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PREFACE 

This text is the gratification, to some degree at least, of a suppressed 
desire of some twenty-five years^ standing: this has been the development 
of a reasonably complete mathematical analysis of the mechanics of 
gearing. 

The subtitle of this treatise could well be Final Report of the ASME 
Special Research Committees on Worm Gears and the Strength of Gears.’’ 
The information and the inspiration from the work of these committees 
and from personal contact with their individual members has been the 
major motive force behind this work. 

To quote from a note to one of my colleagues: ^‘If one understands 
the significance of the calculus, then the subject of conjugate gear-tooth 
action should be mastered with ease. On the other hand, if one has a 
visual imagination and can grasp the significance of this conjugate gear- 
tooth action, then this presentation should be of material aid to help 
him to master the significance of the calculus. If however, as with 
myself, he has neither, then continued application to the problem may 
give him some slight appreciation of both.” 

This is not a text on gear design. It should form, however, a sound 
foundation upon which logical design practices and design data can be 
erected. These design structures, however, must be erected by the spe¬ 
cialized engineering groups that have need of them. In the final analy¬ 
sis, there are so many unkno\vn and uncertain factors that in critical 
cases our only answer is to ^Hry and see.” An analysis such as this 
should be of material aid in the interpretation and in the application of 
the information that is made available by definite tests and by actual 
service experience. 

The trends of today indicate a growing demand for the seemingly 
opposed requirements of higher speeds and greater loads with more reli¬ 
ability and quietness of operation. These demands are met in part by 
improved materials, better balancing, more nearly perfect machined sur¬ 
faces, and more intensive attention to many details of design. This last 
should also include a rigorous mathematical analysis of both the kine¬ 
matic and dynamic conditions of operation. 

The major objection to the thorough analysis of any mechanism is 
the amount of time required to make it, and also the dearth of individuals 
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who have both the ability and the inherent urge to do such work. If 
each new project must be started from the beginning, the time required 
to carry it through might be excessive for any single application. If, 

however, we can build up a foundation of general solutions of different 

basic types of mechanisms, then the specific task for any given project is 

to arrange the general solution for the particular case and solve. Even 

so, considerable time must be spent in computing the results, and a cal¬ 

culating machine is one of the essentials. 
Among the machine elements that have received much less analytical 

attention than they deserve are linkages, cams, and gears. The book 

attempts to give in usable form such a general analysis of gears. 
As noted before, this is not a text on gear design. The major effort 

has been to make apparent the nature of the action and contact between 
the contacting teeth of the different types of gears. A clear understand¬ 
ing of these features is essential if the designs are to exploit the full pos¬ 

sibilities of these mechanical elements. 
The first chapters give an analysis of conjugate gear-tooth action, 

nature of the contact, and resulting gear-tooth profiles of the several 

types of gears. These include spur gears, internal gears, helical gears, 

spiral gears, worm gears, bevel gears, and hypoid or skew bevel gears. 
Spur, internal, and helical gears are used to drive parallel axes. Bevel 

gears are used to drive intersecting axes. Spiral, worm, and hypoid 

gears are used to drive nonparallel, nonintersecting axes. 
The. last chapters give an analysis of gear teeth in action. These 

include frictional heat of operation and its dissipation, friction losses and 

efficiencies, dynamic loads in operation, beam strength or resistance of 

the teeth to breakage and fatigue, surface-endurance limits of materials, 
and the limiting wear loads or the potential resistance to surface disin¬ 

tegration and excessive wear. 

No claim is made that this analysis is complete. In the first place, 
space limitations prevent the full development of many interesting and 

pertinent factors of this general problem. While in the second and more 

important place, the writer has much to learn about the subject. It is 
probably much larger than the capacity of any individual to master com¬ 

pletely. Even this incomplete analysis is the result of the original work 

of many individuals. 

The effort has been made to give due credit in the text to the many 

sources of information that have made possible this analysis. In addi¬ 

tion to this, much help both direct and indirect has been obtained from 

close personal contact with Wilfred Lewis, Carl G. Barth, Charles H. 

Logue, Ernest Wildhaber, and all the other members of the ASME Spe- 
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cial Research Committees on Worm Gears and the Strength of Gear 
Teeth, as well as from many other individuals who are struggling with 
various types of gear problems. And last, but not least, a debt of grat¬ 
itude is owed to Guy L. Talbourdet, who has studied this manuscript crit¬ 
ically and who has checked carefully all the derivations of the equations. 

Earle Buckingham 

Cambridoe, Mass. 

March, 1949 
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CHAPTER 1 

CONJUGATE ACTION ON SPUR GEARS 

The essential purpose of gear-tooth profiles is to transmit rotary 
motion from one shaft to another. In the majority of cases, the addi- 
ional requirement of uniform rotary motion also exists. 

There is an almost infinite number of forms that can be used as gear- 
tooth profiles. Although the involute profile is the one most commonly 

used today for gear-tooth forms that are used to transmit power, occa¬ 
sions arise when some other form of profile can be used to advantage. 
In addition, there are also other problems than the transmission of 
rotary motion, where a thorough knowledge of the theory of gearing will 
assist to the most direct solution. One of such problems is the bobbing 
of spline shafts. 

Again, in order to appreciate fully the great simplicity of the involute 
form both in its theory and in its production, it is necessary to have a 
clear understanding of the principles of conjugate gear-tooth action. 
We will therefore consider now the characteristics of gear-tooth profiles 

that will transmit through each other uniform rotary motion. The 
action between such teeth is called conjugate gear-tooth action. 

In essence, a pair of mating gear-tooth profiles are cams, the one acting 

against the other to produce the relative motion desired. With certain 
restrictions, one profile can be chosen at random and a correct mating 
profile can be developed. On the other hand, if both profiles are selected 
arbitrarily, the nature of the resulting action can be determined, but it 

will seldom if ever be uniform motion. 
In all cases when two curved surfaces act against each other, the line 

of action Ix'tween them will be along the common normal to the two 
curves at the point of tangency between them. If these two curved 
profiles are mounted on pivots, as shown in Fig. 1-1, this line of action 

a-a will intersect the line of centers c-c at A, Then the angular-velocity 
ratio between the two arms will be inversely proportional to the radii of 
the respective arms to the point A. These radii are the momentary pitch 

radii of the two forms. 
In order to transmit uniform rotary motion, the values of the momen¬ 

tary pitch radii must remain constant for all operating positions of the 

contacting profiles. This gives the basic law of conjugate gear-tooth 

action, which may be expressed as follows: 
1 
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Law of Conjugate GeaMooth Action, To transmit uniform rotary 
motion from one shaft to another by means of gear teeth^ the normals to the 

profiles of these teeth at all points of contact must pass through a fixed point 

in the common center line of the two shafts. 

Pitch Point. This fixed point in the com¬ 
mon center line is called the pitch point. With 

every gear-tooth form except the involute, there 

is a definite pitch line or pitch circle from 

which the conjugate gear-tooth profiles must be 

developed. The pitch circles of mating spur 

gears must be tangent to each other. The point 
of tangency of these two pitch circles is the 

pitch point. 
These pitch circles are of such size that if 

they were to drive each other by friction with¬ 

out slipping, they would transmit the relative 
motion required. The sizes of these pitch circles 
are inversely proportional to the angular veloci¬ 

ties of the two gears. For equal velocities these 

sizes are equal. For double speed, the pitch 
circle of the slower gear is twice the size of that 

of the faster gear. The tooth proportions may 

be symmetrical or unsymmetrical in respect to the pitch line: the tooth 
profile may be all above or all below the pitch line or it may be partly 

above and partly below. 

Basic-rack Form. As stated before, the tooth profile for one gear 
may be chosen arbitrarily, and the conjugate profile for the mating gear 

can be developed. For every pair of conjugate gear-tooth profiles, there 

is also a definite basic rack form. This basic-rack form is the profile of 
the conjugate gear of infinite diameter. Its pitch line is a straight line. 

Path of Contact. When conjugate gear-tooth profiles act together, 
the point of contact between them will travel along a definite path, which 

is called the path of contact. In other words, the path of contact is the 
locus of all points of contact between the conjugate gear-tooth profiles. 

Line of Action. From any point of contact, a straight line, normal to 
both of the mating profiles at the point of contact, can be drawn from it 

to the pitch point. This straight line or common normal to the profiles 

is called the line of action. 

Pressure Angle. The angle between this line of action and the com¬ 
mon tangent to the two pitch circles at the pitch point is called the pres¬ 

sure angle of the specific points of the teeth that are in contact. With all 
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gear-tooth forms except the involute form, this pressure angle changes 

from point to point. 
Once a pitch line has been established for any given tooth profile, a 

definite path of contact exists along which contact with all other conjugate 

gear-tooth profiles is made regardless of the number of teeth in these 
gears. The path of contact for any given conjugate gear-tooth system 

is the same for any two gears as it is for any one gear and the basic rack 

of the system. 
The simplest way to define any definite conjugate gear-tooth system 

is to specify the form and size of its basic rack. There is a definite rela¬ 

tion between a gear-tooth profile and its path of contact so that if either 

one is given, the other is fixed. 

BASIC-RACK FORM GIVEN 

We shall start our analysis with a specified form for the basic rack. 

We shall use the pitch point as the origin of the coordinate system for the 

basic rack and for the path of contact. We shall use the center of the 

conjugate gear as the origin of the polar coordinate system for the gear- 
tooth profile, and the vectorial angle will be zero at the pitch point. All 

angles will be plus when they are measured in a counterclockwise direc¬ 

tion. In all these calculations, great care must be exercised to use the 
correct sign (plus or minus) of these angular values. 

We shall use the following symbols, and subscripts will be used when 

needed to identify the different gears of a pair or train: 
X = abscissa of basic-rack profile 
y = ordinate of basic-rack profile and of path of contact 

Xp = abscissa of path of contact 
(f) = pressure angle 
r = length of radius vector of conjugate gear-tooth profile 

R = pitch radius of gear 

6 = vectorial angle of radius vector 
4/ = angle between tangent to tooth profile and radius vector 

€ = angle of rotation of gear from zero position 

X = abscissa of conjugate gear-tooth profile (origin at center of gear) 

Y — ordinate of conjugate gear-tooth profile (origin at center of gear) 

Path of Contact. Given the values of Xy i/, and <t>; to determine the path of 
contact. 

tan <t> = dxjdy 

Referring to Fig. 1-2, we have from the geometrical conditions shown 
there 

= —y/tan </> (1-1) 
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The value of Xp will be negative when the value of x is positive, 
because the two points will always be on opposite sides of the origin. In 
order to establish the path of contact for any given basic-rack profile, a 
series of points on the given profile, together with the values of the tan¬ 
gents at those points, are selected or determined, for which the equivalent 
points on the path of contact can be determined by the use of Eq. (1-1). 
These values can then be plotted to any desired scale. 

The first step is to determine the values of a:, y, and tan 0 for a selected 
series of points on the basic-rack profile. Generally the equation of this 

Basic rack profile 

rack profile can be readily established. In other cases, values measured 
from an enlarged layout may be used. 

Conjugate Gear-tooth Profile. When we have the coordinates of the 
basic-rack profile and those of the path of contact, we can then calculate 
the coordinates of the conjugate gear-tooth profile for any specific pitch 
radius. Referring to Fig. 1-3, we have the following from the geometrical 
conditions shown there: 

r = v(/2 - i/)2 + x^? (1-2) 
€ = (Xp — x)/R 

$ = {tan-”^ [^p/{R — y)] — € 
0 = l(x - Xp)/R] + tan“i lxp/(R - y)] (1-3) 

As noted before, the values of x and Xp will always be of opposite sign, 
so that the numerical value of their difference will always be the sum of 
their values with the sign of x. 

Limitations to Conjugate Action. WTienever there is a cusp in the 
form of the conjugate gear-tooth profile, the extent of the useful profile is 
limited to the bottom of the cusp. If the tooth profiles engage beyond 
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this point, there will be interference in the action, or undercut. These 
conditions will be analyzed in detail later in connection with the study of 
the form of the fillet or trochoid below the conjugate profile of the 
gear-tooth. 

Mating Gear-tooth Profile. For the coordinates of the mating gear- 
tooth profile, which must be conjugate to the first gear-tooth profile, we 
must use the coordinates of the 
inside surface of the original basic 
rack, or we must determine them 
from the values of the first gear- 
tooth profile. When the basic- 
rack form is given, it is best always 
to work directly from it. 

The values for the coordinates 
of the inside surface of the basic 
rack and its path of contact will be 

the same as before but of opposite 
sign. With these values, we pro¬ 
ceed as before to determine the 
coordinates of the mating gear- 
tooth profile. 

Cartesian Coordinates for Con¬ 
jugate Gear-tooth Profiles. ' 
When it is desired to use rectangu¬ 
lar coordinates to plot the form of J 
the gear tooth or tooth space, we 
can shift the origin as may be 
desired. Generally it is desirable 
to make the y axis at the center 
line of the tooth or space. Then when 

/ 

y 
/ 

/ 
1 
/ 

X 

Fig. 1-3. 

6' = original vectorial angle* at center of tooth or space 
d == calculated vectorial angle 

0" = vectorial angle with Y axis at center line of tooth or space 

e" = 0^-6 
X = r sin e" 
Y = r cos 

(1-4) 
(1-5) 

(1-6) 

Arc of Action. The arc of action is the arc through which one tooth 
travels from the time it first makes contact with the mating tooth along 
the path of contact until contact ceases. For smooth continuous action, 
the arc of action must be something greater than the arc between succes¬ 
sive teeth of the gear. 
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The arc of approach is the arc through which the tooth travels from 

the time it first makes contact with the mating tooth along the path of 

contact until the contact has reached the pitch point. 
The arc of recess is the arc through which the tooth travels from the 

time contact is at the pitch point until contact ceases along the path of 
contact. 

Thus when 

€o = arc of rotation of pitch point of driving gear to position of first 
contact near root of tooth' 

€r = arc of rotation of pitch point of driving gear to position of last 
contact at tip of tooth' 

fia = arc of approach of driving gear 
/3r = arc of recess of driving gear 
P — arc of contact of driving gear 

0a = (1-7) 
0r = €. (1-8) 
S == 0a + 0r (1-9) 

The foregoing values are independent of their signs. Here we are inter¬ 
ested only in the numerical sums. 

Example with Given Form of Basic Rack. As a definite example we shall use a 
basic-rack profile that is formed by the arc of a circle as shown in Fig. (1-4). F'or this 
example^ we have when 

A ** radius of rack profile 
B « distance along x axis to center of radius, A 
D « distance along y axis to center of radius, A 

^ These values are the values calculated for the respective contact points. 
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We will let 

Then 

X - B - VA* - {D + yy 

^ - tan ^ ^ + y — 
dy Va» - (d + y)« 

A* 1 J.M. X 

dy^ [i4* — (D -f A cos* 0 

L « 5.00 B « 4.5315 D = 2.1131 

X 

tan 0 

4.5315 - \/25 - (2.1131 + 2/)* 
(2.1131 + y) 

\/25 - (2Ti31 + 1/)* 

(1-10) 

(1-11) 

(1-12) 

(1-10) 

(1-11) 

Example of Path of Contact. We shall use increments of 0.10 for values of y from 
0 to ±1.00 with which wo obtain the values of x, y, and tan 4> tabulated in Table 1-1. 
By the use of those values in Eq. (1-1), we obtain the values of Xp that are tabulated in 
Table 1-1 and plotted in Fig. 1-5. 

Table 1-1. Coordinates of Given Basic-rack Form and of Conjugate Gear 

Tooth 

(Plotted in Fig. 1-5) 

y, in. X, in. tan 0 Xp, in. r, in. 0, rad X, in. Y, in. 

1.00 0.6189 0.79566 -1.2568 19.0415 0.0277 0.2203 19.0402 
0.90 0.5414 0.75514 -1.1918 19.1371 0.0244 0.2846 19.1350 
0.80 0.4678 0.71686 -1.1160 19.2324 0.0211 0.3494 19.2282 
0.70 0.3979 0.68054 -1.0286 19.3274 0.0181 0.4092 19.3218 
0.60 0.3316 0.64599 -0.9288 19.4222 0.0152 0.4675 19.4166 

0.50 0.2687 0.61300 -0.8157 19.5171 0.0124 0.5242 19.5101 
0.40 0.2090 0.58140 ; -0.6880 19.6120 0.0098 0 5788 19.6036 
0.30 0.1524 0.55105 -0.5444 19.7075 0.0072 0.6316 19.6974 
0.20 0.0987 0.52181 -0.3833 19.8037 0.0047 0.6848 19.7918 
0.10 0.0480 0.49361 -0.2026 19.9010 0.0024 0.7333 19.8875 

0.00 0.0000 0.46631 0.0000 20.0000 0.0000 0.7852 19.9846 
-0.10 -0 0453 0.43985 0.2274 20.1013 -0.0023 0.8358 20.0840 
-0.20 -0.0880 0.41414 0.4829 20.2058 -0.0046 0.8858 20.1864 
-0.30 -0.1282 0.38910 0.7710 20.3146 -0.0070 0.9395 20.2929 
-0.40 -0.1659 0.36469 1.0968 20.4295 -0.0094 0.9941 20.4052 

-0.50 -0.2011 0.34085 1.4669 20.5524 -0.0120 1.0535 20.5253 
-0 60 -0.2341 0.31750 1.8898 20.6865 -0.0147 1.1158 20.6565 
-0.70 -0.2647 0.29463 2.3759 20.8359 -0.0178 1.1885 20.8018 
-0.80 -0.2930 0.27217 2.9393 21.0067 -0.0212 1.2696 20.9683 
-0.00 -0.3191 0.25009 3.5987 21.2076 -0.0254 1.3706 21.1633 

1 00 -0 3430 0.22835 4.3792 21.4517 -0.0305 1.4956 21.3994 

Example of Conjugate Gear-tooth Profile. We shall use a value of 72 = 20.00 for 
the first gear. With this value and the tabulated ones used in Eqs. (1-2) and (1-3), 
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we obtain the values tabulated in Table 1-1 for r and 6. These values are also plotted 
in Fig. 1-5. 

For the mating gear to run with the first gear, we shall also use a value oi R ^ 20.00. 
For this gear, the values of a;, ?/, and Xp are the same as before but of opposite sign. 
These values are tabulated in Table 1-2 together with the computed values for r and d 
for the second gear. This second profile has a cusp at its bottom, which limits its 
active profile below the radius of about 19.4237. This corresponds to a maximum 
radius of about 21.0067 on the mating gear. 

Gear-foofh space (1st. gccsr) 

Fig. 1-5. 

Arc of Action. We shall assume that the outside radius of the second gear is 
21.0376 and that this point makes contact with the first gear at a radius of 19.0415. 
We shall also use an outside* radiu.s for the first gear of 21.0067. 

At the start of contact 

X = 0.6189 Xp = -1.2568 y = 1.00 

(x — Xp) 1.8757 nnoo'TO j- 
€a = il ~ ^ 20 ^ ~ 0 0^373 radian 

Here, as noted before, we are interested only in the numerical values and not the signs; 
hence 0a = 0.09373 radian. 

At the end of contact 

X = -0.2930 Xp = 2.9393 // = -0.80 

3.2323 niAin 1- €r *= — 20 ~ —0.16161 radian 

Hence 
0r — 0.16161 radian 

p *= 0.09373 -f 0.16161 = 0.25534 radian 

These gears must have (6.2832/0.25534) = 25 or more teeth for continuous action. 
Rectangular Coordinates. We shall assume that both of the gears have 40 teeth, 

and that we want their rectangular coordinates in reference to the center line of the 
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tooth space of the first gear, and the center line of the gear tooth of the second gear. 
We shall also assume that the arc tooth thickness of each gear at its pitch line is equal 
to one-half of the circular pitch, or 1.5708. For the first gear we have 

Table 1-2. Coordinates of Inside Surface of Basic-rack Form and of (Conju¬ 

gate Gear Tooth 

(Plotted in Fig. 1-5) 

2/, in. X, in. tan <f> Xpj in. r, in. 9, rad X, in. F, in. 

1.00 0.3430 0.22835 -4.3792 19.4981 0.0096 0.9525 19.4749 
0.90 0.3191 0.25009 -3.5987 19.4361 0.0097 0.9514 19.4128 
0.80 0.2930 0.27217 -2.9393 19.4237 0.0097 0.9508 19.4004 
0.70 0.2647 0.29463 -2.3759 19.4457 0.0095 0.9478 19.4226 
0.60 0.2341 0.31750 -1.8898 19.4918 0.0091 0.9422 19.4690 

0.50 0.2011 0.34085 -1.4669 19.5551 0.0083 0.9300 19.5330 
0.40 0.1659 0.36469 -1.0968 19.6307 0.0072 0.9120 19.6095 
0.30 0.1282 0.38910 -0.7710 19.7151 0.0058 0.8882 19.6950 
0.20 0.0880 0.41414 -0.4829 19.8059 0.0042 0.8608 19.7873 
0.10 0.0453 

1 
0.43985 -0.2274 19.9013 0.0022 0.8249 19.8842 

0.00 0.0000 0.46631 0.0000 20.0000 0.0000 0.7854 19.9846 
-0.10 -0.0480 0.49361 0.2026 20.1010 -0.0025 0.7389 20.0873 
-0.20 -0.0987 0.52181 0.3833 20.2036 -0.0051 0.6904 20.1919 
-0.30 -0.1524 0.55105 0.5444 20.3073 -0.0080 0.6350 20.2973 
-0.40 -0.2090 0.58140 0.6880 20.4116 -0.0111 0.5748 20.4034 

-0.50 -0.2687 0.61300 0.8157 20.5162 -0.0145 0.5080 20.5098 
-0.60 -0.3316 0.64599 0.9288 20.6209 -0.0180 0.4386 20.6162 
-0.70 -0.3979 0.68054 1.0286 20.7255 -0.0217 0.3641 20.7222 
-0.80 -0.4678 0.71683 1.1160 20.8299 -0.0256 0.2845 20.8280 
-0.90 -0.5414 0.75514 1.1918 20.9340 -0.0297 0.2001 20.9330 
-1.00 -0.6189 0.79566 1.2568 21.0376 -0.0340 0.1104 21.0373 

O' = 1:5^ = 0.03927 radian = 2.250° 
40 

Using this value in Eq. (1-4), we obtain values of 0"j from which, using Eqs. (1-5) and 
(1-6), we obtain the values of X and F, which are tabulated in Table 1-1 and plotted 
in Fig. 1-5. 

For the second gear we have 

®' = - = -0.03927 radian = -2.250° 
40 

Proceeding as before, we obtain the values of A" and Y for the second gear, which are 
tabulated in Table 1-2 and plotted in Fig. 1-5. 

ONE GEAR-TOOTH FORM GIVEN 

Now we shall start with a specified form for one of the gear-tooth 

profiles. We shall use the center of the gear as the origin of the polar 
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coordinate system and the pitch point as the place where the vectorial 
angle is equal to zero. All symbols and other conventions will be the 
same as before. Angles are plus when measured in a counterclockwise 
direction. We will use the subscript i on all symbols for the original 

gear and the subscript 2 on all 
symbols for the mating gear. It 
is assumed that we have or can 
obtain the values for 7?i, ri, di, €1, 
and ^1, where 

tan^i = — (rid0i/dri) (1-13)^ 

If we need the sine or cosine of this 
angle, we have 

tan ^1 

sin rpi = 
\/l + tan^ 

cos = 
1 

\/1 4“ tan^ 

Path of Contact. Referring 
again to Fig. 1-3, we have from 
the geometrical conditions shown 
there the following: 

cos <t> = (^1 cos yl/i)/Ri (1-14) 
Cl = ^1 — 0 — (1-15) 

Xp = ri sin (f 1 — <t>) (1-16) 

y = Ri 
- ri cos (^1 - <t>) (1-17) 

Basic-rack Form. If we need 
the form of the basic rack, we 
obtain the value of x as follows: 

X — Xp — Riei (1-18) 

When we have the coordinates of the basic-rack form and of its path 
of contact, we can proceed as before to determine the coordinates of the 
mating gear-tooth profile. Or we can determine these coordinates 
directly from those of the original gear and the path of contact. 

Mating Gear-tooth Profile. Referring to Fig. 1-6, we have from the 
geometrical conditions shown there the following: 

r2 = V{R2 + yV + V (1-19) 
cos ^2 = R2 COS <t>/ri (1-20) 

' The sign here is minus because of the special coordinate system used. When the 
value of r is increasing, the value of ^ is decreasing. 
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^2 -- ^{Ri/R^^i 
62 = ^2 — <t> — C2 

(1-21)^ 
(1-22) 

Examples of Mating Tooth Profile from Given Tooth Profile. The first step 
toward the solution of any of these problems is to set up an equation for the profile of 
the given tooth form. Then the values for the mating profile are obtained by the 
use of the values established for the first profile and the foregoing equations. As a 
definite example, we shall start with a pin- 
tooth gear where the teeth are cylinders or 
pins mounted between plates. Such mem¬ 
bers are often called lantern pinions. 

First Example: Pin-tooth Gear. Refer¬ 
ring to Fig. 1-7, we will use 

A => radius of pins 
B =» radius to center of pins* 

Ri =» pitch radius of lantern pinion. 

01 « C08“ 
- A* 

2Br, 

cos ' - 

sin ^1 

2BRi 

A* + ri* - 

A* 

R* 
2Ari 

(1-23) 

(1-24) 

First we select a scries of values for ri, 
then we determine the corresponding values 
of Oi, and \pi. Next we substitute these 
values into r>is. (1-14), (1-15), (1-16), and 
(1-17), to obtain values for the coordinates 
of the given tooth profile and its path of 
contact. 

Last we substitute these values into Eqs. 
(1-19), (1-20), (1-21), and (1-22) to obtain the values of the coordinates of the mating 
tooth profile. 

If we wish to plot the results and use rectangular coordinates, then we determine 
the corrected value for the vectorial angle to make the form symmetrical to the center 
line of the tooth or space, and use Kqs. (1-4), (1-5), and (1-6) to obtain these values. 

As a definite example, we shall use the following values: 

0.750 
Ri = 
Rt = 

B = 
6.00 

18.00 

5.90 
with 12 pins or teeth 
with 36 teeth 

We shall choose an increment of 0.05 for ri and use values ranging from 6.65 to 5.70. 
For the original pin-tooth gear and its path of contact, we obtain the values tabulated 
in Table 1-3. For the mating gear-tooth profile, we obtain the values tabulated in 
Table 1-4 and plotted in Fig. 1-8. 

‘ Mating spur gears always run in opposite directions. 
* The center of the pins must always be off the pitch line, on spur gears, to avoid a 

cusp in the form of the mating gear tooth. 
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T-able 1-3. Coordinates of Pin-tooth Gear and Its Path of Contact 

(Plotted in Fig. 1-8) 

ri, in. (9i, deg ^1, deg 0, deg ei, deg Xp, in. 7j, in. 

5.70 -0.016 -11.862 21.609 -33.455 -3.1436 1.2453 
5.75 0.070 - 7.897 18.334 -26.301 -2.5414 0.8421 
5.80 0.122 - 4.004 15.354 -19.480 -1.9229 0.5279 
5.85 0.140 - 0.163 12.839 -13.142 -1.3162 0.3000 
5.90 0.125 3.644 11.084 - 7.565 -0.7640 0.1497 

5.95 0.078 7.436 10.477 - 3.119 -0.3157 0.0584 
6.00 0.000 11.229 11.229 0.000 0.0000 0.0000 
6.05 -0.112 15.041 13.147 2.006 0.2000 -0.0467 
6.10 -0.257 18.891 15.865 3.283 0.3220 -0.0915 
6.15 -0.433 22.801 19.108 4.126 0.3961 -0.1372 

6.20 -0.648 26.794 22.723 4.719 0.4401 -0.1844 
6.25 -0.901 30.904 26.648 5.157 0.4638 -0.2328 
6.30 -1.198 35.164 30.864 5.498 0.4724 -0.2823 
6.35 -1.544 39.628 35.400 5.772 0.4682 -0.3327 
6.40 - 1.949 44.364 40.309 6.00-1 0.4525 -0.3H40 

6.45 -2.426 49.483 45.702 6.207 0.4253 -0.4359 
6.50 -2.998 55.162 51.767 6.393 0.3849 -0.4886 
6.55 -3.713 61.753 58.892 6.574 0.3269 -0 5418 
6.60 -4.690 70.160 68.079 6.771 0.2397 -0.5956 
6.65 -7.163 90.000 90.000 7.163 0.0000 -0.6500 

In practice, when pin-tooth gears are used, no attempt is made to obtain any of 
the dedendum contact on the mating gear. This part of the form is cut away as 
indicated by the dotted lines in Fig. 1-8. 

Second Example. As a second example, we shall use a gear-tooth profile that 
consists of a straight line as shown in Fig. 1-9. For this we have the following: 
A * radius of circle to which straight line profile is tangent 
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Table 1-4. (Coordinates of Gear Mating with Pin-tooth Gear 

(Plotted in Fig. 1-8) 

<t>j dog 

21.G09 

18.334 

15.354 

12.839 

11.084 

10.477 

11.229 

13.147 

15.865 

19.108 

22.723 

26.648 

30.864 

35.400 

40.309 

45.702 

51.767 

58.892 

68.079 

90.000 

^2, dog 

30.886 

26.012 

21.278 

16.953 

13.494 

11.479 

11.229 

12.510 

14.835 

17.838 

21.307 

25.153 

29.337 

33.882 

38.836 

44.314 

50.507 

57.751 

67.290 

90.000 

02, deg 

-1.875 

-1.089 

-0.469 

-0.267 

-0.112 

-0.038 

0.000 

0.032 

0.064 

0.105 

0.157 

0.224 

0.306 

0.406 

0.528 

0.681 

0.871 

1.050 

1.468 

2.388 

€2, deg 

11.152 

8.767 

6.293 

4.381 

2.522 

1.040 

0.000 

-0.669 
-1.094 

-1.375 

-1.573 

-1.719 

-1.833 

-1.924 
-2.001 

-2.069 

-2.131 

-2.191 

-2.257 

-2.388 

r2, in. 

19.5003 
19.0122 

18.6274 

18.3473 

18.1658 

18.0612 

18.0000 

17.9533 

17.9085 

17.8628 

17.8156 

17.7673 

17.7177 

17.6673 
17.6160 

17.5641 

17.5114 

17.4582 

17.4044 

17.3500 

X, in. 

0.2508 

0.5053 

0.6965 

0.7508 

0.7924 

0.8111 

0.8203 
0.8282 

0.8361 

9.8469 

0.8609 

0.8792 

0.9023 

0.9305 

0.9653 

1.0092 

1.0641 

1.1153 

1.2384 

1 5122 

Y, in. 

19.4986 

19.0055 

18.6143 

18.3319 

18.1485 

18.0429 

17.9813 
17.9352 

17.8918 

17.8472 

17.7993 
17.7516 

17.7009 

17.6489 
17.5954 

17.5402 

17.4833 

17 4256 

17.3618 

17.2839 

From the geometrical conditions 

shown in this figure, we have 

$1 — sin“' (A/ri) — sin"^ {A/Ri) 
(1-25) 

sin \Pi = A/ri (1-26) 

For tlu* definite example, we shall use 

= 10.00 

A =5.00 with 20 teeth 

R2 = 20.(X) with *10 teeth 

We shall select a series of values for r\ 
varying from 9.00 to 11.(X) in increments 

of 0.10, and determine the coordinates of 

the original profile and those* of the path 

of contact by the use of Kqs. (1-14), 

(1-15), (1-16), and (1-17). These values 

are tabulated in Table 1-5. Then we 

shall determine the values of the coordi¬ 

nates of the mating gear-tooth profile by 
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Table 1-5. Coordinates of Straight-line Gear-tooth Profile and Path op 

Contact 

(Plotted in Fig. 1-10) 

ri, in. »h deg 'pi, deg <t>, deg €i, deg Xp, in. y, in. 

9.00 3.745 33.745 41.551 -11.551 -1.2224 1.0834 
9.10 3.329 33.329 40.507 -10.507 -1.1370 0.9713 
9.20 2.921 32.921 39.442 - 9.442 -1.0448 0.8595 
9.30 2.523 32.523 38.357 - 8.357 -0.9453 0.7482 
9.40 2.135 32.135 37.251 - 7.251 -0.8382 0.6374 

9.50 1.757 31.757 36.121 - 6.121 -0.7229 0.5276 
9.60 1.388 31.388 34.964 - 4.964 -0.5988 0.4187 
9.70 1.028 31.028 33.777 - 3.777 -0.4652 0.3112 
9.80 0.678 30.678 32.558 - 2.558 -0.3215 0.2053 
9.90 0.335 30.335 31.300 - 1.300 -0.1667 0.1014 

10.00 0.000 30.000 30.000 0.000 0.0000 0.0000 
10.10 -0.327 29.673 28.652 1.348 0.1800 -0.0984 
10.20 -0.647 29.353 27.246 2.754 0.3751 -0.1931 
10.30 -0.959 29.041 25.776 4.224 0.5866 -0.2833 
10.40 -1.266 28.734 24.226 5.774 0.8174 -0.3679 

10.50 I -1.563 28.437 22.586 7.414 1.0704 -0.4452 
10.60 -1.855 28.145 20.826 9.174 1.3503 -0.5136 
10.70 -2.141 27.859 18.917 11.083 1.6631 -0.5700 
10.80 -2.422 27.578 16.806 13.194 2.0185 -0.6097 
10.90 -2.695 27.305 14.410 15.590 2.4306 -0.6251 
11.00 • -2.964 27.036 11.484 18.516 2.9412 -0.5973 
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the use of Eqs. (1-19), (1-20), (1-21), and (1-22). The rectangular coordinates of this 
profile are found by the use of Eqs. (1-4), (1-5), and (1-6). These values are tabulated 
in Table 1-6 and plotted in Fig. 1-10. 

There is a cusp at the root of the mating gear so that ils active profile cannot 
extend below a radius of about 19.50, and the maximum radius of the first gear must 
be reduced to about 10.700. 

Table 1-6. Coordinates of Mating Gear-tooth Profile of Straight-line 

Tooth Profile 

(Plotted in Fig. 1-10) 

0, deg ^2, deg ‘ ^2, deg €2, deg 
1 

^2, in. A", in. F, in. 

41,551 45.711 -2.459 5.775 21.1188 0.0439 21.1187 
40.507 43.610 -2.150 5.253 21,0021 0.1,569 21.0015 
39.442 42.310 -1.853 4.721 20.8857 0.2642 20.8832 
38.357 40.966 -1.569 4.178 20.7697 0.3658 20.7664 
37.251 39.568 -1.308 3.625 20.6517 0.4.576 20.6466 

36.121 38.138 -1.043 3.060 20.5403 0.5503 20.5329 
34.964 36.644 -0.802 2.482 20.4275 0.6294 20.4179 
33.777 35.086 -0.580 1.889 20.3165 0.7082 20.3041 
32.558 33.469 -0.368 I 1.279 20.2078 0.7792 20.1929 
31.300 31.775 -0.175 0.650 20.1021 0.8429 20.0844 

30.000 30.000 0.000 0.000 20.0000 0.8994 19.9798 
28.652 28.133 0.155 -0.674 19.9024 0.9489 19.8797 
27.246 26.161 0.292 -1.377 19.8105 0.9919 19.7857 
25.776 24.072 0.408 -2.112 19.7254 1.0275 19.6986 
24.226 21.841 0.502 -2.887 19.6492 1.0557 19.6209 

22.586 19.451 0,572 -3.707 19.5841 1.0761 19.5545 
20.826 16.849 0.610 -4.587 19.5331 1.0862 19.5028 
18.917 14.025 0.649 -5.541 19.5010 1.0977 19.4700 
16.806 10.862 0.653 -6.597 19.4951 1.0987 19.4641 
14.410 7.246 0.655 -7.795 19.5268 1.1013 19.4957 
11.484 2.889 0.663 -9.258 19.6244 1.1094 19.5930 

PATH OF CONTACT GIVEN 

When the coordinates of the path of contact are given, we can then 
determine the coordinates of the basic-rack profile. Then with this 
information, we can proceed as before to determine the coordinates of the 
other gear teeth. 

We shall start with Eq. (1-1) 

Xp = —y/tSLii <t> = —y dy/dx 
Then 

tan </> = ’-y/xp (1-27) 
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At the origin 

tan <l> = '—dy/dxp (1-28) 
whence 

X = - jy dy/xp (1-29) 

When we have the value of Xp in terms of y. we substitute this expres¬ 
sion for Xp in the foregoing equa¬ 
tion, simplify, and integrate. The 
constant of integration must be 
selected to bring the resulting 
curve through the origin or pitch 
point. This constant of integra¬ 
tion will be the value of the indefi¬ 
nite integral when y is equal to 
zero. 

Example of Given Path of Contact. 
As a definite example, we shall use a 
portion of a parabola as our Kiv(‘n path 
of contact, as shown in Fig. 1-11. The 
symbols are indicated there. From this 
figure, we have for the original equation 
of the parabola 

Xr == ayc^ (1-30) 

When the origin is transferred to the 
pitch point, we have 

aA^ -\- Xp yc — y — A 

Substituting these values into the original equation for the parabola, we have 

Then 

aA^ A- Xp — a{y — A)* 
Xp = a(y — A)* — aA* == ayiy — 2A) (1-31) 

= _ /■ = 1 /■ J ayiy - 2A) a J 
As X must equal zero when y equals zero, we have 

C-log 2A 
then 

1 
X * - [log 2A — log (2A — y)l 

a 
(1-32) 

For the definite example, we will use' 

a * 0.375 A « 2.3094 

* These values have been selected to give a pressure angle of 30 deg at the pitch 
point. 
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Table 1-7. Coordinates of Parabolic Path of Contact and Its Basic-rack 

Form 

(Plotted in Fig. 1-12) 

y, in. Xp, in. Xy in. tan <f> 4>y deg 

1.00 -1.3571 0.6507 0.73689 36.387 
0.90 -1.2551 0.5780 0.71707 35.643 
0.80 -1.1456 0.5072 0.69830 34.927 
0.70 -1.0287 0.4383 0.68048 34.235 
0.60 -0.9042 0.3711 0.66355 33.566 

0.50 -0.7723 0.3055 0.64743 32.920 
0.40 -0.6328 0.2416 0.63209 32.297 
0.30 -0.4859 0.1791 1 0.61747 31.694 
0.20 -0.3314 0.1180 0.60348 31.110 
0.10 -0.1695 0.0584 0.59011 30.545 

0.00 0.0000 0.0000 0.57735 30.000 
-0.10 0.1770 -0.0571 0.56510 29.471 
-0.20 0.3614 -0.1131 0.55339 28.960 
-0.30 0.5534 -0.1678 0.54213 28.464 
-0.40 0.7528 -0.2215 0.53133 27.983 

-0.50 0.9598 -0.2741 0.52095 27.517 
-0.60 1.1742 -0.3257 0.51097 27.066 
-0.70 1.3962 -0.3763 0.50136 26.628 
-0.80 1.6256 -0.4260 0.49211 26.202 
-0.90 1.8626 -0.4747 0.48319 25.790 
-1.00 2.1071 -0 5220 0.47459 25.389 

Then 

Xp = 0.375f/(i/ - 4.6188) 
X = 2.6667[log* 4.6188 

- log* (4.6188 - y)] 

At the origin- 

tan <t> = —dy/dxp = l/2aA = 0.57735 

Values for this path of contact and 
the resulting basic-rack form are tabu¬ 
lated in Tabic 1-7 and plotted in Fig. 
1-12. 

RADIUS OF CURVATURE OF TOOTH PROFILE 

The radius of curvature of the gear-tooth profile is an essential value 

that is needed for the determination of the intensity of the local stresses 

* These are natural logarithms to base c. All logarithms used in this text are to 
this base. 
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set up between the loaded gear teeth. When Re = radius of curvature, 
for Cartesian or rectangular coordinates 

for polar coordinates 

Rc 

[1 + {dy/dxY]^^ 

(d^y/dx^) 

[r^ + jdr/deY]^^ 
— r{dh/d6^) + 2{dr/ddY 

(1-33) 

(1-34) 

When the equation of the profile of the basic rack or of one of the 
gears is known, the value of the radius of curvature at any point of that 

profile can be determined readily by means of one of the two preceding 
equations. 

The determination of the radius of curvature of one of the calculated 
profiles is a much more complex procedure because here we have one 
independent variable and several dependent ones. The radius of curva¬ 
ture at the pitch point is the simpler one to find because here several of 

these variables become equal to each other. We shall first consider the 
radius of curvature of the calculated profiles at any point. 

Radius of Curvature of Gear-tooth Profile. We shall start from a 
given basic-rack form. For the conjugate gear-tooth profile, the problem 
is to obtain values for (dr/dd) and (dV/d0^) in terms of the known values 
so that they may be substituted into the general polar equation for the 

radius of curvature. We have, to start. 

dr/dd = —r/tan^ = — rcot^ 

Differentiating in respect to 0, we obtain 

dP-r/dd’^ — — {dr/dd) cot ^ + r cosec^ \p {d\l//dd) 
whence 

d'r/dd'^ — (r/sin^ ^)[cos2 ^ + {dyp/dd)] 

The derivation of an expression for d\(//dd may be very complex and 
difficult. A reasonable approximation will be to use the ratio of the 
differences from the tabulated values. In other words, we shall substitute 
A}///Ad for dyp/dd. This ratio will be the same whether we use the values 
of these angles in degrees or in radians. 

Substituting the foregoing into Eq. (1-34), combining, and simplifying, 

we obtain 

Rc = —Y-T\-(1-35) 
sin^fl — (cl^/dd)] 

This relationship applies to both gears of the pair. 

Example of Radius of Curvature of Gear-tooth Profile. As a definite example, we 
shall use the pin-tooth gear whose values are tabulated in Table 1-3, and determine its 
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radius of curvature at a radius of 6.50. We shall use a radius difference of plus and 
minus one increment of the tables from the selected value of 6.50 {i.e., 6.55 — 6.45). 
From the values in Table 1-3, we obtain 

» 12.270° M = -1.287° {A^P/^e)-9.534 

Substituting this value into Eq. (1-35), we obtain Rc = 0.7518. This value is 
plus, and so the form is convex. The actual radius of the pin is 0.750, so that the 
error in this approximation is 0.0018 or 0.24 per cent. 

Radius of Curvature of Rack-tooth Profile. When we start from a 
given form for one of the gears, then it may be difficult to find the values 
of (dy/dx) and (d'^y/dx^). In this case we have, to start, 

dy/dx « 1/tan <t> = cot <t> 

Differentiating in respect to x, we obtain 

d^y/dx"^ = — <t>{d<t>/dx) = —(d<t>/dx)/fi\n^4> 

If we use differences here instead of the differentials, then the value of 
A<f> must be in radians to obtain the correct value of the ratio A<t>/Ax, 
Substituting these values into Eq. (1-33), combining, and simplifying, we 
obtain 

Rc = —I/sin <l>{d<t>/dx) (1-36) 

Example of Radius of Ctirvature of Rack-tooth Profile. As a definite example, we 
shall use the rack whose values are tabulated in Table 1-1. We shall take the value 
of y as 0.80, where tan <t> = 0.71686 and 4> — 35.635°. Proceeding as before, we obtain 
A<t> = 2.821° = 0.04924 radian, and Ax = 0.1435, whence (A0/Ax) = 0.343, and 
Rc = —5.004. The sign here is minus, and the form is convex. This rack has a 
radius of curvature of 5.00, 

Radius of Curvature at Pitch Point. We shall use the following 
symbols for the radius of curvature at the pitch point: 

Rcr — radius of curvature of rack profile at pitch point 
Rci = radius of curvature of first gear at pitch point 
Rc2 = radius of curvature of second gear at pitch point 

We have to start 
^ _ Ri _ ___ fii 

dSi tan ypi tan <#> 
dVi _ —R\[l — Ri tan <t>id\v/dy^)] 
dBi^ tan^ 0 

Because of the specific coordinate system used where the value of r 

decreases as the value of 0 increases, these terms are minus. 
When we substitute these values into Eq. (1-34) and simplify, we get 

R cl 

R\ sin 0 

1 — /£i sin 0 cos® 4>{d^x/dy^) 
(1-37) 
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For the basic-rack form at the pitch point, we obtain 

whence 

Rct — 
1 

cos® <t>{d^x/dy^) 

d^x _ 
5? “ ■ 

Substituting this value into Eq. 

Rel = 

For the mating gear, we obtain 

Rc2 = 

1 
Rcr cos® <t> 

(1-37), we obtain 

RiRcr sin (f) 
Rcr + Ri sin <j> 

RiRcr sin <t> 
Rcr — R2 sin <!> 

(1-38) 

(1-39) 

(1-40) 

With the specific coordinate system used here, on the rack form when 
the value of Rcr is plus, the form is concave. For the gears, on the other 
hand, when Rci or Rd is plus, the form is convex. 

We now have the radius of curvature of either gear in terms of the 
radius of curvature of the basic rack. We shall now combine these equa¬ 
tions and obtain expressions for the radius of curvature of either gear in 
terms of the radius of curvature of the other. For this we get 

R\Ri sin <t> 
(1-41) 

(«1 + Ri) — {RiRi sin (t>/Rc2) 
RiRi sin <t> 

(1-42) 
~i~ Ri) — {RiRiSin <f>/Rci) 

Examples of Radii of Curvature at Pitch Point. The foregoing equations give 
values of the radius of curvature at the pitch point of any one member of the system in 
terms of the radius of curvature of any other member. The first step is to determine 
the radius of curvature of the given member. Then this value is used to find the 
others. 

First Example. For the first example, we shall use the basic-rack form shown in 
Fig. 1-12. The equation of this profile is given by Eq. (1-32) and is as follows: 

I ■= i (log 2A - log (2A - !/)] (1-32) 

where 
o - 0.375 and .1 - 2.3094 

d‘x _ 1 r 1 •] 1 
dy* “ oL(2^ - y)d 8 

“ co8» ” (cos’ 30°)O^) “ 0708119 “ “^2.3167 

This value is minus for the rack, and hence the form is convex. 
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We can also determine this value directly from the general equation (1-33), as 
follows: 

^ - = a(2A - y) dx tan <f> 

Differentiating in respect to x, we obtain 

R = 1 ^ -1 ^ ^ 
"" sin3 <t>{dhj/dx^) 0.64952 sin^ 30° 0.08119 -12.3167 

When the value of the radius of curvature of the basic rack at its pitch point is 
known, the radius of curvature of any other gears of the system at their pitch points 
can be readily determined. 

Second Example. As a second example we shall use the basic-rack form shown in 
Fig. 1-4, which is an arc of a circle with a radius of 5.00. This form is convex so that 

Urr = -5.00 R, = 20 7^2 = 20 
tan 4> = 0.46631 <t> = 25.000° sin 25° = 0.42262 

-20 X 5 X 0.42262 
Rci 

-5 + (20 X 0.42262j 
'12.2413 

This value is minus so that the form of this first gear is concave at the pitch p>oint. 

Rc2 
20 X 5 X 0.42262 

(20 X 0.42262) + 5 

This value is plus so that the form of this second gear tooth is convex at the pitch 
point. 

Enveloping Gear-tooth Form. When all other factors are identical 
except for the radii of curvature, then the intensity of the maximum 
specific compressive stress set up between curved contacting surfaces 

under load is given by the following equation: 

When s = compressive stress, psi 
A = value depending upon load, modulus of elasticity of materials, 

length of contacting surfaces, etc, 

.s2 = .1 [{l/Ilcd + (l//?.2)] (1-43) 

In this equation, when the form is convex, the sign for the radius of 

curvature is plus. When the contacting surface is concave, then the sign 
is minus. This agrees with the conditions set up in this analysis for the 
gear-tooth profiles, but it is opposite to the conditions on the basic-rack 

profile as developed here. 
As an example, if we have Rci = 2.00, Rc2 = 4.00, and if both forms 

are convex, then 

If the larger member is concave, while the smaller one is convex, then we 

have 
,2 ^ ^04 - H) = 34 A 
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Thus when the values of all other factors are equal except for the direction 
of the relative curvatures, the stresses are less when the directions of the 
curvatures follow each other than they are when these directions depart 
from each other. 

This condition has led to the belief that if the gear-tooth forms were 
made enveloping, z.e., if one profile is convex and the other is concave, then 

the compressive stresses at the region 
of contact would be less than they are 
when the forms of the teeth of both 
members are convex. 

Equation (1-42) gives the relation¬ 
ship between the radii of curvature of 
conjugate gear-tooth profiles at their 
pitch point. We will now derive an 
equation for the sum of their recipro¬ 
cals, which is the value needed for the 
determination of the contact stresses. 
Thus we have 

Rcl Rc2 Rcl 

+ {Ri + R2) — (R1R2 sin <t>/Rci) 

R1R2 sin </> 

Combining and simplifying, we obtain 

Rcl ^ Rc2 sin </> \Ri ^ R2} 
(1-44) 

From this last equation we can see 
that the sum of the reciprocals of the 
radii of curvature of conjugate gear- 

tooth profiles at their pitch points is independent of the radius of curvature 
of the tooth profile of either member and depends solely upon the sizes of 
the gears and the pressure angle at the pitch point. In other words, a 
certain amount of rocking action or change in relative curvature is needed 
at this point, and the resulting compressive stresses are identical regard¬ 
less of the specific curvature of either member. Hence the belief in the 
lower compressive-stress conditions for enveloping gear-tooth forms is a 
fallacy. 

This condition can be shown graphically as in Fig. 1-13, where /^and 
12 represent the instantaneous centers of the effective radii of curvature, 
J?'ci and R'c2) respectively. Whatever the actual conditions may be, the 
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relative rocking action must be the same as that given by the two effective 
radii of curvature. 

Radius of Curvature of Internal Gears at Pitch Point. For internal 
gears, the sign for the curvature of the pitch line of the internal gear will 
be minus, and so the expression for the sum of the reciprocals of the radii 
of curvature of the tooth profiles at 
the pitch point is as follows: \ I /\\v 

R'ci R'c2 sin <i> \Ri rJ 

(1-45)__ 

INTERCHANGEABLE GEAR-TOOTH 
FORMS 

No consideration has been given 

to the factor of interchangeability /v^S^ \ 
in the preceding analyses. For ex- 
ample, the gear-tooth forms shown ^ 
in Fig. 1-5 will mate and run together 
properly, but two gears of the form of either will not run together correctly. 
In order to obtain such interchangeability between gears so that all gears 
of all sizes conjugate to the same basic rack will mesh together correctly, 
the path of contact of the system must be symmetrical in relation to the 
pitch point. When this condition is met, then the profile or form of the 

basic rack of the system will also 
\ / be symmetrical in relation to the 
\ / \ / pitch point. Then all gears of all 

numbei's of teeth that are con- 
jugate to such a basic ra(;k will also 
be conjugate to each other. 

7 —^ Example of Interchangeable Gear- 
/ \ tooth System. Wo shall uso the rack 

/ \ form shown in Fig. 1-4 for the addendum 
/ nA of the basic rack and will reverse it for 
^ the dedenduin, which gives us the basic- 
/ \ rack form and path of contact with the 

/ ^ values tabulated in Table 1-8 and plotted 

Fia 1 16 
With 20 teeth in the gear and a pitch 

radius of 20, the form of the dedendum of the gear will be the same as that tabulated in 
Table 1-1, while the form of its addendum will be the same as that tabulated in Table 
1-2. These values, together with the Cartesian coordinates adjusted to the center line 
of the tooth are tabulated in Table 1-8 and are plotted in Fig. 1-15. 
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CYCLOIDAL TOOTH FORMS 

One of the first general forms to be used for gear-tooth profiles was 
the cycloidal form. Theoretically, in its kinematics, it has many points 
of advantage. The practical difficulties of producing it accurately, how¬ 
ever, are largely responsible for its retirement from the field of commercial 
gears. 

Wilfred Lewis has said: 

The practical consideration of cost demands the formation of gear teeth upon 

some interchangeable system. The cycloidal system cannot compete with the 

involute, because its cutters are formed with gre'ater difficulty and with less 
accuracy, and a further expense is entailed by the necessity for more accurate 

center distances. Cycloidal teeth must not only be accurately spaced and 

shaped, but their wheel centers must also be fixed with equal care to obtain 

satisfactory results. 

Table 1-8. Coordinates of Interchangeabi e Basic-rack Form, Its Path of 

Contact, and a Conjugate Gear-tooth Profile 

(Plotted in Figs. 1-14 and 1-15) 

y, in. X, in. tan 0 Xp, in. r, in. Oy rad A”, in. in. 

1.00 0.6189 0.79566 -1.2568 19.0415 0.0277 1.2743 18.9888 
0.90 0.5414 0.75514 -1.1918 19.1371 1 0.0244 1.2177 19 0983 
0.80 0.4678 0.71686 -1.1160 19.2324 0.0211 1.1003 19.1974 
0.70 0.3879 0.68054 -1.0286 19.3274 0.0181 1.1082 19.2955 
0.60 0.3316 0.64599 -0.9288 19.4222 0.0152 1.0573 19.3935 

0.50 0.2687 0.61300 -0.8157 19.5171 0.0124 1.0079 19.4911 
0.40 0.2090 1 0.58140 -0.6880 19.6120 0.0098 0.9018 19.5885 
0.30 0.1524 0.55105 -0.5444 19.7075 0.0072 0.9150 19.()8f)2 
0.20 0.0987 0.52181 -0.3833 19.8037 0.0047 0.8704 19.7845 
0.10 0.0480 0.49361 -0.2026 19.9010 0.0024 0.8291 19.8837 

0.00 0.0000 0.46631 -0.0000 20.0000 0.0000 0.7854 19.9840 
-0.10 -0.0480 0.49361 0.2026 20.1010 -0.0025 0.7389 20.0873 
-0.20 -0.0987 0.52181 0.3833 20.2036 -0.0051 0.0904 20.1919 
-0.30 -0.1524 0.55105 0.5444 20.3073 -0.0080 0.6350 20.2973 
-0.40 -0.2090 0.58140 0.6880 20.4116 -0.0111 0.5748 20.4034 

-0.50 -0.2687 0.61300 0.8157 20.5162 -0.0145 0.5080 20.5098 
-0.60 -0.3316 0.64599 0.9288 20.6209 -0.0180 0.4386 20.6162 
-0.70 -0.3979 0.68054 1.0286 20.7255 -0.0217 0.3041 20.7222 
-0.80 -0.4678 0.71686 1.1160 20.8299 -0.0256 0.2845 20.8280 
-0.90 -0.5414 0.75514 1.1918 29.9340 -0.0297 0.2001 20.9330 
-1.00 ; -0.6189 

1 
0.79566 1.2568 21.0376 -0.0340 0.1104 21.0373 



25 CONJUGATE ACTION ON SPUR GEARS 

George B. Grant wrote in his excellent ''Treatise on Gearing'':^ 

There is no more need of two different kinds of tooth curves for gears of the 
same pitch than there is need for two different threads for standard screws, or 
two different coins of the same value, and the cycloidal tooth would never be 
missed if it were dropped altogether. But it was first in the field, is simple in 
theory, and has the recommendation of many well-meaning teachers, and holds 
its position by means of human inertia,or the natural reluctance of the average 
human mind to adopt a change, particularly a change for the better. 

Although cycloidal forms are seldom used today for gear-tooth profiles 
that are employed primarily for the transmission of power, they are widely 
used for impellers or rotors of pressure blowers and for other special 

Fig. 1-1 e. 

applications. Their interaction in these uses is conjugate gear-tooth 
action, although the actual rotation of their shafts may be controlled by 
other gears. An analysis of these cycloidal forms is, therefore, in order. 

The Cycloid, The path described by a point on the circumference of 
a circle that rolls upon a straight line is called a cycloid. When the point 
where the curve meets the straight line is the origin of the coordinate 
system, and also its pitch point, the derivation of the equation of this 

curve is as follows: We shall let 

a = radius of rolling circle 
€ = angle of rotation of rolling circle 
Referring to Fig. 1-16, the distance from the origin to the point of 

tangency of the rolling circle with the straight line is equal to the length 
of the arc e at the radius a, which is equal to ac. The tracing point on 
tlie rolling circle is at a distance of a sin c from the vertical center line of 

the rolling circle, whence 
X = a{€ — sin e) (1-46) 

' This is one of the classics on the subject. It was first published by Mr. Grant in 
1890. It is now published by the Philadelphia Gear Works. 
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The tracing or generating point on the rolling circle is at a distance of 
a cos € below the center of this rolling circle, whence 

2/ = a(l — cos e) (1-47) 

These two equations are the simplest form in which the equation of 
the cycloid can be given. They may be combined into a single equation 
with the third variable € eliminated, which gives the following: 

X = a {cos ^ [(a — y)/a] — \^2ay — y‘^/a] (1-48) 

dx/dy = tan = 2//V2uy — 2/^ (1-49) 

For the radius of curvature of the cycloid, we get 

Rcr = — 2 \^2ay (1-50) 

For the path of contact, we get 

- —y/iv^xi <t> = — '\/2ay — 1/^ (1-51) 

Equation (1-51) gives the value of the abscissa of the path of contact; 
the value of y is the same as that for the cycloid itself. We shall next 

determine the equation of a circle of radius a that is tangent to the x axis 
at the pitch point. We have for the equation of such a circle 

whence 

Xp^ + (a - yY = a2 

Xp = ± -y/a^ — (a — yY = ± y/2ay — 

This equation is the same as that for the abscissa of the path of contact; 

therefore the path of contact of a cycloid is the rolling circle itself in its 
starting position. 

The Epicycloid. When a rolling circle, tangent externally to a fixed 
circle, rolls upon the fixed circle, the path described by a point on the 
rolling circle is called an epicycloid,^ We shall take the origin of the polar 
coordinate system at the center of the fixed circle, and let 

R = radius of fixed circle, which is also the pitch circle 

a = radius of rolling circle 
6 = angle of rotation of rolling circle 

€1 = angle of rotation of gear 
We have the following from the geometrical conditions shown in 

Fig. 1-17: 

cos € 
[R -f g)^ + 

2cl{R -f- fl) 

* The epicycloid is the form of the addendum surface of a gear tooth that meshes 
with a cycloidal rack. 
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whence 
, (r* - 7?2) 

cos € = 1 - ^ ^ 
2a{R + a) 

(1-52) 

(? = |‘-sin-‘(^sin*) (1-53) 

From the foregoing equations, we obtain 

^ dr It sin €[/? + a(l — cos e)] 
(1-54) 

ae 
~ R 

(1-55) 

♦4 (1-56) 

Radius of Curvature. The radius of curvature of the epicycloid is 
given by the following equation: 

j _ 4a(/? + a) sin (e/2) 
” R +2a 

(1-57) 

Examples of Radius of Curvature of Epicycloid. As a definite example of the 
radius of curvature, we shall let 

R « 10.00 a == 2.00 r = 10.00 = radius of pitch circle 
whence 

6 = 0° sin («/2) = 0.00 
Rc * 0.00 

The radius of curvature of all cycloidal forms at the pitch point is equal to zero. 
This is one feature of this form of curve that makes it unsatisfactory for a gear-tooth 
form to transmit power. 
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As a second example, we shall determine the radius of curvature of this same 
epicycloid at its maximum radius of 14 in. Here 

e = 180° €/2 = 90° sin {^/2) = 1.00 
4X2X12X1.96 

14 14 

The Hypocycloid. When the rolling circle, tangent internally to the 
fixed circle, rolls on the fixed circle, the path described by a point on the 
rolling circle is called a hypocycloid.^ We shall again take the origin of 
the coordinate system at the center of the fixed circle, and shall use the 
same symbols as before. 

We have the following from the geometrical conditions shown in 
Fig. 1-18: 

cos c = 
r2 - {R - ay 

2a{R — a) 

= 1 - 

^ 

(1-58) 
2a{R — a) 

sin (1-59) 

tan \p = 
r dd 

dr 

r2(l — cos e) + aR sin^ e 
R sin 6[/^ — a(l — cos e)] 

(l-(iO) 

Radius of Curvature. The radius of curvature of the hypocycloid is 
given by the following equation: 

~4a(/^ — a) sin (e/2) 
Rc = 

R - 2a 
(1-01) 

Example of Radius of Curvature of Hypocycloid. As a definite example, we shall 
determine the radius of curvature of a hypocycloid at its minimum radius when 

R = 10.00 a = 2.00 r 
e = 180° e/2 = 90° 

-8 X 8 X 1.0 

= 6.00 = minimum radius 
sin (c/2) = 1.000 

— 64 
» - -10.6667 

0 

The sign for this radius of curvature is minus and the form of this curve is concave. 

Application of Cycloid to Gear-tooth Forms. When cycloidal curves 
are used for gear-tooth profiles, the addendum of the tooth is an epicycloid 
and the dedendum is a hypocycloid. For interchangeable tooth forms, 

‘ The hypocycloid is the form of the dedendum surface of a gear tooth that meshes 
with a cycloidal rack. 
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the size of the rolling circle must be identical for both parts of the tooth 

form. 
When the size of the rolling circle for a hypocycloid is one-half the 

size of the pitch circle, or fixed circle, the form becomes a radial line to the 

fixed circle. When the gear-tooth system is based on a pinion of 12 teeth 
for the smallest of the system, this pinion is made with radial flanks 
(or form of dedendum). Then the size of the rolling circle for all gears of 

the system w ill be one-half the pitch diameter of the 12-tooth pinion. 
Cycloidal Rotors. The cycloidal form is well adapted for use as the 

form of rotors in blowers and rotary pumps, because of the closed path 

of contact for the full-cycloidal form, w^hich eliminates the possibility of 
trapping betw een the lobes of the rotors. It is widely used in that type 

of blower known as the Root type. In many other places it, or its 

equivalent, would be a more effective form than the involute, which is 
now^ used extensively in oil and w^ater pumps with rotors of gear-tooth 

form, but it would require a more 

elaborate construction than the 
present one in many cases. Most 
of such pumps consist of two 

meshing and self-driving rotors of 
gear-tooth form. The action be¬ 

tween t w' o full-cycloidal-form 
rotors is conjugate gear-tooth 
action, but the pressure angle be¬ 
tween them rises from 0 to 90 deg 

and then becomes negative in 

effect, so that one rotor or spur of 
straight tooth form w ill not drive 
the other rotor through the w hole 

cycle of operation. This requires 
the provision of other gears than 

the rotors themselves to drive 

them and to keep them in the 
correct angular relationship to 

each other. 

Example of Cycloidal Rotors. As an example, wo shall determine the form of a 
pair of 2-lobed rotors oix'rating at a center distance of 4 in. Tn this example the 
diameter of the rolling circle must be one-quarter the size of the pitch circle. This 
gives the following values for these rotors: R = 2.000 in. and a = 0.500 in. With 
these values and the use of the foregoing equations, we obtain the values of the 
c(X)rdinnte8 for these rotors, which are tabulated in Table 1-9 and are plotted in 

Tig. 1-19. 
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SEGMENTAL FORM FOR ROTORS 

For most purposes a segmental form can be substituted for the 
cycloidal form. If the form is to be generated, this is a more practical 
and better form to use than the cycloidal. It is a reasonably close 
approximation to the cycloidal, has a closed path of contact, and its 
basic-rack form is composed of arcs of circles whose centers are off the 
pitch line. The equations for such a basic-rack form and its path of 
contact have already been established. These are as follows: 

Table 1-9. (Coordinates of Cycloidal Rotor 

(Plotted in Fig. 1-19) 

r, in. d, rad <t>y deg «i, deg X, in. in. 

3.00 -0.78540 90.000 45.000 0.0000 3 0000 
2.90 -0.49743 69.909 34.945 0.8234 2.7806 
2.80 -0.38289 61.214 30.607 1.0968 2.5762 
2.70 -0.29647 54.210 27.105 1.2674 2.3840 
2.60 -0.22629 47.985 23.992 1.3791 2.2041 

2.50 -0.16733 42.130 21.065 1.4487 2.0375 
2.40 -0.11724 36.391 18.195 1.4869 1.8839 
2.30 -0.07498 30.526 15.263 1.4999 1.7436 
2.20 -0.04040 24.197 12.098 1.4915 1.6172 
2.10 -0.01419 16.640 8.320 1.4637 1.5058 

2.00 0.00000 0.000 0.000 1.4142 1.4142 
1.90 • 0.00649 21.134 -10.567 1.3522 1.3347 
1.80 0.01963 30.220 -15.110 1.2975 1.2476 
1.70 0.03523 37.035 -18.517 1.2437 1.1590 
1.60 0.06514 43.854 -21.927 1.2026 1.0553 

1.50 0.09889 49.707 -24.853 1.1602 0.9508 
1.40 0.14510 55.550 -27.775 1.1227 0.8364 
1.30 0.20567 61.342 -30.621 1.0876 0.7121 
1.20 0.28964 67.482 -33.741 1.0555 0.5708 
1.10 0.41748 74.658 -37.329 1.0264 0.3956 
1.00 0.78540 90.000 -45.000 1.0000 0.0000 

X = B - (D + yY 

dx D + y 

dy - (D + yy 

For the dedendum of this rack, we obtain 

X = - {D - yy - B 
dx . _ D — y 
-1- = tan <t> = -— 
dy - {D - yy 

(1-10) 

(1-11) 

(1-62) 

(1-63) 
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Table 1-10. Coordinates of the Segmental Basic Rack, Its Path of Contact, 

AND Segmental Rotor 

(Plotted in Figs. 1-20 and 1-21) 

Vy in. Xf in. tan <t> Xp, in. r, in. dy rad X, in. r, in. 

1.00 1.5708 00 0.0000 1.0000 0.7854 1.0000 0.0000 
0.90 0.9905 2.81531 -0.3197 1.1455 0.3723 1.0491 0.4599 
0.80 0.7624 1.89725 -0.4217 1.2719 0.2514 1.0966 0.6444 
0.70 0.5960 1.46327 -0.4784 1.3852 0.1846 1.1426 0.7831 
0.60 ^ 0.4631 1.20404 -0.4983 1.4860 0.1388 1.1860 0.8954 

0.50 0.3527 1.01283 -0.4937 1.5792 0.1052 1.2222 0.9886 
0.40 0.2520 0.86433 -0.4628 1.6656 0.0758 1.2635 1.0852 
0.30 0.1790 0.74269 -0.4039 1.7473 0.0582 1.3053 1.1616 
0.20 0.1100 0.63917 -0.3129 1.8270 0.0393 1.3417 1.2401 
0.10 0.0507 0.54845 -0.1823 1.9087 0.0209 1.3775 1.3212 

0.00 0.0000 0.46708 0.0000 2.0000 0.0000 1.4142 1.4142 
-0.10 -0.0507 0.54845 0.1823 2.1079 -0.0299 1.4453 1.5344 
-0.20 -0.1100 0.63917 0.3129 2.2221 -0.0702 1.4572 1.6776 
-0.30 -0.1790 0.74269 0.4039 2.3352 -0.1176 1.4461 1.8336 
-0.40 -0.2520 0.86433 0.4628 ! 2.4442 -0.1669 1.4173 1.9914 

-0.50 -0.3527 1.01283 0.4937 2.5483 -0.2282 1.3473 2.1629 
-0.60 -0.4631 1.20404 0.4983 2.6473 -0.2914 1.2553 2.3308 
-0.70 -0.5960 1.46327 0.4784 2.7421 -0.3618 1.1270 2.4997 
-0.80 -0.7624 1.89725 0.4217 2.8316 j -0.4426 0.9519 2.6668 
-0.90 -0.9905 2.81531 0.3197 2.9176 1 -0.5453 0.6938 2.8339 
-1.00 -1.5708 00 0.0000 3.0000 -0.7854 0.0000 3.0000 
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With these coordinates, we are in a position to proceed as before to 
determine the coordinates of the path of contact and those of the con¬ 
jugate gear-tooth profiles. 

Example of Segmental Rotor. For a basic rack of segmental form to be used as a 
substitute for the cycloidal rack of the rotor shown in Fig. 1-10, the height of the 
addendum must be equal to 1.00 and the circular pitch must be equal to 27r. Hence 
when X — 1.5708 and y = 1.00, the value of B must be equal to 1.5708 so as to have a 

closed path of contact. Then 

A - 1 + Z) = VB^ + ip 
whence 

D = 0.73370 and A = 1.73370 

With the use of these constants, we obtain the values for the coordinates of the 
basic rack, its path of contact, and the conjugate rotor form tabulated in Table 1-10 
and plotted in Figs. 1-20 and 1-21. 

Many other forms of continuous or tangent curves can be used as the 
basic-rack form for rotors, or for any other types of gear-tooth forms, 
when they are desired for any reason. For example, a sine curve or two 

tangent ellipses could be substituted for the form of the basic rack in 
place of the cycloid. The equations for such forms can be set up readily, 
and then the several equations for the path of contact and the conjugate 
gear-tooth forms would be used as before. The choice here is practically 

unlimited. 
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HOB FORM FOR SPLINE SHAFTS 

The problems of determining the forms of hobs that are to be used to 
generate spline shafts, ratchets, sprocket wheels, etc., are essentially 
problems of conjugate gear-tooth forms. The hob form must represent 

in its cutting edges and cutting action the form of the basic rack that is 
conjugate to the particular form recjuired. 

Example. We shall dctorniine the form of the basic rack that will generate the 
form of the spline shaft shown in Fig. 1-22. 

The first step is to select the pitch circle. In this case we shall use the outside 
diameter of the shaft for the pitch diameter. The next step is to set up the equation 
of the gear-tooth form. In this example it is a straight line tangent to a circle. Such 
equations have already been set up together with the equations for the path of contact. 

We shall also rearrange the equations for the path of contact and conjugate rack profile 
to suit this particular problem. These equations are as follows: 

d = sin“^ (A/r) — sin*”' (A/R) (1-25) 
cos 0 = \/r^ — A^/R (1-64) 

Xp = {\/7^~^TyR)(A - VR^ - r* 4- A*) (1-65) 
y = (\//e2 _ ,.2 ■_!_ ,\i/R)WR^ - r* -f A* - A) (1-66) 

X ^ R — tan“» ^ (1-67) 
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For the example shown, we have the following values for a G-spline shaft 2 in. in 
diameter: 

72 = 1.00 A ^ 0.250 Depth * 0.100 

The values obtained are tabulated in Table 1-11 and plotted in Fig. 1-23. 
An examination of these tabulated values shows that the height of the fillet at the 

bottom of the spline will be about 0.020-in. because when the height of the rack form 
is nearly 0.100 in., it makes contact with the spline at a radius of 0.920 in., or 0.020 in. 
above the bottom of the spline. 

Table 1-11. Coordinates of Spline Shaft, Its Path of Contact, and Basic-ra(’K 

Form 

(Plotted in Fig. 1-23) 

r, in. 0, rad y, in. Xp, in. 
1- . 

X, in. 

1.000 0.00000 0.00000 0.00000 0.00000 
0.995 0.00130 0.00517 -0.01850 0.00139 
0,990 0.00261 0.01064 -0.03549 0.00298 
0.985 0.00393 0.01633 -0.05123 0.00473 
0.980 0.00527 0.02222 -0.06588 0.00666 

0.975 0.00663 0.02825 -0.07961 0.00876 
0.970 0.00799 0.03442 -0.09251 0.01100 
0.965 0.00938 0.04070 -0.10469 0 01339 
0.960 0.01077 0.04706 -0.11620 0.01591 
0.955 0.01219 0.05350 -0.12711 0.01857 

0.950 0.01361 0.06000 -0.13748 0.02136 
0.945 0.04506 0.06655 -0.14733 0.02427 
0.940 0.01652 0.07315 -0.15673 0.02730 
0.935 0.01799 0.07980 -0.16570 0.03045 
0.930 0.01948 0.08647 -0.17425 0.03371 

0.925 0.02099 0.09317 -0.18243 0.03708 
0.920 0.02252 0.09988 -0.19023 0.04056 
0.915 0.02406 0.10662 -0.19771 0.04414 
0.910 0.02562 0.11336 -0.20488 0 04783 
0.905 0.02720 0.12011 -0.21173 0.05161 
0.900 0.02880 0.12695 -0.21838 0.05553 



CHAPTER 2 

CONJUGATE ACTION ON INTERNAL GEARS 

In principle, the conjugate gear-tooth action on internal spur gears is 
the same as that for external spur gears. Any of the basic-rack forms 
used for spur gears may be used also for internal gears. However the 
basic-rack form is not, in effect, revolved 180 deg for calculating the form 
of either member of the pair. 

We shall use the same symbols as before. The subscript i will be 
used on symbols for the spur pinion, and the subscript 2 will be used 
on symbols for the internal gear. These symbols are as follows: 

X = abscissa of basic-rack profile 
y = ordinate of basic-rack profile and of path of contact 

Xp = abscissa of path of contact 
<f} = pressure angle 
r = length of radius vector of conjugate gear-tooth profiles 

R = pitch radius of gears 
6 = vectorial angle of radius vector 

yp — angle between tangent to tooth profile and radius vector 
c = angle of rotation of gear from zero position 

X = abscissa of gear-tooth profile (origin at center of gear) 
Y == ordinate of gear-tooth profile (origin at center of gear) 
We shall use the pitch point as the origin of the coordinate system for 

the basic rack and its path of contact. We shall use the center of the 
gear as the origin of the polar coordinate system for the gear-tooth profiles, 
and the vectorial angle will be zero at the pitch point. The angles 6 and 
€ will be plus when they are measured in a counterclockwise direction from 
the pitch point. In all these calculations, great care must be exercised 
to use the correct signs (plus or minus) of these angular values. 

BASIC-RACK FORM GIVEN 

We shall start this analysis with a known or given form for the basic 
rack. For internal-gear drives, the same coordinates of the basic-rack 
profile and the same equations for the gear-tooth form apply to both the 
spur pinion and the internal gear. On internal-gear drives, both gears of 
the pair rotate in the same direction. The equations for this problem 
have already been derived in C^hap. 1 and are as follows: 

r = V(« - y)* + V 
e = [(x - + tan-’ [xp/(R — y)] 

36 

(1-2) 

(1-3) 
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LIMITATIONS TO CONJUGATE ACTION 

The same limitations to conjugate action that exist on external spur- 
gear drives also exist on internal-gear drives. Whenever a tangent circle, 
with its center at the axis of either gear, can be drawn to the path of 
contact, a cusp will exist in the form of the gear-tooth profile if the actual 
action extends beyond that point. Conjugate action will cease at the 
point of tangency of this circle and the path of contact. Whenever the 
generating tool cuts below this point, unless it is rounded or relieved in 
form, the tooth form will be undercut as the generating tool rocks through 
the tooth space. The shape of the path of the corner of the generating 
tool as it travels through the tooth space is a trochoid. When no under¬ 
cut exists, this trochoid will be tangent to the tooth profile and will be 
the form of the fillet that joins the tooth profile to the land at the bottom 
of the tooth space. These trochoids will be analyzed in the next chapter. 

There are more possible limitations to an internal-gear drive than 
there are for a spur-gear drive, particularly when the difference between 
the number of teeth in the internal gear and the number of teeth in the 
spur pinion is small. Hence the design of the tooth forms for internal- 
gear drives is more critical and more exacting than that for external- or 
spur-gear drives. Among the possible limitations are the following: 

1. Undercut gear-tooth profiles 

2. Interference between the corner of the spur-pinion tooth and the 
trochoidal fillet of the internal gear 

3. Interference between the corner of the internal-gear tooth and the 
trochoidal fillet at the bottom of the tooth space of the spur pinion 

4. Interference betw^een the tips of the spur- and the internal-gear 
teeth as they come into and go out of mesh. (In special cases, such as 
with full continuous-form rotor gear teeth, a secondary action may exist 
here that can be used effectively for pumping action.) 

INTERNAL-GEAR-TOOTH FORM GIVEN 

When the form of the internal-gear-tooth profile is kno^vn, the forms 
of the path of contact, the basic-rack profile, and the conjugate pinion- 
tooth profile may be determined by analysis. Referring to Fig. 2-1, we 
can obtain these values from the geometrical conditions shown there. 

Path of Contact 
tan 1/^2 = —r2d62/dr2 (2-1)^ 

cos 0 = (r2 cos ^2)/R2 (2-2) 

€2 = H - <t>- 02 (2-3) 
Xp = r2 sin (^2 ~ <t>) (2-4) 

2/ = 7^2 — 7*2 cos {\l/2 — 4) (2-5) 
' Because of the specific coordinate system used here, where the value of r% 

decreases as the value of 62 increases, this value is minus. 
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Basic-rack Profile. If the form of the basic rack is required, its 
ordinate y is the same as that for the path of contact. Its abscissa x is 
given by the following equation: 

X — Xp — (2-6) 

Conjugate Pinion-tooth Form. For the coordinates of the conjugate 
pinion-tooth form, we have the following: 

ri = V{Ri - yV + V (1’2) 
€1 = {R2/Ri)e2 (2-7) 

cos xpi = Ri (cos <t))/ri (2-8) 
di = — (t> — €i (2-9) 

Radius of Curvature. When 
Rc is the radius of curvature of 
profile, we have 
For the basic rack 

Rc = ■ \ (1-36) Sin 0 {d<t>/dx) 

For the spur pinion 

For the internal gear 

In these equations, for the basic 
rack, when the sign is plus, the 
tooth surface is concave. For the 
two gears, when the sign is plus, 
the tooth surfaces are convex. 

Fig. 2-1. 

Radius of Curvature at Pitch Point. When 
Rcr = radius of curvature of basic rack at pitch point 
Rc\ = radius of curvature of spur pinion at pitch point 
Rc2 = radius of curvature of internal gear at pitch point 

Rcr = —l/cos^ <t> {dH'/dy^) 
P — RiRcr sin (l> 

Rcr + Ri sin <f> 
p - sin <f> 

Rcr + R2 sin 0 

(1-38) 

(1-39) 

(2-11) 

^ The sign for the curvature of the pitch circle of the internal gear is minus. 
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When the form of the internal gear is known, we have 

R cl 
_R1R2 sin <t>_ 
{R2 ~ Ri) — {R1R2 sin (t>/Rc2) 

(2-12) 

For the sum of the reciprocals of the radius of curvature of the tooth 
profiles at the pitch point, we have the following: 

2 
/?2 ) (1-45) 

R'ci ~ R'c2 sin ij> \Ki 

Examples of Internal-gear Drives with Form of Internal Gear Given. For the 
first example we shall use a pin-tooth internal gear with 36 teeth or pins, 18-in. pitch 
radius, and a 12-tooth spur pinion, 6-in. pitch radius. 

When A = radius of pins = 0.750 
B = radius to center of pins = 18.10 

referring to Fig. 2-2, we have 

. 4- - d* 
a 1 ---— di 

2BR2 

sin 4/t 

cos 
B* 4- rz* - 

2Bri 

B^ - A^ - ra« 

2Ar* 

(2-13) 

(2-14) 

The values for the internal pin-tooth gear and its path of contact are 
tabulated in Table 2-1 and plotted in Fig. (2-3). The values for the con¬ 
jugate spur pinion are tabulated in Table 2-2 and are also plotted in 
Fig. 2-3. 
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Table 2-1. Coordinates of Pin-tooth Internal Gear and Its Path of Contact 

(Plotted in Fig. 2-3) 

r2, in. 

17.35 
17.40 
17.45 
17.50 
17.55 

17.60 
17.65 
17.70 
17.75 
17.80 

17.85 
17.90 
17.95 
18.00 
18.0367 

18.00 
17.95 
17.90 
17.85 

$2, deg 

2.360 
1.490 
1.153 
0.910 
0.722 

0.565 
0.435 
0.330 
0.241 
0.165 

0.105 
0.058 
0.024 
0.000 

-0.010 

0.000 
0.024 
0.058 
0.105 

^2, deg 

90.000 
68.521 
59.676 
52.400 
46.341 

40.907 
35.902 
31.210 
26.753 
22.353 

18.340 
14.312 
10.367 
6.481 
3.656 

6.481 
10.367 
14.312 
18.340 

<f>f deg 

90.000 
69.269 
60.695 
53.615 
47.693 

42.356 
37.414 
32.753 
28.291 
23.853 

19.729 
15.512 
11.202 
6.481 
0.000 

- 6.481 
-11.202 
-15.512 
-19.729 

C2, deg 

-2.360 
-2.238 
-2.172 
-2.125 
-2.074 

-2.014 
-1.947 
-1.873 
-1.779 
-1.665 

-1.494 
-1.258 
-0.859 

0.000 

3.666 

12.962 
21.545 
29.766 
37.964 

Xp, in. 

0.0000 

-0.2272 
-0.3103 
-0.3710 
-0.4079 

-0.4451 
-0.4658 
-0.4767 
-0.4764 
-0.4660 

-0.4327 
-0.3748 
-0.2615 

0.0000 
1.1500 

4.0374 
6.5988 
8.9024 

11.0065 

Vy in. 

0.6500 
0.6015 
0.5528 
0.5038 
0.4547 

0.4056 
0.3562 
0.3064 
0.2564 
0.2060 

0.1554 
0.1039 
0.0520 
0.0000 
0.0000 

0.4586 
1.3070 
2.4607 
3.9472 

Williams Intcrnal-gear Drive, As a second example, we shall use an 
internal gear whose profiles consist of straight lines, as shown in Fig. 2-4. 

This form of internal gear is known as the Williams internal gear. It is a 
simple form to produce and can be made on a verti(*al slotter or vertical 

shaper. For large internal-gear drives where generating equipment is 
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Table 2-2. Coordinates of Spur Pinion Conjugate to Pin-tooth Internal 

Gear 

(Plotted in Fig. 2-3) 

<t>, deg ri, in. deg 'pi, deg «i. deg X, in. F, in. 

90.000 5.3500 7.080 90.000 -7.080 1.3847 5.1677 
69.269 5.4033 4.301 66.850 -6.714 1.1438 5.2808 
60.695 5.4560 3.256 57.435 —6.516 1.0575 5.3526 
53.615 5.5087 2.511 49.751 -6.375 0.9972 5.4176 
47.693 5.5602 1.949 43.420 1 -6.222 0.9530 5.4779 

42.356 5.6120 1.495 37.809 -6.042 0.9180 5.5364 
37.414 5.6630 1.124 32.697 -5.841 0.8902 5.5926 
32.753 5.7135 0.837 27.971 -5.619 0.8C98 5.6469 
28.291 5.7633 0.597 23.551 -5.337 0.8535 5.6998 
23.853 5.8127 0.397 19.255 -4.995 0.8408 5.7515 

19.729 5.8606 0.241 15.488 -4.482 0.8319 5.8013 
15.512 5.9080 0.134 11.872 -3.774 0.8277 5.8497 
11.202 5.9538 0.048 8.673 -2.577 0.8253 5.8963 
6.481 6.0000 0.000 6.481 0.000 0.8207 5.9428 
0.000 6.1092 - 0.148 10.850 10.998 0.8201 6.0531 

- 6.481 6.8560 - 2.812 29.593 38.886 0.0104 6.8288 
-11.202 8.0974 1 -10.057 1 43.376 64.635 -0.3020 8.0917 

not available, it proves to be a very effective type. Only one curved- 
form cutter for the pinion is required, and the coordinates for this form 

Fio. 2-4. 

are readily determined as follows: When A is the radius of the circle to 
which the straight-line gear-tooth form is tangent, 

$2 = sin"' {A/r2) — sin"' (A/Ii2) 

sin ^2 = A/r2 

(2-15) 

(2-16) 
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Table 2-3. Coordinates of Williams Internal Gear and Its Path of Contact 

(Plotted in Fig. 2-4) 

Tiy in. 02, deg 'Ph deg <t>, deg C2, deg Xp, in. Vy in. 

17.00 0.976 17.104 25.432 -9.304 -2.4623 1.1792 
17.10 0.873 17.001 24.703 -8.575 -2.2916 1.0542 
17.20 0.772 16.900 23.895 -7.767 -2.0946 0.9280 
17.30 0.673 16.801 23.062 -6.934 -1.8867 0.8031 
17.40 0.572 16.700 22.197 1 -6.069 -1.6622 0.6795 

17.50 0.474 16.602 21.300 -5.172 -1.4332 0.5588 
17.60 0.376 16.504 20.365 -4.237 -1.1852 0.4400 
17.70 0.281 16.409 19.390 -3.262 -0.9204 0.3239 
17.80 0.186 16.314 18.364 -2.236 -0.6367 0.2114 
17.90 0.092 16.220 17.280 -1 152 -0.3311 0.1030 

18.00 0.000 16.128 16.128 0.000 0.0000 0.0000 
18.10 -0.092 16.036 14.888 1.240 0.3627 -0.0964 
18.20 -0.182 15.946 13.541 2.587 0.7637 -0.1840 
18.30 -0.272 15.856 12.046 4.082 1.2160 -0.2596 
18.40 -0.360 15.768 10.341 5.787 1.7403 -0.3176 

18.50 -0.448 15.680 8.296 7.832 2.3776 -0.3466 
18.00 -0.534 15.594 5.560 10.568 3.2407 -0.3154 
18.60 

C
O

 

d
 1 15.594 -5.560 21.688 6.7122 0.6615 

18.50 -0.448 15.680 -8.296 24.424 7.5175 1.0962 

Table 2-4. Coordinates of Spur Pinion Conjugate to Williams Internal Gear 

(Plotted in Fig. 2-4) 

4>, deg deg »i, deg €i, deg 7*1, in. A", in. in. 

23.895 1.470 0.87() -23.301 5.4875 0.7994 5.4290 
23.062 3.139 0.869 -20.802 5.5288 0.8047 5.4699 
22.197 4.701 0.811 -18.207 5.5741 0.8057 5.5156 
21.300 6.544 0.760 -15.516 5.6269 0.8084 5.5684 
20.365 8.347 0.693 -12.711 5.6852 0.8102 5.6271 

19.390 10.181 0.577 - 9.786 5.7502 0.8079 5.6932 
18.364 12.085 0.429 - 6.708 5.8235 0.8033 5.7678 
17.280 14.065 , 0.241 - 3.456 5.9062 0.7955 5.8524 

16.128 16.128 0.000 0.000 6.0000 0.7832 5.9486 

14.888 18.292 -0.316 3.720 6.1072 0.7638 6.0592 

13.541 20.582 -0.720 7.761 6.2310 0.7356 6.1874 

12.046 23.041 -1.251 12.246 6.3766 0.6937 6.3387 
10.341 25.743 -1.959 17.361 6.5529 0.6327 6.5223 
8.296 28.831 -2.961 23.496 6.7774 0.5364 6.7561 

5.560 32.713 -4.551 31.704 7.0983 0.3652 7.0889 
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We shall use a 36-tooth internal gear with an 18-in. pitch radius, and a 
12-tooth spur pinion with a 6-in. pitch radius. The value of A will be 
5 in. 

The values for the Williams internal gear and its path of contact are 
tabulated in Table 2-3 and plotted in Fig. 2-4. The values for the con¬ 
jugate spur pinion are tabulated in Table 2-4 and are also plotted in 
Fig. 2-4. 

SECONDARY ACTION ON INTERNAL GEARS 

It is possible to have secondary action between the teeth of an internal 
gear drive. Its most general practical application is for pump rotors 
where the tooth profile of one or both of the two members is formed by 
continuous curves and where the internal gear has one more tooth than the 
mating pinion. This secondary action will exist mostly between the 
addenda of the mating gear teeth while the primary action will exist 
between the addendum of one gear tooth and the dedendum of the 
mating gear tooth. 

There is some secondary action on the pin-tooth internal-gear drive 
shown in Fig. 2-3. In that example it is a continuation of the primary 
action. Strictly speaking, this secondary action begins when the same 
point on the internal-gear-tooth profile makes a second contact with the 
mating pinion tooth. This will be when the pressure angle becomes zero 

and changes to a minus value. 
In order to avoid cusps in the form of the pinion tooth and to have 

continuous action, the secondary path of contact must be a closed curve, 

and no part of it, except its extremes measured radially from either 
member of the pair, must be tangent to a circle concentric with either 
gear. Thus if an arc of a circle is used as the form of the internal-gear 
tooth, the center of that circle must be outside the pitch circle of the inter¬ 
nal gear. If this center is inside the pitch circle of the internal gear, the 
pressure angle will not pass through a zero value. Secondary action 

may exist here, but it will not be a continuous action from primary to 
secondary and its path of contact will not be a closed curve. If the center 
of the circle of the internal-gear-tooth form is outside the pitch circle but 

is too close to it, there will be a cusp in the tooth form of the conjugate 
spur pinion at the beginning of the secondary action. In case of question, 
very small increments of radius for the internal gear should be used in this 
region to calculate the form of the conjugate spur pinion. An examina¬ 
tion of the calculated coordinates, or an enlarged layout of these values, 
will soon show whether or not such a cusp exists. 

The calculation of the tooth form of the conjugate spur pinion for 

secondary action is exactly the same as that for the primary action. The 
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values for the internal gear are the same in both cases except for the 
pressure angle, which is of the same value at a given radius but is minus 
on the secondary action. The angle of rotation of the internal gear to 
the position of secondary contact must be calculated. 

Example of Secondary Action on Internal Pump Rotors. As a definite example we 
shall use an internal gear with 4 teeth and a spur pinion with 3 teeth. The form of the 
internal-gear tooth will be an arc of a circle. In effect, this form is the same as that 
of the pin-tooth internal gear. Such internal-gear drives are often called Gerotors. 
With this construction we will have primary action between the addendum of the 
internal gear and the dedendum of the pinion. There will also be a small amount of 
primary action between part of the addendum of the pinion near its pitch line and the 
dedendum of the internal gear. There will also be secondary action between the 
greater part of the addendum of the pinion and the tooth profile of the internal gear. 
When 

A = radius of internal-gear-tooth form, 
B — radius on internal gear to center of A, 

and all other symbols are the same as before, we have the following equations for the 
determination of the path of contact and of the conjugate pinion-tooth profile: 

. , + Rt‘‘ - A' , + r-A - 
‘ -2Bn 

(2-13) 

. , - A‘ - 
= ' 2Ar^ 

(2-14) 

cos (2-2) 

(2 ^ \p2 — <t> — O2 (2-3) 

Xp = r2 sin — <f>) (2-4) 

y = R2 — rz cos (^2 — <t>) (2-5) 

r, = -f Xp* (1-2) 

Ri 
“ Ri"" (2-7) 

Ri cos <t> 
cos \pi =- 

ri (2-8) 

0\ = \pi — <t> — (\ (2-9) 

To obtain the Cartesian coordinates for the pinion-tooth profile we 
6' original vectorial angle at center of tooth or space 
$ = calculated vectorial angle 

* vectorial angle with Y axis at center of tooth or space 

have, when 

e" ^ S' ~ e (1-4) 

X = r sin e" (1-5) 

r = r cos e" (1-6) 

For the definite example, we shall use the following values: 

Rx = 1.500 Ri « 2.000 A - 1.500 B = 2.750 

In this example, the pressure angle will be zero when the value of is equal to 
2.03717. We shall use increments of 0.05 for the radius of the internal gear from 1.25 
to 2.00, and increments of 0.01 for the radius of the gear from 2.00 to 2.03717. The 
values for the internal gear and its path of contact are tabulated in Table 2-5 and 
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Table 2-5. Coordinates of Internal-gear Pump Rotor and Its Path op 

Contact 

(Plotted in Fig. 2-5) 

r2, m. 02, deg 1^2, deg 0, deg «2, deg in. 2/, in. 

Primary Action 

1.25 32.156 90.000 90.000 -32.156 0.0000 0.7500 
1.30 20.498 68.256 76.066 -28.308 -0.1767 0.7121 
1.35 16.090 59.511 69.972 -26.551 -0.2451 0.6724 
1.40 12.974 52.960 65.061 -25.075 -0.2^)35 0.6311 
1.45 10.557 47.557 60.708 -23.708 -0.3299 0.5880 

1.50 8.599 42.887 56.666 -22.378 -0.3573 0.5432 
1.55 6.974 38.741 52.808 -21.041 -0.37()7 0.4965 
1.60 5.624 34.990 49.050 -19.684 -0.3887 0.4479 
1.65 4.457 31.549 45.327 -18.235 -0.3930 0.3975 
1.70 3.471 28.360 41.584 -16.695 -0.3889 0.3451 

1.75 2.630 25.377 37.761 -15.014 -0.3757 0.2907 
1.80 1.912 22.569 33.790 -13.133 -0.3503 0.2344 
1.85 1.302 19.910 29.575 -10.967 -0.3106 0.1763 
1.90 0.786 17.379 24.956 - 8.363 -0.2502 0.1166 
1.95 0 355 14.958 19.619 - 5.014 -0.1584 0.0565 

2.00 0.000 12.635 12.635 0.000 0.0000 0.0000 
2.01 -0.064 12.182 10.776 1.470 0.0493 -0.0094 
2.02 -0.124 1 11.731 8.544 3.311 0.1123 -0.0169 
2.03 -0.182 11.284 5.510 5.956 0.2042 -0.0197 
2.03717 -0.222 ^ 

1 

10.988 0.000 11.210 0.3883 0.0000 

Secondary Action 

2.03717 -0.222 10.988 0.000 11.210 0.3883 0.0000 
2.03 -0.182 11.284 - 5.510 16.976 0.5865 0.0566 
2.02 -0.124 11.731 - 8.544 20.399 0.7000 0.10.52 
2.01 -0.064 12.182 -10.776 23.022 0.7840 0.1492 
2.00 0.000 12.635 -12.635 25.270 0.8538 0.1914 

1.95 0.355 14.958 -19.619 34.222 1.1066 0.3945 
1.90 0.786 17.379 -24.956 41.549 1 1.27i)6 0.5955 
1.85 1.302 19.910 -29.575 48.182 1.4064 0.7982 
1.80 1.912 22.569 -33.7!)0 54.447 1.4986 1.0028 
1.75 2.630 25.377 -37.761 60.508 1.5612 1.2094 

1.70 3.471 28.360 -41.584 66.473 1.5969 1.4170 
1.65 4.457 31.549 -45.327 72.419 1.6069 1.6254 
1.60 5.624 34.990 -49.050 78.416 1.5913 1.8339 
1.55 6.974 38.741 -52.808 84.575 1.5494 2.0419 
1.50 8.599 42.887 -56.666 90.954 1.4792 2.2489 

1.45 10.577 47.557 -60.708 97.708 1.3770 2.4544 
1 40 12.974 52.960 -65.061 105.047 1.2359 2.6577 
1.35 16.090 59.511 -69.972 113.393 1.0419 2.8584 
1.30 20.498 68.256 -76.066 123.827 i 0.7582 3.0560 
1.25 32.156 90.000 -90.000 147.844 ! 0.0000 3.2500 
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Table 2-6. Coordinates of 3-tootii Rotor Conjugate to Internal Gear 
(Plotted in Fig. 2-5) 

deg ri, in. 0i, deg deg €i, deg X, in. F, in. 

Primary Action 

90.000 0.7500 42.875 90.000 -42.875 0.6495 0.3750 
76.066 0.8075 25.107 63.429 -37.744 0.5427 0.5979 
6!).<.t72 0.8631 18.903 53.474 -35.401 0.5077 0.6980 
65.061 0.9171 14.770 46.398 -33.433 0.4846 0.7787 
60.708 0.9698 11.724 40.821 -31.611 0.4679 0.8495 

56.666 1,0214 9.362 36.191 -29.837 0.4555 0.9141 
52.808 1.0719 7.478 32.231 -28.055 0.4463 0.9746 
49.050 1.1216 5.967 28.772 -26.245 0.4399 1.0317 
45.327 1.1705 4.696 25.710 -24.313 0.4351 1.0866 
41.584 1.2186 3.64^) 22.973 -22.260 0.4322 1.1394 

37.761 1.2663 2.788 20.530 -20.019 0.4313 1.1906 
33.790 1.3132 2.038 18.317 -17.511 0.4310 1.2404 
29.575 1.3597 1.418 16.370 -14.623 0.4324 1.2891 
24.956 1.4059 0.883 14.688 1 -11.151 1 0.4346 1.3370 
19.619 1.4522 0.422 13.354 j - 6.685 , 0.4378 1.3846 

12.635 1.5000 0.000 12.635 0.000 0.4417 1.4335 
10.776 1.5102 - 0.088 12.648 1.960 0.4425 1.4439 
8.544 1.5210 - 0.181 12.778 4.415 0.4433 1.4550 
5.510 1.5334 - 0.286 13.165 7.941 0.4442 1.4676 
0.000 1.5494 - 0.434 14.513 14.847 0.4450 1.4842 

Secondary Action 

0.000 1.5494 - 0.434 14.513 14.847 0.4450 1.4842 
- 5.510 1.5580 - 0.522 16.603 22.635 0.4451 1.4958 
- 8.544 1.5606 - 0.549 18.106 27.199 0.4452 1.4958 
-10.776 1.5618 - 0.564 19.356 30.696 0.4452 1.4970 
-12.635 1.5625 - 0.571 20.487 33.693 0.4451 1.4977 

-19.619 1.5643 - 0.601 25.409 45.629 0.4449 1.4997 
-24.956 1.5670 - 0.655 2<».788 55.399 0.4443 1.5027 
-29.575 1.5718 - 0.764 33.904 64.243 0.4428 1.5082 
-33.790 1.5789 - 0.951 37.855 72.596 0.4398 1.5164 
-37.761 1.5880 - 1.225 41.691 80.677 0.4351 1.5273 

-41.584 1.5991 - 1.605 45.441 88.630 0.4279 1.5408 
-45.327 1.6118 - 2.097 49.134 96.558 0.4179 1.5567 
-49.050 1.6260 - 2.706 52,798 104.554 0.4049 1.5748 
-52.808 ; 1.6415 - 3.489 56.469 112.766 0.3870 1.5952 
-56.666 1.6580 - 4.418 60.188 121.272 0.3649 1.6213 

-60.708 1.6754 - 5.552 64.020 130.277 0.3361 1.6413 
-65.061 1.6934 - 6.932 68.069 140.062 0.2<)97 1.6667 
-69.972 1.7120 - 8.680 72.538 151.190 0.2514 1.6934 
-76.066 1.7309 -11.081 77.955 165.102 0.1822 1.7213 
-90.000 1.7500 -17.125 90.000 197.125 0.0000 1.7500 
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plotted in Fig. 2-5, The values for the conjugate spur pinion are tabulated in Table 
2-6 and are also plotted in Fig. 2-5. 

SECONDARY ACTION ON 
CYCLOIDAL INTERNAL GEARS 

We shall examine next the con¬ 
ditions that exist between the epicy- 
cloidal addendum of a spur pinion 
and the hypocycloidal dedendum of 
an internal gear when there is a 
difference of 1 tooth in their respec¬ 
tive tooth numbers, and when the 
diameter of the rolling circles of 
these cycloidal forms is equal to the 
center distance. 

Referring to Fig. 2-6, at any 
pressure angle </>, the line of action 

passes through the points of tangency of the rolling circles of both gears 

Fio. 2-6. 
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with their respective pitch circles, and also through the point of tangency 

(which is the point of contact) of the two tooth profiles, which last point 

is also the point of contact of the two rolling circles. 

The radial lines from the centers of the two gears to the centers of 

their respective rolling circles pass through the points of tangency of their 

rolling circles and their pitch circles, and are parallel to each other, 

because the triangles formed by the line of centers, these radial lines, and 

the line of action are similar isosceles triangles, as shown in Fig. 2-6. 

The length of the line between the centers of the two rolling circles is 

equal to 2a, and the center distance between the axes of the two gears 

is also equal to 2a. The hsngth of each radial line to the center of its 

rolling circle is the same for both gears. Therefore the geometrical figure 

whose sides are the line of centers of the two gears, the line of centers of 

the two rolling circles, and the two radial lines is a parallelogram. 

As noted before, the line of centers of the two rolling circles passes 

through the point of tangency of the two rolling circles, which point is also 

the point of contact between the two gear-tooth profiles. This point is 

at the middle of the line of centers of the two rolling circles. 

Hence the form of the secondary path of contact of these two cycloidal 

forms is the path described by the middle of the link whose length is 

equal to 2a, a link that is pivoted on two parallel arms whose lengths are 

each equal to /?i -1- a, as this linkage is revolved. Such a form is a circle 

of radius ecpial to Ri + a, whose center is on the line of centers of the two 

gears, at a distance of /?i 4- a from the pitch point. This secondary 

path of contact is shown as a dotted line in Fig. 2-6. 



CHAPTER 3 

TROCHOIDS, TOOTH FILLETS, AND UNDERCUT 

As noted in Chaps. 1 and 2, whenever a tangent circle can be drawn 

from the center of the gear to the path of contact, as shown in Fig. 3-1, 

conjugate action cannot take place below the radius Ru. In addition, if 
the mating profile extends so that it would reach beyond the point of 

tangency of the path of contact and the tangent circle, a cusp will exist 

in the theoretical form of the tooth pro¬ 
file because two points of contact should 

exist for the same radial distance on the 
gear. Under such conditions, the 
corner of the m(<ting gear will interfere 

or make improper contact with the in¬ 
complete profile. If the interfering 
member is a generating tool, the corner 
of its tooth, which travels in a trochoidal 

path in relation to the gear being gen¬ 
erated, will sweep out its path, remove 
some of the conjugate profile, and pro¬ 

duce an undercut tooth form. 

We shall therefore analyze these 
trochoids so as to determine both the 

forms of the undercut when it exists and 

also to determine the form of the fillet of the tooth whether undercut exists 
or not. We sometimes have the condition where the generating tool is 
smaller than the mating gear. Here the generating tool cuts deeper than 

the mating tooth extends, but we must be sure that the fillet made by the 
generating tool does not interfere with the tip of the tooth of the mating 

gear. On internal gears another factor is present. Here we must be sure 

that the trochoidal path of the corner of one tooth does not interfere with 
the tip of its mating tooth as it comes into and goes out of mesh. 

We have five relative conditions or types of trochoids to consider. 

These are as follows: 
1. Corner of rack tooth in relation to root of gear tooth 

2. Comer of gear tooth in relation to root of rack tooth 

3. Corner of one gear tooth in relation to root of second gear 
48 
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4. Corner of pinion tooth in relation to internal gear 
5. C'orner of internal-gear tooth in relation to pinion 

TROCHOID OF CORNER OF RACK TOOTH AT ROOT OF GEAR 

When the rack tooth represents the form of the generating tool, then 
this trochoid gives the form of the fillet of the gear tooth. When no 
undercut is present, this trochoid 
will be tangent to the generated 
gear-tooth profile. The equations 
for this trochoidal path are derived 
as follows: 
Let R = pitch radius of gear 

6 = distance from pitch line of 
rack to sharp corner of 
rack tooth 

Tt = any radius of trochoid 
dt = vectorial angle of trochoid 

\l/t = angle between tangent to 
trochoid and radius vector 

ei = angle of rotation of gear 
Xt = abscissa of corner of rack 

tooth measured from the 

pitch point 
8 = angle between origins' of 

the trochoid and the gear- 
tooth profile 

We have the following from the geometrical conditions shown in 
Fig. 3-2: 

tan ' 
Vn- - {R - by^ Vrr - {If - W 

(3-1) 
(R-b) R 

. , r, de, R{R - 
tan \^i = ~ — =- 

(fr, R V r.2 - 

b) - rr 

- (ft - 6)2 
(3-2) 

To plot this trochoid in its proper relation to a definite gear-tooth 
profile, we must first determine the angle between the origins of the two 
curves. For this we have 

arc 5 = Xt/R (3-3) 

To obtain the Cartesian coordinates of the trochoid in relation to 

’ The origin of the coonliiniU' system for the trochoid is the center of the gear, 
d'he vectorial angle is zero when the corner of the rack tooth is at its deepest position 
in the gear. 
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those of the gear-tooth profile, we have when 
S' = original vectorial angle at center of tooth or space 
dt == calculated vectorial angle of trochoid 

= vectorial angle of trochoid with Y axis at center of tooth or space 

^ e' - b ± Bt (3-4)1 
Then we have as before 

Xt = Tt sin (3-5) 
= n cos e"t (3-6) 

Table 3-1. Coordinates of Trochiod of Corner of Rack Tooth 

(Plotted in Fig. 3-3) 

ri, in. dt, rad e,, deg e",, deg Xt, in. in. 

20.0000 0.00655 0.375 -2.949 “1.0290 19.9736 
19.9013 0.00734 0.421 -2.903 “1.0078 19.8758 
19.8059 0.00802 0.460 -2.864 -0.9895 19.7809 
19.7151 0.00853 0.489 -2.835 “0.9751 19.6910 
19.6307 0.00892 0.511 -2.813 “0.9637 19.6071 

19.5551 0.00917 0.525 -2.799 -0.9549 19.5318 
19.4918 0.00930 0.533 -2.791 -0.9491 19.4686 
19.4457 0.00934 0.,535 -2.789 -0.9462 19.4226 
19.4237 0.00935 0.536 “2.788 -0.9448 19.4008 
19.3000 0.00920 0.527 -2.747 -0.9418 19.2770 

19.2000 0.00877 0.502 -2.822 -0.9452 19.1768 
19.1000- 0.00796 0.456 -2.868 -0.9560 19.0761 
19.0000 0.00660 0.378 -2.946 -0.9764 18.9749 
18.8500 0.00000 0.000 -3.324 -1.0931 18.8183 
19.0000 -0.00660 -0.378 -3.702 -1.2268 18.9603 

19.1000 -0.00796 -0.456 -3.780 -1.2.593 19.0584 
19.2000 -0.00877 -0.502 -3.826 -1.2810 19.1572 
19.3000 -0.00920 -0.527 -3.851 -1.2962 19.2.564 
19.4237 “0.00935 -0.536 -3.860 -1.3076 19.379<i 
19.4457 j -0.00934 -0.535 -3.8.59 -1.3087 19.4016 

19.4918 -0.00930 -0.533 -3.857 -1.3112 19.4477 
19.5551 -0.00917 -0.525 -3.849 -1.3127 19.5109 
19.6307 -0.00892 -0.511 -3.835 -1.3129 19.5863 
19.7151 “0.00853 -0.489 -3.813 -1.3111 19.6715 
19.80.59 -0.00802 -0.460 -3.784 -1.3070 19.7627 

19.9013 1 “0.00734 -0.421 -3.745 -1.2998 19.8587 
20.0000 -0.00655 -0.375 -3.699 -1.2902 

1 
19.9.584 

1 Because the trochoid is symmetrical about its origin, the last term in Eq. (3-4) is 
plus and minus. 
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Example of Trochoid of Corner of Rack Tooth. As a definite example we shall use 
the gear-tooth form whose coordinates are tabulated in Table 1-2. We shall assume a 
clearance of 0.150, which will give the 
following values: R « 20.00, b = 1.150. 
The value of Xt must be calculated 
from Eq. (1-10), where y = —1.150, 
A = 5.00, B = 4.5315, and D = 2.1131. 
This gives the value Xt = —0.3748. 
This profile is conjugate to the inside 
surface of the basic-rack form so that the 
signs of these coordinates are reversed. 
Hence Xt = 0.3748 and 

5 * = 0.01874 radian = 1.074° 

The values for this trochoid arc tabu¬ 
lated in Table 3-1 and arc plotted in 
Fig. 3-3. Here the trochoid produces 
undercut. 

This same trochoid is at the root of the gear-tooth form whose coordinates arc 
tabulated in Table 1-1. In this case, as there is no cusp, the trochoid will be tangent 
to the gear-tooth profile. 

FILLET FORM OF ROUNDED CORNER OF RACK TOOTH 

When the rack is represented by the cutting tooth of a rack-shaped cut¬ 
ter or of a hob, the corners of these cut¬ 
ting teeth are generally rounded. In 
such eases, the center of the rounding 
will follow the trochoidal path as given 
by Eqs. (3-1) and (3-2), and located by 
Eq. (3-3), but the actual form of the fillet 
will be the envelope of the path of a 
scries of circles equal in size to the 
rounding of the corner, and with their 
centers on the trochoidal path. We can 
establish this fillet form also by analysis. 
Thus when all other symbols are the 
same as before except 

Xi = abscissa of center of rounding 
of corner of rack tooth, meas¬ 
ured from pitch point 

b = ordinate of center of rounding, 
measured from pitch line 

A = radius of rounding 
Tf = any radius of fillet form 
6f = vectorial angle of fillet form 

the values for the trochoid of the center 
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of the rounding will be calculated as before. Then, referring to Fig. 3-4, 
we have for the fillet form 

Tf = — 2Art sin ypt (3-7) 
6f = dt + cos“^ [(n — A sin ^OA/l (3“8) 

TROCHOID OF CORNER OF GEAR TOOTH AT ROOT OF RACK 

Some racks are generated from a pinion-shaped cutter. These cutters 
have substantially sharp corners. The form of the fillet at the roots of 

Fio. 3^6. 

such rack teeth is the form of the trochoid developed by the path of the 
corner of the pinion tooth as it sweeps out of mesh. The equations of 
such a trochoid are as follows: 
Let Xt = abscissa of trochoid 

yt = ordinate of trochoid 
Xo = distance from pitch point to origin of trochoid 
Xt = abscissa of trochoid with pitch point as origin 
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/?o = outside radius of pinion 
R = pitch radius of pinion 
So = vectorial angle to comer of pinion-tooth 
6( = angular rotation of pinion 

Referring to Fig. 3-5, we have from the geometrical conditions shown 
there 

yt - R — Ro cos ei 

Xt — Ro sin €t R^t 

cos €f = (R — yt)/Ro 

sin = \/Ro^ — {R — yiY/Ro 

Whence 

Xt = ^/Ro^-\R - yd^ - R sin-1 W~R f- {R - y,)yRo] (3-9) 

xo = RSo (3-10) 
X, - Xt - xo (3-11) 

TROCHOID OF CORNER OF ONE GEAR TOOTH 
AT ROOT OF SECOND GEAR TOOTH 

When a gear is generated from a pinion-shaped cutter, and the 
corner of the cutter tooth is sharp, the form of the fillet produced is that 
of the trochoid of the corner of the tooth of the pinion-shaped cutter. 
Let R\ = pitch radius of first gear, or cutter 

= pitch radius of second gear 

C = center distance 
Ro = outside radius of first gear 

Tt — any radius to trochoid on second gear 

St — vectorial angle of trochoid 
€i == angle of rotation of first gear 
€2 = angle of rotation of second gear 
^0 = vectorial angle to corner of tooth of first gear 

5 = angle between origin of second gear-tooth profile and trochoid 
Referring to Fig. 3-6, we have from the geometrical conditions shown 

there 

€2 — — (7?i/f?2)ei (3-12 

n = VC^~VR^^'2CRo cos Cl (3-13) 

sm (€2 + Si) =--- 
Tt 

whence 

€2 (3-14) 

(3-15) 
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FILLET OF ROUNDED TOOTH OF FIRST GEAR AT ROOT OF SECOND GEAR 

Sometimes the tip of the tooth of the pinion-shaped cutter is rounded 
to give a larger radius of fillet or to produce a full-rounded-root form to 
reduce the stress concentration at the root section of the tooth on critical 
and heavily loaded gear drives. We already have Eqs. (3-7) and (3-8) 
for the resulting fillet form, and Eqs. (3-13) and (3-14) for the trochoid 
of the center of the rounding. Before Eqs. (3-7) and (3-8) can be used, 
however, we must derive equations for the value of the tangent to the 
trochoid of the center of the rounding. 

It is possible to combine Eqs. (3-13) and (3-14) and obtain a single 
equation for the value of this tangent, but it will give a complex equation. 
A simpler form for calculation will be obtained by using the angle of rota¬ 
tion as the independent variable, and deriving expressions for the first 
derivative of r< and dt in respect to it. Thus when ypt = angle between 
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tangent to the trochoid and the radius vector, and all other symbols* are 
the same as before, 

dti 

* , dOt tan 
dBi/dti 

drt/dei 

Ro(rt^ cos €i — CRo sin^ €i) 
rt2((7 — Rq cos ei) 

dvt _ CRo sin ei 
dei Tt 

R2 

(3-16) 

(3-17) 

(3-18) 

With these values, we then use Eqs. 
the values of the coordinates of the fillet, 
and Eq. (3-15) to determine the angle 
between the origins of the fillet and the 
tooth form. To find the Cartesian coordi¬ 
nates, we use Eqs. (3-4), (3-5), and (3-6) 
as before. 

TROCHOID OF CORNER OF PINION 
TOOTH AT ROOT OF INTERNAL GEAR 

When the internal gear is generated, it 
is usually done with a pinion-shaped cutter. 
This trochoid would then be the form of 
the fillet at the root of the internal-gear 
tooth. 
When Ri = pitch radius of pinion 

R2 = pitch radius of internal gear 
C = center distance 

Ro = outside radius of pinion 
€1 = angle of rotation of pinion 
€2 = angle of rotation of internal 

gear 
Tt — any radius to trochoid on 

internal gear 
Ot = vectorial angle of trochoid 
6 = angle between origins of tro¬ 

choid and internal-gear tooth 

(3-7) and (3-8) to determine 

Fig. 3-7. 

^0 = vectorial angle to corner of pinion tooth 

then 
€2 = iRi/R2hi (3-12) 

' Position of the center of the rounding is substituted for the position of the corner 
of the tooth of the first gear. 
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Referring to Fig. 3-7, we have from the geometrical conditions shown 

there 

n = VC' + Ro^ + 2CKo cos *1 (3-19) 

• i 1 /) \ sin €i sin («2 -t- 6,) = - 
Tt 

e, = sin-* - e, (3-14) 

5 = (^Ri/R2^^q (3-15) 

FILLET OF ROUNDED TOOTH OF PINION AT ROOT OF INTERNAL GEAR 

We have already derived Eqs. (3-19) and (3-14), which are used to 
determine the coordinates of the trochoid of the center of the rounding at 

the tip of the pinion tooth. We have also Eqs. (3-7) and (3-8) for the 
fillet form developed by the rounded corner of the pinion tooth. Before 
we can use these last equations, however, we must determine values for the 
angle between the tangent to the trochoid and its radius vector. Follow¬ 
ing the same method as before we have when = angle between tangent 
to trochoid and its radius vector, 
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tan == rt 
drt 

{ddi/dti) 

^ drt/dei 

ddt _ Rojrt^ cos €i + CRo sin^ €i) 

dei Tt^iC + Ro cos €i) 
drt __ CRo sin €i 
d€i Tt 

(3-16) 

(3-20) 

(3-21) 

With these values, we then use Eqs. (3-7j and (3-8) to determine the 
values of the coordinates of the fillet, and Eq. (3-15) to determine the 

angle between the origins of the fillet and the tooth form. Equations 

(3-5) and (3-6) are used as before to determine the Cartesian coordinates. 

TROCHOID OF CORNER OF INTERNAL-GEAR TOOTH AT ROOT OF PINION 

The corner of the tooth of the internal gear must clear both the fillet 

of the mating spur-pinion tooth and also its tip as it sweeps into and out 
of mesh. For this trochoidal path we have the following: 

When Ri = pitch radius of pinion 

/?2 = pitch radius of internal gear 
C = center distance 

Ri = internal or inside radius of internal gear 

€i = angle of rotation of pinion 

€2 = angle of rotation of internal gear 

Tt — any radius to trochoid on pinion 

do — vectorial angle to corner of internal gear 
Ot = vectorial angle of trochoid on pinion 

5 = angle between origins of trochoid and pinion-tooth form 

€l = {R2/Ri)^2 (3-22) 

Referring to Fig. 3-8, we have from the geometrical conditions shown 

there 
rt = VC^ + /i/”^C7e7cos €2 (3-23) 

sin (€i + dt) = Ri sin 62/rt 

di = sin“^ {fii sin €2/rt) — €1 (3-24) 

Examples of these trochoids and fillets will be given later when we 

determine the forms of various gear teeth. 



CHAPTER 4 

THE INVOLUTE CURVE AND ITS PROPERTIES 

At the present time the involute curve is used almost exclusively for 
spur-gear-tooth profiles that are employed to transmit power. It meets 
all the requirements for a gear-tooth profile and, in addition, has so many 
unique and valuable properties that it stands in a class by itself. These 
unique properties free it from many of the restrictions of other gear-tooth 

curves. In order to appreciate its 
many valuable features, it is best to 
study it by itself rather than as one 
of a group of gear-tooth curves. 

The involute is the curve that is 
described by the end of a line that is 
unwound from the circumference of 
a circle, as shown in Fig. 4-1. The 
circle from which the string is un¬ 
wound is called the base circle. The 
equation of the involute is as follows: 
Let Rb — radius of base circle 

r = radius to any point of 
involute 

9 = vectorial angle 
P = angle through which line 

has been unwound 
We have from the geometrical conditions shown in Fig. 4-1 

A/r2 - /A2 
e = p - tan-' 

The length of the generating line \/r^ Rb^ is also the length, of the 
circumference of the base circle, that is subtended by the angle /?. Hence 

y/r^ — Rb^ = R^& or = 
Vr^ - Rb^ 

Rb 

whence 

a/ — R}^ 
e = ^ p "■ - tan- 

lib 

.j Vr^ - Rb^ 

Rb 
58 

(4-1) 



THE INVOLUTE CURVE AND ITS PROPERTIES 59 

This is the polar equation of the involute curve. 
When xp = angle between tangent to curve and radius vector, 

tan yp — 

But this last value is also the tangent of the angle (/3 — 0), so that this 
tangent to the involute curve is parallel to the radial line at the start of 
the generating line of the involute. Hence the tangent to the involute 
curve is perpendicular to the generating line, or conversely, the generating 
line is the normal to the involute curve. 

When Rc = radius of curvature of involute curve, 

dr _ rRb d’^r _ —rRi^ 

dd ” — Rb^ dO^ (r^ — Rb’^)^ 

Substituting these values into Eq. (1-34), combining, and simplifying, we 
obtain 

Rc = Vr^ - (4-3) 

But this value of Rc is the length of the generating line from its point of 
tangency with the base circle to the 
involute curve. Hence the radius of 
curvature of the involute curve at 
any point is the length of the gener¬ 
ating line to that point. 

Involute Curve as a Uniform-rise 
Cam. A simple conception of the 
involute curve is that of a uniform- 
rise cam, where the rise per revolution 
along a line tangent to the base circle 
of radius Rb is equal to the circum¬ 
ference of the base circle. Such a 
cam is shown in Fig. 4-2. If this cam 
revolves at a uniform rate of speed in 
the direction shown by the arrow, 
the roll follower will rise at a uni¬ 
form rate of speed also. If the cam 
revolves in the reverse direction, the 
follower will fall accordingly. 

The path of contact between the 
roll on the follower and the involute cam is a straight line that is tangent 
to the base circle. Being a straight line, it is symmetrical in reference to 
any point on this straight line. This is one of the unique properties of this 
involute curve that set it apart from all other gear-tooth curves. 

Fio. 4-2. 
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Action of One Involute against Another. If, instead of acting against 
a cam roll, the involute acts against another involute, we have the condi¬ 
tions shown in Fig. 4-3. The point of contact between the two involutes 
is that point where the tangents to the two curves coincide. The tan¬ 
gents to both involutes are always perpendicular to their generating lines. 
The tangents to the two involutes coincide only when the generating line 
of one is a continuation of the generating line of the other. Therefore 
the locus of points of contact between two involutes is the common tan¬ 
gent to the two base circles as shown in Fig. 4-3. 

When one involute is revolved 
at a uniform rate of motion, the 
length of the generating line from 
its point of tangency to the base 
circle to the involute profile at 
point P changes uniformly. If 
the direction of rotation is in the 
direction shown by the arrow in 
Fig. 4-3, the length of this line 
increases. At the same time, the 
length of the generating line on the 
mating involute is shortened at 
the same uniform rate because 
the total length of the common 
tangent to the two base circles 
remains constant. This means 
that the second involute must 

revolve at a uniform rate in the direction shown by the arrow in Fig. 4-3. 
Base Circles Determine Speed Ratio. The relative rate of motion 

depends only upon the relative sizes of the two base circles. No matter 
what the distance may be between the centers of the two base circles,when 
one involute acts against another, contact between them takes place only 
along the common tangent to the two base circles, and their relative rates 
of motion remain the same. If one base circle is double the size of the 
other, the rate of revolution of the larger involute is one-half that of the 
smaller. This is because the larger involute, or its base circle, revolves 

■ through only one-half the angle that the smaller one must revolve through 
to wind up the length of the generating line that the smaller one has 
unwound. The conditions are exactly the same as though two pulleys were 
set up and connected by a crossed belt. Hence the relative rates of the 
two mating involutes that act against each other are in inverse proportion 
to the sizes of their base circles. 

