

(20-3) 

(20-4) 
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simultaneous recovery. The gradual decrease with increasing 
deformation of the rate of hardening which can be observed in 
all metals is, to a certain extent at least, due to the intensified 
recovery associated with increasing deformation by which the 
thermal stability of the structure is reduced. 

Equation 19-9 which governs the velocity of slip has been 
derived on the assumption that in the initiation of the slip process 
the influence of the energy of the applied forces is large compared 
to that of the heat energy, since the probability of thermal 
energy fluctuations occurring simultaneously over all particles 
involved in the slip motion is very small; the effect of tempera¬ 
ture on the critical shear stress is, therefore, also small. How¬ 
ever, the progress of slip and of work hardening depends very 
much on temperature. This temperature influence results from 
the recovery and other diffusion processes going on simultaneously 
with the deformation. Thus, the velocity of deformation which, 
according to eq. 19 -18, affects the critical shear stress but little, 
is of considerable influence on the progress of strain hardening, 
since at a high velocity of deformation the hardening rate must 
necessarily be higher than at a low velocity at which the soften¬ 
ing effect due to recovery is more pronounced. 

From eq. 20*4 an equivalence relation can be obtained of the 
effects of time and of temperature in the recovery process of 
metal crystals. If it is assumed, to a first approximation, that 
the true hardening does not itself depend on either velocity of 
deformation or temperature, this dependency is introduced indi¬ 
rectly by the recovery effect and diffusion processes. The same 
apparent hardening will, therefore, be associated with an identical 
extent of recovery if diffusion processes lending to precipitation 
are insignificant. Hence, the relation |^etween t and T producing 
the same amount of recovery is obtained from eq. 20-4 by 

introducing n/rio = const. 

= const (20-5) 

or 

log (Tt) = Q/RT + const (20-6) 

valid for T < 6, For T > 6 the left side of eq. 20 • 6 becomes log t. 
Equation 20 6 shows that the work-hardening process can be 
considerably more influenced by a change of temperature than 
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by a variation of the strain rate, that is, a variation of the time 
t during which the forces are applied. 

Slip in single crystals can be much more rapidly blocked by 
diffusion of foreign atoms into the operative slip planes than by 
atomic strain hardening which results from the textural micro¬ 
stresses introduced in the course of the bending and distortion 
of glide lamellas. By such diffusion the stress limit at which 
substantial plastic deformation occurs is considerably raised 
and the apparently continuous, quasihomogeneous hardening 
process transformed into an abrupt, inhomogeneous yield which, 
frequently, is initiated at a higher stress than that at which it 
continues (see Art. 16). The effective blocking of operative 
slip planes which produces this phenomenon can, however, take 
place only in crystals with one or two slip planes, as the blocking 
of one or even of a few slip planes would not produce any appre¬ 
ciable effect on the resulting yield process in crystals in which 
slip proceeds on a large number of alternative planes. 

Creep. Not only are changes in the internal structure of 
materials by slip, fragmentation, and subsequent formation of 
texture produced under conditions in which the increasing resist¬ 
ance to deformation due to strain hardening is overcome by 
increasing stresses, so that a constant rate of deformation is 
sustained; they are also produced if the stresses are increased, 
independently of the increase in resistance to deformation, at a 
lower rate than this resistance increases, even if, in the limiting 
case, the rate of stress increase is zero; that is, the stress is sus¬ 
tained at a constant level. This follows from the general eq. 
19*4, from which a finite value of inelastic deformation can be 
obtained for any value of as long as T > 0, if only the stress 
is applied during a sufficiently long period. The deformational 
response of a material to a sustained stress is designated as creep, 
which is therefore not a particular type of inelasticity, but only 
the response to a particular type of loading. Therefore, it will 
be produced by the same combination of simple dcfoimation 
mechanisms, complex mechanisms of stress-induced structural 
change, and effects of thermal processes within the structure, 
which is responsible for inelastic deformation under any other 
loading condition. The particular importance of creep in engi¬ 
neering and in research, however, is due to the fact that condi¬ 
tions of sustained stress are very frequently encountered in 
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practice, and that, moreover, tests of materials under conditions 

of sustained or very slowly increasing stress bring out basic fea¬ 
tures of deformational response that are obliterated in tests in 
which relatively high constant rates of deformation are induced. 
Because of the strain hardening produced in metals by the 
deformation, the rate of deformation in creep tests of metals 
decreases with time as long as the hardening proceeds. This 

follows immediately from a consideration of eq. 19-4 or of the 
simplified eqs. 19 -5 and 19 • 9, if it is considered that = const 
and that for a strain-hardening material s = /(e), where /(e) 
represents a monotonously increasing function of the total strain 
e. With u = de/dt differential equations for e are obtained from 
any one of the afore-mentioned equations. Their solutions for 
arbitrary monotonously increasing strain-hardening functions 
/(e) produce creep diagrams e(0, the time derivatives of which 
decrease with time, in accordance with the shape of observed 
creep curves of metals (Fig. 49 -2). This conclusion holds for the 
creep of single crystals as well as for polycrystalline aggregates. 
In the latter, however, the effect of the interaction between 
crystals and intercrystalline boundaries will influence the creep 
l)ehavior considerably. 

It can be inferred from eq. 19* 15 that the rate of deformation 
under a constant force is extremely sensitive to changes of tem¬ 
perature. For = const, eq. 19* 15 may be written in the form: 

logM = C, - Ce- (20-7) 

l^ecause of this relation a change of a few degrees in T will pro¬ 
duce a considerable change in u. This fact has been confirmed 
by numerous test results, such as those on zinc and tin crystals 
indicated in Fig. 20 -6, which show that a change of temperature 
by 20°C may produce a change by a factor of nearly 10 in the 
velocity of the deformation. 

Cheep tests and tests at very low stress rates have been used 
to demonstrate and investigate the characteristic inhomogeneity 
of plastic slip in metals, both single crystals and polycrystalline 
aggregates, which is caused by the precipitation of alloying ele¬ 
ments, such as carbon in steel, copper and magnesium in alu¬ 
minum, beryllium in copper, on the slip planes in the course of 
the deformation (see Art. 16). These tests-® ® show alternate 
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periods of very rapid and very slow creep, producing the step¬ 
like stress-strain diagrams characteristic of tests performed at 
low loading rates (Fig. 20-7). The duration of the strain steps 
varies with the loading rate and may attain several days and 

Time, min Time, min 

Fig. 20-6 Velocity of slip as function of tiunperaturc (after Boas^o *^). 

Fig. 20-7 Discontinuous stress-strain curves at various temperatures in 

aluminum (after McRcynolds*®'®). 

even months if the loading rates are extremely low.^^ 7 
been noted that discontinuity of the stress-strain diagrams is 
characteristic for a certain range of temperatures only; beyond 
this range, which is bounded by the temperature at which the 
diffusion of the alloying element becomes too slow for precipita¬ 
tion to be significant, and the temperature at which the creep 
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rate becomes too high for the precipitation to have a noticeable 
effect, the stress-strain diagrams appear perfectly continuous. 
This fact tends to support the assumption that diffusion processes 
are responsible for the observed inhomogeneity and discontinuity 
of plastic slip and illustrates the importance of those processes 
in the interpretation of the deformational response of materials 
to applied forces. 

Classificatiox of mechanisms of change of state. Be¬ 

cause of this importance, the observed inelastic response of a 
material can be interpreted correctly, and the significance of the 
observations evaluated, only if the effects of all mechanisms, both 
force-induced and temperature-(time-)induced, expected to pro¬ 
duce a change of state, are considered, and the relative significance 
of each of these mechanisms is analyzed under the particular 
conditions of the test or of the performance of the material. 

In order to facilitate such analysis, a classification of the opera¬ 
tive mechanisms has been proposed in Table 20 • 1. In this 

classification the mechanisms are divided into two large groups: 
one group of mec^hanisms operative primarily in metals; the other 
operative primarily in molecular substances, particularly high 
polymers. Although such division appears reasonable from a 
general point of view, it is not rigorous. Thus, for instance, 
viscous deformation, although primarily associated with molec¬ 
ular substances, will not be entirely absent in metals. Similarly, 
the division into force-induced and temperature- or time- 
induced mechanisms does not imply that the latter mechanisms 
are independent of the applied force; the division only intends 
to convey the fact that they are not directly induced by the 
applied forces, being affected by them only indirectly by way of 
the deformation. ^ 

Although in every deformation process all the mechanisms 
associated with the particular type of material are theoretically 
operative, only certain of those mechanisms will be significant 
under certain conditions or, for the same conditions, during 
different periods of the test or the performance. Thus, for 
instance, in a polycrystalline metal viscosity (relaxation) will 
dominate the initial creep behavior, if the structure is fine grained, 
whereas slip will be dominant if the metal is coarse grained. 
Since viscosity is much more time- and temperature-sensitive 

than slip, it must be expected that the creep behavior of the 
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fine-grained metal will be more sensitive to temperature changes 
than that of the coarse-grained metal. It must further be 
expected from a consideration of Table 20 1 that, the longer 
the duration of the creep and the larger the strains, the more 
significant the effects of the complex mechanisms, such as frag¬ 
mentation and recrystallization. 

TABLE 20 l 

Classification of Mechanisms Responsible for Changes of State in 

I]ngineering Materials 

Mechanisms of Cliangc of State 

Simple (omplex 

Involving Individual particles 
M ac rom o loc u les 

and crystals 

General charact(*r 

of structure 

Force-induced (deformation) 

Metals Slip Fragmentation 

(hardening) 
Formation of 
anisotropic 

texture 

Polymers Relaxation 

(viscosity) 

Change of configu¬ 

ration of mokicular 

structure (thixot¬ 

ropy) 

“Crystallization 

Small deformations ->■ Direction of increasing deformation 

Temperature-(time-)induced 

Metals Self-diffusion (re¬ 

covery) precipita¬ 

tion (aging) 

Recrystallization Phase chang(‘ 

Polymers Molecular diffusion Chemical reaction Depolymerization 

(randomization of 

structure) 

Moderate tempera¬ 

tures 

-Direction of increasing tempera¬ 

ture and time 

The force-induced and the time-induced mechanisms in the 
individual subgroups are interrelated in such a manner that an 
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intensification of the former may produce an intensification of 
the latter, and vice versa. Thus, for instance, intensified frag¬ 
mentation may be both the cause and the result of intensified 
recrystallization. On the other hand, the trend may be the 
reverse, as in the case of intensified slip producing intensified 
precipitation whereas intensified precipitation retards the slip. 
In molecular structures the change of configuration produced 
by the applied force may affect the intensity of certain chemical 
reactions, such as cross linking, and thus lead to a complete 
reorganization of the deformed structure, which depends on the 
intensity of the applied forces but, at the same time, changes 
the deformational response of the material to those forces. 
This mutual interrelation of the force-induced and the tem¬ 
perature-induced mechanisms makes the interpretation of an 
observed deformational response of any material beyond the 
range of small deformations rather difficult. 

21. Volumetric Deformation 

Inelastic deformation of a homogeneous isotropic material 
body cannot be produced by hydrostatic tension or compression 
alone. Under the action of an isotropic force field the body 
decreases or increases in volume until the external forces are 
balanced by the (isotropic) internal reactions and a new position 
of equilibrium is established. On removal of the forces the body 
completely recovers its initial volume. 

If the material body is made up of randomly arranged particles 
or of an arrangement of spherical symmetry, the equilibrium dis¬ 
tances between the particles are changed by the external iso¬ 
tropic force field until the repulsive and attractive interatomic 
or intermolecular forces balance the external forces; such changes 
are transient, and no changes take place in the relative positions 
of the individual particle by which their energy would be reduced 
permanently. Although the observed practically perfect reversi¬ 
bility of volumetric deformation strongly supports the foregoing 
interpretation of the effect of an isotropic force field on an ideal 
statistically isotropic and homogeneous material, the existence, 
under such conditions, of inelastic deformation, no matter how 
small, cannot be wholly excluded for real materials. Several 
particles, no matter how few, will always be in positions from 
which stabilizing place changes are sufficiently probable actually 
to take place, since it is unlikely that under the action of an 
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external force field all particles of the body remain in conditions 
of perfect stability. Although the extent of local inelastic 
deformation in a statistically isotropic material body subject 
to an isotropic force field may be so small as to be imperceptible, 
such effects are bound to exist; being negligible under most con¬ 
ditions, they will manifest themselves under special conditions, 
for instance in the damping of volumetric vibrations. 

In crystalline bodies the inherent anistropy of the arrangement 
of particles produces different deformational responses in different 
directions. Hence, spherical symmetry of the external force 
field does not produce spherically symmetrical deformation, 
unless the lattice is one of spherical symmetry. The imposition 
of a state of hydrostatic pressure or tension on a crystalline body 
therefore, does not produce only volume changes but also changes 
of shape, which will be the more marked, the more pronounced 
the anisotropy of the atomic structure of the body. In crystals 
inelastic effects associated with isotropic force fields may there¬ 
fore not be negligible. Such effects are practically nonexistent 
in the three-dimensionally symmetrical cubic crystals; they are, 
however, very pronounced in hexagonal crystals. Comparative 
compressibility measurements of crystals of various metals sup¬ 
port this conclusion. Thus the difference in two directions of the 
compressibility of hexagonal crystals is very large; for zinc, a 
ratio of 1 to 7 between minimum and maximum compressibility 
has been observed.^ 

In addition to the anisotropy inherent in the crystal lattice 
there is another type of anisotropy, the existence of which may 
be the cause of inelastic deformation of both crystalline and 
amorphous bodies subject to an isotropic force field superimposed 
on a deviatoric (distort! onal) force field by which the interatomic 
distances in the different directions are changed by different 
amounts, proportional to the principal elastic strains. Different 
force fields necessarily produce different degrees of strain aniso- 
tropy in the initially isotropic structure. The strain anisotropy 
is clearly visible in the statistically isotropic photoelastic mate¬ 
rials; the photoelastic response is but an expression of this phe¬ 
nomenon. Since the effect of strain anisotropy on deformation 
does not differ from the influence of inherent anisotropy, the 
superimposition of an isotropic force field on a deviatoric force 
field acting on a material body will produce not only volumetric 
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deformation but also a certain change of shape, the extent of 
which decreases with the intensity of the isotropic force field and 

the degree of strain anisotropy. 
The generally assumed mutual independence of volumetric 

deformation and of change of shape of a material body under 
the action of external forces, therefore, can be considered but 
as a first approximation. As such it is of great value in simpli¬ 
fying the phenomenological analysis of deformation. Under 
certain conditions, however, such as superimposed very high 
hydrostatic pressure, this approximation may no longer be ade- 
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Fig. 21 • 1 ('Onipressihility as function of atomic number. 

(juate to describe correctly the actual behavior of the material 

body. 
Although volumetric deformation will not perceptibly deviate 

from elasticity, this elasticity is not linear, as may be inferred 
from Fig. 9 9. Whereas the decrease of the slope within the 
range of increasing distances between particles (extension) is 
usually of no particular significance, since fracture as a rule 
intervenes before the displacement reaches values at which the 
decrease in the slope is appreciable, its steep increase in the range 
of decreasing distances (compression),^^due to the sharply increas¬ 
ing repulsive energy of the particles, is responsible for the 
decrease, with increasing pressure, of the compressibility of all 
homogeneous materials; such decrease is expressed by an apparent 
increase, with decreasing volume, of the elastic modulus of volume 
change, usually designated as the hulk modulus. 

The compressibility of elements varies periodically with their 
atomic number. This can be seen from Fig. 21-1 in which com¬ 
pressibilities have been plotted to a certain scale against atomic 
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number. A comparison with Figs. 8-2 and Fig. 8-3 shows the 
inverse and the parallel periodicities, respectively, of the com¬ 
pressibility versus atomic radius and of the density versus atomic 
radius relations. The most compressible solids are those that 
have the largest atomic radii and the lowest density; these are 
the alkali metals. Compressibility of a material may thus be 
visualized in terms of the compression of an aggregate of impene¬ 
trable ‘^elastic’’ spherical electron shells. The larger the 
radii of the individual spheres, the easier and the more exten¬ 
sively can this body be compressed by hydrostatic pressure. 

With increasing density and increasing external pressure the 
resistance to inelastic deformation increases in both crystalline 
and amorphous materials. In crystals this increase is expressed 
by an increase of the critical shear stress; this increase appears 
to be negligible at moderate pressures, but becomes appreciable 
at high pressures.*^^ “ In amorphous materials the velocity of 
inelastic deformation is considerably reduced by superimposed 
pressure due to the increase of the coefficient of viscosity with 
increasing hydrostatic pressure.-^ ^ 

22. Fracture 

Separation in a material body may be the result of shearing 
in two along a slip plane or of separation by extension normal to 
the separation plane. The forces and stresses that produce the 
first type of separation are the same that produce slip; thus the 
shear separation process is but a continuation of the slip process, 
extending beyond the limits of the crystal. The extensions pro¬ 
ducing true separation along planes normal to the lines of action 
of the forces, however, are unrelated to slip phenomena. The 
two separation processes are essentially of a different nature. 

Genuine shearing separation resulting from the finite size of 
the body can take place, however, only in metals, in which the 
interatomic bonds are continually re-established in the course 
of the slip process. In ionic and homopolar crystals slip (cannot 
proceed without a partial disruption of bonds, unless the 

thermal activation of the atoms is particularly strong and makes 
the reestablishment of the bonds possible. Such conditions are 
the exception, rather than the rule. In amorphous materials in 
which slip does not occur, separation is always associated with a 
force or an extension normal to the separation plane. That 
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such separation may be preceded and accompanied by substan¬ 
tial inelastic deformation does not change the fact that separation 
and deformation are different although not independent processes. 

With the sole exception of the pure shearing into two of a single 
metal crystal the initiation of fracture represents a discontinuity 
in the deformation process. The change of state, which con¬ 
tinuously proceeds within the material body subjected to forces 
and which manifests itself by the deformation, reaches a limit 
at the point of fracture, which is a condition of instability of the 
internal structure. When this condition is reached, the con¬ 
tinuity of the transformation from mechanical (potential) into 
heat energy is broken by the appearance of a new mechanism of 
transformation of the energy of the applied forces into the energy 
of the newly created surfaces along which separation proceeds. 
The manner in which this transition point is reached depends 
essentially on the process of change of state, that is, of the 
deformation preceding and leading up to it. 

Fracture is a process of progressive separation of atomic 
bonds which starts at points where the alternative mechanism 
of place change of particles is not available for the release of the 
potential energy of the applied forces, accumulated in the inter¬ 
atomic bonds, and where the absolute value of the accumulated 
bond energy is highest. The disruption of a number of atomic 
bonds increases the energy accumulated in the remaining bonds, 
since the energy of the acting forces is balanced by a further 
displacement of the bound particles from their position of 
equilibrium towards energy levels at which separation becomes 
increasingly possible. Atomic fracture is thus a chain reac¬ 
tions^ process; it may be very rapid and lead to macroscopic 
fracture under a single force application of short duration, if the 
energy of the applied forces is relatively high or if its distribution 
over the interatomic bonds is highly i^onuniform; or macroscopic 
fracture may be slowly progressive and proceed under either 
repeated application or long duration of forces of a relatively 
low energy potential if the process is accompanied by a gradual 
change of the distribution of bond energies and by concentration 
of the response to the external forces within a decreasing number 
of bonds. 

Since the initiation and propagation of fracture within the 
material depends on the level of potential energy stored up within 
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a number of excessively strained atomic bonds, it appears rea¬ 

sonable to assume that the occurrence of fracture on a macro¬ 
scopic scale will be related to the accumulation of a certain 
critical amount of potential energy which can not be dis¬ 
sipated into heat energy before it is released by separation. 

The level of energy of the applied forces at which the critical 
state is reached depends necessarily on the process of energy 
dissipation preceding it, that is, on the relative amounts of 
stored-up and dissipated energy: the energy that is not stored up 
reversibly produces structural changes in the material, which 
are associated with its irrecoverable deformation. The close 
interrelation between fracture and inelastic deformation is the 
result of the fact that the greater the portion of the energy of the 
applied forces that is dissipated into heat energy in the course of 
inelastic deformation, the smaller the stored-up energy potential 
that remains available for fracture. Thus, under conditions that 
are not conducive to the dissipation of applied energy into heat 
energy, the main portion of the eruugy of the applied forces will 
be used to produce fracture. Such conditions are created by 
low temperatures, high rates of application of forces or of energy, 
as well as by a large share of the work of volumetric expansion 
in the total amount of the work of the applied forces. The 
difference in the effect on fracture of volumetric expansion and 
compression is due to the fact that, although volumetric energy 
cannot be effectively dissipated, volumetric compression evi¬ 
dently cannot cause separation. Elevated temperatures, low 
rates of application of force or of energy, and a large share of dis- 
tortional work in the total work of the applied forces lead to a 
considerable intensification of the process of dissipation of applied 
energy into heat by place changes of particles, and thus increase 
the permanent deformation which' precedes and accompanies 

fracture. 
Fracture may start when, under the external conditions repre¬ 

sented by forces and temperatures, not all the particles, of which 
the material body is built up, can find locations in which they 
are in a state of stable equilibrium. However, if such an unstable 
particle, in incessant thermal motion in a small region about its 
momentary position of equilibrium and continually exploring the 
potential field in which it is located, is able, in response to the 
imposed external conditions, and in order to restore its stability 
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reduced by these conditions, to find an alternative and more 

stable position of lower potential energy within the potential 
field of the forces of the surrounding particles, no atomic bond 
is disrupted. Evidently such change of place is possible only if 
(a) an alternative position within the potential field of the forces 
of the surrounding group of particles exists, and (6) the thermal 
activation of the particle is high enough to make this place 
change sufficiently probable to occur during the period of load 
application. Place changes of individual particles in response 
to external forces are therefore less probable at low than at high 
temperatures. 

If the instability of the position, in which the particle finds itself 
as a result of changes in the external condition, cannot be resolved 
by a place change, the particle will tend to regain its stability 
by disrupting the bonds connecting it with certain of the sur¬ 
rounding particles, initiating fracture on the atomic scale. 
Whether and how rapidly this atomic fracture (which is a local 
instability phenomenon) will multiply and spread into a visible 
crack depends on energy considerations, since local instability 
spreads only if by this process the potential of all the forces 
involved is diminished. 

Although the probability of occurrence of local bond disruption 
within the submicroscopic structure is highest at some intrinsic 
point of instability such as an imperfection of this structure, 
for instance a single dislocation or a concentration of dislocations 
in a block boundary, there are factors of instability present in 
any structural arrangement, even in the absence of imperfections. 
These factors are related to the temperature oscillations within 
the atomic or moleculai* structure, as a result of which transient 
cracks of atomic size might be opened during particularly large 
low-temperature energy fluctuations. It is, however, equally 
probable that compensating fluctuations of thermal energy 
above the mean would occur rapidly enough to heal these incipient 
atomic cracks. In fact, the heat energy set free at the same time 
at which atomic fracture occurs provides the heat just in the 
location where it is most needed to heal those fractures. Under 
such conditions the levels of potential energy pertaining, respec¬ 

tively, to the cracked and uncracked state differ by such infinitely 
small amounts that no definite trend in the separation process 
can develop. A clear trend towards large-scale propagation of 
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atomic fracture can develop only if the potential energies of the 
two states differ by finite amounts. Thus, if the interatomic 
distances are increased by the action of external forces, the gain 
in potential energy accompanying a spreading crack increases, 
as a result of the increased energy difference between the state 
of the material body before and after fracture. 

Fracture cannot spread at the expense of the energy of the 
atomic forces, if the material is compressed so much that the 
interatomic forces are, on the average, repulsive. Under such 
conditions the opening of a crack would require the compressing 
of the particles on both sides of the potential crack, accompanied 
by an increase of potential energy. However, it is not impossible 

to set up such conditions that the increase in the energy of the 
internal forces associated with the spreading of a crack against 
compression is accompanied by such a decrease of the energy of 
the external forces that fracture may still occur, as the total 
potential of the system decreases. Such conditions which require 
a particular disposition of the external forces have been devised 
by P. W. Bridgman in some of his experiments on materials 
under the action of high hydrostatic pressure*^-^’^ 

Fracture cannot be produced by hydrostatic compression 
alone, as all particles are crowded together, not separated. If 
it is assumed that bond disruption is associated with a critical 
separation distance between the particles, a state of hydrostatics 
compression will increase the amount of the relative separation 
of particles necessary to cause bond disruption. A superimposed 
hydrostatic pressure, therefore, will increase the intensity of the 
forces required to produce fracture, whereas a hydrostatic tension 
will have the opposite effect. For moderate pressures, which 
do not cause changes in the interatomic distances of a magnitude 
comparable to the separation distance, these effects may be 
negligible. They will, however, become the more pronounced, 
the higher the volumetric compression as well as the compressi¬ 
bility of the material. 

Materials in which even a moderate change of hydrostatic 
pressure or tension appreciably affects fracture under general 
conditions of stress are the microscopically and macroscopically 
inhomogeneous materials. Microscopic inhomogeneities of the 
structure produce a nonhomogeneous response within the 

material to the (homogeneous) state of hydrostatic stress. This 
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fact explains the considerable influence on the condition of frac¬ 
ture of very moderate spherical stresses in such materials as 
cast iron, concrete, and stone, in comparison to their negligible 
effect in the statistically homogeneous and relatively incom¬ 
pressible metals and amorphous substances. 

Fracture being essentially the propagation from the submicro- 
scopic into the macroscopic scale of instabilWes within the poten¬ 
tial field of the atomic or molecular forces, all effects that facili¬ 
tate or inhibit the formation and propagation of such instabilities 
are of primary importance in influencing, if not determining, the 
occurrence and progress of fracture on a macroscopic scale. 

The most important of the effects favoring the initiation of 

l)ond disruption are therefore the intrinsic inhomogeneities in 
the potential energy field of the interatomic or intermolecular 
forces as well as those produced by deformation. They cause 
the variation, over a wide range, of the energy levels of the par¬ 
ticles and thus of the energy conients of the bonds between the 
particles. In statistically homogeneous and isotropic materials 
this variation of energy levels results from the statistical dis¬ 
tribution of particles within the space occupied by them. In 
single crystals variation of energy levels of individual particles 
is theoretically nonexistent because of the uniform repetitive 
pattern of the distribution of particles in the ideal lattice. A 
relatively small slip however is sufficient to disturb the near 
homogeneity of the real lattice structure and to produce, in the 
glide planes, distorted atomic layers containing bonds of high 
and highly variable energy content. In two-phase or polyphase 
materials the inhomogeneities within the different phases will 
be of different order and type, since they are the result of the 
textural stresses which arc of different orders of intensity. It is 
therefore primarily the inhoniogeneity of the energy levels of par- 
ti(;les within or near the boundaries of the individual constituent 
phases and within atomic layers distorted by deformation that is 
responsible for the actual separation strength of real two-phase 
or polyphase materials. 

The most important effect counteracting the initiation and 
propagation of bond disruption is the thermal activation of par¬ 
ticles. The more intense this activation, the higher the proba¬ 
bility that a particle in unstable position will reach a more stable 
position by the mechanism of place change instead of by the 
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mechanism of bond disruption. The interplay between these 
two mechanisms is responsible for the character of the observable 
fracture. The influence of temperature on the fracture stress 
is relatively small, since this stress depends essentially on the 
interatomic force that defines the critical separation distance. 
Temperature, however, effects the relation between the proba¬ 
bilities of separation and of place change by which the occurrence 
of fracture and the extent of the preceding inelastic deformation is 
determined. 

Attempts to compute the fracture stress from the interatomic 
forces^^'^ have proved as futile as the attempts to compute the 
critical shear stress in this manner, and for the same reason. 
Slip and fracture in real materials are determined by the inhomo¬ 
geneities of the internal structure, not by the regularities of an 
assumed ideal arrangement. In crystals slip and fracture origi¬ 
nate at dislocations, block boundaries, or other locations of 
structural inhomogeneity and proceed by the formation of 
further inhomogeneities and imperfections. Hence, both the 
critical shear stress and the fracture stress are determined by the 
relatively small number of anomalously located particles, rather 
than by the large majority of regularly arranged particles. It 
is, therefore, not surprising that the separation strength computed 
on the assumption of an ideal arrangement is between two and 
three orders of magnitude higher than the observed cohesive 
strength. 

However, there is, at least in crystals, a definite effect of the 
mean energy of the atomic bonds on the trend of the observed 
separation strength. As this value depends on the initial 
imperfections within the crystal lattice, it will be the higher, 
the smaller the extent of such imperfections. It has been pointed 
out previously (see Art. 13) that the perfection of a lattice 
increases with the intensity of the interatomic forces: large 
forces may be sufficiently strong to overcome effectively the 
rapid reduction in the mobility of the particles in the solidifica¬ 
tion process due to the decreasing temperature, forcing the par¬ 
ticles to form a regular lattice at a time when the effect of small 
forces would already have been blocked. Thus, the higher the 
intensity of the interatomic forces, that is, the higher the average 
lattice energy of the material, the less the imperfections in the 
atomic structure and the higher the real cohesive strength. 

This conclusion is borne out by all observations. 
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In crystals separation without preceding slip (cleavage) takes 
place along well-defined crystallographic planes called cleavage 
planes; these are frequently but not always identical with the 
slip planes, 'i'he stresses required to produce fracture by cleav¬ 
age are different for different planes. Cleavage fractures result in 
the formation of flat plane surfaces; in metals they can be pro¬ 
duced only if the force is applied almost perpendicularly to the 
potential cleavage plane, as otherwise slip interferes. Cleavage 
can be produced more easily at low temperatures, although the 
cleavage stress itself appears to be practically independent of 
temperature. However, the reduction of the velocity of slip 
with temperature, and the consequent increase of the critical 
shear stress increases the component of the force in the slip 
plane which would be necessary to initiate slip before cleavage 
is likely to occur. The deviation of the direction of the acting 
force from the direction perpendicular to the cleavage plane is, 
therefore, the less effective in preventing cleavage, the lower the 
temperature. 

Fracture in polyphase molecular materials, particularly in high 
polymers, is initiated either by disruption of the primary bonds 
forming the individual chain molecules or by the pulling apart 
of intertwined groups of molecular chains, connected by rela¬ 
tively weak intermolecular forces, without any chain segment 
being broken. Materials in which fracture is governed by the 
latter mechanism, in general, will show^ considerably lower 
cohesion than materials breaking by rupture of individual chain 
segments, as the cohesive forces betw^een segments are of atomic 
order of magnitude. How^ever, if the chains are very densely 
spaced, the number of w eak intermolecular bonds may increase 
so considerably that, in spite of the weakness of the individual 
bond, the total force required to produce fracture by the pulling 
apart of the intertwined chains becomes higher than the force 
required to break the primary bonds of chain segments. Since 
density of spacing of chain molecules is related to molecular 
weight, an increase of strength w ith the molecular w^eight of the 
material should be expected; the existence of such a relation 
has been confirmed by experiment. ® 
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CHAPTER 

4 

MECHANICAL VARIABLES 

23. Mechanical State 

The mechanical properties of a material are generally expressed 

in terms of the mechanical reactions to loads and to other 

external influences, such as temperature. These reactions are 

the obsei-vable and measurable expressions of the processes of 

exchange of mechanical energy and of its transformation (dis¬ 

sipation) into thermal energy. They can, therefore, be described 

by introducing the thermodynamical characteristics of the mate¬ 

rial body as functions of the mechanical variables (forces, displace¬ 

ments, and the like) and by applying the fundamental laws of 

thermodynamics. Mechanical properties in the widest sense are 

thus defined by four-dimensional relations between the mechani¬ 

cal and the thermodynamical variables, that is, between forces 

and displacements or between their specific values (stresses and 

strains), and between time and temperature. In the usually 

assumed isothermal conditions the relations are three-dimensional, 

that is, between forces, displacement# (or stresses and strains), 

and time, temperature being simply a parameter. Relations 

connecting the mechanical and thermodynamical variables are 

called (mechanical) equations of state. 

The existence of an equation of state implies that the force 

necessary to produce a certain deformation of a material body 

during a certain time and at a given temperature depends only 

on the momentary values of the deformation and its time 

derivatives and the momentary temperature, not on the extent 

and rate of previous deformation or temperature. The immedi- 

167 
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ate effect of temperature in producing an intensification of the 

heat-energy fluctuations of the particles of the material body 

does not in itself interfere with the existence of an equation of 
state; although it changes the shape of the force-deformation¬ 

time relation, it does not affect the continuity of the relation. 
It is only under certain conditions that temperature effects also 

produce significant structural changes within the material 

(thermal recovery, grain growth, recrystallization, and precipita¬ 
tion). Since the rate and extent of those changes depend on 

the magnitude of previous deformation and on the conditions 

in which it was produced, the structural temperature effects 
seriously interfere with the existence of a mechanical equation 
of state by making the relations between the variables dependent 

on previous history. 
Considering that real materials are generally not in a state of 

perfectly stable thermal equilibrium and that every irrecov¬ 

erable deformation is the result of structural (atomic) changes 
within the material, an equation of state cannot^ in principle^ be 
expected to exist. However, for conditions for which the occurring 

structural changes do not appreciably affect the mechanical 

behavior, the existence of an equation of state can be assumed 

as a first approximation. 
The assumption of the existence, for a certain material, of a 

mechanical equation of state makes it possible, by defining the 

relations existing at various temperatures between the kine- 
matical and the dynamical variables to predict the mechanical 
behavior of the material under general conditions on the basis of 

a comparatively small number of tests under special conditions. 
The constants appearing in the equation of state are the mechan¬ 
ical constants of the material. 

At constant temperature a mechanical equation of state can 
be represented by a three-dimensional curved surface, the dimen¬ 

sions being force or stress, deformation, and deformation velocity. 

It can be established either on the basis of structural (atomic) 

considerations (see Art. 19) or by the phenomenological procedure 
of performing mechanical tests. However, this latter method 

does not in itself establish the existence of an equation of state, 

unless additional observations are made to ascertain whether at 

constant temperature and given values of deformation and 
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deformation velocity the observed forces or stresses are one¬ 
valued and do not change with time. 

Mechanical laws describe the deformation of material bodies 
by establishing relations between the dynamics and the kine¬ 

matics of the deformation in terms of the mechanical variables. 
These variables must therefore belong to either of tw^o groups: 

(a) the groups of dynamical variables, and (6) the group of 

kinematical variables. Since, phenomenologically, the deform¬ 
able body is considered as a homogeneous isotropic continuous 

medium, all mechanical changes of a material body of arbitrary 

shape can be derived from those of the volume element by 
integration over space; therefore, the phenomenological study of 

mechanical behavior can be limited to the analysis of the mechan¬ 
ical changes produced in the volume element. 

The state of deformation of a volume element is defined by its 

space coordinates and by the time derivatives (velocities, 
accelerations) of those coordinates. These magnitudes form the 
group of the kinematical variables. 

There are three basic types of motion: translation, rotation, 
and pure deformation, that is, deformation without rotation. 

Pure deformation is again subdivided into volumetric change 

and volume-constant distortion. Any general motion of the 

volume element can thus be produced by a combination of trans¬ 
lations, rotations, and pure deformations. 

The dynamical state of a volume element is described by the 
dynamical variables, which are defined by relating each type of 
motion to a dynamical magnitude. Hence, translations are 

related to the forces by which they are produced, rotations to 
moments and deformations to stresses. According to the sub¬ 

division of deformations, stresses are subdivided into isotropic 
stresses producing volume changes •dnd.deviatoric stresses^ that is, 
stresses producing distortions. These dynamical magnitudes, 

defined by their relation to the three basic types of motion, 
together with their derivatives in space and time, form the group 

of the dynamical variables. In defining those variables for the 
volume element, the forces and moments should be considered 

as densities of forces and moments. 
The mechanics of translations and rotations is fully described 

by Newton’s laws of motion which, for the volume element dV 
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can be written in the form: 

:Ef = padV (23-1) 

for the dynamical equilibrium of forces /, and 

2m = Xf r == a rp dV (23 • 2) 

for the dynamical equilibrium of moments ?n. In these equations 
r denotes the distance of the force vector from the center of dV, 
a the acceleration, and p the mass density. The analysis of the 
motion is made possible by the application of d’Alembert’s or 
Hamilton’s principles. The only mechanical constant, the mass 
density p is sufficient to describe the mechanical behavior of the 
volume element. 

In the mechanics of deformation d’Alembert’s principle alone, 
relating forces and moments with translations and rotations, is 
insufficient to describe the phenomena; the necessary relation 
between the third pair of variables, the stresses and deformations, 
is provided by the mechanical equation of state. The number of 
material constants appearing in this equation will necessarily 
depend on the complexity of the behavior of the considered 
material, that is, on the number of constants contained in the 
equation of state. 

It is important to define material constants in such a manner 
that they are independent of the conditions of the experiments 
from which they have been determined and that they describe 
the behavior of a volume element. Experiments provide, in 
general, relations between quantities observed on bodies of 
finite volume and specific shape; the immediate validity of these 
relations and of the parameters appearing therein is limited to 
the conditions of the experiment. These parameters become true 
mechanical constants only after the relations have been trans¬ 
formed so as to be valid for the volume element. 

24. Dynamical Variables 

Forces acting on the volume element are of two different types: 
(a) forces proportional to the mass or density of the element, 
which are the forces of gravity and of inertia, and (b) forces 
acting on the surface of the volume element, which are usually 
called tractions or traction forces. The distribution of the forces 
within every portion of the material body is governed by the 
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principle of dynamical equilibrium between the forces acting on 
the surface of the considered portion and the forces of gravity 

and inertia, acting on its mass. According to this principle the 
concept of stress^ or more accurately, tensor^* ^ of stress is intro¬ 
duced for every infinitely small volume element; it expresses the 
fact that a surface of second degree (quadric) can always be 
found to represent the distribution over the unit sphere of the 
forces that act across all possible planes through the center of 

the element. Stress specifies the traction forces t acting across 
every given plane; it thereby determines two mutually perpen¬ 
dicular directions corresponding to the normal stress component 
tfti which acts perpendicular to the plane, and the tangential 
or shear stress component ts which acts within the plane. In 
the stress quadric three principal planes, at right angles to one 
another, exist across which the traction forces are normal, so 
that the tangential components = 0. Three principal axes 
of stress are so specified that their directions coincide with those 
of the principal planes of the stress quadric; their respective 
lengths express the intensity of the traction forces per unit area 
across those planes. 

Numerically, the state of stress within an infinitely small 
N'olume element, the rectangular (cartesian) coordinates of which 
are Xi, 0:2, and x-s, is completely defined by the specification of 
nine quantities, which are the components of the stress tensor 
in the directions of the axes of the coordinates xi, X2, X3. If 
three surfaces of the volume element are defined by xi = const, 
X2 = const, and X3 = const, respectively, the vectors of stress 
acting across those surfaces have the components (sn, S12, S13), 

(‘^‘21, -^22, «23), and (.S31, 532, S33), respectively, where the first 
subscript denotes the direction normal to the considered surface 
and the second the direction of the component. These are the 
nine components of the stress tensor Tjk which can be written 

fsu 6*12 su\ 
TjA: = ( S21 S22 523] (24-1) 

\ssi ^53 2 S3 3/ 

This tensor of second rank defines in a concise manner the 
state of stress existing at a certain point within the material 

body. 
The condition of force equilibrium 23-1 in the direction of the 
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three coordinate axes can be written in the well-known form:-^ ^ 

^^11 ^ d821 ^ ^^31 

dxi dx2 dxs 

dxi dX2 dx-i 

dsvi 

dxi +?+ dX2 
-h 

(24-2) 

where/i,/2, and/a denote the components of the forces of inertia. 
The condition that the volume element be in a state of moment 

equilibrium defined by eq. 23 -2 requires that the stress tensor be 
symmetrical,-*^ ® or that the tensor components, 

Sjk = (24-3) 

Tensor symmetry is an invariant property, so that eq. 24*3 
holds under any coordinate transforma¬ 
tion. Since the nine stress components of 
the tensor 24 • I are thus interrelated by the 
three eqs. 24-3, the state of stress at any 
point is completely determined by the six 
components of the symmetrical stress 

tensor, sn, S22, S33, ^12 = S21, S23 = 
and 531 = Si3, which satisfy the equilibrium 
conditions and the given surface conditions 
in the three directions Xi, X2, X3. 

The components in the coordinate sys¬ 
tem (xi, X2, X3) of the stress vector t on a plane the direction of 
which is defined by the three directional cosines Zi, I2, h of its 
normal (Fig. 24-1) is obtained from the equilibrium condition: 

h = sxili 521/2 + ^31/3 

t2 = S12/1 + 522/2 “H S32/3 (24’4) 

^3 = S13/1 + 523/2 + S33/3 

The vector t has a normal component in and a tangential 
component U which, in terms of /i, <2, ^3, can be expressed by 

in == till + ^2/2 + tzlz (24-5) 

= <1® + (24-6) 

Fig. 24 • 1 Stress vec¬ 

tor on plane. 
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By expressing the values h, ^2, ^3 in eq. 24 • 5 by eq. 24 • 4 and intro¬ 
ducing the directional cosines h = rci/r, h = X2/r, h — Xz/r^ 
in terms of a radius vector r through the origin in the direction 
of the normal to the plane, defined by the relation = const/^„, 
the equation of the stress quadric is obtained: 

+ 822X2^ + SzzXz^ + 2si2XiX2 + 2s23^2^3 + 2sz\XzX\ 

= const (24-7) 

If the axes xi, X2, xz are rotated so as to coincide with the axes of 
the quadric (eq. 24-7), the mixed stress terms vanish. Hence, 

i\ = /-i = S2I2) ^3 = 8zlz (24*8) 

where .si, .92, S3 denote the prmcipal stresses^ acting on the surface 
elements perpendicular to the principal directions of the stress 
quadric. When eq. 24 -8 is introduced into eq. 24 -5, the normal 
(‘omponent, 

tn — 8\li^ + .92/2“ 4* 8zlz^ (24-9) 

Hence, eq. 24 0 becomes 

+ S2^^2^ + 8zHz“ — (Si/i“ + ^2^2“ + ^*3^3^)^ (24*10) 

The values of the principal stresses are obtained if in eqs. 
24 *4 the vector components are expressed by eqs. 24*8, where 
si, §2, 8z are considered the three possible values of the stress s. 
Considering that 

+ + h^ = 1 (24*11) 

four equations are thus obtained for /i, I2, h and the principal 
stress s. The determinant equation for s is obtained from eq. 
24 4 in the form, 

.911 8 S2I 8ZI 

Si 2 822 — 8 8Z2 = 

SlZ 82^ 8z:i — *9 i 

or explicitly, 
= 0 

(24-12) 

(21 13) 

For a symmetrical tensor 24-1, the following expressions repre¬ 
sent the constant factors of eq. 24 -13: 

hi = sii + S22 + 833 = Si -F S2 + S3 (24-14) 

/,2 = S11S22 + S22S33 + S33S11 — S12* — S23* — 831^ 

= S1S2 + S2S3 + S3S1 (24-15) 
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laZ = S11S22S33 + 2S12S23S3I “* SiiS23^ S22S31^ “ 533812^ 

= S1S2S3 (24 16) 

Equations 24 -14, 24 -15, and 24-16 express the three independent 
invariants of the stress tensor, which are the elementary sym¬ 
metric functions of the principal stresses represents the 
determinant of the stress components); they are called invariants, 
since they are invariant under any rotation of the coordinate' 
system. The three values of the principal stress si, §2, ss are 
the roots of eq. 24* 13. 

It is evident that the foregoing three invariants are not the 
only possible forms of invariants, since by combining them 
algebraically new invariants can be formed. 

A stress tensor can be resolved into its isotropic or spherical 
component and its distortional or deviatoric component. Hence, 

Tyjfc ^T, + Tajk (24-17) 

where and Tojk denote, respectively, the spherical stress tensor 
and the stress deviator, given by the expressions: 

(p 0 o\ /sn - p S21 

0 p 0 j and Tojk = I Si2 S22 - V 
0 0 pj Vi3 «23 

in which p denotes the mean hydrostatic stress, 

V ~ i(^ii 4“ ^22 + ^‘33) 

The three invariants /osi, /o82 ai^d /o.s3 of the stress deviator 
Tojk in terms of those of the stress tensor are obtained by per¬ 
forming the operations indicated by eqs. 24 14 to 24 16 on the 
deviator 24 * 18. Hence, 

/(),i = 0 (24-20) 

/082 = 7«2 ~ 

= ~ ^22)^ + (S22 533)^ + (S33 ”” Sii)^] 

~ (512^ + ^23^ + 531^) 

= ““MC***! •'52)^ + (§2 ss)^ + (S3 — Si)^] (24-21) 

(24-18) 

(24-19) 

/0.3 =/.8 - i/.i /.2-^/a®] (24-22) 



Art. 241 Dynamical Variables 175 

The invariants of the tensor or of the deviator of stress can 
be used to represent the state of stress or the state of deviatoric 
stress in a three-dimensional system of invariant coordinates 

(/l, /2, /3). 
For plane stress with S33 = su = S23 = 0 and within a direc¬ 

tion defined by the cosines of the normal hn = cos a and hn = 
sin a, the components, 

tn = ti cos a + h sin a and = t\ sin a — h cos a (24-23) 

are obtained from eqs. 24 -5 and 24-b. Introducing the expres¬ 
sions 24 • 4 into eq. 24 • 23, 

in = cos^ a + S22 sin^ a + S12 sin 2a 

and 

For 

*^‘11 + 'S*22 Sll — S22 o , • o /o/i c\A\ -1---cos 2a + .S12 sin 2q: (24-24) 

.1^ = sin 2a - S12 cos 2a (24-25) 

tan 2a = tan 2(i> — 
2s 12 

Si I — S22 
(24 •2()) 

the component tg vanishes and tn reaches the extreme value of 
the principal stress, 

Sl,2 = i(’^’ll S22) ± 4 (sii — 6*22)“ 
+ si2‘'^ (24-27) 

For 

tan 2a = tan 26 = — 
, sii - S22 

2s 
(24-28) 

12 

the shear component t,, reaches its extreme value, 

tsmax ..4 
(sn-^£1^ (24-29) 

while 

tn “■ 

4 ■ - 2 

Sll + S22 Si + *2 

2 2 
(24-30) 
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Because tan 2</) tan 2^ = —1, the directions of pi incipal shear 
stress are inclined under ±45® to the direction of principal stress. 

The planes of the principal shear stresses in the three-dimen¬ 
sional states of stress are obtained by eliminating from eq. 24-10 

one directional cosine with the 
aid of the relation 24 -11 and 
subsequently differentiating eq. 
24 10 with respect to the remain¬ 
ing cosines. By repeating this 
procedure with all three cosines, 
three pairs of extremal condi¬ 
tions are obtained for the planes 

of extreme values of shearing 
stress. They are fulfilled on the 
planes containing one axis and 
bisecting the angle between the 
other two axes of principal stress 
under 45®. The directions of 

the principal shear stresses form a regular octahedron whose 
corners lie on the axes of principal stress^^'^^ (Fig. 24 *2). 
Their values are 

Fig. 24-2 Octahedron of direc¬ 

tions of principal shear stresses. 

tai = i(s*2 «3); ^2 = ^(s3 — Si); = i(si — S2) (24-31) 

hence, 

hi + ts2 + ^if3 == 0 (24-32) 

The normal and the shearing stresses tno and for any of the 
eight planes of the octahedron are called the octahedral normal 
and shearing stresses. Their values are 

tno — i[(Sl + S2 + S3)] = 

ho = i[(^i ’^2)^ + (^2 — «s*3)’ + (.S3 — (24-33) 

This can be easily shown by computing h and h for any octa¬ 
hedral plane with the aid of eqs. 24 5, 24 -6, and 24 -8. 

By substituting eq. 24 -31 into the second eq. 24 -33, the octa¬ 
hedral shear in terms of the three principal shear stresses: 

ho = %[hl^ + <«2“ + = V — ■|/«02 (24-34) 

Because of eq. 24 • 32, h can be expressed in terms of two of the 
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principal shear stresses only: 

U = + tsi • U2 + (24-35) 

25. Kinematical Variables 

For the definition of deformation or displacement two positions 
of the material body, one initial and one terminal, must be con¬ 
sidered. The displacement of the mass points of the material 
from one position to another shows a distribution in space that 
is necessarily governed by the principle of continuity, unless 
fracture occurs and this continuity is broken. According to 
this principle, the concept of strain or, more accurately, of a 
strain tensor expresses the fact that the relative displacements, 
that is, the changes in length in the immediate neighborhood of 
the considered point, are always so distributed over the unit 
sphere surrounding the point that a quadric, the strain ellipsoid, 
changes its form from a sphere in the initial unstrained position 
to an ellipsoid in the terminal position, while another quadric, 
the reciprocal strain ellipsoid, simultaneously changes from an 
ellipsoid into a sphere. In both the initial and the terminal 
positions, the strain ellipsoid and the reciprocal strain ellipsoid 
define, by their common center and their curves of intersection, 
a conical surface, termed the co7ic of zero elongation, which repre¬ 
sents an invariant in the sense that its generating lines have 
the same length in both positions, as if they were rigid rods. 
Whereas the strain ellipsoid defines the state of strain under 
applied forces, the reciprocal strain ellipsoid defines the strain 
associated with the removal of forces. 

Considering a series of parallel planes, these planes will glide 
over one another during the progress of the deformation; at the 
same time their distances apart in a direction normal to the planes 
will change, while in a direction at right'angles to both directions 
the relative displacements are zero. Thus, for each plane two 
mutually perpendicular directions are defined as the directions 
of normal strain and of shear strain. There are three principal 
planes in the strain quadric at right angles to one another, and 
for these the shear strains vanish and the displacements are 
normal. The directions of the normals to the principal planes 
of the strain quadric are usually defined as the three main axes 

of strain or axes of principal strain. 
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The magnitude of these axes can be defined in various ways. 
Although, in principle, this definition is arbitrary, certain require¬ 
ments must be met in order to obtain all relations in the simplest 
possible form. Generally, mechanical variables obey a law of 
simple superposition; values may be added algebraically to 
obtain the resulting value. In defining the magnitude of strain 
however, this possibility depends on the definition of the measure 
of strain. 

There are two modes of definition of the deformation of a con¬ 
tinuous medium. In terms of Lagrangian coordinates the inde¬ 
pendent variables are the positions Xi of the mass points in the 
initial unstrained state; the derivatives of the displacements are 
determined at these positions. In terms of Eulerian coordinates 
the independent variables are the displacements Ui which define 
the positions of the mass points in the deformed state, and the 
derivatives are determined at the positions {xi + Ui). When the 
displacements are so small that products of derivatives can be 
neglected, the difference between these two modes of defining 
strain vanishes. 

When the deformations are not limited to infinitesimal values, 
different definitions of the measure of strain will necessarily lead 
to different stress-strain relations. Evidently a stress-strain 
relation that is linear in one strain measure will be nonlinear in 
every other measure. In principle, any arbitrary function of the 
elongation ratio of the axes of the strain ellipsoid \i can be used 
as a measure of strain, provided such a function is reduced to 
the classical measure, Ci = (Xt — 1) for infinitesimal strain. 

If a point of a material body with coordinates {xlX2X^) is 
displaced by a distance u, the projections of the displacement 
vector in the directions of the coordinate axes are (uiU2Uz); since 
displacements must be continuous functions of the coordinates, 
the change in the components of the relative displacements of 
the neighboring points, under the assumption of small deforma¬ 
tions can be written in the form. 

where the derivations are taken at ixiX2Xz), The change of dis¬ 
placement du of the considered point, that is, its deformation, 
can be specified by the nine components dn/dXi of a nonsyra- 
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metrical tensor of second rank; the tensor of the total deformation 

dUi dU] dui 

dx\ dXo dxg 

dUi dU2 dUi 

dx\ 6X2 dxs 

dU3 ^
 i 1 dus 

dxi dX2 dxsf 

(25-2) 

tensor of strain. 

This is evidently not the tensor of strain, since it contains the 
1 / dUj dUf\ , - I. . 

rotation w* = - i —^ — -— h whereas the tensor of strain, 
2 \dxk dxjj 

related to the tensor of stress of a volume element in dynamical 
equilibrium, must necessarily be symmetrical and therefore rota¬ 
tionless. Thus, a new symmetrical tensor must be developed, 
by splitting off the symmetrical part and taking the averages 
of the terms dujjdxk lying symmetrically to the diagonal dUi/dXi 
of the tensor U^jb. The components of this symmetric tensor are 
therefore defined by the expressions: 

and gjk 
1 

2\dXk dXj/ 
(25-3) 

where the terms denote the normal strains and gjk the shear 
strains or angle changes. The three components of the vector 
of pure deformation are thus given by the eciuations: 

(iui = eu dxi + gvi dxi + g\^ dxz 

dU2 = 9^21 dXi -f* (’•22 dX2 + <72 3 dX’^ 

du-i = gil dxi + (732 + dx2 + 633 dx-i 

(25.4) 

The symmetric stram tensor can therefore be written in the form, 

eii 9X2 9^13\ 

921 622 92Z 1 (25-5) 

9Z2 ezz/ 

where gjk = gkj- The deformation tensor of eq. 25-2 is thus 
made up of the symmetric tensor of strain (eq. 25 • 5) and of the 
asymmetric rotation represented by the vector components: 
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dri = — c«?3 dx2 “I" <*>2 dxz 

rfr2 = (azdxi ~coirfx3 (25-6) 

dr:i = —0)2 dxi 4" ^<>1 dx2 

As in the case of the stress tensor, the three directions for which 
the mixed components of strain vanish are the axes of principal 
strain e; the values of principal strain are obtained by solvinj? 
eqs. 25*4 for dui = edxi. The determinant equation, the three 
roots Ci, 62, and 63 of which are the principal strains can therefore 
be written in the form, 

611 — c gi2 giii 
g2i ^22 — c g2^ = 0 (25-7) 

<731 gn ^33 — e 
or, explicitly, 

- hie- + hie - hi = 0 (25-8) 

where Ie\. Ie2i denote the three incarianls of the strain tensor: 

hi = 611 + ^22 H“ <'33 = Cl + C2 + C3 (25-9) 

7e2 = C11622 + C22C33 + C33C11 — J/l-i' — r/23“ ““ g‘n' 

= 6162 + ^2^3 + C361 (25 • 10) 

7e3 = C11622C33 + 2^i2^23f/3l “ Cuf/23“ “ C22</3l’ “ ^ngV>^ 

= 616263 (25-II) 

These expressions are invariant with respect to any orthogonal 
transformation, that is, rotation, of the coordinate system. The 
third invariant lez represents the determinant of the strain 
components. 

If terms of higher than first order in strain are neglected, the 
first invariant of strain /d represents the dilatation of a unit vol¬ 
ume F, since the specific volume change: 

dV 
— = (1 + 6i)(l + C2)(l + C3) — 1 

- (61 + 62 + 63) + terms of higher order in e (25 * 12) 

Hence, in first approximation, 

/el = Cl + 62 + C3 = 
dV 

V 
= 36 u (25-13) 
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Every strain tensor Ejk can be resolved into its volumetric 
componentj the spherical tensor Ej,, and its distortional component 
or deviator Eoj*. Hence, 

Ej]c = Ev 4" (25*14) 

where 

0 0\ 
E„ = I 0 Cv 0 I and 

\0 0 cj 
/{en - e^) gi2 gi^ \ 

= I f/2l ^22 g2s j (25-15) 

\g^\ g^2 633 “■ ^v/ 

The three invariants of the deviator of strain Eo;jk in terms of 
those of the strain tensor are 

/o«i = 0 (25*10) 

/0c2 = /e2 ~ ” ^2)^ + (^2 63)^ + (^3 — ^i)^] 

(25-17) 

/0.3 = /e3 - i/el(/e2 ~ f/.l") (25*18) 

The state of strain can be represented in a plane of strain with 
the aid of Mohr’s circles of strain in a similar way that the state 
of stress can be represented in Mohr’s stress plane.^^ ^ By 
replacing the six components of the stress tensor Tjk by those of 
the tensor of strain Ejk^ similar relations are obtained between 
the unit sphere and Mohr’s plane of strain to those obtained for 
Mohr’s plane of stress. This analogy of the circles of stress and 
of strain is valid however only for small deformations, since the 
simple definition of shear strain (eq. 25-3) is not valid beyond 
this range. ^ 

For pure distortional strain defined by Ct, = 0 the equations 
for the octahedral shear strain may be expressed in analogy to 
the equations of octahedral shear stress: 

go = Uiei - + (62 - 63)' + (63 - 6,)']« (25' 19) 

considering that the principal shear strains, 

= 62 - 63: fl'a = «3 - ei; gs = ei - (25-20) 

Thus eq. 26 • 19 may be written 
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(Jo = 4- 92^ + “ V^“-|-^()e2 (25-21) 

Because of = 0, the sum {gi + 92 + 9^) =0; hence, 

9o = + 9\92 + 9'!^)^^ = f[2(ei^ + ^162 + (25-22) 

The kinematical state of a material body is not sufficiently 
defined by its initial and its deformed position but requires the 
consideration of the time during which the process of deforma¬ 
tion takes place. This is done by introducing the velocity 
N’ector V instead of the displacement vector u. The symmetric 
tensor fejfc of the strain velocities is obtained by replacing in 
eqs. 25 • 3 and 25 • 5 the components of the strain vectors by those 
of the strain velocity vectors. 

The classical definition of strain relates the elongation dl of the 
axes of the strain ellipsoid to their length Zq before deformation. 
This has the disadvantage that the strain obtained by an n-fold 
repetition of the same elongation dl is different from that resulting 
from the elongation n dl imposed in one operation. Because of 
this definition of strain with reference to the length before 
deformation, the same elongation, 

dl = [h — lo] = [Z2 — h] = IZ3 — h] == [In ” i(n—1)] (25-23) 

does not lead to the same value of strain. The strain associated 
with an n-fold repetition of dl is therefore 

..(i 

^ (i/ dZ dl ndl 

This difficulty can be overcome by introducing a different 
definition of strain, which was first suggested by Roentgen and 
later by Ludwik^^ 2 more recently advanced by Hencky^® ^ 

on the basis of a systematic consideration of its mathematical 
implications. If strain is defined as the ratio of the momentary 
elongation dl to the momentary length Z a finite change of 
length from Zo to Z is associated with the strain: 

€ = ^ y = In ~ = In = In (1 + e) = In X (25 -25) 

-) 
(25-24) 
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This measure is called the logarithmic or natural strain and will 
be designated by e. Hencky has shown that the strains e form 
a group and that therefore they can be added algebraically. 
Hence, 

= In ih/h) + In {h/h) + * * * 

= In 
W2 • 

Zo^i • 

In 

Hn-1) 

= In {In/lo) ful 
The comparison of eq. 25 -26 with eqs. 25 -12 and 25 -13 shows 
that, as a result of the logarithmic definition of strain, eq. 25 -13 
is no longer an approximation. 

Since, according to eq. 25 -13, the dilation 3ev is equal to the 
first invariant of the strain tensor if and only if the strain is 
logarithmically defined, unless the analysis is restricted to 

infinitesimal strains, it is only in the logarithmic measure of 
strain that the resolution of a strain tensor into a volumetric and 
a distortional component retains its physical significance beyond 
the range of infinitesimal strains. 

In the general case of a triaxial pure (rotationless) deformation, 
logarithmic strain is defined by 

€1 = In (1 + Cl) = In Xi 

62 = In (1 + ^2) = In X2 (25 -27) 

€3 = In (1 + e3) = In X3 

where 61,62,^3 denote the classically defined strains. Hence 

Xi=e“, \2 = X3 = (25-28) 

All relations established for e are equally valid for e. Thus, the 
principal shear strains yi 

7* = ay - 6A: = In (1 + 6y) - In (1 + Ck) (25-29) 

The components yi fulfill the condition, 

STi = 0 (25-30) 

and the logarithmic octahearal shear strain, 

Jo = •|[2(€i^ + 6162 + €2^)]^ (25-31) 

The principle of algebraic addition of finite logarithmic strains 
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is valid, however, only for pure strains, that is, as long as the 
axes of the strain ellipsoid do not rotate during the deformation. 
These are the states of strain in which perpendicular systems of 
straight parallel lines are deformed in such a way that they 
remain perpendicular systems of straight and parallel lines. 
There are only three such states: (1) pure volume change without 
distortion, (2) unidirectional strain and (3) pure shear without 
volume change where a rhombus is changed into a congruent* 
rhombus by interchanging the acute and obtuse angles as well 

(a) Pure shear (h) Simple shear = 
pure shear + rotation 

Fig. 25 1 Illustration of doforniation of circle in (a) pure shear and (5) 

simple shear. 

as all combinations of states 1, 2, and 3. It is important to 
remember that simple shear is not a pure strain but a combination 
of a pure strain and a rotation (Fig. 25 * 1). 

The fact that the definition of strain used will necessarily 
affect the relations between the dynamical and kinematical vari¬ 
ables observed in mechanical tests of materials is of considerable 
importance in the interpretation of test results. Examples of 
the differences in the plotted test results introduced by the arbi¬ 
trariness of the definition of strain are given in Art. 87. It 
should be kept in mind that in attributing physical meaning to 
curves obtained in mechanical tests, the arbitrariness of the 
definition of strain requires careful consideration. Unless 
deformations are infinitely small, the definition of strain also 
affects the dynamical variables in finite bodies. Whenever the 
unstrained (initial) and strained shapes of the body cannot be 
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considered practically identical, as a result of the strain being 
finite, the action of the forces must be related to the strained 
shape in order to obtain the true stresses. 

In the study of the relations between the kinematical and 
dynamical variables it is necessary to bear in mind the tensor 
character of these relations even if, as in this book, tensors are 
introduced with the purpose of familiarizing the engineer with 
the concept itself, and of having a short and therefore convenient 
expression for relations between general states of stress and 
strain, rather than of making use of the methods of tensor 
analysis. Physical characteristics, however, must be classified 
according to their tensorial rank, because in cases of a transforma¬ 
tion of the reference system, the transformation of characteristics 
of different tensorial rank follows different laws. A physical 
constant, as any scalar magnitude, is a tensor of zero rank, repre¬ 
sented by a number. A tensor of first rank is a vector which 
in the r-dimensional space is represented by r components; dis¬ 
placements, velocities, and forces are tensors of first rank. Ten¬ 
sors of second rank, such as stresses, strains, and strain velocities 
are represented by a matrix of r^ components. 

It is a fundamental law of physics that no relation between 
variables is of general validity unless the related characteristics 
are of equal tensorial rank; if this condition is not fulfilled, a single 
transformation of the reference system is sufficient to break or 
alter the established relation, the physical meaning of which 
would therefore be dependent on and strictly limited to the 
specific conditions of the test from which it has been derived. 

26. Mechanical Variables in Curvilinear Coordinates 

In analyzing certain problems it is expedient to replace the 
rectangular system of coordinates by^a curvilinear orthogonal 
system. The practically most important system is that of cylin¬ 
drical coordinates which in the state of plane stress is identical 
with that of polar coordinates. The three directions are the 
radial direction r, the tangential direction 6, and the vertical 
direction z. 

The symmetrical stress tensor is given by the six stress com¬ 
ponents: 

(26.1) 
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The principal stresses Sr, ^oy Sz (axes of the stress ellipsoid) are 
obtained in the manner outlined in Art. 24 by solving the determi¬ 
nant equation; the invariants of the tensor are again the three 
elementary symmetric functions of the principal stresses. The 
equilibrium conditions are^® ^ 

^ 1 ^Sf‘$ 

dr r dd + T= + -fr 

dSre J- dsee ^jz 2sre 

r~^ ~dz ^ ~ 

^Srz . dSdz . I 

"dT r 6^ ^ r 
Sz 

(26-2) 

where the fi denote the components of the external forces. 
If the position of a point in space is given by its three coordi¬ 

nates r, 2, the line element ds is defined by 

ds^ = d.r^ + • de'^ + dz^ (26-3) 

The change of coordinates resulting from the deformation in 
terms of the components of the displacement vector Ue, and 

Uz are: 

Ue 
dr = Ur] dS = —; dz = Ug (26-4) 

r 

The tensor of strain is defined by the change in the coefficients 
of eq. 26 *3, and its components are obtained by evaluating the 
difference in length of the line element ds before and after defor¬ 
mation and by computing the components in the directions of 
the coordinates. The six components of the symmetrical strain 
tensor are given by the expressions:^®;^ 

€r 
dUr 

~dr 

due 

6* = 
dUz 

liz' 

1 due , 
QrB ^--^ r dr 

due 

dr r 

due , 1 
get = "T-1— 

dz r 

dUg 

dUz , dUr 

(26-5) 
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The specific volume change, 

3^1, = “ {tUt) + - • (26 • 6) 
r dr r 66 dz 

The principal strains (axes of the strain ellipsoid) and the invar¬ 

iants of the tensor and deviator of strain are obtained from eq. 

25-8 and the eqs. 25-9 to 25-11 and 25-16 to 25-18. 

In the practically important cases considerable simplifications 

of the general equations are introduced by the particular condi¬ 

tions of loading and of deformation. 
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CHAPTER 

5 

THE MECHANICAL EQUATION OF STATE 

27. Change of State. Thermodynamic Considerations 

The coordinates in terms of which the mechanical state of a 

deformable material body is described are the kinematical vari¬ 

ables and the dynamical variables. Changes of mechanical 

state are defined by continuous functions of these coordinates, 

which represent equations of state. 

Changes of state may be either reversible or irreversible. Irre¬ 

versible changes of state are accompanied by permanent (identi¬ 

fiable or unidentifiable) changes in the pattern of the internal 

structure of the material on the various levels of aggregation of 

structural elements. Changes of pattern accompanying reversi¬ 

ble changes of state are transient, since the definition of reversi¬ 

bility implies the identity of the initial and final state. On a 

structural scale this is equivalent either to the identity or to the 

equal probability of occurrence of the initial and the final struc¬ 

tural pattern. The continuity of the mechanical equation of 

state for a continuously changing independent variable, express¬ 

ing continuity of change of the dependent variable, depends on 

changes of structural pattern being the exclusive result of 

changes of the independent mechanical variable. If the change 

of structural pattern is “spontaneous,” that is, unrelated to 

changes of the independent variable, uncontrollable discon¬ 

tinuities in the equation of state must be the result. 

Changes that occur spontaneously are manifestations of the 

fact that the considered system is not in equilibrium. Inversely, 

a criterion of equilibrium can be established with regard to the 
188 
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fact that the properties of a system do not change spontaneously. 
Thus, an equation of state may be assumed to exist only if the 

momentary values of the dependent variable are fully determined 
by the momentary value of the independent variable and do not 
depend on the previous history, that is, on the path along which 
these values have been attained. In this case the changes of 
structural pattern accompanying the forced change of state 
must be either reversible or unidentifiable. 

Essentially, equations of state describe processes of energy 
transformations expressed either in terms of forces or stresses and 
displacement or deformations or directly in terms of the different 
types of mechanical and heat energy. Such equations should 
therefore be derived from the fundamental principles governing 
processes of energy transformation, that is, from the two prin¬ 
cipal laws of thermodynamics. 

The first law or law of conservation of energy for a mechanically 
closed (conservative) system states that the energy of this system 
is invariable. The change of energy of the system per unit time 
is therefore equivalent to the energy per unit time supplied to 
the system by the work of the external forces. Thus the work 
A12 necessary to transfer a system from the energy state Wi 
to the energy state W2 depends only on these two states and does 
not depend on the path over which this transfer has taken place. 

Hence, 

d\V dA 
l|/., _ or, per unit of time, (27 1) 

dt dt 

In the form of eq. 27 1 the law of conservation of energy is 
limited to purely mechanical phenomena; the energy of the sys¬ 
tem W is the sum of the kinetic energy Wk and the internal or 
potential energy the work A is the \ft)rk supplied by the exter¬ 
nal forces. If the mechanical law of energy conservation is 

extended to include the principle of equivalence of work and 
heat, the first law of thermodynamics for constant mass takes 

the form, 

W2 ^ Wi = Q + A or, per unit of time, 

dj^ _ dWk , ^ ^ 

dt dt dt dt dt 
(27-2) 
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where Q denotes the heat energy in mechanical units, applied to 
the system from outside. Equilibrium of a conservative system 
is defined by the absence of changes in kinetic, external, and 
thermal energy; hence, d^/di = 0 and > extremal value. 

Since, according to the energy law of mechanics, 

dWk = dA - dWi (27 3) 

where Wi denotes the work of the internal forces (stresses), the 
relation, 

d(l) ^ dQ dWi 

dt dt dt 
(27-4) 

is obtained from eqs. 27 • 2. 
The equivalence of mechanical work and heat contained in 

the first law is subject to the limitation of the second law, which 
expresses the fact that the exchange of mechanical energy into 
heat is not a reversible process, at least not on a phenomenological 
scale. Only as far as quantity is concerned can work and heat 
be equated exactly, since they are both forms of energy subject 
to the first law; however the exchange from one form into 

another is noncommutative. In real mechanical processes the 
creation of heat by friction or friction-like processes can never 
be prevented; such processes can therefore not be perfectly 
reversible. 

According to the second law of thermodynamics the irreversi¬ 
bility of a mechanical process is defined by the condition that 
this process or change of state be accompanied by an increase of 
the entropy of the considered mechanical system. The entropy S 
which is a function of the momentary state of the system is 
given for the volume element at rest by the expression 

dt T dt 
(27-5) 

Considering this definition, eq. 27 *4 becomes 

d^ _ rj^dS dWi 
dt dt dt 

(27-6) 

which is the fundamental equation of thermodynamic change of 
state representing the interrelation of temperature, entropy, 
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deformation, and stress by means of the specific internal (poten¬ 
tial) energy <l>; it is valid for constant mass. 

The irreversibility of a change of state requires that 

dt 
> 0 (27-7) 

The entropy /S is a function of the same variables as the energy 
potential it defines the thermodynamic state of a system. 

If the system is considered to consist of discrete particles, its 
state is determined by the energy distribution over the particles 
(see Art. 15). The entropy defining this state must therefore 
be related in some way with this energy distribution. Since it 

is evident that a change of state, if it is to occur, will necessarily 
be accompanied by an increase of the probability associated 
with the energy distribution over the particles, the entropy, 
because of its relation to the irreversibility of mechanical proc¬ 
esses, can be considered a direct measure S = /(P) of the thermo¬ 
dynamical probability P of the energy distribution. This is the 
meaning of the Boltzmann-Planck relation S = k log P, which 
establishes the relation between classical and statistical thermo¬ 
dynamics; in this relation the thermodynamical probability of a 
state is defined as the number of equally probable energy distri¬ 
butions over the particles associated with the considered thermo¬ 
dynamical state of the whole system, defined by its entropy.-^ - 

The Boltzmann-Planck relation follows from the definition of 
the entropy according to which the total entropy of a system is 
obtained as the sum of the entropies of the constituent parts, 
since entropy, like energy, is an additive property; the probability 
of the state of a system, on the other hand, is obtained as the 
product of the probabilities of the ^states of the constituent 
parts. The relation between entropy and probability must 
therefore be a logarithmic one, since this is the only relation 
which is suited to express the additive character of entropy in 
terms of addition of probabilities by multiplication. 

Unlike other properties, entropy is a rather abstract concept 
since it is not directly related to every-day experience. It is a 
function of the state of a system, and a change of entropy, like 
one of energy, depends only on the initial and the final states, 
not on the path between them. 
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Being a function of the momentary state of the system, and 

having the tendency to increase with any irreversible change of 
the system, entropy is in fact the only signpost of time, the 
only concept by which the passage of time, as expressed by the 
definitions of earlier and later, can be defined. In statistical 
thermodynamics entropy is defined in terms of the distribution 
of energy over the particles (energy pattern), that is, in terms of 
the probability of any particular distribution. The actually 
observed distribution is necessarily associated with a relatively 
large probability of occurrence; any spontaneous change of state 
will transfer the system to a state of still higher probability. 
The system comes to rest when it reaches a state of equilibrium 
defined by a state of maximum probability. The direction of 
spontaneous change is thus toward the increasingly probable 
states of increasing randomness. Changes of entropy can there¬ 
fore be calculated in terms of the changes of probability, as 
expressed by the Boltzmann-Planck relation. Such calculations 
are actually carried out in order to establish the degree of dis¬ 
order in binary metal crystals and the tendency in the structure 
of such crystals to change from the randomness of the solid solu¬ 
tion to the order of the superlattice (see Art. 11). 

It should be pointed out, however, that at normal tempera¬ 
tures most materials exist more or less indefinitely in states that 
are not those of perfect thermodynamic equilibrium, but rather 
states in which the tendency to changes has become very small. 

According to eq. 27 -2 the power or time derivative of the work 
A of the external (body and surface) forces is 

dA _ dWk dQ 

dt dt dt ~~ dt 
(27-8) 

where the minus sign before dQ/dt applies for thermal energy 
added, the plus sign for thermal energy subtracted or dissipated. 

An adiabatic change of state is defined by dQ/dt = 0. This 
change is therefore reversible since no energy transformation 
into heat has taken place. For an isothermal change of state 
dT/dt = 0, and eq. 27-8 takes the following form: 

dA 

dt 

dWk 

dt 
+ |c-r«) (27-9) 

The expression ($ — TS) defines the free energy of the system 
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which, for an isothermal change of state, replaces the energy 
potential by which the reversible changes of state are governed 
under adiabatic conditions. 

During an irreversible change of state part of the applied 
external energy is dissipated into heat. By denoting this dis¬ 
sipated energy by W d and introducing the relation 27 -5 in the 
form. 

dWn ^ ^ ^ 

dt dt dt 
(27 10) 

the thermodynamical equation of state for irreversible processes 
is obtained from eqs. 27 • 6 and 27 • 10, 

d . dWn dWi 
(27-11) 

where W denotes the total energy and p the density of the body 
considered which has to be introduced because the first law 
applies to unit of mass, whereas the energies W/>, and Wi are 
usually specified for unit volume. For equilibrium with W = 

d dp 
const, the time derivative -j^{Wp) =-7^ IF; hence, eq. 27* 11 

dt 

becomes the Gibbs-Helmholtz relation 

dt 

d<l> dWo dWi dp _ 

dt dt dt dt 
(27-12) 

The power of the work Wi of the internal forces or stresses or 
of the work A of the external forces can alw^ays be expressed in 
terms of the mechanical variables (Tyjk, Ejk); it is thus mechan¬ 

ically defined. This is not always the cSlse with regard to -7 

dt 

and *7 WDy which are characteristics of the material, describing 
dt 

respectively, the rate at which the material is able to store applied 
energy and to dissipate it. 

If, in a mechanically closed system, both $ and Wd are mechan¬ 
ically defined functions, that is, expressible in terms of the 
mechanical variables, eq. 27-12 is transformed into an equation 
of state for the material described by the functions $ and Wd* 
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According to the second law and the definition of dissipated 
energy (eq. 27 10), the inequality relation ITd > 0 defines irre¬ 
versible processes; reversibility of the process would be defined 
by a relation of equality. Since any deformation can be split 
into its volumetric and distortional components, and since volu¬ 
metric changes are essentially reversible and have therefore 
no bearing on the inelastic deformation (see Art. 21), the equa¬ 
tion of state governing volume-constant irreversible deformation 
is obtained from eq. 27 • 12 by assuming ^ and Wi to refer to dis¬ 
tortions only and by introducing p = 4p = 0: 

dWi^ ^0 dWo 

dt dt dt 
(27-13) 

where the subscript 0 indicates that the energies are the distor¬ 
tional (deviatoric) components of the respective energies. 
Because of eq. 27-3, eq. 27-13 is transformed into 

dWko , ^0 ^ __ ^0 

dt dt dt dt 
(27-14) 

According to eq. 27 • 14, the distortional change of state of any 
deformable body is determined 

B 

by the momentary distribution 
of the energy applied per unit 
time among the three funda¬ 
mental types of energy: ki¬ 
netic, potential, and dissipated 
(heat) energy. The state of 
the body at any time t can 
therefore be expressed in tri¬ 
angular coordinates (Fig. 27 -1) ; 
this representation was first 
prqposed by Weissenberg. » 

Point A {Ao = Wjco) defines 
conditions in which the ap¬ 
plied energy is immediately 
converted into kinetic energy. 
Such conditions are represented 
by the perfectly rigid solid and 

the ideal liquid. Point B(Ao == ^o) represents the condition that 
the applied energy is stored up as potential energy in a station¬ 
ary state; this is the condition of the perfectly elastic body. 

Fig. 27 • 1 Representation in trian¬ 

gular coordinates of state of energy 

of body of general behavior. (Ar¬ 

rows indicate possible directions of 

energy transformation.) 
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Point C{Ao = Wd) describes the immediate dissipation of the 
applied energy into heat, a condition represented by the perfectly 
viscous liquid in slow stationary flow, considered as a sequence 
of states of equilibrium. Line AB represents the reversible 
interchange between potential 
and kinetic energy without 
loss, as represented by elastic 
vibrations; line BC represents 
the relaxation of potential en¬ 
ergy; line AC represents the 
dissipation into heat of the 
kinetic energy either by vis¬ 
cous flow or by solid friction. 
Energy transformations along 
AC and BC are irreversible 
in the direction of C. 

The general state of a body 
is represented by a point in 
the interior of the triangle. 
Changes of state are expressed 
by changes in the triangular 
coordinates of the point. 
Thus, the sequence of states during a damped free oscillation may 
be represented by the diagram shown in Fig. 27-2: the inter¬ 
change of potential and kinetic energy is associated with energy 
dissipation; the vibration ceases when all mechanical energy has 
been transformed (dissipated) into heat energy. 

The lines AC and BC represent both processes of energy dis¬ 
sipation; however, the points on define processes where dis¬ 
sipation occurs from a position of rest of the body, whereas 
points on BC describe dissipation associated with motion. 
Energy dissipation from a position of rest, in which the applied 
energy is first stored up as potential energy, is usually defined 
as relaxation. It can only manifest itself in materials which are 
able to store reversibly a certain energy potential, at least during 
a finite time. Energy dissipation as a result of motion is defined 
as internal friction in solids, and as viscosity in liquids. 

The triangular representation of the general energy relation 
27 14 indicates that there are three basic types of change of 
mechanical state of a solid since there are only three types of 

Fig. 27 • 2 Change of state in terms 

of energy during damped free oscil¬ 

lation. (Arrows indicate different 

directions of energy dissipation by 

solid friction, creep, viscous (fluid) 

flow, and relaxation.) 
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energy transformation. These are indicated by the sides of the 

energy triangle: a reversible transformation producing elasticity^ 
and two irreversible transformations producing, respectively, 
relaxation and internal friction. Thus, thermodynamic considera¬ 
tions lead to a subdivision of general mechanical behavior into 
three classes somewhat similar to those that were derived from 
considerations concerning the difference between the ordered 
and the unordered structure of matter (see Art. 4). 

Although relaxation and viscosity can be described by the 
same parameter, the coefficient of viscosity, it is preferable not 
to identify relaxation with viscosity, but to use relaxation in 
reference to materials in which a finite elastic potential can be 
built up by the applied forces, at least temporarily, and to use 
viscosity in reference to materials for which this is not possible. 
Thus, the term relaxation should be applied to solids, whereas 
viscosity should refer to the behavior of liquids. 

If a force is applied to the relaxing material, the ensuing defor¬ 
mation process is usually called creep. Although this deforma¬ 
tion may, in the simplest case, proceed at a linear rate and thus 
resemble linear viscous flow, there is the difference that creep 
is the result of progressive relaxation of applied energy by way 
of the temporary storing up of finite amounts of potential energy, 
whereas in viscous flow the applied energy is directly dissipated 
by way of kinetic energy; the potentials which are temporarily 
built up between groups of molecules and rapidly dissipated 
during flow are infinitely small. 

It is necessary to distinguish between the ability of a material 
to store applied energy temporarily and its ability to retain, 
indefinitely, a limited amount of it. In the first case, the rela¬ 
tion between load and deformation or between applied and dis¬ 
sipated energy is continuous over the whole range of deforma¬ 
tion. In the second case it must be discontinuous, since the rate 
of irrecoverable deformation is different for loads associated 
with energy potentials smaller than the limiting amount of energy 
that can be stored up indefinitely, and for loads producing energy 
potentials exceeding this limit. Only materials that possess 
the ability of reversibly storing up finite amounts of potential 
energy are real solids; all other apparently solid materials show 
the behavior of fluids and should be considered as undercooled 
liquids or pseudosolids.'' The limiting energy level represents 
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flow or yield limit in terms of energy; in terms of load or stress 
it is usually called the yield value (in rheology) or the yield stress 
(in engineering). 

The existence of a yield limit implies the existence of a transi¬ 
tion point of mechanical behavior, delimiting conditions under 
which the applied energy is reversibly stored up from conditions 
where no further storing up takes place and the energy exceed¬ 
ing the stored-up potential is immediately dissipated. In the 
triangular energy representation (Fig. 27* 1) the finite yield 
limit defines the condition under which energy transformation 
starts to take place along the line BC. Since some inelastic 
deformation associated with energy dissipation along the line 
AC will always occur before the applied energy reaches the 
yield limit, this limit is not an absolute limit of permanent defor¬ 
mation, but an energy (or stress) level at which the mechanism 
of dissipation undergoes a more or less rapid process of trans¬ 
formation. The comparative magnitudes of the inelastic defor¬ 
mation under loads below the transition level and above this 
level will frequently justify the assumption that irrecoverable 
deformation below the yield limit, caused by the relaxation 
mechanism, is negligibly small and that the yield limit represents 
a practical limit of permanent deformation. However, in real 
materials some inelastic deformatiqn is always present even below 
the yield limit. 

Structurally, the discontinuous transition from one mechanism 
of energy dissipation to another can only be caused by a similarly 
discontinuous change in the structure of the material. Since 
real materials are mostly multiple-phase systems, the existence 
of a yield or flow limit suggests the occurrence of rapid structural 
changes within at least one phase, if a certain stress level is 
exceeded. Such changes consist mostly ^f local breakdowns or 
of the total destruction of a continuous solid phase in a two- 
phase solid-fluid system (gels), or of the more rigid phase in a 
two- or polyphase solid-solid system (polycrystalline metal) or 
in a polyphase solid-fluid system (high polymer). Single-phase 
materials, such as glass, have no yield limit. On the other hand, 
polyphase materials the many phases of which are only mod¬ 
erately different in the grade of their response to external load 
will have so many consecutive transition points that the concept 
of a definite yield limit loses its meaning; in this case the points 
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marking discontinuities in mechanical behavior associated with 
discontinuous structural changes are becoming so closely spaced 
as to produce an appearance of continuity. 

28. Change of State. Energy of the Deformable Body 

The forces acting on any volume element produce in it a state 
of strain and impart to it a certain amount of kinetic energy. 
The power, that is, the time derivative of the energy is the product 
of the acting forces times the velocity of the resulting displace¬ 
ment and consists of the power of the stresses and the power 
of the body forces (inertia, gravity). Hence, 

A = + 522^22 + 533633 + Si2^12 + 523^23 + 531^31 

+ p(^l^l + ^2^2 + ^3^3) (28 1) 

The last term is the time derivative of the kinetic energy Wfc, 
as can be shown by differentiating with regard to time the 
expression for Wk for unit volume, 

= I + V + .V) (28 -2) 

The power of the strain energy Wi alone, according to eq. 27 -3, 

Wi = S11611 + 5225*22 + 533633 + $12012 + 5i3^i3 -f- 523^23 (28 * 3) 

or, in tensor notation, 

Wi = Tjktjk (28-4) 

The tensor product is defined as the sum of the products of the 
corresponding components. By introducing the volumetric and 
deviatoric components of the tensors Tjk = Tv + Toy* and fey* = 
£v + fioyjfcj and considering that Toyjkfiv and Tvfioyifc are neces¬ 
sarily zero, the power of the strain energy can be resolved into 
the power of the volumetric and of the distortional energies; 

Wi ^ Tvfiv “h Toyfc^ioyfc (28-5) 

Whereas T and £ are tensors, their products are scalars, the 
energy being a scalar. 

If eq. 28-5 is combined with eq. 27 13, the equation of state 
for distortion becomes 

+ (28.6) 

where both 4>o and Wb are functions of the dynamical and kine- 
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matical variables. For volumetric deformation, 

= (28-7) 

The foregoing mechanical equations of state describe in the form 
of differential equations the relations between the kinematical 
and the dynamical variables, as defined by their respective 
tensors. Their constants are the mechanical constants of the 
material. 

If the alternative energy interchanges between two types of 
energy only are analyzed, while the third vanishes in comparison, 
eq. 28-6 is split up into three special equations, of which evi¬ 
dently only two are independent, as only two of the three func¬ 
tions appearing in eq. 28-6, namely, and Wcan be chosen 
independently. Hence, 

(а) With Wd = 0, 

Wio = y, «1>o(To, Eo) = Toyfcfioyifc (28-8) 
at 

which is the equation of state of the elastic solid. The rate of 
energy applied equals that of energy stored up; the process is 
perfectly reversible, since no energy is dissipated. Since 4>o is 
a function of the time derivatives of To and Eo, respectively, 
eq. 28-8 defines a general relation of elasticity, of which the 
linear relation of the classical theory of elasticity represents the 
simplest special case. 

(б) With WiQ = 0, 

^ $o(To, Eo) + Tr„(To, Eo) =0 (28 • 9) 
at at 

which is an equation describing an int^prchange between the 
elastic potential and the dissipated energy under such conditions 
that no further distortional energy is applied. The process is 
irreversible and proceeds, according to the second law, in the 
direction of decreasing potential; it has been designated as relaxa¬ 
tion. Thus eq. 28-9 represents the most general law of 

relaxation. 
(c) With 4o = 0, 

I Tr.o(ToEo) = I TF„(ToEo) (28 10) 
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which is an equation defining a condition in which the applied 

strain energy is balanced by the rate of energy dissipated into 
heat. Processes of this type are completely irreversible; the 
behavior expressed by eq. 28 • 10 can be considered the result of 
internal friction and is usually called plasticity. It represents 
the most general law of internal friction. 

Equations 28*8, 28 -9, and 28 10 are the equations of state 
underlying the theories of elasticity, relaxation and plasticity 
(internal friction). They have been developed from the basic 
principles of thermodynamics without any particular assumptions. 

29. Superposition of Simplified Equations of State 

The behavior of real materials can be described by superim¬ 
posing the three idealized types of behavior specified by eqs. 
28 -8, 28 • 9, and 28 • 10. The material of general deformational 
behavior is thus represented as a mixture of idealized materials. 

In the equation of state 28 *6 of a real material it is possible 
to define the functions, 

<i>o(To,Eo) = <I>oi (29-1) 

IF,,(To, Eo) = Wn, 

in such a way that two component bodies are described by the 
relations, 

Tojk^ojk = 3:^01 and Tojk^ojk ~ (29-2) 
at (it 

If the general and the two component bodies are subjected to 
the same stress deviator To, three solutions exist Eo = Eoa;(To, t) 
where k takes, consecutively, the values A; = 1, 2, 3. If it is 
possible to eliminate T© and t from these three equations, a rela¬ 
tion between the three values of t,ok pertaining to the general 
and the two ideal bodies, respectively, is obtained. By express¬ 
ing Eoi in terms of E02 and E03, the law of superposition Eoi = 
/i(Eo2, Eos) is established, according to which the deformation 
of the general material can be computed from those of the com¬ 
ponent materials. 

Similarly, by subjecting the three bodies to the same distortion 
tensor Eo, the solution of the three eqs. 28-6 and 29-2 for To 
leads to three equations To = Tojfc(Eo, f); the subsequent elimina- 
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tion of Eo and t results in a relation among the three values of 
Tofc pertaining to the three bodies. If Toi is expressed in terms 
of To2 and To3> the resulting equation is the law of superposition 
of the stresses Toi = /2(To2f Toa)* The functions /i and are 
the characteristic functions of superposition of equations of state 
from which the law of superposition of the variables can be 
derived. 

Thus, if the equations of state for the component bodies are 
given and the behavior of the general body is to be found, all 
component bodies are subjected to either the same kinematical 
or the same dynamical conditions. The total dynamical or 
kinematical response is then obtained by simple addition of the 
component responses. The establishment of the equation of 
state of the general body, however, is difficult since the time 
derivatives of the functions *^0 and \Vd cannot be added. If, on 
the other hand, the component equations of state of a general 
body, described by a general ecpiation of state, are to be found, 
the time derivatives of the constituent functions <I>o and Wd are 
usually connected by simple additive relations, whereas the laws 
of superposition of the mechanical variables are rather complex, 
so that no direct addition of the variables is possible. 

