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PREFACE 

This book is the outgrowth of a course of lectures entitled 
‘^Advanced Inorganic Chemistry/^ which I gave for a number of 
years at Harvard University. The contents, however, bear 
little resemblance to those of the traditional works on inorganic 
chemistry; the object is, rather, to see what light can be thrown 
on typical phenomena in this field by the modern theory of the 
atom. In attempting a development of this point of view, the 
book has become essentially a discussion of the chemical bond 
as exemplified in inorganic compounds. 

Since the book has been written primarily for students of 
chemistry, and since it has been anticipated that its principal use, 
at least in classes, will be by students of about the level of the 
first year of graduate work, its scope and character have been 
determined with the needs of such students in mind. A student 
who has had a good course in physical chemistry may be supposed 
to have a reasonably good knowledge of the properties of matter 
in bulk. On the other hand, it has been my experience that he 
is likely to have but a very superficial acquaintance with the 
properties of individual atoms. This is certainly less true today 
than it was a few years ago, but it is still a sufficiently good 
generalization to justify including a discussion of atomic theory. 
Such a discussion occupies about the first thir4«Qf the text. It 
starts with a brief account of the development^lof the atomic 
theory in chemistry, and continues with the contribution of 
physics in uncovering the more detailed structure of matter. 
Carrying these considerations on through the more modem 
aspects of atomic theory, including the wave theory of matter 
and quantization, I have introduced applications to the hydrogen 
atom, the properties of the elements in general, and the nature of 
chemical binding. In this way the ground is broken for the more 
detailed applications of the later chapters. 

This introductory material is presented in an elementary man¬ 
ner. In particular, I have made an effort to present the ideas 
lying behind the wave mechanical theories of covalent binding 
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vi PREFACE 

without giving all the mathematical detail. The treatment is 
based upon the fact that it is not necessary to consider the wave 
equation in order to study the wave phenomena associated 
with particles of constant velocity; thus the fundamental con¬ 
cepts can be elucidated, and applications to cases where the 
velocity of the particle is not constant can be looked upon as 
extensions of the theory, for which not all details need be given. 
The old quantum theory has been considenid to be an approxi¬ 
mation to the wave mechanics and has been applied where 
permissible. 

The phenomena of inorganic chemistry are extremely compli¬ 
cated and involve such a variety of factors that any attempt at a 
complete wave mechanical analysis, without introduction of far- 
reaching simplifications, appears hopeless at the present time. 
Yet for the unraveling of the factors involved and the elucida¬ 
tion and classification of the phenomena in a more general 
manner, the semiquantitative method outlined in the first part of 
the book often yields surprisingly adequate results. It is not to 
be denied, of course, that anyone desiring to become an investi¬ 
gator in this field will wish to make a more thorough study of 
wave mechanics. It is hoped, however, that such a student will 
find a helpful approach to this more detailed study in the first 
part of the book, and that he will gain from it a knowledge of 
some of the physical implications, which may well precede the 
mastery of the mathematical details. For many students of 
chemistry, who do not have a mathematical turn of mind and 
who intend to specialize in other branches, the treatment given 
in the first part of the present volume may well be all that is 
required. 

In writing the book I have tried to adhere as strictly as possible 
to topics that are directly concerned with the clarification of the 
nature of chemical binding. For example, I have freely used 
the results of crystallography but have limited discussion of the 
actual methods to a bare outline, only sufficient to indicate the 
general ideas involved. In cases of this kind references are given 
in which the details of the subject may be pursued further. 

Similarly, little has been said about the actual measurement of 
spectral lines beyond indicating that that is the method by which 
energy levels are determined. And I have not stressed the details 
of atomic structure, which are of particular interest in spectros- 
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copy. Such topics as the coupling of spin and orbital angular 
momentum, for example, are adequately treated in other works, 
and for the purpose of this book it was not necessary to lay much 
stress on the interaction of the electrons within an atom. 

In discussing the chemical bond, I have generally made use 
of the concei)t of the localized bond rather than the molecular 
orbital. I fully realize the value of the latter method, but the 
localized-bond concept seems to lend itself more readily to an 
elementary treatment. Since the chemist is most interested in 
the lowest state of a molecule, no attempt has been made to 
trc'at the excited energy levels in any detail. 

Phenomena that depend primarily upon rates of reaction, 
rather than upon the state attained in equilibrium, have also been 
excluded. Since the state of systems in equilibrium is our pri¬ 
mary concern, great stress has been laid on the calculation of 
the energies of various systems under various conditions. In 
the last chapter, which deals with aqueous solutions, entropies 
also have been considered. However, in the earlier chapters 
calculation of entropies seemed less important, and it was felt 
to be advantageous to keep the book as elementary as possible 
by excluding detailed applications of the second law of thermo¬ 
dynamics. The emphasis was, therefore, laid on the energy 
relationships. 

Within the self-imposed limitations outlined above, it has still 
been possible to discuss and correlate a considerable mass of 
material that is of interest to the inorganic chemist. Of course, 
no exhaustive treatment of the vast body of known facts could 
be attempted. I have tried to select typical applications with the 
aim of giving the student a ‘Teeling^^ for the phenomena of 
inorganic clumistry that will make it possible for him to correlate 
other facts as these facts appear. Nevertheless, a considerable 
amount of material has been brought together in the last chapters 
and treated in a manner more or less novel, at least as far as the 
textbook literature is concerned. It is my hope that this latter 
part of the book will have some appeal to research workers, as 
well as to the students who seek an introduction to the field. 
In general, the more recent references have been given, since from 
these the earlier literature may be traced; the references are not 
designed to give a historical perspective. Even with a list con¬ 
fined to the more recent papers, it would be impractical to attempt 
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to make it exhaustive, and I afn well aware that many important 
references have been omitted; the fact that some particular piece 
of work has not been mentioned is not to be construed as meaning 
that it is not significant. 

It is my pleasure to express my gratitude to many who have 
at one time or anoth('r been of assistance in the preparation of 
the text. In the early stages I received much help and encour¬ 
agement from Dr. Victor Guillemin, Jr., who read and criticized 
all the earlier chapters. These chapters were also the subje(*t 
of extremely helpful comments of Professor A. E. Ruark. Pro¬ 
fessor K. Fajans gave freely of his lime and effort, and a number 
of the later chapters owe much to his friendly criticism. Several 
portions were painstakingly read and criticized by Professor 
Hertha Sponer, and a rather lengthy chapter was the subject of 
detailed comments by Professor Joseph E. Mayer. Colleagues 
who were kind enough to read special sections of the book and 
communicate with me on special topics are Professors J. C. 
Bailar, Jr., A. B. Burg, E. D. Eastman, C. J. Gorter, Ralph 
Halford, David Barker, W. M. Latimer, Edward Mack, Jr., A. 
R. Olsen, Linus Pauling, G. K. Rollefson, W. C. Root, W. H. 
Zachariasen, and others. Mr. W. L. Haden, Jr., assisted in the 
preparation of Fig. 91, and Mr. C. V. Cannon assisted in the 
proofreading. 

I am indebted to a number of authors and publishers for per¬ 
mission to use cuts and quotations. Sources of these are 
acknowledged at the appropriate places in the text. 

I should not close without mention of my former teachers and 
colleagues at the University of California and the California 
Institute of Technology. All of them through their influence 
on the early development of my ideas in the field of chemistry, 
and atomic chemistry in particular, are in some measure responsi¬ 
ble for whatever merit this book may possess. 

Finally, it is a pleasure to express gratitude for the aid rendered 
by my mother in the preparation of the manuscript. Without 
her encouragement and assistance, the completion of the book 
would scarcely have been possible. 

O. K. Rice. 
Chapel Hill, N. C., 

December, 1939. 



CONTENTS 
pAGa 

Peepacb. V 

Tables.xiii 

CHAPTER I 

Development of the Atomic Theory in Chemistry. 1 

Early Development of Chemistry, 1—^Laws of Chemical Combina¬ 
tion, 2-^The Atomic Theory, 3—^The Determination of Atomic 
Weights, 4—The Combining Volumes of Gases and Avogadro's 
Law, 6—The Periodic System, 7—Faraday^s Law, 8—Exercises, 9. 

CHAPTER II 

The Constitution of Matter.10 

vThe Nature of the Electron, 10—The Action of Electric and 
Magnetic Fields on Charged Particles, 12—Determination of c/m 
of an Electron, 14—Determination of the Charge of an Electron, 15 
—Positive Ions, 17—The Constitution of the Atom, 18—Sum¬ 

mary, 23. 

CHAPTER III 

Wave and Corpuscular Properties op Radiation and Matter . . 25 

The Wave Properties of Light, 25—Reflection of X Rays from a 
Crystal, 26—The Photoelectric Effect and the Corpuscular Theory 
of Light, 29—Reconciliation of the Wave and Corpuscular Theories 
of Light, 31-^Wave Properties of Electrons, 32-^The Properties of 
the Electron Waves, 34, 

CHAPTER IV 

Elementary Quantum Theory.. 36 

^"Nature of Atomic Spectra, 36—^Theory of an Electron in a **Box,” 
37—The Number of Quantum Conditions and the Separation of 
Variables, 44—The Quantization of Rotational Motion, 45— 

Quantization of the Space Rotator, 49—Quantum States and 
Phase Space, 53—Exercises, 59. 

CHAPTER V 
The Hydrogen Atom.. 60 

Classical Motion of the Electron, 60—Circular Orbits, 61—Energy 
and Angular Momentum of Elliptical Orbits, 62—The Quantization 
of the Hydrogen Atom, 64—^The Quantum States and the Phase 

ix 



X CONTENTS 
Paqii 

Integrals, 66—Positive Energies of the Hydrogen Atom, 67— 
Wave Picture of the Radial Motion of the Electron, 68—Experi¬ 

mental Confirmation of tiie Hydrogen Energy Levels, 72—Sum¬ 
mary, 74—ICxercises, 74. 

CHAPTER VI 

hlLECTRON Spin, Angular Momentum, and Magnetic Moment. . . 75 

Electron Spin, 75—The Magnetic Moment of Spinning and 

Rotating Electrons, 76—The Storn-Gerlach Experiment, 79. 

CHAin^ER VII 

Many Elec’tron Atoms and the Periodic System.84 

Atoms with Many Ehudrona, 84—Pauli’s Exclusion Principle, 88— 

Th(; Helium Atom, 89—The First Row of the Periodic Systcnn, 90— 

A Remark on Notation, 90—The Remaining Rows of the Periodic 
Table, 91—Recapitulation, 93. 

CHAPTER VTII 

Some Properties op the Elements and Their Connection with 

Electron Structure.95 

“ ^Effects of Penetration of Electron O^its into Undtirlying Sh(‘1^95 
- .^~The lonijiation Potential, (OOtMTIio Electron Affinity, 

([)-4illectropoaitivity and Electronegativity of the Elements, 101— 

X-ray Spectra, 102—Exercises, 103. 

CHAPTER IX 

Molecular Potential-energy Curves and Molecular Motion . 104 

The Formation of Compounds,(jct^-^^^^^^oleeular Energy Levels, 110 

—Molecular Spectra, J15^^'he Dissociation Energy, 116—The 
Shape of the Potential-energy Curves, 119—The Rotation and 

Vibration of Polyatomic Molecules, 120—Exercises, 124. 

CHAPTER X 

The Hydrogen Molecule.125 

The Helium Atom, 126—The Hydrogen Molecule, 133—The 

Ijowest Repulsive State of the Hydrogen Molecule, 136—The 

Hydrogen Molecule Ion, 137—Alternative Treatjnent of the 

Hydrogen Molecule, 140—Comparison of the Approximations 
Involved in the Two Methods of Treating the Hydrogen Molecule, 

142—Properties of Hydrogen Atoms, 144—Ortho- and Para- 

hydrogen, 148. 

CHAPTER XI 

Theories op Valence.151 

Lewis’s Theory of Valence, 152—^London’s Theory of Valence, 154 

—The Hund Mulliken Theory of Valence, 157—Comparison of the 

Theories of Valence, 161—Exercises, 162. 



CONTENTS xi 

CHAPTER XIT 
Paob 

Transition from Covalent to Ionic Binding in Simple Gaseous 

Compounds.163 

Elementary Diatomic Gases, 163—Elementary Polyatomic Gases, 

167—An Approximate Measure of Electronegativity^ 16&— 

Polarizability as a Crit(irion for Electronegativity, (iTlb-^The 

Transition between Covalen^nd Polar Bonds from the roint of 

View of Wave Mechanics, tj78H»Ehergies of Polar and Covalent 
Bonds, ^8!)i;3^efinition of ^flie Term '‘Bond Energy, 

-^l^olarity 6l Bonds and the Electrone^gativity S(^ale, d 89)-«T)ipole 

Moments, 196-w^^omcnts and Bond Energies of the "^Hydrogen 

Halides, Considered as Ionic Molecules, 200—Resonance, 202— 
Exercises, 204. 

CHAPTER XIII 

The Nature of the Solid State.205 

CHAPTER XIV 

Ionic Crystals.212 

The Crystal Structure of the Alkali Halides, 212—The Use of the 

X Ray in the Stud5’^ of Cryst.als, 213-“Appli(^ation of X Rays to 

the Study of the Alkali Halides, 214—The Ioni(5 Radius, 217— 

Energy of Crystal Lattices, 222—Interionic Distances in Real 
Crystals, 230—The Born-Haber Cycle, 232—The Stability of 

Saits of Different Valence Type, 243—The Energy of the Alkali- 

Halide and Hydride Molecules in the Gaseous State, 249—The 

Proton Affinity of Ammonia, 254—Some Properties of OH and 

SH, 258—Exercises, 261. 

CHAPTER XV 

Further Properties of Covalent Bonds.262 

Methods of Determining Molecular Structure, 262—Directional 

Properties of Chemical Valence, 264—Magnetic Criterion for 

Type of Binding, 276—Exercises, 284. 

CHAPTER XVI 

Complex Compounds and Complex Crystals, including Atomic 

Crystals..286 

Methods of Investigation, 286—^The Nature and Properties of 
Complex Ions, 290—The Binding Force within Complex Ions, 292— 

Some Energy Relations among Iron and Cobalt Complexes, 295— 

Stereoisomerism, 297—Results of X-ray Analysis, 308—Complex 

Crystals, 309—The Coordination Number in Complex Ions and 

Crystals, 315—Covalent Radii, 319—Distances in Isosterfss, 332-— 

The Transition between Ionic and Covalent Binding, 334—Special 

Types of Molecular and Crystal Structure, 338—One-electron 



xii CONTENTS 
Pa OB 

and Three-electron Bonds, 343—Double Bonds in Complex 
Compounds, 350—Exercises, 352. 

CHAPTER XVII 
Molecular Crystals. .354 

Van dor Waals Forces, 354—Dipolf* Forces, 358 —The Experimental 
Material, 302—Exercise, 309. 

CHAPTER XVni 
Metallic Crystals.370 

The Alkali Metals and Alkaline Earth Metals, 370—The Transi¬ 

tion between Metallic and (’ovalent Binding, 376—Intermetallic 

Compounds, 379—ICtU'rgy Bands in Metals and Alloys, 387— 
Exercises, 391. 

CIIAPTEH XTX 

The Structure of Water, Hydrate}^ and Aqueous SoLirnoNs . . 392 

The Structure of Glasses, 392-^he Structure of Wat(*r, 393-^ 

Comparison of Water with Other Liquids, 390—-The Dielectric 

Constant of Water, 397—Ionization and the Propj'rties of Ions in 
Aqueous Solution, 398—litdation lad ween Energy and Free 
Energy of Solution of Ions, 411—The Factors Affecting Solubility. 

Illustrative Examples, 414—Ionization of Halides of the Transition 

Metals, 418 — Hydrates, 421—Acids and Bases, 426—Oxidation and 
Reduction Reactions, 438—Exercises, 441. 

APPENDICES 

I. Some Definitions and Theorems of Claksk al Mbcuiank’s . 443 

II. The Principles of Equilibrium.454 

III. Electrical Forces.* . 462 

Exercises, 468. 

IV. Some Remarks on the Geometry of Molecules and Crystals 469 

Exercises, 475. 

V. General References.476 

Author Index.479 

Subject Index.485 

Formula and Substance Index.501 



TABLES 
Pag® 

1. PERioDir Table and Outer Electrons of the Elements.* . . 9J 

2. Values OF n*.96 

3. Values op n* for Sodium.96 

4. Ionization Potentials.98/. 

5. Electron Affinities.101 

6. Degree of Dissociation op H2.146 

7. Energy of Dissociation for Diatomic Molecules.165 

8. FOB Diatomic^ Molec ules.165 

9. Electronegativity Values.169 

10. Ionic Polarizabilities.178 

11. Bond Energies in the Normal Saturated Hydrocarbons. . 187 

12. Bond Energies, Calculated Nonpolar Bond Energies, and 

A Values.190 

13. Thermochemical Data Used in tub Calculation of Bond 

Energies.192/. 

14. Electronegativities.196 

16. Some Dipole Moments.199 

16. Ionic Radii.220 

17. Calculated and Observed Distances in Alkali Halides . . 221 

18. Values of the Madelung Constant.225 

19. Distances for Alkaline Earth Oxides, Etcj.232 

20. Born-Haber Cycle for the Alkali Halides.236 

21. Bobn-Habbr Cycle for Cuprous, Silver and Thallous 

Halides.238 

22. Results op the Application of the Bobn-Haber Cycle to 

Halide Crystals.239 

23. Bobn-Habbr Cycle for Alkaline Earth Oxides, Etc. . . . 240 

24. Results of the Application of the Born-Haber Cycle to 

Oxides, Sulfides, and Selbnides.242 

26. Application op the Born-Haber Cycle to the Alkali 

Hydrides.243 

26. Calculated Heat Absorbed on Formation of Subhalidbs . . 246 

27. Properties of Gaseous Alkali Halides and Hydrides . . . 263 

28. Properties of Ammonium Halides.266 

29. Bond Distances and Angles in Unsymmbtrical Molecules . 270/. 

30. Types of Binding in Complex Ions from the Magnetic 

Criterion.294 

31. Shapes of Certain Ions in Crystals.308 

32. Ratios of Radii: Cation^/Oxygen. Coordination Numbers in 

Complex Crystals and Oxygen Ions.317 

33. Covalent Radii.319 



XIV TABLES 
Page 

34. Bond Distances and Radius Sums in Methyl Compounds . . 322 

35. Bond Distances in Halides.323 

36. Distances in Crystals. 327#. 

37. Interatomic Distances in Isosteric Crystals with Co¬ 

valent Binding.333 

38. Properties Illustrating the Transition between Ionic and 

Covalent Binding.335 

39. Theoretical and Empirical Heats of Sublimation.357 

40. Properties of Hydrogen Halides.363 

41. Binding P^nbrgies op Alkali and Alkaline Earth Metals . 373 

42. Crystal Structures of Certain Elements.378 

43. Specific Conductanc’e of Metallic Compounds.381 

44. Heats op Formation of Metallic Compounds.381 

45. Compositions of Alloys.384 

46. Absolute Boiling Points.396 

47. Heats op Solution of Alkali Halides.400 

48. Heats of Solution op Alkali and Halogen Ions.402 

49. Heats of Solution of Various Ions.403 

50. Entropies of Solution op Solid Salts.407 

51. Entropies op Ionization op Solid Salts to Form Gaseous 

Ions.408 

52. PjNtropies of Solution of Gaseous Ions.408 

53. Apparent Ionic Volumes in Solittion.410 

54. Analysis of Oxidation Reactions, 1.439 

55. Analysis op Oxidation Reactions, II.440 



ELECTRONIC STRUCTURE 
AND CHEMICAL BINDING 

CHAPTER I 

DEVELOPMENT OF THE ATOMIC THEORY 
IN CHEMISTRY 

1.1. Early Development of Chemistry.—It is tho ideal of the 
theoretical physicist' ultimately to explain all the facts of chem¬ 
istry in terms of the properties of the electrons and positively 
charged nuclei of which all atoms are composed. Actually, of 
(bourse, he is yet far from accomplishing this ideal, and historically 
the development of the subject has necessarily been from the 
empirical to the theoretical rather than the reverse; hypotheses 
have usually followed facts and have developed from the specific 
and special to the general and inclusive. 

Thus the alchemists labored for many years to convert base 
metals into gold and, though failing in this attempt, laid a founda¬ 
tion of empirical facts upon which theoretical chemistry could 
build. They found that substances could be transformed in 
various and manifold ways, but that it was not possible, at least 
with the means at their command, to continue this process 
indefinitely and change any substance into any other. This led 
to the fundamental concept of chemistry, the notion of elementary 
substances. As early as the seventeenth century, it was stated 
by Jungius and by Boyle that there were certain elementary 
substances which could not be changed into each other and could 
not be further decomposed, and that all other substances were 
composed of combinations of these elements. . 

This concept was crystallized by Lavoisier, who showed, for 
example, in his classical experiment on the decomposition of 
HgO that one could account for all the material of the HgO in 
the products, Hg and O2, and that by proper treatment it was 

1 



2 THE ATOMIC THEORY IN CHEMISTRY Sec. 1.2 

possible to get the HgO back again from the products. The 
importance of this work of Lavoisier was due to his use of the 
weight of the material as the measure of its amount. He could 
thus show that within his experimental error (which was, to be 
sure, rather large) there was just as much substance in the prod¬ 
ucts, Hg and O2, as in the original HgO from which the former 
were produced. It is thus possible to follow quantitatively the 
decomposition of a substance into two or more substances, all 
with different properties, such that the total weight of all the 
products is equal to the weight of the original substance; and 
finally it is possible to learn which substances cannot be decom¬ 
posed and are thus elements. By the use of weight relationships, 
one can trace a reaction through in all its details, and can make 
sure that nothing is lost, and that no extraneous material (oxygen 
or other gases of the atmosphere, for example) becomes involved. 
By aid of his own and other work, Lavoisier was able to make a 
list of elementary substances which was reasonably accurate, 
considering the difficulties involved. This list was corrected 
and greatly added to during the first part of the last 
century. 

1.2. Laws of Chemical Combination.—The truth of the first 
law of chemical combination, the law of definite proportions, was 
at least indicated by the work of Lavoisier. The establishment 
of the laws of multiple and reciprocal proportions followed early 
in the nineteenth century. Though these laws are well known 
to all chemists of the present day, a statement of them may not 
be out of place. 

1. Law of definite proportions: The chemical elements com¬ 
bine always in a definite weight ratio when forming a given 
compound. 

2. Law of multiple proportions: If an element A combines with 
an element B to form different compounds in which different 
weights, say a, jS, 7, . . . , of A are combined with unit weight 
of B, then a:p:y: ...» a:b:c . . . , where a, 6, and c are 
integers (usually small integers, at least in inorganic compounds). 

3. Law of reciprocal proportions: Let a be the weight of A 
and p the weight of B which combine with unit weight of C. 
Then the weight of A which combines with a weight p of B will 
be either a or a(g/r), where q and r are integers (usually small 
integers). 
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These laws have been combined and stated as one in the fol¬ 
lowing way by Muir:^ 

To every homogeneous substance can be assigned a certain number, 
expressing a definite mass of the substance, which may be called its 
combining weight, or its reacting weight; all chemical reactions between 
elements and compounds occur between masses of them which can be 
expressed by the numbers in question, or by whole multiples of these 
numbers. 

Final proof of the exact and practically universal validity of 
these laws and of the fact that the combining weights of elements 
do not, in general, depend on the source or the method of prepara¬ 
tion was given by Stas in a scries of memoirs published between 
1840 and 1882. His conclusions have been somewhat modified 
in exceptional cases by the discovery of isotopes, but this does not 
change the essence of the ideas we wdsh to develop (see footnote 2). 

1.3. The Atomic Theory.—The laws of chemical combination 
readily follow if it is assumed (1) that each element is composed 
of ultimate indivisible particles, akmSj all the atoms of a given 
element being exa(;tly alike, and in particular having the same 
weight (2) that in forming a compound a number (usually a 
small number) of atoms of various kinds combine in a definite 
way to form a molecule; and (3) that a compound consists of an 
aggregation of such molecules, the composition of all molecules 
of a given compound being exactly alike. The atomic hypothesis 
of the constitution of matter, however, did not wait for the 
discovery of the laws by which elements combine, for some of the 

^ Muir, History of Chemical Theories and Laws,^' p. 99, John Wiley & 

Sons, Inc., 1906 (permanently out of print). This book contains an interest¬ 

ing account of the development of chemical theory. 

* The existence of isotopes necessitates some modification of this state¬ 
ment. Isotopic atoms are practically identical in all respects except in 

mass. The laws of chemical combination will follow from the atomic 

hypothesis, however, if all the isotopes of a given element are always present 
in constant proportion, whether the element is free or combined, so that 
there is a definite average atomic mass for the element. The condition that 

the isotopes be present in constant proportion is practically always fulfilled 

to an extremely high degree of approximation in manipulations involving 
ordinary chemical processes, though recently there have been successful 
attempts to separate isotopes. It is also true that radioactive lead has a 
different isotopic constitution and hence a different atomic weight from 

ordinary lead. This results in an exception to the conclusion of Stas. 
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ancients held that matter was composed of atoms. Still, they 
can fiardly be said to have formulated a true scientific theory; 
the modern atomic theory may be considered to date from the 
deduction by Dalton of the laws of chemical combination and 
his description of chemical Compounds and reactions in terms of 
atoms. 

1.4. The Determination of Atomic Weights.—If, now, the laws 
of chemical combination are established, and if we have a fairly 
good idea as to which substances are elements and which are 
compounds, a new problem at once presents itself. We wish to 
determine combining weights. And once the atomic theory 
is accepted in the form stated above, this resolves itself into a 
more special problem, the determination of atomic weights. 
This, of course, involves the determination not only of the relative 
weights of elements that will combine with each other, but of the 
chemical formulas of the compounds formed. 

The pioneer in the determination of combining and atomic 
weights was Berzelius, who analyzed some two thousand sub¬ 
stances in the course of his lifetime. These analyses were made 
with remarkable accuracy, considering the equipment which lu^ 
had at hand, and the chief difficulty turned out to be the determi¬ 
nation of the formulas of the compounds. Here, it was often 
necessary to make arbitrary assumptions. For example, if the 
formula Cr203 were chosen for chromous oxide, then the formula 
for chromic oxide would have to be CrOa; but since it is not pos¬ 
sible to know how many atoms are in combination in a molecule, 
how might one be sure that chromous oxide ought not to hav(» 
the formula CrOa and chromic oxide, therefore, the formula CrOe? 
Berzelius frequently used what appeared to him to be the simplest 
set of formulas. This often gave him corrc^ct, sometimes incor¬ 
rect, results. But without some other criterion, it is obvious 
that atomic weights determined by arbitrary assignment of 
chemical formulas might easily be in error by such a factor as 
2 or 3. 

There is a very useful physical x^niieiple which is of great 
service in the determination of atomic weights; it is, namely, 
Avogadro^s law, which states that equal volumes of gas at stand¬ 
ard conditions of temperature and pressure contain equal numbers 
of molecules, regardless of the nature of the gas. Berzelius, 
however, did not recognize the validity of this law; he assumed, 
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instead, what he considered to be simpler, that equal volumes 
of elementary gases contained equal numbers of atoms and that a 
different and unknown law held for compound substances. Thus 
from the fact that two volumes of hydrogen combined with one 
of oxygon in the formation of water, he concluded that two atoms 
of hydrogen combined with one of oxygen, and he wrote 

2H + O H2O 

arriving at the correct formula for water, in spite of his incorrect 
premise. Tlie fact that two volumes of water are formed from 
two of hydrogen and one of oxygen, he did not attempt to inter- 
])ret. By this metliod, simply because so many of the ehmentary 

. gases were diatomic, Berzelius arrived at the correct results for 
the formulas of many compounds. These results were then 
extended to other compounds by analogy. Thus if the formula 
for ammonia is Nils, the formula for the chemically similar 
phosphine would be assumed to be PH3. 

Two kinds of physical analogy also played an important role 
in the early determination of atomic weights. One of these is 
indicated by the law of Dulong and Petit. These workers found 
that for a great many elements the specific heat per gram atom 
per degree centigrade was approximately 6 cal.; there is now 
known to be a statistical mechanical basis for this law,^ but at 
first it was found empirically. It will be observed that it 
depended upon knowledge of the atomic weights of the elements 
investigated; otherwise, the amount of material constituting a 
gram atom would not be known. However, once it was estab¬ 
lished for a series of elements whose atomic weights were known, 
at least provisionally, it could be extrapolated, so to speak, to 

^ Modern developments have shown that Dulong and Petit^s law is an 

asymptotic approximation, valid only at high temperatures (and then 
exactly true only in the absence of other complicgting factors), and the 

limiting asymptotic value of the specific heat has been shown to be ZR - 

5.96 cal. per gram atom per deg. {R is the gas (jonstant). (This is for con¬ 

stant volume, however, whereas usually .specific heats are meastired at 

constant pressure.) Low values of the specific heat, found for particular 
elements at room temperature, are due to the fact that room temperature 

is not a sufficiently high temperature for these substances, and raising the 
temperature brings an approach to the limiting high temperature value. For 

a more detailed account, the student is referred to Taylor, “A Treatise 

on Physical Chemistry," 2d ed., vol. 1, pp. 276Jf., and vol. 2, pp. 1393jf., 

D. Van Nostrand Company, Inc., 1931, 
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other elements. It was then possible to say that the amount of 
any element which required six calories to heat it up one degree 
centigrade was one gram atom. Though it was never supposed 
that the law of Dulong and Petit would give an exact value for 
the specific heat per gram atom, the atomic weight could thus be 
roughly found, and then more exactly determined by analyses; 
since this law would almost always give results much closer than 
the factor of two or three which was in doubt in the determination 
of the atomic weight, this combination of methods was helpful 
in many cases. 

Another type of physical analogy is expressed by Mitscherli(;h’s 
law of isomorphy. Mitscherlich made a study of the properties, 
especially the crystalline form, of a series of analogous compounds 
of arsenic and phosphorus; he also investigated a number of 
groups of oxides and salts of analogous composition. This study 
led him to enunciate the following law:^ *45qual numbers of atoms, 
combined in the same manner, produce the same crystalline 
forms; identity of crystalline form is independent of the chemical 
nature of the atoms and is determined only by their number and 
relative positions.^’ This law was applied in many cases to 
determine the formulas of unknown compounds from those whose 
formulas were believed to be known. Thus, Berzelius, having 
concluded that chromous oxide had the formula Cr208, noted that 
ferric oxide and aluminum oxide had the same crystal form, and 
therefore wrote Fe203 and AI2O3. 

1.6. The Combining Volumes of Gases and Avogadro’s Law.— 
We shall now return to a consideration of the combining volumes 
of gases and the proper use of Avogadro's law. Despite the 
pioneer work of Avogadro himself, of Gay-Lussac, and of Dumas, 
confusion hovered over this subject until the middle of the last 
century, when the difficulties were cleared up by the work of 
Laurent, of Gerhardt, and particularly of Cannizzaro, and Avo¬ 
gadro’s law came to furnish the most^ powerful method for the 
determination of the formulas of compounds. 

It is obvious that if Berzelius had interpreted the relation 

2 volumes of hydrogen + 1 volume of oxygen gives 2 volumes of 
water vapor 

^ It is, of course, now recognized that compounds with analogous chemical 
formulas do not always have the same crystalline form. However, the fact 
that they often do was of considerable aid in the early history of chemistry. 
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correctly, as 

2 molecules of hydrogen + 1 molecule of oxygen gives 2 molecules 
of water 

he would have seen that, since 1 molecule of oxygen is used in 
forming 2 molecules of water, the oxygen molecule must be broken 
in two and hence it must contain an even number of atoms. The 
fact that in the study of many reactions the oxygen is never 
broken into four or more parts leads one to write the formula 
as O2. 

In the same way, the formulas of other elementary gases may 
be found. If oxygen then is assigned the atomic weight 16, it 
is possible by comparing the vapor densities to get the atomic 
weight of any other element whose formula in the vapor state is 
known. But the usefulness of the method does not stop here, 
for it is possible to find the molecular w^eights of compounds, and 
having done this it is possible to find, by chemical analysis, the 
weight of any given element combined in one mole' of a certain 
compound. If, then, it should be possible to find a number of 
compounds of a single element, which can be obtained in the 
gaseous state, the smallest weight of that element which can 
occur in one mole would become known. This smallest weight 
will naturally be supposed to be the weight of one gram atom of 
this substance, i.e.y the atomic weight. 

Furthermore, if the atomic weights of a scries of elements have 
been found, it is possible to determine the smallest weight of 
another element that wall combine with one gram atom of any 
one of the series of elements whose atomic weights are known. 
This smallest weight will be presumed to be the atomic weight of 
the new element. This method can of course be used, no matter 
how the series of known atomic weights is obtained, but is effec*- 
tive only if these atomic weights are really known, 

1.6. The Periodic System.—By means of all the methods out¬ 
lined above, it was finally possible to arrive at a reasonably 
reliable system of atomic weights. The final confirmation of 
these atomic weights came with Mendel^eff^s discovery of the 
periodic law. This uncovering of the regularity of nature left 
little doubt that the system of atomic weights which led to it 

^ It is now, of course, possible to define a mole as the amount of substance 

that occupies a definite volume in the gas phase under standard conditions. 
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was correct. The developments of modern physics provide ti 
theoretical foundation for the periodic system, which will be 
discussed in later chapters, and which, of course, strengthens the 
conviction that the tabic of atomic weights is correct. Further¬ 
more, modern methods, such as the use of X rays in the study 
of crystals, have fully confirm-‘d the chemical formulas used by 
the pioneers in the determination of atomic weights. 

1.7. Faraday’s Law.—If two ehictrodes of the same mental dip 
into a solution of a salt of that metal, an ehictric current can be 
forced through the solution by means, say, of a battery applied 
between the two electrodes, as shown in Fig. 1. It is found that, 
in such an electrolysis, metal disappears from one electrode* 
(the anode) anr 

_-j 

goes into solution, while it is deposited from the 
solution on the other electrode. 

r ^ by Faraday, and, translating 
his fundamental discovery into 
modern terminology, we may 
say that he found that for 
every gram atom of material 
deposited on, or dissolved from, 
an electrode in this manner a 
certain definite quantity of 
electricity, f.c., 1 faraday 

Agt Ag 

Fia. 1.—Electrolysis of a Mvlver soiuUon. ^ 9.6t>() X 10^ COUlombs) Or 

a small integral multiple of a 
faraday, depending upon the material of the electrodes, passes 
through the circuit. This is explainable in terms of an atomic 
theory of electricity in much the same way that the laws 
of chemical combination are explainable in terms of an 
atomic theory of matter in general. It indicates that electricity 
can enter into combination with matter much as different kinds 
of matter enter into combination with each other. 

Since all substances are electrically neutral, they must contain 
equal amounts of positive and negative electricity. But it is 
now known, of course, that positively or negatively charged ions 
can exist in solution, although the solution as a whole is neutral. 
Deposition of a positively charged ion on an electrode, for exam¬ 
ple, requires that it be furnished with one or more electrons, 
depending upon its charge. Thus a silver ion, Ag+, requires an 
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electron before it can be deposited as neutral metallic silver. 
These electrons are produced by some chemical process at another 
electrode {e.g.^ solution of some metal, in the battery which 
furnishes the current for the circuit) and travel through a wire 
to t}i(? place whore they are needed, or, rather, the (dectrons 
{)rodiice^d by the chemical process exert a '‘push'' down the wire 
which results in electrons already at the other (^nd being released 
for the chemical process taking place there—tliere is no bodily 
transfer of the particular electrons, which take part in the reac¬ 
tion at the one electrode, to the other electrode, but only a dis¬ 
placement of electrons down the wire. 

In the foregoing paragraph, we have outlined a rather highly 
develo})ed theory. It did not, of course, spring into being all at 
once, hut developed gradually, as the r(‘sult of numerous experi¬ 
ments on the properties of electrolytic solutions and the proper¬ 
ties of electrically charged particles in gaseous discharges. We 
(^annot go into all the ramifications of this development, but somcj 
of them will be touched on briefly in the next chapter, which 
deals with the j^roixirties of individual atoms and electrons and 
describes some of the methods by which these properties have 
been discovered. 

Exercises 

1. Show in detail how the three law.s of chemical combination follow from 
Muir^s statement, pa^e 3. 

2. Deduce the law of reciprocal proportions from the atomic tlioory. 
3. Discuss the volume relations in some reaction w'hich enables one to 

conclude that the chlorine molecule contains an even number of atoms. 
4. J liter of a gaseous compound of a certain element at J atm. and 25®C. 

contains 2.45 g. of the element. 1 liter of another gaseous compound under 
the same conditions contains 1.47 g. of the element. On the basis of these 
data, assuming the perfect gas laws, what is the largest possible value of the 
atomic weight of the element? State another value of the atomic weight 
consistent with these data. 



CHAPTER II 

THE CONSTITUTION OF MATTER 

According to the modorn theory of the oonstitution of matter, 
each atom is composed of a positively charged nucleus, which 
has most of the mass of the atom and is surrounded by a number 
of electrons, there ordinarily being just enough electrons so that 
the positive charge of the nucleus is exactly neutralized. The 
chemical properties are determined by the behavior of the elec¬ 
trons, and depend to a great extent upon their number. The 
number of electrons is determined in turn by the positive charge 
of the nucleus, but the latter has only an indirect influence on 
the chemical properties of the atom. One of the chief aims of 
this book will be the correlation of chemical properties and 
electronic structure. The first step in carrying out this purpose 
is a description of the properties of the electron itself. This 
description will be given in the present chapter, and the most 
important experimental evidence, which leads to the establish¬ 
ment of the most general features of the above-outlined theory 
of the constitution of matter, will be reviewed. 

2.1. The nature of the electron was first learned from the 
experiments of J. J. Thomson and of Lenard on electric discharges 
through highly evacuated tubes^ (pressure less than 10“*-* or 
10~^ mm.). Such a tube is illustrated in Fig. 2. C is the cathode, 
A is the anode, and B is a thick metal disk which is connected 
to ground. Both A and B have slits through them. D and E 
are plates across which an electrical potential can be applied. 
If, now, a moderate potential is applied between C and A, a 
phosphorescent spot will appear at p, which is apparently due to 
something that has come through the slits in A and B. If the 
tube is arranged so that some solid object can be placed between 
B and p, the phosphorescence at p ceases. If an electrical 
potential is applied across D and E, the spot p moves down if E 

'See, c.g., J. J. Thomson and G P. Thomson, Conduction of Elec¬ 
tricity through Gases,” 3d ed., vol. I, Cambridge University Press, 1928. 

10 
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is positively charged, up if D is positively charged. It therefore 
seems reasonable to suppose that the phosphorescence at p is 
due to negative particles (cathode rays, or electrons) which have 
been released from the negative electrode C, accelerated by the 
positive electrode A, and have passed through the slits in A and B. 

Negatively charged particles can also be obtained from other 
sources. Thus they are observed in the emissions from radio¬ 
active bodies, and they are ejected from glowing metals and 
metallic oxides. The latter sources may be used in electron 
tubes, of which there are a large variety. Sommerfeld in his 
book Atomic Structure and Spectral Lines gives a description 
of a tube in which the cathode is furnished with a spot of calcium 
oxide (a substance that readily emits electrons), which is heated 

Fig. 2.—A discharge tube. 2> shown positively charged. (.Adapted, by per^ 
mission, from Fig. 55, of J. J. Thomson and G. P. Thomson, ** Conduction of Elec¬ 
tricity through Gases,'' Sd. ed., vol. I, Cambridge University Press, 1928.) 

by the discharge. This tube contains gas at 0.1 mm. pressure, 
which makes it possible to follow the path of the stream of 
electrons, since they ionize the gas and cause it to glow. The gas 
in the tube also causes practically the entire potential drop to take 
place in the immediate neighborhood of the cathode, so that the 
electrons reach their full velocity almost immediately, start out 
at right angles to the cathode surface (f.e., the calcium oxide 
surface), and travel in a straight line unless acted upon by an 
external field. The effect of an applied electric field may be 
easily followed in a tube such as described by Sommerfeld, since 
the path of the electrons is outlined by the glow of the gas. It 
can be easily observed that they behave as negatively charged 
particles, but accurate measurements cannot be made in a tube 
containing 0.1 mm. of a gas, because the gas is rendered con¬ 
ducting by the electrons, and this interferes with the action of 
the electric field. 

‘ English translation, 3d ed., vol. 1, Chap. I, §3, Methuen & Co., 
Ltd., 1934. 
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The tube shown in Fig. 2 may, however, if highly evacuated, be 
used for quantitative measurements, and by observing the effect 
of a magnetic field, and comparing it with the effect of an electric 
field, it is possible to determine the specific charge (ratio of the 
charge of the particles to their mass) and the velocity of the 
electrons, as will be shown immediately. 

2.2. The Action of Electric and Magnetic Fields on Charged 
Particles.—The action of an electric field on a charged body Is 
known from experiments on macroscopic bodies, and it is assumed 
that the same laws hold for microscopic bodies. In stating these 
laws, we assume that the definitions of all the fundamental 
(‘lectrical quantities are understood, it being beyond the scope 
of the present book to consider the relations between the funda¬ 
mental experiments upon which these definitions arc based and 
the laws we wish to discuss. A summary of the most important 
laws about electrical forces is given in Appendix III. 

A magnetic field bears the same relation to magnetic poles as 
an electric field bears to electric charges. The magnetic field 
due to a pole of strength qi at a distance r is qi/r^ and the force 
exerted in vacuum on another pole of strength q% is qiq2/T^i being 
attractive or repulsive according to whether gi and q^ are different 
typj3s or the same type of magnetic pole. qi and q2 are in such 
units that two unit poles 1 cm. apart exeit a force of 1 dyne on 
each other. The field strength is then given in gausses. 

The action of a magnetic field on a charged particle may be 
inferred from its action on a wire carrying eh^ctric current. The 
latter is known from direct experimental measurements, which 
may be summarized as follows. If a wire carrying a current i is 
acted upon by a magnetic field //, then (if i is expressed in electro¬ 
static units and H in gausses) the force / acting on unit length of 
wire in va(‘uum is given by 

where B is the angle between the direction of magnetic field and 
the direction of the current, and c the velocity of light. ^ If we 
represent the field and the current as vectors of length H and f, 

^ If both I and H were exprebsed m electromagnetic units, as is more usual 
in treat ISOS on electromagnetism, the velocity of light would not appear in 
the exj>res8km 
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respectively, / is equal to the area of the parallelogram thus 
defined (Fig. 3) divided by c. The direction of the force / is 
at right angles to the directions of both i and IL If i gives th('. 
direction of positive current, then in Fig. 3 the force is directed 
into the paper. However, the question of positive and negative 
signs and directions of force can for the most part be disregarded. 

Now a stream of electrons moving close together in the same 
direction and with the same velocity 
will produce a current equal to nev, 
where n is the number of electrons 
per unit length in the stream, c the 
charge of one electron, and v the 
velocity. Assuming then that the ac¬ 
tion of a magnetic field on this stream 
of electrons is the same as on a current in a wire, we may write 
for the force per unit length of the stream 

- nevH . - 
/ =-sin 0 

c 

H 
Fig. 3. 

whence the force per electron fo is given by 

- evil . ^ 
fo =-sin 0. 

0 
(1) 

If the electron is moving in a uniform magnetic field in a path 
at right angles to the field, since the force on it tvill also be in the 
plane perpendicular to the magnetic field, the electron will con¬ 
tinue to move indefinitely in this plane. Since the force is also 
at right angles to the velocity of the electron, the path will be a 
circle in this plane. The force exerted by the magnetic field will 
be balanced by the centrifugal force arising from the motiop of 
the electron in the circle. ^ If the circle has a radius p, the centrif¬ 
ugal force is mw^/p, where m is the mass of the electron. As sin b 
is 1 in this case we have 

or 

mo^ _ evH 
p c 
e _ 

me ~ pH (2) 

^ Our treatment neglects the relativity of mass of the electron, which may 
he important if its velocity is very great. It also neglects any effect of 
radiation, which is always entirely insignificant. 
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2.8. Determination of e/m of an electron was first carried out, 
using a direct method, by J. J. Thomson.^ If the tube of Fig. 2 
is placed in a magnetic field which, to the right of the slit B, 
is perpendicular to the long axis of the tube and has a uniform 
value, and which is zero to the left of B, the electron beam will 
be deflected in the plane perpendicular to the field. The radius 
of curvature of its path is readily found, through a simple geo¬ 
metrical calculation, by observing the deflection of the fluores¬ 
cent spot at p. It is thus possible to obtain c/m from Eq. (2), 
provided a method for obtaining v can be found. This can be 
done by applying an electric field across the plates D and E. If a 
field E is thus applied, the force on each electron is eE. This 
force acts for the time t during which the ('lectron is between the 
plates. If the length of the plates along the line of motion 
of the electrons is Z, then t = l/v. During the passage between 
the plates, the electron will acquire component of velocity 
given by 

mv^ = 
eEl 

(3) 

in a direction perpendicular to its original velocity v, [Equation 
(3) follows from equating the momentum mv^ to the force cE 
times the time l/v during which it acts.] The ratio r = vj_/v can 
be determined from the geometry of the tube by observing the 
deflection of the spot p. From (3), we may write 

rm (4) 

Elimination of v from (2) and (4) makes possible the deter¬ 
mination of e/m, since all other quantities are measured 
experimentally. 

The experiment for the determination of e/m, as outlined, is 
of course an ideal experiment; in actual practice, various com¬ 
plications (nonuniform electric and magnetic fields and the effects 
of any residual gets in the tube, for example) have to be allowed 
for. The effect of the mutual repulsion of the electrons, which 
might be expected to cause a spreading of the stream, is negligible. 

J. J. Thomson and G. P. Thomson, ^‘Conduction of Electricity 
through Gases,” 3d ed.', vol. I. 
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There are various modifications that may be made in the 
experimental details. For example, in a highly evacuated tube, 
the second relation between v and e/m may be obtained by noting 
the total potential drop V (equal to the average field E times the 
distance), through which the electron falls. The energy thus 
imparted to the electron is eV (equals average force eE on the 
electron times the distance through which it travels), so that we 
have instead of (4) the relation 

= eV (5) 

provided the electron starts out with zero kinetic energy. The 
best method for producing the stream of electrons is by the use 
of a hot cathode, usually a wire heated by an electric current, 
as then a very high vacuum may be used. The best recent 
value of c/m, obtained by deflection methods with all necessary 
refinements, is 5.27 X 10^^ e.s.u. per g.^ 

It is important to note that cathode rays have been produced 
in tubes in which the electrodes have been constructed of a 
variety of different materials, and in which the residual gas has 
been of different kinds. Always, in all these cases, the value of 
e/m has been found to be the same within the limits of the experi¬ 
mental error, which indicates that the same kind of particles is 
always produced. Also, the /3-rays produced in radioactive 
decomposition, and the particles produced by the action of light 
on metals, have been shown to be of the same nature. It thus 
appears that there is but one kind of electron which occurs as a 
constituent of ordinary material systems, and it is of very wide¬ 
spread occurrence in nature. 

2.4. Determination of the Charge of an Electron.—The charge 
of an electron e as distinguished from the charge per unit mass 
e/m has been very accurately determined by Millikan by means 
of the famous oil-drop experiment. ^ Fine drops of oil are sprayed 

^ The values of this and other constants given in this chapter are taken 
from '*An Outline of Atomic Physics,” 2d ed., pp. 389-391, by the Univer¬ 
sity of Pittsburgh Staff, John Wiley & Sons, Inc., 1937. However, on 
account of the large number of calculations in the literature using the 
values given by Birge, Physical Review Supplement {Rev, Mod, Phys,) 1, 
1 (1929), it has been found necessary, in order to avoid inconsistencies, to 
use these earlier values for calculations presented in other parts of the text. 
The errors thus caused are not important. 

* See Millikan, ^‘Electrons (-f and —), Protons, Photons, Neutrons, and 
Cosmic Rays,” University of Chicago Press, 1935. 
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between two electrodes, which consist of plates placed horizon¬ 
tally so as to produce a vertical electric field, with the positive 
plate on the top. Electrons (or negative ions) and positive ions 
are produced in the space between the plates by the action of 
X rays on the air between the plates, and one or more of them 
may be caught ])y an oil drop. The electron or ion thus captured 
will impart a charg(‘ to the drop, which will move with a con¬ 
stant velocity under the combined action of the electric field, 
gravity, and the fri<*tional resistance of the air. Its motion may 
be observed by means of a microscope. Under gravity alone 
(electric field turned off), the velocity Vx will be given by Stokes^ 
law of falP 

Mg — ^irrrjvx, (6) 

where M is the mass of the oil drop (corrected for the buoyancy 
of the air), Mg the force exerted by the gravitational field on the 
oil drop, r the radius of the oil drop, and rj the viscosity of the air. 
If the oil drop has a negative charge a and an electric field of 
strength E is turned on, the oil drop will be pulled upward toward 
the positive plate by a force eE. If this exceeds the force of 
gravity, the oil drop will move upward with a velocity given 
by Stokes' law, which will now have on the left-hand side the 
new expression for the force exerted by the combined electric 
and gravitational fields on the drop: 

Ee ~ Mg = 6TrrjV2. 

From (6) and (7), 

_ Mg(vi -f V2) 
* Evi 

But the mass of the drop may be found by use of Eq. (6) pro¬ 
vided the density of the oil is known so as to make it possible to 
express r in terms of Jkf, for ^ and ri are known constants, while 
vi is found experimentally. Everything on the right-hand side 
of Eq. (8) is then known or experimentally determined so that e 
may be evaluated. 

It was found by experiments of this kind that the charge on 
the oil drop changed only by whole multiples of a certain definite 

^ For a discussion of this law, and certain modifications required, see 
Millikan, op, cit.f especially Chap. V. 

(7) 

(8) 
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quantity of electricity, which was therefore presumed to be the 
smallest possible charge that any body could have and assumed 
to be equal to e, the charge on the electron. The present accepted 
value of e is 4.80 X 10"“^° e.s.u.^ 

From the values of ejm and c, it is possible to determine m, 
which turns out to be 9.12 X 10~‘-^® g. 

2.5. Positive Ions.—We shall now turn to the consideration of 
positive ions.2 These are readily produced as canal rays^^ 
in a discharge tube in which a hole is bored through the cathode, 
and which contains gas at a low pressure. A pencil of light will 
appear behind the hole in the cathode, with phosphorescence at 
the point where it strikes the glass. These effects are produced 
by positively charged ions, as may be shown by the direction in 

Fig. 4.—Schematic drawing of a tube for the i)roduction of positive ions. 

which they are deflected by electric and magnetic fields. The 
amount of deflection, how^ever, is extremely small, corresponding 
to a value of e/m for these particles, which is very much smaller 
than the value of e/m for the electrons. 

In order to measure the e/m of these particles accurately, it is 
necessary to have the gas in the tube at a very low pressure, not 
more than a few thousandths of a millimeter of mercury. In 
order to measure the amount they are deflected, it is best to 
allow them to impinge on a photographic plate, which they 
affect at the point where they strike. It is found that the value 
of c/m depends upon the gas used in the tube, the largest value 
of c/m being obtained when hydrogen is used. This value is 
nevertheless about 1835 times smaller than the c/m for the 
electron;^ if it is assumed that this is due to the mass of these 
ions being larger than the mass of the electron rather than the 
charge being smaller, and that the particle whose c/m is thus 
measured is (a positively ionized hydrogen atom) then the 

^ See footnote 1, p. 16. 
*See, e.^., J. J. Thomson and G. P. Thomson, “Conduction of Elec¬ 

tricity through Gases/* 3d ed., vol. I. 
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mass of H"** is seen to be about 1835 times that of the electron. 
The value of efm for found by deflection experiments agrees 
within the limit of error with that found in electrolysis by 
measuring the weight of hydrogen (or, better, a metal) deposited 
at an electrode when a given amount of electricity passes through 
the circuit. (It is the latter, more accurate value, that is actually 
quoted). 

The technique of measuring c/m has been greatly developed 
by Aston^ and, more recently, by others, c/m has now been 
determined for a large number of positive ions with great accu¬ 
racy. On the assumption that the charge of a positive ion is 
always equal either to that of an electron or to a small integral 
multiple of it, it has been possible to determine the masses of 
many different positive ions. It is found that an element may 
really consist of a number of different substances called “iso¬ 
topes.'^ The isotopes of a given element all have, in general, 
practically identical chemical properties, but each respective 
isotope has its own characteristic atomic weight. When one 
takes the average atomic weight of the different isotopes, weight¬ 
ing according to the amount of each isotope present, it is found 
that the averages for the different elements are in the same ratio 
as the atomic weights of those elements obtained from chemical 
determinations. This comparison furnishes most important 
evidence as to the correctness of our view on the nature of posi¬ 
tive ions and the atomic theory of matter. 

2.6. The Constitution of the Atom.—All the experiments 
which have been considered in this chapter are consistent with 
the view that an atom is composed of a positively charged 
nucleus whose charge is ejcactly neutralized by electrons. A 
positive ion is produced when an atom loses one or more electrons. 
Since the electrons are very light compared with the positive 
nuclei, the mass of an ion will be practically equal to the mass of 
the atom from which it is formed. 

We shall now consider the experiments of Rutherford,^ which 
indicate that all the positive charge of an atom is in one extremely 
small nucleus and that the electrons form a rather diffuse cloud 

^ See Aston, ^'Mass Spectra and Isotopes,” Longmans, Green k Company, 
1933. 

* Ruthshford, Chadwick, and Ellis, ‘‘Radiations from Radioactive 
Substances,” Cambridge University Press, 1930. 
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outside the nucleus. These experiments also make possible an 
estimate of the positive charge of the nucleus and hence the 
number of electrons in the atom. They were performed before 
the work of Aston, and it was llutherford^s work, in fact, that laid 
the foundations for the modern theory of atomic structure. 

Rutherford used a-particles as tools in his investigation, 
a-particles are the positively charged ions omitted by radioactive 
bodies; before we can understand Rutherford's work, we must 
know the nature of these particles which he used as instruments 
of research. 

The value of e/m can be measured for the a-particle as for any 
other positive ion, and it is found to be approximately half as 
great as for H+. It is further found that all the a-particles from 
any given radioactive substance have a certain definite velocity 
(except that in some cases there are several groups of a-particles, 
all the particles in a given group having the same velocity). A 
bit of a radioactive substance therefore furnishes a very con¬ 
venient source of charged projectiles with a constant and very 
high energy. 

a-particles can be individually observed, due to the fact that a 
flash is seen every time one hits a zinc sulfide screen. This 
makes it possible to determine the number of a-particles emitted 
by a given amount of a radioactive substance in unit time. It is 
also possible to collect all the a-particles emitted in a given time 
through a certain solid angle and measure the total charge given 
to an electrometer by these particles. Since the rate of emission 
of particles has already been found by counting flashes, it is 
possible to determine how many a-particIes are required to 
produce the given charge, and hence the charge on a single 
a-particle may be found. It is just twice the charge on an elec¬ 
tron. The mass of the a-particles must therefore be approxi¬ 
mately four times that of a hydrogen ion. All the information 
about the properties of a-particles needed in order to use them 
as tools in the study of atoms is thus at hand. 

That a-particles differ in no way from doubly ionized helium 
atoms was proved by Rutherford and Royds, who collected them 
in a helium-free chamber, allowed them to be neutralized, and 
then showed that helium was present. It may be remarked 
parenthetically, that, since the weight of an a-particle is four 
times that of a hydrogen atom, and since the molecular weight of 
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helium (known from the gas density) is twice that of hydrogen, 
helium gas muvSt be monatomic if hydrogen is diatomic. 

If an «*particle is allowed to shoot into a gas, it will be slowed 
up and will stop after it has penetrated a certain distance, which 
will be of the order of several centimeters if the gas is at a pressure 
somewhat near normal. For an a-particle of definite energy, 
the range is inversely proportional to the concentration of the 
gas, if the same kind of gas is always used. The stopping power 
per atpm of gas is thus a constant, characteristic of the gas. 
a-particles will penetrate sheets of metals or other solid sub¬ 
stances, provided they are thin enough. The stopping power per 
atom of substance is roughly proportional to the square root of 
the atomic weight. 

When of-particles go through a thin metallic screen, it is found 
that most of the a-parti(^les emerge without much change (3° or 
less) in the direction of their motion. A few, however, are 
observed to be highly deflected. It is these latter which are of 
interest to us here, for we shall see that these deflections can be 
(explained on the assumption that the a-particles pass near 
massive charged bodies; and in order to explain the results, the 
charge on such a body must be taken to be equal to the charge 
on the electron times the atomic number (f.e., the number that 

"^gives the position of the element composing the screen in the 
periodic system). The experiments therefore give direct evi¬ 
dence as to the structure of atoms, and we shall now proceed to 
discuss them in some detail. 

It is obvious that when the a-particle is deflected through a 
large angle it must be repelled by a relatively heavy body. A 
light body, like an electron, would merely be pushed out of the 
way, and this, in fact, is happening all the time as the a-particle 
goes along its path. The a-particle gradually loses energy, and 
is eventually stopped, which accounts for its finite range, but it 
suffers no sharp change in its motion unless it penetrates very 
close indeed to the massive and highly charged nucleus. In fact, 
if we assume that we are here dealing with the ordinary inverse- 
square-law repulsion of two positively charged bodies, it can be 
readily shown that, if the nucleus has a charge not larger than 
the charge of an electron multiplied by the atomic number of the 
heaviest nuclei, the a-particle must come within a distance of the 
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order of cm. or less.^ This distance is very much smaller 
than the distance between centers of adjoining atoms, which is of 
the order of 10“"® cm. Therefore it is reasonable to suppose that 
the a-particle, if it penetrates close enough to be appreciably 
deflected, is so much closer to the deflecting nucleus than to any 
other body which might affect it that the effect of the latter can 
be neglected. Further, since the atomic weights of most sub¬ 
stances, which have been studied in this way, are much higher 
than that of helium, we can as a first approximation assume that 
the a-particle is simply deflected from a fixed center of force. 

The orbit described by a particle that is repelled from a fixed 
point 0 by a force varying inversely as the square of the distance 
between them is a hyperbola with 0 as a focus. We shall dis¬ 
cuss, without giving proofs, the characteristics of this hyperbola. 
The fixed point, being a focus, is, of course, symmetrically placed 
with respect to the two asymptotes. Let the distance from O to 
either of the "asymptotes be p (see Fig. 5). p is the distance at 
which the particle would pass by 0, if no force were acting. Let e 
be the charge on the electron. Then the charge on the a-particle 
is 2e (we disregard sign), and the charge on the nucleus will 
be designated as Ze, Z being the atomic number. We let M 
be the mass of the a-particle and v its velocity. 4> is, as shown 
in Fig. 5, the angle through which the a-particle is deflected. 

^ This is given approximately by p of Eq. (9). It is necessary for a typical 
oc^particle (velocity, say, 1.5 X 10® cm. per sec.) to come at least this close 
to a nucleus of atomic number around 90 to be deflected 30® or more. 
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Then it may be shown^ that 

, 4> 2Ze* 
2 Mv^' (9) 

It is thus seen, as might be expected, that the a-particle is 
deflected more the less its kin^'tic energy, the smaller the dis¬ 
tance it passes from the nucleus, and the greater the charge on 
the nucleus. 

The quantity p characterizes the hyperbola and determines 0, 
Z and V being fixed in any given experiment. But it is easy to 
determine how many a-particles will pass a nucleus at a distance 
lying between p and p + dp, where dp is a small difference (or 
rather would so pass, if no deflection occurred). Since p deter¬ 
mines 0, the number of a-partides which one would expect to be 
deflected at any given angle can be calculated and compared with 
experiment. The number thus obtained depends upon Z, which 
can thus be calculated, and when the proper value of Z is used the 
experimental results are reproduced by the theoretical equation. 
The values of Z thus obtained agree with the atomic number of 
the element, as determined independently by use of other con¬ 
siderations. This gives strong support to the theory that atoms 
are composed of positive nuclei with charge equal to the atomic 
number and neutralized by electrons which surround the nucleus 
within a distance of the order of 10'”* cm. 

It may not be amiss to give some details of the above-indicated calcula¬ 
tion. The chance that an a-particle would pass a distance between p and 
p dp from a given n\icleus is proportional to the area included in the 
annular space between p and p -H dp, in the plane perpendicular to the 
flight of the a-particle, namely, 27rp dp. Now suppose that there are N 
atomjs per unit volume in the screen which is used and that the thickness 
of the screen is L Since the a-particle is moving normally to the screen, 
the effect is just the same as if it were striking a plane containing Nt atoms 
per unit area. This assumes that no atom is directly behind another; 
appreciable deflections occur for such small values of p, and the screens 
used are so thin that for our purposes this assumption is justified. The 
chance that the <*-partiele would pass, in its flight, the required distance 
from some atom is equal to the ratio of the total area of the annular spaces 
of the atoms in unit area to unit area, or 2rpNt dp. It may be assumed 
that no a-particlc is deflected twice through a reasonably large angle; it is a 
rd.re event for it to be so deflected once. The formula, which is thus derived 
on the assumption that a given a-particlc is not deflected more than once, 

^ RuTasRFORD, Chadwick, and Ellis, op. cU., p. 193. 
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naturally does not hold for very small values of <>, since for a small deflection 
the of-particle does not need to approach the heavy nucleus so closely, but 
t can be made small enough so it holds for 3®. 

Now, as noted before, the angle of deflection </> is a function of p, and the 
fraction of the particles that will be deflected through an angle between <t> 
and ^ 4- will be equal to the fraction incident at a distance from a 

scattering center between p and p -)- dp, where p and p dp are the 

distances that correspond to <f> and <f> -f- d<^. This fraction is equal to 
2irpNt dp — 2vpNt{dp/d<i>) d<t>. The quantity |2irpN< (dp/dtf>)\f then (the 

lines indicating that the quantity is to be taken positive), is the fraction 

per unit angle scattered at the angle <f>, which corresponds to the distance p. 
From Eq. (9), 

and 

whence 

2Zc2 cot (<^/2) 
Mv^ . 

^dp ^ 

dft> Mv^ s,\n^ {4>/2) 

lo_^xr. dpi _ 4wNtZ^e^ C08 (</>/2) 
d4\ AfV^sin* i4>/2) 

(10) 

It is seen that the number of particles per unit angle deflected at a given angle 

will depend upon quantities all of which are known except Z; the latter may 
consequently be determined. Since the shape of the curve is independent 
of Zf it is necessary to measure the actual number of a-partides falling on 

unit area of the screen, and the actual fraction of them scattered at the 

various angles. 
Equation (10) has been thoroughly tested in Rutherford^s laboratory and 

found to hold under all attainable conditions for elements heavier than 

copper. In these heavier elements, the closeness of approach of the oe-par- 

ticle is limited because of the strong repulsive force of the highly charged 
nucleus. In lighter elements, where under favorable circumstances (fast 

o-particles and large angles of deflection) closer approach is possible, devia¬ 
tions have been observed. This is due to breakdown of the inverse-square 

law of repulsion upon which Eqs. (9) and (10) are based. In the case of 

aluminum, this breakdown occurs when the distance of approach of the 

a-particle (OV of Fig. 5) is about 10~^* cm. It is, of course, not at all 

surprising that the inverse-square law should break down at such small 
distances. It simply means that at such distances the actual structure of 
the nucleus is of importance, and it is no longer permissible to regard it • 

simply as a point charge, but a more elaborate description becomes necessary. 

2.7. Summary.—The results, the experimental basis of which 
is discussed in Chaps. I and II, may be briefly summarized as 
follows. All substances are composed of atoms which are in most 
instances combined into molecules. An atom is composed of a 
positively charged nucleus, which has most of the mass of the 
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atom, and a surrounding cloud of negatively charged electrons. 
An electron has a charge of 4.80 X 10””'° e.s.u. and a mass of 
9.12 X 10~^® g. The mass of the nucleus of the hydrogen atom, 
the lightest of all nuclei, is about 1835 times as great as the mass 
of an electron; other nuclei are heavier, ranging up to more than 
two hundred times this amount The charge on the nucleus Is 
equal to a multiple of the charge on the electron, the whole atom, 
in general, being neutral. The atomic number gives the charge 
on the nucleus in terms of the electronic charge, and it is also 
equal to the number of electrons in the neutral atom. The radii 
of nuclei are of the order of 10~'^ cm., whereas the radii of atoms, 
including the cloud of electrons, are of the order of 10~® (gener¬ 
ally, 2 to 3 X 10“^) cm. The nuclei are themselves of complex 
structure, but for the purpose of the present work it is not neces¬ 
sary to discuss their structure. 



CHAPTER III 

WAVE AND CORPUSCULAR PROPERTIES OF 
RADIATION AND MATTER 

In the preceding chapter, we have considered experiments that 
may be described by treating the electron as a corpuscle. There 
are other experiments which show that electrons also have wave 
properties. Such experiments involve changes in the motion 
of the electron which take place in a distance of the order of 
atomic dimensions, 1cm or less. When distances of this order 
of magnitude are of importance, it is necessary to deal with the 
wave properties of electrons; so it is obvious that t hese properties 
will play an important role in the theory of atomic structure. 
These distances are actually of the order of (and, in fact, deter¬ 
mined by) the wave length pf the electron waves. Just as w(' 
must use physical optics rather than geometrical optics when we 
consider distances of the order of the wave length of light, so 
we must take into account the wave properties of electrons when 
distances of the order of the wave length of the electron become 
important. But the wave-corpuscle dualism contains something 
more profound, in the case of both optics and elec*tricity, than 
the difference between physical and geometrical optics. It will 
be convenient to begin the discussion of this subject with the 
case of light. This offers a natural introduction to the study 
of the wave properties of the electron, but it is also of importance 
in itself, since the light emitted by atoms provides one of the best 
instruments we have for the study of their properties. 

3,1. The Wave Properties of Light.—The phenomena of 
diffraction and interference have long been explained on the 
assumption that light consists of waves which travel outward in 
all directions from the source. These waves may be thought of 
as displacements in an elastic medium, the ether, though the 
modern views do not admit the reality of this medium. The 
ideas involved may be illustrated by a simple interference experi¬ 
ment, shown in Fig. 6. At O, we have a source of light that falls 
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on a screen, which is perpendicular to the plane of the paper, the 
setup being shown in section in the figure. In this screen, there 
are two openings, at A and B, that act as secondary sources from 
which the light spreads ovit in all directions, and the interference 
phenomena appear on the second screen. Suppose C is a point 
such that 

AC - BC = nX, 

where X is the wave length of the light and n is a whole number.^ 
Then the light waves from A and B are in the same phase at C, 
the ^Misplacement’^ represented by the wave from B is always 

in the same direction as that repre¬ 
sented by the wave from A, and the 
result is that reinforcement occurs 
and there is a bright spot at C. On 
the other hand, if 

AC - BC = (n + i)X, 

then the displacements at C are in 
opposite directions, and cancel each 
other, so that there is a dark spot 

at C. Points on the screen that do not correspond to either of 
the extremes described receive intermediate amounts of light. 

A few other well-known phenomena that are explainable on 
the basis of the wave theory of light are the colors of thin films, 
the spreading of light when it goes through a very small opening 
(which explains why the small openings A and B of the experi¬ 
ment we have discussed do act as secondary sources), the reflec¬ 
tion of light from a grating, etc. 

3.2. Reflection of X Rays from a Crystal.—The question which 
we shall treat in this section is not only one that illustrates very 
well the type of calculation which may be made by aid of the 
wave theory of light but is one that we shall find of importance 
later on, as it furnishes a most powerful tool for the investigation 
of crystal structure. Ordinary visible light has a wave length 
ranging around 4000 to 7500 A. (lA. = 10“* cm.). This is large 
compared with atomic distances. X rays, however, are well 
known to be light of extremely short wave length; in fact, their 

^ It is assumed that the source 0 is equidistant from A and B, so that the 
light waves start out in phase from these points. 
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wave lengths are of the order of atomic dimensions. The result 
is that crystals can be used as gratings in the study of X rays, and 
conversely, X rays may be used to study the structures of 
crystals. 

The characteristic property of crystals is that the atoms are 
arranged in regular rows and pianos. The nature of these planes 
of atoms {i.e.j planes in which lie the centers of gravity of a series 
of atoms) will be more fully appreciated from the figures of 
Appendix IV. A beam of X rays impinging upon a crystal is 
reflected from these planes, just as a beam of light is reflected 
from a plane mirror, with the angle of reflection equal to the 
angle of incidence. This comes about because of destructive 

Fig. 7.—Reflection of X-ray beam from atomic planes in a crystal. 

interference of light scattered at any other angle. The proof 
of this statement will not be given here, but it will be accepted as 
the basis of some further deductions. 

Only a small proportion of an X-ray beam will be reflected 
from any given plane of atoms in the crystal. Most of the 
beam passes through such a plane, and a small proportion of that 
which passes through will be reflected from the next parallel 
plane, and so on. This series of reflections gives rise to inter¬ 
ference effects, which may be quantitatively described, and 
furnishes the basis for a theory of the reflection of X rays from 
crystals. 

In Fig. 7, we represent a crystal with a beam of X rays traveling 
in the direction indicated by the arrow. The figure shows a sec¬ 
tion formed by cutting along the plane which is perpendicular 
to the planes of atoms in the crystal and which passes through 
the line AB which gives the direction of motion of the X rays. 
The lines a, b, c represent in sectional view planes of atoms 
in the crystal. From each of these planes, a small fraction of the 
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beam of X rays will be specularly reflected in the direction CA, as 
indicated in the figure. Now let us consider the wave front BD. 
The portion at B travels to A, and a certain fraction is reflected 
there. The portion at D travels to C, and the same fraction 
is reflected there. (So little is reflected at any one plane that 
we may consider that the original beam passes from plane to 
plane practically undiminished in intensity, and so the same 
amount is reflected from each plane.) The wave front moves 
from C to A and arrives at A a certain distance behind the part- 
that came from B. If this distance (ACD — AB) is equal to 
n\ wh(?re n is an integc^r and X is the wave length of the X rays, 
then the part ct)ming from D will arrive at A just in phase with a 
later wave from B, and we shall have reinforcement. But it may 
be readily seen that the distaru^e 

ACGH - AB = 2(ACD - AB) = 2n\, 

so that the portion starting at H will also be in phase at A; 
and so for X rays refk'cted from all planes below c. But if 
ACD ~ AB differs from n\ by only a very small amount, there 
will be waves in all possible phases^ meeting at A, and the result 
will be that cancellation will occur. So the reflections from 
individual planes of atoms destroy each other, and the result is 
that under circumstances like this no reflected beam of X rays can 
be observed coming from the crystal. Reflection can be observed 
only if the angle? B is such that ACD — AB = nX. But 
ACD — AB == 2d sin where d is the dist ance between planes. 
For if we drop AF perpendicular to EC, then it is seen that EF, 
which is equal to EA sin 6 or 2d sin 0, is equal to 

ECD - FD - ECD - AB, 

and we see from the figure that ECD == ACD. Therefore, we 
may write, as the condition for reflection from the crystal, 

2d sin 0 == nX, (1) 

^ This will be the case because only a very small amount of reflection takes 
place from any one plane and the light in the reflected beam is contributed 
by reflections from many planes, even deep in the crystal. The phase of the 
portion reflected from each plane may differ but slightly from that reflected 

from immediately neighboring planes, but when the whole reflected beam is 
considered it is seen that light in any given phase can be matched (and 
hence canceled) by light in just the opposite phase. 
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which is the well-known Bragg law of reflection, w may take any 
integral value that does not make sin 0 greater than 1, so several 
angles of reflection are possible, n is called ^4he order of the 
reflection.'' 

When X rays pass through crystalline slabs, diffraction phe¬ 
nomena also occur. This is the basis of the von liain* nu^thod of 
investigation of crystal structure. In this method, instead of 
using X rays of a single wave length, a beam containing a wide 
(continuous range of wave lengths is used. It is found that if a 
pencil of such X rays is passced through a crystal to a photographic 
plate the plate will show a heavy central spot, which is du(c to the 
X rays that have passed through without alteration in their 
direction, surrounded by a series of lighter spots due to X rays 
whose direction of propagation has boon changt'd by passage 
through the crystal. These doflect('d l)eams make ].)erf(H:tly 
definite angles with the original beam and the (‘ryslal axc's, and 
each of the deflected beams is homogeneous, ?^c., it (‘onsists of a 
single wave length only. So this method scdects out* not only 
particular directions for the defl('cted beams, but particular 
wave lengths. The theory of this phenomenon rests on the 
same general principles as the theory of reflection fi’om a crystal 
face, but we shall not consider the details. 

In a modification of the von Laue method, a monochromatic 
X-ray beam is used and the crystal is rotated. Refraction then 
occurs only for definite orientations of the crystal, and the 
refracted light goes off at certain definite angles. 

3.3. The Photoelectric Effect and the Corpuscular Theory of 
Light.—When ultraviolet light or X rays are allowed to fall on a 
metal, it is observed that electrons are emitted from the metal. 
These electrons emerge with various velocities, but with mono¬ 
chromatic light there is a certain maximum, depending upon th() 
frequency of the light, and most of the electrons mo^'e with a 
speed not very much lower than the maximum velocity. It is 
found that the kinetic energy corresponding to the maximum 
velocity is ^iven by the relation. 

^hv- Wo, (2) 

where A is a universal constant (Planck's constant, equal to 
6.628 X erg sec.^), which has an exceedingly far-reaching 

^ See footnote 1, p. 15. 
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importance in modern physics, and TFo is a constant that is 
characteristic of the particular metal used in the experiment. 
The number of electrons emitted from the metal per unit time is 
dependent on the intensity of the light, but the maximum energy 
(and also the distribution of velocities for any given metal) 
depends solely upon the frequency of the light and not at all on 
its intensity. If the frequency of the light is such that hv is 
less than TFo, practically no electrons are emitted, lihv = Tfo, 
the frequency is called the threshold frequency. The threshold 
frequency is in the visible or infrared for the alkali metals and in 
the ultraviolet for other substances. 

Elster and Geitel^ showed that the proportionality between 
the number of electrons emitted and the intensity of the light per¬ 
sisted even when the intensity of the light was cut down to 
3 X 10“® erg cm"^ sec”^ This is a very remarkable result. 
Since there are about atoms per sq. cm. at the surface of the 
metal, an electron emitted with an energy of the order of 1 elec¬ 
tron volt^ (1 electron volt being equal® to 1.602 X erg) 
would somehow have to collect, presumably from the incident 
light, energy equivalent to that falling in 1 sec. on the space occu¬ 
pied by 10^^ or 10^^ atoms. It is very difficult, on the basis of any 
wave theory, to see how this light could be collected, concen¬ 
trated, and transmitted to a single electron, especially as this 
does not occur when hv is only slightly less than Wq, Further¬ 
more, there is practically no time lag during which this collection 
of energy could occur, Marx and Lichtenecker,^ illuminating a 
sensitive potassium cell by light from a revolving mirror, showed 
that, when the time of illumination was reduced to sec., 
the proportionality between the number of electrons emitted 
and the intensity of light held even when the latter was reduced 
to 0.56 erg per sq, cm. per sec. 

These phenomena, however, as was pointed out by Einstein, 
all become very clear if we assume that light consists of cor¬ 
puscles moving perpendicularly to the wave front with energy 

» Elster and Gbitbl, Phys. ZeU,, 17, 268 (1916); see Hughes and 
DuBridge, ‘^Photoelectric Phenomena,” p. 31, McGraw-Hilf Book Com¬ 

pany, Inc., 1932. 

* An electron volt (or, less properly, a volt) is the energy acquired by an 

electron on dropping through a potential difference of 1 volt. 

® See footnote 1, p. 15. 

< Marx and Lichtenbckeb, Ann. Phynk^ 41, 124 (1913)., 
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depending on the frequency and equal, in fact, to hv^ and that 
the number of these corpuscles falling on unit area per unit time 
is proportional to the intensity of the light. An electron, then, 
may be ejected if it is struck by and receives the energy of one 
of these corpuscles, or light quanta, as they arc called. The 
electron requires an amount of energy equal to at least TFo to 
get out of the metal (the energy required may be greater than 
TFo if the particular electron that gets the energy is not right at 
the surface). The electron, therefore, emerges with kinetic 
energy equal to hv — TTo, or less.^ The number of electrons 
ejected will obviously be proportional to the intensity of the 
light. 

3.4. Reconciliation of the Wave and Corpuscular Theories of 
Light.—We have seen in the last few pages that there are two 
theories, which at first sight seem contradictory. How can light 
consist of waves and particles flying through space at the same 
time? Yet the one theory seems to be necessary to explain some 
phenomena, the other appears necessary to explain others. 
Some indication of the meaning of this apparent paradox is 
afforded by noting which experiments require the wave theory 
and which the corpuscular theory. As has been illustrated by 
the limited number of examples presented in this chapter, those 
experiments which Require the wave picture involve the 'propaga¬ 

tion of light, while the corpuscular theory is necessary to treat 
those which involve transfers of energy to individual electrons or 

atoms. A possible way to resolve the paradox lies in the hypo¬ 
thesis that light actually does consist of quanta or corpuscles, 
but that the motion of those corpuscles is guided by the waves. 

Let us return again to the interference experiment considered 
at the beginning of this chapter. The wave theory says that 
certain spots on the screen^ at C mil be light and others dark. 
The light corpuscles, therefore, move in such a way that they 
fall on the light spaces and avoid the dark ones. In other words, 
the density of light quanta at any point in space is proportional 

1 It is not strictly true that there is a definite maximum velocity, for 
there are some electrons in the metal that already have high velocities, 
and this velocity may be added to the velocity imparted by the light quan¬ 

tum. However, only a few electrons will be emitted with energies exceeding 

the ^‘maximum.” 

* See Fig. 6. 
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to the energy per unit volume which would be given by the wave 
theory. If the energy per unit volume at any point calculated 
by the wave theory is E then the number of quanta per unit 
volume at the same point is E/Zii', since the energy per quantum 
is hv, 

A rath('r curious situation ari; '>s if the intensity of light is very 
small. 8ui)pose, for example, that in the interference oxperi- 
imuit, th(‘ intensity is so small that only rarely is there even a 
single quantum between O and C. To speak of the density of 
quanta then has no meaning. But the energy density calculated 
from th(' wave theory still is» proportional to the probability per 
unit volume that we shall find a light quantum in any given ele¬ 
ment of voliinu'. If we w^ait a very long time, the fraction of the 
time that the given elermmt of volume contains a quantum will 
be profiortional to the energy density calculated from the wave 
theory. 

3.6. Wave Properties of Electrons.'—In Chap. II, we con¬ 
sistently treated electrons as particles. If, however, a beam of 
electrons is reflected from the surface of a crystal, a diffraction 
phenonu'non very similar to that found in the case of X rays 
may lx* observed. Various complications arise in the case of 
electrons vvliich are not important in the case of X rays; thus 
the electron does not penetrate into the crystal as readily as 
X rays, ajid so reflection takes place from only a few crystal 
layers; furtliermore, the energy of some of the electrons is 
changed owing to interaction wdth the atoms of the crystal, and 
other (‘fFe(d-s also occur owdng to the interaction of the electrons 
with the individual atoms of the crystal. It is beyond the scope 
of this book to deal in detail with these complicating factors, and 
we need emphasize only the important qualitative fact that the 
appearaiuic of diffraction indicates that electrons have a dual 
w {iv('-(!orpiiscular nature similar to light. 

Diffraction ph(‘nornena also occur when electrons of several 
thousand volts energy pass through very thin films of various 
crystals, j)articularly metals. The phenomena which occur in 

^ I'he wave quantum theories, to be considered in this and following 
chapters, are based on the work of de Broglie, Schrodinger, and Heisenberg. 

The early experimental work was due to Davisson and Genner and G, P. 

Tiiomsou and Reid. See Thomson, ‘*Wave Mechanics of Free Electrons,^' 
McGraw-Hill liook Company, Inc., 1930. 
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this case are very similar to those found in i.ho ease of X rays, 
and the wave length X of the electrons may be determined with 
rather good accuracy from such experiments, provided the dis¬ 
tances between planes of atoms in the crystal are known. These 
distances have already been determined by the help of X rays 
and density measurements. It has thus been found (as was 
already anticipated theoretically) iliat there is a (*onnection 
betwecm the wave length and the velocity v of the electrons, as 
follows; 

This formula is not limited to electrons, but can be applied 
to any body if the appropriate mass is used. 

Although this is iippareiitly of quite ditfercnt form from the relation 

between the energy and the frequency of light, it is really closely related to 

it. This may be seen if we accept the eciuivaleiice of energy and mass as 

deduced from relativity theory. According to this theory, mass and energy 

are interconvertible. For example, if an electron could be imagined to lx; 

annihilated, a corresponding amount of energy would have to appear in sonu' 

other form. On the other hand, if the energj^ of a body is incTeas(^d in any 
manner, its mass increases correspondingly. If all quantities arc expressed 

in e.g.s. units, the mass multiplied by the s(iuare of the velocity of light gives 

the corresponding energy. Thus for a light quantum, 

hp (4) 

where m is the mass of the light quantum and c the velocity of light. But 

p = c/X, where X is the wave length of the light, whence it is readily seen that, 

exactly the same relation that holds for the electron, as c is the velocity of 

the light quantum. Therefore, 

where M is momentum, for either light quant um or electron, lh(^ momentunj 
being equal to the mass of the body times its velocity in relativity theory 

as in classical theory. 

It is thus seen that there is considerable similarity between electrons and 
light quanta. Both of them maj^ be considered to be corpuscles whose 

motion is guided by waves. In spite of this, however, there are probably 

more points of difference than of similarity. One of the most important of 

these differences is due to the fact that an electron has a mass, and hence 
possesses considerable energy, even when it is at rest. When it is set in 
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motion, its mass increases, corresponding to the extra kinetic energy. If 
the mass of the electron when at rest is mo, then, according to the theoiy of 
relativity, its mass when it is moving with a velocity v is given by 

7/.* 77io( 1 (7) 

where c is the velocity of light. We maj'^ expand the square root by means 
of the binomial theorem, and if v is v'^ry small compared with c, we have the 
approximation 

= mo + -i- - 

Multiplying through by c* to get the energy gives 

mc^ -- 777oC* -f- 

that is to say, the energy is equal to the rest energy plus the kinetic energy, 
which has the usual form provided v is small enough compared with c. 
As V increases, this expression breaks down, and it is seen from (7) that m 
approaches infinity as v approaches c. c is thus an upper limit for v. How¬ 
ever, a light quantum has the velocity of light, and yet its mass is finite. 
This can mean only that the rest mass of a light quantum is zero. The 
energy of a light quantum is uniquely determined by its true mass. The 
energy of an electron is also determined by its mass, but since it has a fiixed 
rest mass and its velocity can approach but never reach c, its energy may 
just as well be considered to be determined by its velocity. 

3.6. The properties of the electron waves will be treated in 
bare outline only, giving just what is necessary for our purposes. 
The wave, considered as a function of the coordinates of the 
space in which the electron moves, will be designated by the 
symbol yp. We have already discussed one of its important prop¬ 
erties, namely, the connection between its wave length and the 
velocity of the electron. The term ‘^wave’^ and the mention 
of “wave length*’ already indicate to some extent the nature of 
the function It will be a sinuvsoidal function of the space 
coordinates, or a similar type of function which is periodic or 
nearly periodic. It may also be a function of time, and in this 
case it will be a periodic function of the time. However, in the 
cases in which we shall be interested, yp may be treated as inde¬ 
pendent of time—a function of the space coordinates only. 
It may be real or complex.^ We designate its conjugate complex 

^ It may be well to summarize the mathematical conceptions used here. 
The unit of imaginaries i is defined as the square root of minus one, — 1. 
Any multiple of this unit by a real number, as where 6 is real, is a pure 
imaginary. A complex number, such as a + where a and b are real, is 
the sum of a real number and a pure imaginary. The number a — hi is the 
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as In practically all the cases we shall have to consider, how¬ 

ever, ^ will be real, in which cash == 

The physical significance of the function \p is that it deter¬ 

mines the probability that an electron should be found at a given 

p(nnt in space. Now yp itself can be partly imaginary or nega¬ 

tive, while the probability that an electron will be found at a 

given place can obviously be only real and positive. This 

probability, therefore, cannot be determined by yp itself. The 

function ypyp*, however, has the right properties, and according to 

the theory, it is this product ypyp"^ which determines the probability 

that an electron be at a given point. This statement may be 

made more precise. Consider a region in space‘defined so that 

the x-coordinate lies between x and x + dx, the 2/-f‘Oordinat(^ 

between y and y + dy^ and the s-coordinate between z and 

z + dz. dXj dy, and dz are so small that the function yp has essen¬ 

tially a constant value yp{x,y^z) throughout the element of volume 

thus defined. Then the probability that an elecitron be found 

in the volume considered (or, if the density of electrons is 

high, the number of electrons per unit volume) will be propor¬ 

tional to yp(x^yyZ)yp*(x,y,z) dx dy dz. 

The function yp{XyyyZ) is determined as the solution of a certain 

differential equation, the wave equation, which may be found if 

the equation of motion of the electrons under the conditions of the 

given experiment is known. As will appear in the next chapter, 

it is not necessary to use this differential equation to find the 

wave function when the velocity of the electron under considera¬ 

tion is constant. It is necessary, however, when the velocity 

is not constant, and especially if it changes within a distance short 

compared with a wave length of the electron, under which con¬ 

ditions Eq. (3) naturally loses some of its meaning. 

In the following chapters, we shall consider the type of wave 

functions that occur in several special cases, though we shall 

endeavor to give a qualitative rather than a quantitative picture, 

and use a kind of hybrid of classical and wave theories. It 

must be noted that in a strict(^r theory even dynamical quanti¬ 

ties, Ijke energy and monn^ntum, must be defined in terms of 

the wave equation. 

conjugate complex of a -f hi. The product of a number and its conjugate 
complex is real. Thus 

(a + hi){a - bi) » a® - * o® - 6*(~1) * a* + hK 



CHi\PTER IV 

ELEMENTARY QUANTUM THEORY 

4.1. Nature of Atomic Spectra.—One of the most powerful 

means of investigating atoms and moleeules is the study of the 

light they emit or absorb, especially when they are in the gaseous 

state. Such a study has shown that not all frequencies are 

e3mittcd or absorbed by a given species of atom or molecule, but 

that in general there appear spectral lines of definite frequency. 

Each substance has its own characteristic set of spectral lines. 

It was early found that the frequencies of the spectral lines 

could be advantageously expressed as differences of certain 

quantities, called ''term values'^; this is the so-called "Ritz 

combination principle.” Thus suppose that for some given 

atom there was a series of term values ri, r2, ts, 74, such that 

Ti > 72 > 73 > t4 . . . ; then the following frequencies might be 

observed: 

Vu = Ti — 72, Pli = 7i — 73, Vii == 7] — 74, J'23 = r2 — 73, CtC. 

The utility of this scheme lies in the fact that it expresses a certain 

relationship which may be observed among the frequencies (thus 

in the example givefi, 1^12 + vzi = Pn) and that the number of 

term values necessary to describe a given spectrum is much 

smaller than the number of spectral lines. This latter state¬ 

ment holds true, despite the fact that, owing to certain "selection 

rules,” not all the spectral lines which might be expected from a 

given set of term values actually occur. 

On the basis of the quantum theory of light, outlined in the 

preceding chapter, these term values receive a simple inter¬ 

pretation if it is supposed that when an atom emits light it emits 

just one quantum. It is thus assumed that the term ♦values 

represent energy levels in the atom; this is described by saying 

that the atom is "quantized.” An atom, then, we infer, can 

have only certain definite energies; it can occasionally lose energy, 

dropping from a higher to a lower energy level, and emitting 
36 
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thereby a light quantum whose hv is equal to the difference 
between the energies of the atomic states. 

We may be a little more specific. Our picture of an atom 
supposes that it consists of a positively charged nucleus sur¬ 
rounded by electrons. These electrons must be moving in 
various paths or orbits about the positive nucleus; and we may 
assume that a stationary state^ of an atom is defined by the' 
conditions of motion of the electrons in that atom. Thus if an 
atom is in one of its higher energy’- states, tliis may be owing to 
one or more of its electrons having more energy than ordinarily. 
Such an atom is said to ]>e in an excited state. 

It is one of the triumphs of the wave theory of electrons that 
it has been abh^ to give an explanation of the cxist(‘nce of station¬ 
ary energy states in atoms, and in many cases it is possible to 
make an actual calculation of the allowed energy values. In 
order to do this, it is necessary to impose c(Ttain restrictions on 
the wav(^ function rp of any electron. In general, it is assumed 
that, in addition to being a solution f)f a certain type of differen¬ 
tial equation, it must be a continuous and single-valued function 
of the coordinat es a*, ?/, and z of the electron it represents, and 
it must be everywhere finite. These restrictions, reasonable 
though they are, must be taken as additional hypotheses, whos<^ 
claim to (correctness, as the claim of the wave theory as a whole, 
rests on the fact that by means of them it is possible to explain 
the experimental facts. Such a theory, it should be emphasized, 
is of value, not because it is to be considered as more important 
or more fundamental than the experimental facts, but because 
it is able to explain a great many experimental facts and bring 
out the relationship between phenomena which at first sight 
appear to be unrelated. 

4.2. Theory of an Electron in a ‘‘Box,”—The way in which the 
assumptions just outlined make it possible to explain the quan¬ 
tization of atoms will be illustrated by considering a simple case, 
which does not correspond to any known atom, but which brings 
out the general principles involved very nicely. Suppose an 
electron^ is moving in the potential energy field shown in Fig. 8. 

^ The term ‘^stationary state'' is often used instead of “quantum state," as 

descriptive of a condition in which an atom can exist for some length of time. 
* The same considerations will apply to any other particle if the proper 

mass is used. 
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In the region between a: = 0 and x ~ a, there is no force acting 
on the electron, and the potential is constant. At x = 0 and 
X == a, the potential suddenly rises to infinity. The electron is 
thus enclosed between two potential walls, and so nriay be said to 
be in a box. In a rectangular three-dimensional box, the range 
of motion of an electron vdll also be confined in the y- and z- 

directions. It will be supposed 
that at 2/ = 0 and y = h and at 

8 8 2 = 0 and ^ = c the potential also 
suddenly rises to infinity. The 
electron will then be confined to 
that portion of space for which 
0 < X < a, 0 < 2/ < 6, and 0<z<c. 

A<^cording to the classical theory, 
-jj-^-the electron will move with a con- 

X stant velocity till it strikes one of 
Fig. 8.--~Pot,ential energy curve for 

an electron in a box. , 7 . , , 
poiient of the velocity, though 

remaining the same in magnitude, will reverse its direction, and 
this process will recur indefinitely. 

Let us now consider the corresponding wave picture. We shall 
(leal first with the x-component of the velocity of the electron. 
To indicate the possibility of doing this, let us consider a simple 
illustration. Suppose an electron is moving in some arbitrary 
direction in space, making an angle a 

wnth the x-axis, and suppose that the 
distance between the wave fronts, i.e., 
the wave length, is equal to X. The 
electron, of course, moves in a direction 
perpendicular to the wave front, and 
the distance between wave fronts is 
measured along this perpendicular. It 
is readily seen (Fig. 9) that the distance 
between w-ave fronts along the x-axis 
is given by X* ~ X/cos a. Since the x-component of velocity is 
given by Vx — V cos a, it is seen that the formula (3), Chap. Ill, 
holds for the components of the velocity and the wave length as 
well as for these quantities themselves. Thus the x-component of 
the velocity can be treated as separate from and independent 
of the other components. 



Sec. 4.2 THEORY OF ELECTRON IN A *^BOX’* 39 

However, a set of wave fronts such as indicated in Fig. 9 can¬ 
not apply directly to an electron enclosed in a box.' For Fig. 9 
implies a definite direction of motion for an electron at any par¬ 
ticular point in space, whereas in a box, an electron changes its 
direction of motion every time it strikes one of the walls. But 
the {K)int that the discussion was intended to illustrate, namely, 
the possibility of considering the x-y y-, and 2;-components of the 
motion as independent, still holds good. In a rectangular box 
a certain simplicity is introduced because, although a component 
of velocity changes direction on a collision with a wall, it does not 
change in magnitudcy and hence the wave length associated with 
it does not change. Furthermore, if the potential energy within 
the box is constant, as has been assumed, the magnitude of the 
x-component of the velocity and hence the corresponding wave 
length are independent of x. Since this is true, the wave function 
of the electron will be a simple sinusoidal function of x; it may 
be written in the form 

, . . 2irx . rj 27r:c 
\f/ = sm -r-h D cos - 

Ax A X 
(1) 

where A and* B are constant amplitudes (avssumed real, so that 
^ and the electron cannot be in the region 

outside X = 0 and x == a. Therefore, 

^ = 0, if X < 0 or X > a. (2) 

The only way the wave function can be continuous (one of the 
conditions that is imposed upon it) is for the right-hand side of 
(1) to be 0 for X = 0 and x = a. If it is to be 0 at- x = 0, we must 
have B = 0. If it is to be zero at x = a, we must have 

or 

(3a) 

27ra 
(3b) 

where n is a whole number giving the number of half waves 
between x = 0 and x = a; n is called the ^'quantum number^’ 

^ At least, as the next sentence indicates, they cannot describe a stationary 

state of the electron. 
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of the particular state that it defines. Thus the following con¬ 
dition is imposed on X*: 

X. = (3c) 

From Eq. (3), Chap. Ill, this is equivalent to the following 
condition on the velocity: 

_ nh 

~ 2am 

For the kinetic energy, we have 

imvx^ 
Sa^m 

(3d) 

(3e) 

It is thus seen that the part of the kinetic energy due to the x-corn- 

ponent of the velocity can have only certain definite values; all others 

are excluded by the conditions imposed upon the wave functions. 

It is usual to designate the allowed wave functions as ^n, giving n 

the appropriate value to indicate to which one of the allowed 
fuiKitions reference is had, though if no confusion is possible the 
subscript’may be omitted. The allowed functions are generally 
called eigenfunctions,'^ or ^^characteristic functions," though 
also referred to simply as ‘‘wave functions." 

The function is of course a function of x only. It is, in fact, 
really only a factor of the wave function, that part dealing with 
the a;-coordinate only, and dx may be taken as representing 
the probability that, if an electron is in the state n, it will be 
found between x and x + dx. This interpretation makes it 
possible to evaluate An, the amplitude of the eigenfunction ^n. 
The probability that the electron will be between a: = 0 and 
X = a is obviously equal to 1, since the electron must be some¬ 
where in this range. Therefore, 

dx = sin2 dx == 1. (4) 

Now sin2(27rx/Xa.) dx is, by direct integration, equal to a/2, 

provided a is a whole or half integral multiple of the wave 
length X»; if X, has one of the values given by (3c), this relation, 



Sec. 4.2 THEORY OF ELECTRON IN A ‘'BOX' 41 

together with (4), gives 

A. = (6) 

We may, therefore, write 

= (6) 

When is given the value indicated in Eq. (5), fn is said to be 
normalized. 

Flo. 10.—Wave funntions for the first three energy levels of a particle (one 
dimensional) in a box, and the squares of the wave functions. 

As has already been noted for 2/ < 0 and y > 6 and for 2 < 0 
and z > Cj the potential energy also becomes infinite. Restric¬ 
tions similar to those found for the a;-part of the kinetic energy 
exist for the y- and 2-parts, and only very definite values of that 
part of the energy contributed by the motion in these directions 
are possible. In other words, its entire energy is quantized. 

Corresponding to the three directions of space, there are three 
wave functions, similar to that defined by Eq. (6), say 
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Here the notation has been changed slightly: Xn is the same func¬ 
tion previously designated as ypn- In order to specify exactly 
the state of the electron, it is necessary to give three quantum 
numbers n, A;, and 1. Once these numbers are given, dx gives 
the probability that the electron be between x and x + dx^ Yk^ dy 

the probability that it be between y and y + dy^ and dz the 
probability that it be between s and z + dz» The probability 
that it be simultaneously between x and x + dXj y and y + dy^ 

z and z + dz is given, according to a well-known theorem of the 
theory of probability, by the product of the separate probabilities, 
namely, Xn^Yk'^Zi^ dx dy dz. We may therefore write for the 
complete eigenfunction, which is a function of x, y, and 2, 

tf/nkl =* XnYkZi, (8) 

and it is seen that dx dy dz then gives the probability that 
the electron be in the specified volume element. 

It may seem strange that, when the electron is in a certain 
definite energy level, tliere are certain places where there is no 
probability of finding the electron and other places where there 
is a large probability of finding it. It seems at first sight con¬ 
trary to the usual conception of the nature of mechanical motion. 
There is, however, strong evidence from a variety of sources 
that the wave picture is correct, and that the commonly held 
ideas are merely approximations which are, however, very good 
if the bodies that are considered are large. For such a small 
body as an electron, these approximations break down. 

It is also evident that the picture of an electron in a stationary 
state (i.e., a quantized energy level) is quite different from our 
ordinary picture of a moving body, in that there is a probability 
of finding the electron at various places which extend all the way 
from one side of the box to the other, and the motion of the elec¬ 
tron is not brought at all into evidence by regarding the waves 
themselves. It is possible, however, to reproduce the appearance 
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of a moving electron, by means of the waves, and the way in 
which this is done may be briefly outlined. As has been stated 
above, for our purposes any dependence of the wave functions 
on the time can in general be neglected, but in order to reproduce 
this appearance of a moving electron, it is necessary to consider 
the time dependence of the wave functions. Without going 
into too great detail, we may note that this is accomplished^ by 
multiplying ^nki by where Enki is the energy of the 
state nklj t is the time, and- f = \/ — 1. Since, by a well-known 
theorem in function theory,* 

^2.iE.uit/h ^ {2irEnkit/h) + f sin (2TrEnkit/h), 

it is seen that this exponential is a periodic function of the time 
with frequency Vnki = Enkilh^ the customary relation between 
the energy of the particle and the frequency of the waves. Now 
it is possible to set up an expression for the wave function of the 
system, of the form 

^ (9) 

by choosing the proper values of the constants Cnkh ^uch that 
at time < = 0 the electron is confined to some limited region of 
space, and such that the center of gravity of this wave packet 
will move with a certain velocity. Such a wave packet thus 
behaves very much like a moving electron, except that it has a 
tendency to spread, f.e., the region in which the electron is likely 
to be found gets larger and larger. But this effect is easily 
accounted for, since the ^nA-z for various values of n, k, and Z, and 
hence corresponding to various energiesy are included in the sum 
(9), Thus it is not certain that the electron represented by the 
wave packet has a definite velocity, but there is only a certain 
probability that its velocity lies within any given limits, just 
as one can only say that there is a certain probability that the 
electron is located within certain limits of space. It is found 
that the smaller the space region in which there is an appreciable 
probability of finding the electron, the greater is the range of 

^ This is discussed in some detail in Condon and Morse, Quantum 
Mechanics,*^ p. 25, McGraw-Hill Book Company, Inc., 1929. 

® See footnote 1, p. 34. 
* See, e.g.y Slater and Frank, ^introduction to Theoretical Physics,'' 

pp. 22-23, McGraw-Hill Book Company, Inc., 1933. 
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possible velocities. If the electron is confined to a region of 
space whose linear dimensions are of the order of lO*”® cm., the 
range of probable velocities is quite appreciable. If, however, the 
electron is confined to a region whose linear dimensions are of 
the order of 10”'*, then the range of probable velocities is, or at 
least may be, extremely small. Ordinarily, distances less than 
lO”'* cm. cannot be measured, and in general, experiments are 
designed in such a w'ay that the probable region for an electron 
is at least this large. If this is so, it is quite possible for the range 
of probable velocities to be w^ithin the limits of experimental 
error. In such a (*ase, the wave mechanics gives essentially the 
same answer to any problem as ordinary mechanics. Although 
we can say only that there is a certain probability that the electron 
is in such and such a position, and has such and such a velocity, 
there is a very small probability of finding the electron outside 
a certain region the size of wdiich is so tiny that it would be beyond 
the power of our instruments to measure it. And the position, at 
any time, of the region in wdiich the electron must very probably 
be may be calculated to within a very small error by assuming 
that it is moving with a certain velocity, which is therefore 
identified witli the velocity of the electron. However, when 
dealing with atoms and atomic distances, the situation is very 
different, and when an electron is in a certain stationary state, 
nothing more can be said about where that electron is than 
may be learned from the eigenfunction belonging to that station¬ 
ary state. In other words, nature forbids us to know too much 
about any electron. This principle, due to Heisenberg and 
known as the ^'uncertainty principle,” has been discussed quanti¬ 
tatively in numerous treatises on wave mechanics,^ but it is 
outside the scope of this book to go into it beyond the cursory 
and qualitative discussion that has just been given. 

4.3. The Number of Quantum Conditions and the Separation 
of Variables.—The example of the particle in the box illustrates 
a general principle of considerable importance, which will be 
applied later in this chapter. It will have been noted that three 
quantum numbers, corresponding to throe independent quantum 
conditions, are necessary to define the state of the system. This 
corresponds to the fact that three coordinates are necessary to 

* See, e.g.f Hbisenberg, **Physical Principles of the Quantum Theory,” 
University of Chicago Press, 1930. 
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determine the position of the particle in space. In general, the 
number of independent conditions necessary to define the state 
of a system (which may consist of more than one particle or be 
subject to various constraints) is equal to the number of coordi¬ 
nates necessary to completely specify the positions of all parts 
of the system in space. This number is described as the number 
of degrees of freedom of the system. The coordinates used need 
not necessarily be rectangular coordinates but may be polar or 
other types of coordinates; however, the number of coordinates 
necessary to specify the state of the system is independent of the 
kind used. 

The application of the quantum conditions is readily effected 
only if the equations of motion of the system are separable in one 
set of coordinates or another. The equations of motion of the 
particle in the box, for example, are separable in the ordinary 
Cartesian coordinates x, and z. This evidences itself in the fact 
that the kinetic energy (the only part that can vary) can bo 
written in the form imvx^ + imvy^ + and that each part 
has a value which is constant in the course of the motion, and 
which is entirely independent of the other parts. There are 
thus three independent constants of the motion. There are other 
constants of the motion, c.^., the absolute values of the compo¬ 
nents of the momentum in the three directions, but these are not 
independent of the kinetic energy. It is seen that the three 
independent constants of the motion are just the quantities that 
are quantized and, in general, when desirous of finding the quanti¬ 
ties to be quantized, one will look for the independent constants of 
the motion. These may be energies, momenta (in the general 
sense of Appendix I), etc., but the number of independent con¬ 
stants will be equal to the number of degrees of freedom of the 
system. 

4.4. The Quantization of Rotational Motion.—We shall now 
turn our attention to the wave functions and quantization of 
another highly idealized mechanical system. Suppose that a 
body of mass m is attached to a rod of negligible mass and con¬ 
strained by it to move in a circle of radius r about a fixed point. 
The position of the body is described by the angle x made by the 
rod with a fixed direction in the plane of the circle in which the 
mass is constrained to move (see Fig. 11). Since this variable 
completely describes the position of the system, it is a system with 
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one degree of freedom, requiring one quantum condition to fix 
it8 state of motion. 

Once the body is set in motion, it will continue to move with 
constant angular velocity. This suggests setting up an expres¬ 
sion for the wave function similar to Eq. (1), hut involving the 
angle x instead of the distance x. Thus we write 

^ = A sin (10) 

where is what may be called a wave angle. (We refrain from 
using the more general form A sin {2Trx/\) + B cos (27rx/Xx), 
for this is quite equivalent to WTiting A sin (2xx/Xx + b) where 6 
is another constant, which can be eliminated simply by changing 

Flo. 11. 

the starting point for the measurement 

of X.) 
Proceeding on tlu^ basis of an analogy 

which will become evident immediately, 
w(^ set 

Jl ^ h 

mvr (11) 

(where x is the angular velocity^- Multiplying through by r 

gives X;^r = hjmv. Now is a length—it is the length of arc, 
on the circle described by the moving body, which is included 
between wave fronts, ^.e., between the successive angles that 
correspond to maxima, let us say, of yp. It is seen that this wave 
length has the usual relation to the velocity of the particle. 

It may appear that the introduction of Eq. (10) and the use 
of a wave angle which obeys Eq. (11) are arbitrary procedures. 
This is quite true. It must be remembered that the object of 
theoretical research is not to give an ultimate explanation of 
experimental facts, but to find relations between them. The 
usual procedure is to make arbitrary assumptions and find out 
where they lead. They are satisfactory if they give results 
consistent with experiment, and they are useful if they make it 
easier to correlate and understand the relations between different 
experimental facts. It is often desirable to make as few assump¬ 
tions as possible and from them to derive as many experimental 

^ In general the dot represents differentiation with respect to time, e. g., 

X * dx/dU 
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facts as, possible. Thus it could be shown that Eqs. (1) and (10) 
are both solutions of special eases of a general wave equation, the 
assumption of the validity of which could be taken as our starting 
point. Tor our purposes, this would introduce unnecessary 
mathematical abstractions, and we have contented ourselves with 
a less ambitious program in which special assumptions are intro¬ 
duced for special cases. These special assumptions are still 
useful in correlating the facts, and an attempt is made to show 
that they are not entirely distinct, but that there are definite 
relations between the assumptions made in various cases—that 
they at least have a certain similarity. The results achieved in 
the special cases will also be seen to have certain characteristics 
in common. In other more complicated cases, then, we shall 
be content to go directly, or almost directly, to the results, 
merely showing that they still have the common characteristics, 
and referring the student to more detailed treatises for a more 
rigorous treatment. 

Returning from this digression, let us proceed to the quantiza¬ 
tion of rp. It has previously been noted that a wave function 
must be single valued and continuous. In order for ^ to have 
these properties, it must repeat itself on going around the circle; 
that is to say, increasing the angle x by 2t should bring back the 
original value of which means that 

sin 
27r(x + 2t) 

\ . 
(12a) 

This gives 

27r(x + 27r) . 

rr 
2tx 

+ 2irn, (12b) 

where n is a whole number, giving the number of waves in the 
circle. 

From this, it is seen that 

Xx = (12c) 

and the energy, which is equal to imv'^ = is from Eq. (11) 
given by 

(12d) 
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In this case, the value n = 0 is a possibility. This makes 
infinite, and ^ is simply a constant^ (and so, obviously, single 
valued). E and the momentum are zero, which is consistent 
with the infinite wave length. Furthermore, each of the other 
energy levels is double, i,c., really consists of two coincident levels, 
since the body can rotate either clockwise or counterclockwise. 

The results just obtained may be expressed in a useful form in 
terms of the angular momentum. Inasmuch as the angular 
momentum is defined (sec Appendix I) avS the product of (1) the 
mass, (2) the distance r from the fixed point, and (3) the com- 

])onent of velocity perpendicular to 
the direction of the line joining the 

n«0 fixed point to the moving body (in 
this case, the velocity itself), it is 
given by 

= mrv == mr^x. (13) 

Using (11) and (12c) 

(14) 

Fig. 12.—Wave functions for 
the first throe quantum states of 
the rotator. 

for the /ith quantum state. 
It is thus seen that the quantiza¬ 

tion may b(? expressed in terms of 
as an independent constant of the 
motion, as w'ell as in terms of E; 

these expressions are, of course, not 
independent, one being derived from 
the other. 

It may appear .strange that in the preceding discussion the starting point 

for the measurement of the angle x should be arbitrarily chosen, for that 
means that the maxima and minima of the probability function occur at 

arbitrary positions in space, which, unlike the case of the particle in the 

box, are not determined by the actual physical situation. The answer to 
this objection is to be found in the fact that the expression for ^ given in 

Eq. (10) is really not quite complete. Actually, this is a problem in which 
the physical reality can be better represented by assuming ^ to be complex, 
writing instead of (10) 

-f- Ai cos 

Uf ^ is constant Is obviously infinite, and Eq, (10) does not hold. 
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which may be shown to be a solution of the wave equation as well as expres¬ 

sion (10). It must be remembered that the general form of the probability 
function is rather than In this case, 

= A sin — Ai cos 
\x • Ajf 

and 

H'* = = A^, 

which is independent of x and states that the probability of finding the 

particle anywhere is independent of the angle. Obviously the new expres¬ 

sion for has the same periodicity as before, and Eqs. (12b), (12c), and all 
equations based on them will be unchanged. For the quantization of the 
motion, the important fact is the existence of a wave angle and the con¬ 

ditions on the wave function, not the exact form of the wave function. The 

latter may be of importance in other connections, ])ut need not be considered 

unless the particular experiment under consideration requires it. 
• 

4.6. Quantization of the Space Rotator.—In Sec. 4.4, we dealt 
with a two-dimensional rotator, t.c., oiu^ that was constrained to 

move in a definite, fixed plane. The results may be extended to 
the case of a rotator which is similar in every respect, except that 
it is free to move in space. The position of the revolving mass 
may be described by means of a system of polar coordinates, 
with origin at the fixed center of rotation, such as is shown in 
Fig. 13. The distance of the rotating body from the center of 
rotation is, of course, determined by the length of the weightless 
rigid rod which connects it to this center. Its position, desig¬ 
nated as P in Fig. 13, is then completely determined by the angles 
used in polar coordinates, namely, the angle 6, made by the line 
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OP with the axis QOQ', and the angle 0, made by the intersection 
of the plane QPQ' and the plane II (which is perpendicular to 
QOQ' at the origin) with an arbitrary line OR in IT. 

Since two coordinates ^ and d are necessary to determine the 
position of the rotator, it has two degrees of freedom. It is 
therefore necessary to find two independent constants of the 
motion in order to effect the quantization. 

One of these constants of the motion may be taken as the 
total angular momentum. This is constant, as in the example 
of the plane rotator. In fact, once the body is set into motion, 
it will continue to move in the same jolane until it is disturbed, 

for there will be no forces at right angles 
to its direction of motion tending to pull 
it out of the plane determined by its 
direction of motion and the rod joining it 
to the origin. 

The angular momentum may be taken 
as a vector quantity perpendicular to 
the plane of motion, and of magnitude 
determined, as in Sec. 4.4, as the product 
of the distance r of the body from the 
center of rotation, its mass m, and its 

Fig. 14.—Projection of velocity Tx where X is the angular velocity 
poSr^axis (x 1=^ the angle in the plane of revolution). 

The direction of the angular-momentum 
vector is such that, if the direction of rotation of the rotator 
appears counterclockwise to the observer, the angular-momentum 
vector points toward the observer (see Fig. 78, Appendix I). 
Giving the angular momentum thus determines the plane of the 
rotation and its tilt in space, as well as the speed of the rotation. 

It should be noted that when we say that the angular momen¬ 
tum is quantized, we refer to its magnitude. Assuming the 
vector to be quantized would be equivalent to quantizing the 
three components, and there are only two quantities to be 
quantized. The second constant of the motion to be quantized 
may, to be sure, be (and generally is) taken as the projection 
or component of the angular momentum along the polar axis. 
This projection is called 

It is seen, as indicated in Fig. 14, that will not uniquely 
determine the direction of the angular-momentum vector, since 
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the latter may describe a cone and still give the same value of 
P4,. This simply means that these various directions are allowed 
by the quantization, and the wave description of the phenomenon 
ran in fact be used to give the probability of any such direction 
once Pj( and p^ are determined. 

More disturbing, perhaps, is the fact that the quantization 
depends on the polar axis which is, of course, arbitrarily chosen. 
There is thus something arbitrary about the process of quantiza¬ 
tion. However, this arbitrariness is simply an expression of the 
fact that it is not possible to distinguish between the directions in 
space unless they can be correlated with some physical reality. 
Under some circumstances, there may be a physical reason 
for selecting some particular polar axis. Suppose, for example, 
the rotating body were electrically charged. It would then 
interact with a magnetic field. Such a magnetic field would, 
according to the classical theory, cause the angular-momentum 
vector to process about an axis in the direction of the field, 
t.c., to revolve about the axis at a constant inclination, forming 
a cone and leaving the component of the angular momentum 
in the direction of the field constant. In a case like this, it is 
clear that the polar axis must be taken so as to coincide with the 
direction of the field, since p^ should be the component to remain 
constant. Even an extremely small magnetic field, whose 
effect on the energy of the system is practically vanishing, would, 
according to classical theory, cause a precession which would 
eventually cause the vector to take all positions in the cone. 
Then p^ and would be the only two independent dynamical 
quantities to remain constant, and, therefore, only these two 
could conceivably be quantized (at least other quantities would 
not be independently quantized). If the magnetic field is zero, 
then it is, to be sure, possible to choose the polar axis arbitrarily. 
But the wave functions for one set of axes can be expressed in 
terms of the wave functions for another set; if there is a certain 
quantum state for which the projection of the angular momentum 
on the polar axis has a given value in one set of axes, this means 
that there is a certain probability that it have any giv^en value if 
taken along some other polar axis. 

This statement may seem paradoxical, but the fact is that it is 
not possible to define the axis of quantization without either 
expressed or implied reference to some definite experiment which 
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measures along that axis, and it so happens that it is not 
possible to perform an experiment that will give information 
about the projection of angular momentum on more than one 

axis at a time. This is another aspect of the 
uncertainty principle, and will be discussed 
further in Chap. VI, after the consideration 
of some actual atomic systems. 

The polar axis having then been deter¬ 
mined or arbitrarily selected, it is desired to 
know the actual values of wdiich 
are allowed by the quantization. In this 
case, the wave function depends upon the 
two variables <#> and 0, and it may be shown, 
by considering the differential equation of 
which it is a solution, that it is, indeed, a 
product of the type 4>(</>)0(^), where ^(</>) 
depends only on <i> and Q{0) depends only on 
6. However, the momenta and velocities 
involved, when expressed in terms of 0, 0, <j>, 

and 6j are sufficiently complicated so that it 
Fig. 15.—Projection would be difficult to make any predictions as 

In ^thTs'^d^iairam 7 t Or Q(9) without Solving 
taken as a vector with the wave equation (though it does turn out 

jOTtions”on She a“xL'*Me that «>(<#.) is a simple sinusoidal function), 
shown, which are whole It will be necessary to merely give the results 

Wh.*°‘Thllen^h8"of oase, and to show later that they are 
the projections are the at least consistent with certain general rules 
values of mi. which will be developed. It is found that 

and P4, may have the following values: 

p, = VW+T)^> (15) 

where Z = 0, 1, 2, . . . 
and 

(16? 

where^ me = ~Z, — Z + 1, , . . , 0, . . . Z — 1, Z. 
The limit on the possible values of mi follows from the fact that 

' Do not confuse the quantum number mi with the mass m. 
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cannot, being a projection of be greater than absolute 
value. It is seen that when the value of I is fbced, p^ is determined 
and there are 21 + 1 possible values of p^. The situation for 
/ = 3 is illustrated in Fig. 15 by means of a vector diagram. 

The energy of the rotator that we have been considering is 
determined by p^. The kinetic energy is and by Eq. (13), 
which applies equally well here, this is equal to 'p^l2mr'^. As 
there is no potential energy the expression for the energy becomes 

F = (17) 

The value of mi has no influence on the energy; mi simply deter* 
mines the tilt of the plane of revolution with respect to the polar 
axis. 

4.6. Quantum States and Phase Space.—In the preceding 
pages, the motion of a particle under various conditions of 
constraint has been considered. In See. 4.2, the case of a free 
particle (^’.e., free aside from the fact that it was confined in a 
box) was treated, and the particle had three degrees of freedom; 
in Sec. 4.4, the case of a particle constrained to rotate in a plane 
at a definite distance from a fixed center was considered—this 
particle had one degree of freedom; finally in Sec. 4.5, a particle, 
constrained to rotate a definite distance from a fixed point, but 
free as to its plane, and having, hence, two degrees of freedom, 
was treated. In the case of the free particle, the position of the 
particle was given by the three coordinates x, y, z with corre¬ 
sponding momenta Px, Py, and p*, which could be written in 
terms of the velocities as 

Px = mx, 

Vv =* rny, 

In the case of the plane rotator, the position of the particle is 
described by the single coordinate x, and the corresponding 
momentum (angular momentum in tHs case) is given by 

Vx ~ wr^x. 

In the case of the space rotator, the position of the particle is 
given by the polar angles <t> and By and again there are corre- 
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spending momenta. The momentum corresponding to <i> is ju{=rt 
the angular-momentum projection already considered. In 
terms of the velocities and coordinates, it is given by 

P0 = mr2<^ sin 2 6, (18) 

as is shown in Appendix I. Corresponding to S is a special 
momentum pe which is given by 

Pe = mr^6 (19) 

(see Eqs. (7c) and (7b) of Appendix I). 
If there is but a single particle, there cannot be more than three 

degrees of freedom. However, in a gen¬ 
eral case, involving more than one 
particle, there may be any number of 
degrees of freedom. If there are N de¬ 
grees of freedom, which means that it 
requires N independent coordinates to 
describe the position of all parts of the 
system completely, there will be, cor¬ 
respondingly, N momenta. The N coordi¬ 
nates do not need to be simple rectangular 
or polar coordinates, and the correspojid- 
ing momenta may be very complicated 
functions of the coordinates and velocities. 
The number of coordinates and momenta 

does not depend, however, on the way the coordinates are set up. 
Suppose, having a system with N degrees of freedom, we con¬ 

struct a new space with 2N dimensions, the rectangular coordi¬ 
nates of which are the coordinates and the momenta of the systenl. 
Such a space is called the ‘‘phase spaceof the system; It is 
important to note that in the phase space for the space rotator, 
for example, the values of such quantities as 0, pe are 
marked off on axes which are set up at right angles to each other. 
In a 2JV-dimensional space, it is, of course, possible to set up 
2N mutually perpendicular axes, though it is not possible to 
draw a figure that will adequately illustrate the situation. In 
Fig, 16, however, an attempt is made to bring out the essential 
particulars by showing the axes in the phase space for the plane 
rotator. It will be noted that the axis for the angle x is limited 
to a length of 2w, because the angle ranges only from 0 to 2jr, 

Fig. 16.—Phase space for 
plane rotator. Positive and 
negative pxs correspond to 
the two directions of rota¬ 
tion. 
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The usefulness of the phase space will become evident from the 
following considerations. According to classical mechanics, the 
state of a dynamical system at any time may be represented by a 
single point in an appropriate phase space, as that determines the 
g\s anii p^s of the system, and from the and p^s the position and 
velocity of every particle in the system may be calculated. The 
motion of the system would then, according to classical theory, 
be determined for all time,^ arid this motion of the system could 
be represented by a corresponding motion of the phase point. 
According to the wave mechanics, however, which deals in 
probabilities, one cannot trace the behavior of the system in such 
detail, but if a system is in a given stationary quantum state, 
we may say in a general sort of a way that it is confined to a 
certain region of the phase space. In general, it may be stated 
that in a system with N degrees of freedom a quantum state is 
equivalent to a hypervolume of 2N dimensions in the phase space 
equal in magnitude to (It may be readily verified that the 
dimensions of h are the same as the dimensions of a coordinate 
times the corresponding momentum, namely, energy times time, 
so the dimensions of are correct for the phase space.) 

This may be illustrated by a consideration of the example dis¬ 
cussed earlier in this chapter, the motion of a particle in a “box.^^^ 
In this case, as noted above, there are three coordinates—the 
ordinary Cartesian coordinates—and the three corresponding 
momenta, so the phase space is six dimensional. It is possible 
to deal, however, with the two-dimensional sub-phase spaces, each . 
of which is defined by the pair of axes representing a coordinate 
and its corresponding momentum. Consider first the subspace 
defined by x and p*. p* will be positive if the particle is moving 
toward larger values of x, negative if it moves in the opposite 
direction. As the particle moves along, in the nth quantum 
state let us say, its p* remains constant, according to the classical 
picture, till the particle comes to one end of the box, when it 

^ It is a well-known principle in the classical mechanics, arising from the 
fact that the equations of motion are second-order differential equations, 

that if the mutual positions and velocities of all parts of a system are 
known, the state of the system may (at any rate in principle) be foretold for 

any future time. 

* Another example is discussed by Sommerfeld, ** Atomic Structure and 
Spectral Lines,” 3d English ed., vol. 1, p. 78, Methuen & Co., Ltd., 1934. 
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reverses sign. Thus the representative point in the two-dimen¬ 
sional sub-phase space will have a path such as is shown in Fig. 17 
(solid lines ABDEA). Equation (3d) page 40, gives the a;-com- 
ponent of the velocity of the particle, but it does not, of course, 
take into account the sign, giving only the absolute value. Vrom 
(3d), the absolute value of px when the particle is in the nth 
Q state will be given by 

When the particle is in the 
(n — l)th state, the path of the 
representative point will be given 

^ by the dotted lines A'B'D'E'A' 
^ of Fig. 17. The space between 

the two lines, shown shaded in 
Fig. 17, may be taken as the 
measure of the region in the sub- 
phases space occupied by one 
quantum state. It is equal to 

Fio. 17.—Phase diagram for par¬ 
ticle in a box (one dimensional). In 
the nth quantum state the particle 

X a = A. 

follows the path ABDEA, the area Af j 
enoloaed being the value of /p.dx *^6 y and 2 
(special case of /pdg—see p. 57) for motions of the particle will be 
the motion of the particle in the nth onrl 
quantum state. quantized and occupy a region 

equal to h in their respective 
subspaces. The areas in the x, y, and z sub-phase spaces will all 
be perpendicular to each other and may thus be considered as the 
projections of a six-dimensional space whose hypervolume is hK 

This result may be used to find the approximate number of 
quantum states in any designated region of the six-dimensional 
phase space. We shall illustrate this by obtaining a result that 
will be found useful in later chapters. We shall calculate the 
approximate number of quantum states for a region of the phase 
space for which the total kinetic energy 

+ P.* + P.“) 

(which is, in this case, the total variable energy) is less than some 
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given value To. The volume in the phase space for which the 
energy T is less than To may be taken as the product VPo of 

two factors, a space factor V, and a momentum factor Pq, V is 
naturally equal to abc, where a, 6, and c are the lengths of the 
sides of the box, t.c., V is the volume of the box. It is seen from 
Eq. (20) that T is constant on the surface of any sphere in the 
momentum space, the radius of the si)here being \/2Tm, which 
is the magnitude p of the momentum vector (see Fig. 18). 
The volume of the sphere bounded by the To surface is 

iirpo^ - i7r{2Tomf^ = Po. 

The number no of quantum states in this region for which the 
energy is less than To is thus given by 

no=PoVh~^ =: iw{2Tom)^'^Vh~\ (21) 

It is convenient, however, whenever possible, to consider a 
two-dimensional projection, as 
was done with the example just 
considered. In general, the hy¬ 
pervolume of a quantum state 
in a 2iV-dimensional phase space 
can be thought of as having a 
cross section of area h on each 
of N mutually perpendicular 
planes, determined by the axes of 
a coordinate q and its conjugate 
momentum pq. This relationship 
may be expressed in terms of the 
phase integral, which is defined 
as Jpqdqj where the variable of 
integration is allowed to range over the values taken during 
one period of the motion, i.e., until it returns to the starting 
value. This integral represents an area on the pq-q plane. Thus 
in the case of the particle in the box, it is clear that the area 
OABC (see Fig. 17) is the contribution to the integral for the 
motion of the particle from one side of the box to the other, 
whereas the area CDEO is the contribution to the integral for the 
reversal of the motion and completion of the period of motion, 

^he latter part of the integral is positive, for although pq is necra 

Flo. 18.—Momentum vector and its 
projections in momentum space. 
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tive, the increments dq are likewise negative while the particle is 
reversing its motion. 

In order that the area between neighboring quantum states 
should be equal, or approximately equal, to it is clear that, for 
the nth quantum state, SVq should be equal, or approximately 
equal, to nh^ and that, in any event, there should be but one 
quantum state for which /pg dq lies between nh and (n + l)h. 

Sometimes Spqdq may depend on several quantum numbers; in 
this case, a slight alteration of this rule is necessary, as will be 

illustrated in the consideration of the 
space rotator. 

In the case of the space rotator, there 
arc, as already noted, four dimensions 
in the phase space. The quantities 
that are quantized are the constants of 
the motion and p^, whereas the 
phase integrals are /p^ d(t> and /p(? dd. 

Since p^ is equal to mih/2Tr (where mi 

is the quantum number) and <l> goes 
from 0 to 27r while the particle executes 

Fio. 19.- 
for and 
Jp4, d<t). 

-Phase diagram 
Shaded area =» 

mih 

2ir 
d<l> one period of its motion, it is seen that = 1 

= mih. The integral, therefore, has the expected values. 
With the other integral, the situation is slightly more compli¬ 

cated. It is necessary, in order to evaluate the phase integral, to 
express pe in terms of p^ and p^. In Eq. (4) of Appendix I, it is 
shown that 

y,2^2 ^ J.202 0 

Therefore, by Eqs. (13), (18), and (19), 

VxX = + VeO. 

Since the dot means time differentiation, multiplying this through 
by dt gives 

Px dx = P0 + P9 de, 

/p«. = /px dx ~ /P0 d0 

Jo ^tr Jo 2ir 
d^ 

whence 
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= \/i(l + 1)A — mih 

if I and mi are the quantum numbers. In order to understand this 
result, the quantum number mi should be held constant and I 
should be varied. It can then readily be seen, since I must be 
equal to or greater than mi, that the area enclosed between 
adjacent I values is approximately h, and these quantum levels 
are correctly spaced. The hypervolume in the four-dimensional 
space, occupied by any given quantum state, will be at least 
approximately equal to the area on the plane between 
adjacent mi values times the area on the plane between 
adjacent I values, since these are mutually perpendicular cross 
sections of the cell in the phase space assigned to this particular 
quantum level. This product is always close to /i®, as expected. 
This deduction may be considered as a rough verification of the 
results cited in Sec. 4.5, 

Exercises 

1. Calculate the wave length of an electron with 1 electron volt of energy; 
of a proton with the same energy. 

2. Calculate the wave length of a body with a mass of 1 g., moving with a 
velocity of 1 cm. per sec. Wliat is its energy in electron volts? 

3. Calculate the energy in ergs and in electron volts of an electron and of a 
proton in the first quantum state of a one-dimensional box of length 1 cm.; 
of length 2 X 10“® cm. Calculate the velocity and energy in ergs and elec¬ 
tron volts of a body of mass 1 g. in the first quantum state of a box of length 
1 cm. Repeat all calculations for the fifth quantum state. 

4. From Eq. (3e), find an approximate formula for the number of energy 
levels in a box for which the energy lies between Ei and E^^ where Ei^ iS^a, and 
Ei ~ El. are very large compared with but — iS'i is very small 
compared with Ei and E^. 

In these problems the potential energy may be set equal to zero. 



CHAPTER V 

THE HYDROGEN ATOM 

The hydrogen atom is the simplest of all atoms. It consists 
of a single electron revolving about a positively charged nucleus 
which has a mass about 1835 times that of the electron. The 
electron is attracted to tlu? nucleus by a for(;e equal to 
where c is the charge on the electron and r the distance between 
electron and nucleus. The mass of the nucleus is so great com¬ 
pared with that of the electron that to a very good approximation 
it may be considered to be a fixed point to which the electron is 
attracted by the force noted. 

As was first shown by Bohr, whose work lies at the basis of all 
modern atomic theory, the motion of the electron about the 
nucleus is quantized. An exact description requires the use of 
the wave mechanics. However, the general procedure in case 
of atomic systems is to consider first the classical motion of the 
electron and then see how it is affected by the quantum theory. 
Tills method has been used in several instancies in Chap. IV, 
and will be applied to the present case. The classical treatment 
not only provides a basis for further discussion and a convenient 
nomenclature, but is a sufficiently good approximation for many 
purposes. It will, therefore, be given in some detail, after which 
the quantization of the motion will be considered, and finally 
some aspects of the wave picture will be pr(‘sented. 