The relative rates of the two involutes ma}'’ be r(‘pr(*sented by two 
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plain disks that drive each other by friction. Such disks are known as 
pitch disksj while their diameters are known as pitch diameters. An 
involute has no pitch diameter until it is brought into contact with another 
involute. This is another unique feature of the involute curve. All 
other gear-tooth curves must be developed from a preselected pitch circle 
or pitch line. The involute has no fixed pitch circle, but any diameter on 
it is a potential pitch diameter. This is because the path of contact is a 
straight line, a form that is symmetrical about any point in this line. 

Furthermore, the path of contact for involute curves is also the line of 
action. Again, the form of the involute depends solely upon the size of 
the base circle. 

In Fig. 4-4, two involutes are shown in contact at different center 
distances. The common tangent to the two base circles is both the path 
of contact and the line of action. We have seen before that the radii of 
the base circles are in inverse proportion to the rates of revolution of the 
involutes. The radii of the two pitch disks, which are tangent to each 
other at the pitch point and which represent the same relative rates of 
revolution, are directly proportional to the radii of the base circles of 
their respective involutes. 

From the geometrical conditions shown in Fig. 4-4, we see that the 
intersection of the common tangent to the two base circles with the com¬ 
mon center line of the two involutes establishes the pitch point and the 
radii of the two pitch circles. 

The angle between the common tangent to the two base circles and a 
line perpendicular to their common center line is called the pressure angle. 
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This angle does not exist until two involutes are brought into contact 
with each other. There is a definite relation between the pitch diameter 
and pressure angle of any given involute. Thus for any established 
pitch diameter there is a corresponding pressure angle. 

Thus both the sizes of the pitch circles and the pressure angle of a 
pair of mating involutes depend solely upon the sizes of their base circles 
and the distance between their centers. 
When C — center distance 

Ri = pitch radius of first involute 
R2 = pitch radius of second involute 

Rbi = radius of base circle of first involute 
Rb2 = radius of base circle of second involute 

<l> = pressure angle 

C = i?i “b I?2 (^4) 
R1/R2 — Rbl/Rb2 

whence 

Rl = R2Rbl/Rb2 
C = iR2Rbl/Rb2) + R2 = R2{Rbl + Rb2)/Rb2 

whence 

R2 = Rb2C/{Rbi + Rb2) (4-5) 

In like manner 

Rl = Rb\C/{Rb\ + Rb^ (4-6) 

Referring again to Fig. 4-4, we have from the 
shown there 

geometrical conditions 

cos <t> = {Rbl “b Rb2)/C (4-7) 

We can obtain other simple and useful interrelations from the geo- 
metrical conditions shown in Fig. 4-4 as follows: 

cos <f} = Rbi/Ri = Rb2/R2 (4-8) 
whence 

Rbl = Rl cos <t> (4-9) 
and 

J?62 ” R2 COS 0 (4-10) 

Action of Involute against a Straight Line. WTien an involute acts 
against a straight line, we have the conditions shown in Fig. 4-5. The 
straight line is the tangent to the involute curve and is always perpendicu¬ 
lar to its line of action. ^ When it is constrained to move only in the direc¬ 
tion of the line of action, it will be moved at a corresponding and uniform 
rate to that of the end of the generating line. 

We shall now consider the motion of this straight line when it is con¬ 
strained so that it can move only in the direction of the line AA\ If we 
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designate the distance that the line travels in the direction AA' as Z)i, the 
distance that this line moves along the line of action, as D, and the angle 
between the line of action and the line AA' as <t>h we have the following 
relationship: 

Z)i = Z)/cos 

As the value of D changes uniformly, and as the value of <t>i is constant, 
the value of D\ also changes uniformly. As cos 0i can never be greater 
than unity, the value of Di will never be smaller than D, Therefore 
when the line against which the 
involute acts is constrained so that 
it moves only in the direction of the 
line AA', the distance it travels 
along this line will be greater than 
the distance along the line of action, 
but its rate of motion will be uni¬ 
form as long as the rate of rotation 
of the involute is uniform. 

If the involute should make one 
complete revolution, the value of 
D would become 27r/?6. The value 
of Di would become 27r7?6/cos 0i. 
This last value also represents the 
circumference of a pitch disk that 
drives a straight edge by friction 
when this straight edge is parallel 
to the line AA'. The radius of 
this pitch disk or pitch circle, /?i, thus becomes equal to Rh/cos <#>i. In 
Fig. 4-5, the radius of this pitch circle is established by the intersection 
of the line of action by a radial line, from the center of the base circle, that 
is perpendicular to the line AA'. 

Hence the form of the basic rack of the involute is a straight line, a 
form that is also symmetrical in relation to any point on it. Thus any 
point of this basic-rack profile may be used as a pitch point without 
affecting its value as the basic rack of an interchangeable gear-tooth 
system. 

SUMMARY OF INVOLUTE-CURVE PROPERTIES 

It follows then that the involute curve has the following properties: 
1. The shape of the involute curve is dependent only upon the size 

of the base circle. 
2. If one involute, rotating at a uniform rate of motion, acts against 

another involute, it will transmit a uniform angular motion to the second 
regardless of the distance between the centers of the two base circles. 
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3. The rate of motion transmitted from one involute to another 
depends only upon the relative sizes of the base circles of the two involutes. 
This rate of motion is in inverse proportion to the sizes of the two base 

circles. 
4. The common tangent to the two base circles is both the path of 

contact and the line of action. In other words, the two involutes will 

make contact with each other only along this common tangent to the two 
base circles. 

5. The path of contact of an involute is a straight line. Any point 
on this line may therefore be taken as a pitch point, and the path of con¬ 
tact will remain symmetrical in relation to this pitch point. 

6. The intersection of the common tangent to the two base circles 
with their common center line establishes the radii of the pitch circles of 

the mating involutes. No involute has a pitch circle until it is brought 
into contact with another involute, or with a straight line constrained to 
move in a fixed direction. 

7. The pitch diameters of two involutes acting together are directly 
proportional to the diameters of their base circles. 

8. The pressure angle of two involutes acting together is the angle 

between the common tangent to the two base circles and a line perpen¬ 
dicular to their common center line. No involute has a pressure angle 
until it is brought into contact with another involute, or with a straight 
line constrained to move in a fixed direction. 

9. The form of the basic rack of the involute is a straight line. The 
pressure angle of an involute acting against such a rack is the angle 
between the line of action and a line representing the direction in which 
this rack moves. 

10. The pitch radius of an involute acting against a straight-line rack 

form is the length of the radial line, perpendicular to the direction of 
motion of the rack, measured from the center of the base circle to its 
point of intersection with the line of action. 

USE OF THE INVOLUTE FORM FOR GEAR-TOOTH PROFILES 

When the involute form is used as a gear-tooth profile, several involute 
curves are developed from the same base circle to form the profiles of the 
several teeth. As gear teeth are generally symmetrical, at the start we 
shall consider but one side of the teeth. 

In Fig. 4-6 is shown the development of one side of several successive 
teeth. Imagine a string with knots evenly spaced wound about the 
circumference of the base circle. As this string is unwound, each knot 
will describe an involute curve. The distance between these involutes, 
measured along any line tangent to the base circle is always the same. 
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This distance is equal to the length of the arc of the base circle between 
the origins of any two successive involutes. This is also the distance 
between the knots in the string. This distance is also equal to the cir¬ 

cumference of the base circle divided by the number of teeth in the gear. 
It is called the base pitch of the involute gear. Thus when 

Pb = base pitch of involute gear, in. 
Rb = radius of base circle of involute, in. 
N = number of teeth in gear 

Pb - 2TRb/N (4-11) 

In a pair of mating involute gears, the base pitch must be identical 
on both gears to obtain smooth continuous action. 

Rolling and Sliding Action. As pointed out before, the length of the 
generating line that is unuTapped from the base circle is the radius of 
curvature of the involute curve at any point. Figure 4-7 shows the posi¬ 
tion of this generating line at equal angular intervals. At the origin of 
the involute, a, the length of the generating line is zero. At b it is 
infinitely longer. At c it is twice the length that it is at b. At d it is 

one and a half times the length at c, etc. The radius of curvature of the 
involute thus increases rapidly in proportionate length near the base 
circle, and more slowly as the curve departs further from the base circle. 
In other words, the form near the base circle is very sensitive, but it 

becomes less sensitive the farther it departs from the base circle. 
Sensitive curves of this type are most difficult to produce accurately 

whether they are on gear-tooth forms or on other types of cams, and 
they should always be avoided whenever possible. Thus only in cases 
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of necessity should the active profile of an involute gear tooth extend to 
or very close to the base circle. 

It will also be noted in Fig. 4-7 that the length of the curve ah is much 
less than the length 6c; that he is shorter than cd] etc. Thus whether 
the involute is acting as a cam or is acting as a gear-tooth profile against 
another involute gear tooth, the length of the curve that must pass 
through the line of action for any series of equal angular movements 

changes constantly. The nearer the active part of the profile is to the 
base circle, the shorter is the length of this profile. 

Thus when two involutes are acting against each other, a combined 
rolling and sliding action takes place between them because of the vary¬ 
ing lengths of equal angular increments on the profiles. 

In Fig. 4-8 are shown two equal involutes with the generating lines 

shown at equal angular intervals. The part ah of the profile on one 
involute comes into contact with the profile section gh on the second 
involute. Profile ah is much nearer to its base circle than is gh^ and it is 
therefore much shorter. The two profiles must slide against each other 
a distance equal to their difference in length to make up this difference. 

The length he is still much shorter than its mating section hi^ but the 

amount of sliding will not be as much as with the previous sections of the 
mating profiles. Spaces ed and ij are more nearly equal in length, ed 
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being the shorter, so that still less sliding takes place here. The sections 
de and jh are almost equal in length, but the length of the profile de on the 
first involute is now slightly longer than its mating section on the second 
involute. Thus the small amount of sliding that takes place now acts 
in the opposite direction to that of the initial sliding. The remaining 

Fia. 4-8. 

sections of the first involute become increasingly longer, while those on 
the second involute become shorter, so that the amount of sliding increases 

again. 
It is evident that the rate of sliding between two involutes acting 

against each other is constantly varying. The rate of sliding starts 
quite high, reduces to zero at the pitch point, changes its direction, and 
increases again. The actual velocity of the sliding is the same for both 

profiles, but it is distributed over different lengths of profile. 
Sliding Velocity. Equations for determining the sliding velocity at 

any point on a pair of involute gear teeth are derived as follows: The 

sliding velocity will be the difference in the speed of the ends of the 



68 ANALYTICAL MECHANICS OF GEARS 

generating lines of the involutes as they pass through the line of action. 
The angular velocity of these generating lines will be the same as the 
angular velocities of the gears themselves. The actual sliding velocities 

Fio. 4-9. 

will be the products of these relative angular velocities and the lengths 
of the generating lines or radii of curvature. 

Referring to Fig. 4-9, we have the following: 
wi = angular velocity of driving gear, radians/min 
0)2 = angular velocity of driven gear, radians/min 
n = rpm of driving gear 

V = pitch-line velocity of gears, ft/min 
V, = sliding velocity, ft/min 
R\ = pitch radius of driving gear, ft/min 

7?2 = pitch radius of driven gear, ft/min 
C = center distance, in. 

Rh\ — radius of base circle of driving gear, in. 
J?62 = radius of base circle of driven gear, in. 

(p = pressure angle 
Rci = radius of curvature of driving gear at ri, in. 
Rc2 = radius of curvature of driven gear at r2, in. 

ri = any radius of driving gear-tooth profile, in. 
r2 = mating radius of driven gear-tooth profile, in. 

V = 2TRin/l2 = /?ia)i/12 (4-12) 
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whence 
coi = l2V/Rx 
Vt — (SclCOi — i2c2W2)/12 

CO2 “ -RiC0i//^2 

"ReX “1“ Rc2 ~ G Sin (f> 

Rci = — Rbi^ 
Rc2 = \/r2^ — 7262^ = C sin — Vn^ — 

Substituting these values into the equation for sliding, combining, and 
simplifying, we obtain 

Vg = [V{Ri + R2)/RiR2]{'\/ti^ — Rbi^ — Ri sin 4>) (4-13) 

Equation (4-13) may also be written 

^ ^ (V^i^ — Rbi^ — sin <t>) (4-14) 

When the driven member is a rack, the value of R2 is equal to infinity, 
so that 1/722 is equal to zero. Hence the sliding velocity between an 
involute gear and its rack is as follows: When Vgr = sliding velocity on 
rack, feet/min, then 
When the rack is driven 

V.r = V(l/Ri)(\/ri^ — Rbi^ - Ri sin </>) (4-15) 

When the rack is the driving member 

V,r = 7(1/722) (722 sin </> — y/r^ — Rbi^) (4-16) 

Example of Sliding Velocity. As a definite example we shall determine the rela¬ 
tion V,/V for a pair of gears of equal size and also for one of these gears meshing with 

a rack. We shall use the following values: 

Ri * 10.000 Ri = 10.000 C = 20.000 0 - 20° 

Whence 

Rbi = 7^62 =* 10 X cos 20° = 9.39693 

Using a series of values for ri ranging from the value of Rb\ to 11.000 in. and Eq. 

4-13), we obtain the values for VJV plotted in Fig. 4-10. 

The value of the sliding is minus on the dedendum of the driving gear and is plus 

on its addendum. This indicates that the direction of the sliding as the dedendum of 

the driving gear is in toward the center of the gear, and is out or away from the center 

of the gear on the addendum. The direction of sliding changes at the pitch point as 

its velocity passes through zero. The symbol Ra\ used in Fig. 4-10 is for the radius to 

the bottom of the active profile of the driving gear. Contact does not extend do^vn to 

the base circle. 
Using the same series of values of r\ as before and Eq. (4-15), we obtain the values 

of VIV for the sliding between a gear and a rack. These values are plotted in Fig. 
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4-11. The values for this relative sliding on a rack are exactly one-half of the values 

for a pair of equal gears. 

Duration of Contact. One of the important factors in the design of 
gears that are to transmit power is that the proportions of the involute 

profiles must be so selected that the second pair of mating teeth will he 
in contact before the first pair is out of contact. The minimum amount 
of contact that will be adequate depends upon many conditions, and may 
need to be established by experience or experiment for critical cases. 
Except when the pitch-line velocities are high and sliding velocities arc 
critical, a greater amount of contact than the minimum will seldom be 
detrimental for power drives. 

The arc of action is the arc through which one tooth travels from the 
time it first makes contact with its mating tooth until it ceases to be in 
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contact. The number of teeth in contact, or the contact ratiOj is the 
quotient of the arc of action divided by the arc between successive teeth 
on the gear. Thus if an overlap of 0.60 exists, the contact ratio is 1.60. 

In Fig. 4-12, that part of the line of action which is intercepted by the 
two outside circles of a pair of mating gears, shown as a heavy line, is the 

length of the arc of action measured at the radius of the base circle. This 
length divided by the length of an arc of the base circle between two 
successive involutes gives the contact ratio. 

The arc of action is often separated into the arc of approach and the 
arc of recess. The arc of approach is the arc through which the tooth 
moves from the time it first comes into contact with its mating tooth 

until contact is made at the pitch point. The arc of recess is the arc 
through which the tooth moves from the time when contact is at the 
pitch point until it ceases to be in contact with its mating tooth. 

Referring to Fig. 4-12, we shall let 

<t> = pressure angle 
lUp = contact ratio 
ffa — arc of approach 

fir = arc of recess 



72 ANALYTICAL MECHANICS OF GEARS 

NI = number of teeth in driving gear 
Nt = number of teeth in driven gear 

C = center distance, in. 
Roi = outside radius of driving gear, in. 
Ro2 = outside radius of driven gear, in. 
Ri = pitch radius of driving gear, in. 
R2 = pitch radius of driven gear, in. 

Rbi = radius of base circle of driving gear, in. 
Rb2 = radius of base circle of driven gear, in. 

Pb = base pitch of gears, in. 
Simple equations can be derived for the values of the arc of approach, 

the arc of recess, and the contact ratio by solving several of the right 
triangles shown in Fig. 4-12. The angle of approach in circular measure 
or radians is found by dividing the length of the line yv by the radius of 
the base circle. The length of this line is equal to the length of xv minus 
the length xy. 

Length xy = R2 sin <t>_ 
Length xv = Ro2^ — Rn^ 

whence 

fia = — Rb2^ — R2 sin 4>)/^b\ (4-17) 

The arc of recess is found in a similar manner by dividing the length 
of the line yz by f?6i. 

fir = - Ri sin <t,)/R,i (4-18) 

The contact ratio is found by dividing the length of the line zv by the 
base pitch. The length of the line zv is equal to the sum of yz and yv, 

nip = {\/Roi^ — Rbi^ + y/Roi^ — Rbi^ — C sin 4>)/Vb (4-19) 

Duration of Contact with a Rack. The contact ratio for a rack and 
gear is determined in a similar manner. Referring to Fig. 4-13, we have 
the additional symbol a = addendum of rack, in. 

When the gear drives the rack, we have from the geometrical conditions 
shown in Fig. 4-13 the following: 

/3a = a/Rb\ sin <l> (4-20) 

Pr = {\^Roi^ — Rbi^ — Ri sin <I>)/Rbi (4-18) 

When the rack drives the gear, the values for the arc of approach and 
the arc of recess are reversed. 

_ (a/sin 0) + y/Roi^ — Rbi^ — Ri sin <t> 

Vb 
(4-21) 
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Active Profile. The active profile of a gear tooth is that portion of 
the tooth profile which actually comes into contact with its mating tooth 
along the line of action. In general, when the tooth design is such that 
a high rate of sliding exists, one or both active profiles will be short in 
relation to the length of the whole tooth profile. When the rate of sliding 

is low, on the other hand, the active profiles will include the greater part 

of the entire tooth profile. 
Referring again to Fig. 4-12, the radius to the bottom of the active 

profile on the pinion or driving gear is equal to the length of the radial 
line 0\v, This line is the hypothenuse of a right triangle of which Rh\ 

and the line uv are the two legs. 

Length uv = C sin <t> — ~ Rb2^ 

When Rai = radius to bottom of active profile on pinion, in. 
Rai = radius to bottom of active profile on gear, in. 

+ (C sin it> - (4-22) 

In similar manner 

K.J = VKm* + {C sin <l> - (4-23) 

In the case of a rack and pinion 

Rai = VRbi^ -t- [Ri sin <t> - (a/sin <#>)]* (4-24) 
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Example of Active Profile. As a definite example we shall use the pair of equal 

gears and the gear and rack from the preceding example. Whence we have for the 

gears 
Rai = V(9.39693)2 + (6.84040 - 5.71820)* = 9.46370 

For the example with the pinion and rack we have: 

Rai = V(9.39693)2 + (3.42020 - 2.92381)* = 9.41003 

These values are indicated on the sliding diagrams shown in Figs. 4-10 and 4-11. 

Limitation to Conjugate Action, 
base circle, no conjugate gear-tooth 

As the involute curve starts at the 
action can take place below it. If a 

straight-sided rack with sharp cor¬ 
ners acts against the involute, and 
these corners extend too far below 
the base circle, interference is pres¬ 
ent unless the tooth is undercut, 
as shown in Fig. 4-14. The looped 
curve shows the path of the sharp 
corner of the rack tooth as it comes 
into and goes out of engagement. 
This path not only undercuts the 
tooth below the base circle, but it 
also removes the lower part of the 
involute profile. 

This looped path is the same 
trochoid that is discussed in Chap. 
3 and is shown in Fig. 3-3. From 
there we have 

R = pitch radius of gear, in. 
Tt = any radius of trochoid, in. 
h = distance from pitch line to 

corner of rack tooth, in. 
Bt = vectorial angle of trochoid 

„ _ Vr.* -{R-bf - by 
Ot — ran .. , • (3-1) 

When 6 = angle between origins of trochoid and involute 
0 = pressure angle of involute at R 

6 = <t> - 
{R — b) tan <t> 

R 
(4-25) 

Example of Undercut. As a definite example we shall determine the form and 

position of the trochoid that would be formed on the gear by the corner of the following 
rack: 
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R = 6.000 h = 1.157 0 = 14.500° 

cos 0 = 0.96815 tan 0 - 0.25862 

Ri = 6 X 0.96815 = 5.80890 

« = 0.25307 - = 0.04432 radian 

From these values and the equations of the trochoid and the involute, we obtain 
values for the two curves that are plotted in Fig. 4-14. 

Undercut with Pinion-shaped Cutter. Many gears are generated by 
a cutter of the form of a mating involute gear. If the sharp comer of the 
tooth of the pinion-shaped cutter extends too far below the base circle, 
undercut will be present. The form of this trochoid is also discussed in 
Chap. 3. For this trochoid we shall use the following symbols: 

N2 — number of teeth in gear 

Nc — number of teeth in pinion-shaped cutter 
Roc — outside radius of pinion-shaped cutter, in. 

C = center distance between axes of gear and cutter, in. 
€2 = angle of rotation of gear 
€c = angle of rotation of pinion-shaped cutter 
61 = vectorial angle of trochoid 
Ti = any radius to trochoid, in. 

Substituting the foregoing symbols into the equations in Chap. 3, 
we have 
From Eq. (3-12) 

From Eq. (3-13) 
€2 = - {Nc/N2)ea 

COS €c 
+ Roc^ - 
" 2CRoc 

From Eq. (3-14) 
^ • —1 ^oc sin Cc 
6t = sin ^-€2 

n 

When 8 = angle between origins of trochoid and involute 
02 == vectorial angle of involute gear profile at pitch line 
Oc = vectorial angle of cutter profile at outside radius 

8 = {Nc/NOiOc - 02) - 02 (4-26) 

Example of Undercut with Pinion-shaped Cutter. As a definite example we shall 

use the same gear as before and use the following values^ for the pinion-shaped cutter: 

N2 - 12 iVc = 18 Roc = 10.250 C = 15.000 

Be = 0.06488 $2 = 0.00554 

« “ (!?{2) (0.06488 - 0.00554) - 0.00554 = 0.03347 radian 

1 The calculations are made on the basis of 1 DP for the greatest simplicity in 

calculation, where DP =» diametral pitch, which is the ratio of the number of teeth 

to the pitch diameter. 
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The coordinates of the involute gear profile are the same as before. Using the 

foregoing equations for the trochoid, we obtain the values that are plotted in Fig. 4-16. 

Undercut Limit for Rack. In order to avoid this undercutting, the 
sharp corner of the rack or equivalent hob form, can extend below the 

base circle only a limited distance. 
Its bottom edge must not reach below 
the line where the line of action is 
tangent to the base circle, as indicated 
in Fig. 4-16. If the comer of the hob 
tooth is rounded, the position where 
the rounding is tangent to the flank 

Fig. 4-16. Fig. 4-16. 

of the tooth corresponds to the sharp corner. 
Referring to Fig. 4-16, we shall let 

Ru = radius of gear to undercut hmit, in. 
Rb = radius of base circle of gear, in. 
R = pitch radius of gear, in. 
4> = pressure angle of rack 
We have the following from the geometrical conditions shown in 

Fig. 4-16: 

Bu = cos 0 = B cos* (4-27) 

Undercut or Interference Limit for Two Gears. In a similar manner, 
if two involute gears are acting against each other, or if a pinion-shaped 
cutter is used to generate another gear, their outside circles must not 
extend beyond the point of tangency of the line of action with the base 
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circle of the mating gear, as indicated in Fig. 4-17, or a similar interference 
will develop. 

Referring to Fig. 4-17, we shall let 
Rtni = radius of maximum addendum circle of first gear that will avoid 

interference, in. 
Rm2 = radius of maximum addendum circle of second gear that will 

avoid interference, in. 
C = center distance, in. 

Rb\ = radius of base circle of first gear, in. 
Rb2 = radius of base circle of second gear, in. 
Ri = pitch radius of first gear, in. 
R2 = pitch radius of second gear, in. 

Rui = radius to undercut limit of first gear, in. 
Ru2 = radius to undercut limit of second gear, in. 

0 = pressure angle of gears 
We have the following from the geometrical conditions shown in 

Fig. 4-17: 

= \/Rbi^ + (C sin 0)2 (4-28) 

= + (C sin (4-29) 

= C (4-30) 

= C-R„i (4-31) 



CHAPTER 5 

INVOLUTOMETRY OF SPUR GEARS 

The involute curve has many properties that make it extremely 
valuable as a gear-tooth form. In practice, full advantage of these 
properties is not always taken because the method of calculating involute 
sizes and proportions is not very generally known. These calculations 

are sometimes complex, but they are not 
difficult once the few simple fundamen¬ 
tals have been mastered. It is no more 
difficult to calculate involute tooth sizes 
and proportions than it is to do the same 
type of thing ^vdth plane triangles. In 
both cases, if much of such work is to be 
done, a calculating machine is as necessary 
as the trigonometric and other tables. 

An involute gear-tooth form consists 
of two similar involute curves with a 
common base circle. When their rela¬ 
tive positions are known at any radius, 
their relative positions at any other 
radius can be readily determined. In 
general, this is accomplished by first 
determining their relative positions at 
the base circle, and then adding or sub¬ 

tracting the vectorial angle of the involute for any other radius. We 
shall call this process of calculating involute gear-tooth relationships 
involutometry. 

Equation of Involute. In Fig. 6-1 is shown the involute curve. We 
have derived the following equation for it in the preceding chapter. 
When Rb = radius of base circle, in. 

r = any radius to involute form, in. 
d = vectorial angle 
0 = pressure angle at radius r 

0 = - Rby/Rb - tan-i (Vr^ - Rt^/Rb) (4-1) 

From the geometrical conditions shown in Fig. 5-1, we have 

V (r^ — RbY/Rh = tan <f> 
78 
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whence 
6 = tan 0 — 0 = inv 4> (5-1) 

From Fig. 5-1 we also have 

r = Rb/coa (f> (5-2) 

These last two equations give the fundamental relationships of the 
involute of the circle by means of which involute gear-tooth sizes are 
readily calculated. Here the origin of the gear-tooth profiles is not at the 
pitch point but is at the origin of the involute curve. It will be seen from 
Eq. (5-1) that there is a fixed relationship between the two angles <t> and 6, 

which is independent of the diameters of the gears. The most convenient 
form for the value of 6 is in circular measure or radians, and its value can 
be obtained by subtracting the value of the angle </> expressed in radians 
from the value of its tangent, as expressed by Eq. (5-1). This value of 9 
for any angle 0 will be called the involute function of <i> and will be 
expressed as inv <f) in the equations that follow. Tables of such involute 

functions are available, and they enable all involute calculations to be 
made in a manner similar to the solution of plane triangles. 

The further consideration of involutometry will be in the form of a 

series of problems. The ones that follow do not begin to exhaust the 
number of similar problems that may need a specific solution. Given the 
basis and the general method of operation, however, it should be possible 

for any one to work out the solution for any specific problem of this 
nature with which he is confronted. 

All these problems will be solved on the basis of 1-DP gears. In most 

cases, such a procedure will make for the simpler solutions because then 
the pitch diameter is equal to the number of teeth in the gear. The first 
step toward the solution of any specific problem, therefore, will be to 

transform all given dimensions of size to the equivalent ones for a 1-DP 
gear. In presenting this limited selection of problems, the necessary 
e(iuations will be derived first and then a specific problem will be solved 

numerically. 
Problem 6-1, Given the arc tooth thickness and pressure angle of an 

involute gear at a definite radius, to determine the coordinates of the involute 

profile. 
The complete profile includes both the involute profile and the 

trochoidal fillet. We shall start with the involute profile, and treat the 

fillets as separate problems. 
Referring to Fig. (5-2), when 

Ti = given arc tooth thickness, in. 
Ri = given radius of profile, in, 

<Ai = given pressure angle at radius Ri 
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r == any radius of profile, in. 
T = arc tooth thickness at r, in. 
(t> = pressure angle at r 

jRfr = radius of base circle of involute, in. 
We have by transposing Eq. (5-2) 

Rh = R\ cos it>\ (5-3) 

cos <t>i = Rb/Ri (5-4) 

This last equation holds true for all positions, so we can write 

cos 4> = Rb/r (5-4) 

As the tooth form is symmetrical, we shall deal with the half thickness 

of the tooth. The angle of the half thickness of the tooth at Ri in 

circular measure or radians is equal to T\/2R\, 
The half thickness of the tooth, in radians, at the base circle is equal 

to {T\/2Ri) + inv The value of inv will be taken from a table of 
involute functions. 

The half thickness of the tooth, in radians, at any other radius r is 
equal to its half thickness in radians at the base circle minus the involute 
function of the pressure angle at the specific radius r. Thus we have' 

T/2r = {Ti/2Ri) + inv — inv 4> 

Solving for T, we have 

T = 2r[(7’i/2fli) + inv — inv 4>] (5-5) 

' T/2r is the angle in radians from the center of the tooth to the given point r on 

the involute profile. 
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Hence to determine the arc tooth thickness on an involute gear at any 
radius, Eqs. (5-3), (5-4), and (5-5) would be solved in the order given for 
the specific value of r that may be required. 

To determine such values for the entire involute profile, we would use 
a series of values of r ranging from the base circle to the tip of the tooth. 

Cartesian Coordinates, To obtain the Cartesian coordinates of the 
involute profile in reference to either the center line of the tooth or the 
center line of the space, we first determine the vectorial angles of 
the several points of the profile from the specified center line, and then 
use Eq. (1-5) and (1-6) as follows: 

= vectorial angle of profile from specified center line 
X = abscissa of profile 
Y = ordinate of profile from center of gear 

X = r sin (1-5) 
F = r cos (1-6) 

When = vectorial angle of profile from center line of tooth 

= T/2r = {Ti/2Ri) + inv <t>i — inv </> (5-6) 

When = vectorial angle of profile from center line of space 
N = number of teeth in gear 

== (tt/AT) - {T/2r) - (ttAV) [(Ti/2/2i) inv ~ inv 0] (5-7) 

Example of Involute Profile. As a definite example we shall use a 20-tooth gear of 

10 DP and 20-deg pressure angle, whose arc tooth thickness at the radius of 1 in. is 

equal to one-half the circular pitch of 0.31416 in. This gives the following values: 

10 DP 1 DP 

Pitch radius. 1.000 

0.15708 

20^ 
i 

10.000 

1.5708 

20® 

Arc tooth thickness. 

Pressure angle. 
1 

Using the 1-DP values, we have 

Rh ^ 10 X cos 20® =• 9.39693 

From the table of involute functions we get 

inv 20® - 0.014904 

r - 2r (1^^ + 0.014904 - inv - 2r(0.093444 - inv *) 

Using a series of values of r ranging from the radius of the base circle, 9.39693, to 

11 in., we determine first the value of ^ from Eq. (6-4), then obtain the value of inv 0 

from a table of involute functions, and then solve the foregoing equation for the 
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several values of T. Such values have been computed and they are tabulated in 

Table 6-1. 
For the Cartesian coordinates, we have, when the origin is at the center line of the 

space, 

--m-(i)-(i) 
These coordinates have been computed. They are tabulated in Table 5-1 and 

are plotted in Fig. 5-3. 

These tabulated values of r and T would be divided by 10 to reduce them to the 

original 10-DP sizes. These values give the coordinates of the involute profile only. 

Cenfer line 

The tooth form includes, however, the fillet that joins the involute profile to the 

bottom land of the tooth space. The shape of this fillet will depend ufx)n the form of 

the generating tool and the method used to produce this gear. To coiiipleto the tooth 

form, we must determine the coordinates of the trochoidal fillet that will be produced 

by the particular tool and method used to generate it. This form may be hobbed or 

generated by a pinion-shaped cutter. Equations for these troi^hoids are given in 

Chap. 3. The next problems will be to select and use the proper equations for the 

specific trochoid that will be developed. We shall start, however, with the radius 

to the top of the fillet when no undercut is present. 

Problem 6-2. Given the 'proportions of the hob and gear tooth, to deter¬ 
mine the radius to the point of tangency of the involute profde and trochoidal 
fillet. 

When no undercut is present, the trochoidal fillet will be tangent to 
the involute profile. This point of tangency for a hob will be the point 

where the end of the straight-line profile of the hob or basic-rack form 
crosses the path of contact, as shown in Fig. 5-4. 



r, in. <^, deg inv 4) 7’, in. Z, in. 

9.39693 
9.500 
9.600 
9.700 
9.800 

9.900 
10.000 

10.100 

10.200 

10.300 

10.400 
10.500 
10.600 
10.700 
10.800 

10.900 
11.000 

TI2r 

0.000 0.000000 0.093444 
8.447 0.001077 0.092367 

11.805 0.002966 0.090478 
14.359 0.005590 0.087854 
16.490 0.008219 0.085225 

18.345 0.011409 0.082035 
20.000 0.014904 0.078540 
21.504 0.018675 0.074769 
22.887 0.022696 0.070748 
24.172 0.026950 0.066494 

25.369 0.031399 0.062045 
26.499 0.036065 0.057379 
27.563 0.040900 0.052544 
28.572 0.045908 0.047536 
29.531 0.051074 0.042370 

30.447 0.056399 0.037045 
31.321 0.061857 0.031587 

F, in. 

1.75617 0.59755 9.37795 
1.75497 0.61436 9.48005 
1.73718 0.63888 9.57869 
1.70437 0.67085 9.67682 
1.67041 0.70354 9.77472 

1.62429 0.74230 9.87218 
1.57080 0.78460 9.96920 
1.51033 0.83032 10.06586 
1.44326 0.87934 10.16206 
1.36978 0.93174 10.25777 

1.29054 0.98686 10.35310 
1.20496 1.04517 10.44781 
1.11393 1.10600 10.54212 
1.01727 1.16972 10.63591 
0.91519 1.23606 10.72904 

0.80758 1.30517 10.82152 
0.69491 1.37676 10.91354 

When Rf — radius to top of fillet, in. 
R = pitch radius of gear, in. 

Rb — radius of base circle, in. 
<t>i = pressure angle at R 
h„ = distance from pitch line of hob to point of tangency of 

rounded corner with straight-line form, in. 
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We have from the geometrical conditions shown in Fig. 5-4 the 
following: 

Rf = sin — (6o/sin -f fli,* (5-8) 

Example of Radius to Top of Fillet. We will use the same example as before, which 

gives the following 1-DP values: 

Whence 

Then 

R - 10.000 <l>i « 20^* R, « 9.39693 ba =» 1.000 

Ri sin <t>i - 3.42020 bjam 0i » 2.92380 

Rf - \/(0.4964)* -f (9.39693)* « 9.41003 in. 

Problem 6-3. Given the proportions of the pinion-shaped cutter and the 
gear teethy to determine the radius to the point of tangency of the involute 
profile and the trochoidal fillet 

When no undercut is present, the 
trochoidal fillet will be tangent to the 
involute profile. The point of tan¬ 
gency for a trochoid developed by a 
pinion-shaped cutter will be the radius 
to the point where the maximum radius 
of the involute form of the cutter 
crosses the path of contact, as shown 
in Fig. 5-5. 
When Rf = radius to top of fillet, in. 

R = pitch radius of gear, in. 
Rb = radius of base circle of 

gear, in. 
fpi = pressure angle at R 

Ric = maximum radius of invo¬ 
lute profile on pinion¬ 
shaped cutter, in. 

Rbe = radius of base circle of 
pinion-shaped cutter, in. 

C = center distance between 
axes of gear and cutter, in. 

<f>ic = pressure angle at maxi¬ 
mum radius of involute 
on cutter 

we have the following from the geometrical conditions shown in Fig. 5-5: 

Rf = >/{C sin <l>i — Rbe tan </>/«)* + Rb^ (5-9) 
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Example of Radius to Top of Fillet. Using the same gear as before, and a 30-tooth 

pinion-shaped cutter, we have the following 1-DP values: 

C « 25.00 R « 10.00 Rb ^ 9.39693 <t>i « 20° 

Ric « 16.250 Rbc « 14.09539 

COS « 0.86741 = 29.841® 

Whence 

R/ « \/(0.46353)* 4- (9.39693)* = 9.40835 in. 

We shall now consider the several forms of the fillet that may be 
developed by different generating 
tools. 

Problem 6-4. Given the pro¬ 
portions of a hob with rounded cor¬ 
ners and of a gear toothy to determine 
the form of the trochoidal fillet. 

The form of this fillet is that 
whose equations have already 
been derived in Chap. 3. We 
must first determine the radius 
and the position of the center of 
the rounding at the tip of the 
hob tooth. Referring to Fig. 5-G, 
when 

Ti = arc tooth thickness of gear tooth at pitch radius Ry and width of 
rack or hob space at pitch line, in. 

R = pitch radius of gear, in. 
p = circular pitch of gear, in. 

if) I — pressure angle at R and one-half included angle of hob tooth 
hi = dedendum of gear and addendum of hob, in. 
ba = distance from pitch line of hob to point of tangency of rounded 

corner with straight-line form, in. 
A = radius of rounded corner of hob tooth, in. 
b = distance from pitch line of hob to center of rounded corner, in. 

B — distance from center line of rack tooth to center of rounded 

corner, in. 
c = clearance at bottom of tooth space, in. 

c = bi -- ba = A{1 — sin <tn) 

^ bi — bg 
1 — sin <t>i 

b =^bi- A 

C^hfer //ne of 

Fig. 5-6. 

whence 

(5-10) 

(5-11) 
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B b tan <l>i -}- 
cos «/>i) 

(5-12) 

When 5, = angle between center line of gear-tooth space and origin of 

trochoid 
S. = B/R (5-13) 

When dt = angle between center line of gear tooth and origin of trochoid 

_ (p/2) - B 
-R- 

(5-14) 

For the trochoidal path of the center of the rounding, we have the 
following equations from Chap. 3: 
When Tt = any radius of trochoid, in. 

6t = vectorial angle of trochoid 
rpt = angle between tangent to trochoid and radius vector and all 

other symbols arc the same as before, 

6t = tan' 
r - (R-by] _ - {R - by 

tan = 

R - b 
R{R - b) 

R 

RVn- - {R - by 

(3-1) 

(3-2) 

The next step is to determine the coordinates of the actual fillet. For 
this we have the following from Chap. 3: 
When Tf = radius to any point on actual fillet, in. 

6/ = vectorial angle of actual fillet form 
and all other symbols are the same as before, 

Tf = y/rr + 

^/ = ^< + cos“^ 

2Art sin ypt 
Tt — A sin \l/t 

rf 

(3-7) 

(3-8) 

Hence to determine the coordinates of the actual fillet when the corner 
of the hob tooth is rounded, we must first calculate the coordinates of 
the trochoid of the center of the rounded corner and then calculate the 
coordinates of the actual fillet. 

Cartesian Coordinates of Fillet. To obtain the Cartesian coordinates 
of the fillet in reference to the center line of the space or tooth, we proceed 
as before. Thus when 

5 = angle between origin of trochoid and center line of tooth or space 
6f = original vectorial angle of fillet 

B"f = vectorial angle of fillet in reference to selected center line 
r/ = any radius to fillet, in. 

Xf = abscissa of fillet, in. 
F/ = ordinate of fillet, in. 
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d"f = 8+Of (1-4) 
Xf = Tf sin d"f (1-5) 
Yf = Vf cos d'^f (1-6) 

Example of Fillet Developed from Rounded Corner of Hob Tooth. As a definite 

example wc shall use the same 20-tooth gear of 20-deg, full-depth form as has been used 

in the previous examples. For this we have the following 1-DP values: 

Ti 1.5708 p = 3.1416 <t>x = 20° 

c = 0.157 R = 10.000 ba = 

1.157 - 1.00 

1 - 0.34202 
= 0.2386 

6i - 

1.000 
1.157 

b = 1.157 - 0.2386 = 0.9184 

B = _ ^0.9184 X 0.3C397 + = 0.19722 

(5-10) 

(5-11) 

(5-12) 

Tsing the center line of the space as the reference line for plotting, we have 

010722 
6, = - 0.019722 radian = 1.130° (5-13) 

For the coordinates of the trochoidal path of the center of the rounding, we have 

dt = tan ' 
(\ - 82.475V58\ 
V "''9.08160 / 

- 82.475458 

10.000'■ 

, , _ 90.81()0 - 
tan i/'t =-(3-2) 

10 - 82.475458 

For the coordinates of the actual fillet, 

we have 

r/ = \/rt2 -f 0.05693 - 0.47720rt sin i/'t 

(3-7) 

Of = 0t -f cos~' 
rt — 0.23860 sin i/t 

Tf 
(3-8) 

These values have been calculated. They are tabulated in Table 5-2 and plotted 

in Fig. 5-7. 

Problem 6-6. Given the proportions of the gear tooth and of a hob with 
full-rounded tips, to determine the form of the trochoidal fdlet. 

On gears that must operate under highly stressed conditions, the 

bottom land and the fillet of the tooth space are often made in one 
continuously curved form so as to reduce the stress concentrations at the 
base of the gear tooth. Such a practice is often followed in such widely 
separated fields as steel-rolling-mill gears and airplane-propeller reduction 

gears. 
One method of producing such a rounded form at the bottom of 

the tooth space is to use a hob with a full round or radius at the tip of the 



88 ANALYTICAL MECHANICS OF GEARS 

Table 5-2. Coordinates of Fillet Developed by Rounded Corner of Hob 
Tooth 

(Plotted in Fig. 5-7) 

ft, in. 

10.000 

9.900 

9.800 

9.700 

9.600 

9.500 

9.400 

9.300 

9.200 

9.100 

9.0816 

9.100 

9.200 

9.300 

9.400 

9.500 

9.600 

9.700 

9.800 

9.900 

10.000 

Bi rad 

0.01331 

0.01533 

0.01698 

0.01821 

0.01893 

0.01906 

0.01840 

0.01679 

0.01349 

0.00576 

0.00000 

0.00576 

0.01349 

0.01679 

0.01840 

0.01906 

0.01893 

0.01821 

0.01698 

0.01533 

0.01331 

hy deg 

-12.374 

-10.344 

- 8.073 

- 5.488 

- 2.473 

1.163 

5.945 

12.186 

22.772 

54.154 

90.000 

54.154 

22.772 

12.186 

5.945 

1.163 

- 2.473 

- 5.488 

- 8.073 

-10.344 

-12.374 

r/, in. 

10.05383 

9.94561 

9.83634 

9.72572 

9.61352 

9.49815 

9.37522 

9.25258 

9.11030 

8.90769 

8.84300 

8.90769 

9.11030 

9.25258 

9.37522 

9.49815 

9.61352 

9.72572 

9.83634 

9.94561 

10.05383 

8/ rad 

0.03649 

0.03893 

0.04098 

0.04264 

0.04370 

0.04416 

0.04369 

0.04201 

0.03761 

0.02150 

0.00000 
0.02150 

0.03761 

0.04201 

0.04369 

0.04416 

0.04370 

0.04264 

0.04098 

0.03893 

0.03649 

rad 

0.05621 

0.05865 

0.06070 

0.06236 

0.06342 

0.06388 

0.06341 

0.06173 

0.05733 

0.04122 

0.01972 

-0.00178 

-0.01789 

-0.02229 

-0.02397 

-0.02444 

-0.02398 

-0.02292 

-0.02126 

-0.01921 

-0.01677 

Xf, in. 

0.5649 

0.5824 

0.5968 

0.6061 

0.6093 

0.6064 

0.5940 

0.5708 

0.5220 

0.3671 

0.1744 

-0.0159 

-0.1630 

-0.2062 

-0.2246 

-0.2320 

-0.2305 

-0.2228 

-0.2091 

-0.1910 

-0.1686 

F/, in. 

10.0879 

9.9285 

9.8182 

9.7068 

9.5942 

9.4788 

9.3565 

9.2349 

9.0954 

8.9001 

8.8413 

8.9077 

9.1088 

9.2503 

9.3725 

9.4953 

9.6107 

9.7232 

9.8341 

9.9438 

10.0524 

tooth as shown in Fig. 5-8. The calculation for the coordinates of the 
resulting fillet form is identical 
to that of the preceding example. 
For the trochoid of the center of 
the rounding, we have Eq. (3-1) 
and (3-2). For the coordinates of 
the actual fillet, we have Eq. (3-7) 
and (3-8). To obtain the Carte¬ 
sian coordinates of the actual 
fillet, we have Eq. (1-4), (1-5), 
and (1-6). The only difference 
between this problem and the 
preceding one is the location of the 
center of the rounding, its radius, 

and its position in reference to the involute profile of the gear tooth. 
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5. = 0 (5-19) 

When 6t = angle between center 
line of gear tooth and origin of 
trochoid 

= ^ (5-20) 

Using the same symbols here as were used in Prob. 5-4, and referring 
to Fig. 6-8, we have 

B = 0 (5-15) 

A - (II/?) - ■>. , (5.1J, 
COS <t>i ^ ' 

b = ba — A sin (fn (5-17) 
6i = 6 + (5-18) 

When 5, = angle between center v_% /——L. 
line of tooth space and origin of \ \ / j" 
trochoid i \ / 

Example of Hobbed Full-rounded-root Form. As a definite example we shall use 
the same values as before. 

Ti = 1.5708 p = 3.1416 <i>x = 20° K = 1.000 
R = 10.00 B = 0 

. 0.7854 - 0.36397 
^ “ 0.93969 0.44847 (5-16) 

6 - 1.000 - (0.44847 X 0.34202) - 0.84661 (5-17) 
6, = 0.84661 + 0.44847 = 1.29508 (5-18) 

Using these values in the several equations, we obtain the values tabulated in 
Table 5-3 and plotted in Fig. 5-9. 

Table 5-3. Coordinates of Full-rounded Hobbed Root 

(Plotted in Fig. 5-9) 

n, in. dt, rad 'ri, cleg r/, in. (?/, rad A'/, in. P/, in. 

9.15339 0.00000 90.000 8.70492 0.00000 0.0000 8.7049 
9.200 0.00822 32.858 8.96460 0.05026 0.4504 8.9533 
9.300 0.01332 17.048 9.17854 0.06006 0.5500 9.1593 
9.400 0.01566 8.440 9.34471 0.06313 0.5896 9.3261 
9.500 0.01669 2.890 9.48797 0.06390 0.6058 9.4686 

9.600 0.01682 - 1.239 9.62015 0.06344 0.6099 9.6008 
9.700 0.01632 - 4.552 9.74585 0.06220 0.6058 9.7270 
9.800 0.01522 - 7.335 9.86727 0.06032 0.5948 9.8493 
9.900 1 0.01368 - 9.743 9.98568 0.05796 0.5785 9.9689 

10.000 i 0.01178 -11.873 10.10181 0.05524 0.5577 10.0864 
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Problem 6-6. Given the size and form of a pinion-shaped cutter and the 
proportions of the gear toothy to determine the coordinates of the trochoidal 
fillet. 

The form of this fillet is the trochoid whose equations have already 
been derived in Chap. 3. These equations are as follows: 
When 7?i = pitch radius of gear, in. 

Rc = pitch radius of cutter, in. 
N\ — number of teeth in gear 
Nc = number of teeth in pinion-shaped cutter 

Roc = outside radius of cutter, in. 
C — center distance between axes of gear and cutter, in. 
€c = angle of rotation of cutter 
€i = angle of rotation of gear 
Bt = vectorial angle of trochoid 
rt = any radius to trochoid, in. 

01 = pressure angle at pitch line of gear and cutter 
0OC = pressure angle at tip of cutter tooth 

bt — angle between origin of trochoid and center line of gear tooth 
5, = angle between origin of trochoid and center line of tooth 

space 
= vectorial angle of trochoid in reference to selected center 

line 
T\ = arc tooth thickness of gear at /?i, in. 
Tc = arc tooth thickness of cutter at R^ in. 

€1 = {Rc/Rx)ec (3-12) 

Tt = + Roc^ - 2Cltoc cos «c (3-13) 
dt = sin~‘ (floe sin et/r<] — ti (3-14) 

5. = {NJNi)[{,Tc/2Rc) -f inv <i>x — inv <^„c] (5-21) 
= {Nc/Ni)[{t/Nc) — {Tc/2Rc) — inv + inv <l>oc] (5-22) 

e"t = 5 ± Ot a-4) 

Example of Fillet Developed by Tip of IHnion-shaped Cutter. As a definite exam¬ 
ple we shall use the same 20-tooth gear as before, and assume the use of a 30-tooth 
pinion-shaped cutter. For the 1-DP values, we have the following: 

= 20 Nc * 30 Rc ^ 15.000 
<t>i =20° Tc ^ 1.5708 r, 

15 X 0.93960 

Roc = 16.250 
1.5708 

cos <t>oc ~ 

29.841“ 

i =30/1 

inv <t>, 
5708 
30 

16.250 
,e = 0.052832 inv 

-h 0.014904 - 0.052832^ 

0.86741 

0.014904 C = 25.000 

* 0.021648 radians 



INVOLUTOMETRY OF SPUR GEARS 91 

The coordinates for this trochoidal fillet have been calculated. They are tabulated 
in Table 5-4 and are plotted in Fig. 5-10. 

Problem 6-7. Given the propor^ 
Hons of the gear and the arc tooth thick¬ 
ness of the pinion-shaped cutter^ to 
determine the radius of a full-rounded 
tip on the cutter and the form of the 
fillet produced on the gear. 

The tip of the tooth of the pinion¬ 
shaped cutter may be rounded as 

Fig. 5-10. 

shown in Fig. 5-11 in order to obtain a continuously curved bottom land 
on the gear. We must first determine the radius of this rounding and the 

Table 5-4. Coordinates of Trochoid of Corner of Pinion-shaped Cuiter 

(Plotted in Fig. 5-10) 

deg n, in. 0,, deg 0"t, dog Xt, ill. Ytj in. 

0 8.7500 0.000 1.240 0.1894 8.7480 

1 8.7570 0.356 1.596 0.2439 8.7535 

2 8.7783 0.704 1.944 0.2978 8.7732 

3 8.8134 1.038 2.278 0.3503 8.8064 

4 8.8026 * 
1 

1.349 2.589 0.4003 8.8535 

5 

1 

8.9251 1.631 2.871 0.4471 8.9139 

6 9.0008 1.878 3.118 0.4896 8.9875 

7 9.0893 2.084 3.324 0.5270 9.0740 

8 9.1907 2.245 3.485 0.5587 9.1736 

9 9.3040 2.456 3.696 0.5990 9.2847 

10 9.4289 2.415 3.655 0.6011 9.4098 

11 9.5649 2.415 3.655 0.6098 9.5455 

12 9.7166 2.356 3.596 0.6091 9.6925 

13 9.8685 2.241 3.481 0.5992 9.8503 

14 10.0346 2.064 3.304 0.5783 10.0180 
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position of the center of this radius. Referring to Fig. 5-11, when 
/2c “ pitch radius of pinion-shaped cutter, in. 

Ric = radius to top of involute profile on cutter, in. 

Roc = outside radius of cutter, in. 
Rbc = radius of base circle of cutter, in. 

A = radius of rounding at tip of cutter tooth, in. 
Tc = arc tooth thickness of cutter at pitch radius, in. 

Tic = arc tooth thickness of cutter at R^y in. 

4>\ = pressure angle at Rc 
<l>ic = pressure angle at Ru 

Rdc = radius to center of rounding, in. ' 

<t>dc = pressure angle at Rdc 

we have the following from the geometrical conditions shown in Fig. 5-11: 

cos <t>ic = Rbc/Ric (5-23) 
Tic = 2Ric[{Tc/2Rc) + inv <^i — inv <t>ic] (5-24) 

An exact solution for the value of the radius A may be more complex 
than its importance justifies. We can use the two preceding equations as 
trial solutions and then use a simple approximation for the value of A, 

Then with this value of A, we can determine new and exact values for 
Ric and <t>ic. Such an approximation is as follows: 

A = Tic/2 cos <t>ic (5-25) 

inv <t>dc = {Tc/2Rc) + inv <f>i - (A/RbJ) (5-26) 

Rdc — Rbc/cos 4>dc (5-27) 

To determine the corrected values of Ric and <t>ic for the selected value 
of A, we proceed as follows: 

tan <t>ic = {Rbc tan (pdc + A/Rbc = tan <pdc + {A/Rbc) (5-28) 
Ric = Rbc/cos <l>ic (5-29) 

We already have Eqs. (3-7) and (3-8) for the actual fillet form and Eqs. 
(3-13) and (3-14) for the trochoidal path of the center of the rounding. 

Equations (3-16), (3-17), and (3-18) give the value of the tangent to the 
trochoid. These equations, using the preceding and following symbols, 
are as follows: 

Ri = pitch radius of shaped gear, in. 
Ni = number of teeth in gear 
Nc = number of teeth in pinion-shaped cutter 

C = center distance between axes of gear and cutter, in. 

€c = angle of rotation of cutter 
€i = angle of rotation of gear 

Bt = vectorial angle of trochoid of center of rounding 
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r< = any radius to trochoid of center of rounding, in. 
r/zt = angle between radius vector and tangent to trochoid 
5t = angle between origin of trochoid and center line of gear tooth 
5, = angle between origin of trochoid and center line of tooth space 
6/ = vectorial angle of actual fillet form 
Tf = any radius to actual fillet form, in. 

^"/ = vectorial angle of actual fillet in reference to selected center line 

r, = + Rdc'^ — 2Rdc cos 

- _, /Rdc sin <A 
\ rt 

5. = 0 

A - 

tan \l/t = n 
ddt/du 

'‘dr,Me 

r,-(C — Rdc cos 6c) 
dri _ Cfirfc sin 6c 

dec ~ n_ 

r/ = \/rr + _ 2^1 r, sin yj/t 

r. ^ ,rt — A sin ypt 

(3-12) 

(3-13) 

(3-14) 

(5-30) 

(5-31) 

(3-16) 

(3-17) 

(3-18) 

0/ = 6i -j- cos ^-   (3-8) 

d"f = d ±df (1-4) 
Xf — Tf sin 6"/ (1-5) 
Yf — Tf cos 0"/ (1-6) 

Example of Fillet Produced by Full-rounded Pinion-shaped Cutter. As a definite 
example we shall use the same gear and cutter as before. For this we have the 
following values: 

Ni - 20 Nc ^ 30 Ri =» 10.000 Rc = 15.000 4>i = 20^* 
Tc - 1.5708 Ric (trial) » 16.250 Ru « 14.09539 4>ic = 29.841“ 

inv it>i - 0.014904 inv <t>ic * 0.052832 cos == 0.86741 

Tie - 32.50 + 0.014904 - 0.052832^ = 0.46904 (5-24) 

Trial Solution 
0.46904 

2 X 0.86741 
0.27037 

, 0.46904 n r\i/lonii 0.27037 mv + 0.014904 - 0.048083 mv --^ 1- 14.09539 

— 28.985® cos » 0.87475 tan <t>dc 
14.09539 

0.65397 

0.87475 
16.11362 
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We will use these trial values and determine the corrected values for 0ic and 

tan </)ic 

4>ie •= 

. 0.27037 
0.55397 + Y4;^j539 0.57315 

R 

29.819® cos 4>,c = 0.86760 
14.09539 
0.86760 

16.24641 

(5-28) 

(5-29) 

The coordinates of the form of this 
fillet have been calculated. They are tabu- 
ated in Table 5-5 and plotted in Fig. 5-12. 

Problem 6-8. Given the arc tooth 

thickness and pressure angle of an 

involute gear at one radius^ to deter- 

mine the radius where the tooth becomes 

pointed. 

Referring to figure (5-13), let 
ri = given radius of gear, in. 

<t>\ = pressure angle at ri 
Rh = radius of base circle of gear, in. 
Ti = arc tooth thickness at ri, in. 
r2 = radius where tooth becomes pointed, in. 
02 = pressure angle at 7’2 
In this problem, the arc tooth thickness at r^ will be equal to zero. 

Hence 

inv 02 = {Ti/2ri) + inv 0i (5-32) 
Rh == 7*1 cos 01 (5-3) 
Ti = Rb/cos 02 = ri cos 0i/cos 02 (5-2) 

Example of Radius to Pointed Tip of Tooth. As a definite example we shall use 
the following values: 

Ti = 1.5708 ri = 9.000 <t>i = 20“ inv - 0.014904 

inv 0, = + 0.014904 - 0.102171 

<t>t “ 36.422“ cos 0j - 0.80467 
fit = 9 X 0.93969 - 8.45723 
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Table 5-5, Coordinates of Fillet Form from Full-rounded Tip of Pinion¬ 
shaped Cutter 

(Plotted in Fig. 5-12) 

dog rt, in. St, deg \Pt, deg r/, in. 0/, deg Xf, in. Yf, in. 

0 8.8864 0.000 90.000 8.6160 0.000 0.0000 8.6160 
1 8.8936 0.312 59.920 8.6603 1.210 0.1829 8.6583 
2 8.9140 0.617 39.119 8.7459 1.992 0.3040 8.7406 
3 8.9483 0.908 25.966 8.8332 2.483 0.3827 8.8249 
4 8.9963 1.178 17.086 

1 
8.9206 2.838 0.4417 8.9097 

5 9.0575 1.420 
i 

10.563 9.0118 3.110 0.4889 8.9985 
6 9.1314 1.630 5.432 9.1098 3.322 0.5279 9.0945 

• 7 9.2179 1.800 1.182 9.2163 3.505 0.5634 9.1991 
8 9.3170 1.927 - 2.473 0.3326 3.630 0.5908 9.3139 
9 9.4279 2.007 - 5.701 9.4586 3.707 0.6116 « 1 

9.4388 

10 9.5502 2.037 - 8.607 9.5944 3.734 0.6248 9.5740 
11 9.6834 2.013 -11.258 9.7398 3.707 0.6298 9.7194 
12 9.8271 1.932 -13.703 9.8946 3.623 0.6252 9.8749 
13 9.9809 1.795 -15.974 10.0586 3.482 0.6109 10.0400 
14 10.1438 1 600 -18.095 10.2310 3.283 0.5859 10.2142 

Problem 6-9. Given the arc tooth thick¬ 

ness, radii, and pressure angle of a pair of 

mating involute gears, to determine the center 

distance at which they will mesh tightly. 

Referring to Fig. 5-14, let 
R\ = radius of first gear where thickness 

is known, in. 
7\ — arc tooth thickness of first gear at 

R\, in 
<t>i — pressure angle at Ri and R2 
N1 = number of teeth in first gear 
R2 — radius of second gear where thick¬ 

ness is known, in. 
T2 = arc tooth thickness of second gear 

at R2, in. 
N2 = number of teeth in second gear 
ri = pitch radius of first gear when 

tightly meshed, in. 
ti = arc tooth thickness of first gear at 

ri, in. 
02 = pressure angle at ri and r2 

rj = pitch radius of second gear when tightly meshed, in. 
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t2 = arc tooth thickness of second gear at r2 

Cl = center distance for pressure angle of <^i, in. 
C2 = center distance when tightly meshed with pressure angle of 0a, 

in. 
From Eq. (5-5) we have 

ti = 2ri + inv <t>i 

ti = 2rs + inv 

The sum of these two tooth thicknesses must be equal to the circular 
pitch at the meshing pitch line. This circular pitch is equal to the 
quotient of the circumference of either gear pitch circle divided by'its 
number of teeth. Hence 

— inv 02 

— inv 02 

<1 + ^2 = 
2Tri 

IT 

2xra 

777 

We also know that the pitch diameters of two mating gears are 
directly proportional to their numbers of teeth. Whence we have 

Rt = Ri and r, = r, 

Substituting these values into the equation for h, we have 

whence 

4* ^2 == 
2wri 

ITT 

Combining terms, simplifying, and solving for inv (pt, we obtain 

(5-33) inv 
_ Ar,(ri -I- r,) - 2irR^ 

2/2,(AT, + Nt) 

When the values are changed to the 1-DP values, then 

2Ri = Ni 

and 

• Ti + Ta — T , . 
inv = -.r -r-Ar, ■ + mv 

Nx + N, 
(5-34) 
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We already have derived 

ri = Ri 
cos 4>i 

COS <f>2 

Also we know that 

whence 
Ri “h R2 = Cl 

C2 

and r2 = R2 
cos 01 

cos <j>2 

and ri + r* = C2 

Q 
* cos <l>2 

(5-35) 

Example of Center Distance for Two Given Gears. As a definite example we shall 
use a pair of 6-DP Rears, 20-deg nominal pressure angle, of 24 and 36 teeth, with the 
following given values: 

6 DP 1 DP 6 DP 1 DP 

ftl Rx 3.000 18.000 
Tx Tx 0.270 1.620 
Ci 

inv 

4>i *=* 20° 

Ni « 24 Ni 
1.710 4- 1.620 - 3.1416 

« 36 

4* 0.014904 

C, 

c. 

60 
21.268° cos <i>2 - 0.93189 

30 X 0.93969 
0.93189 

30.25110 

30.25110 

5.04185 

0.018044 

for 1-DP value 

for 6-DP value 

Problem 6-10. Given the arc tooth thicknessj radius^ and pressure angle 
of a gear and the proportions of a pinion-shaped cutter^ to determine the 
generating center distance and the root radius of the gear. 

This problem is very similar to Prob. 5-9. We need only introduce 
symbols for values of the pinion-shaped cutter in place of those for the 

gear. Thus let 
R\ = radius of gear where arc tooth thickness is known, in. 

Rri = root radius of gear, in. 
NI = number of teeth in gear 

<t>i = pressure angle at Ri and at Rc 
Re = radius of pinion-shaped cutter where arc tooth thickness is 

known, in. 
Roc = outside radius of pinion-shaped cutter, in. 

Te = arc tooth thickness of cutter at /2c, in. 
Ti « arc tooth thickness of gear at /2i, in. 
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Nc = number of teeth in pinion-shaped cutter 

02 = generating pressure angle 
Cl = center distance for pressure angle of 0i, in. 

C2 = generating center distance with pressure angle of 02, in. 
From Eq. (5-33) we have 

inv 02 = {[A^i(ri + Tc) ~-"2irRi]/2Ri{N I -f- Nc)} + inv 0i (5-36) 

Reduced to 1-DP values, this equation becomes 

inv 02 = (Ti Tc Tr)/{N 1 + Nc) + inv 0i (5-37) 

C2 = Cl cos 0i/cos 02 (5-35) 

Rrl = C2 - Roc (5-38) 

Example of Setting for Pinion-shaped Cutter. As a definite example we shall use 
the 6-DP, 24-tooth gear from the preceding example, and a 3-in. diameter, 18-tooth, 
pinion-shaped cutter, which gives the following values; 

6 DP 1 DP 
1 

6 DP 1 DP 

2.000 12.000 Rc 1.500 9.000 

Ti 0.285 1.710 Tc 0.2618 1.5708 
c, 3.500 21.000 Roc 1.7083 10.250 

mv 02 = 

.Vi - 24 Nc 
01 = 20" 

1.710 -f 1.5708 ^ 3.1416 
' '42 

18 

4- 0.014904 = 0.018218 

02 = 21.334" cos 0 
^ 21 X 0.03069 
C2 == 

C2 = 

0.03147 
2J_. 18532 ^ 

“6 

0.93147 

= 21.18532 

3.53080 

R 

R 

ri = 21,18532 - 10.250 = 10.03532 
1(M)3532 

6 1.82255 

for 1-DP value 

for 6-DP value 

for 1-DP value 

for 6-DP value 

Problem 6-11. Given the proportions of a gear and its mating rack^ to 

determine the position of the rack when meshed tightly, 

I.ot 0 = pressure angle of rack 

p — circular pitch of rack, in. 
.Vi = number of teeth in gear 

R\ = radius of gear where pressure angle is 0, in. 
T\ = arc tooth thickness of gear at /?i, in. 
Tr = thickness of rack tooth at i?i, in. 
H = distance from center of gear to nominal pitch line of rack, in. 

X = distance between R\ and nominal pitch line of rack, in. 
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The nominal pitch line of the rack is the line where the rack-tooth thick¬ 
ness is equal to one-half the circular pitch of the rack. 

We know that the circular pitch of the gear at Ri must be the same as 

the circular pitch of the rack because the pressure angle at is the same 
as that for the rack. We also know that the sum of the arc tof)th thick¬ 
ness of the gear at R\ and the thickness of the rack tooth at that same 

position must be equal to the circular pitch of the rack. Whence 

Tr = p-T, 

X = (P/2) - 
2 tan <l> 

H = Ri X 

Combining these terms, we have 

^ + L^l/2) - (gZ4) 
tan <j> 

When this equation is reduced to the 1-DP values, it becomes 

H = ^4- (^i/2) - 0-7854 
2 tan (j) 

(5-39) 

(5-40) 

Example of Position of Mating Rack. Aa a definite example wo shall use the 
following: a 5-DP, 20-dog rack and an 18-tooth gear with an arc tooth thickness of 
0.325 in. at 1.800 in. radius. This gives the following values: 

5 DP 1 DP 

p 0.62832 3.1416 

ft. 1.800 9.000 

Tx 0.325 1.625 

.V, = 18 
<#> = 20” tan -!> = 0.30397 

Using the 1-DP values, we ohtain 

// = 9 -f. 9——g 07446 
^ 0.36397 -'u/iao 

H = 9:2'^ = 1.81489 
5 

for 1-DP value 

for 5-DP value 

Problem 6-12. Given the proportions of an involute gear, to detennine 

the proportions of a mating rack of different circular pitch. 

Let R\ = given radius of gear, in. 
<#>i = pressure angle of gear at R\ 

Ti = arc tooth thickness of gear at R\, in. 
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Ro — outside radius of gear, in. 
Rr = root radius of gear, in. 
Rb = radius of base circle of gear, in. 

c = clearance, in. 
Pi = circular pitch of gear at 22i, in. 
Pi = circular pitch of rack, in. 

4>i = pressure angle of rack 

Pb == base pitch of gear and rack, in. 
H = distance from center of gear to nominal pitch line of rack, in. 
Or = addendum of rack, in. (from nominal pitch line) 

br — dedendum of rack, in. (from nominal pitch line) 
We know that the base pitch of a pair of mating involute gears, or of a 

mating involute gear and rack, must be identical. Hence 

whence 

We already have 

P6 = Pi cos ^1 = Pi cos <t>i 

__ Pi cos 01 
cos 4>i 

Ti = 2R2 (h 
\2R, 

Rt = 

4- inv 01 — inv <f>t 

R, 
) 

Ri cos 01 __ 

cos 02 cos 02 

(6-41) 

(5-5) 

(5-2) 

where Ti = arc tooth thickness of gear at pressure angle of 02, in. 
Ri = radius of gear where pressure angle is 02, in. 

If we let 
Tri = tooth thickness of rack at radius B2, in. 

X = distance between Ri and nominal pitch line of rack, in. 

then 

Tri = Pi — Ti 
^ _ {pi/2) - T^ 

2 tan 02 

Combining these expressions, we obtain 

H = Rt + ~ ~ (Pi»/^) (5^2) 
tan 02 

ar = H - Rr - c (&-43) 
br Rq + c- H (5^4) 

Example of Special-pitch Rack. Aa a defiiiite example, we shall use a standard 
12-DP, 24-tooth gear of 20Hieg full-depth form, which must mesh with a rack whose 
circular pitch is 0.250 in. This gives the following values: 
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12 DP 1 DP 12 DP 

Ri 1.000 12.000 c 0.0131 0.157 
T, 0.1309 1.5708 Pi 0.2618 3.1416 

R. 1.0833 13.000 P2 0.250 3.0000 
Rr 0.9036 10.8430 

<t>i = 20° 

AT, = 24 

Using the 1-DP values, we obtain 

<t>2 

COS <t>i 

10.250° 

R, = 

^ 3.1416 X 0.93969 
3.000 

inv 4>2 = 0.001933 
12 X 0.93969 

0.98404 

tan 4>2 = 0.18083 

H « 11.45917 -h 

0.98404 
(11.45917 X 0.078421) 

= 11.45917 

0.7854 
0.18083 

ar = 12.08539 - 10.843 - 0.157 - 1.08539 
br = 13.000 + 0.157 - 12.08539 = 1.07161 

* 12.08539 for 1 DP 

for 1 DP 
for 1 DP 

Problem 6-13. Given the center distance and numbers of teeth of a pair 
of mating involute gears, and the tooth proportions of the hob {basic-rack 

form), to determine the tooth proportions of the gears. 

When N\ = number of teeth in first gear 
N2 = number of teeth in second gear 
R\ = pitch radius of first gear, in. 

R2 = pitch radius of second gear, in. 
i?oi = outside radius of first gear, in. 
Ro2 = outside radius of second gear, in. 

Rri = root radius of first gear, in. 
Rr2 = root radius of second gear, in. 

61 = dedendum of first gear, in. 

62 = dedendum of second gear, in. 
ht = whole depth of tooth, in. 

c = clearance, in. 
</>! = pressure angle of hob 
<t>i = pressure angle of mating gears 
p = circular pitch of hob, in. 

Uk = nominal addendum of hob, in. 
Cl = center distance of gears with pressure angle of </>i, in. 
C2 = meshing center distance of gears, pressure angle 4>2y in. 

P = diametral pitch of hob 
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we know that 

Cl = (ATi + iV2)/2P (5-45) 

C2 = Cl cos 0i/cos 02 (5-35) 
Whence 

cos 02 = Cl cos 01/C2 (5-46) 

When T\ — arc tooth thickness of first gear where pressure angle is 0i, in. 

7^2 = arc tooth thickness of second gear where pressure angle is 
01, in. 

^1 = arc tooth thickness of first gear where pressure angle is 02, in. 

h = arc tooth thickness of second gear where pressure angle is 02, 
in. 

we know that 

^1 + ^2 = 2irC^/{Nx + N^) 
and 

Pi + P2 = 2Ci{[(^i + /2)/2C2] + inv 02 ~ inv 0i} 

We also know that the sum of the tooth thicknesses of the hob teeth 
at the points where they mesh with the gears while they are being 
generated is equal to 2p — (Pi + P2). 

WTien X = sum of the distances from the generating pitch circles to the 
nominal pitch line of the hob, in. 

P - [2p - (Pi + P2)] ^ Pi + P2 - p 
2 tan 01 2 tan 0i 

whence 

Rrl + Rr2 = Cl 4" ^ “■ 2a/i 

Introducing the values of x and Pi + P2 into the foregoing equation, we 
obtain 

Rr\ + Rr2 = Cl — 2ah + 
2Ci{[7r/(iV'i + iV'2)] + inv 02 *- inv 0i 

2 tan 01 

Reducing this equation to the 1-DP values, we obtain 

- V 

(5-47) 

Rrl "t” Rr2 = Cl —' 2ah + 

Cl (inv 02 — inv 0i) 
tan 01 

(5-48) 

It is thus apparent that the sum of the root radii of these meshing 
gears is a constant, whatever size we may wish to make either radius. 

The next step is to select values for these radii, which involves a choice of 
tooth proportions. 

Under some circumstances the outside radius of one gear may need 

to be some specific value. In such a case, we first determine the whole 
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depth of tooth d>nd subtract it from the fixed outside radius. This gives 
the value for one root radius. The root radius of the other gear would 
then be the remainder of the sum of the two. It is necessary in such cases 
to check for conditions of undercut. 

In most cases, however, there will be no definite restrictions on the 
sizes of the gears. Under these conditions, the tooth proportions should 

be established in relation to the base circles rather than in relation to the 
actual pitch circles. The dedendum of the smaller gear should be less 
than the dedendum of the larger gear. When the numbers of teeth are 

large—about 40 or more for the smallest gear with a pressure angle of 
14)^ deg and 30 or more with a pressure angle of 20 deg—then the dedenda 
of the two gears may be the same. When smaller numbers of teeth are 
involved, the following equation may be used for the values of the 

dedenda: 

62 

C2 - {Rrl + Rr2) 

1 + y/N2/N1 

- C2 - {Rrl + Rr2) 
C2 - {Rrl + Rr2) 

1 

(5-49) 

(5-50) 

We must next establish the value for the whole depth of tooth. The 

expression C2 — (Rri + Rr^) is equal to the sum of the dedenda of the 
mating gears, which is also equal to the whole depth plus the clearance. 

Whence 

C2 {Rrl + Rr*d = ht C 

It is generally best to make the clearance proportionately the same as 
that of the standard tooth form, which is represented by the form of the 

hob teeth. Thus when 
hn — nominal or standard whole depth of tooth, in. 

Cl = nominal or standard clearance, in. 

hti/{hti + Cl) = ht/{ht + c) 

h, = [hn/{hn + CiWu + c) 

Substituting the value of {Ju + c) into this last equation, we get 

ht = [hn/{hti + Ci)][(72 — {Rri + Rr2)] (5-51) 

As the actual pitch radii are directly proportional to the numbers of 

teeth in the gears, we have 

Ri = NiCo/iNi + N2) 

R2 = N2C2KN1 + N2) 

(5-52) 

(5-53) 
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The following relationships should be self-evident: 

Rri Ri-bi (5-54) 
Rr2 ” R2 — ^2 (5-55) 
Roi = Rri *4* ht (5-56) 
Ro2 “ Rr2 4“ ht (5-57) 

Example of Hobbed-gear Design. As a definite example we shall use the follow¬ 
ing; 8-DP hob, 143^-deg pressure angle, gears with 18 and 30 teeth, to run at a center 
distance of 3.100 in. This gives the following values: 

8 DP 1 DP 8 DP 1 DP 

p 0.3927 3.1416 Cl 3.100 24.800 

ah 0.1446 1.1570 Cl 3.000 24.000 

hn 0.2696 2.1570 Cl 0.0196 0.1570 

Ni = 18 - 30 
= 14.500° inv <t>i — 0.005545 cos <t>i = 0.96815 

Using the 1-DP values, we obtain 

24 X 0.96815 

tan 01 *= 0.25862 

cos 02 
24.800 

= 0.93692 

02 =« 20.460° inv 02 = 0.015995 

Rri + Rr, = 24.00 - 2.314 + = 22.65576 

h,i 2.157 
hii -j" Cl 2.314 

= 0.93215 

The following values are for 1 DP: 

ht 

6i 

0.93215(24.800 - 22.65576) = 1.99875 
24.800 - 22.65576 2.14424 

1 8 1 -h 1.2910 

62 = 2.14424 - 0.93594 = 1.20830 

0.93594 

Ri 
18 X 24.800 

48 
9.300 

R2 

Rri 
Rr2 
Roi 

Ro2 

30 X 24.800 
-48-15.500 

9.300 - 0.93594 = 8.36406 
15.50 - 1.2083 = 14.29170 
8.36406 + 1.99875 = 10.36281 
14.2917 -h 1.99875 = 16.29045 

These values would be divided by 8 to obtain the values for 8 DP. The coordi¬ 
nates of these tooth profiles have been calculated. They are plotted in Fig. 5-15. 
These tooth proportions keep the active profiles of the teeth of both gears in the space 
between the two base circles. 
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Problem 6-14. Given the center distance and numbers of teeth of a pair 
of mating involute gears and the proportions of a pinion-shaped cutter^ to 
determine the tooth proportions of 
the gears. 

The best solution of this prob¬ 
lem is in four steps, as follows: 

1. Determine the tooth pro¬ 
portions as though the gears were 
hobbed from the basic-rack form 
of the pinion-shaped cutter. 

2. Determine the arc tooth 
thickness of the gears at the initial 
pressure angle (pressure angle of 
basic rack and pinion-shaped cutter). 

3. Determine the center distances of generation of the two gears with 
the pinion-shaped cutter. 

4. Determine the tooth heights and clearances and the final propor¬ 
tions of the gears. 

First Step, For the first step we have the following from Prob. 5-13: 
Ni = number of teeth in first gear 
N2 = number of teeth in second gear 
Ri = pitch radius of first gear, pressure angle of 02, in. 
R2 = pitch radius of second gear, pressure angle of 02, in. 

Rri = hobbed root radius of first gear, in. 
Rr2 = hobbed root radius of second gear, in. 

61 = hobbed dedendum of first gear, in. 
62 = hobbed dedendum of second gear, in. 
01 = pressure angle of hob and of pinion-shaped cutter 
02 = pressure angle of mating gears 
ah = nominal addendum of hob and of pinion-shaped cutter, in. 
Cl = center distance of gears with pressure angle of 0i, in. 
C2 = center distance of meshing gears with pressure angle of 02, in. 
P = diametral pitch of hob and of pinion-shaped cutter 

Cl- 
Ni + N2 

2P 

Rrl + Rr2 

COS 02 — 
Cl cos 01 

= Cl — 2ah + 
Ci(inv 02 — inv 0i) 

tan 01 

C2 {Rrl Rr2) 

1 + 

(6-45) 

(5-35) 

(5-48) 

(5-49) 
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(5-50) 

(5-52) 

(5-53) 

(5-54) 
(5-55) 

We use here the 1-DP values for calculation. 
Second Step, For the second step, in order to determine the arc tooth 

thicknesses of the gear teeth at their generating radii in relation to the 

hob, we proceed as follows: 

When Rgi = hob-generating radius of first gear, in. 
Rg2 = hob-generating radius of second gear, in. 
Ti = arc tooth thickness of first gear at Rqi^ in. 
T2 = arc tooth thickness of second gear at Rgi, in. 
p = circular pitch of hob, in. 

and all other symbols are the same as before, 

Rgi = Ni/2P Rg2 = N2/2P 

~ (p/2) + 2 tan <t>i{Rri + a/i — Rgi) (5-58) 
T2 = (p/2) + 2 tan (t>i{Rr2 + an - R02) (5-59) 

Third Step,. For the third step, to determine the generating center 

distances between each gear and the pinion-shaped cutter, we have from 

Prob. 5-10 the following: 
When Roc — outside radius of pinion-shaped cutter, in. 

Rc = pitch radius of pinion-shaped cutter where pressure angle 
is <^i, in. 

Tc = arc tooth thickness of pinion-shaped cutter at Rc^ in. 
Nc = number of teeth in pinion-shaped cutter 

03 = generating pressure angle for first gear 
04 = generating pressure angle for second gear 
C3 = center distance for first gear and cutter with pressure angle 

of 01, in. 
Ca = center distance for second gear and cutter with pressure 

angle of 0i, in. 

Cgi = generating center distance of first gear and cutter with 
pressure angle of 03, in. 

Cg2 = generating center distance of second gear and cutter with 

pressure angle of 04, in. 
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R'ri = root radius of first gear from pinion-shaped cutter, in. 
R'r2 = root radius of second gear from pinion-shaped cutter, in. 

and all other symbols are the same as before, we have, using the 1-DP 
values. 

inv <^3 = {Ti + Tc — t)/{Ni + Nc) + inv <t>i (5-37) 
Cgi = Cz cos <^)l/cos <l>z (5-35) 

R'ri = Cgi - Roc (5-38) 
inv 04 = {T2 + Tc — t)/{N2 + Nc) + inv 0i (5-37) 

Cg2 = Ca cos 0i/cos 04 (5-35) 

R'r2 = Cg2 - Roc (5-38) 

Fourth Step. For the fourth step, to determine the whole depth of 
tooth, we proceed as in Prob. 5-13 as follows: 
When hti = nominal or standard whole depth of tooth, in. 

Cl = nominal or standard clearance, in. 

h\ = [hn/{hn + Ci)][C2 - {R%i + (5-51) 

and when 
/2'oi = outside radius of first gear, in. 
R'o2 = outside radius of second gear, in. 

R'oi “ R'ri “h Nt (5-56) 
R'o2 = R\2 + h't (5-56) 

Example of Shaped-gear Design. As a definito oxample wc shall use the following: 
10-DP, gears of 20-deg full-depth form, with 15 and 40 teeth, cut with 3-in. diameter 
pinion-shaped cutter, to run at a center distance of 2.800 in. This gives the following 
values: 

10 DP 10 DP 1 DP 

p 0.31416 Cl 2.750 27.500 

ah 1.250 Rc 1.500 15.000 

hti 0.225 Roc 1.625 16.250 

Cl 0.025 Tc 0.15708 1.5708 

C2 

Ni = 15 

01 = 20° cos 01 = 0.93969 

Using the 1-DP values, wc have 

N2 = 40 iVc - 30 
inv 01 = 0.014904 tan 0i 

27.500 X 0.93969 ^ 
cos 02 = -- = 0.92291 

28.00 
inv 02 0.021952 

0.36397 

02 = 22.645‘ 



108 ANALYTICAL MECHANICS OF GEARS 

Rrl + Rr2 « 27.50 - 2.50 + 

, 28.00 - 25.53251 Oi =■-= 
1 + 

hi *= 2.46749 - 0.93714 = 
15 X 28 

27.50(0.021952 - 0.014904) 
0.36397 

2.46749 

25.53251 

1 4- 1.63299 

= 1.53035 

0.93714 

Ri 

Ri 

T2 

inv 4>% 

55 
40 X 28 

55 

7.63636 

= 20.36364 

1.5708 + (2 X 0.36397) (6.69922 -f 1.250 - 7.50) 
1.5708 + (2 X 0.36397) (18.83329 + 1.250 - 20.0) 
1.89781 + 1.5708 - 3.1416 

1.89781 
= 1.63143 

45 
4>3 22.717^* 

Cg\ 

COS 4>3 = 0.92243 
22.500 X 0.93969 

+ 0.014904 = 0.022170 

C3 = 45^ == 22.500 

= 22.92125 

inv </>4 

= 20.367 

0.92243 
Hri = 22.92125 - 16.250 = 6.67125 

1.63143 + 1.5708 - 3.1416 

R%i 
2.25 

70 
cos <t>i = 0.93749 
35 X 0.93969 

0.93749 
35.08213 

= 0.014904 = 0.015770 

C4 = 7% = 35.000 

35.08213 

16.250 = 18.83213 

^ [28 - (6.67125 + 18.83213)] =* 2.24696 

R'oi = 6.67125 + 2.24696 - 8.91821 
R'oi = 18.83213 + 2.24696 = 21.07909 

These are the 1-DP values. For the 10-DP values, these dimensions would be 
divided by 10. The coordinates of 
these gear-tooth profiles have been 
calculated. They are plotted in Fig. 
5-16. 

Problem 6-16. Given the arc 
tooth thickness and 'pressure angle 
of an involute gear at a specified 
radiuSy to determine the position of 
a wire or roll placed in the tooth 
space. 

This analysis was originally 
made by Ernest Wildhaber. Re¬ 
ferring to Fig. 5-17, let 

Rb = radius of base circle, in. 
Ri = radius at which tooth thickness is known, in. 
01 = pressure angle at Ri 
T\ = arc tooth thickness at /2i, in. 
W = radius of measuring wire or roll, in. 
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r2 = radius to center of roll, in. 
N = number of teeth in gear 
02 = pressure angle at r2 

The angle in radians from the center of the tooth to the center of the 
roll is equal to tt/N, 

The angle in radians from the 
center of the tooth to the origin of 
the involute tooth profile is equal 
to {Ti/2Ri) + inv 0i. 

Another involute curve is shown 
in Fig. 5-17 as a dotted line. This 
dotted involute passes through the 
center of the measuring roll. The 
angle from the center of the tooth, 
in radians, to the origin of this 
dotted involute curve is equal to 
(Ti/2Ri) + inv 01 + (W/R,). 

The angle in radians from the 
origin of the dotted involute to the 
radial line of the gear that passes 
through the center of the roll is the involute function of 02. Whence 

inv 02 = {Ti/2R,) + inv 0i + (W/R,) - (w/N) (5-60) 
r2 = Rb/cos 02 (5-2) 

Example of Radius to Center of Measuring Roll. As a definite example we shall 
use the following: 6-DP, 24-tooth gear, of 20-dcg pressure angle, with a tooth thickness 
of 0.2618 in, at 2.00 in. radius. This gives the following values: 

W = 0.150 A = 24 <f>i = 20^^ Ti = 0.2618 
: 0.014904 cos <t>i = 0.93969 Rb = 1.87938 

_j_ Q 014904 4_— 0 029276 4.000 ^ -t- 1.87938 24 9.UJJJ7b 

<^2 = 24.812° cos <t>2 = 0.90769 
1.87938 

= 0:90769 = 2^7051 

Ri = 2.000 W = 0.150 N = 
inv (t>i = 0.014904 cos <t>i 

0.2618 , 
+ 0.014904 + 

2.07051 

Problem 6-16. Given the arc tooth thickness and pressure angle of an 
involute gear at a definite radiuSj to determine the measurement over rolls 
placed in the tooth space. 

Here we have one of two possible conditions. When the number of 
teeth in the gear is even, the rolls will be diametrically opposite to each 
other; then the measurement over the rolls is equal to twice the sum of 
the radius to the center of the roll and the radius of the roll. When the 
number of teeth is odd, then we must determine the off-center angle of 
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the radial lines through the centers of the rolls, and calculate accordingly. 
Let Ml = measurement over rolls, even number of teeth, in. 

M2 = measurement over rolls, odd number of teeth, in. 

and all other symbols be the same as those in Prob. 5-15. 

Even Number of Teeth 

Ml = 2(r2 + W) (5-61) 

Any size roll may be used provided that it makes contact on the 
involute profiles, and also extends beyond the outside circle of the gear. 

TV 

Fig. 5-18. 

For the coarser pitches, it does not need to extend beyond the tips of the 
teeth if there is room in the tooth space for the measuring anvils of the 
micrometer. For gears of conventional proportions, the following equa¬ 
tion gives a reasonable size for the measuring roll: 

W = 0.840/P or slightly larger 

where P = diametral pitch. 
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Example of Measurement over Rolls—Even Number of Teeth. As a definite 
example we shall use the following; 30-tooth, 6-DP, 14t^-deg tooth form of conven¬ 
tional proportions, where the arc tooth thickness at 2.500 in. radius is equal to 0.2618 
in. This gives the following values: 

Ri = 2.500 AT = 30 <#>1 = 14.500° Ri, = 2.42037 
Ti = 0.2618 P = 6 inv ^1 = 0.005545 cos <t>i = 0.96815 

IF = = 0.140 

inv + 0.005545 + 
5.000 

<t>i = 18.144° 
2.42037 

r2 = 

3.1416 
2.42037 30 

cos <i>2 = 0.95028 

= 0.011027 

= 2.54701 
0.95028 

Ml = 2(2.54701 + 0.140) = 5.37402 

Odd Number of Teeth. When the number of teeth is odd, the tooth 

spaces are not diametrically opposite to each other, as shown in Fig, 5-18. 

In these cases, the triangle as indicated in the figure must be solved to 

obtain the measurement over the rolls. Hence for odd numbers of teeth 

we have 

M2 = 2{r:[cos (907iV)] + W\ (5-G2) 

Example of Measurement over Rolls—Odd Number of Teeth. As a definite 
example we shall use the following: 31-tooth, 6-DP, 14dog tooth form of conven¬ 

tional proportions, where the arc tooth thickness at 2.59333 in. radius is equal to 

0.2618 in. This gives the following values: 

Ri = 2.58333 N 
Ti = 0.2618 

= 31 01 ^ 14.500® Rb = 2.50105 cos 0i = 0.96815 
P = 6 inv 01 = 0.005545 (907A^) = 2.903® 

cos (90®/iV) = 0.99872 W = 0.140 

mv 02 
0.2618 

+ 0.005545 + 
0.140 3.1416 

5.16667 

02 == 18.048® 
2.50105 

2.50105 31 

cos 02 = 0.95080 

= 0.010850 

r2 = = 2.63047 
0.95080 

M2 = 2[(2.63047 X 0.99872) + 0.140] = 5.53420 

When the radius of the roll and the measurement over the rolls are known, then 
the foregoing equations may be readily rearranged to solve for the arc tooth thickness 

of the gear tooth. 



CHAPTER 6 

mVOLUTOMETRY OF INTERNAL GEARS 

We shall now turn our attention to the internal involute gears. The 
involute form of the gear-tooth profiles is the same as that for the spur 
gears, but the tooth form of the internal gear is that of the tooth space 

of the spur gear. In other words, 
contact is made on the inside or 
concave side of the involute curve 
of the internal gear instead of on 
the outside or convex side of this 
curve as on spur gears. Also the 
root radius of the internal gear is 
its largest radius, and the tips of 
the teeth are at its smallest radius. 
The fillet joins the involute at its 
greatest pressure angle instead of 
at its smallest pressure angle as 
is the case with spur gears. The 
mating spur pinion must operate 
inside the internal gear. This con¬ 
dition imposes several possible 
sources of interference that are 

The center distance is equal to the 
difference between the pitch radii instead of being equal to their sum as 
for spur gears. 

The further consideration of this subject will be in the form of indi¬ 
vidual problems as before. 

Problem 6-1. Given the arc tooth thickness and pressure angle of an 
internal involute gear at a definite radius, to determine the coordinates of the 
involute profile. 

Referring to Fig. 6-1, when 
Ti = given arc tooth thickness, in. 
Ti = given radius of profile, in. 
{pi = given pressure angle at ri 
r2 = any radius of profile, in. 
T2 = arc tooth thickness at r2, in. 

112 

not present with mating spur gears. 
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ij>i = pressure angle at r2 
Ri, = radius of base circle, in. 

we have from the spur-gear analysis 

Rb = ri cos 4)1 (5-3) 
cos 4*2 = Rb/vi (5-4) 

As the tooth form is symmetrical, we shall use the half thickness as 
before. The half thickness of the tooth at ri, in radians, is equal to 
7’,/2r,. 

The half thickness of the tooth—extended il necessary—at the base 
circle is equal to (T\/2ri) — inv 4>i. 

The half thickness of the tooth, in radians, at any other radius rj is 
equal to its half thickness in radians at the base circle plus the involute 
function of the pressure angle at that radius. Whence we have 

T‘i/2ri = (ri/2ri) - inv 4)i -f inv 4)2 (6-1) 
T2 = 2r2[(!ri/2ri) — inv 4)i -f inv <t>i] (6-2) 

Cartesian Coordinates. To obtain the Cartesian coordinates of the 
involute profile in reference to either the center line of the tooth or the 
center line of the space, we first determine the vectorial angles of 
the several points of the profile from the specified center line, and then we 

use Eq. (1-5) and (1-6) as before. 
Let Q" = vectorial angle of profile from specified center line 

X = abscissa of profile, in. 
Y = ordinate of profile, in. 

When B" is the vectorial angle from the center line of the tooth, then 

B" = T2/2r2 = (7’i/2ri) — inv 4>i -f inv ^2 (6-3) 

When B" is the vectorial angle from the center line of the space, then 

B" = (tt/A) - {T2/2r2) (6-4) 
X =r2 sin B" (1-5) 
y = rs cos 8” (1-6) 

Example of Internal-gear Involute Profile. As a definite example we shall use the 
following; 40-tooth, 5-DP internal gear of 20-deg pressure angle, whose arc tooth thick¬ 
ness at a radius of 4 in. is equal to one-half the circular pitch. This gives the following 

values: 

5 DP 1 DP 

ri 4.0C0 20.000 

Ti 0.31416 1.5708 

4>, - 20° cos <t>i “ 0.93969 inv 4u - 0.014904 
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Using the 1-DP values, we have 

2rj 

Bo = 20 X 0.93969 = 18.7938 

^ 18.7938 
COS 02 = - 

r2 

— 0.014904 + inv 02 = 0.024366 — inv 02 

Using a scries of values of r2 ranging from 19 to 21 in. (and up to the radius where 

the fillet joins the involute curve), we obtain the values tabulated in Table 6-1. These 

values are also plotted in Fig. 6-2. In this example, the values are determined in 

reference to the center line of the tooth space. 

The tooth form also includes the fillet that joins the involute curve to 
the root circle. The shape of this fillet will depend upon the size and form 

of the generating tool that is used to cut the internal gear. Pinion- 
shaped cutters are used almost exclusively to generate internal involute 
gears. 

Before we determine the form of the fillet, we will first determine the 

radius to the point where the fillet joins the involute profile. This is 
the point of tangency of the two curves. 

Problem 6-2. Given the proportions of an internal involute gear and the 
size and position of the pinion-shaped cutlery to determine the radius to the 
point where the fillet joins the involute profile. 

The radius to the point where the fillet joins the involute curve will be 
at the point where the maximum radius of the involute profile of the 
pinion-shaped cutter intersects the path of contact, as shown in Fig. 6-3. 

When the corner of the cutter tooth is sharp, this maximum radius of the 

involute profile will be at the outside radius of the cutter. When 
the cutter tooth has a rounded corner or tip, this maximum radius of the 

involute profile will be at the radius where the rounding joins the involute 
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Table 6-1. Coordinates of Involute Profile of Internal Gear 

(Plotted in Fig. 6-2) 

r2, in. 4>t, deg inv 02 T2l2r2 0", rad Z, in. Yj in. 

18.79380 0.000 0.000000 0.024366 0.054174 1.0177 18.7662 
19.000 8.449 0.001078 0.025444 0.053096 1.0083 18.9732 
19.200 11.807 0.002967 0.027333 0.051207 0.9827 19.1748 
19.400 14.361 0.005384 0.029750 0.048790 0.9459 19.3769 
19.600 16.490 0.008219 0.032585 0.045955 0.9004 19.5792 

19.800 18.345 0.011409 0.035775 0.042765 0.8464 19.7820 
20.000 20.000 0.014904 0.039270 0.039270 0.7852 19.9846 
20.200 21.505 0.018678 0.043044 0.035496 0.7169 20.1873 
20.400 22.888 0.022699 0.047065 0.031475 0.6418 20.3900 
20.600 24.172 0.026949 0.051315 0.027225 0.5607 20.5924 

20.800 25.372 0.031411 0.055777 0.022063 0.4588 20.7950 
21.000 26.501 0.036074 0.060440 0.018100 0.3801 20.9966 
21.10627 27.072 0.038614 0.062980 0.015560 0.3286 21.1037 

profile of the cutter. In all cases, the resulting fillet is tangent to the 
involute profile of the internal gear. 
When Roc = outside radius or pinion-shaped cutter, in. (or maximum 

radius of involute profile on cutter) 
</>! = pressure angle at pitch or generating radius 
C = center distance between axes of gear and cutter, in. 

Rb2 = radius of base circle of internal gear, in. 

<i>oe = pressure angle at Roc 
Rf = radius to point where fillet joins involute, in. 

Rf = V(C sin 01 + Roc sin (j)oc)^ + Rb2^ (6-5) 

Example of Radius to Intersection of Fillet and Involute. We shall use the values 
from the preceding example with a 20-tooth cutter. This gives the following values 
for 1 DP: 

C = 10.000 Roc = 11.250 Rb2 = 18.7938 <t>oc = 33.355° 
01 = 20° sin 01 = 0.34202 sin <f>or = 0.54982 

Whence 

Rf = \/(9:g03^)2 + (18.7938)"^ = 21.10627 

The position of this point is indicated in Fig. 6-2. 

Problem 6-3. Given (he 'proportions of a pinion-shaped cutter with 
sharp corners at tips of teeth and its generating center distance^ to determine 
the coordinates of the trochoidal fillet developed on a given internal gear. 

The form of this fillet is the trochoid whose equations have already 

been derived in Chap. 3. 
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When N2 

Nc 
Roc 

R2 

Rc 

C 

€c 
€2 

dt 
Ti 

</>! 
To 

0OC 

Toe 

Rbc 

dt 

e"t 
Xt 

Yt 

number of teeth in internal gear 
number of teeth in pinion-shaped cutter 
outside radius of pinion-shaped cutter, in. 
pitch radius of internal gear, in. 
pitch radius of pinion-shaped cutter, in. 
center distance between axes of gear and cutter, in. 
angle of rotation of cutter 
angle of rotation of internal gear 
vectorial angle of trochoid 
radius to trochoid, in. 
pressure angle at pitch line of cutter and internal gear 
arc tooth thickness of cutter at T^c, in. 
pressure angle at tip of cutter tooth 
arc tooth thickness of cutter at Rocj in. 
radius of base circle of cutter, in. 
angle between origin of trochoid and center line of gear 
tooth 
angle between origin of trochoid and center line of tooth 

space 
vectorial angle of trochoid in reference to selected center line 
abscissa of trochoid, in. 
ordinate of trochoid, in. 

St 
Tocl^Roc 

d. 
dt 

e"t 
Xt 

Yt 

«2 = {Rc/Ili)fc (3-12) 

= VC* + Roc^ + 2CRoc cos (3-19) 

= sin-‘[(7?o<: sin tc)/r — €2 (3-14) 
= {Tc/2Rc) + inv <l>i — inv (5-6) 
= {NJNi){TJ2Ro.) (6-6) 

= - iNc/Ni){Toc/2Roc) (6-7) 
= 6 ± (1-4) 
= Tt sin d"t (1-5) 
= Tt cos d^'t (1-6) 

Example of Trochoidal Fillet on Internal Gear. As a definite example we shall 
use the same internal gear as before and a 4-in. diameter, 5-DP pinion-shaped cutter. 
This gives the following values: 

5 DP 1 DP 

Rc 2.000 10.000 

Rcc 2.250 11.250 
Rbe 1.87938 9.3969 

Nc = 20 ATa « 40 
01 “ 20® cos 01 = 0.93969 inv 0i = 0.014904 
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If we wish to use specific values of n, we can rearrange Eq. (3-19) to solve for tc as 
follows: 

cos Ce 
W - c* ~ Roc^) 

2CRoc (3-19) 

Using the 1-DP values, we obtain the following: 

^oc 

COS fj^oc 
9.3969 
11.250 

= 0.83528 

= 33.355° 

cos €c = 

inv <t>oc — 0.076097 
- 226.5625 
225."()00 

<2 = = 0.50£. 
dt — sin~i(11.25 sin ec/n) — ca 

We shall use the center of the tooth space as the reference line. 

20 /I 5708 \ 
6, = ^ + 0.014904 - 0.076097j = 0.008673 radian 

Using the foregoing values and equations, and values of n ranging from 21.25 in. 
to 20.50 in., we obtain the values tabulated in Table 0-2. These values are plotted 
in Fig. 6-3 together with the coordinates of the involute profile, which are tabulated in 
Table 6-1. 

Table 6-2. Coordinates of Trochoid of Corner of Pinion-shaped Cujter 

(Plotted in Fig. 6-3) 

Tt, in. 

21.250 
21.200 
21.150 
21.10627 
21.100 

21.050 
21.000 
20.950 
20.900 
20.850 

20.800 
20.750 
20.700 
20.650 
20.600 

20.550 
20.500 

deg 

0.000 
7.867 

11.141 
13.359 
13.647 

15.672 
17.626 
19.312 
20.863 
22.308 

23.666 
24.949 
26.174 
27.344 
28.466 

29.547 
30.590 

Biy deg 

0.000 

0.232 
0.329 
0.395 
0.404 

0.467 
0.522 
0.573 
0.621 
0.664 

0.706 
0.746 
0.783 
0.820 
0.855 

0.889 
0.922 

deg 

0.497 
0.729 
0.826 
0.892 
0.901 

0.964 
1.019 
1.070 
1.118 
1.161 

1.203 
1.243 
1.280 
1.317 
1.352 

1.386 
1.419 

A't, in. 

0.1842 
0.2697 
0.3048 
0.3286 
0.3317 

0.3541 
0.3734 
0.3911 
0.4078 
0.4224 

0.4366 
0.4501 
0.4624 
0.4745 
0.4860 

0.4963 
0.5076 

Fe, in. 

21 2492 
21.1983 
21.1479 
21.1037 
21.0973 

21.0471 
20.9966 
20.9464 
20.8960 
20.8456 

20.7954 
20.7450 
20.6948 
20.6444 
20.5942 

20.5440 
20.4936 
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Problem 6-4. Given the proportions of a pinion-shaped cutter with a 
fuU-rounded tip and its generating center distance^ to determine the coordi¬ 
nates of the fillet developed on a given internal gear. 

The form of this fillet is one whose equations have already been 
derived in Chap. 3. 

When Re = pitch radius of pinion-shaped cutter, in. 
Ric = radius to top of involute profile on cutter, in. 
Roc = outside radius of cutter, in. 
Rbc = radius of base circle of cutter, in. 

A = radius of rounding at tip, in. 

Tc = arc tooth thickness of cutter at Rc, in. 
Tie = arc tooth thickness of cutter at Ric, in. 
<l>ic = pressure angle at Rio 
4>i = pressure angle at Re 

<l>dc — pressure angle at Rdc 
Rdc = radius to center of rounding of tip, in. 

cos <t>ic Rbc/Ric (5-23) 
Tic = 2Ric[(Tc/2Re) + inv <t>i — inv <t>ie] (5-24) 

For the trial solution we have 

A = TJ2 cos (t>ic (5-25) 
inv <t>dc = (Tc/2Rc) + inv <t>i - (A/Rbc) (5-26)^ 

Rdc Rbc/cos <f>dc (5-27) 

To determine the corrected value of R,c. for the selected value of A, 
we proceed as follows: 

tan = tan (t>de + (A/Rbe) (5-28) 
Ric = Rbc /cos0,c (5-29) 

Trochoid of Center of Rounding, When 
iZ2 = pitch radius of internal gear, in. 
N2 = number of teeth in internal gear 
Nc = number of teeth on pinion-shaped cutter 
C = center distance for cutter and internal gear, in. 
€c = angle of rotation of cutter 
€2 = angle of rotation of internal gear 
Bi = vectorial angle of trochoid of center of rounding 
r< = any radius to trochoid of center of rounding, in. 
rpt = angle between radius vector and tangent to trochoid 

Bt = angle between origin of trochoid and center line of gear tooth 
Be = angle between origin of trochoid and center line of space 

* We may use the value of 4 as determined from Eq. (5-25), or we may round this 
figure off to a value slightly smaller. 
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6f = vectorial angle of actual fillet 
Tf = radius to actual fillet, in. 

= vectorial angle of actual fillet in reference to selected center line 
and all other symbols are the same as before 

_ Rc 
€2 p Cc 

£12 
(3-12) 

Tt = \/+ Rdc^ + 2CRdc cos €c (3-19) 
0 = sin-*[(-Kdc sin ec)/r,] — tj (3-14) 

5. = 0 (6-8) 

(6-9) 

, >■( ddtfdec 
dr.Hu (3-16) 

ddt _ RdeiXi^ cos €c + CRdc sin^ 6c) Rc 
d€c rt^{C + Rdc cos €c) R2 

(3-20) 

dvt __ CRdc sin €c 
dec Ti 

(3-21) 

Actual Fillet Form 

Tf = — 2Art sin yj/t (3-7) 
0/ = 04 + cos-^ [(n — A sin r/'O/r/] (3-8) 

0"/ = 5 ± 0/ (1-4) 
Xf = Tf sin 0"/ (1-5) 
Yf = Tf cos 0"/ (1-6) 

Example of Fillet of Rounded Cutter Tip on Internal Gear. As a definite example 
we shall use the 1-DP values from the preceding example. This gives the following 
values: 

Rc = 10.000 R.c (trial value) = 11,250 Ri^c = 9.3969 Tc = 1.5708 
01 = 20° inv 01 = 0.014904 cos 0i = 0.93969 C = 10.000 AT, - 40 

Nc = 20 

For the trial solution for the radius of the rounding, w’e have 

9.3969 
cos 0tc — = 0.83528 

11.250 
0*. = 33.355° inv 0i. = 0.076097 

22.50(0.07854 -f 0.014904 - 0.076097) « 0.39031 
, 0.39031 

2 X 0.83528 

We shall use the value A ■= 0.230. Then 

inv <t>dc « 0.07854 + 0,014904 - 

0.23364 

0.230 
0.068968 

9,3969 
<t>dc « 32.374° cos 0dc = 0.84457 tan <t>dc « 0.63398 

9.3969 
Rdo 0.84467 

11.12625 
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Using these values, we shall recalculate the value of Ric- 

tan (t>ic = 0.63398 + ; 0.65846 bu>ix V'tC — v.v/vfvn/vj I Q 3Q09 — vr. 

<t>^c = 33.363® cos 4>ic = 0.83520 
Q 306Q 

= tSio - 1^*25107 

Roc = 11.12625 +0.230 = 11.35625 

Trochoid of Center of Rounding, We shall rearrange Eq. (3-19) to use specific 
values of r*. 

— C* - Rdc^ 
COS =»-sTTp- (3-10) 

ll/de 

Whence 
n* - 223.79344 

222.525 

$t — sin" 
^11.12625 sin _ 

5. = 0 
dSt 11.12625(n* cos €c + 111.2625 sin* €c) 

du “ r,*(10 + 11.12625 cos €c) 

= -111.2625 sin- 
ate ft 

tan ^j/i = 
ft (dOt/dtc 

Using the foregoing values and equations, we obtain the values tabulated iu 
Table 6-3. 

Table 6-3. Cooudinates of Fillet from Rounded Tip of Pinion-shaped Cutter 

(Plotted in Fig. 6-4) 
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Coordinates of Actual Fillet 

Tf \/n* + 0.0529 — 0.46rt sin 
6f — Qt -Y cos“i (n — 0.23 sin ^()/r/ 

^"/ = Of 

The values for these coordinates have been calculated. They are also tabulated in 
Table 6-3 and are plotted with the involute 
profile in Fig. 6-4. 

Problem 6-6. Given the propor¬ 
tions of an internal gear and mating 
spur pinion^ and the center distance, to 
determine the minimum inside radius 
of the internal gear that will avoid 
involute interference. 

If the profile of the internal involute gear extends below the point of 
tangency of the path of contact with the base circle of the mating spur 
pinion, or pinion-shaped cutter that is used to generate it, involute inter¬ 
ference will exist. To avoid such interference, the inside radius of the 
internal gear must be made large enough to be outside this point. 

Referring to Fig. 6-5, when 
R\ = pitch radius of spur pinion, in. 
R2 = pitch radius of internal gear, in. 
C = center distance, in. 
(h = pressure angle at Ri and Rz 

Rb2 = radius of base circle of internal gear, in. 
Rix = minimum inside radius of internal gear that will avoid involute 

interference, in. 
we have the following from the geometrical conditions shown in Fig. 6-5: 

C R2 - Ri (6-10) 
Rb2 = R2 cos (f) (5-3) 

Ri, = VKm® + (C sin <f,y (6-11) 
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Example of Minimum Inside Radius. As a definite example we shall determine 
the minimum inside radius for the 40-tooth internal gear used in the preceding example 
that will avoid involute interference with the 20-tooth pinion-shaped cutter. Using 
the 1-DP values, we have the following: 

= 10.000 Ri = 20.000 C = 10.000. Rn = 18.7938 
- 20® sin 20° = 0.34202 

whence 

Ri. = V(i8:79W'+n:^4“^2r* = 19.10247 

Problem 6-6. Given the proportions of the internal gear and spur 
pinion, and the center distance, to determine the contact ratio for an internal- 
gear drive. 

The contact ratio of an internal-gear drive is obtained by dividing the 
length of the path of contact between its intersection with the inside 
circle of the internal gear and its intersection with the outside circle of 
the spur pinion by the base pitch of the series of involute curves that 
form the similar profiles of successive gear teeth. This condition holds 
true only when the inside circle of the internal gear is large enough to 



INVOLUTOMETRY OF INTERNAL GEARS 123 

avoid involute interference, with both the mating spur pinion and the 
pinion-shaped cutter that is used to generate it. 

The intersected part of the path of contact is indicated by the heavy 
line in Fig. 6-6. Referring to Fig. 6-6, when 

Ri = pitch radius of spur pinion, in. 

i?2 = pitch radius of internal gear, in. 

Rb\ = radius of base circle of spur pinion, in. 

Rh2 = radius of base circle of internal gear, in. 
Ro\ = outside radius of spur pinion, in. 

Ri = inside radius of internal gear, in. 

j) = circular pitch at R\ and f?2, in. 
Ph == base pitch of involute profiles, in. 

C = center distance, in. 

0 = pressure angle at Ri and R2 

Trip == contact ratio 
we know that 

Pb — V cos 0 Rhi = Ri cos <t> Rb2 = cos <t> 

_ - IW + C sin 0 - VRi^ - 
TItp — ‘ (O-IJ) 

^ Pb 

If, however, the value of C sin <(> is greater than the value of 
y/Ri^ — involute interference will be present. In such cases, 
the maximum possible value of nip will be something less than 

VRoi^ —Rbi^/Ph 

Example of Contact Ratio for Internal-gear Drive. As a definite example we shall 
use the following: 10-DP, 20-tooth pinion. 40-tooth internal gear, 20-deg pressure 
angle, 1.000-in. center distance, with the following proportions: 

10 DP 1 DP 10 DP 1 DP 

Ri 1.000 10.000 2.000 20.000 

Rhl 0.93969 9.3069 Rh2 1.87938 18.7938 
Roi 1.125 11.250 Ri 1.940 19.400 

p 0.31416 3.1416 Ph 0.29521 2.9521 
C 1.000 

1 

10.000 

Using the 1-DP values, we obtain 

V(11.25)» - (9.3969)» + 3.4202 - - (18.7938)* 
2.95213 

6.18552 -f 3.4202 - 4.81176 
2.95213 

1,623 tooth intervals 
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Problem 6-7. Given the proportions of an internaUgear drive^ to deter'- 
mine the arcs of approach and recess. 

Referring to Fig. 6-6, let 

Ri = pitch radius of spur pinion, in. 

Roi == outside radius of spur pinion, in. 
Rbi = radius of base circle of spur pinion, in. 

R2 = pitch radius of internal gear, in. 
Ri = inside radius of internal gear, in. 

Rb2 = radius of base circle of internal gear, in. 

<t> = pressure angle at 721 and R2 

Pa = arc of approach of dri\dng member 
Pr = arc of recess of driving member 

When the spur pinion is the driving member, 

pa = (722 sin (t> — \/Ri^ ~ Rb2^)/Rbi (6-13) 

Pr = (V72oi" - Rb? - 72i sin 0)/726i (6-14) 

When the internal gear is the driving member. 

Pa = - Rbi^ - Ri sin 0)/7?62 (6-15) 

Pr = (722 sin 4> — \/Ri^ ^ Rb2’^)/Rb2 (6-16) 

Example of Approach and Recess on Internal Drive. As a definite example we 
shall use the 1-DP values from the preceding problem and determine the values when 
the spur pinion is the driving member. This gives the following values: 

Ri = 10.000 Rox = 11.250 R,x = 9.3969 R2 = 20.000 
ft. - 19.400 R,2 = 18.7938 <t> = 20° sin 20° = 0.34202 

/3a 
6.8404 - \/(19-40)2 - (lC'7038)» 

9.3909 
0.21589 radian 

>/(ri.25)» - (9.3969)‘ - 3.4202 
9.3969 

= 0.20427 radian 

Problem 6-8. Given the proportions of an internal-gear drive, to deter¬ 
mine the sliding velocity between the mating gear teeth. 

As with spur gears, the sliding velocity between the teeth of an 
internal-gear drive Avill be the difference in the speeds of the ends of the 

generating lines of the two mating involute curves as they pass through 
the path of contact. The angular velocities of these generating lines will 
be the same as the angular velocities of the gears themselves. The actual 
sliding velocities will be the differences between the products of these 

angular velocities and the lengths of the respective generating lines, or 
radii of curvatures. Referring to Fig. 6-7, let 

coi = angular velocity of driving member, radians/min 

W2 = angular velocity of driven member, radians/min 
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n = rpm of driving member 
V = pitch-line velocity of gears, ft/min 

Vs = sliding velocity, ft/min 
721 = pitch radius of spur 

pinion, in. 
7^2 = pitch radius of internal 

gear, in. 
C = center distance, in. 

Rbi = radius of base circle of 
spur pinion, in. 

Rb2 = radius of base circle of 
internal gear, in. 

<t) = pressure angle at Ri and 

7^2 
Rci = radius of curvature of 

pinion at ri, in. 

Rc2 = radius of curvature of 
internal gear at r^, in. 

ri = any radius of pinion pro¬ 
file, in. 

r2 = mating radius of ri on 
internal-gear profile, in. 

Spur Pinion as Driving Mem-- 
ber. When the spur pinion is the driving member, then 

V = (27r72in)/12 = 72ia;i/12 (4-12) 
oji = 12F/72i 

^ (M2)(^^c10)1 "" 72c2C02) 
C02 = 72iCOi/722 

Whence 

Vs = (coi/12)[72.i - {R1RC2/R2)] 
Rc2 “ 72ci = C sin <#> 

Rci = V rF — Rbi^ 

Rc2 = \/r2^ — Rb2^ = C sin <;> + ^rP — Rb\^ 

Substituting these values into the previous equation for the sliding 
velocity, we obtain 

Vs = (F/72i722)[(722 ~ 72i) Vri^ - Rbi^ - RiC sin <t>] 
But 

C = R2 — R\ 
Whence 

Vs = [F(722 - Ri)/RiR2]{Vri^ - Rbi^ - Ri sin 0) (6-17) 
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Equation (6-17) may also be written 

F. = F[(l/i?i) - (l/K2)](Vn^ - IW - Ri sin </>) (6-18) 

Internal Gear as Driving Member, When the internal gear is the 
driving member, then 

F = 27rJ?2^/12 = i?2toi/12 

And in a similar manner we obtain 

V, = FlCl/Ri) - {l/R,)]{Ri sin 4> - ~ Rti^) (6-19) 

A comparison of the two foregoing equations for sliding velocity makes 
it apparent that the value of this sliding velocity is the same for a given 

Fio. 6-8. 

point of contact regardless of which member of the pair is driving, but 
that the sign or direction of the sliding, when the internal gear is driving, 
is the reverse of that when the spur pinion is driving. 

Example of Sliding Velocity on an Internal-gear Drive. As a definite example we 
shall use the 1-DP values from the example used with Prob. 6-6. From this we have 
the following values: 

Ri - 10.00 R2 » 20.00 Rbi “ 9.3969 « 20® sin 20® = 0.34202 

We shall assume the pinion to be the driving member and use values of ri ranging 
from 9.3969 to 11.250 in. Introducing the specific values into Eq. (6-18) and solving 
for the ratio of the sliding velocity to the pitch-line velocity, F,/F, we obtain the 
following: 

Vs/V - 0.06[\/ri* - (9.3969)* - 3.4202] 
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These values have been calculated and they are tabulated in Table d-4. They 
are also plotted in Fig. 6-8. 

As with spur gears, a minus value indicates that the direction of the 
sliding on the driving member is toward the center of the gear, while a 
plus value indicates that the direction of the sliding is away from the 
center of the gear. The actual sliding velocity on internal gears is much 

less than on a pair of similar spur gears. 
If this sliding velocity were plotted against the position of the contact 

along the path of contact, the graph would be a straight line. This posi¬ 

tion along the path of contact represents the angular movement of the 
gears. Therefore the velocity of sliding changes uniformly during the 
contact of the mating teeth. The average sliding velocity on the deden- 

Table 6-4. Sliding Velocity on Internal-gear Drive 

(Plotted in Fig. 6-8) 
V,/V = 0.05lv"r,* - (9.3969)2 - 3.4202] 

n, in. Rcif in. Rc, - 3.4202 v./v 

9.3969 0.00000 i -3.4202 -0.17101 
9.6000 1.96425 -1.45595 -0.07280 
9.8000 2.78177 -0.63843 -0.03192 

10.0000 3.4202 0.00000 0.00000 
10.2000 3,96715 0.54675 0.02740 

10.4000 4.45626 1.03606 0.05180 
10.6000 4.90492 1.48472 0.07424 
10.8000 5.32337 1.90317 0.09516 
11.0000 5.71824 2.29804 0.11490 
11.2500 6.18553 2.76533 0.13827 

dum, for example, will be one-half the sliding velocity that exists when 
contact is first made. The average sliding velocity on the addendum of 
the driving member, on the other hand, will be one-half the sliding 

velocity that exists when contact is made at the tip of its tooth. 

Problem 6-9. Given the proportions of a spur pinion and an internal 
gear, and the center distance, to determine the radius on the pinion where 

contact is first made with the tip of the internal-gear tooth. 
This radius will be at the point where the inside circle of the internal 

gear intersects the path of contact. Referring to Fig. 6-9, when 

C = center distance, in. 
<t> = pressure angle of operation 

Rbi = radius of base circle of spur pinion, in. 

Rb2 = radius of base circle of internal gear, in. 
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Ra\ = radius to bottom of active profile on spur pinion, in. 
Ri = inside radius of internal gear, in. 

we have from the geometrical conditions shown in Fig. 6-9 the following: 

Rai = ViVRi^ - iW - C sin <l>y + (6-20) 

Example of Active Profile of Pinion with Internal Gear. As a definite example 
we shall use the 1-DP values from the preceding example. This gives the following 
values: 

C = 10.00 <f> = 20^* sin 20° = 0.34202 
Rbi = 9.3969 Rb2 = 18.7938 Ri = 19.400 

Whence 
Rai = V(4.81372 - 3.4202)2 + (9.3969)* = 9.49936 

This radius is indicated on the sliding diagram in Fig. 6-8. 

Problem 6-10. Given the proportions of an internal-bear drive, to 
determine whether or not interference 
exists between the tips of the pinion 
teeth and the internal-gear teeth as the 
teeth come into and go out of mesh. 

This condition of tip interference 
is present when the trochoid of the 
path of the corner of the pinion 
tooth intersects the involute profile 
of the internal-gear tooth. Thus if 
we solve Eqs. (3-12), (3-19), and 
(3-14) for di, substituting the value 
of R^ for rty and establish the rela¬ 
tionship of the origin of the trochoid 
in reference to the involute profile, 
we can compare the position of this 
trochoid at Ri with the position of 
the involute profile at the same 
point. If the trochoid is outside 
the tooth form, then no tip inter¬ 
ference will be present. If this 

trochoid is inside the involute profile, then tip interference is present. In 
either event, we can determine the amount of clearance or the depth of 
interference at this inside circle of the internal gear. Thus when 

Ni = number of teeth in spur pinion 
JV2 = number of teeth in internal gear 
Roi = outside radius of spur pinion, in. 
Ri = inside radius of internal gear, in. 
C = center distance, in. 
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€i = angle of rotation of spur pinion 

€2 = angle of rotation of internal gear 
6ti = vectorial angle of trochoid at Ri 
</>! == pressure angle at pitch line of gears 

<t>2 = pressure angle at Ri 
<t>oi = pressure angle at tip of spur-pinion tooth 
Ri,i = radius of base circle of spur pinion, in. 

Ri,2 = radius of base circle of internal gear, in. 
8 = angle between origins of trochoid and involute of internal gear 

62 = {Ni/N2)ei (3-12) 

We have from Eq. (3-19) 

cos Cl = (Ri^ ~ Roi^ - C^)/2CRoi 

and from Eq. (3-14) 

Bn = sin“^ [(/2oi sin ei)Ri] — C2 

8 = (iV’i/JV2)(inv <l)oi ~ inv <t>i) + inv 4>i (6-21) 

cos 02 = Rb2/Ri cos 0ol = Rhl/Rol 

When :ci « angle of tip of internal-gear tooth at Ri from origin of 
involute, radians 

X2 = angle of trochoid at 72, from origin of involute of internal 
gear, radians 

xi = inv 02 (6-22) 

X2 — 8 — Bn (6-23) 

When xi is greater than X2f tip interference exists. When X2 is greater 
than xij there is clearance between the trochoid and the tip of the internal- 

gear tooth, and so no interference is present. 

Example of Check for Tip Interference. As a definite example we shall use the 
following: 1-DP internal gear, of 20-dcg pressure angle, with 30 teeth, and a 25-tooth 
spur pinion with the following values: 

A 1 = 25 Ni =* 30 Roi « 13.750 R; = 14.400 Rsi - 11.74616 
R,,2 « 14.09539 C = 2.500 if>i « 20° inv 20° - 0.014904 

(14.40)* - (13.75)* - 2.5* 
cos ei 0.17524 

5 X 13.75 
M * 79.908® sin ei « 0.98453 

» 2 5^q X 79.908° - 66.590° 
$ti « 70.068° - 66.590° = 3.478° = 0.060702 radian 

11.74616 
cos 4*oi *• ■ 0.85426 

13.75 
0.1 - 31.322" inv 0oi - 0.061863 
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« - (2 ^o) (0.061863 - 0.014904) -h 0.014904 « 0.054036 radian 
Xi « 0.054036 - 0.060702 - -0.006666 radian 

14.09539 ^ 
cos </>i * - “ 0.97885 

14.40 
^2 « 11.806° inv <t>2 * 0.002967 

Xi = 0.002967 radian 

In this example, the value of xi is greater by 0.002967 plus 0.006666 radian, which 
equals 0.009633 radian, than the value of 
Xi. Hence there is tip interference. The 
actual amount of this interference is equal 
to 0.009633 X Ri, which is equal to 0.13871 
in. 