However, a group of general bodies can be defined for which 
simple additive superposition laws are valid with regard to both 
the equations of state and the mechanical variables. Only those 
bodies are actually accessible to mathematical analysis. They 
are defined by the condition that the functions and 
dWn/dt can be expressed in terms of either the dynamical or the 
kinematical variables alone, or, more generally, that a strain- 
energy function or a potential and a dissipation function Wd 
exist which are both independent of the sequence of straining. 
The two types of mechanical equations (rf state that are obtained 
by imposing this condition are of the form, 

Tofio = I ‘I’oCEo) + W^i,(Eo) (29 • 3) 

and 

Tofio = I o(To) + I tr,>(To) (29 • 4) 

Since for fio ~ 0 both functions 4>o(Eo) and Wd{Eq) necessarily 
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vanish, they must be divisible by 6o* Hence, 

To = i 4.o(Eo) + i lfi>(Eo) = /i(Eo, fio • • • Eo”) (29-6) 
H/Q ^0 

where m denotes the order of the time derivatives of Eq. Simi¬ 

larly, since both functions 4>o(To) and Tfz>(To) vanish for To 
= 0, they must be divisible by To. Hence, 

io(To) + ~ Pf/>(To) = hiTo, To • • • To») (29-6) 
lo Ao 

where n denotes the order of the time derivatives of To. 
Under the usually considered conditions of stationary flow all 

time derivatives of higher than first order can be neglected. 
The simplified equations of state are therefore 

To=/i(Eo, fio) (29-7) 

and 

£o=/2(To,To) (29 8) 

Thus, only in the case of the separation of variables can 

explicit relations in terms of stresses, strains, and their time 
derivatives be obtained from the basic form of the equation of 
state in terms of energies. Equations 29*5 to 29*8 therefore 
should be always considered as derivations of the fundamental 
energy relation and not as intrinsic equations of state. Equa¬ 
tions 29 • 7 and 29 • 8 describe the mathematically simplest types 
of inelastic behavior. The behavior described by eq. 29*7 is 
called after-effect or anelasticity whereas eq. 29 • 8 describes 
relaxation. 

Superposition of equations of after-effect is relatively easy for 
imposed deformations; by the addition of the stresses produced 
in the constituent materials the stresses in the combined material 
are obtained. On the other hand, superposition of equations of 
relaxation under conditions of imposed stress is performed by 
simple addition of the strain rates produced by the stress in the 
constituent materials. The superposition of equations of after¬ 
effect under conditions of imposed stress or of equation of relaxa¬ 
tion under conditions of imposed deformation is considerably 
more complex; it requires the integration over time of the 
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respective equation of state and their solution with regard to 
either Eo or To. 

By the superposition of a number of idealized materials the 
behavior of any one of which is described by equations either of 
after-effect or of relaxation alone, a general behavior is obtained 
which is no longer one of pure after-effect or of pure relaxation, 
but a combination of relaxation and after-effect, characteristic 
of a body described by the general equation of state 28 -6. 

The simplified equations of state 29-7 and 29-8 have been 
obtained by introducing the rather arbitrary assumption that 
the function Wd can be expressed in terms of either the dynamical 
or the kinematical variables 
alone, that is that the dissipa¬ 
tion process is independent of 
sequence. Their validity is 
thus strictly limited to condi¬ 
tions meeting these assump¬ 
tions; it should not be ex¬ 
pected to extend beyond this 
range. Observation of the re¬ 

lations To = /i(Eoi feo) or 
^0 = /2(ToTo) can therefore be 
considered observations of 
equations of state only, if the 
behavior of the material is 

Fig. 29*1 Stress-strain diagram 

and energies Wt> and 4». 

simple relaxation or simple after-effect or can be represented by 
superposition of elements of the same type of simple behavior, 
differing only in the constants. 

Changes of state of any material for which the function Wd 
cannot be adequately expressed in terms of either the dynamical 
or the kinematical variables alone (the Condition is fulfilled for 
the elastic potential ^o) therefore cannot be expressed in terms 
of stress, strains, and their time derivatives by equations of the 
type 29 -7 or 29 • 8, but only in terms of energies, that is, by the 
general eq. 28-6. There can be no doubt that for the majority 
of real materials, particularly metals, the dissipation function 
TTi? is not independent of the sequence of deformation, especially 
beyond the range of very small deformations. Hence, if the 
conditions under which simplified equations of state can be 
established are not valid even as a first approximation, equations 
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of state should be formulated in terms of energy, by plotting the 
recoverable (elastic) potential observed on unloading, as ordi¬ 
nate, against the dissipated energy Wd associated with the 
irrecoverable deformation, as abscissa. (Fig. 29 1.) Even this 
representation will fail, however, to produce an equation of 
state if part of the dissipated energy is associated with thermal 
processes taking place during the deformation, which are not or 

are only indirectly related to the applied load. For three-* 
dimensional states of stress the octahedral shear stress and strain 
or stress and strain intensities (Art. 41), are to be plotted in Fig. 
29-1 since the total distortional strain work, 

ir = ^ j t.o ■ dg„ = J Sr de, (29 -9) 

30. Linear Equations 

For all materials the deformational behavior of which can be 
described by equations of the type 29 • 5 to 29 • 8, a relation that 
is linear to the second approximation may be assumed to exist 
between the mechanical variables in the vicinity of the origin 
defined by Eq = 0 and To = 0, that is, for small strains. This 
follows from the fact that both the distortional energy potential 
4>o and the dissipated energy Wd must be even functions of the 
strain and its time derivatives, if the direction of the distortion 
is not to become part of the description of deformational behavior. 
Such influence of direction would be contrary to the assumption 
of isotropy of the material. Hence, because of 

^o(Eo’”) = 4>o(-Eo"^) and Wi>{Eo^) ^ W(301) 

the following relations are obtained between the derivatives, 

J-4>o(Eo’") = - and 

^ Woi-Eon (30-2) 

which indicate that these derivatives are odd function of strain 
and of its m time derivatives. Since every odd function has 

d 
an inflection point at the origin, the functions ^0 and 

aEo 
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Wd can be represented in second approximation by a relation 
a£o 
that is linear in Eo and all its time derivatives. Because of eq. 
30-1, all odd terms of the functions and Wdj developed into 
power series, are zero. Since 

fio dEo * ifco dt dEo 
(30 3) 

the functions of /i (Eo^) in eqs. 29*5 and 29-7 are linear within 
the range of small deformations, a similar reasoning the 
linearity of the functions /2(To”^) can be established within the 
same range. Thus, within the range of small deformations the 
simplified equations of state of the homogeneous, isotropic body 
29 • 7 and 29 • 8 are necessarily linear relations between the mechan¬ 

ical variables. 
In the mechanical e(]|uations of state of deformable materials 

derived on the basis of thermodynamical considerations, three 
types of constants can be distinguished: the constants of elasticity, 
of relaxation, and of internal friction (plasticity). In the par¬ 
ticular case of a linear relation between dynamical and kine- 
matical variables, one single constant will define each type of 
deformational behavior since those constants refer to volume- 
constant distortions only; an additional constant, however, must 
be introduced to describe the relation between isotropic stress 
and volume change, which, for the homogeneous isotropic 
medium, is an elastic relation (see Art. 27). Hence, under the 
assumption of linearity of the relations 29-7 and 29-8 four 
mechanical constants have to be introduced: two constants of 
elasticity (one referring to volume change and one to distortion), 
one relaxation constant, and one friction constant; both constants 
of inelasticity are functions of the absolute temperature T. 

The simplest types of linear deformational behavior can there¬ 
fore be described by 

(а) The equations of linear elasticity: 

To = 2(?Eo or to = 2Gfio (30-4) 

(б) The equation of linear after-effect: 

To = 2CrEo + 21760 (30-5) 
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(c) The equations of linear relaxation: 

In addition to any of the equations of distortion, the volu¬ 
metric deformation is defined by the relation: 

or = A (30-7) 

In the foregoing equations K and G denote, respectively, the hulk 
modulus and the shear modulus of elastic deformation and r) the 
coefficients of viscosity. 

In all considerations involving the potential <l>o and the dis¬ 
sipation function Wdj it was tacitly assumed that a function 
Wd > 0 existed for any value of ^o. It is possible, however, to 
introduce the assumption that only for values ^ ^2/ the power 
Wd of the dissipated energy has a finite positive value, whereas 
for ^0 < the change of state of the material is perfectly reversi¬ 
ble since Wd = 0. This assumption introduces a discontinuity 
of behavior delimited by an additional constant the yield 
limit, or the yield stress So (see Art. 27). 

The linear inelastic behavior described by the constants K, 
G, ri and or Sq is the simplest approximation of real behavior. 
For many materials this simple approximation is not sufficient, 
and the ‘‘constants*^ become dependent on stress. This is an 
expression of the fact that they vary with the internal structure, 
which is permanently changed in the course of the inelastic 
deformation. An empirical expression for the ‘‘constant’^ as a 
function of stress may in such cases be established on the basis 
of test results, and expressed by a power series in stress, 

e = osiS + “h at)S^ “f" ' * * (30-8) 

where ai represents the modulus of linear elasticity. 
A more frequently used method of reproducing nonlinear 

behavior is the use of power functions with nonintegral powers. 
In this case the relation of stress and strain is usually written in 
one of the forms, 

e = as^ or « = (30-9) 

where the exponent m > 1 or w < 1. 
The use of power laws, although convenient, particularly 
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because of the linearity in double logarithmic representation, has 
however, definite limitations.^®*^ The first is in the fact that 
for very small values of either variable the behavior of the power 
function becomes irregular and differs appreciably from its 
behavior at larger values, whereas the representation of experi¬ 
mental results usually requires that for small values of the varia¬ 
bles the relations become linear. For 6 = 0 the tangent modulus 
of the power law will be either infinite or zero, depending on 
whether the power ^ 1. Power functions must therefore not be 

extrapolated to zero. 
The second limitation is that of variability of dimensions. 

Since e and s have definite dimensions and the exponent m must 
evidently be dimensionless, the dimension of a or /?, respectively, 
will vary with each value of the exponent. The law describes, 
therefore, particular conditions, not the general behavior of the 

material. There are, however, two conditions under which a 
power law may be used to express a general functional relation 
without the dimensional objection, namely: if the exponent has 
a constant value throughout, or if the variables are dimension¬ 

less, being introduced as ratios (V^o) and (e/eo)- 
The third limitation is that both variables increase indefinitely, 

so that for infinite strain the stress becomes infinite. This 
behavior has no physical parallel. 

The principle advantage in the use of power laws is that, in 
double logarithmic representation, all power relations are straight 
lines; thus, 

log r = log a + m log s or log s = log iS + n log e (30 • 10) 

The slope of this relation is obtained by differentiation of eq. 
30 10: 

d log si d log s 
- = — or -- 
d log e m d log e 

(30-11) 

Thus for power laws in logarithmic representation the slope of the 
diagram is the inverse of the exponent or the exponent itself, 
depending on which of the equations 30*9 is used. There is no 
physical significance in this fact. 

Power laws are therefore nothing but simple interpolation 
formulas; they should be used only within the range in which 
their validity has been established. 
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31. Applications of the Concept of the Equation of State 

The concept of a mechanical equation of state applicable in 
the interpretation of mechanical tests was first suggested by 
Ludwik.®^*^ However, practical applications of this concept by 
which stress, strain, strain rate, and temperature can be inter¬ 
related have only been made rather recently in experiments with 
metals, particularly in connection with the aim of studying the 

interrelation between tensile tests and creep tests.^^’^ The 
establishment of a valid equation of state, for instance, would 
eliminate the necessity for long-time creep tests; in general, by 
the aid of such an equation the expected behavior under difficult 
testing conditions could be derived from the results of easily 
performable tests. 

Since the existence of a mechanical equation of state implies 
that the stress necessary to produce a given strain rate at a given 
temperature depends only on the instantaneous values of tem¬ 
perature and strain, no structural change must be produced in 
the course of the deformation that would make the final structure 
of the material identifiably different from its initial structure. 
If the change is identified by comparative values of stress at 
given strain, strain rate, and temperature, even relatively small 
structural changes may invalidate the concept of an equation 
of state. However, if the identification is in terms of changes of 
the potential energy <I> at a given value Wan equation of state 
(expressed in energies) will be more likely to exist, in spite 
of a certain amount of structural change, since a considerable 
number of states of a material body which are different when 
defined in terms of the mechanical variables and their time 
derivatives may prove to be very nearly identical if expressed in 
terms of energy. 

Structural changes, which are functionally unrelated to the 
mechanically applied energy, must certainly be expected to 
invalidate the equation of state, unless such changes, although 
unrelated to the mechanical energy, could be quantitatively 
related to changes of entropy. Some attempts in this direction 

have recently been made.^^'^ 
At temperatures sufficiently below recrystallization tempera¬ 

ture, metals do not undergo spontaneous,” that is, thermal, 
structural changes during moderate time intervals; similarly, 
for small amounts of inelastic strain, recrystallization proceeds 
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very slowly. Thus, the concept of a continuous equation of 
state is frequently valid as a first approximation, particularly 
if the considered range of temperature variation is moderate. 

If isothermal tensile tests at 
different constant strain rates 
are performed under conditions 
for which an equation of state 
exists, a family of stress-strain 
curves is obtained; similarly 
another family of curves may 
be obtained by performing a 
number of tensile tests at con¬ 
stant strain rate and various 
temperatures (Fig. 31 1). If 
in the first series of tests one 
test is interrupted at a certain 
stress, the straining necessarily 
proceeds under constant stress at a decreasing rate. If the pre¬ 
vious strain rate is suddenly reapplied, the stress is raised to the 
level it would have attained at the same strain in the uninter¬ 
rupted test. Similarly, if the temperature is suddenly changed 

Fig. 31 • 1 V^erifioation of a rnochan- 

ical equation of state. 

Fig. 31-2 Failure of a meehanieal equation of state. 

during a test at constant strain rate, the stress level follows this 
change of temperature, and the stress-strain relation assumes the 
form pertaining to the new temperature of the test, and continues 
as if the whole test had been performed at the new temperature. 
Investigations conducted on a number of metals and alloys^*'* 
with the purpose of checking the existence of a mechanical 
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equation of state oVer a considerable range of strain have shown 
that the stress at a certain strain does not depend on the momen¬ 
tary value of strain rate and temperature alone, but also on the 
temperature at which the specimen w^as strained previously, 
since this temperature exerts a marked effect on the structural 
changes associated with the strain. Thus, the observed curves 

. differ from the curves expected 
under the condition of the exist- 
ence of a mechanical equation 
of state in terms of stress, strain, 
and its time derivatives, as indi¬ 
cated schematically in Figs. 311 
and 31-2. However, when the 
experimental results are replotted 

5t,-ain e terms of energy, all the data 
^ ^ . .... that suggest an apparent failure 
Fig. 31-3 Relations s =/i(e)for - i r i.u u • i 

• 01 the concept ot the mechanical 
varying parameter e. . 

equation of state in terms of 
stress and strain are found to provide fairly good evidence for 
its validity.^^’ *^ 

In order to combine the results of tests at constant strain rate 
and tests at constant temperature a number of values of the 
strain-rate-temperature parameter P pertaining to selected 
coordinates (s, e) can be computed 
(see Art. 19) and plotted in the 
stress-strain plane. By suitably ^ 
interpolating continuous lines of -g 
equal value of the parameter P = .| 
const, equations of state of the form ^ 
s = s (e, P) could be established, 
on the basis of which the com- Strain e 

bined effect of changes of temper: ^ 

ature and of strain rate might be for varying paramotcr 8, 

predicted. 
The principal practical use of equations of state is in converting 

data obtained from one type of test into data that might be 
expected to result from a different type of test. If, from the 
results of a number of tensile tests at various strain rates e, 
which have been plotted schematically in Fig. 31-3, the values 
of the strains e at different strain rates pertaining to a constant 
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level of stress are derived for a number of stress levels as the 
points of intersection of the horizontal s = const with the curves 

S =/i(e)(e=:con«t) the relations e =/2(6)(«=con«t) may be plotted 
(Fig. 31-4) as well as the relation l/e = By inte¬ 
grating the relation, 

de 

dt 

1 
(3M) 

and solving the resulting equation, 

de = t + const (31 -2) 

with regard to e, the creep func¬ 

tion e = /4(0(.s=con8t) is obtained. 
On the other hand, if creep 

curves are recorded at various 

Fig. 31-5 Creep curves at dif¬ 

ferent temperatures T. 

temperatures (Fig. 31-5), the creep rates as function of the 
temperature at various given values of elongation may be 
obtained at the points of intersection of various lines e == const 
with the observed curves (e, 0(r=«ouflt). In the case of viscous 
creep, for instance, the functions obtained, according toeq. 19 -8, 
should be of the type: 

[const — In (c) :COUSt) = const I- (31-3) 

Such relations have actually l)een observed.^^ ® 

32. Limit of Continuous Change of State. Fracture 

The change of state proceeding continuously within the system 
of coordinates of the mechanical variables reaches a limit at the 
point of fracture. The critical energy potential defining 
macroscopic fracture (see Art. 22) depends on both initiation 
and progress of separation on the atomic level. It is therefore 
essentially dependent on the structural pattern of the material 
and its change during deformation. Changes in pattern, pro¬ 
ceeding under load or spontaneously, will necessarily produce 
variations in the critical energy potential. 

Fracture in two- or polyphase materials must depend on the 
interaction between phases during the preceding change of state 
and on the relative importance of the constituent phases in 
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producing changes of structural pattern. Thus, under condi¬ 
tions in which in a polycrystalline aggregate the energy trans¬ 
formation associated with changes of structural pattern is essen¬ 
tially concentrated within the intercrystalline boundaries, the 
value of the separation potential will depend predominantly 
on changes within the intercrystalline phase, in which separation 
will also take place. Under different conditions the changes of 
pattern will mainly affect the crystalline regions; the variation 

Conventional strain, % 

Fig. 32-1 P^ffect of change of strain rate on deformation and rupture of 

carbon-molybdenum steel at 1000°F (After R. F. Miller, V. G. Smith, and 
G. L. Kehl^2.2) 

in the level of the critical energy will then be essentially 
related to changes within these regions, and separation must be 
expected to proceed mainly through the crystals. Since the 
conditions defining the character of the process of change of 
state are strain rate and temperature, the resulting type of frac¬ 
ture will necessarily depend on both of these parameters in 
combination, in the same way in which they determine the change 
of state immediately preceding fracture. If changes of pattern 
are produced simultaneously in both phases, the expected char¬ 
acter of separation can no longer be predicted and may be of 
either type. Such conditions are present in polycrystalline 
metal aggregates near recrystallization temperature, where the 
thermal stability of particles in both phases is nearly equal and 
place change of particles between the phases is going on. It has 
been observed that at such temperatures, called equicohesive tern- 
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poratures, no definite character of fracture develops, intercrystal¬ 

line separation being as frequent as transcrystalline separation.*^* ^ 

The stress-strain diagrams reproduced in Fig. 32 • 1 illustrate 
the interrelation between the character of fracture and preceding 
deformation under conditions in which an equation of state can 

be assumed to exist; they show that the character of fracture does 

not depend to any appreciable degree on previous history of 

straining, but only on the momentary values cf the strain rate.*- - 

A more extensive discussion of the interrelation between the 

structural and the phenomenological aspect of fracture is pre¬ 

sented in Chapter 12. 
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CHAPTER 

6 

LINEAR BEHAVIOR 

33. Elasticity. Small Strain 

A material is truly clastic if the elastic potential is associated 
with the forces of the primary (atomic) bonds. The elasticity 
may be expected to be the more perfect, the more nearly equal 
the distribution of bond energies over the particles. 

The truly elastic deformations of materials are relatively small; 
they are reversible, without observable energy loss. The rela¬ 
tions of force and displacement or of stress and strain are prac¬ 
tically linear, as must be expected on the basis of the discussion 
in Art. 30. Only if the deformations are no longer small, is it 
necessary to distinguish between real time-independent non¬ 
linear elasticity and the nonlinearity resulting from the existence 
of time effects. These latter effects prodiice nonlinear stress- 
strain relations in loading, accompanied by complete or partial 
reversal of deformation in unloading. However, even if the 
reversal is complete, the loading and unloading diagrams are not 
identical, and energy is dissipated during each loading cycle. 
This is actually the behavior of most of the materials considered 
in engineering to manifest nonlinear elasticity. In fact, true non¬ 
linear elasticity cannot be a property of real materials, except for 
large deformations. 

It is generally assumed that the classical theory of elasticity 
involves two approximations in addition to the assumptions of 
homogeneity and isotropy: These are the assumptions of infin¬ 
itesimal deformations and of linearity of the relation between 

the tensors of stress and of strain. From the discussion of the 
S14 
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character of the functions ^q{Eo) and Wd{Eo) in Art. 30, it is 
evident that one of these two assumptions is redundant, since 
for an isotropic body the condition of linearity follows directly 
from the assumption of small deformations and within this 
range therefore need not be specified as an empirically established 
additional relation. Since the equations of the classical theory 
of elasticity are linear, superposition of solutions is permissible. 
The general equation of the elastic body 28-8, derived from 
thermodynamical considerations, shows that the behavior of this 
body is fully defined by the elastic potential or the “strain- 
energy function made up of and 4>v. 

As the strain-energy function of the isotropic body is neces¬ 
sarily invariant against rotation of the coordinate axes, it must be 
a function of tlie invariants of strain and of temperature or 
entropy; hence, 

7^3, T) (33-1) 

Hypotheses as to the actual form of the strain-energy function 
must ultimately be justified by experiment. If it is assumed that 
^ is an analytic function of the strain invariants lei = /t, the 
elastic potential for constant temperature can be represented 

by the power series in e: 

<*> = a/i + 6/,^ + c/2 + <//i" + e/1/2 +//3 + • • • (33-2) 

where the coefficients a, 6, r, . . . are parameters that depend 
on the elastic properties of the medium. The omission of the 
constant terms from this series indicates the choice of the zero 
value of ^ as the origin; if the stress is zero in the unstrained 
state, then a = 0, and the first term involving Ii vanishes. It 
has been shown in Art. 30 that congruence of the relation between 
the mechanical variables in volume-co»stant tension and com¬ 
pression is possible only if <I> is an even function of strain. Hence, 
eq. 33 -2 retains but the terms which are even in strain and may 
therefore be written in the form: 

= 6/1^ + CJ2 + + hli^Io + 7/2^ + Ar/i/a + • * • (33-3) 

The strain-energy function of (volume-constant) distortion is 

therefore 

= CI2 + 7/2^ + * * * (33*4) 
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since for small deformation Se,, = /i = 0. Hence, the energy 
function of volume change, 

+ gl\^ + hli^l2 + A;/1/3 + • * • (33-5) 

Equations of similar type can be developed in terms of the 
invariants of stress. 

The linear stress-strain relations of the classical theory are 
obtained by neglecting in eq. 33 -3 all terms of higher than second' 
order in strains. The strain energy function of linear elasticity 

thus appears as a homogeneous quadratic function of the com¬ 
ponents of strain: 

<l> = 6/1^ + cl2 and ^0 ~ cl2 (33 G) 

The coefficients b and c are usually expressed in terms of the 
bulk modulus K, the modulus of rigidity G, and Poisson’s ratio /x- 

b - ^^ and c = — 2G (33-7) 
1 — 2/x 2 I + /X 

Hence, 

^ - 2GIo2 (33 8) 

If the change from the initial to the stressed state is adiabatic 
(constant entropy S) the strain-energy function of the classical 
theory has the property that 

— = Si and — = Ci (33-9) 
dCi aSi 

where Ci and Si are the components of the strain and the stress 
tensor, respectively. In isothermal processes the increase of 
entropy (loss of heat to the surrounding medium) accompanying 
the change from the initial to the final state must be introduced; 
hence, the expression of *^free energy” (<I> — TS) given in e(|. 
27 • 9 plays the role of the energy potential. Thus, 

a(<l> - TS) 

dCi 
(33 10) 

The difference between adiabatic and isothermal elastic defor¬ 
mation which appears in the strain-energy function necessarily 
affects the values of the elastic constants, If during deformation 
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the volume of the body is changed, a change in temperature 
results, as defined by the equation of state for volume changes 
governing any isotropic material, according to which expansion 
is accompanied by a drop of temperature, compression by a 
temperature increase. In adiabatic processes, therefore, the 
kinematical variables contain a component resulting from changes 
in dimensions due to the temperature change, which is absent 
in isothermal processes. This component reduces the amount 
of deformation if the temperature decreases and increases it if 
the temperature is raised. Thus, the apparent bulk modulus 
of adiabatic deformation is higher than that of isothermal defor¬ 
mation if the deformation is accompanied by volume expansion, 
and lower if it is accompanied by volume compression. Only 
under conditions of volume-constant distortion (shear), does no 
difference exist between the adiabatic and isothermal moduli. 
The numerical differences for metals at room temperature are 
of the order of magnitude of 1 percent. 

Attempts have been made to develop a theory of nonlinear 
elasticity, retaining the assumption of infinitesimal deformations, 
but introducing even and odd terms of e, up to the third order.- 
The number of independent elastic parameters is thus extended 
to five, as may be seen from eq. 33 2. Such a potential however 
does not lead to congruence of the stress-strain relation in tension 
and in compressions. True nonlinear elasticity is therefore 
probably not a property associated with any real material under 
conditions of small strains. 

Important problems of apparently nonlinear truly elastic 
behavior are those involving infinitesimal strains accompanied 
by large rotations. Although the assumption of linearity of the 
relation between stress and strain remains valid, the linearity 
of the relations between forces and ((Reformations no longer 
exists, because of the effect of the finite rotations.®^ ^ 

34. High Elasticity, Finite Strain 

For the manifestation of high elasticity of a material, com¬ 
pletely different conditions are required from those for true 
elasticity. These conditions are, essentially, the existence of a 
skeleton structure, that is, of a continuous solid network, in 
which bonds of w^idely different energy contents, both primary 
and secondary, are present. Such networks which are usually 
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immersed in or filled with a fluid phase are mostly formed by 
long chain molecules that are either flexible or rigidly inter¬ 
linked. If the molecules are short and rigid the network may 
still be flexible, as the elastic flexibility of a skeleton or of an 
open framework is large in spite of the rigidity of the connections 
and of the individual members. If the chains forming the 
network are very flexible, the concept of thermal oscillations of 
molecules must be introduced to explain the very high elasticity 
present, as for instance in rubber and rubber-like compounds. 

These so-called thermodynamical (kinetic) theories®^ - of 
elasticity assume that a chain molecule in the unstretched state 
will take the statistically most probable form and therefore will 
not be straight, since the straight line, being one particular form 
of many alternatives, is rather improbable. If the chains are 
stretched and approach straight lines, the probability of this 
stretched state is evidently smaller than that of the unstretched 
state. Hence, the material tends to re-establish the more prob¬ 
able forms of the molecules in the unstretched state, and this 
tendency produces the reversibility of the deformation. Kinetic 
theories assume the molecules to be in the form not of simple 
chains but of coiled spirals, interlinked by secondary bonds; 
under load these spirals are uncoiled and stretched but only aftei- 
the secondary bonds have been disrupted. Since thermal oscil¬ 
lations of particles forming the chain molecules take place 
essentially in directions perpendicular to the axis of the chains 
(see Art. 10), the orientation of the molecular chains or coils by 
stretching in the course of which the chains become parallel, 
approaching each other, produces an increased repulsion between 
the constituent molecules of neighboring chains; this repulsion 
which is the result of the intensified thermal oscillations tends to 
increase the lateral distances between the interacting chains, 
thus producing lateral expansion associated with longitudinal 
contraction. 

The assumption of lateral intermolecular repulsion explains 
the anomalous thermoelastic or Joule effect of rubber as well as 
the abnormal values of m Whereas elastically normal 
materials show a cooling effect when stretched rather rapidly 
(adiabatically), rubber exhibits the opposite behavior, developing 
heat. This heat effect is so pronounced that it can be easily 
observed by stretching a rubber band quickly and putting it to 
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the lips; conversely, stretched rubber contracts longitudinally 
when heated. These effects are assumed to be the result of the 
intensified lateral thermal oscillations due to stretching or to 
heating: The resulting lateral expansion produces longitudinal 
contraction; conversely, heat energy is developed as a result of 
the oscillations intensified by the crowding together during the 
stretching of the molecular chains. These anomalous effects, 
however, accompany large strains only; both the thermo¬ 
elastic effect and Poisson's ratio of rubber are normal for small 
elongations. 

The stress-strain relations of high elasticity are not linear. 
For a large number of materials they are even not monotonous. 
Thus, although for rubber-like materials the range of high elas¬ 
ticity starts practically at zero stress, a short range of true elas¬ 
ticity precedes the range of high elasticity in films and fibers. 
The boundary between the two ranges is attained when the 
secondary cross links between the chains are disrupted and the 
character of the deformation changes from the elastic straining 
of the cross-linked structure to the uncoiling and stretching of the 
unlinked chain molecules; this boundary represents a true yield 
point of the material. Since with progressing uncoiling and 
stretching of the molecules the resistance to deformation will 
necessarily increase, until further deformation can only proceed 
by elastic stretching of the straightened parallel chains, highly 
elastic materials appear to ^‘stiffen" with increasing deformation; 
for large strains their stress-strain diagrams thus tend to bend 
away from the strain axis (Fig. 20-1). 

The development of a theory of finite elastic strain has not 
made any appreciable progress within the last few decades. 
For states of pure strain the logarithmic definition of strain 
extends the validity of the procedure of simple superposition to 
finite strains. For such states Hencky has attempted to derive 
stress-strain relations from a second-order strain-energy func¬ 
tion. ® The developed equations indicate a volume dependence 
of both the shear and the bulk modulus for finite strain. This 
apparent increase of the shear modulus and of the bulk modulus 
has actually been observed for materials subjected to very high 

hydrostatic pressures. 
Attempts have been made to derive stress-strain relations for 

finite strains in highly elastic materials from rather arbitrarily 
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assumed analytical strain-energy functions containing more than 
the two constants of the classical function.®^ ® A theory of finite 
strains including rotation has first been developed by Hamel, 
and restated and applied to special problems by Murnaghan 
and Seth;®^ ^ a general formulation is due to Reiner.®^*® Accord¬ 
ing to the theory of finite strains the basic assumption of the 
classical theory of elasticity, that a distortion is uniquely related 
to a deviatoric stress and a volume change to an isotropic stress, 
is valid only within the range of infinitesimal strains. When the 
strains are finite, a hydrostatic stress will cause a volume change, 
and vice versa; however such a volume change may also be caused 
by a deviatoric stress in the absence of a hydrostatic stress. On 
the other hand, a hydrostatic stress may be required to main¬ 

tain a certain distortion. It follows from the analysis of finite 
shear^ that a simple shear is accompanied by a volume expan¬ 
sion; hence, a bar subjected to a torsional moment will be 
extended in the direction of its axis. This conclusion is borne out 
by experiments. 

The elastic body under conditions of finite strain has therefore 
a property that is absent in the classical body and that is called 
dilatancy. The existence of this property of volume change 
under a shearing stress has already been expected by liord 
Kelvin,who also predicted that the volume change would be 
proportional to the square of the shear by which it is produced; 
this assumption is confirmed by the analysis of the elastic body 
subject to finite strain. 

35. Linear Bodies. Systematics of Inelastic Behavior 

Integration of basic equations. Under the assumption 
that both the elastic potential ^ and the dissipation function 
WD are functions of second order in terms of stresses or strains, 
the classification of deformable bodies presented in Table 35 1 
gives a systematic survey of linear inelastic behavior. Two 
equations are necessary to describe the total deformation, one for 
volume change (which is invariably a relation of elasticity) and 
the second for distortion. Table 36 • 1 illustrates the formation of 
general linear inelastic behavior as a synthesis of the behavior 
of solid and liquid phases, the limiting cases being that of the 
perfectly elastic solid and of the ideal viscous liquid. In order 
to facilitate identification a name has been attributed to every 
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one of the simple materials, the name being that of the first 
proposer of the respective equation of idealized behavior; this 
procedure has been suggested by Reiner. ^ Thus, the linear 
elastic solid is termed Hookean, whereas the ideal viscous liquid 
is called Newtonian; the linear relaxing material is named after 
Maxwellj the linear anelastic body (after-effect) is named after 
Kelvin, the perfectly plastic solid, the deformation of which is 
elastic below the yield point and plastic above it, after St. 
Venant, and the general elastic body after Hencky. The visco- 
plastic or Bingham body, which has not been included in the 
table but is frequently mentioned in rheological literature, is 
actually a generalized St. Venant body whose deformation beyond 
the yield limit is viscous. 

The materials defined in Table 35 1 by the simplified linear 
eciuations of state are the classical bodies. Their behavior in 
terms of the variables which are observable in simple mechanical 
tests is obtained by integrating the respective ecpiation for the 
volume element, considering the boundary and loading conditions 

of the test. 
The solution of the equations of the Kelvin and of the Maxwell 

body are obtained as solutions of linear differential equations of 

the form, 

^ + My = Ar (35-1) 
d.r 

given by the general expression 

y = p-/’' . (JiVp/" + C) (35 • 2) 

Hence, for the Kelvin body with M = (?/ry, N = ;~Toi and 
2ry 

!/ = Eo: 

Eo = • (eoo + ^ (35 -3) 

where Eoo denotes the value of Eo at t = 0. 
For the Maxwell body with M = G/t), N = 2Gfio> and 1/ = To: 

To = • (Too + 2G dt) (35 -4) 

where Too denotes the value of To at / = 0. 
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If the elastic solid is subjected to a constant stress deviator 

To = Too, the resultant strain Eo = Too is reached instan- 
2G- 

taneously. For the Kelvin body the solution for an imposed 
constant stress deviator To = Too is obtained from eq. 35-6: 

Eo = e-(-£00 + ;^ Too(l - (35-5) 

If, for ^ = 0, Eoo = 0, the time-deformation curve: 

Eo = ^Too(l - e-<(35 -6) 

The final total deformation (for < = x)^ which is that of the 
perfectly elastic solid, is reached asymptotically. 

Fig. 35 • 1 Strain-time curve of Kelvin body for given stress-time diagram. 

If at any time the stress is released, the strain is not immedi¬ 
ately recovered; after load release it decreases according to the 
relation: 

^ for < > <0 (36-7) 

Equation 35-7 describes the aftereffect of the Kelvin body 
(Fig. 35-1). 
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The ratio r = rj/G has the dimension of time; it is called the 
retardation time. The tangent to the strain-time diagram 35 • 6: 

dEp ^ Too G __ Too ^ 

dt ~ 2G ’ v*" ~ 2G ' 

For t = 0: 

(_ Too ^ 

\ dt / «=o) 2G r 

(35-8) 

(35-9) 

Hence, the retardation time is cut off on the horizontal asymp¬ 
tote Eo = Tqo/2G of the strain-time function by the tangent to 
this curve at the origin. It is the time required to produce 
(1 — 1/e) of the full elastic deformation under an applied con¬ 

stant stress (Fig. 35-1). 
If the Kelvin body is sub¬ 

jected to a constant rate of 
strain fio = c, the strain Ep = 
c^; hence the stress-strain tensor 
relation, 

To = 2GEo + 2nc (35-10) 

is linear throughout, the tangent 
modulus being constant and 
equal to 26"; for Eo = 0 the 
initial stress tensor Too = 277c 
(Fig. 35*2). For Ep = const, 
£0 = 0; for this condition the 

Kelvin body is perfectly elastic. 
For a constant rate Sq of stress To = So/; the integration of eq. 

35 • 3 gives the strain-time relation, 

Eo = [ 1 - J (1 - e-^n ] + Eooe-'^^ (35-11) 

Fio. 35-2 Stress-strain relation 

for Kelvin body subject to tension 

test at different constant rab^s of 
strain. 

which, for Sp = 0, gives the strain-recovery function (elastic 
after-effect): 

Eo = Eooe~''^ (35* 12) 

If Eo = 0, for / = 0 the stress-strain tensor relation becomes 
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The inverse tangent modulus, 

for To = 0 becomes (rfEo/c/To)Eo-o = 0. 
Hence, all stress-strain diagrams have a common vertical tangent 
at the origin, which is the axis of ordinates; for To—> they 

become parallel, the inclination of the asymptotes being () 
\aEo/ Eo-»« 

= 2G (Fig. 35-3). On the ordinate axis these asymptotes cut 
off the values (rSo). 

A constant stress tensor 

To = Too and, consequently. 
To = 0, acting on the Maxwell 
body, produces a constant 
strain rate and a steadily in¬ 
creasing strain tensor, since 

I 
fio = Too 2ri 

and 

Eo = ~Too^ + const 
2r? 

(35-15) 
Fici. 35-3 Stross-strain relation for 

Kelvin body subjeot to tf*nsion teat 

at different constant rates of stress. 

The constant is the strain Eoo at ^ = 0, which is the elastic strain 
produced by Too* Hence, 

Eo = ^ Too + ^ Too/ = ^ Too [ 1 + ;] (35 -1«) 

If a constant strain Eo = Eoo is applied and sustained, eq. 
35 -4 with £o = 0 produces the relatioif: 

To = Too^"'^^"’"' = 2GEoo^“''" (35-17) 

Hence, if the deformation is kept constant the initially induced 
stress due to the strain tensor Eoo is gradually relaxed. The 
rate of stress relaxation is governed by the relaxation time r = 
w/G. Since 

to = -Too-e-‘^ (35 • 18) 
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the stress rate at ^ = 0, 

(to),_o= --Too (35-19) 
r 

Hence the tangent at < = 0 to the stress-time diagram of the 
Maxwell body (Fig. 35 -4) cuts off the relaxation time on the 
time axis. 

35-4 Stress-time curve for Maxwell body under constant strain 

(relaxation diagram). 

Fig. 35-5 Stress-time diagrams for Maxwell body subject to tension test 

at different strain rates after having been initially stressed to Too (after 
Reiner®^’*). 

If a constant rate of strain fio = c is applied, the relation 

To = + 2ct/(1 - e-'/O (35-20) 

is obtained from eq. 35 -4. With c = 0 eq. 35 -15 is transformed 
into the relaxation function 35-12; for different values of c a 
family of stress-time curves can be drawn (Fig. 35-5). If the 

strain rate Co = ::r Too> eq. 35*15 becomes To = Too = const. 
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and the respective stress-time curve becomes a parallel to the 
t axis. For all strain rates c > Co, the stresses increase with 
time, whereas, for c < Co, the stresses gradually decrease. The 
strain rate c = Co defines the limiting condition for which the rate 
of energy dissipation just equals the rate of energy application. 

The stress-strain relation of the Maxwell body subject to a 
constant strain rate is obtained by introducing feo = c or Eo = 
zty into eq. 35* 15, assuming that for Eo = 0, To = Too = 0. 

Fig. 35-6. Stress-strain relation of Maxwell body subject to tension test 

at different constant strain rates = c. 

The elimination of t results in the stress-strain function, 

To = 2crj{\ - (35-21) 

the tangent modulus, 

^ (35-22) 

for Eo = 0 becomes (dTo/dEo)(Eo-o) = 2G. 
Thus, the tangent at the origin of the family of stress-strain 
functions is the stress-strain relation of the linear elastic body; 
this relation also holds for the whole range of stress if c = <». 
For different strain rates the deviation of the respective stress- 
strain function from linear elastic behavior is the less, the higher 
the value of the applied strain rate (Fig. 35 -6). 

If after attaining a certain level of strain Eoo the strain rate is 
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reversed, the equation of the unloading branch of the stress- 

strain tensor relation may be written in the form: 

To = - 1) (35-23) 

valid for Eoo > Eo > 0; its tangent modulus: 

(35 -24) 
dEo 

for Eo = Eoo becomes (dTo/dEo)Eo=Eoo = 2G. 
The tangents at t he origin of the loading diagrams are necessarily 

parallel to the tangents at Eo = 
Eoo of the unloading diagrams 

(Fig. 35-7). 
If the Maxwell body is sub¬ 

ject to a constant rate So of 
stress To = So<; the stress-strain 

relation: 

Fig. 35-7 Stress-strain curve for 

loading of a Maxwell body at a 

strain rate £o = c up to a .strain 

6(10 and unloading it at a strain 

rate 6o = — c. 

The equation of the inverse tan¬ 

gent modulus, 

dEo 

dr'o 
(35-26) 

for To = 0 becomes (dEo/dTo)(T.=o) = 1/2(7. Again, the tan¬ 
gent at the origin of the stress-strain curves is the relation of 
linear elasticity, which holds also for the whole range of strain 
if So = oo. For different stress ratds a family of parabolic 
stress-strain functions is obtained; again, they deviate from 
linear elasticity the less, the higher the strain rate applied (Fig. 
35 -8). However, the stresses of the constant-strain-rate stress- 
strain curves approach limiting values, whereas those of the 
constant-stress-rate curves increase monotonously. 

The foregoing relations connect the deviators of stress and 
stress rate with the deviators of strain and of strain velocity. 
The relations connecting stress and strain in simple mechanical 
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tests must be derived by resolving the tensors of stress and strain 
with regard to the particular conditions of the test. 

Since in shear (for instance in the torsion test of very thin- 
walled tubes) the spherical 
tensors of both stress and strain 
vanish, the deviator relation 
is identical with the relation 
between the shear stress and 
strain components. Hence, the 
deviator relation for the Max¬ 
well body, for instance, can be 
directly transformed into the 
shear stress-strain relation, 

^12 = ^ i*12 + ^ 6*12 (35 -27) 

as all the constants remain 
unchanged. 

Axial load tests, however, require resolution of the tensors. 
By transforming the matrix of the deviator of strain so as to 
make it comparable to the matrix of the deviator of stress,®" ® 
the deviator relation of the linear elastic body is transformed 
into the stress-strain relation in uniaxial loading, 

6* = ei2G{\ + m) (35-28) 

The equation of the volume-constant Maxwell body in terms of 
uniaxial stress and strain can thus he directly written in the 
form. 

Fig. 35 • 8 Stress-strain relation for 

Maxwell body subject to tension 

test at different constant rates of 
ufrAGu = e 

where X = 3t? is the coefficient of viscosity for uniaxial volume- 
constant deformation. 

Elastic-viscoelastic analogy. If the deviators of stress 
and strain are developed into series of their time derivatives, the 
general stress-strain relations of volume-constant linear visco¬ 
elastic materials, may be written in the general form. 

■PToyfc ““ 2QEoyA! (35-30) 
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where P and Q denote, respectively, the linear operators ak • —^ 
dt 

and bm • —^ and a* and bm are constants characteristic of the 
ot 

material. 
Alfrey has shown that an analogy exists between elastic and 

linear viscoelastic materials, which simplifies the solution of 
boundary problems of volume-constant viscoelastic materials. 
These boundary problems may be of two types: 

1. Surface forces are given as functions of space and time; the 
pertaining stress distribution within the body and the deforma¬ 
tions shall be determined. 

2. Displacements of the surface are given as functions of 
space and time; the pertaining displacement and stress distribu¬ 
tion within the body shall be determined. 

In the solution of the problem, it is assumed that, at the time 
^ = 0, either the given surface forces and the stress components 
which are to be determined vanish together with their (k - 1) 
time derivatives, or the given surface displacements, as well as 
the displacement components in the interior which arc to be 
determined vanish together with their (m - 1) time derivatives. 

The elastic-viscoelastic analogy shows that the distribution of 
deviatoric (distortional) stresses within any volume-constant 
linear viscoelastic material described by a general relation of the 
form 35-30 is identical with that of a volume-constant elastic 
material subject to the same instantaneous surface forces. Thus, 
if the given surface forces can be written in the form, 

fi = (35-31) 

where x denotes the space coordinates, the stress distribution 
produced within the linear viscoelastic 'material 

t) = S0ik{x)p{t) (35-32) 

where Soik(x) denotes the deviatoric stresses produced by the 
surface forces fi(x) within a volume-constant linear elastic body 
of identical shape. According to eq. 35 -30, the strain compo¬ 
nents Bik in the viscoelastic body can be written in the form, 

eiic{x, t) = eoik{x)r(t) (35-33) 
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where r{t) the response function satisfies the differential equation, 

Qr{t) =Ppit) (35-34) 

and vanishes with its derivatives up to the (m — 1) order for 
t = 0. The quantity eQik{x) is connected with by the 
relation, 

soifc “ 2coifc (35*35) 

The equivalent elastic strain e^ik is thus the deviatoric strain 
in an elastic body of unit modulus of rigidity, subjected to the 

surface forces Ji{x). 
The response function r{t) of any viscoelastic material is easily 

obtained from the consideration of the effect of a simple shearing 
stress s = 2p{t). The shearing strain produced by this stress 
and obtained by solving the basic equation of the material for 
pure shear is r{t). The strain within the viscoelastic body pro¬ 
duced by the surface forces f\{x)p{t) can now be computed by 
multiplying the equivalent elastic strain e^ih by the response 
function r{t). Solutions of this type may be superimposed 
because the differential equations for stresses and strains are linear. 

A similar procedure is adopted for the determination of stresses 
in the second boundary value problem of viscoelastic materials. 
If the surface displacements are given in the form, 

Ui = Ui{x)p{t) (35-SO) 

and SQik denotes the equivalent elastic deviatoric stress produced 
by these displacements in the linear elastic body, the stress 
distribution in the viscoelastic body is given by 

SikiXy t) = soik{x)r{t) (35 *37) 

where r{t) is the response function to be Obtained as before. 
Because of the elastic-viscoelastic analogy it is possible to use 

linear viscoelastic materials in the photoelastic investigations of 
the elastic distribution of stresses. However, the strain-optical 

relations vary with the type of viscoelastic behavior and are 
different for a material with after-effect and for a material with 
both after-effect and creep, since the birefringence arises solely 
from the deformation of the elastic phases of the material. 
These relations have been derived by Mindlin.^®*® 
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36. Mechanical Models. ' Simple Behavior 

In order to account for the inelastic effects in materials in 
terms of their structure it is necessary to analyze mechanisms to 
which these effects may be due. A promising line of attack of 
this problem would be the setting up of structural models which 
could explain in simple terms the structure and its mechanism 
of deformation. However, the development of such models 
would require a knowledge of the internal structure of the mate¬ 
rial, which is frequently lacking. In order to overcome this 
difficulty and to obtain from the model qualitati^ e information con¬ 
cerning the internal structure of the considered material, mechan¬ 
ical models have been developed. The principal value of such 
mechanical models is that they show how the different types of 
simple behavior may be superimposed; they provide thus the 
clues to the development of real structural models. 

In the study of molecular or atomic mechanisms of inelastic 
deformation the analysis of a mechanical model will frequently 
be more effective than that of a stress-strain relation. In a 
model analysis each contribution to the stress or strain of any 
one element may actually be identified with some specific 
molecular or atomic process so that the individual strain or 
stress component may be assumed to possess a certain physical 
significance. 

The theory of mechanical models considers combinations of 
elements which are supposed to behave 
mechanically like the constituent phases 
of the material, but which, apart from this 
mechanical behavior, have nothing in com¬ 
mon with the real material. The mechan¬ 
ical models devised to illustrate inelastic 
behavior are usually built up of combina¬ 
tions of two model-elements representing 
the two basic types of deformation (Fig. 
36-1): 

I. A perfectly elastic spring for elastic 
deformation. 

2. A dashpotj consisting of a perforated piston moving in a 
cylinder containing a viscous liquid, for viscous deformation. 

The spring element, which obeys Hookers law, is a model of the 
linear elastic body; if the liquid in the cylinder obeys Newton’s 

Fig. 36 • 1 Simple 
model elements: (a) 
spring (elastic) and 
(h) dashpot (viscous). 
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law of viscosity, the dashpot is a model of the Newtonian liquid. 
These elements can be combined in different ways so as to approxi¬ 
mate the observed mechanical behavior of real materials. How¬ 
ever, as long as models are limited to combinations of the two 
elements of linear elasticity and of linear viscosity, they can only 
reproduce the deformation of linear viscoelastic materials. 

Mechanical models can only be correlated with the behavior 
of materials under simple conditions of testing, such as pure 
shear or volume-constant homogeneous stress or strain. 

For the spring element the relation between displacement x 
and force P is 

Xx^^aP (36 1) 

where a is the spring constant. For the dashpot the relation 
between the rate of displacement of the 
piston dx<i/dt under the action of a force P is 

7 rt 
= <t>P and j:.. = <f> P dt (36 2) 

dt Jo 

where <t> is the reciprocal value of the vis¬ 
cosity coefficient, called the fluidity. 

There are two possibilities of combining 
elements; they can be coupled in either 
scries or parallel. If the two elements are 
coupled in series (Fig. 36-2), the force 
acting in them will be the same and ecjual 
to the total applied force. Hence, the deformation is the total 
change of length produced in the individual elements, 

X = x\ X2 = olP + (t> ^ P dt (36-3) 

or, by differentiation, 

dx . dP 

A comparison of eq. 30-4 with that of the Maxwell body 
(Table 35 • 1) shows that by coupling the basic elements in series a 
model of the Maxwell body is produced. The relaxation time 

Fig. 36 -2 Simple ele¬ 

ments combined in 

series (Maxwell unit). 
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of the system is t = a/0, and 

(36-5) 

where Pq = (P)t=o. 

If the two elements are coupled in parallel (Fig. 36 -3), their 
extensions under load must be the same. The force acting on the 
spring is given by 

Fig. 36 3 Simple ele¬ 

ments combined in 
parallel (Kelvin unit). 

Pi = (3G-0) 
(X 

and the force on the dash pot by 

^2 = - • '-r (36-7) 
<t> (U 

If both equations an', combined, the load P 
on the system, 

P = i'i+i^. =- + (30-8) 
a (f) at 

When eq. 36-8 is compared with that of the Kelvin body, it is 
obvious that by coupling of two basic elements in parallel a model 
of the Kelvin body is produced. This is also the model of Kelvin’s 
“sponge, filled by a viscous liquidits behavior can therefore 
be expected to approximate the mechanical behavior of two- 
phase materials, consisting of a “springy” continuous structure, 
the voids of which are filled by a viscous liquid. The integral 
of the model equation is 

X = . ^xo+ <l> Pe^"" dt^ (36 -9) 

where xq = 
In the case of a load of periodically varying magnitude the', 

viscous resistance causes a phase difference between applied force 
and resulting deformation, associated with dissipation of mechan¬ 
ical work into heat. The load deformation diagram of the Max¬ 
well body is a closed ellipse the area of which W = 7rPo^0/w 
represents the energy dissipated per load cycle; Pq denotes the 
load amplitude and co its frequency. F'or the Kelvin body the 
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stable closed elliptical load-deformation diagram is only reached 
after a few cycles of transient behavior. 

In discussing mechanical models it has been assumed so far 
that inelastic deformation is produced by any load intensity. 
If the behavior of plastic materials is to be analyzed in terms of 
mechanical models, the yield limit must be introduced as an 
additional constant. This can be done either 

1. By introducing a friction resistance between piston and 
cylinder of the dashpots, which would prevent the pistons from 
moving as long as the force on the 

dashpot remains below the yield limit. 
2. By introducing a third model ele¬ 

ment consisting of a weight resting on a Yield limit 3^^ 

plane connected to a spring, with a 

friction force equal to the yield limit, model unit. 

preventing the movement of the block 
under the action of forces below this limit (Fig. 36-4). 

The new element can be considered a St. Venant unit, since 
the weight remains at rest and the deformation is elastic until the 
force exceeds the yield limit, at which a time-independent motion 
along the plane is initiated. The Maxwell unit with friction 
between piston and cyinder of the dashpot, on the other hand, 
reproduces the behavior of a Bingham body with elasticity. By 
constructing a composite model, consisting of a number of such 
units with different friction values in the dashpots, coupled in 
parallel, the plasticity of metals can be reproduced. 

37. Mechanical Models. Complex Behavior 

Real materials arc usually of more complex behavior than that 
which can be described by simple linear models. Such behavior 
is frequently approximated by the coupling of more than two 
basic elements, or by the coupling of several Maxwell units or 
Kelvin units. 

By combining, for instance, a Maxwell unit and a Kelvin unit 
in series and subjecting it to a constant load Pq acting between 
t = 0 and t = the total elongation is obtained by adding that 
of the two units the constants of which are marked by the sub¬ 
scripts m (Maxwell) and k (Kelvin), respectively. 

X = P{)[am + + «fc(I “ ^ ^ (37.1) 
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where xq denotes the deformation imposed at ^ = 0. This equa¬ 
tion shows that the total deformation under load is made up of 
three parts: instantaneous elastic deformation, linear creep, and 
after-effect. If at ^ the load is released, of the total defor¬ 
mation produced by the constant force Pq, 

= P 0«m + Po<t>nJ + P 0(Xk{l — 

= .Toi. + t)erni ‘^after-effect 

the elastic part will be recovered immediately, the anelastic part 
will be recovered gradually, and the creep will remain perma¬ 
nently (Fig. 37 1). 

i’o 

Fig. 37-1 lioad-timc and (don«ation-tiine diagram of model consisting 

of Maxwell unit and Kelvin unit coupled in series. 

If a condition is now considered to exist such that in the course 
of unloading, at a time h > to, the system is suddenly loaded by 
a force -Pi of very short duration,” ' acting in the direction 
opposite to that of the action of Po, this force will act mainly 
on the spring of the Maxwell unit and cause a decrease of x by 
OmPi- This deformation is almost fully recovered by removal 
of —Pi. From that moment on, the original after-effect pro¬ 
ceeds as before, but with a slightly lower horizontal asymptote, 
because of the slight permanent deformation in the opposite 
direction produced by -Pi in the dashpot of the Maxwell unit 
(Fig. 37-2). The system has thus developed a “memory”; one 
part of it responds to processes of short duration by contracting 
and extending in response to the load Pi; the other part acts on 
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the “memory’' of the previous load by proceeding to contract, 
at least for a certain time, in accordance with the after-effect pro¬ 
duced by Pq. 

^^Memory” effects of this type may be produced experimentally 
l)y twisting wires, filaments, or 
threads of suitable materials 
beyond the limit of elastic de¬ 
formation. If a torque is 
applied in one direction, the 
after-effect tends to reverse 
the resulting twist after the 
torque has been released. If 
during the period of recovery 
of the twist a se(;ond torque is 
applied in the opposite direc¬ 
tion and released, a second 
after-effect is produced. Both 
after-effects are superimposed, and the rates and directions of the 
resulting after-effect which determine the visible behavior of 
the wire will depend on the respective times of application and 
values of the different torques (Fig. 37*3). 

Force 

Po _ 

Deforr 

_1 

nation ^ 

/ a.J 
_ _ _L 

s 

♦ Time 
M 

Time 

Fig. 37 *2 Memory effect produced 

in model represented in Fig. 37 • 1 

(after Burgers'’" *). 

h i(j. 37-3 Superimposed after-effects of torques of opposite direction. 

If a number of torques of varying intensity and duration are 
applied consecutively in both directions, the resulting after-effects 
may produce very erratic observable deformations, all relations 
between applied torque and resulting twist and after-effect 
having become intraceable because of the superposition of the 
various after-effects. “Memory” tests on rubber and glass 
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threads and on metal wires have been performed by various 
investigators.^^ - 

It has been found that the behavior of real materials usually 
cannot be described by two constants, the elastic modulus and 
the relaxation time alone. The introduction of a number of 
constants, however, makes it possible to reproduce rather com¬ 
plex behavior. This is done either by parallel coupling of a 
number n of Maxwell units or by a coupling in series of a number 
n of Kelvin units (Fig. 37 -4). Each unit is defined by its con- 

Fig. 37*4 Coupling of (a) Maxwell elements and {h) Kelvin elements for 

representation of complex inelastic behavior. 

stants ami, <t>mi or aki, <t>ki, the sul)script i taking, consecutively, 
all values from 1 to n. Both types of superposition of units 
have been applied in the analysis of textile fibers, glass, and high 
polymers. ^ 

The coupling in parallel of a number of Maxwell units is 
equivalent to the structural assumption of the coexistence of a 
number of phases with different relaxation times Tmi = otmi/<t>mi> 
This assumption has a certain physi6al justification since in 
materials of unordered structure the existence of phases of dif¬ 
ferent relaxation times may be expected as a result of: 

1. The difference in the size of particles, especially in molecular 
compounds. 

2. Different relaxation rates in an otherwise homogeneous 
assembly of particles of the same size, due to variations in the 
activation energy of particles in their respective equilibrium 

positions. 
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If a system consists of two Maxwell units coupled in parallel 
with the constants ai, 0:2, <^>1, <<>2, and the respective relaxation 
times Ti = ai/01 and 72 = ^2/02, its response to a constant 
load applied at time ^ = 0 is determined by the conditions, that 
(1) the sum of the forces Pi and P2 in the two elements is equal 
to the applied force Po, and (2) the deformation of both Maxwell 
units under their respective loads Pi and P2 must be equal. 
These conditions produce the relation, 

7 = Pop[l + rj(\ ~ +r‘i] (37-3) 

where 

and 

^ = - 

a 1^2 

i + a-i) 

T 
r = - - 

rir2 

(Xi -h 0^2 

4>l + <f>2 

Kcpiation 37-3 has the same general form as eq. 37 -2, containing 
an elastic component, a uniform creep component, and an after¬ 
effect component. The instantaneous deformation is given by 
Pop; this value, multiplied by (r<), gives the uniform creep com¬ 
ponent; the term PoP^(l — represents the deformation due 
to redistribution of the load as a result of the coexistence of two 
relaxation times. 

After removal of the load at time ti the residual deformation 
at a subsequent time t is given by the expression, 

= P^plrt, + q ’ ^ - 1)1 for t > h (37-4) 

it consists of a permanent set P{^vrl\ and a transient residual 
deformation (after-effect). 

The load-time and deformation-time diagrams drawn in Fig. 
37-5 show that under constant load the material flows at a 
gradually decreasing rate, a phenomenon that is usually described 
as transient or primary creep, until it reaches the steady state 
of linear viscous or ‘^secondary” creep. It may therefore be con- 
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eluded that the introduction of different relaxation times by th(3 

coupling of Maxwell units is sufficient to produce transient creep. 

Pig. 37 o Foroe-tinio and deformation tim(‘ diagram of model consisting 

of two Maxwcdl units coupled in parallel. 

If the material, the behavior of which is to be reproduced by 
the model, consist of a continuous solid skelton, at l(‘ast one 

elastic element must be coupled in parallel 
with the Maxwell elements. The external 
load will then, through the relaxation of the 
Maxwell units, be gradually transferred into 
the elastic element. After load release there 
will, however, be no permanent deformation, 
only after-effect. Such behavior is obtained 
if in the model consisting of two Maxwell 
units one relaxation time approaches infinity 
(Fig. 37-6). 

Under a constant load Pq applied at time 
/ = 0 the deformation of such a model at time /, 

x^Po - [ 1 + ^ (1 - 1 (37 • 5) 
ofi -r «2 L a2 J 

Of 1 (X2 
where r --If the load is removed at t = tiy the residual 

02 

deformation at a subsequent time ty 

2 

X =Po [(I - e-‘'0 - (1 - (37-6) 
ofi + a2 

^0 

Fig. 37-6 Model 
consisting of Max¬ 

well unit in parallel 

with elastic ele¬ 

ment. 



Art. 37] Mechanical Models. Complex Behavior 241 

The force-time and deformation-time diagrams are shown in 
Fig. 37*7. After the occurrence of the instantaneous elastic 
deformation in both springs, the load carried by the Maxwell 
unit is gradually transferred to the spring. Upon load release the 
spring cannot recover its initial length instantaneously because 
of the resistance of the dashpot in the Maxwell unit. However, 
the remaining tension in the spring is gradually relaxed as a 
result of the viscous flow in the dashpot, and the initial length 
of the model is asymptotically recovered. 

Ficj. 37 -7 Force-timo and force-deformation diagram of model represented 

in Fig. 37-6. 

If a periodic force P = Pq sin o>t is imposed, the behavior of 
this model under two limiting conditions of frequency can be 
predicted without mathematical analysis. Periodic forces of 
very high frequency will produce simultaneous elastic deforma¬ 
tion of both springs in phase with the force, the dashpot of the 
Maxwell unit remaining practically rigid. Thus, 

X = oPq sin cot (37 -7) 

where a = — If, on the other hftnd, the periodic force 
a\ + a2 

is applied very slowly, the Maxwell unit will always be very 
nearly relaxed, the force being carried by the spring element 
alone. The deformation is therefore again in phase with the 
applied force, but the amplitude increases to 

X = aiFo sin cot (37 -8) 

Hence, as the frequency of the applied force decreases, the 
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apparent rigidity of the system decreases steadily. However, 
the angle of lag between force and deformation, which is zero 
under both limiting conditions, must necessarily first increase 
and then decrease, attaining a maximum between the limiting 
conditions defined by eqs. 37 • 7 and 37 • 8. 

Models with multiple relaxation times can be made to repre¬ 
sent the deformation of amorphous materials, such as glass, 
rather closely. Various functions describing ^‘primary” creep 
or after-effect can be produced by parallel coupling of Maxwell 
units. The larger the number of units coupled, the more 
extended the period of primary’’ creep and the better the 
approximation to given creep curves that can be accomplished. 

If a model of a number n of relaxing (Maxwell) elements and 
one spring element is subject to an instantaneously applied 
deformation xq, the initial load in the system. 

w 

1 

the load in an individual unit 

P.0 = “ (37 10) 

Since after a time t this load has decreased to 

Pi (37 11) 

the total load in the system at time t has also decreased to 

P = 
OLi 

+ Xi) 1 2 OCi 

(37-12) 

where ai denotes the constant of the'spring element. 
The analysis of the behavior of a multiple-element model is 

rather cumbersome, even for constant load, since a complex 
redistribution of loads among the Maxwell units takes place. 
Immediately on load application the Maxwell units with very 
short relaxation times begin to give up their loads. Since the 
units with long relaxation times give up their loads very slowly, 
they will temporarily carry some of the load given up by the 
other units. Hence, their loads will first increase and then 
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decrease, whereas for units with short relaxation times the load 
decreases continuously to zero; in the spring elements it increases 
continuously to its final value associated with the full load. 

38. Superposition Theories'^^ ^ 

If it can be assumed that no permanent structural changes 
occur in a material during deformation under constant load, the 
deformation at any instant can be divided into two parts: the 
instantaneous deformation, which is proportional to the stress 
acting at that instant, and the delayed deformation, which is a 
function of the loading history. The total deformation, as a 
function of time can thus be written in terms of a model : 

.r(0 = aPoll (38-1) 

where fir is a constant of proportionality and rpciO ^ function of 
time, which increases from zero at time t = 0 to a finite value at 
infinite time. The function ^^(0 deformation under con¬ 
stant load is called the creep f unction and represents the delayed 
component of the deformation. 

On the other hand, if a constant deformation xq is applied at 
zero time, the force required to sustain this deformation can be 
divided into two parts: one, representing the initial force required 
to produce instantaneously the deformation xq, the other repre¬ 
senting the proportionate decay of the force with time under 
constant deformation. The force, as a function of time, can 
thus be written in the form, 

P(/) = - [1 - /JrMO] (38-2) 
a 

where fir is a constant of proportionality and yprit) a function of 
time, which increases from zero at time / = 0 to a finite value 
smaller than I/fir at infinite time; thi^ function is called the 
relaxation function. 

For a Maxwell unit the relaxation function is obtained from 
the comparison of eqs. 38-2 and 36-5 for Po = Xo/a and dx/dt 

= 0, 
[1 - firMt)] = “ fl - (1 - 0] (38-3) 

a a a 

in the form. 

Mrit) = 1 - (38-4) 
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with /3r = 1, whereas the creep function follows from the com¬ 

parison of eqs. 38 -1 and 36-3 for P = Pq: 

= = - (38-5) 
a T 

Since the function '' can be approximated by (1 — t/r) for 

small values of t/r, the relations x(l)/aP and aP{t)/xo, as defined 
by the creep and relaxation equations 38 1 and 38 • 2, respec¬ 
tively, are the mirror images of each other fc»r very small values 

of t/r and for pr = l^c = 
Considering a more complex mechanical model, such as that 

consisting of a spring and a Maxwell unit coupled in parallel, 
relaxation and creep functions are again obtained by comparison 
of the eqs. 38 2 and 38 1 with eep 37.5 describing the model 
behavior: 

Iir4'r{l) = — (I - (38-G) 
-j- ao 

• 1 1 
with ’ and 

ai + a2 

^ - (I - e-‘’) (38-7) 
Ot2 

with Pc = oL\/oLi. In this case the relations x{t)/al^{s and 
aP(t)/xQ, as defined by eqs. 38-1 and 38 2, are two curves that 
can become the mirror image of each other if and only if Pr = Pc- 
This requires that a\ be small in comparison with a-Zj which 
can only be the case if the delayed component of the deformation 
is small in comparison with the instantaneous component. If 
both components are of the same order of magnitude, the simple 
relation between creep and relaxation no longer exists; in such 
cases the results of creep and of relaxation tests are not directly 
convertible. 

For a model with a large number of relaxation times the com¬ 
parison of eqs. 37 • 12 and 38 2 produces the function, 

” i 

yie-'-. 

1-*.-—- (38-8) 

2- 

a» 
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which indicates the decay of stress with time, the constants 1/a, 
representing the weights of the different relaxation times Tj 

present in the material or in its model. If the decay function 
38-8 is plotted against time in a logarithmic scale, curves of 
sigmoidal (ogive) type, with some irregular features, are obtained 
(Fig. 38* 1). The stress decay is the more continuous, the more 
relaxation times are present. It is on account of the assumption 
of discrete relaxation times and weights that several points of 

Fig. 38 1 Stress-deoay functions (1 — i/'r) for various distributions of 

relaxation tiin(‘s, plotted against logarithm of time. The heavy vertical 

lines indicate fretpumey distribution of relaxation times (after Wiechert’®**). 

inflection, as shown in Fig. 38 -1, are introduced into the decay 
functions.^® Since in real materials one inflection point only 
is usually observed, the discontinuous model, consisting of a 
finite number of Maxwell units, should be transformed into a 
continuous one, characterized by the continuous distribution 
function of relaxation times F{t). The area under the distribu¬ 
tion curve must be unity (normalizing condition). If the dis¬ 
crete weights I ai in eq. 38 -8 are replace!?! by the continuous dis¬ 
tribution curve, the decay function, 

I = /„>(r)rfre-" (38-9) 

is obtained. Hence, the relaxation function, in terms of an 
arbitrary distribution of relaxation times, 

i'r = /o>(r)(l - e-‘'0rfr (38-10) 
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The direct computation of the distribution function of relaxation 
times from observed relaxation curves is very difficult; a more 
expedient way of analysis consists in writing down an analytical 
expression for the distribution function F(r), which appears 

plausible on theoretical grounds and allows the calculation of the 
relaxation function, and then comparing and fitting the calcu¬ 
lated and the observed curves by changing the parameters of 
the assumed distribution function of relaxation times. 

39. Nonlinear Mechanical Models 

The derivation of eq. 19 17 from eq. 19 -16 shows that linear 
viscosity represents only a special case of general inelastic 
behavior. Mechanical models made up of linear dissipative 
elements therefore cannot be expected to reproduce closely the 
behavior of real materials of general behavior. Even the com¬ 
bination of linear elements by applying the superposition prin¬ 
ciple (see Art. 38) is frequently ineffective in reproducing mechan¬ 
ical behavior which is basically nonlinear. This is particularly 
true for the behavior of polymers at high stress levels as well as 

for metals. 
A mechanical model by the aid of which general inelastic 

behavior can be reproduced more adequately than by the use of 
complex linear models is the three-element model shown in Fig. 
37-6 in which the linear dissipative element has been replaced 
by a nonlinear element, the behavior of which is governed by the 
hyperbolic sine law of general inelasticity (eq. 19-16). This 
model has been extensively used in textile research.^ 

The principal difficulty in the practical use of a nonlinear model 
is due to the complexity of the mathematical (expressions obtained 
as solutions of the model equation. Even the analysis of a 
two-element Maxwell unit consisting only of a spring and of 
a non-linear dashpot leads to expressions that are cumbersome 
and difficult to use in the actual evaluation of experimental 
results. 

Thus, the equation of the nonlinear Maxwell body for pure 
shear is obtained by adding the equation of the Hencky solid to 
that of the general inelastic solid eq. 19* 16: 

e = — .s* + C sinh {cs) 
2Cr 

(39-1) 
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or, in terms of model analysis, 

X = aP + C sinh (PP) (39 • 2) 
where C and 0 are constants of nonlinear behavior. Under con¬ 
stant load Pq the nonlinear Maxwell unit deforms at a uniform 
rate x — C sinh If a constant strain rate x = cq is applied, 
eq. 39 -2 may be written in the form, 

(l<b 
~ -f- sinh (j) = K (39 • 3) 
dr 

where K = co/C, <t> = 0P and t = - 0Ct. For constant strain 
a 

X = Co = 0, and thus iC = 0. Hence, the equation of relaxation 
of the nonlinear Maxwell unit is 

'-^ + sinh^ = 0 (39-4) 
dr 

the solution of which for the boundary condition </> = for r = 0, 

tanh (0/2) = tanh {<j>o/2)c~' (39*5) 

replaces the relaxation equation of the linear Maxwell unit. 
The general nonhomogcneous eq. 39-3 which, with different 

constants, is also the model cciuation of the three-element non¬ 
linear model represented in Fig. 37 • 6, has recently been integrated 

for several loading conditions.^ It has been found that the 
non-linear dashpot yields rather sharply at a certain intensity 
of the applied force, independent of the rate of deformation, 
and does hardly move below this force. Thus the rather abrupt 
transition between small and large deformations characteristic 
of metals can be related to the nonlinearity of the dissipative 
element, making it unnecessary to use a special St. Venant ele¬ 
ment for the model reproduction of a yi(^d point. 
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CHAPTER 

7 

PLASTICITY 

40. initiation of Plastic Deformation 

Plastic deformation has l)een defined (see Art. 17) as the irre¬ 
coverable deformation characteristic of materials existing in the 
ordered (crystalline) state; it is produced by shear forces causing 
slip along selected crystallographic planes. Therefore, plastic 

deformation is essentially a discontinuous process, taking place 
along discrete planes and extending over a length that is a 
multiple of the atomic distance (the unit or “quantum” of slip). 
It first affects crystal planes the orientation of which, with 
regard to the imposed field of stress, is most favorable for the 
initiation of slip. 

Slip bands within single crystals consisting of clusters of 
atomic slip planes are spaced at minimum distances of the order 
of magnitude of 0.1 micron; this spacing increases with increasing 
temperatures. Hence, the limiting spacing is of the same order 
of magnitude as the limiting crystallite or block size (see Art. 
13) and is equally a function of temperature. Initially one or a 
few slip bands are formed. As the applied shear stress increases, 
more slip bands develop, their spacing becoming increasingly 
uniform. 

It has been pointed out in Art. 18 that, since slip in real crystals 
is not limited to a single atomic plane but involves a number of 
adjacent atomic planes, a certain amount of disorder is produced 
by atomic distortion within the glide planes. This disorder is 
necessarily accompanied by a certain thermal instability resem¬ 
bling that of an unordered atomic arrangement. Glide planes 

249 



250 Plasticity [Art. 40 

approach therefore the time- and temperature-sensitive behavior 
of the crystal boundaries, at least during a certain period after 

their formation, before a new order is established by place 
changes of activated particles. 

In polycrystalline aggregates, grain boundaries exert a strong 
restricting influence on the initiation of slip within the grains. 
The grain boundaries also restrain slip propagation through 
neighl)oring crystals. If a crystal grain is favorably oriented 

with regard to slip and is entirely surrounded by less favorably 
oriented grains, slip bands will develop only when the applied 
shear energy is sufficient to force several neighboring grains to 
deform. 

Slip in polycrystalline aggregates is essentially a heterogeneous 
deformation; although a number of crystals are plastically 

deformed, the rest of the material remains elastic. The inter¬ 

action between elastic and plastic deformation results in a 

gradual transfer of the resistance to the applied forces into the 
elastic part, which in turn produces further local slip within the 
most favorably oriented crystals within the elastic regions. Slip 
initiation thus consists of a series of localized ‘^catastrophic’^ 

processes along planes of maximum shear. The direction of 

atomic slip within the individual crystal will necessarily differ 
from the over-all direction of the common slip band, as the 

orientations of the crystals differ. Motion along the common 

slip bands is thus made up of the components of the individual 
slip motions within the affected crystals in the direction of this 

band. 
The intersection of the continuous slip bands with the surface 

of the body are the glide lines or Lueder^s lines observable on the 

polished surface of certain metals, such as mild steel, in the 
early stages of plastic deformation. Since it follows the direction 
of maximum shear, the anisotropic plastic deformation occurs 

along planes inclined at 45° to the direction of the principal 

stresses. 
The actual field of glide lines may initially be identified with 

the field of principal shear trajectories in the elastic problem; 
deviations must, however, be expected, particularly during later 
stages of deformation, because of the disturbance of the elastic 

stress field produced by the propagation of plastic glide planes. 
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Several examples of the fields of anisotropic plastic deformation 
are presented in Fig. 40 * 1. 

In certain metals, particularly cubic body-centered iron, glide 
lines are very distinctly visible on the polished surface; in others, 

(a) Tensile specimen (b) Torsion specimens 

I 

Fi(i. 40 1 Examples of anisotropic plastic deformation (glide lines). 

no anisotropic deformation is visible, and only apparently iso¬ 
tropic areas with a dulled surface appear and gradually spread 
under increasing load. During the progress of the anisotropic 
deformation under an applied constant strain rate the measured 
load fluctuates rapidly about a constant value; the formation of 
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each new glide line is accompanied by a sudden drop of the load. 
In tensile tests of mild steel the deformations observed remain 
within the elastic order of magnitude until the metal in the gage 
length has been transversed by slip bands (Fig. 40- la). 

Where the distribution of stress is not uniform, as in bending, 
torsion, or contact pressure, the glide planes associated with 
initial anisotropic yielding gradually extend from the highly 
stressed surface into the less stressed interior. In such cases the 
load observed at a certain strain rate does not fluctuate with the 
appearance of new slip bands; the anisotropy and heterogeneity 
of the deformation process is less apparent than it is in homo¬ 
geneous stress fields with unrestricted propagation of glide lines. 
The propagation of visible glide lines in nonuniform stress fields 
is restricted by areas of low stress, causing a relatively early 
transition from the heterogeneous anisotropic into the statis¬ 
tically isotropic plastic stage; under conditions of homogeneous 
stress, on the other hand, the heterogeneity and anisotropy of 
the plastic deformation is very pronounced, and isotropic plas¬ 
ticity develops only under relatively large strains. Moreover, 
the restriction imposed by the nonuniformity of the stress field 
on the propagation of the slip bands prevents the spreading of 
heterogeneous plastic disturbances deep into the elastic region 
so that stress conditions in this region are not changed. For 
nonuniform states of stress the initial stage of heterogeneous 
deformation is therefore less important within the total process 
of plastic deformation than for homogeneous stress. 

Since the fluctuation of the load at the yield limit in the tensile 
test of mild steel is closely associated with the appearance of 
glide lines, it is not observed when the initiation of plasticity is 
gradual and therefore isotropic. Only materials with a sharply 
defined real yield limit may therefore be expected to show glide 
lines. This yield limit is represented by the lower level of the 
fluctuating load during heterogeneous plastic deformation. The 
upper level of fluctuation is an expression of the delay in the 
initiation and propagation of glide lines, which is caused by the 
heterogeneity of the structure of the polycrystalline aggregate, 
as well as by the time effects associated with the diffusion of 
foreign atoms into and out of operative slip planes, discussed in 
Art. 16 and 20. 

Visible heterogeneous deformation does not occur under con- 
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ditioiis in which the resistance to deformation of the grain 
boundaries is relatively small. Since slip depends on the resist¬ 
ance of the crystals, which is low, and since a few individual 
crystals will always be in a position favorable for the development 
of slip, the material will yield on a macroscopic scale at very 
low stresses unless it is restrained by the grain boundaries. 
The occurrence of catastrophic^' slip after local breakdown of 
the resistance of grain boundaries which produces a sharp yield 
point, must therefore be associated with highly resistant grain 
boundaries. Hence, if the manifestation of visible heterogeneous 
yielding depends on a high resistance to deformation of grain 
boundaries relative to that of the crystalline areas, this type of 
deformation will be the less probable, the higher the resistance 
of the crystalline areas or the lower the resistance of the inter¬ 
crystalline boundaries. 

Some investigators have suggested that the glide lines are a 
definite property of metals of the body-centered cubic system. 
Although the evidence is not conclusive enough for this state¬ 
ment to be generally acceptable, it may be assumed that the 
large number of slip systems of the body-centered crystal reduces 
the slip resistance of such crystals below that of any other type, 
thus creating conditions conducive to a sharply pronounced 
yield limit in polycrystals. 

After the over-all deformation has exceeded a certain limit the 
lines along which slip occurs become so closely spaced that they 
tend to form a statistically homogeneous area, which appears 
isotropically plastic. From the boundary of this area further 
glide lines spread out; it is in this way that the boundary of the 
plastic region gradually extends in metals with a pronounced 
yield point. In other metals the anisotropy of slip is limited 
to the submicroscopic scale; the slip bands are so closely spaced 
from the very beginning of the deformation that the deformed 
regions appear isotropic and extend in an apparently isotropic 
manner. 

Hence, in metals with a sharp transition between elastic and 
plastic deformation, glide lines as well as statistically isotropic 
plastic areas are simultaneously present. In metals without a 
pronounced yield point anisotropic deformation takes place on 
a submicroscopic scale only; phenomenologically the deformation 
appears homogeneous and isotropic. 
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The coexistence on a macroscopic scale of heterogeneous aniso¬ 

tropic slip and statistically isotropic plastic deformation requires 
two different approaches to the solution of problems of plastic 
deformation. However, heterogeneous slip is usually though not 
always a transient initial stage, whereas it is the essentially iso¬ 
tropic plastic deformation that is characteristic for plastic 
behavior. In this stage the development of statistically homo¬ 
geneous and isotropic plastically deformed regions with a well- 
defined boundary between the elastic and plastic regions is 
gradual. The plastic deformation is assumed to spread along 
the boundary on which the criterion governing the transition 
from the elastic into the plastic state has been reached. 

The only group of problems of plastic deformation in which the 
effect of the anisotropic yielding is of primary importance and 
the solution of which cannot, therefore, be based on the assump¬ 
tion of isotropic plastic deformations are the problems of buckling 
particularly under conditions of 2-dimensional stress. The rea¬ 
son for this is that the limit of instability is associated with the 
initiation of plasticity which, in metals with a sharp yield point, 
is heterogeneous and anisotropic, and not with the development 
of an isotropic plastic region at a stage at which the deformation 
process itself has become instable. 

41. Conditions of Plasticity 

Although the picture of the gradually spreading isotropic 
plastic region is an idealization of the real process of transition 
of the material body from the elastic into the plastic state, this 
picture provides an adequate approach to the quantitative 
analysis of many problems of plastic deformation of metals. 

In dealing with such problems it is necessary to differentiate 
between the stage of initiation of plastic deformation, governed 
by the yield condition,the deformation throughout the plastic 
range governed by the “flow condition,” and the unloading 
stage, governed by the “unloading condition.” For ideal plastic 
materials, that is, materials that deform under an unchanging 
value of the specific resistance to deformation, the “yield condi¬ 
tion” and the “flow condition” are identical; that is, the condi¬ 
tion of initiation of plastic deformation is satisfied throughout 
the full range of plastic deformation or flow. 
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Slip within an individual crystal starts when a critical level 
of shear energy is applied; this level depends on the orientation 
of the crystal with regard to the applied stress field, since the 
deformation of the crystal by slip is anisotropic. If the size of 
the individual crystal is small in relation to the size of the con¬ 
sidered polycrystalline specimen, and if there is no reason to 
anticipate preferential orientation of crystals within the aggre¬ 
gate, a random distribution of crystal orientations may be 
assumed to exist as a result of which the initiation of statistically 
isotropic plastic deformation can be statistically related to the 
distortional energy producing slip in the individual crystals of 
the aggregate. Hence, a definite level of distortional energy 
delimits the states of elastic and of plastic deformation, on both 
the structural and the phenomenological scale. The condition 
for the initiation of isotropic plastic deformation must therefore 
have the form, 

<l>o(/o2, T) = = const ('H I) 

where 4>o, the energy of elastic distortion, is a function of the 
second invariant of the deviator of either stress or elastic strain 
and of temperature. This is the condition of plasticity intro¬ 
duced independently by Huber^^ ^ and v. Mises,"^' and redefined 
by Ilencky.^^ ^ It will be referred to as the Huber-Mises- 
Heyicky condition of plasticity. 

Since perfect elasticity is but an ideal limiting condition, and 
some, no matter how slight, dissipation of the applied energy 
always takes place above absolute zero temperature if the period 
of application is long enough (see Art. 19), the transition from 
the elastic into the plastic state is gradual for all real materials. 
In some metals, however, the amount of applied energy dissipated 
below the critical energy level is so ^mall as to be negligible, 
whereas the inelastic deformation at a level of applied energy 
slightly exceeding the critical level is considerable; the transition 
between the two states is thus rather abrupt, and the setting up 
of a definite boundary between the elastic and plastic domain 
has a real physical meaning. In materials with a less sudden 
transition, the boundary between the elastic and plastic domains 
has the character of a designated limits being related to the 
occurrence of an arbitrarily specified amount of irrecoverable 
deformation, assumed to delimit elastic and plastic behavior. 
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The condition of initiation of plasticity (eq. 41 • 1) for constant 
temperature, can be expressed in terms of principal stresses: 

4>o 
OG 

[si“ + + s-r (SiSo + S2S3 + S3S1)] 

1_ 

T2G 
[(tSi — So)" + (50 — ^3)^ + (^‘3 “ (41-2) 

Because of eq. 24-31, this condition can also be written in the 
form: 

4*0 = ^ + ts2^ + tsZ^) = (41-3) 

is an empirical energy limit which must be derived from 
experiment. If it is assumed that the yield stress in simple 
tension is given by Si = so, while = S3 = 0, the yield energy 
limit % is obtained from the distortional energy in terms of the 
uniaxial yield stress so, 

4*0 i T - ^ 
2G 6 G ^ 

(41-4) 

or 

~3/o.v2 = (41 •4a) 

Hence, the Huber-Mises-Hencky condition of initiation of iso¬ 
tropic plastic deformation {yield condition) in principal stresses, 

2/ = (5i — 82)“ + 0s*2 — 83)^ + (83 — 8i)“ = 2So^ (41-5) 

or, in principal shear stresses, 

+ t,f2^ + ^«3“ = -ST^O^ (41-6) 

In terms of stress components this condition becomes 

2/ = («ii — 822)^ + (822 “■ 533)^ + (S33 811)“ 

+ 6(512'^ + 823^ + 831^) 

= 280^ (41-7) 

The function / has been called by v. Mises the plastic potential. 
If elastic strain is used, the yield condition may be written in 

the form: 
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= (f;i“ + ^2^ + ^3^) = (41-8) 

If the yield strain in simple tension is given by ei = eo while, 
under conditions of volume-constant distortion, e2 = = —ico, 
the yield energy limit is obtained from the distortional energy 
in terms of the uniaxial yield strain eo.* 

“ Ol Oe‘2 ^ 12 ^ 

Hence, the yield condition in terms of principal elastic strains, 

f[(ei — 62)^ + (^*2 ~ 63)*^ + (^3 — ^1)^] = (41-10) 

in terms of the components of strain, 

t[(^ii ~ ^22)*^ + (<^22 "" <^33)^ + (^33 — ^'11)^] 

+ K^r>“ + {/23' + 6^31^) = ^0^ (41-11) 

In order to express the condition of plasticity in terms of either 
stress or strain instead of in terms of energy, Hencky^^ has intro¬ 
duced the concepts of the intensity of stress Sr and of the intensity 
of strain Cr, defining these quantities by the expressions: 

V2 
Sr = [(Sll ~ S22)” + (S22 — 533)“ 4" (§33 — .S*li)“ 

+ 0(Si2^ + 523“ + S3i“)]^" 

= V-'zJZ (41 12) 

and 

V2 
Cr = [(eil ““ 622)^ + (^22 ^33)^ + (^33 — Cn)^ 

+ 2 

0e2 (41-13) 
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Hence, the yield conditions, 

or 
Sf “■ 6*0 nnd Cf •” co 

^Io82 = and —/oe2 = 

(41 • 14) 

(41 15) 

These conditions can be written in a slightly different form if they 
are expressed, as suggested by Nadai^^ ' ® and Ros and Eichinger^’ ® 
in octahedral shear stresses and strains (see Art. 24). 

The octahedral shear stress (eq. 24 -34) according to eq. 41 • 15 

is equal to ^sq a/2, and the octahedral shear strain (eq. 25 -19) 
/“ 

according to eq. 41 • 15 is equal to <3o • V 2. Hence, 

and 

V2 /2 — So V2 
to — Sr ^ • V —/o.2 — g (41- 16) 

go = Sr V2 V-hei = eo V2 (41 17) 

Since both the octahedral stress and strain and the intensities 
of stress and strain are thus proportional to the roots of the 
second invariants of the deviators of stress and strain, the rela¬ 
tions connecting them, 

Sr = Sr{er) or to = ^o(<7o) (41 18) 

should be identical for volume-constant distortion under any 
state of stress. Therefore the variables Sr and Cr or to and 
Qo under complex conditions of stress or strain behave like stress 
and strain in simple tension or in pure shear. The shape of the 

functions Sr(0 and toiOo) can thus be determined by such 
simple tests. 

Within a rectangular system of coordinates of principal stresses 
(si, S2, S3) the Huber-Mises-Hencky condition of initiation of 
isotropic plasticity can be represented by a circular cylinder with 

the radius Sq V2/3, the axis of which has equal inclination 
towards all positive axes of principal stresses. All states of 
stress within this cylinder are elastic; states defined by points 
on the surface of the cylinder are those associated with the initia¬ 
tion of plastic flow. Points outside the cylinder are not possible. 
The circle of intersection of this cylinder with the plane normal 
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to its axis through the origin of the coordinate axes defined by 

the equation (si + S2 + sa) =0 represents the yield condition 
for purely deviatoric states of stress. If the orthogonal stress 
axes 6*1, 62, 53 are projected on this plane, they project into axes 
intersecting at 120°. If the scale of the projection is increased 

by the factor V^2/3, the deviatoric stress components (81 ~ p, 

S2 — P, ''Ja — p) are measured directly on the projected axes. In 
this representation the yield condition is represented by a circle 
around the origin of radius sq. 

The yield condition for two-dimensional states of stress is 
represented by the curve of 
intersection of the cylinder 

with the (8182) plane, which is 
an ellipse: all points defining 
states of stress within the 
ellipse are elastic; points on 
its circumference define con¬ 
ditions of plasticity. 

For plane stress with 83 = 0, 
the equation of the ellipse has 
the form/^ 

si^ + 82^ - 8182 = 80^ (41 • 19) 

The axis of the ellipse in the 
direction 81 = 82 has the length 

a = 80 V2; the axis of the ellipse in the direction Si = —82 has 

the length b = sq V2/3 since, for 82 = 0: 81 = 80, and, for 
8i = 0: 82 = 80; on the line 81 = 82, the point of intersection is 
again 81 == 82 = 80, whereas, on the line 81 = —82, the point 

of intersection is defined by 81 = 80 and 82 = —80 V^l/3. 
For plane strain 83 = + 82); hence, the equation of the 

ellipse, 

+ 82^ — 8182 ^ = 80^ (41-20) 
1 ~ M + M 

The long axis a of this ellipse is a function of Poisson^s ratio m; 

the small axis remains constant 6 = 80 V2/3 (Fig. 41-1). In 
this representation pure shear is defined by 8i = —82; the rela¬ 
tion between the yield stress in shear k and in tension or com- 

Fig. 411 Huber-Mises-Hencky 
yield condition (ellipse) and Tresca- 
St. Venant yield condition (hexa¬ 
gon) in two-dimensional representa¬ 

tion. 
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pression sq is Vl/3 = 0.577. The correeiness of this lii»;ure for 
metals has been proved by experiment.^* ^ 

With k = So/\/^ the yield condition (eq. 41 15) can be 
written in the simple form, 

“7o«2 = k^ (41 • 15h) 

The Huber-Mises-Hencky yield condition based on the 
criterion of a limiting amount of distortional energy is a relatively 
late concept. Several alternative conditions of plasticity have 
been proposed before, and considerable controversy has developed 
concerning the validity of the dififerent concepts. This contro¬ 
versy was to a certain extent the result of inaccurate terminology, 
of lack of differentiation between conditions of yielding and 
conditions of rupture, and of lack of differentiation between 
conditions governing the initiation of plastic deformation and 
those governing its progress. 

The oldest condition of plasticity is that proposed by Cou¬ 
lomb,Tresca,*** ** and amended by St. Venant,^* *** which is 
based on the assumption that in the plastic state the maximum 
shear stresses have constant values so/2. Hence, 

(Sl - S2)^ = So^ (si - .Ss)^ = So^ (S2 - (41 -21) 

This system of equations represents in the (S1S2S3) space a hexa¬ 
gonal prism the axis of which has equal inclinations towards all 
coordinate axes. It is the prism inscribed into the cylinder 
(eq. 41-5); its intersection with the (^i, §2) plane is the hexagon 
inscribed into the ellipse representing the Huber-Mises-Hencky 
condition for plane stress. The relation of 0.5 between the yield 
limit in pure shear and in homogeneous tension or compression, 
inherent in the Tresca-St. Venant condition is at variance with 
most of the experimental results. However, since the dis¬ 
crepancy is the more pronounced, the more gradual the transi¬ 
tion between the elastic and the plastic states, it appears that 
heterogeneous plastic deformation may actually be governed by 
the Tresca-St. Venant condition. 

