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PREFACE TO SECOND EDITION

ACONSIDERABLE number of minor corrections and im-

provements have been made in this reprint of the first

edition. I have to thank a large number of colleagues who have

helped me in the revision. The only major change is that I

have inserted in Chapter VIII a short introduction to the theory

of meromorphic functions. This has been made possible by

compressing some comparatively unimportant sections, and

transferring the theory of the gamma-function to Chapter IV,

where it now includes a more complete discussion of Stirling’s

formula.
E. C. T.

PREFACE TO FIRST EDITION

This volume is a development of the notes from which

I have lectured in recent years to students at University

College, London, and Liverpool University. It consists of some
rather disconnected introductions to various branches of the

theory of functions, both real and complex. I think the average

student finds the existing literature on these subjects rather

formidable, and I hope that these chapters will do something

to bridge the gap between the elementary text-books and the

systematic treatises on the theory of functions.

A knowledge of elementary analysis is assumed. By ele-

mentary analysis we mean, roughly, what is contained in

Hardy’s Courf^e of Pure Mathematics, Apart from this the work
IS self-contained. The order in which the chapters occur is to

a certain extent arbitrary. The last four chapters might well

come after Chapter I. Apart from occasional references forward,

the earlier part of the book is independent of these chapters

;

but what they contain is part of the necessary equipment of the

analyst of to-day, just as much as the older theory of analytic

functions.

A number of miscellaneous examples are given at the ends of

the chapters. Some of them are more or less immediate applica-

tions of the book-work. Others are more difficult theorems
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which have not found a place in the text
;
these are accompanied

by indications of the solution, and references to the sources.

When I first proposed to put my notes into the form of a book,

Professor Hardy very generously offered to work through them

in connexion with his lectures at Oxford, and they have been

revised with the help of the notes which he made during this

process. I have adopted a very large number of improvements

from Professor Hardy’s notes, and I wish to express my very

deep gratitude for the assistance which he has given.

I have also to thank Mr. U. S. Haslam-Jones and Dr. B. M.

Wilson, who have read the proofs and made a large number of

useful suggestions.

E. C. T.

REFERENCES TO HARDY’S PURE MATHEMATICS

This book refers to the sixth edition of the above but the

corresponding references in the seventh edition may be found

from the following table:

Sixth Seventh Sixth Seventh Sixth Seventh

Edition Edition Edition Edition Edition Edition

99 100 160, 161 165, 166 193-4 200-1

101-2 102-3 167, 168 173, 175 206 2J3

105-6 106-7 175 181 208 215

125 126 177-8 184-5 213-14 220-1

146 149 180-1 187-8 222 229

153, 154 157, 159 184-5 191-2 224 231

156-64 161-9 189-90 196-7 233 240

The following alterations to references should also be noted:

Page 10, footnote, /or Ex. 27 read Ex. 10

19, line 20, /or ex. 32 read ex. 36

20, line 2 from foot, /or § 184 read § 203

31, line 3, /or ex. (xv) read ex. (xvii)

43, lines 2-3, for § 181, exs. LXXVI, 9-10

read § 188, exs. LXXVI, 8-9

61, footnote %for ex. 20 read ex. 16

306, footnote *, for ex. 42 read ex. 44
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CHAPTER I

INFINITE SERIES, PRODUCTS, AND INTEGRALS

1. Introduction. In this opening chapter we supplement

the knowledge of elementary analysis which the reader is sup-

posed to have at his disposal. We deal particularly with series,

each term of which is a function of a variable; with integrals

involving variable parameters; and with a variety of those

double-limit problems which are so common in all branches of

analysis. As we have explained in the preface, we take Hardy’s

Pure Mathematics (to which we refer as P.M.) as a starting-

point, and refer to it whenever possible.

We shall use the following notation. In any argument, a

number independent of the main variables is called a constant.

A number not depending on any variable is called an absolute

constant. We use A to denote an absolute positive constant,

not necessarily the same one each time it occurs. The reader

may find statements such as ‘/(x) < A, hence 2/(x) < A’ a little

disconcerting at first, but he will soon get used to them. A con-

stant depending on one or more parameters is usually denoted

by A.

By /(^) = D(^(x)} we mean generally that I/(x)
1
< A(f>{x) if x

is sufficiently near to some given limit. In particular, 0(1)

means a bounded function. Thus

sinx= 0(1x1), (x-f 1)2=:. 0(1)

as X -> 0; and

sinx = 0(l), (x-l-l)2=: 0(x2)

as X 00.

Sometimes, however, /(x) = 0{^(x)} is used to mean

|/(x)l<AXx),

but it is usually sufiiciently obvious what parameters are

involved.

By /(*) = o{<l>(x)} we mean that f(x)/(f>{x) -> 0 as x tends to

a given limit. Thus

sin X = o (x*), (x-f- 1
)2= 0 (x®)

as X -> 00. In particular, o(l) means a function which tends to

zero.
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we mean that f{jc)j(j>{x) 1 as a; tends to a

given limit.

We use c to denote a variable which is to be given arbitrarily

small values, and so may be thought of as small.

By max(a, 6,...) we mean the greatest of a, 6,..., and by

min(a,6,...) the least.

1.1. Uniform convergence. The reader should be familiar

with the idea of a convergent series * Our standard notation for

an infinite series is

00

+ ~ ^
the limits of summation being (l,oc), unless other limits are

definitely assigned. The ri^th partial sum of the series is

We begin by recalling the definition of convergence. The series

is said to be convergent to the sum s if, given any positive

number €, however small, we can find a number Wq, depending

one, such that |s_5j<. {n> n^).

In other words, s,^ tends to the limit 5 as tends to infinity.

Suppose now that each term of the series is a function of a

real variable x. This variable is usually supposed to range over

a closed interval, a^x^by say; but the range of variation

may equally well be an open interval, a <x <b; or indeed any

set of points. We now write the series

and its nth partial sum is s^{x). The series may, of course, be

convergent for some values of x and divergent for others. If it

is convergent for all the values of x considered, its sum is a

function of x, defined for these values of x. We denote it by 8{x).

Definition. The series ^ ujix) is said to be uniformly con-

vergent over the interval {a,b) if, given any positive number c,

however small, we can find a number n^, depending on e but not

on x,8iwht}m
l

5(a;)-s„(a;)l<e

for n > n-Q, and for every value of x in the interval (a, 6).

It is clear that uniform convergence implies convergence for

every value of x in the interval; but a series may (as we shall

PM. § 76.
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show by examples) be convergent for every value of x in an

interval without being uniformly convergent. It may be true

that to every pair of values of x and e corresponds a number
such that |5(x)— <€ for n>nQ\ but at the same time it

may happen that, as x approaches some point of the interval,

the number Uq may become indefinitely large. The series would

then not be uniformly convergent.

Notice that uniform convergence is a property associated with

an interval (or set of points), not with a single point.

1.11. Tests for uniform convergence. Just as there are

tests for the convergence of a series of constants, so there

are tests for the uniform convergence of a series of functions.

The simplest and most useful test, due to Weierstrass, is as

follows:

The series 2 '?^«(^) uniformly convergent over the interval (a, b)

if there is a convergent series of positive constant terms, ^ ^^l/y

for all values of n and x,

Tn the first place, the series convergent for every

value of X, by the ordinary comparison theorem {P.M

.

§§ 167,

184). It therefore has a sum 6’(a:) for every value of .r. Also

|5(a:)-5„(a:)| = |M,H](»')+««+2(a^)+-K «,hi+“«+2+-,
which can be made less than any given e by taking n greater

than a certain number n^. Since the a^^ series is independent of

X, the number n^ is independent of x. This proves the theorem.

Notice that the result still holds if \u^fx)
| < a^^, not necessarily

for all values of n, but for all sufficiently large values of n.

A more general test pf the same type, which is sometimes

useful, is that ^ uniformly convergent if \Ujfx)
\ ^ v^{^)y

and 2 uniformly convergent. We leave the proof of this

to the reader.
00

Examples, (i) The power series 2 is uniformly convergent for
n=o

a if — l<a<??<l. [Take = |cr|" or |6|", whichever is the

greater.]

(ii) The trigonometrical series

cos nx

n=l

is uniformly convergent over any interval.
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00

(iii) The Dirichlet series X uniformly convergent for a < « < 6,

n = i

if 1 < a < ?).

[Take a^-- n"®; see P,M. § 175. The sum of this important series

is denoted by J(5).]

(iv) The series oo

n " 0

is uniformly convergent for — 1 < oj < 1

.

(v) A similar definition of uniform convergence may be framed for

series such as QO

2 r" cos nd^
n~0

where the general term is a function of two (or more) variables, here

r and 0. This series is uniformly convergent for 0 < r < 6 < 1 and any
range of values of d.

1.12. Other tests. In a general way, any test for con-

vergence becomes a test for uniform convergence if its condi-

tions are satisfied independently of x. For example {P.M. § 168),

2 '^yM) is convergent for a particular value of x if there is a

number r, less than 1, such that

for all values of n. In general, the value of r for which this is

true will depend on x. Suppose, however, that we can find a

number r such that the condition is satisfied for all values of

X with this same value of r. Then the series is uniformly con-

vergent, provided that Ui(x) is bounded. For repeated applica-

tion of the above inequality gives

\u.n{x)
\ ^ ^

if \Ui{x)
\ < M, and the result follows from the comparison test.

Other tests for convergence may be extended in the same

way. Take, for example, Dirichlet’s test (P.M, § 189). The
analogous test for uniform convergence is as follows:

ISK is a positive function of n which tends steadily to zero as

n-r CO, and if there is a constant A such that

I ttn(x) < A
n = i

for aU mines of N and x, then the series

1
is uniformly convergent.
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The reader should have no difficulty in formulating the

rigorous proof.*

Examples, (i) If the numbers are positive and decrease steadily

to zero, the series

2 sin nx

is uniformly convergent in any closed interval not including a multiple

of 277. [Compare P,M. ex. LXXIX, 2. Use the identity

. „ .
. cos Jar — co8(n-f 1

sin X f- sin 2ar -f ... sin nx ~ 1 *—
. |

2 8inja; J

(ii) Under the same conditions, the series

2 sin nx

is uniformly convergent in an interval including x ~ 0.

1.13. A necessary and sufficient condition for uniform
convergence. The series 2 uniformly convergent if and
only if the folloiving condition is satisfied. Given any positive

number €, we can find n^, depending on e but not on x, such that

< €

for all values of m and n greater than n^.

This corresponds to the ‘general principle of convergence’ for

ordinary series (P.M. §§ 83, 84).

As in the case of ordinary series, the condition is easily seen

to be necessary; for

so that, if the series is uniformly convergent, the condition is

satisfied. In the case of ordinary series, the proof of sufficiency

is more difficult. But, once the difficulty has been overcome in

the ‘ordinary’ case, there is no further difficulty in the ‘variable’

case. For suppose that the condition is satisfied. Then, by the

theorem for ordinary series, the series ^ Un{x) is convergent for

every x. Let its sum be s{x). Given e, choose Uq so that

1
< ^ (m > Wo, n > Wo).

Keeping m fixed, make w -> oo. Then, since s,fx) -> ^(a:),

provided only that m > Uq, Hence the convergence is uniform.

1.131. The following theoremf on a class of trigonometrical

series is an excellent example of the above principle.

* See Bromwich’s Infinite Series^ ed. 2, § 44.

t Chauiidy and JolUffe (1).
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If the numbers are positive and steadily decreasing, a neces-

sary and sufficient condition that the series

should he uniformly convergent throughout any interval is that

nb^^ -> 0 .

To show that the condition is necessary, observe that, if

X “ 7rl(2p), and* n [|p+ !]»

sin +1 sin(w+ 1 )^ + • • •+ ^^> sin

> b^(mnnx + sinpx) > l)sin Jtt,

since there are at least |p~l terms in the bracket, in each of

which mx > Jtt. Since the given series is uniformly convergent

in an interval including the origin, the left-hand side of the

above inequality tends to zero as p oo. Hence pbj^ -> 0.

In proving the sufficiency of the condition, we require the

following result, known as Abel’s lemma:

If

and if m < ai+agd-.

M

for all values of n, then

b^m < af)^+aJ)^-{-.,,+a^fi^, h^M

for all values of n.

Let Thent

Since each bracket is positive or zero, the sum is not decreased

if each s^ be replaced by M
;
and this gives

Jf(6jL

—

b^-\- M{b2
— 63)4-*.«+Af6,,^ = Mb^,

the required upper bound. Similarly we obtain the required

lower bound. This proves the lemma.

In the series in question, it is sufficient to consider the interval

0 ^ a: < 7T, since each term is odd and has the period 277. Con-

sider the sum , . , , , •

p
== 6;, sin na: + .. . -f 6p m\px,

where now n and p are unconnected. Let — max(m6^), so
m^:^n

*
fx] moans the integral part of x.

t Cornpai*e P.M. § 189.
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that 0. If X ^ rrln, .we apply Abel’s lemma. We have

|sinna:+--*+sinra;|
1

""
sin lx

cos(n— |)a: — cos(r4' \)x

2 sin lx

for all values of n and r, and, since sin^/0 is steadily decreasing

for 0 < 0 < Itt,
^

and we deduce that

sin ix X

JO

If ^ ^ WiP> have, since sin0 < 6,

Kpl < b^nx+...+h^px^^p/i^x < 7r/t„.

If Trjp<x< 7r/n, we combine the two arguments. We have

and, applying Abel’s lemma to the second part, and the other

method to the first part, obtain

Taking k = [tt/x], we have

Hence in any case

and, since -> 0, the result follows.

1*14. Uniform convergence and continuity* So far, of

course, we have not suggested any reason for considering uni-

formly convergent series at all. They are important for many
reasons, not all of which can be explained in this chapter. The
first reason is the following theorem

:

The sum of a uniformly convergent series of continuous func-

tions is a continuous function.

We use the same notation as before, and write

«(a:) = «„(*)+

so that r„(x) is the remainder after n terms of the series. Then,

if X and x-\-h are any two points of the interval considered,

|a(a:+A)-«(a;)| == \8„{x+h)-a„{x)-\-r^{x+h)-r^{x)\

< s„,(a:)l+ |»-„(a;+A)|+ lr„(x)|.

Having given c, we can choose so that

l»‘»(«+^) I< Vni.^) i
< f {»> «o).

B
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for all values of h. We now fix on a definite value of n which

satisfies this condition. Having fixed n, s„(x) is a continuous

function of x, since it is the sum of n continuous functions. We
can therefore choose 8 so small that

|5„(a:+A)-s„(x)|<c {|A|<8).

Hence, combining the above inequalities,

I«(*4-A)—s(a;)|< 36 ([A|<8),

which proves that s(x) is continuous.

Notice that the result is true if the functions are merely

continuous at the single point x considered; for all we have used

is that s^(x-i-k) as A -> 0, a; being fixed. We can therefore

state the result as follows:

The limit of the sum of a uniformly convergent series of func^

tions, each of which tends to a limit, is the sum of the limits of the

separate functions.

1,2. Series of conmplex terms.* The theory of uniform

convergence may be extended to series of the form

in which the general term u,fz) is a function of the complex

variable z. Instead of uniform convergence in an interval, we
shall now have uniform convergence throughout some region of

the 2;-plane, such as the interior of a circle or a square. The
reader should have no difficulty in extending the definitions and

tests to this case. It should also be noticed that the theorem

on the continuity of the sum of a uniformly conveigent series

can be extended at once to series of complex functions.

00

Example. Tlie series 2 n“', where « is a complex variable, is uni-
n~l

formly convergent throughout any finite region in which R{«) ^ a > 1.

The function defined as the sum of the series, is continuous at

all points of the region R(fi) > 1.

[Compare ex. (iii), § 1.11.]

1.21. Power series. One of the simplest cases of uniform

convergence of a series of complex terms is that of a power

series. We know {P.M. § 193) that a power series

n-Q

* F.M. § 190.
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has a radius of convergence R (which may be zero or infinite),

such that the series is convergent for l2| < iJ, and divergent

for \z\> R,

The series is uniformly convergent for \zl < R\ where R is any

positive number less than R.

For let p be a number between i?' and R. Since the series is

convergent for z = p, there is a number iiT, independent of n,

such that |a„ p^\< K for all values of n. Hence, for \z\ ^ i?',

and the last term is independent of z, and is the general term

of a convergent geometrical progression. Hence (by the ana-

logue for complex functions of the test of § 1.11) the series is

uniformly convergent.

We have thus shown that any circle interior to the circle of

convergence is a region of uniform convergence. The circle

of convergence itself is not necessarily a region of uniform con-

vergence; in fact on the circle the series does not necessarily

converge at all.

Example. For the series 2 the circle of convergence is a region

of uniform convergence.

1.22. Abel’s theorem. There is one interesting possibility

which the above discussion so far leaves open. Suppose, to take

the simplest case, that we have a real power series

S (1)
n=0

with radius of convergence 1. Suppose further that the series

S «» (2)
n-0

is convergent. Does the interval of uniform convergence, in this

case, extend right up to the point a; = 1 ? The answer is in the

affirmative.

If the series ^

2 ®»
n=»0

is convergent, and has the sum s, then the series

i
n»o
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is uniformly convergent for 1, and

lim 2
x-^X 0

The proof is an immediate consequence of Abel’s lemma (see

§1.131). Let

Then, given €, we can choose n^ so large that

(Uq < n < jp). Since the numbers a;” are non-increasing if 1,

Abel’s lemma gives, for tIq < n< p,

+ (0 < x < 1),

and this is the condition for uniform convergence.

The second part of the theorem now follows from the con-

tinuity theorem of § 1.14.

Example. From the expansion (P.M. § 213)

log(l-f-i»') === ^— + {\x\< 1),

deduce that log 2 - 1 — ^ -f J— . . . .

1.23. Tauber’s theorem. The direct converse of the ‘con-

tinuity’ part of Abel’s theorem would be that if

f(x) = 2 «n*“ «
n=0

CO

as a; -> 1, then ^ converges to the sum s.

0

is shown by the simple example

That this is false

f{x)-=l(-irx-:
1

r+x*

in which f{x) -> i, but ^ is not convergent.
0

If, however, wo impose on the coefficients a„ a restriction as

to their order of magnitude, it is possible to prove a converse

theorem.
00

If = o(l/?i), and f(x) s as x ->1, then 2 oo'^verges to the
0

sum s.

We first prove the following simple lemma:*

Lemma. If as oo, then

f^o+bi+ --+b^
0 .

n+1

P,M. Ch. IV, Misc. Ex. 27,
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For, if \bj < K for all values of n, and
[
< e for n >

then

»-f-l ^ w+1 n-\-\

(no+l)A: (n~nje ^

if n > (no+l)A7€. This proves the lemma.

To prove Tauber’s theorem, it is sufficient to prove that

2 1 «« -> 0
0 0

as a: 1, where N == [1/(1— a:)]. That is, we have to show that

A’ + 1 0

Call these two sums <S\ and /S^. Given e, choose N so large that

j7ia„| <e (n> N). Then

'

= I

J.”- •f
I

<»+ 1 Jr < (W)(i^)
'

Also 1 “ (1— a:)(l+^+...+^^'“^) <7i{l—x),
A

]
A

_ I rt 1 ^ \ XT' I I ^ t Iand so I^S'ai < (1-x) 2 w|a„| r:- 2
0 iV i)

which tends to zero, by the lemma. Hence \S^\< e if N is large

enough, and so |i\+*S 2 l< 2^. This proves the theorem.

1.3. Series which are not uniformly convergent. Up to

this point, the reader may still suspect that convergence

throughout an interval is the same thing as uniform conver-

gence. We shall show by means of examples that this is not so.

Examples, (i) We can construct a series for which

'
' l+nx ' ^ '

by taking Ui(x) — l/(l+ic), and

, ^ 1 1 / i\

"l-fna: l + (n— (1 -j-nx){l -f (a— l)x}

This function is a continuousJunction which tends to a discontinuous

limit. For, if a; > 0, «„(ir) obviously tends to zero as w->oo. But if

x~ 0, sj^x) ” 1 for all values of n, and so its limit is 1. The sum of

the series is therefore discontinuous. Hence the series cannot be uni-

formly convergent.

(ii) Consider the series oo

2) xe ~^.

(n> 1).
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Here #„(0) — 0, so that a'(0) — 0. Wlieii x > 0,

As a: ->0, s{x) 1. Hence A'(a:) is disconiimious, and, as before, the series

is not uniformly convergent in any interval ending at x 0.

In fact, if a: = 1 /71,

so that |a(a:)--5„(a*)| is not ‘uniformly sinaH’ near a' — 0.

(iii) Consider similarly

?i ^-0

(iv) As in example (i), we can construct a series for which

s„(a:) “= n.r(l— a*)" (b <: x - 1).

Obviously a(0) — 0. Also, if a: > 0, n( 1 •—a’)" —> 0 as n -> oc (P.M. § 206).

Hence s{x) = 0 for all values of x. In this case, therefore, the sum of

the series is continuous. But the series is not uniformly convergent. It

is a simple exercise in differential calculus to find the maximum of

aj^x); it is

/_!L
ll+n/ *

and thus tends to the bmit as n —>00 (P.M. §§ 73, 208). Hence,

however large n may be, the function sj(x)—8(x) takes values nearly as

large as c“h Thus tlio convergence is not uniform.

The reader should draw the graph of if„(.t‘). It lias a wave which

approaches the origin, and diminishes indefinitely in breadth, but not

in height.

Notice that uniformity of convergence may be altered by

multiplying by a factor independent of n. For example, if

X

l-j-nx’

then |s„(x)| < 1/n (0 a: 1), so that the series converges uni-

formly to zero. But the series obtained by multiplying by \jx

is not uniformly convergent (ex. (i) ).

On the other hand, if we multiply a uniformly convergent

series by a bourided factor independent of w, the resulting series

is also uniformly convergent. This is easily seen from the

definition.

1,31. Uniform convergence of series of positive terms.

It is clear from the above examples that uniform convergence

is not a necessary condition for continuity, though it is a suffi-
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cient condition. There is, however, one interesting case in which

uniform convergence and continuity are equivalent.

If 2 ^ series of continuous positive terms in

a given closed interval, a necessary and sufficient condition that

s{x) should be continuous is that the series should be uniformly

convergent over the interval.

We have to prove that the condition is necessary, i.e. that,

if s(x) is continuous, the series is uniformly convergent.

Employing our usual notation, the function is

continuous, and so (P.M. § 102, Th. 2) has an upper bound,

say, which is attained at some point x^^ of the interval. It is

sufficient to prove that for, since the terms are positive.

for n^N and all x; and this implies uniform convergence if

e y 0 as iV^ -> 00 .

Suppose on the contrary that does not tend to zero. Then,

since it is steadily decreasing (because the terms are positive),

it has a positive lower bound, S say. Also the numbers x^ have

a limit-point, £ say, in the interval {P.M. § 19). Choose N so

large that s{^)—s^{^) < S. Then, if ^ is an interior point of the

interval, there is an interval {^—h,^-\-h) throughout which

«(a?)—%(a:) < 8 {P.M. § 101, Th. 1). If f is an end-point, the

same is true of {^,^-{-h) or (^—A,^), Hence for those

values of n for which \x^—^\ <h. This gives a contradiction,

and the theorem is proved,

1.4. Infinite products. An infinite product is an expression

df the form

containing an infinity of factors. We denote it by

IT
n=i

We suppose that no is equal to —1.

Writing p^ for the partial product

?>n==TT(l+«J.
w = l

we say that the infinite product is convergent if, as n~> oo,

tends to a limit other than zero. We might, of course, admit the

* See Hardy (11) for a detailed discussion.
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limit zero as well; but we shall see later that this would often

be inconvenient.

If the product is not convergent, it is said to be divergent.

If 0, it is said to diverge to zero.

Examples, (i) The product

is converpjent.

(ii) If the product (1) is convergent, ~> 0.

1.41. We begin by considering two simple cases.

If ^ 0 for all values of n, the product XT(l+cr;i) and the

series 2 converge or diverge together.

Since, in this case, is a non-decreasing function of n, it

either converges or tends to positive infinity. Now

The left-hand inequality is obvious on multiplying out the pro-

duct; and the right-hand inequality follows from the fact that

1+a e" for every positive a. The two inequalities show that

p,^ and a^~\-...-\-af^ are bounded or unbounded together, and this

gives the result.

If 0 for all values of n, write and consider

the product

n(i-u-

If 0, ^ I, for all values of n, and 2 is convergent

^

then na— is convergent.

Since J is convergent, we can choose N so large that

and, in particular, 6,, < 1 (n > N). Then

(1-~6^0(1-W >
(1— 6y)(1— 6 Y+l)(f '^^A+2) ^ (f

and so generally

Hence steadily decreasing for n'^N, and has a

positive lower bound. Hence it tends to a positive limit. Since

Pjs^^i is not zero, the result follows.

If 0^b^< I for every n, but diverges, then XI(1—6„)

diverges to zero.
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For 1—6 < if 0 < 6 < 1, so that

The right-hand side tends to zero, and the result follows.

In particular, if 0^ <1, the product IJ (l—ft,,) cind the

series 2 <^onverge or diverge together.

1.42. The general case. Now let the numbers be any

numbers, real or complex, other than — 1.

Definition. The product JJ (l+«„) is said to be absolutely

convergent if the product XT (1+ l^^l) convergent.

It is clear from the first result of § 1.41 that a necessary and

sufficient condition that the product should be absolutely convergent

is that 2 l®nl should be convergent.

We next show that an absolutely convergent product is con-

vergent.

To prove this, let p„ denote the same partial product as

before, and let ^

r/i=l

Pn~Pn-\ — (l+®l)-(l+®«-l)®n>

Pn—P^-1 = (1+ l®ll)"-(l+

and it is plain that

Now, if n (14-l<3^;il) is convergent, tends to a limit, and so

l{P,-Pn~^) is convergent. Hence, by the comparison theorem,

^(Pn~Pn~i) convergent, i.e. p^ tends to a limit.

This limit cannot be zero. For, since 2 I®hI is convergent

and 1 -f -> 1, the wseries

V̂
1+^/t

is also convergent,

product

Hence, by what we have just proved, the

tends to a limit. But this product is equal to l/p.^- Hence the

limit of p^ is not zero.

Example. The factors of an absolutely convergent product may be

taken in any order, without altering the value of the product. (Compare

P.M. § 185.)
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1.43. The logarithm of an infinite product. If

1

is it necessarily true that

f log(l+a„).--logp ?

Here log 2; denotes the principal value of the logarithm of 2
,

i.e. the value whose imaginary part lies between — tt and tt

(P,M, § 224).

The result is obviously true if all the numbers a,, are real and

positive, for then all the logarithms have their ordinary arith-

metical value. But, in the general case, the formula requires

modification.

Let denote the ??th ])artial product, and let

so that and tend to limits, and so does if its values are

suitably chosen. Let vliere --tt < tt;

then, since a -> 0, 6^^ > 0 as n .

7?

Let 2 + "».)•
Vi = 1

Then s„ -= log + 2kjTT,
( 1

)

where is an integer. Now

2ki,TT---- 0,4-...+0„—

so that 27T(i-„+i- A-„) = ^,,+ 1- J.

and the right-hand side tends to zero. Hence, if n is sufficiently

\2n{k„^^-k„)\<2^,

and so — since k,^ is always an integer. Thus k^ has

a constant value, k say, if n is sufficiently large; i.e.

«« = log P„+ {n > «o).

and, making n->cx),

2 log(l +a„) = log?> + ^Jcin.

The sum of the series is therefore a value, but not necessarily

the principal value, of the logarithm of the product.

Notice also that it follows from the proof that

f log( 14-a„) = logp - logjt);v

iV+l

for all sufficiently large values of N.
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If WO start with the series of logarithms, and assume that

oo

2 log(l+o„) - s,

n=«i

we have, on taking the exponential of (1),

and so = e®,

i.e. the product converges to the exponential of the sum.

Examples, (i) If 2 «« and 2 are convergent, then ]j[ is

convergent. [Use the equation log( 1 -{- a^) = 0( |a„|®).]

(ii) If 2 «n» Z 2 Z are all convergent, then H +^*i)

is convergent.

(hi) If a„ is real, and ^ convergent, the product ]Q (l+<^*) con-

verges, or diverges to zero, according as ^ ^2 converges or diverges.

(iv) The product

is divergent.

(v) Show that, if

^1_ _ 1 Jl_ 1

the product fl (l+an) converges, though both 2 ®^nd 2 aJ diverge.

(vi) Tlie product PJ ^1 is divergent, butnh ^
is convergent.

(vii) If 2 \^n\ is convergent, so is (1—

;

and if ^ is con-

vergent, so is n (1— [As u->0, (1— w)e“ = 14-0{w“*) and
(1— «)««*+!« r=: l-fO(w“®); or we may consider the series of logarithms,

as in (i). Products of this type are of great importance in Chapter VIII,

and are discussed fully there.]

1.44. Uniform convergence of infinite products. The

infinite product «>

n {l+«»(2)}.
n=l

where the factors are functions of a variable z, real or complex,

is said to be uniformly convergent if the partial product

Pni^) =n {l+ttm(2)}
m=l

converges^,uniformly in a certain region of values of 2; to a limit

which is never zero.

The simplest test for the uniform convergence of a product

is as follows:
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The product JJ{1 -j-ujz)} is uniformly convergent in any region

wh^e the senes ^\u„(z)\ converges uniformly to a bounded sum.
The proof consists of a re-examination of the convergence-

argument of § 1.42 from the point of view of uniformity LetM be the upper bound of the sum J \u,Xz)\ in the region con-
sidered. Then

Let

Then

{ 1 + I}.. .{1 -f \u^{z)
1}

<

J’»(2)-fT{i+K(z)l}.

-Pn(2) P»-l(2)^(l+ |Ml(s)|}...{l-}-|tt„_j(2)|}|w„(2)| <eM|%„(2)|.

Hence ^ is uniformly convergent, and the result
follows as in § 1.42.

Examples, (i) The product

where xo- runs through the prime numbers 2, 3, 6,..., is uniformly con-
vergent m any finite region throughout which R(s) for thesame thing is true of the series J |xv-.|, >vhich consists of some of the
terms of the senes J |n-| (§ 1.2, example).
The value of the product is 1 /{(s). For

(l-2-)^(»)= l+ 3-*+5-*-|-...,
all terms containing the factor 2 being omitted on the right. Next

(l-2-*)(l-3-')i(s) = l-i-6-*-f7-*-f ll-'-t-...,

all terns containing the factors 2 or 3 being omitted. So generally, if
IS the nth prime,

(
1-2 •)...(!— «•-*)$(«)=

where all numbers containing the factors 2. 3 are omitted.
all the numbers up to ur, are of this form,

|(l-2-')...(l_x,r»')f(s)-l| < |(w„-t-l)-|-f-|(w„-f-2)-|-h...,
which tends to 0 as to-, oo. Hence

Since

lim(l-2-)...(l-TO,-')J(«)= 1,
, W^OO
the result stated.

(ii)HR(a)5,2

logf(«)= _ 2:iog(l-TO-'),
to-

all the logarithms having their principal values.
[We deduce from the above example and § 1.43 that

log J(«) = - 2 Iog( 1- TO-) -1- 21kin,

where i is an integer, which depends prima facie on s.
obviously 0. Also, as long as R(«) > l, the real part of

If a is real, k is

l— remains
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positive, and so its amplitude remains between — Jtt and Jtt. Each term

Jog(l— TDT"') is therefore continuous for R{5) > 1. Hence the sum of the

series is continuous.

Similarly log ^{s) is continuous, provided that > 0. This is

certainly true if R(«) ;> 2, since, if R(5) = a > 2,

It follows that ^ is continuous for R(s) > 2, and so zero throughout

this region.]

(hi) The convergence of the product fl (l+On) does not imply that

of fj (l-j-a^a:), except for x 0 and x --- 1.*

(iv) The convergence of n (l-fa„) does not imply that

lim n (1+v”) = n
[In fact, Hardy (5) gives an example in which

lim n{l+«.a!») = 2 n (!+«»)•

The result is, of course, in striking contrast to Abel’s theorem on the

continuity of power series.]

(V) The product

is not convergent for any rational value of ^/tt, but is convergent if ^/tt

is an algebraic number (P.M. Ch. I, ex. 32) wliich is not rational.

[The problem of the behaviour of this product, suggested by Hardy

(5), was solved by Littlewood (2).]

1.5, Convergence of infinite integrals » We assume that

the reader is familiar with the elementary properties of the

Riemann integral of a continuous function {P.M, §§ 156-64). If

f{x) is continuous over a finite closed interval {a, b), the Riemann
integral ^

J f(^) dx

a

exists. Similarly the indefinite integral

F{x) = J /(<) dt

a

exists for a^x^b; and F(x) is continuous, and has a dif-

ferential coefficient equal to /(x). We assume a knowledge of

the usual rules of integration by parts, integration by substitu-

tion, etc., and of the mean-value theorems (P.M. §§ 160-1).

We next extend the definition to a class of discontinuous

* Hardy (5).
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functions. Suppose that the interval (a,fc) can be divided up

into a finite number of parts such that

f{x) is continuous except at Xi,..,y x^, and such that the limits

/(ar^—O), f{xi+0)y,.,y etc., exist (P.JIf. § 99). Then the integral

of f{x) over each partial interval exists, and the integral over

the whole interval is defined as being the sum of the integrals

over the partial intervals; i.e.

b Xi Xt h

J f{x) dx== j f{x) dz + J fix) dx +...+ J fix) dx.

a a Xi Xn

An infinite integral is defined in l^.M. § 177. If /(<) is in-

tegrable over (a, x) for all values of x, and
X

lim f fit) dt — I,

a>-*oo
a

then we say that the infinite integral
00

a

is convergent, and has the value 1.

Similarly, if fit) tends to infinity, or oscillates, as x c, but
X

lim f fit) dt == I,

a

then we define the integral of fit) over (a, c) to be equal to I

iP.M. § 180).

There is no difficulty in extending the rules for integration

by parts and substitution to these cases.

A number of tests for convergence, such as the comparison

test, for the case where /(x) is positive, are given in P.M. § 178.

Suppose now that fix) is not necessarily positive. If fix) and
|/(x)| are both integrable in one of the senses already explained,

and if the integral „

/
\m\di

a

is convergent, then the integral

]fit)dt

a

is said to be abaoVutdy convergent (cf. P.M. § 184).

An abaolviely comergeni integral is cemvergent. For, if the
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integral of |/(/)[ is convergent, so are the integrals of

#)-i/(0Hm 0(0 - 1/(0
1-m

by the comparison test, and 0 both being positive. Hence
the integral of i{0(O“0(O}“/(O convergent

The result may be extended to the case where f{t) is a con-

tinuous complex function, by considering separately its real and
imaginary parts.

An integral which is convergent, but not absolutely con-

vergent, is said to be conditionally convergent.

The most important tests for conditionally convergent in-

tegrals are the analogues of Dirichlet’s and AbePs tests for

series {P.M. § 189).

Analogue of Dirichlet’s test. If (f){x) has a continuous

derivative, and decreases steadily to zero as x~> oo, and

F{x) = jf(t)dt

a
is bounded, then the integral

00

J
dx

a

is convergent.

We integrate by parts, this being the process for integrals

analogous to the ‘partial summation’ by which Dirichlet’s test

is proved. We have

J
^(x)f{x) dx - ^{X)F{X)^

J
{-.!>'(x))F{x) dx.

a a

The integrated term tends to zero as X oo; and the last

integral is absolutely convergent by the comparison test; for

|J^(x)| is bounded and —(f>'{x) is positive, and

\ {-j>'{x)} dx =
a

This proves the theorem.

Examples, (i) The integrals

00 oo

are conditionally convergent.

(ii) State and prove the analogue for integrals of Abel’s test.
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We note finally a necessary and sufficient condition for the

convergence of the integral

oo

a

it is that, given e, we can find such that

J f{x) dx <e
X

for X' > Xq. This may be proved in the same way as (or

deduced from) the corresponding theorem for series (P.M.

§§ 83
-4 ).

Examples, (i) Use this principle to prove that an absolutely con-

vergent integral is convergent.

(ii) Prove Dirichlet’s test for convergence by means of this princii)le

and the second mean-value theorem (P.M. § 161, exs. 11-12).

1.51 Uniform convergence of infinite integrals. We can

now extend the idea of uniform convergence to infinite integrals.

Let f{x,y) be an integrable function of x over the interval

a < X < 6, for a < y < and for all values of 6. Suppose that

the integral

4>(y) = j fix, y)dx
a

is convergent for all values of y in the interval (a,j3). Then the

integral is said to be uniformly convergent if, given e, we can find

a number Xq, depending on c but not on y, such that

X
4>iy )- J fix, y) dx < e, (X > Xo).

a

A similar definition may be framed for integrals which are

infinite by reason of the integrand becoming infinite in the range

of integration.

The simplest test for uniform convergence is the analogue of

the series-test of § 1.11. The above integral is uniformly con-

vergent if there is a positive function g(x), independent of y, such

that \f(x,y)
\

^g{x) for all values of x and y, and such that the

integral ^

J
gix) dx

a
%s convergent.
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This may be proved in the same way as the corresponding

result for series.

Other tests may be extended in a similar way. For example,

in Dirichlot’s tc^st, if/and ^ are functions of x and y, we assume

that dffyjdx is continuous, and ^{x) tends to zero steadily and
uniformly with respect to y, and that |F| is less than a constant

independent of x and y. The integral of is then uniformly

convergent.

Examples, (i) Consider the convergence of the integral

oo

r(.T) = J<*
'e- <dt.

0

[Suppose first tliat x is real. The integral is convergent at the upper
limit for all values of x, since is bounded for all x, and we can
compare the integral with that of 1/^^; but for convergence at the lower

limit we must have .t :> 0 (P.M. § 180).

The integral is uniformly convergent over any finite x-interval (a, 6),

where a > 0. To prove this, w^e divide it into integrals over (0, 1) and

(1, oc)), and compare the two parts with

1 oo

J
^ dC

J
0 1

wliich arc convergent and independent of x.

Similarly, if x is complex, the integral is uniformly convergent over

any finite region throughout which R(:r) > a > 0; for if a; — then

result can now be proved as before.]

(ii) The integral «

I^ dx

0

is absolutely convergent for 1 <8 < 2, and any y. For a fixed s in this

range, it is uniformly convergent for 0 < a < 2/ < for any jS.

It is conditionally convergent if 0 < « < 1
, y > 0, and uniformly con-

vergent for 8 in this range and 0 < a < t/

For fixed y > 0, it is absolutely and uniformly convergent in

1 < 5 < ^2 < 2, and uniformly, but not absolutely, convergent in

0 < < 8 < 1 .

1.52. The continuity theorem. In this section we shall

prove the analogue for integrals of the theorem that the sum
of a uniformly convergent series of continuous functions is

continuous.

We first require the following theorem on continuous functions

c
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of two variables, similar to the theorem for one variable proved

in P.if. § 106.

Let f{x, y) be a continuous function of x and y throughout the

rectangle Then, given e, we can divide

up the given rectangle into a finite number of sub-rectangles

x^^x^ x^^i, yv^y ^t/v hi> ^ i^i

\f{x,y)-S{Ly})\<^

provided that (x, y) and (^, r}) belong to the same sub-rectangle.

We prove this by the method of subdivision. Suppose that

the given rectangle has not the required property. Then, if we
divide it into quarters by the lines x V == i(a+i5), at

least one of the four quarter-rectangles has not the required

property. Choose that one which has not; or, if more than one

have not, choose one of them—to give a definite rule, choose

one on the left-hand side if possible, and then, having fixed the

side, choose the lower of two on the same side.

We next subdivide the chosen rectangle into quarters; and
so the process of subdivision proceeds indefinitely, there being

always at least one quarter which has not the required property.

The left-hand sides of the chosen rectangles form an increasing

sequence, and the right-hand sides form a decreasing sequence,

and so each sequence has a limit; and the limits are the same,

since the length of the side tends to zero. Call the limit X.
Similarly the upper and lower sides tend to a limit Y.

We now use the fact that the function is continuous at {X, Y).

Given €, we can find 8 so that

\f{x,y)-f{X,Y)\<\^ (|x-Z|<8, |y-71<8).

and 80 \f{x, ->7)1 < e

if (x^y) and (^, 77) both lie in the square with centre (X, Y) and

side 28. Thus the rectangles chosen in the construction have

the required property when they lie in this square, as they

ultimately do. We have thus obtained a contradiction, and the

theorem is proved.

We also deduce the following result: Given e, we can find 8

such that
\f{x,y)-M,r,)\<€

•provided that jx-“^|< 8 and 8, 8 depending on e only^

and not on x, y, or rj.
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For divide up the rectangle so that \f{x, y) —/(^, r/)
| < Je if (x, y)

and (^ , j]) belong to the same sub*rectangle. Let S be the minimum
of the sides of sub-rectangles. Then 8 is the required number. For

if \x—^\ <8 and \y—ri\ <8, {x,y) and belong to the same

or to adjacent rectangles, and in either case the theorem follows.

The result may be expressed by saying that a function of two

variables which is continuous in a rectangle {boundary included)

is uniformly continuous in the rectangle.

We can now proceed with the properties of integrals.

If f{x, y) is continuous in the rectangle a^x^by oc^y
then

fj

a

is a continuous function of y in

For
p

(|A;| <; A"o),

and, given e, we can choose so that

|/(a;,y+A:)-/(:r,y)Ke (lA:l<A’o)>

for all values of x and y. Hence

\(}>{y+h)-~(f)(y)\ <€(6--a) (lA^K A'o)>

the required result.

If f{x, y) is continuous in the reclaiigle a^x ^b, oc^y

for all values of b, and the integral

00

Hy) ^ I
fix,y) dx

a

converges uniformly with respect to y in the interval (cx,j3), then

cf>(y) is a continuous function of y in this interval.

We have
00

\<f>{y+^)-<f>{y)\ = J
{f{x,y+k)-f{x,y)} dx

a
X

j

00 oo

J
{f(x,y+k)—f(x,y)} dx +]j f(x,y+]c) dx +

j
f(x,y) dx .

a lx X
Given c, we can choose Xq so that each of the last two terms

is less than € for X > Xq, for all values of h. Having fixed X,
the first term tends to zero with h, by the previous theorem.

The result now follows.
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In the above theorems, the continuity ofi^ at the end-

points a and P is one-sided, e.g. ^(y) -> <f)(oc) a^y -> a by values

greater than a.

Examples, (i) If the integral

f) dx

is convergent, then

jju>
0

oo

J
6 "'/(•< ) dx

is uniformly convergent in 0 2/ < ^3, and so continuous at y - 0.

[This is the analogue for integrals of Abel’s theorem on power series.

It may be proved as follows. Lot

SO that F{x)~-^ 0 as ,r-> oc . Suppose that ]F(.r)| < e for x > Xq. Then
A" I

F{X)c-^'' -F(X')e-^>-2/
j

F{j-)e-’^dx'

A"

1

A'

j

/(u:’)e' r/.r

J

A'

X > A"o and all

A

C' €4 € f ?/« [
^dx<3e

(ii) The integral

J

*'’*^*5^ dx

0

is convergent for every y; but it is not uniformly convergent in the

neighbourhood of y ~ 0, since it is discontinuous at this point.

[To prove this, observe that it is (a) constant for y > 0 (put x — u/y),

(6) positive for y = I (express it as

nn

2
C sin a; ,

J
(n“l)7r

i.e. as a series of decreasing terms of alternate signs), and (c) an odd

function of y.

Wo may prove directly that it is not uniformly convergent by con-

sidering the ‘ remainder ’

oo 00

X
X Xv

and putting, e.g., X -= Trjy,

The value of the integral will be obtained later (§ 1.76).]
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1.6. Double series. A double series consists of a double

array of terms 22^
where each of the suffixes m and n runs from 1 to infinity. There

is no single method of summing the series, such as the lim^,/

method for single series, which obviously claims our attention.

We can form partial sums of the series in a great variety of

different ways, and each way gives rise to a method of summing
the series. We may, for example, consider 'rectangular’ sums

M N
2 2«m,n.

tn~i n=l

and then make M and N tend to infinity in various ways. Or

we may consider sums such as

2 n>

taken over triangular regions. Or, finally, we may convert the

double series into a ‘repeated’ series, first evaluating the sums

2 n>

and then finding the sum of their sums. We write this repeated

series as « «

2 2
m~i n~i

the inner sum being found first. We call this the ‘sum by

rows’. If we proceed in the opposite order, we obtain another

repeated series oo «

2 2 ^m,n'
n 1 m= 1

We call this the ‘sum by columns’.

1.61. Double series of positive terms. If all the terms

^m,n series are 'positive, all methods of summation are

equivalent. Either we obtain a finite limit, the same in all cases;

or, however we sum, the series diverges to positive infinity.

To prove this we consider in turn the various possibilities.

We call a set of pairs of numbers (m,n) a region. Let

(p=: 1,2,...) denote a sequence of finite regions, each of which

includes the one before, and such that, however large JV is, A^
includes the square m^N,n^N, Up is large enough.

There are now two possible cases. Suppose first that the

finite sums
nj

• * • ~t”
jfc.
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selected in any manner from the series, have an upi)er bound

G. Then plainly ^ ft

for all values of p. On the other hand, given e, we can find

one of these finite sums greater than 0—€. But Ap includes

every term of this finite sum, if p is large enough, and then

C-

Hence, since 2 is non-decreasing,

lira 2 G;

that is to say, the series is convergent when summed in this

particular way, and its sum is O. In this case the series is said

to be convergent, it being unnecessary to specify the particular

sequence of regions taken.

Suppose secondly that there is no such upper bound G. Then,

having given any positive number //, there is a finite sum

^mi , n,
“1” • • • “1“ ^mtf •

H.

Since we can find a number p such that A^ includes this sum,

we have v rr

At,

for this value of p. Hence

2 ^m, M CO*

Ap

In this case the series is said to be divergent.

These two cases are the only possibilities; and, since the

results are independent of the particular regions A^ considered,

we have proved the theorem, so far as finite partial sums are

concerned.

Repeated series do not, so far, come under our analysis. To
include them we have to replace our finite regions A^ by infinite

regions.

Suppose first that the double series is convergent. Let D be

any region, finite or infinite. Let ^ if (m, n) is a point

of D, and otherwise == 0. Then clearly 2 71
converges if

does. We write
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this being the definition of the left-hand side. It is clear that

2 w ^
D

Now let = 1, 2,...) be a sequence of regions, finite or

infinite, having the property characteristic of Then we have

2 n <
Dp

and we can prove precisely as before that

Hence lim 2 ™
J3->QO Dj,

In particular, if we take to be the infinite region defined by
m < p, we find that the sum by rows is equal to G. Similarly

the sum by columns is G,

Secondly, suppose that the double series is divergent. Then
it may happen that the series

2 n
I>P

is divergent for a definite value of p. In this case the process

comes to an end at this point. On the other hand, if ^ is con-
Dp

vergent for every p, we can, as before, show that

Dp

for every H and p ^Pq{H). Hence

Dp

In particular, if the double series is divergent, either some

column is divergent, or every column is convergent, but their

sums form a divergent series. The same thing is true of rows.

1 .62 . As the case of repeated series is particularly interesting,

we give an alternative proof for this case.

ex5 oo qo 00

1 2«m,«=I 2 (I)
tn~l n—1 n— 1 m=l

in the sense that, if either side converges, then so does the other,

and to the same sum.

Suppose, for example, that the left-hand side is convergent.

This means that all the series

oo

2 n
n*«i
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are convergent, to sums A„„ say, and that

is convergent, to sum aS\ say.

Since for all values of m and r?, it follows from the

comparison test that all the series

QO

2 n
?« —

1

are convergent. Let their sums be Then
A' iV oo CO A’ oc)

2 A(»^ - 2 I «»/. .. 2 I ««., « ^ I ---- *’•

n- 1 n = l?//-l m-ln-l

Hence the series ^ is convergent, and, if its sum is S\ then

/S' S. But we can now reverse the whole argument, and,

starting with the convergence of the right-hand side, prove that

Hence

1 .621 . ytill another method of proof is as follows. Suppose

that the left-hand side of 1,62 (1) is convergent. Then
A' QO CO N
1 ( 1 )
n~l 7n~l 7n ~l 7i--l

this being merely the addition of a finite number of convergent

series, whose convergence follows from that of ^ i®

sufficient to prove that, as N oo,

i I 0; (2)
m-l n-iv-fl

for this expression, together with the right-hand side of (1), is

S; and it will then follow that the left-hand side of (1) tends

to 8, which is what is required.

This, however, follows from the uniform convergence theorem

of § 1.14; for the series (2) is of the form

I
m=i

It converges uniformly with respect to N, since

and 2 convergent; and, for each value of m, u„(N) 0.

This proves the theorem.

This method is of interest for the following reason. In less

simple cases, where the numbers are not all positive, we
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can still start from (1), and so reduce the problem to the proof

of (2). This can then be proved by some special method—see,

for example, § ISA), ex. (xvii).

1.63. The comparison test. Series of positive and
negative terms. We first note the comparison test for the

convergence of a double series of positive terms ; if „

and ^ 6,,, ,,
is convergent, then ^ convergent. We leave the

proof of this to the reader.

Suppose now that some of the numbers are positive, and
some are negative. Then the series ^ is said to be absolutely

convergent if the series ^ u I

convergent.

Let n if and otherwise let = 0; let

A«, /j

~ if ^m,7i otherwise Then
^ n < l«/«, « < Ki, n I

* Hcncc, by the comparison

test, the series v v
Z^m,n^ ZPm,n

are convergent if 2 \^'tn,n\ i® convergent. Let the sums of these

series be a and Then, with our previous notation,

2 ^rti, n 2 n ^ n ^

The same thing is true if the finite region is replaced by an

infinite region but now the above equation is taken as the

definition of the left-hand side.

The ‘sum’ a— jS is indejicndent of the region A^, or We
state the result simply by saying that the series ^ ctm,n ^
vergent

;
that is, an absolutely convergent double series is convergent.

The comparison test can now be extended to series of this

type.

1.64. Series of complex terms. Suppose now that is

a complex number, say Then the series

be absolutely convergent if 2l^m,nl
vergent. Since

l^7'yi,nl ^ l^m, nl> l^m, wl ^ l^m, nl»

this involves the absolute convergence, and so the convergence,

^f 2 ^m, n 2 ^m,n' ^f ^ ^bc suiiis of thesc scries,

2 ^m, V
^ 2 n+ i 2 n ^

and the series is said to be convergent; that is, an absolutely

convergent series of complex temns is convergent.
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All our conclusions about series of positive terms can now
be extended to absolutely convergent scries.

1.65. Multiplication of series. Let

be two absolutely convergent series. The series obtained b}’^

multiplying these series by Cauchy’s rule is

where = ao^n+«A-i+-+«n^o-

The rule has its origin in the case of power series, where
~ wlierc, in the multiplied series, we

collect together terms involving the same power of x,

00 00

If the series ^ 2 absolutely convergent^ and their
0 0

oo

sums are a and 6, then 2 f*,, absolutely convergent, and its sum
0

is ah.

This follows at once from the above theorems on double

series. For the double series ^ absolutely convergent.

Its sum by rows or columns is ab, and

S«.= 1 o.
n=(^ m4n<iV

which also tends to the limit ab.
oo CO GO

If the series ^a^, ^ ^ <^'re all convergent, to sums a, b,
0 0 0

and c, then c — ab.
oo 00

We apply the above theorem to the series ^ ®m*”> 2 ^n*"j
0 u

oo

2 which are absolutely convergent if 0 < a; < 1, and then
0

make x-^1 and use Abel’s theorem (§ 1.22).

1.66. Miscellaneous examples on double and repeated series.

(i) If |a,„,n|< Am<^P, where A,a,^ are constants, and \x\< 1, \y\< 1,

then 2 is absolutely convergent.

(ii) If 2 i® absolutely convergent, then 2 am,n^y* is absolutely

convergent for |a^| < |a:o|, \y\ < |yo|.

(iii) The series 2 is convergent if a > 1, )8 > 1.

(iv) The series ^ is convergent if a > 1.

GO n
[Compare the terms for which w < n with 2 2

ni=:i m«i
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The same result holds for the corresponding doubly infinite series, in

which each variable ranges from — co to oo, omitting m = n = 0.

(v) The series 2 cn*)~“ is convergent if a > 0, 6* < ac,

and a > 1. [For
ani^ -f 2hrnn -|- cn®

has a positive minimum value.]

(vi) If the ratio zjz' is complex, and a is not equal to any of the

numbers ~~mz—nz\ then 2 is convergent if a > 2.

(vii) By expanding the function

log(l— 2ic cos 61 = log(l--xe^)4-log{l—

in two different ways, show that

cos nd ~ 2""’^ cos^O — ~ 2*^~^cos*~^d -h 2"~®cos*~*^—

and also obtain a series of ascending powers of cos 8,

[The rearrangement may be justified by the double series theorem;

we also use the theorem on the uniqueness of a power series, P.M. § 194.]

(viii) If ja] < 1 and \x\ < 1,

z 2
n\

a"

i+ icV”
: e«—

(ix) If a: is not a negative integer.

z
1

l)...(a;+ n)

1 1

l!(x+l) 2! (x+2)
n = 0

(x) If d{n) denotes the number of divisors of n, and |a;|< 1,

«0
00

n-i

(xi) Dirichlet multiplication. If 2 absolutely

convergent, and = 2
pq==n

2 a,n- . 2 *».«“• = 1
In particular {$(*)}* = 2 d(n)n~‘.

(xii) If a„,, = 1 (m = n+l, n = 1, 2,...), o„.. = —
1 (m = n— 1,

n == 2, 3,...), and otherwise = 0, then

2 2 ^ 2 2 «m,-
m~l n=l n==i m = l

(xiii) Prove a similar result if

1
(m ^ n), o«.« = 0 (m = n).
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[Here (terms m — n being omitted)

y ii,n -Ly/-^ ^*-'1

rn^— n^ ZZ \ni—n m'^nj
m^l 7n"=l

^ ^

/ n- 1 N-n
,

iV +n ,
v

-voo >'-1 v-l v-n + 1
'

JL“ 4n2’

and the sums by columns and rows are tt^/S and — tt^/S. See Hardy (3).]

(xiv) If 2 |w^| is convergent, then J][ (ld-i/„2 ) is absolutely and uni-

formly convergent in any finite region, and it may be rearranged as

a power series in 2 ,

n(i+w.2) = i+2 2“-+*'‘Z2“».«-+--
m^'n

[The first part has been proved already (§ 1.44), and it is simply a

question of justifying the rearrangement. Let 2 be- fixed. Let

Pn = n(i+KiNi) -= i+ori2|+...-f a^>i2|^.
1

Then > P, and, for each m, is non-decreasing and < P| 2 |^”*.

Hence say. Plainly

1 + I Cif'lzl- < Pj. < 1 + f 0, 1

^
1

"

m-l m-1

Making N 00 , then A; 00 ,
we deduce that

(^' < N).

P = i+ ZQ.NI”.
m-l

Let
N

Pjf == n = l+ci'^Z+..-+ci^*2"'.
1

By an obvious extension of the theorem of absolute convergence to

multiple series, -> and plainly — < 0„— Hence
if k < iV^,

I
IV- 2 < i (f?«-Cif'')|z|’*+ I 0.121“.

lm-1 m-l I m-l fc-fl

which tends to 0 by choosing first k and then N, Hence the result,

(xv) Assuming that

sin a?

deduce that 2 2 !!!! — ~
2^n*"90'

n-l n-1

(xvi) Let mean that < e if m and n are both

> no = no(c).

Show that, if 8, and lim „ exists for each m, then
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lim
(

= s,

m—•00 ^n-^oo /

It has been proved by Pringshoim that, if the double series 2 2
converges to sum s in the sense that

m n

22
^ 1 y-1

CD 00

and the single series ^ «m.n» 2 “m.n
m=l n-l

all converge, then the sum by rows and the sum by columns are also

both f3qual to s. See Bromwich, Infinite Series, § 30.

(xvii) From the formula

(P.M» § 214), deduce that

iu-i.
3 ' 5

TT

4

12 + 32 + 52
+-'

g'-

[The result follows from the formula

00 oo

2 2 (
- 1 )*

(m+J)(m+n+ J)

For the left-hand side (putting n ~ r—m) is equal to

OQ QQ

2 2 (^D*
(w’+j)(m-f n+jV

V (-1)”" V (-I)” /2 2 \"_ ,^ m+i 2̂ r+i U 1
^ '

w+i
m = — 00 r— — Qo

Also, if n ^ 0,

00

2
1

rn- — 00

** / \

1 y / _i _ .._L Uo,
n y?i -f J m'\-n

-\~\J

so that the right-hand side is equal to

00

1

2 (m+J)*m=—

C

30

We have therefore to justify the inversion of the repeated series. The

associated double series is clearly not absolutely convergent, so that

a special method is required.

We have, for every N,
00 JV JV 00

2 2„= 2^ 2 .

m 00 n-—N n~-~N m = “QO

and hence (see § 1.621) it is sufficient to prove that, m N 00 ,

00 00 00 —A^—

1

2 2 ^0. 2 2-^0.
-00 n=iV+l ms=— 00 n*— 00
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Consider the former sum. If m > — 1, we have

I
1

|n=N+l

This part of the sum is tiiereforo less in absolute value than

2 SI+Wm+A'+ ;n Z-, 4A^(m+iV+.i})
^

v\-—N~\ * — iiV—

i

2 |m+JlJiV+ 2
‘ iV-ll

which plainly tends to zero. In the rest of the sum, wo write

2
= A’4

(“I}"..

m
t
n+ j

(-irTT- 2
~oo
m |-n+

J

'

The sum formed from the terms involving tt plainly tends to zero, and

the last term is similar to the one already considered, and so also gives

a sum which tends to zero.

Finally, the other sum can be dealt with in the same way, and the

result follows,]

1.7, Integration of series. Having completed our discus-

sion of repeated summations, we now turn to a similar set of

problems, in which one of the summations is replaced by an

integration. Since a finite integral is itself a limit, whereas a

finite sum is not, this makes everything one degree more com-

phcated.

We first consider the term-by-term integration of a series over

a finite range.

1.71. A uniformly convergent series of continuous functions

may be integrated term by term; that is, if u^ix), U2{x)y... are con-

tinwma, and
... = 5(x)

converges uniformly over (a, 6), then

b b b

j
Uyi^x) cZa: + J

U2{x) da; +.,. = J
5(a;) dx,

CL a, CL

Since s^x) is continuous (§ 1.14), it has a Riemann integral.

Also the sum of the first n terms of the integrated series is (with

our usual notation)
,,

J
dx.
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We have therefore to prove that

or that

U ft

j
s„(x) dx-^

j
s(x) dx,

a a
b

J
{s(ar)— a„(a;)} dx -> 0.

But, given €, we can find such that

for n > Wq and all values of x. Hence, by PM, § 160, (7),

J
{s{x)—s,Xx)} dx <e{h—a).

and the result follows.

Examples, (i) If 0 < rc < 1,

+ < + «= + ...) rfi = x+ ia:24-i**+- .

0 0

(ii) Similarly, arc tana; = x— tt- + —
3 5

(iii) Prove that

1

r, l-frc dx

J ¥
[Use Abel’s continuity theorem.]

(iv) Show that, if r < 1, and n is a positive integer,

IT

J 1— 2rcoR^ f
cos nd dd — Trr^,

1.72. A series may be differentiated term by term if the dif-

ferentiated series is a uniformly convergent series of continuous

functions; that is, if

Ui{x)+u^{x)+...^s{x),

and the functiona u^{x), Uf^{x),... have continuous derivatives

u[(x),... such that the aeries

u[{x)+u’^{x)+...

converges uniformly tof(x) in {a, b), thenf{x) — s'(x) for a <x <b.
By the previoiis theorem, the second series may be integrated

term by term over {a,x), so that
X

W*)—%(«)}+Wx)—tt2(a)}+" = J
/(<) dt.
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But the left-hand side is also equal to s(x)—s(a). Hence
.r

5(.r)- 6-{a) ^ J f(t) dt,

a

and, differentiating, the result follows, since /(o') is continuous.

Examples, (i) If |.r| < ],

£ n(n- l)...(a-I-+l)r"-*-.
n-k W /

(ii) If ^ > 1, 00

^
n 2

1.73. A real power series may be integrated or differentiated

any number of times within the interval of convergence. That is

to say, the result of any number of formal term-by-term integra-

tions or differentiations is true, provided that we are inside the

interval of convergence.

Let the power series be

f{x)=r2a„x" (|a;|<-R).
0

We can integrate^ once, by uniform convergence (§ 1.21), and

obtain ^ ^

0 n - 0

The interval of convergence, and so of uniform convergence, is

plainly at least as wide for this series as for the previous one,

and so the process may be repeated.

Term-by-term differentiation gives

f'(^) = 1 ‘nxi„x”-\

This series also is convergent for |a:| < R.

\a„
I
< K, Hence

r«-ll :WKP«1
yn~l K<~n

P

For, if 0< p < R,

and hence the differentiated series is convergent for |.r| < p, by

comparison with the convergent series

1

ir^xi/p^

Hence the differentiated series is uniformly convergent over

any interval included in
{
— R,R), and so term-by-term dif-
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ferentiation is justified. The process can, of course, now be

repeated.

It follows in particular that a function represented by a power

series Twis derivatives of all orders.

It is also clear, since neither integration nor differentiation

can decrease the interval of convergence, and the two processes

are reciprocal, that neither can increase the interval.

Example. The Maclaurin expansion of f{x)

X is the original series.

Of)

“ 2 }>owers of
n - 0

1 .74. Jf X is real, and

n ~ 0

then f{x~\-h) may he expanded by Taylor's theorem in powers of

h, provided that |.r
|
< JR and, \h\ < B~ |.r|

.

The formal expansion is

OO y

fix+h) ^ y ~f'>^Kx),^ ml
m=o

where, by the previous theorem,

f<^\x)= 2 n(n—l)...{n—‘m-rl)a^^^x*‘^'^*K
n-m

To prove that this actually holds, we write

f{x+h) = 2 ajx+h)” = y a„ V
n~0 nti

n - 0 m 0

2
m=0 n m

We have to justify the inversion; and it is justified by absolute

convergence if

OO n

Zki2
n»0

n{n-~l)...(n~~m+l)

ml
= 2KI(|x|+i*.|)'‘
n^O

is convergent. This is true if |.rH-|A| < JR, which proves the

theorem.

Notice that the interval of convergence obtained for the new
series extends just up to one end of the interval of convergence

of the original series. The actual interval of convergence may
D
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be no larger, e.g. in the case of

1

fi^)
1—

But it may in some cases extend further; e.g. if

1

l+x
l—x+x'2_

we have

and

p.)(a;)==

f{h+h) - |(-ir(§)-^v/.^'

which is convergent for [fe] <|.
It is impossible to give a satisfactory account of this pheno-

menon so long as we consider real power series only, and wc
must postpone further discussion until we have considered func-

tions of a complex variable.

1.75, Series which cannot be integrated term by term.
A simple example of such a series is obtained by putting

s^^{x) = n^x{l—xY' (0 < x ^ 1).

Then 5(;r) = 0 for all values of x, so that

1

s(x) dx = 0.

But

/'
0

1

f
sjx) dx :

(n-f l)(n+2)
^1,

so that term-by-term integration gives an incorrect result. The
series is, of course, not uniformly convergent.

On the other hand, uniform convergence is not a necessary

condition for term-by-term integration. Some of the non-uni-

formly convergent series of § 1.3, e.g. those for which

«n(*) = . »»(*) = nx{ 1 -xY,

can be integrated term by term.

This leads us to consider more general classes of series which

can be integrated term by term.

1.76. Boundedly convergent series. A series

is said to be boundedly convergent in an interval {a, b), if it con-
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verges for every value of x in the interval, and if there is a constant

M such that
| < M for all values of n and x {a b).

It is clear that the sum of a boundedly convergent series is

bounded. So far we have no method of integrating bounded
functions in general, so boundedness by itself does not enable

us (at this stage) to integrate term by term. We have to com-

bine it with another condition.

We say that a series is uniformly convergent over (a, b), except

in the neighbourhood of the point c, if it is uniformly convergent

over the intervals (a,c~-8), (c+8,6), however small 8 may be.

We can then justify term-by-term integration under the fol-

lowing conditions:

If the series is uniformly convergent over {a,b), except in the

neighbourhood of a finite number of points, and also boundedly

convergent over the whole interval, then it may 6c. integrated term

by term over (a, 6).

To prove this, it is sufficient to suppose that there is one

exceptional point, c. Suppose that < M. Then \s{x)
| <M

also. The integral of s{x) exists in the sense of § 1.5, and

b jC— S b

I
{s{x)—s„{x)} dx < J

(s(a:)—«„(a;)}da: + J
s„(x)} dx +

a a c+S

.c4-8 .c4 5

+ J
s(x) dx +1 «„(x) dx

L-S ' c-S

h

f +4SJ/.
c+8

We can choose 8 so small that the last term is less than a given

e, for all n. Then, having fixed S, the other terms tend to zero,

by uniform convergence. This proves the theorem.