The coordinates of this internal-gear 
tooth have been calculated, using a value 
of 1.3888 in. for Ti at a radius of 15.00 in. 
The coordinates of the trochoidal path of 
the corner of the spur-pinion tooth have 
also been calculated. These values are 
tabulated in Table 6-5 and plotted in Fig. 
6-10. This figure shows the trochoidal 
path cutting into the tip of the internal- 
gear tooth. 

Problem 6-11, Given the tooth proportions of a spur pinion and an 
internal gear, to determine the center distance at which they will mesh tightly. 

Table 6-5. Coordinates of Internal-gear Teeth and of Trochoidal Path of 

Corner of Pinion Tooth 

(Plotted in Fig. 6-10) 

r, in. 0t, rad. Xi, in. Yt, in. a", rad. X, in. 7, in. 

16.250 0.00000 0.1335 16.2469 0.020499 0.3331 16.2466 
16.000 0.00805 0.4373 15.9941 0.029108 0.4658 15.9949 
15.800 0.01281 0.5070 15.7918 0.035675 0.5636 15.7899 
15.600 0.01796 0.5809 15.5892 0.041924 0.6538 15.5863 
15.400 0.02358 0.6599 15.3858 0.047824 0.7361 15.3824 

15.200 0.02974 0.7450 15.1818 0.053337 I 0.8103 15.1784 
15.000 0.03648 0.8361 14.9768 0.058427 i 0.8760 14.9744 
14.800 0.04384 0.9337 14.7705 0.063023 0.9324 14.7705 
14.600 0.05191 1.0385 14.5631 0.067044 0.9784 14.5672 
14.400 0.06070 1.1506 14.3539 0.070364 1.0125 14.3644 

This problem is very similar to Prob. 5-9, and will be solved in the same 
manner. 
Let R\ = radius of spur pinion where arc tooth thickness is known, in. 

T\ = arc tooth thickness of pinion at /?i, in. 
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N\ = number of teeth in spur pinion 
</>i = pressure angle at Ri and 

R2 = radius of internal gear where arc tooth thickness is known, in. 
T2 = arc tooth thickness of internal gear at R2, in. 

N2 = number of teeth in internal gear 
ri = pitch radius of spur pinion when tightly meshed, in. 
ti = arc tooth thickness of pinion at ri, in. 

02 = pressure angle at ri and r2 

r2 = pitch radius of internal gear when tightly meshed, in. 
t2 = arc tooth thickness of internal gear at r2, in. 

Cl = center distance for pressure angle of 0i, in. 
C2 = center distance when tightly meshed at pressure angle of 02, in. 

From Prob. 5-9 we have 

t\ = 2ri[(ri/2/2i) + inv 0i — inv 02] 

From Eq. (6-2) we have 

We know that 

and 

t2 = 2r2[(r2/2i22) — inv 0i + inv 02] 

ti + h — 2Tri/iV'i = 2^2! N 2 

R, = {N2/Ni)Ri and r2 = {N2/Ni)ri 

Substituting these values into the equation for (2, combining terms, 
simplifying, and solving for inv 02, we obtain the following: 

inv 02 = [27rRi — Ni(Ti + T^/2Ri{N2 — A^i)] + inv 0i (6-24) 

When this equation is reduced to 1-DP values, it becomes 

inv 02 = [?r — {Ti -p T^/N2 — N1] -f- inv 0i (6-25) 

We know that 

ri = Ri cos 0i/cos 02 

and 

r2 = R2 cos 0i/cos 02 and R2 R\ — C\ 

and 

ra - ri = C2 

Whence 
C2 = Cl cos 0i/cos 02 (5-35) 

Example of Center Distance for Special Internal-gear Drive. As a definite exam¬ 
ple, we shall use 10-DP, 20-deg gears with a 25-tooth spur pinion and a 45-tooth inter¬ 
nal gear with the following given values: 
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10 DP 1 DP 10 DP 1 DP 

Ri 1.250 Ri 2.250 22.500 
T, r. 0.138 1.380 
Cl 10.000 

Ni =25 ATj = 45 
01 = 20® inv 20® = 0.014904 cos 20® = 0.93969 

Using the 1-DP values and Eqs. (6-24) and (5-35), we obtain the following: 

3.1416 - (1.700 4- 1.380) 
inv 02 « 

02 

C2 = 

20 
21.246® cos 02 

10 X 0.93969 
0.93203 

+ 0.014904 

= 0.93203 

10.08218 

0.017984 

for 1 DP 

Problem 6-12. Given the tooth proportions of an internal gear^ to deter¬ 
mine the cutting or generating position of a pinion-shaped cutter. 

This problem is identical to the preceding one. With the substitution 
of the proper symbols into Eq. (6-25), we shall have the solution. This 
problem also includes the determination of the root radius of the internal 
gear. Thus when 

Rc = pitch radius of pinion-shaped cutter, in. 
Te = arc tooth thickness of cutter at Tie, in. 
Nc = number of teeth in pinion-shaped cutter 

Roc = outside radius of pinion-shaped cutter, in. 
R2 = pitch radius of internal gear, in. 

T2 = arc tooth thickness of internal gear at /?2, in. 
N2 = number of teeth in internal gear 
/?r2 = root radius of internal gear, in. 

<t>i = pressure angle at Re and R2 

<t>2 = generating pressure angle 
Cl = center distance for pressure angle of 01, in. 

C2 = generating center distance with pressure angle of 02, in. 
we have from Eq. (6-24) 

inv 02 = [2TrRc — Nc{Tc + T2)/2Re(N2 — Ne)] + inv 0i (6-24) 

Reduced to the 1-DP values, this equation becomes 

inv 02 = [tt — (Tc + T2)/N2 ~ Nc] + inv 0i (6-25) 
C2 = Cl cos 0i/cos 02 (5-35) 

Rr2 ~ C2 4" Roc (6-26) 

Example of Position of Cutter for Internal Gear. As a definite example we shall 
use the internal gear from the preceding problem and assume the use of a 3-in .-diameter 
pinion-shaped cutter with 30 teeth. This gives the following values: 
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10 DP 1 DP 10 DP 1 DP 

Rc 15.000 Ri 2.250 22.500 

Tc T2 0.138 1.380 

Roe 1.625 16.250 Cl 0.750 7.500 

N, =30 ATj = 45 
01 = 20° cos 20° 0.93969 inv 20° = 0.014904 

Using the 1-DP values, we obtain 

inv 02 
3.1416 - (1.5708 -f 1.380) 

15 
+ 0.014904 = 0.027264 radian 

02 == 24.362° cos 02 = 0.91096 

C2 

Rr2 

7.50 X 0.93969 
= 7.73653 

0.91096 
= 7.73653 + 16.250 = 23.98653 

for 1 DP 

for 1 DP 

Problem 6-13. Given the center distance and numbers of teeth for a spur 
pinion and an internal gear^ and the proportions of a pinion-shaped cutter, 
to determine the proportions of the spur pinion and the internal gear. 

This problem must be solved in five successive steps, as follows: 

1. Determine the minimum inside radius for the internal gear that 
will avoid involute interference with either the mating pinion or the 
pinion-shaped cutter, whichever is the smaller. 

2. Determine the position of the pinion-shaped cutter when generating 
the internal gear, and the arc tooth thickness of the internal gear at its 
nominal pitch line. 

3. Determine the proportions of the teeth of the mating spur pinion. 
These values depend, in part, upon the method used to generate the 
pinion. 

4. Determine the cutting data for the spur pinion. 
5. Determine the clearances and the final tooth proportions of the 

gears. 

In addition, if the difference between the numbers of teeth in the spur 
pinion and internal gear is small, less than about 6 or 7, for example, we 
must also check to be sure that the tips of the teeth will not interfere 

with each other as they come into and go out of mesh. 
For the first step, we have Prob. 6-5 with Eqs. (G-10) and (6-11). If 

the pinion-shaped cutter has fewer teeth than the spur pinion, the first 

step would be made using the nominal pressure angle of the pinion¬ 
shaped cutter. If the spur pinion has fewer teeth than the cutter, the 
first step would be made using this pinion and the operating pressure 
angle. 
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If the start is made with the pinion-shaped cutter and the inside 
radius of the internal gear must be increased to avoid involute interfer¬ 
ence with the cutter, the generating center distance would be increased 
also, so that little, if any, of the depth of the tooth in the internal gear 
would be lost. In all cases, the inside radius that is used should be some¬ 

what larger than the minimum inside radius. 
For the second step, we have Prob. 6-12, modified as necessary to meet 

the particular need. 
For the third step, we must rearrange some of the existing equations to 

solve for the values needed. 
The fourth step is similar to this same type of problem on spur gears, 

and simple equations may be set up to solve for the values needed. 
The fifth step is an over-all check. The w hole depth of the tooth on 

the pinion must not be greater than the nominal whole depth of tooth. 
Let Ro\ = outside radius of spur pinion, in. 

Ri = nominal pitch radius of spur pinion, inches 
Rri = root radius of spur pinion, in. 
Ti = arc tooth thickness of spur pinion at Ri, in. 

Rbi = radius of base circle of spur pinion, in. 
Ni — number of teeth in spur pinion 
Roc = outside radius of pinion-shaped cutter, in. 
Rc = nominal pitch radius of pinion-shaped cutter, in. 
Te = arc tooth thickness of cutter at Rcy in. 

Rhc = radius of base circle of pinion-shaped cutter, in. 
Ne = number of teeth in pinion-shaped cutter 

Rri = root radius of internal gear, in. 
Rz = nominal pitch radius of internal gear, in. 
Ri = inside radius of internal gear, in. 

Rhi = radius of base circle of internal gear, in. 
Tt = arc tooth thickness of internal gear at R^y in. 
Ni ^ number of teeth in internal gear 

Cl =* center distance for spur pinion and internal gear for pressure 
angle of </>i, in. 

Cl = center distance of operation of spur pinion and internal gear 

with pressure angle of <^2, in. 

Cgi — center distance for cutter and internal gear for pressure angle 
of </>i, in. 

C'a* “ generating center distance for cutter and internal gear with 
pressure angle of <^<,2, in. 

P = diametral pitch of pinion-shaped cutter 
01 = nominal pressure angle of pinion-shaped cutter 
02 = operating pressure angle of spur pinion and internal gear 
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• = generating pressure angle of pinion-shaped cutter and internal 

gear 
First Step 

Cl = (N, - Ni)/2P 
When 

{N, - Ni)/2P = (7, 
then 

C\ = Ci and <pi = 

Otherwise 
cos <t>i ~ Cl cos 4>\/Ct (5-36) 

To determine the minimum inside radius of the internal gear when the 
spur pinion is smaller than the pinion-shaped cutter, we have from Prob. 

6-5 

+ iCi sin (6-27) 

When the pinion-shaped cutter has fewer teeth than the spur pinion, 

we will not know the generating center distance until some of the other 
values have been established. Here we may need to make a trial solution 

for this inside radius first and choose a value for it somewhat larger than 
the minimum. Later, such a selected value should be rechecked to be 
sure that involute interference has been avoided. For such a trial solu¬ 

tion, we shall use 

Ri. = VRt2^ + (C,1 sin <^0^ (6-28) 

When the pinion-shaped cutter is smaller than the spur pinion, it is a 
good plan to solve both of the two equations (6-27) and (6-28) and choose 
a value for Ri somewhat larger than the larger value of the two. 

Second Step. After a value for Ri has been selected, the next step is to 

determine the generating center distance for the pinion-shaped cutter and 
the internal gear. For this we may use, when 

hti = nominal whole depth of tooth, in. 

C,2 = «» + hn - Roc (6-29) 
cos <t>g2 = Cgl cos <t>l/Cg2 (5-35) 

We must next determine the value of 7^2. For this we can transpose 
Eq. (6-24) or (6-25) to solve for T2 as follows: 

inv 4>g2 = [[2irRc - N,{Tg + T2)]/2Rg{N2 - A,)l + inv <t>, (6-24) 

Transposing this equation to solve for Ta, we obtain 

T2 == \[2Rc{N2 - iV'^)(inv <;>i - inv 0^2) + 2TRc]/Ne] - Tg (6-30) 
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Reduced to 1-DP values, this equation becomes 

T2 = {N2 — Nc){inv <t>i — inv <t)g2) + tt — 7'c (6-31) 

Rr2 = Cg2 + Roc (6-26) 

Third Step, We now have all the values for the internal gear. The 
next steps are to determine values for the spur pinion, starting with the 
value of Ti, This is obtained by transposing Eq. (6-24) to solve for Ti, 

When it is thus transposed, we have 

Ti = {[2/ei(iV2 - iVi)(inv <t>i - inv <#>2) + 2TrRi]/Ni\ - (6-32) 

Reduced to 1-DP values, this equation becomes 

Ti == {N2 — <f)i — inv ^2) 4" ^ — To (6-33) 

Fourth Step. After the value of Ti has been established, we turn our 
attention to the generation of the spur pinion. This may be done by a 

hob or by a pinion-shaped cutter. 

Spur Pinion Generated by Hob. When the spur pinion is gen¬ 
erated by a hob, we have the equations of Prob. 5-11, where we substitute 
the hob proportions for those of the rack, to determine the root radius 

of the spur pinion. For this we have, when 
p = circular pitch of hob, in. 

<t>i = pressure angle of hob and nominal pressure angle of gear 
H = distance from center of spur pinion to nominal pitch line of hob, 

in. 
Oh = nominal addendum of hob, including clearance, in. 

H = R,-\- 
(Ta/2) - (p/4) 

tan <t>\ 

Rrl H Uh 

When Cl = clearance at tip of pinion-tooth, in. 

Ro\ ~ Rr2 ^2 ^1 

(5-39) 

(6-34) 

(6-35) 

Spur Pinion Generated by Pinion-shaped Cutter. When the 
pinion is generated by a pinion-shaped cutter, we have the eciuations 

from Prob. 5-10 to determine the root radius. This pinion-shaped cutter 

may be the same that is used to cut the internal gear, or it may be of 
another number of teeth. In either case, the specific values for the 
cutter actually used should be substituted into the equations. Thus 
when 

4>o^ = generating pressure angle of cutter and spur pinion 

inv <t>g2 
Ni{Ti + Tc) - 2irRi 

2R,CN\~+ Nc) 
+ inv 01 (5-36) 
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Reduced to 1-DP values, this equation becomes 

inv <f>„i = ^ + inv <l>i (5-37) 

When Cgz = generating center distance of cutter and spur pinion, in. 

= [(ATx -f- iV.)/2P] (6-36) 
COS (Pgi 

Rri = C,3 ~ Roc (6-37) 
Roi = Rr2 — C2 — Cl (6-35) 

The value of Ci may generally be taken as that of the nominal clear¬ 
ance of the gear-tooth system that is used. 

Fifth Step, The last step is to check the resulting whole depth of the 

pinion tooth. If this value is greater than the nominal depth of tooth, 
the outside radius of the spur pinion should be reduced accordingly. It 
may also be necessary to check for tip interference and for the duration of 

contact. 
If tip interference is present, it can be reduced or eliminated by 

increasing the inside radius of the internal gear and cutting its teeth 
deeper; t.c., increasing the root radius by the same amount that the inside 

radius has been increased. This will reduce the contact ratio, and so this 
feature must be checked. 

Example of Interaal-gear-drive Design. .Vs a definite example we shall use the 
following: 8-DP, 20-deg internal-gear drive with a 20-tooth spur pinion and a 40-tooth 
internal gear operating at a center distance of 1.300 in. Both the spur pinion and the 
internal gear will he generated with a 3-in.-diaineter, 24-tooth, pinion-shaped cutter. 
This gives the following values: 

8 DP 1 DP 8 DP 1 DP 

Wi 1.250 10.000 * Rb2 2.34922 18.7938 

Ihx 1.17461 9.3969 I ' c. 1.300 10.400 
c, 1.250 10.000 ' R.. 1.65625 13.250 

Rc 1.500 12.000 Tc 0.19635 1.5708 

Rhf 1.40936 11.27628 ] h.i 0.28125 2.250 
1.000 8.000 Cl 0.03125 0.250 
2.500 20.000 

i 

Ni =20 ATe - 24 Ni = 40 
01 « 20° inv 20° - 0.014904 cos 20° - 0.93969 

Using the 1-DP values, we have 

4>i 

cos 03 
10 X 0.93969 

25.369° 
10.400 

inv 03 « 0.031399 

. 0.90355 

sin 03 

IL. - \/(18.7938)* -f (10.40 X 0.42845)* - 

- 0.42845 

19.31481 
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We will select the value R, •• 19.3200, whence 

C,t - 19.3200 + 2.250 - 13.250 
^ 8.00 X 0.93969 

cos <l>,i « 

8.320 

8.320 - 
<t>gi *" 25.369° inv <t>g2 = 0.031399 

Tt - (40 - 24) (0.014904 - 0.031399) + 3.1416 - 1.5708 « 1.30688 
Rri = 8.3200 + 13.250 = 21.5700 

Ti - (40 - 20)(0.014904 - 0.031399) + 3.1416 - 1.30688 * 1.50482 
1.50482 -h 1.5708 - 3.1416 

mv 4>gi 
26 + 24 

<t>g2 « 18.725° cos <f>oi =» 0.94707 
X 0.93969 

0.94707 
21.81801 - 13.250 

H- 0.014904 « 0.012155 

CgZ 

Rrl ' 

21.81801 

8.56801 

This root radius is too far below the base circle. We shall therefore increase the 
inside radius of the internal gear to 19.500 in., and recompute the several values. 
When 

Ri « 19.500 
' Cgi = 19.500 4- 2.250 - 13.250 - 8.500 

8.00 X 0.93969 
cos 4>gi “-- - 0.88441 

<t>gi « 27,821° inv <t>gi - 0.042141 
Tt - (40 - 24) (0.014904 - 0.042141) + 3.1416 - 1.5708 - 1.13501 

Rrt =« 8.500 4 13.250 = 21.750 
Ti - (40 ~ 20)(0.014904 - 0.031399) 4 3.1416 - 1.13501 - 1.67669 

1.67669 4 1.5708 - 3.1416 
inv <pgl 

20 4 24 

<t>gi — 20.986® cos <t>oi 
^ X 0.93969 

” 0.93367 
Rrl = 22.14185 - 13.250 = 8.89185 
Roi » 21.750 - 10.400 - 0.250 « 11.100 

4 0.014904 - 0.017310 

- 0.93367 

22.14185 

We shall now check the tooth height on the spur pinion and the clearance. 

Tooth height « 11.100 - 8.89185 - 2.20815 

This is less than the nominal whole depth of 2.250 in., and b satisfactory. 

Clearance at root of pinion » — Cj — Rri 
« 19.500 - 10.400 - 8.89185 - 0.20815 

This clearance is less than the nominal value of 0.250 in. and should be increased. 
We shall obtain the additional clearance by enlarging the inside radius of the internal 
gear by 0.042 in., and leaving all other values the same as before. The corrected value 
for the inside radius thus becomes 

Ri - 19.542 

♦ It is only a coincidence that the values of ^7 and <t>g7 are identical. In each case 
here, the center distance has been increased exactly 4 per cent. 
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The coordinates of the spur pinion and internal gear of this drive have been calcu¬ 
lated, and they are plotted in Fig. 6-11. 

Problem 6-14. Given the radiuSy arc tooth thicknessy and 'pressure angle 
of an internal gear, to determine the measurement between rolls placed in the 
tooth spaces. 

This problem is similar to Probs. 5-15 and 5-16 for spur gears. Refer¬ 
ring to Fig. 6-12, when 

Rh2 = radius of base circle of internal gear, in. 
R2 = radius where tooth thickness is known, in. 
<t>i = pressure angle at R2 

T2 = arc tooth thickness at /?2, in. 
W = radius of wire or roll, in. 
r2 = radius from center of gear to center of roll, in. 
02 = pressure angle at r2 

N2 = number of teeth in internal gear 
Ml = measurement between rolls, even number of teeth, in. 
M2 = measurement between rolls, odd number of teeth, in. 

we have from the geometrical conditions shown in Fig. 6-12 the following: 

inv 0, = (Tr/iVj) + inv 0i - (r2/2/?2) - {W/R,^) (6-38) 
r2 = /?62/C0S 02 (5-2) 

Even Number of Teeth, WTien the number of teeth in the internal 
gear is even, the tooth spaces will be opposite each other; hence 

Ml = 2(r2 - TF) (6-39) 

Odd Number of Teeth. When the number of teeth is odd, then the 
tooth spaces are not opposite to each other. In such cases, 

Af 2 = 2[r2 cos (907^^2) - W] (6-40) 
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Example of Roll Measurement of Internal Gear. As a definite example we shall 
use the 40-tooth internal gear from the preceding example. This gives the following 
1-DP values: 

T2 = 1.13501 Rt = 20.000 7^62 = 18.7938 = 40 
</>! = 20° inv 20° = 0.014904 

We will let W »= 0.900. 

inv 02 3:^+0.014904 -^^0’ 

02 

_0^900_ 

18.7938 
21.009° cos 02 = 0.93352 

18.7938 
^ 0.93352 

Ml = 2(20.13219 - 0.900) 

20.13219 

38.46438 

0.017368 

for 1 DP 

When the measurement between the rolls is known, the arc tooth thickness can be 
determined by rearranging the foregoing equations to solve for the arc tooth thickness 



CHAPTER 7 

CONJUGATE ACTION ON HELICAL GEARS 

This analysis of helical gears will be restricted to those whose teeth 

have a uniform axial lead. As with spur gears, for every pair of conjugate 

helical-gear teeth, there is a definite basic-rack form. The horizontal 

elements of this basic-rack form will be straight lines, but these straight 
lines will be at some angle other than a right angle to the side of the basic 

rack that lies in a plane of rotation of the mating helical gears. 

The form of the basic rack normal to its horizontal elements is known 
as the normal basic-rack form. Its form in the plane of rotation of the 

gears is known as the basic-rack form in the plane of rotationj or more com¬ 

monly as its basic-rack form. In general, when any element or value of a 
helical gear is not specifically designated as normaly it refers to the condi¬ 

tions in the plane of rotation of the gears. 

The angle of departure of the straight-line horizontal elements of the 
normal basic-rack form from the perpendicular to the plane of rotation is 

called the helix angle. This is also the helix angle on the pitch cylinders of 

the conjugate hc^lical gears. 
The normal plane for a pair of helical gears is the plane normal to the 

straight-line horizontal elements of the normal basic rack. It is not a 

normal plane to the forms of the teeth on the helical gears. There is no 
normal plane to helical-gear teeth. The helix angle of the gear changes 

with its diameter, and any surface that is normal to the helical-gear-tooth 

elements is a warped surface, and it is useless as a basis for any exact 
analysis. 

The analysis of conjugate gear-tooth action on spur gears can be 

carried through completely on a single plane. That of helical gears 
sometimes requires the use of two or three planes. In other words, the 

kinematics of spur gears is a two-dimensional problem. That of helical 

gears is a three-dimensional problem. We must therefore develop the 
faculty of thinking and working in three dimensions if we are to master 

this subject. 

The line of tangency between the pitch surfaces of any pair of gears 
is the locus of the pitch points, through which the normals from all points 

of contact of the conjugate tooth profiles must pass. From any point of 

contact between the teeth of two mating helical gears, or between a gear 
141 
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and its basic rack, two normals may be drawn to the locus of the pitch 
points. These normals are the lines of action. One line is normal to the 
tooth surface at the point of contact. This is the normal line of action. 
The other line is normal to the tooth profiles in the plane of rotation and 
is commonly called the line of action. 

As conjugate gear-tooth profiles act together, the points of contact will 
travel along definite paths, which are called paths of contact. Here also we 
have the normal path of contact^ which is the path in the normal plane, and 
the paih of contact in the plane of rotation^ or more simply, the path of 
contact. 

The tooth form of the helical gear in the plane of rotation is of constant 
form, and its conjugate action may be studied here as though it were a 
spur gear. The tooth form of the helical gear is represented by its inter¬ 

section vdih the normal plane is of changing form as the gear rotates— 
only the normal basic-rack form remains constant here—so that little 
can be accomplished by attempting to study its action and its limita¬ 
tions in this normal plane. When need arises, as in the determination 
of the actual contact line across the faces of mating helical gears, such a 
study can best be made by using the basic-rack form of the system. 

Except for the duration of contact, the conditions between a helical gear 
and its basic rack are identical to those existing between a pair of mating 
helical gears. 

All the analysis of spur gears can be applied directly to the study and 
design of helical gears by using this spur-gear analysis for the conditions 
in the plane of rotation of helical gears. But with this, we must also 
consider the additional conditions introduced by the helical form. In 
almost every case, we can use the same hob, for example, to generate 
both spur and helical gears. When this is done, however, the form of the 

helical gear in its plane of rotation is different from the form of the spur 
gear produced by the same hob. In effect, the form of the basic rack 
from which the hob is developed becomes the form of the normal basic 
rack of the two helical gears. 

There is, in effect, a double driving action between helical gears. 
The one is the conjugate gear-tooth action in the plane of rotation, where 
the tooth forms act together as cams to transmit uniform rotary motion. 

The other is the rocking or rolling action between mating helices, which 
also acts to transmit uniform rotary motion from one shaft to another. 
When the face widths of the gears are large enough, the duration of con¬ 
tact in the plane of rotation becomes of secondary importance. Its 
major influence on such helical-gear drives is to control the area of the 
contacting tooth surfaces that are available to carry the load. 

Helical gears are inherently smoother running than spur gears when 



CONJUGATE ACTION ON HELICAL GEARS 143 

sufficient face width is available to give a continuous helical action as the 
load is transferred from one pair or group of teeth to another. This is 
largely because the helix is a form of large and uniform radius of curva¬ 
ture, while the conjugate gear-tooth forms, which must do all the work 
alone on spur gears, have relatively small and rapidly changing radii of 
curvature. On the other hand, helical gears introduce an end thrust that 
is absent on spur gears, an end thrust that may or may not be detrimental 

to the service required of them. 
Double helical gears, with the two halves of opposite hand of helix 

angle, are often employed where the inherent advantages of helical gears 

are desired without the detrimental effects of external end thrusts. Such 
double helical gears are known as herringbone gears; the end thrust of one 
half is counterbalanced by the end thrust in the opposite direction of the 

other half. Each half of a herringbone gear can be studied as a simple 
helical gear. 

We shall start our analysis of helical gears with a given normal basic- 
rack form, and determine the conditions in the plane of rotation of the 
conjugate gear-tooth form. 

Normal Basic-rack Form Given. Given the form of the normal basic 
rack, with the pitch point in the plane of rotation as the origin of the 
coordinate system, and referring to Fig. 7-1, we have the following: 
When X = abscissa of basic-rack profile in plane of rotation 

Xn = abscissa of normal basic-rack form 
y = ordinate of basic-rack form and of path of contact, both 

normal and in the plane of rotation 

Xp = abscissa of path of contact in plane of rotation 

Xnp = abscissa of path of contact on normal plane 
yp = helix angle at pitch line and angle of basic-rack elements 

dxjdy = tan <t> = pressure angle in plane of rotation 

dxnidy = tan <f>n = normal pressure angle 

Xp = —y/tan <#> (1-1) 

We have the following from the geometrical conditions shown in 

Fig. 7-1: 

Xn = XC03\l^ (7-1) 

and conversely 

X = Xn/cos ^ (7-2) 

dxn/dy «= tan <t>n = idx/dy) cos ^ = tan </> cos ^ (7-3) 
Xnp = Xp cos ^ = —y cos ^/tan </> = — T//tan 0n (7-4) 

Xp = Xnp/cos ^ ^ (7-5) 
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The values of Xp and x„p will be negative when the values of x and Xn 
are positive, because the two sets of points will always be on opposite 
sides of the origin. 

pJome of rofaffon 

Fig. 7-1. 

In order to plot the paths of contact, a series of points on the basic-rack 
profile together with the values of their tangents are used. From these 
values, the corresponding points on the paths of contact are (hMermined 
by means of Eq. (1-1) and (7-4). These values can be plotted to any 
desired scale. 

Example of Change from Normal Plane to Plane of Rotation. As a dofinito example 

we shall use the full-cycloidal rack profile as the form of the normal profile of the basic 

rack. The equation of this form is as follows: For the addendum of the basic rack, 

we have, when 

a = radius of rolling circle 

e « angle of rotation of rolling circle 

Xn = a(e - sin e) (1-46) 

2/ = a(l - cos €) 0-47) 

For the dedendum of the basic rack, we have 

Xn " -o(6 — sin c) (7-6) 

y - -a(l — cos f) (7-7) 
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In other words, this form is symmetrical about the pitch point, and the coordi¬ 
nates of the addendum and of the dedendum are alike except for the change in sign. 

For the addendum, we have 

tan “ dxn/dy = yly/2ay - if (1-49) 

^np =* -y/tan == — \/2ay~- y* (1-51) 

Equation (1-51) is the equation of the rolling circle of the addendum at its starting 
IX)siti()ii. 

We will use a value of 0.500 for a. From this value and with the use of the fore¬ 
going ecpiations, using vahu‘S of € from zero to 180 deg, varying by 15-deg increments, 
we obtain the valuers tabulated in Table 7-1. These values are also plotted in Fig. 
7-2. That part of the j)ath of contact which is included in the tabulated values is 
shown as a full line. The other half of this path of contact, when t varies from 180 to 

Table 7-1. Coordinates of CYrixiioAL Norm\l Basic Rack and Path of Contact 

(Pl<)tt(‘d in Fig. 7-2) 

i 
<><'R 1 

i 
J-H, Ul. 

1 
i/, in. tan </>r, in. 

180 1.570K0 l.(X)000 X -0 00000 
1(35 1.31010 ! 0.98297 7.59575 -0.12938 
150 1.0.5900 0.93,301 3.73205 -0.2,5000 
135 0.824.55 0.8,53.55 2.41421 -0.3,5356 
120 0.61419 0.7,5000 1.73205 -0.43301 

105 0.43333 0.62911 1.30323 -0.48296 
00 0.2S501 0.50000 1.00000 -0.50000 
75 0.17154 0.370.59 0.76733 -0.48296 
60 0.09059 0.2.5000 0,57735 -0.43301 
45 0.03915 0.146.50 0.41421 -0.35356 

30 0.01180 0.06699 0.26795 -0.25000 
15 0.00149 0.01704 0.13165 -0.12938 
0 0.00000 0.00000 0.00000 0.00000 

- 15 1 -0.00149 -0.01701 0.13165 0.12938 
- 30 ' -0.01180 

1 
-0.06699 0.26795 , 0.25000 

- 45 -0.03915 -0.146,50 0.41421 0.3,53,56 
- 60 -0.090,59 -0.2,50(X) 0.57735 0.43301 
- 75 -0.17151 -0.37059 0.76733 1 0.48296 
- 90 -0.28.540 -0.50000 1.00000 ! 0.50000 

-105 -0.43333 -0.62941 1.30323 0.4,8296 

-120 -0.61419 -0.75000 1.73205 0.43301 

-135 -0.82455 -0.85355 2.41421 0.353,56 
-1.50 -1.0.5900 -0.93301 3.73205 0.250(X) 
-165 -1.31049 -0.98297 7.59575 0.12938 

-180 ; -1.57080 -1.00000 OC 0.00000 
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360 deg is shown in dotted lines. These values are for the form of the basic rack in 
the normal plane and for its path of contact in that same plane. 

Basic-rack Profile and Path of Contact in Plane of Rotation. We shall next deter¬ 
mine the values of the coordinates of the basic-rack profile and its path of contact 
in the plane of rotation. We have for the addendum of this example 

X “ (a/cos ^)(c — sin c) 

y « a(l — cos <) (1-47) 
tan if> *= tan 0«/cos ^ =» y/coa ^ y/2ay — y* 

Xp =» Xnp/cos ^ =■ —\/2ay — y*/coB ^ 

For this example we shall use the following values: 

^ = 30® cos ^ =* 0.86603 

Table 7-2. Coordinates in Plane of Rotation of Helical Cyciajidal Basic 

Rack and Path of Contact 

(Plotted in Fig. 7-3) 

€, deg y, in. X, in. tan <t) Xp, in. 

180 1.00000 1.81380 oo 0.00000 
165 0.98297 1.51322 8.77081 -0.11204 
150 0.93301 1.22283 4.30940 -0.21651 
135 0.85355 0.95211 2.78769 -0.30619 
120 0.75000 0.70921 2.00000 -0.37500 

105 0.62941 0.50037 1.504g4 -0,41826 
90 0.50000 0.32955 1.15470 -0.43301 
75 . 0.37057 0.19808 0.88604 -0.41826 
60 0.25000 0.10460 0.66667 -0.37500 
45 0.14650 0.04521 0.47829 -0.30619 

30 0.06699 0.01363 0,30940 -0.21651 
15 0.01704 0.00172 0.15202 -0.11204 
0 0.00000 0.00000 0.00000 0.00000 

- 15 -0.01704 -0.00172 0.15202 0.11204 
- 30 -0.06699 -0.01363 0.30940 0.21651 

- 45 -0.14650 -0.04521 0.47829 0.30619 
- 60 1 -0.25000 -0.10460 0.66667 0.37500 
- 75 -0.37057 1 -0.19808 0.88604 0.41826 
- 90 -0.50000 -0.32955 1.15470 0.43301 
-105 -0.62941 -0.50037 1.50484 0.41826 

-120 -0.75000 -0.70921 2.00000 0.37500 
-135 -0.85355 -0.95211 2.78769 0.30619 
-150 -0.93301 -1.22283 4.30940 0.21651 
-165 -0.98297 -1.51322 8.77081 0.11204 
-180 -1.00000 -1.81380 00 0.00000 
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From these equations and the values tabulated in Table 7-1, we obtain the values 
tabulated in Table 7-2. These values are also plotted in Fig. 7-3. As before, the 
values for the dedendum of the basic-rack form are the same as those for the addendum 
except for the change in sign. 

The path of contact in the plane of rotation is no longer two tangent circles. This 
form has become two tangent ellipses, with a width on the minor axis of 0.86603 and a 
length on the major axis of 1.000. The resulting conjugate tooth forms are no longer 
cycloidal ones. 

Conjugate Gear-tooth Form in Plane of Rotation. The conjugate 
gear-tooth form can be determined only in the plane of rotation. All the 
following symbols are for values in the plane of rotation and are also the 
same as those for spur gears: 

X = abscissa of basic-rack form 
y = ordinate of basic-rack form and of path of contact 
0 = pressure angle 

Xp = abscissa of path of contact 
S = vectorial angle of conjugate gear-tooth form 
r = radius to conjugate gear-tooth form 

R == pitch radius of gear 

r = - yY + Xp* (1-2) 
=* {(i — Xp)/R\ -h tan-' [xJ{R — y)] (1-3) 

Here we use the same coordinate system as was used for spur gears. 
The vectorial angle is equal to zero at the pitch point. Its values are 
minus for the addendum of the conjugate gear-tooth form and are plus 
for its dedendum. 
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Example of Conjugate Gear-tooth Form. As a definite example, we shall continue 
with the previous one and determine the tooth form of a 4-lobed helical rotor whose 
basic-rack form is given in Table 7-2. 
When N = number of teeth in gear 

Pn = normal circular pitch, in. 
p = circular pitch in plane of rotation, in. 
^ == helix angle at pitch line 

p = p„/cos xp (7-8) 

Pn — V cos \p (7-9) 

For this example, we have the values of the coordinates of the basic rack and its 

path of contact that are tabulated in Table 7-2. We have also the following values; 

N ^ A ^ = 30° cos xp = 0.86603 p„ = 6.2832 a = 0.500 

6.2832 
^ 0.86603 ^■“'^'^21 

4 X 7.25521 
R = p.\ /2r = —^ 2832“ = 

The coordinates of the conjugate gear-tooth profile in the plant* of rotation have 

been calculated from these vahies. They are tabulated 

in Table 7-3 and plotted in Fig. 7-4. 

^ \ ^ Contact Line between Helical-gear-tooth 
\ / \ / Surfaces. On spur gears the contact between 

meshing teeth is a straight line, which is 

--—^j\ parallel to the axes of the mating gears. As 
j ' fhe gears revolve, this contact line travels from 

the bottom of the active profile of tlu^ driving 

^ member to the top of the active profile. On 

the driven member, this contact line travels from the top of its active 
profile to its bottom. It Ls the same contact line, but the two gears are 

revolving in opposite directions. 
On helical gears, except for the involute form, the contact lietween 

mating teeth is a curved line that will be in a generally diagonal direction 
acro.ss the face width of the gears. It will reach from the top to the 

bottom of the active profile of the teeth when the face width is great 
enough to permit it to do so. With wide face widths, this ccmtact line 

will be repeated on several pairs of mating teeth. As tluisc gears revolve, 
this contact line will travel in an axial direction across the face width of 
the mating gears. A point on these contact lines, such as the point where 

the contact line intersects a definite plane of rotation, will travel vertically 

over the active profile as in the case of a spur gear, but the contact line 
as a whole will travel in an axial direction. 

In order to determine the form of the projection of these contact 
lines, either on a plane parallel to the pitch plane of the basic rack or on a 
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Table 7-3. Coordinates op Tooth Profile of 4-lobed Rotor in Plane of 

Rotation 

(Plotted in Fig. 7-4) 

«, deg y, in. r, in. d, rad 

180 1.00000 3.61880 0.39270 
165 0.98297 3.63756 0.32107 
150 0.93301 1 3.69214 0.25295 
135 0.85355 3.77768 0.19121 
120 0.75000 3.88693 0.13811 

105 0.62941 4.01126 0.09443 
90 0.50000 4.14150 i 0.06035 
75 0.37057 4.26877 0.03530 
60 0.25000 4.38486 0.01820 
45 0.14645 4.48282 0.00772 

30 0.00099 4.55696 i 1 0.00230 
15 0.01704 1 4.60312 0.00029 
0 0.00000 1 4.61880 0.00000 

- 15 -0.01704 i 4.63819 -0.00047 
- 30 -0.00699 4.69079 -0.00366 

- 45 -0.14645 4.77508 -0.01191 
- 60 -0.25000 4.88322 -0.02696 
- 75 -0.37057 5.00687 -0.04981 
- 90 -0.50000 5.13708 -0.08071 
-105 -0.62941 5.26485 -0.11936 

-120 -0.75000 5.38188 -0.16501 
-135 — 0.85355 5.48091 -0.21651 
-150 -0.93301 5.55603 -0.27264 
-165 -0.98297 5.60289 -0.33188 
-180 -1.00000 j 5.61880 -0.39270 

plane parallel to the one that contains the axes of the gears, we must 
know the coordinates of the tooth profile of the basic rack and of its path 
of contact in the plane of rotation, as well as the value of the helix angle. 

Thus when 
z = abscissa of projection of contact line on plane parallel to pitch 

plane of basic rack and on plane containing axes of geai*s 
yi == ordinate of projection of contact line on plane containing axes of 

gears 
1/2 == ordinate of projection of contact line on plane parallel to pitch 

plane of basic rack 
Xp = ordinate of path of contact in plane of rotation 
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The calculated values of these coordinates are tabulated in Table 7-4 and plotted 
in Fig. 7-5. 

Forms of Fillets, Internal Helical Gears, etc. The forms of the 
trochoidal fillets, the limitations to conjugate gear-tooth action, internal- 
gear problems, etc., must all be studied in the plane of rotation. When 
the conditions of the drive in the plane of rotation are known, all further 
analyses are identical to those for spur gears. If the normal profile of the 
basic rack is the starting point for the analysis, then its form and its path 
of contact in the plane of rotation must be established first. After that is 
accomplished, it is treated as a spur gear. If conditions of contact or any 
other features relating to its helical form are required, direct reference to 
the recpiired conditions on the basic rack will lead to the simplest and most 

direct solution. 

Table 7-4. Coordinates of Projections of Contact Line 

(Plotted ill Fig. 7-5) 

X — Xpy in. 1 z, in. ^1, in. t/2, in. 

0.00000 1 0.00000 0.00000 0.00000 
0.23014 1 0.39861 0.06699 0.21651 
0.47960 0.83069 0.25000 0.37500 
0.76256 1.32078 0.50000 0.43301 
1.08421 1.87791 0.75000 

1 
0.37500 

1.43934 2.49301 0.93301 ! 0.21651 
1.81380 3.14160 1.00000 1 0.00000 
2.18826 3.79018 0.93301 1 -0.21651 

2.54339 4.40528 0.75000 1 -0.37500 
2.86.504 4.96239 0.,50000 ! 

1 
-0.43301 

3.14800 5.45249 0.25000 i -0.37500 
3.39746 5.88457 0.06699 ! -0.21651 
3.62760 6.28320 0.00000 i 0.00000 
3.85774 6.68180 -0.06699 i 0.21651 
4.10720 7.11388 -0.25000 0.37500 

4.39016 7.43077 -0.50000 0.43301 
4.71181 8.16109 -0.75000 0.37500 

5.06694 8.77620 -0.93301 0.21651 

5.44140 0.42480 -1.00000 0.00000 
5.81586 10.07337 -0.93301 -0.21651 

6.17099 10.68847 -0.75000 -0.37500 
6.49264 11.24559 -0.50000 -0.43301 
6.77560 11.73569 -0.25000 -0.37500 

7.02506 12.16777 -0.06699 -0.21651 
7.25520 12.56640 0.00000 0.00000 



CHAPTER 8 

INVOLUTOMETRY OF HELICAL GEARS 

The involute helical gear stands in a class by itself. It retains all the 
unique properties of the involute spur gear, which do not need to be 

repeated here. In addition, when the helical action is adequate, its con¬ 

tact ratio in the plane of rotation is of secondary importance; hence many 

of the limitations to spur-gear design do not exist here. Undercut tooth 

profiles are about the only limitations to helical involute gear-tooth 

design. 
It will assist to a better understanding and to a greater appreciation 

of the properties of the involute helical gears if we have a clear and simple 

mental picture of the physical shape or nature of the development of this 
involute helicoid. Thus if we take a piece of paper with square edges and 

wTap it tightly about a cylinder with the outside edge parallel to the axis 

of the cylinder, and then unwind this paper, the outside edge of it as it 

sweeps through space generates the surface of an involute spur gear. 

Here the cylinder is the base cylinder of the spur gear. Now if we cut t he 

outside edge of this paper at an angle as indicated in Fig. 8-1, this angular 

edge becomes a helix of uniform lead when this paper is wrapped tightly 

on the cylinder. As we unwind this paper with the angular edge, cacdi 

point on this edge describes an involute curve, but each point starts from 

a different angular position on the cylinder. This cylinder is also the 

base cylinder of the involute helicoid. The surface described by the 

angular edge of this paper is the surface of an involute helicoid, or that 

of a helical involute gear. 
152 
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The helix angle of the angular edge of the paper when it is wrapped 
tightly around the cylinder is the helix angle of the involute helicoid on 
its base cylinder. Thus there are only two fixed or constant values of the 
involute helicoid: first, the size of the base cylinder, and second, the helix 
angle on the base cylinder. All other proportions and values are vari¬ 
ables that are dependent upon these two fixed values. Many otherwise 
perplexing problems of involute helical gears can be solved simply and 

directly by referring back to this simple fundamental development of 
the involute helicoid. Thus when 

Rb — radius of base cylinder, in. 
\pb = helix angle on base cylinder 
L = lead of helix, in. 

L == 2T7?6/tan (8-1) 

tan ^6 = 2TrRb/L (8-2) 
Rb = L tan rPb/2ir (8-3) 

Basic Relationships of Helical Involute Gear Elements. We will now 
develop some of the basic relationships of the helical involute gear. 
Here, as with spur gears, we will start with the basic rack of the system. 

Referring to Fig. 8-2, we have the following: 
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4> = pressure angle in plane of rotation 

(t>n = normal pressure angle of basic rack 
N = number of teeth in gear 

p = circular pitch, plane of rotation, in. 
^ = helix angle of basic rack and at R 

Pn = normal circular pitch, in. 
R = pitch radius of gear, in. 
P = diametral pitch, plane of rotation 

Pn = normal diametral pitch 

tan yf/ = 2TrR/L (8-4) 
L = 27rP/tan yp = 27rPi>/tan yph (7-13) 
p = Pn/cosyp (7-8) 

Pn — V cos yp (7-8) 

tan <t>n = tan 0 cos yp (7-3) 
tan <t> = tan <pn/cos yp (8-5) 

Rb — R cos <t> (4-6) 

Solving Eq. (7-13) for tan ^6, we have 

tan ^6 = (Rb/R) tan ^ 
But 

Rb/R = cos <t> (4-8) 

Whence 
tan ^ = tan ^ cos <l> (8-6) 

This last relationship is a very important and useful one. The 
product of the cosine of the pressure angle of an involute helicoid at any 
radius and the tangent of the helix angle at that same radius is equal to a 
constant for any given helicoid, and that constant is the value of the 

tangent of the helix angle on the base cylinder. 

Generating Helical Involute Gears. There are two different methods 
widely used for generating helical involute gears. One method uses a 

generating tool that represents the form of the normal basic rack either 
in the form of a hob or else in the form of a rack-shaped planing tool. The 
other method uses a helical pinion-shaped cutter that has a definite lead. 

This cutter and the gears it generates act together as a pair of helical 
gears; hence the lead of the generated gear must be proportional in the 
ratio of the tooth numbers of the gear and the cutter to the lead on the 

cutter. In other words, these helical pinion-shaped cutters are made to 

produce gears of definite nominal helix angles. Special helical pinion¬ 
shaped cutters must be made to produce other helix angles or leads. 

With the first method, where standard basic-rack forms are used as 

the basis of the helical-gear design, this basic-rack form is the normal 
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basic rack of the helical gears. Where helical pinion-shaped cutters are 
used, and the forms of these cutters are based on standard basic-rack 
forms, the basic-rack form here is the basic rack in the plane of rotation 
for the helical-gear design. In this case, the design is exactly the same 

as that for spur involute gears. Hence in the development of relation¬ 
ships for use in helical-gear design, we must deal with both conditions. 
The further consideration of helical involute gear design will be in the 
form of individual problems. 

Problem 8-1. Given the normal diametral pitchy numbers of teeth in the 
gears, and the center distance, to determine the leads and the helix angle at 

the pitch line. 
When Ni = number of teeth in pinion 

N2 = number of teeth in gear 

Pn = normal diametral pitch 
C = center distance, in. 
^ = helix angle of basic rack 

Li = lead of pinion, in. 
Li = lead of gear, in. 

cos ^ + Ni)/2PnC (8-7) 

L\ = vNi/Pn sin ^ (8-8) 
Li = tN2/Pn sin ^ (8-9) 

It is apparent from an inspection of Eq. (8-8) and (8-9) that the leads 
are directly proportional to the numbers of teeth in the gears. Therefore 
whenever any approximation or rounding off of decimals is used for the 

values of the leads of mating helical gears, care should be taken to ensure 
that the leads actually used are directly proportional to the numbers of 
teeth in the gears. 

Example of Leads and Helix Angle. As a definite example we shall use a pair of 
helical involute gears with the following given values: 

8 iVi 

cos yp - 

20 Nt 

20 -f 55 
55 C = 5.250 

» 0.89286 
2 X 8 X 5.250 

^ - 26.765** sin yp - 0.45033 
3.1416 X 20 

Li - 

Lj -» 

8 X 0.45033 

3.1416 X 55 
8 X 0.4'5033 

17.44054 

47.96149 

If we wish to round off these values of the leads, we can use 

Li - 17.440 in. 

L, - X 17.440 - 47.960 in. 

Then 
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Problem 8-2. Given the helix angle at the pitch radii, the normal 
diametral pitch, and the numbers of teeth in a pair of helical gears, to deter- 

mine the center distance. 

When all symbols are the same as before, we have 

C = (iVi + N,)/{2P^ cos (8-10) 

Example of Center Distance. As a definite example we will use a pair of helical 
gears with the following given values: 

yP = 25° COS yp = 0.90631 Pn = 12 
^ _ 30+60 

2 X 12 X 0.90631 

Ai = 30 

4.13765 

A* « 60 

Problem 8-3. Given the number of teeth in a helical gear, the helix angle 
of the basic rack, and the proportions of the normal basic rack, to determine 
the pitch radius, the radius of the base cylinder, the lead of the helix, and the 
helix angle on the base cylinder. 

When N = number of teeth in gear 
yp = helix angle of basic rack 

Pn = normal diametral pitch of basic rack 

R = pitch radius of gear, in. 
<t>n = normal pressure angle of basic rack 

(p = pressure angle of basic rack in plane of rotation 

Rb = radius of base cylinder, in. 
L = lead of helix, in. 

\kb = helix angle on base cylinder 

R = A'/(2PnCOS^) (8-11) 

tan <t> = tan <#>n/cos yp (8-5) 

Rb = R cos (t> (4-9) 
tan \pb = tan xp cos </> (8-6) 

L = irN/Pn sin }p (8-8) 

Example. As a definite example we shall use a helical gear with the following 
given values: 

A = 40 
^ = 30° COS xp 

<t>n = 14.50° tan « 0.25862 /\ « 10 
«= 0.86603 tan ^ = 0.57735 sin xp = 0.50000 

40 

tan 4> ^ TTc 

Rb 
tan xpb 

0.29863 

L « 

2 X 10 X 0.86603 
0.25862 
0.86603 
16.627° COS 0 * 
2.30940 X 0.95819 
0.57735 X 0.95819 
28.952° 
3.1416 X 40 

= 2.30940 

0.95819 
= 2.21284 
« 0.55321 

10 X 0.50000 
- 25.13280 
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All the problems in Chap. 5 for involute spur gears may be used 
directly for helical involute gears when the values for the basic-rack or 
tooth proportions have been established in the plane of rotation. This 
applies only to the proportions and sizes of the involute profiles them¬ 
selves and to their interrelations with each other. 

Problem 8-4. Given the center distance^ numbers of teeth or reduction 
ratiOj and the normal basic-rack proportionSy to determine the tooth propor¬ 
tions and the bobbing data. 

There are several different solutions possible for this problem. 
1. We can determine the helix angle so that the sum of the pitch 

radii are equal to the given center distance. This is the more common 

solution, but it is not always the best one. Here we can proportion the 
teeth in the conventional manner, or we can increase the addendum of the 
smaller gear to avoid undercut, for example, and decrease the addendum 
of the mating gear an equal amount. This solution may introduce values 

for the leads that may require a considerable train of change gears on the 
hobbing machine. 

2. The numbers of teeth may be small, and excessive undercut may be 

present, if the first solution is followed. Here, as with spur gears, we may 
use a smaller diameter and helix angle for generating the gears than is 
required to make the sum of the nominal pitch radii equal to the specified 

center distance. Then we shall determine the basic-rack proportions in 
the plane of rotation and proceed as with spur gears as in Prob. 5-13. 

3. We can follow the practice outlined in Prob. 5-13 but shall first 
make a trial solution for the leads, and then select leads approximating 
the calculated ones but leads that are easy to obtain on the hobbing 
machine. Then using these simple leads as a start, we shall recompute 
the helix angle of generation to suit them, determine the basic-rack 
proportions in the plane of rotation, and proceed along the same lines as 
those shown in Prob. 5-13. This last method is the solution that will be 
(jarried through here. 

Let </>nc = pressure angle of rack-shaped cutter or hob 
Pne = diametral pitch of hob 

ah = addendum of hob, in. 
Cl = center distance with pressure angle of </>! in plane of rotation, 

in. 
C2 = given center distance of operation, in. 
Ni = number of teeth in pinion 
N2 — number of teeth in gear 

Ro\ = outside radius of pinion, in. 
Ro2 = outside radius of gear, in. 
Rr\ =* root radius of pinion, in. 
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Rr2 = root radius of gear, in. 
Li = lead of helix of pinion, in. 
L2 = lead of helix of gear, in. 
Ri = pitch radius of pinion, in. 
R2 = pitch radius of gear, in. 
61 = dedendum of pinion, in, 

62 = dedendum of gear, in. 
= helix angle of generation 

^2 = helix angle of operation 
4>i = pressure angle of generation in plane of rotation 
4>2 = pressure angle of operation in plane of rotation 
Pi = diametral pitch of generation in plane of rotation 
ht = whole tooth depth of gear teeth, in. 

The first step is to make a trial calculation for the leads of the gears. 
When the tooth numbers are small and excessive undercut may be pres¬ 
ent, the center distance used for this trial solution should be a suitable 
amount smaller than the specified center distance of operation. 

For example, if we have a pair of such gears with 20 and 30 teeth, the 
sum of their tooth numbers is equal to 50. The nominal center distance 
for such spur gears of 1 DP is 25.000 in. A good design for such a com¬ 
bination would use an operating center distance of 25.5931 in., or an 
increase in center distance of 0.5931 in. If the helical gears are of 8 DP, 
we would divide this difference by 8, which gives us a value of 0.0741 in. 
We would then use a value for C2 in the trial calculations for the leads 
somewhere between 0.070 and 0.080 in. smaller than the specified value. 
When the tooth numbers are large and no danger of excessive undercut 
exists, we would use the specified value of C2 in the trial calculations for 
the leads. 

Trial Calculations for the Leads 

cos = {Ni + N2)/2PncCt (8-7) 
Li = wNi/Pnc sin (8-8) 
Lj = vNi/Pnc sin (8-8) 

When the trial values for these leads are obtained, we will select values 
for them that are reasonably close to the calculated ones, leads that can 
be readily obtained on the bobbing machines, and leads that are directly 
proportional to the numbers of teeth in the gears. Then we proceed as 
follows: 

Calculatiom for the Generating Helix Angle 

sin ypi = vNi/PncLi == wNtIPJLi 
tan 4>i = tan <l)ne/cos \l/i 

Pi = Pnc cos 

(8-12) 
(8-5) 

(8-13) 
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Cl = {Ni + N2)/2Pi (5-45) 
cos 02 = Cl cos 01/C2 (5-46) 

From here on, we follow the spur-gear problem as given in Prob. 5-13. 

Rri + Rr2 — Cl — 2ah + [Ci(inv 02 — inv 0i)/tan 0i] (5-48) 

Here, as with spur gears, the sum of the root radii is a constant 
regardless of how the teeth are proportioned. At times we must hold the 
outside radius of one of the two members of the pair to a definite size 
because of other structural conditions of the particular mechanism. In 
such cases we would determine the value for the whole tooth depth, 
subtract it from the fixed outside radius, and thus obtain the value of the 
root radius for that particular member of the pair. This root radius 
would then be subtracted from the sum of the root radii, and the 
remainder would be the value of the radius of the root of the mating gear. 
By adding the value of the whole tooth depth to this root radius, we 
would obtain the outside radius of this mating gear. 

The flexibility in the design of helical involute gears is almost 
unlimited. When the helical contact is adequate, we do not need to 
concern ourselves with the contact ratio of the involute profiles in the 
plane of rotation. Our only serious limitation is undercut. This can 
and should always be avoided. 

Calculations for Tooth Proportions. When all other symbols are the 
same as before and 

ha == nominal whole depth of tooth, in. 
C\ = nominal clearance, in. 

h = (C2 - {Rrl + /er2)] (5-51) 

WTien there is no restriction on the outside radius of either gear of the 
pair, the following equations prove effective for determining the several 
tooth proportions: 

C2 — {Rrl + Rr^ 0l — --, (5-49) 
1 -h V^/N2 

bi = Ci — {Rrl -j- Rri) — bi (5-50) 

' Ni -h Ni 
(5-52) 

Z> N2C2 _ /nr jp 
N^ + Ni ~ 

(5-53) 

Rrl = — 61 (5-54) 
Rr2 ~ R2 — (5-55) 
Rol = Rrl + ht (5-56) 
Ro2 ~ Rr2 ”1“ ht (5-57) 
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Examples. In order to give some indication of the great flexibility of helical 
involute gear design, we shall use several different examples: each of them having to 
meet different sets of conditions. The examples given are only samples and do not 
begin to exhaust the many varying sets of conditions that can be handled effectively 
by this method. 

First Example, As the first definite example we shall use the following: Reduction 
ratio of three to one; outside diameter of pinion to be held to 0.750 in., with 1.250 in. 
center distance; some standard 14}^-deg hob is to be used to generate the helical 
gears. This gives the following values: 

ATa = 3iVi C, = 1.250 Roi = 0.3750 

The first step is to determine the normal diametral pitch and numbers of teeth 
for these gears. If they were spur gears of conventional design, then 

If we use Pi 16, then 

P _ N1C2 _ 1.250 
' Ni-{- N2 4 

P - 
' 0.625 

0.3125 

Ni - 10 and Nt =• 30 

The sum of the tooth numbers in this example is 40. For 1-DP spur gears, the center 
distance should be about 20.7428 in. to avoid undercut, an increase of 0.7428 in. over 
the proportional center distance. Dividing this value by 16, we obtain a value of 
0.0464 in. Hence we shall use as a trial value the following: 

Cl = 1.250 - 0.047 = 1.203 

But we must use a hob of some standard diametral pitch. For the helical gears, it 
must be of a finer pitch than for a spur gear. We have the relationship 

P\ = Pne cos \f/i 
In this trial example, we have 

Pi 
Ni -f N2 
2 X 1.203 

16.625 

(8-13) 

Assuming a trial value of = 30°, 

cos ypi = 0.86603 
Then 

cos 0.86603 

We must use a standard diametral pitch, so in this example it must be either 18 
or 20. With the small numbers of teeth involved, the better selection would be the 
finer pitch, or 20 DP. Now we have the following values for this problem: 

Pne « 20 = 10 AT, « 30 C, = 1.250 Roi =» 0.375 
<t>nc *» 14.50° cos <l>nc » 0.96815 tan <t>nc « 0.25862 an *= 0.0579 

Trial Calculation for Lead 

40 
cos ypi 

2 X 20 X 1.250 
0.80000 
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“ 36.870° sin 

j _ 3.1416 X 10 

‘ 20 X 0.600 “ 

. ^ 3.1416 X 30 

’ “ 20 X 0.600 

•= 0.60000 

2.6180 

7.8540 

We shall select the following values for the leads: 

L, = 2.600 Li = X 2.600 = 7.800 

We shall now determine the actual helix angle of generation 

sin ^ 
3.1416 X 10 

= 0.60415 
20 X 2.600 

37.168*=^ cos = 0.79687 

0.25862 
tan <f)i = = 0.32454 

0.79687 

01 « 17.980® cos 01 - 0.95116 inv 0i = 0.010724 

Pi = 20 X 0.79687 = 15.9374 

We shall now treat the problem the same as if it were for a pair of spur gears. 

^ 40 

cos 02 = 

2 X 15.9374 
1.25491 X 0.95116 

1.25491 

0.95489 
1.250 

02 = 17.275® inv 02 = 0.009481 

Rri + Pr2 = 1.25491 - 0.1158 + 
1.25491(0.009481 - 0.010724) 

0.32454 
= 1.13863 

9 ^ ^7 
ha « = 0.1079 Cl = 0.0079 

h, = (1-250 - 1.13863) = 0.10377 

With the fixed value of Roi = 0.375, we have 

Rn = 0.3750 - 0.10377 = 0.27123 

Rr2 = 1.13863 - 0.27123 = 0.86740 

Ro2 = 0.86740 + 0.10377 - 0.97117 

The 10-tooth pinion should be checked to make sure that its root radius is above the 

undercut limit. If it is below, either its value must be increased or else the drive 

should be recalculated using a finer pitch and a greater number of teeth. For the 

undercut limit, we have the following from the analysis of spur gears: 

When Ru =» radius to undercut limit, in. 

R\ = generating pitch radius of pinion, in. 

01 =« generating pressure angle 

Ru 

R\ 
Ni _ 10 
2Pi 2 X 15.9374 

0.31373 

P'l cos* 0, - c, - 0.31373 X (0.95116)* - 0.0079 0.27593 

A comparison of the values of Rri and shows that there will be undercut on the 

10-tooth pinion. The difference is small so that wo can increase the root radius of the 

pinion and decrease the root radius of the gear the same amount. We must leave the 
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outside radius of the pinion unchanged because it is a fixed value. Otherwise, we 

would increase this outside radius the same amount as the root radius. We must 

reduce the outside radius of the gear the same amount that we increase the root radius 

of the pinion so as to maintain the clearance. The minimum change would be to make 

the root radius of the pinion equal to the undercut radius. This change would be 

0.27593 - 0.27123 = 0.0047 in. 

We shall allow a little margin, however, and choose a correction that will make the 

value of the root radius of the pinion an even decimal. Hence we shall make a correc¬ 

tion of 0.00877 in. on both members. This gives the following for the final values: 

Rri = 0.27123 + 0.00877 - 0.2800 

Roi = 0.375 Fixed value from the start 

Rr2 = 0.86740 - 0.00877 = 0.85863 

Ro2 - 0.97117 - 0.00877 = 0.96240 

These last values are the actual dimensions to which the gears would be made. 

If we wish to determine the tooth forms of these gears in the plane of rotation, we 

must first determine the arc tooth thicknesses of the teeth at their generating radii, 

and then proceed as in Prob. 5-1. 
When Ti = arc tooth thickness of pinion at generating radius, in. 

T2 = arc tooth thickness of gear at generating radius, in. 

R'l — generating radius of pinion, in. 

R'2 = generating radius of gear, in. 

Pn = circular pitch of hob, in. 

p = circular pitch of basic rack (hob) in plane of rotation, in. 

and all other symbols are the same as before 

p = pn/cos (t>i (7-8) 

T\ =* (p/2) ■+• 2(Rr\ ah R'\) tan <t>i (8-14) 

T2 =* (p/2) -f“ 2{Rr2 “h Uh — R'2) tan (8-15) 

The coordinates of these tooth profiles 

have been calculated, and they are plotted 
in Fig. 8-3. 

Second Example. For the second exam¬ 

ple we shall take one with no limitations on 

diameters or center distance. This exam¬ 

ple will consist of a pair of helical gears of 

20 and 40 teeth, generated with a 10-DP, 

143^-deg standard involute hob, with a 

helix angle of about 30 deg. This gives 
the following values for the trial calculation for the lead: 

Nx * 20 A'j = 40 Pne - 10 = 30° cos =* 0.86603 

sin = 0.50000 </>«. = 14.50° tan « 0.25862 an * 0.1157 

Trial Calculations for Lead. Transposing Eq. (8-7) to solve for Cj, we have 

„ Ni +N2 
* *“ 2Pnc cos 

20 +40 

(8-16) 

C, 
2 X 10 X 0.86603 

3.46410 
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, _ 3.1416 X 20 
‘ 10 X 0.500 

j 3.1416 X 40 
“ 10 X 0.500 

12.56640 

25.13280 

We shall use the following values for the leads: 

Li = 12.500 Li = 25.000 

We shall now determine the helix angle of generation. 

. , 3.1416 X 20 
sin =« Yn 0.50266 

10 X 12.50 
= 30.176® cos ^1 = 0.86449 

0.25862 
tan 01 = 0.29916 

01 - 17.407' 
0.86449 

cos 01 = 0.95420 inv 0i == 0.009706 
Pi = 10 X 0.86449 = 8.6449 

60 
Cl = 

2 X 8.6449 
3.4702 

Comparing this with spur gears of the same tooth numbers, we find that for 1-DP 
gears, the center distance is increased 0.4178 in. for a total of 60 teeth in the pair. 
This would be 0.4178/10, which equals 0.04178 in. for 10-DP, 14l2-deg gears. This 
increase in center distance would give 

Ci = 3.4702 -f- 0.04178 = 3.51198 

We shall make the operating center distance an even dimension; hence we shall use 

Ci — 3.500 in. 
Whence 

cos 02 
3.4702 X 0.95420 

- 0.94608 

Rrl + Rr2 

02 = 18.900® 

3.4702 - 0.2314 + 

3.500 
inv 02 == 0.012509 

3.4702(0.012509 - 0.009706) 
0.29916 

Cl - 0.0157 

3.28221 

hn = 0.2157 

k, = (3.500 - 3.28221) = 0.20301 

3.500 - 3.28221 
6i 

6, 
Ri 

R2 

1 4- 

0.21779 - 0.09021 
20 X 3.50 

= 0.09021 

0.12758 

60 
40 X 3.50 

60 

1.16667 

2.33333 

Rrl - 1.16667 - 0.09021 = 1.07646 
Rr2 « 2.33333 - 0.12758 « 2.20575 
R,i « 1.07646 + 0,20301 =* 1.27947 
Roi « 2.20575 + 0.20301 « 2.40876 

The coordinates of these gear-tooth profiles have been calculated, and they are 
plotted in Fig. 8-4. 
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Third Example, As a third example we shall assume that the center distance 

and the tooth numbers are definitely fixed, but that the pitch of the hob and the 

diameters of the gears are variable. For this example we shall assume the following 

values: 

iVi = 17 ATa = 38 C = 6.250 

together with a 14J^-deg full-involute hob of some standard diametral pitch. 

If these were spur gears of conventional 
design, then 

P. = = 5.238 
2 X 5.25 

If Pn *=* 6, then 

cos ^1 = = 0.87300 

This trial calculation gives us some idea of the helix angle that would be needed 

with some definite diametral pitch. If the helix angle is too great, then a coarser 

pitch should be used. If the helix angle is too small, then a finer pitch should be used. 

In this example, the helix angle is slightly less than 30 deg, a value that will be con¬ 

sidered as satisfactory. We shall therefore use a standard 6-DP hob. 

Comparing this with spur gears of the same tooth numbers, we find that for a 

tooth-number total of 55 teeth, the center distance would be increased 0.5073 in. for 

1-DP spur gears. For these 6-DP gears, this amount would be 0.5073/6, which is 

equal to 0.0846 in. We shall therefore reduce the value of Ci to 5.165 in. for the 

purposes of the trial calculations for the leads. 

Trial Calculation for Leads 

cos 

= 

Lx = 

Lt 

55 
~ fy \y P \y r, lAti 0.88738 2 X 6 X 5.165 

27.454° sin = 0.46104 

3.1416 X 17 

6 X 0.46104 

3.1416 X 38 

6 X 0.46104 

= 19.30678 

43.15634 

If we select a simple value for Li that is divisible by 17, then the value of La will 

also be simple. When we divide the foregoing values of the trial leads by the respec¬ 

tive tooth numbers (19.30678/17 for example), we obtain a factor of 1.13568. We 

shall use the factor 1.20, as it is a better one for the selection of change gears. Thus 

we shall make 

Li = 17 X 1.20 = 20.40 

La « 38 X 1.20 = 45.60 

Final Caixulation for Gears. We now have the following values for the 

further calculations: 

Nx - 17 

tan <t>ne “ 

Aa “ 38 

0.25862 

sin \f/i 

Ca - 5.250 
Li = 20.40 L 

3.1416 X 17 

“ex 20.40 

26.870° cos 

4>nc - 14.50° 
“ 45.60 ah 

0.43633 

• 0.89979 

Pne « 6 
- 0.1928 
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tan <^i 0.25862 
= 0.28742 

= 16.036” 
0.89979 

cos 4>i = 0.96109 inv 4>i = 0.007544 
Pi = 6 X 0.89979 = 5.39874 

55 
C, 

cos 4>s = 

" 2 X 5.39874 
5.09378 X 0.96109 

= 5.09378 

0.93249 
5.250 

<t>i = 21.175° inv ^2 = 0.017799 

Rri + Prt = 5.09378 - 0.3856 + ^>378(0.017799_- 0.007544) 

hn = 0.3596 c, = 0.02617 

K = (5-250 - 4.88992) = 0.33565 

6.= Q ^ 0.14431 

4.88992 

1 + V38/17 

62 = 0.36008 - 0.14431 = 0.21577 

17 X 5.25 
R, = = 1.62273 

00 

/e, = = 3.62727 
00 

Rri = 1.62273 - 0.14431 = 1.47842 

Roi = 1.47842 + 0.33565 = 1.81407 

Rr2 = 3.62727 - 0.21577 = 3.41150 

Ro2 « 3.41150 -f 0.33565 = 3.74715 

The coordinates of these gear teeth have been calculated, and they are plotted in 

Fig. 8-5. 

These three examples should be suffi¬ 

cient to indicate the flexibility inherent in 

the design of helical involute gears. 

Problem 8-6. Given the 'propor¬ 
tions of a pair of helical gears, to 
determine the face contact ratio. 

The face contact ratio is the ratio 
between the helical advance on the 
pitch cylinders of a pair of helical gears across their active face width and 
the circular pitch at the pitch radius in the plane of rotation. This ratio 
must be greater than unity to obtain continuous helical contact on a 
helical-gear drive. Thus when 

F = active face width^ of gears, in. 
p = circular pitch at pitch radius, plane of rotation, in. 

= helix angle on pitch cylinder 
m/ = face contact ratio 

m/ = (F tan \p)/p (8-17) 

^ The active face width is the actual axial distance across the faces of the mating 

gears that are in actual contact. 
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Example of Face Contact Ratio. If the gears in the third example of the previous 

problem have an active face width of 3.00 in., we would have the values that follow. 

In the third example we did not determine the operating circular pitch or the helix 

angle on the pitch cylinders; hence we must calculate them now from the lead and the 

pitch radius of either gear. 

Whence 

Rx = 1.62273 

P = 

tan ^ = 

Li = 20.40 iVi = 17 
2tR, _ 6.2832 X 1.62273 _ 

T7 
2t^R, ^ 0.2832 X 1.62273 _ 

Li 20.40 

F = 3.000 

0.59976 

0.49980 

3 X 0.49980 
”” “ 0.59976 

2.500 

Problem 8-6. Given the values of a pair of helical involute gears^ to 

determine the projection of the contact line on a plane containing the axes of 

the gears and on a plane parallel to the pitch plane of the basic rack of the pair. 

Confoicf line (B) 

If we refer to Fig. 8-1, the projection of the angular edge of the paper 
that sweeps through space to develop the form of the involute helical- 
gear-tooth on either plane of reference will be the respective projections 
of the actual contact line between the mating gear teeth. Thus with 
helical involute gears, this contact line is a straight line. Referring to 
Fig. 8-6, when 
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tl^ = helix angle on base cylinder 

4> — pressure angle of operation in plane of rotation 
4' = helix angle on pitch cylinders 

A = angle between projection of contact line on plane containing the 
axes of the gears and the trace of base or pitch cylinder on plane 

5 = angle between projection of contact line on plane parallel to pitch 
plane of basic rack and projection of axes on plane 

tan A = tan ^5 sin </> 
tan 1 = tan ^6 cos <t) 

But 
tan xph = tan ^ cos <t> 

Whence 
tan A = tan ^|/ cos (f> sin <j) 

tan 8 = tan \p cos- 0 

(8-6) 

(8-18) 

(8-19) 

Example of Helical Contact Line. As a definite example we shall determine the 

contact line for the pair of helical gears in the preceding example. From this we 

have the following values: 

<t>2 = 21.175° <t> sin </) = 0.36122 cos <p = 0.93249 

cos* </> = 0.86954 tan ^ = 0.49980 4' = 20.556° 

tan A = 0.49980 X 0.93249 X 0.36122 = 0.16835 A = 9.556° 

tan 5 = 0.49980 X 0.86954 = 0.43460 <5 = 23.490° 

Problem 8-7. Given the proportions of a helical involute gear and the 

setting of the hob of given proportions^ to determine the minimum distance of 

the center of the hob from the face of the gear before the hob starts to cut. 

Referring to Fig. 8-7, when 

Roi = outside radius of gear, in. 

Roh = outside radius of hob, in. 
C = center distance between centers of hob and gear, in. 
X = angle of axis of hob with face of gear 

€i = angle on gear to point on intersection lino 
€h = angle on hob to point on intersection line 
We shall first determine the projection, of the form of the intersection 

of the outside cylinder of the hob with the outside cylinder of the gear, on 
a plane parallel to the axes of the gear and of the hob. We shall use the 
intersection of these axes on the reference plane as the origin of the coordi¬ 

nate system, as shown in Fig. 8-7. 
When X = abscissa of projection of intersection form, in. 

y = ordinate of projection of intersection form, in. 

we have the following from the conditions shown in Fig. 8-7: 

X = Roi sin €i 
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sin €i = x/Roi 

y = X tan X + (Roh sin en/cos X) 
C = Roi cos €i + Roh cos eh 

Rearranging and combining these equations so as to solve for values of 
y in terms of x and the other kno^vn values, we obtain 

cos €i = a/I — sin^ Cl = y/Ro\' — x^jRox 

C = Roh cos eh + \/Roi'^ — 
Whence 

cos eh = (C — \/Roi^ — x’^)/Roh 

sin — cos^eh = Roh^ — (C — \/ftoi“ — x^y/Roh 

Substituting this value of sin eh into the equation for y, Ave obtain 

y = X tan X + 'VRoh^ — (C — \/Roi^ — Vcos X (8-20) 

This equation will give the coordinates of the projection of the inter¬ 
section of two cylinders on a plane parallel to their axes. The maximum 
value of !/, i.e., i/m, will be the minimum distance of the center of the hob 
from the face of the gear before the hob starts to cut, unless the hob is too 
short to cover the full intersection. 
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An examination of Eq. (8-20) shows that the maximum value of x, 
i.e., Xm, will be reached when 

C — \/Roi^ — xj = Roh. 

because the expression under the radical in Eq. (8-20) becomes minus, 
and imaginary, when the value of x is greater than that given by this 
relationship. Solving this expression for Xm, we have 

= \/Roi^ - {C ~ R^^ (8-21) 

The value of y when x is equal to zero, i.e., yo, is given by the following: 

2/0 = \/Roh- — (C — Roiy/cos X (8-22) 

The value of x when the value of ?/ is a maximum, f.e., xi, is given very 
closely by the following equation: 

xi = (xm^ tan \)/^/2/0^ + tan^ X (8-23) 
Then 

Vm = xi tan X + [ Rok' — (C — \/Roi^ — Xi2)Vcos X] (8-24) 

If the length of the hob is shorter than the distance to Xi, then the 
value of xi for use in Eq. (8-24) will be given very closely by the following: 
When Xh = extension of end of hob, in. 

xi = Xh cos X (8-25) 

Example of Intersection Curve of Two Cylinders. As a definite example we shall 

use the following values: 

Roi = 10.00 R,h = 1.500 C = 11.230 
X « 30° tan X = 0.57735 eos \ = 0.86603 

Xm = VlOO - (9.73)- 2.30805 

V2.25 - (1.23)2 
yo - 

X\ 

0.86603 

(2.30805)* X 0.57735 

= 0.99135 

pm 

vTO.99135)* -f (2.30805 X 0.57735)* 

1.8518 X 0.57735 + 

= 1.85180 

V2.25 - (11.23 ~ VIO6 ~ 3.42916)* _ , 

0.86603 

If we set this hob in the machine so that the entering side has only a short exten¬ 

sion such that Xk 1.500 in., then 

xi - 1.50 X 0.86603 - 1.29904 

« 1.29904 X 0.57735 -f 
^2.25 - (11.23 - VlOO - 1.6875)* 

0.86603 “ * 
58382 
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Table 8-1. Coordinates on Intersection Curve of Hob and Gear 
(Plotted in Fig. 8-8) 

X, in. y, in. x.in. y, in. 

0.000 0.99135 -0.000 0.99135 
0.100 1,04827 -0.100 0.93280 
0.200 1,10351 -0.200 0.87257 
0.300 1.15708 -0.300 0.81067 
0.400 1.20893 -0.400 0.74706 

0.500 1.25901 -0.500 0.68167 
0.600 1.30727 -0.600 0.61455 
0.700 1.35364 -0.700 0.54535 
0.800 1.39800 -0.800 0.47423 
0.900 1.44021 -0.900 0.40098 

1.000 1.48014 -1.000 0.32544 
1.100 1 1.51761 -1.100 0.24744 
1.200 j 1.55237 -1.200 0.16673 
1.300 1.58413 -1.300 0.08302 
1.400 ! 1.61256 -1.400 -0.00402 

1.500 1.63714 -1.500 -0.09490 
1.600 1,65732 -1.600 -0.19020 
1.700 1.67222 -1.700 -0.29076 
1.800 . 1.68072 -1.800 -0.39774 
1.900 j 1.68075 -1.900 -0.51318 

2.000 1 1.67015 -2.000 -0.63925 
2.100 1 1,64265 -2.100 1 -0.78222 
2.200 ; 1.58508 -2.200 i -0.95526 
2.30805 1.33255 -2.30805 -1.33255 

0 

of two cy/inders 
Fig. 8-8. 



INVOLUTOMETRY OF HELICAL GEARS 171 

The coordinates for the full intersection curve of these two cylinders have been 

computed. They arc tabulated in Table 8-1 and plotted in Fig. 8-8. The projection 

of the end of the hob is also shown. It will be noted that this last value of ym is slightly 

greater than the true value. 

Problem 8-8. Given the proportions of a helical involute gear and of the 

hobj to determine the amount of overtravel needed to complete the generation of 

the gear. 

On bobbed herringbone gears with a clearance groove between the two 
sections of opposite hand of helix, it is necessary to have some measure 
both of the approach of the hob before it begins to cut and also of the 
amount of overtravel needed to complete the generation of the gear. 
The minimum Avidth of groove Avould be the sum of the tAvo foregoing 

factors. 
The generating action of a hob Avhen cutting a gear is exactly the 

same as the conjugate action betAveen tAvo helical gears whose axes are 

not parallel. A single-thread hob is a 1-tooth helical gear. Xo attempt 
will be made here to shoAV the derivation of the equations because the 
first step toAvards such a derivation is the stud}^ of the conjugate gear- 

tooth action of such gears. This Avill be covered in Chap. 9 on spiral 
gears. Hence only the deriAmd equations Avill l)e giA^en here, because they 
are needed to complete the design of herringbone gears. Thus Avhen 

<f>n = normal pressure angle of hob and normal basic rack 

\h = lead angle of hob at Rh 

X, = angular sotting of hob from face of gear blank 

C = center distance betAveen axes of gear and hob, in. 

Rh = generating pitch radius of hob, in. 
Ri = generating pitch radius of gear, in. 

Pn = normal circular pitch of hob, in. 

}p2 = helix angle of gear at i?2 

Roh = outside radius of hob, in. 

Ro2 = outside radius of gear, in. 
X = distance betAveen pitch planes of hob and gear, in. 
yo = overtravel of hob required to complete generation of gear tooth, 

in. 
X = C - iRh + R2) (8-26) 

sin \h = pn/2wRh (8-27) 

When the hob and gear are of the same hand, then 

X, = ^2 - X, (8-28) 

When the hob and gear are of opposite hand, then 

X. = ^2 + X, (8-29) 
U = sin* \h + tan* <t>n (8-30) 
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_V = sin^ ^ii + tan* </>„ (8-31) 
Bi = {\/'URoh'^ — Rh^sin^'Kh — jB* tan <f>„)/U (8-32) 

Bi = iVVRoi- - Ri^sm'‘4>2 - Ri tan <^„)/7 (8-33) 
j/„ = Bi sin or yo = sin ^2 [Bi — (X/tan «)»„)] (8-34) 

whichever is the larger. 

Example of Overtravel of Hob. As a definite example vve shall use substantially 

the same values as were used in Prob. 8-7. We shall also use a helical gear and hob of 

the same hand. This gives us the following values: 

= 14.500° cos <t>n = 0.96815 tan <t>n = 0.25862 = 30° 

Roh = 1.500 Rk = 1.3554 R02 =- 10.000 R2 = 9.875 

Vn = 0.3927 C = 11.2304 X = 0.000 

0.3927 
sin \k — = 0.04611 

6.2832 X 1.3554 

\h = 2.643° X. = 30° - 2.643° == 27.357° 

U = 0.002134 4- 0.066884 = 0.069018 

V = 0.250000 -f 0.066884 = 0.316884 

Vo. 1513^ - 0.35053 B, - 

B2 

0.069018 

V7.309494 - 2.55387 

0.316884 

=* 0.55855 

= 0.47254 

As the value of is the larger of the two, we have 

yo » 0.55855 X 0.500 = 0.27927 

The minimum value for the clearance groove for a herringbone gear will be ym 4- Vo* 
Using the value ym equal to 1.430 in., we have 

Minimum width of groove = 1.430 + 0.280 = 1.710 in. 

Problem 8-9. Given the lead of a helical pinion-shaped cutler, to deter¬ 

mine the lead of the generated gear. 

The leads of all mating helical gears operating on parallel axes must 
be directly proportional to the numbers of teeth in the gears, and must 
also be of opposite hand of helix. The pinion-shaped cutter, when 
generating a helical gear, operates exactly the same as a mating pinion to 

the gear being generated. 
When Nc = number of teeth in helical pinion-shaped cutter 

N\ = number of teeth in generated helical gear 

Lc = lead^ of helical pinion-shaped cutter, in. 
Li = lead^ of generated gear, in. 

L, - {Ni/N,)Lc (8-35) 

> The leads of the helical pinion-shaped cutters and of the generated gears are 

always of opposite hand. 
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Example of Lead of Gear Generated from Pinion-shaped Cutter. As a definite 

example we shall determine the lead of a 48-tooth helical gear generated by a 28-tooth 

helical pinion-shaped cutter with a lead of 25.904 in. This gives the following values: 

Nc = 28 ATi = 48 Lc = 25.904 

Li = X 25.904 = 44.40685 in. 

Helical Pinionr-shaped Cutters. The conventional helical pinion¬ 
shaped cutters are made to standard diametral pitches and pressure 

angles in the plane of rotation. The 20-deg stub tooth form is the one 
most commonly used. The tooth forms and proportions of these cutters 
in their planes of rotation are identical to those for spur gears; hence all 

gears to be produced by these cutters are designed, as far as tooth forms 
and proportions are involved, as spur gears. 

Helical internal gears are generated almost exclusively by these 
cutters, and the design of these internal gears is also covered by the 

material in Chap. G on internal gears. The only difference is that with 
adequate helical contact, the contact ratio in the plane of rotation becomes 

of secondary importance. 
Helical Internal Drives. The following tooth proportions, based on 

the 20-deg-stub tooth form, for pinions of IG teeth and over, and for 
internal gears of 28 teeth and over, cut with helical pinion-shaped cutters 
of IG teeth and larger, will avoid all interference conditions. These 
proportions are the same as those used for spur internal-gear drives 
except for the tooth heights. 
When Ii„i = outside radius of pinion, in. 

Ri = pitch radius of pinion, in. 

Ni = number of teeth in pinion 

/?2 = pitch radius of internal gear, in. 
Hi = inside radius of internal gear, in. 

Rro = root radius of internal gear, in. 

Rri = root radius of pinion, in. 
C = center distance, in. 
P = diametral pitch, plane of rotation 

T\ = arc tooth thickness of pinion at /?i, plane of rotation, in. 
T2 = arc tooth thickness of internal gear at 722, plane of rotation, 

in. 

Ri = iVi/2P R2 = N2/2P 

Roi - {Ni + 2.100)/2P = Pi + (1.050/P) (8-3G) 
R, = (N, _ 0.900)/2P = P2 - (0.450/P) (8-37) 

C {N2- Ni)/2P = P2 - Pi 
Ti = 1.7528/P 
Ti = 1.3888/P 
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The difference between the tooth heights of the shaped full-depth 

form and the stub tooth form (1-DP values) is equal to 0.250. 
Problem 8-10. Given the measurement over a pair of rolls in the opposite 

tooth spaces of a helical gear, to determine the arc tooth thickness of the teeth 

at a given radius where the helix angle and pressure angle are known. 

Measurements over rolls on helical gears are very difficult to make 
with any great degree of accuracy unless definite precautions are taken. 
In many cases, a pair of calibrated wedges, or rack teeth, make a much 

more reliable measurement for tooth thickness than do rolls. However 
rolls are often available when needed, while the special calibrated rack- 
tooth wedges may not be at hand. The measurement over rolls should 
be made between parallel flat surfaces and not with a micrometer alone. 
When the rolls are held in position on the gear by two parallels, the two 
rolls will be on opposite sides of the gear, or diametrically opposite to each 
other, whether the number of teeth in the gear is odd or even. With odd 
numbers of teeth, one roll may make contact near one edge of the gear 
while the other roll makes contact near the opposite edge of the face 

width. If an attempt is made to measure odd numbei’s of teeth over the 
rolls directly with a micrometer, one or both rolls will be tipped away 
from the correct plane of measurement, and any measured values so 

obtained are useless for any purpose. 
Ball-point micrometers may be used, but here the two balls must be 

definitely aligned in respect to the face of the gear blank. For example, 
the gear blank may be laid flat on a surface plate, and the two ball points 
may be held against this same surface plate. Where balls are used, when 
odd numbers of teeth are involved, the calculation of the actual chordal 
measurement must include the offset condition or position in exactly the 
same way as the calculations are made for spur gears with odd numbers of 
teeth. 

The calculation for the radius to the center of the ball on helical gears 
is identical to the calculations for the radius to the center of a roll on the 
same gear. For these calculations we have the following: Referring to 
Fig. 8-9, when 

r2 = radius to center of roll, in. 
Rh = radius of base cylinder of gear, in. 
Ri = radius at which tooth thickness is required, in. 
01 = pressure angle, plane of rotation, at R\ 

02 = pressure angle, plane of rotation, at r2 

W = radius of roll or wire, in. 
01 = helix angle of gear at Ri 

0b = helix angle of gear on base cylinder at Rh 

Tn = normal arc thickness at Ri, in. 
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Ti = arc tooth thickness in plane of rotation at Ri, in. 
N = number of teeth in gear 

M = measurement between two flat parallel plates that hold the rolls 
in contact with the gear teeth, in. 

we have from Eq. (5-61) 

r2 = (M - 2W)/2 

We have from the conditions shown in Fig. 8-9 

cos 02 = Rb/r2 (5-4) 

Considering again the generation of the helical tooth surfaces of the 

gear by the angular edge of the sheet of paper wound about the base 

/ 

/ 
/ 

/ 

Fig. 8-9. 

cylinder, the point of tangency of the roll or ball and the tooth surface 
will be at a distance equal to the radius of the roll or ball and normal to 
the angular edge of the paper when the angular edge of this paper sweeps 
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through the center of the ball in any plane perpendicular to the axis of 
the helical gear. 

This normal distance is equal to TF. In the plane of rotation, where 
all involute calculations must be made, the distance from the edge of the 
paper to the line parallel to the edge at a distance W from it will be equal 
to W/cos ^6. Whence 

Ti = 2Ri[{ir/N) + inv <t>2 — inv <j>i — {W/Rb cos ^6)] (8-38) 
tan ^|/b = (Rb/Ri) tan = cos <l>i tan (8-6) 

Tn = Ti cos (8-39) 

Example of Roil Measurement. As a definite example we shall use a 30-tooth, 
6-DP helical gear with the following values: 

.1/ = 6.1500 W = 0.140 Ri = 2.88673 N = 30 
4^1 = 30“ cos = 0.86603 tan = 0.57735 

4>i = 16.637“ cos <t>i = 0.95814 inv <t>i = 0.008446 

r, = 6J§0g-_0ji0 = 2.9350 

Rb = Ri cos <t>i = 2.88673 X 0.95814 = 2.76589 
tan ib = 0.95814 X 0.57735 = 0.55318 

4b = 28.951“ cos 4i. = 0.87505 

<t>2 = 19.545° inv <t>2 = 0.013878 

Ti = 5.77346 + 0.013878 - 0.008446 - = 0.30200 

T„ = 0.30200 X 0.86603 = 0.26154 

When the arc tooth thickne.ss is known, the foregoing equations can he rearranged 
to solve for the measurement over the rolls. 



CHAPTER 9 

INVOLUTOMETRY OF SPIRAL GEARS 

Screw Gearing. Screw gearing includes various types of gears used to 
drive nonparallel and nonintersecting shafts where the teeth of one or 
both members of the pair are of screw or helicoidal form. In these gears, 

the driving action is predominantly a screwing or wedging action between 
the contacting tooth surfaces. Sometimes conjugate gear-tooth action 
is present, and sometimes it is not. Spiral gears are one type of screw 
gears. A spiral-gear drive consists of a pair of helical gears that drive 

each other when mounted on nonparallel and nonintersecting shafts. 
When helical gears are mounted on parallel shafts, the contact between 

them is line contact, and the mating gears are of opposite hand of helix. 

When helical gears are used to drive nonparallel shafts, the contact 
between them is point contact, and the mating gears are generally of the 

same hand of helix. 

Spiral-gear Action. The exact nature of the action between a pair of 
spiral gears is not generally understood. Practically no present text on 

the subject of mechanical design gives a complete or correct statement of 
this action. This action must be studied in three dimensions. It is more 

complex than the study of the action between a pair of helical gears on 
parallel shafts because it cannot be shown completely on a single plane. 
On spiral-gear drives, the unique condition exists where each member of 
the pair has two distinct pitch surfaces: one is a pitch cylinder in its own 
plane of rotation, and the other is a pitch plane whose trace is in the plane 
of rotation of the mating gear. 

When the axes are at right angles to each other, the pitch plane of each 
gear travels in the direction of its own axis. WTien the axes are not at 

right angles to each other, the pitch plane of each gear travels in the 
direction of rotation of the mating gear. 

In addition, or, rather, complementary to the two pitch surfaces, each 

gear of a spiral-gear drive has two circular pitches: one is a circular pitch 
in its own plane of rotation and controls the size of its pitch cylinder, and 
the other is the axial pitch or the circular pitch of its pitch plane whose 

value is controlled by the axial pitch of the gear and the angle between 
the axes of the pair. When the axes are at right angles, the circular pitch 
of the pitch plane is the axial pitch of the gear and is equal to the lead of 

177 
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the helix divided by the number of teeth in the gear. The circular pitch 
on the pitch cylinder of one gear is the same as the circular pitch on the 
pitch plane of the mating gear. When the angular position of the axes 
is fixed, the circular pitch of the pitch plane of each gear is the same at all 
distances from the axis of the gear, while the circular pitch on the pitch 
cylinder, which is the circular pitch of the gear in its plane of rotation, is 
constrained to a fixed diameter. 

These pitch surfaces are shown in Fig. 9-1. As most commonly 
designed, the pitch planes of mating gears lie in the same plane but travel 
in different directions. This direction depends upon the angle between 

the axes of the gears. 

The driving member of a pair of spiral gears is commonly called the 
driver^ while the driven member is called the follower. Referring to 

Fig. 9-1, when the lower gear is the driver and the upper gear is the 
follower, the pitch plane of the driver travels in the direction of rotation 
of the pitch cylinder of the follower as it rolls upon it and is screwed 
along by the helix of the driver. The direction or sense of the motion of 
the pitch plane is controlled by the direction of the helix on the driver. 
The example shown in Fig. 9-1 is for a pair of left-handed helical gears. 
If they were right-handed, the pitch plane of the driver and the pitch 
cylinder of the follower would travel in the opposite direction to that 

shown. 
The pitch cylinder of the follower is driven by the pitch plane of the 

driver, while its own pitch plane is screwed along and engages the pitch 
cylinder of the driver, as indicated by the arrows in Fig. 9-1. 
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Thus we have a closed circuit of action on these spiral gears. To 
summarize, we have the following: The helix of the driver screws its 
pitch plane along its line of travel. This pitch plane is always tangent 
to the pitch cylinder of the follower and causes it to rotate. The rotation 
of the follower screws its pitch plane along its path, and this pitch plane is 
always tangent to the pitch cylinder of the driver. The rate of travel of 
this pitch plane must be the same as that of the circumference of the 
pitch cylinder of the driver. This completes the closed circuit. 

The forms of the basic racks of the two helical gears match each other 
as indicated in Fig. 9-2. When /• ^ 

the basic rack of the driver is -i u / offoNoZer^ 

moved in the direction of motion of'foZZwer 

of the pitch plane of the driver, it 
acts as a wedge or cam on the basic 
rack of the follower, and forces it 

Fio. 9-2. Fig. 9-3. 

to move in the direction of motion of the pitch plane of the follower, as 
indicated in Fig. 9-2. 

When the distance between the axes of the gears is increased, the 
sizes of the pitch cylinders remain unchanged, and the pitch plane of the 
driver remains tangent to the pitch cylinder of the follower. The pitch 
plane of the follower likewise remains tangent to the pitch cylinder of the 
driver. Under these conditions, with helical involute gears, the con¬ 
jugate gear-tooth action remains correct, but the two pitch planes no 
longer lie in the same plane, and the two pitch cylinders no longer touch 
each other but are separated as indicated in Fig. 9-3. 

When the distance between the axes is decreased from that shown in 
Fig. 9-1, the sizes of the pitch cylinders again remain unchanged and the 
pitch plane of each gear remains tangent to the pitch cylinder of the 
mating gear, thus separating the pitch planes as before, but the pitch 
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cylinders now intersect each other. The conjugate gear-tooth action, 
however, remains theoretically correct. The only restriction to the reduc¬ 
tion of the center distance is the limit of undercut on one or both of the 
gear-tooth profiles. The only restriction to the increase of center distance 
is the reduction of the contact ratio, which must be always greater than 
unity, and it can often be held to two or slightly more. 

When the angular setting of the axes of the two gears is changed, the 
circular pitch in the plane of rotation of both gears is also changed. It 
becomes larger or smaller; the result depends upon the direction of the 
angular shifting of the axes and the direction of the helices on the gears. 
When the center distance is unchanged with this change in angular posi¬ 
tion, the position of the pitch planes shifts with the change in the size of 
the pitch cylinders so that they no longer lie in the same plane. The con¬ 
jugate gear-tooth action here also remains theoretically correct. 

Hence with the point contact between a pair of helical involute gears 
operating on nonparallel axes, we have the condition where neither a shift 
in the center distance nor a change in the angular relationship of the axes 

will result in the loss of theoretically correct conjugate gear-tooth action. 
This condition is the primary reason why a spiral-gear drive of adequate 
tooth design that is not loaded above its limited capacity is generally 
the quietest and most satisfactory of all the different types of gear drives. 
No small error in alignment of shafts or in the center distance between 
them has any detrimental effect on their action together. 

Except with gears of the same helix angle, the diameters of the pitch 
cylinders of a pair of spiral gears are not directly proportional to their 
numbers of teeth. In these drives, the speed or reduction ratio is depend¬ 
ent upon the numbers of teeth alone. 

Only helical involute gears will be considered in this study of spiral 
gears. Other forms may be used, but they do not have the same freedom 

and versatility as the helical involute gears. The individual gears of 
these spiral-gear drives are helical involute gears. All geometrical 
relationships of these gears are identical to those of helical involute gears 
as given in the preceding chapter. 

Conjugate Action of Spiral-gear Drives. The conjugate gear-tooth 
action of a spiral-gear drive can be studied in the plane of rotation of each 

gear of the pair. The projection of the path of contact on a plane parallel 
to the plane of rotation of each gear is the same as the path of contact of 
the trace of the basic rack on this plane and the gear-tooth profile in 
its plane of rotation. This condition is sho^vn in Fig. 9-4. 

These are helical involute gears in this example, and the helix angle is 
45 deg on both gears. Both pitch planes lie in the same plane for this 
example. The projection of the actual path of contact in the plan view 
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will be normal to the elements of the basic racks. In this example, the 
projection of this path of contact is at 45 deg, as shown. When the 
pitch planes coincide, this projection of the path of contact will pass 
through the intersection of the projections of the two axes. The length 
oa of the path of contact is projected up from the driver, and the length ob 

is projected over from the follower into the plan view. The actual length 
of this path of contact is obtained by projecting this path of (contact from 
the plan view to the common normal basic-rack section for the two gears 

as shown in Fig. 9-4. This actual length is the combination of the sec¬ 
tions oa and oh when projected to the path of contact on the normal basic- 

rack form. 
When the pitch planes are separated by an increase in the center 

distance, we have the conditions shown in Fig. 9-5. The length oia of 

the projection of the path of contact in the plan view is projected from the 
plane of rotation of the driver as before, and the length 02b is projected 
from the plane of rotation of the follower. The projection of this path 
of contact on the plan view no longer goes through the intersection of the 
projection of the two axes on this plan view, and the lengths Oia and 
02b overlap each other, as indicated in Fig. 9-5. When this path of con¬ 

tact is projected on the normal basic-rack form, the projection oia over¬ 

laps the projection 02b by the length of the line O1O2. This overlap 
represents the amount of action on the basic rack between the two pitch 
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planes. In this case, the total length of the actual path of contact is less 
by the distance 01O2 than the sum of the lengths oia and 026. 

When the pitch planes are separated because of a decrease in the center 
distance, we have the conditions shown in Fig. 9-6. As before, the lengths 
of the projections oia and 026 are projected from the planes of rotation of 

the driver and follower, respectively, and from there to the normal section 
of the common basic-rack form. In this case also, these projections in 
the plan view do not pass through the intersection of the projections of 

the two axes. Also, these two projections do not meet each other but are 
separated by the distance O1O2. Conjugate action exists, however, along 
this distance O1O2, and again it represents the action that exists between 

the two pitch planes. In this case, in the normal plane of the basic rack, 
the actual length of the line a6, which is the total length of the actual path 
of contact, is equal to the sum of oia and 02b plus the length O1O2. 

Thus an increase in the center distance, which separates the two 
pitch planes, tends to decrease both the actual length of the path of con¬ 
tact and the contact ratio, while a decrease in the center distance, which 
also separates the pitch planes, but in the opposite direction, tends to 

increase the contact ratio of the spiral-gear drive. 
The further consideration of the subject of spiral gears will be in the 

form of specific problems. 
Problem 9-1, Gircn the proportions of a pair of spiral gears and the 

center distance^ to determine the contact ratio. 
Referring again to Figs. 9-4, 9-5, and 9-6, the value of the contact 

ratio is obtained by dividing the length of the path of contact on the 
normal basic rack (length ah) by the normal base pitch of the helical gears 
used in the drive. This length, as noted before, is affected by the distance 

that may lie between the pitch planes. Thus when 

mp = contact ratio 
Ro\ = outside radius of driver, in. 
Ro2 = outside radius of follower, in. 
Ri = radius of pitch cylinder of driver, in. 
R2 = radius of pitch cylinder of follower, in. 

Rbi = radius of base cylinder of driver, in. 
Rb2 = radius of base cylinder of follower, in. 

C == center distance, in. 
<l>\ == pressure angle of driver at 721 in plane of rotation 
<l>2 = pressure angle of follower at 722 in plane of rotation 

<t>n = pressure angle of normal basic rack form 

ypi =» helix angle of driver at 721 

yp2 ~ helix angle of follower at 722 
Pn =» normal circular pitch of basic rack, in. 
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ptn = normal base pitch of helical gears, in. 
= distance between the pitch planes of driver and follower, in. 

A = C - {Ri + /t^2). (9-1)1 

For the purpose of deriving the equations for the contact ratio, we 
shall introduce the following symbols: Referring to Figs. 9-4, 9-5, and 9-6, 

we have 
AI = length Oia of projection of path of contact in plane of rotation of 

driver, in. 
Bi = length Oia of projection of path of contact in plan view, in. 
Cl — length Oia of path of contact on normal basic-rack section, in. 
A2 = length 02b of projection of path of contact in plane of rotation of 

follower, in. 
B2 = length 02b of projection of path of contact in plan view, in. 
C2 = length 02b of path of contact on normal basic-rack section, in. 

\/Roi^ — fifer — /^i sin 0i 
y/Ro2“ — Rb2^ — R2 sin <j>2 

AI cos <t>i 

cos 

A 2 cos <t>2 

cos \(/2 

Bi __ Ai cos <t>i 

cos <t>n cos \f/i cos <t>n 

B2 A 2 cos <f>2 

cos 0n cos ^2 cos (t>n 
Cl + C2 - (A/sin <t>n) 

Pbn 

Pn COS <t>n (9-2) 

As the known values are usually the normal pressure angle, the helix 

angles, and the outside and pitch radii, it will be convenient to transform 
these equations so that only these known values are required for the solu¬ 
tion. We have to start 

tan <l>n = tan cos = tan 4>2 cos \p2 

* The value of X is plus when the center distance is increased so that the pitch 

cylinders do not touch each other, and is minus when the center distance is decreased 

so that the pitch cylinders intersect each other. 

= 

A 2 = 

Bi = 

B2 = 

Cl = 

C2 = 

Trip = 

Pbn = 
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Whence 

tan <f>i 
tan 
cos ypi 

sin <t>i = 
Vcos^ \f/i + tan^ 

cos \pi 
cos 01 = — 

V cos^ 01 + tan^ 0^ 

Rbi = /2i cos 01 = 
Ri cos 01 

cos^ 01 + tan^ 0^ 

Introducing these values into the equation for Ci, combining, and simpli¬ 
fying, we obtain 

\/(cos^ 01 + tan^ <t>n)Roi^ — Ri^ cos^ 0i — /^i tan 0n 
cos 0n(COs2 

As one expression is repeated, to simplify the writ ing of the equations, we 
shall let 

Whence 
U = (cos- 01 + tan- 0n) (9-3) 

^ ^-JRol^ — Ry COs2 0n 

' U CO^<t>n 

In a similar manner, we obtain 

V — (cos- 02 -f" tan- 0n) (9-4) 

f 'cos 0. 

I /v^f^7r;i'2^/^i^cos2"0^ - Ri tan 0^ 

P,l\ Uc6^4>n__ 

\/VRo2^ — Rr cos“ 02 — /?2 tan 0n_A_\ 
V" cos 0n sin 0n/ 

If we bring the value 1/cos 0n outside of the parentheses, and substi¬ 
tute the value of pbn from Eq. (9-2), we shall have as another factor 

Pn COS‘^ 0n 

The final equation then becomes 

rri (\/lJRoi^ — Ri^ cos^ 01 — Ri tan 0n 
= -jj-- 

, Vr7e„2* - cos* ^2 - tan <#>„ 
V 

(9-5) 

X 
tan <j>n ) (9-6) 
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Example of Contact Ratio on Spiral Gears. As a detinitc example we shall use the 

following values; 

= 2.580 Ri - 2,480 = eO.SOO” cos = 0.49242 

Rci = 2.620 Rt = 2.520 vf-J = 29.500° cos v('2 = 0.87036 

<t-n = 14.500° cos <t>n = 0.96815 tan 4>« = 0.25682 X = 0.02202 

p„ = 0.31416 

^ ” 0.31416 (0.96815)^' 3.39597 

U = (0.49242) > + (0.25862)* = 0.30936 

V = (0.87036)* + (0.25862)* = 0.82441 

/'\/2.059224 - 1.491329 - 0.64138 
m, - 3.39597 - 

\/57659080 - 4.810608 - 0.64719 0.02202\ _ „ 

0.82441 0.25862/ 

In this example the contact ratio is slightly over two, which is satisfactory. 

Problem 9-2. To determine the form of the thread on a worm that is 
milled with a straight-sided thread-milling cutter with its axis parallel to the 
axis of the worm. 

When a cone-shaped milling cutter or grinding wheel of any diameter 

is used to finish a worm, and the axis of the milling cutter or grinding 
wheel is set parallel to the axis of the worm, the form of the threads or 
teeth on the finished worm will be that of a helical involute gear. Such a 

form is called the involute helicoid. This form is the limiting form of many 
other types of helicoids, and it may be produced in a great variety of 

ways. For example, the form of rolled screw threads produced by flat 

rolling dies, and the form of screw threads produced by bobbing with an 
annular thread-milling hob are both this same involute helicoid. This 

mathematical form has been patented over and over again as “the form 
produced by said method,'’ etc. The method may be new, but the 
form produced is probably much older than the Patent Office itself. 
Such involute helicoids are suitable driving members for spur and helical 

involute gears when the normal base pitches of a given pair are identical. 
Involute helicoids produced in this manner are generally limited to single 
threads. 

The mathematical proof of the foregoing statement about the form 
produced by a cone-shaped cutter or grinding wheel, originally developed 
by Ernest Wildhaber, is as follows: The form of the helicoid produced by a 

cone-shaped rotating tool whose axis is parallel to the axis of the helicoid 
5s the locus of points of tangency between the cone-shaped tool and the 
surface of the helicoid in all the relative operating positions of the two 
members. 

To determine this locus of points of tangency as the helicoid is screwed 
axially in relation to the position of the cone-shaped tool, we will establish 
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the equations needed to locate any point of tangency. Such equations 
will then be general ones for all points of tangency as we change the values 

to define other points of tangency. 
When curved or warped surfaces are tangent to each other with either 

point or line contact, as the case may be, there will be one and only one 
tangent plane that contains the point or line contact. Hence if we can 
locate this tangent plane in relation to the two members, we can soon 
determine whether line or point contact exists and where it is. 

Trace of cone on 

Referring to Fig. 9-7, the line .1.1 is the trace of a plane, parallel to 
the axes of the cone and helicoid, on the drawing plane. The point P 
is any point of tangency between the cone and helicoid and is in the draw¬ 
ing plane. This point P is also on the line A A, The line EE is the 
projection of an element of the cone that also contains the point P. The 
line BB is the projection on the drawing plane of a tangent line to the 
helicoid that contains the point P. This line is perpendicular to a radial 
line of the helicoid. The tangent plane of the two members must contain 

the point P and the two lines BB and EE. 
The intersection curve of the cone with the intersecting plane AA is a 

hyperbola, and its equation is given by the following expression: 
When 7 = one-half included angle of cone-shaped tool 

D =* distance of intersecting plane AA from axis of cone 

X = tan 7 a/_ 
dx/dy = tan <t> ^ y tan yly/D“ + 

(9-7) 
(9-8) 
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The tangent to this hyperbola that passes through the point P will lie 
in the plane AA and also in the tangent plane of the two surfaces. In 
other words, the tangent to the hyperbola, on plane AA, that passes 
through point P is the trace of the tangent plane of the two members on 
plane .4.4. 
When X = angle of line BB with the drawing plane, which is also the lead 

angle of the helicoid at point P 
R — radius on helicoid to point P 
C = distance between axes of cone and helicoid 
L = lead of helicoid 

R = V(C ~ DY + 
tan X = L/2TrR = L/2Tr V(C - DY + if (9-9) 

As noted before, this line BB, whose projection is shown on the draw¬ 
ing plane, is this tangent to the helicoid at point P, and it must also lie in 

the tangent plane to the surfaces of 
the two members. When this line 
BB is revolved about point P in the 
tangent plane of the two members, 
it must coincide with the line tan¬ 
gent at point P to the hyperbola of 
the cone member when it reaches 
the plane A A, When this line BB 
is revolved further about point P 
until it meets a plane through point 
P that is parallel to and at a dis¬ 
tance y from the axes of the cone 
and helicoid, it will be the trace of 
the tangent plane of the two mem¬ 
bers on this new plane. This new 
plane will be the drawing plane of 

Fig. 9-8. Referring to Fig. 9-8, this trace of the tangent plane of the two 
surfaces will be at some angle y\ to the drawing plane of Fig. 9-7. Thus 
when 

71 = angle of trace of tangent plane with drawing plane of Fig. 9-7 
Xi = angle of tangent line BB with drawing plane of Fig. 9-7 when 

revolved to intersecting plane A A 
a — angle between projection of cone element on drawing plane 

of Fig. 9-7 and center line of cone and helicoid 

* This element of the cone, which passes through point F, lies also in the tangent 
plane of the two surfaces. 
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P = angle between radial line of helicoid to point P and center line of 
cone and helicoid 

we have the following from the geometrical conditions described: 

cos q: = D/y/U^ + (9-10) 
sin a = y/y/D'^ + y^ (9-11) 

tan 7i = (tan y V+ y- — y tan </>) /D 
tan (j) = y tan y/y/D * -f y- (9-8) 

Substituting this value into the preceding equation, combining, and 

simplifying, we obtain 

tan yi = D tan yfy/P>‘^ + (9-12) 

This last ecpiation gives the value of the angle of the trace of the 
tangent plane on the drawing plane of Fig. 9-8. In order to obtain the 
value of the angle of the trace of this tangent plane on the intersecting 
plane AA^ we proceed as follows: 

sin (3 

cos (3 

tan Xi = 

._ y__ 
■ 

_c - D 

■ v^((; - 7>>’T? 
tan X — sin i3 tan 71 

cos (3 

(9-18) 

(9-14) 

Substituting the values of the angles into this last equation, combining, 

and simplifying, we obtain 

tan Xi 

As noted before 

whence 

L \/lP + //“ — 2TrI)y tan 7 

27r(C^ D) 'VD^^y^ ^ 

tan <t> = tan Xi 

y tan 7 _ P JP + ?/“ ~ 27rD?/ tan 7 

2t(c -d) 

Solving this equation for y, uc obtain 

^_LD_ 

(9-15) 

(9-16) 

It is apparent from an inspection of h"q. (9-10) that the value of y will 
always be directly proportional to the value of D for any given values of 
L, C, and 7. Therefore the locus of points of tangency of the cone and 

helicoid when they are in contact with each other will lie in a straight line, 
and this straight line must be the clement of the cone, EE. This line will 
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be tangent to a cylinder concentric with the axis of the helicoid, a cylinder 
that we will call the base cylinder. Thus when 

jRft = radius of base cylinder of helicoid 
\h = lead angle at the base cylinder of the helicoid 

/iJa = C sin a = CylVD^ + 

Substituting the value of y from Eq. (9-lG), combining, and simplifying, 

we obtain 
Rb — Z//2if tan y (9-17) 

The value of Rh is therefore independent of the value of C or D. Its 

value depends only upon the value of the factors L and y. Therefore, 
regardless of the diameter of the cone-shaped tool and the center distance 
between the tool and the helicoid, the same form of helicoid will be pro¬ 

duced as long as the lead of the helicoid and the angle of the cone remain 

unchanged. 

tan \b = L/27rRh (9-18) 

Transposing Eq. (9-17) to solve for tan y, we obtain 

tan y = L/2irRb (9-19) 
Therefore 

y = X. (9-20) 

In other words, the cone angle of the cone-shaped tool is the lead angle 
of the helicoid upon its base cylinder. If we consider this angle as that of 
the angular edge of a sheet of paper that is wound around the base 
cylinder, it is apparent that the form of this helicoid is the same as that 

of an involute helical gear, or an involute helicoid. 
Therefore to produce an involute helicoid worm to mesh with a spur 

gear with shafts at right angles to each other, or to mesh with any helical 

involute gear where the axis of the worm is at right angles to the normal 
basic rack of the helical gear, we can mill or grind this worm with a cone- 
shaped tool with its axis parallel to that of the worm. The lead of this 

worm would be equal to the normal circular pitch of the basic rack, and 
the half angle of the cone would be equal to the normal pressure angle of 
the basic rack. This type of worm is generally restricted to single¬ 
thread worms, or single-tooth helical gears. 

Problem 9-3. Given the shaft angle and helix angles^ with the diam¬ 
eters and speed of rotation^ to determine the peripheral sliding velocity 
between them. 

The greatest part of the sliding action on a spiral-gear drive is that 
which is represented by the sliding of the two basic racks of the system on 
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each other. Such conditions are shown in Fig. 9-9. Thus when 
R\ = radius of pitch cylinder of driver, in. 

R2 = radius of pitch cylinder of follower, in. 
n = number of rpm of driver 

V = pitch-line velocity of driver, ft/min 
V, = sliding velocity between basic tacks, ft/min 

= helix angle of driver at R\ 

^2 = helix angle of follower at R2 

S = shaft angle 

2 = + ^2 

V = 2wRinll2 = 0.5236/2i7i (4-12) 

Figure 9-9 gives a graphic solution of this problem. Whence we have 

F sin 2 = Vg sin (90® — ^2) = F, cos \p2 

Substituting the value of F into this equation, we obtain 

Vg = 0.5236/2in sin 2/cos ^2 

When the shafts are at right angles to each other, then 

S = 90® and sin S - 1.000 

(9-21) 
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and Eq. (9-21) becomes 

V. = 0.5236/ein/cos h (9-22) 

These equations apply to the conditions that exist when the pitch 

planes of the two gears coincide. When these pitch planes are separated, 

there may be some small variations from these values. The equations are 

still correct, however, for the velocity of sliding on the basic racks of the 

system. 
In the case of an involute helicoid worm driving a spur gear, the value 

of Ri is infinite. The actual basic racks, however, arc acting at the pitch 

radius of the spur gear; hence the distance from the axis of the driver to 

its pitch plane, Rz, would be used instead of the infinite value of R\. 

Rz = C - Rz (9-2.3) 

When the values of and ^2 are equal, the sliding conditions are the 
most favorable. For one thing, with a fixed ratio and a given center 

distance, the sliding velocities are least under these conditions. For 

another, the actual amount of .sliding on both gears will be alike under 

such conditions. In other words, under such condition.s, the sliding will 

be evenly distributed over the sjime distance on the tooth surfaces of both 

gears. In other cases, as when the helix angle of the driver is much 

greater than the helix angle of the follower, the amount of sliding is, of 

course, the same on both gears, but it is distributed over a longer distance 

on the driver, and over a shorter distance on the follower. 

Example of Sliding Velocity on Spiral Gears. As ii clcfinito (‘xaiiiplt^ we shall use 
the following values: 

Ri = 2.500 n = 600 2 - 85^ 
^1 = 50*^ \p2 — 35° eos ^2 

^ 0.5236 X 2.5 X 600 X 0.90619 
" 0.81915 

sin 2 = 0.99619 
- 0.81!n5 

= 955 ft/inin 



CHAPTER 10 

HELICOID SECTIONS 

Conjugate Action on Worm-gear Drives. In many respects, a worm- 
gear drive is a development of a spiral-gear drive such that one member 
of the pair has been made to envelop the other. This construction will 
introduce line contact V)etween the mating members in place of the point 
contact that exists between a pair of spiral gears. Starting from a spiral- 
gear drive, either member of the pair may be made to envelop the other. 
A worm-gear drive can be designed as a substitute or replacement for any 
spiral-gear drive. The conventional design of a worm-gear drive is 
mounted on nonintersecting axes with planes of rotation at right angles to 
each other. Worm-gear drives can be made, how ever, to drive shafts that 
are not at right angles to each other. 

The conjugate gear-tooth action between a worm and a w orm gear is 
identical to that of a spur gear and a rack. As the w'orm revolves, the 
thread form on the w'orm advan(*es along its axis, and the worm gear is 
rotated a corresponding amount. The pitch surfaces of such a drive con¬ 
sist of a pit(‘h plane for the W'orm or rack member and a pitch cylinder for 

the worm gear. 
In this analysis, the worm will always be the member with a uniform 

axial lead, whether it is the driver or follower, or whether it is the smaller 
or larger member of the pair. 

When one member of a spiral-gear drive is made to envelop the other, 
the enveloping member loses its uniform axial pitch, and w ith it., its pitch 
plane. It retains only its pitch cylinder. The mating member, with a 
uniform axial lead, retains its pitch plane to match the pitch cylinder 
of the enveloping member, but loses its pitch cylinder because it has no 
matching pitch surface on the enveloping member to act against. Thus 
the worm has no true pitch diameter or pitch cylinder. The radial 
distance from the axis of the w orm to its pitch plane is commonly called 

the pitch radius of the worm. 
The conjugate gear-tooth action betw^eon a w^orm and a worm gear is 

the same whether the w orm is revolved t o screws the thread form along its 

axis or whether the worm is moved axially without revolving. 
The basic-rack form of the worm gear is the form of that section of the 

worm thread which actually engages wdth the w^orm-gear teeth. This 
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form changes across the face of the worm gear. When th^se forms are 

established for any given planes of rotation of the worm gear, conjugate 

gear-tooth forms and trochoidal fillets of the worm gear are determined 
for these planes of rotation in exactly the same manner as for spur gears. 

When the contact on a series of planes of rotation of the worm gear has 

been determined, the position and the projection of the actual contact line 
between the worm and worm gear can also be established. 

The first step toward the study of the nature and the amount of the 

contact on such drives and of the forms of the conjugate gear teeth on the 
worm gear is the determination of the form of the basic rack of the worm 

gear in any desired plane of rotation of the worm gear. 

Helicoid Sections. In order to determine the basic-rack forms on 
various planes of rotation of the worm gear, we must determine the equa¬ 

tions of the intersection profiles of the worm or helicoid with these planes 

of rotation. 
The exact thread form used for the worm, within certain limits, as for 

all spur-gear and rack forms, is of small importance. The essential 

requirement is that the thread form of the worm and that of the hob or 

other tool used to generate the worm gear be as nearly identical as possible. 

The actual form of the thread on the worm depends entirely upon the 

type, form, and size of the thread-cutting tool, and upon the type of proc¬ 

ess used to finish the worm thread. With tools of identical form of cut¬ 

ting profile, threads chased in a lathe or milled on a thread-milling 

machine or ground with a conical wheel of appreciable diameter will all 

have different thread forms. We must therefore determine the inter¬ 
section profiles of several different types of helicoids. These will be as 

follows: 

Convolute Helicoid. This type of helicoid has its straight-line genera¬ 
trix tangent to a cylinder of any diameter that is concentric with the 

axis of the helicoid. The concentric cylinder will be called the base 

cylinder. The inclination of the generatrix, measured from any plane of 

rotation of the helicoid, is in the same direction as the inclination of the 

helix of the thread. This form is an approximation to that of a milled or 

ground worm thread. It is a general form of helicoid, of which the screw 
helicoid and the involute helicoid are limiting or specific types. 

Screw Helicoid. This type of helicoid has its straight-line generatrix 

passing through the axis of the helicoid. It is a convolute helicoid with 

its base cylinder reduced to a zero diameter. It can be produced on a 

lathe with the cutting edges of a straight-sided cutting tool set in a plane 

that contains the axis of the helicoid. This is the common screw-thread 
form. 
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Involute Helicoid. This type of helicoid has its straight-line generatrix 

tangent to a concentric cylinder of such diameter that the lead angle on 

this base cylinder is the same as the angle of the generatrix with a plane 

perpendicular to the axis of the helicoid. Such a plane is a plane of 
rotation of the helicoid. This is another specific type of the convolute 

helicoid. This is also the form of a helical involute gear. It is also the 
form of a rolled and of a hobbed screw thread. 

Chased Helicoid, This type of helicoid has its straight-line generatrix 

tangent to a cylinder concentric with the axis of the helicoid. The inclina¬ 
tion of this generatrix, measured from a plane of rotation of the helicoid, is 

in the opposite direction to the inclination of the helix of the thread. 

This is the form produced by a straight^-sided cutting tool that is tipped to 
the helix of the thread. 

Milled Helicoid, This type of helicoid is the form produced by a 

cone-shaped milling cutter or grinding wheel that is tipped to the helix of 

the thread. The generatrix in this case is not a straight line but is a 
slightly curved one; its exact form depends upon the cone angle, the diam¬ 

eter of the rotating tool, and the diameter and lead of the worm. 

We shall now determine the equations of the intersection profiles of 
these dilTerent types of helicoids, starting with the convolute helicoid. 