According to Fig. 41 • 1 the Tresca-St. Venant condition can 
be considered a first approximation of the distortion energy con¬ 
dition. Although the difference between those two conditions 
does not appear to be considerable, it is within the most intensive 
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states of stress (segments of ellipse) that this difference is largest. 
In the case of plane, volume-constant strain with sz == 0.5(si -f- §2) 
the distortion-energy condition (eq. 41-5) becomes 

i(si - 82) = [(—-f-—)' + S12'] = + ^ (^1-22) 

and thus differs from the Tresca-St. Venant condition, 

K8i-S2)=| (41-23) 

only by the factor 2/V3 = 1.15. In the case of plane stress, 
however, the distortion-energy condition is given by eq. 41 • 19, 
while the maximum shear condition retains the form 41*23. 

for metals 

Fig. 41-2 Uoprosoiitntion of yield condition as enveloping line of Mohr’s 

stress circles. 

The Tresca-St. Venant condition can be presented with the 
aid of Mohr's circles (Fig. 41*2). However, it has been found 
by experiment that the parallel enveloping lines at a distance 
t = ±So/2 which, according to this condition, should delimit the 
state of plastic flow do not exist.Therefore, it cannot be 
the maximum difference between two of the principal stresses, 
but a function embodying all three stresses such as the invariant 
/o«2 which defines the condition of insetting plastic deformation. 

Yield tests on nonmetallic substances are rather difficult to 
interpret because of the arbitrariness of the definition of the 
‘‘initiation" of inelastic deformation and because of the very 
pronounced effect of the rate of loading. In general, however, 
it has been found that the Huber-Mises-Hencky condition of 
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plasticity is not valid for nonmetallic substances. The Tresca- 
St. Venant condition of constant shear stress, on the other hand, 
can be generalized so as to account for the fact that for many 
nonmetals the critical value of the maximum shear stress which 
delimits conditions of inelastic deformation is not constant, but 
a function of the hydrostatic stress p. This is the Mohr- 
Kdrmdn hypothesis where /(p) is an empirical 
function of the hydrostatic stress; this function is usually repre¬ 
sented as the enveloping curve of Mohr^s circles of limiting shear 

of this condition has been 
established for stone, cast 
iron, and many other porous 
materials. It is, however, 
a criterion of rupture in 
shear rather than one of plas¬ 
tic deformation; this point 
is frequently overlooked. 

For certain natural and 
synthetic resins the Huber- 
Hencky-Mises theory has 

been found to reproduce the observed behavior fairly well; how¬ 
ever, a definite influence of the state of hydrostatic compression 
or tension has to be introduced. For such materials eq. 41 1 
can be written in the form, 

4>o(/o2, T) =/(7i) (41.24) 

where /(/1) is a function of the first invariant, to be determined 
by experiment. This condition has originally been formulated 
by V. Mises^^ 2 and more recently reintroduced as a parabolic^' 
yield limit it leads to solutions of a form similar to those of 
the theory of compressible fluids. 

The conditions of constant distortiotial energy and of constant 
maximum shear stress are essentially yield conditions^ governing 
the initiation of plastic deformation. They cannot be expected 
to govern the progress of plastic deformation after its initiation, 
since this phenomenon is affected by changes in the internal 
structure of the material taking place during the process. Only 
under the assumption that in the course of plastic deformation 
identifiable structural changes do not occur can it be assumed 
that the yield condition will also describe the process of plastic 

stress (Fig. 41-3). The validity 

Fig. 41-3 Mohr-Kdrmdn yield condi¬ 

tion as enveloping line of circles of 

principal shear stress. 
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deformation after its initiation and may therefore be used as a 
flow condition. The validity of this assumption is limited to 
conditions of very small ideally plastic deformation and to condi¬ 
tions of stationary plastic flow of such small velocity that the 
process may be considered a sequence of states of equilibrium. 

42. Theories of Plastic Deformation 

In dealing with the relations between the mechanical variables 
governing plastic deformation, the problems are usually divided 
into two groups. The theories of the first group, known as 
theories of plastic floWy are based on the realization that the 
calculation of stresses and strains in any general problem of 
plasticity involves a close analysis of the history of the deforma¬ 
tion from the moment of initiation of plastic flow. Hence, a 
process of plastic deformation is mathematically to be considered 
as a succession of infinitesimal increments of distortion, and the 
relation between the mechanical variables can only be a relation 
between the momentary stress and the increment of plastic strain 
or the velocity strain; the strain increments or velocity strains, 
dci = Ci, den = Cin and dgij == are defined with reference to 
the deformed shape of the material body just before the incre¬ 
ments have been imposed. The theories of the second group 
known as theories of plastic deformation are based on the sim¬ 
plifying assumption that a step-by-step integration over the 
entire history of plastic deformation can closely enough be 
approximated by an averaging process over this deformation 
history, by which the relations between stress and strain are 
re-established. 

Under certain conditions this averaging process of obtaining 
the plastic strain from the velocity strain by simple multiplication 
by the sum of the intervals or the tin^e is more than a first 
approximation; it represents the rigorous procedure. These con¬ 
ditions require that during the entire deformation period the 
principal axes of the resultant strain tensor, that is, the sum of 
the elastic and plastic strain tensors, coincide with the stress 
tensor; that the ratios of principal stress, sz/si and S2/S1, remain 
constant and the stress field not rotate; and, finally, that the 
density of the body not change. These conditions are auto¬ 
matically fulfilled when in the ideally plastic substance in which 
the elastic deformations are neglected the stress components 
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remain at their constant value and the plastic strains increase 
by small amount under conditions of steady flow. Under condi¬ 
tions of combined elastic-plastic deformation, however, when a 
definite boundary between the elastic and the plastic regions 
exist which gradually changes in location and shape as the 
external forces are increased, the field of elastic stresses is con¬ 
tinually displaced within the body. Thus, in the case of elastic- 
plastic deformation the ratios between the principal stresses will 
not remain constant, and theories of plastic flow should be used 
generally in order to obtain rigorous solutions. However, the 
step-by-step integration required in the theories of plastic flow 
makes the rigorous solution of any problem, even of the relatively 
simple ones of rotational symmetry such as the thick-walled 
cylinder under internal pressure, difficult and cumbersome ^ 
it is doubtful moreover whether the accuracy achieved compared 
to the approximate solutions by the theory of plastic deforma¬ 
tion justifies the effort involved. Thus, until further develop¬ 
ment of the theory of plastic flow provides more effective tools 
for the solutions of problems of plasticity, and until it also 
becomes evident that the approximate solutions of the problems 
under investigation are so inaccurate that they cannot be trusted 
even as approximations, theories of plastic deformation must 
necessarily remain the principal tool in the solution of technically 
important problems of plasticity. 

The general description of plastic deformation of a material 
body requires the introduction of two different sets of stress 
strain relations: one to be used for loading, that is, for conditions 
of stress that produce an increase of the irrecoverable strain; 
the other for unloading, that is, for conditions affecting the elastic 
strain only. Since the variation of the work done by the internal 
forces, both below and beyond the elastic limit, is directly pro¬ 
portional to the variation of the stress or strain intensities, these 
intensities may be used to define the process of loading and 
unloading. Thus, a process of loading at a certain point of the 
considered body is defined as such a change of the state of stress 

as a result of which either ( —/082) or the intensity Sr increases; 
conversely, for a process to be defined as unloading the invariant 
(—/o«2) or the stress intensity, Sr must decrease. An infinitesi¬ 
mal change of stress for which d/o«2 = 0 or dsr = 0 has been 
called by Prager a neutral change of stress. Any change of 
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stress that affects the hydrostatic stress only is necessarily 
neutral. 

Since any given neutral change of stress thus differs by an 
arbitrarily small amount from changes that constitute loading 
and changes that constitute unloading, it should be required 
that the stress-strain laws for loading and unloading satisfy this 
condition of continuity for any neutral change of stress. It has 
been shown by Prager and coworkers^^'^ that no stress-strain 
law representing a theory of plastic deformation can satisfy the 
continuity condition and that only theories of plastic flow can 
provide the continuity between loading and unloading. 

Theories of plastic deformation and theories of plastic flow, in 
general, have been modeled on the theory of the elastic body and 
on the theory of the viscous liquid, respectively. Hence, in 
formulating laws of plasticity the assumptions are usually made 
that proportionality exists between the stress deviator and either 
the deviator of strain or the deviator of velocity strain and that 
for conditions of unloading the stress-strain law is that of linear 
elasticity. Hence, for loading, under conditions of flow. 

Toy A; = X dEoyA: (42* 1) 

where X is a positive scalar fact or of proportionality; for unloading, 

ToyAi = 2GEoyA; (42-2) 

These assumptions are equivalent with the introduction by v. 
Mises of a plastic potential (sec eqs. 41 -5 and 41 -7) from which 
the relation in the plastic range between the components of 
deviatoric stress and of distort ional strain (or strain increment) 
can be derived in the same manner in which these relations in 
the elastic range are derived from the elastic potential. Hence, 
with the plastic potential, according to eq. 41-7, 

dcoti = 1 . K 
Xq ^Sii 

and = (42-3) 
Xn OSii 

where Xo denotes a scalar factor of proportionality. With 

-- = (2Sii — 522 S33) = 3(5ii — p) 
dSii 

3512 and (42-4) 
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and similar equations for the other coordinate axes or, for prin¬ 

cipal stresses, 

^ = 3(s, - p) (42-5) 
OSi 

the Mises stress-strain or velocity -strain relations are 

Xod^oii = 3(sii - p) and Xodgu = Ssu (42-6) 

with similar equations for the other coordinate axes; for the 
principal axes i of stress and strain, 

'^^odeoi = 3(st — p) (42-7) 

By introducing Xq = 3X, eqs. 42 -6 and 42 7 can be written in the 

form, 

Sii Si ■ ~ 'P Sij 
= const = X (42 8) 

(lien - ev) die,- ^v) dxjij 

or 

Si - - S2 _£2 - f3_ Sz 
" - X (42-9) 

dei - - de2 de2 — dez dez - dei 

Eq. 42-9 can also be written in the form, 

^2 

S3 - Si 

dei — de2 S2 — S3 __ de2 — dez 

dez — dei S3 — si dez — dei 
(42 Da) 

from which, by subtraction of the two left sides and the two right 
sides, 

3(s2 “ P) _ 2s2 — Si S3 _ 3(c/c2 — dev) _ 2dc2 ~ dei “ dfiz 

Si — S3 Si — S3 dei — ^^3 ~ dei 

(42-9b) 

Equation 42-9 states that the Mohr circles for the stresses and 
the strain increments are geometrically similar, since, no matter 

what the magnitude of the differences (si — S3) and {dei ~ dez)^ 
the relations between the radii of the circles determined by the 
intermediate stress S2 and the intermediate strain increment de2 

are identical. It is evident, therefore, that in dealing with 
problems of plasticity strains can be used instead of the strain 
increments only if during the entire process of deformation the 
Mohr circles for stresses and strains remain geometrically similar. 
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With X = 2G, eqs. 42 -8 and 42 -9 are transformed into equations 
of linear elasticity if the strain increments are replaced by strains. 

The factor of proportionality X is obtained from the yield or 
flow condition, eq. 41*15 if in the expression for the second 
invariant 7o82 the components of stress are replaced by the com¬ 
ponents of the strain increment according to eq. 42 -7. Thus, 

X = A;/V^/oe2 = ~^/\/—7oe2 *= ~r^- (42-10) 

Hence, the relations 42-6: 

(i{eii - e^) = • {Sii - p) and dgij = • stj (42 - 11) 

For unloading defined by (hr < 0 or for straining for which 
Cr < COf eqs. 42 -11 are transformed into the relations of elasticity: 

2G{eii - Cv) = {sii - p) and 2G • (jij = Sij (42 -12) 

A method of derivation of the stress-strain relations for plastic 
deformation based on a variational principle introduced by 
Haar and v. Kdrman ^ has been suggested by Hencky/^ 4 Haar 
and V. Karman attempted to derive the equations governing the 
state of elastic-plastic equilibrium from the condition that this 
equilibrium is defined by a minimum value of elastic deforma- 
tional energy under the auxiliary conditions provided by the 
three equations of static equilibrium and the yield condition (eq. 
41*7). This variational problem results in stress-strain relations 
of the form, 

1 + 0 

~2G 

(42 13) 

l±j\ 
2G 

0 + 

[Sii - 

3m 

1 +M 

0+1 
and gij = 

where 0 is a function of the coordinates. The volumetric strain 

i + <t> 
3p 

<l> + 
3m \ 

1 +m) 

0 + 1 / 

1 - 2m 1 

2G(1 +^)^~ 
(42-14) 
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Equation 42* 14 shows that the relation between Cy and p is the 
same in the elastic and in the plastic range; this was to be 
expected since inelastic deformation affects the change of shape 
only and not the change of volume. Equations 42-13 may be 
written in the form, 

\ + <t) 1 + 0 
{ea - e,) = {su - p) and (‘+2-15) 

or, splitting the elastic and plastic parts of the deformation, 

(^n ~ ^ ~ 

1 0 

Whereas the Mises equations describe plastic flow, the Hencky 
equations refer to elastic-plastic deformation. 

The eqs. 42-13 make it clear that, whereas the deformation 
within the elastic range is governed by the shear modulus (?, the 

material appears to soften in the elastic-plastic range, the defor¬ 
mation of which is governed by the factor (1 + 0)/6r > 1/C. 
The function 0 has positive values within the plastic area. It is 
like X a function of the coordinates and may be a function of 
time. The equation 0 = 0 is the equation of the surface which 
delimits the elastic and the plastic domains. 

If in flow theories the elastic deformations accompanying 
plastic flow are taken into account, the superposition of Hooke’s 
law and of eq. 42 -11 results in the relation, 

{eu - 6y) = ^ 0v22 - p) + ^ {Sii - p) (42 -18) 

• --L- 

2G X 

These relations have been proposed by Prandtl and Reuss.^^*^ 
The similarity of the eqs. 42 *18 with the equations of a Max¬ 

well body is purely superficial; the form of the function X is 
such that the equations are homogeneous in time. This becomes 
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clear when the relation between the equations of plastic deforma¬ 
tion 42* 17 and those of plastic flow 42-18 are established by 
differentiating eq. 42-17 with respect to time: 

\ (j} (jf 

(ea ~ ^ ^ ~ ^ ~ 

^ ^ ^ (42 -19) 

The difference l)etween the flow ecjs. 42 19 derived from 
Hencky^s equations of plastic deformation, and the Prandtl- 
Reuss equations of plastic flow 42 • 18 is in the existence on the 
right side of the former of the second (plastic) term relating the 
deviator of velocity strain to that of the stress velocity. Com¬ 

parison of the third term shows that 1/X = <j>/ 2G and that there¬ 
fore eqs. 42* 18 are homogeneous in time. 

If the proportionality between the deviator of stress and that 
of velocity strain is restricted to states of stress above the yi(4d 
limit, whereas below this limit the material is considered unde- 
formable, its behavior is essentially that of a viscous body with 
a yield limit. In the theory of ideal bodies such a material is 
known as a ^‘Bingham body^^ or a viscoplastic material. 

Within the so-defined material the assumption of propor¬ 
tionality between the velocity strain and the instantaneous value 
of stress is qualified by the condition that at the yield limit 

/^(/o2) = ^0(^02) = 0 all velocity strains vanish. It is 
therefore necessary to replace, as the relevant dynamical variable, 
the tensor or deviator of stress by the so-called tensor or deviator 
of overstress, which is fully defined by the existing state of stress 
and vanishes at the yield limit. This procedure has been sug¬ 
gested by Fromm^- ® and developed by Imager.^ 

By denoting by s'l, §'2, and s'z the projections, on the axes of 
principal stress Si, S2, and S3, of the vectors representing the 
tensor of overstress at a point P situated beyond the yield limit 

F(siS2Sz) = 0 within the (S1S2S3) space, a function H{siS2S^) = 
const can be defined, which describes a single-parameter family 
of surfaces such that the vector associated with a point P is 
normal to the surface passing through P. The components of a 
normal to the surface are proportional to dH/ds\, dH/ds^y and 
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dH/dsz; thus, the normal (unit) vector has the directional 

cosines, , I dH , I dH , I dH 
= -p • 7“; ^2 = p ■ 7~j ~ F ’ I~~ K ds\ K ds2 K dsz 

where, because of + Z3* = 1, 

«-[©'*©'*e-i)T »■» 

If the intensity of the vector, the components of which are 

s'l, s'2, s'a, is defined by the function, 

G = \/S\^ + 82!^ + ^3^^ = 53) (42*22) 

the principal stress components of the tensor of overstress are 
given by the expressions: 

dJl r ^G_ 

dsi' 

dJI 

dS2' 
S3 

(^ djl 

K dsz 
(42*23) 

Since the overstress tensor vanishes at the boundary between the 
elastic and plastic region, the function G must be zero for F — 0, 

The yield limit is thus equally defined by G = 0. Under the 
assumption of isotropy both functions G and JI arc necessarily 
functions of the invariants of the stress tensor: 

G = G(llsf 1281 I is) 

H = H{Iui hsi hs) 
(42*24) 

Whereas, as a result of the introduction of the Huber-Mises- 
Hencky yield condition G = F = 0, the function G = [4>o(/o«2) 
— $y)] depends on the second invariant of the deviator of stress 
only, this is not a priori true of the function H. Hence, visco¬ 
plastic behavior, in general, will be described by higher than 
second powers of the stress components and thus not only by the 
second but also by the third invariant. 

In order to verify the theoretical assumptions concerning the 
relations between the mechanical variables in the plastic state 
of real materials, particularly metals, tests under combined 
stresses, particularly axial tension and either torsion or internal 
pressure of thin-walled metal tubes, have been performed.^ 
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Their results seem to indicate slight systematic deviations from 
the general relation 42 • 1 and thus from the conditions 42 • 8 and 
42-9, in which the strain increments are replaced by strains, 
while supporting in principle the Huber-Mises-Hencky yield 
condition. If two ratios m and n are defined by 

m = 2 —-- and n = 2 --- (42 • 25) 
Si — s:i Cl - cs 

the validity of the general condition 42*9 would lead to the 
straight-line relation m = n. Results of tests'^”(Fig. 42-1) 
show an apparently systematic 
deviation from this relation. 
Either this deviation may be due 
to noncoincidence of the stress 
and strain tensor in the deforma¬ 
tion or to the influence of the 
overstress tensor in the stress- 
strain relations by which higher 
than second-power stress terms 
are introduced in the yield con¬ 
dition, or it may be ascribed to 
elTects of anisotropy within the 
material. Since tests under com¬ 
bined stresses are usually per¬ 
formed on thin-walled tubes, 
the anisotropy inherent in these 
tubes as a result of the fabrica¬ 
tion process must be expected to 
affect the test results. This anisotropy cannot be eliminated 
even by the most elaborate heat treatment. Therefore it is not 
to be expected that test results obtained dh such specimen could 
be in agreement with conditions of deformation derived under 
the assumption of isotropy of the material. 

For orthotropic materials in which the three existing axes of 
anisotropy intersect at right angles, a modified theory of deforma¬ 
tion valid only for rotationless deformations the principal axes 
of which coincide with the axes of anisotropy, might be established 
by developing an expression for the distortional energy of the 
orthotropic body, which would replace the expression ^o(/o2, T) 

u 

V r- 

—m ‘ 

II l Vena int) 

0 —1.0 

FiG. 42 • 1 Deviation of Tay¬ 

lor and Quinney’s tests^^'® on 

metals from the straight- 

line relation. The curve is 

derived from Prager’s equa¬ 

tions of the overstress func¬ 

tion// = Is2 ~~ 0.65(/«3//a2)®- 
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in the yield condition 41 • 1. This procedure is open to the 
objection that the distortional energy of an anisotropic body 
depends on the relations between the elastic constants. Evi¬ 
dently these constants must appear in the yield condition of the 
anisotropic material. There is however no reason to assume 
that they would govern the plastic flow and thus appear in the 
relations between the stresses and the plastic strain increments. 
Hence, it appears more reasonable to select, by analogy with the 
Mises criterion for the plastic flow of an isotropic material, a 
homogeneous quadratic function of the stress components as 
the plastic potential f of the orthotropic body. 

This has recently been done by Hill,^- ^ who introduced the 
expression, 

2/ = F(s22 533)^ + G(ssz — Sii)^ + H{sii — ^22)^ 

+ 2Ls2z^ + + 2Nsv2^ (42*20) 

as the plastic potential of an orthotropic material whose axes of 

orthotropy coincide with the coordinate axes. If soi, S02, So3 

are the yield stresses in tension in the directions of the axes of 
orthotropy, and ki, k2f and kz are the yield stresses in shear with 
respect to these axes, the constants of the plastic potential are 
defined by the relations: 

G + H ^ 

H + F ^ 
_1 

«02 

1 

2 J 

2F = 

2G = 

2^ 

1 1 1 

2 + 2 2 f 
S02 «03 soi 

1 1 1 

2 + 2 2 ’ 
S03 Soi 502 

1 

0 + 
1 

2 + --2; 
SOl S02^ 503 

2N = 

k2^ 

I 
/7 2 
A3 

(42*27) 

By applying eqs. 42*3 to the yield criterion 42 26 the following 
relations between the components of the stress tensor and the 
tensor of strain increment are obtained: 

\{)den = H{sn — S22) + Cr(sii — «33); 

\0de22 = F(822 — S33) + H(S22 ““ «u); 

^odgzi = Msz\ (42*28) 

Xorfe33 = (?(«33 ~ Sn) -f F{8zZ S22); 

Xo dg\2 = N812 
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Since ew + ^22 + <333 = 0, the selection of the plastic potential 
(eq. 42 26) implies that the superposition of hydrostatic pres¬ 
sure does not affect the distortion of the body and thus its plastic 
yielding. This assumption is, however, justified only as a first 
approximation (see Art. 21). 

A similar attempt to develop a condition of orthotropic flow 
has been made by Jackson,^-'^® who succeeded in reproducing 
test results obtained on steel tubes under combined stress, for 
which the isotropic theory proved inadequate. 

43. Residual Stresses following Plastic Deformation 

It has been assumed so far that the behavior of the plastic 
body depends on the instantaneous values of the deviators of 
stress and of strain or of the integral over the strain increments 
during loading, but not on previous strain history. However, if 
a continuous elastic region exists simultaneously with plastic 
domains, the mechanical behavior of the body will depend on the 
sequence of load application and unloading. As a result of the 
irrecoverable deformation produced within the plastic area on 
loading, a system of residual stresses is introduced on unloading. 

The residual stresses evidently influence the deformation pro¬ 
duced by subseciuent loads. This interaction of elastic and 
plastic regions creates a strain-hardening effect, which although 
not identical with the work hardening of the material produced 
by textural microstresses is basically the same phenomenon. 
The difference is only in the order of magnitude of the inelastic 

regions involved. 
If, under the assumption of ideal plasticity, no elastic area 

exists in the deformed body, or if the elastic deformations are 
neglected in comparison with the plastic deformations, the 
stresses in the ideal plastic body are detti*mined by the initial 
yield condition and remain invariable during the progress of 

plastic deformation. However, unless a relation between the 
deviators of stress and of strain velocity is introduced and a 
problem of viscous flow formulated, the deformations remain 

indeterminate, although the stress problem is determinate. 
The deformational behavior of a material in the range of 

elastic-plastic equilibrium, and the transition from conditions of 
elastically restrained or contained^^ plastic deformation to a 
state of unrestrained flow under determinate stresses can be 
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illustrated by a very simple structural model proposed by 
Hencky^^’^ and shown in Fig. 43 -1. Denoting the cross section 
of the members Si and >82 by A i and A 2, respectively, the analysis 
of the statically indeterminate system under the action of the 
force P gives the relations: 

S2 == 

1 + 2 ^ sin^ a 
A2 

and Si = S2 4^ sin"* a 
A 2 

(43 1) 

The elastic energy IF of the system 

W _.2 I _A_ 
EA1 sin a^ * EA2 ^ 

82^ 

= ki^Sl^ + k2^S2^ (43-2) 

A t 

Fig. 43-1 Structural model 

for illustration of states of 

elastic-plastic equilibrium 

and residual stresses. 

Under the specific assumptions a = 30° and A1/A2 = 4, 
the forces in the members Si = S2 

= P/2. The upper limit of per¬ 
fectly elastic condition, defined by 
S2 = ^0^2, where sq denotes the 
yield limit, is therefore reached 
under the load Pki = 2so/l2 (Fig. 
43-2). The initiation of unre¬ 
stricted plastic flow is defined by 
the load Ppi = 5so * A 2 under which 
the members Si start to deform 

plastically. The range Pei < P < Pn is governed by the laws 
of contained elastic-plastic deformation: the application of 
any load within this range produces, on unloading, a system 
of residual stresses affecting the subsequent load cycle. Thus, 
for instance, if P = 4soA2, the elastic forces are aSi = 2so^2 

and S2 = 2soA2j and the stresses si = J/^So, S2 = 2so. Since 
82 = So defines plasticity, ^82 cannot exceed so^2, so that the 
remainder of the load has to be taken on by a8i; therefore, 
the real forces are Si = 3so^2 and S2 = so^2, and the stresses 
81 = 82 = So* On unloading the member S2 has become 
too long to follow the full recovery of strain in Si, which would be 

2Sil ^ h . , . , h 
irT* ; its own contraction is only 
EAl JBr E 

Hence, an 
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internal force Z2 is necessary to force S2 back into a compatible 
position. This force is obtained from the condition, 

+2so| 

Hence X = §0^2, and the residual forces and stresses in Si and 
S2 are 

>Si = “>§2 = ^1 = and §2 = "“^o 

Therefore, under a second load application of P = 4so^42, the 
stresses are Si = j^so + and S2 = 2so — sq == ^o, 
which is still within the elastic range. By previous plastic defor¬ 
mation the system has thus become elastic for the price of an 
inelastic displacement A of magnitude, 

This elasticity is due to the storing up of an energy potential 
within the system; because this energy neither can be recovered 
mechanically nor is dissipated, it has been called by G. Taylor^® ^ 
latent energy. The amount of latent energy Wh is, however, only 
a portion of the total energy W expended in deforming the 
structure, 

n/ I Q 2 ^"^2 

since 

= — • — So“4.42 + — S02.42A = = W 

If the load is increased beyond P = 4#o-42, the residual stress 
in S2 would exceed S2 = — sq, which is not possible. Thus, only 
the residual stresses pertaining toP = 4so.42 remain permanently 
in the system. For loads exceeding 450-4.2, permanent deforma¬ 
tion is produced during each load cycle and forcibly reversed 
during unloading; work is therefore permanently expended and 
appears as hysteresis. 

If, after a load Pei < P < 4^42^0 has first been applied and the 
system made elastic with respect to every repetition of this load, 
a load is applied in opposite direction, plastic deformation sets 
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in at a lower load than the elastic limit of the initial (undeformed) 
system. This so-called Bauschinger effect under reversed load 
is produced by the residual stresses due to the load P which, by 
increasing the stresses under the load (—P) produce an earlier 

(a) P = 2S0A2 Elastic 
(b) P = SsqAz Elastic-plastic: yield point on reversal 

under f-Pj = So A2 

(c) P^AsqAo Elastic-plastic: yield point on reversal 
under r-P; = 0 

(d) P = SsoAg Fully-plastic: yield point on release 
under P = 50^2 

Fio. 43*2 Work hardening, Bauschinger eft’cet, and liysieresis in structural 

model of Fig. 43.1 under load.'^*'^ 

start of plastic deformation in the member S2. Thus, for 
instance, if P = 4A2S0, plastic deformation Avill set in under any 
value of (—P) > 0, because the residual stress due to the load 
P = —4A 2^0 is just at the yield limit §2 = Force-deforma¬ 
tion diagrams of the model, under different reversed loads P are 
shown in Fig. 43 *2. Both hysteresis and Bauschinger effect are 
clearly visible. 
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The discussed model has also been used by Prager^* * for a 
general representation of the ranges of problems of contained 
plastic deformation and of free plastic flow. If the variables 
X = kiSi and y = 1^28^ are introduced into eq, 43 *2, this equa¬ 
tion becomes + 2/^) = = W which is the equation of a 

Kkj. 43 -8 IVagiM-’s n'prcscntation-’* ''* of the genenil olastic-plastic behavior 
of the Heneky model. 

cinde. Any possible response of the model to an external load 
can be represented by a point on the straight line given by the 
ecjuation of equilibrium of the system: 

2^S, sina + .S!2 = f 2sina + f =P 43-3) 
A’l A 2 

The actual elastic response is defined by the point pertaining to 
the condition of minimum potential energy r“ = W —> min; this 
is the point on the straight line (eq. 43 -3), the distance of which 
from the origin a: = y = 0 is a minimum (Fig. 43-3). It is 
obtained as the point of intersection of the line of equilibrium^ 
defined by eq. 43 • 3, and the line of the elastic state which is the 
normal through the origin to the direction of the parallel lines of 
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equilibrium. The yield condition for S2 is given by a straight 
line parallel to the x axis at a distance y = ± F, where Y = 

the yield condition for /Si by a straight line parallel to 
the y axis at a distance x = ±Xy where X = kiSoAi. These 
straight lines forming the yield rectangle delimit the regions of 
perfect elasticity and of plastic flow; they contain states of 
elastic-plastic deformation. Thus the conditions defined by 
points along a line through the origin are elastic between 0 and 
Fly elastic-plastic between F\ and F2, and fully plastic beyond 
F2 ] the distance {F2 — Fi) defines the range of contained (elastic 
plastic) deformation, whereas points beyond F2 define conditions 
of free plastic flow. 

The family of parallel lines of equilibrium is defined by the 
parameter P. The line Lq through the origin for P = 0 includes 
all possible states of residual stresses compatible with equilibrium 
conditions; the line L/^ through (0, F) delimits the purely elastic 
states, the line Lr through (X, F) the states of contained elastic 
plastic deformation. From this representation it is immediately 

evident that the minimum condition TF = r —> min of the elastic 
problem must be reinterpreted in the elastic-plastic problem 
by introducing the auxiliary condition of compatibility of the 
elastic-plastic state of the structure with the yield condition. 
Thus the actual response of the model to any load Pei < P < Pei, 
defining an equilibrium line L between Le and Le, is represented 
by the point on L the distance of which from the origin is the 
minimum, compatible with the restriction that the point must 
be located on either of the lines x — X or y = F. 

The response to a load cycle (0 —> P —^ 0) is represented in 
the loading stage by the succession of points on the line of elastic 
state up to F\ and by points of x = X up to the maximum load 
defined by point P; in the unloading state by points on a line 
through F parallel to the line of elastic state. The point of 
intersection R of this line with the line of residual stresses Lo 
defines the state of residual stresses introduced by the load P. 
Evidently R must be located within or on the boundaries of the 
elastic rectangle. Under reversed direction of the load the limit 
of purely elastic response is defined by the point of intersection 
P'l of the unloading line of the elastic state FR with x = — X. 
The difference between the length RF and PP' represents the 
Bauschinger effect of the model. Being a state of elastic equilib- 
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rium, the state of residual stresses defined by the point R on the 
unloading line must necessarily fulfill the minimum condition 
r —> min. 

The consideration of the model has shown the validity of a 
minimum principle in the theory of the contained elastic-plastic 
deformation; this minimum principle, however, is not identical 
with the principle of minimum strain energy which governs the 
elastic behavior. By the introduction of the yield condition as 
an auxiliary condition of the variational problem, the condition 
of minimum elastic strain energy is changed in the domain of con¬ 
tained elastic-plastic deformation into a condition of minimum 
distortional energy. Since the elastic distortional energy governs 
the plastic deformations, a minimum of distortional energy will 
necessarily be associated with minimum values of the plastic 
deformations. If plastic resistance is defined in terms of the 
external forces producing a certain amount of plastic deformation, 
the minimum condition of distortional energy is equivalent to 
a condition that has been formulated as a special “condition of 
maximum plastic resistance,’^ valid within the range of plastic 
deformation,^'*^ ^ In this range the total strain energy will 
generally not attain extreme values. Other variational prin¬ 
ciples have recently been established^^ ^ for the plastic body, 
according to which the stress variation of the plastic work is 
an absolute maximum, whereas the velocity strain variation is a 
minimum. 
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CHAPTER 

8 

WORK HARDENING OF POLYCRYSTALLINE 

METALS 

44. Structural Theories of Work Hardening 

When the yield limit of a metal specimen is exceeded, the 
plastic deformation under either constant or fluctuating stress 
is more or less rapidly blocked by changes within the structure 
of the material. These changes result in a gradually increasing 
resistance to further plastic deformation, increasing indentation 
hardness and increasing fracture strength, as well as in changes 
in density, electric conductivity, magnetic properties, and resist¬ 
ance to wear. Whereas the elastic shear modulus remains 
practically unchanged, slight changes occur in the value of the 
bulk modulus and of Poisson^s ratio. ^ This process of changing 
the mechanical properties of metals by plastic deformation is 
usually termed strain hardening or work hardening; for the poly¬ 
crystalline body the latter term is the more adequate, since the 
changes within the material may be related to an input of work. 
A general theory of work hardening can be developed on the 
basis of this relation. 

The rate of change of mechanical and other properties is 
related to the rate of irrecoverable change in the internal structure 
of the polycrystal; it depends necessarily on the initial undeformed 
structure of the material and is different for polycrystalline 
aggregates of various initial structure. It also depends on the 
temperature and the speed at which the material is deformed. 

Changes in the physical properties by work hardening are 
281 
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thus related to some modification that has occurred within the 
configuration of the crystal grains. Since mechanical properties 
of polycrystalline metals also depend on the nature of the grain 
boundaries, changes of those properties are necessarily also related 
to changes in the character and volume of these boundary regions. 

When a metal crystal within the polycrystalline aggregate is 
permanently deformed, slip takes place along a number of the 
eligible slip planes which are most favorably oriented with respect, 
to the direction of principal shear of the acting stress system. 
The spacing of the slip planes and the extent of slip along these 
planes have been found to depend on the applied rate of strain 
or of loading.If the deformation is produced very slowly, 

the amount of slip on individual planes is extremely small and 
the number of planes correspondingly large; under such condi¬ 
tions slip on atomic slip planes is rather uniformly distributed 
and the extent of slip on any plane so small that it may be 
invisible under the microscope. Above a certain critical strain 
or loading rate, on the other hand, the spacing of visible slip 
planes and the extent of slip along individual planes suddenly 
increases since the visible slip lines are in fact slip bands or glide 
lines formed of a cluster of closely spaced atomic slip planes (see 
Art. ^ The critical over-all strain or loading rate at which 
the finely distributed laminar slip is transformed into one essen¬ 
tially concentrated within clusters of closely spaced slip planes 
which divide the crystals into glide lamellas depends on the rate 
at which applied strain energy is dissipated within the inter¬ 
crystalline regions. If the rate of application of strain energy 
is higher than its rate of dissipation within this region, extensive 
breakdown of the intercrystalline cohesion will occur, accom¬ 
panied by an abrupt change in the distribution of crystalline 
slip. It is reasonable to assume that the rather uniform restraint 
imposed on the deformation of a crystal by slip, which is provided 
by unbroken relaxing grain boundaries, will favor a fine distribu¬ 
tion of slip planes and small amounts of slip on individual planes, 
as such distribution will enable the crystal to deform plastically 
within the restraint of the relaxing intercrystalline medium. 
The propagation of extensive slip on widely spaced clusters of 
slip planes, on the other hand, requires excessive and rapid defor¬ 
mation of the restraining medium which necessarily leads to its 
local destruction (Fig. 44-1). Finely distributed slip is thus 
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characteristic of slowly deforming relatively fine-grained poly¬ 
crystalline aggregates in which the crystals deform by slip within 
the slowly yielding boundaries. Such deformation cannot be 
expected to occur in single crystals, the slip of which is unre¬ 
strained and therefore rather sudden and extensive, nor in rapidly 
deformed or coarse-grained poly crystalline aggregates, since the 
restraints imposed on the slip along widely spaced slip bands are 
rapidly removed by the local destruction of the cohesion of the 

(a) (b) (c) 

Fig. 44-1 Schematic diagram of extension of crystal (a) in surrounding 
viscous matrix, (b) by slip along wid(‘ly distributed glide planes, and (c) 

by finely distributed slip. 

boundary regions. Slip bunds in this case are free to propagate 
through a number of neighboring crystal grains. 

Slip is retarded by the distortion of the atomic structure 
around the slip planes; the amount of distortion created during 
slip determines the rate of blocking along the slip planes. There¬ 
fore, over-all plastic deformation resulting from relatively short 
slip on many finely distributed slip p^^nes will be less rapidly 
blocked than plastic deformation resulting from extensive slip 
along widely spaced clusters of slip planes and associated with 
the creation and distortion, during the motion, of glide lamella 
of finite thickness between the slip bands. ^ 

However, the development of a blocking mechanism by dis¬ 
tortion of the atomic arrangement within the slip bands is prob¬ 
ably responsible for work hardening only within the range of 
relatively small plastic deformation. The increase in the 
resistance to deformation that can be explained by this mecha- 
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nism alone is usually not of the same order of magnitude as the 
increase actually observed in polycrystalline aggregates. Thus, 
the blocking mechanism developing within individual slip bands 
may account for the work hardening in single crystals; for most 
metals such work hardening, however, represents only a fraction 
of the total work hardening observed in polycrystalline aggre¬ 
gates. Therefore, it is probably not so much the blocking of 
slip vrithin the slip bands but the blocking of this slip at or near 
the grain boundaries which is subsequently overcome by frag¬ 
mentation, rotation, and elastic distortion and bending of crystal 
fragments, that produces the observed work-hardening effects 
of the polycrystal (see Art. 20). 

Crystal fragmentation produced in the course of plastic defor¬ 
mation can be made visible by observing the changes in the X-ray 
diffraction pattern. The broadening of the initially sharp dif¬ 
fraction rings, which indicates a breakup of larger into smaller 
crystal units, as well as elastic bending and distortion of the 
fragmented units, the definite limit of this broadening, and the 
retention of a certain texture of the final X-ray pattern indicate 
the existence of a limiting size of crystal fragments, to which the 
initial crystal structure is finally broken down.'*'* At this limit 
the thermal instability at the temperature of the deformation, 
as expressed by the rate of diffusion, becomes so strong that 
fragments that are smaller than the limiting size tend, if formed, 
to coalesce rapidly to the limiting or to a larger size. 

Crystal fragmentation is probably the principal structural 
change associated with plastic deformation within the range 
of strains up to 15 or 20 percent. Changes in the mechanical 
properties within this range are thus essentially due to the refine¬ 
ment of the initial crystal grains producing crystallites of more 
or less uniform limiting size and to changes in the volume and 

energy content of the intercrystalline boundaries. 
The primary effect of grain refinement is to increase the specific 

distortional energy that can be reversibly stored up within an 
individual crystal grain, since, according to eq. 41 • 8, the yield 
limit is proportional to the sum of the squares of the principal 
shear strains. Assuming that slip within an individual grain of 
the polycrystal is the result of the energy that produces pure 
shear in the eligible slip system of the considered crystal, the 

critical energy level at which slip is initiated along a single one 
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of the eligible planes is represented by the shear energy that can 
be released by slip over one atomic distance a, which is the unit 
step or quantum of slip. Slip over one-half that step only requires 
energy application; the second half of the step toward the new 
equilibrium position occurs spontaneously, after the activation 

energy between the two equilibrium positions has been over¬ 
come in the motion over the first half of the unit step. The 
critical energy level, which depends on the sliear strain a/2X, is, 
therefore, directly proportional to the square of this ratio where 
X is a measure of the linear dimension of the crystal (Fig. 44 -2). 

The change in the energy con¬ 
tent of the boundaries of the 
broken-up crystal structure is 
accompanied by an over-a 11 
decrease in density of the aggre¬ 
gate of the order of magnitude 
of 0.1 to 1.0 percent which is a 
characteristic feature of the work¬ 

hardening process of most polj^- ^ o or . n*. 
crystalline metals; no measurable 
decrease in density can usually be found in cold-worked single 
crystals.'*^ ® In the course of the fragmentation of the crystal 
structure a considerable amount of disorder is created around 
the glide bands as a result of the distortion of the atomic structure 
within these bands as well as by rotation, distortion, and bend¬ 
ing of the crystal fragments (glide lamellas) during deformation. 
To stabilize this distorted structure a system of textural micro¬ 
stresses of very high potential must be built up during unloading. 
Thus, a certain percentage of the volume of cold-worked poly¬ 
crystalline metals will contain particles connected by bonds of 
exceptionally high energy content; the distances between particles 
within this volume must markedly exceed those in the remaining 
crystal volume. The potential energy introduced into and 
latently stored within the polycrystalline structure by the frag¬ 
mentation of crystals is therefore contained essentially within the 
small volume of crystal boundaries and distorted slip bands.^ 
This conclusion has been confirmed by the comparison of changes 
in the lattice parameter observed in the course of work hardening, 
with the over-all decrease in density of the material, or with the 
amount of potential energy latently stored up within the frag- 
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mented structure and measured by the difference of the heat 
content of the undeformed and of the work-hardened structure. 
The amount of latent energy or the density decrease sufficient to 
produce an over-all elastic strain consistent with the observed 
change of the lattice parameter was found to be much smaller 
than the actually measured latent energy or the change of 
density. Thus the latent energy and the local density changes 
must be concentrated mainly within the intercrystalline bounda¬ 
ries and within the distorted slip bands. 

At all stages of the fragmentation process, slip within the indi¬ 

vidual crystals of the polycrystalline aggregate can be effectively 
blocked by an increased resistance to deformation of the grain 
boundaries and distorted slip bands, such as that produced by 
the diffusion of foreign atoms into those regions (precipitation). 
Thus, slip delay and discontinuous yielding, which in hexagonal 
single crystals is caused by the blocking of the operative slip 
planes but cannot occur in cubic single crystals because of the 
large number of alternative slip planes (see Art. 20), can be pro¬ 
duced in cubic polycrystals, such as steel and aluminum, by 
the blocking of the propagation of glide planes across grain 
boundaries. 

A change of deformational properties due only to the refine¬ 
ment of the crystal grains would necessarily be independent of 
the direction of applied strain, since changes within a statistically 
isotropic material cannot depend on the direction of the strain. 
However, the change in the energy content of the distorted 
atomic layers surrounding the crystal fragments, which results 
from the system of textural stresses stabilizing the work-hardened 
structure after fragmentation, introduces a directional effect of a 
similar type to that discussed in connection with the occurrence 
of residual stresses in the elastic-plastic deformation of Hencky^s 
structural model (see Art. 43). In the'same manner in which the 
effect of systems of macroresidual stresses is not independent of 
the direction of the applied force, changes of deformational 
properties due to the existence of a system of textural stresses 
depend on the direction of the straining. The expression of this 
dependence in work-hardened metals is the Bauschinger effect; 
the resistance to plastic deformation as defined by the yield 
limit is increased in the direction of the work-hardening strain; 
it is reduced for strains applied in the opposite direction. For 
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strains in intermediate directions the changes of deformational 
properties are rather erratic. 

When an advanced stage is reached in the process of crystal 
fragmentation without fracture having occurred, the mechanism 
of plastic deformation by slip and fragmentation changes gradu¬ 
ally and becomes one of formation of a definite texture (orienta¬ 
tion), by the rotation and temporary breakup of fragments, which 
are subsequently re-formed in the direction of the largest strain 
velocity (see Art. 20). Changes in mechanical and other prop¬ 
erties produced during this stage of the deformation are an expres¬ 
sion of the developing anisotropy of the material; the structural 
pattern defined by grain size and by the volume of grain bound¬ 
aries remains essentially unaffected, and the hardness increase 
during this stage is relatively small. 

45. A General Law of Work Hardening 

On the basis of the preceding discussion four different mecha¬ 
nisms may be responsible for the increase of resistance to plastic 
deformation of a polycrystalline metal aggregate stressed above 
the yield limit. Although it is frequently attempted to explain 
the work-hardening phenomenon in terms of a single one of 
those mechanisms, it is most probably the joint operation of all 
four mechanisms simultaneously or consecutively that is respon¬ 
sible for the observed work-hardening effect over the whole range 
of deformations. Work-hardening may thus be the result of 

1. The increase in resistance to slip within a single crystal, 
due to the creation and propagation under applied shear of dis¬ 
tortions within the atomic lattice (dislocations). 

2. The increase in resistance to plastic deformation of a poly¬ 
crystalline aggregate produced by the fragmentation of crystals 
and the rotation, elastic distortion, and bending of crystal frag¬ 
ments. The increased resistance is due primarily to the fact that 
the specific shear energy required to initiate slip in a single 
crystal is an inverse function of the square of the crystal size. 

3. The stabilization of the fragmented and distorted crystal 
structure by a system of textural stresses set up during unloading 
after fragmentation. This system stabilizes the distorted struc¬ 
tural pattern by introducing into the materia! a certain amount 
of latently stored potential energy, 

4. Anisotropic change in resistance to plastic deformation 
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produced by practically volume-constant deformation associated 
with rotation, breakup, and rapid re-formation of crystal frag¬ 

ments of limiting size in the direction of the maximum strain 
velocity. 

The mechanism of setting up a system of textural stresses 
within the deformed structure can be interpreted in two different 
ways, following two different schools of thought. If it is assumed 

that the textural stresses are concentrated within the interfaces 
of the crystal fragments, the mechanism is consistent with the 
concept of crystal fragmentation; if, on the other hand, it is 

assumed that the textural stresses are associated with distortions 
on an atomic scale^ (dislocations), the work-hardening effect 
may be attributed to an increase in the density of the dislocations 

produced in the course of the deformation, without the concept 
of fragmentation being introduced. There is, in fact, no con¬ 

tradiction between the two assumptions if it is recalled that block 

boundaries can be defined as planes of concentration of disloca¬ 

tions (see Art. 13). Thus, an increase of the density of disloca¬ 
tions can be interpreted as an increase in the extent of the volume 
of interfaces, which can only result from a reduction of the size 

of the undistorted crystal regions. Hence, the concept of work 
hardening due to the potential energy of the increasingly dense 

dislocations is essentially only a different interpretation of the 
concept of work hardening due to a fragmentation process; in 
order to account for the work-hardening limit, which is attained 
when the structure is made of fragments of limiting size, a limit 

of maximum density of dislocations must be introduced. 

Although the different work-hardening mechanisms are 

assumed to be jointly operative, the degree of their relative 

importance probably changes with the initial properties of the 
material and with the progress of work hardening. Atomic 
distortion (mechanism 1) is probably responsible for the 

initial work hardening associated with small plastic deformation, 
or for the work hardening of polycrystals consisting of a small 

number of crystals. Beyond the range of small deformations 

the work-hardening effects resulting from crystal fragmentation 
and storing up of potential energy, that is, mechanisms 2 and 3, 
may be assumed to be mainly responsible for producing the 

observable relations of stress and strain. Reorientation of frag- 
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ments, which does not produce appreciable hardening, is opera¬ 
tive in the formation of texture under large unidirectional strains; 

therefore in polycrystalline metals the texture-forming mecha¬ 
nism comes into play at a late stage, when crystal fragmentation 
has been nearly completed and further deformation can only 

proceed by directional reorientation of the crystal structure under 
conditions of considerable thermal instability. 

A feature common to the mechanisms 1, 2, and 3 will be used 

to develop a general function of work hardening. This feature 
is the dependence of the resistance to slip initiation within a 

crystal or within a polycrystalline aggregate on an inverse func¬ 
tion of a geometrical parameter X, which is considered a measure 
of the average linear dimension of the crystals or the crystal 
fragments forming the aggregate. 

Considering an elementary crystal cube of linear dimension X 
(Fig. 44 -2), subject to pure shear, slip is initiated by the gliding 

of one atomic plane over another over one atomic distance, with 
accompanying release of stored-up potential energy, when the 

elastic shear strain g attains the value a/2X, that is, when the 

upper plane is displaced against the base plane by one-half 

the atomic distance a. Hence, the elastic energy per unit vol¬ 
ume which can be reversibly stored up before slip starts, the 

so-called resilience }iGg^ = const 1/X^; it is thus inversely pro¬ 
portional to the square of the parameter X. It is this resilience 
that provides a measure of the hardness H, by delimiting the 
energy level at which plastic deformation starts. 

If it is assumed that the increase in hardness H is not or not 
only due to the resilience of individual crystals increasing with 
decreasing parameter X but to the storing up of latent energy 

within the fragmented structure, the hardness increase dH would 
be proportional to the increase, in the ^course of fragmentation, 
of the intercrystalline surfaces within the unit volume of the 

aggregate. If m crystals of parameter X^ making up the unit 
volume of hardness Hm are broken up into a unit volume of 
hardness Hn consisting of n crystallites of parameter Xn, and if 

the ratio of hardness before and after fragmentation Hm/Hn is 
assumed to be proportional to the ratio of intercrystalline sur¬ 

faces Am and An per unit volume before and after fragmentation, 

the hardness ratio can be expressed by 
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^ Xfn 

Hfn TnXfn^ Xfi 
(45.1) 

since {mXm^) = (nXn^) == unit volume. The hardness H is 
therefore inversely proportional to the parameter X. The same 
relation is obtained from the dislocation theory.^®'2 

Thus, according to any one of the three work-hardening mecha¬ 
nisms the hardness H defined in terms of the elastic resilience 
is inversely proportional to either the square of the parameter X 
or to X itself, or to some intermediate power X”, where 1 < n < 2. 
It is on the basis of this conclusion that a general law of work 
hardening can be developed. This law describes the change of 
state in terms of the process of energy transformation which 
accompanies the changes in the structural pattern of the metal. 
It can therefore be expressed in terms of the basic thermodynamic 
relation (eq. 28*6); for each structural pattern defined by the 
energy Wdj irrecoverably expended in producing it, a limiting 
amount of distortional energy 4>o = // exists, up to which 
dWo/dt — 0. The function — H — f{Wd) represents the 
basic work-hardening relation. 

Energy being an additive quantity, the hardness of the poly¬ 
crystalline aggregate can be assumed to be roughly equal to 
the sum of the individual hardness or resilience values of the 
constituent crystals; hence. 

i ^ GgJ r,„ = 4>o(Sf) V (45 • 2) 

where g denotes the over-all limiting shear strain and V the vol¬ 
ume of the aggregate, while Vm and gm, respectively, denote the 
volume and limiting shear strain of an individual crystal of size 
m out of the n sizes of crystals forming the aggregate. 

Since the hardness H of the aggregate is made up of the sum 
of the hardness H^n of the constituent crystal sizes, the contribu¬ 
tion of the crystal size m to the hardness of the aggregate will 
necessarily be HmVm/V, If the structural pattern producing 
the hardness H is defined by a certain volume distribution of 
crystal parameters X^, running from Xi to Xn, where Xi denotes 
the largest crystal size, Xn the smallest (limiting) size, this 
pattern is related to the energy Wd irrecoverably expended in 
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producing it from the initial structural pattern of the aggregate, 
defined by the initial hardness Hq, 

The validity of this relation is, however, limited to conditions 
for which slip, crystal fragmentation, and distortion are the 
principal operating dissipation mechanisms; this is the case at 
temperatures at which the thermal stability of the distorted 
crystal pattern is high and effects of anisotropic reorientation of 
crystals are slight. At temperatures sufficiently below recrystal¬ 
lization temperature, the energy dissipated by thermal mecha¬ 
nisms will, in general, be negligible. At temperatures near 
recrystallization temperature, however, the amount of energy 
dissipated directly into heat without producing a permanent 
change of structural pattern that would result in increased hard¬ 
ness becomes so large that a definite relation between hardness 
H and dissipated energy Wu no longer exists. Similarly, energy 
is dissipated without producing appreciable change in hardness, 
if directional reorientation is the predominant phenomenon 
during deformation. However, conditions of such thermal insta¬ 
bility of the fragmented structure can be expected to become 
pronounced only at the approach to the limit of hardness. Since 
for most of the structural metals at room temperatures or even 
at moderately elevated temperatures fracture will prevent this 
upper limit of work hardening from being attained, the one¬ 
valued relation between hardness H and dissipated strain energy 
WD may be assumed to hold with fair approximation within the 
practically important range of deformation. 

An increase in hardness dH is brought about by expending the 
energy dWd to change the volume distribution of crystal sizes 
through the fragmentation of a part Vm of the total volume Vm 
of crystals of size \m and hardness Hm, into an equal volume of 
crystals of size Xn and hardness Hn. Therefore the rate of work¬ 
hardening of the aggregate. 

m 

1 

(45-3) 

if the considered volume of the aggregate V is unity; the sum is 
to be taken over all crystal sizes affected by fragmentation, that 
is, over all sizes m < n. 

Fragmentation of crystals could be either gradual, through 
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consecutive stages, when every crystal size is broken up into a 
next smaller size, or catastrophic^ every crystal size being shattered 
directly into fragments of limiting size, or it could be of an inter¬ 
mediate nature. It has been found that the first assumption 
leads to work-hardening functions inconsistent with observa¬ 
tions;*^ ** the catastrophic type of fragmentation is therefore 
assumed to be prevalent. 

If qm denotes the ratio of the volume of one crystal of parameter 
X,n to the volume of the crystal fragment of limiting parameter 
Xn, the ratio of hardness of the two crystal sizes, 

if the hardness is defined by the resilience of crystal grains alone. 
If, on the other hand, it is assumed that the increase of hardness 
is not due to the increasing resilience of the refined crystal grains 
hut results from the latent energy stored up in the intercrystalline 
surfaces, the hardness ratio, according to eq. 45 -1, is 

II 

H 

n 

m 

(45-5) 

Adopting eq. 45-4 and introducing it into eq. 45*3 give the 
rate of work-hardening: 

m 

By integration, 

// ? H miqm. n \)vm + const 

(45-()) 

(45.7) 

If Vm denotes the relative volume of grains of parameter \m frag¬ 
mented to date out of the volume Fow of such crystals initially 
existing in the unit volume F, the rate of fragmentation of grains 
of any particular parameter X,^ reasonably be assumed pro¬ 

portional to the relative volume of such grains Vm = {Vmo 
existing at the considered stage of fragmentation defined by Wd. 
This assumption is generally used in physical disintegration 
(decay) processes. Hence, 
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;^ = (F„o-t'J- (45-8) 
aW D am 

where am is a factor of proportionality characteristic for the sta¬ 
bility of the grain size; its inverse value is proportional to the 
rate of disintegration. With the condition that Vm = 0 for 
Wd — WDOm, integration of eq. 45-8 gives 

Vm = ^mo[l - (45-9) 

valid for values oi Wd > W 
The work-hardening curve corresponding to eq. 45 • 7 has thus 

different ranges governed by different equations and delimited 
by the values of Wnom- In the first range, from Wim = 0 to 
Wz)02 the largest size of crystals of parameter Xi and hardness H\ 
is broken up into crystallites of limiting size until the over-all 
hardness H of the poly crystalline aggregate (which in the initial 
stage, that is, for Wd = 0, is H reaches the hard¬ 
ness H2 of the grains of parameter X2. From there on the frag¬ 
mentation of the crystal size of parameter X2 sets in, proceeding 
simultaneously with the continued breaking up of still existing 
grains of parameter Xi, and so on. Thus, for the first stage 
(0 < Wd < Wdo2), with /f = for Wo = 0: 

H = //,[! + - 1)1',o(l - (45-10) 

(fCiierally the hardness II(Wom) within the mth stage, 

ifc = i 

= Hi 2 [gi.k%k.n’ - 1)^0 
1 

“^)]| (45.11) 

where qi,m^^ = Hm/Hismd qk, = Hn/Hk^ Hn being the hardness 
of crystallites of limiting size Xw. The rate of work hardening 
within this range. 

dH{WDm) 

dWj>n, 
Hi n 

n 
1) «A. I 

a* 

(45 12) 
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If the rate of work hardening is plotted against hardness, a 
straight line, 

= Cl + C2H (45 13) 
dW D 

is obtained if one term only {k = 1) exists in eq. 45 -12 or, alter¬ 
nately, if ak is the same for all crystal sizes. The shape of the 
function H — f[dH/dWd) thus provides an indication of the 
(character of the process of fragmentation. 

It is evident that the only change that would be introduced 
into eqs. 45 -10 to 45 -13 by adopting a different assumption con¬ 
cerning the operative work-hardening mechanism is to change 

the powers of all qu, m and Qk, n ratios in those equations from 2/3 
to 1/3, as required by eq. 45 -6, which would replace eq. 45 -4 on 
the basis of which the work-hardening law has been derived. 

This change is a change in constants only and does not affect the 
form of the general work-hardening function. 

In applying eq. 45* 11 to the interpretation of experimental 
results for a general state of stress, the proper measure of H and 

of WD must be introduced. According to eq. 41 -4 or 41 • 9 ‘I>o is 
proportional to the second invariant of the deviator of stress or 
of elastic strain. There is, however, no simple measure oi Wd\ 
it could only be computed directly by integrating the area under 
the stress-strain diagram (Fig. 29 -1). If, in first approximation, 
W jy could be assumed to be proportional to the second invariant 
of the deviator of irrecoverable strain /op2, the general work¬ 
hardening function H = f{WD) would have the invariant form, 

/0.2 = F(/op2) (45 14) 

In the simplest case of an aggregate with a uniform grain size, 
eq. 45 10 with Fio = 1 governs the entire range of deformation. 
Hence, 

H “ (Hn - Hi)e-^'^ (45-15) 

and 

(4516) 
dW D a 

Relations 45-15 and 45-16 are represented in Fig. 45 -1. The 
slope (—1/a) of the relation 45 -16 is constant over the entire 
deformation range. This constancy is an indication that only 

one crystal size is being broken up. 
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H dH 

Fig. 45 • 1 Work-hardoiiing function for fraj'mentation of single crystal size. 

Equation 45 - IG can be written in terms of stresses if TFn is 
considered to be a function of plastic strain In p alone, 

= 1 - l^l - j (45-17) 

where and Si denote the stresses for p = oo and p = 1, 

respectively. Hence, 

S = s^■^JI - [l - j (45-18) 

The form of this relation for an assumed value (si/s^) = O.l and 
for a stability coefficient a = \ 
is represented in Fig. 45-2. 
The diagram shows that 
within the range of logarith¬ 
mic strain 0.1 < In p < 0.6 
the stress-strain diagram is 
very nearly straight; it only 
starts to curve downward at 
higher values of strain. The 
apparent straight-line relation 
is therefore a transient phe¬ 
nomenon and has no physical 
meaning. Since in tension 
tests of metal specimens, par¬ 
ticularly steel, fracture mostly 
starts before the curved part 
of the stress-strain diagram is reached, the apparent straight- 
line part of the diagram is frequently considered a character- 

Fig. 45-2 Stress-strain diagram for 

work-hardening process involving 

breakup of one crystal size (yield 

stress Si O.ls*). 
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Rate of work hardening x 10^ 
0 10 20 30 40 50 60 70 80 90 100 

Fio. 45 *35 Work-hardening curve for mild steel.^* * 
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istic feature of deformational behavior; there is, however, no 
justification for this assumption. 

Figures 45-3 reproduce the functions H = S{W) and dH/dWd 
— f{H) in terms of (e^) and (In p)^ from a combined tensile- 
test and wire-drawing experiment performed on mild steel in 
which very high strain values were reached.* From the 
interpretation of the dH/dWd = /(H) diagram, it is found that 
the work-hardening process consists of three distinct stages (of 
which only two are discernible) in the course of each of which 
fragmentation of one crystal size takes place; only during the 
comparatively short curved transition stages does the fragmenta¬ 
tion process involve two consecutive crystal sizes. A detailed 
analysis of the stress-strain curve shows that the true stress 
s = H.n«x/A at which necking starts in the tensile test coincides 
with the stage of deformation when the breakup of the largest 
crystal size is practically completed. It can be easily verified that 
necking starts under maximum load when the rate of hardening 
is no longer able to compensate for the decrease in cross section, 
by computing the maximum sustained load in the tension test 
Hm«x from the minimum condition dP = d{sA) A ds + s dA 
= 0 and therefore ds/s = ’—dA!A (see Art. 87). The coinci¬ 
dence is therefore to be expected, since the discontinuous decrease 
in the rate dH/H and therefore of ds/s must necessarily produce 
necking under decreasing load. 

46. Time Effects. Thermal Stability of Work Hardenins 

In the course of the crystal-fragmentation process regions of 
high textural stresses consisting of highly distorted and therefore 
thermally unstable atomic layers surrounding the fragments 
are created. The work hardening itself, that is, the changes in 
the structure of the polycrystalline ag^egate and the resulting 
changes in deformational response and mechanical properties 
are therefore both time- and temperature-sensitive. The more 
extensive the crystal fragmentation and the larger the volume 
of distorted atomic layers created in the course of the deforma¬ 
tion, the lower the thermal stability of the fragmented crystal 
pattern; the more pronounced therefore the effects of time and 
temperature. 

The apparent continuity of most of the observed work-harden¬ 
ing diagrams is the result of the application of relatively high 
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strain rates, which prevent the manifestation and observation 
of discontinuities in the diagram. The lower the applied rates 

of deformation or loading, the more 
pronounced the discontinuous appear¬ 
ance of the work-hardening diagram 
(Fig. 46-1). The gradual refinement 
of the crystal grains by fragmentation 
will therefore tend to make the discon¬ 
tinuous shape of the diagram the less 
pronounced, the larger the deformation. 
On the other hand, in the very early 
stages of deformation the slip planes 
are very finely distributed and crystal 
deformation goes on without disruption 
of the slowly deforming intercrystal¬ 
line boundaries; during these stages 
the work-hardening diagram, therefore, 
will be the more perfectly continuous, 
the slower the loading rate. The exist¬ 

ence of both effects has been observed in polycrystalline metals 

(Fig. 
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Fig. 46*2 Slow-loading work-hardening curves of aluminum at room tem¬ 

perature (after Hanson and Wheeler'*® *). 

If during the work-hardening process the load is controlled, the 
strain increments are discontinuous; under sustained load the 
deformation goes on at a decreasing rate until the newly mobilized 

Fig. 46 • 1 Schematic 

stress-strain curves within 

the work-hardening range 

of a metal for rapid and 

slow loading. 
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resistance of the fragmented pattern is able to carry the load 
(see Art. 20). If during the work-hardening process the strain 
rate is controlled, the resistance, that is, the stress increments, 
change discontinuously. Under a sustained constant strain, 
the stress necessarily drops, since at the moment of interruption 
of the deformation process the strain velocity suddenly becomes 
zero. Part of this drop, which is invariably observed in inter¬ 
rupted work-hardening tests (Fig. 46-3), can also be conceived 
as a relaxation of stress under sustained constant strain, by the 
adjustment of the relaxing grain boundaries to the imposed 

Fig. 46*3 Constant-strain-rate work-hardening curve of polycrystalliin* 

copper with interruptions of deformation (after Elam**®*2). 

strain. The drop in resistance immediately on interruption of 
the test is the smaller, the slower the strain rate applied, since 
it expresses the difference between the resistance to deformation 
at the applied strain rate and at zero strain rate. The additional 
drop that depends on the length of the period of interruption is, 
when it occurs, an expression of either relaxation or of the 

thermal instability of the fragmented crystal structure or of both 
effects. This drop will necessarily be the more pronounced, the 
nearer the temperature of the deformation process is to the 
recrystallization temperature. 

If, after interruption at a certain strafn, the deformation 
process is restarted at the previous strain rate, the stress at which 
further irrecoverable deformation sets in will be the stress at 
which the deformation process was stopped, only if the behavior 
of the metal is consistent with the concept of an equation of 
state. Rigorously this concept is inconsistent with the work- 
hardening process of most of the technically important poly¬ 
crystalline metals. In those metals the stress at which plastic 
deformation starts at the previous strain rate after the interrup¬ 
tion of the test is usually higher than the stress recorded at the 
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moment of interruption; the excess of this new yield limit over 
the resistance to plastic deformation at the moment of interrup¬ 
tion depends on the extent of fragmentation, the applied strain 
rate, and the temperature; it increases with increasing duration 

Fig. 46-4 Work-hardening diagram at constant strain for mild (aging) 

steel, with interruption of test (after Elam^®'^). 

of the period of interruption (Fig. 46-4). The more extensive 
the process of fragmentation at the time of the interruption, the 
higher the momentary increase in the yield limit. Thus, a more 
pronounced increase must be expected in initially coarse-grained 

than in fine-grained aggregates 
(Fig. 46 • 5), whereas the increase 
will be less pronounced near the 
end of the deformation process 
than at its beginning, because 
of the largely completed grain 
refinement at the later stage. 

The increased resistance, due 
to strain aging, however, is not 
permanent. With proceeding 
deformation it is usually followed 
by a drop back into a curve that 
is a continuation of the preceding 

stress-strain diagram. The momentarily increased resistance 
to plastic deformation following an interruption of the deforma¬ 
tion, as a result of which an excess load is needed to initiate 
further slip and fragmentation, has thus the character of an uppe?' 
yield limit which is frequently observed in conventional tensile 
tests of steel; this load, however, is not needed to sustain the 

Fig. 46-5 Work-hardening dia¬ 

gram for nonaging steel (with rest 

periods.) 
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progress of deformation, which is essentially a continuation of 
the interrupted fragmentation process. 

Various phenomena may be responsible for the changes in the 
(leformational response of the grain boundaries and the slip bands 
producing strain aging, such as precipitation and enforcing of 
atomic volume fit of the precipitated atoms, or formation of a 
different intercrystalline structure. The analysis of those effects 
forms the subject of various metallurgical theories of age harden¬ 
ing^® ® the physical basis of which has been discussed in Art. 16. 

The relative importance of the softening and the hardening 
effect will depend on the type of the metal, its content of alloy¬ 
ing elements and initial structure, its melting point, the tempera¬ 
ture during deformation as well as the temperature during rest 
periods, the extent of fragmentation, and the length of time since 
the interruption of the work-hardening process. Usually both 
effects are operative; they act, however, with different intensity 
at different times during the test. Whereas strain aging involves 
diffusion of foreign particles, softening is due to self-diffusion. 
IIen(!e, the percentage of alloying or foreign elements appears to 
be the most important single factor responsible for strain aging. 

The higher the temperature of the test and the more extensive 
the preceding fragmentation of crystals, the more pronounced 
the thermal instability of the fragmented crystal structure, and 
the higher therefore the rate of self-diffusion. At or near recrys¬ 
tallization temperature, the work-hardening effect is fully coun¬ 
terbalanced by the simultaneous resoftening, unless the rate of 
fragmentation is so high as to exceed the rate of recrystallization. 

47. Phenomenological Analysis of Plastic Deformation with Work 
Hardening 

In the analysis of problems of plastic deformation with work 
hardening, a certain assumption must be made concerning the 
form of the relation connecting the second invariants of the 
deviators of stress and velocity strain, or of the stress and 
velocity strain intensities. This relation may be given by 
an empirical curve (Fig. 47 • 1) or the corresponding analytical 
function, 

(47-1) 

or, according to eq. 42 • 8, 

(s.» - p) = 26r’(^n - e») and s,y = 2G'’^<y (47 -2) 
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where denotes the shear modulus which, within the work 
hardening range, is a function of the stress intensity. For an 
incompressible material = 0, and 

{8ii — p) = 2G' den and Sij = 2G^ dg^ (47 • 3) 

For a state of uniaxial stress 82 = 83 = 0, and p = ; hence, 
if the strain increment is replaced by the strain, 

= 3G\8i)(ei - O = 3G^(si)ei(l + /x) (47-4) 

or, for volume-constant deformation. 

Si = 3(?^(si)ei (47-5) 

If the continuous empirical work-hardening function is replaced 
by a polygon defined in the elastic 
range by the elastic shear modulus (j, 
and above the elastic range by one 
or a number of secant moduli Cr' (Fig. 

47 1), the momentary deformational 
response of a body of work-hardening 
material is represented by the response 
of a two-phase or polyphase body of 
elastic material, the individual phases 
of which, having different shear mod¬ 
uli, are continually forced to a com¬ 
mon deformation. However, the 
boundaries between the individual 
phases vary with the stress intensity; 
the boundaries at any moment during 

the deformation process thus depend on the entire history of 
deformation. 

In the simplest case of homogeneous volume-constant straining 
a ‘‘polygon’’ may be defined by the elastic shear modulus and 
one work-hardening shear modulus G' = ^ In this case eq. 
47 • 1 may be written in the form, 

(Sr Sor) ~ 3H (Cr 6or) (47 * 6) 

where Sor and eor denote the intensity of stress or strain, respec¬ 
tively, at the yield limit. For uniaxial stress Sr = si, Sro — 

8oi) ~ ^ro ~ ^01 “ 8oi/3G', hence, 

Fig. 47 • 1 Empirical work¬ 

hardening curve Sr = f(er) 
and replacing polygon. 
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+ 80*"‘ 
(47-7) 

For a compressible material, according to eq. 47 -4 and because 
of Cr = %e\{\ + /x), the total strain, 

e\ = (si — Soi) + Soi (47-8) 
2110 + m) ' ' 2G(1 + m) 

The plastic strain component eip = ci — cu, where the elastic 
strain 

Hence, 

Cle — 
1 

Si 

Sip -f-J 
l2H(l 

2G{\ + n) 

^ ] (Si - 
2H{1 + m) 2G(1 + m) 

(47-9) 

soi) (47-10) 

Under general conditions of homogeneous strain with the prin¬ 
cipal strains ci 9^ 0, ^ 0, 7^ 0, the resulting strains Ci, 1% 
C3 in the directions of the coordinate axes are 

Sl6 = ^le “ M(^2e + ^3e) (47*11) 
and 

Cip = eip - v{e.^ip -f C3p) (47*12) 

where Ci = lu + Since e\p = a — eu, 

Cl = Cl — m(^2 + ^3) + (m — ^){C2e + C3e) (47*13) 

This general relation which may be written in a similar form for 
62 and 63 is simplified by the assumption n = v 9^ 1/2. Accord¬ 
ing to observations, this assumption is more reasonable than the 
assumption fjL 9^ v = which is generally made and which 
implies that in the work-hardening range the material flows with 
constant volume. Actually, all observations of the deforma- 
tional behavior of metals above the elastic range show that the 
specific density has a definite tendency to decrease with respect 
to the density in the elastic state as a result of the microscop¬ 
ically inhomogeneous conditions of strain created by crystal 
fragmentation. However, because of the very small density 
change fx = v may be introduced, and eq. 47 • 13 written in the 
conventional form: 

ei = Cl — M(e2 + 63) (47-14) 
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Introducing eq. 47 -8 and similar expressions for and eq. 
47* 14 gives the relation: 

+ 2iG{\ ~+ fj) ~ (47* 15) 

and similar expressions for 62 and ^3. 
The principal stress components at the yield limits soi, S02, 

So3 must evidently satisfy the yield condition 41-5, while the 
stress components at any point within the work-hardening region 
must satisfy a similar condition in which, however, the right- 
hand side is replaced by 2sr“, where Sr is obtained from eq. 47 •(). 
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CREEP AND RELAXATION 

48. Creep of Viscoelastic Materials 

Creep and relaxation are frequently defined as thedeformational 
responses to constant stress and to constant strain, respectively, 
of a statistically isotropic material of unordered atomic or 
molecular structure. This definition, however, is too narrow to 
cover all aspects of the phenomenon for the designation of which 
the terms creep and relaxation are generally used. 

In dealing with this general problem of the time dependence of 
deformation under sustained stress or constant load, and of 
stress or load under sustained initial deformation, the essentially 
amorphous viscoelastic substances are only one particular group 
of materials in which time effects are of considerable importance. 
The other group for which, under certain conditions, these effects 
may become very significant are the metals, both polycrystalline 
and deformed single crystals. The fact that the phenomeno¬ 
logical behavior under sustained stress, lo^d, or deformation of 
those two groups of materials of intrinsically different structure is 
designated by the same name because it shows a similar trend 
though being different from a structural aspect, has been responsi¬ 
ble for a certain confusion in the evaluation and interpretation 
of creep and relaxation experiments and in the generalizations 
based thereupon. It has also introduced a certain complexity 
in the approach to a phenomenological theory of creep, since 
the necessity of defining the observed similarities and differences 
in the mechanical response of the internal structure to imposed 
constant load, stress or strain, and of isolating the few essential 

305 
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factors governing the phenomenon has been frequently neglected 
in favor of procedures of devising empirical relations, reproducing 
results of series of rather uncoordinated experiments. 

The complexity of the phenomena of creep and of relaxation 
for various materials and the difficulties in the interpretation of 
test results are in direct relation to the complexity of the internal 
structure of the considered material. It has been shown (see 
Art. 35) that the total strain of the Maxwell body under a 
uniaxial force consists of the elastic component eo and the viscous 
(creep) component e^, or 

e = eo + 6c = — H^ (48-1) 

where r = E/X = SG/Srj denotes the relaxation time^ which can 

Fig. 48* 1 Creep diagrams of a Maxwell body. 

be defined either as the time after which the stress under a sus¬ 
tained constant strain has fallen off to (l/e) of its initial value, 
or as the time required to produce, under a sustained stress, an 
inelastic strain equal to the elastic strain. The family of creep 
curves 6c = /(O of the Maxwell body thus consists of a family 
of straight lines passing through a common point C on the time 
axis to the left of the origin, the abscissa of which is equal to 
the relaxation time, or OC = —r (Fig. 48 -1). 

The analysis in Art. 37 of the simple model consisting of two 
Maxwell elements coupled in parallel has shown that the linearity 
of the creep diagram of the simple viscoelastic body vanishes if 
the single relaxation time t of the Maxwell body is replaced by 
two or a number i of relaxation times r< of Maxwell elements 
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coupled in parallel or of Kelvin elements coupled in series. Under 
constant stress, materials represented by such models creep at a 
gradually decreasing rate, approaching asymptotically a con¬ 
stant minimum rate defined by the longest relaxation time; thus, 
the creep diagram appears practically linear over a considerable 
range. The length of the initial range of creep at decreasing 
rate, which is generally called the primary qr short-time creep, 
depends on the number of different relaxation times (or retarda¬ 
tion times if Kelvin elements are coupled) and increases with their 
number. The model analysis has shown the behavior within 
this range to be essentially the result of a superposition of after¬ 
effects (Kelvin phases), each of which is governed by a function 
of the form (1 — In terms of a continuous distribution 
F{t) of retardation times the part of the creep diagram produced 
by aftereffect may thus be described by a function of the form, 

e.i = eo /„ " Firm - e"'') rfr (48 • 2) 

where eo is the ordinate of the intersection of the asymptote of 
e.c with the strain axis, the so- 
called zero intercept. The total 
creep ec, which is the sum of 
the primary creep or aftereffect 

«ri = ^()/(0> i^iid of the lineal- 
viscous creep ec2 (Fig- 48-2) 

= ^o/(0 + ^c2 t 

= ^o F(T)(l-e-‘>/r + ^J 

(48-3) 

where ri denotes the relaxation 
time of the Maxwell phase. 

The temperature dependence of the coefficient of viscosity rj 
and thus of the retardation or relaxation times t = rj/G, according 
to eq. 19 *6, may be expressed by 

Fi(i. i8-2 ( Veep diajjjrain pro¬ 
duced by after-effect (recoverable 
creep) and viscous (irrecoverable) 

creep. 

r ro€ Q/JiT (48-4) 

where to denotes a constant of dimension of time and Q the 
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activation energy per mole; the creep strain is therefore strongly 
temperature-sensitive. The total strain increases in proportion 
to the decrease, with increasing temperature, of the coefficient 
of viscosity, and the shape of the primary creep function becomes 
rapidly very steep, approaching elastic behavior (Fig. 48 -3). 

A large number of viscoelastic materials, such as, for instance, 
the photoelastic materials and many textile fibers, do not show 
real creep, only delayed recoverable deformation. In this case 
the observed creep rate approaches zero at infinite time. If in 

Time 

Fig. 48*3 Creep and recovery curves for fully recovering viscoelastic 

material as a function of temperature {Ts > T2 > Ti). 

the course of the deformation process no irrecoverable changes 
take place in the molecular structure of the material, such 
behavior is due only to the existence within the material of a 
continuous elastic network which cannot be permanently 
deformed (see Art. 37). The same phenomenon of decreasing 
creep rate may be due, however, to a different cause when the 
real creep is accompanied by irrecoverable changes in the molec¬ 
ular structure resulting from chemical reactions which accom¬ 
pany the deformation. Such changes may be the formation of 
additional cross links between the moleqular chains, or the break¬ 
ing and re-formation of links, or the volatilization of part of a 
constituent fluid phase, or crystallization (see Art. 20). All 
these changes by increasing in the course of time the apparent 
rigidity of the material produce a gradual reduction of the creep 
rate which will necessarily be the more significant, the longer 
the duration of the loading. 

The difference between the purely mechanical after-effect and 
the effects of permanent change of molecular structure in pro¬ 
ducing a decreasing creep rate is not observable in the course of 
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loading. It becomes visible only during unloading, since the 
inelastic deformation due to the mechanical after-effect is fully 
recoverable after sufficiently long (theoretically infinite) time, 
whereas genuine creep, the rate of which is affected by gradual 
changes within the molecular structure, is unrecoverable. The 
shape of the unloading dia¬ 
gram is therefore an indica¬ 
tion of the relative import¬ 
ance, in viscoelastic materials, 
of the primary creep (that 
is, the after-effect) and of the 
secondary, not necessarily 
linear stage of genuine creep 
(P'ig. 48 -4). The after-effect 
is frequently referred to as 
creep recovery. 

On the other hand, changes in the molecular structure accom¬ 
panying deformation may also produce a more or less gradual 
increase of the creep rate, if such changes consist in the rupture 
of cross links during deformation or in a local reduction of the 
extent of polymerization (depolymerization). As a result of the 

Fig. 48-4 Irrecoverable creep deter¬ 

mined from recovery diagram. 

Fig. 48-5 Variation of creep curves of viscoelastic material (a) with stress 

(s8 > S2 > si) and (6) with temperature (Tg > > Ti). 

reduced rigidity of the network of chain molecules, an increased 
rate of deformation within the viscous phases is required to 
balance the applied stress. Since the extent of structural changes 
during deformation depends on stress, temperature, and time, 
different shapes of creep curves are obtained for the same visco¬ 
elastic material if any one of the above parameters is varied 
(Fig. 48*5). 
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Although the term creep implies, in general, deformation at 
sustained constant stress, actual creep tests are usually performed 
under constant load, the recorded creep diagrams being in fact 
deformation-time diagrams at constant load but varying stress. 

In the tension test of a specimen of circular cross section Ao of 
a volume-constant Maxwell body under constant load P, the 
strain velocity of the moving end of the specimen: 

By introducing eq. 48 • 5 and the stress 5 = P/A into the equa¬ 
tion of the Maxwell body 35*29, the relation is obtained: 

^_Id /P\ _ 1 /P\ 

A dt " EdlXA/ \\a) 
(48*0) 

Integration of eq. 48 * 6 for P = Pq under the boundary condition 
A = Ao for < = 0 leads to the equation, 

(48-7) 

with eo = Pq/EAq. For not too large strains eq. 48*7 may in 
first approximation be replaced by 

^ = 1 - eo(t/\) (48 -8) 

or, because of constant volume, 

L - 1 
Iq 1 — eo{t/\\ 

(48*9) 

Hence, the logarithmic strain in the constant-load tensile test, 

'-'"©■'"(rdsw) 
In the constant load compression test 

e 
1 + eo{t/\) 

(48-U) 
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For constant stress P/A = const, eq. 48 • 6 becomes 

and, integrated, 

311 

(48 12) 

(48*13) 

In Fig. 48-6 eqs. 48 10, 48-11, and 48 13 are compared for 

0 10 20 30 40 50 60 70 
tiT 

FiCf. 48-6 Comparison of creep curves of viscoelastic bar in constant-load 

tension test, constant-load compression test, and constant-stress test. 

Co = 0.033. With increasing time the difference between the 
time-strain curves becomes considerable? The results of con¬ 
stant-load-creep tests must therefore not be confused with those 
of constant-stress-creep tests, unless the total creep-strain is 
small. The observed creep rates are thus applicable only to the 
specific testing conditions. 

In attempting to apply the results of uniaxial creep tests to 
general states of stress the fact should not be ignored that the 
rate of creep in a certain direction is in general not related to 
the axial stress component in the same direction, but to the entire 
deviator of stress, since viscous flow is a response to distortional 
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stresses only. Hence, the smaller the share of the deviatoric 
stresses in the general state of stress, the smaller the rate of 
creep. Therefore the creep rate in the directions of the principal 
stress 8i is reduced by stresses 82 and S3 of the same sign as si, 
becoming zero for si = 82 = 83, but is increased by stresses 82 

and 83 of opposite sign. 

49. Creep of Metals 

The complexity of creep phenomena in polyphase materials, 
such as polymers and polycrystalline metals, is due to the inter¬ 
action of the constituent phases during the deformation, and to 
the difference in the responses of those phases to changes of 
parameters of the test, that is, to changes of stress, time, and 
temperature. However, although even in highly complex visco¬ 
elastic materials, such as high polymers, the interaction between 
an elastic network and a number of viscous phases produces phe¬ 
nomena that are essentially combinations of after-effects and of 
viscous creep, the creep of metals is generally a combined effect 
of the predominantly viscous inelastic deformation within the 
unordered intercrystalline boundaries and the complex deforma¬ 
tion by slip and fragmentation of the ordered crystalline domains. 
The phenomenon is made still more complex by the change of 
structure within the crystalline regions produced in the course 
of the deformation and by the thermal instability of the deformed 
structure (see Art. 20). 

The character of the interaction between the crystalline and the 
intercrystalline phases depends on the relative rigidities of the 
intercrystalline boundaries and the crystalline domains. As long 
as the inelastic deformation is concentrated within the crystal 
boundaries which restrain the crystalline domains from deforming 
by slip, the metal responds essentially like a relatively simple 
viscoelastic material, in which the response of the crystals is 
elastic. The extent of creep under such conditions is limited and 
is governed by viscoelastic relations of the type of eq. 48*3. 
Such conditions are present in metals subject to moderate stresses 
at all temperatures, at which the slip resistance of the crystals 
exceeds the resolved shear stress; they may therefore exist at ele¬ 
vated temperatures, if either the applied stress is so low or the 
slip resistance within the crystal region so high that, in spite of 
the sharply reduced rigidity of the intercrystalline regions and 
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the consequent rather rapid transfer of the response to the exter¬ 

nal load into the crystal domains, no slip is produced. The 
material then responds essentially as a viscoelastic body which 
deforms by creep of the boundary material and by relative 
motion and rotation of the grains along the boundaries. 

Conclusive evidence of such rotation has been obtained by 
Moore and coworkers in creep tests of lead.'*®;^ When polished 
specimens were scratched with parallel lines and then drawn 
several percent at room temperature the scratches assumed 
dilferent orientation in adjacent grains when the extension 
proceeded at a slow rate but maintained the same orientation 
when the extension was rapid. Thus, disorientation of crystal¬ 
line domains due to their rotation within the viscously yielding 
disordered regions (grain boundaries, slip bands) appears to be a 
phenomenon which is associated with the deformation of poly¬ 
crystalline metals under conditions in which those regions appear 
relatively soft.- To produce such conditions loads must not 
necessarily be of long duration if the order of magnitude of 
relaxation times of the intercrystalline regions is also relatively 

short. 
The essentially viscoelastic character of the creep is changed 

when either the slip resistance of the crystal regions is so far 
reduced or the resolved shear stress so far increased that the 
rotation of the crystals within the boundary material is followed 
by slip and fragmentation of a certain number of crystals. The 
character of the creep thus changes gradually from a purely 
viscoelastic deformation, to a highly complex combination of 
viscous disorientation, slip, work hardening, recovery or 

recrystallization, and progressive local fracture. 
Viscous creep of the polycrystalline metal aggregate associated 

with rotation of grains along the grain boundaries is thus character¬ 
istic for the initial stage of creep tests performed at a stress, which 
is not high enough to produce slip within the crystal regions by 
local disruption of intercrystalline boundaries immediately on 
application of the load. The length and importance of this 
stage evidently depends on the specific volume of grain-boundary 
material and on the resilience of the individual grains. This 
type of creep is the more important, the smaller the grain size 
of the metal, the larger the specific volume of the boundary 
regions, and the higher the resilience of the individual grains. 
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Since under the same stress level the extent of crystal slip and 
fragmentation in fine-grained metals is much smaller than in 
coarse-grained metals, while the volume of viscous material is 
larger, the viscoelastic stage of creep is longer and of greater 
importance in fine-grained than in coarse-grained polycrystalline 
metals. At sufficiently low stresses the viscous creep component 
in coarse-grained metals may gradually vanish and creep thus 
proceed at a decreasing rate that gradually approaches zero as 
further grain-boundary deformation is blocked by contact and 
interlocking of grains. Generally, therefore, the rate of steady 
creep is higher in fine-grained than in coarse-grained metal, at 
least at the moderate stresses at which crystal slip is limited or 
practically nonexistent. Hence, no creep at stresses below the 
critical shear stress should be expected in bodies made up of 
single crystals. It is for this reason that, for instance, tungsten 
filaments, exposed to very high temperatures in lamps, are now 
made of single crystals, since their efficiency depends on the 
total absence of creep (sagging). 

At a stress above the critical shear stress the lattice of the 
single crystal is distorted as a result of slip, and thus a viscous 
component is introduced into the subsequent deformation process 
which becomes the more significant the more extensive the slip. 
Thus, creep of a single crystal is initiated by slip and is therefore, 
in the first stage, as time-sensitive as the slip process itself. 
Hence, the precipitation of foreign particles within the slip 
planes retarding and finally blocking slip, as well as the diffusion 
of those particles under the applied stress by which the slip is 
unblocked after a certain delay which depends on the diffusion 
rate (see Art. 20) will necessarily modify not only the creep rate 
of the single crystal, but also that of the aggregate made up of 
such crystals. 

Since the viscous component of creep of the single crystal is 
introduced as a result of the disordered atomic layers around the 
slip planes, viscous creep of crystals can not occur without pre¬ 
vious plastic deformation, and it can only be maintained by 
continued slip; otherwise it is rapidly blocked as a result either 
of selfdiffusion by which the disorder around the slip planes is 
gradually eliminated, or of precipitation as a result of which 
the slip resistance is raised on the slip planes. There is therefore 
a close interrelation between the plastic slip and the viscous 
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component in single crystals as well as in polycrystalline 
aggregates. 

When creep of the polycrystalline aggregate is due to the com¬ 
bined effect of viscous deformation of the grain boundaries and 
distorted atomic layers, of rotation of crystals and of slip, the 
decreasing rate at which creep proceeds during the first or 
transient stage is no longer the result of pure after-effect, that is, 
of the internal redistribution of the mechanical response to the 
load between the elastic and the viscous phase of a material of 
unchanging structure; it is the expression of the combination of 
work-hardening fragmentation, of viscoelastic redistribution of the 
deformational response to the load within the changing crystal 
structure, and of precipitation. Moreover, with increasing 
deformation the tendency to viscous creep is increased because 
of the increasing volume of disordered material produced by the 
fragmentation and because of the intensified thermal instability 
of the fragmented structure. This instability promotes local 
recovery and recrystallization, accompanied by accelerated 
deformation; since the rate of recrystallization depends on the 
extent of work hardening, a periodic fluctuation of acceleration 
and deceleration of creep must be expected quite independent 

from effects of precipitation. Such fluctuations express the 
alternations of work-hardening and recrystallization periods, as 
the recrystallization rate, which exceeds the work-hardening rate 
at a certain strain, sharply drops after partial recrystallization 
has taken place by which the work-hardening rate is again raised. 
The existence of such periodicity in the deformation process could 
actually be deduced from X-ray diffraction studies.'*® ^ 

Because of the pronounced influence of temperature on both 
the viscosity of the distorted atomic layers and the rate of 
recovery and recrystallization within tfte fragmented structure, 
the rate of the viscous creep component increases very sharply 
with temperature. It also increases with the stress level, because 
of the increased extent of fragmentation produced by higher 
stress. Thus the shapes of the creep curves will vary with the 
applied stress level and with temperature, as shown schematically 
in Fig. 49 • 1; the higher the temperature and the stress level, the 
more nearly viscous the character of the creep, whereas low 
temperatures and low stresses produce a predominance of the 
work hardening and of the after-effect. 
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As in the case of viscoelastic materials, the respective influences 
of structural changes and of genuine after-effect on the decrease 
of the creep rate cannot be separated during the loading period, 
but only by observing the strain recovery on load removal. As 

Fig. 49 -1 Variation of creep curves of metals (a) with stress (S3 > S2 > si), 

and (6) with temperature {T^ > T2 > Ti). 

creep, which is the result of permanent structural change by 
work hardening and recrystallization, cannot be recovered, the 
influence of the after-effect is represented by the recoverable 
part of the inelastic deformation produced by the load. 