6.1. Classical Motion of the Electron.—Since the electron is 
attracted to the positive nucleus by a force that varies inversely 
as the square of the distance, its motion, on the classical picture, 
is exactly similar to the motion of the planets about the sun. 
Thus in atomic mechanics, many of the results of celestial 
mechanics may be taken over bodily. Most important for our 
purpose are the first two of Kepler’s laws, which may be tran¬ 
scribed to fit the case at hand, as follows: 

1. The electron moves in an ellipse with the positive nucleus 
at one of the f lei. 

60 
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2. The line joining the electron and the positive nucleus sweeps 
out equal areas in equal times* 

The first of these laws was shown by Newton to be a result of 
the inverse-square law of attraction and the general laws of 
motion. As the proof of it is as much a matter of geometry 
as dynamics, and since it is availabki in many treatises on 
dynamics and celestial mechanics, it will not be given here. 
The second of these laws, as shown in Appendix I, is an expression 
of the fact that the angular momentum of the electron in its 
orbit remains constant. It was shown by Newton to follow 
merely from the fact that the force is directed to a central point; 
his proof is given in Appcmdix I. 

6.2. Circular Orbits.—A circle is a special case of an ellipse, 
in which the two foci coincide at the center.^ It is a specially 
simple kind of orbit, and it will be helpful to consider the prop¬ 
erties of such an orbit first.. As before, let r represent the dis¬ 
tance from the moving electron to the attracting center; in this 
case r is the radius of the orbit. The electron rotating in its orbit 
has a centrifugal force equal to my-/r, where m is its mass and v 

the magnitude of its velocity. This is balanced by the force of 
electrical attraction where e is the magnitude of the charge 
on the electron (taken positive) so that 

niv'^ . 
^ ^2' (1/ 

from which it is seen that with a circular orbit (r constant) v 

must be constant and the electron has a kinetic energy given by 

(2) 

The total energy is the sum of the kinetic and potential ener¬ 
gies. The potential energy depends only on the distance between 
the electron and the positive nucleus, f.e., it is a function of r 

alone, and it does not depend at all on whether the orbit is 
circular or not. Since the electron and proton have equal and 
opposite charges of magnitude -c, the potential energy is equal 

^ Bohr treated only circular orbits; the extension of the old quantum 
theory to elliptical orbits in space was due to Sommerfeld and to Wilson. 

See Sommerfeld, ** Atomic Structure and Spectral Lines,” 3d English ed., 
vol. 1, pp. 109^., Methuen & Co., Ltd., 1934. 
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to — — (see Appendix III). Since it is necessary to do work on 

the electron and thus increase its potential energy in order to 
move it to a position of zero potential energy (taken according to 
the usual convention to be r = its potential energy at any 
finite distance r must be negative. Therefore, the total energy 
E of an electron moving in a circular orbit is, from Eq. (2), 
given by 

E = (3) 

The angular momentum is given by 

mvr = e's/rar. (4) 

5.3. Energy and Angular Momentum of Elliptical Orbits.—It 
will be shown in this section that the energy of an elliptical orbit 

Fig. 20.—Elliptical orbit, attracting center at O. 

is dependent only upon the major axis of the ellipse and is, 
therefore, equal to the energy of a circular orbit if the diameter 
of the circle is equal to the major axis of the ellipse. However, 
with a given major axis, the angular momentum of the orbit is 
smaller, the smaller the minor axis of the ellipse. The energy 
of an orbit may, therefore, be said to depend only upon its size, 
in so far as that is measured by the major axis, whereas the 
angular momentum depends upon the shape of the ellipse as well. 

Consider the ellipse shown in Fig. 20 with semimajor axis 
a(= SA), semiminor axis 5, and the attracting center at the 
focus 0. By a well-known geometrical property of the ellipse, 
the sum of the distances to the foci from any point on the ellipse 
is equal to the major axis. Thus, CO' == CO = a. We desig- 
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nate the distance SO as q and let the velocity of the electron at 
A be Vj^ and the velocity at B be v^. When it is at A, the dis¬ 
tance r of the electron from 0 is a — g, and when it is at B, its 
distance from 0 is a + g. Also at A and B, the electron is 
moving perpendicularly to the line joining it with O. There¬ 
fore, on account of the conservation of angular momentum, 
which says that the angular momentum is the same at all points 
in the orbit, 

m(a - q)vj, = w(a + g)^^ (5) 
or 

Vb = vx 
a —■ q 

a + q 
(6) 

Since the total energy of the electron must be the same at any 
point in its orbit, we have, adding kinetic and potential energies 
at A and equating to the similar sum for B, 

= 
a + q 

(7) 

Substituting the value of from (6) into (7) and rearranging the 
latter slightly gives 

(g - 
(« + g)V 

But 1 — 
(g — g)^ _ 4ag 
(g + g)2 ~ (g + qy Hence 

a + q 

(q + qy 
4ggL (g — q) - (ct + Q) 2g g — g 

(8) 

Substituting (8) into the left-hand side of Eq. (7) gives for 
energy 

E = 
e 2 

2a 

the 

(9) 

which shows that the total energy is determined solely by the 
major axis of the ellipse. 

The value of the angular momentum, which is equal to 
m(a — g)t^A, may be found by substituting into this expression 
the value of obtained from Eq. (8), giving 
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By Fig. 20, Therefore 

m{a — q)vA = (1^) 

6.4. The Quantization of the Hydrogen Atom.—In the cas(» of 
the hydrogen atom, theni are three eonstants of the motion, the 
energy E, the total angular momentum and the projection 
of the angular momentum along some axis The quantization 
of the latter two quantities proceeds in the same way as for the 
space rotator (see Sec. 4.5). can take on the values p/, where 

VI = VI(1 + 1)-^’ (11) 

where Z = 0,1, 2, . . . , and can take on the values Pm^, where 

rriih 
- Yt 

and = —Z, —/ + 1, . . . , 0, . . . , / — 1, Z. 
can take on the values E,^ given by 

(12) 

The energy E 

E n 

2'jrHn(d 
(13) 

where n (the ^Total” quantum number) = Z + 1, Z + 2, . . . . 
The statement that n is equal to Z + 1, or greater, is a natural 

consequence of considering the quantization of angular momen¬ 
tum before the quantization of energy. It is often desired to 
find out how many quantum states there are with a given energy, 
and in this case it is more convenient to state that n may take on 
the values 1, 2, 3, ... , and place the restriction on Z, i.c., Z can 
take on the series of values 0, 1, 2, . . . , n — 1. 

These results are very easily visualized from the classical pic¬ 
ture of the noLotion in an ellipse. It was shown in Sec. 5.3 that 
the energy of such an elliptical orbit depends only on the major 
axis, the larger the major axis, the greater being the energy 
(jj — eV2a, therefore, the larger the a, the smaller the — .B, or 
the greater is the actual value of the energy). The size of the 
orbit is determined by n; only a discrete sot of values for the major 
axis is permitted by the quantum conditions. The angular 
momentum depends on the minor axis of the ellipse, as well as the 
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major ajds. The greater the minor axis, the greater the angular 
momentum. But the minor axis cannot possibly become greater 
than the major axis. It is not surprising, then, that the greater 
the major axis, i.e., tlie greater the energy, the greater the number 
of values of the angular momentum which will be allowed by the 
quantum conditions. There are n different values of ? for each 
value of the energy and 21 + 1 different values of mi for each 
value of the angular momentum. It is, therefore, clear that 
the number of quantum levels having the same energy increases 
rapidly with the energy. This is illustrated in the following 
table, which gives the various (combinations of quantum numbers 
for the different quantum states for which n is equal to 3 or less. 

Table of Quantum Levels 

n 1 mi Typo 

\ 0 0 Is 

2 1 
i 

1 ■ 2p 
1 0 2p 
1 -1 2p 

1 0 0 2s 

3 2 2 \ 3^Z 
2 1 Sd 
2 0 Zd 
2 -1 Zd 
2 -2 Zd 
1 { 1 Zp 
1 : 0 i Zp 
i ! -1 ! Zp 

I 1 38 

The type of quantum level, given in the last column of the 
table, designates the quantum state in terms of a notation that 
is often used to classify the energy levels into states that have 
the same values of n and L The numeral stands for the value 
of /q when^as, if Z = 0, the atom is said to be in an s-state; if 
Z = J. the state is called a p-state; Z = 2 is a d-, Z = 3 an/-state; 
from this point on, the notation proceeds alphabetically: gf-state, 
/^-state, etc. If the quantum number n of the electron is 2, for 
example, and the quantum number Z has the value 1, then this 
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information may be expressed by saying that the atom is in a 
2p-state. This statement, which does not specify is sufficient 
for many purposes. This peculiar nomenclature is to be traced 
back to the early study of atomic spectra, when the relationship 
between spectral lines and energy levels was not understood; 
unfortunately, perhaps, it became so widely used that it has per¬ 
sisted to the present time. 

5.5. The Quantum States and the Phase Integrals.—The proof that Eqs. 

(11) and (12) are consistent with the condition on Jpq dq^ discussed in Sec. 4.6, 

follows exactly as for the space rotator. The expression (13), for the energy, 

may be shown to conform to the quantum condition on Jpr dr^ where pr is 
the momentum conjugate to r. According to Eq. (5) of Appendix I, the 

kinetic energy of the electron will be given by 

T = \mv^ — \mr^ -f 

The total energy is the sum of the kinetic and potential energy. The latter 

is equal to- Therefore, 
r 

E « Jmr** -f \mr^x^ — —• 
r 

This can be expressed in terms of the momenta pr and pj^ 

and (3) of Appendix I] as follows: 

By Eq. (11), then, 

2m 2mr* r 

IP A. ^ !! 
^ 2m 8x*mr* r 

or 

■4 47rV* r 

pi [see Eqs. (7a) 

(14) 

(15) 

(16) 

When the notation of Fig. 20 is used, it is seen that r fluctuates between the 
values a + g and a — q. While r is increasing, i.e., while dr is positive, pr is 

also positive since r is positive; for decreasing values of r, on the other hand, 
Pr is negative and the negative value of the square root [Eq. (16)] must be 

used; Pr goes through its zero values when r is neither increasing nor decreas¬ 

ing, at a -h ? and a — q. The part of the integral for which dr is positive 
contributes just the same amount to the total value as the part for which dr 
is negative, We can, therefore, integrate from a — g to a -f- g only and 
double the result. This gives 

(17) 
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This integral may be evaluated and yields 

dr = -ViiTTT) h + (18) 

Substituting from Eq. (13) into Eq, (18), we get 

ipr dr = h[n - \/l{l -f 1)], (19) 

it being quite obvious then that the difference of successive values of /pr dr, 
if Z is fixed, is exactly equal to /i, so that the expected condition on /pr dr 
is fulfilled. Equation (19) also shows why n must always be greater than L 
For otherwise /pr dr would have a negative value, whereas it has been 
shown that it is always positive. 

Fig. 21.—Schematic phase diagram for the radial motion of the electron in the 
hydrogen atom. The enclosed area is f pr dr. 

6.6. Positive Energies of the Hydrogen Atom.—So far we have 
considered only the case in which the total energy is negative, i.e., 

the kinetic energy is smaller in absolute value than the potential 
energy which is always negative. It is of course possible for 
the total energy to be positive. If this is so, the kinetic energy 
will have a finite positive value even if r is taken to be infinite. 
In other words, the electron could go an infinite distance from 
the positive nucleus (this would require an infinite time, of course) 
and still be moving. An electron that starts at r = oo with a 
definite velocity will be attracted toward the nucleus, swing in 
toward it with increasing velocity, fly past it, and proceed with 
decreasing velocity to infinity in some other direction. Its path, 
according to the classical theory, will be a hyperbola. Such an 
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electron is not attached to the positive nucleus in the same sense 
as an electron that is moving in an elliptical orbit in which, of 
course, it never gets farther than a certain finite distance from 
the nucleus. The electron moving in a hyperbolic orbit is said 
to be a free electron, ajid its motion is not quantized. Only 
negative energies are quantized according to Eq. (13)—all posi¬ 
tive energies are allowed. (Of course, if the system is put in a 
box, then a certain quantization will occur, as in the last chapter, 
but if the box is considerably larger than atomic dimensions, the 
energy levels will be so close together that they may be con¬ 
sidered to form a continuum.) 

6.7. Wave Picture of the Radial Motion of the Electron.—The 
picture of the electron orbit given above is, of course, not strictly 
correct. It is sufficiently near to being correct to suffice for many 
purposes, but, according to the wave mechanics, it is too detailed. 
It is not actually possible to follow an electron in its orbit, either 
theoretically or by any conceivable experiment, however ideal¬ 
ized, even though it be imagined that absolutely perfect instru¬ 
ments are available. It is possible to predict only the probability 
of the electron being in any particular position, this probability 
being given by the wave function. Further, it is the wave 
function that determines the allowed quantum levels. The 
results of the quantization have, however, as a matter of fact, 
been taken from the wave mechanics so that no error enters into 
them from this cause. 

This particular case of the hydrogen atom offers an especially 
good example of the way the properties of the wave functions 
determine the quantum levels, and it seems worth while to con¬ 
sider this matter a little more closely, though still not attempting 
to give quantitative details. We shall confine ourselves to a 
consideration of the wave picture for the radial motion of the 
electron, f.c., the motion having to do with the coordinate r. It 
will be observed from Eq. (14) that, for a fixed value of the 
energy depends on a term pr^/2m, which has the form of a kinetic 

€^^ Xiji —h l)A^ 
energy, and a term ^ - y or - 7 which depends, 

on r. Though the term pi^f2mf^ really originated as a kinetic 
term, it acts exactly like an addition to the potential energy in a 
virtual one-dimensional motion involving only the coordinate r 

and ita derivatives with respect to time. If the effective poten- 
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tial energy Ur = -^2^2-f plotted as a function of r, the 

curves shown in Fig. 22 arc obtained for the cases Z = 0 and Z = 1, 
respectively. In this figure, the positions along the energy axis, 
determined by the quantum number n, are marked by the hori¬ 
zontal lines. Parenthetically, it may be remarked that the 
reason n cannot be less than 2 if Z = 1 is graphically brought out 
by Fig. 22. The (uiergy d('termined by = 1 is seen to lie 
below the potential-energy curve; this would necessitate that 

Fig. 22.—Effective potential-energy curves and energy levelj for hydrogen atom 

the term Pr^l2m should always be negative, which would mean 
that the velocity wwld be imaginary 

The wave functions ^ of the hydrogen atom are functions of r, 
6j and <t>. Just as in the case of an electron moving in a box the 
wr^^ye functions ooul(;i be expressed as products of thrtH' factors, 
each one of which was a function of one only of the coordinates 
Xy y, and z, so in this case we can write ^ = RO^y wdiere iC Ls a 
function of r alone, O a function of 0 alone, and ^ a function of 
<l> alone. In Fig. 23 are exhibited the functions R for the various 
(energy levels that are shown in Fig. 22. 

In polar coordinates, an eh'raent of volume defined by 6 and 
$ + dd, and <t> + and r and r + dr has the magnitude 
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r® sin S dB d<t> dr. The probability of finding an electron in this 
volume element is proportional to the volume and to and so is 
given by 

sin $ do d<t> dr = sin B dB d<l> dr. (20) 

In order to normalize this expression (see pp. 40/.), we can set 

the integrals of its three independent products separately equal 
to 1; thus 

= 1 

0* sin 6 dd = 1 

and 

1. 
The probability of finding the electron between r aAid r + dr^ and 
anywhere as far as B and <t> are concerned, is obviously given by 
integrating over the whole range of the latter two variables. 
Since integration over <l> and B gives factors of 1, the probability 
in question is dr. Similarly, the probability that it lie 
between B and ^ is 0® sin ^ dB, and, likewise, the probability 
that it lie between <l> and <t> + d<l> is d<t). The probability that 
it lie within all three limits simultaneously, namely, that it lie 
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witMn the volume element defined by them is, of course, the 
product of the three independent probabilities, as is indicated 
in the preceding expression, (20). 

2.5 2.5 5 2.5 5 75 10 125 
Fia. 24.—for various energy levels of the hydrogen atom. (ordinates) 

in arbitrary units, but same for each diagram, r (abscissas) in A. 

The function which gives the probability per unit distance 
that the electron be found in any range of r is obviously an impor¬ 
tant function, and it is shown for various energy levels in Fig. 24. 

It. will be observed from Figs. 23 and 24 that the number of 
waves increases as n increases. In a general way, the most 

Fia. 26. Fig. 26. 

probable positions for the electron lie roughly within the range 
through which the electron would move according to the classical 
theory, but the details of the picture are very different. 
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An interesting situation •arises if w(f try to construct a wave 
function to fit the differential equation which determines R, for 
some energy that does not coincide with one of the allowed 
energies given by Eq. (13). For example, an attempt to con¬ 
struct such a w^ave function for an energy just below the energy 
given by n = 1 for Z = 0 gives a v^^ave function like that shown 
in Fig. 25. Instead of asymptotically going to zero as r IxH^omes 
infinite, R approaches the axis, does not roach it, and eventually 
becomes infinite. If the energy lies between that which corre¬ 
sponds to n = 1 and that iov n = 2, a curve something like that 
shown in Fig. 26 is obtained. In general, R will become infinite, 
which means that the electron would practically always be found 
at infinity. In excluding such cases, the possibility of having 
any energy excepting one of those given by Eq. (13) is ruled out. 
Only in these cases are the wave functions everywhere finite. 
This qualitative discussion will illustrate in a rough way the 
manner in which the more exact analysis of the wave mechanics 
yields Eq. (13). 

6.8. Experimental Confirmation of the Hydrogen Energy 
Levels.—In the preceding pages, wo have given a theoretical 
account of the quantum states and energy levels of the hydrogen 
atom. The expcirimental verification of these results comes from 
observation of the spectnim of hydrogen, and, when certain fiije 
points of the theory are taken into account,^ the agreement 
between experiment and theory is as complete and beautiful as 
any in the whole range of science. What is observed, of course, 
as will be clear from Sec. 4.1, is the differences of energy which 
(ixist in the hydrogen atom, rather than the actual energy levels 
themselves. The experimental method is, briefly, as follows. 
If hydrogen is brought into a situation in which it can receive 

' The results pre.sented fail to take account of two corrections, which 

produce slight changes. In the first place, the nucleus was assumed to be so 
heavy that it could be regarded as a fixed center of force. Secondly, it was 

assumed that the electron always moves so slowly compared with the 

velocity of light that the relativity correction is negligible. These effects 
produce very slight shifts in the energy levels which, for accurate spectro¬ 

scopic work, need to be taken into account, but which, for moat purposes, 

may be entirely neglected. The relativity correction is, however, as shown 

by Dirac, closely related to the spin of the electron, a property that will be 

taken up in the next chapter. The details of this relationship are outisidje 

the scope of this book. 
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energy, as for example, in an electric discharge, it may become 
dissociated, ^.e., some of the molecules of hydrogen, H2, may 
become split up into their constituent atoms. These atoms then 
may receive further emergy, so that instead of all of them existing 
in the lowest possible energy level some of them may be excited up 
to higher energy levels. The latter can then emit radiation, 
dropping at the same time to a lower energy level, the energy 
going out in the form of a light quantum. There exists between 
the energy of the light quantum (whicdi is equal to an energy 
difference in the hydrogen atom) and the frequency of the light 
the relation discussed in Chap. IV. It is, therefore, })ossiblc to 
get a verification of the theory just discussed by measuring the 
frequencies or the wave lengths of the light emitted by the hydro¬ 
gen, i.e., by a study of its spectrum. This has been done, and as 
has been stated, the theory has been extremely successful. 

There is one point in the theory, however, that at first sight 
would seem to be extremely difficult of verification. It will be 
remembered that the theory predicts, in general, that there will 
be a numb(^r of different quantum states, all of which have the 
same energy, the number of levels with a given energy rapidly 
increasing as n increases. Now we may ask the question: How 
in practice' can these various levels be separated? If we effec¬ 
tively measure only the energies of the atom, it would appear 
that they could not be separated. But suppose the atom is 
observed in a strong electric field. Such an electric field will 
slightly change the energy of the levels of the atom. But the 
effect of the electric field will depend not only upon the size of 
the ellipse, but also upon its shape and its orientation in space. 
Thus some of the components of the multiple energy state will be 
shifted by different amounts. It is true that in fields of strengths 
readily obtaincjd there are still some states whose energies coin¬ 
cide, but the multiple nature of the energy levels is readily 
demonstrated. The amount each quantum state should shift is 
calculable, and once more theory and experiment are in excellent 
agreement. 

In the course of such experiments, it becomes evident, however, 
that transitions with emission of light do not occur between all 
possible quantum states; and, in fact, such transitions will not 
occur unless V = Z" ± 1 and m/ = m/" ± 1 or m/ = m/', where 
Z" and mi" are the rotational quantum numbers of the initial 
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state, i.e,, the state of higher energy, and V and m/ are the 
quantum numbers of the final state. This so-called selection 
rule'' may also be explained theoretically; for our purposes, 
however, it is not necessary to consider this matter further. 

6.9. Summary.—The results on the energy levels and quantiza¬ 
tion of the hydrogen atom will be frequently referred to, so it 
seems desirable to summarize them at this point. 

The energy of the electron of the hydrogen atom in its elliptical 
orbit depends upon the major axis, hence the size, of the ellipse. 
It is given by the quantum number n, according to the equation 

- 

2ir^me^ 

nW ’ 

where n can take the values 1, 2, 3 . . . 
The angular momentum of the electron depends upon both the 

major and the minor axis of the ellipse, hence upon the shape of 
the ellipse. It is given by the quantum number I, according to 
the equation 

VI = VKHTI)^- 

If the value of n is given, then I can take the values 0,1, 2, ... , 
n — 1, there being thus n values of I possible. If Z « 0, 1, 2, 
3,4, . . . , the atom is said to be in an 6*-, p-, rf-,/-, gr-, . . . state. 

The projection of the angular momentum on an arbitrary axis 
depends upon the tilt in space of the plane in which the electron 
is moving. It is given by the quantum number mj by the 
equation 

If the value of I is given, then mi can take the value — Z, — I + 1, 
. . . , —1, 0, 1, . . . , Z — 1, Z, there being thus 2Z + 1 values 
of mi possible. 

Exercises 

1. Calculate in ergs and electron volts the energy neoessary to just 
remove an electron from the lowest orbit of the hydrogen atom. 

2. Calculate the value of a (semimajor axis of the ellipse) for the lowest 
state of the hydrogen atom, by use of Eqs. (9) and (13). 



CHAPTER VI 

ELECTRON SPIN, ANGULAR MOMENTUM, AND 
MAGNETIC MOMENT 

6.1. Electron Spin.—In tlio preceding chapter, it has been 
shown that many of the characteristics of the hydrogen spectrum 
can be explained on the basis of the assumption that the state of 
each electron is det(^rmined by three quantum numbers w, Z, and 
nil. This holds also for the spectrum of many other atoms, 
though the complications naturally are much greater. But many 
of the features of the spectra of the more complex atoms, and the 
effect of a magnetic field on hydrogen itself, have made it neces¬ 
sary to assume that the electron has a fourth quantum number. 
This fourth quantum number is the spin quantum number.^ 

It is assumed, in short, that the electron is not simply a point 
charge, but that (to speak very loosely) it has a certain extension 
in space and is spinning with a constant angular momentum. 
It is not the actual angular momentum, which is of greatest 
importance for the applications to be considered, but its projec¬ 
tion along some particular but arbitrary line in space (for our 
present purpose, we may take this line in space as being the 
same axis with respect to which the orbital angular momentum 
Pi is oriented); this projection is loosely referred to as the ‘‘spin 
angular momentimi.'^ The spin quantum number s takes the 
values i or —^ so that the angular momentum is ±ihf2w. The 
same direction is taken as positive as in the case of the projection 
pm of the orbital angular momentum. It is of interest to note 

that the two possible values of the projection of the angular 
momentum differ by /i/27r, just as do the angular momenta 
corresponding to two neighboring values of mi (say mi and 
mi + 1) in the orbital case, and that these arc the projections 

1 Uhlenbeck and Goudsmit, Naturwiss.^ 13, 953 (1925); Nature, 117, 
264 (1926); Btchowsky and Urey, Proc. Nat. Acad. Sci., 12, 80 (1926); 
Pauu, ZeiU. Physik, 43, 601 (1927). 

75 
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which, by analogy with the orbital case, would be expected to result 

from a total angular momentum of 

From our point of view, the chief justification of these rather 
elaborate assumptions is that they make it possible to explain 
a multitude of facts in spectroscopy, though they have been 
given a theoretical foundation.^ We cannot go into these 
spectroscopic and theoretical details, but shall see later in tlie 
development of the periodic system of the elements how useful 
this concept of the spinning electron is. 

6.2. The Magnetic Moment of Spinning and Rotating Elec¬ 
trons.—As remarked in the preceding paragraphs, the spinning 

Q £ of the electron manifests itself experi- 
I j mentally in large part through its 
I I—B magnetic effects. Although it is beyond 

the scope of this book to go into the 
details of the effect of a magnetic field 
on the spectra of atoms, it will be of 
interest to consider some of the elemen- 
tary magnetic properties of both the 
orbital motion of the electrons and their 
spin. For this purpose, a discussion 

based on classical theory is sufficient; quantum theory yields the 
same results. 

As seen in Chap. II, if a wire carrying an electric current is 
placed in a magnetic field, the field exerts on the wire a force / 
per unit length of wire, which is perpendicular to the wire and 
the magnetic field, and which is given by the equation 

Fio. 27. 

/ = ^ sin e, (1) 

where i is the magnitude of the current, H the strength of the 
magnetic field, 6 the angle between the direction of H and that 
of the wire, and c the velocity of light. 

Consider a circuit such as shown in Fig. 27, with the movable 
wire AB placed across the fixed wires CD and EF and a current i 
flowing through the circuit, and suppose there is a magnetic field 
of strength // directed perpendicular to the plane of the paper. 

1 Dirac, Proc. Roy, Soc„ A117, 610 (1927); A118, 351 (1928). 
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Under these circumstances, there results a force on AB equal to 
iHl/Cy where I is the length of AB from the wire CD to the wire 
EF. This force will be in the plane of the paper and perpendic¬ 
ular to AB, and we shall suppose that i and H are so directed that 
the force opposes motion of AB from CE to DF. Then the 
amount of work done in moving AB from CE to DF is equal to 
the force times the distance moved, which p 
is (iHl/c)w^ where w is the distance from I ^ . 
CE to DF. But Iw is the area A of the ^ ^ 
circuit which is thus opened out, and the 
work done is equal to illA/c, 

Suppose now, with the wire AB in the 
position CE, the whole circuit to bo 
turned over bodily to the position shown ^ J_L q 
in Fig. 28. Work is done on the circuit ^ ^ 
in this process on account of the effect 
of the magnetic field. The same amount of work is done, 
however (since the final and initial conditions of the circuit are 
the same) if, starting with the circuit as in Fig. 27, (1) the wire 
is brought from CE to DF, (2) the circuit turned over, and (3) the 
wire brought from DF to CE, so that the situation is as shown in 
Fig. 28. In process (1), the work done is equal to illA/c; in 
(2), no work is done, since the electrical circuit now consists of 
two wires between D and F, practically coincident in position 
and carrying current in opposite directions; in process (3), 
since the wire is actually moving in the same direction as in 
process (1), work is again done on the wire, in the same amount 
--^—— as in (1). The total amount of 
_ work done is therefore 2iHAIc. 
_^ Let us compare this with the 

' amount of work necessary to 
^ ^ turn over a bar magnet in a 

* magnetic field. Let the magnet 
have poles of strength q, sepa¬ 

rated by a distance 5. Suppose for simplicity and definite^ 
ness that the magnet is pivoted at its center, though this 
is not really necessary and is not to be taken as indicating 
any lack of generality in our considerations. If the magnet 
is oriented at an angle 6 with respect to the magnetic 
field, as shown in Fig. 29, then there is a force equal to qH exerted 

rated by a distance 5. 
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on each pole, as indicated in the figure. The force on one of the 
poles is in the direction of the field, that on the other is in the 
opposite direction. These two forces may be balanced, assuming 
the magnet remains rigidly pivoted at the center, by a force gr, 
exerted at one of the poles, directed along the circumference of 
the circle described by the polos of the magnet and equal to 
2qH sin B, If 6 is equal to zero when the magnet is in its normal 
position of equilibrium (as is the case with the forces in the 
directions shown in the figure), then work must be done on the 
magnet in order to increase 9. The work done by the force g on 
the magnet in moving it through an angle dd is equal to the force 
times ,the distance moved, the latter ]>eing (*qual to ^5 dB, The 
total Amount of work done on the magnet when it is turned 
through an angle of 180°, to the position in which it is parallel, 
but opposed, to the field, from the position in which it is normally 
at rest, is thus 

qlib sin 0 dO = 2qHb = 

where g = gfi is the so-called magnetic moment of the magnet. 
If this is compared with the amount of work necessary to turn 
over the electric circuit in a magnetic field, it is seen that the 
latter behaves in a magnetic field as though it has rigidly attached 
to it a bar magnet with its long axis perpendicular to the plane 
of the circuit and with magnetic moment equal to iA/c, 

For the purpose of investigating its magnetic behavior, an 
electron revolving about in an orbit may be considered as equiva¬ 
lent to a little closed circuit. If the frequency of revolution of 
the electron in its orbit is the current is given (disregarding 
sign) by epof since this is the amount of electricity that passes 
a given point in the orbit per unit time. The electron moving 
about in its orbit thus has associated with it a magnetic moment 
fi equal to evoAlc, where A is the area included in the orbit. 
But vqA is just the area described by the radius vector of the 
electron per unit time, and is, thus, as shown in Appendix I, 
equal to ipifm where pi is the total angular momentum and m 
the mass of the electron. Therefore, still disregarding sign, 

(2) 

Pi being given by Eq. (11) of Chapter V. 
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The quantity ^ is a vector quantity directed perpendicularly 
to the plane of the orbit of the electron. Its projection on some 
axis will bear the same relation to the total magnetic moment 
as the corresponding projection of the angular momentum bears 
to the total angular momentum. Thus we may write 

_ e __ mill e 
pm^ 2^^ 27r 2mc (3) 

The fundamental magnetic moment he/47rmc is known as the 
^'Bohr magneton.’^ 

This equation gives the magnetic moment due to the orbital 
motion only. In tlie case of spin, the spectroscopic facts show 
that the ratio of the magnetic moment to th() angular momentum 
is twice as great as this, and if we let ps be the spin angular 
momentum about the same axis, we may write (disregarding 
sign) 

c _ 1 _c_ 
2 27r nic 

(4) 

In the preceding discussion, wc have adhered to the assumption that the 
orbital motion and the spin are oriented independently of each other with 
respect to the direction of the magnetic field. This is what happens when 
the magnetic field is sufficiejitly strong. In a weak magnetic field, the spin 
is generally oriented by the magnetic field created by the orbital angular 
momentum in the direction defined by this field, and then the resulting 
spin-orbit combination is oriented by the external field. In an atom with 
several electrons, the orbits are usually oriented first with respect to each 
other, giving a resultant orbital magnetic moment; similarly, there is a 

resultant spin moment which is oriented with respect to the resultant mag¬ 
netic field due to the orbital motion, the whole finally being oriented with 
respect to the external field. This is known as Russell-Saunders coupling, 
and is an approximate description of the state of affairs in many atoms, 
giving a fairly good account,of their spectra. For our purposes, we are 
most interested in the number of states with similar energies, and this 
number may be obtained without the details of the interactions between 
the various orbital motions and spins in a complicated atom. 

6.3. The Stem-Gerlach Experiment.—The fact that the 
different orientations of the orbit are in general associated with 
different values of the projection of the magnetic moment along 
a specified direction in space provides a means by which the 
atoms having various values of this projection may be separated. 
A method for effecting such a separation was first invented by 
Stern and Gerlach. It consists essentially in allowing a beam 
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of atoms to pass down a nonhomogencous magnetic field, a 
magnetic field that varies from point to point in space. The 
nature of the action of such a field may readily be understood by 
considering the force it exerts on a small bar magnet. Suppose, 
for simplicity, that the direction of the field is along the 21-axis 
and that the field itself is a function of z. Suppose further that 
the bar magnet has its long axis at an angle 6 to the 2:-axis. Let 
the field at one of the poles of the magnet, say the one with the 
smaller value of z, be H; the field will exert a force of gff, where q 
is the pole strength, on this pole. The field at the other end of 

the magnet will be given very closely by LT + cos 6^ where 

6 is the length of the magnet, 5 cos d being the distance along the 
field from one pole to the other, and the force on this pole will be 

in the opposite direction and equal to q^H + ^8 cos The 

net force on the magnet will be given by the difference of these 

It is thus seen 
r I.. ^ dH 
forces, which is equal to cos Oot cos 0, 

that the magnet will be propelled in one direction or the other 
by a force varying with its magnetic moment /x, the degree of non¬ 
uniformity of the field, and the relative orientation of the bar 
magnet and the field. An atom with a magnetic moment will 
behave just as the equivalent bar magnet in such a field. 

Stern and Gerlach have designed a magnet, which gives a non- 
homogeneous field, whose pole pieces are as shown in Fig, 30. 
Figure 30a gives a cross-sectional view, and Fig. 30b gives a 
perspective view. The magnetic field is very strong just at the 
tip of the triangular pole piece and grows weaker away from this 
neighborhood, the magnetic lines of force being somewhat as 
indicated in Fig. 30a. A beam of atoi^is is allowed to pass along 
the triangular pole piece (in vacuum to avoid molecular collisions), 
as indicated in Fig. 30b. If z measures the distance in the vertical 
direction, it is seen that in the region where the beam goes the 
field is a function of z only, and it will separate out the atoms 
whose ^-components of magnetic moment are different, f.e., 
it will separate out the atoms whose orbits are oriented in different 
ways with respect to this particular 2-direction. Of course, the 
magnetic moment due to spin also has its effect and tends to 
complicate the situation, especially when the interactions 
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between spin and orbit are taken into account. In Fig. 30b, the 
paths indicated are illustrative of what would happen if the 
atoms passing down the field were hydrogen atoms in their lowest 
state. Here there is no orbital angular momentum, and there¬ 
fore no corresponding magnetic momentum. There are, how¬ 
ever, the two possible orientations of the spin of the electron, in 
which the equivalent bar magnets are oppositely placed. One 
of them is thus displaced in one direction and the other in the 
other direction, resulting in two beams of hydrogen atoms, in one 
of which the electron spins are in one direction and in the other 

(a) , (b) 
Fig. 30.—The Stern-Gorlach experimental arrangement. The term vertical 

direcAion^ used in the text, refers to Fig. 30a. It is the direction of inhomogeneity 
of the magnetic field and actually appears horizontal in Fig. 30b. {From Ruark 
and Urey, ** Atoms, Molecules, and Quanta,"') 

of which the spins are opposite. The central line is the undc- 
flected path which would be taken if there were no magnetic field. 

It is seen that in the preceding experiment the direction along 
which the projectfon of the angular momentum is quantized is 
automatically determined; the ^-direction may be said to be 
experimentally defined. Once the experiment is set up, this 
direction is no longer arbitrary, but the way in which we choose to 
set it up is of course as arbitrary as ever. It is instructive to 
consider what happens if we ^'change our minds'' as to what the 
z-direction should be. Suppose that after passing through the 
magnet shown in Fig. 30 the beam of hydrogen atoms is allowed 
to pass through another magnet, placed at an angle, as shown in 
Fig. 31, but with its long axis still in the same direction. Between 
the two magnets, let a metal plate with a small hole in it be so 
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placed that only one of the separated atomic beams emerging 
from the first magnet can enter the second magnet. Suppose 
further that the change from the magnetic field of the first magnet 
is very sudden—that there is no gradual transition from one 
magnet to the other. If this condition is fulfilled, then the beam 
will again be analyzed into difiorent components in the second 
magnet. That is to say, we roquantizc with respec^t to the 
new z'-axis. The first magnet and th(^ metal plate soh^eted out a 
definite beam, i.c., one which contains atoms with a certain 
definite angular-momentum-i)rojection quantum number with 

2 

respect to the z-axis. But on examining the quantization of this 
beam with respect to the z'-axis, it is found that there is a certain 
probability that it have any given quantum number. The 
probability of any given atom having any particular quantum 
number on the z'-axis depends upon the angle a which defines 
the inclination of the one axis with respect to the other. In 
particular, if a = 0, quantization along the z'-axis is the same 
thing as quantization along the z-axis, and the beam goes 
through unchanged. Likewise, if a = tt, the beam goes through 
unchanged but now is deflected in the opposite direction. It 
may be remarked that it is really not at all surprising that defining 
the projection of the angular momentum for the z-axis will not in 
general be sufficient to define it exactly for a z'-axis, if it is remem- 
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bered that, as shown in the last chapter, the actual direction of 
the orbit in space is by no means completely defined when the 
quantum number giving the projection of the angular momentum 
is given. 

The hypothetical experiment just desc-rihed should add vsome- 
thing to the definiteness of the ideas involved in selecting out a 
certain 2:-axis. In making such a selection, we always have, in 
the back of our minds, some such experiment which actually 
selects out the atoms with the various quantum numbers. For 
many purposes, it is not necessary to state the nature of the 
experiment in detail, and when it is only desired to count up 
the number of quantum states possible, as is often the case, the 
2;-axis can be quite arbitrarily chosen. In other cases, however, 
the 2:-axis to be chosen is definitely spocifi(id by the circum¬ 

stances of the problem. 
The reanalysis by a second magnet, of one component of a 

beam that has already been analyzed by one magnet has an 
analogy in the case of polarized light. As is wcdl known, when 
a pencil of light is allowed to fall normally on a caloite crystal, 
it is broken up into two beams, one of which, the ordinary beam, 
goes straight through the crystal and the other of wdiich, the 
extraordinary beam, is bent to one side. These bc^arns are 
polarized at right angles to each other. If one of those beams is 
selected and allowed to pass through a second cal cite whose 
crystal axes are parallel to the axes of the first crystal, the light 
passes through unchanged. If the axes of the two crystals are at 
an angle to each other, however, the bc^ain is analyzed by the 
second crystal into two beams, in just the way the original 
unpolarizcd light would be analyzed by a crystal placed in this 
position, except that the intensity of the two beams is different 
depending upon the relative orientation of the two crystals. 
Although the analogy is by no means exact, the separation of the 
light polarized in definite directions with respect to the crystal 
axes is in some respects similar to the separation of the different 
quantum states of the atom by a magnetic field parallel to some 
particular line in space. The fact that the light has already 
been analyzed into its polarized components by one crystal does 
not prevent its reanalysis de novo by a second crystal 



(CHAPTER VII 

MANY ELECTRON ATOMS AND THE PERIODIC SYSTEM 

7.1. Atoms with Many Electrons.—The hydrogen atom was 
considered in some detail in an earlier chapter, and later on we 
shall make a fairly extended study of the next simplest atom, the 
helium atom. In the present chapter, the general features of the 
many-electron atom and the rules that govern the electronic, 
structure of these atoms will be discussed. 

It is convenient in treating atoms having many electrons to 
consider the electrons to be added to the nucleus one by one. 
The first electron is thus attracted by a single center of force, and 
the problem is the same as the problem of the hydrogen atom, 
except that the potential energy between the electron and the 

nucleus is given by the expression 
T 

i where Ze is the charge 

on the nucleus, e being the charge on the electron, with the result 
that wherever occurs in the formulas for the hydrogen atom 
it is replaced by 

When the second electron is added, the situation is somewhat 
more complex, as it is necessary to take into account the forces 
between the two electrons. However, as a first approximation, 
if the first electron is in its lowest energy state and hence is 
moving very rapidly, it may be treated as a spherically sym¬ 
metrical smear of negative electricity, surrounding the positive 
nucleus. Then the motion of the added electron is handled by 
assuming that it moves in the centrally symmetric but non- 
Coulomb potential field^ produced by the nucleus together with 
the distribution of electricity from the first electron. As elec¬ 
trons are added, one by one, we treat all those which have been 
added previously as part of the spherically symmetrical smear. 
Now it is well known that a spherically symmetrical distribution 
of electricity exerts the same force on an electrically charged 

^ By the temi “non-Coulomb potential we mean one in which the 
potential does not vary inversely as the distance from a fixed point. 

84 
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body completely outside of it as if all the electricity in the dis¬ 

tribution were concentrated at the center of symmetry. Thus, 

if the added electron is at a great distance from the nucleus and 

completely beyond the orbits of the electrons already addend, the 

latter simply act as a partial screen for the charge of the nucleus, 

so that the whole distribution exerts the same force as a point 

charge (Z — N)ey where N is the number of eh'ctrons already in 

their orbits about the nucleus. If the last electron penetrates 

within the smear of other electrons, then these (^xert a smaller 

shi(?lding effect. That part of a spherically symmetrical dis¬ 

tribution which is at a greater distance from the center of sym¬ 

metry than a given point charge exerts no force on the latter; 

so if the electron under consideration penetrates completely 

inside the others, it will experience the full force of the nuclear 

attraction. 

For any electron that moves under the influence of a ccmtrally 

symmetrical field, no matter what the law of for(;e may be, the 

angular momentum and its projection are determined by the 

quantum numbers I and mu The proof, given in Appendix I, 

of the constancy of the angular momentum of a body attracted 

to a center of force does not make any assumptions as to the law 

of force except that it be centrally directed. The angular 

momentum, being constant, can be quantized in exactly the same 

way as before, with the same results. The only change comes 

in calculating the energy levels. If the electron did not penetrate 

into the cloud of electrons surrounding the nutdeus at all, it would 

be always moving in the field of an effective charge of (Z — N)e 
and its energy would be given by' 

^ " nW 

If the electron does penetrate, however (as in general it will, at 

least to a small extent), the energy corresponding to any given 

value of the quantum number n may be expected to be lowered 

below the value given by Eq. (1) (i.e., E will have a greater nega- 

^ In Eq. (13) of Chap. V, it is possible to show that the factor is really 

to be considered as a product, c* X c*, one factor of which comes from 

the charge on the electron, the other from the charge on the nucleus. In the 

hydrogen atom, both of these happen to be equal. When the charge on the 

nucleus has a value different from e, one of the factors is changed accordingly. 
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tive value) because the electron is part of the time under the 

influence of a stronger attractive force. The greater the amount 

of penetration, the more the energ}’^ will be lowered. With a 

given value of n, the penetration will be the more marked the 

smaller the value of /. This is because the small values of I 
correspond to the orbits of low angular momentum. In the 

case of the hydrogen atom, where the orbits are elliptical, it will 

be remembered that alth<jugh the length of tluj major axis of the 

ellipse is fixed by the quantum number n, the minor axis depends 

Fio. 32.—Showing tho change in el(^ctron orbits with increasing penetration. 
(From White, ** Introduction to Atomic Spectra*') 

on I and is small if I is small. In an ellipse of large major and 

small minor axis, the foci of the ellipse are of course near the ends 

of the major axis. Since the nucleus is at one of the foci, this 

means that with the length of the major axis (determined by n) 

given, the electron comes nearer the nucleus, the smaller the 

minor axis, i.e., the smaller I, This means greater penetration 

for an s-orbit than for a p-orbit, for example. This remains 

true in spite of the fact that, in the case of an electron moving in 

a centrally symmetric but non-Coulomb field, the orbit is not an 

ellipse, but instead becomes a rosette, the path *of the electron 
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being bent in sharply by the large force exerted when the electron 

is close to the nucleus. Portions of some orbits of this sort are 

illustrated in Fig. 32, which shows the transition between a 

deeply penetrating orbit and one that penetrates only slightly. 

The orbits may be approximately represented as ellipses with 

rotating major axes. 

It will, of course, be understood that in speaking so definitely 

of the path of the electron we are here, as always, making only 

an approximate statement of th(^ true stat(^ of affairs. Actually, 

of course, to be stri(^tly correct, the phenomena should be 

described in terms of the wave theory. The wave picture, how¬ 

ever, will show that an electron in a penetrating state will have 

a relatively large ])robability of being near the nucleus, and so 

penetrates” in tha wave theory also. This should be clear 

qualitatively from tlie discussion of the wave functions of 

hydrogen for various values of Z, given in Sec. 5.7. 

A more exact understanding of the effect of penetration of the electron's 

orbit on the total energy may be obtained from a consideration of Eq. (17) 
of Chap. V. Suppose we set tlie potential energy of the electron in the cen¬ 
trally symmetrical but non-Coulomb field equal to F, a function of r which 

(Z — N)e^ Ze^ 
is equal to---at great values of r and to —at small values of 

r. This quantity F, then, takes the place of the factor —e^/r in the last term 
under the radical in Eq. (17) [originally introduced from Eq. (15)], and 

Eq. (17) becomes 

fpr dr ^ 2jj^^^y[2mE - 
m H- l)/t2 

47r*r* 
2m F dr. (2) 

In this integral, o is the farthest distance of the electron from the nucleus 
in its rosette orbit and a — g the smallest distance, just as was the case with 

the elliptic orbits of the hydrogen atom. It will be understood that sub¬ 

stituting F for — e*/r does not alter any of the relations which do not involve 

the potential energy, nor does it change those which do involve it very 

profoundly. Thus.pr, the integrand of Eq. (2), goes through its zero values 
when r « a H- ^ and r — a — g as in Chap. V. 

(Z — N)e^ 
If V were equal to---for all values of r, then Eq. (2) would give 

Ze^ 
just the value of E given by Eq. (1). Were F equal to —throughout the 

range of r, we should get the value of E given by setting iV” « 0 in Eq. (1). If 

V changes, E must have such a value that fpr dr retains its value, inde¬ 

pendently of the form of V (it will continue to be at least approximately 

true that fpr dr is always given by Eq. (19) of Chap. V swid so depends only 
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on n and 1), If F varies between 
{Z - N)e^ . Ze^ . 
-- and-, then it is obvious 

T T 

that, in order for /pr dr to have the proper value for the given I and w, the 
, rr X T u j. xi j- 1 2ir^in{Z — N)^e* 

value of E must he between the corresponding values-- 

and so will be smaller (have a greater negative value) than 

the first of tliese. Furthermore, the larger I is, the greater is the lower 

limit a — q fit which the integrand becomes zero. This is obvious from 
inspection of Eq. (2), since increasing I increases the second term in the 

square root, and this term is negative. The quantity under the square root 

is, of course, positive as a whole. Of course, tlie region for which r is less 
than a — q contributes nothing to the integral; since making I greater 

increases a — it is clear that it will cut out a contribution to the integral 
(Z — N)e^ 

from a region in which V deviates from ---Hence the greater /, 

the less the energy will deviate from the value given by Eq. (1), and the less 
the effect of penetration. 

7.2. Pauli’s Exclusion Principle.—Since the amount of energy 
available per atom at ordinary temperatures is smalP compared 
with the difference in energy between a quantum state for which 
n = 1 and one for which n = 2, it would be natural to expect 
that all the electrons in any given atom would go to a quantum 
state for which n = 1, This, however, turns out not to be the 
case. On the basis of certain spectroscopic evidence, Pauli 
enunciated the following rule, known as the ‘'Pauli exclusion 
principle,” which seems to be of universal validity: In any 
atomic or moteeviar system^ no two electrom can have all four 
quantum numbers the same. The basis of this rule is purely 
empirical. Pauli, as stated, originally derived it from spec¬ 
troscopic considerations, but it has a profound effect on all 
properties of atoms, and its verification may be said in a sense to 
rest bn the entire experience of mankind, for it would be a pro¬ 
foundly different world if Pauli’s principle did not hold. It will 
appear, in the following account, how the properties of the chem- 

' More precisely expressed, we may say that the energy difference 
between quantum states for which n - 2 and those for which w *** 1 is large 

compared with kT &.t ordinary temperatures, where k is the Boltzmann 

constant (gas constant divided by Avogadro^s number); therefore, the 

relative probability (=c that the state for which n — 2 will be 

occupied is very small. See Appendix II, pp. 457/. For purposes of orien¬ 
tation as to orders of magnitude, it may be said that at room temperature 

kT is about 0.025 electron volts. 
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i(3al elements depend upon it and, following Bohr, Stoner, and 
Main Smith, how the periodic law may be understood. 

When we attempt to build up an atomic stnicture by adding 
electrons to the nucleus one by one, we see, in the light of Paulies 
principle, that the energy levels must be filled up in the order 
of their energies. There is not, in general, sufficient energy 
available at ordinary temperatures to excite an electron from one 
energy level to another, but if any given energy level is occupied, 
it is not possible to put another electron into it. The state of the 
last electron added to the nucleus can be described by the same 
four quantum numbers n, Z, m^, and s as if the other electrons 
were not there, though the energy of this state may be changed, 
as we have seen, by the presence of the other electrons. 

7.3. The helium atom is, with the exception of hydrogen, the 
simplest of all atoms, as it contains only two electrons, neutral¬ 
izing the charge of 2e on the nucleus. The first electron will go 
into a l5-state, as in hydrogen, such a state having the lowest 
energy. There are, however, two Is-states, for there are the two 
possible directions of the spin, which will always, of course, 
simply double the number of quantum states shown in the 
table of Sec. 5.4. The structure of the helium atom may there¬ 
fore be written as Is^, where the superscript indicates the number 
of electrons in the Is-state. 

It will be of interest to consider the energy of the helium atom 
in its lowest state. The energy necessary to remove the second 
electron (f.e., the last one added, therefore the first one to be 
removed) is 24.5 volts, which lies between the energy 13.5 volts 
necessary to remove an electron from hydrogen and the energy^ 
54.1 volts' necessary to remove the first (remaining) electron. 
That the value is thus intermediate is to be expeicted. If the 
first electron completely shielded the second one from half of 
the charge of the nucleus, the energy to remove the second one 
should be just the same as that necessary to remove an electron 
from hydrogen, whereas if there were no shielding, it should 
require as much energy to remove the second electron as th(^ 
first one. There is one thing which should be noted, however; 
namely, the two electrons, once they are both in l^j-states in 

^ These are the older values. The value given in “An Outline of Atomic 
Physics^ (see footnote 1, p. 15), for the removal of an electron from hydrogen, 
based on the more recent values of the physical constants, is 13.60 volts. 



do MANY ELECTRON ATOMS Sec. 7.5 

helium, are exactly alike and may really be considered to shield 
each other, which does not appear very clearly from our approxi¬ 
mate picture of one electron rotating in the field of the nucleus and 
all the other elecitrons. Whi(!hev(».r electron is taken away first 
will require 24.6 volts for its removal, and the one that is left 
will require 54.1. As a matter of fact, this is the worst case for 
our approximate method of treatment, for this is the only atom in 
which all the electrons are in the same state. The helium atom 
will be considered again in some detail in Chap. X. 

7.4. The First Row of the Periodic System.—There cannot be 
more than two electrons in the Is-level, so that lithium, which 
has three electrons, must have one in a higher energy level. This 
third electron will naturally seek tlu^ lowest energy available to 
it; this will be a level with n = 2. On acjcount of the penetration 
effect, an s-elcf^tron has a lower energy than a p-electron. The 
third electron in lithium will therefore go into a 2s-state, and we 
may designate the structure of the lithium atom by the symbol 
Is^ 2s\ 

Beryllium has four electrons. As there can be two electrons in 
26*-states, as in Is-states, its structure will be 2s^. 

In the case of boron, with five electrons, one electron will again 
have to be placed in a higher energy level, as the Is- and 2s-levels 
are filled by two electrons in each. The next lowest energy 
level is a 2p-energy level. Boron therefore has the structure 
Is^ 25^ 2p^, From the number of possible orientations (the 
number of possible values for the projection of the angular 
momentum) of an orbit for which Z = 1, and from the fact that 
there are always two possible values of the spin quantum number, 
it is seen that there may be six 2p-ol(H*trons (compare the table 
in Sec. 5.4.). The electronic structures of the next five elements 
are therefore as follows: 

C Is® 2.S® 
N 3s®2s®2p® 

O Is® 2s® 2p* 
F Is® 2s® 2p^ 
Ne Is® 2s® 2p^ 

With the rare gas neon, the shell for wdiich n ^ 2 is filled. 
7.6. A Remark on Notation.—In the last sentence, we have 

used the word ^'shell.'^ The group of quantum states for which n 
has a definite value is called a shell. The shells are often desig- 
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nated by giving the value of w, or by means of letters, beginning 
with K and proceeding alphabetically. Thus the n = 1 shell 
is also called the K-shell, the n = 2 shell is called the L-shcll, etc. 
A group of quantum states for which the values of ^oth n and I 
are fixed is called a “subshcll.’’ However, when no confusion 
can arise, we shall often call a subshell a shell, and also speak, 
for example, of the 2s-shell. 

For reasons that will presently become obvious, the electrons 
in the outermost shell and sometimes some electrons in the 
next outermost shell are called ‘‘valence electrons,^' provided 
these shells are not completely filled. For example, nitrogen 
has five valence electrons, while copper is sometimes said to 
have two valence electrons. (For electron structure of copper 
see below.) 

7.6. The Remaining Rows of the Periodic Table.—The struc¬ 
tures of all the elements are shown in Table 1, which gives the 
number of electrons of each kind, when the element is in its 
normal state. In the second row of the periodic table, the 
3a- and 3p-levels are filling up, as shown. 

Tablb 1.—Periodic Table and Outer Electrons of the Elements 

H He 

1« 1 2 

Li Be B C N 0 F Ne 
2a 1 2 2 2 2 2 2 2 
2p 1 2 3 4 5 6 

Na Mg A1 Si P S Cl A 
3a 1 2 2 2 2 2 2 2 

3p 1 2 3 4 6 6 

K Ca Sc Ti V Cr Mn Fe Co m Cu Zn Ga Ge Aa Se Br Xx 
3d 1 2 3 5 5 6 7 8 10 10 10 10 10 10 10 10 

4a 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 

4p 1 2 3 4 5 6 
Rb Sr y Zr Cb Mo Ma Ru Rh Pd Ag Cd In Sn Sb Te I Xe 

4d 1 2 4 6 (6) 7 8 10 10 10 10 10 10 10 10 10 
5a 1 2 2 2 1 1 (2) 1 1 0 1 2 2 2 2 2 2 2 

5p 1 2 3 4 6 6 
Ca Ba Hf Ta W Re Oa Ir Pt Au Hg Tl Pb Bi Po — Rn 

4/ 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

5d 1 2 3 4 5 6 7 9 10 10 10 10 10 10 10 10 

6a 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 
dp 

lU Ac Th Pa U 
1 2 3 4 6 6 

6d (1) (2) (3) (4) 
7a 1 2 (3) (2) (2) (2) 

Data from Heriberg, ** Atomspektren und Atomstruktur/' Theodor Bteinkopff Verlag. 

Drasden and Leipaig. 1936. 
Numbera in parentheaea are doubtful. 
• The raire eartha come between La and Hf. They all have 0 or 1 6<f>eIectrona, 2 da* 

eleotrona» no 6p-eleetronat and 1 to 14 4/*eleetrona. 



92 MANY ELECTRON ATOMS Sec* 7.6 

When w == 3, it is possible for the first time to have I = 2, i.e., 
c^-states. It might now be expected that after the 3p-states those 
of next lowest energy would be the Sd-states. However, an 
A’-eleefron penetrates into the inner shells so much more than a 
d-electron that the lowering of energy due to this cause more than 
counterbalances the increase of energy caused by going from 
n = 3 to n == 4, the result being that the 4s-levels are lower in 
energy tlian the 3d. Potassium therefore has the stnicturc^ 

3p® 4sh and calcium has the structure l6’2 2.s“2p^' 
3s=^ 3^*^ 4.9*'^. The energy of a 3d-level, however, is lower than 
that of a 4p-l(^vel, so the Sd-h^vels are filled up before the 4p-levels. 
l^he electronic structures of the r(\st of the elements in this row 
of the periodic table may be seen by reference to Table 1. The 
3d-l(wel fills u]) regularly from scandium to nickel. In chromium 
and copper, there arf' slight irregularities. This must mean that 
under some circumstances the 3d-level to he filled has a lower 
(‘iiergy than the 4t9-lev(4. It is not surprising that irregularities 
like this should occur, as the relative energies of various levels 
must be affected in some measure by the electrons already in 
the atom, and in any case the difference in energy between 3d- 
and 4s-lev(4s is not great. Besides, there is undoubtedly a cc'.rtain 
special stability conne(;ted with a completed subshell, and there 
appears also to ho a s})ecial stability about a half subshell, as in 
chromium. The fact that copper has but one 4.9-electron is 
deduced from its spectrum, as is, indeed, the structure of any 
atom. The details of the method by which these conclusions are 
reached are part of the theory of complex spectra and are beyond 
the scope of this book. We shall see later, however, how the 
electronic stnicture is connected with other properties of the 
element. 

The fourth row of the periodic table is built up much like the 
third row, as will be seen from Table 1. It will be seen that the 
same type of irregularity occurs as in the third row; in fact, 
the irregularities are a little more frequent. 

With the completion of the fourth row, the 5p-shell is filled, 
but the 4/-orbits are still vacant. The preceding rows of the 
periodic table would lead one to expect that the 6s-levels would be 
filled before the fid-levels, and it turns out that the 65-levels also 
have a lower energy than the 4/. Then in lanthanum, an electron 
goes into the fid-level. In the case of cerium, however, the 
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added electron goes into the 4/-levcl, and in the immediately 
succeeding elements the 4/-shell fills up. These elements form 
the group of rare earths, all of which have almost identical 
chemical properties. After the 4/~shell is complete, tlu^ 5f/-levels 
fill up, with some irregularity, as seen in Table 1. In this section 
of the periodic system, the available energy levels are very close 
together, and small perturbations are apt to change th(dr order; 
we have seen, for example, that the addition of on(3 (dectron to 
the 5d-shell raises the energy of the rest of the levels of that shell 
sufficiently so that the 4/-levels becomes lower, aiid then the 
4/-shell fills up before the M. 

The periodic system as we know it ends with the filling up of the 
7.9-level and part of the 6^/-leveL In none of tliese (dememts is 
there a 5/-electron in the normal state. 

The order in which the electrons enter in the periodic table 
may be summarized as follows: 1.9, 2.s*, 2p, 3.9, 3p (4a‘, 3c/), 4y> 
(5.9, 4ci), 5p (66‘, 5c/, 4/), 6p, 76*, 6c/. The energy levels in paren¬ 
theses have about the same energy and change their ordc'.r in 
different elements. The states within the parentheses g(d/ their 
first electrons in the order in which they are written, but they 
are finally filled up in just the reverse order. 

7.7. Recapitulation.—In the first cha[)t(‘r, we briefly reviewed 
the work of the early chemists, their discovery of the laws of 
combination of the chemical elements, and the determination of 
atomic weights. It was seen how the study of the properties 
of the elememts and the measurement of their atomics weights led 
to an arrangement of the elements, practically in th(‘ orde^r of 
atomic weight, which gave also a description of their properties. 

The study of matter was then taken up from another point of 
view, namely, we inquired how it is built up from its fundamental 
constituents. The properties of electrons, nuclei, and atoms 
were considered, and it was noted that the properties of matter 
may be deduced from atomic spectra. The simplest of atoms, 
the hydrogen atom, which contains one electron bound to a 
relatively heavy nucleus with equal and opposite charge, was 
then considered in some detail. Passing to more complicated 
structures which contain many electrons, we saw how, by rela¬ 
tively simple assumptions, a scries of electronic structures capable 
of explaining the spectra of the known elements can be built up. 
This leads to an arrangement of the elements that corresponds 
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exactly to the arrangement based on their chemical properties. 
Even without a detailed consideration of the way the chemical 
properties may be explained on the basis of the electronic struc¬ 
ture, this happy correlation greatly strengthens our belief both in 
the correctness of the chemical findings, in particular the atomic 
weights found by the chemist?, and in the essential correctness 
of the physical theory which has led to this result. This theory 
may therefore be used with confidence as a foundation for the 
discussions to follow. 



CHAPTER VIII 

SOME PROPERTIES OF THE ELEMENTS AND THEIR 
CONNECTION WITH ELECTRON STRUCTURE 

8.1* Effects of Penetration of Electron Orbits into Underlying 
Shells.—In the preceding chapter, we have discussed the effect 
of the electrons already in the atom on the motion of a new 
electron and have seen how the fact that an electron can pene¬ 
trate into the inside shells affects its energy. It may not be 
amiss, for the sake of orientation as to the magnitudes of the 
quantities involved and their relation to the periodic arrange¬ 
ment of the elements, to consider this matter in a little more detail 
in the case of those elements which have a single valence electron, 
namely, the alkali metals and the copper group. Such elements 
resemble the hydrogen atom, and if there were no penetration 
of the valence electron, its energy would be given by the hydrogen 
formula 

(1) 

Of course, it is understood that n in this formula cannot take on 
a value already claimed by electrons in one of the closed subshells. 
Thus in cesium, if the outer electron is in an s-state, the value 
of n could not be less than 6, but if it should be in a d-state, for 
example, it could have a value 5 since only the 3d- and 4d-states 
are occupied by inner electrons. 

If there is penetration of the outer electron, then as seen in 
the last chapter, Eq, (1) does not hold; it has been customary to 
write 

(2) 

where n*, the so-called effective quantum number, is the value it is 
necessary to insert into the equation in place of the true total 
quantum number n in order to get the actual value of the energy. 
A comparison of n* and n will then give a measure of the effect of 
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penetration. In Table 2 are given the values of n* for the lowest 
p-, c/-, and /-states of the alkali metals and copper, silver, and 

Table 2.—Values of n* 

s 1 '' 
d 1 / 

Li !.o9{2) ' 1.96(2) : 3.00 (3) ' 4.00 (4) 
Xa 1.03(3) i i 2.12 (.3; 1 2.99 (3) 4.00 (4) 
K 1.77(4) 1 I 2.23 (4) ! 2.85(3) 3.99 (4) 
Kl> l.SO(o) 1 2.28 (.5) 1 2.77(4) 3.99 (4) 
Cs 1.87(6) 2.33 (6) i 2.55 (5) 3.98 (4) 
Cu 1.33 (4) 1.86(4) j 2.98 (4) 4.00 (4) 

Ag . 1.34(5) 1.87(5) 1 ■ 2.98 (5) 3.99 (4) 
Au ' 1.21(6) 1.72(6) j 2.98(6) 

gold. ’ These may be compared with the corresponding values of 
n (given in panuiiheses). It will be s(‘en, for example, how much 
great(‘r the off(H't is for a deeply penetrating <s‘-eleetron than for a 
p-el('ctron whicli does not penotrab' so deeply, how mucdi great(‘r 
it is for a heavy atom than for a light one which has not so many 
elec^trons in the inner shells for the outer electron to penetrate, 
and how much greater it is for an atom in which the first shell 
t he oulra' elecdron has to penetrate is a shell of 18 rather than a 
shell of 8. 

The diifc'reiice between n* and n is almost independent of the 
latter as th(' values for sodium, given in Table 3, will indicate.' 

Table 3.— Values of n* for Sodium 

n S i 
' . . . i 

d i ’ ^ 

3 1.63 2.12 J - « 2.99. 
2.64 3.13 3.99 4.00 
3.65 4.14 4.99 

■ 4 65 5.14 ‘ 5.99 6.01 

8.2. The ionization potential, the energy necessary to 
n‘mov(‘ th(‘ most loosely bound electron from an atom in its 

^ Sue fluND, “IJnicrispektren,” pp. 30, 39, Julius Springer, Berlin, 1927; 

White, ‘‘Introduction to Atomic Spectra,” pp. 89, 90, McGraw-Hill Book 

t’ompany, iiic., 1934. 
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lowest energy leveV is one of the most important properties of th(' 

atom from the point of view of chemistry. This energy is 

obtained directly from Eq. (2) if n* is given the value appropriate 

to the most loosely bound electron w'hen the atom is in its lowest 

state. The considerations involving penetration are of utmost 

importance in determining the ionization poteiitial of an element. 

The energy nec(\ssary to rc^move the most loostdy bound elect ron 

in its lowest energy state from the ion that is left after onc^ el(‘c~ 

tron has already been removed is called the ionization potential 

of the ion or the second ionization potential of the corre¬ 

sponding atom; in lik('. manner, the ionization potential of tin* 

ion formed by removing two electrons is the third ionization 

potential of the atom, (‘tc. Th(^ first, s(3Cond, and third ioniza¬ 

tion potentials of the elements as far as they arci known are given 

in Table 4. The first ionization potentials are also shown 

graphically in Fig. 33. 

In looking over the trends of the ionization potentials,*^ we 

note that along any row of the periodic table the ionization 

potentials tend to increase from left to right. This general 

tendency is due to the increasing nuclear charge as the atomic 

number increases, and to the fact that all the electrons involved 

in the building up of any row of the table are at roughly similar 

distances from the nucleus. The result is that the outermost 

^ It will, of course, he understood thiit this refers to an isolated atom, t.e., 

an atom in a dilute gas. 

* When the term ionization poteiitiar’ is used without qualification, it 
means the first ionization potential, or the energy necessary to remove the 

outermost electron from the atom. 
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Table 4.—Ionization Potentials 

(In electron volts) 
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T^lb 4.—Ionization Potentials.—(Continued) 

Pd 8.3 19.8 
Ag 7.54 21.7 1 (82) 
Cd 8.96 16.84 38.0 
In 5.76 18.80 27.91 
Sn 7.30 14.52 30.49 
Sb 8.35 (18) 24.7 
Te 8.96 30. 
I 10.5 1 19.4 
Xe 12.08 (23) 32.0 
Cs 3.87 23.4 (35) 
Ba 5.19 9.95 i (35.5) 
La 5.59 11.38 (20) 
Ce 6.54 1 14.8 
Pr (5.76) 
Nd (6.31) 
Sm (6.55) 11.4 
Eu 5.64 11.4 
Gd (6.65) 
Tb , (6.74) 

Dy (6.82) 

Yb (6.23) 12.05 
Hf (14.8) 
W 8.1 

Os 8.7 

Pt 8.88 

Au 9.19 i 19.95 
Hg 10.38 18.66 34.3 
T1 6.07 20.31 29.7 
Pb 7.38 14.96 ! 31.91 
Bi 7.25 16.60 25.43 
Rn 10.70 

Ra 5.25 10.10 

From Landolt-Bornstein, “Tabellen,” JuliuM Springer, Berlin, and Herzborg, “Atomapek- 
tren und Atomstruktur,” Verlag von Theodor Steinkopff, Dresden and Leipzig, 1936. Val- 
uea from these sources were averaged, except where a choice appeared indicated. 

Doubtful values in parentheses. 
See footnote, p. 89. 

electron is not very effectively screened or shielded by the other 
outer electrons and so is affected by the increase in nuclear 
charge. 

On passing from a rare-gas structure to the next alkali element, 
a great decrease in ionization potential occurs. The added 
«-electron, being in a completely new shell, is relatively well 
shielded from the nuclear charge, in spite of a considerable 
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teridoncy to p(metrato the inner shell. Going from an alkali 
(element to the adjacent alkaline earth element brings a noticeable 
increase in the ionization potential, for one of a pair of s-electrons 
does not shield the other one very well against the increased 
nuclear charge of the alkaline earth element avS compared with the 
alkali el(‘mcnt. 

A p-electron outside the 2s-subshell is much better shielded, as 
it does not penetrate so strongly as an .s-electron, and boron and 
aluminum have lower ionization potentials than beryllium and 
magnesium, respectively. However, a cZ-electron outside a 
completed s-siibshell is not so well shielded (compare, e.g., 
scandium with calcium). At first sight this may seem strange 
as a (/-electron should penetrate still less than a p-electron, but 
the d-ele(!tron added in this case has a lowc^r quantum number n 
than the outer ^-electrons. It is for this reason that the (/-level 
has a low energy and, in fact, it is because of this that the elec¬ 
tron enters the (/-lev(^l in the first place. 

In addition to those mentioned above there occur other 
exceptions to the general rule that the ionization potentials 
increase across the rows of the periodic table. There are rather 
marked and perhaps rath(?r unexpected irregularities at oxygen 
and sulfur. Other irregularities, the causes of which are rather 
obvious from the electron stnictures of the elements, occur at 
gallium, indium and thallium. 

Turning now to a comparison of the first, second, and third 
ionization potentials of the same element, we note that the 
second ionization potential is always much larger than the first 
and the third always much larger than the second. It is, of 
course, to be expected that it will be harder to remove an electron 
from a positively charged ion than from a neutral atom, and the 
difficulty increases wiih the charge on the ion. It is to be 
noticed, however, that there are certain striking difTerences in this 
respect between sodium, magnesium, and aluminum, for example. 
Ill the case of sodium, after one electron is rernovi^d, arare-gas-liko 
electron configuration is left and it is very difficult to remove the 
second electron. In the case of magnesium, two electrons must 
be removed before getting to the rare-gas structure and these two 
electrons are relatively easy to remove, whereas in the case of 
aluminum even the third electron is more easily removed than 
the second electron in sodium. These facts are related to the 
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fact that sodium is univalent in its compounds, calcium bivalent, 
and aluminum trivalent. 

8.3. The electron affinity is defined as the energy that is given 
out when an electron is added to an atom to form a negative ion. 
The second electron affinity is the energy liberated when an elec¬ 
tron is added to a negative ion to give a doubly charged negative 
ion. The electron affinities of only a fe^w elements are known, 
some of these are given in Table 5. They are determined in a 
way to be discussed later, in Sec. 14.7. 

Table 5.—ELErTiiON Affinities 

(In electron volts) 

F. 4.12 

Cl. 3.78 
Br. 3.55 

1. 3.22 
O. -7.2“ 
S. -4.0" 

Se. -4.6" 
" For tho udditioti of two elcctron.s. 

The halogens, if they add one electron, give ions with a rarc'- 
gas structure. The latter are, therefore, very stabl(\ and the 
electron affinities of the halogens are correspondingly high. I'lu* 
ele(!tron affinities of the elements of th('. oxygen group are pre¬ 
sumably also positive, but all that can be measured is the sum 
of the first, two electron affinities, which is negative in spite of 
the rare-gas structure of the doubly charged ion thus formed, 
because the last electron must be added to the singly charged ion 
against an electrostatic repulsion. 

8.4. Electropositivity and Electronegativity of the Elements.— 
When he uses the term electropositive'' or electronegativein 
describing the characteristics of an element, the chemist, refers 
to a complex array of properties, not all of which parallel ea9h 
other completely. Nevertheless, in a general way, an element is 
electropositive if it has a relatively great tendency to lose an 
electron (or, perhaps* better, a relatively small attraction for an 
electron)., and it is electronegative if it has a relatively great 
electron affinity. It is, in fact, possible to formulate a reasonably 
good definition of electropositivity or electronegativity in terms 
of these two properties of the elements; this will be done in 
Sec. 12.3. In a general way, it can be seen from Tables 4 and 5 
that the general trends of electropositivity and electronegativity 
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defined in this way will be that which the chemist has always 
found. Elements become more electropositive as we go to the 
left of the periodic table and down; they become more electro¬ 
negative as we go to the right and up. 

8.6. X-ray spectra of the elements are of great historical 
interest because it was by means of them that Moseley first found 
a completely objective and unequivocal method of ordering the 
elements in the periodic table. The X-ray lines he studied are 
lines of very small wave length emitted by the elements. The 
wave lengths of these lines do not, on progressing from element to 
(‘lement, show any changes that correspond to the periodic prop¬ 
erties of the elements but instead change gradually and uni¬ 
formly. It is possible to assign to each element an ordinal 
number, representing the position, in this series, of its X-ray line 
of a given type, a number that turns out to be equal to the atomic 
number of the element.^ Further, the frequency of the X-ray 
line, if it belongs to the so-called K-series (explained below), 
is approximately proportional to the square of the atomic 
number. 

I’hese relationships are easily understood in the light of present- 
day theories. X-ray lines arise from transitions in the inner 
shells of the atoms. Suppose, for example, a metal is bombarded 
by high-speed electrons, as is the case in an X-ray tube. It is 
possible for such a high-speed electron to knock an electron 
out of the K-shell of the atom. The K-electrons of an atom arc 
those near the nucleus, and as most of the time they are much 
closer to the nucleus than to most of the other electrons in the 
atom, the latter have only a relatively small shielding effect. 
We can get an approximate value for the energy of a K-electron 
by neglecting the shielding entirely; this yields the expression 

* 2Tr^mZ^e^ 
A2 ^ 

the quantum number n being 1. Now suppose an 

L-electron drops into the K-shell, filling up the hole which is 
there. In this process, an X-ray line is emitted,' it belongs to 
the K-series because the electron drops back into the K-shell. 
If as a very rough approximation we neglect shielding for the 

L-electron too, its energy is ——; since n = 2, and the fre- 

^ The term “atomic number'^ might be defined in this way. We consider 
it better, however, to define it in terms of the charge on the nucleus. 
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quency of the X-ray line is (2ir^mZ^e'^//i^)(l — J); since the 
energy of the L-electron contributes only a relatively unimportant 
term to this expression, the approximation made in neglecting 
shielding will be sufficiently good. The corrections that should 
be made to this expression will depend on which one of the Ij-elec- 
trons actually makes the jump, as they are not all alike, but we 
may neglect these differences and compare always the same 
X-ray line for the different elements. The frequency will thus 
be roughly proportional to the square of the atomic number, as 
actually found. Of course, in the case of hydrogen and helium 
which have no L-electrons, lines of this sort cannot occur, but 
certain possible electron transitions correspond pretty closely. 
Elements that have M-, N-, etc., electrons will also present the 
possibility of jumps from these higher levels to a hole in the 
K-shell, and there can also be transitions between the higher 
shells. Similar relations between frequency and atomic number 
will hold for all these types of transition provided the com¬ 
parison is made between corresponding lines of the different 
elements. 

Exercises 

1. Explain the breaks in the value of the ionization potential that occur 

at gallium, indium, and thallium. 

2. Rubidium is more electropositive than silver. Explain. Discuss the 

difference in chemical properties from the point of view of the electronic 

structure. 

3. It is not so easy to remove the valence electron from normal ce.sium as 

it is to remove the valence electron of lithium after the latter has been 

excited to the 6s-level. Explain. 

4. Copper has a smaller atomic volume than potassium, the alkali metal 

in the same row of the periodic system. Explain. 

6. Calculate the fourth ionization potential of beryllium. 

6. From measurements on crystals, such as described in Chap. XIV, ic 

is found that the size of the rare-earth ions (of the type Ce'^++) progress¬ 

ively decreases as the 4f-level fills up (the “lanthanum contraction'^* 

Explain. 



CHAPTER LX 

MOLECULAR POTENTIAL-ENERGY CURVES AND 
MOLECULAR MOTION 

We turn now to the consideration of a problc^m that is central 
to the whole of chemistry. It will he the purpose of this chapter 
to discuss qualitatively, and with the aid of simf)le examples, the 
general ideas that are involved in th(^ study of chemical combina¬ 
tion, as well as the tyi>es of motion that occur in molecules. 

9.1. The Formation of Compounds.—Perhaps the simplest 
type of chemical-compound formation is the formation of polar 
compounds, and for purposes of illustration, we shall discuss the 
forces involved in cases of this kind. Let us consider, for example, 
the formation of a gaseous sodium chloride molecule from a 
gaseous sodium ion, Na”^, and a gaseous chlorine ion, Cl“, i.c., 
the reaction 

Na++ Cl-NaCl (1) 

It would, of course, he possible to consider the formation of a molecule of 
sodium chloride from a neutral sodium atom and a neutral chlorine atom 
(all being supposed to be in the gaseous state), writing the reaetion 

Xa 4- Cl NaCl (2) 

However, it will appear later, in Chap. XIV, that this latter reaction is best 
treated as the sum of a series of steps 

Na —♦ Na4 -f K“ 

Cl + E- Cl- 
Na-^ + Cl- NaCl 

where E” is used as the chemical symbol for a free electron. At present, 
however, it is merely desired to illustrate the process of compound formation 
by means of an example in which the attractive force is of a particularly 
simple type, and for this purpose we confine our attention to reaction (1). 

When the sodium and chlorine ions are sufficiently far away 
from each other, the force that exists between them is of a purely 

104 
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electrostatic nature and is the same as that existing between an 
electron and a positively charged nucleus, namely, e^/r^ w^here e 
is the charge on thci electron and r the distance between the 
centers of charge (which are the same as th(» centers of gravity) 
of the sodium and chlorine ions. If it is assumed that the 
potential energy is zero when r is infinite, then the potential 
energy at any distance r is given by the usual expression* 
This is true at any rate as long as r is great caiough. However, 
it will break down at smaller distances. For it must be remem¬ 
bered that the sodium and chlorine ions are not point charges, 
but that they have shells of elee,trons that extend out from the 
nuclei to distances of the order of 10 cm. When the two ions 
come so close that interpencitration of th(i electron shells, begins 
to take place, other forccis come into play. These result in a 
resistance against bringing the nuclei closer together; i.e., a 
repulsive force appears which works against the attraction due 
to the gross electric charges. The repulsive forces probably 
arise principally from the following circumstance. ^ It was shown 
in Sec. 4.6 that a quantum state occupies a region of a definite 
size in the phase space, and, by Sec. 7.2, there can be only one 
electron in a single quantum state. If the electron shells are 
pushed together, this means that more electrons are forced into a 
given volume (in ordinary space). Since each electron is in its 
own quantum state, the result is that there are more quantum 
states per unit volume of ordinary space. This means that each 
quantum state must occupy a greater region in the momentum 
part of the phase space. Thus the momentum, and therefore 
the energy, corresponding to ea(jh quantum state is raised; 
just as in the case of the electron moving in a box, considered in 
Sec. 4.2, the energy of all the quantum states goes up if the box 
is made smaller. It might be argued that instead of more elec¬ 
trons on the average occupying the given volume some of the 
electrons would simply be pushed out of the volume, and this is 
partly true; but this pushing-aside process itself requires energy. 
The net result is that as soon as the two ions are close enough 

^ See, e.g., Jensen, Zeits, Phyaik, 101, 164 (1036); GombXs, 93, 378 

(1935). The type of repulsive force considered here is always operative, 

but inay be said to be typical of cases where ions with closed shells come 
into contact. That, in some cases, repulsive forces can also arise in a some¬ 

what different way will be seen in Chap. X. 
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together so that the electron shells affect each other, a repulsive 
force sets in, and this repulsion then increases very rapidly when 
the distance is decreased only a very little, and it quickly over¬ 
comes the attractive force. The effective potential energy 
between the two ions is shown schematically as a function of r 
in Fig. 34. At great distances, the curve starts off as an inverse 
first-power curve; at smaller distances, the effect of the repulsive 
forces begins to become evident. At the distance ro, the repulsive 
and attractive forces just balance and the potential-energy curve 
has a minimum at that point; at smaller distances, the repulsive 
force predominates, and since it now requires work to push the 

Fig. 34.—Molecular potential-energy curve. 

particles together the potential rapidly increases as the distance 
decreases. 

It is, of course, not necessary for the attractive forces to be of 
the same nature as those in the example just considered. It is 
quite possible to have strong attractive forces between neutral 
atoms, due..to the interaction of the electrons in the atoms, as we 
shall see in the next chapter; other types of repulsive force than 
those considered above may be operative.^ In such cases, the 
attractive force will not manifest itself at such great distances as in 
the case where the attraction is between two ions; but in general, 
attractive forces, if they occur at all, do manifest themselves at 
greater distances than the repulsive forces. The latter, whatever 
their origin, always predominate at very small distances, and one 
gets potential curves which resemble Fig. 34 qualitatively in that, 
as r decreases from infinity, the potential first decreases to a 

1 See Chap. X. 
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minimum and then increases very rapidly to an extremely high 
value. 

In looking at the matter from the point of view of experiment, 
the mere fact that molecules exist with a fairly definite distance 
between atoms is indication that the potential-energy curve has 
somewhat the shape shown in Fig. 34. If there were no repulsive 
forces at small distances, the atoms in the molecule would not 
remain a definite distance apart; instead, their positions would 
tend to coincide. The existence of a position of equilibrium 
implies a minimum in the potential-energy curve. At ordinary 
temperatures, a molecule tends to have a low energy; this means 
that there will be but little kinetic energy and the atoms will have 
to be at positions of low potential energy; i.e.y the value of r 
will not, in the course of the motion of the atoms, become very 
different from ro, where the potential-energy curve has its 
minimum. The shape of the potential-energy curve will be 
further discussed, in connection with the experimental material, 
in Secs. 9.4 and 9.5. The nature of the attractive and repulsive 
forces operative in solids will be discussed in later chapters; in 
particular, the forces in the ionic type of crystals, such as NaCl, 
will be discussed in some detail in Sec. 14.5, and the forces in 
gaseous molecules of this type treated more or less quantitatively 
in Sec. 14.9. It may be remarked that every available line of 
evidence on the repulsive forces verifies the relatively great 
steepness of the potential curve in the region where the inter¬ 
atomic distance is less than ro. 

Leaving then, for the present, the more detailed discussion of 
the experimental facts, a somewhat more exact formulation of 
the theoretical side of the problem may be attempted. When we 
consider a single atom, we must deal with the motion and the 
quantization of a number of electrons attracted to a nucleus 
which may be treated approximately as a fixed center of force. 
In a case of a molecule consisting of two atoms, it is necessary to 
consider the effects of two centers of force. If these two centers 
of force are far removed from each other, each electron can be 
thought of as attached to one or the other of them and the 
problem reduces to two problems of a single center of force. On 
the other hand, if the two centers of force are close together, then 
it is not possible to say definitely whether a given electron, 
especially an outer electron, belongs to one center or the other, 
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and the two-center problem must bo considc^red in its entirety. 
The approximation made if it is assumed that each electron is 
definitely attached to one or the other of th(i centers of force is 
much worse in some cases than in others. It is not necessary to 
go into this matter at the present time; what we wish to bring 
out now is that each electron occupies a certain quantum state 
with a certain energy in the two-center problem just as in the 
one-center problem. But in the case of the two-center problem, 
the energy of any quantum state depends upon the distance 
between centers. Whether the atoms will appear to attract or 
repel each other depends upon whether the sum total of all these 
electron energies is increased or decreased when the distance 
between the atoms is increased. From this point of view, then, 
the effecitive potential energy of the two atoms is merely the 
sum of the energies of the quantum states of all the electrons.^*® 
Subtracting from this sum the value of the total energy of the 
quantum states of the two atoms at infinite separation is equiva¬ 
lent to changing the zero of potential energy so that it occurs 
when the two atoms are infinitely separated; this was done in 
Fig. 34. This method of setting the zero of potential energy is 
sometimes inconvenient, however, because there is more than 
one possible potential-energy curve for a pair of atoms; we often 
wish to compare the energies of the different curves and, there¬ 
fore, desire that there be a common energy zero for them all, 
instead of having a special zero for each one. 

If one of the electrons is excited, it will be in a quantum state 
that has a different energy than the lowest or normal state, and 
the total energy of all the electrons will be a different function 
of the distance between the atoms. Thus, in Fig. 35 are pic¬ 
tured schematically some potential-energy curves belonging to 
a single pair of atoms. The zero of potential energy is taken 
arbitrarily as convenient, but it is the same for all curves. The 
difference between the curves at any value of r shows how much 
energy is necessary to excite an electron to the particular excited 

* A rather similar case of an effeijtive potential energy occurs in Sec. 5.7. 

* This statement involves the assumption that the nuclei move so slowly 
compared with the electrons tliat the latter always have time to adjust their 

motion to that expected for fixed nuclei at the distance apart at which the 

nuclei happen to be at any given instant. Actually, a very good approxi¬ 
mation to-this assumption is always tnie becau.se of the groat mass of the 
nuclei as compared with the electrons. 
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state considered, when the atoms are that distance apart. When 
r is very great, this simply means exciting the electron of one 
or the other of the atoms; the asymptotic difference between 
the curves when r is great therefore represents the energy neces¬ 
sary to excite an electron of a particular one of the atoms to some 
definite state of higher energy. And, of course, states can also 
occur in which more than one electron is excited. 

As long as there is no transition from one potential-energy 
curve to another, we can, if we are intenisted in the motion of the 
nuclei, consider them as point masses moving in a potential- 

Fio. 36.—Normal and excited potential-ouergy curves for a pair of atoms. It 
will be noted that one of those curves is depicted without a minimum. It is 
quite possible fox; electronic states to exist in which no attraction between the 
atoms occurs. Such a state, obviously, 'mil not result in molecule formation. 

energy field which is a function of the distance between them, 
the forces between them being directed along the line joining 
the particles. It is a well-known mechanical principle that the 
center of gravity of the system may move with a constant velocity 
without affecting the relative motion of the two masses (see 
Appendix I). The relative position of the two masses may be 
given by specifjdng three coordinates r, the distance between 
them, and the polar angles 6 and <!> giving the direction in space 
of the line joining them. The relative motion is given if r, B, 
and <l> are known as functions of the time. It may be shown 
(Appendix I, pp. 451/.) that, as far as their relative motion is 
concerned, the system of two particles (of mass mi and m2) can be 
replaced by a single particle of mass fi = mim^l{mi + m2) 
attracted to (or repelled from) a fixed center with a force that is 
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the same function of the distance as the force between the two 
particles of the system is of the distance between them. The 
coordinates r, 6j and 0, of the representative particle, taking the 
fixed center as the origin, are then the same functions of the time 
as the coordinates r, and <t> defined above for the two-particle 
system. The mass n is called the “reduced mass” of the original 
pair of particles. 

9.2. Molecular Energy Levels.—Since the relative motion 
of the atoms in a molecule can be replaced by the motion of a 
representative particle of mass fx, acted upon by a central field of 
force, the quantization of the molecule is very similar to that of 
the hydrogen atom,^ the only essential difference being that the 

potential —is replaced by a potential V which is a more com¬ 

plicated function of r. No account need be taken of the motion 
of the center of gravity of the molecule, since the relative motion 
of the atoms is quite independent of it. The quantization of 
the angular momentum and its projection along an arbitrary 
axis proceeds just as in Sec. 4.5, provided the vector sum of the 
orbital and spin angular momenta of all the electrons vanishes 
when the motion of the nuclei is not taken into account. If 
there is a resultant electronic angular momentum, it has a gyro¬ 
scopic effect on the motion of the molecule, but for our purposes 
consideration of this may be omitted. We shall use the quantum 
numbers j and m,- to designate the nuclear momentum and its. 
projection, respectively, writing for the total angular momentum 
of the jth state (j, corresponding to I of Sec. 4.5, can have any 
integral value from 0 to <») 

Pi =• Vj(j + 1)^ (3) 

and for its projection 

1 For detailed accounts of molecular motions and molecular spectra, the 
reader may be referred to the following books: Jevons, “Report on Band 
Spectra,*^ The Physical Soc., London, 1932; Sponer, “ Molekiilspektren,” 
vol. II, Julius Springer, Berlin, 1936; and Weizel, Bandenspektren,” 
Akademi^phe Verlagsgesellschaft, Leipzig, 1931, etc.; as well as portions of 
many general works on quantum mechanics. 
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where m,-, corresponding to mi of Sec. 4.5, can take integral 
values from —j to j. 

. In quantizing the energy, account must be taken of the radial 
motion, just as in the case of the hydrogen atom, though the 
actual nature of the radial motion of the atoms in a molecule is 
very different from the radial motion of the electron in the 
hydrogen atom. It has been remarked in the preceding section 
that for a molecule in a low-energy level the value of the coordi¬ 
nate r never becomes greatly different from n. This is illustrated 

by Fig. 36. For simplicity, we shall first consider the case in 
which j = 0, so that there is no rotational energy. The direction 
of the line joining the two atoms remains fixed in space, i.e., 
e and (l> are constant, but the atoms oscillate back and forth 
about positions of equilibrium. Since the pair of atoms can be 
replaced by a single representative t)article of mass /tx, the kinetic 
energy associated with this oscillation or vibrational motion is 

If E represents the total energy of the pair of atoms 
(excluding, of course, any energy of translation of the center of 
gravity) and V, the potential energy, the difference between them 
jB — F is the kinetic energy. In the case sketched in Fig. 36, 
this is negative to the left of n and to the right of r^. According 
to the classical picture, then (and the description heretofore 
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given has adhered to the classical picture) values of r less than 
Ti or greater than r2 cannot occur. According to wave mechanics, 
there is a certain probability that r might be less than ri or 
greater than r2, but these classical!}^ forbidden cases are not very 
probable, and it is approximately correct even on the wave 
mechanical basis to say that r is confined between ri and r2. 
In general, for low molecular energies, r2 — Vi is not more than 
about 10 per cent as great as ro, so the oscillation may be treated 
as a small oscillation. 

Let the value of the potential energy at its minimum be 
designated as Vq. The potential energy V at any point r may 
be expressed in terms of Fo as a power seric^s in r — ro, a process 
very commonly employed in mathematical considerations, in the 
following manner: 

V = Vo + a(r — ro) + 6(r — ro)^ + c(r — ro)*^ + • . . (5) 

where a, c, . , . are constants. Diiferentiating with respect 
to r gives 

^ = a + 26(r - ro) + 3c(r - ro)^ + • • • (6) 

but since V has its minimum at r = ro, dV/dr must be equal to 
zero there. Hence it is seen that a = 0. Further, if r — 

is not too large (and as noted above it does not become larg(i if 
E is not too high), it is possible to neglect the higher terms in 
r — ro. Then Eq. (5) becomes 

F= Fo + 6(r ~ ro)2. (7) 

Motion in a potential-energy field given by an equation of this 
type is called “simple harmonic motion.^’ 

The increase dV in the potential energy, when the representa¬ 
tive particle is displaced a small distance dr, is equal to ~/dr, 
where / is the force on the particle. (The minus sign arises 
because/is taken as positive if it acts in the direction of increasing 
r, and the potential energy increases if the force is opposed to the 

dV 
displacement.) Since, from these remarks, /i® 

seen from Eq. (6) that, approximately. 

/ = ~26(r - ro). (8) 
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This can be set equal to the reduced mass times the acceleration, 
giving as the classical equation of motion 

—lj,r = 2h(r — ro). (9) 

The solution of this differential equation is 

r - ro = A sin (1^) 

where A and 8 are constants of integration. This shows that, 
according to the classical picture and making the approximations 
noted (simple harmonic motion), the value of r oscillates back 
and forth past the position of equilibrium ro as a sinusoidal func¬ 
tion of the time, r returns to its original value after a time 
r such that '\/2h/fjLr = 2t. The reciprocal of r is the frequency 
of vibration vo which is thus given by 

It should be noted that h depends only upon the potential-energy 
curve, the broader the minimum being, the smaller 6. n, of 
course, depends only on the masses of the atoms. From Eq. (11), 
it is seen that vq depends, then, at least to the approximation 
to which Eq. (7) is valid (i.e., for sufficiently low energy levels) 
only on the potential energy and the masses of the atoms and is 
independent of the total energy, which depends upon the ampli¬ 
tude of the motion (z.e., upon the largest value r — ro can 
take in the motion). From Fig. 36, it is clear that the higher 
the energy level, the greater this amplitude will be, and the total 
energy is closely related to the magnitude of A in Eq. (10). 

The preceding account gives a fairly complete description of th(i 
vibration from the classical point of view. Quantum theory, 
we know, will restrict the possible energies of the system. In the 
case of the simple harmonic oscillator described above, the energy 
levels may be shown to be given by the following formula: 

Fo = (v + i)hvof (12) 

where t; = 0, 1, 2. . . . 
The treatment of the vibrational motion outlined above was 

carried out for the case where there is no rotational motion. 
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If there ivS rotational motion, it may be shown that, to a first 
approximation, it is independent of the vibrational motion, and 
the energy due to the rotational motion may simply be added 
to the energy given by Eq. (12). Since the amplitude of the 
vibrational motion is small, the rotational motion may be handled 
as though the two atoms were at a fixed distance ro. This means 
that Eq. (17), of Sec, 4.5, will hold without alteration other than 
insertion of the appropriate quantities for the case at hand, which 
gives for the rotational energy 

(13) 

where I = is the moment of inertia of the two nuclei about 
their center of gravity, assuming them held rigidly fixed at the 
distance ro. Since this equation involves a number of approxima¬ 
tions, it is not generally applicable when the energy of vibration 
or rotation is not low, in contrast to Eqs. (3) and (4), which are 
not subject to these limitations, my, of course, has no effect 
on the energy. 

A better understanding of the relationship (12) above, may be had by a 
consideration of the integral /pr dr. As stated above, the problem of the 

diatomic molecule is formally the same as that of the hydrogen atom, 

except that the potential energy does not have the form —— • If, therefore, 

is replaced by V ~ Fo + 6(r — r©)* and I is replaced by j, and m is 

replaced by m, Eq. (15), page 66, will hold in the present instance, and the 
expression for the total energy may be written 

E Ell I iU + IW 
2m 

4- Fo + Hr ~ ro)*. (14) 

This may be solved for pr and the result placed in /pr dr. The integral must 

be taken over a complete oscillation of the particle; t.e., it must bo taken over 

the motion of the particle while it moves from the smallest classically 
possible value of r, t.e., ri, to the largest value ra, and hack again, pr is 

positive when dr is positive, and negative when dr is negative. This means 
that pr dr is always positive, and we write for the integral in the particular 

case that j = 0, 

Jp, rfr = 2dr = - 5(r - rol^ dr, (15) 

ri and ry afe the values of r for which f and hence p^ the integrand of (15)i 
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becomes zero, so that ri ro - (E - Fo)/&andr2 = ro + *%/ (JS? - VQ)/h. 

The integral in Eq. (15) may be readily evaluated, giving 

Jprdr = wiE - Vo)yj^ = (16) 

the.latter relation following from Eq. (11). It is now readily seen that Kq. 

(12) represents the type of condition on fpr dr demanded by Sec. 4.6. 
The rotational energy levels may be readily tak(m (!arc of in tliis scheme. 

if it is noted that the term (14) acts just like an addition to 

the potential energy. If the range of values from ri to is small enough, 

it may be considered as practically constant and written 
Stt/xTo^ 

This 

term, identical with the right-hand side of Eq. (13), then finally appears as 
an addition to the total energy. 

9.3. Molecular spectra offer, as might be expected, the best 
source of information on molecular em^rgy levels. The energy, 
of course, is not observed directly, but as usual the spectral 
lines represent differences between energy levels. The spectra 
are much simplified by the fact that the quantum number j 

obeys certain selection rules; namely, it can change only by 
± 1 or, in some cases, 0. The quantum number m,* can change 
only by ± 1 or 0, but since it does not affect the energy it is 
not important for our present purposes. 

Three kinds of molecular spectra are observable.^ In the very 
far infrared, transitions involving only changes in j and no other 
quantum numbers are observed. On account of the selection 
rules mentioned above, these spectra are very simple, consisting 
of a series of lines equally spaced on the frequency scale, but 
because they lie so far in the infrared, their observation requires 
a rather difficult technique. Since far infrared means waves of 
very low frequency, and hence quanta of low energy, the fact 
that these spectra appear in this region indicates that the energies 

^ Another important method of investigation of molecular energy levels is 

the study of Raman spectra. These spectra result from the absorpion of a 
light quantum and its reemission in the same step with altered frequency, 
the difference in energy between the absorbed and reemitted light quantum 

being equal to an energy difference in the molecule. They are especially 

useful for the study of vibrations of complex molecules (see Sec. 9.6). See, 

e.flf., Kohlrausch, ^'Der Smekal-Raman Effekt,” Julius Springer, Berlin, 

1931, and Erganzungsbd., 1938. 
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of different rotational states with the same value of v lie very 
close together. 

In the near infrared, it is possible to observe spectra that arise 
from simultaneous changes in v and j. Since higher frequencies 
are involved, it is evident that vibrational energy levels are 
spaced farther apart than rotational levels.^ 

The most important spectra occur at still higher frequencies, 
in the visible and ultraviolet. They involve electronic transi¬ 
tions, being due to transitions from vibrational and rotational 
levels belonging to one potential-energy curve to levels belonging 
to another curve. 

From analyses of these spectra, it is possible to learn much 
about the details of the energy levels of molecules. Since the 
energy may be described approximately as a sum of a term such 
as given by Eq. (12) and a term such as given by Eq. (13), the 
statement that the energy is separated into vibrational and 
rotational parts is experimentally verified, at least approxi¬ 
mately. Since, as just seen, the difference in energy between 
adjacent rotational levels with given v is in general small com¬ 
pared with the difference between adjacent vibrational levels, 
the energy states appear to occur in groups or bands, all those 
with given v and different being grouped together. 

From the spacing between vibration levels, it is possible to 
find vq from Eq. (12), and ultimately b from Eq. (11), since n is 
known. This gives information about the shape of the potential- 
energy curve near its minimum. From the spacing of the indi¬ 
vidual, rotational levels in a given band, it is possible to find I 

from Eq. (13), and from J, the interatomic distance ro may be 
found. The study of molecular spectra (band spectra) thus yields 
very important information about the molecule. 

9.4. The Dissociation Enefgy.—A still more important 
molecular constant, the energy necessary to pull the two atoms 

^ This is directly connected with the fact that the atoms of the molecule 

vibrate through a space which is small compared with the distance between 

the atoms, while in making a rotation the atoms move through a distance 
comparable with the distances between them. Therefore, a vibrational 
state has a relatively small extension in ordinary space, so it must occupy 

a relatively large region of momentum space, in order that it may have its 

quota of phase space. In order for the vibrational state to have a relatively 

large region in momentum space, the energy levels must be relatively far 

apart. See Sec. 4.6. 
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apart, can also often be obtained by the study of band spectra. 
As already noted, it is only an approximation to consider a 
molecule as a harmonic oscillator. The energy levels of a 
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Fiq. 37.—Illustrating spacing of molecular vibration-rotation levels, showing 

positions of bands for which » = 0, 1, and 2, above the minimum of potential 
energy Vq. Levels for jwiih values from 0 to 6 shown in each band. To illus¬ 
trate the transitions which occur in molecular spectra, the possible quantum 
jumps starting from the level » =* 1, y = 3 are shown. (We assume j can 
change by ±1.) An increase in energy means a quantum must be absorbed, 
a decrease of energy means a quantum is given out. The transitions shown are 
classified as follows: 

a, b—near infrared absorption, 
c, d—near infrared emission, 
e —far infrared emission, 
f —far infrared absorption 

Visible and ultraviolet transitions cannot be shown because the bands belonging 
to only one electronic state appear in the figure. 

harmonic oscillator are spaced at equal intervals, but in actual 
molecules it is observed that the higher the energy, the closer 
together the levels become. When the allowed energies become 
closer together, the difference in momenta between adjacent 
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levels also becomes smaller, which means that an energy level 
occupies a smaller volume in the momentum space than it would 
were the molecule a harmonic oscillator with a frequency corre¬ 
sponding to the difference in energy for the low-energy levels. 
Therefore, in order that each energy level should have its regular 
quota h in the complete phase space, the distance over which 
the oscillator can move in coordinate space must be greater. 
Thus the actual potential-energy cufve must be more spread out 
than a harmonic-oscillator curve would be. The situation is 
illustrated in Fig. 38. At the energy indicated, a classical 
harmonic oscillator would have a range of motion from A to B, 
whereas with the other curve, which resembles an actual molec¬ 
ular-potential curve, the classical range of motion at the same 

Fig. 38.—Actually observed type of molecular energy curve, contrasted with 
curve for harmonic oscillator. 

energy would be from F to G, a much greater distance. This 
spreading out of the potential-energy curve is in harmony with 
the tacit assumption, which has been made throughout, that a 
potential-energy curve will approach a definite limiting value as 
r is indefinitely increased; in other words, it will require only a 
finite amount of energy to pull the atoms in a molecule com¬ 
pletely apart. It will be observed that the real potential-energy 
curve in Fig. 38, as well as the potential-energy curves illustrated 
previously, has been so drawn as to be approaching an asymptotic 
value for large distances of separation. If the total vibrational 
energy of the pair of atoms exceeds this value, the classical range 
of the relative motion of the two atoms becomes infinite; i.e., the 
atoms are free. Above this energy, the energy levels are infinitely 
close together; in other words, the spectrum becomes continuous, 
just as in the case of the hydrogen atom when the electron has 
energy greater than the ioniaation energy and is therefore a free 
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electron. If the energy at which the continuous spectrum sets in 
can be observed, it is possible to determine the dissociation 
energy of the molecule. In general, rather than to observe this 
directly, it is more accurate to observe the discrete vibration levels 
as near as possible to the dissociation potential, and extrapolate 
to the energy at which the difference in energy between two 
successive levels becomes zero. 

The actual energy necessary to dissociate a molectile in its 
lowest vibrational state will not be exactly equal to the difference 
between the lowest point on the curve and the asymptote, 
because, as will be seen from E(p (12), even when v is zero, 
E — Vo, the energy of the oscillator measured from the lowest 
point of the curve, is not zero, but is equal to ihvo, which is 
known as the '^zero-iK)int energy. 

It should be borne in mind that in speaking of the dissociation 
energy of a molecule reference is had to a molecule in some 
definite electronic state. A molecule has many electronic states, 
to each of which corresponds a potential-energy curve, and each 
potential-energy curve has its own dissociation energy. In other > 
words, the dissociation energy of a molecule depends upon the, 
electronic state it is in. When no statement to the contrary is 
made, however, it is usual to use the term ^^dissociation energy^’ 
to mean the dissociation energy of the molecule in its lowest, 
electronic state. ^ 

9.6. The shape of the potential-energy curves in the case of 
actual molecules is not a problem that needs to be considered in 
great detail. An account of a few of the qualitative features will 
be sufficient for our purposes. The fact that the vibrational 
levels become closer together at higher energies means that the 
actual potential-energy curve must spread out at these higher 
energies more than the corresponding harmonic-oscillator curve, 
but it does not say just how it will spread out. In fact, it is 
possible to find an infinite number of potential curves to fit any 
given set of energy levels. It will be noted, however, that in 
Fig. 38 the curve, which has been claimed to have the qualitative 
features of actual potential curves, has been drawn so that it is 
steeper for small values of r than the harmonic-oscillator curve, 

^ Should some of the potential-energy curves cross, the dissociation energy 

is the energy necessary to go from the lowest undissociated state to the 
lowest dissociated state, even though it belongs to a different curve. 
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the increasing width at high energies of the actual’' curve being 
due to its behavior at large values of r. The steepness for small 
values of r has already been mentioned in Sec. 9.1 as being in 
accord with various lines of experimental evidence. Further 
evidence regarding the shape of the potential-energy curves may 
be obtained from a study of the rotational spectrum of molecules. 
The treatment of the rotational energy levels given above was, 
of course, a very crude one. It was recognized that it cannot give 
an entirely correct result to simply add to V the constant quan¬ 

tity 
j{3 + l)h^ 

and especially will this be in error if the potential- 

energy curve is not symmetrical. In the case of the non harmonic 
curve shown in Fig. 38, it is quite obvious that it would be a better 
approximation for the higher energy levels if, while still assuming 
that the effective addition to the potential energy did not vary 
with r, we should replace vq by a greater value. Thus the rota¬ 
tional levels may be expected to be closer together, the greater 
the value of the vibrational quantum number. This is actually 
observed to be the case, and provides further evidence that the 
type of curve shown in Fig. 38 is correct in its qualitative features. 

9.6. The rotation and vibration of polyatomic molecules 
present a much more complicated problem than the case of 
diatomic molecules.^ The translational motion of the whole 
molecule, however, is handled just as easily as before; the coor¬ 
dinates of the separate atoms are referred to the center of gravity 
of the molecule, and the translation of the molecule is just the 
same as that of a mass equal to the sum of the masses of all the 
atoms in the molecule concentrated at the center of gravity. 

Consider first the case of a rigid” molecule. In such a 
molecule, each of the atoms vibrates about a position of equilib¬ 
rium and all of the equilibrium positions are definitely fixed with 
respect to each other, forming a ‘'rigid framework” for the 
molecule. In general, such a molecule has three degrees of 
freedom of rotation, ie,, it is necessary to specify three angles, 
as well as the coordinates of the center of gravity, in order to 
completely determine the position of the rigid framework of 
equilibrium positions in space. The state of rotation of the 

* For a more complete account see Pauling and Wilson, ** Introduction to 
Quantum Mechanics,^' pp. 282#., McGraw-Hill Book Company, Inc., 1935. 
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molecule is given by specifying three rotational quantum 
numbers which determine, among other things, the rotational 
energy. 'In order to completely specify the positions of the 
atoms, we can then fix their relative positions by giving the 
Cartesian coordinates of each one, taking its own equilibrium 
position as the origin for the coordinates of any particular atom. 
If there are N atoms in the molecule, there are, in all, such 
coordinates. How(wer, only 3i\r — 6 are independent. For 
example, if all the atoms were displaced in the same direction 
and by the same distance, this would amount simply to a transla¬ 
tion of the whole molecule, i.e.y the rigid framework to which the 
coordinates of the separate atoms are referred would be shifted 
along. There being six independent ways in whi(;h the position 
and orientation of the rigid framework can be changed, this 
implies six conditions on the 3iV coordinates if the motion of the 
atoms is to be such as not to include a translation or rotation 
of the framework. There are thus 3^^ — 6 independent degrees 
of freedom of re^lative nonrotational motion of the atoms, ^.c., 
3N — 6 vibrations, each with its own frequency, and each having 
a quantum number. 

If all the atoms are arranged in a straight line, then two angles 
are sufficient to specify the direction in space of this line, and 
there arc only two degrees of freedom of rotation. In this case 
there arc, then, 3N — 5 degrees of freedom of vibration. 

A rigid polyatomic molecule with three rotational degrees of 
freedom has, as is shown in treatises on mechanics, three principal 
axes which are at right angles to each other. If the body is set 
rotating about one of these axes, it will continue to rotate about 
this axis forever, provided it is not acted upon by external forces, 
whereas if it is set to rotating about any other axis, the instan¬ 
taneous axis of rotation continually changes. There are three 
principal moments of inertia, one for each of the principal axes. 
In terms of these, the motion of the system is readily described, 
and the moment of iiKjrtia about any arbitrary axis can be readily 
calculated. The principal moments of inertia enter into the 
quantization of the rotational motion, and an analysis of the 
rotational spectrum of the molecule will sometimes give values 
for the principal moments of inertia. These moments of inertia 
depend upon the arrangement of the atoms in the molecule, and 
they in turn can, if the molecule is simple enough, give informa- 



m MOLtiCVLAR MOTION Sqc* 9*6 

tion about the arrangement of the atoms, and thus furnish a val¬ 
uable aid in the determination of the structure of the molecule. 

We shall not discuss the rotational spectrum or energy levels 
of polyatomic molecules further but shall give a brief account of 
the vibrational motion. It will be assumed that the vibrations 
are small, that the center of gravity of the molecule is at rest, 
and that the molecule is not rotating. This procedure is j ustified, 
for it may be shown that to a first approximation the motion of 
the molecule may be considered to be separated into translational, 
rotational, and vibrational motions which are independent of 
each other. 

In discussing the vibration of a polyatomic molecule, the 
mathematical details will not be given, but an attempt will be 
made to describe the motion qualitatively according to the 
classical picture. In a polyatomic molecule, the force acting 
upon any given atom depends not only on the position of that 
particular atom, but also upon the position of all other atoms. 
When all the atoms are simultaneously in a position of equilib¬ 
rium, the force on any one of them is, of course, zero. If any 
atom is displaced, not only are forces exerted on it, but it must 
necessarily exert forces on its neighbors. In general, this set of 
complex interactions results in a very complicated motion. 
However, it is possible to set a polyatomic molecule into vibration 
in such a way that all the atoms vibrate about their equilibrium 
positions with the same frequency and in phase with each other, 
f.e., they all pass through the equilibrium position at the same 
time. Such a state of motion is known as a normal mode of 
vibration* There are as many different normal modes of vibra¬ 
tion as there are vibrational degrees of freedom. Any actual 
vibrational motion, however complex, can be analyzed into (i.e., 
be shown to be built up by superposition of) some or all of the 
normal modes of vibration. 

The nature of the normal modes of vibration may be illustrated 
by means of a simple example, the carbon dioxide molecule,^ in 
which the atoms are known to be arranged iii a straight line, 
thus, 0—C—0. This molecule has SiNT—6 = 4 vibrational degrees 
of freedom. In two of the normal modes of vibration, the motion 
of the atoms will be in the line of centers, as illustrated in Fig. 39 

* See Sponee, ^‘Molekiilspektren,” vol, I, p. 75, for a synopsis and 

ref6ren<Sfes. ’ 
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(a) and (b). One of them (a) consists of motions of the oxygens 
only about their positions of equilibrium, the two oxygens moving 
simultaneously toward or away from the carbon atom. In the 
other (b), the oxygens move simultaneously in one direction 
while the carbon moves in the opposite direction. These are 
stretching vibrations. There are also two bending vibrations, 
one of the type shown in Fig. 39 (c), the other just like it but at 
right angles to it. A bending at some other angle is simply a 

^ o ^ ^ ^ 
a b c 

Fiq. 39.—Normal vibrations for carbon dioxide. Carbon atoms white, oxygen 
atoms black. 

superposition of the other two, and so is not an independent mode 
of vibration. In general, bending frequencies are much lower 
than stretching-type frequencies connected with the same type 
of bond. 

In Fig. 40, the normal modes of vibration of the water molecule 
are illustrated. Here there are ZN — 6 = 3 vibrational degrees 
of freedom, since it is not a straight-line molecule. The oxygen 
atom, being so much heavier, will move very little compared with 
the hydrogen atoms. This is indicated roughly by the length of 

(a) (b) (c) 
Fig. 40.—Normal vibrations of the water molecule. Oxygen atoms, large 

circles; hydrogen atoms, small circles. 

the arrow. It will be seen that vibrations (a) and (b) involve 
stretching of the bonds, whereas (c) is the bending type. 

In any molecule, each normal mode of vibration has its own 
characteristic frequency and each one is quantized independently 
of the others. The allowed energies of any normal mode of 
vibration are given in terms of the frequency in the same way as 
for a simple vibration. The total vibrational energy of the 
molecule is the sum of the separate energies of the various 
modes of vibration. 
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Though each normal mode of vibration has its own frequency, 
there are often relations between those frequencies, since the 
various types of vibration involve motions of the same bond. 
Sometimes these relations can give valuable information concern¬ 
ing the structure of the molecule. Thus, it can be readily shown 
that in a straight-line triatomic molecule the ratio of the two 
stretching frequencies depends only on the masses of the atoms, 
provided the forces between the two outside atoms can be 
neglected, and the ratio can be calculated theoretically. If 
approximately this ratio is found experimentally, it lends evidence 
that the molecule is a straight-line molecule. Otherwise it 
has a kinked structure. 

The method (^an be apjJied, however, only to relatively simple 
polyatomic molecuh^s, since the actual analysis of the spectrum 
is generally very difficult.^ In making such an analysis, use is 
made of all known properties of the s])ectrurn. In particular, 
selection rules, which depend very largely on the symmetry prop¬ 
erties of the molecule, have proved very helpful. 

Exercises 

1. The maximum distance between the atoms (^.c., the distance between 
them at the end of the vibration) of the moieculc C2 would be 0.058A. greater 
than the equilibrium distance, if they vibrated c-hiH.sic;iIly with an energy 

equal to the energy of the lowest vibrational state. Calculate h, the fre¬ 

quency, and the energy between energy levels, assuming simple harmonic 

oscillation. 
2. The equilibrium distance between atoms in the molecule HI in the 

normal state is 1.62A.; in 12, it is 2.66A.; in C2, it is 1.3!A. Calculate the 
energies of the first five rotational states of each of these molecules. 

8. A body of mass m moves (one dimensionally) in a potential-energy 
field such that if a; > 0, the potential energy U = aXf whereas if x < 0, 

then U « —ax. How many energy levels arc thenj with energy less than 
E? Answer this question numerically if m is the mass of a hydrogen atom, 

E is 0.5 electron volt, and a is 1 volt per Angstrom (see Chap. IV). 
4. Suppose that in far infrared al)sorption the quantum number j changes 

from a value jo to -f 1. From Eq. (13), find a formula for the frequency 
of the light absorbed as a function of jo. Show that the spectrum consists 

of a series of lines of equally spaced frequencies. 

' For a fairly detailed discussion of a number of molecules, see Penney and 

Sutherland, Proc. Roy. Soc. {London)^ A156, 654 (1936); Stuart, “Mole- 

ktilstruktiir,” pp. 295 J'., Julius Springer, Berlin, 1934; Schaefer and Matossi, 

*^Das ultrarote Spektrum,” pp. 225#., Julius Springer, 1930. 



CHAPTER X 

THE HYDROGEN MOLECULE 

The hydrogen molecule is tlu' simplest example of a nonpolar 
or nonionic molecule. The combination in this instance is 
between two neutral atoms, which are exactly alike, so that one 
has no more tendency than the other to form either positive or 
negative ions. Of course, ultimately the forces involved are 
<‘lectrostatic forces, for the hydrogen nuclei are bound together by 
the electrons; but it is obvious that this statement implies that 
the electrons which effect the? binding are Ix^tween the protons, 
and the reason that they stay in this advantag(^ous position is 
understood only by a study of 
the wav(^ functions of the ele(*- 
trons. Ordinary mechanics is 
completely incapable of solving 
this problem, and the solution 
of it by the use of wave mc^chan- 
ics has been one of the great 
triumphs of that theory. We 
may, however, start our discussion by using the corpuscular 
picture of the electron. 

Suppose that we have two positive hydrogen nuclei or protons 
A and B and two electrons 1 and 2. The distances between the 
various particles are designated as shown in Fig. 41. The 
potential energy of the whole system is given in this case by the 
expression 

ri2 ^Ai rfi2 rA2 rai rAn 
(1) 

If, however, we consider the problem of the electrons moving 
under the influence of the two centers of force at A and B, we see 
that only the first five of the terms in the foregoing potential 
expression enter into the problem of determining the electronic 
enei^. The last term, which arises from the repulsion of the 

125 
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nuclei, is a term that is simply added to the electronic energy to 
get the total energy of the system. Starting now with the two 
nuclei an infinite distance apart, let us suppose them to be 
slowly pushed together. At the beginning, the problem is that 
of two separated atoms, but as the nuclei approach each other 
it is necessary to consider the effect of both nuclei on both elec¬ 
trons, Finally, the two nuclei may be thought of as merged 
together. In this cas(i, the electronic energy is just the same as 
for the helium atom, since there are two electrons moving in the 
field of a center of force of twice the strength of a proton. This 
suggests that a study of the energy levels of the helium atom may 
be of some assistance in understanding the nature of the binding 
forces in hydrogen, and this is indeed the case. 

10.1. The helium atom was treated by means of the quantum 
mechanics by Heisenberg. We shall consider a helium atom in 
which one of the electrons is in the lowest energy level, a Is-state, 
but in which the other electron is in some excited energy level. 
At first, we shall neglect the Coulomb repulsion between the elec¬ 
trons—t.e., the motion of each electron under the influence of 
the positive nucleus is treated as though the other electron were 
not there. The wave functions of the electrons are thus hydro¬ 
genlike wave functions, modified, of course, on account of the 
double charge on the nucleus. We shall denote the wave function 
for the unexcited state as ^ and the wave function for the excited 
state as <^>. The two electrons will be designated as 1 and 2, 
respectively. If electron 1 is in the unexcited state and electron 
2 in the excited state, this will be indicated by writing ^(1) 
and <^>(2), and if the electrons are exchanged we shall write 
^(2) and </>(!). Wave functions for the whole system are found 
by taking products of ^ and 4>. Thus if dxidyidzi is 
the probability of finding electron 1 in a certain element of 
volume of size dxi dyi dzi and (<^>(2))^ dx^ dy2 dz^ is the probability 
of finding electron 2 in an element of volume of size dx^ dy^ dz2y 

then the probability that they will both simultaneously be in the 
indicated volume elements is dxi dyi dzi dx2 dy2 dz2 

^ dxi dyi dzi dx2 dy2dz2* Thus ^(l)</>(2) can be 
taken as the combined wave function for both electrons. It 
should be noted that dxidyidzi and dx2dy2dz2 refer to two 
different volumes in ordinary space, but they are.both referred 
to the same set of coordinate axes, the subscript 1 referring to 
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the coordinates of electron 1 and the subscript 2 referring to the 
coordinates of electron 2. In the phase space (Sec. 4.6) for the 
two electrons, however, Xi and yi and 2/2, and Zi and would 
all be marked off along different axes. 

But the preceding wave functions make no mention of the spin. 
The state of the spin can be indicated by means of one of two spin 
wave functions, ^ a which says that the spin of the electron is in 
one direction and jS which says that the spin is in the other direc¬ 
tion. Thus the wave function tells us that 
electron 1 is in the unexcited state and has its spin in the direction 
indicated by a, and that electron 2 is in the excited state and has 
its spin in the opposite direction. Now, of course, either electron 
can be the one in the unexcited state, and either electron can have 
its spin in either direction. There are eight possible combina¬ 
tions, as follows: 

^(l)<l>(2)ail)a(2) 

^(l)4>(2)«(l)/3(2) 
m<i>m{i)a{2) 
4>(l)^(2)a(l)a(2) 

(2) 

But on closer thought it will be realized that these functions do 
not really furnish satisfactory wave functions for the problem. 
For they assume that the two electrons are distinguishable, 
whereas in reality it is quite impossible to distinguish any given 
state from the state in which the electrons are interchanged; it is 
to be expected that two such states, which are entirely indis¬ 
tinguishable and which have exactly the same energy, would pass 
freely from one into the other. Such a situation should be 
exhibited by the wave functions themselves, and it is necessary 
to find wave functions that do take it into account when attempt¬ 
ing to calculate the effect of the action of the two electrons on 
each other, even in rough approximation. Now the wave func- 

^ The spin wave function is not a function of the ordinary coordinates 

of the electron, but may be thought of as a function of a special spin coordi¬ 

nate, which describes the internal state of the electron. Its exact nature 

does not need to concern us here. 
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tions, as written, are solutions of the wave equation, but it may 
be shown that the sum of two solutions, or, more generally, any 
linear combination of the various solutions which represent states 
having the same energy, is also a solution.^ This suggests that 
we should look for linear combinations of the solutions, which 
have the property that they involve tlie two ('h'ctrons in the same 
way. Such a wave function will Ix' so constituted that it either 
remains unchanged (the wave fuiu^tion is symmetric) or changes 
in sign (the wave function is antisymmetric) when the two elec¬ 
trons are interchanged. It is allowable for the wave function to 
change in sign, be(\ause any calculation of actual probabilities 
involves a square of the wave function and is unclianged when 
the electrons are interchanged ev(^n though the wave function 
itself changes in sign. There are eight independent wave func¬ 
tions, as has been seen, and there are eight independent linear 
combinations which have the foregoing necessary properties. 
These combinations are given herewith, and the reader may 
verify, by actually interchanging the symbols 1 and 2 for the two 
electrons, that they have the properties claimed for them. 

Symmetric combinations 

^(l)<^(2)«(l)a(2) + <^(l)V^(2)a(J)a(2) 
- a(l)a(2){V^(l)0(2) + <^(1)^(2)} 

^(l)<^(2)^(l)/3(2) + <A(1)^(2)^(1)^(2) 
= ^(1)0(2) {^(1)<^(2) + ^(1)^(2)} 

^(l)0(2)a(l)0(2) + <^(l)^(2)^(l)a(2) 

^P{l)mmci{2) + </>(l)^(2)a(l)^(2) (3) 

Antisymmetric combinations 

^(l)<^>(2)a(l)a(2) -- </>(l)^(2)a(l)a(2) 
- a(l)a(2){^(l)c^(2) ~ <^>(1)^^(2)} 

^ A more detailed discussion of this statement is beyond the scope of this 

book, but it may b^ remarked that it depends on the fact that the wave 
equation is a linear differential ecpiation. 

* These combinations are not normalized (see statement just following 

Eq. (6) of Chap. IV], that is to say, each one should properly still be multi¬ 

plied by a constant factor. Inasmuch as only relative probabilities for the 

location of an electron are important to us in this chapter, we shall, in 

general, not trouble to normalize the wave functions considered.. 
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^(l)0(2)^(l)/3(2) ~ 0(1)^(2)^(1)0(2) 
= - <^(i)^(2)} 

^(l)<^(2)a(l)^(2) + ^(l)<^,(2)^(l)a(2) 
- <^>(])^(2)«(1)^(2) - 0(l)^(2)^(l)a(2) 

- {a(l)0(2) +^(l)a(2)} {^(1)0(2) ~ 0(i)V'(2)l 

^(l)</>(2)a(l)/3(2) - ^P{\)<i>{2m^)a{2) 
+ <^(l)v^(2)a(l)^(2) - <l>0)H2m\M2) 
= {«(l)/3(2) ^ ^(l)a(2)) {^^(1)0(2) + <^>(1)^(2)} (4) 

Now it is found in nature that only antisymmotrical functions 
occur; for example, in our study of the spectrum of helium we 
shall see that it may be understood by taking into account only 
the antisymmetric wave functions. This statement is a some¬ 
what more general statement of the Pauli ])rinciple (see S(Hi. 7.2). 
Consider, for example, the special case in which 0 is the same as 
Then, ac^cording to the Pauli principle, since both electrons are in 
t.he same state aside from spin, their spin must be different. It is 
seen that the first two symmetrical wave functions do not have 
this property. And if ^ is the same as <!>, ibe last two symmetrical 
wave functions both reduce to \t/(l)\l/(2){a(l)P(2) + P(l)a(2)\. 

Though the spin state a(l)^(2) + p{l)a(2) is originally built 
up of states in which one electron has one spin and another the 
other spin, this combrnaiion is generally classified, for reasons into 
which we cannot go here, with those spin states in which both 
electrons have the same spin. Thus all the symmetrical states 
must be discarded in this case. But if xp is the same as </>, all the 
antisymmetrical wave functions automatically vanish, except 
the last one, in which the spin function a{l)fi{2) — fi{l)a(2) is 
the one that is recognized as having the electrons in opposite 
spin states. 

In our discussion up to this point, the action of the electrons on 
each other has been neglected. We now have to sec how this 
interaction affects the results. Only the electrical interaction 
needs to be considc.red. The magnetic forces between the 
magnetic moments associated with their spin and orbital rota¬ 
tions (which have hitherto'' not even been mentioned in this 
(bapter, but which were briefly discussed at the end of Sec. 6.2) 
are much smaller, and may still be neglected for the present. 
The electrical force which we wish to take into account is the 
electrostatic repulsion between the two electrons. Since it is a 
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repulsion, it is to be expected* that the energy of any state will 
be higher than that obtained by neglecting it, but the exact 
amount the energy will be raised for any given 0 and ^ depends 
upon which one of the possible antisymmetrical combinations is 
considered. We note that the antisymmetrical wave functions 
are divided into two factors, a *:pin factor and a coordinate (or, 
as it is often called, orbital) factor. If the wave function is 
antisymmetric in the spin part, it is symmetric in the orbital 
part, and vice versa. The first, three of the wave functions as 
written are symmetric in the spin and antisymmetric in the 
orbital part, while only the last one is antisymmetric in the spin 
and symmetric in the orbital part. The coordinate part is most 
important in determining the energy to be associated with any 
given wave function, for it is this part of the wave function which 
determines the probability that the electrons shall be any given 
distance ri2 apart, and the mutual potential energy of the elec¬ 
trons is given by c^/ri2. Now the antisymmetrical orbital fac¬ 
tors vanish if the coordinates of the two electrons are the same. 
For the values of ^(1) and <^(2) depend only upon the coordinates 
of the respective electrons, and if the-tsoordinates of the two 
electrons are the same, must have the same value as 
^(2)<#>(1). Thus a wave function with an antisymmetrical 
orbital factor gives a probability of zero for the two electrons to 
be in the same place and a small probability for them to be near 
each other. On the other hand, a wave function with a sym¬ 
metric orbital factor allows the electrons to come'close together. 
When the electrons are close together, their mutual energy is high, 
so the energy of a state whose wave function is symmetrical 
in its orbital part is higher than the energy of the corresponding 
state that is antisymmetrical in the orbital part. As has been 
seen, there are three states with antisymmetrical orbital factors. 
On account of the small interaction of the spin magnetic moments 
and the magnetic moments due to the orbital rotations, these 
three states may have slightly different energies, but they will all 
be considerably lower than the energy of the state with a sym¬ 
metric orbital factor. Corresponding to any given excited state 
0 of one of the electrons there is, then, a singlet state, and with a 
somewhat lower energy, the members of a triplet. 

Of course, the considerations of the preceding paragraph con¬ 
cern chiefly the difference between states symmetrical and anti- 
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symmetrical in the orbital parts, but built up out of the same 
original wave functions \l/ and <l>; the 
actual total energy, however, is deter¬ 
mined principally by the particular states 
that ^ and <t> represent.^ Consider, for 
example, all those term values or energy 
levels of helium for which rp is tlie lowest 
s-state, namely, the Is-state, and 0 
represents some other 6‘-state. To dis¬ 
tinguish the various th(?y may be 
written as using th(^ total quantum 
number n, which goes with tlie jmrticular 

as a subscript. The energy levcds, 
which go with some of the lower values of 
n, are shown schematically in Fig. 42, 
the vertical height of the horizontal line 
representing the energy of the particular 
state. 

A somewhat more detailed considera¬ 
tion of the energies of the different states 
will be in order, n = 1 represents a 
very special case, as <^i = and as we 
have seen, there is but one state whose 
wave function is different from zero, 
namely, the one for which the coordinate 
part is symmetrical. Now the ioniza¬ 
tion potential of He^, i.e., the energy 
necessary to just remove the remaining 

Fig. 42.—Energy levels 
of He, with one electron in 
the l»-8tate and the other 
in some s-state (total quan- 

^ It will be recogtiizod that this is the basis of turn number given by n). 
the considerations of Chap. VII. There we The energy of the lowest 

assumed that the energy of a given electronic taken as 

configuration depended upon the quantum horizontal line). The indi- 
numbers of the various electrons, and we did cated separation of the mem- 
not allow for exchange of electrons at all. bers of triplet states is purely 
This is a sufficiently good approximation for When both elec- 

•11 1 ‘j ^ i. ^1 trons are s-electrons, the 
many purposes, as will be evident from the members of a triplet actually 
comparison of ionization potentials for com- coincide in energy, if the 
parable singlet and triplet states, {^iven in the atom is not in an external 

next paragraph; at the same time, it will be 

seen that the exchange effect is by no means oa the scale of 
vanishingly small. \he diagram. 
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electron, is 54.1 volts. If there were no interaction between the 
two electrons of He, the energy necessary to remove both elec¬ 
trons would be twice this, or 108.2 volts. Actually, the energy 
necessary to remove one electron from He is only 24.5 volts, 
the sum of the two ionization potentials being 78.6 volts. It is 
thus seen that the mutual repTilsion of the electrons has a large 
effect on the energy. The energy necessary to remove one 
electron is considerably greater than the ionization potential of 
the hydrogen atom which is 13.5 volts; it is obvious, however, that 
one electron to some considerable extent shields the othc^r electron 
from the charge on the nucleus,^ as was already seen in Sec. 7.3. 
If one of the electrons is in an excited state, then we should expect 
the electron in the lower state to have a still greater shielding 
effect. Thus in the state represented })y <^>2, the energy necessary 
to pull away the electron in the 2s-state is 4.74 volts if the atom 
is in the triplet state and 3.95 if it is in the singlet state, as com¬ 
pared with 3.38 volts to pull off a 26‘-electron from hydrogen. 
Parenthetically, it may be remarked that in the particular case 
under consideration, where </>2 represents an s-state, the energies 
of all three states of the triplet coincide. In other cases, the three 
triplet levels differ from each other by very small amounts, but for 
a few states the differences have been measured. 