Various extensions of the theorem are possible. It is not

necessary that the series should be uniformly convergent over

(«,c— S) and (c4-8,6), if term-by-term integration over these

intervals can be justified in some other way. A more important

observation is that the theorem remains true if we insert in the

integral a factor ^(x), which is integrable, but not necessarily

bounded. Suppose, for example, that <f>(x) is continuous over

(a,b) except at x — a, in the neighbourhood of which it is
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unbounded; and that
e,

j\i(x)\dx
a

exists as an infinite integral. Then we may multiply the series

by (f>(x) and integrate term by term. For

j

CT+S tt+S

J (a(x)—Sn(x)}^(x) dx < 2M
J |^(a:)| dx,

' a a

which can be made less than any given c, by choice of 8, for all

values of n; and the integral over (a+8,6) may be dealt with

as before.

We observe finally that later, when we have developed the

theory of the Lebesgue integral, we can put all these theorems

into a much more satisfactory form. All the restrictions involv-

ing continuity and uniform convergence are only necessary

because of the limitations of the Riemann integral, and dis-

appear in the final form of the theorem.

Examples, (i) The series for which

«,(*) = 8j,x) = nx(l-xY (0<a:<l),

are boundedly convergent.

(ii) Consider the series

sin a;
^

sin 2a;
^

sin 3a;
^

-J- + + .

It follows from one of the general tests (see § 1.12, ex. (i)) that this

series is uniformly convergent except in the neighbourhood of the points

a? — 0, ±27r, ±47r,... . To show that it is boundedly convergent, and
to sum it, we use a more special method.

Since each term has the period 2ir, it is sufficient to consider the

interval 0 < a; < 27r. Here we write

X X

= f (cos t + cos 2< + ... 4- cos nt) dt — ( dt

J J 2smit
0 0

0 0

(n+})x x

0 0
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Now

u

J
sinw ,du

0

is alway s j)ositive, and has an absolute maximum at h - tt {P.M. § 181,

exs. LXXVI, 9-10). Hence

K(.)| < + J
-

1)
dt +in

0 0

for 0 < a; < TT, i.e. the series is boundedly convergent in this interval.

Since each term is odd, it is boundedly convergent in (— tt, 0), and so,

by periodicity, in any interval.

To sum the series, let x be fixed, 0 < a: < 2n, and make n —> oo. Then
oo

r sinw , fsinw ,hm I - du “
I

du
n—ao J ^ J ^

0 0

exists (§ 1.5). Let us denote the value of this integral by /. Also

^ \ ^ JL. fi (—1—
xj n f J + I J d^\2sinj^

^

cos(n-f- J)f df,

0

which tends to zero on account of the factor n-f J in the denominator

(the other factors being bounded). Hence, if s(x) is the sum,

s{x) I— \z (0 < a: < 277).

But plainly 5 (77 )
— 0, so that I = ^77 .^ This gives at the same time the

sum of the series and the value of the infinite integral.

The reader should draw the graph of the sum of the serias, noticing

its discontinuities at the points x — 0, i 277, i 477,... . [See also Ch. XIII,

ex. 11.]

(iii) Prove, without using integrals, that the above series is boundedly

convergent, using a method similar to that used in § 1.131.

(iv) Sum the series 111
P + 32 + 6J-*-

-

by integrating the above series over (0, 77).

(v) Prove that
CO

n= 1

77® ^ 77a: 07
*

(0 < 07 < 77).

1 .77. Term-by-term integration when the integrals are

infinite. We now pass to the general case of term-by-term

integration over an infinite range, or of functions which become
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infinite in the range of integration. In each case the results are

similar to those already obtained for repeated series. For con-

venience we state them as a single theorem.

Suppose that u^X^) > 0/or all values of n and x, and that

/ {2
M„(x) dx ( 1

)

a a

for all values of c less than b {or for all finite values of c). Tlmi

b h

J {S “«(*)} = 2 J
««(^) dx (2)

a a

QO OO

(or
J {2 = 2 J

(2 a)

a a

in the second case), provided that either side of the resulting equation

is convergent.

The proof is the same in the two cases. Let us take the case

of a finite interval {a,b).

Suppose that the series on the right of (2) is convergent, say

b

2 / ^n(*) dx = S.

a

Then, since Ujfpc) ^ 0,

J {2 ««(*)} dx^J^ 'j u^{x) dx 5^ S
a a

for all values of c less than b. Hence (see P.M,. 7th edition,

§185) the integral on the left of (2) exists, as an infinite

integral at 6; and, if its value is /, then 1 < S. On the othei*

hand,

2j J
^ = J (2 “h(^)} dx < J (2 «„(a:)| dx 7,

and, making N oo, vre see that /S < 7. Hence in fact S — I.

A similar method may be used if the left-hand side of (2) or

(2 a) is assumed to exist. The reader should write it out in detail.

As in the case of series, we can omit our ‘positive’ condition

if we assume instead that one of the sides of (2) or (2 a) is

‘absolutely convergent’, i.e. remains convergent if u„{x) is re-

placed by its modulus.



INTEGHATION OF 8EK1KS 15

The above results remain true for functions u,fj') which may
have either sign, or be complex, provided that either of

/ {2
dx, 2 / !“»(«) I

dx.

{or
/ {2 l“«(a:)l} dx, 2 J

dx

in the second case), is convergent.

It follows from the theorem already proved that the two con-

ditions are equivalent. We then obtain the result precisely as

in the case of double series. If u^{x) is real, w^e consider the

functions \u,,fx)\±^u,Xx), each of which is positive. If uj^x) is

complex, say u^,{x) ~ 0L,fx)-{-i^,fx), we consider the four func-

tions \u^(x)\±,a^fx), \^f'n{^)\i:Pn{^)^ of which is positive.

1.78. Miscellaneous examples on term-by-term Integration.

(i) Prove that

1

I lot? “ dx ~ I

j
0

by expanding in powers of x and integrating term by term. [Notice

that the series is not uniformly or even boimdedly convergent in the

neighbourhood of a; — 1.]

(ii) We have

00

0

CO

0
00

00

x^-^c-^dx

0

== 2 J
dy^'^ rr*T{8) = T(a%{s).

0

Justify this process (a) for s > 1, (6) for s complex, R(5) > 1.

(iii) Prove that
J

e”"' cos hx dx ==

0

by expanding cos hx in powers of x. [The process is justified by absolute

convergence if R(a) > jt), though the result holcb in a wider range

than this.]

(iv) Prove that, if p > 0,

J
log- dx — \-

X p^

0
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(v) Prove that, if /> > 0,

3

C XP~^ .1 1
dx ^ -f ... .

J l-far p p-\-l

0

(Hero tlie absolute convergence test fails. Integrate over (0, f ), where

0 < ^ < 1, and use Abel’s theorem.]

(vi) Prove that

QO

sinhax* . n
^

an
= (0<a<6).

[On expanding in powers of wo obtain the series

2
2a

(2n-
*

For the summation of this we must refer to Chapter III.]

/ - v i.
rcosha.r , n an

(vii) Provo that — ^ sec (0 < a < 6).

J cosh 6a: 26 26
0

[The general tost fails, but the integral can be evaluated by moans of

(v) above.]

(viii) If — ac" 6c~"** (0 <a <h)y show that

2 J
««(*)

0

dx ^
[ (2 «»(*)}

0

dx.

[We have

but
J
{2 M„(X)} da: = J j

d* > 0.

0 0

since the integrand is positive for all values of x, w/(e*— 1) being a
steadily decreasing function of u.

It is easy to prove directly that

2 J l«»Wl dx

is divergent.]

(ix) Consider the integral

J
e~** sin-T* cos aa: dx.

Here we shall anticipate for a moment some of the results of Chapter III.



INTEGRATION OF SERIES 47

If we expand cos ax in pt)worti of x and integrate term by term, we obtain

(‘v<*ry tovin of wliich is zero (§3,120). Hot the givt‘n integral is not

identically zero (see § 3.13).

The test of § 1.77 fails; for the integral obtained by replacing u^{x)

J
c^^lsinaj^jcoshaa: dx,

0

which is divergent.

1.79. As a final example of term-by-term integration under

special conditions, we prove the following theorem:
oc

The power series 2 supposed convergent for a; > 0, may
n-O

be multiplied by e~^ and integrated term by term over (0, oo), pro-

vided only that the resulting series is convergent.'^

The formula is

r ( ” 1

00
r

*
e--" 2 11 ^-x^n ^ ^ fi y.

J Iw- 0 ' n-Q
ft

and we have to justify the inversion on the assumption that

2 convergent.

Put so that^ convergent. Then 6„ is bounded,

\bJ<B, say, and

n\
<B

ni
{O^x^ X).

Hence ^b^x^jnl is uniformly convergent over (0, X), and we
may multiply by and integrate term by term over this

range. Thus

dx = e-^x^ dx.
( 1 )

We are given that

e~V dx =
oc

0

HaixJy, (1). (6).
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is convergent. Hence (1) may be written

0 X

and it remains to be proved that the last term tends to zero

as X -> GO. Now
CO

j
e-^x^ dx =

X
so that the series in question is

Qo n

7l, = 0 w-0
00

Let r„ r= 2 so that r„ -> 0 as -> oo. Then b„ =r- ^n+i»
V = /l

X n NA n N rt

71^0 m = o n=o m=0

n = 0 '* '

The last term tends to zero as N -> oo, for any X, so that, making

N CO, (3) takes the form

o-X

n=0

The result now easily follows. Given any positive c, we can find

N so that |r.,J<€ for n>N, Then, since \r^\<A for all

values of n,

2 »T
<^‘-’‘2. S +“ 2 IS

N+l

and, having fixed N, we can choose X so large that the first

term also is less than e. Hence the result.

1 .8. Repeated integrals. A repeated integral is one degree

more complicated than a series of integrals. Even if the limits
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of each integration are finite, a repeated limit is involved, and
its inversion requires justification. If the limits of each integral

are infinite, four successive limiting operations are involved.

1 .81 . We consider first continuous functions and finite limits.

If f{Xyy) is a continuous function of x and y in the rectangle

a^x^b, then

h P P ^

j
dx

j
f{x, y)dy =

j
dy

j
f{x, y) dx.

a oc OL a

Since f{x, y) is continuous, the integral

F(x) = j
f{x,y) dy

OC

is a continuous function of x (§ 1.52). We can therefore integrate

it over (a, 6). The result is the left-hand side of the equation.

Similarly the right-hand side has a meaning.

To prove that the two sides are equal, divide up the ranges

of integration by points x^ and {a = i = x^, a = j/q,

^^yn)> ^hat <S, < S, for all values of

fi and v. Let ^ii»v lower and upper bounds of

fix, y) in the rectangle (x^, x^+^-,y„, Then for < 2/ < y„+i

XU4-1

and hence, integrating with respect to y,

Vv+l

Vv Xfi

Summing with respect to y. and v, we have

P b

2 2 m^j^^+i-^^)iyy+i-yv) <j^yj /(*> y)
a a

The same inequalities are also satisfied by the other repeated

integral. Also, when 8 -> 0, the difference between the extreme

terms of the inequality tends to zero; for we can choose 8 so
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small that the maximiiiii value of is less than any

given e; and then

v)(^/LA4'1 ^'fi)iyv+ l l/v)

Hence the two repeated integrals are eciual.

1.82. Extension to discontinuous functions. Suppose

next that the rectangle is crossed by a continuous monotonic

curve y = or x = ^{y), from a: === a to a; = c; and let f{x, y)

be bounded, and continuous except on this curve. Then the

repeated integrals still exist and are equal.

In the first place, the function F(;x) is still continuous. For

if a<x<c,
<f>(x) P

F(x) =r. f fix, y)dy +
|
fix, y) dy = F^ix)-\-F^ix),

Ot <^(X)

say; and
<^(x) (f>('X\-h)

Fiix+h)—Ffx)=j {fix+h,y)—fix,y)}dy+
J

fix+h,y)dy.
Of.

which plainly tends to zero with h. Hence is continuous,

and similarly F^ix) is continuous. Hence the first repeated

integral exists, and, similarly, so does the second one.

To prove that they are equal, consider the strip

<f>(x)— r] <y <<f>(x)+ 7),

and suppose for simplicity that <^(a:) is steadily increasing. Con-

struct rectangles with sides less than 8, as

before. Then the area of those rectangles between x^ and x^^i

which contain any point of the strip is less than

< + 28 )

;

the total area of such rectangles is therefore less than

8()3-a)+(6-a){2^+2S).

Hence, if denotes a summation over these rectangles, and

\f{x,y)\^M,

V v)i^(i+i ^ij.)iyv+i yv)

< 2il/(8(/8-a)+(2ij+2S){6-a)},

which can be made arbitrarily small by choice of rj and 8.



REPEATED INTEGRALS 51

Finally, since /(a?, y) is continuous in each of the remaining

regions, we can choose 8 so small that

max(Jf^ „)< e

in the remaining rectangles. The result now follows as before.

We can, of course, now extend the result to functions which

have any finite number of discontinuities of the above type. In

particular, the result holds for an integral taken over a non-

rectangular region bounded by curves of the above type; for

this can be considered as an integral over a rectangle, the func-

tion being continuous in a limited part of it and zero elsewhere.

Notice finally the following inequality. Suppose that/(x,y)

is continuous, and \f{x,y)
\ < JIf, in a region of the above type,

and that /(x, y) = 0 elsewhere. Let F{x, y) M in the region,

and F(x, y) == 0 elsewhere. Then

P b t ^ b

j j /(^> 2/) ^ J
rfy

J
F{x, y) dx.

OL a ' oc a

The reader should have no difficulty in deducing this from the

above analysis.

1.83. Change of variables in a repeated integral. The

formula by which the variables in a repeated integral are

changed may be obtained as follows. Consider the integral

over a given region, and let

x^<l){u,v), y = iff(u,v).

Suppose that these functions are such that, if y is constant, x is

a monotonic differentiable function of u. If we transform the

integral with respect to x into one with respect to w, we obtain

jf{x,y)dx = j

But*

SO thatf

dx __ d<f} d<f> dv
^ ^^

du du dv du^ du dv du

dx

du

dij> dil>\ IdJ,

\0u dv dv duj Idv d{v,v)l dv

* See P.M, § 153.

t For the Jacobian notation see P.M. ch. VII, ex. 20.
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Hence the repeated integral becomes

if the order of integration may be inverted. Finally, expressing

2/ as a function of v (for a fixed u), and assuming that it is

monotonic, we have

dy btfs

dv dv ’

and the integral becomes

where ¥{u, v) v), v)}.

The process is valid if, for example, the integrand at every

stage is a continuous function, and the region is bounded by

monotonic curves as in § 1.82. Some care is needed in verifying

this in particular cases. Consider, for example, the integral

a <(a*—y*)

J = jdy
j

f{x,y)dx,

0 0

where f(x,y) is continuous, and transform to polar coordinates

(r, 0) given by x = r cos 0,y~r sin 0. Transforming first to (r, y),

we have x = ^J(r^—y^), and

dx _ r

dr ^(r^—y^y

which becomes infinite at r = y. To avoid this difficulty, con-

sider instead the integral

h= f
dy

I
f{x,y)dx,

0 b

where 0<S<a. Transforming first to (r,y), then to (r, 0), in

the above manner, we obtain

a arccos(5/r)

I^ = ^rdr
j f{r cos 6, r Bin d)dd.

Now let B -> 0. Then -> I, and the last integral tends to

a in

J
r dr

J
/(r cos 9, r sin 9) d9.

0 0
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Each of these statements is readily proved by means of the

inequality noticed at the end of § 1.82.

For the general theory of these transformations sec Goursat’s

C(MT8 d'Anaiyse, t. 1, ch. 6.

1.84. Repeated integrals, one range being infinite. The

most important theorem here is the analogue of the theorem on

term-by-term integration of a uniformly convergent series.

Suppose that

h P P f)

j
dx

j fix, y)dy = j
dy

j f(x, y) dx

a QL OL a

for all values of b greater than a, and that

00

\f{x,y)dx
a

is uniformly convergent in the ran^e ot^y Then

GO ^ OO

j
dx

j fix, y)dy^ j
dy

j fix, y) dx.

a a a a

n

For
J fix, y) dx = s^fy) -> «(«/)

a

uniformly in (a,j8). Hence, using the result for sequences,

n P P n

j
dx

j
fix,y) dy =

j
dy

j fix,y)
dx

a a. OL a

P P P ^

=
j «»(y) dy-> \

siy) dy^ j
dy

j
fix, y) dx,

(X a OL a

the required result.

A similar theorem holds for infinite integrals of the second

kind.

The same results also hold if the integral is not uniformly

convergent in the neighbourhood of certain points, but is

boundedly convergent. In fact the same proof holds under these

conditions.

1.85. Repeated infinite integrals. The following theorem

is the analogue for repeated integrals of the theorems of § 1.62

and § 1.77 for double series and series of integrals.
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Suppose Otal f{x, y) is positive, awl lliut

j
dx

j
fix, y)dy~^

j
dy

J
f{x, y) dx (1 )

a cx OL a

for all values of c less than 6, and that

h y y h

j
dx

j
f(x,y) dy -=

J [
f{x, y) dx (2)

a (X a a

for all values of y less than jS. Then

h ^ ^ h

j
dx

j fix, y) dy = j
dy

j fix, y) dx, (3)

a OL art
provided that either side of this equation is convergent.

The theorem is still true if one or both of b and jS is replaced

by infinity.

Take, for example, the case of two finite interyals, and suppose

that the left-hand side of (3) exists. Since f(x,y) > 0

y P

jfix,y)dy^jfix,y)dy i«<y<^),
a a

and hence

y b

j
dy

\ fix, y) dx

ac a

by ^

=
I*

rfx
J fix, 7j)dy<^j dx

j
fix, 7j) dy.

a Qc a a

Making y jS, we see that the right-hand side of (3) exists,

and that
^ ^ ^

j
dy

j fix, y)dx^jdxj fix, y) dy.

The same process may now be reversed, and it yields the

reversed inequality. Hence the two sides are equal.

The same proof holds if 6, or j8, or both of them, are infinite.

Though the actual proof is simple, we have, of course, made
rather far-reaching assumptions; and, in applying the theorem,

we have to justify (1) and (2) on other grounds, for example, by
uniform convergence. This is made necessary by the limitations

of the Riemann integral; for from the mere fact that

? c

J
(ly jf(^,y)dx
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18 bounded as C“>6, we cannot deduce that

h

J y) dx
a

is intcgrable in Riemann’s sense. When we come to the

Lebesgue integral, we shall see that difficulties of this kind

disappear.

The theorem remmns true for functiom f{x,y) which may have

either sign, or be comj)lex, 'provided that either of the integrals

b ^ P b

J
rfx

J \f{x, y) 1

dy,
J
dy

f
|/(x, y) i

dx
a a a. a

is convergent.

The extension is made as in the case of series. Jf f{x,y) is

real, we consider the functions \f{x,y)\-:^f{x,y), and \i f{x,y)

is complex, we consider \f(x,y)\ \-'Rf(x,y), \Kx,y)\±lf{x,y).

1.86. The Gamma-function. The function

oo

r(x) --
J

-le-' (1)

0

is, as we have already observed (§§ 1.51, 1.52), continuous for

R(a') > 0. We are now in a position to investigate its properties

more fully. We shall supi)Ose throughout this section and the

following one that x and y are real, leaving it to the reader to

consider how far the results are true for com])lex values of the

variables.

If X > 1, we may integrate by parts, and obtain

r{j) = [-F-Je + [
F-e-'t//..

’ 0

The integrated terms vanish, and wc have

r(x)^(x-i)r(x-i) (x>i). (2)

oc

Since r(l) “=
J

e-^ dt ^ 1, repeated application of (2) gives

r(w)-=(n--l)! (3)

if n is a positive integer. Thus Ffx) may be regarded as a

generalization of a factorial.

E
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Now consider the product
oo QO

r(;r)r(?/) = J
dt

J
du (a; > 0, t/ > 0).

0 0

We may regard this as a repeated integral. Putting u = tv, and
inverting the order of integration, we have, formally,

DO OO

r{a;)r(2/)~
f

dt
J

dv

0 0

00 00

~
j

dv
J

dt

0 0

oo oo

= J J*

oc

"k^+y)
J

VV~l
dv.

Hence

where

r(a:)r(y).

{l-|-i;)X+J/

0

^{x, y) {x > 0, y > 0),

krr

(
4 )

r(x+?/)

00

^{x,y)
J

dv =
2 j

(co8 0)2^-i(8in0)2*'-i dd

0 0

1

= J
A»-Hl-A)J'-idA.

0

The difficulty of the j^roof lies in the inversion of the rei)eated

integral „ „

j
dt

j
<*+v~it;v-ie-<(i+») dv.

0 0

Since each integral is infinite at each limit if the indices of t and

V are negative, this requires several applications of the theorem

of § 1.85. It is easily seen that the t- and v-integrals are both

uniformly convergent over any finite range which excludes the

origin. Hence the integrals over (0, T;vo,V) and (<„, r;0,F)

may be inverted if >0, Vq> 0. Hence, the integrand being

positive, the integral over (0, T; 0, V) may be inverted. Since

also the integral over T\0,ao) may be inverted by uniform

convergence, it follows that the integral over (0, T\ 0, oo) may
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be inverted. Similarly the integral over (0, oo
; 0, F) may be

inverted. Hence, finally the whole integral may be inverted.

Again, putting x — y =^m (4), we have

{r(i)F= 2r(l) Jd^=.7r,
0

or, since r{^) is plainly positive.

r(j) = Vtt.

Next, putting y— xva (4),

{r{x)Y

(
5)

r(2x)
= J

dA = 2
1
A^-^(1-AF-1 dA.

0 0

Putting A = ^V/x, so that A(l—A) — J— ip., this gives

if = 21-=^
/ (i-pF-V'dM

=

Hence we obtain the ‘duplication formula’

r(2x)r(i) = 22*-ir(x)r(x+ i). (6)

1 .87. Asymptotic behaviour of r(x) as x oo. Consider

first the case where x is an integer, n say, so that r(x) = (w— 1)!.

We use the well-known method of comparing a sum 2 <f>(n) with

the corresponding integral J dt. We have

log{(n-l)!}= 21og»'
|/=1

v4 i *

Now
J

log^ = J
{log{i/+f) + log(v— ^)} dt

v-h

t

= J
|logv*-f log^l— i||df==logv4- c*,,,

0

say, where clearly <7,,= 0(l/v*). Hence

log r(TO) = log{(«,— 1)!}= r log < dt — 2*
J ,<=1

== (n-i)log(«-|)-(»-i)-ilogi-fi- f
== (n—i)logn—n+C'-fo(l), ( 1 )

where C is a constant.
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We can extend this result to nondntegral values of x by

means of the following lemma.

liEMMA. If a is constant, as x - > oo,

V(x)

TV+a)
Suppose that a > 1. Then

r(x)r{a)^

X" (2 )

~ j
dt — J

— (1—
0 0

The first integral is r(cr):r~“, and the second is 0(x~^~^). For

Hence the second integral is positive, and less than
1 00

J (1— (1— + J i'’-^e-^‘dt

0 1

1 CO

< A"
J

(It + J
dt < Kx~^-^,

0 1

where K depends on a only. This proves the lemma for a > \ .

The result for other values of a then follows from l.S() (2).

If now X is not an integer, let x n+a, where n is an integer

and 0 < a < 1. Then

log r(x) = log r(n+a) — log r(n) + ci\ogn + o (1)

= (n— i)log7^ — n-\~C~\-a\ogn-]- o{\)

== (:r—-a—-i)log(;r—a)--a:+a+C+alog(a:-~a)+ o (1)

= (x— i)log:i: — a:+(7+o(l), (3)

the required result.

To find the value of C, we use the duplication formula 1.86 (6).

Taking logarithms and using (3), we have

(2x— ^)log 2x — 2x+C-\-\og Vtt + o (1)

= (2a;~- l)log 2 + (x—

\

)log x-\-x iog(a;+ 1)- 2x- ]+20+ o ( 1 ),

and equating the constant terms, we obtain

C — \og^(27T).

Hence finally
r(a;) ^ a:x-ig-*^(2rr){l+o(I)}. (4)

This result is known as Stirling’s theorem.
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1.88. Differentiation of integrals. The two following

theorems cover most of the cases that are ordinarily met with.

If f{Xy y) and — are contimwus in the rectangle a^x^by
dy

Vo—V ^ 2/ ^ Vo+V iv > ^)>

b

J
f(x,y)dx-

dy

h

{sj_

J Sy
dx ( 1 )

for y = y^.

df
Let

Then =
1 j

{fix, yo+k)-f(x, dx

a

h

==
j
g{^,yo+^k) dx,

a

where 0 < 0 < 1. Since g{x, y) is uniformly continuous, we have,

as in §1.52, ^ t

lim f g(x,yo+0lk) dx = f g{x,yf) dx,

a

the required result.

If the eqvxLtion (1) is true for all values of b greater than a, and

if the integral oo

\fdx

is convergenty and
J ^

is uniformly convergent in the interval (yo~'’J>2/o+^)> Iken

QO OO

a a

We can deduce this from the corresponding theorem for

series (§ 1.72). For let

a+n

[
fix,y)dx = u„(y).

a I u-l
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Then
OD

and, by the previous theorem,

« fn a+n

a a+n-'l a-tn—1

The result now follows at once from the theorem for series.

MISCELLANEOUS EXAMPLES
1 . Consider the miiform convergence of the series

CO

2 x'n'-’
n~l

CO

2jL^ xr— 7i^

and

oo

2
Sin fix

(a>0).

2. Discuss with reference to uniformity the convergence of the series

1)- s"

2 1_^ V
1 -

1

- 2:**’ .Zw n
n-l n^\

(i) for z real and positive, (ii) for general complex values of 2 .

3. Consider the uniform convergence of the integrals

I'-*’ J
cosh xy e“** dx.

0 0 0

4. Consider the uniform convergence of the integral

J
Bin^xy

dx.

Evaluate the integral by differentiating with respect to y,

5. The Bessel function Jy(z) is defined for v > — 1 by the series

7/*^ = V iziiiWl!*^ n!r(v-fw-f 1)'

n«o

Prove tliat, if i/ > — J,

Jy(z)
2''-*r(v+i)r(i) J'

cos(2 COS $) sin^*'^ d$.
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and that, if > — 1, v > — 1,

61

2V + 1

= 2.r(V+]̂ j
J^(zHind)sinf^+^dcos^^^^d dO.

0

6, Prove that

oo

J
e-<-J,{bx) dx = (0 < 6 < a).

OO

J
e-^J„{.r)dx

0

CO

J
Jy{al)e-

and that

7. Prove that

8. Prove that

r/t’

)e-'V " dl ^

00 “ «5

0 0

9. SIlow that the repeated integrals

dx.

11 0 0

/‘"J

1 1

QO 00

(ae-^—be'-^^) dy,

J K^-'Ty^r J J11 0 1

are not equal to the integrals obtained by inverting the order of in-

tegration.

. Prove that
J

co8 2xy dx — JVTre”*'*10

(i) by expanding cos 2xy in powers of x and integrating term by term,

and (ii) by proving that the integral satisfies the differential equation

dl „ .

11. If

prove that

is a constant, and hence that

^(y) = (y>0).
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12. Deduce from the previous example the values of the integrals

13. If

r COST?/ , r TsinT?/ ,

0 0

whore a, 6, p, and q arc positive, prove that

^(P. 9. «, 6) = ^(9, P, b, a).

14.

If
,f,{y) = J

rf.r.

prove that ipiy) = ^Virc--*' {»/ > 0)

(i) by proving that ip'{y) - —2tjs(y), and (ii) by means of the substitu-

tion w = x— yjx.

15. Show that the repeated integral

00 00

J
(lx

J
cos2mT.?/e'’*'*^^+**^ </y

0 0

may be inverted; and hence deduce the value of the first integral of

example 12 from those of examples 10 and 14.

16. Prove that if A > 0, p, > 0,

CO GO 00 Jtt

J
dx |' e~^y^y-~^ dy — J

dr
J

dO,

0 0 0 0

and hence obtain another proof of the formulae of § 1.86.

17. Show that, in the repeated integral

OU GO

J
sinuT dx Jf(y)e~^*' dy^

the order of integration may be inverted if the integrals

0 1

are convergent. Hence show that

J l/(2/)| dy,
J \J(y)\y-^ dy

0

ce sh

X

f sin ax

J :j(T+i^)
dx

+y'

X
[The integral

J
sin or dxj /( 2/)e~'»' may be inverted, since the
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^-integral is uniformly convergent for Hence it is

sufiicient to prove that the integrals

^ CC CO

I
/(.'/)

J
sin uxe- ^ dx,

J
f(y) dy

j
sin axe~^ dx

0 0 0 A
tend to zero as f () and A" -> go. Since |sina.T| ax, the modulus of

the former doe^s not exceed

CO i L ^ CO 00

[ |/(;/)|
(/'/ J

< n
I !/(</)! ily

f
xdx -1-a

J |/{(/)| <]y j xe-^dx
0 0 0 0 1" 0

V CO

^ J l/(.'/)|
<ly -i O

J
l/(y/)|'/*

- dy,

<1 1'

wliich can be made arbitrarily small by clioosing first Y and then

The modulus of tlie latter integral is

,20 CO

I
r ^ ysinaX -fa cos a A'

, I T . . , . ,

jj
/(.'/) 'A'/

J
|/(?/)|p-’»rf2/,

which tends to zero.]

IS. If (Y > 0, p > 0,

V

10. If a > 0, P > 0, and A < y or A > x,

X

/
(x-tr-m-yf 1 r(«)r(j3 ) (x-~yr^^-^

V(oc+ P) l.r-^^A|^|y/-AK\l~.X\ix^P

[Consider the general linear transformation of the interval (y, x) into

itself, and use the previous example.]

20. Prove that if c > 6 > 0, c-a-h > 0,

1

a(a-f l)...(a-f n—
n

!

n-b
2
n-0

Deduce that

])

j
<!.+«-l(l_t)0-6-ld« = J

dt.

0 0

a...(a-fn— l)6...(64-n— I) _ r(c)r(c—a—

6

)

2
a...{ci'+n—

n!c...(c-fn-l)
~ r(c-o)r(c-6)

n»0
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ANALYTIC FUNCTIONS

2 . 1 . Functions of a complex variable. It is just as easy

to construct a function of a complex variable z~x-\-iy as it

is to construct a function of a real variable x. Any finite or

infinite convergent expression involving z gives such a function.

For example, Ijz, ^ are functions of the complex variable z.

The reader of Hardy's Pure Mathematics is already familiar

with many such functions.

Throughout this chapter and the next all functions are sup-

posed to be one-valued in the region in which they are defined.

Our first task is to give a general definition which will be

appropriate to all such functions.

We might say that t/; is a function of 2 if to every value of

2 in a certain region corresponds one or more values of w. This

is modelled on the usual definition of a function of a real

variable. It is perfectly legitimate, but, as is explained in

Hardy's Pure Mathematics^ it is futile because it is too wide.

It makes a function of the complex variable z exactly the same
thing as a complex function

n{^,y)+iv{x,y)

of two real variables x and y. Of course this is not what we
meant when we began to speak of functions of a complex

variable.

Our method of procedure is to assign various properties to

our function which appear to be desirable, and to see whether

any such properties distinguish between what we feel to be

'proper’ and 'improper' functions of 2.

2.11. Continuity. Let/(2) be a function of z defined in the

above way. It is said to be continuous at the point z = Zq if,

given any positive number €, we can find a number 8 such that

provided that \z—Zq\ < 8.

This is quite satisfactory as far as it goes, but it does not go
very far. A continuous function of z is merely a continuous

complex function of the two variables x and y. For if

f{z)^u{x,y)’^iv{x,y),
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and Zg= Xg+i^g, then

lu(^,i/)~u(Xo,yg)l < |/(2)-/(2o)l < e

if |2— 2o| < 8, which is true if

^ol
V2’

I2/-2/0I <
V2’

65

Hence u{x,y) is continuous, and so is v{x,y). Conversely, if u
and V are continuous, so is f(z).

2.12. Differentiability. From the class of continuous com-
plex functions, we next select those which can be differentiated.

The meaning of this term for complex functions must now be
defined.

Following the suggestion of real differential calculus, we write

f'(Zg) = hTa^S^L.&o)^
Z-i-Zo 2 Zq

and we say that f(z) is differentiable if the limit on the right

exists. The limit is called the derivative or differential co-

efficient of f{z). As in the definition of continuity, the approach
of z to its limit Zq can take place in all possible ways. More pre-

cisely, we interpret the above formula as meaning that, given

any positive number e, we can find a number S such that

<€

provided that 0 < |2— 2o| < 8. Thus we assert that, along

whatever path z approaches Zq^ the ratio

M-.&o)
Z Zq

always tends to a limit, and that all the limiting values are the

same. Our requirements are therefore somewhat exacting.

This property of differentiability is, however, one which be-

longs to many familiar functions. A constant is differentiable.

A positive integral power of 2 is differentiable; for the familiar

proof for applies word for word to the case of Similarly,

the sum or product of two (or any finite number) of differentiable

functions is differentiable; and the quotient of two differentiable

functions is differentiable provided that the denominator does

not vanish. Finally, a differentiable function of a differentiable
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function is differentiable. All these theorems are proved in the

same way for functions of s as for functions of x.

For example, any rational function of z is differentiable for

all values of z, other than zeros of its denominator.

^ 2.13. We now naturally ask whether this property of dif-

ferentiability corresponds to a simple property of the functions

u{x, y) and v{x, y) which are the real and imaginary parts of f{z).

Suppose first that z~Zq is purely real, so that

z^-x+iy^.
Then

^ yo)+w(3^, j/o)}— {^(Xo, yo)+iv{Xo , yp)}

Z— Zo
~ X—Xo

X—X^ X—Xq

If this tends to a limit as a: ->• x^, then its real and imaginary

parts separately tend to limits. But this means simply that the

partial differential coefficients

du dv

dx ’ dx

exist at the point (.ro,t/o). Also

Similarly, if we take 2;—

;

2
;o
to be purely imaginary, say

we obtain

fiz)-f{Zo)^ {^(a
^o, y)+ iv{Xo, y)}—{u{Xo , yo)+w(a:o, y^)}

Z—Zo iy—iVo

^ ‘»{xo,y)-v{xQ,y(i)_ u(Xf^,y)—u(x^,yo)

y-yo y-yo

Hence the partial differential coefficients

dv du

dy’ dy

exist at the point {Xf^y^Y, and

(2 )
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Further, on comparing- (1) and (2), and equating real and
imaginary parts, we see that

du dv dv du , .

=!/„). (3 )

We now see that the results of assuming differentiability arc

much more far-reaching than those of assuming continuity. Not
only do the functions u(x,y), ^)[x,y) possess partial differential

coefficients of the first order, but they are connected by the

differential equations (3). These are called the Cauchy-Riemann
equations.

Thus, even if u and v are functions of x and y with partial

differential coefficients of the first order, n-^-iv will not in

general be a differentiable function of 2:.

Examples, (i) Let f(z) R{z) ^ x. Then

^'^0.
c-x by bx by

The partial differential coefficients all exist, but the Cauchy-Rieniann
equations are not satisfied for any value of z,

(ii) Let J{z) \z\‘^ — x‘^-\-y^. Then

bti bu bv .. bv „— =^2x, — = 2i/, — - 0, — = 0.
cx oy c'x cry

The C’auchy-Riemann equations are satisfied at the point 2: = 0 only.

2.14. Analytic functions. Since the property which we

have been discussing goes far beyond what we ordinarily think

of as differentiability, we give it a special name. A function

which is differentiable in this sense is said to be analytic.

The property of being analytic is in fact the distinguishing

property for ‘proper’ functions of a complex variable for which

we have been seeking.

We have seen that the truth of the Cauchy-Riemann equa-

tions is a necessary condition for the function to be analytic.

But it is not a sufficient condition. This is perhaps to be

expected, since we obtained the equations as particular cases

only of the general property of differentiability.

Consider, for example, the function

f{z) = .J\xy\.

This vanishes on both axes, so that at 2; = 0

du _^du dv dv

dx dy dx dy
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and the Cauchy-Riemann equations are satisfied. But f{z) is

not differentiable at 2 = 0. For

z x+iy*

and, if cr == ar, y == jSr, where a and j8 are constants, this tends to

as r 0. The limit is therefore not unique, and so the function

is not analytic.

This example shows that/(2 ) may not be analytic if we merely

know that
{/(z)-/(zo)}/(2-2o)

tends to a limit along two straight lines at right angles. Actually

the definition fails if we restrict ourselves to any special class of

paths. Consider, for example, the function

Then it is easily seen that

lim{/(2)-/( 0)}/2 = 0

as 2 0 along any straight line. But, on the curve x = y^,

/(g)-/(O ) ^ ^ 1

g y*+y* 2'

Hence f(z) is not analytic at 2 = 0.

2.15. Suppose, however, that the four partial derivatives of the

first order exist throughout a region, and are continuous at all

points of the region. Then the truth of the Cauchy-Riemann equa-

tions is a necessary and sufficient condition for f{z) to be arudytic

throughout the region.

We have seen already that the condition is necessary. To
prove that it is suflScient, we use the mean-value theorem for

functions of two variables {P,M. § 154). Consider a point (x,y)

of the region, and a neighbouring point {x+hx,y-\-hy). Then

hu= u(x+hx, y+hy)—u{x, y)

where e and rj tend to zero with 8x and by. Similarly
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Hence, using the Cauchy-Riemann equations,

Su+i8v — ^^+
i^(Sx+iSy)+p,

where IpK (| 6|+ |€'|)|Sx|+ (|^|+ IVI)|8y|.

Hence
f(z+ 82: ) —f{z) iSv

I
P

8z Sx-^iSy dx dx hx-\-ihy^

and \pj{hx+ihy)\ |e|+ |e'|+ 17;|+ |7^'| -> 0.

Hence /(2:) is analytic.

,^ 2.16. A power series represents an analytic function inside its

circle of convergence.

We shall see later that this is merely a particular case of

a general theorem on series which represent analytic functions.

But the following direct proof may be inserted at this point. Let

f{z) = f a„2”
n-0

be convergent for l2| < J?. Then, if p< R, a„p” is bounded,

say |a„p”| < K. Let «,

g{z) =
n -

1

Then if \z\ <p and |sH-|/*| <p,

f(z+h)~f{z)
-?(2)= 2®«{

f
(2+70”— 2”

h
-nz"

Now

|(2+A)”—2”
-nzn-1

1,2

-n\z In-l

Hence

\f(z+h)-f{z) 1 fd^l+l^l)"'
In

n|2|"“^

P-\ P- ^

Ii7ii\p-i2i-i/i| p-\z]) {p-\z\rf

Kp\h\

(p-lz\-\h\){p-\z\f

which tends to zero with h. Hence f{z) has the derivative g{z).
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2A1 * Functions analytic in a region. A function is said

to be analytic in a region if it is analytic at all points of the

region. Henceforth we always consider functions which are

analytic in a region. No particular interest attaches to the fact

that a function (like \z\^) happens to be analytic at certain

points, or even on a certain curve. It is when it is analytic in

a region that interesting consequences follow.

Examples, (i) The function

is analytic for \z\ < 1.

(ii) The functions

CO

n - 0

COS 2 “ sine

are analytic for all finite values of z.

(hi) The function

/(U)-0
is analytic for all finite values of 2 , except c 0. At the })()iiit

the C’auchy-Riernann equations iire satisfied ; for at z — 0

----- 0 ,

so that

r--.: lim -= 0, limi'
( X '('X

lim 0,
(m rlin) -

cy y—>o y i)y
~

01,

du _ c/'r du _ cm

dx dy^ dy ex'

In spite of this, /(2:) is not analytic at z

/(z) = exp{-(rel‘w)-^}

which tends to infinity as r -> 0.

0. For suppose that 2

2.2. The complex differential calculus. The reader might

expect that we should now proceed after the manner of the real

differential calculus. There, having distinguished the special

class of differentiable functions, we next consider the still more

special class of functions which have a second differential co-

efficient. Some of these functions have differential coefficients

of the third order, and so on. Finally, from among functions

which have differential coefficients of all orders, we pick out

those which can be expanded in a power series by Taylor’s

theorem.
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There is no such process of successive specialization for

analytic functions of a complex variable. A function which is

analytic in a region has differential coefficients of all orders at

all points of the region, and the function can be expanded in

a power series, after the manner of Taylor’s theorem, about any

point of the region.

All these facts follow from the definition of an analytic func-

tion by means of its first differential coefficient.

The reader would perhaps expect us to begin by proving that

an analytic function has a second differential coefficient. We
are unable to do this.

The results have of course been proved, or we should not have

been able to announce what they were. But they have never

been proved directly. They all depend on the complex integral

calculus, and it is to this that we must now turn.

2.3. Complex integration. The reader of Hardy’s Pure

Mathematics should know what a complex integral is {P.M.

§ 222). We shall, however, introduce the subject in a slightly

different way.

Let udjB be an arc C of a curve defined by the equations

= ^{^)> y = 0(0.

where 0 and 0 are functions of t with continuous differential

coefficients <(>'{() and ^'{t), and suppose that, as t varies from tj^

to the point {x,y) moves along the curve steadily from A
to B.

Let f{z) be any complex function of z, continuous along

S{z) = n{x,y)-]riv{x,y).

Let *0 , be points on C, being A and 2„ being B. Con-

sider the sum „

I (D
7n = l

where is a point of the curve between and z,^. Writing

~ '^m
~ ^(^m> ’7m)>

~ f'his is

m=l

Now ^m~l ^ 0(^m) 0(^m-l) ^ 0
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where ^ Hence the sum may be

written ^

2 (
2 )

m~i

Since all the functions concerned are continuous (and therefore

uniformly continuous), we can, given £, find S so that

("^m) (^m)l ^

for every m, provided that each

m ~1

It follows that, as c and S tend to zero,

m~ 1

tends to the same limit as

n

m = l

h
viz. to the limit

[ 'l>(i)WH) dt.

C
Similarly the other terms of (2) tend to limits, and we find that

the whole sum tends to the limit

ijs

J
{u+iv){4>'{t)+if{t)) dt, (3)

tj

this integral being interpreted in the obvious way as the sum
of two real integrals, one of which is multiplied by i.

This limit is taken as the definition of the complex integral

of f{z) along (7, and it is written

Jp /(2) dz. (4)

In particular, the above analysis holds for any fimction f{z)

which is analytic throughout a region including 0,

Some of the most obvious properties of real integrals extend

at once to complex integrals; for example,

{/(2)+9'(2)) dz = j^f(z) dz + g(z) dz,

and, if ifc is a constant,

j^kf(z)dz = k j^f{z)dz.
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Also, if C denotes the contour C described in the opposite

direction,

Jp,
/(2) /(Z) dz.

Examples. Vfi) Lot /(;) k, a constant, nml let C bo any curve
joining the points z and z ^ b. Then

I /(L)(2.„ i)
-- k ^

Hence
j^

k dz — k{b-~a).

Sincre the result is independent of the ])ai'ticiilfxr curve C taken, we may
write the result as

f,

k dz — k{b — (t).

\/(ii) Lot/(;) - z, and let C be any cuiwe joining tJic points z — a and
- b.

Fii^st take -- Then

41^ "m l) ^ "m— l)*

W< 1 m-l
Taking the sum is

n

m I

These sums tend to the same limit, and hence so does half their sum, viz.

•i 1 (4-4-i) -

Hence ^ |(6“— a^),

and the integral is again independent of the path.

^^(iii) Calculate the integral

where C is the circle with centre the origin and radius p.

Hero we can put

X ~ p cos 6 ™ <^(^), y — p sin 0 ~

where $ varies from 0 to 27r. Now
(/)'(6)-\ ii/j'iS) — —painO + ploosO ^ pic^^.

Hence the integral is

'iTT Zn

0 «

;^v) Prove similarly that 2” dz = 0,

where n is any integer, positive or negative, other tlian — 1,
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2.31. An inequality for complex integrals. We may de-

fine the length of the curve x = <f>{t), y~ ^(0, whore (f>\t) and
are continuous, to be the integral

/
dt,

taken between appropriate limits. For the justification of this,

see P.31, § 146.

IfM is the upper bound of \f(z)\ on the curve C, and L is the

length of C, then

I J
f(z) dz\ < ML.

In the first place, if F{t) is any continuous complex function

of a real variable t,

I

h b

\ l
F{t)dt <^_l\F{t)\dL (1)

^ a a

and (1) follows on proceeding to the limit.

Hence, with our previous notation,

I Jp
f{z)dz^ = \

J
{u+iv)y>'{t)+i<jt'{t)}dt

= ML.
2.32. Contours. By a contour we mean a continuous curve

consisting of a finite number of arcs of the type already con-

sidered, that is to say, arcs defined by equations x —
y= 0(f), where 0'(f) and 0'(f) are continuous. The contour is

closed if the end-point of the last arc is the same as the starting-

point of the first.

Let (7 be a closed contour. Suppose that there is an interval

(a, b) such that, if a<x' <b, the line x = x' meets C in just

two points, say y^ix') and y^ix'), where y^ < y^\ while if a:' < a

or x' > b, the line x = x' does not meet C. Suppose similarly

that there is an interval (a,)9), such that if a<y'< P, the line

y— y' meets C in just two points, say x^Jly') and Xfjiy'), where

Xj < ajj; while if y' < a or y' > j8, the line y— y’ does not meet C.

Then the point (x, y) is said to be inside C if a < x < 6 and
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Vii^) <y < A point not inside C or on C is said to be

outside C,

A contour which satisfies these conditions is called a simple

closed contour. For example, a circle, square, or ellipse in any
position is a simple closed cdhtour. The definition of 'inside’

and ‘outside’ which we have given may strike the reader as

unnecessarily elaborate, and the class of curves considered un-

necessarily restricted. But the general study of questions of this

kind is not quite so easy as might be suj>posed, and we regard

it as outside our scope. It forms the subject known as ‘analysis

situs’, and is dealt with, for example, in Watson’s Complex
Integration and Cauchy's Theorem, On the other hand, the

reader who prefers to ignore our explanations and trust to

geometrical intuition will find that he gets on perfectly well.

We can extend the class of contours to which our theorems

apply by ‘addition’ and ‘subtraction’ of simple closed contours.

Suppose that C and 6" arc two sim])le closed contours having

one or more arcs in common, but lying outside each other. We
form a new closed contour C" by deleting the common boundary.

The interior of C” consists of the interiors of C and C\ together

with points on the deleted boundary. JSimilarly, if all points

inside C' are also inside (7, we form a new closed contour C",

the interior of which consists of points inside C but outside C".

A closed contour of this kind which is often useful is formed

by the semi-circles \z\ = p, \z\ = R {0< p < R), in the upper

half-plane, joined by intervals of the real axis.

Still more complicated contours can be introduced by further

additions; for example, add the contour just described to its

reflection in the real axis, and delete the common boundary

from z~ —R to z= —p. We obtain a closed contour with a

definite inside and outside. The outside consists of the regions

\z\<p and 1^1 > jB. In describing the contour, the interval from

z=: p to R is described twice in opposite directions.

2.33. Cauchy’s theorem. The keystone of the theory of

analytic functions is the following theorem of Cauchy

:

If ^ function f(z) is analytic and one-valued inside and on a

sifnple closed contour C, then

J^/(
2)

dz = 0.



76 ANALYTIC FUNCTIONS

To prove this, we divide up the region inside C into a large

number of small parts by a network of lines parallel to the

real and imaginary axes. Suppose that this divides the inside

of C into a number of squares, say, and a number of

irregular regions, say, parts of whose boundaries are

parts of C, Then

Lm = I L m ^^ + 1 (1)

where each contour is described in the positive (anti-clockwise)

direction. Consider, for example, two squares ABCD andDCEF
with a common side CD. The side CD is described from C to

D in the first square, and from D to C in the second. Hence

the two integrals along CD cancel. So all the integrals cancel,

except those which form part of C itself, since these are described

once only. This proves (1),

We now use the fact that/(^) is analytic at every point. This

means that, if Zq is any point inside or on C, then

provided that 0 <

|/(2)-/(Zo)

Z Zf.

< 8 == S(2o); i.e. if \z--Zq\ < 8,

If we consider any particular region C^ or />„ in the above

construction, it is evident that we can choose its sides so small

that (2) is satisfied if is a given point of the region, and z any

other point. It is not, however, immediately obvious that we
can choose the whole network so that the conditions are satisfied

in all the partial regions at the same time. We shall prove that

this is actually possible.

Having given e, we can choose the network in such a way tluity

in every partial region C^ or D^^, there is a point Zq such that

(2) holds for every z in this region.

This means, substantially, that the function is uniformly

differentiable throughout the interior of C.

Let us assume for the moment that this is true. Consider one

of the squares of side l^. Here, by (2),

/(«) =/(2o)+(2-2o)/'(*o)+^(2)»

|^(Z)|<€1Z-2„|.where
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Hence

Jp^/(2)
dz = {/(Zo)+ (2-2o)/'(3o)} <f>{z) dz.

The first integral on,the right is zero, by § 2.3, examples (i) and
(ii). Also, by § 2.31,

If 4>{z)dz\<€^2l^Al^,

since \z—z^\ ^ V2/^, and the length of (7^^ is

In the case of one of the irregular regions D^, the length is

not greater than 4^,^+^,^, where is the length of the curved

part of the boundary. Hence

I

^(z) dz\ < eV2Z„(4/„4-5„).

Adding all the parts, we obtain

I

dz
I

< 4V2e 2 (^m+^l)+eV2i ^ -»«• (3)

Now 2 (^m+^n) is ^ region which just includes C,

and is therefore bounded; in fact, if (a, 6; a,j8) is a rectangle

including C,
2 ^

Also 2 is the length of the contour C, Hence the right-hand

side of (3) is less than a constant multiple of e. But the left-

hand side is independent of c. It must therefore be zero.

2,34. We have still to prove the assumption which we have

made. This is done by the well-known process of subdivision.

Suppose that we start with a network of parallel lines at con-

stant distance L Some of the squares formed by these lines may
contain a point wdth the required property. We leave these

unchanged. The rest we subdivide by lines midway between

the previous ones. If there still remain any parts which have

not the required property, we subdivide them again in the same

way. There are now a priori two possibilities. The process may
terminate after a finite number of steps, and then the result is

obtained; or it may go on indefinitely. In the second case there

is at least one region which we can subdivide indefinitely with-

out obtaining the required result. Call this region (boundary

included) After the first subdivision we obtain a part R^,

contained in iZi, with the same property. So we shall have an

infinity of regions JBi, i?
2v, contained in the pre-

vious one, and for each of which (2) is impossible.



78 ANALYTIC FUNCTIONS

There is a point Zq common to all the regions
;
and, since

the dimensions of B,, decrease indefinitely, \z—Zq\ <8 if n is

sufficiently large (say n > n^) and z is in Butf(2 )
is analytic

at Zq. Hence (2) holds with this Zq in i?„, if ti > Uq, We have

thus arrived at a contradiction, and so proved the theorem.

2.35. Cauchy’s theorem may obviously be extended at once

to a closed contour of any of the types defined in § 2.32. It

may also be expressed in slightly different forms. Suppose, for

example, that Zq and z^ are points connected by two different

curves C and C' such that C, and C' reversed, together make
up a simple closed contour, or a closed contour of one of the

other types described in § 2.32. Let f{z) be a function analytic

in the whole region between C and C\ and on the curves them-

selves. Then Cauchy’s theorem obviously gives

jjiz)dz= j^Jiz)dz. (1)

Suppose again that (7 is a simple closed contour, and C'

another simple closed contour lying entirely inside 6\ Let f{z)

be analytic and one-valued at all points in the ring-shaped

region between C and C\ Then

j^fiz)dz = j^J(z)dz. (2)

For we can join C to C' by a straight line I, parallel, say, to

the real axis. Then the region between C and C\ cut by /, is the

inside of a closed contour F, formed by C described positively,

(7' negatively, and I described twice in opposite directions. Now

/j,/(2) dz == j^f(z) dz — Jp./(z) dz + J^/(
2

)
dz — ^J{z) dz.

Since the integral round F is zero, the result follows.

A similar result holds if there are any finite number of con-

tours C', C",.- inside C, and f{z) is analytic in the region

between them. Then

/p/(2) dz = jp,/(2) dz + j^Jiz) dz +...
. (3)

Another important remark is that, for the truth of Cauchy’s

theorem, it is not necessary that f(z) should be analytic on C,

provided that it is analytic inside it and continuous up to and

on C. For iff{z) is continuous, it can be shown that

j^f(z)dz==limj^J(z)dz, (4)
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where C" is a contour inside C and tending to it. It is perhaps

not worth while describing how this is to be done in all cases

—

if (7 is a circle, C' is a concentric circle, and so on. Now the

right*hand side of (4) is zero for all positions of C' inside C.

Hence the left-hand side is zero.

2.36. A complex integral as a function of its upper
limit. Let f{z) be a function analytic in a region D, Let

z

F{z) = I f{w)
dw,

the path of integration being any contour lying entirely inside

D. It follows from Cauchy’s theorem that the value of F{z)

depends on z only, and not on the particular path of integration

taken from z^ to z. Our notation has, of course, anticipated this.

The function F(z) is analytic in D, For

z-^hz

F(z-{-hz)—F(z)==
J
f(w)du\

z

where (by Cauchy’s theorem) we may suppose the integral to

be taken along the straight line from z to z-{-8z. Hence

z-\-8z

Z

Since f{z) is continuous,

\f{w)—f{z)\ < e {\w-z\ < S).

Hence, if 0 < [Sz] < 8,

j^(z+8z)-.F(z)

This proves that F{z) is analytic, and that its derivative is/(z).

As in the theory of functions of a real variable, we call F(z)

the indefinite integral of /(z).

Suppose, on the other hand, that we know an analytic function

(?(z) such that ^^(2 )

throughout I>. Then

L{F(z)-0{z)}=^0.

F{z)-0{z)=:X+iY.Let
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Then (as in the proof of the Cauchy-Riemann equations)

dy dx ^
Hence X and F are constant, i.e. F—QSs. constant. Hence

0 .

o

jf{z)dz = 0(b)—G{a).

2.37. Integration and differentiation of complex series.

A uniformly convergent series of analytic functions of a complex

variable may be integrated term by term along any path in the

region of uniform convergence.

This may be proved precisely as in the case of real functions

(using the inequality of § 2.31).

A series of analytic functions may be differentiated term by term

at any point inside a region where the differentiated series is

uniformly convergent.

This also may be proved in the same way as for real functions.

It will, however, be superseded later (§ 2.3) by a much more

useful theorem, which is a characteristic achievement of com-

plex function theory, and which has no analogue in the theorems

of Chapter I,

2.4. Cauchy's integral. Let f(z) be a function analytic

inside and on a simple closed contour C. Let z be any point

inside C. Consider the function of w

/(w)

w—z'

This function is analytic except dit w~z, where the denominator

vanishes. Hence

f
Mdw= f M-dw,

JcW—Z Jytv—Z

where y is any other closed contour inside C and including

w= z. Let y be the circle with centre z and radius p. Since

/(w) is continuous, we can take p so small that

!/(«')-/(2) I
< «



CAUCHY’S INTEGRAL 81

The first term is equal to 27tif(z) (§ 2.3, ex. 3). Also, by § 2.31,

the modulus of the second term does not exceed

Hence '/
!

Jc

~ , 2ttp

P
27T€.

/(^)

w~
dtv — 27Tif{z) < 27re.

But the left-hand side is independent of c. It must therefore

be zero. Thus ^ ^ x/ \fM
r W—Z

This is Cauchy’s integral formula. It expresses the value of f(z)

at any point inside C in terms of its values on C.

2.41. The derivatives of an analytic function. Let z be

any point inside C, and z-^-h neighbouring point, also inside

C. Then
1 /•

f(z+-h). dw.
27Ti Jq w—z—h

Subtracting the previous result from this, and dividing by h,

f{z+h)-f(z)
~ h

1, f
/(“>)

27ri {w—z){w- -h)
dw. ( 1 )

When h -> 0 the integrand tends to the limit f(w)/{w— z)^. To
prove that we can proceed to the limit under the integral sign,

consider the difference:

I {w- ~z){w—z- -h)
dw — I

Jc

“‘I

/(«^)

(w~ -zf

/(«’)

dw

dw.
{w--z)^{w—z—h)

Suppose that \f(w)\ on C, and that the distance from z to

C (i.e. the minimum of \iv—z\ as w describes C) is S. Let the

length of C be L, ^Then if |A| < 8,

I -h)
dw

ML
s^Ts-w)IC (w—z)\w-

whioh is bounded as |A|->0. Hence the right-hand side of

(2) tends to zero with |A|; Hence, by (1),

/(«’)m- -fiin Jc27n Jo (w—z)^
dw.

(
3)

This is Cauchy’s formula for/'(z).
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The existence otf{z) was, of course, our original hypothesis.

But now that we have obtained this formula for it, we can

repeat the above process. We have

r(z+h)^fiz)
h -I27n Jc

2w—2z—h

c {w—z)^{v)—z—h)^
f(w) dw

27ri

and we prove as before that when A 0 this tends to the limit

f(w) j

Hence f'{z), the derivative of f'(z), exists, and is given by the

2171 Jc (w-^z)^

The argument can obviously be repeated indefinitely; hence f(z)

has derivatives of all orders, the nth being given by the formula

f{w)

277% Jc
dw.

c

2.42. Morera’s theorem. This is a sort of converse of

Cauchy’s theorem.

If f(z) is a continuous function of z in a region, D, and if the

integral ^

jf(z)dz

taken round any closed ccmtour in D is zero, then f{z) is analytic

inside D,

In this theorem the precise sense of the word ‘contour’ does

not matter. The result holds even if we restrict ourselves, say,

to convex polygons.

Consider the function
z

F{z)^
J
f(w) dw,

So

Its value is independent of the path of integration; and

z

where the path of integration may be taken to be the straight

line. This tends to zero with A, since j{yo) is continuous. Hence
J?’(z) is analytic, and has the derivative /(z). But we have just

proved that the derivative of an analytic function is analytic.

Hence /(z) is analytic.
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2.43. Taylor*s series. An analytic function can be ex-

panded in powers of its argument by a formula similar to

Taylor’s series for a real function.

Suppose that f{z) is analytic on and inside a simple closed con-

tour C, and let a be a point inside C, Then

/(z) ==/(a)+ (z-a)/>)+ ...+

the series being convergent if \z—a
\
<8, where 8 is the distance

from a to the nearest point of C.

We start from Cauchy’s formula

where we take F to be a circle with centre a and radius p < 8.

The formula holds if z lies inside this circle, i.e. if \z—a
\ < p.

1 ___
1 z—a (z—a)^

w—z w—a^(w—a)^~^"‘ (tt;—

the series being uniformly convergent on F. Hence we may
multiply hy f{w)/27ri and integrate term by term round F. We
obtain

I ,

jz-a)”' C f{w)

27ri Jr (w—a)^+^
dw -j- . .

.

,

and, by the formulae of § 2.41, this is the desired result. It is

sometimes known as the Cauchy-Taylor theorem.

There is one difference to be noted between this proof and

the corresponding investigation for functions of a real variable.

In the real variable theory we obtain the first n terms of the

expansion, and a remainder term, and a special investigation is

required to see whether this term tends to zero. In the complex

theory the fact that it tends to zero follows from our original

hypotheses. This state of affairs is quite natural; for combining

the above theorem with § 2.16, we see that the necessary and

sufficient condition that a function should be expansible in a power

series is that it should be analytic in a region. We cannot define

an analytic function of a real variable except as one which

can be expanded in a power series. If therefore we start from
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other hypotheses, we may expect to meet with difficulties. For

example, the radius of convergence of the series depends on the

extent of the region where the function is analytic; and it may
therefore be controlled by the existence of singularities off the

real axis, of which, if we confine ourselves to real variables, we
can have no knowledge.

Thus the expansion

1

1+^2
1— ...

holds for |a;| < 1 only. There seems to be nothing in the nature

of the function, considered as a function of the real variable x,

to account for this restriction. But if we make x complex, it is

accounted for by the fact that the function is not analytic at

the points a: =
2.5. Cauchy’s inequality. If

/(3) == 2 (|Z|<-R).

and M{r) is the upper bound of \f{z)
\

on the circle 1^1 — r, (r < R),

for all values of n,

a =± !
" 2n{ J »•+

For dz,

\z\^r

and the theorem of § 2.31 gives at once

Cauchy’s inequality may also be proved as follows. Let

be the conjugate of a^. Then if r < J?,

m-0 n-0

Both series being absolutely convergent, we may multiply by
the usual rule {§ 1.65). The resulting series is uniformly con-

vergent for 0 < 0 < 27r, and we may therefore integrate term by
term over this interval. On integration, all the terms for which

m^n vanish, and we obtain

j\f{z)\^de=
0

n“0



LIOUVILLR’S THEOREM 85

2ir

or I |oJV2« = 1 f \f(z)\^ dd< {M(r)f.
n-0 iSTT J

0

The result clearly follows from this.

Example. Show that Cauchy’s inequality reduces to an equality if,

and only if, f{z) is a constant multiple of a power of z.

2.51 . Liouville*8 theorem. A function which is analytic for

all finite values of z, and is bounded, is a constant.

We give two proofs of this important theorem.

First Proof. If f{z) is analytic for all finite values of z, the

Taylor’s series

f(z) = 2 0„2
»

n=0

is convergent for all z. Also, if |/(3)| ^ M, then by Cauchy’s

inequality KKJfr-
for all values of n and r. Making r ->• cx), the right-hand side

tends to zero if n > 0. Hence a„ = 0 for » > 0, and /(z) = a^.

Second Proof. If Zj, Zg are any two numbers,

jQ z z^ 2iTt% jq z— Zo

=~f27^^ Jcc {z-z^)(z-z^)

cz-

f{z)dz.

where C is a contour including both Zj and z^. Taking (7 to be

a circle with centre the origin, and radius R greater than jz^j or

[Zjl, we have

l/(Zl)-/(Z2)i
^ \Zi—z,\MR

'-{R-\z,\){R-\z^\y

The right-hand side tends to zero as J? ->• oo. Hence /(zj) —f{zz).

Since this holds for all values of Zj and Zj, /(z) is a constant.

The same result holds if the function is bounded on any

sequence of contours tending to infinity. This is clear from

either proof.

2.52. The following is a more general result of the same kind.

Iff(z) is analytic for all finite values of z, and as |zl -»• oo

/(z) = (?(lz|*=).

then f(z) is a polynomial of degree, < k.
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For by Cauchy’s inequality

|a^| < ==

and the right-hand side tends to zero as r oo if n > k. Hence
== 0 forn > k, and the result follows.

2,53. The function A{r), Let A{r) denote the upper bound
of the real part of f(z) on |z| = r. We next prove an inequality

similar to Cauchy’s inequality, but involving A{t) instead of

M(r).

We hive ^ max{4J (r), 0)- 2R{/(0)}

for all values o/ n > 0 and r.

Let z = re^^, and

f(z) = 2 == u{r,e)+w{r,e),
n - 0

oo

Then u{r, ^) = 2 n9)r ^^

.

n-O

The series converges uniformly with respect to 0. Hence we may
multiply by cos7?0 or sinnfl and integrate term by term; and

we obtain

27r 27r

-
I
u(r, 0)co8 nd dd — cx.,r'”, ~ f u(r, 0)sin nO dd ==

^ J tt J

for 71 > 0, while

Hence

and

^ J
u{r,e) de= cxo.

0

Srr

a„r” — («„-[- ~
“ J

u{r,d)e-^”^ dd {n > 0),

0

27r

0

2ir

l«n 1^"+ 2ao< ^ J
{ !“(». 1

+“(». ^)}Hence
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Now \u\-\-u is zero if < 0. Hence if A{r) < 0 the right-hand

side is zero. If A(r) > 0, the right-hand side does not exceed

27T

1

77

de^AA{r).

0

This proves the theorem

.

There are, of course, similar results involving the lower bound
of R/(2), and the upper and lower bounds of If{z),

2*54. The analogue of Liouville’s theorem for A{r), If

f{z) is analytic for all finite values of z, and A (r) is bounded as

r ->oo, then f{z) is a constant. If A{r) < Ar^, where A and k are

constants, then f(z) is a polynomial of decree < k.

In the first case, it follows from the above theorem that \a^^^\r'^

is bounded as r oo for every > 0. Hence ^ 0 for ri- > 0,

andf{z) = Oq. Similarly, in the second case, a^^ ™ 0 for n > k, and

f{z) is of degree k. It is sufficient that the conditions should

hold for some arbitrarily large values of r.

The first part of the theorem may also be proved directly as

follows. Consider the function ^(z) ~ exp{/( 2:)}. Then

Hence, if u{r,0) < A, then

l^(2)|<e^.

Hence, by Liouville’s theorem, (^(2 )
is a constant. Hence f{z)

is a constant.

2.6. The zeros of an analytic function. A zero of an

analytic function /(s:) is a value of z such that f{z) = 0. lif{z) is

analytic in the neighbourhood of 2: = a, then

/(2) = 2 a„(2-a)"
n = 0

for \z—a\ small enough; and if z = a is a zero, one or more

of the coefficients a^, a^,„, vanish. If = 0 for n<m, but

(t^rn ^ then f(z) is said to have a zero of the mth order. Thus

every zero is of some definite integral order—a function cannot

have a zero of fractional order inside a region where it is analytic.

At a zero of order m, we have

/(a) =/'(«) = ...=/(-W(o) = 0,

while ^ 0. This is clear from the form of Taylor’s series,

c
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The zeros of an analytic function are isolated points) that is to

say, if a function f{z) is not identically zero, and is analytic in

a region including z — a, then there is a circle \z--a\ ~ p (/> > 0)

inside which f(z) has no zeros except possibly z^ a itself.