So far only two ranges 
of creep have been con¬ 
sidered : the primary or 
transient creep at decreas¬ 
ing rate, and the secondary 
or viscous creep at practi¬ 
cally constant rate. Creep 
tests at moderate and high 
stresses invariably show 
that a third final range 
exists, during which the 
creep rate increases stead¬ 
ily, and which sooner or 
later is terminated by frac¬ 
ture. This range has been 
indicated in Fig. 49 • 1 which 
shows that, in general, creep 

curves of metals have a definite inflection point, which delimits 
the “third stage. 

The third stage of creep was believed for a time to be an exclu¬ 
sive characteristic of the constant-load test, which could be 
eliminated by keeping the stress constant. Such belief was sup- 

Fi(3. 49*2 Creep curves of lead wire 

under constant load and under constant 

stress (after Andrade^*'^). 
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ported by the results of comparative creep tests on metal wires 
performed by Andrade and reproduced in Fig. 49-2.'*® ^ It has 
become increasingly evident, however, that the accelerated creep 
of the third stage is due not only to the increasing stress over the 
contracting area in the con¬ 
stant load test, but also to 
real changes within the struc¬ 
ture of the material. These 
changes may be the effect of 
intensified recrystallization 
resulting from extensive work¬ 
hardening fragmentation by 
which the subsequent rate of 
creep by further slip and frag¬ 
mentation is increased, or 
they may result from the fact 
that grain-boundary defor¬ 
mation and rotation of neigh¬ 
boring crystal grains without 
slip cannot go on indefinitely 
without the opening of a 
large number of small cracks 
within these boundaries. 
Hence, in the latter case third- 
stage creep does not represent 
a pure deformation process, 
but a process of progressive 
damage (Fig. 49-3). How¬ 
ever, also in the case of third- 
stage creep produced by inten- Fig. 49 -3 Cracking characteristic of 

sified relaxation the sharp third-stagR creep in lead (after Moore 

decrease in the work-harden- Dollin8;» ‘courtesy Prof. C. W. 

ing rate will rapidly termi- ^ ’ 
nate the process of homogeneous deformation by causing necking 
(see Art. 37) and thus initiating a range of instable deformation 
leading rapidly to fracture. Thus third-stage creep, both by 
grain-boundary deformation and by slip, can be considered a 
stage of incipient or progressive fracture, fundamentally different 
from the two preceding stages of deformation. 

Since the length of the second stage of creep depends on the 
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rate at which creep proceeds during this stage, it will be the 
shorter, the higher this rate. Therefore third stage creep in a 
constant load test will set in much earlier than in a creep test 
in which the initial stress or the strain rate is kept constant. 
Because of the additional effect of stress increase by area reduc¬ 
tion, the rate of third-stage creep in tension increases much more 
rapidly in the constant-load test than in the constant-stress test. 
There is, however, no reason to assume that the genuine third 
stage creep can be eliminated by keeping the stress constant; 
it can only be considerably retarded. 

The length of the third-stage creep is an indication of the 
character of fracture; the more pronounced the increase in creep 
rate, the larger the creep at fracture, and the shorter the duration 
of this stage, the larger is the extent of crystal slip and fragmenta¬ 
tion preceding fracture; the more ductile, therefore, the rather 
rapidly developing fracture. A long and very slowly accelerated 
third stage, on the other hand, indicates a slowly developing 
intercrystalline cracking followed by sudden and brittle fracture 
concentrated within the grain boundaries. Frequently both 
types of fracture can be observed to develop simultaneously. 

Since the third stage of creep represents a condition of pro¬ 
gressive or incipient fracture, the approach, under service 
conditions, of the creep strain to the inflection point of the creep 
diagram which defines the insetting critical third stage condition 
must be prevented with reasonable safety. The analysis of the 
third stage of the creep function, therefore, does not form part of 
the analysis of deformational behavior, but belongs to the analysis 
of progressive fracture. As far as design for creep is concerned, 
this stage is beyond the critical limit of deformation. Creep 
design should therefore be based on the two-stage creep curve 
limited by the inflection point. 

Under conditions for which the creep of a polycrystalline metal 
is due to the combined effect of the viscosity of the grain bound¬ 
aries and of the structural changes produced by work hardening, 
the linear relation between creep rate and uniaxial stress Cc = 
s/\ must be replaced by a relation more suited to reproduce the 
combined effects within the intercrystalline and the crystalline 
regions. Such a relation has been derived in Art. 19 on the basis 
of structural considerations; it can be written in the simplified 
form, 
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Be = c sinh (49 -1) 

where c and sq are experimental constants of the dimension of 
strain velocity and stress, respectively. Equation 48-3 can 
therefore be written in the form: 

ec = eofit) + c sinh (s/sa)< (49 -2) 

The extent of the variation of the zero intercept with stress has 
not been reliably established by tests. However, for moderate 
stresses it might be assumed, as a rough approximation, that the 
asymptotically reached second stage represents a state of pre¬ 
dominantly viscous creep with a constant stress-independent 
coefficient of viscosity. In this case the asymptotes to the creep 
curves would pass through a single point on the t axis, left of 
the origin; with/(0 = 1 for < = oo in eq. 49*2, the zero intercept 
eo could thus be derived from the relation eo = const 4. Both 
the steady creep rate and the zero intercept would thus be repre¬ 
sented by the same hyperbolic sine relation, and the general creep 
function could be written in the form: 

ec = [^1 - e~^ 0 dr + C2^] sinh (s/so) (49-3) 

Most of the test results^® ® suggest that in general the asymptotes 
of the creep curves do not intersect in a common point on the 
time axis; two hyperbolic sine functions, differing in the constant 
So, are therefore required to express the creep function in the 
most general form: 

ec = cif{t) sinh (s/soi) + C2t sinh (sAo2) (49-4) 

50. Analysis of Creep Problems 

Analysis of creep problems is based on the mathematical 
representation of two-stage creep curves by expressions of the 
form 48 *3 or 49-4 or simpler approximations, or by an approxi¬ 
mation to the general creep law (eq. 49-4), neglecting the 
transient (primary) creep stage and using only the minimum rate 

of steady creep. 
The simplest and most widely used curve-fitting expressions 

are power laws which may be either of the form, 
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where m > 1, 

(50.1) 

(50-2) 

where 0 < n < 1. These power laws reproduce creep behavior 
over a limited range only. For large stresses s, the expression, 

4 = (50*3) 

or its equivalent, 

5 = So log (50 *4) 

are introduced as approximations to the hyperbolic sine law; 
for small stresses s the linear relation of purely viscous creep 
€c = cs may be introduced as a fair approximation. 

For general conditions of stress the creep functions may be 
written in terms of the intensity of stress and the intensity of the 
creep rate or in terms of the octahedral shear stress and rate of 
strain (see Art. 41). In the form of a power law, using the 
intensities, 

Sr = Cl (4)” (50*5) 

This law includes both the linear viscous substance with n = I 
and the perfectly plastic substance with n = 0. 

In the form of the logarithmic law, 

Sr ==Sr0 log (50*6) 

If eqs. 50 • 1 to 50.6 are used for the analysis of creep problems, 
the effect of the primary stage of creep is tacitly neglected; the 
solutions obtained represent conditions of steady-state creep. 
The approach has been chosen in practically all cases in which a 
numerical analysis of creep problems has been attempted. In a 
few instances only have attempts been made to consider the 
primary stage of creep by expressing the creep rate as the product 
of a power function of time and of a function of stress: 

e’e = const/(s)^’” (50-7) 
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Although the use of formulas of this type introduces considerable 
mathematical difficulties they must be applied in cases of high 
temperature design for short life when the steady-state creep is 
no longer of principal practical importance.®*^ ‘ 

The most serious difficulty in creep design is in deriving the 
expected rate of steady creep under the actual conditions from 
existing test results. For this purpose it is necessary either to 
design the test so as to duplicate conditions of service, or to 
extrapolate from the results of relatively short-time tests, or to 
devise a rational method of accelerated creep tests, using the 
fact that, within the range of small deformations, the deforma- 
tional behavior of both viscoelastic materials and metals is 
governed by a combined strain- 
rate-temperature parameter Assumed line of 

(see Art. 19). In the last case ^ points\ 

a testing temperature is selected c _r _ 
at which the deformation dur- ^ 
ing the expected service life and 8* // —-2i 
at the service temperature can « 
be reproduced within a testing Time 
period of reasonable length. 

Evidently the testing tempera- crated creep test. Temperatures 

ture must still remain within (Ti > Tz> T2> Ti). 
the range of validity of an 
equation of state so that no appreciable change of internal struc¬ 
ture of the material is produced during the test. 

The principal object of the accelerated test is the determina¬ 
tion of the limiting strain which defines the inflection point of 
the creep curve between the second and the third stage. The 
limiting strain appears to be nearly constant (Fig. 50 -1) as long 
as the range of temperature variation is feelow recrystallization 
temperature. It is the limiting strain and not the steady creep 
rate alone, on which a safe creep design depends; only within the 
range of steady creep, delimited by the critical strain is an extra¬ 
polation permissible from the results of tests extending over a 
few hundred hours to service times of several thousand hours. 

In solving general creep problems the consideration of the 
linear elastic-viscoelastic analogy for incompressible materials, 
discussed in Art. 35, is of particular importance. This analogy 
may be extended to compressible elastic solids in all cases, in 

Fio. 50 1 Assumption for accel¬ 

erated creep test. Temperatures 

(Ti > Tz> T2> Ti), 
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which the stresses are independent of Poisscn^s ratio, as for 
instance in plane bending. 

A similarity might thus also be assumed to exist between the 
equilibrium stresses in the loading stage in materials defined by 
a nonlinear stress-strain relation and the stresses under conditions 
of stationary flow in materials whose behavior is described by a 
similar nonlinear relation between stress and strain velocity. ^ 
Hence, the state of stress associated with conditions of creep, 
expressed by eq. 50-5 would be identical with the state of stress 
within a work-hardening material, the stress-strain relation of 
which is expressed by the power law: 

Sr = CiC/ (50-8) 

51. Relaxation 

As long as creep is essentially viscoelastic and proceeds by 
homogeneous deformation within an essentially unchanging 
structure, a definite correlation exists between creep and relaxa¬ 
tion of the same material and can theoretically be used in deriv¬ 
ing relaxation curves from creep curves. It has been shown in 
Art. 38 that the rigorous evaluation of this relation may be 
difficult and may require the application of methods of opera¬ 
tional analysis. However, if part of the observed creep is due 
to irrecoverable changes within the crystalline structure of 
metals or to identifiable changes within the molecular structure 
of viscoelastic materials, this relation no longer exists; the instan¬ 
taneous values of the creep rate have become functions of strain 
and of previous strain history and thus of the amount of energy 
expended in the test. 

Most of the difficulties encountered in the attempts to correlates 
creep and relaxation tests of real materials are probably due to 
the fact that the energy aspect of both tests is different; the rate 
of application of external energy in the creep test dA/dt = Too^o 

> 0, since fio > 0, whereas in the relaxation test dA/dt = To^o 
== 0, since fio = 0 because of Eo = const. Only if none of the 
energy applied in the course of the creep test is expended in 
producing identifiable and irrecoverable changes of the internal 
structure of the material, does this difference in the energy aspect 
of the tests not affect the relation between creep and relaxation. 

Relaxation phenomena govern the behavior of bolted assem¬ 
blies under high-temperature service conditions. Although 
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special relaxation testing equipment has been built, relaxation 
tests are less easy to perform and therefore less common than 
the simple creep tests; it is therefore of practical importance 
to be able to derive the time-stress curve of a relaxing bolt from 
the data obtained by a creep test. 

Under assumptions of simple relaxation, that is, for a constant 
length I of the bolt, gripping infinitely rigid flanges, the relation 
holds 

Ye ’’’ ^ 

where P and Pi denote the momentary and the initial force in the 
bolt, respectively. In a simplified form eq. 51 • 1 may be written 

e + Cc = Co (51-2) 

where e and eo denote, respectively, the elastic and the initial 
strain. Differentiating eq. 51 -2, the relations between the strain 
rates are 

6 + 4 = 0 (51 3) 
or 

4 = -6 
1 ds 

Elt 
(51.4) 

This is the differential equation of the transformation of creep and 
relaxation for ideal homogeneous isotropic materials. 

Equation 51*4 is valid if the structure of the material is not 
changed during the creep test so that the momentary creep-rate 
depends on the momentary values of stress only, not on the 
value of strain and on strain history. With the steady-state 
creep function, 

e’e = /(«) 

integration of eq. 51 -4 gives 

_ 1 ^ ~ Ej. m 
Introducing the hyperbolic-sine law 49 1 for steady-state creep 
into eq. 51-6 gives 

(51-5) 

(51-6) 

sinh (s/so) 
(51-7) 
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The integration of this equation leads to a similar relation to that 
obtained as a solution of eq. 39-4: 

tanh (s/2so) = tanh (51-8) 

where to = so/Ec; hence, 

t = ^0 log (61-9) 

For linear viscous behavior with Sc = cs, 

(51 • 10) 

If the power function 50 • 1 is used instead of the hyperbolic sine 
law, eq. 51-6 becomes 

{s/so)^ ds 
(m — l)cEs^ 

(51-11) 

From either of eqs. 51 -9 or 51 • 10 a curve of stress s as a fraction 
of the initial stress Si versus the time t required to produce the 
stress relaxation from Si to s (relaxation curve) is easily obtained. 

The relaxation problem of bolted assemblies becomes more 
complex if the elasticity of the assembly is introduced; the length 
of the bolt is then no longer a constant but becomes a function of 
the stress. The basic condition in this type of relaxation is that 
at any instant the momentary length of the bolt equals the 
length of the compressed assembly. Considering the assembly 
to undergo both elastic and inelastic deformation, the sum of the 
inelastic strains for bolt and assembly must, at any time, be 
equal to the sum of the initial elastic strains minus the sum of the 
momentary elastic strains. Thus eq. 51-2 applies, if the strains 
e, Ccf eo are so defined as to refer to both bolt and assembly, 
considering their different creep curves and different elastic 

moduli. 
In applying creep-relaxation transformation formulas it must 

be remembered that the question of the validity of eq. 51-4 
always arises, since thermal stability of the mechanical structure 
of metals at elevated temperatures is the exception rather than 
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the rule. Microscopically defined structural stability itself is 
not a sufficient criterion of such validity, since recovery and 
precipitation become visible under the microscope only after 
they have reached a certain intensity, whereas they affect 
mechanical behavior already at a stage at which structural 
changes are not yet optically discernible. 

References 

49 1 H. F. Moore, B. B. Betty, and T', W. Doluns, Univ. Illinois Eng. 

Expt. Sta. Bull. 272 (1935). 
49 -2 W. A. Wood and W. A. Rachinger, J. Inst, of Metals 76 (1949) 237. 
49-3 W. A. Wood, Proc. Roy. Soc A 172 (1939) 231. 
49-4 N. DA C. Andrade, Proc. Roy. Soc. A 90 (1914) 329. 
49-5 H. F. Moore and C. W. Dollins, Univ. Illinois Eng. Expt. Sta. Bull. 

347 (1943) 25. 
49- 6 E. P. Popov, J. Applied Mechanics 14 (1947) A-135. 
50 1 L. F. Coffin, P. R. Shepler and G. S. Cherniak, /. Applied 

Mechanics 16 (1949) 229. 
50- 2 A. Nadai, v.Kdrmdn Anniversary Volume (1941) 237. 



CHAPTER 

10 

INELASTIC BEHAVIOR UNDER DYNAMIC 

CONDITIONS 

52. The Damping Capacity 

In the test or performance of materials under conditions of 
cyclic loading energy is dissipated during each load cycle in the 
interchange between potential and kinetic energy. This dis¬ 
sipation is manifest in various ways, for instance in the appear¬ 
ance of a hysteresis loop in the force-deformation or the stress 

strain diagram under an imposed 
period force (Fig. 52 1), in the 
energy input required to keep 
the amplitude of a forced vibra¬ 
tion constant, in the tempera¬ 
ture increase of the material 
specimen during vibration, in 
the damping of the resonance 
curve,' or in the decay with time 
of the amplitude of free vibra¬ 
tions of a specimen. The specific 
damping capacity is usually de¬ 
fined either in terms of forced 

vibrations, as the ratio ^ between the energy per unit volume 
dWn dissipated during a completely reversed cycle and the max¬ 
imum potential energy W stored up in this volume during the 
cycle or, in terms of free vibrations, as the decrease, per cycle, 
of the natural logarithm of the amplitude a or of the energy W 

326 

Fig. 52 • 1 Hysteresis loop under 

imposed periodic stress, fluctuat¬ 

ing between Snuu and Smin. 
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of the decaying vibrations, which is termed the logarithmic 
decrement 8. 

According to the foregoing definition, 

dWjj 1 d log If 

AN ‘ W ” AN 
(52.1) 

where N denotes the sequential number of the load cycles and 
AN == 1. If it is assumed that the energy is roughly propor¬ 
tional to the square of the amplitude a, or If = ca^, eq. 52*1 
may be written 

d(ca)^ ^dloga 

ca^AN ^ AN 
28 (52-2) 

The damping capacity of a material can also be determined by 
the observation of a resonance curve, which gives the amplitude 

700 

600 

o 500 
o 

hS 

c400 
.o 

I 300 

1*200 

100 

0 

Fir,. 52-2 Hesonanee curves for different values of specific damping \f/. 

of a forced vibration as a function of the ratio X between the 
imposed frequency and the natural frequency of the specimen 
in the vicinity of X = 1 (Fig. 62 *2). The width AX of this curve 

at the ordinate of 0.5 of the maximum amplitude Ao is a direct 
measure of the damping capacity, to which it is related by the 
expression: 

(52.3) 
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If damping is defined by the phase angle or phase lag 7 of a 
forced vibration, this definition can be visualized by considering 
that during an elastic forced vibration the acting force and the 
resulting deformation are in phase, both passing their extreme 
and their zero values simultaneously. Since the vector of the 
deformation velocity is normal to the force vector, no work is 
done. If energy is dissipated in the deformation, a component 
of the deformation velocity falls into the direction of the force, 

r (Deformation 

Fig. 52-3 Vector representation of damped forced vibration. Point A on 
damping ellipse defined by projections of pertaining force and deformation 

vectors. 

and the deformation lags behind the acting force; the energy 
dissipated can be defined by the lag angle between the periodic 
functions of force and deformation. If deformations are repre¬ 
sented as abscissas and forces as ordinates, one cycle of the 
elastic vibration is given by a straight line inclined under 45®, 
rising first toward the right, attaining a maximum value and 
falling towards the left and subsequently returning to the origin. 
In the vibration of an ideal viscous or viscoplastic material the 
deformation velocity is in phase with the acting force; since in a 
periodic vibration deformation velocity and deformation are ir/2 

out of phase, there is a lag of zr/2 between the force and the defor¬ 
mation; the combination of vectors results in a full circle, which 
represents the dissipated energy. If the deformation lags only 
by a small angle 7, the pertaining momentary values of force 
and of deformation are located on an ellipse; this ellipse replaces 
the real hysteresis loop (Fig. 52*3). The introduction of the 
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phase or lag angle y is thus equivalent to approximating the 
hysteresis loop of real materials, which cannot be expressed 
analytically, by an ellipse for which simple mathematical rela¬ 
tions exist. 

If a periodic force P = Pq sin o)t is applied and produces a 
maximum deformation velocity vq, the rate of energy loss, 

Wn = iPo^o sin y (52*4) 

Since the relation between velocity and deformation Aq 

Vq = q)Aq = 2x^.4 0 (52-5) 

eq. 52 -4 becomes 

Wd = io)PoAQ sin y = iwPoAoy = irnPoA oy (62-6) 

for small values of y. 

The energy loss per cycle, 

W i) = ttPoAot (52-7) 

the maximum potential energy stored per cycle, 

W = iPo/lo (52-8) 
Therefore, 

2ir 
}p = 2Ty = 25 = (52-9) 

which is the relation between the various characteristics used 
to define the damping of a material. 

Frequently the mechanical vibrations of the specimen are 
analyzed in terms of an analogy with the steady-state response 
of a linear electric circuit; the graphical representation in Fig. 
52 -3 is interpreted accordingly by considering the two axes of 
coordinates as the axes of the real and the imaginary part, 
respectively, of the complex response to the acting electromotive 
force E = Eoe^\ The response is defined by the impedance 
Z{i<a) of the circuit, which is the complex ratio between the 
electromotive force E and the current I in the steady state; it is 
expressed in the form,®^’ ^ 

(52 10) 
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and represents a generalization of the concept of the electrical 
resistance to an alternating current. Because of the analogy 
of the differential equations governing mechanical and electric 
oscillations of one degree of freedom, respectively, 

+ ^ J + oa; = P = Poe“‘ (5211) 
at at 

and 

+ + = = (5212) 
dr dt C 

according to which the inductance L is equivalent to the mass 
m, the resistance R to the damping d, the reciprocal value of 
capacitance C to the elastic (spring) constant a, the impressed 
electromotive force E to the mechanical force P, and the current 
I = dQ/dt to the rate of displacement or deformation, the con¬ 
cept of mechanical impedance can be introduced to define the 
steady-state response of the oscillating mechanical system to an 
imposed period force Poe^K This mechanical impedance Z{io)) 
is interpreted either as a force versus displacement or force versus 
displacement-velocity response function. In the first interpreta¬ 
tion it represents a generalization of the spring constant, in the 
second it is a generalized viscosity coefficient. 

If a sinusoidal force P{t) = Po sin cot is imposed, the resulting 
deformation is given by 

P(t) 
^(0 = \ = Po[^ sin o)t + B cos <at] (52-13) 

Z(tw) 

The mechanical impedance function Z{i(a) thus represents a com¬ 
plex spring constant which expresses the elastic and inelastic 
responses of the vibrating system. The real component A of 
the spring constant defines the amplitude of the deformation 
which is in phase with the acting force, whereas the imaginary 
component B gives the amplitude of the deformation which is 
out of phase by ir/2; it represents the inelastic effect on the imped¬ 
ance and is therefore identical with the sine of the phase angle 7. 
Hence, for small phase angles (sin 7^7) 

27rP = 2ir7 = ^ (52-14) 

The application of the electrical-mechanical analogy and of 
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the operational methods developed in the analysis of the response 
of electric circuits to electromotive forces®^ ^ to the analysis of 
mechanical systems subjected to imposed forces, particularly to 
the analysis of their inelastic response to alternating forces, has 
the advantage that solutions in electric circuit theory have been 
worked out in great detail. Thus with the aid of the concept of 
impedance it is relatively easy to determine the combined 
response of a system consisting of many elements, for instance 
the system represented by a material with a discrete or continuous 
distribution of relaxation times. 

Damping is the expression of a dissipation process of applied 
strain energy either into heat (real damping) or into surface 
energy (progressive damage by disruption of cohesive bonds). 
The mechanism of dissipation into heat varies even for the same 
material with the amplitude, and it is different for materials of 
different structure. The fact that the applied mechanical 
energy is transformed into heat energy is in itself insufficient to 
interpret the significance of damping observations. It is in 
terms of the differences in the operating dissipation mechanisms 
that differences in the significance of damping can be evaluated 
and damping observations interpreted and correlated with 
mechanical behavior. Such interpretation is frequently difficult 
because external dissipation mechanisms exist in addition to the 
internal ones; they cannot always be entirely eliminated and 
tend to distort the real picture. 

The dissipation mechanisms operating within specimens or 
structures under cyclic loads are: 

1. External dissipation by friction within bearings, grips, and 
the like, and resistance of the surrounding medium. 

2. Internal dissipation by place change of particles within an 
essentially amorphous material. 

3. Internal dissipation accompanying work hardening of single 
crystals or polycrystalline aggregates. 

4. Internal dissipation by repeated fragmentation of a spon¬ 
taneously re-forming polycrystalline structure, that is, by 
thermal softening or recrystallization. 

5. Dissipation into surface energy, usually associated with 
dissipation of applied energy by thermal oscillation and by slip 
in the course of the formation and propagation of cracks. 

The observed damping characteristics are, in general, the 
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expression of a combination of two or more of the afore-mentioned 
dissipation mechanisms; the differentiation between the indi¬ 
vidual influences is usually difficult, if not impossible. However, 
since the damping capacity of a specimen can be rapidly deter¬ 
mined, there have been numerous attempts to correlate damping 
with other mechanical properties that cannot be easily observed 
and measured, such as notch sensitivity, impact strength, or 
fatigue performance. The result of those attempts has mostly 
been disappointing. 

The purpose of damping measurements is usually either: 
1. To study changes in damping as an indication of changes 

in other mechanical properties of the material which are produced 
by the same testing conditions, or to study damping as an indi¬ 
cation of the presence or absence of certain characteristics. 

2. To determine values of the damping capacity for direct use 
in design of vibrating systems near the resonance range. 

3. To study the internal structure and mechanical behavior 
of materials by studying their inelastic response to cyclic loads 
under which this structure remains unaffected by the test. 

To achieve any one of the foregoing objectives different 
approaches are necessary. If, for in¬ 
stance, damping is observed as an 
indication of progressive damage to 

cohesive strength by repeated stress 
cycles, it is necessary to subject the 
specimen in the damping arid in the 
fatigue test to identical stress ampli¬ 
tudes. In this case damping is essen¬ 
tially the expression of changes under 
forced vibrations within the structure 
of the material; ,if under these condi¬ 
tions the damping characteristic tends 

towards a stable value (Fig. 52 -4), this value is not associated 
with the material before the test, but only with the condition 
of the material as changed by the test. The (changing) damping 
values at any particular moment characterize the structure of 
the material only at the same moment. If different testing 
procedures do not produce the same permanent change in the 
structure of the material, or even if the sequence of changes 
producing the same final change is different, the test results are 

Fig. 52*4 Variation of 
(lamping with time (num¬ 

ber of cycles). 
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not comparable, and the relations 52-9 and 52-15 are invalid. 
The damping capacity, therefore, cannot be an indication of any 
property of the material that is determined by a type of test 
totally unrelated to the damping test. 

If the damping capacity of the material is to be determined for 
design purposes, this requires the setting up of testing conditions 
equivalent to service conditions and the determination of a 
final stable value of the specific damping. 

Where damping observations are used to study the structure 
of the material, this structure must not be affected by the test. 
Hence, such damping tests are limited to cycles of very small 
strain amplitude; it is only for such conditions that the equiva¬ 
lence of different testing procedures and different damping char¬ 
acteristics may be assumed to exist. 

The damping of whole structures excited into vibrations by 
special apparatus has occasionally been observed®^ ^ in the 
expectation that the damping capacity might provide an indica¬ 
tion of the state of the structure. However, the sources of damp¬ 
ing in a structure are so manifold that the interpretation of 
a single damping constant in terms of performance seems hardly 
possible. Even a more or less consistent interpretation of rela¬ 
tive changes of damping with time of service is difficult since, 
for instance, observations on bridges have shown tendencies of 
the damping both to increase and to decrease with time, although 
neither behavior could be reliably correlated with performance. 

If external dissipation by friction in the bearings or through 
the resistance of the surrounding medium is eliminated, the 
observed damping is essentially the expression of the inelastic 
behavior of the material. The amount of energy that can pos¬ 
sibly be dissipated by fracture in the creation of new surfaces is 
probably of a much smaller order of magnitude than the energy 
dissipated through the accompanying inelastic deformation. 
The real significance of damping under various conditions could 
therefore only be determined by an analysis of the effects of 
different testing conditions on both the general inelastic behavior 
and the damping values; it is reasonable to assume that, whenever 
an interrelation between damping and some other mechanical 
property can be established, this is possible only because the 
inelastic behavior of the material in the damping test and in the 
test performed to observe the particular property is nearly 
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identical. Hence, the possibility of an interrelation between 
damping and conventional static strength, or hardness or notch 
sensitivity or performance under impact or creep beyond the 
purely viscous range can be ruled out because of the widely 
different conditions of inelasticity and the resulting lack of cor¬ 
relation between the respective tests and the damping test. 
The only relation that may be assumed to exist is that between 
the performance of the material under repeated load cycles and 
damping as a function of the number of cycles since in this case 
similar testing conditions produce similarity of inelastic behavior. 

Changing the testing conditions affects the inelastic behavior 
differently in different material; the significance of damping will, 
therefore, necessarily vary for various materials and conditicms. 
The results of damping observations can therefore be interpreted 
only if the influence of the different factors making up the general 
condition of the test are individually understood and their effect 
on the test or performance analyzed. These factors are the 
same that influence inelastic behavior in general namely, stress, 
strain, strain rate, temperature, and the internal structure of the 
material as initially existing and subsequently changed in the 
course of its strain history. 

The effect of strain rate or stress rate is usually expressed as 
the effect of frequency. The material in the damping test is 
sensitive to frequency in a similar manner as it is to strain rate 
or stress rate in the single-stroke test. However, there is a differ¬ 
ence in the degree of sensitivity, since the inelasticity of the 
response to an external load is considerably more pronounced 
within certain frequency ranges of a vibration test than it is at 
the same stress level in the single-stroke test. Whereas at 
relatively low stresses the stress-strain curve of a material under 
a slowly applied load may show no appreciable deviation from a 
straight-line relation of ideal elasticity, the damping test usually 
reveals a definite inelastic response expressed by relatively high 
damping, if the duration of the imposed stress cycle is within 
the order of magnitude of the relaxation spectrum of the material 
or of its unordered phase (see Art. 37). Since the inelastic 
response of materials within the range of low stresses is due to 
energy dissipation within the unordered phase of the material, 
the specific damping capacity within this range of stress is a 
constant; the behavior can thus be roughly described by the 
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oscillation equation of a system of one degree of freedom with 
linear viscous damping. This damping is, however, an inverse 
function of the frequency. 

Damping of one-phase or polyphase molecular materials such 
as polymers or glass will usually remain of the viscous type up 
to relatively high stresses, since the dissipation mechanism does 
not change with stress, unless considerable destruction of the 
internal network of molecular chains takes place. In poly¬ 
crystalline metals, on the other hand, the dissipation mechanism 
depends on stress and will change considerably when the stress 
exceeds the level up to which no appreciable structural change 
takes place in the material. Below this level the deformational 
response is purely viscoelastic.^*^ ® When the applied load 
produces changes in the structure by slip and fragmentation, the 
specific damping reflects both the viscous dissipation mechanism 
and the dissipation by crystal breakup and thermal softening. 
Only part of the energy expended in work hardening is dissipated 
into heat while part is stored 
up in the work-hardened 
structure as latent energy. 
Since both the extent of crys- .c 
tal fragmentation and the | 
latent energy are functions of ^ 
stress or of strain, or rather 
of both, that is, of the energy 
applied, the specific damping Amplitude (stress, strain) 

capacity can no longer be 
independent of stress. Ob¬ 
servations have shown that 

Fig. 52-5 Specific damping as a 

function of amplitude. 

the damping capacity in most metals increases with stress or 
strain amplitude in such a way that beyond the range of small 
amplitudes the increase becomes gradually linear (Fig. 52 -5). 

GrammeB-^has shown that a linear dependence between 
amplitude and damping (logarithmic decrement) is produced in 
a freely oscillating system with one degree of freedom by intro¬ 
ducing a resistance proportional to the square of the velocity. 
There have been no attempts to interpret the significance of 
this conclusion. 

At stresses at which cracks are initiated and propagated, damp¬ 
ing expresses the dissipation of applied energy into surface energy 
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combined with the increased dissipation resulting from the 
intensified plastic deformation around the spreading cracks. 
Since the energy dissipated by plastic slip accompanying separa¬ 
tion is probably a multiple of the energy actually transformed 
into surface energy, the only possibility of directly observing 
dissipation by surface energy would be to create conditions under 
which no other dissipation mechanism of similar tendency and 
comparable intensity would be present. Such conditions might' 
exist in fatigue tests leading to fracture under relatively low 
stress levels. Observation of the change of damping with the 

number of load cycles sus¬ 
tained have shown curves 
which, for different stress 
levels, are schematically 
reproduced in Fig. 52-6. 
The first part of the curves 
of decreasing damping is 
obviously the expression of 
the progress of the work- 
hardening process, the in¬ 
tensity of which gradually 
decreases until a final pat¬ 
tern of the crystal structure 
characteristic for the ap¬ 

plied stress level is reached. The last part of the curves showing 
sharply increasing damping is the expression of the formation and 
of the spreading under considerable local deformation of macro¬ 
scopic cracks, leading more or less rapidly to fracture. The cen¬ 
tral part which exists only at moderate stress is the expression of 
either one or the other of the two possible dissipation mechanisms 
or their joint effect; relaxation within the unordered and distorted 
regions and separation of bonds on the atomic scale accompanied 
by momentarily intensified thermal oscillation of the separated 
particles. The two superimposed effects cannot be isolated; 
however, the fact that the diagram in this range is not parallel 
to the N axis (as it would be for purely viscous damping) but 
rises steadily suggests a combination of both mechanism. 

It may thus be inferred from Fig. 52-6 that the change of 
damping with the number of load cycles sustained is related to 
the process of progressive damage that finally produces fatigue 

Fig. 52 • 6 Variation in metals of specific 

damping with number of load cycles for 

different stress levels s. 
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fracture, although it does not directly express the effect of 
damage, but rather the effect of localized inelastic deformation 
accompanying damage. It is, therefore, not the absolute value 
of the damping capacity, but its change with the number of 
cycles, which is an indication of the process of progressive 
damage. 

Similarly, in the relation between specific damping and stress 
amplitude, which has occasionally been assumed to provide an 
indication of the endurance limit 
(Fig. 52 -7), the amplitude, at which 
a definite change of the trend in 
this function from a direction nearly 
parallel to the stress axis (viscous 
response) to a more or less linearl}' 
increasing relation is observed, may 
only be considered to delimit the 
stress at which energy dissipation 
by crystal fragmentation sets in. 
This stress, however, would be 
identical with the endurance limit only if fatigue were dependent 
on work hardening alone, which it is not. 

The damping capacity is as strongly influenced by a velocity- 
modified temperature as the general inelastic behavior (see Art. 
19). Although the general trend of increasing damping with 
rising temperature holds for all engineering materials, the actual 
form of the relation depends on their internal structure. 

The dependence of damping on the structure of the material 
makes the observation and measurement of the damping char¬ 
acteristics an outstanding tool for basic research of inelastic 
behavior and of structure within a range of stresses in which 
most other mechanical tests fail because of insufficient sensitivity. 
The structure of a material is studied in the vibration test in a 
similar manner to the way it is studied by X-ray or electron 
diffraction or with the aid of the microscope. Instead of observ¬ 
ing the optical response of the structure to X rays or electron 
or light beams and interpreting this response, which is essen¬ 
tially geometrical, in mechanical terms, the observation of the 
inelastic response of the specimen under forced vibrations of 
different frequencies (vibration spectrum) evolves the mechan¬ 
ical response directly. Moreover, the response is not geomet- 

Fig. 52-7 Relation between 

specific damping and stress 

level as assumed indication of 

endurance limit. 
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rically localized, as in the optical or X-ray methods but expresses 
the average behavior of the particular phase of the material that 
responds to the applied frequency. 

In materials in which a continuous solid phase responds elas¬ 
tically, the inelastic response is of the after-effect type (see Art. 
37). The inelastic response is assumed to be concentrated within 
small local domains called relaxation centers^ which are distributed 
within the elastic matrix. In metals the inelastic domains are' 

Fig. 52 • 8 Comparison of relaxation spectra due to different types of relaxa¬ 

tion for iron at room temperature (after Zener®* ’*). 

A Relaxation by intercrystalline diffusion. 

B Relaxation by thermal diffusion in bending. 

C Relaxation by diffusion of carbon and nitrogen to and from preferred 

interstitial positions. 
D Relaxation within distorted slip planes and atomic layers produced by 

fragmentation. 

E Relaxation within grain boundaries. 

identical with the grain boundaries and the distorted slip planes 
surrounding the crystal fragments. In amorphous materials 
and high polymers the relaxation (or retardation) centers are 
distributed within the material; they do not constitute optically 
identifiable components of the material, but rather different 
responses of individual elements (molecules) or groups defined 
by their individual relaxation (or retardation) times. 

Experimental studies of the inelastic after effect within a 
range of stresses or strains which, in the usual engineering 
terminology, is defined as elastic, date back to Weber, ® Kohl- 
rausch,®2 6 Voigt;^*'^ the theory has been developed by 

Boltzmann, ® and Wiechert.®^ ® Within the last 30 years 
this effect has been extensively studied in high polymers and 
textiles,** 
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More recently Zener®^ and coworkers have developed an 
experimental approach to the analysis of the structure of metals 
by observation and interpretation of their anelastic response 
(relaxation spectrum), in vibration tests. The new term anelas- 

ticity has been introduced for the phenomenon that hitherto was 
known as elastic after-effect. However, the meaning of this term 
has been extended to include not only the inelastic response to 

stress regions of microscopic order of magnitude within the 
elastic matrix, such as the viscous grain boundaries and the 
distorted slip layers, but also the relaxation effects resulting 
from various diffusion processes involving relatively small 
numbers of individual particles such as diffusion of interstitial 

atoms. The positions of the individual relaxation spectra 
associated with the different types of relaxation involving ele¬ 
ments of different orders of magnitude differ by several orders 

of magnitude, and the intensity of the effect, as expressed by 
both the damping and the width of the distribution of relaxation 
times, varies considerably (Fig. 52-8).^^ 

53. Theory of Anelastic Effects 

The theory of anelasticity is based on the principle of superposi¬ 
tion (see Art. 38) formulated independently by Boltzmann and 
Wiechert and expressed by eqs. 38 • 1 and 38 • 2. According to 
eq. 38 1 the deformation .r(0 under an applied load P is given 

by 
x{t) = aP[l + Mcit)] (53-1) 

where \pc{t) represents the creep function and 0c is a constant. 
If this load is applied at a time 6 previous to the considered time 

t and removed at {d + d0), the deformation will not disappear 
on load removal; the residual deformation, will only be recovered 
in time. Hence, the deformation at time t is equal to the instan¬ 
taneous deformation due to the load Pt applied at time t plus the 
sum of all residual deformations due to the transient load Pe 

applied during the time interval dd (Fig. 53-1). According to 
eq. 53 1, the residual deformation at time t due to a load Pe 
acting between 6 and {d + dS) is 

dx = aPepclMt - ~ Mt - e + de)] 
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Fio. 53 1 Superposition of residual deformations produced by loads Pe 
acting at different times 6. 

The total residual deformation at time t due to the loading history 
P{B) (Fig. 53*2) is therefore the integral from 0 = — oo to 0 = 
i of eq. 53 • 2. Hence, the total deformation, 

X ^ a^Pt - fic Pie) rfe] (53-3) 

If the elapsed time is denoted by X = (^ — 0), eq. 53 *3 becomes 

x = a^Pt+fiej^ P(< - X) rfX j (53-4) 

Fig. 53*2 Schematic representation of loading history diagram. 

Since the creep function ^c(0 represents the delayed deformation, 

the function d}l/c{t)/dt represents the creep rate. With ~ ^c(0 = 
dt 

53 *4 may be written in the form, 

xit) = a ^Pit) Pit - \)4>cW rfx] (53-5) 

which is the form of the superposition principle developed by 
Becker.** * 
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According to eq. 53 • 5, the residual deformation dx at a time 
due to the transient load Pe applied between $ and {B + dB), is 
given by 

dx = aPefic<l>c(X) dB (53*6) 

or, for simple loading and unloading with a constant load P, 

dx 
— = ±Xo(l>r{t)^c (53-7) 

where xq denotes the instantaneous deformation under the applied 
load; 0c(O is a function of time, which has been called by Boltz¬ 
mann the remembrance function. The plus sign applies if Pq = 
0 for i < 0 and P = Po for I > 0, whereas the minus sign applies 
if P = Po for / <0 and P = 0 for ^ > 0. 

Equation 53 *5 expresses the deformation x{i)^ produced by a 
given load P(i). By a similar derivation, using eq. 38-2, the 
expression connecting the load P{t) necessary to produce a 
specified deformation xit) is obtained in the form, 

P{t) = i ^x{t) - X{t - X)«r(X) rfxj (53-8) 

The remembrance f unction <l>r{t) = -y ^r(0 is l^he relaxation rate. 
dt 

This is the form of the superposition principle as developed by 
Boltzmann. When the superposition principle is valid, the 
knowledge of the remembrance function is sufficient to compute 
all inelastic effects. 

In the most general case of anelastic behavior of nonmetals 
and metals, the response of the retardation or relaxation centers 
is usually represented by a continuous distribution P(t) of retarda¬ 
tion or relaxation times (see Art. 38), where the ordinate P(t) 
represents the contribution to the observed inelastic response— 
for instance the deformation in the creep test, the load in the 
relaxation test, or the impedance in the vibration test—of those 
elements the retardation or relaxation times of which lie within 
the range r and (r + dr). Since the distribution function fre¬ 
quently covers a range of several orders of magnitude, it is 
expedient to adopt the logarithmic scale for t and to define the 
distribution in terms of the contribution of elements the retarda- 
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tion or relaxation times of which lie within a range (d log r) at r, 
by the distribution function F(r) d log r. With this modified 

d 
distribution the remembrance function ^{t) ^ is obtained 

dt 
with reference to eq. 38 • 10 in the form, 

4> = P F{r)r-h-^ '^ d log T (53.9) 

With the aid of eq. 53 -9 the relaxation or retardation spectrum 
can, in principle, be derived analytically if the function or 
0c which have been determined by experiment can be expressed 
as analytical functions. The rigorous procedure, however, 
requires the application of Laplace and Fourier transforms, since 
it involves the inversion of an integral. If a periodic force of 
frequency co is applied P{t) = the resulting deformation, 

(53-10) 

Z(ico) denotes the complex steady-state mechanical impedance 
of the system and is defined by 

—— = a[\ + L{io))] (53-11) 
Zlio)) 

L(iui) is the Fourier transform of the remembrance function <I>{1), 
given by the expression, 

L(i(jo) == A(c«)) — iB{u)) (53-12) 
where 

A(«) = <t>{t) cos o)t dt (53-13) 

and 

B(«) = f 0(0 sin (at dt (53-14) 

According to eq. 52 -14, B expresses the phase angle y or l/2w of 
the specific damping capacity of the system; for small angles 
the energy dissipation per cycle is therefore BvPo^a. The amount 

of energy that is stored twice in every cycle is a(l + A)0.5Po^. 
In the undamped vibration the energy stored is 0.5Po*a*, where 
a, denotes the spring constant for w = «. Hence, a = a^. 
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(1 + i4) represents the dynamic spring constant. According to 
eq. 53 • 13 for zero frequency (w = 0), that is, for the creep test, 

MO) = jo" <l>c{t) dt == and B(0) = 0 (63 15) 

where denotes the total creep for I = oo, Hence, the 

spring constant a varies between ao = olool^ + ^c(®®)] for w = 0 
and for w = oo, since, for infinite frequency (a? = oo), 

A(oo)=0 and ^(oo)=0 (5316) 

By introducing </>c(0 according to eq. 53 -9 into eq. 53 *15, the 
relation is obtained, 

^(0) = F{T)d log t = (53*17) 

Thus A(0) expresses the area beneath the relaxation spectrum 
drawn to a logarithmic time scale. 

The expressions A(a)) and B(o)) are convenient measures of 
the anelastic effects. A(w) defines the variation of the dynamic 

spring constant with the frequency of vibration, whereas B{w) 
is a measure of the variation of the specific damping. 

For a material with a single relaxation time r, the remembrance 
function, according to eqs. 53 9 and 53* 17, 

0 = (53*18) 

If this expression is introduced into eqs. 53 *13 and 53 *14, the 
inelastic characteristics 

A{(a) = cos a)t d(t/T) (53*19) 

and 

B{u>) = e-‘'* sin u>l di^r) (53• 20) 

A{(a) and B(w) are thus the Laplace transforms of (cos o)t) and 
(sin wOf respectively. By using tables of Laplace transforms, the 
relations are obtained: 

A(^) = i A(0) (53.21) 
1 + TO) 

and 

TO) 

1 + T^O)^ 
A{0) B{o)) = (53*22) 
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These two anelastic characteristics are plotted in Fig. 53 -3 as 

functions of the product (rw). For values (rco) > 10, the dynamic 
spring constant approaches its minimum elastic value a == 
whereas the damping is comparatively small, since A(w) ^0 and 
B((a) ~ O.lil(O); for values (wr) < 0.1 the spring constant a with 
A{(i}) ^ A(0) approaches its maximum value a = aj_\ + ^4(0)], 
whereas the damping with fi(w) ^ 0.1/1 (0) is again small. Only 

in the intermediate frequency range 0.1 < ci>r < 10 are the 

Fig. 53*3 Characteristics A(ur) and ^(aw) as functions of (log wr) for 

material with a single relaxation time. 

variations with frequency of the spring constant and the damp¬ 
ing appreciable. The peak of the damping function B(wt) is 
obtained by differentiation of eq. 53 • 22. 

o
 II 

1
 (63-2:^) 

which results in the relation, 

II II (53-24) 

With the aid of eq. 53 • 24 the mean relaxation time of materials 
can be evaluated from vibration tests; for poly crystalline alpha 
iron the relaxation time associated with grain-boundary relaxa¬ 

tion has been estimated by ^ to be of the order of magnitude 
of r =5 0.76 sec at a temperature of 470®C. Since the order of 
magnitude of the shear modulus (j = 10^^ dynes per sq in., the 
coefficient of viscosity at this temperature rj — tG is of the order 
of magnitude of 10^^ to 10^^ poises. With the activation energy 
Q = 85,000 cal per mole determined by experiment, the tempera- 



Art. 531 Theory of Anelaitic Effecte 345 

ture dependence of the relaxation time and of the coefficient of 
viscosity of the grain boundaries is through the factor 
Hence, at room temperature 77 is of the order of magnitude of 
10^® poises and the mean relaxation time practically infinite 

(10^® years). 
Under the assumption that F(r) is a slowly varying function 

of its arguments, the validity of eqs. 53 • 21 and 53 • 22 can, with 
rough approximation, be extended to the case of a continuous 
distribution of relaxation times. Unless this assumption can be 
considered justified, the anelastic characteristics A(w) and -B(w) 
must be determined by introducing eq. 53 * 9 into eqs. 53 • 13 and 
53 • 14. These equations thus contain an unknown distribution 
function F(t) and therefore cannot be solved rigorously. It has 
been suggested®^ ® however that the validity of eqs. 53*21 and 
53 • 22 be extended to a continuous distribution of relaxation times 
by direct integration. Hence, 

A(«) = 
/■“ F{r) 

Jo 1+«V* 
(53-25) 

fi(«) = 
f- 

Jo 1 + 
(53-26) 

The experimental determination of the variability of the 
anelastic characteristics A{o)) and J5(a)) from resonance vibration 
tests is difficult; variation of the resonant frequency through a 
wide range would involve considerable difficulties because the 
dimensions of the specimen would have to be varied very widely. 
Since, however, anelastic effects and temperature are interre¬ 
lated through the heat of activation Q, as expressed by the 
relaxation-time-temperature relation 48 -4, it may be expected 
that the variation of the anelastic characteristics A(a>) and fi(a>) 
with the frequency of vibration at constant temperature can 
be related to their variation with temperature at constant fre¬ 
quency. Observation of the anelastic characteristics as functions 
of temperature may thus replace their observation as func¬ 
tions of frequency. The relation between frequency and tem¬ 
perature variations of the anelastic characteristics have been 
derived and extensively used in experimental work by Zener 
and coworkers. ^ 

According to eq. 53 *22 the damping is a function of the 
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parameter (ow). Considering the relaxation-time-temperature 
equivalence (eq. 48-4) for a material of unchanging structure, 
the expression for damping may be written in the general form : 

B{oyr) = const(53-27) 

Hence, instead of observing Bioyr) at constant temperature, 
B(T) or B{l/T) can be observed at a constant frequency. 
Similarly, curves A{T) or A{l/T) at constant frequency replace 
the curves 4(to). In order to derive the functions A{(jjt) and 

Temperature of measurement, *0 

Fig. 53-4 Shift of damping characteristics as a result of changed fre¬ 

quency of test (after T. S. 

5(«t) from the functions ^4(1/7") and B(l/T) the heat of activa¬ 
tion Q must be determined. This can be done by two series of 
observations of curves A(l/T) and B{l/T) for two different 
frequencies. It is evident from eq. 53 • 27 that an increase of o 
shifts the curves .4(1/7") and J5(/17"),toward higher tempera¬ 
tures, without changing the shape of the curves, as illustrated by 
Fig. 53-4; similarly, an increase of temperature shifts the curves 
A (or) and JS(cot) toward lower values of (wr). By relating the 
relative shifts in 1/7" required to bring to coincidence the pair 
of curves A(l/7") or B(l/7") observed at two different frequencies, 
with the ratio of those frequencies, an equation is obtained for 
the determination of the activation energy Q. 

The relation between frequency and temperature is derived 
from the condition that the shape of the damping function be 
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independent of temperature, or 

347 

dB 

d(l/T) 

By differentiating eq. 53 • 27, 

d 

d{\/T) 

the relation is obtained, 

du 

= 0 

/ cfw 

\d(l/7’) 
+ «D-« 

(63-28) 

(53-29) 

— (53-30) 

Equation 59-30, integrated, gives the relation between frequency 
and temperature: 

d log w 

dil/T) 
= -Q/R (53*31) 

By replacing the differentials by the differences between a>2 and 
CO I and between and Ti, eq. 53-31 may be written in the form: 

Q/R 
log ((02/cOl) _ log (CO2/CO1) 

l/Ti - I/T2 ~ A(l/r) 
(53*32) 

"J'he activation energy Q can thus be determined from two curves 
B{i/T) observed at two different frequencies coi and C02 and 
shifted horizontally by the amount A(l/7'), so as to coincide. 

In polycrystalline metals a change in grain size has a similar 
effect on the curves A(l/T) and B{l/T) that a change in the 
frequency of vibration has. When the frequency is kept con¬ 
stant, an increase of grain size shifts both cifrves towards smaller 
values of (1/7’), or higher temperatures 7\ as indicated in Fig. 
53 *5. Whereas the maximum amount of damping, indicated 
by the peak of the damping curve B{l/T), decreases appreciably 
with increasing grain size, the value A{0) which defines the 
differences between the spring constants (ao — Ooo) remains 
independent of grain size.*^® ® 

The effect of grain size on the anelastic characteristics is an 
expression of the fact that the thermal instability of the dis¬ 
torted atomic arrangement within the grain boundaries and slip 
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bands as well as the volume of distorted material increase with 
decreasing grain size. Thus, the smaller the grain size, the 
lower the temperature at which the same amount of damping 
due to the viscous response of the grain boundaries develops, 
particularly if the grain refinement is the result of work harden¬ 
ing. This conclusion is confirmed by Fig. 52 -8 which indicates 
that the relaxation times within the distorted regions produced 
by work hardening are considerably shorter than the relaxation 
times of the initial grain-boundary regions. On the other hand, 

Temperature of measurement, *0 

Fig. 53 -5 Shift of damping curves B(T) with grain size (after T. S. *). 

the larger the grains, the less the amount of damping produced 
within the reduced volume of unordered and distorted domains 
of the material. Therefore the characteristic anelastic effects 

are absent in single crystals (Fig. 63 -5). 
The variation of anelastic damping with frequency or with 

temperature can be interpreted in terms of thermal currents 
within the material instead of relaxation times of structural 
units. Such interpretation has first been suggested by Zener,®* ® 
who assumes that fluctuations in stress give rise to fluctuations 
in temperature in the same way that local fluctuations in tem¬ 
perature give rise to local fluctuations in stress. Temperature 
gradients cause irreversible thermal currents associated with 
damping. If these currents are able to maintain temperature 
equilibrium within the field of textural stresses, the vibration 

proceeds isothermally with little dissipation of energy. In the 
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other extreme case the vibration is adiabatic, and the internal 
dissipation of energy is again very small. Hence damping reaches 
a maximum only when the vibration is partly isothermal and 
partly adiabatic. Isothermal conditions are produced if the 
duration of the load exceeds that of the long relaxation times, 
whereas adiabatic conditions are associated with load duration 
much shorter than the short relaxation times, since the thermal 

currents are produced by the relaxing structural units which, 
dissipating part of their energy, emit this energy into heat. 

54. Impact 

The effects of the applied strain rate on the inelastic behavior 
of materials is expressed by eq. 19-15, from which relations 
between strain rate and stress at constant temperature and 
between strain rate and temperature at constant stress can be 
derived. There are, however, two additional effects which are 
not contained in those relations but which influence the mechan¬ 
ical behavior of materials, particularly metals, strained beyond 
the elastic range at very high rates of strain. These are (1) the 
change from essentially isothermal conditions at low and moder¬ 
ate strain rates to adiabatic conditions at very high strain rates, 
and (2) the velocity of propagation of the plastic deformation. 

When the material undergoes plastic deformation adiabatically, 
the stress associated with a certain deformation is raised by the 
high strain rate and by work hardening, as under isothermal 
conditions; however, because of the rise in temperature produced 
by the heat which is developed during the inelastic deformation 
and not carried away, the velocity of deformation at a certain 
stress level is higher under adiabatic than under isothermal con¬ 
ditions. The greater the strain, the greater the amount of heat 
developed and the higher the associated fise in temperature; 
the more pronounced, therefore, the increase in the velocity of 
deformation. The stress-strain curves for adiabatic conditions 
are therefore usually flatter than those obtained under isothermal 

conditions although the stress at which plastic deformation is 
initiated is considerably higher under impact than under static 
loading®^ ^ (Fig. 54 -1). The flattening of the curves will be 

the more marked, the larger the share of distortional energy 
within the total strain energy, since the rise in temperature 
depends on the amount of plastic deformation and thus on the 
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distortional energy alone, whereas the volumetric part of the 
energy, if it produces expansion, may even reduce the rise in 
temperature. The shear stress versus shear strain curve will 
therefore be flatter than the stress-strain curve in uniaxial ten¬ 
sion, At a certain strain rate it may even become horizontal 
or drop after attaining a maximum, with the result that the 
metal flows at constant or even at decreasing stress or, if the 
stress is kept constant, at increasing strain rate (instable flow). 
Zener and Holloman,®^'^ by punching steel plates at extremely 

high strain rates and by metal¬ 
lurgical analysis of the metal in 
the vicinity of the punch, have 
shown that very high tempera¬ 
tures are attained around the 
punch; hence, by concentration 
of distortional strain the defor- 
mational resistance of the metal 
is substantially reduced within 
the small region to which, as a 
result of this reduction, the defor¬ 
mation is confined. Whereas 
for punching at low and mod¬ 

erate strain rates, the plastic deformation extends over a com¬ 
paratively large region around the punch, this deformation is 
essentially confined to the immediate vicinity of the punch in 
the high-velocity punching. Therefore, the resistance to pene¬ 
tration, expressed in applied energy, is substantially reduced. 
The phenomenon of the localized reduction of resistance to defor¬ 
mation by the adiabatic conditions produced by very high strain 
rates is of primary importance in the study of the penetration 
of armorplates as well in the study of speed effects in cutting and 
machining processes. 

A solution of the problem of the propagation of plastic defor¬ 
mation is important for the interpretation of the behavior of 
bars and members subject to longitudinal impact, particularly 
of the performance of metal specimens in tension impact tests. 

Elastic strains are propagated within the strained material 
with the velocity of sound cq; considering the one-dimensional 
problem, the stress wave travels along the infinitely long bar 
without change of shape. The stresses produced in a bar, one 

Fig. 54*1 Schematic representa¬ 
tion of isothermal and adiabatic 

stress-strain curves of metals. 
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end of which is put into longitudinal motion with a velocity t;o 
are s = eE. Since vq = eco, the stress, 

s=^-E (54-1) 
Co 

By introducing the known relation, 

Co = ViTp (54-2) 

where p denotes the mass density of the material, the equation 
results, 

s = pvoco (54-3) 

which gives the stress produced in an infinitely long and thin 
elastic bar or rather wire by longitudinal impact of velocity vq. 
This stress, however, is only produced within the distance 
X < CQt; for X > cot the stress, s = 0. 

In a material with a nonlinear stress-strain relation the velocity 
of the strain wave is no longer constant, and the progressing 
stress wave suffers a continual change of shape. The basic 
theory of the propagation of plastic strain has been developed 

independently by Th.v. Kdrmdn,^** ® and G. I. Taylor. 
For a material with a curved stress-strain diagram the stress 

front in the specimen can be thought of as a large number of 
small stress increments superimposed one on the other. Each 
increment travels along the specimen with a speed determined 
by its position in the stress-strain relation. Since the slope of 

the relation decreases with increasing stress, every stress incre¬ 
ment travels more slowly than the one just below it, and faster 
than the one above it, as can be inferred from eq. 54 -2 by replac¬ 
ing E by ds/de. This results in a steady lengthening of the stress 
wave as it progresses. Although the wave front proceeds in 

accordance with the shape of the loading part of the stress-strain 
diagram, the back of the wave is governed by the elastic (unload¬ 
ing) part of the diagram. Therefore the back of the wave, 
traveling with the highest velocity of the wave front, will 
gradually overtake the parts of the wave front, which move with 
smaller velocities. Along the distance over which this takes 
place the stress will be constant, decreasing beyond it; within 
this distance the irrecoverable strain is also constant. 
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The equation of motion of an element of a one-dimensional 
elastic bar, hit longitudinally by an impact load, has the form: 

= 
dx' 

= Co 
de 

dx 
(54-4) 

where u denotes the longitudinal displacement in the direction 
of X. V. KArmdn has extended the validity of eq. 54 -4 to bars 
of a material with a general stress-strain relation s = s{e) by 
introducing the tangent modulus T = ds/de into eq. 54 *3 instead 
of the constant elastic modulus. Hence, 

d^u d^u ds de 

^ dt^ dx^ de dx 
(54-5) 

The velocity Cp of propagation of plastic strain at a certain value 

^ni 

Cp = (54-6) 
P 

is therefore a variable, depending on the slope of the stress- 
strain diagram at the point e = 6n. The solution of the differ¬ 
ential equation has to fulfill the boundary conditions u = vqI for 
X = 0 and u = 0 for x = oo. If it is assumed that the strain e 
is a function of x/t alone, the complete solution of eq. 54 -5 is 

for X < Vit e = ei 
for < X < ct 7\e) = px^/t'^ (54-7) 
for X > e = 0 

Fig. 64*2 Distribution of strain of plastic wave as a function of distance 

X from impacted end (after v. Kdrmdn®^*®). 

The distribution of e as a function of (x/t) is shown in Fig. 
54*2. The velocity of the plastic wave vi and the maximum 
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strain ci as a function of the velocity of impact Vq is obtained 
from the condition that the displacement of the point x = 0 is 
VQt\ hence, considering eq. 54*6, 

vo=lJ'{T/p)de (64-8) 

where T = f{e). Equation 54-8 determines ei as a function of 
the imposed impact velocity vq. 

The stress in the bar varies from 0 beyond the elastic wave 
front, over a gradually increasing range up to Si within the plastic 
region; the stress si corresponds to C]. The strain ei which is a 
function of is obtained from eq. 54 -8 by graphical computation, 

integrating the curve V{ds/de)/p versus e, derived from the 
experimental stress-strain curve. If it is assumed that ds/de—^ 
0 for large values of e, the integral 54*8 has a maximum which 
might be considered a critical velocity; the strain associated 
with this velocity would then be the strain at which an instable 
condition leading to rapid fracture is reached in a test. 

The principal assumptions on which the present theories of 
the propagation of plastic; waves are based are that the stress 
strain relation is independent 
of time and that the process is 
isothermal, so that the tan¬ 
gent moduli of the static 
stress-strain curve may be 
used in the evaluation of eq. 
54-8. These assumptions 
may be justified as a first 
approximation for very thin 
metal wires only. For bars 
of finite cross section trans¬ 
versal heat flow and radiation 
will considerably affect the 
deformation process, making 
the use of the isothermal 
static stress-strain curve in¬ 
adequate. The critical velocity actually observed in impact 
tests of bars and associated with a maximum value of energy 
dissipated during fracture (Fig. 54-3) thus cannot be satis¬ 
factorily interpreted in terms of isothermal deformational 

0 20 40 60 80 100 120 
Impact velocity, ft per sec 

Fig. 54-3 Variation for hard cop¬ 

per of energy to fracture with im¬ 

pact velocity (after Hoppmann®^ ®). 
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behavior alone, using the nominal or ‘‘engineering’^ stress-strain 
diagram instead of that of true stress and logarithmic strain 
under adiabatic conditions. 

It has already been pointed out that the difference between 
the stress-strain diagram observed under static (isothermal) and 
extreme dynamic (nearly adiabatic) conditions is of primary 
importance in the analysis of all deformation and fracture phe¬ 
nomena at high strain rates, such as that of metal cutting and 
milling. As a result of the time and temperature effects the 

deformational response of the 
metal in the shear zone before 
the tool tip (Fig. 54 *4) is sub¬ 
stantially different from the 
response under static conditions 
and varies with the cutting 
speed. It can be shown by a 
rough calculation that the strain 
rates imposed in the cutting 
process are extremely high and 

Fig. 64*4 Shear zone before tool exceed even the strain rates 
tip in metal cutting (schematic), produced in tension or com- 

pression tests by impact loads 
applied at bullet velocities. Assuming a moderate cutting 
speed of 100 ft per min, a depth of cut of O.Ol in., a shear 
angle a of about 20® (sin a = 0.34), a thickness of the glide 
lammellas of the order of magnitude of lO”'^ cm (see Art. 18) and a 
shear strain of the order of magnitude 0.1 associated with the defor¬ 
mation at the yield stress, the strain rate of the shearing process 
is of the order of magnitude of (100 X 12 X 2.54 X 0.34 X 0.1)/ 
(60 X lO*"^) = 15,000 per sec. At such a strain rate, which is 
by several orders of magnitude larger than the strain rates applied 
in conventional tension tests, the yield stress must be a multiple 
of the static yield stress (see eq. 19-13). However, the heat 
developed in the course of the plastic deformation in the region 
of shear before the tool tip will tend to reduce the isothermal 
dynamic yield stress, this reduction being the more pronounced, 
the more nearly adiabatic the shearing process. It has been 
found that the actual yield stress at strain rates of the order 
of magnitude of the above estimated rate of shearing is however 
still more than three times the static yield stress. 
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In the cutting process the heat developed before the tool tip 
is the less, and this heat is the more effectively carried away, 
the smaller the depth of the cut and the smaller the cutting 
speed. Therefore the specific cutting force which is directly pro¬ 
portional to the yield stress will increase with decreasing depth 
of the cut and with decreasing speed. On the other hand, the 
harder the material to be cut, the higher the required cutting 
speed. Since under stationary conditions the shearing takes 
place at constant stress, all the work-hardening effects having 
been eliminated by the increase of the yield stress and by the 
heat effect, the stress-strain diagram of the ideal plastic body 
appears to be a fairly good approximation of the real deforma- 
tional behavior of metals under extremely high strain rates, if 
the appropriate dynamic yield stress is considered instead of the 

static stress. Hence, problems of plastic deformation at very 
high strain rates could be analyzed more effectively by applying 
the theory of ideal plastic flow after the dynamic yield stress has 
been exceeded, than by attempting to adapt methods used in 
the solution of elastic problems, introducing a variable tangent 
modulus instead of the constant modulus of elasticity. The 

cutting problem, for instance, can be analyzed by assuming a 
triangular ideal plastic zone {ABC in Fig. 54-4) in which the 
shearing process is concentrated and in which, therefore, the 
transition takes place from the yield stress in the shearing sur¬ 
face before the tool tip, to zero stress at the beginning of the 
chip.^^’^ 
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CHAPTER 

11 

FRACTURE 

55. Theories of Brittle Fracture 

It has been pointed out in Art. 22 that the theoretical cohesive 

strength of solids, derived from the interatomic forces is between 

a hundred and a thousand times larger than the observed values. 

In order to explain this discrepancy it is assumed that the inter¬ 

atomic forces across a potential fracture surface are not overcome 

simultaneously but in a certain sequence; a crack is thus initiated 

under an over-all force which, by producing separation of a 

limited number of bonds only is but a small fraction of the force 

that would be required to break all bonds simultaneously. This 

assumption presupposes a highly nonuniform distribution of 

bond strength (that is, of bond energy) within the material. 

Such distribution is actually the result of the inhomogeneous 

structure of real materials as well as of the existence of high 

textural stresses. The discrepancy between the observed frac¬ 

ture strength of a real material and the computed cohesive 

strength of the ideal homogeneous atomic lattice is therefore a 

necessary consequence of this inhomogeneity and imperfection 

of the real structure (see Art. 13). 

As long as the material is assumed to be homogeneous, the 

explanation of the low cohesive strength requires the introduction 

of the concept of stress concentrations of different severity as a 

consequence of which the stresses within the material are mag¬ 

nified locally by a factor adequate to raise the peak stress at 

certain points to the order of magnitude of the theoretical 

separation strength. As the most obvious cause of such stress 
357 



358 Fracture [Art. 55 

magnifications the existence within the unstressed material of 

cracks of varying size and shape has been postulated, and a 
concept of crack propagation as well as a statistical analysis of 
crack distribution and density has been developed on the basis 

of which the cohesive strength of a specimen of finite dimensions 
can be derived from the theoretical separation strength or from 

the surface energy of the separation surfaces. However, it is 

obvious that the structure of real materials is not homogeneous; 
since it is therefore not necessary to assume the existence of 

cracks in order to account for the discrepancy between the 

observed and the theoretical fracture stress, the numerous micro¬ 
crack iheories^^ ^ should not be considered as attempts to repro¬ 

duce real conditions, but rather as attempts to develop a theory 
of fracture consistent with the concept of the isotropic homo¬ 

geneous ideal material, the behavior of which is governed by the 

theory of elasticity. 

Statistical theories of fracture have mainly been derived under 
the assumption of brittle fracture; hence, their applicability is 
very much restricted. Under conditions of homogeneous stress 

for which the statistical microcrack theories have been devel¬ 
oped, engineering materials generally do not fracture by clean 
separation, neither preceded nor accompanied by inelastic 

deformation. Therefore the fact that, whenever fracture is 
associated with inelastic deformation, the structure of the 
material at the end of the fracture process is not identical with 

the structure at its start invalidates the usual statistical approach 
to fracture; this approach is based on an assumed unchanging 
initial distribution of microflaws, microcracks, or defects which 

cause stress concentrations of such severity that, under a load 
producing an over-all stress equal to the actually measured 
fracture stress, the local stress at the severest microcrack reaches 

the intensity of the theoretical cohesive strength of a material 
of perfectly homogeneous atomic structure. 

Essentially, statistical theories of fracture in one form or 

another are all based on Griffith's theory of crack propagation^® ^ 
in which the strain energy necessary to break an elastic solid 

containing an elliptical crack is computed. The solution of the 

elastic problem of the narrow transversal elliptical hole (Fig. 

55* 1) within the homogeneously stressed field, which was first 
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derived by Inglis/^ ^ gives the maximum stress s„,^ at the edge 
of the hole, 

Smax = 28o a/c/p (55-1) 

where so denotes the mean stress, p the smallest radius of curva¬ 
ture, and 2c the length of the ellipse. On the basis of Inglis' 
solution Griffith computed the difference ^We between the 
elastic energies that can be stored up in a very thin homogene¬ 
ously stressed specimen without and with an elliptic hole. This 
difference is given by the expression, 

«o 

AWe = hrcW (55-2) - Hit tUttlH 
The surface energy that appears with 
the formation of a crack of length 2c 
is given by 

Radius p^ I k ®ma)t 

Ws = 4c(r (55-3) 

where cr denotes the specific surface i 
energy. The total change in potential 
energy resulting from the formation 

iimiiunu 
of a crack of length 2c is therefore 

Fig. 55 • 1 Stress distribu- 
= AWe — 4C(7 (55-4) tion adjacent to elliptical 

hole (after Inplis** 
The condition for an instability which 
would result in the extension of the crack of length c is 

dAW 

dc 
= 0 (55-5) 

By differentiating eq. 55 -4 and considering eq. 55 2, the rela¬ 
tion is obtained. 

So = (55*6) 

So represents the over-all stress under which a crack of length 2c 
spreads. Griffith has tested eq. 55 -6 by breaking, under inter¬ 
nal air pressure, glass tubes and hemispheres with cracks of 
length between 0.15 and 0.89 in. produced by cutting with a 
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diamond. He found the constancy of the product so V^c, pre¬ 
dicted by eq. 55 • 6, well confirmed. 

If a breaking stress sq is attributed to every size of crack within 
a homogeneous stress field, or a strength sq to every homogene¬ 
ously strained element containing one crack of this size, and it is 
assumed that a material body is made up of volume elements 
each of which contains one crack, the assumption of a distribu¬ 
tion, within the body, of cracks of various sizes is equivalent to 
the assumption of a distribution, within the body, of the strength 
of the volume elements containing such cracks. Different values 
of stress sq are therefore required to produce fracture in the 
individual elements containing cracks of different sizes. If the 
cracks are distributed at random with a certain specific density, 
and if it is assumed that there is no interrelation between the 
individual processes of crack propagation, the strength of the 
entire specimen will actually be determined by the weakest 
volume element, or the lowest strength,'^ that is, by the lowest 
value of local strength associated with the volume element con¬ 
taining the most severe crack. Thus, Griffith's theory implies 
that, if the stress sq is exceeded within a certain volume, the 
resulting instability at the end of the crack with the most critical 
stress concentration is sufficient to ensure the propagation of 
the crack throughout the entire volume. Hence, the statistical 
microcrack theories of fracture are based on the concept of the 
weakest link, according to which the strength of a chain (being 
a model of the considered specimen) is determined by the smallest 
value of the strength of a link to be found in a sample of size n, 
where n is the number of chain links in the model (or the number 
of cracks or defects in the specimen). In other words it is 
assumed that the most severe crack or defect determines the 
fracture strength of the entire specimen.. 

If, at constant crack density, the volume of the specimen 
increases, the total number of cracks equally increases and so 
does the probability of encountering a severe crack. A relation 
can therefore be established between the strength of a specimen 
defined by its largest crack or weakest volume element and the 
volume of the specimen, if the distribution of cracks of different 
severity in the material is known and can be expressed by the 
distribution of (volume) strength values. 

In terms of statistical theory the problem is thus one of dis- 
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tribution of extreme values, that is, of finding the distribution 
function of the smallest value of strength as a function of the 
number n of cracks for a given distribution function of crack 
severity or sizes or of strength values sq. Different forms of the 
distribution functions of strength or of crack size have been 
assumed by different investigators, the most frequent being 
the Gaussian or normal distribution^® ^ and the exponential 
distribution.®® ® 

The assumption of a Gaussian distribution is not so self-evident 
as it has been assumed to be by the investigators proposing it 
and as might be inferred from the consideration that this dis¬ 
tribution is assumedly that of pure chance. In the case of 
cracks or defects, however, the probability of a very large defect 
is not the same as that of a very small defect; this fact precludes 
the application of distribution functions which are symmetrical 
with regard to their mean values. It is more consistent with 
observations to assume that the probability of occurrence of a 
defect decreases in proportion with the size of the defect, from a 
small probability for a very large defect to an appreciable prob¬ 
ability for a very small defect. The probability distribution of 
size of defects p{c) may therefore be more adequately expressed 
by the simple exponential or Laplace distribution, 

p{c) = ae”"" (55-7) 

where c is a measure of the size of the crack and a a parameter of 
the distribution, than by the symmetrical Gaussian distribution. 
Introducing this distribution of crack size c into eq. 55-6, the 
pertaining distribution of strength sq is obtained. 

The analysis of the weakest-link problem is well known in 
applied statistics and is of importance in various fields of science 
and technology. Its solution is based on tke so-called asymptotic 
theory developed by Fisher and Tippett,®® ® which is concerned 
with the derivation of the distribution function of extreme values 
for large samples from the given distribution function of the 
statistical ‘^population.” A summary of this theory has been 
presented by Cramer.®® ^ 

If the distribution of strength values s of the population is 
given by the function p(s), the associated cumulative distribu¬ 
tion function is 

^(») = Jj p(s) ds (55-8) 
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The distribution of the smallest value in samples of size n, drawn 
from the population, is given by the probability distribution, 

«•„(«) = np(s)[l - P(s)]‘""“ (55-9) 

or by the associated cumulative distribution function, 

n„(s) = /o'^n(s) ds = I - [1 - P(s)r (66-10) 

The most probable value of the smallest value in samples of size 
n is represented by the mode of the distribution function irn(s) 
which can be found either graphically, by drawing the function 
7rn(s) for different values of n, or analytically, by solving the equa¬ 

tion Tn(s) = 0. If p(s) is a Laplace distribution, it can be 
ds 

shown®® ® that the modes of the distribution of the smallest values, 
which represent the most probable strength values of specimens 
containing n cracks, decrease linearly with (log n); since n = yV 
where y denotes the crack density, that is, the average number 
of cracks or defects per unit volume, and V the volume of the 
specimen, the dependence of strength s on volume V is of the 
form, 

(si — S2) = const (log F2 — log Fi) (55-11) 

For a Gaussian distribution of crack or flaw strength tSo, the 
strength of specimens has been found®® ^ to decrease linearly 

with increasing V^log V. The assumption concerning the dis¬ 
tribution of crack size contained in eq. 55 -7, on the other hand, 
leads to the conclusion that the strength of specimens of volume 

V decreases as the reciprocal of ViogF.®® ^ 
Solutions such as eq. 55 11 which give only the dependence 

of the most probable value of the smallest values are not sufficient, 
if it is desired to establish the actual frequency distribution of 
the smallest values. This distribution can be derived in terms of 
a new variable, 

r = nP{s) (55-12) 

which, introduced into eq. 55 • 9, gives the expression for the dis¬ 
tribution function gn{r) for sample size n: 

(65-13) 
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The asymptotic development of this function for the number of 
cracks orn —> oo is given by 

g{r) = Mm g„ ir) = e-^ (55 14) 
n—^ 00 

Equations 55 12 and 55-14 can be used to determine the fre¬ 
quency distribution of the strength of specimens, containing large 
numbers of cracks or flaws. For a Laplace distribution of flaw 

Fig. 55-2 Frequency distribution of strength of specimens containing 

various numbers of flaws distributed according to the Laplace distribution 

p(s) = 5 X (after Epstein) 

strength, for instance, the frequency distributions Wnis) have 
been established for different numbers of flaws (Fig. 55-2). 
These frequency distributions are characteristically skew, with 
negative skewness values. The skewness, which is actually 
observed in tests of the strength of materials under embrittling 
conditions, is the necessary result of the'^application of the sta¬ 
tistical theory of the weakest link, that is, of the distribution of 
smallest values in large samples, to the phenomenon of brittle 

strength. 
Because of the underlying assumptions of perfect brittleness of 

the material, the practical applicability of statistical theories of 
strength is limited to the analysis of size effects with respect to 
the strength of materials which essentially are brittle or which 
are strained under conditions in which they appear brittle. An 
additional limitation of the applicability of these theories is that 
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the conditions under which the weakest-link concept, derived 
from the Griffith theory, can be assumed to hold are not fre¬ 
quently met. 

It has been pointed out that statistical theories of fracture are 
derived on the assumptions that (a) the flaws or cracks are 
independent and thus do not affect each other, (b) one single 
crack or defect of critical size is sufficient to produce a rapidly 
spreading fracture of the specimen extending over its entire 
cross section, no matter what its size and (c) the large-scale 
elastic concept of stress concentration around an elliptical hole 
in an isotropic medium may be extended to the analysis of the 
propagation of cracks of microscopic or submicroscopic size 
within a discontinuous structure. The first two assumptions 
can be justified for amorphous or single-crystal specimens of 
small cross-sectional area when each length element of the speci¬ 
men may be considered a chain linky since only then would an 
incipient crack propagate rapidly through the whole section. It 
is in strength tests of thin brittle threads or in tests of statistically 
isotropic brittle specimens with cracks of macroscopi(; size that 
the weakest-link theory may therefore be expected to lead to a 

correct prediction of size effects. For specimens of large cross 
section with submicroscopic cracks these assumptions, however, 
are not justified. 

The validity of the assumption that the elastic concept of 
stress concentration around an elliptical hole may be extended 
to describe the response of the atomic or molecular structure is 
rather doubtful. The confirmation of Griffith’s theory obtained 
on specimens with a single crack of macroscopic size in itself does 
not justify the extension of this concept to the submicroscopic 
structure by reducing the size of the crack to atomic dimensions. 
The concept of the elastic stress concentration has a meaning 
only in terms of the continuous elastic medium; on the level 

where the material is considered to be built up of discrete par¬ 
ticles it necessarily loses its reality. 

It is, however, possible to base the statistical approach to 
brittle fracture directly on the assumption of the existence of a 
statistical distribution function of the separation strength of 
atomic or molecular bonds within the material built up of dis¬ 
crete particles, without recurrence to the concept of defects or of 
stress concentrations. This assumption, which appears justified 
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in view of the inhomogeneity of the potential field of the inter¬ 

atomic or molecular bond forces, is basically different from the 
assumption of microcracks and stress concentrations, since it 
implies that the distribution of bond forces or of bond energies 

is not, like that of stress concentrations, static and invariable 
but rather of the nature of a continually fluctuating distribution, 
as the waves of thermal energy pass through the material. 
Thus, instead of the probability of bond separation at a particu¬ 
lar location, or of an invariable spatial distribution of bond 
strength, the probability is introduced of the coincidence of the 
separation strength of an individual atomic or molecular bond 
with such a force in this bond produced by the external load, 
which is sufficient to overcome the momentary level of bond 
strength at the unspecified location at which this coincidence 
occurs, thus producing a crack of atomic dimensions. 

If the frequency distribution of the separation strength s of 
atomic bonds is given by the function pi(s), the cumulative dis¬ 

tribution function is given by P\is) = p](s) ds. Under an 

external load causing a macroscopically homogeneous state 
of stress, but a microscopically and submicroscopically inhomo¬ 

geneous field of foj’ces, the forces a induced in the statistically 
oriented individual bonds must also be considered as a distribu¬ 

tion function of bond forces p2(o’)- The probability that an 
individual bond is destroyed as the result of the action of the 
external load is thus the product of the probability of occurrence 
in the bonds of forces o-, by the respective probabilities that the 
bond strength s < a, as required by the condition of coincidence 
defined previously. Such a combination of the distributions 

p>((7) for different levels of the external load S expressed in terms 
of the mean value of the bond force (Tq, wi^h the cumulative dis¬ 
tribution function Pi{s) results in a new cumulative distribution 
curve of the strength of atomic or molecular bonds P{S) expressed 
in terms of the external load S or the mean value of the bond 
fon^e (To = *SVmo, where mo is the total number of bonds over the 
resisting section. The probability distributions pi{s) and there¬ 

fore p{S) — d/dS [P(^)] may be assumed to be of the Laplace type, 
since the probability distribution of separation strength of atomic 
bonds can be expected to be a function that decreases with 
increasing bond strength. 
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It is this concept of the bond strength varying as a result of 
the thermal-energy fluctuations in the material that makes it 
possible to extend the statistical approach to brittle fracture 
under repeated load,^^*^ since it implies that the probability of 
separation of an individual atomic bond by the action of the 
external load S is different for each load application; it also 
changes with the duration of the load cycle. If P is the proba¬ 
bility that a bond will be disrupted during one load cycle of 
amplitude S and very short duration, (I — P) is the probability 
that it will not be disrupted; the probability that it will not have 
been destroyed after N load cycles is (1 — Py. Hence, the 
probability that the bond will not sustain N cycles without dis¬ 
ruption becomes [1 — (I — P)'l. If in a single load cycle the 
simultaneous severance of m of the mo bonds would result in a 
total separation of the considered specimen of the material, 
because the simultaneous disruption of these m bonds would so 
considerably increase the forces in the remaining bonds that these 
would be rapidly destroyed, the probability that N load cycles 
will not cause such separation, because all m bonds remain 
undamaged, is (1 — P)’”^; hence, the probability of separation 
is n = [1 — (1 — P)^‘^]. The form of ll{S) is identical with !!„ 

in eq. 55-10; the pertaining frequency distribution7r(<S) = -“llfS) 
do 

has therefore the same form that is characteristic for the functions 
drawn in Fig. 55 • 2. Hence, the differences between the modes of 
the individual distribution functions for different values (rnN) 
are proportional to the difference of (log mN). Thus the most 
probable, that is, the expected strength values of specimens of 
m bonds subjected to N load cycles are related by the equation: 

— aS.m = —k{\og mNi — log mN\) 
= —k{[ogN^> — logNi) (55*15) 

The fatigue strength S under N load repetitions is therefore 
expressed by the relation, 

S ^ So - klogN (55* 10) 

where So denotes the ‘^static” or single-stroke brittle strength. 
If a Gaussian distribution of bond strength is assumed instead 

of the Laplace distribution, the brittle fatigue strength decreases 

linearily with V log N instead of log iV. 
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Equation 55 • 16 is in fair agreement with experimentally estab¬ 
lished relations S(N) within the finite life range of many materials 
(Fig. 55-3). Where systematic deviations from this relation 
occur, they are due to the modifying effect of inelastic deforma¬ 
tion, as well as to the fact that the weakest-link concept is inade¬ 
quate to explain the progress of fracture in specimens of moderate 
or large size. 

In order to develop a statistical theory of fracture, free of the 
inadequacy of the weakest-link concept, the model of the single 
chain from which this con¬ 
cept is derived should be 
replaced by a model consist¬ 
ing of a bundle of parallel 
chains. In this model the 
strength of the bundle does 
not depend on the strength 
of the weakest link in a 
single chain, but on the dis¬ 
tribution of weakest links in 
all chains, and on the prob¬ 
ability of such a coincidence 
of weakest links in the 
chains that, under a certain 
load, a process of progressive fracture of chains is initiated by the 
consecutive breaking of individual chains overloaded as a result 
of preceding chain fractures. The statistical analysis of this 
composite chain model is considerably more (complex than that 
of the weakest-link model, since under a certain load the proba¬ 
bility of fracture of an individual chain is not independent of the 
sequence of the fractures preceding that of the considered 
chain. In a recent study of the strength of bundles of n parallel 
threads^^ under a load S producing initially forces in the threads 
S/n, it was found that the bundle would not break if and only 
if the strength of k among the threads exceeds S/k, where k g ti. 

The problem of the distribution of strength of bundles of ti 
threads is in this case no longer a problem of the distribution of 
extreme values. Therefore the distribution of the strength of 
bundles obtained in this investigation is no longer skew but 
asymptotically normal for large values of n. Probably even the 
fracture of brittle real materials cannot be adequately described 

Fig. 55*3 (Characteristic shape of 
*SMog .V diagrams representing results 

of fatigue test for materials (a) without 

and (h) with endurance limit. 
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by either the weakest link or the parallel bundle theory. These 
theories indicate, however, the progress of fracture under the 
idealized limiting conditions. 

Recently an attempt has been made to derive the observed 
brittle strength of isotropic materials from the melting heat of 
the material,®^ by assuming that melting constitutes a breaking 
due to the heat movement of the atoms. The fracture strength 
would therefore be connected with the melting energy rather 
than with the sublimation energy. Although by this assumption 
the right order of magnitude of the brittle fracture strength is 
obtained from considerations of atomic processes without the 
necessity of introducing imperfections or inhomogeneities of the 
atomic lattice, its justification is rather doubtful. 

56. Ductile and Brittle Fracture 

In practically all engineering materials fracture is preceded and 
accompanied by irrecoverable deformation of one or a number of 
the constituent phases of the material. The deformed material 
at the end of the fracture process has therefore undergone con¬ 
siderable structural changes. In metals these changes are 
associated with the creation within the distorted atomic arrange¬ 
ment of the fragmented structure of unstable, that is, of over¬ 
strained bonds; in amorphous materials they are the expression 
of the redistribution and concentration of the response to the 
external forces in a gradually decreasing number of bonds due 
to bond relaxation, associated with the place change of particles 
connected by bonds of low stability. 

Although separation and relaxation of unstable high-energy 
bonds are different phenomena, their damaging effect under sus¬ 
tained load is cumulative. Since the applied load must be 
balanced by an increase of the potentral energy of the interatomic; 
bonds while, at the same time, certain bonds are relaxed by place 
change of particles, an increased force is transferred into the 
remaining unrelaxed bonds. This increase intensifies the tend¬ 
ency to bond disruption by increasing the potential energy that 
can be gained by the propagation of a crack. Thus, the potential 
damage within the regions of unordered atomic or molecular 
arrangement, produced by the gradual concentration of the 
response to the external forces within a decreasing number of 
bonds of increasing energy content leads to progressive fracture. 



Art. 56] Ductile and Brittle Fracture 369 

which is preceded and accompanied by inelastic deformation; 
this deformation expresses the extent of place changes of particles 
during the load application. 

Hence, within materials of unordered atomic structure the 

process that controls progressive damage is the same process that 
controls inelastic deformation. Therefore the relation of frac¬ 
ture strength versus time for such materials, or for polyphase 

materials under such conditions that the deformation of the 
unordered or distorted atomic regions is the fracture-controlling 
process, should be essentially of the same type as the strain versus 
time relation of the associated inelastic deformation. The 
dependence on stress of the rate of progressive fracture and of 
the rate of inelastic deformation, respectively, would thus be of 
the type of eq. 49 • 1. For sustained constant stress this equation 
leads to a linear relation between the logarithm of time to frac¬ 
ture and a function of stress which decreases with increasing 
stress. This relation can be derived by integrating the rate of 
progressive fracture, that is, the rate of growth of the fracture 
surface dA/dij expressed by 

dA dec . , 
— = const-— = const sinh 
dt dl 

(«/«o) (50-1) 

over the time to required to produce fracture by total separation. 
Fracture occurs after the concentration of the response to the 

applied load by relaxation and bond disruption has reduced the 
resisting area to such an extent that it is no longer able to carry 
the momentary stress. This minimum area .4c is a direct func¬ 
tion of the initial stress s since it can be assumed that the stress 
intensity at which the progressive fracture process is terminated 
by sudden separation is a constant. Hen^fe, 

= const and ^ = const s (56 • 2) 
Ac Ao 

The difference between the initial area Aq and the minimum 
area Ac represents the progressively disrupted area. Hence, 

jL 
Ao Jo ■ 

dt = const sinh (s/sq) dt 

= 1 — const s (50-3) 



370 Fracture [Art. 56 

and 
const sinh (sAo)^o == (1 — const s) (56 *4) 

For low stresses eq. 56 • 4 can be approximated by 

const (s/so)to = (1 — const s) (56*5) 

or 

to = Ci(s/so)~^ - C2 = Ci[(s/so)~^ - (s/so)“^] 

= Cl - (1 — s/s) (56 ■ 6) 
s 

where s denotes the fracture stress for ^0 = 0 under the assump¬ 
tion that the same mechanism of deformation and of fracture is 
responsible for fracture at all times between = 0 and • 
Since this assumption is usually not justified as the mechanism of 
very short-time fracture is different from that of long-time frac¬ 
ture, the validity of eq. 56 -6 is limited to values of s small in 
comparison with s, so that the term s/s can be neglected in 
comparison with unity. Hence, within this range eq. 56-6 can 
be transformed into a straight-line relation in double-logarithmic 

scale: 
log to = const — log s (56-7) 

For large stresses eq. 56 4 converges toward 

const = (1 — c.onst s) (5()-8) 

Relation 56 -7 is valid under conditions in which the deformation 
is essentially concentrated within the unordered phases of the 
material and the time to fracture is long, whereas relation 56 • 8 
applies if the main part of the deformation that precedes frac¬ 
ture is caused by slip and fragmentatiou of crystals, and time to 
fracture is short. Hence, creep-fracture test results for steel at 
moderately elevated temperatures and relatively low stresses 
when fractures appear brittle can be fairly well represented by 
straight lines in double-logarithmic represention, whereas test 
results for lead or for steel at elevated temperatures within the 
range of high stresses when fractures appear ductile approach 
straight lines in semilogarithmic representation. 

Frequently the observed fracture-strength-time curves con¬ 

sist of ranges of different slope (Fig. 56 * 1). This is an indication 
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of a transition of the character of the creep fracture and the 
preceding deformation either from the intercrystalline brittle to 
the transcrystalline ductile type, or from this latter type to an 
essentially intercrystalline type in which the deformation pre¬ 
ceding fracture is associated with extensive recrystallization and 
fracture itself is associated with precipitation phenomena and 
high-temperature corrosion phencjmena, such as oxidation. 

Short-time 
^ ^tensile strength ^ 

r! >Alloy A (short time) 

-iL^AIloy B (long time) ^ 

Transition point)*'^^^^ S 

of creep rate 

^ a> 

QO 

Medium-temp, alloy 

X^High-temp. alloy 

log hr log hr Temperature 

(a) Creep strength of two (b) Creep strength ot the same (c) Stress to produce rupture 
different alloys at alloy at two different after 1000 hr for 

equal temperature. temperatures (T.^>T^) two different alloys 
(Alloy A with transition 

point of creep rate) 

Kio. 56 1 Creep strength of heat-n'sistant alloys as function of time or 
t(*mperatun\ 

If on the basis of the previous considerations the relation of the 
rate of creep fracture versus temperature is assumed to be of the 
same form as the relation between creep rate and temperature, 
the fracture rate can be exprc^sscnl by 

— = const/Os*)c (56-9) 

Hence, the fracture condition 50-3 leads to the relation, 

= const^ (56-10) 

or the time to fracture at a definite level of sustained stress, 

log^o = Cl + C2/T (56-11) 

This relation between temperature and creep life at constant 
stress is confirmed by tests. 