The preceding discussion will have given some idea of the 
nature of the helium spectrum. We shall now proceed to consider 
Heitler and LondoiPs approximate theory of the hydrogen 
molecule,^ making use of many of the ideas developed in connec?- 
tion with the helium atom. In particular, the device of setting 
up certain approximate wave functions, in which certain poten¬ 
tial-energy terms are neglected, will again be used. As in the 
case'of the helium atom, these approximate w^ave functions will 
be sufficiently goo(i,to make possible a rough estimate of how th(' 
neglected potential-energy terms affect the energy levels. Again 
we shall not attempt to carry out quantitative calculations, l)ut 

^ To say that there is mutual repulsion between the electrons, and to say 
that one electron shields the other from the nuclear charge, are clearly two 

ways of expressing the same thing. 
* A useful review of the early work on the hydrogen molecule and the 

hydrogen molecule ion was written by Pauling, Chem. Rev., 6, 173 (1928), 

which may be consulted for original references. Other accounts are to bti 

found in «ome of the books listed on pp. 476/. 
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shall be content with the qualitative picture this procedure 
gives us. 

10.2. The Hydrogen Molecule.—Reference is once again made 
to Fig. 41 for the notation. We shall start our discussion of the 
hydrogen molecule by supposing that it is a simple combination 
of two atoms with one of the electrons definitely attached to 
nucleus A and the other to nucleus B. It will be supposed, as a 
first rough approximation, that these two atoms do not affect 
each other at all, an approximation which is good if they are far 
apart, but becomes increasingly poorcu’ as they come closer 
together. If it is electron 1 that is attached to nucleus A and 
(‘lectrori 2 that is attached to nucleus B, this approximation 
may be thought of as the result of iHiglecting the terms 

_^ ^ 
rA2 ^Bi rt2 

in I]q. (1); whereas, if electron 2 is on nucleus A and electron 1 on 
f>2 ^>2 

nucleus B, the terms-- H-ar(‘ neglected. 
rB2 ri2 ^ 

The wave function corresponding to the lowest energy of the 
atom formed from nucleus A, if all intc^raction with the other 
atom is neglected, will be designated as \l/^] the corresponding 
wave function for the other atom will be These arc simply 
wave functions for the lowest state of the hydrogen atom, the only 
difference between them being that they are centered on different 
points of space. If electron 1 is on atom A, the wave function 

is a function of the coordinates of this electron, Xi, i/i, and Z\\ 
to indicate this, we shall write ^a(I) > similarly, ^b(2) is a function 
of ^2, 2/2, and 2^2, the coordinates of the other electron, and repre¬ 
sents this electron in the lowest energy state of the atom formed 
by it with nucleus B. The wave function for the system is 
^a(1)^b(2)* This is very similar to the wave function for the 
helium atom and moans, of course, that the probability that the 
coordinates of electron 1 lie between xi and Xi + dxi, yi and 
Vi + dyij Zi and Zi + dzi and that, simultaneously, the coor¬ 
dinates of electron 2 lie between x^ and X2 + dx2,2/2 and y^ + dy^f 
Z2 and Z2 + dzz is given by (^a(1))^(^b(2))® dxi dyx dzi dx^ dy^ dz^. 
This is anticipated because the two electrons are independent of 
each other in the approximation we are considering. If electron 
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2 is on A and electron 1 on B, then the wave function of the sys¬ 
tem is ^a(2)^b(1)* If necessary, in order to get a complete 
description of the system, to multiply by the proper spin func¬ 
tions, just as in the case of the helium atom. 

The wave functions thus set up, which will be like those of 
expression (2) if replaces ^ ami replaces 4>, have a fault very 
similar to that of (2), namely, they do not allow for exchange of 
the two electrons. This can again be corrected for l^y taking 
combinations, and once more it will bo only the antisymrnetrical 
combinations that are allow^cd. In this case, these are the 
following: 

{a(m2) - ^(1)«(2)} {^a(1)^b(2) + M^)M2)] (5) 

An exchange of the two electrons, each one changing its nucleus 
and, possibly, changing its spin, will cause a change of sign of 
each of these combinations. 

Just as in the case of the helium atom, the w'avc funciions with 
the antisymrnetrical orbital part give a zero probability for the 
two electrons to be in the same position and a small probability 
for them to be close together. The wave function whose orbital 
part is symmetrical, on the other hand, gives a considerable 
probability for the electrons to be close together. This means, 
particularly if the distance between the nuclei is of the order of 
magnitude of the major axis of the ellipse for the lowest state of 
the hydrogen atom, that there is a considerable probability for 
both electrons to lie in the region between the nuclei; for, under 
these circumstances, both and have fairly large values in 
this region. On the other hand, the probability of a configuration 
in which both the electrons are, let us say, on the left of nucleus 
A in Fig. 41 will be relatively small, for falls off rapidly as the 
distance from B increases (see Sec. 5.7, especially Fig. 23, case 
n » 1). The net result is that there is a marked tendency for the 
two electrons to lie between the nuclei for the wave function that 
is symmetric in the orbital part. This produces a low^ering of the 
energy.. For, although there is a repulsion between the two 
close electrons which causes a raising of the energy of the system, 
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this is more than counterbalanced by the attractive forces 
between the electrons and nuclei (more specifically the attraction 
of each (dcctron for the nucleus to which it was not originally 
attached) so that the electrons act as a sort of cementing bond 
between the nuclei. The forces thus considered are just those due 

to the terms —--(or —--J which 
rA2 rni ri2 \ r^i ^12/ 

were negk'cted in setting up the potential-energy expressions to 
determines the original wave functions, and it is seen that there 
are two negatives terms and only one positive. As we have noted 
before^, if the two centers of force are brought continuously 
closer together, the wave function will continuously change from 
that for the separated hydrogen atoms to a function representing 
a state of the helium atom, and the energy will go over from a 
value equal to tlu^ sum of th(i energies of two hydrogen atoms to 
that of the particular states of the ludium atom, provided the 
repulsion ])(‘tw(H^n the nuclei is neglected. It is fairly obvious, 
and may be shown by quantum mechanical considerations, that 
the state just considc'red (two hydrogem atoms in their lowest 
states, orbital part of the wave function symmetrical) goes over 
into the lowest state of the helium atom, which, it will be remem¬ 
bered, was also symiiKdrical. If we take as our zero of energy 
that state in which all the particles, the two nuclei and the two 
(doctrons, are infinitely-separated from each other, we see that the 
total energy of two widely separated hydrogen atoms is minus 
twice the ionization potential of hydrogen, or —27,1 volts. 
The energy of the helium atom in its lowest state is the negative 
of the sum of the ionization potentials of helium, or —78.6 volts. 
As the two nuclei, thought of as merely centers of force, are 
pushed together, the energy of the system continually decreases, 
as the immediately preceding considerations have indicated, 
changing from —27.1 to —78.6 volts. 

This neglects, however, the nuclear repulsion. At larger dis¬ 
tances, the attractive forces just considered prevail over the 
nuclear repulsion, but at smaller distances the electrons are, so 
to speak, ^‘squeezed out'' of the space between the two nuclei; 
so they no longer form such an effective bond, and the repulsive 
forces predominate over the attractive. This results in an 
effective potential-energy curve between the two nuclei of the 
general character of that shown in Fig. 34. (Of course, in 
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Fig. 34 the zero of potential energy has been made to (coincide' 
with the asymptotic part of the curve, whereas if the zero of 
energy is taken as described in the foregoing paragraph the 
asymptotic part of the curve in this ease would come at —27.1 
A'olts. Howev(jr, this does not affect the shape of the curve.) 

The minimum of the (jurv<^ for the hydrogen molecule occurs 
when the nuclei are se])arated by 0.74A., and the energy diff(T- 
once betwe(ni the minimum and the asymptote (representing tln^ 
energy of two s(iparated hydrogen atoms) is 4.718 volts. Tlui 
hydrogen in its lowest vibrational state has an energy (zero-point 
energy = see Sec. 9.4) 0.264 volt higher than the energy 
of the minimum, so the,dissociation energy is 4.454 volts. It 
should be emphasized that we have des(‘>ribed the situation 
resulting from the interaction of two hydrogen atoms in their 
lowest energy states, and with oppositely directed electron spins, 
i.e., with antisymmetrical spin fuiuition, thus forcing the coordi¬ 
nate part of the wave function to be symmetrical, by the Pauli 
principle. It should also be stated that the values of the con¬ 
stants involved which have been given are experimental values. 
The approximate considerations that have been outlined, when 
carried through, do not yield exactly these values, but- do show 
qualitatively how the attraction between two hydrogen atoms 
arises.^ 

10.3, The Lowest Repulsive State of the Hydrogen Molecule. 
If we start with two hydrogen atoms in their lowest energy 
levels, but with symmetrical spin functions and antisymmetrical 
coordinate functions, we find that the two electrons have but little 
tendency to be close to each other, land this results in there being 
but a small density of ehictricity in the region between the two 
nuclei, where the wave function for the center of force A overlaps 
that for the center of force B. If the repulsion between the two 
nuclei is neglected, it appears that the action of the two electrons 
is still to lower the energy of the system, because the two attrac- 

' That there should be even qualitative agreement seems the more 
remarkable when it is noted that at the equilibrium position the resultant 
attractive potential is only a small fraction of the attractive potential when 
the nuclear repulsion is neglected. In other words, the true potential is a 
small difference between large quantities, as in the case of the hydrogen 
molecule ion considered below (Sec. 10.4, and see Fig. 44). That this is true 
will be obvious from Secs. 10.4 and 10.5. 
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tive terms —— and — or —— and-) overbalance the 
^A2 ^BlX Vai rB2/ 

term e^/vu arising from the repulsion of the two electrons. The 

net attracition is not so great, however, as in the case considered 

in the last section, and the state connects with an excited level of 

the helium atom. It is, of course, a triplet state, as there are 

three symmetrical spin functions, and it will naturally connect 

with a triplet state of the helium atom. The connection is 

actually with the Is 2p triplet state of the helium atom, which 

has three energy levels in the neighborhood of —57.7 volts. 

We may describe this situation by saying that the electron 

that goes into the 2p-state has been promoted. The attractive 

force has in this case been able to reduce the energy from —27.1 

volts (that of the separated hydrogen atoms, which is of course 

the same as in Sec. 10.2) only to —57.7 volts instead of to —78.6 

volts. On taking into account the repulsion of the nuclei, it is 

found that it more than counterbalances the attractive force at all 

distances of the nuclei. There is thus no tendency whatsoever 

for two hydrogen atoms in a triplet state to form a molecule. 

Every state of a pair of hydrogen atoms is connected with some 

definite state of the helium atom, in a manner similar to that 

which we have discussed in the cases where both hydrogen atoms 

are in their lowest energy states. The excited states, which 

result in both attractive and repulsive curves of various types, 

are not of great interest for our particular purposes, and we shall 

therefore not go further into this subject. It will be found dis¬ 

cussed in various papers and books on band spectra. 

10.4. The Hydrogen Molecule. Ion.—Experiments in which 

the positive ions resulting from an electrical discharge in hydro¬ 

gen gas have been studied have demonstrated the existence of 

the hydrogen molecule ion, H2'^. In this case, there is but one 

electron moving under the influence of two attracting centers of 

force. It is thus, in many respects, a simpler system than the 

hydrogen molecule. 

Suppose that in Fig. 43 there are two nuclei at A and B and an 

electron at C, the distances being designated as indicated. 

The potential energy of the system, leaving out the repulsion 

between the nuclei, is equal to --—* It can be supposed, 

as a first approximation, that the electron is on nucleus A, unin- 
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lluenced by nucleus B, in which case the term —— is neglected 
• B 

and we have a hydrogenlike wave function centered on A, 
namely, or we can suppose it is on nucleus B, neglecting the 

term-> with wave function course, makes no 
Ta 

difference in the energy whether the electron is on nucleus A or 
nucleus B; we may therefore expect that the electron will pass 
freely from one nucleus to the other. To got ai>proximate wave 
functions which indicate an equal probability of the electron 
being on either of the two nuclei, we may try the symmetrical 
and antisymmetricaU combinations and If 
ypj^ and ^b represent the lowest levels of the resjx>ctive hydrogen 
atoms, then ypj^ dej)ends only on the distance from A, and ^b 

on the distance from B. On the 
plane equidistant from A and 
B, therefore, \pj^ and ^b will be 
equal, so that ypj^ yp^ will be 
zero, whereas will 
be large. The symmetrical com- 

Fig. 43. hi nation therefore gives a large 
probability that the electron will 

be between the nuclei, and the antisymmcdrical combination 
gives but a small probability for this configuration. As might 
be expected, when the nuclear repulsion is allowed for, this 
results in a net attraction for the symmetrical combination and a 
net repulsion for the antisymmetrical. For if the electron has a 
large probability of being in the region between the nuclei where 
the neglected attractive potential —cVrA or — eVrg is larger in 
magnitude than the term arising from the nuclear repul¬ 
sion, attraction results. Otherwise the nuclear repulsion 
predominates. \pj^ + yp^, therefore, represents the lowest state 
or ground level for and \p^ — yp^ represents an excited 
state giving no molecule formation. The corresponding energies 
coincide, of course, when A and B are an infinite distance apart, 
but only then. 

^ Here the terms symmetrical” and “antisymmetrical” are used in a 
slightly different sense than previously. As there is only one electron, no 
question of an exchange of electrons enters, but ypA is symmetrical and 

^ is antisymmetrical with respect to a shift of the single electron 
from one nucleus to the other. 
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This shows, in a general way, how attraction results from the 
action of a single electron in the case of the hydrogen molecule 
ion. It is possible, however, in this simple case, to work out the 
complete wave mechanical problem with any degree of exactitude 
desired, by numerical methods. This has been done by Burrau 
for the lowest state of th(i hydrogen molecule ion.^ Its potential- 
energy curve is similar in shape to that of the hydrogen molecule, 
with a minimum when the nuclei are 1.06.1. apart, the minimum 
being 2.78 volts below the asymptotic value of the curve. The 
dissociation energy, allowing for the zero-point energy, is 2.64. 

Fio. 44.—Potential-energy curves for the hydrogen molecule ion, (a) neglecting 
nuclear repulsion, (b) including nuclear repulsion. 

This potential-energy curve, the term due to the nuclear 
repulsion being omitted, is shown schematically in Fig. 44(a). 
In this figure, the zero of energ3’' is taken as the potential energy 
when the protons are an infinite distance apart and the electron 
is an infinite dist;ance from both of them. The dissociation of the 
hydrogen molecule ion which has been considered, however, is 
not dissociaticn into two ions and an electron but dissociation 
into one ion and an atom. The asymptotic value for the poten¬ 
tial energy at great distances of separation is therefore the nega¬ 
tive of the ionization potential of hydrogen, —13.5 volte, as 
shown in the figure. 

^ Sec footnote 2, p. 132, 
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It is fairly obvious that when the distance between the nuf*l(‘i 
is reduced to zero the state reached will be the lowest state of the 
helium ion, He+. Thus when r = 0, the potential energy has 
reached the negative of the ionization potential of He'^, —64.1 
volts. When we combine the attractive curve shown in Fig. 
44(a) with the repulsion of the nuclei, we get the final curve shown 
in Fig. 44(b), in which the same zero of energy is used. This 
curve appears very flat on the scale used, and it is of interest to 
note that it represents a rather small difference between two large 
quantities, the attractive and repulsive potentials. 

10.6. Alternative Treatment of the Hydrogen Molecule.—The 
treatment of the hydrogen molecule ion suggests another method 
(the Hund-Mulliken method—see Sec. 11.3) of considering the 
hydrogen molecule in which the problem is approached through 
a different set of approximations,^ According to this point of 
view, we consider the two-center problem, and feed electrons 
one by one into the molecule, just as in our discussion of the 
building up of the periodic system we fed electrons in one by one 
in the single-center problem. Putting the first electron into 
the lowest energy level gives the hydrogen molecule ion, with 
the potential-energy curve (nuclear repulsion being neglected) 
shown in Fig. 44(a). (It will be remembered that the zero of 
energy is the energy when electrons and nuclei are separated.) 
Putting another electron into the lowest energy level would, 
provided the mutual interaction of the two electrons could bo 
neglected, give a curve just twice as far below the axis as the 
curve of Fig. 44(a). The repulsive potential of the nuclei is the 
same when two electrons are in the molecule as when one is there, 
but the repulsive potential of the two electrons must be added. 
This can be taken into account approximately by assuming that 
tlie electrons are at the positions of the respective nuclei (which 
no doubt gives an underestimate since the electrons tend to be 
close together). This means, then, that the repulsive as well 
as the attractive potential is approximately doubled, hence th(‘ 
total potential is doubled, and the estimated potential-energy 
curve for H.. lies just twice as far below the axis as the curve of 
Fig. 44(b). The calculated energy of dissociation is about 

2 X 2.64 = 5.28 volts 

* Condon, Froc, Nat. Accui. Sd.^ 13, 466 (1927). The treatment is con¬ 
siderably more detailed than that given here. 
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which is about half a volt too large. This is reasonably good 
agreement, considering the approximations involved, and 
especially since the repulsions between the electrons were 
underestimated. 

It will be recognized that this is a very suggestive and inter¬ 
esting method of treating the hydrogen molecule. In the general 
case of more complicated molecules, it is possible to start with 
two attracting centers of force of greater strength than protons 
and build up shells for the two-center problem, as has already 
been done for the one-center problem. Excited states of the 
molecule are states in which one, or more, of the electrons is not 
in its lowest possible orbit. For example, in the hydrogen 
molecule, if one of the electrons is in the state discussed in 
(jonnection with the hydrogen molecule ion and is represented 
l>y other is in the state represented by 
which, as we saw in Sec. 10.4, corresponds to a higher energy, 
the molecuile will be in an excited state. ^ An exact correspondence 
cannot be found, however, between the excited stat(\s formed in 
this way and those discussed in Sec. 10.3. This is because both 
ways of representing the molecule arc approximations, and since 
they are different approximations the results cannot be brought 
into exact coincidence. As a matter of fact, the method of the 
present section apparently yields more repulsive states starting 
with the wave functions than the method of Sec. 10.3. 
For we can suppose that the function over to the 
Is-state of helium when the nuclei are made to coincide, and the 
function goes over to one of the 2p-states of helium. 
If there are two electrons with opposed spins in the state, 
this gives the Is^- or ground state of helium. However, if there is 
one electron in the + yp^ state and one in the state, 
then as ^ s.nd where ^ and have the 
significance attached to them" in Sec. 10.1 here representing 
the Is-state and a.2p-state), all four combinations of Eq. (4) 
would be possibilities. Thus not only the triplet l52p-state, 
as in Sec. 10.3, but also the singlet state is included. Further¬ 
more, by putting both electrons in the ^a state, we shall 
connect with a 2p2-state of helium. Thus, altogether, if we 
include the ground state, we get six helium levels out of ^a 

instead of four. The reason for this apparent discrepancy 
will appear in the next section. 
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We may at this point insert a few words about the electron 
pair.'' As we shall see very shortly, the paired-electron valence 
bond plays an important role in the theory of valence. The 
considerations of the present chapter show that a pair of electrons 
has a bonding action in the case of the hydrogen molecule. 
Though a single electron can give a bond, as in the hydrogen 
molecule ion, a pair of ehictrons produces a stronger bond. From 
the discussion of the preceding paragraph, it can bo seen why 
three electrons do not usually give a strong bond. A third elec¬ 
tron would have to go into a higher energy state, making the 
arrangement unstable.^ Similar statements will hold also for 
polyatomic as well as diatomic molecules. A bonding electron 
between any pair of atoms in a polyatomic molecule may be said, 
with a certain approximation, to be in a definite quantum state. 
Only two electrons, with opposed spins, can go into the lowest 
level (in the term ^4evel" we include both states with all quan¬ 
tum numbers, other than that of spin, the same). This does 
not mean that under certain circumstances there will not exist 
double and triple bonds in which more than two electrons are 
involved, or even three-electron bonds (see Sec. 16.13), but it does 
furnish a reason for the outstanding importance of the electron 
pair in chemistry. 

10.6. Comparison of the Approximations Involved in the Two 
Methods of Treating the Hydrogen Molecule.—The wave func¬ 
tions for the electrons in the hydrogen molecule, obtained in the 
treatments outlined above, naturally differ from each other. 
The orbital part of the wave function for the lowest energy state, 
according to the Heitler-London method of treatment, is, as 
has .been seen. 

^HL = ^A(l)\f^(2) + ^b(1)^a(2) (6) 

An approximation for the corresponding wave function in 
Mulliken's scheme is obtained by noting that when the hydrogen 
molecule is in its lowest energy level the state of both electrons 
is described by the lowest hydrogen molecule ion wave function 
^A + Thus the combined wave function for the two elec¬ 
trons can be written as 

^ See Sec. 7.2. The Pauli exclusion principle holds for molecules as well 
as atoms. For further discussion see Sec. 11.3. 
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= {^a(1) +^b(1)}{\^a(2) +^b(2)} 

= ^a(1)\^a(2) + ^b(1)^b(2) + ^a(1)^b(2) + ^b(1¥a(2) (7) 

Of course, neither of these is the exact wave function for the 
hydrogen molecules, for they both involve approximations. 
They differ from each other in that contains the terms 
^a(1)^a(2) and ^b(1)^b(2) which represent a condition in which 
both electrons are on the same nucleus;^ these terms are, in fact, 
of equal importanc(i with the other terms. On the other hand, 
in the Heitler-London theory, such terms are deliberately 
excluded. Now on account of the strong repulsion between 
electrons, it is obvious that the true wave function will not give 
so great a possibility of the two electrons being on the same 
nucleus as the Mulliken method of approximation. On the 
other hand, there is some probability, even though it is small, 
of their being simultaneously on the same nucleus. This is 
entirely neglected in the Heitler-London method. This suggests 
that the true wave function would be better represented by an 
intermediate form,^ a linear combination of ^hl and 

^a(1)^b(2) + ^b(1)\^a(2) + a{^Aa)\^A(2) + ^b(1)\^b(2)} (8) 

where a has some value between 0 and 1. This is indeed true, 
but the form (8) is still not the correct wave function, even 
though it is nearer to it than either (6) or (7). It still contains 
certain approximations, which may not all have been explicitly 
stated, but are, nevertheless, implied.^ 

1 It is the presence of those two terms, which represent electronic states 
which are not considered in the Heitler-London approximation, that are 
responsible for the extra potential-energy curves that arise from the approxi¬ 
mation of Sec. 10.5. 

* Mulliken, Phys. Rev., 41, 65 ff. (1932); Slater, Phys, Rev., 36, 514 

(1930). 
* It is obvious that when the distance between the nuclei is very large the 

energy of the system with both electrons on one atom will be very large coih- 
pared to that with the electrons on different atoms. The electron affinity of 
hydrogen is less than 1 volt, and the ionization potential is over 13; so the 

energy gained by putting an electron on one hydrogen by no means compen¬ 
sates the energy required to take it off the other. But for small internuclear 

distances, this is no longer the case, at least, to so great an extent, so if a is 

adjusted so that £q. ($) gives a good approximation for small distances, 
it must give a very poor approximation when the distance between nuclei 
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It is seen that in (8), as written, the quantity a may be regardcnl 
as a parameter which may be varied until its best value is found. 
By extension of this method, using more parameters, and some¬ 
what different forms of the wave function, better approximations 
can be secured, and the method may be developed into a series of 
successive approximations by means of which the true wave 
function may probably be approached with any degree of 
accuracy which time and patience will allow. Once the correct 
wave function has been found, the correct energy may be 
obtained also. A treatment of this sort has been carried out for 
the hydrogen molecule by James and Coolidge,^ and these 
authors have found a value of the energy of dissociation which is 
very close to that observed experimentally. There is thus no 
doubt that quantum mechanics gives the correct result, though 
in many respects the exact calculation is hiss suggestive and the 
concepts less readily visualized than is the case with the approxi¬ 
mate methods. 

The more exact methods have also been applied to the calcula¬ 
tion of the energy levels of helium, and to a few simple molecules 
other than hydrogen. Even in the case of hydrogen and helium, 
however, the calculations are exceedingly involved. 

10.7. Properties of Hydrogen Atoms.—It may be well to 
insert at this point a brief account of the properties of hydrogen 
atoms as contrasted to hydrogen molecules.^ As the two atoms 
in a molecule are bound together with considerable energy, it 
might well be expected that hydrogen atoms would be much more 
reactive than hydrogen molecules, and this is, indeed, the case. 
The large energy of binding is further reflected in the methods by 
which hydrogen atoms may be prepared, for it is necessary that 
large quantities of energy should be available. 

Hydrogen atoms were first prepared by Langmuir, using a 
glowing tungsten wire. If a tungsten wire is heated by an elec¬ 
tric current in the presence of hydrogen, more energy is required 
to keep it at a certain temperature than in vacuum, because heat 

is large. This does not mean, however, that the wave functions i 
are not good approximations, even when the distance is great, in the case of 
the hydrogen molecule ion which has only one electron. 

^ James and Cooudgb, J. Chem, Phys.^ 1, 825 (1933). 
*For a review, see Bonhoefpbr, Ergebnisse der exakten Naturwisa,, 6, 

201 (1927). 
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is conducted away by the hydrogen. If the tungsten wire is 
heated above 2000°C., it is found that the cooling effect of the 
hydrogen becomes abnormally large. This is explained on the 
assumption that the hydrogen molecules are beginning to dis¬ 
sociate and are abstracting the necessary energy from the win'. 
Further evidence is the fact that if the hydrogen is present at a 
very small pressure (10“^ to 10“^ mm.) the gas may be notiet^d to 
gradually disappear (clean-up effect). It was found that the 
hydrogen disappeared into the glass walls of the vessel and could 
be driven out again by heating them. This occurs only if the 
tungsten wire is heated to a sufficiently high temperature. It 
obviously indicates that the properties of the gas have changed, 
and is readily explained by the assumption that hydrogen atoms 
are produced and absorbed by the glass. The enhanced chemical 
activity of the gas can also be studied at low pressures, but this is 
not a good way of producing hydrogen atoms for this purpose. 

From the amount of the cooling of the tungsten wire, Langmuir 
found it possible to make an estimate of the equilibrium constant 
for the dissociation of hydrogen at various temperatures and so 
obtain the heat of dissociation. This calculation was based on 
the assumption that equilibrium was established between atoms 
and molecules absorbed on the tungsten, and involves considera¬ 
tion of the rate of transfer of atoms and molecules between gas 
phase and absorbed layer, as well as the diffusion of atoms from the 
wire. , By measuring the amount of cooling of the wire at various 
pressures and temperatures, the percentage of hydrogen molecules 
dissociated and the heat of dissociation could be calculated. 
The value obtained was in reasonably good agreement with later 
more exact results obtained by spectroscopic methods. The 
results obtained at different temperatures and pressures were 
consistent with the assumption that an equilibrium was being 
measured. For orientation. Table 6, giving the approximate 
degree of dissociation at various temperatures and pressures, is 
inserted.^ 

Wood and later Bonhoeffer and others have prepared hydrogen 
atoms by passing hydrogen at low pressures (0.1 to 1 mm.) along 
a tube through which an electric discharge was maintained by 
means of a potential of 5,000 to 20,000 volts. The gas could be 

^Langmuib, J. Am. Chem. Soc., 87, 442 (1915); and Gen. Eke. Rev., 29, 
155 (1926). 
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Table 6.—Dbgkee of Dissociation of Hs 

T(‘’K) 
: 1 

2000 3000 4000 

At 760 mm. 0.0012 0.090 0.62 
At 1 mm. 0.034 0.93 0.999 

led away from the discharge, and was found to be very reactive. 
This reactivity would be retained after the gas had passed 
through considerable lengths of glass tubing provided there was a 
small amount of oxygen present, which poisoned the wall; other¬ 
wise the hydrogen atoms were absorbed on tlui wall and recom¬ 
bined there. That the abnormal reactivity of the gas thus 
produced is in reality due to the presence of hydrogen atoms is 
indicated by the fact that hydrogen atoms are known to be 

lEJechric discharge 

j Ha+H 
Fig. 46.—Schematic drawing of 

discharge tube for production of 
hydrogen atoms. 

})resent in the discharge, because 
tlnnr spectrum is there, and there 
is no evidences to indicate that the 
effects are due to any other active 
body. In particular, the possi¬ 
bility of effects due to the presence 
of ions has been considered by 
Bonhoeffer. The rate at which 
the active bodies disappear, as 

discussed below, is also consistent with the assumption that they 
are atoms which on disappcjaring recombine. 

The gases from the discharge tube can be used to study the 
properties of hydrogen atoms. It is found that they are very 
reactive, and will undergo many reactions which hydrogen 
molecules will not. The atom will react with mercury liquid to 
form HgH gas; one sees over the surface of the mercury a bluish 
light in which the spectrum of this molecule is present, as well as 
the 2537A. mercury line. The reactions that occur are supposed 
to be the following: 

Hg +H 
HgH (excited) -f H 

HgH (excited) 
‘ Hg (excited) + Ha 

Hydrogen atoms react at room temperatures with oxygen to 
form hydrogen peroxide,^ and they also react rapidly at room 

^ Water is also formed, but may be a secondary product. It should be 
remarked that even the hydrogen peroxide is undoubtedly formed as the 
product of a chain reaction involving unstable intermediates. 
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temperature and in the dark with chlorine, bromine, and iodine. 
Molecular hydrogen does not react with oxygen at room tempera¬ 
ture, only.slowly with chlorine in the dark, and extremely slowly, 
if at all, with bromine and iodine. Hydrogen atoms do not react 
with water, ammonia, or methane,^but they do react with various 
higher hydrocarbons, forming hydrogen molecules and free 
radicals. They react with hydrogen sulfide, arsine, hydrogen 
chloride, and hydrogen bromide. Hydrogen atoms reduce 
numerous solids, such as sulfur, phosphorus, arsenic, antimony, 
and a number of oxides and salts. The effect of hydrogen atoms 
on the oxides and salts was observed by passing hydrogen through 
the discharge and then over the substance to be investigated; 
reduction, when it occurred, could be seen to take place by means 
of the change in color. 

In the case of sulfur, H2S is formed, and as H2S is volatile, the 
vessel containing the sulfur loses weight. This loss of weight 
can be used as an indicator of the rate of recombination of 
hydrogen atoms as the gas containing them passes down a tube. 
The vessel containing the sulfur is placed at varying distances 
along the tube as the gas runs down the tube at a constant 
streaming velocity (holding, of course, the conditions in the dis¬ 
charge constant), and the relative losses of weight are compared. 
In this way, knowing how fast the gas is moving down the tube, 
the rate of recombination can be estimated. Other experi¬ 
mental methods are also available.^ It is found that only a 
small fraction of the collisions of hydrogen atoms (calculated 
assuming diameters of the order of 10“^ cm.) are effective in 
causing recombination. This low efficiency is, however, easily 
understood, for two hydrogen atoms obviously have enough 
energy to dissociate, else they would already be combined as a 
molecule. If the spins of the electrons are correct, they will 
attract each other when they come together in collision, but 
they will separate again unless another body is present to take 
away the excess energy. The recombination of hydrogen atoms 

1 This statement is based on the experiments of Boehm and Bonhoeffer, 

Zeit8. phydk, Chem.j 119, 385 (1926), in which a stream of hydrogen con¬ 
taining hydrogen atoms from a discharge is mixed with the other gas. There 

seems to be no doubt that hydrogen atoms at least react much more slowly 

with water, ammonia and methane than with the other gases mentioned. 
3 See, e.g»t Amdub, J, Am, Chem, Soc., 60, 2347 (1938), which has refer¬ 

ences to other recent work. 
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thus requires a three-body collision. The third body need not 
be a hydrogen atom, or a gas molecule of any kind, however; it 
may, for example, be a solid. Hydrogen atoms combine very 
readily on the surfaces of many solids, in particular, metals, 
which are strongly heated by the energy of dissociation thus 
released. 

10.8. Ortho- and Parahydrogen.—In preceding pages of this 
chapter, we have discussed the electronic wave functions of the 
hydrogen molecule. There are phenomena, of some interest, 
that are explained by reference to the nuclear wave functions.^ 

It is natural to assume that the nuclear wave function, like the 
wave function of an electron, may be divided into two parts, a 
spin part and a coordinate part. Further, a proton, like an 
electron, also has a spin angular momentum, whose projection 
along an axis may take the values ± i/?/27r; so there will be thre(^ 
symmetrical spin wave functions and one antisymmetric spin 
wave function, with respect to interchange of the two nuclei. 

The symmetry properties of the coordinate part of the nuclear 
wave functions must now be considered. If the orientation of the 
line joining the centers of the two nuclei is expressed by means 
of the usual polar coordinates and $ (see Fig. 13, page 49), 
it is seen that interchanging the two nuclei is equivalent to 
changing <t> into <t> + tt and changing 6 into t -- 6. In Chap. IX, 
we considered some of the properties of diatomic molecules, in 
general, and noted that since the force between the two atoms is 
directed along the line of centers the motion of these atoms has 
much in common with the motion of the electron in the hydrogcui 
atom. In particular, the wave function may be written in th(^ 
form where is a function only of r, the distance between 
the atoms, and and 0 are functions, respectively, of the two 
variables <f> and It will be clear from the statement made* 
above that the symmetry properties of this wave function will 
depend upon the factor 4>0, and it is found that it is symmetrical 
if j, the rotational quantum number, is even, and antisymmetrical 
if it is odd. We shall not. attempt a detailed explanation of this 
fact, but may call attention to an analogous case, which is some¬ 
what simpler. If there were a molecule that could rotate only in 

' For a more complete account of the subject treated in this section see 

Farkas, ‘‘Light and Heavy Hydrogen,” Cambridge University Press, 

1936. 
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a plane, then by introducing the reduced mass it could be ( reap'd 
as a plane rotator of the type considered in Chap. IV. Inter¬ 
change of the nuclei would correspond to changing x of Sec. 4.4 
to X + ^r, and examination of Fig. 12 will show that wave func¬ 
tions are symmetrical if the rotational quantum number is even, 
antisymmetrical if it is odd. 

If the complete nuclear wave function for the hydrogen mole¬ 
cule is to be antisymmetrical, then a symmetrical coordinate 
function must always be combined with an antisymmetrical spin 
function, and vice versa. The molecules of the type in which 
the spin function is antisymmetrical and the coordinate part 
symmetrical are called “parahydrogen'^; the other combination 
gives ‘^orthohydrogen.^’ For parahydrogen the rotational 
(juantum number j has the values 0, 2, 4, ; for ortho¬ 
hydrogen j = 1, 3, 5, ... . 

OiKJ would, therefore, expect a different proportion of ortho- 
and parahydrogen at high and low temperatures. If the temper¬ 
ature is very low, all the hydrogen will be in its lowest rotational 
energy level, if equilibrium is established, and hence will be 
parahydrogen. At high temperatures, the average molecule will 
have a large rotational quantum number. The number of 
orientations 2j + 1 will not differ very much from one j to the 
next, if j is large enough, so that one might at first expect equal 
numbers of the two kinds of hydrogen at high temperatures. 
However, it must be remembered that there are three kinds of 
symmetrical spin functions and only one antisymmetrical. 
Therefore at high temperatures (room temperature is in this 
sense a high temperature), orthohydrogen should predominate in 
the ratio of 3:1. That this is actually true is indicated by the 
spectrum of hydrogen, which shows alternating intensities. 

It is found, however, that if ordinary hydrogen is cooled to a 
low temperature the ratio of ortho- to parahydrogen actually 
remains unchanged over long periods of time; ortho- and para¬ 
hydrogen thus behave much like separate compounds. The 
transition from one type to the other is very slow, except under 
conditions such that the atoms of an H2 molecule are separated, 
or in the presence of a substance the molecules of which have a 
magnetic moment. Of course, if the atoms are separated they 
will recombine in such a way as to give an equilibrium mixture 
of ortho- and parahydrogen, even though the directions of the 
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spins of the individual atoms are not changed; a magnetic 
substance is able actually to cause changes in the directions of 
the individual proton spins. Pure parahydrogen may be 
obtained at low temperatures by cooling hydrogen in the presence 
of activated charcoal, which acts as a catalyst for the conversion, 
probably due to magnetic interaction. If the charcoal is then 
removed, the parahydrogen can be heated up to room tempera¬ 
ture, and will not go over into the ordinary mixture for a long 
time. Its properties diffe^r from those of ordinary hydrogen, 
e,g.y it has a different specific heat and a different vapor pressure 

Other diatomic molecules, composed of two atoms of the same 
kind, are known from spectral observations to have similar 
properties. The phenomena are, in general, much more compli¬ 
cated, for the nuclei of other atoms than hydrogen consist not of a 
single proton, but of a number of particles closely cemented 
together. These matters are beyond the scope of this book, 
and will not be considered further Iwre 



CHAPTER XI 

THEORIES OF VALENCE 

As has been indicated in previous chapters, there are at least 
two different kinds of chemical combination, (1) that which is due 
primarily to the attraction between a positive and a negative ion, 
and (2) that which is due to the formation of an electron-pair 
bond, as exemplified by the hydrogen molecule. The first type 
is known as ‘^polar'' or ‘^ionic bindingthe second type is called 
‘^nonpolar’’ or ‘'covalent binding/' The distinction between 
the two types of bonds was probably first made by Abegg. 

If a pair of atoms combines chemically, it may generally be 
expected that, if one of them has one or more electrons which are 
relatively easily removed, while the other has a considerable 
tendency to add one or more electrons, the bond will be polar. 
On the other hand, if the two have nearly equal tendencies to 
lose or add electrons, the bond will be covalent. If two atoms 
of the same kind combine, the situation is ideal for the formation 
of a nonpolar bond. In Chap. XII, these ideas will be given a 
more quantitative treatment, and the gradation between polar 
and nonpolar bonds will be considered in connection with the 
properties of simple gas molecules. For the present, it may be 
assumed that a bond can be classed as belonging to one type or 
the other. 

The present chapter will be chiefly devoted to the formulation 
of electron structures associated with chemical bonds and, in 
particular, covalent bonds, though the place of polar bonds in 
the scheme will also be indicated. The electron-pair bond, 
similar to that formed in the hydrogen molecule, as discussed 
in Chap. X, will be the basis of this discussion. 

In the present chapter, not much attention will be given to 
properties of the chemical bonds, such as bond energy. The bond 
energy and certain other properties will be considered in Chap. 
XII, and the discussion of other characteristics of the covalent 
bond, of a somewhat different nature, will be deferred to Chap. 
XV. 

151 



152 THEORIES OF VALENCE Sec. 11.1 

11.1. Lewis’s Theory of Valence.—The importance of the 
electron pair wa« early recognized by Lewis/ long before the 
present concepts of the quantum theory which, as we saw in the 
last chapter, so clearly predict such a phenomenon, had crystal¬ 
lized. He called attention to the fact that practically all chem¬ 
ical compounds contain an even number of electrons. Almost 
the only common compounds existing at room temperature that 
have an odd number of electrons arc NO, NO2, and CIO2. NO2; 
as is well known, tends to polymerize, giving N2O4 which has an 
even number of electrons, and there is also some tendency for 
NO to double up. A few other compounds with an odd number 
of electrons are discussed by Lewis, but these are all unstable 
substances (ixisting only under special circumstanc(\s. 

Lewis also emphasized the tendency of atoms to fill up a shell of 
eight electrons. This idea, which was independently considered 
by Kossel and had been foreshadowed by Abegg and by Parson, 
has been greatly developed by Lewis and by Langmuir, and has 
been of much utility in the discussion of both polar and nonpolar 
compounds. Thus consider the formation of NaCl. The outer 
shell (M-shell) of electrons of a sodium atom contains but one 
electron, whereas the outer shell of a chlorine atom (also an 
M-shell) contains seven electrons. If the sodiiun loses an 
electron, the sodium ion that is left has an outer shell (an L-shell, 
the only M-electron having been removed) of eight electrons, 
whereas the chlorine ion also has an outer shell of eight. The 
electron configurations of these ions are exactly the same as those 
of the nearest rare gas atoms and, undoubtedly, represent very 
stable states. In the case of NaCl, we therefore expect sodium 
and chlorine ions to be formed as a preliminary step, and the 
combination to take place between them. 

On the other hand, when a CI2 molecule is formed, the bond is 
an electron-pair bond, and Lewis assumed that each member of 
the pair was shared by both chlorine atoms and could complete 
the octet, or group of eight, of each one. Lewis adopted the 
scheme of writing formulas in which the electrons in the outer¬ 
most shells were represented by dots. Thus the formula of CI2 

would be :C1:C1:, the electrons being grouped together as pairs, 

^See I^Ewis, Valence and the Structure of Atoms and Molecules/' 
Reinhold Publishing Corporation, 1923, for an extended account. 
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the middle pair belonging to both chlorine atoms equally. Much 
use will be made of this notation. 

There are a great many nonpolar compounds in which one or 
more of the atoms involved have a shell of eight, when the shared 
electrons are counted for both atoms. We give a few examples: 

:C1: H 

:Ci:C:Ci: :0:S:6: H:C:H 

. H 

In the case of CH4, the hydrogen atoms have but two electrons in 
their shells, but this really corresponds to an octet in other atoms 
inasmuch as a K-shell can have but two electrons and the corre¬ 
sponding rare gas has but two electrons in its outer shell. There 
are many complex ions in which all the atoms have an outer shell 
of eight (or the equivalent). Thus we have 

:0: 
— 

:0: H 

:0:S:0: 1 :0:C1:6: and H:N:H 

:0: :0: H 

the net charge on the ion being indicated outside the brackets. 
In the case of a double or triple bond, Lewis assumes that two or 
three pairs of electrons, respectively, are shared between atoms 
in order to complete the shell of eight. Thus we have 

H. .H 
:C::C: and H:Ci;C:H 

H’ ‘H 

The formation of double and triple bonds is an indication of the 
tendency of the combining atoms to complete the shell of eight. 
Further examination of the SO2 molecule shows that all the 
atoms could complete their shell of eight by the formation of a 

double bond, thus, 0:: S: 0: As a matter of fact, this is probably 

nearer to giving a true description of this molecule than th(^ 
formula previously given. It is rather unsymmetrical, but it is 
not to be expected that the double bond would always stay at a 
particular one of the S—O bonds. It is undoubtedly continually 
shifting from one side to the other. There are also other possi¬ 
bilities for the structure of SO2. Thus either one of the oxygens 
could have but six electrons, instead of the sulfur. It may be 
that each one of the configurations has some grain of truth in it, 
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and that the truth approximates some intermediate situation, 
or a tautomeric mixture of all possibilities,^ with the two double- 
bonded structures (i.e., the structures with the double bond to 
one or the other of the oxygens) predominating. 

It should be noted that the character of the electron-pair bond 
is not dependent upon which one of the atoms involved originally 
furnished the electrons. Both electrons of a pair can come from’ 
one of the atoms (called by Sidgwick^ the donor,” the other 
atom which shares these electrons then being called the accep¬ 
tors^), or one of the electrons may come from each atom, or 
in the case of ions, one of the electrons may have been furnished 
by an atom that is no longer present at all. 

It is always possible, in purely formal fashion, to consider any 
electron pair as being fonned by one electron from each atom. 
Thus SO 4—maybe considered to be formed from sulfur and oxygen 

ions, of structure (-S-)"^ and (:0*)“, respectively. Whether 

this is a good way of viewing the situation, i.e,, whether the 
forces involved in the formation of the bond can really be con¬ 
sidered to be the forces between the ions plus the ordinary force 
expected from an electron-pair bond, is another question—^in 
this case, it may be a reasonably good approximation. 

11.2. London’s Theory of Valence.—As has been noted, 
Lewis stresses the stability of the octet of electrons. But there 
are compounds and ions in which it must be assumed that the 
central atom has more than an octet, as shown by PCU, SFe, 
(Code)-. London® has given a formulation of the theory 
couched in more modern language, which also allows for these 
cases, and a somewhat modified version of his theory will be 
given here. 

London’s theory deals piimarily and directly with those cases 
in which the two electrons in the pair come from different atoms. 
A case like SO2 could be handled by formulating it in terms of the 
ions, as was done above, so that each i6n involved in the bond 
furnishes one of the electrons of the pair. 

^This “resonance phenomenon'^ is certainly of importance in many 
instances, and is discussed in some detail later (see Sec. 12.5). 

* SiDOWicK, “The Electronic Theory of Valency," Oxford University Press, 

1927. This book also contains a rather extended account of some of the 

aspects of the theory of valence. 
’London, Zeits, Pkysik., 46, 455 (1928). 
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In order to have the possibility of forming an electron-pair 
bond, there must be one electron in each atom (or ion) in such a 
condition that it can pair with the other electron, so that their 
spins cancel each other. An electron that is already paired with 
another electron in the same atom is not available, while it is 
still so paired, for bond formation. Two electrons within a 
single atom are said to be paired if they have opposite spins and 
all their other quantum numbers arc the same. 

The question as to whether an electron that is already paired 
within an atom can become available for bond formation with 
an electron from another atom dei)ends upon whether it can be 
unpaired without exi)(uiditure of too much energy. For pur¬ 
poses of discussion, London thus considers the unpairing process 
as an intermediate st(\p in the formation of a compound. Now 
according to London’s theory, an electron is readily unpaired, 
provided this can be done without change in the value of the 
total quantum number n of that electron. It is readily 
seen that this leads at once to the prediction that NCia may bo 
formed but not NClr,, and that PCI5 is possible. This is true, 
because the outer (‘kxjtrons of nitrogen are in the shell for which 
n = 2. Since two states form a pair provided all their quantum 
numbers except the spin quantum number are the same, we see 
that there are only four pairs of states for which n = 2, namely, 
one pair of s-states and three pairs of p-states. Since there are 
five electrons, it is obvious that only three can be unpaired if all 
of them are to remain in the n — 2 shell. Therefore there will 
be only three available to combine with the odd electron of a 
chlorine atom, so that NCI3 is a possible compound, but not 
NClb,'Which is in accord with experimental facts. On the other 
hand, the value of n for the outer electrons of phosphorus is 3, 
and there are nine such states, one 5-state, three p-states, and 
five d-states. It is therefore readily possible to have five electrons 
unpaired without going out of the n == 3 shell. In similar 
fashion, it is seen that it is possible to explain the existence of 
SFe and compounds in general in which one, or more, of the 
atoms has a shell of more than eight. 

Some presumptive doubt, at least, as to the basis of this theory 
appears when an attempt is made to estifnate the actual energy 
involved in the unpairing of the electrons. Thus the theory 
supposes that PCL exists because it is possible to unpair the 
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electrons in the phosphorus without leaving the n = 3 shell. 
But as a matter of fact, in the building up of the periodic system, 
the 4s«-levels fill up before the 3d-levels. Now to be sure, we 
cannot say that the order of the levels in phosphorus will be 
the same as in K, the element in which a 4.9-eIectron first appears, 
but it does seem likely that at least not much is gained by the 
fact that to unpair the electrons none have to be taken to the 
4s-level. But another factor than the energy required to impair 
the electrons enters into the problem, namely, the bond energy. 
It is altogether probable not only that the bonds which would be 
formed if some of the electrons were excited to the 4i-level would 
not be so strong as the bonds formed when this is not necessary, 
but also that this is a determining fac tor. 

It is rather unfortunate, however, that it is often not really 
possible in the present stage of our knowledge to separate and 
evaluate the various factors that determine the stability of com¬ 
pounds. There seems to be no doubt that the stability of PCls 
relative tp PCI3 is greater than the stability of NCU relative to 
NCI3, for PCU vapor at 1 atm. dissociates only slightly at 100°C., 
whereas NCIb is unknown; but this difference may be due in large 
part to the mere fact that there is more room to pack atoms 
about the relatively large phosphorus atom, and what the rela¬ 
tive importance of this factor as compared with the electronic 
structure may be is very difficult to decide. We sliall have more 
to say, both about the coordination number (f.c., the number of 
atoms that can surround a central atom) and about bond forma¬ 
tion, in later chapters. 

London summarizes the results of his theory by saying that, in 
agreement with experiment, fluorine should be only univalent, 
oxygen only bivalent, and nitrogen only trivalent. This is true, 
provided one is careful in his definition of valence, or if onc^ 
attempts to apply it only in those cases in which one of the elec¬ 
trons of each pair comes from one of the atoms involved and the 
other from the other atom. The cases in which nitrogen is 
apparently pentavalent are always compounds in wMch one of 
the atoms is held primarily by ionic forces. Thus in NH4CI, 
for example, the Cl~ is held to the NH4'^ by ionic forces, and the 
chlorine cannot be considered to be bound by a covalent link to 
nitrogen. 
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11.3. The Hund-Mulliken Theory of Valence.—We turn now 
to a consideration of the views advocated by Hund, Mulliken, 
Herzberg, Lennard-Jones, and others J Their point of view is to 
consider the electronic orbits in the field of force produced by 
several centers of force. Each orbit in this complex field of force 
will be determined l)y definite quantum nurnb(»rs, and will have a 
certain (^iK^gy that d(^pends upon the quantum numbers and also 
the relative positions of the various centers of force. Wo then 
feed electrons one by one into the quantum states, starting with 
thovse of low^est energy, just as we did with atoms in Chap. VII. 
The hydrogen molecule has already been considered from this 
point of view" in Sec. 10.5. 

It is very heli)ful to consider the gradual change in the energy 
of the quantum states on starting with a separate pair of atoms, 
and allowing them gradually to approach each other until they 
form a united atom with atomic number equal to the sum of the 
atomic numbers of the separate atoms. It was seen in Sec. 
10.3 that an elec'tron may be promoted in this process; that is to 
say, its value of the quantum number n may be greater in the 
united atom than in the separated atom. In the case of the 
hydrogen molecule, it was not necessary for promotion to occur. 
But in some cases, the united atom cannot be formed without 
the promotion of one or more electrons. For example, if two 
helium atoms in their normal states, each containing two Is-elec- 
trons, are united to form a beryllium atom, two of the electrons 
must be promoted to the L-shell. The process of promotion 
requires energy. In the intermediate situation, where there are 
neither separated atoms nor a united atom, promotion will have 
begun, and as it requires energy it contributes to the instability 
of the configuration. Thus we see why the He2 molecule is not 
stable. Promotion is due to the operation of the Pauli exclusion 
principle, and is associated with repulsive forces. This repulsion 

^See, e.gr., Hund, Zeits. EUktrockem., 34, 437 (1928); Mulliken, Ckem, 
Reo,, 9, 347 (1931); Van Vleck and A. Sherman, Rev. Mod. Phys.j 7, 167 

(1935). Hund, Mulliken, and others have also written many papers on 

molecular spectra, treating not only the lowest electronic state of molecules, 

but also excited states. As we are not primarily interested in excited states, 

this matter is not treated in the present volume. For a review, primarily 

of diatomic molecules, see Mulliken, Rev. Mod. Phya., 2, 60 (1930); 3, 89 

(1931); 4, 1 (1932). 
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is essentially the same thing discussed in Sec. 9.1, though if the 
two atoms are pushed very (?lose together, the direct electrostatic 
repulsion of the positive nuclei may play a role. It thus appears 
that the strength of a bond between two atoms will depend to a 
large extent on how many electrons have to be promoted (or at 
least are on the way to promotion) when the bond is formed. 
Electrons that are shared without promotion are bonding elec¬ 
trons, but promoted ekictrons have an antibonding action. 

As we have remarked, the process of promotion is one that 
takes place gradually as the atoms are brought together. If we 
speak of an electron as promoted, it means that we consider that 
electron from the united atom point of view, for only in the 
united atom is it fully promoted. In many cases, this may be a 
good approximation, but in the case of the combination of many- 
electron atoms, it is evident that whether the separated atom or 
the united atom is the better approximation for the molecule at 
the actual molecular distance of separation will depend upon 
which of the electrons we are considering. Only the outer elec¬ 
trons are involved in valence phenomena, and it is obvious that 
the presence of another atom affects the inner electrons relatively 
little. The inner electrons may, therefore, best be considered 
from the separated atom viewpoint, and no promotion of these 
electrons is involved at the usual molecular distances. Of course, 
if the two atoms were pushed closer together, then in the (jase of 
many-electron atoms there would be many more electrons than 
could be accommodated in the inner shells, and wholesale pro¬ 
motion of electrons would be necessary. It is, of course, this 
threat of promotion that prevents the molecular distances from 
being smaller than they are. 

The principles involved in this view of valence phenomena 
may be best brought out by considering a few examples. The 
hydrides of the light elements are particularly susceptible to this 
sort of treatment. I^et us take the hydrides of boron, for exam¬ 
ple. The inner electrons of boron presumably do not come into 
the picture. It is necessary to consider only the outer electrons 
of boron and the electrons of hydrogen. All these electrons 
become part of one shell which may be considered to be the shell 
of the boron^ atom for which n = 2. It is not necessary then to 

^In the discussion we consider the possibility of promotiori from the 
n * 2 shell of boron. An electron is shared with the n » 1 shell of a hydrogen 
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promote an electron until the n = 2 shell is filled, and so the 
following compounds might be expected to be possibilities: 
BH, BH2, BHs, BH4, BH5. Any compound with more than 
five hydrogens would be unstable as it would be necessary to 
promote one electron for each succeeding hydrogen atom that is 
brought in. It is, of course, not true that the molecules listed 
are actually known. BH has been found spectroscopically, 
but the others are actually unknown. Mulliken believes that all 
of them should be stal)le with respect to decomposition into 
atoms, but that they will undergo other reactions. Thus he 
believes that BH5 will be stable with respect to 

BH5 -> B + 5H 

but that the reaction 
BH5 BHa -h Ha 

will tend to go on account of the great stability of the hydrogen 
molecule. BH3 itself does not exist as such, but only as a dimer 
BaHe. It will be noted that the electronic structure of BH3, 
in so far as it resembles the united atom, is just the same as that 
of the oxygen atom. It has b(icn suggested that the combination 
of BHs^s is a process very similar to the combination of oxygen 
atoms; however, there appears to be evidence against this point 
of view as we shall see in Sec. 16.13, and it seems likely that the 
bond between the borons resembles more closely a single bond. 

Whether BH5 is actually stable with respect to decomposition 
into the atoms is not surely known But whether it is stable 
or not, its prediction by a theory exhibits one of the character¬ 
istic features of that theory in a rather striking way. It is seen 
that in BH5 there are four pairs of outer electrons and five hydro¬ 
gen atoms. The hydrogen atoms are simply there, somewhere 
in the electron swarm, and they do not share particular electrons. 
The Hund-Mulliken theory in general lays stress upon the general 
electron configuration rather than the bonds between particular 
atoms. 

According to the Hund-Mulliken theory, the series of hydrides 
of carbon should stop at CH4. In this case, the existence of the 
various hydrides is pretty well established. CH is known spec- 

atom, and promotion with respect to hydrogen does not occur. Of course, 
in the fully united atom, with all hydrogens merged with the boron, the 
situation would be different. 
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troscopically, and CHs hay been demonstratod by chemical means 

to be an intermediate in many organic reactions taking place in 

the gas phaseJ 

We may now consider a number of other molecules from the 

Hund-Mulliken point of view. We turn first to Lia- Each Li 

atom has t wo l^-electrons and one 2s‘-elcctron. Now the aver- 

age distance from the nucleus of the electron in hydrogen when in 

its Is-state is about 0.5 X 10“” cm. In lithium, on account of the 

larger nuclear charge, the distance of the 1 .<f-elcctrons is even 

smaller, being about 0.2 X 10“^ cm. On the other hand, the 

distance between nuclei of Lio known from spectroscopic data 

to be 2.67 X 10“^ cm. and is therefore S(;en to b(^ very great com- 

j)ared with the region occupied by the l^-electrons. In spit() of 

this fact, .James'^ has shown by quantum mechanical calcula¬ 

tions that the U'-electrons play a significant role in determining 

the bond energy. This raises some doubts as to thc^ fundamental 

validity of our usual procedure of neglecting the inner electrons 

in discussing valence iihenomena. It seems probable, however, 

that for qualitative? discussions this assumption is justified. We 

therefore say that the 1 .s-electrons are not shared in Li2. With 

such a small number of electrons, there is, of course, no question 

of promotion. 

In the cases of N2 and CO (which have identical electron 

structures), the Is-electrons are not shared, and there are ten 

electrons to go into the n = 2 shell. But it will only hold eight, 

and two electrons must be promoted. In the case of CN (which 

is known spectroscox)ically and at high temperatures, though 

actually it is a molecule with an odd electron and not stable with 

respect to the reaction 2CN C2N2), one electron must be 

promoted. 

It may be reasonably expected that there will be more unshared 

electrons in molecules composed of atoms farther along in the 

first row of the periodic table. Mulliken believes that the 

2s-electrons are not shared in NO, O2, and F2. This leaves 

six 2p-pla(,*es held in common by the two atoms. Oxygen has six 

outer electrons of which tw^o are 2s-electrons. There are thus in 

the O2 molecule only 2X4 = 8 electrons to share the six places, 

and so two are xjromoted, whereas if the 2s-electrons were shared, 

' See F. O. Rice and K. K. Rice, “The Aliphatic Free Radicals,“ Johns 

Hopkins University Press, 1935. 
« Jambs, J. Chum, Phya,, 2, 794 (1934). 
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four would have to be promote^d. In NO and F2 with unshared 

2s-electrons, one and four electrons, respectively, are promoted. 

As far as the energy of the bond is concerned, it really makes 

little difference according to this theory w'hether the 25-electrons 

are considered to be shared or unshared. For Mulliken con¬ 

siders that every electron that is shared but not promoted is a 

bonding electron, whereas every electron that is shared and 

promoted has an antibonding action, wiiich, roughly speaking, 

counteracts the effect of a bonding electron. If the 25-electron8 

are not shared, then the oxygen molecule, for example, has 

eight shared electrons, of which two are promoted. The net 

effect, therefore, is that of four bonding electrons. If the 2.s-elec- 

trons are shared, then there are four more shared electrons, but 

two more must be promoted; the shared 25-electrons, therefore, 

have no net effect. In any case, there are effectively four bond¬ 

ing electrons, equivalent to (but not actually forming—see 

Sec. 16,13) a double bond, in O2. 

It is readily seen why no molecule of the formula Ne2 exists 

(at least it cannot be formed from neon atoms in their normal 

states). On the assumption that the 25-electrons are not shared, 

there are twelve shared electrons, of which six are promoted, 

the net bonding effect being nil. 

11,4. Comparison of the Theories of Valence.—The Hund- 

Mulliken theory of valence lays more stress than the other 

theories on the entire electron structure, and does not emphasize 

the idea of the electron-pair bond. According to the Hund- 

Mulliken theory, an electron if shared is either bonding or anti¬ 

bonding, and this does not depend on whether there is an electron 

pair or not. It must be stated that this view is certainly sup¬ 

ported by the existence of the stable molecule H2'^. On the 

other hand, it is true that in the great majority of compounds all 

the electrons are paired, and it certainly is convenient to speak 

of the electron-pair bond, even if in certain cases it occurs only 

incidentally. We saw in Sec. 10.5 why the electron pair is of 

frequent occurrence in valence phenomena, and in this connection 

it must be emphasized that the Hund-Mulliken theory is not 

opposed to the idea of the electron-pair bond, though it does not 

stress it; in fact, in Sec. 10.5 the hydrogen molecule was actually 

being considered from the Hund-Mulliken point of view. The 
Hund-Mulliken theory rather states that the electron-pair bond 

is a special case of a somewhat more general phenomenon. It is 
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seen that the electrons in molecules form shells, which consist of 

quantum levels of somewhat similar energies, just as in atoms. 

Only when promotion occurs is the amount of energy required 

excessively high. This enables us to see very clearly why there 

are sometimes more than two electrons in a bond. However, we 

shall see in Chap. XV how double and triple bonds may also be 

understood from a point of view that may be considered an 

extension of the Heitler-London theory. 

On the other hand, when we consider most polyatomic mole¬ 

cules, it is obvious that it is going to be very difficult to count 

up the shared and unshared electrons and d(?cide which are pro¬ 

moted. Furthermore, there seems to be good evidence, from 

organic chemistry, for example, and from the chemistry of the 

complex ions which will be studied later, that there are definite 

valence bonds with definitci directions. In all cases where there 

arc such definite valence bonds, it would seem to be expedient, 

at least for our purposes, to use the electron-pair picture, though 

Mulliken has recently considered polyatomic molecules in some 

detail. 

It is the belief of the author, also, that Lewises rule of eight, in 

spite of tlie fact that there are many exceptions, is of definite 

value in deciding which compounds are likely to be most stable. 

It seems very likely that the Hund-Mulliken theory is more 

appropriate for the discussion of the hydrides of the elements, 

because of the small size of the proton and the fact that its 

distance (obtained from spectroscopic data) from the element to 

which it is attached is so small that it may be considered to be 

within the shell of valence electrons, which is only slightly dis¬ 

turbed from its spherical shape. Every proton may thus be 

said to share the whole valence shell. This theory is also helpful, 

as we have seen, in considering the diatomic compounds of the 

light-elements. 

Exercises 

1. Give the I^ewis formula for CsHg; for CHaNNCHs. 
2. Discuss the molecules NO, F2, CN, and the hypothetical molecule CF 

from the Hund-Mulliken point of view, 
3. It has been claimed by Dennis and Eochow [J. Am. Chem. Soc.^ 65, 

2431 (1933)1 that they have evidence of a compound HFOs, though Cady 
[ihid.f 66, 1647 (1934)] does not believe their evidence is conclusive. If the 
compound does exist, is this necessarily inconsistent with London’s ideas on 
valence f Write a possible Lewis formula for the compound. 



CHAPTER XII 

TRANSITION FROM COVALENT TO IONIC BINDING IN 
SIMPLE GASEOUS COMPOUNDS 

Following the more or less formal description of chemical- 
valence phenomena in the last chapter, we are now ready to 
turn to a more detailed discussion of the physical properties of the 
chemical bond. This study will be initiated by a consideration 
of the properties of some of the simple molecules which commonly 
occur, at ordinary temperatures, in the gas phase. The binding 
within these molecules is generally of the covalent rather than 
the ionic type, but derivations from pure covalency occur and 
can be studied with the aid of a number of properties, the most 
important of which is the binding energy. The electric moment 
of the molecule also throws light on this question, as does the 
distance between atoms forming a bond. More detailed study 
of the latter property will be deferred to later chapters. Of 
importance, also, are the causes of deviation from covalent 
binding. These causes are bound up with the properties of the 
atoms forming the bond, such as their tendency to gain or lose 
electrons, and the ease with which they are distorted in an elec¬ 
tric field. These various considerations will receive a systematic 
treatment in the present chapter. 

12.1. Elementary Diatomic Gases.—The discussion may best 
be begun by a consideration of some of the properties of some 
typical molecules that are composed of two like atoms. In such 
a case, the valence forces are necessarily of a nonpolar character. 
Owing to the motion of the electrons, it is possible, even in such a 
case, for one of the atoms to be temporarily positively charged 
and the other, at the same time, negatively charged, but either 
of the atoms will be exactly as often positively as negatively 
charged. This temporary polarity, with displacement of elec¬ 
trons as often in one direction as in the other, is a part of the 
nonpolar bond, and any part of the forces that arises therefrom 
is included in the term '^nonpolar force.'' 

}63 
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The magnitude of the valence forces is best measured by 
means of the energy necessary to break the molecule, when in its 
lowest electronic state, into its constituent atoms. Closely 
related, as it will appear, is the equilibrium distance between 
atomic nuclei for the lowest state of the molecule, and values of 
this quantity will also be given,^ though, as stated above, a more 
detailed discussion is reserved for later chapters. 

The equilibrium distance between the nuclei is generally 
obtained, as explained in Sec. 9.3, by a study of the rotational 
spectrum of the molecule. It also may be obtained by a study 
of the scattering of X rays or electrons, as outlined in Chap. XV. 
The energy of dissociation may be obtained by a study of the 
vibrational spectrum of the molecule (Sec. 9.4). It may also 
be obtained by application of the thermodynamic equation 
[Eq. (7) of Appendix II] 

din K _ AE 
"'W “ kW 

in which k is the equilibrium constant for the dissociation (the 
square of the concentration of di.ssociate^d atoms divided by 
the concentration of molecules), T the absolute temperature, k the 
gas constant per molecule, and AE the average energy of a pair 
of dissociated atoms minus the average energy of a molecule. 
Measurement of k at different temperatures will yield AE. This 
latter quantity, the energy necessary to dissociate a molecule 
on the average^ is not exactly the same as the energy of dissociation 
D obtained from band spectra, which is equal to the energy 
necessary to go from the lowest vibrational state to the asymp¬ 
totic part of the potential-energy curve. For AE includes the 
energy due to thermal agitation; in other words, it takes into 
account the fact that at finite temperatures the molecules are not 
all in their lowest vibrational state and have, besides, rotational 
and translational energy, and the atoms also have some kinetic 
energy. The kinetic energy of the atoms does not exactly 
balance the average extra energy of the molecules, but both of 
these terms are small at ordinary temperatures, and we may for 
our purposes neglect the difference between AE and D. 

^ Actually, even when the molecule is in its lowest state, the atoms do not 
remain at a definite equilibrium position, owing to the zero-point energy 
(see p. ,119). However, for all practical purposes, the interatomic distance 
may be taken as coinciding with the minimum of the potential-energy curve. 
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Table 7.—Values of the Energy of Dissociation at Room 

Temperature for Diatomic Molecules 

(Kilogram-calories per mole) 
Hi 

103.2 
Li2 c. N2 O2 F2 

26.4 83 169.6 116.7 62.9 
Na2 Pz S2 CI2 

17.4 41.9 76 57.2 

K2 AS2 Sc 2 Brs 
11.6 34 3 72 45.5 

Rba Tc2 I2 

10,6 53 35.7 
CS2 Bis 
10.1 18.8 

From Biehowsky find Rossini “Thermochemistry of Chemical Substances,” except O2 

and the alkali molecules which are from data in the third supplement of Landolt*-Bornsiein. 

“Tabellen”, and in Spoiier, “ Molektllspektren," vol. I, corrected to room temperature, and 

S*. Se2, and Tea, which are from Goldfinger, Jeunehomroe, and Rosen, Nature, 138* 205 

(1936), and C2 which is from Herzberg, “Molecular Spectra and Molecular Structure.” 

Values in the table are AJS' of dissociation rather than AH (see Appendix II). 

In Tables 7 and 8, we give values of AE (or D) and n, the 
equilibrium distance, for a number of diatomic molecules, some 
of which do not occur as ordinary substances in large quantity, 
but are known only through their spectra. These arc arranged 
in such a way as to bring out the periodic relationships. The first 
feature which appears is that, in any column of the periodic table, 
the value of increases and the value of D decreases on going 
from the lighter to the heavier elements. This is, of course, to be 
expected; the distance at which the repulsive forces between the 

Table 8.—Values of r. for Elementary Diatomic Molecules 

(In Angstroms) 

H* 
0.739 

Li2 c, N2 0, F, 
2.670 1.31 1.09 1.204 1.45*^ 

Naj P» s, CI2 

3.07 1.88 1.92« 1.983 

K, Se2 BT2 
3.91 2.19^ 2.28 

Te* la 
2.59^ 2.660 

From SpoNsn, '* MolekUlspekiren,” vol. I, except as noted. 

« Maxwbll, Moslbt, and Hendricks, Phye. Rev., 50, 41 (1936). 

^ Maxwell and Moslbt, ibid., 57, 21 (1940). 

‘'Bkockwatt, J. Am. Chem. Soc., 60, 1348 (1938). 
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nuclei set in increases as the number of electron shells sur¬ 
rounding the nuclei increases. This increase of the distances 
involved necessarily results in a decrease of the binding force; 
the electrons that effect the binding are far removed from the 
centers of force. 

To get a qualitative understanding of the variations which 
occur across the rows of the periodic system, it is necessary to 
call to mind what has been learned about the electronic structure 
of the molecule. The Lewis formula for the fluorine molecule 

is : F: F;, involving a single bond. That this single bond will 

differ in many respects from the single bond in hydrogen is 
obvious, for the other electrons in the outer shells of the fluorine 
atoms must affect the electrons that form the bond. In the case 
of oxygen, however, there is a more profound difference, for in 
order to have a shell of eight around both oxygens we must 
write a double bond^ p.'.'Q.*, and it is interesting that the dis¬ 

sociation energy of oxygen is roughly twice that of fluorine. 
Similarly, in the case of nitrogen we should write a triple bond 
:N:;N:, and here the dissociation energy is roughly three times 
that of fluorine. Looking at the matter from the point of view 
of the Hund-Mulliken theory of valence, we probably should not 
stress the qualitative aspects of the difference between those vari¬ 
ous molecules quite so much; but, as seen in the last chapter, 
when the antibinding effect of promoted electrons is taken into 
account, two effective bonding pairs are left in the case of oxygen 
and three in the case of nitrogen. 

In view of the regularity of the values for the dissociation 
energy going from fluorine to nitrogen, there is a rather striking 
break at carbon. It is quite obvious that the dissociation energy 
of carbon is not what would be expected from a quadruple bond, 
and we shall see in Chap. XV reasons for doubting the possibility 
of four pairs of electrons being shared between two atoms and 
filling the outer shell of both of them to the desired number eight. 
The energy of C2, as a matter of fact, is between that of O2 and 

1 It is extremely doubtful that there is really a double bond in O2; how- 
-ever, the binding energy is probably very close to what would be expected 
for a double bond. This is discussed further in Sec. 16.13. Attention, 
however, should be called to the fact that the strength of a single 0—0 bond, 
as foupd below in Sec. 12.8, is considerably smaller than that of the F—F 
bond. 
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that of Fa; so it appears that the bond is between a single and 
a double bond. The break in the value of the energy of dissocia¬ 
tion that appears with C2 in the first row of the periodic system 
appears in the elements of the nitrogen group in subsequent rows. 
It will be noted that P2, As2, and Bia have relatively low energies 
of dissociation. However, the possibility of errors in these 
values is so great that too much stress should not be laid on 
them. 

12.2. Elementary Polyatomic Gases.—A slight digression on 
the elementary polyatomic gases may be of interest at this point. 
A number of the substances at the right-hand side of the periodic 
table have polyatomic forms.^ Among them are P4, which is 
stable up to 1500®C. and then somewhat dissociated into P2; 
O4, which forms to some extent at liquid air temperature, and 
ozone, O3; the various forms of sulfur, Sg, the form which pre¬ 
dominates in the vapor at the boiling point of sulfur, and the 
molecules Se and S2 occurring at higher temperatures (at 1000° 
sulfur vapor is largely S2, and it is in large part dissociated into 
atoms at 2000°); Ses and Se2; and perhaps other forms of sulfur 
and selenium. There is evidence of various polymers in liquid 
sulfur and selenium, which occur in a number of different forms. 
The fact that these elements exist in these various forms indi¬ 
cates a certain versatility in their electron structure as may also 
be indicated by the fact that their solids show allotropic modifica¬ 
tions. (At least one solid form consists of polymer molecules, Ss.) 

:S:S:S: 
The electron structure of Ss is :S: :S: It is a ring structure 

:SVS:S: 

involving only single bonds, andP4 is a tetrahedron involving only 
single bonds, each atom sharing an electron pair with each of 
the other three. ^ No such structure would be possible with the 
halogens, and only diatomic halogen molecules are known. 

1 These are discussed, e.g., in Latimer and Hildebrand, * ^Reference Book of 
Inorganic Chemistry,'' pp. 25,167jJ^., 188#., The Macmillan Company, 1929; 
and in Ephraim, ‘Inorganic Chemistry," English ed., pp. 85#., Gurney and 
Jackson, London, 19c4. 

* For Ss, see " Strukturbericht," vol. Ill, p. 4. The geometry of the ring 
structure is not intended to be indicated exactly by the formula shown. 
For P4, see Maxwbll, Hbndbicxs, and Moslbt, J, Chem, Phya,^ 3, 708 
(1935). 
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The tetratomic molecule of oxygen would seem to be in a 
somewhat different category from the other polyatomic gases. 
Its energy of dissociation in two O2 molecules is very low indeed, 
being only about 0.006 electron volt.^ This suggests that the 
O4 molecule may be thought of as two O2 molecules rather loosely 
bound together by van der Waals forces, as discussed in Chap. 
XVII. Although this energy of binding is of the order of mag¬ 
nitude to be anticipated froih this type of force, this evidence is 
not entirely conclusive, for we might readily suppose that no 
energy would be required to form four single bonds of O4 from two 
double bonds^ in O2. However, certain peculiarities of the 
spectrum of O4 are best explained on the assumption that it is 
composed of two O2 molecules loosely held together,^ and we may 
assume that this is actually the case. On the other hand, all 
the facts are against any similar assumption in the case of P4, 
for example, as it is far too stable. (The reaction P4 —> 2P2 

requires 1.2 electron volts.) The properties of the polymers of 
sulfur and selenium indicate that they also are stable. Of course, 
loosely bound molecmles like O4 undoubtedly occur with these 
substances also', but are not of importance, any more than is 
the case with oxygen, in affecting the gross physical and chemical 
properties. 

Ozone is a different type of polymer from any of the others; it is 
very reactive and unstable as compared with O2. 

12.3. An Approximate Measure of Electronegativity.—Even 
in the case of a purely covalent bond, there is, as has already been 
noted, a certain chance for both the electrons of an electron-pair 
bond to be on one of the atoms, which causes a momentary 
polarity, but does not make the bond polar. In order for the 
bond to be wholly or partly polar, one of the bonded atoms 
must attract electrons more strongly than the other. If a 
measure for the attraction of an atom for electrons, t.e., for.its 
electronegativity, could be obtained, it would be possible to 
form some idea as to which compounds would tend to be polar. 
A method for getting a measure of the electronegativity of atoms 
has recently been suggested by Mulliken.*^ 

1 Lbwis, J. Am. Chem. Soc.y 46, 2027 (1924). 
* See, however, footnote p. 166. 
* Fxnkelnbubo, Zeits. Physikj 90,1 (1934); 96,699 (1935); and other refer¬ 

ences cited by Finkelnburg. 
< Mulliken, /. Chem, Phye., 2, 782 (1934). 
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Suppose that we had two atoms A and B a large distance from 
each other; in this case, it would be easy, at least theoretically, 
to tell whether it required more energy to take an electron from 
atom A and put it on atom B, or to take an electron from atom 
B and put it on atom A. The energy required in the first process 
is — Fg, where 7^ is the ionization potential of A and is 
the electron affinity of B. The en(;rgy required in the second 
process is the meaning of the symbols being obvious. 
If these two quantities are equal, i.e., if 

/a ~ Z'B = /b - 

or 

7a ~1“ ~ “b Z^B> 

then it is just as easy to take an electron one way as the other. 
On the other hand, if 

then 

Z^A + > 7b + T’bj 

-Za Z^b ^ Z^b Z^A> 

and it is easier to take the electron from B and put it on A than 
it is to take an electron from A and put it on B. Thus a com¬ 
parison of 7 + 7" for two different elements will show which 
element has the greater attraction for electrons. Mulliken 
proposes to take this quantity 7 + 7^ as a measure of the electro¬ 
negativity of an element. It is, of course, a pure assumption to 
suppose that this remains a good measure of the electronegativity 
for an atom that is combined in a molecule. It does, however, 
give very reasonable results, as is seen from the second column 

*of Table 9, which gives 7+7^ for the halogens and hydrogen. 

Table 9.—Electronegativity Values 

(In volts) 

Element Original values Revised values 

F 22. 25.3 
Cl 16.7 19.6 
Br 15.1 18.1 
I 13,7 16.5 
H 14.25 14.25 
li . 5.7 
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The only feature of this table which may seem strange to 
chemists is the fact that hydrogen appears to be more electro¬ 
negative than iodine, and this appearance is undoubtedly incor¬ 
rect. The reason for it seems to reside in the fact that the state 
of a hypothetical ion in combination does not resemble suffi¬ 
ciently closely its state when free. In finding the ionization 
potential for the purpose of determining the electronegativity of 
iodine, we are not necessarily interested in the energy necessary 
to remove the electron and leave the resulting 1“*“ in its lowest 
possible state, but rather in the energy necessary to remove the 
electron and leave the in a state in which it would be capable 
of combining with H”“, say, to form HI. In I^", there are four 
p-electrons to fill three p-states (six when spin is considered), 
and in the normal state of 1+ two of these electrons are in one of 
these levels and each of the other two is in a separate level; 
furthermore, these last two electrons have their spin in the same 
direction, and the H"” ion, in which the electrons have opposite 
spins, cannot combine directly with 1+ to form an electron-pair 
bond. Thus, in order to form HI from H” and I+, we have a 
situation which is the reverse of that considered in the last chap¬ 
ter in connection with London's valence theory; the electrons 
must be paired, or at least the resultant spin must be reduced to 
zero before the compound can be formed. It must be remem¬ 
bered, also, that there are a number of states of 1+ in which the 
resultant spin is zero, corresponding to different distributions of 
the electrons among the quantum levels. The actual state of 
combined iodine will not resemble any one of these as much as 
some average or composite of all of them. Thus in evaluating 
the. ionization potential of I, we should really take the energy of 
the reaction 

I electron -|- I"*" (composite excited state) 

which will be greater than the energy for the reaction 

I —► electron + 1“^ (normal state) 

On the basis of considerations such as these, Mulliken has 
made a revised estimate of electronegativities, as given in 
Table 9. To this, for comparison, the value of lithium h^ been 
added. The electron affinity of lithium has been roughly esti- 
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mated, but since it is very small a very, rough estimate will 
suffice. Thus the value of J + F in the alkali metals is chiefly 
determined by /. It will be evident that the electronegativity 
of the alkali metals decreases, as expected, from lithium to 
cesium. Furthermore, the electronegativities of the copper 
group metals will be greater than those of the alkali metals. The 
electronegativities of both alkali and copper-group metals are 
very much less than that of hydrogen, and it is seen that from 
this point of view hydrogen should be classed with the halogens 
rather than with the alkalies. 

Mulliken has considered the possibility of extending his 
electronegativity table to polyvalent elements. In such cases, 
however, it is necessary to consider the possibility of multiply 
charged ions, so that not only the first, but also the second and 
possibly higher ionization potentials and electron affinities need 
to be considered. The considerations thus become more 
involved and the conclusions less certain. Since there are other 
means of estimating electronegativity, which can also be applied 
to polyvalent elements, we shall not attempt to apply the present 
method to them. 

12.4. Polarizability as a Criterion for Electronegativity.—Once 
we have a list of the electronegativities of the elements, we have a 
ready means of predicting which bonds will be more polar and 
which will tend rather toward the covalent type. The greater 
the difference between the electronegativities of two elements, 
the more polar the bond between them will be. 

A succinct and useful set of rules for determining the relative 
polarity of valence bonds has been given by Fajans.^ These 
rules may be conveniently formulated if we consider a polar bond 
as the norm, and inquire how far it departs from the pure polar 
type; this enables us to refer to the anion and the cation. The 
bond, then, wijl depart most greatly from the purely polar type 
if (1) the charge on the ions is large, (2) the cation is small, and 
(3) the anion is large. ^ The reasons for these rules are very easily 
seen. If the charge on the ions is large,, the force between them 
is large, and the cation tends to draw over toward it some of the 
electrons of the anion, thus effectively decreasing the charge of 

' Fajans, Zeita. Elektrochem,^ 34, t507 (1928). 
* We here consider only simple monatomic ions. Complex ions, such as 

SO4—, will be discussed later. 
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each. If the cation Ih small/ the center of force is able to get 
close to the anion, thus exerting a great force on it, and drawing 
electrons away from it; if the anion is large, the forces on the 
outer electrons due to its own nucleus are small, it is easily 
deformable, and the outer electrons can readily be displaced 
toward the cation. It will be seen that the last two rules are 
really simply qualitative expressions of the rule that a bond is 
less polar, the smaller the difference in the electronegativities of 
the atoms forming it. For the smaller the cation, the more force 
it will exert on electrons and the more electronegative it will be; 
similarly, the larger the anion, the less electronegative it will be, 
and thus (since, by definition, the anion is always the more 
electronegative of the two) the smaller will be the difference in 
electronegativities. As was noted in Sec. 12.3, it is necessary to 
consider the electronegativity of the atom when combined in the 
molecule; so it is not at all certain that the sum of the ionization 
potential and electron affinity of an atom will be a better measure 
of its actual electronegativity than would be given by the lack 
of deformability of its negative ion on the one hand, and by the 
ability of its positive ion to cause deformation on the other. 
However, a great ability of a positive ion to cause deformation 
will invariably be associated with a small deformability of the 
negative ion of the same element; so it might well be that in the 
case of the elements which tend to form negative ions the small¬ 
ness of their deformability alone would be a reasonable measure 
of the electronegativity. 

We are interested in the deformation of an ion in the presence 
of the electric field due to a neighboring ion. The deformability 
of any body in an electric field is commonly called its “polariza- 
bility,”2 and this concept may be quantitatively formulated. 

^ We have remarked in the last section that the copper-group metals are 

less electropositive than the alkali metals. This is associated with the high 
ionization potentials of the copper-group metals, and it is also associated 

with a relatively great ability on their part to deform anions. It is not to 
he thought of as due to their ions ha\dng an especially small size (according 
to Table 16 in Chap. XTV, Cu+ is about the same size as Na+), but rather 

is ooimected with the fact that their electron shell has eighteen instead of 
eight electrons. This question will be discussed further in ?*ec. 16.11. 

® The reader must take care to avoid being confused by this word. The 
larger the polarizability of an anion, the less polar is the bond formed by 
it with a cation. 
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We start with the consideration of a neutral atom, which is 
composed of electrical charges, but in which the total positive 
and negative charges are equal in amount and have, furthermore, 
the same center of gravity. If such an atom is placed in an elec- 
triclfield, there is a displacement of electric charge in the body, 
resulting in the separation of positive and negative charges, and 
producing an electrical dipole. The strength, or moment, of 
such a dipole is defined in a way that is similar to the definition 
of magnetic moment given in Sec. 6.2. If a negative charge of 
e is placed a distance b from an equal positive charge, the electric 
moment of the pair is €5. In the case of an atom, 6 nmy be 
considered to be the displacement of the ‘^center of gravity’^ of 
negative electricity with respect to the positive charge of the 
nucleus; the moment is then Zeby where Z is the atomic number 
and e the elementary electronic charge. As far as dipole strength 
is concerned, this is equivalent to displacement of a single elec¬ 
tronic charge through a distance Zb. If we are dealing with an 
ion rather than a neutral atom, the situation is not essentially 
changed; the displacemeqt of charge is simply superposed upon 
the total charge. 

Now, let the moment produced by an electric field applied to 
an atom or an ion be M. It is proportional to the applied field Ey 
and the constant of proportionality is the polarizability, which is 
designated as a. We have 

M == aE. (1) 

In order to find the order of magnitude of a for an atom,’ let us 
suppose, as a rough approximation, that the atom consists of a 
positive nucleus of charge Ze, surrounded by a sphere of negative 
electricity of uniform density and radius R. Suppose now that 
it is placed in a uniform electric field of strength Ey and that this 
field causes a displacement of amount b of the positive nucleus and 
the negative sphere with respect to each other, without distorting 
the latter, as shown in Fig. 46. If such a displacement occurs, 
then according to a familiar law of electrostatics, the positive 
nucleus is attracted back to the center by all the charge within 
a radius b with the same force as if this charge were at the center 
of the sphere. Since the total charge is Ze, the amount of charge 

* See SiiATBR and Frank, ‘‘Introduction to Theoretical Physics,*' p. 275, 
McGraw-Hill Book Company, Inc., 1933. 
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in the small sphere of radius 8 is Ze{8^/R^), This attracts the 
, , ZV(8^/m ZHH 

positive charge with a force — 
8^ 

Or the situa¬ 

tion may be described by saying that there are equal and opposite 
forces of this magnitude on the positive and negative charges 
which tend to pull them together. On the other hand, the field 
exerts equal and opposite forces equal to ZeE on the positive 
and negative charges, respectively, tending to pull them apart. 
Equilibrium occurs when these two tendencies balance, ^.6., 

^Position op 
pos/Hve nucleus 
when aH>m is in 
Piefof 

-Center of 
negative 
electricity 

Fici. 46. 

when ZeE = ZH'^8lR^^ and it is this condition which determines 
8; from it, it is seen that 

, ER^ 
(2) 

Now the electric moment produced by this displacement of 
charge is Ze6, which, by definition of a, must be equal to aE, 
Hence 

a^R\ (3) 

This result is very rough, but should give the correct order of 
magnitude, and it is seen that there is a very close relation 
between polarizability and size. 

a is generally measured indirectly by measuring the refractive 
index of light. A light beam produces an oscillating electric 
field, which polarizes the atoms of the substance through which 
it passes. The electric moment produced in the atoms naturally 
also oscillates and creates a field which interacts back with the 
field of the light beam. The index of refraction is closely related 
to tlds interaction.. For details, the student must be referred to 
treatises on optics or electron theory; the relation that exists 
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between polarizability and index of refraction is given by the 
formula^ 

a A. vLiAv 
+ 2 ’ (4) 

where n is the index of refraction for light of infinite wave length 
and V is the volume containing N molecules. The theory indi¬ 
cates that this formula should be additive; i.e., in a mixture, the 
quantity on the right-hand side of Eq. (4), which is directly 
measured experimentally, should give the average of the polariza¬ 
bilities of the substances in the mixture. Thus if, of the N 
molecules, Ni were of one kind and of another, and n were 
the refractive index of the mixture, then we should have 

Ofaverago 

N\a\ + 
~N 

3 n2 - 1 

47riV^n2 -h 2^’ (6) 

However, the polarizability of an atom may be affected by the 
proximity of other atoms. In this case, (4) and (5) do not hold 
and corrections must be made. So in the case of ions dissolved 

1 The significance of this equation may perhaps be better understood if 

we write it 

N ^ d {n - l){n 4- 1) 
V 4ir '■ ' -f 2 

Now in vacuum n is equal to 1, and if the molecular concentration N/V is 

sufficiently small, n will be very close to 1, so that under these circumstances 

we may write 

N n - I 
rv- Cii-t 

V= 2ir 

and the deviation of the refractive index from its value in vacuum is simply 

proportional to the density and to a. The more complicated expression is 

needed for high concentrations to take account of the effects of the atoms 
on each other. It must be emphasized, however, that this takes into account 

only the effects of fields, due to the polarization of the atoms, on neighboring 

atoms, and does not take into account any effect of one atom on the polarizor 
hility of its neighbors. Such an effect results in deviation from Eq. (4). 

It should be noted that if N is equal to Avogadro^s number so that V is 
7(^2 _ 1) 

the molar volume, the quantity is what is commonly known as 

the *‘mole refraction.'^ 
See Lorentz, '^Theory of Electrons," Chap. IV, G. E. Stechert A 

Company. Debye, "Polar Molecules,” Chap. I, Reinhold Publishing Co.., 

1929. 
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in water, it might be expected on account of the large forces 
exerted by the ions on the water (see Chap. XIX) that the 
polarizability of the water would be affected. However, as a 
first approximation, in order to got a starting point, it is natural 
to assume Eq. (5) to be correct, which is the same thing as assum¬ 
ing that the polarizabilities of gaseous ions can be obtained from 
measurements on ions in solution. By measuring the refractive 
index of water, one can, from Eq. (4), obtain a for water. Having 
this value, it is then possible, assuming that (5) holds, to measure 
the index of refraction of dilute solutions and so obtain values for 
the polarizabilities of ions. In addition, the polarizabilities 
of the rare gases are known from measurements of their indices 
of refraction. 

It must be noted, however, that the polarizability of a single 
ion cannot be measured, as an ion of opposite sign must always 
be present with it. Only the sum of the polarizabilities of a 
positive and negative ion, or the difference in polarizabilities of 
two positive ions or two negative ions (e.^., the difference between 
Rb*^ and may be obtained from measurements on RbCl and 
KCl), can be found directly. However, certain relations 
between the polarizabilities may be inferred.^ For example, 
consider the series Cl"", A, K"^, all of which have the same elec¬ 
tronic structure and differ only in the nuclear charge. The 
greater the nuclear charge, the more tightly the electrons will be 
bound. Tight binding of the electrons will be expected to result 
in a small size of the ion or atom and a small polarizability. Thus 
we may confidently write a series of inequalities for the polariza¬ 
bilities of these substances, as follows: acr > > «k+- Like¬ 
wise,, since the percentage change in nuclear charge on going from 
Cl~ to A is greater than that on going from A to K"^, it may be 
anticipated that the percentage change between the first pair will 
be greater than between the second pair. Thus we expect 

«ciV«A > «a/«k+* Similarly, we may write > a^r > 
and aBrV^Kr ^ «Kr/Q'Rb+* sincc the percentage change from 
Cl**' to A is greater than from Br“ to Kr, we may also write 

^cr/^A ^ <^Br“/c^Kr* There is thus obtained a large set of 

1 Fajans and Joos, Zeits. Physiky 23,1 (1924). Some consideration of the 
relative magnitudes of the interactions of the varioits ions with the solvent 
also entered into these calculations. 
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inequalities, and it is found that these determine, within narrow 
limits, the way the average polarizability of a solution must be 
divided between the positive and negative ions. Furthermore, 
certain regularities among the various ratios appear, which hold 
well as long as we deal only with the fairly large ions, K"^, Rb'+‘, 
Cs"^, and Cl“, Br“, and I”. When smaller ions are considered, the 
regularities break down. This is probably due to the fact that 
these smaller ions exert larger forces on the water, changing its 
polarizability sufficiently so that it cannot in these cases be 
assumed that Eq. (5) is valid, and it is, consequently, not possible 
to get the polarizabilities of the gaseous ions directly by measur¬ 
ing the refractive index of the solution. However, the regulari¬ 
ties in the various ratios permit extrapolations, not only to the 
smaller ions, such as Na+ and F~, but algo to ions of larger charge, 
where the interaction between ion and water is also so great that 
Eq. (5) breaks down. In this way, Fajaris and Joos^ have set up 
a table of ionic polarizabilities. This table has recently been 
slightly revised by Fajans,^ and the results have been confirmed 
also by several theoretical investigations.*’ The values of most 
of the ions given in Table 10 are those of Fajans, except that the 
values for Li"^ and Be**""^ are the theoretically calculated values of 
Pauling,® as for these ions, Fajans’s method does not give 
good results. 

In the same table, we give in parentheses the cubes of the ionic 
radii as taken from Table 16 of Chap. XIV. It is seen that these 
values are of the same order of magnitude as the polarizabilities, 
and parallel them to a marked degree, but that the polarizabilities 
show a greater variation. Using the polarizability of the ions 
of the more negative elements as a measure of the electronega¬ 
tivity, we can arrange them in the following order of decreasing 
negativity:^ F, 0, Cl, Br, I, S, Se, Te, This order coincides 
with that obtained in Sec. 12.8 from energy considerations. 

^ Fajans and Joos, Zeits, PhyHk, 23, 20 (1924). 
* Fajans, ZeiU. physik. Chem.f B24, 118 (1934). 
«Bobn and Heisenberg, Zeits, Physik^ 23, 388 (1924); Pauling, Ptoc, 

Roy, Soc, {London)f A114,191 (1927); Mayer and Goeppert Mayer, Phys, 
Rev., 43, 605 (1933). 

* In the case of the bivalent elements, such as sulfur, we do not attempt to 
make any correction for the higher charge on the ion, but we use the polariza¬ 
bility of the doubly charged ion taken directly from Table 10. 
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Table 10.—Ionic Polarizabilities in Cubic Angstroms 

(In parentheses cube of radius from Table 16) 
Pie Li+ 

0.20 0.029 0.008 
(0.78) (0.205) (0.079) 

o— F- Ne Na-^ 
2.74 0.96 0.394 0.187 0.103 

(5.43) (2.51) (1.40) (0.86) (0.56) 
S-- Cl- A 
8.94 3.57 1.65 0.888 0.552 

(10.6) (5.92) (3.65) (2.35) (1.64) 
Se Br- Kr Rb'^ Sr++ 
11.4 4.99 2.54 1.49 1.02 

(12.4) (7.4) (4.83) (3.25) (2.30) 
Te-- 1- Xe Cb+ Ba++ 
16.1 7.57 4.11 2.57 1.86 

(15.6) (10.1) (6.9) (4.82) (3.58) 

12.6. The Transition between Covalent and Polar Bonds from 
the Point of View of Wave Mechanics.—Suppose there are two 
atoms A and B that we imagine to be held a fixed distance apart. 
Let us further suppose that these two atoms are hold together by 
a single bond, consisting of a pair of electrons, and that the 
motion of these two electrons can be treated as in a two-center 
problem; i.e,, it is assumed that each electron moves under the 
influence of two centers of force, one at A and one at B, each 
centrally symmetric but neither one necessarily a simple inverse- 
square force. Since A and B are different atoms, they will have 
different laws of force, and one will attract the electrons more than 
the other. If now we should set up an approximate law of force, 
say a sort of average between the law for A and the law for B, 
and assume that both A and B had this same law of force, then 
we should get an approximate wave function, let us say yj/c (a 
function of the coordinates of the two electrons and also depend¬ 
ing on the distance between A and B), which represents a covalent 
bond between A and B On the other hand, if we assumed that 
the more electropositive of the atoms (let us suppose that this 
one is A) exerted no attraction on the electrons whatsoever, we 
should get a wave function in which the elections were always 
on the electronegative atom B, which could be said to represent a 
polar bond. The real wave function would be more closely 
approximated by some combination of the two wave functions. 
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let us say Cc^c + Cp\l/p where Cc and Cp are constants. These 
wave functions will have to fulfill the appropriate normalization 
conditions (see page 41) 

. - 1, i^Pp^dr = 1, + Cp^p^dr = 1, 

where dr = dxi dyi dzi dx^ dy^ dz^, where xi y\y zi and x^, 2/2, 
are the coordinates of the respective electrons, and the integration 
is carried over all space. These simply state that no matter 
what approximation is used, the probability^ of finding the pair 
of electrons somewhere is 1. These equations are equivalent to 
one condition on Cc and C,, but it is still possible to fix arbitrarily 
the ratio between Cp and Cc- This should naturally be done in 
such a way as to make the combination wave function resemble 
the true one as closely as possible, and the resulting value of 
Cp/Cc might then be taken as a measure of the polarity of the 
bond. The process of combining the two wave functions xpc 
and ^p is similar to the combining of the Heitler-London and 
Hund-Mulliken type of nonpolar wave functions as in Eq. (8) 
of Sec. 10.6. (It should be remarked that the wave function of 
Eq. (8) is not normalized and, therefore, really needs yet to be 
multiplied through by a constant.) The wave function already 
consists of (or, better, is approximated by) a combination of the 
Heitler-London and Hund-Mulliken types of functions, and it is 
a further combination with a polar function \l/p which is expected 
to give a still better approximation to the true molecular wave 
function. 

But the idea of using linear combinations of approximate wave 
functions was considered even earlier in Chap. X, e.gr., when the 
symmetrical and antisymmetrical combinations of the functions 
^a(1)^b(2) and ^b(1)^a(2) were taken. These two functions 
represented states with the same energy, and after taking into 
account the effects of some of the approximations, their com¬ 
binations gave two states, one with much lower energy and one 
with much higher energy. In the case of the wave functions 
ype and ypp now under consideration, the energies Be and Bp which 
go with them are not necessarily equal. If they are not equal, 

1 The physical significance of the ^-function is discussed in Sec. 3.6. In 
the present case, as in others we have discussed, the ^-function may be 
assumed to be real and hence equal to its conjugate complex. 
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it may seem strange that and yf/p can be combined at all, as 
one would not expect the system to be able to switch back and 
forth between two states having different energies, apparently in 
violation of the law of conservation of energy. However, it will 
be remembered that in obtaining and and hence Ec and 
Ep special approximations were made about the forces exerted 
by the centers of force A and B on the bonding pair of electrons. 
This simply means that some of the energy of the electrons is 
neglected. If the error thus produced is of the order of magni¬ 
tude of the difference of energy Ec — Ep^ then it is quite possible 
for a linear combination of \l/c and \l/p to represent the true state 
of affairs better than cither one alone. ^ 

In the combination of iAa(1)^b(2) and ^b(1)!Aa(2) in Sec. 10.2, 
we had a symmetrical combination giving the lowest state of the 
system and there was also a second linearly independent, in a 
sense complementary, antisymmetrical combination representing 
an excited state of the system. So also, if a certain combination 
Cc^Pc + Cp\pp gives the lowest state of the system at present under 
consideration, there will be another possible linearly independent 
combination that gives an excited state of the system. If the low- 
energy state is predominantly polar» the complementary excited 
state will be predominantly nonpolar, and vice versa. Suppose 

is the energy of the more polar combination and that of the 
more covalent, then: 

If Ep ^ Ecf 
we have 

^ It will be noted that in the foregoing paragraphs we have described the 
system as being in a state represented by a linear combination Cc^c Cp\t/p 
of two wave functions, and as shifting back and forth between two states 

and It is characteristic of the wave mechanics that it allows some 
ambiguity of this sort in the description of the system. It is equally correct 
to say that the system is in a state that is a sort of average of and V'p* 
or to say that it is changing back and forth from to the relative time it 
spends in either of the states being determined by the relative size of Ce 
and Cp. The system is said to “resonatebetween these two states, and 
the phenomenon is known as the “resonance phenomenon.” There have 
been many applications in the recent literature to problems in organic 
chemistry (see Sec. 12.11, and Pauling and Wilson, “Introduction to Quan¬ 
tum Mechanics,” pp. 314jf., and pp. 377^., McGraw-Hill Book Co., Inc,, 
1935, and Pauling, “The Nature of the Chemical Bond ,” Cornell University 
Press, 1939). 
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> Ep^ 
and 

< eA 
(6) 

but if Ec > Epf 
we have 

Sc > Ec, \ 

and 

< eJ 
(7) 

Thus, on improving the calculation, the energy levels are spread 
apart. 

These results are taken from wave mechanics, and it is a little 
difficult to make them seem intuitively evident. They may be 
described in a more or loss intuitive manner (and somewhat 
amplified) as follows. When a system is in its lowest energy 
level, the electrons tend to get into such a state as to make the 
energy as low as possible. Thus the combination of \l/o and 
which will make the energy as low as possible is the one that is 
chosen. If this combination is predominantly polar, then in its 
lowest state the molecule is polar. On the other hand, the other 
independent combination of the two wave functions is such as to 
make the energy as high as possible. Thus if the lower state 
is predominantly polar, we naturally expect the higher one to be 
predominantly nonpolar, as, if making the molecule polar decreases 
the energy, making it nonpolar should increase the energy. 

The preceding account assumes that a good approximation for 
the true state of the molecule can be obtained by combining only 
two approximate functions. This is sometimes not true, but if 
more than two are necessary the electrons nevertheless try to 
take up that position which makes the energy of the ground state 
as low as possible. This exceedingly important rule from the 
wave mechanics is entirely general^ and will be used frequentj^y 
in the subsequent pages. 

The functions ipc and ^p, as remarked above, are functions of 
the distance between the atoms A and B, and so are the corre¬ 
sponding energies Ec and Ep. It may well be, for example, that 

^See Pauling and Wilson, “Introduction to Quantum Mechanics/* 
pp. 180jf. 
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Ec is greater than Ep at great distances of separation, and that at 
small distances the reverse is true. We then have the situation 
shown by the solid curves,^ representing Ec and Epj in Fig. 47. 
The dotted lines in Fig. 47 then represent and According 
to (6) and (7), the lower dotted line represents (Ep to the right of 
the point at which Ep and Ec cross, and to the left of the point 
it represents whereas the opposite is true of the upper dotted 
line. In any event, the state of the system which goes with the 
lower dotted line gradually changes in character from completely 
polar to practically completely nonpolar on going from greater 
to smaller distances of separation. The exact amount the dotted 
potential-energy curves depart from the solid curves depends 

Fig. 47.—Crossing of potential-energy curves. 

upon two things (1) the nature and the size of the approximations 
involved in setting up and ypp and (2) the value of [Ep — Ec]. 
The smaller the latter quantity, other things being equal, the 
greater will be the deviation between solid and dotted curves. 

12.6. Energies of Polar and Covalent Bonds.—The considera¬ 
tions of Sec. 12.6 suggest that an examination of the energies of 
various compounds might throw light on the polar or nonpolar 
character of the bonds involved in these compounds. If we knew 
the energy of formation to be expected if the bond involved were 
a strictly polar bond and if we knew that to be expected if it 

I This phenoroenon has been discussed in some detail for some special 
potential-energy curves by Pauling, J. Am. Chem. Soc., *64, 996 <1932). 
The general ideas were introduced early in the development of wave mechan¬ 
ics and discussed by many writers. 
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were a strictly nonpolar bond, then on the basis of Sec. 12.5 an 
actual bond which had some polar and some nonpolar character 
ought to have an energy lower than either. 

These ideas may be illustrated by a consideration of the dia¬ 
tomic interhalogen compounds. Consider for example the com¬ 
pound GIF. Fluorine is more electronegative than chlorine; so 
if we regarded this as an ionic compound we would consider it to 
be formed from C1+ and F“. Thus the reaction Cl + F CIF 
is taken as the sum of the steps 

Cl —» Cl'^ + electron (a) 
F 4* electron —> F“ (b) 

C1+ -j- F- —► CIF (polar compound) (c) 

The energy changes associated with the steps (a) and (b) are 
known (Tables 4 and 5, Chap. VIII), and the energy associated 
with (c) can be estimated; so an estimate for the over-all energy 
of the reaction can be made. From Table 33 of Chap. XVI, we 
can make a rough estimate of the Cl—F distance in the com¬ 
pound;^ it turns out to be 1.63A. We can make a rough guess of 
the energy of a polar compound of Cl*^ and F”* by assuming that 
the repulsive force starts in suddenly at this distance and at once 
becomes very great. The energy is then simply the electrostatic 
energy at that distance, and is 8.78 electron volts. When the 
energies of reactions (a) and (b) are added in, it is found that in 
the reaction Cl + F CIF (polar compound) an energy of 
approximately 0.1 electron volt would be absorbed; thus con¬ 
sidered as a polar compound, CIF would not be stable at all. 
It is therefore at once evident that the bond in CIF is preponder¬ 
antly covalent. It may, however, have some slight polar char¬ 
acter, which would make the energy of dissociation greater than 
it would be were the bond purely covalent. In order to decide 
whether this is actually the case or not, it is necessary to have 
.some means of estimating what the strength of the bonds would 
be were it purely covalent. It seems very natural to suppose 
that if the bond were purely covalent the energy of dissociation 
should be some sort of a mean—as an approximation we may take 

^ The use of Table 33 is based on the assumption that the compound is 
covalent, which might seem a trifle inconsistent, but if we estimated from 
Table 16, even with a correction of the type indicated in Sec. 14.9, the 
distance would turn out to be greater than 1.63, and formation of the polar 
compound would appear to be even more endothermic. 
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the arithmetic mean—between the dissociation energies of CI2 

and F2. These latter are 2.48 and 2.72 volts, respectively 
(Table 7), the arithmetic mean being 2.60. The actual observed 
energy of dissociation is 3.74. It is thus seen that there is a differ¬ 
ence A of 1,1 volts, and it is seen that this is too large to be 
much influenced by the way in which the estimate of the energy 
of a purely nonpolar bond was made. It seems most natural to 
suppose that this difference is due, at least in large part, to a cer¬ 
tain amount of polarity in the bond. We shall hereafter use the 
arithmetic mean of the energy of the bonds between like atoms 
to get an estimate of the expected value of the purely nonpolar 
bond.^ The chief justification of the procedure is the fact that 
over a wide range of compounds the actual bond energies are 
practically always, within the limit of accuracy, greater than or 
equal to that calculated for the nonpolar bond, thus indicating 
that the energy of the compound is less^ than it would be if the 
bonds were purely nonpolar, as expected from Sec. 12.5. Another 
justification is the fact that it enables us to make a consistent 
arrangement of the elements in the order of their electronega¬ 
tivities, as we shall see in Sec. 12.8. The arrangement is con¬ 
sistent in that essentially the same order is obtained when 
different sets of compounds are used to estimate the relative 
electronegativities. 

12.7. Definition of the Term “Bond Energy.’^—In the fore¬ 
going pages, the term “bond energy’’ has been used several 
times, without any definition having been formulated for it. 
In the case of diatomic molecules, its meaning will be clear; it is 
simply the dissociation energy, taken at room temperature, as a 

^Pauling and Yost, Proc, Nat. Acad. Sci., 18, 414 (1932); Pauling, 
/. Am. Chem, Soc., 64,3570 (1932). Recently Pauling and J. Sherman have 
suggested [/. Am. Chem. Soc., 69, 1450 (1937)] that a better estimate might 
be obtained from the geometric mean. 

* There are some exceptions to this statement. For example, the gaseous 
alkali hydrides have dissociation energies ranging up to about 0.6 volt less 
than would be expected, according to the above method of calculation, 
for nonpolar bonds. However, the dissociation energies of the alkali double 
molecules, like Na2, are very low, whereas the dissociation energy for Ha 
is very high, and under such circumstances it is probable that the arithmetic 
mean is not a sufficiently good approximation to the expected nonpolar bond 
energy. In the case of certain nitrogen bonds and the C—I bond a similar 
but smaller discrepancy occurs. 
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matter of convenience.^ It is only in the case of polyatomic 

molecules that any difficulty can occur. However, in the case 

of polyatomic atoms containing only one kind of bond, such as 

CH4 or H2O, there is still no difficulty. In this case, the bond 

energy is simply the energy required to dissociate the molecule 

completely into atoms, divided by the number of bonds. Thus 

the energy of the C—H bond in methane is one-fourth the energy 

of the reaction CH4 —> C + 4H. It is to be noted that this is 

not the same as the energy of the reaction CH4 CH3 + H, 

as the bonds that are left in the unsaturated radical when one H 

is taken off are somewhat changed from their original condition. 

The latter quantity is of considerable importance in chemical 

kinetics, but is not essential to most of the problems treated in 

this book. 

The significance of the term bond energy as applied to com¬ 

pounds in which more than one kind of bond occurs may perhaps 

best be brought out by considering some examples. The best set 

of examples to use for this purpose is that furnished by the series 

of paraffin chain saturated hydrocarbons, for here the experi¬ 

mental data are most extensive. The complete dissociation of a 

hydrocarbon CnH2n+2 into nC + (2n + 2)H obviously involves 

the breaking of 2n + 2 C—H bonds and n — 1 C—C bonds. 

The usefulness of the concept of bond energy in this case lies 

in the fact that it is possible to assign a definite value to the 

energy of the C—H bond and a definite value to the energy of 

the C—C bond, and on multiplying the former by 2n + 2 and 

the latter by n — 1 get the total energy required to break up the 

whole molecule into atoms to a reasonably good approximation, 

regardless of the value^ of n. 

A few words regarding the method of testing the hypothesis of 

constant bond energies in the case of hydrocarbons may not be out 

of place, since it is not possible actually to measure the energy 

of complete dissociation into atoms directly. The reaction which 

is actually studied is the combustion of the hydrocarbon® 

' Theoretically, it would be better to use the dissociation energy at 
absolute zero, but the difference in the results obtained would be very slight. 

* This additivity of bond energies was first observed by Thomsen. Thom¬ 

sen and Berthelot were the pioneers in the study of heats of combustion. 
* In this equation and throughout the discussion, all substances are in the 

gaseous state, unless otherwise indicated, except water, which is in the 

liquid state. 
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nCOj + (n + 1)H*0. 

Following Thomsen, this can be thought of as broken up into the 
following steps: 

CnH2n+2-^nC + (2n + 2)H 

TiCj ”f" yi02 —^ 72.CO2 

and 

(2ii + 2)H H-—O2 —> (n “h 1)H20. 

Now let the bond energy of a C—H bond be ^o-h ^^nd that of a 
C—C bond be -Bc-c* Further, let the energy given out when 
the reaction C + O2 —» CO2 takes place be energy 

given out when the reaction 2H + i02 H2O takes place be 
Then the energy given out when the hydrocarbon 

CnH2n4.2 is oxidizcd is 

En = + (n + l)i?HaO — ~ 1)-Ec-C ““ + 2)Ec-.h* 

(8) 

Now jBcoj) -Ec-o not known independently, but 

jBooa is independent of n and is also. We cannot test the 

constancy of Ec^ and separately; so the best way to 
proceed from this point seems to be to assume that J^c-h i® 
independent of n and then check the constancy of -Bq-c s-® 
obtained on the basis of this assumption. This can be done by 
comparing the value of En given by Eq. (8) with iS'n+i, the energy 
of combustion of the next higher hydrocarbon. En+i is obtained 
by replacing n by n + 1 in Eq. (8). It is readily seen that 

= Sc-C - iEoo,. ' (9) 

The left-hand side of this equation we shall call P«. Pn may be 
obtained for different values of n, and since Pco, niust be inde¬ 

pendent of n, Pn will be independent of n if E^^ is, as required 
by the hypothesis of constant bond energies. If n is set equal to 
1, then, Pn gives the apparent energy of the carbon-carbon bond 
in ethane, minus iPco,- Setting n = 2, the apparent additional 
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energy of the new carbon-carbon bond in propane, minus 
is obtained, and so on. The values of Pn for different 

values of n are given in Table 11, which is computed from data 
of Rossini.^ It is seen that the apparent value of is not 
entirely independent of n, but that there is a definite trend. 
However, the trend is small so that for our purposes it may be 
neglected. 

Table 11.—Bond Energies in the Normal Saturated Hydrocarbons 
{En in kilogram-calories per mole) 

n E, -Pn 

1 211.61 53.9 
2 371.33 50.5 
3 528.79 49.8 
4 685.87 49.6 
5 842.90 

Another test of the hypothesis of constant bond energies may 
be made by using the energy of combustion of diamond. ^ The 
energy of combustion of diamond may be thought of as broken 
up into two steps, the evaporation of the solid to form carbon 
atoms and the combination of the carbon atoms with oxygen. 
Letting — 2P (for reasons that will presently become obvious) 
be the energy evolved in the reaction C (diam.) + O2 —> CO2 and 
S the energy absorbed on sublimation of diamond, we may write 

= -5 + £co.. 

In diamond, each cArbon atom has a bond to four other carbon 
atoms. Each bond, however, is common to two carbon atoms. 
There are, therefore, twice as many bonds as atoms, and we may 
set S = 2Sc-c, where i^c-c is the energy required to break a 
carbon-carbon bond in diamond. This gives 

—2P = —2E^^ + E^o^. 

It is seen that, if i5o-c is to be .the same for diamond as for hydro¬ 
carbons, not only should P» be constant, but P and Pn should be 

^ Rossini, But, Standards J, Rea,, 18, 21 (1984). 
• Fajans, Ber, dmU ehem. Oes,, 88, 643 (1920). 
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equal. P is found experimentally^ to be —47.2 kg.-cal. This 
agrees well with the value of Pn for the higher hydrocarbon and 
differs by 6.7 kg.-cal. (or 0.29 volt electron) from the value of 
Pi (ethane). It thus appears that the constancy of bond energies 
becomes better for compounds containing a great many atoms 
(a diamond is a giant molecule containing practically an infinite 
number of atoms). It is probal>le, how(iver, that reasonably 
good results will be obtained when we make our estimate of the 
nonpolar bond energy (as in Sec. 12.6, in order to calculate A) by 
consistent use of data for the compounds containing the smallest 
possible number of atoms. We are forced to do this in general, 
and so vrc shall also do it in the case of the carbon compounds. 

Although we can make a test of the constancy of bond energies, 
it is not possible from available data to g(‘t the absolute values 
of the C—C and C—H bond energicjs with certainty. Of the 
energy quantities considered above, one, known, for the 

reaction 2H + 1^02 —^ H2O may be thought of as decomposed 
into the two steps, 2H H2 and H2 + i02 —> H2O, the energy 
of the first being known spectroscopically and that of the second 
calorimetrically. Assuming then, that Pc-c and Pc-h are con¬ 
stant, one of the three quantities and Pf^,, may be 

assigned arbitrarily and the two others evaluated. For, setting 
w = 1 and letting Pi be the value of Pn for methane, we have 

^ -^coj "F 2Pji^q 4Pq__h, 

and, similarly, for ethane 

P2 = 2Pco, + 3Php — Pc-c ~ 6Pc_h- 

Pco, and Pc^H could be determined from these equations if 

Pc-c were known, but a third equation (for propane, for example) 
would not be independent. If the heat of vaporization of 
diamond were known accurately, we could obtain a value of 
Pc-c> as will be clear from the preceding discussion. Actually 
it seems about as satisfactory to assign it an arbitrary value of 
3.00 electron volts (known to be of the right order of magnitude). 
It may be remarked that the value of A for the C—H bond is 
independent of the value ^assigned to Pc^j, for any change in 

‘ RoTfi, Zeits. Elektrochem., 21, 1 (1915) (in agreement with early work of 
Berthelot). 
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JSc-c produces just half the change in -E7c-n 

12.8. Polarity of Bonds and the Electronegativity Scale.—In 
Table *12 is given a comparison of actual single-bond energies 
(first value) and the values obtained theoretically on the assump¬ 
tion that the bonds are purely covalent (second value). Below 
these is given the difference, A, actual value minus the theoretical 
value for the hypothetical covalent bond. It is seen that A is 
positive as expected in almost every case, and in the exceptions 
the deviation is small and may be due to experimental error. 

A few w^ords regarding the method of determination of the 
single-bond energies in Table 12 will be in order. In many cases, 
it was possible to get single-bond energi(\s from the dissociation 
energies of diatomic molecules, these being obtained spectro¬ 
scopically; but sometimes thermochemical (calorimetric) meas¬ 
urements are also involved. 

As an example, the determination of the ICl bond energy, 
which is the energy of the reaction 

ICl I -h Cl (A) 

may be considered. This may be obtained as half the sum of the 
energies of the following reactions: 

2IC1 I2 + CI2 (B) 

(energy of reaction known from thermochemical measurements) 

T2 21 (C) 

and 

CI2 2C1 (D) 

[energy of reactions (C) and (D) known from spectroscopic data]. 
Sometimes it is necessary to use already determined bond 

energies to get a new bond energy. Thus the energy for the 
O—0 single bond is obtained in the following way. First the 
energy of the O—H bond is obtained. This is half the energy 
of the reaction 

H2O 2H -f" O (E) 

in which two O—bonds are broken. The energy of reaction 
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Tabui 12.—Bond Enkboibs (fibst bow); Calculated Nonpolab Bond 

Enbboibb (second bow); and a Values (thibd bow) 

(All in electron volts) 

Aooordm9,to very recent data [Hughes, Gorrucciui, and Gilbert, J. Am, Chem. Soc* 61, 
2642 (1939)1 value for N—N should be 0.86. This makes A for N~-CI aad N~Br less neg¬ 
ative, but does not have an important effect on Table 14. (Added in proof.) 
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(E) is obtained as the sum of 

H2O —► Ha -f“ -J^Oa (thermocheraical data) (F) 
Ha"^2H (spectroscopic data) (G) 

J0a~>0 (spectroscopic data) (H) 

Next, the energy of reaction 

HjOj->2H +20 (I) 

is obtained. This is the sum of 

HaOa Ha + Oa (thermochemical data) (J) 
Ha->2H (spectroscopic data) (K) 
0a-»20 (spectroscopic data) (L) 

The energy of reaction (I) is the O—0 bond energy plus the 
energy of two 0—H bonds, since H2O2 has the structure^ 
H—O—0—H. The O—energy being known, the energy of 
the O—O bond is found immediately. The ideas involved in the 
procedure are essentially similar to those used in obtaining the 
C—H bond energy. 

In Table 13 is given a list of the reactions used in constructing 
Table 12. The first column gives the bond whose energy is 
sought, and in the last two columns are given the other bond 
energies and the dissociation energies used. In the last column, 
we also make note, by number, of any reaction energies which 
are used in calculating the bond energy in question, but which 
have been previously used in calculating some other bond 
energy, and so are not repeated in the tabulation. Sometimes 
a number of alternative methods for calculating a given bond 
energy are indicated; the results of these have been averaged, 
except in the case of the S—S bond where the results of the 

1 This is indicated chemically by the fact that the hydrogens are replace¬ 
able and the peroxide properties are always associated with a pair of oxygens. 
Further, X-ray analysis shows that in the crystals of BaOa and SrOa the 
oxygens lie close together in pairs (“Strukturbericht, ” Vol. III). These facts, 
of course, do not enable one to say whether the hydrogens are on different 
oxygen atoms, giving a structure with single bonds throughout, or if they 
are on the same oxygen, but the evidence seems to be in favor of the former. 
For a discussion of this point and references to the chemical considerations, 
see Mellor, ‘‘Comprehensive Treatise on Inorganic and Theoretical Chem¬ 
istry,‘‘ Vol. I, pp. 962Jf. Longmans, Green and Co., 1927. See also the 
work on the structure of liquid HaOa of Randall, Proc. Roy, Soc.^ 189, 83 
(1987), and the theoretical work of Penney and Sutherland, Trans, Faraday 
Soe,, 80, 898 (1984); Chm, Phys,, 2, 492 (1934). 
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Table 13.—Thermochbmical Data Used in the Calculation of Bond 

Energies 

(All subetancos in the gase(ms st,ale unless otherwise; indicated: I =* liquid, 

s = solid, etc.) 

Bond 
JOnergy 

ab'-.orbed, 
kg.-eal. 

! Other bond 
energies used 

Other reaction 
energies used 

N—H (1) NHs-* JNl. -f ilHi 11.00 Ns. Hs 
N—N (2) N-.H* (aq) -14.1 j N—H Ns. Hs 

(3) N2II4 fjui) Ns + 2Hs I -4..5 
1 

P__P (4) Vi 4P (I. yellow) i -13.2 
(5) P (I. yellow) -♦ P 1 31.6 

O-H (r>) II2O H. + iOi 1 57.801 Hs, Os 
0--0 (7) HsOs--^ Hs + Os I 33..".O i 0—11 II2, Os 
S-H (8) S (rhomb.) S 53. Hs 

(9) UsS—^ Hs + H (rhf»mh.) j 5.3 
S—S (10) HsiSs Hs -f 2S (rhomb.) ' -8.94 ' S—H Hs. (8) 
S—S (11) S (rhomb.) -2..50 (8) 
P—H (12) PH;. P (I, yellow) + 3H;. 2.3 1 (5). Hs 
F—H (13) HP— JH2 + 1I-'2 64.0 1 . Hs 

(14) JPs—F 31.75 
Cl—H (15) HCl ♦ ills 4- K'li 22. OC H- 

(16) iCUs—Cl 28.90 
Br—H (17) IIBr — jHs + iBr. (/) 8.65 H; 

(18) 5Brs(/)-»Br 20.88 
1—H (19) HI - ills 4- iU(«) -5.91 H> 

(20) ils(i() - I 25.59 
C;—N (21) CH.SNH2 — 0 (diam.) 4- iNs 7.3 N -H. C—11 Hs. Ns 

+ SHs i 
(22) CH4—C (diam.) 4-2H> 18.24 

C—N (23) (CHOsNH — 2C (diam.) 8.2 1 r X
 

Hs. Ns. (22) 
4-iNs4-^H2 

C—0 (24) CHaOH — C (diam.) 4- 2H2 48.44 C—H, 0—H Hs. Os. (22) 
4- Jo? 

c*~o (26) (CH3)20-> 2C (diam.) 4- SHs 46.4 C~H Hs, Os, (22) 
-4 iOs 

c—s (26) CHaSH — C (diam.) 4- 2Hs 3.6 0-?H, C—0. 0*. (8). (24). 
4" S (rhomb.) 

C—s (27) (CH8)3S — 2C (diam.) 4- SHs 8.0 C—C (8) 
4- S (rhomb.) ■ . 

(28) Cattfl — 2C (diam.) 4- 3Hs 20.96 *" 
C—F (29) CFi — C (diaih.) 4- 2F2 163. C—H Fs. (22), Hs 
C—Cl (30) CCh — C (diam.) 4- 2Cls 25.9 a—H CI2, (22). Hs 
C—Cl (31) CHCl*-^ C (diam.) 4- ICl^ , . 23.6 C-H,- ‘ Cls. Hs. (22) 

4* iHa 
C—Cl (32) CH2CI2—C (diam,) 4- Ch 4- H* 21.7. c-a: Cls, Hs, (22) 
C—Cl (33) CHsCl — C (diam.) 4- iCIs 20.1 (j—H Cli. Hs, (22) 

4-IH2 
C-~Br (34) CBr4 — C (diam.) 4- 2Brs (0 -12, C—H (18, (22). Hs 
C“~“Br (36) CHBrs — C (diam.) + ^Brs (0 -6. C—H (18), Hs. (22) 

4- §H2 
C—Br (36) CHsBrs-* C (diam.) 4- Brsd) 1. C—H (18). Hs, (22) 
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Table KS.—Theumochemical Data Used in the Calculation of Bond 

Energies.—{Continued) 

Bond Hen ct ion 

— 
! Energy 
t absorbed, 

kg.-cal. 

Other bond 
energies used 

Other reaction 
energies used 

C—Br (37) CHaBr -» C (diam.) + Ihr^(l) 8..5 (18), H2, (22) 

C—I 

+ ?H, 
(38) CHIa-» C (diam.) + i!ls(*) - \i. C-H (20), H2, (22) 

C~l (39) CHsI, -« C (diam.) + Ia(«) -25. (V-H (20), H2, (22) 

C—I 
+ JH, 

(40) CHsI -» C (diam.) + Uj(») -•1.5 C-H (20), H2, (22) 

N—F 
+ sH, 

(41) NF,—JN, + |F, 26.6 . N2, F2 

N—Cl (42) NCls (in CCI4) + SCh -.55.0 N2. CI2 

N—Br 
(43) NCls (in CCh) -» NCls 
(44) NOCl + iOi -h iCU 
(45) NOBr + JOj d ^Br2a; 
(46) PCls-^ P (I, yellow) + ?Ol2 

6. (est.) 
-12.8 N—Cl CI2, Br2 

P-Cl 
-17.7 

70.0 CI2, (5) 
P—Br (47) PBr3(Z) P (I, yel.) + ^Br^/) 45.0 (18), (5) 

P—I 
(48) PBra(0 -> PBra 
(49) Pl3(«) -> P (I, yellow) -f 

10.0 (est.) 
10.9 (20), (5) 

0~F 
(50) Pl3(«) Pis 
(51) F2O F2 + iOs 

30 (eat.) 
-5.5 F2, Ot 

0—Cl (52) CI2O CI2 + i02 -18.25 CI2, O2 

S—Cl (53) S2Cla 2S (rhomb.) -|- CI2 5.65 s—s (8), CI2 

S~Br (54) S2Br2(0 2S (rhomb.) 4.0 s—s (8). (18) 

F—Cl 

-b Br2(l) 
(55) S2Br2(0S2Br2 

(56) ClF-» 5-CI2 + jFz 

11.9 (est.) 
25.7 Cb, F2 

Cl-*-Br (57) BrCl iCl2 4- iBr2(0 -3.07 Cl2, (18) 
Cl—I (58) ICl JCh 4- 2l2(«) -3.46 CI2, (20) 
I—Br (.59) IBr-> iBr3(0 4-il2(s) -9.6 (18), (20) 

All data from Bichowsky and Roasiiii, "Thermochemistry of Chemical Siibstancea,” 
Iloinhold Publifihini? Corporation, 193G, except a few which were estimated and reaction 
(41) which is from the second supplement (1931) of Landolt-Bornstcin, “Tabellen." Reac¬ 
tion (8) is corrected to conform to the value of the dissociation energy of Ss given in Table 7. 
Reaction (2) is based on heat of vaporization from Landolt-Bdirnstein, “Tabellen," third 
supplement (1936), and heat of solution from Bushnell, Hughes, and Gilbert, Am. Chem. 
AVc., 69, 2H2 (1937). 

s6)uorid method, involving Ss, have not been used. All energies 
in Table 13 are given in kilogram-calories taken directly from 
the various tabulations indicated, but in Table 12, in conformity 
with the usage of Pauling^ in setting up his original table of 
electronegativities, electron volts are used. Results g^ven in 
kilogram-calories may be converted to electron volts by dividing 

1 Pauling, J. Am, Chem. Soc.f 64, 3570 (1932). 
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by 23.06. (Concerning units, see note, page 461.) All energies 
and bond energies in Tables 12 and 13 are for room temperature.^ 

It will be noted that only those compounds have been used 
which involve elements in their lowest valence state. The table 
of electronegativities, which will be subsequently obtained from 
Table 12, therefore, refers specifically to elements in their lowest 
valence states, and will not be expected to be applicable in other 
cases. In finding the P—P bond energy, it is assumed that the 
phosphorus in P4 is in its lowest valence state, as P4 is known to 
have a tetrahedral structure, each phosphorus atom thus being 
connected with each of the others by single bonds, a total of six 
bonds being involved in the molecule. It is assumed that Sg 
has a ring structure, each S atom being attached to two neighbors 
by a single bond. H2S2 presumably has a structure like H2O2, 
and S2CI2 and S2Br2 are assumed to be^ Cl—S—S—Cl and 
Br—S—S—Br. The structures of all other compounds used are 
obvious or well known and need not be discussed at this point. 
In the case of carbon bonds, only the simplest compounds 
involving the desired linkages have been used. 

One of the most remarkable features brought out in Table 12 is 
the extremely low value of the bond energy for the N—N single 
bond and for the 0—0 single bond. The 0—0 bond has a 
strength less than that of S—S, which is an exception to the 
almost universal rule that under similar circumstances the bind¬ 
ing between small atoms is tighter than that between larger 
atoms in the same column of the periodic table.* This will be 
discussed further in Sec. 14.11. 

^ All the bond energies listed in Table 12 are really too large by hT (or 
about 0,026 electron volt at room temperature), because the bond energy 
pluA kT is what is obtained directly from tabulated values of heats of reac¬ 
tion (such as given in Table 13) which include the heat absorbed in order to 

supply energy for the work done against the atmosphere when the reaction 

is carried out at constant pressure [t.e., tabulations give the instead of 
AE of the reaction, where the symbols are those used in Eq. (6) of Appendix 
II]. The inclusion of the extra kT in the tabulated values will obviously 

make no difference. It is to be noted that it is not included in the values of 
Tables 7 and 11, which may cause some apparent discrepancies between 
these tables and Table 13. 