Convolute Helicoid. Referring to Fig. 10-1, which represents the 

convolute helicoid, we have the following symbols: 

L = lead of generatrix, in. 

r = any radius to helicoidal surface, in. 
7 = angle between generatrix and plane perpendicular to axis 

6 = vectorial angle 
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\p = angle between tangent to intersection curve and radius vector 

<l) = angle between tangent to intersection curve and trace of plane 
perpendicular to axis 

6 = angle of rotation of generatrix 

Rb = radius of base cylinder, in. 
D = distance from axis to intersecting plane, in. 
Xa = abscissa of intersection curve, origin at initial point of tangency 

of generatrix and base cylinder, in. 
Pa = ordinate of intersection curve, origin at axis of helicoid, in. 
Intersection Curve with Axial Plane. We shall first determine the 

equation of the intersection curve of this convolute helicoid with the axial 

plane. Referring to Fig, 10-2, we have from the geometrical conditions 
shown there the following: 

Xa — tan 7 — Rb^ — {Le/2Tr) 

tan € = y/ya‘ — Ru^lRb 

Substituting this last value into the first equation, we obtain 

Xa = tan 7 \/yo^ — Rb'^ — tan”^ {y/va — Rb^/Rb) (10-1) 

For the tangent to this curve, we have the following: 

tan </> = dxa/dya = (27r?/a^ tan 7 — LRb)/2irya y/pa — Rb^ (10-2) 

The form of this intersection curve is plotted in Fig. 10-3. The cor¬ 
responding conic section would be two straight lines, the trace of the cone 

on its axial plane. These same straight lines are the asymptotes of the 
hyperbola or the intersection curve of the cone with a plane parallel to its 
axis. 
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These curves representing the intersection of the convolute helicoid 
with its axial plane repeat themselves for every turn or thread of the 
helicoid. These intersection curves also have their asymptotes. An 

Fia. 10-3. Axial section of convolute helicoid. 

inspection of Eq. (10-1) gives the following equation for the asymptotes of 
this intersection curve: 

X = y tan y — {L/2t) tan“^ cc (10-3) 

The value of an arc when its tangent is equal to infinity is 7r/2, 37r/2, 
57r/2, etc. These asymptotes are also shown in Fig. 10-3. 

Intersection Curve of Convolute Helicoid with a Plane Parallel to the Axis 
and at a Distance D from the Axis. Referring to Fig. 10-4, we have the 
following from the geometrical conditions shown there: 
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Xa = tan y -\/D^ + yj — Rb^ — 
2ir 

cos < = 
D + Rb sin e D + Rb \/l - cos’’ ( 

VD^ + yj -i4- ’ 

Solving this last equation for cos t, we obtain 

RbVa + D \/D'^ + yj 
cos e = 

Rb'‘ 

+ J/o'^ 

Substituting this last value into the first equation, we obtain 

Xa = tan y s/D"^ + ya' — Rb^ 

tan 

L Rbya + D VD^ + ya- - Rb^ 
2ir D” + Va- ' 

(10-4) 

_ ^ _ 27rya tan y{D‘‘ 4- l/a^) — L(Rbya -1- D + j/<.~ — /4^) g. 

<^2/a 2t(Z>2 + ya-) 

The form of this intersection curve is shown in Fig. 10-5. The cor¬ 
responding conic section is a hyperbola. This intersection curve also 

has its asymptotes. An inspection of Kcp (10-4) gives tlie following 
equation for these asymptotes: 

X = y tan 7 — (0) (10-6) 

The value of cos“^ (0) will be ^/2, 37r/2, etc. Hence this equation is 
identical to Eq. (10-3). In other words, the asymptotes to these off- 
center sections are identical to those of the axial section. These asymp¬ 
totes are also shown in Fig. 10-5, 
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Intersection Curve of the Convolute Helicoid with a Plane Perpendicular 
to Its Axis {plane of Rotation). Referring to Fig. 10-6, we have the follow¬ 
ing from the geometrical conditions shown there; 

+ 

Whence 

= Y \27r tan 7/ 

tan 5 
Rs‘‘ 

= e _ 6 = tan 7^ - Rt'^ - tan-> 

do _ 27rr2 tan 7 — RbL 

d'T' rL y/r^ — Rb“ 
, . r dd 2xr2 tan 7 — RJ^ 
tan \{/ = -j— = -— 

dr L y/fi - 

(10-7) 

(10-8) 

The form of this intersection curve is shown in Fig. 10-7. The cor¬ 
responding conic section is a circle. This curve is a spiral, starting at the 
radius of the base cylinder. 

Fiq. 10-7. End section of con¬ 
volute helicoid. 

Limits of Conjugate Gear-tooth Action on Convolute Helicoid, The 
extreme limit of conjugate gear-tooth action on these helicoids is reached 
when the pressure angle <t> of the intersection curves with planes parallel 
to the axis of the helicoid is equal to zero. This same condition exists 
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when the tangent to the spiral intersection curve in the plane of rotation is 
perpendicular to the axis of the mating worm gear. Referring to Fig. 

10-8, we have from the geometrical conditions shown there the following: 

(9 + ^ = 90° 

tan 6 = 1/tan xp — L y/r^ — R^^/2Trr“ tan 7 — RJj (10-9) 

The form of this curve is shown in Fig. 10-9. Conjugate gear-tooth 
action is possible only in the region indicated as the ‘Afield of conjugate 

action’' on this figure. 

Fig. 10-9, Field of conjugate action on convolute helicoid. 

This curve, which shows the limits of conjugate action, approaches an 
asymptote that is parallel to the axis of the mating worm gear and is at a 

distance of 
y — L/2tc tan 7 (10-10) 

from the axis of the helicoid or worm. This asymptote is also plotted in 
Fig. 10-9. 

Screw Helicoid. The screw helicoid has a straight-line generatrix 

that passes through the axis of the helicoid. Thus it is one limiting exam¬ 
ple of the convolute helicoid with the size of its base cylinder reduced to 
zero. Hence the equations for the several intersection curves may be 
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established by using the equations of the convolute helicoid and making 
the value of Rb equal to zero. 

Intersection Curve of Screw Helicoid with Axial Plane. Introducing the 
value of Rb = 0 into Eq. (10-1), we obtain the following: 

Xa = Va tan 7 — {L/2Tr) tan ' ^ co (10-11) 

This equation is the same as that for the asymptote to the convolute heli¬ 
coid, Eq. (10-3). Hence the axial-section curve of the screw helicoid is 
the asymptote of the intersection curve of any similar convolute helicoid 
with a plane parallel to its axis. 

tan (f) = (dxa/dya) = tan y (10-12) 

The form of this intersection curve is shown in Fig. 10-10. 

Intersection Curve of Screw Helicoid with a Plane Parallel to the Axis 
and at a Distance I) from the Axis. Introducing the value oi Rb = 0 into 

Eq. (10-4), we obtain 

Xa tan 7 \/D^ + 
D 

This equation can be simplified by introducing the value of tan ^ in 
place of cos”^ as follows: 

D 

Whence 

cos e = 
\/i>^ + 2/a* 

tan c 
— COS^ € 

COS € 

ya 
D 

Xo = tan 7 VD^ + y.* - 

dxa 27rJ/a tan y VD'^ + — LD 

tan”' ^ (10-13) 

tan — 
dva 2n{D^ + yj) 

(10-14) 
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For the equation of the asymptote we have 

tan“‘ 00 (10-3) 

The form of this intersection curve and its asymptotes are plotted in 

Fig. 10-11. 

Fio. 10-11. Oflf-center .section of screw helicoid. 

Intersection Curve of Screw Helicoid with a Plane Perpendicular to its 
Axis. Referring again to Fig. 10-6, when Rb = 0, then € = 0, whence 

r = />e/27r tan 7 

and 
d = 27rr tan y/L (10-15) 

This curve is an Archimedean spiral 
with a uniform rise. Its rise per revolu¬ 
tion is equal to L/tan 7. The etpiation of 
its tangent is as follows: 

tan ^ = (rdd/dr) = 27rr tan 7/L (10-16) 

But 

27rr/L = 1/tan X 

where X is the lead angle at radius r. 
Hence 

tan yp — tan 7/tan X (10-17) 

Fig. 10-12. End section of screw The form of this intersection curve is 
hehcoid. shown in Fig. 10-12. 

Limits of Conjugate Gear-tooth Action on Screw Helicoid. Substituting 
the value Rb = 0 into Eq. (10-9), we obtain 

6 = tan*"^ {L/2irr tan 7) 

X == y tan 7 -a) 

(10-18) 
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This curve, which represents the limits of conjugate gear-tooth action, 
approaches an asymptote that is parallel to the axis of the mating worm 
gear and is at a distance of 

y = L/2ir tan y (10-10) 

from the axis of the helicoid. This asymptote is the same as that for the 
convolute helicoid. This curve and its asymptotes are plotted in Fig. 
10-13. 

Fig. 10-13. Field of conjugate action on screw helicoid. 

Involute Helicoid. The involute helicoid has its straight-line genera¬ 
trix tangent to a base cylinder of such a diameter that the lead angle of the 
helix on this base cylinder is the same as the angle of the generatrix with 
the plane of rotation. This helicoid is another specific or limiting case of 
the convolute helicoid, where 

tan 7 = tan \b = L/2TrRb (10-19) 

and \b is the lead angle on base cylinder. 
Intersection Curve of Involute Helicoid with Axial Plane. Substituting 

the value tan 7 = L/^irRb into Kq. (10-1), we obtain 

*ra 

Xa 
2-ir \ Hi, 

tan 4> = 
(Ij a 
d?/a 

/. V//n- — 

2-h\ya 

(10-20) 

(10-21) 

The equation of the asymptotes to this intersection curve is as follows: 

X = y tan y — tan~‘ “ “ ^ ~ oo^ (10-22) 

These asymptotes arc the same as tho.se for the convolute helicoid. 
The form of this intersection curve and its asymptotes are plotted in 
Figure (10-14). 



204 ANALYTICAL MECHANICS OF GEARS 

Intersection Curve of the Involute Helicoid with a Plane Parallel to Its 
Axis and at a Distance D from Its Axis. Substituting the value of 
tan 7 = L/2TRb into Eq. (10-4), we obtain 

_ L {VD^ + yj - R^y. + D V'D' + 2/a' 
2*- V Rh £>' + ya' 

Ri 
■) 

tan 4) = 
dxc 
dye 

= LL\y± 
2t [ 

+ 2/a' - R>r - DR„\ 
R,{D^ + ya^) 

(10-23) 

(10-24) 

The equation of the asymptotes to tliis intersection curve is as follows: 

These asymptotes are the same as those for the convolute helicoid. 
The form of this intersection curve and its asymptotes are plotted in 
Fig. 10-15. 

Flo. 10-15. Off-center section of involute helicoid. 
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Intersection Curve of the Involute Helicoid with a Plane Perpendicular 
to Its Axis. 

Substituting the value of tan y = L/2TrRh into Eq. (10-7), we obtain 

^ — Rb^/Rb — tan~^ {\/r‘^ — Rb^/Rb) (4-1) 

This equation is the polar equation of the involute curve, which was 
derived in Chap. 4. For the equation of the tangent we have 

tan yf/ = r dS/dr = — Rb^/Rb (4-2) 

The form of this intersection curve is plotted in Fig. 10-16. This 
involute is a uniform-rise spiral along a line tangent to the base cylinder. 
The rise per revolution is equal to the circumference of the base circle. 

Fio. 10-16. End section of involute helicoid. 

Limits of Conjugate Gear-tooth Action on Involute Helicoid. Substitut¬ 

ing the value of tan y = L/2TrRb into Eq. (10-9), we obtain 

6 = tan“^ Rb/y/r^ — Rb^ 

tan d = Rb/y/r^^ — Rb^ sin 6 = tan e/\/l + tan- 6 = Rb/r 

If the equation for this curve, which represents the limits of conjugate 
gear-tooth action, is given in Cartesian coordinates, then 

7j = r sin 6 — Rb (10-25) 

This curve is a straight line. But 

Rb = L/2Tr tan y 
Whence 

y = L/2Tr tan y (10-10) 

This last equation is that of the asymptote to the curves representing 
the limits of conjugate gear-tooth action for both of the previous helicoids, 
in fact, for all varieties of helicoids with straight-line generatrices. 
Hence the limit of conjugate gear-tooth action for the involute helicoid is 
the asymptotic value of this limit for all other types of helicoids with 
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straight-line generatrices. This limit of conjugate gear-tooth action for 

the involute helicoid is shown in Fig. 10-17. 

Chased Helicoid. The chased helicoid is the form produced by a 
straight-sided threading tool set at an angle to the axis of the helicoid as 

shown in Fig. 10-18. 

When 7„ 

Xi 
A 

7 

Rb 

we have 
10-18: 

= one-half included angle of threading tool 

= angular setting of threading tool 
= distance between sharp point (extended) of tool and axis of 

helicoid, in. 

= angle between generatrix (cutting edge of tool) and plane 

perpendicular to axis of helicoid 
= radius of cylinder to which generatrix is tangent, in. 
the following from the geometrical conditions shown in Fig. 

tib = 

\/l -f- tan^ 7n sin^ 
. tan 7r cos Xi 
tan 7 =  —■■■—= 

\/l -H tan^ 7„ sin^ Xi 

Al 
(10-26) 

(10-27) 

This helicoid is similar to the convolute helicoid except that the direc¬ 
tion of the inclination of the generatrix is in the opposite direction to that 
of the helices of the helicoid. Referring to Fig. 10-1, the helix on the base 
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cylinder would run in the opposite direction for this chased helicoid from 
that shown in Fig. 10-1, while all other elements would remain unchanged. 
Hence for the equations of the several intersection curves, the distance 
Le/2Ty which the generatrix travels as the helicoids revolves, would be 
added instead of subtracted to obtain the distance through which a given 
intersection point moves axially as it rotates. 

Intersection Curve of Chased Helicoid with Axial Plane. Introducing 
this change of direction into Eq. (10-1), we obtain 

Xa = tan 7 — Rb^ + {L/^ir) tan~^ {\^ya^ — Rb^/Rb) (10-28) 

For the equation of the tangent to this curve we have 

tan <j> = dxjdija = {^Tyf^ tan y + RbL)/2Tya \/yJ — Rb^ (10-29) 

For the equation of the asymptotes we have 

X = y tan y + {L/2tt) tan~^ oo (10-30) 

The form of this intersection curve and its asymptotes are plotted in 

Fig. 10-19. 

Intersection Curve of Chased Helicoid with a Plane Parallel to the Axis 

and at a Distance D from the .‘l.r7\s. Introducing the change of direction 
of the helices into ]']q. (10-4), we obtain 

Xa = tan y + 2/a“ - + 
L R.ya + D y/W+ 

2w + yj 

The equation of the tangent to this curve is as follows: 

(10-31) 

dxg ^ 2iryg tan y -f + L{R(,yg -f D y/7)^ -h y^^ - 

dVa 2ir(Z)* -f Va^) VD^ + yg^ -It? 
(10-32) 
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For the equation of the asymptotes we have 

X = y tan 7 + tan"‘ 00 (10-30) 

The form of this intersection curve and its asymptotes are plotted in 

Fig. 10-20. 

Fiq. 10-20. Off-center section of chased helicoid. 

Intersection Curve of Chased Helicoid with a Plane Perpendicular to 

Its Axis. Introducing the change of direction of the helices into Eq. 
(10-7), we obtain 

6 = (27r tan y/L) r^ — Rb^ 

+ tan“^ (y/r^ Rb^Rb) (10-33) 

For the equation of the tangent to this 
curve we have 

tan rp = r dd/dr = {2Trr‘^ tan y 

Fiq. 10-21. End section of 
chased helicoid. 

+ RJA/L Vr^ - Rb^ (10-34) 

The form of this intersection curve is 
plotted in Fig. 10-21. 

Limits of Conjugate Gear-tooth Action on 

Chased Helicoid. Introducing the change of 
direction of the helices into Etj. (10-9), we 
obtain 

e = tan-' [L - Rb^/{2irr^ tan y + RJ.)] (10-35) 

This curve approaches an asymptote that is parallel to the axis of the 
mating worm gear, and is at a distance of 

y = L/2ir tan y (10-10) 

from the axis of the helicoid. This curve and its asymptotes are plotted 
in Fig. 10-22. 
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Milled Helicoid. The milled helicoid is produced by a cone-shaped 
milling cutter or grinding wheel that is set at an angle to the axis of the 
helicoid, as shown in Fig. 10-23. The general method used to derive the 
equation of its intersection curve is similar to the one used in Prob. 9-2. 

Fig. 10-22. Field of eonjugatc action on chased helicoid. 

As in Prob. 9-2, the form of the helicoid produced is the locus of all points 
of tangency between the cone-shaped cutter and the helicoid in all the 
relative operating positions of the two members. 

The contact between the helicoid and the cone-shaped tool set at an 
angle to the axis of the helicoid does not remain on the same element of the 
cone. The problem is complex, and the derivation of these equations 

Arb/trc^iry intersecting plane 

would use up so much space that it has been omitted. Only the series of 
ecjuations needed for the solution of a definite example is given. 

Referring to Fig. 10-23, let 
C = distance between axes of helicoid and cone-shaped tool, in. 
7c = onp-half included angle of cutting edges of tool 
Xc = angular setting of cone-shaped tool 

Hoc = outside radius of cone-shaped tool, in. 
Rjt = radius to sharp point (extended) of tool, in. 
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b = distance between axis of cone-shaped tool and any arbitrary 
intersecting plane,^ in. 

/ = \vidth of flat at outside radius of cone-shaped tool, in. 
Other arbitrary symbols will be introduced as needed to simplify the 
equations and the calculations. 

We have the following from the geometrical conditions shown in Fig. 
10-23: 

Rp = Roc + //2 tan 7c (10-36) 

Intersection Curve of Milled Helicoid with Axial Plane. The following 
equations must be solved in the order as given to determine the coordi¬ 
nates of this intersection curve: 

E 

F 

G 

Y 

Ra 

tan A 

= tan 7c(L tan K + 2TrC) 

= 2TrRp tan^ 7c tan Xc 
= L — 27rC tan K + 2irh tan Xc(l + tan^ Xc) 

_ G VF^ + - EF 

E^ - G‘^ 

= h VY^ +1 
__hY cos Xc + {Rp — Ra) tan 7c sin Xc 

C -b 

{Rp — Ra) tan 7c cos \c — bY sin K + 
27r 

(10-37) 
(10-38) 
(10-39) 

(10-40) 

(10-41) 

(10-42) 

(10-43) 

(10-44) 

These last two equations give the values of the coordinates of the 
intersection curve of this milled helicoid with an axial plane. The origin 
of the system of coordinates is on the axis of the helicoid and at the center 
of the tooth space produced by the cone-shaped tool. 

For the tangent to this intersection curve we have the following 
equations; 

H — Ra tan 7c cos X, cos A(T/a sin A — Rh tan 7c sin Xc) 
- w) 

K = sin A(j/o sin A — Rp tan yc si 

M = hi ^ ■; — sin A tan A ) = I 
\cos A / 

(10-45) 

(10-46) 

(10-47) 

(10-48) 

tan <t> 
dx„ 

djja 

li + J 
K + M (10-49) 

' These intersecting planes are parallel to both the axis of the tool and the axis of 
the helicoid. 
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When the diameter of the cutter is small in relation to the diameter 
of the helicoid, and when the lead angle of the helicoid is large, this form 

will be concave and approach the form of a chased helicoid. As the 
relative diameter of the cutter increases, this form will be partly concave 

and partly convex. With a further increase in the diameter, or as the 

setting angle becomes smaller, the form will be convex and will approach 

that of a convolute helicoid. With a cutter of infinite diameter, or when 

the setting angle is reduced to zero, the form will be that of an involute 

helicoid. 
Intersection Curve of the Milled Helicoid with a Plane Parallel to the 

Axis and at a Distance D from the Axis. For this intersection curve we 

shall derive general ecpiations, w hich can be used for any type of helicoid 

w^hen the coordinates of the intersection curve with the axial plane are 

known. 

When Xa and ya = coordinates of intersection curve with axial plane 

tan (t> = dxa/dya = tangent to intersection curve with axial 

plane 

X2 and y2 = coordinates of intersection curve with plane parallel 
to axis at a distance /) from axis 

tan <t>2 = dx2/dy2 = tangent to intersection curve with off-center 

plane 

0^2 = a:a 2_(^V27r) sin-^ {D/y.) (10-50) 

y2 = Vva- - (10-51) 
tan <t>2 = (2/2/2/a) tan 4> + {LD/2Trya-) (10-52) 

Intersection Curve of Milled Helicoid with Plane Perpendicidar to the 

Axis. For this intersection curve we shall also use a general equation, 

w'hich gives us the values in terms of the coordinates of the form in the 

axial section. For the ecpiations of this intersection curve w^e have 

d = 2irXa/L (10-53) 

r = (10-54) 

For the equation of the tangent to this intersection curve w^e have 

tan ^ = r df^/dr — 27r?/a tan </)/L (10-55) 

This completes the analysis of this group of helicoid sections. We 

shall next consider their application to the analysis of the contact and to 

the determination of the position of the actual contact lines on w^orm-gear 

drives. 



CHAPTER 11 

CONTACT ON WORM-GEAR DRIVES 

Path of Contact and Conjugate Gear-tooth Profiles. When the 
coordinates of the intersection curves of the worm or helicoid with planes 

parallel to the axis of the worm are known, we can use the equations 

derived in Chap. 1 to determine the paths of contact and the conjugate 

gear-tooth profiles of the mating worm gear in various planes of rotation 
of the worm gear. The origin of the coordinate system of the helicoids 

is on the axis of the worm, while the origin of the coordinate system used 

for the path of contact and for the conjugate gear-tooth profiles is at the 
pitch point. We must, therefore, first shift the origin of the coordinates 

of the helicoid sections to the pitch point. For this we have the following: 

When Xa and ija = coordinates of helicoid sections with origin on axis of 
helicoid 

X and y = coordinates of helicoid sections with origin at the 

pitch point, in. 
Ri = radius to pitch plane of worm, in. 

x'a = value of Xa when ya is equal to fti, in. 

then 

y = ya - Ri (ll'l) 
X — Xa-- x'a (11"2) 

Path of Contact. We have from Chap. 1 the following ecpuitions for 

the path of contact: 

When y = ordinate of basic-rack profile and of path of contact, in. 

Xp = abscissa of path of contact, in. 

tan <t> = dx/dy = dxajdya (11-3) 

Xp — —i//tan </> (1-1) 

Conjugate Gear-tooth Profile, We also have from Chap. 1 the following 

equations for the conjugate gear-tooth profile: 

When d = vectorial angle of conjugate gear-tooth form 
r = length of radius vector of conjugate tooth profile, in. 

fta = radius of pitch cylinder of worm gear, in. 

r = \/'[R2 ~ y)^ + 

9 = [(x - Xp)/R2] + tan-' [xp/{R2 - y)] 
212 

(1-2) 
(1-3) 
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TTOchoidal Fillet. We also have from ('hap. 3 the following equations 
for the form of the trochoidal fillet at the root of the worm gear-teeth; 
When 7^2 = pitch radius of worm gear, in. 

b = distance from pitch line to corner of basic-rack tooth or to 
center of rounded corner, in. 

ri = any radius of trochoid, in. 
6t — vectorial angle of trochoid 
5 = angle between origins of gear-tooth profile and tro(!hoid 

Xt = abscissa of corner of rack tooth or center of rounding, 
measrired from the pitch point, in. 

di = tan' 
'Vr,^ - {li 

k, - 

- (Ih - b)^ Vr,^ - ik2 - by 
lU 

arc 6 = 
71*2 

(3-1) 

(3-3) 

Example of Path of Contact and Conjugate Gear-tooth Profile on Worm Gear. As 
a definite example we shall (Icterminc the basic-rack forms (helicoid sections), paths of 
contact, conjugate gear-tooth profiles, and forms of trochoidal fillets on the following 
worm-gear drive. The worm will be a screw helicoid. 

Valx:ks for Worm 

Axial pitch. 1.000 in. 
Number of starts or threads. 6 
Ix^ad of thread. 6.000 in. 
Radius to pitch plane. 1.750 in. 
Outside radius. 2.036 in. 
Root radius. 1.413 in. 
One-half included angle of thread. 14.500® 

Valuks for Worm Gear 

Number of teeth. 36 
Pitch radius. 5.7294 in. 
Throat radius. 6.0154 in. 
Outside radius. 6.1970 in. 
Face width. 2.6000 in. 

An analysis will be made on five sections across the face of the gear as indicated 
in Fig. 11-1. The nonactive profile of the rack form in section 1 will be the same as 
the active profile in section 5. Their relative positions will be determined from the 
known thread thickness of the worm at any convenient diameter, such as the outside 
diameter, for example. In a similar manner, the nonactive profile in section 2 will be 
the same as the active profile in section 4. Section 3 is an axial section, and the basic- 
rack form here will be symmetrical. In this case of a screw helicoid, this section is 
formed of straight lines. 

For this screw helicoid we have the following values: 

7 « 14.500® tan y = 0.25862 L = 6.000 F, = 1.750 
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We shall use the following values for the distances of the intersecting planes from 

the axis of the helicoid: 
Section 

1 
2 
3 

4 

5 

Value of D, in. 
1.250 

0.625 

0.000 
-0.625 

-1.250 

Sections 1 and 5. Substituting the foregoing values into Eq. (10-13) we obtain 

For section 1 

X. = 0.25862 vTse^S'-f - 0.95403 

For section 5 

Xa = 0.25862 V1.5626 + y.’ - 0.95493 tan-* 

Substituting the values into Eq. (10-14), we obtain 

For section 1 

For section 5 

1.62496J/. V'1.5625 + j/.* - 7.500 

^ 6.28319(1.5625 + y,*) 

tan <t> 
1.62496i/a vT^5 -f !/a* -f 7.500 

6.28310(1.5625 ^ ya^) 

Solving these equations for a series of values of ya ranging from 0.630 in. to 1.670 

in.., which covers the depth of thread, and for 1.750 in., which gives the value on the 

pitch line, we obtain the values tabulated in Table 11-1. 

Substituting the values from Table 11-1 into Eqs. (11-1) and (11-2), we obtain 

2/ " J/a - 1.750 
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For section 1 

For section 5 

X ^ Xa -V 0.36152 

X ^ Xa + 1.53612 

These values of x and y are tabulated in Table 11-2. Substituting the values from 

Tables 11-1 and 11-2 into Eq. (1-1), we obtain the values of X;>, which are also tabu¬ 

lated in Table 11-2. 

^orm axis 

^_ 

There is no path of contact in section 1 because all the values of tan are minus, 

which indicates that this part of the helicoid form is outside of the field of conjugate 

action. 

These values in Table 11-2 are plotted in Fig. 11-2. 

TaBLK 11-1. (’OORl)INAT?:S OF BaSIC-RACK pROFlI.K IN Sk( TIONS 1 AND 5 

(Blotted in Fig. 11-2) 

ya, in. 

Section 1 Section 5 

Xo, in. tan Xa, in. tan 

0.630 -0.08379 -0.49280 -2.19219 0.72559 

0.760 -0.14334 -0.42340 -2.10000 0.69211 

0.890 -0.19400 -0.35694 -2.01232 0.65694 

1.020 -0.23632 -0.29508 -1.92920 0.62209 

1.150 -0.27096 -0.23864 -1.85850 0.58884 

1.280 -0.29863 -0,18788 -1.77579 0.55794 

1.410 -0.32005 -0.14266 -1.70533 0.52950 

1.540 -0.33593 -0.10263 -1.63815 0.50419 

1.670 -0.34693 -0.06727 -1.57411 0.48136 

1.750 -0.35152 -0.04764 -1.53612 0.468,53 
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Using the values from the preceding tables in Eqs. (1-2) and (1-3), we obtain the 

values of the coordinates of the conjugate gear-tooth profiles of section 5, which are 

tabulated in Table 11-3. The form of the worm-gear-tooth profile in section 1 is 

that of the trochoidal path of the corner of the hob tooth. 

Table 11-2. Coordinates of Basic-rack Profile and Path of (Contact, Sections 

1 AND 5 

(Plotted in Fig. 11-2) 

2/a, in. 

Section 1 1 Section 5 

2/, in. X, in. Vy in- X, in. Xp, in. 

0.630 

o
 1 0.26773 -1.120 -0.65607 1.54357 

0.760 -0.990 0.20818 -0.990 -0.56388 1.43040 

0.890 -0.860 0.15752 -0.860 -0.47620 1.30910 

1.020 -0.730 0.11520 -0.730 -0.39308 1.17346 

1.150 -0.600 0.08056 -0.600 -0.31438 1.01895 

1.280 -0.470 0.05289 -0.470 -0.23985 0.84238 

1.410 -0.340 0.03147 -0.340 -0.16921 0.64187 

1.540 -0.210 0.01559 -0.210 -0.10203 0.41650 

1.670 -0.080 0.00459 -0.080 -0.03799 1 0.16619 

1.750 0.000 0.00000 0.000 0.00000 0.00000 

Table 11-3. Coordinates of Conjugate Gear-tooth Form, Section 5 

(Plotted in Fig. 11-3) 

2/a, in. r, in. rad re, in. 

0.630 7.021 -0.16226 -1.146 

0.890 6.870 -0.13833 -0.9,50 

1.020 6.565 -0.09372 -0.615 

1.150 6.411 -0.07310 -0.468 

1.280 6.256 -0.05384 -0.337 

1.410 6.103 -0.03621 -0.221 

1.540 5.954 -0.02049 -0.122 

1.670 5.811 -0.00704 -0.041 

1.7,50 5.7294 0.00000 0.000 

Using the value of 6 *= —0.080 in Eq. (3-1), we obtain the values of the coordi¬ 

nates of the trochoidal fillet for sections 1 and 5 that are tabulated in Table 11-4. 

The only difference in the trochoids of these two sections at equal distances on oppo¬ 

site sides of the axis of the worm is in their relative locations from the origins of their 

respective conjugate gear-tooth forms, or from the pitch points of the profiles. 

For section 1, the value of Xi » 0.00459, whence 

, 0.00459 nnnoQA 
arc ^ g y294 “ ^ ^0080 radian 
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For section 5, the value of Xt = —0.03799, whence 

0 03799 
arc 5 = - -0.00663 radian 

The values tabulated in Tables 11-3 and 11-4 are plotted in Fig. 11-3. 

SECTION 1. 

Trochoid Path ofconfvrch 

SECTION 5. 
Fig. 11-3. 

Tablk 11-4. Coordinates of Trochoidal Fillet, Sections 1 and 5 

(Plotted in Fig. 11-3) 

r<, in. Otj rad 1 rtdt, in. 

5.8094 0.00000 0.0000 

5.9000 -0.00602 -0.0355 

6.0000 -0.00913 -0.0547 

6.1000 -0.01478 -0.0901 

6.2000 -0.02117 -0.1312 

6.3000 -0.02816 -0.1774 

6.4000 -0.03570 i -0.2284 

6.5000 -0.04373 -0.2842 

6.6000 -0.05221 -0.3445 

Sections 2 and 4, The values of the coordinates of the several curv^es in sections 

2 and 4 are calculated in the same manner as were those for sections 1 and 5. These 

values are tabulated in Tables 11-5, 11-6, 11-7, and 11-8. The angles between the 

origins of the conjugate gear-tooth profiles and the trochoidal fillets are as follows; 

For section 2 

arc S « “ 0.00480 radian 
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Table 11-5. Coordinates of Basic-rack Profile, Sections 2 and 4 
(Plotted in Fig. 11-4) 

Va, in. 

Section 2 ^ Section 5 

Xa, in. tan <t> Xaj in. tan 4> 

1.267 -0.69701 -0.06710 -1.57224 0.53095 
1.350 -0.70123 -0.03500 -1.53130 0.50435 
1.450 -0.70301 -0.00191 -1.48028 0.47687 
1.550 -0.70176 0.02616 -1.43379 0.45351 
1.650 -0.69792 0.05012 -1.38945 0.43355 
1.750 -0.69185 j 0.07070 -1.34698 0.41637 
1.850 -0.68389 j 0.08848 -l.3(M)42 0.40152 
1.990 -0.66433 i 0.10460 -1.25670 0.37896 

Table 11-6. Coordinates of Basic Rack and Path of Contact, Sec tions 2 and 4 

(Plotted in Fig. 11-4) 

Section 2 Section 4 

Vay in. 
y, in. X, in. Xpy in. y, in. X, in. Xpy in. 

1.267 -0.483 -0.00516 -0.483 -0.22526 0.90969 
1.350 -0.400 -0.00938 -0.400 -0.18432 0.79310 
1.450 -0.300 -0.01116 -0.300 -0.13330 0.62910 
1.550 -0.200 -0.00991 7.64526 -0.200 -0.08681 0.44100 
1.650 -0.100 -0.00607 ' 1.99521 -0.100 -0.04272 0.23065 
1.750 0.000 0.00000 0.00000 0.000 0.00000 0.00000 
1.850 0.100 1 0.00796 -1.13020 0.100 ' ' 0.04056 -0.24905 
1.990 0.240 i 0.02752 -2.29445 0.240 : 0.09028 -0.63331 

Table 11-7. Coordinates of Conjugate Gear-tooth Profiles, Sections 2 and 4 

(Plotted in Fig. 11-5) 

Section 2 [ Section 4 
1_ _ 

2/a, in. 
r, in. rd, in. r, in. re, in. 

1 267 6.2392 -0 3288 
1.350 6.1804 -0 2590 
1.450 6.0621 -0 1764 
1.550 9.67511 

. 
-4.1118 5.9457 -0.1063 

1.650 6.16139 -0.1204 5.8339 -0.0474 
1.750 5.72940 j 0.0000 5.7294 0.0000 
1.850 5.74173 5.6349 0.0426 
1.990 5.9490 1 5.5258 0.0631 
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Table 11-8. 

For section 4 

Coordinates of Trochoidal Fillet, Sections 2 and 4 

(Plotted in Fig. 11-5) 

n, in. Tidt, in. 
5.4894 0.00000 
5.6000 0.03237 
5.7000 0.02702 
5.8000 0.01113 
5.9000 -0.01286 
6.0000 -0.04320 
6.1000 -0.07960 
6.2000 -0.12127 

_ 0.09028 

5.7294 
= 0.01575 radian 

The basic-rack forms and paths of contact for these two sections arc plotted in 

Fig. 11-4. The conjugate gear-tooth profiles and trochoidal fillets are plotted in 

Fig. 11-5. 

Palh of conj-acf 

/ 

Path of contact 

_ 
Fio. 11-4. 

In section 2, the lower part of the basic-rack form is beyond the field of conjugate 

action. The pressure angle of this form is so low that the conjugate gear-tooth profile 

is undercut. There is also a cusp above the pitch line because the values of r increase 

again. Such cusps and undercut are always found together. 

Section 3. Section 3 is the axial section of the screw helicoid. The basic-rack 

form here is a straight-line profile, and the conjugate gear-tooth profile is the involute 

of a circle. The coordinates of these intersection curves are tabulated in Table 11-9. 

The profile of this basic-rack form and its path of contact arc plotted in Fig. 11-6. 
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Table 11-9. Coordinates of Profiles in Section 3 
(Plotted in Fig. 11-7) 

tan 4> ~ 0.25862 

J/o, in. Xa, in. Vy in. X, in. X;,, in. r, in. rO, in. 

1.413 -1.13457 -0.337 -0.08715 1.30308 6.2043 -0.1927 
1.550 -1.09914 -0.200 -0.05172 0.77334 5.9786 -0.0855 
1.650 -1.07328 -0.100 -0.02586 0.38667 5.8422 -0.0337 
1.750 -1.04742 0.000 0.00000 0.0000 5.7294 0.0000 
1.850 -1.02156 0.100 0.02586 -0.38667 5.6426 0.0193 
1.950 -0.99570 0.200 0.05172 -0.77334 5.5832 0.0281 
2.086 -0.96052 0.336 0.08690 -1.29921 5.5476 0.0308 

The location of the origin of the trochoidal fillet in reference to the pitch point of 
the gear-tooth profile is as follows: 

. 0.08690 
arc 5 = = 0.01500 radian 

5.7924 

The values of the coordinates of the trochoid arc tabulated in Table 11-10. The 
coordinates of the conjugate gear-tooth profile and of the trochoid arc plotted in Fig. 
11-7. 

Fig. 11-6. Fio. 11-7. 

Field of Contact and Contact Lines. We are now in a position to 
determine the projection of the field of actual contact and the actual 
position of the line contact between the worm and the worm gear. The 
example used here is a very poor design and was selected purposely to 
make apparent the nature of the conditions outside of the field of con¬ 
jugate action, and also those of undercut. The angle of the generatrix 

Table 11-10. Coordinates of Trochoidal Fillet, Section 3 
(Plotted in Fig, 11-7) 

rt, in. ridtj in. 
6.3934 0.0000 
6.5000 0.0502 
6.6000 0.0529 
6.7000 0.0433 
6.8000 0.0250 
6.0000 -0.0319 
6.2000 -0.1113 



CONTACT ON WORMjGEAR DRIVES 221 

of the helicoid must not be much less than the lead angle of the worm if 
such conditions are,to be avoided. Also the worm diameter must be 
large enough to bring the thread contour into the field of conjugate 
action. 

The projection of the field of contact is determined graphically as 

follows: To develop this field of contact and the projections of the actual 
contact lines between the worm and the gear, we need three views of the 
worm: the end view, the plan view, and the side view. In the side view, 

we first plot the paths of contact of the several sections. Through these 
paths of contact we then draw straight lines, parallel to the pitch plane, 
which represent the trace of the outside cylinder of the worm with the 

several intersection planes of the different sections. The intersection of 
this line for section 5, for example, with the path of contact for section 5 
is projected into the plan view of the worm. Wliere this projection line 
crosses the line representing section 5 is one point of the boundary of the 
projection of the field of contact in the plan view of the worm. This 
process is repeated for all sections, and gives a series of points through 
which a curve is drawn. This curve represents the end of the recess 

action betwc('n the worm and the gear. 
To determine the boundary at the beginning of the approach action, 

circles are drawn from the center of the worm gear that represent the 
trace of the outside of the worm-gear blank with the several intersection 
planes. The intersections of these circles with their respective paths of 
contact establish the several points on the boundary of the field of contact 
at the beginning of mesh. These points are projected into the plan view 

of the worm as before, and so this part of the form of the field of contact is 
established. Consideration must be given here to the form of the outside 
of the worm-gear blank, as these projected points generally belong on two 
intersecting curves or forms, and do not lie in one continuous curve. 

The positions of the sides of the field of contact are controlled by the 

intersection of the two sides or faces of the worm-gear blank with the 
threads of the worm. These are commonly straight lines that represent 
the edges of the worm-gear blank. 

When undercut is present, the boundaries will then be inside the full 
potential field of contact. The end of the recess action, in such cases, 
will be the point where a circle of the worm gear that passes through the 
intersection of the trochoid and the conjugate gear-tooth profile crosses 
the path of contact for the particular section. This gives another line 

or curve at the end or side of the field of contact. 
These operations have been carried out in Fig. 11-8. The paths of 

contact, straight lines, and circles are numbered, corresponding to the 

number of the section to which they belong. 
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These operations have been carried out in Fig. 11-9. Generally, the 
operations described can be carried out on the same layout. They are 
separated here to avoid possible confusion. 

Such an analysis may be made of any worm-gear drive. It gives a 
very illuminating picture of the nature and amount of the contact on 
worm-gear drives. Often it will help to explain seemingly paradoxical 
conditions, which are often met with on such drives. Many actual 
analyses and layouts must be made to obtain a full comprehension of this 

phase of the subject. 

Direct Analysis of Contact Lines. It is possible to determine the 
positions of the contact lines between a worm and a worm gear without 
first determining the sectional basic-rack profiles of the worm and their 

paths of contact. A direct analysis of the contact lines is the simpler 
procedure, but it gives little indication of the possible conditions of 
undercut. Therefore until one has mastered the characteristics of 

helicoid sections and their application to the analysis of worm-drive 
contact, and has become fully aware of the influences of the thread angle 
and the lead angle on the off-center sections of the worm, the full analysis 

will always be the more valuable one. 
We shall now proceed to study the contact lines on a helicoid used as 

a worm. This direct method of analysis was originated by Ernest 
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Wildhaber. In order to simplify the problem, we shall at first ignore the 

diameter of the worm gear and also all problems of interference and 
undercutting, and other similar limitations to the field of contact. 
Eventually these problems must be solved in exactly the same manner 
here as is used for the solution of similar problems with spur gears. The 
diameter of the worm gear has no influence on the forms or positions of 
these contact lines: the larger worm gear only uses more of them. 

The contact lines between a worm and a worm gear are determined in 
the same manner as would be used to determine the contac^t lines between 
a rack of varying form of profile across its face and a spur gear. At any 
moment, an infinitely small part of the motion between the two members 

can be considered as a turning motion about the contact line between the 
pitch cylinder of the worm gear and the pitch plane of the worm. This 
contact line, which is the locus of all the pitch points of the mating con¬ 

jugate profiles, when considered as the axis of this turning motion, will be 
called the momentary center of the motion, or more briefly, the momentary 

axis. 
In order for the worm to be able to turn about this momentary axis 

relative to the worm gear, the normal to any contact point between the 
worm thread and the gear-tooth surface must pass through this 

momentary axis. Otherwise it would be impossible for the worm to turn, 
or rock slightly, about the momentary axis in both directions. All this 
is another way of expressing the fact that for conjugate gear-tooth 
action, the normal to the tooth profiles of the mating members at the 
point of contact must pass through the pitch point. Here, however, we 
have a three-dimensional problem instead of a two-dimensional one. 

The normal to the surface of a helicoid must be perpendicular to its 
straight-line generatrix. It must also be perpendicular to the tangent of 
the helix of the helicoid at its point of tangency to the helicoid surface. 
It must also be perpendicular to the tangent of any intersection profile of 
the helicoid with any plane that contains the point of contact. 

We shall now study the screw helicoid and determine its contact lines. 
Contact Lines on Screw Helicoid, Referring to Fig. 11-10, the position 

of the surface of the helicoid relative to the drawing plane can be deter¬ 
mined from the location of its intersection curve with the drawing plane. 

In this case, the drawing plane is perpendicular to the axis of the helicoid. 
The intersection curve for the screw helicoid is an Archimedean spiral 
whose equation is given by Eq. (10-15), which is as follows: 

0 = 2xr tan y/L (10-15) 

This intersection curve can be located in any angular position that 
may be desired. In this examrple we shall start with the origin revolved 
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The intersection of the normal to the helicoid surface with the 

momentary axis is at a distance {h — k) tan 7 tan X from the projection 
of the generatrix on the end view of the worm as shown in Fig. 11-10, 

where 
X = lead angle at point of contact 
r\ = radius to point of contact 

tan X = L/27rri 

Ti = (fti/sin e) + k 

whence 
tan X = L sin €/27r(i?i + k sin c) 

k = {h — k) tan^ 7 fc) t-an 7 tan X/tan €]* 

Substituting the value of tan X, combining, and simplifying, we obtain 

k = (h — k) {tan^ y — [L tan 7 cos e/27r(/c sin c + Ri)]} (11-5) 

When Eq. 11-5 is solved for fc, we obtain an extended quadratic 
equation. For simplification when solving, we will let 

A = 2t sin e 
B = 2kR\ — L sin 7 cos 7 cos € — 2wh sin^ 7 sin t 
C = h{2TrRi sin^ 7 — L sin 7 cos 7 cos c) 

Then 
k = (-/? + \/W+~4AC)/2A (11-6) 

When € = 90°, Eq. (11-6) reduces to the following: 

k = h sin^ 7 (11-7) 

The value of h is plus when the intersection curve of the helicoid is 
above the pitch plane. When the value of h is plus, the value of k is 
plus also. When the value of h is minus, the value of k is minus also. 

A study of Fig. 11-10 will make it apparent that the contact line will 

always lie between the momentary axis and the intersection curve of the 

helicoid with the drawing plane that contains the momentary axis. 
The form and position of this contact line will depend upon the lead of the 

helicoid, the angle of the generatrix, and the position of the pitch plane. 
The smaller the lead and the lower the angle of the generatrix, the closer 
the contact line will be to the momentary axis, which is the intersection 

of the pitch plane with the drawing plane. 
To obtain the contour of the projection of any contact line on the end 

view of the worm for any given position of the helicoid in relation to the 

momentary axis, the positions of a series of contact points must be 

* The sign here is minus instead of plus because the value of € as shown is in the 
second quadrant where the value of its tangent is minus. 
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established. This is done by solving Eq. (11-6) for several different 
positions of the radial plane, or for different values of t. 

To obtain the projections of these contact lines on the plan view of 
the worm, we proceed as follows: 

When X = distance of contact point from momentary axis in an axial 
direction, in. 

then 
X — (h — k) tan y (11-8) 

The value of the coordinate y in this plan view, or the distance of the 
projection of the contact point from the projection of the axis of the worm 

on the plan view, is determined graphically by projecting the position of 
the desired point from the end view into the plan view. 

To determine the change in the form and position of the contact lines 

as the worm is revolved into other positions, the preceding equations are 
solved for successive positions of the momentary axis in relation to the 
helicoid. This is done by determining new values for h corresponding to 

the change in position of the helicoid in relation to the momentary axis. 

For example, if the helicoid is revolved one-quarter of a revolution, all 
the original values of h will be altered an amount equal to L/4 tan y. 

When N = number of threads or starts on worm 

h\ = length of h on first thread from original position, in. 
/i2 = length of h on second thread from original position, in. 

then to obtain values for successive contact lines that exist simultaneously 
on successive threads of the worm 

hi = h (L/N tan 7) (11-9) 

h2 = hi + (L/N tan 7) = ^ + 2{L/N tan 7) (11-10) 
etc. 

The actual duration of contact can be determined by establishing the 
turning angle of the helicoid that will carry the contact lines across the 
face of the worm gear. This, of course, will also be influenced by the 
diameter of the worm gear. The duration of contact will be greater when 

worm gears of greater diameter (and numbers of teeth) are used. These 
conditions will be considered later when we study the field of contact. 

Contact Lines in Involute Helicoids. The form and position of the 
contact lines on an involute helicoid are easy to determine. The nature 
of an involute helicoid is such that every normal to its surface is tangent 
to the base cylinder. Thus if we use for our analysis a series of planes 

that are tangent to the base cylinder, these planes will contain both the 
generatrix and the normal to the helicoidal surface. This leads to a very 
simple solution for the positions of the contact points. Referring to 
Fig. 11-11, when 
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L = lead of generatrix, in. 
7 = angle of generatrix 
c = angle of plane tangent to base cylinder with pitch plane 

= radius of base cylinder, in. 
h = length along line tangent to base cylinder from the momentary 

axis to intersection curve of involute helicoid, in. 
fe = distance to projection of contact point on line tangent to base 

circle from momentary axis, in. 
Ri = distance of pitch plane from axis of helicoid, in. 

Cl = angle of rotation of generatrix from origin of involute 

we have from the geometrical conditions shown in Fig. 11-11 the following: 

h = KftCi — [{Ri — 7?6 cos €)/sin c] 
k = h sin^ 7 

Rb = L/2'k tan 7 

Fig. 11-11. Contact on involute helicoid. 

(11-11) 
(11-12) 

(11-13) 

Equation (11-12) is the same for all positions of the intersecting 
tangent planes. 

In order to determine the change in the projection of the form and 
position of other contact lines as the helicoid is revolved to different 
positions, the changed length of h is multiplied by the constant value of 
sin^ 7. The length of h changes uniformly on all tangent planes. For a 
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turning movement of one revolution, it changes an amount equal to the 
circumference of the base cylinder. For all other movements, it changes 
in direct proportion to the fraction of a revolution that may be made. 

To determine the projection of these contact points on the plan view 
of the worm, we proceed exactly as before as in the case of a screw helicoid. 
For this purpose we have Eq. (11-8). 

Examples of Contact Lines, lioforo considering the method of establishing the 

projections of tVie field of contact, we shall solve a few definite examples to determine 

the difference, if any, in the nature of the contact lin(‘s between similar worms of the 

form of screw helicoids and of involute helicoids. Th(‘se two, as noted before, are 

limiting types of the convolute helicoid. The range between them covers practically 

all the types of worms commonly used. We will also st\idy the influence of the posi¬ 

tion of the pitch plane on the form and nature of th(‘se contact lines. 

Firfit Example: Single-thread Screw Helicoid, The first example will be a single¬ 

thread screw helicoid of the following proportions: 

Outside radius. . 2.500 in. 

Hoot radius. . 2.000 in. 

Angle of generatrix. .30° 

Lead .... . 1.000 in. 

Distance to pitch plane. . 2.250 in. 

For the initial position of the helicoid in respect to the monetary axis, we shall 

mak(^ the inters(‘ction curve of this helicoid in the drawing plane pass through the 

point wlu're r = 2,250 in. on the radial plane where e = 90°. Under th(‘se conditions 

Fio. 11-12. Contact on single-thread screw helicoid. 

we obtain the values tabulated in Table ll-ll. With a single-thread worm, it must 

be revolved a full revolution to determine the contact line on the adjacent thread or 

tooth. Several contact lines, 1 thread apart, have been determined. The values of 

their coordinates are tabulated in Table 11-11. These values are also plotted in 

Fig. 11-12. 
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Fig. 11-13. Contact on single-thread involute helicoid. 

Second Example: Single-thread Involiile Helicoid. As a second (‘xaniple, we shall 

use an involute helicoid with the same values as were used for the screw helicoid, 

and make the intersection curve of this helicoid with the drawing plane pass through 

the same point as before. For this example, we get the values tabulated in Table 

11-12 and plotted in Fig. 11-13. 

Table 11-11. Coordinates of Contact Lines on Single-thread Screw Helicoid 

(Plotted in Fig. 11-12) 

Position of worm 

Values of e 

45° 60° 75° 90° 105° 120° 135° 

1. Turned back 

two revolu¬ 

tions 

h -4.6171 -3.9565 -3.6156 -3.4641 -3.4713 -3.6678 -4.5065 

k -1.0329 -0.8773 -0.8692 -0.8660 -0.9010 -0.0831 -1.1476 

2. Turned back 

one revolu¬ 

tion 

h -2.8850 -2.2244 -1.8836 -1.7320 -1.7392 -1.9358 -2.4475 

k -0.6605 -0.5235 -0.4568 -0.4330 -0.4439 -0.5111 -0.6607 

3. Original posi¬ 

tion 

h -1.1485 -0.4924 -0.1515 0.0000 -0.0072 -0.2037 -0.7154 

k -0.2662 -0.1171 -0.0369 0.0000 -0.0018 -0.0554 -0.2165 

4. Turned ahead 

one revolu¬ 

tion 

h 0.5836 1.2397 1.5805 1.7320 1.7249 1.5283 1.0166 

k 0.1366 0.2970 0.3870 0.4330 0.4398 0.3972 0.2691 
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A comparison of Fig. 11-12 and 11-13 shows some minor differences in 

detail, but on the whole they are substantially alike. The arrows in the 
figures indicate the direction of rotation of the worm. The lower contact 
linos are those at the beginning of mesh, while the contact lines above the 

trace of the pitch plane are those of the recess action at the end of mesh. 
Except where undercut is present, the size of the worm gear has no 
influence on the amount of recess action. A larger worm gear will give 
more approach action. 

Table 11-12. (-oordinates of Contact Lines on Single-thread Involute 

Helicoid 

(Plotted in Fig. 11-13) 

Position of worm 
Values of 6i 

45° o
 o 75° 90° o
 ° 120° ; 135° 

1. Tiiriiod hack 
two revolu¬ 
tions 

h -4.3199 -3.7803 -3.5248 -3.4771 -3.5282 

1 

-3.8100 -4.4382 

k -1.0800 -0.9451 -0.8812 -0.8693 -0.8820 -0.9525 -1.1095 
2. Turned hack 

one revolu¬ 
tion 

h -2.5879 -2.0483 -1.7927 -1.7150 -1.7961 -2.0779 -2.7062 
k -0.6470 -0.5121 -0.4482 -0.4288 -0.4490 -0.5195 -0.6765 

3. Original posi¬ 
tion 

h -0.8558 -0.3162 -0.0607 0.0170 -0.0641 -0.3459 -0.9741 
k -0.2139 -0.0791 -0.0152 -0.0042 -0.0160 -0.0865 -0.2435 

4. Turned ahead 
one revolu¬ 
tion 

h 0.8762 1.4158 1.6714 1.7490 1.6680 1.3862 0.7579 
k 0.2191 0.3539 0.4178 0.4373 0.4170 0.3465 0.1895 

With the pitch plane at the middle of the thread form in the axial 
section, most of the contact is approach action, which is the less favorable 
type of contact on worm-gear drives. As the pitch plane is dropped 
toward the root circle, more of the action will be the more favorable 
recess action. 

To distinguish the two sides of the face of the worm gear from each 
other, we shall call the side where the thread is entering into mesh the 
entering side^ and the opposite side of the face will be called the leaving 

side. It will be noted that the projections of the contact lines on the end 
view of the worm tend to converge toward the pitch plane on the leaving 
side of the face of the worm gear. 
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In order to determine the effect of dropping the pitch plane of the 

worm, we shall determine the projections of the contact lines on both the 
preceding examples when the pitch plane has been dropped to the root 
circle of the worm. 

90^ 

Fig. 11-15. Contact on single-thread involute helicoid. 

Single-thread Screw Helicoid with Pitch Plane Dropped. All factors will be the 
same for this example as for the first example except that the valium of Ri will be 
reduced to 2.000 in. The coordinates of the projection of thf‘He contact lines on the 
end section of the worm are tabulated in Table 11-13 and are plotted in Fig. 11-14. 

Single-thread Involute Helicoid with Pitch Plane Dropped. All factors will also 
be the same here as for the second example except that the value of 721 is reduced to 
2.000 in. The coordinates of the projections of these contact lines are tabulated 
in Table 11-14 and plotted in Fig. 11-15, 
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Table 11-13. Coordinates of Contact Lines on Single-thread Screw Helicoid 

WITH Pitch Plane Dropped to Root Circle 

(Plotted in Fij^. 11-14) 

Position of worm 

Values of ( e 

45° 60° 75° 90° 105° 120° 135° 

1. Original posi¬ 
tions 

h -0.7949 -0.2037 0.1073 0.2.500 0.2516 0.0850 -0.3619 
k -0.1828 -0.0482 0.0261 0.0625 0.0645 0.0223 -0.0971 

2. Turned ah(‘ad 
one revolu¬ 
tion 

h 0.9371 1.5283 1.8393 1.9820 1.9837 1.8170 1.3701 
k 0.2180 0.3648 0.4496 0.4955 0.5065 0.4735 0.3642 

3. Turned ah(‘ad 
two r(*volu- 
tions 

h 2.6092 3.2604 3.5714 3.7141 3.7157 3.5491 3.1022 
k 0.6265 0.7832 0.8757 0.9285 0.9459 0.9197 0.8187 

Table 11-14. Coordinates of Contact Lines on Single-thread Involute 

Helk’oid with Pitch Plane Dropped to Root (’ircle 

(Plotted in 11-15) 

J^)siti()n of worm 

Values of fi 

•15° 60° 75° 90° 105° 120° 135° 

1. Original posi¬ 
tion 

h -0.5023 -0.0276 0.1982 0.2670 0.1948 

i 

-0.0572 -0.6206 

k -0.1256 -0.0069 0.0495 0.0667 0.0487 -0.0143 -0.1551 
2. Turned ahead 

one revolu¬ 
tion 

h 1.2298 1.7045 1.9302 1.9990 1.9268 1.6748 1.1115 
k 0.3074 0.4201 0.4825 0.4998 0.4817 0.4187 0 2779 

3. Turned ahead 
two revolu¬ 
tions 

h 2.9618 3.4365 3.6627 3.7311 3.6589 3.4069 2.8435 
k 0.7405 0.8591 0.9156 0.9328 0.9147 0.8517 0.7109 
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A comparison of Fig. 11-14 and 11-15 shows that no material differ¬ 

ences exist between the two sets of contact lines. 
For further examples, we shall next determine the form and position 

of the contact lines on the end views of worms with multiple threads and 

higher lead angles. 

6-tliread Screw Helicoid. The next example will be a screw helicoid with the 
following proportions: 

Outside radius. 2.500 in. 
Root radius. 2.000 in. 
Lead. 6.000 in. 
Number of threads. 6 
Angle of generatrix. 30° 
Distance to pitch plane. 2.250 in. 

For the initial position of the helicoid in respect to the momentary axis, we will 
make the intersection curve in the drawing plane pass through the point when^ 
r = 2.2500, on the intersecting plane where e — 00°. Under these conditions we 
obtain the values tabulated in Table 11-15. For successive contact lines on adjacent 
threads, the worm is revolved one-sixth of a revolution. The coordinates of the 
contact lines tabulated in Table 11-15 are plotted in Fig. 11-16. 

Table 11-15. Coordinates of Contact Lines on End Section of 6-threai> Screw 

Helicoid 

(Plotted in Fig. 11-16) 

Position of worm 

Values of ( E 

45° 60° 75° 90° 105° 

0 O
 135° 

1. Turned back 
120° 

h -5.6951 -4.6782 -3.9765 -3.4641 -3.1104 -2.9461 -3.0970 
k -0.6068 -0.6729 -0.7665 -0.8660 -0.9512 -1.0282 -1.1703 

2. Turned back 
60° 

h -3.9630 -2.9461 -2.2444 -1.7320 -1.3784 -1.2141 -1.5161 
k -0.4587 -0.4590 -0.4790 -0.4330 -0.4330 -0.4008 -0.3924 

3. Original posi- 
tion 

h -2.2310 -1.2141 -0.5124 0.0000 0.3536 0.5180 0.3671 
k -0.2797 -0.2027 -0.1079 0.0000 0.1000 0.1604 0.1224 

4. Turned ahead 
60° 

h -0.4989 0.5180 1.2197 1.7320 2.0857 2.2.500 2.0991 
k -0.0674 0.0916 0.2641 0.4330 0.5788 0.6758 0.6772 

5. Turned ahead 
120° 

h 1.2331 2.2500 2.9517 3.4641 3.8177 3.9820 3.8312 
k 0.1785 0.4484 0.6525 0.8660 1.0454 1.1733 1.2053 
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6-thread Involute Helicoid. As another example of a 6-thread worm, we will use 

an involute helicoid with the same values as those of the similar screw helicoid, and 

with the intersection curve passing through the same point on the drawing plane as 

on the single-thread involute helicoid used in the second example. For this we get 
the values tabulated in Table 11-16 and plotted in Fig. 11-17. 

5(9^ 7S^ 

Fia. 11-17. Contact on 6-throad involute helicoid. 

A comparison of Figs. 11-16 and 11-17 shows some minor differences in 
detail in the forms of the projections of the contact lines on the end view 
of the worm, but that their general nature and positions are substantially 
the same, particularly on those portions of the contact lines which lie in 
the thread section of the worm. 
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Table 11-16. Coordinates of Contact Lines on End Section of G-tiiread 

In\olute Helicoid 

(Plotted in Figs. 11-17 and 11-20) 

Position of worm 

Values of ei 

5° 15° 30° 45° 60° 75° 90° 

1. Turned back 
120° 

h -9.9379 — 5.2585 -3.9401 -3.3999 -3.0820 -2.8930 -2.8228 
k -2.4843 -1.3146 -0.9850 -0.8500 -0.7705 -0.7232 -0.7057 

2. Turned back 
60° 

h -8.2052 -3.5264 -2.2080 -1.6678 -1.3499 -1.1610 -1.0908 
k -2.0513 -0.8816 -0.5520 -0.4169 -0.3375 -0.2902 -0.2727 

3k Original posi- 
tion 

h -6.4632 -1.7944 -0.4760 0.0642 0.3821 0.5711 0.6413 
k -1.6183 -0.4486 -0.1190 0.0161 0.0955 0.1428 0.1603 

4. Turned ahead 
60° 

h -4.7411 -0.0623 1.2560 1.7963 2.1142 2.3031 2.3733 
k -1.1853 -0.0156 0.3140 0.4491 0.5285 0.5758 0.5933 

5. Turned ahead 
120° 

h -3.0091 1.6697 2.9881 3.5283 3.8462 4.0352 4.1054 
k -0.7523 0.4177 0.7470 0.8821 0.9615 1.0088 1.0263 

We shall again drop the pitch planes of these worms to their root 

radii and examine the conditions under these changed circumstances. 

6-thread Screw Helicoid with Pitch Plane at Root Radius. When the value of R\ 

is reduced to 2,000 in., we obtain the values, for the coordinates of the projections of 
the contact lines on the end view of the worm, that are tabulated in Table 11-17 and 
plotted in Fig. 11-18. 

6-thread Involute Helicoid with Pitch Plane at Root Radius. Wlam th(i value of 
Ri is reduced to 2.000 in., we obtain the values that are tabulated in Table 11-18 and 
plotted in Fig. 11-19. 

A comparison of Figs. 11-18 and 11-19 again shows a very close agree¬ 
ment between the forms and positions of the projections of the contact 
lines of the screw helicoid and the involute helicoid on the end sections of 
the worms, particularly those portions of them which lie on the thread 
sections of the worms. Therefore, except for critical drives, which should 

always be analyzed in detail, the conditions on either type of helicoid 
may be used as a very close approximation to those on any other type of 
helicoid with a straight-line generatrix. 
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Fig. 11-18. Contact on O-thread screw helicoid. 

Table 11-17. C-oordixates ( 'ontact Lines on End Section of G-thread Screw 

IIelk'oid with Pit('H Plane at Loot Radius 

(Plotted ill Fig. 11-18) 

Position of worm 

Values of e 

45" 60" 75" 90" 105" 120° 135" 

1. 'ruriK'd hack 
120" 

h -5.3415 -4.3895 -3.7176 -3.2141 -2.8516 -2.6575 -2.7435 
k -0.4795 -0.5727 -0.08()7 -0.8035 —0.8975 -0.9649 -1.0783 

2. I'urncd back 
60" 

h -3.6095 -2.6574 -1.9856 -1.4820 -1.1196 -0.9254 
1 
-1.0114 

k -0.3581 -0.3829 -0.3912 -0.3705 -0.3315 -0.3052 -0.3618 
3. Original posi¬ 

tion 
h -1.8774 -0.9254 -0.2535 0.2500 0.6125 0.8066 0.7206 
k -0.2058 -0.1453 -0.0523 0.0625 0.1723 0.2532 0.2442 

4. Turned ahead 
60" 

h -0.1454 0.8066 1.4785 1.9820 2.3445 2.5387 2.4527 
k -0.0175 0.1362 0.3156 0.4955 0.6548 0.7716 0.7993 

5. Turned ahead 
120" 

h 1.5867 2.5387 3.2105 3.7141 4.0766 4.2707 4.1847 
k 0.2091 0.4547 0.6364 0.9285 1.1217 1.2680 1 1.3300 
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Fio, 11-19. Contact on 6-thread involute helicoid. 

Table 11-18. Coordinates of Cont.\ct Lines on Knd Section of 6-thread 

Involute Helicoid with Pitch Plane at Root Radius 

(Plotted in Figs. 11-19 and 11-21) 

Values of ci 

Position of worm 
5° 15° 30° 45° 60° 75° 90° 

1. Turned back o O
 

h -7.0(390 -4.2926 -3.4401 -3.0463 -2.7933 -2.6332 -2.5728 
k 

2. Turned back 
-1.7672 -1.0731 -0.8600 -0.7616 -0.6983 -0.6583 -0.6432 

60° 
h -5.3369 -2..060.0 -1.7080 -1.3142 -1.0613 -0.9011 -0.8408 
k 

3. Original posi- 
-1.3342 -0.6401 -0.4270 -0.3286 -0.2653 -0.2259 -0.2102 

tion 
h -3.6049 -0.8285 -0.0240 0.4178 0.6708 0.8309 0.8913 

k 
4. Turned ahead 

-0.9012 -0.2071 -0.0060 0.1044 0.1677 0.2077 0.2228 

60° 
h -1.8728 0.9036 1.7560 2.1498 2.4028 2.5630 2.6233 
k 

6. Turned ahead 
-0.4682 0.2259 0 4390 0.5375 0.6007 0.6407 0.6558 

120° 
h -0.1408 2.6356 3.4881 3.8819 4.1349 4.2950 4.3554 
k -0.0352 0.6589 0.8720 0.9705 1.0337 1.0737 1.0888 

The involute helicoid is the easiest type to analyze in this manner. 
The equations are simple and easy to solve. We shall therefore use the 
conditions on the involute helicoid in the further analysis of worm-gear 
contact with the assurance that the results are representative of those on 
other types of helicoids with straight-line generatrices. 
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Field of Contact. When we have the basic-rack forms (helicoid 

sections) and the paths of contact on several sections of the worm, we can 

determine graphically the forms and positions of the projections of the 

contact lines on the end view of the worm and on the plan view of the 

worm, and also the projection of the field of contact on the plan view of 

the worm. 

On the other hand, when we have the forms and positions of the pro¬ 

jections of the contact lines on the end view and on the plan view of the 

worm, we can determine the paths of contact on the several sections of 

the worm and the projection of the field of contact on the plan view of the 

worm by a similar graphical process. 

For the projection of the contact lines on the plan view of the worm, 

we have F(p (11-8), as follows: 

X — (h — k) tan y (11-8) 

Example of Contact Lines on Plan View of Worm. As definite examples, we shall 
use the G-thread involute helicoid: one exanipl(‘ with the i>itch plane at the middle of 
the thread form at the axial section, and the other example with the pitch plane at the 
root radius of the worm in the axial scadion. For thc'se examples, using the values 
previously det(Tmined, we obtain the value's tabulated in Tables 11-19 and 11-20, 
respeetive'ly. 

The values from Table 11-10 together with those from Table 11-16 have been 
plotted in Fig. 11-20. The y values for the projee'tions of the contact lines in the 

Table 11-19. C'oordinates of Contact Lines on id.AN View of 6-thread Invo¬ 

lute Helicoid—Fitch Plane at Middle of Thread Form 

(Plotted in Fig. 11-20) 

Position of worm 

Values of ci 

15° 30° 45° 60° 75° 90° 

1. Turned back 120° 
h - k -3.9439 -2.9551 -2.5499 -2.3115 -2.1698 -2.1171 
(h — k) tan y -2.2770 -1.7061 -1.4722 -1.334.0 -1.2527 -1.2223 

2. Turned liack 60° 
h - k -2.6448 -1.6.560 -1.2509 -1 .0124 -0.8708 -0.8181 
(h — k) tan y -1.5270 -0.9561 -0.7222 -0.5845 -0.5027 -0.4723 

3. Original position 
h - k -1.3458 -0.3570 0.0481 0.2866 0.4283 0.4810 

{h — k) tan y -0.7770 -0.2061 0.0278 0.1655 0.2473 0.2777 

4. Turned ahead 60° 
h - k -0.0467 0.9420 1.3472 1.5857 1.7273 1.7800 

(h — k) tan y -0.0270 0.5439 0.7778 0.9155 0.9973 1.0277 

6. Turned ahead 120° 
h - k 1.2523 2.2411 2.6462 2.8847 3.0264 3.0791 

{h — k) tan y 0.7230 1.2939 1.5278 1.6655 1.7473 1.7777 
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plan view are projected from the end view as indicated in the figure. This figure 

shows the contact conditions that exist when the pitch plane is at the middle of the 

axial thread form. 
Paths of Contact. To determine graphically the paths of contact in the several 

sections of the worm, we proceed as follows: Lines are drawn through the end view 

of the worm, numbered 1 to 5, respectively, representing the several desired sections 

of the worm. These lines are continued through the plan view. The intersection 

of these lines with the projections of the contact lines in the plan view gives points 

on the path of contact. These intersection points are projected down into the side 

Fiq. 11-20. Contact on O-throad involute helicoid with pitch piano at middle of thread 

form. 

view of the worm. The distance of these points on the paths of contact above the 

axis of the worm are transferred from the end view of the worm. These h(*ights are 

those from the center line of the worm to the intersection of the lirn'S rc'presenting the 

given sections with the projections of the contact lines on the end view. Thesis 

distances may also be measured from the trace of the pitch plan(‘, and be transf(‘rred 

to the side view at the same distance above or below the trace of the pitch plane there. 

Through the several points of the path of contact in the side view of the worm, the 

curve is drawn as indicated in the figure. 

The projection of the field of contact on the plan view of the worm is then deter¬ 

mined exactly as before. The intersection of the outside line of the worm on any 

section with its respective path of contact establishes the position of the end of the 

contact for that section. The intersection of the outside circle of the worm-gear 

blank for this same section with its respective path of contact establishes the point 

of the beginning of contact for that section. Through the several points, projected 
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Table 11-20. Coordinates of Contact Lines on Plan View of 6-thread Invo¬ 

lute Helicoid—Pitch Plane at Root of Thread Form 

(Plotted in Fij5. 11-21) 

Position of worm 

Values of ei 

15° 30° 45° 60° 75° 90° 

1. Turmul buck 120° 

h - k -3.2195 -2.5801 -2.2847 -2.0950 -1.9749 -1.9296 

(h — k) tan 7 -1.8588 -1.4896 -1.3191 -1.2095 -1.1402 -1.1140 

2. Turmal l)ack 60° 

h - k -2.0104 -1.2810 -0.9857 -0.7900 -0.6758 -0.6303 

(h — k) tan 7 -1.1608 -0.7396 -0.5691 -0.4695 -0.3902 -0.3640 

3. Original }K)sition 

h - k -0.6212 -0.0180 0.3134 0.5031 0.6232 0.6685 

{h — k) tan 7 -0.3588 -0.0106 0.1809 0.2905 0.3598 0.3860 

4. Turn0(1 ahead 60° 

h - k 0.6777 1.3170 1.6123 1.8021 1.9223 1.9675 

(h — k) tan 7 0.3912 0.7604 0.9309 1.0405 1.1098 1.1360 

f). Turned ahead 120° 

h - k 1.9757 2.6161 2.9114 3.1012 3.2213 3.2666 

(h - k) tan 7 1.1412 1.5104 1.6809 1.7905 1.8598 1.8860 

into the plan view, curves or lines are drawn that give the outline of the field of 

contact on the plan vi<*w of th(‘ worm. 

In the.se exainph's, the worm gear has 40 teeth with a pitch radius (R2) equal to 

6.36618 in. The valiK'S tabulated in Table 11-20 are plotted in Fig. 11-21, together 

with the projection of the fi(*ld of contact on the plan view of the worm. 

Contact Lines on Worm Drives with Shafts at Any Angle. Thus far, 

the analysis of the conjugate gear-tooth action and the position of the 

contact lines on worm-gear drives has been restricted to those drives 

where the axes of the two members are at right angles to each other. As 

noted before, a worm-gear drive can be substituted for any spiral-gear 

drive. In order to determine the conditions of contact on worm-gear 

drives when the axes are not at right angles to each other, we shall first 

establish the projections of the contact lines on the end and plan views of 

the worm. This will be done analytically. The remainder of the analy¬ 

sis will be completed graphically. 

Using the more common condition where the axes are at right angles 

to each other as the point of departure, the worm-gear position may be 

altered so that its axis is twisted either toward the direction of the helices 

on the helicoid worm or else away from this direction. In the first case, 

the angle between the shafts, or the shaft angle, will be less than 90 deg. 

In the second case, the shaft angle will be greater than fK) deg. 
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Fiu. 11-21. Contact on 6-thread involute helicoid with pitch plane at root of thread form. 

In this analysis we shall use the involute helicoid as the form of the 

worm because of the greater simplicity of its analysis. If necessary, the 

analysis of Qthcr forms of helicoids can be made in a similar, but more 

complicated, manner. Referring to Fig. 11-22, let 

2 = shaft angle 

L = lead of generatrix, in. 

7 = angle of generatrix 

€ = angle of plane tangent to base cylinder with pitch plane 

^ Rb = radius of base cylinder, in. 

h = length along line tangent to base cylinder from momentary axis 

to intersection curve of involute helicoid with plane through 

pitch point, in. 

hi = length along line tangent to base cylinder from its intersection 

with the trace of the pitch plane with drawing plane to inter¬ 

section curve of involute helicoid with drawing plane, in. 

k = distance to projection of contact point on line tangent to base 

cylinder from trace of pitch plane with drawing plane, in. 

Ri = distance of pitch plane from axis of helicoid, in. 

€i = angle of rotation of generatrix from origin of involute curve 

For the intersection of the involute helicoid with the drawing plane, 

we already have from Eq. (11-11) by substituting the symbol hi for h 

hi = Rb^i — [{Ri — Rb cos O/sin e] (11-14) 
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In this problem, the momentary axis is at an angle to the drawing 

plane. The drawing plane will be located so that its trace in the plan 

view intersects the momentary axis where the trace of the plane c = 90° 

also intersects the momentary axis, as shown in Fig. 11-22. 

R^sin€ 

Fiu. 11-22. 

From the geometrical conditions in Fig. 11-22 we have the following; 

/i = /ii + cot S cot 7[/^i cot c — (/Vsin e) + Rb] (11-15) 

k = h sin- 7 (11-12) 

In order to determine the change in the projection of the form and 

position of other contact lines as the helicoid is revolved to different 

positions, the changed length of h is multiplied by the constant value of 

sin^ 7. For a turning movement of one revolution, the value of h changes 

an amount equal to the circumference of the base cylinder. For all other 

movements, it changes in direct proportion to the fraction of a revolution 

that may be made. 
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To determine the projections of these contact lines on the plan view 

of the worm, we proceed as follows: 

When z = distance of contact point from momentary axis in an axial 

direction, in. 

X = {h — k) tan y (f 1-8) 

The value of the coordinate y in the plan view, or the distance of the 

projection of the contact point from the projection of tlie axis of the worm 

on the plan view, is determined graphically by projecting the position of 

the desired point from the end view of the worm into the plan view. 

Field of Contact. The projection of the field of contact on the plan 

view of the worm is determined graphically in a similar manner to that for 

worm gears with axes at 90 deg, except that the sections on which the 

paths of contact are determined are planes of rotation of the worm gear 

instead of planes parallel to the axis of the worm. Hence lines are drawn 

parallel to the edge of the worm gear, or perpendicular to its axis, wliich 

are traces of planes of rotation of the worm gear. The intersection of one 

of these lines with the projection of a contact line in the plan view is 

projected into the side view, or end view, of the worm gear. Tlu^ height 

of this point above the axis of the worm is transferred from the height of 

this same point in the end view of the worm. The path of contact is 

then drawn through the several points thus determined. 

The trace of the outside cylinder of the worm on these planes of 

rotation of the worm gear will be an ellipse and not a straight line. The 

origins of these ellipses will be the point, in the plan view, where the 

projection of the axis of the worm crosses the trace of the specific plane of 

rotation involved. All these ellipses will be the same, but each will 

start from a different origin. The ecpiation of this ellipse is as follows: 

When Roi — outside radius of worm, in. 

S = shaft angle 

a = major radius of ellipse, in. 

b = minor radius of ellipse, in. 

Xe = abscissa of ellipse, in. 

ye = ordinate of ellipse, in. 

a = Roi/^in 2 b = Roi 

For the equation of the ellipse, we have 

{Xe/ay + (ye/by = 1 

Whence 

a:e = (a/b) Vb^ - y? = 2 (11-10) 
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The point where the trace of the outside cylinder of the worm crosses 

the path of contact for the specific section is the end of the action on that 

section. The point where the trace of the outside circle of the worm gear 

crosses the path of contact for any specific section is the beginning of 

action on that section. These points are projected into the plan view 

of the worm, and the outline of the projection of the field of contact is 

drawn through these points as before. 

Example with Axes Twisted in Direction of Helices on Worm. As a definite 

example we shall use the 6-thrcad involute helicoid from the preceding examples with 

a 40-tooth worm gear. For the first of these examples, the axis of the worm gear will 

be twisted in the direction of the helices on the worm. \Vc will use the following 

values for tliis first example: 

Shaft angle. 60° 

Outside radius of worm. 2.500 in. 

Hoot radius of worm. 2.000 in. 

Distance to pitch plane. 2.000 in. 

./\ngle of generatrix. 30° 

Lead of generatrix. . 6.000 in. 

Number of starts or threads. 6 

Number of teeth in worm gear.40 

Pitch radius of worm gear. 5.7625 in. 



Position of worm 

1. Turned back 

120° 

h 
k 
X 

2. Turned back 

60° 

h 
k 
X 

3. Original posi¬ 

tion 

h 
k 
X 

4. Turned ahead 

60° 

h 
k 

-1.5311 

-0.3828 

-0.6630 

0.2010 
0.0503' 

0.0870 

Values of €i 

15° 30° 45° 60° 75° 

-1.5649 

-0.3912 

-0.6776 

-1.6300 

-0.4075 

-0.7058 

-1.7314 

-0.4328 

-0.7497 

-1.8945 

-0.4736 

-0.8203 

-2.1556 

-0.5389 

-0.9334 

0.1672 

0.0418 

0.0724 

0.1021 

0.0255 

0.0442 

0.0007 

0.0002 

0.0003 

-0.1624 

-0.0406 

-0.0703 

-0.4236 

-0.1059 

-0.1834, 

1.8992 

0.4748 

0.8224 

1.8341 

0.4585 

0.7942 
j 

1.7327 

0.4332 

0.7503 

1.5696 

0.3924 

0.6797 

1.3085 

0.3271 

0.5666 

3.6312 

; 0.9078 

1 1.5724 

3.5662 

0.8915 

1.5442 

3.4648 

0.8662 

1.5003 

3.3017 

0.8254 

1.4297 

3.0405 

0.7601 

1.3166 

-1.1141 

-0.3641 

0.89ia 

0.2228 

0.3859 

0.6558 

1.1359 
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With these values and the use of the preceding equations, we obtain the coordi¬ 

nates for the contact lines, which are tabulated in Table 11-21. These coordinates 

are plotted in Fig. 11-23. The graphic determination of the projection of the field of 

contact in the plan view of the worm has also been completed here. 

Worm Gear with Axis Twisted Away from the Direction of Helices on Worm. As 

another example, with the axis of the worm gear twisted away from the direction of 

the helices on the worm, we shall use the same involute helicoid as before and the 

following values for the shaft angle and for the worm gear: 

Shaft angle. 120° 

Number of teeth in worm gear. 40 

Pitch radius of worm gear. 10.1485 in. 

The coordinate's for the form and position of these contact lines are tabulated in 

Table 11-22 and plotted in Fig. 11-24, together with the graphic solution for the field 

of contact. 

'Fable 11-22. Coordinates of the Projection of Contact Lines on 6-thread 

Involute Helicoid with Shaft Angle of 120 Deg 

(Plotted in Fig. 11-24) 

Position of worm 

Values of ( E 

5° 15° I 30° 45° 60° 75° 90° 

1. Original posi- 

tion 

h -9.1428 -3.5562 -1.7861 -0.8971 -0.2281 0.3536 0.8913 

k -2.2857 -0.8890 -0.4465 -0.2243 -0.0570 0.0883 0.2228 

X -3.9590 -1.5404 -0.7734 -0.3885 -0.0988 0.1530 0.3859 

3. Turned ahead 

60° 1 

h -7.4108 -1.8241 -0.0541 0.8349 1.5040 2.0854 2.6233 

k -1.8527 -0.4560 -0.0135 0.2087 0.3760 0.5214 0.6558 

X \ -3.2090 -0.7904 -0.0234 0.3615 0.6512 0.9030 1.1359 

3. Turned ahead 

120° 

h -5.0787| -0.0921 1.6780 2.5670 3.2360 3.8175 4.3554 

k -1.4197 -0.0230 0.4195 0.6417 0.8090 0.9544 1.0888 

X -2.4590| -0.0404 0.7266 1.1115 1.4012 1.6530 1.8859 

4. Turned ahead 

180° 1 

h -3.9467 1.6400 3.4100 4.2990 4.9681 5.5495 6.0874 

k -0.9867 0.4100 0.8525 1.0748 1.2420 1.3874 1.5219 

X -1.7090 0.7096 1.4766 1.8615 2.1512 2.4030 2.6359 



CHAPTER 12 

DESIGN OF WORM-GEAR DRIVES 

The starting point for the design of a worm-gear drive is the worm 
itself, and the companion hob, which should always match the worm. 

Except for small-diameter multiple-thread worms where the thread form 

and worm-gear face come close to or overlap the limits of conjugate 
action, the exact type of helicoid used for the worm is of small importance. 
For the very small diameter worms, the chased helicoid and the screw 
helicoid permit conjugate action closer to the worm axis than does any 
other type of helicoid. The type of helicoid is determined by the method 
used in the shop to make the finishing cut or grind on the worm threads. 
If a screw helicoid is needed, then the grinding wheel must be suitably 
formed to produce it. 

There is, however, one important feature about the design of the 
worm itself. This is the relation between the half thread angle, or pres¬ 
sure angle in the axial section, and the lead angle of the worm. As the 
lead angle is increased, a larger thread angle is essential to avoid excessive 
undercutting on the off-center sections of the worm gear on the leaving 
side. Hence this pressure angle should never be much less than the lead 
angle. For example, a pressure angle of 143/^ deg should never be used 
for worms with lead angles greater than about 16 deg; a pressure angle 
of 20 deg should never be used for worms with lead angles gi’cater than 
about 25 deg; a pressure angle of 25 deg should never be used for worms 
with lead angles greater than about 35 deg; while a pressure angle of 
30 deg can be used for worms with lead angles up to 45 deg. If a single 
pressure angle is to be used for all worms, it should be chosen to meet the 

highest lead angle that is to be used. If these lead angles cover the entire 

range, the 30-deg pressure angle is the best choice. 
As with all other types of gear drives, there is a relatively wide range 

of good design, while outside this range, the conditions become more and 
more unfavorable. The worm-gear face should lie inside the field of 
conjugate action. The relationship between the pressure angle and the 
lead angle of the worm is another limitation to the field of good design. 
For another, the total number of teeth in the worm and in the worm gear 
should never be less than about 40, and more will be better. Because 

of the changing profile of the basic-rack form on the off-center sections of 
248 
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the worm, undercut starts there on the leaving side of the worm-gear 
face very much sooner than it does on the axial section. This is apparent 

from only a casual study of helicoid sections. This is a limitation at 
times to the effective face width for the worm gear. 

At present there is no general standard practice for the design of 
worms or of worm-gear drives. This condition may always be present 
to some degree because of the different restrictions that are imposed upon 
the design of the worm by the characteristics and influences of the differ¬ 

ent methods available to produce the worms. The first step toward the 
development of a standard design for worm drives by any organization 
is the standardization of the worm itself. This problem will be discussed 

later. 
Given the definite specifications for the worm, the hob form must 

match the type of helicoid used or produced on the worm. Also the 
diameter of the hob must never be less than that of the worm. To 
express this in another way, the center distance used for bobbing the 
worm gear must never be less than the center distance of operation. The 

hob may be larger than the worm; the amount larger depends primarily 
upon the lead angle of the worm. For example, with a lead angle of 
10 deg or less and with a nominal pitch radius or effective radius of about 
1.500 in., the hob may be as much as in. larger in diameter than the 
worm without affecting the form of the off-center sections appreciably. 
Any such difference is small enough to be soon wiped out by the plastic 
flow of the material of the worm gear in operation. As the lead angle 

increases, however, the amount of oversize of the hob must be reduced to 
maintain commensurate conditions. Thus with a lead angle of about 
35 deg, the hob should be held to within about 0.005 in. of the diameter of 
the worm. The ductility of the material of the worm gear also plays a 
part here. A more ductile material will permit more plastic deformation 

of the surface in the running-in period than will a harder matei ial. 
The tops of the teeth of all hobs should be rounded with a continuous 

curve, even though this will require a greater amount of clearance. The 
form of this curve may be an arc of a circle or any other smooth curve. 

This is essential, because the pitch plane of the worm generally crosses 
the root of the worm-gear tooth on either side of the axial section of the 
worm. Under such conditions, the form of the fillet at the root of the 

gear tooth is almost an exact duplicate of the form of the corner of the 
hob tooth. When this form is almost sharp, the stress concentrations 
here will be extremely high, and may result in fatigue cracks, which are 

often the cause of failure of such drives in service. 
Many of the dimensions and proportions of the worm gear are directly 

dependent upon the dimensions of the worm. We shall therefore start 
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the consideration of the design of worm-gear drives with the proportions 
of the worm gear, which will be based upon known or assumed dimensions 

of the worm. 

DESIGN OF WORM GEAR 

We shall start with the following symbols: 
Px = axial pitch of worm, in. 
P2 = circular pitch of worm gear, in. 
L = lead of worm, in. 

Ni — number of starts or threads on worm 

N2 — number of teeth in worm gear 
ai = addendum of worm, axial section, in. 
02 = addendum of worm gear, throat section, in. 
Cl = clearance at root of worm, in. 

C2 = clearance at root of worm-gear tooth, in. 
ht = whole depth of thread of worm, in. 

Re = effective radius of worm, in. (i.c., radius on worm to cylinder 
where thread thickness and space width are both equal to one- 
half the axial pitch) 

R\ = radius to pitch plane on worm, in. 

i?2 = pitch radius of worm gear, in. 
Roi = outside radius of worm, in. 
Rri = rodt radius of worm, in. 

Ro2 = outside radius of worm gear, in. 
Rt = throat radius of worm gear, in. (plane of rotation) 
Tr = radius of form at throat of worm gear, in. (axial section of worm 

gear) 

It = throat increment of worm gear, in. 
C = center distance, in. 

Fh == minimum cutting length of hob, in. 
Fz = face width of worm gear, in. 

X = lead angle of worm at Ri 

S = shaft angle 

Worm Drives with Shafts at Right Angles. When the shaft angle is 
equal to 90 deg, we have the following: 

Vx = L/Ni (12-1) 

P2 = Vx (12-2) 
R2 = p2N2/2ir (12-3) 

Ri C - Rz (12-4) 
Rt = C — (Rri + Cl) (12-5) 

tan X = LI2'kRx (12-6) 
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Tr = Rrl + Cl (12-7) 

Ro2 = Rt+ iIt/2) (12-8) 
Fa= 2 V{2Ri - h,)ht (12-9) 

Edge round = (12-10) 

It is good practice to reduce the face width of the worm gear with an 
increase in the lead angle of the worm because of the poorer contact con¬ 
ditions that exist as the distance from the axial section of the worm 
towards the leaving side of the worm-gear face becomes greater. These 

critical conditions become more acute as the lead angle of the worm 
increases. On critical drives, or for any others where an analysis of the 
actual contact conditions is made, these face widths should be limited by 

the conditions of the actual contact. In other cases where no definite con¬ 
tact analysis is made, the following equations will give good proportions: 
When the lead angle is 15 deg or less 

F2 = 2 V(2/ei -h ciMi + 0.50p, (12-11) 
It = 0.70/it (12-12) 

When the lead angle is greater than 15 deg 

F2 — 2 -\/{2Ri 4- cri)aT + 0.25px (12-13) 
It = 0.35/it (12-14) 

The pitch plane of the worm may be located anywhere between the 
elTcctivo radius Re and the root radius Rri of the worm. At times it may 

even be below the outside circle of the worm gear. If the pitch plane is 
below the root circle of the worm, an actual contact analysis should be 
made to be certain that the contact is adeciuate. The lower on the worm 
thread that this pitch plane is placed, the greater will be the amount of 

recess action and the less will be the amount of the approach action. 
The recess action is by far the more favorable action on worm gears. 

This latitude in the position of the pitch plane of the worm also permits 
the selection in most cases of an even dimension for the center distance of 
the worm drive. 

Example with Lead Angle Less than 15 Deg. As the first example we shall use a 

worm with a lead angle of less than 15 deg. We will use the following values: The hob 

will have a rounded tip on its teeth, which will give a greater clearance at the root of 

the worm-gear-tooth form that exists at the root of the worm thread. 

jVi = 1 ATj = 60 Rr = 1.500 L = 0.500 ci = 0.025 

C2 « O.OGO Roi = 1.6592 Rri = 1.3159 ht = 0.3433 

0.500 ^ „ 0.500 X 60 

1 

C (max) 

C (min) 

0.500 R2 4.7446 
6.2832 

It = 0.70 X 0.3433 = 0.2404 

^ R2 R. ^ 4.7446 -h 1.500 = 6.2446 

« Ri + Rrl - 4.7446 4- 1.3159 « 6.0605 
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For the center distance we select any value, between these two values, that 

may be most favorable for other structural or design reasons. In this example we 

will select 

C = 6.125 in. 

Then 

1 = 6.125 - 4.7446 = 1.3804 

a I = 1.6592 - 1.3804 = 0.2788 

6i = 1.3804 - 1.3159 = 0.0645 

Rt = 6.125 - (1.3159 4 0.025) = 4.7841 

Tr = 1.3159 4- 0.025 = 1.3109 

X = 3.300° 

IL2 = 4.7841 4- 0.1202 = 4.9043 

Edge round = 0.25 X 0.500 == 0.125 

F2 = 2 V (2.7608 4- 0.2788rX 072788 + 0.250 = 2.091 

We shall make the face width of the worm gear an even dimension, and for this exam¬ 

ple we shall use F2 = 2.000 in. These value's have been plotted in Fig. 12-1. 

Example with Lead Angle Greater than 15 Deg. As a second example wo shall use 

a multiple-thread worm having all values except the lead angle, lead, and number of 
threads on the worm the same as before. This gives the following values: 



DESIGN OF WORM-GEAR DRIVES 253 

8 AT, = 60 

a =■ 0.060 

R, = 1.500 

Roi = 1.6592 

4.00 

L = 4.000 c, = 0.025 h, = 0.3433 
Rri = 1.3159 = 4.7446 

I, = 0.35 X 0.3133 = 0.1202 
C (max) = 6.2446 C (min) = 6.0605 

We sliall use the same value as before, whence 

C =• 6.125 Ri = 1.3804 a, = 0.2788 

6, = 0.0645 R, = 4.7841 Tr = 1.3409 

^ “ 6.2832 X 1.3804 ^ 

X = 24.757° 

floj = 4.7841 + 0.0601 = 4.8-142 

Ft = 2 V(^608 + 0.2788) X 6.2788 + (0.25 X 0.50) = 1.966 

We shall use F-i = 1.875 in. 

Worm Drives with Axes at Any Angle. AVhen the axes of the two 
members are not at right angles to each other, we have the following: 

Fiq. 12-2. Fig. 12-3. 

When the axis of the worm gear is twisted in the direction of the helices on 
the worm as shown in Fig. 12-2, the value of the shaft angle is less than 
90 deg. When the axis of the worm gear is twisted away from the direc¬ 
tion of the helices on the worm as shown in Fig. 12-3, the value of the 
shaft angle is greater than 90 deg. 
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Px = L/Ni (12-1) 
P2 = Pi cos X/sin (S -j- X) (12-15) 
Rz ~ 'PiN(12-3) 
Ri = C - Ri (12-4) 
R, = C - {Rri + Cl) (12-5) 

tan X = L/2irRi (12-6) 
Tr = (/?n + cO/sin’* S (12-16) 
I, = 0.35/!, (12-14) 

Roi = «, -h (/,/2) (12-8) 
Fi = 2 V{2Ri + ai)a, -f 0.50px (12-13) 

Edge round = 0.25px (12-10) 

Example when Shaft Angle Is Less than 90 Deg. For this example we shall use 

the following values: 

70° R, - 1.500 

N2 = 60 C2 

A\ =3 L = 1.500 

0.060 Roi = 1.6592 

Px 
^00 

3 
0.500 

ht = 0.3433 Cl = 0.025 

Rri = 1.3159 

In this example we must select the position of the pitch plane on the worm first, 

and use the center distance that results. Otherwise we shall have an indeterminate 

equation to solve by a series of trials. We could first solve this problem as a spiral- 

gear drive and then choose one of the members of the pair as a worm. In this ease, 

however, we would use a higher pressure angle for the basic-rack form than that which 

is used for a spiral-gear drive. This second solution would also introduce a special 

w'orm and a special hob. In this example we shall u.se the worm as specified and 

select the value 
Ri = 1.375 in. 

ai = 1.6592 - 1.375 == 0.2842 

tan X 
1.500 

= 0.17362 
6.2832 X 1.375 

X = 9.850° cos X = 0.98526 

2 4- X = 79.850° sin (2 4- X) = 0.98435 

0.500 X 0.98526 ^ 

= — 
0.50046 X 60 

P2 

R2 

C 

^ 4.7790 

4.8131 

6.2832 

= 4.7790 + 1.375 = 6.154 

Rt = 4.7790 - (1.3159 + 0.025) 

It = 0.35 X 0.3433 = 0.1202 

Ro2 = 4.8131 + 0.0601 = 4.8732 

« 70° sin 2 =* 0.93969 sin* 2 = 0.88302 

2.3409 
' 0.88302 

Tr = 1.5185 

Fa = 2 + 0.2842) X 0.2842 + (0.50 X 0.50) =» 2.1072 

We shall use Fa = 2.125 in. 

Edge round =* 0.25 X 0.50 « 0.125 

This worm drive is plotted in Fig. 12-2. 
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Example when Shaft Angle Is Greater than 90 Deg. For this example we shall use 

the same values as before except for the shaft angle. Thus we have 

S = 110" R, = 1.500 ATx = 3 L = 1.500 ht = 0.3433 ci = 0.025 

iV2 = 60 C2 = 0.060 Roi = 1.6592 Rn = 1.3159 Px = 0.500 

Ri » 1.375 ai = 0.2842 X = 9.850" cos X = 0.98526 

S + X = 119.850" sin (S + X) = 0.86333 

0.500 X 0.98526 
V2 = 

R^ = 

0.86333 

0.57061 X 60 

- 0.57061 

= 5.4489 
6.2832 

C = 5.4489 + 1.375 = 6.8239 

Ri = 6.8239 - 1.3409 = 5.4830 

It = 0.1202 
Ro2 = 5.4830 + 0.0601 = 5.5431 

2 = 110° sin 2 = 0.93969 sin^ 2 = 0.88302 

Tr = 1.5185 F2 == 2.1072 

We shall use F2 = 2.125 in. 

Edge round = 0.125 

This worm-gear drive is plotted in Fig. 12-3. 

When the lead angles of the worms are small, under 15 deg, for 

example, and when the angles of the shafts do not vary too much from 
90 deg, under 30 deg, for example, then the axis of the worm gear may be 
twisted in either direction. As either the lead angle or the departure of 

the shaft angle from 90 deg becomes greater than the foregoing limits, the 
shaft angle should always be less than 90 deg. For critical drives of this 
nature, the relative diameters of the worm and of the worm gear may be 

determined from those of a similar spiral-gear drive. In every case of a 
critical or important drive, a complete contact analysis should be made 
to determine the contact conditions. 

DESIGN OF WORM 

The design of the worm is influenced by two major factors or considera¬ 

tions: first, the nature of the manufacturing facilities available to produce 
it; and, second, the conditions for which it is manufactured. For one 

condition, it may be a specific unit for a standard product that is manu¬ 

factured in large quantities, and only one worm drive is involved. As 

specific tools and other equipment must be pro\dded for its manufacture, 
these tools may be made as required without any consideration of the 
possible use of these tools for the production of worms for other uses. 

Here, any possible advantage gained by the use of any available standard 
worm is the possibility of buying the corresponding hob from the stock of 
some tool manufacturer. 

Another condition of manufacture is that where a wide variety of 
different worm drives must be made. Here it becomes essential to use 
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the same tools for as many different worm drives as possible. Here, in 
order to obtain the widest possible use of a given tool, and also to reduce 
the variety of these tools to a minimum, certain restrictions are imposed 
upon the design. 

The major influence of the nature of the manufacturing equipment 
available to finish the threads of the worm is on the exact type of helicoid 
that this available process will produce. This factor, except for the 
minimum diameters of multiple-thread worms as noted before, is of 
minor importance. 

The majority of the early uses of worm-gear drives were for large 
speed reductions. Here the single-thread worm was the most common 
one. Today, worm gears are needed and used for much smaller speed 
ratios, and multiple-thread worms are much more common. Hence we 
must consider the problems of these multiple-thread worms in any 
attempt to set up a standard series. 

Proportions of Chased or Milled Worm Threads. We shall start the 
consideration of the problem of the pro¬ 
portions of worm threads with the condi¬ 
tions that exist when we must use a tool 
of constant form and proportions to chase 
or mill the threads of worms with differ¬ 
ent numbers of starts, all with the same 
axial pitch. The common practice is to 
use axial pitches of even fractions of an 
inch because of the change-gear problem 
on the machines used to finish the threads 
of the worm. For the purposes of this dis¬ 
cussion, we shall use a constant axial 

Fig. 12-4. Form of threading tool pitch of 1 in. We shall also use a ()0-deg 
for 1-m. axial pitch, included angle for the form of the thread¬ 

ing tool, with the proportions shown in Fig. 12-4. 
Ignoring for the present the changes caused because of the setting of 

this tool to the lead angle of the worm at its effective radius, this would 
give us the following thread proportions: The effective radius, where 
the thread thickness and the thread-space width are both equal to one- 
half of the axial pitch, is considered here as the pitch line. 

Inches 
Addendum. 0.250 

Dedendum. 0.3247 

Clearance. 0.0747 

Whole depth of thread. 0.5747 

When this tool is set to the lead angle at the effective radius, and if 
we cut the thread to the full depth, the width of the thread space will be 
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increased to over one-half of the axial pitch because the value of the tool 
thickness at this radius now becomes the normal space width and not the 
axial width. This would make the thread thickness less than one-half 
of the axial pitch and would also reduce the width of flat at the tip of the 
thread. If we maintain the thread thickness here at a constant value, 
equal to one-half of the axial pitch, then we must cut the thread to a 
lesser depth. Thus when 

\e = lead angle at efTective radius 

<t>n = one-half included angle of threading tool 
Qe — nominal addendum of worm thread, in. 
be = nominal dedendum of worm thread, in. 
ai = actual addendum of worm thread measured from Re, in. 
bi = actual dedendum of worm thread measured from R,, in. 
Cl = clearance at root of worm, in. 
in ~ thickness of tool at R,, in. 
h = axial width of space at Re, in. 

Re — effective radius of worm, in. 
then 

tn = ti cos = 0.500 cos \e 

bl = be — (tl — tn)/2 tan <t>n 

bi = be — ^i(l ~ cos X^)/2 tan (f>n 

But for the particular form given 

i\/2 tan <i>n = 45^3 
whence 

bi - (6./3)(4 cos X. - 1) (12-17) 

To keep the form of the same proportions, we will have 

ai = (a./3)(4 cos X, - 1) (12-18) 
Cl = 5i - ai = (c./3)(4 cos - 1) (12-19) 

For a series of lead angles, ranging from 0 to 45 deg, we have the 
following changes in the thread proportions: 

X., dog ai 0l 1 
0 0.2500 0.3247 0.0747 0.5747 

10 0.2449 0.3181 0.0732 0.5630 

20 0.2299 0.298G 0.0687 0.5285 

30 0.2053 0.2667 0.0614 0.4720 

40 0.1720 0.2234 0.0514 0.3957 

45 0.1524 0.1979 0.0455 0.3503 
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Thus in order to use the same threading tool for worms of all numbers 
of threads of the same axial pitch, we must vary the thread proportions 

with the changing lead angles as indicated above. 
If we wish to keep the thread depths constant for all numbers of 

threads, and also to use the same threading tool in all cases for a given 

nominal pitch, then we must change the leads when we change either the 
diameter of the worm or the number of threads or starts on the worm. 
This would give a variable axial pitch and a constant normal circular 

pitch. Thus when 
Pn = normal and nominal pitch, in. 
Px = axial pitch, in. 

Px = Pn/cos X 

Of the two foregoing solutions, the first would best fit the existing 
processes now generally available for finishing the worm threads. The 

second method would be identical to the practice followed for hobbed 
helical gears. If the worm threads were hobbed, then this second metluxl 

would be the logical one to follow. This would permit the unification of 

cutting practices for helical gears and worm threads, and the worm could 
best be made as an involute helical gear. In such an event, the standard 
pitches for worms should be the same standard diametral pitches as those 

now used for spur and helical gears. 

Diameter of Worm. Some worms are made integral with the driving 
shaft and others are made as separate components, which are mounted on 

the driving shafts. We shall call the first type of worms integral worms, 
and the second type shell worms. 

It should be apparent that the diameters of shell worms must be 

larger than the diameters of integral worms because additional space 
must be provided on the shell worms to take care of the bore, key ways, or 
splines, and an adequate wall thickness between the root of the worm 
thread and the tops of the keyways or splines. In addition, considera¬ 
tion must be given to the depth of the cutting flutes on the hob. To 

meet these hob requirements for integral worms, the corresponding hob 
must also be made integral with its cutting arbor or shank. For shell 

worms, the corresponding hob is made with a bore and a keyway, and 
will be called a shell hob. 

Integral worms are generally required for specific applications where 
space must be reduced to a minimum and where the most effective designs 
possible are essential. There is probably but little chance of standardiz¬ 
ing such drives to any great extent, although a standard for integral 

worms for more general purposes might be of value. 
Several possibilities are present for the development of standards for 
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shell worms and hobs. For one, the American Gear Manufacturers’ 
Association has considered the following equation for the effective 

diameters of shell worms of the lower lead angles as a possible basis for 
standardization: 

When Dc = effective diameter of worm, in. 
p, = axial pitch of worm, in. 

D, = 2.4p^ + 1.10 20) 

The constant in this equation is provided to allow for the bore and 

keyway of shell worms and hobs. This association has also considered 
the adoption of the following axial pitches as standards in order to reduce 
the variety: 

Inches 

He Vs y2 yn y i m 2 

Using Eq. (12-20) and the foregoing pitches, we obtain the values 
tabulated in Table 12-1. This table gives the axial pitch, the calculated 
effective diameter, and the lead angles at this effective diameter for 

worms with different numbers of threads. It also gives the number of 
threads, A^'i, that would give a lead angle close to 45 deg. 

It should be apparent that when the lead angle reaches some maximum 

value, generally below 45 deg, the diameter of the worm must be increased 

over the original one with increasing numbers of threads in order to keep 
the value of the lead angle within the selected maximum one. If a 

fixed maximum value is used, then all worms with this maximum lead 

angle, and with the same axial pitch, will have diameters directly pro¬ 
portional to the numbers of threads. It is also apparent that such worms 

of the same number of threads but of different axial pitch will be geo¬ 

metrically similar to each other. 
The efficiency of a worm drive depends largely upon the lead angle of 

the worm. When this angle is small, the efficiency is low. As it increases 

up to about 45 deg, the efficiency improves. The difference in efficiency, 
however, between drives where the lead angle is about 35 deg and over, 

and those where the lead angle is 45 deg, is very small. The worms and 

hobs with lead angles of 45 deg are much more difficult to make than are 
those with lead angles of 35 deg. Hence maximum-lead-angle values of 

between 35 and 40 deg are as good as any. 
A study of Table 12-1 will show that until the lead angles have reached 

the maximum values and the diameters are changed accordingly, there 

is no geometrical similarity between any of the worms. This means that 

individual analyses must be made of each of these drives if definite con¬ 
tact conditions are to be studied. 
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Table 12-1. Worm Diameters and Lead Angles 

in. Z)„ in. 

Lead angle, deg 

■ N\ 
Ni 1 

CM 
11 II II c»

 

0.2500 1.700 2.680 
1 

5.348 10.605 20.530 21 

0.3125 1.850 3.077 6.137 12.138 23.275 18 

0.3750 2.000 3.416 6.807 13.427 25.523 16 

0.5000 2.300 3.959 7.879 15.471 28.966 14 

0.6250 2.600 4.376 8.701 17.017 31.472 13 

0.7500 2.900 4.706 9.349 18.226 33.368 12 

1.0000 3.500 5.197 10.309 19.991 36.039 11 

1.2500 4.100 5.544 10.984 21.216 37.825 10 

1.5000 4.700 5.801 11.485 22.114 39.101 9 

1.7500 1 5.300 6.000 11.871 22.806 40.058 9 

2.0000 5.900 6.158 12.178 23.345 40.801 9 

Module System of Worms. The module of a gear is the amount of 

diameter of the gear for each tooth. It is the ratio of the pitch diameter 

of the gear divided by the number of teeth. It is the reciprocal of the 
diametral pitch. The practice is followed in some places of making the 

effective diameter of the worm some integral number of modules in 

diameter. For example, if a single-thread worm has an effective diam¬ 
eter of 12 modules, this diameter will be the same as that of a 12-tooth 
worm gear of the given pitch. Such a practice will introduce a greater 

degree of geometrical similarity between worms of different pitches than 
any other practice can attain. We shall therefore turn our attention to 
this practice. 

The value of the module for any given axial pitch is obtained by divid¬ 
ing the axial pitch by the value 3.1410. Thus when 

M = module, in. 

N\ = number of modules for effective diameter of worm 

De = effective diameter of worm, in. 
\e = lead angle of worm at De 

NI — number of starts or threads on worm 

De = N\M 
tan \e = N\/N\ 

(12-21) 
(12-22) 

One of the major objects of standardization is the reduction of 
variety. One move in this direction is the selection of a limited number 
of axial pitches for worms. Another good move would be the selection 
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of a limited number of threads or starts for multiple-thread worms. 
This has been done to great advantage in several manufacturing plants. 

Although no general and comprehensive standards have yet been 
developed for worm gears, certain general practices have come into more 

Table 12-2. Table of Shell Wor.ms—Module System 

Px, in. Module A'l Z)e, in. 
Lead angle, deg 

N, = 1 Ah = 3 Ah = 6 Ai = 12 

0.2500 0.079577 20 1.5915 2.862 8.531 16.699 30.964 
0.3125 0.099471 18 1.790.5 3.180 9.462 18.435 33.690 
0.3750 0.119366 16 1.9099 3.576 10.620 20.556 36.870 
0.5000 0.159154 14 2.2282 4.085 12.094 23.199 
0.6250 0.198943 14 2.7852 4.085 12.094 23.199 

0.7500 0.238731 14 3.3422 4.085 12.094 23.199 
l.OOOO 0.318309 12 3.8197 4.764 14.037 26.565 
1.2500 0.397886 12 4.7746 4.764 14.037 26.565 
1.5000 0.447463 12 5.7296 4.764 14.037 26.565 
1.7500 0.557041 12 6.6845 4.764 14.037 26.565 
2.0000 0.636618 12 7.6394 4.764 14.037 26.565 

Table 12-3. Table of Integral Worms—Module System 

Px, in. .V'l De, in. 

Lead angle, deg 

Ah = 1 Ah = 3 .V, = 6 

0.2500 12 0.9549 4.764 14.037 26.565 
0.3125 12 1.1937 4.764 14.037 26.565 
0.3750 12 1.4324 4.764 14.037 26.565 
0.5000 10 1.5915 5.711 16.699 30.964 
0.6250 10 1.9894 5.711 16.699 30.964 

0.7500 10 2.3878 5.711 If). 699 30.964 
1.0000 10 3.1831 5.711 16.699 30.964 
1.2500 8 3.1831 7.125 20 556 36.870 
1.5000 8 3.8197 7.125 20.556 36.870 
1.7500 8 4.4563 7.125 20.556 36.870 
2.0000 8 5.0937 7.125 20.,556 36.870 

or less general use over a period of many years. Some of these, unfor¬ 
tunately, lead to very poor designs of worm gears. For one thing, in the 

effort to use single-thread worms as much as possible, much coarser 
pitches have been used than are actually needed for the service rendered. 
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For all other types of gears, the trend in practice over the past 10 to 20 
years has been towards the use of finer pitches because of many obvious 

advantages. For worm gears, the more general practice of today uses 
single-thread worms of about three times as coarse a pitch as is actually 

Table 12-4. Single-thread Worms 

Vxy in. L, in. Roly in. R,f in. Rriy in. ht, in. Cl, in. deg 

Shell worms 

0.2500 0.2500 0.8581 0.7957 1 0.7147 0.1434 0.0186 2.862 
0.3125 0.3125 0.9732 0.8952 0.7940 0.1792 0.0232 3.180 
0.3750 0.3750 1.0484 0.9549 0.8335 0.2149 0.0279 3.576 
0.5000 0.5000 1.2387 1.1141 0.9523 0.2864 0.0372 4.085 
0.6250 0.6250 1.5483 1.3926 1.1904 0.3579 0.0465 4.085 

0.7500 0.7500 1.8580 1.6711 1.4284 0.4296 0.0558 4.085 
1.0000 1.0000 2.1586 1.9098 1.5866 0.5720 0.0744 4.764 
1.2500 1.2500 2.6984 2.3873 1.9833 0.7151 0.0929 4.764 
1.5000 1.5000 3.2381 2.8648 2.3800 0.8581 0.1115 4.764 
1.7500 1.7500 S.7777 3.3422 2.7766 1.0011 0.1301 4.764 
2.0000 2.0000 4.3174 3.8197 3.1733 1.1441 0.1487 4.764 

Integral worms 

0.2500 0.2500 0.5396 0.4774 0.3966 0.1430 0.0186 4.764 
0.3125 0.3125 0.6746 0.5968 0.4958 0.1788 0.0232 4.764 
0.3750 0.3750 0.8095 0.7162 0.5950 0.2145 0.0279 4.764 
0.5000 0.5000 0.9199 0.7957 0.6344 0.2855 0.0371 5.711 
0.6250 0.6250 1.1499 0.9947 0.7931 0.3568 0.0464 5.711 

0.7500 0.7500 1.3799 1.1936 0.9517 0.4282 0.0556 5.711 
1.0000 1.0000 1.8398 1.5915 1.2689 0.5709 0.0743 5.711 
1.2500 1.2500 1.9008 1.5915 1.1893 0.7110 0.0924 7.125 
1.5000 ! 1.5000 2.2809 1.9098 1.4278 0.8531 0.1109 7.125 
1.7500 1.7500 2.6611 2.2281 1.6657 0.9954 0.1294 7.125 
2.0000 

1 
2.0000 3.0413 2.5464 1.9037 1.1376 0.1478 7.125 

needed. Many of these worm drives would be materially improved by 
the use of a 3-thread worm of about one-third the axial pitch of the single- 
thread worms now used. 

The number of threads for worms could be restricted to the following 
which will cover a very wide range of applications: 

1, 3, 6, 12, 18, 24 threads or starts 

In many places, the first three will cover the great majority of applications. 
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Values are tabulated in Table 12-2 for such shell worms based on the 
module system. This table gives the axial pitch, the value of the module, 

the number of modules in the effective diameter of the worm, the effective 
diameter, and the lead angle at the effective diameter for worms with 
different numbers of threads. When the number of threads gives a value 

Table 12-5. 3-thread Worms 

Pxy in. L, in. Roly in. Rfy in. Rriy in. hty in. Cl, in. Xc, deg 

Shell worms 

0.2500 0.7500 0.8573 0.7957 0.71,57 0.1416 0.0184 8.531 
0.3125 0.9375 0.9719 0.8952 0.7956 0.1763 0.0229 9.462 
0.3750 1.1250 1.0465 0.9549 0.8359 0.2106 0.0274 10.620 
0.5000 i.rjooo 1.2354 1.1141 0.9566 0.2788 0.0362 12.094 
0.6250 1.8750 1.5442 1.3926 1.1957 0.3485 0.0453 12.094 

0.7500 2.2.500 1.8531 1.6711 1.4348 0.4183 0.0543 12.094 
1.0000 3.0000 2.1498 1.9098 l.,5980 0.5518 0.0718 14.037 
1.2500 3.7500 2.6874 2.3873 1.9976 0.6898 0.0896 14.037 
1.5000 4.5000 3.2249 2.8648 2.3971 0.8278 0.1076 14.037 
1.7500 5.2,500 3.7623 3.3422 2.7966 0.9657 0.1255 14.037 
2.0000 6.0000 4.2998 3.8197 3.1962 1.1036 0.1434 14.037 

Integral worms 

0.2500 0.7500 0.,5374 0.4774 0.3995 0.1379 0.0179 14.037 
0.3125 0.9375 0.6718 0,5968 0.4994 0.1724 0.0224 14.037 
0.37,50 1.12.50 0.8062 0.7162 0.5993 0.2069 0.0269 ; 14.037 
0.5000 1.5000 0.9137 0.79,57 0.6425 0.2712 0.03,52 16.699 
0.6250 1.8750 1.1422 0.9947 0.8032 0.3390 0.0440 16.699 

0.7500 2.2,500 1.3706 1.1936 0.9638 0.4068 0.0528 16.699 
1.0000 3.0000 1.8274 l.,5915 1.2851 0.5423 0.0705 16.699 
1.2500 3.7500 1.8775 1.5915 1.2201 0.6,574 0.0854 20.556 
1.5000 4. ,50(K) 2.2,530 1.9098 1.4641 0.7889 0.1025 20.556 
1.7500 5.2,500 2.6285 2.2281 1.7081 0.9204 0.1196 20.556 
2.0000 6.0000 3.0040 2.5464 1.9521 1.0519 0.1367 20.556 

for the tangent of the lead angle greater than 0.75000, the diameter of the 
worm is increased to maintain this maximum lead angle. Thus for all 

12-thread worms with axial pitches greater than 0.375 in., the effective 
diameters will be equal to 16 modules. For all 18-thread worms, the 
effective diameters will be equal to 24 modules. For all 24-thread worms, 

the effective diameters will be equal to 32 modules. On all these enlarged 
worms, the tangent of the lead angle at the effective diameter will be 
equal to 0.75000. This maximum lead angle is equal to 36.870 deg. 
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Similar values are tabulated in Table 12-3 for integral worms based 
on the module system. In this case, all worms with 12, 18, and 24 
threads will be enlarged to 16, 24, and 32 modules, respectively. Except 
for the 0.250-in. and 0.3125-in. axial pitches, these enlarged worms will 
be identical to the shell type of worms with the same number of threads. 

Table 12-6. 6-thkead Worms 

Px, in. L, in. Rolf in. Re, in. Rri, in. ht, in. Cl, in. K deg 

Shell worms 

0.2500 1.5000 0.8547 0.7957 0.7191 0.1356 0.0176 16.699 
0.3125 1.8750 0.9680 0.8952 0.8007 1 0.1673 0.0217 18.435 
0.3750 2.2500 1.0407 0.9549 0.8435 0.1972 0.0256 20.556 
0.5000 3.0000 1.2256 1.1141 0.9693 0.2563 0.0333 23.199 
0.6250 3.7500 1.5320 1.3926 1.2115 0.3205 0.0417 23.199 

0.7500 4.5000 1.838^1 1.6711 1.4538 0.3846 0.0500 23.199 
1.0000 6.0000 2.1246 1.9098 1.6308 0.4938 0.0642 26.565 
1.2500 7.5000 2.6558 2.3873 2.0386 0.6172 0.0802 26.565 
1.5000 9.0000 3.1870 2.8648 2.4463 0.7407 0.0963 26.565 
1.7500 10.5000 3.7181 3.3422 2.8540 0.8641 0.1123 26.565 
2.0000 12.0000 4.2493 ; 3.8197 

1 
3.2617 0.9876 0.1284 26.565 

Integral worms 

0.2500 1.5000 0.5311 0.4774 0.4077 0.1234 0.0164 26..565 
0.3125 1.8750 0.6639 1 0.5968 0..')(M)() 0.1,543 0,0201 26.565 
0.3750 2.2500 0.7968 0.7162 0.6116 0.18.52 0.0240 26.565 
0.5000 3.0000 0.8969 0.79.57 0.(«)42 0.2327 0.0303 30.964 
0.6250 3.7500 1.1213 0.9947 0.8303 0.2911 0.0378 30.964 

0.7500 4..5000 1.34.55 1.1936 1 0.9963 0.3492 0.04.54 30.964 
1.0000 6.0000 1.7940 1.5915 1 1.3285 0.46.55 0.06)05 30.964 
1.2500 7..5000 1.8207 1.5915 1.29.39 0.5268 0.068-1 36.870 
1.5000 9.0000 2.1848 1.9098 ! 1.5.526 0.6322 0.0822 36.870 
1.7.500 10..5000 2.5489 2.2281 1.8114 0.7375 0.09.59 36.870 
2.0000 12.0000 2.9131 2.5464 2.0702 ' 0.8429 0.1095 36.870 

Suggestion for Standard Worms. Using the tool with 00-deg included 
angle shown in Fig. 12-4 for all worms, and Eqs. (12-17), (12-18), and 
(12-19) for the tooth proportions, we obtain the values for the worms, both 
shell and integral types, that are tabulated in the following tables. Table 
12-4 gives the values for the single-thread worms; Table 12-5 gives the 
3-thread worms; Table 12-6 gives the 6-thread worms; Table 12-7 gives 
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the 12-thread worms; Table 12-8 gives the 18-thread worms; and Table 
12-9 gives the values for the 24-thread worms. 

On any detailed drawing of the worm, the thread form should always 

be specified by giving the form, size, type, and setting of the tool that is 
to be used to produce it. This is the only definite way in which this 
information can be given. This information is essential for the maker of 

Table 12-7. 12-thread Worms 

Px, in. L, in. Rolf in. Ref in. Rrif in. hty in. Cl, in. K deg 

Shell worms 

0.2500 3.000 0.8463 0.7957 0.7301 0.1162 0.0150 30.964 
0.3125 3.750 0.9558 0.8952 0.8165 0.1393 0.0181 33.690 
0.3750 4.500 1.0236 0.9549 0.8656 0.1580 0.0206 36.870 
0.5000 6.000 1.3649 1.2732 1.1541 0.2108 0.0274 36.870 
0.6250 7.500 1.7061 1.5915 1.4427 0.2634 0.0342 36.870 

0.7500 9.000 2.0473 1.9098 1.7312 0.3161 0.0411 36.870 
1.0000 12.000 2.7298 2 5465 2.3084 0.4214 0.0548 36.870 
1.2500 15.000 3.4123 3.1831 2.8855 0.5268 0.0684 36.870 
1 5000 18.000 4.0947 3.8197 3.4625 0.6322 0.0822 36.870 
1.7500 21.000 4.7771 4.4563 4.0396 0.7375 0.0959 36.870 
2.0000 24.000 5.4596 5.0929 4.6167 

1 
0.8429 0.1095 36.870 

TiitoKral worms 

0.2500 3.000 0.6824 0.6366 0.5771 0.1053 0.0137 36.870 
0.3125 , 3.750 0.8531 0.7958 0.7214 0.1317 0.0171 36.870 
0.3750 4.500 1.0236 0.9549 0.8656 0.1580 0.0206 36.870 
0.5000 6.000 1.3649 1.2732 1.1541 0.2108 0.0274 36.870 
0.6250 7.500 1.7061 1.5915 1.4427 0.2634 0.0342 36.870 

0.7500 9.000 2.0473 1.9098 1.7312 0.3161 0.0411 36.870 
1.0000 12.000 2.7298 2.5465 2.3084 0.4214 0.0548 36.870 

1.2500 15.000 3.4123 3.1831 2.8855 0.5268 0.0684 36.870 
1.5000 18.000 4.0947 3.8197 3.4625 0.6322 0.0822 36.870 

1.7500 21.000 4.7771 4.4563 4.0396 0.7375 0.0959 36.870 

2.0000 24.000 5.4596 5.0929 4.6167 0.8429 0.1095 36.870 

the hob if ho is to make the form to match the helicoid of the worm. Any 
notation such as normal form of thread,” or ‘^form of thread in normal 

section,” etc., is incorrect, incomplete, and generally misleading. The 
thread form desired should be specified as, for example, ‘^form of 4-in.- 
diameter milling cutter set to lead angle of worm at its effective diameter.” 

The axial or normal thread thickness at this same diameter should be 

given, as well as the outside and root diameters. 
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Table 12-8. 18-thread Worms, Shell and Integral 

N'l = 24 Xe = 36.870° 

P*, in. L, in. Roi, in. Re, in. Rri, in. ht, in. Cl, in. 

0.2500 4.500 1.0007 0.9549 0.8954 0.1053 0.0137 
0.3125 5.625 1.2510 1.1937 1.1193 0.1317 0.0171 

0.3750 6.750 1.5011 1.4324 1.3431 0.1580 0.0206 
0.5000 ! 9.000 2.0015 1.9098 1.7907 0.2108 0.0274 
0.6250 11.250 2.5019 2.3873 2.2385 0.2634 0.0342 

0.7500 
i 

13.500 3.0023 2.8648 2.6862 0.3161 0.0411 
1.0000 18.000 4.0030 3.8197 3.5816 0.4214 0.0548 
1.2500 22.500 5.0038 4.7746 4.4770 0.5268 0.0684 
1.5000 27.000 6.0046 6.7296 5.3724 0.6322 0.0822 
1.7500 31.500 7.0053 6.6845 6.2678 0.7375 0.0959 
2.0000 36.000 8.0061 7.6394 i 7.1632 0.8429 0.1095 

Table 12-9. 24-TnREAD Worms, Shell and Integral 

N\ =32 Xe = 36.870° 
-1 

Pz, in. L, in. Roi, in. Re, in. Rri, in. ht, in. Cl, in. 