The theorem may also be stated as follows:

Let f(z) be a function analytic in a region D, and let P^, PgvM
P,p... be a set of points having a limit'point P inside D. Then

if f{z) = Q at every point P„, it follmvs that f{z) = 0 al all points

ofD.
It may be supposed without loss of generality that P is z ^O.

Then f(z) is analytic in a region including s = 0, and hence

f(z) = f a„z'‘
n~0

for \z\ < R, say. It will be proved that all the coeflicients in

this series arc 7X'ro. If this is not so, there is a first coefficient

which is not zero, say Of.. Then

f{z) = 2*(afc+a*+i2+...) (|z| < R).

If 0 < p < E, the series is convergent for z == p, anci so a„p'‘ is

bounded, say |a„ |p" ^ K. Hence

\f{z)\>\z\
K\z\z

_ \

- p'c^Z
--)

and the right-hand side is positive if |z| is sufficiently small,

except at the point z = 0 itself. This contradicts the hypothesis

that f{z) has zeros arbitrarily near to, but not coincident with,

2 = 0. Hence in fact all the coefficients vanish. Hence f{z) ~ 0

inside the circle of convergence of the above series.

We can now, however, repeat the process, starting from any

point inside this circle; for the data now hold for any such point,

by what has just been proved.* In this way the result may be

extended to any point interior to P,

2.61. The theorem has the following obvious corollaries:

(i) If a function is analytic in a region, and vanishes at all

points of any smaller region included in the given region, or

along any arc of a continuous curve in the region, then it must
vanish identically.

For a more detailed discussion of such chains of circles see Ch. IV.
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(ii) If two functions are analytic in a region, and have the

same value at an infinity of points which have a limit-point in

the region, then they must be equal throughout the region.

Examples, (i) The function sins has zeros of the first order ut the
points 3 — 0, irr, “t27r,..., and no other zeros. [The formula

|sin(;r-f-it/)| V(sin2x-f sinh^i/),

P,M. § 233, ex. 2, shows that sin z has those zeros and no others.]

(ii) The function cos z has zeros of the first order at 2 — Jtt,

and no other zeros.

(iii) If /(z) and g{z) are both analytic functions in a region Z>, and
— 0 in D, then either /(z) — 0 throughout/), or r/(2 ) 0 through-

out D.

2.7, Laurent series. Let f(z) be a function analytic in the

ring-shaped region between two concentric circles C and C\ of
radii R and R' (J?' < i?), and centre a, and on the circles them-
selves.

Then f{z) can be expanded in a series of positive and negative

powers of z--a^ convergent at all points of the ring-shaped region.

We must remind the reader that all functions considered here

are one-valued. This assumption excludes certain functions, any
one value of which is analytic at all points of the ring. Consider,

for example, the function ^
where p is real,

if 3 =
This is analytic except possibly at 2; 0.

f{z) = rTPe^TP^.

Now,

As we pass round a circle with centre the origin, starting at

0 0, say,/(2;) changes from r^ to r^e2i/>7r^ return

to its original value unless p is an integer.

To prove the theorem, let z he a point of the ring, and con-

sider the integral

2m J w—z
taken round the outer circle C in the positive direction, then
along a radius vector (which wo may suppose does not pass
through 2) to the inner circle C, then round C in the negative
direction, then back along the radius vector to the starting-

point. This is a closed contour to which we may apply our
previous results—^the fact that part of it is described twice does
not affect any of the arguments. The value of the integral is

therefore /(z).
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Since f(z) in one-valued, the two integrals along the radius

vector joining the circles cancel, and we obtain

/(^)
1

27ri
r

where now (‘ach integral is taken in the positive direction. As

in the proof of the Cauchy-Taylor theorem

where

2m Jc w—z
Ŵ'-O

fM
(w-~ay*

In this ease, however, is not in general c^ipial to /<^'^(^/ )///!,

since f(z) is not necessarily analytic throughout the interior of C.

Again 11 w~~a {w—ay-^
z—w z—a (2—-a)^

***
{z—ay‘

this series being uniformly convergent on C". Hence

±, f
‘ .-L

'Im J(j- w—z z—a 2-ni
dw -f

+ : . f (w—ay^~^f{w)div+...-- 'y
,

where (w)— a)'*-Y(M.’) du\

These two series together form Laurent’s expansion. They may
be written together in the form

/(z)= 2
n*— CO

where ——
• f

- dw
“ 2m i {w—a)»+^

for all values of n, the integral being taken round any simple

closed contour which passes round the ring.

In the particular case where /(z) is analytic inside C", all the

coefiScients are zero (by Cauchy’s theorem), and the series

reduces to Taylor’s series.

Notice that the series of positive powers of z—a converges.
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not merely in the ring, but everywhere inside the circle C.

Similarly the series of negative powers converges everywhere

outside C\

Examples, (i) Sliow that
QO

plr<z -\) — ^
n -- QO

27r

wliero —
j

co9.{n()~- rnmO) fI6.

277 J
i)

(ii) Show that, if c ;
^ 0,

C* QO

2.*_- ^
n - —

whoro “
f

t-^'‘>H'<^)oos[csin 1 — cos^)— n^}

'^.71 . Isolated singularities of an analytic function,

8upj)ose that a function f{z) is analytic throughout the neigh-

bourhood of a point a, say for < R, except at the point

a itself. Then the point a is called an isolated singularity of

the function.

Suy)pose that/(s) is otui-valued. We may then expand f{z) in

a Laurent series of powers of z—ct, and the inner circle^ C of

§ 2.7 may be taken as small as we please. Thus

f{z) 2 a„(z-a)”+ 2 6„(z-a)-" (0 < \z-a\ < R).
n - 0 n^-].

There are now three possible cases. All the coefficients

may be zero. The function f(z) is then equal to a function

analytic for \z—a
\
< R, except at the point a

;
for example, w^e

might define f{z) to be 1 except at 2 == a, and f(a) ~ 0, This is

a rather artificial sort of singularity, and of no further interest

in the theory.

Secondly, the series of negative powers of 2— a may contain

a finite number of terms only. Then f{z) is said to have a pole

at the point 2 = a. If is the last coefficient which does not

vanish, then
00 iti

f{z) = 2 a,Jz-o)«+ X
n=0 n -

1

and the pole is said to be of order m, or to be a simple, double,...

pole in the cases 771 “ 1, 2,,..

.
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If f(z) has a pole of order m, then plainly (z—a)^\f{z) is

analytic and not zero at 2: = Hence also

"" (z-arm
is analytic and not zero txi a. Hence

so that Ijjiz) has a zero of order 7n at z~ a.

Conversely, a similar argument shows that, if /(;:) has a zero

of order w, then l//(^) has a pole of order m.

The finite series
m

n-l

is called the principal part of f(z) at z = a.

If f(z) has a pole at z = a, then
1/(2:) |

-> 00 as z -> a. For

'n=l ' 'n=l '

> \z-a\-”'[ |6„ 1-Y 1^ 1
\z-ar-'],

and the expression in brackets tends to so that the whole

tends to infinity—in fact the function is dominated by the last

term in the principal part.

If f{z) = as \z—a\ 0, the singularity is at most a

pole of order k; in particular^ iff(z) ==0(1), there is rvo singularity

(except of the trivial type first mentioned).

An argument similar to that of § 2,52, but with 6^, and r

tending to 0, shows that 6^ = 0 for n > k. Again it is clearly

sufficient that the data should hold on a sequence of contours

tending to 0,

Examples, (i) The functions cot z and cosec z have simple poles at

the points z ~ 0, ±77, ± 27r,.,. .

(ii) The functions tan z and sec z have simple poles at the points

z “ ii^r, ±^77,...

.

(iii) Find the poles of

1 1

sin sin a' cos cos a*

(iv) The function cosec has one double pole and an infinity of simple

poles.



SINGULARITIES 93

(v) Find the poles of the functions

2M-1’ s*+r z*-{- 2s24-r

-- 2.72, ^jEjs^^tial singularities. The third possibility is that

in the expansion of f{z) in powers of z—a, the series of nega-

tive powers may not terminate. The point 2; = a is then called

an essential singularity of /(z). In this case

n-0 w=l ' '

where the last series does not terminate, but is convergent for

all values of z except z~ a.

The complicated behaviour of a function in the neighbour-

hood of an essential singularity is shown by the following

theorem of Weierstrass.

Given any positive numbers p, c, and any number c, there is

a point z in the circle \z—a\ < p at which \f{z)—c\ < €.

That is to say, f(z) tends to any given limit as z tends to a

through a suitable sequence of values.

We begin by proving that, if p and M are any positive num-
bers, then there are values of z in the circle \z—a\ < p at whicii

|/(z)| > M, If this is not true, then \f(z)
\ < M for \z—a\ < p.

Hence, if the radius of C' is R,

\K\== {w~a)^~'^f(w) dw

by § 2.31. This holds for all positive values of n and R\ and,

making JB' -> 0, we see that 6^ — 0 for n^\. Hence there is

no essential singularity, contrary to hypothesis.

Now consider any finite value of c. If f{z)—c has zeros inside

every circle \z—a\ == p, the result follows at once. If not, we

can choose p so small that /(z)—c has no zero for \z~a
\ < p.

Then
1

/(2)-C

is regular for \z—a\ < p, except at z ~ a. The i)oint z = a is an

essential singularity of (f){z)\ for

1
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and if (f){z) had a pole, /(a;) would be analytic; while, if (j}{z)

were analytic, f(z) would be analytic or have a pole.

It now follows from the first part that there is a point z in

the circle \z—a\ < p such that

€

i.c. \f{z)—c\ < e,

and this is the result stated.

This theorem distinguishes clearly between poles and essential

singularities. While at a pole f{z) tends to infinity, at an

essential singularity f(z) has no unique limiting value, and in

fact comes arbitrarily near to any assigned value an infinity

of times.

Examples, (i) The functions

t/ 1 1
sin-, cos-

z z

have isolated essential singularities at z — 0.

(ii) The function cosec(l/2 ) has a singularity at z ~
0, but it is not

an isolated singularity, being the limit-point of the poles at the points

z = l/(n7r). We call such a point an essential singularity also.

(iii) The function actually takes every value except 0 an infinity

of times in the neighbourhood of 2:
— 0; and it tends to the limit 0 as

z 0 along the negative real axis.

2.73. The *point at infinity’. We may consider ‘infinity’

as a point by making the substitution Ijw, Then the be-

haviour of /(2 )
‘at infinity’ depends on the behaviour of /(l/w^

at = 0. We say that f{z) is analytic, has a simple pole, etc.,

at infinity, if f{ljw) has the same property at w=: 0 . Thus

f(z) = z^ has a double pole at infinity.

A function which is analytic everywhere, including infinity, is

a CAynstant. For by Laurent’s theorem, since f{z) is regular for

all finite values of z, ^
f(z) = f 0„2'*,

n=o

Since filjw) is regular at te = 0, o„ = 0 for » — 1, 2,..., so that

/(z) = a„.
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A function which has no singularities other than poles is a

rational function.

In the first place, there can only be a fiinite number of such

poles; otherwise the poles would have a limit-point either at a

finite point or at infinity, and at such a limit-point the function

would not be analytic or have a pole, contrary to hypothesis.

Suppose, then, that the poles of f{z) at finite points are at

a, with multiplicities a, Then

g{z) =f{z){z—a)o‘...(z—ky

is analytic except at infinity, where it has at most a pole.

Hence ^
g{z) = 2

n=0

oo

g(llw) == 2
n=0

Since the singularity of g{llw) at the origin, if there is one, is

a pole, this series must terminate, i.e. g{z) is a polynomial.

Hence f{z) is the quotient of two polynomials, i.e. a rational

function.

Conversely, a rational function has no singularities other than

poles.

2.8. Uniformly convergent series of analytic functions.

Suppose that

(i) each member of a sequence offunctions

is analytic inside a region D,

(ii) the series «,

n - 1

is uniformly convergent throughout every region D' interior to D.

Then the function <»

f{z) = 2 u„{z)
n-1

is analytic inside D, and all its derivatives way be calculated, by

term-by-term differentiation.

Let C7 be a simple closed contour lying entirely inside D, and

let z be a point inside C,
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If we knew already that f{z) was an analytic function, we
should have

1

27ri
f

(
1 )

Actually we obtain this result from our data, and then use it

to prove that f{z) is analytic.

We have

«n(2)
^ : ^ f

27Ti Jq w—z
dw

for each function Hence

f{z) = 2 u^iz)
n=i

,yj_ r^ 27Ti Jfy w—zn=i

dw.

But, since uniformly convergent on C, we may
multiply by lj{w—z) and integrate term by term. Thus

and we obtain

ny’hM\dw=y
f

n

277% Jcl ^ V)—Z f 277% Jq w— z

i.e. we have proved (1).

We can now deduce from (1), as in § 2.41, that /(z) has a

derivative /'(2 ), given by the formula

1
f dw.

277% Ja {w—zf

In this case the boundedness of f{z) follows from the uniform

convergence of the series. Hence /{2;) is analytic.

Also

-L
f f y„.(„.

2mJc{w—zy M dw
{w—z)^

00 , /•

n=l

dw
2wi Jc {w—zf

1 K{«),

using the uniformity of convergence again. Hence the series

may be differentiated term by term. Also the differentiated

series is uniformly convergent in any region interior to D. For
if D' is such a region, we can suppost! that the curve C includes
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X)' in its interior, and that the least distance of points of D' from

O is 8. Then for any point z of D'

where I is the length of (7, and € the maximum modulus of

on C. Since the right-hand side is independent of z, and tends

to zero when N and N' tend independently to infinity, the

result follows.

The whole process may now be repeated, starting from the

differentiated series, and the general result thus follows.

The theorem, in a slightly different form, is known as ‘Weier-

strass’s double-series theorem’.*

2.81 • Remarks on the above theorem.

(i) We have already pointed out (§ 2.37) the contrast between

the conditions for term by-term differentiation of real series,

and of series of analytic functions. In the case of real series, we
have to assume that the differentiated series is uniformly con-

vergent. In the above theorem no such assumption is necessary;

actually the differentiated series is uniformly convergent, but

this is one of the conclusions of the theorem.

(ii) If we merely assumed that the given series was uniformly

convergent on a certain closed curve C, we could prove as before

that f{z) was analytic at all points inside C.

(iii) Even if we assume that each u^{z) is anal3d}ic on the

boundary of Z), and that the series is uniformly convergent on

the boundary, we cannot prove that f{z) is analytic on the

boundary, or that the differentiated series converges on the

boundary. Consider, for example, the series

n»l

This is uniformly convergent for |z| ^ 1; but the differentiated

* See Knopp’s Infinite Series, § 66.
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series is not uniformly convergent in the neighbourhood of

z= 1, nor is the function represented by the series analytic

at 21 = 1 . In fact
\og{l~z)

(iv) The theorem may be stated as a theorem on sequences

of functions: if f^{z) is analytic in D for each value of n, and

tends to f(z) uniformly in any region interior to D, then f{z) is

analytic inside D, and fn{z) tends to f{z) uniformly in any

region interior to D.

CO

Examples, (i) The function ^(5 ) — ^ analytic for R(.9) > 1.

n--i

[For the series is uniformly convergent in any finite region to the right

of R{5) “ 1, see § 1.21. example.]

(ii) We have, for R(«) > 1,

ao

n®) = — 2 n-'k)gn,
n-2

and generally » = (-!)* I n- log^a.

(iii) In what region does the .series

2
sin nz

represent an analytic function ?

(iv) The serie.s 00

2
sin nz

is uniformly convergent on the real axis, but not in any region of the

2-plane ; so we can deduce nothing about the analytic character of the

function which it represents.

2.82. Another proof of the theorem. We can also deduce

Weierstrass’s theorem from Morera’s theorem (§ 2.42). For,

since 2 uniformly convergent, we may integrate it term

by term round any contour C, Thus

j^f{z)dz=fj^'u,Xz)dz.

But, since each u^iz) is analytic, every term on the right is

zero. Hence r .

jj{z)dz=^0.

Hence, by Morera’s theorem, f{z) is analytic.
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2.83. Definition of analytic functions by means of in-

tegrals. Let f(z,w) be a continuous function of the complex

variables z and w, where z ranges over a region D, and w lies on

a contour C. Let f{z, w) be an analytic function of z in D, for

every value of w on C. Then

^(2 )
= dw

is an analytic function of z in D; and

and similarly for higher derivatives.

Wc may suppose that the contour C consists of a single

regular curve, on which w = u-{-iv, u ^ u(l), v ~ v{i), Iq^I^
and u'{t) and v\t) are continuous.

Let r be a contour lying in i), on which z = x-l-iy, x — x{s)y

U ?/('‘>')^ «0 ^ *
1 )

<^nd and y'{s) are continuous. Let ^ be

a point inside F. Then

We may invert the order of these tw^o integrations. For wc can

express each of these complex integrals m a sum of real in-

tegrals, as in § 2.3; and we clearly obtain an expression of the

form s,

J
dt

j
y)(Sjt)-\-iilj(8,t)} dSy

to Sg

wherc
<f>
and ip are real continuous functions of s and t. Now

we know that a repep^ted integral of this type may be inverted

(§ 1.81). Hence

f2ni Jr

dz

X

F(z)

z-X
dz.

Thus F{z) satisfies Cauchy’s integral formula, and from this point

the proof that F{z) is analytic, and that we can differentiate

under the integral sign, proceeds as in the theorem on uniformly

convergent series.
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Examples, (i) If f(t) is continuous in (a, 6), ilien

/> h

F(z) = J
cosztfit) dt, Q(z) = J

sin2f/(0 <

a a

are analytic functions for all finite values of z.

(ii) Under the same conditions

is analytic, except possibly when z is real and lies in the interval (a, 6).

2.84. Infinite integrals. Let C be a contour going to infinity,

any bounded part of which is regular. Suppose that the conditions

of the previous theorem are satisfied on any bounded part of C,

and that .

is uniformly convergent. Then the results of the previous thaorem

still hold.

Let be the part of C inside the circle = n, and let

= ^^J(z,w)dw.

Then F^{z) is analytic for every n, by the theorem on finite

integral*. Al»>
F.(z)^F{z)

uniformly as oo. Hence, by the theorem on uniformly con-

vergent sequences, F{z) is analytic. Finally

F'{z) = \imF'^(z) = ]im f
f

n->oo Tir-^oo dZ Jc

2.85. Infinite integrals of the second kind. There is a

similar theorem for the case of a finite contour C, at one end

of which f(z, w) oo. Such an integral represents an analytic

function, provided that the convergence of the integral is uni-

form. The formal statement and the proof are practically the

same as those of the previous theorem.

Exleunples. (i) The function

os

r(.) - J

is an analytic function for R(z) > 0. [The uniform convergence of this

integral has been discussed in § 1.51, ex. (i). It converges uniformly in
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any finite region in which R(z) > a > 0; and any point at which

R(z) > 0 is an internal point of such a region.]

(ii) In what regions do the integrals

QO OO 00

0 0

represent analytic functions ?

(iii) The integral 00

r Bmwz

J ^
dw

converges uniformly in certain intervals of real values of z, but not in

any region
;
so we cannot deduce anything about the analytic character

of the function which it represents.

2.9. Remark on Laurent series. Suppose that we have

obtained in any manner, or as the definition off(z), the formula

f{z) = f A,Xz-ay^ (R' < \z-a\ < R).
7l«-oo

Is the series necessarily identical with the Laurent series of

/(z)? Yes; for if C is the circle \z—a\ — p, R' < p <. R, the

Laurent coefficient a„ is

an
2tti (z— a)"+^

(z-o)”*

(z— a)'‘+^
dz,

by uniform convergence; and the right-hand side is by § 2.3,

exs. (iii) and (iv).



CHAPTER III

RESIDUES, CONTOUR INTEGRATION, ZEROS

3.1. The residue at a singularity. We know (§ 2.71) that,

in the neighbourhood of an isolated singularity z~a, a one-

valued analytic function f(z) may be expanded in the form

m = i «„(2-«)"+ I b^{z-a)-\
n=0 n~l

The coefficient is of particular importance, and is called the

residue of f{z) at the point z = a. By the formulae of Laurent’s

expansion, .

where y is any circle with centre z — a, which excludes all other

singularities of the function.

It is easily seen that, if z — a is a simple pole,

= lim(z— a)/{2 ).

Z-Hl

3.11. The theorem of residues. Let f(z) he one-valued and

aimlytic inside and on a simple dosed contour 6', except at a Jlniie

number of singularities z^, Let the residues of f(z) al these

points be Then

Let yi, y2vjyn be circles with centres z^, and radii so

small that they lie entirely inside C and do not overlap. Then

f(z) is analytic in the region between C and these circles, so

that, by Cauchy’s theorem (see § 2.35),

/(z) dz = f(z) dz+...+ fiz) dz.

But f /(z) dz = 27Tfi?j,

etc., and the result follows.

3.12. Contour integration. The theorem of residues may
be used to evaluate a large number of real definite integrals.

To do this we take a contour, part of which consists of the real

axis, and the remaining part of which is usually made to tend

to infinity. The process is called contour integration. It is best

made clear by means of examples.
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3.121 . It is well known that

00

r dx 77

J l+x^^2‘
0

To prove this by contour integration, consider the integral

r dz

J 1+^^

taken round the contour consisting of the real axis from ~~K
to iZ, with a semi-circle, on this line as diameter, above it. Since

l-fz^ 2i\z—i z+ij'

the integrand has a pole at z — which is inside the contour if

iZ > 1, with residue l/2i. Hence, by the theorem of residues, the

integral is equal to tt.

Now, on the semicircle, \l~\-z^\ ^ JZ^— 1, so that the integral

round the semicircle does not exceed

rrR

and so it tends to zero as iZ oo. Hence

n

rhm iT—
-R

Since the integrand is an even function, the result now follows.

The integral of any even rational function which behaves

suitably at infinity can be evaluated in a similar way.

Of course we know the indefinite integral of ll{l+x^), viz.

arc tan and can evaluate the integral from this. The method
shows to better advantage in cases where we do not know the

indefinite integral.

It has been shown in § 1.76 that

J X 2
0

To prove this by contour integration, consider the integral
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taken round the contour consisting of the real axis from 2 = p
to 2 = JR, where 0 < p < JR ; a semicircle P of radius JR above

the real axis; the real axis again from — JR to —*p; and finally

a semicircle y of radius p above the real axis. We take p small

and E large. The small semicircle is necessary to avoid the

singularity of the integrand at 2 = 0, and the large semicircle

is necessary to close up the contour.

The function e^^Jz has no singularity inside the contour, and

the value of the integral is therefore zero. Thus
R i{
r r piz r p-ix r piz— dx -\-

\
— dz -\-

\
- dx -\-

\
— dz -^0,

j ^ Jr 2 } —X J z

p P

The two integrals along the real axis are together equal to

j ^ j ^
P P

The integral along P tends to 0 when i? 00 . For
7T n

j
jdz ^ j < J

b 7T~b rt

j
dd + j

dd + \
dd < 28 4-7rc-««''’*.

0 5 TT—

8

We first take 8 arbitrarily small, and then, having fixed 8, the

second term may be made as small as we please by choosing

B sufficiently large. Hence the integral along P tends to 0.

Finally,

J y ^ Jy Jy ^

The integrand in the last integral is bounded as p -> 0, and so,

by § 2.31, the integral tends to zero. Also
0

iddI?-

1

-ITT,

Hence, making p -> 0 and i? oo, we obtain

2<

0

— irr = 0

and the result follows.
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Notice that the integral in the negative direction round the

semicircle y tends to — tV into the residue at 2 = 0. It is easily

verified that this is true of any simple pole, but not of a polo

of higher order.

Notice also that we do not consider the integral

sin 2 ,

dz
z

because the integrand does not behave suitably at infinity.

3.123. //0<a< 1,

J l-i-x sman
0

Consider the integral

taken along the real axis from 2 = p to z^R; then in the

positive direction along the circle F with centre the origin and
radius B; then back along the real axis to z^p; and finally

round the circle y with centre the origin and radius p in the

negative direction. This is a closed contour which excludes

the origin. It is necessary to do so, because the function is

not one-valued in a region which includes the origin, so that

the theorem of residues would not apply to such a contour.

The many-valued function is taken to be real on the first

part of the contour. It is then given at all other points by the

formula where 0 0 < 27r.

• There is one pole inside the contour, at 2 = — 1, the residue

there being Hence

r / a
•I

yd-X

1+2
dz +

11
Jy i+2

dz

=27nV“-Wi’'.

The two integrals along the real axis together give

^2 «) r .?“i-
' J l+a:

dx -2»e*“"sinan-

^a-1
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The other two integrals tend to 0. For on P

so that
li,.';;

1+z

dz
Ji—

1

277

B-l’

wliich tends to zero since a < 1. Similarly

I
dz

2Trp“

/y 1+2J

which tends to zero since a > 0. The result therefore follows on

making JB -> oo and /? -> 0.

3.124. The above result has an application to the theory of

the P-function. Putting y = l—x in § 1.86 (4), we have

00

r(a;)r(l-;r) = |
^-du

sin(l— a:)7r'

or r(x)r(i-x)
sinxTT

where 0 < a; < 1

.

3.125. Worn --=0,1,^,-

00

J
sinx* dx — 0.

0

Putting X == the integral becomes

4 J
dt,

0

Consider the integral

/
Zin+Z(i^-I)z dz

taken along the real axis from 0 to i?, then along a quadrant

of a circle of radius R to the positive imaginary axis, and then

back to the origin along the imaginary axis. On the arc of

the circle = e-Bcosff-«giii9 ^
so that

j J
^ -> 0.



CONTOUR INTEGRATION 107

00 00

Hence
J

dx —
J

dy = 0,

0 0

or, replacing y by a; in the last integral,

J
^4;H3g-.r(g7>__g-7>) ^ 0^

and the result follows.

3.126. If c > 0, then

c+i«

JL r -dzrr:=^ («>1).
27ri J z

"
0 (0 < a < 1).

c—ioo

If a> 1, i.e. loga>0, we consider the integral round the

contour consisting of the line from c—iR to c+iJ?, completed

by a semicircle on the left. If R is sufficiently large, this con-

tour includes the pole at 2 == 0, with residue 1 ;
and it may be

proved as in § 3.121 that the integral round the large semi-

circle tends to zero as j? 00 .

If a < 1, we complete the contour by a semicircle on the right.

There is now no pole in the contour, and the second result

follows.

3.127. The F-function integral. We have

np)
J

dx (a >0, p> 0).

If we could make the substitution x ~ it in the integral, we
should obtain

r(p)

J
dt :

and, multiplying by and separating real and imaginary

parts, we find

J
ir, 1

COS
. J. r(«) cos

,<P-‘
. atdt = — -

. hpn.
aP sin

“sm (
1 )

The ordinary rules of integration by substitution, of course,

do not cover a ‘complex substitution’ of this kind. The process is

really an application of Cauchy’s theorem. Consider the integral

J
dz
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taken round the contour consisting of the real axis from z = p
to 2: = JS, the arc of == i2 to the imaginary axis, the imaginary

axis from 2; = ii? to s = ip, and the arc of
|
2;1 =:= p back to the

starting-point. By Cauchy’s theorem, the integral round this

contour is zero. It may be proved as in previous cases that the

integral along
|

2;| = p tends to 0 as p 0 if ^ > 0, and that

along
|

2
|

= jR tends to 0 as i? -> 00 if p < 1. Hence the integral

along the imaginary axis is minus that along the real axis, and

on evaluating it we obtain (1) again, for 0<;;< 1.

3.128. Occasionally we use the converse process, and deduce

the residue from the value of the integral.

If p is an even positive integer, the residue of tan^“^7r2: at z — \

is (

—

The residue is equal to

. l-iR 1 +iR iR -iR

^~iR l-iR 1+ iR iR '

1+iR iR —iR

and
J = J

= ^ f
,

l-iR -iR iR

since tan 772: is periodic with period 1. Hence the residue is

equal to m

2M J
1+iB'

lg^2ivx-Znv_l _IU / ioo\
tan7r3= T „r i \y-^ I-

^ e2.7rj:-2»r,/_|_ 1 ^

Now

Hence as jB -> oo

\—iR

dz ->

l+ifi

and the residue is

J
tanP-^T

-iR

1 /IXP-I

TTt \t

(_l)te

Tn’** JT
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3 , 13 . Consider the behaviour of the mtegral

00

f(^t) — J
dx

0
’

as I CO.

It is convenient, for reasons which will appear latei‘, to begin

by integrating by parts. Integrating the factor the in-

tegrated term vanishes at both limits, and wc obtain

QO

f(t) — ^ J*

e’*^^~**^^(cos.ri — sin dx.

0

As in previous examples, wc replace the circular functions l>y

exponentials, and consider, instead of f{t), the function

CO

Putting X — u^ji, wc obtain

oo

= t-i
j

i
,in^

0

Next, turn the line of integration through an angle A, i.e. use

Cauchy’s theorem as in §
3.12t5. We obtain

00

^(t) = i-i
J

eii>‘c*<A-(i-£)i'c‘''r ie<A

0

"J'his {)rocess is valid if the real part of the coefficient of is

negative for all values of A through which the line of integration

turns; i.e. if sin 4A > 0, or A <
Actually we take A — Jtt. This has the effect of making the

term in e-^* tend to zero as rapidly as possible. It gives

00

^(<) = J
e-v*-a-i)w‘’’i«ri

0

When t-)~co, this last integral, being uniformly convergent,

tends to the limit

QO QO

J
dv = ^ j

dw = ir(J).

l) 0

Hence
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00

Similarly, if \fs{t) = i J
dx,

0

we obtain the same asymptotic formula for ip(t) as for

Hence finally

/(/) ==

A similar process might, of course, have been applied to the

integral before integrating by parts. The reader may verify that

it only leads to the result /(i^) =

3.2. Expansion of a meromorphic function. A function

is said to be merommphic in a region if it is analytic in the region

except at a finite number of poles. The expression is used in

contrast to holomorphic, which is sometimes used instead of

analytic.

The simplest meromori)hic functions are rational functions.

We know that a rational function can be expressed in a simple

way by means of partial fractions; we shall now obtain a

similar expression for a more general class of meromorphic

functions.

Let f{z) be a function whose only singularities, except at

infinity, are poles. We shall suppose for simplicity that all these

poles are simple. Let them be a^, where

0< \a^\ < Kl < lugl < ...,

and let the residues at the poles be 6i, respectively. Sup-

pose that there is a sequence of closed contours such that

includes but no other poles; such that the mini-

mum distance of from the origin tends to infinity with

n, while L,,^, the length of is 0(R,J; and such that, on

f(z) = o{R,^), This last condition will be satisfied if, for example,

f{z) is bounded on the system of contours taken as a whole.

Under these conditions

for all values of z except the poles.
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1

To prove this, conwider the integral

/ - JL r
ini Je, w{w--z)

dii\

where z is a point inside The integrand has poles at the

points with residues “")}*? with residue

f(z)/z; and at ?/; — 0, with residue —fW/z. In particular eases

these last two residues may of course vanish. Hence

m -

1

On the other hand

fw
,
m

1/| max|/(?/>)i,

which tends to 0 as n -> oc, under the conditions stated.

Hence

and the result stated follows.

It is also obvious from the proof that the series converges

uniformly inside any closed contour such that all the poles are

outside it.

3.21. We leave to the reader the modifications which are

necessary itf(z) has poles of higher order than the first. A more
important extension can be made to functions which do not

satisfy the condition /(;:) — o(jR,,) on Suppose now that

this is not satisfied, but that there is a positive integer p
such that /(2:) -- or, more generally, f{z) ^ on

Consider the integral

The calculations y)roceed as before, except that the residue at

w -- 0 is now
1 (/(o)

,

/'(o)
, I

fm
z\ ' p\

The integral again tends to 0 as n -> oo, and we obtain

/(s)-/(0)+ 2/(0)+...
s"/0')(0)

p\
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3.22. Application to trigonometrical functions. Con-

sider the function

/(2 )
= cosecz— 1/z (Zr^^rO), /(O) = 0.

At the point z = tiTr, where n is any positive or negative integer,

sin -: has a simple zero, so that /(z) has a simple pole. The
residue is

lim (a:-~?i7r)/cosec2— — lim-;— — lim^ — (— 1)''.

c->wTr \ Z] ^-^osm(4+n7r) »in4

But there is no singularity at 2 = 0, since

g-sing ^
gsing z^-\-0{\z\^)

^
‘

Let be the square with corners at the points

(n+^){±l±i)7T,

The function Ijz is obviously bounded on these squares. To
prove that cosec g is bounded, consider separately the regions

(i) y > oTT, (ii) — Jtt < y ^ Itt, (iii) y < — Jtt. In the first region

|cosec 2
|

2

and a similar result holds for the third region. Also |cosec gj is

evidently bounded on the straight line joining |(1— i)7r to

|(l+i)7r, and so, since it has the period tt, on all the lines

(?i4- -|i)7r, {n+\+\i)TT, Hence cosec z is bounded on the parts

of (7,^ which lie in (ii), and so on the whole square.

The theorem of § 3.2 therefore gives

coseog--~= V'(— h—

V

g ^ \z--mT nnj

the accent indicating that the term n = 0 is omitted from the

sum. Since, when we pass from C^-t to C„, we include the two
poles together, we should, in the first place, bracket the

corresponding residues together in the sum. However, the series

with n > 0 and n <0 converge separately, so that the brackets

may be omitted.
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If we add together the terms corresponding to

expansion takes the form

\n -1

cosec +22 > +> J .»•

z ^ n-TT^— Z-
n =1

Examples, (i) Ol^tnin tlio expansions

sec:: — 27r > , +

tan.:-=2zV 1

^ (n-f J)V“-2:“
n-o

and cots — 1-1-2;

QO

T-:-
’

.Zw z^~n^Tr“

(ii) Obtain the corresponding expressions for tlie hyperbolic functions.

(iii) Provo that
OO

1 „ j _ 1 sr 1

e'— 1 z 2"^ 4^^ z-'+ 47t^7r~'

00

(iv) Provo that 00800^2:== ^ ^
^

(Z-~7l7r)^

3.23. Expansion of an integral function as an infinite

product. An integral function is a function which is analytic

for all finite values of 2:. For example, e^, cos 2, sin 2, are integral

functions. An integral function may be regarded as a generaliza-

tion of a polynomial; and, just as we can extend the partial

fraction formula to certain meromorphic functions, so we can

extend the expression of a polynomial as a product of factors

to certain integral functions.

Let f(z) be an integral function of 2. Supp'ose that it has

simple zeros at the points * Ir fhe neighbourhood of

f{z) = (z-ajg(z)

where g(z) is analytic and not zero. Hence

f{z)_ 1 g'(z)

7(
2) 2-««'^ff(z)’

and the last term is analytic at a„. Hence /'(z)//(2) has a simple

pole at z = a„, with residue 1 .
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Suppose now thatf'{z)/f{z) is a function of the type considered

in § 3.2. Then

vY ^
I M

/(z) /(O) \2-«» «»/

Integrating from 0 to 2: along a path not passing through any
of the poles, we obtain

Iog/(Z)-Iog/(0) = 2'^+2 {l0g(2-««)-l0g(-«n)+ ^j-

The values of the logarithms will depend on the path chosen;

but when we take exponentials all ambiguity disappears, and

we obtain

/(2)=/(o)c Yl

For example, the function /(2:) = Bmzjz satisfies our condition,

and we obtain the well-known formula

sin 2:

z

g

gTlTT,

or sin z — z

Similarly, cosr= {>-
n=l **

If f'{z)/f{z) satisfies the conditions of § 3.21, we obtain iot f{z)

a product formula of the form

f{z)

*+l^+
2a!i " (J>^l)oj+‘

3.3. Summation of certain series. The method of contour

integration is often effective in summing series of the form

2f{n)

where f(z) is an analytic function of z of a fairly simple kind.

Let C he 8b closed contour including the points m,

and suppose that/(2;) is analytic in this contour, except for poles

at a finite number of points say simple poles with

residues Consider the integral

7TOot7rzf(z) dz.
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5

The function TTCot'nz has in C simple poles at == m, m+ 1 ,..., n,

with residue 1 at each pole. Hence tt oot ttz f(z) has the residues

/(m),/(m+l),...,/(n). Including the residues due to poles of

f{z), we find that

17 cot 77z/(2) dz = 27Ti{f{m)+f(m+

1

)+ • • • +/(«)

+

-f biTT cot 7rai+ • • •

+

bj.7T cot

Suppose, for example, that f{z) is a rational function, none
of whose poles are integers, and which is 0{\z\-^) at infinity.

Take the contour C to bo the square with corners (^+ 2 )(± 1 ±0-
Then, as in § 3.22, the integral round C tends to zero as n cx),

and we have
n

lim 2 —'rT{biCot7Ta^-{-.,.+hf^cot7Taf^}.
n—oo m~ — n

Similarly, by using tt cosec ttz instead of tt cot ttz, we can obtain

expressions for sums of the form

2 (-ir/W-

Consider, for example, the series

y —L_.

Here/{2:) = l/(a+^)^ has a double pole at z = —a. By Taylor's

theorem

cotTTZ = cot(— 7ra)4-(7rz-|-'?ra){—cosec2(— 7ra)}-f-...,

so that the residue of cot ttz/(z+a)^ at z— —a is —tt cosecVa.

Hence

—-—- = TT^cosecVa.
(a-^n)^

3.4. Poles and zeros of a meromorphic function. If f{z)

is analytic inside and on a closed contour C, apart from a finite

number of poles ,
and is not zero on the conkmr^ then

27ri Jc /(z)
dz = N-P

where N is the number of zeros inside the contour {a zero of order

m being counted m times), and P is the number of poles {a pole

of order m being counted m times).
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Suppose that 2; = a is a zero of order m. Then in the neigh-

bourhood of this point

f(z) == (z-a)'«gr(2),

where g{z) is analytic and not zero. Hence

f(z) z-a'^ g(z)'

The last term is analytic at z==a, so that f{z)/f(z) has a simple

pole at z —

a

with residue m. Hence the sum of the residues at

the zeros of f{z) is N,

Similarly the sum of the residues at the poles of f{z) is —P
(we need merely change the sign of m).

It may be proved similarly that if (f)(z) is analytic in and on

C and f{z) has zeros at and pole^ at then

1 r f'(z) 7t

3.41 . If J{z) is analytic in C, then the above formula reduces to

/'(2)

.

ic /(z)
} . f dz = N.
2771 Je

This result can also be expressed in another way. Since

we have

|log{/(z)}
/'(Z)

/(Z)’

f
/'(z)

Jc /(z)
dz = Ac,.log{/{2)},

where denotes the variation of log{/(2:)} round the contour C\

The value of the logarithm with which we start is clearly

indifferent. Also

log{/(z)} = log |/(z)
I
+i arg{/(z)},

and logl/l is one-valued. Hence the formula may be written

^ = ^^oarg{/(z)}-

3.42. Rouch^’s theorem. Iff{z) and g(z) are analytic inside

and on a closed contour C, and \g(z)\ < 1/(2) |
on C, thenf(z) and

f{z)+g{z) have the same number of zeros inside C.

In the first place it is clear that neither /(z) nor f{z)-{-g{z) has

a zero on C. Hence, if is the number of zeros of /(«), and
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N* the number of zeros of f{z)-\-g{z),

2ttN -- A^^arg/,

27rN' = ^c&vg(f+g) = Acarg/H-Acarg^l+|j.

To prove that N -- N\ we have therefore to prove that

A^arg + = 0.

Since < |/ i,
the point w =- l+g^// is always an interior point

of the circle in the ?e-])lane with centre 1 and radius 1; thus, if

2/; — <jy always lies between —W and irr; and therefore

arg(l-fff//) —
(f>
must return to its original value when z de-

scribes C—it cannot increase or decrease by a multiple of 27r.

This proves the theorem.

Another jiroof is as follows. Let (f>{z) ™ g(z)lf{z). Then

N' —— f f (h""
‘2ni Ja f(z)+g(z)

~ 2m Jc /(1+^t)

and the last integral is zero, as we see by expanding in powers

of
(f}
and integrating term by term.

3.43. The following is an example of the type of problem

which can be solved by means of the above theorems.

In which qiiadranfs do the roots of the equation

lie?

The equation has no real roots; for obviously it has no

positive root: i)utting 2:
= —a; it is

x^t-x^+^x^—2x-{-Z == 0 .

For 0 < a: < 1 the first three terms together are positive, and

so are the last two. For a: > 1 the first two terms together are

positive, and so are the last three.

Putting z — iy the equation becomes

iy-~4y24.2iy+3 = 0,

and the real and imaginary parts of this do not vanish together.

Hence there are no purely imaginary roots.

Now consider Aarg(2;^-f...-f 3) taken round the part of the
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first quadrant bounded by \z\^ i?, where R is large. The varia-

tion along the real axis is zero. On the arc of the circle, z — Re^^,

and we have

Aarg(2;^-f ...) = Aarg(JS^e4*<^)-fAarg{l+ 0(i?~i)}

-=27r+0(jR-i).

On the imaginary axis we have

arg(j<+...) = arc tan

The numerator of the expression in brackets vanishes at y = V2,

and the denominator at y = V3 and y ™ 1. Hence the rational

fraction varies as follows as y varies from oo to 0:

y = CO V3 V2 1 0

0, — ,
00

, 0, — ,
oo, +>

Hence arctan(2:^+...) decreases by 27t, and therefore the total

variation of arg(2^+...) round the quadrant is zero, if J? is

large enough.

Hence there are no zeros in the first quadrant.

Since zeros occur in conjugate pairs, it follows that there are

no zeros in the fourth quadrant, and two in each of the second and

third quadrants.

Any algebraic equation may be treated in the same way.

^/3.44. The fundamental theorem of algebra. Every 'poly-

nomial of degree n has n zeros.

In the first place, z^ has n zeros, all at the origin. Now con-

sider any polynomial

^0 "i" + • • •+

»

where a^ 0. Let

f(z) == a^z^, g(z) = ao+«i2:+...+a^-i2:’"-S

and take the contour C of Rouche’s theorem to be a circle with

centre the origin and radius > 1. On C

\f(z)\=::\aJR\

\g{z)\ ^ l«ol+ l%l^+*-+
Hence \g\<i |/| on C provided that

Hence, by Rouche’s theorem, /(2)+9^(J2) has n zeros in a circle

with centre the origin whose radius R satisfies this condition.
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The theorem can also be jiroved as follows. Suppose that the

above polynomial has no zeros; then the function

1

is analytic for all values of z, since its only possible singu-

larities are the zeros of the denominator; and it is bounded as

1^:
I

00 . Hence, by Liouville’s theorem, it is a constant. Hence

the polynomial reduces to the single term a^.

This proves only that the polynomial has one zero, and the

fact that there are n has to be deduced by the familiar process

of algebra.

3.45. A theorem of Hurwitz.* Let be a sequence of

functions^ each analytic in a region D bounded by a simple closed

contour^ and, let f^fz) ~>f{z) uniformly in D. Suppose that f(z) is

not identically zero. Let Zq be an interior point of D, Then Zq

is a zero off{z) if, and only if, it is a limit-point of the set of zeros

of the functions f^i^), points which are zeros for an infinity of

values of n being counted as limit-points.

This easily follows from Rouche’s theorem. We can choose

p so small that the circle
I

2:— = p lies entirely in D, and con-

tains or has on it no zero of f{z) except possibly the point

itself. Then \f(z)\ has a positive lower bound on the circle, say

1 /(2:) I ^ m > 0. Having fixed p and rn, we can choose so

large that
lfn(^)~-f(^)l<'f^ (n>7lo)

on the circle. Since f^(z) :=f(z)-i-{f^(z)—f(z)}, it follows from

Rouche’s theorem that, for n ^n^, fifz) has the same number
of zeros in the circle as f(z); that is, if z^ is a zero of f(z), it has

at least one, and otherwise it has none. This proves the theorem.

The example f^{z) = e^jn shows that it is necessary to as-

sume that f[z) is not identically zero. The example in which

fj^z) = l—z^jn, and I) is the unit circle, shows that the theorem

does not apply to points on the boundary of D. For fifz) -> 1

uniformly in D and on the boundary, but every point of the

boundary is a limit-point of zeros of the functions /^(z).

3.5. The functions
1/(2 ) 1, R{f(z)}, I{/(2j)}. Let f{z) be a

function analytic in a given region, and let u{x,y), v{x,y) be its

T
Hurwitz (1).
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real and imaginary parts. We write

cx cy

and similarly for derivatives of higher order.

We have already shown that the (^auchy-Riemann equations

U^:=-Vy, Uy:^-: -V^.,

hold at all points of the region.

Since f"{z) exists, so do all the partial derivatives of u and v

of the second order. Hence

i.e. u satisfies the partial differential equation (Laplace’s equa-

tion)
,

.

Similarly v satisfies the same equation.

A function which satisfies this differential equation is called

a harmonic function or potential function. The modulus \f{z)\

is not in general a harmonic function; but log|/(z)j is, since it

is the real part of the function Iog{/(2)}.

3.51, The loci |/| — const., R{/} — const., !{/} ™ const., are

curves in the 2:-plane.

If
\
f{z)\ ^ constant throughout a ivhole region where f{z) is

analytic, then f{z) = constant.

For if 1/(2:) 1

~ c, then
~ c^.

Hence
,uu^+vv^ -= 0

,

UUy-{-VVy = 0
,

or, by the Cauchy-Riemann equations.

uu^—vuy=^i^,

uUy-\-vu^ = 0 .

Eliminating Uy we obtain

{u^-\-v^)u^ = 0.

Hence u^= 0
,
and similarly Uy, and Vy are zero. Hence

u and V are constants, i.e. f{z) is constant.

If == c or = c the proof (which we leave to the reader) that

f{z) is a constant is even simpler.
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3.52.

The zeros of f{z) are the intersections of the curves u = 0,

i? = 0. This is obvious.

At a simple zero, the curves v=^0 intersect at right

angles. This follows at once from the Cauchy-Riemann equa-

tions; or it may be seen by taking the zero to be at s = 0, and

writing

so that
u

f{z) = ae^°^z+0(\z\^),

~ arcos(a+0)~f-O(r2),

V r=: arsin(a+0)4-O(r2).

Then the directions of the tangents to 0, v = 0, are given

by 6 — in— a, 6 == — a.

At a j)oint where f(z) is real, and f'{z) ~ 0, the curve v — 0 has

a double point.

For at such a point v ~ 0, v^ = 0, v^ 0, which are the con-

ditions for a double point.

The curves \f(z)
\

= constant are called level curves.

Example. Prove that, at a double zero, each of the curves u 0,

V --- 0, has a double point, and the two curves intersect at an angle

3.53.

A level curve has a double point, if, and only if, it passes

throvyh a zero of f{z).

The equation of a level curve is

and this has a double point if, and only if,

uu^+vi\ = 0 ,

UUyA-VVy — 0 .

Both these conditions are satisfied iif'{z) -- 0. Conversely, the

second equation may be written

—uv^+vu^= 0,

and squaring and adding we have

(ul+vl)(u^+v^) = 0 .

Hence u^ = 0 and v^. = 0, i.e. f{z) == 0.

3.54.

The level curves and the zeros otf(z). If C is a
simple closed level curve, and f(z) is analytic inside and on it, then

f{z) has at least one zero inside C.

Let f{z) = u+iv = ce^‘^



V22 RESIDUES, CONTOUR INTEGRATION, ZEROS

on Cy SO that c is a constant. Then

c “
<f>
= arc tan{vlu).

Let s be the length of C measured from some fixed point on

it. Then
0 :

dc

(

du
.

dv\ 1

ds \

dv du\ 1

r-2‘

( 1 )

(2 )
’'ds dsj

Now d(f>/d^ cannot vanish on C. For if it did we should have,

on squaring and adding the above equations,

{u^+ +
/dv

0
,

i.e.

Now

^ = 0.
ds

dv

ds
0 .

du

ds

dv

dx

dx

'^ r~ -f" '^y

ds ds
^ '

ds’

^ds~
dx

,

dy
+ “'E’'*

SO that, squaring and adding,

The last factor is 1, so that = 0, = 0, i.e. f'{z) = 0. This

is impossible on a level curve without double points.

It follows that (jUfyjds has the same sign at all points of (7,

i.e. that
(f>

increases or decreases steadily round the contour.

Hence its variation round the contour is not zero.

But the variation of
<f>

round the contour is equal to 2Tr

multiplied by the number of zeros inside C. Hence there is at

least one such zero.

3.55. If f{z) has n zeros inside C, then f{z) has n-

inside (7.

Let f(z) = ce^^

on (7. Then

*1 zeros

f(z) ~ cie^^
dz *

Hence arg{/'(2:)} = const. 4-«^+arg
dz'
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Hence, if denotes variation round C,

-^^carg{/'(2)} = ^carg{/(2)}+Acarg^.

Let n' be the number of zeros oif{z). Then

jj

2rrn' “ 27m+A^ arg-^.

Now d<f) d(f) ds

dz da dz*

123

(
1 )

and, as we have already seen, d<f)/ds is real and of constant sign

on C. Hence , , ,

A,^re£ A^arg^^,

Ai dz dx
^

.dy
# .

• • /

Also -P r= _ -j-7, cos^^-^sln^^ “ e’V',

da ds ds

where ifs is the angle the tangent to C makes with the x-axis.

Hence ,

Acarg_=-A^^=-2,,

SO that on dividing (1) by 27r we obtain n' = n— 1, the required

result.

3.56 • The following theorem sometimes gives useful informa-

tion about the zeros of a function.*

Let C be a simple closed contour, inside and on which f{z) is

analytic. Then if K{f{z)} vanishes at 2k distinct points on C, f(z)

has at most k zeros inside C.

If f(z) ~u~\~iv, the number n of zeros of f(z) inside C is

Starting at a point where u we may take the initial value

of arc tan(ii/'u) to lie between — and We can only pass

out of this range, say to (^tt, Itt), if u vanishes, and only pass

on to (Itt, Itt), if u vanishes again. Thus, if u vanishes twice

on C, A(^(arc tan 2;/zt) is at most equal to 2tt, and n is at most

equal to 1. The general result obviously follows from the same

argument.

See, for example, Backlund (1).
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Poisson’s integral formula. Let f(z) be analytic in a

region inclvding the circle and let u{r,B) be its real part.

Then for 0 < r < J2

27r

= Tn\
0

There is a similar formula for the imaginary part v(r,6) otf{z).

These formulae are analogous to Cauchy’s formula giving the

value of f(z) at any point inside a contour in terms of its values

on the contour. They cannot, however, be obtained merely by
separating Cauchy’s formula into real and imaginary parts.

We shall give two proofs.

First Proof. We can suppose without loss of generality that

f{z) == 2 where all the coefficients are real. For, in the

general case, a^ = and

/(z) = 2 z =fi{s)+iUz),

so that R(/) = R(/i)-I(A).

Also, since |a,J ^ \Pn\ ^ fi /g are analytic for

|

2
|

JR. Hence the general result follows from the special case.

In the special case, if f(re^^) = u+iv, then /(re“*^) = u—iv.

Let be a point on the circle \z\== R, and let /(Zj) ~
Then, by Cauchy’s formula,

2rr

2tn J Zj—z 2it J

d<f>

-rcffl

Since the point R^jz is outside the circle, we have

2w

0=:J- f
+ dz =— { #

2Tri J z^—R^lz ^ 27t J Re^<^— Rh-^e ‘^

0

Replacing ^ by —<f), and so iv^ by —ivi, we obtain

2n
,

0

1
I*

(tt,— tVj)rc** _Q
2w J re^^— Re'’^

0
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Subtracting this formula from the previous one, we obtam

. Iff Ee‘'l’+re‘^
,

• ] jjlu-\-iv =—
1 1 T

.-fl

+

tVi
} d<f>,

2rrJ I /
0

and now, taking real parts, the result follows.

Second Proof. Let

/(2) = + R)-

Then, as in § 2.53,

27r 2Tr

™ -
I

u{R,(f))cofin(l) d(f>, j u{R,(f>)sinn<f> d(f>,
TT J TT J

0 0
27r

for a > 0, while (x^^ =z:^
j

d<f).

0

Hence
CO

u(r, 6) 2 (o^,tCosn0 — /3 sin nO)r*^
n-^O

2Tr

^ J
u{R,

<f>) d<l> +
0

„ 27T

I ^ ^
+ - ^— u(Ry (f>){cos n6 cos n(f> + sin nO sin ntf)) d<f>

2^ 00

the inversion being justified by uniform convergence. The
result now follows on summing the series in brackets.

3.61. Jensen’s theorem. Let f{z) be analytic for
|

2l<i?.

Suppose that f{0) is not zero, and let r^, r^,...,r,„... be the moduli of

the zeros of f(z) in the circle |z| < JK, arranged as a non-decreasing

sequence. Then, if r„^r ^ r^+i,

i f
(1)

riTz-rn J

Here a zero of order p is counted p times. The interest of

this formula is that it connects the modulus of the function

with the moduli of the zeros.
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It can be put in another form, in some ways more useful.

Let n{x) denote the number of zeros of f{z) for |z| Then,

if r„ < r <

log
n

= n\Qgr-
7n 1

n -1

= 2 ”»(logL«+i— ^ogr„,)+n(logr— logr„)

n -

1

’'"'1 ^

Tn

(lx

X

Now //? — n(x) for x <
^

for r,, < x <r. Hence

the right-hand side is equal to

r

0

and Jensen’s formula takes the form
r 27r

J^ ""
4i- f

(W - log|/(0)|. (2)

0 0

We shall give two proofs of the theorem.

First I^koof. If f(z) has no zero on \z\~ r, then

n(r)
2nt J f(z) 2n J

^^'!lre^0de.
(3 )

0

Jensen’s formula is obtained formally by dividing by r, integrat-

ing with respect to r, and taking real parts. This process is not

obviously valid, owing to the infinities of the integrand. We
therefore adopt a slightly different method.

In an interval between the moduli of two zeros, each

side of Jensen’s formula has a continuous derivative; the

derivative of the left-hand side is n/r, and that of the right-hand

side is

'In 'In

irf Fr
dd ---~

J
|^{log/{re'^)+log/(re-'®)} dS
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which is also equal to rijr, by (3). Hence the two derivatives

are equal in any such interval. Hence the two sides of Jensen's

formula differ by a constant in any such interval.

Secondly, the two sides are obviously equal when r = 0.

Hence it is sufficient to prove that each side is continuous

when r passes through a value

This is obvious in the case of the left-hand side. For the

right-hand side, it will be sufficient to suppose that there is one

zero of modulus and that its amplitude is zero. Then

log|/(re'®)| = logll—— ei^|+^(r,0),

1 I

where 0 is continuous in the neighbourhood of r — Hence
it is sufficient to show that the integral

< J
|^+|log|0i|| JSlog^.

—8

We can choose 8 so that this is arbitrarily small, for all values

of r in the neighbourhood of Having fixed 8, the remainder

of the integral is evidently continuous. Hence the whole integral

is continuous.

Second Proof. We obtain the result in a number of stages,

(i) has no zeros for \z\ <r, then log f{z) is analytic for

lz|^r, and 27r

log/(0)-~
J

^-^^Mdz = ±j\og{f{re^e)}de,

|S|=T 0

and, taking real parts, we have the result.
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(ii) If 0 < < r, we have

f log(l'—wdy)— = 0
J w

\w\^lir

by Cauchy’s theorem, the logarithm having its principal value.

Hence, with suitable determinations of the logarithms,

1 ,r , /, 1 \dw 1 r . / 1 \dw

277* J

logjl _-)— =
f \ wa^f w 27ri 1

aj 477*'- ® Wu-o

=
'“*( -i;)- H + ss

•

Taking real parts,

0

This is Jensen’s formula for

/w-.-i,

(iii) The above result may be extended to the case r = by

applying Cauchy’s theorem to the circle \w\ = 1/r with a small

circular indentation so that the point v) = l/d^ is excluded. The
integral round the indentation tends to 0 with the radius, and

the proof concludes as before.

(iv) In the general case

where <}>{z) is not zero for \z\ < and (;i(0) == /(O). The general

result then follows by addition of the previous ones.

dO — log-

The theorem may be extended at once to a function which

has poles as well as zeros. Let f{z) satisfy the same conditions
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as before, but now let it have zeros and poles

with moduli not exceeding r. Then

2rr

log|!^llA/(0)|, == ^ J
logl/(re'’®)l de.

0

(
4

)

For if /w™gw/(i-0..|i—
^)

=

we have

27T

277-

J

0

and

2rr

0

The result therefore follows on subtracting.

3.62. The Poisson -Jensen formula. Let f(z) have zeros

at the points and poles at b^, b,^, inside the circle

|

2:| ^ i?, and be analytic elsewhere inside and on the circle. Then

log
I

/(re’®)
I

1 r

2^ J

m

- ^log
R(re^^—a^)

v^l
R{re^^—b^)

This contains both Poisson’s formula and Jensen’s formula

as particular cases. If there are no zeros or poles, it reduces to

Poisson’s formula for the real part of the function log f(z). On
the other hand, if r = 0, we obtain the general Jensen formula

27t

JJm-nl

(i) Let/(z) = 2—0
,
where |a| < R. Then we have to prove that

27r

" ^ \og\Re^<l‘-a\d4>loglre*®-o| =^ J R^—2Rrcoa(6—<f>)-\-r^

— log
R^—dre^^

R{re''9—a)
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27r
r»9.

loglJBc’'^—a| d^.
are

R If277 j R^—2Rrcos(d—ff))-\-r^

But this is equivalent to Poisson’s formula for the real part of

the function . . ,

which is analytic for
|
2:| i2.

(ii) Similarly, ii f{z)— 1 /(2— 6), the formula is equivalent to

Poisson’s formula for the real part of

log(fi-i).

(hi) If /(2;) is analytic and has no zeros or poles in \z\ ^ i?, the

formula is Poisson’s formula for the real part of log/(2 ).

The general case can now be obtained by addition of these

particular cases.

3.7. In all the above theorems the region considered is a

circle. We shall conclude the chapter by proving two theorems

of the same general type as Jensen’s theorem, but applying to

a half-plane and a rectangle respectively.

Carleman’s theorem.* Let f{z) be analytic for l2|>p,
—^77 < argz < ^77, and suppose that it has the zeros r^e^^^,

inside the contour consisting of the semicircles \z\-=^p,

\z\ — R, —^77 < arg 2 < |77, and the parts of the imaginary axis

joining them, and that it has no zeros on the ccmtour. Then

n *

2 J
Iog|/(i2e»®)|cos0d0 +

^ —Itt

H

J
dy+0(l),

p

where 0(1) denotes a function of p and R which, for fixed p, is

bounded as R-^co.

Consider the integral

Carleman (1).
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taken round the contour in the positive direction, starting from

the point z ip with a fixed determination of the logarithm.

The integral along the small semicircle is bounded. On the

negative imaginary axis z = —iy, and we obtain

P

On the large semicircle, z = and we obtain

-In
in

-in

The integral along the positive imaginary axis gives

P

and, taking the real part of /, we obtain the rightdiand side

of Carleman’s formula.

Again, integrating by parts, we have

/- dz.

As we describe the contour, log f{z) increases by 27rm. The

integrated term is therefore purely imaginary. By the theorem

of residues, the last integral is equal to

and, taking real parts, the theorem follows.

The result is easily extended to the case where f{z) has zeros

on the imaginary axis; we make small indentations round these

zeros, and proceed to the limit.

3.71. Let f{z) be analytic and bounded for a; > 0, and let its

zeros in the right half-plane be . Then the series

1
«.s=1

CO8 0n

is convergent.
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Under the conditione stated, the right-hand side of Carle-

man’s formula is bounded above, say < M. Hence

cosd^<M

for all values of R.

< \R,

Hence

Every term on the left is positive, and, if

r„ 4r„

2
COS 6y 4tM

and the result follows.

It is easily seen that the theorem remains true if, instead of

}{z) = 0(1), we suppose that/(2:) ~ where a < 1. But if

a — 1 the theorem fails, as the example /(z) “ cos 2; shows.

3.72, The above theorem may be used to prove the following

result.

Let f{z) be analytic for a: > 0, and of the form as 00
,

where a > 0, uniformlyfor larga^j ^ In, Thenf{z) = 0 identically.

For consider the function F{z) = f{z)sinbz, where 0 < 6 < a.

Here F(z) is analytic and bounded for a: .> 0; it has zeros at the

points z = 7177/6, and 2 b/nn is divergent. This is inconsistent

with the result of the previous section, unless F{z) is identically

zero. Hence F(z) = 0, and sof(z) = 0.

A more complete form of this result will be obtained in

§5.8.

3.8. A theorem of Littlewood.* Let C denote the rect-

angle bounded by the lines a; = x = Xg, 7/ == j/j, y ~ y^, where

Vi < ^2 ' /(^) be analytic and not zero on (7 , and

meromorphic inside it. Let F(z) = log/(z), the logarithm being

defined as follows: we start with a particular determination on

x= X2 ,
and obtain the value at other points by continuous

variation along y = constant from log(x2+iy). If, however, this

path would cross a zero or pole of f(z), we take F{z) to be

jP(«± 70) according as we approach the path from above or

below.

Littlewood (4).
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Lei v(x') denote the excess of the number of zeros of f(z) over the

number of poles in the part of the rectangle where x>x\ Then

Xt

dz = —271%
j

v{x) dx,

a?,

Consider first the function /(a;) = z—a, where a = 0L-\-i^ is a

point of the rectangle. Let C" be the contour obtained by
describing C in the positive direction from (x^.yi) as far as

{x^,P), then the straight line y = ^ SiS far as oc—e-^-i^, then a

circle of radius € about z = a described in the negative direc-

tion, and then returning along y ~ ^ and the rest of C to the

starting-point. Then F(z) is analytic in C", so that

j^
F{z) dz~0.

The integral round the small circle tends to zero with the

radius, and it follows that

j^F(z) dz=-J {Fi(z)-F2{z)] dx,

Xi

where F^ and F2 are the values of F on the two paths joining

to a+ij3. Since we obtain Jg from jFj by passing in the

negative direction round a simple zero of f(z) at 2 = a, we have

F2{z)^F,(z)-27Ti.

Hence «

dz = — 27ri
j
dx — — 2iri

J
v(x) dx,

• Xx Xx

where v{x) =1 (x, < a; < a), 0 (a < x < Xj), i.e. v{x) is the

v-function for the case considered.

The general theorem now easily follows by addition of terms

corresponding to the various poles and zeros of f(z).

MISCELLANEOUS EXAMPLES

1. Evaluate the integrals

00

0

by contour integration.

r dx

J

00

J
dx

ir®4-

1
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2. Evaluate the integrals

00 00 00 GO

r COSO’ , r cosx , r sin'-^a^ , f sin^x

Jaq:?''*’ JiS+J!?'"’ J— *• dx

0 0

by contour integration.

3. Prove that, if c > 0,

r+too

_L r
27ri J

0

(a > 1 ),

(0 < rt < 1 ).

4.

Prove that the integral

/:

dz

,^(4z^-f-42:-f 3)

taken round the imit circle, starting with the positive value of the

square root at 2 = 1, is equal to Itt.

5.

By integrating \ogHI(\-]-z^) round the usual semi-circular contour,

prove that

1+2" 8

oo

f

6.

By evaluating the integral

_L r
27ri J (z— a)'(z—l/a

)

round the unit circle, prove that, if 0 < a < 1,

27T

de 2n

I l+a^— 2acos^ 1—

What is the value of the integral if a > 1 ?

7. Prove that, if 6 > a > — 1,

J
cos'-ecoabede -

0

[Take the integral J (s+ 1 dz round the right-hand half of the unit

circle.]

8. By integrating
r 2d2

J a-c-^

round the rectangle with comers at — tt, tt, rr+ m, —Tr+tn, and making
n -> 00 , show that

IT

J
xmnxdx /t , x /n iv tt, 1+u

,—

"

o—K --log(l+a) (0<o<l), -log-~I_ (a>l).
1+a®— 2acosa; a a a

[Lindeldf, Calcul dee Riaidus, pp. 48-9.]
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9. Show that the function f{x) = sech{x-y^( j7r)} satisfies the equation

f(x)cos xt dx.Sit)

[Take the integral J cos^ssechas dz round the rectangle with corners

*^t in, in f ?7T/V7, and make n~~> oc;.]

10. Show that the function

1 I

SM
satisfies the equation

J(t)

C-^V(27r)_ 1 x^{ 27t )

on

fJ\x)^mxt dx.

[Take the integral

0

r sin 2/.

J e“-l
dZy

where a > 0, round the rectangle with corners at 0, n, n-\-2iTrlay 2i7r/a,

and make n -> oo.]

11.

Prove that, if 0 < a < 1 and 0 < c < 1,

dz 1f f
-4

2771 J
a* SIsin 772 77(1 'MO

12.

Prove that if o > 0, — J 77 < aA <
GO

C e - dr = 1 T (h .

j Sin sin a \aJ

13.

Sum the series

oo oo

2
1 n-

n^ia^’
= 1 71=1

—77 < a < 77, and x is i

14.

Prove that if — 77 < a < 77, and x is not an integer,

sin ax= 4-

71= 1

SinTTX

15.

Prove that*

coth 77
,

coth 277 coth 377 _ I977’
27“"^ 3’* ’^’”“56700*

16. Prove that 00

y ^

Zw n^sin 7

n-i
n7rV2

13773

360V2‘

[Hardy. Consider the integral

K
Ramanujan; see Watson (1).
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L r 1 dz

27ri J sin ttz sin Ottz

^here ^ = V2“l. The series is convergent; for if m is the nearest

integer to nV2,

|nV2~m| —_ j2n‘^—

r

1

nV2H- m n\'2 -f ?n
" n

and hence cosec n7rV2 — 0{n).]

oo

17.