• See Ackbbmann and Matsb, J. Chem, Phye,, 4,379 (1936). 
* It is indeed possible that the value for the S—S bond is in some error, 

but in any event the 0—0 single-bond energy is, comparatively speaking, 
quite low. In the case of carbon, the situation is very different from that 
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We may now consider the setting up of a table of relative 
electronegativities. It is desired to place the elements in linear 
order, assigning to each one a number, \\'hich will express its 
electronegativity. Pauling^ has noted that it is possible to 
assign to each element a definite' number x such that for any 
two elements, say, A and B, the relation (.r^ — = A^b 
(where A^b ^he particular valm^ of A from Tal)le 12) is approxi¬ 
mately fulfilled.^ This makes it possible' to assign a series of 
values of x from the A values, and this number x may be taken 
as the measure of the (il('(dron('gativity; it will be seen then that 
the grciater the distance Ixdween the electronegativities of two 
elements, the greater th.e corresponding value of A, as expected. 
We then proceed as follows: We first note, by inspciction of the A 

values, that the elements can be arranged in the following order 
of increasing electronegativity: P, 11, S, I, C, Br, N, Cl, O, F. 
We then find values for where A and B represent 
two adjacent elements in the lisl.. Thus, for Cl and O, the 
value of \/a for the Cl — O bond givers at once a value of'*^ 
Xq — However, another estimate of can be 

obtaining with oxygen and nitrogen. By comparison of the energies of 

formation of C2H4 and C2H2 with that of ethane, tlu? C—C double-bond 
energy and C™C triple-bond energy may b(i estiinated to be 5.28 and 7.08 
electron volts, respectively, assuming that the energy of the C—C bond is 

3.00 volts. It thus appears that the energy of a double bond is less than 
twice, and the energy of a triple bond less than three times that of a single 

bond. (This conclusion could hardly be upset even though the vahu* for the 
C—C bond should turn out to be appreciably difTenuit from 3.00). The 
dis.sociation energy of oxyge-n, which contains a bond that rescmibles a double 

bond, is much more than twie<* the single-bond energy, and the dissociation 
energy of nitrogen, which contains a triple bond, is much more than three 
times its single-bond (UK'rgy. Altliough the singlt'-bond energies of nitrogen 

and oxj^gen may not be exactly correct, it docs not apptuir pos.siblc that the 

error is suflieiently great to account for the peeiiliarity; for all single-bond 
energi(.‘s involving oxygen and nitrogen are smaller than the corresponding 

single-bond energies of carbon, and an appreciable increase in the values of 
the O—O and N-~ N energies would result in the appearance of many more 
large negative values of A in Table 12 than are there at present. 

^ Pauling, loc. di. 

2 For a theoretical deduction.of this ndationship and further discussion of 
electronegativity scales, see Miilliken, J. Chem. Phjs., 3, 573, 586 (1935). 

3 In the cases where A is negative, it is, of course, impossible to find \/A- 

Since, if the ideas back of the procedure used are correct, negative values 
of A are due to experimental error, we have in these cases set y/A «= 0. 
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obtained from the values of and — Xq, which are 
calculated from the respective A values. Thus a series of values 
for .Ty — can be found and the average taken. If this is done 
for all adjacent pairs of elements in the list, and H is arbitrarily 
assigned the value :r = 0, the values of x for all the elements can 
be tabulated as shown in Table 14. It will be observed that with 
respect to the halogens the ord(T is the same, and even the rela¬ 
tive spacing sorn(‘what the same as in Table 9. 

Table 14.—Electroneo ativitibk 

p ! -0.12 1 Br 0.83 
H i 0.0 N 1.02 
8 0.30 Cl 1.09 

C 0.47 0 j 1.46 
[ 0.47 F 1 1.97 

In this table, no attempt has been made to include the electro¬ 
positive (dements, though valu(\s for the single-bond energies of 
the alkali halides and hydride's can be obtained. These sub¬ 
stances, especially the halide's, are so much moni polar than 
nonpolar that no satisfactory results can be expected from treat¬ 
ing the deviations from nonpolarity. ^ They are considered as 
polar compounds in Chap. XIV. 

Table 14 can, however, be readily extended to a f(‘w other 
negative elements (see Exc^rcise 7, page 204). 

12.9. Dipole Moments.—In the case of an elementary molecule 
in which the two atoms are alike and in which there is perfect 
symmetry with respect to the center of gravity, there is no net 
average displacement of either positive or negative charge from 
the center of gravity (unless the molecule is placed in an electric 
field, in which case an electric moment will be developed du(> to 
th(* polarizability of the molecule); th(^ situation is as described 
on page 163, so that on the avcTage th(^ cent(*r of positive' (diarge 

^ Sinoe this book went to pr<?ss there has appeared a tal)le of electronega¬ 

tivity values which includes the electropositive elenients (Pauling, ^‘The 

Nature of the Chemical Bond,” Cornell University Press, 1939). This 
table is obtained on the assumption that in metals the bonds are essentially 
single covalent bonds. Although the values obtained fit in well with the 

periodic table and the table of ionization potentials, they appear to have a 
much more speculative basis than the electronegativities of the negative 

elements. 
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coincides with the center of negative charge. On the other hand, 
the situation will be different with a gaseous molecule of NaCl, 
for example; for chlorine is more electronegative than sodium, 
and the electrons will tend to be drawn over toward the chlorine. 
Thus, there will be a disj^lacement of elociric charge, the center of 
positive charge will no longer coincide with the center of negative 
charge, and th(‘ molecule will possess a permanent dipole moment. 
If it were strictly true that NaCl w(Te composed of Na"^ and Cl" 
ions, it would b(i possible to calculate the diiK)le moment from 
the distance between th(' ions. For this jnirpose, it could be 
assumed that the net charge of each ion was concentrated at its 
center. However, since actually the ions are polarizable, they 
might be expectcnl to b(' distortf‘(l in (‘a(^h other's fields, resulting 
in a decrease in th(^ ('lectric moment. Such a polarizing effect 
would be esp(Mnally marked in the hydrogem halides because of th(' 

Ktg. 48.—Model of a polar molecule; (a) ideal case; (d) showing distortion of 
anion by cation: the induced dipole partially canewels the original dipole, 

large polarizing action of the small ion, and, as we have seen, 
HCl, HBr, and HI are to be considered as having nonpolar rather 
than polar binding.^ 

Enough has been said to make it (wident that measurements 
of the dipole moment will give valuable information concerning 
the polarity of a bond. The magnitude of the moment can be 
obtained from measurements of the dielectric constant of a 
substance. It will be recalled that the dielectric constant D of a 
substance is defined in the following way. Suppose we have a 
parallel-plate condenser with a certain charge on the plates; 
let the potential between the plates in a vacuum (whose dielec¬ 
tric constant is 1) be <I>. Then if, without changing the charge 
on the plates, a substance whose dielectric constant is D is 
introduced between them, the potential will drop to ^/D. The 
dielectric constant of a substance is thus a measure of its ability to 
counteract an electric field; it does this, of course, by producing an 

See footnote 2, p. 172. 
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electric field itself in the opposite direction, either by displace¬ 
ment of electric charge within itscilf, i.e., in virtue of its polariza¬ 
bility, or by orientation of its pennanent dipoles. There is one 
essential differenct^ ])etwe(*n theses two effects, which enables us to 
separate them. Th(i displacement effect is independemt of 
temperature, but the ori(mtath)n (h'pends upon the temi)eraturc, 
because the greater the thermal agitation, the greater the 
tendency for the directions of the di]:)ol(\s to l)e randomly dis¬ 
tributed and tlie mon' difficult it is for the apidk^d field to orient 
them. To find th(' dipole moimait, fho diel(?(‘tric constant maybe 
measured at various temperatures.’ 

The dielectric constant is closfd}’^ ndat.ed to the index of refrac¬ 
tion n; in fact, according to th.e (‘h'ctromagnetic theory of light, 
for light of infinite wave length ft- = 1). The ndation between 
dielectric constant, j)olarizalnlity a, and ])ermanent electric 
moment jn is given by a relatior) similar to h^q. (4),-’ page 175, 

iT-2'' ” +£)■ 

whore k is Boltzmann constant (sec* page 4G1) and T is absolute 
temperature. It is thus seen how mcuxsun'inents at different 
temperatun^s give g. fx can also b(' found by measuring the 
dielectrics constant and then finding the index of refraction for 
visible light instead of light of infinite wave length. In this case, 

^ D, because the frequency of the light is so great that the 
orientation of the molecule and hence of the permanent dipole 
does not have time to take place. Yet as far as the polarizability 
is concerned, the wave length can, at least in many cases, be con¬ 
sidered practically infinite, because the dupla^ement of charge in 
the molecule, as opposed to orientation, takes place very rapidly. 
Thus a can be found from Eq. (4), after which n can be obtained 
from Eq. (4a). 

In Table 15, we give, following Sidgwick,*"* some results for the 
hydrogen halides. The second column gives the third column 

1 Debye, Polar Molecules,'^ Chap. HI, lleinhold Publishing Corporation, 

1929. 
* Equations (4) and (4a) are the same except that Eq. (4) tacitly assumes 

M =* 0. 

^ SiDGWiCK, *^The Covalent I^nk in Chemistry,” p. 144, Cornell Univer¬ 

sity Press, 1933. 
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the distance 5 obtained by setting n = cb (\vli(‘ni e is the electronic 
charge); the fourth column ro, the actual distance between hydro¬ 
gen and halogen nuclei, as obtained from band spectra; and the 
last column b/r^. It is seen that 5/ro is considerably less than 1, 
indicating a relatively small net disf)lacem('nt of charg(‘ within 
the molecule, or a great ])olarization of lh(‘ halogen ion by 
It is seen, furthermon\ that tin', moment jj. as w(^ll as th(‘ ratio 
5/ro decreases as the polarizabilhy increases, in tluj order Cl“, 
Br“, I~, as is to be exp(u*te(L 

Table 15. - Some Dicole Moments 

/X X 
e.s.u. 

s, A A 8/r, 

IICl. 1 .03 0.210 1 .27 0.17 
IlHr. 0.78 0.103 1.41 0.12 
HI.! 0.38 I 0.080 l.Ol I 0.050 

Nal.' 4.9 1 1.03 2.90 i 1 0.35 
KOI. 0.3 1.32 2.70 1 1 0.47 
KT.* 0.8 1.42 3.23 1 

1 
1 0.44 
i 

To Table 15 have bec'ii add(‘d results for some gaseous alkali 
halide molecules, obtaijied by Scheffers* b.y means of a molecular- 
beam method, sonKnvhat similar to th(‘ Stern-Gerlach experiment 
on magnetic moments described in Chap. VI. It is seen that 
ev(ai in molecules as polar as fh(\se there is considerable polariza¬ 
tion of the anion. It miglit well be that th(T(‘ would be less 
distortion in a crystal, wlu^rc^ the field of the cations is more or 
less evenly distributed around the anion. 

In the case of polyatomic molecules, the situation is more 
complicated. However, in certain cases, where the structure of 
the molecule is known, the bond monumts can be readily deter¬ 
mined from measurements of the moment of the molecule and 
the assumption that this moment is the resultant of bond 
moments directed along the bond directions. Thus water is 
known (see Chap. XV) to have a kinked structure, the two 

1 Scheffers, Phys. Zeit.j 36, 425 (1934). The values of r© in Table 15 are 
the tq (expt.) of Table 27 of Chap. XIV. 

® In this connection, it is of interest to note that Ewing and Seitz, Phya. 

Rev,f 60, 760 (1936), believe, on theoretical grounds, that even in the crystals 

the electrons are considerably displaced from the negative toward the 

positive ion. 
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C)—H bonds being at an angles of J05®. If theses bonds hav(' 
equal moments directed at this angle to each other, the bond 
moment is readily calculated from th(‘ measured resultant. In 
carbon compounds, the problem is complicated on account of tlu' 
tetrahedral symmetry of carbon. The bond moments in 
methane, for example; all cancel, and no information can be 
obtained regarding their magnitude from the fact that the electric 
moment of methane is zero. However, if the C—H moment is 
obtained by extrapolation from O—H and N—H (the N—H 
bond moment can be found because ammonia has a pyramidal 
structure, as is noted in Chap. XV, and hence the resultant 
moment is not zero), other carbon moments can be obtained from 
measurements of organic compounds. It is generally assumed 
that a bond monu'nt dc^ixmds only on the bond and is independent 
of the compound in which it is situated. It is not our puri)ose to 
go here into the details of the determination of bond moments, 
and we shall im^rely state that a considerable number have been 
determined with more or less accuracy and certainty. It has 
been found^ that the hydrogen bond moment of quite a series of 
elements is roughly proportional to the electronegativity value 
given in Table 14. This would lead us to expect the moment of a 
single bond formed by any two (dements, in general, to be pro¬ 
portional to the difference in their electronegativities. However, 
when neither of the elements involved is hydrogen, this is found 
to be at best only qualitatively true. It is, however, clear that 
there is a close connection between the dipole moment and the 
polar character of the bond, even though it does not appear pos¬ 
sible to express it so satisfactorily as in the case of bond (uiergies. 

12.10. Moments and Bond Energies of the Hydrogen Halides, 
Considered as Ionic Molecules.—In the last section, we took 
the point of view that the hydrogen halides could be considered 
as polar molecules in which the anion was highly polarized by the 
field of the cation. In this section, a somewhat more quantita¬ 
tive development of this idea will be attempted,^ though it will 

^ Smallwood, Z&its. physik. Chem., B19, 242 (1932); Malone, J. Chem. 

Phys., 1, 197 (1933); Smyth, /. Phys. Chem., 41, 209 (1937), J. Am. Chem. 

Sac., 60, 183 a938). 
*See Heisenberg, Zeits. Physik, 26, 196 (1924); Hund, ibid., 31, 81 

(1925); 32, 1 (1925); Debye, ‘Tolar Molecules/’ Chap. IV; Kirkwood, 

Phyaik. Zeita., 33, 259 (1932). 
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perhaps appear that this is really approaching the problem from 
the wrong end, since the hydrogen halides are more nearly 
covalent than ionic. But there are eight electrons in the valence 
shell, and if the displacement, which canc(4s part of the electric 
moment expected for a purely ionic molecule, is shared among 
them all, tlu^ displacement of any one ne(»d not be great. This is 
consistcnit with th(^ idc^as of the Hund-Mulliken theory of valence, 
and by a detailed wave mechanical calculation on essentially this 
basis, Kirkwood has been able to give a very good description of 
these mokiculcs. For our jmrposes, howeviir, we shall use a 
much cruder picture. 

A number of very rough assumptions will be made. We shall 
consider the measured dipole moment of the molecule to be 
(composed of two parts (1) the moment cro to be expected if it 
really consists of two ions a distance ro apart and (2) the moment, 
say Mo, which is induccHl in the anion by the proton and which is, 
of course, in the opposite direction. We have then 

M = cro — Mo. (10) 

It is obvious that mo in nearly equal to ero, since m small com¬ 
pared with cro. We shall suppose that, as noted, mo is due to a 
displacement of a considerable amount of charge through a dis¬ 
tance small compared with ro, and that the dipole is located at the 
center of the halide ion. Now the field of force due to the proton 
at the center of the halide ion is equal to c/ro^, and we may set 
Mo = ae/ro^. However, if this expression for mo i« substituted 
into (10), it is found necessary to give a a value considerably 
smaller than that given in Table 10 in order to g(it the right value 
of M- This discrepancy is not at all surprising, considering the 
closeness of the i)roton to the anion and the consequently great 
variation of its field over the volume occupied by the anion, as 
well as the fac^t that the proton has penetrated well into the 
electron shell of the anion. 

Let us now consider the work necessary to removes the proton 
to infinity against the electrical attraction due to the charge on 
the negative ion and the induced dipole. The potential of the 
proton due to the charge of the anion is — e^/ro, and by page 467 
the potential due to the induced dipole is —= —iMo^/ro^. 

The total work of removal, therefore, is —( 1 + ^“ ). From 
r()\ ero/ 
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the values of - ( = — = 1 — — ) in Table 15, it will be seen that 
r()\ 6^0 er^/ 

the term due to the induced dipole is a very a])preciable fraction 
of the whole work. Just how much of this work is to be referred 
to avS the covalent part of the binding en(*rgy is probably an 
academic question, since co^^alcnt forces are also electrostatic 
in their ultimate origin. 

Use of the values of from Tabh' 15 in the formula of the 
preceding paragraph to (‘vahiate the eiu'rgy of disscx'iation of 
the hydrogen halides into ions gives fairly good results. Still, 
because of the aj)proximalions inv^olvx'd, including in particular 
the neglect, of the n'pulsivx) force's due' to tlie^ penetration of the 
proton into the ele^ctron shell, the ealculatioii must be conside^red 
to be quite renigh. The' dise*ussion, however, should se'rve to 
inehcate some'thing of the nature e)f the^ forces involved in the 
transition between pe)lar anel ce)vai('nt binding. 

12.11. Resonance.—As has l)e(‘n explained in some detail, the 
considerations of Secs. 12.7 and 12.S rest upon the hypotluisis of 
constant bond onergic's. Thai is, it ha.*^ been assumed that a 
definite eiK'rgy is assoi'iated vvitli a given ]>ond between a given 
pair of atoms, no matt er where I Ids bond occ'urs. Of course, this 
is only an approximation in any cv(‘rit, ])ut tlujre are certain sets 
of circumstaiujos under which this a.s.sunq;liori can bn'ak down 
rather badly, and the siibjec't should not b(^ closed without some 
discussion of this matter. Tlu'sc (‘xceptious are connected with 
a type of n'sonancci of considerable iin])ortance, though most of 
the applications are in organics chemistry. 

In Sec. 12.5, the phenomeno?! of resonance between covalent 
and ionic states of a molecule veas (considered in some detail, and 
a good deal of the matinhil of tins (‘hapter is based directly, 
or indirectly, upon this discussion. It will be clear, however, 
that resonance will not lu'cessarily be confined to this particular 
type of interaction. There can also be resonance between differ¬ 
ent possible electronic structures of a molecule, all of which may 
be essentially covalent. In fact, it has already been intimated 
that this is the case in the discussion of SOa in Sec. 11.1. 

It is especially easy for such a situation to occur in compounds 
containing double bonds. Consider, for example, formic acid. 
The electronic structure of this substance might conceivably be 
written either 
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. .H 
:o* 

H:C:‘ 

*0: 

or 

.0:H 

:o: 

These two electronic configurations would probably have nearly 
enough the same emcjrgios and the same atomic positions so that 
they could interact or resonate with each other. That the ener¬ 
gies would be nearly equal is (‘xpc'cted from the fact that both 
structures contain just the same bonds, with l)ut a slightly 
different arrangement. The molecule, then, would actually be 
in a state intermediate to those described by the two Lewis for¬ 
mulas, and its energy would be low(^red by the resonance. A 
similar situation might be expected with any carboxylic acid or 
ester. 

In the case of carbon dioxide, resonance might be expected 
among the three structures 

0::C::0, :0:C::0:, and :OiiC:6: 

The first of these) is the one usually written, but the two others, 
involving a triple bond to one or the other of the oxygens, are 
quite conceivable, and their energies may not be greatly different 
from that of the first. 

It will be interesting, then, to find the normal 0=^0 bond 
energy from compounds in which this resonance cannot occur, 
and compare it with C===0 bond energies in which resonance does 
occur. Resonance cannot occur in aldehydes. We may find 
the 0=0 bond energy, knowing the C—H bond energy, either 
by comparing the heat of combustion or of formation of acetalde¬ 
hyde or glyoxal, OHC—CHO, with that of ethane, or by com¬ 
paring the heat of combustion or formation of formaldehyde with 
that of methane. Unfortunately, these do not give consistent 
results. From these three compounds, 7.23, 7.31), and 6.69 elec¬ 
tron volts, respectively, are obtained. In any event, these 
values are all lower than the apparent value for C~0 obtained 
from compounds with resonance. Methyl formate (compared 
with methyl ether), formic acid (compaired with meth^yl alcohol), 
and carbon dioxide (comnared with methane) give 7.90, 7.97, 

^ Pauling and J. Sherman, /, Cheni. I hys,^ 1, 606 (1933). 
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and 7.88 electron volts, respectively, showing that the resoruvnef' 
energy has strengthened the bond considerably. 

Resonance can also have an effect on the intc^ratomic distance, 
as will be seen in Sec. 16.9. Thus the interatomic distances in 
CO2 are abnormally small as compared with distances in com¬ 
pounds having 0=0 groups without having the possibility of 
resonance. Irregularities in the interatomic distances also 
occur in C2H3CI, which can conceivably have either of the struc¬ 
tures 

H ;cr I? 
•C::C' • or :C:C; 

H' H ii 

It must be said, however, that the (energy of this compound shows 
no abnormality. 

Resonance between different electronic structures has recently 
received many applications in organic chemistry, especially in the 
explanation of properties of aromatic compounds.^ 

Exercises 

1. Calculate the energy of dissociation of IF into neutral atoms, assuming 

that the binding is polar. The IF distance may bo estimated (see Table 33) 

at 2.0A,; the electron affinity of F is 4.12 electron volts. Estimate the 

actual energy of dissociation from Table 12. Do you believe IF to be 

predominantly ionic? 

2. Make a similar calculation for HF. The interatomic distance is 
0.864A. In this case, it will be necessary to allow for the repulsive forces in 

the assumed polar molecule. This may be done by multiplying the electro¬ 

static potential by i'-i) , where n may be taken as 6, which is probably an 

overestimate (see Sec. 14.5 and Table 25). 

3. Check the assumption of constancy of bond energies by calculating the 
energy of the C—bond from Eq. (24) and again from (25) of Table 13. 

4. Check the value of the bond energy for the S—S bond, using Eq. (10), 
Table 13. Repeat, using Kq. (11). 

6. Check the bond energy of the C—Cl bond; of th(^ N—F, N—Cl, and 
N—Br bonds; of the S—Cl and the S—Br bonds. 

6. Calculate the average difference of the electroruigativities of S and I 
from the A values of Table 12. 

7. Discuss the electronegativity table from the point of view of the 

periodic table. Estimate the positions of the following elements: As, Se, 
Si, B. For values, see Pauling “The Nature of the Chemical Bond,“ 

Chap. II. 

^ See Pauling, Chap. 22 of Gilman, “Organic Chemistry: An Advanced 
Treatise,” vol. II, John Wiley & Sons, Inc., 1938. 



CHAPTER XIII 

THE NATURE OF THE SOLID STATE 

The classification of bonds as polar or nonpolar, with inter¬ 
mediate cases, is adequate to cover the situation with practically 
all gaseous molecules. In the case of solids, matters are not quite 
so simple. In some solid substances, the forces cannot be classed 
as either polar or nonpolar, in the restricted sense in which we 
have hitherto used these terms; on the other hand, there are 
many examples of solids in which just these kinds of forces are 
entirely adequate to describe the situation. 

Solid substances {i.e., crystals) may be classified roughly into 
four classes,^ as follows: 

L Ionic (typically polar) cryvstals. 
2. Atomic (typically nonpolar) crystals. 
3. Molecular crystals. 
4. Metals. 

There are of course many gradations and many kinds of grada¬ 
tions between these types; the differences between them can, 
however, be best understood by considering the i)roperties of the 
^^most typical” members of each class. 

In the typical ionic crystals, the forces are of the type already 
described as polar. The crystal consists of positively and nega¬ 
tively charged ions, held together by electrostatic attraction; any 
given ion exerts comparable forces on all its neighbors, so that it 
is not possible to group the atoms into molecules within the 
crystal, but, as is well known, the whole crystal must be con¬ 
sidered as one gigantic molecule. Typical examples of these 
substances are furnished by the salts, e.gr., the alkali halides, 
which in the gaseous state form molecules with polar bonds. 
Ionic crystals have in general certain characteristic properties; 

^ See Ruff, Ber. deuL ckem. ges,, 52,1223 (1919). Kossel, Zeiia, Physik, 
1, 395 (1920). Biltz and Klemm, Zeits. anorg. allgem. Chem.t 152, 267 

(1926). Grimm, Zeits. EUktrochem.^ 34, 430 (1928); Naturwiss., 17,535,657 

(1929); Angewandte Chemict 47, 53 (19^). 
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they are hard, often easily soluble in water, in which they are 
ionized; they are nonvolatile, having boiling points usually above 
1000®C., and i^ractically always above 700°; and the molten salts, 
consisting of mixtures of positive and negative ions, conduct the 
electric current. The molecular volumes are determined by the 
ionic radii in a way which will presently be discussed in some 
detail. 

In atomic crystals, the forces are of the nonpolar-valence-type 
variety, such as occur in the elementary diatomic gases. Again 
the whole crystal must be considered as one gigantic molecule. 
Typical examples are furnished by C (in the form of diamond) 
Si, SiC, AIN, BcO, ScN, TiC. They are formed mostly from 
elements near the central portion of the periodic system.^ They 
are very hard, diamondlike bodies; in the most typical cases, 
they are extremely nonvolatile, indicating very strong forces. 
The molecular volumes are small, a property that goes with 
strong interatomic forces. 

In the molecular crystals, in contrast to the two types just 
considered, the molecules retain their identity in the crystal 
complex. Thus, solid chlorine consists of C'U molecules held 
together by intermolecular forces which arc weak compared with 
the forces that hold together the two atoms in a chlorine mole¬ 
cule. The intermolecular forces may be of two types. In some 
cases, notably the solids of diatomic molecules of elements on the 
right-hand side of the. periodic table, the solids of the rare 
gases (which, though the gases are monatomic, may best be 
classed with the molecular solids), CO2, CO, SFe, probably the 
hydrogen halides (except HF), CH4 and most organic substances, 
the forces are of a type that we may designate as van der Waals 
forces; they are the forces that are chiefly responsible for the 
deviations of the so-called permanent gases from behavior as 
perfect gases. They are due to the mutual interaction and 
polarizability of the electron shells surrounding the molecules, 
and are very weak forces. They have the unusual property 
that the force between large molecules is greater than the force 
between small ones; thus the forces increase from top to bottom of 
a column in the periodi c system. For example, the forces between 

* In referring to the periodic table, we always have in mind the arrange¬ 

ment with the long rows (Thomsenarrangement) presented in Table 1, 

p. 91. 
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molecules increase in the order HCl, HBr, HI, as is indicated by 
the boiling points, — -^35°C., respectively; and, 
in general, the higher the molecular weight of an organic com¬ 
pound in a homologous series, the liigher its boiling point. In 
many of these substances, the forces arc sufficiently small, or at 
least depend so little on the relative orientation of the molecules, 
that there is probably actual rotation of the moleciil(\s inside the 
solid except at very low temperatures. At the very lowest 
temperatures, of course, unless the interrnolecular forces were 
absolutely symmetrical, the mok^cules would be rigidly fixed 
in position, and no such rotation w'oiild occur. As the tempera¬ 
ture is raised, however, it will h(^ anti(*i})ate(l that a few molecules 
will get enough energy to begin to rotate. Now, when a molecule 
is itself rotating, this will obviously make it easier for its neigh¬ 
bors to rotate.^ Furthermore, as the tianperature go(\s up, the 
volume increases and th(^ mok'.cules g('t k^s.s in each other’s way.- 
The effect is cumulative'; as the temperature inen^ases, the num¬ 
ber of rotating molecules incr(*as('s v(?ry raj)idly, and rather 
suddenly the crystal will become unstable, and they will all 
rotate. Since incrciased rotation is acc'ornpanied by absorption 
of heat, this can be followed by observing the specific lu'at, which 
will rise suddenly over a transition region of a few degrees and 
then drop, even more shar])ly, to near its normal value; or a 
regular transition with a latent heat of transition may occur. 
Transition points that have been interprc'ted in this way by 
Pauling^ are actually known in a number of cases. 

Another type of force which may be instrumental in certain 
cases in holding togethc'r llie molecules of molecular crystals is 
the electrostatic attraction that occurs between electric dipoles 
when they are properly oriented (they tend, of course, to orient 
themselves naturally in such a way as to attract rather than repel 
each other). This type of force will be of most importance when 
the molecules have relatively large electric moments, and wffien 
the molecules are small, so that the.se electric moments can 
effectively get close to each other. Examples of crystals in 
which this type of force is probably predominant arc H2O, HF, 

^ Fowler, '^Statistical Mechanics,'' 2d ed., pp. SlOjf., Cambridge Univer¬ 

sity Press, 1936. 

* Rice, /. Chem. Phys.^ 6, 492 (1937). 
* Pauling, Phys. Rev., 36, 430 (1930). 
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HNO2, H2CO, CHsOH, NH2OH, H2O2. In these cases, the 
dipole forces are larger than the van der Waals forces in the same 
compound, and the properties of the substances indicate, in 
general, a greater attraction between molecules than one would 
expect from the van der Waals forces alone. Thus the liquids 
tend to be fairly high boiling, compared with liquids of compar¬ 
able molecular weight which have only van der Waals forces, 
and there is a tendency to polymc rize in the liquid state, or for 
the molecules to associate in more complicated ways. If dipole 
forces predominate in holding a crystal together, there cannot be 
free rotation of moleculcis within the crystal. 

Both types of molecular compounds tend to form rather soft 
crystals, an indication that the forces which come into play are 
relatively small compared with those in the ionic and atomic 
crystals; the compounds in which the chief forces are the van der 
Waals forces will be expected to be softer than similar compounds 
in which the dipole forces predominate, though not many data are 
available, and in any event, softness and hardness are qualities 
that are difficult to compare. 

Finally, we have the metallic crystals, in which the forces 
in the typical cases, e.^., the alkali metals, are principally the 
forces between ^^free” electrons in the metals and positive ions. 
These substances are solid, relatively involatile, and conduct 
electricity readily owing to the more or less free electrons which 
they contain. The alkali metals are soft, but the metals toward 
the center of the periodic table {i.e,, the iron and platinum metals 
and their neighbors) are hard; in these latter, however, 
and even more especially in substances ^ like bismuth, forces 
of the nonpolar-valence-bond type undoubtedly come into 
play. 

In the foregoing account, wc have confined ourselves for the 
most part to a discussion of typical properties of the various kinds 
of crystals, and have illustrated our discussion with typical 
examples. There are numerous cases in which a compound has 
some of the characteristics of one extreme class and some of the 
characteristics of another. We have just mentioned some metals 
that have some of the characteristics of atomic crystals. There 
are intermediate cases between atomic and ionic crystals, for 
example, Agl. And there are examples of molecular compounds; 
such as HCl, in which both dipole and van der Waals forces must 
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play some part. Then there are many cases in which forces of 
more than one type come into play in different parts of the same 
structure. Thus, there are numerous examples of complex 
anions and cations, such as SO4 or NH4'*', in which a central 
atom, or ion (sulfur or nitrogen in the examples considered), 
holds others around it by forces intermediate between the ionic 
and covalent types; the complex ion then enters as a whole into 
the crystal structure, and is bound by ionic forces to the other 
constituents. The Cdl2 crystal furnishes a remarkable example 
of a mixture of molecular, nonpolar, and ionic forces. This 
crystal is composed of layers; each layer consists of three planes— 
one of cadmium atoms, or ions, surrounded on either side by a 
plane of an equal number of iodine atoms, or ions. These three 
planes are bound into a compact layer by forces that are pre¬ 
sumably intermediate between atomic and ionic and form a 
giganti(i two-dimensional molecule. These molecules are then 
held together largely, presumably, by van der Waals forces. 

The classification, with respect to the periodic table, of the 
substances forming the various types of compounds will probably 
be evident to the reader from the examples given and from the 
previous discussion of polar and nonpolar compounds. The 
ionic-type crystals always contain elements that are widely 
separated in the periodic table, one of which tends to give up 
electrons, the other of which tends to take on electrons. Typical 
solids of the other three types are either elementary solids, or 
compounds the elements of which are close together in the 
periodic table, the metals coming from the left, the atomic com¬ 
pounds from the center, and the molecular compounds from the 
right of the periodic table. ^ Thus substances that tend to lose 
their electrons easily form metals, in which the electrons are 
more or less free; while substances intermediate in this respect 
form atomic compounds, in which there are several bonds to 
each atom; and in the case of substances that have a great attrac¬ 
tion for electrons, there is such a tendency for localization of all 
the electrons that the presence of other molecules does not dis¬ 
turb the bonds already formed. Thus the electrons are held so 
tightly in a CI2 molecule that they are not greatly disturbed by 
the near presence of other CI2 molecules; but on the other hand, 
the electrons in a C2 molecule would be affected by the presence 

i See footnote, p. 206. 
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of other carbon atoms or molecules sufficiently to cause the C2 

to become part of the atomic crystal. (See also pages 368-369.) 
The various types of solid compotmds, briefly discussed above, 

will be treated in more detail in the succeeding chapters. Of 
course, it will not be possibk' to give a treatment of solids that is 
independent of the considerations of gases and liquids; some 
further properties of bonds in gaseous molecules will also be 
considered, and, oc^c.asionally, some discussion of the forces in 
liquids will be pr(\sented, though th(^ situation in liquids is so 
complicated that no geiuTally adequate treatment yet exists. 
In Chap. XII, although it di*alt exclusively with gaseous sub¬ 
stances, the general jirograin for the study of the chemical bond 
has already been begun. The molecules treated in Chap. XII 
are of the type that form molecular solids, so that many of the 
properties of the bonds bet ween atoms within the molecules of 
these solids have aln^ady been studied. And as already indi¬ 
cated, this type of force is not qualitatively different from that 
encountered in atomic crystals. 

Althougli in the prcc(Kling discussion a variety of properties 
has been mentioned, two properties that wdll be stressed in the 
ensuing study arc the enc'Tgy of formation of compounds and 
interatomic distances. The utility of tlu^ study of the energy 
is already clear, and it will b(^ seen that the interatomic distance 
also depemds on the type of binding, and can throw light in turn 
on the nature of the binding. Interatomic distances are meas¬ 
ured by means of X rays; the methods used are briefly described 
in Chap. XIV, in connection with some simple examples. 

Chapter XIV deals with polar or ionic crystals. Ionic radii, 
giving interatomic distances in polar crystals, are first considered. 
Then the energies of crystal lattices and energies of formation of 
polar crystals are studied, with the aid of a certain type of 
thermochemical cycle, knowm as the ^^Born-Haber cycle.'' The 
effect upon the energy of the transition from ionic* to covalent 
binding is considered. The Born-Haber cycle is a powerful 
tool, and a number of special applications are given. Chapter 
XIV also contains a brief section on the energies of polar com¬ 
pounds in the gaseous state. 

In Chap. XV, we return to the study of covalent binding, and 
present a discussion of some properties common to covalent 
bonds in both gases and crystals, which have not hitherto been 
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considered. In particular, the direction of the bonds in space is 
discussed. A new criterion for type of binding, the magnetic 
criterion, is introdu(;ed. 

In Chap. XVI, the ideas developed in Chap. XV are applied, 
and a variety of pro})erties of various complex (*ompounds are 
considered. After a discussion of lh(‘ nndhods of invc^stigation 
and the chemistry of c.omplex compounds, and some (aiergetic 
considerations in a few cases when' these tiro ])ossibl(', thc're is a 
section on the stereochemistry of com})lex compounds. This is 
followed by a discussion of the arrangement of atoms in complex 
crystals. Next follows a discussion of cot'ak'id radii, which are 
compared with ionic radii, after which various (‘xpc'.rimental data 
that throw light on the tyi)e of binding and, in i)articular, the 
transition from ionic to (*<ovalent typ(^ in crystals are summarized. 
The chapter ends with t\\'o sections on sjxH'ial type's of crystals 
and special types of bonds. 

Chapter XVII decals with the nature of iiitermolecular forces 
in molecular crystals, and gives a dis(*ussion of the relevant 
experimental matcudal, including material beaiing on the transi¬ 
tion between this type of binding and other typ(\s. 

Chapter XVIII discusses metallic crystals. The energiens of 
binding and the nature of the binding in th(^ alkali metals are 
considered in some dcd^ail; then' is a sc'ction on the transition 
between metallic; and covalent binding, a brief discussion of 
intermetallic compounds, and finally, a l)ri('f discussion of the 
recently developed wave nK^chanical picture of metallic binding. 

The general aim of th(;se chax)ters is, by discussion and a 
wealth of illustration, to give tin; reader a reasonably accurate 
idea of the nature of chemical binding in the various types of 
compounds described in this chapter, and to show what can be 
done toward an understanding in relatively simple terms of t he 
various properties of compounds which are generally described 
in treatises on inorganic chemistry. 

In Chap. XIX, the ideas developed are applied to aqueous 
solutions. 



CHAPTER. XIV 

IONIC CRYSTALS 

As noted in the last chapter, the typical examples of ionic 

crystals are furnished by the alkali halides. These crystals may 

be considered to be composed of povsitive and negative ions, tlui 

forces that hold the ions together being almost entirely elecitro- 

static and being balanced when the crystal is at equilibrium by 

th(^ repulsive forces due to interpenetration of the electron sIk'Us. 

As the alkali halides are not only the most typical ionic crystals, 

but are also in many respects th(i simplest of all crystals, we shall 

treat them in some detail and illustrate with them the methods 

that may be used in the study of crystals and, in particular, 

ionic crystals. We shall show that most of their properties arc^ 

satisfactorily explained by the assumption that the attractive^ 

forces are purely electrostatic. 

14,1. The Crystal Structure of the Alkali Halides.—All the^ 

alkali halides except CsCl, CsBr, Csl have the structuni shown 

in Fig. 49. It may be seen that the ions are arranged at the 

corners of cubes, positive and negative ions alternating. In 

such crystals, the ions are said to have a coordination number of 

six, the coordination number being the number of nearest 

neighbors. (The term is also used to designate the number of 

atoms surrounding a central atom. Thus in methane or in 

chloroform, for example, the carbon atom has a coordination 

number of four; in the ion PtCU , the platinum atom has a 

coordination number of six.) 

Figure 49 represents a very simple arrangement, and it is 

probably the first guess that one would make for the structure 

of sodium chloride if he knew nothing about the structure of 

crystals. Its experimental verification by the help of X rays will 

be discussed in the subsequent pages of this chapter. It is by 

no means the only possible crystal structure for crystals of this 

valence type; the chloride, bromide, and iodide of cesium have, 

in fact, another arrangement of atoms, in which all the ions 
212 
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at the corners of a cube are alike and the other ions form a similar 

system of cubes, the vertices of which are at the middle of the 

first set of cubes, so that t he ions have a coordination number of 

eight. This is known as a ‘^body-centered cubic latticefor a 

figure, see Appendix IV. 

Flu. 49.—The sodium chloride lattice: (a) showing the ions as contacting spheres; 
(h) showing the positions of the centers of the ions. 

14.2, The Use of the X Ray in the Study of Crystals.—X rays 

offer a convenient tool for the study of crystals.^ The wave 

length of ordinary light is so great com])ared with atomic dimen¬ 

sions that even with the most powerful microscope we could 

never hope to see details of anything even several thousand times 

jis large as an atom; but the wave lengths of X rays are of the 

order of atomic dimensions, and so they are admirably adapted to 

use in “seeing^’ the arrangement of atoms in crystals. The 

reflection of X rays from crystal faces has already been discussed 

in Sec. 3.2, and it was shown that from any crystal face the 

X rays will be reflected only if they are incident at certain angles 

6 such that 

2dsin0 = nX, (1) 

’ For more detailed accounts of the use of X rays in crystal analysis and 

the results, the following books may be consulted: W. H. Bragg, ‘‘Introduc¬ 
tion to Crystal Analysis,” D. Van Nostrand Company, Inc., 1929; W. H. 

Bragg and W. L. Bragg, “The Crystalline State,” The Macmillan Com¬ 

pany, 1934; Compton and Allison, “X Rays in Theory and Experiment,” 

D. Van Nostrand Company, Inc., 1936. 
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where d is the distance of successive atomic planes, X the wave 

length of the X rays used, and n an integer called the order of the 

reflection. If X rays of kiiowm wavn', length are available and 

the various angles at which reflection occurs can be measured it 

is possibki to determine d. This can easily be accomplished by 

having a (crystal mounted so tlird it can be rotated with respect 

to the incident beam of X rays. If d is known but not X, the 

method (tan lx* us(h;1 to determirn^ X. When the method was 

first used, neith(*r d nor X was known. However, by working 

with a constant source of X rays, so that X, though unknown, 

would remain th(^ same from one (experiment to another, it was 

I)Ossible to det(*rmin(e the relative distances between various planes 

and thus deetermine tlu' positions of tin* ions with respect to 

one another. And if tlue density of the crystal and Avogadro’s 

number are known, tlu* numlxer of ions in a given volume can be 

determined Tlie anangenumt of th(* ions and the number per 

unit volume Ix'ing known, it was possible to compute the actual 

distances in tin* (crystal and then from the distances determine X 

by use of Kq. (1). Having now a standard wave l(?ngth, we can 

determim^ distamxjs in other crystals, and thus detc^rmine their 

density by use of t;he X ray alone, obtaining values that may 

be (‘oinpared with the d(*nsity (h'terrniiKHl in the ordinary way. 

In the presemt state of the scitmee, it. is often possible to get more 

accurate valuers of t he density of a substance by use of X rays 

than 1)3’^ direc't measurements, accairal.t* r(\sults by the ordinary 

nu^thods oft(m being, for various n^asons, very difficult to obtain. 

14,3. Application of X Rays to the Study of the Alkali Halides. 
If we examine Fig. 49 w(* see that there are many ways in which 

planes can be passed through the crystal so that the planes will 

go through centers of ions which lie close together. Three types 

of such planes arc shown in the figure: (1), planes like ABC, 

AFE, etc., which (rather than use the usual nomenclature, which 

for our purpos(?s is n(K‘dl(*ssly complicat(id) we shall call “straight 

planes'’; (2) plain's like BAE and FEC whicdi we shall call 

“semidiagonal planes”; and (3) planes like AEG and GHJ which 

we shall call “diagonal planes.” It may be readily seen from 

the g(K)metry of the figure that if the distance between two adja¬ 

cent straight planes is 8 (equal, e.g.y to BG) then the distance, 

between two adjacent semidiagonal planes is i\/28 and between 

two diagonal planes is i\/35- If the structure represented by 
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Fig. 49 is correct, an examination of the crystal with X rays and 

application of Bragg’s law should show^ that tluire are actually 

distances in the crystal which bear the ratio 

Furthermore, it is possi):>le to determine, by observing the direc¬ 

tions of the incident and the refle(*t(‘<l Ix'ams of X rays with 

reference to the position of the crystal, the angles b(*twTen th(‘ 

various kinds of planes, e.g., the angle betw^een various straight 

planes or betw^een straight- planes and semidiagonal planes. 

There is another detail to w’hicii tla^ attcaition of the reader 

must be directed. It will be noted that the straight ])lan(\s and 

semidiagonal planes contain equal numbers of each of the two 

kinds of ions, but that the diagonal plant's contain only one kind 

of ion. Furthermore, the diagonal planes alternate'—if one 

contains one kind of ion, the next plane will contain the other 

kind. Therefore, alternate diagonal ))lanes an^ different, and 

this has a special ('ffect ori the X-ray diagram, which w-e shall 

proceed to investigate. 

Consider a set of planes, all alike, th(' distance behveen them 

being d. Then the angles at which rofl('(^tion of X rays will take 

place are given by Eq. (1). Xow' insert another S(^t of planes, 

just like the original set, halfway betw'oen the latter. The 

possible angles of reflection d' will noW' Ix' given by the modified 

expression 

2d' sin 6' — n\, (2) 

where d' = d/2. Solving for sin 6 from Eq. (1), we get 

. . nX 
sin 6 = 

2d 
(3) 

and solving for sin from Eq. (2) 

. , n\ 2n\ m\ 
sine = ^ ~ (4) 

which is just the same as (3) except that m = 2, 4, 6. ... It is 

thus seen that inserting an extra set of planes halfway between the 

original ones is equivalent to suppressing the odd orders, and 

only half as many reflections occur. It is easy to understand 

why this occurs. The reflection from the new^ planes is in such 

phase that the odd orders are canceled out by the destructive 
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interference; the reflection from the new planes, however, rein¬ 

forces the even orders, and these will now have an increased 

intensity. If, however, the new planes which are inserted are 

different from the original planes, and so do not reflect the 

X rays with the same intensity, the odd orders of reflection will 

not be completely blotted out, but will still be there, though with 

diminished intensity. This is exactly what we should expect to 

happen with the diagonal planes in the crystal we have been 

considering. Actually it has been found in NaCl and other 

alkali halid('s of like structure that there are reflections at all th(' 

angles corresponding to th(* distance between two like diagonal 

planes, raUier than merely the reflections corresponding to 

the distance between adjacent planes, but the odd orders an^ 
woiak. 

It should be noted that the straight, semidiagonal, and diagonal 

planes are not the only possible planes of atoms in the crystal. 

0 ^ 0-0 0 Many other such planes can 

of course be found, but they 

• #-#-■# will contain fewer atoms per 

N. unit area, and the reflection 

^ therefore be less intense*. 

Furthermore, the distance be- 

^ ^ tween adjacent planes of this 

type will be small, as will be 

^ ^ ^ ^ ^ clear from the two-dimensional 

section shown in Fig. 50. For 

most of them, d is so small that Eq. (1) cannot be satisfied even 

for n = 1, since sin 6 cannot be greater than 1; therefore, from 

these planes there will be no reflection at all. 

Before leaving the discussion of the structure of sodium 

chloride, it should be stated that there is at least one other 

possible arrangement of the ions which would have reflections 

at the same angles as the actual structure. This is the zinc- 

blende structure^ with Zn replaced by Na and S replaced by Cl. 

However, the relative intensities of the various reflections would 

be very different for the two different structures, and a study of 

them leaves no doubt as to the one to be assigned to NaCl. In 

general, the intensities are of great importance in the determina¬ 

tion of crystal structures. 

^ See Appendix IV, 
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The foregoing discussion has shown how it is possible to 

verify, by the use of X-ray analysis, the structure of the alkali 

halides that have the atomic arrangement shown in Fig. 49. 

The verification of the structure of cesium salts that do not have 

this arrangement proceeds jiist as simply. Planes of various 

kinds can be found in the crystal and their distances calculated. 

It is obvious that the distances involved will be diffennit in this 

case, and the distances can be found and the postulated arrange¬ 

ment of the crystal verified by the use of X rays in the same 

manner as before. 

Of course when dealing with a crystal of a more complicated 

type, one is often confronted with a problem that is very much 

more difficult than those just discussed. It will often be difficult 

to make a preliminary guess as to the structure of the ciystal, 

and sometimes X rays alone will not enable one to distinguish 

among various possibilities. In many cases, however, it is 

possible to obtain definite results, and in other cases one can 

supplement the information given by X rays with other informa¬ 

tion. As far as th('. X-ray analysis goes, however, there is no 

new principle involved, and as it is not desired to go into details 

of crystallography we shall in the future merely report the results 

of th(^ X-ray analysis. 

It should be mentioned that there are other methods of using the X rays 
than the Bragg method described above. These are the von Laue method 

and the Debye-Scherrer-Hull powder method. The von Laue method has 

already been briefly described in Chap. Ill; it has been very generally 

emi)loyed. 
The powder method is really a modification of the Bragg method. A 

beam of X rays of definite wave length is allowed to pass through a powder. 

These X rays strike crystals that are oriented in all possible directions. 

Bragg reflection takes place from those crystals which happen to be oriented 
properly with respect to the incident beam. Reflection thus occurs in cones 

the rays of which make definite angles with the incident beam. If a photo¬ 

graphic plate is placed some distance below the powder (which is laid upon a 
thin plate of some material as transparent as possible to X rays), there 
appear upon it, in addition to a spot due to undeflected X rays, a series of 

rings where it intersects the cones of reflected X rays, ami from the size of 

these rings and the geometry of the setup, information (concerning the 
atomic distances within the crystal can be obtained. 

14.4. The Ionic Radius.—The determination of interionic 

distances in crystals by means of X rays has brought out the 

fact that in many crystals these distances can be correlated by 
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assuming that each ion has a fixed and definite radius.* The 

interionic distance's, however, are always distances between the 

centers of two ions, and the actual radii of the separate ions 

cannot be found from a knowledge of these distances alone. 

We may illustrate tliesc* statements with an example. Thus 

if the distances between ])ositive and negative ions in NaCl, 

KCl, and KBr crystals an^ known, it is possible to calculate the 

distance in an NaBr crystal. Jjet an arbitrary radius be assigned 

to Na+. Then the radius of Cl" is found from the ionic distance 

in NaCl, on the assumption that two adjacent ions are touching, 

and the distances between centers is the sum of the two radii. 

From the radius of Cl" and the distance in KCl, the radius of 

is found. And similarly, from KBr, the radius of the Br" 

is found. When the latter is added to the radius of Na*^, it gives 

the (‘xpected ionic distaiu'o in NaBr. This agrees with experi¬ 

ment, thus, in this instance, confirming the assumption that the 

distances in the crystal can be explained by assuming ions of 

fixed radii. But it is clear that any division of the distance in 

the NaCl crystal will give the same result. Taking a smaller 

value for the radius of Na+ for example, eventually yields a 

correspondingly larger value for that of Br”, the sum being the 

same. 

Various methods for dividing the distances in crystals between 

the ions have been suggested. Perhaps the most satisfactory is 

a theoretical one introduced by Pauling.^ The reason that the 

^ The additive rule was first proposed by W. L. Bragg, Phil. Mag.^ 40, 
169 (1920), tind the early development of the idea is due largely to Gold¬ 
schmidt. See Goldschmidt, ‘‘Geochemische Verteilungsgesetze der Ele- 
mentc,^' I Kojnmisjon Hos Jacob Dybwad, Oslo, 1923-1927, especially 

vols. 7 and 8. 
^ Paulino, J, Am. Chan. Soc.y 49, 7G5 (1927). Earlier Wasastjerna, <Soc. 

Sci. Penn. Comm. Phys. Math., 1, No. 38 (1923); Zeite physik. Chem.j 101,193 

(1922), and Goldschmidt Iiad used other methods for dividing the distance 
which gave results in agreement with those obtained by Pauling. Wasast- 
jerna’s method was l/ased on the assumption that the mole refraction of an 
ion depends upon its siac. The mole refraction of an ion is closely related 

to its polarizability, and that Ibis should be related to the size of an ion will 
be clear from the discussion of polarizability of molecules given in Sec. 12.4. 
Another method of gettii^g tlie absolute size of ions, based upon the assump¬ 
tion of anion-anion contact in certain crystals (see end of Sec. 14.4), was 
proposed by Lande, Zeils. Phyniky 1, 191 (192.0). Recently the matter has 

been discussed from still a different point of view by Jensen, Moyer-Gossler, 
and Rohde, Zeits. Physiky 110, 277 (1938). 
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ions appear to have fairly definite radii lies in the nature of the 

repulsive forces which set in when the ions an', brought close 

together. These forces are the same as in diatomic ionic-type 

molecules (see Sec. 9.1) and are due to the interpenetration of the 

electron clouds surrounding the ions. A relatively small inter¬ 

penetration results in a very large increase of the n^pulsive force, 

so that the apparent size of th(‘ ion is very largely determined by 

the extension in space of (he ('lectron cloud. 

In a crystal such as KCl, in which the positive and negative 

ions are, respectively, the ions of alkali and halogen atoms coming 

just after and just before; a given ran; gas in the periodic table, 

the electronic structures «are exactl}^ similar, the only difference 

being in the charge on the nucleus. Now^ obviously in the K+ ion, 

which has a greater charge on its nucleus than the Cl" ion, the 

electrons will be pulled in closer, so that will be smaller than 

Cl““. The exact difference in size will depend upon the effective 

charge on the outer electrons, which, of (bourse, depends on the 

shielding eff(;ct of the inner electrons, whicli in turn depends upon 

how much the outer electrons j)en(;trate the inner shells and 

upon the difference in size of the inner shells themselves in the 

two ions. In general, it may be said that the size of an orbit 

with a definite quantum number is inversely proportional to the 

effective charge. This is seen by replacing^ by Z'e*'*, where 

Z'e is the cffecitive charge acting on the electron considered, in 

Eqs. (9) and (13) of Chap. V and eliminating E between them. 

It is then found that with a given value of n, the quantity a, 

which effectively determines the size of the orbit, is inversely 

proportional to Z'. The determination of the effective charge 

acting on the outer electron is a very complicated calculation, into 

the details of which we cannot enter here. It has been done in a 

number of cases by Pauling, who has thus divided the distance 

in2 NaF, KCl, RbBr, and Csl. 

1 Compare Chap. VII, Eq. (1). In this equation, N is the number of 
inner electrons surrounding the nucleus, and the outer electron is revolving 

about them and is supposed not to penetrate. Hence it is moving under 
the influence of a charge {Z — N)e. Here the electron penetrates and 

moves under the influence of a charge whose average effective value is Z'e, 

Z' thus takes the place of Z — A in Eq. (1), Chap. VII. 

* Since Csl has a body-centered structure, and since the interatomic 
distances in such a structure are somewhat larger than in the sodium chloride 
structure (see Sec. 14.6), correction has been made for this. 
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Once the radii of these ions are calculated, they can be used to 

obtain the radii of other ions with the same number of electrons 

but with different effective charges acting on these electrons by 

again avssuming that the extension of the electron atmosphere in 

space is inversely proportional to the effective charge. Thus the 

radius of 0 can be calculatofl from that of F~, the radius of 

Ca'^"*' from that of K+, etc. The radius of Li*^ is obtained from 

the radius of O and distances in Li20, after applying the correc¬ 

tion for th(^ charge on the ions and the cordination number dis¬ 

cussed below (Sec. 14.6). The. results obtained are given in 

Table 16. 

Table 16.—Ionic Radii 

(In AnKstronis) 
H He Li' B3t (>+ N6t OB' F7- 

2.05 0.92 0..50 0.43 0.34 0.29 0.25 0.22 0. 19 

N3- 0 V- No Na' Mg' ' Si 4' S«‘ CP' 

4.M 2.47 1.70 1.30 1.12 0.95 0.82 0.72 0.05 0.59 0.53 0.49 

Si<" ps- s-' Cl- A Sc»' Ti4^- VB + CrB+ MiP^- 
3.84 2.79 2.19 1.81 1.54 1..33 1.18 1.00 0.96 0.88 0.81 0.75 

Cu + Zn^'- As®' SpB^ Br^+ 
0.90 0.88 0.81 0.70 0.71 0.66 0,62 

Ge«- As3” Se— Br- Kr III)-' Sr'^ Y34 Zr4' Cb®+ MoB^ 
3.71 2.85 2.32 1.95 1.60 1.48 1.32 1.20 1.09 1.00 0.93 

Ag*^ Cd'^ Sn'-* Sb5^- Te«^ 17 + 

1.20 1.14 1.04 0,90 0.89 0.82 0.77 

Sn*- Sba- To *“ I" Xe C8+ Ba+' 
3.70 2.96 2.60 2.16 1.90 1.69 1.53 1.39 1.27 

Au * Hg++ TI!" Pb4+ Bi6+ 
1.37 1.25 1.15 1.06 0.98 

Notb: The radius of and other radii derived therefrom (first row in the table) are 
slightly diflfereut from the values given by Pauling. 

It will be noted that ions with an outer shell of eighteen elec¬ 

trons are also included in Table 16. These are treated as though 

they had the same structure as the ions of the rare-gas type. 

Although it might seem that this would not be justified, actually 

a wave mechanical calculation shows that the eighteen outer 

electrons of Cu~^, for example, would on the average be somewhat 

closer to the nuclei than the eight outer electrons of even if 

the effective charge acting on the outer electrons were the same 

in the two cases. It turns out that the electron density in the 
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('xtrem(' outer portion of an oighteeii-eleetron «hell ion, calculated 

on the assumption that the effective charges are the same in th(‘ 

two cases, is al:)Out equal to the (dectron density for an ion with 

shell of eight. It is the extreme outer part of the electron shell 

that determines the effective radius. Hence, it is only lu'cessary 

in computing the radius of Cu"^', for example, from that of 

to correct for the diffc;rence in the effective charge.^ 

We may now check the hypothesis of constant ionic radii by 

comparing experimental and calculated distances for the various 

combinations of ions in the alkali halide crystals which have the 

sodium chloride structure. This is done in Table 17. It will 

Table 17.—Calculated and Observed Distances in Alkali Halides 

WITH THE Sodium Chloride Structure 

(In Angstroms) 

Li+ Na-* Rh* Cs' 

F“, calc. 1.95 (2.31) 2.69 2.84 3.05 
obs. 2.01 2.31 2.67 2.82 3.01 

Cl“, calc. 2.40 1 2.76 (3.14) 3.29 
obs. 2.57 2.81 3.14 3.29 

Br ", calc. 2.54 2.90 3.28 (3.43) 
obs. 2.75 

[ 
2.97 3.29 3.43 

[ 

I~, calc. 2.75 3.11 3.49 3.64 
obs. 3.00 3.23 3.53 3.66 

From Pauling, reference? 2, p. 218, Calculated values for lithium salts corrected to (‘on 
form with Table 16. 

be observcjd that the agreement is good, except in the case of 

lithium salts. The reason for the discrepancy with these salts is 

readily understood if we note the small size of the lithium ion. 

The anion is so large that there is anion-anion contact, the cation 

being left free to bounce around in the interstices. The situation 

is illustrated in Fig. 51, which shows the cross section of one plane 

^ Of course, the effective charge is different for the various electrons in 

the outer shell, depending largely upon the amount of penetration. In the 
case of it is the outer p-electrons that principally determine the size, 

and in the case of Cu'*' it is the outer d-electrons. It is, therefore, the 

effective charge on p-electrons in the one case, and on d-electrons in the 

other, which is of importance. 
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of a normal sodium chloride type crystal ajid also a similar section 

of a sodium chloride type crystal with anion-anion contact. 

Anion-anion contact occurs if the ratio of the radius of the 

cation to the radius of the anion is less than (\/2 — 1):1. This 

condition is fulfilled in the case of all litiiium halides except 

lithium fluoride. It would tlrii b(‘. expected that one could 

obtain a direct measure of the anion radii by taking half the? dis¬ 

tance betwcjon anion centers in these cryst als, and this is indeed 

the case. Half the distance between anion centers is 1.82A., 

1,95A., and 2.12A. for Cl”, Br“ and J”, r(;s})ectively, agreeing 

closely with the values given in Table 16. In the case of sodium 

iodide, and lithium fluoride the ratio of cation and anion radii is 

very close to the critical value \/2 — 1. This means that double 

repulsion will occur, f.c., any given ion will be affected by the 

sis 
Normal case Ambn-anjon con+cref 

Fio. 61. 

repulsive forces of ions of both signs instead of only ions of one 

sign. The effect of the extra repulsive force is to make the actual 

inte^rionic distance slightly greater than th(^ calculated distance. 

14.6. Energy of Crystal Lattices.— Before proceeding further 

with the discussion of crystal radii, it will be advantageous to 

consider in somewhat more detail the forces operative in ionic 

crystals.^ The nature of these forces will already be clear from 

the discussions at the beginning of this chapter and elsewhere 

(e,g.y Sec. 9.1). They consist of electrostatic forces and the 

repulsive forces due to interpenetration of electron shells. 

Let us consider first the electrostatic forces. The potential, 

due to the electrostatic forces on some ion, say the fth ion, is 

given by the sum^ over all other ions 2/ where z^e is the 

' The first calculations of the type to be considered were made by Born. 
See, e.g.f Born: Atomtheorie des festen Zustands,'^ B. G. Teubner, Leipzig, 
1923. 

* We use the usual sign S to indicate summation. S,- means the sum is to 

be taken over all values of j, A double summation (one summation fol¬ 
lowed by another) is indicated by a double S. 
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charge on the jih ion (e is the charge on the .electron), being, 

of course, the charge on the Hh ion, ^ and Uj is the distance between 

the ith ion and the jth ion. The contributions to this sum come 

largely from the ions in the immediate neighborhood of the iih 

ion, so that if the number of ions is large enough th(i value of the 

sum is independcmt of their number. This is true because there is 

practically complete cancellation of the contribution from positive 

and negative distant ions; there is as much positive as negative 

charge in tho crystal, and the positive and negative charges are 

close to each other; so a distant positive charge will be balanced in 

its effect on the ^th ion by an almost equally distant negatives 

charge. The sum is thcirc^fore ciqual to (where r is the 

shortest anion-cation distance) multiplied by a factor of the 

order of magnitudci of one, and where the sign is negative becausci 

the ions cdosest to a givcai ion are all, or at. least predominantly, 

of opposite sign, giving a negative poi.ential (attraction). In 

simple crystals like the alkali halides, the sum for any given ion 

is the same as that for any other ion, because they are all similarly 

placed in the crystal. To find the total energy of such a crystal, 

we can then multiply the sum ZiZ^e^/vij by the number of 

ions and divide by 2 (it is necessary to divide by 2 because the 

potential of any ion du(^ to a second ion is exactly the same thing 

as the potential of the second ion due to the first—by considering 

the potential of any ion due to all the other ions, then summing 

again over all ions, wo include the mutual potential of all pairs 

of ions twice). In other more complicated types of crystal, 

there may be different kinds of ions placed in different ways, 

each one with its own potential; but in any case the electrostatic 

energy of the crystal will be equal to ZiZj/rij, and this 

sum will again be proportional to N, the number of molecules 
in the crystal. The sum can be expressed in terms of 7% iV, and a 

constant depending solely on the geometry of the crystal. Suppose 

we allow r to vary, keeping the crystal structure the same, i.e., 

holding each ion in the same relative position, so that every dis¬ 

tance ri7 changes in the same ratio as r; we shall then have 

1 The sign of the charge is given by the sign of Zi or Zj. 

* Although the ions in ionic crystals are not arranged in the form of mole¬ 

cules, nevertheless we may speak without ambiguity of the number of 
molecules, it being understood that this refers to the number of neutral 
groups, c.flr,, the number of pairs. NaCl, in a sodium chloride crvstal. 
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Tij — lijV where Uj is independent of r. Setting this into the sum, 

we have z^j/Uj = —NAe^jr^ where A is a quantity 

that depends only on the UjH and the and hence only on the 

geometry of the crystal and the charges on the ions. The values 

of A, the so-called ^‘Madelung constant’^ (after the investigator 

who made the first calculations of this constant), are given in 

Table 18 for several different types of crystal.^ (Actually 

A a- is given, wfiere a is the largest common factor of the 

valenc('s of t'he ions.) This then completes our description of 

the attractive forces in the crystal. 

It has been usual to represent the repulsive energy between two 

ions i and j by an approximation of the type hij/rif\ where bij 

and n are constants. The repulsive forces are known to be 

practically zero to fairly small values of r,; and then to rise 

rapidly as r,:y decreases. This behavior is reproduced by making 

n fairly large. It varies for different crystals but is of the order of 

magnitude' of 10; the method of evaluating it is discussed below. 

It is assumed to be the same for all ion pairs in a given crystal. 

The total repulsive energy of the crystal, like the electrostatic 

energy, is given by a double summation 

2^i^j Vij- iij- r- ' 
(5) 

where B is again a constant depending on the geometry of the 

crystal, {B, however, also depends on the magnitude of the 

repulsive forces.) The total potential energy per ‘‘molecule'' is 

thus given by 

(6) 

if r is allowed to vary,^ keeping the crystal structure the same. 

Equation (6) defines a kind of potential-energy curve in which 

U is defined as a function of r when the crystal is expanded or 

^ Shekmax, J., Chem. Rev,y 11, 107 (1932). 

2 We may assume that r varies arbitrarily, though an actual crystal 
naturally tends to an equilibrium condition in which r has a definite 

value. This equilibrium position may be changed by application of pres¬ 

sure. A process in which r changes, but in which departure from the 

condition of equilibrium is always infinitesimally small (f.c,, in which the 
pressure varied and always has the proper value), is said to be reversible. 
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compressed without displacement of the relative positions of tin* 

atoms. U becomes zero when r is infinit(\ The curve is very 

similar both in nature and in origin to that shown in Fig. 34, 

page 106, the only difference being that here w'e deal with th(^ 

interaction of many ions, whereas there we were considering but 

two. 

Table 18.— Values of the Madeluno Constant for Different Tyi*es 

OF Crystals 

Crystal type Examj)Ie 
Coordination 

number 
.lo 

Sodium chloride. NaCl 6 1.748 1.748 

Cesium chloride. CsCl 8 1.763 1.763 

Sphalerite. ZnS 4 1.638 1.638 

Wurtzite. ZnS 4 1.641 1 .641 

Fluorite. CaFa Ca, 8; F, 4 5.039 1 .680 

Rutile. TiOa Ti, 6; 0, 3 4.816 1.606 

Anatase. Ti02 Ti, 6; 0, 3 4.800 1.600 

/5f-Quartz. SiOa Si, 4; 0, 2 4.439 1.481) 

Cadmium iodide. CdT. Cd, 6 ! 4.71 
1 

1.570 

Note: The coordination nnrnberR are given to give the reader soino idea of the charac¬ 
teristics of the crystal. Souk; of the structures are discussed in Appendix IV, and for 
descriptions of the others the reader may see Sherman, reference 1, j). 224, or the “Struk- 
turbericht,” vol. I. In some (tases, there is some leeway as to the positions of the atoms 
in the designated type of crystal. In this case, the maximum value of the Madelung con¬ 
stant is given; it is not to bo expected that any existing crystal of that type will have a 
Madelung constant very different from the maximum. See Sherman, loc. cit,, p. 107. 
For Afi, see Sec. 14.6. 

Equation (6) represents only the potential energy, and neg^lects 

any thermal motion of the ions. There is still the thermal energy 

to be considered. This will be of the order of, or less than, SkT 

per ion, whtire k is the Boltzmann constant (see Appendix II), 

plus the zero-point energy, which will exist for vibrations of the 

crystal lattice just as it does for vibration of a molecule as seen 

in Secs. 9.2 and 9.4. This extra energy is in all cases extremely 

small compared with the potential energy and except in rather 

refined calculations (^an be neglected. 

To the approximation that it is correct to neglect the thermal 

energy, no heat will flow in or out of the crystal when the distance 

r, and consequently the volume per molecule V, is changed. (7, 

of course, changes for, by Eq. (6), it is a function of r. If the 

pressure on the crystal is P, and if the crystal is expanded 
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reversibly by an amount dF, it does work P dVy per molecule. 
This work is wholly supplied from the energy of the crystal, under 
the assumptions made, and so is equal to — dJ7. Thus we have 

P 
yjj 

dV 
Under ordinary conditions, the pressure is prac¬ 

tically equal to zero. A pressure of 1 atm., for example, is 
entirely iK^gligible compared with the pressure necessary to 
change V by an exceedingly small amount. If we set dU/dV = 0 
(which, if we assume that the relative positions of the atoms 
remain the same,^ is equivalcuit to dV/dr == 0 and, of course, 
means that the energy 11 has its minimum value), then this will 
be the ordinary condition of equilibrium for the crystal. That 
is, the crystal, if not under pressure, will naturally take the 
volume that makes this condition true. Let us call the value of 
r corresponding to this condition ro. Then we have, differen¬ 
tiating Eq. '(6) and setting the derivative equal to zero (multi¬ 
plying through by ro^), 

Aer^ 
7iB 

= 0. (7) 

If we are interested in the energy of the crystal at equilibrium, as 
is usually the case, we may readily find it from (6) by setting 
r = ro in that equation; and evaluating B from Eq. (7), we get 

It is thus seen that the energy of formation of the crystal from 
the ions (generally known as the ^Tattice energy'' of the crystaP) 
can be found if n can be determined. 

Since A and ro may be taken as known, Eq. (7) gives one rela¬ 
tion between B and n. If we could find one more relation 
between them, they could both be evaluated ^‘oxp(^ri men tally." 

^ We arc certainly free to imagine and deal with expansions and contrac¬ 
tions of the crystal in which this is tnie, whether it is alway.s true in actual 

practice or not. We know that the most stable condition of the crystal 

must be stable with respect to changes in which t he relative positions remain 
the same, as well as all others, and our considerations, therefore, give a 
necessary condition for the state of equilibrium. In other words, if we 
have equilibrium, dV /dr » 0 must hold. 

* Uo always has a negative value; the lattice energy is generaUy taken 
as the positive quantity, — C/o. 
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This second relation is furnished by the measurement of the 
compressibility of the crystal. The compressibility is defined 
as the relative decrease in volume per unit pressure applied. 
This may be written as 

(9) 

where V is the molecular volume and P the applied pressure. 
di U 

Since P = if all the energy of the crystal is potential 

energy, we also have 
dP_ 
dF"" 

d^U 
dV^ 

Jy2 By Eq. (9), this gives 

~ = -L 
dV kV' 

(10) 

dP 

V is proportional to if the atoms remain in the same relative 
positions, and the constant of proportionality is readily found 
if the geometry of the crystal is known. Let us call this constant 
a. Furtherniore, U is given as a function of r by Eq. (6). The 
various terms in Eq. (10) may, therefore, be evaluated; it is 
found that 

AAe^ n{n + 3)B _ 
(10a) 

If K is measured under conditions such that the volume of the 
crystal has its normal value, i.e.y when r = ro, then, since rn and 
all other quantities in the equation except B and 7i arc known, 
this gives the second relation between the latter quantities. 

The compressibility of the alkali halides has been measured by 
Slater,^ who extrapolated his results to absolute zero. The 
kinetic energy of the latticci, which in our consideration has been 
neglected, may well be expected to have a greater effect on the 
compressibility, which involves a second derivative, than on the 
energy of the crystal, so that in calculating values of ro and n it is 
obviously best to make the extrapolation to absolute zero. 

Pauling^ has used the following values for n for ions with 
electron structure of the type indicated: He (e.g., Be*^"^, 

^ Slatbr, Phps. Rev., 23, 488 (1924). 
* Pauling, L. Am. Chem. Soc., 49, 772 (1927). 
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5; Ne, 7; A, Cu+ 9; Kr, Ag+» 10; Xo, Au+ 12. In the case of 
compounds containing ions with different electron configurations, 
the average value was used for n. In. the limited number of 
cases in which data are available, these values check fairly well 
with th(j experiments (s(‘e also end of Sec. 14.6). No data are 
available for the ions with an outer shell of eighteen, however. 

The values of n are far from (*ertain, but fortunately it is not 
necessary for 7i to be known v(Ty accurat('ly in order to be able to 
calcailate the energy of a crystal with a fair degree of accuracy. 
This is readily seen from the expression for the enc^rgy of a crystal, 
as giveii by Eq. (8). An error of 1 in n will make an error of 
about one-nth part in the term 1/n of Etp (8), which in turn 
contributes about 1/n of the energy. Thus an error of 1 in n 
will make a fractional error of 1/n- in the energy, which would 
vary from 4 per cent for n = 5 to h'ss than 1 per cent; for n = 12. 
Sh(irman b(4ieves that the error in actual cas(‘.s will not usually 
exceed 3 per cent. 

There is some probability of error du(^ to the approximate form 
which has been taken for the repulsive^ potential. Evalu¬ 

ating B and n by us(^ of Eqs. (7) and (10a) amounts to determin¬ 
ing B and n in such a way that the first and second derivatives 
of the repulsive part of the potential hav(' the (correct values at 
r = ro. This, of course, does not necessarily mean that the 
repulsive potential itself will hav(^ the right value at r = ro, 
and the correctness of the assumption will depend upon the 
validity of our form of approximation. 

Another type of approximation, which is probably preferable 
from the theoretical point of view and which does not give very 
different results from the approximation already used, is one 

of the form be ^, where b and p are constants, so that, instead of 
(6), wo write 

Ae- ~t 
U = ——“ + he (11) 

This form of repulsive potential has certain theoretical advan¬ 
tages. It was first used in the actual calculation of crystal 
energies, a subject to which we shall rev(;rt later, by Born and 
Mayer. ^ The repulsive potential rises the more suddenly and 

^ Born and Maybe, Zeit8. Physiky 76,1 (1932). Actually we have used a 
somewhat oversimplified form for the repulsive potential in Eq. (11). Born 
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rapidly the smaller p so that ro/p (a dimensionless quantity) 
is in a certain sense the counterpart of n of Eq. (6) and it also can 
be evaluated by a consideration of the compressibility of tin* 
crystal. For details, the paper of Born and Mayer must he con¬ 
sulted. With a potential of the form (11), we get in place of 

Eq. (8) 

in which it will be soon that th(' term \/n is rophu*od just by p/r,). 
It is worthy of note that the valu(‘ of p as d(*t<u inined by the 

compn‘ssibiliti(is was found by Born and Maycu* to liav(^ nearly 
the same value', namely, 0.345A., for all the alkali halid(*s. With 
the single exception of lithium iodid(‘, in which cast^ Born and 
Mayer belic've^ the compressibility may be in error, th(^ valuers 
range between 0.310 and 0.384A. In finding the values of p, 

Born and Mayca* used a somewhat more exact form for the 
repulsive potential^ and took into account a number of small 
corrections to th(‘ formula (11) which also of cours(' enter into 
the expression connecting the compn'ssibility with p. Instead 
of attempting to estimate the (compressibility at 0°K., they set 
up a thermodynamic ('xjincssion (involving tluc coefficient of 
thermal (expansion and the change of the (!ompr<\ssibility with 
temperature and pnvssurc^—all at room temperature) by means 
of which it was possibke to relate' the deisired quantity p with the 
comprc'ssibility at room teiniierature. Enough data were avail¬ 
able for nine alkali halides to carry out the calculations, and 
estimates could be made for other alkali halides. In addition, 
they took into account the van der Waals forces between the 
ions, which cause further modifications in the expnessions used 
in the determination of p. The van der Waals force's, as 
explained in Chap. XVII, result from mutual polarization of the 
ions. The motion of the electrons in an ion causes a temporary 
dipole moment in that ion, which in turn induces a dipole moment 
in neighboring ions in such a direction as to producce attraction 
between the ions. The 'pernuinent charge on an ion (say ion I— 

and Mayer have made use of a more complicated form, arising because they 

took into account explicitly the repulsive forces of the more distant, as well 

as the nearest neighbors of a givem ion. 
^ See preceding footnote. 
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lonH 

Ion I 

Fig. 52.---IJlustrating the (fistortion 
of a negative ion by two positive ions. 
The induced dipoles cancel as far as 
their moments are c.oncerncd but may 
not be located at the center c,f the 
negative ion. 

see Fig. 52) will also induce a polarization in a neighboring ion 
(ion II) so as to cause attraction between them; however, there 

will be another ion (ion III) on 
the other side of ion II, and the 
electric moment produced in 

I Ion HI ion II by the permanent charge 
of ion III ^vill just cancel that 
produced by ion I, so that no 
net attraction occurs. This, of 
course, assumes that the dipoles 
produced in ion II may be taken 
as located exactly at the center 

of this ion, so that the dipole producc'd in ion II by ion III has 
as much effect on ion I as the dipole produced in ion II by ion I, 
itself. If ion II is readily distorted, this will not be the case, 
and there will then be an ('xtra attraction due to this cause 
between the ion pairs; such an attraction may be considered to 
be due to an incipient covalent bindinia: force. 

14.6. Interionic Distances in Real Crystals.—Since an ion is 
not simply a hard sphere like a ijilliard ball, but has a certain 
comprcssiliility, the actual distances between ions in a crystal 
will depend not only upon the extension in space of the electron 
atmospheres of the ions, but also upon the forces the ions exert 
on each other, ^ as expressed, for example, by Eq. (7). Since the 
radii of the alkali and halide ions were determined from dis¬ 
tances in uni-univalent crystals with sodium chloride structures, 
and since the radii of the other ions in Table 16 really represent 
extensions in space of the electron cloud about the ion, deter¬ 
mined by comparing with alkali and halide ions, it is seen that 
the distances in a crystal should be given by such radii only if the 
crystal w^ere a uni-univalent crystal with sodium chloride struc¬ 
ture. But, of course, the polyvalent ions cannot form uni-uni- 
valent crystals and they may not have the sodium chloride 
structure. Let us, therefore, define what may be called a 
^‘reduced” Madelung constant by the equation 

. ___ ZcZAof 
A - —2- * (13) 

‘ Zaciiariasen, Zeits, KHst.^ 80, 137 (1931). See, also, Goldschmidt, 
rof(‘rcii(:c 1, p. 218. We have departed somewhat from Zachariasen’s 
procedure. 
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where Zc and Za are the absolute values of the charges (expressed 
as multiples of e) of cation and anion, respectively, / is the 
number of ions in the molecule (z.c., / = 2 for NaCl, / == 3 for 
CaCU, etc.), and Ao depends solely upon the geometry of the 
crystal and not on the valence. Thus it will be clear from the 
expressions for the attractive potentials at the beginning of 
Sec. 14.5, taken together with Eq. (13), that Ao will be the same 
for NaCl and MgO, both of which have the sodium chloride 
structure, and for both of which, of course, / = 2. It will be 
observed from Table 18 that Ao does not deijend very strongly on 
the geometry of the crystal, and the value of A is determined 
mostly by Zey Zaj and /. As a first approximation, we shall con¬ 
sider A 0 to be independent of the form of the crystal. 

In the case of the repulsive term, we can write approximately 

B^f^C^Boy (14) 

where fc is the number of cations per molecule, Cat the coordina¬ 
tion number of the cation, and Bo/r" the repulsiv^e potential 
between a single pair of ions. The total number of contacts 
between anion and cation in a crystal having but one kind of cation 
is /cCnN, where N is the number of molecules. Therefore, if we 
take into account only the potential between adjacent atoms and 
assume that the anion-cation distances for all Cn contacts of a 
given ion have the same value, namely, r, then the total repulsive 
potential of the crystal is equal to fcNC^Bo/r^y so that Eq. (14) 
follows from Eq. (5). Substituting Eqs. (13) and (14) into 
Eq. (7) and solving for vq give 

The radii of Table 16 give the correct value of vo for crystals of 
the sodium chloride type, which are crystals with Za — Zc \y 

with 2/c// == 1, and with Cn = 6. We now assume on the basis 
of Eq. (15) that if these quantities do not have these values, the 
value of To obtained from Table 16 may be corrected by multiply¬ 

ing by (2/cCjv/62tf2Ja/)^. Pauling^s set of values of n (see Sec. 
14.5) can be used. The calculation is easily made by means of 
tables constructed by Zachariasen. 
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In Table 19 are presented the results for the alkaline earth 
oxides, sulfides, and selenides, which have the sodium chloride 

Table 19.—Distances for Alkaline Earth Oxides, Etc. 

(Ill Angstroms) 

Mg-^+ Ca“'-+ Sr++ Ba++ 

0- , calc. 2.05 2.41 2.56 2.79 
obs. 2.10 2.40 2.58 2.77 

S-“, calc. 2.54 2.83 2.98 3.21 
obs. 2.60 2.84 3.01 3.19 

8(r- ", calc. 2.72 2.97 3.12 3.34 
obs. 2.73 2.90 3.12 3.30 

Te- calc. 3.18 3.32 3.55 
obs. .... 3.17 3.33 3.50 

Data from “Strukturbericht.” Calculated values for MgS and MgSe corrected for 
anion-auion contact. 

strucituro. The excellent agreement is perhaps the best justifica¬ 
tion for the use of Pauling^s values of n in attempting to make a 
rough estimate of the expected interionic distance in an ionic 
crystal, which can be compared with experimental distances in 
connection with the study of the transition between ionic and 
covalent binding. The discussion of other cases is deferred until 
Chap. XVI, after the consideration of covalent crystals. 

Pauling\s values of n do not give so completely satisfactory 
a result when an attempt is made to find the contraction on going 
from a coordination number of six to a coordination number of one 
(vaporization of a sodium chloride crystal). This is treated in 
Sec. 14.9. 

14.7. The Bom-Haber Cycle.—In the preceding pages of 
this chapter, we have considered the energy of formation of a 
crystal from the ions which compose it. In most cases, it is not 
possible to measure this energy directly, but the energy of forma¬ 
tion of the crystal from the elements is known. The latter can be 
decomposed into the energies of a number of processes, which 
constitute h3rpothetical intermediate steps in the formation of 
the crystal. Let us consider, for example, the formation of 
sodium chloride from elementary solid sodium and elementary 
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gaseous chlorine. The reaction may be supposed to take place 
either directly or through the following steps 

S I 
Na (solid) - 

ICI2 (gas) • 

► Na (gas) • ► Na'^ (gas) Ls;-x U, 
^ NaCl (solid) 

► Cl (gas) ■ ► Cl” (gas)-f 

The energy placed above each arrow indicates the energy 
absorbed by the system in the particular step. If the cycle takes 
place at the absolute zero of temperature, S is the energy of sub¬ 
limation of sodium at absolute zero, / is the ionization potential, 
D is the energy of dissociation of chlorine at absolute zero, 
F is the electron affinity, and — Uo is the lattice energy. S and I 

represent the energy absorbed when the process involved goes 
in the direction indicated, and D is the energy absorbed when 
the reaction CI2 (gas) —> 2C1 (gas) takes place. As energy is 
actually absorbed in tliese proc.esscs, they are all positive quan¬ 
tities, F is the energy absorbed when an electron is removed 
from Cl"*; it is also a positive quantity. When the reverse 
reaction takes place, the energy absorbed is — F (i.c., energy is 
actually evolved). Uo is given, at least in good approximation, 
by Eq. (8) or (12). In Eqs. (8) and (12), the energy of the 
crystal is assumed to ho zero when the ions are completely 
separated, and Uo is a negative quantity. The positive quantity 
— Uoy the lattice energy, is the energy absorbed when the ions are 
separated. In the reverse reaction, energy Uo is absorbed; 
since Uo is negative, energy is actually evolved. The total 
energy of formation of the crystal from the elementary substances 
Q [energy absorbed in the reaction Na (solid) + iCU (gas) NaCl 
(solid)] is given by 

Q ^S + I + iD --F+Uo. (16) 

Q is accurately known experimentally for many substances, as are 
all the quantities in Eq. (16) except F and Uo* The latter can 
be calculated as indicated in Sec. 14.5, and the equation may 
thus be used to obtain F, As a matter of fact, there have been 
recently several direct experimental determinations of F, but 
these are probably not to be regarded as being so reliable as the 

^Soe, e.g.t Born: “Atomtheorie des festen Zustands,'' B. G. Teubner, 

Leipzig, 1923. 
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determination from Eq. (16). We shall therefore use this equa¬ 
tion for the purpose of calculating F for the various halogens. 
The reliability of the results may then be estimated from the 
consistency of the values F obtains from different compounds of a 
given halogen. (Concerning energy units, see note, page 461.) 

Calculations of this type were, made by Mayer and Helmholz^ 
for the alkali halides and have recently been improved by 
Huggins.2 In calculating the lattice energy, Eq. (12) was used, 
but with appropriate corrections for van der Waals forces,etc., 
as discussed in Sec. 14.5. As already noted, p was found not 
to vary greatly from crystal to crystal, and in calculating Uo the 
same (mean) value was used for all the salts. Born and Mayer 
took p = O.345A., and Huggins took p = 0.333. The zero-point 
energy of vibration of the crystals was also corrected for. The 
values for Uo are given in Table 20. These follow Huggins but 
have been corrected to room temperature by taking into account 
the (relatively very small) thermal energy of the crystal * and the 
gaseous ions. The tabulated values also include the heat 
absorbed in order to furnish energy for the work done against 
the atmosphere when the process is carried out at constant pres¬ 
sure; in other words, they are the changes in heat content (see 
Appendix II), which are the values obtained directly experi- 

1 Mayer and Helmholz, Zeits. Physiky 76, 19 (1932). 
* Huggins, J. Chem, Phys., 6, 143 (1937). Verwey and de Boer [Rec. 

trav, chim. Pays-Basy 66, 431 (1936)] have also made a recalculation, but they 
merely corrected the van der Waals potential used by Mayer and Helmholz 
without considering how this change affected th^equilibriuin condition, 
and hence p and other dependent quantitie^s; the latter changes partially 
cancel the original change in the van der Waals potential. 

* The effect of the van der Waals forces is small but not entirely negligible. 
Their tjontribution to the attractive potential ranges from around 6 (Li salts) 
to 12 kg.-cal. (Cs salts). Becent work of May, Phys. Rev.y 62, 339 (1937), 
and 64, 629 (1938), indicates that the contribution may possibly be larger. 

If the van der Waals forces are neglected altogether, this will be partially 
compensated for by using in Eq. (12) the different value of p which is 
obtained from the compressibility by neglecting the van der Waals forces. 
Some idea of how much the van der Waals force affects p may be obtained 
by calculating I/o as Huggins has done, and then reversing the process, 
calculating an effective value of p directly from Eq. (12) without making the 
corrections. Such values of p are given for the alkali halides in Table 27. 

* Following Mayer and Helmholz. Energies (except I and F) in all tables 
throughout the chapter are for room temperature and, unless otherwise 
noted, contain the work done against the atmosphere. 
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mentally. The other quantities also include the work done 
against the atmosphere and are for room temperature, except for 
the ionization potentials. The average kinetic energies of a 
gaseous atom and a gaseous ion at any temperature will be equal; 
so taking the ionization potential at 0°K, merely neglects the 

Table 20.—The Bokn-Habek Cycle for the Alkali Halides 

(All energies in kilograiii-calorios) 

Salt -Q S I hD -Uo F AvF 

LiF. 145.6 39.0 123.8 31.8 245.1 95.1 
NaF. 136.0 25.9 118.0 31.8 216.4 95.3 

KF. 134.5 19.8 99.7 31.8 193.2 92.6 95.0 
RbF. 133.2 18.9 95.9 31.8 183.4 96.4 

CsF. 131.7 18.8 89.4 31.8 175.9 95.8 

LiCl. 97.6 39.0 123.8 28.9 201.1 88.2 

NaCl. 98.3 25.9 118.0 28.9 184,0 87.1 

KCl. 104.4 19.8 99.7 28.9 168.3 84.5 87.3 

KbCl. 105.1 18.9 95.9 28.9 162.1 86.7 

CsCl. 106.3 18,8 89.4 28.9 153.2 90.2 

LiBr. 87.6 39.0 123.8 23.1 189.9 83.6 

NaBr. 90.6 25.9 118.0 23.1 175.9 8K7 

KBr. 97.9 19.8 99.7 23.1 161.5 79.0 81.8 
RbBr. 99.6 18.9 95.9 23.1 156.1 81.4 

CsBr. 101.5 18.8 89.4 23.1 149.6 83.2 

Lil. 72.5 39.0 123.8 18.1 176.2 77.2 

Nal. 76.7 25.9 118.0 18.1 164.4 74.3 
KT. 86.3 19.8 99.7 18.1 152.5 71.4 74.3 

Rbl. 88.5 , ,;a8.9 95.9 18.1 147.9 73.5 

Csl. 91.4 18.8 89.4 18.1 142.4 75.3 

Experirnentiil quantitips fronj Bichowsky and Rossini, “Thermochemistry of the Chemical 
Substances,’’ Reinhold Publishing Corporation, 1930. 

kinetic energy (and the work done against the atmosphere) of the 
free electrons. The resulting electron affinity then fails to include 
the same quantity, so that the electron affinity obtained is 
actually that for 0°K. This is presented in the last column of 
the table, together wdth the average for each of the halogens. 

The values given for the electron affinities are probably 
correct to wdthin 5 kg.-cal. and are seen to decrease, as expected, 
from fluorine to iodine. The fact that, within rather small 
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limits, the same electron affinity is obtained for a given halogen 
regardless of the salt used is evidence in favor of the correctness 
of the assumptions made concerning the nature of the forces 
operating in these crystals, and we can feel fairly certain that 
they are chiefly electrostatic and repulsive forces as supposed.^ 

These conclusions are further supported by some experiments 
in which the equilibrium between ions and a solid salt has been 
measured directly. Knowing the equilibrium constant, for 
example, for the reaction KI (solid) ^ K+ (gas) + 1“ (gas), 
together with already known thermodynamic data (entropies 
of the salt and of the ions—see footnote, page 406) enables one 
to obtain the energy of the reaction by means of a well-known 
thermodynamic relation [see Eq. (6) of Appendix II]. 

The experiment consists of heating the salt to a high tempera¬ 
ture in a graphite furnace with a small opening, the whole being 
in a vacuum. The number of ions issuing from the hole in the 
furnace is determined by measuring the current they carry due 
to their electrical charges. From the laws of efflux of gases at 
low pressures, the concentration of ions in the furnace may then 
be calculated. [As a matter of fact, the ions are not actually in 
equilibrium with the salt, but with the gaseous molecules pro¬ 
duced by heating the salt which were themselves heated to a 
higher temperature, so that actually the equilibrium constant for 
the reaction KI (gas) ^ K"*" (gas) + 1“ (gas), for example, was 
measured and the value for the reaction KI (solid) KI (gas) 
taken from data of Wartenberg and others, In this way, 

^ This is probably a fair statement, though the lattice may be rather 

insensitive to deviations from the assumed electrostatic character of the 

forces in the crystal; see, c.^., Ewing and Seitz, Phys. Rev., 60, 760 (1936), 
who believe that the electrons are considerably displaced from the negative 

toward the positive ion. Pauling (“The Nature of the Chemical Bond, 
pp. 69ff., Cornell University Press, 1939) has attempted to estimate quanti¬ 

tatively the degree to which these bonds are ionic, but the estimate is only 

tentative. 
We may mention at this point other papers which attempt to penetrate 

more deeply into the fundamentals of the crystal lattice energy calculations, 

for example, Jensen, Zeits. Physik, 101, 164 (1936), Neugebauer and Gk)m- 
bds, ibid., 89, 480 (1934), Landshofl, ibid., 102, 201 (1936). See also 
Wasastjema, Phil. Trans. Roy. Soc. London, A287, 106 (1938). 

*v. Wartenberg and Albrecht, Zeits. Elektrochem., 27, 164 (1921); 

V. Wartenberg and Schulz, ibid., 27, 570 (1921); Sommbrmbybr, ZeiU. 
Physik, 66, 554 (1929). 
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Mayer and Helmholz^ found the following values of the lattice 
energy for several salts (in kilogram-calories at 

KI Csl RbBr NaCl 

153.8 141.5 151.3 181.3 

Tandon,^ using a similar method, has obtained the following 
results: 

Nal KI NaBr KBr 

166.4 150.6 176.3 159.7 

These results are in satisfactory agreement with the values in 
Table 20, and this agreement lends further support to the belief 
that the forces in these crystals are of the ionic type. 

Further support comes to the theory from the direct measure¬ 
ment of the electron affinity of iodine. Sutton and Mayer^ have 
measured the rates of emission of electrons and negative ions 
from a tungsten filament heated to a high temperature in the 
presence of iodine. Electrons may be separated from negative 
ions by taking advantage of the much greater deflec^tion of 
electrons in a magnetic field, due to their small mass. It is 
assumed that practically all iodine molecules striking the surface 
(their number per second can be calculated from the pressure of 
iodine and the area of the wire) are dissociated. Some appear ajs 
atoms, but others are converted to negative ions by the electrons 
coming from the wire, and it is assumed that equilibrium is 
established at the surface of the wire between atoms, ions, and 
electrons. There are then enough data to calculate the equilib¬ 
rium constant for the reaction I (gas) + electron (gas) ^ I~ (gas). 
This gives the free energy change in the reaction; the entropy 
change can be calculated theoretically, and so the energy of the 
reaction can be calculated from the considerations of Appendix 
H. In this way, Sutton and Mayer obtain 72.4 kg.-cal. for the 
electron affinity of iodine. The uncertainty in this result may 
be several kilogram-calories, and it would seem to be in satis¬ 
factory agreement with the value obtained from Table 20. More 

1 Mayer, Zeits. Physik^ 61, 798 (1930); Mayer and Helmholz, tWd, 

76, 22 (1932); Helmholz and Mayer, J. Chem. Phya,^ 2, 245 (1934). 

*Tandon, Proc. Nat. Acad. Sci. India^ 7, 102 (1937); Indian J. Phya., 
11, 99 (1937). 

! Sutton and Mayer, J. Chem. Phya.^ 8, 20 (1935). 
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recently Glockler and Calvin^ have, by means of an experiment 
based on the same principles but different in details, obtained a 
value of 74.6 kg.-cal. 

Similar direct determinations for bromine have led to estimates 
of the electron affinity of^ 88 and"* 80 kg.-cal. 

Once reliable values for th(i electron affinities are available, 
it is possible to use them, in conjunction with Eq. (16) (or the 
appropriate modification of it if other than a uni-univalent salt is 
being considered), to find an ‘^experimentar’ value of f/o, pro¬ 
vided the other quantities in the equation are known experi- 

Table 21.—The Born-Haber Cycle for Cuprous, Silver, and Tiiallous 

Halides 

(All energies in kilogram-calories) 

Salt -Q 8 I iD F 
-Uo 

(expt.) 
- Uo 

(theor.) 
Uo - Uo 

(theor.) (expt.) 

Van der Waals 
contribution 

to — Uo, theor. 

CuCl. 34.3 81.2 177.4 28.9 87.3 234.5 216 18 (15) 
CuBr. 30.6 81.2 177.4 23.1 81.8 230.4 208 22 (15) 
Cul. 25.2 81.2 177.4 18.1 74.3 227.0 199 29 (17) 

AgF. 48,7 68.0 174.0 31,8 95.0 227.5 210 9 (24) 
AgCl. 30.3 68,0 174.0 28.9 87.3 213.0 203 11 (29) 
AgBr. 27.6 68.0 174.0 23.1 '81.8 210.9 397 14 (27) 
Agl. 22.4 68.0 174,0 18.1 74.3 208.2 190 18 (31) 

TlCl. 48.6 40 140.2 28,9 87.3 170 167 3 (28) 
TlBr. 45.3 40 140,2 23,1 81.8 167 164 3 (28) 
TII. 38.5 40 140.2 18.1 74.3 162 169 3 (30) 

Experimental values from Bichoweky and Rossini, "Thermochemistry of the Chemical 
Substances," Reiuhold Publishing Corporation, 1936. 

mentally. Uo may then be calculated theoretically, as in the 
case-of the alkali halides, and the theoretical and experimental 
values compared. This has been done by Mayer and Mayer 
and Levy^ for a number of the silver, thallous, and cuprous 

1 Glockler and Calvin, J, Chem. Phys,, 3, 771 (1935), 
® Glockler and Calvin, ibid.f 4, 492 (1936). 

® Wbisblatt and Mayer, Baltimore meeting of the American Chemical 

Society, April, 1939. 
* Mayer, J, Chem. Phys.f 1, 327 (1933); Mayer and Levy, ibid.f 1, 647 

(1933). These authors have corrected for van der Waals forces, following 

Mayer, J. Chem. Phys.^ 1, 270 (1933). The contribution of the van der 

Waals potential to — f/o (theor.) is given in Table 21, in parentheses, so 
that the,jreader may form some judgment as to its importance. 
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halides. In these calculations the important constants in the 
repulsive part of the potential were obtained from the com¬ 
pressibilities, and allowance was made for the van der Waals 
forces. The results are presented in Table 21. It is seen that 
in the case of the silver halides the agreement is good for the 
fluoride, but that th(^ discrepancy between experimental and 
theoretical values increases with the size of the halide ion and is 
rather considerable in the case of silver iodide. It seems probable 
that this is due to the silver iodide bond being partly covalent. 
The copper salts appear to be more covalent than the silver 

Table 22.—Results of the Application of the Bohn-Haber Cyi^le to 

Halide Crystals 

Crystal -f/o (expt.) — lJ(i (theor.) lU (theor.) — ?/o (expt.) 

MgFs. 088.8 696.8 -8.0 

CaF 2. 617.2 617.7 -0.5 

SrFa. 587.5 l>87.r) 0.0 

BaFs. 553.4 556.4 -3.0 

MnFs. 645.0 656.3 -11.3 

FeFs. 668.6 657.7 10.9 

NiFs. 703,2 697.1 6.1 

CdFa. 661.9 628.7 33.2 

PbFa. 589.7 580.7 9.0 

SrCb. 501.3 493.6 7.7 

Cdl2. 563.1 473.6 89.5 

Pbl2.. 497.1 457.7 39.4 

salts, which is expected since copper ion is smaller. In the case 
of the thallous salts, the theoretical and experimental values of 
I/o agree within the limits of error, and it seems unlikely that the 
thallous halide bonds are appreciably covalent. Inasmuch as 
thallium has three valence electrons, it would hardly be expected 
to have a covalent bond in a compound in which it has lost only 
one valence electron. 

It will be seen, nevertheless, that even in the cases in which 
discrepancy is greatest, the assumption of ionic binding gives a 
fairly good value for the binding energy. This is true for a 
large number of salts of metals in the transition region of the 
periodic table, as will be seen from the accompanying Table 22 
of experimental and calculated values of Uo, which is taken from 
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the work of Sherman.^ These calculated values of l/o are prob¬ 
ably not so accurate as those of Mayer and his collaborators. 
Equation (6) rather than Eq. (11) was used to approximate the 
potential, for one thing, and no corrections were made for van der 
Waals forces; nevertheless, these values of Sherman\s are 

Table 23.—The Born-Haber Cycle for the Alkaline Earth Oxides, 

SuLFn>Bs, and Selenides 

Crystal n -Q S / -Uo F Av. F 

MgO. 7.0 146 36.5 520.6 59.2 940.1 -178 
CaO. 
SrO. 

8.0 
8.5 

151.7 
141 

47.5 

47 
412.9 
383.8 

59.2 
59.2 

S42.1 
790.9 

-171 
-160 

-166.5 

BaO. 9.5 133 49.1 349.0 59.2 747.0 -157 

MgS. 8.0 82.2 36.5 520.6 53 778.3 -86 
CaS. 9.0 114 47.5 412.9 53 721.8 -95 

-92 
SrS. 9.5 113 47 383.8 53 687.4 -91 
BaS. 10.5 111 49.1 349.0 53 655.9 -94 

CaSe. 9.5 81.8 47.5 412.9 51 698.8 -106 
SrSe. 10.0 83.4 47 383.8 51 667.1 -102 -105 
BaSe. 11.0 81.3 49.1 349.0 

1 
51 637.1 -107 

In the case of 8 and Se, the quantity \D includes the heat of sublimation and Q is the 
energy of formation from solid S or Se; \D has been corrected to conform to Table 7. 
— r/o was calculated by Sherman from Eq. (8), using the values of n given. It contains the 
work done against the atmosphere, so it is a A/f, rather than a AE, term. 

Note: A recent recalculation of P for oxygen (de Boer and Verwey, Rec. trav. chim. Pays- 

Bus, 65, 443 (1936)1 yields a value of —173. An earlier calculation by Mayer and Maltbie, 
Zeita. Phyaik, 75, 748 (1932), using the method of Born and Mayer, gave less consistent 
results for the oxides and sulfides than the calculation of Sherman. 

sufficiently good to illustrate the point.^ The largest dis¬ 
crepancy occurs in the case of cadmium iodide, which is undoubt¬ 
edly a bad example of an ionic crystal (see Chap. XIII). The 
apprdlximate agreement between theory and experiment in the 

1 Sherman, Chem, Rev., 11, 93 (1932). 

* The experimental value of f/o iu Tables 22 and 24 is obtained from the 
available data by the use of Eq. (16) (properly modified if the number of 

anions or cations in the molecule is greater than 1). The values of heats of 
formation and sublimation given by Sherman have been compared with the 

more recent tabulation of Bichowsky and Rossini (footnote, Table 20) and a 
recalculation made wherever the differences were more than a few kilogram- 
calories. In Table 22, no allowance was made for the slightly different value 

of F obtained here, because Sherman’s values of I7o were all calculated from 

Eq. (8) rather than Eq. (12), and it seemed more consistent to use his values 
of F. Eniargies, Tables 22 to 25 are in kilogram-calories. 
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case of all these salts (which is to be contrasted with the results 
obtained when we attempted in Sec. 12.6 to calculate the binding 
energy of chlorine fluoride on the assumption that the bond was 
ionic^) maybe an indication that the bonds in all these compounds 
have only a relatively small amount of (covalent character. We 
cannot be certain of this conclusion, however, for we do not know 
just what results might be reasonably exp(^cted on the basis of a 
purely covalent bond, and it seems quite possible that they would 
not be very different. 

The Born-Haber cycle has been applied^ to the alkaline earth 
oxides, sulfides, and selenides, yielding values for the double 
electron affinities of oxygen, sulfur, and selenium. The results 
are given in Table 23. It will be noted that the electron affinities 
in this case are negative because it requires energy in order to 
put on the second electron after the atom is already negatively 
charged. The values of the electron affinities obtained from 
Table 23 have been used, as in the case of the halides, to obtain 
theoretical and experimental values of f/o for oxides, sulfides, 
and selenides, the results being given in Table 24. It will be 
observed again that although some discrepancies occur they are 
not exceedingly large. 

Equation (16) may also be used to find a value of f/o for the 
alkali hydrides, in which hydrogen plays the role of a negative 
ion,® for the electron affinity of hydrogen has been quite accurately 
determined to be 16.4 kg.-cal. by a wave mechanical calculation.^ 

^ It is to be remarked that in Sec. 12.6 we were considering the reaction 

CIF -+01 -1- F, whose energy is not strictly comparable with the lattice 
energy, which is the energy to decompose a crystal into ions. However, 

the energy of the comparable reaction, CIF Cl^ -f- F”, is 12.58 electron 

volts, whereas the calculated energy (Sec. 12.6) is 8.78. It is seen that the 

percentage error is considerably greater than in any of the cases of Table 22. 

* Sherman, Chem. Rev., 11, 149 (1932). 
* Sherman, Chem. Rev.y 11, 159 (1932). These substances are entirely 

saltlike in their properties, and there is every reason to believe that they 

consist of positively charged alkali ions and H“ held together by electro¬ 
static forces. When molten they ox)nduct electricity, H2 appearing at the 
anode. All the crystals have the sodium chloride structure. 

Early attempts to get the electron affinity of H from the Born-Haber 
cycle and an estimate of Uu were made by Kasarnowsky, Zeits. Physik, 38, 
12 (19^), and Zeits. anorg. allgem. Chem.^ 170, 311 (1928). 

^Bbthe, Zeits. Physiky 67, 815 (1929); Hyllbraas, Zeits. Physik, 60, 
624; 68,291 (1930). 
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The results are given in Table 25. In the case of these salts, 
it is not possible to compute t/o very exactly directly from Eq. (8) 

Table 24.—Results op the Applk^ation of the BonN-IlAUEH Cycle to 

Oxides, Sulfides, and Selenides 

Crystal -Uo (expt.) 1 ?
 

g
 

Uq (theor.) — Uo (expt.) 

Li20. 692 695 -3 
CU2O. 1 786 644 142 
Ag20. 714 585 129 
MnO. 929 912 17 
FeO. 937 944 -7 

CoO. 963 950 13 
NiO. 965 968 -3 
ZnO. 964 977 -13 
CdO. 913 867 46 

S11O2. 2812 2734 78 

PhOi. 2829 2620 209 
AI2O3... 3613 3708 -95 
Cr203. 3447(?) 3655 -208(?) 
NaaS. 523 516 7 
CU2S. 682 612 70 

MnS.i 798 788 10 

ZnS. 846 818 28 
CdS. 801 770 31 
HgS. 841 774 67 
PbS. 731 705 26 

Cu2Se. 689 599 90 
MnSe. 789 757 32 
ZnSe. 845 790 55 
CdSe./;. 803 745 58 
HgSe. 848 749 99 

PbSe. 739 684 55 

f/o (theor.) from Sherman, Chem. Rev., H, 154 (1932), (some correoied). Uo (expt.) from 
Sherman, but corrected when necessary to conform to Table 4 and Bichowsky and Rossini, 
“ Thermochemistry of the Chemical Substances,” — Uo contains the work done against the 
atmosphere, so is a AH, rather than a AE, term. 

or (12), because the compimsibilities are not kno^m. The 
calculation can be turned around, however, and Eq. (8) can be 
used to calculate a value of n from Uq. The values of n so 
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obtained are also included in Table 25. The results appear very 
reasonable, and Hyllcraas^ has succeeded in treating the many 

Table 25.—Application of the Bobn-Haber Cycle to the Alkali 

Hydrides 

Salt -Q — Uq (expt.) 7’0 j n 

LiH. 21.6 219.9 2.042 4.45 
NaH. 14 193.4 2.440 1 5.39 
KH. 10 i 165.0 2.850 5.28 
RbH. 12 162.3 3.018 6.42 
CsH. 12 

1 
155.7 3.188 1 6.92 

Recalculated from data in Bichowsky and ttosHini. “Thermochemistry of the Chemical 
Substances.” -- Ih contains the work done apcainst the atmosphere, so it is a A//, rather 
than a A£?, term, but n is calculated from the A/i’ term. 

clo(!tron problem of the lithium hydride lattice quantum mechan¬ 
ically, obtaining for the lattice energy a value of 219 kg.-cal. as 
compared with 220 from Table 25; he obtained a value for the 
interionic distance of 2.2lA. as compared with the experimental 
value of 2.O42A. 

14.8. The Stability of Salts of Different Valence Type.— 
Grimm and Herzfeld^ have made some interesting calculations 
intended to show why certain conceivable salts with ^‘odd’^ 
formulas, like NaF2 and CaCl, either do not exist or are unstable. 
Let us consider, for example, the reaction 

NaF2 NaF -f IF2 (17) 

If it can be shown that the tendency of this reaction to go is very 
great, then NaF2 will be unstable. The reaction can be con¬ 
sidered broken up into steps as follows 

-1/2 -/2+F lJ^-hD 
NaF2-> Na++ + 2r---^ Na+ -f- F" + F-> NaF + iFa (18) 

The energy absorbed in each, step is indicated above the arrow, 
— 1/2 and —U\ being the lattice energies for the reactions 
NaF2 Na^"^ + 2F“ and NaF Na+ + F”, respectively, I2 

the second ionization potential of sodium, and D the dissociation 
energy and F the electron affinity of fluorine. Grimm and 

1 Hylleraas, ibid.f 63, 771 (1930). His value neglects thermal and zero- 

point energy, etc. 
* Grimm and Herzfeld, Zeits. Physik, 19, 141 (1923). 

^ All substances in gaseous state except NaF2 and NaF. 
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Herzfeld make the assumption that the energy of the reaction 
NaF2 —»Na++ + 2F~ is the same as that of the reaction 
MgF2 Mg++ + 2F'", magnesium being the most nearly similar 
alkaline earth metal. This enables us to calculate the over-all 
energy for the reaction (17). We get for the energy absorbed 

Q -[/a - /2 4- F + t7i - = 689 - 1084 + 95 - 216 
- 32 = -548 kg.-cal. (19) 

Thus an enormous amount of energy is given out when reaction 
(17) goes to the right, and NaF2 will be very unstable. The fact 
that a gas is given off increases still more the tendency of (17) 
to go to the right, since the motion of gas molecules is less 
restricted than that of solids (see Appendix II). The energy 
is so great principally because of the high second ionization 
potential of the alkali metal. 

It is seen that it is extremely unlikely that sufficient error could 
arise from the approximations involved in the estimate of U2 to 
affect the result. As a matter of fact, our value of — J72 is 
probably an overestimate, for Na++ would probably have a larger 
radius than Mg++ since the nucleus of the latter has a greater 
positive charge. This would naturally result in the lattice 
energy of NaF2 being less than that of MgF2, giving Q a still 
more negative value. 

Sufficient data are given in the immediately preceding pages 
for the reader to convince himself that a similar result will hold 
for all alkali fluorides (though for CsF the value of —Q has gone 
down to about 100) and, since the fluorides have the greatest 
lattice energies, the other halides of ‘^odd” formula will be even 
less stable. 

We turn now to a consideration of the alkaline earth halides. 
For example, let us consider SrCh. If the reaction 

SrCh -> SrCl + iCh (20) 

does not tend to go, SrCU will be stable toward decomposition. 
This reaction may be analyzed into steps, as follows 4 

SrCla Sr++ + 2C1" Sr+ + Cl- + Cl SrCl + iCh (21) 

The only part of this scheme whose energy is unknown is 
Sr+ + Cl- —> SrCl. In this case, it is assumed that the reaction 

^ All stlbstances in gaseous state except SrCl2 and SrCl. . 
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has the same energy as Rb+ + Cl"* —> RbCI. This would be 
expected to give an overestimate of the energy evolved, or an 
underestimate of the energy absorbed, since Sr+would be expected 
to have a larger radius than Rb"^ on account of the valence 
electron, though it is true that it is not known just how the 
presence of this valence electron may affect the result otherwise. 
We find the energy absorbed when (20) goes to the right to be 
about 155 kg.-cal. This is so high that, in spite of the fact that 
gas is formed when the reaction goes to the right, there will be no 
tendency for this to occur. [The reaction (20) in which a gas 
is formed is somewhat, though not exactly, analogous to the 
boiling of a substance, and, when it is considered that substances 
with half that energy of vaporization boil at well over 1000°, it is 
readily understood that there will be no tendency for (20) to go.] 

It is also of interest to consider the reaction 

Sr 4- SrCb 2SrCl (22) 

The function of the metal may be thought of as the removal of 
the CI2 in (20) and thus the displacement of the equilibrium to 
the right, but (22) may be handled by itself and docs not 
involve the complication resulting from the formation of gas in the 
reaction. It may also be analyzed into steps, as follows: 

Sr (solid) + SrCl2 (solid) —> Sr++ (gas) + 2C1"' (gas) -|- Sr (gas) 
—> 2Sr+ (gas) + 2C1” (gas) 2SrCl (solid) (23) 

and it is found that the reaction requires the absorption of 
approximately 112 kg.-cal.^ The heats absorbed in the forma¬ 
tion of other subhalides have been calculated in similar fashion, 
and are presented in Table 26. In spite of the large energies of 
reaction indicated by the calculation, it has often been claimed 
that subhalides of alkalies and silver, as well as of alkaline earths, 

^ None of the reactions which we have considered can be taken as indicat¬ 
ing that such a substance as SrCl is unstable with respect to decomposition 

into its elements, according to the reaction SrGl —> Sr + JCh. It is 

undoubtedly stable with respect to this reaction, but the question of practical 
importance is whether the reverse of (22) will go or not, i.e., whether the 

subhalide is stable with respect to the decomposition 2SrCl —♦ Sr -h SrCU. 

(This may be considered to be double the reaction SrOl Sr + iCh, 

followed by Sr 4- CI2 SrCb- Because of the great tendency of the latter 
reaction to go, SrCl is not stable with respect to decomposition into Sr and 
SrCb.) Note: All recalculated from F of Table 20 and Q (expt.). 
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may be formed by heating the metal in the presence of the normal 
halide, or by electrolysis of the latter in the molten state. Some 

Table 26.—Calculated Heat Absorbed on Formation op Subhalides 

(In kilogram-calories) 
Mg + MgF2 —>2MgF. 128 
Mg + MgJ2 2MgI. 84 
Ca-h CaFa2CaF. 154 
Ca + CaCla 2CaCl. 114 
Sr + SrCU2SrCl. 112 
Ba + BaFa —2BaF. 147 
Ba -f-Bal2-^2BaI....... 100 

authors, however, have claimed that these subhalides are merely 
solutions of the metal in the normal halide. A careful investiga¬ 
tion was made by L. Wohler and Rodewald,^ who came to the 
conclusion that compounds with the formulas Ag2F, CaF, CaCl, 
and Cal do actually exist. Ag2F reverts to the metal and 
normal halide above 90°C., whereas CaCl and Cal are unstable 
with respect to the metal and normal halide below about 800‘^, 
and CaF is unstable below about 1000°; by rapid cooling, the 
calcium salts may be brought down to room temperature without 
decomposition. Guntz and Benoit^ claim to have prepared all 
the subhalides (as well as suboxides and subsulfides) of strontium 
and barium, though not in pure form. These do not tend to 
become unstable at low temperatures because of the higher heats 
of formation from metal and normal halide. [In the case of the 
calcium subsalts the heat of formation probably becomes nega¬ 
tive at high temperatures, and their behavior is then explained 
by application of Eq. (8) of Appendix II.] The following heats 
of formation at room temperature are given by Guntz and Benoit: 

Ca + CaCl2 2CaCl, 2.7 kg. cal. evolved 
Sr + SrCU 2SrCl, 14.6 kg. cal. evolved 

Ba + BaCl2 •-> 2BaCI, 16.5 kg. cal. evolved 

These values, it will be noted, are in marked disagreement with 
Table 26. 

^WdHLBR and Rodewald, Zeits, anorg. Chem.y 61, 54 (1909). The 

existence of AgaF has been often confirmed, and its structure determined by 

X-ray analysis. It has been reported that it has a structure similar to that 

of Cdia, described on page 209. See the ‘‘Strukturbericht,” vol. II. 
• Guim and Benoit, BuU, Soc, Chim., 36, 709 (1924). . 
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On the other hand, Bichowsky and Rossini^ have listed heats of 
formation of gaseous MgF and CaF (from spectroscopic data). 
If it is assumed that the heats of sublimation of these substances 
are the same as those of NaF and KF, respectively, we can find 
the energy of formation of the solid substances and so get an 
‘‘experimental'^ value of the heat of reaction for Mg + MgF2 —> 
2MgF and Ca + CaF2 2CaF (involving only solid substances, 
of course). We find, respectively, 310 and 196 kg.-cal. absorbed, 
again not in agreement with Table 26, the discrepancy this time 
being in the opposite dire(*.tion. It is obvious that our knowledge 
of the subhalides is not in a very satisfactory state. 

There may, therefore, be some grounds for the doubts of some 
authors that the existence of the subhalides has been unequivo- 
cably proved. However, the chemical evidence appears to be in 
favor of their existence, and they seem to be much more stable, or 
less unstable, than expected.^ The existence of AgoFsuggests the 
possibility that the subhalides contain a doubly charged halogen 
and a normal cation. This suggestion is hard to test because of 
the difficulty of estimating the electron affinity of such an ion 
as Cl . If it is assumed that the difference in energy between 
the reactions Cl Cl + 2E~ and S— —> S + 2E'“ is the same 
as the difference between K —> K++ + 2E~ and A —» A++ + 2E"' 
(K and A having the same electronic structure as Cl and S , 
respectively), then sufficient data are available to estimate the 
energy for Cl Cl + 2E*", and a Born-Haber cycle can be 

^ Bichowsky and Rossini, ‘^Thermochemistry of the Chemical Sub¬ 

stances.” 
2 It is, of course, often quite possible to prepare, indirectly, substances 

that are quite unstable, but do exist by virtue of the fact that their decom¬ 
positions are very slow. If equilibrium were established rapidly, such 

substances could not exist at all. The considerations of this section exclude 
certain conceivable substances only on the assumption that equilibrium is 

established rapidly. The occurrence of the subhalides cannot be explained, 
however, by supposing that it is due to the slow establishment of equilibrium. 
It is true that the subhalides of calcium are, according to Wohler and Rode- 

wald, unstable at room temperature, and exist at that temperature only by 
virtue of the slowness with which equilibrium is attained, but the fact that 

they are made by heating the metal with the normal halide indicates that 
the equilibrium represented by Eq. (22) is actually toward the subhalide 

at these temperatures. The heats of reaction given in Table 26 are so high, 

however, that this reaction should not have the slightest tendency to occur 

at any attainable temperature. 
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set up (E”* = electron). On this basis, however, even the reaction 
CaCl Ca + iCU evolves energy, so the possibility does not 
seem very promising. We can only conclude that the alkaline 
earth subhalides do not have an ionic lattice. Their unexpected 
stability must have something to do with the extra valence 
electron of the metal atom, and it is possible that this electron 
gives the binding a partly metallic character. Pauling has 
suggested that in Ag2F, in which there are layers of silver and 
fluorine atoms, the binding between adjacent silver atoms is 
metallic. 

In spite of the fact that calculations based on ionic lattices 
do not work well for the subhalides, it will be of interest to con¬ 
sider from this point of view the possibility of existence of alkaline 
earth trihalides. The reaction 

MgFa MgF2 + iF2 

for example, will proceed with the production of about 1100 
kg.-cal., if we assume that the lattice energy of MgFs is the 
same as that of AlFa and obtain the latter from available experi¬ 
mental data in the same way that Uo (expt.) was obtained in 
Table 22. We may also estimate that BaCls will decompose in 
similar fashion with the evolution of about 270 kg.-cal. 

In quite a similar manner, it may be shown that rare gas 
monohalides should be expected to be unstable. Similar con¬ 
siderations have also been used by Grimm and Herzfeld in dis¬ 
cussing the stability of oxides and sulfides. In connection with 
the latter calculations, the existence of peroxides, such as Na202, 
is of interest. The calculations definitely indicate that a lattice 
composed of Na'^’^ and 0— ions.should not be stable, but if the 
lattice is composed of Na+ and O”', the energy evolved in the 
reaction 2 Na + O2 —» Na202 (found by using the value for 
the energy of 0~ given by Bichowsky and Rossini, and assuming 
the lattice energy to be the same as NaF) is found to be about 
80 kg.-cal. as compared with an experimental value of 119. 
These probably agree within the limits of error of the calculation. 
It is usually assumed, however, that in sodium peroxide the 
ions are Na+ and O2 , the latter having the electron structure 

:OtO: (See footnote, page 191.) 

There is, of course, no doubt that in general the “normaP' 
formulas for the halides and oxides of the alkalies, alkaline 
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earths, and metals of the aluminum group represent the most 
stable possible combinations, and the preceding discussion will 
help to show why that is so. This discussion has not included 
consideration of many possible formulas in which the halogen 
or oxygen has an abnormal valence, because of the difficulty of 
estimating the energy of a halide or oxide ion with abnormal 
charge. The reason the metal ions generally exhibit a normal 
(iharge in their compounds may perhaps be summarized in 
general terms. The lattice energies increase very rapidly with 
increase in charge. This tends to make compounds in which the 
metal exhibits a large valence more stable. On the other hand, 
the work necessary to overcome the ionization potential tends to 
make it difficult to get an ion of large charge, and each successive 
ionization potential is larger. The increase in lattice energy, 
however, more than counterbalances the extra ionization poten¬ 
tial required to increase the charge on the ion until all the valence 
electrons are removed. But once the last valence electron is 
removed, the work ne(;essary to remove another electron becomes 
so much greater that it now more than counterbalances the 
extra lattice energy. This, of course, is only a rough picture 
of the situation as other factors, e.g., the energy of sublimation 
of the metal, play a role, but it is accurate in a general way. In 
order to verify these statements, the reader should work through 
some of the calculations given in the preceding paragraphs in 
detail (see, for example, Exercises 3, 4, 6, 7, and 8 at the end of 
this chapter). In the case of copper, the second ionization 
potential is small enough and the deviations from ionic binding 
great enough to make cupric compounds stable (see especially 
Exercise 8, page 261). It may be remaf'ked that deviations from 
the ionic type of binding can only make a compound more 
stable than one would calculate from the assumption that it is 
purely ionic, just as deviations from the pure covalent type 
make a predominantly covalent compound more stable, and for 
the same reason (see Sec. 12.5). If, therefore, it is found that a 
(compound actually exists when the calculations indicate that 
it should be unstable, it may simply be because the calculations 
do not allow for a mixed type of binding, though, of course, 
other approximations may cause appreciable errors also. 

14.9« The energy of the alkali-halide and hydride molecules 
in the gaseous state may be readily calculated from the crystalline 
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energy, provided we assume that the attractive and repulsive 
forces are of the same nature.^ Since experimental data are 
available for comparison, it seems worth while to make this 
calculation. The calculation is of interest because of the light 
it throws on the repulsive forces, and we shall accordingly carry 
out the computation by three methods, using different expressions 
for the repulsive potential. 

Method I. In this case, the calculation is essentially like that 
of Sec. 14.6. If the crystal is of the sodium chloride type, 
vaporization involves a change of coordination number from 
6 to 1 and a change of the Madelung constant A from 1.748 to 1. 
It is seen from Eq. (15), therefore, that the value of the inter¬ 
ionic distance Tq of the gaseous molecule will be given by 

where Tq is the distance in the crystal and n has the value assigned 
by Pauling. 

The energy of the gaseous molecule is determined in terms of 
its equilibrium distance by an equation exactly analogous to 
Eq. (8), but with ^4 = 1 and with ro replaced by ro'. Thus 

- -&(' - ;)■ <“) 

The value of —[/o' thus obtained corresponds to the energy 
absorbed in a reaction of the type 

NaCl(g) ^ Na+(g) + Cl-(g) 

An appropriate modification can be made for salts of the 
cesium chloride type, but it is just as satisfactory to calculate a 
value of ro for a salt of the sodium chloride type from Table 16, 
and then use this value in Eq. (24) without modifying the latter. 

Method II is the same as Method 1, except that we use the 
value of n necessary to make Eq. (8) hold when Uo is given the 
value from Table 20 or, in the case of other salts, the experimen- 

' See Reis Zeiin. Physikj 1, 294 (1920); Born and Heisenberg,, ibid.j 

23, 403 (1924); Vrrwey and de Boer, referenro 2, p. 234. Since our 
calculation wls made, another by May, Phys. Rev.^ 64, 629 (1938), has 
appeared. 
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tal value. It must be remembered, however, that — f/o of Table 
20 is the energy of a reaction of the type 

NaCI (solid) Na+Cg) + 

including the work done against the atmosphere, i.c., it is the 
AH of such a reaction, while the AE of this reaction should be 
used in Eq. (8) (see Appendix II). 

Method III uses the Born-Mayer approximation for the repul¬ 
sive force. The energy of a pair of ions forming a gaseous mole¬ 
cule will bo given by the ex])ression 

w = -?! + (26) 
r 

The first term is the electrostatic energy and differs from the 
electrostatic energy of the crystal only in that the factor A does 
not appear. In the last term, giving the repulsive energy, h of 
ICq. (11) is replaced by V] if h is the coefficient for a crystal with 
sodium chloride structure and without anion-aiiion contact, then 

h' = (27) 

because each ion has one neighbor instead of six.^ 
We may determine the equilibrium distance ro' in the gaseous 

molecule by setting dU'/dr' equal to zero, getting 

ro' 
(28) 

If we solve for h' in terms of ro' and substitute into Eq. (26), 
we get an equation like Eq. (12): 

-S(‘ - r?)- W 
Substituting for h' from Eq. (27) into Eq. (28) and rearranging 
slightly, we get 

6pe^ 
(30) 

^ In considering the repulsive forces we take into account only nearest 

neighbors. 
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or, taking logarithms of both sides and again rearranging the 
terms, 

ro' = p In-^-p In 6 + 2p In ro'. (31) 
e^p 

If we differentiated Eq. (11) and solved for ro, the equilibrium 
distance in the crystal, we would get 

To = p\n ~ — pin A + 2p In ro. (32) 
c^p 

From (31) and (32), 

ro ~ ro' = p(ln 6 - In ^) + 2p In — (33) 
ro 

In this development, van der Waals forces, thermal energy, and 
zero-point energy have been neglected. It seems best to assum(‘ 
that these are all included in the repulsive term, and then to 
determine p in such a way that Eq. (12) gives a value of l7o equal 
to that found in Table 20. This is similar to the way n is deter¬ 
mined in Method II, Born and Mayer and Huggins took the 
van der Waals force, thermal energy, and zero-point energy into 
account separately, and their calculated values of Uq contain 
special corrections for these factors, and are based on a value of 
p obtained from compressibilities by taking these factors into 
account. The difference between our value of p and theirs will, 
to a certain extent, correct for the fact that we have not con¬ 
sidered these quantities explicitly.^ However, it is clear that a 
term which involves the sum of a repulsive potential, a van der 
Waals potential, and a correction for kinetic energies will be 
only* approximately represented by an exponential function; 
furthermore, these may differ in crystal and gas. 

The results obtained by the various methods for the alkali 
halides and hydrides are given in Table 27, where they may be 
compared with each other and with the experimental results. 
The experimental" values of — C/o' are obtained from the heat 
of sublimation C/o — C/o' and from — C/o, taken from Table 20 
or 25. In Table 27, none of the energy quantities include work 
done against the atmosphere in a constant-pressure process— 
they are A.E's rather than A/C's. 

^ See footnote 2, p. 234. 
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On the whole, the agreement between the calculated and 
experimental values of Vq and t/o' is fair, but the discrepancies 
are appreciable. Also the agreement between the different 

Table 27.—Properties of Gaseous Alkali Halides and Hydrides 

Salt o >=
 n 

1 

n 

II 
p 

III 
ro' 
I 

ro' 
II 

ro' 
III 

ro' 
expt. 

— 

t/o' - 
(/o 

expt. 

-Uo' 
I 

— 

-f/o' 

n 

-w 
III 

-C/o' 
“expt. “ 

LiF. . .. (1.95) 6 5.90 0.33 1.52 1.52 1.25 63 181 181 194 181 

LiCl.... (2.40) 7 7.75 0.31 1.95 2.00 1.86 46 145 143 148 154 

LiBr... (2.54) 7.5 8.40 0.30 2.10 2.15 2.04 44.2 136 135 138 145 

Lil. (2.75) 8.5 9.49 0.29 2.33 2.38 2.28 . . .. 41 125 124 126 134 

NaF. .. 2,310 7 7.32 0.316 1.88 1.90 1.74 71 150 150 155 144 

NaCl... 2.814 8 9.38 0.300 2.36 2.43 2.33 2.51 56.5 122 121 123 126 

NaBr... 2.981 8.5 10.47 0.285 2.53 2.62 2.54 2.64 53.2 115 114 115 122 

Nal.... (3.11) 9.5 11.51 0.27 2.69 2.76 2.70 2.90 49.8 110 109 110 113 

KF. 2.006 8 8.97 0.297 2.23 2.28 2.18 49.6 129 128 131 142 

KCl.... 3.139 9 11.21 0.280 2.69 2.78 2.71 2.79 51.4 109 108 109 116 

KBr.... 3.293 9.5 12.00 0.274 2.86 2.94 2.88 2.94 49.5 103 103 103 111 

KI. 3.526 10.5 
1 
13.00 0,259 3.10 3.20 3.15 3.23 48.3 96 96 96 103 

RbF ... 2.815 8.5 9.15 0.308 2.39 2.42 2.32 52.8 122 121 123 129 

RbCl... 3.270 9.5 11.59 0.282 2.83 2.91 2.84 2.89 50.9 104 104 104 110 

RbBr.. 3.427 10 12.81 0.268 2.99 3.09 3.03 3.06 50.2 99 98 99 105 

Rbl.... 3.663 11 14.98 0.245 3.24 3.35 3.11 3.26 49.2 93 92 92 98 

CsF.... 3.004 9.5 11.29 0.26(> 2.00 2.66 2.60 50 113 113 114 125 

CsCl. .. 3.560 10.5 14.98 0.238 3.08 3.20 3.15 3.06 60.3 97 96 97 102 

CsBr... 3.713 11 19.47 0.190 3.22 3.40 3.38 3.14 49.3 93 92 92 99 

Csl. . .. 3.95 12 25,1 0.157 3.45 3.06 3.64 3.41 45.8 88 86 87 95 

UH.... 2.042 . . . .1 4.451 1.43j 1.6 54.4 179 164 

NaH... 2,440 . . .. 5.39 1.84 1.88 39.0 146 163 

KH ... 2.850 5.27 2.14 2.24 36.5 125 127 

Note: When anion-anion contact occurs in the crystal, values of p ajul n (Method II) 

are estimated by extrapolation. 
Values of ro in parentheses are calculated from Table 16 (cases of anion-anion contact). 

The other values are those given by Huggins, J. Chem. Phys., 8, 146 (1937). 
Values of t/o' - (/« for halides from Bichowsky and Rossini, “Thermochemistry of 

Chemical Substances'’; for hydrides calculated directly from dissociation energy froni 
Sponer, “ Molekldspe^ktren,” Tables 4 and 25. and the electron affinity of H. 

Expt. values of ro' for halides from Maxwell, Hendricks, and Mosley, Phys. Rev., 68, 968 
(1937); for hydrides, from Sponer, loc. cit. 

methods of calculation is not bad, except in a few cases; in 
particular, Method III cannot be used at all for the hydrides. 
The value of Uo' seems rather insensitive to the method of cal¬ 
culation. Since the differences between the calculated and 
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experimental values of Uo' are in almost all cases fairly small 
compared with f/o' — Uo, we may be said to have made a reason¬ 
ably good calculation of the energy of sublimation of the alkali 
halides. Yet it is seen that the calculated value of —17o' is 
rather consistently low, and the very fact that it is rather insensi¬ 
tive to the exact method of calculation makes this a little difficult 
to understand. If the great(u* experimental value of — i7o' is due 
to greater polarization of the anion by the cation in the gaseous 
molecule where the force fields arc very unsymmetrical, it would 
be expected that the observed values of ro' would be lower than 
the (calculated values, whereas in a number of (*ases the revc^rse 
is true. One might acemmt for the observed results by sup¬ 
posing that there is considerabh^ polarization, and hence an 
appreciable (contribution of covalent forces, in the gas molecule 
combined with a rather sudden increase of the rc'pulsive force 
at distances near the observed values of ro'. 