On the basis of the same assumption the damaging effect of a 
temperature history T{t) can be evaluated by solving the equation, 

^ (5(M2) 
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for the time to fracture t at a constant stress and temperature 
history T{t)y where denotes the time to fracture under the same 
stress at a constant temperature Tq, The damaging effect of a 
sequence of n different temperature levels Ti sustained during 
respective periods U will thus reduce the time to fracture accord¬ 
ing to the relation, 

t = to-\ (56-13) 
1 

which represents an approximate law of “cumulative damage’^ 
for the superposition of the effects of various temperature levels 
in creep fracture tests. 

The damaging effect of relaxation of bond forces is charac¬ 
teristic of the condition of materials under sustained load. In 
the unloaded state place changes of particles and the resulting 
dissipation of the excess bond energy represent a process of 
equalization of the energy levels of particles and thus of their 
forces of interaction; the result is a more uniform distribution of 
the response of all bonds to subsequently applied external forces. 
Relaxation of unstable bond forces has therefore a double aspect: 

1. It is beneficial as long as it occurs spontaneously, that is, 
in the unloaded condition or during unloading; because of the 
resulting equalization of the inhomogeneities in the potential field 
of the bond forces, it increases the over-all level of applied stress 
at which fracture is initiated on the atomic scale. 

2. It may be damaging or beneficial when it occurs under sus¬ 
tained load; by gradually concentrating the response to the 
applied forces within a decreasing number of bonds, it produces a 
“chain-reaction^^ process of bond separation on the atomic scale 
and thus increases the rate at which cracks propagate. 

However, this intensification of the separation process is a 
trend which develops only if the period of load application is 
considerably longer than the lowest order of magnitude of relaxa¬ 
tion times of the deforming material. The response to loads the 
duration of which is shorter or of the same order of magnitude 
may be quite different. In this case the relaxation of the bonds 
between particles of lowest stability and thus of shortest relaxa¬ 
tion time produces at first a beneficial relief of the bond forces of 
highest intensity without appreciable effect of redistribution. 
It is at a later stage only that bonds of higher stability and longer 
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relaxation times start to relax, producing concentration of the 

response to the external force in a decreasing number of bonds. 
Thus, it depends on the ratio between the duration of the load 
cycle and the order of magnitude of the shortest relaxation times 
whether the effect of relaxation during load application is bene¬ 
ficial or damaging. 

Relaxation of bond forces within the unord^red or distorted 
material is the most important single factor that determines the 
character and rate of the fracture process. Only if this process 
is very rapid, as in fracture under rapidly applied or impact 
loads, appreciable relaxation effects cannot develop. 

Fracture within the crystalline regions of metals may be of the 
brittle type, if slip is prevented either by a high critical shear 
stress within the eligible slip planes or by a stress system inhibit¬ 
ing inelastic deformation. In this case separation proceeds along 
the cleavage planes of the crystals; otherwise, fracture will be 
preceded and accompanied by extensive slip and fragmentation. 

Fracture always starts locally, by submicroscopic crack forma¬ 
tion in the direction normal to the largest separation distance of 
particles. However, the change in the local stress system around 
the cracks which form and advance into the crystal regions may 
be sufficient to initiate slip, wherever the state of hydrostatic 
tension at the advancing edge of the crack is reduced or wherever 
favorably oriented slip planes are encountered. The resulting 
local increase in the apparent ductility of the metal around the 
edge of the crack is bound to produce substantial slip. At points 
where the slip movement is blocked by crystal boundaries, a 
state of hydrostatic tension develops which is again overcome 
by the opening of a small crack perpendicular to the direction 
of the largest separation which, being the result of slip, approaches 
the direction of principal shear. 

Thus the initial short clean crack normal to the direction of the 
largest principal strain is changed into an oblique rough crack 
spreading in the general direction of principal shear; it is repeat¬ 
edly interrupted by steplike short clean cracks normal to this 
general direction. The change in character of fracture for con¬ 
stant temperature and strain rate depends therefore essentially 
on the state of stress. There is no basic difference in the frac¬ 
ture mechanism; the type of fracture is but the expression of the 
type of stress that produces it and that determines the character 
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and extent of inelastic deformation by which fracture is precedc'd 
and accompanied. 

A change in the character of fracture as expressed by the extent 
of accompanying inelastic deformation may also be produced by 
varying either temperature or rate of load application. Since 
decreasing temperatures or increasing strain rates tend to raise 
the slip resistance along the eligible slip planes of the individual 
crystals, the amount of deformation within the crystal region 
which is associated with a certain level of applied stress decreases 
with increasing rate of load application or decreasing temperature. 
If the stress is high enough to produce extensive disruption within 
the intercrystalline boundaries, the rapid transfer of the response 
to the load into the crystal regions accompanied by the increased 
resistance of those regions to slip may produce such conditions 
within the most critically oriented crystals that cleavage-planes 
become operative. 

57. Transition Temperature 

Although changes in any of the three parameters: state of 
hydrostatic tension, strain rate, and temperature produce a 
gradual reduction of inelastic deformation accompanying fracture 

and thus a change in the amount of 
energy dissipated in the course of the 
fracture process, these effects alone 
cannot account for the appreciable 
drop, within a relatively narrow range 
of temperature, in the amount of this 
energy that is being observed in tests 
of various materials (Fig. 57 1). It 
must therefore be assumed that a 
decrease of temperature within a cer¬ 
tain range suddenly reduces either the 
fracture stress within the cleavage 
planes or the over-all stress at which 
fracture is initiated by the disruption 

of the intercrystalline regions and distorted slip planes. 
There is no reason to assume an abrupt drop with temperature 

in the cohesion of the cleavage planes. However, a reduction 
of the over-all stress at which fracture is initiated within the 
distorted slip planes may result from such rapid increase, with 

Temperature or strain rate 

Fig. 57*1 Energy “ab¬ 

sorption” to fracture as 

function of temperature or 

of strain rate. 
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decreasing temperatures, of the relaxation times of those regions 
that, instead of the short-time beneficial relaxation under load 
of instable bonds, bond disruption would become the operative 
mechanism of stabilization of the position of particles. The 
simultaneous reduction, with decreasing temperature, of both 
the inelastic deformation and of the stress at which fracture is 
initiated is probably sufficient to account for the abruptness of 
the observed drop with temperature of the energy dissipated 
during fracture of certain metals, particularly of steel. The 
narrow range of temperatures in which this drop is observed is 
known as the transition temperature. 

It may be assumed that every temperature T defines a dis¬ 
tribution of relaxation times (relaxation spectrum) chara(;terizing 
the inelastic response of the material at this temperature. An 
optimum range of duration of the load will then exist at which 
the relaxation of the most unstable bonds is just sufficient to 
increase the uniformity of the response of the bond forces to the 
applied load, without being extensive enough to become damag¬ 
ing; a shorter duration of the load would then produce less relief 
of inhomogeneities in the potential field of the forces between the 
particles and therefore a smaller resistance to the initiation of 
atomic separation, whereas a longer duration would produce 
damaging relaxation, also associated with a reduction of this 
resistance. The optimum range would thus define a maximum 
N’alue of the resistance in terms of the over-all stress at which 
the fracture process is initiated within the relaxing material or 
the relaxing regions of a polyphase material. For loads of a dura¬ 
tion shorter than the optimum, this stress would drop rapidly 
towards the limit at which no appreciable relaxation occurs; 
for loads of longer duration, a gradual decrease of the fracture 
initiation stress would result from the '^increasing extent of 
damaging relaxation. 

The assumed effect of the duration of the load in relation to 
the relaxation spectrum is shown schematically in Fig. 57-2. 
For duration of the load t ^ ro, where tq denotes the optimum 
range, a comparatively small shift of the distribution curve of 
relaxation times towards higher values of r by reducing the tem¬ 
perature Tj or by increasing the rate of load application, that is, 
by decreasing the duration t of the load cycle, is frequently 

sufficient to eliminate all relaxation effects by decreasing the 
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diffusion or reaction rates to practically zero. For f > ro an 
increase of t or an increase of the temperature and the resulting 
shift of the relaxation spectrum toward shorter times r extends 
the relaxation to a gradually increasing number of bonds. With 
increasing duration of the load or increasing temperature the 
number of bonds with relaxation times t > t, which are there¬ 
fore able to carry the load for a certain time, is thus reduced, 

(b) Fracture initiation 
stress (Ti>T2). 

Fig. 57*2 Schematic representation of probable variation of fracture 

initiation stress sb with duration of loading t resulting from distribution of 

relaxation times in the material. 

at first very slowly and then more and more rapidly as the num¬ 
ber of resisting bonds decreases. Hence, the over-all stress at 
which fracture starts within the relaxing material is reduced 
with increasing length of the load cycle which is the phenomenon 

observed in creep-rupture tests. 
Inelastic deformation preceding and accompanying fracture 

in a material of amorphous structure increases with the duration 
of the load. The amount of strain energy “absorbed” or dis¬ 
sipated prior to fracture is obtained as the product of stress and 
of deformation, only the elastic component of which is propor¬ 
tional to the applied stress. The variation of the absorbed 
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energy with the duration of the load cycle is obtained by multi¬ 
plying the respective values of the fracture stress by the sum of 
the preceding elastic and inelastic deformation, as indicated in 
Fig. 57 *3. It is clear that the direct relation between duration 
of loading and inelastic deformation accentuates the abruptness 
of the transition from a high to a low energy absorption for loads 
of relatively short duration. The effect on ^his energy of the 
gradual decrease of the fracture stress with increasing duration 
of the load above the transition range, however, is compensated 
by the increasing inelastic deformation, with the result that the 
energy absorption above this range remains nearly constant. 

With decreasing temperature the distribution function of relax¬ 
ation times is shifted towards larger values of t; the duration of 
the load at whi(di the transition from high to low energy absorp¬ 
tion occurs is therefore necessarily a function of temperature. 
In order to obtain a rough indication of the trend of this function, 
it is assumed that the optimum fracture stress is associated with 
a duration of the load t equal to a constant fraction af of the 
mean relaxation time r of the material, defined by the condition 
log f — log af = const (Fig. 57 -2). Since the relation between 
relaxation time and temperature is given by eq. 48*4, the rela¬ 
tion between temperature and load duration for the optimal 
fracture stress can be expressed by 

t = af = const (57-1) 

where To denotes the upper limit of the transition range, defined 
by the optimal value of fracture stress and therefore by the 
highest value of energy absorption. Hence, 

To = Q/«r~;-: 
log t — const 

(57-2) 

which shows that the transition temperature of amorphous mate¬ 
rials decreases with increasing duration of the had. 

In metals a transition temperature from ductile to brittle frac¬ 
ture, that is, from fracture preceded and accompanied by a 
considerable dissipation of energy to fracture associated with 
very small dissipation, may be expected to exist under conditions 
for which the duration of the load is within the range of the 
relaxation times of the distorted regions surrounding the frag¬ 
mented crystals. However, in metals the effects of precipitation 
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of foreign particles into and out of the distorted slip planes (see 
Art. 20) may considerably modify the relation between the frac¬ 
ture initiation stress and the duration of the applied force result¬ 
ing from the effect of relaxation of bond forces by self diffusion. 

Duration of loading 

Duration of loading 

Fig. 57-3 Schematic representation of variation with duration of loading 

of energy “absorbed” to fracture derived from variation of fracture initia¬ 

tion stress and of deformation (amorphous material) [\V + Cc)]. 

Thus, at temperatures at which the rate of diffusion of foreign 
particles is of the order of magnitude of the rate of load applica¬ 
tion, the resulting unblocking of slip within the strain-aged 
crystalline regions may reduce the inhomogeneities within the 
atomic structure and consequently increase the over-all stress 

at which fracture is initiated. With increasing rates of load 
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application, that is, with reduced duration of the loading, a cer¬ 
tain range will therefore be reached in which the fracture initia¬ 
tion stress drops very rapidly because slip during the period of 
load application remains effectively blocked. Because of the 
large volume of the crystalline regions in polycrystalline aggre¬ 
gates in comparison with that of the interc.rystalline boundaries 
and distorted atomic layers, the blocking of slip by the effects 
of precipitation of foreign particles will be considerably more 
significant within the range of relatively short duration of the 
applied load than the effects of relaxation of unstable bonds by 
self-diffusion within the intercrystalline regions. There is, 
however, no difference in the trend of the variation of fracture 
initiation stress with duration of the load resulting from either 
of those effects as indicated schematically in Fig. 57 2. It 
is only the time range in which the drop occurs and its magnitude 
that may differ. 

The variation, with duration of the load, of the over-all stress 
under which fracture is initiated either within the distorted 
atomic layers surrounding the crystal fragments or within the 
crystalline regions can thus be represented by a function of the 
type indicated in Fig. 57-2, in which the time scale may be 
related to the rate of self-diffusion (relaxation times) within the 
intercrystalline regions or to the rate of diffusion of foreign par¬ 
ticles within the lattice (slip delay times). The amount of 
energy dissipated in the fracture process is again obtained as 
the product of the fracture initiation stress and the deformation. 
Thus, the relation between the energy dissipated in the fracture 
process and the duration of the applied load is of a shape \’ery 
similar to the relation of the fracture initiation stress and load 
duration, with an accentuated drop in the abruptness of the 
transition from high to low energy absorption. With decreasing 
temperature the slip delay times are shifted toward longer values; 
the duration of the load at which the drop from high to low energy 
absorption occurs is, therefore, a function of temperature of a 
type roughly similar to relation 57 • 2, since the temperature 
dependence of the self-diffusion process (relaxation) is essentially 
of the same form as that of the diffusion of foreign particles. 

As in metals the occurrence of a sharp transition from high 
to low energy absorption with decreasing temperature or increas¬ 
ing strain rate depends on the existence of slip delay effects due 
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to diffusion of foreign particles (strain aging), a transition tem¬ 
perature will probably exist only if the rate of slip is significantly 
affected by precipitation processes. Thus, the same alloys that 
are susceptible to strain aging may show a distinct transition 
temperature, whereas, in other metals in which a transition can 
be due only to the varying response of the small volume of the 
unordered intercrystalline regions which is of the same type as 
that of amorphous materials, such transition should be practi¬ 
cally absent or very gradual. 

58. Fracture under Single-Stroke, Sustained, or Repeated Load 

Fracture occurs if the applied energy cannot be dissipated into 
heat nor balanced by the mobilization of additional resistance 
through work hardening, so that a stable condition of the loaded 
body can only be attained by the spreading of a crack. The 
fracture stress or fracture energy necessarily depends on the 
extent of previous deformation, because of the change of structure 
associated with such deformation. However, the increase of 
fracture stress with the extent of prior deformation might be 
observed only under such experimental conditions by which any 
further plastic deformation accompanying the fracture process 
of the previously deformed material could be completely blocked. 
Since even at very low temperatures or very high rates of applied 
strain, fracture of metals is preceded and accompanied by plastic 
deformation, these conditions cannot be fully realized. Several 
investigators have attempted to determine the relation between 
fracture stress and previous deformation,^’* ^ using the technique 
of prestraining the specimens at room temperature and subse¬ 
quently breaking them in liquid air, and have found a linear 
increase of fracture stress in tension with tensile prestrain. 
However, the test results are open to the objection that plastic 
deformation of most metals is only partly blocked by low tem¬ 
peratures. Actually the reduction of the limiting crystallite size 
with decreasing temperature (Art. 13) extends the range of 
crystal fragmentation under load (Art. 45), and thus tends to 
increase the range of deformability of the polycrystal. 

Prestraining introduces anisotropy of the structure which is 
the more pronounced the larger the amount of strain. An 

attempt has been made®® * to interpret the increase of the frac- 
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ture stress as a result of this anisotropy, by assuming that initially 
randomly oriented microcracks seek a preferred orientation under 
the influence of inelastic strain. Simple elongation would thus 
tend to line the cracks in the direction of the strain, whereas in 
simple compression they would line up perpendicular to the axis 
of strain, with the result that the effectiveness of the cracks to 
reduce the over-all strength in tension would be reduced by 
pretension strains and increased by precompression strains. 
Although this conclusion would explain the Bauschinger effect, 
this effect can be equally well explained in terms of the potential 
energy of textural stresses produced by prestraining and stored 
up in the intercrystalline boundaries and distorted atomic layers 
(see Art. 44), without introducing the concept of microcracks. 

The brittle fracture stress should be intrinsically independent 
of temperature.®^ “ On the other hand, the heat oscillation of 
atoms, by giving rise to local density fluctuations, may be 
the cause of a reduction of fracture strength with increasing 
temperature. However, this temperature dependence of frac¬ 
ture stress, which has been reported by a few investigators,®* ® 
may also be the result of the dependence on temperature of the 
deformation preceding and accompanying fracture. This would 
explain the fact that the observed relation of fracture stress and 
temperature is of a similar exponential form as the relation 
between yield stress and temperature. 

Fracture stress depends on the strain rate, since the amount 
of preceding plastic deformation is determined by this rate. 
Although the resistance to inelastic deformation is considerably 
less dependent on strain rate in crystalline than in amorphous 
materials, this dependence cannot be neglected. Hence, the 
higher the increase of resistance to plastic deformation due to 
increasing strain rate, the less additional* resistance must be pro¬ 
vided by work hardening before a definite critical fracture stress 
is attained, if fracture were defined by a definite value of the 
fracture stress. It has, moreover, been observed that even under 
conditions of very high strain rates the influence of preceding 
and accompanying deformation on the fracture process is very 
pronounced, particularly the effect of change from essentially 
isothermal to adiabatic conditions. Thus, in the fragmenta¬ 
tion of steel shell cases the steel disintegrated at a total strain 

of some 35 to 40 percent. The initial velocity of the shell 
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fragments as well as their number were found to be a function 
of the strain velocity of the preceding expansion."^ ‘ 

If fracture were not essentially dependent on the preceding 
and accompanying inelastic deformation, it could hardly be 
expected that results of fracture tests were reproducible. The 
process of separation itself, depending essentially on inhomo¬ 
geneities, both on the submicroscopic and the microscopic scale, 
is necessarily highly erratic. However, this process is apparently 
less important than the inelastic deformation preceding and 
accompanying it. The fact that the effect of deformation in 
reducing the inhomogeneities is fairly well reproducible provides 
an explanation of the reproducibility of the results of fracture 
tests, as well as the explanation of the observed increase of the 
scatter of test results with increasing brittleness of fracture. 

So far, the considered loading conditions were such that, after 
a more or less rapid disruption of the apparently rigid inter¬ 
crystalline and distorted crystal regions, the process of deforma¬ 
tion and subsequent fracture would be (concentrated within the 
(crystal regions. If, on the other hand, the rate of energy dis¬ 
sipation within the intercrystalline and distoi'ted crystal regiems 
is of the same, or of a higher, order of magnitude as the rate of 
energy application, the deformati(3n is concentrated within these 
regions, which therefore appear soft. Their cohesion is gradually 
destroyed by the cumulative effects of relaxation under load and 
separation. The deterioration of the intercrystalline cohesion 
under sustained or slowly applied load extends over the entire 
specimen since the rotation and relative motion of crystals along 
the intercrystalline b(mndaries is not localized in the regi(ms 
of highest stress, as it is in the case of plastic deformation fol¬ 
lowing the sudden breakdown of the grain boundaries under a 
rapidly applied load. The observed decrease in over-all density 
of the material and its appearance under the microscope suggest 
that the disintegration of the intercrystalline regions is followed 
by the appearance of microscopic cracks at or near the crystal 
boundaries which, during a later stage, spread into the neighbor¬ 
ing crystal. (Fig. 49*3.) 

Fracture under repeated load is the result of the combined 
effect of damage to the crystals and to the intercrystalline regions 
produced by crystal fragmentation and b(md separation during 
the loading part, and of relaxation of potential damage (unstable 
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bonds, textural stresses) during the unloading part of the load 

cycles and during rest periods.®^ ^ The endurance limit under 

repeated load cycles is the highest over-all stress which, at the 

temperature and the applied rate of strain, does not produce such 

disruption of the intercrystalline domains as would permit 

appreciable slip and crystal fragmentation to spread through the 

specimen. The extent of intercrystalline breakdown under a 

given intensity of stiess determines the rate per stress cycle of 

the spreading of slip and fragmentation and thus the rate of 

formation of unstable bonds within the distorted slip bands and 

atomic layers suri'ounding the crystal fragments. The rate of 

bond separation under repeated stress, which defines the number 

of cycles a specimen can sustain prior to fracture, that is, the 

life of the specimen, depends not only on the rate of formation 

of unstable bonds, but also on the rate of their relaxation during 

the unloading part of the stress cycle. Kffe(*ts which increase 

the total extent of relaxation, such as rest periods, without affect¬ 

ing the rate of formation of unstable bonds, will therefore tend 

to increase the life of the specimen. The effect of rest periods, 

however, can be appre(;ial)le only if the i-elaxation times of the 

intercrystalline region are several orders of magnitude longer 

than the duration of the individual load cycle. Otherwise, 

relaxation of the unstable bonds accompanies or follows so 

rapidly on the unloading part of the cycle that subsequent rest 

periods have no further effect; in certain metals, siudi as coppei-, 

relaxation effects at room temperature are so extensive that they 

constitute partial recrystallization and produce increased frag¬ 

mentation in subseciuent cycles and therefore damage, that is, 

a shortening of the fatigue life. Since the relaxation times are 

exponential functions of the activation energy, relatively small 

differences in the activation energy of different metals or of the 

same metal at different prestrains will produce different behavior 

in fatigue. 

When the interciystalline regions are relatively soft and 

deformable even under very low over-all stresses, if only the time 

of their application is long enough, there is no stress limit below 

which the spreading of slip within the crystalline areas could be 

restrained by the rigidity of those regions, provided the duration 

of the loading is sufficiently long. Damage by the forniidion 

of new unstable bonds within distorted slip bonds is therefore 
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produced at any level of applied stress above the critical shear 
stress of the largest crystal size present in the aggregate. No 
definite endurance limit above this stress can therefore exist. 
Hence, unless the intercrystalline regions are rigid and strong 
enough to restrain the spreading of slip, the endurance limit is a 
function of grain size and decreases with increasing size of the 
crystal grains making up the polycrystal. The endurance limit 
will therefore be raised by grain fragmentation associated with 
the work-hardening process, whereas the fatigue life may be 
reduced because of the creation of unstable bonds within the 
distorted atomic layers surrounding the fragments. The 
observed endurance limit will therefore be the higher above 
the theoretical minimum limit, associated with slip initiation 
in the largest crystal size, the more pronounced and the more 
stable the work-hardening effect in the metal. The finite life 
range of a metal during which it can be broken by a finite number 
of load cycles will therefore be the more significant compared to 
its endurance range, the more pronounced the effects of relaxa¬ 
tion, recovery, and of subsequent thermal softening. 

In mild steel the existence of an endurance limit considerably 
above the minimum limit defined by the slip resistance of the 
largest crystals is due to the rigidity, that is, the extremely high 
stability, at room temperature and below, of the intercrystalline 
regions. Since this rigidity also accounts for the existence of a 
sharp yield point, the assumption appears reasonable that, when 
metals manifest both a definite endurance limit and a definite 
yield point, the trend in the change of both characteristics with 
changing conditions will be parallel. This conclusion is borne out 
by the observation that coarse-grained steels which have a 
definite yield limit and relatively high endurance limit at room 
temperature lose both those limits at elevated temperatures. 
On the other hand, metals such as aluminum which have no 
sharp yield limit at any temperature do not have an endurance 
limit above that defined by the extremely low slip resistance of a 
single crystal. Only very fine-grained metals, in which the over¬ 
all stress producing slip is higher than the over-all stress required 
to disrupt the intercrystalline regions, can manifest an endurance 

limit without having a definite yield limit. In general, the 
existence of an endurance limit depends on the existence of a 
stable condition of the material. Where changes occur with 
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time, no matter whether they depend on or are independent of 
the load, such as creep, recrystallization, or corrosion, no endur¬ 
ance limit can exist. 

The frequency of the repeated stress cycle can be of no effect 
on the fracture strength as long as the rate of energy dissipation, 
that is, of relaxation within the intercrystalline regions, is negli¬ 
gibly small compared to the rate of energy application; this is, 
however, no longer true when both rates are of the same order 
of magnitude. Under such conditions repeated load cycles will 
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have two effects; (1) The instantaneous effect of crystal frag¬ 
mentation of an extent that depends on the stress level alone; 
this may be called the cycle effect. It depends on the number of 
load cycles. (2) The time-dependent effect of gradual deteriora¬ 
tion of the cohesion of the intercrystalline and distorted crystal 
regions by relaxation and bond disruption, accompanied by a 
certain amount of work hardening by slip and fragmentation 
which follows the relative movement and rotation of grains along 
the relaxing boundaries and produces, at elevated temperature, 
intensified recovery and recrystallization; this is called the creep 
or time effect. It depends on stress, on temperature, and on the 
duration of the load cycle and, thus, for a definite number of 
load cycles, on the total duration of the test. 

Both effects are always present; it is the character of the 
material, particularly its slip resistance and recrystallization 
temperature, but also the applied stress, the strain rate, and the 
temperature of the test, that determine their relative importance. 
The higher the temperature or the lower the slip resistance, the 
lower the strain rate, the lower the stress, and the longer, there¬ 
fore, the duration of the test, the more will the time effect out- 



386 Fracture [Art. 58 

weigh the cycle effect; the smaller, therefore, the difference 
between the relations expressing fracture stress as a function of 
time of loading obtained from creep tests and the relations 
between fracture stress and number of cycles obtained from 

repeated load tests, if the accumulated duration of all loading 
cycles to fracture is considered as duration of the load and the 

45,000 

40,000 

35.000 

30,000 

‘g. 25,000 
(A 
(/) 

I 20,000 

15,000 

10,000 

5,000 

0 

\ ' • \ Stress-rupture 

in 1000 hr 
n \\_1_1 ___ ■ .g|B 

mit 

g. 
stress) ■ i m Enduranc 

reversed 

e limit 

stress) 

Creep 

- 1% 
10,00( 

n \ 
n 

D hr 

V V ■ \ 

«
■
 

IB
S 

s 

B ■ ■ ■ ■ ■ 
Endi 
cycl 

ranee lin 
es of stre 

_ 
lits are fc 
ss in 30C 

_ 
r 40,00C 
hr of te; 

,000 
iting 

1000 1100 1200 1300 1400 1500 
Temperature, "F 

Fia. 58-16 ComparisoQ of creep strength and endurance limits as func¬ 

tions of temperature (Xi-('r W-Cb-Fe alloy). 

steady (mean) stress as the applied stress. The functions of 
time versus creep-fracture stress and fatigue stress, respectively, 
w ould thus tend to become identical with increasing temperature 
of the test. This fact is borne out by tests®® ® (Fig. 58-1). 
The more, under repeated load cycles, the time effect outweighs 
the cycle effect, the more does the fatigue strength depend on the 
frequency of the load cycles, decreasing with decreasing frequency 
because of the increasing time required for the application of a 
specified number N of load cycles. 
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At very high freciuencies the loading rate might attain or 
even exceed the order of magnitude of the rate of unblocking of 
slip planes by diffusion of interstitial atoms (see Art. 20); more¬ 
over the very short duration of the unloading part of the cycle 

may prevent the disorientation by rotation along the inter¬ 
crystalline regions of the crystal fragments produced during 
loading. Thus the amount of energy dissipated per cycle will 
necessarily be much lower at very high frequencies than at the 
usual frequencies at which fatigue tests are performed, and so will 
the amount of damage. Beyond a cci'tain limiting frequency 
the fatigue life of metals, particularly strain-aging metals, will 
increase and the damping associated with fatigue will decrease. 

Fracture of amorphous materials undei* various conditions is 
essentially determined by the momentary strain rate; the effect 
of the deformation preceding it is considerably less important 
than in metals, unless changes of configuration or anisotropy are 
produced by such defoi'mation. The lower at the same stress 
and temperature the strain rate applied, the more extensive the 
internal redistribution of the response to the external load by 
relaxation within the sti’uctural elements with the shortest 
relaxation times. With increasing strain rate or decreasing 
temperature the relation between the duration of the load and 
the shortest relaxation times, characteristic of the instable 
elements, may change so that separation becomes almost per¬ 
fectly brittle since no inelastic deformation can occur. Where 
the separation strength of a polyphase material is essentially 
due to the cohesive stiength of a continuous network of chain 
molecules, both an apparent yield limit and an endurance limit 
will exist delimiting, respectively, a state of extensive disruption 
of the network and of localized initiation gf such a disruption 
pi'ocess. 

59. Condition of Fracture 

Since fracture depends essentially on the preceding and the 
accompanying inelastic deformation, it is reasonable to assume 
that the phenomenological criterion of fracture also depends on 
inelastic deformation; it must therefore depend on the principal 
variables affecting inelastic deformation, that is, stress, strain and 
their time derivatives, temperature, and previous strain history. 

In addition, it must depend on the volumetric expansion in a 
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different way than on distortion, since this expansion influences 
the separation process, whereas (because of its perfect reversi¬ 
bility) it cannot affect the process of inelastic deformation. 

If the initiation of the fracture process within statistically 
isotropic materials depends essentially on previous deformation, 
it cannot depend on the direction of the selected coordinate 
system as long as the deformation is isotropic; the fracture 
criterion of the isotropic material can therefore be introduced 
in terms of the invariants of either stress or strain. Since volu¬ 
metric expansion affects fracture considerably more than volu¬ 
metric compression, the effect of volume change, which does not 
interfere with the isotropy of the fracture condition, introduces 
into it an asymmetry with regard to zero volume change. 

Because of the symmetry of the functions defining elastic and 
inelastic distortion (see Art. 30), the condition of fracture should 
also be expressed in terms of invariants containing even powers 
of stress or strain only; because of the asymmetry with regard 
to zero volume change, it should depend on invariants containing 
odd power of stress or strain. Since the process of bond separa¬ 
tion which initiates fracture depends on the momentary elastic 
strain or the potential energy in a different manner from what it 
depends on the inelastic strain or the dissipated energy, the 
elastic and inelastic strain energies must enter the fracture con¬ 
dition separately. In fact, the elastic and inelastic components 
of strain influence fracture in the opposite way: Increasing 
elastic strain increases the tendency to bond disruption, whereas 
increasing inelastic strain expresses the intensity of the alterna¬ 
tive dissipation mechanism, which reduces the tendency to 
separation. 

Neglecting powers of strain of higher than second order, it 
appears therefore that the second invariant of the deviator of 
elastic strain (or of stress) in conjunction with the first invariant 
is the simplest possible measure defining a criterion of fracture. 
Because fracture is an alternative dissipation mechanism of strain 
energy, the criterion of fracture can only be an energy criterion, 
defining a limiting amount of distortional energy stored up prior 
to fracture in the same way, as the yield limit in terms of resili¬ 
ence defines the conditions of insetting inelastic deformation. 
The essential difference in the form of these two conditions is 

the appearance of the first invariant of elastic strain in the condi- 
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tion of fracture. The dependence of the critical fracture energy 
on the structure of the material changed by the preceding and 
the accompanying inelastic deformation can be expressed as a 
dependence on the dissipated energy W/, which has been expended 
in producing the change during the preceding deformation, and 
on the rate of energy dissipation Wd, associated with the inelastic 
deformation accompanying fracture. 

The simplest condition of fracture can thus be written in the 
form, 

^l)(/o«2) = Mhs2) = F[Wj,, Wn, /ell (59-1) 

where r denotes the recoverable strain and Z’ is a linear function 
of the parameters WlFy„ T and Ie\. In order to make eq. 
59 • 1 dimensionally homogeneous the influence of volumetric 
expansion should be introduced as the square of the first invariant 
rather than as the invariant itself. The asymmetry of the 
volume effect with reference to volume-constant deformation 
would then require the introduction of Iwith such an experi¬ 
mental multiplier which would represent correctly the effect on 
the fracture strength of a state of volumetric expansion. 

Expressing the invariant I^i by the energy of volumetric 
expansion = Klei^j multiplied by a linear factor c, and trans¬ 
ferring it to the left-hand side of eq. 59 I, the fracture criterion 
may be Avritten in the form: 

cj>0 + + (c - = F{\Vn, T) (59-2) 

Under the simplest assumption c == 1 for /^i > 0 and c = 0 for 
/el < 0, the left-hand side becomes the total potential or elastic 
strain energy For definite values of \Vn and Wd 

and r, eq. 59 *2 is thus transformed into the Jracture condition, 

i>.v = const for /ei ^ 0 or Cv ^ 0 and 
^0 = const for < 0 (59 -3) 

which was originally proposed by Huber and has been referred 

to in Art. 22. 
There is, however, no justification for the assumption of c = 1 

for Ov ^ 0. On the contrary, it appears reasonable to assume 
that the effect of the energy of volumetric expansion on the 
initiation of a process of bond separation is of an intensity dif¬ 

ferent from that of the energy of elastic distortion. Only by 
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considering c to be a nonlinear function of ey can the asymmetry 
of the effect of volumetric change on the condition of fracture be 
adequately expressed, if the function c{ev) or c{Iei) is determined 
by experiment. Hence, the general condition of fracture can 
be written in the form, 

^0 = Wn. T) - ciey)^y (59-4) 

which is no longer limited to powers of strain of second order. 
Whereas 4>„ is positive for both volumetric expansion and com¬ 

pression, c{ev) is positive for > 0 and negative for < 0. 

Fig. 59-1 Comparison of equations of flow and equations of fraeture. 

The comparison of the fracture functions (eq. 59-4) and the 
flow function 4>o(TTi>, Wu, T) shows that if fracture is defined by 
the point of intersection of these functions the extent of deforma¬ 
tion at fracture is a function of the volumetric strain. The larger 

the spread of the fracture curves due to the effect of volumetric 
strain, the larger the differences in fracture strain. If fracture 
occurs within a range of deformation in which the rate of work 
hardening is small, the fracture stress will vary only slightly with 
the superimposed volumetric strain, whereas the differences of 
strains will be very large (Fig. 59 -1). 

For conditions of vanishing volumetric strain the fracture 
condition and the work-hardening function have the same form 

^0 = F{Wd, Wd, T)\ only the absolute value of the critical dis- 
tortional energy for given values of the parameters are different 
for fracture and for inelastic deformation. Thus, for instance, 
both static and dynamic fraeture in torsion will necessarily be - 
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jroverned by a distortion energy condition. This condition will 
however be inadequate to describe the results of fracture tests 
under biaxial tension. This conclusion is confirmed by results 
of both static and fatigue test under combined stresses.^® ^ 

The effect of the state of stress on the fracdure strength of 
isotropic materials has not yet been reliably established by 
experiment. Most of the experimental evidence available has 
been obtained from notched-bar tension tests, the results of 
which are difficult to interpret, since the stress distribution in 
the plastically deformed notch is not known. However, intro¬ 
ducing certain approximations concerning this distribution, 
McAdam has found that the shear stress at which fracture occurs 
decreases with increasing hydrostatic tension. “ Since the 

shear stress in a biaxial state of stress is proportional to a/<I>o and 

the hydrostatic tension to this observation would tend to 
confirm the general form of the fracture condition (eq. 59-4). 

The principal difficulties in the experimental procedure and 
in the interpretation of results of fracture tests under a general 
state of stress are in the design of specimens in which a measur¬ 
able state of triaxial stresses can be obtained and which are not 
initially anisotropic as a result of the manufacturing process 
(drawing, rolling), as well as in the evaluation of the anisotropy 
produced in the course of plastic deformation and work hardening. 

In tests of tubes under biaxial homogeneous stresses the frac¬ 
ture strength was found to increase when the transversal and 
longitudinal stress were of the same sign and to decrease when 
they were of opposite sign. These observations are consistent 
with the fracture condition (eq. 59-4), since, with increasing 
biaxiality of the state of stress, the stress components necessary 
to produce a specified value of distortional^ energy increase. 
As the dependence of the fracture limit on Wd, W d, and T is 
introduced essentially by the dependence of the deformational 
behavior on those variables, it can be assumed that, the more 
important the effe(;t of any one of the variables with regard to 
deformation, the more pronounced its effect on the fracture 
strength. 

The effect of strain history on fracture stress is mainly the 
result of the effect of strain history on inelastic deformation. 
Jt has been observed that at room temperature compressive pre¬ 
strain of moderate extent reduces the fracture strength in ten- 
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sion.^® * This appears to be the consequence of the ^^Baus- 
chinger’’ effect produced by the latently stored energy of the 
textural stresses due to crystal fragmentation under the compres¬ 
sive prestrain. If this latent energy potential, particularly the 
latent energy of the volumetric expansion responsible for the 
density decrease associated with work hardening, is introduced 
into the fracture condition, this condition becomes sensitive to 
the direction of applied strain. The latent energy produced by 
the prestrain reduces the amount of strain energy that can be 
stored up prior to fracture, by intensifying the influence of 
volume expansion on the limit of fracture. 

Hence, if the work hardening is accompanied by hydrostatic 
pressure which reverses the volumetric expansion due to crystal 
fragmentation, the limiting amount of energy that can be stored 
up prior to fracture is necessarily increased. This conclusion has 
been confirmed by fracture tests after prestraining the specimen 
in tension under various hydrostatic pressures.®® The higher 
the hydrostatic pressure under which a certain amount of pre¬ 
strain was produced, the higher the recorded fracture stress and 
the larger the fracture strain of the specimen. 

The fracture strength in tension is however increased by com¬ 
pressive prestrain, if this prestrain is no longer moderate, so 
that the effect of the work-hardening crystal fragmentation fol¬ 
lowed by texture formation, that is, the over-all grain refinement 
and developing anisotropy exceeds the effect of the textural 
stresses built up within the structure under moderate prestrains. 
Thus, both the damaging effect of moderate prestrain as well as 
the strengthening effect of large prestrain are due entirely to the 
effect on plastic deformation preceding and accompanying frac¬ 
ture, not to any direct effect on fracture strength. Therefore, 
the fracture strength in tension is invariably increased by tensile 
prestrain. 

The validity of the fracture condition (eq. 59-4) depends on 
the initial isotropy of the material before, as well as on its iso¬ 
tropy during, the deformation. Since large plastic strains in 
polycrystalline metals are usually accompanied by textural 
anisotropy, fracture preceded or accompanied by such strains 
cannot be governed by a condition based on isotropy of the 
deformed material. Hence, the simple superimposition of the 
effects of various states of prestrain by adding the amounts of 
energy Wd dissipated in producing the inelastic strain, as sug- 
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gested by eq. 59 • 4, cannot be adequate to describe the depend¬ 
ence of fracture strength on strain history, unless the strains are 
small enough not to affect the isotropy of the material. 

The observed slight dependence of the fracture criterion on 
states of moderate hydrostatic pressure is a property of statis¬ 
tically isotropic and homogeneous materials of very low compres¬ 
sibility only. The more inhomogeneous and compressible a 
material, the stronger the effect of hydrostatic compression and 

P'lG. 59-2 Enveloping linos of Mohr’s stress circles for granular material. 

tension on the fracture strength. The larger the elements of 
which the material is built up and the smaller the binding sur¬ 
face forces between the elements, the more pronounced both the 
strengthening effect of volumetric compression and the weakening 
effect of volumetric expansion. This increased effect is probably 
the result of local disruption of cohesion within the inhomo¬ 
geneous structure under homogeneous expansion, and of the 
increasing importance, under volumetric compression, of the fric¬ 
tion between the particles in providing resistance to deformation. 

Fracture tests of concrete, of stone, and of metals of micro¬ 
scopically inhomogeneous structure, such ai cast iron, show a 
very pronounced influence of hydrostatic pressure on fracture 
stress.^® ^ Although the general fracture criterion for these 
materials remains an energy criterion, it is convenient to plot 
the results of fracture tests under biaxial stress in terms of the 
enveloping curves of Mohr^s circles (Fig. 59 *2). Since the root 
of the second stress invariant is very nearly proportional to the 
principal shear stress the condition, 

=/(VTH) =/(e.) (59-6) 

replaces the energy condition. 
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With vanishing cohesive forces the continuous solid is trans¬ 
formed into a granular material consisting of relatively large 
discrete particles in which the difference between inelastic defor¬ 
mation and rupture no longer exists, since gliding is the only 
condition of failure. As any continuity of mechanical behavior 
in such material depends entirely on the existence of a state of 
hydrostatic compression, the limiting condition (eq. 59*5) is 
transformed into the well-known linear relation on which the 
theory of granular materials is based: 

/«n.ax = p sin a or = Sn tan a (59 • 6) 

where a is the constant slope of the enveloping curve (Fig. 59 -2). 

60. Fracture on Release of Load 

Among the most complex phenomena of fracture are thos(‘ 
taking place on load release; evidently fracture on load release 
would not be possible without previous large inelastic deforma¬ 
tion. On the other hand, the fracture process itself is brittle, 
since rapid stress release is an elastic process; fracture that fol¬ 
lows immediately on load release is therefore not accompanied 
by inelastic deformation. 

There are two different effects which, individually or in com¬ 
bination, lead to such fracture: 

1. A state of highly inhomogeneous residual stresses following 
on large inelastic deformation, the peak intensity of which exceeds 
the brittle fracture strength of the material. 

2. Volumetric expansion on load release, relative to a previous 
state of large inelastic, deformation accompanied by high hydro¬ 
static compression. 

In one of the experiments performed by Bridgman®^ ^ a thick- 
walled, hardened steel cylinder was subjected to sufficient exter¬ 
nal pressure to produce radial plastic yield toward the center of 
the cylinder, resulting in a permanent decrease of the diameter 

of the inside hole. On release of pressure, and after standing for 
some hours^ a radial crack developed at the inner wall and gradu¬ 
ally spread outward, until it reached the outside of the wall. 
It is also known that glass cylinders, subject to sustained out¬ 
side pressure, tend to crack spontaneously sometime after release 
of pressure. Although it might be concluded that the phe¬ 
nomenon is produced by the residual tensile stresses of the 
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deformed cylinder, two of its aspects cannot be explained by 
residual stresses alone: the spreading of the crack through the 
entire thickness of the wall, and the delay in starting the crack. 
There is, however, an explanation for both, if it is considered that 
under the superimposed hydrostatic pressure the distortional 
stress produces an irretjoverable readjustment to the external 
loads by place change of particles within the atomic structure, 
and that the new configuration of particles has l)ec()me stable 

under the applied hydrostatic pressure. The release of the dis¬ 
tortional component produces residual stresses; the subsequent 
release of the hydi*ostatic pressure acts now like an imposed 
volumetric expansion with regard to the structure of the mate¬ 
rial which has readjusted itself to the distortional stresses under 
the high hydrostatic pressure. Thus, after the instantaneous 
reversal of elastic strain on load release, a delayed strain recovery 
sets in, which is an aftereffect produced in the metal cylinder by 

the interaction of the previously deformed intercrystalline regions 
with the crystal regions which, in addition to their distortion, 
have undergone a purely elastic compression and therefore 
attempt to recover their initial volume; in amorphous materials 
a similar effect is produced by the difference's in the relaxation 
times of the various phases or elements. 

The relaxation of instable bonds, followed by a gradual con¬ 
centration of the I’csponse to the system of residual stresses in a 
decreasing number of bonds, leads to delayed separation on the 
atomic scale, which is intensified by the ndative volumetric 
expansion. The crack which bet^omes \dsible after the atomic, 
separation has become extensive (which takes some time) is the 
result of the combined effect of residual stresses, relaxation, and 
relative volumetric expansion. The spreading of the crack 
through the entire wall thickness, not only through the zone of 
tensile residual stresses, is due entirely to the relative volumetri(‘ 

expansion. 
Zener has illustrated the effect of relaxation by his discussion 

of the observation that the tip of a projectile, recovered after 
passing through an armor plate, has a tendency to fly off spon¬ 
taneously after a certain time. - Presumably the plastic 
deformation of the tip during the passage of the projectile through 
the armor has taken place under substantial volume compression; 
the residual stresses are therefore accompanied by a volumetric 
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expansion relative to the new stable configuration produced 
during the deformation under simultaneous compression. Relax¬ 
ation within the intercrystalline boundaries gradually shifts the 
resistance to the residual stresses into a decreasing number of 
bonds, a process which, after some time, is bound to produce 
separation along the plane normal to which the relative extension 
is largest. This is the plane normal to the direction of the highest 
compression, which is located close to the boundary between 
elastic and plastic deformation. It is along this plane that the 
tip flies off. Placing the projectile in boiling water intensifies 
the relaxation and therefore shortens the interval after which the 
tip flies off; low temperatures, on the other hand, by reducing 
relaxation, cause delay of the phenomenon or prevent its occur¬ 
rence altogether. 

Another illustrative example of fracture on load release has 
been reported by Griggs.^ A specimen of limestone was sub¬ 
jected to a uniaxial compressive stress under a superimposed high 
hydrostatic pressure. The uniaxial compressive stress was 
released first after considerable inelastic deformation had 
occurred; when the hydrostatic pressure was subsequently 
released, the specimen ruptured into thin disks along planes 

perpendicular to the direction of the uniaxial compression. If 
the permanently deformed configuration is considered as the 
zero point, the release of the compressive load acts as uniaxial 
tension, whereas the release of pressure acts as hydrostatic ten¬ 
sion. At a certain combination of both, fracture occurs in the 
direction of maximum extension relative to the permanently 
deformed state. 

The previous example illustrates the formation of shale out of 
an isotropic layer. This layer is first compressed and consid¬ 
erably deformed by a transient directional force under the high 
hydrostatic pressure which acts at the depth at which the layer 
is situated. When subsequently, and long after the transient 
force has vanished, the layer is brought up nearer to the surface 
with resulting total or partial release of the hydrostatic pressure, 
it develops the characteristic separation surfaces normal to the 
direction of the vanished force. 

The condition of fracture on load release can phenomenologic¬ 
ally be formulated in terms of the residual stresses and of a 
relative volumetric expansion, the amount of which should be 
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calculated from a new zero point, defined by the stable configura¬ 
tion reached under the applied external forces. The length of 

the period of application of these forces and the extent of the 
resulting inelastic deformation would therefore appear to be of 
primary importance. Since distortional stresses acting for short 
times generally do not produce extensive permanent readjust¬ 
ment of the configuration within the material, phenomena of 
fracture on release of loads of short duration would be time- 
independent, since they can be due to the residual stresses alone. 
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CHAPTER 

12 

RHEOLOGICAL BEHAVIOR OF SUSPENSIONS 

AND GELS 

61. Brownian Motion. Thixotropy 

Suspensions and gels are forms of aggregation of matter that 

are intermediate between fluids and solids. They are of great 

importance in many processes of transition from the fluid to the 

solid state, apart from having intrinsic industrial significance. 

Both suspensions and gels are fluid-containing systems of various 

composition, with solid particles in different degrees of disper¬ 

sion. Whereas suspensions are essentially liquids, gels can be 

considered as a form of solid since they possess a yield limit and 

therefore elasticity and rigidity below this limit. 

According to the degree of dispersion of the solid particles, 

suspensions are divided into molecular, colloidal, and coarse sus¬ 

pensions. Since both the intensity of thermal activation and the 

magnitude of interacting forces depend essentially on particle 

size, the size of the solid particles is an important characteristic. 

The range of particle sizes has been presented in Fig. 8 1. 

Molecular suspensions are the chemical solutions that behave 

like true liquids. Their particle size is of an order of magnitude 

< 10”^ cm. Colloidal suspensions, also called sols, contain solid 

particles of colloidal size (between 10”^ and 10~^ cm); although 

they cannot be made visible in their individual shape unless 

they are near maximum size, they are not dissolved. The par¬ 

ticles are small enough not to settle under the forces of gravity, 

but also large enough to have only a relatively slow rate of difTii- 
398 
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sion. If the size of tfie dispersed particles is appreciably larger, 
than lO”'^ cm, the suspension is called coarse. Whereas molec-j 
ular suspensions are clear, and colloidal suspensions usually 
appear clear unless they are strongly illuminated and, by reflect¬ 
ing the light, produce a certain opacity, coarse suspensions arc 
visibly turbid. 

Particles in coarse dispersion can in general be separated from 
the fluid medium by gravitation, centrifugal forces, and mecdian- 
ical filters, unless the particles in the apparently (*oarse suspen¬ 
sion consist of or are surrounded by loosely bound groups of 
colloidal particles. Dispersed (colloidal particles remain in sus¬ 
pension. The dispersed phase of a coarse suspension, however, 
tends to settle either upward or downward, according to the 
relative densities of fluid medium and particles. The settling 
or sedinientation will evidently be the less rapid, the higher the 
viscosity of the medium. The separation of the solid particles 
of a (‘oarse suspension from the medium may be accelerated by 
(centrifugal forces, whereas such forces exert no influence on true 
solutions or colloidal suspensions. 

When the behavior (^f a colloidal suspension is considered, the 
(luestion arises why solid particles of a density that is higher than 
the density of the medium in which they are suspend(^d remain 
in suspension instead of settling d(3wn. The answer to this 
(juestion is fcjund in the existence of the Brownian motion of small 
solid particles in a gaseous or licpiid medium. This motion is a 
phenomenon associated with the size of the particles, and its 
discovery and explanation was one of the most important 
steppingst(3nes in the development of the molecular theory of 

matter. 
The Brownian motion is a random motion which can be. 

observed for all suspended particles of an order of magnitude 
not exceeding 10""*^ cm. Its intensity varies inversely as the 
size of the particles; 10“"^ cm appears to be the maximum limiting 
diameter of particles above which no motion can be observed. 
The motion overcomes the forces of gravitation and tends to 
distribute the particles throughout the fluid with statistical 
uniformity. It is due to the collision of the suspended particles 
with the thermally agitated molecules of the liquid and thus 
provides visible evidence of the molecular theory of matter. 
The intensity of the motion is increased by light and by radiant 
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as well as by conducted heat and is also affected by the electric 
charge of the particles and by different chemical reagents by 
which the motion is either accelerated or retarded. 

A molecular (statistical) theory of the Brownian motion has 
been developed independently by Einstein and Smoluchowski.** ^ 

Gels are formed from colloidal suspensions or sols by increasing 
the concentration of the dispersed solid phase either by addition 
of solid substance or by partial evaporation of the fluid medium, 
by decrease of temperature or by chemical reactions (polymeriza¬ 
tion, flocculation). The common feature of all those processes is 
the gradual immobilization of the liquid phase by the formation 
of a structure within the dispersed phase; the gel structure 
depends on the manner in which the immobilization has taken 
place. 

In general the structure of gels is assumed to consist of coherent 
networks of adherent particles, filled with fluid, both phases of 
the solid-liquid substance being continuous. A variation of this 
structure is a form in which the solid component only is con¬ 
tinuous, enclosing the liquid in the form of isolated drops. 
X-ray diffraction patterns of some gels have revealed interference 
rings; it appears therefore that a certain degree of order is intro¬ 
duced by the formation of the network. Because of the con¬ 
tinuity of the formed network, flow cannot proceed so long as 
this network remains intact under the applied shear force. The 
smallest value of the shear stress necessary to destroy the gel 
structure sufficiently for flow of the immobilized fluid medium 
to occur represents the yield limit of the material. 

The appearance of a yield limit, that is, the formation of a 
gel structure, must not necessarily be visualized as the simple 
effect of mechanical contact of particles. Experiments have 
shown that a distinct yield limit can be observed in suspensions 
of concentration of about 15 to 25 percent, and even at 2 percent 
(volume).®^For such concentrations it can only be the forces 
of interaction between the suspended particles in their equilib¬ 
rium positions that resist the applied shear until the force system 
is disrupted and the equilibrium arrangement of particles 
destroyed. The existence of a yield limit could therefore not 
depend on such a minimum volume concentration of solid par¬ 
ticles in the suspension which would produce actual contact 
between the particles. 
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Many gels, particularly clays and paints, revert to sols on 
mechanical manipulation, such as gentle shaking, stirring, or 
ultrasonic vibration; when left undisturbed they solidify again. 
This reversible sol-gel transformation is called thixotro'py; (from 
the Greek thixis = to touch, and trepo = change); it is a process 
that can be repeated indefinitely with the same result. 

According to Freundlich and others, thixotropy is a property 
of those gels in which the packing of the solid particles is very 
loose and encloses a large amount of fluid.®^ * It is due to the 
intensity of the forces of interaction betw een the suspended par¬ 
ticles, which are broken up by the applied shear forces and 
re-establish themselves slowly on removal of the force if not 
disturbed by other external effects. The amount of fluid must 
be sufficient to allow the particles to maintain lirownian motion 
after the breakup of the structure, as, otherwise, neither could 
the substance be fluid after being stirred or shaken, nor could the 
particles come to rest after spontaneously rearranging themselves 
in their position of minimum potential energy. Hence, for 
thixotropy to exist, an upper limit of particle size must not be 
exceeded, which is the same diameter of about 10”^ cm that 
delimits the existence of Brownian motion. When particles are 
nearly spherical, thixotropic effects can be expected only if their 
volume concentration is small, since a continuous and rather 
closely packed structure cannot be broken up to such an extent 
that Brownian motion becomes possible. Thixotropy will there¬ 
fore be favored by nonspherical (elongated) shape of particles 
since nonspherical particles can form a continuous structure at 
lower concentration than spherical particles, and this structure 
can more easily be broken up. In general, thixotropy requires 
a type of structure that is metadable in its nature: the forces 
tending to combine the dispersed particles into a more or less 
continuous structure, as well as the concentration of particles, 
must not be so great as to prevent their dispersion when mechan¬ 
ically agitated or to cause rapid reformation of the structure 
during the agitation or immediately after the agitation has 

stopped. 
There is evidently a very close interrelation between the exist¬ 

ence of a yield limit and thixotropy, although the yield limit is 
defined in terms of a breakdown stress of the structure, whereas 
thixotropy may be a function of the shear stress, or of the shear 
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rate, or of the extent of flow, or of a (combination of all those 
variables. 

62. Viscosity and Yield Limit 

The mechanical behavior of suspensions and gels is described 
by the shear-stress versus flow rate (consistency) diagram (Fig. 
62* 1), in a similar way to that in which the mechanical behavior 

of solids or of apparently solid 
materials is described by the stress- 
strain diagram. Deviations of the 
observed (low diagram of the 
material from the linear diagram 
of the Newtonian liquid can be 
interpreted in terms of structural 
changes within the material. 

Whereas in the study of inelas¬ 
tic materials it is assumed that all 
considered states are states of 
equilibrium, the analysis of sus¬ 
pensions and gels is usually based 
on the assumption of their being 
in a steady state of flow. The two 

mechanical constants appearing in the relation connecting the 
dynamical and kinematical variables which, for incompressible 
flow, are the shear stress St and the rate of shear strain or rate 
of flow g (in fluid mechanics called the velocity gradient D), 

respectively, are the coefficient of viscosity rj and the yield limit 
in shear s^o. 

Suspensions are described by the equation, 

g =M) (62-1) 

since liquids are defined by Sto = 0. Equation 62.1 must there¬ 
fore fulfill the boundary condition = 0 for Si = 0. The general 
equation of state for gels has the form: (se > Sto) 

g = f{st ~ Sto) (62*2) 

Assuming linear behavior, eq. 62 1 becomes the definition of 
the Newtonian liquid, 

1 
g = - St == <t>st 

n 

Fig. 62 1 Consistency dia¬ 
gram of gel. 

(62-3) 
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where is fluidity of the substance, while eq. (62 -2) becomes 
the definition of the Bingham body or viscoplastic body in pure 
shear flow, 

g = - {nt — (02-4; 
V 

With the velocity .^—^0, eq. 02-4 becomes «« = Sto, which is 
the definition of the St. Venant body. 

The difference between the concept of the Bingham body as 
derived here from the viscous liquid and that derived in Art. 42 
from the plastic solid is in the relative magnitude of the elastic 
and the inelastic deformation. Whereas in the mechanics of gels 
the elastic deformation is considered negligibly small in com¬ 
parison with flow, so that the material appears perfectly rigid for 
St ^ Stoj the analysis of the viscoplastic solid by means of the 
tensor of overstress considers both elastic and viscoplastic 

deformation. 
A true fluid is characterized by the complete relaxation it 

exhibits under a stress system different from a pure hydrostatic 
pressure. This relaxation acts so fast that clastic phenomena 
practically vanish before they can be observed. Theoretically 
a certain degree of transient elasticity of shape is present in 
substances that behave essentially like fluids; it can however be 
detected only by experiments that are so rapid that they do 
not provide sufficient time for flow to take place. 4'he higher 
the viscosity of a licpiid, the more relative importance must, 
however, be attributed to the elastic aspect of its response to 
external forces. Since both viscosity and rigidity are embodied 
in the relaxation time, it is in terms of the spectrum of relaxation 
times that the transition from the perfect liquid with zero relaxa¬ 
tion time to the perfectly elastic solid with infinite relaxation 
time can be described. 

The mechanism of flow and of viscous resistance of the true 
fluid is closely connected with the continuous process of forma¬ 
tion and breakup of molecular groups (see Art. 11). The energy 
dissipated into heat in the course of this statistically uniform 
structural breakup and re-formation appears as the resistance 
to flow, expressed by the coefficient of viscosity. Within a 
liquid with a statistically homogeneous structure there is no 
reason to expect the specific resistance to flow and therefore the 
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coefficient of viscosity to depend on the flow rate or on the shear 
stress, as long as the structure of the liquid is not affected by 
either flow rate or shear stress. However since suspensions are 
not tme liquids, their behavior cannot be described by eq. 62*3; 

Fig. 62*2 Typical shapes of consistency curves of suspensions and gels. 

their viscosity is not constant unless the volume concentration 
of dispersed particles is very small and the particles nearly 
spherical and of uniform size. 

Gels will usually not show a linear relation after the shear stress 
has exceeded the yield limit and the 
substance has become a suspension, 
for the same reason that suspensions 
do not show linear viscosity. Con¬ 
sidering Fig. 62-2, the behavior of 
suspensions may follow any one of the 
curves 1, 2, 3, whereas that of gels 
follows any one of the curves 4, 5, 6. 
For suspensions curves with inflection 
points (Fig. 62-3) have also been 
observed. 

Flow relations described by curves 
3 and 6, with viscosity increasing 
with stress, are rather infrequent and 
restricted entirely to substances with 

a clearly anisotropic structure, such as fibrous materials, and 
filaments. Normal flow phenomena of highly deformable sta¬ 
tistically isotropic substances are usually governed by curves of 
the types 1, 2, 4, 5, or by the complex curve shown in Fig. 62*3. 

Fig. 62*3 Consistency 
curve of a suspension with 

structural viscosity. 
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In considering curves 2, 4, and 5 the question presents itself 
whether the difference between them is real, that is, whether in 
most of the deformable substances a yield limit really exists. 
There is no doubt that the yield limit is considerably less marked 
in gels than it is in crystalline materials. This is due to the fact 

that for an apparent yield limit to be observable in gels a con¬ 

tinuous system of interacting forces is required rather than a 
continuous skeleton of solid particles. Hence, the difference 
between the configuration of the structure for which a continuous 
skeleton of particles still exists and for which it no longer exists 
is not necessarily equivalent to the difference with respect to 
the existence or nonexistence of a yield limit. P]ven after the 
destruction of the mechanical contact of particles, the system of 
interacting forces may still remain continuous, until the velocity 
of flow has become large enough to destroy entirely both the 
initial structure and the system of forces between the particles. 
Only after this destruction has been achieved does the flow 
process become truly viscous so that the subsequent formation 
and breakdown of intermolecular force systems may be consid¬ 
ered a purely statistical phenomenon, which can be described 
by a single constant (the coefficient of viscosity), depending 
only on the energy expended in the process. 

P^or an undisturbed skeleton or force system a definite yield 
limit exists at rest; after sufficient agitation this limit may dis¬ 
appear completely. Between the two stages the flow resistance 
is affected by the degree of destruction of the original skeleton 
or force system, and the viscosity depends therefore on stress 
or on flow rate; it becomes practically constant only after a com¬ 
plete breakdown of the structure. It can thus be concluded that 
the existence of a yield limit is real only for gels with sufficient 
volume concentration of dispersed particles to form a continuous 
skeleton, or with sufficiently small particfes to produce strong 
forces of interaction. 

The yield limit is identical with the theoretical limit StQ of 
the linear Bingham body only where it is due to a continuous 
skeleton of solid particles of such size that the forces of inter¬ 
action are relatively small. For gels of different structure the 
real yield limit is smaller than the theoretical limit of the 
linear body, since flow in the fluid phase may start by slow 
change of the equilibrium distance between the suspended par- 
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tides, without breakdown of the system of forces conneetinp; 
them, and proceed slowly, accompanied by a gradual weakening* 
and destruction of the force system. The theoretical yield limit, 
that is, the intercept of the asymptote to the consistency curve 
on the stress axis represents therefore in this case a fictitious 
limiting stress, which might have been observed if the destiu(;- 
tion of the continuous system of forces of interaction were sudden 

and not gradual (Fig. 62 -4). 
Curves of type 2 can thus be 

interpreted in terms of the behav¬ 
ior of Bingham bodies with a fic¬ 
titious yield limit, whereas curves 
of type 5 describe substances for 
which the mechanical contact of 
solid particles and the field of 
interacting forces produce phe¬ 
nomena of a comparable order of 
magnitude. In substances the 
yield limit of which does not 
depend on the existence of a 
mechanically continuous solid 
skeleton, but only on interacting 
forces between particles, thixo¬ 
tropy is therefore a perfectly 
normal phenomenon, as in such 

substances the system of interacting forces will always re-establish 
itself after external agitation ceases and thus re-establish the yield 
limit. Thixotropy would be an anamolous phenomenon only in 
substances in which the yield limit is the expression of a mechan¬ 
ically continuous solid skeleton which must not necessarily 
re-form itself after agitation. If in that case thixotropy comes 
into play, re-establishing a yield limit, this limit is not necessarily 
the initial yield limit, but may be a new lower limit, produced 
by the system of interacting forces alone. 

Complex flow diagrams of the type represented in Fig. 62-3 
(iannot be interpreted in terms of a yield limit since, after a range 
of changing viscosity, the diagram reverts to a straight line 
through the origin which describes linear viscous flow. The 
curved part apparently describes the change of viscosity resulting 
from the gradual breakup of a system of interacting forces 

Fig. 62*4 Consistency curve of 

a gel with real and ideal (Bing¬ 

ham) yield limit, s'to and Sto, 

respectively. 
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between nonspherical particles of relatively low volume concen¬ 
tration; attaining random orientation after the complete breakup 
they are subsequently oriented with increasing rate of flow. It 
is probably the superposition of the breakup and the orientation 
effect and the gradual transition from one to the other that pro¬ 
duces the inflection point. Because of the easier formation of a 
continuous structure by elongated particles and because of the 
possibility of their orientation, the S-shaped diagram is the less 
probable, the more spherical the shape of the particles, the smaller 
their volume concentration but also the smaller the interacting 
forces. On the other hand, a too large volume concentration 
may produce a yield limit. 

The actual behavior of gels is very mu(*.h affected by the rela¬ 
tive magnitudes of yield limit and coefficient of viscosity. There 
are two principal groups, the differences of behavior of which 
result from the fact that one group is characterized by a small 
yield limit and a high coefficient of viscosity, whereas the other 
group shows a relative high yield limit and a small coefficient 
of viscosity. The difference in the coefficients of viscosity 
between the two groups may be as large as Glass, resins 
and asphalts are prototypes of the first group, whereas clays and 
paints form the second group. The practical importance of this 
difference in behavior is considerable: because of their low vis¬ 
cosity, materials belonging to the second group may easily be 
formed into any shape; the high yield limit, however, ensures 
that a shape, once given, is retained indefinitely. On the other 
hand, the high viscosity of glass, resins and asphalts requires the 
application of large forces if deformation is to be produced, 
whereas, as a consequence of a relatively low yield limit, the 
material is bound to lose the given shape in time, even under the 
influence of gravity. 

The reason for the different behavior of iftaterials in these two 
groups is not only the low coefficient of viscosity of the medium 
of dispersion of materials belonging to the second group (water, 
linseed oil) compared to the high viscosity of the media of the 
first group, but also the difference between the high intermolec- 
ular forces within materials of the first group compared to the 
relatively small forces between the dispersed particles in the 
second group. Whereas in the first group flow under applied 
stress of any magnitude takes place by gradual re-formation of 
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the intermolecular force system, resulting from diffusion and 
place change of particles, the solid skeleton or the system of 

interacting forces in substances of the second group is perma¬ 
nently disrupted by the action of applied stress above a certain 
limit only. Since no re-formation takes place during flow, the 
minimum breakdown stress represents a true transition point of 
rheological behavior. It is characteristic that in materials 
belonging to the first group the medium and the dispersed phase 
are chemically identical (isogels), particles being of molecular 
size, whereas in the second group they are chemically different 
{heterogels) j particles being of colloidal size. Actually gels of 
the first group form the transition to materials which are usually 
defined as amorphous solids, although they should, more con¬ 
sistently, be defined as liquids. This uncertainty of definition 
is an indication of the gradual transition between the different 
states of aggregation of matter. 

63. Rheological Measurement. Behavior of Technical Materials 

Rheological measurements are concerned with the determina¬ 
tion of the relation between stress and rate of flow. For true 
liquids this relation is expressed by a single coefficient of viscosity. 
In suspensions and gels the apparent viscosity varies with either 
stress or flow rate; therefore for such materials the observation 
of the consistency curve over the whole range of stationary flow 
replaces the measurement of a single coefficient of viscosity. 
This is, incidentally, one of the principal practical difficulties in 
introducing modern rheological methods into industrial labora¬ 
tories where most viscous substances tested are non-linear; the 

time required to produce a consistency curve is necessarily a 
multiple of that required to determine a constant viscosity 
coefficient. 

Conditions of stationary flow are produced by subjecting the 
material to a simple type of stress, preferably to a homogeneous 
shearing stress. For every value of stress st a definite steady 
state of flow of velocity g is reached after a certain period of 
transient phenomena. The consistency curve of the substance 
g(8t) may then be plotted. If the material has an observable 
yield limit, no flow will occur if the shear stress applied does not 
exceed this limit. If the experimental conditions set up are 
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such that the state of stress is nonhomogeneous, the test must be 
analyzed and the relation with the homogeneous stress established 
by integrating the hydrodynamic equations for the unit volume 
under the particular testing conditions. The existence of a dis¬ 
tinct yield limit and of linear flow in homogeneous shear does 
no more imply that a linear stress-flow-rate relation will be 
observed in a conventional viscometer test, than the existence 
of a sharp yield limit followed by linear work hardening in the 
tension test of a metal implies that the same linearity between 
moment and deformation will be observed in a bending test. 
Actually, most of the industrial viscometers produce nonhomo- 
geneous conditions of stress, and the relation between the 
observed mechanical variables must be reinterpreted in terms 
of the volume element, before the physical meaning of the test 
becomes clear. 

The principal types of viscometers used for suspensions, and of 
plastometers used for gels are: 

1. Capillary-tube viscometers, in which the substance is driven 
by a pressure p through a long narrow tube or radius r and length 
I, and the viscosity ri determined from the simple so-called 
Poiseuille-Hagen linear viscometer equation,®’* ^ 

V = 
prr^ 

8lri 
const p/tj (63.1) 

where V denotes the volume of substance extruded per second. 
For materials with a yield limit 0 a more complex nonlinear 
plastometer equation has been derived by Buckingham and 
Reiner;®® 2 it is transformed into eq. 63* 1 for seo = 0. 

2. Rotation or concentric-cylinder viscometers, in which the 
substance is placed in the space between two cylinders, the inner 
one of which is rotated. The material ii^tates in concentric 
layers; its viscosity can be determined from the linear relation 
between the torque M necessary to produce a definite constant 
angular velocity co of the inner surface, 

const— (63-2) 

For materials with a yield limit, st 7^ 0, Reiner has derived the 
appropriate plastometer equation,®®** 
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, = c,—(63-3) 
0) 0) 

where Ci and C2 are instrument constants. 
3. Compression visco- and plastometers, in which cylinders 

of the viscoplastic material are compressed between parallel 
plates under constant load; the rate of decrease in height or the 
decrease in height after a time interval is measured as function 
of the load. The principal difficulties in using parallel-plane 
plastometers are that the expanding cross section produces 
changes of stress during the test which must be compensated and 
that the frictional restraint over the ends of the cylinder cannot be 
reliably evaluated. This makes the derivation of rational instru¬ 
ment equations very difficult. Various formulas are used, most 
of them derived under such simplifying assumptions that their 
validity is very doubtful, 

4. Usual mechanical tests of viscoelastic materials, such as 
torsion or tension tests of cylinders, or bending tests under 
constant moment or under the own weight of the specimen 
(sagging beam test). The viscosity coefficient is obtained by 
using the elastic-viscoelastic analog}^ in the interpretation of 
observations, adapting the known elastic solution of the problem 
by replacing g by g and G by 17.®^ ^ 

5. Purely empirical or comparative tests, such as penetration 
or indentation hardness tests, and other specific tests for various 
materials; these tests do not give true physical constants and 
can only be interpreted on the basis of empirical formulas. 

Viscometer and plastometer tests are very important in the 
manufacture of a large variety of materials, the technology of 
which forms a series of processes dominated by rheological 
behavior. Among the rheological materials of primary engi¬ 
neering importance are cement, asphalt, natural and synthetic 
resins, paints and clays. The mechanical behavior of rubber¬ 
like materials and of yarns is frequently determined by con¬ 
ventional mechanical tests, observing stress and strain instead 
of stress and flow rate. 

The rheological properties of asphalts vary widely. Values of 
viscosity at room temperatures range from about 10^ poises for 
the fluid petroleum residues to between 10^® and 10^^ for hard 
asphalts. The type of flow varies from that of an essentially 
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Newtonian liquid to a flovy of high complexity. Because of their 
complex nature, asphalts cannot be described on the basis, of 
their chemical composition alone, and it is necessary to classify 
them by physical tests. 

Asphalts show definite elasticity and therefore both aftereffect 
(creep recovery) and stress relaxation. They also show age 
hardening, that is, an increasing value of the apparent viscosity 
with time, and thixotropy. As may be expected, the presence 
of thixotropic structure and age hardening is closely interrelated 
with the existence of a yield limit in the asphalts of continuous 
skeleton structure. Relaxation times near room temperatures 
are of the order of magnitude of a few seconds.®* ® 

The conventional flow tests of asphalt are purely empirical; 
the three most frequently used conventional tests are the pene¬ 
tration test (ASTM-D5-25), the ‘^ring and ball softening-point^’ 
test (ASTM-D36-26) and the ductility test (ASTM-D113-39). 
These tests, very useful for obtaining comparative data, are 
inadequate to indicate fundamental properties since they meas¬ 
ure combinations of basic properties. The flow under penetra¬ 
tion is very much different from that in a viscometer; there is, 
moreover, a conical depression around the needle due to surface 
effects and effects of adhesion of steel and asphalt. The ‘^soften- 
ing-point” test measures a combination of viscosity, density, 
thermal conductivity, all of which vary with temperature and 
with the complexity of the flow. The ductility, because of the 
constant deformation rate imposed, is the expression of the effect 
of a rapidly increasing tensile stress under which the cohesive 
strength of the material is reached. Among the three conven¬ 
tional tests the ductility test is, however, the only one that can 
be interpreted in terms of basic mechanical properties. 

Because of the relatively high strength^ and high viscosity, 
mechanical behavior and properties of resins are usually observed 
in conventional mechanical and not in rheological tests. How¬ 
ever, the flow properties of resinous materials are important^ 
during the different phases of their manufacture when their 
structure has not yet been sufficiently built up to produce essen¬ 
tially solid behavior. An example of such aji application is the 
rheological testing of crude rubber. In this case the observed 
flow properties have not necessarily a meaning of their own but 
may be used as an indication of certaip properties required which^. 
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before the introduction of the rheological testing, may have been 
inferred from a visual inspection or from a so-called psycho¬ 
physical test.** ^ 

The apparatuses used for rubber and rubber compounds are 
either the parallel-plane plastometer, the extrusion viscometer, 
or the rotating-cylinder viscometer. The parallel-plane plastom¬ 
eter has actually been developed for rubber testing. The 

variable that is usually observed in the test is the thickness of 
the sample after a certain period of compression under a standard 
weight and at a standard temperature; in recovery measurements 
the observed characteristic is the recovery in height on release 
of load. Even if the developed theoretical formulas for caUai- 
lating viscosities from such measurements could be assumed 
to be fairly accurate, they cannot be applied to raw rubber, 
because of the considerable effect of thixotropy. Thixotropy 
interferes also with the operation of the extrusion viscometers. 
The most appropriate type for viscosity measurement of rubber 
is the rotating-cylinder viscometer in which both viscosity and 
elastic recovery can be observed. 

Paints are very nearly ideal Bingham bodies with viscosity of 
the order of 10 poises and with yield limits of the order of mag¬ 
nitude of 10^ dynes per cm^. The viscosity makes the paint 
brushable; the yield limit prevents it from sagging or running off, 
but if it forms too rapidly (thixotropy) it prevents leveling of the 
brush marks; thus the concentration of pigments and the viscosity 
of the oil must be selected to ensure the best performance in all 
respects.®* * 

In clays the fluid medium is water; the particles have the shape 
of rough leaves or flakes. The plasticity of clays varies with the 
proportion of water; as water is added to dry clay, its plasticity 
increases until a maximum is reached. A further addition of 
water reduces the plasticity, so that it can no longer keep a given 
shape and becomes first sticky, then a fluid slurry. The plastic 
properties of clays are related to the flakelike shape of the par¬ 
ticles, to the roughness of their surface, to the electrostatic forces 
between them, and to the water films forming around them. 
Their rheological behavior approaches that of a Bingham 
body.®*» 

Thixotropic 0ffects are considerable; it is therefore to be 

expected that the flow of clay should be non-Newtonian. 
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Although the linearity of the flow diagram for higher stresses indi¬ 
cates the existence of a definite theoretical yield limit flow 
starts actually at a lower limit Sto'. Terzaghi®* has called sto' 
the flow limit and Sio the yield limits defining the former as a 
limit at which viscous flow starts within the layers of water 
without changing the structure of the particles, and the latter 
as a limit at which the water film is disrupted and the bonds 
between adjoining particles are broken. 

Thixotropy of clays is of considerable importance in the inter¬ 
pretation of results of tests in soil mechanics. Deep layers of 
clay deform under the weight of the upper layers. This deforma¬ 
tion proceeds by consolidation, that is, by the squeezing out of 
water from the pores of the clay layer which, therefore gradually 
decreases in volume and, consequently, in depth. If thixotropic 
effects are present, the consolidation which, according to the 
theory, proceeds asymptotically until an equilibrium is reached 
between the hydrostatic pressure within the clay pores and the 
imposed pressure,®® may be stopped by the development of a 
continuous system of interacting forces, the resistance of which 

is sufficient to carry the overload, so that a hydrostatic gradient 
no longer exists within the water surrounding the clay particles. 
Thixotropic effects also interfere with the taking of clay samples 
for soil investigations, since the process of drilling out of the core, 
however carefully performed, is bound to disturb the structure 
of internal forces which has been formed over the long periods 
during which the clay deposit has been at rest. So far, no pro¬ 
cedure has been found by which it would be possible to re-estab¬ 
lish within short periods in the laboratory the resisting structure 
of the natural-clay formation which has developed in the course 
of long periods of consolidation. 
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13 

PLASTICITY. PROBLEMS OF 

EQUILIBRIUM 

64. Torsion 

The simplest equilibrium problem of the ideal elastic-plastic 

body is that of torsion. In the case of elastic torsion the problem 

is formulated by assuming that the stresses are independent of 

the direction xz of the axis of the member so that all differentials 

with regard to vanish. Of the equilibrium equations only 

the equation, 

3.ri dx-i 
(G41) 

remains, since in pure torsion sn and S2-> = si2 = 0. Introduc¬ 

ing <1 = su and k = 82.1, this equation may be written in the 

form: 

3.Ti dX-2 
(64-2) 

By introducing the function <t>, so delined that 

ti = 
^2 

ti 
d0 

dx\ 
(64-3) 

and considering the fundamental elastic ecpiations,®'' * 

AS23 == ASi3 = 0 
417 

(64-4^ 
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where A is the Laplace operator, the relations are obtained, 

d d 
— A</> = 0 and — A(l> — 0 

dX2 dxi 
(64-5) 

which require that 

^ = const (64 -(5) 
Xdx*!*' dx^y / 

The boundary condition along the stress-free perimeter, 

t\l\ + hh = 0 ( (04-7) 

where li and h are the directional cosines of the boundary element 
(Is is transformed into the equation, 

(/X2 ^ dxi d<t> (Ixo , d(t> dxi 
/i — - /2 — = — • T- + ^—r = ® 

(IS ds ax 2 (is dxi ds 

by introducing eqs. 04-3 into 04-7. Thus, along the perimeter 
<)> = const; this constant may be assumed as zero without 
changing the stresses. Hence, the problem has been reduced to 
that of the determination of a potential function for the cross 
section that is zero along the perimeter. From the consideration 
of compatability of strains the constant c is obtained c = 2G6^ 
where 6 denotes the angle of twist per unit length. The torque, 

M = — JJ(^i:r2 — t2X\) dxi dx2 = 2jj<t> dxi dx2 = 2V (64*9) 

is obtained by introducing eq. 64-3 and by partial integration, 
considering the boundary condition 0 = 0. 

Comparing eq. 64 0 with that of a thin elastic membrane 
under pressure, Prandtl®^ ^ suggested that 0 can be repre¬ 

sented as the surface of a membrane under internal pressure; 
the contour lines are the trajectories of shear stress, and the 
stress values are proportional to the slope of the membrane. 
The torque is twice the volume V of the stress surface 0(xiX2). 

In the plastic problem, eqs. 64 • 2 and 64 • 3, together with the 
Huber-Mises-Hencky yield condition. 

(64 10) 
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where k denotes the yield stress in shear, result in the equation ® 

(It) = (6^11) 

This is the eo.r.ation of a surface with constant slope and can. 

as suggested by Xadai,®^ ^ be represented by a surface of constant 

slope such as sand heap. By comparing this surface with that 

of Prandtrs elastic membrane a clear picture of ^he transforma¬ 

tion from the elastic into the plastic state is obtained. By 

increasing the pressure on the elastic membrane a condition of 

FiCi. 64-1 Isotropically pla.stic areas in torsion. 

insetting isotropic yield is reached when the first contact is 

established between the membrane and the suiface of constant 

slope. Under increased pressure the area of free deformation 

of the membrane (elastic domain) is gradually reduced. This is 

shown for different shapes of the cross section in Fig. 64-1. 

The shaded areas are those in which homogeneous isotropic 

plastic conditions have been reached. However, since in certain 

metals such as mild steel the real initiation of yield is hetero¬ 

geneous, glide lines can, in these metals, be observed to precede 

any extension of the homogeneous plastic area, as indicated in 

Fig. 40 -1. 

The relation 64 • 9 between torque and volume of the membrane 

0, derived for the elastic problem, also holds for the plastic problem 

of torsion. Thus, for a circular shape of radius a the volume ITi 

of the plastic function 

Fpi = to}- where = k (64* 12) 
3 dr 

Hence, the height h = ka and the torque in the fully plastic state 

of the section, 

itf FI = 2Fpi = 2'jrA’(i “ = ^kird 
u 

{64-13) 
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The elastic torque is given by 

ird^t 
M=— (6414) 

which, for i = fc, attains the limiting elastic value, 

^1/ei ~ ^kird^ = (64-15) 

For the equilateral triangle section, 

= ^kd^ and M^a = s^ka^ = fA/pi (64-16) 

and, for the sc^uare section, 

J/h = ^ka^ and J/ki = = 0.625A/fi (64-17) 

If a torque .I/ei < M < Mi^ is applied and released, a state of 
residual stresses is introduced; these stresses are obtained by 
subtracting, from the elastic-plastic stresses produced by the 
torque M, the elastic stresses that would be produced by the 
same value of the torque. 

65. Bendins. NonuniForm Stress 

A problem of elastic -plastic equilibrium that is of considerably 
practical interest and that by the introduction of the Bernoulli- 
Xavier assumption can be simplified and formulated as a prob- 

TTrThm'lTlU^ ' 
soh" 

\M ^ ̂  I 
_^iirnTflllTlIllTiril^^ 

1 Sq 

_L 

Fig. 65-1 Isotropically plastic areas in pure bending and stress di8trib\i- 

tion over cross section. 

lem of uniaxial nonhomogeneous stress is that of elastic-plastic 
bending. When a member is loaded in bending, a plastic zone 
will develop near the edges of the cross section carrying the 
maximum bending moment and will gradually extend into the 
interior under increasing load until it finally reaches the neutral 
axis (Fig. 65 1). This state delimits the conditions of contained 
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plastic deformation and of free plastic flow. Again, the assump¬ 
tion of homogeneous extension of isotropic plastic areas is fre¬ 
quently at variance with the real process of initiation of plastic 
deformation and its progress, at least in the early stages. The 
stage during which isotropic plastic domains are formed is pre¬ 
ceded by a stage of heterogeneous plastic deformation charac¬ 
terized by the appearance of glide lines as shown in Fig. 40 -1. 

Under the assumption of isotropic plastic deformation under 
constant stress the linear stress distribution over the cross section 
in problems of elastic bending is replaced by the broken distri¬ 
bution shown in Fig. 65-1. Extending the Bernoulli-Navier 
assumption of a plane section remaining plane after deforma¬ 
tion to elastic-plastic deformations (Fig. 05 *2), the statical 

r 
-5 

Adi/* If 
[^^E1 
j_ 

h- 
1 
h - .V y 

1 
1 

^_1_ 

A ^ 
A U —>J 

Fig. 65 ■ 2 Deformation and stress distribution of elastic-plastic rectangular 

section in pure bending. 

moment Mi of the stresses with respect to the neutral axis is given 

by the equation,®^ ^ 

Afi = ElAd<l> = El ^ (65 1) 
h 

where I denotes the moment of inertia of the cross section, if this 
section is symmetrical with respect to the neutral axis. The 
statical moment of the stresses associated with yield initiation 

is given by 

Me. = sox h 

where so denotes the yield stress in uniaxial tension or compres¬ 
sion. The absolute sum of extreme fiber extension and com¬ 

pression Aei pertaining to Mm is given by 

Aei — 2 
E 

(65-3) 



422 Plasticity. Problems of Equilibrium [Art. 65 

If M denotes the applied external bending moment, the equi¬ 
librium condition is expressed by M = Mi. Purely elastic parts 
are defined by M < J/ei, whereas values of M > M^a charac¬ 
terize domains of elastic-plastic deformation. Within those 
domains, symmetric with regard to the neutral axis, regions of 
plastic deformation extend from the outer fibers toward the 
interior; the height of the plastic regions is (Ji/2 — i/o), yo being 
one-half the height of the remaining elastic core. If the deformed 
section remains plane, 

2y^^h (65-4) 
A 

The statical moment of the stresses in the elastic-plastic state 

/■+A/2 ryo fh/2 

Mi = = Jo (65-5) 

For a rectangular section, considering eq. 65-4 and ()5-1, 

Hence 

(65-6) 

(65-7] 

and, for a known distribution .l/(.r), the equation of the elastic- 
plastic boundary. 

^M{x) 
(65-8) 

Introducing the origin of the coordinate system at mid-span, the 
moment equation of a freely supported beam of span I with uni¬ 
form load p, 

M = (65-9) 

By introducing eq. 65 • 9 into eq. 65 8 the boundary of the plastic 
area is obtained after a short transformation, 
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1/0 = + 2 (65-10) 

where pn denotes the load pertaining to IfKi- Introducing 

(3-2i). 
\ Viii/ 

-) =« J 8p 
and 1,3 - 2 ~ = Ji 

\ PkJ 8p 

eq. ()5-10 can be written in the form, 

A B 

(65-II) 

(65-12) 

which is the equation of a hyperbola, the asymptotes of which are 

defined by the condition pm = pj,., = 1 .dp^u since, according 
d/ Kl 

to eq. G5 * 6, ^Mizi is the maximum limiting moment a rectangular 
section can sustain under conditions of contained plastic deforma¬ 
tion. For p = 1.5pei the equation of the hyperbola degenerates 
into the equation of the asymptotes: 

r - 12?- = 0 or 7j = ±?a/|2 (65-13) 

The plastic area of a freely supported beam under uniformly dis¬ 
tributed load is shown in Fig. (15 3. 

?= l/-v^N = 1/VI2 

Fig. 65-3 Plastic areas of rectangular beam subject to uniformly dis- 

distributed load. 

For a simply supported beam with a concentrated load at 
mid-span, 

M = m 
(-?) 

(65-14) 
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and the equation of the elastic-plastic boundary, 

= +4^+ (3 - 2^) (6515) 

This is the equation of two parabolas approaching each other 
as the load increases. Under the limiting load Ppi = 1.5Pei their 
vertices touch at mid-span (Fig. 65 -4). 

y 

Fio. 65-4 Plastic areas of rectangular beam under maximum concentrated 

load. 

If the cross section of the bent bar is not symmetrical with 
respect to the neutral axis, the procedure of computation of the 
elastic-plastic boundary is similar; it is only the computation of 
Mi by integration of eq. 65-5 that becomes more elaborate.®^ ^ 

On release of the load that has produced a moment 71/ei < M < 
Mfi, a state of residual stresses re¬ 
mains. The distribution of residual 
stresses is obtained by subtracting 
from the elastic-plastic stresses due 
to ilf a state of elastic stresses per¬ 
taining to the same moment M (Fig. 
65-5). Because of the equilibrium 
condition ^sy dA = 0, residual stresses 
in bent sections are both tensile and 
compressive; the boundary between 
the regions of tensile and compressive 
residual stresses are the points of 
intersection of the elastic-plastic load¬ 

ing and the elastic unloading stress distribution, obtained from 
the relation, 

M 
Suniomiin* = y 2/1 = sq (66*16) 

Fig. 65*5 Residual bend¬ 

ing stresses in symmetrical 

section previously strained 

beyond the yield limit. 
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Hence, for a rectangular section, considering eq. 65 • 6, 

2 / 4 / 1 
’yi = 7 So T7 = “ So 7 t;—(65 • 17) 

h M 3 h Mei(1 - h ) 

This is the equation of the ordinates t)i ~ 2y\/h of zero residual 
stress in terms of that of the preceding elastic-plastic boundary. 

Introducing eq. 65 • 4 into eq. 65 • 6 the ratio between the elastic- 
plastic resisting moment Mi and the limiting elastic moment 
A/ei is obtained as a function of the depth of penetration of 
the plastic zone c = {h/2 — y): 

Mi/M^ = ^ ^ ■' f)1 

This function, which is represented in Fig. 65 -6, is a parabola 
with the vertex Mi/M^^ = 1.5 at 
c = fe/2; its tangent at the point 
MijM^x = 1.0 and c = 0 has an 
inclination of 

tan gl - -j 
dc 

If we denote by K the ratio of the 
maximum fiber stress to the mean 
stress on either side of the neutral 
axis and by S the inclination of the 
stress distribution, the limiting elas¬ 
tic stress distribution in simple 
bending is defined hy K = 2 and 
S = 2so/hj the mean stress being 
s = So/2. The inclination of the 
tangent to the function = 
/(c//i) at c = 0, as given by eq. 
65 • 19, which indicates the rate of 
increase of the resisting moment 
within the region of contained small plastic deformations, can 
thus be expressed in the form: 

2 S S S 

Fig. 66-6 Relation between 

elastic-plastic resisting moment 

Mi of rectangular section in 

bending and depth of penetra¬ 

tion c of plastic zone. 
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to a bending moment M combined with an axial force P is 

obtained from the limiting stress distribution (Fig. 05-7) by 

evaluating the equilibrium conditions: 

^sdA—P and ^sxjdA =M (65-21) 

For a rectangular section this evaluation leads to the relations: 

so(2r/ — h) — P and .sor/c = M (65-22) 

For an axial force alone d = h; for pun' bending c = d — h 12. 

Hence, 

Pv\ = *So// = Pv^ 

Snh^ 
and Mil = "t = 1.5J/i.:i (65-23) 

4 

Dividing the eqs. 65-22 by the respec- J~ 
** Sq 

tive eqs. 65 • 23 yields 

{P/Pn) = 2d/h - 1 

and (M/Mn) = ied/h^ (65-24) 

,, L- • it. i i.- it. Fi(i.t)5-7 l.iniitingplastic 
By combining these two equations the .listrihution undor 

critical relation is obtained between combined iH-nding momrnt 

(P/Pfi) and (M/Mpi) which defines the and axial force, 

(combinations {M/P) of axial force and 
bending moment under which the limiting plastic carrying 

capacity of a rectangular section is attained: 

{M/MiA = 1 - {P/Pn)^ (65-25) 

The limiting elastic carrying capacity is defined by the relation 

(C/Pe.) + (d//d/K,) = {P/Pn) + \ = +1 (65-26) 

The relations 65-25 and 65 26 are represented in Fig. 65-8. 