Show that if f(z) ^ ^ (l^l > 0), C is a closed contour
n=o

including the origin, and (f){z) is regular in a sufficiently wide region,

then

2m j(.
f(w)<f>(z— w) dw = a^4,(z)— ay ^<i>"(z)-

18.

Prove that

:(a ni'+'iv ‘I
71=1

19. Show that, however small p is, all the zeros of the function

1 + 1+ .1

lie in the circle \z\ < p, if n is sufficiently large.

20, If a > e, the equation c* — az" has n roots inside the unit circle.

[Take/(;c) ^ az**^ g{z) ~ e% in Rouch6’s theorem.]

21, Show that, if a and p are real, the equation

has n— 1 roots with positive real parts if n is odd, and n roots with

positive real parts if n is even.

22. Prove that, if a is not an even integer.

f e-^cosxt dx~ r<“+

as ^ 00 through real values.*

23.

HJ{z) u-\-iv is an analytic function of z = x-{-iy, and is any
function of x and y with differential coefficients of the first two orders.

and
dx^ ^ dy^ lew* ^ ev* /

^ ‘

[See Hardy (6), p. 270.]

* Polya (1).
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24. If f{z) — u+iv is an analytic function of s = x+iy, show that

and that ^ ImI^”
= p(p- 1 )|m|'" -|/'(2)|'"’.

25. Let ^(t) be a real integrable function in the interval (Uy 6), and let

b

f(z) = I
e«^(«) dt

a

have zeros at the points », , Then the series

2
cos/9„

is absolutely convergent.

[The function e^^‘f(z) is bounded for x > 0, and c"y(2
)

is bounded
for X < 0.]



CHAPTER IV

ANALYTIC CONTINUATION

4.1 . General theory. It is natural to think of the aggregate

of all values of say, or log 2, for all values of r, as a single

entity, and each such aggregate we describe as an analytic func-

tion. We have, however, not yet encountered the general idea

of an analytic function as a whole. What we have always been

concerned with is the idea of a function associated with a region,

and defined in that region by a formula. Thus

1+2+22+...
( 12|< 1 ) (

1 )

and

00

(2 )

0

appear as different functions, whose values happen to be the

same for certain values of z. But it is obviously more natural

to regard (1) as a part of (2), and (2) as part of the function

defined for all values oi z other than 1 as 1/(1— 2).

This particular function is one-valued, i.e. has just one value

for each value of z (except z=l). But it is also natural to regard

the two values of ^!z as parts of the same function, and our

definition must include cases of this kind also.

To connect these new ideas with our previous theory, we
require a process by which we can extend the definition of a

function beyond a limited region in which it is originally defined.

This process is called analytic continuation. It is characteristic

of analytic functions of a complex variable, and has no counter-

part in the theory of functions of a real variable.

4.11. Analytic continuation. Suppose that /i(2;) and /2(2)

are functions analytic in regions and respectively, and

that Dj and have a common part, throughout which

f^(z) = f^(z)^ Then we consider the aggregate of values of f^(z)

and/2(2) at points interior to or Z>2 as a single analytic func-

tion f{z). Thus f(z) is analytic in Z> = /(^) =/i(^)
in D^,f{z)^f^{z) in

The function 72(2;) may be considered as extending the domain

in which /i (2:) is defined, and it is called an analytic continuation

of f^{z). Of course in the same way /j, (2:) is an analytic continua-
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tion of /2(^). This process of extending the definition of a given

function is known as analytic continuation.

For the process to have any value it is necessary that it

should, under suitable conditions, give a unique result, and we
shall show that this is so. Before giving the proof it may be

interesting to note the difficulties which we encounter if we try

to define a similar process for functions of a real variable.

It would be natural to suggest that if, say, /(x) = J(7t~x) for

0 < X < 77, then we should extend the definition of /(x) to other

values of x by using the same formula. The difficulty is that

two formulae may represent the same function in one interval,

but different functions in another interval, and there may be

no obvious way of deciding which is the ‘proper’ formula. For

exam})le, the above function is also represented by the series

sin X sin 2x

"r'+~2”~+-
for 0 < X < 77; but if we define the function as the sum of this

series, we find that its value in the interval (—77, 0) is — i(7r+x).

This series is not uniformly convergent, but even if we restrict

ourselves to uniformly convergent series, the same sort of thing

happens. For example, the series

xsinx xsin2x

Y
'

' 2

is uniformly convergent in an interval including x=0; yet if

we use it to continue its sum from positive to negative values

of X, we obtain the undesirable conclusion that the continuation

of hx(7r—x) is — |x(77-f-x).

4.12. Uniqueness of analytic continuation. Suppose that

we have a region D, overlapped by regions Dj and which

have a common part Dg, itself overlapping Z>. Let f{z) be

analytic in Z>, and let /^(z) be a continuation of f{z) to D^, and

f^iz) a continuation of f(z) to Then either of these functions

provides a continuation of f{z) to Dg. To show that the results

of the two processes of continuation are the same, we have to

show that fi{z)~f2{z) throughout D^. This follows from the

theorem of § 2.6, which itself depends on the fact that an

analytic function can be expressed as a power series. The func-

tion fi(z)—'f2{z) is analytic throughout it is zero in the part
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of Dg which overlaps D, since there fi(z) ~f2(z) =/(2). Hence

it is zero throughout Dg.

The proof depends on the existence of a region common to

D and Dg, and if there is no such region, the result no longer

necessarily holds. We may now have fi(z)^f(z) in DD^,

f2{z)=f(z) in Z>i>2, but fi{z)^f2{z) in jDg. This does not con-

tradict the principle of uniqueness, since it only applies to

regions throughout which the function is analytic; and now 1),

Z>i, and D2 may surround, without including, a point where the

function is not analytic.*

4.13. In the second case considered above, where fi(z) ^ f^iz)

in Dg, we still consider the aggregate of values of f-^{z) and f2(z)

as a single analytic function of 2, but now the function is not

one-valued, and in fact is at least two-valued in Dg. In the

same way, different methods of continuation may lead to many
different results, and the function is then many-valued.

The reader of Hardy’s Pure Mathernatica is already familiar

with the different values taken by the function log z {though, of

course, there even the idea of a function analytic at a point does

not appear). The properties of some other many-valued func-

tions, such as 2" = ^aiogz^ derived from those of log 2.

4.14. Definition of an analytic function as a whole. An
analytic function is usually defined originally in some restricted

region of the plane. The principle of continuation enables us to

define an analytic function, without reference to any particular

region in which it is defined. It consists of the original function,

and all continuations thereof, and all continuations of these

continuations, and so on. In this way we may succeed in de-

fining the function f{z) for all values of z, or everywhere except

at certain special points; or only in some restricted region of

the plane beyond which we are unable to pass. In the last

case the region is referred to as the region of existence of the

function, and its boundary as a natural boundary of the func-

tion. In the case of many-valued functions we shall obtain

many values of the function for some or all values of 2.

* This case may be illustrated by a figure in which the regions D, Uj, and
Dj are circles with centres at the vertices of an equilateral triangle, and each
radius just exceeds half the side of the triangle. The function may not be
analytic at the centre of the triangle.
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The definition dejKjnds prima facie on the particular defini-

tion of the function from which we start. Since, however, the

relation between two functions which are continuations of each

other is reciprocal, all these processes may be reversed; and it

will appear from the genera] theory that the definition is really

independent of any pai-ticular starting-point.

4.15. The standard method of continuation. Thestanclard

method of continuation is the method of power series. Suppose

that we start with the series

n 0

convergent in a circle \z—a\ < R. Taking any point h in this

circle other than u, we calculate the value of the function /(6)

and the derivatives /'(ft), /"(6),..., and so obtain the expansion

of tlie funetion in powers of :r— ft. This series will certainly eon-

vc^rge in any circle, centre ft, which lies in the original circle,

and it may converge in a larger circle, and so provide an

analytic continuation of the function. So the whole function

may be constructed by means of power series. Each of the

power series, or, what conies to the same thing, each set of

values is called an element of the function.

The adoption of this particular method as a standard is justi-

fied by the following theorem: All values of the function obtained

by any method of continuation can also be obtained fty means of

power series.

Let C be a contour joining two points z~ a and z ==- ft, along

which we have continued the function /( 2;) by any means; that

is, we have a se(|uencc of formulae which define /(s) in a sequence

of regions 1),,, such that (i) every point of C is an interior point

of one or more i>,,’s, and (ii) consecutive overlap, and the

different definitions oi f{z) agree in the common parts.

We now attempt to carry out the same process by means of

power series; i.e. we try to find a sequence of points z^,

on C such that the circle of convergence about each of them
includes the next, such that the values found from the power
series are the same as those found in the other way, and such

that we reach 6 in this way in a finite number of steps.

With each point z on C is associated a positive radius of
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convergence p, and p is a contirnwus function of z. For take two

neighbouring points and let p and p be the corresponding

radii of convergence. Let \h\ < p. Since f(z) is regular in the

circle with centre z+h and radius p—\h\, it follows from the

Cauchy-Taylor theorem that

P>p-~\hl (
1

)

If \h
\ <p we can use the same argument with z and

interchanged, so that . , ,,
,P>P--\K

i.e, (2)

Since the alternative to \h\<p is p' < |/?.|, (2) holds in any

case. But (1) and (2) together show that p p 'ds h -> 0, which

is what is required.

Since p is continuous it attains its lower bound, and so, since

it is always positive, its lower bound is positive. Let the lower

bound be S.

We now start at z~ a with a power series. Let z^ be the

point at distance JS along the contour. It lies inside the circle

of convergence about a, so that we can expand in powers of

z—z^. The new radius of convergence is at least 8, so that we

can go on to the point z^ distant 8 from a along the curve.

Proceeding in this way we plainly reach 2 = 6 in a finite number
of steps. The fact that we obtain the same value at b in this

way as in the other way follows from the general uniqueness

theorem.

4.16. Branches of a many-valued function. We have

defined an analytic function as the aggregate of all values which

can be obtained by continuation from any element of the func-

tion. In general the function will be many-yilued, i.e. starting

from Zq, say, we can, by taking suitable paths, arrive at Zj wdth

many different values of We may, however, make this

impossible by restricting ourselves to the interior of some parti-

cular region. We then say that there is a branch of the function

in this region. Consider, for example, the function The
system of values defined by (—-tt < 0 < tt) is a branch in

the plane cut along the negative real axis from the origin to

infinity; and the system — is another branch in the same
region. Similarly the function log 2; has in this region an infinity
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of branches defined by

\ogr-\-i{B-\-2mT) (— tt <6 <7t),

every integer n giving a branch.

It should be understood that there is no unique way of

dividing up a function into branches; for example, we might,

in the above cases, cut the plane along any other line from the

origin to infinity. But, however we do it, we obtain a definite

number of branches, e.g. ^Iz has two. The question of the

number of branches will be considered again later.

4.2. Singularities of an analytic function. The only

singularities which we have so far defined are isolated singu-

larities of functions analytic and one-valued in a given region,

or limit-points of such singularities. These were classified as

poles and essential singularities. This classification now proves

to be inadequate.

We shall now' say that a one-valued analytic function is

regular at any point which is interior to one of the circles used

in continuation from the original element; and that it is singular

at any limit-point of regular points which is not a regular point.

A point where the function is singular is called a singular point

or singularity. This definition includes the poles and essential

singularities which we considered before; but there may also be

singularities which are not isolated. In § 4.7 we shall construct

functions for which every point of the unit circle is singular.

A point of this kind is usually called an essential singularity also.

The expression ‘regular’, as we have used it here, means more
than ‘analytic’. A function may be analytic at a point, in

accordance with the definition of § 2.14, without being regular

there
;
for example, let/(2:) = — Jtt < avgz < |7r,

|

2
|
> 0,

and let f(z) ™ 0 eLse^here. It is easily seen that this function

is analytic at ^ — 0, and f{0) ™ 0. Consider, however, the con-

tour consisting of the triangle with vertices at 0 and li: * "i'he

function is analytic everywhere inside and on the contour, but

it is evidently not regular at 2;
™ 0. The distinction is, however,

not very important, since it has to be made only for somewhat
artificial functions like the one considered.

In the theory of many-valued functions we have another kind

of singularity, known as a branch-point. Suppose that, on con-

tinuing the function f{z) round any sufficiently small circle with
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centre Zq, we return to the starting-point with a value of the

function different from the one with which we started. Then
Zq is said to be a branch-point of f(z). For example, if we con-

tinue \z = round the circle of centre 0 and radius r from

0 rrz: 0 to 0 ~ 27t, the value of the function changes from Vr to

— Vr. Hence — 0 is a branch-point of \'z. Similarly it is a

branch-point of l/\^z and log;:.

Notice that a branch-point is not necessaiily an ‘infinity’ of

the function.

A branch of a many-valued function may, of course, have

poles and essential singularities; and a point may be a singularity

for one branch of the function but not for another. For example,

the point 2 ^ 1 is a pole of the branch of 1 /log 2 corresponding to

the value of log 2 which is zero at 2 — 1, but not for any other

value of the logarithm. A general definition of regular and
singular points is not quite so simple for many -valued functions

as for one-valued functions, and it is usually sufficient to con-

sider particular branches separately. We define a regular point

of a branch in the same way as for a one-valued function; but

a singularity such as a branch-point cannot be assigned to one

particular branch.

Examples, (i) The function 2", defined as lias an infinity of

values unless o is real and rational, whcai it has a finite number of values.

(ii) The function 2l(l— c)4 has six values.

(iii) One branch of the fimetion

is pven for [cj < 1 by the .series

and 2 — 0 i.s a regular point for this branch ; but it is a pole for every

other branch.

(iv) The function (log 1/(1 --2){1 has singularities at z ~ 0 and z ~~ I

;

z ~ 0 is a branch-point for one determination of the logarithm.

(v) Consider the singularities of tlio function log log 2 .

4.21. If the radius of conrcrgence of the series

.m = i
isfinite, f(z) has at least one singuhirily on the circle of convergence.

Let C be the circle of convergence, of radius R, and C' a
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concentric circle of radius < R. Let p be the radius of con-

vergence of the power series about a point 2: on C\ As in § 4.15,

p is a continuous function of z. Also p R~~R', Let h be the

lower bound of p for on C'

,

Then S ^ R~R'.
If 8 > R—R\ the circles of convergence about points on C'

together cover the region and f{z) is regular in

this larger circle. Hence, bv the Cauchy-Taylor theorem, the

radius of convergence of V (t is greater than R. contrary to

hypothesis.

It follows that 8 -- R - R\ Since a continuous function

attains its lower bound, tliere is a point say, on O', at

which p -- R—R'. Then ^ is a singularity of f{z). For if it

were a regular point, /(c) would be regular in a circle with centre

- and then the radius of convergence about R'e^^ would

be greater tlian R~-R\
Since we have established the existence of a singularity on

the circle of convergence, we may s])eak of it as the singularity

nearest to the origin, or one of the nearest. We may then say

that the circle of convergence passes thiough the nearest

singularity of the function to the origin.

4 .22 . If w€ continue an analuti^ function f(z) along two dif-

ferent routes from to z^, and obtain two different values off(z^),

tken f(z) must hare a singularity somewhere between the two routes,

We construct two chains of regions, say 1)^ and D',,

such that two consecutive regions of either chain overlap.

and D\ include z^y and //„ include z^\ ff.(z) is analytic in

1\„ and in 77^.;

A

-il") common part of Z>,. and
and /\( 2:) ^ gfz) in the comrmm part of and D[,

We have then to ])rove that, if we can continue the function

to every point between the two routes, then ™
If 8 is small enough, we can construct a polygonal line,

starting at a point a in and ending at b in 7^77^, with

vertices at points (pS, qS), such that the circles of radius 28

with tliese j)oints as centres lie entirely in the first chain, and
each contains the centre of the following one. This chain of

circles can be substituted for the first chain of regions. A similar

chain of circles, with the same 8, can be substituted for the

second chain of regions.



146 ANALYTIC CONTINUATION

We can now replace the first route by a succession of new
routes, consisting of circles of radius 2S with centres at points

(pSy qS), such that each circle of each route overlaps the pre-

vious route, and the circles of the same route on each feide of

it, without leaving any space uncovered. No circle has a radius

smaller than 28, or the previous theorem would show the

existence of a singularity. It follows from the general principle

of uniqueness of continuation that, with each such route, we
arrive at with the same value of Also, in a finite number
of stejis we pass from one of our original routes to the other;

since the function is regular at every point between the two
routes, the process of continuation is never stopped.

4.3. Riemann surfaces. The function \z in a two-valued

function of z: but, if we put ;2: = and distinguish betM een

equal values of z arising from different values of it is possible

to represent it as a one-valued function. Suppose we consider

the values of z corresponding to tt < 0 < Stt as distinct from

those corresponding to —tt < ff < rr; but those corresponding to

Stt < 0 < Stt as the same again, and so on. This is equivalent

to replacing the ordinary s-plane by two planes. We may think

of them as superposed, each of them being cut along the nega-

tive real axis, and the planes being joined cross-w ise along the cut

.

The configuration thus obtained is called a Riemann surface.

If now w e pass along a path encircling the origin, starting on

the upper plane from the negative real axis, we pass round the

upper plane once, then cross to the lower plane, pass round it

once, and then return to the upper plane.

This corresponds to the way in which w^e obtain the two

different values of Vz. On the upper plane, say with — 77 < 0 < tt,

we have \z ~ < In), and on the lower plane

\'z ~ il'rr < ^6 < ?7r); and if 9 is increased further we
return to the upper plane again, and the values are repeated.

Thus \z is a one-valued function on the Riemann surface.

We represent the function log 2 in a similar way upon an

infinity of superposed planes, each cut along the negative real

axis and joined to the opposite edge of the one below . In this

case there is no return to the starting-point.

For a function such as V{(2— a)(2— 6)j we may make a cut on
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each plane along the straight line joining the points a and

c “ b. and join cross-wise along tlie cut.

The number of branches of a many-valued function may be

defined as the least number of planes which are required to form

a Riemann surface on which the function is one-valued.

Considerable ingenuity is required in constructing Riernann

surfaces for more comj)licated functions. They are of great im-

portance in the general theory of many-valued functions, but it

is beyond the sco})e of this chapter to pursue the subject further.

4.4. Integrals containing a complex parameter. We
know that if z is real and positive, then

1

\ (
1 )

0

Now the integral is uniformly convergent in any finite region

to the right of the imaginary axis, and therefore represents an

analytic function of regular for R{z) > 0. Hence the function

F{z}^
I

--
()

is regular for R(::) > 0, and F(z) ^ 0 on the real axis. Hence

F(z) == 0 wherever it is regular, i.e. (1) holds for complex values

of z whose real part is positive. Thus we may put z = x-\~iy

(x > 0) and separate real and imaginary paits, and obtain the

well-known results

QO 00

i COS ytdt== * ( e-^‘ sin ijl dt == J' - (2)
j a'-i+y- J

Examples, (i) Provo that

00

(R(z)>0).

0

[Aasuming the result for real values of the general result may be

obtained either by analytic continuation, or by using Cauchy’s theorem

to turn the line of integration through an angle — Jargz.]

(ii) Prove that
dt _
cos t

except when z is real and 2: > 1 or 2

7r

V(T-7^)

-1.
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4.41. The Gamma'function. The formula

00

r(2:) = J
(1)

0

defines r(2;) as an analytic function, regular for K{z) > 0

(§2.85), As it stands it tells us nothing about r(2 )
on the

imaginary axis or to the left of it.

Consider, however, the function

f{z) = (
2 )

where C consists of the real axis from oo to S, the circle |^^;| = 8

described in the positive direction, and the real axis from 8 to cjo

again. The many-valued function {—wY~'^ = is made
definite by taking log(— to be real at = —8. The contour

integral is uniformly convergent in any finite region of the

2;-plane, for the question of convergence now arises at infinity

only, a case already discussed in §1.51. Hence /(a:) is regular

for all finite values of z,

liw ^ then logz^ = logp4“i(<^““'”’) on the contour. The

integrals along the real axis therefore give

00

j I— g~P -Kar-lXlogrp-in) g
-p -f(s-lXlofirp

+

i
00

== sin 2:77-

J
dp,

8

On the circle of radius 8

j(
— = |e(«-l){loer8+i(<^-7r)}j ^ g(x-l)log8-j/(<^-7r) ^ 0(8^~^).

The integral round the circle is therefore 0(8^) = o(l) as 8 -> 0

if a; > 0. Hence, making 8 0, we obtain

00

f{z) — — 2ism277-
J

e~Ppf‘-^ dp = — 2i sin ztt r(2
)

(R(2) > 0).

0

Now the function |i/(2)cosec zir is regular for all values of z

except possibly at the poles of cosec ztt, viz. 2 = 0, ±1, ±2,...;

and it equals r(2 ) for R(2 ) > 0. We can therefore take thia

function as a continuation of r(2) over the whole 2-plane. But
we know already that r(z) is regular at z = 1, 2 Hence the

only possible poles are at 2 = 0, —1, —2,...

.
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These points are actually poles of r(2 ) ;
for if 2 is a negative

integer, (— is one-valued, and the integral (2) can be

evaluated by the calculus of residues. We obtain

f(—n) = —2niln\,

and the residue of r(2
) is

lim — (-1)"

z-*-n n! 2isin27r n\

All the gamma-function formulae can now be extended to

general complex values of 2 . For example, the functional equa-

r(2)r{l—2
)
= 7rcoseC27r,

proved on the assumption that 2 is real and 0 < 2 < 1, holds

for all non-integral values of 2 .

A consequence of this formula is that l/r(2 ) is an integral

function. For in the above formula the poles of r(l— 2
)
are all

cancelled by zeros of sin z-n.

We can now prove for r(2
)
formulae similar to those of

§§3.22-3. By §1.86 (4)

{0<h<x)
' ' 0

= I
{(1 -<)*-'- +0(1)

0

as A -> 0. The left-hand side is

i(r(,)_w(.)+...){i+.4+...),

where -4 is a constant. Equating the constant terms, we obtain

TO
= J

(x > 0).

0

Putting 1/1 = 2 (1— <)” and integrating term by term,

TO= V/JL
r(z) Z\n+1

The process is justified by § 1.77 if z > 1; the result holds by

analytic continuation for any 2 except a negative integer.
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It ia easily seen that the formula can be rearranged as

r'(2)
,

1

where C is another constant. Integrating and taking expo-
nentials,

n-1

Putting 2=1, 1 = +

-‘‘’snl'+s)*-''’

y being Euler’s constant.

Hence

4.42. Stirling’s formula for complex values of z. The

formula of the previous section gives

logr(2) = 2 j^-log^l+ ^)j-yZ-log2, (1)

each logarithm having its principal value. Now it is easily

verified that

^ r t jV—

1

[ [A-p.} du = y f
J «+2 iff, j \ “+* /

— (2+i)l0g2+ (A'’—

Using 1.87 (1), and the relations

*+5+-+3ra
= log.Ar+y+o(l),
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iog(J\r+2) = iogJV+^+o(±),

and making N -^oo, it follows that

00

logr(3) = (2— J)logz—2+Jlog27r+
J

du. (2)

0
u

Writing <f>(u) = J ([v]—v-^\) dv, <f>(u) is bounded, since clearly
0

^(n+1) = if w is an integer. Hence the last term in (2) is

00

0

f
<f>M

J (u+ z)^

du

u^~\-r'^—2ur cosS

uniformly for — tt+S < argz tt— S. This is the extension of

Stirling’s formula to complex values of z.

Examples, (i) For any constant a

logr(2+a) = (2-|-a-i)logs— «+ ilog27r+0(l/|z|)

as \z\ —> 00 , uniformly for —tt+S < arge < tt—S.

(ii) For any fixed value of x, as y -> ± oo

|r(x+ i2/)| ~e-*"'l«'l|2/|*-V(2w).

00

(hi) Show that the series (^(u) = ^ (1 —cos 2y7ru)f(27r^p^) can be in*

serted in the above formula and integrated term by term. Hence prove

that the integral in (2) is

This process can be carried to any number of terms by repeated partial

integrations.

4.43. The Zeta •function. The function ^(2 ), defined origi-

nally by the series

^(^) =p+^+- (R(^)>i). (1)

has been shown (§ 1.78 (ii)) to be also given by the formula
00

r(2~) J
^
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We can use this formula to continue ^(2 )
across the line x* == 1,

in the same way that we continued T{z) across x ™ 0. In fact

we can prove in precisely the same way as before that, if

1
j-

(_„,)*-!

2isin;S7r f(2:)
div,

(3 )

where, as before, the contour G comes from jiositive infinity

and encircles the origin once in the positive direction. The only

difference is that G must now exclude all the poles of l/(c'^—l)

other than w 0, viz. the points tv == ±2^77-, ±4i7r,...

.

Using the functional equation for the P-function, we may
write the result in the form

r (—
dw.

As in the case of the P-function, the contour iiitt^gral is an

integral function of z. This formula therefore provides the con-

tinuation of ^{z) over the whole plane. The only possible

singularities are at the poles of P(l—

-

2 ), viz. at 2: 1, 2 ,... . But
we know already that ^(2:) is regular at 2; = 2, 3 ,... . Hence the

only possible pole is at 2:= 1. This is actually a simple pole,

with residue L For at 2 = 1 the contour integral is equal to

L
dw

27ri

by the theorem of residues, and P{ 1~2 )
has a simple j^ole with

residue —1, whence the result.

Again, it is well known that

1 _ 1
1

,

V
e^ZIi 2 2. (2n)[~

n=-i ' '

where the coefficients (Bernoulli’s numbers) are rational

numbei*s. Hence we can evaluate where n is any positive

integer, by the theorem of residues. We find that

m=-h
a-2m) = 0 (m=l,2,...),

^(-2m-l)
2m+2

(m = 0, 1,...).
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4.44. The functional equation for the ^ -function. The

^-function satisfies the functional equation

^(1—2;) COS r{z)^{z).

To prove this, we take the formula (3) of the previous section,

where now z may have any value, and deform the contour into

the contour C.^ consisting of the square with centre the origin

and sides parallel to the axes, length of side (4n+2)7r, together

with the positive real axis from
(
2/1 1 )7t to infinity. In so doing

we pass over poles of the integrand at the points w ~ 2i7T, 4i7r/...,

2ni7T, and — 2i7r,...,--2mTr. The residue at 2vi7T (v > 0) is

^iz--lX\oK2v7T~Ki7T) _
and at -~2vi7T it is

Xlog 2vTr I \ in)
^ 2v7tY

"^*6“
' .

The sum of these two residues is

(2v7r)-“^2sin Ittz.

Hence § 4.43 (3) gives

siuTTZ r{z)^{z) ^ ~ 2 {-vttY-K

Suppose now that R( 2:) < 0. On the square

g(x-l)loglu»|-i/arg(^M7) _

and 1] > A, wliile the length of the square is 0(n). Hence

this part of the integral is 0{n^), and so it tends to zero. The

remaining part of the integral plainly tends to zero also. Hence,

making n -> oo, we obtain

siniTZ r{z)^{z) — 27r8in|7r2;(27r)^~^ 2
~ 27TSini7r2:(27r)^~^^(l— 2;),

which is equivalent to the result stated. This proves the func-

tional equation for R(2;) < 0, and so, by § 4.42, for all values

of z.

4.45. An alternative proof. The following proof* proceeds

on quite different lines. Let

f{x) = 2
*’

sin(2«4-l)a^

2n+l (1)

• Hardy (15).
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This series is boundedly convergent, and /(^) == (— for

nirr <x < (m+ m = 0, 1, 2,...; for

V ^ sinna:

n=,)^2-n—

2

OT. = 1 — ^

sin 27i:r

and the results easily follow from those of § l.TG, ex. (ii). We
may therefore multiply (1) by (0<p< 1) and integrate

term by term over any finite interval (0, X). Thus

00

r x^^~-^f{x) dx = ^ f ‘C^"^«in(2/^+ 1)-^ (2)

0 0

We may then replace X by oo provided that

^ 1 r
lim 7 — --- a;^^-^sin{2;i+l)a; f/o; 0.

(
3

)

Integrating by parts, the integral is

cos(2w+l)X ,P-J
2n+l ""^2n+'

oc

i/ x^’“2cos(2w4- 1)'^:

0(ffr^\+oU^
\2n+ir \2n+lJ

/
\2w+l/

and (3) clearly follows.

Inserting the value of /(x), and evaluating the integrals on

the right-hand side by § 3.127, we therefore obtain

00 (m-fl)7r

2 (- 1)"
J

r(p)sm Ipn ^
m-0

The series on the right-hand side converges to

{1-^2-P-^Kip+l),
That on the left is

— [1+ 2 (— l)”'{(w-f 1)^'—

P L W= 1 J

This series is convergent for jp < 1, and, as a little consideration

of the above argument shows, uniformly convergent for

R(jp) < 1— 8 < 1. Its sum is therefore an analytic function of

p^ regular for R(39) < 1. But for < 0 it is

2(1p-~ 2^>+3^^-,..) = 2(l-~2^>
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By the theory of analytic continuation its sum is the same

analytic function of p for 'Rip) < 1.

Hence, for 0 < p < 1,

(1— r{p)w\ \ptt{\— 2~'P-^)^{p~\-\),

zp

and putting p — z—\ we have the same functional equation as

before. The proof holds for 1 < 2: < 2 only, but the result,

proved for these values of z, holds for all values by analytic

continuation.

4.5. The principle of reflection. Let f{z) be an analytic

function f
regular in a region D intersected by the real axis, and

real on the real axis. Then /(z) takes conjugate ualues for conjugate

valueji of z.

Let Zq be an interior jjoint of D on the real axis. Then

f{z) = f a„(z-So)"

for sufficiently small values of \z—Zq\.

All the coefficients are rextl; for

(^learly a^ is real, n, may be calculattnl as the limit of

m-f{zo)
Z-Zq

as z Zq by real values. Hence a^ is real. So they are all real.

The result now follows inside the circle of convergence of the

above series. The general result then follows by continuation,

since the power series about conjugate points will always have

conjugate coefficients.

4.51. A method of obtaining the analytic continuation of

certain functions is given by the Riemann-Schwarz ‘principle

of reflection’. This is contained in the following theorem, which

is a sort of converse of the previous one.

Suppose that a region D of the z-plane has as part of its boundary

a segment I of a straight line\ and that w^f(z) is an analytic

function, regular in D and continuous on I, and such that, as z

describes h w describes a straight line A in the w-plane. Let z be

a point of D, z^ its reflection in I, and let be the reflection of

ir in A. Then v\ = w^iz^) is an analytic continuation of w.
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In the first place, v\ is an analytic function of z^\ for it is

easily seen from a figure that, if w' corresponds to z\ and z[

are their reflections,

1^1 “-^ll ^ \w'-~w\\

and

arg(z^— 2:1) = 2a— arg(2:'— 2), arg(u’j[—

=

2j3— arg(i(;'—

where a and jS are the angles between I and A res})ectively and

the real axis. Now when z' 2, the limit

exists, i.e. the limits

w'—whm —

,

z —2

exist. Hence the limits

lim

exist, and so

lim
w'—w
z' ~~z

lim{arg(te'

—

w)— arg(2' —z)}

liin{arg(MJi— u^i)—arg(2i— Zi)}

lim

exists, i.e. is an analytic function of z^.

Secondly, it is clear that, on ?, u\ = w.

To prove that the two functions are analytic continuations

of each other, take any point of the line Z, and describe round

it a circle C so small that it lies entirely inside D and its reflec-

tion D^, Let c be the boundary of the part of C in D, Cj of the

part in D^, I^et ^(2) = in the part of D inside C, and </>(2)
=

in the remainder of C. Then <f>{z) is continuous, and it is

sufficient to prove that <f){z) is an analytic function of 2.

Let 2„ be a point inside C and D. Then*

^(2o) =
1

27ri L
and, since <I>(z)/{z—Zq) is regular in jDj,

0= .1. f i!lU.
2-m Jc, z—Zf,

* See the end of § 2.3.5,
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Adding, we obtain

^(Zo) ^

fI'm
iM.

2m }c
dZy (1)

the integrals along I cancelling.

We clearly obtain the same formula if Zq is any point inside

C and D^\ and also, since each side of (1) is continuous, if z^ is

inside C and on 1. But, as in § 2.8, the right-hand side of (1) is

an analytic function of regular inside C, This proves the

theorem.

The method of proof also gives the following general theorem:

if two functions f{z)y fi(z)y are analytic and regular in regions D
and separated by a contour C, and continuous on C, and

f(z)—f^(z) along (7, then the two functions are analytic con-

tinv/itions ofe^ach other.

4.6. Hadamard ’s multiplication theorem.’*' The following

problem, which was considered by Hadamard, is a good example

of the principles of analytic continuation. Suppose that

f{z) = f
n-0

is convergent for
|

2:| < i?, and

g{z) = f 6„z«
n=0

is convergent for \z\ < lt\ and that the singularities of f{z) and

g(z) are known. What can be said about the singularities of

the function

-P’(z) = 2 (1)
n = 0

whose coefficients are the jiroducts of those in the given series ?

The general result is that, iff(z) has singularities at a^,

and g{z) at then the singularities of F{z) are to be found

among the points

Let us suppose, to take the simplest possible case, that f{z) has

just one singularity, 2 = a, and g{z) just one singularity, z = jS.

In the first place, F{z) is regular for sufficiently small values

of Zy and in fact for \z\ < RR\ For if € > 0

\a,{R-,r\<K, |6„(i2'-e)«l<ir,

\<^nK\ <
K

* Hadamard (3).

so that
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and by taking e small enough we see that the radius of con-

vergence of the series for F{z) is at least equal to RR\
Hadamard’s theorem depends on the following representation

of F{z) as an integral:

where C is a contour, including the origin, on which la;| < i?,

\zlw\ < R', To prove this, write

in the integral, and integrate term by term, as we may by

uniform convergence. We obtain

dw

=
n - 0

the required result. In order that the inequalities < R,

\zlw\ < R\ should be consistent, it is, of course, necessary that

I;: I
< RR'

,

If this condition is satisfied, C may, for example,

be any circle between \w\ -- R and |«’| — \z\IR'

.

In the case where each function has just one singularity,

i?-: |a| and R' -^ |^|.

We next continue the function F{z) beyond the circle

j

2:| RK by deforming the contour C. As long as C remains

fixed, s may, in (2), take any value such that zj^ remains inside

the contour C. For, by § 2.83, the right-hand side of (2) is an

analytic function of z for all such values of z, and the continua-

tion of F{z) to all such values follows at once.

Suj)po8c on the other hand that we deform C into another

contour C\, which includes 2; = 0 and excludes 2 = a. Let

Then by Cauchy’s theorem Fi{z) = F(z), provided that the

point w — zjp lies within both C and C,
;
for then the integrand

is an analytic function of w, regular between C and C^.

The formula (3) therefore provides the continuation of F(z)

to all values of z such that zj^ lies within C^.
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The only restriction on z, therefore, is that z/^ must lie within

a contour which excludes z = a. But we can choose such a con-

tour for every z except z ”
Thus F{z) is regular except at 2:

“ a/3. The proof, how^ever,

applies only to what we may call the principal branch of F(z),

viz. that obtained by continuation from the original element

without encircling any of the points a^. In the above example

the contour cannot have a loop going round a and enclosing

the origin again on the other side, since the integrand has a

singularity at w ™ 0. Hence if 2;/j3 -> 0 along a path encircling the

point nt, it is impossible to choose Cj appropriately. The point

2 = 0 may therefore be a singularity of other branches of F{z).

In the general case the details of the proof are, of course,

more complicated, but the general method is the same.

Examples, (i) If

a— z b— z

then F{z) ~ —~— .

ab—z

(ii)n

then F{z) - 0, so that the points a/3 are not ni'ccasarily singnlarities

of F(z).

4.7. Functions with natural boundaries. Let

W= 0

Then/(2
)
is an analytic function, regular for

|
2

|
< 1. Let

and consider the behaviour olf{z) as r 1 through real values.

Now f(z) 2:"’ + f Z"’ =/l(z)+/2
(z).

w-0 n=q

say. Then /^(s) is a polynomial, and tends to a finite limit as

r -> 1. When n ^ q, q is a divisor of w!, and so

^nl ^ ^nl ^ q)^

Hence /ala;) = 2
n^q

which tends to infinity as r->l. Hence f(z)-^oo, and so

z= ^ Singularity of f{z). But points of this kind are
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dense everywhere round the unit circle, so that there is no arc,

however small, on which f(z) is regular. It is therefore impos-

sible to continue /(s) across the unit circle, and so the unit circle

is a natural boundary of the function.

A similar result holds for the function

n=0

—we put z = and proceed as before.

4.71. Lambert’s series.* Let

f{z)^f^d(n)z^ (kKl),
n- 1

where d(n) denotes the number of divisors of n. We shall prove

that the unit circle is a natural boundary of this function.

Consider the double series

OO QO

I
fl^l 1

If we arrange it as a single power series we obtain f{z), and if

we sum it by rows we obtain

/w-Zi
z^

/i-1
-Zl^

The double series is absolutely convergent for
|

2;| < 1, so that

the transformation is justified.

Let 2 =
where p and q are positive integers, p>0,q>l, and p is prime

to q. Then we shall prove that, as r -> 1,

(l-r)/(z) -j- 00.

2Z#*
I

Z^*

1 21,zT-
Fot let

1—
where, in takes all values =0(mod?), in all other

values. In putting == mq,

Zii. ^ ^
so that

fmq

fvnq
m=l

l-r Y I-rg
1—r® 1

—

^mq

m=^l

* See Knopp (1).
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1 _j_ /•« _j_ , _ -j- fiVi ~l)(i

I 1
> _ N — = - log
n Z—j vv\ nq rn

00 .1—

On the other hand, if /a ^ O(mod^),

|l__^/Xg27n>/x/<z|2_
(
J J2_|_

4^/i gjy)2

Hence

4r^ sin^-.

(^--^) y ^+ ^

.

2 sin n/q 2 sin TTjq ^ sin Trjq

Hence, as in the previous cases, the unit circle is a natural

boundary of f(z).

MISCELLANEOUS EXAMPLES
1. The power series

n\ay be continued to a wider region by means of the series

log 2 - in? - .o
2 2 2** 3 2®

2 . The power series z-\-lz^-{- -}-•••

and tTT— (s— 2)+ i(2;~2)2~- J(2— 2)M-.-*

have no common region of convergence, but are analytic continuations

of the same function.

3. The functions defined by the series

l-\-az-{-a^z^-\~,..

, 1 (l~a)2
^
(l-a)V

1—.-(Tz^.+-(r=-,7—-
are analytic continuations of each other.

4. If/(2) and g(z) are integral functions, the integral

iTTt ]
\W— Z ZW~W^j

taken round the unit circle, represents f(z) inside the circle and giljz)

outside it.

5.

If F(a, P;y;z) denotes the series

,_^ccB^cc{c^+im+l),_^1+^2
l.y•y l-2y(y+l)

/(2 ) F(a,l;e;z)show that the series
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and j,(s) a,
1—2 \ 2— 1 /

have a common region of convergence; that in this region they both

satisfy the differential equation

(Jz

that /(O) — <7(0) and /'(O) ~ g'{(>)

;

and hence that tlie two functions are

analytic continuations of each other.

6. The function ?

has two power series about 2 — 0, with radii of convergence 1 and 2

respectively.

7. Consider the singularities of the functions

®'‘P|v(2-s)+l}’ 0(2-3)+ ll'

8.

Show that the formulae (2) of § 4.4, which wem proved there for

real values of oc and y, hold also for all complex values such that

\l(y)\ < K(x).

9.

Prove that oo oo

r(2) = f -f ^
J Z0n!(2-fn)’
1 n=0

and hence give another proof of the analytic properties of r( 2 ).

if

10.

Prove that
J

i^’^coBtdt — r(2)cos| 7r2

0

0 < R(2
) < 1 ; and that

J
dt — r(2)sin|7r2

if — 1 < R(z) < 1.

11.

Prove that if 0 < R(2 ) < 1

^(z) — r 14/-^
( — — i-) dw,

r(2) J \c*"~l wj
0

and that if — 1 < R(2
) < 0

00

0

[Consider the corresponding contour integrals as in § 4,43.]

12.

Deduce the functional equation for the zeta-function from the
first formula of ex. 11, and the formula of Ch. Ill, Misc. Ex. 10.
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13. Deduce the functional equation for the zeta-function from the

second formula of ex. 11, and ex. (iii) of § 3.22.

14. The function L{z) is defined for R(2:) > 1 by the series

r/ ^
1 1,1

L(z) — — -i- —

_

P 3* 5*

Show that L{z) is an integral function of z, and that it satisfiejs the

functional equation

L{l — z) = 2*71 sin J 712 T(z)Liz),

15. A function f{z) is defined for \z\ < 1 by the series

Show that

f{z) -

f(-

2
2"

(n-fl)'
n=0

(8 > 0 ).

1 f
r(5) J e<—

2

(it,

and hence that f{z) is regular except possibly on the positive real axis.

By deforming the line of integration into a suitable curve, show that

the principal branch of f{z) is regular except at the point z 1.

16.

Show that the singularities of the principal branch of

oo

z
n-0

a„2"

{n-hiy

are the same for all real values of 8.

17.

Two functions f(x), g(x), are connected by the formulae

I
f(x) = e^^g(t) dt, g(x) -

00

rj e-^*f(t) dt.

for real values of x. Show that there cannot be a finit/e interval outside

which both /(a;) ~ Oandgix) — 0, unless both functions are everywhere 0.

llff(x) - 0 for X < a and x > b, g(x) is analytic.]

18. If =
n=0

show that f(z) =f{z^)-{-z,

and deduce from this that
|

2
|

= 1 is a natural boundaiy of the function.

19. If a is a real irrational number, the series

z
1

represents two different analytic functions, one inside the unit circle and
one outside it, the unit circle being a natural boundary of each. If a is



provides the continuation of f(z) across any arc of the circle of con-

vergence where J(z) is regular.

[This is Borel’s method of continuation-—sec his Lemons sur ks scriea

divergenteSf p. 94. We have F{z) -~= f(z) wherever the series for f(z) is

convergent; for by § 1.79 we may then insert the series for (l>{zt) and

integrate term by term. But if f{z) can be continued at all, F(z) exists

in a wider region. Let 2: be a regular point of f(z). As in § 4.6 we have

f2m Jp w

where C is a contour including the origin, and excluding the singu-

larities of f(w). Hence
\(l>{zt)\ <

where K is independent of z and and M is the maximum of ^{zjw)

for values of w on C. To prove the integral for F{z) convergent, we must
have M < 1. Now 'R(zlw) < 1 if lies outside the circle on Oz as

diameter. We therefore take <7 to be a concentric circle of slightly larger

radius—^say on it M -= |2:|/(|2:|4- §)• Also C must exclude all

singularities of f(w)j and it does so if z lies in a region D formed as

follows : Through each singular point of f(w)j draw a line perpendicular

to the line joining the point to the origin. The unit circle is included

in a polygon D formed by these lines. It is easily seen from a figure

that the conditions are fulfilled if z is inside D and 8 is small enough.

It now follows without difficulty that Borel’s integral gives the con-

tinuation of f(z) to all points inside £>.]

22. Verify Borel’s theorem for the functions



CHAPTER V

THE MAXIMUM-MODULUS THEOREM
5.1. The maximum-modulus theorem. Let f{z) be an

analytic function, regular in a region D and on its boundary C,

which we take to be a simple closed contour. Then |/(2 )| is

continuous in D, since

#

which tends to zero with h. Hence \f(z)
\

has a maximum value,

which is attained at one or more points. The fundamental

theorem of the chapter is that \f(z)\ reaches its maximum on

the boundary C\ and not at any interior point of D. We may
express it by saying that if \f{z)\^M on (7, then the same

inequality holds at all points of D,

A more precise form of the theorem is as follows:

If \f(z)
\
^ M on C, then \f(z) \

< M at all interior points of D,

unless f{2 )
is a constant {when of course |/(^)| = M everywhere).

We shall give a number of different proofs of this theorem.

5.1 !• First proof. This depends on the lemma that if <f>{x)

is continuous, <f>{;x) ^ k, and
b

(
1 )

then (f>(x) = k. For if (j>(^) < k, there is an interv\al (^— S,^-f 8)

in which (f>{x) ^ k—e, say; and
h

J
<^(x) dx < 2B(k-e)+{h-a-2B)k = (b~a)k.-28€,

a

contradicting (1).

To prove the theorem, suppose that, at an interior point Zq

of D, \f{z)\ has a value at least equal to its value anywhere else.

Let r be a circle with centre z^ lying entirely in Z>. Then

Putting z—Zf, — rc’^, f(z)/f(zo) = so that p and ^ are func-

tions of 6, we may write (2) as

pe'^ dB.
(3 )
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2ir

Hence 1 ^ ^ f pdd.
27r J

^

0

But by hypothesis p < 1. Hence, by the lemma, p — 1 for all

values of 0,

Taking the real part of (3) we now obtain

2n

0

SO that, by the lemma, cos<f>
~

1. Hence f(z) ^fiz^) on F, and

so everywhere; that is, f{z) is a constant.

5.12. Second proof. This is similar in principle to the first

proof, but, instead of Cauchy’s integral, we use the fact (§ 2.5)

that, if 00

n=o
2it

then r f
J n = o
0

Under the same hypotheses as before, the left-hand side does

not exceed \f{zQ)\^,i,e, Hence

l«olHKiV+|a,lV+...

for a positive value of r. Hence ^ 0, and f{z)

is a constant.

5.13. Third proof. If Zq is an interior point of Z), we may
expand /(2 )

in a series of powers of 2:— 2:

0 ,

f{z) = f aJz-Zo)”,
ri-=0

with a positive radius of convergence. Putting

z—Zo = re^^, a„ =

this is f{z) = 2
n-0

Hence |/(z)l*= f, J, (1)
w=0 n=0

Suppose first that 0^ ^ 0. Since the series is absolutely con-

vergent, we may rearrange it as a power series in r with a positive

radius of convergence. Let h be the smallest positive value of
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n for which 7^ 0 . Then

\f{z)\^--^Al+2A^Af^r^co^{(XQ~ f (2)
n-^+l

where \c^^
|
< for some value of c. Hence

I

00
I

c»

2
I

^ 2 ~ c^+^r*+'Y(l— cr),

which is less than AqAjT^ if r is small enough. For such a value

of r, \f{z)\^—Al takes both positive and negative values as 6

varies between 0 and 27r, the middle term on the right of
(
2

)

varying between —2A^^AJ^r^ and Hence Aq is muther

a maximum nor a minimum of \f(z)\.

The proof breaks down if there is no a,, (n > 0
)
which is not

zero. But then f(z) — «(, for all values of z.

Finally, if Qq — ^5 l/(^o)l “ which cannot be a maximum,
but is a minimum.

This proves the theorem. We have also shown incidentally

that \f(z)\ cannot have, in D, a niinimum. other than 0 . This may
also be proved by applying the general theorem to the function

5.14. Harmonic functions. The corresponding theorem

for harmonic functions is that a function which is harmonic in

a region cannot have a maximum at an interior 'point of the region.

For let u be the real part of f{z). If is a maximum at an

interior point, so is e’*; i.e. so is \F(z)
\

= This has been

shown to be impossible.

The theorem can also be proved by an argument similar to

that of § 5.13. Without going into complete detail, this may be

seen in a general way as follows. Let u{x,i/) be the real part

of an analytic function f(z) = 2 regular at 2 = 0 . Then

u(x, ?/) = R 2
and we obtain for u(x,y) a double series of powers of x and y.

The coefficients being those of Taylor’s theorem, we have

u{x,y)~-u{0,0) =- u^+nyy+l(u^x^^+2u^yXy+Uyyy^)+>^ .

A necessary condition for a maximum is that u^=r Uy^ 0 . But
since, for a harmonic function, '^xx '^yy

opposite signs, and we can make u{x,y)—u(0,0) either positive

or negative by taking a; = 0 and y small, or y = 0 and x small.

M
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Examples, (i) IfiMl > m on \z\ = a,fiz) is regular for \z\ < c/, an<l

|/(ll)| < thon/(2;) has at least one zero in \z\ < a.

[For \f{z)\ has a minimum inside the circle, and tlie minimum value

must be zero.]

(ii) Use the previous example to show tliat every algebraic* eciuation

has a root.

5.15. The maximum-modulus theorem is also true for a func-

tion f(z) which is regular but not one-valued in a region, pro-

vided that
1 /(2:) 1

is one-valued (e.g. ^/z in a ring-shaped region

surrounding the origin); for the above proofs hold for any

branch of the function.

5.16. I.iet f{z) be an analytic function regular for
|

2:| < R,

and let M{r) denote the maximum of |/(z)| on
|

2:| =^r. Then

M(r) is a steadily increasingfunciion of rfor r < R. For it follows

at once from the above theorem that M(r^) ^ Mir^) if rj <
and M{rf) can only be equal to Mir^) if/(-) is a constant.

Similarly the function ..4(r), defined in § 2.53 as the maximum
of R{f{z)}y is an increasing function of r. For

6^(r)= max|e^^^^|.
\z\=r

5.2. Schwarz’s lemma. If f{z) is an analytic funrlion,

regular for \z\ < jS, and \f{z)\ <M far \z\ R, and /(O) — 0, then

Let <f>{z) = fiz)/z. Then <f>{z) is regular for |2| < i2
,
and

\<f.{z)\^M/E

on the circle |2| = iZ. The same inequality therefore holds inside

the circle also, and since 1^(2) |
= |/(2)|/r the result follows.

5.21. Vitali’s convergence theotem.* Let f„{z) be a se-

quence offunctions, each regular in a region D; let

l/n(z)K^
for every n and z in D\ and let f^iz) tend to a limit, as n-^oo,

at a set of points having a limit-point inside D. Then f^fz) tends

uniformly to a limit in any region bounded by a contour interior

to D, the limit being, therefore, an analytic function of z.

It is sufficient to consider the case where i) is a circle, and

the limit-point is its centre. For then, returning to the general

This proof is given by Jentzsch (1).
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case, we can prove uniform convergence in a circle with centre

the limit-point interior to />. Then we can repeat the j)rocess

with any point of this circle; and so, by the method used in

analytic continuation, extend the domain of uniform con-

vergence to any region bounded by a contour interior to D,

We may take the limit-point as origin. Let the radius of the

circle J) be li. Let

A(^) “ (|2;| ^ R), (1)

Then i/.(-)-/„(0)| < |/,,(^)|+ |/,^(0)| < 2M.

But fn{^)-~fnW zero at ^ 0. Hence, by Schwai-z’s lemma,

Let
(

/-- 0) be a point where the sequence converges. Then

We can choose z' so that the first term is arbitrarily small, and

then, since tends to a limit, we can choose n so large that

the second term is arbitrarily small for all positive values of nt.

Hence /y^(0), i.e. tends to a limit, say a^.

Next consider the function

9,>iz)
--= {/„(2)-ao.«}/2 •-"

•

This also tendsf to a limit at z\ since, as we have just proved,

^ tends to a limit. Also

for
|

2;|“i?, and so also for \z\<R, Thus g„{z) satisfies the

same conditions as fJ^(z) (except for the value of its upper

bound), and hence tends to a limit, say a^. Similarly

tends to a limit for all values of v.

Finally, the convergence of (1) is uniform with respect to n and
z for 1^1 < R—€, since, by Cauchy’s inequality, J ^ MjR^,

So, since every term tends to a limit, the sum tends to a limit

uniformly for \z
\ ^ R—e, This proves the theorem.

5.22. From any sequence of functions regular and bounded in

Dy in the sense of the above theorem^ we can select a sub-sequence

which converges uniformly in any region interior to D,
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Let f^{z) be the sequence of functions, and let \f,X^) \ <M in

D. Let • be a sequence of points having a limit-point

inside D. Then the points 'iVn~fn{^i) inside the circle

|i(;| < ilf in the i4?-plane. Hence they have at least one limit-

point; i.e. there is a sequence of values of ti, say tIj, such

that the sequence of functions

( 1 )

converges at the point z^.

Similarly from this sequence of functions we can select a sub-

sequence
4(.), (2)

which converges at and then from this a sub-sequence

4 (2)>4(2).- (3 )

which converges at z^; and so on.

Now consider the sequence

formed by taking the diagonal terms of the above double array.

Each of these functions belongs to the sequence (1), and so the

sequence converges at z-j^\ each function after the first belongs

to (2), and so the sequence converges at ZgJ so on. Therefore

the sequence converges at each of the points z^y z^y..., and so,

by Vitali’s theorem, uniformly in any region interior to D.

5.23. Montel’s theorem.* Let f{z) be an analytic function

of Zy regular in the half-strip 8 defined by a<x<by y>0. If

f{z) is bounded in Sy and tends to a limit 1, as y cOy for a certain

fixed value ^ of x between a and b, then f(z) tends to this limit

I on every line x = Xq in 8, and indeed f{z) -> I uniformly for

a+S < Xq ^b—h.
Consider the sequence of functions fn{^)—f{z+in)y where

n = 0, 1, 2 ,..., in the rectangle R defined hy a <x <b,0<y <2,
Then f^{z) -> Z at every point of the line x=^^. Hence, by

Vitali’s theorem, f^{z) I uniformly in any region interior to

R, and in particular in the rectangle a+8 < x < 6—8,K y <
This proves the theorem.

The result may be generalized by means of conformal trans-

formations. For example, let z = ilogw. Then the strip in the

z-plane becomes an angle in the t(;-plane, and the theorem states

* Montel (1), Hardy (18), Bohr (4).
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that if cf>(w) is bounded in the angle a < argil? < jS, and <l>{w) I

as II? 00 along any line argii; == constant between a and j3, then

(f)(w) I uniformly in any angle a+S ^ argil? ^ 8 .

5.24. The following theorem illustrates another way in which

the maximum-modulus theorem can be applied.

Let f(z) be regular, aud> \f{z)
\ ^ M, in the circle \z~a\ ^ R,

and suppose that f{a) =/= 0 . Then the number of zeros off{z) in the

circle \z~-a\ ^ \R does not exceed A\og{MI\f(a)\}.

We may suppose that a — 0 . Let z^, be the zeros of

f(z) in l^l < ^R, and let

9(z)=fiz)/fl{^-f)-
m^\\ Z^/

Then g(z) is regular for and on \z\~R we have

^ ~ 1
,
2 ,..., Hence

\g{z)\^Mlfl{3-l) = 2-M
' rn-1

for \z\ = R, and so also for \z\ < R. In particular this is true for

2 — 0 . Since gr{0
) =/(0), it follows that

and hence

1/(0) i < 2-^M,

^ 1
,

M
""logi'o^AO)!-

tlie desired result.

The factor J can clearly be replaced by any number less

than |. Actually a more complete result can be obtained from

Jensen’s theorem (§ 3.61). If the zeros in
|
2;| < JB are rg,..., r^,

thep 27r

log -?-—

f

log|/(i?e*®)l rffl — log|/(0
)|

'•'v^z-rs 27t J
0

<logJlf—log|/(0)|.

Let the zeros in the circle
|
2;|< 8jR, where 0 < 8 < 1

,
be r^,

i-gv-j Then the left-hand side is not less than

log—:?— =«log|.

^ 1 ,
if

Hence
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5.3. Hadamard's three-circles theorem. Let f(z) he an

analytic fund ion ^ regular for r^ Let r^ < 7*2 < r^, and

let M2 ,
be the maxima of \f(z)\ on the three circles

Is
I

To, respectively. Then

Jf)ofir(ra/r|) ^ (
J

)

Let <f)(z) = z^f{z), where A is a constant to l)e det(‘rmined latei’.

Then (l>{z) is regular in the ring-shaped region between 1;:|
- r,

and |;3|
- r3 , and |<^(;:)| is one-valued. Hence th(‘ inaxiimnii of

|<;6(c:)| occurs on one of the bounding circles, i.e.

Hence on \z
\

“ rg

1 /(2 ) I
<: max(r‘Jr7^ii/j, (2)

We have now^ to choose A to the b(\st advantage, and this is

done by making the two expressions in the bracket equal. W(^

therefore define A by the equation

r^M^ — r^^M.y

Thus A -{log{MJAI^)}/l\og(rJr,)}.

With tins value of A, (2) gives

M2 <
and hence 3/^og(r:,/ra^

the required result.

Notice that the case of equality can occur only if (j>(z) is a

constant, i.e. ii f{z) is a constant multiple of a power of

5.31. Convex functions. A function <^(x) of a real variable

X is said to be convex downvnrds, or simply convex, if the curve

y --
<f>(x) between x^ and Xg iilways lies below the chord joining

the points {x^, ^(^1 )}
^md <^(^2 )}- Analytically the condition is

(^1 < ^ < ^2). ( 1 )
X2 Xj^ X2

The function is said to be convex in the wide sense if the sign

of equality can also occur.

A convex function is continuom. For if we make x-> Xj^ in

(1 ), we obtain <f>(x^+0) < <f>{xi); and if we make x^-^xwe obtain

4>(x) ^ 0). Hence <f>{x) = <;6(*t+ 0) for all values of x. Simi-



CONVEX FUNCTIONS 173

larly <^(x— 0) = <^(x) for all values of x. Hence the function is

continuous.

If we put a: = (1)> we obtain

(2)

This is sometimes taken as the definition of convexity* instead

of (1). It is less restrictive than the definition adopted here,

and does not involve continuity.

A sufficient condition for (j>{x) to be convex is that (f>\x) > 0;

for then (l>'{x) is increasing, and

X x.^

^

I
<f>\t) dt < ^ r di < X < Xo),

X J X*2 X J
Xi .c

which gives (1).

5.32. The three -circles theorem as a convexity theorem.
Hadamard’s three-circles theorem may be exi)re8sed by saying

that log is a convex function of logr. For we may write it

in the form

log M{r2 ) <
logrs-logr^

logra-log^*!
logJ/(ri)+

logrg-logri

logo's—log ''i

log Mir.^),

and the sign of equality occurs only if the function is a constant

multiple of a power of z.

5.4. Mean values of \f{z)\. The mean values

‘2rr 27t

h(r) =^ j
I

dd, l^{r) ±
J

d9,

0 0

have properties similar to those of M{r).

5.41. /2
(r) increases steadily with r, and log/

2
(r) is a convex

function of logr.

Let /(z) = 2
ri~0

The fact that /jCr) is steadily increasing is then obvious from

the formula «

n = o
of § 2.5.

e.g. in Polya and Szegd, AvfgcAcn, 1, p. 512.
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To prove convexity, let u= \ogr^ and let /^, denote deri-

vatives with respect to u. Then

du^
(log h)

T r- -

n
and by Schwarz’s inequality

I? - (2 < (2 |

aJV-)(2 - 1,11

Hence the result.

5.42. /i(r) increases steadily with r, and log/i(r) is a convex

function of log r.

It is possible to prove this in the same sort of way as the

previous theorem,* but the proof is not so easy, since there is

no simple expression for 1^ in terms of the coefficients a,^. So

we adopt an entirely different method.*]*

Let 0 < Tj < r2 < rg, and let k{6) and F{z) be defined by

k{d)S(r.,e») = \f{r.,e‘0)
|

(0 < 0 < 'In),

2it

0

Then F{z) is regular for |2i and attains its maximum in

this circle on the boundary, say at z = r^e^^. Hence

Ix{r2) = < |J’(r3e‘^)|

which proves the first part.

Now choose a so that

Then

r“/i(r2 ) r“Z(r2X max |a:“l’{z)K rf/i(ri) = r“/i(r3 ),

and the result follows as in Hadamard’s three-circles theorem.

5.5 Theorem of Borel and Carath6odory.J This result

enables us to deduce an upper bound for the modulus of a func-

tion on a circle \z\-==^r, from bounds for its real or imaginary

parts on a larger concentric circle \z\=^ R.

Let f{z) be an analytic function regular for
|

2
| < i?, and let M{r)

* See Hardy (8), and Landau, Ergebnisse der Funktionentfieorie, § 23.

t P61ya and Szegd, Aufgaben, Dritter Abschnitt, No, 308.

t See Borel, Acta M, 20, and Landau, Ergebnisse, § 24.
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and A{r) denote, as usual, the maxima of |/(2)| avd R(/(z)} on

jzj — r. Then for 0 < r < i?

M{r) <
2r

R—r
A(R).

RA-r

R-r 1 /(0) |.

The result is obvious if f{z) is a constant. If f(z) is not con-

stant, suppose first that /(O) = 0. Then .4(i?) > .4(0) = 0.

Let
<f>(z)

2A{R)-f(z)

Then (f>{z) is regular for
|

2 |^jR, since the real part of the

denominator does not vanish;
<f>(0) ~ 0; and, it f{z) ~ u-\-iv,

since —2A{R)~\-u ^ 2A{R)—u, Hence Schwarz’s lemma
gives

m)\ < R'

Hence 1/(2) I

= 2A{R)f{z) ^2A(R)r
i -1-^(2) R T

and the result stated follows.

If /(O) is not zero, we apply the result already obtained to

/(2)-/(0). Thus
9r 9r

l/(2)-/(0)| < /- maxR{/(2)-/(0)}< ^^-4/l(i?)-M/(0)|},K— r |s|=« K—

r

and the result again follows. If Ai^R) > 0, we deduce

M{r) ^t^{A{R)+\m\}-
Jti—

r

By arguing with —f{z), or with we obtain similar

results in which A{r) is replaced by minR{/( 2;)}, max or

min I{/(2)}.

The inequality is thus proved. The form of the right-hand

side may be varied to a certain extent. It must, however, con-

tain, besides A{R), a term involving /(O), or we could falsify the

result by replacing /(z) by f{z)-\-ik, where A; is a sufficiently large

real number. Also it must contain a factor, such as 1/(J?—r),

which tends to infinity as r^R, To show this, consider the

function f{z) == —ilog(l— z), and let 0 < r < J? < 1. Then
A(R) < Itt, however near iZ is to 1 ;

and/(0) = 0. But M{r) -> oo

as r 1.
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5.51. The same principle can be extended to the derivatives

off{z). Under the conditions of the above theorem^ with A{R) >0,

raax|/<">(2 )i {^(i2)+|/(0)|}.

For

(^—r)"+i

/'"’(2) -- f'. f ,
dw,

27t% Je {iv—zy^
( 1 )

where C is the circle with centre u’ — z and radius 8 ™ J(i?— r).

On this circle
, ii/i> \ wdi x< r+i{R~-r) -= r),

so that Oaratheodory’s theorem gives

max|/(«0l ^5

Hence, by (1),

5.6. The theorems of Phragm6n and Lindelbf .* The fol-

lowing important extension of the maximum-modulus theorem

was given by Phragm^n and Lindel5f

:

Let C he a simple closed contour, and let f{z) be regular inside

and on C\ except at one point P of C\ Let \f{z)
\

on C,

except at P.

Suppose further that there is a function w{z), regular and not

zero in C, such that |a>(z)l 1 inside C, and such that, if e is any

given positive number, we can find a system of curves, arbitrarily

near to P and connecting the two sides of C rouml P, on which

\[<^{z)Yf{z)\^M.

Then \f(z)\ at all points inside C.

To prove this, consider the function

F{z) = {o,{z)YS{z),

which is regular in C. If Zq is any point inside C, we can, by
the hypothesis about (xi{z), find a curve surrounding Zq on which

\F{z)\^M.

Hence |F(Zo)l ^ if,

and so |/(2o)| < if |a,(Zo)|-*.

Making c 0, |/(Zo) | ^ if.

This proves the theorem.

* Phragmen and Lindel6f-(1 ).
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It is not difficult to sec that the exceptional point P may be

replaced by any finite number, or even by an infinity, of points,

provided that functions a»(::) corres})onding to them with suit-

able properties can found.

In the following sections wt give a number of theorems of

this type. Instead of actually using the above theorem, it is

usually simpler to start again with a syjeeial auxiliary function

adapted to the region considered. In practice the exceptional

point P is always at infinity.

5 .61 . The above theorem gives many important results about

the behaviour of a function in the neighbourhood of an essential

singularity, liy making a preliminary transformation, we can

always suppose that the exceptional point is at infinity. The
fundamental theorem then takes the following form:

Let f{z) be (m anqlytic function of z~ regular in the region

I) between two straight lines making an angle njoc at the origin,

and on the lines themselves. Suppose that

\f(z)\^.M (
1 )

on the lines, and that, as r oo,

J{z) = 0{e% (2 )

where ^ < a, uniformly in the angle. Then actually the inequality

(
1

)
holds throughout the region D.

We may suppose without loss of generality that the two lines

are 6 ~ Lei'

6—7(
2 ),

where j8 < y < a and
^ > 0. Then

\F{z)\ = e~"''<^-^y9\f{z)\. (3 )

On the lines cosy0>O, since y<«. Hence on

these lines
I K |/(3)K M.

Also on the arc \d\ ^ Itt/oc of the circle |3| = i?,

and the right-hand side tends to 0 as i? oo. Hence, if i2 is

sufficiently large, |i^(3)| on this arc also. Hence, by the

maximum-modulus theorem, \F{z)\^M throughout the in-

terior of the region 10
1 ^ |ir/a, r ^ R; i.e., since R is arbitrarily
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large, throughout the region D. Hence, by (3),

\J{z)\^Me^ry

in D) and making e -> 0 the result stated follows.