0.2500 6.000 1.3190 1.2732 1.2137 0.1053 0.0137 
0.3125 i 7.500 1.6488 1.5915 1.5171 0.1317 0.0171 
0.3750 9.000 1.9785 1.9098 1.8205 0.1580 0.0206 
0.5000 1 12.000 i 2.6382 2.5465 2.4274 0.2108 0.0274 
0.6250 j 15.000 3.2977 3.1831 3.0342 0.2634 0.0342 

0.7500 18.000 3.9572 3.8197 3.6411 0.3161 0.0411 
1.0000 24.000 5.2762 5.0929 4.8548 0.4214 0.0548 
1.2500 30.000 6.5954 6.3662 6.0686 0.5268 0.0()84 
1.5000 36.000 7.9144 7.6394 7.2822 0.6322 0.0822 
1.7500 42.000 9.2335 8.9127 8.4960 0.7375 0.0959 
2.0000 48.000 10.5526 10.1859 9.7097 

i 
0.8429 0.1095 

Examples of Contact Conditions on Worm Gears. In order to show the nature of 
the contact conditions that will exist on worm drives that use the foregoing serif's of 
worms, several different examples will be analyzed. As noted before, the sum of the 
numbers of teeth in the worm and worm gear should never be less than 40. We shall 
use the 0.500-in. axial-pitch worms as representative of this series. 

Single-thread Worm, 42-tooth Worm Gear. For the first example we shall use a 
single-thread shell worm and a 42-tooth worm gear. This gives the following values: 

Px « 0.600 L = 0.500 iV, = 1 JV2 = 42 ht -- 0.2864 ci = 0.0372 
Re = 1.1141 R.i = 1.2387 Rn = 0.9523 X. = 4.085° 

Module » M - 0.159154 
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From these values we obtain 

R2 = N2M/2 = 21 X 0.150154 = 3.3422 
C (max) = 3.3422 + 1.1141 = 4.4563 
C (min) = 3.3422 -|- 0.9523 = 4.2045 

We sliall make the center distance an even fraction of an inch and shall use C - 4.375 
in. Then 

Ri - 4.375 - 3.3422 = 1.0328 
Rt = 4.375 - (0.9523 -f 0.0372) = 3.3855 

For purposes of determining the face width of the worm gear, we can use the value 
of the lead angle at the efTcctive radius, the value of the cfTcctive radius, and the value 
of the nominal addendum of the worm-thread form. This practice will give a con¬ 
stant value for the face width of a worm gear that meshes with a worm of given axial 
pitch as long as its diameter docs not change or as its lead angle does not increase 
beyond 15 deg. Whence 

= 2 V(2^2282~+0^25r>r^ + (0.50 X 0.50) = 1.8244 

We shall use Fj = 1.8125 in. 

Tr = 0.9523 + 0.0372 = 0.9895 
I, = 0.70 X 0.2864 = 0.2004 

Il.i = 3.3858 + 0.1002 = 3.4860 
Edge round = 0.25 X 0.50 = 0.125 

The contnet line.s and the field of contact for this drive have been determined by 
the use of metliods sliown in Chap. 11, and they arc plotted in Fig. 12-5. An examina- 

Fio. 12-5. Single thread worm and 42-tooth worm gear. 

tion of this figure will show that the field of contact extends over almost 1}^ threads. 
This is a measure of the duration of contact on this drive. 

3-lhread Worm, 42-loolh Worm Gear. We shall use the same center distance as 
before. Many of the values will be the same as in the preceding examples. Thus we 
have 

p.r = 0.500 L = 1.500 )Vi = 3 A'j =42 h, = 0.2788 ci = 0.0362 
R. = 1.1141 = 1.2354 Rr^ = 0.9566 = 12.094“ M = 0.159154 

C = 4.375 Ri = 3.3422 F, = 1.8125 Rt = 1.0328 
R, = 4.375 - (0.9566 + 0.0362) = 3.3822 
Tr = 0.9566 + 0.0362 = 0.9928 
It = 0.70 X 0.2788 = 0.1952 

R«, = 3.3822 -f- 0.0976 - 3.4798 
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The contact lines and field of contact for this drive have been determined as 
before. They are plotted in Fig. 12-6. An examination of this figure will show that 

the field .of contact extends over about 1.40 
threads on the worm, which gives this drive 
about the same duration of contact as that in the 
preceding example. 

(^thread WortUy Yl^tooth Worm Gear. VVe 
shall use the same center distance as before. 
Many of the values will be the same as in the 
two preceding exam les. The lead angle will be 
greater than 15 deg; hence the face width of the 
worm gear will be reduced. For this example 
we have 

p, = 0.500 L = 3.000 = 6 
Ni = 42 A, = 0.2563 ci = 0.0333 

R, = 1.1141 Roi = 1.2256 
Rri = 0.9693 X. = 23.199° 
M = 0.15915-4 C = 4.375 
Rt = 3.3422 Rx = 1.0328 

Rt = 4.375 - (0.9693 + 0.0333) = 3.3724 
Tr = 0.9693 + 0.0333 = 1.0026 

It = 0.35 X 0.2563 = 0.0897 
R,t = 3.3724 -f 0.0448 = 3.4172 

Fa = 2 \/(2.2282 + 0.25) X 0.25 
+ (0.25 X 0.50) * 1.6994 

We shall use Fa =» 1.6875 in. 
The contact lines and field of contact for this 

drive have been determined as before. They are 
plotted in Fig. 12-7. An examination of the fig¬ 

ure will show that the field of contact extends over slightly more than 2 threads. On 
this drive, therefore, there will always be at least 2 threads in contact. 

Fig. 12-7. 6-thread worm and 42-tooth worm gear. 

\2-thread Worm, S6-tooth Worm Gear. For the next example we shall use a 
12-thread worm. We shall keep the sum of the numbers of teeth in the worm and 
worm gear equal to 48, the same sum as for the preceding example This will give a 
36-tooth worm gear. For this we have the following values; 
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Pr - 0.500 L = 6.000 Ni = 12 = 36 h, = 0.2108 c, = 0.0274 
R. = 1.2732 = 1.3649 Rri = 1.1541 K = 36.870“ M = 0.159154 

Ri = 18 X 0.159154 = 2.8648 
C (max) = 2.8648 + 1.2732 = 4.1380 
C (min) = 2.8648 + 1.1541 = 4.0189 

Wo shall use C = 4.000. 
This value for the center distance will bring the pitch plane of the worm slightly 

below the root radius of the worm. We shall make an analysis of the contact, how¬ 
ever, to be sure that the duration of contact i.s adequate. If it is not, then we must 
move the pitch plane of the worm up by increasing the center distance. 

ft, = 4.000 - 2.8648 = 1.1352 
ft, = 4.000 - (1.1541 + 0.0274) = 2.8185 
Tr = 1.1541 +0.0274 = 1.1815 
I, = 0.35 X 0.2108 = 0.0738 

ft„2 = 2.8185 + 0.0369 = 2.8554 

F, = 2 V(2.5464 + 0.25) X 6.25 + (0.25 X 0.50) = 1.7972 

We shall use Fj = 1.750 in. 
The contact lines and the field of contact for this drive have been determined. 

They are plotted in Fig. 12-8. An examination of this figure will shotv that the field 

Fio, 12-8. 12-threud worm and 80-tooth worm gear. 

of contact extends over about 2)^ threads of the worm. Even though the pitch plane 
of the worm is below tlie root rtidius of the worm, and the pitch radius of the worm 
gear is larger than its outside radius, the contact is adequate. In this example, all 
the action is rece.ss action. 

IS-lhread Worm, 30-looth IForm Gear. We shall keep the sum of the numbers of 
teeth equal to 48. This gives a 30-tooth worm gear for this example. We have the 
following values; 

P* = 0.500 L = 9.000 A^i = 18 ATj = 30 /i, = 0.2108 c, = 0.0274 
ft, = 1.9098 ft„i = 2.0015 ftn = 1.7907 X, = 36.870° M = 0.159154 

ftj = 15 X 0.159154 = 2.3873 
C (max) = 2.3873 + 1.9098 = 4.2971 
C (min) = 2.3873 + 1.7907 = 4.1780 
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We shall use C = 4.1876. 

Ri = 4.1875 - 2.3873 = 1.8002 
R, = 4.1875 - (1.7907 + 0.0274) =■ 2.3694 
Tr = 1.7907 + 0.0274 = 1.8181 
I, = 0.35 X 0.2108 = 0.0738 

Ro, = 2.3694 + 0.0369 = 2.4063 

Fj = 2 V (3.8169 + 0.25) X 0.25 + 0.125 = 2.1422 

We shall use Fj = 2.125 in. 
The contact lines and the field of contact for this drive have been determined. 

They are plotted in Fig. 12-9. An examination of this figure will show that the field of 
contact extends over 2>^ threads of the worm. 

Fiq. 12-9. 18-thread worm and 30-tooth worm gear. 

24-lhread Worm, 24-loolh Worm Gear. For the next example we shall use a 
24-thread worm and a 24-tooth worm gear. This keeps the sum of the numbers of 
teeth in the drive equal to 48. It also gives us a one-to-one ratio. For this we have 
the following values: 

Px = 0.500 L = 12.000 AT, = 24 W, = 24 A, = 0.2108 ci = 0.0274 
B. = 2.5465 Ro\ = 2.6382 Rn = 2.4274 X, = 36.870“ M = 0.159154 

Bj = 12 X 0.1591.54 = l.!)098 
C (max) = 1.9098 + 2.5465 = 4.4.563 
C (min) = 1.9098 + 2.4274 = 4.3372 

We shall use C = 4.375 in. 

B, = 4.375 - 1.9098 = 2.4652 
B, = 4.375 - (2.4274 + 0.0274) = 1.9202 
T, = 2.4274 + 0.0274 = 2.4548 
7, = 0.0738 

Boj = 1.9202 + 0.0369 - 1.9571 

Ft =2 V(6.0930 + 0.25) X 0.25 + 0.125 - 2.6298 

We shall use Ft — 2.500 in. 
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The contact lines and the field of contact for this drive have been determined 
They are plotted in Fig. 12-10. An examination of this figure will show that the field 
of contact extends over about threads on the worm. 

Fig. 12-10. 24-thread worm and 24-tooth worm gear. 

Driving Member of Enveloping Form. As noted before, a worm-gear 

drive can be considered as a development from a spiral-gear drive where 
one member of the pair is made to envelop the other so as to obtain line 
contact instead of point contact between the mating teeth. Either 

member of the pair may be made to envelop the other. The more com¬ 

mon practice is to make the larger member, or the member with the 
greater number of teeth, envelop the smaller one or the driver. There 

are occasions, however, when a definite advantage can be gained by 
reversing this practice and by making the driver to envelop the follower. 
This has been done in some cases. Such drives are sometimes called 

hourglass worm drives^ but they are true worm-gear drives as long as one 

member has a uniform axial lead. 
In drives of this kind, the large, multiple-thread worm or helicoid 

member can best be produced as a helical involute gear. In such cases, 

a standard diametral pitch and pressure angle could best be used. The 
enveloping member can be generated by a helical pinion-shaped cutter 
of the same number of teeth as is used for the helicoid member. 

For the further examples, however, we will use the same combinations 
of teeth and the same center distances as before, so as to obtain a direct 
comparison of the conditions of contact when the opposite member is 

made to envelop the other. We will make the helicoid follower as a 
helical involute gear with a 30-deg normal basic-rack form of the same 
proportions as those of the threading tool used to produce the worms. 

The first step to this end will be to transform the values of any given drive 
into those of the equivalent spiral-gear drive. Here we must use the 
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actual distance to the pitch plane on the worms of the preceding examples 
as the pitch radius of the enveloping member, and the actual lead angle 
at this radius as the helix angle of the follower. We shall use the same 
symbols as before and call the helicoid follower the worm even though it is 

not the driver. Then we can use the same equations for the contact 
analysis as before. Thus when 

Xi = lead angle of worm at pitch radius 
Li = lead of worm, in. 

L2 = lead of driver of spiral-gear drive, in. 
<t>n = normal pressure angle of basic rack of worm 
01 = pressure angle of worm in plane of rotation 

Rbi = radius of base cylinder of worm, in. 

and all other symbols are the same as before, then 

cot Xi - L./2irR2 (12-23) 
Li = 27r/?i tan Xi (12-24) 

tan 01 = tan 0„/sin Xi (12-25) 

Rbi — Ri cos 01 (^*^) 

and all other equations are the same as Ix^fore. 

Examples of Enveloping Driver. SO-tooth Worm, IS^tooth Worm Gear. As the 
first example of an enveloping driver we shall use an 18-tooth enveloping driving 
member and a 30-tooth helicoid follower or worm. From the corresponding worm- 
gear example we have the following values: 

Ni = 30 
Ri * 1.8002 

Xi 

Ni 

C 

18 = 2.3873 Roi = 2.3694 
= 4.1875 hi = 0.2108 Ci = 0.0274 

<t>n = 30*^ tan <t>n = 0.57735 
, , _ 9.000 

' 6.2832 X 1.8002 
0.79568 

Rri = 2.1586 
Li = 9.000 

= 51.492° tan X, = 1.25063 sin X, = 0.78252 
Li =» 6.2832 X 2.3873 X 1.25663 = 18.8494 

. 0,57735 A 'TO 01 

“ 6T82o2 = 
<#>i = 36.420'’ cos </>i = 0.80469 

Rbi = 2.3873 X 0.80469 = 1.9210 
R, = 4.1875 - (2.1586 + 0.0274) =. 2.0015 
Tr = 2.1586 + 0.0274 = 2.1800 
/, = 0.35 X 0.2108 = 0.0738 

R.t = 2.0015 + 0.0369 = 2.0384 

Fa - 2 V(4.7746 + 0.25) X 0.25 + 0.125 = 2.3666 

We shall use Fi « 2.375 in. 
The contact lines and the field of contact for this drive have been determined as 

before. They are plotted in Fig. 12-11. An examination of this figure will show that 
the field of contact extends over more than threads of the worm. 
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Fio. 12-11. 30-thread worm and 18-tooth worm gear. 

36-<oo//i IForm, 12-/oo^/i Worm Gear. As the next example of an enveloping driver 
we shall use a 12-tooth enveloping member and a 36-tooth helicoid follower. From 
the corresponding worm-gear drive we obtain the following: 

iVi 

c = 

.V2 = 12 = 2.8648 ILx = 2.8185 
) ht = 0.2108 Cl = 0.0274 R> = 1.1352 

, _ 6.000 non 10 

6.2832 X 1.1352 0 
Xi = 40.030° tan X, = 1.18880 

Li = 6.2832 X 2.86-16 X 1.18880 = 21.3884 
ft, = 4.000 - (2.6077 + 0.0274) = 1.3649 
T, = 2.6077 + 0.0274 = 2.6351 
I, = 0.35 X 0.2108 = 0.0738 

ft„2 = 1.3640 -f 0.0360 = 1.4018 

h\ = 2 \l5.7206 + 0.25r'x'”0.25 + 0.125 = 2.5 

2.6077 
= 6.000 

We shall use — 2.625 in. 

Fio. 12-12. 36-thread worm and 12-tooth worm gear. 

The contact lines and field of contact for this drive are plotted in Fig. 12-12. An 
examination of this figure will show that the field of contact extends over about 
3 threads of the worm. 



274 ANALYTICAL MECHANICS OF GEARS 

^2-‘tooth Worrrij Q-tooih Worm Gear, From the corresponding worm-gear example 
we obtain the following values: 

Ni 

C « 
= 42 = 6 Ri == 3.3422 Roi = 3.3724 
4.375 ht = 0.2563 ci = 0.0333 R2 = 1.0328 

rl — 
L2 

Ly 
Ri 
Tr 

li 

Ro2 

F2 

cot Xi = 
3.000 

= 0.46230 
6.2832 X 1.0328 

Xi = 65.189° tan Xi = 2.16311 
= 6.2832 X 3.3422 X 2.16311 = 45.4253 
= 4.375 - (3.1161 -f 0.0333) = 1.2256 
= 3.1161 +0.0333 = 3.1494 
= 0.0897 
= 1.2256 + 0.0448 = 1.2704 

= 2 \/(6.6844 + 0.25) X 0.25 + 0.125 = 2.7582 

3.1161 
= 3.000 

We shall use F2 — 2.750 in. 
The contact lines and the field of contact for this drive are plotted in Fig. 12-13. 

.\n examination of this figure will show that the field of contact extends over about 
4 threads of the worm. 

42-tooth Worm, S-tooth Worm Gear. From the corresponding worm-gear example 
we obtain the following values: 

.Vi = 42 
C = 4.375 

N2 = 3 Ry ^ 3.3422 Roy = 3.3822 Rr 

ht = 0.2788 Cl = 0.0362 R2 = 1.0328 
, , 1,500 

cot Xi = 0.23115 
6.2832 X 1.0328 

X, = 76.985° tan Xi = 4.32476 
Ly = 6.2832 X 3.3422 X 4.32476 = 90.8200 
Ri = 4.375 ~ (3.1034 + 0.0362) 
Tr = 3.1034 + 0.0362 = 3.1396 
It = 0.35 X 0.2788 = 0.0976 

Rot « 1.2354 + 0.0488 = 1,2842 
F2 - 2.750 

1.2354 

3.1034 
= 1.500 
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The contact lines and the field of contact for this drive have been plotted in Fig. 
12-14. An examination of the figure will show that the field of contact extends over 
more than 4 threads of the worm. 

^2-tooth Worm^ Single-iooih Worm Gear. As the last example of an enveloping 
driver, we shall use a single-tooth enveloping driving member. From the corresp)ond- 
ing worm-gear example we obtain the following values: 

Ni - 42 
C » 4.375 

Roi = 3.3855 
5 R2 = 1.0328 

^ = 0.07705 

Aa = 1 /?! = 3.3422 R,i = 3.3855 E 

hi = 0.2864 Cl = 0.0372 R2 = 1.0328 

6.2832 X 1.0328 "" 
Xi = 85.594^^ tan Xi = 12.97850 

Li = 6.2832 X 3.3422 X 12.97850 = 272.5485 
Ri = 4.375 - (3.0991 + 0.0372) = 1.2387 
Tr - 3.0991 + 0.0372 = 3.1363 
It = 0.35 X 0.2864 = 0.1002 

Ro2 = 1.2387 -f 0.0501 = 1.2888 
F2 = 2.750 

3.0991 
= 0.500 

The contact lines and the field of contact for this drive have been plotted in Fig. 
12-15. An examination of this figure will show that the field of contact extends over 
about 5 threads of the worm. 



CHAPTER 13 

HOURGLASS-WORM DRIVES 

The hourglass-worm drive is a form of screw gearing where neither 

member of the pair has a uniform helical lead along its axis. True con¬ 
jugate gear-tooth action seldom exists between the two mating members 

of such drives. Strictly speaking, these gears are not true gear drives 

but rather are special forms of cams. Many types of this form of drive 
have been designed to meet specific needs. For example, a wide variety 
of them have been designed for use as steering units for automobiles. 

There is no general method for the analysis of the contact conditions 
that exist on these hourglass-worm drives. F^ach type must be analyzed 
individually. A few examples of this type of drive will be analyzed in 

this chapter. The contact on these drives is generally line contact. 
Surface contact is sometimes claimed or implied, but line contact is the 
most that can be obtained together with smooth continuous action. 

Multiple tooth contact can be readily attained on many of these 
drives. However when the amount of contact is adequate to carry the 
loads imposed, additional contact is a liability and not an asset. If these 

drives are run continuously, or enough to develop any appreciable heat 
of operation, the thermal expansion of the gear member is generally 
greater than that of the worm member. As a result, the contact tends 
to become concentrated at the two ends of the worm member. This con¬ 
dition limits the amount of effective contact that can actually be used on 
this type of drive. 

HINDLEY-WORM DRIVE 

The first example we shall analyze is the Hindley-worm drive. This 
was developed by a Mr. Ilindlcy in England for use in a dividing engine 

about 1765. It consists of an hourglass worm that is formed by a 
straight-sided threading tool set in the axial plane of the worm and 
traveling in a circular path with the center of this path at the center of 

the mating worm gear. The mating gear, in turn, is made to envelop 
the worm partially. It is generally produced by a hob of the form of the 
worm. This construction is indicated in Fig. 13-1. 

There are several ways in which this drive may be analyzed. For one, 
the profiles of the worm threads may be determined on a series of planes 
parallel to the axial plane of the worm. These intersection profiles will 

276 
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show a change in form from one thread to another on the same off-center 
plane, and will also show a varying angular displacement in reference to 
the center of the gear except on the axial plane. It is obvious that all 
the teeth of the gear must be identical. 

Another method would be to determine the trace of both the worm and 
the worm gear on a cylinder concentric with the gear. These traces 
could then be compared directly. This second method will be used here. 

Figure 13-2 shows the axial and end sections of the worm. The 
straight-line radial elements of this worm-thread form are all tangent to 

Fio. 13-1. Ilindloy \vorin-Ko:ir drive. 

a base cylinder concentric with the gear. This holds true only in the 
axial plane of the worm, which is also a plane of rotation of the gear. 
Thus when 

C = center distance, in. 
Rb = radius of base circle, in. 
Rc = radius of intersecting cylinder, in. 

NI = number of threads or starts on worm 
N2 = number of teeth in worm gear 

d = angular position of thread element when y = 0 
Cl = turning angle of worm from original position 
€2 = turning angle of gear from original position 
A = distance of intersection point from center line of gear, in. 
a = angle between axial thread element and radial line of gear 

= pressure angle at A when worm element is brought into axial 

plane 
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X = abscissa of trace of worm thread on intersecting cylinder, in. 
y = ordinate of trace of worm thread on intersecting cylinder, in. 

we have to start 

€2 = iViei/ATj (13-1) 

sin a = Rh/Rc (13-2) 

We have the following from the geometrical conditions shown in Fig. 13-2: 

</> = a - (^ 4- €2) (13-3) 
A = Rb cos </> — (C — sin <t>) tan 0 + r tan <t> (13-4) 

A-RbCOs<P'-(C-r-Rf, sin tp) fan 

C-rcos 61 ^VRc'-A^ 

oc.-(B-h62) 
y= rsin (5/ 

^in J=A/Jlc 

x-RcJ=Rc sin ’(A/Rc) 

I'lO. 13-2. 

To simplify and condense this equation, we shall let 

B = Rb cos <t> — {C — Rb sin <#>) tan <j> (13-5) 

whence 

A = B + r tan <(> (13-6) 

But 
= R^ — [C — r cos ti)* (13-7) 

Expanding this last equation, we obtain the following: 

A^ - 2rC cos €i — r’ cos* ei — (C* — Rc'‘) 
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We shall let 
D == - Rc^ 

whence 
= 2rC cos €i — cos^ ei ~ Z) (13-8) 

Squaring Eq. (13-6), equating it to Eq. (13-8), and solving for r, we 

obtain 

r 

{C cos Cl — B tan <^)_ 
— VT& cos €i — B tan (t>y — (B^ -f 2>)(tan2 0 + cos^ €i) 

““ ^ q. cos^ci 

We have from Fig. 13-2 

y = 

sin A = 

r sin Cl 

/ic 

Rc ^ Rc sin' 
/i!c 

(13-10) 

(13-11) 

To determine the complete trace of the worm thread on the intersecting 

cylinder, we first select a series of values for 6 that will include all the 

successive threads on the worm. Then for each value of 6, we use a series 
of values of ci and C2 that will cover the face of the worm gear. For the 
values of ci and C2 on one side of the axis of the coordinate system, their 

signs will be plus. For the opposite side, their values will be minus. 
The values of 6 on one side of the central section where the worm diameter 
is a minimum will be plus. On the opposite side they are minus. 

If the values of 6 for opposite sides of the thread space of the worm at 
the central section are the same but of opposite sign, then the forms of the 
intersection curves of these opposite sides are alike, but inverted in their 

relative positions. In other words, the plus values of x and y become 
minus for the opposite side and the minus values become plus. 

Example of Hindley Worm. As a definite example we shall use the following 

values: 

AT, * 9 A2 = 36 Rb 2.000 Rc = 4.000 C = 5.000 

We shall use an initial value of 0 = 2.50® for the position of the thread near the central 
section. We will use values of €i in steps of 8 deg. From these values, we obtain 

^ 961 _ €1 

“ 36 “4 

sin a - = 0.50000 
4.00 

whence a » 30®. 
In this example we shall determine the coordinates of the top half of the first 

thread, the complete forms of the next 4 threads, and the bottom half of the sixth 
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thread. These are the threads that engage the worm gear. Values of ei will vary from 
0 to ±40 deg in steps of 8 deg. This range will give the full form of the trace of the 
worm threads on the intersecting cylinder. The angular values used to compute the 
coordinates are tabulated in Table 13-1. 

The values for the coordinates of the traces of these threads on the intersecting 
cylinder have been calculated. Th(‘y are tabulated in Table 13-2 and plotted in 
Fig. 13-3. It will be noted that the values of the coordinates of the second half of 
the first thread are the same, but of opposite sign, as are those for the first half of the 
sixth thread, etc. An examination of Table 13-2 or Fig. 13-3 will show that the 
intersection form of the threads of the worm varies from thread to thread. 

Table 13-1. Values of Ancu.es Used for Calculati.vg Coordinates of Inter¬ 

section Profile of Hindley Worm 

Thread 

Values bst 2d 3d 4lh 5lh 6th 
of €1, deg II 1 to

 

O
n o 0 = -17.5° 0 = -7.5° e = 2.5° 0 = 12.5° e = 22.5° 

Values of deg 

40 47.5 37.5 27.5 17.5 7.5 
32 49.5 39.5 29.5 19.5 9.5 
24 51.5 41.5 31.5 21.5 11.5 
16 i 53.5 43.5 33.5 23.5 13.5 
8 55.5 45.5 35.5 25.5 15.5 

0 57.5 47.5 37.5 27.5 17.5 7.5 
- 8 49.5 39.5 29.5 19.5 9.5 
-16 51.5 41.5 31.5 21.5 11.5 
-24 53.5 43.5 33.5 1 23.5 13.5 
-32 55.5 45.5 35.5 25.5 15.5 
-40 57.5 47.5 37.5 27.5 17.5 
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Table 13-2. Coordinates of Traces of Threads of Hindley Worm on Inter¬ 

secting Cylinder 

(Plotted in Fig. 13-3) 

Front Back 

X, in. y, in. 
1 

X, in. y, in. 

First thread 

-0.92740 0.92891 -0.99358 0.94359 
-1.17447 0.73184 -1.07582 ; 0.71473 
-1.39403 0.55230 -1.18187 0.52241 
-1.59132 0.37632 i -1.30278 0.34704 
-1.76725 0.19452 -1.43354 0.17625 

-1.91988 0.00000 -1.57080 0.00000 

Second thread 

-0.30285 0.8^1872 -0.34181 0.85135 

-0.52569 0.64642 -0.40568 0.63771 
-0.72522 0.47442 -0.50000 0.45912 
-0.90708 0.31611 -0.61128 0.30012 

-1.07289 0.16064 -0.73709 0.15005 

-1.22173 0 00000 -0.87266 0.00000 
-1.35075 -0.17223 -1.01571 -0.15856 

-1.45491 -0.36179 -1.16462 -0.33502 
-1.52653 I —0.57335 -1.31807 -0.54104 
^1.55502 -0.81138 -1.47466 -0.79281 
-1.52514 -1.08014 -1.63278 -1.11487 

ddiird thread 

0.34174 0.85135 0.30285 0.84878 

0.13781 0.62635 0.26166 0.63021 
-0.04740 0.44535 0.18347 0.44710 
-0.21852 0.28846 0.07980 0.28722 
-0.37727 0.14304 -0.04050 0.14057 

-0.52360 0.00000 -0.17453 0.00000 
-0.65562 -0.17092 -0.31912 -0.14232 

-0.76969 i -0.35312 -0.47403 -0.29479 
-0.85912 ! -0.56714 -0.63565 -0.46767 
-0.91707 1 -0.84203 -0.79671 -0.65888 
-0.92747 1 -1.22650 -0.99274 -0.94196 
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Table lS-2. Coordinates of Traces op Threads of Hindley Worm on Inter¬ 

secting Cylinder. (Continued) 

(Plotted in Fig. 13-3) 

Front Back 

Xf in. y, in. X, in. Vj in- 

Fourth thread 

0.99274 0.94196 0.92747 1.22650 
0.79671 0.65888 0.91707 0.84203 
0.63565 0.46767 0.85912 0.56713 
0.47403 0.29479 0.76969 0.35312 
0.31912 0.14232 0.65562 0.17079 

0.17453 0.00000 0.52360 0.00000 
0.04050 -0.14057 0.37727 -0.14304 

-0.07980 -0.28722 0.21852 -0.28846 
-0.18347 -0.44710 0.04740 -0.44535 
-0.26166 -0.63021 -0.13781 -0.62635 
-0.30285 -0.84872 -0.34174 -0.85135 

Fifth thread 

1.63279 1.11487 1,52514 1.08014 
1.47466 0.79281 1.55502 1 0.81138 
1.31807 0.54104 1.52653 j 0.57335 
1.16462 0.33502 1.45491 0.36179 
1.01571 0.15856 1.35075 0.17229 

0.87266 0.00000 1.22173 0.00000 
0.73709 -0.15005 1.07289 -0.16064 
0.61125 -0.30012 0.90708 -0.31611 
0.50000 -0.45912 0.72522 -0.47442 
0.40568 -0.63771 0.52569 -0.64642 
0.34181 -0.85135 0.30285 -0.84872 

Sixth thread 

1.57080 0.00000 1.91988 0.00000 
1.43354 -0.17625 1.76725 -0.19452 
1.30278 -0.34707 1.59132 -0.37632 
1.18187 -0.52241 1.34903 -0.55230 
1.07582 -0.71473 1.17447 -0.73184 
0.99358 -0.94359 0.92740 -0.92891 
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Trace of Gear Teeth on Intersecting Cylinder. The intersection 
curves of the worm threads with a cylinder concentric with the axis of 
the worm gear vary from position to position. All the worm-gear teeth, 
however, must be identical and must not interfere with the worm threads. 
Hence one side, or one-half of each side, of the gear tooth will be the form 
produced by the hob at the central section where the lead angle is greatest, 
and the other part of the gear tooth will be the form produced by that 
end of the hob which has the highest pressure angle^ and also has the 
lowest lead angle. 

Fiq. 13-4. 

It should be apparent that the hob must never be shorter than the 
worm. It must be either of the same length or else somewhat longer. 
If it is made of the same length, then as the hob is resharpened, the worm 
must be reduced in length on one side at least by an amount that is 
dependent upon the amount of relief on the hob and upon the amount of 

metal removed from the hob in sharpening. 
Thus to determine the intersection curve of the worm-gear teeth, we 

must analyze the conditions at the central section and those at one end. 
Intersection Curve at Central Section. Referring to Fig. 13-4, let 

Xc = abscissa of trace of central section of hob, in. 
yc = ordinate of trace of central section of hob, in. 

and all other symbols be the same as before. Some additional symbols 
are also sho^vn in Fig. 13-4. 

We have as before 
€2 = Ni€i/Nt 

sin a = Rb/Rc 

(13-1) 
(13-2) 
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We have the following from the geometrical conditions shown in 

Fig. 13-4: 
y, = {C- Rc) tan €i (13-12) 

r = (C - Rc)/cos *1 (13-13) 
sin <l> = Ri/{C - r) (13-14) 

A = €i (j> — oc (13-15) 

Xc = Rc A (13-16) 

The polar equation of the intersection curve of the worm at the central 
section with a plane perpendicular to the axis of the worm is as follows: 

When 0c = vectorial angle 
Tc = length of radius vector, in. 

Fio. 13-5. 

we have from the geometrical conditions shown in Fig. 13-4 the following: 

rc = C — (Rb/em <f>) (13-17) 
<l> = a — €2 A (13-18) 
ej = Ni(i/N2 (13-1) 

0e = fl = H 1 (13-19) 

Intersection Curve at End of Hob. Referring to Fig. 13-5, let us use 
the same symbols as before, with the addition of the following: 

B — distance to end of hob from central section, in. 
P = angle at radius Rc to end of hob 

Xe = abscissa of trace of end section of hob, in. 

ye = ordinate of trace of end section of hob, in. 
and other symbols shown in Fig. 13-6. 
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We have the following from the geometrical conditions shown in 
Fig. 13-5: 

sin 

Ve 

r 

JS 
Re 
(C — Re COS P) tan €i 
C — Rc cos 

COS ei 

(13-20) 

(13-21) 

(13-22) 

tan <t) = 
B + Rb cos <t> 

C — r — Rb sin <t> 

Solving this last equation for sin <t>y we obtain 

sin <f> 
Rb{C -r) + B V(C -rY - - B^) 

{C - rr + B^ 
y = <f) — a 

A = €2 + 7 ^ 
Xe = Rc ^ 

(13-23) 

(13-24) 
(13-25) 
(13-26) 

The polar equation of the intersection curve of the end section of the 
worm with a plane perpendicular to the axis is as follows: 

Oe = vectorial angle 
Te = length of radius vector, in. 

we have the following from the geometrical conditions shown in Fig. 13-5: 

n T? B + Rb cos (p 
fe = C — Rb sm -7--- 

tan </) 

</) = a + /? — €2 

= 
N2 

(13-27) 

(13-28) 

(13-1) 

(13-29) 

Example of Trace of Hindley-worm Gear. Using the same example as before, we 
shall use a length of hob and worm of 3 in. This gives a value for B of 1.50 in. 

For the trace of the central section, we have 

a = 30® C = 5.000 Rc » 4.000 Rb = 2.000 

Using these values in the several equations, we obtain the values of the coordinates 
that arc tabulated in Table 13-3. 

For the trace of the end section, using the foregoing values in the several equations, 
we obtain the values of the coordinates that are tabulated in Table 13-3. All these 
values are plotted in Fig. 13-6. 
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Table 13-3. Trace of Hindley Worm on Intersecting Cylinder 

(Plotted in Fig. 13-6) 

Center section Knd section 

Xc, in. Uc, in. Xe, in. j Un in. 

0.89179 , 0.83910 * 1.09530 1 1.08402 
0.66762 0.62487 0.74211 0.80726 
0.47501 0.44523 0.53351 0.57518 
0.30278 0.28675 0.32721 0.37045 
0.14528 0.14054 0.15114 0.18156 

0.00000 0.00000 0.00000 0.00000 
-0.13397 -0.14054 -0.12811 -0.18156 
-0.25573 -0.28675 -0.23129 -0.37045 
-0.36275 -0.44523 ' -0.30425 -0.57518 
-0.44939 -0.62487 -0.37490 -0.80726 
-0.50447 -0.83910 -0.30096 -1.08402 

Contact Lines on Hindley-worm Drive. The traces of the first, third, 
fourth, and sixth threads of the worm have been plotted with the trace 
of the worm-gear teeth in Fig. 13-7. With geometrically perfect condi¬ 
tions, the only continuous contact is along the straight-line element of 
the worm in its axial plane. There is an intermittent line contact, 
through from 25 to 30 deg of angular rotation of the worm at the central 
section. The form of this contact will be the form of the intersection 
curve at the central section with a plane perpendicular to the axis of the 
worm. The coordinates of this form have been calculated, and they are 
tabulated in Table 13-4. 
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When the hob and the worm are of the same length, there will also 
be another intermittent line contact on the end thread of the worm. 
The form of this line contact will be the form of the intersection curve 

Fio. 13-7. 

Intermittent Intermittent 
contact contact 

End Section 
Fig. 13-8. Contact of Hindley worm-gear drive. 

at the end section of the worm with a plane perpendicular to its axis. 

The coordinates of this form are also tabulated in Table 13-4. 
The contact lines are plotted in Fig. 13-8. The straight, radial, line 

contact at the axial section exists on all threads of the worm. As noted 
before, the curved-line contact on the central and end threads is inter¬ 

mittent and revolves with the worm. 
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Table 13-4. Hindley-worm Intersection Curves with Planes Perpendicular 

TO Axis of Worm 

(Plotted in Fig. 13-8) 

Center section End section 
1 

Oe, deg Tcy in. Bet deg Te, in. 

24 0.08286 24 0.77348 
16 0.43765 16 0.96026 
8 0.73988 8 1.13248 
0 1.00000 0 1.29188 

- 8 1.22585 - 8 1.43976 
-16 1.42340 -16 1.57739 
-24 1.59743 -24 1.70583 
-32 1.75146 -32 1.82598 
-40 1.88857 -40 1.93862 

Referring again to Fig. 13-7, it will be noted that there is an apprecia¬ 
ble clearance between most of the worm threads and the worm-gear teeth 

Fig. 13-9. Enveloping worm for involute spur gear. 

at the sides of the worm-gear face. Many times in actual practice, con¬ 
siderable scraping is done on the hobbed gear so as to reduce the amount 
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of the clearance showing at the edges of the worm gear. Under such 
conditions, the nature of the actual contact will be indeterminate, and 
the smoothness and uniformity of motion transmitted by such a scraped 
drive will be a matter of the circumstances existing on each individual 
drive. 

ENVELOPING WORM FOR SPUR GEARS 

As another example we will examine the contact conditions that will 
exist between an involute spur gear and an enveloping worm. The 

Fig. 13-10. 

enveloping worm could be generated by a pinion-shaped cutter whose 
cutting edges represent the forms of the teeth of the spur gear. Such a 
drive is shown in Fig. 13-9. 

The intersection profile of the spur-gear-tooth form with any plane 
parallel to its axis will be a straight line that is parallel to the axis of the 
spur gear. As the spur gear revolves, this straight line will rise or fall— 
depending upon the direction of rotation. The rate of motion will 
depend upon the position of the intersecting plane in relation to the axis 
of the gear, the size of the base circle of the involute spur gear, and the 
angular velocity of the spur gear. Referring to Fig. 13-10, when 
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Rbi = radius of base circle of spur gear, in. 
D = distance of intersecting plane from axis of spur gear, in. 
Cl = angle of rotation of worm 

€2 = angle of rotation of gear 
Ni = number of starts on worm (generally 1) 
N2 = number of teeth in involute spur gear 

<t> — momentary pressure angle 
y = distance of gear-tooth intersection from projection of axis of 

spur gear, in. 

Rbi = momentary radius of base circle of worm, in. 
C — center distance, in. 

we have to start 

€1 = N2€2/Ni (13-30) 

We have the following from the geometrical conditions shown in Fig. 

13-10: _ 

sin <t> = (y - Rb2 cos <t>)/V 

Solving this equation for sin </>, we obtain 

sin <t> = (y - DRb2)/{D^ + y^) (13-31) 

As the gear is revolved in the direction shown on Fig. 13-10, we have 
the following relationship: 

Rh2 dc2/sin = Rbi dei 

The momentary base circle of the worm is a circle whose circumferential 
velocity is the same as the velocity of the contact point at y. 

d,,/de2 = N1/N2 

Solving for /2hi, we obtain 

Rb\ — N\Rb2/^2 sin 0 (13-32) 

As indicated in Fig. 13-10, these equations give us the position of a 

contact point for any given value of y and D. When the intersecting 

plane is on the opposite side of the axis of the spur gear, the value of D 
will be minus. The contact point, in respect to the axis of the worm, 

wiW be at a distance C — y above the worm axis and at a distance of 
Rb\ to the side of it, as indicated in the figure. By using a series of values 
of y for a given value of Z), we obtain a series of points on the path of 

contact of this drive on the given intersection plane. By determining 
the path of contact on several intersecting planes we can establish the 
projection of the field of contact for this drive. 

Contact Lines on Teeth of Spur Gear. Using this same general 
method of analysis, we can determine the projections of the actual con- 
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tact lines on the several teeth of the involute spur gear that may be 
engaged. Referring again to Fig. 13-10, we shall use the same symbols 
as before with the addition of the following: 

= position of origin of involute gear-tooth profile 
</)2 = pressure angle at radius r2 

r2 = length of radius vector of involute gear-tooth profile, in. 
6 = angular position of radius vector 

We have the following from the geometrical 
Fig. 13-10: 

conditions shown in 

cos <t)2 = Rb2/r2 (13-33) 
6 = + inv 02 (13-34) 
y — r2 sin b (13-35) 
D — r2 cos b (13-36) 

<t> = <t>2 b — (7r/2) (13-37) 
Rbi ~ NiRi^/^2 sin 0 (13-32) 

A series of values of for each tooth engaged with the enveloping 
worm would be used, and the corresponding values of 7?bi, C — and D 
would be determined. With these values, the contact lines and the field 
of contact could be plotted. 

Table 13-5 

Values of r-i, in. 

4.750 4.875 5.000 5.125 5.250 

First tooth 

Rbi, in. 1.74532 0.90458 
y, in. 4.82555 4.96283 
Dy in. 1.72620 1.71255 

Second tooth 

Rbi 1.79630 0.77215 0.52779 0.41452 

y 4.77341 4.90395 5.03614 5.16962 
D 0.99002 0.97545 0.95002 0.91508 

Third tooth 

Rbh in. 1.24811 0.53226 0.38529 0.31548 0.27322 
2/, in. 4.74326 4.86954 4.99665 5.12280 5.24921 

Z>, in. 0.25256 0.23108 0.19630 0.15052 0.09529 
Fourth tooth 

Rbu in. 0.47231 0.31700 0.26096 0.22900 0.20758 
2/, in. 4.72426 4.84570 4.96535 5.08328 5.19939 

D, in. -0.49253 -0.53352 -0.58770 -0.65272 -0.72723 
Fifth tooth 

Rbif in. 0.29576 0.22974 0.20104 0.18327 0.17076 

y, in. 4.58879 4.70262 4.81230 4.91857 5.02163 
Dy in. -1.22555 -1.28500 -1.35720 -1.43987 -1 53164 
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Example of Contact Lines on Enveloping Worm for Spur Gear. As a definite 
example we shall use a 40-tooth spur gear that will mesh with a single-thread envelop¬ 
ing worm. This gear will have the following values: 

Inches 

Outside radius of spur gear. 5.250 
Root radius of spur gear. 4.7100 
Radius of base circle of spur gear. 4.69846 
Face width of spur gear. 2.500 
Center distance. 6.750 
Length of enveloping worm. 5.000 
Maximum outside radius of worm. 2.000 

Using the foregoing values and the equations for the contact lines on the teeth of 
the spur gear, we obtain the values given in Table 13-5. 

These values, together with the projection of the field of contact on the involute 
spur gear, are plotted in Fig. 13-11. 
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WILDHABER-WORM DRIVE 

As another example of an hourglass-worm drive, we shall examine the 
contact conditions on the Wildhaber-worm drive. This design was 
developed by Ernest Widhaber about 1922, primarily as an accurate 
index worm. It has since been used successfully as a power drive. This 
drive consists of an index plate or gear with straight, plane gashes or 
notches and a mating and envelop¬ 
ing worm. This design of worm 
and gear has the following 
advantages: 

1. The form of the gear is ex¬ 
tremely simple, and it can be 
readily and accurately produced. 

2. It meshes with straight-line 
pontact, and the contact can be 
extended over sevei al teeth. 

3. The production of both the 
worm and the gear is simple and 
direct. 

4. No hobs or other special 
cutting tools are required for 
different sizes and designs once 
the initial manufacturing equip¬ 
ment is set up. 

5. Both the worm and the gear 
can be ground in a simple manner. 
This makes possible the use of 
hardened steel for both members 
to carry heavy static and low- 

. - . XIG. 13-12. 
speed loads. 

6. The gear can be split and adjusted to take up backlash when used 
for accurate indexing purposes without affecting the accuracy or extent 
of the contact. ^ 

7. The tooth forms of both the worm and the gear can be accurately 
and simply measured, thus permitting the production of fully interchange¬ 
able parts to any measurable degree of accuracy. 

8. The correct assembled positions of the worm and the gear can be 
determined by a simple visual inspection, thus ensuring proper contact 
conditions when the drive is assembled. 

This worm-gear drive is shown in Fig. 13-12. The gear, as noted 
before, consists of a disk with straight notches cut into its rim. The worm 
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is generated from a flat-sided milling cutter or grinding wheel, so posi¬ 
tioned as to represent the side of the notch in the rim of the gear. Instead 
of generating the worm from a straight line, it is generated from a plane. 

Referring to Fig. 13-12, let 
R = radius on gear to any point of tooth profile, in. 
a = angle of tooth at R with radial line of gear 

Rb = radius of base cylinder of gear to which plane sides of teeth are 
tangent, in. 

The plane tooth flanks of the gear are parallel to the axis of the gear. 
These planes are also tangent to the base cylinder. Whence 

Rb = R sin a (13-38) 

With a given form for the gear teeth, the form of the worm threads 
are controlled by the gear-tooth forms. Here the worm is a barrel¬ 
shaped cam with the straight, plane teeth of the gear as successive fol¬ 
lowers. The cam or thread form of the worm is the surface that is 
generated by the different successive positions of the plane that forms the 
tooth surface of the gear. In other words, these cam surfaces are those 

which are enveloped by the successive positions of the plane tooth flanks 
of the gear teeth. 

The worm, so developed, is not composed of helices. Its outlines 

are not cylindrical but follow the contour of the mating gear. 
Contact on Wildhaber-worm Drive. The contact between the two 

members of this drive can be analyzed by the same method as has been 
used for the enveloping worm of a spur gear. However, as these gear- 

tooth surfaces are planes, a more direct analysis is possible. 
The tooth surfaces of the worm are those which are enveloped by the 

infinitely large number of different positions of the tooth flanks of the 

gear. The contact line between the worm and gear is therefore that 
curve which belongs to any given position of the gear-tooth surface and 
to the infinitely close successive position of it. In other words, the con¬ 
tact line is the line that is common to two infinitely close successive posi¬ 
tions of the gear-tooth flank relative to the worm, and is therefore the 
limiting case of the intersection of the two successive positions of the 

gear-tooth flanks relative to the worm. 
In this case, the tooth surfaces of the gear are planes, which are tan¬ 

gential planes to the thread surface of the worm. The contact line is the 
intersection line of two infinitely close positions of these tangential planes. 
The intersection line of two planes is always a straight line. Therefore 
the contact line between this gear and its worm is always a straight line. 

Referring to Fig. 13-13, let 
C = center distance, in. 
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We shall now determine the actual position of this contact line so as 
to be able to determine its position for any definite example. We shall 
first determine the distance PC'. From the geometrical conditions shown 

in Fig. 13-13 we have 

C’G 
PC’ = 

sin {Ni A<ti/Ni) 

Consider the triangle FGQ, where 

Angle FQG = A<f) 

Angle FGQ = <t> 

C'G = FG== 
Sin <l> 

From these equations we get 

FQ sin A</>/sin 0 
PC' = 

sin (A^2 A<t>/Ni) 

Consider now the limiting case where the value of A0 is infinitely small 

so that the value of the arc and the value of the sine are identical. Here 

we have 
sin A<t> __ A0 _ Ni 

sin (A^2 A<t>/Ni) N2 A<t>/Ni N2 

Substituting this value into the equation for PC', we get 

PC' = (FQ) 
N2 sin <t> 

(13-39) 

Referring again to Fig. 13-13, we have from the geometrical conditions 

there 

FQ = FH - QII = Rb tan </) — 
Rb sin </) 

Substituting this value into Eq. 13-39, we obtain 

PC' = 
Ni(C — Rb sin <t>) _ 2Ni{C — Rb sin <t>) 

N2 sin <t> cos <(> N2 sin 2<l> 
(13-40) 

We shall now determine the length of the line P'Q. This length 

depends upon the value of A<^. In the limiting case the value of A0 is 
infinitely small; hence 

A</) = 0 P'Q = 0 

and the point Q' coincides with the point P'. 
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The projection of the actual conVact line is therefore the line PQ, 
which is at the angle ^ from the y axis. The ordinate of point Q is 

y = QC = C — Rb sin <1) (13-41) 

The abscissa of the point P will be x; hence 

= PC' = - R, sin 0) 
Ni sin 2<t) 

X 2Ni . 
tan ^ sin 2<t> 

y N2 

(13-40) 

(13-42) 

Summary of Contact Analysis. We have now established the position 
of the contact lines for this drive. To summarize, we have when 

C = center distance, in. 
Rb = radius of base cylinder of gear, in. 
Ni = number of starts on worm 

N2 = number of teeth in gear 

<l> = momentary pressure angle of gear 
R = radius on gear to tooth profile, in. 

a = angle of gear tooth at R with radial line 

X = abscissa of contact line (when y is zero), in. 
y = ordinate of contact line (when x is zero), in. 

tp = angle of contact line 

Rb == R sin a (13-38) 
a: = 2Ni{C - Rb sin </>)/iV2 sin 2<p (13-40) 
7/ = (7 — Jift sin <#) (13-41) 

tan yp = x/ij = 2N1/N2 sin 20 (13-42) 

The contact lines on every tooth of the mesh can be determined from 

these equations. In every case, the contact line at the beginning of mesh 
where the momentary pressure angle is least should be determined. If 
this minimum angle is too small, the theoretical initial contact will be 

outside of the meshing surfaces of the worm and gear, which would intro¬ 
duce edge contact at the beginning of mesh. The minimum width of face 
for the gear is determined from a layout of the contact line at the begin¬ 

ning of mesh. It should always lie on the contacting surfaces. 

Example of Wildhaber-worm Drive, As a definite example we shall examine the 

contact conditions on a Wildhaber-worm drive that corresponds to the example used 

for the enveloping worm for an involute spur gear. The angle of the teeth will be 

selected so that opposite flanks of the gear teeth at some definite number of tooth 

spaces apart will be parallel. This will make possible a very simple method of measur¬ 

ing these teeth. To accomplish this, the included angle of the gear-tooth flanks must 

be equal to some even multiple of the angle between successive teeth. 
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This drive will have the following values: 

Ar, ==1 A^2 = 40 C = 6.750 R = 5.000 

The angle between successive teeth in this example is equal to ^^9^0 or 9 deg. 

Hence the included angle of the gear tooth will be some multiple of this, say, 54 deg. 

The angle of the tooth flank with a radial line at the middle of the gear tooth will be 

a = (5472) + (974) = 29.25*^ sin a = 0.48862 

Rb = 5.000 X 0.48862 = 2.4431 

We will use the following values: 

Tooth 

First. . 

Second 

Third. 

Fourth 

Fifth. 

<t>y (log 
9 

. 18 
27 

36 

. 45 

Using these values in the foregoing equations, we obtain the following values for 

the coordinates of the several contact lines: 

Tooth X, in. 
1 

y, in. 

First... 1.03032 6.36783 

Second. 0 50996 5.99503 

Third. 0.34862 5. ()4086 

Fourth.. ... 0 27937 5.31397 

Fifth. . 0.25112 5.02246 

These values are plotted in Fig. 13-14. 

The radius on the gear to the sharp point of the tooth will ho equal to the base 

radius divided by the sine of one-half the included angle of the tooth. Thus when 

ri == radius to sharp point of gear tooth, in. 

ri 
2.4431 

sin 27" 
= 5.381 

The radius on the gear to the sharp root of the tooth space will be equal to the value 

of the base-circle radius divided by the sine of one-half the included angle of the tooth 

space. The value of the included angle of the tooth space is e(jual to the sum of the 

included angle of the tooth and the angle between successive teeth. Thus when 

r2 = radius to sharp root of tooth space, in. 

r2 
2.4431 

sin 31.50" 
= 4.675 

We shall use a truncated form for the gear tooth such that 

Ro = 5.250 Rr = 4.750 Clearance = 0.050 

From the layout in Fig, 13-14, we find that the minimum face width for the gear 

in this example is 2 in. The contact on one set of thread flanks is all on one side of the 

center line of the worm. The contact on the opposite flanks of the thread surfaces is 

the same but reversed in position, and is all on the opposite side of the center line of 

the worm. Thus a split worm gear can be used to take up backlash, and would be 
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Fig. 13-14. ('oiitaot on Wildhabcr worm-gear drive. 

O JL 

Fig. 13-15. 

adjusted to the “high” side of the worm threads, or to the side that makes contact 

with a line that is at right angles to the projection of the worm axis. 
The nature of this contact will be more apparent if we consider the traces of the 

worm and gear on a cylinder that is concentric with the gear and passes through the 

teeth of this drive. Such a concentric cylinder was used in the analysis of the contact 
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on a Hindley-worm drive. These contact conditions on the developed surface of such 

a concentric cylinder are shown in Fig. 13-15. 

Setting of Milling Cutter or Grinding Wheel for Worm. The milling 

cutter or grinding wheel that is used to finish the generation of the worm 

must be set off the center of the worm in order to cover the extreme con¬ 
tact and thus prevent interference. The actual setting of the wheel is 

determined from a layout. The extreme contact lines are plotted as 
shown in Fig. 13-16; the diameter of the milling cutter or grinding wheel 

that is to be used is selected, and the wheel is located so that its circum¬ 

ference will cover the ends of the extreme contact lines. Generally the 
use of the arc of the circle is adequate, and the difference, because of the 

actual tipping of the wheel, is slight. When the clearance is small, how¬ 

ever, the form of the projected ellipse of the wheel should be used. When 
the finishing cut is made by a grinding wheel, it is a good practice to 

provide an undercut root for grinding clearance. In any event, the off- 
center position of the wheel is established from the layout. 



CHAPTER 14 

CONJUGATE TOOTH ACTION ON BEVEL GEARS 

When gears are used to drive shafts whose axes intersect, the pitch 
surfaces arc cones. The point where the apexes of the two pitch cones 
intersect or meet is the intersec¬ 
tion point of the two axes. This 
point is called the cone center. 

The line of tangency between 
the two pitch cones is the locus of 
all pitch points of the contacting 
gear teeth. At any specific point 
along this line of tangency be¬ 
tween the pitch cones, the diam¬ 
eters of the cones are directly 
proportional to the numbers of 
teeth in the gears. Referring to 
Fig. 14-1, when 

Rp = pitch radius of pinion 
pitch cone at large end, in. 

Rg = pitch radius of gear pitch 
cone at large end, in. 

7,, = pitch angle of bevel pinion 
yg = pitch angle of bevel gear 
S = shaft angle 

Np = number of teeth in bevel pinion 
Ng = number of teeth in bevel gear 

Cone 
center 

Fio. 14-1. 

tan 7p = 

2 = 7p + 7(7 

sin S 
(A,AVp) + cos S 

(14>1) 

(14-2) 

When S = 90°, this equation reduces to 

(14-3) 
(14-4) 

When P is the diametral pitch at the large end of the pitch cone, 
301 

tan 7p = Np/Ng 
tan yg = Ng/Np 
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Rp = ^ (14-5) 

R, - ^ (14-6) 

There are many possible designs for bevel gears. Practically, the 
choice is restricted to such designs as can be made on available equip¬ 

ment. The forms may be symmetrical in relation to the pitch cone, or 
they may be formed without reference to the pitch cones. When a gear 
of any form is mounted on one of two intersecting shafts, the normal from 

the point of contact between it and its conjugate gear must pass through a 
pitch point that lies in the line of tangency of the two pitch cones. 

LANTERN PINION AND FACE GEAR 

The lantern pinion and face gear is probably the earliest form of a 

bevel-gear drive. Such a drive is 

shown in Fig. 14-2. The pinion 
consists of a number of cylindrical 
pins equally spaced on a circle con¬ 

centric with the axis of the pinion. 
These pins are mounted in flanges. 
The gear may also have cooper¬ 
ating formed pins, or it may have 
shaped teeth to mesh with the 
cylindrical pins of the lantern 

pinion. In this last case, when 

the pins are of appreciable size, 
the teeth of the face gear can be 

generated by an end mill, which is 

moved, in relation to the motion 
of the face gear, in the same man¬ 
ner as the movement of the cylin¬ 

drical pins in the lantern pinion in 
respect to the face gear. 

We shall determine the con¬ 
tact conditions and the forms of 

the teeth of the face gear for this last type of drive. Referring to Fig. 

14-3, let 
Ri = radius to center of pins in lantern pinion, also nominal pitch 

radius of lantern pinion, in. 

Ri = nominal pitch radius of face gear, in. 

A = radius of pins in lantern pinion, in. 
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<t> = momentary pressure angle of operation 

F = distance of pitch point from pinion nominal pitch circle, in. 
G = height to pitch point and to contact point, in. 

E = distance from contact point to tangent of pinion pitch circle, in. 
r2 — radius to contact point on face gear, in. 
6 = angle to contact point on face gear 

€i = angle of rotation of lantern pinion 
€2 = angle of rotation of face gear 

7p = pitch-cone angle of lantern pinion 

62 = vectorial angle of face-gear-tooth form 

Coniaci' poirrh 

The pitch surfaces of this drive are pitch cones, the same as for other 
bevel gears. The angles of these pitch cones are determined from the 
tooth numbers of the gears, or from their nominal pitch radii, exactly as 
for other bevel gears. 

In order to establish the contact points between the pins in the lantern 
pinion and the teeth of the face gear, we will use a series of values of E 
with a series of values of ci and €2 for each value of E^ as indicated in 
Fig. 14-3. The position of the contact point in the plan view of the 
lantern pinion will be the point where the trace of a plane at E intersects 

the circumference of the pin. The line of action will be a radial line of 
the pin that passes through this contact point. The point at the distance 
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Ff where this line of action intersects the center line of the pinion, is the 
projection of the pitch point for this specific contact point. This pitch 
point is on the common tangent element of the two pitch cones at a dis¬ 

tance G above the axis of the face gear. This tangent element of the two 
pitch cones is the locus of all pitch points. The line of action is perpen¬ 
dicular to the axis of the pin of the lantern pinion. 

Referring again to Fig. 14-3, we have the following from the geo¬ 
metrical conditions shown there: 

sin <t> = [Riil — cos €i) — E]/A (14-7) 
F = /?i(cos €i + sin €i tan </> — 1) (14-8) 
G = R2 + F cot 7p (14-9) 

tan 5 = {Ri sin €1 — A cos <t))/G (14-10) 

r2 = G/cos 5 (14-11) 
02 = 8 - 62 (14-12) 

Example of Lantern Pinion and Face Gear. As a definite example we shall deter¬ 

mine the contact conditions and the form of the face-gear teeth for the following 

drive: 

Number of pins in lantern pinion. 18 

Number of teeth in face gear.36 

Nominal pitch radius of lantern pinion. 5.000 

Nominal pitch radius of face gear. . 10.000 

Radius of pins in lantern pinion. 0.400 

Whence 

Ri = 5.000 Rz « 10.000 A = 0.400 

cot 7p = 3!:>(3 2.000 

Using a series of values of E, <1, and €2, we obtain from the foregoing equations the 

values that are tabulated in Table 14-1 These values are also plotted in Fig. 14-4. 



CONJUGATE TOOTH ACTION ON BEVEL GEARS 305 

Table 14-1. Coordinates of Teeth of Face Gear 

(Plotted in Fig. 14-4) 

deg <t>, deg r2, in. ^2, deg Gj in. 

E = -0.30 

-10 70.030 5.1679 -6.212 5.0693 
-5 52.904 8.8480 -1.856 8.8224 

0 48.590 10.0035 -1.516 10.0000 
5 52.904 11.1031 -1.521 11.1014 

10 70.030 14.6452 -2.136 14.6269 

E - -0.20 

-15 67.800 3.6183 -16.043 3.3171 
-10 43.541 8.2793 -3.042 8.1979 
-5 33 204 9 4290 -2.157 9.3979 

0 30.000 10.0090 -1 .984 10.0000 
5 33.204 10 5264 ' -1.952 10.5259 

10 43.541 11 .5128 -2.121 11.4983 
15 67.800 16 0422 -3.414 16.0015 

E = -0.10 

-15 42.523 7.4569 -4.802 7.2857 
-10 26.096 9.0809 -2.768 8.9975 
-5 17.315 9.7273 -2.293 9.6933 

0 14.477 10.0075 -2.218 10.0000 
5 17.315 10.2306 -2.225 10 2305 

10 26.096 10.7108 -2.275 10.6968 
15 42.523 12.0743 -2.753 12.0329 

E = 0.000 

-15 25.206 7.6231 -5.046 7.4018 
-10 10.945 9.5955 -2.551 9.5123 
-5 2.730 9.9555 -2.285 9.9208 

0 i 0.000 10.0080 -2.291 10.0000 
5 2,730 1 10.0030 -2.321 10.0030 

10 10.945 10.1950 -2.327 10.1839 
15 25.206 1 10.9173 -2.602 10.8775 

E = 0.100 

-20 30.257 7.6820 -5.521 7.4018 
-15 10.129 9.3510 -2 899 9.1974 
-12 1 .325 9.8393 -2.413 9.7334 

12 1.325 9.8504 -2.281 9.8296 
15 10.129 10.1611 -2.417 10.1212 
20 30.257 11.4735 -3.170 11.3920 
25 67.090 19.1633 -6.637 19.0631 

E = 0.200 

-25 42.154 5.7648 -12.203 5.2372 
-20 14.707 8.7541 -3.859 8.4992 

-17 2.651 9.6096 -2.669 9.4276 
17 2.651 9.7563 -2.249 9.6984 

20 14.707 10.3793 -2.676 10.2946 

25 42.154 13.0164 -4.477 12.8890 

E - 0.300 

-25 24.969 7.5147 -6.736 7.0952 

-20 0.222 9.6180 -2.673 9.3837 

20 0.222 9.5007 -2.074 9.4101 

25 24.969 ? 11.1690 -3.484 11.0310 
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Figure 14-4 shows a series of outlines of the face-gear teeth at different 
heights. In effect, it is a contour map of the tooth. From this layout, 

the forms of the different sections of the gear teeth have been determined 

graphically. 
All the sectional contours for the sections where the value of E is 

plus are two intersecting curves. One of these curves is that of the 
approach action, while the other is that of the recess action. Contact on 
these upper sections does not exist when the pin is in its central position, 
but starts at some distance on either side of this central position. The 

gear. 

start of this contact will be the minimum value of ci. Using the same 
symbols as before, we have 

cos €i (min) = {Ri — E)/R\ (14-13) 

Some of this theoretical contact on these upper sections is lost as part of 
the end of the approach action is cut away by the contour for the start 

of the recess action. The actual intersection of the two contour curves 
is determined graphically. 

The point where the contact ceases for all positions of the several 
sections is given by the following equation for the maximum value of €i; 

cos Cl (max) = (J?i — E — A)/Ri (14-14) 

In Fig. 14-5, the projection of the actual contact lines between the pin 
of the lantern pinion and the teeth of the face gear are shown for several 
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angular positions of the lantern pinion. The coordinates of the projec¬ 
tion of these contact lines are given by the values of G and for the same 
value of Cl. 

LANTERN PINION AND PIN-TOOTH FACE GEAR 

As noted before, the face gear that meshes with a lantern pinion may 
have teeth consisting of formed pins, as indicated in Fig. 14-6. The load 

capacity of such a drive is very small because only point contact can 
exist between the mating pins or teeth. 

We shall determine the contact conditions and the form of the pins 
in the face gear for this type of drive. ’ Referring to Fig. 14-7, let 

Ri = radius to center of pins in lantern pinion, also nominal pitch 

radius of lantern pinion, in. 
Ri == nominal pitch radius of face gear, in. 

A = radius of pins in lantern pinion, in. 
0 = momentary pressure angle 
Cl = angle of rotation of lantern pinion 

C2 = angle of rotation of face gear 
7p = pitch-cone angle of lantern pinion 



308 ANALYTICAL MECHANICS OF GEARS 

B = radius to center of pins in face gear, in. 
a = original angular position of pin in face gear 

Ni = number of teeth or pins in lantern pinion 

N2 = number of teeth or pins in face gear 
X = radius of form of pin in face gear, in. 

y = height to radius x of pin in face gear, in. 
The pitch surfaces of this drive are cones, just as for any other type 

of bevel gear. The line of action must be a radial line of the pin in the 

lantern pinion and be perpendicular to the axis of this pin. This line of 

action must also pass through the axis of the pin in the face gear. Refer¬ 
ring again to Fig. 14-7, where several additional symbols are shown for 
the purpose of establishing the equations, we have the following from the 

geometrical conditions shown there: 

a 

G 

tan <t> 

tan <t> 

H 
X 

y 

^ 180° 

N2 

= B cos (€2 — a) 

Ri sin €1 

— ^ (€2 — g) -- /^i cos Cl 
Rl sin €1 

= Rl sin ei — A cos <t> 
= Rl sin Cl — A cos — R sin (€2 — a) 
= 7?i (1 — cos €1) — A sin <t> 

(14-15) 

(14-16) 

(14-17) 
(14-18) 

We shall determine by trial whether or not anything can be gained by 
making the radius to the center of the pins in the face gear greater, less 
than, or equal to the nominal pitch radius of the face gear. 

First Example of Pin-tooth Face Gear. As the first example we shall use the same 

values as were used in the preceding example. Thence we hav6 

AT, = 18 AT* = 36 Rl = 5.000 R2 = 10.000 A = 0.400 

. 18 ^ 180^^ _o 
tan - 3e = 0.500 a = -gg- = 5 

For this first example we shall use B =* 10.50. 

Using these values and the preceding equations, we obtain the values tabulated in 

Table 14~2. These values are also plotted in Fig. 14-8, and show the form of the pins 

for the face gear. 

When the pins in the face gear are located outside the nominal pitch 
circle of the gear, and the lantern pinion is the driver, all the action is 
approach action. The curve for the recess action where the values of 

€i are minus, lies outside the curve for the approach action. This recess 
curve also has a cusp. Such a drive would be better for a speed-up drive 



CONJUGATE TOOTH ACTION ON BEVEL GEARS 309 

Table 14-2. Coordinates of Face-gear Pin Teeth 

(Plotted in Fig. 14-8) 
B - 10.50 

Cl, deg </>, deg X, in. 2/, in. 

Approach action 

40 21.112 0.1232 1.0257 
35 19.752 0.2188 0.7691 
30 18.575 0.2975 0.5424 

25 17.679 0.3614 0.3476 

20 17.267 0.4233 0.1828 

15 17.795 0.4552 0.0481 

10 20.577 0.4938 -0.0646 

5 31.503 0.5478 -0.1901 

0 
1 

90.000 
1 

0.9048 -0.4000 

Uocoss action 

0 -90.000 0.9048 0.4000 

- 5 -27.482 0.5848 0.2036 

-10 -15.830 0.5702 0.1851 

-15 -12.880 0.5886 0.2595 

-20 -12.296 0.6167 0.3867 

-25 -12.682 0.6541 0.5563 

-30 -13.565 i 0.7024 0.7637 

-35 -14.742 I 0.7634 1.0060 

-40 -16.105 0.8393 1.2808 

Recess 

Fio. 14-8. 
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with the face gear driving the lantern pinion. In such a case, all the 
action would be recess action. 

Second Example of Pin-tooth Face Gear. For the second example we shall use the 

same values as before except for the location of the pins in the face gear. In this 

example we will locate the pins at the nominal pitch radius of the face gear, so that 

B = 10.000. 
With these values and the preceding equations, we obtain the values tabulated in 

Table 14-3 and plotted in Fig. 14-8. In this case, when the lantern pinion is the 

driving member, all the action again is approach action. The curve of the recess 

action is outside the curve for the approach action. There is no cusp here, however. 

To obtain recess action, the pins of the face gear must be kx^ated inside of the nominal 

pitch circle of the face gear. 

Table 14-3. Coordinates of FArE-CEAit Pin Teeth 

(Plotted in Fig. 14-8) 
B = 10.00 

€1, flf'g </>, flf'g 1 X, in. j y, in. 

Approach action 

1 

40 1 17.274 ; 0.2438 1.0510 

35 i 15.322 1 0.3177 0.7985 

30 13.364 0.3743 0.5774 

25 11.389 j 0.4157 0.3895 

20 9.380 ! 0.4537 0.2364 

15 7.292 0.4611 0.1196 

10 4.999 1 0.4698 0.0411 

5 1.901 1 0.4673 0.0058 

« i 
i 90.000 0.8617 -0.4000 

Recess action 

0 90.000 0.8617 -0.4000 

- 5 3.155 0.4751 -0.0030 

-10 0.000 0.4682 0.0759 

-15 - 2.286 0.4706 0.1863 

-20 - 4.387 0.4793 0.3321 

-25 - 6.395 0.4965 0.5130 

-30 - 8.381 0.5245 0.7278 
-35 -10.348 0.5654 0.9761 
-40 -12.310 0.6214 1.2551 

Third Example of Pin-tooth Face Gear. In order to have recess action, the pres¬ 

sure angle for this part of the action must start with a plus value. This is obtained 

by locating the pins in the face gear on a circle smaller than the nominal pitch circle 

of the face gear. This brings the pitch point farther down on the pitch cones and 

inside the projection of the nominal pitch circle of the pins in the lantern pinion. We 
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Table 14-4. ('oohdinates of Face-gear Pin Teeth 

(Plotted iii Fig. 14-8) 
B = 9.00 

«i, d('g </>, dog 
i 

X, in. 
1 
' y, in. 

Approach action 

40 9.129 0.4896 1.1063 
35 5.925 0.5221 0.8630 

30 2.325 0.5375 0.6536 

25 - 1.899 0.5385 0.4817 
20 - 7.185 0.5377 0.3516 

15 -14,409 0.5142 0.2703 

10 -26.031 0.5086 0.2515 

5 -48.398 0.5578 0.3182 

0 -90.000 0.7755 0.4000 

llocoss action 

0 ’ 90.000 1 0.7755 -0.4000 

— 5 50.328 0.4886 -0.2856 

-10 29.559 0.3467 -0.1214 

-15 18.621 0.2758 ! 4-0.0426 

-20 11.623 0.2275 1 0.2210 

-25 6.475 0.1958 0.4233 

-30 2.326 0.1785 0.6536 

-35 1 -1.233 0.1763 0.9129 

-40 i -4.416 
1 

0.1908 1.2006 

shall thoroforo make the value of B eciual to 9.00 for this example, with all other 

values the same as Ix'fore. 
With these values we obtain the values tabulated in Table 14-4 and plotted in 

Fig. 14-8. Here the contact is all rc'cess action when the lantern pinion is the driver. 

In this case the approach action is outside the form of the pins in the face gear, and is 

therefore imaginary. The form for this approach action has a cusp. 

From these examples we see that if we wish to use the more favorable 
recess action when the lantern pinion is the driving member, the pins in 
the face gear must be located inside the nominal pitch circle of the face 
gear. When the face gear is the driving member, then to secure recess 
action, these pins must be located at or outside the nominal pitch circle 

of the face gear. 
The distance at which these pins can be located inside or outside the 

nominal pitch circle of the face gear is limited however. The diameter 
of these pins will be greatest when they are located on the nominal pitch 
circle of the face gear. This pin diameter is reduced as the location is 
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shifted either way. This condition limits the distance to which they can 
be moved. 

If we wish to have both approach and recess action on one of these 
drives, then we must use two sets of pins in the face gear, one set at or 
outside the nominal pitch circle and the second set inside the nominal 
pitch circle of the face gear. 

THE FELLOWS FACE-GEAR DRIVE 

Another design for bevel gears is the Fellows spur-pinion-and-face-gear 
drive. This drive consists of an involute spur pinion meshing with a face 

gear that is generated by a pinion- 
shaped cutter of substantially the 
same size and form as the mating 
spur pinion. Such a drive is 
shown in Fig. 14-9. 

The pitch surfaces here are 
cones, just as for all other types 
of lx3vel-gear drives. The momen¬ 
tary pressure angle of the drive 
changes with a change in the dis¬ 
tance from the center of the face 
gear. It is constant for any spe¬ 
cific distance from the center of 
the face gear. It is reduced to 
zero at the distance from the cen¬ 
ter of the face gear where the 
radius of the pitch cone of the 
pinion is the same as the radius of 
the base circle of the involute spur 
gear. It is equal to the nominal 
pressure angle of the spur gear at 

the distance from the center of the face gear where the radius of the pitch 
cone of the pinion is equal to the nominal pitch radius of the involute 
spur gear. 

The active face width of the face gear cannot extend below the point 
where the momentary pressure angle is equal to zero. In fact, it cannot 
extend to this point because the trochoidal fillet of the tip of the cutter 
tooth will cut away the conjugate face-gear-tooth profile before this point 
is reached. Hence very little of the tooth inside the nominal pitch circle 
of the face gear is an elfective part of the tooth profile. 

A simple approximation to the tooth form of the face gear can be 
obtained by treating the face-gear tooth as a rack of varying pressure 

Fia. 14-9. Involute spur gear and Fellows 
face gear. 
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angle and circular pitch at different distances from the center of the face 
gear. Such an approximation will be developed first. 

Approximation for Face-gear-tooth Form. Referring to Fig. 14-10, 

Ni = number of teeth in involute spur gear 

N2 — number of teeth in face gear 
Ri = nominal pitch radius of involute spur gear, also nominal pitch 

radius of bevel pinion, in. 

7?2 = nominal pitch radius of face gear, in. 
ri = momentary pitch radius of bevel pinion, in. 
r2 = momentary pitch radius of face gear, in. 

Rr = root radius of involute spur gear, in. 
Rb — radius of base circle of involute spur gear, in. 

Roc — outside radius of pinion-shaped cutter, in. 
<t> = nominal pressure angle of involute spur gear 

01 = momentary pressure angle of involute spur gear and pressure 

angle of rack 
7p — pitch-cone angle of pinion 
T = arc space width of involute spur gear at Ri, in. 
t = arc space width of involute spur gear at ri, also tooth thickness 

of rack, in. 
a = addendum of rack, in. 
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b = dedendum of rack, in. 
c = clearance, in. 

Referring again to Fig. 14-10, we have 

ri = r2 tan yp (14-19) 
cos 01 == Rh/ri (14-20) 

Solving for the arc space width of the pinion at ri by the same method 
that was used for the development 
of Eq. (5-5), we obtain 

t = 2ri[{T/2Ri) — inv 0i + inv 0] 
(14-21) 

a = Rr- c (14-22) 
b = Roc - ri (14-23) 

Before solving any definite ex¬ 
ample, we shall first derive equations 
for the trochoidal fillet on the fac^e 
gear that is developed by the corner 
of the tooth of the pinion-shaped 
cutter as it comes into and goes out 
of mesh with the face gear. These 
trochoidal fillets limit the extent of 
the active face width of the face gear 
on the side toward the center of the 
face gear. These face widths are 
limited in the other side by the in¬ 
creasing pressure angle and pointed 
teeth of the fac^e gear. 

Trochoid on Face Gear. We shall 
determine the form of this trochoid 

on an intersecting cylinder concentric with the face gear. Referring to 
Fig. 14-11, when 

Roc = outside radius of pinion-shaped cutter, in. 
ri = momentary pitch radius of bevel pinion, in. 
r2 = corresponding momentary pitch radius of face gear, in. 
Cc = angle of rotation of pinion-shaped cutter 
€2 = angle of rotation of face gear 
X = abscissa of trochoidal form on cylinder, in. 
y = ordinate of trochoidal form on cylinder, in. 

we have the following from the geometrical conditions shown in Fig. 14-11; 

y = /2oc(l — cos €c) (14-24) 
sin 0 = Roc sin €c/r2 

X = r2(c2 ± 0) (14-25) 
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We must next determine the distance between the origins of the two 

trochoids on opposite sides of the rack tooth. Referring to Fig. 14-12, 

when 

A = angle of tooth space at Rc 
<t)i = pressure angle at Rc 
(t)o = pressure angle at Roc 

d = angle of tooth space at Roc 
Tc = arc space width of tooth at Rcy in. 

Rc = nominal pitch radius of pinion-shaped cutter, in. 

Roc = outside radius of pinion-shaped cutter, in. 

Rbc = radius of base circle of pinion-shaped cutter, in. 

ri = momentary pitch radius of bevel pinion, in. 

A = distance between origins of trochoids on cylinder, in. 

we have the following from the geometrical conditions shown in Fig. 14-12: 

arc A = Tc/Rc 
cos <t>o = Rtc/Roc (14-20) 

arc 5 = (Tc/Rc) + 2(inv </>« - inv <t>i) (14-27) 

A = ri8 (14-28) 

Example of Approximation for Face-gear-tooth Form. As a definite example we 
shall use the following values: 
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Piich line 
6.000 

r2-l2,000 

\ 
P/lch line 

\ . 

II 
II 

Pilch line 

\ ■ 
Y r^S-SOO 

r2=lW00 

tr 

Pitch line 

V 

1 r,=S.250 
r^-n.SOO 

Pitch line \ iBk 
L 

r,^5.000 
1 10.000 

Pitch line 
\rr4.750 

^^r2=9.500 

Pitch line / 
_L 

r2-9.3969 

Fio. 14-13. 

Ni * 20 N2 = 40 R, ^ R, ^ 5.000 

/?2 = 10.000 Tc - 0.7854 
<t>i =20*^ c = 0.125 

Rn = 4.375 = Rbc = 4.69846 

Roc = 5.625 tan Tp ^Ho 0.500 
^ 0.7854 - , 

5.UU 

cos 4>o 
4^846 
'5.625' 

= 0.83528 

<t>o = 33.355° inv </>« = 0.07610 

inv 01 — 0.01490 

arc 5 = 0.15708 + 2(0.06120) = 0.27948 

With these values and the preceding 

equations, we obtain the values tabulated in 

Tables 14-5 and 14-6. These values are 
plotted in Fig. 14-13. 

In this example, when the pressure angle 

is but a very little less than 20 deg, the con¬ 

jugate face-gear tooth is undercut too much 

to be of any value. On the other side of 

the face gear, when the pressure angle is 

greater than 35 deg, the conjugate face-gear 

tooth becomes pointed. With increasing 

pressure angles, these teeth are reduced in 

height. As noted b(ifore, these conditions 

limit the effective face width of the face gear. 

With larger reduction ratios where the angle 
of the pitch cone of tlie pinion is smaller, the 

effective face width of the face gear becomes 

greater. 

Table 14-5. Coordinates of Face-oear Teeth 

(Plotted in Fig. 14-13) 

ri, in. 0, deg 
1 

6 in. a, in. 6, in. 

4.6985 0.000 0.5980 0.1985 0.9265 

4.7500 8.448 0.6148 0.2500 0.8750 

5.0000 20.000 0.7854 0.5000 0.6250 

5.2500 26.627 1.0526 0.7500 0.3750 

5.5000 31.321 1.3785 1.0000 0.1250 

5.7500 35.202 1.7797 1.2500 -0.1250 

6.0000 38.456 2.2397 1.5000 -0.3750 

Exact Analysis of Face-gear Teeth. We shall now determine the 
profile of the tooth of the face gear that meshes with an involute spur gear 
in a manner similar to that used for the analysis of the face gear that 
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Table 14-6. Coordinates of Trochoidal Fii.lets 

(Plotted in Fig. 14-13) 

X, in. y, in. X, in. y, in. 

ri = 4.69846 in. r, = 9.39692 in. | Ti = 5.500 in. To = \} .000 in. 
A = 1.3131 in. 1 A = 1.53714 in. 

0.0000 0.0000 0.0000 0.0000 
-0.0964 0.0308 -0.0123 0.0308 
-0.1884 0.1229 -0.0198 0.1229 
-0.2722 0.2753 -0.0183 0.2753 
-0.3429 0.4863 -0.0001 0.4863 
-0.3963 0.7536 0.0358 0.7536 
-0.4264 1.0743 0.0976 1.0743 

ri = 4.750 in. r2 = 9.500 in. 1 ri = 5.750 in. r2 = 11.500 in. 
A = 1.3275 in. A = 1.6070 in. 

0.0000 0.0000 0.0000 0.0000 
-0.0908 0.0308 0.0140 0.0308 
-0.1776 0.1229 0.0328 0.1229 
-0.2558 0.2753 0.0614 0.2753 
-0.3210 0.4863 0.1052 0.4863 
-0.3682 0.7536 0.1694 0.7536 
-0.3924 1.0743 ; 0.2593 1.0743 

ri = 5.000 in. r-i = 10.000 in. ! ri = 6.000 in. Vi = 12.000 in. 
A = 1.3974 in. 1 A = 1.6769 in. 

1 

0.0000 0.0000 0.0000 0.0000 
-0.0647 0.0308 0.0401 0.0308 

-0.1250 0.1229 0.0854 0.1229 

-0.1763 0.2753 0.1405 0.2753 
-0.2140 0.4863 0.2113 0.4863 
-0.2330 0.7536 0.3026 0.7536 

-0.2539 1.0743 0.4201 1.0743 

ri =* 5.250 in. r2 ** 10.500 in. 
A =» 1.4673 in. 

0.0000 0.0000 
-0.0385 0.0308 
-0.0723 0.1229 
-0.0969 0.2753 
-0.1072 0.4863 
-0.0981 0.7536 

-0.0649 1.0743 
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meshes with a lantern pinion. Referring to Fig. 14-14, let 
Ri = nominal pitch radius on involute spur gear, in. 

Rbi = radius of base circle of involute spur gear, in. 
4)1 = pressure angle of spur gear at Ri 
ri = radius to contact point on spur gear, in. 
4>2 = pressure angle of spur gear at ri 
4> = momentary pressure angle of drive 
a — initial position of origin of involute on spur gear 
€i = angle of rotation of spur gear 

7p = pitch-cone angle of bevel pinion 
/?2 = nominal pitch radius of face gear, in. 
Ti = radius to contact point on face gear, in. 
F — position of pitch point from nominal pinion pitch circle, in. 
G = height to pitch point and to contact point, in. 
€2 = angle of rotation of face gear 
62 = vectorial angle to face-gear-tooth form 

Ni = number of teeth in involute gear 
N2 = number of teeth in face gear 

T = arc space thickness of spur gear at Riy in. 

Fia. 14-14, 

In order to establish the contact points between the involute spur 
gear and the face gear, we shall use a series of selected values of E that 
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will cover the working depth of the tooth. With each value of E, we 
shall use a selected series of values of ri and the corresponding values of 
</>2. Referring again to Fig. 14-14, we have the following from the condi¬ 
tions shown there: 

a. = {T/2Ri) — inv (fii (14-29) 
cos = {III - E)/ri (14-30) 

cos <t>i = Rb,/ri (14-31) 

€i = /8 — a — inv </>2 (14-32) 
<l> = li+ <t>i (14-33) 
F = (/?6i/cos 4>) — Ri (14-34) 
G = Ri 4- F cot yp (14-35) 

tan 5 = ri sin 0/G (14-36) 
r2 = G/cos 5 (14-37) 

O2 = 5 - 62 (14-38) 

Example of Fellows Face Gear. As a definite example we shall use the same values 
as those used for the approximation. From these and the preceding equations, we 

obtain the values tabulated in Table 14-7. Those values are plotted in Fig. 14-15. 
In effect, they give a contour map of the teeth of the face gear. 

There are cusps on two of the contour lines, which appear to start at a radius of 
about 9.500 in. on the face gear. Below this radius is the region of excessive undercut. 
For this particular example, the smallest effective radius of the face gear is something 
larger than 9.500 in.; the largest radius that retains nearly the full depth of tooth is 
about 12.00 in. Hence the maximum effective face width for this drive would be 
about 2.00 in. 

Sections of the tooth form of the face gear arc also shown in Fig. 14-15. These 
are obtained graphically from the contour lines. They do not appear to vary much 
from the approximation to the form, which is shown in Fig. 14-13. 
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Table 14-7. Coordinates of Teeth of Face Gear 

(Plotted in Fig. 14-15) 

ri, in. <t>, deg «i, deg r2, in. deg 

E = 0.500 

4.750 27.116 14.960 10.6662 0.715 
5.000 45.842 21.342 13.6638 -1.493 
5.250 57.630 25.258 17.7589 -3.870 

E = 0.250 

5.500 1.049 -37.452 9.7989 2.291 
5.250 1.418 -30.952 9.6622 2.095 
5.000 1.805 -22.694 9.5304 1.918 
4.750 8.448 - 3.708 9.5000 1.854 
5.000 38.195 13.694 12.0538 0.592 
5.250 51.836 19.465 15.3711 -1.368 
5.500 61.593 23.092 19.9463 -3.557 

E =■ 0.000 

5.500 6.701 -31.810 9.7350 2.292 
5.250 8.874 -23.497 9.6445 2.195 
5.000 20.000 - 4.500 10.0000 2.250 
5.250 44.380 12.009 13.2424 0.852 
5.500 55.941 17.429 16.9345 -0.939 

E = -0.250 

5.500 13.974 -24.537 8.8214 2.657 
5.250 26.627 - 5.744 10.5000 2.872 
5.500 1 48.668 10.156 14.3229 1.497 



CHAPTER 15 

THE OCTOID FORM ON BEVEL GEARS 

Bevel gears with interchangeable teeth similar to those of spur gears 
may be made. In such a case both gears of the pair must be conjugate 
to a crown rack of symmetrical form. Theoretically, as wide a variety 
of tooth forms may be used for the crown rack of bevel gears as can be 

used for the basic rack of spur gears. Practically, the choice is limited 
to those forms which can be generated readily. Bevel gears are generally 
made in pairs so that interchangeability to the degree sometimes necessary 

for spur geai's is seldom of major importance here. The most essential 
factors are the simplicity of the generating tools and of generating 

machines, with as great a reduction in variety as possible. 
An exact analysis of the conjugate gear-tooth action of such bevel 

gears should be made on the surface of a sphere. The pitch cones con¬ 
tained in a sphere are shown in Fig. 15-1. The bevel gear equivalent to 
the basic rack of the spur gear is the crown rack whose pitch plane is the 

plane of the hemisphere as shown in Fig. 15-2. 
The Octoid Form. The simplest and most commonly used crown- 

rack form for bevel gears is the one that generates bevel-gear teeth of 
321 
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Fig. 15-2. 

octoid form. The form is so called 
because its full path of contact is of 
the form of the figure eight. Only 
a small part of the full path of con ¬ 
tact is actually used for bevel-gear 
tooth action, and this portion is 
practically a straight line. The 
crown rack of this system is com¬ 
posed of plane sides whose straight- 
line elements all converge to the 
cone center as indicated in Fig. 15-3. 

We shall determine the projec¬ 
tion of the path of contact of this 
crown-rack form on the surface of a 
sphere. Referring to Fig. 15-4, let 

A = radius of sphere, in. 
<t> = pressure angle of crown rack 
€ = angle of rotation of bevel 

gear on crown rack 
X = abscissa of projection of 

path of contact, in. 
y = ordinate of projection of 

path of contact, in. 
Other symbols are shown in Fig. 15-4. 
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From the geometrical conditions shown in Fig. 15-4, we have the 
following: 

E = ViA^ - y^) _ 

F = tan^ <j> = \/— ?/*(l tan“ <F) 

F _ cos^ <t> - y'^ 

COS (p 

. ^ y tan <^ + {y/tan <l>) ^ ?/(tan^ 0+1) ^ y 
^ F F tan (p F sin <p cos <p 

Substituting the value of F into this last eciuation, we obtain 

tan € = y 

sin cos^ <P — 

Solving this last equation for y, we obtain 

A sin 6 sin <p cos (p 
y = 

\/cos^ € + sin*-* € sin^ <p 
y cos € 

tan <#> 

(15-1) 

(15-2) 
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When we solve these last two equations for a series of values of c 
ranging from 0 to 90 deg, we obtain values for one quadrant of the projec¬ 
tion of the path of contact of the octoid form on the surface of a sphere. 
The other three quadrants are of similar form. 

Example of Octoid Path of Contact 

following values: 
A « 3.000 

As a definite example we shall use the 

0 - 14.50^ 

The values of the coordinates of the pro¬ 
jection of this path of contact for one quad¬ 
rant are as follows: 

€, deg X, in. y, in. 

0 0.0000 0.0000 
15 0.7171 0.1920 
30 1.3739 0.4103 
45 1.9046 0.6967 
60 2.2063 1.1412 
75 1.9579 1.9566 
90 0.0000 2.9044 

These tabulated values are plotted in Fig. 
15-5. 

Tregold’s Approximation. Fortunately we do not have to resort to 
the solution of bevel-gear problems on the surface of a sphere because 
we have Tregold's approximation, which reduces the problem to one of 
spur gears, and is sufficiently accurate for all practical purposes for tooth 
numbers greater than about 8. This approximation is shown in Fig. 15-6. 
It uses the equivalent spur gears of the back cones of the bevel gears. 
Let Rp = pitch radius of bevel pinion at large end, in. 

Rf, = pitch radius of bevel gear at large end, in. 
7p = pitch-cone angle of bevel pinion 
yg = pitch-cone angle of bevel gear 
S = shaft angle 

Np = number of teeth in bevel pinion 
Ng = number of teeth in bevel gear 

Rvp = back-cone distance and pitch radius of equivalent spur pinion 
in Tregold’s approximation, in. 

Rvo = back-cone distance and pitch radius of equivalent spur gear in 
Tregold^s approximation, in. 

Nvp = number of teeth in equivalent spur pinion 
Nrg = number of teeth in equivalent spur gear 

A = cone distance and radius of sphere, in. 
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Referring to Fig. 15-6, we have the following: 

S = 7p + 7, 

^ _ sin S 
tan 7p - (jVp/iVp) + cos 2 

When 2 = 90°, Eq. (14-2) reduces to 

tan 7p = 

tan y = — tan 7» 

When P is the diametral pitch at large end of bevel gears, 

Rp = 

Rp = 

A = 

Np 
2P 

2P 
Rp 

sin 7p 
K 

sin 7p 

(14-1) 

(14-2) 

(14-3) 

(14-4) 

(15-3) 

(15-4) 

(15-5) 



326 ANALYTICAL MECHANICS OF GEARS 

Rvp — —— = A tan yp 
cos 7p 

(15-6) 

Rva = = A tan 7, 
cos ya 

(15-7) 

iV vp 
COS 7;, 

(15-8) 

N = ^‘’ -i’ vg 
COS Jg 

(15-9) 

The gear-tooth design and proportions for the bevel gears are deter¬ 

mined in the same manner as those for spur gears. When these propor¬ 
tions have been established, they must then be translated into the 

equivalent angles on the bevel gears. 
Bevel-gear-tooth Design. Bevel gears are commonly made of the 

same diametral pitches as those used for spur gears. These are based 

upon the size of the bevel gear at the large end. The tooth heights are 

measured along an element of the back cone. Referring to Fig. 15-7, let 
R = pitch radius at large end, in. 

a = addendum of tooth, in. 

b = dedendum of tooth, in. 
hi — whole depth of tooth, in. 

7 = pitch-cone angle 

a == addendum angle 
8 = dedendum angle 
t = arc tooth thickness on pitch cone at R, in. 

0 = tooth angle (i.e.j angle for setting slide of cutters on bevel-gear 

generating machine. This is the angle between the bottom 
corner of the generating cutter and the center line of the tooth, 

measured from the cone center). 

7o = face angle 
7r = root angle 
<i>c = pressure angle of generating cutter 

We have the following from the geometrical conditions shown in 
Fig. 15-7: 

4. ^ tan a = -7- 

A 
(15-10) 

tan 8 = ~ 
A 

(15-11) 

7o = 7 + « (15-12) 
7r = 7 — 5 (15-13) 

arc 0 = (15-14) 
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The subscripts p and g would be added to the several symbols when 
needed to distinguish the bevel-pinion values from those of the bevel 
gear. The tooth proportions are taken directly from those of the equiva¬ 
lent spur gears in Tregold’s approximation. 

Example of Bevel-gear Design. As a definite example wo shall use a pair of 1-DP 
bevel gears of 20 and 40 teeth with a 20-deg pressure angle. We shall use the tooth 
proportions of the spur-gear full-depth form, and the shaft angle will be 90 deg. This 
gives the following values: 

iVp = 20 N, =-40 Bp = 10.000 R, = 20.000 4>c = 20° 
o = 1.000 b = 1.157 h, = 2.157 t = 1.5708 tan <t>c =■ 0.36397 

tan 7p = = 0.5000 
7p •» 26.565° sin 7p = 0.44721 cos yp = 0.89442 
y, = 63.435° sin y, = 0.89442 cos y, = 0.44721 
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A 

Rvp 

N.P 

Rvg 

N,, 

10 
0.44721 

10 
0.89442 

20 
0.89442 

20 
0.44721 

40 
0.44721 

=• 22.36068 

* 11.18034 

- 22.36068 

= 44.72136 

= 89.44272 

If these bevel gears were to have tooth forms of special proportions, they would be 
designed a.s a pair of involute spur gears of 22.36068 teeth and 89.44272 teeth with 
pitch radii of 11.18034 in. and 44.72136 in., respectively. This example, however, 
uses standard or known tooth proportions; hence we proceed as follows: 

1 on 
= « = 2.56r 

1 1 f;7 

' = ^3W8 == 
7op = 26.565° H- 2.561® = 29.126° 
7rp - 26.565° - 2.872® = 23.693° 
yog = 63.435° + 2.561® = 65.996° 
yrg = 63.435° - 2.872® - 60.563® 

0.7854 + (1.157 X 0.36397) 
^ 22.36068 

= 0.05395 

& - 3.091® 

In this example, the value of the tooth angle is the same for both members of the pair. 

Special Tooth Design for Bevel Gears. As with spur gears, a straight¬ 
toothed bevel gear may be generated with a given pressure angle of tool 
on one generating cone, and be operated with another bevel gear at a 
different pressure angle on a different pitch cone. Here, instead of 

changing the center distance of generation and of operation as with spur 
gears, the angles of the cones of generation and operation are changed. 
The tooth proportions of the gears are determined by Tregold’s approxi¬ 

mation exactly as for spur gears. After the equivalent-spur-gear 
proportions are determined, these values are then translated into the 
corresponding angular values for bevel gears. This translation is done 

for each gear separately. Thus let 

A = cone distance, in. 
R = pitch radius at large end, in. 

7 = pitch-cone angle 
7' = generating cone angle 
N = number of teeth in bevel gear 

Rv = pitch radius of equivalent spur gear, in. 

Nv = number of teeth in equivalent spur gear 
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a = addendum, in. 
h = dedendum, in. 
a = addendum angle 
5 = dedendum angle 
t = arc tooth thickness at R, in. 

R\ — generating radius of equivalent spur gear, in. 
i' — arc tooth thickness at in. 
0 — tooth angle 
<t) = operating pressure angle 

<t>c = pressure angle of cutter 
Rb = radius of base circle of equivalent spur gear, in. 
Given the values of the bevel gear and the pressure angle of the 

cutter, we proceed as follows: 

Ry cos 0 

cos <t>e 

(15-6) 

When 0) is the difference between pitch and generating cone angles, 

w = 7 ~ 7' 

^ {Ry - R\) _ T. [1 Q0^/^0^c)~\ 
tan 0) —-I 1 ' I 

But 

Rv , 
-7- = tan 7 
A 

Whence 

tano; = fl - ^)tan7 (15-15) 
\ COS <t>c/ 

y' = 7 — w (15-16) 

We have the following from involute spur gears: 

Whence 

t' = 2R'y + inv <> - inv j 

-b inv 0 ~ inv <l>^ (15-17) 
cos <l>c \2Rf, / 
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When y is the distance from generating radius to root radius in inches, 

COS <t)\ 
cos <t)cj 

(15-18) 

arc^-t^''/2) + 2/tan 4>c] 
A 

(15-19) 

a 
tan a = -T 

A 
(15-20) 

tan 5 = i 
A 

(15-21) 

7o = 7 + « (15-12) 
*

0
 

1 II (15-13) 

Example of Machine Setting for Special Bevel Gear. As a definite example we 
shall determine the machine settings for generating the 20-deg bevel gears used for the 
preceding example with a 14}2“deg generating tool. For the 20-tooth pinion, we 
have the following values: 

/?„ = 11.18034 <t> = 20® cos <t> = 0.93969 A = 22.36068 
<t>c == 14.500® cos <t>c = 0.96815 tan <t>c = 0.25862 tan y = 0.5000 

t = 1.5708 a = 1.000 b - 1.157 inv = 0.014904 

= 0.07060 
cos <t>c 

tan CO * 0.02940 X 0.500 = 0.01470 co = 0.842® 
y' = 26.565® - 0.842® = 25.723° 

22.36068 X 0.93969 / 1.5708 

inv <t>e = 0.005545 

\22.3 

arc ^ = 

0.96815 V22.36068 
y = 1.157 - (11.18034 X 0.02940) = 0.82830 

0.86387 + (0.82830 X 0.25862) 

+ 0.014904 - 0.005545 1.72774 

22.36068 
0.04821 

/3 = 2.762® 

From the previous example we have 

a = 2.561® 5 = 2.872® yo = 29.126® yr = 23.693° 

For the 40-tooth t)evel gear we have the following values: 

Rv = 44.72136 </> = 20® = 14.500® A = 22.36068 
y = 63.435® t = 1.5708 a = 1.000 b = 1.157 

tan CO = 0.02940 X 2.000 = 0.05880 co = 3.364® 
7' = 63.435® - 3.364® = 60.071® 
t' = 2.33702 
y = 1.157 ~ (44.72136 X 0.02940) * -0.15781 

In this example the generating cone is below or inside the root cone, hence this value 
of y is minus. 

arc ^ = 0.05043 = 2.889® 

From the preceding example we have 

a = 2.561® 5 * 2.872® 70 « 65.996® 7r * 60.563® 
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Table 15-1. Operating Pressure Angles for 14^^-deg Crown-rack System 

+ Nvg <f>, deg cos <^/cos 14.5° inv <p — inv 14.5® 

24 26.10 0.92757 0.0288192 

25 25.75 0.93033 0.0273756 

26 25.40 0.93306 0.U259764 

27 25.05 0.93574 0.0246207 

28 24.70 0.93840 0.0233074 

29 24.35 0.94102 0.0220358 

30 24.00 0.94360 0.0208048 

31 23.75 0.94543 0.0199500 

32 23.50 0.94723 0.0191152 

33 23.25 0.94902 0.0183000 

34 23.00 1 0.9r)079 0.0175042 

35 : 22.75 1 0.95254 0.0167276 

36 22.50 ' 0.9.i428 0.0159696 

37 22.25 0.05599 0.01.52302 

38 22.00 0.95769 0.0145090 

39 21.75 0.95937 0.0138056 

40 21.50 0.96103 0.0131199 

41 21.30 0.96234 0.0125837 

42 21.10 0.96365 0.0120586 

43 20.90 0.96494 j 0.0115442 

44 20.70 0.90622 0.0110405 

45 20.50 0.96749 ' 0.0105473 

46 20.30 0.96875 i 0.0100645 

47 20.10 0.96999 0.0095920 

48 19.90 0.97122 ' 0.0091296 

49 19.70 0.97244 0 0086771 

50 19.50 0.97365 0.0082345 

51 19.35 0.97455 0.0079080 

52 19.20 0.97544 0.0075888 

53 19.05 0.97633 0.0072740 

54 18.90 0.97721 0.0069645 

55 18.75 0.97808 0.0066602 

56 18.60 ' 0.97895 1 0.0063611 

57 18.45 ; 0.97981 1 0.0060672 

58 18.30 0.98066 

1 

i 0.0057783 
1 1 

59 18.15 j 0.98151 0.0054944 

60 18.00 ! 0.98235 0.0052156 

61 17.85 i 0.98318 0.0049417 

62 17.70 i 0.98400 0.0046726 

63 17.55 1 0.98482 j 0.0044084 
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Table 15-1. Operating Pressure Angles for 14J^-deg Crown-rack System. 
(Continued) 

Nvp "1" Nxg <!>, deg cos <^/cos 14.5° inv <i> — inv 14.5° 

64 17.40 0.98563 0.0041489 

65 17.25 0.98644 0.0038941 

66 17.10 0.98724 0.0036440 

67 16.95 0.98803 0.0033986 

68 16.80 0.98881 0.0031576 

69 16.65 0.98959 0.0029212 
70 16.50 0.99036 0.0026893 
71 16.40 0.99087 0.0025372 

72 16.30 0.99138 0.0023870 

73 16.20 0.99189 0.0022387 

74 16.10 0.99239 0.0020923 
75 16.00 0.99289 0.0019479 
76 15.90 0.99338 0.0018053 
77 15.80 0.99387 0.0016646 
78 15.70 0.99436 i 0.0015258 

79 15.60 0.99485 0.0013888 
80 15.50 0.99533 0.0012537 
81 15.45 0.99557 0.0011868 
82 15.40 0.99581 0.0011204 
83 15.35 0.99605 0.0010544 

84 15.30 0.99629 0.0009888 
85 15.25 i 0.99653 1 0.0009237 
86 15.20 0.99677 0.0008591 
87 15.15 0.99700 0.0007949 
88 15.10 0.99724 0.0007312 

89 15.05 0.99747 0.0006678 
90 15.00 0.99770 0.0006050 
91 14.95 0.99793 0.0005425 
92 14,90 0.99816 0.0004805 
93 14.85 0.99839 0.0004190 

94 14.80 0.99862 0.0003578 
05 14.75 0.99885 0.0002971 
96 14.70 0.99908 0.0002368 
97 14.65 0.99931 0.0001770 
98 14.60 0.99954 0.0001176 
99 14.55 0.99977 0.0000586 

100 and over 14.50 1.00000 0.0000000 
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143.^-deg Crown-rack System. A series of pairs of bevel gears, all 
generated with the 143^^-deg generating cutters, similar to the 143/^-deg 
variable-center-distance system for spur gears can be developed readily. 

The Gleason Company has published a series of bevel-gear-tooth forms, 
using cutters of different pressure angles for different pairs, with proper-* 
tions adjusted for effective action and contact. These are good designs, 

but the same results can be obtained with a single standard pressure angle 
of cutter. 

The first step toward such an end will be the selection of suitable 
pressure angles for the various combinations of tooth numbers, based 
upon the equivalent spur gears of Tregold’s approximation. These 
pressure angles will approximate those which arc used for the spur gears. 

This has been done, and the values are tabulated in Table 15-1. 
The tooth proportions of the crown rack will be as follows 

(these are the 1-DP values): 
Inches 

Addendum of 1-DP crown rack. .. .. . 1.000 
Dodendum of 1-DP crown rack. . . ... 1.188 
Whole depth of tooth. .2.188 
Clearance. .... 0.188 

The next step is to determine the generating radii of the equivalent 
spur gears and their tooth proportions. This is done by the use of the 
spur-gear equations in Chap. 5, transposing them when necessary to suit 

our particular needs here. 
The final step is to translate these spur-gear values into the angular 

values of the bevel gears. 
Equations for Bevel-gear-tooth Design. Referring to Fig. 15-8, let 

7p = pitch-cone angle of bevel pinion 

'yg = pitch-cone angle of bevel gear 

A — cone distance, in. 
Rvv — pitch radius of equivalent spur pinion, in. 
Rvg = pitch radius of equivalent spur gear, in. 
C2 = center distance of Tregold’s approximation, in. 

Cl = center distance for pressure angle of 0c, in. 

0 = operating pressure angle 

0c = pressure angle of generating tool 
Up = addendum of bevel pinion, in. 
6p = dedendum of bevel gear, in. 

Og = addendum of bevel gear, in. 
bg = dedendum of bevel gear, in. 
ht = nominal whole depth of tooth, in. 

ac = nominal addendum of cutter, in. 
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Cc = nominal clearance on cutter, in. 
hte = nominal whole depth of cutter, in. 

Rrp = root radius of spur pinion, in. 

Rrg = root radius of spur gear, in. 
ojp = difference between pitch and generating angle of pinion 

o)g = difference between pitch and generating angle of gear 

7'p — generating angle of bevel pinion 
Yo = generating angle of bevel gear 

R^p = generating radius of spur pinion, in. 

R^vg = generating radius of spur gear, in. 

We have from Chap. 5 

Rrp “1“ Rrg 

Ci(inv </> — inv <t>c) 
tan (f)c 

C2 = C\ 
cos (f>c 

cos <t> 

Transposing this last equation, we obtain 

Cl = C2 
cos 4> 
cos <t>o 

From the conditions shown in Fig. 15-8, we have 

C2 = A (tan 7p + tan yg) 

(5-48) 

(5-35) 

(15-22) 
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Substituting this value into the preceding equation, we obtain 

We already have 

, cos 
tan ojp = I 1-- 

\ cos <i>c 
( cos 0 \ 

tan co^, = I 1 —-, J tan yg 
\ cos 0c/ 

^ tan 7p 

(15-23) 

(15-15) 

(15-15) 

We shall now turn our attention to the iooth proportions. From 

Chap. 5 we have 

h = (^^-7} [C'2 - + Rro)] (6-51) 

6p = (5-49) 
1 + VRvJRvr, 

But 
R^g __ A tan yg _ tan yg 
R^p A tan yp tan 7p 

Whence 

~ (16-24) 
1 + vtan 7t,/tan yp 

When 2 - 90^ then 

tan 7;, 
i 

tan yg 
and 

tan yg 
tan 7 p 

tan^ yg 

Thus when 2 = 90^ 

h = - (Rrp + Rro) 

^ 1 + tan yg 

CLp — ht hp 

hg = C2 - {Rrp + Rro) “ hp 

Qg = ht — hg 

(15-25) 

(15-26) 
(15-27) 
(15-28) 

To translate these values of the equivalent spur gears into the angle 
of the bevel gear and pinion, using the same symbols as before, we have 

. Clp 
tan 

Clg 
tan ^0 ~ (15-10) 

tan dp = ^ tan ^0 == j (15-11) 

7op = 7p + «p yog yg “h ^g (15-12) 

7rp = 7p - ^p yrg “ 7j7 (15-13) 
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_ (ff/2P) + flc tan <t>c) 
arc Pp ^ 

o _ (’r/2P) + fflc tan <t>c) 
arc Pg — ^ 

The foregoing are general equations and may be used for generating 

tools of any pressure angle and any tooth proportions. 
Specific Equations for 1-DP, HI^^-deg Crown-rack System. 

When the axes of the gears are at 90 deg and the following fixed propor¬ 
tions are used for the 1-DP crown rack of the system, the several equations 

reduce to the following; 

he = 2.188 ac = 1.188 c. = 0.188 

A = VltTTW = >2 VWTW‘ (15-29) 
tan 7p = Np/N„ (14-3) 
tan 7, = No/Np (14-4) 

C2 = A(tan 7p -f- tan 7,) (15-22) 
Cl = C2(cos <t>/0M815) (15-30) 

Rrp + Rro = Cl - 2.376 + 3.86671Ci (inv <j> - 0.0055448) (15-31) 

h = 0.92087 [C2 - {Rrp + Rr,)] (15-32) 
bp = [C2 - (Rrp + Rr„)]/il -f- tan y„) (15-25) 
Op = ht — bp (15-26) 
bp = C2- (Rrp + Rr,) - bp (15-27) 
ap = ht- bp (15-28) 
tan = [1 — (cos <<>/0.96815)] tan 7p (15-15) 
tan cop = [1 — (cos <^/0.96815)] tan 7^ (15-15) 

y'v = 7p — r'ff = Ya — (15-16) 
tan ap = ap/A tan a, = ag/A (15-10) 
tan bp = bp/A tan 5, = bg/A (15-11) 

7op “ 7p oip 7op “ Yo “f“ ^0 (15-12) 
7rp — 7p Yrg ~ 7o (15-13) 

= &9 (in degrees) = 107.60378/A (15-33) 

Bevel-gear Generating-machine Setting. The cone angle or the generat¬ 
ing angle to which the machine is set is not the actual pitch-cone angle 

(7) of operation, but is the generating angle (7')- 

Block angle = 7' — 7, (15-34) 

The tooth angle is the value of 0 as calculated. 

Example of Bevel-gear Design, As a definite example we shall use a 14-tooth 

bevel pinion and a 21-tooth bevel gear, 1 DP, with shafts at right angles to each 

other. From the foregoing equations, we obtain 

(15-14) 

(15-14) 
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tan 7j> « = 0.66667 yp ^ 33.690° 

tan 7^; « 2^4 *= 1.50000 y^ = 56.310° 

A = V{7V + (10.5)2 = 12.61943 

C2 = 12.61943 X 2.16667 = 27.34214 

The virtual number of teeth is equal to 2C2 — 54.68428. 
We shall use the values from Table 15-1 for the sum of 55 teeth, 

follows: 

cos (}) 

These are a.s 

<t> = 18.75° = 0.97808 inv 0 — inv 14.5° 0.0066602 
cos 14.50 

Cl = 27.34214 X 0.97808 = 26.74280 
Rrp -f Rro = 26.74280 - 2.376 + 3.86671(26.7426 X 0.0066602) = 25.05551 

tan CO;, = 0.02192 X 0.66667 = 0.01461 co;, = 0.837° 
tan coo = 0.02192 X 1.5000 = 0.03288 co, = 1.883° 

ht =* 0.92087(27.34212 - 25.05551) - 2.10569 
2.28663 

K 

ha 

- 0.91465 a;> = 2.10569 - 0.91465 = 1.19104 

, = 2.10569 - 1.37198 = 0.73371 
(1 + 1.500) 

= 2.28663 - 0.91465 = 1.37198 a, 
^ ^ 107.60378 ^ 

12.61943 
1.19104 

tan ftp 12.61943 = 0.09468 ap = 5.392' 

0.91465 
tan 5p 12.61943 = 0.07248 5p = 4.146' 

, 0.73371 
tan a, 12-151943 = 0.05814 a, = 3.327' 

, , 1.37198 
tan 5, 12 91943 = 0.10872 6, = 6.205' 

7.P = 33.690° + 5.392° == 39.082° 
7.P = 33.690° - 4.146° - 29.544° 
7';, = 33.690° - 0.837° = 32.853° 
7.„ = 56.310° 4- 3.327° + 59.637° 
yrg - 56.310° - 6.205° = 50.105° 
y\ = 56.310° - 1.883° = 54.427° 

For the machine settings we have the following: 

Generating cone angle for pinion = 32.853° 
Block angle for pinion = 32.853° — 29.544° = 3.309° 

Generating cone angle for gear = 54.427° 
Block angle for gear = 54.427° — 50.105° = 4.322° 

Tooth angle for gear and pinion = 8.526° 

The 1-DP values for any pair of bevel gears with intersecting axes at right angles 
to each other can be determined in the same manner. 



CHAPTER 16 

SPIRAL BEVEL GEARS 

The relation between a spiral bevel gear and a straight-toothed bevel 

gear is substantially the same as that between a helical gear and a spur 

gear with straight teeth. The pitch surfaces and the nature of the con¬ 

jugate gear-tooth action is the same for the two types of bevel gears. 

With the spiral bevel gear as with the helical gear, the twisted tooth form 

tends to give a smoother engagement of teeth as they enter into contact. 

FELLOWS SPIRAL FACE GEAR 

The Fellows spiral-face-gear drive is the same as that with a spur gear 

except that a helical involute gear is substituted for the involute spur gear 

as the bevel-pinion member. In this case the face gear is generated by a 

helical involute pinion-shaped cutter of substantially the same size as the 

mating helical gear. With the substitution of a helical gear for the spur 

gear, Fig. 14-9 shows this type of drive also. 

As before, the pitch surfaces of the drive are cones. The momentary 

pressure angle of the drive changes with a change in the distance from the 

center of the face gear. As with similar spur-gear drives, the active face 

width of the face gear cannot extend very much below the nominal pitch 

circle because the trochoidal fillet of the tip of the cutter tooth will cut 

away the conjugate gear-tooth profile of the face gear almost up to this 

nominal pitch circle. 

On the other side, the active face width of the face gear is limited 

because of the pointed teeth and the reduced depth of tooth in the face 

gear, which result from the increasing pressure angle as the distance from 

the center of the face gear is increased. 

The trochoidal fillets on the face gear at any specified distance from 

the center of the face gear are identical to those on the equivalent face 

gear that meshes with an involute spur pinion. The only difference is 
that whereas the center line of the tooth of the face gear that meshes with 

a spur pinion lies on a radial line of the face gear, in this case the center 

line of the face-gear tooth lies on a uniform rise or Archimedean spiral. 

Exact Analysis of Spiral-face-gear Teeth. The analysis of this face 

gear is identical to that of one that meshes with a spur gear except for 

the introduction of the spiral form of the center line of the face-gear teeth. 
338 
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The direction of this spiral will depend upon the direction of the helix of 
the helical gear. 

Referring again to Fig. 14-14, let 
Ri = nominal pitch radius of involute helical gear, in. 

^61 = radius of base cylinder of helical gear, in. 
<l>i = pressure angle in plane of rotation of helical gear at R\ 
ri = radius to contact point on helical gear, in. 

<t>2 = momentary pressure angle at ri 
<t) = momentary pressure angle of drive 
a — initial position of origin of involute at distance R2 from center 

of face gear 
€1 = angle of rotation of helical gear 

7p = pitch-cone angle of pinion 
R2 = nominal pitch radius of face gear, in. 
r2 = radius to contact point on face gear, in. 
F = position of pitch point from nominal pinion pitch circle, in. 
G — height to pitch point, in. 
€2 = angle of rotation of face gear 

5 = angle to contact point on face gear 
02 = vectorial angle to face-gear-tooth form 

Ni = number of teeth in involute helical gear 
N2 = number of teeth in face gear 

T = arc space thickness of helical gear in its plane of rotation at Ri, in. 
= helix angle of helical gear at Ri 

^6 = helix angle of helical gear at base radius Rb 
M = height to contact point, in. 
L = lead of helical gear, in. 
As noted before, the analysis is the same as for the spur-gear drive 

except for the twisting of the teeth, which results in an angular position 
of the normal to the point of contact that passes through the pitch point. 
The pitch point will be in the same position, but the actual point of con¬ 
tact will be shifted up or down because of the helix. We shall use the 
values R\ and R2 as the starting point, w ith the teeth at this point in the 
same position as before. Referring again to Fig. 14-14, w^e shall retain 
the following equations from the previous analysis: 

a = {T/2Ri) — inv <t>i (14-29) 
cos /3 = {R\ — E)/ri (14-30) 

cos (t>2 = Rb/ri (14-31) 
</)==/?+ <^2 (14-33) 
F = (/?6i/cos <#)) — Ri (14-34) 
G = R2 4" F cot 7p (14-35) 
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The normal to the point of contact, instead of being perpendicular to 
the axis of the pinion, is at an angle to it as indicated in Fig. 16-1. This 
figure shows the conditions for a right-handed helical gear. For a left- 

handed helical gear, the direction of the angle would be reversed. The 
position of the pitch point is the same as for the equivalent spur gear, but 

the contact point is moved up or down because of the angular position 
of the normal. 

We have from the analysis of helical gears 

tan \pb = tan cos (8-6) 

We have the following from the conditions shown in Fig. 16-1: For right- 
handed helical gears 

ilf = (? — (n sin p tan ^6/cos 0) (16-1) 

For left-handed helical gears 

M = G + {ri sin 0 tan ^6/cos </>) (16-2) 

tan 5 = ri sin 0/M (16-3) 

r2 = M/co& d (16-4) 

For both cases 
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When y is the height of contact point above Riin inches, 

II 1 (16-5) 
For right-handed gear 

*1 = /3 — a — inv <l>2 — (2x2//L) (16-6) 
For left-handed gear 

e. = ^ — a — inv (j>2 “h {2ry/L) (16-7) 
02 ~ ^ — €2 (16-8) 

Table 16-1. Coordinates of Spiral-face-gear Teeth 

(Plotted in Fig. 16-2) 

ri, in. <f>, deg <1, deg r2, in. 02, deg 

E = 0.500 

4.750 27.116 15.564 9.9920 0.970 
5.000 45.842 8.492 12.8278 5.536 
5.250 57.630 -1.678 15.7708 10.712 

E = 0.250 

5.500 1,049 -39.907 10.8642 5.170 
5.250 1.418 -32.373 10.5322 3.929 
5.000 1.804 -22.814 10.1455 2.555 
4.750 8,448 -1.276 9.500 0.638 
5.000 38,195 8.030 11.2730 3.946 
5.250 ^1.836 1.152 13.9446 8.651 
5.500 61.593 -13.046 1 17.6475 15.561 

E = 0.000 

5.500 6.701 -34.512 10.6316 4.810 
5.250 8.874 -24.260 10.2824 3.174 
5.000 20.000 -4.500 10.0000 2.250 
5.250 44.380 1.042 12.3584 6.921 
5.500 55.941 -7.610 15.3192 12.407 

E = -0.250 

5.500 13.974 -26.276 10.4866 4.141 
5.250 26.627 -8.181 10,5000 4.091 
5.500 48.668 -5.598 13.3394 9.860 

Example of Fellows Spiral-face-gear Drive. As a definite example wc shall use 
the same values as were used for the involute spur gear and face gear in Chap. 14. 
The helical gear will have a right-handed lead of 74.00 in. This gives the following 
values: 
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Ni = 20 = 40 == 5.000 Ri = 10.000 <t>i = 20° 

Rh, = 4.69846 cot 7, = *%o = 2.000 inv <t>i = 0.01490 
T = 0.7854 L = 74.00 = 23.000° 
0 75^ ^^4 

a = _ 0.01490 = 0.06364 radian = 3.646° 

tan xPb = tan 23° cos 20° = 0.42447 X 0.93969 == 0.39887 

Using these values and the foregoing equations, we obtain the values tabulated in 

Table 16-1. These values are also plotted in Fig. 16-2. 

The opposite side of the face-gear teeth will be 

symmetrical to the calculated side in respect to a 

uniform-rise spiral that passes through the center 

of the tooth at H2. The rise of this spiral will be 

in direct proportion to the lead of the helical gear 

and the numbers of teeth in the pair. In this ex¬ 

ample the lead of the helical gear is 74.00 in.; there 

arc twice as many teeth in the face gear as there 

are in the helical pinion ; hence the rise of this spiral 

per revolution of the face gear will be 2 X 74, which 

is equal to 148.00 in. This spiral is shown as a dot- 

and-dash line in Fig. 16-2. 

With a larger reduction ratio, the effective face 

width of the crown gear would be increased. There 

arc cusps in the form of these face-gear teeth similar 

to those on the face gear that meshes with a spur 

pinion. This indicates the presence of undercut 

tooth profiles. The effective face of this face gear stops just below the 10.00-in. 

radius of the nominal pitch circle. 

OCTOID SPIRAL BEVEL GEAR 

The study of the tooth forms of these spiral bevel gears is largely a 
study of the crown rack of the system. The spiral-bevel-gear teeth are 
conjugate to this crown rack; one spiral bevel gear is conjugate to the 
upper side of this crown rack, while the other or mating gear is conjugate 
to the lower side of this crown rack. In actual practice, when the gears 
are generated, two crown racks are used, identical in form except for the 
direction of the spiral. The spirals are of opposite hand for mating 
gears. The tooth form of the spiral bevel gear at any specific; section is 
determined by the same methods as are used for bevel gears with straight 
teeth. 

Theoretically, the ideal curve for the teeth of the crown rack is a 
logarithmic spiral because this curve gives a constant spiral angle at all 
diameters. However, with spiral bevel gears as with straight bevel 
gears, general practice and design is limited by the processes that are 
available to produce the product. 

The most commonly used spiral bevel gear is the Gleason spiral bevel 
gear. This is produced by a circular cutter so that the curve of the 

Fig. 10-2. 
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crown-rack-tooth spiral is the arc of the circle described by the cutting 

edges of the tool, which are mounted on the periphery of the cutter body. 

The curve of such a crown rack is shown in Fig. 16-3. 

Unless otherwise specified, the spiral angle is measured at the mean 

radius of the crown-rack face. Referring to Fig. lG-3, when 

yp = spiral angle 

= mean radius of crown rack, in. 

lie — radius of cutter, in. 

V — vertical setting of cutter, in. 

H = horizontal setting of cutter, in. 

we have the following from the conditions shown in Fig. 16-3: 

V = cosiA (lb-9) 

H = /C - lie ^^in yp (16-10) 

tan^ - {lim - Il)/V (16-11) 

Logarithmic Spiral. We shall examine the values of the logarithmic 

spiral to see how closely the arc of the cutter approximates it. Thus let 

r = any radius of spiral, in. 

6 = vectorial angle 

m = cotangent of spiral angle 

To = starting radius^ of spiral, in. 