The area between the two functions represents states of elas¬ 

tically contained plastic deformation under combined bending 

and axial loading. 

The validity of all foregoing equations for the elastically con¬ 

tained plastic bending, based on an isotropic condition of plas¬ 

ticity, has been repeatedly questioned on the basis of results of 
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bending tests of various steel shapes, which suggest that the 
transformation from elastic to plastic bending does not take 

place by the spreading of a homogeneously plasticized region 
under a constant stress so, but rather by the sudden breakdown 
of an elastic state in which the extreme fiber stress has been 

able to attain a value soi > so* The stress soi is considered to 
represent the upper yield limit of the material the excess of 
which over 6*o produces the delay in the slip initiation and the 

Fig. 65 • 8 Range of elastically contained plastic deformation of rectangular 
section under combined bending moment and axial force. 

consequent raising of Mei above the value based on yield initia¬ 
tion at a stress so. Because of this delay plastic deformation 
is no longer an isotropic process but consists of a series of sudden 
glide processes involving successive layers, which start after the 
stresses over a considerable depth of the section have exceeded 
6*0. The assumption is thus introduced that yield initiation does 
not depend on the local stress in the extreme fibers alone but on 
the stress gradient in the vicinity of the considered point, and, 
thus on the entire stress field.®® ^ 

Concerning the critical bending moment under which the 
process of gliding in layers is initiated, two different assumptions 
have been made. One of them considers that slip may be delayed 

until the elastic moment reaches the full plastic value Mfi, when 
the resistance of the section breaks down by excessive yielding.®® ® 
According to the second assumption, which is in better agree¬ 
ment with test results, the breakdown by sudden heterogeneous 
yielding occurs under a bending moment which is lower than 
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A/fi and which is obtained from the purely empirical assumption 
that for this bending moment the stress ordinate which divides 

the ‘‘stress prism” into two parts of equal volume attains the 
value So; this stress ordinate represents the mean resistance. 
The stress prisms are made up of the stress ordinates over the 
basis formed by the parts of the cross section on either side of 
the neutral axis (Fig. 65 -9). The second assumption is based 
on the consideration that the “overstressed” region of the 
stress prism in which ,s > so is supported by the “understressed” 
region in which s < so and that, therefore, for this support to 

stress 

(a) Rectangular section (b) 1 section 

Fig. 65-9 Schematic representation of stress prismis and determination of 

yield stress in bending for rectangular section. 

be effective, the total force in the overstressed region should not 
exceed the force in the understressed region. Although this 
consideration has hardly any physical basis, it has been found to 
represent certain test results fairly well. 

The difference between the two assumptions does not affect 
the numerical results very significantly. For the rectangular 
cross section the first assumption would give soi = 1.5so since 
the full plastic moment My\ = 1.5il/Ei, whereas the second 
assumption leads to a raised yield stress in bending soi = 1.41so. 

There exists considerable evidence that tWe initiation of plastic 
deformation, particularly for mild-steel sections, is actually a 
process of gliding in layers, starting frequently with consid¬ 
erable delay after the application of the load and, for constant 
load, proceeding at a decreasing rate until a new equilibrium posi¬ 
tion has established itself.®® ® However, this evidence does not 
furnish a conclusive reply to the question of whether the yield 
stress in bending is raised as a result of the stress gradient or 
whether the e.xcess of soi over the yield stress .so is a manifesta- 
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tion of a real upper yield point of the steel accompanied by slip 

delay, which would therefore be a characteristic property of cer¬ 

tain steels, particularly steels of the strain-aging type'(see Art. 

20). 
Whatever the results of future tests concerning the raised yield 

stress under which plastic deformation in bending is initiated, it 

appears certain that, because of the heterogeneity of the glide 

processes associated with plastic deformation, the fully plastic 

resistance moment 71/^, in general, will not be attained since 

glide layers will reach the neutral axis in advance of the quasi- 

isotropic gradually spreading plastic regions. This considera¬ 

tion is of importance in developing design methods based on 

elastically contained plastic deformation (see Art. 80). 

66. The Thicic-Walled Cylinder under External and Internal Pressure 

This problem has been investigated and solved under various 

simplifying assumptions by a number of authors.*^® ’ The pro¬ 

cedure outlined here follows essentially that recently developed 

by the Russian investigators®® on the basis of the Haar-Kdr- 

mdn-TIencky equations of plastic deformation. In solving the 

problem cylindrical coordinates are introduced. liecause of the 

condition of polar symmetry the general compatibility rela¬ 

tions are simplified and only one single equilibrium condition 

remains. 

The problem is geometrically defined by the internal radius of 

the cylinder r^*, its external radius rg, and the radius delimiting 

the elastic and the plastic regions ro, as expressed by the ratios 

T T Tq 
P — Pe — and po = — The acting internal pressure is q,-, 

Ti u u 
the acting external pressure 

The elastic solution of the problem is given®® ^ by the expres¬ 

sions for the stress components Sr and sb\ 

and 

Pe (Sle gt) “T P (gt qePe ) 

p^Pe^ ^ 1) 

Pe {.Qe Qi) d" P {fli qePe ) 

P^(P«^ — 1) 

(66-1) 

se = (66-2) 
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In the case of the short open cylinder (plane stress) = 0; hence, 

2{qi - , 

” -1(^7^ 

In the case of the infinitely long cylinder (plane strain) = 0; 

hence, 

rt/nf _ _ „ rv fr*n A \ 

1 +M 
p = 0 (66-4) 

/_ I \ QePe ) _ _ 
Szp{Sr + Se) — /i 2 , ~ I I P 

(Pe - 1) 1 + M 

Thus, for the infinitely long c^dinder, 

2(1 + p)(<7® ~ (/ePe^) 

^ ~ 3(p;-* - 1) 
(66-6) 

The longitudinal stress .s, in the infinitely long cylinder under 

internal pressure, 

_o I /nci \ Sz = 2p H-7,-- 
Pe" — 1 

In the closed cylinder under internal pressure. 

<//r/‘7r qi 
/ *> 2 V 1 

TriVc - Vi ) pc — 1 

(66.7) 

(66-8) 

Comparison of eqs. 66-7 and 66-8 shows that for volume-con¬ 

stant deformation the states of stresses and strain in both the 

infinitely long and the closed cylinder under internal pressure 

are identical. 

The limiting values of either the internal or the external pres¬ 

sure which initiates a plastic ring along the jnner surface of the 

cylinder is obtained by introducing the stress components into 

the Huber-Mises-Hencky yield condition. Hence, for the short 

cylinder, 

giEi = So -C; g. = 0 (66-<)) 
VSp/ + 1 

ffeEl — So 
P/ - 1 a = 0 (66 10) 
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For the infinitely long cylinder, 

(Pe' ~ 1) 

and 

(]m = So 

^eEl = So 

a/(1 - 2m)* + 3p/’ 

(Pe* - 1) 

2pe* Vl — M + M* 

qe = 0 (66 11) 

qi = 0 (66 12) 

The solution for the fully plastic state of a cylinder of external 
radius = ro, which is attained when the boundary of the 
elastic zone has been pushed back to p = po = Pe is relatively 
simple only if the plastic material is assumed to be incompressible 
(p = 0.5). Under this assumption the strain components satisfy 
the equation Cv = 0; considering the compatibility eqs. 26-5, 
this equation may be written in the form, 

dur u 
—- + a = 0 (6613) 
dr r 

which, integrated, gives the equation for Ur, 

Ur 
C 
r 2 

(66-14) 

where C is an integration constant, 
arbitrarily by 

n ^ 
^ “ 2(7 

Defining this constant 

(66-15) 

where c is another constant, the radial displacement. 

Ur 

Therefore, the strains. 

er 

ee 

csqpo^ — aGp^ 

Wp 

csqpo^ + aGp^ 

cgppo^ — aGp^ 

2Gp2 

(66-16) 

(66-17) 
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By introducing eqs. 66*17 into the Hencky eq. 42 15, the 

stress-strain relations are obtained: 

. _ ^ \ _ 2csopo^ 
1 I ^ ^ I 2 1+0 (1 + (t>)p^ 

2G c*sopo“ ~ SGap^ 
Se Sz — ~ ; ; {^0 €2) = ~ ; -^“2 (bb* 18) 

.Sr - s, = 

1 + 0 

2G 

1+0 
(er - €2) = 

(1 + 0)p^ 

-c.s‘opo“ “ SGap^ 

~ 0 + 0^ 
By substituting these relations into the yield condition, an expres¬ 

sion for the function 0 is obtained: 

V~S __:_r-r- 
(1 + 0) = 2 ^+ SG^a^p^ (66* 19) 

Sop 

Introducing the first of the eq. 66 *18 into the equilibrium condi¬ 

tion 26*2 and considering that r/dr - p/dp, the differential 

equation for Sr is obtained 

dsr _ 2cgopo^ 

^ dp (1 + 0)p^ 

_2cso^po' _ 

Vs Ve^VW +^OV^^^ 
(66 20) 

the integration of which gives 

_^ , r (c^so>o‘^ + SG^a“p^)^^ — .spcpo^ 1 

2 Vs + SGVp"*)^^ + .soCpo^J 
(66-21) 

where D is an integration constant. 

The constants a, /), and c are dehned by the boundary condi¬ 

tions: 0 
(а) Sr = —Qi for r = r**, and Sr = 0 for r = Ve for the cylinder 

under internal pressure, or Sr = 0 for r = and Sr = —Qe for 

r — Te for the cylinder under external pressure, and 

(б) The condition that the integral over the longitudinal 

stresses St equals the externally applied longitudinal force which 

is zero for the open cylinder and P — qi2nrr{^ for the closed 

cylinder. 

If the elastic-plastic state is considered and the boundary 

between the elastic and the plastic region defined by r = ro, 
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the following conditions must be imposed along this boundary 
to fit the solution for the elastic and the plastic state continuously: 

1. Stress components Soy Sz continuous. 
2. Strain components Cr, Sz continuous. 
3. <#» = 0. 

By introducing p = po and (I + <#>) = 1 into eq. 66 -19 the con¬ 
stant a is obtained: 

a = Bz (00-22) 

As a result of the equality of the radial stresses Sr ~ Sro, where 
Sro denotes the stress along r = ro, the integration constant D 

follows from eq. 06-21 with p = po: 

D = SrO - 
So , 1 - c V3 

-7^ l<>g--7= 
2 V3 1 + c V3 

(06-23) 

The plastic solution is considerably simplified for the infinitely 
long or the closed volume-constant cylinder {eg = 0). Intro¬ 
ducing this condition, eq. 66 -22 can be used directly to determine 

the constant c = l/VS. With a = 0 the equilibrium equation 
becomes 

dsr __ 2^0 

^ dp Vs 
(66-24) 

which, integrated, gives the simplified eq. 66-21 for the radial 
stress, 

Sr = log p + D (66 - 25) 

Because of the boundary conditions Sr = Sro for p = po. 

D = 5r0 
2so , ^logp. 

f 

Sr — SrO + 

(66-26) 

(66-27) 

Therefore, 
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With 6v = —qi along r = = 0) eq. ()C -27 becomes 

([i — SrO 
V 3 Vo/ 

(66-28) 

similar expression is obtained when Sr = —qeiorr = r,{qi =0). 
Since 

for p = po, 

Ss = SrO H-7= log ( -- ) + 1 
V3 \Po/ 

.S-«o — S'rO + 

(66-29) 

(66-30) 

because of the boundary conditions at p = po and the condition 
-Sr = -f/e = 0 for P = P,., 

2 I 2 

•‘'00 ~ •''Vo 2 2 (ob'31) 

Hence, 

Pd" “ P0“ -S'D 
•''Vo = — o'"."7“ 

Pe V3 
(6() a32j 

Thus according to eqs. (>(> 27 and (U) 29, the stresses within the 
plastic region of the infinitely long cylinder with internal pressure 

Sr = log (“•') - Pc' + pod 
Pc' V 3 L Vo/ J 

(66-33) 

and, because of constant volume, 

«, = K.s..4-s,) = ^^^—^[2p;Mogy + Po'J (66-34) 

Within the elastic region, 

Pe^P V3 
(Pe - P") 

^'**OPo“ / 2 I 2\ 
= “T"2~7r (Pc* + P ) 

P6 P V 3 

(66.35) 
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and 

= niSr + Sr) = M (66-36) 
Pc V 3 

The relation between the internal pressure and the radius ratio 
Po = ro/vi of the boundary between the elastic and the plastic 
zones is obtained from the first of eqs. 66 33 introducing the 
condition Sr = —Qi for r = r*: 

Qi 
«o 

i2pe- log PO + - po^) (66-37) 

The hydrostatic stress within the plastic region, 

p = r2p;Mog(-^) + po^l 
Pe VSL \po/ J 

^‘0 + m) 2 

Pe V3 

and, within the elastic region, 

— + p)^oPo^ 

iPeWi "p7\/3 3 

For = a = 0, eq. 66-19 is transformed into 

<1+«. (^•)’ and 0 = 

o 2 _ ^2 
Po “ P 

(66-38) 

po^ (66-39) 

(66-40) 

Hence the strain components in the plastic region, according to 
eqs. 66 18, 

^‘OPO^ »‘0P0~ ri 1 n /ft/3 41 \ 

“ 2Gp^ Vs’ ~ 2Gp^ Vs’ ~ ^ ~ ^ (66-41) 

The strain components within the elastic region 

, (66-42) 

^ - P.) - - -Kl - Wl 

so(l — 2m)po* 
Sr - u; e.e - ^ 

For the problem of the infinitely long cylinder with external 
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pressure qe, while qi = 0, equations similar to those derived pre¬ 
viously can be obtained by the same procedure. 

Comparison of eqs. 66 *41 and 66 *42 shows that the boundary 
conditions for the strains along p = po are fulfilled only if p = 
0.5 and = Cv = 0. For p 5^ 0.5 the strain components and 
ee in the plastic and the elastic region are incompatible. 

The general solution of the problem, not restricted by the 
assumption of incompressibility of the material, can be obtained 

0 

Fio. 66*1 Variation of distribution of tangential stresses in infinitely long 

thick-walled cylinder under internal pressure (after Beliaev and Sinitski®®-2). 

by the solution for the plastic zone of a system of first-order 
partial-differential equations resulting from the only equilibrium 
condition remaining in the problem of rotational symmetry 
(first of eqs. 26*2), the significant compatibility relations (three 
left-hand eqs. 26*5), the stress-strain relations (eqs. 42*15 for 
the deformation theory or eqs. 42*18 for t*he flow theory), and 
the condition of plasticity (eq. 41 * 5 for the Huber-Mises-Hencky 
condition or eq. 41*21 for the Tresca-St. Venant condition). 
The boundary conditions of the plastic problem are obtained 
from the conditions of continuity of stresses and strains along the 
elastic-plastic boundary. Neither for the flow theory nor for 
the deformation theory is a solution of the differential equations 
in closed form possible. The equations must be transformed 



438 Plasticity. Problems ol Equilibrium [Art. 66 

cross section of an infinitely long cylinder of wall thickness Vi 
and O.ori, respectively, as the diameter of the plastic zone 
increases under increasing internal pressure. 

The problem of elastically contained plastic deformation is 
transformed into a problem of free plastic flow under a pressure 
qi (qe = 0), or Qe (qi = 0), for which the elastic zone disappears 
from the cross section, that is, for po = pe. By introducing this 

Fig. 66 -2 Variation of internal pressure with extension of plastic zone in 

infinitely long thick-walled cylinder (after Beliaev and Sinitski®® 

condition into the eqs. 66-33, the stress components in the fully 
plastic cylinder under internal pressure are obtained: 

-i[2log0 + l] 
(66 43) 

The pressure required to produce and maintain plastic yielding 

over the entire cross section is 

2so 
QiFl = log Pe (66-44) 

Figure 66 -2 shows the variation of Qi with the extension of the 
plastic zone po for cylinders of different wall thickness defined 

by different values of pe. 
Release of the internal or external pressure qm < q < qv\ pro- 
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duces within the cross section a system of residual stresses. 
These residual stresses are obtained by subtracting from the 
stresses of the elastic-plastic condition produced by q the system 
of elastic stresses pertaining to the same pressure 7, as defined 
by eqs. 66 • 1 and 66 • 2. Figure 66 • 3 shows a particular distribu¬ 
tion of residual stresses thus obtained in a cylinder of wall thick¬ 
ness Ti. Because of the residual stresses 
introduced by prestraining to a pT'essure 

7ei < Q ^ 9fi, the cylinder has become 
elastic for the subsequent application of 
any pressure up to the prestraining pres¬ 
sure 7. This is true, however, only if 
within the system of residual stresses itself 
the yield limit has at no point been exceeded 
(see Art. 43-2). 

The problem of the thick-walled cylinder 
is transformed into that of a cylindrical 
hole within an infinite elastic body by 
introducing pe = 00. The stresses within 
the plastic region of radius vq are obtained 
from the eqs. 66-33 and 66 34. 

Fig. 66-3 Tangen¬ 

tial residual stresses 

in infinitely long 

thick-walled cylinder 
(66 • 45) after release of inter- 

nal pressure qi = 

0.68so (after Beliaev 

and Sinitski®®*^). 

Within the elastic region, 

^re “ ^Oe (66-46) 

The relation between the internal pressure and the radius of the 
plastic zone becomes 

[2 log po + 1] (66-47) 

These equations first have been derived by Nadai.®® 
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67. The Rotatins Cylinder and Disk 

Solutions of the problem of the revolving disk or cylinder have 
been given by a number of authors, among others by Hencky®^ ^ 
and Donell and Nadai.®’ ^ The difference between the equations 
of the elastic-plastic problem of the thick-walled cylinder and 
that of the rotating cylinder or disk is in the additional term 
representing the action of the centrifugal forces in the equilibrium 
equation. Thus the equilibrium condition, 

dsr . . w 
r--{se - Sr) =- 

ar y 
(67*1) 

where w denotes the specific weight of the disk, y the acceleration 
of gravity, and w the angular velocity. Under the assumption 
of constant volume Sv = 0 the radial displacement is obtained 
by integration of the eq. 66 13 with a == e^. Hence, from eq. 

66-14 with C == 0 for a solid cylinder and eqs. 26.5, 

e.r 
e, = - = 

dur ez 
Cr — = 7> ~ 

dr 2 

ff 
2 

(67-2) 

Since Cr — ee — 0, the stress difference Sr — se — 0. Hence the 
Huber-Mises-Hencky condition becomes 

Se — Sz = 5o 

and the equilibrium condition 67 * 1, 

dSr ^09 
— =-CO r 
dr y 

The radial stress is obtained by integration, 

(67-3) 

(67-4) 

Sr 

where r* denotes the radius of the cylinder. According to eq. 
67-3, 
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If no force is applied in the direction of the cylinder axis, 

or, introducing eq. 67 • 6, 

(67-7) 

(67-8) 

This is the expression for the circumferential speed Ve at which 
the cylinder is in a fully plastic state. The pertaining radial and 
tangential stress components are 

Sj- 

Sz 

(67-9) 

In a perfectly elastic cylinder of radius revolving with an angu¬ 
lar velocity Ve = the stress components are expressed by the 
equations:®^ ^ 

See = 

II (3 - 2m) 

7 cx
 

1 

1 

y 00
 

1 

w>-/ 

7 4(1 - m) 

(67-10) 

At the center with r = 0, 6v = hence, according to eq. 67*5, 
plastic deformation will start when 

or 

(3 - 4/x) WVeK 

8(1 — m) T * 
(67-11) 

. /2(1 - m) . fsoy 

^ 3 - 4m ^ w 
(67-12) 

Comparison of eqs. 67 • 8 and 67 • 12 shows that under the assump¬ 
tion of constant volume (ix = 0.5) the rotating cylinder becomes 
fully plastic under the peripheral velocity Ve — Ven without an 
intermediate elastic-plastic stage. Such a stage is introduced 
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by values m 0.5; for the extreme value /x == 0 the ratio between 
the peripheral velocity, at which yielding starts at the center 
and the velocity producing fully plastic conditions reaches its 
minimum value VeA’eFi = 0.61. 

In the case of the rotating disk of constant relatively small 
thickness, the principal stress Sg = 0. The two remaining prin¬ 
cipal stresses should satisfy the yield-condition of the plane- 
stress problem (eq. 4119): 

Se^ — SrSo + .Sr" = (()7 • 13) 

This nonlinear elliptic yield condition leads to solutions of con¬ 
siderable complexity. Since in the problem of the rotating disk 
the principal stresses Sr and se are both tensile stresses and sq > 

Sr, the part of the yield ellipse between si = 0 and si = so in 
the tensile quadrant (Fig. 411) can be replaced in rough approxi¬ 
mation by the straight line S2 = So, which forms one side of the 
hexagon representing the St. Venant yield condition. Hence 
the approximate yield condition Se = ^ 

The stresses in the perfectly elastic thin disk of radius 
revolving with an angular velocity Ve — are expressed by the 
equations:®^ * 

wiu'‘ 3 + /i 
Sre — Q 

y 8 f'-fe)’] 
WVe' 3 + /i 

See = - • Q 
7 8 

l+3M/ry 

3 + M \rj _ 
(07-14) 

§2=0 

The disk yields first at the center at a velocity obtained from the 
plasticity condition ' 

^ WVe^ 3 + /i 
ls««j(,_0) = ^ ■ g = s (67-15) 

or 

^3 + ^ w 
(67-16) 

By introducing the yield condition se = Sq into the equilibrium 
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eq. 67 • 1 the differential equation for the radial stress of the fully 
plastic state is obtained: 

Hence, 

d 

dr 
Sr) = c*3^r^ + So (67-17) 

w .> o 

^‘r = So - — a)“r“ 
37 

and Se = So (67-18) 

Since for r = the radial stress s, = 0, the circumferential 
velocity producing fully plastic conditions, 

^’cFl — (67-19) 

Under the assumption of constant volume (/z = 0.5) the ratio 
Ve/veF\ = 0.87; under the other extreme assumption ij = 0, the 
ratio Ve/veFi = 0.94. Hence, the transition between the fully 
elastic and the fully plastic state of the disk is produced by a 
relatively small increase of the angular velocity. During this 
transition the elastic region will extend from a radius r = tq to 
r = Tcf while a plastic region extends from r = 0 to r = tq. The 
stresses in the elastic region are 

S re 

ee 

WVe’ (3 + ft) 

7 ' 8 

(3m+ 1) 

8 

wv. 

& 
©■ 

C2 
+ C, + 

+ Cl H-2 

(67 • 20) 

The stresses in the fully plastic region are given by eqs. 67 -18. 
The constants ci and C2 are obtained from the condition s're — 

Sr and s'ee = Se along the elastic-plastic boundary r = Vq. The 
relation between the circumferential velocity and the radius of 
the plastic zone is derived from the condition s're = 0 for r = 

this relation is expressed by the equation: 

= 
So7 

V) 
3(3 + ^)- 2(1 + 3m)(-) 

(67-21) 
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The foregoing simplified solution for the elastic-plastic rotating 
disk is compatible in the stresses but, as in the case of the thick- 
walled cylinder under pressure, incompatible in strains, unless 
both the plastic and the elastic regions are considered to be 
incompressible; however the displacement is continuous across 
the elastic-plastic boundary. 

The introduction of the approximate St. Venant yield condi¬ 
tion instead of the correct Iluber-Mises-Hencky condition 
results in differences in the relation between circumferential 
velocity and the radius of the elastic-plastic boundary which 
may become considerable near the center of the disk, because of 
the comparatively high sensitivity of the elastic-plastic state of 
the disk with respect to small variations in the angular velocity. 
The difference between the circumferential velocities required 
to produce a plastic region of a certain radius according to the 
two conditions increases with increasing radius of the plastic 
region. 

The solution for the rotating disk with a central circular hole 
of radius r* differs from that of the solid disk only by the additional 
term (ca/r) in the expression 67-21 for the radial stress in the 
plastic zone, which is required in order to comply with the addi¬ 

tional boundary conditions Sr = 0 for r = r^. 
Because of the fact that the axes of principal stress and strain 

do not rotate in the course of the deformation, problems of rota¬ 
tional symmetry are the only type of problem of elastic-plastic 
equilibrium for which the flow theories and the deformation 
theories lead to practically identical solutions if the compressi¬ 
bility of both the elastic and the plastic zone is considered.®^ ‘ 

68. The Blunted Wedge 

The plastic deformation and resistance^ of a uniformly loaded 
blunted wedge was one of the earliest problems investigated by 
methods of the theory of plasticity. Under conditions of free 
plastic flow and under certain assumptions concerning the shape 
of the plastic area (Fig. 68-1), Prandtl has established the fol¬ 
lowing linear relation between the uniform wedge load pw nec¬ 
essary to produce and maintain plastic flow and the wedge 
angle ^ 

Pyj = const (I + 6) (68 1) 
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Results of tests with wedges of various angles $ undiM-taken by 
Nadai®® ^ and Sachs®^ ® to verify this 
relation showed discrepancies between 
theory and tests which increased with 
the wedge angle 9. Only for angles 0 

between 0 and 40® did relation 68 • 1 
describe the test results fairly well; 
for 6 > 40® no agreement was found. 

The wedge problem illustrates the 
difference between the two aspects of 
initiation of plastic deformation: het¬ 
erogeneous gliding in layers and 
homogeneous extension of isotropic 
plastic regions. FrandtPs solution 
has been derived on the basis of the 
assumption of unrestricted gliding of 
the material along glide lines. Nadai^s test results showed this 
assumption to be fairly consistent with real behavior under con¬ 

ditions under which unrestricted 
gliding is possible. Such condi¬ 
tions exist as long as the glide 
lines reach the sides of the wedge 
rather rapidly (Fig. 68-2). In 
this case the effect of the elastic 
deformation is negligible, and the 
gradual extension of isotropic 
plastic areas is impossible because 
of the heterogeneous disturbance 
across the wedge created by the 
glide lines. 

Such bel^S'Vior is, however, re¬ 
stricted to comparatively small 
wedge angles. For large wedge 
angles the inhomogeneity of the 
elastic stress field is sufficient to 
block the progress of the glide 
lines before they are able to reach 
the sides of the wedge, and to 
re-establish a state of contained 

elastic-plastic deformation, the change of which is governed 

sq cm sq cm 

Plastic zones 

Fig. 68-2 Plastic zones in 

.steel wedges of wedge angle 26 
under vertical pressure p (after 

Nadai«-2). 

Fig . 68 • 1 Uniform ly loaded 

blunted wedg(‘ under as¬ 

sumption of unrestrained 
plastic flow (glide lines after 

Prandtl®**-^). 
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essentially by the homogeneous spreading of an isotropic plastic 
region. Under such conditions Prandtl’s assumptions are no 
longer valid, and this fact is reflected in the increasing discrep¬ 
ancies between relation 68 1 and the test results. According 
to these results, the load pw which produces plastic deforma¬ 
tion of different wedges does attain the values predicted by 
eq. 68 1 for small wedge angles B only; it reaches a limiting max¬ 

imum value for B = 7r/2 which is con¬ 
siderably lower than Prandtl’s value 
(p.«)ir/2 = const (1 + 7r/2). 

The test results over the whole range 
of w’^edge angles can be reproduced with 
a fair degree of accuracy by solving the 
problem of elastic-plastic deformation 
of the wedge under uniform load.®® ‘‘ 
The complex elastic solution of the 
w'edge can be replaced by the relatively 
simple solution for one of its corners 

under uniform load (Fig. 68-3). The stress function of the 
elastic problem in plane polar coordinates: 

Fig. 68*3 Corner of 

wedge under uniform load 

F = Cir^ + C2r^<t> + sin 2<t> + C^r'^ cos 2<t> (68-2) 

The integration constants C are obtained from the boundary 
conditions: 

For <t> = 0, 

For <t> = 

Introducing 

,4 - 1 . 
2(a — tan a)^ 

where a = {B + ^2), the stress components are obtained: 

Sr = VwliB — 1) — 2A<I) — Asm2<l> + B cos 2<^] 

Se = Pw[{B — 1) — 2A0 + A sin 24) — B cos 20] (68* *5) 

Sre = Pw[A{l — cos 20) — B sin 20] 

Considering a state of plane strain {eg = 0), the Huber-Mises- 

8$ Pvff Srd — 6 

So = 0; Sr9 = 0 
(68-3) 

B = - 
1 

2(a cot a — {) 
(68-4) 
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Hencky yield condition with the stress components of eq. 68*5 
has the form: 

tnnaJ = Pw^[B^ + 2A=*(1 - COS 2<t>) - 2AB sin 2<l>] = (68-6) 

The maximum value of the principal shear stress is reached 
along a straight line through the corner, defined by the condition 
dtsmajd(t> = 0. With 

or 

= pu,'^{4A'^ sin 20 — 4AB cos 20) = 0 (G8-7) 

sin 20 — tan a cos 20 = 0 (08*8) 

the line of maximum shear is defined by 0 = a/2 and thus 

p 

Fig. 68-4 C^aiiparisoii of yield load of uniformly loaded blunted wedge 

computed after Prandtl’s eq. 68-1 and eq. 68-9 with experimental results.®*'^ 

bisects the corner angle. By introducing the value 0 = a/2 

into eq. 68 -6, the relation between the wedge load pw and wedge 
angle 6 is obtained: 

w 

sin 0 + cos ^ 

I + sin 0 
(68-9) 

This relation is presented in Fig. 68-4 together with Prandtl’s 
relation (eq. 68 -1) and the test results. 



448 Plasticity. Problems of Equilibrium [Art. 69 

The wedge reaches the fully plastic state when so 

along 0 = 0 and 0 = a. Introducing this condition into eq. 68 • 6, 
the relation is obtained, 

= 77-“72 = \ so^ (68 -10) 
4(a — tan a)^ 3 

= 1 + + 2^ tan (68 11] 

Comparison of eqs. 68 • 9 and 68 • 1J shows that the difference in 
wedge pressure required for yield initiation and for fully plastic 
flow increases with increasing wedge angle. 

69. Contact Pressure 

With 0 = 7r/2 the problem of the blunted wedge is transformed 
into the problem of uniform contact pres- 

^ sure (Fig. 69-1) which is of considerable 
^practical importance in the analysis of 

hardness tests and of the carrying capac- 
\ contact bearings. The assumption 
V I uniform pressure over the contact area 

y is however only one of the possible as- 
Fs/ ^ sumptions and must be modified in accord - 

ance with the real conditions. 
^ Concen- j£ contact vSurface remains plane 

trated force acting on , . , . . , 
half-plane during deformation, the contact stresses 

increase towards the edges of the contact 
area approaching in the elastic problem infinity at the edges. If 
the contact stresses remain uniform, the elastic deformation of 
the contact surface increases towards the, center. 

The elastic solution for any type of contact-pressure distribu¬ 
tion can be obtained by integration over a finite contact area of 
the solution for the single force acting on the half-plane; the 
stresses for this case expressed in plane-polar coordinates are 
(Fig. 69 1): 

2P . 
8r --sm 0; 

rr 
Sre = 0 (69-1) 

since the force P is the resultant of the radial stresses Sr acting 
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along any half-circle of radius r. The maximum shearing stress, 

tmKx = 8r — se = const (69 • 2) 

Hence the lines tmnx = const sin <l>/r = const are the circles 
through the point of application of P, tangent to the xi axis. 
Thus, for a continuously distributed pressure p{xi) acting over a 
finite length of the surface of the half-plane (Fig. 69-2), the 

Fig. 69*2 Lines of constant maximum shearing stress fmu = const for 

uniformly distributed contact pressure. 

stresses at a point in the interior are determined by integration 
of eq. 69 • 1 over this length: 

2 f p{xi) cos <t> sin^ <t> 2 [*'- , 
sii = - 

TT 
p(0) sin^ d<l> 

/■*' (09.3) 
TT J r IT J 

2 f p{xi) sin <t) cos^ <t> 
dxi =-/ p{<t>) sin <l> cos d<t> 

TT J 

For a uniformly distributed load p{<t>) = pol hence, by integration, 

Sii = “ ^ [2(<^i — ^2) + sin 2<l>i — sin 2<t>2] 
Ztt 

522= ^ [2(<^i ^2) sin 2<l>i + sin 2^2] (69 -4) 

512 == ^ [cos 2<t>i — cos 2^2] 
Ztt 
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The maximum shearing stress, 

- + Si2^j = ^ sin (01 — 02) (69-5) 

The lines = const are therefore circles through the end points 
of the contact area (Fig. 69 -2). The circle pertaining to the 
maximum value of this shearing stress which, for (01 — 02) = 7r/2 

is equal to p/tt, has a diameter of the length of the contact areas. 
Assuming conditions of plane strain (^33 = 0) the pressure p 

under which the first yielding occurs along this circle, which is 
the maximum elastic bearing pressure of the contact area, is 
obtained from the yield condition: 

TT 

PmaxEl = “7=^>‘0 = I.SISO (09 • 6) 
V3 

Under pressures p > PmaxEi the plasticized area spreads and 
is contained between adjacent circles ^,„ax = const. However, 
the elastic solution given by eq. 09 -3 can no longer be used since, 
with extending plastic region, the stresses in the elastic regions 
are changed. 

. For a pressure distribution p increasing parabolically towards 

the edges of the contact area, with a relation p^ax = 2po, the 
average maximum elastic bearing pressure exceeds by about 27 
percent the pressure for uniform distribution; for a parabolic 
pressure distribution increasing from zero at the edge to a maxi¬ 
mum at the center the bearing pressure is about 27 per(?cnt 
lower.®® 
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CHAPTER 

14 

PLASTICITY. PROBLEMS OF FLOW 

70. Two-Dimensional Problems. Glide Lines 

A state of two-dimensional stress within an ideal plastic 
material under conditions of slow steady flow is independent of 
the deformations; it can be determined from the equilibrium 
equations and the condition of plasticity. Since for plane strain 
(es = 0) the Huber-Mises-Hencky yield condition and the St. 
Venant condition differ only by a constant factor, the plasticity 
equation has the form, 

(«ii - S22)* + 4si2'= (70 1) 

where k = so/V3 or k = respectively, depending on the 
yield condition applied. For plane stress (ss = 0) the St. 
Venant condition is of the same form as for plane strain; the 
Hubei^Mises-Hencky condition, however, takes the form, 

Sii^ -1- S22* ~ S11S22 + 3si2^ = So^ (70 -2) 

Either of the eqs. 70 1 or 70 -2, together with the equilibrium 
conditions, is sufficient to determine the stress components of 
the two-dimensional problem. 

Solutions of the plane problem of plastic flow may be obtained 
by introducing a stress function F. If the stress components are 
expressed by 

d^F dV d^F 

dXi^’ ‘ ST*' §12 ” 
dx By 

(70-3) 

the relation between stress and strain and the compatibility 
45S 
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conditions lead in the elastic state to the well-known biharmonic 
differential equation of the Airy stress function. In the plastic 
state the relations of elasticity are replaced by the plasticity 
condition (eq. 70* 1). Hence, the differential equation for the 
stress function of the plastic state, 

I'his is a nonlinear partial-differential equation of hyper¬ 
bolic type, some special solutions of which have been given by 
PrandtF® ^ and Nadai.’^'^ It possesses two families of charac¬ 
teristics, which are the orthogonal curves a = const, /3 = const 
in the (xix<2) plane; they are one-parameter families of curves 
creating the integral surface of the differential equation. Oseen 
has shown^° ® that, if these characteristics are introduced as a 
curvilinear system of coordinates, the nonlinear differential eq. 
70-4 is transformed into two simultaneous linear hyperbolic 
differential equations with variable coefficients and the same 
characteristics. By a further transformation, of variables intro¬ 
ducing the radii of curvature of the characteristics /?„ and a 
linear hyperbolic differential equation with constant coefficients, 

d'^R 

da dp 
+ cR = 0 (70-5) 

is obtained for either of the radii. For these equations integra¬ 
tion methods have been developed.^®"* Thus, solutions of stress 

problems of the fully plastic state are obtained, if the character¬ 
istics of the hyperbolic differential equations are known. It can 

be shown that at all points within the plastic region the directions 
of these characteristics are identical with the directions of the 
lines of principal shear; thus, the characteristics of the eq. 70-4 

are the glide lines of the problem. 
The use of the yield condition 70 • 2 in the solution of problems 

of plane stress leads to a nonlinear partial-differential equation 
of elliptic type for the stress function, of which no significant 

solutions are known. 
In order to use glide lines for the solution of two-dimensional 

problems of plasticity it would be necessary to determine bound¬ 
ary values in respect to the radii of curvature of the glide lines 
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from the physical conditions of the problem, subsequently inte¬ 
grating the differential equations with regard to these boundary 
conditions. The applicability of the method thus depends essen¬ 
tially on the possibility of selecting adequate boundary conditions 
of the problem in terms of the radii of curvature of the glide lines. 

The number of problems that have been solved by the method 
of glide lines is small. It is usually difficult to integrate the 

Fig. 70 • I Glide-line field of orthogonal logarithmic spirals (after Gcir- 

inger’^®'*). 

partial-differential eqs. 70*5 directly for given boundary condi¬ 
tions. A more promising approach is therefore to select func¬ 
tions of which it is known that they are particular solutions of 
the differential eqs. 70 • 5 and to determine whether the boundary 
conditions they are able to satisfy have any physical reality.^® ® 

A simple function of this type is, for instance, 

R^ = Rg = (70 (5) 

The pertaining field of glide lines a = const and = const con¬ 
sists of two families of orthogonal logarithmic spirals, which 
intersect on the radii through the origin, crossing them at angles 
of 45®. These radii and the concentric circles along which p = 
const are the lines of principal stresses of the plastic problem 
(Fig. 70 -1), which is that of the circular hole under pressure in 
the infinite plane. 
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71. Technological Problems. Pressing and Rolling 

Problems of plastic flow are encountered in the analysis of 
many technological processes involving the deformation of metals 
by pressing, rolling, and drawing. The knowledge of the forces 
developed and of the power required in such processes is of con¬ 
siderable practical interest. In first approximation these forces 
can be determined by theoretical analysis, considering the metal 
as an ideal plastic body. Solutions of the problems of pressing, 
rolling, and drawing have been obtained by v. Kilrman,^‘ ^ 
Hencky,^^’^ Nadai,^^ ^ Orowan,^^ ^ and others. 

Compression of a thin sheet. The simplest problem is that 
of compression of a thin sheet of metal of thickness li between 

two parallel rigid plates. Under conditions of plane strain, the 
distribution of pressures p — f{xi) along the parallel plates of 
length 21 (Fig. 711) can be easily obtained, if in the yield condi¬ 

tion 41-7 the influence of shearing stresses is neglected and the 
stress components .sn, .s*22, and S33 are taken as the principal 
stresses. Hence, 

(.Sn — .S22)“ + {fi22 — *^33)^ + 0^33 ” == (71 *1) 

Because of the assumption of a thin sheet the stresses over h 

may be assumed constant; hence: S22 = const = —p{xi). For 

^3 = 0, 
S33 = i(sii + S22) = i(sii p) (71-2) 

Eliminating S22 and .S33 from the yield condition by introducing 
the relation 712, the simplified yield condition is obtained: 

«ii + P = 2so/V3 = const (71-3) 

According to Fig. 711, the condition of equilibrium of the hori¬ 
zontal forces, considering the effect of a shearing stress t along the 
compression plates, is 

dsn ^k.2l 
dx\ 

(71-4) 

If the shearing stress t is produced by dry friction t = /xp, where 
li denotes the coefficient of friction, eq. 71-4 takes the form. 

dp 

dx 
2mP 

h 
(71-5) 
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the solution of which in the range 0 < x< lie given by 

[Art. 71 

p = ^ (71.6) 
V3 

if the boundary conditions sn = 0 for x = +i and p = 2sq/VS 
are to be fulfilled. Within the range -l< x< 0, the sign of x 
in the exponent of eq. 71-6 changes. The pressure distribution 
expressed by eq. 71 6 is represented in Fig. 71 ■ 1. 

Fig. 71 • 1 Pressure distribution along compressed thin sheet (after 

Nadai’'»). 

If the compressed sheet is subjected to a uniform tensile stress 
at right angles to the direction of the compression, the pressure p 
follows the same exponential law but is reduced in proportion 

(^go/VS) Thus, for a tensile stress si acting at a: = 
2so/V3 

the left part of the pressure curve becomes 

o2n{l—x)/h (71-7) 

and, for S2 acting at x = +1, the right part of the pressure curve 

becomes 

p = - 82) e*'‘<*+*>"* (71-8) 

These curves are shown in Fig. 71 1; their point of intersection 
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changes its direction. Its position is variable and shifts away 
from the side on which a higher tensile stress s is applied. 

If it is assumed that the shearing stress t is due to viscous resist¬ 
ance and therefore proportional to the relative velocity of slip 
between sheet and pressure plates, the shearing stress may, for 
symmetrical flow, be introduced as a linear function of Xi. 
Integrating eq. 71-4 with t = cxi the pressure distribution 
becomes 

P = ^ + {c/h)il^ - x^) (71-9) 

which is a parabolic distribution. 

For a constant shear stress t = const, a linear distribution is 
obtained. Figure 71 1 shows the pressure distribution for the 
different assumptions concerning friction along the pressure 
plates. 

Rolling of a thin strip. The rolling pressure in a strip that 
is being simultaneously pulled through the rolls and the thickness 
of which is reduced from hi to /12 can be computed by a similar 
method of approximation to that used previously. According to 
Fig. 71*2, r denotes the radii of the working rolls, h the variable 
thickness of the sheet in the contact region, xi the horizontal dis¬ 
tance of a point P in the sheet from the origin at the narrowest 
section between the rolls, I the length of the horizontal projection 
of the contact area, and a the angle between the vertical and the 
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normal to the rolls at P. Denoting by 

(71 • 10) 

the reduction ratio, and introducing the relations valid for small 

angles a 

— = Sin a ^ a and (1 — cos a) = — = —5 

r ^ 2 2r^ 
(71-11) 

the length of the contact area, 

I = \/r(hi — /12) = VXr/ii (71-14) 

If p denotes the specific rolling pressure at the point P, sn the 

mean value of the stress in the sheet in the direction of rolling, 

t the friction between rolls and sheet at the point P, and v the 

mean horizontal velocity of the sheet at the point P, the equilib¬ 

rium condition for the horizontal forces acting on a small prism 

of material of width dx\ and height h (Fig. 71-2) require that 

j— (siih) + 2^ + 2p — = 0 (71*15) 
aX} r 

The yield condition is expressed by eq. 713. Because of volume 

constant flow, 

vh = vihi = (71 • !()) 

Introducing eqs. 71-3 and 71 12 into 71*15, the differential 

equation of the rolling problem is obtained: 

+ -2< = 0 (7M7) 

which has first been derived by v. Kdrmdn.^^ ' 

In order to integrate it, certain assumptions have to be made 
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(M)ncerning the shearing stress t which expresses the resistance 

due to the surface friction of the rolls. As in the previous exam¬ 

ple, these assumptions may be (a) t = ±to (constant friction); 

{h) t = ±np (solid friction) and t = f{v) (viscous resistance). 

Nadai^^ ^ has integrated eq. 71 17 for all three conditions and 

computed the distribution of the rolling pressure for different 

values of front and rear pull. For the simplest assumption 

t — ±/o, eq. 71-17 becomes 

dp ±2to 
+ 

4^*0 Xi 

dxi rh2 + Xi^ ' v'3 rh^ + x\^ 

which is transformed into 

2.s*o 
dp = 

±q 2z 
-2 dz -h ::—:—dz 

1 +z 

(7M8) 

(7M9) 

with q = ~'d-- and z ~ 
So ^ r/h) ^hy 

1+z'^ 

The solution of eq. 71 • 19 is 

2.S‘o 
p = —75: [±9 tan * 2 + log (1 + Z )] + C (71 -20) 

The upper and lower signs of q are to be taken for forward 

slip and for backward slip, respectively, and the two integration 

constants Ci and C2 for the two signs determined from the condi¬ 

tions at the ends X[ = 0 and .ri = / of the contact zone, so that the 

given front and rear tension soi and sqo are attained there. Thus, 

from eq. 71-3, 

•'>*10 

2.S0 

V3 

or 

Cl 
2s 0 

V3" 

?>(^l)(a:i=()) - Cl and S20 = - p{xi)^^-i) = Co 

(71-21) 

sio and C2 = [1+7 tan ^ I 
V 3 

- log (I +/2)] - S20 (71*22) 

The point of intersection of the two pressure curves defined by 

the two signs of ±g and the two constants C\ and C2, respectively, 

determines the location of the change in the direction of the slip 

from forward to backward. The pressure peaks are the steeper, 
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the larger the friction; the intensity of the pressure is reduced 

by the application of front or rear tension, and the location of the 

pressure peaks shifts in the direction of the sheet movement if 

both tensions are equal. If one of the tensions is increased 

relative to the other, the location of the peak pressure is shifted 

towards the side of the smaller tension. 

72. Technological Problems: Wire Drawing 

The force required to draw a wire through a die depends essen¬ 

tially on the reduction of the wire area, the friction I of the wire 

on the walls of the die, and the yield condition of the wire. 

Introducing, as before, the simplifying conditions that 

1. The axial, radial, and tangential stresses and strains are 

Fig. 72 1 Equilibrium condition of element in wire-drawing die. 

principal strains, influence of the shear stress components being 

negligible. 

2. The axial tension is uniformly distributed over the (;ross 

section; and 

3. The radial stresses within the die are equal to the pressure 

p exerted by the die; 

The condition of equilibrium in the direction of the drawing of 

a wire element passing through the die can be expressed by the 

equation (Fig. 72 • 1): 

d 
-7- {sgA) + 2trw + 2prir sin a = 0 (72 -1) 
dz 

The strains in the wire are determined by the angle of the die. 

The radial and tangential strain increments are 
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Since for volume-constant deformation, 

^dSy d/Bg "4” dCf "4“ d&9 ^ 0 

the strain component, 

dv 7*0 
dcz = — 2 — and 6^ = 2 log — 

r r 

where ro denotes the original wire radius; hence. 

(72-3) 

(72-4) 

ez , ro 
er = ee = - — = log — 

z r 
(72-5) 

(69 — ^r) = 0 and (er — = — (e^ — ee) = 3 log i 

(72-6) 

(Sr — Sg) = 2G(er — Bz) and (sz — se) = 2G(ez — Be) (72-7) 

the distortional energy yield condition in terms of stiesses 

becomes 

(Sr — Sz)^ + (Sz — So)' = 72G^ *"*^(7)] " 

Because of eq. 72 -5, ,sv = .s>: moreover, it has been assumed that 

Sr — p. Equation 72-8 may therefore be written in the form; 

(Sz + p) = OCr log (72-9) 

Introducing solid friction t = up and considering that z • sm a 
= r, eq. 72-9 can be transformed into the differential equation. 

r—^ + 2s,+ 2p 
dr 

(72-10) 

where, for small die angles, a has been introduced instead of sin a. 
Considering the relation 72 -9, eq. 72-10 becomes 

r-^ — 2kst + 2so(l + A:) = 0 
dr 

(72-11) 
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where k = fx/a. The integral of this equation is 

(72-12) 

This expression has been developed by several investigators. ^ 

If the coefficient of friction jx is assumed to be zero, eq. 72-10 

becomes 

r^ + 2s,+ 2p = 0 (7213) 

or, considering eq. 72-9, 

r^ + 2so = 0 (72-14) 
dr 

the integral of which is 

•SV = +2so log (72 -15) 

The force necessary to draw a wire through a die, reducing its 

area from ^4o to A, is therefore, according to ecj. 72-12, 

for fx 7^ Oj and according to eq. 72-15, 

p = s,A = so^'l log (72-17) 

for vanishing die friction /x = 0. 

Fig. 72-2 Equilibrium condition of element in drawing of thin tube.^2 “ 

Other problems, such as the drawing of a thin-walled tube 

(Fig. 72-2) can be analyzed by the same approximate method. 

P = SzA = So ^ ^ ^ A 
K 
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(*,onsidering the equilibrium conditions in the direction of the 

drawing of an element of width dzJ‘^ 

The assumption of ideal plastic flow on which the foregoing 

analysis has been based does not adequately reproduce the 

behavior of most metals. In order to obtain results which would 

better reproduce the real behavior of metals at or near room 

temperature the effect of work hardening must be considered. 

References 

70* 1 Tj. Prandtl, GoeUimjer Sachrichien (U)20); Z. amjeu^ Math. & Me.ch. 

6 (1923). 
70-2 A. Nadai, Z. Physik 30 (1924) 109. 
70-3 C. W. OsEEN, Arkiv. Mat. Astron. orh Fysik 20 (1928); 24A (1933). 
70-4 H- Geiringer, Mitn. sci. math. Paris, fasc. 86 (1937) 33. 
70- 5 A. Nadai, Plastirityj McGraw-Hill Hook (o., Now York (1931) 227. 
71 1 Th.v. Karman, Z. angeiv. Math. & Mech. 6 (1925) 139. 
71*2 H. Hencky, Z. angew. Math. & Mech. 6 (1925) 115. 
71- 3 A. Nadai, Trans. ASME 61 (1939) A-54. 
71- 4 E. Orowan, Proc. Inst. Mech. Engrs. 160 (1944) 140. 
72- 1 E. A. Davis and S. J. Dokos, J. Applied Mechanics 11 (1944) A-193. 
72-2 G. Sachs, J. D. Lubahn, and D. P. Tracy, J. Applied .Mechanics 11 

(1944) A-199. 



CHAPTER 

15 

WORK HARDENING AND CREEP. SPECIAL 

PROBLEMS 

73. Bendins 

Work hardening. Analyzing the problem of volume-con¬ 
stant pure bending, which has been treated in Art. 65 for ideal 
plastic deformation, under the conditions of linear work hardening 
expressed by eq. 47-6, and retaining the Bernoulli-Navier 

Fig. 73 • 1 Stress distribution in pure bending for linear work-hardening law. 

assumption of a plane section remaining plane after deformation 
and the assumption of a uniaxial state of stress, the statical 
moment of the stresses with respect to the neutral axis in a 
section symmetrical to the neutral axis is given by eq. 65* 1. 
The Bernoulli-Navier condition is expressed by equation 65*4; 
the difference in the analysis is introduced by the difference in 
the elastic-plastic distribution of stresses over the cross section 

464 
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(Fig. 73 1). Introducing the relation 65-3 into eq. 65-4 gives 

A ^ o A = - • — = 2e 
y 3G 

lly substituting eq. 47-7 for e, the relation is obtained: 

=|so(| (4-0 

(73-1) 

(73-2) 

The statical moment of the stresses in the elastic-plastic state, 
according to eq. 65- 1, 

^ fo"" 

+ 2 so)ydA (73-3) 
J Vo 

(Considering eq. 73-2 in the integration, the moment is obtained: 

Mi = f A7ei 

Hence, 

or, because of eq. 65 • 4, 

, -3g U - (73*6) 

where t] = 2yo/h. This is the equation from which the elastic- 
plastic boundary can be computed for any distribution of the 

external moment M{x). 
The shape of the deflection curve w{x) of the elastic-plastic 

part of the bent bar may be obtained from the relation. 

d^w _ _ M{x) 

dx^ “ El 
(73-7) 

considering eqs. 65* 1, 65-4, and 65*3; the differential equation 
of the deflection, 

2^0 1 
(73-8) 
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Creep. For linear materials the stress distribution is that of 

the elastic material (see Art. 35). Considering a nonlinear 
volume-constant viscous material the stress-steady creep rate 
relation of which is given by the power function, 

(73-9) 

where si is the stress in the extreme fiber, n < I and ei denotes 
the strain rate in the extreme fiber (Fig. 73 • 2) in conjunction with 

Fig. 73*2 Creep functions according to eq. 73 -9 for different values of n 
(after Xadai^^'^) 

the Bernoidli-Navier condition for plane sections in the viscous 
material, 

A 
ei h 

the relation is obtained, 

(73 - 10) 

(73-11) 

Since for a symmetrical cross section the neutral axis is at the 
center of the section, the resisting moment, 

h 

Af = 2j^bsycly (7312) 

where h{y) denotes the width of the section 
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With b = const and s from eq. 73 -11, 

fa. QY (73. IS) 

Hence, the extreme fii)er stress, 

2{n + 2)M 
(73* 14) 

0<n<l 

44ius, if M is kept constant during the test the steady-state stress 
distribution along a cross section 
remains constant (see Art. 35). 
For n = 1, eq. 73 14 expresses 
the extreme fiber stress in an 
elastic beam; for n = 0, that in /Plastic n = 0 
a fully plastic beam. The stress ^ 
distribution is linear for n = 1 

and uniform for n — 0; stress _ 
distributions for intermediate ^ ^ , 

, ^ ^ ^ . , Fig. 73*3 Stress aistribiition iit 
values 0 < n < 1 are curved t r r ^ 

pure bendmg according to eq. 
according to eq. 73 • 11, as shown 73.11 values of 0 < n < 1. 
in Fig. 73 3. 

The relation between extreme fiber strain and time is obtained 
by eliminating the stress si from eqs. 73 -9 and 73 -14: 

Fig. 73*3 Stress distribution in 

pure bending according to eq. 

73 T1 for values of 0 < n < 1. 

const 
2(n + 2)4/ 

= const M (73 15) 

const (73 16) 

Hence, the strain-time curve has the form: * 

1 

e = const (73 17) 

The preceding equations have been derived for steady-state 
creep in which the stress distribution is stable and the creep rates 
in the fibers are proportional to their respective distances from 
the neutral axis, as required by eq. 73 10. However, before 
this state is reached, a transient stage must be passed as the 
initially elastic Imear distribution of stress, which constitutes the 
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instantaneous response of the section at the time t = 0 and is 
associated with the condition that the instantaneous strains in 
the fibers are proportional to their respective distances from the 
axis, is transformed into the steady-state nonlinear distribution. 
'Fhis transient stage is usually of no practical significance; its 
length depends obviously on the creep characteristics of the 
material as expressed, for instance, by the power in eq. 73-9; the 
less n differs from one the shorter the time necessary to arrive 
at the steady-state stress distribution. 

74. Infinitely Lons Cylindrical Hole under Pressure within Infinite 
Plane 

Work hardening. According to eqs. 26 -5 and 47 -15, intro¬ 
ducing the notation H = 2H{\ + /x) and G = 2G{\ + At), the 
compatibility relations in cylindrical coordinates are 

dUr 1 . , , ^ / 
' == -fj Sor + MSod) + /= (-S'Cr “ 

dr H G 

n \ 1 
^ — MSr + /iSOr) + g 0^00 ~ M'^Or) (74 * 1) 

duz 

Tz 
= 0 

Eliminating se from the eqs. 74 -1 by substituting the expres¬ 
sion for se from the equilibrium condition 26 *2 and subsequently 
differentiating the second of the eqs. 74 1 with respect to r and 
comparing it with the first, the differential equation for .sv is 
obtained in the form:^^ ^ 

j 

1? 

The solution for the elastic plate with a circular hole is given by 
eq. 66-46, 

So (ro\^ 

where ro denotes the radius of the elastic-plastic boundary. For 
r = ro the stresses s^o and seo satisfy the Huber-Mises-Hencky 
yield condition. The boundary conditions along r = ro which 
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the solution of eq. 74-2 must satisfy are: Sre = Sr = Sorl See = 
S0 = sqb] Ure = Ur] morcover, for r = the internal pressure 
q = —Sr. The solution of eq. 74-2 under these boundary condi¬ 
tions is given by the function, 

and, from eq. 74-1, 

-(?)! 

.,.^1 ((!+,)( 1 1 

+(7)1 
For H = 0 and /i = 0 eqs. 74 *3 and 74 4 are identical with the 
first two eqs. 66-45. 

Cheep. Introducing- the general solution 66 -14 of the differ¬ 
ential eq. 66 -13 for strains under conditions of rotational sym¬ 
metry and volume-constant deformation into the compatibility 
conditions 26 • 5, the strain-velocity components, 

const 
= eo == — 

r“ 
(74-5) 

The intensities of stress and of strain velocity (designated here 
by the subscript i instead of r to avoid confusion with radial 
(•omponents), 

{sq — Sr) and €{ = —^ (74-6) 

if Sz = + Sr). Hence, if for a nonlinear material a general 
power law of the type 73 -9, expressed in terms of intensities of 
stress and strain, 

Si = const ei^ (74-7) 

is assumed to govern the deformational behavior, the relation is 
obtained, 

—2n (s* — Sr) = const f (74-8) 
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The equilibrium conditions 26*2 become 

— == - = const r ^ (74 • 9) 
dr r 

which is the differential equation for the radial stress. Integra¬ 
tion of eq. 74-9 gives the stress equations of rotational symmetry: 

.sv = Cl + Cor--" 

s, = Cl + (\ - 2/i.)C2r--" (74- 10) 

By satisfying the boundary conditions .sv = 0 for r = oo and 
Sr = —qi for r = r^, the expressions are obtained, 

= (74 11) 

So = g-Ki - 

where p = r/r^. By introducing n = 1 the elastic or linear 
viscous distribution of stress (eq. 66-46) is obtained; the stress 
distribution within the ideal plastic material (eq. 66-45) is 
obtained by direct integration of eq. 74 -9 for p = 0. For At = 0.5 
the tangential stress vanishes. 

For the thick-walled cylinder Nadai has given the solution, 

Sr = c[l - p 

= c[l -* (1 — 2rt)p“‘'^"] 
(74-12) 

where p = r/r^; pi = rj/r^, and c = qipi^^/{\ — pi^'^), and has 
shown that, for values of 0< n < 1, the distribution of tan¬ 
gential stresses which reaches its maximum value at the inner 
surface of an elastic cylinder (n = 1) gradually shifts outward 
and, for exponents n <0.5, attains its maximum at the outer 
surface of the wall. For n = 0.5, a uniform distribution of the 
tangential stresses over the wall, 

se = (?iPt/(l - Pi) (74- 13) 

is obtained. It may be inferred from eqs. 74-11 that the distribu¬ 
tion of radial stresses is considerably less sensitive to a variation 
of the exponent n than that of tangential stresses. 

The creep strain is obtained from eqs. 74 -6 and 74 7; both ee 

and Cr are necessarily functions of the form/(n)p-^. 

75. Wire Drawing 

As an example of a technological problem the process of wire 
drawing dealt with in Art. 72 under assumption of plastic flow 
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will be analyzed for linear work hardening. Because of eq. 72-5 

and the resulting condition Sr — the stress and strain intensi¬ 

ties, according to eqs. 41 • 12 and 41 • 13, are 

Sf St — f (<"r ez) (75.1) 

Hence, eq. 47 • 6 becomes 

1 

2H 
[(^r *^2) (^VO ^‘zo)] (^r ^z) (^rO ^zo) (75*2) 

where 6Vo ^i-nd niust fulfill the yield condition, which for = 

seo has the form, 

^rO »^z0 “ ^0 (75*3) 

Neglecting in eq. 75*2 the elastic against the plastic strain and 

introducing eqs. 75*3 and 72*8, the work-hardening condition 

is transformed into the equation: 

— So + iUI log = 0 (75*4) 

Substituting eq. 75 *4 and Sr = —/> into the differential eq. 72 *11 

the new differential equation for wire drawing with work harden¬ 

ing is obtained, 

r ^ - 2k.% + 2(1 + k) [,s„ - 6// log (^)] = 0 (75-5) 

the solution of which is 

l+k Hl+k)H, / r\ (y{\+k)ll 
So---•"}? [z )-JT- 

k 
+ Cr^'‘ 

(75-6) 

Determining C from the condition that at the die entrance 

r = To the stress = 0, the force require! to draw the wire 

through the die, 

For H = 0 this equation is identical with eq. 72 *16. 

(75-7) 
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CHAPTER 

16 

DESIGN FOR PLASTICITY AND WORK 

HARDENING 

76. Limitations of Design for Elasticity 

The design of an engineering structure or part of it can gen¬ 

erally be reduced to the consideration of two problems: 

1. The determination of the stresses in and the deformations 

of the structure resulting from the external loads. 

2. The eralmtion of the significance of those stresses and 

deformations in terms of the capacity of the structure or of the 

material of which it is composed, for carrying these loads. 

In the conventional design which is mostly a design for elas¬ 

ticity, the design procedure is based on the assumptions that: 

(а) Materials are perfectly elastic and stresses are propor¬ 

tional to loads; 

(б) The capacity of the material and of the structure to carry 

a load ts exhausted when the computed maximum stress attains 

the level at which the material ceases to respond elastically 

under the considered conditions of strfess, unless fracture by 

separation (fatigue), or failure by instability (buckling) occurs 

at a lower stress level; in that case this latter limit defines the 

load-carrying capacity of the structure. 

Although methods of structural analysis and design are based 

on these two assumptions, it is taken for granted that the actual 

structural performance is not governed by them. If it were, and 

if these assumptions were more than an expedient attempt to 

simplify the two basic problems of design, no structure could be 

472 
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designed that would be ^‘safe/' because of the sharp stress con¬ 
centrations that are present in every real structure. This fact 
is clearly recognized by all designers in the design of structural 
connections, which, contrary to the conventional design for 
elasticity of structural members, is actually a design for plas¬ 
ticity. No assembly, riveted, welded, or bolted, could practically 
be designed for elastic performance, that is, without the assump¬ 
tion of uniform distribution over the elements of the assembl}'^ 
of the response to the applied force, which implies that the 
material is able to relieve its peak stresses by yielding. Thus, 
in fact, the real strength of a material is less in its capacity to 
resist than in its ability to yield—not without limit since the 
performance of engineering structures depends on their retaining 
their given initial shape within the relatively narrow limits of 
tolerance—but by the right amount and at the appropriate rate. 

The inelasticity of the material determines therefore its structural 
performance considerably more than the separation strength. 

Hence, linearity of the stress-strain diagram of a material is 
a desirable property only so far as it creates the theoretical 
conditions for the application of the relatively simple methods of 
classical elastic theory. It is the very slight deviation from 
elasticity, being the expression of the ability of the material to 
relieve, by limited yielding, localized excessive stresses, that 
creates the practical conditions for the application of elastic 
theory in the design of engineering structures. 

The recognition of the difference of the approach to design 
under different conditions must be accompanied by an appraisal 
of all relevant facts. For instance, it is usually assumed that 
the possibility of design for plasticity as expressed by the assump¬ 
tion of relief of stress concentrations in metals depends on the 
shape of the stress-strain curve determined by a conventional 
test; it is however not sufficiently realized that such correlation 
exists only if the strain rate and the state of stress are the same 
in the test and under service conditions, or if the shape of the 
stress-strain diagram is not appreciably affected by the strain 
rate. This consideration necessarily leads to a different evalua¬ 
tion of the effects of stress concentrations and of the possibility 
of stress relief for basically different types of inelasticity. 

If engineering structures and parts were designed for the sole 
function of carrying loads, a theoretically balanced design would 
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provide a uniform resistance of all parts and elements to the 

applied load; the specified limiting condition of resistance would 
then be attained simultaneously in all parts and elements of the 

structure. However, since the load-carrying capacity is fre¬ 

quently not the primary but a secondary (no matter how vital) 
consideration, whereas the primary function or some other con¬ 

sideration determines the shape of the structure, the possibilities 

of attaining a balanced design of uniform resistance are limited 
to structures the shape of which is primarily determined by the 

functions of load carrying, and the practi(;al design of which is 

not too much affected by considerations concerning the desirable 
uniformity of elements used in the construction. Where the 

shape of the structure or of the part is unrelated to its load¬ 
carrying capacity or where, for economic reasons, the geometrical 

uniformity of the constituent elements is more important than 

the uniformity of their resistance, this resistance will attain a 
limiting value at certain critical points or sections, before such 
value is reached in the remaining parts of the structure. The 

significance of the limiting resistance value must then be con¬ 
sidered in order to evaluate the significance of its being attained 
at certain individual points or sections only. 

A limiting resistance value may be specified in three different 

ways: 

1. In terms of a critical value of stress which defines failure 

by separation, occurring either immediately on the attainment 
of this value or after a period the length of which is a function 

of this critical stress. 
2. In terms of a condition of instability. 

3. In terms of a limiting, recoverable, or irrecoverable deforma¬ 
tion or strain which defines extreme conditions of functional 

adequacy. 

Conditions 1 and 2 represent structural damage; condition 3 

represents functional damage. 

If the limiting condition is specified in terms of a separation 
or fracture stress, it is usually assumed that the load-carrying 
capacity of the whole structure is seriously impaired when this 

stress is reached at one or a number of localized points or sec¬ 
tions. Since the propagation of a crack, once it has been locally 
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formed, is a relatively rapid process, its duration should not be 
taken into account in design; the critical structural damage has 
already been done at the moment of initiation of the crack. 
Similarly, the specification of a limiting condition of instability 

of a critical section or member usually implies that the load¬ 
carrying capacity of the entire structure is endangered by this 

instability, although in some phases of modern aircraft design 

(thin webs and skin) local instability is not considered to repre¬ 
sent a condition of failure of the whole structure. This latter 

approach is, however, the exception and is limited to secondary 

members buckling within the elastic range; it is not applied in 
the design of principal load-resisting parts. 

If the limiting resistance is specified in terms of a deformation, 
the value of which is derived from considerations of the proper 

functioning of the structure in other respects than its mechanical 

resistance to loads, the ciuestion of structural resistance or damage 

does not arise. Damage is then defined in functional terms only, 

the structural adequacy under the limiting conditions being 

taken for granted. 
The specification of limiting conditions in terms of either frac¬ 

ture or instability is ecpiivalent to the application of the weakest- 

link concept used in the analysis of brittle fracture (see Art. 55), 

since it is assumed that the limit of resistance of the weakest or 
the most highly stressed member or part determines the limit 

of resistance of the structure. This approach is justified if the 

immediate result of the destruction of the weakest link is catas¬ 
trophic, or if the l esistance of the whole structure with regard to 

future service is so much affected by the failing of this link that 

a condition of near failure is attained, as in design for brittle 

fracture. However, in the conventional design for elasticity 
under steady or slowly varying loads, the Wcakest-link concept 

is retained, while the limiting condition in terms of brittle frac¬ 

ture (structural damage) is tacitly replaced by a limiting condi¬ 
tion in terms of deformation (functional damage) represented by 

the yield limit, without considering that for such a limiting con¬ 
dition the weakest-link concept is no longer applicable. In 
design for plasticity the weakest-link concept is replaced by the 

concept of redistribution of the response to the applied load over 
the members or sections of the structure as a result of their 
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inelastic deformation, and the limiting condition in terms of 
functional damage by a condition of instability of the entire 
structure, which is again a true condition of structural damage. 

The difference between these two approaches to design will 
be the more pronounced, the less the distribution of forces or 
bending moments follows the distribution of elastic resistance, 
the more extensive therefore the redistribution of the response 
to the applied forces that is possible and that leads to a stable 
equilibrium beyond the limiting conditions of conventional 
(elastic) design. The evaluation of this difference forms the 
subject of the theory of design for plasticity, for which the term 
Itmti design is frequently used. It should, however, be kept in 
mind that the specific use of this designation is hardly justified, 
since every rational design is micessarily a limit design; it is the 
specification of the limiting condition that may differ for different 
approaches to design. 

Some problems of design for plasticity have been dealt with in 
Chapter 13 where the theory of plasticity has been applied to 
problems of elastic-plastic equilibrium and to the determination 
of conditions delimiting stable states of contained deformation 

and unstable states of free flow; these latter represent limiting 
conditions in design for plasticity. Thus, the critical internal 
pressure g, of a thick-walled cylinder is not defined by the pressure 
at which yielding first develops at the inner surface, but by a con¬ 
siderably higher value, that is, by the pressure at which the yield¬ 
ing reaches the outside of the wall and the cylinder starts to flow 
freely. Similarly, the critical carrying capacity My\ of sections 
in torsion and in bending considerably exceeds the elastic carrying 
capacities 

The principles on which design for plasticity must be based 
have been developed in the analysis of the structural model 
shown in Fig. 43 • 1 and have been illustrated by Figs. 43 • 2 and 
43*3. In the practical application of those principles, in the 
design of metal structures, it is necessary to consider the conse¬ 
quence of abandoning the conventional assumption that the 
stresses in the structure are proportional to the applied loads; 
this assumption is valid only for perfect linear elasticity. The 
nonlinearity of the load-stress relation within the range of 
elastic-plastic deformation eliminates the linearity of the relation 
between the stresses under service conditions which are usually 
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elastic and the stresses associated with the limiting resistance. 
Therefore the conventional definition of a factor of safety as 
the ratio between the two stress levels, which makes the use of 
the concept of allowable or working stresses possible, loses its 
meaning, since the stress ratio is no longer identical with the 
load ratio, in terms of which alone safety can rationally be 
defined. Hence, in design for plasticity the fundamental defini¬ 
tion of the safety factor as the ratio between the ultimate carrying 
capacity of the structure and the service load should be applied 
instead of the safety factor expressed in terms of a stress ratio. 
The two definitions are equivalent only in design for elasticity, 
that is, for fracture or for instability. 

77. The Factor of Safety 

The conventional concept of allowable stress implies a com¬ 
parison between a computed maximum stress under the acting 
loads and the fracture stress of the material; it also implies the 
existence of a margin between the two stresses. As its con¬ 
ventional name margin of safety suggests, it reveals the subjective 
striving on the part of the designer for an adequate measure of 
safety as well as a consciousness of the limitations of his knowl¬ 

edge and the arbitrariness of his assumptions. The real character 
of the margin of safety has remained obscure, however, and its 
magnitude is generally estimated on the basis of subjective judg¬ 
ment rather than objective fact. The most refined design is thus 
deprived of its merits, since the designer is free to select the 
fundamental assumption of his design largely on the basis of 
subjective arguments, without being compelled to ascertain 
their validity by the identification of the objective conditions. 
Research in the sphere of new materials cannot be expected to 
bear its full weight on the economy of structures if the safety 
factor can thus be fixed rather arbitrarily. 

The principle underlying the concept of the safety factor can 
best be understood by reviewing the fundamental difficulty of 
structural design. The computed structural characteristic 
{stress) cannot be equated to the characteristic derived from 
observable and measurable physical properties {resistance), 
because the results of an intellectual process (design) cannot be 
equated to the result of a material perception (test result). The 
limitations of human observation are such that no observable 
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quality can be measured exactly. The designer is able to assert 
only that a value is larger than a lower limit and smaller than an 
upper limit—not that it is equal to another value. The manifest 
lack of correspondence between the conceived and the performed 
action in any sphere of human activity explains why no real 
identity may be expected in a series of actions or events that 
were planned to be identical. Consequently, intellectual con¬ 
cepts, contrived to reproduce material phenomena with a certain 
grade of perfection, may be correlated with material observations 
regarding those phenomena only by a relation of ineqiialiiy^ 
expressed in terms of a probable correlation range. This range 
itself will be a function of the degree of perfection in the concept. 
It must therefore provide for: (1) the imperfection of human 
observations and actions (uncertainty), and (2) the inadequacy 
of intellectual concepts devised to reproduce physical phenomena 
(ignorance). This range represents the objective minimum 
value of the safety margin, which is thus identified as a function 
of objective uncertainty as well as of subjective ignorance. 

With increasing perfection of design methods, the element of 
ignorance is largely eliminated; the clement of uncertainty how¬ 
ever is caused by circumstances that can, to a certain extent, be 
changed but that can never be removed. Hence, the safety 
factor is a measure of uncertainty rather than of ignorance. 
The trend toward reducing its numerical value is not so much the 
result of improved design methods as it is the result of modified 
objective circumstances; that is, of standardizing engineering 
materials by introducing quality control in production, of apply¬ 

ing standard acceptance tests by the users of such materials, 
and of introducing stringent regulations for the control of 
workmanship. 

The laws of structural design are derived from the principles 
of classical mechanics and are based on the existence of a 
causal relationship between the antecedent and the consequent 
events. They are mostly expressed in the form of differential 
equations, the solution of which enables the engineer to determine 
all the consequences following one or a number of given ante¬ 
cedent events. Therefore, within the range for which the initial 
assumptions are valid, the designer should be able to go confi¬ 
dently from cause to effect, all phenomena concerned being 
strictly predictable. 
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A certain number of parameters of these equations however 
represent observable and measurable physical properties or 
phenomena. The application of the differential equations to 
structural design requires the introduction of the real values of 
such properties under all conceivable conditions of practical 
importance. Some of these values must be predicted or esti¬ 
mated on the basis of past experience, since their observation 
and measurement under all relevant conditions is impracticable. 
Such prediction is entirely different from that based on differ¬ 
ential equations since the effect of chance inherent in any predic¬ 
tion from past experience becomes significant. The concept of 
deterministic causality is thus superseded by a new concept, 
in which every unknown cause is termed a chance cause. Systems 
of chance causes produce events in accordance with the law of 
large numbers and thus give rise to statistical laws represented 
by frequency distributions. Therefore prediction based on 
statistical causality can be expressed only in terms of the 'proba¬ 
bility of a certain event to occur. Hence, an observable physical 
property can be represented only by a frequency distribution of 
the observed values so that the constancy of any physical prop¬ 
erty is of a purely statistical nature. A given quality approaches 
a constant value only in the sense that it may be represented by 
a genuine frequency distribution produced by chance causes. 
The laws of structural design, therefore, must be considered a 
combination of functional and statistical relationships, functional 
so far as the laws of the theory of structures are concerned, and 
statistical to the extent that real physical properties appear as 
parameters of the functional relations. 

The value of the safety factor m may be derived from the 
condition that the maximum service load P., (or moment) which 
the structure has to carry must never cause^uch damage as to 
impede the fitness for service of the structure, even if the maxi¬ 
mum service load were to coincide with the lowest possible 
carrying capacity Pr- Hence, 

m = ^ > 1 (77 1) 
s 

If (±AP8) denotes the maximum range of fluctuation of the 
service load about its expected or most probable value P^o, and 
(± APr) the maximum range of fluctuation of the carrying capac- 
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ity of the structure about its most probable value PrO) the maxi¬ 
mum service load will be (P.,o + AP^o) and the minimum carrying 
capacity will never be less than (Pro — APr). According to 
eq. 77 • I, failure is prevented if 

Therefore, 
P^fO + AP., < Pro ~ APr 

I - 

PsO < 

1 + -- 

/ .sO 

(77-2) 

(77-3) 

The value of the factor of safety rn depends on the variation of 
the parameters of the design (loading conditions, dimensions, 
weights, mechanical properties); the ranges of fluctuation of the 
individual parameters determine the ultimate ranges of variation 
of load and of carrying capacity in accordance with the law of 
statistical superposition. A structure is thus designed by pre¬ 
dicting its future behavior on the strength of knowledge gained 
by past experience. The computation of its safety factor requires 
an analysis of the variability of all influences bearing on its 
resistance and on the service loads and conditions.^^'^ 

The factor of safety is thus affected by two groups of influences: 
(a) Influences that govern the stress induced in the structure or 
the load that produces such stress; and (b) Influences that 
govern the resistance of the vstructure or its carrying capacity. 

The general approach to the design, as expressed by the selec¬ 
tion of the limiting conditions, determines the mechanism of 
resistancBj that is, the assumed mode of computation of the 
ultimate carrying capacity. Since it is usually impossible to 
conceive such a mechanism that will effectively reproduce the 
actual behavior of the structure, but which, at the same time, 
is simple enough to be suitable for practical design, every devised 
mechanism is fictitious to a certain degree. But if it embodies 
relevant physical properties, which are determinable by relatively 
simple standardized tests, and contains a reasonable theoretical 
concept, correlating the principal design parameters in a dimen¬ 
sionally correct form, its practical efficiency and reliability can 
be ascertained by experiments, the statistical interpretation of 
which will furnish information concerning the range of dispersion 
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of individual values about the line of best fit. The suitability 
of the conceived mechanism is usually judged by the simplicity 
of the underlying concept, by the closeness with which experi¬ 
mental results are reproduced, and by the narrowness of the 
range of dispersion of such results about the line of best fit which 
represents the average trend. 

In the design of metal parts or structures the ultimate carrying 
capacity is represented by the load that produc s free plastic 
flow, whereas the elastic, carrying capacitv is represented by tlie 
load that produce the first contained local yielding. It is doubt¬ 
ful whether the limit of free isotropic flow can actually be 
attained; it has been observed that failure by instability occurs 
under loads that are appreciably lower than the theoretically 
computed limits (see Art. 80). This reduction of the ultimate 
load is apparently due to the heterogeneity and anisotropy of the 
spreading plastic deformation, which produces conditions approxi¬ 
mating flow by the spreading of glide lines through the elastic 
domain under a load that is smaller than that necessary to pro¬ 
duce isotropic flow. It appears therefore that neithei’ design 
for elasticity nor design for full isotropic plasticity constitute 
an adequate procedure. It would, however, be justified to con¬ 
sider the elastic carrying capacity and the load defining full 
plastic flow as the two extremes, enclosing the possible range of 
carrying capacities. 

Whereas in design for elasticity the limiting condition for a 
single load application and for repeated loading is identical unless 
the problem of fatigue enters into the considerations, these two 
limits are different in design for plasticity. The difference 
between the two load levels depends on the intensity of the 
residual stresses set up in the structure or part by the first load 
application (see Art. 43). ^ 

78. Design for Plasticity of Redundant Engineering Structures 
(Theory of Limit Design) 

In the design for plasticity of plane or spatial structural parts 
the difference between the limiting condition for plastic and for 
elastic design is determined by the nonuniformity of the distri¬ 
bution of stress or of elastic resistance. In the case of linear 
statically indeterminate engineering structures, it is the degree 
of redundancy and the distribution of such characteristics of 
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resistance as moments of inertia or sectional areas that determine 
this difference. The total difference is made up of the difference 
between the limiting conditions associated with individual 
critical sections or members and the difference between the 
limiting conditions for the entire structure due to its redundancy. 
In statically determinate structures the second component does 
not exist; the first component only, with regard to the critically 
stressed section or member, determines the difference, which, 
according to eq. 65-6, may be considerable for rectangular sec¬ 
tions in bending, though not for the conventional thin-webbed 
flanged sections. 

The redundancy of a structure the resistance of which is well 
balanced with respect to a certain loading condition would by 
itself not provide a carrying capacity exceeding that associated 
with design for elasticity. However, since variable loading has 
usually to be considered, no balanced distribution of resistance 
is practically possible with respect to any individual loading 
condition, so that an excess of the elastic-plastic carrying capacity 
over the elastic capacity may be expected to exist in any redun¬ 
dant structure. 

The carrying capacity of a /i-fold redundant structure subject 
to bending moments resulting from the single application of a 
load is defined by the load producing a statically determinate 
state of unrestrained flow, in which all n redundants and one 
nonredundant section have attained their limiting values. 
These values depend on the yield point and the dimensions of 
the cross sections. Thus, an n-fold redundant structure under 
increasing load is transformed into a structure of gradually 
decreasing degree of redundancy, before failing finally as a 
statically determinate structure under a load at which the stable 
elastic-plastic equilibrium is transformed into an unstable state 
of free plastic flow. The gradual reduction in redundancy of an 
n-fold redundant structure is associated with the formation of 
plastic hinges at the n sections, at which the bending moments M 
consecutively exceed the limiting elastic moment and 
gradually tend towards the limiting plastic moment of the sec¬ 
tion Afp,. Prior to failure the state of the redundant structure is 
determined by the system of n redundant moments = M^vx 
acting at the plastic hinges; Mjen denotes the limiting value of 
the plastic moment at the redundant section k. 
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Under a load exceeding that which produces this determinate 
condition, the resistance of n sections no longer increases; the 
sections act like plastic hinges with a resisting capacity limited 
to the moment The formation of the (n + l)th plastic 
hinge at the section of maximum moment of the determinate 
structure transforms it into an unstable structure. Hence, the 
limiting condition, defined by a limit of stress in the design for 
elasticity, is transformed into a stability limit in the design for 
plasticity. 

However, this is only the case if the deformation of the mate¬ 
rial is ideally plastic. In a work-hardening material the gradual 
reduction of the degree of redundancy does not take place; the 
limiting condition is therefore not automatically determined by 
a condition of instability, but has to be designated by the intro¬ 
duction of an additional criterion, either in terms of a deforma¬ 
tion specified as excessive, or in terms of a maximum stress 
leading to fracture. In this dilference in the (diarac^ter of the 
limiting conditions is the principal difference in the approach to 
the design for plasticity and for work hardening. 

Since in stru(;tures of work-hardening materials the redundants 
do not reach limiting values, but beyond the elastic limit 
increase steadily with increasing load at a rate determined by 
the work-hardening coefficient H (see Art. 47), it is difficult to 
determine the relation between the redundants of the system 
and the load under increasing load intensity. Redundant 
structures of linear work-hardening materials therefore have to 
be analyzed step by step, as the linear elastic relation between 
stress and strain defined by the modulus G gradually changes 
into a linear work-hardening relation defined by the modulus //, 
and the linear relation between load and stress is transformed 
into a complex nonlinear one. Because of thii^i/^hanging behavior, 
the simultaneous equations for the redundants also become 

nonlinear. 
The carrying capacity under repeatedly applied or variable 

loading of an n-fold redundant structure subject to bending 
moments is defined by the maximum load, the moments of which, 
in combination with the residual moments resulting from the 
previous application of any other load, produce stresses that at 
no point exceed the yield limit of the material. Hence, if n 
states of inherent (load-independent) moments are defined by 
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selecting the redundants so that for each state one redundant 
Xjfc = 1, while all the others are zero, and if aik denotes the maxi¬ 
mum stress at the section i resulting from the state of inherent 
moments produced in the statically determinate basic structure 
by X/t = 1 (while all other redundants are zero) the carrying 
capacity of the redundant structure under repeated load is 
defined by the maximum load fulfilling the conditions,’^ ' 

k=^n k’^n 

I Sj “h ^ (TijcXjc I = So and j ^ GiJcXjc | = so (78* 1) 
A-l 

where Si denotes the stress that would be produced by the limiting 
load in the statically indeterminate structure of unlimited 
elasticity, and Xu are arbitrarily selected values of the redun¬ 
dants. Condition 78 -2 can be extended to cover combinations 
of various loads if it is written in the form, 

k^n 

I max Si + ^ cikXic | g so 
1 

k = n 

mm in Si + ^ (TikXk I ^ i 

k^n 

f^iw + ^ (^ikXk j ^ ^ 

(78-2) 

where I max Si | and | min Si j denote respectively the maximum 
positive and negative values of the stresses at the section i pro¬ 
duced in the statically indeterminate structure of unlimited 
elasticity by any combination of loads, including dead load; Siu, 
denotes the dead load stress at i; and Xk arbitrarily selected 
^ alues of the redundants. Thus, if for an n-fold statically inde¬ 
terminate structure subject to a specified load in variable position 
it is possible to select a system of redundants Xi • • • X* • • • 
so, that the conditions 78 -2 are fulfilled, the structure is able to 
carry this load in any position, as well as in any possible combina¬ 
tion of alternating positions. 

The eqs. 78 *2 imply that if in a redundant structure a set of 
redundants can be selected so as to define a condition of the 
structure that would represent the mobilization by plasticity 
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of the possible maximum of self-help^ the structure will actually 
tend to attain that condition. This process has been termed 
‘‘shake-down'^ by Prager.^^ ^ 

The application of the principles of design for plasticity to the 
design of statically indeterminate trusses is limited, because of 
the fact that a member the carrying capacity of which is reached 
in compression cannot be considered in the same light as one 
that fails in tension, since the force-deformation relationship 
beyond the limiting load is different in both cases. In the case 

Fig. 78* 1 Force-deformation curves for elastic and plastic buckling (after 
v.Karmdn*^’2). 

of axial tension the limiting load of the member or section is 
reached when the uniform stress has attained the yield limit. 
Beyond this limit the deformation increases indefinitely under 
the practically constant limiting force. If the member repre¬ 
sents a redundant member of a statically indeterminate structure, 
the limiting value of the redundant force is therefore constant 
and independent of the deformation. In the case of slender 
compression members the force-deformation relationship char¬ 
acteristic for buckling produces a different behavior in the elastic 
and in the plastic range. Figure 78-1 shows that in the elastic 
range the buckling load is constant and practically independent 
of deformation; in the plastic range, however, the force, after- 
having reached the stability limit, drops appreciably with 
increasing lateral deflection of the member. Therefore, the 
carrying capacity of compression members under conditions of 
plastic buckling decreases rapidly, with the result that the dif¬ 
ference between the ultimate and the momentary forces has to 
be carried by other members of the structure. 
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Considering the behavior of the structural model represented 
in Fig. 43 1 subject to a compression force P, the carrying 
capacity may be reached under different conditions, which 
depend on the relative dimensions of the members I and 2 and 

on the angle a \ 
(a) The buckling limit of the bar S2 is attained before the 

stress ^2 reaches the yield limit. Under increasing lateral deflec¬ 
tion and very nearly constant buckling resistance of S2, the 
forces in aSi increase gradually with increasing load until their 
buckling load and thus the capacity load of the entire structure 
is attained. In this case the limiting load is determined by the 
sum of the limiting (elastic buckling) loads of the individual 
bars, in the same manner as in tension. 

(b) The buckling limit of the bar S2 is reached after the stress 

.^2 has reached the yield limit. As indicated in Fig. 78-1, the 

resistance of So decreases considerably with increasing lateral 
deflection, with the result that the forces in increase rapidly 

with increase of the load P until they attain the buckling load, 

and the structure fails. In this case the limiting load of the 
structure is determined by the buckling load of the bars Si only, 

since the force in ^2, after appreciable lateral deflection of the 
member, drops to a fraction of its buckling load."^^ ^ 

Since the slenderness ratios of bars that fail by buckling in 

the elastic lange are so large that the forces they are able to 
carry are usually small enough to be neglected in a truss the 
other members of which do not fail by buckling in the elastic 
range, and since bars failing by buckling in the plastic range 

cannot be relied on to carry permanently any load, members 
that fail in buckling should not be considered at all, if methods 

of design for plasticity are applied to statically indeterminate 
trusses. It is therefore possible to apply this method only if 
none of the redundant members, the carrying capacity of which 

is reached before the limiting load of the truss is attained, fails 

in buckling. 
In such trusses, a limiting state can gradually be reached 

under repeatedly applied load and defined by the condition that 
all deformations finally become elastic as a result of the built-up 
system of residual stresses; the maximum load for which this 
state is possible is the ultimate carrying capacity. The following 
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conditions under which it can be reached have been derived by 
Gruening:^^ ^ 

1. If under the applied load the stresses in n members of an 
/i-fold redundant truss, which can be considered the redundants 

of the basic determinate system, exceed the yield limit, they will 
be reduced to stresses below this limit under load I’epetition, if 

the stresses in one of the members of the basic system exceed 
the yield limit. 

2. If the stresses in n redundant members and in a few members 

of the basic system exceed the yield limit, those stresses will be 
reduced to values below this limit under repeated application 
of the load, if the forces in the yielding members of the basic 

system and the forces in the redundant members are connected by 
such conditions of equilibrium that both decrease simultaneously. 

3. If the stresses in a single member of the basic system, which 

is connected with the redundant members by such conditions of 
equilibrium that a reduction of the forces in any one of the redun¬ 
dant members is accompanied by an increase of those stresses, 

exceed the yield limit l)efoi*e the stresses in all redundant mem¬ 
bers have been reduced to values below this limit by repeatedl}^ 
applied load, the total deformation produced by the repeatedly 

applied load tends to increase indefinitely, and the stresses remain 
peirnanently above the yield limit. 

In the analysis of problems of contained elastic-plastic defor¬ 

mation it is usually assumed that the principle of minimum 
potential energy governs the elastic-plastic equilibrium in the 

same way as it governs the elastic equilibrium, the only difference 

being the condition of plasticity which, in the elastic plastic 
problem, enters the problem of variation of the elastic? potential 

5^ = 0 as an auxiliary condition (see Art. 43). If the validity 

of this consideration is extended to static«,lly indeterminate 
structures, it follows that the evaluation of the redundants of an 

indeterminate structure under elastic-plastic conditions can be 

l)ased on the same variational principles that are applied in the 
theory of elastic structures. Hence, if ^ denotes the stored-up 
elastic strain energy of the structure expressed in stresses, forces, 
or moments, the successive variation with regard to the redun¬ 
dants Xk leads to the k conditions from which the values of Xk 

can be determined: 
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Jx, ==2/4 = 0 (78-3) 

where yu denotes the deformation in the direction of the redun¬ 
dant Xk. The difficulty in the application of this generalized 
principle of Castigliano is in the evaluation of the function ^ 
separatel32^ for the different elastic and elastic-plastic portions 
of the structure, the individual length of which depend in turn 
on the values of the redundants themselves. The eqs. 78-1 are 
nonlinear and can, even for rather simple structures, only be 
solved by methods of approximation. 

In the case of elastic deformation the applied strain energy 

Fig. 78*2 delation betweon bending moment and sum of extreme fiber 

strains A. 