It is evidently unnecessary to suppose that the function j\z)

is regular in the region \z\ < r^, if there is an arc \z\-=^r^'>

on which (1) is satisfied. With this extension the theorem is

significant for a < ^, the angle including part of the plane

more than once, and the function not being necessarily one-

valued. We can also replace the straight lines of the theorem

by curves extending to infinity; the reader should have no

difficulty in supplying the details of such extensions.

5.62. It is important to notice the relation between the

‘angle’ of the theorem, and the order of f{z) at infinity. The
wider the angle is, the smaller the order of f{z) must be for the

theorem to be true.

In the following theorem, the order is just not small enough

for the previous proof to apply, and a more subtle argument

is required.

The conclusion of the previous theorem> still holds, if we are only

given (hat m =

for every positive 8, uniformly in the angle.

As before we take the angle to be — ^nja. ^0 ^ injcx. Let

J’(2) = c-**7(2).

Then F{z) tends to zero on the real axis, and so has an upper

bound M' on the real axis. Let

M"

We may now apply the previous theorem to each of the two
angles (— |7T/a, 0) and (0, ^77-/a), and we thus find that

throughout the whole given angle.

But in fact M' for
|

^’(z)
|

attains the value M' at a point

of the real axis; hence, if Jlf' = M", F{z) must reduce to a con-

stant, and M“ — M. Otherwise M' < M", so that M" =M in

any case. It therefore follows that
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Hence \f{z)\^M\e-^^l

and the result follows on making € -> 0.

5.63. If f(z) a 08 z CO along two straight lines, and f{z) is

regular and bounded in the angle between them, then f(z) -> a

uniformly in the whole angle.

We may suppose without loss of generality that the limit a

is 0. We may also suppose that the angle between the two lines

is less than tt, since the general case can be reduced to this by
a substitution of the form z ~ w^. We may thus suppose that

the lines are 6 ~ where 0' < Itt.

Let F{z) == 2:^/(2),

where A > 0. Then

\F{z)\ ^
2rA cos0+ 1/(2) I

<
V{r2+A2)

1 /(2) 1
.

Now 1/(2) I ^ M, say, everywhere, and \f(z)\ < e for r > — ^^(e)

and 6 ~ ±6’. Let A = r^Mje. Then for r < r-j

|i?’(2)|<^il/<e
A

and \F{z)
\ < \f(z)

\
< € for r'>r^ and 0— Hence, by the

main Phragmen-LindelOf theorem,^ |i^(z)|:^€ in the whole

region. Hence . ..

I/(2)I<(i+^]|^(2)1<2€

if r > A. This proves the theorem.

5.64. ///(2)^ ->a as z-^ CO along a straight line, and f{z) -> b

as z~^ CO along another straight line, and f{z) is regular and

bounded in the angle between, then a=^b, and f{z) -> a uniformly

in the angle.

Let f(z) -> a along 0 = a, and f{z) -> b along 0 — jS, where

The function

is regular and boimded in the angle, and tends to \{a—h)^ on

each of the straight lines. Hence it tends to this limit imiformly

in the angle; that is,

{f{z)-W+b)Y-W-b? = {/(2)-a}{/(2)-6}
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tends uniformly to zero. Thus to any e corresponds an arc on

l{/(2)—«}{/(z)— t) I < C.

At every point of this arc either \f{z)~-a
\ < \€ or \f{z)~-b

\ < Ve

(or both), and we may suppose that the former inequality holds

at 6 -- a, the latter at 6 = ^ \ let 6^ be the upj^er bound of values

of 6 for which the former holds; then 6^ is a limit of points where

the former holds, and is either a point where the latter holds,

or a limit of such points; hence, since f(z) is continuous, both

inequalities hold at 6q, Taking 2; to be this point, we have

l«-^l < \f(z)—a\+\f{z)-b\ < 2\U,

and, making € -> 0, it follows that a = h. Finally f{z) -> a

uniformly, by the previous theorem.

These theorems have obvious affinities with Montel’s theoroni

(§ 5.23). But in Montel’s theorem the line along which the func-

tion tends to a limit must be interior to the region of bounded-

ness, so that these theorems become corollaries of Montel’s only

if we assume a slightly wider region of boundedness.

5.65. The Phragm6n-Lindel6f theorem for other re-

gions. The angle of the above theorem may be transformed

into other regions, for example into a strip.

Take, for example, the theorem of § 5.61, applied to the region

r > 1, l^l < and put 8 = ilog^, f{z) ™ <f>{$).
If s = (7-\-it,

the lines argz = become parallel lines a—- izin/oc, and

^ = log| 2;|. Hence, if \<f){s)\^M on the upper half of the two

parallel lines and on the segment of the real axis joining them, while

^(cr+i0 = 0(e«'“) {p<a) (1)

in the strip between them, then actually 1(^(6')| throughout

the strip.

Another theorem of this type, which we shall require in the

theory of Dirichlet series, is as follows:

If (l)(s) is regular and 0(c^'^*), for every positive e, in the strip

(71 ^ O' ^ 0'2>

then (^(tT4-iO = 0(|#|*«")

uniformlyfor a, ^ a ^ a,, k{a) being the linear function of a which

takes the values k^, k^ for a = <t„ a,-

The result is true more generally if (f>(s) satisfies a condition
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of the form (1). With the given condition it may be proved

directly as follows.

Suppose first that = 0, 0, so that <j>{8) is bounded for

<7 =
<7i,

a ~ cTg. Let M be the upper bound of on these two
lines and on the segment of the real axis between and ag. Let

g{s) == e^^^(f>(8).

Then \g{8)\ ^ c-'|<^(5)| < \<l>{8 )\ < M
for or “ cTj, a — o-g. Also 1^/(5) I

-> 0 as ^ 00 for < ct ag; and

so, if T is large enough, |^(.9) |
:^ Af on ^ ~ T, cr^ ^ cr < erg. Hence

1^(5 ) I

M at all points of the rectangle (ai,a2 ), (0, T). Hence

|^(.<?)| ^ -M at all points in the half-strip, i.e.

\<f>{8)\<^e^m.

Making e->0, it follows that \(f>{8)\^M for ^>0, and simi-

larly for / < 0. This proves the theorem in the particular case

considered.

In the general case, let

lls{s) = :==:

where the logarithm has its j)rincipal value. This function is

regular for ^ cr < ug, ;
also, if /k(«) = as+b,

R{A'(5)log(— == R[{A:(a)-f ia/}log(^— fa)]

-A:(a)log^-fO(l).

Hence \if;{8)
|

= ^w^od)

The function 0(<s) — (f>{8)/il/{s) therefore satisfies the same con-

ditions as
<l>{8)

did in the first part. Hence 0(t9) is bounded in

the strip, and

5.7. The Phragm6n-Lindel6f function h{6). In several of

the preceding theorems we have been considering the way in

which a function behaves as z tends to infinity in different

directions. We shall now make a more systematic study of this

question.

Consider first the function

f(z) =
Then \f(z)

|

= 00s - 6 sin

The behaviour of log 1/(2;) |
depends in the first place on the

factor r^, which is independent of 6. The different behaviour
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in different directions is determined by the factor

h{d) = acoBpd — bsinpO — r-Ploglfiz)].

This is of course a very special case; but the general case is not

so different from it as might be expected.

We shall suppose throughout the following sections that f{z)

is regular for a<d < ^ that /(s) is ‘of order p’ in

this angle, i.e. that

^/>+c

uniformly in 0, for every positive value of e, but not for any
negative value. (For example, the above function is of order p.)

We define h(6) in general as

h(0) = lim
log|/(re^^)|

V{r)
’

where F(r) depends on the function considered. We should

naturally choose F(r) so that h(6) is finite and not identically

zero. Here we shall consider the simplest case F(r) = but

our argument would apply almost unchanged to any function

such as
r^(log r)^(loglog r)^, . .

.

5*701 • It is convenient to introduce at this j)oint an expres-

sion containing the word ‘infinity’, or the symbol oc, which is

not used in elementary analysis. We shall use lim<^y^==:oo to

mean the same thing as <j>^^ -> oo; and we shall say that <f>{x) has

an infinite value, or <l>{x) = oo, if, and only if, (f>{x) is defined as

the limit of a sequence and the sequence diverges to

infinity for the particular value of x in question. We use —oo

in the same way. For example, we might write

1

if the left-hand side is defined as lim ;
and h{d) = oo means that

r'^^log|/(rc^^)| takes arbitrarily large values as r -> oo.

The novelty consists in writing ‘—oo’, as if we had defined
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a number ‘oo’; but it should be remembered that we have not

done so, and that 'infinity* remains an incomplete symbol.*

5.71 . Let oc< 6^<62<P, and < '^Ip^

H^i) <K <K
Let H{6) be the function of the form a cob p6 + b sin pO which takes

the values h^ at 62. Then -

h(e)^H(e) {5>i^ 0<02)-

It is easily seen that

„ . Ai8inp(02-:0)+A2sinp(0--0O
^

; 8in7(02-^i)

but we do not require this expression in the proof.

Lot H^(d) = a§ cos pd + sin pd

be the iZ-function which is equal to A^+S, A2+8 (S >0) for

0 0 = 0^ respectively. Let

F(z) ~ f{z)e~^'h-^^6^^

,

Then
|

F{z)
|
- 1/(2;) ( 1

)

and so, if r is large enough,

\F{re^^i)\ (;(!),

A similar result holds for Hence, by the theorem of

§ 5.61, F{z) is bounded in the angle (0i, 02)- Hence, by (1),

f(z) = 0{e»s^^n (
2

)

uniformly in the angle. Hence h{d) < H^{0
)

for 0^ < 0 < ^2*

Since H^{0
)

H(0) as 8 >-> 0, the result follows.

5.711. As a particular case of the above theorem, one or

both of A(0i), A(02)> be —00. The conclusion is then that

h{0
)
== —00 for dj^<0 < 02- The same proof still applies, one or

both of the numbers A^, Ag now being arbitrarily large and
negative.

5 .712 . If OL < 6^ < 02 < 0^ < 02 -0t < rrlpy 02—02 < ^Ip\

and h(0f)y h{0^ are finite, and H{0) is an H-function such that

h{0^) < H(0fi, h(02) = H{02),

then h{02) ^ H{02)^
( 1 )

P.M. S 56.
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Choose d[ so that 9^—ttIp < Then ^ H(d[) by

§6.71. Hence, by §5.711, ^(^3) is not —00. If (1) is false, we
can choose S so that ^(^3) < S. Let

Then

J?g(0) = H(e)-^h
Qin p{d—6'y)

sinp(03-~»0;)*

h(e[) ^ Hid') = h(e^) < H(d^-^h) =
Hence h{d^ < H^{9^ < H{d^),

contrary to hypothesis.

5.713. If 9i <i 62 <. ^3, ^2—

^

^3— ^2 ^ “^Ipy

h(9^)8m p(0^~d2)+h(e2)sin p(e^-~e^)+h(02)sm p(e2~-9i) > 0 .

For any H(9 )

II(9^)sinp(9^-- 02)+H(92)smp{9^-- 9^)+I:I{02)smp{02— 9i^
=- 0,

and choosing H(0 )
so that H(9i) ~ M9i),

observing that, by the above theorem, h{Bf) ^ H{9z)y have

the result stated.

The function h{B) is continuous in any interval tuhere it is finite.

Let h{B) be finite in the interval B^^B ^ 0^, and let

Bi<B2< Bz' ^1, 2(^) A-function which takes the

values h{9
f}, ^(^2) at 9^, B2) and define H2^z{^) similarly. Then

by the above theorems

II
2. 3(^) < H^) < Hi, 2(0) (01 < 0 ^ 02)

H
1, 2(^) ^ ^(0) ^ ^2, 3(^) (^2 ^<0 ^ 0z)'

Hence, in whichever of these intervals 0 lies,

^1* 2(^2) ^(0) ^^(^2) H2,
z(0)"H2, z(02)

~ 9-02
~

’ 0-02 B-h
The extreme terms tend to limits as 9 ->02^ hence the middle

term is bounded, and so h(0) -> ^(^g)-

It also follows that |/(re^^)| < exp[r/*{/i(0)+€}] uniformly for

r > rQ(€); (divide the 0-range into n = n(€) parts).

5.72. Geometrical interpretation of the property of h(0 ).

In the case p = 1, the property of the function h{9
)
has a simple

geometrical interpretation.

For every value of 9 in an interval where h{0 ) is finite and
positive, consider the radius vector of length h{0) making an

angle 9 with an initial line, and the perpendicular to this radius



PHRAGMfiN-LINDELOF THEOREMS 185

vector at its end. (Consider, for example, the cases/(z) = cosh 2,

f(z) = cos^+coshz.)

Let Aj, ^2* ^3 values of h{6) at ^1) ^2» ^3, where

01 < 02 < ^3- Then the three perpendiculars are

X cos 01 + ^ sin 01 “ Aj,

X cos 02 + y sin 02
~

X cos 03 + y sin 03 — A3.

The first and third meet at a point (X, Y) given by

Y _ Ai sin 03—^3 sin
0, y h^cosBj^—hj^^cosd^

sm(03-'0i) ’ sin(03~0i)

Now the condition that (X, Y) should lie on the opposite side

from the origin of the second perpendicular (or on it) is

X cos 02+ Y sin ^ 0,

or

(Ai sin B.^~h^ sin 0i)cos 02+

+ (/?3Cos0i—

A

iCOS 03) sin 02—^2 sin(03— 01 ) > 0,

or Aisin(03— 02)+A2S*^(^i~'^3)+^'38in(02“~^i) ^
This is precisely the condition which the function h(B) satisfies.

If the perpendiculars envelope a curve, then two tangents

to it meet on the opposite side to the origin of any tangent at

a point between them. It is easily seen geometrically that this

means that the curve is always concave to the origin.

5.8. The following interesting applications of the Phragmen-

LindelOf principle are due to Carlson.*

Let f{z) be regular and of the form for R(2:) 0; and let

f{z) where a > 0, on the imaginary axis. Thenf(z) = 0

identically.

We apply the argument of § 5.71 to f{z), with p — 1, 0i 0,

02 = irr, hi = A, Ag “
5

8 ™ 0 through-

out the argument. Then § 5.71 (2) gives

^(2) — (1)

for 0 ^ 0 and a similar argument shows that (1) also holds

for -^tt^B^O.
Let F{z) == e^‘^f{z)

where cu is a (large) positive number. Then by (1) there is a

In an Uptjala thesis (11)14). See M. Riesz (1), Hardy (14).
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constant Jf, independent of co, such that

< i)fe((fc+a>)cos0-«lRm0t)r ^ 6> < ^tt).

In particular we have

(2 )

(3 )

for 6 — 6 ~ ± 0:, where a arc tan{A:+a»)/a}.

We can now apply the theorem of § 5.61 to each of the three

angles
(
— —a), (—a, a), and (at, ^tt). It follows that (3)

actually holds for — ^ 6 ^ In,

Hence \f{z)\ ^ making a> -> 00 it follows that

1/(2;) I

== 0. This proves the theorem.

5 .81 . If f{z) is regular and of the form. where k<n,
for R(2;)>0, and f{z)^0 far z~Q, 1, 2, 3,..., then f{z)^0
identically.

Consider the function F(z) --f(z)co^ccnz. On the circles

\z\ = n+|, cosec Tra; is bounded. Hence F(z) — on these

circles, and also on the imaginary axis. Since F(z) is regular it

follows that, if n—l < \z\ <^+1,
F(z) = - 0{eF=%

and so F{z) is of this form throughout R(2:) > 0. Also

F{z) =
on the imaginary axis. The result therefore follows from the

previous theorem.

MISCELLANEOUS EXAMPLES
1. A function /(2 ) is regular inside and on a simple closed contour C,

and \f(z)\ < M on (7. Deduce from Cauchy’s integral for {/(s)}* that,

if z is inside C,
^

where K is independent of n. Hence show that \f{z)\ < M inside C,

[Landau.]

2. Use Poisson’s integral to show that a function which is harmonic

in a region cannot have a maximum at an interior point of the region.

3. If f{z) is regular and for R(z) > 0, \f(z)\ < Af on the

imaginary axis, and /(I) ~ 0, then for x > 0

[Consider ( 1 -f z)/( 1

—

2 ) .f(z)]-

4.

A function /(z) is regular and satisfies the mequalities

\f(z)\ <
in an angle where tf*— < nip. As r->- oo, r~<’logl/(2)l

tends to the limits and for ff = $i, 0,. Let H(6) be the function
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of the form a cos p6 -\-b sin pO which takes the values for 6 — Byy

Then h{6) — H($) throughovit the interval ^

5. Show that, if f(z) = in a given angle, the function

Hd) =
r logr

has properties similar to those of the /^-functions considered in the text.

Show that if f{z) l/r(^+3), then h{$) “ —cos 6 for all values of 6,

6. An analytic function f{z) is regular and not zero in the half-strip

defined by a < x < b, y > 0; f{z) = 0{y^) as y cc imiformly in the

strip, and (log/(2:)| is bounded on the middle line x = J(a-f 6). Prove that

log/{2:) ~ 0{logy) uniformly for a+S < x < b— 8.

[Apply Carath^odory’s theorem to log/(2
) in a circle with centre at

^(a -{- b) iy .]

7. A function f{z) is regular, and |/(z)| < M, for R(2
) > 0, and f(z)

has zeros at Zyy 22,... in this half-plane. Prove that

l/(z)| <
j|l-Z

2i'-f-2 22+ 2

^ -y I

r Af
2„+ 2i

for R(2
) > 0; and deduce that, if f{z) is not identically zero, the series

is convergent. [See Polya and Szego, Absch. Ill, Nos. 295, 298.]



CHAPTER VI

CONFORMAL REPRESENTATION

6.1. Conformal representation. If w is an analytic func-

tion of then to values of z, which we represent as points in

the z-plane, correspond values of w, which we represent as points

in the t^’-plane. We also speak of the point in the w’-plane

representing its corresponding point in the z-plane; and of

regions of the z-plane being represented, or mapped, on corre-

sponding regions of the t/;-plane. The object of this chapter is

to discuss in more detail the nature of this representation or

mapping.

Let w == /(z) be an analytic function of z, regular and one-

valued in a region D of the z-plane. Let Zq be an interior i)oint

of D\ and let and be two continuous curves passing

through Zq, and having definite tangents at this point, making

angles ag, say, with the real axis.

We have to discover what is the representation of this figure

in the le-plane. Before we go any further, we shall make a

restriction, the reason for which will appear in a moment. We
sliall suppose thatf'{zQ) is not zero.

Let Zi and Zg be points of the curves and Cg near to Zq.

We shall suppose that they are at the same distance r from

Zq, so that we can write

z^~Zq — “ re^^K

Then as r -> 0, -> and $2 -> ag.

The point Zq corresponds to a point Wq in the ?^-plane, and

Zi and Zn correspond to points and wv which describe curves

C[ and C; . Let

V\—Wo — W’2— M'o

I’hen, by the definition of an analytic function,

lim
W^—Wo

-fiZo)-

Since /'(zq) is not zero, we may write it in tlie form Then

lim
reie.

Re'K

Hence lim(<^i— 0,)
— S, i.e.

lim
<f>i
= a^+S.
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Hence the curve C[ has a definite tangent at making an

angle with the real axis.

Similarly has a definite tangent at iVq, making an angle

cKg+S with the real axis.

Hence the curves C\, C[, intersect at the same angle as the curves

Cj, Cg. Also the angle between the curves has the same sense

in the two figures.

Because of this property of the conservation of angles, an

analytic representation is called ‘conformal’. Any small figure

in one plane corresponds to an approximately similar figure in

the other plane, since all angles are approximately the same.

To obtain one figure from the other we must rotate it through

a certain angle—the angle 8 = arg{/'(2;o)} of the above notation

—and subject it to a certain magnification, viz.

lim^ = i?=|/'(Zo)|.

It is clear from the above analysis that the magnification is the

same in all directions.

6.11. The case/'

(

2
)
= 0. Suppose now that f'{z) has a zero

of order n at the point Zq. Then in the neighbourhood of this

point
^f^Zo)+a(z—Zo)^+^+...

where a 0. Hence

i.e. =z

where 8 ~ arg a. Hence

lim
<f>i
= lim(8+ (n+ 1 )d^}

= 8+(n+l)ai.

Similarly lim (jig == 8+(^+ 1 )a2 *

Thus the curves C[, still have definite tangents at Wq, but

the angle between the tangents is

lim(^2-^i) = (»+l){“2— “i)-

Also the linear magnification, hmpjr, is zero. The conformal

property therefore does not hold at such a point.

6.12. In the above conformal representations we have, not

merely conservation of angles, but conservation of the sign of

angles; if we get from to Cg by a rotation through an angle
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a in the positive sense, we also get from C[ to C!^, by a rotation

through a in the positive sense.

There are also conformal representations in which the magni-

tude of angles is conserved, but their sign is changed. Consider

for example, the transformation

w = z,

where z is the complex number conjugate to z. This replaces

every point by its reflection in the real axis. Hence angles are

conserved, but their signs are changed. And this is true

generally for every transformation of the form

«;=/(2 ),

where f(z) is an analytic function of z
;
for this is the product

of two transformations:

(i) Z==z, (ii) w=f(Z),

In (i) angles are conserved, their signs changed. In (ii) angles

and signs are conserved. Hence in the resulting transformation

angles are conserved and their signs changed.

6 .2 . Linear* transformation. The function

az4-b
-

cz-\^d

is called a linear function of z. We shall suppose that

dd— be ^ 0,

for otherwise the numerator and denominator are proportional,

and w is merely a constant.

To every value of z corresponds jvLSt one value of w. This is

apparent except, in the case c 7^ 0, for the value z = —dje^

which makes the denominator vanish. But m —dje,

\w\-> 00; and we may regard the point at infinity in the i(;-plane

as corresponding to the point z == —die in the 2-plane.

Ifc = 0, then w~%z-\-\
d a

and (since a 7^ 0) the points at infinity in the two planes

correspond.

^ , dw—b
Conversely 2 = ,—cw+a

so that 2 is a linear function of w.

* Or bilineax.



LINEAR TRANSFORMATIONS 101

Example. Prove that in general there are two values of z (‘invariant

points’) for which w ~ z, but that there is one only if

(a~rf)2-f 46c - 0.

Show that, if there are distinct invariant points p and the trans-

formation may be put in the form

w—q z--q
*

and that, if there is only one invariant point p, the transformation may
be put in the form

- ^ . :L f k.w—p z—p

6.21. Circles. The equation

\z-Zo\==p

represents a circle with centre Zq and radius p.

Two points p, q are said to be inverse with respect to the

circle if they are collinear with the centre and on the same side

of it, and if the product of their distances from the centre is

equal to p^.

then g = Zo+

•

If z = Zo+pe*®

is any point of the circle, then

Z—p pe^^— 1 pe^^-

z—q pe^^—pH^^e^^ p

I!1

This is therefore a new form of the equation of the circle.

Conversely, any equation

=k {k^l)
z~q

represents a circle* with respect to which p and q are inverse

points. For the equation gives

lz|*— 2R(pz)+ = k^{\z\^—2R{qz)+ |g|2},

or 1-12 o R{(P-^^g)g} ,

. p-k^q^_\p—k^\^ \p\^—k^\q\^

i-k^ (1-P)2 1-W '

Since \p—k^\^—(l—k'^){\p\^—k?\q\^) — k'^\p—qW

* The ‘circle of Apollonius’.
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as is easily verified, we obtain

. p-ic\
^ ^

k\p-q
\

The equation therefore represents a circle, with centre

,
_p-k^q

i-k^’

and radius

Also

k\p-q\

p \i~kr
k^q—p)
1-F ’ q-Zo = ^rP

i-k^’

so that (p—Zfy)j{q—Zf^) is real and positive, and

b-Zollff-Zol^P®-

Hence p and q are inverse points.

In the particular case k= 1, z is equidistant from the points

p and qy and therefore lies on the perpendicular bisector of the

line idming them.

^^2. Linear transformation of a circle. In a linear

tmnsformation, a circle transforms into a circle, and inverse points

transform into inverse points. In the particular case in which the

circle becomes a straight line, inverse points become points sym -

metrical about the line.

For let ^ = k
z~q

be a circle (or straight line), with p and q as inverse points. Let

az-\-b dw—b
cz+d —cw-\-a

Then the circle transforms into

dw—b—pi—cw+a)
dw—b—q{—cw+a)

_ 7,
cq+d
cp+d

'

The result is obvious from this equation.

Example. Prove that the linear transformation in which only one

point p is invariant may be considered as the result of (i) an inversion

ap-\-b

cp+d
aq+b
cq-j-d
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in a circle (centre Zq, say), through the point p, (ii) an inversion in the

circle with centre Wq corresponding to Zq in the transformation, and
touching the previous circle at p.

6.23. To find all linear transformations of the half-plane

I(s) ^ 0 into the unit circle
|
w;l 1.

To ])oints 2;, z, symmetrical about the real z-axis correspond

points inverse with respect to the unit ?e-circle. In parti-

cular, the origin and the point at infinity in the W’-plane corre-

spond to conjugate values of 2;.

Let
az-{-b

cz-\-d

be the required transformation. Plainly c 7^ 0, or the points at

infinity would correspond. Now w ~ 0, w ~ oo correspond to

z “ —bja, —djc. Hence we may write

---a

j a z—oc
and w= -- —

c z— oc

The point 2: = 0 must correspond to a point of the circle \w\

so that
l/Tf ru I 1/7 1

1 .

1
,

a —a a
— .
— = "

C —a
i

Hence we put a —

where A is real, and obtain

w ~ e^

ceiX

( 1 )

Since z== ot gives te ™ 0, a must be a point of the upper half-

plane, i.e. 1(a) >0. With this condition the function (1) gives

the required representation. For if z is real, obviously |w;| = 1;

and if 1(2:) > 0, then z is nearer to a than to a, and (w?! < 1.

There are three arbitrary constants in the transformation,

A, R(«), and 1(a). We can therefore make three given points of

the real axis correspond to three given points of the unit circle.

Example. The general linear transformation of the half-plane

R(z) > 0 on the circle |ic| < 1 is
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6.24. To find all linear transformations of the unit circle

|

2:j < 1 into the unit circle |i4?| < 1.

Let
az-\~b

CZ~];~d

Here w — 0, iv “ oo, must correspond to inverse points z~ oc,

z~- Ija, where < 1. Hence

b

a
Oi,

d_l
C

— ^ 2— a: acx Z~OL

C Z~l/oL C * az-— 1

*

The point 2—1 corresponds to a point on |?ej — 1. Hence

aoL 1- aoL

c OL--i| “1 c

Hence w /)'tA

**** 1 ^

(XZ— 1

where A is real.

This is the required result; for if 2 — a - be^^, then

\w\ — 1 .

If 2 — where r < 1 ,
then

\z~a\^--\az-l\-

== — 2rb cos(0— /3)+ 6 -— {6V 2br cos(ff— /3)+ 1

}

= (r2-l)(l~ 62)<o.
Hence < 1.

If we are also given that 2 = 0 corresponds to ^^; = 0, then

a = 0, and the transformation becomes

w = e’^2 .

If also^ = 1 at 2 = 0, then
dz

w^z.
Example. The general linear transformation of the circle |2| <p into

the circle \w\ ^p' is

6.25. Iff{z) is regularfor \z\< l,R{f{z)}>0,andf(0) = a>0,
then l/'(0) i ^ 2a.

A result of this type follows from Carath6odory’s theorem
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and its corollary (§§ 5.5-5.51). The following argument is essen-

tially the same, but can now be put in a form which throws some

light on the general method.

Suppose that we can find a linear transformation g^(j){f)
such that R(/) = 0 corresponds to \g\== I, while f= a corre-

sponds to ^ “ 0 . Then we shall have \g(z)
\
< 1 for R{f{z)} > 0

,

i.e. for
|

2:| < 1, and gr(0) = 0. In this form the data are easy to

deal with. Wo have

l?'(0)| 1. f
2771 J

9i^)

27Ti J
bl- l-€

and hence, making e > 0, l 9
^'(0 )| 1.

We find, as in § 6.23, that the required linear transformation is

9{z)
f(z)+a

or m _l + !7{2)
H. . V

•

Hence r(z)
2ag'iz)

and \m\ = 2aig''(0)K 2a.

6.3. Various transformations. We shall now consider

some examples of functions which are not linear.

6.31. The function w = z^. If z = and then

so that 9 ion^ p = r^,
(f>
= 2d.

The distance from the origin is therefore squared, and the polar

angle is doubled. An angular region a < arg « < j8 is represented

on an angular region 2a < argw < 2/3; if /S— a > tt, the angular

region in the t/;-plane covers part of this plane twice. The
ambiguity arising from this is removed if we replace the ii;-plane

by the Riemann surface described in § 4.3.

If 2; = x-^iy, w = u+iv, then

u+iv — (x+iy)^ = x^-y^-j- 2ixy,

or u = x^—y^, V == 2xy,

Hence the straight lines u — a, v = b correspond to the rect-

angular hyperbolas

^2 -- 2xy = 6 .

These cut at right angles except in the case a = 0, 6 = 0, when
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they intersect at the origin at an angle Jtt. Since dwjdz has a

simple zero at the origin, this is in accordance with the general

theorems on the transformation of angles.

Examples, (i) Prove that the straight lines x = const., y = const.,

correspond to systoms of confocal parabolas.

(ii) Consider in the same way the function w s” for n = 3, 4,... .

6-^^'fhe function Here w becomes infinite

at 2 = 0, while

which vanishes at These points may therefore be

expected to play a special part in the transformation.

Putting 2 = w = we have

and, eliminating 0,

This is an ellipse in the le-plane, and it corresponds to each of

the two circles \z\ =r, \z\ =-. As r-> 1, the major semi-axis

of the ellipse tends to 1, while the minor semi-axis tends to

zero. As r->0 or as r->oo, both semi-axes tend to infinity.

From this it is clear that the inside and the outside of the unit

circle in the 2-plane both correspond to the whole ?^;“plane, cut

along the real axis from —1 to 1. The unit circle
|
2

|

= 1 itself

corresponds to the straight line from -—1 to 1 described twice.

On solving the equation for z, we see that the inverse function

is a two-valued function of w. We can remove all ambiguity

from the representation by replacing the ti;-plane by a Riemann
surface of two sheets, each slit from —1 to 1, and joined cross-

ways along the slit. If we pass round one or other of the points

= ± 1> a different value of z is reached, but, if we pass round

both, 2 returns to its original value.

Examples. To what curve in the w-plane does the line a: ~ 1 corre-

spond ? Consider the result as an example of § 6.11.
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6.33. The logarithmic function. If w=^ log 2:, the angular

region a < arg z corresponds to the infinite strip (x< v < pin
the w-plane.

For if 2 = re^^y then a value of w is

logr+^^‘

Hence u ~ log r, v~ 0.

As r goes from 0 to 00
, u goes from ~ 00 to 00

,
and the result

follows.

If we consider the general value of log z,

w ~ logr-~j-i(0+2i7r),

where k is any integer, we obtain, not one strip, but an infinity

of strips in the if?-plane, corresponding to the infinity of values

of the logarithm.

On the other hand, a strip a<v< p corresponds to an angle

in the z-plane; but, if a>27r, part of the plane will be

covered more than once. We can, however, avoid any ambiguity

by replacing the single 2-plane by a Riemann surface consisting

of an infinity of sheets, each cut along the real axis from 0 to

— 00
,
and the upper half-plane of each joined to the lower half-

plane of the next along the slit. Then a strip of the li^-plane of

breadth 2rr corresponds to one corai)lete sheet of the Riemann
surface, and every point of the Riemann surface corresponds to

just one point of the i/;-plane.

Examples, (i) Investigate the properties of the transformation

w — tan z by considering it as the result of the two transformations

J-rJ
iUi*

and hence obtain a Riemann surface for the inverse function

z ~ arc tan w.

[Hurwitz-Courant, Funktionentheoriey p. 293.]

(ii) Consider the properties of the transformation

w —
for general values of oc.

[The function is defined as c“*®**. Consider separately rational,

irrational, and complex values of a.]

6.34. If = the strip in the z-plane between the lines

a; = 0, x^Itt is represented on the interior of the unit circle in

the w-planCy cut along the real axis from — I to to ^0.
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We have
l—cosz

l+cosz’

If z ^ ^TT+iy, then cos 2; ~ —isinh?/, and — 1 . It is easily

seen that, as y goes from —00 to 00, amw? goes from — tt to tt,

so that w describes the whole unit circle once.

If 2: iy^ cos 2; — cosh I/, and w is real. As y goes from +00
to 0 ,

w goes from —1 to 0
,
and as y goes from 0 to —00, w

retraces its path from 0 to — 1 .

The boundary of the strip therefore corresponds to the

boundary of the cut circle, and there should be no difficulty in

verifying that the interiors correspond.

Example. Prove that the line x — corresponds to a loop of a

closed curve, cutting the real axis w — —1 and w — 1/(3 + 2 V2),

6.4. Simple (‘schlicht’) functions.* We shall say that a

function f{z) is simjde in a region D if it is analytic, one-valued,

and does not take any value more than once in D,

The function w—f{z) then reprtisents the region D of the

2;-plane on a region If of the ^^;-plane, in such a way that there

is a one-one correspondence between the points of the two
regions.

If f{z) is simple in D, f{z) ^0 in D. For suppose, on the

contrary, that /'(Zq) = 0 . Then f{z)—f{zQ) has a zero of order

n \n'^ 2
)
at Zq, Since f{z) is not constant, we can find a circle

\z~Zq\:=S on which fiz)—f(zQ) does not vanish, and inside

which f(z) has no zeros except Zq, Let m be the lower bound
circle. Then by Rouche’s theorem, if

0 < |a| <m, f{z)~f(zQ)~a has n zeros in the circle (it cannot

have a double zero, since /'(z) has no other zeros in the circle).

This is contrary to the hypothesis that f{z) does not take any

value more than once.

A simple function of a simple function is simple. If f(z) is

simple in D, and F{v)) in D\ then F{f{z)} is simple in D; for

= implies /(Zi) =:/(z2), since F is simple; and
this implies z^ = 2:2, since / is simple.

6.41. Inverse functions. In the above relationship, to

every point of D' corresponds just one point of D. We can

therefore consider 2 as a function of w, say z = This is

called the inverse function of w==f{z).

The German word is schlicM

;

Dienes, The Taylor Series^ uses hiuniform.
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The inverse function is simple in D\ For it is one-valued;

and it does not take any value more than once, since f(z) is

one-valued. Finally, it is analytic; for if Wq ^ /{zq), then it is

easily seen by considering ^ f(z)l{f{z)—w} dz that, in any given

neighbourhood of Zq, f(z) takes every value w sufl&ciently near

to Wq, Hence z = <f>(w) is continuous, and

(2—2o)/(«’—M’o) 1//'W
&B w->WQy since /'(Zq) 0.

6.42. Uniqueness of conformal transformation. A
simple function w ~ f{z) which represents the unit circle on itself,

so that the centre and a given direction through it remain unaltered,

is the identical transformation w~z.
We have |/(2 )|

= 1 for \z\==l, and /(O) — 0. Hence, by
Schwarz’s lemma (§ 5.2),

Iw-’l = 1/(2) 1 < |2|-

But, applying Schwarz’s lemma to the inverse function, we
have \z\ < Hence — \z\, i.e.

\f{z)lz\^l (1^1 <1).

Since a function of constant modulus is itself constant, it follows

m = az,

where |a| = 1, The remaining conditions then show that a = 1.

Other functions, such aQw = z^, satisfy the conditions except

that they are not simple.

A simple function which represents the unit circle on itself is

a linear function.

If w^f(z) represents the unit circle on itself, and /(O) = Wq,

wc can, by § 6.24, find a linear function l(tv) which represents

the unit circle on itself, and is such that 1{Wq) == 0. Then l{f{z)}

represents the unit circle on itself, and /{/(O)} == 0. Hence, by
the above theorem, l{f(z)} = az. Since the inverse function of

a linear function is linear, f(z) is a linear function of z.

6.43. Let f{z) be regular at z^O, and f{0) ^ 0. Then f{z) is

simple in the immediate neighbourhood 0/2 = 0
;

i.e. in the circle

^ P small enough.

We may suppose that /(O) = 0. Since /'(O) =^ 0, the origin is

a zero of f{z) of the first order. We can therefore find a circle.

o
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Cy with centre s — 0, on which f{z) ^ 0, and inside which f{z)

has no zero other than z=^ 0 . Let m be the lower bound of \f(z)\

on C,

Since f(z) is continuous and vanishes at z ~ 0, we can find

a circle \z\^ p inside which \f(z)
\
< m. Then w =f(z) is simple

in this circle. For let be any number such that [uj'I <m.
Then by Rouche’s theorem (§3.42) the number of zeros of

f{z)~-w' in C is the same as the number of zeros of f{z), that is,

one. Hence there is just one point in C corresponding to each

such value of w'. The region consisting of these values of z' is

therefore represented simply on the circle \w\<7n] and this

region includes the circle \z\ p.

An alternative proof may be obtained by considering the

power series

/(z) -r 2

whore 0. If /(Zj)

H i

i.e. (n-S2)k+ I a„(zrH-2l‘-‘^»+...+2r
')l

---- 0-
' n 'Z

’

If \Zl\<P,U,\ <p, the modulus of the second factor is

greater than ^

l“il-
n=2

which is positive if p is small enough. Hence z^ = z^y and the

result follows.

6 .44 . The limit of a uniformly convergent sequence of simple

functions is either simple or constant. More precisely
y if fni^)

simple in D for each value of n, and f^{z) ->f{z) uniformly in D,

then f{z) is simple in D, or is a constant.

The possibility of the limit being ^constant is shown by the

example f^{z) = zjn.

In any case, f{z) is analytic and one-valued in D, If it is not

simple, there are two points z^ and z^ at which w=f(z) takes

the same value Wq, Describe, with z^ and Z2 as centres, two

circles which lie in D, do not overlap, and such that f(z)’—WQ

does not vanish on either circumference (this is possible unless

f{z) is a constant). Let m be the lower bound of \f{z)--^tV0 \
on
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the two circumferences. Then we can choose n so large that

on the two circuniforences. Hence, by

Rouche’s theorem, the function

/n(2)-Wo =
has as many zeros in the circles as f{z)—w^, that is, at least

two. Hence is not simple, contrary to hypothesis. This

proves the theorem.

6.45. Let C be a simple dosed contour in the z-planc, enclosing

a region I). Let w - - f{z) be an annlytic function of regular in

D and on C', and talcing no value more than once on C, Then

f(z) is simple in D.

The contour C corresponds to a contour C' in the '^i;-plane.

C' is closed, Hmccf{z) is one-valued; and it has no double points,

since f{z) does not take any value twice on C. Let If be the

region enclosed by C'

.

We assume that f{z) takes in D values other than those on

(7, say at Then, if denotes variation round C,

LAcargl/(z)-/(z„)}

is equal to the number of zeros ol f{z)—f{zf) in C\ it is therefore

a positive integer, since there is at least one such zero. But it

is also equal to 2— Ae'argCie—
ZTT

where ==f{zQ); and this is either 0, if Wq is outside C\ or ±1?
if 7Vq is inside C\ the sign depending on the direction in which
(7' is described. Hence it is equal to 1. Hence lies inside C\
C7' is described in the positive direction, 3iidf{z) takes the value

Wq just once in D, Thus D is represented simply on D',

6.46. Extensions. The condition in the above analysis that

the function f(z) should be analytic on the contour can be

relaxed to a certain extent. The state of affairs is not much
altered iff{z) is not analytic, but is continuous, at certain jioints

of C. Suppose that there is a singularity at on the contour,

and that Cj is C with an indentation round z^. Then the number
of zeros of f{z)—WQ inside is

27r

= j_ r /^(^)

Jo./{z)-«’(
dz;
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and, as the indentation is closed up, this tends to the correspond-

ing integral round C, iif(z) is continuous a,ndf{z) = 0{\z—z^\°^)y

where a > — 1. The argument of § 6.45 therefore still applies.

The function f{z) may also have a pole on the contour; the

region D' then extends to infinity. The theorem of § 6.45 still

holds if the pole is of the first order, and the contour is a fairl}^

ordinary one. Suppose that, by a preliminary change of vari-

able, we take the pole at the origin, and that the direction can

be taken so that R(2;) > 0 at all points of D. Let

«^=/(2 )
= -+ 9'(2).

z

where g(z) is regular in D. Then, for 2: in Z),

R(it?) > minR{/7(25)} a,

say. Let b <a. Then \w—b\ '^a—b for z in />. Hence

w—b i+zg{z)—bz

is regular in D, The theorem applies directly to and so, since

tt; is a simple function of to w.

The result is not necessarily true for poles of higher order.

Examples, (i) Let w f-ltl.

If z = then 1 ^
i l

— cot 4^.

Hence, as z describes the unit circle from 0 to 27r, w describes the real

axis from —00 to 00 . The only singularity on the z-boundary is a simple

pole. Hence the unit circle in the z-plane is represented simply on the

upper half ii;-plane. This of coxirse is easily verified.

(ii) Let

Then, if 2 = w = — cot^jP.

Hence there is a one-one correspondence between the unit circle in the

z-plane and the real w-e^xia. But since there is a triple pole on the

boundary the areas do not necessarily correspond. In fact

+ .(x2-fy2_i)3_,i2(a:^-f2/2— l)t/*=*
{(»-i)*+yT

+•••’

and = 0 corresponds to

i.e. the equation of three circles. Hencb > 0 if 2 is outside each of

these circles, or outside one and inside the other two.
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The reader should draw a figure showing the regions of the 2;-plane

which correspond to the upper half of the M;-plane.

J
dt

. We know that this func-

0

tion is equal to arcsine. Consider, however, what can be

deduced from the integral about the representation of the

2-plane on the 2^;-plane.

Consider what part of the tt?-plane corresponds to the first

quadrant in the 2-planc. If 2 = iy is purely imaginary, we have

w =
V

/
i ds

which is also purely imaginary; and as t/ 00, so does w. The
two imaginary axes therefore correspond.

Again, as 2 increases along the real axis from 0, so does w,

until 2 reaches 1, and w reaches the value

r dt

0

Let us denote the value of this integral by I. Actually I = Jtt,

but we need not assume that this is known.

We must now suppose that the path of integration passes

above the point 2=1, say by a small semicircle. Then arg(l—

0

decreases from 0 to — tt, and so arg(l— increases from 0 to

Jtt; thus the integrand becomes purely imaginary, and we have

1

Finally, as z tends to infinity along the real axis, w tends to

infinity along the line u= I.

Hence the boundary of the first quadrant in the z-plane corre-

sponds to the boundary of the half-strip 0<m</, v>0 in

the to-plane.

Secondly, the function is simple in this region. We cannot

deduce this from § 6.46 without some further argument, since

both the regions extend to infinity. But it is easily seen directly.

For, if t lies in the first quadrant, the imaginary part of 1
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is positive, and arg-y/(l— lies between — and 0. Hence

and, taking the integral along the straight line, it is of the form

where A is a real variable, p > 0, — Jtt < < 0. Such an integral

plainly cannot vanish. Here the function cannot take any value

twice.

Also the quadrant of the circle \z\ = R, where R is large,

corresponds to a curve which (by the previous remark) has no

double point, and which connects the two sides of the strip and

lies entirely at a great distance from the real axis. Hence, by
the theorem of § 0.45, the quadrant is represented simply on

the whole strip.

The next problem is to continue the function beyond this

limited region. This can be done by the method of reflection

of § 4.51. In fact all the boundaries in each figure are straight

lines.

In the first place, the imaginary axes correspond. Hence,

reflecting in these lines, we see that the second quadrant in the

;:-plane corresponds to the half-strip — / < < 0, > 0, in the

?/;-plane. Hence the upper half of the ^-plane corresponds to

the half-strip —I <u< I, v>0.
Next, reflect with respect to the segment (0, 1) of the real axis

in the ;3-plane. We obtain the lower half of the ^-plane. In the

?e-plane we obtain the half-strip —1 <n < I, v aO.
Hence the whole strip —I<u<I corresponds to the whole

2:-plane, but there are singularities at « “ ± 1 round which we
must not pass; we may, for example, suppose the plane cut

from —00 to —1 and from 1 to oo.

Again, a reflection in the segment (l,oo) of the real 2:-axis

corresponds to a reflection in the line U" I in the i/;-plane.

Hence the lower half of the 2-plane (obtained by continuation

to the right of 2 = 1) corresponds to the half-strip I<u< Sly

V > 0 .

It is plain that we can continue this process indefinitely. The
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whole /i^’-plane m divided up into strips of breadth 2/, each of

which corresponds to the whole z-planc.

If we reflect a point ivq of the strip — I <u< /, fii'st in u ™ --

1

and then in u~3I, we obtain the point Meanwhile

the corresponding Zq, being reflected twice in the real axis, has

returned to its original value. Then and correspond

to the same i.e. if z~~g(w), then f/(fr) g(?v-^4J). The

inverse function r/(w) is therefore periodic, with period 4/.

Example. Prove that the function

r fit

(0 < k < 1 )

represents tlie up]K^r half of the ;2-plano on the recta in the u'-plane

bounded by the linos u - — Ky u — A", v 0, v - K\ where

1 , iM'
(U

K’ - r
,

0 1

Prove that the inverse fun(;tion ;r - <j(w) has the two periods 4A and
2iK\

I
Hurw'itz-Courant, Fimktioncnlhcork\ pp. 302-3.]

6.6. Representation of a polygon on a half-plane. The
functions of the previous section are examples of the representa-

tion of a polygon on a half-plane. It is possible to do this with

any polygon. The complete proof would take us too far, but

we can show in a general way how it is to be done.

Consider a polygon in the 24;-plane with n sides and angles

a^TTy(X2TT,,,.yOLj{TT,Vf\ieTeoL^-\-

n

— 2. If 1 (m = l,2,...n)

the polygon is convex. Some of the as may be greater than 1,

but the polygon must never cross itself. Suppose that the

vertices of the polygon are to correspond to points a^, ag,...,

on the real axis in the z-plane. So long as z remains on the real

axis without passing any of the points aj,..., w remains on the

same side of the polygon; hence the angle between the z-curve

and the «/;-curve is constant, i.e. e^Tg{dwldz) is constant (see § 6.1).

then dwjdz has this property. When z passes the point by
a small circle above it, arg(z—0^) decreases from tt to 0, the

amplitudes of the other factors returning to their original values.

Hence a>vg{dwldz) decreases by 7r(ai— 1). Hence the t/;-curve
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turns through 7r(l— aj) in the positive direction. This corre-

sponds to an angle of the polygon.

The required function is therefore of the form

z

w=C
j (<—

The integrand is 0{l/\t\^) as |f| -> oo; hence the integral con-

verges as 2: -> and to the same value in each case, since

the integral along a large semicircle above the real axis tends

to zero. Hence, as z describes the real axis, w describes a closed

curve, and in fact, from the construction, a polygon with the

prescribed angles. By first considering the real z-axis as closed

by a large semicircle above it, we can apply the theorems of

§§ 6.45-6, and we find that the interior of the polygon is repre-

sented simply on the upper half-plane.

To show that we can choose the constants so that a polygon

with given sides, as well as given angles, can be represented, is

more diflScult. For a triangle, however, the result is easily

obtained. Consider, for example, the triangle with veitices

w — iV3, 0, 1 (and angles ^tt, ^tt, -Jtt), and let the vertices corre-

spond to 2: = —1, 0, 1. The above theory gives

z

w=^C
j

dt.

The origins correspond if Zq = 0; and if we write the formula as

z

W=G'
j

dt,

0

where C" is real and positive, the directions of the real axes

correspond. Finally, if

1

1 = C'
j

dt,

0

then z = I corresponds to t4;= 1, and the required representa-

tion is obtained.

Examples, (i) Prove that the function

w ^ ( A
J

dt

(i-*¥

represents a half-plane on eta equilateral triangle.
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(ii) Prove that the function

w
f

dt

represents the unit circle in the z-plane on a square in the ?t?-plane.

[Hurwitz-Courant. Put z —

6.7. Representation of any region on a circle. A funda-

mental theorem of Riemann states that any region with a suiiuble

boundary can be represented on a circle by a simple analytic func-

tion. It is beyond our scope to inquire exactly what forms of

region are suitable. The region may be the interior of a closed

curve; or one side of a curve which goes to infinity in both

directions (e.g. a half-plane); or any form of strip between two

such curves; or even the whole plane cut along a curve (e.g.

along the real axis from 0 to infinity).

Let Dhe a region of one of the above types.

The function which represents any region simply on a bounded

region must be simple and bounded. Let us first verify that

there are such functions for D. Let a and b be two points on

the boundary of i), and let

-m-
In D we can restrict ourselves to one branch of this function;

this branch is simple, and the values taken by it cover a part

only of the te-plane (since both branches together cover the

whole 2/;-plane once). Let be a point of the region not covered.

Then \I(w~~Wq) is simple and bounded in D, Also

/(2)
= P
W—Wq

+?

is simple and bounded, and we can choose p and q so that, at

a given point of D, f{z)
— 0 and f'{z) = 1.

Consider all functions f{z) which are simple and bounded in

D, and such that f(z) = 0 and /'(z) = 1 at a given point P of D.

Let M{f) denote the maximum modulus of f{z). Let p be the

lower bound of Jlf(/) for all such functions.

There is then either a function of the set such that

M{<f>) = p; or a sequence /j, /a,... of functions of the set such that
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We shall show that the second alternative reduces to the first.

Since the sequence f,t(z) is bounded in D, we can, by § 5.22,

select from it a partial sequence which tends uniformly to a

limit in any region interior to 1). Let be such

a sequence, and <f>{z) its limit. Then is also a function of

the set; for it is bounded, and <f>{z)
-- 0, ^'{z) - ~

1 at P, and

is simple (§ (>.44), being not constant since </>'(;:) — 1. Also

by definition of p; and

^(/h,.)<P+c (i’>»'o).

j-e- !/».(-) I
<P+f (»'>»'o)-

Making v -> oo, it follows that

i.e. M{(f>) ^ p.

This proves the existence of a function <f>{z) of the set with

M{(f>)=^ p\ and since <f>(z) is not constant, p > 0.

We shall show that the function w — (f>{z) represents D simply

on the circle |^’| < p. In the proof, we may suppose that p — 1.

Let A be the region of the t«>plane on which w -=
<f>(z) represents

/), Since 1, A is included in \w\ % 1, and reaches its

circumference at one point at least.

If the theorem is not true, A has a bounchiry point oc inside

the circle (|a| < 1). Then each branch of

// w~cx \

J\aw~l)
is regular for w in A. Also \w^\ < 1 if |i^| < 1 (§ G.24), and

— Va. Let /
' W.— '^OL

— 1

Then |z/;2 l ^ 1 if ^ 1. Also

div^ _dw2 dw\ 1 _ 1

ciw dwy ' dw ’ 2w^ 1 )^ 1 )^
’

|a|— 1 |al^— 1
|a|+ l

at = 0. The modulus of this is greater than unity. Hence
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is a function of the set considered, and

Miw^) = 2|Va|
j

H+1
•

This gives a contradiction, and the theorem follows.

209

6.71. Uniqueness theorem. Let D be a region in the

;:-plane which is the interior of a simple closed contour, or which

is of one of the other types considered in § G.7. Then there is

a uniquely determined function w ~f{z) which represents D simply

on the interior of the unit circle in the w-plane, and is such that,

if Zq is a given point in D, f{zQ) ~ 0 andf'{zQ) is real and positive.

It follows from § 6.7 that there is one such function, say

w^f(z). Let 2 = F(w) be the inverse function. Suppose that

there is another function v) --^g{z) with the same properties.

Then the function W — g{F(w)} represents the unit circle simply

on itself, the centre and the direction of the real axis through

it remaining unaltered. Hence, by § 6.42, g{F{w)} = w, i.e.

gi^) ==/(2 )-

6.8. Further properties of simple functions. The claea

of functions f(z) which are simple for |2i< 1, and such that

/*(0) ™ 0, /'(O) 1, has been studied in great detail. The func-

tion w~ z belongs to the class, and represents the unit circle

on itself. For all functions of the class the ‘map’ of the unit

circle is subject to certain limitations. For the details we may
refer to Bieberbach, FunJctionentheorie, ii. 82-94, Landau,

Ergehnisse (ed. 2), pp. 107-14, or Dienes, The Taylor Series,

Ch. VIII. We shall, however, obtain the simplest property of

the map. For any function of the class, no boundary point of the

map of the unit circle is nearer to the origin than the point ^

.

We deduce this from the two following theorems.

Let I I ^2 I

be simple for \z\ > 1, and regvlar except for the pole at infinity.

Then ^

n«i

Since the function is simple, any circle
|
2

|

= r > 1 corresponds

to a simple closed curve in the ii;-plane, which encloses a positive



210 CONFORMAL REPRESENTATION

area. If w — u-\-iv, u = u{0 ), v — v{6 ), on the curve, the area

enclosed is

27r 27r

f de = J
de

0 0

0 ^ ^

X \re^^+re--^^- ^ " -
' n=l ^

de

n - 2

Since this is positive

n-l

and making r -> 1 the result follows.

If W=--f{z)r:=^Z-\-a^'^+...

is simple in [zj < 1
,
then [a^] ^ 2 .

The function

P’(«) = V{/(2")}
= 2+i«22®+-

is also simple in |2:| < 1
; for it is regular, since f(z^) does not

vanish except at 2 = 0
,
where it has a double zero; and if

F(Zi)~ F{z2)y then f(z^) ~ f{zl), and hence, since /(z) is simple,

2f = 2|, i.e. 2i = ±22- But F{z) is an odd function, so that

2i
= —

22 gives F{z^~—F{z^, Hence the only solution of

^^(21) = F(z^) is 2i = 22, i.e. F(z) is simple.

It follows that

is simple for |2| > 1 . Hence by the previous theorem

i|a2 l=»+... < 1 ,

and the result follows.

ta=/(z) = z+OjjS*4-...Now let
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be a function of the class considered in the main theorem. Let

c be a value which it does not take in the unit circle, i.e. a point

outside the ‘map’ of the unit circle. Then

cf{z)
= 3+ (o2+ ^)c-f{z)

is regular and simple for |zl<l. Hence

z2+...

<2,

and the result follows.

<2+|a2|<4,

\c\>h

Example. The function 2/(1 — 2 )-* belongs to the above class. It has

ag = 2, and it gives a map passing through ~ — J.

[The only solution of

is 2 — 2'.]

(1-2)'* (1-2')“^’
\z\ < h < L

MISCELLANEOUS EXAMPLES
1. In a given linear transformation, the point Zq is such that there

is some circle |2:~-2ol which transforms into a concentric circle

\w—Zq\ — R', Show that the locus of z^ is a rectangular hyperbola ; and
that to each point 2q on the locus corresponds just one circle (real or

imaginary) which transforms into a concentric circle.

2. Show that, if ^ —
aw \ w)

and the constant of integration is properly chosen, the whole 2-plane

cut along the semi-infinite lines a; = ± 77-, 2/ < 0, corresponds to the

upper half of the i^;-plane.

3.

Show that, if
dz ^ w
dw ^{w^—a^y

and a and the constant of integration and the value of. the square root

are properly chosen, the upper half of the w-plane corresponds to the

upper half of the 2-plane, cut along the imaginary axis from 2 = 0 to

a point 2 = ik,

4.

If J(z) is regular inside and on the unit circle, \f(z)\ < AT on the

circle, and /(a) — 0, where \a\ < 1, then

\m < M z^a
(S2-I

inside the circle.
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5. Jf f{z) is regular iruskio and on the unit circle, |/(-)|

circle, and /(U) ^ a, where 0 < a < M, then

inside the circle.

[(Consider - M{J{z)~a]l{(if(z)-M-}.]

6. Either branch of the function

M on the

is simple for |;:| < 1,

7.

8how that the fmiction

(i-zr

is simple for \z\ < J, but not in any larger circle with centre at the origin.

8.

Show that the function

f(z) ~z [ iL^z-+a.^z^-^-„.

is simple for \z\ < 1 if «

1 »‘Ki <



CHAPTER VII

POWER SERIES WITH A FINITE RADIUS
OF CONVERGENCE

7.1. The circle of convergence. We know that every

power series has a circle of convergence, within which it con-

verges, and outside which it diverges. The radius of this circle

may, however, be infinite, so that the circle includes the whole

plane. In this chapter we shall consider power series which have

a finite radius of convergence.

The radius of convergence of a power series is determined by

the moduli of the coefficients in the series.

The 'power series oo

(J)
n=0

has the radius of convergence

R-limJaJ-i/^ (2)
W-KO

Suppose that R is defined by (2). If z is a point where the

series (1) converges, a„z"

0

as n->co. Hence, if n is suffi-

ciently large,
|a„2«|<l,

i.e.
l
2

|
<

Making 7i->oo, it follows that
|

2
|

72. Hence the radius of

convergence does not exceed 72.

On the other hand, for sufficiently large values of n,

i.e. |a„,| < (JB-e)-”.

Hence the series (1) is convergent if ^ (72— is con-

vergent, i.e. if < 72— e. Since c is arbitrarily small, the series

(J) is convergent if
|

2
|
< 72. Thus the radius of convergence is

at least equal to 72. Putting together the two results, the

theorem follows.

Examples, (i) Find the radius of convergence of the series

(ii) If 72 1, and the only singularities on the unit circle are simple

poles, then is bounded. [For
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/(^) = l—zc 1 - -ze~

where ff(z) is regular for \z\ < 1 + 8 (8 > 0). Hence g{z) — 2 ^n^"» where

K
(iii) If /? ™ 1, and the only singularities on the unit circle are poles

of order p, then ~ 0{nP~^).

7.11. We also know from the Cauchy-Taylor theorem that

the circle of convergence of the series passes through the

singularity or singularities of the function which are nearest to

the origin. Hence the modulua of the nearest singularity can be

determined from the moduli of the coefficients in the series.

7.2. Position of the singularities. While the modulus of

the nearest singularities is determined in quite a simple way,

their exact position is not usually so easy to find. There are,

however, some special cases in which we can identify a particular

point as a singularity.

In the following theorems we shall take the radius of con-

vergence to be unity; we can, of course, pass from this to the

general case by a simple transformation.

7.21. If for all values of n, then s = 1 is a singular

point.

Suppose, on the contrary, that 2; = 1 is regular. Then, if we
take a point p on the real axis between 0 and 1, there is a circle

with centre p which includes the point 1, and in which the

function is regular. If f{z) is the function, the Taylor’s series

about p is

2
/*'((>)

(2-p)", ( 1 )

and this converges at a point 3 = 1 +S (8 > 0). Now

/^(p) = 2 Mn- l)...(«-r+IK (2)
n~v

and so the above series is

2
|;=S0 n= v

This is a double series of positive terms, convergent for z= 1 +8.
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Hence we may invert the order of the summations, and we
obtain

-pYp'^-''

n-0 y=o
ao

n-O

OC)

n-0

Hence the original series is convergent for 2:
- - 1-f-S, contrary

to the hypothesis that the radius of convergence is 1. This

proves the theorem.

Another proof, due to Pringshcim, is as follows. There is at

least one singularity, say on the unit circle. The Taylor’s

series about where 0 < p < 1, is

VI
v-O

and, since is a singularity, this has the radius of convergence

1 — p. But it is clear from (2) that, if > 0 for all values of /i,

!/C'V*»)l ^Mp).
Hence the radius of convergence of (1) does not exceed l~p.

Hence 2; — 1 is a* singularity.

7,22. If a.f^ is real for all values of n, and ^ ^n, properly

divergent, i.e.

==
«^o+«l+-+«n -> 00 (or -> — OO),

then I is a singulm point.

We have, for |2:1 < 1
,

1 Z n-O n-0 n~0

by § 1.66, the series being absolutely convergent. Hence

/(2)=(1 -z)|;«„2'‘

n-0

= (1-2)2 V'‘+(l- ) 1
n=A4 1

say. Suppose that ^ oo. Then, given any positive number O,

however large, we can chooseN so that s,^>0 (n>N). Then,

if 0 < 2 < 1, *
/2(2)>(1-z) y =

„ »-w+i
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Having fixed we can choose Zq so near to 1 that

since 2;^+^ -> 1 and f^{z) -> 0. Hence

f{z)>^G (z>Zu),

i.e. f(z) -> 00 as 2; > 1. This proves the theorem.

If we merely know that \s„\ -> 00
, we cannot deduce that

1 is a singularity. For example,

(
1+2

)
3
= l-3^+-+ (-l)"a(^^+l)(«+2)2«-t-...,

and here \s.^
|

~ though the function is regular at 2:
» - 1

.

7.23. General tests for singular points. If we consider

any particular point on the circle of convergence, wc can devise

a test to determine whether it is a singularity or not; but it is

not one which lends itself to sim]>le calculations.

We may suppose that the radius of convergence is 1, and, by

a preliminary transformation, we may bring the point to be

considered to 2; — 1

.

The principle to be used is that, if we expand f{z) about a

point on the real axis between 0 and 1, the circle of convergence

includes z=^ 1 if f(z) is regular at this point, and not otherwise.

But we can make a transformation which brings the formula

into a simpler form than the direct application of the principle

would give.

Let F{w) =. .

l— \l~w/

Then F{w) is regular for R(^^;)<|, since R(w) < ^ gives

\w\ < 11— 'm;|. Now

71

2-2

Then a necessary and sufficient condition that 2: = 1 should
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be a singularity of f(z), i.c. that w ^ I should be a singularity

of F{w), is that
i

lim A-

n—ao

For then F{w) has a singularity on I, and every jioiiit

other than iv I is known to bo regular.

By using other transformations we obtain a variety of other

equivalent conditions.

Example. Provo that every point on the unit eirt;Ie is a singularity of

/(-) -

1

il 0

[For the point we have to consider

m-{)

wliero r/,„ if rri 2% and - 0 otherwise, (dearly

n

y _i!i o„.

Zw tnUn—my.

2
2”^** •

,-2»» 1)

2"M(2”— 2"*)!
^

'

^ X
^ 2”M (

2” 2”* )

!

7/i=0

The inodidus (d the term m — n~l is asymptotic to by Stir-

ling’s tboorem. Also, if denotes the general term, and 0 < ni < /i— 2,

U»Vil
~ (2"-2”‘ *+ l)...(2”-2'») V2»-2'»/ \3/ ij’

and the remainder is easily seen to be negligible. Hence

lim|6a«|2»» ^ 2.]

7.3. Convergence of the series and regularity of the

function. It will be noticed that wc have not used the con-

vergence or divergence of the original series as a k'st for

regularity or singularity of the function. In general no such

test is possible, for all possible relations can occur. If

oo

/w=2 (-l)»z»
,

1

n

the series is convergent, and the function regular, at 2 — 1 ;
and

the series is divergent, and the function singular, at z — — 1.
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On the other hand, if

m=- 2 1+-
/!• - U

the series is divergent, but the function is regular, at z^l;
while if

dw
w

the series is convergent at z— 1, biit/(z) has a singularity.

7.31. There is, however, one case in which divergence of the

series indicates a singularity of the function; the case where
-> 0. This follows from the following theorem.

if

f{z) = 2
n =-0

and 0, the series is convergent at every jjoint of the unit circle

where the function is regular.

Two proofs of this theorem have been given. One, due to

M. Riesz, is essentially a ‘complex variable’ method, and is

given by Landau, Ergebnisse, § 18. The following proof, due

to W. H. Young (7), is of Fourier-series type. In some respects

it is not so simple as Riesz’s, but it can easily be adapted to

give more general results.

We may without loss of generality take the point in question

to be z = 1 ;
and we may suppose that /(I) = 0. We have then

to prove that -> 0.

It follows from § 7.22 (1) that

. ^ f/(z)
" 277iJ l-zz«+i’

Taking the contour to be the circle [zj — r < 1, we have

, e-
" 277T™ J 1— re*®

Let 0 < S < TT, and let <f>(6) = ^(0, 8, r) be such that

(i) 4>{e) = l/(l-rc*®) for -tt < 0 < -8 and 8 < 0 < ir;

(ii) ^(0) and ^'(0) are continuous for — tt < 0 < tt;

(iii) 1^(0) 1
< K, If(0)1 < K. |^'(0)! < K, for -tt <6 <ir,
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where K depends on 8 but not on r. For example, if

<j>{e)^ae^^b&^+ce+d (-h^e^h),

we can determine the coefficients so that

^(±8) = j— <^'(±S) ==

Then (ii) is satisfied; and a, b, r, and d are linear functions of

^(ihS) and ^'(±8), the moduli of tht'se not exceeding 1 cosec JS

and I cosec^ iS res})ectively. Hence (iii) is satisfied.

We can then write

27Tr'"s„

J
(le +

J
f{re'‘’)<l>(e)e-‘”^ dd -

-a - TT

^

— J
dd

= /i+ Zg— /g.

Since f{z) is regular at z — 1, and /(I) — 0, we have

in an interval \d\ < uniformly for < r 1. Hence

J
0(1) 0(8).

-s

Suppose now that 8 is fixed. We have

dd,
ml ^

—rr

by uniform convergence; and integrating by parts twice each

integral except the ?2.th,

TT TT

=
f
mdd- 2 f

e’("-’»»^''(0)d0,

TT — 7T

all the integrated terms cancelling. Let e„ = max(|a,„|), so that

€„ ^ 0. Then

I/2 I
^2TrA'|€„+eo ^ + 2 (w-wya)

m>in

--=0(eJ+ 0(l/«)+0(ejJ.
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Finally

/3 --

a

-"s

(Jiven €, we can choose S so that |/jl < le for all values of ??;

and, having fixed 8, wo can choose so large that

l/j,l < Je and 1/3 1 < Jc for 7i > Hence

277r’'l«„|<e (n>n„).