14.10. The Proton Affinity of Ammonia.—Another interesting 
application of the Born-Haber cycle has been made by Grimm,* 
wh(^reby he has determiiu^d the proton affinity of ammonia, 
namely, the energy absorbed in the reaction 

NHv** NHs + 

It is possible to analyze the reaction 

-JN2 (gas) -f 2112 (gas) -f (gas) —> NH4X (crystal) 

(where X is any halogen), which involves a total energy change 
Q, in the following manner: 

JNa + SH*- 

Dh 

-M 
►NHa 

► NH4+-- 

§H,- - —, 11+^ \ Uo 

Dx -F 
\-»NH4X 

4X.- -»X- -►x- / 

(all substances in gaseous state except NH4X), where the energies 
absorbed in the various reactions are designated by the symbols 
written above the arrows. We have, then, 

Q = -ilf + Z>„ + Dx + / - F - P + C7o. (34) 

1 See Sherman, Chem. Rev.^ 11, 150 (1932). 
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All these quantities have been determined experimentally or 
otherwise except (7o, which may be calculated in the same manner 
as for other salts, on the assumption that the NH4+ ion is a 
spherically symmetrical ion much like the alkali ions. This 
certainly should bo a good ai)proximation if the ammonium ion 

Table 28.—Properties of Ammonium Halides 

Salt 

1 

Ionic, distance, 
A. 

Qy kg.-cal. — (^0, kg.-cal. 

XH4F.... 2.63 111.9 177.5 
NH4C1... 3.36 75.1 153.3 
NH4Br... 3.51 64.7 147.4 
NH4I.... 3.62 48.6 i 143.6 

is rotating in the crystal. The valiums for the }')roton affinity 
thus obtained from ammonium fluoride, cliloride, bromide, and 
iodide, respectiv(»ly, are, according to Sherman, 219.6, 209.0, 
208.6, and 202.7 kg.-cal. per mole. Tliese values are corrected 
to O^K. 

The high value obtained from the fluoride (which moans that 
the calculated value of f/o is less than the true value, provided 
the values for the other salts are approximately correct) has been 
interpreted by Sherman on the basis of the assumption that the 
ammonium ion is not rotating in the fluoride crystal. If this is 
the case, then the calculation of the Madelung constant A in the 
expression for U [Eq. (6) or (11), Sec. 14.5], will require the con¬ 
sideration of the structure of the ammonium ion and distribution 
of charge within it; a value of A obtained by supposing the 
ammonium ion to be a spherically symmetrical positive ion will 
clearly give an incorrect value for ffo. 

The question as to whether the ammonium ion will be freely 
rotating in the crystal is largely one of the relative energies of 
the form in which it is rotating and the form in which it is not. 
In general, the crystalline form in which rotation does not occur 
will have the lower energy. As wdll be seen in later chapters, 
the hydrogens in an ammonium ion are in all probability placed 
around the nitrogen at the corners of a regular tetrahedron. 
The charge distribution in such an ion cannot be spherically 
symmetrical, and there is undoubtedly a preponderance of 



256 IONIC CRYSTALS Sec. 14.10 

positive charge near the hydrogens. A negative ion which is 
near one of these positive centers has a lower potential than 
would be the case if all the charge were symmetrically placed 
about the center of the ammonium ion. In order to make the 
most of this arrangement in a crystal, the ammonium ion should 
not be rotating and there should be a negative ion near each 
hydrogen, so that each ammonium ion would have four negative 
neighbors. This, however, means that the crystal would have 
the wurtzite, sphalerite, or some similar structure (see Appendix 
IV), with a lower value of the constant A (see Table 18), and 
hence a smaller latti(*e energy, assuming that the intc'ratomic 
distance is not greatly changed. We may consider the })otential 
of an ammonium halide crystal to be that of a crystal with a 
symmetrical cation, plus a contribution due to the tetrahedral 
structure of the ammonium ion; unless the latter contribution 
is sufficiently great, the crystal will not tend to hav(^ tho form in 
which the ammonium ion has a coordination number of four. 
In the case of ammonium fluoride, the crystal has the wurtzite 
structure; this is probably because the fluoride ion is so small that- 
it can get close enough to the ammonium ion to make the energy 
due to the lack of symmetry appreciable. On the oth(»r hand, 
the chloride and bromide have the cesium chloride structure?, and 
the iodide has the sodium chloride structure (cesium (dilorid(? 
below about --15°C.), and it is probable that the ammonium 
ion rotates freely at room temperature; at any rate, the effect 
of lack of spherical symmetry is not pronounced. 

Since the nonrotating state of the ammonium ion is the one of 
lower energy, it would be expected to be the stable condition 
at low enough temperatures. A further factor would favor it at 
low temperatures. If the electron atmosphere of the ammonium 
ion extends farther out in some directions than in others, then 
when the ions are closely packed, there might be hindrance to the 
rotation due to a purely steric effect; z.c., when the ammonium 
starts to rotate the parts that bulge out will tend to strike other 
ions, and so the rotation will be stopped. As the salt is warmed 
up, a few of the ammonium ions will get enough energy to start 
rotating. Since energy is required for this, the specific heat of 
the crystal will begin to increase over its normal value. As the 
temperature is raised still further, it will become easier for ions 
to rotate, not only because it is easier to get the requisite energy. 
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but because the fact that a number of its neighbors are already 
rotating will mean that less energy will probably be required for a 
given ion to begin rotating, and further, the thermal expansion 
of the crystal will allow rotation to occur more readily. It is 
thus expected that the specific heat will first gradually then 
rapidly rise over a range of a few degrees, as the setting in of 
rotation becomes more noticeable, and then rather suddenly 
fall off when practically all the ions are rotating. Transitions 
of just this type, occurring over a range of about 10®, have been 
observed in ammonium chloride, bromide, and iodide^ at about 
—30, —38, and — 42°C., respectively, and have been ascribed to 
the setting in of rotation in the crystal.^ The temperature at 
which the transition occurs decreases from chloride to iodide, 
indicating decreasing forces, as expected with increasing ionic 
radii. The force exerted by the very small fluorine ion must be 
considerably greater. It should, however, be noted that the 
fluoride also shows an anomaly in the specific heat at — 31®C, 
but it is much less than those shown by the other salts. Its 
interpretation is doubtful, as the crystal structure is certainly 
best interpreted on th(^ assumption that no rotation occurs at 
room temperature. 

It is worth noting that the ammonium chloride crystal does not 
change from the cesium chloride structure below —30®. It thus 
does not make fullest use of the possible energy lowering due to 
the lack of spherical symmetry (probably because of the smaller 
A value for the wurtzite structure, as explained above). It is still 
possible for four chlorides to be especially near the hydrogens of 
a given ammonium ion, but there are four other chlorides nearby 
which are not especially nea-r the hydrogens. In the wurtzite 
structure, each anion is near four hydrogens, one from the 
ammonium in each direction; in the cesium chloride structure, it 
is also near four hydrogens, but only half the eight anions near 
any cation are favorably placed. In the cases of NH4Br and 
NH4I, the low temperature forms are neither wurtzite nor cesium 
chloride, and it is possible that the ammonium ion is still rotating 
but only about one axis. 

* Sec Simon, Simbon, and Ruhemann, Zeits, physik, Chem.f 129, 339 

(1927). 
® Pauling, Phys. Rev,, 36, 430 (1930). 
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In the gaseous state, the eflfeet of the structure of the ammo¬ 
nium ion becomes much more pronounced. In the crystalline 
state, a rotating ammonium ion strongly resembles the rubidium 
ion; it has just about the same apparent size, and it is seen from 
Tables 20 and 28 that NHJ, which has the sodium chloride 
structure, has about the same lattice energy as Rbl. The lattice 
energies of the other ammonium salts, which do not have the 
sodium chloride structure, arc, except for the fluoride, still not 
far from those of the ruludium salts. The heat of sublimation 
of NH4CI is, however, more than 20 kg.-cal. less than that of 
RbCl, indicating that gaseous NH4CI has a relatively very low 
energy its dissociation energy into NH4+ and Cl~ is higher 
by 20 kg.-cal.^ than it would be if NH4+ were spherically sym¬ 
metrical). This is probably due to the fact that in the gas phase, 
as we have seen in the last section, the distance between anion 
and cation is relatively small, so that the asymmetry of the 
cation becomes more important. Further, there is undoubtedly 
a displacement of one of the liydrogens^ toward the negative 
chloride ion in the gaseous molecule of NH4CI which will still 
further lower the energy; this effect would also be present in the 
crystal, but it would probably be less marked, since the force 
is applied on all the hydrogens, and a displacement of one of them 
would probably make the displacement of another harder. It is 
still a little difficult to see why the lowering of the energy of a 
gaseous molecule of NH4CI should be so much greater than the 
lowering of the energy in a crystal of NH4F (about 12 to 15 
kg.-cal. as judged by the abnormality of the proton affinity of 
NHs calculated from NH4F), considering that the fluoride ion 
is §0 small and that there are four fluoride contacts per ammonium 
ion in the crystal. It is seen that the apparent anomaly of NH4F 
crystal is (certainly not greater than would be expected fronr thi) 

anomaly in the heat of sublimation of NH4CI. 
14.11. Some Properties of OH and SH.—Estimates of the 

electron affinity of OH and SH have been made by calculation 
of lattice energies of crystals in which they occur by Goubeau 

* That this is a legitimate conclusion is evident from inspection of Table 27, 

where it is seen that the heats of sublimation of all the potassium, rubidium, 

and cesium halides are practically alike. 

* See Fajans, Zeits, physik. Chem.f A137, 361 (1928). 
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and Klemm,^ and West,^ respectively. OH has the same elec¬ 
tronic structure as F, whereas SH has the same electronic struc¬ 
ture as Cl. The difference between OH and F is that in F all 
the positive charge is in the nucleus, whereas in OH part of it is 
near the edge. A positive charge that is near the edge of an ion 
does not exert so strong a force on an electron as one that is at 
the center. This difference shows up in OH having a much 
smaller electron affinity than F. It also shows up in other ways. 
Thus F~ is smaller than OH“ and the polarizability^ of F“ is 
less than that of OH“. In a similar way, the electron in SH~ 
is less strongly held than that in Cl“. A comparison of the 
various properties mentioned follows: 

Electron affinity: F , 95.0; OH , 48; Cl , 87.3; SH , 61 
Polarizability: * F", 0.96; OH“ 1.88; Cl" 3.57; SH", 5.23 
Radius in crystals: F“ 1.36; OH”, 1.53; Cl”, 1.81; SH” 2.00 

It will be observed that the difference between the electron 
affinities of F and OH is much larger than the corresponding 
difference between Cl and SH. This peculiarity is very likely 
connected with a change in the force on the proton in OH or SH 
when the electron is added. The proton probably moves to a 
new position of equilibrium, with a resultant decrease in the 
(mergy of the system. This effect must be greater in the case of 
SH than in the case of OH, and this may be possible because 
the proton is originally very loosely held in SH, and because this 
structure is larger and ^^softer^^ than OH. In any event, the 
proton is finally quite deeply buried in the electron shell in the 
SH*” ion, which appears to be spherically symmetrical in crystals 
and does not have marked dipole properties as does OH~. 

The process of separating the two OH groups in H2O2 bears 
much the same relation to the dissociation of an F2 molecule as 
the separation of an electron from OH”* bears to the separation 
of an electron from F“". In H2O2 or F2, half the molecule shares 
an electron from the other half, and, as in F~ or OH~, the shell 
of eight of each part is filled. It is therefore of interest to note 

* Goubeau and Klemm, Zeits. physik. Chem,, B86, 362 (1937). 
* West, J. Phys. Chem.y 39, 493 (1935). 
2 Fajans, Zdts, physik. Chem., B24, 134 (1934). 
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that according to' Bichowsky and Rossini, “Thermochemistry 
of Chemi(^al Substances,” the reaction ' 

H2O2 20H 

I’equires 21.7 kg.-cal. This is to be (*-ompared with 

F2 2F 

which, as is to be expected from the electron affinities, requires 
much more energy, namely, 63.5 kg.-cal. 

Another closely relatexl quantity is the bond energy. The 
()—O bond energy (determined from H2O2) is 34.6 kg.-cal., and 
the S—S bond energy (determined from H2S2) is 38.3 kg.-cal. 
In Sec. 12.8, we commented upon the fact that the S—S bond 
energy is greater than the ()—() bond energy. This now seems 
less surprising when considered in the light of the electron affini¬ 
ties of OH and SH, in view of the analogy between breaking an 
electron-pair bond and pulling off an eh^ctron. The surprising 
difference between the O—O single-bond energy and the C—C 
bond energy is, however, still not explained. 

West has also considered the proton affinity^ of SH"", i.e., the 
energy given out by the reactioji 

SH- + 

and found that this is 338 kg.-cal. The proton affinity of (^1 
is 328 kg.-cal. It is interesting that the electron affinity of Cl 
is greater than that of SH and the proton affinity less than that 
of SH~. The large proton affinity of SH~, in spite of its greater 
size, is due to the combination of its large polarizability, the 
possibility of internal adjustment by shift in position of the other 
proton, and the dipole moment, which, though small, makes it 
easier for a proton to be added since it means that some of the 
positive charge already there can be at a relatively great distance 
from the added proton. 

West has pointed out that in some njspects SH~ resembles 
Br“ more than it does Cl~. Thus the size of Br~ in sodium 
chloride type ciystals is 1.95A., very close to that of SH"", and 

^ The proton affinities of a number of different ions and molecules have 

been tabulated by Juza, Zeits. anorg> aUgem. Chem.f 231, 134 (1937). 

Although many of these figures represent only rough estimates, they are of 
interest for comparison. 
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the polarizability of Br- is 4.99, also close to that of SH“. The 
electron affinity of Br, 81.8 kg.-cal., is also closer, but the proton 
affinity of Br- 318 kg.-cal, is not so close as that of C1-. 

Exercises 

(s = solid; g = gas) 

1. Show the results to he (ixpeeted from an X-ray analysis by the Bragg 

method of a crystal of the CsCl type. 

2. Calculate the energies of the following reactions: Li^(f7) + NaCI(s) —^ 

Na+to) + LiClGs); Na+(f7) + KC\is) -> -f iNaCI(.s); KHg) -f HbCl(s) 

Rb'^to) + KCl(s); Rb+(j7) -f CsCl(.s) Cs'^ig) + RbCl(.s’). State in 

each case whether the r€^a(!tion will be expetited to go spontaiuiously in th(‘ 

direction written or not when tlui (concentration of the gaseous ions are unity. 

3. Calculate the energy of the following react ions: RbF2(.s) RbF(<f) -f- 

RbBra^fj) RbBr(.s) -f iBraC^). (Assume RbBrs like SrCMo.) 
4. Calculate the energy of the n^actiou CaBr2(.s) + Ca(.s) —* 2CaBr(.'?). 

6. From the data given in Table 25 and elsc^where in this chapter, check 

the valines of Co (expt.) and n for the alkali hydrid(\s. The alkali hydrides 

have the sodium chloride structure. 

6. CdCl2 crystalliz(^s in a form somewhat similar to the (cadmium iodid(' 

structure. Assuming that the Madelung (constant A is th(^ same as for 

Cdio, calculate Co (see Table 3h, page 328). Find the (3xperimental valiu* 

for Co from data given in tables in this and earlier chapters, together with 

the following data: heat of formation from the elements (heat evolved in 

kilogram-calories per rnolc^ of salt), 93.0; heat of sublimation of Cd, 26.8. 

Compare the theoretical and (experimental values of and discuss the 

result. 

7. Find the experimental value of f for ZnCl-i and CuCla from data given 

in tables in the book and the following: heats of formation, ZnCl?., 99.5; 

CuCl2, 53.4 (in both cases heat evolved in kilogram-calories per mole of salt); 

beat of sublimation of Zn, 27.4. 

8. Calculate the energy absorbed in the r(?action 

2CuC1(6-) CuCl2(«) -f Cu{s) 

from the latti(?(i (uiergies of CuCl, CuCh, the ionization potentials of copper 

and the heat of sublimation of copper. Similarly, calculate the energy 

absorbed in the reaction 

2AgCl(60 ^ AgCl2(«) + Ag 

assuming the lattice energy of AgCU to be the same as that of CdCB (see 

Kxtircise 6). Repeat the latter calculation, assuming that the lattice energy 

of AgCl-i differs from that of CdClz by the same amount that the lattice 

energy of CuChi differs from that of ZnCla. Analyze the principal reasons 

for the instability of AgCla as compared with CuCU. 
9. Calculate and compare the proton affinities of the halide ions. 



CHAPTER XV 

FURTHER PROPERTIES OF COVALENT BONDS 

Before proceeding further in our study of tlie nature of chemical 
compounds, it will be necessary to extend somewhat our con¬ 
siderations concerning atomic binding in general; in particular, 
we shall have to discuss the phenomenon of directed valence. 
It has long been realized, or at least suspected, that valence bonds 
(of the nonpolar type) have direction; for example, it has long 
been customary in organic chemistry to speak of the tetrahedral 
carbon atom, implying that the valence bonds extend out toward 
the corners of a regular tetrahedron. To be sure, in this case, 
one might claim that, since carbon generally has four other 
atoms attached to it, the corners of a regular tetrahedron are the 
most natural positions for these atoms to take, regardless of 
whether the bonds have any ape(afic orientative influence. A 
better example of the effect of directed valence is therefore 
afforded by a molecule like the water molecule. It is definitely 

H H 
known that this molecule is kinked, having the form \ / . 

O 
Such an unsymmetric configuration is best explained as a prop¬ 
erty of the OH bonds; the two bonds tend to form at a certain 
definite angle to each other. 

16.1. Methods of Determining Molecular Structure.—We 
shall here list and briefly discuss some of the principal methods 
by which the structure of molecules—involving such questions 
as the distances between atoms and the angles betwejen bonds— 
can be determined experimentally. 

1. Measurement of electric moment (see Sec. 12.9) will often give 
considerable qualitative information about the structure of a mol¬ 
ecule,^ and from such measurements the kinked structure of the 
water molecule may be at once inferred. It is to be expected, of 
course, that the hydrogen atoms would be positively charged 
with respect to the oxygen atoms, thus producing a dipole. 

^ Dis^yb, ** Polar Molecules,'' Keinhold Publishing Corporation, 1929. 

262 
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However, if the molecule is a straight structure the dipoles would 
cancel, because of the hydrogen^s being oriented in exactly oppo¬ 
site directions. On the other hand, with the kinked structure 
this would not occur. Thus the finding of a finite dipole moment 
was definite evidence in favor of the kinked structure. 

2. Analysis of the Vibration and Rotation Spectra.—The vibra¬ 
tional and rotational energy levels of a polyatomic molecule 
depend upon its structure, as has been shown in Chap. IX. Any 
means by which the various energy levels of a molecule may be 
inferred will be of value in the determination of the structure of 
the molecuh'. 

3. Stereochemical Considerations.—The inferences that may be 
drawn from stereoisomerism in organic (diemistry are well 
known. Similar com si derations applied to the so-called inorganic 
complex molecules also yield much information. This subject 
will be treated more fully later. 

4. Diffraction of X Rays and Electrons.—It was shown in 
Chap. XIV that information regarding the arrangement of 
atoms in (*rystals may be obtained from X-ray analysis. It is 
possible from such measurements to learn about the arrange¬ 
ments of atoms in stable ions which generally enter into the 
crystal as units that are the same in all crystals. Also the 
diffraction of X rays by gases may be made to yield information 
about the structure of the gas molecules.^ This may be con¬ 
sidered to be a limiting case of the powder method of X-ray 
analysis, the powder being so finely divided that it consists of 
single molecules. There will still be a diffraction pattern but the 
diffraction rings will be broad instead of narrow. With a 
crystal, the reflection of X rays from a surface takes place at 
the Bragg angles^ and practically at no other angle because of the 
reflection from many planes of the ciystal, which ensures that, 
except at the Bragg angles, there will be waves in practically 
every phase, guaranteeing complete destructive interference. Of 
course, this does not occur when the reflection is from a single 
molecule, and instead of a sharp maximum of intensity at a 
definite angle there is a band with a broad maximum. Never¬ 
theless, these diffraction patterns can be utilized, by the aid of 

1 See Debye, Zeits. Elektrochem., 86, 612 (1930); Braoo, *^The Crystalline 
State,'' p. 191, The Macmillan Company, 1934. 

* See Sec. 3.2, especially Eq. (1). 
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Fourier analysis, to g:ive very directly the atomic* distances in 

the molecule. 

Instead of X rays, ele(‘trons may be* iisc^d to give the diffraction 

pattern,^ since, as we liave seen, they are diffracted in much the* 

same way as X rays. In the study of gases, electrons are in 

some respec^ts Ix^tter than X rays, because it is easy (by speeding 

up th(5 electrons) to gc^t shorter wave lengths and thus more rings 

ill the diffrac^tion patt(‘rn and bei^ause the scattering is more 

intense. 

16.2. Directional Properties of Chemical Valence.—The phy- 

si(‘al reasons for the phenomenon of direcited valence will now 

be briefly considered. Probably the simpl(\st formulation of this 

[iroblem is that given by Pauling,- and though it involves many 

arbitrary assumptions, it will give a sufficiently good picture of the 

physic^al reality for our purposes. It has been remarked before 

that if a number of different wave functions correspond to the 

same value of thc^ energy then any linear combination of those 

wave functions will also be an acceptable solution of the wave 

equation (see Sec. 10.1). Furthermore, we have seen that if 

wave functions are obtained on the basis of (*ertain approxima¬ 

tions, then, even though these wave functions do not cornjspond 

to ('xactly the same energy, the true wave function after the 

approximations are removed will be a linear fum^tion of the 

approximate wave functions.^ 

Let us now consider an atom in the fields produced by the 

atoms with which it is combining. These fields produce a strong 

perturbing force, the potential of which will be great compared 

with the energy differences of the outer electron orbits. The 

result will be that the wave functions of these outer orbits will be 

rearranged so to speak; there will be a special set of linear com¬ 

binations (equal in number to the original wave functions) which 

will give the resulting molecule the lowest energy, and which will, 

therefore, be involved in the formation of the ground state of 

the molecule.® 

* For a summary and general discussion with references see Brockway, 

Rev. Mod. Phys.y 8, 231 (1936); see also Bragg, p. 264 (loc. cit.). The appli¬ 
cation of electron diffraction to gases was originally due to Mark and Wierl. 

* Pauling, J. Am. Chem. Soc.^ 63, 1367 (1931). See also Slater, Phys. 
Rev.y 87, 481; 38, 1109 (1931). For a critical review and detailed discussion 

see Van Vleck and Sherman, Rev. Mod. Phys.y 7, 167 (1935). 

* The situation is similar to that described in Sec. 12.5.. 
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Some indication of the type of linear combination to be expected 

may be obtained from the hydrogen molecule. In this molecule, 

a concemtration of electrons between the nuclei causes the 

attraction between the atoms. It is, therefore, natural to 

assume that the set of linear combinations which is to })e favored 

is one that will cause the wave functions each to projec^t out 

farthest in some specific direction, the direction of the bond it 

is to form, and to give a large electron density along th(' bond. 

It is on this assumption that the considerations of Pauling rest. 

We may illustrate these considerations by means of a simi)le 

example, the methane molecule. The carbon atom has four 

outer electrons. In the ground state, there are two 26f-(‘lectrons 

and two 2p-electrons. According to the theory of London, all 

the electrons must be unpaired before combination with the 

four hydrogens can take place. This assumption has betai dis¬ 

cussed in Chap. XI. In the present case, the impairing is lu'lpt^d 

by the fact that ^^good^^ bond-eigenfunctions (/.c., wave functions 

that stick out^’ markedly in certain directions) can be formed 

from a linear combination of oiu^ s-wave function and three 

7>-wave functions (with the quantum number mi = —1, 0, 1, 

respectively) better than from other combinations. It is found 

that the ^^besC^ four independent linear combinations of these 

waves have, respectively, high electron densities in the directions 

of the corners of a regular tetrahedron. Thus in place of the 

original 2s- and 2p-states, we have thes(' bond-eigenfunctions, 

or bond-forming orbits, and into each of these orbits goes one 

of the outer electrons. Each outer elec^tron then ‘‘pairs with 

the electron of a hydrogen atom. The calculations show that 

the pairing is most effective, Le., the bond energy lowest and th(^ 

bond consequently most stable, if there is as much overlapping as 

possible between the wave function of a given electron and that 

of the electron with which it is paired and as little as possible 

between it and those of all other electrons on other atoms. This 

is realized if the hydrogens are situated at the corners of the tetra¬ 

hedron toward which the bond-eigenfunctions point, and the 

stable form of the methane molecule is therefore tetrahedral. 

The theory is not able, at the present time, to give more than 

the roughest estimate of the energy involved in the bond forma¬ 

tion. Even the estimate of the energy of the preliminary impair¬ 

ing of the electrons offers some difficulty, for any one of the 
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unpaired electrons may have its spin oriented in either direction 

(for an unpaired electron does not have to share its orbital 

quantum state with another electron, and so its spin state is 

not restricted by the Pauli exclusion principle). There are, 

then, various possible spin combinations of the unpaired elec¬ 

trons. Although the energy due to electron spin is generally 

neglected in our calculations, it is nevertheless sufficient to cause 

a considerable difference between the energies of some of these 

states with different spin combinations; and since it is not known 

just which combination is to be used in bond formation, the 

energy of unpairing is left in some doubt. The energy to bring 

about the unpairing in carbon has, however, been estimated by 

Van Vleck,^ with what he believes to be about 10 per cent 

accuracy, to be around 7 electron volts or 160 kg.-cal. per mole. 

It has this rather large value on account of the; necessity of 

exciting one of the s-electrons to a p-state. It is clear that 

unless there were a considerable gain from the formation of the 

tetrahedral bonds, as is the case with carbon compounds, the 

unpairing would not occur. In cases wlun'o th(*re arc fewer 

than four groups or atoms attached to a cc^ntral atom which 

has a completed octet, the energy gained by tetrahedral bond 

formation may not be great enough to countc^rbalance the 

disturbance of the low energy ^-electrons, which in such a case 

as the water moh'cule need not take part in the bond formation. 

Under these circumstances the s-wave function is said to be 

unavailable for bond formation. The case of the water molecule 

will be discussed below, and in this case it is not possible to say 

unequivocally whether the 6‘-wave function takes part in bond 

formation or not. 

A tetrahedral arrangement of atoms about the central atom 

is not the only possibility. The arrangement which will occur in 

any given case depends upon the original wave functions involved 

in forming the bond-eigenfunctions. In general, of course, the 

wave functions which are concerned in the formation of the 

bond-eigenfunction cannot differ too greatly in energy, even 

though the effect of this difference in energy is largely erased by 

the effect of the other atoms. Thus one might expect the 

s- and p-wave functions of a given shell to combine to form 

bond-eigenfunctions, but s- and p-wave functions of different 

^ Van Vlbck, J. Chem. Phys.j 2, 297 (1934). 
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shells would not be expected to so combine. A d-wave function 

might be expected to combine with s- and p-wave functions 

of a shell just outside, however, since the corresponding energies 

are not very different; e.gr., 4s- and 4p-wave functions may com¬ 

bine with Sd-funetions. It is possible, on the other hand, for such 

a d-state to be occupied by an electron or electrons not taking 

part in bond formation (f.c., not shared by an adjacent atom), 

in wliich case the d-wave function is ]iot available for formation 

of a bond-eigenfunction. Although such a d-state can be occu¬ 

pied by two electrons with opposite spins, one such electron is 

sufficient to render it unavailable, inasmuch as a bond-eigen¬ 

function, after being further transformed by interaction with 

the other combining atom, is generally occupied by a pair of 

shared electrons. On the other hand, there may be some cases 

in which the d-wave function is used in bond formation, and 

then one of the bond (dg(nifun(;tions is occupied by an electron 

or pair of electrons which is not shared. This situation, how¬ 

ever, seems to be fairly rare. 

The type of structure that will be produced by various wave 

functions may be inferred by a study of the nature of the bond- 

eigenfunctions formed. Such a study has been made by Pauling, 

and although it involves a number of approximations which are 

not entirely satisfactory, it yields rules that appear to be fairly 

well confirmed by the experimental facts. These rules are as 

follows: 

1. If only p-wave functions are involved in formation of the 

bond-eigenfunction, the valence bonds are at riglit angles to 

each other. 

2. If all s- and p-wave functions of a given shell are involved, 

the structure will be a tetrahedron. Expressing the fact that 

one s-wave function and three p-wave functions are involved, 

these are designated as .s*p^ bonds. 

3. If all 6*- and p-wav(j functions of a given shell and one d-wave 

function (usually’' fn)’r> the shell just inside) are involved, the 

stnicturc is a s(juare. In this case, there are five wave functions 

that form five linear combinations four of which give electron 

distributions projecting out each in a specific direction, the four 

directions thur> (lelerrnirKMi being toAvard the corners of a square. 

The fifth cornbinal ion, \>'hich does not involve either the d- 

or the s-eigenfunction at all, docs not give a large electron density 



268 FURTHER PROPERTIES OF COVALENT BONDS Sec. 16.2 

except relatively near the central atom, and so is not a good 
bond-eigenfunction. Thus, only four of the five possible eigen¬ 
functions are used in bond formation, and the fifth possible state 
will generally not be filled by an electron pair at all. In fact, an 
electron pair that has no other place to go than this fifth state 
will tend, instead, to render the d-eigenfunction unavailable. 
It is to be noted that it would be possible, by not using the d-wave 
function, to form a tetrahedron of the type (2), but the square 
here described is more stable, and is formed when a d-state of 
sufficiently low energy is available. These are known as sp^d 

bonds (p^ because the equivalent of one p-eigenfunction is used 
in forming the nonbonding combination). 

4. If all s- and p-wave functions of a given shell and three or 
more d-wave functions (presumably from an inner shell) are 
available, then a tetrahedron may be formed, only four of the 
seven resulting eigenfunctions being good bond-eigenfunctions, 
'^''hese are sp^d^ bonds. This is a more stable arrangement than 
tile square, and if there are three or more d-spaces available, 
the resulting molecule or complex will have a tetrahedral struc¬ 
ture (at least if its coordination number is 4). If only one or two 
d-spaces are available, it is not possible to have this type of 
bond-eigenfunction, and if the coordination number/is 4, only 
one of the d-wave functions is used, the square structure being 
formed. 

5. If all s- and p-wave functions of a given shell and two or 
more d-wave functions are available, six bond-eigenfunctions may 
be formed, giving a regular octahedron. These are sp^d^ bonds. 

There are still other possibilities, but the five given are the 
most important. 

These rules will be illustrated by means of specific examples. 
As has already been pointed out, if the atoms surrounding a 
central atom are held to it by ionic forces, they will tend to 
take up symmetrical positions about the central atom. Sinc(‘ 
most of the configurations mentioned above as resulting from 
atomic binding are also symmetrical, it will be seen that the 
atomic arrangement will not always suffice by itself to distinguish 
between binding which is predominantly polar and binding 
predominantly nonpolar, and in general it is not possible to get a 
simple criterion for the degree of polarity of the bonds in complex 
compounds. In illustrating the rules for configuration, we shall 
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select compounds that are believed to be predominantly nonpolar, 
but it will be necessary to defer until later the discussion of the 
reasons why they are believed to be nonpolar. For the most 
part, the discussion of the determination of the structure of the 
molecules will also be deferred to later chapters. With this 
understanding, we shall proceed to give examples of the various 
types of atomic configuration. 

1. It would be natural to suppose that the water molecule 
would furnish a good example of compound formation involving 
only p~wave functions. However, the angle between OH bonds 
is nearer the tetrahedral angle than it is to a right angle. This 
may be, indeed, due in part to the repulsion between the hydro¬ 
gen atoms, but it may also be due to the bond-eigenfunctions 
actually being of the sp^ tetrahedral type.^ The eight valence 
electrons would then be housed in those states, but two pairs 
would belong only to the oxygen, and only two pairs would 
actually be shared between the oxygen and a hydrogen. On the 
other hand, H2S seems certainly to offer an example of p bond- 
eigenfunction, as do also the crystals of arsenic, antimony, and 
bismuth. In these crystals, the atoms are so arranged that each 
atom has three closest neighbors, and, therefore, three of the 
five outer electrons are shared. There will be three p bond- 
eigenfunctions belonging to each atom, each one of which can 
interact with a similar bond-eigenfunction of another atom; two 
atoms share each pair of electrons, and each atom shares a 
pair with three other atoms altogether. However, even here 
there may be some effect of the s-wave function, for the angles 
between the bonds are not exactly 90°, but are as follows: As, 
97°; Sb, 96°; Bi, 94°. 

1 It has been argued by Stuart, ZeUs. physik. Ckem., B36,155 (1937), that 

the normal valence angle for N, O, and F, and the heavier elements in the 

same columns of the periodic table is 90% but that in many cases the mutual 
repulsion of the attached group causes these angles to be larger. It is 

observed that the angles are greater, the smaller the central atom, arid the 
larger the group attached to it, as would be expected. The attached groups 
can be assigned an effective radius which checks fairly closely with the 

effective radius estimated from interatomic or intergroup distances between 
atoms or groups attached to different (neighboring) molecules. Although 

this seems to be evidence in favor of the supposition that N, O, and F do 

have a normal valence angle of 90®, it may still be true that when the angle 
is forced to a larger value the wave functions approach the tetrahedral type. 
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Table 29.—Bond Distances and Angles in Unsymmetrical 
Molecules of Valence Types (1) and (2) 

Molecule Distance, A Angle Authority 

Cl 
1 

(C—Cl) 1.77 112° B 

H 

H—dlJ—Cl 

i. 

H 

N—H 
\ 

H 

1 

(C-~C1) 1.77 112° B 

1.01 

1 

109° 

1 * 

S 

F 

P—F 
\ 

F 

1.52 104° B;S 

Cl 

p^l 2.00 

■ 

101° 

i 

1 

B; S 

F 

As^F 

\ 
1.72 B;S 

Cl 

As—Cl 

''a 

2.16 103° B;S 

• 

\
 
/

 
o

 0.955 104°40' S 

Cl 

0-" 

'^Cl 

1.68 1 1 115° B 
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Table 29.—Bond Distances and Angles in Unsymmbtrical 

Molecules of Valence Types (1) and (2).—(Continued) 

Molecule Distance, A Angle Authority 

CH3 

0/ 1.42 iir B 
\ 

CH3 

H 
/ 

S 1.35 92°20' S 
\ 

H 

i 
i 
i ! 

Note: There baa been aomo controversy aa to whether the bond aiiRle in HaS should be 
92° or 85°. See Nielsen and Nielsen, J, Chem. Phys., 5, 277 (1937), and Cross and Crawford, 
ibid., 6, 370, 371 (1937). 

2. Perhaps one of th(^ simplest examples of the sp® tetrahedral 
bond-eigenfunction is that furnished by the carbon atom. Here 
the four wave functions of the L-shell are combined to form four 
tetrahedral bond-eigenfunctions. Ea(*h one of these interacts 
with the bond-eigenfunction of another atom, and an electron 
pair is shared between them. In the diamond crystal, for exam¬ 
ple, each carbon atom is surrounded by four carbon atoms 
tetrahcdrally arranged about it, and each bond-eigenfunction 
interacts with a bond-eigenfunction of one of the surrounding 
atoms. In some compounds, two of the bond-eigenfunctions of 
a given atom interact with two from another atom, forming a 
double bond. Similarly, interaction between three eigenfunc¬ 
tions gives a triple bond. Another example of tetrahedral bond- 
eigenfunction is furnished by the atoms in the AIN crystal* 
which has an arrangement much like the diamond, but with each 
atom surrounded by four others of a different kind. 

As has already been noted, those cases are particularly inter¬ 
esting in which less than four atoms are arranged about a central 
atom with the angles between the bonds approximately equal to 
the tetrahedral angle 109®28', or smaller. If there are less than 
four atoms, the structure cannot be explained by the tendency 
of the molecule to take a symmetrical form, but must be due to 
the properties of the bond. It is also an indication that the 
binding is nonpolar rather than ionic, since ions of the same sign 
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surrounding the central ion would tend to get as far away from 
each other as possible. 

It is true that it has been shown that the effects considered in 
Secs. 12.9 and 12.10 are capable of producing the appeararn^e of 
directed valence (see reference 2, page 200). We have seen that 
a (jation induces a dipole moment in an anion. This dipole 
moment, if it is large enough, may exert sufficient force on 
another cation to change very appreciably its equilibrium posi¬ 
tion with respect to the first cation. A cation induces in the 
anion a dipole that is oriented in such a direction as to attract 
the cation or any other positive ion very close to it; therefore 
the induced di])ole will have the effect of partially overcoming th(j 
repulsion between any positive ions that may be near the anion. 
The first attempt to consider the structure of the water molecule 
was made in this way, and although an incorrect valence angle 
was deduced, a definitely kinked structure was predicted (in 
fact, the angle was too acute). It may be that recently these 
calculations have not been given the consideration they deserve, 
but in any event, since the polarization of one atom by another 
is a step in the transition from polar to nonpolar binding, this 
cannot alter our conclusion that a kinked structure for such a 
molecule as the water molecule is evidence for a predominance of 
covalent character in the bonds. 

In view of the special interest of these unsymmetrical mole¬ 
cules, a table of some whose structures have been determined, 
either by the study of molecule spectra or by electric diffraction, 
has been included. Data for molecules whose structures have 
been determined by the former method are taken from Sponer, 
‘^Mplekiilspektren,^' vol. I (indicated by S in Table 29), and 
data for those studied by means of electron diffraction are taken 
from the article by Brockway^ (indicated by B in the table). 
The structure of the molecule is indicated, as well as may be in 
two dimensions, and the column headed “Distance^’ gives the 
distance between the central atom and the one next to it (if there 
is more than one distance, the particular distance is specified). 
The column headed Angle'' gives the angle between bonds. 
(If there is more than one kind of bond, it is the angle between 
two bonds of the kind for which the distance is given.) Other un¬ 
symmetrical molecules will be found listed in Brockway^s article. 

* Beockway, Rev. Mod. Phys., 8, 260 (1936). 
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A slight digression about the properties of double and triple 
bonds may not be amiss at this point. The reason that it is 
possible to have free relative rotation of the two methyl groups in 
ethane but not of the two methylene groups in ethylene may 
now be made clear. The tetrahedral bond-eigenfunction is 
symmetrical about an axis through the line of centers of the 
two carbon atoms in ethane. Relative orientation of the two 
methyl groups does not affect the relation between the two inter¬ 
acting bond-eigenfunctions. The only forces tending to prevent 
free rotation are presumably those between the hydrogen atoms 

Fiu. 53.—Illustrating the structure of H2C=CH2 and H2C=C==CH2, showing 
the carbon atoms as tetrahedra inscribed in cubes (see Appendix IV). 

themselves. In the case of ethane, for example, these forces are 
probably great enough to prevent continuous rotation of the 
methyl groups,^ but not sufficiently great to prevent frequent 
rotation, as the methyls must frequently acquire sufficient energy 
to turn around with respect to each other against these forces. 
This means that, as far as chemical phenomena are concerned, 
the rotation may be considered as free, since the rotation occurs 
much more rapidly than most chemical reactions. On the other 
hand, with two interacting bond-eigenfunctions in each group, 
as in the case of ethylene, for example, relative rotation of groups 
cannot take place without affecting the interaction between at 

1 Howard, /. Chem, Phys.^ 6, 451 (1937); Kemp and Pitzbr, J. Chem. 
Phya. 4, 749 (1936); Kistiakowsky and Wilson, J. Am. Chem. Soc.^ 60, 
494 (1938). 
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least one pair of bond-eigenfunctions, and this requires a very 
great energy. Thus practically no rotation occurs around a 
double bond. 

Elementary geometrical considerations show that the centers 
of gravity of all the atoms in an ethylene molecule are in a plane. 
This follows if we assume that the carbon atom has a tetrahedral 
structure and that a double bond involves sharing an edge, 
whereas with a single bond only a corner is shared. Similarly, in 
an arrangement like C=C—C, all the carbon atoms lie in a 
straight line. Assuming that a triple bond means that the 
tetrahedra involved share a face, we see that all the atoms in 
acetylene lie in a straight line. (See Figs. 53 and 54.) 

When a central atom is attached to one atom by a single bond 
and to another atom by a double bond, the three atoms should 
not be in a straight line, as is seen from the g(K)metry of the 
tetrahedron (Fig. 53). The angle would be expected to be 
somewhat larger than the normal tetrahedral angle of 109°28'. 

An example is furnished by S()2 in which 
the two oxygens are attached to a 
central sulfur atom, one presumably by 
a single bond, the other by a double 
bond (else the octet of an atom is not 
complete). There is a possibility of 
resonance in this case, as was shown 
in Sec. 11.1, but all the possible elec¬ 
tronic states would result in a kinked 

molecule. It is, therefore, not surprising that the molecule is 
actually found to be bent,^ the O—S—0 angle being in the 
neighborhood of 125°. 

3. An example of the square structure is furnished by the 
nickel cyanide ion, Ni(CN)4 . Nickel in its normal state has 
eight 3d-electrons and two 4s-electrons. Now the nickel atom 
shares an electron with each of the cyanide radicals. A cyanide 
radical is a neutral radical with an odd electron, resembling a 
halogen atom. The two extra electrons, which give the negative 
charge to the complex ion, may be assigned to the nickel (for the 
purpose of discussion only). This gives an ion Ni— with eight 
3d-electrons and four electrons in the n = 4 shell, only the latter 

^ Cboss and Brockwat, J, Chem. Phys., 3, 821 (1935); Giauqub and 

Stbvbnson, J, Am. Chem. Soc., 60,1389 (1938). 

Fio. 54.—Illustrating the 
structure of HCHECH, show¬ 
ing the carbon atoms as 
tetrahedra. 
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of which are shared. The states occupied by the eight 3d-elec- 
trons do not, in this case, share in the formation of bond-eigen- 
functions, as the electrons are paired among themselves. The 
unoccupied 3d-state is free to interact with the 4.9- and 4p-states 
to form bond eigenfunctions, into which the four electrons, which 
have been roughly described as having n = 4, can go. With 
one 3d-state and all the 4&‘- and 4p-states available, we have a 
situation corresponding to that recpiired for the formation of a 
square. 

It will be seen that nickel has the maximum number of elec¬ 
trons with which a square configuration for the divalent state 
would be expected. Nevertheless, copper, which has one 
more electron, has a square structure in sucdi compounds as 
CuCl2(1120)2. In this case, the extra electron is evidently 
housed in the fifth eigenfunction, noted in the description of 
sp^d bonds, and does not render the last 3d-state unavailable. 
A single electron is apparently not so effective in rendering this 
state unavailable as a pair.^ 

4. An example of the tetrahedron of the more stable type is 
Cr04—. This ion may (conveniently be considered to be formed 
from Cr"*'"^ and O” ions. The Cr++ ion has four 3d- and no 
4s- or 4p-electrons. All these (electrons are shared, and it is 
obvious, since all of the 3(/-wave fun(*tions are available, that the 
conditions for forming the tetrahedron of the more stable type 
are fulfilled. 

* It should be noted that Cox, Wardlaw, Websb^r, and coworkers [J, Ckem. 
Soc., 1936, 459, 781, 147.5, 1S36, 775, 1937, 1.5.56; Nature, 139, 71 (1937); 
Sci, Prog., 32, 463 (1938)], eonsidc'.r that the plane structure is a (characteristic 

of a bivalent central element. Thus they claim from X-ray examination 
that not only nickel, (copper, platinum, and palladium show the plane 

structure, but also bivalent silver, cobalt, manganese, tin, and head. Such a 

structure for tin and lead involves outer d-states, or contravenes Pauling's 

criteria. Also the square structure for the cobalt compounds they examined 

(isomers of CoCl2Py2, wlucre Py — pyridine) would be rather surprising 
since the magnetic criterion (Sec. 15.3) shows the binding to be ionic (or 

[Barkworth and Sugden, Nature 139, 374 (1937)], and C0CI4— has a tetra¬ 
hedral structure. Cox and Webster also state that Pt(CH3)3Cl is tetra¬ 

hedral, whereas platinic platinum with a coordination number of four 

might be expected to be square. If, in this compound, the bonds are 
of the tetrahedral type, one of the nonbinding eigenfunctions must 
contain a pair. 

Two elements not in their bivalent states, namely, trivalent gold and 
manganese, are also said to show square coordination. 
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5. The ion PtCU is an example of the octahedron. This may 
be considered to be made up of neutral CPs and a Ft ion with 
ten 5d- and two 65-ele(^trons; six of these twelve electrons are 
not shared. These six unshared electrons occupy three d-states, 
leaving just enough d-states of the n == 5 shell available to 
satisfy the necessary conditions for an oc^tahedron. 

16.3. Magnetic Criterion for T3rpe of Binding.—As remarked in 
the opening paragraph of this chapter, the mere fact that a com- 
l)OUiid or complex ion has one of the structures noted above is 
not a sufficient crit(irion to show that the binding is covalent if the 
structure is symmetrical. A kinked structure, such as exhibited 
by wat(^r, may be regarded as evidence that the bond is pre¬ 
dominantly covalent, for if the bonding were ionic the two hydro¬ 
gen ions would tend to get as far away from each other as possible. 
Similarly, the square structure of Ni(CN)4 would appear to 
indi(^ate that the binding within the ion is covalent. 

Another property that is of some value in distinguishing 
between ionic and covalent binding in such compounds or ions 
is the magnetic moment.’ As we have se(ui in Chap. VI, an 
electron in an atom contributevs to the magmatic momcmt of the 
atom in two ways, by its orbital motion ami by its spin. The 
contribution of an electron in a molende depends largely on 
whether it is shared between atoms in the molecule or whether 
it may be regarded as belonging essentially to one atom only. 
An electron that is not shared, and is well shielded from the 
action of other atoms in the molecaile, acts much like an electron 
in ah atom. The inner, unshared electrons usually occur in 
closed shells or closed subshells; in such cases, the magnetic 
moments of the different electrons in the shell or subshell just 
cancel each other, so that the net value of the magnetic moment 
is zero. We shall in the following discussion be most interested 
in the valence electrons and in the uncompleted subshells of 
d-electrons, which are appreciably affected by surrounding atoms. 

It was shown in Chap. VI that the orbital magnetic momentum 
of an electron is proportional to the angular momentum. This 

^ Pauling, J*. Am, Chem. Soc,, 63, 1391 (1931). The matter is discussed 
by Stoner, Magnetism and Matter,” Methuen & Co., Ltd., 1934, and 

Klemm, '^Magnetochemie,” Akademische Verlagsgesellschaft, Leipaig, 
1936. Por an account of magnetic theory, see also Van Vleck, Electric 
and Magnetic Susceptibilities,” Oxford University Press, 1932. 
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holds for molecules as well as atoms, and the fact that angulai* 

momentum and orbital magnetic moment })arallel each other 

is of some value in our exposition, since it is often easier to dis¬ 

cuss the angular momentum than it would be to discuss the 

magnetic moment directly. We shall s(»e that such a discussion 

will show that in a molecule there is usually no orbital magneti(* 

moment, and that thCimeasured magnetic* momcuit, t)fnng thus 

entirely due to spin, makes it possible to tell how many paired 

and how many unpaired electrons are i)resent, thus throwing 

much light on the valence phenomena. 

In previous discussions, much str(\ss has b(‘(‘n laid on the 

fact that then-e is (HUiscn-vation of the angulai* momentum of an 

c^lectron moving in a fic^ld of force, such as is found in an atom, 

directed toward a fixed ccniter. The proof of the conservation 

of angular momentuin given in Aj)p(*ndix 1 depends directly 

upon the assumption that the field of forc^e is of this ty})e. In a 

molecule, however, the force on an electron is not nec^essarily 

at all tim(\s direc^tly toward the center of gravity of the* system, 

nor toward any single point. The angular inomcnitum of an 

electron in a molecule will not remain (H)nstant. This clocks not 

mean, of course, that the angular momentum of the molecule 

as a whole is not conserved: the cdectrons merely exchange 

angular momentum with the nuclca. This exchange takes j)lac(^ 

continuously (though not necessarily uniformly). Since the 

nuclei are heavy bodies, so that a relatively small change in their 

velocity results in an appreciable change in angular momentum, 

the angular momentum of an electron is not only not conserved, 

but changes sign, and will on the average be as often in oiu^ 

direction as in the opposite. The average angular momentum 

with respect to the nuclei will be zero;^ therefore, since the motion 

of the nuclei is very slow compared with that of the electrons, 

the average angular momentum of the electrons with respect to 

fixed space will also be practically zero.^ This null value of the 

^ In the case of diatomic molecules, or molecules all of whose atoms are 

arranged in a straight line, the component of the angular momentum of 
electrons along this line of centers is conserved, because there will be no force 

on the electrons perpendicular to such a line. The component of the 
angular momentum of an ele(d,ron along the line of centers need iu)t, there¬ 

fore, be zero. 
* There will be some contribution to the magnetic moment from the 

motion of the nuclei. This, however, will be small compared, for example, 
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angular momentum implies a null value of the orbital magnetic 
moment. The orbital magnetic moment about such centers is 
said to be quenched. 

The angular momentum due to spin, however, is not readily 
exchanged with the angular momentum of the nuclei. The 
electrons in a molecule, therefore, contribute a spin magnetic 
moment just as in atoms. Often the magnetic moment of a 
molecule is contributed almost entirely by spins. 

This statement miglit be thought to be incorrect because of the 
inner electrons which are so well shielded from the fields of the 
surrounding atoms that they move in the (\ssentially spherical 
symmetrical field of a single atom; the relative motion of the 
atoms disturbs them but little, and their angular momentum 
is conserved (at least for a time that is long compared with the 
time necessary for them to become orientated in a magnetic field.)’ 
But, as we have seen, such inner electrons ordinarily occur in 
closed subshells, and the magnetic moments of the different 
electrons in such a subshell cancel, so that the net value is izero. 
The only case in which electrons in an uncompleted subshell are 
well shielded from external fields is that of the rare earths, in 
which the 4/-electrons are in such a subshell. In this case, the 
4/-electrons contribute to the magnetic moment through both 
their orbits and their spins. However, such electrons have little 
or nothing to do with valence phenomena, and so the problem 
of their magnetic moments will not be (amsidered in this book. 

The uncompleted d-shells of the transition element do enter 
into valence phenome na and are sufficiently affected by outside 
fields so that in many cases only their spins contribute to the 

with the magnetic moment of the electron in tlie lowest state of the hydrogen 
atom (i.e.t to a Bohr magneton), for the nuclei have the same charge as an 
electron, and move in paths of similar dimensions, but have a much smaller 

velocity. That the contribution due to the motion of the nuclei will be 
small may also be seen from Eq. (2) of Chap. VI, which holds for the nuclear 
motion if we substitute the nuclear rotational quantum number j for I and 

the reduced mass of the nuclei for m. Although j may be on the average 

larger than i, the reduced mass is so much larger than the mass of an electron 

that the magnetic moment arising from nuclear motion is always small. 
^ Since the process of measuring the magnetic moment consists in applying 

a magnetic field and observing the effects of orientation, such electrons would 

be expected to behave experimentally as though their orbital magnetic 

n^oments were unquenched. 
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magnetic moment, although sometimes there is some residual 
effect due to the orbital moment, which, however, we shall 
neglect in the discussion. It is in the case of these d-electrons 
that the measurement of magnetic moments can give information 
concerning the type of binding in a compound. It is a general 
rule, empirically observed to be practically always obeyed, 
that in the lowest energy hivel of an atom the unpaired electrons 
in the atom have their spins in the same direction. Thus if 
there are n unpaired electrons, these are lined up so the magnetic 
moments add, and if, in a magnetic field, the complex is lined up 
as a whole with or opposed to the field, the component of the 

angular momentum along the field will be since each 

electron contributes Or the comydt^x of electron spins 

may be oriented in such a way that the component of the angular 
momentum in the direction of the field differs by an integral 

number of units from thus giving the series of values 

^7ih (^n — l)h (-jn + l)h 

2t ~ ' 
—the correspond¬ 

ing components of magnetic moment being obtained simply by 
multiplying these values by^ e/mc. It is usual to designate 
n/2 as S. It will be noted (see Sec. 5.4) that the values of the 
component of angular momentum are the same as would be 
contributed by an orbit with quantum number I = S, whose total 

,,, VsTs~^h 
angular momentum would be-^- The values of the 

component of magnetic moment are twice those resulting from 
such an orbit, and such as would result from a magnetic moment 
of 2\/^(S + l)(he/4wmc). As has been noted in Sec. 6.2, the 
fundamental moment helArmc is known as a Bohr magneton, 
and the quantity 2'\/S(S+l), which is commonly used as 
a measure of the magnetic moment, is consequently the number 
of Bohr magnetons. It is seen that the number of Bohr magne¬ 
tons is determined by, and is itself a measure of, the number of 
unpaired electrons.^ v 

^See p. 79. 
* This, however, may be considered as only the roughest sort of approxi¬ 

mation. Very often the orbital motion and the spin affect each other in 
such a way that the magnetic moment is different from what would be 
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In view of the tendency of electrons that are not shared 
between atoms to be unpaired if possible (a tendency that 
presumably persists even if the atom is combined in a com¬ 
pound), measurement of the magnetic moment may throw light 
on the number of shared electrons. Since in ionic binding, 
electrons are not shanid, whereas in covalent binding they are, 
something may thus be learned about the type of binding. 

The way that the determination of the number of unpaired 
electrons can throw light upon the natures of the binding in a 
chemical compound may be illustrated by noting the difference 
between FeFf, and Fe(CN)6 . The experimental values^ 
of 2\//S(*S -f- i) for these ions are ~ 5.9 and 2.6, indicating five 
and one unpaired electrons, respectively [2\/|(|-|- 1) == 5.92 and 

+ 1) = 1.73]. If the binding in such an ion is ionic, 
i.e., if the ion is composed of an Fe+++ and six X“ ions (where 
X- = p- or ON**), then the X~ ions have only closed shells and 
contribute no magnetic moment, and the Fe^"^"^ has five unpaired 
d-electrons whose spins tend to add, giving 2\/f(f + 1) Bohr 
magnetons. On the other hand, if octalu'dral l)ond-eig(mfunc¬ 
tions are formed, there will be six pairs of shared electrons, each 
X“ ion furnishing one pair (or oiu' of the electrons of each pair 
may be thought of as coming from an Fe ion, and one from a 
neutral X). The sphP octahedral bond-eigenfunctions, con¬ 
taining the shared electrons, use up two d-w^ave functions, so 
that only three d-plac^es are left to hold the five unshared d-elec- 
trons of the Fe. Therefore, only one of these electrons may be 
unpaired. From this discussion, and from the respective values 
of the magnetic moments, it would be inferred that the FeFe"" ~ 
ion is itself composed of ions, whereas the Fe(CN)6-ion, con¬ 
taining shared electron pairs, has predominantly covalent bonds. 

expected from spin alone. Usually it is greater, and, roughly speaking, 

one may say that the angular momentum acts as though it were not fully 
quenched, but were contributing to the measured number of Bohr 
magnetons. 

^ Calculated from data of Cotton-Feytis, Ann. Chim.y 4, 9 (1925), and 

Jackson, Proc. Roy. Soc. {London)^ A140, 696 (1933), respectively. The 
actual salts used were (NH4)3FeF8 and K3Fc(CN)o; NH,4'*' and have no 

magnetic moments. The number of Bohr magnetons found for the cyanide 

is actually closer to the value for two unpaired electrons but probably 
agrees with the value for the expected one unpaired electron as closely as 

may be hoped for, considering the uncertainties involved.- 
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Recent calculations of Van Vlock and Howard^ appear to indicate 
a possibility that the conclusion that the forces in Fe(CN)6 
are predominantly covalent is not iiecessarily correct, for it is 
shown that the forces of surrounding ions might conceivably be 
sufficient to change the ord(;r of the energy levels of the Fe'^+'*'. 
However, since this does not occur in the FeFe-i(ni, in whi(*h, 
on account of the small size of tlie F~ ion, th(^ ionic forces are 
especially great, it seems reasonable to suj)pose that the magnetic 
criterion for distinguishing between j)olar and nonpolar bindings 
is correct. In any event, siudi a change in its (mergy levels 
implies a distortion of the Fe+^+“^ and hence may reasonably be 
assumed to be a step in the direction of covalency, although it is 
the wrong ion that is being distorted. There being a lack of 
other criteria applicable to compounds involving elements of the 
transition group, we shall us(' tins one whore possibles It will 
be obvious that if there are less than four (/-('hictrons on the 
central clement or ion this criterion cannot be applied. 

In the foregoing discussion, we have assumed that the shared 
electrons in a covahmt bond of the square or octahedral type 
necessarily involve the inner ^Z-eigenfunctions, f.c., the 3^/-eigen- 
functions in the case of elements of the iron group. It is possible 
on the other hand that tluu'e are some cas(\s in which the (niter 

d-eigenfunctions (4d in the iron group) arc involved.- Such a 
bond would obviou.sly be more polar in its properties than a 
bond involving the inner d-eigenfun(;tions, and its magnetic; 
moment would be the same as for an ionic bond, and hence could 
not be distinguished from the latter by the magnetic criterion.^ 
Since such a bond has properties intermediate between truly 
ionic and truly covalent bonds, we shall designate it as semi- 
covalent. It will be understood that this term will be applied 
only in cases in which use of the inner d-eig(;nfunctions is possible. 
If these are filled up, so that a bond involving the outer eigen¬ 
functions is the only possible one, th(;n that type will be; desig¬ 
nated as covalent, as usual. 

We shall conclude this section with a fc^w words on the (experi¬ 
mental method for determining the number of Bohr magnetons, 
though a full discussion of this subject is beyond the scope of this 

^ Van Vlbck and Howard, J. Chem. Phys.^ 3, 807, 813 (1935). 

* Huogins, J. Chem. Phye., 6, 527 (1937). 
*True of any case involving no inner d-electrons, e.g., sp^ bonds. 
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book. The measurement is based on observing what happens 
when the substance under consideration is introduced into a 
magnetic field. The action of a magnetic field upon a mag¬ 
netizable body is somewhat similar to the action of an electric 
field on a dielectric. Magnetization of a body by a magnetic 
field occurs (1) on account of the effect of the magnetic field on 
the orbits of the electrons in the body (by changing their size 
or the speed of the electrons) and (2) owing to the lining up of 
molecules or ions having permanent magnetic moments (so-called 
^'elementary magnetsunder the influence of the field. On 
account of these effects, the mutual potential of any system of 
magnetic poles will be obtained from the expression for their 
potential in a vacuum by dividing by a factor y called the 
magnetic permeability of the material. It is more usual to 
deal with the susceptibility x» which is related to \i by the equa¬ 
tion y == 1 + 47rx. 

When elementary magnets are oriented in a field, they turn in 
such a way as to decrease the energy of the system. The effect, 
therefore, is to draw the magnetized body into the field. A body 
that is thus drawn into the field is said to be "paramagnetic.^' 
One method of measuring the susceptibility is based upon the 
measurement of the force with which such a body of known vol¬ 
ume is drawn into a field of known intensity. 

The first type of action of the magnetic; field on a body, 
namely, its action on the electron orbits, usually results (unlike 
anything in the electrical case) in a force tending to push the 
body out of the field. This force is generally very small com¬ 
pared with, and hence more than counterbalanced by, the 
attraction of the field for the body, provided there are molecules 
present that do have permanent magnetic moments. If, how¬ 
ever, there are no permanent magnetic moments present, there 
will generally be a slight rcvsidual force tending to push the 
magnetized body out of the field. Such a body is said to be 
"diamagnetic." 

If a j)aramagncitic substance is diluted by mixing with it some 
nonmagnetic substance (i.c., a substance with no permanent 
magnets), x a])proxiinately inversely proportional to the 
volume containing one mole of paramagnetic substance (at 
least after allowing for the diamagnetism of the diluent). Thus 
the susceptibility multiplied by the molal volume, which is 
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called the ''molal susceptibilityis a constant characteristic 
of the substance. 

In the electrical case, it is the temperature coefficient of the 
dielectric constant that is directly connected with the ele(rtri(‘, 
moment of the molecules. Similarly, iii the magnetic case, the 
temperature co(?ffici('nt of the molal susci^ptil^ility is the quantity 
directly connected with the molecular magnetic moment. The 
situation is somewhat conii)licated by th() inteniction of the 
elementary magnets with (^ach other. HoAvever, it is generally 
found experimentally that the molal susc('ptil)ility Xm i^ given 
as a function of the al)soliit(' temperature T by an equation of 
simple form, involving two constants, C^i and 0: 

y — _ „ 
AM rji   Q 

The number of Bohr magnetons pcT moh^cule of the substance 
is given, at least in siini3le cases, by 2.84 -x/C^r. It is beyond the 
scope of this book to go into the tlu^oiy that lies baede of this 
expression, and the doubts and difficulties that may arise in 
attempting to apply it in si)ecial cases; for these matters, the 
student is referr(;d to tr(‘atises on magnetism.^ Often measure¬ 
ments arc available only at room temperature, and in this case 
Cm is usually calculated on the assumption that 6 is zero. 9 is 
usually, but not always, small, and sometimes this may lead to 
considerable errors. Larger values of 0 may be connected wdth 
strong interaction Ix'twc'en neighboring atoms of the substance 
being investigate?d, or other disturbing features, and if 9 is large, 
the calculated valu(i of the number of Bohr magnetons is less 
likely to be of significance. 

There is a considerable amount of experimental work available 
on the magnetic susceptibilities of compounds of the transition 
metals.2 In general, in these compounds, it is only the transition 

^See footnote, p. 276. 
* The data have been summarized by Pauling **The Nature of the Chemi¬ 

cal Bond,'^ pp. 107, 109, Cornell University Press, 1939; Pauling and Hug¬ 
gins, Zeit. KrisLt 87, 216 (1934); in the treatises mentioned in the footnote, 

p. 276; by Gorter, Arch, dxi Mus&e Teylevy 7, 183 (1932); by Cabrera, 

Magn6tisme,” Rapports et Discussions du Sixidme Conseil dc Physique, 
pp. 1932; in Landolt-Bornstein, “Tabellen,” and in ^international 

Critical Tables.” 
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metals themselves that have any magnetic moment, and these 
measurements, therefore, may be considered to give the magnetic 
moments of ions of these metals; or, in compounds in which the 
metal’is bound covalemtly, the measurements give the moments 
of ions or groups containing the atom of the transition metal. 
M(^asurements have been made on simple compounds, on (‘omplex 
compounds, and on aqueous solutions. Some of the results on 
simple compounds are summarized below: 

Oxides of the First Row of Transition Elements.—The tempera¬ 
ture dependence of the susceptibilities indicates large negative 
values of B for some oxides of chromium and manganese. The 
resulting values of give values of the Bohr magneton number 
agreeing fairly w^ell with what is to be expected for ionic com- 
j)()unds. With other oxides susceptibilities that have beem meas¬ 
ured only at room temperature are smaller than calculated for 
the given ion (knowing the number of Bohr magnetons expected 
for that ion) assuming ^ = 0; but since B is probably not near 
zero this is not surprising, and it seems fair to conclude that th(^ 
results are at least consistent with the assumption that oxides 
are ionic. 

Sulfides of the First Row of Transition Elements..Data on 
vanadium, chromium, and manganese compounds inconclusive. 
FeS'i is probably covalent.^ 

Halides and sulfates of the first row of transition elements are 
almost certainly ionic, or, at least, semicovalent. 

Exercises 

1. Why would the PCI3 niol(M!ule be expected to have either p or bond- 
eigenfunctions? 

2. Discuss the electronic structure of Cu(CN)4 . Do you expect it. l,o 
have a tetrahedral or square structure? For the experimental result, see 
Table 31. 

3. Complex compounds of platinic pla tinum generally have an octahedral 
structure, whereas platiiious compounds generally have the square structure. 
Assuming that they are covalent, give an explanation in terms of their 
electronic structure. 

4. Assuming covalent binding and assuming ionic binding, calculate the 
number of Bohr magnetons for the elements V to Cu in the first transition 
series in their common valence states. Assuming 0=0, calculate the 
susceptibility at 300°K. 

* According to Pauling and Huggins, ref. 2, p. 283. 
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6. Write a Lewis electronic structure for nitrous oxide, NNO. Assum¬ 

ing N and O to be tetrahedra, predict the form of the molecule. Do thci 

same for thiocyanate ion, SON"", hydrogen j^eroxide, HOOII, and nitrite 

ion, ONO“. Name a mimber of other ions you would expect to have the 

same structure as NNO. 
6. Suggest two possibles electronic structures for the molecule ON(M. 

Make a prediction as to th(i shape of this molecule (see Kctelaar and !*almer, 

./. Am. Chem. Soc., 69, 2629 (1937)]. 



CHAPTER XVI 

COMPLEX COMPOUNDS AND COMPLEX CRYSTALS, 
INCLUDING ATOMIC CRYSTALS 

Although there are simple atomic crystals, such as diamond and 
AIN, many of the pro])erti(5S of covak^nt bonds, especially those 
discussed in the last chapter, are better illustrated by the complex 
compounds and complex ions of various types, and this inter¬ 
esting branch of chemistry is much illuminated by the general 
principles developed. Further, the questions that arise in con¬ 
nection with the transition to other types of binding are by no 
means confijied to atomic crystals of the simi)le type, but present 
much the same problem in the case of complex compounds. 
As we have seen in the prec('ding pages, there are complex ions 
of various types, which generally represent (^uite stable configura¬ 
tions. In some respects, the study of th(‘se ions yields more 
information than the study of the sinq^k^r atomic crystals, and 
it seems convenient to bc^gin this chapter with a consideration of 
ions rather than crystals. 

In the common type of ion, there ls a (jentral atom surrounde^d 
by a number of more negative atoms (or sometimes groups or 
molecules) in a more or less regular configuration. /Often these 
negative atoms are all alike; occasionally more than one Ifilfd are 
present. Sometimes the central atom is the more negative, 
though this type is less common. Sometimes there is no single 
(central atom and the geometrical arrangement is more compli¬ 
cated than indicated above. Complex ions are usually stable in 
aqueous solutions, and generally enter as units in chemical 
reactions. If this were not true of at least some chemical 
reactions with any given ion, it would scarcely be recognized as a 
distinct entity, though a compact grouping in a crystal is often 
used to define an ion. 

16,1. Methods of Investigation.—In our consideration of a 
complex ion, we are interested in knowing something of its 
composition and its structure. There are many methods avail- 

286 
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able that throw light on the composition of complex ionsJ 
Most elementary, of course, is the method of chemical analysis. 
The fact that a certain combination of atoms occurs again and 
again in a series of different compounds leads one to infer that 
these atoms are bound together in a kind of complex, though it 
does not, of courses (at any rate without othei- considerations 
being, at least, implied), lead to a determination of the charge 
on the ion, which is one of its important properties. Again, a 
salt may be soluble in water, and it may react with other sub¬ 
stances to form various i)recipitatos. If all these precipitates 
contain certain elements (which were pi-esent in the same pro¬ 
portions in the original salt) in a certain (‘oinbination, it seems 
likely that this group exists also as an ('ntily in aqueous solution. 

It is often possible to infer the composition of a complex ion 
by its chemical behavior and the behavior of substances from 
which it is formed in aqueous solution. This may j)(a-ha])s best 
be illustrated by an example. Suppose* w(‘ have a solution that 
is known to contain one mole of silver ion and su]:)pose it has 
previously been ascertained that cyanide ion has a definite com¬ 
position. Now we add one mole of ])otassium c^'anide to the 
silver solution and obtain a precipitate* containing 1 gram atom 
of silver and 1 gram equivalent of cyanide. If oik* more mole 
of potassium cyanide is added, all the im'cipitate goes into solu¬ 
tion. We therefore infer that there is now present in solution a 
complex ion having the formula Ag(CN)2'~. (If the charges on 
silver and cyanide ions are known, we infer therefrom the charge 
on the complex ion, and the result must be correct if no other 
ions are involved.) The fact that many sets of experimental 
observation can be explained in similar fashion, and the further 
fact that observations on related substances give mutually 
consistent results, lend some confidence in the conclusions 
reached in this manner. 

1 For more detailed accounts of these methods see Jacques, “Complex 

Ions,” Longmans, Green & Company, 1914; Schwarz, “Inorganic Complex 
Compounds,” English trans., John Wiley & Sons, Inc., 1923; Werner, “New 
Ideas on Inorganic Chemistry,” English trans., Longmans, Green & Com¬ 

pany, 1911; and Weinland, “Eiiifiihrung in die Chemie der Komplexver- 

bindungen,” Ferdinand Enke Verlag, Stuttgart, 1Q24. The book by 

Werner is a classic by the man principally responsible ;for the development 

of this field of chemistry; the work by Weinland is a c^nprehensive account 

of the experimental results. See also footnote 2, p. 297. 
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Fig. 55. 
tho study 

AgCCN)r. 
o]f»(*trioi<y 

It must be borne in mind, however, that cases will arise in which 

the foregoing method of investigation will not be applicable. 

It will be seen that its success in the preceding case depends upon 

a particular set of cinniinstances. Solid AgCN reacts with CN " 

to form Ag(CN)2~, and it requires only an exceedingly small 

concentration of CN“ to bring the precipitate into solution. 

However, solid AgCN is also in 

equilibrium with Ag+ and CN~. 

As long as there is an excess of 

Ag"*" present, it keeps the (concen¬ 

tration of CN“ dow n sufficiently 

so that the AgCN is not brought 

into solution as Ag(CN)2"’. If 

these equilibria did not b(car tho 

right relation to each other, th(^ 

obsf'rvations would not hav(‘ 

the simplicity observed. How¬ 

ever, it might be possible to 

measure the (concentration of the 

various substaiKHcs in solution, 

either dir(‘ctly or indirectly, and 

so obtain the valines for the equilib¬ 

rium (constants involved. This method of investigation of th(‘ 

properties of complex ions is illustrated by Exercise 2 at the end 

of the chapter. 

Observations of the type described above may be confirmed by 

transference experim(?nts. Consider, for example, the experi- 

nu'utal setup shown in Fig. 55 in which we have a silver anode 

at A and cathode at C immersed in a solution (jf the complex salt 

KAg(CN)2 (obtained, say, by filtering the AgCN precipitate, 

washing and dissolving in an equivalent amount of KCN). 

Suppose one equivalent of electricity to be passed through the 

coll. One gram atom of silver will then be found to be deposited 

on the cathode, and 1 gram atom is removed from the anode. 

The current will have been carri(^d by the ions, part of it by 

part by Ag(C'’'N)2“. Suppose that the fraction of the current 

carried liy K+ is x. Then after the passage of the current, x 

('quivalents of will have been transferred from the region near 

:V to the region near C and 1 — x equivalents of Ag(CN)2” will 

have been transferred from the region near C to that near A. 

Transference cell, for 
of the complex ion, 
The ionic carriers of 

arc Ag(CN)2"' and K'*'. 
Though Ag(CN)2~ movies toward the 
anode, silver is deposited on the 
cathode, the rnechani.sm undoiiljt- 
edly involving Ag(CN)2“ Ag^ -f 
20N“, though Ag^ is i)reseiit in very 
small concentration. 
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There would then be one equivalent more of than of 

Ag(CN)i!"“ near C, provided nothing else had happened. Bui, 

since one equivalent of Ag(CN)2“ will have been deposited on the 

cathode as silver, two equivalents of CN“ will have been released, 

and the net effect will be that the number of equivalents of K+ 

will exceed the number of equivalents of Ag(CN)2“ by two, and 

two equivalents of (CN)- will be present. In the anode region, 

the amounts of and Ag(CN)2“ will be equal, but two moles of 

AgCN will precipitate. These predictions can be verific'd by analy¬ 

sis of the anode and cathode portions of the cell for silver, (cyanide 

radic.al, and potassium after the elec.qricity has passed through. 

It will be observed that the results predicted d(‘])end upon th(' 

assumptions made about the ions. It is, namely, assumed that 

the silver and cyanide move together so (hat silvcn* goes to th(* 

anode (Ag"*" would go to the eathod(^) and that one atom of silv('r 

is tranferred for each two cyanide radicals. Furtlu'rmore, it. is 

assumed that each Ag(CN)2“ ion has a single negative charge 

(this, of course, is not independent of the assumption that th(^ 

salt of the formula KAg(CN)2 gives potassium ions and complex 

ions in solution). The verification of tlunse assumptions may be 

considered to be a verification of the formula of the complex ion. 

The transference method is a very powerful one, and has been 

much used in .the study of complex iojis. 

Another method that has been used in the study of (complex ions 

is the measurement of the inolal electrical conductivity of th(^ 

salt. In the case of simple salts and complex salts with ions of 

known composition, this quantity has been found to depend 

chiefly on the valence type of the salt, being greater the higher 

the charge on the ions. Conversely, the conductivity can be 

used to determine the valence typo of the salt, which may be 

sufficient to determine the formula of the complex ion or, at least, 

throw light on it.' Other methods, such as the freezing point 

lowering, can also be used to find the number of ions pr(‘sent, and 

h(un^e to make* possible inferences concerning th(» formula of th(‘ 

c()ni})lex ion. 

In the case of complex ions in which various groups of different 

character are attached to the central atom, the isomerism, 

particularly stereoisomerism, can give much information con- 

^ For an example, see Schwarz, op. ciL, p. 32. 
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ceming the structure of the ion, as already remarked in Sec. 

15.1. This will be discussed later in the chapter. 

Finally, as already seen in preceding chapters, the use of 

X rays can give mucli information concerning the arrangement 

of atoms in complex ions as they exist in crystals. 

16.2. The Nature and Properties of Complex Ions.—A glance 

at Wcinland’s ‘^Chernie der Komplexverbindungen will indi¬ 

cate the vast variety of complex ions that may be formed. The 

best known of these are, of course, the anions in which a central 

atom is surrounded by oxygen atoms, the sulfate ion being a 
typical example. A few cations containing oxygen, such as 

¥0+“^, are also known. There are numerous anions and cations 

that (^an be thought of as being formed by the combination of a 

positive ion, generally of an element in or near the transition 

region of the periodic table, either with negative ions or with 

such neutral molecules as water or ammonia. The negative 

ions or neutral molecules thus combined are invariably groups 

that are themselv(is capable of separate existence, and the 

variety of ions that may occur in such combinations is very 

great indeed, among them being F^*, Cl", Br~, CN"', CNS~, 

N02'“, SH", SO3 , OH~, a variety of (uganic ions, etc. The 

hydrates, which will be studied in Chap. XIX, may be classed 

among the complex ions. It is interesting to note that certain 

organic substances having two free ends, like oxalate ion and 

ethylene diamine, can occupy two coordination places^ in a com¬ 

plex ion. ' Co3 and SO3 are also included among these. 

Since most of our chemistry is the chemistry of aqueous solu¬ 

tions, the hydrates play a special role among the complex ions. 

Water in crystals may occur either as a ^Tiller'' occupying inter¬ 

stices in the crystal or it may be a coordination molecule more or 

less firmly bound to a central positive ion and thus forming 

part of a complex ion. The actual strength of the binding is 

not always a good criterion as to the type of binding, for some 

filler molecules are more tightly bound than coordination mole- 

^ Following a common usage, we shall speak of a molecule that is attached 
to a central ion to form part of a complex ion as a coordination molecule, 
and say that it occupies a place in the “coordination sphere.^’ The number 
of molecules or groups surrounding a central atom is the coordination num¬ 
ber of that central atom. (If a group occupies two coordination places it is 
counted twice.) For the definition of coordination number when no com¬ 
plex ion or molecule is involved see Sec. 14.1. 
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cules in other crystals.^ However, when a water molecule in the 

coordination sphere of a complex ion is driven out, the properties 

of the ion change in a characteristic way. This may best be 

illustrated by an example.^ [Co(NH3)6H20]Cl3 is a brick-red 

crystalline powder which is soluble in water, giving a solution 

that has none of the characteristic properties of a solution con¬ 

taining ammonia. This indicates that the ammonia is not free. 

On the other hand, the chlorine may all be precipitated by silver 

ion without apparently affecting the ammonia. The conclusion is 

that the ammonia is bound in the cation whereas the chlorine is 

ionized. It is then inferred that the water molecule is also 

in the cation, since experience shows that trivalent cobalt has a 

coordination number of six. This, however, is mere inference, 

but it can be verified, or at least the inference can be strengthened, 

by heating the crystal to around 100®C. at which temperature the 

water is driven out. It is then found that only two of the three 

chlorines can be precipitated by silver ion, the third having 

presumably taken the place of the water in the coordination 

sphere. By heating this substance in aqueous solution, the 

chlorine is again driven out by a water molecule and the original 

substance recovered. 

There are cases in which isomers are known, the difference in 

the compounds consisting entirely in the mode of linkage of the 

various constituents. For example, there are three salts with 

the empirical formula CrCl3*6H20, one of them being violet, and 

two green.*"* The violet salt gives a solution in which all three 

chlorines are ionized, as indicated by its behavior with silver 

ion. In the two green forms, two chlorines and one chlorine, 

respectively, are ionized. The salts, therefore, presumably have 

the formulas 

[Cr(H20)6]Cl3,* [Cr(H20)5Cl]Cl2*H20 
and 

[Cr(H20)4 Cl2]Cl-2H20. 

The violet salt is the most stable, and in aqueous solutions the 

other salts change to the violet form in a short time. 

1 See the discussion in Sec. 19,9 
* See Weinland, op. cit, pp. 16-17, 37 
’See WsRNEB and Gubssb, Ber, deut. chem. Ges., 34, 1579 (1901); Bjbb- 

RTTM, tWd., 89,1699 (1906); Zeita. phyaik, Chem., 69, 596 (1907), 
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16.3. The binding force within complex ions may be due to the 

electrostatic attraction of the central ion for the surrounding ions 

or dipoles, or it may be of the nonpolar type, or it may be any 

combination of the two: In most ions it appears from stoichio- 

motrical (considerations that at least part of the binding force 

must be ionic. Thus we might imagine an ion like SO4 to be 

made up of S®"*' ions and 0 ions, in which case the binding force 

would be purely electrostatic, or of S'^'^ and 0"“ ions, in which case 

there would be the binding force due to four shared pairs of elec¬ 

trons, but still some electrostatic force due to the attraction of the 

j)ositive and negative ions, ev^en though these are not so highly 

charged. Another possibility is that the sulfur is practically neu- 

t.ral and is combined with two neutral and two singly charged 

oxygens. (This would not mean that there would be any observ¬ 

able difference between the oxygens, as the charge would undoubt¬ 

edly mov(^ around from one oxygen to the other, so each would 

have an average charge of one half.) The true state of SOr^' 

probably lies b(3tween the extnnnes mentioned, and indeed, it 

seems reasonable to suppc^se that the combination of and 

four 0“ is a fairly gcjod approximation.^ (See also Sec. 16.14.) 

In special instanc(3s, the arrangement of the atoms in an ion 

(^an give information as to the nature of the binding. In Chap. 

XV, we discussed the arrangements of the groups within the 

(*omplex Hisulting from nonpolar binding involving various 

kinds of wave functions. The expectation for purely electro¬ 

static binding is that the arrang(3ment should be the most 

symmetrical possible with the given number of groups. Unfor¬ 

tunately, this coincides in most cases with the grouping pre¬ 

dicted by the theory of the covalent forces. Only case (3) of 

th(3(«e considered in Chap. XV, the arrangement of four groups 

about a central atom in the form of a square, is differcirit from 

what would be expc^cted of polar landing. However, as seen in 

Chap. XV, an unsymmetrical arrangement can often persist when 

less than four atoms are attached to the central atom. This 

happens, for example, in the case of the sulfite ion, which has the 

^ This assumption seems very plausible and is supported to some extent 
by the considerations of Sec. 19.10. It at first appeared that the analysis of 

the spectra of such ions yielded evidence for it [Urey and Bradley, Phys. Rev., 
38, 1969 (1931 )J, but more recently [Rosenthal, Phya. Rev., 49, 535 (1936)] 
objections have been raised to this interpretation. 
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:0: 

electronic formula :S:0: The oxygens actually at thnn* of 

•9* 
the corners of a nearly regular tetrahedron about tlu' sulfur.^ 

The only difference betvvecMi this ion and an ion in which four 

oxygens are attached is that in the present case one of the pairs 

of electrons occupying th(‘ bond-eigenfunctions of the sulfur is 

not shared with another atom. Other ions of this type an* (^lO.v 

and BrOs". Such an unsymmetrical ajrangeuKuit of the atoms 

about the central atom is a clear indication of the covahuit char¬ 

acter of the bonds. Since they differ only by having one more 

atom and one more shared electron pair, it is natural to infer 

that SO4 and C104~ ions have covalent binding also. 

Another criterion, which can give some information about the 

charatiter of the bonds in an ion, has also been discussed in 

Sec. 15.3. This is the magnetic moment of the ion. 1'his 

criterion is applicable only to elements of the transition sf;ries, 

and then only if the number of d-electrons in the uncompk^ted 

shell lies within certain limits. It is, unfortunately, not appli¬ 

cable to such ions as Cr04 and Mn04~*, which are possi})ly 

examples of the teti*ahedron, siiK'c t\w sam(‘ magnetics 

moment would be predicted for ionic as for nonpolar binding. 

The magnetic criterion is usually appli(*able to the elements in 

the iron and platinum groups, and a considei'able amount of data 

exists. An attempt has been made to summarize this in the 

accompanying table. In onkT to indicate the valence of the 

metal in any given complex ion, the symbol for the metal which 

is given at the top is the symbol that would be written if the 

binding were ionic. The nature of the various types of binding 

is indicated either by the symbol meaning ionic (or sejiiicova- 

lent), or, in the case of covalent binding, by giving the type of 

binding. This will indicate the kind of ion formed, its coordina¬ 

tion number, etc. 

It will be understood that in some cases a (certain amount of 

judgment has been used in compiling this list with respecd to the 

actual constitution to be assumed for a compound with a giv(‘n 

formula. In a similar manner, measurements of susceptibiliti(\s 

of ions in solution have been assumed to be measurements of the 

1 Zachariasbn, J. Am, Chem, Soc,, 68, 2123 (1931). 
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susceptibilities of the hydrates, unless definite evidence to the 

contrary is available. In general, no attempt has been made to 

go beyond the compilations of magnetic data assembled by 

various investigators on the subject, and no exhaustive analysis of 

the crystal structure and magnetic data with respect to the light 

they might throw upon each other has been made. It is believed, 

however, that in its general aspect the table cannot be greatly in 

error; at the same time it seems obvious that further work on the 

subject, both with respect to the gathering of new data and the 

analysis of the old, would be highly desirable. 

In using Table 30 it should be borne in mind that the magnetic 

criterion says a bond is cither covalent or ionic and gives no 

information about the transition between the two extreme types. 

It is, therefore, quite possible that a different criterion would give 

a different result in some cases. 

16.4. Some Energy Relations among Iron and Cobalt Com¬ 
plexes.—There are not many easily correlated data for estimating 

the relative stability of various complex ions. Data do happen 

to be at hand, however, that make it possible to find the effect of 

forming the cyanide complex on the oxidizability of ferrous iron 

to ferric and to compare it with the same effect in the case of 

cobalt. The matter will be considered in some detail as it illus¬ 

trates the utility of the rules set forth in Chap. XV, and at the 

same time may be correlated with the magnetic data. 

The effect of the formation of the cyanide may be compactly 

expressed in the following manner. The energy (actually the 

free energy—see Appendix II) given out by the reaction (in 

aqueous solution) 

Fe+++ + Fe(CN)«*- Fe++ + Fe(CN)6- 

is 9.5 kg.-cal., and that given out by the analogous reaction 

Co+++ + Co(CN)6^- Co++ -h Co(CN)c— 

is 60 kg.-cal.^ The latter reaction, therefore, has a much greater 

tendency to go as written. The great difference between the 

reactions is explained on the supposition that Co(CN)6^“ is very 

unstable, which is evidenced by the fact that it decomposes water 

^From the tables of electrode potentials in Latimer, ** Oxidation States 

of the Elements and their Potentials in Aqueous Solutions,'^ pp. 201, 294- 

298, Prentice-Hall, Inc., 1938. 
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with tlu‘ (^volution of hydrogen. This instability is expected 

from its electron structure.^ Let us suppose that Co(CN)6^~ 

is built up from neutral CN’s and a Co^“ ion, which has seven 

3rf-eleetrons, two 4s-electn)ns, and four 4p-electrons, and that 

the binding within the ion is covalent. The seven 3d-electrons 

an» not shared, and in order that two d-states may be available 

for combination into octahedral bond-eigenfunctions it is 

ne(^essary for one of these d-eleetrous to be pi'omoted to a 5s-state. 

This would naturally cause the ion to have a high energy and 

hence be unstable. It is very likely that this (ircumstance 

causes the binding in the Co(CN)6^” to be ionic (or at least 

s(anicovalent). In general, C'N~ tends to form covalent com- 

I)lexes, so the fact that the complex is divalent and is forced into 

the relatively unstable ionic form makes the complex cobalt 

easy to oxidize. In the case of the iron complex, the magnetic 

nu^asurements show that both the ferro- and fcirricyanides have 

covalent binding.^ 

The instability of complex cobaltous compounds is a general 

])henomenon, though quantitative data ai’e not available in most 

cas('s. 'In the case of the ammonia complexes, however, it is 

known that the cobaltous compound [Co(NH3)c]Cl2 has a much 

greater ammonia pressure than the (jobaltic'^ [Co(NH3)6]Cl3. 

Furthermore, magnetic data are available, and these indicate 

that th(» binding in [Co(NH3)6jCl2 is ionic, but that it is covalent 

in [Co(NHs)6]Cl3 (see Table 30). In the case of the iron com¬ 

pounds, the magnetic data indicate that [Fe(NH8)6]Cl2 is ionic, 

^ Hoard, quoted by Pauling, J. Am. Chem. Soc.^ 54, 994 (1962). 

* It must be remembered that in aqueous solution Co"'"’’, Co^"^"**, Fe'^+, 

and Fe+++ probably represent hydrate comphixes (see Chap. XIX). The 

relative stability of the simple bivalent and trivalent aqueous ions should, 
however, not be affected by factors similar to tlu)se which influence the 

stability of the cyanides, since in the hydrates ionic forces undoubtedly 
predominate. 

* Mellor, “Comprehensive Treatise on Inorganic and Theoretical 
Chemistry,“ vol. 14, pp. 631, 654, Longmans, Green & Company, 1936. The 

free energy made available in the aqueous reaction 

Co+++ H- Co(NH8)6-*'+ Co++ H- Co(NH8)«+++ 

has been given by Latimer (Ref. 1, p. 295) as 40 kg.-cal. Co(NH8)6'^'^ is 

therefore not quite so unstable as the cobaltous cyanide, probably because 

of the somewhat greater tendency of ammonia complexes to have ionic 
bonds. 
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but unfortunately the data appear not to be available for 

the ferric compound. The indications seem to be that iron 

has a greater tendency than cobalt to form ionic compounds. 

FeCNHiOe'*"'^ has a marked tendency to oxidize but this seems to be 

little if any greater than that of Fe^"*', and the solid (diloride 

[Fe(NH3)6]Cl3 has a greater ammonia ])ressure^ than the solid 

[Fe(NH3)6]Cl2. As far as these observations go, they are what 

would be expected from the results with the cyanides. Mon^ 

experimental work on the ammonia complexc^s, which would show 

to what extent their propei'ties parallel those of the cyanides, 

would be of considerable interest. 

16.6. Stereoisomerism.—Mu(^h can be leai*ned about the 

structure of the ions or compounds formed by a given atom by 

studying the various types of isomerism exhibited by theses 

(iompounds.*^ .Two types of isomerism may be distinguished, 

geometrical isoiiKnism and optical isomerism. The first type 

of isomerism may be illustrated by dichloroethylene, which 

occurs in the so-called cis- and trans-forms: 

Cl H 
\ 

h" cn 
Traiis-fonn 

H H 
/ 

/' 

V\ 
Cis-fonn 

In this particular instance, the isomeiisjn is possible because 

there is no rotation about a double bond. These two compounds 

have different physical properties and, in particular, the trans¬ 

form has no resultant electric^ moment, because it has a plane of 

symmetry, whereas the cis-form has an electric moment.'^ This 

^ Abbgg, “Handbuch der aiiorganischen Chemie," Band, 3 Abt., 2 Teil, 

pp. B91, B390, S. Hirzel Verlag, I^ipzig, 1930. 

* A much rnoix? extended account of this material than can be given here 

will be found in Freudenberg^s compendium, “Stereochemie,” Franz 
Deutickc, Leipzig and Vienna, 1933, which has been largely used as a source 

book. Especially useful for our purposes are articles by Meisenheimer 

and Theilacker, Ziegler, and Pfeiffer. Another useful work is Wittig, 

‘‘Stereochernie,^^ Akademische Verlagsgesellschaft, Leipzig, 1930. For a 

brief account including some more recent work, see Bailar, Chem. Rev,^ 19,67 

(1936). See these reviews for references to the literature for the work 

discussed in this section. 

3 See Debye, Polar Molecules,*^ p. 53, Tleinhold Publishing Corporation, 

1929. 
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property thus serves to tell which is which, and the resolution 

has been confirmed by X-ray and electron-diffraction experi¬ 

ments.^ Optical isomerism, as is well known, is exhibited by a 

carbon atom to which four different groups arc attached, being 

due, in this case, to the tetrahedral structure of the carbon atom. 

When four different groups arc attached, the compound has no 

plane of symmetry and cannot be made to coincide with its 

mirror image. The compound, therefore, occurs in right- and 

left-handed forms, which have in general identical physical 

properties, but which react in different ways toward anything 

that has similar right- or left-handed properties. For example, 

the plane of polarized light will be rotated to either the right or 

left, depending upon which form the light passes through, whence 

the optical activity. If allowed to combine with another 

optically active substance of definitely determined right- or left- 

handed configuration, the two forms of a substance which it may 

be desirtid to investigate yield compounds which differ more 

fundamentally than an object and its mirror image and which 

can be separated from a mixture by taking advantage of their 

difference in physical properties.^ After separation, the original 

substance (or rather, in each case, an optically active isomer of it) 

can often be regenerated. This method of separating optical 

isomers has been successfully applied in many cases. ^ 

A complex ion in which the central atom has a coordination 

number of four and in which the four substituents are arranged 

in a plane in the form of a square can exhibit geometrical isom¬ 

erism similar to that of dichloroethylene. An example of this 

sort of isomerism is furnished by the compound^ Pt(NH3)2Cl2 

1 See Bbockway, Rev. Mod. Phys.j 8, 260jr. (1936). 

* It is readily seen that the combination right-left*^ bears an essentially 

different relation to the combination “right-right** than “right** bears to 

“left.** On the other hand “right-left** bears a relation to “left-right,** 

which is similar to the relation “right** bears to “left.** The first relation¬ 
ship is the one of which advantage is taken in the separation of optical 

isotopes. 
* It has been applied to many optically active inorganic compounds, such 

as are discussed in the succeeding paragraphs, as well as to organic com¬ 

pounds. See, e.g., Werner, Ref. 1, p. 287. 

* This classical case of stereoisomerism has recently been questioned, but 

in view of the behavior of other platinum compounds it is probably a valid 
case. For discussion and references see Bailar, Ref. 2, p.. 297. For a dis- 
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(which is, of course, a neutral substance and not really an ion). 

The structures of the two forms are as follows: 

NH, NHa NH* Cl 
\ / \ / 

pt Pt 
/ \ / \ 

Cl Cl Cl NH, 
Cis-form Trans-form 

This type of isomerism, in which the isomers have different 

physical properties, does not occur if the compound has a 

tetrahedral structure, and hence can serve to distinguish between 

the two types. However, the same isomerism would occur with 

a square in which the central atom was not in the plane of the 

other groups, and so it does not serve to eliminate this possibility. 

In cases in which X-ray examinations have been made of this 

type of compound K2[PtCl4] and K2[PdCi4]), the central 

atom has been found to lie in the plane 

of the others (Table 31, p. 308). If the 

central atom were not in the plane, 

compounds of the type MeABC2 (cis) 

or MeABCD (where Me stands for the 

central atom and A, .B, C, and D for 

different atoms or groups in the coordi¬ 

nation sphere) should show optical ac- of square coordination com- 

tivity.l Such optical activity has not central atom not 

been observed, but it does not appear 

to have been particularly looked for. There is thus not very 

much evidence on this point, but it seems reasonably safe to 

assume that when the square configuration occurs the central 

atom lies in the plane. 

In discussing the tetrahedral and square configurations, it will 

be realized that we have considered only the most symmetrical 

possible arrangements. If the arrangement were not symmetrical 

(if, for example, the four substituents in the “square” configura¬ 

tion were not equally distant from the central atom), the number 

M M 

Fig. 56.—Optical isomers 

cussion of the evidence funiished by dipole moments see Jensen, Zeits. 
anorg, allgem. Chem.j 226, 97 (1935). 

‘ For a more detailed discussion of possibilities of stereoisomerism sec 

Pfeiffer in Freudenberg^s **Stereochemie,” pp. 12OOj0^. The reader should 

also note the discussion, pages 304/, below, of the optical isomerism of 

diamine complexes. 
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of isomers would be greatly increased; such large numbers of 

isomers have not been found.^ It will be understood that this 

does not exclude the possibility of distortions from these most 

symmetrical forms, provided that the distortion is conditioned 

by the substituents and not by the central atom. Thus, two 

optical isomers could be slightly distorted out of the tetrahedral 

shape owing to attractions and repulsions between the substit- 

Cl Cl 

Cl NH3 

Fig. 67.—Cis-trans isomerism of an octahedral coordination compound. 

uents, but the distortions of the right- and left-handed forms 

would be so related that they would still be mirror images, and 

they could not differ more fundamentally. Similarly, the cis- 

and trans-forms might be distorted in different but definite ways, 

depending upon the relative positions of the substituents, and 

this would not give rise to any new possibility, since it depends on 

the substituents and not on any peculiarity of the valence bonds 

of the central atoms. 

In the octahedral type of complex ion, geometrical isomerism 

can also occur. ^ For example, there exist two ions with the 

C forniula [PtCl2(NH3)4]'*^ with slightly different 

properties. The possibility of geometrical isomer- 

ism is readily seen, for the two chlorines can be 

either in adjacent positions in the octahedron (cis- 

compound) or at opposite vertices (trans-com- 

pK_pound), as will be clear from Fig. 57. The fact 

that in compounds of this type more than two 

E isomers have never been found is evidence against 

Fig. 68.—Trig- a plane configuration, similar to benzene, which 

ona prism. ^Quld allow the possibility of three isomers. 

Other less symmetrical arrangements also would allow the 

existence of more isomers, just as in the case where the coordi¬ 

nation number is four. This is true, for example, for the 

trigonal prism, as will be seen from Fig. 58, since the edge AB 

' See footnote on preceding page 
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is different from the edge AD. The trigonal prism is indeed, not 

unknown; it has been discovered, as noted in Sec. 16.12, not 

from isomerism, but (in cases in which all the atoms surround¬ 

ing the central atom are the same and in which the crystal 

cannot really be said to consist of complex ions) by the use of X 

rays. It is, however, apparently quite rare. 

The isomerism of compounds with coordination number six 

but containing groups or radicals that occupy two coordination 

places is of particular interest. Let us 

consider, for example, the ion 0^ 

[Co(NH,)4(C204)]+ 

in which the oxalate radical occupies two 

coordination places. Now it is natural to ^^3 i 

assume that these two places are adjacent | 

places and not opposite places in the ^ 

octahedron; in other words, the compound 59 —Tranfoxaiato 

must be a cis-compound. As a matter of (‘ompound. 

fact, in cases of this kind isomerism does 

not occur. If there are two oxalate groups, it is ])ossible for 

stereoisomerism to occur. Ix^t us consider, for example, the 

ions of the formula [Co(C204)2(NH3)2]“. The traus-com- 

pound (Fig. 59) has a plane of symmetry and is identical with its 

Fig. 60.—Optical isomers, cis-oxalato compound... 

mirror image. ' This is not true of the cis-compound (Fig. 60). 

The cis- and trans-compounds may therefore be identified by 

finding which one can be resolved into optic^al isomers. This 

type of consideration, together with the fact that the two places 

occupied by an ion such as the oxalate ion are cis-places, has 

proved invaluable in the study of these compounds. By use of 

substitution reactions, in which it can be assumed that substitu- 
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tion takes place without a shift in position, a group like the 
oxalate group may be replaced by two others, w^hich are then 
known to be in the cis-position, and so the eis- and trans-forms 
of other compounds can be identified. It is true that sometimes 
shifts in position do occur, so that due caution must be used in 
drawing (jonclusions from such experiments; but the conditions 
under which such shifts occur are believed to be known in many 
cases. These shifts can often be studied by use of the compounds 
with two oxalate groups, for in these compounds the configuration 
can be determined if it is known whether optical isomers can be 
separated or not. There is at present a large body of experi¬ 
mental material bearing on the question of the determination 
of the configuration, especially of the cobalt compounds, and the 
configuration is believed to be known in many cases. ^ 

An excellent summary of the results of experimental work in 
this field is comprised in Freudenberg^s “Stereochemie. The 
following elements have been shown by study of isomerism to 
have a tetrahedral valence structure: Be, B, C, Si, Ge, Zn, Sn, N, 
P, As, S, Se, Te. In all compounds in which this tetrahedral 
structure occurs, the elements in question have (presumably) 
an octet of electrons, some shared and some unshared (or often 
all shared), in their outer shells. 

The compounds by means of which these structures have been 
determined are for the most part complex organic compounds. 
Usually it is optical isomerism of a compound with four different 
substituefits (or with three different constituents and with one 
corner of the tetrahedron empty, which offers the possibility of 
the right- and left-handed forms just as well, since all four corners 
of the tetrahedron are different) that have been observed. In 
the case of nitrogen, structural isomerism of the dichloroethylene 
type is quite common. A typical example is offered by the 
two compounds 

CeHfi—C—CHaBr CeH6—G—CHaBr 

HO—I I—OH 

which have different physical properties. Quaternary ammo¬ 
nium bases having four different groups attached to the nitrogen 
have been separated into optical isomers, but in most cases 

Wbbnbr, Ref. 1, p. 287. 
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attempts to separate tertiary amines in which there are three 
different substituents with one corner of the tetrahedron blank 
have failed. This is probably due to the ease with which right- 
and left-handed isomers change into each other in this case. 
In one instance in which separation was effected, racemization 
was found to take place rather easily. 

In the cases of beryllium, boron, and zinc optical isomerism has 
apparently been found only in compounds having two substit¬ 
uents, each one occupying two coordination places. 

In the case of sulfur, selenium, and tellurium, optically active 
substances in which there are three groups attached to the central 
ion have been separated. Typical of these compounds is the 
tellurium salt 

CHs 

CH,—C6H4—Te 

CeHs- 

The tellurium has a completed octet without sharing electrons 
from the iodine ion, and the latter is apparently not part of the 
complex, but held merely by ionic binding. In certain cases, 
e.gf., Te(CH3)2l2, geometrical isomerism was found to occur, 
which at first led to the supposition that the tellurium in this 
compound had a square configuration. In this case, also, 
ionization occurs in aqueous solution, and it was eventually 
found that the isomerism was due to the formation of more 
complex ions.^ This example illustrates the care that must be 
exercised before definite conclusions can be drawn from examples 
of isomerism. 

It has been claimed that in some of their compounds the 
divalent elements Cu, Pd, Pt, and Ni also have tetrahedral struc¬ 
tures. This is based in part on the existence, in the case of 
nickel, platinum, and palladium, of salts of the type 

NH2CH2CH2 

Ni—NHjCH^Hr^N 

1 I 
Xj 

> Drew, J. Chem. Soc. (London), 1929, p. 560; Lowbt and Gilbert, ibid,, 
1929, p. 2076. 
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where X is univalent. In this salt, the nickel is in contact with 
four nitrogens, 1 and when the spatial arrangement is investigated 
it is seen that this would be practically impossible without great 
distortion and strain if all the bonds lay in a plane. ^ The com¬ 
pounds could be octahedral, however, with the halogens occupy¬ 
ing places in the coordination sphere. 

There are other cases in which these elements are believed to be 
tetrahedral. In these, the central atom is surrounded not by 
four different substituents, but by two substituents, each of which 
occupiers two coordination places. The arrangement is such that 
if the valences of the central atom are in a plane cis-trans iso¬ 
merism would result, but not optical isomerism; whereas optical 
isomerism and not cis-trans isomerism would be expected if the 
arrangement is tetrahedral. In divalent salts of copper, plati¬ 
num, and palladium, such optical isomerism has been observed. 
An example is the palladium ion 

H H 
(CH,)2C—n' N—C(CH8)2 

■ ! /■' \ I 
HaC-N' N—CHs 

H, 

+ + 

On the other hand, the compound shown in Fig. 61 should 
have optical isomerism if the valences of the central atom lie in 
a plane, but not if they are arranged as a regular tetrahedron. 
It was found that the substance was optically active. In other 
platinum salts, cis-trans isomerism has been observed, which 
would also indicate a plane rather than a tetrahedral configuration. 

1 Each bond represents a pair of electrons shared between palladium and 

nitrogen. We have drawn them as four equivalent bonds though this gives 

nitrogen an apparent valence of four. Bonds that give an element an 
apparently abnonnal valence are frequently indicated by dotted lines, but 

as this carries with it the implication that these bonds have a special charac ¬ 

ter, which actually they do not possess, it seems preferable to represent 

them in the same way as other bonds. 

* The plane structure is expected for the elements under consideration in 

their divalent states, and either a tetrahedral or an octahedral structure is 

contrary to what would be expected from the valence rule, especially for 

palladium and platinum, which usually form covalent bonds. However, we 

must not be surprised if the valence rules are broken when their fulfilment 

would cause great strain in the attached organic radicals, and other cases of 

this type are known. 
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■CH^CHs 

^CH» 

Fig. 61.—Optically active ion (doubly positively charged) with piano con¬ 
figuration. The two plane rings are both horizontal. If one were horizontal 
.ind the other vertical, as would be demanded by a tetrahedral valence structure 
of the central atom, there would be a plane of symmetry and, hence, no optical 
activity. 

In the case of the ion 

H. Hi 
HiC—N N- 

Pt 
/ 

>C2Hfi 

CeH,—C—N N-C CHa 
H Hi Hi Hi 

4- 4" 

both cis-trans isomerism and optical activity are found. ^ The 
former would be expected from a plane and the latter from a 
tetrahedral structure in this case, and so the compound seems 
to have some of the properties of both kinds of structure. 

The observations on these compounds thus seem to be self- 
contradictory; however, they could be explained by supposing 
that the valence bonds of the central atom form a tetrahedron, 
but an irregular one, or that the valence bonds form a pyramid, 
or that the diamine rings themselves are not planar. How¬ 
ever, with respect to the last possibility, it must be said that on 
account of the large size of the central atom a nonplanar form of 
the ring would result in a distortion of the bond angles in the 
ling from the tetrahedral angle and so would cause strain (see 
Fig. 62). In any event, the problem presented by these salts does 
not seem to be finally cleared up. 

In connection with this discussion, it is interesting to note that 
the nickel compound^ (in which the nickel is divalent, z.c., con¬ 
tributes two valence electrons to the electron structure) 

* Reihlen and HChn, Liebigs Ann. Chem,, 619,80 (1935). It was demon¬ 
strated that optical activity was due to the platinum, as well as to the active 

carbon atom present. 

* In the formula shown each valence line represents, as usual, a pair of 
shared electrons, and all carbon, nitrogen, and oxygen atoms have a com¬ 

pleted octet. 
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O 0 

CHr-CHj—C==N N=C—CHs—CHs 
\ / 

Ni 

CHr-C==N^ ^N=C—CH, 

OH OH 

in which there is a five-membered ring with double bonds has a 

cis- and trans-form (the cis-form, with the OH groups adjacent, 

is shown). It has, therefore, presumably, a plane configuration. 

In other cases (with zinc and copper), six-membercd rings 

involving double bonds give an apparent tetrahedron. 

Whenever the elements Co, Pd, and Pt, in their divalent forms, 

are not members of a ring, the isomerism observed indicates a 

plane configuration. We have already noted that such an 

arrangement is not the one that would be anticipated were the 

forces ionic, so the formation of such a compound is indication 

that the bond is covalent. It is, therefore, gratifying that 

the magnetic criterion indicates covalent bonds for PtCU , 

Pt(NH3)4"‘"*", and Pt(C204)2 . It may be noted here that X-ray 
experiments on copper compounds, in particular CuCl2(H20)2, 

indicate a square configuration. Divalent Ni also tends to have 

a square configuration, as is to be inferred, e.g., from the iso¬ 

morphism of k2[Ni(CN)4]H20 and K2[Pd(CN)4]H20. (PdCU— 

has been found to be a plane square by X-ray examination, and 

so it is probable that Pd(CN)4 is a square also.) Ni(CN)4 

has been found by the magnetic criterion to be covalent. On the 

other hand, compounds of Ni++ with ammonia have ionic bind¬ 

ing, and there are many compounds with the octahedral ion 

Ni(NH3)6'^'^. The bond between Ni and amines has also been 

found in some cases to be ionic, and, undoubtedly, this is true in 

general. This being the case, it would not be at all surprising if 

further stereochemical or X-ray research on the complex nickel 

salts containing diamine rings should show that the nickel is 

either tetrahedral or octahedral. But if a tetrahedral structure 

is finally, confirmed in the case of the similar platinum and 

palladium salts, it would be much more unexpected from the 

theoretical point of view, as the binding in these salts usually 

seems to be covalent.' 

' The reader should compare footnote 1, p. 275. 
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An octahedral arrangement of six surrounding groups forming 

a complex ion has been found ^ by observation of isomerism for 
the following divalent elements: 

Fe, Ni, Ru, Pt, Zn, Cd; for the 

following trivalent: Cr, Fe, Co, 

Ru, Rh, Ir, Al; for the following 

tetravalent: Pd, Ir, Pt, Ti; and for 

pentavalent As. In each case, 

there are six pairs of shared elec¬ 

trons. 

Some of these cases call for 

special mention. Divalent nickel 

forms octahedral complexes with (b) 

some substituents and square com¬ 

plexes with others. It was seen 

earlier in the chapter (Sec. 16.4) Fig. 62.-~Showing the angles in 

that the complex, six-coordinated diamme ring attached to a 
/ ^ platinum atom, assuming (a) that 

cyanide of divalent cobalt is un- the platinum has a plane square 

stable. A covalent six-coordinated configuration (6) the piati- 
, num has a tetrahedral configura- 

complex of nickel should be un- tion; and assuming in each case 

stable for the same reason; in fact that the ring is in a plane. Radius 
’ of divalent platinum taken as 

it should be more unstable, for 1.32 a., of carbon, as 0.77A., 
there are more electrons left in of nitrogen, as 0.70 A. [Table 33 

Ni«-. It i, th,» interesting th.t If Si “ISS 
with cyanide nickel forms the ion It is seen that if the normal 

Ni(CN).- with a equate eeuagur- ff 
ation. On the other hand, the ions and if the radius of platinum is the 

Riif^h flS floH otherR sanae for both configurations, there 

with six substituents are not par- hedral arrangement than for a 

lieulatly unetable, and the binding “ f 

is probably ionic or semicovalent in the electronic structure of piati- 

,dl these cases. Optical activity 

was observed in a tridipyridine after Mills and Quiboil, J. Chem. 

compound, each dipyridine mole- (London), 1935, 842). 

cule occup5dng two coordination places. 

Again, divalent platinum would not be expected to have stable 

complexes with coordination number six, and mostly it has the 

1 Pfeiffer in Freudenberg, ‘^Stereochemie/' pp. 1200jf; Burstall, J, 
Chem. Soc., 1936, 173. In the case of Zn and Cd isomers were not actually 
isolated, but certain optical effects in solution were attributed to optically 
active forms which rapidly racemize. 
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square configuration. There are a few compounds with coordina¬ 

tion number of six, however, and cis-trans isomerism has been 

obseiwed in Pt[(CH3CN)2(NH3)4]Cl2. The tetravalent ion 

Pt^+ has only six 5d-electron,s, and is therefore capable of form¬ 

ing covalent octahedral bonds involving two 5d-places without 

difficulty. 

16.6. Results of X-ray Analysis.—It appears to be generally 

agreed by crystallographers that the ions that are commonly 

observed in aqueous solution occur as units in crystals. For 

example, many crystals of which the sulfate ion is a part have 

been examined, and it is invariably found that the sulfur atom 

is surrounded by four oxygens at the corners of a regular tetra¬ 

hedron, the distance between oxygen and sulfur centers being 

about ].5oA., and the distance between adjacent oxygen centers 

being about 2.45A. 

The size and shape of a given ion are not, however, entirely 

invariable from crystal to crystal but depend upon the forces 

Table 31.—Shapes of Certain Ions in Crystals 

(In all cases, the central ion appears first in the formula) 

Straight lines: 

HF2'-, N3", NCO-, Ag(NH3)2^ Cd(N^3)2+^ Hg(NH3)2^^ b", ICh", 

Ag(CN)r 

Kiiiked lines: 
NOr, CIO2- 

Triangles, central atom in plane: 

BO3—, CO3—, C(NH2)3^ C0(NH2)2, NO3- 

Triangles, central atom out of plane (pyramids, or decapitated tetrahedra): 

80,“-“, ClOa-, BrOa- 

Tetrahedra: 

Si04-, CrO^—, WO4-", M0O4—, Mn04~ PO4-, SO4"-, Se04", 

CIO4-, 104“, lle04-, VS4-, AsS4-, SnS4-, BeF4-‘-, BF4', 
Be(H20)4++ C0CI4--, Cu(CN)4—, Zn(CN)4--, Cd(CN)4-“-“, Hg(CN)4-‘“, 

N(CH3)4^ N(CH3)2H2^ PH202-, OsOaN*-, Zn(NH3)2Cl2 

Squares, central atom in plane: 

PtCl4—, PdCU— Pd(NH,)4+^ CuCl2(H20)2, AuBr4- 

Octahedra: 

A1F»-, SiFe—, GeFe-", FeFe-, M0O3F3-, TiCl6~~, ZrCle—, PtCl6“~, 
PdCl#—, SnCle—, PbCle--, SeCU—, TeCh—, OsOsCb-^, SeBre—, 
Sn(OH)e—, Te(OH)6, Co(NH3)6-^+ Co(NH3)«+++ Co(NH3)6H20+++ 

NH4(H20)«+ Rb(H20)6+ Cs(H20)3% Mg(H20)e++, A1(H20)6+++ 

Cr(H20)«+++ Zn(H20)6+^ Ni(H20)«++ TUHiO)*^ Cr(NH3)6Cl'^+ 
Co(NH3)*C1++ Rh(NH,)6Cl++ Co(N02)6+++ Pt{SCN)fl-~ 
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pxerlcd by the other ions present. Distortions and changes in 
size involving variation in the interatomic distances of as much 
ii.s O.2A. appear to be by no means uncommon. It is not alto¬ 
gether impossible, however, that some of these difFerences are 
due to experimental error in determining the positions of the 
atoms in the complex crystals involved. 

In Table 31 are given the structures of a number of ions, as 
obtained by X-ray analysis of crystals.' This table is meant to 
be suggestive rather than exhaustive. 

KHf. fi.3,—Extended BOz ion. [After Zacharioften, Proc. Nat. AcoH. Sd.. 17, 619 
(1931).) 

16.7. Complex Crystals.—There are many crystals of rather 
complex composition that are better considered as a whole than 
as composed of ions. For example, in CaB204 the borons are 
surrounded by oxygens which form an almost equilateral triangle 
about the borons. These triangles are extended indefinitely, 
forming chains of the composition B02~, as shown in Fig. 63. 
These chains form what Bragg has characterized as an extended 
acid radical. These radicals are held together by the positive 
calcium ions. 

The silicates, however, are the compounds that furnish the 
examples of complex crystals, par excellence.^ In fact, among 
the silicates, practically every gradation of complexity is realized 
in some one or another of the known forms. Every crystal 

^ For more detailed descriptions of crystal, structures and references to 
the original literature, the reader should consult the *‘Strukturbericht,” 
Zeiis. Krist. For Cu(CN)4— see Cox, Wardlaw, and Webster, J. Chem. 
Soc, {London)^ 1936, 775. 

* W. L. Bragg, Zeits. Krist^ 74, 237 (1930). 
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Flo. 64A.—Tsrpes of silicon-oxygen groupings: (a) closed groups, (b) chains 
and bands. Black circles represent silicon, white circles oxygen. [From Bragg, 
ZoUa, KrieL, 74, 237 (1930), and Bragg and Bragg, “ The Crystalline Stale,'* vol. I, 
p, 184, The Macmillan Company, 1934.] 
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Fig. 64B.—^Types of silicon-oxygen groupings: (c) sheet, such ae found in talc 
and mica; all tetrahedra may point the same way, or alternate tetrahedra may 
point in opposite directions; a superimposed silicon and oxygen are shown by a 
double circle, oxygen by a single circle; (d) three-dimensional net (ultramarine); 
black circles represent aluminum or silicon, white circles oxygen. [From 
Bragg, Zeits* KrisU, 74, 237 (1930), and Bragg and Bragg, **Th» CrystaUino 
State,** vol. I, p. 135, The Macmillan Company, 1934.] 
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known, however, is characterized by the fact that silicon is 
surrounded by four oxygens in the form of a nearly regular 
tetrahedron,^ the silicon-oxygen distance being in the neighbor¬ 
hood of l.eA., varying slightly from crystal to crystal. In the 
orthosilicates, in which the ratio of oxygen to silicon is at least 
4:1, simple anions of the formula Si04^‘~ are formed. In crystals 
in which there is relatively less oxygen, various types of complex 
structure occur. In some crystals, there are finite silicon-oxygen 
groups of var3ring complexity, often forming a ring structure. 
In others, there are twisted silicon-oxygen chains, each link 
composed of an oxygen tetrahedron about a silicon and each 
tetrahedron having one atom in common with the preceding and 
following one. These chains have the composition SiOs . 
There also occur silicon-oxygen sheets, which extend indefinitely 
in two dimensions and for which a typical formula would be 
Si205 . Such a structure occurs in micas, and is responsible for 
their peculiar property of splitting and slipping easily in one 
direction. Finally, silicon and oxygon may form a network in 
three dimensions; this occurs in silicon dioxide (quartz) itself, 
the composition being Si02 (neutral). In some minerals in 
which part of the silicon is replaced by aluminum, three-dimen¬ 
sional network anions can occur, since Al'^++ has a smaller 
charge than Si^*^. In all cases, the extended anions are held 
together by positive ions dispersed among them in such numbers 
that the whole is neutral. In its ability to form either simple^ 
or extended anions, silicon is intermediate in its properties 
between the alkali and alkaline earth metals and the negative 
elements like chlorine and sulfur. The alkali and alkaline earth 
metals form oxides which (though actually, of course, neutral) 
might perhaps^be thought of as extended anions, but they do not 

^ It is of interest to note that the angle between the bonds to a given 

oxygen atom is by no means invariable in the silicates, but seems to be 
determined by the geometrical exigencies of the situation. There are even 

different forms of SiOa in which the Si—O—Si bond angle is slightly 

different, though never far from 180® in Si02. This may indicate that the 
binding is predominantly ionic rather than covalent. 

* It will be noted that the word “simple*' has been used to characterize 

ions that are elsewhere called “complex.” The terms, of course, are rela¬ 

tive, and an ion that is simple compared with an extended acid radical is 

complex when compared, for example, with Cl*", 
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form simple anions. The negative elements, on the other hand, 
tend^ to form simple anions like C104~ and SO4—. 

If sulfur-oxygen chains tended to exist, then we should 
expect to have neutral (diains of composition SO3. There is an 
undoubted tendency for the SO3 molecule to double up^ accord- 

:0: :0: 

ing to the formula :0:S:():S, but combinations of this sort, 

:0: rO: 

in particular long chains, cannot be extremely stable, as is 
evidenced by the relatively low boiling point of SO3. A possible 
explanation of the difiference between SO 3 and Si02 in this respect 
is the following. Sulfur is a much more negative element than 
silicon, and tends to draw the oxygen electrons in toward it to a 
much greater extent, so that the^y are less free to be shared with 
another sulfur or another clement in general. It may be this 
same tendency which shows up in the fact that sulfuric acid is a 
strong acid (see Sec, 19.10). 

It is a very interesting fact that in complex crystals containing 
oxygen, and in crystals with oxygen anions, the more electro¬ 
negative elements tend to show a constant coordination number, 
being surrounded by a definite number of oxygen atoms, whereas 
the electropositive elements have coordination numbers that vary 
from crystal to crystal, and the oxygen atoms are often arranged 
about them in a rather irregular way; i.e., the more electronega¬ 
tive elements determine the structure, the more electropositive 
ones ‘‘take what they can get.” The reason for this becomes 
clear if we think of the crystal as formed from ions of all the 
elements. Take, for example, a BPO4 crystal, and think of it as 
composed of P^*^, and O ions. The force exerted by 
the P®+ ion on the O ions will be greater than that exerted by 
the ion, both because of the greater charge and the greater 
electronegativity of th(^ phosphorus. The fact that P^'^ is highly 
charged and phosphorus is highly electronegative means that the 

‘ The following heats absorbed are relevant: 

Ca2Si04 CaSiOs 4* CaO, 8 kg.-cal.; 

2Na8P04 Na4p207 -f Na20, 59 kg.-cal,; 

2K2SO4 K2S2O7 “H K2O, 124 kg.-cal. . 

* By Trouton^s rule (see p. 362). 
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P—O bond will certainly not be a strictly ionic bond, but this 
does not affect the conclusion, for it is really only a result of the 
fact that the phosphorus exerts a large force on the oxygen. 
This particular crystal may be used as an example of the fact that 
the most highly charged ion, here determines the structure 
of the crystal, for the phosphorus atoms arc surrounded by four 
oxygens in the form of a nearly regular tetrahedron, whereas the 
boron is also surrounded by four oxygens, forming a less regular 
tetrahedron. The normal position for boron, as indicated by the 
borate ion, is in the center of three oxygens. This dominance 
of the highly charged ions is one of the determining rules of 
complex crystal structure. 

Other rules have been formulated by Bragg and by Pauling.^ 
Of these, the most important is the rule that electrical charge 
is locally neutralized (electrostatic-valency rule). Consider an 
anion, which we designate by a subscript 0, with charge — Zo 
(the unit being taken as the charge on the electron). This ion 
will be close to a number of cations, which will be designated by 
the running subscript i. Let the fth ion have a coordination 
number of n» and a charge of Zi; then it may be said to share an 
n»th part of its charge, namely, Zi/ni, with any one anion. The 
principle of local neutralization then says that as nearly as may 
be possible the charge on the original ion just balances the 

charge shared with it by the surrounding cations, i,e., Zq 

This assumes that every charge is surrounded as closely as 
possible by charges of the opposite sign, which means, of course, 
a low potential energy. In applying this rule, it is assumed that 
each ion has a charge corresponding to its valence, as though 
ther binding were purely ionic. The fact that in the actual 
compound the binding may be more nearly covalent means only 
that there is a displacement of charge, due to distortion of the 
electron atmosphere of the anion toward the cation, and does not 
affect the applicability of the rule at all. This rule applies to 
single (monatomic) ions, which may themselves be constituents 
of complex ions. 

Another rule generally followed by complex crystals is that 
highly charged ions are far away from each other. This is 
another expression of the fact that the electrostatic potential 

‘ W. L. Bbaqq, Zeita. 74, 287-304 (1930); Pauling. J. Am, Chem. 
Soc,, 61, 1010 (1929). 
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must be low. The explanation of the relative instability of 
chains with the formula SO3 may be given an alternative state- 
ment. Since S®'*' is a highly charged ion and since these ions are 
brought fairly close to each other in such a chain its instability 
is explained. This explanation may be compared with the one 
previously given. It illustrates the fact that similar results are 
often obtained, regardless of the type of binding assumed. 
(Again compare Sec. 19.10.) 

16.8. The coordination number in complex ions and crystals 
depends primarily upon the ratio of the radius of the central atom 
or ion to that of the atoms and ions surrounding it. This applies 
in a general way whether the binding is ionic or covalent, and 
something can be learned by assuming that it is purely ionic, so 
that within the complex ion itself the central atom is a cation 
which has lost all of its outer electrons and the outer atoms are 
anions which have completed their outer shell of electrons. 
This assumption is useful despite the fact that it is often not too 
good an approximation to the truth, and even though the actual 
interatomic distances may not be reproduced too well by it. 
The rule usually cited for the determination of coordination 
number is that there will be as many anions surrounding a cation 
as can be arranged in symmetrical fashion about it, maintaining 
contact between the cation and the anions surrounding it, t.e., 
avoiding anion-anion contact;^ this we shall call the ‘^rule of 
close-packing.’^ Thus, we have a coordination number of three 
if the space within thn^e closely^ packed anions is less than the 
size of the cation, but the space available between four of the 
anions closely packed in the form of a tetrahedron would be more 
than needed to accommodate the cation, etc. If we attempt to 

^ This rule may be generally applied whether the cation and surrounding 
anions are part of a complex ion or not; indeed it probably holds better 
when they are a part of a, complex ion. 

The “rule of close-packingis not to be confused with another kind of 
close-packing often mentioned in the literature. In many complex crystals 

with multiply charged cations, even relatively small anions such as O 
and F" are large compared with the cations. These anions then generally 
have an arrangement in which they are approximately closcj-packed among 
themselves. That is to say, if we look at the anions alone, we find that they 

simulate one of the close-packing arrangements discussed in Appendix IV. 
This fact has been of great assistance in crystal analysis. Approximate 
close-packing of this kind is in no way incompatible with the rule of close- 
packing discussed in the text. 
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calculate the electrostatic energy of the various arrangements, 
there appears to be no reason why the rule of close-packing should 
hold. It would naturally be expected that the electrostatic 
energy would be lower the more anions there were about a given 
cation; hence an arrangement with a high coordination number 
would be expected to persist, even though anion-anion contact 
were occurring, unless a rearrangement would result in a con¬ 
siderable lowering of the anion-cation distance, sufficient to more 
than compensate the effect of decreasing the number of anion 
neighbors near a given cation. The matter is further complicated 
by the existence of repulsive forces and van der Waals forces, 
which undoubtedly often play an important part in determining 
the crystal form. It is not surj)rising that exceptions to the rule 
of close-packing, e.g., cases where anion-anion contact oc^nirs, 
are known. 

Indeed, it could hardly be supposed that in crystals of fixed 
composition, such as the alkali or alkaline earth halides, the 
rule of close-packing would iiec^essarily giv^(‘ the crystal form 
correctly. But in case the crystal contains more than two con¬ 
stituent elements (as is always the cas(' wh('n complex ions are 
present), and the composition has some possibility of variation, 
without upsetting the balance of positive and negative ions, 
then the close-packing rule may well he an important factor in 
determining just what (iomposition the crystal will assume. 
It may, for example, determine how many molecules of water 
will enter into the reaction when the crystal is formed by evapora¬ 
tion of an aqueous solution. 

Goldschmidt and Pauling have applied the rule of close-pacik- 
ing.to a study of the coordination number in crystals. Pauling' 
has applied it, in particular, to the oxygen anions of a number of 
the more negative elements. Purely g(H>m(itric considerations, 
then, show that the triangular form of an ion will be stable if the 
cation-anion ratio is less than 0.225; the tetrahedron is stable 
if the cation-anion ratio is between 0.225 and 0.414; the octahe¬ 
dron, if it is between 0.414 and 0.732; and the cube, if it is 
above this. The results of Pauling are shown in the accompany¬ 
ing table and, in spite of the rough character of the assumptions 
made, are in good accord with experience. Some of the ions 
listed are too electropositive in character and not of sufficiently 

^ Pauling, /. Am, Chem. Soc,, 66, 1895 (1933). 
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lugh valence to form stable complex anions; the considerations, 
however, should be equally applicable to complex cations formed 
with water. Thus we have the ions Be(H20)4+'‘^ occurring in 
Be(H20)4S04, the ion A1(H20)6'^"^'^ occurring in many crystals, 
and other ions as noted in Table 31. B+++, 0'’+, and have a 
normal coordination number of three. The other ions, according 
to Pauling's summary and available data in the “Struktur- 
bericht," have normal coordination num})ers as indicated by 

Tablk 32.—Ratios of Rai>ii: Cation/Oxygen 

Coordination Numbers in Complex Crystals and, in Partk^tlar, 

IN Oxygen Ions 

Be'' 1 B " C4f X5+ 

0.24 0.19 0.16 0.14 C.N. , = 3 region 

Mg+-^ P5+ 8«-* CP^ C.N. - 4 region 

0.47 0.41 
1^ _ 

0.37 0.34 0.30 0.2s 

Zn^ ' Ga-^ 
“■ “"1 

Ge^+ Se«' 
0.50 0.46 0.43 

i 
0.40 0.37 0.35 

Cd^’ ll^M4- Te«-" 17 4- 

0.65 .0.59 0.55 0.51 0.47 0.44 

C.N. « 6 region 1 
The relations shown on the table give a rough iiiditjation of the experimental results. 

Table 32. There are many salts in which this might not be 
indicated by the stoichiometrical formula, but it must be remem- 
benni that polymerization, i,e., formation of chains, rings, or 
sheets, as described for the silicates, can occur. For example, 
this occurs with salts of HPO3. Iodine, near the borderline, can 
have a coordination number of four or six (I()4“, lOe^"). Tin, 
antimony,^ and tellurium form the ions Sn(0H)6 , Sb(()H)6“, 
and TeOe®". 

1 It was suggested by Hammett, ‘‘Solutions of Electrolytes,” p. 108, 

McGraw-Hill Book Company, Inc., 1929, and by Pauling (Ref. 1, p. 316) 

that in the antiinonates the ion Sb(OH)6’' is present. This is supported 

by the fact that in such a substance as K2H2Sb207 the amount of water of 

crystallization is generally such as to make it possible to write the formula 

KSb(OH)6, and by the fact that a solution of the salt has an acid reac¬ 

tion and (as shown by measurements of conductivity) a singly charged 

anion. However in crystals of Ca2Sb207, Ca281)207•4H2O, and a number of 

other antimonates, the antimony is surrounded by eight oxygens, all at 

about the same distance. 
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Since F"” is slightly smaller than 0—, the central atom in a 
fluoride often has a larger coordination number. This is illus¬ 
trated by BF4’‘, AlFe , SiFe—, PFe^ SFe, and probably SnFs^”". 

Of course, some of the ions mentioned exist only in crystals, 
not in aqueous solution. 