Ws == ^ and the dissipated energy Wn = 0; for elastic-plastic 
deformation Wg = ^ + Wn. Considering eq. 65-2 and the 
relation between the bending moment Mi and the sum of the 
extreme fiber strains A in the elastic-plastic state represented in 
Fig. 78 *2, the stored-up potential energy is expressed by’® ® 

while the total strain energy, 

m. - 

Only within the elastic range A ^ Abi and M ^ Mei is J dWg = 
J as may be seen by comparing the areas above and below 
the Mi — A diagram in Fig. 78 • 2. 
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Expressing in terms of deformation, 

= j '\m - M,(A)]d(0 
+ [M - Mi{A)\ c/(0j dx (78 (i) 

and introducing for the rectangular section ,1// according to eq. 
05 -6, as well as replacing Mi by M after the integration has been 
performed, the relation is obtained: 

(-87) 

Similarly, 

8) dW = )■ ■ (--- + 3 - 3) dx (78 • 
2 KI \\ Ae, / ^ 

The dissipated energy, 

dW., . dW. - dt . | - ^Jdu (78 ») 

In terms of moments, introducing eq. 65 -7, the potential energy, 

(78-10) 

Whereas for elastic deformation the potential energy increases 
indefinitely with increasing moment or deformation, this energ}" 
tends towards a limit in the elastic-plastic state, which is defined 
in Fig. 78-2 by the horizontal asymptote M = A/pi. The dis¬ 
sipated energy, 

3J7e,“ / 2.T/ei - M \ 

This expression is positive only for > M > Mei. 

79. Procedures of Limit Design 

Procedures of limit design are based on the principle that the 
final values of the redundants may be selected arbitrarily so as to 
produce the most favorable distribution of moments or of forces. 
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The practical procedure is different in the design for a single 
application of the load, for repeated application of the same load, 

and for repetition of different loads. A different procedure is 
necessary if it is required to determine not only the final carrying 
capacity, but also the real values of the redundants of the 
elastic-plastic system as functions of the load. Finally, con¬ 
sideration of the real form of the stress-strain curve or of a 
linear work-hardening relation instead of the ideal plastic stress- 
strain relation requires another modification of procedure. 

Single load application. The carrying capacity under a 
single application of a load can be determined without analyzing 

the elastic redundant structure, by attributing to all redundant 
moments values equal to the ultimate values of the bending 
moment which the respective redundant sections and the 
critical section of the nonredundant structure are able to carry 
under the assumption of fully plastic distribution of stress. 
Hence, the final moment distribution of the continuous beam of 
two spans with uniform cross section (Fig. 79 1) is determined 
by the bending moments over the support and under the load 
becoming equal to Mu. The ultimate load P is therefore 
obtained from the relation: 

— = i Mfi or Pn = — - (79 *1) 
4 i 

The sequence of the formation of the plastic hinges does not 
affect the final state. Since the carrying capacity of the simply 
supported beam Pqfi = the ratio of the carrying capaci- 
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ties for the simply supported the continuous beam of two 
spans is 1:1.5. On the basis of design for elasticity {M^ - 
^HePl) this ratio is, 

471/e. G4.1/k. ^ 

/ ‘ 1,3/ 
(79-2,) 

Under the action of concentrated loads P at the centers of both 
spans, the carrying capacity for design for plasticity remains 
unchanged whereas that for elasticity (criiical moment over sup¬ 

port) becomes P = 3 ' hence, the ratio, 

4A/Ei 

/ 

164/ 

3/ 
= I : 1.33 (79-3,) 

A moderate yielding of the central support does not affect the 
ultimate carrying capacity; it may only change the sequence of 
the formation of plastic hinges. Under two symmetrical con¬ 
centrated loads or a uniformly distributed load the plastic defor¬ 
mation of the two-span beam starts over the central support. 

A small yielding of this support reduces the negative support 
moment sufficiently to transfer the first plastic deformation into 
the spans. As a result of the bending moment M > over 
a certain length near the center of the spans, the apparent rigidity 
of this length is reduced; the whole structure becomes less sus¬ 
ceptible to further yielding. After plastic hinges have formed 
at mid-span the structure is no longer affected by yielding of the 
central support. Hence, it is only the sequence of the elimina¬ 
tion of the redundants, which has been changed by the yielding, 
not the carrying capacity. In design for plasticity a moderate 
movement of supports need therefore not be considered. 

Repeated application of the same load. In order to deter¬ 

mine the carrying capacity under repeated application of the 
same load, both the plastic and the elastic moment distribution 
of the redundant structure must be known in order to find the 
residual moments introduced by the plastic deformation. The 
ultimate distribution of moments under a single application of 
the limiting load for the continuous beam of two spans as pre¬ 
viously determined, and the elastic distributions are as follows; 
For a concentrated load at mid-span of first span: 
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Plastic: Ppi = —~ ; Mm = — A = Mv\ 

Elastic: P = Pn; i/;,, = = -^Pki/ (79-4) 

For concentrated loads at mid-span of both spans: 

() \I 
Plastic: Ppi = Mm = — A" = .l/pi; 

Elastic: P = Pp.; = ^Pp./; A = -iW (79 oj 

If the ultimate load is applied the first time and released, the 
residual moments are obtained by subtracting from the moments 
of the limiting plastic distributions the moments produced by the 

force (—Pi-i) in an elastic structure (see Art. 43). Hence, for a 
concentrated load at mid-span of the first span: 

= “T^IS^PfiP, Aftes = ~'T^Pv\l) (79-6) 

For concentrated loads at mid-span of both spans: 

A/wiiies = Ah,,s = (79-7) 

Evidently, these residual moments appear only if the structure 
after unloading remains a continuous beam; otherwise, as a result 
of the plastic deformation, the beam will bend upward and rise 
from its central support. The full load Ppi can be repeated a 
second time only if no plastic deformation occurs on unloading 
and during the second loading. Hence, the sum of the maximum 
residual stresses in the critical sections and the elastic stresses 
produced in those sections by the residual moments must not 
exceed the yield limit. The maximum residual stress in sections 
in which the fully plastic stress distribution has been reached 
remains smaller than 3^So for all structural shapes, attaining the 
value }^iso for the full rectangular section only. Conditions 
where plastic deformation may occur on unloading are thus limited 
to diamond-shaped and round sections, where residual stresses 
may be higher than 3^^.so, since the elastic fiber stresses due to the 
residual moments will usually be considerably less than }^'2So* If 
kso denotes the residual stress of the critical section in terms of 
the yield limit, the elasticity of the unloading process requires 
that 

\f 
kso + ~-^so or M^^soS{l-k) (79-8) 

O 
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where S denotes the elastic section modulus. Only for small 
differences (1 — k) will this condition lead to limit loads P < P^i. 

Alternating application of different loads or mobile 

LOADS. If it is assumed that the two-span continuous beam is 
alternately subject to (1) one load P at mid-span of one span, 
and (2) symmetrical loads P at mid-span of both spans, the 
identity at the criti(*al sections of the signs of the moment per¬ 
taining to one loading condition and the residual moment of the 
other condition implies that for either condition P < if 
recurrent plastic deformation is to be avoided. The load P 
which can be sustained, if alternately applied in the two positions, 
is obtained from the conditions that the sum of the stresses pro¬ 
duced at mid-span by the loading (1) and the residual stresses 
from the preceding loading (2), as well as the sum of the stresses 
produced over the support by the loading (2) and the residual 
stresses from the loading (1) do not exceed the yield stress sq. 

Instead of the detailed analysis of cither condition, eqs. 78 -2 
may be applied to alternating and to mobile loads. With 

_ _ 12 P/ 

- 04 ‘ S 

^supix)rt 1 

and 

_ 13 P/ 
: 

rr... = — * 

the residual moment is obtained from the condition. 

Hence 

13 P/ _ A _ P/ X 

64 ' S ~ 2 S ~ 64 ' S S 

X = 96 
and 

19 

4/b <P., 
The general procedure based on eqs. 78-1 and 78-2 to be 

adopted for any type of loading, including mobile loads, is illus¬ 
trated in Fig. 79-2 and 79-3. For a definite load the elastic 
distribution of moments and stresses must be established first. 
If the cross section is uniform, moment distributions may be used 
directly. If changes of cross section occur, maximum stresses 
must be computed; their distribution over the structure will 
show discontinuities at the points of changes of cross section. 
For mobile loads, elastic maximum and minimum moments and 
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the resulting stresses are computed for a number of sections by 
appropriately loading the moment-influence lines of the respective 
sections. After tracing the enveloping lines of maximum and 
minimum bending moments, the lines of the redundants (dash 
lines) are constructed in accordance with the conditions 78 *2. 

(a) Continuous beam <)V(*r three spans subject to mobile load P, with line 
of support moments selected so that M\ — Mh. 

(6) (Continuous beam over four spans with discontinuous change of cross 
section at F and G subject to uniform dead load and live load in critical 
position. Line of support moments selected so that ni = fin = .S2 = sc. 

Fio. 79*3 Distribution of maximum moments or stresses in redundant 
structures under mobile loads according to principles of design for plasticity 

(limit design) (after Bleich^^ ’). 

Analysis of rp:dundant elastic-plastic system. The 
redundants of a structure which, over a certain length, has 
reached the elastic-plastic condition M > Meu may be computed 
by the generalized energy variation method if the potential 
energy $ is determined separately for the elastic and for the 
elastic-plastic range. Since the length of the elastic-plastic 
section varies with the load, the analysis must be repeated for 
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different loads and for different v^alues of the lediindants X. 
The abscissas associated with the minimum ordinates of the 
curves # = f{X) indicate the values X for eveiy load. 

For structures with cross sections for which the difference 
between A/ri and My\ is relatively small, the variational procedure 
may be applied to ^ obtained from the elastic structure with th(^ 
equation of plasticity M = xI/ri as an auxiliary condition. 

Consideration of the actual form of the stress-strain 

DIAGRAM. For redundant structures made of metals that do not 
show a sharp yield limit and for which therefore the stress-strain 
diagram of ideal plasticity does not represent a satisfactory 
approximation, the approach to design for plasticity is necessarily 
different, since the ultimate carrying capacity, instead of being 
automatically defined as a limit of stability, must be specified 
arbitrarily by introducing a separate criterion. The assumption 
of the equalization of moments by the formation of plastic 
hinges is not justified, and the structure remains fully redundant, 
even if the plastic deformation in all redundant sections extends 
over the whole depth of the cross sections. Since the length and 
the apparent rigidity of the elastic-plastic parts of the structure 
vary with the load, the relations between the redundants and 
the load intensity is nonlinear, without however, tending towards 
a final value determined by conditions of unrestrained plastic 
flow. 

The computation is elementary, but the solution of the system 
of nonlinear equations by methods of approximation is extremely 
cumbersome, even for the simplest structures and loading- 
conditions. 

Prager has investigated the effect of different forms of the 
transition between elastic and plastic conditions on the behavior 
of a simple redundant structure.’®' ^ For a general curved transi¬ 
tion, the analysis of a fixed-end beam with symmetrical loads P 
in the third points showed that the shape of the transition curve 
did not appreciably affect the value of the redundant moment M. 
It was however of considerable influence on the deformation of 
the structure under load, particularly under loads approaching 
the ultimate carrying capacity. 

80. Theory of Limit Design and Experiments 

Experiments on redundant structures, particularly continuous 
beams, have shown that in metals with a sharp yield limit the 
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carrying capacity associated with fully plastic distribution of 
stress over the critical sections represents an ultimate theoretical 
limit and that it is a rational procedure to consider both this 
limit and the elastic carrying capacity as extremes, enclosing the 
possible range of fluctuations of the real carrying capacity, the 
expected value of which is in the vicinity of the mid-point 
between the extremes (see Art. 77). 

P 
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This ratio varies between Pn/pQ = 1 for a freely supported span 
and Pva/Pq — 2 for a central span with fixed ends defined by 
Li = 0 and a = 0.5. 

The full plastic capacity load Ppi is reached with the formation 
of two plastic hinges over the supports and one at mid-span of 
the central span. It is therefore independent of a and can be 
expressed by 

P Fl 

4(7’,, + 7’,).So 

Li 
(80()) 

where 7’,, and 1\ denote the plastic section moduli at mid-spnii 
and over the supports, respectively. For constant section along 
the structure 7’,, = = 7’, and 

_ 8Tsa 
r^\ — — 

L2 

so that 

Pn ^ 2T 

~Po S 

(80-7) 

(80-8) 

Under the assumption that the expected value of the carrying 
capacity is the mid-point v^alue, 

PLn = + /■’ll) (80-9) 

the relations are obtained, 

3 - 2a 

1 — a 
(80-10) 

and 

P. 4V ^ 

2’\ 3 - 2a 
(80-11) 

.sy 1 - a 

In Fig. 80 • 2 eqs. 80 • 5, 80 • 8, and 80 • 11 are compared with results 
of tests by Stuessi, Kollbrunner, and Maier-Leibnitz.^^‘ * The 
experimental values are scattered within a relatively narrow 
range about the mid-point values computed from eq. 80 • 11 and 
are thus considerably below the theoretical maximum (eq. 80 -8). 

Equation 80*11 becomes invalid for values of a approaching 
zero, since the stability of the continuous beam with very large 
side spans and a plastic hinge at mid-span of the central span 
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vanishes rapidly as a approaches zero. For a = 0 the carrying 
capacity is therefore given by P = iPEi(l + T/S); near a = 0 
it falls off sharply towards this value from that given by eq. 
80 -11. This example is thus also an illustration of a limitation 
implicit in the theory of plastic redistribution of moments of 
n-fold redundant structures: the method of redistribution can 

Values of ^ 

Fic. 80-2 Comparison of the results of tests of the carrying capacity of 
the structure in Fig. 80-1 witli the carrying capacity computed on the basis 

of various theories. 

be applied only if all intermediate states of the stru(*turc of 
reduced redundancy are stable until the (n -Kl) plastic hinge is 
formed. 

According to the foregoing example, design for plasticity 
under certain conditions may be not less inadequate than the 
conventional design for elasticity, only less safe. However, 
even such lather complex conditions are fairly well met by the 
simple assumption of a mid-point value of carrying capacity 
between the extremes. 

As pointed out in Art. 77, the discrepancy between the results 
of the theory of plastic redistribution of bending moments— 
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based on the assumption of the gradual spreading of isotropic 
plastic regions and leading to a full equalization of the bending 
moments carried by the critical sections of the structure—and 
the results of many tests^^^ ’ is due to the fact that, particularly 
in mild-steel sections subject to bending moments, the initiation 
of plastic deformation may be so long delayed that the process 
of transition from elastic to plastic deformation is no longer gradual 
but sharply discontinuous. Since the sudden plastic deforma¬ 
tion proceeds in this case in an anisotropic manner along well- 
defined and rather widely spaced glide planes the development 
of which has been delayed b3^ the inhomogeneity of the stress 
field (see Art. 75), the assumption of gradual redistribution of 
moments leading to full equalization of the resistance to the 
applied load of the critical sections can no longer be valid. The 
limiting carrying capacity of a mild-steel structure computed on 
the basis of full equalization of the bending moments in the 
critical sections, in general, therefore, cannot be attained; the 
difference between the really attainable and the limiting carrying 
capacity is a function of the type of the structure and the loading 
conditions; the more nearly equal the moments in the critical 
sections in the elastic stage, the more perfect the moment 
equalization that can be achieved by plastic redistribution.- 
Since evidently no moment equalization is required when the 
elastic moments are initially equal, the foregoing (amclusion 
simply expresses the fact that the moment equalization by plastic 
deformation will be the more perfect, the less the plastic redis¬ 
tribution required to achieve it. This fact is clearly illustrated 
by Fig. 80-2. 

81. Stability in Compression within the Elastic-Plastic Range 

The design of axially compressed members for stability within 
the elastic-plastic range is usually based on the assumption of a 
linear work-hardening relation from which either the tangent- 
modulus or Engesser equation, 

P'h (81i) 

or the* double-modulus or Kdrmdn equation. 

P"js 
t^TI 

(81.2) 
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(?an be derived; Pb denotes the limit buckling load, I the smallest 
moment of inertia of the cross section, I the buckling length, 
IP = 3/f == ds/de the tangent modulus of work hardening in 
axial compression, and T the combined or Karmari modulus. 

According to Engesser's generalization^' ^ of the Euler formula, 
Pb = for the elastic range, the smallest axial load at 
which instability of equilibrium is reached, because of the exist¬ 
ence of an equilibrium position infinitesimally near to the straight 
equilibrium position, is given by Euler’s equation in which the 
elastic modulus has been replaced by the tangent modulus oi’, 

Fkj. St • 1 Str(‘ss and strain distrit)ution under in.axiimiin t)U(*klinj5 load 

within th(' elastic-plastic range. 

in case of a linear work-hardening law, by the work-hardening 
modulus as indicated by eq. 81 1. The Engesser load is, 
however, not the theoretical maximum load which the column is 
able to support without large deflections; the ultimate load has 
been derived by v. Karman'^^ - under the assumption of a linear 
work-hardening relation. 

If it is assumed that, under the action of the maximum stable 
axial force, slight bending starts, the distribution of stresses over 
the section can be represented by Fig. 811; *the uniform com¬ 
pressive stress due to the axial load so is increased at the inner edge 
of the bent bar by ,si and reduced at the outer edge by §2, where 
the stress increase si is related to the deformation ei by the 
relation, 

Si = sq SHei = So 4" H'ei (81 *3) 

while the stress reduction (unloading stress) is evidently 
governed by the elastic modulus and related to the strain by 

.s'2 = So — 3Gc2 — Ee2 (81 *4) 
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Under the assumption that plane sections remain phine after 
deformation, the following relations are valid: 

A U = - = — = ~ 
R 2/1 H'yi 2/2 Ey-i 

Introduction of eq. 81-5 into the equilibrium condition, 

(81-5) 

is - so) dA == 0 (81-6) 

leads to the relation, 

[ (si - -So) dA + f {s2 — So) dA = --— f y dA 
J Ai J A > Vl J Ai 

+ f ydA (H'Si + ES-,) (81-7) 
y-i Ja, R 

where >Si and S2 denote the statical moments of the areas *41 and 
.4 2 about the neutral axis, respectively. 

The bending moment, 

M = /* (^1 — so)y dA + f 
J Ai J A'i 

So 

(,S2 - so)y dA = 

Si - So S2 
"T 

yi y2 
where T is the Karman modulus, 

(81-8) 

T (81-9) 

/i, /2, and / denote, respectively, the moments of inertia of tiu* 
areas A\, A2, and A = yli + ^2 about the neutral axis. 

The differential eq. 81 *8, 

I 

M = i IT = -Py = IT (81 • 10) 

is a form identical with the Euler equation, and its solution leads 
to the buckling load given by eq. 81 -2. 

Shanley has recently shown by experiments^ that if the tan¬ 
gent modulus remains constant both the Engesser and the 
Kerman “buckling loadsrepresent limiting values, the Engesser 
load being the lowest and the Kilrm^n load the highest load at 
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which bifurcation of equilibrium positions can occur, that is, 
at which the column can assume a bent as well as a straight 
equilibrium form. For loads between the Engesser and the 
Kdrmdn load the transition from the straight to the bent position 
requires an increase of the axial load; at the Karman load this 
transition occurs at constant load. Since the actual increase 
of the buckling load beyond the Engesser load is r-latively small 
and is accompanied by appreciable deflections, it may be expe¬ 
dient to use the Engesser tangent modulus eq. 81 1 in actual 
design for stability beyond the 
elastic range, although it should 
be realized that the Engesser load 
does not represent a genuine 
buckling load (limit of instabil¬ 
ity) but only a bifurcation point 
of equilibrium. Because the 
load can still increase while the 
column bends, it is possible to 
avoid elastic unloading of the 
se(jtion, so that the basic assump¬ 
tion of the double-modulus 
theory is no longer justified. 

The difference between the 
Engesser and the Karman load is 
very pronounced in the “reversal of strain'’ method of buckling 
observation in which the strains on opposite faces at midheight 
of the loaded (column arc plotted against the applied load. 
Before the Engesser load is attained the strains increase on both 
faces, at first at the same rate until the column starts to bend 
laterally, later at different rates. At the Engesser load the 
strain at the face with concave curvature decreases, while the 
other strain increases (Fig. 81-2). The maximum (Kdrman) 
load at which the strain increases rapidly at constant load is 
higher than the point of strain reversal defining the Engesser 
load. 

The application of the tangent-modulus theory is simple only 
if it can be assumed that the behavior of the material in uniaxial 
(compression can be represented by a linear work-hardening 
relation, that is, that the tangent modulus remains constant. 
For a gradually decreasing tangent modulus the value of i/' in 

Fig. 81*2 Load-strain ri'latioiis 
for opposite faces of colunm in 

buckling tost. 
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eq. 811 depends on so that the Engesser load can not easily 
be determined. 

The solution of the problem of stability beyond the elastic 
range of thin plates is considerably more difficult than that of the 
buckling bar because of the two-dimensional state of stress. 
The effect of the state of stress has two aspects which are inde¬ 
pendent of each other although the}^ are frequently confused: 

1. In plastic buckling of plates a state of stress due to the 
bending of the plate from the straight toward the bent equilib¬ 
rium position is superimposed on the initial state of homogeneous 
compression. Hence the ratio of the deviator components does 
not remain constant, as required by the condition of isotropic 
plastic deformation {eq. 42*8) but changes during the buckling 
process as the bending stresses increase. The plastic; deformation 

is therefore no longer isotropic but depends on the entire strain 
history. Bijlaard,^’"^ who has investigated this problem very 
extensively, has shown that the resistance to buckling is increased 
by this change of the ratio between the deviator components and 
that this excess of the real buckling Icmd over the buckling load, 
computed on the basis of the assumption of isotropic plasticity 
by introducing essentially a reduced modulus of elasticity into 
the elastic solution,^' ^ is the more pronounced, the more the 
final ratio of the deviator components differs from the initial 

ratio. 
2. In the state of homogeneous compression leading to hu(;k- 

ling, the initiation of plastic defc^rmation by the development of 
anisotropic flow along one or a number of visible glide planes may 
affect the buckling load mc^re significantly than the usually 
assumed isotropic plastic deformation that could only develop 
as the plastic strain increases further. In this later stage, how¬ 
ever, the isotropy of the deformation is»considerably modified 
by the effect of the superimposed bending as outlined under 1. 
Hence, the evaluation of the buckling load requires the intro¬ 
duction of the assumption of an inherently anisotropic material 
in which the initiation of slip along glide planes depends not only 
on a stress invariant, as in the isotropic material, but also on 
orientation of the considered body with regard to the directions 
of principal shear of the applied stress field. Under this condi¬ 
tion a pure rotation of the stress field does not represent a neutral 
change of state, as in the isotropic plastic body (see Art. 41), 
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but may be associated with plastic deformation along potential 
glide planes that have become operative as a result of the rotation. 
The theory of anisotropic plasticity, which has been proposed 
by Boeker*^ ® and by Brandtzaeg^^ has recently been revived 
and applied to buckling of plates.^* ^ The results of this theory, 
however, can be significant only when anisotropic plastic defor¬ 
mation by gliding along visible glide planes represents the char¬ 
acteristic behavior of the material at the traUsSition between 
elastic and inelastic* deformation. 
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CHAPTER 

17 

DESIGN FOR CREEP 

82. Metallic Structures and Parts at High Temperatures 

Design for creep of metallic parts is essentially a design for 
high-temperature servi(;e, since, with the exception of lead and 
lead alloys, engineering metals do not creep appreciably at and 
below room temperature. In design for plasticity the inelastic 
deformations are specified to remain of the order of magnitude 
of the elastic deformations. However, at elevated temperatures 
creep during the normal period of service may produce deforma¬ 
tions of a different order of magnitude, and the designer must 
make the necessary provisions to allow for irrecoverable deforma¬ 
tion of at least this magnitude, without danger of causing func¬ 
tional damage, that is, without interference with the satisfactory 
operation of the machinery or the structure. This deformational 
aspect is, however, only one aspect of the design for creep. The 
other aspect is that of structural damage due to the deterioration 
of the cohesive strength of the material as a function of the 
period of load application and of the temperature history (see 
Art. 49). 

For power machinery operating at elevated temperatures up 
to about 850°F and for metals developed for such service tem¬ 
peratures, which usually have creep rates of an order of mag¬ 
nitude not exceeding 10“^ to 10“^ per hr under conventional 
service stresses, design for creep is mainly concerned with the 
deformational aspect, that is, with ‘functional damage” only; 
the specified limiting strain is usually of the order of magnitude 
of 0.1 percent and thus presupposes service periods of the order 

506 
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of magnitude of 10"^ to 10^ hr. In this case the limiting condition 
for creep design is specified in terms of functional damage; the 
creep aspect is irrelevant with regard to structural damage and, 
therefore, with regard to the specification of the limiting condi¬ 
tion for such damage, so that design for structural safety means 
design for elasticity or for plasticity. 

The re(*ent development of ecpiipment for operating service 
at temperatures considerably above 850°F such as gas turbines 
and jet engines, however, has completely changed the relative 
importance of the design for creep and that for plasticity or 
time-independent fracture and has marie design for creep the 
principal design aspect with regard to both functional and struc¬ 
tural damage. At temperatures above 1000°F, creep during the 
period of service can no longer be I'estricted to the order of mag¬ 
nitude of 0.1 percent; the design must be sound, ))oth functionally 
and structurally, for total (*reep of the order of magnitude of about 
0.5 to 1.0 percent which, with the usually considered service peri¬ 
ods of a few thousand hours, permits creep rates of up to 10“'’ per 
hr. It is, moreover, no longer the functional problem of deforma¬ 
tion limits and clearances alone that has to be considered; the 
reduction of fracture stress with time during the expected period 
of service emerges as the primary factor in creep design, whereas 
the importance of the clTcct of time-independent plasticity is 
very much reduced, lienee, the use of metals at service tem¬ 
peratures exceeding 1000°F nec(‘ssitates a basic change of the 
design concepts; design for finite life and for appreciable perma¬ 
nent deformation replaces the design for time-independent 
carrying capacity and small deformation. Thus, stress alone 
is no longer the major consideration that it is in conventional 
design; the relevant characteristics in high-temperatiue design 
are dress, permanent deformation, temperature, and time at a cer¬ 
tain temperature. It is no longer sufficient to compare the design 
stress with the strength of the material; but the stress-tempera¬ 
ture-time history of the structure or the part must be compared 
with the strength-temperature-time history and the deformation- 
temperature-time history of the material under conditions similar 
to those in service. 

Because of the effect at elevated temperatures of temperature 
and time on both deformation and strength, the operating tem¬ 
perature and life of the designed part must be carefully specified 
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in advance if the most suitable material is to be selected for the 

particular purpose. Since the creep-fracture stress of various 

metals at various temperatures decreases with time at different 

rates, an incorrect specification of the operating period and 

temperature may easily result in the selection of a material for 

the particular conditions that is inferior to alternative materials. 

Figure 56 1 shows the creep-fracture stress for certain alloys 

developed for high-temperature servi(*e as function of tempera¬ 

ture with a specified time to fracture, and as function of time 

at a specified temperature. It can be clearly seen that the allo}^ 

that is decidedly superior above a certain temperature or below 

a certain operating time may become inferior for service at a 

lower temperature or for longer operating times if it loses its 

strength more rapidly with increasing temperature and time than 

an alternative material. This consideration is of importance 

not only in the selection of the most adequate alloy from existing 

test data, but also in the interpretation of the results of full-scale 

development tests of the apparatus. Since such tests may be 

of shorter duration than the specific operating period, and tem¬ 

peratures may be less controlled, the performance in this test 

of a particular alloy may lead to wholly unjustified conclusions 

concerning its performance in service. 

The relative importance of plasticity in design for service 

conditions under which creep is the dominating factor depends 

on the actual character of the creep. If creep is the expression 

of essentially viscous intercrystalline deformation and crystal 

rotation along the crystal boundaries without or with very 

restricted slip and crystal fragmentation, the effects of plasticity 

are negligible since the deformation is essentially of a viscous 

type. In this case the total deformation, due to the deformation 

of the intercrystalline material, is relatively small, and fracture 

appears brittle. On the other hand, if creep is associated with 

considerable slip and crystal fragmentation, plasticity effects are 

of considerable importance. Under such conditions deformation 

prior to fracture is relatively large, and fracture appears ductile. 

The necessity of differentiating between predominantly viscous 

and predominantly plastic creep in design arises from the different 

influence of either type of creep on the stress distribution and 

on the condition of fracture. The behavior of metals within a 

range of predominantly viscous creep will necessarily be very 
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similar to the behavior of viscoelastic materials. Hence, as a 

result of the elastic-viscoelastic analogy (see Art. 35) the stress 

distribution will not differ substantially from that of an elastic 

material. Substantial relief of stress concentrations, therefore, 

must not be e\pc( ted or, at best, will be relatively small unless the 

nonlinearity of the creep is very pronounced; methods of design 

for plasticity are therefore not applicable. The resistance to 

stru(;tural damage should be evaluated on the basis of the elastic 

stress distribution, without appreciable relief of stress concentra¬ 

tions. On the other hand, when creep is largely due to slip and 

crystal fragmentation, the distribution of stresses and relief of 

stress concentrations will approach conditions existing within 

a plastic material; the work-hardening effects are practically 

eliminated by the relatively high rate of rccrystallization at the 

elevated temperatures at which such conditions exist. 

A closer approximation to the real stresses and strains in a non¬ 

linear viscoelastic material can be obtained from the solution of 

the given problem under the assumption of a nonlinear steady- 

state stress-creep-rate relation, for instance in the form of a 

power law (see Chapter 15). However, such solutions can be 

obtained in closed form only for relatively simple problems, such 

as torsion, bending, or problems of rotational symmetry. The 

solution of more cc^mplex problems leading to nonlinear differ¬ 

ential equations will usually be possible only by numerical 

methods. 

The stresses and particularly the strains computed under the 

assumption of steady-state creep are significant only if the design 

is for long life, or if the range of transient creep is very short. 

In the design of parts for short life the analysis should consider 

that creep proceeds at a decreasing rate before the steady state 

is reached. Such analysis can proceed only by methods of 

numerical approximation. It can however be shown‘ that 

under certain conditions the strains occurring during the transient 

stage of creep may be much larger than those obtained by con¬ 

sideration of the steady-state creep rate alone. 

If substantial vibratory stresses superimposed on a steady 

stress have to be considered, the relative importance of time 

effects and of cycle effect will depend on the comparative creep 

effects of the steady and the alternating stress. When the creep 

under the steady stress is essentially viscous, the cycle effect 
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tliixt is associated with slip and fragmentation will be appreciable 

and design for stress reversal necessary. When, on the other 

hand, creep under the steady stress is produced by extensive 

slip and fragmentation, the cycle effect may be very small, 

since the intensified fragmentation under the vibratory stress 

cycles will also produce intensified recrystallization as a result 

of which the work hardening associated with cycle effects is 

largely eliminated; since in this case the difference between creep 

strength and fatigue strength practically vanishes (see Art. 58), 

Fig. 82-1 Schomatioal creep curves indicating diffen'ut performance (after 

R. B. Smiths^ «). 

the variable (cyclic) stress is of no significance and need not be 

considered in design. 

A very important aspect in design for high-temperature service 

is the consideration of the thermal stresses arising in the designed 

parts as a result either of differential expansion associated with 

thermal gradients or of localized plastic deformation due to the 

relief of high compression stresses produced by local heating, 

and followed, on subsequent cooling, by very high residual ten¬ 

sile stresses. The deviatoric part of the thermal peak stresses 

can be relieved only by the essentially plastic type of creep, not 

by viscous creep. Since the highest thermal stresses are tran¬ 

sient, as they occur at the start or at the termination of an 

operation of the machinery, the most important property of the 

material will be a very high short-time creep-fracture stress, 

which will prevent thermal cracking during the transient heating 

and cooling cycles (thermal fatigue). 
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The difference between the two types of creep in metals used 

for high-temperature service is clearly visible in the typical creep 

curves of different alloys, as shown schematically in Fig. 82 1. 

Although all three alloys fracture under the same stress at nearly 

the same time, diagram B is characteristic for a material the 

creep of which is largely due to rotation along grain boundaries, 

crystal slip, and fragmentation, from the very beginning of the 

load application to final rupture, which is preceded and accom¬ 

panied by considerable elongation. Diagram C expresses the 

behavior of a metal with moderate creep, resulting mainly from 

intercrystalline deformation during all three stages of the creep 

process; fracture accompanied by small deformation is sudden 

and has a brittle appearance. Neither material B nor C is 

really satisfactory from the designer’s point of \dew. The creep 

of type B, although accompanied by large-scale plastic relief of 

stress con(*entrations, actually represents a process of progressi\'e 

damage to the cohesive strength of the metal, a process which 

starts at the moment of load application; the slight upward 

inflection of the diagram iieai* fracture marks but a final accelera¬ 

tion of this process of separation, probably due to the propaga¬ 

tion of ^’isible cracks. There is neither a first nor a se(*ond stage 

of creep since the third stage extends practically over the entire 

time of loading. The predominantly viscous creep of type C 

is restricted in magnitude and represents true flow with no 

immediate real damage but an accumulation of potential 

damage due to grain V)oundary relaxation (sec Art. 58); it is this 

gradual accumulation of potential damage that subsequently 

produces sudden fracture with small additional deformation 

after a short third stage. Plastic- relief of stress concentrations 

under sustained loads must not be expected^ Hence, although 

the deformational performance of the material C is satisfactory, 

its capacity to redistribute concentrated stress is not; its struc¬ 

tural performance is therefore rather inadequate. 

Although a metal whose creep behavior is represented by 

diagram A deforms essentially in a viscous manner like metal C 

during the first two stages, the character of creep changes com¬ 

pletely during the third stage; it becomes plastic. Thus, the 

accumulated damage within the grain boundaries at the end of 

the second stage of creep is of no consequence, since fracture is 

preceded by considerable plastic deformation and redistribution 
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of stresses. The ultimate carrying capacity of the structure 
and its parts, therefore, can be derived on the assumption of 
fully plastic behavior, so that material A represents comparatively 
the most satisfactory type of behavior for high-temperature 

service. 
In specifying working stresses for creep design from observed 

creep diagrams, the expected service life must be considered, 
and the stresses set up so as to ensure adequate fracture strength 
and a limiting deformation that would not exceed an amount 

specified with regard to suc¬ 
cessful operation of the de¬ 
signed machinery during its 
period of service. Working 
stresses for short-life equip¬ 
ment such as jet engines are 
leased on an expected life of 
1000 to 2000 hr. Since creep 
tests of such duration are 
usually available, there is no 
difficulty in specifying the 
stress that would produce a 
creep rate and thus a final 

deformation not larger than the limiting amount; for the same lim¬ 
iting deformation a shorter expected service life permits design 
with a higher working stress (Fig. 82 • 2). When, on the other hand, 
equipment such as power machinery is designed on the basis of an 
expected life of 100,000 hr, whereas in creep tests testing times 
of 10,000 hr are only very rarely exceeded, the necessary extra¬ 
polation from the 10,000 hr test is safe only if, at the selected 
stress level, the third stage of creep starts beyond the expected 
service life. Otherwise the extrapolation \^ould result in exces¬ 
sive deformation occurring during the service period, associated 
either with progressive damage to the cohesion of the material 
or with actual fracture (Fig. 82-3). With regard to the use of 
results of creep tests for the design of machine parts, the effect 
of the state of stress should necessarily be considered. Since 
only the deviatoric part of the stresses produces creep, it cannot 
be expected that the creep rates in uniaxial tension as obtained 
from a conventional test will be comparable to the creep rates 

under the three-dimensional state of stress existing in most 

Time 

Fig. 82-2 Relation l)etweeii design 

stress and expected life t in design 

for limiting creep strain A. (S3 > 

S2 > «i.) 
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machine parts. This consideration applies both to the creep 
rate and to the time at which the third stage is initiated. 

If the working stresses for creep design are not governed by 
the limiting deformation, but by the fracture strength, a different 
design approach is necessary for metals with essentially viscous 
and metals with essentially plastic creep because of the difference 

in the effect of stress concentrations in either case. The fracture 
stress for 100,000 hr or more at full temperature must be deter¬ 
mined by extrapolation from short-time tests which is possible 

Fkj. 82 -3 Comparison of actually expected creep curves extrapolated from 

short-time creep tests for design for a limiting creep strain A at a selected 

design stress s (extrapolation permissible only at stress si). 

only if the slope of the function of fracture stress versus the 
logarithm of life does not change abruptly. 

Present practical high-temperature design is usually based on 
the maximum-stress theory of fracture, if general conditions of 
stress are encountered. There appears to be no factual informa¬ 
tion available on the basis of which a rational condition of fracture 
of metals at high temperatures under a generafl state of stress 
could be derived. Where creep is restricted and constitutes a 
secondary, mainly deformational effect, as in design for service 
temperatures not exceeding 850°F, the fracture criterion devel¬ 
oped in Art. 59 remains more or less valid. However, where 
creep and creep-rupture become the main problem, as in design 
for service temperatures above 850°F, part of the inelastic defor¬ 
mation is the expression of progressive damage instead of being 
only an indication of a change of structure by slip and fragmenta¬ 
tion. Hence, the condition of fracture can no longer be expressed 

in terms of elastic strain energy alone; the limiting amount of 
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this energy probably becomes a function of the creep preceding 

fracture. 
Whether creep is essentially viscous or essentially plastic 

depends mainly on stress level and temperature. An increase 
of stress or a change of temperature may therefore change the 
character of creep as well as of the creep fracture. Thus, cor¬ 
relation between design stress and ultimate or fracture stress 
is rather meaningless, as either stress refers to a different dura¬ 
tion of the load and thus, in certain cases, may refer to a different 
type of deformation and fracture. By selecting the design stress 
in terms of a certain percentage of the fracture stress for a certain 
duration of the load, a considerable safety margin is actually 
introduced with regard to the period of operation, since fracture 
at the design stress is not made impossible or less probable than 
at the ultimate stress, but only requires a longer period of appli¬ 

cation of the load. Because of this extension of the time to 
fracture, the fracture phenomenon itself may be changed from 
ductile, owing to essentially plastic creep, to brittle owing to 
essentially viscous creep, or vice versa, depending on the char¬ 
acter of the material and on the temperature. Thus the approach 
to the design at both stress levels is no longer identical. These 
facts make any rational interpretation of the concept of working 
stress in design for high-temperature creep almost impossible. 
It appears therefore reasonable to specify that such design should 
be based on judicious joint evaluation of the expected most 
critical loading and temperature and the maximum time of 
operation rather than on service conditions, comparing the 
maximum stresses and times directly with the observed fracture- 
stress“time diagram of the material. However, even this pro¬ 
cedure is difficult, unless only a single operating temperature is 
considered; no information is at present available concerning 
the damaging eftec^t of a time sequence of temperature cycles, 
such as, for instance, overheating. 

The concept of the safety factor in design for high-temperature 
creep strength is considerably more complex than the same con¬ 
cept in design for elasticity or plasticity. This complexity 
results from the interrelation among time, temperature, and 
strength which introduces the duration of the load at (;ertain 
temperatures as a significant characteristic of this load. Since 
the effect of load fluctuations is to be combined with temperature 
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fluctuations of various duration, it cannot be interpreted in 
terms of the required safety without there being considered 
simultaneously the expected durations of the various load inten¬ 
sities at the various temperatures and their cumulative effect 
on the fracture strength of the material. Fluctuations of load 
intensity are therefore not independent of the fluctuations of 
resistance so that the simple statisti(?al concept proposed in 
Art. 77 is not applicable. 

83. Viscoelastic Materials 

In the design of parts and structures of viscoelastic materials 
the fact that the amount of deformation or of strain is not a 
direct indication of the intensity of stress is of piincipal impor¬ 
tance. In such materials a nonlinear force-deformation diagram 
obtained in a tension test is not an indication of a nonlinear stress 
distribution in bending, since nonlinear behavior may be a time 
effect only. In Art. 35 it has been shown that a linear visco¬ 
elastic body in tension or shear is characterized by stress-strain 
or force-deformation diagrams of a curvature which depends on 
the applied strain rate. The stress distribution in bending of a 
beam of such material, however, is linear as long as the relation 
between stress and rate of strain remains linear. Thus, non¬ 
linearity of a stress-strain diagram in a mechanical test is sig¬ 
nificant for design only if the nonlinear behavior is not produced 
by time effects alone and does, therefore, not change appreciably 
with the applied rate of strain. 

Design for strength of linear or nearly linear viscoelastic mate¬ 
rials should therefore be based on the stress distribution gi^'en by 
the theory of elasticity. No matter what the inelastic deforma¬ 
tion observed after the forces have been applied^the distribution 
of stresses in structures of such (volume-constant) materials 
docs not change but remains essentially identical with the 
elastic distribution produced immediately on load application. 
Observed inelastic ^'yielding'" is therefore not an indication of 
relief of stress concentrations, if yielding^’ is used as a synonym 
for creep. 

Considering creep in the design of redundant structures, the 
difference in the effect of creep on stresses produced by loads 
(load stresses) and on stresses produced by an initial deformation 

(deformation stresses) necessarily influences the design procedure. 
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In redundant structures of linear or nearly linear viscoelastic 
behavior and within the range of small deformations the dis¬ 
tribution of load stresses and the values of the redundants are 
proportional to the applied loads and independent of deforma¬ 
tion; the results of elastic analysis of such structures are there¬ 
fore valid, in spite of their inelastic behavior. No redistribution 
of values of redundants takes place as a result of irrecoverable 
deformation. However, if the stresses or redundants result from 
an initially applied deformation, they will tend to fade out 
asymptotically because of the relaxation effects in the material. 
This is immediately evident from the linear viscoelastic equations 
of bending considered as a uniaxial problem. 

The equation of an element of a Maxwell body for uniaxial 
stress is (see eq. 35 • 29) 

(83 • 1) 

The approximate relation between the bending moment M and 
the curvature \/R ^ —dt^w/(lx“ which for the elastic material is 

(83-2) 

becomes, on differentiation with regard to time, 

A __1 dM 
dt \dxy ~ ~ Ef dt 

(83-3) 

For the ideal viscous beam, this relation is obtained directly 
from the viscoelastic analogy: 

d 

dt 
(83-4) 

By carrying out the operation indicated by eq. 83-1. the equa¬ 
tion is obtained. 

dt 
+ - + EIj = 0 (83-5) 

with the relaxation time t = \/E. 
The solution of eq. 83 -5 is 

M = 
/■* d /d^w\ 1 

(83-6) 
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For an impressed deformation the curvature remains constant, 
so that the right-side integral of eq. 83 -6 vanishes, and the 
initially produced moment Mo decreases towards zero according 
to the function Mo 

The differences and similarities in the behavior of redundant 
metal structures and redundant viscoelastic; structuies and their 
effect on design can be illustrated by considering the continuous 
beam over two spans, loaded by symmetrical concentrated loads 
at mid-span, which produce a settlement of the central support 

Fk;. 83-1 ('hange of lino of support inomont of visooolastio beam over two 

spans with yielding central sup{)ort B. (1, level support; 2, instantaneously 

on yielding of sui)port; 3 and 4, at different times after yielding). 

by a finite amount. It has been found in Art. 79 that the carry¬ 
ing capacity of such a metal structure is determined by the 
plastic resistance of the critical sections near mid-span and over 
the central support and is affected neither by the value of the 
redundant in the elastic state nor by the (small) yielding of the 
support. In the case of the linear viscoelastic structure the 
distribution of stresses and the value of the redundant are iden¬ 
tical with those of the elastic structure. Yielding of the support 
is accompanied by an immediate change in the value of the 
redundant and the stress distribution. These changes, however, 
are not permanent since they are the result of an imposed defor¬ 
mation but vanish with time, and the structure tends asymptoti¬ 
cally towards the elastic distribution of redundants and stresses. 
The design of such structures for strength should therefore be 
based on their elastic analysis, design for creep remaining a 
secondary purely deformational aspect. These conclusions are 
borne out by experiments with resins*^® ^ (Fig. 83* 1). 

The creep aspect becomes of primary importance where the 

distribution of stresses and the values of the redundants depend 
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on the deformation itself, since the structure can no longer be 
analyzed in its undeformed condition. The influence of the 
deformation on the stresses and the limitation of the carrying 
capacity by the existence of a stable deformed shape change the 
strength problem into a stability problem. The fact that the 
stability of such structures or parts is a function of their total 
deformation introduces the dependence of this stability on the 
amount of creep and thus on creep rate and the duration of the 
load; the limit of structural stability becomes therefore a func¬ 
tion of time. The principal structural forms in the design of 
which these considerations are of practical significance ai*e 
columns and arches. 

Columns. The differential equation of the viscoelastic 
column with an initial deviation from the straight line wi is 

obtained by introducing the bending moment due to the axial 
compressive force P, 

M = P(Wi + w) (83-7) 

into eq. 83-5; the resulting equation has the form, 

4. 4. _ 
\d~xy'^ \t ^ r) ~ 

(83-8) 

For t = 0 the solution w = iCo, where ivq denotes the solution of 
the differential ecpiation for elastic buckling. Equation 83 8 has 
an analytical solution of the form w = X{x)T{t) only if w/wi = 
const, that is, if the time-dependent deflection w is proportional 
to the initial deviation Wi. Although in this case the theoretical 
ultimate buckling load P = Pbq is that of the elastic column, very 
large deflections are reached under any load P < P^o, if its time 
of application is long enough. 

If w and Wi are not congruent, eq. 83 • 9, can be solved by suc¬ 
cessive approximation.®*"* 2 Considering a compressed strut with 
lateral load producing a moment distribution MxOy a first approxi¬ 
mation Wi of the deflection is obtained by integrating eq. 83 *9 
with M = Mxo. The second and the following approximations 
W2 ‘ * ^ Wn are obtained by solving eq. 83-9 successively with 

Ml » Pwiy M2 = Pw2 ' ' ' Mn~i ** P * The solution 
w ^ w\ W2 + ' • • is a power series in (P/P^o) and {i/r); it 
converges only if the duration of the load does not exceed a 

critical time U, For t ^ to the series becomes divergent; the 
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deformation thus tends towards an infinite value for any load 
P > 0, if its duration exceeds i = to, the buckling time; as long 
as t < to, the equilibrium remains stable, '^idie limiting relation 
P/Pbo versus to/r is obtained from the condition that consecutive 
terms of the power series 
w{P/Pbo) decrease in value. 
Because of the large defor¬ 
mations that must be ex¬ 
pected under loads even 
below the theoretical insta¬ 
bility limit, the practical 
buckling loads will be con¬ 
siderably below the theoret- 0 2 0 3.0 4.0 
ical limiting loads. Figure 
83 -2 shows the buckling- Fig. 83 -2 H)ickling-load versus buck- 
load versus buckling-time .lingrani of viso.-lastic stmt, 

curve for a compressed strut 
with constant initial eccentricity Wi = const, computed by the 
outlined method of successive approximation. The reduction 
of the stability with time is shown to be (jonsiderable and would 
require a different treatment in design of viscoelastic struts with 

regard to transient and to sus¬ 
tained compressive forces. 

The theoretical conclusions 
are borne out by experiments, 
as can be inferred from Fig. 
83-3 in which the observed 
buckling strength of a strut of 
phenolic resin of slenderness 
ratio 75 is shown as a function 
of the buckling*time.®* ® 

Arches. The behavior of 
redundant arches of viscoelastic 
material is identical with that 
of any other type of redundant 

structure as long as the total deformations may be assumed to 
remain negligibly small with respect to the rise of the arch. 
In this case the thrust as well as the load stresses are unaffected 
by creep, whereas the deformation stresses and the differential 
thrust due to rib shortening or to yielding or rotation of supports 

0 10 20 30 
Time, hr 

Fig. 83 • 3 Buckling-strcss versus 
time curve of phenolic re.sin strut 

(after llo.ss®'* -’). 
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tend to vanish with time, asymptotically re-establishing the 
elastic distribution of stresses and redundants due to loads only. 
Thus, if an unforeseen yielding of abutments occurs, accompanied 
by a reduction of the initial thrust due to the load, this reduction 
will be compensated in the course of time, and the initial condi¬ 
tion of the elastic arch, envisaged in the design, will be re-estab¬ 
lished. Hence, it appears unnecessary to anticipate and allow 
for a small movement of supports in the design of viscoelastic 
arches, if the material is able to resist the transient stresses, which 
appear at the time of the movement. 

Arches that are so slender, flat, and heavily loaded that their 
change in configuration due to the deformation can no longer 
be neglected in the analysis of redundants and stresses do not 
behave in the manner just outlined. 

If the bending moment is so much affected by the deflection 
w that this influence cannot be neglected, the right-hand term 
of eq, 83 2 becomes 

M = Mo — H{y — w) — Ml ~ (Ml — Mr) (83-9) 

where Mq denotes the moment of the simply supported span /, // 
the horizontal thrust, and Ml and Mr the fixed-end moments 
at the left and right abutment, respectively. Hence, the diffei- 
ential equation of the deflection curve, 

(83-10) 

where the right-hand side represents the development of eq. 
83*9 into a power series, the (constants of which depend on 
applied load, conditions of support, and variation of moments 
of inertia along the rib; the constant 

(83-11) 

where Ic denotes the moment of inertia of the crown section. 
The solution of eq. 83 • 10 is 

w = C\ cos cx + C2 sin cx + F{x) (83-12) 

where F{x) is a particular polynomial solution of the same order 
as X{x/l)y the coefficients of which are determined by introducing 
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F{x) into eq. 83 10 and comparing it term by term with X{x/l); 

the coefficients are functions of the redundants //, Ml, and Mr. 
The redundant moments are defined by the two boundary 
conditions, 

where and <^>-2 denote the imposed angular rotations of the 
abutment sections; the thrust may be determined from the con¬ 
dition that the horizontal projection of the deformed rib is equal 
to the span. 

ids + A ds) cos i(l> + A d<t>) = I (83 • 14) 

For the fixed-end arch with unyielding abutments <^i = <^2 = 0; 
for the two-hinged arch Ml = Mr = 0. 

The bending moments in the rib are determined by the 
expression: 

12 

M = H{C\ cos cx + (-2 sin c.r) + EIc F{x) (83-15) 
ax 

Evidently the superposition principle is no longer valid, and 
influence lines cannot he used. In order to determine the critical 
values of the combination of bending moments and thrusts, ecjs. 
83- 10 and 83 -14 must be solved for the most unfavorable loading 
conditions. 

The difference between the results of the conventional arch 
theory and the outlined deflection theory which is a function of 
the ratio of dead and li\'e load and the rigidity of the rib expressed 
by the arch characteristic {cl) is illustrated in Table 83-1, giving 
the values of bending moments at the quarter-point of the span 
of a two-hinged flat parabolic arch of a rise to*span ratio 1/9, 
subject to dead load and live load p extending over one-half 
the span from abutment to crown, for different ratios and 
two arch (diaractcristics {cl) = 2 and {cl) = 5 computed by the 
deflection theory.^ 

T.XHLIO 83 1 

Pw/P 1 6 12 

cl = 2 
cl = 5 

1 /47.5 
1/30 

1/44 
1/26 

1/35.5 pC 
1/22.5 pt^ 

1 
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The relation between the bending moments of the arch and the 
characteristic (cl) indicated in Table 83 • 1 explains the consid¬ 
erable influence of creep in the design of arches of viscoelastic 

material. Since 

cl = I (83-16) 

where r denotes the radius of inertia of the crown section, the 
bending stresses in the arch depend on the slenderness ratio 
//r, on the sustained uniform compression stress sq, and on the 
elastic modulus. In first approximation the effect of creep may 
be introduced as a gradual reduction of the apparent elastic 
modulus (secant modulus) E' or, according to eq. 48 -1, 

E'=li:—^ (83-17) 

I +- 
T 

where E denotes the initial (clastic) modulus. Introducing eq. 

83 • 17 into 83 • 16 gives 

cl ~ eo\\ +- (83-18) 

where cq = \^so/E. With (cl) thus becoming a function of time, 
the bending moments of the arch will necessarily increase with 

time. 
This increase will affect primarily the dead-load moments, 

since no appreciable creep and therefore no apparent reduction 
of the elastic modulus is caused by transient loads. The slight 
influence of creep on the moments due to service loads is only a 
result of the fact that, according to eq. 83-9, the bending 
moments produced by any load depend on the total thrust, 
including the dead-load thrust, and on the total deflection, 
including the deflection due to dead load, and that both dead¬ 
load thrust and deflecton depend on creep. 

The comparison of the behavior of arches with characteristics 
below cl = 2 and those with characteristics cl > 2 shows the 
considerable difference of the effects of viscous creep on either 
type of structure. ® Whereas for cl <2 the stress problem is 
significant, the creep effect being beneficial with regard to defor- 
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Illation stresses and negligible with regard to load stresses, it is 
damaging for arches with cl > 2, as the significance of the stress 
problem is gradually reduced 
and the stability problem be¬ 
comes increasingly significant. 
Figure 83-4 shows the effect of 
the end conditions of the arch 
on its creep sensitivity. 

84. Concrete and Reinforced 

Concrete 

Concrete is formed by an 
aggregation of loose grains (sand 
and aggregate) held together by 
a highly viscous liquid, the 
cement paste. The viscosity of 
this liquid increases with time, 
as a result of chemical changes 
within the structure (crystalliza¬ 
tion) until a complete crystalline 
network blocks all viscous defor¬ 
mation. The relative volume of 
grains and of viscous medium determines the mechanical behav¬ 
ior of the (HuiCrete. Hardened cement paste is essentially a 
(nonlinear) Maxwell body of high viscosity and cohesion; the 
aggregates and sand form a noncohesi\'e, granular mass, the 
resistance of which to irrecoverable deformation by shear (in 
this case identical with “gliding rupture'’) is the result of 
friction between the grains, which in turn is a function of the 
applied hydrostatic pressure. The observed l^havior of con¬ 
crete is enclosed between these two limits. The high-grade 
concretes, which are very rich in cement, deform essentially 
like vis(;oelastic materials with a viscosity of the order of 
magnitude of about 10^® poises. The larger the amount of 
aggregates, the less pronounced the effects of viscosity and of 
cohesion and the more pronounced the effects of internal friction. 
Thus, in rich concretes the distribution of stresses is essentially 
elastic, whereas in the incoherent granular mass the stress at 
which deformation occurs and proceeds remains constant, as in 
a plastic material. It may therefore be assumed that various 

cl 
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mixes of concrete, defined by various ratios of aggregates and 
cement, will show types of behavior varying between that of the 
purely viscoelastic and that of the plastic material and therefore 
manifest various types of nonlinearity of the stress-strain relation. 

There is, however, one fundamental difference between the 
plasticity of a metal and the apparent plasticity of a granular 
material under constant stress. This difference is not so mu(*h 
in the type of motion but in the forces acting between the par¬ 
ticles involved in it. Whereas in plastic slip in metals the inter¬ 
acting (cohesive) forces are strong enough to re-form continually 
the cohesive bonds during the motion, the apparent cohesion 
between the particles of the aggregate, resulting, in fact, only 
from the adhesion between the particle-^ and the cement medium, 
is not re-established if it has been destroyed once in the course 
of the relative motion of particles under the action of external 
forces. Hence, the effect of plasticity of a metal and of the 
apparent plasticity of concrete containing a relatively large 
volume of aggregates is of a basically different type: metal 
plasticity produces relief of elastic peak stresses by nonlinear 
behavior due to transcrystalline slip, without damage to cohesion 
during this process, whereas the relief of elastic peak stresses 
produced by the plasticity of the concrete is accompanied by 
a certain amount of local destruction of cohesion and is therefore 
the expression of a process of internal damage. Therefore, the 
observation of considerable nonlinearity of the stress distribution 
of a concrete section in bending which is not solely due to the 
nonlinearity of the creep tacitly implies that under the applied 
load considerable local destruction is produced within the mate¬ 
rial; otherwise, the concrete would remain a viscoelastic material 
with an essentially linear or slightly nonlinear stress distribution. 

The basic difference between the plasticity of metals, the 
plasticity of concrete, and its viscosity is not sufficiently 

realized in the design of concrete and reinforced-concrete struc¬ 
tures and in the selection and adequate evaluation of the mate¬ 
rial. It is therefore frequently assumed that the absolute or the 
relative amount of irrecoverable deflection of a concrete structure 
has some structural significance or can be used to evaluate per¬ 
formance or damage, as, for instance, in the case of the conven¬ 
tional loading test of reinforced concrete structures. There is no 
justification for this assumption; it is the damaging part of the 
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irrecoverable deformation alone, that is, the part that produces 
the time-independent nonlinear distribution of stress in bending, 
that might provide an indication of structural damage, if it could 
be separated from the viscous deformation, which bears no rela¬ 
tion to damage or structural performance, but the amount of 
which considerably exceeds the deformation due to structural 
damage. 

Creep in concrete proceeds at a decreasing rate. This is due 
partly to the stiffening (crystallization) of the cement paste with 
time, partly to the gradual stoppage of the viscous flow of the 
cement under sustained load by the particles of the aggregate 
coming into contact and forming a continuous rigid skeleton. 
The closer the initial structure of the concrete to the formation 
of such a skeleton, the shorter the period of creep and the smaller 
its amount. The duration of creep is therefore the shorter, the 
leaner the mix and the more elongated the stone particles. 

Oeep in concrete can be effectively reduced or stopped within 
a relatively short time by the introduction of reinforcement in 
the direction of the motion, since the viscous deformation of the 
concrete is thus coupled in parallel with the elastic or, above the 
yield limit, with the plastic or work-hai*dening deformation of 
the steel. The higher the yield stress of the reinforcing steel, 
the more eflectivc its performance in reducing the creep of the 
concrete. 

The design of “prestressed reinforce(l-con(*rete structures'^ ’ 
is to a considerable extent the problem of the interaction of a 
viscoelastic beam with an elastically prestrained reinforcement 
which produces an initial bending moment, counteracting the 
moment produced by dead load and service load. Because of 
the high compressive stresses involved, the con(»’ete used must 
be of a very high grade and therefore of very nearly viscoelastic 
behavior. 

The “prestress” in the reinforcement, producing the counter¬ 
acting moment, is introduced by imposing a constant initial 
deformation (shortening of the fiber) by means of straining the 
reinforcement before the concrete is poured and releasing the 
straining force after sufficient bond has developed in the hardened 
concrete or, if the bars are free to move in channels of the beam 
and are anchored by end plates, by straining them after the con¬ 

crete has hardened. After hardening of the concrete the “pre- 
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stress^' is subject to relaxation; it will therefore gradually decrease 

with increasing viscous deformation of the concrete. It is only 

because of the fact that the creep of concrete tends with a decreas¬ 

ing rate toward a finite limit that a considerable part of the 

“prestresscan be permanently retained in the structure. 
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CHAPTER 

18 

SIGNIFICANCE OF MECHANICAL TESTING. 

INTERPRETATION OF RESULTS 

85. Mechanical Tests and Inelastic Behavior. Machine Effects 

The significance of the variables obserx ed in mechanical tests 
depends on the purpose of the test. This purpose may be: 

1. The determination of properties and characteristics of basic 

physical significance. 
2. The determination of properties and characteristics sig¬ 

nificant in manufacturing processes. 
3. The dei’ivation of data for design of engineering structures. 
4. The control of the uniformity of a manufacturing process 

in terms of the uniformity of a certain mechanical characteristic 
of the product. 

The variables observed express either the kinematical response 
of the tested specimen to imposed dynamical conditions, or the 
dynamical response to imposed kinematical conditions, or, 
finally, the energetic response to the imposed, usually dynamical, 
testing conditions. The phenomenon observed is thus either 
the deformation of the specimen under a given load or the resist¬ 
ance to deformation of the specimen, expressed in terms of the 
force developed under the imposed conditions, and interpreted 
in terms of the stress with which the volume element opposes the 
external conditions. The significance of this resistance is, how¬ 
ever, not independent of the deformation associated with it, 
unless the material is perfectly elastic. It is thus the interpreta¬ 
tion of the relation between resistance and inelastic deformation 

527 
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that provides the basis for an interpretation of the significance 
of mechanical tests. 

The interpretation of the significance of the characteristics 
determined in a mechanical test is relatively simple, if the purpose 
of the test is either to detei*mine the material characteristics that 
are directly significant in a manufacturing process—such as the 
work-hardening capacity of a metal for the deep-drawing process 
or the viscosity of a resin for an extrusion process—or to control 
the uniformity of such a process by controlling a certain specified 
characteristic. In the latter case the functional interrelation 
between the observed characteristic and any real physical prop¬ 
erty which would be relevant in the use of the material may be 
vague or nonexistent. It is only the uniformity of the manu¬ 
facturing process that the tests are designed to control; therefore 
the interpretation of the variation of the observed characteristic, 

not of the characteristic itself, is of real significance. 
The interpretation of tests, the purpose of which is the observa¬ 

tion of basic physical properties, is, in general, rather difficult, 
since it is almost impossible to devise a testing procedure in 
which the observed quantities are basic physical properties of a 
material, and in which, moreover, these properties are not 

changed by the test itself. There is a very long way between 
the performance of a mechanical test and the interpretation of 
the observed characteristics. Thus, the observed ^‘basic^^ pj’op- 
erties of the material are usually rather complex characteristics 
of both the testing procedure and the material, not as it is, but 
as it is being changed by the test. These characteristics are 
therefore related to the material in its newly changed conditions, 
not in its initial condition. Hence, correlation between test 
results and the performance of the material in service, or between 
different types of tests, can be expected only if the changes that 
the material has undergone during the test are similar to the 
changes that it is expected to undergo in service or in the different 
types of test. Since mechanical changes of state can usually 
be interpreted or expressed in terms of inelastic deformation, 
the criterion of correlation between test and performance or 
between different tests can be formulated in terms of the simi¬ 
larity or of correlation of inelastic deformation under the com¬ 
pared conditions. Thus, unless the inelastic deformations pro¬ 
duced in the compared tests can be correlated or are of a similar 
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character and order of magnitude, correlation between test 
results can not be expected. 

This fact makes the derivation of design data from test results 
particularly difficult, since such data can only be obtained from 
tests that reproduce service conditions rather closely, whereas 
conventional tests are designed for expediency of testing rather 
than for reproduction of conditions of performance. Hence, 
conventional test results must be interpreted in tcims of perform¬ 
ance, a procedure the success of which again depends on the 
degree of similarity of inelastic behavior in service and in the 
test. 

Similarity of inelastic behavior in various types of tests or in 
test and performance requires a sufficient similarity of the char¬ 
acteristics that affect the inelastic behavior, such as state of 
stress, strain rate, temperature, and previous history as expressed 
by inelastic strain. Since, under conditions for which an equa¬ 
tion of state may be assumed to exist, strain rate and tempera¬ 
ture are interchangeable, similarity of conditions resulting in 
similar inelastic behavior reipiires similarity of a combined 
sti-ain rate-temperature parameter rather than similarity of 
cither strain rate or temperature considered separately. 

fn mecdianical tests spe(*imens of a material are loaded by 
constant or gradually increasing forces until separation occurs 
or considerable deformations are produced. From the recorded 
force-deformation or deformation-time or force-time diagrams, 
the characteristic properties of the materials are derived. The 
specimens are loaded either by applying a mass directly or with 
the aid of levers, changing the force by changing either the mass 
or the lever arm, or by moving the mass with a certain accelera¬ 
tion; or the specimen, set into the mechanical system of the 
testing apparatus, is forced to deform by specified amounts, and 
its resistance to the imposed deformation is measured. In 
interpreting the recorded relation between force and deformation, 
it is important to recognize the influence of the testing apparatus 
itself on the shape of this relation. Since the specimen is not 
independent but forms part of the mechanical system, the 
mechanical response of the entire system to either deformation 
or load must be considered and analyzed, if the force-deformation 
diagram is to be interpreted in terms of the response of the speci¬ 
men itself. The characteristic of the testing apparatus, relating 
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the applied forces to the deformation of the apparatus or vice 

versa, must be known before the results of the mechanical test 
of a specimen obtained in this apparatus can be analyzed; this 
response must be considered both under static conditions, that 
is, successive states of equilibrium, and under the transient 
dynamic conditions of actual loading. 

In testing machines in which the loads are applied by connect¬ 
ing a mass to the specimen either directly or by the aid of levers 
{force machines), inelastic deformation proceeds under constant 
load only if the conditions are very nearly static; that is, the 
deformation increases very slowly. Whenever the inelastic 
deformation proceeds rapidly, the inertia forces of the applied 
masses must be considered. The influence of the inertia forces 
increases with increasing lever ratio z since the moment of inertia 

I of the applied mass m increases as the square of this ratio, 
whereas the increase of the force with the ratio is only linear. 

The natural frequency of the system 
/const 

« = V— W' 
const 

m 

thus decreases with increasing ratio z; since a high natural fre¬ 

quency determines the sensitivity of the apparatus to indicate 
rapid changes of deformation of the specimen, testing machines 
with large lever ratios are inadequate for recording rapid inelastic^ 

deformation. Hence, no information is obtainable from the 
load-deformation diagram observed in such machines concerning 
the actual process of deformation before practically static condi¬ 
tions have re-established themselves. However, at the conclu¬ 
sion of the transient (dynamic) process, the force defining the 
state of equilibrium has not been changed. 

In testing machines in which a specified deformation is imposed 
mechanically or hydraulically {deformation machines), the resist¬ 
ance to deformation of specimen and apparatus including the 

resistance-measuring device determines the recorded force. 
The whole system can be considered a rather complex combina¬ 
tion of springs, represented by the specimen, the compressible 
fluid, and the elasticity of the machine parts and of the load 
indicator, and of masses. The character of the machine is 
determined by the relative magnitude of the combined elastic 
deformation of machine-parts and liquid and the elastic deforma¬ 
tion of the specimen. If the elastic deformation of the machine 
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is much larger than the deformation of the specimen, the machine 
appears soft; inelastic deformation proceeds without considerable 
reduction of the force, as can be inferred from Fig. 85 -1 in which 
the specimen and the machine are represented by two springs. 
If, under a given force, the elastic deformation of the machine 
A2 is a multiple of that of the specimen Ai, a small inelastic 
deformation dAi will practically not affect the acting force, since 
the change of this force is determined by </Ai/A2, which is very 
small. If, however, the elastic deformation of the machine is 

Extension 

Extension 

Kic. 85-1 8ch(‘inati(* r('|)r(‘s(‘ntatioii of (a) “soft’’ and (b) “hard” deforma¬ 
tion machine. 

of the same order of magnitude as or even smaller than that of 
the specimen, the machine appears hard; the effect of the inelastic 
deformation dAi sharply reduces the acting force since r/Ai/A2 

is comparatively lai*ge. Hence, the hardness or softness of the 
machine is an important factor in the interpretation of the 
recorded force-deformation diagram, particularly since the slope 
of the unloading part of the diagram and the drop of the load at 
the yield point is largely determined by the character of the 
machine. 

When the hard machine is stopped at the moment the specimen 
starts to flow, the load drops abruptly to a new equilibrium level 
determined by the relaxation of the elastic stress in the specimen 
resulting from its inelastic flow under the imposed constant 
deformation at which the machine was stopped. If the machine 
is not stopped but the over-all deformation of the specimen pro¬ 
ceeds at a constant rate after the specimen has started to flow, 
the relation between deformation and load will depend on the 
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ratio between the rate of over-all deformation imposed by the 
machine and the rate of flow of the specimen. The smaller this 
ratio, that is, the smaller the imposed strain rate or the more 
rapid the flow, the more abrupt and the more pronounced the 
drop of the load at the moment of yielding. If the imposed 
strain rate attains or exceeds the rate of flow of the specimen, the 
deformation will proceed at constant or increasing resistance 
(load), the performance of the hard machine becoming identical 
with that of the soft machine. Hence, the hardness or softness 
of a testing machine is determined not only by the machine 
characteristic but also by the ratio of the spring constants of 
machine and specimen. Thus, for instance, a machine that 
appears soft in tests of a material at a certain strain rate and 
temperature may become hard if used for high-temperature 
testing of the same material. 

Because of the heterogeneity of the initiation of plastic flow 
in metals, the deformation of the specimen will not proceed at 
the constant strain rate imposed by the mac^hine, but at very 
rapidly varying rates, which depend on the momentary latio 
between the rate of flow in the specimen and the rate of imposed 
deformation. Momentarily increasing flow rates are associated 
with a drop of the load, whereas a momentary reduction of the 
flow rate is marked by an increasing load. It is this interplay 
between flow rate and load that sharpens the discontinuities in 
the recorded load-deformation diagrams of hard machines at 
relatively low strain rates. 

In soft machines the effect of the imposed strain rate is con¬ 
siderably less pronounced than in hard machines, since the dis¬ 
continuities in the relation of load and deformation are compen¬ 
sated by the relatively large elastic deformations of the machine. 
Thus, the soft deformation machine has a characteristic similar 
to that of a load machine but has the advantage of higher 
dynamic sensitivity. 

It is because of the relatively small moving masses that the 
dynamic sensitivity of the deformation machmen is considerably 
higher than that of the load macMnes. Therefore these machines 
are able to record rapid deformation processes which are not 
recorded by load machines, because their inertia is too high. 
Thus, in recording inelastic deformation the hard machines 
respond very sharply by a drop of the load to even the smallest 
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inelastic deformation, whereas the soft machines tend to smooth 
out all fluctuations and to sustain the load at a nearly constant 
level. The expression of the heterogeneity of the initiation of 
plastic deformation in metals by the development of slip lines 
will therefore be intensified in the hard and smoothed out in the 
soft machine. Hence, the selection of the required type of 
response of the testing machine must depend on the purpose 
of the test. 

The inertia effects in the machine are of particular importance 
in high-speed and impact testing. Because it is therefore 
extremely difflcailt to record directly load-deformation diagrams, 
the observations are usually limited to the recording of the total 
energy expended in deformation or fracture. Hut even in this 
case the energy dissipated during the process of transfer of the 
impact into the specimen by inertia elTects and deformation of 
pai’ts of the machine is so considerable as to make the inter- 
])i’etation of results rather difficult. In most high-x elocity tests 
in which force-deformation curves ha\'e l)een reported, these 
curves were obtained from the actually recorded displa(*ement- 
time diagrams by double differentiation with regard to time. 
The resulting acceleration-time diagram is easily conv^erted into 
a force-time diagram if the mass producing the impact is known. 
The force-deformation diagram is then obtained by correlating 
the divsplacement-time and the force-time diagrams. 

The dilTerence between load machines (or soft deformation 
machines) and hard deformation machines is equally significant 
for the interpretation of results of tests under repeated load cycles 
as it is for single-stroke tests. If the amplitude of the load cycle 
is kept constant, the amplitude of the deformation cycle will 
change during the test. But the relation between load or stress 
at fracture and the number of load cycles sustained to fracture 
is not affected by this change. However, when the amplitude 
of the deformation cycle is kept constant under testing conditions 
under which the elastic deformation of the machine, that is, of 
the ''springwhich enforces the deformation of the specimen, 
is small in comparison with the deformation of the specimen, 
the load amplitude drops with the start of inelastic deformation. 
The harder the machine or the more extensive the inelastic 
deformation at the imposed amplitude of deformation, the more 

pronounced the drop of the load amplitude. Thus, the actual 
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intensity of the load cycle produced by way of the imposed defor¬ 

mation cycle is variable, and the recorded relation between load 
or stress at fracture and the number of load cycles sustained to 
fracture is the less reliable, the more extensive the inelastic 
deformation during the test. 

The most frequently used conventional mechanical tests are: 
(1) the hardness test, (2) the uniaxial tension test, (3) the impact 
test and (4) the repeated-load (fatigue) test. The significance 
of these tests will now be analyzed and related to the associated 
inelastic deformation. 

86. The Hardness Test 

The hardness test is the simplest of all mechanical tests to 
perform. By attributing a numerical value to the resistance 
of a material to indentation of a specified size or depth, encoun¬ 
tered by an indenter of specific shape and assumedly infinite 
rigidity, it expresses a relation between the resistance in terms 
of the acting force, called hardness, and the inelastic deformation 
in terms of the size of indentation. In this definition hardness 
is the resistance associated with a certain arbitrarily specified 

amount of inelastic deformation and is therefore a function of 
this deformation. A less arbitrary procedure would be to define 
hardness in terms of zero inelastic deformation, as the maximum 
force under which no irrecoverable deformation, that is, no 
permanent indentation is produced. Based on this definition 
of hardness, however, the hardness test could hardly be performed. 

Evidently the information which the hardness test provides 
will be related to the properties of the bulk of the material only 
if the properties of the surface do not differ considerably from 
those of the interior or if the thickness of the surface material 
of different properties is small in comparison with the depth of 
indentation. 

In order to determine the resistance with which the material 
opposes the indentation, that is, its hardness, a large number of 
testing procedures have been developed. Of these the Brinell 
(ball indenter), the Rockwell (ball or cone indenter), and the 
Vickers (pyramid indenter) tests are the most widely used. In 
all these tests, the hardness is expressed either in terms of the 
indentation depth, if the applied force is invariable, or in terms 
of a force or of a uniform stress over the indentation area.'*® ^ 
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The hardness values obtained from different tests are therefore 
less the expression of a genuine physical property than of com¬ 
parative behavior under the different very specific testing con¬ 
ditions. Because of the complex state of stress produced in any 
type of hardness test, the hardness number must, in general, not 
be considered a real material constant. In Brinell tests it is 
highly variable and depends strongly on the absolute value of 
the indentation force; although in cone and pyramid indenter 
tests this dependence on force is very nearly eliminated because 
of the geometrical similarity of the indentations under any load, 
the hardness number itself is still a comparative characteristic 
rather than the expression of a physical property, since it depends 
on other factors of the test, such as the cone angle. 

The definition and measurement of hardness in terms of a 
specific pressure alone (cannot be considered adequate, since the 
significance of the resistance to inelastic deformation can only 
be interpreted in relation to this deformation. The assumption 
that an interpretation is possible in terms of the resistance alone 
would be valid only within the elastic range of deformations 
because, within this range, the form of the relation between 
resistance and deformation is known and independent of the 
test. The conventional procedure to represent the results of 
hardness tests in terms of the resistance to deformation alone is 
equivalent with the attempt to represent comparative results 
of tension tests in terms of the recorded loads or the true stresses 
at a single isolated and arbitrarily selected value of strain which 
is not specified. A real resistance value must, however, embody 
both cause and effect, that is, the applied specific force and the 
produced deformation. Hence, the real measure of resistance 
or hardness should be the ratio between the*' applied specific 
force (stress) and the resulting irrecoverable deformation (inden¬ 
tation). The resistance so defined would be more of a physical 
(^hara(*teristic of the material than the conventionally defined 
hardness number; it would be of the type of a hardening modulus^ 
similar to the concept of the secant modulus in tension tests 
beyond the elastic range. The fact that the surface over which 
the force is distributed is connected by a simple geometrical 
relation with the inelastic deformation (indentation depth) is a 
feature of the hardness test which makes measurements particu¬ 

larly simple, since, at least theoretically, it is sufficient to measure 
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one of the geometrical characteristics only, that is, either diameter 
or depth of indentation. 

Since the hardening modnlus observed in hardness tests will, to 
a considerable extent, be determined by the work-hardening 
capacity of the material, which tends to decrease with increas¬ 
ing strain, a similar trend of decreasing hardening modulus with 
increasing indentation must be expected and has actually been 
observed. This similarity, however, is merely one of trend, 
since not only is the state of stress and therefore the extent of 
inelastic deformation different in both tests, but also the defini¬ 
tion of deformation. In the hardness test this deformation 
cannot be expressed in dimensionless form (strain) by referring 
it to a definite measured length, but it is an average of a complex 
nonuniform deformation. Therefore the hardening modulus is 
still not a real material constant, but it is nearer to one than the 
conventional hardness number. Since the observed variables 
in the hardness tests are thus not independent of the geometry 
of the test, the correlation of the results of hardness tests with 
the results of tests in which mechanical properties are observed 
as functions of strain must necessarily remain empirical. 

The two variables observed in the Jirinell hardness test are the 
force P divided by the area A of the indentation, which is the 
hardness number, 

Hn = P/A = P/wDi 
2P_ 

tD{D - Vd^ - d}) 
(8()1) 

where D denotes the diameter of the ball and d the diameter of 
the indentation; the depth of the in¬ 
dentation ^ is a function of d: 

Fig. 86 • 1 Brinell hardnc«f<; 
test. 

t = - VD^ - d^) (86 -2) 

In terms of the indentation angle th 
(Fig. 86-1): 

2P 
Hb = --(86-3) 

tD^(1 ■— cos 0/2) 

Hence, for similar indentations defined 
by equal angles 0 and identical hardness number H the loads 
are proportional to the squares of the ball diameters. Similar 
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formulas for hardness numbers H = P/A are obtained foi- 
indenters in the shape of cones or pyramids. 

The relation between the force P and the diameter of indenta¬ 
tion d is frequently presented in the form of a power law, 

P = ad^^ (80-4) 

where a and n are constants that depend on hardness and diain 
eter of the indentcr ball, a repre¬ 
senting the value of the load for 
the diameter d = 1; the power n 
varies between ii = 2 and n = 8. 
For cone and pyramid indenters, for 
which the hardness number is inde¬ 
pendent of the load, the power n — 2 
and P = ai^. 

The unsatisfactory correlation be¬ 
tween the real hardness of a metal 
which is essentially the expression 
of its work-hardening (aipacity and 
the conventional hardness number, 
particidarly the Brinell number, is evident from the shape of the 
observed Hb{P) and //«(f/) relations which, for a number of 
materials, show a definite maximum (Fig. 8G-2). This maxi¬ 

mum is unrelated to the steadily 
increasing work hardening of the 
metal but is a purely geometrical 
characteristic of the test. The 
hardening modulus H/t, on the 
other hand, shows a decline which, 
rapid at first, becomes more grad¬ 
ual later (Fig. 86 • 3); this behavior 
is consistent with the fact that 
the work-hardening modulus of a 
metal observed in a uniaxial test 
decreases at first rapidly and then 
more slowly and tends asymptoti¬ 

cally towards zero. Correlation of hardness with mechanical 
characteristics observed in other types of tests depends on the 
similarity of the inelastic behavior under the compared testing 
condition. 

Depth of indentation t, load P 

Fig. 86*3 Schematic relation 
of hardening modulus Hn/t and 

load or depth of indentation. 

F'ig. 86-2 Schematic rela¬ 
tions of Hriiiell hardness and 
diameter of indentation or 

loads. 
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Within the elastic range the elastic modulus may be considered 
a direct measure of hardness. Within the inelastic range the 
resistance to indentation depends on both the elastic and the 
inelastic (work-hardening) resistance. The smaller the indenta¬ 
tion, that is, the smaller the load or the higher the hardness of 
the material, the more important is the elastic component of 
the resistance in comparison to the inelastic component, and the 
more nearly linear the relation between hardness and elastic 
modulus. This fact is an additional explanation of the difficulty 
of comparing hardness values associated with different depth of 
indentation. 

No close empirical correlation between indentation hardness 
and yield limit observed in a tension test can be expected, since 
the amount of inelastic strain associated with the yield limit is 
considerably smaller than the inelastic* strain produced by the 
indenter. It has been estimated that the inelastic, strain associ¬ 
ated with the usual Brinell hardness numbers of steel is of the 
order of magnitude of between 5 and 15 percent, whereas the 
yield limit is usually determined from the 0.2 percent offset. 
Because of the relatively large strain associated with the hard¬ 
ness test, a direct relation can be expected to exist between the 
hardness number and the stress St at whicdi nec^king starts in the 
tensile test, since the localized strain at the early stage of necking 
is of a similar order of magnitude. The existence of such a rela¬ 
tion between the hardness number Hu and the so-called ultimate 

tensile strength St (see Art. 87), 

.sv = CHn (86-5) 

is actually observed;®® ^ the factor C varies between 0.39 and 
0.45. A relation of this type can be expected to hold as long as 
the orde'* of magnitude of inelastic straiii is comparable in both 
types of test, and to become the more unreliable, the more dis¬ 
similar, for a certain material, the inelastic aspect of the respec¬ 
tive tests. 

The significance of time and of temperature in the interpreta¬ 
tion of the results of hardness tests depends on the deformational 
character of the material. In hardness tests of essentially visco¬ 
elastic materials, both the rate of indentation and the time of 
load application, and also the period elapsing between load 

removal and the measurement of the indentation, will necessarily 
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affect the result, since the influence of creep and elastic after¬ 
effect (creep recovery) may be considerable. The results of 
indentation hardness tests of metals at elevated temperatures 

may be affected both by the change in hardness with tempera¬ 
ture of the indenter, by the difference in temperature between 
the indenter and the material, as well as by the duration of the 
test and the period between load removal and measurement of 
the indentation. In order to obtain reproducible results all 
those factors must be controlled. 

Indentation hardness tests are frequently used in order to 
control the uniformity of a certain property related to hardness, 
such as for instance the conventional ultimate tensile strength.^’ 
If the correlation is satisfactory and interpretable in terms of the 
principles of inelastic behavior, as it is in the case of tensile 
strength according to oa\. 8()-5, hardness tests may, for control 
purposes, be preferable to tension tests because of their sim¬ 
plicity. The statistical information concerning the uniformity 
of the “ultimate tensile strength^’ of the material obtainable 
from a large number of simple and rapidly performed hardness 
tests is usually more relevant to the purpose of the test than the 
limited information supplied by a small number of elaborate 
tension tests. 

The correlation of data concerning performance in technological 
processes with conventional hardness numbers is rather vague. 
A better correlation may however be obtained by using the 
hardening modulus. With regard to design, the hardness number 
is not directly significant, since, like the “ultimate tensile 
strength,’^ it is associated with inelastic deformation far beyond 
that involved undei’ service conditions. 

Apart from hardness measurements by indentation under 
static loads, dynamical testing procedures have been developed 
in scIrroHcope tests in which the hardness is measured in terms of 
the height of rebound h of a body that is dropped from a specified 
height ho on the surface of the material to be tested. It is evi¬ 
dent, that the concept of hardness as defined by the rebound 
test is basically different from the hardness concept underlying 
the indentation test. Whereas, in the indentation test, hardness 
is defined as the resistance to inelastic deformation, it is defined 
in the rebound test as a direct function of the recoverable poten¬ 

tial energy, which is the energy that produces the rebound. 
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Hence, the relation measured in the scleroscope test is that 

between the recoverable strain energy and the applied energy. 
The rebound is therefore related to the damping capacity of the 
material rather than to its hardness. 

Even for the purpose of comparative hardness testing, the 

rebound test can evidently be applied only to materials of equal 
modulus of elasticity. Only in this case is the trend of the 
rebound values related to the trend of hardness values, since, the 

higher the rebound, the smaller the amount of energy spent in 

producing inelastic deformation; the smaller therefore the 
inelastic deformation itself, which, in terms of the indentation 

test, is inversely proportional to the hardness of the material 
under constant load. Repetition of the rebound test at the 
same spot must necessarily result in increasing rebound hardness 

values, because of the work-hardening effect produced by the 

test itself. 
The results of rebound tests of different materials are compa¬ 

rable only if they are interpreted in terms of damping and not of 
hardness. The specific damping may be assumed to be roughly 

related to ho and h by the equation, 

= 1 — h/h[) (86-6) 
ho 

from which the other damping constants can be derived. 

87. The Tension Test 

The tension test is the basic mechanical test. It is at present 

the most extensively used method for evaluating the physical 
properties of solid and apparently solid materials. At the same 
time the tension test is a very comple^^ procedure; its results 

depend to a considerable extent on the geometrical form of the 

specimen, the characteristics of the testing apparatus, and the 

general conditions of the test. 
The results of tension tests are recorded either in the form of 

load-deformation curves or of stress-strain diagrams. Whereas 

the load-deformation curve is easily defined and recorded, its 

use in the interpretation of the test is unsatisfactory, since it 

depends essentially on the dimensions of the test specimen. On 
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the other hand, the use of diagrams of stress versus strain, which 

is more satisfactory because of the recording of variables which 
are essentially independent of the particular dimensions of the 
test specimen, introduces the difficulties of an adequate and 
consistent definition and measurement of those variables. This 

is l)ut a particular aspect of the quite general experience in the 
mechanical testing of materials that, the easier and more rapidly 
a test (!an be performed, the more difficult the interpretation of 

the observed results. The difficulty of defining and recording 

stresses is a characteristic of the tension test and due to the 
nonuniformity of the deformation process within the inelastic? 

range of the test; the difficulty and arbitrariness of defining strain 
is characteristic for the analysis of all deformation processes in 

which deformations are not infinitesimal (see Art. 29). 

Stress in the tension test is defined either as a fictitious value, 
by dividing the applied load by the original area of the cross 

section of the specimen (nominal or “engineering” stress .so) or 

as a real value by dividing the applied load by the smallest real 
area pertaining to this load (“true” stress). This value is. how¬ 

ever, real only within the range of uniform strain, becom¬ 

ing fictitious after necking sets in and the state of stress is 
three-dimensional. 

The strain is derixed either from the extension of a certain 

gage length /o or from the reduction of the original cross-sectional 
area Ao. A definite geometrical relation between the changes 

of l{) and of Ao exists as long as the deformation is homogeneous. 

Beyond this range, that is, when necking sets in, the changes of 
length and diameter can no longer be related; strains derived 

from the observed over-all extension and from local area reduc¬ 

tion are therefore no longer interchangeable. Since the measured 
extension is not uniform over the gage length but represents the 

sum of a uniform elongation and a highly localized nonuniform 

deformation, the strain derived from the maximum area reduc¬ 
tion is a more adequate measure of inelastic deformation within 

the range of necking than that derived from the ovei-all extension 

of a gage length. 
The principal definitions of strain which are used in repre¬ 

senting the results of tensile tests are®^ ' (for assumedly volume- 

constant materials): 
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(a) The nominal elonjjiation st rain eo, 

A/() / — lo 
Ci) = -y- - 

M) li) 

or, since Al = AoIq, 

.lo — A A.l() 

[Art. 87 

(87-1) 

(87-2) 

(6) The nominal area-reduction strain qo, 

— A AAq 
r/o = T = — 

A 0 A 0 

or, because of volume constancy, 

I — Iq AIq 

= / / 

(c) The logarithmic (natural) strain, 

= ei 

(87-3) 

(87-4) 

■-/.''-(a 
The relation between the various strains are 

e = 5 = - log (1 - </o) = - log (1 - eO = log (1 + co) 

= log(l+9i) (87-6) 

and 

1 + eo = 
1 

1 ~ 61^ 
1 + 0^1 = 

1 

go 
(87-7) 

For different values (Aq/A) or {l/lo) thq functions eo = qi, qo 
= ei and e = q have been plotted in Fig. 87 * 1. 

The complexity of the behavior of metals in the tensile test is 
due to the fact that, beyond the elastic range, the deformation 
is not uniform but, because of the heterogeneity of the flow, 
proceeds in a series of local extensions associated with migrat¬ 
ing’^ small local contractions.*^ At each point of contraction 
the stress increases; however, at the same section the material 
has also been work-hardened. There is therefore a competition 
between the increase of resistance to inelastic deformation due 
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to work hardening and the increase of stress due to area reduc¬ 
tion. As long as the work hardening overcompensates the area 
reduction, the inelastic straining is transferred into another less 
work-hardened section. However, as soon as the rate of work 
hardening has been so far reduced that it can no longer com¬ 
pensate the local reduction of area, the section appears weaker 
than the adjacent sections and the deformation continues in 
the same section, in whi(;h therefore the stresses increase and 
necking sets in. Necking is thus an instability (jondition defined 
by a maximum of the load P that the affected section is able to 
carry. Since P = sA, the 
condition at which necking 2.81-- 
starts can be expressed by 
dP — d{sA) = 0 and there- 
fore (see Art. 45): I 

d^ dA ^ 

As long as the increase -20-30 
of the total force A ds due A^/A 
to work hardening exceeds 

the decrease { — s dA) due nitions of strain in terms of Aq/A (after 

to area reduction, thecarry- McOegors^ »). 
ing capacity of the section 
increases, and “uniform” inelastic elongation is produced by 
propagation of the local plastic strain from section to section. 
As the rate of the purely geometrical area reduction cannot be 
expected to increase discontinuously, the fact that, at a certain 
strain, the rate of work hardening is so substantially reduced 
that A ds < s dA, could be the result of the rather rapid change 
in the work-hardening mechanism due to a change in the hard¬ 
ening effect of crystal fragmentation after the volume of crystals 
of largest size has been broken up, as discussed in Art. 45, or it 
could be the result of a sharp intensification of recrystallization. 

Since the instability of the deformation of the specimen in the 
tension test thus appears to be the expression of a certain change 
in the work-hardening process, the stress at which this change 
occurs has no significance beyond that of delimiting two stages 
of the work-hardening process. The conventional interpretation 
in terms of a characteristic of strength {ultimate tensile strength) 
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of the maximum load or of the nominal stress at which necking 

sets in has therefore no physical justification; hence, the recorded 
value of the conventional tensile strength does not represent a 
characteristic of the material interpretable in terms of structural 
performance or significant in design. This value is conspicuous 
only if the results of the tension test are presented in terms of the 
load or the nominal stress .so but loses its identity as a maximum 
if the recorded dynamical x ariable is the true stress s. In this 
representation it is, however, defined by a certain characteristic 
relation between stress and strain. 