Making r -> 1, it follows that 27r| 5 ^J < e (n > n^). i.e. 0.

The reader will notice that we have not used the full force

of the hypothesis ‘/(z) is regular at T; and the ])roof M ould

hold M'ith little change if e.g. f(z) - z\^), M'here a > 0 .

For the more general foiiu of the theorem we must refer the

reader to Young’s pa])cr.

7 .4 . Over-convergence.* We know that, at every point

outside the circle of convergence of a power series, the series is

divergent. But if, instead of consideiing the whole sequence of

))artial sums of the series, m^c consider particular sequences of

these sums, it is sometimes possible to obtain a conv('rgent

sequence. This is shown by the folloM’ing example.

Let m-2
Pn

where p„ is the maximum coefficient in the polynomial

{2:( I— Then in each of the polynomials

Pn

the moduli of the coefficients do not exceed 1, and one of them
is actually eq ual to 1 . Also the highest t(U‘m in this polynomial is

of df*gree 2 .4^, Mdiereas the lowest term in the next polynomial

is of degree 4"+^ Hence, if we expand /(s) in powers of 2, each

term is a single term of one of the above polynomials. The
radius of convergence of this scries is 1, since |a„| 1 for all n,

while ] for an infinity of values of n.

In i)artieular, the above series of polynomials is convergent

for 1^1 < J . But, since it is formally unchanged by the substitu-

tionz^ I —ze, it is also convergent for 1^7
1
< for \l—z\ < 1.

* Ostrowski (1), Zygmuncl (1), Estm*mann (2).
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The special se3qiicncc of partial sums obtained by taking each

polynomial as a whole is therefore convergent in a region which

lies partly outside the unit circle.

A power series which has a sequence of partial sums con-

vergent outside the circle of convergence of the series is said to

be ‘over-convergent’. Of course a power series can only be

over-convergent in the neighbourhood of a point of the circle

where the function is regular. We shall next define a class of

functions which have this property of over-convergence in the

neighbourhood of every point of the circle where the function

is regular.

7.41. Suppose that the power series

f{z) = 2
n-0

has the radius of convergence 1, and that there are an infinite

number of gaps in the sequence of coefficients^ i.e. there are

sequences of suffixes such that = 0 for Pk<'^<qk>
qk ^ a fixed positive

Then the sequence of the corresponding 2)artial sums

* n=0

is convergent in a region of which every regular point of f{z) on

the circle of convergence is an interior point.

To prove this it is sufficient to consider the point s = 1

.

Suppose that/(2) is regular ntz~ 1. Then, if 8 is small enough,

it Is regular in and on the circle with centre J and radius J+8.
We apply Hadamard’s three-circles theorem to the function

<A(3) =/(2)-«p,(z),

and the circles with centre J and radii 1—8, 1+e, i+8, where

0 < € < 8. If are the maximum moduli of f>{z) on

these circles, then
I+2S I+2S

,
l+2€ ...

JISfg
‘'1-28 < + JIfg *1-28. (C

In order to prove that Sj,^z) -^f{z) in a region including z — 1,

it is sufficient to show that we can take c so small that -> 0

when Pji cx). The idea of the proof is that, while is sub-

stantially of the order (1-j-S)*’*, behaves like (1— 8)«*, and
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SO, since is greater than the right-hand side of (1) is small

when Pj^ is large.

To every positive rj (say with < |8) corresponds a K such

that

Hence, as k ~> oo,

n_-s\7*

1-8
1—

7J

Also, if i\[ is the maximum modulus of f(z) on the outer circle,

31s J/ -f- jrto
i
+ . .

.+ \a,,z<‘i

Jl/+/v(i+
l-l-S

I
1— 7?

Hence the right-hand side of (1) is

a- 8 \<i+

1

ii; / 1 + 8 \ '•*
;::i0

(t:)"

(i:^rh-i(i^rr

When € -> 0, rj -> 0, the expression in brackets tends to

(1 _S)a+^)l0J!r(l-l-25)(l

which is less than 1 if 8 is small enough; for its logarithm

~ — 2i?8^ as 8 -> 0, and so is negative for small 8. Hence we
may take € and t] so small that the original expression is less

than 1 ;
and the result then follows.

7.42. The occurrence of gaps in the series is not merely a

useful device for producing over-convergence. It has an essen-

tial connexion with it. This is shown by the following theorem,

which is a sort of converse of the preceding one.

If a sequence of partial suws of the series /(s) = 2
with radius of convergence 1, is uniformly convergent in the neigh-

bourhood of a point on the unit circle, then

f(z) = gr(z)+r(z),

where the power series g{z) has an infinite number of gaps pj^,

where (ind the radius of convergence of the power

series r(z) is greater than 1

.

We shall not give the proof, which is more difficult than that

of the direct theorem.
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7.43. Hadamard’s gap theorem. //, in the 'power series

f{z) = f a„2™,
n- 0

~ 0 except when n belongs to a sequence Uj^ such that

+ where ?? > 0, then the circle of convergence of the

series is a natural boundary of the function.

This is an almost immediate corollary of the theorem on over-

convergence. For, if f(z) were regular at any point of the circle,

the series would be over-convergent at that point, i.e. the

sequence

n l

would be convergent at a point outside the circle. But for a

series of the given form this sequence of partial sums is the

same as the whole sequence of partial sums. Hence over-con-

vergence is impossible, ana consequently every point of the

circle of convergence is a singularity of f{z).

7.44. Mordell’s proof of the theorem.* This is a very

simple direct proof. Suppose that the radius of convergence is

1. Let z = aw^-{-bw^-^^, where 0 < a < 1, a-\-b — 1, and p is a

positive integer. Clearly
|

2:| ^ 1 if |w;| 5^ 1; and it is easily seen

that
|2:i < 1 if ^ 1, except that 2 == 1 if — 1. Let

^f(z) " 2

Then (f>(w) is regular for |i^| ^ 1, except possibly at = 1. We
shall show that the radius of convergence of the power series

for (f>{w) is 1, and hence that 2/; = 1 is a singularity of <f>(w).

We observe that, in the last expression but one for <l>{w), no

power of IV occurs twice if

(;>+l)nfc<pn*+i,

i.e. — 1

\

throughout the series; and this is true' ifp> l/d^. The expression

2 b.,^w^ is then obtained by simply omitting the brackets in the

previous expression.

* Mordell (1).
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If the series for ^{w) had a radius of convergence greater than

1, it would be convergent for a real > 1, and therefore the

series for f{z) would be convergent for a real z > 1, which is

false. This proves the theorem.

There is still another proof,* depending on the criterion

of § 7.23.

The theorem of § 7.41 can be proved in a similar way.f Let

the series for f(z) satisfy the condition of § 7.41. Then ^(w) can

have no singularity for
|
2/;| < 1 except possibly at = 1.

Hence ii f(z) is regular at z == 1, is regular at w.’ = 1, and

so in
I
w?

I
< 1+S for some positive 8. Hence ^ converges

(p-f 1)2)4

for \w\ < 1+S, and in particular ^ converges for
n —

0

1
22

; I
< 1+S. Hence 2 converges in a region of which 2=1

n=0
is an interior point.

7.5. Asymptotic behaviour near the circle of conver-
gence. If the coefficients in the power series satisfy a suffi-

ciently simple law as n oo, we can deduce an asymptotic

expression for the function f{z) as approaches the circle of

convergence along a radius vector. The simplest case of this

process is given by the following theorem.

Let f{x) = 2 g{x) = 2
n-0 n-

0

where 0, and the series converge for 0 < ic < 1 and
diverge for a; = 1. If^asn-^oo,

dn^Cb^, ( 1 )

then a8x~>l f{x)~ Cg{x).
(2 )

Given e, we can find N such that

i®n— I < (» > N)-

See Landau. Ergehniase, § 19 .

t Pointed out by Mr. M. M. Crum.
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\f{x)~Cg{x)\ - 2 {^n-0bjx^\
In-0 '

<
I

2 {
0’n—Gb„ )x«

1
+

1

y (a„- Cb„ )x’'
I'n--o I

n 0 7i~N 1 1

< 2 W,—Gb„\+cg{x).
71 0

Having fixed we can, since g{x) -> oo, choo>so S so that

2 K—CK 1
< ^g{^) > 1 -S)-

n-0

Then \f(x)—Cg(:x)\<2eg{x) (x>l— S),

which proves the theorem.

Tlie same result, however, holds under more genjaral condi-

tions. Let the series converge for 0 < x < 1;

and lei 6\, and he positive, and ^ and ^ In divergent, and let

S„r~^Cf„. (3)

Then (2) is still true.

For as in § 7.22, for 0 < x < 1

oo 00

f(x) ^ (1—x) 2 V”. £?(•»•) == (T-^) 2

and by the previous theorem

oo oo

2s„x”r^Clt„x\
71 0 no

Hence the result.

In particular, if s^^ Cn, then

f{x)~ ,

^ 1-x
Examples, (i) If p < 1, as x -> 1

2
x^ r(i—
nP

fWe have (1— ^

^

Lwe have (1 x)
]>+!) *

no
and we can use the lemma of § 1.87.]
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(ii) Show that if

F(oif jS, y, x) = 1 -f

then, as a; -> 1,

OL.P

l.y
X +

<x(a+l)j9{j8+l)

1.2.y(y+l)
•

F(a.,
J3, y, x)

if > y; and that

r(y)r(a-|-/3— y) 1

a+jS, a;)

r(a4-^)

r{oL}V{^)
log

1

1 - a!*

7.51. The converse problem. It is easily seen that there

is no general converse of the above theorems; from the asymp-

totic behaviour oif(x) we cannot deduce that of a„, or even of

Consider, for example, the function

1 = {1—x) 2 (w+l)^'-^"
-X) no

= 2
n=0

Here S
2ni^i = 0, while = m+1; hence Sf^ oscillates infinitely,

though/(a:)~i/(l-a:).

The coefficients in this example arc, of course, not all positive;

and this is, in a sense, the cause of the failure of the converse

theorem. If we assume that all the coefficients are positive, we
can state a precise converse of the last result of the previous

section.

If a„ > 0 for all values of n, and as x~>\

f{x)= f a„x«^
n=0 ^

n
then as n-> CO = 2

This theorem is due to Hardy and Littlewood.* We shall

give an extremely elegant proof which has recently been ob-

tained by Karamata.f

7.52. In order to appreciate the point of the proof, it may
be well to see what can be proved by fairly obvious arguments.

In the first place ^
/(a?) >2 Ov®" >

* Hardy and Littlewood (2). t Karamata (1).
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for all values of x and n. Taking x— we obtain, since

f(x)<AI{l-x),
I ^ ^ A

say s.^ < A{ri,

On the other hand, using (1), we have

/(a;)=--(l-x) f v”‘
VI 0

< (1— a:)5„ 2 x”'-\-Ay{\—x) V nix"

(
1

)

7H - 0 VI~n

A X**
+1

X

Taking we obtain, since f{x) > Aj(l — x) > Anl\ if

n > 2A, An ^ . . s
^

Ane-^

Hence, if A is sufficiently large,

^n>A^n, (
2 )

What wc have to show is that A^ and A 2,

can be replaced by

l+€ and 1— e respectively. The above argument is too crude

to do this, and the method actually used is far from being an

obvious one.

7.53. Karamata’s proof. The proof depends on the well-

known theorem of Weierstrass, that we can approximate uni-

formly to any continuous function by a sequence of polyno-

mials.* Let g{x) be continuous in (0, 1), and € a given positive

number. Then there are polynomials p{x), P(x), such that

p(x)^g(x)^Pix),
( 1 )

1 1

and
J

dx^€,
j
{P(x)—g{x)} dx < e. (2)

0 0

This is obviously true if p{x) and P{x) differ by at most ie from

g{x)—\€ and g{x)A-\^ respectively.

If g{x) has a discontinuity of the first kind in the interval,

say at a; = c, we can still construct polynomials satisfying (1)

and (2). Suppose, for example, that*gr(c— 0) < g^(c4'0). Let

* A proof is given in § 13.33. For another proof see Goursat, Coura

d*Analyaep t. 1, § 206.
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<})(x) ~ g(:x)-\~ ie for X < c— S and for x > c\ and, for c—5 < x r,

let ^(a:) ™ raax{/(.T),(7(^)+ |e}, where l{x) is the linear function

of x such that Z(c— 8) -- gr(c—S)+ 2 ^, ^(c) = <7(c+ 0)+|€. Then
^{x) is continuous, and (f>{x) > g{x). It is easily seen that, if 8 is

small enough, a polynomial P{x) which approximates suffi-

ciently closely to ^{x) has the required properties. Similarly

we may construct p{x).

To prove the theorem of Hardy and Littlewood, we first

prove that ^
lim(l— a:) ^ ci,^x‘*'P{x^) ^
a;->l n-0

for any polynomial P{x). It is clearly sufficient to consider the

case P{x) ~ x^. Then the left-hand side is

(l-x) I; [(1— x-*+i) f a„(x*=+i)«|

n-0 J-—X \ '

and the result follows.

Next, we have
j

lim(l— a:) f a„x'>g(x'^) = f g{t) dt (4)
X->1 7l«0

^

if g(t) is continuous, or has a discontinuity of the first kind. For
let p{x) and P{x) be polynomials satisfying (1) and (2). Then,

since g{x) < P(x), and the coefficients are positive,

lim(l— a;) 2 < fiin(I — x) ^ a^,x^P(x^)
n=0 n=0

1 1

= J
P{t) dt<

j
g(t) dt +€.

0 0

Making e -> 0, it follows that

00

a;) X a„a;"gr(a:'*) <
n=0

Similarly, arguing with p{x), we obtain

00

lim(l— a;) ^ o„a:"gr(a:”) >
»=o

and (4) follows.
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Now let

g(t) =.0{0^t< e-i), - 1/t (e-i < f < 1).

1 1

Then
J

g{l) dt = (5)

0 1/r

Let X —r Then
QO A'

2 "= 1 «« = 2 »«
n-0 n-^i/logCi/r) M 0

and so, by (4) and (5), ^ \/{l~x) N. This proves the

theorem.

7.6. Abel’s theorem and its converse. In this section we
return to a subject already discussed in Chapter I. In § 1.22

we proved Abel’s theorem for real ])ower series: if the series

00

W = 0

converges to the sum s, then

f{x) = 2 -> s
71-0

as x~>l through real values. In §1.23 we proved Tauber’s

theorem, that the converse deduction holds, ^7ror?V/erf that

— o(l//«). We shall now consider a number of generalizations

of these theorems.*
oo

7.61. If 2 «n= «. (1)
n-0

ao

then f{z) = 2 -> 5 (2)
7»^-0

as z-> I along any path lying between two chords of the tin it circle

which pass through z—\.
As in § 1.22, it is sufficient to show that the power series is

unifonnly convergent, but now we must prove uniform con-

vergence in a region included between two chords through 2 “ 1,

and a sufficiently small circle with centre at z=^ 1.

We have to adapt the argument used to prove Abel’s lemma

(§ 1.131) to the present conditions. Let

^n,p == +
Landau. Ergebnisae, Ch. Ill, and Hardy and Littlewood (1), (2), (3). (4).
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SO that p 1
< e (^0 < n < p). Then

m

Hence for n'^riQ

I

m
1

/m~i \

2 «.2*' <4 2
• V /I

' ^ V n '

C»

<^[|i-2| 2 l^l''+0
l'= 0

The result now follows as in the previous case, provided that

l-l^l

is bounded as 2; -> 1 on the path considered. It is this that

makes it necessary to restrict the path, for this function can

be made large by taking z near to 1, but still nearer to the

circumference.

Suppose, then, that

\l-z\^k{l^\z\) (k>l). (3)

This inequality is satisfied in a region bounded bj^ the curve

\l-z\^-k(l^\z\).

Putting 1—c = the equation becomes

p == k— i|l

—

i.e. (p—

—

— 2pcos^+p2),

C08<l)—k

This represents a curve with two branches through 2 = 1
,
each

making an angle arccos(l/A:) with the real axis. By choosing

k sufficiently large we can make the curve include any region

of the required type. Since (3) is satisfied inside the curve, the

theorem now follows.

7.62. We can also obtain a similar extension of Tauber’s

theorem.

If f{z) s as z-> I along a path satisfying the same conditions

as before^ and a^ = o(l/n), then ^ converges to the sum s.
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In view of the above analysis, the proof given in § 1.23 now
requires little modification. We have to prove that

Si—Ss = f, 2 a„(l -2") -> 0,
71-N I 1

* 0

where jV — [1/(1— 12:!)]. As before, if \na.n\ < e for n > N,

I

ISJ =1
nj (A+ 1)(1-|2|)(A+ 1)(1-|2|)

Now \\—z^^\ — 1(1— 2:)(l-j--+-*-+ 2:'''"^)| \\—z\n.

Hence, if 7.G1 (3) is satisfied,

N N 1.

< i l»t««(l-2)| < ^-(l- |2|) i; n\a„\ n\a„

and this tends to zero, by the lemma of § 1.23. This proves the

theorem.

7.63. Tauber’s theorem for regular paths. It is not

possible to extend Abel’s theorem, at any rate in its obvious

form, to paths which touch the unit circle; for example, it is

known* that the series

(0<a<l)
n~l

is convergent if 6 > I— a; but, if 6 < \— \a, the function

f{z) — 2
n=i

does not tend to a limit as 2; -> 1 along an arc of a circle touching

the unit circle at 2: — 1.

On the other hand, we can obtain an extension of Tauber’s

theorem to paths which touch the circle, provided that they

are sufficiently regular.

A path will be called ‘regular’ if it is defined by equations

X = x{t), y = y(t), where x'(t) and y'{t) are continuous and never

both 0, so that there is a definite tangent at each point.

If f{^) s cts z -> I along a regular path inside the circle, and
= o(l/w), then ^ converges to the sum s.

We may suppose without loss of generality that ,}#
™ 0 Let

See Hardy and Littlewood (3), p. 207.

Q
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C be the path in question. Then the integral

1

J f{w)
dw,

Z

taken along C, exists; and it is o(|l— 2:|) as 2: -> 1. For, given £,

we have |/(w;)| € for w sufficiently near to 1 on G, Hence

I

^

J
f{w) dw\ < e l(z),

where l(z) is the length of C from z to 1. But /(2)~ il— z] as

z-> I
]
for if ^ = 0 corresponds to 2; — 1,

i

~r = 7 /
f{^'(o)F+y (o)}^]‘,

0

x'(u) and y'(u) being continuous; and

1

Hence j f{w) dw~ o(\l—z\), (1)

Now if z and z' are points on (7,

€ 00

J
/(w^) dv) == 2

Z 71= 0
^

This series converges uniformly with respect to z' for l^'j ^ 1

(since = o{lln) ). Hence, making 2
' -> 1,

J f{w) dw==^ (1 -z”+^). (2)

Z 71= 0

LetiV = [l/|l-z|]. Then

jf(w)dw= 2 + 2
Z 71 = 0 iV-fl

and ^2= 2
jV+i ' ' ' '

Also

l-2”+l = (1—2)(l+2+...+2”)

= (1—z)(n4-l)—(1—2)*{n+(n— l)z4--”+2“~^}

= (1-2)(»+1)+0(11-2M.



Hence

LITTLEWOOD’S THEOREM 233

2i = (i-2)f «„+o(|i-spS«K|)

= (l-2)«iV+0(|l-2|2iV)

= (1-2K^+0( 11-21). (4)

From (1), (3), and (4) it follows that % — and this proves

the theorem.

7.64. Littlewood’s extension of Tauber’s theorem. We
now pass to an extension of quite a different kind. In all the

forms of Tauber’s theorem so far considered, the condition

has played an apparently essential part. It was,

however, discovered by Littlcwood that it can be replaced by
the more general condition = 0{\jn). Here we shall restrict

piirselves for the sake of simplicity to the real axis, though it

is possible to prove the theorem for complex paths.

7.65. We use the following lemma:

If f{x) is a real function with differential coefficients of the first

two orders for 0 <. 1, arid, as x -> I,

then

Let o:' = where 0 < S < |. Then

where xd^ <ix\ Hence

(!-*)/(*) + j6(l-j)V({)

^m-m+o(S).
( 1 )

.ince no = O
Ijj,)

= 0{. J

.

By first choosing 8 sufficiently small, and then x sufficiently

near to 1, the right-hand side of (1) can be made as small as we
please. This proves the lemma.

7.66. Littlewood’s theorem. Iff(x) = 2V” ->sas x-> 1,

and a„ — 0{\jn), then ^ ®n (xmverges to the sum s.

The proof depends on the theorem of § 7.51, and in proving

The original proof, Littlewood (3), was different.
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that theorem we have really overcome the most serious diffi-

culties. We may obviously suppose, without loss of generality,

that the limit 8 is zero. Then

fix) = f == o(l)
w=0

as a: -> 1. Also, since = 0{l/7i),

/'W = !_»(»-

1

)».*>- = 1 )» -‘) - O .

Hence, by the lemma,

\I

Suppose that \na,^
\
<c. Then

y 1.
c ) 1— a; c 1 — a:

But the coefficients in tliis series are all positive, and so, by the

theorem of § 7.51, ^
V' /, va.A

or '%va^ = o{n).
(
1 )

V-l

This is an asymptotic formula for a finite sum, and so is a

considerable step in the right direction. To get exactly the

required result, still another argument is required.

Let denote the left-hand side of (1) if n > 0, and let = 0.

Then „ „

/(x)-a„ = 2 ^
n-l n^i ^

n+l n{n+l)\

n

Since w^ = o{n), the first term on the right is o(l) as a:-> 1.

Hence, since /(*) 0,

|»-(STr—
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But wJ{n{n-\‘\)] — o{\ln), and so, by the ordinary form of

Tauber’s theorem, «

The left-hand side is

N

lirn y lim ill)

= lim lim i a,,
jV-^oo A-f lj A _«>«, = I

and the theorem is therefore proved.

7.7. Partial sums of a power series.* The study of the

partial sums of a power series is facilitated by the use of the

formulae of the theory of Fourier series. We shall use some of

these formulae, and quote them from Chapter XIII; but in each

case where they are used here the proof is an immediate con-

sequence of uniform convergence.

Let /(2) = 2a„2™ {|2|<1),

and

Let

«u(2) = «o+ai2+.-+a„2"

l-r*
%,«) = i+rc«,9 + A<»2«+...,

1 7 / a\ 2r”'^'(cos(n-f-l)0-~rcosri6}
a„d W)-

2(,-„-2,cos9Tr-^j
“

Then

s

J -f r cos 0+ . .
.
+ r^*cos

ZTT

,Xre’») i
J

# (0 < r < p < 1). (1)

This may be proved directly by term-by-term integration. It

is a case of Parseval’s formula (§ 13.54).

Also, by Dirichlet’s integral (§ 13.2),

277

* Landau (2), (3), (4), and Ergehnissty Ch. I.
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We can thus express as a repeated integral involving / and k,

/*«'«’-*-) d4
4.) #. (3)

0 0

We consider also the arithmetic means of the partial sums,

= K(^')+Si(2)4--+S„-i(2)}/k.

By (1), a„(re''') = i
J

/(pe'(M)) A^,

0

A'„(r.0) = iyAv(r,0);
71^

(
4

)

where

and, by Fejer’a integral (§ 13.31),

(5 )

7.71. Bounded power series. Suppose now that /(z) is

bounded in the unit circle.

^/ l/(“)l ^ 1^1 < 1. ihe.n \a.„{z)
\ <M for all values of n

and |z| < 1; and, conversely, if |cr„(z)| <M for all n and \z\ < 1,

then |/(z)| < ilf.

It is clear from the above formulae that k{r, 6) and A'„(r, 6)

are positive for r<l. Hence, if |/(z)|^il/, it follows from

(4) that

0

But the right-hand side is what reduces to in the case

f{z) =“ M, viz. M. This ])roves the first part.

Again and so also tends to f{z) as n^co. The
second part follows at once from this.

7.72. The corresponding results for s^{z) are not so simple.

This is due to the fact that k^^, unlike K^, is not always positive.

It is not necessarily true that |5^(2)| for all values of n
and z. In fact it is known* that the upper bound of

all functions /(2j) such that \f(z) \ ^ M, tends to infinity with n.

We have, however, the following result:

* Landau, Ergehnisae, § 2.
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There is an absolute constant A such that

\8,Xz)\<AM\ogn

for aU functions f{z) such that \f{z)\ M.
If |/(z)|<if, by§7.7 (3),

M
277*

27r 27r

8in(w-f </i)

^ ,

sin
I

0 0

The inner integral is equal to

TT
,

If {71 f*i)

J
I

sm^a
I J sinAa

O' “
' 0

= 0(l)+0(log«);

and, putting n — 0 in 7.7 (2),

27r

0

This proves the theorem.

TT

/

da

sin ia
l/(« rU

7.73. It is easily seen that sj^z) is bounded in a circle of

radius r' less than 1 ;
for k^{r, 6) is obviously bounded in such

a circle. The upper bound for depends on M and on r\

What is not so obvious is that we can choose r', independent

of Mf so that the upper bound is exactly M.

U 1/(25) 1 ^ M, then |5jz)| for l^K
It is clear that

1— 7
-2— 2r^^^(\-\-r)

2{T^r)2"

and if r ^ 1, 71 ^ 1, the numerator is not less than

Hence k,fr, > 0 for r < and we can now proceed as in

§ 7.71. We have

0

and the right-hand side is what 8^{z) reduces to when/(2
)
= My

viz. M. This proves the theorem.

Fej6r (6).



238 POWER SERIES

The number I is the greatest number with this property.

For consider the function

M = (0<a<l).
az—

1

Then \f{e^^)\ ~ 1, so that \f(z)\ < 1 for |;:1 < J. Also

s^(z)=^a+{a^-^l)z,

and the point ~ A/a where 8j^{z) > 1 is arbitrarily near to |::|

since a is arbitrarily near to 1

.

7.8. The zeros of partial sums.* Let

f{z) -= o„+aiZ+ ... {a„ r/. 0),

be a power series with radius of convergence 1, and let

s^^{z) ~ aQ-\-ajZ+

.

Then being a polynomial of degree n, has n zeros.

If f{z) has zeros inside the circle of convergence, then by

Hurwitz’s theorem (§ 3.45) every such zero is a limit-point of

zeros of the polynomials

Now consider the simplest function of the above type,

/(z) = ^- = 1+2+22+....
1—

z

Here «n(2)= l+Z+...+2” = 1—z”+i

1-2'^

Hence «„(2 )
has zeros distributed evenly round the circle, and

it is plain that every point of the circle is a limit-point of

such zeros.

It is somewhat remarkable that the general case is so nearly

like this simple case. This was discovered by Jentzsch, who
proved that, for every power series, every point of the circle of

convergence is a limit-point of zeros of partial sums.

We shall deduce this from some quite simple ideas depending

on the theory of equations.

Let 8 be a given positive number, n a number such that

KI> 1^0 1

(l+8)«- (1 )

Jentzsch (1).
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This is true for arbitrarily large values of n, or the radius of

convergence would be greater than 1 .

Let 2?!, 2;2v> zeros of the corresponding s^(z). Then

and so < (l+Sf-

Let 2^1,..., Z/. be the zeros of 5^,(2:) in the circle l^l < 1— 8 . By
Hurwitz’s theorem (§ 3 .45 ), k is constant for sufficiently large

values of n, and
1^12:2.. . >iC,

where K depends on 8 only.

Let be the zeros for which \z\ > 1 +e. Then

2i2;2...2:^,(l+^)'^< l^n-p-rV-^nl

Hence
?i(Iog( 1

+

8
)
— log

(
1

—

8 )}— logA logA
log(l+€j~log(l-S) ' Ae

^

By choosing first €, then 8 , and then n, we can make pjn

arbitrarily small.

Hence, for given 8
,

e, and rj, the number of zeros in the circle

|2;l
-<gl+€ is greater than n(l—rj), if n is a sufficiently large

integer for which
(
1
)

true.

7 .81 . It is clear from the above result that the zeros of partial

sums have at least one limit-point on the circle of cxjnvergence.

We can obtain a little more information by considering the

sum ^

Putting z^ = rje^^y, we have
I

If > Itt+oc, or 0^ < — Itt— a, where a > 0
,
for every v, the

left-hand side is less than

—n(l— 7y)sin(x

by the above theorem. This is inconsistent with
(
1 ), if n is large

enough. Hence there must be zeros in any angle including
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(-“Itt, Itt). Similarly there must be zeros in any angle greater

than TT.

To prove Jentzsch’s theorem we have to replace such an

angle by an arbitrarily small one. This is done by using a con-

formal transformation which magnifies the eflfect of the zeros

in the immediate neighbourhood of the point considered.

7.82. Let V
,

.

cosA—

2

w^-f-cosAW = y 1)
2 COSA— 1 1+^^cosA

where 0 < A < Jtt, and where /(cosA) ^ 0. This transforms the

unit circle in the s-plane into the unit circle in the ^^?-plane.

The point z~ I becomes w= I, The point 2 == becomes

^(e2a_i)
.
gi(7r—A)

and similarly z = becomes iv = e-^'c^r-A) Thus, if z == re^^,

w — the arc —A 5^ 0 < A of the unit circle is transformed

into the arc —tt+A < <}4 ^ tt—A.

The zeros of s^{z) are transformed into the zeros Wj, ==

of the function

= 5^(cosA)+t^{^ cosA s„(cosA)+sm^A .!?^j(cosA)}+ ...

= bQ-\~blW-\- ..,y

say; and corresponding to § 7.81 (1) we have

1
V= 1

COS^y

Py

wcosA — sin^A r(-5
Un

8;(c08A)
|

(cos A) I’

(2)

The last term tends to a limit as n -> oo, since s„(cosA) ->/{cosA),

which we have supposed is not 0, and a^(cosA) ->/'(cosA). Hence
as » -> 00

ooBtfiy

I -«cosA.

Suppose now that the region of the w-plane

1—€<P< 14-€, — (ff—A+a) < ^ < TT—A+Of,

where 0<€<1, 0<a(<A, is free from zeros. Put

" cos
<l>y _

(
3 )

(4)

2 ^

Since p

2 + 2 + 2= 2^1 +2. + Ss-
Pv p^<l-€ l-€<p^<l-\-€ p^,>l+ € 1 a 3

= 1 corresponds to r — 1, it follows from considerations
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of continuity that the circles e, p=l+e correspond to

curves (in fact circles) inside and outside r ~ 1 respectively,

which can be made as near to it as we please by taking e small

enough.

The number of terms in is less than K A"(8, €,A); and
has a positive lower bound, since the zeros of .<?,t(cosA) in

question tend to zeros of /(cos A). Hence

Ii<^- (6)

The number of terms in ^3 is, by § 7.8, less than iqn, where

ri — S, e, A) tends to 0 as n -> 00 through a certain sequence

of values. Hence

l3<
Tin

i+t (
7 )

In 2^ the number of terms exceeds n{\— r])— K, and by
hypothesis cos^^, < “Cos(A— a) for each term of this sum.

Hence ,

i+e
-^cos(A- -a).

(
8

)

From (5), (6), (7), (8) it follows that

This contradicts (3) if a > 0 and e is small enough. There are

therefore zeros in the region (4), and hence, since e and a may
be as small as we please, in any region containing the arc p = 1

,

—tt+A <<f>< 77—A, Hence, in the 2-plane, there are zeros in

any region containing the arc r = 1, —A < P < A. Finally, since

A may be as small as we please, it follows that z = 1 is a limit-

point of zeros. Similarly every point on the unit circle is a

limit-point of zeros.

MISCELLANEOUS EXAMPLES
1. If |a„/cr^ 4 i|

then the radius of convergence of ^ is R.

2. If (*+-+"(-)}'®
o.+il I n W;

where c > 1, then Jo,*" converges absolutely everywhere on its circle

of convergence.

3- If o,/a,+i-> 1. then

lim = -1-
n—>00 ^ I

uniformly for [z] > 1+8 > 1. Hence show that all the limit-points of

the zeros of partial sums are inside or on the unit circle. [S. Izumi (1).]
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4. Show that as jc -> 1

i—im'
and that, as 2 -> along the radius vector,

i z"* ~ -i -
"

--
)
V

„to 2?Vu-h/Z.

5.

If log n, tlien, as a: -> 1,

2;a,x-
n=0 l-j;

j^The right-hand side is

^

6. If ^ 1 /logn, then, as a: -> 1,

00 J

^2 a,a:» ~
^ jy^ j

•

[If 2p denotes a sum over the range €jo/log(l/a?) < n <r e(p-f l)/log(l/a;),

then

2-if logn log(l/a:)log{l/log(r/a:)}’

7. Show that if > 0, and

1

«-o U
then ««~ in‘.

X OP

[We have fj(x) •= jf(t) dt -=^
0 n=o

n

a„a7" ^ 1

nfl 1— a:*

Hence 2
a„

and the result then follows by partial summation.]

8,

Generally, if a„ > 0, and f{x) (1— where a > 1, then

n“

:j.iy

[We have

n=0

X

hr,!

r(n4-a)

QU

2
a^x^

and, on the other hand,

fa-i(x) ^

r(a)(l-®) r(a)(l-a:)'
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Hence

n

2
W=1

a„ n
j,a-i '

and the result now follows without difficulty.]

9.

If J(z) is regular in a region including the origin, and /(O) — 1,

then f(z) can be expanded in the form

/(Z) = (l+aiSKl+OjzZKl+aaS^)...

for sufficiently small values of z,

[Ritt (1); Assuming an expansion of the above form, we write
= Ci+ C22:+ ..., and determine the numbers in succession by

equating coefficients in the equation

Ci+V-f-**’ 2
na^z^~^

1

If /x„ — meix\ay\^l^, we deduce from the recurrence relation that
V 't, n

/xj < lc«|. Hence /x„ is bounded, and the process can be justified.]

10. Show that the circle of convergence of the above product is the

same as that of the series but that the power series for f{z) may
have a larger circle of convergence.

11. If each of the series

oo 00 oo

n = 0 n-0 n-0

has a radius of convergence equal to 1, then so have the series

00 oo

2 2 «»V"-
W--0 n=o

12.

If each of the series

f(z) = i; o,2», g(z) = 2 F{z) = 2 o,6,z"
w=o n=0 n=0

has a radius of convergence equal to 1, ii f{z) is regular on its circle of

convergence except at 2 = 1, and > 0 for all values of n, then F{z)

has a singularity at 2: = 1.

[Bohnenblust (1): the series

<f>{z)
= 2
n=0

has the radius of convergence 1, and so by § 7.21 has a singularity at

2; = 1. By Hadamard’s multiplication theorem (§4.6) the singularities

of <f>{z) are products of those of F(z) and of

/(*) = 2 a.®"
n-O

Thus 1 == where a is a singularity of F(z), p of f{z)

;

and jS must be

1. Hence a = 1.]
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If J{z) — is regular on it^s circle of convergence except at

;:o» then every series whicli consists of a selection of terms from 2
and which has the same radius of convergence, has a singularity at Sq*

14.

Show that the theorem of § 7.21 is still true if the coefficients a„

are complex, provided that |arga„| < a < .Jtt for all values of n.

[Wo have \a^\ < sec a Rcr„.]

15.

The function

n-i

is continuous in and on the unit circle; but every point of the circle is

a singularity.

16.

If f(z) is bounded in the unit circle, then 2] i® convergent.

[See § 2.5.]

The following cxcrntplcs arc on the hordcr4ine between theory of power

aeries and theory of real functions. It serins most convenient to insert

them here, but some of them assume the theory of mean convergence given

in § 12.5.

17. If 2 convergent, then

'In

J n^O
0

Hence, show that, as r —> l,f{rc*^) converges in moan to a limit-function

F{0) of the class iv“(0, 27r).

18. If f{z) ^u+ iv, F(6) — U+ iV in the previous example, show
that Poisson’s foimulae

2rr

'-''‘’"if
0

2'rr

.(r, -r(0) = J-
J j ^

mi>)^
hold for r < 1.

19. Show that, in the above' examples, u(r,d) ~> U{d) as r -> 1 for

every value of d in the Lebesgue set of U(0), Deduce tliat f(re^^) F{$)

as r 1 for almost all values of 6.

[The analysis is similar to that of § 13.34.]

20. Show that a bounded analytic function tends to a limit radially at

almost all points of its circle of convergence.

21. If t/(^) > 0 for all values of then u(r, 0) > 0 for all values of

r and 6»
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22. 11 /(2 ) is regular and bounded for \z\ < 1, and f{z)->0 as 1

throughout an interval of values of 8, then f{z) is identically zero.

[If 0 < 0 < 27tIp is part of the interval, consider the function

23. More generally, if f(z) is bounded and tends to zero radially for

values of 0 in a set of positive measure, then f(z) is identically zero.

[See Bieberbach, ii, p. 156. Let E be the set where f(z) 0, and let

m(E) ” ^ > 0. Let Ui(6) == A//x in E, and — — A/(27r~/x) in CE, Let

g(z) be the corresponding analytic function defined by the formulae of

ex. 18. Then ^'(O) = 0. Let h(z) = so that h(0) = 1. Then

/(O) =/(0)A(0) = 5
^. fmHz) - = ~ f /(*V<(2 ) T*2TTt J

z zm Jqj^
z

|/(0)| < ^e-“A/(27r-M).

Since A may be as large as we please, /(O) = 0. Applying the same

argument to f(z) Iz, f'(0) = 0, etc.]

24. If U(d) is any function integrable in the Lebesgue sense, and

m = 1 f (\z\ < 1 ),

J 1— 26*9

0

then f{z) tends to a limit as r 1 for almost all vahies of 8.

[Plessner (1): We may suppose without loss of generality that

U{(f>) > 0, Then R(/(2)} > 0. Hence the function 1/{1 +/(2)} is bounded

in the unit circle, and so tends to a limit for almost all values of 8. This

limit is different from zero almost everywhere.]



CHAPTER VIII

INTEGRAL FUNCTIONS

8.1. Factorization of integral functions. An integral

function is an analytic function which has no singularities

except at infinity. The simplest such functions are polynomials.

A polynomial /(s:) which has zeros at the points Zj, 2:

2 ,...,
can

be factorized in the form

The zeros of integral functions in general are equally im-

portant. An integral function which is not a polynomial may
have an infinity of zeros z^; and the product

taken over these zeros may be divergent. So we cannot always

factorize an integral function in the same way as a polynomial,

and we have to consider less simple factors than 1—
The expressions

F\u,0)=l'—u, £!(u,p) = (l—u)e^ ^ ^ = 1
,
2 ,..,),

are called primary factors. Each primary factor vanishes when

1; but the behaviour of E(u,p) as -> 0 depends on p.

For 1^1 < 1,

log E{u,p)-
^+1

P~\r 1

Hence, if i > 1, and < Ijh,

\\ogE{u,p)\ <

P+2

<Nr>{i+i+i+...j = i|»r'.

It is this inequality which determines the convergence of a pro-

duct of primary factors.

8.11. The theorem of Weierstrass. If f{z) is an integral

function, what can we say about its zeros ?

Since /(2 ) is analytic except at infinity, the zeros can have no

limit-point except at infinity. In general, this is all that we can

say. This follows from the following theorem of Weierstrass.

Given any sequence of numbers volvose sole limiting-point
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is at infinity, there is an integralfunction with zeros at these points,

and. these points only.

We may suppose the zeros arranged so that 1221 < •••

»

l^t \z„
1

“ r„, and let p^, P2 >- * be a sequence of positive integers

such that the series

I©”
is convergent for all values of r. It is always possible to find

such a sequence; for r^->oo, since otherwise the zeros would

have a limiting-point other than infinity; and we may take

71, since
.

j

\rJ 2'^

for r,^ > 2r, and the series is therefore convergent.

l^et

This function has the required property; for, if

hence the series > log El— —
\Zn\>2R ^

(
1

)

(2 )

is uniformly convergent for ^ 1^, and hence* so is the product

I^n|r>2/?

Hence f{z) is regular for
|

2
| ^ i?, and its only zeros in this region

are those of / « v

n
\ZnmR ^ ^

i.e. the points 2j, z^,..,

,

Since R may be as large as we please,

this proves the theorem.

The function f{z) is, of course, not uniquely determined by

the zeros, since we have a wide choice of the numbers p^,

8.12. It is possible to factorize any given integral function

in the following way.

, Iff{z) is an integral function, and /(O) 0, then

f{z)^mP{z)e^^^

* See;§ 1.43, end.

R
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where P(z) is a product of primary factors, and g(z) is an integral

function.

We form P(z) as in the above theorem from the zeros of

f{z). Let
P'(^

)

P(z)’

Then (f>{z] is an integral function, since the poles of one term

are cancelled by those of the other. Hence also

g{z) = J ^(0 dt = log/(2)—log/(0)—logP(z)
0

is an integral function, and the result stated follows on taking

exponentials.

If f(z) has a zero of order p at z — 0, a factor z^ has to be

inserted.

This factorization is not unique.

8.2. Functions of finite order. The general factorization

theorem is not precise enough to be of much use; in general the

umbers p^ increase indefinitely with n, and we can say little

about the function g(z). There is, however, one case in which

we can put the theorem into a perfectly definite form, that of

functions of finite order.

An integral function f(z) is said to be of finite order if there

is a positive number A such that, as
|

2;| = r -> oo,

f{z)=^Oier^),

The lower bound p of numbers A for which this is true is called

the order of the function. Thus, if f{z) is of order p,

for every positive value of c, but not for any negative Value.

In this, and similar statements throughout the chapter, e is

thought of as taking arbitrarily small values, and the constant

implied in the O depends in general on e. If it were independent

of e, we could replace e by 0 in the formula.

Functions of finite order are, after polynomials, the simplest

integral functions. A polynomial is of order zero; some of the

properties of functions of small order are similar to those of

polynomials.

Many familiar functions are easily seen to be of finite order;

e* is of order 1 ; so ai^e sin z and cos z; cos Vz is an integral function
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of order I ;
is an integral function of order k, if k is a positive

integer (if k is not an integer, it is not an integral function).

The function is of infinite order.

In what follows we shall suppose generally that /(O) is not 0.

This simplifies the anatysis a little, and division by a factor

does not affect the order.

8.21. The function n{r). Let n(r) denote the number of

zeros z^y... of an integral function f{z) for which

Then n(r) is a non-decreasing function of r which is constant

in intervals; it is zero for r < \z^\y if /(O) is not zero.

This function is, as we have seen in § 3.61, connected with

f{z) by means of Jensen’s formula. In fact

r 27r

J hr ]
l/(»'C''')

1
dO -log 1/(0) |. (1

)

0 ()

If f{z) is an integral function, this holds for all values of r.

Iff{z) is of order p, then n{r) — For

logl/(^e''®)l < A'r^’+S

K depending on,€. only. Hence, by (1),

f dx < KrP+^. (2)
J X
0

But, since n{r) is non-decreasing,

2r 2r

J ^ J ^
— »(r)log 2.

r r

2r

Hence n{r) < ,

^
„ f dx < KrP+^

log 2 J X
0

by (2).

We may thus say, roughly, that the higher the order of a

function is, the more zeros it may have in a given region.

8.22. If r„... are the moduli of the zeros of /(z), then the

series 2 convergent if (x>p.

Let jS be a number between oc and p. Then n{r) < ArP.

Putting r = r^, this gives

n < Ar^.
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Hence r““ <
and the result follows.

The lower bound of positive numbers ol for which ^
convergent is called the exponent of convergence of the zeros

^

and

is denoted by p^. What wo have just proved is that < p. We
may have Pi<p\ for example, if f{z) = e®, /> — 1; but there are

no zeros, so that p^ ~ 0.

Notice that Pi = 0 for any function with a finite number of

zeros; thus
/>i > 0 implies that there are an infinity of zeros.

8.23. Canonical products. Ah impoiiiant consequence of

the above theorem is that, if f(z) is of finite order, then there

is an integer p, independent of n, such that the product

/i = i
^ ^

is convergent for all values of z; for by 8.11 (1), with p^ = 1>

this product is convergent if

is convergent;* and this is true for all values of r if 1 > pj,

and so it is certainly true if p-^-l > p.

If p is the smallest integer for which (2) is convergent, the

product (1) is called the canonical product formed with the zeros

of /(2;); and p is called its genus.

If py is not an integer, then p ~ [p^]; if p^ is an integer, p — Pi

if is divergent, while p = pT^—l if it is convergent. In

any case ^ ^ ^^ < Pi < P-

8.24. Hadamard's factorization theorem. If f{z) is an

integral function of order p, with zeros z^, (/(fi)

f(z) ^ e^^)P(2 ),

where P{z) is the canonical product formed with the zeros of f(z),

and Q(z) is a polynomial of degree not greater than p.

We can now take the P{z) of § 8.12 to be the canonical pro-

duct. It follows from the factorization theorem of § 8.12 that

there is an expression for f{z) in the above form, in which Q{z)

is an integral function. What we have to prove is that in this

case Q(z) is a polynomial.

Compare § 1.43, ex. (vii).
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Let V = [/o], SO that Taking logarithms and differen-

tiating 1 times, we obtain

1

To prove that Q(z) is a polynomial of degree u at most, we have

to prove that — 0.

Let

k.K/f

Since |1—z/z„| 1 for \z\ — 2R, |z„| ig; R, we have

W2)l<l/(2)//(0)| = O(e<2'^>‘'^') (1)

for \z\ ~ 2R. Since gj^(z) is an integral function, this holds for

|

2
|
< 2R also.

Let hj^{z) — log^^^(2;), the logarithm being determined so that

hj^{0) — 0. Then h^^{z) is re^gular for \z\ < i?, and, by (1),

^{hniz)] < KRf^^^.
(2 )

Hence, by § 5.51,

for |c| ~ r < i?; and for |z| — |/2 this gives

(3 )

Hence =- ^-^+'>(^)+v! T ,

= 0{i2p+—1)+0( 2 IzJ—i)

for \z\ — iR, and so also for \z\ < iR, The first term on the

right tends to 0 as i? -> oo if e is small enough, since v+ 1 > p;

and the second term tends to 0 since 2 convergent.

Since the left-hand side is independent of R it must be zero,

and the theorem follows.*

8 .25 . The order of a canonical product is equal to the exponent

of convergence of its zeros.

We know that, for any function, p^ < p. Hence we have to

piove that, for a canonical product P{z), p^Pi- Let r^, rg,...

* Hadamard (2). This proof is due to Landau (5). For an alternative proof

see § 8.72.
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be the moduli of the zeros, and k a constant greater than unity.

Let

iogiP(z)i= 2 log
’^) + 2

^ , I... \ n. / \ fi n
Tn-kkr

In ^2 inequality 8.11 (2), and obtain

11©"Tn>kr ^ r„>kT « '

If p~p^—\, this is 0(rJ’+i) — 0(r#’i). Otherwise pi+e<2)+l
if e is small enough, and then

^p+1 y y
r„>I'r r„>i*r

< ^ — 0(rP»+^).

Again in 2^ we have terms involving E{u,p), where \u\ Ijk,

so that

log|^(«,^9)| <log{l+ |M|)+|tt|-j-...+ ^^- < A'|m|P,

where A" depends on k only. Hence

l,<0(rP 2 r^A^OlrP 2 rP^^-i^r-P—

)

\ Tn^^kr ^ ^ rn^kr ^

= 0{r^^{kr)p^-^^-^ 2 = 0(r^‘+^).

Hence log|P(2 )l < 0(rPi+^),

and the result follows.

8.26. If p is not an integer
^ = p.

We have in any case p^ < p. Suppose that p^ < p. Then P{z)

is of order p^, i.e. of order less than p. Also, if Q(z) is of degree

q, is of order q; and g ^ p, and in this case ? < p, since q is

an integer and p is not. Hence f{z) is the product of two func-

tions, each of order less than p. Hence f(z) is of order less than

p, which gives a contradiction. Hence p^ == p.

In particular, a function of non-integral order must have an

infinity of zeros. In fact, if the order is not an integer, the

function is dominated by the canonical product P(z); whereas,

if the order is an integer, P{z) may reduce to a polynomial or

a constant, and the order then depends entirely on the factor

In any case, since P{z) is of order pj, and of order

we have , ,

p= max{j,pi).
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S.27. Genus. The genus of the integral function /(^j
)
is the

greater of the two integers p and q, and is therefore an integer.

Since p^p and ? < p, the genus does not exceed the order.

The actual determination of the genus of a given function is

sometimes not easy.

Example. Prove that the genus is not less than p—l.

8.3. The coefficients in the expansion of a function of

finite order. A necessary and sufficient condition that

/(2) = fan2’‘ (1)
71= 0

should be an integral function of finite order p is that

lim ==1.
nlogn p'

The argument depends on the fact that 2 does not

differ very much from its greatest term, and that \f(z)\ lies

between the two. This is further illustrated by the example

which follows.

(i) Let — n log n

where p is 0, positive, or infinite. Then, for every positive c,

> (/i—€)»log% (n > Wo),

i.e. |a„|

If /X > 0, it follows that (1) converges for all values of z, so that

/(z) is an integral function. Also, if p. is finite,

l/(2)| < -4r”«+ 2 (r>l).
n=n,+i

.JL

Let denote the part of the last series for which n < (2r)f‘-S

the remainder. Then in

r“ < exp{(2r)f‘-«logr},

so that
1 _L

< exp{(2r)#*-'logr} 2 < K exp{(2r)#*-'logr}.

In < |, so that

_!L
Hence

|
/(z)

|
< K exp{(2r) log r},

i.e. p^l/(fi—e). Making €->0, p^ljp. In the case /x= oo,
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tho argument, with an arbitrarily large number instead of fi,

shows that p = 0.

On the other hand, given e, there is a sequence of values of

n for which
log(VKI) < (/^+f)»logn.

i.e.

i.e.
V

Taking r ~ this gives

|o„|r“ > = exp|^(/i+e)log 2.r/‘^|.

Since by ('auchy’s inequality M{r) ^ |a„|r'', it follows that, for

a sequence of values of r tending to infinity,

M{r) > exp(.4r^/<'*+*>).

Hence p ^ l/(/i-j-e), and, making e 0, p ^ Ijp.. If /x = 0, the

argument shows that/(2 ) is of infinite order.

(ii) Let f{z) be a function of finite order p. Then a„ -> 0, so

that p., defined as before, is not negative. The argument then

shows that p, — 1/p.



MISCELLANEOUS APPLICATIONS
8.4. Examples, (i) Prove that the order of the function

256

OD

/w-2 2"

(n!)«
TO==0

is 1/a.

[We may use the above theorem, or proceed more directly as follows.

Suppose z real and positive. The terms of the series increase until n is

approximately and then decrease. Hence, if 2 = we get a
maximum term

ri'**'*' n”®

(n!)« (n"+*e "2*77^“ n<«(2*7r4y®

~

Since |/(2 )|
is greater than this term, its order is at least 1 /a.

On the other hand, |/(2 )| < f(\z\), and if 2 is real

n»0 N+1
N

n-0

< ^2^4-

{(iV-f 1)!
N+i

2^+1

{(A^+“i)!}o.(iz: 27N<.)’

provided ^hat > z. Taking N = [(22)*/“], we obtain

/(2 )
- 0(zy) = 0 {2

<2''‘'“} = 0 (6
*”“^'),

SO that the order does not exceed 1/a. Hence p
— Ijoc. (See Hardy’s

Orders of Infinity, ed. 1, p, 55.)]

(ii) Discuss in a similar way the function

00

n=l

(iii) If A 0, and p{z) is a polynomial, e^^—p(z) has an infinity of

zeros,

[If not, €^*—p(z) — e<**+^P(2 ), where P(2 ) is a polynomial. By com-

paring rates of increase in various directions we find that o — A, then

= rational function.]

(iv) If j(z) is of order p, and g(z) of order p' < p, and the zeros of

g(z) are all zeros off(z), then f{z)lg{z) is of order p at most.

[For f(z) = Pi(z)e^^^*\g(z) — P2{z)e^t^*\ and P1
/P2 is either the canonical

product formed with the zeros of or this product multiplied by an
exponential factor of order not exceeding p. Hence the order of P

1
/P2

does not exceed p.]

(v) cos 2 and sin 2 are of order 1; the product formulae (§ 3.23) are

cases of Hadamard’s theorem.

(vi) l/r(2) is of order 1; deduce the product formula (§4.41) from

Haxiamard’s theorem.
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Jwith the notation of § 4.41, /(I—2 )
= — 2t7r/r(2), and

/(z) = o|e’'l»l^l+
J /Wc-'dijl = 0{c’'W{|z| + l)W+i}.j

(vii) ^{s) ~ l)7r~**r( Is an integral function with /> = 1,

[To prove that p < 1, use § 4.43 (3) and ex. (iv); and p > 1 since

logf(«)^2~', ]og^{«) J«log« as ^->00 by real values. Next the

functional equation gives ^(5 ) = f(l— ^). Hence S(2 ) = f(J-f iz) is even,

€ind E{^z) is an integral function of order and so has convergence

-

exponent J.]

(viii) z~^J^,{z) is an integral function with p == 1, p^ = 1. Verify the

result of § 8.3 in this case. [See p. 60, ex. 5.]

00

(ix) Fg^(z) = J e~<®cos 2t di {oc > 1) is of order a/(a— 1).

0

[Either directly from the integral, or from the power*series.]

(x) d‘i(z) = where |g| < 1, is an integral
n« — 00

function with p = 2, p^ = 2.

[If A = (2|z|+ log2)/log|l/?|-i,

<22 |gl'"+*>‘e<‘«+»l'l+ 2 2 = 0(e'>^+i>W) = 0(e‘W).
n<A n>A

d'i(z) has simple zeros at 2 = rmr+mrrj where m and n run through all

integers (see e.g. Whittaker and Watson, Modem Analyeia^ §21.12).

Hence pi — 2.]

(xi) ^1 (2 ) is an integral function of sin 2 of order 0.

[If 2 sin 2 = ^1 (2 )
= then

g(w) = 2 — (2n4-l)i4i»"“i4-...}
n-O

= o{^2 |9|»*+<)*(|w| + l)»-+i|

It was proved by P61ya (2) that if g and h are integral functions, and
g{h(z)} of finite order, then either A is a polynomial and g of finite order,
or h is not a polynomial but of finite order, and g of zero order.]

(xii) If (Tn > 0 )
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is of order p, 0 < p < 1 , then for p < a < 1

VI r iog|/(-a:)| TT V I

A,r"' J a^+i (TtanTi-CT Z<J crBinirar

.

[
We have

00

J

) . TT
da; ==

asm 7T(T J atanTra
J

8.5. The derived function. Many of the properties of the

derived function of an integral function are the same as those

of the primitive function. The following theorems are examples

of this.

8.51. The derived function f{z) is of the same order as f(z).

Let M'{r) = max|/'(2:)|. Then

r It—

r

(1)

For f(z) = jf'(t)dt+m.

the integral being taken along the straight line. Hence

if(r)<rJf'{r)+|/(0)l.

On the other hand,

where C is the circle \w—z\=-E—r (|z| = r<5); Hence,

choosing z so that \f'(z) \
= M'{r), we have

.M{R)
M'{r) < B-r'

The result stated now follows on taking, say, i? = 2r in (1).

8.52. The well-known theorem, that if f{z) is a polynomial

with all its roots real, then f'{z) has the same property, can be

* Pdlya (2).
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extended to a certain class of integral functions. The result is

expressed by the following theorem of Laguerre

:

Iff(z) is an integralfunction, real for real z, of order less than 2,

with real zeros, then the zeros of f{z) are also all real, and are

separated from each other by the zeros of f{z).

have f{z) — cz^e^^
| | ^

1— —
j

where k is zero or a positive integer, and c, a, and sjg,... are

all real. Taking logarithms and differentiating,

f{z)^k

m ^

Hence, if 2 == x-\-iy,

{x-zj^+ify

which is zero if y = 0 only. Hence f(z) cannot be zero except

on the real axis.

Again, ^ _ V L...

dz\fiz}j z^ ^^{z-z„Y’

which is real and negative if z is real. Hence /'(^)//(^) decreases

steadily as z increases through real values from z^ to and

so it cannot vanish more than once between and Clearly

it changes sign, and so vanishes just once in this interval. This

proves the theorem.

It is clear from the above result that, if the zeros of f{z) are

Zgvj then the series

converge or diverge together. Hence the zeros oif{z) have the

same exponent of convergence as those of f(z). It may be shown

further that f(z) and f{z) have the same genus, but this is not

quite so easy to prove (see ex. 16 at the end of the chapter).

Since f{z) is of the same order as /(z), and has real zeros only,

the theorem may now be applied to it, and we see that f'^(z)

has real zeros only; and so for/'"(z), etc.

The proof also applies to a function f(z) of order 2, but of
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genus 1. In this case, however, we cannot extend the result to

/"{z),.,. without considering the problem of the genus of f{z).

It is easily seen by means of examples that the theorem is

not true for functions of genus 2. For example, in the case

f(z)^ze^\ f(z) = (2z^+l)e^\

the zeros of f'(z) are complex; and in the case

fiz) =.- f'(z) = |z(22-
the zeros of f'(z) are real, but are not separated by those of /(z).

Example. The differential equation

has no real solution, other than y
~

di^in/, which is an integral func-

tion of finite order.

[Suppose that y m b. function of finite order p. Then

y - e«(^>P(0,

where F(t) is a canonical product, and Q(t) a polynomial of degree not

greater than p. Since the zeros of P{t) are zeros of sin^<, P(t) is of order 1

at most.

Now

where /(/) is of order 1 at most. Hence

/(<) =

where Py(t) is a canonical product. Hence

e2<2(i)iai+6p(^)P^(^) _ -sin2/,

i.e. c2«(04.ai+fcp(^) ^ ~sin2f/Pi(0

is of order 1 at most (§ 8.4, ex. (iv)). Hence P{t) is of order 1 and Q(t)

is linear.

Hence y is a function of order 1.

We can now use Laguerre’s theorem. 2/
is a function of order 1 with

real zeros. The zeros of^ are separated by those of 2/» so that, as y has
€tt

no triple zeros, all the zeros of ^ are simple. So all the zeros of are

simple. Hence y has zeros at all the zeros of sin t. Suppose y has a double

zero at / = Ictt. Then ^ has a zero between {k—l)7r and ^tt, a zero at
at

d^V
kfr, and a zero between kn and I)?**. Hence has two zeros between
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(^— 1 ) 7r and )7r, which is impossible. Hence y has all the zeros of sin t

just once. Hence .

2/
= e^^fisinf.

Inserting this in the differential equation, we obtain

(a*— l)sin<-f-2a cost = — sint.

Since the left-hand side is bounded for real t, so is the right-hand side,

and hence a = 0. Then jS — 0 or Trt.]

8.6, Functions with real zeros only, A number of im-

portant functions have no complex zeros; for example, all the

zeros of l/r(2:) are real. On the other hand it is sometimes very

difficult to decide whether the zeros are real or not; for example,

it was conjectured by Riemann, in 1859, that all the zeros of

the function E{z) of § 8.45 are real, but this has never been

proved.

8 .61 . The theorems of Laguerre. In some cases the ques-

tion can be decided by the following theorems of Laguerre.*

Let f(z) be a polynomial,

f(z) = aQ+a^z+,..+aj,zP,

all of whose zeros are real) and let (f>{w) be an integral function of

genus 0 or 1, which is real for real w, and all the zeros of which

are real and negative. Then the polynomial

()r(2) = ao<^(0)+ai ^(1)2+ ... +o^

has all its zeros real, and as many positive, zero and negative zeros

asf(z).

Let (f)[w) — ae^

where > 0 for all values of n. Consider the function

Obviously gi{z) has as many zeros at z = 0 as /(z); and the

second expression for it shows, by Rolle’s theorem, that it has

(Euvres, t. 1, p. 200.
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the same number of positive zeros as f{z). Similarly it has the

same number of negative zeros.

By repeating the argument, we can obtain the same result

for the function

= «o+“i <f>ni^)z+-+ap<f>,,(p)zP,

where +
f?

Next, the transformation z = where == ^— 2] l/a^,

shows that the same result holds for
^

where <l>Jw) =

Finally, -> <f){w) uniformly in any finite region. Hence

G^^{z)->g(z) uniformly in any finite region; by Hurwitz’s

theorem (§ 3.45) the zeros of g{z) are the limits of the zeros of

G^{z); it is clear that g{z) has the same number of zeros at

2; = 0 as f{z)\ and this completes the proof.

8,62, Suppose that <f>{w) satisfies the conditions of the previous

theorem^ and that f{z) is an integral function of the form

the numbers a and z^^ being all positive. Let

/(2) = f
n=0

ao

Then g(z) = 2
n=0

is an integral function, all of whose zeros are real and negative.

In the first place, g(z) is an integral function; for, since

(l+a;)e“® 1 for x'^0,

and so the series for g{z) is everywhere convergent.

n*0

Let
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All the zeros of this are real and negative, and hence, by the

previous theorem, so are the zeros of

n-0

Finally, gr^(2) -> g(z) uniformly in any finite region. In fact it

is clear from the expression

2
!

pP

that a,, ->a„ as p -> co for every fixed n, while p| < for

all values of n and p. Hence, if iV^ < 2p,

W)—gp(z)\ < 2 +
|
1 dnZ" +1 if a„.pZ"

n = l I 'iV+ 1

2 K-««,p)z”|+2 i
n=l 1 iV+l

We can now choose N so large that the second term is less than

any given c, and then, having fixed N, the first term tends

to zero. Hence ^^(2) -><7(2:).

As in the previous proof, the result now follows from Hur-

witz’s theorem.

8,63. The simplest case is that of the function /(2)r=e*.

From this we deduce that if ^(w) satisfies the conditions of the

previous theorems^ then

n=0

is an integral function, and all of its zeros are real and negative.

Examples, (i) Let

^{w) = l/r(M?+v-f 1) (v > - 1).

This is an integral function of genus 1, with zeros at w = — i/— 1,

—v—-2,... . These are all real and negative, auid hence the zeros of

2
2"

n! r(n+v-|-l)

Jv(2i^lz)

(i>JzY

are all real and negative. Hence the zeros of Jv(z) are all real,

(ii) The function* «

Fgfz) = J
e“*“co8z^ dt

P61ya (1).
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has no zeros if a — 2, and an infinity of real zeros, but no complex

zeros, if a — 4, 6, 8,... .

[We have, by § 8.47,
2^ ^

oc

r(2n-f 1)

If a — 2, we have, as in § 8.47,

F,(z)

which has no zeros.

If a — 2k, where A; is a positive integer, let

^(w) - r{(2i^4-l)/2A:}r(ii;4-l)/r(2w;+l)*

Then is an integral function satisfying the conditions of Laguerre’s

theorems of § 8.6. Hence the zeros of

71 = 0

are all real and negative, so that the zeros of F^jlz) are all real. Also

(§ 8.47) p — 2k12k

~

1, so that 1 < p < 2, and there must be an infinity

of zeros.

If oL is not an oven integer, it can be proved that there are an infinity

of complex zeros, and a finite number of real zeros.]

8.64. Functions with real negative zeros. If all the zeros

of a function are real and negative, the modulus of the function

is related to the distribution of its zeros in a specially simple way.

Suppose that f{z) is such a function, and that its order p is

less than 1 . Then

Hence, if z is real,

log/w = 2 ><«(> +^) =I +d,)r

Sn 0

where n(f) has its usual meaning.

Suppose now that as t-> co, n(t)~ }<tP. Then

log f{x)~ ttA cosec TTp ocP,

For we have (A—

<

n(t) < (A+e)^^

* The reader should justify this step, which is a simple example of partial

summation.

S
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for i > Iq(€), Hence

:X + dl+U^ f
+

J f(x+ l) J l(x+0

The first term is plainly 0(1), and, putting t = xu in the second

integral, we obtain

QO

a:^(A-l-^)

J*

~xP{X~{-€)7TCOBec7Tp

0

by § 3.123. A similar result holds with A— e, and the theorem

follows.

More generally,'^

log f(re^^) e^f^nX cosec np rP

for any fixed 6 in (— tt, tt), log/(2;) denoting the branch which is

real on the positive real axis.

In fact the above expression for log/(z) as an integral, obtained

for real z, holds by analytic continuation for — tt < argz < tt.

Hence we obtain as before

0

Turning the line of integration to / = ue'^^, we obtain

XreP^^ r z= XrPeP^^TT cosec irp

J u{r+u)
0

as before.

It is also possible to prove theorems of the converse type,

viz. to deduce the asymptotic behaviour of n{r) from that of

log
1/(2;) I

. The most interesting is that if, as x-> 00 by real

values
y
logf(x)r^7rX cosec np xPy then n{r)r^XrP, This theorem

t

is closely connected with the Tauberian results of §§ 7.41-7.44,

but the proof is too complicated to give here.

P61ya and Szego, Aufgaben, IV Abschn., no. 61.

t See Valiron (1), Titchmarsh (6), (6).
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8.7. The minimum modulus. Let m(r) denote the mini-

mum of \f(z)\ on the circle \z\^r.

The function m(r) cannot be expected to behave in as simple

a way as M(r), since it vanishes whenever r is the modulus of

a zero of f(z). But we shall see that, if we exclude the immediate

neighbourhood of these exceptional points, we can set a lower

limit to m(r); and, in general, m(r) tends to zero in somewhat
the same way as l/M(r).