^ This radius will be the radius to the middle of the crown rack, 7?^. 
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^ = angle of tangent to radius vector 

e = base of natural logarithms 

We have for the equation of the logarithmic spiral 

r = roe”*® 

Whence 

log r == log ro + md log e 

But log e — 1.000, whence 

log r = log ro + md 
dr 
re 

= mde 

d^r 

do dr 

r do , , 1 
—j— = tan ^ = — 
dr ni 

= m 
df^ 

dh dr 
do = mr 

do dr de 
= rm^ 

(16-12) 

When Rc is the radius of curvature of spiral in inches, 

[r2 + {dr/dsy]^^ 
r2 « r{d^r/de^) + 2{dr/dey 

(1-34) 

Substituting the values from the preceding equations into Eq. (1-34), 

combining, and simplifying, we obtain 

Rc = r\/l + (16-13) 

But 

= cot^ yp 
Whence 

Rc = r/sin ^ (16-14) 

If the radius of the cutter were made equal to the radius of curvature 

of the logarithmic spiral at the middle of the face of the crown rack, then 

the horizontal setting of the cutter would always be equal to zero, and 

the radius of the cutter would always be greater than the radius of the 

crown rack. This would require such a large cutter that some smaller 

radius must be used for practical reasons. The result of using smaller 

cutters is a gi'eater change in the spiral angle across the face of the crown 

rack than W'ould be present if the larger cutter could be used. 

Example of Spiral. As a definite example we shall use the following values, and 

determine the change in spiral angle across the face of the crown rack: 

Outside radius of crown rack. 8 in. 

Inside radius of crown rack. 6 in. 

Radius of cutter. 6 in. 

Angle of spiral at mid-section. 30 deg 

^ 7.000 sin 30° = 0.50000 cos 30° « 0.86603 

7 00 
Radius of curvature of logarithmic spiral = " 14.00 
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Referring to Fig. 16-4, when 

ypi = spiral angle at r 

r = any radius, in. 

and all other symbols are the same as 

before or as shown in the diagram, then 

tan « = p (16-15) 

tan 7 = ^ (16-16) 

2/e. 

(16-17) 
_ V' + m - /e.» 

2r -s/v^ -1- //» 

(16-18) 

= a -t- 0 (16-19) 

In this example, we have 

cos (d a) 

cos (7 -f 

F = 6 X 0.86603 = 5.19618 
II = 7.000 - (6 X 0.50) « 4.000 

tan y = = 1.29904 

When r - 6.000 

F2 = 27.000 
7/2 = 16.000 

5 = 37.589^^ 

7 = 52.41 r 

When r 

cos (5 4" «) 

cos (7 + P) 

8.000 

cos (5 -f- a) 

cos (7 4- i3) 

. t 36 36 ^ Q 5 + „ = 56.876° 
12 Vis 

= -- - = 0.54645 y + P = 56.876° 
12 V43 

« = 56.876° - 37.589° = 19.287° 
0 = 56.876° - 52.411° = 4.465° 

= 19.287° -1- 4.465° = 23.752°, 

= 43 + 36 ^ 64 ^ Q J9062 8 + a = 79.011° 
12 V43 

= ^3 -t- 64 - 36 ^ 0.67671 y + 0 = 47.313° 
16 V43 

a = 79.011° - 37.589° = 41.422° 

=■ 47.313° - 52.411° = -5.098° 

i/i = 41.422° - 5.098° = 36.324° 

If the cutter radius were the same as the radius of curvature of the logarithmic 

spiral at the mid-section, we would have 

Rc « 14.000 
V « 14.00 X 0.86603 « 12.12442 

H » 7.000 - (14 X 0.500) = 0.000 

tan 5 « 0 5 *= 0 tan y « 

Rc^ « 196.000 
V2 = 147.000 
7/2 = 0.000 

7 “ 90® 00 
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When r = 6.000 

= '2mffl244? = « * + “ = 

^ ^ 

a = 25.270° - 0 = 25.270° fi = 95.126° - 90° = 5.126° 

<h = 25.270° + 5.126° = 30.396° 

When r = 8.000 

cos (« + a) = ^8^-Y|l244f = «-®2184 a + « = 34.730° 

cos (y+ff)= i47±-6^% ^ P ^ ^ ^ 33 332° 

a = 34.730° - 0 = 34.730° = 85.562° - 90° = -4.438° 

iPi = 34.730° - 4.438° = 30.292° 

With the smaller cutter, the spiral angle varies from almut —6° at the inside radius 

of the crown gear to about +6° at the outside radius. With the larger radius of 

cutter, the variation in the angle of the spiral is l(‘ss than one-half of one d(;gree. 

Curvature and Contact. Thus far, in discussing the spiral or curva¬ 

ture of the tTo\vn-ra(;k tooth, we 

have been referring to the condi¬ 

tions at the middle of the tip 

of the cutting tool. The actual 

radius of cutting changes slightly 

along the angular profile of the 

cutting edge. Thus there will be 

a difference in the actual radius 

of the crown-gear tooth between 

the two sides of the tooth space 

as indicated in Fig. 16-5. At 

most, this difference will be equal 

to the width of the tooth space. 

In most cases, different cutters 

are used to finish the two sides of 

the teeth, and this difference is kept to a minimum. 

The radius of curvature of the concave side of the tooth should be 

slightly larger than that of the convex side. Theoretically this would 

limit the contact to point contact. The relative difference in radius is 

so small, however, that the slight elastic deformation of the tooth surfaces 

under load will develop an appreciable length of contact. The actual 

contact area in service will show an area substantially as shown in 

Fig. 16-6. 

In most cases, the design of bevel gears and their mountings is such 

that the pinion is overhung. This slight difference in curvature permits 
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some slight bending or deflection without setting up contact at the edges 

of the gear faces. 

That portion of the bevel gear tooth at the small end of the gear is 

called the toe, while the portion near the large end of the gear is called the 

heel. On heavily loaded spiral bevel gears, the gears are often so adjusted 

that under light loads, the contact is near the toe. Then when heavier 

loads are applied, the contact shifts towards the heel. Such a practice 

takes the greatest advantage of this characteristic of these spiral gears. 

Form of Crown Rack. Theoretically, the pitch surface of the crown 

rack should be a plane. As actually made, however, the tips of the 

cutter lie in a plane so that the actual generating pitch surface of the 

Gleason spiral-bevel-gear system is a cone, as indicated in Fig. 16-7. 

This pitch-cone angle is very close to 90 deg, so that except for very small 

numbers of teeth in the pinion, the mathematical error introduced is 

generally much smaller than the normal and inevitable errors of actual 

production. 

Gleason System of Spiral Bevel Gears. The proportions of the gear 

blanks for spiral bevel gears are determined in the same manner as those 

for bevel gears with straight teeth. The proportions of 1-DP crown-rack 

teeth at the large end arc as follows: 

Inches 

Addondum. 0.850 

Dedendum.1.038 

Clearance.0.188 

Working depth. 1.700 

Whole depth. 1.888 
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Pressure angles of 143^2 deg and 17 deg are used on these gears. The 
pressure angle employed depends upon the number of teeth in the pinion 
and on the gear ratio. The 143/^-deg pressure angle is used on all com¬ 
binations where the pinion has 14 or more teeth; for 13-tooth pinions 
when the gear has 20 or more teeth; for 12-tooth pinions when the gear 
has 20 or more teeth; for 11-tooth pinions where the gear has 25 or more 
teeth; and for 10-tooth pinions when the gear has 25 or more teeth. The 
17-deg pressure angle is used for the smaller pinions that mesh with the 
smaller gears. A pinion of 10 teeth is the smallest standard gear of the 

system. 
The spiral angles employed generally are between 30 and 35 deg. 

The hand of the spiral is denoted by its direction when the gear or pinion 

is viewed from its small end. A right-handed spiral curves off in a clock¬ 
wise direction; a left-handed spiral curves off in a counterclockwise direc¬ 
tion. The hand of spiral is reversed on mating gears. 

The hand of spiral does not affect the quietness or smoothness of 
operation, but it does affect the intensities of the thrust loads. As regards 
the influence of the spiral alone, a right-handed spiral pinion driving in a 
clockwise direction tends to move the pinion toward the cone center. 
When this pinion drives in a counterclockwise direction, the spiral tends 
to move the pinion away from the cone center. A left-handed spiral 
driving pinion will act in the reverse direction in both cases. 

Tooth Proportions. The Gleason Works have developed and published 
tables of tooth proportions for these spiral bevel gears. These propor¬ 
tions were determined by adjusting them until the amount of sliding 
during the approach action was about the same or slightly less than the 
amount of sliding during the recess action. When the addendum of the 
gear is reduced, the addendum of the mating pinion is increased a corre¬ 
sponding amount. The working depth and the whole depth of the teeth 
remain constant. The pressure angles are selected to give as low a pres¬ 
sure angle as possible without the presence of excessive undercutting of 
the pinion tooth. 

Spiral Bevel Gears with Straight, Offset Teeth. Instead of using 
an arc of a circle for the approximation to the logarithmic spiral, we can 
use the straight line tangent to the spiral at the mid-section of the face 
of the crown gear as an approximation, as indicated in Fig. 16-8. This 
straight line will be tangent to a circle concentric with the crown rack. 
Referring to Fig. 16-8, when 

R = radius to mid-section of face of crown rack, in. 
rp — spiral angle at R 

Rb = radius of concentric circle to which straight line is tangent, in. 

Rb = R sin }p (16-20) 
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Example of Straighti Offset Teeth. As an example we shall use the same values as 
were used for the example with curved teeth. Whence we have 

R = 7.000 = 30^* sin = 0.500 

Rb = 7.000 X 0.500 = 3.500 

Spiral Angle of Straight, Offset Teeth. We shall now determine the spiral angle at 

the outside and inside edges of the crown-gear face. 

When r = radius to any point, in. 

= spiral angle at r 

then 

sin = Rb/r (16-21) 

Fig. 16-8. Fig. 16-9. 

Example of Spiral Angle. Using the same values as before, wo have 

Outside radius of crown rack = 8.000 in. 

Inside radius of crown rack = 6.000 in. 

When r =» 6.000 

sin iAi = = 0.58333 4'i = 35.685° 

When r =■ 8.000 

sin - 0.43750 = 25.945° 

In this example, the straight-line form departs less from the logarithmic spiral 

than did the 6.000-in. radius used in the preceding example. 

The form of the crown rack of this system is the same, except for the straight-line 

approximation instead of the arc of a circle, as the crown rack with curved teeth. 

This is shown in Fig. 16-9. 
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The tooth proportions of this system are identical to those of the 

system with curved teeth. In general, this type of tooth is used on large 
bevel gears where otherwise an extremely large circular cutter would be 

required. 

FORMATE GEARS 

Another type of spiral bevel gear, very similar to the foregoing, is also 
used. This type has been called the forinate gear. In order to simplify 
the production of the gear, it is made with teeth of straight-sided profile. 

The approximation to the spiral may be an arc of a circle or a straight 
tangent line. This gear is produced by a simple forming process. 

Fig. 16-10. 

The pinion is generated with the same type of cutting tool as before. 

In its generation, however, it is made to roll, in effect, on the pitch cone of 
the mating gear instead of around the pitch plane of the crown rack. 
Thus the mating gear itself is substituted for the crown rack. We 

employ this same practice in the generation of the face gears to mesh with 
lantern pinions or with involute gears. The tooth forms are conjugate, 
and the meshing and operating conditions here are the same as for the 

equivalent type of spiral-bevel-gear drive. A formed gear with straight, 
offset teeth, which also represents the generating form for the pink)n, is 
shown in Fig. 10-10. 

The tooth proportions for these formate gears are the same as those 
for the spiral bevel gears that have already been described. The forms 
of the gear and pinion blanks, pitch-cone values, face and root angles, 
etc., for all these spiral bevel gears are determined in the same manner 
as the similar values for straight-toothed bevel gears. 
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SPIRAL BEVEL GEARS WITH FORMED TEETH 

Some large bevel gears that are produced on template-forming 
machines are also made with spiral teeth. The same machine that is 
used for forming bevel gears with straight teeth is used for these spiral 
bevel gears by providing means to rock or oscillate the work blank as the 
cutting tool travels across the face of the blank. The rotation of the 
work is directly proportional to the travel of the tool along the face of the 
gear blank; hence the form of the spiral developed is a uniform rise or 
Archimedean spiral. The same templates that control the tooth form 
are used for both straight and spiral teeth. 



CHAPTER 17 

SKEW BEVEL OR HYPOID GEARS 

A pair of nonparallel shafts that do not intersect may be driven by a 

pair of skew bevel or hypoid gears. Such gears have much in common 

with bevel gears and also begin to approach some of the conditions of 

spiral gears or worm gears. The pitch surfaces of skew bevel gears are 

hyperboloids of revolution. The action between these pitch surfaces is 

not true rolling but is a combination of rolling and sliding. We shall 

therefore start with a study of these hyperboloids of revolution. 

H3rperboloid of Revolution. A hyperboloid of revolution is the 

surface developed by a straight-line generatrix, tangent to a base cylinder 

and at an angle to the axis of the base cylinder, as it is revolved about the 

axis of the base cylinder. Such a surface is shown in Fig. 17-1. Refer¬ 

ring to this figure, let 

Rb = radius of base cylinder, in. 

y = angle of generatrix with axis of base cylinder 

X = axial distance from point of tangency of generatrix with base 

cylinder, in. 

r = radius of hyperboloid at r, in. 

We have the following from the geometrical conditions shown in 
Fig. 17-1: 

r = y/Rb^ 4- X* tan* y 
352 

(17-1) 
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When two hyperboloids are tangent to each other, the locus of the 
points of tangency between them is along their straight-line generatrices. 
In other words, the line of tangency is where the two generatrices coincide. 

This line of tangency is the locus of all the pitch points of the conjugate 
gear-tooth profiles. For a given angle of axes and ratio of rotation, the 

angles of these generatrices are determined in the same manner as the 
angles of the pitch cones when the two axes intersect. 

The diameters of the base cylinders of the pitch hyperboloids are, in 
effect, the pitch diameters of two spiral gears with helix angles equal to 
the angles of the generatrices. The sliding along the common generatrix 
(locus of pitch points) is similar to the sliding on the pitch surfaces of 

such spiral gears. The sum of the base cylinder radii is equal to the 

shortest distance between the axes of the two hyperboloids. This is the 
distance by which the axes are offset from each other, and it will be called 
the center distance. Thus when 

Np = number of teeth in hypoid pinion 
Ng = number of teeth in hypoid gear 

S = shaft angle 
7p = angle of generatrix of pinion hyperboloid 
yg = angle of generatrix of gear hyperboloid 

C = center distance, in. 
Rbp = radius of base cylinder of pinion hyperboloid, in. 
Rbo = radius of base cylinder of gear hyperboloid, in. 

Tp = radius of pinion hyperboloid, in. 

Tg = radius of gear hyperboloid, in. 

(14-1) 

(14-2) 

We shall restrict this analysis to the conditions that exist when the 

shaft angles are equal to 90 deg. Whence, when S = 90°, 

tan 7p = 
Ng 

tan jg = 
Np 

To determine the sizes of the base cylinders of the pitch hyper¬ 
boloids, we shall treat them as spiral gears. Thus we have the following 

for spiral gears of 1 normal DP: 
7p = fielix angle of spiral pinion 
yg = helix angle of spiral gear 

Rbp = pitch radius of spiral pinion, in. 
Rbg = pitch radius of spiral gear, in. 
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Whence 

and 

Ri 'bp 2 cos 7p 
Rbg 2 cos Jg z Sin 7p 

Ng _ Z> \ T> _ I 
— t^bp “T Hbg — H-h - 

^ ^2 cos 7p 2 Sin 7p 
M 

rl" 
and Ng = 

2 

1 + ^_ 
I \cos 7p sin 7p tan 7p 

Nr 
tan 7p 

2 cos 7p sin^ 

fep C = 
sin* 7p 

= C sin^ 7p Hbp (17-2) 

In similar manner we obtain 

«6„ = C cos= 7p (17-3) 

• , _ Np^ , _ Ng^ 
sm 7p ^^2 ^ cos 7p _j_ ^^2 

We have Eq. (17-1) to determine the radius of the hyperboloid at 
any point. 

Example of Pitch Hyperboloids. As a definite example we shall use the following 

values: 

.Vp == 20 =40 1' = 90° C = 3.000 

tan 7p = = 0.500 jj, = 25,565° sin^ y,, = 0.200 

tan y, = ^9^0 2.000 y^ = 63.435° eos^ y^, = 0.800 

Rhp = S X 0.200 = 0.600 Ri„ = 3 X 0.800 = 2.400 

From these values and a series of values of x in Eq. (17-1), w^e obtain the coordi¬ 

nates tabulated in Table 17-1, These two pitch surfaces are also plotted in Fig. 

17-2. The projection of the locus of pitch points, which is also the projection of the 

common generatrix of the two hyperboloids, is also shown in Fig. 17-2. 

Sliding on Hyperboloids. It will be noted from a comparison of the 
values shown in Table 17-1 that the radii of the contacting circles of the 
hyperboloids are not directly proportional to the numbers of teeth. 

These circles (axial sections of the hyperboloids) touch each other at the 
pitch point but do not rotate in the same plane or in planes at right angles 
to each other. The normal circular pitch of the two gears, however, 

must be identical, i.e., the pitch points of successive teeth on both gears 
must coincide. Therefore sliding must be present between the pitch 
surfaces at the pitch point. 

We shall consider the conditions at a pitch point at the gorge section. 
Here the two base cylinders of the hyperboloids touch each other, but 
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they rotate on axes at right angles to each other. Hence the action here 
is all sliding. We shall let 

Vp = peripheral velocity of base cylinder of pinion hyperboloid, ft/min 

Vg = peripheral velocity of base cylinder of gear hyperboloid, ft/min 
Vm = sliding velocity at pitch point, ft/min 

Up = rpm of pinion 
Ug = rpm of gear 

Vp = 0.5236npK6p Vg = 0.52S&ngRbg 
Ug = {Np/Ng)np = Tip tan 7p 

VpIVg = UpRbp/npRbg tan jp = C sin^ yp/C cos^ yp tan Tp = tan yp 

These vectors are shown in Fig. 17-2. The vectors for sliding are 
shown in the direction of sliding on the pinion. Hence the direction of 
the sliding at this pitch point is along the common generatrix of the two 

hyperboloids. 

From the foregoing we have 

Vg == Fp/tan 7p 

As these two components of the sliding velocity are at right angles to 
each other, we have 

F, = VVJTT? = Fp Vl'+ (1/tan 7p)^ = Fp/sin 7p (17-4) 

This equation may also be written 

F, = 0.5236npi?6p/sin 7p 

This sliding velocity is the same as that between two spiral gears. 
We shall now consider the conditions at a second pitch point that is at 

a distance x along the axis of the pinion. We shall use the same symbols 

as before. 
Fp = 0.5236npftp Vg = 0.5236n,/2, 

Rp = radius of pinion hyperboloid, in. 
Rg = radius of gear hyperboloid, in. 

F'p, F'p = sliding component of velocities 
F"p, V^^g = rolling component of velocities 

6p, dg = angle of direction of velocities 

F'p = Fp sin dp V'g 
F"p = Fp cos dp V"g 

sin dp = Rbp/Rp sin dg 
cos dp = X tan yp/Rp cos dg 

Whence we obtain 
F'p = 0.5236np/?i,p 

= Vg sin dg 

F g cos dg 

“ Rbg/Rg 

= X/Rg 
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This is the same value as the sliding at the first pitch point. 

V'g = 0.5236n,]?6, 

This is the same value as the sliding at the first pitch point. Hence this 
sliding is the same in amount and direction at all pitch points. 

Whence 

F"p — 0.5236npa; tan yp 
= 0.523671^,0; but rig = Up tan yp 

V"g = 0.5236npa; tan yp 

This last value is the same as that for the pinion, hence the rolling veloci¬ 

ties in the direction of rotation of 
the crown member of the pair is the 
same for both members. 

Pitch Surface of Crown Member 
of Hypoid Gears. The pitch sur¬ 
face of the crown rack of bevel gears 

is a circular disk or plane that is 
tangent to the two pitch cones with 
its center at the cone center of the 
two pitch cones. The pitch surface 

of the crown member of hypoid 
gears, however, is a warped surface 

that is tangent to the twn pitch 

hyperboloids. Its axis will be at 
the point w^here the two base cylin¬ 
ders of the tangent hyperboloids 
touch each other. This axis will 
lie in a plane that is parallel to the 
axes of the two hyperboloids. 

We can use either member of the 
pair to determine the nature of this 
warped surface. We shall use the 
pinion as indicated in Fig. 17-3. 
We shall determine the lead angle 
of this surface at any radius r of the wnrped surface. This angle w ill be 
the angle of the tangent to the hyperboloid at the given position of the 
generatrix. Thus let 

Rbp = radius of base cylinder of pinion hyperboloid, in. 

yp — angle of generatrix of pinion hyperboloid 
X' = angle of trace of tangent plane with plane of rotation of pinion 
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X = lead angle of warped pitch surface of crown member of hypoid 
gears 

r = any radius of warped pitch surface of crown member, in. 
L = lead of pitch surface of crown member of hypoid gears, in. 
Referring to Fig. 17-3, we have the following: 

But 

whence 

But 

whence 

tan X' = lihp/r sin 7p 
tan X = tan X' cos = Rbp/^ tan 7p 

lihp = C sin- 7p 

tan X = C sin- yp/r tan 7p = C sin yp cos yp/r 

tan X = L/2Trr 

L — 27rr tan X 
L = 27rC sin 7p cos yp 

(17-5) 

(17-7) 

Therefore this lead is the same for all diameters, and the pitch surface of 
the crown member of the hypoid gear is a screw helicoid. 

Circular Pitch of Hypoid Gears. • It should be apparent that hypoid 
gears have much in common with spiral gears. Each member of the 

pair will have its own circular pitch in its plane of rotation. As the 
diameters of the pitch hyperboloids are not directly proportional to the 
numbers of teeth, these circular pitches will be different from each other. 

Their normal circular pitches, however, must be identical for any given 

pitch point, and must also be the same as the normal circular pitch of the 
crown member for the same pitch point. 

We shall start with a pitch point at the axis of the crown member. 
Here the normal circular pitch docs not reduce to zero, but will be e(iual 
to the lead of the crown member divided by the number of teeth in one 
complete turn of the crown member. Thus let 

Np = number of teeth in hypoid pinion 
Ng — number of teeth in hypoid gear 

Nr = number of teeth in one complete revolution of crown member 
Pn = normal circular pitch, in. 
C = center distance, in. 
r = any radius of helicoidal crown member 

When r = 0 

Vn = 

Nr = 

L _ %rC sin 7p cos yp 

'Nr Wr 

27r(7 sin yp cos yp 

Vn 

(17-8) 

(17-9) 



SKEW BEVEL OR HYPOID GEARS 359 

When Pp = circular pitch of pinion in its plane of rotation, in. 
= circular pitch of gear in its plane of rotation, in. 

2irRbp _ 27rC sin^ 7p 
Pp Np Np N„ 

But N, = Wp/tan yp, whence 

2^(7 sin 7n cos yp 

^ _ 2TrRi,„ _ 2tC cos® yp 
Pg — — -- 

Na 

For the pinion 

For the gear 

Vo = 

Vn = 

Vn = 

Np 
Vp cos yp = Vo sin 

2rC sin2 yp cos yp 

Np 

to
 

sin- yp cos 7p 
N, 

These last two values are identical. Substituting this value of the 
normal pitch into Eq. (17-9), we obtain 

yy 
27rC sin‘^ yp cos yp 

p 
sm yp 

But 

whence 

sm yp 
VW+No^ 

Nr = VNr^ + Ng^ (17-10) 

This value is the same as for the number of teeth in the crown rack 
of bevel gears. 

When r = x/cos yp. We shall now determine the normal circular 
pitch in the plane of rotation of the crown member for the crown member, 
the pinion, and the gear at any radius r of the crown member. The 
geometry for this is identical to that for the rolling velocities of the 
several members. Thus we have 
For the crown member 

For the pinion 

Pnp 

27rr _ 27r.r _ 2tx 
(17-11) 

^r cos yp VNp^ + Ng"^ No 

2tRp cos 8p _ 2Trx tan ypRp 2nrx 
(17-11) 

Np NpRp 

2TrRg cos 8g 2TrxRg 2tx 
(17-11) 

No ~ RoNo ~ N, 

For the gear 
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All these values of the normal pitch in the plane of rotation of the 
crown member are identical. They are also the same as the circular 
pitch of the bevel gears in the plane of rotation of the crown rack. 

Summary of Hypoid-gear Tooth Action. It should be apparent that 
the nature of the action between hypoid-gear teeth is, in effect, the com¬ 
bination of the rolling of bevel-gear tooth action and the sliding of spiral- 
gear or worm-gear tooth action. The amount of the sliding is dependent 
upon the amount of offset of the axes. The pitch surface of the crown 
member is a screw helicoid. When the offset is reduced to zero, the 

pitch surface of the crown member becomes a plane, and the resulting 

gears become bevel gears. 
Because of the lead of the pitch surface of the crown member, if the 

pressure angle is the same on both sides of the tooth of the generating 
member, the effective pressure angle of operation in the plane of rotation 
of the crown member becomes greater by the amount of the lead angle 

on one side of the tooth, and less by the same amount on the other side 
of the tooth. This lead angle changes with the diameter of the crown 
member. Hence for substantially similar pressure angles of operation 

on both sides of the tooth, the nominal pressure angles of the two sides 

of the tooth of the generating member must be different. 
Theoretically an interchangeable tooth form for the helicoid crown 

member of hypoid gears could be developed. The form must be held 

symmetrical in relation to the locus of pitch points on the helicoid surface 
of the crown member; the depth of the tooth must also vary with the 

diameter of the crown member, and reduce to zero at its axis. As a 

result, the development of the full form of such a crown member by 
means of a simple cutting tool controlled by the many different motions 

required to maintain its constantly changing position and alignment 
would involve a very complex mechanism. 

The chances are that the more practical solution is to make one 
member of the pair of such a form that it can be readily reproduced by 

some simple motions of a suitable cutting tool, and then generate the 
mating member to be conjugate to this selected form. The arbitrary 
member selected may be the pinion member or the gear member. The 

available choice is quite extensive. The further discussion of hypoid 
gears will be devoted to such arbitrary combinations. 

LANTERN PINION-HYPOID FACE GEAR 

As the first example of a hypoid-gear drive, we shall use a lantern 
pinion and a hypoid face gear because this is the simplest one to analyze. 
The hypoid face gear could be generated in the same manner as indicated 

in Chap. 14 except that the axes of the lantern pinion and the face gear 
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do not intersect each other. Referring to Fig. 17-4, when 
C == center distance, in. 

Np = number of teeth or pins in lantern pinion 
Ng = number of teeth in hypoid face gear 

Kp ~ radius to center of pins in lantern pinion, also nominal pitch 
radius of lantern pinion, in. 

Rg = nominal pitch radius of hypoid face gear, in. 
A — radius of pins of lantern pinion, in. 

</) = momentary pressure angle of operation, plane of rotation of 
lantern pinion 

Fig. 17-4. 

II = distance of pitch point from center line of lantern pinion, in. 

G = height to pitch point and to contact point, in. 
E = distance of contact point from tangent line to pin circle of lantern 

pinion, in. 
Tg = radius to contact point on hypoid face gear, in. 

8 = angle to contact point on hypoid face gear 
€p = angle of rotation of lantern pinion 
€g = angle of rotation of hypoid face gear 

7p = angle of generatrix of hyperboloid pitch surface of pinion 
Rbp = radius of base cylinder of pinion hyperboloid, in. 
Rbg = radius of base cylinder of face gear hyperboloid, in. 
M = distance of contact point from center line of face gear, in. 

dg = vectorial angle to hypoid-face-gear tooth form 
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We have to start 
tan 7p = Np/Ng (14-3) 

Rbp = C sin2 7p (17-2) 
Rbg = C cos^ 7p (17-3) 

The method of analysis here is very similar to that of the lantern- 
pinion drive analyzed in Chap. 14. In this drive, however, the two sides 

of the teeth of the face gear are not symmetrical. We must therefore 
determine the forms of the two sides separately. Figure 17-4 shows the 

contact on the left-hand side of the face-gear tooth, or the side of the 
tooth that is towards the center of the face gear. 

From the geometrical conditions shown in Fig. 17-4, which is similar 

in many respects to Fig. 14-3, we have the following: 

sin 0 = [/?;,(! — cos €p) — E]/A (17-12) 
H = Rp cos €p -f- {Rp sin €p — Rbp) tan 0 (17-13) 

G = ///tan 7p (17-14) 
M = Rp sin €p — A cos (j> — C (17-15) 

tan 6 = M/G (17-16) 
r„ = G/cos 6 (17-17) 
R, = Rp/tan 7p (17-18) 
Gg — 6 - (17-19) 

Pfich point 

Figure 17-5 shows the conditions on the second side of the face-gear 
tooth. From this we have the following: 
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sin <t> = [Rp(l — cos €p) — E]/A (17-12) 
H — Rp cos «p — {Rp sin «p — R^p) tan <j> (17-20) 

G = ///tan jp (17-14) 
M = Rp sin ep + A cos (l> - C (17-21) 

tan 5 = M/G (17-16) 
= G/cos 5 (17-17) 

(17-19) 

Example of Lantern-pinion-hypoid-face-gear Drive. As a definite example we 
shall use tlie same lantern pinion as before with a center distance of 1.500 in. This 

gives the following values: 

iVp = 18 Ng = 36 Rj, = 5.000 R, = 10.000 A = 0.400 

C = 1.500 Rlp = 0.300 R,,„ = 1.200 tan = 0.500 

Using a series of values of ep, and 

Tables 17-2 and 17-3. These values are 

also plotted in Fig. 17-6. The coordi¬ 

nates for the second side of the tooth 

have been moved one tooth interval, or 
10 deg, so as to give the contour of the 

t(K)th rather than that of the space. 

As before, this figure gives a contour 

map of the tooth of the hypoid face 

gear. From this layout, sections of 

the gear tooth have been determined 

graphically. 

All the contours for sections where 
the value of E is plus are not continuous 

curves but are formed of two intensect- 

ing curves. Contact does not exist on 

F/rsf s/efe of foofh 

we obtain the values that are tabulated in 

Seconcf side of foofh 

Fia. 17-7. 
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Table 17-2. Coordinates op Hypoid Face Gear por I..antern Pinion—First 

Side of Teeth 

(Plotted in Fig. 17-6) 

deg r,., in. e., deg G, in. 

E ^ - -0.300 

-10 4.2365 -31.213 3.4181 
— 5 8.2907 -12.292 8.0160 

0 9.4731 -10.328 9.3197 
5 10.3959 - 9.379 10.3210 

10 12.9986 - 8.397 12.9757 

-0.200 

—15 4.2365 -50.402 1.8474 
-10 8.0710 -14.212 7.6215 
- 5 9.2812 -11.660 8.9991 

0 9.8286 -10.828 9.6536 
5 10.2356 -10.355 10.1396 

10 10.9701 - 9.828 10.9311 
15 14.5361 - 8.908 14.5317 

E ^ - -0.100 

-15 1 7.4099 1 -17.136 6.7354 
-10 ' 9.1204 ' -12.387 8.7037 
- 5 9.7817 -11.206 9.5031 

0 10.0243 j -10.852 9.8451 
5 10.1501 -10.690 10.0466 

10 10.4520 -10.451 10.4048 
15 11.4937 - 9.996 11.4827 

E = 0.000 

—15 8.7477 -13.648 8.1586 
-10 9.7928 -11 .360 9.3963 
— 5 10.1638 -10 787 9.8917 

0 10.1789 -10.758 10.0000 
5 10.0817 -10.848 9.9748 

10 10.1188 -10.818 10.0679 
15 10.6104 -10.568 10 5952 

E = 0.100 

-20 7.9779 -16.467 7.1417 
-15 9.6325 -11.826 9.0897 
-12 10.1543 -10.827 9.7195 

12 9.8534 -11.009 9.8157 
15 10.0324 -10.922 10.0145 
20 11.0428 -10.702 11.0421 
25 17.6493 -11.015 17.6433 

E = 0.200 

-25 6.1089 -27.291 4.6940 
-20 9.0843 -13.326 8.3418 
-17 9.9828 -11.177 9.3999 

17 9.6806 -11.091 9.6706 
20 10.1386 -10.999 10.1371 
25 12.3499 -11.031 12.3458 

E = 0.300 

-25 7.8963 -17.732 6.8223 
-20 10.0519 -11.047 9.3813 

10 9.4097 -11.156 9.4078 
25 10.7496 -11.166 10.7467 



SKEW BEVEL OR HYPO ID GEARS 365 

Table 17-3. Coordinates of Hypoid Face Gear for Lantern Pinion—Second 

Side of Teeth 

(Plotted in Fig. 17-6) 

fp, deg in. Op, deg G, in. 

E ^ - 0.300 

-10 16.4300 -2.799 16.2781 
-5 12.0364 -5.883 11.9078 

0 10.7593 -6.948 10.6803 
5 9.6433 -7.755 9.6028 

10 ! 6.7391 -9.250 6.7205 

E - ■0.200 

-15 17.6710 -1.101 17.4722 
-10 12.2519 -4.758 12.0747 
- 5 11.0414 -5.838 10.9247 

0 10.4105 -6.362 10.3464 
5 9.8114 -6.764 9.7842 

10 8.7710 -7.248 j 8.7651 
15 4.7872 -8.156 1 4.7869 

E = - -0.100 

-15 12.8290 -3.734 12.5832 
-10 11.1742 -5.343 10.9925 
-5 10.5359 -5.982 10.4207 

0 10.2157 -6.253 10.1549 
5 9.9008 -6.452 9.8772 

10 9.2955 -6.692 9.2914 
15 7.8363 -6 850 7.8359 

E = 0.000 

-15 11.4219 -4.794 11.1600 
-10 10.4875 -5.850 10.2999 
-5 10.1490 -6.206 10.0321 

0 10.0604 -6.277 10.0000 
5 9.9711 -6.322 9.9490 

10 9.6314 -6.438 9.6283 
15 8.7248 -6 476 8.7234 

E = 0.100 

-20 1 12.0864 -3.710 1 11.7421 
-15 10.5068 -5.706 10.2289 
-12 10.0733 -6.264 9.8435 

12 9.7475 -6.356 9.7473 
15 9.3060 -6.348 9.3041 
20 7.7716 -5.900 7.7517 
25 0.9079 4-45.369 0.4829 

E = 0.200 

-25 13.8340 -1.343 13.4322 
-20 10.8266 -5.116 10.4520 
-17 10.0580 -6.259 9.7261 

17 9.4623 -6.311 9.4554 
20 8.6775 -6.055 8.6569 
25 5.8515 -3.557 5.7804 

E = 0.300 

-25 11.7619 -3.542 1 11.3039 
-20 9.8230 -6.623 ! 9.4125 

20 9.4058 -6.281 9.3860 
25 7.4437 -4.967 7.3795 
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these sections at the central position of the pin but starts at some distance on either 
side of this central position. 

The projections of the contact lines between the two members at various angular 
positions can be determined as before in Chap. 14. For any given angular position, 
the value of E is one coordinate, and the value of G is the other. These contact lines 
are shown in Fig. 17-7 for the two sides of the tooth of the hypoid face gear. 

The tooth forms and the contact conditions are different on the two sides of the 
teeth. According to the way this analysis has been made, if the lantern pinion is the 
driving member and the first side of the face-gear tooth is the loaded side, then the 
direction of rotation is in the opposite direction to that indicated in Fig. 17-4. Under 
these conditions, the plus values of €p are approach action, and the minus values are 
recess action. Under these circumstances, most of the surface of the face-gear tooth 
acts during the approach action. 

If the lantern pinion is the driving member and the second side of the face-gear 
tooth is the loaded side, then the direction of rotation is reversed. It will then be in 
the same direction as indicated in Fig. 17-4. Here also, most of the surface of the 
face-gear tooth acts during the approach action. If the smoother conditions of recess 
action are needed, then this design of drive would be better for a step-up drive where 
the hypoid face gear is the driving member. Of the two sides of the face-g('ar tooth, 
the first side is the more favorable one. The conditions on both sides of the teeth 
would also be more favorable with a larger reduction ratio. With a smaller angle 
of the generatrix of the pinion hyperboloid, the face width could be increased, and 
more recess action would be present. 

FELLOWS HYPOID-FACE-GEAR DRIVE 

Another type of hypoid drive is the one where a spur pinion or helical 
involute pinion meshes with a face gear where the axes of the pair do not 
intersect. The hypoid face gear is generated with a pinion-shaped cutter 
of substantially the same size and form as the mating pinion. The rela¬ 
tive positions of the hypoid face gear and the pinion-shaped cutter are 
the same as those of the face gear and the mating pinion of the hypoid 
drive, and their relative motions are the same. 

The analysis of the contact conditions here is very similar to the 
analysis of the same type of gear drive with intersecting axes as given in 
Chap. 14. The pitch surfaces of these gears arc hyperboloids of revolu¬ 
tion. We will start with the analysis of the conditions when the pinion 
member is a spur gear. 

Involute Spur Pinion as H3rpoid Pinion. Referring to Figs. 17-8 and 
14-14, let 

Ri = nominal pitch radius of involute spur pinion, in. 
Rbi = radius of base cylinder of involute spur pinion, in. 

<t>i = pressure angle of spur pinion at 721 

ri = radius to contact point on spur pinion, in. 
02 = pressure angle of spur pinion at ri 
0 = momentary pressure angle of drive in plane of rotation of spur 

pinion 
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a — initial position of origin of involute on spur pinion 
Cl = angle of rotation of spur pinion 

7p = angle of generatrix of pinion hyperboloid 
Rbp = radius of base cylinder of pinion hyperboloid, in. 

C — center distance, in. 
K2 = nominal pitch radius of 

hypoid face gear, in. 
r2 == radius to contact point on 

hypoid face gear, in. 
H = position of pitch point 

from pinion axis, in. 
G = height to pitch point and 

to contact point, in. 
M = distance of contact point 

from face-gear center line, 
in. 

€2 = angle of rotation of hypoid 
face gear 

8 = angle to contact point on 
hypoid face gear 

$2 = vectorial angle to hypoid- 
face-gear tooth form 

Ni = number of teeth in in¬ 
volute pinion 

N2 = number of teeth in hypoid 
face gear 

T — arc space thickness of spur 
pinion at /^i, in. 

E = distance of contact point Figure n-i4 

from 7^1, in. 
The conditions here differ from those shown in Fig. 14-14 only in the 

displacement of the angular element that contains the pitch points and 
the displacement of the axis of the face gear. Thus we have from the 
geometrical conditions shown in Fig. 17-8 the following: 

a = (772/^1) - inv </>! (14-29) 
cos ^ = (7^1 — E)/ri (14-30) 

cos <t>2 = Rbl/f'l (14-31) 
Cl = — a — inv <#>2 (14-32) 

0 = ^ 02 (14-33) 

7/ = (T^bi/cos <i>) — Rbp tan <t> (17-22) 

G = II cot 7p (17-23) 
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M = ri sin /3 - C (17-24) 
tan 5 = M/G (17-25) 

rj = (r/co9 d (17-26) 
02 = 5 - €2 (17-27) 

The foregoing equations apply to one side of the teeth of the hypoid 
face gear as shown in Fig. 17-8. The conditions on the two sides of the 
teeth are different. For the second side of the teeth of the hypoid face 

gear, we have the conditions shown in Fig. 17-9, From this we have the 
following: 

a = inv 4>i — {T/2Ri) (17-28) 
cos p = {Ri — E)/r\ (14-30) 

cos <^2 = KiiAi (14-31) 

(i = — a + iav 4>t (17-29) 
4> = 4>t- P (17-30) 

H = (Bji/cos <!>) -f- Rip tan <j> (17-31) 
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G H cot (17-23) 
M = ri sin |8 - C (17-24) 

tan 5 = M/G (17-25) 

Vi = (j/cos 6 (17-26) 
0i = d - (2 (17-27) 

Example of the Fellows Spur-pinlon-hypoid-gear Drive. As a definite example 
we shall use the following values: 

A^i = 20 Ni = GO Ri = 6.000 fJj = 15.000 <l>i = 20° 
Rki = 4.C9846 cot yp = = 3.000 T = 0.7854 

inv <i>i = 0.01490 C = 3.000 R^p = 0.300 

a = - 0.01490 = 0.06364 radian = 3.646® 

Using these values together with a series of values of E and ri in the foregoing 
equations, we obtain the values for the two sides of the teeth of the hypoid face gear, 

Table 17-4. Coordinates of Hypoid-face-gear Teeth—First Side of Teeth 

(Plotted in Fig. 17-10) 

ri, in. deg fi, deg r2, in. 02, deg 

E = 0.500 

4.750 27.167 14.961 15.5419 -10.465 
5.000 45.842 21.312 19.3239 -9.538 
5.250 57.502 25.218 24.8241 -9.089 

E = 0.250 

5.500 1.050 -37.588 15.2185 -9.762 
5.250 1.290 -30.994 15.0207 -10.070 
5.000 1.805 -22.725 14.7947 -10.382 
4.750 8.495 -3.711 14.4326 -10.760 
5.000 38.195 13.665 17.2870 -9.329 
5.250 51.708 19.424 21.6204 -8.500 
5.500 61.596 22.958 27.9681 -8.118 

E = 0.000 

5.500 6.703 -31.935 15.0482 -9.942 
5.250 8.859 -22.425 14.8526 -10.530 
5.000 20.000 -4.530 14.9760 -10.046 
5.250 44.139 11.855 18.9301 -8.221 
5.500 55.943 17.305 23.8485 -7.471 

E = -0.250 

5.500 13.982 -24.656 15.0354 -9.755 
5.250 26.499 -5.785 15.5926 -9.165 
5.500 48.664 10.026 20.3636 -7.172 
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which are tabulated in Tables 17-4 and 17-5. These values are also plotted in Fig. 
17-10. 

The conditions here are very similar to those with the spur pinion meshing with a 
face gear. Thus there are cusps, which are not shown in the figure, on the contour 
of the teeth of the hypoid face gear in some cases. Below these cusps is the region of 
excessive undercutting. The conditions of undercut here are nearly the same as 
those shown in Chap. 14. They become more severe, however, as the center distance 
for the hypoid drive is increased. For this hypoid face gear, the smallest effective 
radius is about 15.00 in. 

Sections of the teeth are also shown in Fig. 17-10. As with other face gears of this 
type, the teeth become pointed with increasing diameters so that the effective face 

width of these gears is limited. The larger the ratios, or the smaller the angle of the 
generatrix of the pinion hyperboloid, the greater these effective face widths become. 

Helical Involute Pinion as Hjrpoid Pinion. This hypoid drive is the 
same as before with the substitution of a helical involute pinion for the 
involute spur pinion. The conditions here are very similar to those for a 

Fellows spiral face gear as analyzed in Chap. 16, with the shifting of the 
locus of pitch points to the generatrix of the hyperboloid pitch surface. 

The direction of the spiral on the hypoid face gear must be from the 

pinion axis toward the face-gear axis. This is necessary because of the 
nature of the sliding on the pitch hyperboloids. Thus when the axes are 
offset as shown in Fig. 17-9, a right-handed helical pinion must be used. 

The analysis of this spiral hypoid face gear is the same as for the 
preceding one with the introduction of the spiral form that develops from 
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Table 17-5. Coordinates of Hypoid-face-ceab Teeth—Second Side of Teeth 

(Plotted in Fig. 17-10) 

ri, in. <t>, deg ei, deg ri, in. 6i, deg 

E = 0.500 

4.750 27.167 -14.961 1 16.9213 -10.523 
5.000 45.842 -21.312 21.7848 - 6.649 
5.250 57.502 -25.218 28.2304 - 3.251 

E = 0.250 

5.500 1.050 37.588 14.1161 -13.451 
5 250 1.290 30.994 14.1257 -13.428 
5.000 1.805 22.725 14.2038 -13.388 
4.750 8.495 3.711 14.6950 -13.016 
5.000 38.195 -13.665 19.1931 - 9.193 
5.250 51.708 -19.424 24.4539 - 5.888 
5.500 61.596 -22.958 31.4993 = 2.907 

E = 0.000 

5.500 6.703 31.935 14.3157 -13.483 
5.250 8.859 22.425 14.4746 -13.061 
5.000 20.000 4.530 15.6184 -12.584 
5.250 44.139 -11.855 21.0511 - 8.644 
5.500 55.943 -17.305 27.0237 - 5.523 

E = -0.250 

5.500 13 982 24.656 14.8125 -13.488 
5.250 26.499 5.785 16.4742 -12.420 
5.500 48.664 -10.026 22.8409 - 8.378 

the helical teidh of the pinion. Referring again to Fig. 17-8 and also to 

Fig. 17-11, for the first side of the teeth, let 

Ri = nominal pitch radius of involute helical pinion, in. 
Rbi = radius of base cylinder of helical pinion involute, in. 

01 = pressure angle, plane of rotation, of helical pinion at Ri 

Ti — radius to contact point on helical pinion, in. 
02 = pressure angle, plane of rotation, of helical pinion at ri 
0 = momentary pressure angle of drive, plane of rotation of pinion 

a = initial position of origin of involute at distance /?2 from center 
of face gear 

€i = angle of rotation of helical pinion 

7p = angle of generatrix of pinion hyperboloid 
Rbp = radius of base cylinder of pinion hyperboloid, in. 
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C = center distance, in. 
R2 = nominal pitch radius of face gear, in. 
rg — radius to contact point on hypoid face gear, in. 
H = position of pitch point from pinion axis, in. 

G — height to pitch point, in. 
M = distance of contact point from face-gear center line, in. 

P = height to contact point on face gear, in. 

€2 = angle of rotation of hypoid face gear 

S = angle to contact point on face gear 
$0 = vectorial angle to hypoid-face-gear tooth form 

Ni = number of teeth in helical pinion 

N2 — number of teeth in hypoid face gear 
T = arc space thickness of helical pinion, plane of rotation, at /?i, in. 
E = distance of contact point from Ri, in. 

= helix angle of helical pinion at Ri 
ypb = helix angle of helical pinion at Rh\ 
As noted before, this analysis is the same as that for the spur pinion 

except for the twisting of the teeth, \vhich gives an angular direction to 

the normal at the point of contact that passes through the pitch point. 
The pitch point will be in the same position as before, but the actual 
point of contact will be shifted up or down because of the helix. We will 

use the values R\ and R2 as the starting positions, with the teeth at this 
point in the same position as before. Referring again to Fig. 17-6, we 
retain the following equations from the previous analysis: 

a = {T/2Ri) — inv (14-29) 
cos |3 = (Ki — E)/ri (14-30) 

cos <t>i = Rbi/n (14-31) 

</) = + 02 (14-33) 
II = (/?6i/cos 0) — Rbp tan 0 (17-22) 
G = H cot 7p (17-23) 

M = ri sin i3 — C (17-24) 

The normal from the pitch point to the point of contact, instead of 
being perpendicular to the axis of the pinion, is at an angle to it as indi¬ 
cated in Fig. 17-11. This figure shows the conditions for a right-handed 
helical pinion. The position of the pitch point is the same as for the 

equivalent spur pinion, but the contact point is moved up or down 
because of the angular position of the normal. 

We have from the analysis of helical gears 

tan yph = tan cos 4>\ (8-6) 
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We have the following from the conditions shown in Fig. 17-11: 

P = G — [(ilf + Rbo) tan ^6/cos 0] (17-32) 

For right-handed helical pinions 

P = G -f- [{M + Rbg) tan \pb/oos <l>] (17-33) 

For left-handed helical pinions 

tan 5 = M/P (17-34) 

= P/cos S (17-35) 

Let y be the height of the contact point above P2 in inches. Then 

y = P - R2 (17-36) 
= P — a — inv <l>2 — (27r?//L) (17-37) 

For a right-handed helical pinion 

€i = /3 — a — inv 02 + i/h^y/L) (17-38) 

For a left-handed helical pinion 

Sg = d - €2 (17-39) 

These are the equations for the first side of the teeth of the hypoid 

face gear. 
For the second side of the teeth of the hypoid face gear, we have, 

referring to Fig. 17-9, the following: 

a = inv 01 - (P/2Pi) (17-28) 
cos P = (Pi — E)/ri (14-30) 

cos 02 = P6i/ri (14-31) 
0 = 02 - 0 (17-30) 
H = {Rbi/cos 0) + Rbp tan 0 (17-31) 

G = H cot 7p (17-23) 
M = ri sin - G (17-24) 

Because of the angular position of the normal from the point of con¬ 
tact to the pitch point, we have the conditions indicated in Fig. 17-12. 

Whence 

p = G - [(ilf -f Rb,) tan Wcos 0] (17-32) 

For right-handed helical pinions 

tan 5 = il//P (17-34) 

r2 = P/cos 6 (17-35) 

y = P - R2 (17-36) 

€i = /3 — a + inv 02 — {27ry/L) (17-40) 
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For a right-handed helical gear 

€i = — « + inv (^2 “I" i^iry/L) (17--41) 

For a left-handed helical gear 

d, = 8 - €2 (17-39) 

Example of Helical Pinion as H3rpoid Pinion. As a definite example we shall use 
the following example; 
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A^i « 20 A^2 = 60 i2i = 5.000 R2 = 15.000 4>i « 20° 
Roi = 4.69846 cot 7p = ®?^o = 3.000 T = 0.7854 C - 3.000 

Rbp = 0.300 = 2.700 L = 74.000 = 23.000° 

Using these values and the foregoing equations with a selected series of values for 
ri and E, we obtain the values for the two sides of the teeth of the hypoid face gear, 
which are tabulated in Tables 17-6 and 17-7. These values are also plotted in Fig. 
17-13. 

For this hypoid drive, the smallest effective radius of the face gear is about 15 in. 
The maximum effective radius is about 18-in., as shown. Sections of the teeth are 
shown as before. The first side of the teeth appears to be the more effective side for 
driving. The pressure angles here are somewhat greater than those on the second 
side of the teeth. 

Table 17-6. Coordinate.s of Hypoid-pv^ce-gear 4'eeth—First Side of Teeth 

(Plotted in Fig. 17-13) 

ri, in. 1 
1 

1 
0, deg ‘1, <i<‘g ill. 00, deg 

E = 0.500 

4.750 27.167 15.772 14.8970 -10.553 
5.000 45.842 5.597 18.2487 - 4.443 
5.250 57.502 -16.060 23.4866 4.635 

E = 0.250 

5.500 1.050 -39.083 16.3596 - 7.635 
5.250 1.290 -31.437 15.9710 - 8.630 
5.000 1.805 -21.835 15.5031 - 9.832 
4.750 8.495 - 0.005 14.5508 -11.896 
5.000 38.195 5.165 16.8089 - 6.632 
5.250 51.708 — 6.655 1 20.3749 0.069 
5.500 01.596 -30.039 25.8964 

i 
9.510 

E = 0.000 

5.500 6.703 -32.881 16.0893 - 8.240 
.'>.250 8.859 -21.884 15.5805 - 9.842 
5.000 20.000 - 3.556 15.1007 -10.274 
5.250 44.139 1.347 17.2177 - 5.143 
5.500 55.943 -18.791 22.4307 4.453 

E = -0.250 

5.500 13.982 -25.138 15.7958 - 8.702 
5.250 26.499 - 7.902 15.7239 - 8.365 
5.500 48.664 -19.060 21.0228 2.643 
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Table 17-7. Coordinates of Hypoid-face-gear Teeth—Second Side of Teeth 

( Plotted in Fig. 17-13) 

ri, in. <1>, deg €i, deg r„ in. e„, deg 

E = 0.600 

27.167 
45.842 
57.502 

-25.291 
-58.189 
-97.602 I 

17.7110 j 
23.1664 
30.4182 

- 6.372 
6.477 

21.726 

E = 0.250 

1.050 -46.597 13.1296 -16.561 
1.290 -39.043 13.3674 -16.290 
1.805 -29.403 13.7030 -15.827 
8.495 - 6.109 14.8141 -13.719 

38.195 -35.985 20.1121 - 1.113 
51.708 26.0512 11.605 
61.596 -113.066 34.0356 27.924 

E = 0.000 

6.703 39.240 13.5170 -16.086 
5.250 8.859 27.851 13.9559 

20.000 - 2.317 15.7433 
44.139 -43.942 22.0781 

5.500 55.943 -82.236 28.8364 16.839 

E - ~0.250 

5.500 13.982 25.873 14.2642 -14.096 
5.250 26.499 - 0.698 16.6057 -10.175 
6.500 48.664 -51.555 23.9892 6,034 

FORMATE HYPOID DRIVE 

As another example of a hypoid drive we shall use a bevel gear with 

plane tooth surfaces and determine the tooth forms of the mating hypoid 
pinion. Such a bevel gear is shown in Fig. 17-14. The first step towards 
an analysis of this drive is to establish the values for the gear. Thus when 

Jo = angle of generatrix of gear hyperboloid 
Rbg = radius of base cylinder of gear hyperboloid, in. 

01 = pressure angle of gear measured along hypoid element 

00 = pressure angle of gear measured from plane of rotation 
02 = angle of trace of gear measured from plane of rotation 
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we have 
tan 03 = tan 0i/sin yg (17-42) 

tan 02 = tan 0i cos yg (17-43) 

For the analysis of the hypoid pinion, we shall select a plane perpen¬ 
dicular to the axis of the pinion and determine the location of the contact 

points on this plane. The projection of the normal to the point of contact 
on any plane will be perpendicular to the trace of the plane gear-tooth 
surface of the bevel gear on that plane. 

Referring to Fig. 17-15 for the contact on the first side of the thread, 
we have the following symbols: 

NI = number of teeth in hypoid pinion 

N2 = number of teeth in bevel gear 
Ri = nominal pitch radius of hypoid pinion, in. 
R2 = nominal pitch radius of bevel gear, in. 
7p = angle of generatrix of pinion hyperboloid 
yg = angle of generatrix of gear hyperboloid 

Rbp = radius of base cylinder of pinion hyperboloid, in. 

Rbg = radius of base cylinder of gear hyperboloid, in. 
0 = momentary pressure angle of drive, plane of rotation of pinion 
€1 = angle of rotation of hypoid pinion 
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€2 = angle of rotation of bevel gear 
A = projected length of element of gear hyperboloid to intersecting 

plane, in. 
P = height to intersecting plane, in. 
C = center distance, in. 

G = height to pitch point, in. 

D = distance from locus of pitch points to intersection of gear- 
hyperboloid element with intersecting plane, in. 

B = distance from pinion center line to intersection of gear-hyper¬ 
boloid element with intersecting plane, in. 

E = distance from locus of pitch points to contact point, in. 
F = distance from pinion center line to contact point, in. 
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ri = radius on hypoid pinion to contact point, in. 
A = angle from center line of pinion to contact point 
H == distance from pinion center line to pitch point, in. 
a = initial position of bevel-gear tooth element 

Figure 17-15 shows any position of the bevel gear and the trace of the 

plane tooth surface of the bevel gear on the intersecting plane, which is 
at a height of P. The contact point is at some position E and F, as 
indicated. We know that the normal to the trace of the gear tooth on a 
plane perpendicular to the axis of the gear from some distance E must 

pass through the pitch point at a height of G from the axis of the bevel 
gear. Also we know that the normal to the trace of the bevel-gear tooth 
on the intersecting plane at the position E and F must pass through the 

pitch point at a distance of H from the axis of the hypoid pinion. We 
shall therefore set up equations for these conditions and solve for the 
unknown values of E and F. 

We have the following from the geometrical conditions shown in 

Fig. 17-15: 

A = - ~ (17-44) 
cos C2 

B = A tan jp 
D = Rba{^ — cos C2) + A sin 62 (17-45) 

The trace of the gear-tooth surface on a plane perpendicular to the 

axis of the gear is at an angle of €2 + <#>2, whence 

E tan (€2 “b <^>2) “t“ F — Cr 

The trace of the gear-tooth surface on the intersecting plane is at an 
angle of which is called the momentary pressure angle of the drive. 

tan <t) = (17-46) 
cos €2 

/) — K 
B + ^~ F tan <#> = // 

tan <}) 
G = II cot jp 

Whence 

(B + -- — E tan 0 ) cot jp = G 
\ tan </) / 

Equating the two equations for G, solving for F, and simplifying, we 

obtain the following: 

_ A tan (t> — P tan <t> + D cot 7p (17-47) 
tan (c2 + 02) tan </> + (cot 7p/cos^ </>) 

„ . ^ . D - E 
F — A tan 7,, H- 

tan <t> 
(17-48^ 
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We shall let 

A ^ tan A =-=7— 
F 

(17-49) 

F 
= -X cos A 

(17-50) 

90° 
(17-51) 

N2 

Con^acf 
po/nf 

Pitch point 

-D-I Pitch po/ht 
^ • 1/ 

Fiq. 17-16. 

This holds true when the gear-tooth thickness is equal to one-half the 
circular pitch at the pitch element. 

= A - + ^ « (17-52) 

The foregoing gives the equations for the first side of the teeth. The 
conditions for the second side of the teeth are shown in Fig. 17-16. The 
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equations are derived in the same manner as before. Whence we obtain 

P — Rbo sin €2 

E = 

A = 
cos €2 

D = — cos €2) + A sin 62 

A tan <t) — P tan <t> — D cot 7p 
tan (€2 — </>2) tan <j> — (cot Tp/cos^ </>) 

Z? . , D - E F = A tan 7p — 

X A E -\' Pbp tan A = —p—? 

tan 0 

ri 
cos A 

N2 , A 0, = A - 6, - 

(17-44) 

(17-45) 

(17-53) 

(17-54) 

(17-49) 

(17-50) 

(17-51) 

(17-55) 

The foregoing gives the equations for the second side of the teeth of 
the hypoid pinion. 

Example of Hypoid Pinion for Formate Gear. As a dofinite ('xample we shall use 
the following values: 

iVi =20 Afj - 60 Ri = 5.000 
R2 = 15.000 C = 4.000 

Rup - 0.400 R,,, = 3.600 

For first side of teeth 

<Pi = 20° 

For second side of teeth 

01 = 25° 
tan yg = ^?2 0 = 3.00 = cot jp 

90° 
60 

= 1.500° 

Fig. 17-17. 

Using a series of values of €2 for three posi¬ 
tions of the intersecting plane and the foregoing 
values and equations, we obtain the values for 
the coordinates of the teeth of the hypoid pinion, 
which are tabulated in Table 17-8. These values are also plotted in Fig. 17-17. 

.\s with all other types of hypoid drives, the conditions are better on one side of the 
teeth than they are on the second side. In this example, the pressure angle of the 
second side of the teeth was increased in order to compensate, partially at least, for 
this difference. 

Many other forms of bevel gears can be used for the mating members 
of hypoid pinions. The elements of the teeth may be in a straight or 
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curved line, and this line may be at an angle to the projection of the locus 
of pitch points. The form must be such that it can be represented by the 
travel of the cutting tool during the generating process. 

Table 17-8. Coordinate of Hypoid Pinion Teeth 
(Plotted in Fig. 17-17) 

deg 

First side of teeth Second side of teeth 

ri, in. 9\, (leg ri, in. 6i, deg 

P = 15.000 

6.000 5.8430 3.310 4.6624 -1.337 
4.000 5.5324 5.708 4.7296 -1.091 
2.000 5.2551 7.635 4.8446 -0.645 
0.000 5.0160 9.074 5.0160 0.074 

-2.000 4.8197 10.030 5.2171 1 .045 
-4.000 4.6717 10.544 5.5087 2.667 
-6.000 4.5769 10.692 5.8235 4.610 

P - 13.000 

6.000 5.0739 3.814 4.0599 -0 564 
4.000 4.8041 6.279 4.1097 -0.309 
2.000 4.5620 8.272 4.2074 0.092 
0.000 4.3517 9.774 4.3517 0.774 

-2.000 4.1776 10.780 4.5411 1.804 
-4.000 4.0445 11.335 { 4.7733 3.246 
-6.000 * 3.9567 11.500 5.0451 5.124 

P = 11.000 

6.000 4.3054 4.4')!) 3.4580 0.499 
4.000 4.0764 7.053 3.5377 0.514 
2.000 3.8706 9.136 3.5713 1.108 
0.000 3.6884 10.726 3.6884 1.726 

-2.000 3.5366 11.811 3.8447 2.680 
—4.000 3.4183 12.417 4.0386 4.034 
-6.000 3.3376 12.607 4.2674 5.820 

The Gleason hypoid drive is one where the bevel-gear member is a 
spiral bevel gear. This drive is described in a paper by Arthur L. 
Stewart and Ernest Wildhaber.^ 

1 Trans. SAE, 1926. 



CHAPTER 18 

GEAR TEETH IN ACTION 

The load-carrying capacity of any gear drive may be limited by any 

one or more of three factors. These are as follows: 

1. Excessive heat of operation 

2. Breaking of gear teeth 

3. Excessive wear of gear-tooth surfaces 

In addition to these, excessive noise in operation may make a gear drive 
unsuitable for use even though none of the three foregoing factors is 

involved. 
Satisfactory gears must transmit power smoothly, with a minimum of 

vibration and noise, and must also have a reasonable length of useful 

life. In order to accomplish these ends, several essential requirements 

must be met. These requirements are of varying degrees of importance, 

depending largely upon the nature of the service the gears are to render. 

Some of them are requirements of the gears themselves; others have to do 

with their mounting and with the care and attention given to the drive 

in service. 

Noise of Gears. It would be well to state at the outset that no metal 

gears in operation are absolutely noiseless. Quietness is a relative term. 

The most accurate gears when running under load at any appreciable 

speed will develop a certain amount of sound. 

The noise of gears is of many kinds. It ranges from the unobtrusive 

hum of the better gears to rumbles, clashes, and squeals of varying pitches 

and intensities of the poorer grade. The exact causes of all conditions 

of noise are not, as yet, fully known. One fact, however, is certain: 

Excessive noise is evidence of improper conditions somewhere in the 
mechanism. In many respects, it is not a question of why gears are noisy 

but rather why they are ever quiet. 

Noise is relative rather than absolute. It may be defined as an 
unpleasant or objectionable sound. This is certainly a proper definition 

of the noise of gears. There is only one sure method of reducing the 
amount of sound produced by gears. This method is to improve the 

accuracy and smoothness of profile of the gears themselves as well as to 

make their conditions of operation as favorable as possible. More 

effective designs of gear-tooth forms may help somewhat, but this 
383 
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improved design must be coupled with high-class workmanship in order 

to secure the full benefit of the improvement. 
The search has been made for many years, and still continues, for 

some form of modification of gear-tooth profiles that will make unneces¬ 
sary the need of extreme accuracy. This search has been fruitless in the 
past and probably will always be so. This docs not mean that all modifi¬ 
cations of gear-tooth profiles are always undesirable. Certain slight 
modifications can be made to advantage at times to minimize the effects 
of other small errors. The attempt should always be made to keep such 
modifications to a minimum. In most cases, this modification should be 
in the nature of a tolerance, i.e.j the direction of permissible errors on the 
tooth profiles should be in the direction that avoids edge contact at the 
beginning of mesh. 

The form and material of the gear blank itself has a marked influence 
on the relative quietness of the gear at times. A blank that has the 
general characteristics of a bell will pick up and sustain a sound of its 
own vibration frequency that is created either by the engagement of the 
gear teeth or by some other outside agency. The characteristics of the 
material of which the blank is made are important factors in this respect. 

The design of the gear housing is still another factor that may influence 
the noise of gears in operation. Some gear housings are effective reson¬ 
ators, while others are not. There is much to be done in this field of 
acoustics before we can design with certainty a gear housing that will 
absorb or muffle much of the sound of operation of the gears. 

Insufficient backlash is sometimes the cause of excessive noise, heat, 
and wear. No gear drive can transmit loads continuously without back¬ 
lash. Some misguided mechanics and others insist that the only good 
job is one with tight fits. The need of operating clearances holds true 
with gears as well as with almost every other type of operating mechanical 
element. Gears heat in operation. If sufficient backlash has not been 
provided to take care of the differential thermal expansions, the teeth 
will bind, with disastrous results. 

Inadequate lubrication may also be a source of excessive heat, noise, 

and wear. At low speeds, the major purpose of the oil is lubrication. 

At high speeds, the major purpose of the oil is to act as a coolant and carry 
away the frictional heat of operation. Here the lubrication may be a 

secondary factor. Again, at high speeds, too much oil at the mesh point 

of the gears may be a source of excessive heat as the oil is expressed sud¬ 
denly from between the teeth. In other words, the amount of oil alone 

is not the only consideration; careful attention may need to be given to 

the method of its application. Adequate lubrication, however, is required 
at all speeds. 
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Loads on Gear Teeth. The average load on gear teeth is, of course, 
the transmitted load. Both experience and actual tests, however, have 

made evident the condition that the actual working loads on gear teeth 
are greater than the average transmitted load. Some of this increase in 
load is the result of variations in the output, or a load variation set up by 
the conditions of service. Some drives are subjected to shock loads, 
while others have only to meet reasonably uniform loads. In addition, 
some increase in load is caused by the speed of engagement of the teeth 
and by the inaccuracies of the gear teeth themselves. 

Dynamic Loads on Gear Teeth, The dynamic load is the maximum 
momentary load imposed on the gear teeth by the conditions of service, 
including the influence of errors in the gear teeth themselves. The nature 
and extent of these dynamic loads on gear teeth or on any other operating 
elements of a mechanism have long been open questions. In the absence 
of any evidence to the contrary, these dynamic loads have generally been 
considered as being directly proportional to the applied or average loads. 
Thus certain velocity factors have been established by running various 
mechanical elements, such as ball bearings and cast-iron gears, at varying 
velocities and imposing a sufficient load to cause failure. These applied 
loads which cause failure are then divided by the static load that would 
cause a similar failure, and the quotients so obtained have been used as 
velocity factors. 

For example, if a pair of cast-iron gears running at a certain pitch-line 
velocity should fail under an applied load of 1,000 lb, and these same 
gears would fail under a static load of 3,000 lb, the velocity factor for 
this pitch-line velocity would be taken as equal to one-third. It is then 
assumed that under these same A^clocity conditions, the dynamic load 
would be equal to three times the applied load. Hence with an applied 
load of 250 lb, the dynamic load is assumed to be equal to 750 lb. 

In 1879, John H. Cooper made an investigation of the strength of 
gear teeth and found that there were then in use about 48 well-established 
rules for horsepower and working strength, differing from each other in 
extreme cases by about 500 per cent. In 1886, Prof. William Harkness 

found from an examination of the literature of the subject, dating back 

to 1796, that according to the constants and formulas used by different 
authors, there were differences of 15 to 1 in the power that could be trans¬ 

mitted by a given pair of gears. 

On October 15, 1892, Wilfred Lewis presented a paper before the 

Engineers’ Club of Philadelphia entitled Investigation of the Strength 

of Gear Teeth. He appears to have been the first to use the form of the 

gear tooth as one of the factors in a formula for the strength of gear teeth. 
The Lewis formula, given below, soon became widely used. 
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Lewis Formula. When 
W = transmitted load, lb 

5 = safe working stress in material, psi 
p = circular pitch, in. 
F = face width of gears, in. 
y = tooth-form factor 

W = spFy (18-1) 

He then gave the following list of safe working stresses for cast iron 
and steel, which was determined from an English rule published in 1868: 
credited to E. R. Walker, Newcastle under Lyme. 

Speed of teeth, 
ft/min 

Safe working stress, psi 

Cast iron Steel 

100 or less 8,000 20,000 
200 6,000 15,000 
300 4,800 12,000 
600 4,000 10,000 
900 3,000 7,500 

1,200 2,400 6,000 
1,800 2,000 5,000 
2,000 1,700 4,300 

Mr. Lewis continued his discussion with the following statement: 

What fiber stress is allowable under different circumstances and conditions 
cannot be definitely settled at present, nor is it probable that any conclusions will 

be acceptable to engineers unless based on carefully made experiments. Certain 

factors are given as applicable to certain speeds, and in the absence of any later or 

better light upon the subject, these have been constructed in a table to embody in 

convenient form the values recommended. It cannot be doubted that slow 

speeds admit of higher working stresses than high speeds, but it may be ques¬ 

tioned whether teeth running at 100 feet a minute are twice as strong as at 600 

feet a minute or four times as strong as the same teeth at 1800 feet a minute. 

Barth Equation. The foregoing values were later put into the form 
of an equation by Carl G. Barth. This equation is as follows: 
When s = safe working stress, psi 

Si = safe static stress, psi 
V = pitch-line velocity, ft/min 

s = 600si/(600 + V) (18-2) 

The foregoing values and the Barth equation were based on tests and 
experience with cast-iron gears with cast tooth forms prior to 1868. 
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With the introduction of cut and generated gears of a higher degree of 
accuracy, the Barth equation is often modified as follows: 

s = l,200si/(l,200 + V) (18-3) 

High-speed Herringbone Gears. With the introduction of higher 

speeds for prime movers, such as steam turbines and electric motors, and 
the use of reduction gear drives for connecting them with the driven 
mechanisms, such as generators, centi'ifugal pumps, fans, etc., it has been 

found by experience that after the gears reach a pitch-line velocity of the 

order of 5,000 ft/min, their load-carrying ability is practically constant 
for any higher speeds. This condition has led to the use of equations for 
such gears based on the limiting load per inch of tooth face. One such 

equation commonly used in the United States is the following: 
When W = transmitted tooth load, lb 

F = width of gear face, in. 

k = constant depending upon materials and load conditions 
D = pitch diameter of smaller gear, in. 

W = FkD (18-4) 

The following values of k are often employed in this equation for steel 
gears: 

For single reduction gears, steady load, continuous service 

k = 62.5 

For single reduction gears, steady load, full load reached only occa¬ 

sionally 
k == 100 

Another similar equation that is widely used in England is the 
following: 

W = Fk^/D (18-5) 

In this equation, for steel gears, the following values of k are often 
used: 

For single reduction gears, steady load, continuous service 

k = 175 

For single reduction gears, steady load, full load reached only occa¬ 
sionally 

k = 250 

No allowance is made in these equations for the effect of pitch-line 
velocity. They are based on experience with high-speed gears in service. 
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When gears are made accurate enough to operate satisfactorily at about 
5,000 ft/min pitch-line velocity, there seems to be but little difference, 
except at critical speeds, in either their quietness or load-carrying ability 
between that speed and up to over 10,000 ft/min. 

Marx Tests. It was not until about 1911 that any extensive and 

systematic tests were undertaken to obtain more reliable information on 
this subject of working loads; at that time Prof. Guido H. Marx at 
Stanford University made an extensive series of tests by running cast-iron 

gears to destruction. These tests were continued in 1915 with the assist¬ 

ance of Prof. Lawrence C. Cutter and included tests with pitch-line 
velocities running up to 2,000 ft/min. The results of these tests were 
reported in papers read before the ASME in 1912 and 1915. Some 
influence of the contact ratio was apparent in the results of these tests. 
Velocity factors that showed some variation from the commonly used 
values were established from these tests. 

Ralph E. Flanders, in the discussion of the 1912 report, makes the 
following comments: 

In regard to the dynamic qualities of the materials, is it safe to use the velocity 
coefficients given for all materials? Does not the strength of a gear running at 
high speed depend more upon the dynamic qualities of the metal than on the 
static strength? Would the coefficients derived from cast iron be correct when 
used for mild steel or when used for special heat-treated alloy steels, such as are 
used in automobile practice? It is also important to know how much the accu¬ 
racy of the cutting affects the strength of the gears at high speed. The chances 
are that a high premium is put on accuracy from the standpoint of strength. 
If this is so, it should be definitely known, though it may not be practicable to 
include this factor in a formula. 

In 1924, Franklin and Smith undertook a series of tests, under the 
supervision of Professor Marx, on cast-iron gears made to varying degrees 
of accuracy. The tests were made on the same apparatus as that used 
by Marx, and the results were presented in a paper read before the ASME 
in 1924. These tests showed that the accuracy of the gears had a marked 
influence on their strength at speed. 

Increment Load. The validity of the use of a velocity factor has 

been questioned from time to time. In the January, 1908, issue of 
Machinery^ Ralph E. Flanders discusses the probable nature of the 
dynamic loads on gear teeth. He points out the possible effects of errors 
and the influence of the masses, and then states: ‘‘After some reflection, 
the writer has come to the conclusion that a variation in the strength of 
perfectly formed gearing, due to a variation in the velocity, can be due 
to but one thing—impact caused by the imperfect meshing of otherwise 
perfectly shaped teeth, deformed by the load they are transmitting.^’ 
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The thought has been advanced that the actual dynamic load on gear 
teeth is the combination of two loads: first, the transmitted or useful 

load; and second, an additional or increment load caused by imperfect 
tooth profiles, unbalance, fluctuating applications of load, etc. Tooth 
action is made up of accelerations and deceleratoins caused by the defor¬ 

mation of the teeth under load, tooth-form errors, spacing errors, etc. 
At low speeds, these errors have but a relatively slight effect, but at high 
speeds they may develop increment loads many times greater than the 
applied load. 

In an article published in Zeitschrift des Vereines deutscher Ingenieure 
in 1899, Oscar Lasche discussed the probable affect of errors and the 

large increment loads that might result from them at high pitch-line 
velocities. He gave certain calculated values for these increment loads 
based upon the assumption of rigid materials, but stated: ‘^All such 
figures, however, depend upon assumptions which influence the results 

to a large extent and do not permit the determination of the results 
accurately.’^ Considering rigid bodies, he states that the increment load 

caused by errors would be proportional to the square of the pitch-line 
velocity. He goes on to state, however: 

The more elastic the teeth are, the greater the error that can be permitted. 
The differences in the velocities caused by the errors can be partially absorbed 
by the teeth themselves without disturbing the velocities of the rotating masses 
so much, and without causing such high increment loads. The duration of the 
changes in velocity is also spread over a longer period of time because of the 
springy action of the teeth, and consequently the acceleration of the masses is 
reduced, and the increment load is cut down. 

In a paper read before the (British) Institution of Mechanical Engi¬ 
neers in May, 1916, Daniel Adamson discussed the probable value of 
the increment loads along similar lines to those followed by Oscar Lasche. 

As a result of correspondence between Daniel Adamson, Wilfred 

Lewis, and Charles H. Logue, Lewis proposed in a paper read before the 
ASME in December, 1923, the design and construction of a testing 
machine that would enable these increment loads to be measured. He 

pointed out the difficulty of reconciling the results of actual breaking 
tests with the analytical work of Oscar Lasche, the one seeming to con¬ 
tradict the other. He stated: 

In the writer’s opinion, breaking tests are misleading and should be dis¬ 
couraged for the simple reason that when a gear is broken under any conditions 
as to load and speed, it is done for, and it becomes impossible to say what that 
gear would have shown under some other conditions. So also in regard to form¬ 
ing and spacing, it is a matter of vital importance that the minute errors, so 
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detrimental to smooth running, be noted in terms of the velocity ratios which 

they produce, and as near as may be under actual working conditions. 

But if it is true, and no doubt it is, that errors in forming and spacing are 

responsible for the loss of working strength at speed and that, as pointed out by 

Lasche, the variations in velocity ratio caused thereby give increment loads 

proportional to the speed squared for rigid forms in continuous rolling contact, 

a complete understanding of the effect of speed upon the strength of gear teeth 

requires a correlation of errors to the increment load or to the permissible speed, 

as indicated by Mr. Adamson in his paper. 

ASME Special Research Committee on the Strength of Gear 

Teeth. As a result of the efforts of Wilfred Lewis, the ASME Special 
Research Committee on the Strength of Gear Teeth was organized to com¬ 

plete the design of the testing machine, solicit funds for its construction, 
and to conduct tests. Preliminary studies and discussions considered the 
probable results of the tests and possible methods of analysis. A pre¬ 

liminary study made by Ernest Wildhaber deserves particular mention. 
He worked out an analysis on the basis of rigid bodies, following Oscar 
Lasche^s method; then a similar one introducing the influence of elasticity 

with a constant effective mass; and third, the influence of elasticity with 
infinite mass, a condition that might be approached at very high speeds. 
He summed up these analyses as follows: 

Summing up: We have now three conceptions of the effects of errors. Accord¬ 

ing to the first, the increment loads will be proportional to the square of the 

velocity. According to the second conception, the increment loads will be 

directly proportional to the velocity; and according to the third, there is a limit 

increment load which is independent of the velocity. Furthermore the incre¬ 
ment loads in the first case arc directly proportional to the masses; in the second 

case, they would be proportional to the square root of the masses; and in the third 

case, the limit increment load would be independent of the masses. All of which 

shows we are badly in need of experimental data. And only after the gear tester 

has spoken is it possible to conceive a final, simplified, and practical theory of 

the effect of errors on the strength of gear teeth. 

The Lewis gear-testing machine was built, and tests were run over a 
period of several years at the Massachusetts Institute of Technology. 
A description of the testing machine and the results of these tests were 
published in an ASME Research Publication, 1931, entitled Dynamic 
Loads on Gear Teeth. An analysis of the dynamic loads on spur gears 
based on this report is given here in Chap. 20. 

Frictional Heat of Operation. The power loss at the tooth mesh of 
any gear drive is converted into heat, and this frictional heat must be 
carried away in some manner. Some of it is dissipated by direct radia¬ 
tion, and some of it is carried away by the lubricant. With a closed 
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gear case, all the heat that is dissipated is radiated from the exposed 
surface of the gear case. The rate of this heat dissipation depends upon 
the exposed area of the gear case, the condition of the exposed surface, 
and the difference in temperature between the surface of the gear case 
and the surrounding air. When the rate of heat dissipation is equal to 
the rate at which the heat is created, we reach a condition of balanced 

temperature. 
The entire exposed surface of the gear case will not all be at the same 

temperature. The exposed surface of the oil sump will have an appre¬ 
ciably higher temperature than the remainder of the exposed surface of 
the case. Thus any calculated value for the balanced temperature of 

the gear case will be an integrated average value. However, as the 
exposed area of the oil sump is generally small in comparison to the total 
exposed area, the calculated value of the temperature should be approxi¬ 

mately that of the gear case. 
The rate at which the heat will be radiated from the surface of the 

gear case is a very uncertain factor as it depends, in addition to other 
factors, upon the character and condition of the radiating surface and the 
conditions of air circulation around the gear case. It should also be 
appreciated that the temperature of the gears themselves, and that of 
other surfaces inside the gear case, will be much higher than the tempera¬ 

ture of the outside of the gear case. 
Under the more favorable conditions of radiating surface and air 

circulation about the case, we may assume a rate of 2.7 Btu per hour per 

square foot of exposed surfa(^e of the gear case for the rate at which this 
frictional heat is dissipated for a difference of 1°F between the tempera¬ 
ture of the gear case and that of the surrounding air. This is equivalent 

to about 35 ft-lb per minute per scpiare foot of exposed surface per 1°F 
difference in temperature. Thus when 

Wf = power loss, ft-lb/min 
Td — difference in temperature between outside of gear case and room 

temperature, °F 
A = area of exposed surface of gear case, sq ft 

Td = Wf/SdA (18-6) 

Under less favorable conditions, when the gear case is located in a 
corner or in a pit where there is little free circulation of air, the rate at 
which the heat will be dissipated will ,be materially less than the fore¬ 
going. Thus with the gear case in an unfavorable position, the rate of 
dissipation of heat may be reduced to or below about 1.8 Btu/(hr)(sq ft 

exposed surface) for each 1°F difference in temperature. This is equiva¬ 
lent to about 24 ft-lb/(min)(sq ft exposed area)(l°F temperature dif- 
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ference). Under such conditions 

= Wf/24A (18-7) 

Example of Heat Dissipation. As a definite example we shall use a spiral-bevel- 
gear drive and assume that it transmits 25 hp with a power loss of 4,125 ft-lb/min, and 
that the area of the exposed surface of the gear case is equal to 2 sq ft. Whence we 
have 

A 

T 

2.000 Wf 

4,125 

35 X 2 

= 4,125* 

59°F 

When the amount of frictional heat is too great to be dissipated by 
the radiation from the exposed surface of the gear case, we must introduce 

a circulating-oil cooling system or its equivalent. Such an equivalent 

might be a water-cooled jacket around the case. In general, however, 
the circulating-oil system would be more effective, as this will take the 
heat directly from the gears and carry it away. Here we direct a greater 
stream of oil against the gear blanks than is required for lubrication. 
Some of the heat may be dissipated by radiation from the exposed surface 

of the gear case, but we will assume for the present that all the heat must 
be carried away by the oil. We will determine the amount of oil required 
to carry away the heat with a specified rise in temperature of the oil. 
Thus when 

Wf = power loss, ft-lb/min 

Tr = temperature rise permitted in the oil, °F 
C = specific heat of oil 
X = oil to be circulated, Ib/min 
Q = heat generated, Btu/min 

Q = xTrC (18-8) 
1 Btu = 777.5 ft-lb 

777.5Q = Wf 

C = 0.40 (average for lubricating oils) 

Substituting these values into Eq. (18-8) and solving for x, we obtain 

X = 0.00321 (W//r,) (18-9) 
1 gal of oil (231 cu in.) weighs about 7.63 lb 
1 cu in. of oil weighs about 0.03292 lb 

Whence 

Pounds of oil per minute = 0.00321 (Wz/rr) (18-9) 
Cubic inches of oil per minute = 0.0975(W//rr) (18-10) 

* The friction losses of the bearings should also be added to those at the tooth 
mesh in order to determine the probable average temperature of the gear case. 
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Circulating-oil Cooling and Radiation, When part of the frictional 
heat is dissipated by radiation from the exposed surface of the gear case, 

then only the remainder will be carried away by the circulating oil 

The temperature of the outside surface of the case should be taken as 
something less than the temperature of the oil. A few simple tempera¬ 

ture measurements on any particular case would give the proper value. 

A fair guess might be that the temperature rise of the outside surface of 
the case will be about 75 per cent of the temperature rise of the circulating 

oil. Under these conditions, we must first determine the relative amounts 

of heat carried away by the two methods. For this we must combine 
the two sets of equations. 

When W'f = amount of power loss dissipated by case, ft-lb/min 
W^'f = amount of power loss carried away by oil, ft-lb/min 

A = area of exposed surface of gear case, sq ft 

Td = temperature rise of outside surface of gear case, °F 
Tr = temperature rise of circulating oil, °F 

Wf ~ total power loss, ft-lb/min 
X = oil to be circulated, lb 

we already have the following: 

Td = TF'//35A 

Whence 

W'f = yoATd 
= W/ - TF'/ 

x = 0.00321 (W"//rr) 

Whence we have the following: 

Pounds of oil per minute = 0.00321 (TF/ ~ W'f)/Tr (18-13) 
Cubic inches of oil per minute = 0.0975(1F/ — W'f)/Tr (18-14) 

Examples of Circulating-oil Cooling. First Example. For the first example we 

shall assume that all the frictional heat is to be carried away by the cireulating oil. 

We will use the following values: 

Inlet oil =» 100°F Outlet oil = 200°F Wf = 30,000 

Whence 

Tr » 100°F 

30 000 
Cubic inches of oil per minute = 0.0875 —*= 29.95 cu in./min 

Second Example. As a second example we shall assume that the exposed area of 

the gear case in the preceding example is equal to 5 sq ft, that the average temperature 

of the outside of the gear case is 175®F, the room temperature is 75®F, and that all 

other factors are the same as before. This gives the following values: 

Td = 100° Tr » 100° A = 5.00 Wf = 30,000 

(18-6) 

(18-11) 

(18-9) 
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From Eq. (18-11) we have 

IF'/ = 35 X 5 X 100 = 17,500 

From Eq. (18-12) we have 

W"f = 30,000 - 17,500 = 12,500 

Prom Eq. (18-14) we obtain 

12 500 
Cubic inches of oil per minute == 0.0075 —47^ = 12.19 ou in/min 



CHAPTER 19 

EFFICIENCIES OF GEARS 

Analyses of the efficiencies of gears have been made by Reuleaux^ and 

Weisbach.2 Leutwiler^ gives an approximation based on Weisbach’s 
analysis that meets all ordinary requirements. These equations are 
general in nature and must be adapted or arranged to solve any specific 

problem of gear contact. Substantially the same results are obtained by 

an unpublished analysis made by Prof. William Howard Clapp of the 
efficiency of involute gears. The following analysis for involute gears is 

that of Professor Clapp: 

It is customary to express the efficiencies of many power-transmitting 
elements in terms of a coefficient of friction. Familiar examples are power 
screws, worm-gear drives, belts, friction clutches, and the various types 

of bearings. This method has the merit of bringing out relationships 
that would not otherwise be obvious. The effects of changes in design, 
whether in proportions of parts or in materials, where frictional contact 

occurs, are indicated by the ecpiations and are sufficient warrant for their 
use. In addition, the heat of operation and the question of the possible 
need for cooling often makes the use of such an ecpiation imperative. 

In any analysis some simplifying assumptions must be made. The 

first trial solution may be oversimplified in order to gain a better under¬ 
standing of the problem and to reduce the number of variables. Then 
other conditions may be introduced in order to approach closer to the 
actual conditions. We will start, therefore, with the following assump¬ 
tions, none of which may be absolutely true in practice: 

Assumptions. 

1. Perfectly shaped and equally spaced involute teeth. 
2. A constant normal pressure at all times between the teeth in 

engagement. 
3. When two or more pairs of teeth carry the load simultaneously, the 

normal pressure is shared equally between them. 

1 Reuleaux, “The Constructor,’’ 4th ed., p. 134 (Suplce, 1893). Phila. 

2 Weisbacii and Herman, “The Mechanics of Machinery,” translated by J. V. 

Klein, Vol. Ill, p. 347 (Wiley, New York, 1894). 

3 Leutwiler, “Elements of Machine Design,” p. 319 (McGraw-Hill, New York, 

1917). 

395 
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Analysis of Friction Loss. Referring to Fig. 19-1, in which one gear 
driving clockwise drives another, and where the subscript 1 is used on 

Fig. 19-1 

the symbols for the driver and the subscript 2 is used on those for the 
follower, we will let 

Rbi = radius of base circle of driver, in. 
Rhi — radius of base circle of follower, in. 

<t) = pressure angle of gears 

mn = the path of contact, with m the point of first 
contact and n the point of last contact 

X = any point of contact along the path of approach 
y = any point of contact along the path of recess 
p = pitch point 

m', n', p', x', p' = corresponding points of the origin of the involute 

curve on the base circle of the driver, so that the 
distance mn is equal to the arc distance m'n', etc. 
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m", n", p", x", t/" = corresponding points of the origin of the involute 
curve on the base circle of the follower 

p'Oi = reference radius from which the angles of action 
of the driver are measured 

p"02 = reference radius for angle of action of follower 
Pal = angle of approach for driver (angle p'Oim') 
pri = angle of recess for driver (angle p'Oiu') 
pi = any angle of action such as p'Oix' or p'Oii/' 

Pa2i Pr2y P2 = Corresponding angles for follower 

/' = coefficient of friction, considered constant 
fa = average coefficient of friction of approach 
fr = average coefficient of friction of recess 

Wn = total normal pressure acting between the teeth, 
lb 

Lai = friction lever arm for driver during approach, in. 

Lri = friction lever arm for driver during recess, in. 
La2y Lr2 = corrcsponding lever arms for follower, in. 
Tai, Tri = torque exerted by driver during approach and 

recess, respectively, in.-lb 
Ta2y Tr2 = torque exerted on follower during approach and 

recess, respectively, in.-lb 

Wah ^Vfi = work output of driver during approach and 
recess, respectively 

Wa2y Wr2 = work input of follower during approach and 
recess 

W/ = friction loss of both gears 
coi = angular velocity of driver, radiaris/min 

Niy N2 = number of teeth on driver and follower, respec¬ 

tively 
From assumption 3, it can be shown that the total friction loss and 

the power input to the follower during the engagement of one pair of 

mating teeth are the same as when one pair of mating teeth carry the 
entire load throughout their period of engagement. 

Work Output of Driver during the Engagement of One Pair of Teeth, 

Referring again to Fig. 19-1, during approach, considering any position 
of contact as at x, the normal force Wn opposes the rotation of the driver, 
while the frictional force/TFn assists rotation. The torque exerted by the 

driver at any approach position is as follows: 

Tal = WnPbl “* fWnLal 
Lai = cx = cp — px = cp — p'x' = Rbi tan <l> — RbiPxi 

Tal = WnRbi [1 - /(tan 0 - j3,i)] 
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The work output of the driver during approach is as follows: 

Wa, = f Tax d&x = WnRbi [1 ” /(tan <i> - fix)] dfi. 

During recess, the direction of the sliding between the teeth is reversed, 

so that 

Trl = WnRl>l + fWnLrl 

Wrx = f Trx dfix = W„R,X [1 + /(tan 4> + fix)] dfix 

Work Input to Follower during Contact of One Pair of Teeth. During 
approach, the normal force and the frictional force oppose each other. 

Ta, = WJh2 - fWnLa2 
La2 ~ Rh2 tan ^ 4“ 7?621^x2 

Wa2 ~ WnRb2 [1- ” /(tan + /?2)] d^2 

During recess, both the normal force and the frictional force assist the 
rotation of the follower. 

Tr2 — WnRb2 fWnLr2 

Lr2 = Rb2 tan 0 — Rb20x2 

Wr2 = WaR,2 [1 + /(tan ,/> - fi2)] dfi2 

Case I. f Considered as Constant. Let us assume first that the 
coefficient of friction remains constant throughout engagement. Inte¬ 
grating the equations for work, we obtain 

Wax 

Wrx 

Wa2 

Wa2 

Wr2 

Wr2 

W„R,, 

WaRiX 

WaRx,2 

WaR,, 

Wr.Rs2 

WnR,X 

fiax - /' (tan <}>) fiax + fiaX^ 

firX+f' {t&n,l>)firx+^~firx^ 

fiaH - /' (tan <t>) fia2 - ^ fiai^ 

- /'(tan 
Z/le,2 ] 

0r2 + f (tan (p) I3r2 — ^ i3r2^ j 
firx+f'(tm4x) firx 
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The efficiency of the gears is equal to 

Wai + Wrt ^ (gal + grl) " f tan <f> (g„, - g,,) - {f/2m) + g.i^) 

(Val + Wn (gal + grl) “ /' tan <!> (g„i - gn) + (/72)(ga2=“ + grl^) 

The friction loss per minute is equal to 

IFnCOlRM [/' , 
It^al + Wrl [2 

+ g.l=) (19-1) 

The efficiency can be written more simply and almost exactly by con¬ 
sidering the work input to be equal to 

whence 

Wal + Wrl = Wr^icJUl 

Efficiency = 1 — 
1 + (i/w)'!/' 

gal + grl . 2 
(gal^ + grl^) (19-2) 

Case II. f Considered as Variable. Actually, the coefficient of fric¬ 

tion is not constant but varies with different loads, speeds, lubricants, and 

gear materials, as well as with different types of finish and probably with 
many other factors. 

Actual tests on gears indicate that the general form of the curves 
representing the average coefficients of friction plotted against sliding or 
pitch-line velocities is very much the same as on similar graphs represent¬ 
ing the performance of plain bearings. Here, at low speeds, the values 

of the coefficient of friction are high, reducing rapidly to a minimum with 
increasing speed, and then rising again slowly with further increases in 

speed. 

We have already seen that the nature of the sliding between involute 
gear teeth consists of sliding in one direction during approach, reducing 
to zero at the pitch point where the direction of sliding changes, and 

increasing again as the contact progresses through the recess action. 
Since the direction of sliding changes at the pitch point, we may 

conclude that the coefficient of friction will never lie wholly within the 

field of perfect film lubrication during the period of engagement of a pair 
of mating teeth. 

We may set up these efficiency equations in a variety of ways. The 
chances are, however, that the most we can determine by experiment is 
to establish some average values for approach action and average values 
for recess action. These conditions could be studied by testing gears 

that have all approach action in one case and all recess action in another 
case, with all other factors remaining constant. 
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From the observation of the behavior of gears on the Lewis gear¬ 
testing machine at very low speeds up to about 5 ft/min pitch-line 
velocity, the friction of approach appeared to be about double that of 

recess on hobbed, milled, and shaped gears of cast iron, soft steel, bronze, 
and aluminum. On hardened and ground steel gears, however, there 
appeared to be no appreciable difference between the friction of approach 

and that of recess. There did appear to be, however, a momentary jump 
in the friction load to about 150 per cent of the average value when the 
contact passed through the pitch point. Whether or not these conditions 

would hold true when the gears are operating at higher speeds is an open 
question. Yet regardless of this, it would appear that some average 
values of the two coefficients of friction, approach and recess, would give 
us a reasonably close measure of the truth. 

We shall therefore introduce different average values for the coeffi¬ 
cients of friction of approach and recess. Thus we obtain 

Wal = Wnfibl 

Wrl = WnRn 

Wa2 = WnRti 

Wr2 = Wr^Rti 

pal — fa (tan 0) pal + Pal f<i Q 2 

Prl + fr (tan </>) Pri + Prl^ 

pal fa (tan (f)) Pal 27)1 

Prl + fr (tan <t>) Prl ““ Prl^^ 

The friction loss per minute is equal to 

Considering the work input to be equal to 

Wal + Wrl = WnmRtl 

then the efficiency will be equal to 

+ (l/wi) \ff^^ J 
Efflctency - 1 - (f + f «,.>) 

(19-3) 

(19-4) 

Summary of Efficiency Equations. To bring the foregoing material 
into a more condensed form for ready use, we make the following sum¬ 
mary (we shall also repeat the equations for the sliding velocity and for 
the arcs of approach and recess): 
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When Ni, N2 =• number of teeth on driver and follower, respectively 
m = gear ratio 

Pay = arc of approach and recess on driver, respectively 
/ = average coefficient of friction 

fa = average coefficient of friction of approach action 

fr = average coefficient of friction of recess action 

m = 
N2 

(19-5) 

When the coefficient of friction is assumed as constant 

Efficiency = 1 - j ^ (19-6) 

When the average coefficients of friction of approach and recess are 

different 

Efficiency - 1 - ] (§ l>.‘ + § «-■) dM) 

Arc of Approach and Recess 

R\, Rt, = pitch radius of driver and follower, respectively, in. 
Roly Ro2 = outside radius of driver and follower, respectively, in. 

Rbh Rb2 = base-circle radius of driver and follower, respectively, in. 

C = center distance, in. 
0 = pressure angle 

« \^Ro2^ — Rb2^ — R2 sin 0 
=-W,- 

\/R„i^ — sin <#> 

=- 

Sliding Velocity. When 
V = pitch-line velocity of gears, ft/min 

Vs = sliding velocity, ft/min 

n = rpm of driver 
r = any radius of driver, in. 

and all other symbols are the same as before 

V = 2TrRin/l2 = 0.5236fiin 

Vs = V[{\/R,) + {I/R2)] (Vr- - Ri>i^ - Ri sin 0) 

(4-17) 

(4-18) 

(19-8) 

(4-14) 

As noted before, the sliding velocity varies from zero when the contact 
is at the pitch point to a maximum in either direction at the beginning 
and ending of mesh. This variation in sliding velocity is uniform along 
the path of contact. We shall use the average sliding velocity, which will 
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be one-half of the maximum value, to select the coefficient of friction. 

Thus when 
V\ = average sliding velocity, ft/min 
Vaa = average approach sliding velocity, ft/min 
Var = average recess sliding velocity, ft/min 

Var = (F/2) [(l/Ki) + (1/722)] {VRoi^ - Rbi^ - Ri sin <t>) 

This is equal to 
Var = (F/2) [(1/720 + (1/7201 RtlPr 

But 
Rbi = 72i cos <t> 

Introducing this value into the foregoing equation, we obtain 

Var = (y/2) [1 + (N,/N.)] COS cj> (19-9) 

In a similar manner we obtain 

Vaa = (1^/2) [1 + (iVi/iVOl COS (/> (19-10) 

In most cases, when we need some measure of the efficiency in order 

to determine the amount of heat to be dissipated, the use of an average 
sliding velocity for the entire tooth engagement and an average coefficient 
of friction will be adequate. It is primarily when we wish to compare the 
relative merits of different tooth designs that we need to consider the 
approach and recess separately. Thus, for the value of the average 
sliding velocity, we have 

V'a = 7 COS (^> [1 + {N,/N^)] Wa + ^.)/4] (19-11) 

Coefficients of Friction on Spur Gears. Several tests of the power 
losses with spur gears are reported on pages 51 to 59, inclusive, of the 
ASME Research Publication, 1931, entitled Dynamic Loads on Gear 
Teeth. Applying the foregoing analysis to the results of these tests, we 

can obtain some tentative values for the coefficients of friction for use 
until more extensive and more reliable values can be obtained. 

Referring to this report, on the run N, both pairs of gears in the testing 

machine were the same. The master gears used on this run were also 
used on all other test runs. Hence we will divide the power losses here 
by 2 on the assumption that the losses were the same on both similar 
pairs of gears. 

Starting with run N-24 where there was a tooth load of 1,092 lb (from 
table on page 59 of report) and the pitch-line velocity was 25 ft/sec or 
1,500 ft/min, we have for these 3-DP, 143^-deg-form, milled cast-iron 
gears the following values: 
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Pounds 
Power loss, total. 19.25* 
Power loss, zero load. 5.25t 

Difference. 14.00t 
Master-gear loss. 7.00t 
Test-gear loss. 7.001 

* At pitch radius, 
t At pitch line. 

These gears have the following values: 

/3a = 0.3691 radian /3r = 0.3045 radian = 18 A^2 = 48 
Output load = 1,092 lb 

Input load = 1,099 lb 

Efficiency = = 0.9936 

Transposing Eq. (19-6) to solve for/, we have 

2(1 - 0.9936) (/3a + ^r) 

^ W+ + 0.375) 
0.0272 

In like manner, the values for the coefficients of friction for various 
speeds on runs 11 and S have been determined. These values are tabu¬ 

lated in Table 19-1. The gears in run R were 20-deg, 3-DP gears of soft 
steel and cast iron. The gears in run S were 14}^-deg, 10-DP gears of 
soft steel and cast iron. 

These values of / are plotted in Fig. 19-2 against the values of the 
pitch-line velocities. Here there is a distinct difference between the two 
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graphs; that for the finer pitch is definitely below that for the coarser 
pitch. In other words, the finer pitch gears are more efficient. 

Table 19-1. Values of / for Runs R and 8 

(Plotted in Figs. 19-2 and 19-3) 

F, ft/min 

Run R Run S 

/ V\y ft/min / V',t ft/min 

0 0.0517 0.00 0.0496 0.00 
150 0.0112 27.75 0.0066 12.00 
300 0.0122 55.50 0.0088 24.00 
450 0.0155 83.25 0.0110 36.00 
600 0.0188 111.00 0.0127 48.00 

750 0.0216 138.75 0.0143 60.00 
900 0.0244 166.50 0.0160 72.00 

1,050 0.0273 194.25 0.0173 84.00 
1,200 0.0296 222.00 0.0185 96.00 
1,350 0.0315 249.74 0.0196 108.00 

1,500 0.0329 277.50 0.0206 120.00 
1,650 0.0343 305.25 0.0216 132.00 
1,800 0.0357 333.00 0.0225 144.00 
1,950 0.0371 360.75 0.0234 156.00 
2,100 0.0385 388.50 0.0242 168.00 

0.05 

0.04 

0.03 

f 

0.02 

O.OI 

" 0 100 200 300 400 
Vg (ft. per min.) 

Fig. 19-3 

These values of / are plotted in Fig. 19-3 against the average sliding 
velocities. Here the two graphs intersect each other. Averaging the 
several test, values, we obtain the values of / that are plotted in Fig. 19-4 
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against the average sliding velocities. These values will be used for soft 
gears of conventional design where the arcs of approach and recess are 
substantially equal. 

Values of fa and fr for soft gears are plotted in Fig. 19-5. These will 
be used when the design gives a preponderance of recess or approach 
action. In these cases, the average velocity of sliding will be different 
on the approach from that on the recess. These values are based on the 
differences noted in very low speed tests. It is hoped that further tests 
can be made to obtain more reliable values. The value of fr will be used 
for both approach and recess on hardened-steel gears. 
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These values are given very closely by the following empirical equa¬ 

tion: 
When / = average coefficient of friction 

Ja ~ average coefficient of friction of approach 
fr = average coefficient of friction of recess 
Fa = sliding velocity, ft/min 

e = base of natural logarithms 

/ = W. (19-12) 

Table 19-2. Coefficients of Friction 

,, ft/min / fr 

0 0.0500 0.0667 0.0333 
10 0.0207 0.0276 0.0138 
20 0.0130 0.0174 0.0087 
30 0.0121 0.0162 0.0081 
40 0.0130 0.0174 0.0087 

50 0.0142 0.0190 0.0095 
60 0.0155 1 0.0206 0.0103 
70 0.0167 0.0222 0.0111 
80 0.0179 0.0238 0.0119 
90 0.0190 0.02.54 0.0127 

IQO 0.0200 0.0267 0 0133 
150 0.0245 1 0.0326 0.0163 
200 0.0283 0.0378 0.0189 
250 0.0316 0.0422 0.0211 
300 0.0346 0.0462 0.0231 

400 0.0400 0.0534 0.0267 
500 0.0447 0.0596 0.0298 
600 0.0490 0.0654 0.0327 
700 0.0529 0.0706 0.0353 
800 0.0566 0.0754 0.0377 

900 0.0600 0.0800 0.0400 
1,000 0.0632 0.0842 0.0421 
1,500 0.0775 0.1034 0.0517 
2,000 0.0894 0.1192 0.0596 
2,500 0.1000 0.1333 0.0667 

= j (19-13) 

(19-14) 
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Values determined by the use of these equations are tabulated in Table 
19“2. 

Examples of Spur-gear Efficiency. First Example. As a first example we shall 

compare the efficiencies of a pair of 4-DP, 14p2-dog gears with a similar pair of 20-deg 

gears. All dimensions will be the same except the pressure angles. We shall use the 

following values: 

Ni = 24 A^2 = 120 Ri = 3.000 7^2 = 15.000 V = 1,500 

Rai = 3.250 Ro2 = 15.250 C = 18.000 m = 5.000 

For the 14j^-deg gears we have 

Rui = 2.90445 Ri^2 = 14.52225 (ia = 0.3095 = 0.2400 

For the 20-deg gears we have 

= 2.81907 Ri,z = 14.09535 (i,, = 0.2449 (3r = 0.2073 

For the 143^-deg gears wc obtain 

V,n - 750(1.20) (0.3095 X 0.96815) = 270 

whence 
fa = 0.044 

V.r = 750(1.20) (0.2400 X 0.90815) = 209 

whence 
/. = 0,020 

Introdiuang the.s<! values into P]qs. 19-7, we obtain 

Kfiici('ncy = 0.99415 Power lo.ss = 0.585% 

For the 20-deg gears we obtain 

V,a - 750(1.20) (0.2449 X 0.93969) = 197 

w hence 

fa = 0.038 

V,r = 750(1.20) (0.2073 X 0.93909) = 175 

w hence 

fr = 0.018 

Efficiency = 0.99595 Power loss = 0.405% 

Under these conditions, the 20-dcg gears show a slightly higher efficiency than do 

the I4t^-deg gears. Their power loss is 0.405 per cent as compared with 0.585 per cent 

on the 143^-deg gears. Their sliding velocities are lower and their ares of approach 

and recess are less than those of the 143/2-deg gears. 

Second Example, As a second example we shall use the same 20-deg gears as 

before, but will use them as a step-up drive instead of as a reduction drive. We will 

then compare their efficiency with the same gears used as a reduction drive. In this 

case we can simply exchange the sliding velocities of approach and recess to determine 

the respective coefficients of friction. Thus we have 

V,a = 175 fa - 0.036 V,r = 197 fr = 0.019 

In this example, as the larger gear is the driver, we have 

Rbi = 14.09535 Rb2 = 2.81907 /So - 0.0415 fir - 0.0490 m = 0.20 
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Introducing these values into Eq. (19-7), we obtain 

Efficiency * 0.99643 Power loss =» 0.357% 

In this example, the efficiency of the step-up drive is a little higher than that of the 
same gears used for a reduction drive, primarily because of its greater recess action. 
When the amount of approach and recess are equal, there will be no difference. When 
the recess action of the driver on a reduction drive is greater than the approach action, 
then the corresponding step-up drive will be less efficient than the reduction drive. 

Third Example. As a third example we shall compare the efficiency of an 8-DP, 
20-deg reduction drive of the same diameters as before with the 4-DP, 20-deg drive 
used in the first example. W^e already know from the results of tests that the finer 
pitch gears will have a smaller power loss because of their lower sliding velocities. We 
will attempt to obtain some measure of this difference. We have the following values 
to start: 

Ni =48 A2 = 240 Ri = 3.000 R2 = 15.000 V = 1,500 m = 5.00 
ftoi * 3.125 R.2 = 15.125 C = 18.000 = 2.81907 R12 - 14.09535 

= 0.1258 = 0.1140 

Introducing these values into Eq. (19-10), we obtain 

7,0 - 750(1.20) (0.1258 X 0.93969) = 106 
whence 

fa = 0.028 
V„ = 750(1.20)(0.1140 X 0.93969) = 96 

whence 
fr - 0.0130 

Introducing these values into Eq. (19-7), we obtain 

Efficiency = 0.99847 Power loss = 0.153% 

In this example, the power loss is equal to 0.153 per cent as compared to a power 
loss of 0.405 per cent for the 4-DP gears. Thus by reducing the circular pitch to 
one-half of the original value, the power loss has been reduced to about 38 per cent of 
the original amount. 

Fourth Example. For the fourth example we shall determine the power loss and 
efficiency of a pair of 4-DP, 20-deg, hardened and ground steel gears of the same size 
as before. Here all the values will be the same as before except the coefficients of 
friction. For these we have 

/a = /r = 0.018 

Introducing these values into Eq. (19-6), we obtain 

Efficiency = 0.99754 Power loss = 0.246% 

In this case, the power loss amounts to 0.246 per cent as compared with a power 
loss of 0.406 per cent for the soft gears. 

As a matter of interest, the calculated power loss, using this analysis and the 
specified values for the coefficients of friction, on a pair of hardened and ground steel 
gears of special tooth design transmitting over 3,000 hp at a pitch-line velocity of over 
6,000 ft/min was about 0.60 per cent. After these gears were made, they were run 
on a dynamometer test, and the measured power loss was about 0.50 per cent. 
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EFFICIENCY OF INTERNAL GEARS WITH STRAIGHT TEETH 

If an analysis is made for the efficiency of an internal-gear drive like 
the one made for external spur gears, it will be found that the normal 
force and the frictional torque either assist or oppose gear rotation in 
exactly the same way as was shown to occur in the case of external gears. 

There is, however, one difference in the two cases. This is in respect to 
the distance to the lever arms of the frictional forces. For external gears, 
the lever arms of the driver are greater on the approach than on the 
recess. For internal gears, this condition is reversed. Thus let 

m = gear ratio 
/ = average coefficient of friction 

fa = average coefficient of friction of approach 
fr = average coefficient of friction of recess 

Paj Pr = arc of approach and recess of driver, respectively 
When a single average coefficient of friction is used, then 

Efficiency = 1 - M (19-15) 

When different coefficients of friction are used for approach and 

recess, then 

Efficiency = 1 - ^ ~ (19-16) 

Arc of Approach and Recess 
Rij R2 = pitch radius of driver and internal follower, respectively, in. 

Roi = outside radius of driver, in. 
Ri = inside radius of internal follower, in. 

Rbh Rb2 = radius of base circles, in. 
C = center distance, in. 
<t> = pressure angle 

/3a = (Rj sin <t> - (6-13) 

Pr = (VR.i* - Rm* - Ri sin 0)/Rm (6-14) 

Sliding Velocity 
V = pitch-line velocity, ft/min 

V, — sliding velocity, ft/min 
n = number of rpm of driver 
ri = any radius of driver, in. 

V = 0.5236Rin (19-8) 

V. = F[(l/Ri) - (I/R2)] (Vn^ - R6i' - Ri sin 4>) (6-18) 
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As before, the average sliding velocity will he equal to one-half the 
maximum sliding velocity of approach or recess. 

When V\ = average sliding velocity, ft/min 
Vsa = average sliding velocity of approach, ft/min 
Var — average sliding velocity of recess, ft/rain 

V's = 7 cos 0 [1 - (A1/A2)] [{0a + W/4] (19-17) 
Vsa = (7/2) [1 - (Nr/N,)] 0a cos </> (19-18) 
Vsr = (7/2) [1 - (A1/A2)] 0r cos 0 (19-19) 

Coefficient of Friction for Internal Gears. In the absence of any test 
data on the performance of internal-gear drives, we shall use the same 
values of the coefficient of friction here as for external spur gears with 

straight teeth. 

Examples of Efficiency of Internal-gear Drive. First Example, As a first example 
we shall use the same values as were used for the 4-DP, 20-deg spur gears. This givc's 
the following: 

Ni - 24 N<i = 120 R, = 3.000 R^ = 15.000 V = 1,500 m = 5.00 
Roi - 3.250 Ri = 14.750 C = 12.000 R,i = 2.81907 fe,2 = 14.09535 

Introducing these values into Eqs. (6-13) and (6-14), wo obtain 

= 0.2783 - 0.2073 

Introducing these values into Eqs. (19-18) and (19-19), we obtain 

F,a = 157 fa = 0.034 V„r = 117 /r = 0.015 

Introducing these values into Eq. (19-16), we obtain 

EfTiciency = 0.99740 Power loss = 0.260% 

In this example, the inside radius of the internal gear is held to conventional pro¬ 
portions. This results, among other things, in an increased arc of approach. Piven 
so, the power loss here is equal to 0.260 per cent as compared with a loss of 0.405 per 
cent for the equivalent spur-gear drive. 

Second Example. As a second example we shall use the same size of gears as before, 
but will proportion the teeth as recommended in Chapter 6 on internal gears. This 
gives the two following changed values: 

/e„i = 3.4125 R, = 14.850 

Introducing these changed values into the various equations, we obtain 

/3a = 0.1619 /3, = 0.3181 F.a =91 /„ = 0.025 Vsr = 179 
fr = 0.018 

Whence 
Efficiency = 0.99794 Power loss = 0.206% 

This change in tooth proportions brings the value of the power loss here to about 
one-half that of the equivalent spur-gear drive. 
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EFFICIENCY OF HELICAL GEARS 

Equation (19-1) applies also to helical gears except that the influence 
of the helix angle on the normal tooth load must be considered. Thus 
when 

W = tangential applied load, lb 
W'n = normal force acting on helical tooth profile, lb 
Wf = friction loss per minute 

<l> = pressure angle in plane of rotation 
<^n = normal pressure angle 
^ = helix angle at pitch radius 

W 
IT'. = (19-20) 

(19-21) 
cos (j>n COS xp 

tan <f)n = tan </> cos xp 

Substituting the value of IT', for 1T„ in Eq. (19-1) for the friction loss 
per minute, we obtain 

(‘+s)] 
Considering as before the work input as equal to Wco\Ri 

Efficiency = 1 - [^i' 

Summary. To bring the foregoing into the same form as the similar 
material for spur gears, we have the following: The equations for the arcs 
of approach and recess are the same as for spur gears. The values of the 
pressure angle in the plane of rotation must be used in these eciuations. 
When Nij N2 = number of teeth in driver and follower, respectively 

m = gear ratio 
/3o, I3r = arc of approach and recess of the driver, respectively 

/ = average coefficient of friction 
fa = average coefficient of friction of approach 
fr = average coefficient of friction of recess 
xp = helix angle at pitch line 
(p = pressure angle in plane of rotation 

<pn = normal pressure angle 

N2 
m = (19-5) 

When the coefficient of friction is assumed as constant 

Efficiency = 1 - ( ^  ) \ 1 i (19-23) 
\COS (^„ cos L /3a -f |8r J 2 
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When the coefficients of friction of approach and recess are different 

Efficiency = 1 — ( 
COS 0 

cos <t)n COS 

1 + (1/m) 

/3a + |8r 
(§(!.' + § ft') (19-24) 

Coefficients of Friction on Helical Gears. In the absence of experi¬ 
mental data on the power losses on helical gears, we shall use the same 

values for the coefficients of friction here as are used for spur gears. 

Example of Efficiency of Helical Gears. As a definite example we shall use a pair 
of helical gears, 4 DP, 20 deg in the plane of rotation, with 24 and 120 teeth, and a 
helix angle of 30 deg. The values will be the same as those for the similar pair of spur 
gears. We will also use the same speed of operation. If we multiply the power loss 
of the spur gears by the value of the bracket in Eq. (19-24), it will give the value of the 
power loss for these helical gears. Whence we obtain 

Power loss = 0.405 X 1.1377 = 0.461% Efficiency = 0.99539 

EFFICIENCY OF SPIRAL GEARS 

The contact between a pair of helical gears that operate together on 
nonparallel axes is point contact. The action between the teeth is 
primarily sliding, a type of action that exists between the teeth of all 

gears operating on nonparallel, nonintersecting axes. The sliding on the 
tooth profiles because of their different lengths is also present, but this 
sliding here is so little in comparison to the amount of peripheral sliding 

that it will be ignored. Its influence could be introduced if necessary, 
but this would result in a long and involved equation, and would be a 
refinement* not justified by the present state of our knowledge about the 
coefficients of friction and other factors. 

We have already derived equations for the sliding velocity between 
the two mating basic racks of a spiral-gear system. We shall use this as 

the average sliding velocity between the teeth of the gears. The work 
output will be taken as equal to the product of the tangential applied 
load and the pitch-line velocity of the driver in its plane of rotation. The 

friction loss will be the product of the normal load on the teeth, the 
coefficient of friction, and the average sliding velocity on the gear teeth. 
The work input will be taken as the sum of the work output and the 

friction loss. 
Sliding Velocity of Spiral Gears 

Ri = radius of pitch cylinder of driver, in. 
R2 = radius of pitch cylinder of follower, in. 
n = number of rpm of driver 
V = pitch-line velocity of driver in its plane of rotation, ft/min 

V» = sliding velocity between basic racks, ft/min 

= helix angle of driver at Ri 
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^2 = helix angle of follower at R2 

S = shaft angle 

V = 0.5236Rin (4-12) 
V, = V sin 2/cos (9-21) 

When S = 90°, then 

F, = F/cos 4^2 (9-22) 

Efficiency of Spiral Gears 
/ = average coefficient of friction 

W = tangential applied load on driver, lb 

Wn = normal tooth load, lb 
Wf = frictional work, ft-lb/min 

(f> = pressure angle, plane of rotation of driver 

<t)n = pressure angle of basic racks and normal pressure angle of spiral 
gears 

For the work output we have 

Work output = WV 

For the friction loss we have 

But 

and 

whence 

Wf = WnfVs 

Wn = 
W 

COS <l>n COS 4^1 

V sin S 
F. = 

cos 4/2 

TFF/sinS 

^ cos </)n cos 4^1 cos ^2 

/sin 
Work input = WV { 1 H----7- 

\ cos (l>n cos cos ^2 

. cos (j)n cos 4^1 cos 4^2 
Efficiency = -;-;-—r—/-.—^ 

cos 4>n cos 4^1 cos ^2 + / sin S 

(19-25) 

(9-21) 

(19-26) 

When S = 90°, then cos ^2 = sin ^1, and 

Efficiency = 
cos <l>n sin 2^1 

cos 0n sin 2^1 + 2/ 
(19-27) 

Coefficient of Friction for Spiral Gears. In the absence of definite 
test data on the efficiency of spiral-gear drives, we shall consider that the 
conditions here are similar enough to those on worm-gear drives to use 
test data from that source. Test data on the performance of different 

worm-gear drives show a considerable variation. The minimum coeffi- 
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cients of friction appear to be at sliding v^elocities between 300 and about 
600 ft/min. Under the lighter loads, the minimum value is at the lower 
velocity. Under the heavier loads, the minimum value is at the higher 
sliding velocity. 

With the theoretical point contact of spiral gears, the unit load on the 
gear-tooth surface is high, even under small applied loads. The experi¬ 
mental values for the coefficients of friction of worm gears under the 
heavier loads will be used for spiral-gear drives. These values are given 
very closely by the following empirical equation: 
When Vs = sliding velocity, ft/min 

e = base of natural logarithms 
/ = average coefficient of friction 

f = + 0.0013 VV. (19-28) 

Values of the coefficients of friction obtained by the use of this ecpia- 
tion are tabulated in Table 19-3. These values will also be used for 
worm-gear drives. 

Examples of EflSiciency of Spiral-gear Drives. First Example. As a definite 
example vve shall use a pair of spiral gears, 16 and 64 teeth, with a normal rack form of 
10 DP, 14)/^ deg, with a 90-deg shaft angle and a helix angle of 45 deg for botli gears. 

Table 19-3. (Coefficients of h4ticTiON for Spiral Gears and for Worm Gears 

Vs, ft/min 
^ ! 

Vs, ft/min f 

0 0.2000 750 0.0375 
10 0.1209 1,000 0.0420 
20 0.0993 1,250 0.0465 
30 0.0859 1,500 0.0506 
40 0.0764 1,750 0.0545 

50 0.0693 2,000 0.0582 
60 0.0637 2,.’)00 0.0650 
70 0.0591 3,000 0.0712 
80 0.0553 4,000 0.0822 
90 0.0522 5,000 0.0919 

100 0.0495 6,000 0.1007 
150 0.0408 7,000 0.1088 
200 0.0365 8,000 0.1163 
300 0.0330 9,000 0.1233 
400 0.0327 10,000 0.1300 
500 0.0358 
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The driver will operate at a speed of 2,000 rpm. This gives the following values: 

2 = 90° i/'i = i/'z = 45° R, = 1.1313 R^ = 4.5254 n = 2,000 
V = 0.5236 X 1.1313 X 2,000 = 1,185 

V = = 1 675 
0.70711 

whence 

Kfriciency = 

/ = 
0.96815 

0.96815 + 0.1066 

0.0533 

= 0.900 Power lo.ss = 10.0^ 

Second Example. As a second example we shall use the same values as before 
except that 

= 60° yPi = 30° 

This gives the following values for the pitch radii: 

Ri = 1.600 R2 - 3.650 

V = 0.5236 X 1.60 X 2,000 = 1,675 
__ 1675 _ 

0.80602 
. 0,0681.5 X 0.80602 „ 

Kffioioncy o70681.5 x ”0:86602 > O.l l U 

/ = 0.0,572 

Power loss = 12.1% 

A comparison of this power loss with that of the pnwious examph' gives soim^ 
indication of the value of selecting, when(*v(‘r ])ossil)le, lu'lix angles equal to one-half 
the .shaft angle. 

Third Example, h'or the third examj)le we sliall use the same values as hc'fore 
but with a shaft angle of 60 deg. We shall use h(‘lix angles of 30(l(‘g for both gears. 
This gives the following values: 

V = 60° 1^1= 1^2 = 30° Ri = 0.9238 

V = 0.5236 X 0.9238 X 2,000 = 967 

Whence, from Table 19-3, 
/ = 0.0414 

. 0.96815 X 0.86602 X 0.86602 „ 
F^fficumcy = o.726rr+ (0;04lP X 0.8(7602) = 

7^2 = 3.6950 2,000 

_ 967 X 0.86602 ^ 
0.86602 ' ^ 

Power loss = 4.7% 

In this drive, we are part of the way back toward a parallel-shaft drive, and so the 
sliding velocity is reduced materially. As a result, the powc^r loss is reduced. 

EFFICIENCY OF WORM-GEAR DRIVES 

The contact conditions on a worm-gear drive depend upon many 
factors. Among them are the thread angle of the worm, its lead angle, 
and the position of the pitch plane of the worm. Here, as with all other 

types of screw gearing, the action is primarily sliding. The actual sliding 
velocities will be different, to a greater or lesser extent, on different drives 
because of differences in the nature of the contact. If we wish to be as 

precise as possible, we must make a complete and detailed contact analysis 

of every drive to determine the average sliding velocity. 
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One major use of any efficiency equation for worm-gear drives is to 
obtain some reasonable estimate of the amount of frictional heat that 
must be dissipated. We shall therefore consider a worm-gear drive as a 

development from a spiral-gear drive where one member of the pair has 
been made to envelop the other partially so as to obtain line contact 
instead of point contact. We will, therefore, use the same equations for 

the average sliding velocities here as are used for spiral-gear drives. 
In the case of worms, we use the lead angle instead of the helix angle. 