If the recorded strain is the nominal strain co, the point of 
maximum load in the true stress versus strain curve is easily 
determined as the point at which the tangent through (co = — 1, 
s = 0) touches this curve. For a different definition of strain the 
identification is less simple. The condition for the point of 
maximum load follows from e(p 87-8 if A and dA are expressed 
in terms of the strain, by introducing the assumption of volume- 
constant deformation. Since, according to eqs. 87 * I to 87 -5, 

dA _ dco _ dei 

A I + Co 1 — Cl 
(87-9) 

the following relations are obtained from ecp 87-8 for the slope 
of the tangent at the point of maximum load (Fig. 87-4). 

ds s d.s d,s .s .s da ^ 

T~ "" rZ A ^ r ^ "" 1 ^ T "" deo 1 + Co de\ dgo 1 — ci 1 — (7o de 

It is frequently assumed that the true stress—logarithmic- 
strain relation between the yield stress and the stress at maximum 
load (necking stress) can be represented by a simple power 
function, because of the relatively small Tange over which this 
relation has to be so represented; such assumption is generally 
justified, although it should be kept in mind that the proposed 
representation is a purely empirical curve-fitting procedure. 

Hence, if 

s = const c" (87 11) 

reproduces the recorded true stress-strain diagram within the 
considered range, the double-logarithmic representation of this 

function is a straight line. Because 
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“ = n const (87-12) 
de 

and l)e(*aiiso of eqs. 87 -8 and 87 *9, the relation is obtained, 

const c"' = n const (87• 13) 

wiiich shows that the lo^^arithmic strain at tlie maximum load 
is expressed by the power ri. Since according to eq. 30 H this 
power n represents the slope of the function 87 • 11 in double- 
logarithmic representation, this slope gives the logarithmic strain 
at the maximum load. The value of this strain can thus be 
fairly accurately determined from a double-logarithmic plot of the 
true stress-strain diagram, however, only as long as the stress- 
strain diagram can be represented by a single pover function. 

In actual tests there is usually a slight difference between the 
points on the stress-strain diagram at which the maximum load 
is reached and the point at which necking sets in, since necking 
starts somewhat before the maximum load is attained. This 
difference is the result of the time effects which have not been 
considered in the analysis of the tension test. Since the apparent 
resistance of the specimen to deformation is not only a function 
of work hardening, but also a function of the strain rate, the 
insetting necking which tends to increase the local strain rate 
raises the stress at which the deformation proceeds beyond the 
work-hardening resistaiK^e. As a result the maximum load is 
slightly higher than the necking load, the difference being the 
larger, the more pronounced the intrinsic effect of the strain rate. 

In Fig. 87 • 2 the results of a tension test have been plotted in 
terms of both nominal and true stresses, as well as for the three 
different definitions of strain in terms of area reduction q\, qo, 
and q. Although both the functons s = f{q) and s = f{qi) are 
very nearly straight lines beyond the point of maximum load, 
the function ,s' = /(q'o) shows a marked upward curvature. This 
upward curvature, which is observed in practically all tension 

t ests the results of which are plotted in the variables s == /((/o), 
is the result of the particular definition of the strain. The 
straight-line part of the relation 5 = f{q) or s = /(^o), on the 
other hand, has no particular significance; it extends only over 
a certain range of strains, beyond which it may be expected to 

curve down, unless fracture intervenes (see Art. 45). 



546 Sisnificancc of Mechanical Testins [Art. 87 

Fig. 87-2 Comparison of different representation of results of tension t(\st 

of mild steel specimen (after McGregor®^’^). 

The representation s = /(^o) has been used to extrapolate the 
results of tensile tests to values of qo = 1 or A = 0, defining 

the extrapolated stress s at 70 = 1 as 
the/me cohesive strengih^'^ ^ (Fig. 87 -3). 
This procedure tacitly neglects the 
characteristic upward curvature of all 
s = fiqo) diagrams for large values of 
strain by replacing the actual curved 
diagram by a tangent at the maxi¬ 
mum load stress, a procedure for 
which no justification exists. If the 
abscissa go = 1 is interpreted in terms 
of g, which is the only definition of 
strain that does not lose its meaning for 

very large strains, it is found that, for go = I, the strain g = <», 
whereas, for go = 0.67, the pertaining value g = 1.10. Hence, 
the range of strains in the representation s = /(g) between 

Fig. 87-3 Ludwik’s extra¬ 

polation of the 5(go) curve. 
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q = 1.10 and 7 = 30 is shortened and thus sharply distortcMl 
in the representation .s = /(go) to a range between go = 0.67 and 
go = 1.0 (Fig. 87-4). Evidently, the distortion of the function 
8 = /(g) in th(' representation s = /(go) becomes the more pro¬ 
nounced, the nearer go approaches unity; the upward slope of the 

« = /((/o) diagram may thus be expected to become very steep 
in the vicinity of go = 1. The limiting ordinate of s at go = 1 
which represents the limiting work-hardening resistance for 
g = 00, and which is reached asymptotically (see Art. 45) can 

Fio. 87-4 Comparison of reprosontation sO/o) and 8{q) for largo strains. 

therefore have no relation whatsoever to a fictitious value of stress 
obtained by linear extrapolation. 

The same is true if the test results are plotted, as has been done 
by Stead and others/^ in terms of n = fid/do) = / \/l — go 
instead of « = f{qo) (Fig. 87-5). Although, in this representa¬ 
tion the upward curvature of the diagram starts at considerably 
higher values of ‘^strain,’' the range of deformation 0.33c/o ^ d 
^ 0 is, in terms of logarithmic strain, the range 2.3 g g ^ oo. 
The work-hardening function in terms of ,■ = /(g) extending 
from g = 2.3 to infinity is therefore distorted beyond recognition 

l)y being squeezed into the range 0.33(/o > d > 0. In the vicinity 
of d = 0 an upward curvature of the s = J{d/do) diagram of such 
sharpness must therefore be expected that any attempt to 
approximate this diagram by a straight line is clearly invalidated. 
h]ven an extrapolation from go = 0.999 to go = 1.000 is impos¬ 
sible since, for go = 0.999, the logarithmic strain g = 3.0; thus 
the stress-strain diagram s = /(g) between 3 < g < <» would, 
in the s = /(go) representation, be squeezed into the interval 

0.999 < go < 1.0. 
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The stress-strain diagrams s = f{qo) representing the results of 
tension tests of the same material at different stages of work 
hardening (Fig. 87 -5) must necessarily intersect at go = 1, since 
in the particular definition of strain go this intersection is the 
expression of the fact that an ultimate work-hardening limit 
exists which is reached asymptotically, that is, for g = oo. The 

Fig. 87-5 Extrapolation of s{d/do) curves recorded in tension tests of 

carbon steel at different stages of work hardening defined by the percentage 

of area reduction at the end of the work-hardening process (after Stead*’ 

point of intersection can, however, not be found by linear extrap¬ 
olation from strains go < 1.0. 

The information contained in the stress-strain diagram is the 
level of yield stress, of necking stress, and of fracture stress, and 
the work-hardening capacity of the material as indicated by the 
slope of the diagram between the necking stress and the fracture 
stress. Only the first two figures are obtained from the conven¬ 
tional nominal stress versus strain diagram. Of these the yield 
stress is the only figure of direct engineering significance. It 
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determines the load-carrying capacity of all structures for which 
dynamical effect ai‘c not of primary importance. The less pro¬ 
nounced the yield stress, the less clear its engineering significance, 
since the carrying capacity of a structure can be clearly defined 
in terms of the yield stress only if yielding is a real rather abrupt 
transition of deformational behavior of the matenal (see Art. 
79). If the yield stress is a designated limit, it is the shape of the 
transition from the elastic into the work-hardening range and the 
slope within the work-hardening range that become of significance 
in the evaluation of the material. 

The shape of the true stress -strain diagram within the transi¬ 
tion range between the designated yield stress and the necking 
stress is of significance as an indication of the ability of the mate¬ 
rial to redistribute elastic peak stresses by inelastic action. The 
more gradual the transition, the less relief of stress concentrations 
(!an be expected and the more liable therefore the material to 
brittle fracture. On the other hand, the ability of such materials 
to sustain a stress exceeding the designated yield stress without 
appreciable deformation associated with slip and crystal frag¬ 
mentation reduces the damage within the internal structure pro- 
duc.ed by this over stress and makes the material resistant to its 
repetition. Thus metals with a rather sharp transition into the 
work-hardening range may be expected to be less sensitive to 
stress concentrations, but more sensitive to repeated overstress, 
than metals with a gradual transition. 

For metals of roughly equal fracture stress the slope of the 
diagram between the necking stress and the fracture stress is 
significant with regard to the performance in technological and 
fabrication processes rather than in the finished structure. It is 
an indication of the forces required to produce deformation in 
deep-drawing, stamping, cold-rolling, and other cold-forming 

processes, as well as of the suitability of the material for large 
local deformation without embrittlement. This correlation of 
test and performance is possible, since the respective strains are 
of the same order of magnitude. However, the slope of the 
stress-strain diagram alone is not a sufficient guide to ductility, 
if the fracture stresses of the compared metals are different. 
In this case the total amount of dissipated energy, as defined by 
the area under the stress-strain diagram, in conjunction with the 

slope within the work-hardening range, might provide a more 
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reliable indication of cold deformability. The best materials 
would be those with the largest areas and the smallest slopes. 

Although the structural performance of a metal is strongly 
affected by the shape of the 6* = f{q) diagram in the vicinity of 
the yield stress, its suitability for actual use in structures depends 
to a considerable extent on the ratio between the yield stress and 
the necking stress. This figure has, howe\^er, no relation to the 
actual performance of the structure under any possible service 
condition, but only to its expected performance under abnormal 
accidental conditions, l^oth the yield stress and the necking 
stress are limits of inelastic behavior; the range between those 
two stresses is characterized by a work-hardening capacity which 
is considerably higher than that beyond this range. Hence, it 
is only within that range that a deformational resistance, appre¬ 
ciably exceeding the resistance at the yield stress, can be devel¬ 
oped by inelastic deformation; the strains, although relatively 
large, are still limited by the existence of states of equilibrium. 
The consequences of an accidental excess load, particularly one 
that is dynamically applied, are rendered less serious if the prog¬ 
ress of yielding is accompanied by an increasing resistance by 
which it can be checked before the deformation is excessive or 
fracture occurs. Evidently, the amount of enei'gy that can be 
absorbed in this process depends as much on the difference 
between the two stress levels as on the necking strain. Ft is 
therefore the ratio between yield stress and necking stress in 
conjunction with the limit of uniform strain, that is, the strain 
at insetting necking, that provides the reserve in carrying capac¬ 
ity against accidental, principally dynamic, overloads, ensuring 
that the work-hardening capacity mobilized against the acting 
forces be adequate but also that the uniform yielding be sufficient 
to reduce the intensity of the forces resulting from the impact. 
That the ‘^strength reserve’’ assumedly represented by the excess 
of the necking stress over the yield stress is unrelated to the 
design and does not define an ultimate carrying capacity, which 
could be compared to a design-carrying capacity, is evident from 
the fact that the ultimate tensile strength^ as the necking stress 
is usually called, is neither ‘‘ultimate” nor a “strength,” but 
only a point at which the rate of work-hardening resistance 
changes; it is situated within a range where strains are a multiple 

of maximum design strains. 
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There is no relation between the information obtained from a 
uniaxial tension test and the performance of the material under- 
conditions of triaxial stress. High ductility in the tension test 
has no bearing on the actual behavior under triaxial stress, par¬ 
ticularly as the sti-aiii values associated with ductility in the 
uniaxial test are of a different oi-der of magnitude from the strains 
under conditions of triaxial stresses. {Satisfactory performance 
under triaxial stress rc(iuires a relatively low yield limit in terms 
of distortional energy, so that, even under conditions for which 
the ratio between volumetric strain energy and total applied 
strain energy is high, a relatively small amount of distortional 
energy is sufficient to produce inelastic relief of peak stresses. 
Thus a stress strain diagram starting to curve downward at a 
relatively low stress le\’cl might indicate a better performance 
of the metal under (*onditions of triaxial stress than a linear rela¬ 
tion attaining at high yield stress. 

The true fracture stress observed in a uniaxial tension test 
represents the cohesive strength, under the particular state of 
stress under whi(*h fracture occurs, of a material that has under¬ 
gone the inelastic defoi-mation preceding fracture. These con¬ 
ditions are, howe\'er, unknown, unless the specimen fractures 
without appreciable inelastic* deformation, d'he fracture stress 
of the deformed material can therefore have no significance with 
respect to the performance of the material in service, since even 
the most criti(;al service conditions are not associated with 
inelastic deformations of the order of magnitude observed at 
fracture in the uniaxial tension test of a ductile material. The 
fracture stress can be directly related to the carrying capacity 
of the structure only if both the specimen and the structure fail 
in brittle fracture. However, the smaller th( inelastic deforma¬ 
tion that precedes fracture, the more important the local inhomo- 
geneitics of stress both within the structure and within the 
specimen, and the less reproducible therefore the results of tests. 
The greater therefore the difficulty of establishing a correlation 
between the results of similar individual tests and between test 
results and performance. 

Strain at fracture, either in terms of elongation or of area 
reduction, is frequently considered a measure of the ductility or 
the toughness of the material. Actually these values are func¬ 

tionally unrelated to the performance of the material under 
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service conditions, since the necking of the tensile specimen, 

which is the principal factor in producing the strain values at 
fracture, is a characteristic instability effect of the test under 
conditions not comparable to service conditions. Because of the 
necking, however, a triaxial state of stress develops in the vicinit}^ 
of the necked-down section. Thus, the specimen at stresses 
beyond the necking stress is subject to a notch-tension test, and 
its performance in this test is an indication, at least qualitatively, 
of its ductility under a hydrostatic stress component superim¬ 
posed on the distortional stress, which increases with the reduc¬ 
tion of the necked-down section. Hence, it may be assumed that 
the more extensive the necking prior to fracture, the better the 
performance of the material around a notch or a stress concentra¬ 
tion. The measure of such ductility, however, is not the over-all 
elongation of the gage length at fracture, but the local reduction 
of area of the necked-down section. 

Whereas the area reduction at fracture may thus be considered 
a comparative measure of notch ductility, the practically uniform 
elongation associated with the necking stress is an indi(;ation 
of the maximum capacity of the material to absorb, that is, to 
dissipate energy under exceptionally heavy excess loads with a 
limited amount of deformation. Since this capacity is unrelated 
to the local necking, it is also not clearly related to the over-all 
elongation at fracture. Joeing a combined expression of the 
uniform elongation prior to necking and of the local elongation 
associated with the local contraction, the over-all elongation at 
fracture is an unsatisfactory characteristic of ductility, as in the 
ductility evaluation of the material it is desirable not to combine 
the uniform and the local inelastic deformation. 

The magnitude of inelastic strain necessary for redistribution 
of stress concentrations and relief of elastic peak stresses is, in 
general, of the order of magnitude of the elastic strains (see Art. 
43). Thus, satisfactory performance of a material under service 
conditions would require not more than this amount of inelastic 
strain accompanying stresses of the order of magnitude of the 
highest elastic service stresses. The inelastic strain at frac^ture 
or even at the necking stress is therefore irrelevant with regard 
to service performance, unless it is assumed that in a continuous 
stress-strain diagram an inelastic strain of the order of magnitude 
of the elastic strain at the level of the highest service stress is 
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necessarily associated with a definite limit of uniform inelastic- 
strain prior to necking. This limit of uniform strain would thus 
not be significant in itself, but only as an indication of the mag¬ 
nitude of inelastic strain under extreme service conditions. 

Strain (c) 

Fig. 87 6 Comparison of of different notches («) on stress-strain 

diagrams in tension test, using (6) nominal stn'sses, or (c) true stresses 

(after Ludwik*^ • . 

Conventional creep tests are tension tests under sustained load. 
Because of the relatively small strains involved, the difference in 
the various definitions of strain are of less importance in creep 
tests than in the conventional tension tests. Similarly, the 
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consideration of the true stress instead of the load or the nominal 
stress does not appreciably affect the results. For large strains, 
however, it may be necessary not only to correct the results 
recorded in terms of nominal stress sq and strain cq, but also to 
compensate for the increase in stress due to the reduction of 
cross-sectional area, since creep tests should actually be performed 
under constant stress (see Art. 49). 

If the tensile test specimen contains a symmetrical notch, the 
distortional energy in the vicinity of the notch, resulting from 
the applied axial load, will be the smaller the higher the specific 
volumetric expansion due to the notch. Hence, the load or 
stress required to produce the same amount of inelastic strain 
increases with increasing sharpness of the notch, with the result 
that both the uniaxial nominal yield-stress and the ultimate stress 
are raised by notches of increasing sharpness (Fig. 87 ()). The 
fracture stress itself appears to be unaffected by the charactei* of 
the notch; however the extent of work hardening required to 

bring the strCvSS up to the critical value, which is indicated by 
the amount of irrecoverable deformation preceding fracture, 
necessarily depends on the form of the notch; it is this form whicdi, 
by determining the relative amounts of volumetric and distor¬ 
tional energy associated with a certain applied load, determines 
the amount of additional resistance to deformation to be pro¬ 
vided by work hardening, before the total resistance attains the 
critical energy level characteristic of the fracture stress. Thus 
the higher the stress that can be sustained within the notched 
section without inelastic deformation, the smaller the inelastic 
strain at which the stress reaches the limit of fracture. 

88. The Torsion Test 

Among mechanical tests the torsion test' is theoretically the 
most adequate test for studying inelastic behavior, since it 
represents conditions of purely deviatoric stresses. Therefore 
the torque-twist diagram observed in the test of the specimen 
has the same character as the basic shear-stress-shear-strain 
diagram for the volume element; both diagrams are directly 
proportional, if tests are performed on thin-walled cylinders in 
which the effect of the nonuniform stress distribution along the 
diameter of the plain cylindrical specimens is practically elimi¬ 
nated. Such proportionality does not exist in other but torsion 
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tests, since the isotropic stress superimposed on th(‘ devialoric 
stress under conditions of simple tension, compression, or bending 
affects the force-displacement diagram without affecting the 
inelastic component of the deformation. 

Like tension tests, torsion tests can be performed at constant 
strain rate or at constant stress rate. In the first case the t(n*que 
is applied by a gear or by a transmission; in the second it is 
produced by a driving pulley from which a bucket is suspended 
into which lead shot or water is fed at (‘onstant speed. If this 
speed is kept very low, it is relatively easy to observe the dis¬ 
continuous steplike types of stress-strain diagrams discussed in 
Art. 46 since the slip responsible for the discontinuity is not 
influenced by a volumetric component of strain.^ 

Because of the elimination of the volumetric expansion and of 
the necking associated with the inelastic deformation in the uni¬ 
axial tension test the range of inelastic sti ain that can be investi¬ 
gated in a torsion test considerably exceeds that produced in a 
tension test prior to fracture. This difference increases with 
increasing brittleness of the material. Thus, a previously cold- 
worked metal appears prior to fracture considerably stronger and 
less ductile in the tension test than in the torsion test, - a ph(y 
nomenon that is probably due to the different effect of the density 
decrease associated with cold working; deformation in the tension 
test is accompanied by dilatation, whereas in the torsion test it 
proceeds at constant volume. 

The relations between the mecdianical variables under condi¬ 
tions of uniaxial stress and of torsion or pure shear have been 
given in Arts. 24 and 25. From the equations derived there it 
follows that the stress in the tensile test is in first approximation 
ecpiivalent to double the shear stress in the torsion test, whereas 
the tensile strain is equivalent to one-half the shear (torsion) 
strain. 

89. Impact Tests 

The conventional designation of a test as an impact test is 
rather inadequate, since it is current practice to lump together, 
under the general heading of impact tests, tests on notched 
specimens usually performed in bending under impact, with 
high-velocity tension tests of unnotched bars, without considering 

the basic difference between these two types of tests. In the 
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notc*hed-bar test the inelastic behavior of the material is mainly 
governed by the triaxial state of stress imposed by the notch 
and only to a lesser extent by the velocity of the striking mass, 
whereas in the dynamic tension test of unnotched specimens the 
ctTect of the strain velocity is of primary importance. In both 
types of tests, which are now carried out mainly on pendulum- 
type machines, the velocity of strain is assumed to be equal to 
the pendulum velocity. This assumption is justified only if the 
energy of the striking pendulum considerably exceeds the energy 
required to deform and break the specimen. 

The purpose of either type of test is different. Dynamic ten¬ 
sion tests are usually performed with the aim of observing th(‘ 
deformational behavior of a material strained at high velocity; 
notched-bar impact tests, on the other hand, are used for an 
empirical evaluation of the service performance of different mate¬ 
rial under dynamic loads. Whereas it is difficult to perform a 
dynamic tension test in such a w^ay that the stress-strain diagram 
is reliably recorded, but not more difficult to interpret it than it 
is to interpret the static tension test, it is relatively easy to per¬ 
form a notched-bar impact test and record the energy required 
to break the specimen, the so-called impact value, but extremely 
difficult to interpret the significance of this energy value in terms 
of basic mechanical properties of the material. This difficulty 
as well as the difficulty of comparing the results of test on speci¬ 
mens of different shape and size is due essentially to the difference 
in the inelastic deformation associated wuth the behavior under 
identical testing conditions of those specimens. However, the 
ease with which the conventional notched-bar impact tests, such 
as the Charpy or the Izod test, are performed has made these 
tests extremely popular. 

The characteristic shape of the force-elongation diagrams 
recorded in dynamic tension tests expresses the velocity effects 
on the deformation to be expected on the basis of the analysis 
of inelastic behavior. With increasing strain rate the yield stress 
is raised above the level observed in the static tension test, 
approximately in accordance with eq. 19* 13. Evidently this 
tendency will be the more pronounced, the more time-sensitive 
the inelastic behavior of the material is. Thus the yield stress 
of a cold-worked metal or the part of the force-elongation dia¬ 

gram that represents the transition from elastic to large-scale 
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inelastic deformation will be raised more pronouncedly in a hif^h- 
velocity tension test than that of a material with a more stable 
and therefore less time- and temperature-sensitive structure, 
such as an annealed metal.^'* ' On the other hand, the slope 
of the dynamic force-elongation diagram is smaller than that 
determined in the static test. Again, this penomeiion, which is 
due to the thermal softening of the material by the heat energy 
dissipated in inelastic deformation and not carried away produc¬ 
ing the nearly adiabatic chara(*ter of the high-velocity test (see 
Art. 54), is the more pronounced, the larger the specific amount 
of dissipated energy, that is, the highei* the velocity of the test, 
and the less stable, that is, the more' temperature-sensitive the 
structure of the material. Thus, cold-woiked metals will show 
a more pronounced decrease of the slope of the force-elongation 
curve in dynamic tests than metals in annealed condition. 
Because of the reduced work-hardening rate in the adial)atic 
test, the instability inherent in the tension test and expressed 
by oq. 87’8 is delayed, and necking sets in at a higher uniform 
strain. Hence, because of the possibility of a simultaneous 
increase of both stress and deformation, the total energy dis¬ 
sipated prior to fracture and c(Kisidered indicative of dynamic 
performance may be higher in the dynamic tension test than it is 
in the static test. This difference will usually bo more marked 
for cold-worked metals than for annealed metals and may prac¬ 
tically vanish if the structure of the material is very nearly stable 
and the testing conditions more isothermal than adiabatic. 
Thus the deformational behavior in a dynamic test will depend 
on the ratio of volume to surface and therefore on the diameter 
of the specimen. 

The foregoing conclusions hold only as longf as the imposed 
strain rate of the test does not attain the transition velocity, at 
which fracffaire, preceded by large inelastic deformation, is trans¬ 
formed into a brittle-type fracture (see Art. 57), or at which the 
imposed strain rate exceeds the velocity of propagation of the 
plastic deformation wave (see Art. 54). For unnot(4ied speed- 
mens, however, the limiting rates are much higher than the 
velocities attainable in the conventional tension impact machines. 
Even so, the interpretation of results of impact tests requin's 
careful consideration of all aspects of inelastic behavior during 
the test. Otherwise, differences in the test results will be ascribed 
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to different properties of the material or to inadequate perform¬ 

ance of the tests, where the differences may be due entirely to 

the different inelastic behavior resulting from differences in the 

testing conditions. 

The impossibility of reaching the Iramition velocity of strain in 

tests under homogeneous states of stress has been one of the 

principal reasons for the development of the notched-bar impact 

test. The effect of a notch in a specimen in the dynamic test is 

twofold: It induces three-axial states of stress and thus a state 

of hydrostatic tension which, superimposed on the deviatoric 

stress, considerably affects both inelastic behavior and fracture; 

and it increases the specific rate of energy application by reducing 

the volume of the deformed material. Hence the total energy 

required to deform and break the notched specimen is a fraction 

of the energy required to break the unnotched specimen and 

becomes a function of the shape and dimension of the notch and 

of the dimensions of the specimen. For reasons of convenience 

the notched-bar impact test is usually performed in bending, 

which considerably simplifies the testing pro(;edures but increases 

the complexity of the testing conditions and thus makes inter¬ 

pretation of test results more difficult. 

No interpretation of the results of notched-bar impact tests in 

basic physical terms is possible, since these results depend on 

the geometrical features of the test. It can therefore not be 

reliably decided whether observed variations are the result of 

the differences in one or a number of geometrical factors, or 

whether they are the expression of differences in some intrinsic 

property of the material. The energy absorbed in breaking the 

specimen, recorded as the characteristic of the material in the 

test, expresses both the energy of deformation, elastic and 

inelastic, prior to the initiation of a crack at the root of the notch 

and the energy expended in the propagation of the crack across 

the specimen. As long as the fracture is preceded by appreciable 

inelastic deformation, the energy of crack propagation is prob¬ 

ably very small in comparison with the energy of deformation. 

If, however, the energy of deformation is very small, as in brittle 

fracture, the share of the energy of crack propagation in the total 

energy may become considerable. Thus the total energy will 

become the nearer proportional to the width of the specimen across 

which the crack spreads, the more brittle the fracture becomes. 



Art. 89] Impact Tests 559 

By recording the total amount of energy dissipated in ductile 

fracture, the notched-bar impact test does not distinguish between 

metals with a very high work-hardening rate and small deforma¬ 

tion prior to fracture and those with a low work-hardening rate 

and large deformation. It combines, moreover, the effects of 

strain velocity and the state of triaxial tension at the root of the 

notch. It is therefore obvious that impact values which vary 

with specimen size and shape of the notch cannot be correlated 

with the results of other tests, including dynamic tension tests, 

'rhe correlation of the notch impact value of a material with 

design is nonexistent; the correlation with performance in service 

is vague. There appears to be a certain empirical relation 

between the notch impact values of different materials and their 

tendency to fracture under dynamically applied triaxial stress. 

However, the impact values provide only a comparative rating; 

they must not be considered as interpretable information. 

The principal purpose of the conventional notched-bar impact 

testing is to detect vetocity-sefmtive or temperature-sensitive 
behavior, that is, abrupt (change from ductile to brittle fracture, 

as expressed by a sharp drop of the energy absorbed to fracture 

at a certain critical transition velocity or temperature. Since 

the behavior of the specimen also reflects the influence of the 

triaxiality of the state of stress at the root of the notch, which 

itself affects the type of fracture by determining the ratio 

between volumetric and distortional strain energy during the 

deformation and fracture process, the test does not provide a 

direct indication of either the effect of temperature or of velocity. 

The recorded function of impact values versus temperature or 

impact velocity express therefore the effect of the strain rate or 

the temperature of the test, combined with the effect of the 

geometrical characteristics of the specimen dh deformation, on 

strength, and on the rate of crack propagation. The recorded 

transition temperatures or transition velocities can therefore be 

interpreted only as rating values of comparative behavior of 

different materials under identical testing conditions. Since the 

testing conditions of a notched-bar test cannot be quantitatively 

defined, transition temperatures or velocities obtained on notched 

specimens of different shape and size cannot be compared with 

each other, nor can they be quantitatively related to the per¬ 

formance of the material in service. 
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90. Fatigue Tests 

The interpretation of the signitiean(*e of results of conventional 

tests of specimens subjected to repeated load cycles is made 

difficult by the following facts: 

1. That progressive damage is a process essentially determined 

by happenings on the submicroscopic scale, the cumulative effects 

of which become visible on a phenomenological scale at such an 

advanced stage of the fatigue test that most of the damage has 

already been done. 

2. That the results of fatigue tests show a much wider scatter 

than the results of any other inechani(*al tests. 

3. That the effects of the size and the shape of the specimens, 

of their surface condition, and of their environment (corrosion) 

are especially pronounced. 

Moreover, the test results very much depend on the testing 

procedure and apparatus. The conventional testing conditions 

are hardly representative of the conditions of service, and the 

usual methods and techniques of representation of test results are 

inadequate. With regard to the latter shortcomings, however, 

fatigue tests are not different from other types of mechanical 

tests. 

In the testing under repeated load cycles specimens are usually 

subject to either bending or axial loading or torsion; the cycle 

imposed may be one of full stress reversal between equal stress 

limits of unequal sign, or of stress fluctuation between unequal 

stress limits of equal or unequal sign. Every arbitrary cycle of 

fluctuating stress, however, can be split into a steady (mean) 

stress and a superimposed stress reversal, so that full stress 

reversal represents a condition of zero mean stress (Fig. 90 1). 

This splitting off of the mean stress is important with regard to 

the interpretation of the effects of inelastic deformation in fatigue 

tests, since it is the steady (mean) stress rather than the rapidly 

fluctuating cyclic stress that determines the intensity of plastic 

redistribution of stresses, or the effect of creep accompanying 

the fatigue process. 

Of the different types of fatigue tests, bending tests are the 

easiest to perform and the most difficult to interpret, whereas 

the axial load tests are relatively easy to interpret but much 

more difficult to perform than bending tests. The principal 

difficulties with regard to the interpretation of fatigue test results 
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are the influences of surface conditions of the specimen and of 

environment, as well as the effects of inelastic deformation. 

These influences are most pronounced in bending; tests and in 

torsion tests. In spite of this fact the simplicity of the bending 

fatigue test, particularly in the form of the rotating beam or 

cantilever test, has made it the standard fatigue test. 

The influence of surface conditions and of environment are 

necessarily the more pronounced, the more important the con¬ 

tribution of the surface layers of the specimen to its fatigue per¬ 

formance. It is for this reason that tlie test results obtained in 

Fig. 90* 1 Stn'ss-time diagrams in faiigne tests, 

bending and torsion tests of plain specimens, in which the maxi¬ 

mum stresses are within the surface layers, depend very markedly 

on surface conditions and environment. Because of this depend¬ 

ence it is actually not clear to what extent bending and torsion 

fatigue tests represent tests of the surface conditions rather than 

of the fatigue performance of the material as such. If thin- 

walled specimens are used in those tests instead of plain ones, the 

effect of the stress gradient is largely eliminated ;j^t the same time, 

however, the surface effects are intensified by the introduction of 

a second, inner surface, the condition of which, moreover, can 

be less well controlled than that of the outer surface, and is 

therefore less well reproducible. In addition to this difficulty, 

the anisotropy of specimens prepared from thin walled tubes is 

usually very pronounced, and cannot be eliminated. 

Because of the uniformity of the stress distribution over the 

cross section of the specimen, the surface and environment 

effects are considerably reduced in axial load tests. However, 

such tests require a rather complex apparatus, and are compara- 
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tively difficult to perform because of the difficulty of producing 

adequate conditions of axiality of the loading and of controlling 

the operating frequency of the machine. 

The significance of the influence of the inelastic deformation 

depends on the loading characteristics of the fatigue testing 

machine. If, as in the nonrotating bending machines and in 

most of the axial-load machines, the load cycle is produced with 

the aid of an oscillating spring which contiols the deformation 

or the strain amplitude imposed on the specimen, the character¬ 

istic of the machine is similar to that of a hard tension machine 

used in static tests, if the rigidity of the spring is high in compari¬ 

son to the rigidity of the specimen. An inelastic deformation 

of the specimen occurring in the course of the fatigue test com¬ 

pensates part of the elastic deformation of the spring, and thus 

reduces the amplitude of the imposed stress (*.ycle. This ‘‘con¬ 

stant-strain’’ type of machine responds therefore to inelastic 

deformation of the specimen by a drop of the load, which is the 

more pronounced, the harder the spring controlling the load. 

In order to keep the stress amplitude constant during the test in 

a constant-strain machine, the deformation of the loading spring 

must be continually adjusted. 

If the amplitude of the stress cycle is kept constant by applica¬ 

tion of a constant load, as in a rotating-beam machine, or prac¬ 

tically constant by use of a very soft loading spring, as in a 

hydraulic pulsator, the characteristic of the machine is similar 

to that of a .soft tension machine. This type of machine does 

not respond to inelastic deformation of the specimen by a change 

of stress. 

In mechanical-oscillator types of fatigue machines the load 

cycle is produced by the centrifugal force resulting from an 

unbalanced rotating mass; the load amplitude may be controlled 

by either the eccentricity of the unbalanced mass or its speed of 

rotation, if the machine operates at a frequency different from 

the natural frequency of the specimen, or by the variation of the 

natural frequency of the vibrating system, if the machine oper¬ 

ates at this frequency. Oscillator machines operating below 

the natural frequency of the specimen are essentially of the 

constant-stress type, since the force of the oscillating mass is 

controlled by the elastic resistance of the specimen and is there¬ 

fore not affected by its inelastic deformation. The specimen is 
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subject to a practically constant stress amplitude and responds 

by a gradually changing deformation. Oscillator machines 

operating at a frequency substantially above the natural fre¬ 

quency of the specimen are essentially of the hard constant- 

strain type, since the amplitude of the load cycle is determined 

by the unbalanced mass of the oscillator; for constant mass the 

amplitude of the deformation cycle imposed on the specimen 

remains constant, the inelastically deforming specimen being 

thus subject to constant-strain cycles to which it responds by a 

varying stress. In order that oscillator-type machines be able 

to operate at the natural frecpiency of the specimen, the response 

of the specimen must be very nearly elastic; the permissible 

damping which can be compensated by the input energy is small, 

and, although these machines are essentially constant-deforma¬ 

tion machines, the dilTerentiation between constant strain and 

constant stress is immaterial under the conditions of near 

elasticity. These I’esonance machines, which may be incited 

mechanically, electromagnctically, or pneumatically, are usually 

sluit off when in the course of the test the frecpiency of the speci¬ 

men drops sharply below its initial natural frequency. Howevei*, 

it is not easy to decide whether the damaging effect producing 

such reduction of the natural frequency is the result of wide¬ 

spread inelastic deformation or of the development of a fatigue 

crack. In any case the definition of fatigue failure observed on a 

resonaiK'e machine must be different from that of fatigue failure 

observed on any other type of machine, which is defined by 

visible cracking or full separation of the specimen. Because of 

this fact, as well as because of the influence, through the inelas¬ 

ticity of the specimen, of the testing apparatus and procedure on 

the test results, the comparison of results of fij^igue test obtained 

on different machines will frequentl}' be misleading and should, 

therefore, be avoided. 

The elfect of the inela*stic behavior of the specimen also 

accounts for the influence of the frequency of the imposed load 

cycles on the test results. When the duration of the individual 

load cycle is of an order of magnitude compai’able to the order 

of magnitude of the relaxation times of the material, this influ¬ 

ence is considerable both in viscoelastic materials and in metals. 

Under such conditions a combination of fatigue and creep effects 

is responsible for the progressive damage produced by the applied 
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load cycles. Because of this combination such fatigue-test 

results will be representative only if the frequency of the test 

is the same as the frequency of the load cycles under service 

conditions. Otherwise, the number of load cycles imposed on a 

specimen in the course of a test of a duration equal to the expected 

life of the considered structural or machine part will differ con¬ 

siderably from the number of cycles this part is expected to 

sustain in service. No correlation between test and performanc^e 

under such conditions can be expected. This consideration is of 

particular importance with regard to machine parts operating 

at very high temperatures and vibrating at frequencies consid¬ 

erably above the operating frequencies of conventional fatigue¬ 

testing machines, such as turbine blades. 

Although it is usually assumed that, the fatigue performance 

of metals at room temperature is not affected by the frequency of 

the test, at least within the practical frequency range of fatigue 

machines, a certain frequency effect will necessarily be observable 

at relatively high frequencies. This is due to the fact that, 

since at constant frequency the average strain rate is propor¬ 

tional to the amplitude, it decreases with decreasing amplitude. 

At constant amplitude, on the other hand, it increases with 

increasing frequency. Since the yield limit is a function of the 

strain rate, it will change with changing frequency of the test; 

as far as the fatigue performance depends on the yield limit or is 

related to it, it will also change with frequency. This effect 

will become clearly observable, however, only if the difference 

between the compared frequencies is one of several orders of 

magnitude, because the yield point varies with the logarithm of 

the strain rate. 

Because of the influence of the strain rate on fatigue perform¬ 

ance the form of the load cycle should be ^expected to affect this 

performance. The load is usually not applied or removed at a 

constant rate, but at a rate varying periodically between a maxi¬ 

mum at the mean stress and zero at the maximum and minimum 

stresses. No information is available concerning the effect of 

the shape of the load-time or stress-time diagram on the fatigue 

performance of the specimen. 

The results of fatigue tests are usually presented in the form 

of graphs indicating the level S of the repeated stress cycle as a 

function of the number N of cycles sustained prior to failure, 
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the so-called S-N diagrams. These diagrams are, in general, 

determined by a rather arbitrary process of curve fitting through 

a relatively small number of points representing results of indi¬ 

vidual fatigue tests performed at various stress levels. In the 

presentation of S-N curves it is frequently not even stated 

whether these curves have been obtained as estimated ^Mines of 

best (it'' or whether, following a procedure proposed by several 

investigators, they are curves drawn in such a manner as to 

remain below any of the individual test results. Evidently 

either of these procedures will lead to radically different S-N dia¬ 

grams of different significance. 

Since within the usual testing range any of the S-N cur\^es, in 

general, can be approximated by a simple power law, it is trans¬ 

formed into a straight line in double-logarithmic scale. This 

scale is therefore most freciuently used in the practical repre¬ 

sentation of fatigue results, the straight line relation being of 

some advantage in the drawing of the diagram through the test 

points. The representation of fatigue-test results in semiloga- 

rithmic scale will result in a straight-line relation only for brittle 

materials or for ranges of nearly brittle behavior (see Art. GO). 

Within ranges of large-scale inelastic deformation, however, even 

the double-logarithmic straight-line relation becomes unreliable, 

unless the tests have been performed in constant-stress machines, 

since the computation of the stress value from the imposed 

strain becomes the less reliable, the larger the inelastic strain 

component, and the more difficult therefore its compensation 

by adjustment of the loading spring. Fatigue-test results of 

metal specimen as represented by S-N diagrams are therefore 

the less reliable, the nearer the test stress approaches or the 

more it exceeds the yield limit of the material, true or designated. 

Hence, the softer the metal under the testing conditions, the more 

inadequate are the hard constant strain machines, and the more 

important the use of constant stress or soft constant-strain 

machines. This consideration is of importance with regard to 

fatigue tests on metals at elevated temperatures. In differen¬ 

tiating between a hard and a soft machine for this purpose, it 

should be borne in mind that the hardness or the softness of the 

constant-strain machine depends on the rigidity of the spring 

relative to the rigidity of the specimen. Hence, a machine that 

is soft at room temperature may be hard at the elevated tempera- 
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ture of the test, at which the rigidity of the specimen is reduced 

by creep. 

The conventional S-N diagrams are intended to represent the 

average performance (‘Mine of best (if’) or the minimum per¬ 

formance (lowest line) in fatigue of the tested specimens, assumed 

to be representatiA^e of the material. The exponent of the powei* 

law in the natural scale representation, or the (negative) slope of 

the straight-line relation in double-logai-ithmic representation is 

a measure of the rate of progressive damage, since it indicates 

the reduction, with log iV, of the logarithm of the stress. It is 

therefore affected both by the severity of the stressing, as indi¬ 

cated by the large-scale stress concentrations (notches) and 

surface effects (corrosion pits), and by the resistance to progres¬ 

sive damage of the material, as indi(;ated by the severity of the 

textural stresses. Thus, the slope of an S~A^ diagram in double- 

logarithmic representation is increased if either the stress con¬ 

centrations of the external stress field oi* the inhomogeneities of 

the field of textural stresses are intensified; it is reduced as a 

result of all effects that reduce the inhomogeneities of the external 

stress field, such as plastic relief of peak stresses, or of the field 

of textural stresses, such as recovery after work hardening. 

The conventional representation of the results of fatigue tests 

by a single S-N diagram is completely inadequate, since such 

representation neglects a particularly characteristic aspect of all 

fatigue data: their scatter. This scatter is much wider than the 

unavoidable scatter of all test results and observations, because 

the fatigue resistance of a material depends much more than 

any other mechanical property on the individual response to the 

imposed conditions of eacdi element that makes up the specimen. 

Moreover, although in all other mechanical tests the testing 

conditions are imposed just once, they are periodically repeated 

in the fatigue test; therefore, the unavoidable statistic.al variation 

is also introduced into the testing conditions. It is this com¬ 

bination of the statistical effects in the applied load and in the 

response of the material that produces the wide scatter charac¬ 

teristic for results of fatigue tests. Extreme care in the prepara¬ 

tion of specimens can be only partially effective in reducing this 

scatter, since only the surface conditions of the specimen are thus 

controlled. However, the more significant the contribution of 

the surface to the observed fatigue performance (for instance in 
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bending or torsion), the more effective the control of the surface 

conditions of the specimens in reducing the scatter of test results. 

A considerable reduction of the scatter of fatigue-test data is 

achieved by plastic deformation, which produces an averaging 

effe(*t with regard to both the textural stresses and the inhomo¬ 

geneities of the imposed stress field. Hence, the scatter of the 

results of fatigue tests of metals will be the narrower, the more 

extensive the plastic deformation that precedes fatigue failure. 

The higher the intensity of the applied stress cycle, the narrower 

Fi(i. 90-2 Uational ropresontation of n^sults of fatigue tests. 

therefore the scatter of the test results. These results should 

therefore not be presented in the form of a single S-N diagram, 

but by two converging straight lines in double-logarithmic scale, 

enclosing all results which might be expected to fall, with a 

designated probability, within the aiea between them; the 

steeper line indicates the limit of worst performance, the flattei* 

line that of best performance (Fig. 90 2). However, the point 

of intersection of these two lines, which is usually located at a 

Unite number of stress cycles, cannot be considered to be par¬ 

ticularly significant, since the determination of the actual stress 

values at this level is usually not very reliable as a result of the 

large component of inelastic deformation. 

If the number of test results is insufficient for a fairly correct 

evaluation of the position of the limiting S-M diagrams by sta¬ 

tistical interpretation, the usual procedure is to represent the 

results by a single S-N diagram best fitting the test points. This 

procedure is highly unreliable, since the slope of this diagram 

depends more strongly on chance than the individual test points. 
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because of the large number of combinations of test points of 

equal probability of occurrence through which S-N diagrams of 

different slopes, but equal probability, may be drawn. This 

fact is easily proved by the comparison of any number of S-N 
diagrams for the same material, obtained from similar series of 

tests of relatively small numbers of ^Mdenticar’ specimens^" ^ 

[Fig. 90-3). 

A partial remedy of this difficulty associated with the use, in 

conventional fatigue testing, of a relatively small number of 

specimens distributed over the whole stress range, can be obtained 

by performing the tests at only two stress levels, sufficiently dis¬ 

tant to enclose most of the relevant testing range, so that the 

average of log N at each stress level can be determined with the 

increased reliability provided by a larger number of test points 

at each level. If inelastic deformation can be assumed to reduce 

the scatter range at the higher stress level, the number of test 

results required at this level may be smaller than that at the 

lower stress level at which the scatter is necessarily wider. Thus, 

the relatively best results of a small number of fatigue tests 

will be obtained by testing about one quarter to one third of the 

total number of specimens at the highest stress level that can bo 

reliably imposed by the machine, and the remaining specimens 

at a stress level low enough to produce larger scatter, but not too 

low to produce failure within reasonably short testing periods, 

the assumption being that within the testing range a straight- 

line S-N diagram is obtained in double-logarithmic representa¬ 

tion. The test results should then be presented by a line pass¬ 

ing through the best possible estimates of the mean of log N 
at both stress levels. 

The shape of the frequency distribution p{N) of the fatigue 

strength at any level S cannot be determined from a small 

number of tests, but can only be estimated on the basis of pre¬ 

vious knowledge concerning the character of this distribution, 

derived from the results of a large number of fatigue tests at 

various constant-stress levels. The small number of investiga¬ 

tions of this type^° 2 have shown a characteristically skew fre¬ 

quency distribution p(A'), with the modal value substantially 

below the mean; however, this skewness is considerably reduced 

if p(log N) is plotted instead of p{N)y the frequency distribution 

p(log N) approaching the normal (Gaussian) distribution func- 
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tion fairly well. By representing the cumulative distribution 
fN 

function P(iV’) = / p(A^), instead of the frequency distribution, 

the similarity between the fatigue data at a certain level of 

imposed stress and the so-called ^‘mortality data^^ as expressed 

by life-expectancy charts of various machine parts, or of other 

products in which ‘‘life’' is an important factor, such as light 

bulbs and radio tubes, becomes obvious ^ (Fig. 90 4). Fatigues 

Fig. 90-4 Life expoctaiicy (mortality) ciuvos of various machine parts 

and of laboratory fatigue specimens (after Almcn®®'^). 

data, therefore, should be considered in the same light as “mor¬ 

tality data^’ and interpreted as such. The general realization 

of this fact by designers will do away with the tacit assumption 

that fatigue strength is a characteristic that can be as accurately 

determined as the yield stress or the “ultimate tensile strength,” 

and can therefore be relate^d to either of these values by a simple 

multiplier. 

For metals showing a definite endurance limit the S-N dia¬ 

gram, which is defined in terms of failure occurring after a finite 

number of load cycles, loses its significance at this limit, which is 

defined by the nonoccurrence of failure. This difference in the 

significance of the S-N diagram and the endurance limit makes 

the conventional plotting of an extension of the S-N diagram as a 

line parallel to the N axis within the range of indefinite endurance 

rather meaningless; the so-called “knee” in the double-loga¬ 

rithmic S-N diagram, which assumedly divides the finite life 
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range from the endurance range, is in fact the limiting point of 

the validity of the S~N diagram, since this diagram expresses a 

significant relation only within the range of stresses under the 

repeated application of which the specjimen actually breaks or 

otherwise fails. This relation is derived from the results of tests 

of a “population” of specimens breaking at various combinations 

of stress level and number of repetitions. The endurance limit, 

on the other hand, is the highest stress lev^el at which the speci- 

men is not expected to fail even after an infinite number of stress 

repetitions; therefore, it can be estimated only from an extrap¬ 

olation to zero or to a designated measuie of probability of th(i 

observed percentage of specimens failing at various stress levels. 

Still better, it can be estimated by a procedure known as “sen¬ 

sitivity testing* in which the specimens are subjected to stress 

intensities ranging from a level at which practically no failures 

occur to a level at whi(;h almost all specimens fail, the stress for 

any given specimen being determined by whether the prec^eding 

specimen failed or did not fail. The usual procedure of presenting 

the endurance limit as a line parallel to the N axis, drawn below 

any point representing a test at which a specimen has “run out,” 

that is, at which it has not failed after a practically infinite num¬ 

ber of load repetitions, cannot be expected to lead to a correct 

estimate of the true endurance limit of the material. 

If no endurance limit exists because of the influence, undei- 

the conditions of the test, of time-dependent processes, such as 

creep, diffusion (recovery and precipitation), recrystallization, 

or corrosion, the S-N diagrams do not attain their lower limit 

of validity within the range of finite values of N; however, 

because of this so extended range of validity of the diagram, its 

whole range usually cannot be represented by a single power law, 

and thus by a straight line in double-logarithmic representation, 

but only by several power laws valid within certain parts of the 

range. Hence a curved S-N diagram is obtained even in double- 

logarithmic representation, asymptotically approaching the 

intrinsic endurance limit determined by the slip resistance of 

the largest crystal size present in the poly crystalline aggregate 

(see Art. 62). 

The sharp differentiation for metals that have an endurance 

limit, between the finite life range of fatigue performance in 

which the S-N diagram is valid and the range of indefinite 
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endurance, is of considerable practical importance. The influ¬ 
ence of specimen shape and size, as well as the influence of tem¬ 
perature and of history (heat treatment, previous cold work, 
surface treatment) will necessarily be diflerent with regard to 
the location and slope of the S-N diagram, and with regard to 
the endurance limit, since in the first case the relevant effects 
are those on crystal fragmentation, crack initiation, and propaga¬ 
tion, and in the second those on the process of blocking of 
slip and crystal fragmentation. Although in both cases the 
most significant part of the influence of the various effects is on 
the inelastic deformation preceding and accompanying fatigue, 
the fatigue performance in the first case depends on the progress 
of such deformation, and in the second on its blocking at an early 
stage. 

Thus, for instance, the effects of size and shape of fatigue 
specimens must necessarily influence the slope of the S-N dia¬ 
gram more than it influences the endurance limit. This con¬ 
clusion is borne out by comparative torsion fatigue tests of round 
solid and hollow steel specimens of equal diameter, which showed 
that the slope of the S-N diagram of the hollow specimen was 
much steeper than that of the solid specimen, because of the 
smaller cross-sectional area to be destroyed, whereas the endur¬ 
ance limit of both types of specimens was identical.^ This is 
only to be expected, since at the maximum fiber stress, at which 
the cold-working effects can still be rapidly blocked and the 
response of the specimen become elastic, which is the stress at 
the endurance limit, no reason exists for a different performance 
of a plain and a hollow specimen, as only the response of the 
surface layer is significant. On the other hand, prestraining in 
torsion of such specimen might possibly affect the endurance 
limit more than the S-N diagram, since the resulting raising of 
the yield point will substantially raise the endurance limit, while 
the life of the specimen at a definite stress cycle may be much 
less affected. 

Since the inelastic behavior of the material subject to repeated 
stresses below the yield limit is not related to the inelastic defor¬ 
mation associated with the results of other tests, except the 
damping test (see Art. 62), the results of repeated load tests, in 
general, cannot be correlated with the results of other mechanical 

tests. Moreover, as long as the inelastic deformation and the 
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damage during the test can be produced only by load repetition, 

there appears to be no other povssibility of determining the frac¬ 

ture stress for a certain number of load cycles than subjecting 

the material to this number of load cycles. Only when, as in 

high-temperature testing, the progressive damage is produced by 

both load repetition (cycle effect) and creep (time effect) does 

it become possible to find a certain correlation between the 

results of repeated-load tests and creep tests. This is due to the 

fact that the same localized inelastic deformation that is produced 

by a repeated load might be produced by a constant load of 

different intensity sustained for a certain period. 

A shortening of repeated-load tests at temperatures at which 

(a*eep effects are negligible can thus be achieved only by increas¬ 

ing the frequency of the load cycles. However, in doing this 

the effect on the inelastic deformation of increasing the strain 

rate must be considered. 

The significance of the results of fatigue tests in terms of 

structural performance would be obvious, if the loading condi¬ 

tions of the test were to reproduce those in service, as in this ease 

a direct correlation would exist between test and performance. 

Such conditions are, howex er, the c.xception rather than the rule; 

so far no reliable and practical basis has been developed for 

the interpretation of the significance of the results of conven¬ 

tional fatigue tests (load cycles of constant amplitude) in terms 

of actual performance under load cycles of widely varying 

amplitudes and different sequence of application interrupted by 

j)eriods of rest. 

References 

86 1 Symposium on the Significance of the Hardness Test, Proc. A STM 

43 (1943) 803. 
86- 2 /6/Vi., 804. 
87 -1 C. W. MacGregor, Proc. ASTM 40 (1940) 5lo. 
87- 2 W. Kuntze and G. Sachs, Z, Ver, deut. Ing. 72 (1928) 1011. 
87*3 G. Sachs and G. Fibk, Der Zugversuchj Leipzig, Akad. Verlagsg(‘s 

(1926) 40. 

H. O'Neill, Proc. Inst. Mech. Engrs. London 161 (1944) 116. 
88 -1 A. Sauveur, Proc. ASTM 38 (1938) 10. 
88- 2 F. B. Seely, Proc. ASTM 40 (1940) 541, 547. 
89 1 Symposium on Impact Testing, Proc. ASTM 38 (1938) 105. 
90 -1 J. O. Almen, SAE Trans. 61 (1943) 265. 



574 Sisnificance of Mechanical Testins 

90-2 H. Muellek-Stock, Miii. Kohle u. Eiseuforschuny 2 (1938) 83. 

A. M. Freudenthal, C. S. Yen, and G. M. Sinclair, 8th ProgreHn 
Kept, on Fatigue, Office of Naval Research & Univ. Illinois Eng. 
Expt. Sta., Urbana (1948). 

90-3 J. 0. Almen, op. cit., 262. 

90-4 B. Epstein, ASTM Bull. 168 (1949) 62. 
J. T. Ransom and R. F. Mehi., Metals Trans. 186 (1949) 364. 

90-5 H. J. Gough, The Fatigue of Metals, Scott, Greenwood & Son, 
London (1924) 83. 



AUTHOR INDEX 

Alfrey, T., 108, 164, 230, 248, 356 
Almen, O. J., 569, 570, 573, 574 
Andrade, N. da C., 164, 316, 317, 325 
Arrhenius, S., 113 

Barrett, C. S., 397 
Batdorf, S. B., 505 
Becker, R., 340, 356 
Beliaev, N. M., 437, 439, 457 
Bernhard, R. K., 355 
Betty, B. B., 325 
Bijlaard, P. P., 504, 505 
Bingham, E. C., 221, 403, 412 
Biot, M. A., 247 
Birch, F., 248 
Bleich, F., 493, 495, 505 
Boas, W., 108, 164 
Bocker, R., 505 
Bohr, N., 35, 36 
Boltzmann, L., 112, 113, 135, 191, 

338, 339, 341, 355 
Born, M., 26, 60, 164, 213 
Bragg, L., 70, 71, 96, 107 
Brandtzaeg. A., 505 
Brick, R. M., 164 
Bridgman, P. W., 164, 248, 394, 

397 
Brillouin, L., 187 
Buckingham, E., 413 
Burgers, J. M., 237 

Cherniak, G. S., 325, 526 
Chwalla, E., 505 
Clark, S. D., 356 
Coffin, L. F., 325, 526 
Cottrell, A. H., 164 
Coulomb, C. A., 260, 279 
Cramer, H., 361, 397 

Daniels, H. E., 397 
Datwyler, G., 356 

Davis, J^:. A., 279, 28C, 463 
De Broglie, M., 44, 45 
Debye, P,, 85, 164 
Dchlinger, U., 05, 108 
Dirac, P. A. M., 44 
Dokos, S. J., 463 
Dolan, T. J., 397 
Dollins, C. W., 317, 325 
Donell, L. IL, 440, 451 
Dorn, J. E., 213 
Dunbar, L. W., 213 
Dnshman, S., 213 

Eichingcr, A., 258, 279 
Einstein, A., 400, 413 
Eisenschitz, R., 213 
l^:iam, C. F., 145, 164, 299, 300, 

304 
Engesser, F., 500, 501, 505 
Epstein, B., 397, 574 
Eyriiig, H., 108, 164, 248 

Fiek, G., 573 
Fisher, J. C., 164, 213 
Fisher, R. A., 361, 397 
Fraenkel, S. J., 280 
Frank, N. IE, 213 
Fredrickson, J. W., 164 
Frenkel, J. I., 397 
Freudcnthal, A. M., 26, 304, 397, 

451, 505, 574 
Freundlich, H., 401, 413 
Fritsche, J., 450, 505 
Fromm, H., 269, 280 
Fuerth, R., 397 
Fullman, R. L., 213 

Gauss, L., 48 
Geil, G. W., 397 
Geiringer, H., 454, 463 
Geisler, A. H., 304 



576 Author Index 

Gibbs, J. W., 112, 135, 193 
Glasstone, S., 108, 164 
Goetz, A., 108 
Goldberg, A., 213 
Goss, N. P., 108 
Gough, H. J., 164, 574 
Grammel, R., 335, 355 
Griffith, A., 358, 359, 360, 364, 

397 
Griggs, E., 396 
Grimm, TL, 107 
Gruening, M., 487, 505 
Guinier, A., 108 
Guth, E., 26 

Haar, A., 267, 280, 430 
Haase, O., 164 
Haegg, G., 60 
Halsey, G., 248 
Hamel, E., 248 
Handelman, G. H., 280 
Hanson, D., 164, 208, 304 
Harrington, R. H., 60 
Hedvall, J. A., 164 
Heidenreich, R. D,, 164 
Heisenberg, W., 44, 48, 49 
Hencky, H., 183, 187, 221, 222, 248, 

255, 257, 267, 274, 279, 280, 430, 
440, 451, 455, 463 

Hill, R., 279 
Hodge, P. G., 451 
Hollomon, J. H., 108, 164, 213, 350, ; 

356, 397 i 
Hooke, R., 21, 222, 232 
Hopprnann, W. H., 353, 356 
Houwink, R., 75, 107, 247, 414 
Huber, M. T., 255, 279, 389 
Hudson, D. R., 60 
Huthsteiner, H., 213 

Inglis, C. E., 359, 397 

Jackson, L. R., 273, 280 
Jaffe, L. D., 108, 164 
James, H. M., 26 
Jeffrey, G. B., 26 
Jenkin, F. C., 248 
Jenkins, W. H., 397 

Kantorova, T. A., 397 
Karm.4n, Th. v., 267, 280, 351, 352, 

356, 397, 430, 455, 458, 463, 485, 
500, 501, 505 

Karnop, R., 164 
Ke, T. S., 164, 344, 345, 348, 356 
Kohl, G. L., 213 
Kelvin, Lord, 220, 248 
Kirkwood, J. G., 108 
Koehendoerfer, A., 164 
Koehler, J. S., 96, 108 
Koidra\is(*h, F., 248 
Kohlrauseh, R., 248, 338, 355 
Kollbninner, C. F., 450, 498 
Kuntze, W., 573 

Lacombe, P., 108 
l.nidler, K. J., 108, 164 
Lankford, W, T., 280 
Lederman, H., 248, 355 
Lee, IL H., 279, 356 
Lin, C. C., 280 
l^ode, W., 279 
Lubahn, J. 1)., 463 
Ludwik, P., 83, 108, 182, 187, 208, 

213, 546, 553 

Maerea, A. E., 451 
Magnel, (1., 526 
Maier-Iieibiiiz, IL, 498, 505 
Majors, H., 397 
Malaval, M., 451 
Masing, G., 108 
Matossi, F., 108 
MeAdam, D. J., 391, 397 
McGregor, C^. W., 164, 213, 397, 5 13, 

546, ^73 

McReynolds, A. W., 150, 164 
Mobs, R. W., 397 
Mehl, R. F., 574 
Miller, R. F., 213 
Minis, B. D., 397 
Mindlin, R. T)., 231, 248 
Mises, R. V., 60, 255, 256, 262, 265, 

279 
Mohr, O., 181, 279, 393 
Mooney, M., 248 
Moore, H. F., 317, 325 



Author Index 577 

Mott, N. F., 397 

MuoJler-Stock, II., 574 

Muir, J., 164 

Miirnaghan, F. I)., 248 

Nabarro, F. R. N., 108, 164 

Nadai, A., 140, 16)4, 258, 279, 325, 

419, 439, 440, 445, 450, 451, 453, 

455, 456, 459, 463, 4()5, 470, 471 

Nix, F. C., 108 
Nye, J. F., 107, 304 

O’Neill, n., 573 

Orowan, E., 95, 101, 10<S, 213, 455, 

463 
Oseeii, C. W ., 153, 4(i3 

Panov, J.)., 248 

Pauli, W., 37, 39 

Pipes, A. L., 60, 355 

Planek, M., 32, 33, 36, 114, 191 

J\)lanyi, M., 95, 108 

Popov, K. P., 325 

Poynting, J. H., 247 

Prag(‘r, W., 264, 265, 269, 271, 276, 
278, 280, 450, 485, 19(), 505 

Prnndtl, T.., 95, 108, 140, 1()4, 268, 

418, 444, 445, 446, 447, 451, 453, 

463 

Putnam, W., 279 

(^linney, XL, 271, 280 

Rabinowitsch, R., 213 
Rachinger, W. A., 108, 325 

Ransom, J. T., 574 

Read, T. A., 108 

Rehkuh, F., 248 
Reiner, M., 26, 213, 221, 248, 304, 

409, 413, 414 

Reiner, R., 26 

Xteuss, E., 268, 280 

Rice, F. O., 26, 60, 107 

Rivlin, R., 414 

Ros, M., 258, 279 
Roseoe, R., 164 

Rosenhain, W., 164 

Ross, A. 1)., 519, 526 

Rutherford, E., 36 

Sachs, G., 164, 151, 463, 573 

Sadowsky, M. A., 280 

St.-Venant, B. de, 221, 2()0, 271, 279 
Sauveur, G., 573 

Sayre, M. 304 

Schaeffer, C., 108 
Schmid, E., 164 

Schro(;dinger, E., 44, 46 

Scott-Blair, G. \V., 414 
Seely, F. B., 279, 42(), 150, 573 

Seitz, F., 108, 164 

Seth, B. R., 248 

Shaffer, B. W., 356 

Shanley, F. R., 502, 505 

Shepha*, P. C., 325, 526 

Shockley, W., 69, 107, 108, .64 

Siegfried, \V., 213 

Sinclair, G. M., 574 
Sinitski, A. K., 437, 438, 439, 451 

Slater, J. C., 213 

Srnekal, A., 95, 108, 164 

Smith, J. 0., 426, 450 

Smith, K. F., 280 

Smith, R. B., 397, 510 

Smith, S. I., 304 

Smith, V. G., 213 
Smoluchowski, M. v., 400, 413 

Sokolnikoff, 1. S., 187, 450 

Stead, O., 547, 548 
Sternberg, E., 247 

Stuessi, F., 498 

Swainger, K. II., 304, 471 

Swift, W., 187 

Taylor, G. I., 95, 108, 164, 271, 275, 

280, 304, 351, 356 

Teller, E., 26, 60, 107 

Terzaghi, K., 414 

Thomson, J. J., 247 
Thum, A., 450 

Tietz, E., 213 

Timoshenko, S., 187, 451 

Tippett, L. H. C., 361, 397 
Tolman, R. C., 108, 163 

Tracy, D. P., 463 



578 Author Index 

Tresca, H., 200, 270 

Trenting, H. G., 104 
Tapper, S. J., 279 

Turnbull, D., 213 

\ oigt, W., 338, 355 

Walther, 11., 355 

Weber, W., 338, 355 

Wegel, R., 355 

Weibull, W., 307 

Weiser, H. R., 413 
Weissenberg, K., 104, 

Wheeler, M. A., 104, 

, 213 

208, 304 

White, G. N., 451 

VA'iec^hert, E., 245, 248, 338, 330, 355 
Wolff, H., 107 

Wood, W. A., 100, 108, 304, 325 

Woolley, R. L., 304 

Wunderlieh, E., 450 

Yen, C. S., 574 

Zachariasen, W. IL, 108 

Zener, C., 20, 213, 338, 330, 345, 348, 

350, 350, 305, 307 
Zwicky, F., 00, 108 

Zwikker, C., 00, 108 



SUBJECT INDEX 

Activation, 80, 110, 122J, 145^' 

Activation energy, 84,110, 117, 122j/‘, 

285 

determination of, 340^/ 

(‘ffect of, on fatigue, 383 

on fracture, 383 

of diffusion processes, 120 

of iron, 344 

Activation rate, 130 

Adiabatic effects, in metal cutting, 

in penetration of armor plates, 350 
on stress-strain diagrams, 217, 

349jf, 354, 557 

After-effects, 202, 205, 222/ 
superposition of, 307, 310 

Age hardening, 120/, 301/ 

Alkali metals, 41, 54 

Allotropic modifications, 57, 02/, 

135 

Alloys, 57/ 
Aluminum, deformation of, 150, 208 

Amorphous substances, 103, 125/ 

Analogy, crc(‘p-work hardening, 322 

electrical, 329/ 

membrane, 418/ 

sand-heap, 419 
viscoelastic, 321/, 50t), 510 

Anelastic characteristics, 345/ 

Anions, 43, 63 

Anisotropy, formation of, 140/, 287/ 
of plastic deformation, 271/ 

of work-hardened metal, 380/ 

strain, 154 

Antimony, 65, 72, 90 

Argon, 41, 53 
Armor plates, penetration of, 350 

Asbestos, 71 

Asphalt, 410/ 

Atom, model of, 35/, 46, 51 

quantum-statistical concept of, 51 

Atoii'ie number, ?7, 54/ 

Atomic radius, 52, 54/ 
Atomic weight, 61 

Aust(mit(^, 57 

Avogadro’s number, 61 

Bauschinger effect, 275/, 286, 381 

influence on fractun^ of, 392 

Beat frequencies, 31, 4() 
Bifurcation of equilibrium, 503 

Binding energy, 75 

mass (‘quivahmee of, 7 
Bingham body, 269, 403 

Blocking of slip planes, 120/, 130, 

149/, 283/, 298, 379/, 428, 500 
Block “Structure, 97/ 

Boltzmann-ATaxwell distribution, 

111/, 135 
Boltzmann-Planck ri'lation, 191 
Bonds, tyi i of, 61/ 
Brinell ha d less, 536/ 

Buckling, plastic, 500/ 

viscoelastic, 518/ 

Bulk modulus, 216 

adiabatic effect on, 217 

effect of A\ork hardening on, 281 

Canonical distribution, 112 

Carbon, 66 

diffusion of, 56 

Carburizing, 92 

(Carrying capacity, 481 

of curved beams, 426 

of redundant plastic structures, 

481/, 491/, 497/ 

of trusses, 487/ 

Cations, 43, 63 

Cement, 105/ 

viscosity of, 523 

Ceramic materials, 105/ 

Characteristic temperature, 115/ 



580 Subject Index 

Circular hole, glide-line field of, 454 

plastic solution of, 439 

Clay, 412/ 

Cleavage fracture, 163, 374 

Closed electron shells, 41/, 51/, 04/, 

73 
Cohesive strength, 75, 357/ 

in tension test, 546, 551 

statistical theories of, 360/ 
Compressibility, 41, 54, 154/ 

Conservation, of em^rgy, 34, 189 

of momentum, 34 

Consistency diagrams, 102/ 
Contained plastic deformation, 273/, 

276, 278, 481/ 

C'oordinates for definition of strain, 

178 

Coordination lattice, 63, 86/ 

Chopper, 69 

Correspondence prirndple, 34 

Coulomb attraction, 36, 63 

Covalent bonds, 67, 71/, 90 
Cracking, delayed, 394/ 

Cracks, atomic and submicroscopic, 

159/, 358/, 373, 381 

in creep processes, 142, 316/ 

Crazing, 142 

Creep, general theory of, 148/ 

of concrete, 525 

of lead, 313, 31(i/ 

of single crystals, 314 

periodicity of, 315 
temperature dependence of, 149/, 

211, 315 

three-axial, 311/, 512 

third stage of, 316/ 
transient, 239/, 307/, 315/, 509 

Creep design, for short life, 509 

vibratory stresses in, 509/ 
Creep fracture, 382/ 

Creep function, 319/, 339 

Creep recovery, 309 
Creep strength, temperature depend¬ 

ence of, 371/ 

time dependence of, 369/ 

Crystal boundaries, formation of, 

101 

viscosity of, 101, 127/, 344/ 

Crystal classes, 89 

Crystal fragmentation, 140, 284/, 
291/ 

Crystal fragments (crystallites), 100, 

140, 284, 380 

Crystallization, 103 

of high polymers, 141/ 

Crystals, types of, 63/, 70, 73, 100 

Crystal systems, 89 
Cubic lattice, 90/ 

(Curved beams, carrying cai)acity of, 

426 

Cyaniding, 92 

Cylindrical hole, plastic solution of, 

439, 454 

Damage, functional, 474/, 506/ 

structural, 474/ 

Damping, (‘ffeet on, of fatig\ie, 336/, 

572/ 

of grain size, 347/ 

of temperature, 337, 348 

variation of, 332/, 343/ 

Damping tests, purpose of, 332, 331, 

337/, 572/ 

Dashpot, 232 

l)e Broglie ocpiation, 45, 49 
Debye function, 114/ 

Debye temperature, 115/, 136 

Decay function, 245 

Deflection theory of arches, 520 

Deformation, contained plastic, 

273/, 276, 278, 481/ 

delayed, 121 
discontinuous, 149/, 286, 298 
structural mechanism of, 122/ 

temperature sensitivity of, 126 

Deformation machines, 530 
Deformation stresses, 515/ 

Density, 55 

of work-hardened metal, 285 

Depolyinerization, 142, 309 

Deviator, of strain, 180 

of stress, 174 

Diamond, specific heat of, 115 
structure of, 66 

Diffusion, 56, 103 



Subject Index 581 

Diffusion, blocking of slip planes 

by, 120/f, 130, 149jf, 2HSff, 298, 
379/, 428, 500 

coefficient of, 117/ 

grain boundary, 128, 280 
rate of, 117/, 122 

strain aging, 120/, 301/ 

types of, 118/ 

Dilatancy, 220 
Dipoles, 58 

Discontinuity, of phonoinfuia, gcui- 

eral, 17 
of slip, 149/ 

of stress-strain diagrams, 280, 

298 

of yielding, 280 

Dislocations, 95, 124/ 

concentration of, 95, 97, 288 

hardening effect of, 144, 287/ 

soap-bubble model of, 90 

Disorder, long-range, 85 

Disorientation of crystal structures, 

313 

Divisibility of matter, 0/ 

Ductility, measure of, 549/ 

Elastic constants, 75, 210/ 

Elasticity, nonlinear, 214, 218/ 
lOlastic. limit, 22, 138 

lOlastic potential, 215/ 

Electron-cloud density, 50/, 58 
Electronegative elem(*nts, 07 

Electron inicToscope, 44 

Electron orbits, 30/, 52 

ellipticity of, 38 
energy level of, 37, 40 

filling of, 41/ 

Electrons, excited state of, 39 
free, 08, 70, 73 
sharing of, 04/, 73 

hllectron shells, closed, 41/, 51/, 

04/, 73 

incompletely filled, 09, 73 

Electron spin, 39 

Elliptical hole, stress concentration 

due to, 359 

Endurance limit, 330/, 383/, 570/ 

Energy, free, 192, 210 

Energy, latent, 275, 285/, 292, 335 

Energy content of solid, 7, 82/ 
Energy quantum, 32 

Energy transformation, representa¬ 

tion of, 194/ 
types of, 199 

Entmpy, 190/, 208 

Equations of statti, exiat<*nc(* of, 108, 

208/ 
linear, 222 

Equicohesive temperatun^, 212 

Ecpiilibrium, bifurcation of, 503 

conditions of, 170/, 180 

Equipartition theorem, 82/ 

Equivalent elastic strain, 231 

Exclusion principle, Pauli’s, 37/, 

42/, ()4, 90 

Extreme values, statistical theory of, 

301/ 

Fatigue data, scatt(‘r of, 5()7/ 

])resentation of, 505/ 

significance of, 573 

Fatigue strength, 382/ 

effect on, of (‘old work, 384, 572 

of cre(q), 385/ 

of frecpiency of loading, 387, 

503/ 

statistical asp('cts of, 30()/ 
under combined stn'sses, 391 

Fatigue testing, 500/ 

Ferromagnetism, 09 

Finite strain, 219/ 

Flocculation, 400 

Flow, 9/, 139 
theories of phistic, 203/ 

units of, 83, 80 

Fluidity, 232, 403 

Force machim^s, 530 
Forces, interatomic, 73/ 

internal, 8 
Foreign atoms, precipitation of, 

101/, 118, 314 
Fracture, atomic concept of, 157/ 

conditions of, 157, 211/, 390/, 
514/ 

delayed, 394/ 

Fracture strength, brittle, 357/ 
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Fracture strength, effect, of anisot¬ 
ropy on, 392^ 

of hydrostatic stress on, 160^, 
393 

of inelastic doforniation on, 
ISSif, 212, 381#, 391# 

of strain rate on, 212, 381 
of stress condition on, 391 
of temperature on, 381 
of time on, 377# 
of volumetric strain on, 388# 

of amorphous materials, 126, 387 
of bundles of threads, 367 
reproducibility of, 382 

Fragmented crystal stnu'ture, 140, 
284#, 291#, 313 

thermal instability of, 284, 291 
Free electrons, 68, 70, 73 
Free energy, 192, 216 
Functional damage, 474#, 506# 

Gal ton board, 47# 
Gaussian distribution, 48, 361# 
Glass structure, 104 
Glide lamellas, 131#, 143, 282 
Glide larninas, 130# 
Glide lines, distance of, 132 

mathematical properties of, 250, 
453 

propagation of, 251# 
Grain boundaries, cracking of, 317# 

creep of, 312# 
foreign atoms in, 101#, 128, 286 
relaxation times of, 313 
viscosity of, 101, 344# 

Gram-atom, 61 
Granular material, failure of, 394 
Graphite, 65, 71# 
Group pattern, 16# 

Halogens, 41, 64 
Hardening modulus, 535# 
Hardness, Brinell, 536# 

definition of, 534# 
rebound (scleroscope), 539# 

Heat, of sublimation, 64, 69 
specific, 82#, 115 

Helium, 7, 37, 40 

Hctcrogels, 408 
Heterogeneous materials, 106# 

fracture of, 393 
Hexagonal crystal structure, 65, 90 

slip delay in, 286 
High elasticity, theories of, 218# 
High-temperature s(;rvice, metals 

for, 508, 511 
Homogeneity, statistical, 13 
Homologous temperatures, 83# 
Hydrogen, 37, 50# 
Hyperbolic^ sine relation of inelastic¬ 

ity, 136, 139, 246 
Hyst(*resis, 275#, 326, 329 

Impedanct*., 32t)#, 342 
Impenetrability of matter, 39, 56, 73 
Indentation, 534# 
Inelasticity, tlu'rmal and atherinal, 

m/ 
Inert gas, 41, 52, 73 
Infrared radiation, 32, 80 
Intercrystalline regions, viscosity of, 

101, 127#, 344# 
Interstitial alloys, 57 
Interstitial diffusion, 119 
Interstitial solid solution, 92 
Invariants, 173#, 186#, 215#, 270# 
Ionic bonds, 74 
Ionic lattice, 86 
Ionization, 70 
Ions, 43, 68 

radii of, 52# 
Iron, allotropic modification of, 57, 

93, 135 
Isogels, 408 
Isotropy, s^tatistical, 13, 87, 103 

Joule effect, 218 

Kelvin body, d(?viator relations of, 
223# 

model of, 234 
Kelvin elements, superposition of, 

238, 307, 319 
Krypton, 41 

Laminar slip, 130#, 282 
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Laminates, 107 

Lattice defects, 94^ 

concentration of, 95, 97, 288 
liRttice vibrations, 76j7 

Ijatent energy, 275, 285^, 292, 335 
Limiting resistance, 474 

Limiting size of crystal fragnuuits, 
100, 140, 284, 380 

Linear substances, classification of, 
221ir 

liiquid, definition of, 8, 196^ 
undercooled, 85, 104^, 19() 

Lithium, 40 

Load stresses, 515ir 

Ix)garithmic decrement, 327 
Logarithmic strain, 183 

JiUeder’s lim^s, 250ff 

\ 

Machines, deformation and force, j 
530 I 

Macroinoloculcs, GOff, 07, 73 j 
Mart(Misitic transformation, 93, 135 

Mass defect, 7, 01 

Mass phenomena, definition of, 17 

Material body, i\ff 
Maxwell body, h(*ain equation of, 

510 

deviator ndations of, 223/ 

Maxwell-lloltzmann distribution, 

111/, 135 
Maxwell elem(*nts, nonlinear, 240/ 

superposition of, 238/, 307 
Mechanical t(^sting, purpose of, 527/ 

Melt, solidification of, 98 

Melting process, 80/, 103, 308 

Membrane analogy in torsion, 418/ 

Memory effects, 230/ 

IVlercury, 85 

Metal cutting, 354/ 
Metallic bonds, 02, 08/ 

Metals, alkali, 41, 54 

transition, 69 

Metal structure, soap-bubble model 

of, 70/ 
Methacrylates, 141 

Mica, 71/ 
Microcracks, 159/, 358/, 373, 381 

Miller indices, 89 

Model elements, mechanical, 232, 

235 

Models, multiple-element mechani¬ 

cal, 238, 242/, 240/ 

Mohr’s circles, 181, 201, 200 
enveloping lines of, 393/ 

Mole, 01 

Molecidar compounds, heat of suIj- 

limat ion of, 73 

Molecular crystals, 03, 73, 80 

Molecular sus|)ension, 398/ 

Molecidar weight, 01 
Moha*ul(‘s, 58/, 04/, 72 

Mosaic structure, 90/ 

\(‘ckiug in tension t(‘sts, 317, 543/ 

X(‘on, 40 

X(‘utral (‘hanger of states of stress, 
2(i4/, 504 

Xitriding, 92 

Xitrogen, 50 
Xonlinear elasticity, 214, 218/ 

X^oidinear MaxwtUl element, 247 

Xonlinear stress distribution, 40()/, 

409/, 515, 524 

Xonlin«*ar stress-strain diagram in 

design, 473, 470 

Xotch(*d-bar impact test, 558//’ 
Xotch effect in tension lest, 553/ 

Xucleus, 37, 52 

Octalnvlral slu'ar strain, 181/, 258 

Octahedral shear stress, 170, 258 

Orbital motion, 30/ 

Order, 24, 80, 84/ 

Order disonh i*, 85/, 102/ 
Order-disorder spectrum, 127, 192 
Order-disorder transformation, 104 

Orthotropic plastic deformation, 

272/ 

Oscillators, 30/, 70, 114 
Overstress, nvsistance against, 549 

tensor of, 269 

Paints, 412 
Paracrystallinc^ formation in melts, 

102 
Paraffin, 73 
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Particle size, 53 

Pauli’s exclusion principle, S7ff, 42ff, 
64, 90 

Penetration, of armor plate, 350 

of plastic zone, 253/, 425/, 438 

Periodic table of elements, 37/ 

Phase, definition of mechanical, 14, 

20 
Phase angle, 328/, 342 
Phase transformation, 118 

Photoelasticity, 154, 308 

Photon, 44 

Planck’s constant, 33 

Planck’s function, 114 

Planck’s oscillator, 32, 114/ 

Plastic deformation, propagation of, 

350/ 

theories of, 263/, 272/ 

Plastic flow, theories of, 2()3/ 
Plastic hinges, 482/, 490, 498/ 

Plasticity, models of, 235, 247 

of concrete, 524 

Plastic potential, isotropic, 256, 265 

of orthotropic body, 272 

Plastic stability, in uniaxial com¬ 

pression, 500/ 

of plates, 504/ 
Plastic wave, propagation of, 350/ 

Plastic zones, spreading of, 253/, 

425/, 438 

Plastometers, 409/ 

Poisson’s ratio, effect on yield con¬ 

dition of, 259 

of work-hardened metal, 281, 303 

Polymerization, 67, 81/, 104, 400 

Polymers, fracture of, 163 

Polyphase materials, 105/ 

damping of, 335 

fracture of, 211/ 

yield limit of, 197 

Polystyrenes, 141 

Potassium, 53/ 

Potential, elastic, 215/ 

plastic, 256, 265, 272 

Potential trough, 74/, 80, 84, 123/ 

Power functions, use of, 206/, 544 
Precipitation, 101/, 118/, 128/, 

149/, 286, 314 

Prestressed concrete, 525/ 

Primary bonds, 62/, 74 

Properties, types of, 17, 19, 94 

Pseudosolids, 196 

Psychophysittal test, 412 

Quantization of frequencies, 44/ 

(Quantum concept, 32/ 

Quantum ladder of frequencies, 33 

Quantum numbers, 37/, 64 

Quasidergodic, 111 

Radiation, infrared, 32, 80 
Randomization of striu^ture, 142 

Rate process(^s, 113, 140 

Rebound (sclcroscopc) hardiness, 

5m 
Recovery, 140, 145/, 297/ 

Redundant metal structun^s, carry¬ 
ing capacity of, 481/, 491/, 

497/ 

shakedown of, 485 
Relaxation, effect on fracture of, 

372/, 383, 395/ 

of bolted assemblies, 322/ 

relation of (ueep and, 196, 244, 

322/ 

Relaxation (‘enters, 338, 311 

Relaxation function, 243/, 322/ 

Relaxation spectrum, 338/, 342/, 

375/, 382 
R(4axation t(‘st, 322 

Relaxation tiniiis, 225, 245, 306/, 

338/ 
R(*membrancc function, 341/ 

Residual stresses, in plastic; bending, 

424/ ^ 

in thick-walled cylinder, 439 

structural model of, 274/ 

Resilience, 138/, 143/, 289/ 

Resins, 411/, 517/ 

Resonance, 64/, 68, 73 

Resonance curve, 327 

Retardation time, 224 

Reversibility, 118, 194 

Rotating cylinder (disk), limiting 
velocity of, 441/ 

Rotations, components of, 217 



Subject Index 585 

Iliibbor, testing of, 411 

thermoclastieity of, 218 

Safety, factor cf, 480, 514^7 

St. Venant clement, 23o 
Scatter of fatigue il.A \, .5()7/f 

Scleroscopc har(lii(\s.s tc'st, 53V)j/' 

Secondary bonds, 74 

Sedimentation, 399 

Selenium, 05 

Self-diffusion, 118, 140, 115/ 

Sensitivity testing in fatigiu^, 571 
Shale, mechanism of formation of, 

390 

Sharing of electrons, 0 1/, 73 
Sh(^ar strain, octahedral, 181/, 258 

principal, 181 

pure, simple, 184 

Sh(*ar stress, critical h'soIvcmI, 129/ 

effect of hydrostatii* pressure on 

critical, 150 

octahedral, 170, 258 

principal, 170 
Shell cases, fragmentation of, 381/ 

Sili(^at('s, 00 

Silicon, 90 
Silver chloride, 73 
Sk(*leton structun's, 19, 07, 105/, 

217/ 
Slip, 121/ 

blocking of, 120/, 124, 130, 149/, 

283/, 298, 301 

direction of, 129 

distribution of, 130/, 142/, 249/, 

282/ 
initiation of, 132, 141/, 250/, 

280 

laminar, 130/, 140/ 
temperature effect on di.scontinu- 

ous, 150/, 298/ 

unfinished, 95, 124 
Slip bands, 132, 282 

spacing of, 249, 282/ 

viscosity of, 127/, 132, 249 

Slip delay, 149/, 428, 500 
(effect on transition temperature 

of, 379/ 

in hexagonal crystals, 280 

Slip planes, 128/ 

direction of, 129, 250, 453 

precipitation on operative;, 120/, 
121, 130, 149/, 280, 298 

rotation of, 133/ 
Slip sy.stemis, 129, 132/, 110 

Sodium, 40, 57, 09 

Sodium chloride, 59, 73 
I Solid, definition of, 8, 190 

j energy content of, 7, 82/ 
I Solid solution, 88, 92 

j Sols, 398 
I Specific ftensity, 55 

Specific luMit, 82/, 1 15 

Spring constant, geiu'ralizeel, 330, 
342 

State, meclianisins cf change' of, 

109/, no, 120/, 152 

Strain, definition of, 178, 511/ 

finite, 219/ 

logarithmic, 182/ 

Strain aging, 120/, 300/ 
Strain anisotropy, 154 

Strain de;viator, 180 

invariants of, 181 

Strain elli])s()id, 177/, 187 

Strain-energy function, 215/ 
Strain hardening, meclianisins of, 

140/, 287 

temperature sensitivity of, 145/ 

Strain-rate tem])erature parameter, 

137/, 210, 321, 337 
Strain softening, 141/ 

Strain tensor, 179/, 180 

invariants of, 180 
Stress-concentration fae'tor, 420 

Stress concentrations, in conen'te, 

plastic relief of, 524 
in fracture theories, 357, 304 

in metals, plastic relief of, 420, 

473, 549 
relief in creep design of, 509/, 

515 

Stress deviator, 174 

invariants of, 174 
Stress distribution, in bending, 

plastic, 421, 404 

with creep, transient, 407/ 
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Stress function, 452^ 

Stress gradient, effect of, 15, 42B, 

428/ 

Stress prism, 429 

Stress quadric, 173 
Stress-strain diagram, adiabatic, 

217, 349/, 354, 557 

Stress tensor, 172/, 185 

invariants of, 173/ 

Structural damage, 474/, 506/, 524/ 

Structural element, 6, 12 

Structural models, 232, 235 

Structure, cubic, 90/ 

diamond, 66 

hexagonal, 65, 90 

linear (threadlike), 65 

plane (sheetlike), 65, 71/ 

Structure-sensitive properties, 19, 94 

Substitutional alloys, 57/ 

Sulphur, 65, 93 

Superlattice, 87/ 

Suspensions, 398/ 

Talcum, 71/ 

Tellurium, 65, 90 
Temperature, Debye, 115/, 136 

homologous, 83/ 
transition, 374/ 
velocity-modified, 137/, 201, 321, 

337 

Tensile strength, ultimate, 550 

Tensor, overstress, 269/ 

rank of, 171, 179, 185 

strain, 179, 186 

stress, 172/, 185 

Textile fibers, 71, 105 

Textural stresses, 101, 144, 285, 297, 

348 

Texture, formation of, 140/, 287/ 

Thermal expansion, coefficient of, 

75/ 

Thermal fatigue, 510 
Thermal instability of structun^, 

145/, 284, 297, 313/ 

Thermal oscillations, amplitude of, 

74 

frequency of, 79, 116 

Thermal softening, 140, 145/, 297/ 

Thermoelastic effects, in metals, 

217 

in rubber, 218/ 

Thick-walled cylinder, delay(‘d 
cracking of, 394/ 

limiting prtvssure in plastic, 431/, 

438, 47(» 

residual stresses in, 439 

Thixotropy, 13, 142, 401/, 406, 412/ 

Tin, 70, 93 

Transformation, austenitic, 57 

martensitic, 93, 135 

Transition temperature, 374/ 

Transition velocity, 376/, 557/ 

Trusses, carrying capacity of, 487/ 

Twinning, 134/ 

''i^vo-phase systems, 106 

Uncertainty principle, 44, 49 

IJndercoolcMl liquid, 85, 104/, 19() 

Unit, of action, Planck’s, 33 

of flow, 83, 86 

Unit cell, 89 

Valence crystals, 64, 70 

Valence electrons, 41/, 54, 63, 66/ 

Variational principles in plasticity, 
267, 279/, 487/, 496 

Velocity-modified temperature, 

137/, 210, 321, 337 

Velocity strain, 263 

Vibration, modes of, 77 

Viscoelastic analogies, 321/, 509, 

516 

Viscometers, 409/ 

Viscoplastic body, 221, 269, 403 

Viscosity, 136/, 141, 196 

measurement of, 2, 338, 409/ 

of grain boundaries, 101, 344/ 

of metals, 151/, 338 

of slip bands, 127/, 132, 249 

structural, 404 

temperature dependence of, 137, 

307 

Viscosity coefficient, 86, 229 

generalized, 330, 342 
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Viscosity coofficient, of asphalt, 

410 

of concrete, 523 

of paints, 412 

\'olurnetric defonnation, effect of 
anisotropy on, lodj/" ! 

r(‘versibility of, 153j/ 

Wave, propagation of plastic, 351^ i 

Wave (iquation, 45jf 

Wave function, 43^, 50, ()7jD‘ 

Wav(^ particl(^, 4Sj[f j 

W(‘akest-link conc(q)t, in (l(‘sign, 475 | 

in fracture, 300^ j 

Wedge, limiting pressure on plastic, j 

44()^r I 
Wire drawing, force of, 4(52, 471 i 

Work hardening, nu'chanisms (»f, 

UOff, 2S7Jf I 

Work-hardening diagrams, discon- I 

tinuity of, 150, 28(5, 208 

Work-hardening relations, deriva¬ 

tion of general, 290Jf 
Working stresses, 477, 512^/ 

Xenon, 11 

^ i(4d conditions, 255^ 

eff(H*t of hydrostatic stress on, 2(52 

representation of, 258^‘ 

Vitdding of stipport, effect on carry- 

i?ig capacity of continuous 
beam, 401, 517 

Vi(4d limit, 130, 107, 252, 300, 400, 

405 

Yield rectangl(‘, Prager’s, 277 
Vitdd str(‘ss, in impact test, 55(5^/" 

in t(*nsion test, 548j/‘ 

Zero elongation, cone of, 177 

Zero intercept of creep curves, 307, 

310 
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