8.71. Consider first a canonical product P(z) of order p, with

zeros

If about each zero z^^(\z^^
\

^l) we describe a circle of radius

|

2:„ where h> p, then in the region excluded from these circles

\P{z)\>e-r^’ (r>ro(€)).

Following the method of § 8.25, it is clear that

Tn^kr rn>kr

1-- ~0{rP+^).

Since ^ convergent, the sum of the radii of the circles

is finite, and so there are circles with centre the origin and

arbitrarily large radius which lie entirely in the excluded region.

Now if z lies outside every circle \z—z^\ = and r^ < kr,

-2*'*
Tn^kr

Hence

2
l<r«<AT

> — (14-A)logfcr.»(ii:r)

> —K\ogkr.rP+^ > — rP+2*.

Finally 2 log (r>2).

and the result follows.

8.711. Iff{z) is a function of order p, then

m{r) >
on circles of arbitrarily large radius.

For /(2)
= P(2)e«*>,
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where Q(z) is a polynomial of degree 3 < p; hence

|e0(*)| > e-Ar«

for sufficiently large values of r
;
and by the previous result

|P(2)| >
on circles of arbitrarily large radius. Hence the result.

8.72. Another proof of Hadamard’s factorization

theorem. The theorem of § 8.71 leads to an alternative proof

of Hadamard’s factorization theorem. Let

f{z) = P(2)e«(*)

where P(z) is the canonical product formed with the zeros of

/(z). Then Q{z) is an integral function. Let p be the order of

/(z), Pi the exponent of convergence. Then P(z) is of order p,,

and Pi ^ p. Hence

lP(z)l >
on circles of arbitrarily large radius. Also

Hence R{$(s:)} = log = log{0(e’''‘")} < AV **

P(z)

on circles of arbitrarily large radius. Hence, by the theorem of

§ 2.54, Q(z) is a polynomial of degree ^ p.

8.73. In special cases it is possible to prove much more pre-

cise results than the theorem of § 8.711.

// p < J, there is a seq'uence of mlties of r tending to infinity

through which m{r) co.

In the first place, there is no line argz == constant on which

/(z) is bounded; for the whole plane, bounded by this line, forms

an angle 2tt, and 27r< -nip if p < ^. Hence, by § 6.61, if f{z) is

boimded on this line it is bounded everywhere, and so reduces

to a constant.

Suppose now that

and let
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where ^
|
2;,J. Then

min|/(^)| ^ \<f>{-r)\.

, r
since 1 1

Zn

for every n. Also (f>{—r) is unbounded, since (f)(z) is an integral

function of the same order 8isf(z), This proves the theorem.

8.74. The following result is still more precise.

If 0<p< 1, there are arbitrarily large values of r for which

m(r) > {M{r)Y^^'"P~'^.

The following proof is due to Polya (3). Define f(z) and ^(z)

as before, and we may plainly take c — 1, A: = 0. It is sufficient

to prove the theorem for <f>{z). If 0 < p < |, i.e. cosTrp > 0,

this follows at once from the relations m(r) ^ \<l>{-r)\,

M{r) ^ (f>(r). In any case, if z' is a point where \f{z')\ == w(r),

we have

\<l)(r}cf>{—r)\

Hence, if the theorem is true for (f>{z), then

m{r)M(r) ^
for arbitrarily large r, and the result for f(z) follows.

If the theorem is false for <f>{z), there are positive constants

€ and a such that

log|<^(— x)l < (cosTrp— €)log^(x) {x > a).

By § 8.4, ex. (xii), for p < 5 < 1, and so also for p < R(5) < 1,

00

J
{cos7T5log^(a;)—log|^(— do; = 0.

0

Since the integral over (0,a) is regular for 0 < R(s) < 1, so is

the integral over (a, 00 ). Hence
C30

a

where

^,(a:) = (coSTTp—t)log^(x)—log|^(— «)!, = log.^(a;),

^(s) = OOSttS— COS 7Tp-f-f> “ == logo,

is regular for 0 < R(a) < 1, and in particular at « = p. Here
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and
(f)2 are positive for x > a, and tp(8) is positive for s real

and sufficiently near to p.

Let A > 0, Z> = d/ds. Then

^ a !

say, the series being convergent for sufficiently small positive

h and s—p. Also

Since |<A^(5)| < for real s, this plainly exceeds

if h is small enough. Hence
00

oc

In particular for any w > a

O)

J
4>^{ei)^l+^ye->Ui < 2M/^(a).

CX

Making m -> oo, then a> -> oo, it follows that

J
if - j

a a

is convergent for a value of A less than p. Hence ^ is

convergent, contrary to § 8.26. This proves the theorem.

8.75. A similar result holds for functions of order 1 and exponential

type, i.e. such that f{z) =
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If f(z) = 0(e****), then m(r) > some arbitrarily large r. If

r,,... are the moduli of the zeros of /(2 ), wo find as in § 8.21 that

n(r) — 0(r)f l/r„ < KJn. Hence

^w-n(‘+a-«n('+ _ sinh(7TA’' Vr)

} irK^lr
n™! n«l

Define h(B) (§ 5.7) for <f)(z) witli V{r) — \lr. Then h{B) < ttK for all B.

Since \(f>{z)\ > 1 if R{2) > 0, h{B) is finite for —In < B < In, and so

everywhere (§ 5.712). Also h( — B) — h{B); and § 5.713, with Bi == —n,
B^ — 0, B^ — n, p

—
J, gives h{n) > 0. Hence

\f{z)f(-z)\ > |/(0)|2|<^(_r2)i >
for some arbitrarily large values of r, and the result follows.

8.8. The a-points of an integral function. Our discussion

of integral functions has so far centred round the distribution of

the zeros of the function. A more general question is that of

the distribution of the points where the function takes any given

value a—the ‘a-points', as we may call them.

There is one case in which we have already obtained fairly

precise results, namely, that of functions of finite non-integral

order. If f{z) is of order p, where p is not an integer, then it

has an infinity of zeros, and the exponent of convergence of the

zeros is p. But clearly /(2)—a is also of order p, where a is any

constant. Hence f(z) has an infinity of a-points, and their

exponent of convergence is p ;
i.e. their density is roughly the

same for all values of a.

A similar argument may be applied to functions of zero order.

Such a function has an infinity of zeros unless it reduces to

a polynomial; and f{z)—a is a polynomial for every value of

a oj for none.

If/(2;) is of positive integral order, and a, then f(z)—a —
where Q{z) is a polynomial. If 6 a, then Q(z) — log(fc—-a) for

some z, i.e. f(z) = b for some z. Hence f{z) takes every value

with one possible exception.

8.81. Picard’s theorem. The main theorem of the subject

is due to Picard; it is independent of any considerations of

order.

An integralfunction which is not a polynomial takes every value,

with one possible exception, an infinity of times.

Picard’s proof of the theorem depends on the properties of

the elliptic modular function. This function, which we shall
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denote by m{z), has the following propei*ties: it is regular every-

where except at z = 0, 1, and oo; and its imaginary part is never

negative.

By means of this function we can easily prove that an integral

function which is not a constant takes every value, with one possible

exception, at least once.

Suppose that/(2;) is an integral function which does not take

either of the values a or h, where a ^b. Then

5'(2) b~a

is an integral function, which does not take either of the values

0 or 1. Consider the function 'm{g{z)}. It is regular except at

infinity, since g{z) does not take either of the finite values for

which m is singular. Also its imaginary part is positive. Hence,

by § 2.54, it is a constant. But m is not constant, and so g{z)

must be constant. This proves the theorem.

As we have not discussed the construction of the modular

function, we shall not complete this proof, but shall give a more

direct proof, depending on a theorem of Schottky.*

8 .82 . The characteristic feature of Picard’s theorem is that

it admits the possibility of there being an exceptional value.

This exceptional value may actually exist; for example, the

function e^ never takes the value 0. A value with this property

is said to be 'exceptional P’.

There is another sense in which a value may be exceptional.

A function may take the value a, but only at points which have

a convergence-exponent less than p. For example, the function

e^cos\fe, of order 1, has zeros, but their convergence exponent

is A value with this property is said to be 'exceptional B\
i.e. exceptional in the sense of Borel. It is clear that a value

which is exceptional P is a fortiori exceptional B,

8 .83 . For functions of positive integral order, Picard’s

theorem is a consequence of the following theorem of Borel,

which shows not merely that there is at most one value 'excep-

tional P’, but at most one 'exceptional B\

Another direct proof, depending on a theorem of Bloch, is given by
Landau, ErgehnUee . . ., ed. 2 (1929), Ch. VII, and by Dienes, The Taylor Seriest

Ch. VIII.
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Borel’s theorem. If the order of f{z) is a positive integer^

then the exponent of convergence of the a-points of f{z) is equal to

the order, except possibly for one value of a.

Suppose that there are two exceptional values, a and 6. Then

f(z)—a = (1

)

and f(z)—b^^z^^e^'^P^(z), (2)

where Qi{z) and polynomials of degree p, and ^1(2)

and P2(^) canonical products of order less than p.

Subtracting, we have

b—a =
(3 )

or = z^^P2{z)+(b—a)e-^^^^^\

Since Q^iz) is of degree p, the right-hand side is of order p.

Hence so is the left-hand side, and so Qi{z)—Q2{z) is of degree

p, since P^{z) is of order less than p.

Differentiating
(
3 ), we have

==
(
4 )

Now the order of P^ is the same as that of P^, and so is less

than p. Hence the coefficient of is of order less than p, and,

similarly, so is that of e^K Hence we may write
(
4

) in the form

2;/c3p^gOi+Q3 —

where and are polynomials of degree p—-1 at most, and

Pg and P4 are canonical products. The two sides must have the

same zeros, so that P3 = P^, and so ^^+^3= Q2+Q^,
i.e. Qi-'Q2 = ^4—^3? which is of degree less than p. This con-

tradicts the previous result, that Qi—Q^ is of degree p, and so

proves the theorem.

8 .84 . For the proof of Schottky’s theorem we require the

following lemma:

Let (f)(r) be a real function of r for 0 ^ r ^ R^, and let

0 s; #(r) < M (0 < r < Rf), (1)

and also ’
(JS-r)®

(0< r < i? < ^1 ). (2)

Then A, ^ ^
(0 < r < iZj). (3)
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The actual form of the result (3) is not particularly important.

What is important is that it depends only on r, and <7, and

not on M,
From (1) and (2) we obtain

{0<r<R^R,), (4)

SO that the upper bound M given in (1) is reduced at once to

a multiple of VifeT. If we repeat the process, using first (4) with

rj, rg for r, R, and then (2) with for R, we obtain

(7
4{r) < (0<r<ri<r2<^i).

C t I

2**“1 2**

(ri-rf

So generally

< (r.-rf [{r^-r,r] ‘ I
Taking this gives

1+J+2+...+---"—
I

C U+:,+...+ ’ -t

0(r)<4
^^{iR.-rf] '

and, making n-> oo, the result follows.

8.85. Schottky’s theorem. If f{z) is regular and. does not

take either of the values 0 or 1 for \z\ < i?i, then for
|
2

| < i? < Jfj

where K depends on /(O) only. For all functions which satisfy the

given conditions and are such that 8<l/(0)|<l/8, |1-/(0)|>8,
we can take K to depend on 8 only.

We shall not require the actual form of the upper bound for

f{z), which could be considerably improved if necessary
;
what

is important is that it depends only on /(O) in the manner
stated, and on RjR^,

Let g^{z) = log{/(3)}, g^{z)= log{ 1 -/(z)},

where each logarithm has its principal value at z = 0. Then

gi(z) and ^2(2) are regular for |z| ^ R^. Let Mi{r) and M^ir) be

the maxima of |gri(2)| and \gi{z)\ respectively on |2| =r, and let

M{r) = max{Jlfi(r), Jf2(r)}.

Bi(r) = -minR{j7,(z)}= max log
W-r W-r 1/(2) 1

Let
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Then Caratheodory’s theorem (§ 5.5), applied to gi{z), gives

^i(pX-^ Bi{r)+ ^^\gi(())\ (0 < p < r). (1)
r— p r— p

There are now two possibilities. Either B^ir) is not large

—

say JSi(r) ^ 1, in which case (1) is a result of the required type;

or B^{r) is large, in which case there is a point z' on \z\ = r

where
1/(2;') |

is small. But if
1 /(2;') |

is small, g2{z') is (apart from

a term 2mTi) approximately equal to —f(z'); and then Cara-

theodory’s theorem, applied to loggr^, gives on the left (not

logiifi as we should in general expect), and on the right

]ogM2
= 0(yJM2). We thus obtain an inequality of the type

considered in the elementary lemma. This is the general plan

of the proof, and we now proceed to fill in the details.

Suppose that B^{r) > 1, and let z' be a point where

Bi{r) = logl/\f(z')\.

Then \f(z'}] = < e-i < L (2)

There is therefore an integer n such that

g.^{z')— 2nrri ==

m-1

Hence 19
^

2 (
3')— 2w7ri| < 2 2“"*—

1,
jn-1

and so 2\n\7T < l+\g
2{z')\ ^ l+ilf

2
(r). (3)

Let h{z) == log{g2{z)—2n7ri},

where the logarithm has its principal value at 2: — 0. Then h(z)

is regular for
l

2:| < J?!, since f{z) ^ 0 and so g2(z) ^ 2n7ri\ and

Carath6odory’s theorem gives

J? -4- 7
*

max \h(z)\ < max log
1^2 (2) -2n77t| + |A(0)|. (4)

Isj—r B T li r

The left-hand side is not less than

2n>7i l/(z’)l+ l/(z')i‘+l/(2')T‘+-

by (2). On the right we have

maxlog|j;'2(2)— 2n7rt| < log{ifera(i?)+2|n|7r} < log{2if2(i?)+l},
1*1
=«



282 INTEGRAL FUNCTIONS

by (3) ;
if w ^ 0, lgr2 (

0)— 2n7rt| > ir > 1, and so

\hm < log|<72(0)-2M7n|+7r < logdsfjWl+ l+ii/^Wl+Tr.

If n = 0, |A(0)| < |log(sr2(0)||+7T. Hence (4) gives

< -^-^{2]og{2M^(R)+ |<7,(0)1+ l}-i-ilog|?2(0)!|+7r]+log2
ii—

r

< -~flog{234(i2)+i(72(0)K-l)+ ilogl!72(0)||+^]. (5)
II—

r

This inequality, proved for jBj(r) >1, is obviously true for

Brir) ^ 1. Hence (1) and (5) give in any case

M,{p) < rw-^ ^^[log{23i2(ii) +1172(0)1+ 1}+

+ |log 19^2(0)1 1 +l^i(0)l+7r].

Since we may interchange g^(z) and g2,(z) in the whole argu-

ment, the inequality is still true if the suffixes 1 and 2 are

interchanged. Combining the two results, we have

where A' depends on |^i(0)iand |gf2(0)| only. Takingr = ^(A+p),

we obtain

M(p) < 32Af {logi/(A)+A} <
KR\m(R)

^ (R-p?
since logiV/(A) — 0{Vilf(A)}. Hence, by the lemma.

M(p)< KR\
{R-pr

and
i f{z) 1 < < exp •

Since K depends on |gri(0)] and |gr2(0)| only, the last part of

the theorem also is true.

8.86. Picard’s first theorem. An integral function which
is not constant takes every value, with one possible exception, at

least once.

Suppose that f(z) does not take either of the values a or 6

(a b). Then g(z) = {/(2:)--a}/(6~-a) does not take either of the
values 0 or 1. Hence, by Schottky’s theorem,

\g(z) I
< exp A< A,).

Taking Aj = 2A, 19(2)1 < K. Hence 9(2) is a constant.
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8.87. We can also prove the following generalization of

Picard’s theorem.

Landau’s theorem.* If oc is any number, and any number

other than 0, there is a number R = i2(a, j8) such that every function

f{z) = (x+^z+a^^+a^z^+.,.,

regular for |z| ^ ii, takes in this circle one of the values 0 or 1.

We may suppose that ol^-O, (x=^ I, for otherwise we have the

result at once. If f(z) does not take either of the values 0 or 1,

then by Schottky’s theorem \f(z)
\
< K{(x) for \z

\ < Ji?. Hence

8.88. We have so far stated Picard’s theorem in terms of

integral functions, i.e. functions with an essential singularity at

infinity. But a corresponding theorem holds for any function

with an isolated essential singularity.

Picard’s second theorem. In the neighbourhood of an iso-

lated essential singularity, a one-valued function takes every value,

with one possible exception, an infinity of times.

In other words, if f{z) is regular for 0 < \z—Zq\ < p, and there

are two unequal numbers a, b, such that f{z) ^ a, f(z) ^ b, for

\z—Zq\ < p, then Zq is not an essential singularity.

We may suppose that Zq = (), /> = 1, a = 0, and b == 1. We
prove that there is a sequence of circles \z\ — r^, where 0,

on which /(z) is bounded. By § 2.71 this precludes the existence

of a singularity at z — 0.

We start from Weierstrass’s theorem that, in the neighbour-

hood of an essential singularity, a fimction approaches arbi-

trarily near to any given value an infinity of times. Thus there

is a sequence of points Zj, Zj,... such that l2ll>|22l>-.
l
2„| ->• 0, and

l/{2n)-21<i. (
1 )

It is clear that Schottky’s theorem would enable us to con-

struct a sequence of circles, with these points as centres, in

which f(z) is bounded. These circles do not, of course, include

* Landau (1), and Ergehniase, § 25.
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the origin; but this is, so to speak, an accident arising from the

fact that we have proved Schottky’s theorem for a class of

convex curves (viz. circles). We can remove the difficulty by

making a conformal transformation, which has the effect of

replacing a circle by an elongated curve which, though it

excludes the origin, passes right round it and overlaps itself on

the far side.

Let (w — u-\-iv)y and consider the half-strip of the

24?-plane This corresponds to the interior

of the circle \z\ == 1. Let = log 2:„ (—tt < < tt), so that

R(i^„) —oo; and let f(z) = g{w).

We apply Schottky’s theorem to the function

h(w') = g(w,,+w').

This is regular for \w'\ < 47r if n is large enough, and it does
not take either of the values 0 or 1. Hence

\h{w^)\ <K==K{h(0)} < 277);

and, the numbers h(0) = g(w,^):=:f{z^) satisfying (1), we can

replace the right-hand side by an absolute constant. Hence
\g{w)\ < A for \w—w^

\ < 277, and in particular for u ~ R(w^^),

~77<t;<77. Hence

\f{z)\<A (l2 |
= lz,„|),

and the result follows.-

8.89. Asymptotic values. A number a is said to be an

asymptotic value of an integral function f{z) if there is a con-

tinuous curve from a given point to infinity, i.e. along which

|
2:|-~>oD, and along which f(z)-^a as z->oo. Thus 0 is an
asymptotic value of e®, since -> 0 as 2; oo along the negative

real axis. The function ^

J
dty

0

where g is a positive integer, has the q asymptotic values

Zrrik ?
e® je-^dt (k = 0,

0

as 2 -> 00 along the lines argz =
We may define the ‘asymptotic value oo’ similarly.

We shall now prove the following theorems.
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Every function with an isolated essential singularity at infinity^

which is not a constant, has the asymptotic value infinity.

By Laurent’s theorem, such a function is of the form

f(z)+g(z), where /(2:) is an integral function, and g(z) tends uni-

formly to a limit as \z\ -> co. Hence it is sufficient to consider

integral functions. For an integral function not a constant, the

maximum modulus M(r) tends steadily to infinity. Consider an

indefinitely increasing sequence of numbers = M{r^), Xg,...

.

It follows from Liouville’s theorem that there is a point outside

the circle \z\ = r^ at which \f(z)\ > Xj. The set of points where

1/(2) I
> Xi constitutes the interior of one or more regions

bounded by curves on which 1/(2) |

= X^; and these regions

must be exterior to the circle |2| = rj. Let one such region be

Z\. Now must extend to infinity; for otherwise we should

have a finite region with 1/(2) |

= X^ on the boundary and

\f(z)\ > Xj inside, contrary to the maximum-modulus theorem.

Further, f{z) is unbounded in Dj. For otherwise the principle

of Phragmen and LindelOf would also show that 1/(2;)
| < X^

at all points inside D^. In fact, the argument of § 5.6 applies

with P at infinity and a»(2) = rjz. Hence there is a point of

at which 1/(2) |
> Xg, and consequently a domain interior

to such that \f(z)\ > Xg at aU points of 2>2 . We can now
repeat the argument with X3,... . Hence there is a sequence of

infinite regions each interior to the preceding one and

such that \f(z)\ > X^ in and 1/(2:)
|

== X^ on its boundary.

Now, take a point on the boundary of Z)^, and join it to a point

on the boundary of Dg by a continuous curve lying in D^; then

this point to a point of by a continuous curve lying in Z>2,

and so on. We clearly obtain a continuous curve along which

/(z) -^00.

If an integral function does not take the value d, then a is an

asymptotic value.

For \j{f(z)—a] is an integral function, and so has the asymp-

totic value 00.

The argument of § 5.64 shows that if an integral function

has asymptotic values on two curves, and is bounded between

the curves, then these asymptotic values must be the same.

Asymptotic values not so connected we should consider as

distinct, whether they are equal or not.
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It was conjectured by Denjoy that an integral function of

finite order p can have at most 2p asymptotic values. The theorem

with 5/j instead of 2p was proved by Carleman; and Denjoy ’s

conjecture was finally proved by Ahlfors. The general proof is

not easy. It is, however, easy to see that there can be at most

2p straight lines from 0 to oo along which a function of order p

has distinct asymptotic values. For by § 5.61 the angle between

two such lines must be at least equal to trip.

8,9. Meromorphic functions. We shall now give a short

introduction to the theory of meromorphic functions, i.e. func-

tions whose only singularities, except at infinity, are poles.

The theory depends largely on the general Jensen formula

(§ 3.61 (4)). Let f(z) be a meromorphic function, with zeros

Ug,.- and poles 6^, 62,. - (other than 0) arranged with non-

decreasing moduli. Suppose that in the neighbourhood of the

origin it is of the form cz^+.,,y where k may be any integer.

Then Jensen's formula for z~^f(z) is

bvA.
log

As in § 3.61

2n

-’'4-logjc| = ^ J
Iog|/(re'®)| de —klogi

0

\^v^l

I/. I I

dx

X *

I®k 1 l^wil

Let n{r, 0) be the number of zeros of f(z) in Izj < r. If ^ > 0,

V = n(x,0)—k for [a^l ^ a; <|av+il; hence

r

iog-^=

If n{r, ao) is the number of poles of f{z) in Izj ^ r, we obtain

similarly

log 'Vt=
0

If A; is negative, it appears in the second integral instead of the

first. Writing

N{r,a) — j
dx +«(0,o)logr

X
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we obtain in any case 27r

284 c

Nir,0)-N{r,oo) = ± J
log|/(re^«)[ dO -log|c|. (1)

Let us write log-^a — max(log a, 0)

for any positive a. Thus

log a “ log+a— log+l/a.

2n

I^t rn(r,a) == mlr,- 1 = ~ log-*

\ /'~«7 27r J |/{rf7^)-a|
0

2^

and m(r, oo) = m{r,f) = ^ J
log'

\
f{re'^)\ dB.

dd

Then (1) may also be written

m{r, 0)+iV^(r, 0) = m(r, oo)-f-A’’(r, oo)— logjci. (2)

Now apply this formula to f{z)— a, where a is any number.

If/(z)-a = 0
^,
2^+... in the neighbourhood of the origin, we

obtain

m{r,a)+N{r,a) == m{rJ—a)+N(r,Qo)--\og\c^l

the term N{r,oo) being unaltered since the poles of f(z)—a are

the same for each a.

Now we have

l/l+ |a| < 2|/a|, 2|/i, 2|a.| or 2

according as |/| ^ 1 and |o| >1, |/| and |a( <1, |/| < 1

and |a| ^ 1, or |/| < 1 and |a| < 1. Hence

log(l/l+l«l) ^ log+|/H-log+|a|+ log2.

Hence log+|/— a| < log+|/H-log+|a|+log2,

and similarly

log+l/l < log+1/—oH-log+|aH-log2.

Hence \'in{rj—a)—m{r,f)\ < log+|ai+log 2.

It follows that

m{r,a)+N{r,a) = m(r, oo)+N(r, oo)+<^(r, a),

where |^(^a)l <.|log|c^||+log+|a|+log2.

Hence iff{z) is a meromorphic function and not a constant, the

T



2Ud

values of the sum
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m(rya)+N(r,a)

for two given values of a differ by a bounded function of r.

All the sums being to this extent equivalent, we can represent

them all, e.g. by the one with a == oo. Thus if we put

T(r) == m(r,co)+iV{r,oo), (3)

we have for all values of a

m(r,a)+iV(r,a) = T(r)+<;^(r,a),

where (l>(ry a) is {for each a) bounded as r cc.

T(r) is called the characteristic function off{z).

We shall next show that T(r) is an increasing convex function

of log r,

Jensen’s formula for f{z)—e^^ (A real) is

27r

N{r,e^^)—N{r,co) = ^ J
^og\f{re*^)

0

if /(O) 7^ e’^. Also, for any a,

— e'^l dd —log 1/(0)— c»^|,

(
4

)

2rr

^ J
logie«'®-o| de ^ log' |a|,

0

e.g. by Jensen’s theorem with f(z) = z—a, r == 1, Hence, multi-

plying (4) by l/(27r), and integrating with respect to A over

(0, 27r), we obtain

277

i.e.

J
N(r,e^^)dX —N(r,cc) = ^ J

log+|/(re’®)| dB —log+|/(0)|,

0 0

27r

m =
1 J

dx +iog+i/(o)i.

Now, for any a, N{r,a) is an increasing convex function of r,

since
dN(ry a)

d log r
== n(r, a).

which is non-negative and non-decreasing. Hence T{r) has the

same property.

In the above formulae N(r,a) measures the number of times

the function f{z) takes the value a. Since the largest contribu-



MEROMORPHIC FUNCTIONS 284 e

tions to m(r, a) come from arcs where f(z) is nearly equal to a,

m{r, a) measures in a sense the intensity of the approximation

of f(z) to a. We could describe'w(r, a)+^(r, a) as the total

affinity of the function f(z) for the value a.

For a given function, certain values may be exceptional, e.g.

in the sense that the function does not take these values. The
above theorem shows that there can be no exceptional values

in the sense that the total affinity of the function for every

value is the same, apart from bounded functions of r.

Examples, (i) Let /(z) be a rational function, say = P(z)IQ(z)y

where P(z) is of degree /i, Q(z) of degree »/, Fand Q having no common
factor. If fx > V, then

7n{r,a) -• 0(1), JV(r,a) = /xlogr-f 0(1)

for every finite a, while

m(r,QO) == (/x~-r)logr+0(l), N{r,oo) = vlogr+0(l).

If fi < Vf then

m(r, a) — 0(1), N{r,a) ~ vlogr-f 0(1)

for a ^ 0, while

m(r,0) — (i^—^)logr f 0(1), N{r,0) — ftlogr-f 0(1).

If ^ = V, let Oq and bg be the coefficients of in P and Q. Then if

a # Oo/«»o. m(r,a) = 0(1). N(r,a) = /ilogr+0(l),

while, if a^Q— h^P is of degree a,

= (/i— a)logr+0(l), = a!logr+0(l).

In any ca.se T(r) ~ O(logr).

(ii) The function e* does not take the values 0 or co; on the other

hand these are limiting values of the function as 2 —> oo. Here

JV(r, 0) = JV(r, 00
)
= 0, iH(r, 0) = m(r, cx)) — ~ ,

TT

while for a ^ Q, oo,

m{r,a) = 0(1), N(r,a) =- + 0(1).
TT

Here T(r) — rjn.

(iii) Consider similarly tans (±i are exceptional values).

8.91. Order of a meromorphic function.

morphic function /(«) is said to be of order p if

r— 00 logr
== p>

T{r) = 0(rP+*)

The mero-

80 that
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for every positive e, but not for e < 0.

To show that this agrees with the definition of order in the

case of an integral function, we shall prove:

If f(z) is an integral function.

T{r) ^ \og*M{r) < T{R)
R—

r

for 0 < r < R.

For an integral function, N(r,oo) = 0, and T{r) = m(r, oo).

The left-hand inequality is thus

27r

^ J
log+|/(re’®)i de < ]og+max|/(re*^)|,

0

which is plainly true. Also by the Poisson-Jensen formula

2rr

logl/(«»)[ -Ij d4 -

Each term in 2 is negative, and

R^—2Rrco8(d—(f>)-j-r^ ^ (jR— r)^.

M=1

h"-

-%)

Hence, taking 6 so that the left-hand side is a maximum,
Zrr

log|lf(r)l < ^ J
log|/(i?c’^)| d<j>

R+r

,

^ •

R—r

0

T(R)

and the second inequality follows.

Taking R = 2r, the identity of the two definitions of the

order of an integral function is clear.

Now let r^(a) be the moduli of the zeros off{z)— a, r^fco) the

moduli of the poles off(z). Then we have the following results.

Iff(z) is of order p, then for every a

m{r,a) = 0(r^+*), N(r,a) = 0(rP^^), n(r,a) = 0(rP‘^^)

z(irand

is convergent.
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The first two results are immediate since

m{r,a) < T{r)-\-0{l), N(r,a) ^ T(r)-^0{\).

The remaining results then follow from that on N{r, a) as in the

case of an integral function.

More precise results of the same kind are given by Nevan-

linna, Fonctiom Miromorphea, Ch. II.

8.92. Factorization of meromorphic functions. Let /(z)

be a meromorphic function of order p, with zeros a„ and poles

(/(O) 0). Then it follows from the above results that there

are integers p^ and p^ not exceeding p such that

n-1

are convergent for all values of z. Hence Pi(2:) and P^{z) are

integral functions of order not exceeding />. Also

/.(2 ) =f(z)Pi{z)

is an integral function. Now

P(r,fi) = m(r,co,/i) < m(r,oo,/)+m(r,oo,P2 )

< 7’(r,/)+T(r,P2) = 0(rP+‘)4-C>(r/’+‘).

Hence fi(z) is of order p at most, and hence

Mz) = eWp^(z).

where ^(2) is a polynomial of degree not exceeding p.

We have thus proved that

f{z) = eWA(z)/P,(2),

an extension of Hadamard’s factorization theorem to mero-

morphic functions.

A slightly deeper theorem, in which the numerator and de-

nominator do not necessarily converge separately, is proved by
Nevanlinna, Fonctions Miromorphes, Ch. III.

Further developments of the theory of meromorphic func-

tions are largely concerned with extensions of the theorems of

Picard and Borel. For these we must refer to the books of

Nevanlinna.



285 INTEGRAL FUNCTIONS

MISCELLANEOUS EXAMPLES
1. Prove that, if a is not a multiple of tt,

00
,

sin(a- 2 )
= sinae-*'-*

n- —00

2. Show that the equations

sin z = log 2 — tan z — az-\~b,

where a and b are any complex numbers, each have an infinity of roots.

3. Find all the zeros of the function

e^-1,

and show that they have no finite exponent of convergence.
00

4. If /(c) = 2 ^
1
.^” ^ function of non-integral order, show that the

n=*o

coefficients in the polynomial (?(c) — bjC-f ... -f- of Hadamard’s theorem

can be expressed in terms of Oj, ag,..., a^.

[If p is not an integer, q < /»-f 1, and P(z) — as z 0,

Hence on equating coefficients P(z) is not involved.]

5. If /(c) — 2 order p, what is the order of F{z) - 2 •

6. The generalized hypergeometric function is defined by the formula

^,,z)
2, (^,),...(^,),n!’
n -^0

where (a)„ ^ (x(a-f !)•••(« (a)o = Show that it is an integral

function ii q y p, and find its order.

7. Show that oo

/(-) = 1
n - 00

is an integral function if 1^1 < I, k > 1, and find its order.

8. If or > 1, the fimction

- n ('+5)
n-~l

is an integral function of order I /a. [For further properties of the

function see Hardy (4).]

9.

The function

n -

1

is an integral function of sfero order.

10.

Show that, if a > 0,

/.w-fi (+!.)
n=l
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is an integral function of order 1 -j- 1 /cx ; and express it in the standard

factor form in the cases a = 1, a — 2.

11. If a > 0, the function

M - 2
«.=o

r(l-han)

is an integral function of order 1/a. [Several memoirs on this function

are to be found in Acta Math. 29.]

12. If a is real, all the roots of the equation r'(z) — or(z) are real.

13. Show that

2
*1=0

coshVn ^

n!

is an integral function of order 1, and that it has an infinity of zeros,

all of them being real and negative.

14. A function f(z) of order \ has all its zeros real and negative, and
such that n{r) ^ fcVr logr. Determine the asymptotic behaviour of M(r).

[Use the method of § 8.64.]

16.

Show that, if /(z) is a canonical product with zeros z„ such that

2 1/|2„| is convergent, then /(z) = 0(e*’*'), and |/(z)| > on circles

of arbitrarily large radius.

[We have ^ / » s

|/W|<fl(l+|||)exp(2||l).
n=l W+1 ^

whence the first result easily follows. The second part then follows from

§ 8.75.]

16. In Laguerre’s theorem of § 8.52, show that /'(z) has the same
genus as/(z).

[The only case in which there is anything to prove is the case p = 1,

when the genus may be 0 or 1. Then we use the fact that the series

2 1/|2„| and 2 l/kn| converge or diverge together, compare M{r) and
M\r) by § 8.51, and apply the previous example.]

17. Show that the genus of a function of exponential type (§ 8.76) is 1.

oo

18. Show that, if/(2) = ^ a^z^ is of exponential type,

=

0(e"***),

0

and hence that (^{z) = 2 has a finite radius of convergence.

19. In order that f(z) should bo of exponential type, it is necessary

and sufficient that it should be expressible in the form

/(*) 2^ J
wherexM is regular for sufficiently large values of w (including infinity),

and (7 is a circle with centre the origin and sufficiently large radius.

[We have xM = l/w</>(l/w), where ^ is the function defined in the

previous example.]
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Let f(z) be of exponential type, and let h{6)y supposed > 0, be

the Phragmen-Lindelof function associated with f(z), with V(t) = r.

Consider the radii vectores of length h(d) making angles —6 with the

real axis, and the perpendiculars to these radii vectores at their ends

(cf. § 5.72). Then regular if w lies on the side of one of these

perpendiculars opposite to the origin.

[Wo have oo

(^(2) = J
e-*f{zt) dt

0

by term-by4.erm integration, if \z\ is small enough
; turning the contour

through an angle A, «

(f>(z) - J
dL

0

Here the integrand is 0(e-<coaA+rt{M^+A)+«}j^

and the integral is convergent if

rh(S-\-X) < cos A. (1)

Hence <f>{z) is regular at 2 = re^ if (1) holds for some value of A. If

w = rV^', then x('^) i® regular if r' > /i(A— ^')sec A for some A. This is

equivalent to the above statement.

For a detailed discussion see P61ya (4).]

21,

The function

2
2 ’*

(n-\-ayn\

is of exponential type. [For further properties of the function see

Hardy (2).]

22. Show that the function
b

f{z) = J e‘*V(<)

a

where g(t) is continuous, is of exponential type, and that the corre-

sponding function x('^) i® regular except in the interval (ia, ib) of the

imaginary axis.

23. Show that the fimction f(z) of the above example tends to zero

as 2 00 in either direction along the real axis, and deduce that f(z)

has an infinity of zeros.

24. A function /(z) is said to be of zero type ilf(z) =
In order that/(2 ) should be of zero type, it is necessary and sufficient

that *

/(«) =^ dw,
JO

where is S'U integral function of i *
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[The situation is similar to that of examples 18-19, except that here

- 0(e*«).]
00

25. A necessary and sufficient condition that f{z) ^ ^ should
w = 0

be an integral function of 1/(1

—

2 ) is that there should be an integral

function g(z) of zero type such that = g{n) for rz- = 1, 2,,.. .

[Carlson (1), Wigert (1), Hardy (14). If there is such a function g(z)y

let

9iz)
2ni

00
1 f

Then /(2)— Un — 2 “ —
. I' ® „=i* 27ri Jcl-ze’"''

'

if C is a contour enclosing the origin, and on which K(w) < log|l/z[.

This is an integral of the type used in § 4.6, and by deforming it we can

show that any branch of /{z) is regular except at z = 1 (where the

contour is nipped between 0 and log l/z). Also

m--. - x(iogi)
+^ ~ xw *».

where C' is a contour enclosing w = log l/z. This shows that f(z) is

one-valued near 2 = 1, and so an integral function of 1/(1— z).

Conversely, if /(s) is of the typo prescribed, we have

and we can put z ~ e"*", and deform the resulting contour into any

simple closed contour which encloses the origin but lies entirely inside

the circle
|

2/^| = 2tt- Finally f{e~^) is regular except for w = 0 and

w = ±2k7ri {k = 1, 2,,..), and so/(e~*') = g(w)+{l;(w), where g(w) is an

integral function of Ijwy and ^(w) is regular for \w\ < 27r. Hence the

result.]





CHAPTER IX

DIRICHLET SERIES

9.1. Introduction. By a Diriclilet series we mean, in this

chapter, a series of the form
oo

n~l

where the coefficients are any given numbers, and 5 is a com-

plex variable. The more general type of series

is also known as a Dirichlet series. The special type is obtained by

putting = log n. For the theory of the general type we must
refer to Hardy and Riesz’s General Theory of Dirichlet’s Series^

Throughout the chapter we shall write = cr-f where a and

t are real. If the Dirichlet series is convergent, we shall denote

its sum by /(«). We have already had one important example

of a Dirichlet series, the zeta-function of Riemann,

n=^i

Dirichlet series are not of such importance in general analysis

as power series because they only represent a very special class

of analytic functions. They are, however, of great importance

in applications of analysis to theory of numbers. In several

ways their theory is more complicated than that of power series.

For example, the circle of convergence, circle of absolute con-

vergence, and circle of regularity of sum-function are all the

same for a power series. In the theory of Dirichlet series, in

which ‘circle’ must be replaced by ‘half-plane’, the three corre-

sponding half-places may be all different.

9.11. The association of half-planes with a Dirichlet series

depends on the following theorem:

If the Dirichlet series is convergent for s = Sq, then it is uni-

formly convergent throughout the angular region in the s-plane

defined by the inequality

where 8 is any positive number less than ^n.
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It is sufficient to consider the case where = 0; for

where s' = 5— 5^,

and the latter series is convergent for s' ~ 0.

We suppose, then, that ^ convergent. Let

= ®n+l+^n+2+*-

SO that 0. Then
N N N , ^

2Zw Zw zz
?i= M M
Now

1 1) .r

(n+1)'* n^f ‘ i'P (A^+1)*

1 1

n+1

, r ^
n+1

<- i.i r —Jfjjfi
1

)
'(n+l)» n” j

n n
0

and |r^|<€ for n^nQ = being independent of s.

Hence for M >n^

y ^ <iiil V 1
Z, cr In" (n+lH^if"^(AM-l)"
n-~M n=M ' '

a \m^ (N+in
< 2€\s\la-\-2€,

If |arg5| < Itt— 8, i.e. tja < tan(|7r--S) = cot 8, we have

\8\la == ^{l+t^Ja^) < cosec 8.

N
Hence 2 2c(co8ec84-l).

n=M
The right-hand side is independent of 5, and tends to 0 with e;

and this establishes uniform convergence.

In particular, if the series is convergent for s^= o-Q+i^oj

convergent for s = a+i^, provided that <7 > do. For we can choose

the 8 of the above proof so small that larg(5—5o)| < 8.

9 .12 . The region of convergence of the series is a half-plane.

For we can divide values of o' into two classes, those for which

the series is convergent for 0 > a', and other values of o'. By
the above theorem, every member of the first class lies to the
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right of every member of the second class. Let be the real

number defined by this section. Then the series is convergent

for a > (Tq, divergent for a <
The number Gq is called the abscusa of convergence of the series.

The series may converge for all values of s (e.g. = l/nl), or

for no values of s (e.g. ~ n\).

The sum f(8) of the series is an analytic function of s, regular

for a > ag. For every term of the series is analytic, and any point

8 with (T > <Ty is included in a domain of uniform convergence.

The questions of the convergence of the series, and the regu-

larity of the function, on the line a — remain open; and (as

in the case of power series) various different cases are possible.

We have, howeverj the following analogue of Abel’s theorem

for power series:

If the series is convergent for s — s^, and has the sum f{s^), then

f{s) ->/(5o) w’Aen s -^Sq along any path lying entirely inside the

region |arg(5— 5o)l ^ iTT"— 8.

This follows at once from the theorem of uniform convergence.

9.13. Absolute convergence. The region of absolute con-

vergence of the Dirichlet series is a half-plane.

For the series is absolutely convergent if the series

is convergent. If this is convergent for a particular value of a,

it is clearly convergent for any greater value. Hence, as in the

case of convergence, there is a number d such that it is con-

vergent for a>dy and divergent for a <d.
Hence the original series is absolutely convergent for a > a, and

not absolutely convergent for a <5.
The number d is called the abscissa of absolute convergence.

The numbers Oq and 6 are not necessarily eqvjal, i.e. there may
be a strip of the plane in which the series is convergent, but

not absolutely convergent.

This is shown by the following example. If a > 1, we have
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The last series, as it is arranged here, is convergent for o- > 0

(and uniformly convergent in any finite region to the right of

(7 = 0). For, by a well-known theorem (P.M, § 188), it is con-

vergent if s is real and positive. Hence, by the theory of

analytic continuation, the formula holds for cr > 0.

In this case (Tq = 0, (j = 1.

In any case ^ 1.

For if convergent, is bounded as

and hence ^ ^

^«+i+8

is absolutely convergent if S > 0, which gives the result.

In the above example, a— cro= 1, so that the strip of non-

absolute convergence may be as wide as 1, though it can be

no wider.

9.14. The abscissa of convergence. The formula for Uq,

analogous to the formula (§7.1) for the radius of convergence

of a power series, takes slightly different forms according to

whether 2 is convergent or not. Let

™ %+^2+ * • •+ »

and, if 2 is convergent, let

^Og\s.n
OL = lim ,

n->oo log n
P^]im log^J

log 71

j3 being defined only if 2 i® convergent.

Then 0^ = a if divergent, and otherwise ctq = j8.

In the former case > 0, and in the latter case < 0; for

2 «n is convergent if ctq < 0.

(i) Let 2 divergent, and let s have a real positive value

for which the Dirichlet series is convergent. Let

K = = 6i+6a+...+6„, = 0,

so that is bounded, say < J?. Then

% = 2 Kn*= 2 (
5„—

n»l »=!



CONVERGENCE 293

Hence JS ^ {(^+ lY—n^}+BN^< 2BN^y
n=^i

log 1% I
< « logN + log 2B,

and so a < 5. Hence a <
A similar argument holds if ^ is convergent. If s has a real

negative value for which the Dirichlet series is convergent,

n=iV+l »=VH-1

= 2 -S„{w*— (n+!)«}—
n=N

so that kjv I ^ X (^+ 1 )*}+

—

2BN‘‘

Hence, as in the other case, ^ < a^.

(ii) Since s„= 0(n“+'), and, if.s is real,

n+1
1 1 c du

we have
N

^ 7h^

(n+1)*

N

yS-\-l

n^M V\ n=M4-l
N

?
1 8'N SM

n^-7Uil -
(
1 )

if 5 > a and € is small enough. Hence the Dirichlet series is

convergent if 5 > a; hence < a. Since = r„_i— if ^
is convergent, we find similarly that ctq < )S. This proves the

theorem.

If a = 00
,
the series is nowhere convergent, and if jS — —oo

it is everywhere convergent. This easily follows from the above

argument.

9.15. The abscissa of absolute convergence. We have

5= Em ^Qg(KI+ l"2l+-+KI)
^

log»

a= Um ^°6(l”"+il+l"n+2l+-)
^

n-.« log»
or
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according to whether ^ \^n\ divergent or convergent. This

is a particular case of the previous result-

Example. Determine (Tq and a for the series in which a„ — 1, (~ 1)",

a”(0 < a < 1), logn, 1/logn, respectively; and for the

series in which — I (n a perfect square), ~ 0 otherwise.

9.2. Convergence of the series and regularity of the

function. The region of convergence of a power series is deter-

mined in a perfectly simple way by the analytic character of

the function which it represents—the circle of convergence

passes through the singularity nearest to the centre. There is

no such simple relation in the case of Dirichlet series. There

is not necessarily any singularity on the line of convergence,

and in fact f{s) may be an integral function even though the

abscissa of convergence of the series is finite. This is shown by
the above example of the series for (1— 2^“^)^(5). This is an

integral function, since the pole of at 5 = 1 is cancelled by
the zero of 1— But the corresponding series converges for

<7 > 0 only.

On the other hand, the series for Ks), § 9.1 (2), has a singu-

larity on its line of convergence. This is a particular case of the

following theorem:

If a.f^ ^ 0 for all values of n, then the real point of the line of

convergence is a singularity off{s).

The proof is similar to that of the corresponding theorem for

power series (§7.21).

We may suppose without loss of generahty that Oq = 0. Then
if 5 == 0 is a regular point, the Taylor’s series for /(«), at the

point s= I, has a radius of convergence greater than 1. Hence
we can find a negative value of s for which

v=0
v! n

v-Q

But every term in this repeated series is positive. Hence the

order of summation may be inverted, and we obtain

/{«) = y — y—

-

rif v\
w= l v=0
00 00

-2
n^l

g(l-fi) log: n

n
n-i
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Thus the Dirichlet series is convergent for a negative value of

5, contrary to hypothesis.

9.3. Asymptotic behaviour of the function as ^ oo. The

function f(s) is bounded in any half-plane included in the half-

plane of absolute convergence.

For

for a a > cr, and all values of /.

If the series

n~l

is convergent, we can take cc^—a, and the function is bounded
in the half-plane of absolute convergence. This is true, for

example, of the function

n-2
n^ log^n *

But in general the half-plane of absolute convergence is not

a region where f{s) is bounded, even if we exclude the neigh-

bourhood of singularities on the line a — a (see § 9.32).

Even in the half-plane of absolute convergence, the behaviour

olf{a-\-it) as ^ 00 is, in general, rather complicated. Take, for

example, a series with real positive coefficients in which

2
n=3

for a certain value of <r. Then

a„ cos(^logn)
ai+

9^

CO

for i = 2m7r/log 2, m — 1, 2,... . Also

n=3

for (2m-l-l)7r/log2, m== 1, 2 ,.... Hence R/(«) oscillates as

< 00 .

9.31 . The following theorem is due to Dirichlet: Given N real

numbers c^, Cg,.--, positive integer q, and a positive number r,

u
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we can find a number t in the range and integers

x^y such that

(»= 1, 2,...,iV^).

The proof is based on the argument that if there are m+l
points in m regions, there must be at least one region which

contains at least two points.

Consider the iV-dimensional unit cube with a vertex at the

origin and edges along the coordinate axes. Divide each edge

into q equal parts, and thus the cube into q^ equal compart-

ments. Consider the points in the cube

[Acj]
, Acg [AC2], . .

. ,
Ac^ [^^v])

»

where A takes the values 0, r,..., rq^. At least two of these

points must lie in the same compartment. If they are given by

A = Ajl, A = Ag (Aj < Ag), then there are integers x^y x^y.,, such that

{X^—\)c^—Xn ^ 1/? (n = 1, 2,..., N)y

and so ^ = A2~Ai gives the required result.

9.32, We can now deduce the following theorem.

Iff{s) == 2 where > 0 for every value of n, and where

2 divergency the function f{s) is not bounded in the region

a>d, |<|

That there may be no singularities on the boundary of this

region is shown by the function ^(s) = 2 which is regular

except at 5 = 1. We make \t\'^tQ to exclude the neighbourhood

of the point 5 == d, where there is a singularity.

We have, for every value of Ny and <7 > d,

N
and so |/(«)| V — —^ n^

n=l

>2^o<»(<logn)-2^.
n=i iV+l

By Dirichlet’s theorem there is, for given N and q, a number

t (t< t < rq^) and integers x,,..., x^, such that

(»= 1, 2,..., JV^).
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Hence cos(flogn) > cos(27r/g) for these values of n, and so

2?'0s(ll0g«)>C06^|;^
n=^l ^ n=l

Hence, taking q 6, say, so that cos 277/g =

\m\>y(o)-2y^.
JV+l

Given any positive number H, we can choose a—d so small

that f(a) '> 4kH (since f(a) -->00 as o d). Having fixed <j, we
can choose N so large that

N+l

Then \f(s)\ > H, and the result follows.

9.33. In the half-plane of convergence, the function may, for

certain values of t, become as large as a power of t. For example,

the function /(«) = (l-~2i“*)^(«), referred to in §9.13, satisfies

the inequaUty \f(a)\>Ati-<’

for some arbitrarily large values of t, and values of a between

0 and J.*

On the other hand, the function cannot have values greater

than every power of t. This is shown by the following theorem.

We have ^ |i_(o-_a,)+e)

as 1^1 00, for any value of a between oq and Uq+I; and also

uniformly in the half-plane to the right of any such line.

Suppose first that ^ is convergent. Then a^ and s^ are

bounded. Now (§ 9.14 (1)

)

N , ^ .

1 _ t % _
(n+iyf \M+iy^(N+ir‘

If a > 0, the last term tends to zero as N 00
,
and we obtain

M

N

1

M

25+ 2 '

1 M+1

n 1

»*

* See MisoeUaneous Exampleis, no. 18.
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Hence, by § 9.1
1 (2), if 0 < cr < 1,

I/Ml < ^I
i a 2 {i-

Taking M =
[<], we obtain

/(s) = C)(<i-) (0<a<l),

and similarly /(«) = 0(<^-“) (0< a< 1, a^^a). In the general

case, the series ^ convergent for 5 = (To+e, and we
obtain the above case by changing the origin to this point.

Hence the general result follows.

9.4. Functions of finite order. At this point we adopt a

slightly different point of view. We have so far considered f(s)

as being defined by the series 2 and we have confined

our attention to the half-plane of convergence of the series. It

may, however, be possible to continue the function outside this

half-plane. The function, so defined, may be regular in a wider

half-plane; or it may be regular in a wider haK-plane except for

a certain finite region. We shall now consider the relations

between a function defined in this way, and the Dirichlet series

from which it originated.

The theorem of § 9.33 suggests that it will be particularly

interesting to consider fxmetions which satisfy the condition

/(s) = 0(|<|->)

for some positive value of -4. A function which satisfies this

condition for a particular value of a is said to be of finite order

for that value; if the condition is satisfied uniformly for

ui < (7 Ug, we say that the function is of finite order in

this strip. Similarly we can define a function of finite order

in a half-plane a >
We have seen that any function defined by a Dirichlet series

is of finite order in a half-plane included in the half-plane of

convergence. It may be of finite order outside this half-plane;

for J(s), for example, Uq= (§ ^*13)

»*1

(a > 0),
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and hence, by § 9.33,

9.41. The function /x(o’). The lower bound ^ of numbers ^

such that f(s) = 0{\t\^) is called the order of f{s) for that par-

ticular value of or. Thus /x is a function of <t.

The main properties of the function ii{a) follow from the

Phragmen-Lindel5f theorem proved in § 5.65. Suppose that f(s)

is regular and of finite order for cxj < a < ug, and let

/x(o'i) = /xi, /^(ag) — /X2 - Then, if e is any positive number,

fia^+it) = f(cr2+it) --

Hence, by the theorem referred to,

f{s) = (aj < a < ug),

where k{a) =
aj— Oj

Making e -> 0, it follows that

^2 ^1

Hence the function ^(cr) is convex dotmwards.

It follows also that /x(ct) is continuous (§ 5.31).

Secondly, /x((t) == 0 for sufficiently large values of a; for since

f{s) is bounded for g> a, /x(a) < 0 for a > a; on the other hand,

if is the first coefficient in the Dirichlet series which does

not vanish, and d < oc < a,

— y y 1^,^ n° mF
n =m -I-

1

II = 7n +

1

which can be made positive by taking o large enough. Thus

\f(s)\y considered as a function of ty has a positive lower bound
if a is large enough. Hence /a(cr) > 0, so that in fact /x(a) = 0.

If now /x(c7) were negative for any value Uj in the region where

f{8) is of finite order, it would follow from (1), with o-g so large

that /xg = 0, that /x(cr) < 0 for o-i < or < ag*, and we have shown
that this is impossible if is large enough. Hence ^(a) is ne%>er

negative.

In particular, /x(a) == 0 for a > a; for we have already shown
that /x(flr) ^ 0 for cr > d.
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Again, take > a in (1), so that /xj* = 0. Then if > 0,

Hia) < /*i < fii {or > ffj.
CTg—aj

Hence fi(a) is a steadily decreasing function of a.

9.42. Perron’s formula. We next require an expression for

the sum s^ as an integral. This is a particular case of the

following theorem.

If X is not an integer
y c is any positive number, and a > Uq—c,

then c+ioo

2^=4 /
/(»+<») ^•*»-

Suppose first that a > d—c. Then the series for f(s-\-w) is

absolutely and uniformly convergent, and we have

c-irXA' c-rv±’ ^

i f f{8-\-W) — dw= f. f y271% J w 27T% J ^ 71*+*^ w
e-iU c-iU ^

00 c+iT
u, _

^ 1 r ^
27ri Zm n^ ] \n) w

Now by § 3.12G
c+»«

1 h

itri J \n) w 0

{n<x)
(n > x).

It is therefore sufficient to prove that we can replace U and T
in (2) by oo; that is, we want

limy^* f /^r- = 0,
r-^00 ^ n^ J \nj w

with a similar result for U.

Now for a fixed x,

f /*\“’ dw /xX®'*'*®’ xV’dw
nj w \n/ (logx/n)(c+*T)*^logx/« J \»/

c+tT
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Hence

PERRON’S FORMULA
C+ ioO

,

v r —=o(-s
n® J \n) w \T^n°^.
c+iT

^ n=l >

and the result (for a > a— c) follows.

Suppose next that Qq—c < a < of—c. Let a > a— a, and con-

sider the integral
^

_

/(5-l-t^;) — dw;

taken round the rectangle formed by the lines R{i^) = c,

R(t(;) = a, l{w) = — U, l(w) = T. By the theorem of § 9.33, the

integrand is
^^^_(<j4.c-ao)+€j^

and so the integrals along the horizontal sides tend to zero as

U -> oo, T -> CO. The integrand is regular inside the rectangle,

and so, by Cauchy’s theorem,

c+iao ; Qt+ico

f /(«+«’)— r fi3+w) — dtv.
2tt% J w 2m J w

c— ioo a— loo

Since a > a— ot, the right-hand side is equal to
n̂<x

first part. This completes the proof.

The particular case 5 — 0 is

c+itn

f
(cx^o)- (3)

n<:x ^'rn J w
C'-ivi

This is Perron’s formula.

9.43. There are several other formulae of the same type as

Perron’s. One which we shall use later is

00

“iSA J
r(f)/(.+»)8-»to.

»-» c-i*

where 8 > 0, A > 0, and c> 0, c> 5—a. To prove this, write

the right-hand side as

c+<«

X f
27rtA J n«l

^ dw.

and observe that we can invert the order of summation and
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integration by 'absolute convergence’. We therefore obtain
c-^ioo

n=l ^ ^

and the result follows by the calculus of residues.

9 .44 . The theorem of § 9.42 enables us to obtain a result of

the opposite type to the previous ones—we can pass from the

order of the function to the convergence of the series.

The Dirichlet series is convergent in the half-plane where f{8)

is regular and p(a) = 0.

Let 5 be a point in the interior of this half-plane, and let S be

a positive number so small that a— 8 is still in the same half-plane.

Let c > oF— (7+ 1 (so that the simpler case of the theorem of § 9.42

can be used). We deform the contour of § 9.42 (1) into the form

c— ioo, c—iTy —S—iTy —S+iT, c+iTy c-fioo,

where T > \t\. In doing so we pass over a pole at t/; = 0, with

residue /(«). Hence

n<x

“sLl J+J + J + J + /

c—iT —h—iT —8+tT r-f/T

W
dw.

'c— too C—iT —B—iT —S+iT c-tiT

Since we are in the half-plane where /x((t) = 0, we have

f^s) == O(l^l^) for every positive c. Hence
-s+ir T

x~^ dv

I
f{S+W)^dw=

J
=

-B-iT
c-hiT

and
J

/(s+w) ^ dto=
J

O(T^) ^du=
-B+iT -B

A similar result holds for the integral over {c—iT, —8— iT).

Finally, as in § 9.42,

c+ico c+ioo

^'“dw

j f (0
c+iT c+iT

00

W

^ n''+®|loga;/»|/
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We may suppose without loss of generality that x is half an

odd integer. Then

\\ogxjn\ > log{(n+^)/n} > A jn.

Hence the above expression is

0

since a+c— 1 >d.
A similar result holds for the integral over (c— i oo,c— iT);

and adding, we obtain

2 a^n-^—f(s) =
n<x

Taking T = x^^, this is

0(^-8+2C€)_f_0(^-c+2cc)^

which tends to zero as a: -> oo if e < 8/2c and e < This proves

the theorem.

A more general theorem of the same type is given in Landau’s

Handbuch, § 238, Satz 57.

9.45. Let (7^ be the abscissa limiting the half-plane where

f{8) is regular and of the form 0{t^), Then we have proved that

aQ ^ ^ a.

It is not easy to give an example where these numbers are

all different. There is some reason to suppose that, for the

function (1— 2^"®)^(5), we have =
J, so that the three numbers

are 0, and 1 respectively. But this has not been proved.

9.5. The mean-value formula. If a >5,

lim-^ r \f(s)\^dt— V
r->oc2r j

1

For l/WP

;

00 00 _

V S V
m‘’+^^ n°-^

m-\ n=i

n*l

the series being absolutely convergent, and uniformly con-

vergent in any finite f-range. Hence we may integrate term by
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term, and obtain

T

J [ \f(o\\adt='K 4-W 52^ 2 Bin(y log n/m)

2y I \J\ ^ ^2a 2?’logn/w
n=l m^n

The factor involving T is bounded for all T, m, and n, so that

the double series converges uniformly with respect to T\ and

each term tends to zero as T -> oo. Hence the sum tends to

zero as T oo, and the result follows.

9.51. The mean-value half-plane. Let be the least

number such that j(8) is regular and of finite order, and the

mean-value formula holds, for every o greater than cr^^. We
shall call the haM-plane a > the mean-value half-plane. This

expression is justified by the following theorem:*

Ufi^) ^ regular and offinite order for a^oc, and

T

i
J

\f{<x+it)\^dl

is bounded as T

2T
-T

00
,
then

T
1

lim _
t^oo2T

( 1 )

y Tfl~ 1

(2)

for <7 > a, and uniformly in any strip a < < or ^ org-

Starting with the formula of § 9.43, and moving the contour

to R(ir) = a— a, where G>a, we pass a pole at w = 0, with

residue Xf{s); and if A > a—oc, no other pole is passed. Hence
a—<r-f-ioo

2niX

00 a—<r+ioo

a—a—too

00

by the asymptotic formula for the F-function (§ 4.42, ex. (i) ).

Now if |t| < T,

00
/ \

J
dv = on dv\ = 0{e-^^),

2T 'o'T '

Carlson (1). The theorem is analogous to Parsevars theorem for Fourier
series (§ 13.54).
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and a similar result holds for the integral over (— 00 , —27).
Also, by Schwarz’s inequality,*

2T

I j
e^^^^^\f{(x+i(t+v)}\dv\

2T 2T

-2T ~2T
2T

<A
J

d?;.

Hence

lV?^e-(n8)" -m
2T

<^S2a-2a f e-^^^^\f{a+i(ti-v)}\^ dv

-2T

and, integrating with respect to t over (—7, 7),

T

-r
2T T

< A8^°-^
j

dv
J

\f{<x-\-i(t+v)}\^ dt +0(S®"-2“).

Now
-2T -T

T+v

\U{<^^-i{t+v)]\^dt^ f \f{a+it)\^dt^O{T)

-T ~T+V

uniformly for |r| < 2jy Hence

T
1
2T J

-T

C-(nS)^_/(«) dt =

uniformly with respect to T. Hencef
T M , T

g-(n8)*

||2r: I
(3)

uniformly with respect to T.

* See PM. Ch. VII, ex. 42; or § 12.41 below.

f By Minkowski’s inequality (§ 12.43), but only in the case where p == 2

and the functions are continuous.
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If S > 0, the series 2 is absolutely convergent,

and so, by § 9.5,

T

]iraJL r|y^e-<»8)^'d<=y
t-*«,2T J |^n» ^

-T

p-2(nSr
(4)

Taking, say, S = 1, it follows from (3) and (4) that

T

2^ 1/01

-T

^dt<A,

Hence by (3), with any positive S,

y
and so, since S may be as small as we please,

Kl"

is convergent, and

limyi2

1
-2(wSr vM'.

S_>0^ 71^"' ^ 71“

Given c, we can choose 8 so that the absolute value of the

left-hand side of (3) is less than c, for all values of T, and so

that

< 6 .

Having fixed 8, we can, by (4), choose so large that

T

— fly^'2T } I
n*

-T

,-(n8)* dt ,(yl^ <€.

for T > Then

-T '

< 3£

for T > To, and the theorem is proved.

9.52. If |/(«)|® has a mean-value for a= a, then the Dirichlet

aeries ia absolutely convergent for a > a+ 1. In symbols.
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It follows from the above theorem that

2:
,

^2a+2e

is convergent for every positive e. Now

Kl“
I
^ \2 I 12

y ^ f< y y
I
Zw n*

j
^ ^2a+2€ ^

1

^2a+2€ ^2(7-2a-2€
n=l n«=l

and this is bounded if e is small enough and a—a > i. This

result was obtained in another way by Hardy (10).

9.53.

If f(8) is bounded for <T>a, then ^ is con-

vergent] if
1 /(5 ) 1

M, then

1 n2a

This also follows from the theorem of § 9.51. For
T

2-S^'=“'"4J
-T

for every a > a; and making a -> a the result follows.

If we assume that f(s) is boimded, the analysis of § 9.51 can,

of course, be very much simplified.

9.54. Another consequence of these theorems is that a strip

in which f{s) is boimded, but in which the Dirichlet series is not

absolutely convergent, can be at most of breadth J.

9.55. The Dirichlet series converges in the half-plane in which

f(s) is regular and of finite order, and
T

-T
exists. Thai is, oq < tr„.

We have first to deduce an ‘order’ result for /(a) from the

given mean-value result.

We have fis) — 0{\t\^) uniformly in any strip a < a < where

Let a be a point of the strip (ot./S), R a number less than 1 and
less than oe—cr„^, independent of t. Then, if 0 < p < i?,

2w

//(*+<»<*)«#
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Hence, by Schwarz’s inequality,

2iT 2tr 2n

J#.J
\f{s+pe^’^)\^d<f> =^j Ifis+pe^^d^,.

0 0 0

Multipljing by p, and integrating with respect to p from 0 to

B, we have in

mf{8) P <^ J J
Ifis+pe^^P dpd<f>

0 0

a+R t+R a^R Kl+ l

J J
\Rx-¥iy)? dxdy

j \
\f(^+iy)\^ dy.

a-R t--R o-R -\t\-l

Kl + l

Now f \f{x+iy)\^dy^O{t)

-Ul-i

uniformly in x\ hence

which gives the required result.

We use the same contour integral as in § 9.44, a and a—S
now being in the half-plane a > a^. Then

fis+w) — dw ^ x'^
w

!/(«+«;) |2 dv

Let

Then

= / l/(<y+«+ty)l®% = 0(v).

0

<f>(T)

V(8*+T*)
+ f vtf>(v)

J (S^+v^)*
0

dv

—T

Similarly the integral over (— T, 0) is O(log T). Hence

-8+iT

I* f(8+tv) ^dw= 0(x-^ log T).

-h-iT
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Also, by the lemma,
c+iT c

r f{8+w) ^dw= { 0(VT) ^ du = 0{afT-i),

with a similar result for the integral over (c—iT, —S— iT). As

in § 9.44, the remaining integrals are Hence

y = 0(x-Slog T)+0(:ifT-i),

n<x

and, taking T — this tends to 0 as a;->cx), so that the

result follows.

9,6. The uniqueness theorem. A function f(s) can have

at most one representation as a Dirichlet series. More pre-

cisely, if CO ao

1 1

in any region of values of s, then a„ = for all values of n.

For the series 2 uniformly convergent in a

region including part of the given region and extending arbi-

trarily far to the right; and so its sum is the same analytic

function, viz. 0, in the whole region. But, if m is the first value

of n for which a^ ^ 6^,

Wl+l

and, as in § 9.41, this is positive if a is large enough. This leads

to a contradiction, and so proves the theorem.

9.61. The zeros of/(«). The above argument shows that

/(«) ahvaya haa a half-plane free from zeroa.

The problem of the distribution of the zeros of any given /(«)

is usually a very difficult one, and the results for different func-

tions may be very different. For example, it is supposed that

all the complex zeros of the function

Jl^

1*
2
3*

lie on the lines a= 1 (zeros of 1—2^-*) and tr= J (zeros of ^(s) );

the zeros on o= 1 are easily identified, but the remaining state-

ment has never been proved.

On the other hand, it is known that the function (|'(«)/^(s).
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which is represented by an absolutely convergent Dirichlet

series for C7>1, has no zeros in a certain half-plane a'>E
(E > 1), and zeros on lines a= o' which are dense everywhere

in the interval 1 < a < ^.