Also, on the worm gear there is no uniform axial lead to the teeth, and 
hence this gear has neither a lead angle nor a helix angle. We shall 
therefore rearrange the equations for sliding to use the worm values. 

Average Sliding Velocity for Worm-gear Drives 
Ri = radius to pitch plane of worm, in. 

X = lead angle of worm at R\ 
2 = shaft angle 

= normal thread angle (one-half included angle of thread) 
(fix = axial thread angle 
V = peripheral velocity of worm at 22i, ft/min 

Vg = average sliding velocity, ft/min 
n = number of rpm of worm 

V = 0.5236J?in 

Rearranging Eq. (9-21) to use the worm values, we obtain 

^ V, = V sin 2/sin (2 — X) 
When 2 = 90®, 

Vg - 7/cos X 

(4-12) 

(19-29) 

(19-30) 

Efficiency of Worm-gear Drives. We shall rearrange the efficiency 
equations for spiral gears for use on worm-gear drives. The values of the 
coefficients of friction in Table 19-3 were determined from experimental 
data from worm-gear tests, and these values will be used here. We will 
let / be the average coefficient of friction. 

Efficiency = 

tan (fin tan (fix cos X 
cos (fin sin X sin (2 — X) 

cos (fin sin X sin (2 -- X) -f / sin 2 

When 2 = 90®, then sin (2 — X) = cos X. 

Efficiency = 
cos (fin sin 2X 

cos (fin sin 2X + 2/ 

(19-31) 

(19-32) 

(19-33) 

Examples of Efficiency of Worm-gear Drive. First Example. As a definite exam¬ 
ple we shall use the following: A single-thread worm, 90-deg shaft angle, 30-deg normal 
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thread angle, lead, 3.00-in. nominal pitch diameter, running at 1,000 rpm. Thia 
gives the following values: 

Ri = 1.600 <t>n “SO” n = 1,000 X = 3.037° sin 2X 

V = 0.6236 X 1.600 X 1,000 = 785 

785 

0.10581 

0.90859 

From Table 19-3, / 

Efficiency = 

0.0381. 

0.86602 X 0.10581 

0.09163 4- 0.0762 
0.546 Power loss = 45.4% 

Second Exan\ple. As a second example we shall usv, a 3-start worm of the same 

size as before, with all other values the same. This gives the following values: 

Ri 1.500 n = 1,000 

F = 785 

X = 9.043*^ 

F.= 
0.98757 

cos X = 0.98757 sin 2X = 0.31044 

= 795 / = 0.0383 

. 0.86602 X 0.31044 . 

= 0.26885 0.0766 = 

Third Example. As a third example we shall use a 6-start worm of the same size 

and at the same speed as before. This gives the following: 

Ri = 1.500 X = 17.657° 

V = 785 V. = 

cos X = 0.95289 

785 

Efficiency 

0.95289 

0.86602 X 0.57806 

0.50061 + 0,0778 

sin 2X = 0.57806 

= 824 / = 0.0389 

= 0.865 Power loss = 14.5% 

Fourth Example. As a fourth example we shall use a 12-start worm of the same 

size and at the same speed as before. This gives the following: 

Ri = 1.500 X = 32.482° 

= 785 F. = 

cos X == 0.84356 

_785_ 

0.84356 
930 

. 0.86602 X 0.90604 . , 
Efficiency = = 0.905 

sin 2X = 0.90604 

/ = 0.0408 

Power loss = 9.5% 

Fifth Example. As a fifth example we shall use an 18-start worm of the same size 

as before. This gives the following values: 

Ri = 1.500 

F = 

Efficiency 

X = 43.679 

785 V, 
0.72322 

0.86602 X 0.99894 

"0^86510 -h 0.0870 

cos X = 0.72322 

= 1,085 

= 0.909 

sin 2X = 0.99894 

/ = 0.0435 

Power loss =9.1% 

It will be noted that very little is gained in efficiency with increasing lead angles 

after the value has reached 30 deg or over. 

EFFICIENCIES OF BEVEL GEARS 

The tooth action of bevel gears with straight teeth is very similar to 
that of spur gears. The beveled faces of the gears introduce axial thrusts, 
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which are absent on spur gears, but these thrusts are components of the 
normal tooth loads, and the resulting axial thrusts are carried by the 
bearings. This increases the bearing friction losses over those on spur 
gears of equal size and loads, but the efficiency equations we are concerne<l 
with here deal only with the friction losses at the tooth mesh. 

We shall therefore use the spur-gear efliciency equations for these 

bevel gears. The arcs of approach and recess will be determined from 
the equivalent spur gears of ITegold’s approximation. We shall there¬ 
fore start with a summary of Tregold’s approximation and the calculation 
of the arcs of approach and recess. 

Tregold’s Approximation 
= number of teeth in bevel pinion and gear, respectively 

7y = pitch angle of bevel pinion and gear, respectively 
2 = shaft angle 

Rp^ Rg ~ pitch radius of bevel pinion and gear at large end, in. 

Rvpi Rvq pitch radius of e(iuivalent spur pinion and gear, in. 

^ = 7p + 7y (14-1) 
Rvp Rp/cos 'yp (1^-b) 
Rv(j Rg/cos yg (15-7) 

We shall use the mean diameters of the faces of the bevel gears to 

determine the average pitch-line and sliding velocities. We shall use 
the diameters at the large ends to determine the arcs of approach and 
recess because they are the simplest to use and these values in radians 

are the same for all parts of the face. 
Arcs of Approach and Recess 

Rvp, Rvq = pitch radius of equivalent spur pinion and gear, in. 
ttp, Qg = addendum of pinion and gear, respectively, in. 

Rop, Rog outside radius of equivalent spur pinion and gear, in. 
Rhp, Rbg — base radius of equivalent spur pinion and gear, in. 

<t> = pressure angle 
fia = arc of approach of pinion 
fir = arc of recess of pinion 

Rop Rvp ctp (19-34) 
Roq Rvq ~I“ Clg (19-35) 
R'bp R'vp cos (j) (19-36) 
Rbg = Rvg COS 0 (19-37) 

Substituting these symbols into Eq. (4-17) and (4-18), we obtain 

i3a = i\/Ro/ — Rba^ — Rvu sin <t>)/Rhp (19-38) 
/3r = {\/Rop^ — Rbp^ — Rvp sin <t>)/Rbp (19-39) 
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Sliding Velocity 

V = pitch-line velocity at Rm, ft/min 
V\ = average sliding velocity, ft/min 

V,a = average sliding velocity of approach, ft/min 
Vsr = average sliding velocity of recess, ft/min 
Rm = mean pitch radius of bevel pinion, in. 

n = rpm of bevel pinion driver 

V = 0.523()ft„,n (19-40) 
V, = V cos [1 + {R,,/R,,)] [ipa + /3,)/4] (19-41) 

V.a = |- (l + /3« cos (19-42) 

(19-43) 

Coefficients of Friction for Bevel Gears. We shall use the same 
coefficients of frict ion here as are used for spur gears. As with spur gears, 
the values of / will b(^ used on soft gears when the arcs of approach and 

recess are substantially the same, and also in those cases where some 
approximation for the amount of the power loss is needed to determine 
the frictional heat of opc'ration. Values of fa and fr will be used to com¬ 

pare the probable or relative performance of different tooth designs used 
for soft gears. The values of fr will be used for both approach and recess 
on hardened-steel bevel gf^ars. 

Efficiency of Bevel Gears. When m is the equivalent-spur-gear ratio 

m = ^ (19-44) 

When a constant coefficient of friction is used, then 

Efficiency = 1 — "*■ (19-45) 

When coefficients of friction of approach and recess are used, then 

Efficiency = 1 - d- § (19-46) 

Examples of Efficiency of Bevel Gears. First Example. For a definite example we 

shall use a pair of 16-tooth, 4-DP btwel gears operating at a speed of 1,000 rpm. The 

face widths of the gears will be taken as 0.750 in. The axes of the gears are at 90 deg. 

The arcs of approach and recess will be calculated from the 1-DP values^ as follows: 

Rp = Rp = 8.000 7p = ap = ag — 0.9338 



420 ANALYTICAL MECHANICS OF GEARS 

From Tregold’s approximation we obtain 

R^^ = = 11.3135 <l> = 20.50° Rop = = 12.2473 
Rb, - Rbp = 10.5970 cos = 0.93667 sin <#. = 0.35021 

Whence 
/3a = /3r = 0.2055 

For the 4-DP values we have 

ie„, = 2.000 - 0.2620 = 1.738 n = 1,000 
o Q2S4 

V = 0.5236 X 1.738 X 1,000 = 910 m = = 1.000 

V,a = Vsr = (9i9i)(l + 1)(0.2055 X 0.93667) = 175 / = 0.0264 

As the arcs of approach and recess are equal, and these are soft gears, we would 

use the value of / in any case. Substituting these values into Eq. (19-45), we obtain 

Efficiency = 0.9946 Power loss = 0.54% 

Second Example. As a second example we shall use a 16-tooth bevel pinion and a 

32-tooth bevel gear. The other values will be the same as before. We shall use the 

following 1-DP values: 

Rp = 8.000 Rg = 16.000 Tp = 26.565° yg = 63.435° 

ap = 1.3948 ag = 0.6035 

From Tregold's approximation we obtain 

R,p = 8.9442 R,g = 35.7773 <t> = 15.05° Rop = 10.3390 

Rog = 36.3806 sin <f> = 0.25966 cos <t> = 0.96570 Rbp =* 8.6374 

Rbg = 34.5501 /3a = 0.2442 /3r = 0.3983 

For the 4-DP values we have 

Rm = 2.000 - 0.1677 = 1.8323 n = 1,000 

V = 0.5236 X 1.8323 X 1,000 = 959 m = = 4.000 
’ 8.9442 

V,a = (95%)(1.25)(0.2442 X 0.96570) = 141 /„ = 0.0316 

Vsr = (95%)(1.25)(0.3983 X 0.96570) = 230 fr = 0.0202 

Substituting these values into Eq, (19-46), we obtain 

Efficiency = 0.9957 Power loss = 0.41 % 

In this case, the larger reduction drive shows a slightly smaller power loss than the 

pair of miter gears. This is largely because of the greater amount of recess action 

and a lesser amount of approach action on the last pair of bevel gears. 

EFFICIENCY OF SPIRAL BEVEL GEARS 

The tooth action of spiral bevel gears has much in common with that 

of helical gears. We shall therefore determine the equivalent helical gear 
by the use of Tregold^s approximation, and use the efficiency equations 
for helical gears to obtain a measure of the eflficiencies of spiral bevel 

gears. For the value of the helix angle, we shall use that of the spiral 
angle of the crown rack of the spiral-bevel-gear system. 
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As the contact on the commonly used spiral bevel gear does not extend 
entirely across the tooth face, and as the actual action is a combination of 
conjugate gear-tooth action and rolling action along the spiral, we shall 
not attempt to separate the friction of approach and recess, but shall use 
a single average value for the coefficient of friction. We shall, however, 

determine the arcs of approach and recess at the middle of the gear face 
in order to obtain some measure of the average amount and velocity of 
the sliding action. These conditions change across the face of the spiral 
bevel gear because of the changing spiral angle, but the value at the 
center of the face of the gear should give a reasonable average value. 

The form of the equivalent helical gear and the arcs of approach and 

recess are determined in exactly the same manner as for bevel gears with 
straight teeth. The value of the pressure angle in the plane of rotation 
of the equivalent helical gear is used for this purpose. 
When fp = spiral angle at middle of tooth face 

<j> = pressure angle in plane of rotation of equivalent helical gear 
<j)n = normal pressure angle at middle of face 

and all other symbols are the same as those for bevel gears 

Efficiency = 1 

tan 0 = 
tan 
cos \p 

(19-47) 

V = 0.5236R„n 

r'..yco3^(. + |^)(^) 

/ COS 0 \ r 1 + (l/m) 1 /f\ 
\COS <t>n cos p/ [(da + dr) COS \p \ \2/ 

(19-44) 

(19-40) 

(19-41) 

(da* + da*) 

(19-48) 

The values of / in Table 19-2 will be used for spiral bevel gears made 
of soft materials, while the value of /r will be used for spiral bevel gears 

made of hardened steel. 

Example of Efficiency of Spiral Bevel Gear. As a definite example we shall use a 

16-tooth spiral bevel pinion and a 32-tooth gear, 4 DP, with the driving pinion running 

at a speed of 1,000 rpm, and shall compare their performance with the similar pair of 

bevel gears with straight teeth. These gears will be of soft steel for the purpose of 

comparison. To determine the arcs of approach and recess, we have the following 

1-DP values: 

Rp = 8.000 Rg = 16.000 Tp = 26.565° jg = 63.435° 

Up « 1.150 ag = 0.550 rP = 30° <t>n - 14.50° Rrp = 8.9442 

R,, = 35.7773 tan = 0.29863 = 16.627“ 

Rt, = 8.5702 Rt, = 34.2814 = 10.0942 R,, = 36.3273 
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Whence 

= 0.1992 fir = 0.3237 

For the 4-DP values, we have as before 

Km = 1.8323 V = 959 V>. = (959 X 0.95819) (1.250) 150 

Whence from Table 19-2 we obtain 

/ = 0.0245 

Substituting these values into Eq. (19-48), we obtain 

Efficiency — 0.9950 Power loss = 0.50% 

The reduced tooth heights of this form reduce the arcs of approach and recess and 

the sliding velocity, as compared with the bevel gears with straight teeth. As a result, 

the power loss here is practically the same as that on the straight-toothed bevel gears 

of the same size. With hardened-steel gears, the power loss would be about two-thirds 

of this amount, or equal to 0.33 per cent. 

EFFICIENCY OF HYPOID GEARS 

The tooth action of hypoid gears is complex. It has some of the 

characteristics of spiral-bevel-gear tooth action and some of the charac¬ 
teristics of worm-gear tooth action. The worm-gear tooth action 
develops from the sliding of the hyperbolic pitch surfaces on each other. 

As the distance between the axes of the gears increases, this sliding also 
increases, and the tooth action approaches closer to that of a worm-gear 
drive. this distance becomes less, the sliding is reduced, and the 
action approaches closer to that of spiral bevel gears. When this distance 

becomes zero, then we have a pair of spiral bevel gears. 
Any general analysis of the tooth action of hypoid gears made for the 

purpose of determining actual sliding velocities and the resulting efficien¬ 
cies would probably be an approximation at best, or else too complex for 
general use. Until we have further information on measured power losses 
here, any such analysis or approximation will be open to question. How¬ 

ever, in order to complete this general analysis of the efficiencies of dif¬ 
ferent types of gears, we shall venture on a general approximation for 
this purpose. 

To keep this analysis relatively simple, we shall make the following 
assumptions: 

1, We shall assume that the conjugate gear-tooth action here is sub¬ 
stantially the same as that on equivalent spiral bevel gears, and shall 
therefore use the spiral-bevel-gear analysis for this part of the power loss. 

2. We shall assume that the sliding of the pitch surfaces in the planes 

of rotation of the two members is the controlling factor of the worm-gear 
action, and that the results of this sliding are commensurate with that on 
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worm gears. We shall therefore use many of the factors from the worm- 
gear analysis here. 

3. We shall assume that the total power loss is equal to the sum of the 
two foregoing elements of power loss. We shall call them the spiral- 
bevel-gear loss and the worm-gear loss. 

Spiral-bevel-gear Power Loss 
\p — spiral angle of gear at middle of tooth face 

Rjn — mean pitch radius of hypoid pinion, in. 

<l> = pressure angle in plane of rotation of equivalent helical gear 
<t>n = normal pressure angle at middle of gear face 

Rvpy Rvq = pitch radius of equivalent helical pinion and gear, in. 
m = gear ratio of equivalent helical gears 

/3a, jSr = arc of approach and recess of equivalent helical gears 
/ = average coefficient of friction (Table 19-2) 
V = pitch-line velocity, ft/min 

V*a = average sliding velocity, ft/min 
n = rpm of driving pinion 

Rhpy Rhg = radius of base cylinder of pinion and gear hypoid, in. 
C = center distance 

Rpj Rg = pitch radius of hypoid pinion and gear at large ends, in. 
R'py R'g = pitch radius of equivalent bevel pinion and gear, in. 

^0 = number of teeth in hypoid pinion and gear, respectively 
7p) 70 = angle of generatrix of pinion and gear hypoids 

Rp = 

Rg — 

Rvp 

Rvg 

ViR'vY + 

R'v 
cos 7,, 

cos 75 

(19-49) 
(19-50) 

(19-51) 

(19-52) 

(19-47) 

(19-44) 

(19-40) 

(19-41) 

(19-63) 
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Worm-gear Power Loss. We might develop some extended equa¬ 
tions to determine the sliding velocities along the teeth of hypoid gears, 
the sliding action that is the result of the sliding between the two pitch 
hyperboloids of these gears. It is doubtful at this time, however, if we 
could do more than make a series of approximations. Therefore in order 
to have some simple approximation that will enable us to estimate the 
conditions of frictional heat, we shall treat this action as though it were 
worm-gear action, and use as a measure of the sliding velocity the com¬ 
ponent of the siding velocity between the pitch hyperboloids in their 
planes of rotation. In other words, this sliding velocity will be considered 
the same as the peripheral velocity of the radius to the pitch plane of the 
worm. Thus when 

Rbp = radius of base cylinder of pinion hypoid, in. 
7p = angle of generatrix of pinion 
<t>n = normal pressure angle at middle of face 
V = peripheral velocity of pinion at Rbpy ft/min 

V» = average sliding velocity, ft/min 
n = number of rpm of driving pinion 
/ = average coefficient of friction (Table 19-3) 

We will let 

V = 0.52S6Rbpn 

— 0-5236/?bpn 
* ~ sin 7p 

B = 

B = 

power loss 
transmitted power 

2/ 
cos (t>n sin 27p + 2/ 

(19-54) 

(19-55) 

(19-56) 

Total Power Loss on Hypoid Gears 

Total power loss _ 
Transmitted power 

Efficiency = 

A + B 

1 
1 + A + B 

(19-57) 

(19-58) 

Example of Efficiency of Hypoid Drive. As a definite example we shall use a 
hypoid drive of the same size, speed, and ratio as was used in the example for spiral 

bevel gears. Here the spiral-bevel-gear loss will be the same as before. This gives 
the following values: 

Np = 16 Na -= 32 7p = 26.565® yg = 63.435° = 30° 
<t>n = 14.50° R'p = 2.000 R'g = 4.000 C = 1.500 = 0.300 

Rbg = 1.200 n = 1,000 Rp = 2.0223 Rg = 4.1761 

From the example on spiral bevel gears, we have 

A = 0.0050 
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For the worm-gear power loss we have 

V. = 0.5236 X 0.300 X = 586 / = 0.0416 

0 0832 
^ “ 0.96815 X 0.800 + 0.0832 “ ® ®^70 

A + B = 0.0050 -1- 0.0970 = 0.1020 

Efficiency = = 0.9074 Power loss = 9.26% 

If this approximation is reasonably accurate, the power loss on these hypoid gears 

is almost twenty times the amount of the power loss on the equivalent spiral-bevel- 

gear drive. Even so, the actual amount of these losses is small. The most important 
matter is the amount of the frictional heat that must be dissipated. 



CHAPTER 20 

ANALYSIS OF DYNAMIC LOADS ON SPUR-GEAR TEETH 

The following chapter is an analysis of the tests made on the Lewis 

gear-testing machine by the ASME Special Research Committee on the 

Strength of Gear Teeth. This committee was organized under the 
chairmanship of Wilfred Lewis and was directed by him until his death 

in 1929. A description of the testing machine and details of the tests 

has been published in the ASME Research Publication, 1931, entitled 

Dynamic Loads on Gear Teeth. Some further development of this 

material is included in the following chapter. 

Errors on gear-tooth profiles, caused by elastic deformation under 

load or by inaccuracies of production, or both, act to change the relative 
velocities of the mating members. This varying velocity of the rotating 

members results in a varying load cycle on the teeth of the gears; the 

amount of this load variation depends largely upon the extent of the 

effective masses of the revolving gears, the extent of the effective errors, 

and the sp)eed of the gears. If the gears were made of rigid materials, 

the acceleration loads would vary as the square of the velocity. With 
elastic materials, however, the deformation of the teeth will also increase 

with an increase in load and tend to reduce the amount of change in 

velocity, and this will reduce the intensity of the high momentary accelera¬ 

tion load. 

It appears from a study of the charts made on the testing machine 

that give a measure of the accuracy of the gears, that the effective error 
seems to act primarily as the load is being transferred from one pair of 
mating teeth to the next pair. The errors may be of any type, yet their 

influence seems to be greatest during the transfer of the load from tooth 
to tooth. 

When a positive error, or high spot, is present and comes into mesh, 

it acts to slow down the driving gear and to speed up the follower. The 

relative change in velocity of either member will depend upon the amount 

of the effective masses acting at the pitch line of each gear; the change in 

velocity of the member with the greater effective mass will be the smaller 

of the two. If the masses are equal, the change in velocity will be divided 
equally between the two gears. 

At the instant that the second pair of mating tooth profiles have taken 

over the full load, and the accelerating action of the error has ceased to 
426 
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act, the masses are moving at different velocities such that the bearing 
surfaces of the mating teeth tend to separate. This relative motion 
away from each other is opposed by the power input and torsional deflec¬ 

tion on one side and the applied load on the other side. Eventually the 
two teeth come together again with an impact, the intensity of which is 
the maximum momentary load on the gear teeth, or the dynamic load. 

In other words, the change in momentum set up by the action of the 
effective error is absorbed by elastic impact, and this impact load is 
always the maximum load value of the cycle. Thus we have two load 

surges at every tooth engagement: the acceleration load, which is set up 
by the first phase of the tooth engagement, followed by the impact or 
dynamic load, which is the reaction to the acceleration load. 

Acceleration Load. If the materials were rigid, the acceleration load 
would vary as the square of the pitch-line velocity. As the materials 
are elastic, when the load required to deform the teeth the amount of 

the effective error is less than that required to accelerate the effective 
masses, the teeth will be deformed, and the acceleration of the masses 
will be reduced accordingly. At infinite speeds, the momentum of the 

masses would be infinite, and no change in the velocity of the masses 
would be possible. Hence, under these conditions, the teeth would be 
deformed the full amount of the effective error, and the maximum load 

would be that required to deform the teeth that amount. This gives a 

limiting or asymptotic value of the acceleration load. Thus when 
fa = force acting at acceleration, lb 
V = pitch-line velocity, ft/min 

Cl = value representing the reactions of rigid bodies 
C2 = asymptotic load or force required to deform the teeth the full 

amount of the effective error, lb 

/i = CiF^ /2 = C2 

Then 

l//a = (I//1) + (I//2) (20-1) 

Solving for /«, we obtain 

fa = /,/2/(/l + /2) (20-2) 

Reactions of Rigid Bodies. We shall direct our attention first to the 
equation of the parabola that represents the reactions of rigid bodies. 
In order to obtain numerical values for this equation, we must have some 
measure of the effective error, the distance in which it acts, and the 

effective masses of the mating gears. The effective error is in the nature 
of a high spot or foreign body that tends to separate the mating tooth 
surfaces. It is measured by the displacement of the relative positions 

of the gears at the pitch line. Thus when 
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E = effective error in action of the gears, ft 
m = effective mass at pitch line of gears (polar moment of inertia 

divided by the square of the pitch radius) 

V = pitch-line velocity, ft/sec 
a = acceleration, ft 'sec^ 

Then 

/i = ma 

This accelerating force acts for a very short time while the load is 
being transferred from one pair of mating teeth to the next pair. Thus 

when 
S = distance a point on pitch line travels while the accelerating force 

acts, ft 
Di = distance a point on pitch line would travel in the same time if no 

error were present, ft 
t = time in which accelerating force acts, sec 

vq = initial pitch-line velocity, ft/sec 

S = Vot -f* {at“/2) 

whence 
a = 2(>S — vd)/t^ 

But 
S = D\ + E and t = Di/vo 

Substituting these values into the equation for the acceleration, we 
obtain 

a = 2Evq^/D\^ 

Whence 
fi = ma = 2mEvd/Dx^ (20-3) 

We shall transform Eq. (20-3) into the following units, which are the 
ones commonly used in gear calculations: 

V = pitch-line velocity, ft/min = 60?;o 
e = effective error, in. = 12£J 

D = distance in which error acts = 12Di 
Substituting these values into Eq. (20-3), we obtain 

= mc7V150D2 (20-4) 

The results of the tests on the Lewis machine indicate that as far as 
work done is involved, it is the amount of the error rather than its exact 
nature that is the determining factor in the magnitude of the loads 
required to keep the teeth of the test gears from separating far enough 

to break the electrical circuit that is passed through the meshing teeth. 
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The observed conditions would indicate that the value of e/D'^ is prac¬ 
tically a constant for a given size and tooth form of gear. The following 
graphical analysis gives us a value for this expression that agrees closely 
with the results of the tests. 

In order to obtain some expression for the relationship we shall 
consider the two gears separately and as each gear meshing with a com¬ 

mon basic rack. We shall also consider the error to be divided between 
them. We shall then determine the value for each gear meshing with this 
basic rack and add the two expressions for the final answer. 

The first problem is to establish some reasonable relationship between 
the two factors. As a preliminary move, we shall consider the conditions 
of a hoop or circle rolling along a straight line until it meets an obstruc¬ 
tion, as indicated in Fig. 20-1. 

Referring to Fig. 20-1 where 

y = height of obstruction, in. 
R = radius of circle, in. 
P = angle of rotation to rise on obstruction 

D = circumferential rotation of point on circle through angle in. 

cos jS = {R — y)/R 

whence 
y = J?(l — cos ff) D = R0 

Whence 
y/D^ = (1 — cos I3)/RP^ 

In this preliminary example, the obstruction or error is perpendicular 
to the direction of rolling of the circle. To meet the conditions on a gear, 
it must be in the same direction. Such a condition for the pinion is 

indicated in Fig. 20-2. We shall assume that the form of the pinion 
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tooth is full, or extends beyond the theoretical form, so that it moves the 
basic rack the additional distance €i when it is rotated through the angle 

</>. In this case 
Ri = pitch radius of pinion, in. 
Ri = pitch radius of gear, in. 

<t> = pressure angle 
Cl = error on pinion profile, in. 
62 = error on gear profile, in. 

Whence 

y = Cl/tan <t> ei = y tan </> D = Ri<l> 

Ci/D^ = tan 0(1 — cos (t>)/Ri<t>^ 

We shall assume that the relationship between the error on the gear 
and the distance through which it acts is the same as the similar relation¬ 
ship on the pinion. Whence we have 

62/0^ = tan 0(1 — cos 0)//?20^ 
But 

6 = Cl -f- 62 

Whence 
c//)2 = [{1/Ri) + {I/R2)] [tan 0(1 - cos 0)/02] (20-5) 

Substituting this value into Eq. (20-4), we obtain 

/i = [tan 0(1 - cos 0)/15O02] [{l/R,) + {l/R2)]mV^ (20-6) 

When 0 is equal to 14J^ deg, this equation becomes 

/i = 0.00086 [{l/Ri) + (l/R2)]mV^ (20-7) 

When 0 is equal to 20 deg, this equation becomes 

fi = 0.00120 [(l/Ri) + {l/R2)]mV^ (20-8) 

These values satisfy the test results and will be used for the further 
analysis of the dynamic loads. 

Asymptotic Load.. We must now determine the value of /2, or the 
value of the load required to deform the teeth the amount of the effective 
error. To do this, we must determine the amount of deformation of the 
gear teeth under load. Formulas for the calculation of the elastic defor¬ 
mation of gear teeth are given in a paper by S. Timoshenko and R. V. 
Baud.^ These equations are as follows: 

* The Strength of Gear Teeth, Mech. Eng.^ November, 1926. 
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Compressive Deformation. Starting with the compressive deforma¬ 
tion, when 

b — width of strip of contact between two cylinders under load, in. 
P = load per inch of face, lb 
E = modulus of elasticity of material 
n — radius of first cylinder, in. 
r2 = radius of second cylinder, in. 

When di = compressive deformation, in. 

m = Poisson’s ratio for the material 

di 
2(1 - m^)P 

E IT 
(20-10)' 

The radius of curvature on an involute gear-tooth profile is changing 
constantly as the diameter changes. However, when a pair of involute 
gears are meshed, the sum of the radii of curvature (ri + r2) on the 

mating profiles is constant and is equal to the center distance multiplied 
by the sine of the pressure angle. Equations (20-9) and (20-10) may be 
combined and simplified for such involute gears as follows: 

log (4ri/6) + log (4r2/6) = log 

¥ = 10.336 (~ ) 
\Eri + rjy 

^ 2(l-m=)Pr2,, 1.548P (r. + rs) 
(20-11) 

It will be seen from Eq. (20-11) that the amount of compression 
depends upon the sum of the radii of curvature of the surfaces in contact. 
As this sum is a constant on a pair of mating involute gear-tooth profiles, 
the deformation caused by the compression will be constant over the 
entire profile as long as the load and pressure angle are constant. 

According to Eq. (20-11), the amount of compression increases with 
increasing values for the radii of curvature, all other factors remaining 
the same. For the compressive deformation of the curved profiles of 
gear teeth, this is contrary to all expectations. The foregoing condition 
is due to the derivation of Eq. (20-10) through integration from one 
center of curvature to the other. In most cases on gear teeth, these 
centers of curvature are outside the tooth form, particularly as the radius 

* All logarithms are to base c. 
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of curvature becomes larger. It is believed that the approximate formula 
given later as Eq. (20-13), which satisfies measured conditions of defor¬ 
mation under known test loads, gives a closer measure of the truth than 
does Eq. (20-11). The approximate equation (20-13) will be used in 
the further analysis. 

Bending Deflection. We shall now consider the bending deflections 
of the gear teeth. 
When ^2 == deflection caused by bending and shear of the gear tooth, in. 

L = length of tooth to sharp point, in. 
a = distance from sharp point to point of application of load, in. 

ho = thickness of tooth at base, in. 
h = thickness of tooth at point of application of load, in. 

^2 
12PL^r/3_ a\{a A , .L] 4P(L - a)(l + m) 
Eho'^ L \2 2Ly \L V a\~^ {h + ho)E 

(20-12) 

Equation (20-12) is that for a cantilever beam of variable depth. 
The first term on the right-hand side represents the deflection due to the 
bending moment, and the second term represents the deflection due to 
the shearing force. 

When we use the foregoing equations, the total deformation of a pair 
of loaded gear teeth will be equal to the sum of the compressive defor¬ 
mation of (20-11) and the bending deflection of both members from 
(20-12). . 

Approximate Equation for Compression and Bending. Equations 
(20-11) and (20-12) are used to determine the relative deflections on a 
pair of gear teeth as the load is applied at different points over their 
profiles. For working values, when the contact is at the middle of the 
gear teeth, the following approximation, which is based on experimental 
measured values of different tooth forms and different materials, will be 
used. The value gives the combined bending and compressive deforma¬ 
tion of the mating pair of gear teeth. 
When z = elasticity form factor of gear teeth 

y = Lewis tooth-form factor 
E = modulus of elasticity of material 
d = total elastic deformation of the pair of mating tooth profiles, 

1-in. face width, at middle of profile, in. 
F = face width of gears, in. 

W = applied tangential load, lb 

d — (W/F) [{EiZ\ + E^z^/EiZiE^'z^ 
z = 2/7(0.242 -h 7.252/) 

(20-13) 
(20-14) 
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Limiting Acceleration Load. The limiting acceleration load, as noted 
before, is the load that is required to deform the teeth by the amount of 

the effective error. With perfectly formed teeth, the effective error 
would be the amount of deformation under the applied load. When 
errors are present, the effective error is the combination of the original 

error and the deformation under the applied load. Thus when 
e = measured error on pair of mating teeth, in. 
d = total deformation of mating teeth under applied load, in. 

/2 = limiting acceleration load, lb 
W = applied tangential load, lb 

/2 = W[{e/d) + 1] (20-15) 

Effective Mass. The effective mass acting at the pitch line of any 
pair of gears attached to shafts carrying other rotating masses is variable. 
The amount of this variation will depend largely upon the speed of the 
gears, the extent of the effective error in the gear teeth, and the elasticity 
of the shaft or coupling between the gears and the other rotating masses. 

This variation in effective mass is caused by the elasticity of the connect¬ 
ing member. If the shaft were rigid and all the other rotating masses 
were rigidly connected to it, the effective mass would be constant, and all 
variations in velocity caused by the imperfect meshing of the gear teeth 
would be imparted to all the connected rotating bodies. The momentum 
of these bodies would then set up greater acceleration loads than those 
which are created by the masses of the gear blanks alone, and the greater 
the masses of these connected bodies, the greater this additional load 

would be. 
However, the shafts or other connections are not rigid but elastic, so 

that when it takes less force to twist the shaft than to accelerate the con¬ 
nected masses, the shaft will twist, and the acceleration of the connected 

masses will be correspondingly reduced. 
We shall now attempt to determine the influence of the elasticity of 

the shaft or coupling on the amount of the acceleration load of the con¬ 

nected masses that will be felt at the pitch line of the gears. Thus when 
fi == force required to accelerate connected masses, acting at radius 

equal to pitch radius of gear, lb 

U = force, acting at radius equal to pitch radius of gear, required to 

twist shaft by amount of displacement, lb 
fr = resultant force required to accomplish a combined acceleration of 

the connected masses and twisting of shaft, lb 

fr = (/j/2)/(/l + h) (20-16) 
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Here we have a condition similar to that for the acceleration load on 
gear teeth. We shall now direct our attention to the value of /i, or the 

force required to accelerate the connected masses. 
e" = additional distance at pitch radius to be moved, in. 
D = distance along pitch circle in which acceleration takes place, in. 

rria = mass effect of connected masses at pitch radius = lo/R^ 
V = pitch-line velocity of gears, ft/min 

From Eq. (20-4) we have 

/i = mae"7Vl50Z)2 (20-17) 

The previous analysis brings out the condition that the relationship for 

any gear of e"appears to be a value independent of the extent of the 
error. We shall therefore use the same relationship here. Whence 

e^'/D^ = [(l/fti) + (I/R2)] [tan </>(!- cos <t>)/(l>^] 

We have for 143^^-deg gears, from (20-7), 

H = 0.00086[(l//ei) + {I/R2)] 

We have for 20-deg gears, from (20-8), 

H = 0.00120[(l/ii!i) + (1//?2)1 

Then 

/i = HniaV^ (20-18) 

We shall now direct our attention to the force required to twist the 

shaft or coupling an amount equal to e" measured at the pitch radius of 
the gear. Thus when 

Z = elasticity factor of shaft or coupling 

P = load applied at pitch radius to twist connecting member, lb 
T = torsional deflection at pitch radius under load P, in. 

Z = P/T (20-19) 

For flexible couplings and other complex forms, the value of Z may 
be determined experimentally. For solid cylindrical shafts, however, 
this factor may be calculated as follows: 

When R = radius where load is applied (pitch radius), in. 
L = length of shaft, in. 
d = diameter of shaft, in. 
F = torsional modulus of elasticity 

T = {P/F){d2R^L/Td*) (20-20) 
Whence 

Z = ird^F/Z2R^L (20-21) 
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Then 

h = (20-22) 

The ratio of the total effective mass of the connected bodies to the 
amount that will be felt at the tooth mesh of the gears will then be equal 

to /r//1. Thus when 
rrta = total effective mass of connected bodies = h/R"^ 
rrih == mass effect of connected bodies at the tooth mesh 

Vftb/~ Jr/f 1 

Substituting the value of fr from Eq. (20-16), we have 

rrib/ma = /2/(/i + A) (20-23) 

We must now direct our attention to the distance that one gear moves 
in relation to its mating gear because of the effective error. This distance 

will depend upon the extent of the error and the relative masses of the 
mating gears at their pitch lines. Thus when 

mi = effective mass acting at pitch line of first gear 

m2 = effective mass acting at pitch line of second gear 
e = effective error in action, in. 

6" = amount of movement at pitch line of first gear, in. 

then 
e" = 17126/(mi + m2) (20-24) 

The value of mi is the sum of the effective mass of the first gear blank 

itself, which is a constant, and the mass effect rrih of the connected masses. 
This last value will be a variable. In addition, there will be some part 
of the mass of the rotating shaft and other parts, but these additional 
mass effects will be so slight in most cases that they will be ignored in this 
analysis. When nip is the effective mass of the pinion blank at the pitch 

line 
Ml = Trip mi (20-25) 

Substituting this value into Eq. (20-24), we obtain 

e" = m2e/{mp + mi + m2) (20-26) 

In this equation, we have two unknown values, mi and e". Substituting 
the value of /i from Eq. (20-18) and the value of /2 from Eq. (20-22) into 
Eq. (20-23), and solving for e", we obtain 

e" = HmamiVyZ{ma - mi) (20-27) 

Equation (20-27) has the same two unknown values as Eq. (20-26). By 

equating these two equations for e" and solving for m6, we obtain 

mi\HmaV^) + mi[HmaV\mp -f- m2) + m2eZ] — mam2eZ = 0 (20-28) 
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The solution of Eq. (20-28) for rrib would give a long and extended 

equation. We shall therefore let 

A - HmaV^ 
B — A{mp + m2) + m^Z 
C = main^eZ 

Then 

mb = (VB^ + 4AC - B)/2A (20-29) 

When appreciable masses are connected to both gears of a pair, a 
similar analysis must be made for each gear. The effective mass of one 
gear blank can be used to find the mass effect mb of the connected masses 

of the other gear. Then the calculated value of the effective mass of the 
first gear will be used to determine the mass effect of the connected masses 
of the second gear. Any attempt to solve for both values at the same 

time leads to indeterminate equations. Hence, in effect, we solve this 
problem by trial. 

We shall now consider the effective mass influence acting at the pitch 

line of the meshing gears. Thus when 
m = effective mass influence at pitch line of gears 

mi = effective mass acting at pitch line of pinion 

m2 = effective mass acting at pitch line of gear 

m = (mim2)/(mi + m2) (20-30) 

This equation gives the value of m that is used in Eq. (20-6). 

Separation of Tooth Surfaces. At the instant that the engaging pair 
of tooth profiles have come fully into mesh and the acceleration load has 

ceased to act, the masses are revolving at slightly different velocities. 
As noted before, the movement of the driving member has been slowed 
down, while that of the follower has been speeded up. In effect, they 

are moving away from each other because of this difference in velocity, 
which has been imparted to them by the accelerating force. This rela¬ 
tive movement apart is resisted by the input torque and torsional deflec¬ 
tion of various members and the applied load or work that the mechanism 
is performing. The conditions here are roughly represented by Fig. 20-3. 
This represents a rigid slide with a cam surface moving in the direction 
shown by the arrow. The mass m is held against it by the force W. The 

rise or cam on the slide with a height e represents the amount of the error 
in action. When the cam surface on this slide reaches the contact finger 
of the mass, an acceleration load is set up, and the mass is set in motion 

in a vertical direction. While the mass is moving up the cam surface, 
the accelerating force fa is acting through the vertical distance e. The 
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additional work done by this cam is equal to fae. The distance k that 
the mass will move away from the slide depends upon the intensity of 
the applied load W, This force will act through the distance k to absorb 
the additional work of acceleration. Hence for rigid bodies 

Hence 
fae = Wk 

k = {fJW)e (20-31) 

w 

w 

Thus when W is equal to /«, these rigid bodies will separate a distance 

equal to e. When W is double the value of /a, the distance k will be one- 
half the distance e, etc. This separation is indicated by the dotted line 
in Fig. 20-3. 

With elastic bodies, however, the accelerating force, in addition to 
imparting a certain difference in velocity between the masses, will also 
cause additional deformation. Under these conditions, assuming that 

all the deformation is on the slide, we would have the conditions indicated 
in Fig. 20-4. In this case, the work that is stored in the deformed mate- 
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rial will also act on the separation of the two bodies, in addition to the 
separating effect of the change in momentum imparted by the action of 
the accelerating force, while the applied load W will act as before to hold 
them together. Thus when 

W = applied load, lb 

/o = accelerating force, lb 

d = deformation set up by the applied load, in. 

dtn = maximum deformation set up by the total load, in. 
e = error or rise on undeformed profile, in. 
k = separation of surfaces, in. 

Work done by accelerating force alone = fa{e — dm + d) 
Work stored in elastically deformed profile = H (/a + W)dm 

Whence 

W{k + dm) = fa{e - dm + d) + (H)(/a + W)dm 

Solving this equation for fc, we obtain 

k = {U/W){e - dm + d)^- iy2)[(Ja/W) + \]dm - dm 
But 

dm = [(/a/W) + l]d 

Substituting and simplifying, we obtain 

k = (fa/W)e -- (d/2)[(fJW)^ + 1] (20-32) 

Under static conditions, fa = 0, whence 

k = -d/2 

When the value of k is minus, it indicates deformation instead of 
actual separation, and its value represents the distance the centers of 
mass of the compressed contacting surfaces have moved from their 

relative positions in contact under zero load. 
Impact Loads. The following analysis of elastic impact was made by 

Carl G. Barth, a member of the ASME Special Research Committee on 
the Strength of Gear Teeth. 

After the gear teeth have separated because of the relative changes in 
velocity imparted to the gears by the action of the accelerating load, and 

have reached the point of maximum separation, they will come together 
again with an impact. At the instant of maximum separation, both 
gears will be traveling at the same velocity. 

Figure 20-5 is a representation of three successive instants of the 
impact action. Thus when 
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fc = amount of separation, in. 
W = applied load, lb 
mi = effective mass of driver 
m2 = effective mass of follower 

t = time required for mi to overtake m2, min 
51 = space traveled by mi, ft 
52 = space traveled by m2, ft 

Vc = common velocity of gears, ft/min 
Vi = velocity of mi when it overtakes m2, ft/min 
F2 = velocity of m2 when overtaken by mi, ft/min 

mj 

= Fo 1 
mi V2 = Vc - at = Vc - 

m 
m2 

Insbnt of maximum separation 

W- Vj—^ PS—- 

JT12 

Instant of impact 

W- 
1 

rr _L 
1 

•r — 
uix • i ^2 

Instant of maximum 
impact force 

Fig. 20-6 

whence 

_ Fs = Wt (— + —\ 
\mi m2/ 

Si = (Fc + Fi) I s* = (Fo + V,) ^ 

s, - = fc = mVr - FsX t = 2fc/(Fi - F*) 

Substituting this value of t into Eq. (20-33), we obtain 

(20-33) 

(Fi - ViY = 2fcTF (— + —) \mi m2/ (20-34) 

Considering now the intensity of the impact force and referring to the 
last two phases of the impact shown in Fig. 20-5, when 

Vc = common velocity of the two gears at the instant of maximum 
impact, ft/min 
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Wd = maximum intensity of the impact load, lb 
Xi = corresponding maximum deformation of mi, in. 
X2 = corresponding maximum deformation of m2, in. 
Zi = elasticity form factor of mi 
Z2 = elasticity form factor of m2 

El = modulus of elasticity of mi 
E2 = modulus of elasticity of m2 

F = face width of gears, in. 
then we have 

^ = ziEiXi = Z2E2X2 

_ Wd _ Wd 
ZiEiF ZiEiF 

The total energy, which is all kinetic energy at the instant of impact, 
is equal to 3^(miFi^ + m2F2^). The total kinetic energy at the instant 
of maximum impact force is equal to J^(mi + m2)yc^ But 

y = 1 4~ m2y2 

® mi + m2 

Substituting this value of Vc into the preceding equation, then the total 
kinetic energy at the instant of the maximum impact force is equal to 

mi^Fi^ -f- 2mim2yiFe + m2^y2^ 

2(mi + m2) 

Ignoring internal friction, the loss of kinetic energy during impact is 
equal to the amount of potential energy stored in the deformed elastic 
bodies. If no outside force were acting during impact, this loss of kinetic 
energy would be equal to (IFd/2)(xi + X2). When a constant force IF 
acts on the bodies during impact, some account must be taken of the 
work done by this force through the relative distance these bodies move 
while impact is taking place. The potential energy stored in the deformed 
bodies would then be equal to 

whence we have 

iWa - 2W){x, + X*) = 
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Combining and simplifying, we obtain 

iWi - 2W){xi + Xi) = y^fnm2 
Ttlx TMj 

Substituting the value of Xi + xj from Eq. <'20-35) into the foregoing, 
combining, and solving for Wd, we obtain 

W..w + ^w + O'. - V,)’r 

From Eq. (20-13) we have 

t _W (ZiEi + 

F\ ziExZiEi ) 

Whence 

/ ZxExZ2E2 \ _ IE 
\zxEx -|- Z2E2/ Ed 

(20-36) 

(20-13) 

Substituting the foregoing value into Eq. (20-36), we obtain 

Wd = W Jw^ -h ^ ( -^hr) (El - Fs)* 
\ a \mi ■+■ 1712/ 

(20-37) 

But 

(Fi - Fs)* = 2kW (20-34) 
^ ^ \ mim2 / 

Substituting this value into Eq. (20-37), we obtain 

Wd = W + = IF ^1 -h yji+Y) 

For a suddenly applied load, the value of k would be equal to zero. 
Substituting this value into Eq. (20-38), we have 

Wd = 2TF 

For a static load, the value of k would be equal to —d/2. Substituting 

this value into Eq. (20-38), we have 

Wd = W 

Equation (20-38) thus appears to be a general equation for all condi¬ 
tions of load, impact, suddenly applied, and static. For conditions of 

variable loads, greater than static ones but less than a suddenly applied 
one, the use of the minus value for k, which depends upon the amount of 
elastic deformation (or preload) at the instant of reversal of load, should 

give us a measure of the maximum intensity of the loading. 
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This equation is of the same form as that derived by Mansfield 
Merriman about 60 years ago for impact loads on beams. For this pur¬ 

pose, Merriman derived the following: 

7’ = S-l--S.^l-by 

where T = maximum flexural unit stress produced by the impact 
S = unit stress that is caused by the static load P 

f = deflection caused by the static load P 

h = height above beam from which weight P falls 
Merriman discusses the possible use of a time factor to modify the 

value of the radical in this equation in order to have it apply to loads of 
less severity than suddenly applied loads. It would seem, however, that 
a minus value for k in Eq. (20-38) when the bodies are elastically deformed 

at the instant of reversal or change of loading would be a more practical 
solution. 

Summary of Analysis of Dynamic Loads on Spur-gear Teeth. The 

foregoing analysis of dynamic loads on spur-gear teeth includes several 

troublesome factors, which make necessary the use of assumptions and 
approximations. For one thing, the amount of deformation of the tooth 

profile is variable, depending upon the position on the profile where the 

load is applied, and also upon whether one pair of mating teeth or two 
pairs are carrying the load. The foregoing analysis assumes that but a 
single pair of teeth are carrying the load at the critical phase of the load 
transfer. 

Again, it has been assumed that the acceleration load has a constant 
value. This assumption is probably never exactly true, although the 

influence of the elasticity of the materials will tend to make the accelera¬ 
tion load approach this condition. Furthermore, the time factor has 
been eliminated from the equations so that they represent work done 

during acceleration rather than the actual intensities of the acceleration 
loads. In other words, the calculated acceleration load represents the 
mean effective pressure on the gear teeth during acceleration. Actually 

the maximum acceleration load may closely approach the severity of the 
impact or dynamic load at times, but it can never exceed it. 

The assumptions and approximations used have been noted in the 

foregoing analysis. We shall assemble here the specific equations needed 
for the solution of definite problems. The analysis of the dynamic loads 
on spur-gear teeth requires the determination of the following: 

1. Effective mass acting at pitch line of gears 
2. Acceleration load 
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3. Amount of separation of profiles 
4. Impact or dynamic load 

We would reduce the amount of computing if we could determine the 
intensity of the impact directly from the acceleration load and its com¬ 
ponents. The following equation gives a very close approach to the 
value of the dynamic load, and will be used: 

Wd = W+ Vfal2f2 - fa) (20-39) 

Effective Mass, For the determination of the effective mass, we have 
nia = full effective mass of connected bodies at Ri = 
nib = mass effect of ma at pitch line of pinion 

nip = effective mass of pinion blank at 72i = Ip/Ri^ 
mi = effective mass acting at pitch line of pinion 
m2 = effective mass acting at pitch line of gear 

m = effective mass influence at pitch line of gears 
V = pitch-line velocity of gears, ft/min 
Z = elasticity factor of connecting member 

e = measured error in action of gears, in. 

W = tangential applied load, lb 
F = face width of gears, in. 
d = deformation of teeth at pitch line under applied load TF, in. 

Ri = pitch radius of pinion, in. 
R2 = pitch radius of gear, in. 

2i, Z2 = elasticity form factors of gear teeth 

Elf E2 = modulus of elasticity of materials 
y = Lewis tooth-form factor 

2 = ?//(0.242 + 7.25?/) (20-14) 
d = {W/F) [{\/EiZi) + (\/E2Z2)] (20-13) 

nib = + 4XC - B)/2A (20-29) 

where A — HniaV^ 
B = (nip + m2) A + 2m2Z 

C — emam2Z 

For 14 V^-deg gears 

H == 0.00086[(l//2i) + (I/R2)] 

For 20-deg gears 

H = 0.00120[(1/Ki) + (l/7i:2)] 
Z = P/T (20-19) 

where P == load applied to shaft or coupling at radius iJi, lb 

T = torsional deflection at /?i, in. 
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Till = Trip + mb (20-25) 
m = mim^/imi + ^2) (20-30) 

The values for the tooth deformation d for gear teeth of conven¬ 
tional design can be determined very closely by the following empirical 
equations: 

For 14J^-deg gears 

d = 9M5{W/F) [{l/Ei) + a/Ei)] (20-40) 

For 20-deg full-depth form 

d = 9.000(1F/F) K1/.Bi) + {l/Ei)] (20-41) 

For 20-deg-stub tooth form 

d = 8.70{W/F) [(l/Et) + (l/E,)] (20-42) 

Fig. 20-6. 

Example of Effective Mass. As a definite example of the determination of the 
value for the effective mass we shall use the example shown in Fig. 20-6. From the 

values given there we have 

Zi 

Za 

Ai 

3.1416 X 4* X 12,000,000 _ , 
32 X 6* X 10 “ 1,^,4U0 

3.1416 X 8^ X 12,000,000 

32 X 20* X 20 
0.00120(1^ + Ho)l6 X 1,000* » 4,800 

« 603,200 
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Bi - [(2.50 + 13.00)4,800] + (0.001 X 13 X 1,206,400] Sr90,083 ?? 
Cl = 0.001 X 16 X 13 X 1,206,400 = 250,931 

\/B^ + 44 iC, - Bi 113,722 - 90,083 
2Ai -2.46 

mi = 2.50 + 2.46 = 4.96 

We shall now make simUar calculations to determine the influence of tjte members 
connected to the gear shaft. 

Ai = 0.00120 X 0.250 X 40 X 1,000^ = 12,000 
Bi = (13 + 4.96)12,000 + 0.001 X 4.96 X 603,200 = 218,512 
Cl = 0.001 X 40 X 4.96 X 603,200 = 119,680 

VWT^AiCi - Bi 231,284 - 218,512 „ 
==-2a7-^ ^ 

7712 = 7ng + 7nj = 13.00 + 0.53 = 13.53 
== ^ 13.53 

4.96 + 13.53 
3.63 

In order to show the variations in 
the value of the effective mass with 
changes in velocity, values of nii,, mi, rtid, 

7n2, and m have been calculated for 
different pitch-line velocities. These 
values are tabulated in Table 20-1. 
Most of them are plotted in Fig. 20-7. 

A study of Fig. 20-7 will give a good 
idea of how the mass influence of the 
connected masses reduces with increas¬ 
ing velocity. If the connections arc less 
elastic, such as results from larger or 
shorter shafts between the connected 
masses and the gears, the influence of 
these connected masses will persist into 
higher pitch-line velocities. 

Acceleration Loads. For the 
determination of the acceleration 
load we have the following: 
When/i = force required to accel¬ 

erate the masses as 
rigid bodies, lb 

/2 = force required to deform teeth amount of effective error, lb 
fa = acceleration load on gear teeth, lb 
W = applied tangential load, lb 
m = effective mass acting at pitch line of gears 

e = measured error in action, in. 
d = deformation of gear teeth under load Wj in. 
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Table 20-1. Effect of Speed on Mass Factors 

(Plotted in Fig. 20-7) 

7, ft/min nib mi nid m2 
1 

m 

0 16.00 18.50 40.00 53.00 13.71 

100 14.64 17.14 37.30 50.30 12.78 

200 11.97 14.47 14.95 27.95 9.53 
300 9.48 11.98 7.57 20.57 7.57 
400 7.52 10.02 4.40 17.40 6.36 

500 6.04 8.54 2.72 15.72 5.53 
1,000 2.46 4.96 0.53 13.53 3.63 
2,000 0.76 3.26 0.10 13.10 2.61 
3,000 0.36 2.86 0.04 13.04 2.35 
4,000 0.21 2.71 0.022 13.022 2.24 

5,000 0.13 2.63 0.013 13.013 2.19 
6,000 0.09 2.59 0.009 13.009 2.16 
7,000 0.07 2.57 0.006 13.006 2.14 

/i = HmV^ 
For gears 

H = 0.00086[(1/J2i) + {I/R2)] 
For 20-deg gears 

H = 0.00120[(l/i?i) + (I/K2)] 
h = W[{e/d) + 1] 

fa = /1/2/ (/l + ft) 

(20-43) 

(20-16) 
(20-2) 

Example of Acceleration Load. As a definite example we shall use the values 
shown in Fig. 20-6. Whence we have 

fi = 0.00120 (H -f* Ko)3.63 X 1,000* = 1,089 

d - 9.0 X 1,000 (ig flQQooQ + is^ooo^ooo) - 

/a 

<0.00024 
1,089 X 5,167 
1,089 -h 5,167 

899 

0.00024 

In order to show the variation in the values of fi, fzy and fa with changes in velocity, 
these values have been calculated for different pitch-line velocities. They are tabu¬ 
lated in Table 20-2 and are plotted in Fig. 20-8. 

Dynamic Load, For the determination of the maximum intensity of 
the impact load, which is the dynamic load, we have the following: 
When Wd = dynamic load, lb 

W,= W+ V/a(2/2 - fa) (20-39) 
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Example of Dynamic Load. As a definite example we shall use the values shown 
in Fig. (20-6). Wlience we have 

Wd = 1,000 + \/899(2 X 5,167 - 899) - 3,912 lb 

Values of the dynamic load at different pitch-line velocities have been calculated 
and are tabulated in Table 20-2 together with the values for the acceleration loads. 
These values are plotted in Fig. 20-8. 

Table 20-2. Acceleration Loads 

(Plotted in Fig. 20-8) 
/, = 5,167 lb 

V, ft/min h, lb lb Wd, lb 

0 0 0 1,000 
100 38 38 1,625 
200 114 111 2,065 
300 204 196 2,410 
400 305 288 2,701 

500 415 384 2,955 
1,000 1,089 899 3,912 
2,000 3,132 1,950 5,043 
3,000 6,345 2,848 5,617 
4,000 10,752 3,490 5,887 

5,000 16,425 3,930 6,017 
6,000 23,328 4,230 
7,000 31,458 4,438 6,115 
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Dynamic Loads on Small Gears. Small gears are generally mounted 
on such small shafts that the influence of the connected masses is negligible 
and can be ignored. When the pinion shaft is less than 2 in. in diameter, 
we can use the same analysis as before, but use only the values of the 
effective masses of the gear blanks themselves in Eq. (20-43). 

Example of Dynamic Load on Small Gears. As a definite example we shall use a 
pair of 24-DP gears, having 24 and 72 teeth, 34"hi. face, running at 600 rpm, and 
transmitting a tooth load of 25 lb. These will be of 20-deg full-depth form of con¬ 
ventional design. Both gear blanks will be of steel and of plain disk form. This 
gives the following values: 

Ni = 24 iVj = 72 Ri = 0.500 Rt = 1.500 F = 0.250 
W = 25 F = 157 ft/min 

The weights of the gear blanks will be 0.055 lb for the pinion and 0.491 lb for the 
gear. The effective weight at the pitch line will be one-half the total weight; hence 

0.055 
mi = -xj- — 0.00086 

o4 
m2 = = 0.00767 

64 
_ 0.00086 X 0.00767 _ . 

0.00086 + 0.0076'7 

fi = 0.00120 (g^ + 0.00077 X 1572 = 0.061 lb 

We shall assume the maximum error in action to be 0.002 in. 

^ 0.25 (30,000,000 30000,000) 

^■-“(oSs + O 
0.061 X 857 
0.061 4- 857 

= 0.061 lb 

Wd = VO.O6I (1,714 - 0.061) + 25 = 35.22 lb 

DYNAMIC LOADS AND INFLUENCE OF FINE PITCH AND HIGH SPEED 

Thus far we have considered the dynamic load conditions when the 
flow of power through the tooth mesh has been a direct reflection of the 

irregularities of the tooth mesh. Under some conditions, however, the 
momentum of the revolving parts will act to maintain a substantially 
constant velocity, and the gear teeth will be in intermittent contact only 

enough to restore the energy that is lost between successive impulses. 
When the flow of power follows the full irregularities of the tooth 

mesh we have, as pointed out before, two peak loads for each tooth engage¬ 
ment: the acceleration load followed by the impact or dynamic load. 
The dynamic load absorbs in elastic impact the change of momentum set 
up by the action of the acceleration load. As the time interval between 

successive tooth engagements becomes very small because of high pitch¬ 
line speeds or because of fine pitches at lower pitch-line velocities, the 
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gears may not have time enough to complete both load cycles. In effect, 
this would tend to reduce the effective error, and also act to reduce the 
intensity of the dynamic load. 

The major problem here is to determine the amount of time required 
for the gears to complete the full double-load cycle for each tooth engage¬ 
ment. We know that the average load must be equal to the transmitted 
load. We know also that time is consumed in the separation of the teeth 
as well as for the return, or impact. The best that we can do at the 

present time is to set up some reasonable hypothesis and to try it; then 
to check the results against definite applications in service. If the 
assumed conditions appear to be less severe than the actual ones, then the 

assumed time interval should be increased. If the assumed conditions 
appear to be more severe than the actual ones, then the assumed time 
interval should be reduced. In other words, the following assumptions 

represent a first trial and must be checked against actual working condi¬ 
tions before too much reliance is placed on the actual numerical values 
obtained. 

We know that the total time interval for each tooth mesh is equal to 

the time between successive tooth contacts. We shall assume that the 
applied load w acts for the same length of time in overcoming the separat¬ 
ing action as it does in returning the teeth into contact again. We would 
then have the condition that the greatest possible effective error would be 
the distance that the applied load could move the masses of the gear 
blanks in a time interval equal to one-half the time between successive 
tooth meshes. If this distance is greater than the error in action, we 
shall assume that the time is sufficient for the double-load cycle and that 
the conditions of the preceding analysis will prevail. If, on the other 
hand, this distance is less than the error in action we shall assume that the 
time is not sufficient for the double-load cycle and that the effective error 
is therefore reduced to the distance that the gear blanks can be moved by 

the applied load in the limited time available. 
Under these conditions, it is apparent that for all gear drives, regard¬ 

less of the extent of the actual error in action, there will be a speed at 

which the dynamic load is independent of the actual error in action. It 
may be that the dynamic load will reach a maximum value at some speed 
and then reduce with a further increase in speed. In such cases the 
gears must be strong enough to carry the loads through this maximum 
value without failure in order to be able to operate at the higher speeds. 
Thus when 

n = rpm of driver 
Ni = number of teeth in driver 

t = one-half the time between successive tooth meshes, sec 
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m = mass effect at pitch line of gears 
W — applied tangential load, lb 
S = distance along pitch line that gears can be moved by force W in 

time ty ft 
e' = distance on pitch line that gears can be moved by force W in time 

ij in. 
a = acceleration of gears, ft/sec^ 

W = ma a = W/m S = at^/2 = Wt‘^l2m 
t = 30/niVi (20-44) 

e' = l2\Vty2m = (SWt^/m (20-45) 

When e' is greater than the measured or assumed error in action, e, 
the value of e will be used in the dynamic load equations. When e' is 
less than e, then the value of e' will be used in the dynamic load equations. 

If the gears are to run at the higher speeds except when starting and 
stopping, then stresses greater than the endurance limits of the materials 
could be permitted for the load at its maximum value. On the other 

hand, if the gears are to run at a varying range of speeds above and below 

this maximum or critical value, then the stresses must be within the 
endurance limits of the materials if the gears are to have a reasonable 
length of useful life. 

In any event we should be able to determine this critical value directly. 
This can be done and the speed at which this critical load occurs can be 
determined directly by a rearrangement of Eq. (20-28) and (20-45). 
This solution will give the value of n when the value of e' is equal to e. 
Thus when 

Tie = rpm of driver when c' is equal to e 
and all other symbols are the same as before 

no = (SO/A^x) V^W/em (23-46) 

We shall disregard the influence of any connected masses here. Any 
error in so doing will make the value of c' larger than it would otherwise 
be. We shall then use the value of c' as the effective error in the dynamic 
load equation we may be using. 

Example of Dynamic Load at High Speed. As a definite example we shall use the 
same gears as those in the preceding example. This gives the following values: 

iV, =24 AT, = 72 R, = 0.500 Rj = 1.500 F - 0.25 e - 0.002 
m = 0.00077 IF = 25 

/, - 0.0032 X 0.00077 X V* 

(o,00006 0 
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We shall first determine the value of rte. 

ric 
30 
24 

_^ 12 960 
0.002 X 0.00077 

We will use a value of n 

t 

20,000. 

30 
0.0000625 

= 0.00076 

20,000 X 24 
, ^ 150(0.0000625)2 

^ 0.00077 
V = 0.5236 X 0.50 X 20,000 = 5,236 
/i - 0.0032 X 0.00077(5,236)2 = 67.54 

>■ - 
Wh = V56^0(682 - 56.40) + 25 = 2131b 

If we had used the full value of the error, we would have 

Wa = \/56.40(l,714 - 56.40) + 25 = 331 lb 

In this example, the limited time between successive tooth meshes has reduced the 
dynamic load by an amount equal to 118 lb. 

At the critical velocity where ric = 12,050, we would have 

V - 3,390 fi = 28.32 /j = 857 fa =* 27.41 
Whence 

Wh = \/27.41 (1,714 - 27.41) + 25 - 233 lb 

Second Example of D3rnamic Loads at High Speed. As a second example we shall 
use the gears shown in Fig. 20-6. We shall determine the critical value and values of 
Wd for velocities where the value of e' is less than the value of e. For this we have 
the following values: 

iVi = 30 Ri = 5.00 Rz = 20.000 F = 

THp =» 2.50 m, = 13.00 W 
We will use 

_ 2.50 X 13.00 _ ^ 
- 2.50 + 13.00 - 

/, =. 0.0003 X 2.10 X V> 

/a = 1,000 (q qqq24 ^ 0 

5.000 
= 1,000 

e = 0.001 

30 
30 

Vc ■■ 
fi ■ 

h 

/» 

- \/ 6|000 j 000 
0 >0.001 X 2.10 ’ 

0.5236 X 5 X 1,690 = 4,425 
0.00063 X 1,690» = 12,335 

' '■*» (cSk + 0 - *■ K00024 
12,335 X 5,167 
12,335 + 5,167 

167 

3,642 

\/3,642(10,334 - 3,642) -h 1,000 = 5,936 
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Values obtained for e' for various pitch-line velocities are tabulated in Table 20-3. 
Corresponding values olWd are also tabulated together with the values of the dynamic 
loads for the full value of e. These values are also plotted in Fig. 20-9. 

In this last example, at a speed of 1,690 rpm or a pitch-line velocity of 4,425 ft/min, 
the time is just sufficient to permit the complete double-load cycle, if the assumptions 
on which this analysis is based are reasonably correct. Beyond this speed, the effec¬ 
tive error is reduced and the value of the dynamic load is also reduced with further 
increases in speed. For these higher speeds with the lower dynamic loads, however, 
the gears must be strong enough to carry themselves through the maximum load 
conditions. 

Table 20-3. Values of Wd for Values of e and e' 
(Plotted in Fig. 20-9) 

F, ft/min n, rpm c', in 

w,, lb 

For e For e' 

1,000 382 0.019568 3,912 11,138 
764 0.004892 5,043 10,556 

1,146 0.002184 5,617 8,756 
1,528 0.001223 5,887 6,973 

4,425 1,690 0.001000 5,936 5,936 
1,910 0.000786 ! 6,017 5,283 
2,292 0.000546 6,081 4,249 
2,673 0.000400 6,115 3,659 



CHAPTER 21 

DYNAMIC LOADS ON GEAR TEETH 

The analysis of the dynamic loads on spur-gear teeth is given in the 

preceding chapter. We shall now attempt to apply the results of this 

analysis to the dynamic loads on other types of gears, starting with 
internal-gear drives. 

DYNAMIC LOADS ON INTERNAL-GEAR TEETH 

The dynamic loads on internal-gear teeth are the same as those on 

spur gears except that the directions of curvature of the pitch circles of 

the internal gears follow those of the mating pinions, instead of moving 

away from them. Hence the value of the pitch radius of the internal 

gear is minus instead of plus as regards all conditions of relative curvatures. 

Effective Mass. The determination of the effective mass for internal- 
gear drives is exactly the same as that for spur gears except that the value 

of H required for the solution of Eq. (20-29) is as follows: 

For 20-deg gears 

H = 0.00120[(1/Ri) - (I/R2)] (21-1) 

where Ri, Rt = pitch radius of spur pinion and internal gear, in. 

Acceleration Loads. For the determination of the acceleration load 

on internal-gear teeth we have the following: 

When/i = force required to accelerate mass as rigid body, lb 

fi = force required to deform teeth amount of error, lb 

fa = acceleration load, lb 

W — applied tangential load, lb 

^ m = effective mass acting at pitch line of gears 

e = measured error acting at pitch line of gears, in. 

d = deformation of teeth under applied load W, in. 

V = pitch-line velocity, ft/min 

fi = HmV^ 

For 20-deg gears 

H = 0.00120[(1/Bi) - (1/^2)] 

/2 = W[{e/d) -b 1] 

d = (W/F)[(l/E,z,) -b {\/E,z^)] 
453 

(20-43) 

(21-1) 
(20-15) 

(20-13) 
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Where Z\j Z2 = elasticity form factors for gear teeth 
E\, E2 modulus of elasticity of materials 

F = face width of gears, in. 

For 20-deg gears of conventional design 

d - QmiW/F)[(l/Ei) + {I/E2)] (20^1) 

/a =/l/2/(/l+/2) (20-2) 

Example of Acceleration Load on Internal-gear Drive. As a definite example we 
shall use the same values as were used for the spur-gear drive. This gives the follow¬ 
ing values: 

Ri = 5.000 R2 = 20.000 
H = 

/ 

W = 1,000 V = 1,000 
= 0.00120(K - Ko) = 0.00018 
= 0.00018 X 3.63 X 1,0002 = 653 

(0S4+') - 5'“' 

m « 3.63 

fi = 1,000 

/ 
653 X 5,167 _ 

= 653 + 5,167 = 

Dynamic Load on Internal-gear Drive, For the determination of the 
maximum intensity of the dynamic load we have the following: 

When Wd = dynamic tooth load, lb 

W4 = W + \//a(2/2 - fa) (20-39) 

Example of Dynamic Load on Internal-gear Drive. Continuing the preceding 

example, we have 

Wh = 1,000 -I- \/580(10,334 - 580) = 3,378 lb 

The dynamic load on the equivalent pair of spur gears is equal to 3,912 lb. 

DYNAMIC LOADS ON HELICAL-GEAR TEETH 

Experience teaches us that with all other factors equal, a helical-gear 
drive will run more smoothly than a pair of spur gears with straight 
teeth. Here the tooth action is a combination of conjugate gear-tooth 
profile action and a camming action along the mating helices. As regards 

smoothness of running alone, continuous action can be transmitted by 
the contact along the helices regardless of the form of the tooth profiles. 

If these mating profiles are not conjugate, then the action will be between 

the two mating helices that extend the greatest distance beyond the 
theoretical conjugate gear-tooth profiles. Under such conditions, how¬ 
ever, the contact approaches point contact, and the load capacity of the 

drive is limited by the amount of load this small surface area can carry 
without excessive wear. With correct tooth profiles, the contact between 
them is line contact, and then the whole active profiles of the teeth of 

both gears will come into contact. In other words, the major effect of 
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profile errors on helical gears is to restrict the area of the actual tooth 
contact and thus reduce its ultimate load-carrying capacity. 

On the other hand, when the gears are made of plastic materials, 

there may be some corrective influence during the running-in period if 
the initial loads applied are not too great. The high stresses set up by 
any restricted contact will cause local plastic flow and thus tend to 

increase the actual contact areas. This type of action is absent on spur 
gears, and plastic flow on such gears tends to increase the error in the 
tooth profile. 

If the initial loads on helical gears made of the more plastic metals 
are too great, excessive plastic flow of the surface material will be the 
result. This may increase the error in action, thus increasing both the 
noise of operation and also the intensity of the dynamic loads. 

We shall attempt to introduce into the equations for the dynamic 
loads the influence of the helical action on the intensities of these loads. 

One way in which this might be done is to use as the velocity of engage¬ 
ment the normal velocity of the basic-rack form as it theoretically engages 
the teeth of both gears simultaneously. In such a case, when 

V = pitch-line velocity in plane of rotation, ft/min 
Vn = pitch-line velocity of normal basic-rack form, ft/min 

4/ = helix angle of gears at pitch line 

Vn= V cos ^ (21-2) 

Another factor to be considered is the elastic deformation of the gear 

teeth under load. We have used an average deflection value for a given 
basic-rack system for the analysis of the dynamic loads on spur-gear 
teeth, and this system or its equivalent is the normal basic-rack form of 

the helical gears. The tangential load normal to the helix angle will be 
greater than the tangential load in the plane of rotation, but the developed 
length or face width of the helical gear will be greater in the same pro¬ 
portion. However, the deflection in the plane of rotation will be greater 

than the deflection in the direction normal to the helix. Thus when 
dn = normal deflection of tooth form under load IT, in. 
W — applied tangential load in plane of rotation, lb 
d = deflection of tooth form at pitch line in plane of rotation, in. 

d = dn/cos \[/ 

The foregoing equation might apply if the load were concentrated 
at the pitch line. But with helical gears of involute form, the contact 
line is at an angle to the trace of the pitch surface, and the resulting deflec¬ 

tion will be greater than that given by the foregoing equation. This 
increase in deflection will be greater with an increase in the helix angle. 
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We will therefore use the following equation as a measure for the deflec¬ 
tion on helical gears in their plane of rotation: 

d = dn/cos^ ^ (21-3) 

As the errors in form or spacing act, there may be some shifting of 

the masses in an axial direction as well as a change in velocity in the plane 

of rotation. This is particularly true for a herringbone-gear drive where 
the pinion is usually left free to float in an axial direction and find its 

own position. It would appear, however, that the value of the mass 

influence would be affected but little by this action. We shall therefore 
introduce the influence of the helix angle, as expressed in Eqs. (21-2) and 

(21-3), into the equations for the dynamic loads on spur-gear teeth to 
obtain equations for use on helical gears. 

Effective Mass. For the determination of the effective mass we have 
the following: 

When rria = full effective mass of connected bodies on pinion shaft at 

Ri = IJRi^ 
nib = mass effect of on tooth profile of pinion 

nip = effective mass of pinion blank at 7?i = Ip/R\^ 
Ml = effective mass acting at pitch line of pinion 

rric = full effective mass of connected bodies on gear shaft at 

R2 ~ Ic/R*^ 
TYid = mass effect of nic on tooth profile of gear 
riig = effective mass of gear blank at R2 = Ig/Ri^ 
ni2 = effective mass acting at pitch line of gear 
m = effective mass influence at pitch line of gears 
V = pitch-line velocity, ft/min 

Zi = elasticity factor of connecting member on pinion shaft 
Z2 = elasticity factor of connecting member on gear shaft 

e = measured error in action, in. 

W = tangential applied load at pitch line, lb 
F = active face width of gears, in. 
d = deformation of teeth under applied load W, in. 

Ri = pitch radius of pinion, in. 

R2 = pitch radius of gear, in. 
= helix angle at pitch line 

2i, Z2 = elasticity form factors of gears 
Eij E2 = modulus of elasticity of materials 

y = Lewis tooth-form factor 

y 
0.242 + 7.252/ 

z = (20-14) 
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nib 

(W/Fm/Erz,) + jl/E^,)] 
cos* ^ 

VB^ + iAiCi - Bi 
2Ai 

where Ai = HniaV^ cos* \l/ 
Bi — {nip nig)Ai -f- enigZi 

Cl = em^nigZi 
For 143^-deg gears 

For 20-deg gears 

H = 0.00086 

H = 0.00120 

2 = £ 

{ri ^ 

{wi + R^ 

(21-4) 

(20-29) 

where P = load applied to shaft or coupling at pitch line of gear, lb 

T = torsional deflection at pitch line of gear, in. 

where A 2 

B2 

C2 

rrid 
'\/B2^ H" 4^42^2 — B2 

M2 

HrUcV^ cos^ yp 

{nig + mi)A2 + emiZ2 

enicni\Z2 

(21-5) 

7711 = nip + Mb 

7n2 = rUg + nid 
m\ni2 

m =-j- 
mi + m2 

(20-25) 
(21-6) 

(20-30) 

The value for the tooth deformation d can be determined very closely 

for gears of conventional design by the following equations: 

143^-deg gears 

d 

20-deg full depth 

d 

d 

9.345(1F/F) [{l/Ei) + {l/E,)] 
(21-7) 

cos* \l/ 

9.000(1F/F) [(l/£i) + (1/F*)] 
(21-8) 

cos* 4' 

8.700(TF/F) [{l/Ei) + (1/F,)] 
(21-9) 

COS^ yp 

20-deg stub tooth 
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Example of Effective Mass for Helical Gears. As a definite example we shall use 
the values given in Fig. 20-6 with a 30-deg helix angle. We have from the spur-gear 
example: 

Zi = 1,206,400 Zi = 603,200 
Ai - 0.00120(H + Mo)16 X 1,0002 x O.866O32 - 3,600 
Bi = [(2.50 + 13)3,600] + [0.001 X 13 X 1,206,400] - 71,483 
Cl = 0.001 X 16 X 13 X 1,206,400 = 250,931 

93,398 - 71,483 
mb = 3.04 

7,200 
Ai - 0.00120 X 0.25 X 40 X 1,0002 x O.866O32 == 9,000 
Bi = (5.54 -f 13)9,000 + 0.001 X 5.54 X 603,200 = 166,860 
Ci - 0.001 X 40 X 5.54 X 603,200 = 250,931 

180,705 - 166,860 
7fld = 

mi = 

m2 = 

18,000 
2.50 + 3.04 = 5.54 
13.00 + 0.77 = 13.77 
5.54 X 13.77 

0.77 

5.54 + 13.77 
3.95 

Acceleration Load on Helical Gears. For the determination of the 
acceleration load we have the following: 

When/i = force required to accelerate the masses as rigid bodies, lb 

/2 = force required to deform teeth amount of error, lb 
fa = acceleration load on gears, lb 

W = applied tangential load, lb 

m = effective mass of gears 
e = measured or assumed error in action, in. 
d' = deformation of gear teeth under load IF, lb 

/i = HmV^ cos^ yp 
For 14t^-deg gears 

H = 0.00086[{1/Ki) + {\/R2)] 
For 20-deg gears: 

H = 0.00120[(1/Ri) + (l/Ri)] 
/2 = W[{e/d) + 1] 

fa = /l/2/(/l + /2) 

(21-10) 

(20-15) 
(20-2) 

Example of Acceleration Load on Helical Gears. As a definite example we shall 
use the values shown in Fig. 20-6 with a 30-deg helix angle. Whence we have 

fi = 0.00120 x:0.25 X 3.95 X 1,0002 X 0.866032 

. 889 X 4,125 
889 + 4,126 ° 

889 lb 

Dynamic Loads on Helical-gear Teeth. For the determination of the 
maximum intensity of the impact load, which is the dynamic load, on 

helical-gear teeth, we have the following: 
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When Wd = dynamic tooth load, lb 

Wi = W + Vfa{2fi - fa) (20-39) 

Example of Dynamic Load on Helical-gear Teeth. As a definite example we shall 
continue with the preceding problem. Whence we have 

Wd = 1,000 + \/731 (8,250 - 731) = 3,334 lb 

Djmamic Loads on Fine Pitches and at High Speeds. When the 
time interval between successive tooth contacts is too small to permit 

the full double-load cycle to act, then we have the following: 
When n = rpm of driver 

N1 = number of teeth in driver 

t = one-half the time between successive tooth contacts, sec 
m = effective mass of gear blanks at pitch line of gears 

e = measured or assumed error in action, in. 

e' = distance on pitch line that gears can move in time in. 

t = SO/nNi (20-44) 
e! = ijWt^/m (20-45) 

When 6' is greater than <?, the value of e will be used in the dynamic 
load equations. Wlien e' is less than c, then the value of c' will be used 

as the effective error in the dynamic load equations. 
When Tic = rpm of driver when e/ is equal to e 
and all other symbols are the same as before 

ric = (30/iV,) (20-46) 

Example. Using the same values as before, we have 

W = 1,000 m = 2.50 Ni = 30 e = 0.001 

30 V 0.001 X 2.50 ''P'” 

In this example, at speeds above about 1,550 rpm, the effective error will be less 
than the measured one. 

DYNAMIC LOADS ON SPIRAL GEARS 

The primary tooth action on a pair of spiral gears is a screwing or 

camming action. The theoretical contact is point contact. When the 
materials of the gears are soft and plastic, there is an appreciable amount 
of corrective action or running-in, so that the error in action is reduced 
with continued use provided that a destructive abrasive action is not 
set up. In general, it is probable that when the extent of the error in the 

direction of the action of the theoretical basic rack does not exceed about 
0.002 in. on soft materials, the larger part of this error will be corrected 
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in service. Under such conditions, the effective error in action may be 
primarily the elastic deformation of the tooth surfaces under load, and 
the dynamic load will then be substantially proportional to the applied 

load. In any event, we can safely assume that the eventual error in 
action after thorough running-in on the softer materials will be of the 
order of 0.0010 in., and the dynamic loads so determined will be greater, 

if anything, than the actual ones. 
With spiral gears of hardened steel, on the other hand, although some 

corrective wear may occur, the larger part of the initial error will persist. 
In general, with carefully cut gears, and including probable distortions 
in hardening, the extent of this initial error will be of the order of 0.002 in. 
Under these conditions, the extent of the initial error will have a major 

influence on the intensity of the dynamic load. 
Eventually it may prove necessary to set up two equations for the 

dynamic loads on spiral-gear teeth: one for use when both gears are made 
of hardened steel; and another for use when one or both of them are 
made of softer and plastic metal. We are in need of experimental data 
not only to complete the analysis of the dynamic loads on spiral-gear 

drives but also to determine the limiting wear-load conditions. In the 
absence of such information, however, we shall set up tentative equations 
for use until more reliable information is available. 

Deformation of Spiral-gear-tooth Profiles The permissible tooth 
loads on spiral-gear drives are relatively small, and the greater part of 
the deformation will be the surface deformation at the point contact. 

We shall therefore ignore the small amount of the bending of the teeth 
under these small loads. As a reasonable approximation, we shall assume 
that the contact here is similar to that of a pair of crossed cylinders with 
their axes at right angles to each other. The actual tooth surfaces are 
curved in two directions relative to the contact point, and the determina¬ 
tion of these actual radii of curvature would be a very complex operation. 
With definite experimental data to analyze, such calculations are justified. 
In the absence of such information, a simple approximation will be as 
useful and effective as a more complex analysis. 
When d = tooth deformation, in. 

P = load on crossed cylinders, lb 
jRci = smaller radius of curvature, in. 
Rc2 = larger radius of curvature, in. 

Ely E2 = modulus of elasticity of materials 
mi, m2 = Poisson's ratio for materials 

A = value depending upon value of Rc2/Rci (see Table 21-1) 
^ = helix angle of gear 
<f> = pressure angle of normal basic rack 
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Ri = pitch radius of driver, in. 
Ri = pitch radius of follower, in. 

D 72 sin 0 
He — n r" 

COS^ ^ 

Table 21-1 
Rc2/Rc, a 

1.000 2.080 
1.500 2.060 
2.000 2.025 
3.000 1.950 
4.000 1 .875 
6.000 1.770 

10.000 1.613 

(21-11) 

The approximate radius of curvature of both gears will be determined, 
and the larger value will be Rc2 and the smaller value will be Rci. 

(R I I 72 
\[E,/{\ - m^)] +T/?V(1 - m^)]p ( 

Let e = error in action on normal basic rack, in. 
C = load required to deform teeth amount of error, lb 

Substituting the symbol e for d and C for P in Eq. (21-12), and solving 

for C, we obtain 

) (21-12) 

C = (21-13) 

Dynamic Loads on Spiral Gears. AVe shall determine the dynamic 
load on spiral gears as the maximum momentary load normal to the 
theoretical basic-rack form. We shall ignore the influence of the con¬ 
nected masses and use only the effective masses of the gear blanks them¬ 
selves. Thus when 

W = tangential applied load on driver, plane of rotation, lb 

Wn = normal tooth load, lb 
ipi = helix angle of driver 
0 = pressure angle of normal basic rack 
V = pitch-line velocity of driver, plane of rotation, ft/min 

Vr = pitch-line velocity of normal bavsic rack, ft/min 
mi = effective mass of driver blank at pitch line 

m2 = effective mass of follower blank at pitch line 
m = effective mass acting at pitch line of gears 

721 = pitch radius of driver, in. 

722 = pitch radius of follower, in. 
e == error in action along normal basic rack, in. 
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C = load required to deform tooth amount of error, lb [value deter¬ 
mined by use of Eq. (21-13)] 

Wdn = normal dynamic tooth load, lb 

Wn = W/cOS COS </) (21-14) 
7, = V cos (21-15) 
m = + m2) (20-30) 
/i = HmYr^ (21-16) 

For 14)^-deg basic-rack form 

H = 0.00086[(cos2 ^i//?i) + (cos2 (21-17) 

/2 = c + T7n (21-18) 
/a=/l/2/(/l+/2) (20-2) 

W,n = Wn+ V'/a(2/2 - fa) (21-19) 

Examples of Dynamic Load on Spiral Gears. First Example. As a definite 

example we shall use a pair of hardened-steel spiral gears of the following sizes: 

Ni = 12 iV2 = 48 Pn - 10 ^2 * 30° </> = 14.50° 
Face width = 1.000 iF = 20 lb n = 2,000 e = 0.002 

Whence 
= Ko cos 60° = 1.200 Ri = 2^0 cos 30° = 2.7713 
Vr - 0.2618 X 2.40 X 2,000 X 0.500 = 628 ft/min 

When 0.265 lb is the weight per cubic inch of steel 

^ _ 3.1416 X 1.2* X 1 X 0.265 _ 
— —2x32:2- 

3.1416 X 2.7713* X 1 X 0.265 
m2 — 

m = 

Wn - 
Rc2 =* 

Rcl == 

Rc2 

Rcl 

2 X 32.2 
0.032 

0.018 X 0.032 
' 0.018 + 0.032 

20 
0.500 X 0.96814 
1.20 X 0.25038 

0.25 
2.7713 X 0.25038 

1.202 
0.925 

0.75 

1.3 

0.0115 

= 41.3 lb 

= 1.202 

0.925 

WTience 
A - 2.074 

^ /0.002\^^i /60,000,000\ . L /0.925 X 1.202\ 
V2.047/ V 0.900 /V \^o.925 + 1.202/ 

H = 0.00086 (5|g -H 0^3) = 0.00032 

/. - 0.00032 X 0.0115 X 628* - 1.5 lb 
u = 2,000 -1- 41.3 - 2,041.3 lb 
^ _ 1.5 X 2,041.3 _ , fe 

1.5 -f 2,041.3 

Wj. - 41.3 + V1.5(4,082.6 - 1.5) - 119.5 lb 

2,000 lb 
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This dynamic load of 119.5 lb would develop a maximum compressive stress of over 
240,000 psi in the hardened-steel materials. 

Second Example. As a second example we shall use the same values as before, but 
with cast iron as the material for both gears. This would give the following value.s: 

Vr * 628 m = 0.0115 /i == 1.5 Ra = 0.925 Rr^ = 1.202 
E = 15,000,000 A = 2.074 W,, = 41.3 

These gears will receive corrective wear so that we shall assume an eventual error 
in action of 0.0005 in. along the normal basic rack; whence 

^ _ /0.0005\3^ /30,000,000\ ^/O'. 
^ V 2.074 J V 0.900 ) 

fi = 125 + 41.3 = 166.3 
^ _ 1.5 X 166.3 _ , 

1.5 + 166.3 

W,n = 41.3 + (332.6 - 

.925 X 1.262N 

.925 + I.202J 

63.6 lb 

This dynamic load of 63.6 lb would develop a maximum compressive stress of 
about 63,000 psi in the cast-iron materials. 

DYNAMIC LOADS ON WORM GEARS 

The tooth action on a worm-gear drive is similar to that on a pair of 
spiral gears except that the contact is line contact instead of point con¬ 
tact. The exact nature of this line contact depends upon several factors, 
such as the thread angle, the lead angle of the worm, and the position of 
the pitch plane of the worm in reference to the thread depth. Another 
variable factor is the changing form of the worm-gear tooth across its 
face. All these variables make it a complex task to calculate the local 
deformations under load and also to determine with any degree of 
accuracy the influence of other conditions that affect the intensity of the 
dynamic load. We shall therefore use only approximations for this 

purpose. 
In common with spiral-gear drives, when the extent of the error in 

action on a worm-gear drive does not exceed about 0.002 in., it is probable 
that a large part of this error will be corrected in service by the plastic 
flow of the material of the worm gear. We shall therefore use a value of 
0.001 in. for the effective error on worm gears as a measure of the condi¬ 

tions after the initial running-in of the drive. 
As with spiral gears, we shall ignore the influence of the connected 

masses and use only the effective masses of the worm and worm-gear 

blanks. Thus when 
W = transmitted axial tooth load, lb 
Vr = normal pitch-line velocity, ft/min 

X = lead angle of worm 
L = lead of worm thread, in. 
n = rpm. of worm 
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F = face width of worm gear, in. 
Ri = nominal pitch radius of worm, in. 
Ri = pitch radius of worm gear, in. 

Ely Ez = modulus of elasticity of materials 
Ml = effective mass of worm blank at pitch radius 
m2 = effective mass of worm gear blank at pitch radius 
m = effective mass influence at pitch line of drive 

Wd = dynamic axial tooth load, lb 
C — load per inch of face required to deform teeth by amount of 

error, lb 
e = error in action, in. 

mim2 m =-j- 
nil + m2 

(20-30) 

nL cos X 
12 

(21-20) 

0.120e 
(21-21) 

(1/Ei) + (1/J5*) 
/i = HmVr^ (21-10) 

For worms of 14)>^-deg pressure angle 

H.0.0008C (21-22) 

For worms of 20-deg pressure angle 

H - 0.00120 (21-23) 

For worms of 25-deg pressure angle 

« = 0.00153 (21-24) 

For worms of 30-deg pressure angle 

H = 0.00188 + 5^) (21-25) 

h = FC+W (21-26) 

f _ /'/* 
/1+/2 

(20-2) 

W,= W+ V/a(2/2 - fa) (20-39) 

Examples of Dynamic Load on Worm-gear Drive. First Example. As a definite 
example we shall use a hardened and ground steel worm and a bronze worm gear with 
the following values: G-start worm and 48-tooth worm gear, 1-in. axial pitch. 
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fti = 1.910 
Rt - 7.6394 

.X ■ 
mi 

Vr 

22.566° 
- 0.20 m2 

= 30° 
1.68 

Length of worm 
n = 2,000 W 

2,000 X 6 X = 923 ft/min 

4.00 
1,000 

12 

r_0.120 X 0.001_- 1 onn m 
(1/30,000,000) 4- (1/I5,000,()b0) "" 

H - 0.00188 +T«) - 0.000355 

/, = 0.000355 X 0.179 X 923^ = 54 lb 
/2 = 2,550 + 1,000 = 3,5501b 

54 X 3,550 . ,, 
= 54--t:X550 = 

Wd = 1,000 -f V54(7,100 - 54) = 1,617 lb 

L = 6.00 
F * 2.125 

Second Example. As a second example we shall use a cast-iron worm and bronze 
worm gear of the same size as before. Whence we have 

C == 

/i 
A 

A 

W = 1,000 Vr = 923 ft/min 
0.120 X 0.001 

(i/15,000,000) + (1/15,000,000) 
H = 0.000355 m = 0.179 

= 0.000355 X 0.179 X 923^ - 54 lb 
= 1,912 4- 1,000 = 2,912 lb 

54 X 2,912 

= 900 lb 

54 4- 2,912 
= 54 lb 

Wd = 1,000 4- \/54 (5,824 - 54) = 1,558 lb 

DYNAMIC LOADS ON BEVEL-GEAR TEETH 

The tooth action on bevel gears with straight teeth is very similar to 
that on spur gears. We can use the same analysis here when it is adjusted 

to the equivalent spur gears of Tregold’s approximation. 

Effective Mass. For the determination of the effective mass we have 
Eq. (20-29) from the spur-gear analysis. The pitch radii of the gears 
will be the mean pitch radii, or the radii of the pitch cones at the middle 

of the tooth faces. For the value of // we have, when 
Rmp = mean pitch radius of bevel pinion, in. 

Rmg = mean pitch radius of bevel gear, in. 

7r = pitch-cone angle of bevel pinion 
yo =* pitch-cone angle of bevel gear 

For 14)/^-deg gears 

H = 0.00086[(cos yv/Rmp) + (cos yg/Rmo)] (21-27) 

For 20-deg gears 

H = 0.00120[(cos yp/Rmp) + (cos yg/Rmg)] (21-28) 
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Acceleration Load. For the determination of the acceleration load 
we have the following: 
When/i = force required to accelerate the masses as rigid bodies, lb 

/2 = force required to deform teeth by amount of effective error, lb 
fa = acceleration load, lb 

W = applied tangential load, lb 
m = effective mass of gears 

mi = effective mass acting at pitch line of bevel pinion 

m2 = effective mass acting at pitch line of bevel gear 
e = measured or assumed error in action, in. 

C = load per inch of face required to deform teeth by amount of 

error, lb 
F = face width of gears, in. 

m =-j- 
mi + m2 

(20-30) 

/i = HmV^ (20-43) 

Use Eqs. (21-27) and (21-28) for values of H, 

U = FC -^W (21-26) 

For Hj-^-deg gears 

„ 0.107e 
(l/fi.) + (1/fi,) 

(21-29) 

For 20-deg gears 

^ O.llle 
{\/E,) + {^/E^) 

(21-30) 

f _ fih 
/. + h 

(20-2) 

D3maniic Load on Bevel-gear Teeth. For the determination of the 
maximum intensity of the impact load on bevel-gear teeth, which is the 
dynamic load, we have the following: 
When Wd = dynamic tooth load, lb 

W, = W+ VJM2 -TJ (20-39) 

Example of Dynamic Load on Bevel-gear Teeth. As a definite example, we shall 

use a pair of 6-DP bevel gears of 24 and 48 teeth, 20-deg full-depth form, with a face 

width of 1 in., with a tooth load of 300 lb, and with the pinion running at 1,200 rpm. 

Both gears are of steel. We shall use the following values: 

ATp » 24 7p =« 26.565° cos 7p = 0.89442 R, * 2.000 F - 1.000 

N, = 48 7p = 63.435° cos 7. -= 0.44721 R. - 4.000 TT - 300 
n = 1,200 c = 0.002 
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Wo will use m = 0.070. 

ft mp 

Rmo 

Rmp 

Rmg 

^ Rp - 2 
F 

^ Rg - ^ sin yg 

= 2.000 - (0.500 X 0.44721) * 1.7764 
= 4.000 - (0.500 X 0.89442) » 3.5528 

V 
V 

H 

/i 

C 

h 

= 0.5236/2„pn 
= 0.5236 X 1.7764 X 1,200 = 1,116 ft/min 

/0.89442 0.44721\ 
= 0.00120 + 3:5528; " 
= 0.00075 X 0.070 X l.HO^ = 65.4 lb 

_ 0.111 X 0.002_^ Q wn ih 
“ (1/30,000,000) + (1/30,000,000) 
= 3,330 + 300 = 3,630 lb 

fa 

Wj 

65.4 X 3,630 = 64.2 lb 
65.4 -h 3,630 
300 -1- v/64.2(7,260 64.2) = 980 lb 

(21-31) 

(21-32) 

(21-33) 

Dynamic Loads at High Speeds on Bevel Gears. As with spur gears, 
when the time interval between successive tooth contacts is too short 
because of fine pitch or high pitch-line velocities to permit the full 
double-load cycle, the extent of the effective error will be reduced, and 
the intensity of the dynamic load will also be reduced. Thus when 

n = rpm of bevel pinion 
Np = number of teeth in bevel pinion 

t = one-half the time betw’cen tooth contacts, sec 
m = mass effect at pitch line of gears 
W = applied tangential load, lb 

e = measured or assumed error, in. 
e' = effective error, in. 
Tic = rpm of pinion when e' is equal to e 

i = 30/nAp (20-44) 
e' = (SWt^/m (20-45) 

Tie = (30/iVp) VQW/em (20-46) 

When e' is greater than e, the value of e w ill be used in the dynamic 
load equations. When e' is less than c, then the value of e' w ill be used 
in the dynamic load equations. 

The maximum value of the dynamic load will be when the bevel 
pinion is running at a speed of rif. If the gears are to operate most of 
the time at higher speeds, then stresses greater than the endurance limits 
of the materials could be permitted for the load at its maximum value. 
If the gears are to run at a varying range of speeds above and below’ this 
critical value, then the stresses must be w ithin the endurance limits at 
this critical value if the gears are to have a reasonable length of useful life. 
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Example of High-speed Bevel-gear Drive. As a definite example we shall use the 
same values as before, but with a reduced error in action of 0.001 in., and a higher 
speed of operation. We shall use the following values: 

Wp = 24 7p = 26.566“ = 1.7764 N, =48 7. = 63.435“ 
= 3.5528 F = 1.000 W = 300 n = 7,500 e = 0.001 m = 0.070 

H = 0.00075 C = 1,665 

30 .. / 1,800 
24 V 0.00007 

We shall determine the critical dynamic loads at the speeds of 6,345 rpm and 
7500 rpm. 
When Vc = pitch-line velocity at critical load, ft/min 

When n 

Vc = 0.5236 X 1.7764 X 6,345 = 5,900 ft/min 
/i = 0.00075 X 0.070 X 5,900^ = 1,828 lb 

= 1,665 -h 300 = 1,966 1b 

- 1.828 X 1.965 _ 0^7 lb 
1,828 + 1,965 

= 300 + \/94f(3,930 - 947) = 1,980 lb 

h 

fa 

Wa 

7,500, then 

V = 0.5236 X 1.7764 X 7,500 = 6,976 ft/min 

e' = 6 X 300 X = 0.000714 in. 

^ 0.111 X 0.000714 _ 
(1/30,000,000) + (1/30,000,000) ’ 

/. = 0.00075 X 0.070 X 6,976* = 2,555 lb 
ft = 1,188 + 300 = 1,4881b 

/. 2,5.55 X 1,488 
2,555 + 1,488 

= 940 lb 

Wd = 300 + \/940(2,976 - 940) = 1,684 lb 

In this example, the operating dynamic load is about 300 lb less than the maximum 
dynamic load at the critical point. 

DYNAMIC LOADS ON SPIRAL BEVEL GEARS 

The tooth action of spiral bevel gears has much in common with the 
tooth action on helical gears. We shall therefore use the same analysis 
here, adjusted to the equivalent helical gears by the use of Tregold’s 
approximation. 

Effective Mass. For the determination of the effective mass we have 
Eqs. (20-29) and (21-6) from the helical-gear analysis. The pitch radii 
of the spiral bevel gears will be their mean pitch radii. For the value of 
H we have the following: 
When Rmp = mean pitch radius of spiral bevel pinion, in. 

Rmo = mean pitch radius of spiral bevel gear, in. 
= pitch-cone angles of spiral bevel pinion and gear 
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For 143/^-deg gears 

H = 0.00086[(cos yp/Rmp) + (cos yg/Rmo)] (21-27) 

For 20-deg gears 

H = 0.00120[(cos yp/Rmp) + (cos yg/Rmg)] (21-28) 

Acceleration Load on Spiral Bevel Gears. For the determination of 
the acceleration load on spiral bevel gears, we have the following: 

When fi = force required to accelerate masses as rigid body, lb 

/2 = force required to deform teeth by amount of error, lb 
fa = acceleration load, lb 
m = effective mass acting at pitch line of gears 

mi = effective mass acting at pitch line of pinion 

7712 = effective mass acting at pitch line of gear 
e = measured or assumed error in action, in. 

C — load per inch of face to deform teeth by amount of error, lb 
F = face width of gears, in. 
V = pitch-line velocity, ft/min 

\f/ — spiral angle at middle of tooth face 
71 = rpm of spiral bevel pinion 

W = applied tangential load, lb 

m im2 
m =-j- 

^1 + 7712 

V = 0.5236fi^pn 
/i = HtuV- cos^ ^ 

We already have Eqs. (21-27) and (21-28) for the value of H. 

/2 = FC cos^ ^P+W 
For 14}/^-deg gears 

^ _ 0.107e 
{l/EO + {I/E2) 

For 20-deg gears 
0.1 lie 

{\/E,) -h {I/E2) 
f _ /1/2 

/.+/* 

Dynamic Loads on Spiral Bevel Gears. For the determination of the 
dynamic loads on spiral bevel gears, we have the following: 

When Wd = dynamic tooth load, lb 

(21-34) 

(21-29) 

(21-30, 

(20-2) 

(20-30) 

(21-33) 
(21-10) 

(20-39) 
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Example of Dynamic Load on Spiral Bevel Gears. As a definite example we shall 
use the same values as those of the bevel-gear example with straight teeth, but with a 
spiral angle of 30 deg. This gives the following values: 

N, 
Na 

24 
■ 48 

1,200 

7p 

ye 
e 

26.565° 
63.435° 
0.002 

cos 7p = 0.89442 
cos yg = 0.44721 

m - ,0.070 
F 

Rp 
Rg 

2.000 
4.000 

= 30° 
W 

cos ^ 

Rmo 

Rn 

Rp 2 7p 

Ra sin yg 

1.7764 

/i 
/2 

fa = 

Rmg = 3.5528 V = 1,116 H = 0.00075 
- 0.00075 X 0.070 X 1,1162 x 0.7500 = 49.0 lb 
= 3,330 X 0.7500 + 300 = 2.798 lb 

49 X 2,798 
= 48 lb 

49 d- 2,798 

= 300 H- \/48(5,596 - 48) = 816 lb 

l.UUU 

300 
' 0.86603 

(21-31) 

(21-32) 

3,330 

Djmamic Loads on Spiral Bevel Gears at High Speeds. In common 
with other types of gears, when the time interval between successive 
tooth contacts is too short to permit the full double-load cycle to act, 

either because of fine pitches or because of high pitch-line velocities, the 

extent of the effective error will be reduced, and the intensity of the 
dynamic tooth load will also be reduced. Thus when 

n = rpm of spiral bevel pinion 
Np = number of teeth in spiral bevel pinion 
. t = one-half the time between successive tooth contacts, sec 
m = mass effect at pitch line of gears 
W — applied tangential load, lb 

e — measured or assumed error, in. 
e' = effective error, in. 

t = 30/nNp (20-44) 
e' = (20-45) 

Uc = (30/iVp) y/^W/em (20-46) 

When is greater than the measured error c, the value of q> will be 
used in the dynamic load equations. When the value of e' is less than 

e, then the value of e' will be used in the dynamic load equations. 
The maximum value of the dynamic load will occur when the spiral 

bevel pinion is running at a speed of ric. If the gears are to operate most 
of the time at higher speeds, and pass through this critical value only 
occasionally when starting and stopping, then stresses greater than the 
endurance limits of the materials used for the gears could be permitted 

for the load at its maximum value. If the gears are to run at varying 
speeds, above and below this critical value, then the stresses here must 
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be within the endurance limits of the materials if the gears are to have 
a reasonable length of useful life. 

Example of Spiral Bevel Gears at High Speeds. As a (iefinite example we shall 
use the same values as before, but with a reduced error in action of 0.001 in., and a 
higher speed of operation. We shall use the following values: 

ATp « 24 Rmp = 1.7764 N, = 48 Rmo = 3.5528 F = 1.000 
1^ = 300 n = 7,500 e = 0.001 m = 0.070 

_30 ^ / 1,800 _ 
24 > 0.00007 6,345 rpm 

We shall determine the critical dynamic load at the speed of 6,345 rpm and also 
the dynamic load at the speed of 7,500 rpm. 
When Ve — pitch-line velocity at critical point, ft/rnin 

Vc = 0.5236 X 1.7764 X 6,345 = 5,000 ft/min 
/i = 0.00075 X 0.070 X 5,900^ X 0.750 - 1,371 lb 

= 1,665 X 0.750 -h 300 = 1,549 lb 
_ 1,371 X 1,549 

/2 

/a 

Wd = 300 + \/727(3,098 - 727) = 1,613 lb 

1,371 -f 1,549 
= 727 lb 

When n =« 7,500, then 

V - 0.5236 X 1.7764 X 7,500 = 6,973 ft/min 
30 t = 

7,500 X 24 
= 0.000167 sec 

e' = 6 X 300 X = 0.000714 

C - 

0.070 
0.111 X 0.000714 

= 1,188 1b 
(1/30,000,000) + (1/30,000,000) 

/, = 0.00075 X 0.070 X 6,9732 X 0.750 = 1,916 lb 
f2 - 1,188 X 0.750 + 300 - 1,191 lb 
/ - 1.^110 X 1,191 _ _ „ 

1,916 + 1,191 

Wd = 300 -f a/734(2,382 - 734) = 1,400 lb 

DYNAMIC LOADS ON HYPOID GEARS 

The tooth action on hypoid gears varies somewhat from that on spiral 
bevel gears because of the sliding action that develops as a result of the 
offset axes of the gears. We shall, however, treat them here as spiral 

bevel gears with an increased spiral angle because of the offset contact. 

Thus when 
Rmo = mean pitch radius of hypoid gear, in. 

Rbg = radius of base cylinder of gear hyperboloid, in. 
Jo = angle of generatrix of gear hyperboloid 
^ = spiral angle of hypoid gear at mean pitch radius 

= effective spiral angle of hypoid gear at mean pitch radius 

== ^ + sin~^ {Rbo sin yg/Rmu) (21-35) 
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Effective Mass of Hypoid Gears. The effective mass of hypoid gears 
will be determined in the same manner as the masses for spiral bevel gears. 

Acceleration Load on Hypoid Gears. We have the following for the 
determination of the acceleration load on hypoid gears. 
When/i = force required to accelerate the masses as rigid bodies, lb 

/2 = force required to deform teeth by amount of effective error, lb 
fa — acceleration load, lb 
m = effective mass of gears at point of mesh 

rui = effective mass acting at pitch line of hypoid pinion 
m2 == effective mass acting at pitch line of hypoid gear 

e = measured or assumed error in action, in. 

C = load per inch of face to deform teeth by amount of error, lb 

7p, 7(7 = angle of generatrix of pinion and gear hyperboloids 
F = face width of gears, in. 

Rp = pitch radius of hypoid pinion, in. 

Rg = pitch radius of hypoid gear, in. 
Rmp = mean pitch radius of hypoid pinion, in. 

Rmg = mean pitch radius of hypoid gear, in. 

V = pitch-line velocity, ft/min 
xpc — effective spiral angle at middle of tooth face 
n = rpm of hypoid pinion 

W = applied tangential load, lb 

For 143^^-deg gears 

For 20-deg gears 

F 
Rmp Rp 2 “Yp (21-31) 

F 
Rmg Rg 2 'Yg (21-32) 

m\m2 m = -- 
mi + m2 

(20-30) 

V = 0.523f)/?„pn (21-33) 
fi = HmV’^ cos^ \f/c (21-10) 

II = 0.00086 + -pA 
\ *^mp *^mg / 

(21-27) 

II - 0.00120 ^ p 
\ Hmp Hmo / 

(21-28) 

= FC cos' tf^c+W (21-34) 

For 143^-deg gears 

0A07e 
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For 20-deg gears 
„ _ O.llle 

+ (!/£?*) 

t = _M_ 
/1+/2 

Dynamic Load on H3rpoid Gears. For the determination of the 
dynamic load on hypoid gears we have the following: 
When Wd — dynamic tooth load, lb 

Wd = W+ Vfa(2h - fa) (20-39) 

Example of Dynamic Load on Hypoid Gears. As a definite example we shall use 
the same values as those of the spiral-bevel-gear example with an offset or center 
di.stanee of 1.500 in. This gives the following values: 

(21-30) 

(20-2) 



CHAPTER 22 

BEAM STRENGTH OF GEAR TEETH 

As noted earlier, the load-carrying ability of any gear drive may be 

limited by one or more of the following factors: 

1. Heat of operation 
2. Beam strength of teeth 

3. Wear-load capacity of materials of gears 
In other words, a satisfactory gear drive must have the ability to dissipate 

the frictional heat of operation, must have teeth sufficiently strong to 
carry the dynamic loads without breaking or shearing, and must be made 
of materials whose surface-endurance properties are adequate to carry 

the dynamic loads without excessive wear. 
When we study the beam strength of the teeth, the gear teeth are 

considered as cantilever beams. The most severe conditions of loading 

would be when the full load is carried at the tips of the teeth. On the 

more accurate gears, the full load will not be carried there, because with 
a slight amount of elastic deformation, the load will be shared by a second 

pair of mating gear teeth. However, when the requirements of weight 

and size of gears are not critical, a condition that includes the great 
majority of gears used in machine design, we shall certainly be safe if we 
assume that the load may be carried on the tip of a single gear tooth. 

BEAM STRENGTH OF SPUR-GEAR TEETH 

Lewis Formula. Wilfred Lewis appears to have been the first to use 
the form of the gear tooth as one of the factors in a formula for the strength 
of gear teeth. This formula, which has become the one most widely used 

today, was presented in a paper read before the Engineers^ Club of 
Philadelphia on Oct. 15, 1892. This formula is as follows: 
When Wt = safe bending load on gear tooth, lb 

8 = safe working stress of material, psi 

p = circular pitch of gear, in. 
F = face width of gears, in. 

y = tooth-form factor 

Wg = spFy 
474 

(18-1) 
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Tooth-form Factor, The tooth-form factor y is obtained by consider¬ 
ing the gear tooth as a beam, fixed at one end and loaded at the other. 

These factors are usually determined graphically as follows: Referring 
to Fig. 22-1, when 

8 = maximum fiber stress, psi 

h = thickness of beam, in. 
h = height of beam or tooth, in. 

we have for such a beam 

W, = 
sFb^ 

6/i 
(22-1) 

It can be shown by similar triangles in 
Fig. 22-1 that 

6/2 h 
whence 

6' 

^ 4/i 

Substituting this value into Eq. (22-1), we have 

Q.T 
W, = .sF -l- ^spF^ = spFy 

From whence 

y = 3p 
(22-2) 

Such tooth-form factors for several different gear-tooth systems are 
tabulated in Table 22-1. These values are for use when the load is 

assumed to be concentrated at the tips of the gear teeth. 

Maximum Load at Middle of Tooth. A study of the dynamic loading 
of gear teeth indicates that the impact load acts shortly after the engage¬ 

ment of the succeeding pair of mating teeth, and appears to be imposed 

somewhere near the middle of the tooth depth. This impact load is the 
maximum momentary load, although under some conditions the maxi¬ 

mum intensity of the acceleration load may be nearly equal to the inten¬ 
sity of the impact load. The acceleration load is imposed near the tip 
of the driven gear. However, at this point, when the elastic tooth deflec¬ 
tion is equal to the error in action, this load will be shared by two pairs 
of teeth. In the tests on the Lewis gear-testing machine, the conditions 
of the tooth surfaces of the tost gears indicated that the maximum punish- 
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ment of the tooth surfaces occurred near the middle of the tooth depth. 
It shifted slightly with changes in speed, but never appeared near the 

tip of either of the two mating teeth. Hence when size and weight 
become more critical factors, we can use tooth-form factors for the more 
accurate gears that are based on the line of force passing through the 
middle of the tooth, as shown in Fig. 22-2. Values of y based on these 

conditions are tabulated in Table 22-2. 

Table 22-1. Values of Tooth-form Factor Load at Tip of Tooth 

N 

y 
... 

14V2-deg 

form 

14;i^-deg 
variable 
center 

distance 

20-deg 
full-depth 

form 

20-deg 
stub tooth 

form 

Internal gears 

Spur 
pinion 

Internal 
gear 

12 0.067 0.125 0.078 0.099 0.104 * 

13 0.071 0.123 0.083 0.103 0.104 * 

14 0.075 0.121 0.088 0.108 0.105 * 

15 0.078 0.120 0.092 0.111 0. 105 
16 0.081 0.120 0.094 0.115 0.106 * 

17 0.084 0.120 0.096 0.117 0.109 * 

18 0.086 0.120 0.098 0.120 0.111 * 

19 0.088 0.119 0.100 0.123 0.114 4< 

20 0.090 0.119 0.102 0.125 0.116 * 

21 0.092 0.119 0.104 0.127 0.118 * 

22 0.093 0.119 0.105 0.129 0.119 * 

24 0.095 0.118 0.107 0.132 0.122 * 

26 0.098 0.117 0.110 0.135 0.125 
28 0.100 0.115 0.112 0.137 0.127 0.220 
30 0.101 0.114 0.114 0.139 0.129 0.216 

34 0.104 0.112 0.118 0.142 0.132 0.210 
38 0.106 0.110 0.122 0.145 0.135 0.205 
43 0.108 0.108 0.126 0.147 0 137 0.200 
50 0.110 0.110 0.130 0.151 0.139 0.195 
60 0.113 0.113 0.134 0.154 0.142 0.190 

75 0.115 0.115 0.138 0.158 0.144 0.185 
100 0.117 0.117 0.142 0.161 0.147 0.180 
150 0.119 0.119 0.146 0.165 0.149 0.175 
300 0.122 0,122 0.150 0.170 0.152 0.170 

Rack 0.124 0.124 0.154 0.175 

♦ Internal gears with less than 28 teeth must be designed specially for the particular application, and 
their, values of y must be determined for each one individually. 
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Table 22-2. Values of y when the Load is Near the Middle of the Tooth 

N 

y 

14H-dcg 
form 

20-(log full- 
depth form 

20-deg stub 
tooth form 

Internal gears 

Spur 
pinion 

Internal 
gear 

12 0.113 0.132 0.158 0.207 * 

13 0.120 0.141 0.164 0.208 * 

14 0.127 0.149 0.172 0.209 ♦ 

15 i 0.132 0.156 0.177 0.210 
16 0.137 0.160 0.184 0.211 ■¥ 

17 0.142 i 0.163 0.187 0.215 * 

18 0.146 0.166 0.192 0.218 * 

19 0.150 0.170 0.196 0.222 * 

20 0.153 0.173 0.200 0 225 * 

21 0.156 0.176 0.203 0.228 * 

22 0.158 0.178 0.206 0.230 * 

24 0.162 0.182 0.211 0.233 * 

26 0.166 0.187 0.216 0.236 * 

28 0.170 0.190 0.219 0.239 0.400 

30 0.172 0.193 0.222 0.242 0.395 

34 0.176 0.200 0.227 0.246 0.387 

38 0.180 0.207 0.232 0 250 0.380 

43 0.183 0.214 0.235 0 253 0.372 

50 0.187 0.221 0.241 0.256 0.364 

60 0.192 0.227 0.246 0.260 0.356 

75 0.195 0.234 0.252 0.264 0.348 
100 0.198 0.241 0.257 0 268 0.340 

150 0.202 0.248 0.264 0.272 0.332 

300 0.207 0.255 0.272 0.276 0.325 

Lack 0.210 0.262 0.280 

* Internal ffoara with \ess than 28 teeth must bo designed specially for the particular application; 

their values of y must bo determined for each one individually. 

Double Tooth Contact. In very critical drives, special tooth propor- 
tions and tooth designs that give a contact ratio greater than two may 
be used. In such cases, we can make some reasonably close approxima¬ 
tion to the way in which the load will be shared between the two pairs of 
mating teeth. The contact on the first pair of mating teeth will be near 

the tip of the tooth of the driving member when the contact on the second 
pair is near the middle of these teeth. With a definite amount of error, 
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the tooth profiles of the highest pair must deform by the amount of this 
error before the second pair of teeth will begin to share this load. If the 

amount of deflection under a given 
load were the same at the tip and at 
the middle of the tooth, the remainder 
of the load would be shared equally. 
But the unit deflection at the tip is 
always greater than at the middle of 
the teeth. Hence the contact at the 
tip will carry a proportionately lesser 
part of the remaining load than does 
the contact at the middle of the teeth. 

The nature of the error may be 
such that the initial contact takes 
place at the tip or at the middle of the 
tooth. Therefore we must assume 
that it may be at either place, deter¬ 
mine the possible loads and stresses 

accordingly, and use the value that gives the greater bending stress. 
This will generally be when the initial contact is assumed at the tip of 
the tooth. 

From the preceding chapter, we have 
C = load per inch of face to deform teeth by amount of error lb 
d = deformation at middle of teeth under load W, in. 

W — applied tangential load, lb 
F = face width of gears, in. 
Zi = deformation factor of pinion tooth 
Z2 = deformation factor of gear tooth 

Ely E2 = modulus of elasticity of materials 
y = Lewis tooth-form factor 
e = measured or assumed error, in. 

For the deformation at the middle of the mating gear tooth profiles 
we have 

d = {W/F)[{l/Eizi) + {\/E2Z2)] (20-13) 
z = t//(0.242 -f 7.252/) (20-14) 

FC/W = e/d 
whence 

FC = eW/d (22-3) 

In general, the deformation at the tip of the tooth will be about 150 
per cent of the deformation at the middle. Hence when one pair of 
teeth has been deformed by the amount of the error, the remainder of the 
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load will be shared so that about 40 per cent of it will be applied at the 
tip of the first pair and 60 per cent at the middle of the second pair. 
Thus when 

dt = deformation at tip contact, in. 

dt = 1.50d (22-4) 

Example of Double Tooth Contact. As a definite example we shall use the follow¬ 
ing assumed values: 

W = 23,360 = 37,430 « = 0.0005 F = 2.750 
yi (at tip) = 0.092 yi (at middle) = 0.231 ^2 (at tip) = 0.122 

7/2 (at middle) = 0.210 Zi = 0.10121 Z2 — 0.10830 p — 0.5236 
El ^ E2 30,000,000 d = 0.00541 C = 785 FC = 2,160 

We shall assume first that the high point is at the tip of the driving pinion. The 
load required to deform the teeth here by the amount of the error will be 

Whence we have 

HFC = X 2,160 = 1,440 lb 

Pounds 
Total tooth load. ... 37,430 
Ix)ad to deform teeth to double contact. . . 1,440 
Load to be shared. . . . . . 35,990 
Carried at tip, 40% of shannl load. . 14,396 
C'arried at middle, 60% of shared load. .21,594 
Total load at tip. 1,440 -|- 14,396 = 15,836 
Total load at middle. .21,594 

We shall now assume that the high ix)int is at tlie middle of the tooth. The load 
r('(}uired to deform the teeth here by the amount of the error will be FC — 2,160 lb. 
Whence we have 

P 0^171 ds 
Total tooth load. 37,430 
Ijoad required to obtain double contact. 2,160 
Ixiad to be shared. 35,270 
(Carried at tip, 40% of shared load.14,108 
Carried at middle, 60% of shared load. . .21,162 
Total load at tip. 14,108 
Total load at middle. 2,160 + 21,162 = 23,322 

From these values we have 

Maximum load at tip =» 15,836 lb 
Maximum load at middle =» 23,322 lb 

We shall now compute the bending stresses. Transposing the T^ewis formula to 
solve for stress, we obtain 

s *■ W/pFy (22-5) 
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For the load at the tip of the pinion tooth, we have 

15,836 
* ° 0.5236 X 2.75 X 0.092 

120,000 psi 

For the load at the middle of the pinion tooth, we have 

23,322 
0.5236 X 2.75 X 0.231 

= 70,150 psi 

In this example the smaller load at the tip of the pinion tooth develops the higher 
bending stress. 

Stress Concentration at Fillet. Whenever there is a rapid increase of 

section in a stressed body made of elastic material, there will be an 

increased local stress, or stress concentration, at the region of increase 
of section. The intensity of this stress concentration depends largely 

upon the rate of change of section. Thus the actual maximum local 

stresses at the root of a loaded gear tooth are larger than the average 
stresses as determined by any bending formula such as the Lewis equation. 

Phofcoelastic studies of the stress concentrations at the roots of gear 

teeth have been made by several investigators. Similar studies have 
been made upon the effects of the size of fillets on the stress concentra¬ 
tions in test bars. These results have been compared with the results 

on similar metal bars subjected to fatigue tests. Physical fatigue tests 
on soft steel indicate that this material yields under stress, and the 
material is stress- or work-hardened and strengthened at times to a 

greater or lesser degree, and thus it apparently shows a lower stress con¬ 

centration than that obtained from photoelastic tests. On hardened- 
steel samples, on the other hand, the results of the physical fatigue tests 

agree very closely with those of the photoelastic tests. The influence of 
these stress concentrations is not apparent under simple tension or bend¬ 
ing tests; it requires the repeated loading of the fatigue tests for the 
influence of these high local stresses to make themselves felt. 

Because of the local yielding and work-hardening of the softer mate¬ 

rials, and their apparently lower values of the stress concentration, gears 
made of such materials as cast iron, bronze, and soft steel would use a 
lower stress-concentration factor than those obtained from photoelastic 
tests. For gears made of hardened steel, however, the full value of the 
photoelastic stress-concentration factors should be used. 

In Bulletin 288, December, 1936, of the Engineering Experiment 
Station of the University of Illinois, written by Paul H. Black, are given 

the following stress-concentration factors for the fillets of gear teeth. 
These values were determined from photoelastic tests on from 12- to 
24-tooth pinions, 14J^-deg composite form, where 
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kt = stress-concentration factor in tension 
kc = stress-concentration factor in compression 

DP k, k. 

4 1.47 1.61 
5 1.47 1.61 
6 1.42 1.57 
7 1.35 1.50 
8 1.345 1.500 

Other investigators have noted that the stress concentrations at the 

fillet of the nonloaded or compression side of the gear tooth are larger 
than those on the loaded or tension 
side of the tooth. Some claim is made 

that there is no fatigue under com¬ 
pressive stresses, yet the great ma¬ 
jority of broken gear teeth show the 

fracture extending from the fillet on 

the compression side into the gear 
blank and up and out on the loaded 
or tension side of the tooth above the 

fillet, as indicated in Fig. 22-3. 
Stress Concentrations at Ke3rways. 

The foregoing photoelastic tests also 

included a study of the stress concen- 
Fm. 22-3. Typical tooth fracture. 

trations at the keyways of the bores. Black draws the following con¬ 
clusions from the results of these photoelastic tests: 

The best location of the keyvvay for solid spur gears on the basis of lowest 

stress is that in which the center line of the keyway is in line with the center line 

of a tooth space. The poorest location is that in which the center line of the 

keyway is in line with the center line of a tooth. 