Though very good results are obtained by assuming that the 
binding in all these ions is ionic, it is worth while noting that in 
every case the observed coordination number is quite consistent 
with the electronic structure if covalent binding is assumed. It is 
true that the binding in the ions of coordination number six must 
involve outer d-electrons, having the same value of the quantum 
number n as the s- and p-electrons. The cases where the coor¬ 
dination number is three are of particular interest. In these 
cases, the central atom lies in the plane with the surrounding 
ones. The carbonate ion may be taken as typical. There are 
three possibilities regarding its electronic structure. (1) It may 
be ionic, being a combination of with three 0—\s. (2) It 
may have the structure 

b* .. 
• CiiO 

:0: * 

In this situation, all the atoms would lie in a plane. Since there 
would be resonance between the three possibilities (double bond 
to any one of the three oxygens), the actual structure would 
presumably be symmetrical. (3) It may have the structure 

:0: 
:0:C:0: 

That is to say, it is not inconceivable that three of the four levels 
of the carbon atom could be combined to give bond-eigenfunc- 
tions of a different type from the tetrahedral bond-eigenfunc- 
tions;^ however, in view of the fact that carbon appears in general 
to maintain its octet, this alternative seems somewhat less prob¬ 
able. But it is not possible to say definitely which of the alterna¬ 
tives gives the best description of the carbonate ion. It may 
resonate among all the possibilities. 

^ A combination can be formed of one s- and two p-levels, giving coplanar 
bonds making angles of 120® with each other. 



Sec. 16.9 COVALENT RADII 319 

16.9. Covalent Radii.—X-ray investigations have been made 
of a number of crystals in which the binding is almost certainly 
covalent and the atomic distances obtained. Pauling and Hug¬ 
gins^ have made estimates, based on these investigations, of the 
radii of various atoms in compounds in which the binding is 
covalent; their values are purely empirical, but are of use in 
correcting the experimental data. These radii will obviously 
depend upon the valence state of the atom and upon which of the 
types of bonds mentioned in Sec. 15.2 is involved. Pauling and 
Huggins first consider the atomic radii for atoms with sp^ tetra¬ 
hedral bonds. In designating a bond as an sp^ tetrahedral bond, 
we do not necessarily mean that the coordination number of the 
atom is four. Thus, as explained in Sec. 15.2, it appears that 
the oxygen bonds in water may be of this type, though only two 
hydrogens are attached to the oxygen. Tn Table 33, we give the 

Table 33.—Covalent Radii 

Be B C N 0 F 

1.07 0.89 0.77 0.70 0.66 0.64 
Mg A1 Si P S Cl 
1.40 1.26 1.17 1.10 1.04 0.99 

Cu Zn Ga Ge As Se Br 

1.35 1.31 1.26 1.22 1.18 1.14 1.11 

Ag Cd In Sn 
(1.21) 

Sb 
(1.17) 

Te 
(1.14) 

I 

1.53 1.48 1.44 1.40 1.36 1.32 1.28 

All 

1.50 
Hg 

1.48 

T1 

1.47 

Pb 

1.46 

(1.41) 
Bi 

1.46 

(1.51) 

(1.37) (1.33) 

tetrahedral radii of Pauling and Huggins. These were obtained 
in the following way. For C, Si, Ge, and Sn the radii were 
taken as half the observed interatomic distances in the diamond- 
type crystals in which each atom is surrounded by four other 
atoms of the same kind at the corners of a regular tetrahedron. 
The radius for sulfur was assumed to be half of the distance 
between sulfurs in P3nite, FeS2, or hauerite, MnS2. [In th^e 
crystals, each sulfur is surrounded by four other atoms, one sul¬ 
fur and three iron or manganese atoms, and presumably shares an 
electron pair with each of these atoms. Since all its inner 
shells are full and since there are thus just eight outer (shared) 

^ Pauling and Huggins, Zeita, Krist, 87, 205 (1934), 
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electrons, the sulfur is presumably in a tetrahedral state.] The 
radii of Zn, Cd, and Pig were then found from the interatomic dis¬ 
tances in their sulfides, and the selenides and tellurides of these 
metals then furnished data for the determination of the Se and 
Te radii. The radius of O was obtained from ZnO. Other 
radii were then obtained through interpolation and extrapola¬ 
tion in the periodic table, together with some other approximate 
considerations described in the paper. The extrapolations and 
interpolations are based on the relationship between the elements 
of a given row of the periodic table rather than that between 
elements of a given column. It will b() noted that the radius 
increases from top to bottom of a column, as might be expected, 
but the relation is rather irregular; however, as one goes across 
a row from left to right, the radius decreases regularly and grad¬ 
ually. This gradual decrease is readily understood as being due 
to the increase of the change on the positive nucleus, if it is 
borne in mind that the electronic structure for tetrahedral 
valence is the same for all atoms of a given row. In every case, 
there are four pairs of outer shared electrons and the inner elec¬ 
tronic structure is th(^ same. If one of the electrons of a shared 
pair should be arbitrarily assigned to each of the sharing atoms, 
then the charge on the atom would vary in a regular way across 
a given row of the table. Thus tetrahedral magnesium would bo 
Mg and tetrahedral Cl would be Of course these 
formulas are far from representing the true state of affairs, but 
they illustrate the point. ^ 

In a compound in which an element exhibits its normal valence, 
but in which the coordination number is less than four so that 
tetrahedral bond-eigenfunctions are not necessarily formed, a 
different radius may well be anticipated. Pauling and Huggins 
have given a set of such normal radii, based chiefly on a compari¬ 
son of half the interatomic distance in the diatomic halogen 
molecules with the corresponding tetrahedral radius and on the 
radii of the elements of the carbon group, in which the normal 
valence radius must be the same as the tetrahedral radius. 
Where the normal radii differ from the tetrahedral, they are 
shown in parentheses in Table 33. 

^ In connection with the statements of this paragraph, the reader should 
see Sec. 16.10. 
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Tho method of knowing the cases in wliich normal valence radii 
are to be used and those in which tetrahedral radii are to be used 
may well be brought out by means of examples. Let us consider 
the iodine atom, for instance. Obviously in I2 the normal radius 
is to be expected. The same is true in the tetraiodides, such as 
Sil4. In these comjjounds, the crystals are composed of mole¬ 
cules loosely held together. Each iodine is held by valence forces 
to only one other atom, namely, the central atom. In the Agl 
crystal, on the other hand, each iodine atom is equidistant from 
four silver atoms (at least at a sufficiently low temperature—for 
further discussion see Sec. 16.12) and may he considered to share 
an electron pair with each of the four, so in this case we use the 
tetrahedral radius. It may be remarked that in this (;ase each 
electron pair is assumed to be equally shared between a silver and 
an iodine atom, and the crystal might be thought of as composed 
of Ag and ions. Such a picture would be far from the 
truth, however, and the crystal no doubt much more closely 
resembles a (complex of Ag“* and I* ions, though this is going too 
far in the other direction. 

In the case of elemcuits of the nitrogen-phosphorus group, the 
normal radii apply when the element has a valence of three, 
with three atoms attached directly, as in AsCL; in the case of 
the oxygen-sulfur group, the normal radii apply when the element 
has a valence of two, with two atoms attached, as in SCI2. In 
these molecules, each atom has its completed octet. 

The normal and tetrahedral radii apply to molecules in the gas 
phase as well as to crystals. Gas molecules have recently been 
extensively investigated by the electron-diffraction methods, 
and in Tables 34 and 35 we give some of the results^ and compare 
them with the calculated covalent distances. The values given 
in Table 29 may also be cornpan^d with values calculated from 
Table 33. 

It will be seen that the agreement bt^tween calculated and 
observed values is generally very good, in the case of Table 34. 
In Table 35, some discrepancies appear; these are greatest in 

1 The results are taken from the following sources: Brockway, J, Phys. 
Chem.^ 41, 185 (1937); Springall. and Brockway, /. Am, Chem. Soc.^ 60, 

996 (1938); Brockway, Rev, Mod, Phys,, 8, 260-261 (1936); Gregg, 

Hampson, Jenkins, Jones, and Sutton, Trans, Faraday Soc., 38,856 (1937). 
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just those cases in which the bond might be expected to have 
some ionic character. 

Perhaps most interesting are the compounds of boron. ^ In 
all cases, the bond distances are smaller than calculated from 
the covalent radii. This is not unexpected, for the binding in 
these compounds is certainly not of the simple tetrahedral 
sp^ type. BFs has exactly the same number of electrons as 
CO3 , and the remarks anent the latter made at the end of 

Table 34.—Bond Distances and Radius Sums in Methyl Compounds, 

FROM KlECTRON-DIFFRACTION MEASUREMENTS 

(In Angstroms) 

« TheBe are spectroscopic values dcrivetl by Sutherland, reference .3, p. 325. 
N<)te on configurations: Compounds of C, S, Ge, Su, totrahndra; compounds of N, P, As, 

pyramids; compo\uids of O, S, bent lines. 

Sec. 16.8 will hold equally well for BFs, though the binding in 
BFs may well be supposed to have more of an ionic character 
than that in COs because boron is less electronegative than 
carbon, and fluorine is more electronegative than oxygen. Also 
the double-bonded structures would be relatively less likely in 
BFs than in COs , as compared with the single-bonded structure, 
since the single-bonded structure, having fewer shared electrons, 

^LfvY and Brockway, J. Am. Chem. Soc.^ 69, 2085 (1937). 
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Table 35.—Bond Distances in Certain Halides from Electron- 

diffraction Measurements 

(In Angstroms) 

Central 
atom 

Compound 

j Distances for 

F Cl Br I 

B BXa Calc. 1.53 1.88 2.03 
Obs. 1.31 1.75 1.87 

C CX4 Calc. 1.41 1.76 1.91 
Obs. 1.36 1 1.755 1.93 

Si SiX4 Calc. 1.81 2.16 ! 
Obs. 1.54 2.00 1 

1 

Ge GcX4 Calc. 2.21 
Obs. 2.08 

Sn 811X4 Calc. 2.39 
Obs. 2.30 

P PX, Calc. 1.74 2.09 2.24 2.43 

1 Obs. 1.52 2.00 2.23 2.52 
1 

As AsXs Calc. 1.85 2.20 2.35 2.54 

Obs. 1.72 2.16 2.36 2.58 

Sb SbXa Calc. 2.40 2.55 2.74 

Obs. 2.37 2.52 2.75 

0 0X2 Calc. 1.30 1.65 

Obs. 1.41 1.68 

Te TeXa Calc. 2.36 2.51 

Obs. 2.36 2.49 

Cl CIX Calc. 
i 

1.98 2.32 

Obs. 1.983 2.315 

Note on configurations: BXs, plane triangles; CXa, SiX4, GeX4, 60X4, tetrahedra; PXi, 
AsXs, SbXa, pyramids; OX2, bent lines; TeXs, probably straight lines. 

is of a more ionic character. All the halides of boron have, of 
course, the same number of valence electrons. The distances in 
BCI3 and BBrs suggest an effective radius of 0.75^. for boron in 
compounds of this type. This agrees fairly well for B(CH«)s, 
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also.^ The observed B—C distance in this compound is 1.56A.; 
calculated distance, assuming boron radius of 0.75A., is 1,52A. 
The observed B—F distance, however, is rather Jower chan the 
calculated distance of 1.39A. But this is not unexi)ected if the 
binding in this (iompound has an appreciably greater ionic 
character than the other eompouncis.- 

Cases in which the observed distances are greater than the 
calculated covalent distances are found in*^ ONCl and ONBr. 
The N—Cl distance is 1.95A., calculated 1.69A.; the N—Br dis- 

^tance is 2.14A., calculated 1.84A. It has been suggested that 
this is due to some ionic character of the bond on the supposition 
that the sum of tlie ionic radii is larger than the sum of the 
covalent radii in this case; however, actually it seems difficult to 
predict what the ionic distance should be. 

The F—F distance in F2 is also unexpectedly largo (1.45A.— 
see Table 8), and here no ionic contribution is ])ossible. This may 
indicate some peculiarity in the binding in fluorine, but in view 
of the emi)irical nature of the covalent radii, it may be that too 
much stre^ss sliould not be laid on discnjpancies of this kind. 

It is perhaps not without interest to note that in TeCU the 
Cl—Te—Cl valcmce angle is not a tetrahedral or a light angle; 
instead, the atoms are probably in a straight line.^ A similar 
statement holds for TeBr2. This must indicate some peculiarity 
in the electron structure of th(‘se compounds; it is clear that the 
bonds are ncuther of the usual type nor of the pure p type. 
In spite of this, the agreement between observed and calculated 
distances is very good as may be seen from Table 35. 

HgCla, HgBrz, Hgl2, Znl2, and Cdl2 are other examples of 
linear molecules,^'^ Here there is considerable discrepancy 
between observed and (;alculated distaiu^es. The observed dis¬ 
tances are: 2.34. 2.44, 2.61, 2.42, 2.60A.; calculated: 2.47, 2.62, 
2.81, 2.64, 2.81A., respectively. The observed distances in the 

^ It will, of course, be observed that the doiiblo-boiuled structure of 
COs cannot be written for BfCHsls unless a CHa group shares electrons 
as a unit. This may possibly occur. 

* For some remarks on B(OH)3 see Sec, 19.10, p. 438. 

* Ketelaar and Palmer, J, Am. Chem. 5oc., 69, 2629 (1937). 

^ Brockway, Rev. Mod, Phya.y 8,260-261 (1936). 

® H ASSEL and StrOmme, Zeits. physik. Ckem,^ B38,466 (1938); Gregg, et aZ,, 

reference 1, p. 321. 
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gaseous molecules differ considerably from the distances in the 
crystals (see Table 36). 

Other interesting substances an*. P4 and AS4. In these mole¬ 
cules, the four atoms occiijjy tlie corners of a t(‘trahedron,^ and 
the bond angles are, therefore, exjual to tlie angle of an equilateral 
triangle, 60®. This is far from Ihe normal tetrahedral angle 
(which is, of course, Ihe angle made by the lim^s joining the 
center of gravity of the tetrahedron with two verti(?es), or from 
a right angle, but in spite of this the interatomic distances (2.21 A. 
in P4 and 2.44A. in AS4) are quite normal 

There are some cascss where the interatomic disl ance between a 
given j)air of atoms apparently varies in different molecules. 
Ac^cording to the electron-diffraction data, tlie C—V distances 
in the various fiuorochloromethanes vary by as much as o.oel. 
This has been discussed by Bro(?k\vay.“ Rectuitly, however, 
Sutherland^ has made estimates of (‘arl>on-halogen distances in 
methyl halides, with the use of sp(*ctrosc-opic data; these are 
included in Table 34 for comparison. In the cases of CH3F 
and CIIsCl, Ili(‘se d(*p(UKl (thiefly upon analysis of the rotational 
spectrum; in the cases of CHaBr and CH3I, the rotational spec¬ 
trum cannot be resolved, and recourse is had to a discussion of 
the vibrational levels, which involves certain theoretical guesses. 
The distance's thus derived for C—Br and C—I are subject to 
considerable uncertainty, but in general there appears to be 
enough discrepancy betwe^en the results obtained from the two 
types of data to leave room for some doubt in the whole matter. 
For further details, the reader must be referred to the original 
papers of Brockway and of Sutherland. 

Brockway^ has also call(;d attention to the fact that in the 
chlorine derivatives of ethylene, containing a double bdnd, the 
C—Cl distance, as obtained from electron-diffraction data, is 
considerably smaller (about 0.06 or more) than in saturated 
compounds. This is supposed to be due to resonance (see Sec. 
12.5) between two diffen'nt states of the molecule.^ For exam- 

1 Brookway, Rev. Mod. Phys.y 8, 260-261 (1936). 

* Brockway, J. Phys. Chem.y 41, 185 (1937). 

Sutherland, Tram. Faraday Soc.y 34, 325 (1938). 

The fact that the electric moment of HaC—CH2CI is 2.03 X 10"“^* e.s.u. 
whereas that of H20™CHC1 is only 1.66 X lO”^^* has been cited as evideiice 

in favor of the occurrence of resonance in the latter compound. The 
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pie, the compound C2H3CI can conceivably have either of the 
two following electron fstructurcs; 

H. .Cl H Cl: 
‘C::C: H:C:C‘ 

H- H •• 

The first is the one usually assumed, but if the compound actually 
has propertie^s intermediate between those suggested by the two 
formulas, then it is clear that the C—Cl bond will have some of 
the properties of a double bond, and hence the C—Cl distance 
should be somew^hat shortened. For it is found in general that 
double-bond distances are about 0.20A. less, and triple-bond 
distances are about 0.34A. less, than single-bond distances. It 
may be remarked that a somewhat similar situation occurs with 
CO2. Here resonance could take place between the following 
structures: 

:0!:C:0: 0::C::0 :6:C\\0: 

The middle one is the one usually written, but the others, one 
with a triple bond on one oxygen, the other with a triple bond on 
the other oxygen, are also possible. The distance between 
carbon and oxygen in this molecule, 1.13-1.16A., is definitely 
smaller than one would expect from a double bond and more like 
what would be expected for a triple bond. It appears that 
resonance, which is in general accompanied by a lowering of the 
energy of the molecule, also generally results in a shortening of 
the intermolecular distance, so that in this case the tendency is to 
make the distance resemble that expected for a triple bond, rather 
than to increase the double-bond distance toward that expected 
for a single bond. 

Although the results of electron diffraction by gases are very 
interesting, and the number of researches is continually increas¬ 
ing, it is probably still true that the main source of material 
available for comparison with the atom rajdii is the result of 
X-ray examination of crystals. We shall now proceed to a 
discussion of this material. Instead of merely reproducing 

resonance should result in the chlorine sometimes sharing two electrons 
with the neighboring carbon atom. The chlorine in the unsaturated com¬ 
pound should thus be less negative than the chlorine in the saturated 
compound where ho resonance can occur. The hypothesis of resonance there¬ 
fore offers an explanation of the lower electric moment in the unsaturated 

compound. 
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Table 36.—Distances in Crystals 

Compound Obs. Ionic Covalent Re/Ra C.N. 

Iji20. 2.00 2.00 0.335 4 
Li2S. 2.47 2.43 0.269 4 
USe. 2.59 2.57 0.254 4 
Di2Tc. 2.82 2.77 0.236 4 
NasO. 2.40 2.37 0.540 4 
Na2S. 2.83 2.80 0.433 4 
Na2Se. 2.95 2.93 0.409 4 
NaaTe. 3.17 3.14 0.380 4 
K2O. 2.79 2.75 0.756 4 
K2S. 3.19 3.18 0.606 4 
K2Se. 3.32 3.31 0.573 4 
KaTe. 3.53 3.52 0.531 4 
CsCl. 3.56 3.61 0.933 8 
CsBr. 3.71 3.75 0.865 8 
Cal. 3.95 3.95 0.781 8 
CuF. 1.84 2.19 1.99 0.705 4 
CuCl. 2.35 2.63 2.34 0.530 4 

CuBr. 2.46 2.77 2.46 0.492 4 

Cul. 2.63 2.99 2.63 0.444 4 

CU2O. 1.84 2.19 (2.01) 0.545 2 

CuaS. 2.42 2.85 1 (2.39) 0.438 4 

CuaSe. 1 2.49 2.98 I (2.49) 0.413 4 
AgF. 2.46 2.62 (2.17) 0.926 6 

AgCl. 2.77 3.07 (2.52) 0.696 6 
AgBr. 2.88 3.21 (2.64) 0.646 6 

Agl. 2.99 3.42 (2.81) 0.584 6 

Agl. 2.80 3.28 2.81 0.584 4 

AgsO. 2.05 2.48 (2.19) 0.715 2 
BoO. 1.65 1.53 1.73 0.244 4 

BeS. 2.10 (1.99) 2.11 0.196 4 
BeSe. 2.22 (2.15) 2.21 0.185 4 

BcTe. 2.43 (2.40) 2.39 0.172 4 

BejC. 1.81 (3.27) (1.84) 0.104 4 

MgFa. 1.99 1.82 (2.04) 0.603 6 

MgCla. 2.69(?) 2.25 (2.39) 0.453 6 
Mgl,. 2.94 (2.68) (2.68) 0.380 6 
MgTe. 2.77 2.68 2.72 0.328 4 

MgaSi. 2.77 (3.43) (2.57) 0.214 4 
MgaGe. 2.76 (3.39) (2.62) 0.221 4 
MgaSn. 2.93 (3.48) (2.80) 0.222 4 
CaFa. 2.36 2.26 0.868 8 

CaCla. 2.74 2.60 0.652 6 
Cals. 3.12 2.97 .... 0.545 6 
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Table 36.—DisTANdEw in Crystals.—{Continued) 

Compound 0)^s. Ionic 1 Covalent 
1 

Rc/Ra C.N. 

SrFa. 2.50 2.41 0.970 8 
SrCL,. 3.02 (2.84) 0.729 8 
BaFs. 2.68 2.02 .... 1.13 8 
ZnFa. 2.03 1.92 0.646 6 
ZnCl,. 2.73(?) 2.34 (2.30) 0.486 6 
ZiiO. 1.98 2.04 11.97.1 0.500 4 
ZnS. 2.35 2.45 12.351 0.401 4 
ZnSc. 2.45 2.59 12.45) 0.379 4 
ZnT(‘. 2 64 2.80 12.63] 0.352 4 
Cc\F,. 2.31 2.24 (2.12) 0.839 8 
CdCU>. 2.6() 2.59 (2.47) 0.630 6 
Cdia. 1 2.99 2.95 (2.76) 0.528 6 
CdO. 2.36 2.41 (2.14) 0.647 6 
CdS. 2.52 2.69 12.52] 0.520 4 
CdSe. 2.62 2.83 2.62 0.491 4 
CdTo. 2.80 3.04 2.80 0.456 4 
HgF^. 2.40 2.37 (2.12) 0.919 8 
HgCla. 2 25 2 43 2 47 0 690 2 

HgBr,. 2.48 2.56 2.62 0.640 2 
Hgl,. 2.78 2.98 (2.76) 0.578 4 
HgS. 2.53 2.85 12.52] 0.570 4 
HgSe. 2.62 2,98 2.62 0.539 4 
HgTe. 2.78 3.19 2.80 0.500 4 
BN. 1.45 1.61 (1.59) 0.138 1 3 
AIF3.1 1.70-1.89 1.54 (1.90) 0.530 6 
AI2O3. 1.90 (1.78) (1.92) 0.410 6 
AI2O3.1 i 1.62-1.78 1.66 (1.92) 0.410 4 
AIN. 1.91 2.07 1.96 0.292 4 
AlP. 2.36 2.42 2.36 0.258 4 
AlAs. 2.44 2.52 2.44 0.253 4 
Algb. 2.64 2.70 2.62 0.244 4 
Sc20s. 2.09 2.11 0.602 6 
ScN. 2.22 2.58 0.430 6 
Y2O3. 2.27 2.26 0.681 6 
LaF 8. 2.36-2.70 2.39 1.021 11 
GaP. 2.35 2.60 2.36 0.290 4 
GaAs. 2.44 2.69 2.44 0.284 4 
GaSb. 2.64 2.86 2.62 0.275 4 
InSb. 2.79 3.07 2.80 0.352 4 
TlSb. 3.33 (4,28) (2.83) 0.390 8 
C. 1.54 (2.69) [1.54] 0.070 4 
SiC. 1.89 (2.99) 1.94 0.157 4 
SiF,. 1.60 1.35 1.81 0.478 4 
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Tablb 36.—Dlstances in Cbtstals.—(Continued) 

Compound ! 01)S. Ionic Covalent Rc/Ra C.N. 

Sil4. 2.46 2.32 2.50 0.301 4 
SiOs. 1.58 1.49 1 .83 0.369 4 
SiSa. ; 2.14 1.88 2.21 0.296 4 
Si. ; 2.34 (2.99) [2.34] 0.169 4 
TiOo. 1 1.96 1.01 2.02« 0.545 6 
TiS,.,. I 2.42 2.31 2.40« 0.438 6 
TiSo,. i 2.53 (2.44) 2.50« 0.414 6 
TiTe.. 1 2.72 (2.72) 2.68« 0.383 6 
TiC. 2.16 (3.94) 2.13'* 0.232 6 
Zr02. 2.20 (2.27) (2.17')^ 0.620 8 
ZrSo. 2.58 2.44 2.55'’ 0.498 6 
zrSo2.; 2.68 2.58 2.65^ 0.470 6 
ZrC. 2.34 (4.0) 2.28‘ 0.264 6 
CeOa. 2.34 (2.35) 0.722 8 
Gel4. 2.57 2.28 2.55 0.352 4 
GeOa. : 1.86 1.77 (1.88) 0.431 6 
Ge. 2.44 (3.11) [2.44] 0.205 4 
Snii. 2.63 2.46 2.73 0.445 4 
Sn02. 2.06 3.95 (2.31)« 0.545 6 
81182. 2,55 2.35 [2.49P 0.438 6 
811 (gray). 2.80 3.39 [2.80] 0.259 4 
PhOa. 2.16 2.10 (2.16)*^ 0.602 6 

SiCl..1 2.00 1.76 2.16 0.359 4 
GeCh.' 2.08 3.91 2.21 0.420 4 
SiiCl<.I 2.30 2.10 2.39 0.530 4 
TiCh.1 2.21 2.06 0.530 4 

po-.1 1.5 1.43 1.76 0.335 4 
80r". 1.5 1.31 1 .70 0.302 4 
cior.! 1.5 1.24 1.65 0.279 4 
104“.! 

1 
3 .8 1.57 

1 
3 .94 0.437 4 

« From the ociulu^drsil radius, 1.3G.V. for Ti, of Pmiliiig and Huggins. 

<» From the octahedral iadi\is, l.DlA. for Zr, of Pauling and Huggins. 

From octahedral radiu.s of Sn, 1.45A., as modified by Pauling. 

^ From octahedral radius of Pb, 1.50A., as modified by Pauling. 

tables of experimentally observed and theoretically calculated 
distances in atomic crystals, it has seemed best to prepare and 
insert at this point a fairly comiprehensive table of interatomic 
distances, both ionic and covalent. In Table .36, therefore, 
we present the experimental anion-cation distances for a large 
number of binary crystals; a few elementary crystals are also 
included. In a few cases, the data given in the literature indicate 



330 COMPLEX COMPOUNDS AND CRYSTALS Sec. 16.9 

the possibility that the atoms surrounding a cation are not all at 
the same distance. Unless there is a large variation in these 
distances, however, a rough mean is given. Also, in some cases, 
different crystal forms with the same coordination number are 
known. In these cases, a mean distance is also used. 

The experimental distances are compared with the calculated 
values obtained from the ionic radii according to the method^ 
described in Sec. 14.6. When necessary, the calculated values 
are corrected for anion-anion contact. ^ In the case of elementary 
crystals, like diamond, it is assumed that half the atoms are 
anions and half cations. Where available, covalent radii from 
the tabulation of Pauling and Huggins are also included. Values 
that were originally used in obtaining the set of covalent radii 
are in brackets. In some cases, the covalent radii used are not 
applicable to the actual crystal form of the substance considered, 
and in such cases the values are enclosed in parentheses. The 
fact that a substance exhibits its normal valence in a crystal does 
not mean that one is justified in using the normal valence radius, 
as will be clear from the description above of when the normal 
radius is to be used. On the other hand, if the crystal is not 
tetrahedral, the tetrahedral radius is not directly applicable, 

^ The method of Sec. 14.6 was modified somewhat in the case of tetra¬ 
hedral molecules. It seemed that in these substances it would be best to 
neglect forces between the separate molecules altogether. The electro¬ 
static forces are due to the attraction of the central cation for the surrounding 
anions and the anions’ mutual repulsion. If r is the anion-cation distance, 
then it is readily proved from the geometry of the tetrahedron (see Appendix 
IV) that the potential per molecule is — 12.33e*/r, so that the Madelung 
constant A in this case is 12.33, which is to be compared with the value of 
1.748 fpr NaCl. Taking into account the fact that there are four repulsive 
contacts per molecule as compared with six in NaCl, wc see, by the same 
reasoning as in Sec. 14.6, that the radius sum obtained from Table 16 

1 i_ 

should be multiplied by (1.748/12.33)^^ (4/6)”■“ This correction should 
apply equally well to a gaseous molecule, and at the end of Table 36 we 
have added some results for tetrahedral molecules obtained by the electron- 

diffraction method. 
* Correction is made only for the unoccupied space. No correction is 

made for possible change in the number of contacts between ions, or for 
change in the value of n. The correction can, therefore, be only partially 
satisfactory. Where anion-anion contact occurs or where the radius ratio 
is very close to the limit so that it is very nearly, but not quite occurring, 
the results for the calculation of the ionic distances have been placed in 

parentheses. ^ 
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either; however, unless normal valence radii are clearly indicated, 
tetrahedral radii are used. We have included in the table the 
ratio of the radius of the cation to that of the anion {Rc/Ra) and 
the coordination number (C.N.) of the cation from which it may 
be judged to what extent the rule of close-packing about the 
cation, discussed in Sec. 16.8, is obeyed. It will be observed 
that anion-anion contact does occur, but is relatively infrequent; 
on the other hand, sometimes not enough anions surround a 
cation to fill up the space around it. 

A comparison of the experimental distance in a crystal with the 
results obtained from ionic and covalent radii may serve in some 
cases to distinguish between ionic and covalent binding, though 
often no certain conclusion may be drawn. ^ It is rather remark¬ 
able, in fact, how often the distances calculated from ionic radii 
and covalent radii check each other rather closely. Large dis¬ 
crepancies occur only when the elements involved arc very close 
to each other in the periodic table, and the compounds are pretty 
definitely covalent. The way the distance is divided between 
adjacent atoms is very different, however, depending upon 
whether the ionic or covalent set of radii is used. 

A special word should be said about BN. In this case the 
crystal is arranged in sheets, with the following type of structure 
(each bond line indicating an electron pair): 

N N 
\ /■ \ / \ / 

B B B 
I I I 
N N N 

B B B B 

N N N N 

B B B 

^ It should also be borne in mind that when ZcZa [sec Eq. (15) Chap. XIV] 
is greater than 4, the difference between the calculated value of ro and the 
radius sum of Table 16 liecomos great. Under these circumstancevS, owing 
to the uncertainty in n, the value of ro can be considered only a rough 
approximation, and may be in error by 10 or, in extreme cases. 20 per cent. 
Assuming the reduced'* Madehing constant Ao to be the same for all crys¬ 
tals may cause the calculated ionic distances in crystals having three atoms 

per stoichiometric molecule to be about O.OSA. too low in the worst cases. 
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This particular structure can, of course, resonate with many other 
structures having the double bonds in other positions. The 
small interatomic distance is no doubt due to the double-bond 
character of the linkages and the resonance. Carbon, in the 
form of graphite, has the same type of structure and has a very 
similar interatomic distance, 1.42a. In both these crystals the 
distance between the sheets of atoms is relatively very large. 

To Table 36, we append the distance from the central atom to 
one of the surrounding atoms in some of the common complex 
ions. These distances vary somev/hat from crystal to crystal, 
as we have noted, and the values given arc average^' or typical 
values. The experimental distances have again been compared 
with covalent distances and with ionic distances, calculated much 
the same as for tetrahedral molecules, but allowing for the double 
charge of the oxygen and for the particular charge on the cation. 
It will be seen that the ionic distances agree remarkably well with 
the observed distances, though it seems doubtful that the forces 
can be purely ionic. The oxygen-oxygen distances in these 
crystals are very small, much smaller in all cases than twice the 
radius of oxygen in Table 16. In fact, they are so small that it 
seems probable that there is anion-anion (t.c., oxygen-oxygen) 
contact even though the cation-anion ratio would not indicate 
that this should be the case. At least this is true unless the dis¬ 
tortion of the oxygen ions is quite considerable (as would be the 
case if the binding were largely covalent). 

Pauling and Huggins^ have also given a table of octahedral radii, which 
they have used to correlate interatomic distances in crystals such as FeSa, 
in which metal atoms are surrounded by six others in the form of a regular 

octahedron, the binding being of the type. The interatomic distances 

aro«x)btained by combining the octahedral radius with the appropriate radius 
for the other atom involved. Where possible, distances (jalciilated from 
these octahedral radii are included in Table 36. 

16.10. Distances in Isosteres.—If two molecules have the 
same electronic structure, they are said to be isosteres. Exam¬ 
ples are furnished by the pairs CO and N2 and OCO and NNO. 
In each pair the molecules have the same number of valence elec¬ 
trons and the same number of inner electrons on corresponding 

^ Pauling and Huggins, Zeita. KrUU, 87, 227Jf. (1934); these have been 

slightly modified by Pauling, “The Nature of the Chemical Bond,” pp. 
168#., Cornell University Press, 1939. 
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atoms. They differ only in the charges on the nuclei. The 
molecules in each pair have remarkably similar physical proper¬ 
ties and also similar structures. Thus the interatomic distance^ 
in CO is I.I3A., in N2 it is I.OqA.; in OCO the distance between 
end atoms is 2.32A., in NNO it is 2.38A. 

One may in the same way speak of isosteric crystals. Thus 
KF and CaO are isosteres. In this case, however, the inter¬ 
atomic distances are noticeably different, being 2.67A. for KF 
and 2.4oA, for CaO. If we compare the radii sums directly from 
Table 16, the order of size is reversed, and we get 2.69A. for KF 
and 2.94A. for CaO. The small observed size for CaO is due to 
the higher charges on the ions. Such results are typical of ionic 
compounds. 

On the other hand, Goldschmidt^ has observed that in covalent 
crystals with tetrahedral structure, all of whi(*h have eight val- 

Table 37.—Intekatomic Distances in Isosteric Crystals with 

Covalent Binding 

Number of inner 
electrons® 

Isosteres 

! 
Interatomic 

distances 

2,2 BeO, CC 1.65, 1.54 

2, 10 BeS, CSi, NAl 2.10, 1.89, 1.91 

2, 28 BeSe, OZn, FCu ^ 2.22, 1.98, 1.84 

10, 10 AlP, SiSi 2.36, 2.34 

10, 28 AlAs, PGa, SZn, ClCu 2.44, 2.35, 2.35, 2.35 

10, 46 MgTe, AlSb, SCd 2.77, 2.64, 2.52 

28, 28 CuBr, ZnSe, GaAs, GeGe 2.46, 2.45; 2.44, 2.44 

28, 46 Cul, ZnTe, GaSb, SeCd 2.63, 2.64, 2.64, 2.62 

46, 46 Agl, CdTe, InSb, SnSn 2.80, 2.80, 2.79, 2.80 

« Of the elements in the oompounds, in the order in which they are given in the formulas 
of the compounds. 

ence electrons per stoichiometric molecule, the interatomic dis¬ 
tances are practically the same for all of a series of isosteres. 
This is brought out in Table 37, where it is seen that GpW- 

^ These are the data from band spectra, see Sponer, *‘Molckulspektren,” 

Vol. I, Julius Springer, Berlin, 1935. Data from electron diffraction agree 

within the limit of error, but indicate a greater difference between CO2 and 

N2O. 
*See Grimh and Wolff, “Handbuch der Physik,” 2d ed., vol. XXIV/2, 

p. 996, Julius Springer, Berlin, 1933. 
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schmidt^s rule holds better the more covalent the set of com¬ 
pounds would be expected to be. The table is so arranged as to 
bring out the way in which the interatomic distances gradually 
increase with increasing complexity of the electron structure. 
This method of exhibiting the results se(*ms to bring out certain 
properties of the covalent bond better than merely finding a set 
of covalent radii, but is, of course, in no way inconsistent with 
the existence of the set of covalent radii. Table 37 suggests, in 
fact, a simplified set of covalent radii, as follows: all elements 
with 2 inner electrons, 0.77; with 10 inner electrons, 1.17; with 
28 inner electrons, 1.22; with 46 inner electrons, 1.40. These 
values give radius sums that agree with the experimental data 
with the same accuracy as that witli which the distances in 
isosteric crystals agree with each other. They will not reproduce 
the experimental data as well as the values of Table 33. It may 
be that the radii in Table 33 are not to be taken as pure covalent 
radii, but as containing an unconscious correction for the tend¬ 
ency of certain elements to form compounds with a partially 
ionic character. However, this is a matter that can scarcely be 
decided definitely. 

16.11. The Transition between Ionic and Covalent Binding.— 
The halides of silver and copper and the oxides, sulfides, selenides, 
and tellurides of zinc, cadmium, and mercury are substances of 
simple composition in which the binding is undoubtedly inter¬ 
mediate in character between ionic and covalent. It should, 
therefore, be of interest to collect in one table the various prop¬ 
erties that may be of use in studying the transition between ionic 
and covalent binding. This has been done as far as is possible 
in Table 38. 

First is given the radius of the cation from Table 16 and the 
polarizability of the anion from Table 10. As seen in Sec. 12.4, 
these quantities should help us form a judgment as to the rela¬ 
tive deviations from pure ionic type to be expected of the various 
compounds in the table. It is important, however, to notice 
that Cu+ is about the same size as Na+ and Ag+ is only slightly 
smaller than K+. It is, therefore, clear that if the silver and 
copper halides show greater departure from a purely ionic char¬ 
acter than do the alkali halides, this cannot be due to the small 
size of the catipn. Indeed, it appears to be generally true, as 
has been stressed by Fajans, that an ion with a shell of eighteen 
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electrons exerts a greater distorting force on a given anion than 
does an otherwise similar ion with a shell of eight. This is 
undoubtedly connected with the greater force exerted by an 
eighteen-shell ion on a penetrating electron, as the outer elec¬ 
trons of the anion probably penetrate to some extent beneath the 
outer shell of the cation. 

Table 38.—Properties Illustrating the Transition between Ionic 

AND Covalent Binding 

Substance 
r 

(cation) 
a X 1024 
(anion) 

1 
Ionic 
-Obs. 
dist. 

Pure 
covalent" 

-Obs. 
dist. 

?7o (theor.) 
— C/o (expt.) 

C.N. 

CuF. 0.96 0.96 0.35 0.15 4 
CuCl. 3.57 0.28 0.04 18 4 
CuBr. 4.99 0.28 -0.02 22 4 
Cul. 7.57 0.36 -0.01 29 4 

AeF. 1.26 0.96 0.16 1 9 6 
AgCl. 3.57 0.30 11 6 
AgBr. 4.99 0.33 14 6 
Agl. 7.57 0.48 0.00 i 18 4 

ZnO. 0.88 2.74 0.06 0.01 
i 

-13 4 
ZnS. 8.94 1 0.10 0.04 28 4 
ZnSe. 11.4 0.14 -0.01 55 4 
ZnTe. 16,1 0.16 -0.02 4 

CdO. 1.14 2.74 0.05 46 6 
CdS. 8.94 0.17 0.05 31 4 
CdSe. 11.4 0.21 0.00 58 4 
CdTe. 16.1 0.24 0.00 4 

1.25 8.94 0.32 67 4 
HgSe. 11.4 0.36 99 4 
HgTe. 

j 
16.1 0.41 . i 

4 

« The covalent distances are calculated from the radii j?iven in Sec. 1C. 10 rather than 
those given in Table 33, as it is believed that the former represent more nearly the radii to 
be expectcjd from purely covalent bonds. 

The series of silver halides have often been cited as exhibiting 
very beautifully the transition between ionic and covalent bonds. 
It will be seen that the deviation between the observed inter- 
nuclear distance and the calculated ionic distance becomes 
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progressively more pronounced going from AgF to Agl. Like¬ 
wise, the difference between the experimental and theoretical 
lattice energies becomes progressively greater. Finally AgF, 
AgCl, and AgBr have the sodium chloride type of lattice, whereas 
Agl has a tetrahedral type of lattice^ (with, to be sure, some com¬ 
plications—^see Sec. 16.12). A tetrahedral type of lattice is, of 
course, characteristic of binding, as we have seen, but long 
before the development of the wave mechanical theories, it was 
held to be characteristic of covalent binding. This type of 
lattice is, of course, to be expected with ionic binding if the cation- 
anion radius ratio is small enough; but the ratio is not sufficiently 
small in the case of Agl, and alkali iodides having cations smaller 
than Ag+ have the sodium chloride structure. In addition to 
the properties thus far considered, it is believed that the increas¬ 
ing insolubility of the silver salts from the fluoride to the iodide is 
directly connected with the increasingly covalent character of 
the binding. This is discussed in Sec. 19.7. All the prope?rties 
of these substances thus show trends consistent with the trend 
in the character of the bond. 

The beautifully consistent picture that is thus obtained with 
the silver halides may, however, be to some extent deceptive, for 
as soon as an attempt is made to extend it to the other substances 
in Table 38 difficulties arise. 

Consider, for example, the cuprous halides. One gains a 
general impression that these salts are more covalent than the 
silver salts. This appears from the larger values of C/o (theor.) 
~ Uo (expt.) as well as the fact that the coordination number in 
all the salts is four, and a greater degree of covalency in the 
cuj)rous salts is quite to be expected since Cu+ is a smaller ion 
than Ag+. The values of Uq (theor.) — C/o (expt.) are not only 
larger than those for the silver salts but they have the expected 
trend. Yet when we look at the difference between ionic and 
observed distances, we see that the trend is entirely lacking: 
the discrepancy could be explained if it were supposed that, for 
some reason the calculations that resulted in the radii of Table 
16 gave too high a value for Cu"*". However, the lack of a trend 
in this instance may be to some extent accidental, for it is seen 
that, except for the fluoride, which is the most ionic cuprous salt, 

^ The data in Table 36 for Agl with silver having a coordination number 
of 6 were obtained from solid solutions with AgBr, not pure Agl. 
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the agreement is good between observed distances and those 
obtained from covalent radii. 

In the case of the bivalent elements, it is not always easy to 
find marked trends from oxygen to tellurium. This is perhaps 
due, in that instance, to uncertainty in the values of Uo (theor.) 
— ?7o (expt.) for CdO, etc., and it may be fair to say from the 
small value of this quantity in ZnO, from the close agreements of 
ionic and observed distances in the oxides (which may, however, 
be accidental since the covalent distances also agree), and from 
the coordination number of six in CdO that the oxides are more 
ionic than the other compounds. Such a conclusion, neverthe¬ 
less, does not seem very certain. There seems to be some evi¬ 
dence, from the large values of JJq (theor.) — [7o (expt.), that the 
mercury compounds are more covalent than the others, which 
is just what would not be expected from the sizes of the ions. 

It will thus be seen that, although these compounds most 
probably do exhibit the transition between ionic and covalent 
binding, the simple regularities, for which one is sometimes 
inclined to hope, cannot always be found. 

The trends that occur in the nature of the binding among the 
metals of the group under discussion are of interest in connection 
with the trends in certain other related properties. It is gener¬ 
ally recognized that silver is a more noble metal than copper. 
It is often stated or implied that the more noble a metal is, the 
less electropositive it is. However, the quality of nobleness in a 
metal is connected with nonreactivity, whereas the quality of 
electropositiveness is reflected in the type of bonds that it forms. 
It is true that there is often a parallelism between the two prop¬ 
erties. Thus cesium is more electropositive than lithium, and 
also less noble, for in general its compounds have a higher heat of 
formation (^.e., more heat is evolved when they are formed) and 
hence are more stable. See, for example, the values of Q in 
Table 20. And, of course, it is well known that the true noble 
metals are among the least electropositive. 

Nevertheless, we should not be surprised to find that occasion¬ 
ally a less noble metal is also less electropositive, as occurs in the 
case of copper and silver. The halides of copper have only 
slightly greater heats of formation^ than those of silver, and the 

1 It is of interest to note (see Table 21) that this slight difference is actually 
due to the greater degree of covalency of the copper bonds, and, hence, with 
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halides of univalent copper are stable with respect to decomposi¬ 
tion into copper and the halides of bivalent copper. The real 
difference between copper and silver lies in the stability of the 
oxides and sulfides. The heats of formation (evolved) are as 
follows: CU2O, 42.5 kg.-cal.; Ag20, 6.95; CU2S, 19.0; Ag2S, 5.5, 
Since the stability of such compounds is not a simple function 
of any one property of cither of the elements involved, it is seen 
£hat the nobleness of a metal cannot be easily related to any other 
single property. 

In the case of the zinc, cadmium, mercury family, the stability 
of the oxides and sulfides decreases in the order in which the 
members of the family are written. Zinc and cadmium halides 
are not exceedingly diff(^rent, but mercury halides are much less 
stable. We have seen, however, that mercury also appears to be 
less electropositive, so here there is the usual relation between 
nobleness and electropositivity. (Cf. also Cd and Hg in Table 4.) 

16.12. Special Types of Molecular and Crystal Structure.— 
Though many complex ions, molecules, and crystals have simple 
S3mfimetrical structures, such as regular triangles, tetrahedra, 
squares, octahedra, and cubes, this is by no means true in all 
cases. There are molecules whose form corresponds to none of 
the expected types, and whose structure is difficult to explain on 
the basis of electron theory or electrostatic forces. Also there 
are numerous crystals that have exceedingly complicated struc¬ 
tures, frequently involving highly distorted tetrahedra and 
octahedra. Although distortions may sometimes be due to the 
tendency of certain atoms or ions to form as closely packed a 
structure as possible, there are certainly many cases in which the 
arrangement may, to say the least, be characterized as unexpected. 

An illustration of a rather extreme type, which shows the com¬ 
plexities that may be involved, is furnished^ by Agl. As noted 
in Sec. 16.9, at sufficiently low temperatures this substance has 
a tetrahedral type of structure in which each silver is surrounded 
by four iodine atoms, and each iodine by four silver atoms. In 

respect to the halides, copper is actually loss noble than silver because it is 

less electropositive. 
^Helmholz, /. Chem. Phys.j 3, 740 (1935); Strock, Zeits. physik. 

Chein,t B26, 441 (1934). The discussion has to do with the behavior of 

Agl having the wurzite structure (see Appendix IV). Another form having 

the sphalerite structure is also known. 
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order to have complete electron sharing, the crystal would have 
to be composed of Ag-and I+++ ions; in other words, three 
electrons from iodine would have to be among those shared. 
That they would be very reluctantly shared is evident, and the 
softness of the crystal would indicate that the atoms do not have 
four strong tetrahedral bonds. So it is, jx'rhaps, not very sur¬ 
prising that at a higher temperature (room t(*niperature) irregu¬ 
larities begin to ai)pear. At room teinj^erature, many of the 
silver atoms find a i)osition of equili])rium in which they are 
closer to three of the surrounding iodines than to the remaining 
one. Above 146°C., the* sharing of electrons becomes still less, 
there is a transition to a cubic body-c(uitered latt ice of iodine ions, 
and the silver ions S(‘(un to move freely, like a fluid, in the inter¬ 
stices; this is in spite of the fact that iho density of the high 
temperature form is greater. Owing to the fn‘e mobility of the 
silver ions, the liigh temj)erature form readil}^ conducts elec¬ 
tricity. No very satisfactory explanation of this rather remark¬ 
able behavior can be given, but it is certainly not tyjncal of either 
th(^ purely ionic or the' j)urely (‘ovalent typo of crystal. Although, 
as stated above, the cirse of Agl is ext nunc, it is to be noted that 
not many other crystals have been investigated so thoroughly. 
Whereas there are few, or no other, cases in which some of the 
atoms or ions liave alternative positions, in other respects some 
other crystals are about as complicated. In a complicated 
crystal of this sort, there is usually present at. least one transition 
element or, at any rate, one from the central portion of the 
periodic table. Generally the elements involved are such as 
would be expected t-o have a binding of type intermediate 
between covalent and ionic, and frequently, though by no means 
always, some of the elements are not in th(*ir maximum valence 
states. It may be of interest to note here that also in the case 
of the transition between metallic and covalent binding com¬ 
plicated structures appear (see Sec. 18.2). 

It would be impossible to attempt here to give a detailed 
description of the various types of crystal structure that have 
been discovelred, and little would be gained, since at present few 
unifying principles have been found. However, there are some 
types of molecular and crystal structure which, though not con¬ 
forming, at least apparently, to the ordinary rules, nevertheless 
are of fairly frequent occurrence. It seems worth while, without 
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presenting an exhaustive account, to give a brief discussion of 
some of these. They will be classified according to the coordina¬ 
tion number. 

Coordination Number Two.—There are a number of ions and 
molecules containing a total of three atoms, in which all the 
atoms lie in a straight line, and in wdiich the central atom 
may, therefore, be said to have a coordination number of two. 
Most of these compounds have already been mentioned in Table 
31 and Sec. 16.9. A partial list follows: Ag(NH3)2^-, Cd(NH3)2++, 
Hg(NH3)2^, HgCls, HgBrs, Ugh, Znh, Cdh, TeCl2, TeBrs, 
Is"*. The ions, of course, are known from crystal measure¬ 
ments*; HgCl2 and HgBro are known as linear molecules in both 
gas and crystal. The otliters are known from electron diffraction 
in gases. The linear form with coordination number two does 
not persist in the crystal in the case of Hgl2, Cdl2, and probably 
Znl2. To the list of substances having linear configurations 
should be added Cu2(), in the form of cuprite, in which copper 
has a coordination numb(*r of two and oxygen of four. 

It will b(i noted tliat here is a large group of substances which 
may be described as (;omi)osed of a central eighteen-electron 
shell ion, to which are attached two negative ions or groui)s with 
octets. This is a convenient description but should not be 
taken as necessarily implying ionic binding. Ionic binding would 
give a ready explanation of this type of molecule in the gas phase, 
but in many cases this type of structure is found in the crystal, 
and in any event, Hgl2 must certainly have largely covalent 
binding. It has been shown^ that by combination of the s-w^ave 
function witli one of the p-wave functions it is possible to get 
two bond-eigenfunctions which are oppositely directed. These 
are not quite so much concentrated in one direction as are the 
tetrahedral .sp* functions, but when there are only two pairs of 
electrons in the valence shell they may tend to be formed, because 
they involve less excitation in the impairing of the electrons of 
the central atom. The excitation is expected to be less because 
the low-energy s-wave function is less diluted, so to speak, by the 

^ The cases of Cd(NH3)2’^’^' and Hg(NH3)2"’‘’^ depend upon measurements 
of the corresponding halides. Since there are also halogen ions fairly close 

to the mercury it is to some (extent a question of judgment as to whether 
halogens are also coordinated with the mercury or cadmium or not. 

* Hottgren, Phys. Rev., 40, 891 (1932). 
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higher energy p-statcs than in the case of the bond-eigen- 
functions. Another possibility in the case of the mercury and 
cadmium halides is that bonds are formed with th^ double- 
bonded structure : Cl:: Hg:: Cl: Sucli a possibility does not exist 

with the ammonia compounds, however, unless ammonia can 
share its electrons as a unit. 

The tendency to form compounds with a linear struetTire is not 
confined to the elements of the silver and zinc groups, however, 
as is seen from TeCU and TeBr2. Tel¬ 
lurium, in these compounds, has a com¬ 
pleted octet outside the shell of eighteen. 
In these cases it is difficult to see why 8p 

linear bonds should be formed as this 
requires unpairing of cS-electrons which do 
not need to be shared. Most probably an 
outer d-state is involved. 

In the case of Is"", there are more t han 
enough electrons to form octets on all the pyramid, 

atoms, so one atom, presumably the central one, must have 
electrons in at least one d-orbit. 

Coordination Number Four,—The ion ICU"", occurring, for 
example, in KICU, deserves mention as an ion in which iodine 
has a peculiar type of coordination.^ The chlorines an? arranged 
in the form of a square, with the iodine in the middle. There 
are too many electrons for this to be binding of the regular square 
spH type. It may b(? a case of octahedral binding, in which two 
of the corners of the octahedron have electron pairs but no 
substituent; outer d-orbits would be involved. 

Coordination Number Five.—In PFs, which has been investi¬ 
gated by electron diffraction,^ the fluorines are arranged in the 
form of a double pyramid. Three of the fluorines form a plane 
triangle with the phosphorus in the middle. The other fluorines 
are directly above and below the phosphorus, forming the apic6?s 
of the double pyramid. All fluorines are at the same distance 
I.54A. from the phosphorus. IF5 probably has a similar struc¬ 
ture, with an I—F distance of 2.57A. PF3CI2 and PCI5 are similar 
molecules. In PF3CI2 the distances® are, P—F, l.SoA., and 

1 Mooney, Zeiis, Krist.^ 98, 377 (1938). 
* Brauns and Pinnow, Zeiis. physik. Chem.f B36,239 (1937). 
* Brockway and Beach, J, Am. Chem. Soc.^ 60, 1836 (1938). 
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P—Cl, 2.O5A. In PCI5 the two chlorines at the apices are said 
to be at a slightly greater distance than the others; the distances^ 
are given as 2.11 A. and 2.04A. 

Essentially the same structure occurs in the compounds*-* 
Sb(CH8)3X2, where X may be Cl, Br, or I. The CH8^s form a 
triangle with the antimony in the middle, the halogens being 
directly above and b(4ow the antimony. The halogens, being 
attached directly to the antimony, will not ionize in acetonitrile 
solution, though hydrolysis occurs in water. Sb(CH8)3(OH)2 is 
also a weak electrolyte, and probably has a similar structure, but 
Sb(CH3)3XOH is a strong electrolyte. In this case, the anti¬ 
mony is probably tetrahedral, forming an ion Sb(CH3)3X'^. 
The tetrahedral form is what naturally would be expected, but 
it is seen that actually in this case it possesses no special stability. 

The crystal covellite, (^uS, offers another interesting example 
of an atom with a coordination umber of five. There arc two 
types of sulfur in this crystal; one of them is surrounded by five 
copper atoms in the form of a double ])yramid. The copper 
atoms in the triangle are in this case somewhat nearer to the 
sulfur (2.I9A,) than those forming the apices of the double 
pyramid (2.35A.). 

Coordinatio7i Number Six.—A certain number of instances are 
known in which an atom with coordination number of six is 
surrounded by atoms at the corners of a trigonal prism rather 
than at the corners of a regular octahedron. Thus in NiAs an 
As atom is surrounded by six Ni\s at the corners of a trigonal 
prism.® Other compounds of transition metals with S, Se, Te, 
and Sb crystallize in the same way. In M0S2 and WS2, the 
metal atom lies at the center of a trigonal prism formed by sulfur 
atoms. According to a w^ave mechanical treatment by Hult- 
gren,'^ a trigonal prism can be formed if five d-eigenfunctions are 
available. Theoi*etically, the ratio of altitude to the edge of the 
base of the prism should be unity, a condition very nearly fulfilled 
by M0S2 and WS2. 

^ ScHOMAKER, quotcd by Pauling, ‘‘The Nature of the Chemical Bond,^' 
p. 103, Cornell University Press, 1939. 

* Wells, Zeits. Krist., 99, 367 (1938). 
® A trigonal prism is a figure whose base is a triangle (in this case an 

equilateral triangle) and whose sides are perpendicular to the base (see Fig. 
58, p. 300). 

* HdLTGBBN, Phys. Rev., 40, 891 (1932). 
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Electron-diffraction investigations have been made of the 
structures of the molecules^ of WFe, and MoFe. In con¬ 
trast to results previously obtained mth the hexafluorides of the 
sulfur group, it was lound that th(\se molecules were not regular 
octahedra, but that the octahedra were distorted. The fluorines 
can be divided into three groups of two each. Each group con¬ 
tains the pair of opposite fluorines, which form a straight line 
with the central atom. The tliree straight lines thus formed are 
at right angles to each other, just as they would be in a regular 
octahedron, but the distance between fluorine and the central 
atom is different in the different groups. In UFc and WFe, the 
three different U—F distances are in the ratio 1:1.12:1.22. In 
MoFc, the ratios may be the sanies, but tlie results are less certain. 
It is thus seen that uranium, tungsten, and jnolybdenum cer¬ 
tainly do not tend to form regular 0(!tahedra, but the actual 
structure differs in tlu' sulfides and fluorides. 

16.13. One-electron and Three-electron Bonds.—There are 
some compounds of light elements, some of which have already 
been mentioned in passing, which, though hardly to be con¬ 
sidered with the group discussed in Sec. 16.12, have rather 
unusual properties. These properties can be explained on the 
basis of certain special assumptions. It was soon in Chap. X 
that there is a very stable ion of the formula H2^ in which the 
two protons are held together by the action of one electron. 
This, of course, suggests that there may be other compounds in 
which some of the bonds are one-electron bonds. It is necessary 
for the formation of a one-electron bond that the two atoms (or 
ions) which are to be joined should exert forces of somewhat 
similar magnitude on the electron. Otherwise the electron will 
tend to be attached to one of the atoms, and the electron distribu¬ 
tion about this atom will be fairly symmetrical. Since the elec¬ 
tron is effective in producing a cementing action only when there 
is a tendency for it to remain between the atoms it is joining, 
it is seen that an overpowering attraction of one or the other of 
these atoms for the electron produces a weak one-electron bond; 
but, of course, a polar bond may be formed, if this leaves the 
atoms charged, and in this respect the one-electron bond is no 
different than the electron-pair bond. 

* Bbaune and Pinnow, Zeits, physik. Chem,, B36, 239 (1937). 
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The structure of diborane has long been one of the outstanding 
puzzles of inorganic (jliemistry, for there apj^ear not to be enough 
valence electrons to make such a comi^ound stable.^ Sidgwick 
has suggested- that it contains^ one-electron bonds. The possi¬ 
bilities are 

H H , H H IIH 

HB:BH II:BBH 

a H f i ii H H 

In the first two formulas, it is not important just which hydro¬ 
gens have one-electron bonds, but only wl)('ther they are both on 
the same boron atom. The last arrangement, with a one-elec¬ 
tron bond between the borons, is a distinct possibility, and it 
makes no essential difference whi(*li hydrogen has the remaining 
one-electron bond. 

Lewis*** has made a somewhat diffc'rent suggestion. He sup¬ 
poses that at any given moment there is one f)oint of linkage at 
which there are no electrons. Thus we may have 

H IT II II 

H:B:B:H or IIiB B:H 

ii H ii H 

It is supposed that there is resonance between all possible states. 
Since boron and hydrogen have about the same electronegativity, 
as will be evident from extrapolation of th(j electronegativities 
of the elements of the first row of the periodic table (see Table 14), 
the electrons will have no choi(*e as Ix^tween a B—B l)ond or a 
B—H bond. Hence, there being seven linkages and six pairs of 
el^trons, each bond will have a pair six-sevenths of the time. 
Essentially the same result should follow from Sidgwick^s hypoth¬ 
esis, and either Sidgwick^s or Lewises structure simply amounts to 
saying that the twelve electrons are uniformly distributed over 
the seven bonds. Since resonance produces an energy level which 
is low’er than that of any of the resonating states, the uniform 

^ It is, as a matter of fact, very reactive. For the chemistry of boron sec 

Stock, Hydrides of Boron and Silicon,'^ Cornell University Press, 1933. 

* Sidgwick, “Electronic Theory of Valency,” p. 103, Oxford University 

Press, 1927. 
*Lia“wis, /, Chem. P/iys., 1, 17 (1933). 
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distribution of all the electrons may well produce a stable B2H6, 

even though any given electron structure? would bo expected to 

result in an unstable molecule. 

The literature has not been lacking in other suggestions as to 

the structure of the B2H6 molecule. Boeseken and WahP sug¬ 

gested that it is an acid of the anion 

HH 

H:B:B:H 

ii 
, and Wiberg 

has suggested that it is an acid of the anion 

H H 

B::B 

a ii 
Wiberg^ has recently reviewed the evidence in favor of his struc¬ 

ture. He cites the formation in liquid ammonia solution of the 

saltlike electrolytically conducting B2H6*2NHy, which he inter¬ 

prets as an ammonium salt of the a(‘id. lie states that the 

ethylenelike character of the anion is indicated by the fact that 

B2H6 readily adds two atoms of alkali metal. Further, he sup¬ 

ports the opinion that four hydrogens of diborane are different 

from the others by citing the fact that four hydrogens, only, 

may be replaced by methyls. 

However, the arguments of Wiberg can hardly be said to be 

conclusive. In the first place, S(*hlesinger and Burg® have 

brought forth evidence which indicates that B2Hb'2NH3 is rather 
' H H H ‘ - 

the ammonium salt of the anion H:B:N:B:H which they 

1. H ii H J 
believe to be formed in ammonia solution because in such solu¬ 

tion B2H0 has a certain tendency to split into BHs^s, a tendency 

also supported by other evidence [^.e., the reaction at low tem¬ 

peratures with trimetliylamine to, form (CH3)3XBIl3l. The 

fact that B2H6 adds alkali may indeed bo an evidence of unsatura¬ 

tion, but this unsaturation is present according to any formula¬ 

tion. The alkali-addition compounds may b(‘ alkali salts of th(' 
“ HH ~ 

I 
I'inally, the fact that only four hydro- anion H:B:B:H 

H n 

^ BdESEKEN, Verslag Akad. Wetenschappen Amsterdam^ SI, 591 (1922); 
Wahl, Zeita, anorg. allgem. Chern.f 146, 230 (1925). 

* Wiberg, Ber, dent. chem. Gea.f 69, 2816 (1936). 
*SoHLBsiNGER and Burg, J. Am. Chem. Soc., 60, 290 (1938). 
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gens can be replaced by alkyls might be evidence that an anion 

of the type [(CH3)2B—B(CH3)2l may be formed without it 

necessarily being true that an anion [HoB — BH2]— is formed. 

But more likely it simply shows that addition of a more negative 

group than H draws the electrons from the B—B linkage, so 

that further addition of methyl groups would result rather in 

splitting up the compound. As a matter of fact, boron trimethyl, 

B(CH3)3, and B(C2H5)3 are not associated (see also the discus¬ 

sion in Sec. 17.3). It should, however, be stated that attempts to 

introduce a fifth methyl into B2H2(CH.3)4 have been unsuccessful.^ 

Electron diffraction^ and crystal structure measurements of 

B2H6 have shown that the B—B distance is about 1.86A. This 

is larger than expc'c-ted from Table 83 for a covalent single bond, 

and certainly is larger than would be expetjted for a double bond, 

and so offers further argument against Wiberg\s structure. 

Furthermore, the electron-diffraction measurements indicate 

that all the hydrogens are equivalent, rather than that two of 

them are different, though, on account of the difficulty of deter¬ 

mining positions of very light elements by electron diffraction, 

this conclusion may not be entirely certain. 

Before concluding the consideration of diboranc, we must 

mention one physical property that has frequently played an 

important role in discussions of its structure; namely, it is found 

to have no magiuitic moment.’’ As wo have seen, this means 

that there are as many electrons with spin in one direction as in 

the other. One might, perhaps, suppose that in the one-electron 

formulas, in which there are two unpaired electrons, there would 

be a chance of these electrons both having their spins in the 

same direction. If, however, resonaiico occurs between the one- 

electron state and states in which all of the electrons are paired, 

this cannot be the case. On account of the difficulty of turning 

over the spin of an electron, it is not possible for the molecule to 

change from one state to aiiothf'r in which the spins of some of the 

electrons are different, and hence no r(‘soiiance occurs between 

such states. 

^ A. B. Bitrg, private communication. 

* Baxtbu, /. Am. Chem, Soc.^ 69, 1096 (1037). 
*See footnote 4 of Schlesinger and Walker, J. Am. Chem. Soc.f 67, 

621 (4935). 
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The compounds of boron appear to be the only important ones, 

outside of H2"^, in which the idea of a one-electron bond oflfers 

promise of being useful. The situation is different, however, 

with respect to the three-electron bond,^ which differs only 

slightly from a one-electron bond. Suppose we have two atoms, 

or ions, one with one outer electron and one with two, thus, A* 

and B: We suppose the two electrons on B to be paired. Sup¬ 

pose the state in which there are two electrons on A and only one 

on B has a comparable energy. Then we can have one of the 

electrons shared between A and B and alternately paired with 

the electron on A and that on B. In certain energy states, the 

shared electron will tend to lie between A and B, and thus will 

form a bond between them. Since the shared electron must be 

alternately paired with an electron on A and one on B, its spin 

must be the opposite of that of each of tln^se electrons, each of 

wliich must, accordingly, have the same spin. The spin of one 

of these electrons will be unbalanced, and the three-electron bond 

thus must contribute to the magnetic moment of the molecule. 

Now the oxygon molecule is a molecule that spectroscopic 

analysis shows to have no resultant orbital angular momentum, 

yet it has a magnetic moment. This shows that it must possess 

unbalanced spins, which Vould not occur if all the eU^ctrons were 

paired in the usual way. Pauling suggests that it has two three- 

electron bonds and one electron-pair bond, its structure being 

:0:0: In this structure, as in the structure one would get from 

the assumption of a double bond, four electrons are shared by 

the oxygen atoms, and it might well be expected that these two 

possibilities would result in molecules with somewhat similar 

energies. The empirical fact, apparently, is that the three- 

electron-bond structure has the lower energy, but this could 

hardly be predicted offhand. 

Another molecule that Pauling postulates has a three-electron 

bond is nitric oxide, written :N::0: The reason for this 

assumption is the fact that nitric oxide, though possessing an odd 

electron, ‘appears to be relatively little unsaturated. It does 

combine with itself to form a double molecule, but the energy 

of dissociation is low, only about 3 kg.-cal.^ The dissociation 

1 Pauling, /. Am, Chem. Soc., 53, 3225 (1931). 
* For a discussion and references see Rice, J, Chem. Phys.^ 4, 367 (1936). 
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energy of N2O4, also rather low, about 13 kg.-cal., is nevertheless 
much larger than this.^ Further, NO tends to combine with 
organic radicals having an unpaired electron, but these appear 
to be about as unsaturated as NO itself. Pauling writers for 
these a formula similar to the one he suggested for oxygen 

RinTO: 

Pauling has also discussed magnetic moments of c('rt ain (*om- 
plex compounds containing NO, namely, [Co(NH3)r,NO]Cl2 

which has a moment corres])onding to two electrons with si)in 
in the same direction and 

Na2[Fe(CN)5N0]2H20, [Ru(NH3)4NO HsOJCU, 
and 

[Ru(NH3)4NO Cl]Br2 

which have zero moment. In these cases NO is assum(Hl to have 
a different electronic structure than when it is uncombined. If 
we assume that in the first compound cobalt is trivalrmt. and 
the NO is in the form of the ion NO" with a stnudure and mag¬ 
netic moment like oxygen, then, if the bonds between cobalt and 
the surrounding groups are covalent, the compound shouldhav(i 
the magnetic moment observed, this coming entirely from the 
electrons on the NO group. If, in the iron and ruthenium com¬ 
pounds, these metals are in the divahuit state and the IsH) is in 
the form of a positive ion NO+ with structure like nitrogen (hav-,. 
ing, hence, no three-electron bonds and no magnetic moment) 
and if the bonds arc covalent, the observed zero magnetic 
moment is explained. 

It might be well to discuss the ])henomena that we have 
explained in terms of one-electron and thn^e-cloctron bonds from 
the viewpoint of the general theories which we have discussed in 
Chap. XI. A one-electron or three-electron bond is of course 
invoked precisely to account for phenomena that do not fit into 
the electron-pair scheme, and it would appear that the idea of the 
stability of the shell of eight loses a good deal of its significance 
in these cases. However, the Hund-Mulliken theory Is general 
enough to explain the phenomena we have noted. Thus the 
magnetic moment of O2 is explained simply by supposing that 

* Pauling, however, also writes a stnicture for NO2 involving throe- 

eleotron bonds. See “The Nature of the Chemical Bond,^* p. 250. 
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the two promoted (ilectrons are not in the same energy level, 
and that they have parallel spins, something about the inter¬ 
action of the spins and the orbital motion stabilizing this arrange¬ 
ment. The assumption that one electron in NO is promoted and 
that there are six bonding electrons, giving the equivalent of two 
and a half bonds, corresponds well with the structure given 
in the preceding paragraphs. 

There does, however, secern to be a difference between the Hund- 
Mulliken theory and the thre(velcctron bond theory, which may 
be definitely stated, though we shall not attempt to say which 
one is a better description of the actual state of affairs in th(^ 
molecule. In the (^ase of a threcvelfHd ron bond, only one of the 
throe electrojis involved may be propcnly (*alled a bondijig elec¬ 
tron, as will be clear from our original description of a three- 
electron bond. Tims in (>2 there are f^ur bonding electrons, two 
in the pair and one in each of the three-electron bonds. The 
existence of th(^ three-electron bonds is conditional upon the 
assumption that the oxygxms are sufficiently far apart so that two 
distinct quantum stat(‘s are involved, one belonging to one oxy¬ 
gen atom and the otlier to the other oxygen atom, in each three- 
electron bond. If the oxygens were close enough so that the 
ele(;trons in these two quantum states began to interfere With 
eatb other, f.c., if the united atom state of affairs were actually 
being approacdied, one of the three electrons would have to be 
promoted and two of th(‘m would constitute a bonding pair. 
From the three electrons, the net number of bonding electrons 
would still be one, but* the three-electron bond appears essentially 
to require that the? promotion of electrons shall not yet have 
occurred. In this wiiy it may be said to differ from the Hund- 
Mulliken picture of i)romoted electrons. We may postulate a 
three-electron ].)oiid in cases like O2 if we look at the combination 
from the separated atom point of view, and we get the Hund- 
Mulliken picture if w^e use the united atom point of view, just as 
in more ordinary instances the separated atom point of view 
leads us to electron pairs, wdicreas the united atom point of view 
leads to coiLsideration of promoted electrons. Probably the truth 
lies somewhere in between. 

In Chap. XI, it was suggested that the combination of two 
BHg's to form B2H6 might be like the combination of two oxygen 
atoms to form O2. Nothing that has been said about B2H0 
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would exclude the possibility that there is at least a certain 
amount of truth in this suggestion. However, since B2H6 has no 
magnetic moment and O2 has, it would appear likely that the 
lowest state of B2Hfl fesembles the excited double-bonded state 
of oxygen with all electrons paired, rather than the normal 
lowest state with the three-electron bonds. 

16.14. Double Bonds in Complex Compounds.—After the 
preceding sections of this chapter went to press, Pauling^ pub¬ 
lished the suggestion that many of the oxygcm ions, and complex 
compounds in general, have some doublcj-bond character. For 
example, in SO4 he assumes that the oxygens tend to share 
more than one electron pair with the central atom, taking advan¬ 
tage of the ability of an atom like sulfur, in which relatively 
low-lying d-states arc available, to expand its valence shell 
beyond the octet. The principal reason for this assumption is 
the fact that the interatomic distance is smaller than calculated 
for single bonds (see Table 36). 

While such double-bonded structures are possibilities which 
cannot be definitely excluded, and although it is not easy to esti¬ 
mate just how much they may contribute, it is the opinion of the 
author of the present work that there is little reason to believe 
that they are usually of great importance. In the first place, it 
does not appear that the evidence from interatomic distances is 
very conclusive. The distance calculated from covalent single¬ 
bond radii is undoubtedly an overestimate, since a single-bonded 
structure must consist of S++ and O'" ions, and the superimposed 
electrostatic forces would undoubtedly shorten the bond. It is 
to be further noted that the small interatomic distance calculated 
on the basis of S®+ and 0 ions is an underestimate (for it does 
not take into account the forces due to the positive ions immedi¬ 
ately outside the sulfate ion in a crystal), and, if it could be 
properly corrected, might well be expected to give something 
near the correct interatomic distance in spite of the improbable 
character of the assumptions on which it is based. 

In SO3— the observed interatomic distance is also less than 
the sum of the covalent radii, but the form of the ion (regular 
tetrahedron with one corner missing) is as expected from a single- 
bonded structure. Similar remarks apply to ClOs^. In H2P02"' 

^Pauling, “The Nature of the Chemical Bond,’^ Chap. VII, Cornell 

University Press, 1939. 
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the hydrogens are bound by single bonds to the phosphorus, but 
the oxygens may have double bonds. In this case the tetra¬ 
hedron is rather noticeably distorted. 

It is, perhaps, not possible to draw conclusions concerning 
bonds which involve d-states from bonds in which only s- and 
p-states play a role. It is of interest, however, that when only s- 
and p-states are involved, sulfur shows only a relatively weak 
tendency to form double bonds. The C—S single-bond energy 
is about 21 kg.-cal. less than the C—0 single-bond energy, but 
by comparing CSo and OCS with C()2 it is found that the C=vS 
double-bond energy is about 65 kg.-cal. less than the C=0 
double-bond energy. It is, to be sure, hard to see just how the 
resonance with other bond structures may affect the results with 
these molecules, but since practically the same result is obtained 
from either CS2 or OCS it is probable that the conclusions are not 
invalidated. 

Pauling has also considered a possible type of double-bond 
structure in complex ions, in which the central atom furnishes the 
extra electrons. As a typical example we consider re(CN)6'‘~. 
The possible covalent electron-bond structures (neglecting elec¬ 
trons in the iron which are not in the particular bond) are 
Fe: C:: N: and Fe:: C:: N: The extra pair in the latter structure 

is contributed from the c/-levels in the iron, and there are enough 
d-electrons in the iron to provide pairs for three double bonds. 
Pauling points out that if the electron pair between iron and 
cyanide in the first of the above formulas were equally shared 
between them, it would leave the iron with a charge of —4, 
which, he believes, could be only partly removed by the partially 
ionic character of the bond. Resonance with the second formula 
would obviate the difficulty. In the case of Cr(CN)6^”, how¬ 
ever, another difficulty appears when the magnetic moment is 
considered. For if the double bonds have the usual character 
they should involve paired electrons, in which case all of tlie 
electrons in Cr(CN)6^"' should be paired, provided, at least, that 
all of them share in double-^bond formation. But the magnetic 
moment indicates that there are two unpaired electrons, so at 
most two of the four^ d-electrons of chromium can be used in 

^ Two electrons from chromium are surely shared, leaving thus four d- 
electrons which are shared only if there is double-bond formation. 
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the double bonds. If one i>air of d-electrons were equally 
shared between chromium and cyanide it would reduce the 
negative charge on chi’omium by only one electronic charge, 
which would reduce fbc negative charges on the chromium by 
only one-fourth of its amount. It may iK'vertheless be possible 
that the great stability of numerous cyanide complexes (and 
nitrite complexes, too) is due in part to resonance with these 
double-borid('d structures. However, at the prescait time it 
seems that most of our knowledge of these compounds is reason¬ 
ably well expressed by the single-bond formula, allowing for 
partial ionic character of the bonds. 

As Pauling points out, it is not possible to write double-bond 
formulas for complexes with NHa, H2O, etc. In most such cases 
the binding is more or less ionic, so the large negative charge is 
(effectively removed from the central atom. 

Exercises 

1. A solution is known to contain cobalt, cblorinc, and ammonia, and no 

other suhstaiK^c except water. It is known that for every atom of cobalt, 

in whatever form it may b(‘, there are 8 atoms of chlorine in some form or 

other, and 1 molecule of NHs. The total concentiation of all cobalt is 

1 gram atom per 1. To 100 (ic. of this solution, 0,8 mol of AgNOa arc added. 
A precipitate is separated and found to consist of 0.2 mol of AgCl. To 

another lOO-cc, portion of the solution, a 100-cc. portion of 0.1 N liCl is 
added, and the concentration of H * in the resulting solution is found to be 

0.05 N. Give the formulas (including the charges) of the ions, and other 

substances, if any, present in the original solution in appreciable concen¬ 
tration. 

The solubility of AgBr is about 7 X 10 mol per liter. It dissolves in 
1 per cent NaaS^Os solution to the extent of 0.35 g. jx^r 100 g. of solution. 

Calculate the equilibrium constant for the reaction between Ag ^ and S2O3 

oj\ the assumption (a) that the reaction is Ag' -f 2S2O8 * , 
(i) that the reaction is Ag'^ -{- 8203 Ag(S203)‘~. In 10 per cent Na2S203 

solution, the solubility of AgBr is 3.50 g. per 100 g. of solution. Is assump¬ 
tion (a) or (b) correct? (Rough calculations, assuming perfect solutions, 

will be adequate.) 

3. A solution was made up of a substance having the empirical formula 

KsCrCl.’, (not counting possible water of hydration) and containing 1 g. of 

chromium per 100 g. of water. Some of this solution was electrolyzed 
between platinum electrodes, under conditions such that no chlorine was 
evolved. The portion of solution near the anode, containing 100 g. of 

water, was now analyzed, and was found to contain 1.252 g. of chromium 

and 5.13 g. of chlorine. From this, what do you infer respecting the formula 

of the compound? If the substance were really a mixture of KCrCl4(H20)2 
-h 2KCI, how would you expect the result to differ from that obtained? 
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4. Describe the possible stereoisomers of [Co(N02)3(OH)8]Na8. 

Describe the possible stereoisomers, including optical isomers, of [Co(N08)2 

Cl2(OH)2]Na3. Can [00(0204)3]“““ exhibit optical isomerism? 
6. Discuss the expected isomerism of the first two compounds in Exer¬ 

cise 4, if the configurations were trigonal prisms instead of regular octahedra. 
6. Give Lewis elect-ron structures for all the compounds mentioned in 

Sec. 16.5 whoso formulas are set out in separate lines. 

7. Look up the table of coordination numbers in silicate crystals given 

by Bragg (see, e.g.y VVyckofT, ^‘Structure of Crystals,^' 2d ed., p. 194) (com¬ 

pare with Table 32), and show how it illustrates the rule discussed in Sec. 

16.7 that the more elecrtronegative cations have the greatest role in deter¬ 

mining the crystal structure. 
8. Check the electrostatic-valency rule (Sec. 16.7) in the case of BPO4 

for B and P. 

9. The crystal NH4nF2 is presumably composed of NH4 ^and FHF~ions. 
Each N is surrounded by four H’s, (uich one of which is also in contact with 

one F. Each F is in contact, with three H’s, two of which an* parts of (two 

separate) NH4^ ions and one of which is in the FHF" ion. Check the 

elec.trostatic-valcncy rule for N and F. 

10. In CaB204, the boron and oxygen form chains as shown in Fig. 63. 

There are two types of oxygen atoms. The first type is linked to one boron 

and three calciums, the second type to two borons and oikj calcium. lOach 

boron is surrounded by three; oxygens, one of the first type and two of th(* 

second. Each calcium is surrounded by (‘ight oxygens, six of the first tj^pe 

and two of the second. Show t hat the statement regarding the surroundings 

of a calcium follows from the other statements, and (dieck the el(;ctrostatic- 

valency principle. 

11. Write the electron formulas for the possible states among which B4H10 

can resonate. Assume that this is a straight chain compound, in this way 

resembling the straight chain hydrocarbons. 

12. Give the electron structure for the complex compounds containing 

NO mentioned in Sec. 16.13. Show that the statements made regarding the 

magnetic moments follow from thest^ electron structures. 

13. Discuss the eh’ctron structures of and C102"', and show that 

these ions should have the form nott'd in Table 31. 

14. Disc.uss electron structures and predict the shapes of SO3, AuCL"; 

and CuCL”. 



CHAPTER XVII 

MOLECULAR CRYSTALS 

In Chap. XIII, we saw that the forces in molecular crystals 
may be either van der Waals forces or dipole-dipole forces, and 
learned something of the nature of these forces. In the present 
chapter, we shall consider the magnitude of these forces from the 
point of view both of theory and of the effects they produce. 

17.1. Van der Waals Forces.—Any molecule or atom will 
always have a dipole moment that continually fluctuates in 
magnitude and direction. This will be true even though the 
average moment of the molecule is zero, and is due to the fact 
that the electrons arc continually in motion, so that the center of 
negative electricity is not always located exactly at the nucleus 
or center of positive electriidty. It is clear, for example, that a 
hydrogen atom always has a dipole moment because the electron 
does not coincide with the positively charged nucleus. However, 
the orientation of this dipole, in an electric field of the order of 
magnitude that can be readily applied, is so much slower than 
the natural rate of motion of the electron around the nucleus 
that the measured moment is simply the average moment. The 
dipole is oriented in one direction as often as in the opposite 
direction, and so the average in any direction is zero, and the 
hydrogen atom appears to have no dipole moment; this is 
expressed by saying that it has no permanent dipole moment. 
Nevertheless, the temporary moment can exert a force on 
another atom that is close enough to it; it produces an electric 
field in the neighborhood of the other atom, and since the latter is 
polarizable a dipole moment is induced in it. The interaction 
between the temporary dipole in the one atom and the induced 
dipole in the other produces an attraction between them. (This 
is in addition to, and quite apart from, any attraction'^ due to 
valence forces, which are not considered in this discussion, 
though, except for the rare gases, they are always large compared 
with the van der Waals forces if atoms are under consideration.) 

854 
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We see from Eq. (21), page 467 that the expression for the poten¬ 

tial energy associated with this attraction is — • 

ilfi is the temporary dipole of the first atom, Bi is the angle it 
makes with the line joining the centers of the two atoms, and 
0-2 is the polarizability of the second atom in which the dipole is 
induced. Since the temporary dipole is continually changing in 
magnitude and direction, to get an average value of the potential 

we must take the average value of Mi^, which is called Mi^, and 
the average value of cos^ B, over all angles in space, which is equal 

to -J. The expression then becomes — ■—— To get the total 

potential between two atoms, it is necessary to add the potential 
due to the dipole induced in the first atom by the temporary 
dipole of the second atom, which gives 

U = (1) 

To find the value of f7, we need to be able to estimate the a's 
and We shall attempt to find only orders of magnitude. 
As seen in Sec, 12.4, in order to find the order of magnitude of 
a for an atom, it may be supposed, as a rough approximation, 
that the atom consists of a positive nucleus of charge Ze, sur¬ 
rounded by a sphere of negative electricity of uniform density 
and radius f2, and that the electric field causes displacement of 
the sphere of negative electricity without distortion. Then 
[Eq. (3) of Chap. XII] 

a == RK (2) 

The major axis of the orbit of the outermost electron must also 
be of the order of R, We should naturally expect M to be of the 
order of magnitude of the distance from the nucleus of the outer¬ 
most electron times its charge, so that 

W = e^R^ (3) 

approximately. It seems reasonable to suppose that the effect is 
essentially that due to one electron, as for the most part the 
electric moments of the various electrons will cancel each other. 
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As long as the outermost electron is outside all the other elec¬ 
trons, the net charge acting upon it is the same as that exerted by 
the proton of a hydrogen atom on the electron. On the assump¬ 
tion that the orbit of the outermost electron is reasonably hydro¬ 
genlike, we may write as an approximation for its energy 

E = 
2a (4) 

where a is the semimajor axis of the ellipse and naturally of the 
order of R. Now —Eis just the energy necf\ssary to remove this 
electron from the atom, i.e.y the ionization potential /. So 

I ^ 
2R (5) 

Using P]qs. (2) and (3) in Eq. (1), for the case that the two atoms 

are alike, so that ai = a2 = a and Mi^ = = M^, we get 

U = ~ 
2aM'^ 

^6 

2eW 
(6) 

By the use of Eqs. (5) and (2), Eq. (6) may also be put into the 
form 

t7 - - 
4a27 

..R ^ (7) 

which is useful if a and / are known from independent measure¬ 
ments. Except for the constant factor (which should be |), 
this is actually the approximate formula obtained by quantum 
mechanical calculations.^ In view of the rough assumptions 
made in the preceding calculations, the agreement is all that 
could bo expected; in fact, it may .even be to some extent 
fortuitous. 

The formula thus derived is confined in its applicability to 
atoms; however, it is actually reasonably good for molecules that 
are not too complex in structure, and especially molecules whose 
outer electron configurations are reasonably symmetrical. The 

1 Eisbnschitz and London, Zeita. Physiky 60, 491 (1930); London, Zeita. 
phys, Chem,y Bll, 222-226 (1930). Or, see Slater and Frank, ‘introduc¬ 
tion to Theoretical Physics,” pp. 439-442, 545-563, McGraw-Hill Book 
Company, Inc., 1933. 
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potential energy represented by the formula is, of course, of 
importance only in the case of saturated molecules or rare-gas 
atoms between which there are no valence forces. 

This formula has been applied to the calculation of heats of 
sublimation of molecular crystals by London.^ In doing this, 
it is necessary to take into account the forces exerted on an}^ one 
atom or molecule by all its neighbors. ^ For(;es of this type are 
additive, the force (and the potential) between two atoms or 
molecules being independent of others in the immediate' neighbor- 

Table 39.—Theoretical ani> Empirical Heats op Sitblimation 

Subs. 

/ 

Kg.-cal. 

per mole 

Density, 

g./cc. at 

0"K. 

Molal 
volume 

cc. at 0°K. 

a X lO^S 
cc. 

Heat of 

tion, kg. 

mo 

Theor. 

sublima- 
-cal. per 
4e 

Expt., 

0°K. 

Ne. 495 1.46 13.8 0.39 0.39 0.59 

A. 361 1.70 23.5 1.65 1.77 2.03 
Kr. 321 3.2 26. 2.54 3.0 2.80 

N,. 391 1.03 27.2 1.74 J .59 1.86 
O2. 299 1.43 ! 22.4 1.57 1.46 2.06 

CO. 329 1.05 1 26.7 1.99 1.82 2.09 

CH4. 334 0.53 30.2 2.58 2.43 2.70 

C12. 419 2.00 35.4 4.60 7.0 7.43 

HCl. 315 1.56 23.4 2.63 4.0 5.05 

HBr. 306 2,73 29.6 3.58 4.5 5.52 

HI. 292 3.58 35.7 5.4 6.7 6.21 
NO. 235 1.58 19.0 1.76 2.01 4.29 

^ London, op. city pp. 236-242; for a review, see London, Trans. Faraday 
Soc,y 83, 8 (1937). 

2 In a close-packed crystal (the usual type for simple molecular lattices), 

each molecule has 12 nearest neighbors. The potential of an atom in such a 
crystal, therefore, would be roughly twelve times that of the mutual poten¬ 

tial of two atoms. However, each molecular contact is a coiftact of two 
molecules, and the corresponding intermolecular potential would be counted 

twice if we were to multiply the mutual potential of two molecules by twelve 

times the total number of molecules. The total energy of the crystal, 

therefore, is six times the mutual energy of a pair of molecules. Actually, 

however, the more distant molecules contribute something, so that the total 

attractive energy of a crystal in which the attractive energy follows the 
inverse-sixth-power law is 7.23 times that of a single pair of molecules 

with the same intermolecular distance. 
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hood. The distance between molecules is calculated from the 
density of the crystals, and the repulsive force [as well as appre¬ 
ciable corrections which really ought to be made in the attractive 
forces, because the distance of approach of the molecules is too 
close for Eq. (21) of Appendix III to hold exactly] is neglected. 
Both the experimental value of the heat of sublimation and the 
density are corrected to 0°K., in order to avoid complications 
due to thermal motions of the atoms. I was evaluated from 
spectroscopic, data. 

The results of the comparison between theory and experiment 
are presented in Table 39, taken chiefly from London. It 
will be seen that the agreement between theory and experiment 
is reasonably good, especially in view of the approximations 
involved, (‘xce])t for nitric oxide, which consists of double mole¬ 
cules in the liquid or solid phase. ^ Associated solids and liquids 
in general have high heats of vaporation, since the heat of 
vaporization also includes the heat of dissociation. 

Of especial interest is the series of hydrogen halides, in which 
the heat of sublimation increases with the molecular weight. 
As already noted in Chap. XIII, this behavior is typical of van 
der Waals forces. On first glance at Eq. (6), assuming it to give 
a good approximation for the potential, this may seem a little 
strange; for one^s first inclination would be to set the inter- 
molecular distance r in the crystal equal, or at least proportional, 
to 2B, which would make 17 inversely proportional to R and hence 
IJ would be expected to decrease with the molecular weight. If 
one may assume that the value of R for a hydrogen halide is 
somewhere near the radius of the corresponding halogen ion, 
then the intermolecular distances calculated from the respective 
densities (either at 0®K. or the boiling point) in solid or liquid 
HCl, HBr, and HI certainly parallel closely the values of R. 

On the other hand, it will be seen from the table that a actually 
varies more rapidly with R than R^ (/?® being proportional to the 
inolal volume), so the fact that Eq. (6) does not appear to give 
an increase in the van der Waals potential with the molecular 
weight may be laid in part to the approximations in Eq. (2). , 

17.2. Dipole Forces.—The nature of the dipole forces, resulting 
from the interaction between molecules with permanent electric 

1 See Rice, J. Chem. Phys,, 4, 367 (1936) for a discussion and references. 
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moments, will be sufficiently clear from the discussions in Chap. 
XIII and Appendix III. When permanent dipoles are present, 
the potential due to their interaction is simply superimposed 
upon the van der Waals potential; these two effects are inde¬ 
pendent of each other. (There will be an additional attraction 
due to the interaction between the permanent dipole and the 
dipole induced by it in another molecule. This, however, should 
be relatively unimportant compared with the forces due to the 
permanent dipoles, unhiss two different molecules, one with a 
permanent dipole and one without, are involved.) 

The hydrogen halides offer a good opportunity to study the 
circumstances under which the van der Waals forces pre¬ 
dominate, and those under which the dipole forces are more 
important. The calculation which was discussed in Sec. 17.1 
would indicate that the cohesion properties of HCl, HBr, and 
HI are reasonably well accounted for by the consideration of 
van der Waals forces only. It will be of interest, however, to 
make a rough calculation to show that the dipole forces are 
actually small. For this purpose, we choose HCl, in which the 
dipole ^rces are most likely to be of importance. 

At low temperatures, solid HCl has a somewhat distorted close- 
packed (face-centered cubic) lattice. Each molecule has 12 
nearest neighbors, and from the density given in Table 39, the 
average distance between nearest neighbors is about 3.79 A. 
Using, then, the expression developed in Appendix III for the 
potential between two dipoles, setting sin 6i = sin $2 = 0 
and cos $i = —cos 02 = 1 (^-e., assuming the most favorable 
orientation for attraction), and taking Mi = Mi — M from 
Table 40, we obtain a value of 3.88 X erg for the potential 
of the two molecules. Multiplying by Avogadro^s number and 
reducing to calories, we get 563. Suppose now that of the mole¬ 
cules near any one the equivalent of six are favorably oriented 
(which is impossibly large). Each of these contacts is a contact 
between two molecules; these forces will contribute, under the 
assumptions made, about 563 X f = 1689 cal. per mole to the 
heat of sublimation. This is certainly an overestimate, but even 
so, it is relatively small compared with the heat of sublimation 
given in Table 39. It might possibly be objected that some of 
the molecules are appreciably closer than this average distance; 
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these might exert greater mutual forces, but the difference 
must be small. The density of the high-temperature modifica¬ 
tion of HCl, in which, j^resumably, the molecules are rotating 
freely^ and which is of the cubic close-packed variety, so that all 
near neighbors are equally distant, is only about 5 per cent less 
than the density at absolute zero. Furthermore, the heat of 
sublimation of the high-temperature form is still about 4500 cal. 
per mole at its melting point, which is much larger than the value 
of 1689 estimated above as maximum dipole action at O^K. 

In the case of HF, the situation is entirely different. Here the 
dipole forces play a predominant role. This is evidenced by the 
relatively high boiling iK)iiit, which will he discussd below, and 
by the tendency of HF to polymerize in the gas phase. Simons 
and Hildebrand- measured the vapor density of HF from —39 to 
88°C., and found that at the lowest temperature the apparent 
molecular weight of saturated^ vapor became 87.4 (molecular 
weight of the monomer is 20). The other hydrogen halides 
show no such tend(;ncy to polymerize in the gas phase, and since 
the van der Waals forces would be expected to be less for HF, 
it is obvious that some other stronger force must be holding the 
molecules together. Examination by electron diffraction® shows 
that the HF molecules stick together in short kinked chains, with 
the negatively charged part of one molecule near the positively 
charged part of the next. The angle between two adjacent links® 
of the chain is about 142^. It seems a little strange that these 
chains'are not straight, as that would give the lowest electro¬ 
static energy; however, it is probable that the angle of 142° is 
not rigidly fixed but is, rather, an average, the bond between 
different HF molecules being weak enough so that the. chains 
bend easily under thermal agitation. The distance between two 

^ HCl has a transition point at about 98®K., such as described in Chap. 
XIII, which has been ascribed to the setting in of rotation in the solid by 
Pauling, Rhys, Rev.y 36, 441 (1930). 

® SmoNs and Hildebeand, J. Am. Chem. Soc.y 46, 2183 (1924), 
* Bauee, Beach, and Simons, J. Am. Chem. Soc.y 61, 19 (1939). 
* It has been suggested by Pauling that in the ion HF2"', which exists in 

aqueous solution, the binding is ionic, the two negative fluorine ions being 
held together by a positively charged hydrogen ion between them. It does 
not seem likely that this occurs in the polymerized HF, in gas phase, 
however. 

* A “link^^ can be taken as the line joining one fluorine aiom with the next. 



Sec. 17.2 DIPOLE FORCES 361 

adjacent fluorine atoms in the chain‘ is 2.55A., and from this the 
energy of interaction is found to be 5900 cal. per bond mole. 
(In making this calculation, it is assumed that the HF molecules 
are oriented parallel to the chain, as shown in Fig. 66, which is 
not quite the assumption made by Bauer, Beach, and Simons.) 
This bond energy is, therefore, quite api)reciable, and may well 
be expected to have a marked influence on the properties of the 
substance. It is considerably larger than would be expected for 
the van der Waals potcjntial between two HF molecules, which 
(from comparison with HCl, see Table 39 and footnote 2, 
page 357) should not exceed 500 cal. per pair mole. The perma¬ 
nent dipole-induced dipole potential, calculated from Eq. (21) 

Fig. 66.—HF chain (not to stale). 

of Appendix III (a reasonable estimate of the polarizability of 
HF being made), is also small. 

A comparison between the HF and water molecules will be of 
interest. The heat of sublimation of ice is approximately 12,000 
cal. per mole. As shown in Chap. XIX, ice has a tetrahedral 
structure, each molecule being surrounded by four others. Since 
each contact is a contact between two molecules, the number of 

bonds” between molecules is twice the number of molecules. 
Therefore (if the effect of more distant molecules is neglected) 
the mutual energy of two water molecules that are in contact is 
about 6000 cal. per pair mole, which is just about the same as 
calculated for one pair of HF molecules. But even this energy 
is not sufficient to cause association of water in the vapor phase. 
The marked association of HF would seem to indicate that the 
binding energy of a pair is even greater than this. However, in 
view of the approximate nature of the calculations, the dis¬ 
crepancy indicated does not seem serious. 

^ It may be of interest to compare some other observed F-H-F (fluorine to 

fluorine) distances: NaHF*, 2,51; KHF*, 2.2.5; NH4HF2,2.37. See Table III 

of Huggins, /. Organic Chem,^ 1, 407 (1936). In these cases we most prob¬ 
ably have to do with an ionic binding between H and F, as suggested in 

footnote 4, p. 860. 
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17.3. The Experimental Material.—It is not usually possible 
to make so complete an analysis as in the case of the hydrogen 
halides. Usually not so^many data are available, but a great deal 
can be learned simply from the boiling points of a series of sub¬ 
stances.^ If the molecules are held together by van der Waals 
forces in the solid state, the same forces are operative in the liquid 
state, and the heat of vaporization is a good measure of the 
strength of those forces. But according to Trouton’s rule, the 
heat of vaporization in calories per mole of a normal nonassoci- 
ated liquid is about twenty-one times the absolute boiling point. 
This rule is only an approximation which is not very good at low 
temperatures, but it is not necessary to go into these details; 
for the rest of our discussion the boiling point may be taken as a 
sufficiently good indication of the magnitude of the van der 
Waals forces, or other cohesive forces, such as dipole forces if 
they are operative. If there are special directed forces like 
dipole forces, the result is always that, the heat of vaporization 
becomes more than twenty-one times the boiling point. So an 
abnormally high boiling point will, in general, mean a still greater 
abnormality in the heat of vaporization. Since van der Waals 
are in general the weakest type of force operative in solids and 
liquids, they ordinarily result in substances that boil at lower 
temperatures than is the case when other forces are operative. 

The hydrogen halides, whose properties have already been 
extensively discussed, will illustrate the preceding statements. 
In the accompanying table are given their boiling points Tb and 
their molal heats of vaporization at the boiling point AHby as 
well as the dipole moments M for comparison.^ It is seen that 
the, boiling point and heat of vaporization increase in the order 
HCl, HBr, HI, as expected for van der Waals forces. Qp the 
other hand, HF has an abnormally high boiling point. 

Similar results are found with other hydrogen compounds, the 
dipole forces being appreciable only when the central atom is in 

^ The boiling point has long been used as a criterion in the classification of 
chemical compounds. See footnote 1, p. 205. 

*The heats of vaporization are taken from Bichowsky and Rossini, 

**Thermochemistry of the Chemical Substances,” Reinhold Publishing 

Corporation, 1936. Boiling points for the chapter are, in general, from 
‘^International Critical Tables” or Landolt-BSmstein, “Tabellen.” The 

dipole moments are the same as in Table 15. That for HF is the estimate of 
Smallwood, Zeits. phystk. Chem.y B19, 253 (1932). 
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Table 40.—Properties of Hydrogen Halides 

n, ■’K. 
AHhf kg.-cal. 

per mole 
M X 10>', 

e.B.u. 

HF. 292.5 2.0 

HCl. 188.1 3.86 1.03 
HBr. 206.1 4.21 0.78 
HI. 237.7 

1 
4.72 [ 0.38 

the first row of the periodic table. This is illustrated by the 
boiling points of tlie series of hydrogen compounds of the elements 
at the right of the periodic system, some of which are given in 
Table 46, of Chap. XIX, which is presented in connection with a 
further discussion of the intermolecular forces of polar liquids. 
It is interesting to observe that when the molecule is symmetrical, 
so that there is no resultant dipole moment (methane), the boiling 
point is low even for a hydride of an element of the first row. 

It will be seen from this discussion and from that of Sec. 17.2 
that hydrogen is capable of forming what may be called a 
** bridgebetween two negative atoms. When it does this, it is 
sometimes said to form a ‘^lydrogen bond,^^^ though the term 

bridge is probably more descriptive. Such hydrogen bridges 
are responsible for the polymerization of many organic com¬ 
pounds. For example, formic acid and other organic acids occur 
as dimers even in the gas phase. The structure of the dimer of 
formic acid is as follows:'^ 

0--H—O 
/ \ 

H—C C—H 
\ / 

O—II—o 

a dotted line being used to indicate tlie ‘‘bondsbetween a 
hydrogen and an oxygen on the other molecule. It is thinkable 
in such a case as this, where the binding of the hydrogen tends 
toward the polar type, that the hydrogen is symmetrically situ¬ 
ated between the two oxygens, rather than being definitely 

^Latuvier and Rodebush, J. Am. Chein. Soc.^ 42, 1419 (1920). For an 

extended discussion and references, see Huggins, reference 1, p. 361; see 

also Rodebush, Chem. Rev.y 19, 59 (1936). 
* Pauling and Brockway, Proc. Not. Acad. Sci., 20,336 (1934). 
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attached to one of thorn. Actually, however, it is probable the 
hydrogen remains attached to a particular molecule. In the case 
of water, which is dis(aissed in detail in Chap. XIX, a strong 
hydrogen bridge is formed between water molecules, causing the 
relatively high boiling point of water, but the hydrogen forming 
the bridge undoubtedly bf‘longs to one of the water molecules 
rather than the othcir. 

Hydrogen bridges also occur in inorganic crystals, such as 
NaHCOs. We hav(i already discussed one such case, that of 
NH4F, in Sec. 14.10. 

The distance Ix^tween oxygtms in various O—H—O linkages 
varies from 2.55 to 2.8A. It is obvious that the smaller the 
distance the more likc^ly it will ho t hat the hydrogen will be placed 
symmetrically with n^spect to th(^ atoms it is bridging. How¬ 
ever, the smallest of theses distances is considerably greater than 
twice th('. normal 0—H distance of 0.955A in water. 

Huggins has estimated the energies of hydrogen bridges in various 
compounds, involving F—H—F, O— H—O, C—H—N, N—H—F, 
C—H—0, and N—H—0 linkages. (His estimate for F—H—F, 
however, restcxl on data now known to l)e inapplicable.) They 
are almost all around G kg.-cal. (only three varying appreciably 
from this figure, the total range being from 4 to 10.5). In view 
of the different electronegatives of the atoms and the different 
properties of the coin]X)unds iiivolvcxl, this figure seems to be 
remarkably constant. The N—H—N bridge formed in solid 
or liquid ammonia is apparently considerably weaker than those 
considered by Huggins. It should b(' noted that Huggins^ esti¬ 
mates of hydrogf.^]! bridg(‘ strengths do not make any allowance 
for van der Waals forces. 

It seems j)robabl(* that only in comi)oiinds containing hydro¬ 
gen are the dipole forces of considerable impoilance. Thus we 
may consider the series NF3, boiling at 144°K., PFs boiling at 
178°K., and AsFa boiling at 336‘^K. Tiiese compounds are all 
undoubtedly unsymmcdric^al (i)yrainidal in structure); one 
would expect the dipole force?^., if th(\y exist, to be more effec¬ 
tive the smaller the molecule, but it is s(*(ui that although they 
may cause the boiling ]>oint of XF3 to be higher than it other¬ 
wise would be, they are not sufficient to upset the order. On 
the other hand, it is i)robable (judging from the other halides 
of this group) that the dipole moments actually increase with 
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the molecular weight, on account of the increasingly positive 

character of the central atom; this might be the cause of the rela¬ 

tively high boiling point of AsFg, but it seems rather unlikely. 

The halides of boron also are examples of molecular compounds. 

One might, perhaps, reasonably ex})ect dipole forces to play a 

significant role in the case of BF3, in wliicdi there is a relatively 

electropositive element combined with the extremely negative 

fluorine. However, BF3 has the form of a triangle with the 

boron in the plane of the fluorines.^ It is thus quite sym¬ 

metrical, with no resultant dipole moment, and is extremely 

volatile. (The boiling points of the halides of boron are BF3, 
172°K.; BCI3, 286°K.; BBi% 364°K.; and BI3, 483°K., showing 

no indicat ion of dipole-dipole forces.) This is, i^erhaps, a little sur¬ 

prising in view of the fact that BH3 does not exist, but is always 

polymerized to the form B2H6, and that the halides of boron 

have a very considerable tendcmcy to add an atom or group that 

can furnish an electron pair. Thus compounds like BCI3PH3 

and BF4” are known,- and the latter has a tc'trahedral structure. 

It is to be noted, however, that in thes(^ compounds the BF3 or 

BCI3 group really acts like a negative ekunent, sharing the elec¬ 

trons that are furnisla'd by another elenumt. It may thus be the 

very fact that fluorine is strongly electronegative that prevents 

an electron pair from a fluorine in BF3 from being shared with 

another BF3 molecule. The negatively charged ion, F“, may 

well be less electronegative, and so mon^ prone to share electrons 

with a BF3 molecule, giving BF4“ (see also Secs. 16.9 and 16.13). 

The aluminum halides furnish an interesting series, inasmuch 

as a sudden change of type takes i)lace as one goes from the 

fluoride to the chloride. Aluminum fluoride has a high boiling 

point (sublimation point® = 1530°K.), indicating that the forces 

are too large to be merely van der Waals forces; in fact, one might 

well conclude that they are also too great to be dipole forces. 

X-ray analysis of the crystal^ shows that each aluminum is 

surrounded by six fluorines, three at 1.70A. and three at I.SOA, 

^ Braune and Pinnow, Zeits. physik. Chem.y B36, 251 (1937); Linke and 

Rohrmann, ibid.y B35, 256 (1937). 
2 See, e.g.y Mellor, “Comprehensive Treatise on Inorganic and Theoreti¬ 

cal Chemistry,vol. 5, pp. 132, 123, Longmans, Green & Company, 1924. 
® Rupp and LbBoucher, Zeiis. anorg. allgem. Chem.y 219, 380 (1934). 

* For crystal structures and references see the “Strukturbericht.” 
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There is no indication that molecules are present in the lattice, 

and it seems rather probable that the forces are largely ionic in 

type, though they may be partly covalent. In the case of alumi¬ 

num chloride, on the other hand, the situation is decidedly 

different. The boiling point is relatively low, approximately 

433®K. Vapor-density measurements show that the formula 

is AI2CI6, indicating that the crystal is probably composed of 

molecules of this formula. The higher halides resemble AliCU 

in their properties. ^ X-ray measurements of solid A^CU and 

electron-diffraction measurements^ of the aluminum halide gases 

8 

have been made, but they are not in agreement. The crystal 

measurements of AI2CI6 indicate a structure of the type shown in 

Fig. 67, consisting of six chlorines in the form of an octahedron 

with two aluminums inside, very close together (0.63A.). The 

electron-diffraction measurements, on the other hand, indicate a 

molecule like that shown in Fig. 68, with the chlorines forming 

two tetrahedra with a common edge, one aluminum being inside 

each tetrahedron (Al-Al distance 3.4A.). This arrangement 

would correspond to an electron structure like this: 

;ci; 
! >1. ; 
;ci: :ci. ;a; 
• • • • • ♦ 

^An investigation of the thermodynamic properties of the aluminum 
halides has been mad6 by Fischer and Rahlfs, Zeits. anorg. Ckem.y 205, 

1 (1932). At high temperatures Al2Cl^ dissociates appreciably, and the 

other halides dissociate more easily. 
* PXLMER and Elliott, J, Am, Chem. Soc,j 60, 1852 (1938). 
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It seems very unlikely that the structure of the molecule can be 

as different as this in the solid and gas. The distance between 

an aluminum atom aiid an adjacent halogen atom, according to 

the electron-diffraction measurements, is 2.()6A. if the halogen 

is one of the outside ones (No. 3 in Fig. 68, for example) or 2.2lA. 
if it is one of the inside ones (No. 8 in Fig. 68, for example). The 

calculated distance from Table 33 is 2.25A. For AUBre, the 

distances are 2.21 and 2.33, calculated 2.40A.; for Able they are 

2.53 and 2.58, calculated 2.59. The binding is probably inter¬ 

mediate between ionic and covalent. It may be that the higher 

aluminum halides form molecular compounds, in contrast to 

AIF3,because the bonds are more covalent, so that each aluminum 

is bound to special halogen atoms, which belong to it in particular 

and are not bound to any other aluminum. On the other hand, 

the higher halides may form molecular compounds simply because 

with a larger halogen the coordination number of aluminum is 

smaller. If the coordination number of aluminum is smaller, 

the coordination number of halogen (with respect to aluminum) 

must be smaller also. Thus halogens cannot form bridges 

between aluminum atoms to give a continuous network through 

tlie crystal. 

In sharp contrast with the properties of aluminum chloride are 

those of the oxide and nitride. The former has a boiling point of 

2480'^K., and the forces may be either ionic or covalent, or some¬ 

thing intermediate, but there are certainly no molecules formed. 

The nitride also has an extremely high boiling point, and the 

forces are almost certainly predominantly covalent. 

The properties of scandium trichloride are also of interest. 

This compound is not molecular, as the boiling point is high 

(melting point 1212°K.). There is thus another abrupt transi¬ 

tion from molecular to nonmolecular binding going from alumi¬ 

num chloride to the corresponding scandium salt. Again, it 

cannot be stated with certainty whether this is due to SeCU 

being more ionic than AbCU, or whether it is because the larger 

scandium atom or ion has a larger coordination number than 

aluminum. Crystal-structure investigatioas of SeCU should 

prove very interesting in this connection. 

Halides in which there are four or more halogen atoms sur¬ 

rounding a central atom generally have fairly low boiling points; 

this is especially true of many of the fluorides. These compounds 
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may thus be considered to be molecular compounds. Thus 
MoFe has a boiling point of 308®K., and WFe has a boiling point 
of 291°K. There are some exceptions, however. For example, 
S11F4 boils at 978®K, as contrasted with 387°K. for SnCU. It is 
probable that the binding in SnFd has considerable ionic charac¬ 
ter. In the case of thorium, which in view of its high atomic 
number may be expected to be quite electropositive, it seems 
probable that the chloride ThCU wdiich boils at 1195°K. is largely 
ionic, and even the bromide^ ThBr4 which sublimes at 883®K. is 
also probably largely ionic. 

It is interesting that where tw'o or more halides with different 
formula exist, the compound that contains the greater number 
of halogen atoms is often the lower boiling. Thus SiiCU boils 
at 896°K,, whereas SnCU ]>oils at 387°K.; SeF4 boils at 373°K., 
whereas SeFe boils at 224°K.; and OsFc boils at 476°K., whereas 
OsFg boils at 320°K. It seems reasonable to suppose that in 
those cases the com}K)und with fewTr halogen atoms has a more 
open structure, allowing close approacdi of electrically polarized 
groups and thus giving a better opportunity for the play of dipole 
forces; the forces may even verge toward the ionic type in SnCb. 
When the number of halog(ms is larger, there is less room about 
the,central atom, and the close a])i)roach of groups having electric 
moments is pnivented by steric liindrance. On the other hand, 
in a case like that presented by the phosphorus fluorides, it is 
probable that the diixdc forces are unimportant, due to the nega¬ 
tive character of tlu^ central atom, as is evidenced by the very 
low boiling points (PF3, 178°K.; PFs, 198°K.). In such a case, 
the van der Waals forces are greater the greater the number of 
atonis in the compound, and the compound with the greater 
number of halogens boils at the higher temperature. As is to be 
expected if the forces in the fluorides are predominantly of the 
van dcr Waals type, the chlorides boil at higher temperatures.^ 

1 In a general way, van der Waals forces increase with the molecular 

weight of the compound, regardless of the atomic weight of the atoms form¬ 
ing the compound. This is well illustrated by the hydrocarbons, with their 

increasing boiling points in a homologous series. In a case like this, we can 
think of each of the atoms of the molecule having its own van der Waals 
(or in some cases dipole) forces operating between it and surrounding mole¬ 

cules, the forces on a given molecule being the sum of the forces on its parts. 

A large molecule is thus hold in the liquid at many points, and this makes it 

difficult for such a molecule to leave the liquid phascu 
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Oxygen ha^? less tendency than the halogens to form molecular 

compounds as is evidenced by the small number of volatile 

oxygen compounds. With a few exceptions OSO4), volatile 

compounds are confined to the oxides of tlie halogens, the sulfur 

group, nitrogen, phosphorus, arsenic, and carbon. Particularly 

remarkable is the great difference between COn, on the one hand, 

and Si02 and B2O3 on the other.^ Individual molecules do not 

exist in the latter crystals, x^robably because 8i and B are electro¬ 

positive enough to form oxides with bonds of predominantly 

ionic character, whereas this is not so with CO2. However, 

oxygen being less negative than fluorine, the fact that it has, in 

general, less tendency to form molecular crystals cannot be 

explained by assuming that it forms more iojiic compounds. It 

seems rather to be connected with the fact that it has a valence 

of two instead of one, so that with a given element in a given 

valence state th(»re will be only half as many atoms of oxygen per 

atom of the otlun* element in the oxide as there are atoms of 

fluorine in the fluoride. ’ Thus it is easier for an oxygen to come 

into contact with, and be bound to, more than oiu^ atom of 

another element, and so it is easier for val(‘n(*e bonds to run from 

atom to atom throughout the crystal in an oxide than in a fluoride. 

It may be addc'd that tlu^ small size of carbon may be part of 

the reason that this elemcmt pref(U-s to form double bonds with 

oxygen rather than have a coordination number of four. Thus 

the difference between Si02 and CO2 may be somewhat similar 

in nature to the difference between oxides and fluorides. 

Summarizing, then, may say that molecular crystals tend 

to be formed 

1. When the strong bonds tend to be covalent rather than 

ionic, because the former are more definitely localized than the 

latter. 

2. When one kind of atom tends to predominate in number in 

the crystal, especially if it is univalent. 

Exercise 

L Argon has a face-centered cubic structure. Assuming as an approxima¬ 

tion that each atom is affected only by its nearest neighbors, calculate the 

heat of sublimation from the density and value of a given in Table 39. 

^ In this connection, note the discussion in Sec. 16.7. 



CHAPTER XVIII 

METALLIC CRYSTALS 

18.1. The Alkali Metals and Alkaline Earth Metals.—It was 
indicated in Chap. XIII that the typical metal {c.g., an alkali 
metal) can be thought of as consisting of a series of positive ions 
immersed in a sea of free electrons. The stabilizing influence is 
the electrostatic attraction between the positive ions and the 
negative electrons. The origin of the balancing repulsive force 
is of a rather unusual character; it is due to the Pauli exclusion 
principle (Sec. 7.2) as applied to the/rcc electrons in the metal.' 
These ^‘frec’’ electrons are actually moving in a sort of “box/^ 
similar to that described in Sec. 4.2. There is quantization of 
the energy levels in this box, and but one electron can occupy a 
given quantum state. Just as this property works out in the 
case of an atom to prevent it from collapsing, so it prevents the 
metal as a whole from collapsing. 

These ideas can readily be worked out quantitatively and 
applied to the alkali metals.^ The attractive force in an alkali 
metal may be considered to be very similar to that prevailing in 
an ionic uni-uni valent crystal. It is true that in the crystal the 
negative ion has a practically fixed position, whereas in the metal 
the electron does not; however, it will be reasonable to write the 
expression for the attractive potential of the metal in the form 

Ae^ 
-where here r is the average distance between electron and 

positive ion, A a constant, and e the electronic charge. Assum¬ 
ing that this average distance is proportional to the distance 

^Fkenkbl, ZeiU, Physik, 49, 31 (1928); Frenkel, ‘‘Wave Mechanics, 

Elementary Theory,’^ pp. 221j9‘., Oxford University Press, 1932. For the 
origins of the modem electron theory of metals see Pauli, Zeits. Physikj 
41,81 (1927); Sommerfeld, Houston, and Eckart, tbtd,, 47,1-60 (1928); and, 

also, Fermi, ibid.t 36, 902 (1926). 
*Ricb, J, Chem. Phys.^ 1, 649 (1933). GombAs, Zeits, Physik^ 94, 473 

(1935); 96, 687 (1935); and later papers in Zeits. Physik^ has worked out a 
more elaborate th^ry of the same general type. 
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between adjacent positive ions, and hence to F^, where F is the 

atomic volume of the metal, we may write it as — where Ax 

is a new constant. A similar constant can be defined for ionic 
crystals. Sherman^ has tabulated values of Ai for the uni¬ 
univalent crystals and (what amounts to the same thing) Ai/4 
for the bi-bivalent crystals whose Madelung constants are given 
in Table 18 of Chap. XIV; the range in Ai (or Ai/4) is from 
2.0 to 2.4. 

Let us now return to a consideration of the repulsive force. 
As noted above, this may be referred to the quantization of the 
free electrons in the ^4)ox'' provided by the metal. The box, 
however, will not be a simple box because of the presence of the 
[)ositive ions. These ions consist of nuclei surrounded by shells 
of electrons occupying the inner quantum states which may be con¬ 
sidered to be substantially unaffected by the presence of other 
positive ions. Since these inner states are already occupied, 
the free electron can enter the region near the nucleus only as a 
penetrating electron; as such, it can stay there only a short time. 
The presence of the ions thus effectively shuts out a certain 
portion of the space in the metal from the free electrons. Let us 
make the assumption now that the kinetic energy of the electrons 
can be quantized independently of their potential energy (which 
assumption may be said to bo the quantitative characterization 
of the assumption that the electrons are ^‘free'^) and that the 
effect of the ions can be taken into account by subtracting a 
volume Vi from V to get the volume per ion in which the electrons 
are free to roam. It will turn out later that Vi must be assigned 
values about five times as great as the volume that would be 
calculated from the crystal radii for the alkali ions; however, it 
seems not unlikely that the penetration of the electron begins 
already outside this arbitrarily defined distance, so that the 
electron will in general spend a relatively smaller time in 
regions near the ion than in regions farther away and this, 
together with the boundary conditions which the electron waves 
must meet at the points where the ions are located, may combine 
in the responsibility for the relatively large values of Vi. 

If there are N ions in the portion of metal considered, the total 
volume available to them will be N{V — F<). The number of 

1 Shbbman, J., Chem. Rev.^ 11, 107 (1932). 
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quantum states no having kinetic energies less than, or equal to, 
To will, from Eq. (21) of Chap. IV, be given by 

no = 2 X |x(2Tom)^(7 - (1) 

where m is the mass of the electron; the factor 2 allows for the 
fact that the number is doubled owing to the two possible states 
of the electron spin. Electrons going into these quantum states 
will fill up the lowest energy levels first. Suppose that all the 
quantum states are filled up whose energy is, say, To,max or less; 
then, since the total number of electrons is equal to the number 
of ions Ny the value of To,max will be found by setting no ^ N and 
solving for To. This gives 

rp ^ _3 Y 
2mV87r(F - Vi)/ 

Actually it is true only at absolute zero that all the states with 
energy less than 7"o.max are filled and all those with greater energy 
are empty, but even at room temperature this is true to a good 
approximation. 

From Eq. (1) it is seen that the number of electrons having 
energy less than To (To < To.max) is proportional to To^^^ Like¬ 
wise the number having energy less than To + <fTo, where dTo is 
a small increment, will be proportional to (I'o + g?To)^; so the 
number in the range of energies between To and To + rfTo will be 
proportional to 

(To + dTo)^^ - To^ == dTo^^ = ^To'UToy 

hence will be equal to aTo^^ dTo, where a is a constant. The 
average energy of all the electrons will be 

r” “*“ro X dTo 
rp _ ^__ 8 m 

_ 3 AY 3 
IOtoVSitCF - F<) 

It will be observed that this average energy increases as the 
volume V decreases. It may be treated as a potential due to a 
repulsive force. The total energy E of the metal is thus given as 
a function of F, by the expression 
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e^Ai 3 h^( 3 
10TO\8jr(F - Vi)) ■ (3) 

This, of course, neglects all zero-point energy and thermal agita¬ 
tion of the ions. At absolute zero, however, the latter factor 
is nonexistent, and in any event, Eq. (3) should be a good 
approximation. 

The equilibrium volume of the metal, the observed value of V 
at absolute zero, which we shall call will be obtained in terms 
of Vij by finding the minimum of E by differentiation of Eq. (3). 
Since Ve is observed and Vi is unknown, the latter instead may be 
determined in terms of the former. Substituting the resulting 
value of Vi back into Eq. (3), we get an expr€\ssion for Egj the 
energy of formation of the metal at absolute zero (neglecting 
zero-point energy) from free positive ions and electrons. This 
should be the negative of the sum of the energy of sublimation 
S and the ionization potential /, since the decomposition of the 
metal into gaseous ions and electrons can be thought of as taking 
place in steps, first sublimation, then ionization. 

The final theoretical evaluation of Ee depends upon the assign¬ 
ment of a value for Ai. The value that has been used is the 
entirely reasonable one of 2.08, for all the alkali metals. A com¬ 
parison of observed and calculated values of Ec is given in Table 
41. 

Table 41.—Binding Energies of Alkali and Alkaline Earth Metals 

(Energies in electron volts, volumes in cu.A per molecule) 

Metal Vi I —Ee (calc.) 

Li. 20.71 6.5 ^ 5.36 1.69 7.05 7.13 

Na. 37.60 14.9 5.11 1.12 6.23 6.18 
K. 71.6 33,3 4.32 0.86 5.18 5.25 
Rb. 87.6 42.6 4.16 0.82 4.98 4.98 

Cs. 108.7 55.3 3.87 0.82 4.69 4.70 

Mg. 23.5 8. 22.57 1.57 24.14 21.96 

Ca. 43.0 18. 17.91 2.07 19.98 18.98 

Sr. 55,4 25. 16.65 2.04 18.69 17.80 

Ba. 62.9 29. 15.14 2.12 17.26 17.23 

The experimental values of 8 are for room temperature, but these are practically the 
same at absolute sero. Values of 8 from Bichowsky and Rossini, Thermochemistry of 
the Chemical Substances" Reinhold Publishing Corporation, 1936; for source of Vt see Rice, 
reference 2, p. 370. 
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A similar calculation for the alkaline earth metals can be made, 
if we take into account the fact that there are two electrons per 
positive ion and that A i must be assigned another value in order 

A le^ 
that — give the correct value of the potential energy per 

positive ion. An alkaline earth metal may be compared with a 
uni-bivalent crystal. For a number of different types of such 
crystals, Ai has been found by Sherman^ to range from 6.6 to 8.0. 
The results of some calculations using Ai = 6.6 are given in 
Table 41. In the case of the alkaline earth metals, I stands for 
the sum of the first two ionization potentials. 

It will be observed that the agreement b(itwcen the experi¬ 
mental and theoretical values is reasonably close, especdally in 
the case of the alkali metals. For these, the agreement is so close 
that the method may be considered a theoretical way of cal¬ 
culating /S, this quantity being found as the difference between 
Ee calculated and I observed. Though S is a small difference 
between these two relatively large quantities, the results obtained 
are very good. In the case of the alkaline earth metals, the 
agreement is not sufficiently good to use the results in this way. 
It might be imagined that this poorer agreement in the cas(‘ of the 
alkaline earth metals is due to variation, in A\ from metal to 
metal. However, it seems more likely that it is due to deviation 
from the pure metallic type of binding setting in for the lighter 
alkaline earth metals. That tliis would occur is to be inferred 
from work by Wigner, Seitz, Slater, and others,^ who have con¬ 
sidered the binding forces in metals by actually finding approxi¬ 
mate solutions for the wave equation for the free electrons. 
These calculations show (in verification of earlier less exact work) 
that instead of there being a completely continuous series of 
close-spaced energy levels for the free electrons, these occur in 
bands, there being certain fairly wide energy regions in which no 
allowed energy levels exist. That this is to be expected is seen 
if we consider the process of expanding a metal, allowing it to go 

* Shbracan, Chem. JRev., 11, 107 (1932). 
* Based on earlier work of Bloch and Brillouin. For reviews see Slater, 

Rev. Mod, Phya.j 6, 209 (1934); Mott and Jones, ** Properties of Metals and 

Alloys,*' Oxford University Press, 1936. Numerous applications have 
appeared in the recent literature, the method having even been extended to 
substances which are far from being metallic. 
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over to neutral atoms (the state it naturally would assume if 
expanded indefinitely) instead of ions and electrons. At the end 
of the process, the free electrons have become bound electrons in 
definite energy levels. In the actual metal, we might well expect 
that some intermediate condition would exist. The energy 
levels would not be reduced to the uniformity of levels in an 
empty box, such as considered in Chap. IV, but would retain 
some of the characteristics proper to atoms, thus giving rise to 
the banded structure. This phenomenon will be further dis- 
cussed in Sec. 18.4. If the energies for which no levels occur are 
higher energies than those normally possessed by any of the 
electrons, that is to say, if deviations from the uniform empty- 
box distribution occur only for levels not actually occupied, then 
the electrons will act like free electrons. This is the situation 
presumably existing in the alkali metals, but apparently not in 
any others, except perhaps barium. This accounts for the good 
agreement obtained with the alkali metals, using the very rough 
picture present.od above. It- may be remarked that it does not 
work any better for the copper group than it does for the lighter 
members of the alkaline-earth-metal group, and in the copper 
group, also, the electrons are probably not “entirely free.” 

Just as in the case of ionic crystals it was possible to get an 
expression for the compressibility' by two-fold differentiation 
of the energy expression [Eq. (10), Chap. XIV], so this should 
be possible here. When this is attempted, very poor agreement 
with experimental values is obtained. This may be in part due to 
the fact that the experimental value is obtained at room tempera¬ 
ture, and there are some indications that the values thus obtained 
may differ rather widely from the values at absolute zero. But, 
in any event, it appears that relatively insignificant changes in 
the energy expression may make a great difference in the cal¬ 
culated compressibility, so that the latter has but little signifi¬ 
cance from the point of view of the calculation outlined. When 
corrections are made so as to make the compressibilities fit, t^he 
value of A i necessary to make the theoretical energies agree with 
the experimental is slightly changed, and the agreement as 
between the different alkali metals is made slightly less exact. 
Nevertheless, the general picture and the assumption that Ax 
has a reasonable value practically the same for all the alkali 
metals seem to work very well. Slight discrepancies show them- 
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selves in the case of the alkaline earth metals, and with metals of 
higher valence the deviation from metallic character increases 
until finally the metallic binding merges into atomic or covalent 
binding. Some of the elements just to the right of the center of 
the periodic table, having low valences, exhibit more typically 
metallic binding than some of those to their left. It must be 
said, however, that there is no proof that these elements of lower 
valence have more free electrons per atom than the less metallic 
metals of higher valence; in fact, since the latter have more 
valence electrons, the contrary is probably often true, but in any 
event, the elements of higher valence have fewer free electrons 
per valence electron. 

18.2. The Transition between Metallic and Covalent Binding. 
From the preceding discussion, it appears that the deviation from 
metallic tyj)e binding is related to the existence of bands of 
energy levels. The properties of substances .will be largely 
determined by the number of energy levels available per molecule 
in each band, for this will determine the distribution of valence 
electrons within the bands, and the disposition of the valences 
electrons, in turn, largely fixes the properties of the substance. 
It seems probable that a strictly covalent binding is marked by 
a structure in which the bands are exactly filled. When the 
bands are almost filled, or just fail to take care of all the electrons, 
the substance is predominantly of covalent type, but has some 
residual metallic properties, such as electrical conductivity, 
though the conductivity will be relatively small. Such a case is 
bismuth. The study of energy bands may be considered as 
analogous to the Hund-Mulliken point of view in the study of 
iholecules (see Chap. XI). In Chaps. XV and XVI, we have 
rather stressed the Heitler-London-Pauling-Slater point of view, 
and for many purposes this is simpler, but with its localized bonds 
it is not applicable to metallic binding. 

The role played by the number of valence electrons in the 
transition from metallic to covalent binding has been brought 
out by Hume-Rotheryi in a study of the crystal structure of the 
elements toward the right of the periodic table. Although, as 

^ Htjmb-Rothbrt, '*The Metallic State,” Oxford University Press, 1931, 
pp. 306jf. This book and Hume-Rothery’s more recent work, “The Struc¬ 

ture of Metals and Alloys,” Institute of Metals, London, 1936, contain much 

material on the metallic state. 
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will appear in Sec. 18.4, these considerations are not wholly 
independent of the energy bands, they emphasize a rather differ¬ 
ent aspect of the matter. The tendency of atoms to share elec¬ 
trons so as to complete shells of eight would, if carried to its 
logical conclusion, cause valence electrons to be shared between 
more than two atoms. In the case of arsenic, for example, this 
is not necessary, for three valence electrons from each atom can 
be shared with three other atoms. As a result every atom has 
three shared pairs which with the unshared pair complete the shell 
of eight. In the case of germanium, the arrangement is of the 
tetrahedral type in which each atom has four shared pairs. On 
the other hand, if the shell of eight is to be completed in the case 
of gallium, it will require that an atom share five electrons from 
other atoms, and it will then have to share its three electrons with 
five atoms; there are not enough electrons to go around, and each 
electron must be shared among more than two atoms. This may 
be regarded as an approach to the metallic state in which all 
electrons are shared among all atoms. This discussion suggests 
that each gallium should be surrounded by five nearest neighbors, 
and at first this was thought to be the case, but more recent 
evidence indicates that the number is seven.* This is a very 
peculiar type of structure, and though it shows that some of the 
atomic character of the binding remains, it also shows that the 
shift to metallic binding does not occur smoothly, but that various 
complications enter. 