The maximum bore that should be used in a solid spur gear having Brown and 

Sharpe teeth for equal maximum tensile stresses in the gear, based on the photo- 

eliistic method, is given by the following equation, where 

d = maximum allowable bore in gear, inches 

D — pitch diameter of gear, inches 

N = number of teeth on the gear 

d = D(0.50 + 0.0344 ^/N - 12) (22-6) 

This equation, which allows for a square key whose sides are one-quarter the 

diameter of the shaft, applies only when the center line of the key^vay is in line 

with the center line of a tooth space. In addition, it strictly applies only for the 
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numbers of teeth covered in this investigation, namely, 12 to 24. For gears 
having a larger number of teeth than 24, the equation may be used to obtain an 
approximate maximum bore by taking N equal to 24 in the equation. 

Stress-concentration Factors for Gear-tooth Fillets. A later investi¬ 
gation at the University of Illinois was reported by Thomas J. Dolan.' 
Dolan gives as an equation that meets the results of his tests, the following: 

When r = radius of fillet, in. 
t = thickness of tooth at root, in. 

h — height of load position on tooth above weakest section, in. 

For 14)^-deg gears 
kt = 0.22 + {t/rYKi/hy-^ (22-7) 

For 20-deg gears 

kt = 0.18 + (t/vY-V/hY-^ (22-8) 

Dolan points out the fact that for purpose of design, any such values 

should also consider the behavior of the material, and should be carefully 
checked against laboratory tests of the materials and compared with 

actual service experience. 

Fillet Stress Concentration. First Example, We shall apply Dolananalysis to a 
definite example. We shall use the same gears that were used in the previous example. 
These are 2(>-deg gears of hardened steel. Judging from the results of other tests, 
the photoelastic stresses and the actual stresses in hardened steel appear to agree very 
closely. 

The outline of this pinion tooth is the one shown in Fig. 22-3. We shall first 
determine the values of the stress-concentration factors for the load applied at the 
tip of the tooth and also for the load applied at the middle of the succeeding tooth. 
For this we have the following values: 

t = 0.337 r = 0.040 h (at tip) = 0.400 h (at middle) = 0.200 
//r = 8.425 t/h (load at tip) — 0.8425 t/h (load at middle) = 1.685 

With load at tip of tooth 

k, = 0.18 4- (8.425)«-H0.8425)« ' = 1.61 

With load at middle of tooth 

kt = 0.18 4- (8.425)” ni.685)"' =* 2.07 

We shall now determine the inten.sities of the stress concentrations under the 
foregoing conditions. In the previous example, we obtained the following computed 
stresses: with load at tip of tooth, 120,000 psi; with load at middle of tooth, 70,140 psi. 
If the foregoing stress-concentration factors apply, we would have the following as a 
measure of the actual maximum local stresses: 
With load at tip 

120,000 X 1.61 - 193,200 

* Dolan, Thomas J., Influence of Certain Variables on the Stresses in Gear Teeth, 
J. Applied Phys., Vol. 12, No. 8, pp. 384-391, August, 1941. 
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With load at middle 
70,150 X 2.07 = 145,200 

If we increased the radius at the fillet to 0.60 in., we would have 

t/r « 5.616 with all other factors the same. 
At tip 

kt = 0.18 + (5.616)«H0.8425)«-^ = 1.49 
At middle 

kt = 0.18 -h (5.616)0 2(1.685)^-^ = 1.92 

Then the corresp^mding stress concentrations at the fillets would be 

Stress with load at tip = 178,800 psi 
Stress with load at middle = 134,700 psi 

Second Example. As a second example we shall determine the stress-concentration 
factors for a 7-DP soft-steel gear of 20-deg full-depth tooth form. A layout of this 
profile will give the following values: 

To tip 

To middle 

r = 0.033 t = 0.250 

h = 0.285 

h = 0.143 

We shall determine the stress-concentration factors for the loading at these two 
positions. 

i/r = 7.576 

At tip 

At middle 
t/h = 0.877 

t;h - 1.608 

When the load is applied at the tip of the tooth 

= 0.18 -h (7.576)«-2 (.877)^^^ 1.69 

When the load is applied at the middle of the tooth 

kt = 0.18 + (7.576)«2 (1,608)"^ = 1.89 

With soft-steel gears, the plastic yielding of the material will reduce the intensity 
of the actual stress concentration, or its apparent intensity. This may be the result 
of increased physical properties because of the work-hardening. Values for this must 
be determined by experiment and by analyzing actual service data, wherever it may be 
obtained. It may be that the reduction of area of the material in a tensile test will 
give a measure of this factor. In the absence of more definite information, and judg¬ 
ing from results on other types of machine elements made of soft steel, we shall assume 
that it will vary uniformly from about 40 per cent of the increase in the calculated or 
photoelastic value for steel of about 200 Brinell hardness to alx)ut 80 per cent for steel 
of about 400 Brinell hardness. We shall assume a hardness of 200 Brinell for this 
gear. Under these conditions we have 

1. Increase by photoelastic test when load is applied at tip of tooth is equal to 0.60. 

0.60 X 0.40 - 0.24 
We shall use kt 1.24. 
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2. Increase by photoelastic test when load is applied at middle of tooth is equal to 
0.89. 

0.89 X 0.40 = 0.35 

We shall use kt — 1.35. 

When more reliable test data is collected, it should be possible to establish some 

reasonably reliable relationship of this nature that would enable more accurate 

calculations or estimates to he made. 

Working Stresses. One of the most difficult factors to select for the 
design of gears is that of a suitable value for the working stress for the 

material. One reason for this difficulty is the absence of precise informa¬ 
tion about the actual conditions of the transmitted load in service. For 
example, a thousand different lathes of a given size and make may be in 

service, yet no two of them will be subjected to the same working loads 
in their use and abuse throughout their useful life. To meet these condi¬ 
tions of uncertainty, we may assume the worst possible conditions of 
loading, and design accordingly. Again, we may asume an average 
condition of loading and then select a low working stress for the material 
to give us some margin with which to meet the extreme conditions. 

In those cases where size and weight are not critical, we can so design 
as to be generally safe. Here, in many cases, we shall have much more 
load capacity than we actually need. If the volume of production is 
small, such a procedure is probably the best. 

On the other hand, when the volume of production is largo, and also 
Where size and weight are critical, the only direct answer is to ^ffry and 
see^'; i.e., to make experimental models and test them. In addition, 

the performance of the units in service must be watched and checked, 
because no laboratory test is ever a complete substitute for the actual 
conditions of service. 

Values obtained from service on one type of mechanism can seldom 
be used safely on different types of mechanisms or widely different condi¬ 

tions of service unless their conditions of service and construction are 
substantially identical. Thus the manufacturers of any specialized type 
of product should establish from their own experience with the designs 
and materials they are actually using the values for the working stresses 

in their designs. Test data and the experience of others may give many 
valuable clues, but each manufacturer must himself determine his own 
limiting working-stress values. 

In the case where size and weight are not critical, we can use the 
flectional-endurance limit of the material as the safe working stress in the 
equation for the beam strength of the gear tooth. When the gears are 

always loaded in the same direction, then the stress range will be from 
about zero to a maximum, and the endurance limit under such conditions 
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is generally about 150 per cent of the endurance limit when the stress 
range is plus and minus a definite amount. In general, for soft steel, the 

endurance limit for reversed bending is about one-third of the ultimate 
strength in tension. With hardened steel, there does not appear to 

be a definite endurance limit. In such cases we must know the load-life 

characteristics of the materials and select a stress that will ensure the 
desired length of useful life. 

Several texts are available on the subject of the fatigue of materials. 

The flectional-endurance limits of most of the materials commonly used 
in gear construction have been established and published. As design 
conditions become more critical, however, endurance tests should be 

made on the materials actually used, and these specific test values should 

be used as the basis for the selection of the working stress that is to be 
used in design. 

When size and weight are critical, we must determine by experi¬ 

ment and experience some factors of use and abuse to guide us in our 
selection of the working stresses. For example, in a paper by J. 0. Almen 

of the General Motors Corporation, presented before the American Gear 

Manufacturers^ Association in 1941, is given the following schedule of 
the life requirements at maximum stress of certain mechanical elements 

as established by service experience: 

Cycles 

Automobile rear-axle gears. 100,000 

Automobile transmission low gear. 100,000 

Automobile chassis springs. 100,000 

Automobile transmission second gear. 300,000 

Truck rear-axle gear. 500,000 

Bus rear-axle gear. 1,000,000 

Lewis Equation with Fillet Stress-concentration Factor. Wlien a 
suitable working stress has been selected, the limiting beam load for the 

gear tooth can be computed from the Lewis equation and the fillet stress- 

concentration factor. This limiting beam load should be greater than 
the dynamic load to provide a margin of safety. Such a margin will be a 

measure of the additional load that can be carried. Some margin of 

safety is always desirable. With spur gears, a broken tooth means a 
failure of the gear drive. This margin of safety should be enough, at 

least, to cover the probable increase of error in action because of wear. 

The softer or the more plastic the materials of the gears may be, the 
greater the chances are that the error in action will increase with con¬ 

tinued service. 

The Lewis equation may be modified to include the fillet stress-con¬ 
centration factor as follows: 
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When W, 
s 

V 
F 

y 
h 

limiting beam load, lb 
working stress of the material, psi 

circular pitch, in. 

face width of gears, in. 
Lewis form factor 

fillet stress-concentration factor, tension side 

W, = spFy/k, (22-9) 

Example of Limiting Beam Load on Spur Gear. As a definite example we shall 

use the following values: 24-tooth, 7-DP gear of 20-deg full-depth tooth form, made 

of soft steel, 200 Brinell hardness, with radius of fillet = 0.033 in. The values of kt 
are from a previous example (page 483). 

At tip 

kt = 1.24 y - 0.107 

At middle 

p = 0.4488 
kt = 1.35 

F = 2.000 s 

y = 0.182 

= 50,000 (for one-way loading) 

Whence we have for the load at the tip 

W. = 
50,000 X 0.4488 X 2.00 X 0.107 

1.24 
3,872 lb 

For the load at the middle of the tooth we have 

W. - 
50,000 X 0.4488 X 2.00 X 0.182 

1.35 
6,050 lb 

As the dynamic load is applied near the middle of the tooth, we shall use the 

last value as the limiting beam load for this gear. If this value is less than the dynamic 

load, we should either increase the circular pitch of the gears or increase the face 

width of the gears. If this load is very much greater than the dynamic load, we 

should decrease the circular pitch of the gears because the finer pitches are inherently 

smoother running and more efficient than the coarser pitches. 

Load Distribution across the Face of the Gears. If the gears were 
made of rigid materials, the tooth load would be distributed uniformly 

across the face of the gear. But the materials are elastic and deform 
under load. This deformation is of three major types: deformation of 

the gear teeth, torsional deflection of the gear blanks, and bending 
deflection of the gear blanks. Considering at first only the deformation 
of the gear teeth, including bending and compressive surface deformation, 

and the torsional deflection of the gear blank, we have the condition where 
the difference in the tooth deformation on opposite sides of the gear face 
will be equal to the torsional deflection of the gear blanks. When we 

introduce the effects of the bending of the gear blanks, this will tend to 
reduce the intensity of the loading at the middle of the gear blank and 
increase it correspondingly at the ends of the gear face. 
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All these variables are interdependent; they depend upon each other. 
The torsional deflection introduces a variable load distribution across the 

face of the gear. The nature of this load distribution influences the 
amount of torsional deflection. For example, if the load is distributed 
uniformly across the face of the gear, the total torsional deflection between 

the end where torque is applied and the free end would be equal to the 
torsional deflection that would result from the application of one-half the 
total load at the free end. Again, if the load varied uniformly across the 

face of the gear from a maximum at the driving end to zero at the free 
end, the torsional deflection at the free end would be equal to that devel¬ 
oped by one-third of the total load applied at the free end of the gear 
blank. 

A very similar relationship develops from the bending. If we ignore 
the torsional deflection for the moment, and assume a uniform distribu¬ 
tion of the load across the face of the gear, the deflection at the middle of 

the face would be equal to that developed by the application of one-half 
the total load at the middle of the gear face, assuming bearings at each 
end of the face of the gear. This would reduce the tooth deformation 

at the center of the gear face with a corresponding reduction in the applied 
load there and an increase in the load intensity at the ends of the gear face. 
This in turn would influence the nature of the bending deflection. 

Differential equations have been set up for this condition of loading. 
Each drive requires a specific integration, because the position of the 
bearings in relation to the face of the gear affects the bending deflection. 

In general, these show a maximum intensity of loading at the driving 
end, a minimum intensity near the middle of the face, and some increase 
again toward the free end of the gear blank. 

In most cases, we are interested primarily in the maximum intensity 
of the loading, which will always be at the driving end. In view of the 
fact that our knowledge of even the applied load conditions on most gear 

drives is only approximate, a simple approximation here for the load 
distribution across the face of the gears that will give a good approxima¬ 
tion for the value of the maximum inteuvsity of loading should be adequate 

for most uses. We shall therefore set up an approximation based on the 
following incomplete assumptions: 

1. The torsional deflection of the gear blank will be so small that it 

can be ignored. 
2. The bending deflection of both the gear and pinion blanks will also 

be ignored. 
3. The torsional deflection of the pinion blank will be taken as equal 

to that developed by one-half the applied load at the free end of the 
pinion. 
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4. The difference in load intensity at the two ends of the pinion face 
will be measured by the difference in tooth deflection at opposite ends, 

which is equal to the torsional deflection of the pinion blank. 
Torsional Deflection of Pinion Blank. For the torsional deflection of 

the pinion blank, we have the following: 

Let R = pitch radius of pinion, in. 

Rr = root radius of pinion, in. 
Wd = dynamic tooth load, lb 

T = torsional deflection at free end of pinion at pitch radius under 

load Wd/2, in. 
F = face width of pinion, in. 

Eg = shearing modulus of elasticity = 12,000,000 for steel = 6,000,- 

000 for cast iron 
When the pinion is solid 

T = iWd/2E,){2RW/TRr^) (22-10) 

When the pinion is hollow and 
Rh = radius of bore, in. 

T = {Wd/2E.)[2R^FMR/ - Rh^)] (22-11) 

Deformation of Gear Teeth. For the tooth deformation, we have the 

following: 
When w' = load per inch of face at driving end of pinion, lb 

w" = load per inch of face at free end of pinion, lb 

w = average load per inch of face, lb 

Wd = total dynamic tooth load, lb 
F = face width of pinion, in. 

Aw — difference in unit load between that at driving end and that 
at free end, lb 

Eij E2 = modulus of elasticity of materials 

Aw = w' — w' 
For 143/2-deg gears 

Aw — 
0.107T 

(l/EO + {I/E2) 
(22-12) 

For 20-deg full-depth tooth form 

A O.lllT 
(l/EO + {I/E2) 

For 20-deg-stub tooth form 

A _ 0.115T 
(l/Er) + {I/E2) 

(22-13) 

(22-14) 
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Load Distribution across Face. 

w = Wd/F (22-15) 
w = (lo' + w")/2 

w' = 2w — w" = w + (Aw/2) (22-16) <1 1 II (22-17) 

With this approximation, the value of appears to be slightly greater 
that that obtained from the use of the integration of the differential equa¬ 
tion, while the value of w" is appreciably smaller than the value obtained 
from a more exact analysis. However it is the value of that is the 
more critical and important one. 

Examples of Load Distribution across Face of Gear. First Example. As a definite 
example we shall use the following: 48-tooth pinion of 8 DP, 20-deg full-depth form, 
18-in. face width, solid steel pinion, with a dynamic load of 20,000 lb. Whence we 
have 

R 3.000 Rr = 2.850 Wa = 20,000 F - 

T = 
20,000 2 X 9 X 18 

24;b()(V)bb 

• Aw = 0.111 X 

20,000 

- 0.0013 

0.0013 _oir-iK 
2/30,000,000 ^ 

w = —- = 1,111 lb/(in. face) 
lo 

18.000 

U)' = 1,111 + = 2,194 ll)/(in. face) 

w" = 2,194 - 2,105 = 29 lb/(in. face) 

In this example, the intensity of the load at the driving end is nearly double the 
average intensity of loading. The intensity of the loading at the free end is almost 
nothing. This face width is too wide for this diameter of pinion. 

Second Example. As a second example wo shall use the same pinion as before, 
but with a face width of 12 in. and a dynamic load of 13,333 lb. This gives the follow¬ 
ing values: 

R 3.000 

r = 

Aiv — 

Rr = 2.850 
13,333 

W, = 13,333 
2 X 9 X 12 

2 X 12,000,000 3.1416 X 65.975 
0.111 X 0.00058 

= 966 lb 

= 1,111 lb/(in. face) 

2/30,000,000 
13,333 

12“ 

F = 12.000 

= 0.00058 

w;' = 1,111 + = 1^594 lb/(in. face) 
rv" = 1,594 - 966 = 628 lb; (in. face) 

Third Example. As a third example we shall use the following: 96-tooth pinion of 
8 DP, 20-deg full-depth form, 24-in. face width, hollow steel pinion with 8-in.-diameter 
bore, with a dynamic load of 48,000 lb. Whence we have 
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R * 6.000 Rr - 5.850 

48,000 

Rh - 4.000 F 
2 X 36 X 24 

24,000,000 3.1416(1,171.265 - 266) 

0.111 X 0.00092 , 
- 1,531 lb 

24,000 Wd =» 48,000 

0.00092 

2/30,000,000 

48,000 

24 
2,000 lb/(in. face) 

w' * 2,000 + i5 3j^ = 2,765 lb/(in. face) 

w" = 2,765 - 1,531 = 1,234 lb/(in. face) 

BEAM STRENGTH OF HELICAL-GEAR TEETH 

The contact between helical-gear teeth is along a line that is at an 
angle to the trace of the pitch cylinder. The load along this line is not 
uniform, because of the difference in the amount of elastic deformation 
at the different heights on the teeth. However, the stress at the root of 
the teeth will be influenced more by the total load that is applied than by 
the local conditions of loading. 

Because of this angular contact line, which travels across the face of 
the gear in an axial direction as the contact progresses, the ends of the 
teeth at either side of the gear face may be subjected to higher momentary 
loading at the beginning and ending of mesh. However, if there is an 
overlap on the face contact, elastic deformation here will bring a second 
pair of teeth into contact, and this second contact will be in a position 
away from the ends of the gear face. 

The normal tangential load on helical gears is greater than the tan¬ 
gential load in the plane of rotation. But the length of the tooth along 
the helix is also greater than the face width, and here the influence of one 
factor will exactly counterbalance the other. 

The beam strength of helical gears is usually calculated in the same 
manner as that for spur gears, using the normal circular pitch and the 
normal pressure angle and the virtual number of teeth in the helical gear. 
Thus when 

Wg = limiting beam load for helical-gear teeth, lb 
p = circular pitch in plane of rotation, in. 

Pn == normal circular pitch, in. 
Fa = active face width, in. 

8 = working stress of materials, psi 
^ = helix angle at pitch line 
N = number of teeth in gear 

Nr, = virtual number of teeth in gear 
y = Lewis tooth-form factor 

kt = stress-concentration factor, tension side 

Nv = iV/cos^ ^ (22-18) 
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The value of y will be determined from the virtual number of teeth 
and the normal pressure angle. These values are the same as those for 
spur gears which are given in Tables 22-1 and 22-2. 

Although the conditions of local loading will make some difference in 
the value of the stress-concentration factor, in the absence of definite test 

data, we shall use the same values here as for spur gears. Whence we 

have 
Vn = p cos ^ (22-19) 

W, = spnFay/kt (22-20) 

In general, we can use values of y that are based upon the application 
of the dynamic load at the middle of the tooth form. 

Working Stresses. We have the same problem here as to the selec¬ 

tion of the safe or suitable working stresses as we have for spur gears. 
Where size and weight are not critical, we can use the flexional-endurance 

limits of the materials. Where these factors are critical, we must deter¬ 

mine from experiment and experience suitable values for use. 
The limiting beam strength of the gear tooth should always be greater 

by a suitable margin of safety than the dynamic load. The conditions 

of service are the determining factors for the extent of such margins of 

safety. 

Example of Limiting Beam Load on Helical-gear Teeth. As a definite example we 

shall use the following values: 48-tooth pinion, 8 DP normal, 14eg normal tooth 

form, 30-deg helix angle, 10-in. active face width, steel of 200 Brinell hardness. This 

gives the following values: 

A = 48 i/^ = 30^ F« = 10.000 pn = 0.3927 

r « radius of fillet = 0.020 t = thickness of tooth at base = 0.220 

h = height to point of application of load = 0.126 

- = 11.00 { = 1.760 
r h 

kt = 0.22 -f (11.00)«* (1.760)f*^ = 2.47 

Because of the plastic yielding and work-hardening of this soft steel, the probable 

value of the stress-concentration factor may be about 40 per cent of this increase in 

stress. 

Hence 

1.47 X 0.40 = 0.588 

We will use kt « 1.59. 

N. 48 

0.64952 
73.9 

whence 

y = 0.195 

We will use s « 50,000 (for one-way loading), whence we have 

50,000 X 0.3927 X 10 X 0.195 

1.59 
W. 24,080 lb 
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Load Distribution across Face of Helical Gear. For single helical 
gears, the load distribution across the face of the gear will be very much 

the same as that for spur gears except that the form of the normal basic 

rack will be used to determine the normal tooth deformation, and this 
normal deformation must be converted into the deflection in the plane of 
rotation of the gears. 

Torsional Deflection of Pinion—Single Helical Gears, For the tor¬ 
sional deflection of the pinion blank, we have the following: 
Let R = pitch radius of pinion, in. 

Rr = root radius of pinion, in. 
Wd = d3mamic tooth load, lb 

T = torsional deflection at free end at R under load Tr<f/2, lb 

Fa = active face width of pinion, in. 
Eg = shearing modulus of elasticity 
Rh = radius of bore in pinion, in. 

When the pinion is solid, we have the following: 

T = {Wd/2Eg){2RWa/irRr^) (22-10) 

When the pinion is hollow, we have the following: 

T = {Wd/2Eg)[2RWah{Rr^ - Rh^)] (22-11) 

Tooth Deformation of Single Helical Gears. For the tooth deformation 
of single helical gears, we have the following: 
When w' = load per inch of face at driving end, lb 

It;" = load per inch of face at free end, lb 
w = average load per inch of face, lb 

Aw = difference in unit loading between ends of pinion, lbs. 
^ = helix angle at pitch radius 

Ely Et, = modulus of elasticity of materials 
For 143^-deg normal gear-tooth form 

0.107rcos2^ 
{l/Ei) + {I/E2) 

(22-21) 

For 20-deg normal full-depth form 

O.llircos^^ 
H/Ei) + (l/E,) 

For 20-deg normal stub tooth form 

0.115Tcos2^ 
{\/Ei) + (l/E,) 

(22-22) 

(22-23) 
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Load Distribution across Face of Single Helical Gear. For the load 
distribution across the face of a single helical gear, we have the following: 

W = W,/Fa (22-15) 
w' = w + {Aw/2) (22-16) 

w" = w' - Aw (22-17) 

Example of Load Distribution across Face of Single Helical Gear. As a definite 

example we shall use the values from the preceding example with a dynamic load of 

20,000 lb. This gives the following values: 

R 3.464 

T = 

w — 

Aw = 

Rr = 3.315 Fa = 10.000 W,i = 20,000 

xj/ = 30° co,s2 ^ = 0.7500 

20,000 2 X 11.909 X 10 ^ 
2 X 12,000,000 3.1416 X 120.758 " 

= 2,000 lb/(in. face) 

0.107 X 0.00052 X 0.75 _ , 

2/30,000,000 

w' = 2,000 + 62% = 2,323 lb/(in. face) 

w" = 2,323 - 626 = 1,697 lb/(in. face) 

Load Distribution across Face of Herringbone Gears. With herring- 
bone gears, the teeth will tend to center themselves on the two helices of 

opposite hand, and so the effective torsional deflection will be reduced 

to one-half of that of the full active face width. Otherwise it will be the 
same as for single helical gears. Using the same symbols as before we 

have 

For solid pinions 

T = {W,/2E.){RWa/irRr^) (22-24) 

For hollow pinions 

T = {W,/2Es)WFJir{Rr^ - i?,^)] (22-25) 

Example of Load Distribution across Face of Herringbone Gear. Using the same 

example as before, but as a herringbone gear with a total face width of 10 in., we have 

1 = = 0.00026 

w = 2,000 lb/(in. face) 
Au> « 62 6^ = 323 1b 

w' = 2,000 + 323^ = 2,162 lb/(in. face) 

w" = 2,162 - 323 = 1,830 lb/(in. face) 

BEAM STRENGTH OF SPIRAL-GEAR TEETH 

The contact between spiral-gear teeth is point contact, which moves 

from the bottom to the top of the tooth of the driver as the action 
progresses. Here the tooth load is concentrated at a point. The load 
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capacity of spiral gears is small and is limited primarily by the ability 
of the material to resist excessive wear. It is seldom that the beam 
strength of spiral gears becomes a limiting factor. In any case of ques¬ 
tion, however, the beam strength of a spiral gear will be calculated in 

exactly the same manner as that for a single helical gear. 

BEAM STRENGTH OF WORM-GEAR TEETH 

Because of the many variations in the design and contact conditions 
on worm-gear drives, any general formula for the beam strength of the 

teeth of these gears can be but an approximation. The nature of the 
contact, for example, depends upon the lead angle and the thread angle 
of the worm and upon the position of the pitch plane of the worm in 

relation to the depth of the thread. The contact lines on the worm 
threads may vary from approximately concentric arcs from the worm cen¬ 
ter to lines that are almost radial to the worm center. Again, the form 

of the tooth of the worm gear across its face is constantly changing in 
size, in form, and in thickness. Thus at the edges of the gear face, the 
tooth forms are much thicker and shorter than they are at the central 

plane. 
Furthermore, the beam strength of the teeth of worm-gear drives is 

a deciding factor only for slow-speed gears or when heavily loaded drives 

are used only intermittently. Here the limiting factor may be either the 

beam strength or the shear strength of the teeth. Thus we need some 
estimate of the bending strength and of the shear strength, and should 

always use the weaker of the two. The worm-thread form is always much 

stronger than that of the tooth of the worm gear, and so we shall consider 
only the probable strength of the tooth of the worm gear. 

Limiting Load for Beam Strength of Tooth of Worm Gear. Although 

the number of teeth in the worm gear will have some influence on the 
limiting load for beam strength, we shall set up approximations and use 
a single tooth-form factor for each thread form of worm. In addition, 

these approximations will not be close enough to justify the use of any 

stress-concentration factors here, although we must not overlook the 
fact that we should always use as large a fillet as possible at the roots of 

the gear teeth to keep these stress concentrations to a minimum. These 
fillets are governed largely by the radius at the tip of the tooth of the hob. 

On critical drives where a complete contact analysis is made, and the 
actual contours of the teeth of the worm gear are established, we can then 
determine values for the form factor and also for the fillet radius at the 
various sections. We could then check the stresses on the basis of the 

unit loading applied at the weakest sections, and obtain some measure 
of the probable maximum bending stress. 
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Thus when 

Wa = limiting beam strength of tooth of worm gear, lb 
Px = axial pitch of worm, in. 

Pn = normal pitch of worm, in. 
X = lead angle of worm 

F = face width of worm gear, in. 
s = safe working stress for material, psi 
y = tooth-form factor 

4>n = normal thread angle of worm 

Pn = Px cos X 
W a = SPr^y 

We shall use the following values of y: 

<t>n y 
uy^ 0.100 
20 0.125 

25 0.150 

30 0.175 

Working Stresses. In most cases, a worm-gear drive is not used 
where size and weight are critical factors. Here we can use the flectional- 

endurance limits of the materials for our working stresses. For a revers¬ 
ing drive, we should use the flectional-endurance limit for reversed bend¬ 
ing. For a one-way drive, we can use the endurance limit for stresses 
from zero to a maximum value. These values will be about 50 per cent 

higher than those for reversed bending. 
In the exceptional case where the size or weight of the worm-gear 

drive must be kept to a minimum, and some degree of limited life is 
acceptable, we must find by experiment the stress limits to which we must 
keep. In this case we are in the same position as before with spur and 

helical gears. 
Materials for Worm Gears. The choice of materials for worm gears 

is more limited than for most other types of gears. The worm gear is 

never completely generated in the bobbing process to the degree necessary 
for satisfactory operation; the final generation or finishing will be by 
plastic flow and cold-working of the surface material of the enveloping 

member or worm gear during its running-in or during its initial service 
operation. Thus the helicoid member of the pair must be hard enough 
to hold its form while the enveloping member is being cold-worked to its 

final form. This limits the choice of materials for the enveloping mem¬ 

ber, which is usually the larger member of the pair, to the softer and more 
plastic materials. Cast iron is sometimes used for slow-speed worm-gear 

(22-26) 
(22-27) 
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drives for the enveloping member, but it is not generally as satisfactory as 
most of the other materials because of its limited plasticity. Gear 

bronzes are the most widely used materials for the enveloping member. 
Some aluminum alloys are used for worm gears; they have excellent plastic 
qualities, but any failure of lubrication is generally disastrous. A 

cast-iron worm with an aluminum-alloy worm gear might be a good 

combination. 
We shall therefore consider here the following: cast iron, gear bronze, 

and a tin-free antimony-copper alloy, which has excellent bearing char¬ 
acteristics but a low tensile strength. The physical properties of the 
different gear bronzes will vary. Bronze is one of the most tempera¬ 

mental of materials; a great deal depends upon the technique employed 
in its alloying, melting, and casting. In any case of question, specific 
tests should be made to determine its physical characteristics, particu¬ 

larly its fatigue characteristics. For general purposes, the following 
values may be used for the working stresses: 

Material 

Working stress, psi 

One-way drive Reversing drive 

Cast iron. 12,000 8,000 

Gear bronze. 24,000 16,000 

Antimony bronze. 15,000 10,000 

Example of Limiting Beam Load for Worm Gear. As a definito example we shall 

use a hardened and ground steel worm and a phosphor-bronze worm gear with the 

following values: 6-start worm and 48-tooth worm gear, l-in. axial pitch. 

Ri = 1.910 X = 26.565° <^n = 30° L = 6.000 p, = 1.000 

Pn = 0.894 F = 2.250 y — 0.175 s — 24,000 (one-way drive) 

W, = 24,000 X 0.894 X 2.250 X 0.175 = 8,448 lb 

Shear Strength of Teeth of Worm Gear. At slow speeds, in particu¬ 
lar, and when heavy shock loads must be carried, the limiting factor for 
the load on a worm-gear drive may be the shear strength of the worm- 

gear teeth. We shall therefore set up an approximation for this shear 
strength. 

When F = face width of worm gear, in. 

p* = axial pitch of worm, in. 

8, = shear strength of materials, psi 
A = approximate area of root section of tooth of worm gear, sq in. 
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we shall use the following approximations: 

For 14J.^-deg worms 

A = O.eOFp;, (22-28) 
For 20-deg worms 

A = 0.70Fp^ (22-29) 
For 25-deg worms 

A = 0.75Fp, (22-30) 
For 30-deg worms 

A = 0.75Fp, (22-30) 

When W'a = limiting shear strength of tooth of worm gear, lb 

W's = (22-31) 

We shall tentatively use the following values for the shear strength of 
the materials: 

Material s,, psi 

C\'ist iron. 10,000 

Gear l^ronze. 10,000 

Antimony bronze. 6,000 

Example of Shearing Strength of Tooth of Worm Gear. As a definite example 

we shall use the same worm-gear drive as before. This gives the following values: 

4>n == 30° p. = 1.000 F = 2.250 = 10,000 

A = 0.75 X 2.250 X 1.000 - 1.68 sq in. 

W\ = 2.J X 1.68 X 10,000 = 11,200 lb 

This value should be more, by a suitable margin of safety, than either the dynamic 

load or any momentary overload that may exist in starting. 

The foregoing does not apply to a progressive shearing that may result from a 

fatigue crack that starts at the region where the pitch line crosses the root curve of the 

tooth of the worm gear, a place where the size of the root fillet is at its smallest value. 

BEAM STRENGTH OF BEVEL-GEAR TEETH 

If the materials of the bevel gears were rigid and the gears were 
rigidly mounted, the load would be distributed uniformly across the face 

of the gears. But both the materials and the mounting are elastic. Con¬ 
sidering only the elastic deformation of the gear teeth, if the contact line 

extended is to pass through the cone center of the pair, the teeth must 

deflect more at the large ends of the gears than they do at the small ends. 
This would require a correspondingly greater unit load at the large end. 

We should consider now the elasticity of the mounting, because most 
bevel-gear drives have an overhung pinion. Elastic deformation here 

would tend to increase the unit load at the large end still more. Thus it 

should be evident that there is a variable load intensity across the face 
of the bevel-gear drive. This is one reason why it is desirable to use as 
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narrow a face as possible on a bevel-gear drive. When the face width is 
adequate to carry the load, any increase here is a liability and not an 

asset. In no event should it be greater than one-third of the cone dis¬ 
tance. One-quarter would be a better maximum value. It is good 

practice to make it as much less than this as is possible. 
We can set up equations for the beam strength of bevel-gear teeth 

similar to those for spur gears. The original Lewis equation for bevel 

gears is as follows: 
When Ws = limiting beam strength of bevel-gear teeth, lb 

D = pitch diameter of bevel gear at large end, in. 
d = pitch diameter of bevel gear at small end, in. 

s = safe working stress for the material, psi 
p = circular pitch at large end, in. 
F = face width of bevel gears, in. 
y = tooth-form factor, based on equivalent spur gear 

or more simply 

W.^spFy^ (22-33) 

which gives almost identical results when d is not less than two-thirds of D. 

As the cone distance from any diameter is directly proportional to 
the diameter, we can use the following: 

When A = cone distance from large end of gear, in. 
7 = pitch-cone angle 
R = pitch radius at large end of gear, in. 

A = 
R 

sin 7 

„ A - F 
W„ = spFy --j- 

(22-34) 

(22-35) 

The value of p, based on the virtual number of teeth, or the number 

of teeth in the equivalent spur gears of Tregold^s approximation, will be 

the same as for spur gears. If the suggested system of 143^^-deg bevel 
gears are used, then the values of y for the 143^-deg variable-center-dis¬ 
tance system of spur gears would be used here. The Gleason Works 
have published such values for gears of their design. Thus when 

N = number of teeth in bevel gear 
Np = virtual number of teeth in bevel gear 

N 
AT, 

COB 7 
(22-36) 
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We also use the same stress-concentration factors for the bevel gears 
as are used on spur gears. Thus when 

kt = stress-concentration factor 

Wt = spFy 
[{A - F)/A 

h 
(22-37) 

Working Stresses. We must meet the same problems here about the 
working stresses and the margin of safety as we must meet on spur gears. 

Hence the discussion of these factors for spur gears applies directly to 
bevel gears also. Where size and weight are not critical factors, we can 
use the flectional endurance limits of the materials for our working 

stresses. Where these are critical factors, we must establish the working 

stresses by experiment and experience with the units in actual service. 

Example of Limiting Beam Strength of Bevel Gears. As a definite example, we 

shall use a pair of 6-DP bevel gears of 24 and 48 teeth with a face width of 1 in. Both 

gears are of steel, 250 Brinell hardness. We shall use the following values: 

Np = 24 Ng = 48 7p = 26.565° sin jp = 0.44721 cos jp — 0.89414 

F — 1.000 p = 0.5236 Rp = 2.000 s — 60,000 (one-way drive) 

Radius of fillet = 0.033 Height to point of loading = 0.340 

Thickness of tooth at base = 0.315 

l.315\^- 
kt = 0.22 + 

/0.315\«- /0-315\^^ , 
Vo.ossj Vo.340/ 

As these materials are plastic, for the specified hardness we shall use a factor that 

gives only 50 per cent of the calculated increase m stress; whence 

We will use kt =» 1.27. 

0.5 X 0.54 = 0.27 

0.89414 

We shall use the value of y for tlu; 14J2"4cg variable-center-distance system; whence 

y = 0.117 

~ ^ — 4 472 
^ 0.44721 

W, = 60,000 X 0.5236 X 1.00 X 171(4j72^-^1.00)/4.472] ^ 2,245 lb 

This value should be greater, by a suitable margin of safety, than the dynamic 

load. 

BEAM STRENGTH OF SPIRAL-BEVEL-GEAR TEETH 

The relationship between bevel gears with straight teeth and spiral 
bevel gears is essentially the same as that between spur gears with straight 
teeth and helical gears. We shall therefore set up equations for the beam 

strength of spiral bevel gears based on those for bevel gears with straight 
teeth, adjusted to the spiral angle. These same equations will also be 
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used for hypoid gears where the gear member is substantially the same 
as that for a spiral-bevel-gear drive. Thus let 

Wt = limiting beam strength of spiral-bevel-gear teeth, lb 
p = circular pitch in plane of rotation at large end of gear, in. 

Pn = normal circular pitch at large end of gear, in. 

F = face width, in. 
s = working stress of material, psi 
^ = spiral angle at middle of gear face 

7 = pitch-cone angle of gear 
N = number of teeth in gear 
y = Lewis tooth-form factor 

kt = stress-concentration factor, tension side 
A = cone distance from large end, in. 
R = pitch radius at large end, in. 

4>n = normal pressure angle at middle of tooth face 
The Gleason system of spiral bevel gears has its own tooth propor¬ 

tions, and values of y for these gears, based on the actual number of 

teeth in the gear, have been published by the Gleason Works. These 

published values are also used for the Gleason hypoid gears, although 
they are only approximate for the hypoid gears. In general, the values 
for the hypoid gears would be something larger. 

The values for the stress concentration factor kt will also be deter¬ 
mined in the same manner as for spur gears. 

Pn = p cos ^ 
[{A - F)/A] 

kt 

(22-19) 

(22-38) 

The working stresses will be the same as those for spur, helical, and 
bevel gears. The limiting beam load should be greater than the dynamic 
load by a suitable margin of safety. The same margins of safety that 

may be found adequate for spur, helical, and bevel gears should also be 

suitable for the spiral bevel gears. 

Example of Limiting Beam Strength of Spiral-bevel-gear Teeth. As a dcfinito 
example we shall use a 6-DP spiral-bevel-gear drive of 24 and 48 teeth, 30-dcg spiral 
angle, both gears of steel, 250 Brinell hardness. This gives the following values: 

N, 
No 
F 

24 7p 
48 yo 

1.000 
V - 0.5236 

Radius of fillet « 0.033 Height to point of loading 
Thickness of tooth at base « 0.285 

/0.285\» » /0.285\o ^ 

26.565® cos tp = 0.89442 
63.435® cos yg - 0.44721 
30® cos ^ = 0.86603 
8 «« 60,000 (one-way drive) 

Rp » 2.000 
Rg = 4.000 
4>n “ 14.500® 

y - 0.124 
0.285 
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As these materials are plastic, for the specified hardness we shall use a factor that 

gives only 50 per cent of the calculated increase in stress; whence 

We shall use kt = 1.38. 

A = 

0.50 X 0.76 = 0.38 

2.000 
= 4.472 

W, = 60,000 X 0.4534 X 1.00 X 

0.44721 

Pn = 0.5236 X 0.86603 = 0.4534 

0.124 [(4.472 - 1.00)/4.4721 

1.38 
= 1,900 lb 

This value should be greater, by a suitable margin of safety, than the dynamic 

load. 



CHAPTER 23 

SURFACE-ENDURANCE LIMITS OF MATERIALS 

As pointed out before, the load-carrying ability of any gear drive may 

be limited by excessive heat of operation, breakage of teeth, or excessive 

wear. We shall now consider the subject of wear on gear teeth. Our 
first need is some definition of the term wear. For the purposes of this 

discussion, we shall consider anything that alters the form, size, or surface 

smoothness of the gear-tooth profiles as wear. Thus we may have bene¬ 
ficial as well as destructive wear. The cold-working of the tooth surfaces 

of gears made of the softer and more plastic materials that results in 

smoother and harder tooth profiles without increasing the error in action 

is one type of beneficial wear. On plain bearings this condition is some- 

timers referred to as nmning-in or wearing-in. Destructive wear starts 

when the bearing surfaces begin to wear out, and the transition point is 

not always easy to establish. 

Considering the chara(;ter or the smoothness of the surface, there are 

six distinct types of wear that have been noted on gear-tooth profiles in 

service. We believe that we have identified the cause and effects of these 

types of wear, because we have set up conditions in the laboratory that 

we believe are responsible for these types of wear and have obtained 

results comparable with those observed in service. No claim is made, 

however, that we have observed and identified all types of wear. Many 

other conditions, or combinations of conditions, of wear have been 

observed in service that have not yet been classified or identified. 

Types of Wear, Some of the identified types of wear appear to be 

caused by failure of the lubricant. Other types of wear appear to be 

substantially independent of the lubrication, although some of them 
may be accentuated by inade(piate lubrication. We shall call these 

identified types of wear by the following terms: 

1. Pitting 
2. Abrasion 

3. Scoring or cutting 

4. Spalling 
5. Galling or scuffing 

6. Seizing 

In addition, several other types have been noted, such as a flaking at 
the comers or edges of hardened-steel gears, and a burning effect that 

502 
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appears on heavily loaded and high-speed gears. This last appears to be 
the result of the condition where the heat is created faster than the coolant 

can carry it away. Possibly the local temperature is so high that the 
lubricant does not remain in liquid form. For example, on hardened- 
steel gears when the product of the unit tooth load and the maximum 

sliding velocity, exceeds a value of around 3,000,000, this condition 
appears. On soft-steel gears it may appear at a lower value. It appears 
to be some measure of the rate of creation of frictional heat. 

Types of Wear Not Caused by Failure of the Lubrication. We shall 
consider first several of the foregoing types of wear that do not appear 
to be caused by failure of the lubrication, starting with pitting. 

Pitting. There appear to be at least two general types of pitting: 
one a shallow surface failure, and the other a deeper destructive pitting. 
The surface pitting appears to be of several kinds. For one, there is an 

incipient'^ or ''superficiaF' pitting that appears to start as a crack on 
the surface, generally at right angles to the direction of rolling. WTien 
sliding is present, particularly on hardened steel under heavy loads, these 

surface cracks sometimes appear at an angle that reflects the influence of 
the sliding. These cracks are a possible result of the elastic wave ahead 
of the contact, which subjects the surface material to reversed bending. 
The resulting pits are shallow, seldom more than 0.005 in. deep, and the 
shapes of the craters appear to depend upon the structure of the material. 
Some are microscopic in size, only a few thousandths of an inch across; 
others are 6 in. or more across, and of irregular shape. At all events, 
this incipient pitting does not appear to be the cause of any great concern. 
If the loads imposed are below the limiting loads for the materials, this 
incipient pitting appears early in the life of the gear, appears to progress 

to a certain extent, and then to cease. 
Another type of pitting develops on some soft-steel gears. Cracks 

will start below the surface of the material at a depth of from 0.005 to 
0.010 in., and eventually break to the surface. These may be of con¬ 
siderable extent. The depth is much less than the depth to the point 
of maximum shear. These cracks appear to be the result of the plastic 

flow of the surface material. The surface lamina tends to creep in the 
direction of rolling and sliding under repeated loads, a condition that, 
added to the shear stress set up by the compressive effect of the loading, 
results in cracks substantially parallel to the surface. Sometimes a 
double line of cracks develops, and with continued loading, the material 
between the two lines of cracks becomes shattered, apparently along the 

(Tystal boundaries of the materials. These conditions have become 
evident upon the microscopic examination of samples under test to deter¬ 
mine their surface-endurance properties. 
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There are other types of surface pitting, some of which may destroy 
the usefulness of the gear. At times a severe surface pitting appears at 
the pitch-line area of the tooth profile, which may continue until the use¬ 
fulness of the surface is destroyed. This appears to be more common on 
the softer materials. The whole subject of the surface disintegration of 
materials under rolling and sliding contact deserves much more attention 
than has yet been given to it. 

Simultaneously with the foregoing phenomena, and probably with 

many more that have not yet been detected, shear stresses are repeatedly 
imposed upon the material, and the intensity of these shear stresses is 
different at different depths, the maximum shear stress being at some 

distance below the surface of the material. When the loads imposed 
develop stresses beyond the surface-endurance limits of the material, 
particles or flakes will be sheared out of the surface of the material. In 
tests to date, the thickness of these flakes has generally been equal to or 
greater than the depth to the point of maximum shear. With case- 
hardened steel, if the depth of case is not equal to about double the depth 
to the point of maximum shear, subsurface cracks develop along the line 

of case and core, and sections of the case are sheared out. In other 
words, the depth of case must be below the region of high shear 
stress. 

The exact sequence of the different phenomena is a matter of (piestion. 
Probably in some cases a crack may start under the surface in the region 
of high shear stress before the surface disintegration of the material has 
progressed very far. In other cases the reverse may be true. Again, 
both types of failure may progress together. Probably the physical 
characteristics of the materials influence these conditions. 

Lubrication does not appear to be a controlling factor here. With 
sliiling in particular, inadecpiatc lubrication appears to accentuate the 
conditions and result in a lower surface-endurance limit. In these cases, 
the sliding appears to develop higher surface stresses in the direction of 
sliding so that the resultant combined stress is higher. 

Abrasion. Abrasion is caused by the presence of foreign matter such 

as grit or metallic particles between the rubbing surfaces. On gear teeth 
it results in scratches or fine grooves spaced more or less at random and 
mnning in the direction of the sliding between the surfaces. Use of a 
heavier lubricant may reduce the effect of abrasion but will not eliminate 
it. If the abrawsive is carried between the rubbing surfaces by the lubri¬ 
cant, the oil should be adequately filtered to prevent this condition. If 

the abrasive consists of small particles of the materials that have been 
released by the pitting, abrasion may be reduced or eliminated by reduc¬ 
ing the unit loads sufficiently so that the particles are not released and so 
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the abrasion will not take place. If the abrasive comes from some out¬ 
side source, such as abrasive particles in the air of a cement mill or free 
abrasive released from grinding wheels in operation, effective guards 
should be provided to prevent the abrasive from reaching the contacting 
surfaces of the gears. Information as to the relative resistance of dif¬ 
ferent materials to abrasion is of value, but as Regards this type of wear 
in the majority of cases, the major problem is to design so as to avoid any 
likelihood of its occurrence. 

Scoring or Cutting. Scoring or cutting takes place when, because 
of other types of wear, rough surface finish, misalignment of parts, or 
other imperfections, sharp corners or edges are present that cut through 

the oil film and score the mating surface. At times a scored surface may 
appear to be very similar to one that has suffered from abrasion. Gen¬ 
erally, when scoring is present, some abrasion is present also, because the 

particles of metal gouged out will act as an abrasive. In general, scratches 
resulting from scoring will have a more regular pattern than those result¬ 
ing from abrasion. Also the scratches are generally deeper. In the 
majority of cases, scoring is the result of poor workmanship, so that the 
most effective way to avoid it is by exercising more care in producing the 
mating surface. 

One type of scoring on gear teeth takes place when, because of wear, 
error in tooth form or spacing, or poorly designed tooth profiles, coupled 
with deformation of the teeth under load, the entering tip of the tooth of 
the driven member makes premature contact with the flank of the tooth 
of the driving gear. This entering tip travels in a trochoidal path in 
relation to the driving gear, a path whose form almost coincides with the 
profile of the flank of the tooth of the driving gear, so that a very slight 

displacement because of error, wear, or deformation under load will per¬ 

mit premature contact. 
When this condition exists, the flank of the tooth of the driving gear 

will be gouged away and will tend to be shaped to the concave form of the 
trochoidal path of the tip of the entering tooth, thus resulting in a worm 
tooth form of double curvature. On worm-gear drives, particularly when 

the thread angle is small in relation to the lead angle of the worm, a simi¬ 
lar cutting often takes place, so that comparatively large flakes of the 
bronze of the worm gear are found at the bottom of the gear case. 

Spalling. Spalling is a type of wear or surface failure that sometimes 
takes place on the more ductile materials. It occurs when the shear 
stresses set up by the movement of the elastic and plastic wave ahead of 
the contact area between the curved surfaces exceed the shear strength 
of the material. In many respects it is similar to some types of destruc¬ 
tive pitting and results in the shearing out of flakes of material of appre- 
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ciable size, but it does not appear to be a phenomenon that is caused by 
fatigue. 

In some cases spalling occurs when heavily loaded gears made of soft 
materials are first operated, but often, continued operation results in the 
cold-working of the surface material, increasing its physical properties 
while reducing the amount of plastic deformation, so that the spalling 
ceases. In many cases, a suitable running-in period under increasing 
loads will cold-work the surface material so that this spalling will not 

take place. 
With the softer and more plastic materials tested, a definite plastic 

flow of the surface material occurs, even though particles are not sheared 

out of the surface. Sometimes this plastic flow develops into a series of 
waves on the surface. With the introduction of sliding between the two 
surfaces in generally rolling contact, this corrugation effect is increased 

gi'eatly. Inadequate lubrication will also accentuate this condition. 
Such an effect is often found on gear teeth in the form of a hollow at the 
pitch-line area of the driver and a ridge at the pitch-line area of the fol¬ 
lower, at the place where the direction of the sliding reverses. 

None of the four preceding types of wear is caused primarily by failure 
of lubrication. Some borderline cases may show up with inadequate 
lubrication that would not exist under more favorable conditions of 
lubrication, notably the plastic flow of the surface with the development 
of hollows and ridges. Any or all of them may exist under the best pos¬ 
sible conditions of lubrication. 

Types of Wear Caused by Failure of Lubrication. There are several 
types of wear that are directly caused by failure of lubrication. When 
adequate lubrication is present, none of them will exist. We shall now 
consider these types of wear, starting with galling. 

Galling or Scuffing, Galling results from a momentary failure of the 
oil film, which sometimes causes high local temperatures and also a plastic 

flow of the surface of the material. When particles of material are 
dragged out of the surface by this action, some abrasion will also take 
place. Too heavy a lubricant on gear teeth often results in such galling 

because the time between successive contacts of the same teeth is not 
sufficient for the lubricant to flow back again over the contacting sur¬ 
faces. In such cases the use of a lighter lubricant will often overcome 

this trouble. 
Galling is difficult to prevent between sliding surfaces which have only 

a slight amount of motion between them or which have a frequently 
reversing direction of relative sliding because, under such conditions, a 
continuous film of oil cannot be formed and maintained. At the other 
extreme, galling often takes place when the loads are heavy and the rate 
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of sliding is high because of the frictional heat and the necessity, on gears 
at least, of using relatively light lubricants under such operating condi¬ 
tions. In such cases, the oil film is not strong enough to support the 
load, and as a consequence, momentary metallic contact between the 
sliding surfaces is of frec^uent occurrence. This condition is often met at 
the tips of the teeth of gears running at high speed, and is often called a 
wiredrawing effect. The high speed tends to throw the oil ofi from the 
tooth surfaces. In such cases, a baffle may sometimes be arranged to 

block the space on the in-meshing side of the gears, and sufficient oil may 
be fed to minimize or to overcome this galling. 

Seizing. Seizing, in many respects, is an extreme case of galling. 

In this case, local temperatures are so high during the momentary failures 
of the oil film that particles of metal are actually welded or brazed onto 
the contacting surfaces. On gear teeth, particles so welded to the tooth 

surfaces then act to score the mating tooth surfaces. In the case of 
plain cylindrical bearings, such particles of material may actually weld 
the two members together in spots. To minimize or overcome both 
galling and seizing, many special lubricants, commonly known as EP 
{extreme-pressure) lubricantsy have been developed. These may be 
divided into two major types: the one where some solid lubricant such as 
graphite or lead soap has been introduced, and the other where sulfur or 
chlorine or other element has been added to prevent welding. Where 
sulfur or chlorine is added to the lubricant for this purpose, the element 
acts to contaminate the surface material and thus acts as an antiflux, pre¬ 
venting the particles from welding to the contacting surfaces. 

Of the six foregoing types of wear, failure of lubrication is directly 
responsible for only the last two types, namely, galling and seizing. 

“Gear-tooth Contact Wears Away Small Particles of Metal.” The 
statement is made in a standard specification for gears to the effect that 
every time a pair of gear teeth makes contact, small particles of material 

are worn away, thus resulting in a slow but relatively uniform wearing 
away of the surfaces. Such a condition exists only in the case of abrasion, 
provided that the quantity and the quality of the abrasive is constant; or, 

in the case of scoring, provided that the cutting edges are not worn down 
or dulled. 

In most cases, wear on gear teeth is of a periodic nature. For example, 

if the tooth surfaces are rough, wear will be rapid at the start because of 
the scoring and the resulting abrasion. After the rough surfaces or sharp 
edges have been worn down and the abrasive particles have worked free 
of the contacting surfaces, practically no further wear is evident for a 
greater or lesser period of time, depending upon the intensity of the tooth 
load. Under heavy load, the next cycle of wear will start when more 
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particles of material are released because of the surface fatigue of the 
material. Then further abrasion takes place, often followed by scoring 

or cutting, which is caused by the entering tip of the tooth of the driven 
gear, which gouges out the flank of the tooth of the driving gear. After 
this tip has cleared its path and the released particles of the material have 
worked free of the contacting surfaces, another period free from wear 
ensues until the same cycle is repeated again. Under suitable conditions 
of load and lubrication, gear teeth may run indefinitely without any signs 

of appreciable wear. 
Influence of Mating Materials. In addition to the foregoing, the 

problem of wear is complicated by the interaction of different materials 
on each other. We learn from experience that certain combinations of 
materials work well together, while other combinations do not. Further¬ 
more, with a given construction, a combination of materials that works 
well in certain respective positions may not be satisfactory when the 

materials used for the mating parts are reversed. For example, cast iron 
and bronze prove by laboratory tests to be an excellent combination. A 
cast-iron worm mating with a bronze worm gear shows in service a high 

resistance to wear, much better than a hardened-steel worm and a bronze 
worm gear. Yet a bronze worm mating with a cast-iron worm gear 
shows in service a very poor resistance to wear. In this case, our experi¬ 

ence with these and other combinations of materials teaches us that the 
enveloping member or worm gear should always be made of the more 
plastic material of the combination used, so that it can find itself by plastic 
flow and cold-working during the initial running-in period. 

Other conditions constantly occur where a plausible explanation of 
cause and effect is not so evident. Thus, for example, why does phosphor 

bronze operate well as regards resistance to wear with cast iron and hard 
steel but poorly with soft steel, bronze, or phenolic laminated material? 
Also, why does soft steel operate well with cast iron, babbitt, soft brasses, 

and sometimes with hardened steel but not with bronze, soft steel, or 
phenolic laminated material? Why does hardened steel operate well 
with the soft bronzes, brass, cast iron, babbitt, phenolic laminated 

material, and often with hardened steel, but not with the harder heat- 
treated alloy bronzes? Oil-hardened steel does not always operate well 
with casehardened steel. Again, two hardened nickel steels do not 

always operate well together, particularly when any appreciable heat 
exists. Also difficulties sometimes exist when a hardened nickel steel is 
mated with a nickel-bronze worm gear. Why does cast iron generally 
operated well with all other materials? Even so, cast iron in the ‘^as 

cast” condition is not always as satisfactory as it is when suitably 
heat-treated. 
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Importance and Uses of Endurance Limits of Materials. Logically, 
the working stresses used for design of most machine parts should be 
based upon the endurance limits of the materials rather than upon their . 
ultimate strength, elastic limit, or yield point, particularly if the parts 
are to render as long a service as possible. The endurance limit is that 
unit stress which can be repeatedly imposed indefinitely without causing a 
fatigue failure. To ensure long life to any mechanism, the stresses 
imposed in actual service should be kept within the endurance limits of 
the materials employed in the construction of the mechanism. 

In many respects, most materials appear to have much in common 
with human muscles; when they are stressed within their endurance 
limits, their strength increases up to some optimum with repeated stress¬ 

ing or exercise; when they are stressed beyond their endurance limit with 
repeated stressing, they will be permanently weakened, and eventually 

they will fail by fatigue. 
If the endurance limits, both flectional and surface, of materials are 

known and used as the basis for the working stresses, then the designer 
can design a given mechanism so that it will stand up against both 

breakage and excessive wear. Or again, if a limited life is acceptable, the 
designer can proceed with his task accordingly and with much more 
assurance than is otherwise possible. 

However, at present, in the great majority of cases, the designer is 
ignorant of one of the most important factors of machine design. This is 
the knowledge of the actual intensity of the dynamic or maximum momen¬ 
tary loads that exist on various parts of the mechanism under the service 
conditions. p]ven the value of the average loads is often unknown. 
Today, this part of machine design is experimental and empirical almost 

without exception. 
Designs have been developed by trial and experiment until they per¬ 

form well in certain limited fields. If that mechanism, however success¬ 
ful it may be in its usual application, is used under more severe conditions 
than before, often it proves to be inadequate for such hew use. For 
example, designers of motor trucks have developed from years of experi¬ 

ence designs that prove adequate for commercial hauling, most of which 
is done on hard roads. If these same vehicles, however, are used in 
lumbering operations, or to bring supplies to an army in the field, over 

poor or wrecked roads or no roads at all, the chances are that the average 
service conditions here would impose average loads of double, or more 
than double those of commercial hauling. Under these conditions, vdth 
the many hardened-steel parts involved in the construction of the trucks, 
the useful life of such vehicles would probably be very much less than 
their life when used commercially. 
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In the same way, considerable uncertainty exists as to the real load 
capacity of many other mechanical units. Take, for another example, 
geared speed reducers. Here may be one that has run successfully for 
several years transmitting the power from, say, a 10-hp motor, to a given 
machine. This does not mean, however, that the average transmitted 
power has been 10 hp. It may have been nearer 2 or 3 hp. Yet the 
inclination is to rate such a speed reducer at the same power as the rating 
of the motor to which it has been attached. 

The designer may know the extent of the useful or applied load on 

the several parts of a given machine, but the actual intensity of the 
dynamic load is generally a profound mystery. In the experimental 
stages, a part may break. This gives some measure of the stresses exist¬ 

ing in that part, but such breakage often causes damage to some other 
parts of the mechanism, often including the breakage of other parts. 
Under such conditions it is often difficult or impossible to determine 

which part broke first. 
If the surface fatigue characteristics of the materials used are known 

and if the surfaces are carefully watched, dynamic loads that cause sur¬ 

face failures can generally be detected before any harm is done to any 
other part of the mechanism, and a reasonably close measure of the inten¬ 
sity of the dynamic load can be made from the condition and appearance 

of the surface failure of the particular part. In other words, the surface 
of the material itself, on which is imposed the dynamic loads, can be used 
as an indicator or measure of the extent of these loads. In cases where 
no surface failure is evident, a part of weaker surface strength may be 
substituted for the original one until the desired information is obtained. 
To my mind, the most effective research laboratory for the study of such 
dynamic loads, and many other features of the design, is the performance 
of the product itself in actual service. Thus, a greater knowledge of the 
surface-fatigue characteristics of materials will provide a powerful tool 
for the study of the dynamics of many types of mechanisms and a measure 
of the actual intensities of the dynamic loads existing there under the 
actual conditions of use and abuse, a subject of which today our knowl¬ 

edge is very incomplete. 
Surface-endurance Limits of Metals. Since 1931, the AS ME Special 

Research Committee on the Strength of Gear Teeth has been conducting 

tests to determine the surface-fatigue characteristics of various metals 
that are used in the construction of gears. Such tests take time, and to 
date but a very small part of the field has been covered. The following 
is a summary of the work covered to date: 

Teats on Castriron Alloys. The most extensive series of tests to date 
on the surface-endurance limits of metals has been made on several cast- 
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iron alloys. The results of these tests, referred to a common basis of two 
rolls in contact, each with a 1-in. radius (2-in. diameter) and a 1-in. face 
are shown in the following charts. These are plotted against logarithmic 
coordinates. The applied load is plotted against the number of cy(?les of 
stress. It appears from these tests that the endurance limit is reached 
at about 30,000,000 cycles of stress. All tests were run in combination 
with a hardened and ground steel roll unless otherwise noted. 

Cast Iron with Steel Scrap. Figure 23-1 shows the results of tests 
on gray iron with 30 per cent steel scrap. The chemical analysis of a 

sample of this material is as follows: 

Element cent 

Silicon. 1-84 

Sulfur. 0.136 

Manganese. 0.65 

Phosphorus. 0.387 

Total carbon. 3.25 

Graphite. 2.80 

Combined carbon. 0.45 

The results of tests of the physical properties of this material, both as 

cast and heat-treated, are as follows: 
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As cast Heat-treated* 

Ultimate strength. 35,200 lb/in. 2 45,950 

Elastic limit. 15,000 lb/in.2 35,750 

Brinell hardtiess. 223 255 

Flectional-endurance limit. 21,000 Ib/in.- 25,000 

* The heat-treatment was as follows: Heat to 1500®F and quench in oil. Draw at 950 to 1000°F. 

This material is probably much better than the average run of cast 
iron with steel scrap. The heat-treatment did not appear to have any 
effect on the value of the surface-endurance limit, although it did increase 
the flectional-endurance limit slightly. It is possible that the cold-work¬ 
ing of the “as cast^^ material during the initial stages of the tests accom¬ 
plished the same purpose here as the heat-treatment. 

The surface-endurance limit of this material, under pure rolling condi¬ 
tions, appears to be with an applied load of about 1,095 lb. The equiva¬ 
lent maximum specific compressive stress, on the basis of static conditions, 
is equal to about 87,000 psi. We know from photoelastic tests that the 
actual stresses here are somewhat higher, possible 10 per cent, but we do 
not have sufficient data to speak with any certainty. Hence we shall 
use for purposes of comparison the equivalent static load stresses. These 
samples showed an increase in hardness of surface because of cold-working 
varying from about 5 to 20 points, Brinell hardness number. 

Nickel Cast Iron, as Cast. Figure 23-2 shows the test results on 
gray iron alloyed with nickel, with the test rolls as cast. The chemical 
analysis of a sample of this material is as follows: 

Element Per cent 

Silicon. 1.42 

Sulfur.0.117 

Manganese. . . 0.37 

Phosphorus. 0.448 

Total carbon. .3.36 

Graphite. .2.50 

Combined carbon. ...0.86 

Nickel. 1.52 

The results of tests of the physical properties of this material are as 
follows: 

Ultimate strength. 35,400 Ib/in.* 

Elastic limit. 12,600 lb/in.* 

Brinell hardness. 217 

Flectional endurance limit. 16,000 Ib/in.* 
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The surface-endurance limit of this material under pure rolling condi¬ 
tions appears to be with an applied load of about 685 lb. The equivalent 
specific compressive stress, based on static loading, is about 69,200 psi. 
These samples showed an increase in surface hardness because of cold¬ 
working of from 5 to 15 points, Brinell hardness number. 

Samples of this material were tested with about 9 per cent sliding 
action and gave substantially the same results as for pure rolling. 

Number of cycles 

Fig. 23-2. Nickel cast iron as cast. 

Nickhl Cast Iron, Heat-treated. Another series of tests was 

made with this same nickel cast iron when heat-treated as follows: Heat 
to 1500°F and (lueiich in oil; draw to 980'’F. 

The results of tests of the physical properties of this material are as 

follows: 

Ultiiiiato strength 

Elastic limit... . 

Brinell hardness.. 

41,700 lb/in.2 
24,000 lb/in.2 

246 

The surface-endurance limit of this material under pure rolling condi¬ 
tions appears to be with an applied load of about 822 lb. The equivalent 
maximum specific compressive stress, based on static loading, is about 

75,800 psi. The results of these tests are shown in Fig. 23-3. 
Another series of tests on this material, heat-treated as before, but 

drawn to about 350 and 400 Brinell hardness, was made. The results 

were about the same for both degrees of hardness. The surface-endur¬ 
ance limit appears to be with a test load of about 960 lb. The equivalent 
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maximum specific compressive stress, based on static loading, is about 
81,900 psi. These samples showed no definite increase in surface hard¬ 
ness because of cold-working. The results of these tests are shown in 
Fig. 23-4. 

Nickel Cast Iron, Hot-qupjnch Treatment. While the foregoing 
tests on heat-treated nickel cast iron were being made, experiments were 
being conducted by the company supplying the material on different 

heat-treatments. The following heat-treatment^ was developed, which 
changed the structure of the material, particularly the form and disper¬ 
sion of the graphite, and gave much higher physical properties to the 
material: Heat to 1500°F and hold until thoroughly heated; quench to 

650°F and hold until heat is uniform; cool in boiling soda water. For 
the test rolls, the parts are held at temperature for about 30 min. 

This interrupted-qiiench treatment gave the following physical proper¬ 

ties to the test samples: 

Ultimate atnmgth.46,500 psi 
Elastic limit. . 25,000 psi 
Brincll hardness. 287 
Flectional endurance limit. 19,000 psi 

The results of the surface-endurance tests for this material are shown 

in Fig. 23-5. The surface-endurance limit under pure rolling conditions 

' Patents have been applied for on this heat-treatment. 
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appears to be with a load of about 1,645 lb. The equivalent maximum 
specific compressive stress, under conditions of static loading, is about 

107,300 psi. These samples showed an increase in surface hardness 
because of cold-working of from 5 to 40 points, Brinell hardness number. 

Some of these samples were tested with about 9 per cent sliding action. 

The surface-endurance limit under these conditions appears to be with 
an applied load of about 1,235 lb. The equivalent maximum specific 
compressive stress, under conditions of static loading, is about 92,900 psi. 

Fiq. 23-6. Chrome-nickol ca.st iron. 

Chrome-nickel Cast Iron. Figure 23-6 shows the results of tests 

on chrome-nickel cast iron, both as cast and heat-treated. The results 
in both cases were substantially the same. The chemical analy.sis of a 
sample of this material is as follows: 

Element 
Silicon. 
Sulfur. 
Manganese.... 
Phosphorus. 
Total carbon. . . . 
Graphite. 
Combined carbon 
Nickel. 
Chrome. 

Per cent 
1.24 

0.130 

0.44 

0.297 

3.39 

2.50 

0.89 

1.44 

0.50 

Tests of the physical properties of this material gave the following 
results: 
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As cast Heat-treated * 

Ultimate strength. 

Elastic limit. . 

Brinell hardne.ss. 

39,000 psi 

15,100 psi 

234 

44,730 psi 

31,600 psi 

243 

♦ The heat-treatment was as follows: Heat to 1550®F; quench in oil; draw to desired hardness. 

The surface-endurance limit under pure rolling action appears to be 
with an applied load of about 750 lb. The equivalent maximum specific 
compressive stress, based on static loading, is about 72,400 psi. These 

samples showed an increase in surface hardness because of cold-working 
of from 0 to 15 points, Brinell hardness number. 

Molyhdionum Cast Iron, Hot-quench Treatment. Figure 23-7 

shows the results of tests on molybdenum cast iron, heat-treated. The 
heat-treatment used was the same interrupted quench as was used on the 
nickel cast iron. The chemical analysis of a sample of this material is as 

follows: 

Element 
Silicon. 

Manganese.. 

Total carbon. 

Molybdenum 

Per cent 
1.77 

0.59 
3.12 
0.66 
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The physical properties of this material, heat-treated as noted, are as 

follows: 

Ultimate strength. 40,000 psi 

F]lastic limit. 22,400 psi 

Brinell hardness. 290 

Flectional endurance limit. 22,000 psi 

The results of the surface-endurance tests on this material, both as 
cast and heat-treated, are shown in Fig. 23-7. As cast, the surface- 

endurance limit under pure rolling action appears to be with an applied 
load of about 9(30 lb. The eciuivalent maximum specifics compressive 
stress, under static loading, is about 82,200 psi. 

The surface-endurance limit of the heat-treated material under pure 
rolling action appears to be with an applied load of about 1,850 lb. The 
equivalent maximum specific compressive stress, under static loading, is 

about 113,700 psi. These samples showed an increase in surface hardness 
because of cold-working of from 15 to 40 points, Brinell hardness number. 

This material is the best of all the cast irons we have tested. It has 

given excellent results in service on a wide variety of appli(‘ations. 
Tests on Bronze, Tests have been made on several lots of phosphor 

gear bronze, all of them being substantially the same as SAE-05 bronze. 

One lot was cast against a chill; all the other lots were sand-cast. One 
lot was cast in an iron foundry, and the metal was overheated when 
•poured. Some tests were run against hot-(iuenched nickel-cast-iron 
rolls; all the other tests were run against hardened and ground steel rolls. 

Phosphor Bronze. The test results of all the tests of phosphor 
bronze are shown in Fig. 23-8. The surfacavendurance limit, under pure 
rolling action, of the sand-cast bronze appears to be with an applied load 

of about 590 lb. The ccpnvalent maximum specific comprcssi\'e stress, 
under static loading, is about (37,(300 psi. These samples sliowed an 

increase in surface hardness because of the cold-working of from 50 to 
80 points, Brinell hardness number. The initial Brinell hardness number 
was about 80. 

The surface-endurance limit of the bronze cast against a chill under 
pure rolling action appears to be with an applied load of about 1,025 lb. 
The equivalent maximum specific compressive stress, under static load¬ 
ing, is about 82,800 psi. These samples showed an increase in surface 
hardness because of cold-working of from 80 to 100 points, Brinell hard¬ 
ness number. The initial Brinell hardness number was about 80. 

The surface-endurance limit of the overheated bronze, sand-cast, 

under pure rolling action was with an applied load of about 100 lb. The 
equivalent maximum specific compressive stress, under static loading, is 
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about 25,000 psi. These samples were etched and broken after the tests. 
Very large crystals were apparent. On the outside surface where destruc¬ 
tive pitting was present, no crystal structure could be seen, indicating 
amorphous material where the surface had started to disintegrate. This 
is an indication of the care and technique required in the casting of 

bronze. These samples showed an increase in surface hardness because 
of cold-working of from 10 to 70 points, Brinell hardness number. 

The surface-endurance limit of the sand-cast bronze running against 
a hot-quenched nickel-cast-iron roll appears to be with an applied load 

Fig. 23-8. Pho.spliur bronze. 

of about 1,470 lb. The cciuivalent maximum specific compressive stress, 
under static loading, is about 83,300 psi. This load is much higher than 
can be accounted for because of the lower modulus of elasticity of the 

mating cast-iron roll as compared with that of the hardened-steel roll. 
It is possible that the more effective lubrication because of the free 
graphite released from the cast-iron roll was largely responsible for this 
increase in load-carrying ability. Current tests on soft steel indicate 
that when more effective lubrication exists, the influence of sliding and 
creep, because of the clastic and plastic wav'c at the contact area, is reduced, 
and the surface-endurance limit is increased materially. These bronze 
samples showed an increase in surface hardness because of cold-working 

of from 50 to 100 points, Brinell hardness number. 
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Nickel Bronze. Tests were also made on a nickel bronze, sand-cast, 
running with a hardened and ground steel test roll. The surface- 

endurance limit of this material under pure rolling action appears to be 
with an applied load of about 820 lb. The equivalent maximum specific 
compressive stress, under static loading, is about 75,700 psi. These 

samples showed an increase in surface hardness because of cold-working 

of from 5 to 20 points, Brinell hardness number. The initial Brinell 
hardness number was about 80. The results of these tests are shown in 

Fig. 23-9. 

Fio. Nickel bronze. 

Soft Steel. No comprehensive tests, as yet, have been completed on 
soft steel. From the tests on such materials to date, we obtain some 

indication of the difficulties that will be met here. On the softer steels, 

under 200 Brinell hardness number, for example, corrugations or waves 

are developed on the surface, particularly if any sliding action is present, 

under relatively light loads. When the loads are light enough to avoid 
this plastic flow of the surface material, they are generally well within 
the surface-endurance limits of the materials. After a preliminary run 

under a light load, the surface material becomes hardened by cold-work¬ 
ing. Then heavier loads can be imposed without developing corrugations 
on the surface. This process can be repeated until the surface hardness 

of the material has been increased 100 points or more, Brinell hardness 

number. Then if these preworked samples are tested for their endurance 
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limits, this value will depend more upon the cold-worked conditions than 
they do upon the original condition of the material. It may thus be 

necessary to establish surface-endurance limits for such soft steels on the 
basis of various degrees of running-in or cold-working. If so, when such 
values are applied to wear loads for gear teeth, these gear teeth must 

receive an equivalent running-in before they will be able to carry the full 
rated load. 

Tests are now under way on these materials. Such tests take time, 
so that progress is slow. It will probably be several years before many 

definite values can be reported. In the meantime, tentative values have 
been established on the basis of actual service performance and have 

been used successfully in gear design for some years past. Many or 
most of them may be more conservative than necessary. These values 
are listed in a table in Chap. 24. Some degree of running-in is probably 

present in these values, as the full rated load on gears is seldom applied 
continuously in service. Without such running-in, the use of steels 
below 200 Brinell hardness number for gears is always hazardous. 

Hardened Steels, Two series of tests on hardened steels have been 

made: one on casehardened steel and the other on induction-hardened 
steel. This is but a small start on this project. As noted before, 
hardened steel does not appear to have any definite endurance limit. 
Tests up to 400,000,000 cycles of stress show the limit load reducing, fol¬ 
lowing the same line of the tests at the heavier loads and fewer cycles, 
with the increasing numl)er of cycles. 

Both of these two seric^s of tests on hardened steel were run with simi¬ 
lar material in the mating rolls and with about 10 per cent sliding action 

between them. 
C.\SEHAUDENED Steel. The Tcsults of the tests on casehardened 

steel are shown in Fig. 23-10. This steel was substantially SAE 2515. 
Sets of samples were prepared with three depths of case: about 0.030 in., 

about 0.040 in., and about 0.055 in. The heat-treatment was as follows: 
Carburize at 1650°F; quench in oil at 1425°F; draw one hour at 290''F. 
The physical properties of the core material tested as follows: 

0.030-in. case 0.040-in. case 0.055-in. case 

Ultimate strength, psi. 179,000 182,000 181,000 

Yield point, psi. 161,000 164,500 166,000 

Elongation, per cent. 15.2 16.8 16.8 

Reduction of area, per cent. 63 62 62 

Core hardness, Rockwell C. 38 37 37 

Case hardness, Rockwell C. 60 56 56 
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All the samples of the 0.030-in. case failed at the line of case and core. 
All the other samples failed in the case. The results of these tests, based 

Fia. 23-10. Casehardened Hteel. 

on the applied loads on a pair of 2-in.-diametcr tost rolls with a 1-in. face 
.are as follows: 

Applied loads 

Number of cycles 
0.030-in. case 

1 

0.040-in. case 0.050-in. case 

1,000,000 8,300 12,890 5,920 
10,000,000 6,960 9,840 4,880 

100,000,000 5,830 8,270 4,090 

The equivalent maximum specific compressive stresses, based on 
static loading, of these samples is as follows: 

Xuinher of cycles 

Maximum specific compr(‘ssive stress 

0.030-in. case 0.040-in. ca.se 0.055-in. case 

1,000,000 296,000 362,000 249,300 
10,000,000 270,300 321,400 226,300 

100,000,000 247,400 294,600 207,200 
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The surfaces of these test rolls were ground and lapped. There is 
reason to believe that the slope of these surface-fatigue graphs for 
hardened steel is influenced by the character of the surface finish, the 
smoother hardened-steel surfaces having the lesser slope. 

In these tests, the 0.040-in. case depth gave the best results. The 
shallower case failed at the line of case and core, and did not develop the 
full strength of the case. Here the region of high shear stress extended 
below the case depth. The samples of the 0.055-in. case depth showed a 

shattered appearance around the pits, a possible indication that the sur¬ 

face had become brittle because of the conditions of the heat-treatment. 
Induction-hardened Steel. The tests on induction-hardened steel 

were made on an experimental lot of substantially SAE-1040 steel. 

These samples were finish-turned before hardening. They were not 
finished after hardening. No physical tests were made of these samples. 

The results of these tests, based on the applied loads on a pair of 

2-in.-diameter test rolls with a 1-in. face, are shown below. The tabu¬ 
lated maximum specific compressive stresses are based on conditions of 
static loading. 

Number of eydes Load, lb 
Ma.ximum sped lie coiu- 

pn‘ssivo stress, psi 

1,000,000 8,950 300,500 
10,(K)0,<XK) 0,950 270, UH) 

100,000,000 5,390 237,900 

These results are plotted in Fig. 23-11. These test results show a 

steeper slope on the graph than those of the casehardened steel, possibly 
because of the difference in the smoothness of the finish of the surfaces. 

Summary of Surface-endurance Tests. Although the complex behavior 

of these materials under the repeated surface stresses set up by the rolling 

and sliding action is still far from being understood, and even though 
the actual intensities of the several stresses, compressive, tensile, and 
shear, are thus far indeterminate, yet the actual test load results may be 
applied safely to design. These tests were started in 1931, and the test 
results have been successfully applied in the design of cams and their 
roller followers, and in the design of gears ever since they have been 
available. The comparative results between different materials as found 
in these tests are confirmed by the behavior of these materials in service 
as elements of automatic machines operating in production. The limit-- 

ing loads as determined from these tests have thus far resulted in designs 

with no appreciable wear. 
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Fiq. 23-11. Iiiduction-liardened steel. 

Load-diameter-stress Factor. For the purpose of setting up a load- 
diameter-stress factor, we shall start with the Hertz equation for the 
stresses set up between two loaded cylinders in contact. Thus when 

s = maximum specific compressive stress, psi 
w = applied load on cylinders, lb/(in. length) 

T\y r2 = radii of cylinders, in. 
El, E2 = modulus of elasticity of materials 

, _ 0.35^(l/ri) + (l/r2)] 
{I/El) + {\/E2) 

(23-1) 

We shall now introduce an experimental factor of load stress based 
upon the test values. 

Ki = experimental load-stress factor for two cylinders 

Then 

by definition (23-2) 

K^ 

(l/rx) + (l/r2) 
(23-3) 

Referring now to the tests on the cast iron with 30 per cent steel 
scrap, we have as the surface-endurance limit load on two 2-in.-diameter 
test rolls, one of steel, an applied load of 1,095 lb. This gives the follow¬ 
ing factors for the solution of Eq. (23-2): 
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w = 1,095 ri = 1.000 ra = 1.000 

K, = 1,095(K + K) = 2,190 

The values of these factors Ki may be used to determine the limiting 
surface loads between two curved surfaces of the same combination of 
materials. These limiting loads are the ones that can be carried indefi¬ 

nitely without appreciable wear. If abrasive particles are present 
between the surfaces, these values do not apply. For example, if the 
minimum radius of curvature of a cam is 4 in. and the cam roll is 2 in. in 

diameter, and the parts are made of these same two materials, then 

ri = 1.000 r2 = 4.000 Ki = 2,190 

2,190 2,190 ^ n 
^ lb/(in. face) 

In other words, this cam can be loaded up to some 1,752 lb per inch of 

face width. 
Load-stress Factor for Gear Teeth. For involute spur-gear teeth 

when 
K = load-stress factor for gear teeth 

<t> = pressure angle of gears 
Di == pitch diameter of pinion, in. 

D2 = pitch diameter of gear, in. 

We shall let 

vsin <t> 

Di sin <t> 
r* =-^ 

j. sin (t> [{l/Ei) + {\/Ei)] 

4 X 0.35 
(23-4) 

The value of Ki for cylinders is as follows; 

s=[(l/^0 + {l/Ei)] iiCi = u, (i -I- i) = 
\ri TiJ 0.35 

Whence 

and 

K _ sin <|> 

K = 

4 

Ki sin <l> 
(23-5) 

Values for the load-stress factors for cylinders, Ki, and the load-stress 

factors for gear teeth, K, established from the foregoing test data, are 

tabulated in Table 23-1. 
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Table 23-1. Experimental Load-stress Factors 

(Mated with hardened steel unless otherwise noted) 

Material Ku 
K, gears 

cylinders 
14J^-deg 20-deg 

Cast iron with 30% steel scrap. 2,190* 137* 187* 
Nickel cast iron. 1,369 85 117 
Nickel cast iron, heat-treated to 300 Br. 1,643 102 140 
Nickel cast iron, heat-treated to 350-400 Br. .. 1,917 120 163 
Nickel cast iron, hot-quench. 3,286 205 280 
Nickel cast iron, hot-quench, 9 % sliding. 2,465 154 210 
Chrome-nickel cast iron. 1,506 94 128 
Molybdenum' cast iron. 1,917 120 163 
Molybdenum cast iron, hot-quench. 3,697 231 316 
Phosphor bronze, sand-cast. 1,177 1 100 
Phosphor bronze, chilled. 2,054 128 175 
Phosphor bronze, overheated when cast. 
Phosphor bronze, sand-cast, with nickel cast iron, 

205 12 17 

hot-quench. 2,730 171 234 

For 1,000,000 cycles 

SAE-2515 steel, 0.030-in. case. 16,720 1,045 1,430 
SAE-2515 steel, 0.040-in. case. 25,780 1,610 2,204 
SAE-2515 steel, 0.055-in. case 11,840 740 1,012 
SAE-1040 steel, induction-hardened . 17,900 1,118 1,530 

For 10,000,000 cycle 'S 

1 
SAE-2515 steel, 0.030-in. case. 13,920 870 1,190 
SA5)-2515 steel, 0.040-in. case. 19,080 1 ,230 1,682 
SAE-2515 steel, 0.055-in. cas(‘.. 9,700 610 834 
SAE-1040 steel, induction-hardene<l.... 

i 
13,900 8()8 1,188 

For 100,000,000 cycles 

SAE-2515 steel, 0.030-in. case. 11,660 728 996 
SAE-2515 steel, 0.040-iii. case. 16,540 1,033 1,414 
SAE-2151 steel, 0.055-in. case. 8,180 511 699 
SAE-1040 steel, 0.055-in. case.j 10,780 673 921 

* Probably much higher than for average of thia material. 



CHAPTER 24 

LIMITING LOADS FOR WEAR ON GEARS 

Charles H. Logiic, in the ‘‘American Machinists^ Gear Book/^ pub¬ 

lished in 1910, suggested the use of the radius of curvature of the gear- 

tooth profile as a measure of the stresses on gear teeth that affect the 

wear. Joseph Jandesek followed this same thought in articles published 

in 1920 to 1927, giving numerous formulas, diagrams, and calculations 

based on the Hertz eciuation and using the maximum surface pressure 

or compressive stress as a measure of the wearing qualities. 

About 1920, the writer first used the Hertz equation as a measure of 

gear-tooth wear and in May, 1926, presented before the American Gear 

Manufacturers’ Association a paper in which were given constants that 

had proved generally satisfactory during about 7 years’ use. 

LIMITING LOADS FOR WEAR ON SPUR GEARS 

The contact conditions between spur-gear-tooth profiles are similar 

to those between two cylinders, except that on gear-tooth profiles the 

radius of curvature is constantly changing. If we use the contact and 

pressure conditions between two cylinders as a measure of the stresses on 

the surfaces of gear teeth, we must first select some definite part of the 

gear-tooth profile for use as a basis of comparison. 

In many cases, wear on gear teeth first becomes apparent at or near 

the pitch line. Possibly one contributing cause for this effect is the fact 

that one pair of teeth is usually carrying the entire load when contact 

exists on this part of the tooth profile; when contact takes pUu^e near the 

top or the bottom of the active profile, two pairs of mating teeth are 

usually sharing the load. Again, the impact or dynamic load is usually 

imposed on the gear teeth near the pitch-line area. And it is the intensity 

of this dynamic load that is largely responsible for the surface fatigue of 

the gear material. Hence we have reasonable cause to select the radius 

of curvature of the gear-tooth profile at the pitch line as the one to use 

as a basis of comparison with the Hertz equation, and to apply there the 

results of tests for surface endurance on cylindrical test rolls. Thus when 

s = maximum specific compressive stress, psi 

Wyo = limiting load for wear, lb 

F = face width of gears, in. 
527 



528 ANALYTICAL MECHANICS OF GEARS 

T\y r2 = radii of contacting cylinders, in. 
E\^ E2 = modulus of elasticity of materials 

we have the Hertz equation as follows: 

_ 0.35TF4(l/rO + (l/r^)] 
F[{l/E^) + {I/E2)] 

When Di = pitch diameter of pinion, in. 
D2 = pitch diameter of gear, in. 
N1 = number of teeth in pinion 
N2 = number of teeth in gear 
K = load-stress factor for materials 
Q = ratio factor 
</) = pressure angle of gears 

ri = 

r2 

D\ sin </> 
2 

D2 sin 0 
2 

2 
14-2 = — 
r\ r2 sin <t> 

Substituting this value into Eq. (24-1), we obtain 

^ 0.701F4(1/Z)0 -f (l/£>^)] 
F sin m/E,) + (l/EOl 

Solving Eq. (24-2) for 1E„,, we obtain 

_ sW sin m/E,) -h (I/E2)] 

0.70[(1/Z>.) -f H/D,)] 

1 DiDi 

We shall let 
(l/Di) + (l/£>s) 

2Ni 
Q = 

2 

Nt + N, 

D\Di 

b\ 4- bt 

2Di 

b\ -f- Dt 

bi -[- Dt 

Substituting this into Eq. (24-3), we obtain 

W. - 

But we already have 

„ ^ sin </>[(l/gi) 4- {^/Et)] 

1.40 

(24-1) 

(24-2) 

(24-3) 

(24-4) 

(24-6) 

(23-4) 
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Substituting this value of K into Eq. (24-5), we obtain the following equa¬ 
tion for the limiting wear load: 

= DiFKQ (24-6) 

This limiting load for wear should be equal to or slightly greater than 

the dynamic load. No appreciable margin of safety is needed here, 
because an occasional overload will have but little effect. This wear is 
a matter of fatigue, and repeated loads are required to develop the 
fatigue of the materials. 

Tentative Load-stress Values for K. Tentative values for the load- 
stress factor K for gear teeth, based primarily upon service data, are given 

in Table 24-1. These are for use until more definite experimental values 
can be established. These values have been used for several years 
successfully for general machine design. Many successful drives appear 

to use values in excess of the tabulated ones. On the other hand, many 
drives that have shown excessive wear in service have used values only 
slightly in excess of the tabulated values. With the softer steels in par¬ 

ticular, it is possible that the specific conditions of the initial operation 
and running-in has had a pronounced influence on the results. 

Depth to Point of Maximum Shear. When casehardened steel gears 

are used, it is necessary to have some measure of the depth to the point 
of maximum shear stress so that the depth of case will extend below the 
region of high shear stress, else the full surface strength of the case mate¬ 

rial will not be effective. Experience and tests indicate that the depth 

of case should not be less than about double the depth to the point of 
maximum shear. Thus when 

Z = depth to point of maximum shear stress, in. 

w = load per inch of face, lb 

E = modulus of elasticity of material 
ri, r2 = radii of curvature of mating profiles, in. 

<t> = pressure angle of gears 
El, E2 = pitch radii of gears, in. 

ri = El sin <l> r2 = E2 sin <!> 

Z = 1.19 \/w{rir2)/E{ri + r^) (24-7) 

The maximum shear stress is equal to about 

0.304 X maximum specific compressive stress 

Limiting Wear Load on Spur Gears. First Example, As a definite example we 

shall determine the limiting wear load for a pair of 7-DP soft-steel gears, 20-deg full- 

depth form, of 28 and 66 teeth, with a 3-in. face width. The pinion will be of 250 
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Table 24-1. Values of Load-stress Factor K 

Brinell number 

s, psi 

K 

Pinion Gear 20-deg, lb 

Steel pinion and steel gear 

150 150 50,000 30 41 
200 150 60,000 43 58 
250 150 70,000 58 79 
200 200 70,000 58 79 
250 200 80,000 76 103 

300 200 90,000 96 131 
250 250 90,000 96 131 
300 250 100,000 119 162 
350 250 110,000 144 196 
300 300 110,000 144 196 

350 300 120,000 171 233 
400 300 125,000 186 254 
350 350 130,000 201 275 
400 350 140,000 233 318 
400 400 150,000 268 366 

Steel pinion and cast iron gear 

150 50,000 44 GO 
200 and over 70,000 87 119 

Steel pinion and nickel cast iron, hot-quenched 

150 50,000 44 60 
200 70,000 87 119 
250 90,000 144 196 
300 and over 93,000 154 210 

Steel pinion and phosphor-bronze gear 

150 
200 and over 
250 and over * 

50,000 
65,000 
83,000 

46 
73 

128 

62 
100 
175 

Cast-iron pinion and cast-iron gear 

! \ ... 1 1 80,000 1 152 1 1 208 

Hot-quenched nickel-cast-iron pinion and gear 

1 1 93,000 1 206 1 1 281 

Hot-quenched nickel-cast -iron pinion and phosphor-bronze gear 

1 1 ... 1 83,000 1 171 1 1 234 

♦ Chilled bronze, 
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Brinell hardness number, and the gear will be of 200 Brinell hardness number. This 
gives the following values: 

Ni =28 Ni ^ 56 Di = 4.000 F = 3.000 

From Table 24-1 we obtain 

Whence 

K = 103 

^ 28+56 
1.333 

= 4.00 X 3.00 X 103 X 1.333 = 1,648 lb 

Second Example. As a second example we shall determine the limiting wear load 

for a pair of 8-DP casehardened steel gears, 20-deg full-depth form, of 24 and 56 teeth 

with a 2.50-in. face width. This gives the following values: 

N, = 24 iV2 =56 Z)i = 3.000 F == 2.500 

From Tabhi 23-1 for SAE-2515 steed, 0.040-in. case depth, and 100,000,000 cycles of 

stress, wc have 

Whence 

K = 1,414 

2 X 56 
Q = 

24 + 56 
1.40 

Wre = 3.00 X 2.50 X 1,414 X 1.40 = 14,857 lb 

We shall determine the depth to the point of maximum shear to see if the depth of 

case of 0.040 in. is a<l(*(piate. I^or this we have 

ri = 1.5 X 0.34202 = 0.513 

[4,847 

27500 
5,930 lb 

= 3.5 X 0.34202 = 1.043 

= 1.10 
5,030 X 0.535 

30,000,000 X 1.550 
0.0097 in. 

As the depth of case is more than double the depth to the point of maximum shear, 

this depth of case is adeepmte. 

LIMIT LOADS FOR WEAR ON INTERNAL GEARS 

The conditions on internal gears with straight teeth are the same as 

those on spur gears with straight teeth except that the form of the inter¬ 

nal-gear-tooth profile is concave instead of convex. Hence the sign of 
the radius of curvature for that profile is minus instead of plus. Thus 

when 
= limiting load for wear, lb 

F — face width, in. 
D\ = pitch diameter of spur pinion, in. 

TV I = number of teeth in spur pinion 

N2 = number of teeth in internal gear 
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K = load-stress factor for materials 

Q = ratio factor 

Q = 2N2/{N2 - Ni) (24-8) 
W. = DiFKQ (24-6) 

Example of Limiting Load for Wear on Internal-gear Drive. As a definite example 

we shall determine the limiting wear load for an internal-gear drive, of 7 DP, gear 

teeth of 20-deg full-depth form, 21 and 56 teeth, of soft steel, with a face width of 

2 in. The pinion will be of 250 Brinell hardness number, and the internal gear will be 

of 200 Brinell hardness number. This gives the following values: 

Ni =21 ATj = 56 Di = 3.000 F = 2.000 

From Table 24-1 we have 

K = 103 

« = = 3.200 

= 3.000 X 2.000 X 103 X 3.20 = 1,977 lb 

LIMIT LOADS FOR WEAR ON HELICAL AND HERRINGBONE GEARS 

The contact line of mating helical-gear teeth is at an angle to the 

trace of the pitch surface, and hence the equivalent radius of curvature 
of the mating cylinders is larger than that for the same diameter and 

pressure angle of spur gears. We shall therefore modify the wear-load 
equations for spur gears accordingly and use the same load-stress factors 
here as for spur gears. The form of the teeth will be referred to the 
normal basic-rack form. Thus when 

Wv, = limiting load for wear, lb 
Fa = active face width of gears, in. 
Di = pitch diameter of helical or herringbone pinion, in. 

Ni = number of teeth in pinion 
N2 = number of teeth in gear 

^ = helix angle at pitch line 

K = load-stress factor for materials 
Q = ratio factor 

For external helical gears 

Q = 2N,/iN, + Nt) (24-4) 

For internal helical gears 

Q = 2Ni/{Ni - ATO (24-8) 

For all helical and herringbone gears 

W„ = DiFJCQ/cos^ (24-9) 

Example of Limiting Wear Load on Helical Gears. As a definite example we 

shall use the following values; 48-tooth pinion, 240-tooth gear, 8-DP normal, 143^-deg 
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normal tooth form, 30-deg helix angle, 10-in. active face width, steel pinion of 260 Brin- 

ell hardness number, steel gear of 200 Brinell hardness number. Whence 

Ni - 48 A^2 - 240 Z>i = 6.928 Fa =* 10.000 ^ = 30° 

From Table 24-1 we have 

K 

Q 

LIMIT LOADS FOR WEAR ON SPIRAL GEARS 

The contact conditions on the teeth of spiral gears are similar to the 
contact conditions between two cylinders with crossed axes. In this 

case, relatively small applied loads set up high compressive stresses at 
the point of contact, and the load-carrying capacities of these gears are 
very limited. In addition, we have relatively high sliding velocities, so 

that the possibilities of galling are always present. The beam strength 
of these gear teeth is seldom a limiting factor. 

The limiting load for wear for spiral gears is a very uncertain value. 

If the gears are allowed to operate for a greater or lesser period of time 
in their actual working position under a light load until the contacting 
surfaces have been cold-worked and polished along the lines where con¬ 
tact occurs, they can then carry appreciably greater loads than they 

could have carried if they were assembled and loaded without the pre¬ 
liminary polishing run. Again, if the gears are carefully run in under 
increasing loads until a polished band of appreciable width is developed 

on the tooth surfaces of the gears where contact takes place, they can 
then carry very much greater loads without excessive wear than they 
can after a short polishing run. In fact, the longer a pair of spiral gears 
are operated without abrasive wear or galling on the tooth surfaces, the 
greater the loads will be that they can carry without excessive wear. 

It should be apparent, therefore, that any load factors for spiral gears 
are dependent upon the care with which they have been run in after their 
assembly in their operating position. With proper care at the start, a 
load that would cause excessive wear on the gears when they are first 

assembled may often be increased to several times the original limiting 
load because of the influence of careful running-in, and not result in 
appreciable wear. On the other hand, when abrasive wear or galling has 

once started, it is almost impossible to stop it without shifting the relative 
positions of the gears and so bringing new portions of the tooth surfaces 

into contact. 
It should also be apparent that smooth tooth surfaces are essential 

for spiral gears. A roughly finished surface, particularly if the material 

- 76 

48 + 240 

^ 6.928 X 10 X 76 X 1.667 

0.7500 
= 8,775 lb 
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of one gear is harder than that of the other, or if the material of either 
does not cold-work readily, will act much the same as a rotary file. 

Any analysis of limit wear loads on spiral gears will always be inde¬ 

terminate to some degree. We may assume point contact, but cold¬ 
working and wear may develop a definite width of contact, which will 

reduce the calculated value of the surface stresses. The results must 

therefore always be checked against service data and experience. We 
shall, however, start off with the analysis of the compressive stresses set 

up between two crossed cylinders under load. For this we have the fol¬ 

lowing when the axes of the cylinders are at right angles to each other: 
Let W = applied load on crossed cylinders, lb 

s = maximum specific compressive stress, psi 

Rei = smaller radius of curvature, in. 
Rc2 = larger radius of curvature, in. 

El, E2 = modulus of elasticity of materials 
mi, m2 = Poisson^s ratio for materials 

A = value depending upon value of Rc2/Rci (see Table 24-2) 
B = value depending upon value of Rc^/Rex (see Table 24-2) 

^ — helix angle of gear 
R = pitch diameter of gear 

= pressure angle of normal basic rack 

Table 24-2 

Rc2/Rc\ A H 

1.000 0.908 1.000 
1.500 1.045 0.765 
2.000 1.158 0.632 
3.000 1.350 0.482 
4.000 1.505 0.400 
6.000 1.767 0.308 

10.000 2.175 0.221 

With this notation we have 

Rc 
R sin <t> 
cos* xp (22-13) 

The values of Re for both gears must be determined first in order to 
establish the smaller and larger values. 

1.5W 
8 = 

TCd 
(24-10) 
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where 

_ 4 ^ I^W{RciRei) /l — , 1 — mi^\ 

“ “ V b.. + B,. V—ET- + -^) 

We shall use the approximation 1 — = 0.900. 
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(24-11) 

d = Be (24-12) 

Compressive Stresses on Spiral Gears. First Example. As a definite example, 

to obtain some measure of the intensity of the compressive stresses on spiral gears, we 

shall use a pair of hardened-steel spiral gears of the following values: 

Ni » 12 A^2 = 48 Pn = 10 - 60° ypt 
<t> = 14.500° W = 20 lb 

Ri « Ho cos 60° = 1.200 

2 cos 30° = 2.7713 

' 3U'' 

Rei 

Rel 

1.20 X 0.25038 

0.25 

2.7713 X 0.25038 

- 1.202 

= 0.925 

Re2 1 o 

Rci “ 

0.75 

A = 0.990 B = 0.859 

^ 0.990 
/40(Q.925 X L202) 1.800 

0.925 -f 1.202 30,000,000 

* 0.859 X 0.01069 = 0.00918 

1.5 X 20 

= 0.01069 

3.1416 X 0.01069 X 0.00918 
= 97,400 psi 

In this example, a load of 20 lb develops surface compressive stresses of nearly 

100,000 psi. 
Second Example. As a second example we shall use a pair of cast-iron spiral gears 

of the same sizes as before. This gives the following values: 

Ni - 12 
4> - 14.500° 

e 

AT, * 48 Pn = 10 - 60° ^2 = 30° 

- 1.200 R2 = 2.7713 Rci = 0.925 

^ » 1.3 A = 0.990 B = 0.859 

0.99 
^0(0.925 X 1.202) TWO 

0.925 4- 1.202 15,000,000 ' 

= 0.859 X 0.01346 = 0.01156 

1.5 X 20 

0.01346 

x.u _ Cl cfvn ^.,1 

3.1416 X 0.01346 X 0.01156 “ ’ 

W « 20 

P.2 = 1.202 

With the lower modulus of elasticity of cast iron, and all other factors the same, 

the compressive stresses are reduced to about two-thirds of those in the steel gears. 

Limit Load for Wear on Spiral Gears. In order to determine the 

limit load for wear on spiral gears, we must rearrange these equations to 
solve for the load that will develop the endurance limit stress of the mate- 
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rials. Combining Eqs. (24-10) and (24-12), we obtain 

1.51^ 
s = 

tBc^ 

Solving for c, we have 

[lew 
V wBs 

(24-13) 

Introducing the approximation 1 — = 0.900 into Eq. (24-11), we have 

c = ^ '/1-8TF(RA)/1 a (24-14) 

Equating Eqs. (24-13) and (24-14), raising them to the sixth power, and 
solving for we obtain 

W = 

LS(Rc,Rc2) ( 1 l\Y 
Rci + Rc2 \Ei ^ eJ 

(1.5ABs)3 
(24-15) 

We shall introduce a ratio factor and a load-stress factor to simplify 
this equation as follows: 
When Ww = limiting load for wear, lb 

Q = ratio factor 
K = load-stress factor 

we shall let 

Whence 

(24-16) 

(22-13) 

Then 

K = 29.76625*' (24-17) 

Wr. = A^B^KQ (24-18) 

Tentative values of K, based on service data, are given in Table 24-4. 
The values of K for the hardened-steel combination show little or no 
increase with running-in. The values for the softer materials, however, 
show considerable increases with running-in. The values for a short 
running-in period may be used in all cases except when a definite run- 
ning-in operation under increasing loads is made as a definite part of the 
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Table 24-3 

Rei/Rcl P* 

1.000 0.560 1.000 0.560 

1.500 1.302 0.449 0.583 

2.000 2.411 0.252 0.609 
3.000 6.053 0.112 0.678 
4.000 11.620 0.064 0.744 

6.000 30.437 0.0292 0.889 

10.000 106.069 0.0108 1.141 

assembling and testing process. Also, when the contact ratio is two or 
more, then two pairs of teeth are sharing the load after a short running-in 
period, and the limit wear load will be double that for a single pair of 

mating teeth. 
For spiral gears, as with all other types of gears, the limiting wear 

load should be equal to the dynamic load. 

Example of Limiting Wear Load on Spiral Gears. As a definite example we shall 

use the same values as before, for both the hardened-steel and the cast-iron combina¬ 

tions. This gives the following values: 

iVi = 12 Ni - 48 Pn - 10 4'i =*00° ^2 = 30° <i> = 14.500° 
Pi « 1.200 Ri = 2,7713 Rci « 0.925 Pc2 = 1.202 

= 1,3 = 1.005 B’ - 0.690 
Rci 

For hardened steel and hardened steel 

K - 446 

For cast iron and cast iron 

K - 770 

0.925 X 1.202 

0,925 + 1.202 )■ 0.272 

For the pair of hardened-steel spiral gears 

Wu, «= 1.005 X 0,690 X 446 X 0.272 « 84 lb 

When the contact ratio is two or more, W= 168 lb. 

For the pair of cast-iron spiral gears 

Wu> « 1.005 X 0.690 X 770 X 0.272 * 145 lb 

When the contact ratio is two or more, Wv, “ 290 lb. 
These values should be equal to or slightly larger than the value of the dynamic 

load. 



638 ANALYTICAL MECHANICS OF GEARS 

Table 24-4. Load-btress Factors for Spiral Gears 

Pinion 

(driver) 

Gear 

(follower) 
«, psi K, lb 

With initial point contact 

Hardened steel Hardened steel 150,000 446 

Hardened steel Bronze 83,000 170 

Cast iron Bronze 83,000 302 

Cast iron Cast iron 90,000 385 

With short running-in period 

Hardened steel Hardened steel 446 

Hardened steel Bronze 230 

Cast iron Bronze 600 

Cast iron Cast iron 770 

-; 

With extensive running-in period 

Hardened steel Hardened steel 446 

Hardened steel Bronze 300 

Cast iron Bronze 1,200 
Cast iron Cast iron 1,500 

LIMIT LOADS FOR WEAR ON WORM GEARS 

The contact on worm-gear drives is line contact. In effect, the action 

is that of a rack and a gear. The changing form of the worm across the 

face of the gear makes it impossible to derive a simple mathematical 
expression for the contact curvatures. In addition, the combination of 
the lead angle of the worm and the position of the pitch plane of the worm 

in reference to the worm-thread profile has a pronounced influence on the 
position and form of the actual contact lines. We are therefore forced to 
use empirical values for the load-stress values. 

The values given are based on worms of low lead angles. When the 
pitch plane is near the root of the worm thread in the axial section, as the 
lead angles increase, these values increase also because of the more favor¬ 
able position of the contact lines. Thus the tabulated values given in 
Table 24-5 are for use with lead angles below 10 deg. For lead angles 

from 10 to about 25 deg, these values may be increased to 125 per cent 
of the tabulated values. For lead angles above 25 deg, these values may 
be increased to 150 per cent of the tabulated values. 
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When complete contact analyses of the worm-gear-tooth contacts are 
made, the average length of the actual contact line would be used. Here, 
more definite load-stress values may be established from experience. 
For general purposes, the width of the effective face at the pitch line of 
the worm gear will be used as the average length of the contact line. 

The final generation of the worm-gear-tooth profiles is obtained by 
cold-working the surface material of the worm gear in actual service. 
Experiments indicate that these surfaces, on the softer gear bronzes, will 

cold-work a maximum of about 0.002 in. normal to the tooth surfaces 
without developing abrasive wear. For example, if a worm-gear drive 
in service shows about one-half of its tooth surface cold-worked, and the 

drive is operating without excessive wear, this is conclusive evidence that 
the load-stress value employed is only about one-half of the limiting value 
for the specific conditions of operation. The careful observation of these 

drives in service offers many opportunities of establishing more accurate 
load-stress factors for the particular operating conditions. 

The worm, or helicoid member, should be made of the harder material, 

and the worm gear, or enveloping member, should be made of the more 
plastic material. The most common combination of materials for worm- 
gear drives is hardened steel for the worm and bronze for the worm gear. 

If soft steel is used for the worm, the minimum hardness of the steel used 
should be about 250 Brinell hardness number, and as much harder as 
possible. In any event, the thread surfaces on the worm should be as 
smooth as it is practical to make them. Rough worm threads will act as 

a rotary file on the worm gears and will develop excessive cutting or 
scoring. 

Undercut should be avoided on worm-gear drives. This means, in 

general, that the sum of the numbers of teeth in the worm and worm 
gear should not be less than about 40. When undercut is present on a 
worm-gear drive and the loads are appreciable, the outer edge or corner 
of the worm thread may cut off flakes of appreciable size from the worm- 
gear-tooth profiles, particularly if any measurable deflection of the worm 
or rim of the worm gear exists. 

The wear-load capacity of a worm-gear drive depends largely upon 
the diameter of the worm gear. The major influence of the diameter of 
the worm is to limit the effective face width of the worm gear. The 
thread angle of the worm has some influence, but the lead angle has more. 
The thread angle must be increased with an increased lead angle to avoid 
conditions of undercut. Hence we shall ignore the minor influence of 

the thread angle. Thus when 
Wu, = limiting load for wear, lb 
Dt = pitch diameter of worm gear, in. 
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F = effective face width of worm gear, in. (assumed length of con¬ 

tact line) 
K = load-stress factor for materials 

Table 24-5. Load-stress Factors for Worm Gears 

Worm Gear K, lb 

Steel of 250 Br. hardne.ss number . . Phosphor bronze 60 

Hardened steel. Phosphor bronze 

Chilled phosphor bronze 

Antimony bronze 

Phosphor bronze 

80 

Hardened steel. 120 

Hardened steel. 120 

Cast iron. 150 

Wu, = DiFK (24-19) 

Values for K are given in Table 24-5. 

Example of Limiting Wear Load on Worm-gear Drive. As a definite example we 

shall use a hardened and ground steel worm and a phosphor-bronze worm gear with 

the following values: 6-start worm and 48-tooth worm gear, 1-in. axial pitch. This 

gives the following values: 

Di = 3.820 Di = 15.278 X = 26.565° 0n =30° L = 6.000 

Px = 1.000 F * 2.250 K =* 1.50 X 80 « 120 

= 15.278 X 2.250 X 120 « 4,125 lb 

, This value should be equal to or slightly larger than the dynamic load. 

LIMIT LOADS FOR WEAR ON BEVEL GEARS 

The contact on bevel gears is line contact and is very similar to that 
on spur gears. We shall therefore use the equivalent spur gears from 
Tregold’s approximation to determine the limiting wear loads for bevel 

gears. 
Because of the overhung pinion and the deflection under load of both 

the bevel pinion and the bevel gear, only about three-quarters of the full 
face of the bevel gears is generally effectively in contact. We shall there¬ 
fore assume that only this part of the gear face is available to resist the 

surface fatigue of the materials. Thus when 
Ww = limiting load for wear, lb 
Np = number of teeth in bevel pinion 

Ng = number of teeth in bevel gear 

Nvp = virtual number of teeth in bevel pinion 
Nvg = virtual number of teeth in bevel gear 

Dp = pitch diameter of bevel pinion at large end, in. 

D^p = virtual pitch diameter of bevel pinion at middle of face, in. 
P = diametral pitch of bevel gears at large ends 
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F — face width of bevel gears, in. 

7p = pitch-cone angle of bevel pinion 
jg = pitch-cone angle of bevel gear 

<t> = pressure angle of crown rack 

Q = ratio factor 

K = load-stress factor for materials (same as for spur gears) 

Z)p = Np/P (24-20) 

Dvp = {Dp — F sin 7p)/cos yp (24-21) 

Nxp p/cos yp 
= Ng/cos yg (15-9) 

Q = 2Nxg/{Nxp + Nxg) (24-22) 
TTu, = 0.75DxpFKQ (24-23) 

Example of Limiting Wear Load for Bevel Gears. As a definite example we shall 

use a pair of 6-DP bevel gears of 24 and 48 teeth, 20-deg full-depth form, with a face 

width of 1 in. Both gears are of steel, 250 Brinell hardness number. This gives the 

following values: 

N, = 24 7p = 26.565^ cos 7p = 0.89442 D, = 4.000 

N, =48 y, = 63.435° cos yg = 0.44721 Dg = 8.000 

F = 1.000 4> = 20° 

From Table 24-1 we obtain K = 131. 

D.p = 4.00 - (1 X 0.44721) 

0.89442 
= 3.9755 

N = —- 
24 

0.89442 

48 

26.83 

^ = 0:44721 = 

Q = 
2 X 107.33 

= 1.60 
26.83 -h 107.33 

Wr. = 0.75 X 3.9755 X 1.00 X 131 X 1.60 = 625 lb 

This value should be equal to or slightly larger than the dynamic load. 

LIMIT LOADS FOR WEAR ON SPIRAL BEVEL GEARS 

The relationship between bevel gears with straight teeth and spiral 

bevel gears is practically the same as the relationship between spur gears 
with straight teeth and helical gears. We shall therefore set up equations 
for the limiting wear loads on spiral bevel gears based on those for bevel 

gears with straight teeth, but adjusted to the spiral angle. These same 
equations will also be used for the limiting wear loads on hypoid gears 
when the gear member is substantially the same as that for a spiral-bevel- 

gear drive. With the increased sliding action on hypoid gears, the prob¬ 

lem of lubrication is more critical than that for spiral bevel gears. When 
both members are made of hardened steel, as in rear-axle drives for 
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automobiles, an extreme-pressure lubricant is generally necessary. Thus 

when 
Wu, = limiting load for wear, lb 
Np = number of teeth in spiral bevel pinion 
Ng = number of teeth in spiral bevel gear 

Nvp = virtual number of teeth in spiral bevel pinion 
Nvg = virtual number of teeth in spiral bevel gear 
Dp = pitch diameter of spiral bevel pinion at large end, in. 

D„p = virtual pitch diameter of spiral bevel pinion at middle of gear 

face, in. 
P = diametral pitch at large end of gears 

F = face width of gears, in. 
yp — pitch-cone angle of spiral bevel pinion 
yg = pitch-cone angle of spiral bevel gear 

4>n = normal pressure angle at middle of gear face 
^ = spiral angle at middle of gear face 
Q = ratio factor 

K = load-stress factor for materials (same as for spur gears) 

Dp = Np/P (24-20) 
D,p = (Dp — F sin yp)/cos yp (24-21) 

Npp = iVp/cos yp (15-8) 
Np, = N,/cos y. (15-9) 

Q = 2Np,/{N,p + Np,) (24-22) 

Wp, = {0.75DppFKQ)/cos^ i (24-24) 

Example of Limiting Wear Load for Spiral Bevel Gears. As a definite example 

we shall use a pair of 6-DP spiral bevel gears of 24 and 48 teeth, 20-deg normal pres¬ 

sure angle, full-depth form, with a face width of 1 in. and a spiral angle of 30 deg. 

Both gears are of steel, 250 Brinell hardness number. This gives the following values: 

Np = 24 7p - 26.565° cos yp = 0.89442 

N, = 48 “ 63.435° cos 7. - 0.44721 

F = 1.000 =20° ^ = 30° 

From Table 24-1 we have K = 131. 

D,p 

N.P 

N,g 

Q 

4.00 - (1.00 X 0.44721) 

24 

0.89442 

26.83 

- 3.9755 

107.33 

0.89442 

48 

0.44721 

2 X 107.33 

26.83 + 107.33 ’ 

0.75 X 3.9755 X 

• 1.60 

1.00 X 131 X 1.60 

0.7500 

Dp = 4.000 D„ - 8.000 
COB ^ = 0.86603 

= 833 lb 

This value for the limiting wear load should be equal to or slightly greater than the 

dynamic tooth load. 
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A 

Acceleration load, 427 

limiting, 433 

Arc, of action, 5 

involute, 71 

of approach, 72 

of recess, 72 

Asymptotic load, 430 

B 

Barth equation, 386 

Base circle, involute, 58 

Basic rack, 2 

involute helical gear, 153 

in plane of rotation, helical, 141 

spiral gears, 179 

Beam strength, of bevel gears, 497 

of helical gears, 490 

of spiral bevel gears, 493 

of spur gears, 474 

of worm gears, 494 
Bending deflection, 432 

Bevel gears, conjugate tooth action, 301 

14J^-deg crown-rack system, 333 

special tooth design, 328 
tooth design, 326 

Blowers, cycloidal rotors for, 29 

segmental rotors for, 30 

C 

Center distance, involute helical, 156 

involute internal, 130 

involute spur, 95 

with meshing rack, 98 

Chased helicoid, 195 

axial section, 207 

end section, 208 

limits of conjugate action, 208 

off-center section, 207 

sections, 206 

Chased worm threads, 256 

Compressive deformation, 431 

Conjugate action, helical gear, 141 

internal gears, 35 

limitations, 4 

of internal gears, 36 

of involute spur gears, 74 

spiral gears, 180 

spur gears, 1 

worm gears, 193 

Conjugate profiles, spur gears, 4 
worm gears, 212 

Contact lines, direct analysis of worm, 

223 

enveloping worm for spur gear, 290 

involute helicoid, 227 

projections, involute helical gears, 166 

screw helicoid, 224 

worm drives, 220 

worm shafts at any angle, 241 

Contact ratio, involute spur gears, 70 

spiral gears, 183 

Convolute helicoid, 194 

axial section, 197 

end section, 199 

limit of conjugate action, 199 

off-center section, 197 

sections, 195 

Crown rack of octoid form, 322 

Cycloid, 25 

Cycloidal tooth forms, 24 

D 

Dynamic load analysis, on bevel gears, 

465 

on gear teeth, 385 

on helical gears, 454 

at high speeds, spur, 448 

on hypoid gears, 471 

on internal gears, 453 

on small gears, 448 

on spiral bevel gears, 468 
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Dynamic load analysis, on spiral gears, 

459 

spur gears, 426 

summary, 442 

on worm gears, 463 

E 

Efifective mass, 433 

Efficiency, of bevel gears, 417 

of gears, 395 

of helical gears, 411 

of hypoid gears, 422 

of internal gears, 409 

of spiral bevel gears, 420 

of spiral gears, 412 

of spur gears, 400 

of worm gears, 415 

Endurance limits, use of, 509 

Enveloping gear-tooth form, 21 

Enveloping worm for spur gear, 289 

Epicycloid, 26 

F 

Face contact ratio, helical gears, 165 

Fellows face-gear drive, 312 

teeth, 316 

trochoids, 314 

Field of contact, shafts at any angle, 244 

worm drives, 220, 239 

Fillet form, from full-rounded hob tooth, 

87 

from full-rounded pinion-shaped cutter, 

91 

internal involute helical gear, 151 

from pinion-shaped cutter, 90 

from rounded corner of hob, 85 

Friction coefficient, of spiral gears, 413 

of spur gears, 402 

of worm gears, 414 

Frictional heat of operation, 390 

G 

Gear-tooth profile, Cartesian coordinates, 

5 

Generating involute helical gears, 154 

Gerotors, 43 

H 

Helical gears, conjugate form in plane of 

rotation, 147 

contact line between teeth, 148 

pitch and form from normal basic rack, 

143 

Helicoid sections, 194 

Helix angle, 141, 153 

High-speed herringbone gears, 387 

Hindley-worm drive, 276 

contact lines on, 287 

Hob advance for cutting, 167 

Hob form, worm drives, 249 

Hob overtravel for cutting, 171 

Hobbing data for helical gears, 157 

Hyperboloid of revolution, 352 

sliding on, 354 

Hypocycloid, 28 

Hypoid gears, circular pitch, 358 

Fellows face-gear drive, helical pinion, 

370 

spur pinion, 366 

formate gear, 376 

Gleason system, 382 

lantern-pinion face-gear, 360 

pitch surface of crown member, 357 

tooth action, 360 

I 

Impact loads, 438 

Integral worms, table, 261 

Interchangeable gear-tooth forms, 23 

Involute action, 60 

and fillet tangency, 82 

as tooth form, 64 

Involute coordinates, 79 

Involute curve, 58 

properties, 63 

Involute equation, 78 

Involute helicoid, 152, 190, 195 

axial section, 203 

end section, 205 

limits of conjugate action, 205 

off-center section, 204 

sections, 203 

Involute internal, arc of approach and 

recess, 124 

contact ratio, 122 
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Involute internal, coordinates of profile, 

112 
fillet form, from full-rounded tooth of 

cutter, 118 

from sharp corner of tooth of cutter, 

115 

fillet tangency, 114 

first contact on pinion, 127 

interference at start of mesh, 128 

involute interference, 121 

proportions of gear and pinion, 133 

shaping data, 132 

sliding velocity, 124 

Involute rolling and sliding, 65 

Involute spur gear, bobbing data, 101 

proportions of rack of different circular 

pitch, 99 

rack meshing distance, 98 

radius to pointed tips, 94 

shaping data, 97, 105 

I. 
Lantern pinion, 11 

and face gear, 302 

and pin-tooth face gear, 307 

Lead of tooth, and helix angle from num¬ 

ber of teeth and diametral pitch, 155 

from pinion-shaped cutter, 172 

Ivcwis formula, 386 

Limiting loads for wear, bevel gears, 540 

helical gears, 532 

internal gears, 531 

spiral bevel gears, 541 

spiral gears, 533 

spur gears, 527 

worm gears, 538 

Line of action, 2 

lioad distribution across face, 486 

Ix)ad-stre88 factor, 525 

experimental values, 526 

Ix)ads on gear teeth, 385 

M 

Marx tests, 388 
Measurement over rolls, involute helical 

gears, 174 

involute internal gears, 139 

involute spur gears, 108 

Milled helicoid, 195 

axial section, 210 

end section, 211 

off-center section, 211 

sections, 209 

Milled worm threads, 256 

Module system of worms, 260 

N 

Noise of gears, 383 

Normal basic rack, helical gears, 141 

line of action, 142 

path of contact, 142 

Normal plane, helical gears, 141, 153 

O 

Octoid form on bevel gears, 321 

P 

Path of contact, 2 

helical, 142 

octoid, 324 

worm drives, 212 

Pin-tooth gear, internal, 38 

spur, 11 

Pitch point, 2 

Pitch surfaces, spiral gears, 178 

Pressure angle, 2 

R 

Radius of curvature, internal gears, 37 

spur gears, 17 

S 

Screw gearing, 177 

Screw helicoid, 194 

axial section, 201 

end section, 202 

limits of conjugate action, 202 

off-center section, 201 

sections, 200 

Secondary action, cycloidal internal 

gears, 46 

internal gears, 42 

Segmental form rotors, 30 
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Separation of tooth surfaces, 436 
Shear strength of worm-gear teeth, 496 
Shell worms, table, 261 
Sliding velocity, on bevel gears, 419 

on spiral gears, 190 
on spur gears, 67 
on worm gears, 416 

Spline-shaft hob form, 33 
Spiral bevel gears. Fellows spiral face 

gear, 338 
formate gears, 350 
formed teeth, 351 
octoid, 342 

curvature and contact, 346 
form of crown rack, 347 
Gleason system, 347 

straight offset teeth, 348 
Spiral-gear action, 177 
Stress concentration, at fillet, 480 

at keyway, 481 
Surface endurance limits of materials, 502 

tests, bronze, 518 
cast iron, 510 
hardened steel, 521 
soft steel, 520 

T 

Thread form milled on parallel axes, 186 
Tooth fillets, 48 
Tooth-form factor, 475 
Tregold's approximation, 324 
Trochoidal fillet, worm drives, 213 
Trochoids, 48 

from rounded comer of rack, 51 
from rounded tip of gear, 54 

U 

Undercut, 48 

on involute, 75 

W 

Wear, types of, 502 
Wildhaber-worm drive, 293 

contact lines, 294 
setting of cutter form worm, 300 

Williams internal gear, 39 
Working stresses, 484 
Worm axial pitches, 259 
Worm design, 255 

single-thread, 262 
3-thread, 263 
6-thread, 264 
12-thread, 265 
18-thread, 266 

Worm diameter, 258 
Worm drives, with axes at any angle, 

253 

contact on, single-thread worm, 266 
3-thread worm, 267 

6-thread worm, 268 

12-thread worm, 268 

18-thread worm, 269 

24-thread worm, 269 

30-tooth worm, 272 

36-tooth worm, 273 

42-tooth worm, 274 

design of, 248 
Worm-gear design, 250 
Worm-gear materials, 495 