The number of valence electrons undoubtedly plays an impor¬ 
tant part in determining whether a substance is metallic or not, 
but it is by no means the only factor; in fact, the number of ele¬ 
ments to be counted as metallic in any given row in the periodic 
table depends, as we know, upon the location of that row. Thus 
in the first row, probably only lithium and beryllium would be 
classified as metallic, whereas in later row^s such elements as 
arsenic, antimony, and bismuth, and even tellurium are often 
considered to be metallic, the first three mentioned, especially, 
having some of the physical properties of metals. As indicated 
above, this does not, by any means, signify that all valence 
electrons are free, and in fact, in these very negative elements it 

^ For details of crystal structure and references see the “Strukturbericht.” 
See also Dehlinger, “ Gitteraufbau metallischer Systeme/' Akademische 

Verlagsgesellschaft, Leipzig, 1935. 
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Table 42.—Crystal Structures op Certain Elements 

Number 

Element neigh- Distance Remarks 

bors ; 

Cu.: 12 2.55 Close-packed spheres (face-centered 

cubic,—see Appendix IV) 

Zn. 
<6 

2.65 

2.94 

Structure almost close-packed 

Ga. 
2.44 A slight displacement would change 

<6 2.71-2.80 coordination number from 7 to 5 

Ge. 4 2.43 Tetrahedral, like diamond 

As. II 2.51 
3.15 

Anglo between bonds 97® (see p. 269) 

(Other forms exist—^some amorphous) 

Se. 2 2.32 Spiral chains (allotropic forms exist— 

some amorphous) 

Br. 1 2.27 Molecular crystal 

Ag. 12 2.88 Like Cu (Possibly an allotropic form 
exists) 

Cd. 
2.97 Like Zn 

<6 3.30 

In. 
3.24 Slightly distorted close-packed 

<8 3.37 

White Sn. 
3.02 Much distort-ed tetrahedral 

(2 3.15 

Gray Sn. 4 2.80 Tetrahedral, like diamond 

Sb. 
2.87 Angle between bonds 96° (sec p. 269) 

h 3.37 (Less stable amorphous forms exist) 
Te. 2 2.86 Spiral chains (allotropic forms probably 

exist) 

I. 1 2.70 Molecular crystal 

Ati. 12 2.88 Like Cu 

Hg. 
<6 

3.00 

3.47 
Rhombolicdral (distorted close-packed) 

T1. 12 3.45 Hexagonal close-packing (see Appendix 

IV). An allotropic form occurs which 

is also close-packed—^face-centered 

cubic. 
Pb. 12 3.49 Close-packed 

Bi. 53 3.10 Angle between bonds 94° (see p, 269) 
IS 3.47 i (Amorphous forms may exist) 

There seems to be no reason to tiippose that in amorphous forms the immediate surround* 
ings of any single atom are very diircrcnt than in the crystalline form. 
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seems unlikely that there are as many free electrons as would 
correspond to one per atom. It does not take many free electrons 
(which may be defined as electrons in incompletely filled energy 
bands) to lend some of the physical metallic properties to a sub¬ 
stance, and in such cases in which there are four or more valence 
electrons, e,g., bismuth and silicon, the valence forces are pre¬ 
sumably largely covalent. These substances are different from 
most metals in that they are brittle, and their electrical con¬ 
ductivity is relatively small. The conductivity of most metals 
decreases steadily with the temperature, the result of the thermal 
agitation of the lattice. In the case of a number of borderline 
metals, germanium, tellurium, and silicon, the conductivity 
increases with increasing temperature, but only at low tempera¬ 
tures.^ This is probably due to an increase in the number of free 
electrons with increasing temperature, which is counteracted by 
other effects at higher temperatures. ^ Lead appears to be fairly 
metallic, but in the case of tin there are two forms known, one of 
which, gray tin, has a tetrahedral structure and does not appear 
to have metallic properties. White tin is metallic, and the 
tetrahedral arrangement is very much distorted, though signs of 
special structure, which would not be expected with purely 
metallic binding, are present. Such signs of structure are also 
marked in zinc, in which each atom has six neighbors at a dis¬ 
tance of 2.65A. and six at 2.94A., in cadmium with a similar 
structure, and in mercury, though these elements are generally 
conceded to be metallic. In the more definitely metallic sub¬ 
stances, the structure is close-packed, or nearly so, each atom 
having twelve or eight nearest neighbors. In Table 42, we sum¬ 
marize some of the pertinent properties of the elements in this 
region of the periodic table. 

18.3. Intermetallic Compounds.—Grimm® has given a classi¬ 
fication of binary compounds into various types, corresponding in 
the main to the types of binding considered in Chap. XIII. His 
tables show a great majority of all known and inferred com¬ 
pounds to be metallic compounds. His classification is for the 
most part based upon inference from the physical properties of 

^The conductivity of silicon continues to increase up to a high tempera¬ 
ture, where phase transitions occur. 

* Hume-Rothbrt, -*The Metallic State,” p. 309. 
< See Gbibim, Angewandte Chemie, 47,53 (1934). 
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the compounds, but is undoubtedly accurate in the main. 
Metals and metallic compounds can be recognized by their rela¬ 
tively high electrical conductivity, due to the free electrons, by 
their metallic glance, arising from their high reflective power, 
which is also due, as optical theory indicates, to the free electrons 
they contain, and by such physical properties, as ductility, which 
depend upon easy slipping of the atoms past each other, which 
occurs with the metallic bond, but not with the localized covalent 
bond (because in this case it would require breaking of bonds) 
nor in the ionic bond (presumably because it could not occur 
without bringing ions of like charge close to each other). 

The great preponderance of intcrmetallic compounds is of 
course to be referred back to the preponderance of metallic ele¬ 
ments. Atoms with a relatively small number of valence elec¬ 
trons tend to lose electrons or, as Hume-Rothery has noted, share 
them with a number of other atoms, while elements whose 
number of valence electrons approaches eight tend to complete 
the shell of eight by adding electrons. There are far more ele¬ 
ments with less than four valence electrons than with more than 
four valence electrons, which, as pointed out by Grimm, accounts 
for the large number of metallic elements and compounds. The 
elements that form true intcrmetallic compounds probably do 
not extend beyond the trivalent elements on the right of the 
periodic table {e.g.y gallium). 

The so-called intcrmetallic compounds range from compounds, 
such as Na4Sn, in which the binding probably has some of the 
properties of ionic, covalent, and metallic bindings, and Na2Te 
(often called an intcrmetallic compound though probably largely 
covalent or ionic) to compounds in which the metallic char¬ 
acter is largely preserved, as evidenced by such physical prop¬ 
erties as electrical conductivity, metallic luster, and ductility.^ 
Even these more metallic compounds often appear to be less 
metallic than the elements, at least as far as one of the typical 
metallic properties, electrical conductivity, is concerned. This 
is illustrated by Table 43, which is taken from a table given by 

1 For a general account, see Dehlinger, Ergehnisse der exakten NcUurmsa.f 

10, 325 (1931). For a more recent general discussion with some attempt at 
classification with respect to composition and crystal structure, see 

Dehlinger, Naturvnss.f 24, 391 (1936), and “ Gitteraufbau metallischer 
Systeme.” 



Sec. 18.S INTERMETALLIC COMPOUNDS 381 

Table 43.—Specific Conductance [ji) op Metallic Compounds 

Compound MgaSn MgCu2 MgtCu MgZn2 MgsBi2 MgAl MgjAl, 

23.0 23.0 23.0 23.0 1 23.0 23.0 23.0 
X 10-^ 0.092 19.4 8.38 6.3 0.76 2.63 4.53 

8.60 64.1 64.1 17.4 0.84 35.1 35.1 

Compound MnAla FeAls NiAls AgsAU AgsAl AgMg AgMgs 

22.7 11.0 8.51 68.1 68.1 68.1 68.1 
M X io~* 0.20 0.71 3.47 3.85 2.75 20.52 6.16 

35.1 35.1 35.1 35.1 35.1 23.0 23.0 

Compound AgaSb Te2Sb2 TeSn Te8Bi2 CusAs 

68.1 0.017 0.017 0.017 64.1 

M X 10-* 0.93 0.48 0.97 0.045 1.70 

2.56 2.56 8.60 0.84 2.85 

First row gives sfjecific conductance for first element appearing in formula of compound; 
second row gives it for the compound; third row gives it for second element appearing in 
formula. 

Table 44.—Heats of Formation of Metallic Compounds 

(In kilogram-calories per formula weight) 

0.37 FesSi -20. Mg4Al, 49.0 NaSn2 20. 

SnBi2 -0.17 AlCu 68. MgaCe 17.0 NaaSn 21. 

SnBis -0.19 AlCus 23. CaSi 87 Na4Sn 34. 

SnaBi -0.12 AlaCu 84. CaSia 220 Na4Sn8 56. 

-0.78 AUFe 25.0 CaSna 52 NaCda 8.5 

CdSb 2.7 AlCo 32. CaZn4 29.5 NaCds 12.5 

CdaSba 4.0 AUCo 86. CaZnio 48. NasHg 11.1 

HgPba -0.05 CeHg, 23.2 CaaZns 40. NasHga 22.2 

Hg,Tl, 2.50 CeZn4 49. Ca4Zn 32. NaHg 11.0 

HgCd, 0.74 CeAU 22. CaCda 30. NaHga 18.5 

HgCd 1.96 CeaAl 39. CaAls 51 NaHg4 22.2 

HgjCd 3.99 LaAl4 20. Ca3Mg4 43. KHg 11.0 

CuaSb 2.5 MgaSn 59. LiHg 20.8 KHg, 26.0 

CusSn 8.0 MgZna 13.1 LiHga 25.0 NaK 2.1 

CuaZns 16. MgCd 9.2 LiHgs 26.8 NaKa 5.3 

CuaCds 3.0 MgHg4 NaK, 5.6 

Ag«Hg4 ■■ Na,K 0.4 

From Bichowsky and Rossini, ** Thermoohemistry of the Chemical Substances.” The 
table gives heats evolved. 
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Kraus. ^ That many of these intermetallic combinations are real 

compounds of some stability is indicated by the heats of formation 

tabulated in Table 44. * The heats of formation appear to follow 

no fixed rule except that they are low for compounds of two transi¬ 

tion elements or two alkali metals. 

Even more striking is the irregularity in the formulas them¬ 

selves. With the exception of a few like Na4Sn which involve 

relatively electronegative metals, or substances which have not 

been treated in this book as metals at all, the intermetallic com¬ 

pounds in general exhibit an almost complete breakdown of the 

valence rules. Even with elements that do form compounds of 

normal valence, abnormal compounds are likely to occur. Thus 

sodium forms a whole series of compounds with tin, Na2Sn, 

Na4Sn3, NaSn, NaSn2. It has been suggested by Kraus^ that in 

this case there are complex tin ions, somewhat analogous to the 

well-known tri-iodide ion 13- and the various sulfide ions SS—, 

S2S—, S3S—, S4S , SsS which are known to exist in aqueous 

solution. Kraus and his coworkers have also demonstrated the 

existence of complex tellurium ions TeTe and TesTe— in 

ammoniacal solution. 

Incidentally, it may be mentioned that liquid ammonia has 

proved a most useful tool for the study of metallic substances. 

In general, metals are not easily volatile, nor are they soluble in 

most other nonmetallic solvents. Practically the only oppor¬ 

tunity of studying metals in a dispersed or dilute condition has 

been afforded by liquid ammonia solutions. Metallic substances 

dissolved in ammonia act, in dilute solution, like electrolytes. A 

dilute solution of sodium, for example, acts as thoiigh it contains 

Na+ and NHs” ions, the sodium apparently giving up an electron 

which then becomes more or less associated with a solvent mole¬ 

cule. At higher concentrations, however, this solution appears 

to contain free electrons as indicated by its liigh electrical con¬ 

ductivity, its metallic luster (it is a deep blue), and also by its 

magnetic properties. The tendency of metals to act like elec¬ 

trolytes in liquid ammonia solutions brings about the possibility 

of some rather queer replacement reactions. Thus KCl is 

soluble in liquid ammonia, but CaCh is not, which results in the 

following reaction taking place: 

2KC1 -f Ca CaCh (ppt) -f 2K 

^ Kraub, /. Am, Chem, Soe., 44, 1216 (1922). 
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Many, perhaps most, intermetallic compounds do not have an 
exact, definitely defined composition, but can vary between cer¬ 
tain limits, the possible leeway differing in different cases. In 
this respect, they rese;mble solid solutions, though they may have 
rather different properties from the constituent elementary sub¬ 
stances. As stated above, they do not obey the ordinary valence 
rules, but certain interesting regularities do appear. 

Some of the more striking of these regularities appear in the 
alloys of copper, silver, and gold.^ These metals will dissolve 
another metal to some extent without change in crystal struc¬ 
ture, the foreign atoms taking places on the lattice, forming a 
so-called a-phase. Addition of more of the foreign material 
causes a change in crystal structure to a body-centered cubic type 
known as the /3-phasc (usually stable only at fairly high tempera- 

'tures). Addition of still more results in a more complicated 
though still cubic structure, the y-phase, and still more may 
result in an ephase, which is hexagonal close-packed (see Appen¬ 
dix IV). The latter two types of alloy are hard and brittle, and 
so have lost some of their metallic characteristics. Each type of 
phase exists over a small range of compositions, but there is 
usually a gap in compositions between the various phases 
(compositions in these regions giving heterogeneous mixtures). 
Complications can occur, and phases may be stable only at high 
teniperatures. Though the ^-, 7-, and e-phases have possible 
ranges of compositions, they can be described roughly by a 
stoichiometrical formula. Examples of the various kinds of 
phases are shown in Table 45. In a few cases, e.g., CuZn, the 
composition in which the alloy exists actually does not quite 
reach the composition indicated by the formula. In AuZng and 
perhaps AuCds the structure is cubic; an e-type structure occurs 
with a larger percentage of Zn. The crystal structure of CusSi is 
different from that of other /3-phases listed, but similar to several 
others not given. 

Each of these -types of phases appears to be characterized Dy a 
certain ratio of the number of valence electrons to the number of 
atoms, known from its discoverer as the *‘Hume-Rothery ratio.'' 

^ For more detailed accounts of the material described in this paragraph, 
see Hume-Rothery, ^‘The Metallic State/' pp. 328/., ‘*The Structure of 
Metals and Alloys," pp. 98/.; Dehlinger, Ergehnisse der exakten NcUurmas^f 
10, 325 (1935), and " Gitteraufbau metallischer Systeme," pp. 98/.; and 
Westgren and Phragm4a, Trans. Faraday Soc.f 85, 379 (1929). 
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Table 45.—Compositions of Alloys 
/J-phases 7-pha8e8 €-phases 

Cu sSi CuaZng CuZng 
CuaSn AgaCds CugSn 
CuZn CU9AI4 CuaSb 
CuBe CuaiSna CuBea 
AgZn CuaCda CusGe 
AuZn AgaZng AgZiia 
AgCd AgsHgs AgCda 
AuCd Au sZng AgsAla 
CuaAl 
AgMg 

AugCdg Again 
AgaSn 
AgaSb 
AuZna 
AuCda 
AufiAlg 
AuaHg 

Consider, for example, CusSi. The five copper atoms contribute 
each a valence electron, the silicon atom contributes four; the 
total, nine, is divided among six atoms, giving a ratio 3:2. This 
ratio holds for all the jS-phases listed. For the y-phases the ratio 
is 21:13, for the €-phases^ it is 7:4. The metals of the iron and 
platinum groups also form and 7-alloys, for example, CoAl 
and Fe6Zn2i. The electron-atom ratio follows the Hume-Rothery 
rule if the iron or platinum metal is assumed to contribute no 
valence electrons. Some attempts have been made to explain 
these rules, based on quantum states in the energy bands in the 
alloys (see Sec. 18.4). 

In some alloys, each kind of atom takes its place in the lattice 
in a regular way, so that one could consider that the crystal is 
composed of two perfectly regular but interpenetrating super¬ 
lattices. In other cases, the atoms of various kinds are arranged 
at random on a single lattice and the superlattice structure does 
not exist. Sometimes a transition from the more ordered super- 

^ It should be noted, however, that according to Westgren and Phragm4n 
the homogeneity range of some «-phases (Ag-Sn and Ag-Sb alloys) is so 
great that it covers the range which would be expected for the /S- and 7- 
phases, also. In these cases and 7-pha8es have not been reported. In 
the case of CuaSb, Again and AgaSb, which are reproduced in our table as 
given by Dehlinger, it will be noted that the formulas given do not corre¬ 
spond to the 7:4 electron-atom ratio, but rather to the normal valence 
formula. 
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lattice arrangement to the less ordered random arrangement can 
be followed. Such order-disorder transitions have recently been 
rather extensively discussed^ and present a number of points of 
interest. It will be recognized that if an ordered state tends to 
exist at all it must be ‘a state of lower energy and will therefore 
exist in the lower temperature range. As the temperature is 
raised, the thermal agitation tends to produce the disordered 
condition. As the amount of disorder 
increases, the amount of energy necessary 
to still further increase the disorder by a 
given amount decreases; in other words, a 
certain amount of disorder already present 
tends to increase the ease with which 
further disorder is produced. The result is 
that there is a fairly sharp transition tem¬ 
perature above which the disorder suddenly 
becomes practically complete. As the 
crystal is heated, energy must be supplied 
to effect the order-disorder transition. 
The specific heat therefore rises, first 
slowly as disorder begins, then rapidly 
(since the rate of increase of disorder itself 
increases, as we have seen, which more 
than counterbalances the decrease in the Fiq. 69.—Two-dimen- 

amount of energy necessary to further disorder*^ 
increase the disorder), finally reaches a 
sharp maximum, and then drops suddenly at the transition 
temperature.2 Other properties also, such as electrical resist¬ 
ance, show an abrupt bend at the critical temperature. By 
suddenly cooling an alloy in its disordered state (quenching), it is 
usually possible to ‘*freeze^’ it in this state, as the transition to 
the ordered state takes place slowly at low temperatures. Prop¬ 
erties such as electrical resistance and particularly hardness and 
malleability depend greatly on whether a state of order or dis- 

^See Fowler, ‘‘Statistical Mechanics,” 2d ed.. Chap. XXI, The Mac¬ 
millan Company, 1936, and Nrx and Shocklbt, Rev. Mod. Phys.^ 10,1 (1938) 
for reviews. 

^ In some cases latent heats of transition are found at a definite tempera¬ 
ture, as in melting. If there is a latent heat, properties like electrical resist¬ 
ance should show actual discontinuities at the transition point. 
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order exists in an alloy, and so, when the alloy has finally been 
brought to room temperature, its physical properties depend 
largely on its history—whether it has been allowed to come to 
equilibrium or not. 

An example of an alloy that exhibits a transition between 
ordered and disordered conditions is j3-brass^ which has (very 
approximately) the formula CuZn. The lattice is a body-cen¬ 
tered cube, and in the ordered state the copper atoms occupy the 
positions at the center of cubes formed by zinc atoms, and the 
zinc atoms occupy similar positions with respect to the copper 
atoms. In the disordered state, the zinc and copper atoms are 
randomly placed in the body-centered lattice. The transition 
temperature is 470°C., and the transition begins around 200°C. 
In this case, the transition has not actually been followed by 
X rays, but the existence of the ordered superlattice at room 
temperature has been demonstrated, ^ and the specific heat curve 
has the expected form, described above. In this case, although 
quenching is possible, it is easy to get complete equilibrium at all 
temperatures in the interesting range. 

Transitions of the type considered may also have very com¬ 
plicated connections with changes in crystal structure. This 
occurs in gold-copper alloys,^ and the situation is further com¬ 
plicated experimentally by the fact, due to difficulty in securing 
equilibrium, that the results depend greatly on the heat treat¬ 
ment the alloy has received. 

Another type of alloy is the interstitial^ compound.^' Such 
an alloy, having some metallic physical properties, is formed 
between a metal in or near the transition region of the periodic 
.table and an element like boron, carbon, or nitrogen. In these 
alloys, the small atom finds a place in the spaces left between 
the metal atoms. If the size of the metal atom is suflSciently 
large compared with the other, this takes place with very slight 
change in the metal lattice, and phases that range around the 
compositions M4X, M2X, MX, and MX2 (M = metal, X = 
boron, carbon, or nitrogen) are usual. If the metal atom is not 

^ Brago and Williams, Proc. Roy, Soc. (London)^ A151, 540 (1935). 
*JoNBS and Sykes, t&id., A161, 440 (1937). 
•See Johansson and Linde, Ann. Physiky 26, 1 (1936). 
f JiXao, Zeita. phyaik, Chem,^ B12, 33 (1931); Dehlinoer, Ergebniaae der 

exakten Naturmaa.f 10, 357jf. (1931). 
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quite so large, then the concentration of the Ught atoms in the 
alloy cannot usually become so great, and other formulas appear; 
for example, cementite, which is of importance in the metallurgy 
of iron, is FesC. When the percentage of carbon is as large as 
this, it is not in the spaces between iron atoms, but is substituted, 
resulting in a complicated lattice. 

Hydrogen is strongly occluded by some transition metals; 
it is well known, for example, that palladium, in particular, can 

dissolve^’ large quantities of hydrogen. In general, we may 
expect that in cases of this sort the molecular structure of the 
hydrogen is broken down. It has been suggested that the 
hydrogen plays the role of a metal in these occlusions, so they 
may be considered to be alloys.^ Experiments on the trans¬ 
ference of hydrogen in palladium under the influence of an elec¬ 
tric field seem to indicate that the hydrogen exists at least in part 
in the form of positive ions. The released electrons would then 
join the other free electrons from the palladium. After a small 
amount of hydrogen has been added to palladium, there is a 
change of phase. There is evidence that this phase has the 
definite composition Pd-iH, at least above 80®C. 

18.4. Energy Bands in Metals and Alloys.—Though a detailed 
discussion of this matter is beyond the scope of this book, some 
indication may be given of the methods used in considering the 
energy states of electrons in metals. ^ The energy state of a free 
or partly free electron can be characterized by three quantum 
numbers, which describe the state of its motion in the x-, and 
z-directions, respectively. These quantum numbers are very 
closely associated with the wave number (i.e., the reciprocal of the 
wave length) of the wave associated with the electron, as will be 
evident from the considerations of Chap. IV, in which we 
treated the motion of an electron in a box. In fact, it will be 
seen from Eq. (3c) of Chap. IV that the wave numbers for the 
successive allowed energy levels in the case of a one-dimensional 
motion will be in the ratios 1:2:3:4: . . . If the motion is 
three-dimensional and the wave under consideration has a direc¬ 
tion that is not parallel to one of the axes, its wave number k 

^See CoBHN and Jti^BGBNs, Zeita. Physik, 71, 179 (1931); Gillbspis and 
Hall, J. Am. Chem. Soc., 48,1207 (1926); and Ubbblohdb, Proc. Boy. Soc. 
(London), Am, 295 (1937). 

* For references see footnote 2, p. 374. 
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is related to the components of the wave number h in, the 
a;-, y^, and «f-directions by the relation 

+ ky^ + 

The exact relations involved will be clear from the two-dimen¬ 
sional case illustrated in Fig. 9, page 38. The wave is proceed¬ 
ing in an arbitrary direction with wave length X. Its ^Vave 

length in the x-direction is X* = > and in the jy-direction 
® cos a 

it is X« ~ -Hence kx = k cos a and ky = k sin a, and since 

cos® a + sin® a = 1, it is seen that fc® = fc*® + fcy®, and the rela¬ 
tion is easily extended to three dimensions. Giving the values of 
kxj kyy kz will determine both k and the direction of the wave. 
We shall denote the vector with components fc*, fcy, and kz by the 
symbol k. It points in the direction of motion of the wave front. 

In an actual metal, in which there are centers of force acting 
upon the ^‘free” electrons, the situation is, of course, more com¬ 
plicated than in the empty box of Chap. IV. It is still possible, 
however, to assign wave numbers fc*, fc^, fc*, which may be con¬ 
sidered as equivalent to quantum numbers for these electrons. 
If the metal were an empty box, there would be a very closely and 
regularly spaced set of energy levels as in the three-dimensional 
case of Sec. 4.2. In the real metal, the energy is still determined 
by kxy ky, kzy but the functional relationship is more complex, and 
at certain quantum states jumps in the energy occur. That is, 
the energies of the lower quantum states are fairly regularly 
spaced, but finally we come to a certain quantum state whose 
energy is considerably higher than that of the next lower quantum 
state. This accounts for the energy bands and gaps in the 
energy-level system mentioned earlier in this chapter. 

If electrons are allowed to bombard a crystal, they are reflected 
according to the same laws as X rays [see Eq. (1) of Chap. III]. 
Remembering that fc = 1/X, we can write this equation in the 
form 

A; sin 9 . (4) 

It is to be noted (see Fig. 7, page that k sin Q is just the 
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projection of the vector k along the normal to the plane of atoms 
in the crystal from which the reflection takes place. The con¬ 
dition that Bragg reflection of a beam of electrons should take 
place is just that the projection of the vector k be given by Eq, 
(4). Now the wave mechanical theory of the motion of the 
electrons in a crystal leads to the remarkable but still very 
reasonable result that the gaps in the energy occur for combina¬ 
tions of the quantum numbers ft*, fcj,, and kz, which fulfill the 
condition given by Eq. (4). 

Suppose now we set up a 
system of axes, such as 
shown in Fig. 70, and draw 
a line OP normal to one of 
the planes of atoms of the 
crystal. On this line, we 
mark off a point Q such that 
the length of OQ is equal 
to n/2d. If we lay off our 
vector k from the origin, it 
will be clear that every 
vector ending in a plane 
though Q perpendicular to 

/. 11 1 X —IHustrating the condition im- 
OF parallel to tne pUed by Eq. (4). The plane paseing 
original plane of atoms in through Q, parallel to the plane of atoms 
., . iv perpendicular to OP, upon which the 
the crystal; will satisfy Eq. sector k ends, is shown shaded. 

(4). This can be done for 
any plane in the crystal, for any value of n; so we find a series of 
planes in our diagram which lay off regions of space such that 
the jump im the energy occurs on crossing over from a kx, fcy, k^ 

that lies on one side of one of these planes to a ifc«, kyj kg that 
lies just across it, in the next region. In particular, there will be 
a closed region around the origin for which ky, and k» have their 
lowest values and for which the energies are low. A quantum 
state to which corresponds a vector that extends, just beyond 
the bouildary of this region has a considerably higher energy. 
If there are just enough electrons available to fill all the low 
energy levels, the energy of a metal will be relatively low. How¬ 
ever, if there are too many electrons for the low energy levels, 
then the energy will be relatively high. 
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The number of energy levels per atom will depend on the 
arrangement of the atoms in a crystal, i.e,, on the type of lattice 
involved, but it will not depend upon the distance between atoms 
provided their relative positions are held fixed. TMs is under¬ 
stood by reference to I]q. (3c) of Chap. IV, which shows that the 
number of different values which kx = 1/Xa: may take before it 
reaches any given value is proportional to a, the linear dimension 
of the box. In general, it is true that the number of different 
values which kxj ky^ and kz may take before reaching any assigned 
value is proportional to the linear dimensions of the crystal. If, 
therefore, a crystal is expanded or contracted, the number of 
quantum states will be accordingly increased or decreased. On 
the other hand, by Eq. (4) above we see that the values of 
k sin 6 for which the gaps in energy occur are inversely propor¬ 
tional to the distance between planes in the crystal. The net 
result is that expansion or contraction of a crystal leaves the 
number of energy levels below the first energy gap unchanged. 
A crystal with too many electrons to fill the low-energy levels 
cannot, therefore, greatly increase its stability by expanding or 
contracting, but it may be able to revert to another crystal form 
which has more low-energy levels. In general, a completely 
filled energy band is quite stable, but one with a few extra elec¬ 
trons is disproportionately unstable. Although it is clear that 
a structure with a few electrons more than are necessary to fill 
the first band of energy levels is unstable, it may yet be that the 
moat stable structure is one in which the band is not completely 
full. A band always contains a few electrons 6f relatively high 
energy corresponding to the states whose fc*, fcy, fc* lies near one 
of the corners of the polygonal figure bounding the first energy 
band. Electrons filling these high-energy states cause a certain 
instability, which may result in the alloy crystallizing in some 
other form. However, these energy states in the corners will 
not be included in a sphere^ inscribed inside the polygonal figure, 
and if only enough electrons are present to fill the states repre¬ 
sented by kxy kyj kg values inside the inscribed sphere, the struc¬ 
ture may be stable. In the case of the j8-phases described above, 
the first energy band contains 2 quantum states per atom, but 

^ Sometimes a sphere cannot be inscribed in such a way as to nearly fill 
the polygonal figure, in which case some other similar, but less symmetrical, 
figure would be used. 
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the inscribed sphere contains^ only 1.48, which corresponds very 
well with the Hume-Rothery ratio of 3:2. In the case of the 
y-phases, the first band contains^ 1.73 states per atom and the 
inscribed sphere 1.54. The Hume-Rothery ratio in this case is 
21:13 = 1.61. In the case of the €-phase, the number of states in 
the first band is 1.746 per atom,^ which corresponds practically 
exactly to the Hume-Rothery ratio of 7:4. 

The fact that the jS-phases are metallic is probably connected 
with the fact that the first zone of energy levels is not filled, 
whereas in the case of the 7- and €-phases some of the metallic 
properties have been lost because the first energy band is nearly 
filled. In the 7-pbases the electrical conductivity is said to have 
its lowest value when the composition is such that the Hume- 
Rothery ratio is exactly fulfilled. 

Exercises 

1. Calculate the heat of sublimation of copper at room temperature, 
using its density of 8.93 g. per cc., and compare with the experimental value 
of 81 kg.-cal. per mole. 

2. Write a Lewis electron structure formula for crystalline arsenic. 

^ See Mott and Jones, “The Properties of Metals and Alloys,^' Chap. V; 
Dehlinger, Zeits. Physiky 94, 231 (1935). 



CHAPTER XIX 

THE STRUCTURE OF WATER, HYDRATES, AND 
AQUEOUS SOLUTIONS 

A great part of inorganic chemistry consists in the study of 
reactions of substances dissolved in water. A consideration of 
the structure of water and the nature of aqueous solutions, being 
necessary for the understanding of these processes, is therefore of 
preeminent importance. 

19.1. The Structure of Glasses.—As a prelude to the study of 
the structure of water and aqueous solutions, it will be appro¬ 
priate to discuss the structure of certain glasses. A glass is a 
liquid that has been supercooled without freezing to a tempera¬ 
ture so low that it has lost its fluidity. Many of its properties 
are still those of an ordinary liquid rather than a crystal. 

Warren^ has investigated vitreous SiC)2 by means of X rays. 
In all the various forms of Si02, each silicon is surrounded by four 
oxygens at the vertices of a regular tetrahedron, and each oxygen 
shares two silicons, acting as a connecting link between them. 
These diflferent crystalline forms differ in the relative orientation 
of the tetrahedra about the two silicons joined by a common 
oxygen bond, the tetrahedra themselves being all alike. ^ In any 
given crystal type, there is a perfectly definite and regular 
arrangement. It was found, however, that the X-ray analysis 
of the glass indicated a random relative orientation of the tetra¬ 
hedra with a common oxygen. The glass thus has the same 
arrangement as a crystal, provided one looks at a sufficiently small 
portion of it; the difference consists in the irregular arrangement 

1 Waekbn and Hill, ZeiU. Kristf 89, 481 (1934); Wa&een, Phya, Rev,, 
45,657 (1934). For a general discussion of glasses, see Zachariassn, J, Am. 
Chem. Soc.y 64,3841 (1932); Randall, Diffraction of X-rays and Electrons 
by Amorphous Solids, Liquids and Gases,pp. John Wiley & Sons, 
Inc., 1934, HXgq, J. Chem. Phys.y 8,*42 (1935); Zachariasbn, ibid., 8, 162 
(1935). 

* They also differ in the angle between the two Si—0 bonds to a given 
oxygen atom (see footnote 1, p. 312, Chap. XVI). 
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of the glass when one looks at the whole thing. The glasses 
Ge02 and BeF2 are similar to Si02. 

19.2. The Structure of Water.—A detailed theory of the struc¬ 
ture of liquid water has been developed by Bernal and Fowler^ 
and has recently been further discussed by Katzoff and by 
Morgan and Warren.^ This theory is based upon the structure 

between (a) a crystalline structure, and (6) a glass with the same composition. 
It will be observed that the arrangement about any one of the black atoms is the 
same in the glass as in the crystal. [After Zachariaeen, J. Am. Chem. Soc., 54, 
3846/. (1932).1 

of ice, X-ray examination of water itself, and the known prop¬ 
erties of the water molecule, in particular the fact that the angle 
between the two hydrogen-oxygen bonds is nearly the tetrahedral 
angle. It seems reasonable to assume that the electronic struc¬ 
ture of water is of the sp^ tetrahedral type* (Sec. 15.2), and that 

1 Bernal and Fowler, /. Chem. Phys., 1, 515 (1933). 
* Katzoff, J. Chem. Phys., 2, 841 (1934); Morgan and Warren, iJbid.^ 

6,666 (193^). 
® As pointed out on pp. 266 and 269, in the case of the water molecule 

it is not possible to state unequivocally whether the bond-eigenfunctions 
involve only p-states, or whether they are of the sp^ type. There does seem 
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the electron wave functions are such as to cause a considerable 
density of negative electricity in directions corresponding to the 
vertices of a tetrahedron. At two of these positions of large 
density of negative electricity, however, are located the positives 
hydrogen nuclei, and since hydrogen is less electronegative than 
oxygen, these positions may be expected to constitute centers of 
net positive charge, while the other two tetrahedral positions con¬ 
stitute centers of negative charge. In liquid water, the positive 
centers of one molecule will attract the negative centers of 
another molecule. In this way, each oxygen atom tends to b(^ 
surrounded by four hydrogens at the corners of a more or less 
regular tetrahedron, two of the hydrogens belonging to the same 
molecule, while the other two hydrogens belong each to a different 
molecule. (It is, of course, possible for the two hydrogens of a 
single molecule to be attracted to the negative spots of a given 
molecule, but it seems probable that usually the two negative 
spots will attract hydrogens from two different molecules.) The 
hydrogens act as links between the oxygens in much the same 
way that the oxygens act as links between silicons in Si02, with 
the difference that in Si02 the oxygen is equally shared between 
the surrounding silicons. Ordinary ice has essentially the same 
cr3rstal structure as the form of Si02 known as tridymite. 

X-ray investigation of water indicates that this tetrahedral 
arrangement persists to a considerable extent in the liquid.* 
The arrangement of molecules in the liquid probably resembles 
the arrangement of the silicons in vitreous Si02, but is even more 
indefinite, in that the links between adjoining water molecules 
are undoubtedly not at all permanent, but are continually break¬ 
ing and reforming, so that any given water molecule is on the 
average definitely attached to less than four neighbors. Water, 
then, has what has been termed a broken-down ice structure. 
This shows up in the X-ray diffraction pattern for water in that 
instead of getting definite angles of diffraction, the diffraction 
merely shows a broad maxima at certain angles, indicating that 
the intermolecular distances are variable, but giving, neverthe- 

tp be, however, a tendency for the water molecule to have a tetrahedral 
coordination, which is easily understood if the bond-eigenfunctions are of 
the type. 

^ Sete Katzoff, and Morgan and Warrrn, loe. dt 
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less, good evidence of the essentially tetrahedral character oi the 
arrangement. 

Further evidence on the structure of water is furnished by a 
consideration of its density. It will be clear from a consideration 
of Figs. 83 and 84 of Appendix IV that a tetrahedral arrangemem 
is a very open one, in which the space available is far from being 
filled. The X-ray analysis shows that the distance between 
nearest neighbor molecules in ice is 2.76A. If ice were composed 
of spheres of this diameter in a close-packed arrangement with 
twelve nearest neighbors instead of four, it would have a molal 
volume of 9.0 cc. Actually, the molal volume of ice is 19.6 cc. 
In water, the X-ray analysis shows that the average distance 
between nearest neighbors is 2.90A. at 1.5°C.; yet w^e know melt¬ 
ing actually causes a contraction, the molal volume of water being 
18.0 cc. This is in good accord with the picture of water as a 
broken-down ice structure. The decrease in volume is due to 
the partial breaking down of the tetrahedral structure, with 
filling in of some of the spaces. It should be noted that the 
decrease of the volume of WBter is by no means so great as to 
indicate a very extensive breaking down of the tetrahedral struc¬ 
ture. Close-pa(?ked spheres of effective diameter 2.9oA. would 
give a molal volume of 10.5 cc. If the arrangement in ice were 
unchanged, but the volume increased by the amount indicated 
by the increase in intermolecular distance, the volume would be 
21.8 cc. The actual molal volume of water is considerably 
nearer the latter figure. 

When water is heated, there are two opposing tendencies 
operative, the normal tendency for neighboring molecules to be 
spaced farther apart, on the one hand, and the tendency toward 
further breakdown of the tetrahedral structure and filling in of 
the spaces, on the other. These tendencies just balance at 4®C., 
where the molal volume has a minimum. 

Recently, Cross, Burnham, and Leighton^ have investigated 
the Raman spectrum of water, and have thus obtained informa¬ 
tion about the vibrational frequencies of liquid water and ice. 
They have calculated the vibrational frequencies of liquid water 
on the assumption that the natural vibrations of any molecule 
are relatively slightly changed by its neighbors and, in particular, 
have discussed how much the frequency w;ould be changed if one, 

^ Cross, Burnham, and Leighton, J. Am, Chem, Soc., 69,1134 (1987)* 
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two, three, or four neighboring molequles bound to the given 
water molecule by hydrogen bonds were causing the perturba¬ 
tions. Interpreting their experimental results with the aid of 
these theoretical calculations, they have come to the conclusion 
that in liquid water a given water molecule is, on the average, 
acted upon by only a little more than two of its neighbors with 
sufficient intensity to cause a shift in its vibrational frequencies. 
If their interpretation is correct, it would seem to indicate that 
the intermolecular binding in water is even less definite than indi¬ 
cated above. In any event, however, the binding is definitely 
enough oriented and sufficiently powerful to support the open 
tetrahedral structure of the liquid and prevent a collapse to a 
close-packed structure, which is the main point of importance 
for our purpose. 

19.3. Comparison of Water with Other Liquids.—In the light 
of the foregoing account of the structure of water, it will be of 
interest to compare the boiling point of water with that of some 
related liquids, as seen in the accompanying table. It will be 

Table 46.—Absolute Boiling Points of Various Substances 

11211 SiHi.161|HsCCH3.185 HsNNHj. 
240 PHb.186 HbCNHb. 267 H2NOH.. 
873 SHi.213 HbCOH. 338 HOOH... 
292ICIH.1881 HbCF.196 H8C=CH ■ 

noted that water has a much higher boiling point than any of the 
substances CH4, NHs, and HF that have the same number of 
valence electrons. It seems most probable that this is due to the 
fact that in the water molecule there are two positive regions and 
two negative regions, which makes possible an interlocking net¬ 
work of connections through the liquid, each water molecule 
having a coordination number of four. In the case of NHs, if 
nitrogen is assumed to have the tetrahedral electronic structure, 
there are three positive spots and one negative spot. This 
makes possible the formation of chains in which the negative 
end of each molecule is attracted to one of the positive spots of 
an adjacent one. It is impossible, however, to haye a, network, 
however irregular, running through the liquid with coordination 
number of four, for this requires an equal number of positive 



Sec. 19.4 THE DIELECTRIC CONSTANT OF WATER 397 

and negative places. A similar remark holds for HP if the 
fluorine is tetrahedral; if it is not (as is probably the case), no 
remark is necessary. Methane, in which the whole outside of the 
molecule is positive, has ,a very low boiling point, as is to be 
expected. 

In the next row of the periodic table, hydrogen sulfide, corre¬ 
sponding to water, has the highest boiling point. The effect is 
rather slight, however, presumably because with these molecules 
van der Waals forces predominate. 

The table shows how the substitution of a methyl radical for a 
hydrogen affects the boiling point. Methyl alcohol has a high 
boiling point, but not so high as water, probably because forces 
around the larger methyl cannot be so large as in the neighbor¬ 
hood of a hydrogen. CH3F has a rather surprisingly low boiling 
point. Hydrazine has a high boiling point, 387°K., and this is 
true also of hydroxylamine and hydrogen peroxide.^ 

19.4. The Dielectric Constaht of Water.—One of the most 
important properties of water, which it is necessary to consider in 
connection with the properties of solutions of electrolytes, is its 
dielectric constant. As remarked in earlier discussions, the 
water molecule has a dipole moment. Such a property is natur¬ 
ally to be expected from our description of the structure of the 
water molecule, involving, as it does, localization of positive 
charge on one side of the molecule and negative charge on the 
other. The electric dipole will tend to be oriented in an electric 
field in such a way as to decrease the energy of the system, and 
the electron shells of the molecules will also tend to be distorted 
because of their mutual polarizability. Suppose now that we 
have two electric charges of magnitude ci and 62. Suppose 
further that the charges are sufficiently far apart so that as far 
as their effects on each other are concerned they may be treated 
as point charges. If they were in vacuum, they would have a 
mutual potential energy 6162/^, where r is the distance between 
them. But we have seen in Sec. 12.9 that the introduction of a 
dielectric medium between two condenser plates will cut down 
the potential between them by a factor equal to D, the dielectric 
constant. In exactly the same way, if the two charges are 
immersed in a dielectric medium like water, the potential energy 

^In this oonneotion see Handall, Proc. Roy, Soc, {London)^ A199, 83 
(1937). 
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is decreased by a factor D, so that it becomes^ exe^jrD, The 
dielectric constant D is actually constant, independent of €i, 
and r, provided the electric field does not become too large. If 
the field at any point beco’mes so great,, however, that the dipoles 
are already practically completely lined up, corresponding to a 
state of saturation of the dielectric, then it is obvious that a 
further increase in the field can cause no further change in the 
orientation of the dipoles, and they will be vdthout effect on the 
energy of the system. D thus appears to decrease as the dielec¬ 
tric approaches saturation. Such a situation is likely to arise if 
the bodies carrying the charges e\ and ^2 are very small (of the 
order of molecular dimensions, as in the case of ions), for in that 
case the fields in the neighborhood of the charges become very 
great. Furthermore, other irregularities may appear because 
of the molecular structure of the dielectric. 

The dielectric constant of a liquid ordinarily decreases with 
temperature, because the increasing thermal agitation of the 
molecules makes it harder to line them up. In the case of water, 
it is obvious that there is another force tending to prevent the 
orientation of water molecules in an electric field; this is the 
tendency for them to be lined up with respect to each other due 
to the forces considered in Sec. 19.2. This makes small displace¬ 
ments of individual water molecules more difficult but does not 
prevent them from lining up in such a way that, while still 
preserving their tetrahedral coordination, a preponderance of 
water molecules have their negative ends pointing toward the 
external positive charge. The dielectric constant of water at 
room temperatures has the unusually large value of approxi¬ 
mately 80. 

19.6. Ionization and the Properties of Ions in Aqueous Solu¬ 
tion.—When a polar substance dissolves in water, it is generally 
ionized. The reactions of ions are of particular importance 
to the inorganic chemist. Since an understanding of these 
reactions must be based on a knowledge of the nature of the 
ions themselves, some space will be devoted to a consideration 
of this question. 

We have seen that the formation of the gaseous ions from a 
solid salt is a process requiring a considerable amount of energy, 

^ lu^the term ‘‘potential energy ” is included also the energy of the medium 
in which the charges are located (but see also Sec, 19.6). * 
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and in no known case is there any appreciable tendency for such 
a reaction to proceed spontaneously. On the other hand, the 
formation of aqueous ions from a solid salt is one that frequently 
takes place very readily. It must, therefore, require much less 
energy than the formation of gaseous ions. The reason for this 
is readily understood if we remember the high dielectric constant 
of water. If the dielectric were really a nonmolecular continuum, 
we should have to break the process of solution into two steps, 
the first being the introduction of dielectric between the ions of 
the solid, which would result in a lowering in the energy of the 
system, and the second being the dispersion of the ions in the 
dielectric. The latter requires energy but, because of the reduc¬ 
tion of the potential between ions by the dielectric, only ^ as 
much as would be required in vacuum, and possibly not enough 
to balance the energy in the first step, so that energy might even 
be expected to be evolved on solution. In any event, the heat 
of solution would be small. When the molecular structure of 
water is considered, the situation appears more complicated. 
Saturation effects cause the effective dielectric coustant to be 
lower than the measured value, as has already been explained. 
Actually, of course, the molecular structure also prevents the 
occurrence of the first step described above, the interpenetration 
of solvent between the ions of the solute. It may still be, how¬ 
ever, that the arrangement of dielectric molecules around an ion 
in solution is more compact than the arrangement of other ions 
about it in the solid. A compact arrangement of the dipoles of 
the solvent about an ion results in a relatively low energy. In 
view of the various complicated factors involved, it is not sur¬ 
prising that solution of the alkali halides sometimes results in 
evolution and sometimes in absorption of heat; this may be seen 
from Table 47, where L is the heat evolved when one mole of salt 
is dissolved to form an infinitely dilute solution.^ The heat 
evolved or absorbed is always small in magnitude, however, 
compared with the lattice energy (compare —(7o, Table 47). 
(Regarding energy units see page 461.) 

^ Fajans and Schwartz, Zeits. phyHk. Chem.f Bodemtein Featband, 717 
(1931), have tabulateij L for various salts and discussed its significance. In 
Table 47, we have used the very slightly different values of Bichowsky and 
Rossini, ** Thermochemistry of the Chemical Substances," Reinhold Publish¬ 
ing Corporation, 1936. 
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Tablb 47.—Heats op Solxjtion op Alkali Halides at Room 

Tbmpebature 

(In kilogram-calories per mole) 

Salt ~C/o L L+ +L- 

LiF..i 245.1 -0.7 244.4 
LiCl.... 201.1 8.7 209.8 
LiBr. 189.9 11.5 201.4 
Lil. 176.2 14.9 191.1 

NaF. 216.4 -0.3 216.1 
NaCl. 184.0 -1.2 182.8 
NaBr. 175.9 -0.6 1 175.3 
Nal. 164.4 1.6 166.0 

KF. 193.2 4.0 197.2 
KCl... 168.3 -4.4 163.9 
KBr. 161.5 -5.1 156.4 
KI. 152.5 -5.2 147.3 

RbF. 183.4 6.0 189.4 
llbCl. 162.1 -4.4 157.7 
RbBr. 156.1 1 -6.1 150.0 
Rbl. 147.9 -6.6 141.3 

CsF. 175.9 8.6 
-4.6 

184.5 
CJflCl.. 153.2 148.6 
CsBr. 149.6 -6.9 

-8.5 
142.7 

Csl. 142.4 133.9 

In order to gain a more detailed understanding of the process of 
vsplution and the meaning of the values of L, the matter may be 
considered from a different point of view. The process of solu¬ 
tion to, form aqueous ions will again be thought of as broken up 
into two steps, but different from those considered in the pre¬ 
ceding paragraph. It is assumed that the substance is first 
ionized into gaseous ions, in which process the lattice energy 
— f/o is absorbed. From the considerations of Chap. XIV, the 
energy of this process is known for many salts. In the second 
step, the gaseous ions are dissolved in the water, the energy 
evolved in this process being the heat of solution of the gaseous 
ions. Let the energy evolved on solution of the gaseous positive 
ion be and that of the negative ion be X*”. The heat L 
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evolved on solution of the solid salt is then given by 

L = + L~' + Uo- (1) 

We may now make an attempt at a rough theoretical evaluation 
of and L*”. According to electrostatic theory, when an elec¬ 
trically charged body of radius r, with a spherically symmetrical 
distribution of electricity of total charge e within this distance r 

from the center, is introduced into a dielectric with dielectric 

evolved. This gives a basis of comparison with the experimental 
results. The use of this relation in this connection was first 
suggested by Born,^ and it was early applied by Latimer. ^ 

In Table 47, we include values of L+ + L” obtained by adding 
the quantities in the two preceding columns. It is impossible to 
separate the sum experimentally into the values and L- for 
the individual ions. However, differences between the individual 
values can readily be found. For example, the difference 
between the heat of solution of K+ + Cl- and K*^ + Br- will 
be the difference between 01“ and Br"". It should be possible to 
substitute any other alkali ion for potassium and (assuming the 
values of Uo to be correct) still find the same difference between 
the chloride and the bromide. This is, of course, an immediate 
consequence of the ionic theory of Arrhenius, and the result can 
be expected to hold only if the heats of solution at infinite dilution 
are considered, for only at infinite dilution can we measure the 
interaction of an ion with the solvent, unaffected by interaction 
with other ions. In the tables, all values of heats of solution 
are those obtained by extrapolation to infinite dilution, and the 
result obtained is independent of the choice of the common ion 
within, at worst, about ±2 kg-cal., which is within the limit of 
error of, and may be considered a further check on, the calcula¬ 
tion of the lattice energy. 

The average value for the difference A between the heats of 
solution of adjacent halogen and alkali ions is given in Table 48, 
(column marked '‘obs.^’). For comparison, there is also given 
the difference to be expected theoretically from Born’s formula* 

1 Born, Zeits, Physik, 1,45 (1920). 
^Latimbr, /. Am. Chem. Soc.t 48, 1234 (1926). 
® Bom’s formida gives AE*s of solution, and the are AH’s (see Appen¬ 

dix II), but the difference is negligible. 
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Table 48.—^Hbats of Solution of Alkali and Halogen Ions at Room 

Temperature 

(In kilogram-calories per gram ion) 

j 
Ion 

Radius, 
A. 

L+ or L- 

(calc.) 
A (calc.) 1 A (obs.) 

L+ or L~ 
(used) 

F-. 1.36 1 119.9 29.9 33.8 125.9 
Cl-. 1.81 i 90.0 6.4 7.4 92.1 
Br-. 1.95 83.6 8.1 9.2 84.7 
I-. 2.16 75.5 75.5 

Li+. 0.59 276 1 104 26.6 117.2 
Na^. 0.95 172 49 i 18.9 90.6 
K'". 1.33 123 13 1 6.6 71.7 
Rb^. ; 1.48 110.0 13.5 7.2 65.1 
Cs-^. 1.69 96.5 j 57.9 

given above. This is done simply by inserting the ionic radius 
from Table 16 in the formula. No allowance is made for the 
effect of coordination number (see Sec. 14.6), which is equivalent 
to assuming that the coordination number is six and that the 
radius of the ion is the same as that of a uni-univalent electrolyte. 
Furthermore, in the use of Born’s formula, we continue to neglect 
the molecular character of the dielectric. The results can, there¬ 
fore, be taken only as the roughest sort of an approximation; 
nevertheless, it will be seen that the ^‘experimentar’ and theo¬ 
retical differences agree pretty well for the negative ions, though 
there is no agreement at all for the positive ions. This suggests 
that the energy of solution of at least the largest negative ion, 
1“, should be fairly close to the theoretical value, and if it is 
assumed that it does actually have this value, then from it and 
the data of Table 47 values for the heat of solution of all the other 
ions can be calculated^; these are also given in Table 48. The 

1 It must be said that this method of dividing the heat of solution between 
the positive and negative ions is open to some objections, and other methods 
of making this division have been proposed. Bernal and Fowler, Ref. 1, 
page 393, have made a calculation that yields considerably different 
values for the energies pf solution of the positive and negative ions. Klein 
and Lange, Zeits. EleHrochem.t 43, 570 (1937), have recently estimated 
energies of solution from absolute electromotive force measurements, getting 
values for the alkali ions about 15 kg.-cal. greater than those of Table 48. 
However, the older method of estimating the absolute electromotive force 
of cells, based on electrocapillary measurements, gives Values for the alkali 
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values obtained for the positive ions are all much less than the 
theoretical values. If our method for dividing the heat of solu¬ 
tion between positive and negative ions is correct, it indicates 
some asymmetry in a water molecule which makes it easier for a 
negative than a positive ion to orient the water molecule. It 
seems, indeed, very likely that the centers of positive charge are 
very close to the surface of the water molecule. This might 
account for the apparent readiness with which a negative ion 
effects the orientation of a water molecule, as compared to a 
positive ion. The readiness with which hydrogen bridges are 
formed is evidence in favor of the supposition that the positive 
charge is close to the surface, not only in water but in many 
polar groups in which hydrogen is present. An apparent asym¬ 
metry of the water molecule shows up also in other properties 
which will be discussed below. ^ It should also be remarked that 

Table 49.—Heats op Solution op Various Ions at Room Temperature 

(In kilogram-calories per gram ion) 

Ion Radius, A. L+ (obs.) 
j 

L+ (calc.) 

H+. 253 
Ag+. 1.26 106 129 
T1+. .... 68 
Mg+^. 0.82 446 795 
Ca+-^. 1.18 369 552 
Sr++. 1.32 339 494 
Ba++. 1.53 305 426 
Fe+-^. 446 
A1+++. 0.72 1071 j 2040 

the special tetrahedral structure of the water molecule would have 
to be taken into account in any attempt at a quantitative dis¬ 
cussion of the process of hydration; it is an oversimplification 
to treat it as a simple dipole. 

ions only 5 or 6 kg.-cal. greater than those of Table 48. See Latimer, **Tho 
Oxidation States of the Elements and their Potentials in Aqueous Solutions,'^ 
Prentice-Hall, Inc., 1938, pp. 21-22. ‘ Latimer, Pitzer, and Slansky, /. Chem. 
Phys.f 7, 108 (1939), have suggested a method of dividing the heat of solu¬ 
tion, similar to that used here, which gives even better agreement with the 
results based on electrocapillary measurements. 

^ See Latimer, Chem. Rev.y 18, 354-356 (1936), and Latimer, Pitzer, and 
Slanskt, J. Chem. Phys.f 7, 108 (1939). 
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In Table 49, we give some values for the energy of solution of 
some polyvalent positive gaseous ions. These are to be com¬ 
pared with the theoretical values obtained from the radii of 
Table 16, appropriate modifications being made to allow for the 
double or triple charge. These corrections, however, do not 
include a correction, like that in Sec. 14.6, for the effect of the 
<*liarge on the apparent radius. It is observed that, as is to be 
expected, the discrepancy between the theoretical and ejcperi- 
mental values is considerable, and this discrepancy would be 
increased by the correction for the effect of charge on the radius. 

The experimental values were obtained, as in the case of the 
univalent ions, by the use of heats of solution and lattice energies. 
The latter, however, were not calculated directly, but were cal¬ 
culated from the heats of formation of the crystal, and other 
thermal data,^ and the already determined electron affinities of 
the halogens, using the appropriate modification of Eq. (16) of 
Chap. XIV. Excellent checks were obtained with different 
halides of the same metal. 

Although the heat of solution is of paramount importance in 
determining the solubility of salts, it is not possible to get a com¬ 
plete understanding of the phenomenon from the heat of solution 
alone. Even if it were possible to assume that the ions formed a 
perfect solution, and the interionic attraction were completely 
negligible, it would be necessary to take into account the effect of 
the entropy change on solution. As shown in Appendix II, the 
entropy is essentially a measure of the freedom of motion of the 
system, and a system tends to assume that state in which its 
motion is as unrestricted as posvsible, provided the energy of 
this state is not too great. For example, when a substance 
evaporates, its entropy increases because the gas molecules 
enjoy greater freedom of motion, and as far iis this factor is con¬ 
cerned evaporation is favored, but the energy factor favors 
the condensed state. When the volume of a gas increases, the 
entropy likewise increases; in fact, in an isothermal process the 
incre^e of entropy per mole is given by the gas constant times 
the change in the natural logarithm of the volume occupied by 

^ Thfe energies of formation and solution were taken mostly from Bichow- 
sky and Rossini, ^‘Tliermochemistry of the Chemical Substances.'' A few 
heats of solution are from Latimer, Schutz, and Hicks, /. Chem. PhyB.y 
9,82 (1934). 
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one mole. In the case of a solution, the change of entropy of a 
mole of solute with concentration is likewise given by the gas 
constant times the change in the natural logarithm of the volume 
containing one mole, if the solution is dilute enough. The 
entropy of the mole of solute is, however, by no means the same 
as if it existed in the same volume of empty space. In the first 
place, the molecules of solvent occupy a large fraction of the 
space, and the volume actually available to the solute molecules 
is therefore by no means equal to the total volume. Besides 
this, the solute molecules may well have an effect on the solvent 
molecules, and this effect is best included as part of the entropy 
of the solute. If the solute is an electrically charged ion in 
aqueous solution, it tends to orient the water molecules in its 
neighborhood; this decreases the freedom of motion of the water 
molecules and results in the entropy being lower than it would 
otherwise be.^ 

Solution of a solid salt is a process in many respec^ts resembling 
vaporization, and so would be expected to result in an increase 
of entropy, in spite of the fact that the dissolved ions are free to 
move only in a fraction of the solvent volume. However, the 
effect of the orientation of solvent molecules may be so great as to 
actually cause a decrease in entropy on solution. In any event, 
the effect of orientation is to cause there to be less tendem^y for 
the substance to dissolve. The solubility product of a salt is the 
equilibrium constant for the process of solution and so is a 
measure of the solubility of the salt. The dependence of such 
an equilibrium constant on the energy and the entropy of solution 
is given in Appendix II [Eq. (6) and footnote 1, page 460]. 
The relation, which applies strictly only to perfect solutions, in 
which forces between solute molecules (»an be neglec^ted, is as 
follows: 

RT]nK =^L + TAS^, (2) 

Here R is the gas constant, T the absolute temperature, K the 
solubility product, L the heat evolved on solution per rnole (this 
includes any work done against the constant pressure of the 

, 1 For a more detailed discussion of the significance of the entropy of solu¬ 
tion see Latimer and Kasper, J. Am. Chern. Soc.f 51,2293 (1929), or Latimer, 
Chem. Rev,, 18, 354-^56 (1936). See also Eley and Evans, Trans. Faraday 
Soc., 84. 1093 (1938). 
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atmosphere: L is the negative of the AH of the process), and 
A/S® is the hypothetical change of entropy when one mole of solid 
salt dissolves to form a solution whose concentration is one mole 
per liter. By hypothetical change of entropy is meant the 
change that would occur were the solution a perfect solution, t.e., 
if it were possible to neglect the interaction of the ions on each 
other while in solution. (We call such a hypothetical perfect 
solution with a concentration of one mole pe^r liter a hypothetical 
molal solution.) Since salt solutions are far from perfect, 
Eq. (2) can be only a rough approximation, but it should suffice 
to give the solubility of slightly soluble salts (for in such cases 
we never deal with large concentrations and may neglect ionic 
interactions) and, in any case, will give a fair approximation. 
The fact that a concentration of one mole per liter may not be 
attainable does not prevent us from calculating what the entropy 
of such a solution would be if it could be realized. 

The value of AS® is of considerable importance in determining 
and understanding the solubility of various salts, and we shall 
now concern ourselves with the evaluation of this quantity. 
As may be seen by Appendix II, A/S® is given by the heat absorbed 
when one mole of the salt dissolves to give a hypothetical molal 
solution, divided by T, provided the process is carried out 
reversibly, but AS^ is usually obtained by calculation from other 
thermodynamic quantities. The values for a number of solid 
salts are given in Table 50. 

To understand the values of A/S®, we again find it convenient to 
think of the process of solution as divided into two steps, first the 
formation of gaseous ions with hypothetical concentration of one 
mole per liter, and secondly, the solution of the gaseous ions to 
form a solution, also with the hypothetical molal concentration.^ 

1 The method of obtaining these entropies is briefly as follows. We can 
first get an absolute value for the entropy of a solid salt by use of the third 
law of thermodynamics, which states that the entropy of any substance at 
absolute aero is zero. To find the entropy at some other temperature, use 
is made of the law stated in Appendix II, that the change in entropy on 
changing the temperature is equal to the heat absorbed divided by the 
temperature. The heat absorbed when the temperature is increased by an 
increment dT is Cp dT, where Cp is the specific heat at constant pressure, 
and the corresponding entropy change is Cp dTjT. The entropy at some 

temperature, say Tj, is, therefore, given by which may be 
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We write 

ASo = AiSjO + 

where ASi^ and AS2^ refer, respectively, to the two steps just 
described. Values of ASi^ for a number of solid salts are given in 
Table 51. AS2^ is the entropy of solution of a pair of ions and 
may be written 

AS2^ = AS+ + AS- ' 

where AS'^ and AS~ refer to the positive and negative ions, 
respectively. By a study of electrolytic cells in which the two 

Table 50.—Entropies of Solution of Solid Salts to Form 
Hypothetical Molal Solutions at 25°C. 
(In calories per mole per decree Centigrade) 

Li+ Na*^ Ag+ Mg++ Ca++ Zn++ Cd-^+ 

F~. -1 6 -32 -25 
Cl-. 3 10 18 8 -23 -21 -9 
Br”. 14 21 12 -19 -11 
I~. 17 25 15 -14 -4 
NOa-. 21 27 21 
so.--. -26 -3 8 -s! -33 -25 -52 -46 
COs—.1 -171 -18 -60 -46 -38 -58 

1_ 
-68 

i i 

electrodes are at different temperatures, it is theoretically 
possible to get the entropies of the separate ions in solution.^ In 
this way, it has been possible to get the values of AS'^ and AS~ 

given in Table 52. 

evaluated if Cp is known as a function of T. In this way the absolute 
entropy of the salt can be obtained; the entropy of dissolved ions can be 
obtained from the entropy of the solid salt and the entropy change on 
solution, and the entropy of the gaseous ions can be obtained by statistical 
mechanical calculations. This gives all the data necessary for finding the 
quantities given in thfe tables. Actual data in the tables are taken from 
Landolt-Bomstein, **Tabellen,” Latimer, Pitzer, and Smith, J. Am. Chem. 
Soc.y 60, 1829 (1938), and Latimer, “The Oxidation States of the Elements 
and Their Potentials in Aqueous Elutions,” pp. 328-333. 

^ Knowing the absolute entropy of only one ion of course makes it possible 
to determine it for all others. For this purpose we use tha value for 01~, 
obtained by Eastman and Young (quoted by Latimer, Chem. Rev,, 18, 
355 (1936). 
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From Table 51, it is seen that the values of ASi^ are all 
accounted for if the entropy of vaporization to form gaseous ions 
is in all cases about 20 cal. per mole per degree per ion. The 
great variation in the valuCvS of AS^ is to be ascribed to variation 
in AS2^j and this is understood by considering the values of AS‘^ 

Table 51.—Entropies of Ionization of Solid Salts to Form Gaseous 

Ions at Hypothetical Molal Concentrations, at 25®C. 
(In calories per mole per degree Centigrade) 

Li+ Na-^ K' Ag+ Ca-^-^ cd-^+ 

F-. 45 43 71 

Cl". 41 42 41 41 ' 68 63 66 
Br".i 42 41 41 1 65 65 

I".I 1 41 41 40 62 63 

Table 52.—Entropies of Solution of Gaseous Ions, at 25®('5. 

(In calories per mole per degree Centigrade) 

H**. -24.3 Ca++. -51.2 Fe+-'-. (-69.) 
Li-*-. -25.3 -41.2 .! (-112.) 
Na'^. -19.6 

. 

.i (-69.) -119.3 
-11.0 Zn-^ +.i -67.0 

. 
F-. -26.1 . 

Rb^. -8.8 Cd^^-. -59.3 Cl”. -12.2 
Ag-^. -20,7 Hg++. -51.1 Br“. -8.4 
T1+. -9,6 Sn+-'-. -48.0 I-. -4.2 
Mk+-^. -70.0 Pb++. -40.8 S"”’. -26.3 

Doubtful.values in parentheses. 

and AS^. It will be seen that the smaller the ion (of given sign 
and magnitude of charge) and the larger the charge, the more 
negative is the value of AiS+ or A/S~. This is exactly what is to 
be expected, for the greater the force the ion exerts on the sur¬ 
rounding water molecules, the more the water molecules should 
be tied up,, with consequent reduction of their freedom of niptioh. 
This results in thp*lowering of the entropy of the system. It will 
be seen that this effect is great enough to make the molal entropy 
of WblutiPn (Table 50) of most of the salts involving polyvalent 
ions negative, even in the cases where there are three ions per mol¬ 
ecule, in spite of the large values of ASx^ when three ions ^re pres¬ 
ent. Where complex ions are involved, we have not attempted 
to break down the entropy of solution into component parte, 
but roughly speaking, the entropy of solution is of similar magni-^ 
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tude to that of molecules involving simph^ ions of the same 
valence type. 

It is of interest to note that in the entropies, as well as in the 
energies of solution of gaseous ions, there is a lack of symmetry 
between positive and negative ions.^ We may, for example, 
compare K*^ and F~ which have nearly the same ionic radii. 
The value of for has been taken as 71.7 kg.-cal., whereas the 
value of L~~ for F“ is 125.9 kg.-cal. This much greater heat of 
solution would indicate that F“ has a greater effect on the solvent 
than K"^, and this is borne out by the miu^h more negative value 
of the entropy of solution of F“, indicating that it restricts the 
motion of the water molecules much more than does K*^. In 
the case of I~, the entropy of solution is so low that it is of the 
right order of magnitude to be accounted for on the supposition 
that the only effect of the solvent is to occupy space, so that a 
dissolved I"" does not have so much room to move around in the 
solution as in the gas phase.- This is the sort of situation in 
which a solvent would act as though it were a continuous dielec¬ 
tric in which the molecular structure were unimportant, and 
may offer some justification for our procedure in calculating the 
energy of solution of I" on that basis. 

Another property that is related to the entropy of solution of an 
ion is the apparent volume of the ion when in solution. This 
property has been discussed especially by Bernal and Fowler,® but 
our discussion will differ somewhat from theirs. The apparent 
volume of an ion in solution is defined as the increase in volume^ 
per ion when a salt containing that ion is dissolved. As in the 
case of other properties, it is not possible without further hypo¬ 
thesis to separate the change of volume due to the positive and 
that due to the negative ions. However, at infinite dilution 
the difference in the apparent volumes of two halogen ions, let 

1 See Latimer, Chem, Rev., l9, 354-356 (1936), and Latimer, Pitzku, and 
Slansky, J. Chem. Phys., 7, 108 (1939). 

* The ion is probably free to move in a space equal to ordy A ti) f io of 
that occupied by the solvent [see Horiuti, Zeita. Elekirochem., 39, 22 (1933); 
Evans and Polanyi, Tram. Faraday Soc., 81, 891 (1935); Rice, J. Chem. 
Phya., 6, 353 (1937); Eyring and Hirschfelder, J. Phys. Chem., 41, 249 
(1937)]. This would indicate an entropy of solution of —-K In 10 to —-R In 
100, or —4.6 to —9.2 calories per mole per degree. 

* BipRNAt/ and Fowler, J. Chem. Phys., 1, 531 (1933). 
♦This increase in volume the difference In volume between solution 

and pure solvent. The volume of the solid salt is not added to the latter. 
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US say, combined with a particular positive ion, should be inde¬ 
pendent of which positive ion this is. This is found to be the case, 
presumably within experimental error. Slightly modifying the 
procedure of Bernal and Fowler, we have attempted to get the 
apparent volume in solution of the separate ions by assuming that 
in Csl, which has large ions that presumably have the smallest 
effect on the water molecules, the volume is divided between 
Cs"^ and I~ in the ratio of the cubes of the ionic radii. The 
apparent volumes of other ions can then be obtained, and these 
are given (together with the volumes of spheres with radii equal 
to the ionic radii of Table 16) in^ Table 53. It will be seen that 

Table 53.—Apparent Ionic Volumes in Solution 

In A*. 

Experimental, "C. 
Calc, from 

Table 16 
0 25 50 

H+. -3. 

Li+. -4.7 -5.7 -6.7 0.9 
Na-*'. -9.8 -6.6 -5.1 3.6 
K+. 7.8 10.3 11.3 9.9 
Rb-^. 16.3 18.7 19.8 13.6 
Cs+. 28.2 ; 30.9 32.1 20.2 
Ag+. ca. —10 8.4 
Mg++. -43.6 -44.0 -45.2 2.3 
Ca++. -39.1 -36.3 -37.2 .6.9 
Sr+-". -42.0 -37.8 -36.8 9.6 
Ba++. -34.2 -28.8 -26.9 15.0 

F”. 1.9“ 10.5 

qi-. 30.6 33.6 34.5 24.8 
Br-. 41.4 45.3 46.6 t 31.1 
I-. 58.8 64.4 67.1 42.2 

NOr.;. 53. 
1 
1_ 

• 18®C. 

^ Values for alkali and halide ions (except F“) from tabulation of dif¬ 

ferences of partial molal volumes, Landolt-Bornstein ‘‘Tabellen,” III, 
Ergfinzungsbd., p. 382. Value for NOa" from RbNOa after H. Smith, in 

Landolt-Bdmstein, “Tabellen,^^ III., p. 383. Values for F~ and Ag'^from 
data in * international Critical Tables.'* Va lues for alkaline earth ions 

from data and calcidations kindly furnished by W. C. Root (Thesis, 

Harvard University); for H'*' from calculations by W. C. Root based on 
* * Iniemational Critical Tables.'' 
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for a number of the large ions the apparent ionic volumes are 
slightly larger than the calculated values and parallel them rather 
well. The small ions, however, which exert large forces on the 
water molecules, sufficiently increase the density of the water 
so that the apparent ionic volume becomes small. Negative 
values presumably mean that the electrostatic attraction between 
ion and water is so great that the openwork structure of the 
water is broken down, and a number of water molecules coordi¬ 
nate with the ion, forming a complex ion. 

There is, apparently, a limit to the negative value of the appar¬ 
ent volume of a univalent ion; in fact, at 25® those of Li+ and 

are less negative than that of Na+. Lithium and hydrogen 
are smaller than the holes in the water structure and so are prob¬ 
ably not centered in the holes. ^ This seems to diminish their 
effectiveness in breaking down the water structure, at least at the 
lower temperatures. 

In the case of polywalent ions, the forces are much greater, and 
large negative volumes occur. 

It will be seen from a comparison of the tables that there is a 
relation between the entropy values and the volumes. The 
parallelism between calculated volume and observed apparent 
volume breaks down badly in those cases in which there is a 
large negative value of the entropy pf solution of the gaseous ion. 

19.6. Relation between Energy and Free Energy of Solution 
of Ions.—In view of the facts brought out in the preceding sec¬ 
tion, it may be profitable to attempt a more exact interpretation 
of Bom's expression for the energy of solution of an ion 

This is the actual reversible work necessary, according to 
electrostatic theory, to take an ion bodily out of solution. 
It thus resembles a free energy of solution rather than an energy 
of solution, because removing the ion from solution also changes 
the condition of the molecules of the solvent, and this may be 
reflected in absorption or evolution of heat, which has to be taken 
into account in computing the energy change, but not in com¬ 
puting the free-energy change, which is given by the reversible 
mechanical work done on the system. From thermodynamics, 

' (Compare Gibson, Sci, Mardhhjf 46, 115 (1938). 



412 WATER AND AQUEOUS SOLUTIONS Sec. 19.6 

this reversible work AF is equal to Ai? — TAS, where LH is the 
change of the heat content on taking a mole out of solution, in 
this case equal to or L~, while AiS is the change of entropy^ (see 
Appendix II). This suggests that it would be better to com¬ 

pare the expression^ “^^1 with L* + TAaS^, where Afi^^ 

is taken from Table 62, rather than to compare it with itself. 
However, the theory visualizes a process in which each individual 
is handled and moved separately by some external agency, but 
in which, of course, no such control is maintained over the solvent 
molecules, which are free to move under the influence of the field 
of the ion. This means that the A5 term used to calculate AF 
should not contain any contribution from the change in the 
freedom of motion of the ions themselves on solution, but only 
from that part of AS^ that is due to the effect of the ions on 
the solvent. Now it was indicated above that it is reasonable to 
assume that the entropy of solution of I~ ions, —4.2 cal. per 
mole per degree, is entirely due to the change of the freedom of 
motion of the ions; therefore, in calculating AF for comparison 
with the theoretical expression, AS will be set equal to zero, so 
AF == L”, for I“. It is then clear that the set of values of L+ 
and obtained by assuming L~ to be given correctly by the 
theoretical expression in the case of iodide ion is consistent 
with the present considerations. In all other cases, AF will be 
different from or L~, If it is assumed that the change of the 
freedom of motion of all the halide ions is the same as for I““ (and 
this is certainly a reasonable assumption as. the correction is 
practically negligible in any event), then the change of entropy 
due to the effect on the solvent is obtained by subtracting 
— 4.2 from A/S~, giving 

AF = L- + T{^S'- + 4.2). 

Values of AF at room temperature, obtained in this way for the 

^ Care must be taken to keep the signs straight. AH is the change of heat 
content on taking an ion out of solution, hence it is positive if heat is added 
to the system when an ion is removed. is positive if heat is lost by the 
system when an ion is jmt in. Hence AH » ^. Here AS is the change 
of entropy on removing an ion from solution, whereas AS^ is the change of 
entropy when an ion is dissolved. So if these are equated, it must- be with 
opposite signs. 

* AT ^ Avogadro’s number (see note on page 461). * 
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several halide ions, are as follows: F*”, 119.5; Ch, 89.8; Br”', 83.5. 
It is observed that these are in remarkable agreement with the 
calculated values of given in Table 48; this may, however, be 
to some extent fortuitous. 

If a similar correction is attempted for the positive ions, the 
disagreement between calculated and observed values of is 
greater.^ 

It seems worth while to consider the matter under discussion 
from another point of view. It is known from thermodynamics^ 
that A/S = --(d/\F/dT)p (the subscript indicates that the 
differentiation is to be performed at constant pressure). So the 
equation AF = AH ~ TAS may be written 

. AH + 

If we set AF = found that 

\dT Jp 2r D\dT)p 

which is always small compared with AF if Z)*is set equal to the 
dielectric constant of water; —‘T(dAF/dT)p turns out to be 
approximately 0.018iVe2/2r. 

The calculated value of -‘T(dAF/dT)p or TAS should, of 
course, be compared, for the halide ions, with the experimental 
value of^ 

~r(AS- + 4.2) 

'Latimer, Pitzer, and Slansky, J. Chem, Phys,, 7, 108 (1939), have 
recently made a calculation which is similar to the one given in this section. 
They found that by adding 0.85A. to the radii of the univalent positive ions, 
they could be brought into line also. This is connected with the asymmetry 
of the water molecules discussed above, it being assumed that the center 
of the electrical dipole cannot get closer than 0.85A. if the dipole has the 
negative end nearest the ion. Latimer, Pitzer, and Slansky also believe 
that better results are obtained if 0.10A. be added to the radii of the negative 
ions. This leads, it is true, as noted in the footnote, p. 402, to a set of values 
for the energy of hydration which are in slightly better agreement than ours 
with those based on electrocapillary measurements. 

* See Lewis and Randall, Thermodynamics and the Free Energy of 
Chemical Substances,'Vp, 172, McGraw-Hill Book Company, Inc., 1928, 

* With regard to the signs, see the footnote on the preceding page. 
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rather than with —TAS”, itself. But our apparently reason¬ 
able assumptions have made T(AS~' + 4.2) equal to zero for 
I" , and it is indeed doubtful whether I~ should tie up the 
water molecules more than they are tied up in pure water. It is 
true that —TAS~ for checks approximately with the theo- 
n^tieal value of 0,01SNc^/2r, but it is questionable whether this is 
significant as neither — TAS"^ nor — TiAS'~ + 4.2) checks at all 
well for the other negative ions, not to mention the positive ions. 
These difficulties are all connected with the rough approximation 
of treating a molecular medium as a continuous dielectric with 
unvarying dielectric constant, as Born’s formula does. The 
validity of applying Born’s formula for the calculation of AF may, 
then, also be questioned. The difficulties involved in this case 
should not be too serious, however, if the entropy effect is not too 
great, since the term involving D has a relatively small effect on 
the calculated value of Al\ 

19.7. The Factors Affecting Solubility. Illustrative Examples. 
All of the alkali halides are very readily soluble except lithium 
fluoride, which is soluble only to the extent of 5 X 10”^ mole per 
liter. The heat absorbed on solution of lithium fluoride is, how¬ 
ever, less than is the case with a number of the other alkali 
halides. The insolubility of lithium fluoride must therefore be 
referred to the entropy of solution. It is interesting to compare 
lithium fluoride with potassium bromide, which absorbs more 
heat on solution, but is very soluble. The contributions to the 
quantity on the right-hand side of Eq. (2), page 405, may be sum¬ 
marized as follows (with all entropies expressed in kilogram- 
calories per^mole per degree to be comparable with energy term 
expressed in kilogram-calories per mole): 

L A6V ASf® L-f TAiSf‘>(7’ * 298®abs.). 
LiF. -0.7 0.044 -0,051 -0.007 -2.8 
KBr.... -5.1 0.041 -0.019 0.022 1.5 

The value of ASi^ for LiF has been obtained from Table 51 by 
extrapolation. The value of the solubility product calculated for 
LiF from Eq. (2), page 405, is about 8.7 X 10~®, corresponding to 
a solubility of 9 X 10**® jjjole per liter, which is in good accord 
with the observed value. It is of interest to note that the low 
solubility as compared with potassium bromide may be traced 
to the large negative value of ASa®, which is ultimately due to the 
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fact that the small lithium and fluoride ions exert great forces 
on the water molecules and so restrict the freedom of motion of 
the latter. Although it is hardly correct to say that any one 
factor is responsible for the solubility or insolubility of a salt, 
it may, at least, be said that the large forces exerted by the ions 
on water and consequent entropy effect are an important con¬ 
tributing factor in making LiF only slightly soluble. 

The silver halides show a ver^ different behavior from the 
alkali halides, silver fluoride being soluble, whereas silver cliloride, 
bromide, and iodide are practically insoluble, the solubility 
decreasing in that order. But the entropies of solution of the 
silver salts are almost identical with those of the corresponding 
sodium salts. It is, therefore, obvious that the difference in 
solubility of sodium chloride and silver chloride has to do prin¬ 
cipally with the heat of solution, and it is, indeed, true that when 
silver chloride is dissolved 16 kg.-cal. per mole are absorbed, 
whereas in the case of sodium chloride only 1 kg.-cal. per mole 
is absorbed. In order to analyze this difference, let us turn to 
Eq. (1), page 401. L” is the same for the two salts. is 
15 kg.-cal. greater for Ag*^ than for Na"^. This tends to favor 
the solubility of the silver salts; however, it is more than counter¬ 
balanced by the fact that — t/o is 30 kg.-cal. more for AgCl than 
for NaCl. Since these salts have almost the same interionic 
distance, it is seen that this difference must be mostly duo to tln^ 
difference in the type of binding in the respective lattices. 
Indeed, we have seen (Chap. XIV, Table 21) that van der 
Waals forces contribute 29 kg.-cal. and covalent forces 11 
kg.-cal. to the lattice energy of AgCl. These forces, then, are 
very largely responsible for the insolubility of AgCl. 

In Chap. XVI, we noted that the distance between silver and 
chlorine atoms in silver chloride is smaller than expected theo¬ 
retically for ionic compounds (see Table 38, page 335). This is, 
presumably, another indication of the partially covalent char¬ 
acter of the bond. The theoretical radius of the silver ion 
(Table 16) is closer to that of potassium than to that of sodium 
ion. In calculating the lattice energy of silver chloride, the 
actual instead of the theoretical atomic distance is used. Had 
the latter been used, the discrepancy between the actual and 
theoretical lattice energies would have appeared greater, which 
would seem to reinforce the opinion that the covalent character 
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of the bond in AgCl is in large part responsible /or its insolubility. 
In the case of silver fluoride •the interionic^istance coincides 
fairly closely with the theoretical. In this salt, the forces are 
probably largely ionic. The salt might be expected to resemble 
somewhat potassium fluoride. The silver ion in solution, how¬ 
ever, does not differ from that produced by silver chloride, and 
its high heat of solution would tend to increase the solubility 
as compared with potassium fluoride. On the other hand, the 
(mtropy of solution of silver fluoride is lower than that of potas¬ 
sium fluoride, but not enough lower to. counteract the energy 
effect. 

There is thus an interesting difference between silver chloride 
and silver fluoride, resulting largely from the nonionic contribu¬ 
tion to the ])inding in the former. The increasing insolubility 
of the bromide and iodide is related to the increasing amount of 
covaleney in their binding. The solubility of various silver 
salts may b(‘ compared with the solubility of corresponding 
sodium salts, and a general view of the behavior of the silver 
salts thereby obtained.^ The solubility of most sodium salts is 
rather large, and it may be assumed that the solubility product of 
u series of such salts will not vary except by a factor that is small 
compared with the variation of the. solubility products of the 
corresponding silver salts. The solubility product of the sodium 
salts, therefore, may be roughly taken as constant. Further¬ 
more, it is seen from Table 50 that the entropies of solution of 
corresponding sodium and silver salts are much alike. There¬ 
fore, from Eqs. (1) and (2) we* get for any pair of salts AgX and 
NaX the following equation^: 

• BT In - BT In = L* - L+. + 

Since RT\n is assumed to be constant and and are 
also constants, the value of In for different salts® (different 
X’s) should give an approximately straight line when plotted 
against Uj^x That this is actually the case is shown in 

^ See Fajan«, Zeits. KHst., 66, 343^. (1928). 
* For the sake of simplicity, we drop the subscript, 0, on the U*a, 
® We can include on the same diagram salts of the type Ag2X, where X is 

a bivalent radical, if for these salts we plot i In XAg^x as ordinate and 
Ua^sX. — as abscissa, where UAutx and are the lattice energies 
for that amount of salt containing one gram of silver and sodium 
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Fig. 72. The strMght line df)e8 not appear to have the right 
slope; but this is due to the fact that the solubility products of 
the sodium salts are actually not all exactly the same.’ The 
interesting point which it is desired to bring out here is the 

10 20 30 40 50 60 70 
" ('JAgX'tiNaX) 

Fig, 72.—Solubility products and lattice energies. Theoretical slope for 
18®C. Data for the carbonate and halides are for 25°C., but difference is within 
experimental error. Value for Ag2S very rough. {Data from Landolt-Biirnstein, 

^'Tabdlen.”) 

dependence of the solubility prodxict on the character of the bind¬ 
ing of the salt. Roughly speaking, assuming that the sodium 

respectively. It should be noted that the solubility product is the equilib¬ 
rium constant for the reaction 

AgX {solid) ^ Ag’*'{aq) -f X”(ag) 
or 

Ag2X {solid) ^ 2Ag'^(ag) -f Xr‘{aq) 

and the actual solubility of th<* substance may be greater than that calcu¬ 
lated from this equilibrium because of the effects of other reacdJons, namely, 
hydrolysis and complex formation. 

' The discrepancies are practically entirely accounted for by this variation 
in the solubility products of the sodium salts, as appears from a tabulation 
in Chap. XXI of Latimer, reference Up. 406, (Ihese solubility products 
are corrected for deviations from the perfect solution laws, and so can be 
used directly in the equation-^actually Latimer gives free energies of solu¬ 
tion from which corrected solubility products are calculated directly.) 
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salts are ionic, is a measure of the deviation from 
the pure ionic type of binding in the silver salt, and it is seen 
that a lar^e deviation means, on account of the logarithmic 
relation, an extremelj’’ small solubility. 

A similar analysis could undoubtedly be made of the solubilities 
of many other salts, but none will be attempted here. Various 
complications may, of course, arise. In some cases, the ions 
formed react- with water, so that the ions present are not those 
which would be expected offhand from the formula of the salt. 
Not all salts in which the binding is purely ionic are soluble. 
For example, this is the case with BaS04 and BaCOs. In such 
cases, ions of higher valence are involved, and the solubility 
depends on the relation between the ionic forces in the lattice 
and those in solution. 

In no case will a stable atomic compound dissolve to give 
neutral atoms in solution. It is only the possibility of ionization 
that makes solution of a nonmolecular solid possible. On the 
other hand, there is the possibility of the molecules of molecular 
compounds dissolving in water, depending on the relative 
strengths of the attraction between molecules of the substance 
involv(^d and the attraction between these molecules and water. 
These matters have been discussed in detail by Hildebrand,^ 
and will not be considered here. Molecular compounds may also 
react with the water, perhaps forming hydrated ions, as in the 
case of AUCle (see Sec. 19.9). 

19.8. Ionization of Halides of the Transition Metals.—In the 
account of the complex salts given in Chap. XVI, we have noted 
several cases in which a halogen ion is attached to a central ion 
and is not ionized in aqueous solution. Whether such a halide 
is ionized depends upon the mode of attachment of the halogen; 
if water or ammonia molecules, for example, are directly attached 
to the central ion, filling up its coordination sphere, then the 
halide is ionized, but if the halogen itself is in the coordination 
sphere it is not. This behavior may seem very different from that 
exhibited by the salts of the more electropositive metals, but in 
reality the contrast in behavior is not so great as it may seem. 
For since the ions of the more positive metals also have an 
affinity for water, when the salts ionize in aqueous solution, we 

^ Hildebrand, Solubility,” 2d ed., (Reinhold Publishing Corporation, 
1938). 
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may, to all intents and purposes, consider that these ions hayo 
formed a compound with several molecules of w^ater, they are 
hydrated. This is especially true if the charge on the ion is 
greater than 1. These ions are thus essentially complex ions in 
solution, as has, indeed, been indicated already. 

The question as to whether a halide will be ionized in aqueous 
solution is largely a question as to w'hether the positive ion has a 
greater attraction (under the conditions existing in the solution) 
for the halide ion or a water molecule. This question is always 
decided in favor of the water molecule in the case of the alkali 
and alkaline earth metals, but the matter is more doubtful in tlu' 
case of a transition metal. The situation is further complicab'd 
in the case of the latter by the fact that equilibria are fre¬ 
quently not established rapidly. Thus we have seen in Sec. 
16.2 that the equilibrium in aqueous solution between thc^ 
various aquochromichlorides is slowly established. 

In the case of the typical weak electrolyte HgCU, which 
ionizes only very slightly in aqueous solution,^ the (equilibrium 
must establish itscdf rapidly, for it undergoes the usual ionic* 
reactions, such as precipitation of mercuric iodide by j)otassiiun 
iodide. 

The equilibria involved in the interchange of halogen ions 
and water in complex ions have not been found at- all simple, 
nor have the conditions under wdiich such interchange takes 
place been systematically discussed. It is thus scarcely safc^ 
to make any definite quantitative statements with regard to the 
difference between the alkali and alkaline earth metals on the (>ne 
hand and the transition metals on the other. Qualitatively, it 
appears that the force betw^een the transition ions and chlorine, 
bromine, or iodine is relatively greater (as compared with th(^ 
force between the ions and w^ater molecules) than is the case with 
the more metallic ions. As seen in Sec. 19.7 by comparing 
sodium and silver salts, it seems probable that this is an expression 
of a greater tendency of the bond to be covalent and of a greater 
importance of van der Waals forces when a transition metal 
is involved. The water molecule is so much smaller than a * 
chloride ion that one W'Ould expect the force between the water 

' HgCU is perhaps ionized in saturated solution at 25®. See Mellor, 
“Comprehensive Treatise on Inorganic and Theoretical Chemistry,'' vol. 
IV, p. 822, Longman^, Green & Company, 1928. 
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and the metallie ion (though only an ion-dipole force as contrasted 
to an ion-ion force) to be greater than that between the metallic 
ion and a chloride ion, or at least great enough so that in the 
presence of the large excess of water in aqueous solutions the posi¬ 
tive ion would be hydrated without question, as always occurs 
with an alkali or alkaline eart.h metal, and with the metals of the 
aluminum group. ^ However, the very fact that the chloride ion 
is fairly large renders it liable to distortion in the field of a small 
positive ion; ^.c., the bond tends toward covalency instead of 
being electrostatic. 

Furthermore, as we have seen, hydration may, if the ion is 
small, involve a large decrease of entropy due to the tying up of 
the water molec^ules; this discourages ionization, and makes it 
possible for weak electrolytes to exist (especially when the posi¬ 
tive ion is at least divalent) if the bond is sufficiently covalent. 
The transition ions are very small, and it seems likely that the 
(Uiergy involved in the distortion of the halogen is what turns the 
balance so that the complex ions containing chlorine, bromine, 
or iodine become more or less stable iji aqueous solution. The 
magnetic criterion applied to the salt (NH4)2 [FeCl5H20] does 
indeed indicate that the binding is not covalent, but in this case 
the complex ion is undoubtedly not extremely stable. 

On the other hand, the binding in most complex ions containing 
fluorine is in all probability ionic. An example is FeFc-, and 
the statc'ment would certainly be true for ScFo . The latter 
ion is quite stable in aqueous solution,^ and it is probable that 
FeFfi is also—at least it is known that Fe++"^ and F~ have a 
strong tendency to combine in aqueous solution,'’* but this is not 
surprising, for the fluoride ion is so small that the force between 
ft and the central ion is quite large. One could not in such a case 
predict offhand whether the complex ion should be stable or not, 

^ This happens despite the possibly covalent character of the binding in 
aluinimmi chloride discussed in Sec. 17.3, and the fact that its crystal cron- 
tains molecules of the formula AbCb (see Sec. J9.9). This bespeaks an 
extremely strong bond between aluminum and the oxygen of the water, in 
agreement with the amphoteric character of aluminum hydroxide (see Sec. 
19.10). 

*See Weinland, *‘Chemie der anorganischen Koinplexverbindungen,'* 
p. 149, Ferdinand Enke Verlag, Stuttgart, 1924. 

®See Abegg, ‘‘Handbuch der anorganischen Chemie,” 4. Band. 3. Abt,, 
2, Tail, p. B158, Verlag von S. Hirzel, Leipzig, 1935. • 
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and no attempt at theoretical calculatioiivS have yet been made, 
as far as the author is aware. 

It must be stated that we have made little attempt in the 
foregoing discussion to evaluate the possible influence of van 
der Waals forces. This is hardly possible in the present state 
of knowledge, but Sec. 19.7 indicates that it may not bo 
inappreciable. 

19.9. Hydrates.—Since many salts readily dissolve in water, it 
is not at all surprising that in many cases hydrated crystals are 
formed. These may be considered to be in a sense intermediate 
between aqueous solutions and anhydrous crystals. 

Bernal and Fowler^ suggest a classification of hydrat(\s into 
three types. (1) There are liydrates in which the wat(»r merely 
occupies holes in the crystal. (2) There are hydrates in which 
the water appears to be definitely attached to a specific ion, 
surrounding it in what may bo called a coordination sphen^. 
(3) The crystal may resemble ice in whi(*h the ions are dissolved, 
the crystal melting, on heating, in its own water of hydration; 
such a crystal would be Na2SO4*10H2O, for example. It is not 
certain, however, that crystals of the first two classes will always 
lose water by evaporation rather than melting in their own water 
of hydration,^ nor it is certain that tlie reverse will be true of th(‘ 
latter class of crystals. Furthermore, it may often be difficult to 
decide, even when the structure of a crystal is known, to which 
class it may most logically be assigned. 

One thing is fairly certain, however, and that is that the more 
or less tetrahedral structure of the water molecule is often of 
considerable importance in determining the structure of a crystal. 
An example of this is furnished by the hexahydrated magnesium 
halides.’* In these salts, the magnesium ion is surrounded by 

^ Bernal and Fowler, /. Chern, Phys.j 1, 533 (1933). 
* It might be supposed that water molecules which merely fill a hole 

in a crystal would be easy to remove, but Fajans (private discussion) has 
suggested that they will be relatively hard to remove. If the space for the 

water molecules is already present it will not b(? necessary to do any work in 
order to make the holes in which they are to rest. On the other hand, if it 
is nee.ossary to make the holes before putting in the water mohMuiles, the 

iiydrate will have a relatively high energy and hence be unstable. 
AIF3 IH2O is an example of an extremely stable hydrate in which the water 
occupies holes in the crystal structure. 

® For crystal structures and references see the Strukturhericht. In 
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six water molecules in the form of a regular octahedron. Two 
halogens are close to this group and near the center of opposite 
faces of the octahedron. At each of the six other sides,, there is a 
halogen which is displaced from the center of the face toward 
one of the water molecules. Although it is not possible by means 
of X-ray determinations to locate the hydrogens in a crystal, it 
.seems probable that each of the two halogens that are near the 
c(mterH of opposite faces has a hydrogen from each of the three 
waters of the face directed toward it. The other hydrogen from 
(‘ach H2() inol(3Cule is directed toward one of the* other halogens. 
Although the tetrahedral structure of the water molecule is not 
too directly in evidence, it appears that each water molecule 
has its negative end (or ends) directed toward the central mag¬ 
nesium ion and is in contact through hydrogen bonds with two 
halogen ioris.^ Each of the latter is joined to several waters 
through hydrogen bonds. This peculiar arrangement of the 
chlorines about the water tetrahedron naturally results in a rather 
complicated crystal structure. It is in contrast to the situation 
that exists in the case of several ammonia complexes of similar 
structure, e.g,, Ni(NH8)6CU, Ni(NH3)6Br2, Ni(NH3)6l2. In 
the.se compounds, which have the fluoritp structure, the Ni- 

ion is likewise surrounded by eight halogen ions, but 
each of the latter is opposite the center of a face of the ammonia 
octahedron, thus making possible a more regular crystal arrange¬ 
ment. Each halogen is surrounded by four Ni(NH3)6'^'^ groups 
at the corners of a regular tetrahedron. 

Another interesting example of the influence of the structure 
of the water molecule is furnished by NiS04-7H20. In this case, 
(‘aeh Ni+^ has six waters coordinated about it, and there is one 

most cases we give only those details of the crystal structure which are 
necessary for the understanding of the role of the water in the crystal. 

However, concerning the crystal di.scu88ed in this paragraph see Appendix 
IV. 

^ The H—O—H angle appears to be greater than the tetrahedral angle. It 
is .suggested by Andress and Gundermann, Zeits. Krist., 87, 366 (1934), who 

determined the struc-ttire of these crystals, that this is connected with the 
.strong force the magnesium exerts on the surrounding oxygens. This 

loosens the hydrogens (as evidenced by the tendency of the salt to hydro¬ 
lyze) (see Sec. 19,10) and may well cause a change in the valence angle. For, 
when the OH bond is made more polar, the positive charges on the hydrogens 
are less nexitralized, and tend to push away from each Other. 
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remaining water that does not come into contact with an Ni^^. 
There are two types of coordinated water molecule. (1) Of the 
six water molecules about a given nickel ion, four have three 
bonds in a plane (i.e., there is what might be called a double 
bond to the nickel, and the two hydrogens make contact with 
oxygens, which may be from the sulfate group, the negative ends 
of an uncoordinated water molecule, or the negative end of one of 
the other type of water of coor¬ 
dination belonging to a different 
nickel ion). (2) The other two 
waters of the coordination 
group arc tetrahedral, one of 
the negative spots making a 
contact with the nickel, and 
the other with a hydrogen of 
an uncoordinated water, or a 
hydrogen of a water of coor¬ 
dination from another group, 
while the two positive spots 
each contact a sulfate oxygen, 
or the negative end of an un- 
(^oordinated water. The un¬ 
coordinated water is also 
tetrahedral. In NiS04*6H20, 
the nickel is again six-coordi¬ 
nated, and the general structure 
of the coordination group is the 
same as before, i.e., four of the 

Fig. 73.—Water molecule with three 
bonds in a plane in hydrates of NiSOi. 
The black circles indicate the location of 
the hydrogens in the water molecule. 

vaters have three bonds and two 
are tetrahedral. 

In Al(H20)6Cl3 and Cr(H20)6Cl3, there are six water molecules 
arranged in the form of a regular octahedron about the metal 
ion. Each water is combined with two Cl”"\s, presumably 
through hydrogen bonds, the angle between these bonds being 
about 105°, nearly the tetrahedral angle. The Cl^^s form bridges 
between the complex ions. These salts have a tendency to split 
off HCl even at room temperature (hydrolysis), indicating the 
great affinity of the metal ion for oxygen and the force with 
which it displaces the electrons away from the hydrogen.^ 

* See footnote 3, p. 420, and Andress and Carpenter, Zeiis. Krist.^ 87, 

462 (1934). 
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Tt will bo noted that in the aluminum and ehromium salts 
(^jioh water has only two Vxmds to atoms other than the (central 
metal, while in the nickel salts described above two of the waters 
exhibit three ^^externar* bonds. It has been suggested by 
Beevers and Schwartz^ that this difference is characteristic of 
the metals, and Cr^*^ being able to satisfy all twelve 
negative bonds from the six water molecules, whereas Ni^ + can 
satisfy only ten. The exact reason for this is not clear, though 
it might reside in the greater positive charge of the trivalent ions. 
If there really are ten or twelve bonds of a covalent nature, they 
are obviously a different type of bond than those considered in 
Sec. 15.2, and as a matter of fa(^t measurements of magneticj 
susceptibility indicate that the bonds in NiS04-7H20 are ionic 
or semicovaleiit. 

The great contrast between the structure of anhydrous alumi¬ 
num chloride (which, as seen in Sec. 17.3, is a molecular com¬ 
pound) and that of the hydrated salt is of inttirest. Aluminum 
chloride in sufficiently dilute solution appears to be completely 
ionized,^ though it is somewhat hydrolyzed. The ion in aqueous 
solution undoubtedly has a structure like that in the hydrated 
salt. It is this possibility of reversion to a stable Iiydrated form 
that makes aluminum chloride soluble. The large magnitude 
of the forces operating between aluminum and oxygen may, then, 
be said to be chiefly responsible for the solubility of tlie salt, but 
the possibility of hydration of chloride ion also plays a necessary 
role. Even though the binding in solid anhydrous aluminum 
chloride is not ionic, we may consider the process to be broken 
up into the usual steps (s = solid, g = gas, aq = aqueous): 

iAUCAc. is) (g) -f- 301“ (g) 
A1+++ (g) ^ (aq) 

3Cl- (g) 3C1-* (aq) 

The first step requires an energy of 1270 kg.-cal., and as may be 

1 Bebvbrs and Schwartz, Zeits, Krist.y 91, 168 (1935). 

* This must be the case, for the value obtained for the heat of solution of 

appears to be the same regardless of whether data for AbCU or 
another halide are used to calculate it. Thus the state of Al+"^+ in solution is 

independent of the particular aluminum salt. It should be remarked that 

this use of the heat of solution is an illustration of a general method. It 
may often prove a valuable source of information regarding the state of an 

ion in solution. 
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seen from Tables 49 and 48, the latter two evolve energies of 
1071 and 3 X 92.1 = 276 kg.-cal., rospoctively. The affinity 
of aluminum ion for liquid water, given by the second reaction, 
is not quite so great as its affinity for gaseous chloride ion, given 
by the first reaction; but the additional energy of hydration of the 
chloride ion more than balances the difference. Crystalline ^ 
Al(H20)6Cl3 gives out only about 13 kg.-cal. on dissolving. 

It is of interest that the aluminum fluoride crystal does not 
give evidence of molecular structure. The structure is rather 
complex and irregular, but each aluminum ion is nestled in 
among fluoride ions, and the structure is probably close to being 
truly ionic. It is not close-packed, and hydrates are known, 
ranging from AlF3-3iH20 to AlF3*iH20. In AIF3-2H2O, which 
has a stnicture practi(ially identical with the anhydrous salt., 
the water is probably in interstices in t-he crystal. It is cpiite 
evident that in this crystal the structure of the water molecule 
cannot play the same role that it does with the other crystals 
we have discussed, for it is close only to the negative fluorine ions 
and does not come near to the positive ions at all. It is, never¬ 
theless, very difficult to drive the last half molecule of water out 
of the crystal requiring strong heating^ [the heat absorbcKl in the 
reaction 2A1F8-H20 («) —» 2AIF3 {s) + H2O {g) is 35 kg.-cal.]. 
It seems very likely that there is at least one hydrogen bond 
between the oxygen of the water and a fluoride ion. 

It is of some interest to note that the dehydration of AIF3 is 
irreversible. The anhydrous salt does not readily take up water 
because of the difficulty of opening up the structure so that the 
water molecules can enter. This difficulty must^also appear 
when the water molecules leave. Some energy is required to 
open the structure, which is later regained when the structure 
again closes after the water molecules have left. In other words, 
the dehydration requires an activation energy. 

An example of a salt containing only one molecule of water of 
hydration is Li2S04*H20. In this case, each lithium is surrounded 
by a tetrahedron of four oxygens. In half these tetrahedra, each 
of these oxygens also belongs to a sulfate tetrahedron; in the other 
half, however, one of*them belongs to a water molecule. This last 
oxygen forms hydrogen bonds to neighboring sulfate oxygens, the 

1 Qee footnot/e 2, p. 421. 
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angle between the two hydrogen bonds of a given water molecule 
being the tetrahedral angle. 

It seems safe to draw the following general conclusions about 
hydrated compounds: (1) There is a tendency for the water 
molecules to be definitely coordinated [through the oxygen, as, 
for example, in A1(H20)6'^'^'^] with a metal ion. This is undoubt¬ 
edly due to the marked displacement of negative charge toward 
the oxygen in the water molecule, together with its small size. 
The oxygen thus can displace negative ions (except fluoride ion) 
from the neighborhood of the positive ion.^ It is seen that this 
tendency is ultimately due to the outstandingly electronegative 
character of oxygen. (2) The structure of the water, except in a 
few cases (whore the adjustment is probably difficult because of 
geometrical reasons), plays an important role in the determina¬ 
tion of the crystal structure. * 

19.10. Acids and Bases.—A large number of substances, w^hen 
dissolved in water, give rise to either ions or OH~ ions. These 
ions, of course, exert strong forces on the water molecules, and the 
H*^, in particular, is probably pretty firmly attached to one of the 
negative spots of a water molecule, so that what is present is 
actually an ion. The question as to whether a substance 
is a strong acid or not will depend on the force with which th(^ 
ionized residue holds a proton as compared with the attraction 
of a water molecule for a proton, in aqueous solution.^ If the 
latter predominates, the substance is a strong acid. 

Most of the commoner acids may be classified into two groups: 
(1) the hydroacids, such as HCl, in which the hydrogen to be 
ionized is a^^ached directly to some negative ion which may be 
considered to be the central atom of the molecule; (2) the oxygen 
acids, in which the hydrogen is attached to an oxygen atom which 
is ill turn attached to a central atom. Other acids are known 
in which the hydrogen is attached to some negative element, other 
than oxygen, which is in turn attached to a central atom, such as 
chloroplatinic a(‘id H2PtCl6. 

^ This, of course, does not occur with the stable complex ions of the 
transition elements, in which, as we have already marked, the forces are, 
at least to a considerable extent, covalent. 

® By adding this phrase we automatically include any effect due to 
hydration. 



Sec. 19.10 ACIDS AND BASES 427 

In the case of the hydroacids, the strength of the acid increases 
with molecular weight. Thus the strength of the acids H2O, 
H2S, H2Se, H2Te increases in that order. The halogen acids 
HCl, HBr, and HI are all strong acids, and may be considered to 
be completely dissociated in water, but HF is a weak acid. This 
trend of the acid strength is merely a manifestation of the fact 
that chemical forces in general become less when atomic or ionic 
sizes increase. It is easier to split a hydrogen ion away from a 
large ion than from a small ion.^ On going across the periodic 
table, the strength of these acids decreases as the electronegativity 
of the element decreases. An electronegative element draws 
electrons to it; these electrons, then, are less likely to be shared 
with the hydrogen, which is thus more readily split off as an ion. 
In the case of the hydroacids, however, the electronegativity of 
negative elements is not always important. Thus, though 
fluorine is the most electronegative element known, it does not 
draw the shared electrons away from the hydrogen sufficiently 
to make HF a strong acid. The small size of the fluorine ion 
causes the forces to be so strong that the acid is weak (in fact, 
it is probable that H2F2 as well as HF2‘" can (ixist in solution). 
However, the greater electronegativity of fluorine as compared 
with oxygen is sufficient to make HF a stronger acid than 
water, and water is in turn a stronger acid than ammonia. 
Ammonia, in fact, does not behave as an acid at all, but as a 
base, as the tendency of the nitrogen to share its extra pair of 

^ This statement, due po Kossel, Ann. Phiysik, 49, 276 (1916), holds as a 

first approximation, when we consider the effective forces between ions in 

solution as well as when we consider the forces between gaseous ions. As 

Fajans, Naturvnsa.j 9, 729 (1921), has pointed out, the process of ionization 
should really be broken up into steps, for example, 

HX {aq) HX (g) (a) 

HX (g) {g) + X- {g) (b) 
(j7) -f X- (g) m (aq) -f X* (aq) (c) 

The energies involved in processes (b) and (c) are large and opposite in sign. 
The overall ionization energy is thus a small difference between large 

quantities. However, in systems as simple as these it seems possible to 
suppose that the results, obtained by assuming that the ionization in solu¬ 

tion resembles ionization in a continuous medium pf constant dielectric 

constant, are roughly correct. Thus if one arranges a series of reactions 
with different X's in the order of the energies of ionization the result will be 

the same for gas phase and for solution. 
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electrons is sufBcient to enable ammonia in aqueous solution to 
rob some of the water molecules of a hydrogen ion.* The 
tendency of phosphorus in phosphine to share its electrons is also 
present, but the forces are so much weaker on account of the 
large size of the phosphonis ion that phosphine is not appreci¬ 
ably basic in aqueous solution. However, phosphonium com¬ 
pounds are known; these salts decompose in water, giving the acid 
and phosphine. The heavier members of the nitrogen group 
of the periodic system do not form this type of compound. 

In the case of oxygen acids, the strength of the acid is deter¬ 
mined to a large extent by the electronegativity of the central 
element. With acids of similar structure, such as H2SO3 and 
H2Se03, the one containing the more electronegative element, in 
this case H2SO3, is the stronger. With extremely electropositive 
elements, the hydroxide is a base instead of an acid, and in 
intermediate cases it is amphoteric. 

An oxygen acid is made stronger by the substitution of a more 
electronegative element for some atom in the molecule. A 
well-known example of this effect of a negative atom is furnished 
by the comparison of chloracetic acid with acetic acid, the former 
being much the stronger. In general, the greater the number of 
negative atoms present in an acid, other things being equal, the 
stronger the acid. This results in a hydroxide, in which the 
central atom has a high valence, being more acidic than one in 
which the same central atom has a lower valence. Thus sul¬ 
furic acid is a stronger acid than sulfurous. Many elements in 
the transition region of the periodic table exhibit a series of 
hydroxides or oxides which range from those having basic prop¬ 
erties, throtigh those which are amphoteric, to compounds which 
are acidic in nature. Manganese is an excellent example of 
such an element. 2 

^ The reader should eompare the reactions (in aqueous solution and hen(^e 

under eo^parable conditionsj NHs -f H2O —► NH4‘^ + OH“ and H2O -f 
HjO -4 + OH*". The first has far the greater tendency to go in the 
direction written. 

* The acids of phosphorus constitute an exception to the general rule. 
Phosphorous acid, HaPO# is stronger than phosphoric and hypophosphorous, 
H»P02 is stronger still. It is found, however, that only two hydrogens 

ionize in H^POa and only one in H8PO2. The ease of ionization of those 
hydrogens that do ionize and the fact that the others do not has been 
explained by assuming that the latter hydrogens play the role of a negative 
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A qualitative explanation of the above described properties 
of the oxygen acids can be given. ^ The more electronegative 
the central atom, the more strongly it attracts electrons, and the 
more the electrons on the oxygen are pulled toward the central 
atom. This makes it less easy for the oxygen to share electrons 
with the hydrogen, which then becomes more loosely bound and 
will instead become attached to a water molecule. However, if 
the central atom is sufficiently electropositive, the electrons on 
the oxygen tend to be displaced toward the hydrogen. Thus the 
hydroxyl radical tends to break off. In other words, a polar 
character of the oxygen-hydrogen bond promotes the splitting 
off of hydrogen ion in aqueous solution, while a polar character 
of the oxygen-metal bond tends to cause the splitting off of 
hydroxyl ion. The strengthening of the acid by the introduction 
of a negative atom occurs because the latter draws electrons 
toward it, and thus, by a shift transmitted throughout the mole¬ 
cule, away from the hydrogen. The effect is naturally smaller, 
the farther the negative atom is from the acid hydrogen. 

A different form of theory can be given, from which quantita¬ 
tive results can be obtained. A number of attempts have been 
made to calculate ionization constants of organic acids®;here, only 
the recent work of Kossiakoff and Harker* on inorganic oxygen 

element, being attached directly to the phosphorus, so that the electronic 
structures of these compounds may be written as follows: 

H 

:0: :6: 
H:P:6:H H:P:6:H 

:0: ” ii ■■ 

See Table 31, Chap. XVI, and Latimer and Hildebrand, ** Reference Book of 
Inorganic Chemistry,’^ p. 176, The Macmillan Company, 1929. This 
structure of HaPOs has been confirmed by the calculation of Kossiakoff and 
Barker (see p. 437). 

A very interesting account of some of the properties of complex hydrates 

and acids has been given by Hall, Cfeem. Ret;., 19, 89 (1936). 
^ See Lewis, “Valence and the Structure of Atoms and Molecules," p. 138, 

Eeinhold Publishing Corporation, 1923. 
* See Smallwood, J. Am. Chem, Soc.j 54,3048 (1932); Euckbn, Angewandte 

Chemie, 46, 203 (1932); Kibkwood and Westhbimbr, J, Chem. Phys., 6, 
506, 513 (1938). 

* Kobsiakofe and Habkbr, J. Am. Chem. Soc.^ 60, 2047 (1938). Their 
account has been altered here in some details, but the results remain the 

same. 
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acids will be considered. These authors consider the actual 
strength of the 0—H electron-pair bond, which is broken to give 
an H+, to be the same in all acids, and calculate the differences in 
ionization on the basis of .differences in electrostatic forces due t>o 
effective charges on the various atoms in the acid radical. In 
calculating these charges, a shared electron pair is supposed to 
contribute one electronic charge to one of the atoms and one to 
the other. Thus consider the two reactions: 

H80,- SO,-- + H ^ 

and 
H8O4- -> SO4-- + 

It is necessary to compare the (dectroii structures of the SO3 
and SO4 ions, the entities which are attracting the ions. 
These electron structures are as follows: 

:0: :0: 
:S:6: and :6:S:6: 

:0:“ “lO:-" 

In SOs , there are three shared pairs, so the sulfur has five 
valence electrons, which gives it a net charge of +1, and each 
oxygen with seven electrons has a net charge of —1 electronic, 
charge. In SO4 , the sulfur has a net charge of +2 and each 
oxygen a net charge of ~1. A hydrogen attached to an oxygen 
in SO4 thus comes under the influence of a greater positive 
charge on the sulfur than a hydrogen attached to an oxygen on 
SOa—. This tends to make the hydrogen on SO4— ionize more 
readily. On the other hand, there is an extra negatively charged 
oxygen on the SO4 , but this is farther away from the attached 
hydrogen than is the sulfur, hence has less effect on it. The net 
result is that HS04~ is a stronger acid than HSOa". It is seen 
from this description that, as in the older theory, the effect is due 
to the tendency of the extra oxygen in SO4 to take one of the 
sulfur electrons for itself, leaving the sulfur more positively 
charged than in SOs . Instead of supposing, however, that this 
effect is transmitted through displacement of electrons away from 
the hydrogen, it is supposed in Kossiakoff and Harker's theory 
that it is transmitted directly electrostatically. In the older 
theory, the larg^ charge on the sulfur in SO4— is partly counter¬ 
acted ^through the sulfur pulling electrons in from the oxygens, 
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which of course leaves a smaller negative charge on the oxygens, 
and in particular the oxygen to which the H**" is attached. So the 
repulsion of the sulfur and the attraction of the oxygens are both 
less in the older theory than in Kossiakoff and Harker^s theory. 
If the differences in the attractive and repulsive forces should just 
about cancel each other, the simple electrostatic calculation 
would give correct results, even though there were some truth 
in the older theory, and the electrostatic theory does give 
excellent results, as we shall see. 

Before proceeding to the calculations, it may be well to indicate 
why the first hydrogen ion of a polyvalent acid is always most 
readily lost. Compare, for example, the reactions 

and 

H2SO4 HSO4- -h 

HSO4" S04“- -h H+ 

To understand why the first tends to go more readily than the 
second, it is necessary to compare SO4 and HSO4". The latter 
has the electronic stmcture 

:6: 
:6:S:6:H 

In Kossiakoff and Barker's method of calculating charges on the 
various atoms, the hydrogen is assumed to share an electron pair; 
so there is a sulfur with charge of +2, two oxygens with charge 
of — 1, one oxygen with charge of 0, and one hydrogen with charge 
of 0. There is, therefore, one less negative oxygen than there is 
in SO4—, with the result that a hydrogen is more readily ionized 
from H2SO4 than from HS04“. 

It is very probable that a hydrogen ion in aqueous solution is 
rather definitely attached to a water molecule, forming a hydro- 
nium ion, HsO**”. This ion will be hydrated by other more 
loosely bound water molecules. The process of ionization may 
be supposed to consist of the formation of a hydronium ion. In 
the neighborhood of ^y OH group in an acid, a number of water 
molecules will be oriented; in particular there will usually be 
one, water molecule oriented so that one of the negative spots 
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on tho oxygon of tho water will be near the hydrogen of the 
OH group. Consider the case of HCIO, for example. In 
solution, there will exist a configuration like this: 

H 
/ 

O—H- 

/ \ 
Cl H 

Of course there will also be other oriented water molecules in the 
neighborhood. The first step in the ionization will be the forma¬ 
tion of the following configuration : 

H 

O- H-0 

Cl H 

This will require the breaking of an O—H bond and the forma¬ 
tion of an 0—H bond; the energies involved will presumably 
about cancel. But in addition, since the CIQ- group has a net 
negative charge and H2O is neutral, it will require a certain 
amount of electrostatic energy to remove the proton from the one 
position to the other; let this be Ei per mole. The next step 
in the ionization will be the breaking away of one of the other 
hydrogens on the hydronium ion, leaving the configuration 

O— 

Cl 
/ 

H—O 
\ 

H 

This, second step will again involve the breaking and formation 
of a hydrogen bond, and the electrostatic energy, due to the 
attraction of the CIO" ion, will be small because of the greater 
distance of the other hydrogen. Eventually, however, there 
will exist in the solution a hydronium ion with oriented water 
molecules about it. The net energy effect, after the first st^p, 
will consist, at least approximately, in the difference in energy 
of the hydration of a hydronium ion and the hydration of a water 
molecule. Let this energy (V.e., the energy absorbed on ionization 
due to the difference in hydration) be It is supposed that E2 

is the same no matter what acid is used. The total energy of 
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ionization AE is, therefore, given by 

AE = E^ "f“ Eif 

where only Ei depends upon the nature of the acid. 
In calculating JSi, it is assumed that no change in the orienta¬ 

tion of water molecules about the acid ion takes place. For it 
will be seen, though the tetrahedral water molecule was inade¬ 
quately represented in a two-dimensional diagram, that the water 
molecule which was left near the CIO” ion after the hydronium 
ion broke up was already properly oriented. Therefore E\ 
can be taken simply as the electrostatic energy required to 
move the proton from the CIO” to the adjacent water molecule. 
If all distances involved are known, this can be calculated, pro¬ 
vided an estimate can be made for the effective dielectric constant 
of the liquid. The large dielectric constant of water is due to the 
possibility of orientation of the water molecules in an electrics 
field. If there is to be no change in the orientation, however, 
there will be no contribution from this factor; only the polariza¬ 
bility of the electrons in the molecules will contribute. Measure¬ 
ments of the index of refraction indicate that with orientation 
excluded the dielectric constant is about 1.77. The value that 
has actually been used is^ 3. This may be supposed to allow 
for the possibility of displacement of protons in the electric field, 
without orientation, or for a slight amount of orientation. We 
assume that any entropy change involved in this process is 
negligible. 

The distances of the various atoms composing the oxygen ion 
are known, or may be readily inferred, from X-ray data on 
crystals. Only the 0—H bond distance and the distance 
between the oxygens of the acid and of the water need to be 
considered. Kossiakoff and Harker take the O—H distance to 
be O.95A., which is consistent with Table 29. The distance 
between oxygens is taken ^ 2.70A., which is slightly less than 
the distance between water molecules in ice. Using these 
values, it is seen that the proton must be moved along the line 
joining the two oxygens by a distance of O.80A., on going from 
the acid to the water molecule. With,these data, then, and the 
assumption already made as to the charge to be assigned to each 

1 See Debyb, '‘Polar Molecules,'' Chap. VI, Reinhold Publishing Corpora¬ 

tion, 1929. 
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atom, El is readily calculated as the difference in electrostatic 
potential of the proton at the two positions. 

The ionization constant K is the equilibrium constant for the 
reaction 

HAc + H2O H80+ + Ac' 

where Ac"“ stands for the acid radical. It is related to the stand¬ 
ard free-energy change of this reaction (see Appendix II) by the 
usual formula 

RT In K = 

where AF^ = AH — TAS^. Since there is little change in 
volume on ionization, AH is practically equal to AE = jBi + J?2, 
but the change in entropy on ionization needs to be considered. 
There are two reasons for a change of entropy in the foregoing 
chemical reaction. In the first place, it will be realized that there 
is a difference in the volume through which a proton is free to 
move when it is attached to Ac*” and when it is attached to^ H2O. 
This is not because of any particular difference in the binding 
of the proton in the two cases, but simply because AS^ is the 
change in entropy that occurs on reaction when the concentration 
of HAc is at its standard state, 1 mole per liter, and when water 
is at its standard state, 55.5 moles per liter (see footnote 1, 
page 460; in dilute solution, the solvent is treated as a pure 
liquid). If there were one oxygen atom per acid molecule, the 
effective volume for w'ould be about 55.5 times as great 
after the reaction had occurred as before, since there are 55.5 
times as many water molecules as acid radicals for it to rest on. 
This would mean an increase of entropy on ionization given by 

R In 55.5 = 8.0 cal. per degree. 

If there is more than one oxygen (or more than one hydrogen) 
in the acid, the entropy change is very slightly different. 

There is one other entropy effect, a decrease on ionization 
due to the hydration of the H»0*^, which should not be far 
different from the entropy of solution of H+, or about —24.3 cal. 
per deg. per gram ion. ^The value of AS® should therefore be 

^ The method of making such a calculation was indicated by Harker in a 
private communication. 



Sec. 19.10 ACIDS AND BASES 436 

about —24.3 + 8.0 = —16.3. In a few cases, there are enough 
data available to find AS® experimentally.^ These are as follows: 

HSOr H+ + sor- AS® = -26.2 
HSOs~ H+ + SOa-- AS® = -29,6 
H2S0.1 — H+ + HSO3’ AS® = -22.1 
HCOr — -i- COa-“ AS® = -35.2 

H+ + HCOa- AS® = -22.9 
HPOr- H+ + PO4— AS® = -43 
HaPOr — + HP04~“ AS® = -30.3 
H,P04(a^) + H2P04- AS® = -16.0 

It is seen that the AS® values are more negative than calculated, 
and the entropies of ionization of HCO3” and HPO4— vary rather 
considerably from the expected result. This can be due only 
to a change in the orientation of water molecules about the 
ionized anion residue. If this occurs, however, E2 is also affected, 
for in assuming that E2 had a common value for all acids, any 
such reorientation about the ionized residue was neglected. If 
such a reorientation gives a negative contribution to TAS®, it 
must give a greater negative contribution to Otherwise 
no reorientation would occur, for a system does not revert to 
a state of low entropy unless this condition is more than com¬ 
pensated by being a state of low energy, the general thermo¬ 
dynamic condition for equilibrium being that the free energy 
should be a minimum. Since the variation of TAS® at room 
temperature from acid to acid is not extremely large, amounting 
to only a few kilogram-calories, it seems reasonable to suppose 
that the variation in E2 — TAS^ is still less. We therefore set 
as an approximation 

AF® = Fx + C, 

where C is a constant and C ^ E2 — TA/S®. Using C = —43.0 
kg.-cal. and making the small correction for the number of 
available oxygens per proton in the acid radical, Kossiakoff and 
Harker have calculated values of logic K for a series of oxygen 
acids. In Fig. 74, logic K, observed, is plotted against logic K, 
calculated. If the calculations were always exactly correct, all 
points would lie on the diagonal line. The result may be said 

' See Latimbe, ^‘The Oxidation States of the Elements and their Poten¬ 
tials in Aqueous Solutions,” pp. 328#., Prentice Hall, Inc., 1938; Latimur, 
PiTZEB, and Smith, J. Am. Chem. Soe.j BO, 1829 (1938). 
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to be a remarkable check, considering the approximations and 
arbitrary assumptions involved. In spite of this, it seems best 
to reserve judgment as to how literally the theory should be taken, 
but, in any event, it promises to be a useful working hypothesis. 

Kossiakoff and Harker have found that agreement was 
obtained only for the correct structure of the acid; the assignment 

Fig. 74.—‘[After Kossiakoff and Harker, J. Am. Chem. Soc., 60, 2053 (1938).] 

of other structures destroyed the agreement. For example, in 
the acid HsIOe, iodine has a coordination number of six, and 
from this structure the correct value of logic K was obtained from 
the calculation; assuming that the acid is HI04*2H20, with a 
coordination number of four for iodine, gives no agreement 
between experimental and calculated values of logic K, It was 
possible, then, to predict the structure in the case of gennanic 
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acid, where it was not previously determined. It was found 
necessary to assume that germanium has a coordination number 
of four, the proper formula being Ge(OH)4. For HsPOs the 
structure given on page 429, above, was used. 

Finally, it should be noted that the value of C of —43.0 kg.-cal. 
is very reasonable. Taking TAS^ as approximately —7 kg.-cal., 
this makes —E2 — 50 kg.-cal. This may be compared with the 
heat of solution L+ of H+, which is 253 kg.-cal. The heat of 
solution includes the heat of formation of the O—H bond in 
RaO^ (the proton affinity of water) and the heat of hydration of 
the hydronium ion, whereas —^2 consists principally of the latter.^ 
This interpretation yields a value of about 200 kg.-cal. for the 
proton affinity of water. This is about the same as the value 
for the proton affinity of ammonia found in Sec. 14.10, which is 
very reasonable, especially as the calculations are rough. 

In special cases, it is possible for special factors to affect the 
strengths of acids. For example, it is possible that, after 
removal of the proton, the (electronic configuration of the acid 
radical might in some (?as(is revert to some other arrangement. 
This would cause the ion to be more stable than it otherwise 
would be, and thus make the ionization take plac^e more readily. 
As an illustration, consider the ionization of HCOs”'. This leaves 
a CO3— ion, which very likely has the structure 

:0: 

:0:C::0 

in which there is an oxygen with a double bond. If this is the 
case, the double bond resonates between the three C—O linkages, 
as explained in Sec. 16.8, giving the carbonate ion a symmetrical 
structure. But if a proton is attached to one of the oxygens, the 
attraction of the positive charge on the electrons will make it less 
likely that that oxygen will share its electrons to give a double 
bond. Only two C—O linkages, then, participate (at least to the 
full extent) in the resonance. Thus the electron structure of the 
acid radical changes, becoming more symmetrical, after ioniza¬ 
tion. Naturally this change would not take place unless it made 
the CO3— ion niore stable. It has, then, a tendency to shift 

^From each of these should be subtracted the heat of hydration of 
water, but this cancels. 
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the equilibrium 

HCOr 5=^ CO3— + H+ 

to the right. The calculations of Kossiakoff and Barker, using 
the double-bonded structure and neglecting resonance, might be 
expected to give too low a value for the ionization constant, and 
this is true in the cases of H2CO3, HCOs", HNO3, HNO2, HCOOH, 
and CH3COOH, though the difference between calculated and 
observed values is within the limits of error in H2CO3 and HCOs"*. 
In the case of H3BO3, a plane single-bonded structure [B(OH)3] 
gave a calculated value of the ionization constant that agreed 
with the experimental value within the limits of error. This is 
of interest in connection with the discussion of boron compounds 
given on pages 322-324. 

19.11. Oxidation and Reduction Reactions.—Among the most 
important reactions occurring in solution are those involving 
oxidation and reduction. These are often exceedingly com¬ 
plicated, and it is possible to offer but few generalizations as to 
the strength of oxidizing and reducing agents. In many cases, 
various solid substances are involved, and in practically all cases 
the hydration of various substances plays a significant role. 
Often the ions of water are involved, so that the strength of an 
oxidation or reduction agent depends upon the concentration of 
these ions in solution. 

One important series of reactions of this type consists of those 
in which one metal displaces ^another in solution. In the dis¬ 
placement series, we are accustomed to thinking of a metal that 
displaces another metal as being more electropositive than the one 
displaced. In a general way, this is true, but it is by no means 
always true. The ionization potential being a rough measure of 
the electropositiveness of a metal, we might thus expect cesium 
to displace lithium ion from solution (if this could be carried out 
without reaction with the water itself). Actually, lithium ion 
tends to displace cesium. Chief factor in this reversal of expecta¬ 
tion is the fact that the energy of hydration^ of Li+ is so much 
greater than that of Cs+, making Li+ ion in solution very stable. 
In other cases, the stability of the solid metal may play a pre¬ 
dominating part. 

1 The energy of hydration is here the same as L+, Table 48, the convention 
as to si^h being the same as there. , ' 
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Sometimes no solids are involved, but there are likely to be 
enough other complications to make predictions and explanations 
difficult. Suppose, for example, it is desired to compare the 
following, entirely analogous, reactions: 

and 

ClOr -f 6H^ 4- 6E-- -> Cl“ + 3HaO 
BrO,- + 6H+ -h 6E*“ Br- -f SHjO 

lOs- + 6H+ + 6E“ 1“ 4- SBiO 

all taking place in aqueous solution (E “ is used as the chemical 
symbol for electrons). The relative tendency of the reactions 
to go depends upon the stability and condition of hydration of 
Cl~, Br~, and I“, and CIOs", BrOs", and lOs^ In such cases 
as these, it is often of assistance to analyze the reactions into 
steps. Thus for the reactions just considered, we set down the 

Table 54.—Analysis of Oxidation Reactions, I 

Heat absorbed, kg -cal. 

Partial reaction 
IfX- ! IfX* IfX * 

Cl Br I 

X08* (0^) 4- H-* (a?) HXOa (») 
49.7 38.1 

/ -2.3 
HX0.1 (!»)-► |H2 {g, + X(g)-^ fO, (g) / 1 82.4 

X (g) + E-^ X- (g) -87.3 -81.8 -74.3 
X" {g)~-* X" (aq) -92.1 -84 7 -75.5 

5ff' (aq) + IH, (ff) + §0, (g) + 5E™-» ZRtO (liq) -768.2 -768.2 -768.2 

XOr iaq) + 6H-»- iaq) + OE'-* X- (aq) + 3H*0 (liq) -897.9 
I 

-896.6 -837.9 

(E" - electron, « *> solid, g *= gas) 

partial reactions^ shown in Table 54. From the results of this 
table, we may expect CIOs" and BrOs" to be much stronger 
oxidizing agents than lOs". It is not possible to say that this is 
due to any one cause. Of considerable importance, however, is 
the stability of the ions CIOs"”, BrOs"", and IQs’". As bromine is .a 

^ Data from Bichowsky and Rossini, Thermochemistry of the Chemical 
Substances.” It should be borne in mind that the overall reaction is a 
half-reaction. When it is considered together with the half reaction of the 
reducing agent the extremely large negative values for the energy of reaction 
will not be so much in evidence. Only the differences in the energy of reao« 
tion are of significance in determining the relative power of the oxidising 
agents. 
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larger atom than chlorine, it is not surprising that BrOs^ is less 
stable than CIOs"". However, it is rather surprising that lOs” is 
more stable in aqueous solution than either of the others. This 
may be due to the normally larger coordination number of iodine, 
which enables it to be more completely hydrated. Thus in solu¬ 
tion, lOs"” probably really becomes I(()H)6~, whereas BrOs" and 
CIOs”" take on at most one molecule of water. Since the size 
of the central atom thus has a double effect, influencing the 
bond energy directly and also affecting the possibility of hydra¬ 
tion, it is not easy to predict the result in any given case. Thus, 
with respect to reduction to the halide ion, I()4“ is only about 
24 kg.-cal. more stable than C104-, while Br04“ is apparently 
unknown and hence undoubtedly quite unstable. The reactions 
of the ions SO3 , SeOs , and TeOs as oxidizing agents to 
give S, Se, and Te, respectively, are analyzed in Table 55. The 
higher oxygen ions of bromine or selenium are invariably rela¬ 
tively iins table. 

Table 55.—Analysis of Oxidation Reactions, IT 

Heat ahHorhed, kg.-cal. 

Partial ri^actioii 
If X « IfX = IfX« 

S Se Te 

XO»- (a<z) 4- 2H+ (og)- H2 (a; + X (a) 4* fOa (p) 201 174 180 
X(p)->X(«) -53 -51 -39 

4H+ (09) + Hi {g) 4- 102 (9) 4- 4E~-^ 3H2O (liq) -656 -666 -656 

XOj- {aq) 4- 6H+ (ag) 4- 4E--» X («) 4- 3H20 {liq) -608 -533 -516 

(£•“ * electron, 9 » solid, q = gas) 

Various other oxidation and reduction reactions could be 
studied in the same way. It must be remembered, however, 
that the entropy of the various substances involved also has an 
influence on the reaction, though it is less important than the 
energy. Furthermore, the actual course of many reactions is 
determined not so much by the products and reactants as by the 
rate of reaction. Of course, if a reaction is to proceed at all, the 
products must be more stable than the reactants, but the rate of 
reaction may be so slow that, even though this condition is ful¬ 
filled, the reaction for all practical purposes will not go. Some- 
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times there is more than one set of possible products, and the 
actual products obtained will depend very largely upon the rela¬ 
tive rates of reaction. Thus, just how much the valence of an 
oxidizing agent will be reduced by a given reducing agent may 
depend upon the rate of the respective reactions that give the 
various valence states. These considerations greatly complicate 
the discussion of oxidation and reduction reactions, and indeed, 
of all reactions. On the other hand, equilibria can often be 
measured, and even in the cases where they are not the con¬ 
trolling factors, their study is of importance as a general guide. 

Although it is usually unsafe to make generalizations about 
oxidizing and reducing agents, there is one statement that can, 
apparently, safely be made concerning the valence states of the 
more metallic transition elements. In any given column of the 
periodic table to the left of the iron, palladium, and platinum 
metals, the elements of greater atomic weight tend to exist in 
the higher valence states; the compounds in which the element 
exhibits the high valences are therefore loss powerful oxidizing 
agents with the heavier elements. Thus the hexavalent com¬ 
pounds of molybdenum, tungsten, and uranium are not strong 
oxidizing agents. 

Exercises 

(5 = solid; g - gas) 

1. From the heat of formation of aqueous ZnCb from its elements, 

115.3 kg.-cal. (evolved); the heat of vaporization of zinc, 27.4 kg.-cal; and 
other quantities obtainable from the tables in the book, calculate the heat 
of solution of gaseous Zn"^"*'. Repeat, using Znia (heat of formation of 

aqueous Znl2, 61.4 kg.-cal.) Calculate the heat of solution theoretically, 

and compare. 
2. From the heat of formation of aqueous InCb, 145.4 kg.-cal. (evolved); 

the heat df vaporization of indium, 52 kg.-cal.; and other quantities obtain¬ 

able from tables in the l)ook, calculate the heat of solution of gaseous 
In+++ Calculate the heat of solution theoretically, and compare. 

8. HCl is ionized in aciueoua solution, but liquid HCl itself is not ionized. 
Remembering that the reactions to be compared are 

IlCl -f H2O + el¬ 
and 

HCl -f HCl — H2CI+ + el¬ 

and that solvation must play an important role in the phenomena, explain 

this difference in behavior. 
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4. Analyze the reaction Li («) -f {aq) -♦Li'^ {aq) + Cs (s) into stops 

whose energies may be found in the tables in the book, and verif}'^ the state¬ 
ment that the chief reason for the tendency of lithium to displace cesium 

is the large energy of hydration of lithium. What will be the effect of the 
entropy of hydration? 

5. Similarly analyze the reaction Zn (s) 4- Fe’*’+ iaq) ->Zn+*^‘ {aq) •+• Fe (s), 

and indicate why zinc replaces iron. (See Exercise 1.) 

6. From Tables 16 and 49, make a rough estimate of the heat of solution 

of Au"*", and compare with Tl'*’. 
7. From Table 49, make a rough estimate of the heat of solution of Al^^. 

Then, using data to be found in the book, estimate the energy of the reaction 

A1+++ {aq) + Cl- {aq) ^ Al+-^ {aq) + iCU {q)- 



APPENDIX I 

SOME DEFINITIONS AND THEOREMS OF CLASSICAL 
MECHANICS 

Since considerable use is made, in various parts of the text, 
of the principles of the dynamics of a particle and of a system of 
particles, it seems desirable to collect the formulas used in an 
appendix. It is assumed that the definitions of such terms as 
force, energy, mass, and momentum, as well as the process of 
resolving forces and other directed quantities along axes, are 
familiar to the student. In the more elementary cases, the 
appendix is intended to provide a summary rather than an 
explanation of the various laws and equations. For more 
detailed accounts, the student may consult any good text on 
general physics or mechanics. 

The equation of motion of a single particle may be written in 
various ways, the most important of which may be summarized 
as follows:^ 

/ = ma ^ rm ^ My (1) 

where / = force exerted on the particle. 
m = mass of the particle, 
a = = acceleration produced by the force. 
V = velocity. 

M = momentum = mt;. 
/, a, Vy M, and M are all directed or vector quantities; a, and M 
are in the same direction as /. These may all be resolved along 
x-y y-y and z-axes, and there is a set of equations for the com¬ 
ponent along each axis, as follows: 

' / = max = mx = nw^ = Mx 
f may 5= mi) — mi>y = Afy (2) 
/ = mat = ntz ^ mvt ~ 

^ The dot is used throughout to denote differentiation with respect to time. 
The double dot denotes a second derivative. 

443 
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According to Eq. (1), a force operating for a definite time 
produces a change in the momentum of the body it acts upon 
equal to the force times the time. If it operates through a given 
distance, it changes the kinetic energy (which is, of course, equal 
to imv^) by an amount equal to the force times the distance 
through which it operates. A particle that is placed in a field, 
such as an electrical, magnetic, or gravitational field, which 
exerts a force on that particle, is said to have a potential energy 
due to the field, which depends upon the position of the particle 
in the field. The potential energy is equal to the work needed 
to be done by some external agency (which is supposed to be 
capable of grasping and holding the parti(ie) in order to bring 
the particle from a position outside the field (in general, an 
infinite distance away) to a point in the field, without giving the 
particle any kinetic energy. If the field repels the particle, the 
potential energy is positive. If the field attracts the particle, 
the work done by the external agency is negative (f.e., actually 
the field does work on the external agency) so the potential 
energy is negative. The total energy of the particle moving in 
the field and without other constraints or forces is equal to the 
algebraic sum of the kinetic and potential energies. 

Motion of a Particle Constrained to Move a Fixed Distance from 
a Given Point.—A particle so constrained, say by a rigid rod of 
length r, will, if no external force is excited upon it, rotate with 
constant velocity in a circle with radius r and center at the given 
point. As such circular motion involves a constant acceleration 
of the particle toward the fixed center (otherwise the particle 
would move along a straight line), the rod must exert a force on 
it. This is the centripetal force and is equal to mv^/r, where 
m and v are mass and velocity of the particle. The equal and 
opposite force exerted by the rotating particle on the rod is called 
the ^‘centrifugal force.^^ 

Motion of a Particle That Is Attracted to a Fixed Point.—If a 
particle moves under, the influence of a force that is directed 
along the line joining it to a fixed center, its motion is best 
described by means of a system of polar coordinates, with origin 
at the center of force. The position of the particle is designated 
by giving the coordinates r. By and 0, where r is the distance 
to the center of force and B and <t> are the usual polar angles. 
This is illustrated in Fig. 75, where the point P is the position 
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of the particle. In this fig;ure, r is equal to OP, B is the angle 
made by the line OP with the polar axis QO, and is the angle 
made by the intersection of the plane QPO and the plane n 
(which is perpendicular to the polar axis at the origin) with an 
arbitrary line OR in TI. This line, however, is taken as the 
intersection of the plane of motion 
with n, as this is convenient for 
later calculations, and involves no 
loss of generality. Suppose the 
particle is moving with a velocity 
V in some direction. The line OP 
and the vector representation of 
the velocity v determine a plane. 
Since the force acting on the 
particle is in this plane, the par¬ 
ticle will have no tendency to 
move out of the plane, and will 
continue in it indefinitely. This 
plane of motion is shown as the plane }H)R in Fig. 75. The 
angle POR will be designated as x* 

The angular momentum particle with respect to the 
point O is defined as the product of (1) the length OP = r, (2) 
the projection of the velocity v along a line in the plane of motion 
perpendicular to OP, and (3) the mass of the particle. This 
projection or (*.omponent of the velocity will be equal to rx; we 
may, therefore, write 

Px = (3) 

is a very important dynamical quantity. Its importance 
arises, in part, from the fact that for central motion, i.e., motion 
in which the force is directed toward (or away from) a fixed 
point, it is constant. This may be readily proved, following the 
original discussion of Newton, in an intuitionally obvious manner. 
First it is convenient to note that the conservation of angular 
momentum is equivalent to the statement that for a central field 
of force the areas swept out by tHe radius vector iii equal times 
are equal (see Fig. 76). (Applied to the motions of the planets 
about the sun, this is Kepler^s second law.) 

In order to prove this statement, we think of the central force 
as being replaced by an intermittent force, which acts at intervals 
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and for a very short time only. The shorter the time force acts, 
however, the greater the force itself is supposed to be. It 
assumed that the integral of the force over any appreciable tinJe 

0 
Fig. 76.—Illustrating the definition of angular momentum. Angular momen¬ 

tum is equal to the mass, times the distance OP, limes the perpendicular projec¬ 
tion of V, here represented by QP'. It is noted that the area of the triangle OPQ 
is equal to JOP X QP'. Since QP »= » is the distance moved by the particle 
in unit time, the triangle OPQ is the area swept out by the radius vector (line 
joining the particle to O) in unit time. Hence angular momentum » 2 X mass 
X area swept out in unit time. 

interval, dt, is the same for the true force as for the force that 

is assumed to replace it. Let the moving body start at the point 
P (Fig. 77) and move to the point Q, at which time it is acted 

R 

0 
Fig. 77. 

upon by the intermittent force, which is 
directed toward the center 0. The body 
moves in a straight line from P to Q, since 
no fotce is acting upon it in that interval, 
and it sweeps out an area equal to 
iOP X PQ, where OP is the perpendic¬ 
ular distance from 0 to the line PQ. If 
no force had acted at Q, the body would 
have mofVed to R, where QE = PQ, in ^ 

time equal to that necessary to go from P to Q, and would have 
swept out an area OQR obviously equal to the area OPQ, How¬ 
ever, if a force does act on the body at Q, it acquires there a com¬ 
ponent of velocity parallel to OQ; therefore, instead of moving to 
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R, it will move to a point R' such that HR7 is parallel to OQ, 
and will thus sweep out an area OQR'. But since RE7 is parallel 
to OQ, the altitu<^of the triangle OQR is the same as that of the 
triangle OQR', OQ being considered as the common base. 
Therefore the two triangles have the same area, and it is seen 
that after the force has acted the same area is swept out, per unit 
time, as before. As the force acts intermittently, this will con¬ 
tinue to be true indefinitely. But if we consider a smaller and 
smaller force acting more and more often, we approach the 
limiting case, the law of equal description of areas continuing 
to hold good as this limit is approached. Thus angular momen¬ 
tum is conserved as a body moves under the influence of a central 
field. 

In considering the motion of a particle attracted to a fixed 
point, it is often desirable to express its kinetic energy in terms of 
the polar coordinates and the corresponding velocities. It has 
already been noted that the component of the velocity of the 
particle perpendicular to the line OP joining it to the center of 
force (see Fig. 75) is given by rx; the velocity along OF is equal 
to r. The velocity component rx can be resolved further into 
two components that are mutually perpendicular and also 
perpendicular to OF, namely, a component parallel to the plane 
II and a component tangent to the great circle QP. Since 
these components are perpendicular to the component r, they are 
entirely independent of the magnitude of r. The component 
along QP will, obviously, be equal to rO. The component 
perpendicular to plane n will be the angular velocity, times 
the perpendicular distance of P to the polar axis, which is r sin 6. 
Thus, this component of velocity is sin 0. Since rd and 
sin 6 are components of rx, and all three of these quantities are 
components of v, we may write 

r^X^ == sin^ B (4) 

and 

+ r^x* « sin^ B. (5) 

Oeneraiized Definition of Momentum,—^Before proceeding 
further, it will be necessary to formulate a general definition of 
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momentum.^ So far we have considered ordinary momentum 
and angular momentum. The former is of particular value when 
the position of a particle is described in terms of rectangular 
coordinates. The component of momentum mx is said to be 
conjugate to the variable a:, my is conjugate to y, etc. In like 
manner, the angular momentum is conjugate to the variable 
X- In general, no matter what system of coordinates is used, a 
set of conjugate momenta may be found. 

Usually, in the case of a single particle, there will be three 
independent coordinates with their conjugate momenta. If the 
motion is constrained in some way, there may be fewer inde¬ 
pendent coordinates (as, for example, in the case of the rotator 
constrained to move at a fixed distance from a given point). 
When there is more than one particle, there will be more than 
three variables. Suppose there are N independent variables 

0^2, • . . , It will always be possible to express the kinetic 
energy of the system in terms of these coordinates and their 
corresponding velocities <?2, . • . , is. Thus the kinetic 
energy may be expressed as a function T{qij ^2, . . . , (isy 
Qu • • • 1 of all these variables. Then the momenta 
Pu P'2i • • • fPN conjugate to the coordinates qi, ^2, . . . , <7^^ are 
defined by the following set of equations: 

^Tiqij 72, * * * > qiy * ■ ■ ,gy) 

dT{qi, qt, ■ ■ ■ 
dqi 

7 qiy ^2, * ■ ■<i/>) 

dTiqi, qi, ■ ■ ■ 

dqz 

) Qn, qiy Q27 ‘ ' ’ 7 q^) 

(6) 

In the partial differentiations, ^ all variables are held constant 
except the one iiwlicated. JThus, in the case of pi, the expression 
for the kinetic energy is differentiated as though qi, ^2, . . . , qN, 
92, , Qn (all except qi) were constants. 

The momenta already used are examples of the definition just 
given. Thus suppose the kinetic energy is expressed in terms 

' For a more extended treatment see, e.j/., Byerly, ^'Generalized Codrdi- 

aates,” Ginn and Company, 1916. 

* See Daniels, "Mathematical Preparation for Physical Chemistry,'* 
Chap. X-VII, McGraw-Hill Book Company, Inc,, 1928, 
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of the Cartesian components of velocity x, y, and i, 

T = ^m{x^ + 2/^ + i^). 

The oj-component of momentum is given by 

dT 
dx 

= mx 

which is, of course, the usual expression. 
In the case of a body rotating in a plane at a fixed distance 

from a center of rotation. 

So 
T = 

dT 

dx 
= nir-Xy 

which is the usual expression for the angular momentum. 
In the case of a body moving under the influence of a central 

force, the kinetic energy can be written from Eq. (5) 

T = imf^ + ^nir^6^ + sin^ $ 

The momenta conjugate to r, and are, respectively. 

Vr^^^rnr 

pe 

p^ 

dr 
dT 
dd 

d^ 

= Ta == 

= mr^<l> sin^ 6, 

(7a) 

(7b) 

(7c) 

Components of Angular Momen¬ 
tum.—The angular momentum may - 

be considered to be a vector, rather d’i^ect^n * o* 
than a scalar, the direction of the angular momentum vector and 

vector l)eing perpendicular to the ^^^rection of motion. 

plant* of motion, and such that if the direction of rotation of 
the rotator appears counterclockwise to the observer the angular 
momentum vector points toward the observer (see Fig. 78). 

The component of the angular-momentum vector along the 
polar axis is of particular importance. Let the angular momen¬ 
tum be px, a be the angle made by the angular-momentum 
vector and the polar axis. This component is then p^ cos a, 
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and it may be shown that it is equal to P4, of Eq. (7c). To prove 
this statement, consider Fig. 75. The particle Is supposed to be 
at point P and moving in the plane POR. The point P has the 
coordinates r (== OP), S angle QOP), and <l> (= angle ROS). 
X is the angle ROP. The plane PGS is constructed perpendicular 
to OR. Therefore the angle PGS is the dihedral angle between 
n and plane POR; this is equal to the angle between the per¬ 
pendiculars to n and POR (t.e., the polar axis and the angular 
momentum vector, respectively); a is defined as the latter angle, 
so angle PGS = a. It is now desired to prove that ^^s a 

= P0, or, by Eqs. (3) and (7c), x cos a — ^ sin® B. We proceed 
by first getting a n\imber of relationships between the various 
angles and distances. From Fig. 75, the following relationships 
are seen to be true. 

OS = r sin B (8a) 
PS - r cos B (8b) 
GS = GF cos a (8(0 
re = GI" sin « (8d) 
^ OS sin <i> (8(0 
OG = OS cos <1, (81) 
GP == r sin x (8g) 
(IG = r cos X. (8h) 

Various relations between the angles follow from these equations. 
Thus from (8f), (8h), and (8a), 

cos X = eos <t> sin B. (9a) 

From (8b), (8d), and (8g), 

cos ^ = sin a sin x. (9b) 

From (8c), (8e), (8g), and (8a), 

cos a sin x = «in <t> sin (9c) 

If now we differentiate (9c) with respect to time, we get 

X cos a cos X ~ cos sin ^ d sin cos B. (10) 

But from (9b), 

d sin d =» — i sin A cos x- (11) 
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From (10) and (11), 

X cos x{ cos a + sill a sin </> ) = <^ cos sin 6. 
\ sin 0 ^ 

On taking note of (9a), this reduces 1o 

( I • • . cos A , xi cos 0£ + sm a am <#> - j ^ 

Appl3dng (9c) and multiplying both sides by sin^ B, we get 

X cos a (sin’-* 6 + «in x « cos 6) = <j> sin^ 6. (12) 

But now it is seen from (9b) that the parenthesis on the left-hand 
side of Eq. (12) is equal to sin* B + cos* 0 == 1, so that the relation, 

X cos a — (j> sin* (13) 

which was to be proved, follows. 
Systems of Two Particles.—There is often occasion to consider 

a system composed of two particles that attract or repel one 
another. Let the Cartesian coordinates of the first particle, 
referred to some fixed set of axes, be a^i, yiy and Zi, and let those 
of the second particle, referred to the same set of axes, be ^2, 
and Z2- Let the masses of two particles be mi and m2, respec¬ 
tively. As in the case of a single particle, 

fxx = /r, = m^xz 
fy, = rrtiyi fy, = m^y^ (14) 

= miZx fz^ ~ m^h* 

If there is no other force than that which the particles exert on 
each other, then since the forces on the two particles are equal 
and opposite 

Wifi =» or mx^x + mz^z = 0 
miyi = -mzVz or miyi + mipz = 0 (15) 
m\Z\ = — mz'Zz or miZ] -|- mzh =* 0. 

Integrating twice with respect to time gives 

miXi + m^xz — ajt + fix 
Wii/i + mzy% - fiy 

miZi + + jS* 

where the a^s and fi^s are constants of integration. 



452 APPENDIX I 

Let us now introduce quantities, A'', Y, Z, the coordinates of 
the center of gravity of the pair of particles, which are defined by 
the equations 

(mi + m2)X = yuiXi + m2X2 

(mi + m2)F = mii/i + m2t/2 (17) 

(mi + m2)Z = rriiZi + m2Z2- 

It is seen from Kqs. (17) and (16) that the center of gravity of 
two particles which exert forces on each other, but on which no 
other forces are acting, moves with a uniform velocity. We also 
introduce three other new variables x, t/, and 2, such that 

X ^ X2 — Xi 
y ^ Vi - Vx (18) 
2 = 2J2 — Zx. 

Xy yy and z are the components of the distance between the 
particles, and their changes in the course of time determine the 
relative motion of the two particles. They can, of course, be 
expressed in terms of polar coordinates. From Eqs. (18) and 

(16), 

V = Hi= (19) 

From Eqs. (14) and (19), 

i fx = Xy 
fy - m (20) 
/. == 2m 

when* n = m\mi/(mx + m2) and is callod tho rodueed mass, and 
where /. = /», = —etc. 

Thew are the same as the equations of motion of a particle of 
mass /I upon which a force with components/,, fy, and /»is acting. 
The relative motion of a pair of particles can therefore be treated 
in the same way as the motion of a .single particle with mass y, 
and coordinates Xy yy and z. As the force between the particles 
depends on the distance between them, /», /y, and/* are definite 
functions of Xj and 
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The kinetic energy of the system of two particles can readily be 
separated into two parts, (1) the kinetic energy of the motion of 
the center of gravity, which is equal to 

hirn, + W2)(:t2 + y2 + ^2) « (21) 

where V Is the velocity of the center of gravity, and (2) the 
relative kinetic energy, 

+ 2^) (22) 

where v is the relative velocity of the two particles. These two 
parts of the kinetic energy are quite independent of each other 
and may be treated separately. By differentiation of (17) and 
(18), solving for Jt, Y, Z, i, y, and i in terms of ii, ii, £2, 
substituting in Eqs. (21) and (22), and adding, it may readily be 
shown that the total kinetic energy of the system 

+ yi^ + Zi^) + irr?2(x2’^ + ?/2- + 22^ 
is equal to the sum of the contributions of (21) and (22). In 
Eq. (21) or (22), as in the other equations, *the rectilinear 
coordinates can be replaced in the usual way by polar coordi¬ 
nates. 

Many of the preceding results can be generalized to the case of 
n particles. In this case there are 3n equations like Eqs. (14). 
In general the components of the forcch will be functions of th<‘ 
positions of all the particles. Theoretically, the equations can 
be integrated, and there will be 6n constants of integration, 
because there are Sn differential equations of the second order. 
The case of the two particles just considered illustrates this 
general rule, as there are 12 constants, the 6 of Eqs. (16) and 
6 more that will come from the integration of Eqs. (20). 

The generalized definition of the center of gravity is given by 
the equations 

(mi + + • • ' + mn)X =* miJ*i + 7712X2 + • • • + mnJ-n 
(mj + m2 + * • • + m„)V = miyi = m2^2 + • * * + mnyr, 
(mi + ^2 + • * * + == miZj ~ m2Z2 + • • • + ffinZn- 

If there are no forces other than those exerted by the particles 
on each other, the cent<'r of gra^dty again moves with constant 
velocity. 

There will be no generalizatiqnjstrictly analogous to Eqs. (20). 
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THE PRINCIPLES OF EQUILIBRIUM 

It is believed that ther<* will be found in this book but few 
applications of thermodynamics with which a student who has 
had a course in physical chemistry is not familiar. It has, 
nevertheless, semed desirable to incorporate some of the prin¬ 
ciples of chemical equilibrium in a form which, although making 
no claim to rigor, it is hoped may be readily visualized. 

A state of chemical equilibrium results from a balance of two 
tendencies (1) the tendency of a system to spread out over as 
great a space (strictly, phase space—^see Sec. 4.6) as possible, 
(2) the tendency for the individual elements of a system to have 
a low energy. The first tendency predominates at high temper¬ 
atures, the second at low. 

Without going too deeply into statistical mechanical theory, 
we shall now attempt to formulate these ideas. We shall first 
consider the tendency of a system to spread out in ordinary 
space. For our purposes, this will be sufficient, and the tendency 
of a system to spread out in phase space, including momentum 
space, will be mentioned only incidentally. 

Let us now look at the behavior of a gas. If the gas is perfect, 
there being no forces between the molecules and all positions 
being equivalent as far as potential energy is concerned, the 
tendency to increase in volume is unopposed by any internal 
forces. The gas exerts a pressure on the vessel containing it, 
and if the vessel is enlarged, for example by withdrawing a 
piston in a cylinder, the gas does work on it. Suppose there are 
N molecules of gas in a vessel of volume Fi, and suppose this 
volume is increased to Fa; then the amount of work done by the 

P dVf where P = NkT/V is the pressure (k is the gas 

constant per molecule, T the absolute temperature). We find 
Fa 

J P dV NkT In If the temperature of the gas is to be 

kept constant, an amount of heat q equal to N)cT Inmust 

454 
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be absorbed by the gas. It is thus seen that g/NT is in a certain 
sense the measure of the relative molecular volume change. It is 
a quantity that is independent of the amount of the gas, the 
temperature, and the nature of the gas. This quantity—the 
amount of heat per molecule, added when a system undergoes 
any change which is effected in a mechanically reversible manner 

in such a way that if the process is carried in the reverse 
direction the amount of mechanical energy required to do this is 
the same as the amount furnished by the system in the direct 
process), divided by the temperature—is called the molecular 
entropy change in the process. Multipl3dng it by Avogadro^s 
number gives the molal entropy change designated by the 
symbol AS, 

This may be generalized to include cases in which the momen¬ 
tum space (see Sec. 4.6) is also involved. Thus any increase in 
the phase space available to a molecule of the system is reflected 
in an increase of the entropy. If the temperature of a perfect 
gas is increased without changing the volume occupied by the 
gas, the entropy increases because a greater region in momentum 
space becomes available to the molecule. This is measured 
again by the heat absorbed per molecule divided by the tempera¬ 
ture, as may be shown by statistical mechanics. The molecular 
entropy of a system, being a measure of the phase space available 

' to the particles of the system, depends only on the state of the 
system, and its relation to the heat absorbed in any mechan¬ 
ically reversible process is the essence of the second law of 
t hermodynamics. 

The entropy change connected with any change in a thermo¬ 
dynamic system thus has, in a certain sense, a double aspect, 
being related, on the one hand, to the heat absorbed if the 
change in the system is carried out reversibly, and on the other 
hand, directly to the change in the freedom of motion of the 
molecules. Let us return to the case of the expanding gas, and 
consider the second aspect- We see that the entropy change in 
expanding from volume Vi to volume i» equal to 

AS « Nk In (F2/F1). 

Or, as we see by allowing F2 to approach Fi, we may write 

dS ,„dlnF 
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Integrating this equation, we may write for the entropy of the 
gas as a function of the volume 

S ^ NklnV + Cl, 
where Ci is a constant, which depends on the nature of the gas, 
and also, since these quantities tire held constant in the process 
considered, on N and T. If now we set Ci == —Nk In iV + iVC, 
where C is independent of JV, but dependent on temperature, we 
get 

>S = iVA: In ^ + NC, 

Fio. 79. 

and it will be seen that assuming this dependence of Ci on iV 
gives S the proper dependence on N. For example, if N is 

doubled and V is also doubled, so 
that we have twice as much gas 
at the same pressure, the entropy 
will be doubled. In the fore¬ 
going expression, V/N is a mea¬ 
sure of the freedom of motion of 

the gas in ordinary space; and its freedom of motion in momen¬ 
tum space, which depends only on the temperature and th(' 
nature of the gas, is contained in C. 

In order to illustrate the principles involved in equilibrium 
problems, we shall consider a special example. Let us suppose 
that a gas is enclosed in a cylinder with a piston as shown in 
the figure. It is supposed that between the two dotted lines a 
strong force acts on the molecules, so that those in the left part 
of the cylinder have a much lower energy than those in the right 
part. Let the volume of the left part be Vi, that of the right 
part Fr, let the difference in energy per molecule be Ac, and 
suppose equilibrium is established in all parts of the cylinder. 
The entropy of the system will be the sum of the entropies of 
the left- and right-hand sides, and will have the form 

N,k In + N,C + Nrk In + NrC 

Vt . 
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if + JVr = N. Now let the piston move to,the right a small 
amount, Vr increasing by hVr. Assume this to take place so 
slowly that equilibrium is maintained, so that the whole process is 
reversible. Then, if the process occurs isothermally, the change 
of entropy will be (since N and C arc constant in the isothermal 
proe(\ss) 

iS = &(kNi In ^ + AJVr In 

= A;^ln - 1^ bNi + k{\n ^ - 1^ &Nr + 5F, 

= fc(ln ^ - In m, + Ay' bVr. (1) 

(The simplification comes from noting that, since N is constant, 
hNi = —hNr>) But this must also be equal to the heat absorbed 
in the process divided by the temperature. To maintain constant 
temperature, it will be necessary to absorb an amount of energy 
equal to Ae bNr due to transfer of molecules from the low- to the 
high-energy region and another amount equal to 

PiVr = kTNr ^ 

due to the work the gas does on the piston in expanding. 
This latter term, when divided by T, cancels the last term in (1), 
and we can write 

or 

Vr In 

& 
Ni 

Ae 

(2) 

In other words, the relative probability per unit volume that a 

molecule find itself in the right-hand part is e **’. This is a 
result that holds in general for phase space. Since a quantum 
state occupies a definite volume in phase space, the relative 
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probability of two quantum states with energies €% and respec- 

tively, is given by e . 
A very similar treatment can be given a system in which an 

equilibrium of two atoms forming a diatomic molecule 

A + B4=tAB 

is established. Combination of A and B restricts their motion 
and is very much like forcing one of them to move in a 
small volume. Suppowse we let the volume in which the gases 
(considered perfect) are free to move be designated as V and 
suppose we let the effective volume for the relative motion of a 
pair of combined atoms be Fo- Then, by analogy with the first 
expression in Eq. (1), we can write for the change in entropy 
when Na, Nbi and Nab) the numbers of the various types of 
molecules present, are changed,’ 

SS = s(kNA In + kNn + I*^ ]^ + I^<>) 

== k(ln - l) «JVx + fc(ln - l) ^Nb 

+ fc(ln F„ + In - l) SNjlb. (3) 

(The quantity Fo is not divided by Nab because it is the effective 
volume for one pair.) In the expression above 

bNA = 8Nb = -dNAB, 

since the total number of atoms of A and B remain always 
constant if both those combined and uncombined are counted. 
If is the energy of dissociation of AB (^.e., the energy 
necessary to break an AB of average energy into an A and a 
B of average energy), then the energy absorbed is Ae SNaj and if 

' The entropy of the whole is the entropy of A plus the entropy of B plus 
the entropy of AB, each calculated as though the other gases were not there. 
The complete expression for the entropy is 

kNAln^+ kffakNAs^ + ^aCa + NbCb + NasCab 

It will be seen by comparing with Eq, (3) that, since BN a ^ BN h ^ —BNab, 
we liave the relation A; In Fo * Cab — Ca Cb, 
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this is divided by T it must be equal to the foregoing expression, 
provided the process is carried out reversibly.' If we let 
Wa * Na/V^ t.e., the concentration of the atoms A, etc., then 
the resulting expression may be written 

nAUB 

Uab 
(4) 

where the quantity on the left is the equilibrium constant k 

expressed in terms of concentrations. Since Fo does not differ 
greatly for reactions of this type, the value of Ae may be con¬ 
sidered a measure of the equilibrium constant at any given 
temperature. This is the basis of the usage of the text in com¬ 
paring energy changes for similar reactions. 

From Eq. (3) it is seen that A<r® = — A;(ln Fo -j- 1) is the change 
of entropy per molecule of AB dissociating when the concentra¬ 
tions are unity,^ and Eq. (4) may be written in the form 

kT In K = —Ac + T A(r®. (5) 

If we let K be the equilibrium constant expressed in terms of 
partial pressures, K = Pab^PaPb^ and let A£^ be the energy 
change per mole and Afi^® the entropy change per mole when 
Pa = Pb ^ Pab = 1 (and with pressure constant instead of 
volume), then it may be readily shown that Eq. (5) is equivalent to 

RT In K -AH + TAS® = -AF®, (6) 

where Afl*, which is called the change in heat content, in this case 
equals AE -f- RT and in general is equal to AE + A(PF) and 
AF® is defined by the equation. Equations (5) and (6) can be 
applied in general to cases of equilibrium, if more than two kinds 

^ This is the same thing as saying that A, B, and AB are in such concentra¬ 
tions that they are in equilibrium. If the rate of reaction were so slow that 
A, B, and AB could exist together without equilibrium being established, 
Eq. (3) would still give the entropy change when Naj iVa, and Nab were 

A« $Na 
changed. But then we could not set the entropy change equal to ——« 

This equality is the eondUion for equilibrium. 
*Of course when all concentrations are unity, the system will not iiv 

general be at equilibrium, but as we have noted, Eq. (3) holds anyhow. 
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of atoms are involved, and Eq. (6) is especially useful wlu'u a 
process takes place at constant pressure.’ 

The quantity is called the standard free-energy change of 
dissociation, the term ^‘standard'’ referring to th^ fact that the 
process takes place at partial pressures equal to unity. In 
general, for an isothermal process AF = AH — TaSj and at 
constant pressure as well as constant temperature 

AF = AE + PAV - TAS. 

Now AE is the total change of energy of the system, and 
PAV is the work done against a piston or other device 
(for example, the atmosphere) used to keep the pressure 
constant. 2 If the change is carried out in a mechanically 
reversible manner, then TaS is the heat absorbed by the system. 
AF must then, under these circumstances, be the reversible work 
done on the system by any mechanical device operating upon 
it other than the piston or the atmosphere which maintains con¬ 
stant pressure. The term “mechani(*al dc'vice^^ includes also 
electrically operating instruments. 

From Eq. (5), we may readily obtain an important equation 
that gives the rate of change of In k with temperature. Dividing 
through by T and differentiating, we have 

, d In AC _ ^1 dAe 1^1 dAff^ 
T df ~dT' 

However, since the entropy change in a mechanically reversible 
process is the heat absorbed divided by the temperature, the 
following equation must hold for any of the substances, A, B 

^ Equation (6) also applies when solid and liquid substances are involved. 
The solid and liquid states normally existing are themselves taken as the 

standard states and it may be shown that if this is done* no pressures corre¬ 
sponding to the solid or liquid substances appear in A", but only pressures of 
substances not present in the solid or liquid state. Substances in solution 
may also be present. The normal state is the state when* the concentration 

IS 1 molal, and concentrations in solution appear in K in lieu of pressures. 

For further details,, the student should refer to some standard work on 
thermodynamics, such as Le^Ms and Randall, ^‘Thermodynamics and the 
Free Energy of Chemical Substances,” Mc(5raw-Hill book Company, Inc 

1923. 
* It is seen that differs from C^E simply in that it includes the change 

in energy of the piston or the atmosphere. 
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or AB, (or any other substance which may be involved in the 
equilibrium) if the temperature is changed while holding the 
volume constant:^ 

-1 
“ df‘ 

Hence we must have^ 

and 

1 dAe dAa^ 

TdT dT 

d In if _ Ae 
(7) 

In a similar manner, if the pressure is held constant, it is readily 
shown from Eq. (6) that 

d \i^ ^ All 
■ dT im (8) 

NoU on Energy UniU.— lii this appendix we have distinguished between 
molecular and molal quantities In general, however, symbols representing 
energies are, throughout the text (except as otherwise noted and in Chap. 
XIX), so defined as to refer to one molecule, or one atom, or one bond, etc. 
An effort has been made to follow this usage consistently in the equations, 
and the gas constant per molecule k (the Boltzmann constaat) has been used 
rather than R. In the case of chemical reactions the energy change is 
that which occurs when the number of molecules indicated in the equatioi? 
react. otIT 

However, it is often convenient to express energies numerically 
or kilogram-calories per mole, or, in the case of reactions, as ^ogminT^ 
calories change upon reaction of the number of moles indicated chemi¬ 
cal equation. When the term “calories” or “kilogram-catfofieS”'1^*818? 
alone, it refers to such molal quantities. This should cHliiSJiio 
for the molal energies are obtained from molecular energies simply by 
multiplication by Avogadro’s number. {o 

In Chap. XIX, except when otherwise stated, energies and entropies 
have been defined tx) refer to one mole of substance. bxiit 

^This is a mechanically reversible pFBee(^)\mce there is no mechanical 

change. 
* Since the gases are perfect, we can^^|rith^t aff^tin|j energy^, 

any particular volume, say uni^* volume. JJia nen^ aear*mf£ .®ndwa 
entropies. bol'itixo omol 

) iUiVit «i uo'iol Hidt li ovijiKtwf 
iiovr^ ji; iu> (*t)\ otnol odl" .(bfeS 

(’x)\ 
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ELECTRICAL FORCES 

All the types of forces between atoms are ultimately electrical 
in origin. Those which are operative in covalent or nonpolar 
bonds are, as seen in the text, rather complex in character, 
involving electron exchange and the wave properties of the 
electron in a rather fundamental way. Other forces, such as 
those operative in ionic crystals, molecular crystals, and metals 
are of somewhat simpler character. In this appendix, a summary 
will be given of the various types of electrical forces (in vacuum). 

Before proceeding, it will be well to recall some fundamental 
definitions. The mutual 'potential (potential energy) of any two 
bodies containing electrical charges is the work it is necessary to 
do on those bodies in order to bring them from positions in which 
they are an infinite distance apart to the positions in which their 
potential is desired. Let / be the force between two bodies, and 
suppose it is a function of the distance r between them; it will be 
convenient to write /(r) for the force when the distance is r. 
The force is assumed to be positive if it is repulsive. We shall 
designate the mutual potential of two bodies when at a distance 
r by ^(r). To increase the distance between the charges by an 
amount dr, an amount of work equal to —/(r)dr must be done 
on them. Hence by the definition of 4>{r) we can write 

^(ro) = -j‘y(r)dr dr (1) 

and 

(j) 

The electric field Eir) due to some body containing electric 
charge is the force exerted on unit positive chaise (,E(r) is 
positive if this force is directed away from the body producing 
the field). The force /(r) on a charge e is given by 

/(r) *» eE(r). 
462 

(3) 
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The most elementary type of electrical force is that between 
two charged bodies (assumed to be points) with charges ci and 
62, let us say (and we may assume that ei and 62 are positive or 
negative according as the corresponding charge is positive or 
negative). In this case, 

and 

(4) 

(5) 

These are negative if the charges are of opposite sign, correspond¬ 
ing to attraction. By Eqs. (3) and (5), it is seen that the field 
at the charge Ci, due to the charge C2, is equal to e^/r^. 

«2 

Fig. 80. 

The electrostatic unit of electrical charge is defined in such a 
way that if r is in centimeters, /(r) is in dynes. Thus two unit 
charges 1 cm. apart exert on each other a force of 1 dyne. 

Ion-Dipole Forces,—^As seen in Sec. 12.4, two equhl and opposite 
charges, say ei and — Ci, separated by a* distance Ji, constitute a 
dipole moment 

ilf 1 - eU (6) 

The potential between such a dipole and another charge 62 

depends upon the distance r between the charge and the dipole 
(we assume that r is so large compared with h that we can speak 
roughly in this manner of distance between the charge and the 
dipole) and the orientation of the dipole with respect to the line 
joining it and the charge. Let us consider Fig. 80* For definite¬ 
ness, let us call the distance between 62 and — €1 simply r; the 
distance between e% and ei will then he r + h cos Bi to a very 
good approximation, since r'^^h. The potential between €2 

and — ei will be —and the potential between €2 and ei will be 

e2«i/(r -f h cos ^1). The total potential between charge and 
dipole will be the sum of these 
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r + h oos $i 0- 

We may expand the first fraolion in the parentheses by the 
binomial theorem and drop terms containing; and higher 
powers, obtaining 

and 

0(r) = 
e2fuli eos 

r- 
^2-Mi cos 61 

r2 
(7) 

. 2e2M I cos 
/W = — -y, - ■ (8) 

This force, of course, does not include any torque tending to turn 
the dipole, but is only the force directed along the line joining 
Cl and ^2. The dipole will have turning forces on it, and there is 
also a torque on the system as a whole, f.c., equal and opposite 
forces tending to push the ion and the dipole, respectively, 
perpendicularly to the line joining them, in the plane c% — cj, 
If the dipole is held fixed in position and the ion moves a distance 
dy upward in Fig. 80, the angle 6i will change by ddi == dy/r. 
So the component of forcje is 

1 d<l>(r) _ e2Mj sin 6] 
r dSi ~ r’ 

(8o) 

A force of the ion-dipole type will in general be much less than 
the force between two charges, unless r becomes of the order of 
li, in which case the expression given for the potential is no longer 
valid. An ion-dipole force is the type of force operative between 
ions in aqueous solution and the surrounding water molecules, 
and is responsible for most solvation effects, though as noted in 
Sec. T9.5, this is a somewhat oversimplified statement. 

Dipole-Dipole Forces,—The potential between two dipoles is 
readily calculated in a very similar manner. Let the first dipole 
be composed of charges ei and — ci at a distance L, so that 
eih « Ml, and let the second dipole be composed of charges 
62 and —62 at a distance h, so that ezU = M2 (see Fig. 81). We 
again assume that the distance r between the two dipoles is large 
compared with h and L. Now for definiteness let the distance 
from —62 to —61 be r. In calculating the other distances 
it will not be allowable this time to make approximations. 
Let the distance between —62 and ei be rij it is given 
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by the relation = (r + Zi cos ^1)2 + (h sin $1)^ Similarly 
the distance r2 between — ei and 62 is given by the relation 

= {r + I2 cos $2)^ + {h sin ^2)^. Finally the relation 
7*12® = (r + cos + I2 cos 62)^ + (Zi sin — I2 sin ^2)^ holds 
for the distance ri2 between ci and ^2, for the special case that 
both dipoles lie in the same plane. The total potential energy 
is <l>(r) = eiC2{r ^ — rr^ — r2“"^ + ri2"’^). Expanding rr\ r2~S 
and ri2' S which involve square roots, by the binomial theorem, 
and discarding all terms of the third degree or higher in h and 
hf we obtain 

^. 2M1M2 cos d\ cos 62 , M1M2 sin 61 si =---H--- 

and, for the force component along r, 

-62 -e, 
Fig. 81. 

This type of force is the kind designated as a dipole force in the 
discussion of molecular crystals. 

We could also consider forces on quadripoles, f.e., equal positive 

and negative charges arranged in the form of a square _ ^; 

but although they play a role in certain phenomena they will not 
be important for our purposes. 

Ion-Induced Dipole Forces,—If a body, composed of electrical 
charges but in which the positive and negative charges balance, 
is placed in an electric field it was seen in Sec, 12.4 that there is a 
displacement of electric charge in the body, resulting in the 
separation of positive and negative charge, and producing a 
dipole whose moment (at least if the field is not too large) will be 
proportional to the field; the constant of proportionality is called 
the ‘'polarizability^' and is designated by the symbol a. Thus 
a body with a charge 61 at a distance r from a neutral body will 
produce a field equal in magnitude to ci/r* at the neutral body, 
causing a dipole moment equal to orei/r*. The dipole moment is 
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oriented along the line joining the charge and the body, in such 
a direction that attraction results between the charge and the 
polarized body. On applying the expression for an ion-dipole 
potential, the mutual potential between the charges and the 
polarized body is given by 

■= (11) 

If, however, we are interested in the potential energy of the 
whole system, as is generally the case, there is another potential 
involved that must be considered. The creation of a dipole in a 
polarizable body requires the expenditure of energy, and this self¬ 
potential of the induced dipole must be added to ^m(r). Since 
the strength of the induced dipole depends upon the distance 
of the charged body that induces it, the self-potential will also 
be a function of r, and we can write 

^{r) = (12) 

where is the self-potential. We shall now proceed to 
calculate ^i(r). 

Suppose the induced dipole to consist of a charge e and an 
equal and opposite charge — e, separated by a distance L The 
electric field E producing this separation exerts a force eE in the 
direction of the field on the positive charge e, and an equal and 
opposite force —eJ? on the negative charge. It is this force 
which is necessary to effect the separation by the amount i. By 
the definition of a, we have 

« M = aE, (13) 

Setting the force eE equal to gr(Z), since it is a function of Z, we 
have by Eq. (13) 

(14) 

The work, then, which is necessary to change I from a value of zero 
to its final value I is obtained by integrating g from 0,to 1; 
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This is just the value of the self-potential, and putting in the 
value of M, namely, aei/r* gives 

(16) 

This represents a positive potential, since work is done on the 
ssrstem to separate the charges e and — e from their normal posi¬ 
tions of coincidence. We get, therefore. 

and 
ti aci® 

2r^ 
(17) 

II —2aei® 
(18) 

Dipoh-Induced Dipole Forces.—A dipole also can induce 
another dipole in a polarizable body. By Eqs. (8), (8a), and (3), 
a dipole of moment Mi produces a field at a distance r, whose 
components along and perpendicular to the line joining the 
dipoles are, respectively. 

E{t) = - 
2Mi cos 0i 

Ei(r) = - 
Ml sin 6i 

(19) 

A body at distance r will therefore have induced in it a moment 
Ayith components (2ailfi cos 0i)/r® and {aMi sin respec¬ 
tively. Each component can be treated as independent of the 
other. Each one will be in such a direction as to lower the total 
potential energy of the system. By Eq. (9) the respective 
electrostatic potential energies due to interaction with the 
original dipole will be 

**n(r) = 
4aMcos^ di aMi^ sin^ $i (20) 

But, by Eq. (15), there will be self-potentials of just half these 
amounts and opposite in sign, so the total potential energy will be 

2aMi^ cos® $1 ofAfi® sin® Si 
2r« 

(21) 

and the force component along r will be 

/(r)- 
12aM 1® cos® Si 

r7 
3aAfi® sin* Si 

r’ 
(22) 

It should be noticed that these equations, as well as Eqs. (17) 
and (18), break down at small distances for two reasons. In the 
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first place, they cannot be valid under conditions under which 
Eqs. (7) and (9) break down, and in the second place, if the 
inducing body is too close to the one in which a dipole is induced, 
the field over the latter will not be constant, so that Eq. (13) will 
not hold. 

It is forces of the type we have just been considering that 
produce the van der WaaLs attraction. The inducing dipole 
does not need to be a permanent dipole; the temporary displace¬ 
ment of charge resulting from the motion of the electrons in their 
orbits is quite sufficient. Thus any two molecules or atoms, 
due to their momentary dipoles, are always inducing in each 
other secondary dipoles. The primary dipoles may be in such a 
direction as to either attract or repel each other; they continually 
change in direction, and on the average neither attraction nor 
repulsion is experienced. But the secondary induced dipoles 
are always in such a direction as to attract the primary dipoles. 
There is thus a net attraction, the magnitude of which is dis¬ 
cussed in Chap. XVII. 

It is seen that the forces considered present a series in which the 
dependence on r becomes more and more marked. In a general 
way, it may be said that the higher the power of r, the smaller 
the actual magnitude of the force. All the expressions for the 
potential break down when the distance r becomes of the order 
of the distances separating the charges within a given dipol(\ 
In most cases, however, the latter separations appear to be small 
compared with atomic distances that give the lower limit 
for r, so that the formulas can be used with a fail degree of 
approximation. 

Exercises 

1/ Calculate the force and the potential between two electrical charRos 
equal to the charge on the electron at a distance of 2 X lO""® cm. Calculate 
(approximately) the force and the potential between two dipoles, produced by 
displacing one eleetromc charge 0 1 X 10"'® cm., when placed 2 X 10“® cm. 
apart in the relative positions shown: 

Jia) (c) -f 

1 
-f

 

(.b) — .j- W + 
-f 

2. Derive ICq. (18) directly from Eq (8) and Eq. (22) directly from 

JSq. (10>. 
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SOME REMARKS ON THE GEOMETRY OF MOLECULES 
AND CRYSTALS 

The Geometry of the Tetrahedron and Tetrahedral Structures,— 
The geometry of the tetrahedron is l)eHi understood by con¬ 
sidering its relation to the eu!)e. Alternate corners of a cube 
are the vertices of a regular tetrahedron (Fig. 82). All the main 
diagonals of the cube go through its center of gravity O which is 
also the center of gravity of the tetra¬ 
hedron. Since the ratios of the lengths 
of the edges, the face diagonals, and the 
main diagonals of a cube are readily ^ 
deduced by use of the Pythagorean 
theorem, all the important relations of 
the tetrahedron are easily found. The 
‘Hetrahedral angleis the angle made 
by the lines joining the center of gravity e 
with two of the vertices, for example, the Fio. 82.-—Geometry of the 

angle AOC. The relation of an atom regular tetrahedron. 

having a coordination number of four (S in SOi ion, for exam¬ 
ple) to the atoms that surround it tetrahedrally is that of the 
center of the tetrahedron O to its four vertices A, C, H, and F. 

In view of the intimate relationship between a tetrahedron 
and a cube, it is to be expected that there will be a clos^' relation¬ 
ship between a cesium chloride (body-centered cubic) lattice 
(Fig. 83) and a tetrahedral lattice. Indeed a tetrahedral lattice 
can be made out of a cesium chloride lattice by removing half 
of each kind of atom. This is shown in Fig. 84. Figure 84a 
shows the structure as mutually contacting spheres, and Fig. 84b 
shows the positions of the centers of gravity with the mutual 
contacts indicated by heavy lines going from one center to the 
other. This is the sphalerite or zincblende structure. It is clear 
from Fig. 84a that if the two types of atoms are of anywhere 
near equal size a tetrahedral arrangement will be a very open one 

469 
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in which the atoms do not come near to filling the space available, 
even though they are in contact. 

If the white and black spheres shown in Fig. 84 are considered 
to represent the same kind of atom instead of different kinds, 
then the sphalerite structure becomes the diamond structure. 

The lattice points of Fig. 
84b are shown viewed from 
another angle in Fig. 85a. It 
is readily seen that the struc¬ 
ture may be extended indefi¬ 
nitely in all directions, with 
the black centers always sur¬ 
rounded by white ones in the 
directions shown in Fig. 85b, 
and the white centers always 
surrounded by black ones in 

the manner shown by Fig. 85c. This is not the only type 
of extended tetrahedral structure. Another, the wurtzite 
structure, is shown in Fig. 85d. It will be seen, that in this 
structure the black centers can be divided into alternate planes, 
all the centers in one set of planes being surrounded by white 
centers, as shown in Fig. 85b (these black centers labeled b in 

Fia. 84.—Sphalerite or aincblende structure* 

the figure), whereas all those of the other planes are surrounded as 
shown in Fig. 86e (labeled e in the figiire). Similarly, white 
centers are in alternate planes, having neighbors arranged as in 
Btgs. 85c and 88f, respectively (labeled c and f, respectively). 
Figures 85a and 86d do not exhaust the posrabilities of tel^ahedral 
lattices. Several others, which differ in various details, are 
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known, out in all, the immediate surroundings of any atom are 
the same (except for the directions in which the neighbors are to 
be found). 

Fia. 86.—Sphalerite and wurtaite structures. 

The structures of two of the common varieties of Si02 are 
easily understood from Figs. 85a and 85d. In /S-cristobalite, the 
Si atoms form a diamond lattice and so may be represented by 
the black and white spheres of Fig. 85a, the oxygens being laid 
midway on the connecting lines. ^ Similarly, the black and white 

Fio. 86.—Geometry 
of the octahedron. 

Fig. 87.—Octahedral ar¬ 
rangement of atoms. 

spheres of Pig. 85d may be considered to represent the Si atoms 
of /S-tridymite, with the oxygens laid midway on the connecting 
lines. Some other forms of SiO* differ in that the Si—O—Si 
angle is not 180°. 

‘ ‘'Stnikturbericbf," vol. I, p. 160; but see also vol. 11, p. 261. 
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Geometry of the Octahedron and of Fluorite and Related Struc¬ 
tures.—The geometry of the octahedron may be appreciated 
from Kg. 86. An octahedron is formed by joining the mid-points 
of the faces of a cube. Vertices of an octahedron correspond to 
faces of a cube and, conversely, faces of an o(‘iahedron correspond 
to vertices of a cube. The structure obtained by placing atoms 
in mutual contact at the corners of an octahedron may be visual¬ 
ized from Fig. 87. This may, for example, represent the six 
water molecules in A1(H20)6'^"‘‘'‘^, the Al‘^++ being then in the 
space at the center. 

Fig. 88.—Fluorite structure. 

In the light of what has been said about octahedra and tetra- 
hedra, the structure of fluorite, CaF2, may be understood from 
Fig. 88. Here the large cubes represent Ca+“^ and the small ones 
F“. The relative size and the cubical shape of the cubes have no 
physical significance, but an* used to make the structure easy to 
visualize. It will be seen that the Ca^"^ have eight F““^s sur¬ 
rounding each one. On the other hand, each F~ has only four 

surrounding it. These are tetrahedrally arranged 
around the F*^ ions, as will be seen from the fact that every other 
corner of the cubes representing F"’ ions is connected to a Ca*^ 
cube. A great many crystals have the fluorite structure, 
including many with complex anions and cations. Thus with 
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Ni(NH8)6Cl2 the Ni(NH3)6“^ ions are represented by ilio large 
cubes, the Cl”* ions by the small cubes, in Fig. 88. Each Cl*” is 
thus in contact with a face of the Ni(NH3)6'^'^* octahedron and 
joins four such faces belonging to different octahedra. In 
Ni(NH3)6(0104)2, the tetrahedral CIO4"” replaces Cl*”. The 
corners (i.e., the oxygens) of the C104^ tetrahedra are undoubt¬ 
edly directed toward the Ni(NH3)6'^‘^ ions which they connect. 

The structure of the hexahydrated magnesium halides, dis¬ 
cussed in Sec. 19.9, is closely related to the fluorite structure. 
Although there is no molecule formation evident in Fig. 88, the 
whole crystal forming a giant molecule, we can arbitrarily think 
of the crystal as divided into molecules with their long axes all 

Fig. 89.—Illustrating structure of Mg(H20)6Cl8. Unshaded molecule 
in fluorite position with respect to shaded molecule. Displacement of unshaded 
molecule to get into position for Mg(H20)«Clj2 shown by arrows. 

parallel. Two such molecules are shown in Fig. 89. Now with 
Mg(H20)6Cl2 the large cub(*s represent Mg(H20)8'^'^ and the 
small ones represent Cl“. The actual structure of Mg(H20)6Cl2 
can be formed from the structure shown in Fig. 88 by displace¬ 
ments of the molecules with respect to each other. Such a dis¬ 
placement is shown in Fig. 89. The unshaded molecule moves 
with respect to the shaded molecuh' so that one of the chlorines 
of each molecule is nearer the water mr>lecule at the corner of one 
of the vertices of the IVIg(H2())6^’^ octahedron of the other 
molecule. The reason for the upward displacement, as well as 
the displacement along the long axis of the molecule, will be 
evident from Fig. 87. Since the water molecule rests at the 
center of the aube face, it is not possible for a Cl"" which moves 
nearer the center of the cube face to remain as close to the center 
of the cube as it was before. Other molecules surrounding the 
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shaded molecule in Fig, 89 are displaced in other directions in 
forming the Mg(H20)6Cl2 structure. Some of the displacements 
are not quite so symmetrical as that shown in the figure. 

Fig. 90.—Illustrating close-packing. 

Close-packed Structures.—A close-packed structure of spheres 
of equal size is composed of planes such as shown in Kg. 90. 
These rest one on top of the other, with the atoms of one plane 

Fig. 91.—Illustrating cubic close-packing. The balls are piled in the form of a 
pyramid, with two extra ones added at the top. Five of the balls are shaded to 
bring out the fact that this is really a face-centered cubic arrangement. iA/ter 
model vmde by Dr. E. Mack^ Jr.) 

just above half of the spacee between the atoms of the plane 
below. Let the plane shown in Fig. 90 be designated aa B, the 
one just below it in the crystal as A, and the one just above it as 
C. l^t us suppose that the atoms of C rest on those of B in such 
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a way that their centers are just above the black spaces between 
the atoms of B* Then, if the atoms of A are just below the 
black spaces of B, we have hexagonal close-packing; on tlje other 
hand, if the atoms of A are below the white spaces of B, the 
arrangement is cubic close-packing, or face-centered cubic. The 
latter is illustrated in Fig. 91. 

It will be observed that in a close-packed arrangement four 
adjacent atoms are tetrahedrally arranged about the space 
between them, and that any given atom in the close-packed 
structure has twelve closest neighbors. 

Exerciser 

1. If the edge of a tetrahedron (octahedron) has the length /, find the 

distance from the center of gravity to a vertex. 

2. Calculate the tetrahedral angle. 
8. Calculate the anion-cation radius ratio which will just give anion- 

anion contact when the cation has a coordination number of four; of six. 

4> From the distances given in Table 36 find the molal volume of CsCl; 

of CaFi. 
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GENERAL REFERENCES 

In order to avoid repeated referoiK‘es in the text, some books 
of general interest in connection with the subjects treated in this 
volume are listed herewith. This list makes no pretension of 
being complete; its object is merely to provide the student with 
a representative selection of books for supplementary reading. 
The books in the first gro\ip are elementary accounts of material 
related to that presented in the early part of the present volume. 
The books in the second group give gnjatf'r detail or a different 
point of view on various special topics. In the third group are 
listed some tabulations of experimental material which have 
been found helpful in the preparation of the tables. In most 
eases we give, after the title of a book, the particular chapter or 
chapters of the present work to which the reference is most 
closely related. 

I 

H. T. Briscoe: *‘Thci Structure and Properties of Matter/* McGraw-Hill 

Book Company, Inc., 1935; for Chaps. II, IV, VII, XI. 

K. W. Gurney: “I^lemcntary Quantum Mechanics,’* Cambridge Universitv 

Press, 1934; for Chaps. Ill, IV, V, VI, IX, X, XI, XVIII. 

G. F. Hull: Elementary Survey of Modem Physics,** The Macmillan 

Company, 1936; for Chaps. 11 to IX. 

N. F. Mott: Outline of Wave Mechanics,** Cambridge University 

' Press, 1930; for Chaps. HI, IV, V, VI, X. 

W. G. Penney: ‘^Quantum Theory of Valency,** Methuen & Co., Ltd., 

1935; for Chaps. IX, X, XI. 

**Outline of Atomic Physics,** 2d ed., by the University of Pittsburgh Physics 

Staff, John Wiley & Sons, Inc., 1937; for Chaps. II to VII. 

II 

A. E. VAN Arkel and J. H. de Boer: '^Chemische Bindung als elektro- 

statische Erscheinung,** S. Hirzel, Leipzig, 1931; for Chap. XI and later 

chapters. 

S. DubRMAN: “Elements of Quantum Mechanics,** John Wiley & Sons, Inc., 

1938; for Chaps. Ill, IV, V, VI, IX, X, XVIL 
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See the Formula and Substance Index for reference to individual com¬ 
pounds mentioned in the text. For tables see this Subject Index, or the list 
of tables, pp. xiii-xiv. n. indicates reference to footnote; rx. indicates 
reference to exercise. 

A 

Acids, classification, 420 
hydroKcn, strengths of, 427-428 
oxygen, entropy of ionization, 

434-435 

list, 435 
strength of and (‘nergy of 

ionization, and configura¬ 

tion, 436-437 
electrostatic theory, 429-438 
factors affecting, 428-429 

and resonance, 437- 438 
Alloys {see Intermetallic compounds) 

Alpha particles (o'-particles), deflec¬ 
tion by atomic nuclei, 20-23 

properties of, 19-20 
Ammonia solutions, 382 
Angular momentum, of atoms and 

ions, 279 
(somponents, 449-451 
conservation of, 61, 445, 447 

definition of, 445, 446 
due to inner electrons, 278 
of hydrogen atom, 62-64 
of molecules, 110-111, 277-279 

of plane rotator, 48 
projection and precession of, 51 

projection of, 50-53* 
selection of axis, 81-83 
separation of atoms with differ¬ 

ent, 79-63 
of space rotator, 60-53 

spin, 75-76 

Anion-anion contact, 221-222, 330, 

331 

Anions, extended, 309 313 
Annealing of alloys (.svc Quenching, 

of alloys) 
Aiilisymmctric wave functions, defi¬ 

nition of, 128, 138w. 
and Pauli exclusion principle, 129 

(See also Wave functions, sym¬ 
metry of) 

Association, molecular (.see C’H202; 
TIF; NO; NO*; SO« in Formula 
Index) 

Atomic beam, in inhomogeneous 
magnetic field, 79-83 

Atomic crystals, interatomic dis¬ 
tances in, table of, 327- 329 

properl ies of, 206 
solubility in water, 418 
(*SVc also Complex ions and com¬ 

pounds; Covalent binding) 
Atomic number, definition of, 20, 24 

experimental determination of, 

20-23 
and X-ray sjx‘ctra of elements, 

102-103 
Atomie radii (see Hadii, covalent) 
Atomic theory, and combining laws, 

3- 4 

of electricity from Faraday’s law, 8 
Atomic weights, determination of, 

4— 7 
Atoms, constitution of, 10, 18-23 

summarizing statement, 23-24 
many electron, 84-94 

electron structure of, 99-94 

properties of, 95-103 
size of, 24 

485 
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Avogadro's law, and atomic weights, 
4-^7 

B 

Band spectra («€c Spectra, molecu¬ 

lar) 

Bases, 426-428 
Beam of atoms, in inhomogeneous 

magnetic field, 79-83 
Biziding forces, in complex ions, 

153-164, 292-295 
in crystals, classification, 205-210 
in molecules, nature of, 104r-110 
typp of, and ionization in solution, 

*419-421 
magnetic criterion for, 276-284 
from magnetic criterion, table, 

294 
and solubility of salts, 415-418 
and strength of acids, 429 

and volatility, 362-369 
(*SVc altio Bond energy; Born-Haber 

cycle; CJovalent binding; Co¬ 
valent bonds; Dipole-dipole 
forces; Double bonds; Metals; 

Molecular crystals; Polar 
binding; Valence; Van d e r 
Waals forces; 9ee aUo Formula 

Index) 

Bipyramid, 341-342 
Bohr magneton, definition of, 79 

number in molecules, 279-280 
experimental determination and 

results, 281-284 
Boiling points and intermolecular 

forces, 207, 362-363 
of hydrogen halides, table, 363 

of substances forming molecular 
crystals, 364-369, 896-397 

table, 396 
Boltzmann constant, definition of, 

461 
Boltzmann distribution law, 467-458 
Bond angles, in unsymmetrical 

molecules, table, 270-271 
{Sfte aUo Bond-eigenfunctions; 

Valence, directed) 

Bond distances (see Interatomic dis¬ 

tances) 
Bond-eigenfunctions, definition of, 

265 
and double and triple bonds, 273- 

274 
for methane, 26%5-266 
and stability of compounds, 295- 

297 
types of, 266-268, 318w., 340-342 

examples, 268-276 

Bond energy, additivity, 185-188 
in complex compounds, 295-297 
covalent, calculation of, 184 

definition of, 184-185 . 
determination of, 189-194 
and resonance, 202-204 

table, 190 
transition between bond types, 

effect on, 182-194 
(See cdso Binding forces; Dis¬ 

sociation energy; Double 

bonds; Nitrogen (Oxygen, 
Sulfur) single-bond energj^; 

Potenti al-energy curves; 
Triple bonds; see also Formula 

Index) 
Bond moments, 200 
Bom-Haber cycle, for alkali halides, 

232-236 
for alkali hydrides, 241-243 
for alkaline earth oxides, sulfides 

and selenides, 240, 241 

for ammonium salts, 254-255 

for halides, 238-241 
for oxides, sulfides and selenides, 

241, 242 
for salts of unusual valence type, 

243-249 
tables, 235, 238-240, 242, 243, 246 

Bragg’s law, 28, 213 
Brillouin zones (see Energy bands 

in metals and alloys) 

C 

Carbon-carbon bond, rotation about, 

273-274 
Cathode rays (see Electrons) 
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CJenter of gravity, definition of, 452- 

453 
Centrifugal force, 444 

Cesium chloride lattice, 469-470 

Characteristic functions (see Bond- 
eigenfunctions; Eigenfunctions; 

Wave functions) 
(charge on ions and crystal stnicture, 

313-315 
Chelate compounds, stcreocheinis- 

try, 301-306 
Chelate rings, with platinum, strain 

in, 305, 307 
Chemical combination, laws of, 2-3 

Cis-trans isomerism, 297-301 

Close packing, in crystals, 315-318 

geometry of, 474-475 

rule of, 315 
Combination principle, Ritz, 36 

Combining volumes of gas, in atomic 

weight determinations, 4r-7 
Combustion, heat of, for diamond 

and hydrocarbons, 185-188 
Complex crystals, structure of, 309- 

313 
rules governing, 313-315 

Complex ions and compounds, bind¬ 

ing in, 153-154, 292-295 
from magnetic criterion, table, 

294 
with chelate rings, 301-307 
chemical behavior and ionization 

of, 291, 418-421 

composition of, 290 
configuration of ions in crystals, 

methods of determination, 

286-290 
table, 308 

coordination number in, 315-318 

table, 317 
dimensions in crystals, 329, 332 

double bonds in, 350-352 
electronic structure and oonfigurar- 

tions, 274-276 
energy and stability of, effect of 

electronic structure on, 295- 

297 
isomerism, 291 

Complex ions and compounds, 

stereoisomerism, 297-308 
(See also Formula Index) 

Complex numbers, 34-35n. 

Compressibility, of alkali metals, 375 
of ionic crystals, 227-229 

Conductivity, electrical, of metals, 
376 

of metals and intermetallic com¬ 

pounds, 380-391 
table of, 381 

of solutions of complex ions, 289 
Configuration, molecular (see Mo¬ 

lecular structure) 

Constants of motion, definition of, 

45 

Continuous spectrum, of hydrogen 
atom, 67-68 

of molecules, 118-119 

Coordination compounds (see Com¬ 

plex ions and compounds) 
Coordination number, in complex 

ions and crystals, 315-318 

tables of, 308, 317 

in crystals, table of, 327-329 
definition of, 212, 290n. 

Coordination place, molecule, sphere, 
definitions, 290n. 

Corpuscular theory of light, 29-31 
reconciliation with wave theory, 

31-32 

Coupling, Russell-Saunders spin- 

orbit, 79 

Covalent binding, conditions favor¬ 

ing, 171-172 

crystals with (see Atomic crystals; 

Complex ions and compounds) 

definition of, 151 

transition to metallic binding, 

376-379 

transition to molecular binding, 

367-369 

transition to polar binding, ac¬ 

cording to wave mechanics, 

178-182 

effect on energy, 189-184 

properties illustrating, 334r-337 
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Covalent bondu, energy of, hypo¬ 

thetical, calculation of, 184 

{See also Bond energy; Covalent 

binding) 

polarity of and electronegalivily, 

189, 195-196 
radii for (see Radii, covalent) 

(Set also Valence) 

Cri«tohalite, lattice, 471 
Crystal structure, and charge oii 

ions, 313—315 
determination of, 213-217 

geometry of sodium chloride type, 

212-216 
geometry of various types, 4(59- 

475 
of intermetallic compounds, 383- 

384 
table, 384 

isomorphy, 6 

of metallic elements, 376-379 

table, 378 
of metals, dependence on energy 

bauds, 390-391 
of molecular lattices, 357w. 

special types, 338-342 
(See also Complex ions and com¬ 

pounds; Interatomic dis¬ 

tances; Interionic distances; 
see also Formula Index) 

Curie-Weiss law (see Magnetic sus¬ 

ceptibility) 
(hirrent, electric, force on, due to 

magnetic field, 12-13, 76-78 

D 

Definite proportions, law of, 2 

Deformation of ions and atoms (see 

Polarizability; Polarization) 

Degrees of freedom, definition of, 45 

number of, in polyatomic mole¬ 

cules, 120-121 

and quantization, 45 

Density (see Volume, atomic; Vol¬ 

ume, molal) 

Diamagnetism, 282 

Diamond, lattice, 470 

Dibasic acids, 431 
Dielectric constant, and electric 

moment, J98 
(See also H2O in Formula Index) 

Dipole-dipole forces, in crystals, 

207-208 

as function of distance, 464-465 

in hydrogen-halide crystals, 358- 

362 

in substances containing hydro¬ 

gen, 363-364, 396-397 
in water and ice, 393-396 

(See also Electric moment; Molec¬ 
ular (Tystals) 

Dipolc-induced-dipole forces, 467- 
468 

(See also Molecular crystals; Van 

der Waals forces) 

Dipole moment (see Electric mo¬ 
ment) 

Directed valence (see Valence, di¬ 
rected) 

Disorder, m alloys, 384-386 
Dispersion forces (see Van der Waals 

forces) 

Dissociation energy, of diatomic 

molecules, 116-119 
of elementary diatomic molecules, 

164-167 
table, 165 

of hydrogen halides into ions, 

calculation, 200-202 
measurement of, 164 

(See also Bond energy; see also 

H2; H2+ in Formula Index) 
Distance, interatomic (see Inter¬ 

atomic distances; Interionic dis- 
tancee) 

Distribution law, Boltzmann, 467- 
458 

Double bonds, in complex com¬ 

pounds, 350-352 
and directed valence, 273-274 
dissociation energy of, 166 

electronic formulas for, 153 
energy of C==C, 194-195n. 
energy of C=0, 203 
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Double bonds, energy of C*s=0 and 

C=-S, 361 

interatomic distances for, 326 
and resonance, 202-204 

Double pyramid, 341-342 
Dulong and Petit, law of, 5 -6 

K 

Eigenfunctions, definition of, 40 

(See also Bond-eigenfunctions; 

Wave functions) 

Electric field, action on electrons, 

12-13 
definition of, 462 

Electric moment, definition of, 173, 

463 
permanent, definition of, 196-197 

and dielectric constant, 197-198 

and electronegativity, 200 

of hydrogen and alkali halides, 

table, 199 
of hydrogen halides, calcula¬ 

tion, 200-202 
and molecular structure, 262- 

263 
of polyatomic molecules, 199- 

200 
produced by electric field, 173-174 
and resonance in CHaCHCl, 325- 

326n. 
{See also Dipole-dipole forces; 

Dipole-induced-dipole forces) 

Electrical forces, types of, 462-468 
Electrolysis,' and law of electro¬ 

chemical equivalence, 8-9 
Electromotive series, 438, 441-442 

Electron, in ‘‘box,” 37-42 
phase diagram of, 56-56 

charge on, 15-17 
force on, due to magnetic field, 

12-13 
in hydrogen atom, motion of, 61- 

64 
magnetic moment of, orbital and 

spin, 76-79 
mass-charge ratio, 14-15 

nature of, 10-11 

Electron, spin of, 75-76 

wave function of, 38-44 
wave length of, 33 

wave properties of, 25, 32-36 

{See also Electrons; Valence cle(^- 

trons) 
Electron affinity, definition and 

table, 101 

{See also H; Halogens; O; OH; 
SH; S-group compounds in 
Formula Index) 

Electron pair bond, Ijewis formulas 

for, 152-154 
and magnetic moment, 280-281 
nature of, 142 

and valence, 152-155 

Electron volt, conversion factor to 
kilogram calories, 193-194 

definition of, 30n. 

Electronegativity, 101-102 

and crystal structure, 312-314 
and electric moment, 200 

and electron affinity and ioniza¬ 

tion potential, 168-171 
and nobleness of metals, 337-338 

and polarity of bonds, 189, 195- 

196 

and polarizability, 171-172, 177 
scale (tables), 169, 196 

Electronic formulas, 152-154 
{See also Formula Index) 

Electronic structure, and configura¬ 

tion of complex ions, 293 

table, 294 

and directed valence, 267-276, 

318n., 340-342 

of elements, in atomic form, 89-93 

in solid form, 376-379 

of intermetallic compounds, 383- 

384 

of linear molecules, 340-341 

and stability of complex com¬ 

pounds, 295-297 

for trigonal prism, 342 

{See also Electron pair bond; 

Valence; see also Formula 

Index) 
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Electrons, atoms with many (see 

Atoms, many eljBctron) 
diffraction of, 32--^ 

by gases, and molecular struc¬ 

ture, 263 

energy levels of, in atoms, 89-93 
identity of, from various sources, 

15 
in metals, free, 379-373 

(See also Energy bands in 
metals and alloys) 

outer, penetration of orbits (see 
Penetration of electron orbits) 

reflection from crystal faces, 388- 

389 
valence, 91 

of elements, table, 91 
(See also Electron; Valence elec¬ 

trons) 
Electropositivity (see Electronega¬ 

tivity) 
Electrostatic energy, in crystals (see 

Ionic crystals, energy of) 
Electrostatic-valency rule, 314 

Elementary molecules, 163-168 
Elementary substances, concept of, 

1-2 
Elements, electron structure of, 89- 

93 
Ellipse, properties of, 62 
B^ergy, binding (see Binding forces; 

Bond energies; see also Formula 

Index) 
of combustion, of ionization, of 

reaction, of solution, of sub- 
, limation, of vaporization (see 

Combustion, Ionization, etc.) 

of formation (see Heat of forma¬ 

tion) 
free (see Free energy change) 

lattice, definition, 226 

and mass, 33-34 
potential (see Potential energy; 

Potential-energy curves) 

zero point, definition of, 119 
Energy bands in metals and alloys, 

874-376 

theoiy of, 387*^1 

Energy levels, in atoms, 89-94 

notation, 65 
density in phase space, 56-69 

of electron in *'box,^’ 40 
of helium atom, 89-90, 129-132 

of hydrogen atom, 64 
of molecules, 113-114 

of plane rotator, 47 

of space rotator, 53 

Entropy, definition of, 455 
determination of, 406-407». 

of perfect gas, 455-456 
(See also Acids, oxygen; Equi¬ 

librium, chemical; Ionization, 

of solid salts; Solution) 
Equation of motion, of a particle, 

443 
of two particles, 451-452 

Equilibrium, chemical, laws of, 464- 

461 
of molecules in field of force, 466- 

467 
Equilibrium constant, equation for, 

459 
temperature dependence of, 460- 

461 
Equilibrium distance (see Inter¬ 

atomic distances; Interionic dis¬ 
tances; Intermolecular dis¬ 

tance) 
Exchange phenomenon, in helium 

atom, 126-129 

in hydrogen molecule, 133-134 

Exclusion principle, Pauli, 88 

and antisymmetric wave func¬ 

tions, 129 

F 

Face-centered cubic lattice, 474-475 

Faraday, quantity of electricity, 

definition, 8 

Fluorite lattice, 472 

Forces, binding (see Binding forces) 

electrical, types of, 462-468 

intermolecular (see Intermolecular 

forces) 
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Ponnulas, chemical, assignment of, 

by combining volumes, 4-7 
by Dulong-Petit law, 5-6 
by isomorphy, 6 

electronic, 152-154 

{See also Formula Index) 

Free energy change, definition of, 

460 

of solution of ions, 411-414 
standard, 459-460 

Freedom, degrees of {see Degrees of 
freedom) 

Freezing point, lowering by complex 

ions, 289 
Frequency of molecular vibrations, 

113 

G 

Geometrical isomerism {see Stereo¬ 

isomerism, geometrical) 

Glassy, 392-393 

H 

Harmonic motion, 112-113 

Heat, of (jombustion, of ionization, 

of reaction, of solution, of sub¬ 

limation, of vaporization {see 
Combustion, Ionization, etc.) 

of formation {see Binding forces; 

Bond energies; Born-Haber 

cycle, tables; Intermetallic 
compounds; see also energy 

and heat of formation under 

various substances in For¬ 

mula Index) 
Heitler-London method, for hydro¬ 

gen molecule, 133-137, 142-143 
Homopolar binding {see Covalent 

binding) 
Homopolar radii {see Radii, covalent) 

Hume-^Rothery rule, 383-384 

explanation of, 390-391 
Hund-Mulliken method for hydro¬ 

gen molecule, 140-143 

Hund-Mulliken theory of valence, 

157-161 
and three-electron bonds, 348-350 

Hydration, in crystals {see H2O, in 
crystals, in Formula Index) 

effect of, on oxidizing and reducing 

agents, 438-440 

of ions in solution {see Solution) 
Hydroacids, strength of, 427-428 

Hydrogen bridges or bonds, 363-364 

{See also I)ijK>le-dii)ole forces; 

see also H2O, in crystals; 
NH4'^, rotation; NH4HF2 in 
Formula Index) 

Hydrolysis, of Al(H20)eCl8 and 

Cr(H20)6 CU, 423 

1 

Index of refraction, relation to 

polarizability, 175, 198 

Infrared spectra, 115-117 

Int/cratomic distances, in crystals, 

observed and calculated, table, 
327-329 

for double and triple bonds, 326 

in elementary diatomic molecules, 
164-166 

table, 165 

in gas molecules, determination of, 
263-264 

lists, 323-326 
tables, 270-271, 322, 323, 329 

in isosteres, 332-334 
tabic, 333 

in metallic elements, table, 378 

{See also Volume, atomic) 

and resonance, 325-326 

in tetrahalides and tetrahedral 

ions, table and calculation, 

329, 330n., 332 

{See also Interionic distances; 

' Radii; see also Formula Index) 

Interatomic forces {see Binding 

forces) 

Interference phenomena {see Elec¬ 

trons; Light) 

Interionic distances, and anion- 

anion contact, 221-222 

and coordination number, 281 
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Interionic distances, in (jrystals, 

observed and calculated, tables, 
221, 232, 266, 327-329 

in gaseous alkali halides and 

hydrides, 260-254 
table, 263 

and valence, 230-231 

{See also Radii, ionic; see also 

Formula Index) 
Interionic energy {see Kleetrical 

forces; Ionic crystals) 

Intermetallic compounds, composi¬ 
tion, crystal structure and' 
phase relationships, 383-384 

table, 384 
electrical conductivity of, 380, 391 

table, 381 
energy bands in, 387-391 

heats of formation, table, 381 
of hydrogen, 387 

intorsticial compounds with B, C, 
and N, 386-387 

order-disorder phenomena in, 384- 

386 
physical properties of, 380 
substances forming, 379-380 
valence electrons, Hume-Rothery 

rule for, 383-384 

Intormolecular distance (see Hydro¬ 

gen bridges; Volume, molal) 
Intormolecular forces {see Dipole- 

dipole forces; Hydrogen bridges; 
Molecular crystals; Van der 

Waals forces; see also Formula 
Index) 

Intersticial compounds, 386-387 
lon-dipole forces, 463-464 
lon-induced-dipolo forces, 200-202, 

465-467 
Ionic binding {see Polar binding) 

Ionic crystals, energy of, crystals of 
unusual valence type, 243-249 

direct experimental determina¬ 
tion of, 236-238 

electrostatic, and structure, 316 

and heat of solution, 400, 401 

theory, 222-280 
{See also Bom-Haber cycle) 

Ionic crystals, polarization in, 220- 

230 
properties of, 206-206 

repulsive forces in, 224, 227-229 

and compressibility, 227-229 
vapors of, 249-254, 258 

(See also Interionic distances; 
Polar binding; Radii, ionic) 

Ionic radii (see Radii, ionic) 
Ionic volumes {see Solution) 

Ionization, of acids {see Acids) 

of halides of transition elements, 
in solution, 418-421 

of oxygen acids, 430-438 

of solid salts to form gaseous ions, 

236-237 
entropy of, table, 408 

in solution, 398-399 

Ionization potential, definition of, 
96-97 

of elements, table, 98-99 
of gas molecules, table, 36i 

penetration, effect of, on, 97-101 
and valence, 100-101, 249 

Ions, deformation of {see Polariza¬ 
bility; Polarization) 

forces between, in crystals, 222- 
228 

as function of distances, 462- 
463 

shape of, in crystals, table, 308 

in solution {see Ionization; Solu¬ 
tion) 

Isoelectronic molecules and crystals 
(see Isosteres) 

Isomerism of complex ions, 291 
{See also Stereoisomerism) 

Isomorphy, law of, 6 

Isosteres, interatomic distances in, 
332-334 

table, 333 

Isotopes, 3n., 18 

K 

K-shell, significance of notation, 91 
Kepler's laws, 60-61, 445-447 

Kilogram-calories, conversion factor 
to electron volts, 193-194 
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L 

Ir-shell, significance of notation, 91 
Lanthanum contraction, 103ea;. 

Lattice energy, definition of, 226 

(See also Born-Haber cycle; Ionic 

crystals, energy of) 

Lattices, types of, 469-475 
(See also Crystal structure) 

Layer lattices (CdL, Ag^F, BN, 

graphite), 209, 246, 331, 332 

Lewis’s theory of valence, and 
formulas, 152-154 

Light, absorption of, 36-37 

corpuscular properties, 29-32 
corpuscular theory, re{?onciliation 

with wave theory, 31-32 
emission of, 36-37 

by hydrogen atoms, 73 
interference of, 25-26 

quanta, nature of, 30-31 
wave properties of, 25-29 

Linear molecules, with double and 
triple bonds, 273-274 

Linear mole<;ules and ions, in¬ 
volving heavy atoms, 324, 340- 

341 

vibrations of, 122 -123 
liquids, intermolecular forces in, 

362-369, 396-397 
London’s theory of valence, 154-156 

M 

Madelung constant, definition of, 

224 
‘‘reduced,” definition of, 230 

table, 225 

Magnetic field, force on electron or 

charged body, and on electric 

current, 12-13, 76-78 
inhomogeneous, action on atomic 

beam, 79-^ 
Magnetic moment, of atoms and 

ions, 279 

as criterion for type of binding in 

complexes, 276-284 

results of application, table, 294 

Magnetic moment, definition of, 78 

and double bonds in complex ions* 
351-352 

due to inner electrons, 276, 278 
due to spin of electron, 79 

of electric circuit, 76-78 
of electron in orbit, 78 

projection of, 79 
experimental determination, 281- 

283 

results of, 284, 294 
fundamental (see Bohr magneton) 
of molecules and ions, 277-279 
and stereoisomerism of complexes, 

306 

(See also B2H2; NO complexes in 
Formula Index) 

Magnetic poles, force between, 12 

force on, due to magnetic field, 

76-78 
Magnetic susceptibility, 282-284 

also Magnetic moment) 

Magneton (see Bohr magneton) 
Many electron atoms (see Atoms, 

many electron) 
Mass, and energy, 33-34 

reduced, 109-110, 452 
Mechanics, classical, of a particle, 

443-451 

of two particles, 451-453 

Metals, in ammonia solution, 382 
atomic volume of, lOSex. 

table, 373 

binding forces, in alkali and alka¬ 

line earth metals, 370-375 
table, 373 

in heavy metals, 208 

transition to covalent binding, 

376-379 
compounds with B, C, N, 386-387 
compressibility of alkali, 375 

crystal structure of elementary, 

376-379 
table, 378 

electrical conductivity of, table, 
381 

energy bands in, 374-876 
theory of, 387-391 
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Metals, free electron picture, 370-374 
occlusion of hydrogen, 387 

properties of, 208, 370^80 

(See oho Intermetallic coni> 

pounds) 
Mole refraction, 175n. 
Molecular compounds, solubility in 

water, 418 
Molecular crystals, crystal stnicture 

of, 33771. 

density, and energy of sublimation 

of, table, 357 
energy of, theory, 354-358 
intemiolecular forces in, data re¬ 

lating to, 362-369 

and properties, 206-208 
(See also Dipole-dipole forces; 

Van der Waals forces) 
Molecular motion, 109-115, 120-124 
Molecular orbits, and valence (see 

Hund-Mulliken method; Hund- 
Mulliken theory of valence) 

Molecular structure, methods of 
determination, 124, 262-264 

special types, 388-343 
tables, 270-271, 322, 323 
(See also Complex ions and com¬ 

pounds; Stereoisomerism; 
Valence, directed; see also 

Formula Index) 
Molecular volume, of alkali and 

alkaline earth metals, table, 373 

Moment (see Angular momentum; 
Electric moment; Magnetic 

moment) 
Momenta, generalized definition, 

447-449 
. number of, 54 

in polar coordinates, 449 

(See also Angular momentum) 
Moseley’s law, 102-103 
Multiple proportions, law of, 2 

N 

Nitrogen (N—N) single-bond 
energy, 194 

Nobleness of metals, 337-338 

Nonpolar binding (see Covalent 
binding) 

Normal covalent radii (see Radii, 

covalent) 

Normal modes of vibration, 122-123 
Nucleus, atomic, charge of, 20-23 

size of, 21, 23, 24 

0 

Occlusion of hydrogen, by metals, 387 

Octahedral configuration, bond 
eigenfunctions, 268, 276 

condition for stability, 316-318 
energy and electronic structure, 

295-297 
of ions in crystals, table, 308 
stereoisomerism due to, 300-301 

examples of, 307-308 

iinsymmetrical in UF«, WFe, 

MoFe, 343 

Octahedron, geometry of, 471 *472 

Octet, 152-153 
exceeded in certain molecules, 165 

Oil drop experiment, 15-17 

One-electron bond, in boron hy¬ 
drides, 343-346 

in hydrogen molecule ion, 137-140 
Optical isomerism (see Stereoisomer¬ 

ism, optical) 

Orbitals (see Hund-Mulliken method; 

Hund-Mulliken theory) 

bond (see Bond-eigenfunctions) 
Order-disorder phenomena in alloys, 

884t386 

Orthohydrogen, 148-150 

Oscillator, harmonic, 112-113 
Oxidizing agents, strength of, 438- 

441 

Oxygen acids (see Acids, oxygen) 

Oxygen (O—O) single-bond energy, 
194, 260 

P 

Parahydrogen, 148-K50 
Paramagnetism, 282 

(^ee oJbo Magnetic moment) 
Particle in **box,” (see Electron, in 

“box’O 
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Particlfj theory {see Corpusotilar 
theory) 

Pauli exclusion principle, 8S 
and antisymmetric wave func¬ 

tions, 129 

Penetration of electron orbits, 85-88 

and effective quantum mimbcr, 

95-96 
and ionization potentials, 1(X>-101 

Perfect gas, thermodynamic behav¬ 

ior, 454-457 
Periodic tabic, 91 

and binding forces in crystals, 209 

building up of, 90-93 
confirmation of atomic weights, 

7-8 
principles underlying, 89 

Phase diagram, for hydrogen atom, 

67 
for particle in ^^box,^^ 55-56 

for rotator in space, 58 
Phase integral, definition of, 57 

for hydrogen atom, 66-67 

for molecular vibration, 114-115 
for space rotator, 58-59 

Phase space, definition of, 54 

region occupied by quantum state 

in, 55-59 
representation of system in, 55 

Phases in alloys, 383-384 

Photoelectric effect, 29-31 

Planck's constant, 29 
Plane rotator, 45-49 
Polar binding, conditions favoring, 

171-172 
crystals with {see Ionic crystals) 
definition of, 151 
transition to covalent binding, 

23^241, 334-337 
effect on solubility of salts, 

415-418 

{See also Covalent binding, 
transition to polar binding; 
Magnetic moment, as crite¬ 

rion for type of binding) 

transition to molecular binding, 

365-369 
polar compounds {see Ionic crystals) 

Polar coordinates, 49-50 
momenta in, 449 

resolution of velocity component's 
in, 447 

Polarity of bonds, and electro¬ 
negativity, 189, 195-196 

Polarizability, of atoms, theory of, 
173-174 

definition of, 172-173 
and dielectric constant, 198 

and electronegativity, 171-172, 

177 
of gas molecules, table, 357 
and index of refraction, 174-175, 

198 

of ions, 176-177 
table, 178 

measurement of, 174-176 

Polarization, and directs! valence, 

272 

and electric moment, 197-199 

forces due to, 465-468 

{See also Van der Waals forces) 

in hydrogen halides, 200-202 
in ionic crystals, 229-230 

and ionization in solution, 419-420 

and solubility of salts, 415-418 
Positive ions, in gas discharge, and 

mass-charge ratio, 17-18 
Potential energy, definition and sign 

of, 444 
of electrically charged bodies, 462- 

468 
Potential-energy curves, crossing of, 

181-182 

of diatomic molecules, excited, 
108-109 

nature of, 104-110 

shape of, 105-107, 118-120 
zero of energy for, 108 

effective, for electron in hydrogen 

atom, 69-69 
for harmonic oscillator, 112 
for hydrogen molecule, 136-136, 

140-141 

for hydrogen molecule ion, 139- 

140 
for ionic crystals, 224, 228 
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Promotion of valence electrons, 137, 
167-161 

Proton («ce in Formula Index) 

Proton affinities {see HaO; NHa; SH 
in Formula Index) 

Pyramid, double, 341-342 

Q 

Quantization, of angular momen¬ 

tum, 48, 60-53 

and change of axis, 81-83 

and degrees of freedom, 45 
of electron in 39-42 

of hydrogen atom, 64-67 
of molecules, 110-114 

theory of, 114-115 
nature of, 36-37 

of rotational motion, 45-63 
of space rotator, 49-53 

Quantum of action (see Planck's 

constant) 

Quantum number, effective, 95-96 
tables, 96 

total (n), definition of, 64 
(See also Quantization) 

Quantum states, separation in mag¬ 

netic field, 79-83 
(See also P^nergy levels) 

Quantum theory of light, 30-32 
Quenching, of alloys, 38^386 

K 

Radii, covalent, determination of, 

319-320 

from isos teres, 334 

table, 319 

for various valence types, 320- 

321 

(See also Interatomic distances) 

ionic, constancy, check of, table, 

221 
effective nuclear charge and, 

219 

of eighteen-electrcm-shell atoms, 

220-221 

Radii, ionic, nature and determina¬ 

tion of, 217-220 
ratio of, tables, 317, 327-329 

ratio of (cation/anion), and 

coordination number, 315- 

318 

table, 220 

(See also Interionic distances) 
Raman spectra, 115n., 396-396 
Rare earths (see Formula Index) 

Rare gases (see A; Rare gases in 

Formula Index) 

Reaction, heats of, table, 192-193 

Reciprocal proportions, law of, 2 

Reduced mass, definition of, 109- 
110, 452 

Reducing agents, strength of, 438- 
441 

Refraction, index of, relation to 

polarizability, 175, 198 
Repulsive forces, in hydrogen mole¬ 

cule, 135-137 

in hydrogen molecule ion, 138-140 
in ionic crystals, 224, 227-229 
in metals, 370-372 
nature of, 105-106 

Resonance between electronic struc¬ 
tures, definition of, 180n. 

and electric moment in CH2CHCI, 
325—326w. 

and energy of system, 180-182, 
202-204 

and interatomic distances in 

CH2CHCI and CO2, 325-326 
and strength of oxygen acids, 437- 

438 
wave mechanical treatment, 178- 

182 

(See also electronic structure 

under BN; COa in Formula 
Index) 

Reversible process, 224n., 455, 459 
Ritz combination principle, 36 

Roentgen rays (see X rays) 
Rotation, about carbon-carbon 

bond, 273-274 

of diatomic molecules, 110-111, 
114, 115 
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Kotation, of molecules and ions in 

crystals, 207, 255-257, 360 

of polyatomic molecules, 120-122 
Rotator, in plane, 45-49 

in space, 49-53 

phase diagram and phase in¬ 
tegral, 58-59 

Rule of eight, 152-153 

Russell-Saunders coupling, 79 

S 

Salt vapors, energy of, and interionic 

distances in, 249-254, 258 

Salts (see Ionic crystals) 

Screening, by inner electrons, 84-88 
Selection rules, for hydrogen atom, 

73-74 

in molecular spectra, 115 

Semi-covalent binding, definition of, 

281 
Semi-polar binding, 154, 292 

Separation of variables, 45 

in hydrogen atom, 69 
Shared electrons (see Electron pair 

bond) 
Shell, definition of, 90-91 

of eight electrons, 152-153 
Shielding by inner electrons, 84-88 
Sodium chloride structure, 212-216 

Solubility, factors affecting, 414-418 

Solubility product, relation for, 405- 

406 
Solution, entropy of, of gaseous ions, 

406-409 
calculation of, 413-414 
table, 408 

of salts, 406-409 

table, 407 
and solubility, 404-406 

free energy of, of gaseous ions, 

411-414 
heat of, of gaseous ions, 400-404 

tables, 402, 403 
of salts, 399-404 

table, 400 
ionic volumes in, 409-411 

table, 410 

Spectra, of atoms, 36-37 
of hydrogen atom, 72-74 

molecular, 115-117, 124 

Raman, 115n., 395-396 

X-ray, of elements, 102-103 
Sphalerite lattice, 469-471 

Spin, of electron, 75-76 

(See also Electron, spin of) 

of proton, 148 

Spin-orbit coupling, 79 
Spin wave functions, for helium 

atom, 127 
for hydrogen molecule, 134 

Square configuration, bond-eigen- 

functions, 267-268, 274-275 
as characteristic of bivalent ele¬ 

ments, 275w. 

of ions in crystals, table, 308 

stereoisomerism, 298-299, 304- 

307 
and X-ray results, 306 

Stationary state, definition of, 37n. 

Stereoisomerism, of complexes with 

coordination number four, ex¬ 

amples, 302-306 

distortions of configuration, effect 

on, 300 
geometrical, nature of, 297-301 
of octahedral complexes, 300-301, 

307-308 

optical, nature of, 298, 301 

Stern-Gerlach experiment, 79-83 
Stopping power for a-particles, 20 

Strain in complex ions, involving 

rings, 307 

Sublimation, energy of, of alkali and 

alkaline earth metals, table, 

373 

of alkali halides and hydrides, 

249-254 

table, 253 

of ammonium halides, 258 

of hydrogen halides, 359-361 

of molecular crystals, observed 

and calculated, 357-358 

table, 357 

Subshell, definition of, 91 
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Sulfur (S—8) single-bond energy, 
194, 260 

Superlattices, 884-386 
Symmetric wave functions, defini¬ 

tion of, 128, 138w. 

(See also Wave functions, sym¬ 
metry of) 

T 

Term value, definition of, 36 

(See also Energy levels) 

Tetrahedral angle, definition of, 469 

magnitude of, 274 
Tetrahedral compounds, interatomic 

distances, calculation, 330n. 

observed and calculated, table, 

329 
Tetrahedral configural ion, bond- 

eigenfunctions, 265-268, 271- 

275 

cxindition for stability, 316-317 

of ions in crystals, table, 308 
stereoisomerism due to, examples 

of, 302-305 

list of elements exhibiting, 302 

Tetrahedral ions, 292-293 
interatomic distances, calculation, 

332 
observed and calculated, table, 

329 

Tetrahedral lattices, 469-471 
Tetrahedral radii (see Radii, 

covalent) 

Tetrahedron, geometry of, 469 
Thermodynamics, 454-461 

Three-electron bond, 347-350 

Total quantum number (n), defini¬ 
tion of, 64 

Transference experiments, on com¬ 

plex ions, 288-289 
Transition between bond types (see 

various kinds of binding) 
Triangular configuration, 318, 322- 

323 
of ions in crystals, table, 308 

Tridymite, d—, lattice, 471 
Trigonal ^rism, 300-301, 342 

Triple bonds, and directed valence, 

274 
dissociation energy of, 166 

electronic formulas for, 153 
energy of CEiC, 194~195n. 

interatomic distances, 326 

Trouton^s rule, 362 

U 

Uncertainty principle, 43-44 

United atom, 157-158 
for hydrogen molecule, 126, 135, 

137, 141 
for hydrogen molecule ion, 140 

V 

Valence, comparison of theories, 

161-162 

directed, and double and triple 

bonds, 273-274 

examples, 268-276 

in methane, 265-266 
nature of, 262, 264-265 

types of bonds in, 266-268, 
318/1., 340-342 

(See also Linear molecules and 
ions; Octahedral configura¬ 
tion; Square configuration; 

Tetrahedral configuration; 

Triangular configuration; Tri¬ 
gonal prism) 

electron pair in, 152-153, 154-155 
of elements in salts, determined by 

energy relations, 243-249, 
261e;r. 

and excited states of atoms and 
ions, 154-156, 170, 265-266 

factors determining, 249 

and ionization potential, J 00-101 

and molecular orbits, 157-161 

(See also Binding forces, etc.) 

Valence electrons, in compounds, 
Lewis formulas, 152-154 

definition of, 91 

of dements, table, 91 

in intermetallic compounds, 383*' 
384 
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Valence electrons, in metals, STB-SSO 
penetration of (see Penetration of 

electron orbits) 
Van der Waals forces, and boiling 

points, 362 
crystals with (see Molecular 

crystals) 
dependence on distance, 467-468 

in hydrogen halide crystals, 368- 

361 
ill ionic; crystals, 229, 234n., 238n., 

239 
theory of, 354-358 
for various substances, table, 357 

Vaporization, energy of, of hydrogen 

halides, table, 363 
and Van der Waals forces, 362 
(See also Sublimation, energy 

of) 
Variation method, applied to H2, 

143-144 

Velocity, components in polar coor¬ 

dinates, 447 
and wave length, 33 

Vibration, of diatomic molecules, 

111-115 
of polyatomic molecules, 122-124 

Vibrator, harmonic, 112-113 

Vitreous state, 392-393 
Volt (see Electron volt) 
Volume, atomic, of alkali and alka¬ 

line earth metals, table, 373 

of metals, 103 ex. 
of ions in solution, 409-411 

table, 410 
molal, of molecular crystals, table, 

357 
of water and ice, 395 

W 

Wave equation, nature of, 35 

Wave functions, bond-forming (see 
Bond-eigenfunctions; Valence, 

directed) 
conditions on, 37 

in hydrogen atom, 72 
for electron in *‘box,^* 39, 41-42 

Wave functions, for helium atom, 

126-130 
for hydrogen atom, 68-72 
for hydrogen molecule, 133-134, 

141-143 
for hydrogen molecule ion, 138 

for mixed covalent and polar bind¬ 

ing, 178-182 
for moving electrons, 43-44 
normalization of, 40-41, 70 

physical significance, 34-35 

for plane rotator, 46-49 
and resonance, 178-182 

symmetry of, 128-129, 134, 138 
effect on energy of helium atom, 

130-132 
effect on energy of hydrogen 

molecule, 134-137 

symmetry of nuclear, 148-149 

time, dependence on, 43 
Wave length, component of, 38 

of electron, and velocity, 33 

Wave number, definition, 387 
Wave packet (see Wave functions, 

for moving electron) 
Wave theory, of electrons, 32-35 

of light, 26-29 
reconciliation with corpuscular 

theory, 31-32 

Weak electrolytes, 418-421 
Weight relations, use of, 1-2 

Wurzite lattice, 470-471 

X 

X rays, and crystal structure, 213- 

217, 263, 308-309 
(See also Crystal structure) 

diffraction by gases and molecular 
structure, 263 

nature of, and reflection from 

crystals, 26-29 
X-ray spectra of elements, and 

atomic number, 102-103 

Z 

Zero point energy, definition of, 119 

of H2, 136 
Zincblonde lattice, 469-471 





FORMULA AND SUBSTANCE INDEX 

This index contains references to individual substances and certain groups 
of substances, mentioned in the text; individual substances, which appear 

in tables or lists only, or which are used as illustrations, without bringing 
out any particularly characteristic property of the substance, are not in 

general included, as these may be traced from the Subject Index or from the 
List of Tables, pp. xiii-xiv. 

Alphabetization in this index is by the first symbol in the formula, then by 
the second symbol, etc. Numeral subscripts are disregarded in deciding 

between compounds containing different elements. Thus BN precedes Be, 

and Ag'iF follows AgCl and precedes Agl. Certain group names are used 
and alphabetized as if they were symbols. Thus H halides follows HF and 
precedes HI. The most important of these terms are the following: alkali, 

alkali-ions, alkali-metals, alkaline-earth, alkaline-earth-metals, complexes, 

Cu-group, Fe-group, halide-ions, halides, halogens, hydrides, oxides, 
Pt-group, rare earths, S-group, subhalides, sulfides, selenides, tellurides, 

Zn-group. A hyphenated word is alphabetized as a single word. Thus, 

Zn-group follows all Zn compounds, e.g., ZnS; and halides follows halide-ions. 
The valence of an clement is sometimes indicated by a Roman numeral in 

parentheses. 

Contrary to the usual custom of always listing all compounds under the 

most positive elements, compounds are sometimes listed under a negative 
element or group, when the latter determines the characteristic properties, 
and many negative ions are listed. 

n. indicates reference to footnote; ex. refers to exorcises. 

A 

A, solid, crystal structure of, 369 

(aSVc also Rare gases) 
Acids {see Subject Index) 
Ag, alloys of, 383-384 

salts of, solubility of, 415-418 

valence of, 246-248, 261e». 
Ag (and compounds) {see Cu-group, 

etc.) 

Ag(CN)2““, reactions in solution and 
electrolysis, 287-289 

AgCl, AgCL, Born-Haber cycle, 

2%\ex. 
Ag(II) complexes, configuration of, 

275n. 
501 

Ag2F, binding forces in, 248 

crystal structure of, 246n. 

Ag halides, Born-Haber cycle, 238- 

239 

Agl, binding forces in, 208 

crystal, structure and properties, 

338-339 

Again, 384n. 

Ag(NHs)2'^'^, structure of, 340 

Ag(S208)2—, equilibria in solution, 

35260;. 
AgaSb, 384n. 

AgSb alloys, composition of, 384». 

AgSn alloys, composition of, 384n. 

AltCle, heat of solution, 424-425 
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AJF,, AlF.-iHA A1F,-3JHA 
421n., 426 

AIF.—, 318 

317 , 

stnicture of, 423-424, 472 
Al(H20)eCl*, crystal structure of, 

423-424 

heat of solution, 425 

hydrolysis, 423 

stability of, in solution, 442ex. 

A1 halides, structure, boiling points, 
and intermolecular forces, 365- 

367 
AIN, binding forces, natun* of, in, 

206, 367 

bond-eigenfunctions, 271 

AlaOs, binding forces in crystal, and 
boiling point, 367 

A1(0H)3, amphoteric character of, 
420n. 

Aldehydes, resonliiice, lack of, in, 203 
Alkali halides, Born-Haber cycle, 

232-236 
compressibility of, 227-229 
crystal structure, 212-213, 214- 

216 

electric moment of gaseous, 199 

in gaseous state, energy and 
interionic distance, 249-254 

heat of solution, 400 

interionic distances in, 221 
volume in solution, 410 

Alkali hydrides, Born-Habor cycle, 

241-243 
in gaseous state, energy and 

interionic distances, 249-254 
Alkali hydrogen fluorides, inter¬ 

atomic distances in, 36In. 
Alkali-ions, heat of solution, 401-403 

Alkali-metals, binding forces in, 208, 

370-375 
effective quantum numbers for* 

atoms, 95-96 

electronegativity of, 171 
energy of sublimation, 373 

molecular volumes, table, 373 

valence of atoms, 248-244, 248- 
-249 

Alkaline-earth oxklos, Born-Haber 

cycle, 240, 241 
int-eratoinic distances, table, 232 

Alkaline-earth selenides, Born-Haber 

cycle, 240, 241 
interionic distances, table, 232 

Alkaline-earth subhalides, 244-248 

Alkaline-earth sulfides, Bom-Haber 
cycle, 240, 241 

interionic distances, table, 232 

Alkaline-earth tellurides, interionic 
distances, table, 232 

Alkalino-cartJi-mctals, binding forces 

in, 373-375 

energy of sublimation, table, 373 
molecular volume, table, 373 

valence of atoms, 244^248 
As, bond-eigenfunctions and crystal 

structure, 269 

electronic structure and physic,a) 

properties of solid, 377 

As2, dissociation energy, 167 
As4, interatomic distance and molec¬ 

ular structure', 325 
AsFs, intermolecular forces and boil¬ 

ing point, 364 

AsNi, crystal structure of, 342 

Au, alloys of, 383-384 
An (and compounds) {see Cu-group, 

etc.) 

AuCd*, crystal structure of, 383 
Au(III) complexes, configuration of, 

275n. 

AuCu alloys, order-disorder phe¬ 
nomena in, 386 

AuZna, crystal structure of, 383 

B 

B, intermetallic compounds, 386-387 
BBrj, BCl*, BFa {see B halides) 
B(CHs)«, BCCaHs)*, molecular struc¬ 

ture and binding forces, 323- 
324, 346 

BChPHs, 365 
B complexes, stereoisomerism of, 303 

BFr, 318, 365 
BH, BHj, BHa, BH4, BHp, electronic 

structure, 158-159 
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BaHs, electronic stnicture, 344r-346, 
349-350 

magnetic moment, 346 

BiH2(CH3)4, 346-346 
B2He-2NH», 346 
B halides, interniolecular forces and 

boiling points, 365 

electronic structure and inter¬ 
atomic distances, 322-324 

BN, crystal and electronic structure 

of, 331-332 
BOa", structure of, 309 

BaOs, binding forces, 369 
B(0H)3, ionization of, and molecular 

stmeture, 433 

BPO4, crystal structure of, 313-314 

Ba (and compounds) (see Alkaline- 
earth, etc.) 

BaCl, BaF, 246 

Ba02, crystal structure, 191 w. 

Bases, 426-428 i 
Be complexes, stereoisomerism of, 

303 
BeFj, vitreous, 393 

Be(H20)4-^+ 317 
BoO, binding forces in, 206 

Bi, binding forces in, 208 

bond-eigenfunctions and crystal 
structure, 269 

conductivity, 376 
physical properties of, 376-379 

Bi2, dissociation energy, 167 

Br, Bra, Br~ (see Halide-ions; 

Halogens) 
BrO*^, configuration of, and type of 

binding forces in, 293 

as oxidizing agent, 439-440 

BrOi*”, non-existence of, 440 

C 

C, bond-eigenfunctions and struc¬ 
ture of compounds, 265-267, 
270-274 

diamond, bond energies in, 187- 

188 
binding forces, nature of, in, 

206, 209-210 

C, double and triple bonds, 273-274 

excitation for bond formation, 266 

graphite, structure of, 332 

intermetallic compounds, 386-387 

rotation about C—C bond, 273- 
274 

C2, dissociation energy, 167 

CH, CH2, CH», CH4, electronic 
structure, 159-160 

CHa compounds, interatomic dis¬ 

tances and molecular structures, 
table, 322 

OHa halides, interatomic distances, 
326 

CH4, liquid, inleniiolecular forces in, 
396-397 

solid, binding forces in, 206 
(See also C, bond-eigenfunctions) 

CH4, CaHft, CaHg, etc., bond energies 

in, 185-189 
CaHg, bond-eigenfunctions and mo¬ 

lecular structure, 274 

C/2H4, C3H4, bond-eigen functions 
and molecular structure, 273- 

274 
CgHaCl (chloroethylene), inter¬ 

atomic distances, electric mo¬ 
ment and resonance, 204, 325* 

326 
CHaF, liquid, interniolecular forces 

in, 397 

C2H4(NH2)2 (ethylene diamine) and 

derivatives, complexes, 303-305 

CH20 (formaldehyde), solid, inter- 

molecular forces in, 208 

CH2O2 (formic acid), molecular 

’ association and hydrogen 

bridges in, 363 

resonance in carboxylic acids, 2b2- 

203 

aad ionization, 438 

CH4O (methyl alcohol), liquid, inter- 

molecular forces in, 397 

solid, intermolecular forces in, 208 

(glyoxal), resonance in, 203 

C3H4O (acetaldehyde), resonance, 

lack of, in, 203 



604 ELECTRONIC STRUCTURE AND CHEMICAL BINDING 

C2H4O2 (methyl formate), resonance 

in, 203 
C2H202C1 (chloracetic acid), strength 

of, 428 

CN, electronic structure, promotion, 

and molecular association, 160 
CN complexes, binding, typo of, in, 

295-296 
and magnetic mouiont of, 280- 

281 

double bonds in, 361 
energy and stability of, 295-296 
with Ni and Pd, type of binding, 

306-307 
CO, electronic structure and promo¬ 

tion, 160 

properties and resemblance tt» 

N2, 332-333 
solid, intermolecular forces in, 206 

CO2, interatomic distances and 
resonance, 326 

properties and resemblance to 

N2O, 332-333 
resonance in, 203-204 

solid, intermolecular forces in, 

206, 369 

vibration of molecule, 122-123 
COi , electronic structure of, 318 
C2O4— (oxalato) complexes, 301-302 

with Pt^+, type of binding, 306 

COS, energy of, 361 

CS2, energy of, 351 
Ca (and compounds) (see Alkaline- 

earth, etc.) 

CaB204, crystal structure of, 309 
CaCl, CaF, Cal, 246-247 
CaF2, crystal structure of, 472 

CaSiOt, Ca2Si04, energy of, 313w. 

Carboxylic acids, see CH2O2 

Cd (and compounds) (see Zn-group, 

etc.) 

CdsAu, crystal structure of, 383 
CdCl2, iBom-Haber cycle, 261ea;. 

Cdls, crystal structure and binding 

forces, 209 
interatomic distance and molec¬ 

ular structure, 324 

Cd(NHt}t*^'*‘) configuration of, 340 

Cl, Cl2, Cl“ (see Halide-ions; Halo¬ 

gens) 
Cl complexes, chemical behavior of, 

‘291 
with Pt, Pd, and Cu, type of bind¬ 

ing, 306 
GIF, bond energy, 183-184 

CIO2, electronic structure, 162 
configuration of, and type of 

binding, 293, 360 

as oxidizing agent, 439-440 

ClOr, binding, type of, 293 
as oxidizing agent, 440 

CoAl, 384 

Co complexes, binding, type of, in, 
295-297 

energy and stability of, 295-297 

containing oxalate radical, 301 
Co(II) complexes, configuration of, 

275w. 

square, 306 

Co((NH3)6H20)C1, chemical behav¬ 
ior of, 291 

Cr(CN)6*'", double bonds, and mag¬ 
netic moment of, 351-362 

CrCl3-6H20, isomerism and chem¬ 
ical behavior, 291 

Cr(H20)6Cl3, crystal structure and 
hydrolysis of, 423-424 

C'r04 , binding, type of, 293 

electronic structure and configura¬ 
tion of, 275 

Cs, in electromotive series, 438, 
441-442ea?. 

Cs (and compounds) (sec Alkali, 
etc.) 

CsCl, crystal structure of, 469-470 
Cu, alloys of, 383-386 

order-disorder phenomena in, 
386 

valence of, 261ea;. ^ 

Cu (and compounds) {see C^-group, 
etc.) 

CuCl, CuCls, Born-Haber cycle, 
261ea;. 

Cu(II) complexes, electronic struc¬ 
ture and configuration of, 275 

stereoisomerism of, 303-304 
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CuaO, ciystal structure of, 340 

CuSj crystal structure of, 342 

CuaSb, 384n. 

CusSi, crystal structure and elec¬ 
tron-atom ratio, 383-384 

CuZn, 383 

order-disorder phenomenon, 386 
Cu-group, effective quantum nimi- 

ber for atoms, 95-96 
electronegativity of elements, 171 

nobleness of metals, 337-338 
Cu-group halides, Born-Haber cycle, 

238-239 
transition between types of bind¬ 

ing, 334-337 

Cu-group ions, polarization by, 172n. 

Cu-group oxides and sulfides, heats 

of formation, 338 

F 

F, Fa, F“ (see HF; Halide-ions; 

Halogens) 

Fa, electronic structure and promo¬ 

tion, 160-161 

interatomic distance, 324 

FCl, bond energy, 183-184 

F complexes, 318 

binding forces in and magnetic 

moment of, 280-281 

FaH“, interionic distances in crystals 

containing, 36In. 

Fe, in electromotive series, 442ex. 

FeaC, 387 

Fe(CN)6 , binding forces and 

magnetic moment, 280-281 

FeCUHaO , binding forces in, 420 

Fe complexes, binding, type of, in, 

and energy and stability of, 

295-297 

FeFe , binding forces and ioniza¬ 

tion in solution, 420 

binding forces and magnetic mo¬ 

ment, 280-281 

FesZnait 384 
Fe-group metals, alloys of, 384 

G 

Ga, electronic structure of, 377 

Ge, electronic structure of, 377 

GeOa, vitreous, 393 

Ge(OH)4, configuration of and ioni¬ 
zation constant, 437 

H 

H, atomic, 144-148 

bridges or bonds (see HaO, in 

crystals; NH4HFa; NH4, ro¬ 

tation; see also Hydrogen 

bridges in Subject Index) 

continuous spectrum of atom, 

67-08 
description of atom, 60 

in electric field, 73 

electron affinity, 241 

electronegativity of, 171 

emission of light by atom, 73 

energy levels in atom, 65 

experimental confirmation of, 

72-74 
ionization potential of, 89 

mass of atom, 18 

occlusion in metals, 387 
orbit of electron in atom, 60-64 
phase integrals for atom, 66-67 
positive energy levels of atom, 67- 

68 
quantization of atom, 64-67, 74 
recombination of atoms, 147-148 

selection rules, 73-74 
spectrum of, 72-74 

wave picture of atom, 68^72 
H^, mass and charge of proton, 17- 

18 
spin of, 148 
volume, effective, in solution, 411 

Hs, comparison with H2*^, 140-141 

connection of energy levels with 
helium atom, 135, 137, 141 

degree of dissociation of, 145-146 

dissociation of, under various con¬ 

ditions, table, 146 
dissociation energy, 136 

calculation from 140 



606 ELECTRONIC STRUCTURE AND CHEMICAL BINDING 

H2, exchange phenomenon, 133-134 

excited slates of, 136-137, 141, 

142-143 
Heitler-Ix)ndon method, 133-137 
by Hund-Mulliken method, 140- 

142 
comparison of metliods, 142-- 

143 
interatomic distance, 136 

ortho- and para-, 148-150 
potential energy, 125-126 
potential-energy curve, 135-136, 

139, 140-141 
repulsive states of, 136-137, 141, 

142- 143 

triplet state of, 137 
variation method applied U), 

143- 144 
wave functions of, 133-134, 141, 

142-143 
zero-point energy of, 136 

wave theory and energy curves 

for, 137-140 
HsBOa, ionization of, and configura¬ 

tion, 438 
HCOs", entropy of, 435 
HCOs", H2COa, ionization of, and 

resonance, 437-438 
HCl, rotation of molecules in 

crystals, 360n. 
(See also H halides) 

HF, liquid, intermolecular forces in, 

396-397 
molecular structure and poly¬ 

merization of, 360-361 
fijolid, intermolecular forces in, 

207-208 
(aSVc alio H halides) 

11 Fs", intorionic distances in crystals 

*' containing, 36Iw. 

HFO., I62c.r. 
configurafion and ioniza¬ 

tion constant of, 436-437 

H halides, binding forces in, 170 
boiling points of, 207, 363 
electric moment of, calculation of, 

200-201 

tables. 199, 363 

H halides, intermolecular distances 

in crystals, 358 
as ionic molecules, calculation of 

energy, 200-202 
polarization in, 200-202 
solid and liquid, intermoleculaj 

forces in, 206-208, 358-361 

strength of, as acids, 427 

sublimation of, heat of, 358 
vaporization, heat of, table, 363 

HsIOft, configuration and ionization 

constant of, 436 

also lOc*") 
HNO2, solid, intermolecular forces 

in, 208 
HNO2, HNO3, ionization of, and 

resonance, 438 
H2O, bond-eigenfunctions and <ion- 

figuration, 269 
in crystals, intermolecular forces 

and structures, 421-426 
structure of hydrates, 472-474 

dielectric constant, 397-398 
effective for ionization of acids, 

433 
intennolecular forces in, compari¬ 

son with other liquids, 396 

length of hydrogen bridge in, 364 
molecular structure, 262 

proton affinity of, 437 
llauian spc'ctrum of, 396-396 
solid, intermolecular forces in, 

207-208 
strength of, as acid, 427 
structure of and strength of acids, 

431-432 
structun' of liquid and solid, 

393 -396 
vibration of molecule, 123 

IIiO complexes, chemical behavior 

of, 291 
with typo of binding, 306 

(See also ILO, in crystals) 

H2O2, energy, 194, 259-260 
liquid, intermolecular forces in, 

397 
properties and structure, 191 

solid, intermolecular forces in, 208 
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H>0+ 426 

HPOa, polymerization in solid, 317 

HPO4, entropy of ionization, 435 

HsP02~, structure of, 350-351 

H*P02, HaPOs, structure, 428-429n. 
HsPOa, structure and ionization, 437 

H2S, binding in liquid, 397 

bond-eigenfunctions and molec¬ 

ular structure, 26i9 
H2S, H2Se, HaTe, strength of, as 

acids, 427 
HaSa, energy and structure, 194, 260 

H2SO)), H2SO4, strength of, as acids, 

428 
HaSeOa, strength of, as acid, 428 
Halide-ions, free energy of solution, 

412'-414 
heat of solution, 401-402 

Halides, Born-Haber cycle for crys¬ 

tals, 232-236, 238-240 
of Cu and Ag, transition between 

types of binding, 334-337 

electric moment of gaseous, table, 

199 
of H, binding forces in, 170 
of heavy elements, electronic struc¬ 

ture, and molecular structure, 

340- 342 
interatomic distances and molec¬ 

ular structure, table, 323 

magnetic susceptibility and bind¬ 

ing forces in crystals, 284 
methyl, interatomic distances, 325 

of P, molecular structure of, 

341- 342 

of transition elements, ionization 

of, 418-421 

{See also imder various metallic 

elements) 

Halogens, electron affinities, table, 

101 
electron affinity of, determination 

by Bom-Haber cycle, 232-235 

direct experimental determinar- 

tion, 237-238 

solid, intermolecular forces in, 

206-209 

He, electron structure of, 89 

energy levels of atom, 89-90, 
129-132 

connection with hydrogen mole¬ 
cule, 135, 137, 141 

exchange phenomenon, 126-129 
monatomic gas, 20 

spin wave functions, 127 

wave functions of, 126-130 
He"*" (see Alpha particle, in Subject 

Index) 

Hea, normal, nonexistence of, 157 

Hg (and compounds) (see Zn-group, 
etc.) 

HgCla, as weak electrolyte, 419 
Hg(II) halides, interatomic dis¬ 

tances and molecular structure, 
324, 340-341 

Hg(NH8)2‘'‘^, configuration of, 340 
Hydrates {see H2O complexes; H2O, 

in crystals) 

Hydrides, of alkali metals {see 

Alkali hydrides) 

1 

heat of solution, method of 
determination, 402 

Is", configuration of, 340-341 

ICU*", configuration and electronic 
structure, 341 

lOs', as oxidizing agent, 439-440 

lOr, 317 
as oxidizing agent, 440 

lOe*”, 317 
{See also H JOa) 

InAgs, 384n. 

K 

K (and compounds) {see Alkali, etc.) 
KBr, solubility of, 414-415 

KaSOi, KsSaOr, 313n. 

L 

La contraction, lOSer. 

li, in electromotive series, 438, 441- 
442ex. 

size, 160 
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Li (and compounds) (see Alkali, etc.) 
Li***, volume in solution, 411 
Lia, electronic structure, 160 

LiF, solubility of, 414-415 

Li*S04‘H20, crystal structure of, 
425-426 

M 

Mg (and compounds) (see Alkaline- 
earth, etc.) 

MgF, heat of formation, 247 

Mg (H*0)6 halides, crystal structure 
of, 421-422, 473-474 

Mn, acids and bases of, 428 
Mn(ll and III) complexes, con¬ 

figuration of, 275n. 

MnOi”, binding, type of, 293 
Mo, compounds of, as oxidizing 

agents, 441 
MoFfl, intermolecular forces and 

boiling point, 368 
molecular structure, 343 

MoSa, crystal structure of, 342 

N 

N, intermetallic compounds, 386-387 
pentavalcnt, nature of binding, 

156 

Na dissociation energy, 166 
promotion and electronic struc¬ 

ture, 160 

resemblance to CO, 332-333 

N—N, single-bond energy, 194 
NQft, nonexistence of, 155 
N complexes, stereoisomerism, 302- 

303 

NFs, intermolecular forces and boil¬ 

ing point, 364 
NH«, as base, 427-428 

liquid, hydrogen bridge in, 364 
intermolecular forces in, 396 

proton affinity of, 264r“266 
as solvent, 382 , 

NHa complexes, with Ag, Cd, and 

Hg, configuration of, 340 
chemical behavior of, 291 

NH* complexes, crystal structure of, 

473 
with Fe and Co, energy and 

stability of, 296-297 

with Pt(II) and Ni(II), type of 

binding, 306-307 
binding forces in, 209 

rotation and forces on in crystals, 

255-258 
N2H4, liquid, binding forces in, 397 

NH4HF2, crystal structure of, 353ea;. 

NH4 halides, crystal structure of, 

and rotation of NH4''‘ in, 255- 

257 
energy of, 254-255 

intcrionic distances in, table, 255 

vapors of, 258 
NHaOHChydroxylamine) liquid, in¬ 

termolecular forces in, 397 
solid, intermolecular forces in, 208 

NO, electronic structure and molec¬ 

ular association of, 152, 347-348 

electronic structure and promo¬ 

tion, 160-161 
molecular association and sub¬ 

limation of, 358 

NO complexes, magnetic moment 
and electronic structure, 348- 

349 
NO2, molecular association and elec¬ 

tronic structure of, 152, 348 
N2O, properties and resemblance to 

CO2, 332-333 

N2O4 (see NO2) 
NOBr, NOCl, interatomic distances 

in, 324 

Na (and compounds) («ce Alkali, etc.) 
NaCl, crystal structure of, 212-213, 

214-216 

(See also Alkali halides) 
NaHCOa, hydrogen bridges in, 364 

NasOj, lattice energy of, 248 

Na8P04, Na4Pj07, 313 
Na2SO4 l0H2O, 421 
Na4Sn, Na2Sn, Na48ns, NaSn, Na- 

Sn*, 380-382 
Na2Te, binding forces in, 380 
Ne2, nonexiMience of, 161 
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Ni(II) complexes, electronic struc¬ 
ture and configuration of, 274- 
275 

square, 306 
stereochemistry of, 303-304 
stereoisomerism of octahedral, 307 

NiAs, crystal structure of, 342 
Ni(H20)6‘*’*^, configuration of, 422- 

423 
Ni(NH3)6(C104)2, crystal structure 

of, 473 
Ni(NH8)6 halides, crystal structure* 

of, 422, 473 
NiS04-6H20, Ni804-7H20, crystal 

structure of, 422-423 

O 

O, acids containing (sec Acids, 
oxygen, in Subject Index) 

electron affinity of, 101 
determination by Born-Haber 

cycle, 240-241 
molecular compounds of, 369 

O2, dissociation energy, 166 
electronic structure, 347 

and promotion, 160-161 
O,, O4, 167-168 
O—O, single-bond energy/ 194, 260 
OH, electron affinity, 259 
OH“, polarizability and crystal 

radius, 259 
ONBr, ONCl, interatomic distances 

in, 324 
OsFe, OsFh, intermolecular forces 

and boiling points, 368 
Os04, intermolecular forces, 369 
Oxalato complexes (sec C2O4— com¬ 

plexes) 
Oxides, Born-Haber cycle for, 240, 

241-242 
of Cu and Ag, heats of formation, 

338 
magnetic susceptibilities and bind¬ 

ing forces in, 284 
of Zn, Cd, Hg, transition between 

types of binding, 335, 337 

P 

P2, P4, 167-168 
P4, interatomic distances and molec¬ 

ular structure, 325 
stability, 168 

PCU, possibility of existence of, 155 
PFs, PF5, intermolecular forces and 

boiling points, 364, 368 
PFa-, 318 
PH 3, as base, 428 
PH 4^, compounds of, 428 
P lialidos, molecular structure of, 

341-342 
PO4-, P2O7'-, 313». 
Pb, physical properties of, 379 
Pb(II) complexes, configuration of, 

275n. 
Pd, occlusion of hydrogen, 387 
Pd(II) complexes, configuration of, 

275n., 299 
square, 306 
stereochemistry of, 303-304 

Pd2H, 387 
Pt(II) complexes, configuration of, 

275w. 
geometrical isomerism and con¬ 

figuration, 298-299 
square, magnetic moment, 306 
stereochemistry of, 303-305 
stereoisomerism of octahedral, 

307-308 
strain in chelate rings, 305, 307 

Pt(IV) complexes, configuration of, 
276 

Pt-group metals, alloys of, 384 

R 

Rare earths, electronic structure, 
92-93 

sizes of .ions, 103ea;. 
Rare gases, solids of, binding forces 

in, ^ 
{See also Molecular crystals in 

Subject Index) 
Rb (and compounds) (see Alkali, 

etc.) 
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S 

S, allotropio forms, S*, S«, Sg, 167 
Sg , 81“"“, etc., 382 

S—S, fidngle^bond energy, l94, 260 
SsBrg, SjCU, molecular structure of, 

194 

8 compounds (see S-group com¬ 

pounds) 
SFg, 318 

solid, intermolecular forces in, 206 

SH, electron affinity, 258-269 
SH*“, polarizability and size in 

ciystals, 250-261 

proton affinity of, 260 
SO2, bond-eigenfunctions and mole¬ 

cular structure, 274 
electronic structure of, 153-154 

SOi, molecular association of, 313 
SOg , configuration of, and type of 

binding, 292-293, 350 
as oxidizing agent, 440 

804“"', binding, type of, 292-293 
and magnetic susceptibility of 

compounds, 284 

binding forces in, 209 

dimensions in crystals, 308 

804““, SaOT““, 313 
Sb, bond-eigenfunctions and crystal 

structure, 269 
physical properties of, 377 

Sb(V), compounds, molecular struc¬ 
ture, 342 

SbAg alloys, composition of, 384n. 

SI^Agg, 38471. 

SbCua, 384n. 

Sb(OH)g-, Sba07““, 317 

ScClg, binding forces in crystal and 

melting point, 367 

8cFg , binding forces in, and ion¬ 

ization in solution, 420 

8cN, binding forces in, 206 

Se compounds (see S-group com¬ 

pounds) 

SeFg, )3eFg, intermolecular forces and 

boiling points, 368 

SeO< , as oxidizing agent, 440 

S-group compounds, Born-Haber 

cycle, 241-242 
C'u, Ag sulfides, heats (»f forma¬ 

tion, 338 

electron affinities, 101, 241-242 
magnetic susceptibilities and bind¬ 

ing in sulfides, 284 

stereoisomerism of, 303 

Zn, Cd, Hg sulfides, selenides, 
tellurides, transition between 

types of binding, 335, 337 
Si, binding forces in, 206 

physical properties of, 379 
SiC, binding forces in, 206 

SiCug, crystal structure and elec¬ 
tron-atom ratio, 383-384 

SiFg—, 318 

SiOg, binding forces in crystal, 369 
crystal structure of, 312, 471 

vitreous, 392 

Si04^“, etc., structure of various 
silicates, 309-313 

Sn, physical properties of and 
allotropy, 379 

SnAg alloys, composition of, 384n. 

SnClg, SnCh, SnF4, intermolecular 
forces and boiling points, 368 

Sn(II) complexes, configuration of, 
275n. 

SnFg^-, 318 
SnNag, SnNaa, SnjNai, SnNa, Sn*Na, 

380, 382 
Sn(OH)6““, 317 
Sr (and compounds) (see Alkaline- 

earth, etc.) 
SrCl, 244-246 
SrOj, crystal structure, 191n. 
Subhalides, 244-248 

T 

Te, physical properties of, 377-379 
Te compounds (see S-group com¬ 

pounds) 
Te,““ Ter“ 382 

Te halides, interatomic distances in 
and molecular structure of, 324, 
340-341. 
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TeOa—, as osddizing agent, 440 

TeOe«-, 317 

TiC, binding forces in, 206 

T1(I) halides, Born-Haber cycle, 

238-239 

U 

U, compounds of, as oxidizing agents, 

441 

UFtt, molecular structure of, 343 

W 

W, compounds of, as oxidizing 

agents, 441 

WF«, intermolecular forces and boil¬ 

ing point, 368 

molecular structure, 343 

WSa, crystal structure of, 342 

Z 

Zn, in electromotive series, i42ex. 
Zn(and compounds) (see Zn-group) 

ZnsAu, crystal structure of, 383 

ZnCla, Born-Haber cycle, 2^lex, 
Zn complexes, stereoisomerism of, 

303 

ZnCu, composition, 383 

order-disorder phenomenon, 386 

Znij, interatomic distances and 

molecular struct ure, 324, 340 

ZnS, crystal structure of, 469-471 

Zn-group, crystal structure of ele¬ 

ments, 379 

nobleness, 338 
Zn-group oxides, sulfides, selenides, 

transition between types of 

binding, 335, 337 
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