It is interesting to compare the general problem with the

particular case where ~ 0 except when n is a power of 2.

Then the function is of the form

where z = 2"^. The series is a power series as well as a Dirichlet

series. To each zero Zj, of the power series corresponds a sequence

of zeros
i ^_ \ogz^+2fnn

log 2
(m=0, ±1, ±2,...)

of /(«). If Zq is the zero of smallest modulus (other than 0), f(s)

has no zero to the right of the line

logl/|Zol

log2
’

there being an infinity of zeros on this line.

9.62. The function N{(7,T). Let Iq be a positive number
such that f{8) is regular for t^tQ and a sufficiently large, and

let N{g, T) be the number of zeros a -{-if of f[s) such that

a > a, /q < ^' < T, Then we have the following theorems:

9.621. Iff{s) is of finite order for a^oc, then

N{a, T) = 0(T\og T) (a > cx).

We can find a number ^ so large that \f(s)
\

has positive lower

and upper bounds on the line or = Let 0 < 8 < a). We
apply Jensen’s theorem to the circle with centre ^-{-irS and

radius If n{r) is the number of zeros of f{s) in the circle

\s—{p-{-inb)\ <r, Jensen’s theorem gives

P-oc 27r

j
^dr =^j log\f{p+in»+{p-oi)e^\ dd -log|/(^-f i»8)|.

0 u

Now f(a) = 0{t^) for o ^ oc, 8*nd so

^ogl/{i8+*«S+{/3— a)c*®}| = log|0{(nS+^—a)^}| < ^logn,
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where K depends on a, 8,... only. Also log|/(^+inS)| = 0(1);

hence

But

T
n(r)

dr < K log n.

J*

P~(X

8) r —>Kn{P-a-8),
P-a-S

and n(p~~a—S) is, if 8 is small enough, greater than the number
of zeros in the strip

a > 01+28, (n—l)S < f < (>i+|)8.

Denoting this number by we have therefore

v,^<Klogn.

Hence iV(o+28, T) ^ T,
/o/8<n<r/8

and the theorem follows.

9.622 • If f(8) is bounded for a + a,

A+a,T) = 0(T) (a>o).

The proof is similar to the previous one, but here the factor

logT obviously does not occur. The example at the end of

§ 9.61 shows that we may have N{a, T)>AT.

9.623. Iff{s) has a mean value for a = a, and is offinite order

for a ^ a, then ^ ^
We use the following lemma:

If <f>(t) is a positive continuous function in {a,b),

h b

feZa J ^ Lza J
a ^ a

Divide the interval (a, 6) into n equal parts by the points

o = Zq, Xj,..., = 6. We have

Hence i2 ^ 2 ’

X
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i.e.

Making n oo, the result follows.

The theorem may be deduced from Jensen’s theorem by an

elaboration of the argument of § 9.621, but it is more con-

venient to use the theorem of § 3.8. Applying it to the function

f{s) and the rectangle (a, T), we have, on taking real parts,

P T

27r J
N{a, T) <i(T = J

logl/(a+i<)( dt —
OL <0

T P P

— / logl/(iS+»01
/
o.rgf(a~\-iT) da —

J
arg/(ff+4^) da.

^0 oc a

( 1 )

Applying the lemma to the first term on the right of (1),

we have

r T

f-t^ / J
logl/(Q(+i<)l® dt

/q <0

<iIog <A

by hypothesis. Thus the term in question is less than AT.
Secondly, as in § 9.621, log|/(j9+i<)| is bounded if ^ is large

enough. Hence, if p is suitably chosen, the second term on the

right of (1) is 0{T).

To deal with the third term, suppose first that /(«) is real for

real s. We can take j8 so large that R{f{s)} does not vanish on

ff = /8. Then, as in § 3.56, arg/{«) is bormded on or= jS, and, on

t = T, arg/(«) = 0{g), where q is the number of times R{/(«)}

vanishes ont= T, a< a < j3. Now ont=T

R(/(«)}= m<^+iT)+f{<r-iT)} = g{a),

say, and q is the number of zeros of g[z) on the real z-axis such

that a ^ z < /9. Since g{z) = 0(T^), it follows from Jensen’s

theorem as in § 9.621 that q= O(log T). Hence the third term

on the right of (1) is 0(log T).
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If f(s) is not real on the real axis, we can consider instead

the function

and ap])ly the same proof to this.

Finally, the last term on the right of (1) is a constant. Hence

J
A>, T) da = 0{T).

a

^ a+5

But
J
N(a, T) > I

N{a, T) da ^ hN(a+h, T),

(X OL

and the result now follows.

9.7. Representation of functions by Dirichlet series.

What sort of function can be represented by a Dirichlet series ?

It would take us much too far to give anything like an
adequate answer to this question, but we can give some indica-

tions. It is not difficult to see that a Dirichlet series can only

represent functions of a very special kind.

If /(s) is representable by a Dirichlet series, it must, in the

first place, be regular and bounded in a certain half-plane (viz.

CT ^ d+e). Further, it must have a mean-value

T

27'J
-T

for all sufficiently large values of a, and the value of the limit

must decrease steadily as a increases.

Again, if f(s) = 2 ^ is real, then for u > d

„ V ®n 2 sm(T log xjn)

2Tl6gxln ’

the term occurring if x is a positive integer only. The last

series, being uniformly convergent in T, tends to zero as T -> oo.

Hence t

-T

dt=
0

(x a positive integer),

(otherwise).



314 DIRICHLET SERIES

This, therefore, is a necessary condition lorfis) to have the form

2 formulae are due to Hadamard). It is, however,

not sufficient. But it shows what special properties a function

representable by a Dirichlet series must have.

If the Dirichlet series reduces to a single term, say f{8) ™ ak~\

then f(8) is periodic, with period 27ri/log k. The general Dirichlet
00

series with period 27ri/log k is J If we insert other terms,
n 0

the property of periodicity disappears; but/(<9) always retains

a certain more general property, which resembles that of

periodicity, and any such function is said to be ‘almost periodic’.

It is in the study of almost periodic functions that answers to

the question which we have raised are to be found. We have

no space to go into this question further. But we may say

roughly that, if an almost periodic function takes a certain

value, it repeats this value, not exactly, but apjjroxiniatdy, an

infinity of times; and the points where it does this are distri-

buted in much the same way as the periods (a, 2a, 3a,...) of a

periodic function.

The theory of almost periodic functions is du(^ to H. Bohr

(f), (2), (3).

MISCELLANEOUS EXAMPLES
00

1.

Prove that, if <l>{x) — ^ then

~^<f>{x) dx

(i) for a > 0, CT > CT, (ii) for cr > 0, a > CTo.

2.

If 0 < 0 < 27r, the function /(«), defined for a > 0 by the equation

2
pinB

n=l
is an integral function.

[Use ex. 1 and proceed as in the case of C(5).]

3.

The functions defined for a > 1 by the series

2
pai(logii)>

=
n‘

71=1 n»=l

are both integral functions. [Hardy (7), (10).]

(a > 0),
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4. A function represented by a Dirichlet series cannot tend to a limit

(in the half-plane of absolute convergence) as ^ oo, unless it is a
constant.

[

QO

If f(s) -= ^ then for a > a

lim 2
‘2T

f{8)dt^a^y lim-

-T ~T
Hence, if f(8) —> a, aj ~ a, ^ |a„p " |a|‘^.

Hence |«2|^+

+

i.e. Og — 0, ag = 0,... . Hence f(s)
— a^.j

6. Show that ^

2--^.- (->!)•
C(»)

n=i

where /Lt(l) = 1, /x(n) = (
— 1)^ if n is the product of r different primes,

and otherwise /i(n) — 0. Show also that

M̂
(28) n*

a=l

[The infinite product for ^(5 ) is given in § 1.44, ox. 1.]

6. Verify the formulae*

d(n) Y d^) ^ sr {d{^)y^

C(2fi) Z, n* ' l(2s) ' Z n*
’

where d{n) denotes the number of divisors of n, and cr > 1

.

j^If the expression of n in prime factors is

d(n) = (mi-{-l)(mg4- 1).then

Hence
(2m-f 1)

pfn»

p m~0
pm*

p m-0

and

7. Verify the formulae

OP

l(s)Ua-a) = y^ (a > 1. ff > a+ 1),
n*

n^i

* A number of other formulae of this kind are given by P61ya and Szegd,

AMfgaben, VIII. Abschn., nos. 49-64.
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and*
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C(8)^(s— a)^{8— b)^{8—a—b
) ^ cr^{n)aM

1^(28—a~b) n*
n=i

(cr > 1, cr > a4“l» cr > 6+1, o >

where or.(n) denotes the sum of the ath powei’s of tlie divisors of n.

I^The second formula follows from the identity

( 1 "V “')( I •){ 1 -)( 1
^

“ rr^p-)(i~y) Z *

J
7/1= 0

8.

Let d;fe(n), where A; — 2, 3,..., denote the number of ways of ex-

pressing w as a product of k factors, the order of the factors being taken

into account. Then

and

y n‘
n~i

(tT> 1);

2 -tv
’’ - «'*»'n h*-(iir-))

”•

n=l p

where p runs through all prime numbers, and PJ(z) is the Legendre

polynomial of degree n. [Titchmarsh (8),]

9. Show that, if/(fi) has the period 27Ti/logA:, Hadamard’s formulae

for the coefficients (§ 9.7) are equivalent to Laurent's formulae for

the coefficients in a power series.

10. A necessary and .sufficient condition that a function /(«) should

be of the form

hi
]^n$

71=0

oo

2 :

is that/(«) should be regular and bounded for sufficiently large values

of a, and have the period 27ri/logA:.

1 1 . If a„ = 0 unless n is a power of k, then

Oo a = or, - (7,^.

QO

12. The function /(«) = ^ 2”*"** has the line a = 0 as a natural
m-o

boundary. [See §4.71.]

13. The function /(8) = 2 where p runs through all prime num-
bers, has the line o = 0 as a natural boundary.

[This is a more recondite example than the previous one } see Landau
and Walfisz (1).]

Ramanujan (1). B. M. Wilson (1).
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14. The function ^

n=l

is meromorphic if r = 1, or if r = 2, k — 2; for other values of r and
k it has the line a = 0 as a natural boundary. [Estermann (1).]

15. Show that, for the function

/x(cr) - 0 ((7 > 1), = 1-2(7 ((T<0),

and that /i(<7) < 1— (7 for 0 < cr < 1.

[The result for a < 0 follows from the functional equation for ^{a).

The aotual value of /x(<t) for 0 < c7 < 1 is not known.]

16. Calculate the mean value

r

-T
for the functions f(s) = ^(s), l/^(s),

17. Show that, if /(«) is unbounded on any line a -= a in the half-

plane where it is of finite order, it is also unbounded on every line

a — p < (X in the same half-plane.

18. Show that the function/(«) = (1— is unbounded on ©very

line c7 — a < 1 ; and that t^~^f{a) is unbounded on every line or = a,

where 0 < a <
[The theorem of § 9.32 shows that ^(«), and so also (1— 2^*-*)^{5), is

imbounded for ct > 1, |<| > 1. The theorem of § 9.41 then gives the first

result, and the second result then follows from the functional equation

for ((tf), § 4.44, and the as^miptotic formula for the F-function, § 4.42.]

n
19. If bounded, then /(a) = 2 is regular for a > 0;

and, if /(a) has a pole on o == 0, it is at most of the first order.

[

If ^(w) == 2 have
v^u

M =
« J tS

du = oL
J j

= 0 g)

•

20.

If 8^^ n, then /(«) ^ l/(a— 1) as a 1 by real values greater

than 1.

If ^ n log*n, where is a positive integer, then

k\



CHAPTER X

THE THEORY OF MEASURE AND THE
LEBESGUE INTEGRAL

10.1. Riemann integration. In the theory of analytic

functions we have used the familiar definition of an integral

due to Riemann. In the theory of functions of a real variable,

however, Riemann ’s definition has been almost entirely super-

seded by a more general one, due to Lebesgue.

Lebesgue’s definition enables us to integrate functions for

which Riemann’s method fails; but this is only one of its

advantages. The new theory gives us a command over the

whole subject which was previously lacking. It deals, so to

speak, automatically with many of the limiting processes which

present difficulties in the Riemann theory. At this early stage

it is difficult to say anything more precise.

Let us begin by recalling the definition of the Riemann

integral of a bounded function. Suppose that f{x) is bounded

in the interval (a, 6); we subdivide this interval by means of the

points Xq, x^y...y so that

a=^XQ<Xi< =
Let be the lower and upper bounds oif{x) in the interval

Xj,<x^ x^y^i, and let

V~Q v-0

When the number of division-points is increased indefinitely so

that the greatest interval tends to zero, each of the

sums 8 and S tends to a limit. If the limits are the same, their

common value is the Riemann integral

b

J fix) dx.

a

In certain cases, e.g. if f{x) is continuous, we can say definitely

that this integral exists.

Suppose in particular that /(a;) takes the values 0 and 1 only,

say f{x) == 1 in a set JSJ, and f{x) = 0 elsewhere. Then it is easily

seen that s is equal to the sum of the lengths of those intervals

throughout which f{x) = 1, i.e. intervals consisting entirely of
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points of E\ while S is the sum of lengths of intervals which

include any point of E, If the set E consists of a finite number
of intervals, there is no difficulty in proving that 8 and 8 tend

to the same hmit, viz. the sum of the lengths of the intervals

of E.

The Riemann integral of such a function {f{x) == 1 in i?,

0 elsewhere) may be called the extent of the set E, Extent is

thus a generalization of the length of an interval. The extent

of E, if it exists, is written e{E), so that

b

e{E) = J f{x) dx.

a

Whether the extent exists or not, the limits of s and 8 exist.

These limits are called the interior and exterior extents* of E,

and are written ei{E), e^(E),

The function f(x) is called the characteristic function of the

set E,

It is easy to define a set which has no extent. Let E be the

set of all rational values of x in (a, 6), Since every interval con-

tains both rational and irrational numbers, we have ™ 0,

1, for all modes of division and all values of v. Hence

^ 0, 8 = b—a, and consequently

ei(E) = 0, e^(E) = b--a,

The extent of this set is therefore undefined, and the charac-

teristic function f{x) has no Riemann integral.

In the general case we may say that the definition of the

extent of E depends on the consideration of certain sets of

intervals related to Ey the number of such intervals being

always finite.

Lebesgue’s generalization is in the first place a generalization

of extent; and it consists fundamentally in removing the restric-

tion that our sets of intervals must be finite. Before we can

introduce it formally we must make some further remarks about

sets of points.

10.2. Sets of points. For the fundamental ideas concerning

sets of points we refer to Hardy’s Pure MathematicSy Chapter I.

We usually denote sets of points by Ey and suppose

Tlie exterior extent is sometimes called the content.
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them all to lie within a finite interval (a, 6). We denote by CE
the complement of E, i.e. the set of all points of the interval

(a, 6) which do not belong to E.

If and ^wo sets, we denote by E-^-\-E^ the set of

all points belonging to or E^, and by E^E^ the set of all

points belonging to both E^ and E^. The notation is suggested

by the fact that, if fx(x), /^(x) are the characteristic functions

of E^ and E^y then fi{x)f.y(x) is the characteristic function of

while, if E^ and E.^ have no common points, f^{x)-\-f2{x)

is the characteristic function of

Note that C(Ei+E^) - CE^ . CE^,

The notation extends in an obvious way to any finite number
of sets; also, if there are an infinity of given sets then

JE'j+i?2 +**- denotes the set of points belonging to any of the

given sets, and E^E^.,. denotes the set of points belonging to

each of the given sets.

By Ej^ < E2 we mean that every point of Ej^ is a point of

Two sets are said to ‘overlap’ if they have common points.

An infinite set of points is said to be enumerable if it is possible

to define a one-to-one correspondence between the points of the

set and the integers 1, 2, 3,...; that is, we must be able to arrange

the points in a sequence x^, x^, such that every point

occupies a definite place in the sequence. For example, the set

of numbers 1, J, |,... is enumerable; so is the set i, J, .

I’lie set of all proper rational fractions is enumerable ; for w e

can arrange them as follows:

h 3 > h h-*

taking the denominators in order of magnitude, then the

numerators.

The ‘sum’ of two enumerable sets is enumerable; for if E-^

consists of the points x^, and Eo of then all points

of E1
+E2 are given by the sequence

^2 > •

A similar argument applies to any finite number of enumer-

able sets. Further, the sum ofan enumerable infinity ofenumerable

sets is enumerable] for let the sets be E^, and let E^ consist

of the points ^ -r ^
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We can arrange the double infinity of points as a single

infinity in various ways, e.g. by taking together points for which

m+n — k (A; = 2, 3,,..), and in each such group taking m in-

creasing; thus

^l,V ^1 , 2 »
^

2 , 1 >
^

1 . 3 >
^2, 2 ’

^3, 1 >
^1, 4

>"* •

This proves the theorem.

Finally a subset of an enumerable set is enumerable. For any

sub-set of clearly has a first member, a second

member, a third member, and so on, and this gives the required

enumeration.

10.201 • The reader might begin to suspect that all sets were

enumerable; but this is not the case. The set of all numbers

between 0 and 1 is not enumerable.

To prove this, suppose on the contrary it were possible to

arrange all such numbers in a sequence Xo,... . Suppose each

such number expressed as an infinite decimal (‘terminating’

decimals end with an infinity of O’s; we exclude a recurring 9).

We then form a new decimal f ,
such that, for every value of n^

the nth term in the decimal for ^ exceeds by 1 the nth term in

the decimal for x^^, if it is 0, 1 ,..., 7, and is 0 if it is 8 or 9. This

rule defines ^ completely, and | does not end with a recurring

9. But I is a number between 0 and 1, and is different from

any of the numbers This contradicts the assumption that

the sequence contains all the numbers between 0 and 1.

A similar argument applies to any interval. We call all the

points of an interval a continuum. Our result is that a continuum

is not enumerable,

10.202. A point ^ is called a ‘limit-point’ of a set E if, how-

ever small S may be, there are points of E, other than f ,
in the

interval (^—8,1+8). (See P.Jf., p. 30, where a limit-point is

called a ‘point of accumulation’.)

A set which contains all its limit-points is called a closed set.

Thus an interval together with its end-points is a closed set.

Such an interval is called a closed interval.

An open interval is an interval without its end-points. An
open set is the complement of a closed set with respect to an

open interval.

An open set consists of an enumerable set of non-overlapping
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open intervals. For let E be an open set, and let a; be a point

of E. Then, for sufficiently small values of S, the interval (x,x+S)

consists entirely of points of E; for otherwise x would be a limit-

point of CE, so that CE would not be closed. Let be the

upper bound of values of 8 with this property. Then ^ belongs

to E for x^^ < a::+Sj*, but is not a point of E, since, if

it were, the interval of points of E would extend beyond it, by

the above argument.

Similarly there is a number Sg such that | is in .B for

X— 82 < ^ < a:, while a?— 82 is not in E.

Thus X is a, point of an open interval (a:— 82,:r+8i) of points

of E.

Similarly all points of E fall into open intervals. To arrange

these intervals as an enumerable sequence, take first the inter-

val, if there is one, greater than i(6— a); next, in the order in

which they occur on the line, those whose length is < \{b—a)

and > J(6—-a); and so on. Every interval of E has a definite

place in this enumeration.

The 'sum' of two open sets is an open set. For if B = B^-f Bg,

and Bj and Bg are open, every point of B is an interior point

of an interval of points of B.

The same argument shows that the sum of any finite number,

or of an enumerable infinity, of open sets is open. In particular

(the converse of the above theorem), the sum of an infinity of

open intervals is an open set.

Also if Bj and E^ are open sets, then B^Bg is open. For a

point of B^Bg is an interior point of intervals both of B^ and

of Bg*, and so it is not a limit-point of C{E^E^, which consists

of points of either CE^ or CE^.

This argument cannot be extended to an infinity of sets;

e.g. if B^ is the open interval — 1/w < a; < 1/w, then E^E^ .. is

the single point a: = 0.

10.21. The measure of a set of points. We are now in a

position to define a new generalization of Tength'. Instead of

starting from a finite number of intervals, we start from an

open set, which may contain an infinity of intervals.

The measure of an open set is defined to be the sum of the

lengths of its intervals. This sum is, in general, the sum of an

infinite series. It is always convergent, since the sum of any
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finite number of terms is the sum of the lengths of a finite

number of non-overlapping intervals, aU contained in an interval

(a, 6), and so is not greater than 6— a. Hence the measure of

any open set contained in (a,b) does not exceed b—a.
The exterior measure of a set E is the lower bound of the measures

of all open sets which contain E. It is denoted by mJ^E). It is

clear that ^ ^ ?

0 < m^{E) < h—a,

and that, if E^ < E^, then m^{Ef) < m^{E^).

The interior m^easure, m^{E), is defined by the formula

m^{E) = b—a—mJ^CE).

If m^(E) ~ m^{E), then the set E is said to be measurable^ and

the common value of and m^(E) is called its measure, and is

denoted by m(E).

We have also
i > 7-tvm^iCE) = b~a—w,^(E),

If E is measurable, so that m^(£) ™ it follows that

m^{CE) = m^{CE). Hence CE is measurable, and

m{E)-{-m{CE) = b~a.

Notice that we have given two definitions of the measure of

an open set, one direct and one indirect. It will appear before

long that they are equivalent. Meanwhile, in arguments in-

volving open sets, we use the direct definition.

10.22. For any set E we have

mi{E) < mJ,E).

For, by the definition of exterior measure, there are open sets

O and O', including E and CE respectively, and such that

m(P) <m^{E)+€,

m{0') < mJi^CE)-{-e.

If c > 0, every point of the interval (a+e, 6— c) is an interior

point of an interval of 0 or of O'; and so, by the Heine-Borel

theorem,* we can select from these intervals a finite set, say Q,
which together include (a-f-€,f>— c). Then plainly

wi(^) ^ b—a—2e
and m(0) < m(0)+m(0').

P.M. § 105. In the proof there given we start with an interval ending at

a, whereas here there is an interval including a. This does not affect the proof.
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Combining these inequalities we have

b—a <
Making e -> 0, it follows that

6—a < mJ,E)+m^{GE),

which is equivalent to the result stated.

lfm^{E) — 0, itfollows that m^{E) = 0. Hence E is mejasurahlty

and its measure is zero.

10.23. We now come to the two fimdamental theorems in

the theory of measure.

First fundamental theorem. If E^, JE'a* •••»

measurable sets, then the set E == ^ measurable,

m(E) ^ .

If El, do not overlajK then the equality holds. [Otherwise the

series may diverge.)

Second fundamental tneorem. If Ei, (^re measurable

sets, them the set EiE^E^... is measurable.

That is, the set of points belonging to any of the sets Ei, E^,...

is measurable, and so is the set of points belonging to aU of them.

We shall begin by proving two lemmas on open sets, the first

of which is the first fimdamental theorem for open sets. We
next prove a general theorem on exterior measure, and deduce

from it the first fundamental theorem for the case where the

sets do not overlap. Then we obtain the second theorem for

two sets, and use it to complete the first theorem. Finally we
use this result to complete the second theorem.

10.24. If Oi, 0^,... are open sets (overlapping or not), and

O = 0i+02+^3'+’**-^

then m(OX • (1)

We assume the convergence of the series on the right, since

otherwise the theorem is meaningless.

Let the intervals of 0^ be (ctrn.ny^m.n) (m=l, 2,...), and

let those of 0 be (A^,Bj^) (k— 1,2,...). Let c be a positive

number less than Then every point of the interval

(Aj^-\-€, Bi^—e) is an interior point of one of the intervals

(<im.ni^m,n) which make up (Aj^,Bi^). If denotes a summa-
tion over these intervals, it follows from the Heine-Borel

theorem, as in the previous proof, that
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Bjc—A^—2€ < 2* «m,n)-

Making c -)• 0, we obtain

(2)

and, summing with respect to k,

(6^, (3)

Since a convergent double series of positive terms can be
summed in any manner, the right-hand side of (3) can be re-

arranged in the form

n=l m=l n=l

This proves the theorem.

If none of the sets overlap, each interval (A £*) coincides

with one interval (a^„, b^ „), and the inequaUties (2) and (3),

and so also (1), become equalities.

An enumerable set is measurable, and its measure is zero. For

let the set be Zi, Include z^ in an open interval of length e.

If this does not include Z
2 , we can include x^ in an interval of

length |€; and so generally z„ in an interval of length t/2". Thus

the given set can be included in an open set ofmeasure not greater

than 2c. Since c may be as small as we please, the exterior

measure of the set is zero. Hence its measure is zero.

10.241. If O and O' are open sets which together include all

points of the interval {a, b), then

m{00') < m(0)+m{0')—(b—a).

By the Heine-Borel theorem we can select finite sets of the

intervals of O and O', say Q from O and Q' from O', such that

Q and Q' together include the whole interval (o+€,6— c); and

we may, by adding further intervals if necessary, suppose that

0 = Q+B, 0' = Q'+R',

where m{B) < e, m(B') < e. Now

00' < QQ'+B-\-B',

$0 that by the previous lenuna

m(OO') < m(QQ')+»»(B)+m(i2')< m(QQ')+2e.
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But fn{Q)+in{Q')—m{QQ') > b--a—2€, from elementary con-

siderations, and m(0) ^ m(Q), m{0') ^ m{Q'), Making c 0,

the result follows.*

10 .25 . If

E =
then •

We can enclose in an open set 0^ such that

Summing with respect to n, and using the result of § 10.24,

m(0) < wi(0i)+m(02)+... < mJ^Efi+mJ^E^)+...+e,

But 0 is an open set which includes E, Hence

mJl^E) < m(0).

Hence mJ^E) < mJ,Ef)+mJ,E^)+..,+€,

and, making c -> 0, the result follows.

10 .26 . If El, j&2>-” non-overlapping measurable sets, and

E =
then E is measurable, and

m(E) = m(£'i)+m(jB?2)+- - •

We may suppose that all the sets are included in (a, 6).

(i) Consider first the case of two sets, E = JE'j-j-JE'g. We know
already that

m^(E) < m^{Ei)+m^{E^) = m(A\)+m(£?2 )-

Hence it is sufficient to prove that

mi(E) '^m{Ei)+m(E2)y

i.e. that m^{CE) < m(CEi)-\-m[CE^—{b—a).

Now we can include GEi, CE^, in open sets O^, Og? s^^h that

m(Oi) < m(CEf)-{-€, m{0^ < 7n((7^2)+€-

Since Ei and E^ have no common points, CEi and CE2 together

include the whole interval, and hence so do and Og. Hence

^(<^1^2 ) < wi(Oi)-fm((92)~(6—a).

Actxially the two sides are equal. This follows in due course from the
first fundamental theorem.
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But OjOg includes CE. Hence

mJ^CE) < m{0^0^) < m{0^)-]-m(02)—{b—a)

< m(CE^)+m{CE2)~^2€—{b----a),

and, making e 0, the result follows.

(ii) The theorem for any finite number of sets follows by
repeated application of (i).

(iii) In the case of an infinity of sets, we have, for all values

of 71,

m{E^)+m{E^)+ .,.-{-m{E,,) = m{E^-\- .,,+E,,) < 6—a.

Hence 2 is convergent.

Let + Then CE < CS,, so that

m^(CE) ^ m^(C8,,) = m{CSJ = 6—a— — 77i(i;^).

Making ti -> oo we obtain

m^iGE) < 6—0— 2 ME„),

i.e.

Combining this with § 10.25, the result follows.

In particular, taking j&i, open intervals, it follows

that any open set is measurable in the general sense, and that

the two definitions of the measure of an open set agree. Also

any closed set, as the complement of an open set, is measurable.

If E^ and E2 are measurable sets, E^ being included in E^y then

J&2—*^1 measurable.

C{E^-E,) = E^+CE,.

10 .27 . If E and F are measurable sets, so is EF.
Let both sets be included in (a, b), and suppose first that F is

an interval (a,j3). Let E^ be the part of E in (a,j3), E^ the

remainder. Similarly, if 0 is an open set containing E, let

0= O14-O2 * ^2 open sets containing respectively

Ej^ and E^, if we neglect the points a and j3, as we obviously

may; and clearly

m(0) = m(0j)-\-m(02 ).

Taking lower bounds,

m^{E)==m^{Ei)+m^{E2). (1 )

Similarly, if e= CE= e,4-«2>

«»e(e) = me(c,)+me(c2).

Y
(2 )
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But, since E is measurable,

m^{E)+m^(e) = b—a, (3)

and by § 10.25

We(-£^j)+»ie(«2) > »»^(-®2+e2) = 6—O— (/S— a). (4)

From (1), (2), (3) and (4) it follows that

and hence is measurable.

The result is therefore proved if F is an interval, and so, by
the previous theorem, if F is an open set. In the general case

we can include F in an open set 0, and CF in O', so that

m(0)-\-m{0') < 6—a+€. Then

EF < EO, C{EF) - OF+F. CE < O'+O. OF,

so that

m,(FF)+m,{0(FF)} < m(F0)+m(0')+m(0 . OF)

= m(0)-\~m{0') < 6—a-f-£.

Making c 0, m^(FF)+Wg{0(FF)} ^ b— a, whence the result.

If Ey and E^ are measurable, the set E of points belonging to

E^ but not to Elis measurable.

For E = E^. CEy

10.28. We can now complete the proofs of the fundamental

theorems. Let Ey E^,... be any sets, overlapping or not, and
let E be their sum. Let

E'^ = E^. CEy E',= E^. C{Ei-\- F' ),

E', = E^.C{Ei+E'^-^E'f),

and so on. Then Ey E'y E'y... are non-overlapping measurable

sets, and E = Ei-\-E'^-\-E’^-\-...

.

Hence E is measurable, by

§ 10.26, and the proof of the first fundamental theorem is com-

pleted, the inequality then stated following from § 10.25.

Again, if F = EiE^E^..., then

C7F=CFi-fCFa-f....

Hence, by what has just been proved, CF is measurable, and so

F is measurable. This proves the second fundamental theorem.

10.29. Limiting sets. If Ey Ey... are measurable sets, each

contained in the following one, and E is their sum, then

]xmm{E„) = m{E).
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For the sets E^—E^,.^. are measurable and non-

overlapping, and

so that

m{E) = m{Ei)-{-m{E2—
= lim{m{E^)+m(E2~E^)+ ...+7n(E,^~E^^^^ == \imm{EJ.

The set E is called the outer limiting set of the sets E^,—
If each of the sets E^, E^,-.. contains the next, and E = E^E^*.,,

n—

^

This follows by complementary sets from the previous

theorem. In this case the set E is called the inner limiting set.

Unlike most of the theorems on the measure of sets, the first of

these results holds if 'measure’ is replaced by 'exterior measure’,

whether the sets are measurable or not. This remark will be

useful in the next chapter, where it happens to be inconyenient

to verify that certain sets are measurable.

If E is the outer limiting set of a sequence E^, then

limm^(EJ = m^{E).
?lr->00

Let E^ be included in an open set 0^ such that

m{OJ < m^{EJ+e.

Let <Si„ = 0„0„+i0„+2"-j /S = • Then

®n < '^n ^ ^n> ^ < S„+i, SO that S is the outer

limiting set of the sets (this is not necessarily true for 0„,

which is why we introduce S^). Hence

m^{E) < m{S) = lim»n(<S„) < limmj(i?„)+c,

and, making e -> 0, mJi,E) < lim But since a set which

includes E also includes E^, mJiE) > mg{E„) for every n. This

proves the theorem.

10.291. Cantor’s ternary set. The following set of points,

defined by Cantor, has many interesting properties.

Divide the interval (0, 1) into three equal parts, and remove

the interior of the middle part. Next subdivide each of the two

remaining parts into three equal parts, and remove the interiors

of the middle parts of each of them; and repeat this process

indefinitely. Thus at the pth step we remove 2^“^ intervals.
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We denote these intervals, from left to right, by 8
^^

where

k runs from 1 to 2^-^. For each k the length of 8
^,

is 3~^.

Let E be the set of points which remain. Then E is the set

of points represented by the infinite decimals

in the scale of 3 (indicated by the final figure), where the

numbers Ug,... take the values 0 or 2 only, never the value 1
;

for example, E includes
|
= *200..., and also

I,
which can be

represented as -0222 ... . In fact the first step described above

removes from the interval all points for which the first figure

is a 1 (except * 100 ... = *022 ...); the second step removes all

remaining points for which the second figure is a 1 (except
•010 ... = -0022 ..., and -210 ... ~ *2022 ...); and so on. Notice also

that the end-points of the intervals 8^ consist of all decimals

where the digits after a certain point are all O’s or

all 2 ’s. This is obviously true for
^ ;
then Sg, j, 82^

2

obtained

by taking the first decimal as 0 or 2 and then the rest as the

decimals corresponding to the ends of 8
^ j; and so on. Thus the

general form of the end-points of a is

•ai...a^0222...(3), •aj...a^2000...(3).

The set E is not enumerable; this may be proved in the same
way that it was proved that the continuum was not enumerable.

On the other hand, the measure of E is zero; for

m(E) = 1-2 MK-ic) = 1- 2
P-1

We shall refer to this set again in § 11.72.

Example. Prove that the measure of the set of points in the interval

(0, 1) representing numbers whose expressions as infinite decimals do
not contain some particular digit (say 7) is zero.

10.3. Measurable functions. Let/(x) be a bounded func-

tion of X in the interval a^x^^b. We denote by E(f> c) the

set of points in (a, b) where /(x) > c; and similarly with other

inequalities.

The function /(x) ia said to be measurable if any one of the sets

Eif^c), E{f<c), E(f>c), EU<c)
is measurable for ail values of c.

Any one of these four conditions implies the other three.
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Suppose, for example, that the first holds. The second follows

by complementary sets. Hence also the sets

(«= 1 , 2,...)

are all measurable. Hence the set

{E,-E^)+{E^-E.,)+... = E(c </< c+1)

is measurable. Hence

E{f^c) ^ E{f^c)-^EU>c+l)-^E{c </< c+1)

is measurable, and the result clearly follows from this,

10.31. General properties of measurable functions.

(i) Let f be a measurable function, k a constant. Then fc+/,

and in particular —/, are measurable.

This is obvious.

(ii) If f and
<f>

are measurable functions, the set E{f> (f>)
is

measurable.

If/>
<l>,

there is a rational number r such that f>r><f>.

Hence E{f> ^) = 2
r

where r runs through all rational numbers. Hence the result.

(iii) Iff and
<f>

are measurable, so aref-\-(f> and f—^-
For E(f+<f> > c) - E{f> c-<l>)

and the result follows from (ii). Similarly for /—</».

(iv) Iff and
<f>

are measurable, so is
f<f}.

The function {f{x)Y is measurable, for, if c> 0,

EiP > c) E{f> y/c)+E(f< - Vc).

The general theorem then follows from the fact that

(v) If fn{x) is a sequence of measurable functions, then

lim/„(a;), Um/„(a:),

n->oo

supposed finite, are measurable. In particular, if the sequence

tends to a limit, the limit is measurable.

ljdtJ{x) = lim/n(^). Let c be any real number, let

“ ^'(a > »+
i)
+

>

=+s)+ •••

and let E^ = i 3... . By the fundamental theorems
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E„ n and are measurable. Now E„^, the set of points com-

mon to all the sets E„,^, is the set where f^> c+l/m for

arbitrarily large values of v. Hence

/=-iim/,>c-f-l>c

in Let E^+E2+E^+,.,

.

Then E is measurable, and

f>c at all points of E. Conversely, if f(x) >c, then there is

an integer m such that/^(x) > c+ 1 /r/i for arbitrarily large values

of Vy and so x belongs to one of the sets E„^. Hence E = E{f> c),

which proves the theorem.

(vi) A continuous function is measurable. For if f{x) is con-

tinuous, it is easily seen that E(f^ c) is closed. Hence E{f> c)

is open, and so measurable.

All the ordinary functions of analysis may be obtained

by limiting processes from continuous functions, and so are

measurable. The same thing is true of some of the more arti-

ficial functions. For example,

lim{cosm!7ra:}2«^

is the limit of a contiruous function, and is equal to 1 if mix is

an integer, and otlierv-^ise is zero. If x is rational, mix is an

integer if 7n is large enough. Hence

f{x) == lim lim{cos m!7Tx}2^
7W->00 n—

is equal to 1 if x is rational, and to 0 otherwise. The fact that

this function is measurable has, of course, been proved more
directly (§ 10.22).

10.4. The Lebesgue integral of a bounded function. We
are now in a position to define the Lebesgue integral of any
bounded measurable function.

If f{x) is the characteristic function of a set E, i.e. f{x) = 1

in E and 0 elsewhere, a natural definition of the integral is

b

J f{x) dx— m{E).
a

If f{x) = kin E and 0 elsewhere, then we take
b

Jf{x) dx= km{E).
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In the general case, let cx and jS be the lower and upper bounds

of f(x). As in the case of Riemann integration, the integral is

defined as the limit of the sum; but this time the sum is obtained

by dividing up the interval of variation of f{x). We take

numbers t/ojJ/i,..., Vn+i such that

Let be the set where ^f(x) < y^+iiv— O,.,,, n~l), and
the set where f(x) -- jS. Since f(x) is measurable, all the sets are

measurable. Putting = j3, let

s=i yM^v)> -S == 2
v=0 v=0

The Lebesgue integral off(x) over (a,b) is the common limit of the

sums s and S when the number of division-points is increased

indefinitely, so that the greatest value of yy+i—y^ tends to zero.

To justify the definition we have to prove that the two limits

exist and are equal.

Suppose the interval (a, jS) divided up in two different ways,

each difference 2/^-n~”2/v way being less than e. Let the

sums formed in these two ways be s, S and s', S'. Then

s-s = 2 (yv+i-yvM^p) < ^ 2 = e(6-a),
v >=0 v=0

and similarly S'— s' < €{b—a).

We now divide up the interval (a, jS) by taking all the division-

points of the first two ways at once. This gives two more sums,

s" and S". Now the insertion of a new division-point does not

decrease a lower sum or increase an upper sum; for example, if

we insert a point t] between y^ and y^^^ we have

yM%) < yv'ff<'{E{yv <f< </< 2/..+1 )}.

so that the lower sum is not decreased. Applying this principle

repeatedly, we obtain

s ^ s”, s' ^ s",

and similarly S" <5, S' < S'.

It follows that the intervals (a, S) and {s', S') have points in

common, e.g. all points of the interval (s', S"). Hence the

numbers s, s', S, S' all lie within an interval of length 2e(6— a).

The existence and equality of the limits then follow from the

genmal principle of convergence.
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10.41. Comparison with Riemann’s definition. Perhaps

the most obvious difference to the beginner is that, in Lebesgue’s

definition, we divide up the interval of variation of the function

instead of the interval of integration. This, however, is com-

paratively unimportant. What is essential is that we use the

general theory of ‘measure’ of sets instead of the more limited

theory of ‘extent’. It would be possible to build up an integral

from integrals of characteristic functions, but using extent

instead of measure. This would be substantially equivalent to

Riemann’s definition. On the other hand, it is possible to define

an integral equivalent to Lebesgue’s by dividing up the interval

of integration in a suitable way.

In both Riemann’s and Lebesgue/s definitions we have

upper and lower sums which tend to limits. In the Riemann
case the two limits are not necessarily the same, and the func-

tion is only integrable if they are the same. In the Lebesgue

case the two limits are necessarily the same, their equality

being a consequence of the assumption that the function is

measurable.

Lebesgue’s definition is more general than Riemann’s. For

the characteristic function of the set of rational points has a

Lebesgue integral, but not a Riemann integral; and we shall see

later that, if a function has a Riemann integral, then it also has

a Lebesgue integral, and the two are equal.

We use the same notation

b

I
f{x) dx

a

for a Lebesgue integral as we have done for a Biemann integral.

When it is necessary to distinguish a Riemann integral from

a Lebesgue integral, we shall denote the former by
h

B
J
f{x) dx.

a

10.42. Integral over any measurable set. Let E be any

measiurable set contained in an interval {a,h). The integral of

f{x) over E may be defined in the same way as the integral

over an interval. The sets e„ of § 10.4 are now the sub-sets of

E where y, </{*)< the proof of the existence of the
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integral is practically unchanged. The integral is written

/(a:) dx.

Any integral over a set of measure zero is zero. For all the sets

By are of measure zero, and so the sums s and 8 are always 0.

We might also define the integral by putting f(x) == 0 in CE,
and then using the definition of the integral over an interval.

It is easily seen that the two definitions are equivalent.

10.43. Henceforward we shall assume that all sets and func-

tions introduced are measurable, without always saying so

explicitly.

10.44. Elementary properties of the integral of a
bounded function.

(i) The mean-value theorem. If ol ^f{x) ^ j
8

,
then

(xm{E) < f f(x) dx < j8m(JS/).
Je

For it is easily seen that am(E) < 5 < ^m{E)y and the result

follows in the hmit.

(ii) The integral is additive for a finite number or for an
enumerable infinity of non-overlapping sets included in a finite

interval. That is, if

E = Ey^-\-E2-\- ...,

then f{x) dx = f{x) dx + f(x) dx

Suppose first that there are two sets, E^ and JB/g. Inserting

division-points y^, the sets E, E^, E^ are divided into sub-sets

el, el, such that

m{ef)=-m{el)-\-m{el).

Hence f, + f = 2 Z
j El J E%

; = hm 2 vM^v) =

Similarly for any finite number of sets.

If there are an infinity of sets, let 8^ be the sum of the first

n, the remainder. Then

But, by the mean-value theorem, if l/(a:)| ^ M, then

1

J^/(aj) da:
I

<
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and this tends to zero as n -> oo, since the series ^ ^(^n)
vergent. Hence

r =Um f = f + f +....
Je JSn JEx JEt

(iii) //, in a set E, f(x) < ^(^), then

jj^
/(^) ^ jj^

Take division-points y^, and define the sets e^, by means of

f{x). Then, in <f>ix) '^f{x)^y^. Hence

^(x) da; = 2 vM^v)-

The right-hand side tends to j^f(x) dx, whence the result follows.

(iv) The integral of the sum of a finite number of hounded

measurable functions is the sum of the integrals of the separate

functions.

In the first place, if i is a constant,

(/+*) dx^j^fdx + j^kdx = j^ fdx +km{E).

For calculate the sum s relative tof{x) with the scale j/q, yi,...,

and the sum s' relative tof(x)+k with the scale yo+k, A:,...

.

Then = 2 iyp+^)M^y) = s+km(E),

and the result follows in the limit.

Now consider any two functions /(a:) and <f>(x). We have

L dx= 2 /,^(/+^)

J Cy

^8+ j^(f>dx

by what has just been proved. Similarly, replacing by
we obtain . .

{f+4>) dx^8+ j^<f,dx.

The result now follows in the limit.

The result for any finite number of functions is obtained by
repeated application of the result for two functions.

(v) If k is a constant,

kf{x) dx^kj^ f(x) dx.

This is obvious if ib= 0. If &> 0, calculate the second integral
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with the scale and the first with the scale Then the sets

are the same in each case, and s ~ ks', whence the result.

(vi) We have

I

f{^) dx\^< jj,,
\f(x)\ dx.

Let be the set where f{x) ^ 0, ^2 where f(x) < 0.

and the result is obvious.

(vii) A relation which holds except in a set of measure zero

is said to hold almost everywhere.

Two functions which are equal almost everywhere have the same
integral.

Let f{x) = <f){x) at all points of E, except in a set e of measure

zero. Then

Je (/-^^) dx + (/-^) dx.

The first term is zero because m{e) = 0, and the second because

the integrand is everywhere zero. Hence

Je
=

(viii) If f{x) ^ 0 and f(x) dx ~ 0, then •f{x) = 0 almost

everywhere in E.

Let Eq == E(f~ 0), and

E{MI{n+l)<f^Mln), n=: 1,2,...,

where M is the upper bound of /. Then E = JE'o+^i+^2+*-- >

‘ £ /*= < £/<b- 0.

Thus in{E^) = 0 for »= 1, 2 ,..., and the result follows.

10.5. Lebesgue’s convergence theorem (theorem of

bounded convergence) . Let fn{x) be a sequence of measurable

functions such that |/„(«)| <M for ail values of n, when x is in

a sets, and let Um /„(*) =/(x)
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for ail values of x in E, Then

dx^j^ f{x) dx.

Since sets of measure zero can be omitted from the integrals,

it is sufficient that the conditions should hold almost everywhere.

Since \fn(^)\ < M for each n, \f(x)\ ^ M. Hence f{x) is

integrable, and we have to prove that

lim
Jg,

{f{x)-fn(x)} dx = 0.

Let = \f-~fn\^ € be any positive number, and let

El = E(€ > Qi, E^ = E(gi g^, -),

^3 = E(g2^€>gi,gi,...),

and so on. Then the sets Ej^ are measurable; they are non-

overlapping, since but not in E^^ so that

E^^^ has no point in common with Ej^\ and every point

of E belongs to some Ej^\ for g.n{x) -> 0 for every x, so that to

every x corresponds a first number k such that

all less than €, and then x belongs to Ej^,

It follows that

L 9n = 9ndx+ f g„ dx +...

.

mf Xu J Xu’^

Now < € in E^, and g^ < 2M everywhere. Hence

9n dx < €{m{Ei)+...+m(E„)}+2M{m{E^^i)+...}.

Making » -> oo, it follows that

lim 9n dx ^ em{E).

Hence, making e -> 0, it follows that

^^j^9ndx = 0,

and the theorem follows.

JPhe theorem is not true for Riemann integrals, because the

function f{x) is not necessarily integrable in Biemaim’s sense,

even if each /„(x) is. For example, let r,, be the rational

points in (0, 1), and let/„(x) = 1 if x = r,, r^,... or r„, and/„(x) == 0

elsewhere. Then ,

R jf„(x)dx=^0
0
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for every n\ but f(x) = 1 for every rational x, and f{x) = 0 for

irrational x, so that f{x) is not integrable in Riemann’s sense.

10 .51 . The theorem of bounded convergence may be stated

as a theorem on term-by-term integration of series. If the series

converges in a set E to s{x), and its partial sums

are bounded for all values of n, when x is in E, then

j^s{x) dx = j^Ui(x) dx + j^,v-2(x) dx •

This is the final form of the theorem of bounded convergence

proved for Riemann integrals in § 1.76.

10 .52 . Egoroff’s theorem.* If a sequence offunctions con-

verges to a finite limit almmt everywhere in a set E, then, given 8,

we can find a set of measure greater than m{E)—8 in which the

sequence converges uniformly.

Let fjx) be the sequence, let E' be the set where f^{x) con-

verges, say to/(x), and let = If-fJ-
Let Cl,..., Cy,... be a sequence of positive numbers tending to

zero. Let be the sub-set of E' where gy<€y. for v'^n.

Then each of the sets is contained in the next, and
their outer limiting set (§ 10.29) is E\ since gr^ -> 0 everywhere

in E\ Hence we can determine n(r) so that

Let ^ ^n(l),l'^n(2),2'"^n(r),r'

Then, in 8, < «, (n ^ n(r) ) for all values of r, i.e. g'n
->• 0

uniformly in 8', and

m{E-8) = m{E'-8) ^ | <T |= S-

This proves the theorem.

Example. Use Egoroff’s theorem to prove Lebesgue’s convergence

th^rem.

X^IO.6. If f(x) has a Riemann integral over {a,b), then it has

a Lebesgvs integral over the same interval, and the two are equal.

The result is easily proved if we assume that /(x) is measurablef

* Egoroff (1).
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for then it certainly has a Lebesgue integral. Dividing up

the interval (a,b) by the points x^, x-^,..., and denoting by

m^. My the lower and upper bounds of f{x) in a;^ < a; < ar^+j, we
have

n~l n-l n-i

2 myiXy^i-Xy) < 2 /(*) da; < 2 My{Xy^J^-Xy).
v=0 V=0 •'

^1/

The middle term is the Lebesgue integral, while each of the

extreme terms tends to the Riemann integral. Hence they are

equal.

To prove that f{x) is necessarily measurable if it has a Rie-

mann integral, let

if,(X) = my {Xy<X^Xy+^), <!> ^X) ^ My (Xy K X ^ Xy

.

Then

n-l ? n-l S

2 my(Xy^l-Xy) = 4>{X) dX, 2 My{Xy^l-Xy) = ^(x)
i»s=0 •' i>=0 **

a a

Consider now an enumerable infinity of modes of division of

the interval (a,b) such that max(a:,,^.i— -> 0; and let each

set of division-points contain the previous set. Let E be the

set'of all the division-points. E is enumerable and so of measure

zero, and so may be neglected in integration. At any point x not

in E, <f>{x) does not decrease, and <l)(x) does not increase, as we
insert division points. Hence <l>{x) -> m(x), <I>(a:) M{x), where

in(x) and M{x) are the ‘lower and upper bounds of f{x) at x\
i.e. the limits of the lower and upper bounds in indefinitely

small intervals containing x. Also and 0(x) are measurable,

and hence so are m{x) and M(x); and, by Lebesgue’s con-

vergence theorem,

h b h b

lim
J (f)(x) dx = J

m{x) dx, lim
J
0(x) dx = J

M(x) dx.

a a a a

But if /(x) has a Biemann integral, each of these limits is equal

to it. Hence 6

j
{M(x)-m{x)}dx:=0.

a

Since M(x) > »n(x) it follows by § 10.44 (viii) that M{x) = «i(x)

almost everywhere; and since M(x) ^/(x) ^ m(x) it follows that

f{x) = m(z) almost everywhere. Hence /(x) is measurable.
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10.7. The Lebesgue integral of an unbounded function.

Let f(x) be an unbounded measurable fxmction, and suppose

first that f{x) ^ 0. Let {f{x)}„, or simply (/)„, denote f{x) at

points where f{x) ^ n, but n where f(x) > n. Then is

bounded and measurable, and so integrable. We define the

integral of f{x) over the set to be the limit, if it exists, of the

integral of {/(a;)}„,

/jj
f(^) dx- lira J^{/(a:)}„ dx.

For a positive function f{x) to be integrable over E, it is

clearly necessary and sufficient that

/^ {/(*)}» dx

should be bounded.

The integral of a negative function may be defined in a similar

way. In the general case, let }{x) > 0 in E^, f{x) < 0 in E^.

Then we define the integral of f{x) by the equation

fix) dx = j^ fix) dx + j^J{x) dx.

A function which is integrable in this sense is ‘absolutely

integrable’, i.e. |/(a:)l is also integrable. In fact it is clear that

/g \fi^)\ dx =
jj^

fix) dx - dx.

It would of course be possible to define integrals which are not

absolutely convergent; but we shall see that integrals of the

above kind preserve all the characteristic properties of integrals

of bounded functions, whereas this would not be true of non-

absolutely convergent integrals.

We shall henceforth use the word ‘integrable’ to describe any

function, bounded or unbounded, which has an integral in the

above sense.

The use of the expression ‘infinity’, introduced in § 5.701, is

also very convenient here. For example, if

Jg{/(*)}n
dx

tends to infinity with n, we write

J^/(x)da: = co.
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J.

Examples, (i) Show that
J
x~^dx exists as a Lebesgue integral, and

is equal to 1/(1— a), if 0 < a < 1 ; but is infinite if a > 1.

[The Lebesgue definition of the integral is

\ ndx -h
j

0 n->/

X dx].

and the results are the same as in the elementary theory.]

(ii) More generally, let/(a;) be positive, and bounded in (c, 1) for every

positive e. Then
^ i

r f(x) dx = lim ff(x) dx
J c~>o
0 €

in the sense that both sides are finite and equal, or both infinite.

(iii) The function

is not integrable in Lebesgue’s sense over (0, 1).

1

[The function is continuous over (c, 1), and lim f(x) dx exists. But
c-K) J

€
1

J
|/(a:)| dx = CO i

0

for |/{^)| > -|cos-?5 — 2x > - — 2a;
’

' x\ x^ X

in each of the intervals {(2n+ J)7r}"i < x < {(2n— J)!!}*"*, and it is easily

seen from this that
1

J
{\fix)\),dx> Alogn.]

0

(iv) Let f(x) be any measurable function in E, and let be the sub-set

of E where n— 1 ^ f(x) < n. Then the necessary and sufficient con-
00

dition that f(x) should be integrable over E is that ^ \rt\m(e^) should
fist— CO

be convergent.

(v) We might define the integral of a positive unbounded function

f(x) by taking {/(a;)}" — f{x) if f(x) < n, and otherwise {/(a;)}** 0, and
substituting {/(a;)}** for in Lebesgue’s definition. Show that this

definition is equivalent to that of Lebesgue.

(vi) If |/(a;)| < ^(a;), and </>{x) is integrable over E^ then f{x) is in-

tegrable over E,

(vii) If f(x) is integrable over E, and E^ is the part of E where

> w, then in{E^) = o {I In).
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(viii) If f{x) 0 at every poirtt of Cantor’s ternary set, and f{x) p
in each of the complementary intervals of length 3“^, then

1

J
f(x) dx

0

exists in Lebesgne’s sense and is eqtial to 3.

10.71. Elementary properties of integrals. The integral

is additive, i.e. if Ei, are non-overlapping sets, and
E— then

We may suppose without loss of generality that/ 2^0; for if

the result is true for positive functions it is true similarly for

negative functions, and so by addition in the general case. This

remark simplifies many of our proofs.

We define (/),^ as before. The integral of (/),^ is additive,

so that

Now make n ~> oo. If there are only a finite number of sets,

the result follows (from the equality). If there are an infinity

of sets we obtain (from the inequality)

2 /„./<'»

But for any value of K

Making n->co first, and then X oo, we obtain

Hence the result. (Notice the analogy with the proof given in

§1.62 that a double series of positive terms may be summed
by rows or by columns to the same sum.)

10.72. The sum of a finite number of integrable functions is

integrable, and the integral of the sum is the sum of the integrals

of the separate functions.

It is sufficient to consider two functions, say f{x) and g{x).

Suppose first that they are both positive, and let
<f> —f-\-g. Then

(/)»+ (?)»
Z
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Hence

(-AL ^ Jg if)n dx + (!7)„ dx < dx,

and making n->co

L ^ ^L/ + L ^ ^L ^

which gives the required result.

If /> 0, ^ < 0, consider the set where > 0. Here

/== ^+(“?)5

and the result follows from the previous case. Similarly where

^ < 0 we consider —g =/-f(— ^).

Having proved the result for the sum and difference of

positive functions, the general result now follows.

10.73. The following results can easily be deduced from the

corresponding results for bounded functions:

(i) If h is a constant^

^^hfdx = k Ij^fdx.

(ii)

(iii) Two functions which arc equal almost everywhere have the

same integral.

(iv) If fix) ^ 0, f(x) = 0, then f{x) = 0 almost everywhere

in E.

(v) Iff{x) is integrable over E, and J5?i, is a sequence of

sets contained in E such that m{Ej^) -> 0, then f{x) dx 0, and

indeed uniformly for all such sequences of sets.

For, supposing, as we may, that f{x) > 0, choose n so that

l^[fi^)-{fi^)}n\dx<€.

Having fixed n, we have

jst ^ < « (* > *o)-

Hence

dx = {/(X)}„ dx + [f(x)-{f(x)}n] dx

^ L* + L [/(«')-{/(*))«]^
<26 > kff),

and the result follows.
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Example. Let f(x) be integrable, and <^{x) integrable in Riemann’s
sense, over (a, 6). Dividing up the interval {a, b) by points x^, as in

§ 10.1, prove that, as max(a;„
^ i -a;,;) -> 0,

lim 2 f fj{x)dx = f ^(x)J{x)dx.
V— 0 J J

Xf/ d
[Titchmarsh ( 1 ).]

10.8. The general convergence theorem of Lebesgue.

Iffj(x) is a sequence of functions such that \fn(x)\ ^ F{x), where

F(x) is integrable over E, for all values of n and all values of x in

E, and .

hm/„(a:) =/(x)

for all values of x in E, then

lim f „ /u(^) =
f

fix) dx.

As usual, it is sufficient that the conditions should hold almost

everywhere. The proof is almost the same as that of the theorem

of bounded convergence. We define the sets E^ as before; by

§ 10.71 the series .

lj^^^F{x)dx

is convergent, and we have

dx < €{m{Ef)+...+m{EJ]+

+ 2 r F{x) dx +2 f F{x) dx +...

.

Making -> oo it follows that

lim dx < €m{E),

and the result now follows as before.

The above theorem enables us to prove a new theorem on

term-by-term integration of series. We may multiply a boundedly

convergent series by any integrable functiouy and integrate term by

term. For if is the nth partial sum of the series, and

k»(^)l ^ f>{x) is the integrable function, we have

which is integrable, and may be taken as the F{x) of the above

proof.
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10.81. The following theorem is often useful. Its original

form is due to Fatou.^

ifM>o for all values of n, and x in E, and f„(x) -*f(x)

as n-^ CO, then

f{x) dx < lim fjx) dx.

n—*-00
^

The statement implies that, if the right-hand side is finite,

then f(x) is finite almost everywhere and integrable; while, if

f{x) is not integrable, or is infinite in a set of positive measure,

then .

/n(^) = 00-

n-^QO

It is easily seen that, with the usual notation,

n—xjo

Hence, by the theorem of bounded convergence,

Jim iAf(^)]k<ix.
n—<*) ^ ^

< Jg fn(^) dx,

and hence lim f /„(a;) dx ^ lAfi^)}kdx.
n-xK

Making jfc -> oo, the result follows at once if f{x) is finite almost

everywhere, the set where /(x) is infinite being omitted from the

integral. If f{x) = oo in a set e of positive measure, then

j^{f{x)]kdx^km{e)

fqr all values of fc, and the result follows.

10.82. A convergence theorem for monotonic sequences.

Let fi{x)y /2(a?)v be a sequence of positive integrable functions,

non-decreasing for every value of x in E, Let f{x) be the limit,

finite or infinite, of the sequence. Then

in the f(^owing sense:

(i) if the left-hand side is finite, then f{x) is finite almost every-

where and integrable, and the equality holds-.

• Fatou (1), p. 376.
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(ii) if the right-hand side is finite, so is the left-hand side, and

equality holds ’,

(iii) if the left-hand side is infinite, then f(x) is not integrable

or is infinite in a set of positive measure
;

(iv) the converse of (iii) holds.

If the left-hand side is finite, so is the right-hand side, by

Fatou’s theorem; and equality in cases (i) and (ii) follows from

Lebesgue’s convergence theorem, since f,X^) ^f(x). Then (iii)

follows from (ii) and (iv) from (i).

10.83, We can now put the theorem of § 1.77 on integration

of series into a more satisfactory form.

if Unix) ^ 0 for all values of n and x, then

b b

J ii Unix)} (ix = 2 J
Unix) dx,

a a

provided that either side is convergent.

For the partial sum Sj^{x) ~ ufix)-\-...-\‘U^{x) is positive, and

non-decreasing for every value of x.

In particular, the convergence of the right-hand side implies

the convergence of 2 ^n(^) almost all values of x.

We have still to consider the case where the range of integra-

tion is infinite; but as we have not yet discussed infinite

Lebesgue integrals of this kind, we must postpone the complete

result until the end of the next section.

10.9. Integrals over an infinite range. Let f{x) be a func-

tion which is integrable over the interval (a, 6), for all finite

values of b. Let f^(x) — f{x) where f(x) ^ 0, and fi{x) — 0 else-

where; and let f2(^)='—f{^) where f(x)<0, and f^(x)^0
elsewhere. Then

b b b

J fix) dx= j fiix) dx — j fzix) dx.

a a o

Each integral on the right is a non-decreasing function of b, and

so tends to a finite limit or to positive infinity as 6 -> oo. We
write

00 6 GO 6

f /i{x) dx = lim r/,(x)dx, f/
2{x)dx = lim f/2(x)dx,

^ 6-^oo ia a a o
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if both the limits ai*e finite; and we then define the integral of

f{x) over (a, cx)) by the equation

00 00 oo

J f{x) dx — j
f^{x) dx — j f^ix) dx.

a a a

It is clear from the definition that a convergent integral of

this kind is absolutely convergent; for

00 QO oo

/ i/(^)l dx:=j /i(x) fix + J
f^(x) dx.

a a a

Thus

0

is not, in the strict sense, a Lebesgue integral, because it is not

absolutely convergent.

Naturally many of the properties of finite integrals can be

extended to inlinite integrals. It is usually quite easy to see

when this can be done, and we leave the details to the reader.

The theorem of § 10.83 has an immediate extension: if

u^(x) > 0, then «

/ {Z
dx^2j “«(*) dx,

a a

provided that either side is convergent.

The convergence of either side implies the convergence of the

corresponding expression in which the upper limit is replaced

by a finite b. Hence, by § 10.83, the equation with upper limit

b on both sides holds; and the required result now follows as

in § 1.77.

It may be well to remark finally that the examples given in

§ 1.75 and § 1.78, where

are just as cogent with the Lebesgue as with the Riemaiin

integral. The same sort of restrictions still have to be made,

though the theorem as a whole takes a simpler form.



CHAPTER XI

DIFFERENTIATION AND INTEGRATION

11.1, Introduction. The ‘fundamental theorem of the integral

calculus’ is that differentiation and integration are inverse pro-

cesses. This general principle may be interpreted in two dif-

ferent ways. If f{x) is integrable, the function

jj

Fix) fit),

is called the indefinite integral of f{x); and the principle asserts“ F'(x)==/(x). (2)

On the other hand, if Fix) is a given function, and fix) is

defined by (2), the principle asserts that

jfit)dt-^Fix)-Fia). (3)

a

The main object of this chapter is to consider in what sense

these theorems are true.

As in elementary theory, (2) follows from (1) for every value

of X for which fix) is continuous. For we can choose so small

that \fit)—fix) \
< € for \t—x

\ ^ h^; and then

1

J
{fit)-fix)}dt (|/l|<Ao),

X

by the mean-value theorem. This proves (2).

However, in the Lebesgue theory we consider functions which

are in general discontinuous, so that the above argument does

not apply to them. Actually the interesting question is, not

whether (2) holds at particular points, but whether it is true in

general; and to this we can give a satisfactory answer.

Iffix) is any integrable function, its indefinite integral Fix) has

almost everywhere a finite differential coefficient equal to fix).

The problem of deducing (3) from (2) is much more difficult.

We require in the first place that F'ix) should exist at any rate

almost everywhere, and, as we shall see in § 11.22, this is not

necessarily so. Secondly, if ^'(a:) exists we require that it should
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be integrable. If we were relying on the Riemann theory, we
should find a fundamental difficulty here; for Volterra has

shown by an example* that F\x) may exist everywhere and
be bounded, and yet not be integrable in Riemann’s sense. In

the Lebesgue theory, a differential coefficient is measurable, and
so int/Cgrable if it is bounded. But, if it is unbounded, it is not

necessarily integrable in the Lebesgue sense. The problem has

received a satisfactory answer, but it requires a more general

process, known as totalization, or Denjoy integration, which we
have not space to consider here. The result is that if F\x) is

finite everywhere, then (3) follows from (2) if the integral is

taken in the Denjoy sense.

11.2. Differentiation throughout an interval. The
ordinary functions of analysis are differentiable in general, i.e.

for most values of the variable, though there may be special

points at which they are not differentiable. The exceptional

points are usually isolated. This seems to have created the

impression at one time that a continuous function necessarily

has a differential coefficient in general. It was, however, shown

by Weierstrass that this is quite untrue. There is a continuous

function tvhich lim no differential coefficient anywhere.

Nevertheless, the idea that an ‘ordinary function^ has a dif-

ferential coefficient in general is correct, if we attach this vague

expression to a different class of functions. We shall see that

it is true in the sense that a monotonic function has a finite

differential coefficient almost everywhere.

We shall first consider non-differentiable functions, and then

proceed to the constructive side of the theory.

11.21. Continuous non-differentiable functions. There

are many simple examples of continuous functions which are

not differentiable at particular points; for example, iif{x) == |a;|,

the ratio

tends to different limits, 1 and —1, as ^->0 by positive or

negative values; and if f(x) — a: sin ljx(x^ 0)> /(O) = 0, the ratio

does not tend to any definite limit.

We can next, by a method known as the condensation of

Hobson, vol. i, p. 461.
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singularities, construct continuous functions which are not dif-

ferentiable in a set which is everywhere dense, for example in

the set of rational points. Let rg,... denote the rational

numbers between 0 and 1, and let

F{x) = aj{x-rj,

where /(x) has an assigned singularity at x — 0, and the coeffi-

cients tend to zero sufficiently rapidly. Then F(x) will have
the assigned singularity at every rational point. For example,

F(x) = 2 3»

is continuous, since the series is uniformly convergent; but it

is not differentiable at any rational point; for

h Z, A.3«

QO

+2
Ar+1

and as A -> 0 the first term tends to a limit, the second term

tends to 1/3^ according as A > 0 or A < 0, and, if |A| < 1, the

third term does not exceed

2 .
3^

in absolute value. Hence does not exist.

To obtain functions which are everywhere non-differentiable

we have to use quite different methods. The first example of

such a function was given by Weierstrass.

11.22. Weierstrass ’s non-differentiable function. This

function is defined by the series

/ oo

J(x) = 2 oos{a^7rx),
n=0

where 0 < 6 < 1, and a is an odd positive integer. The series

is uniformly convergent in any interval, so that f{x) is every-

where continuous. On the other hand, if aft > 1, the series

obtained by term-by-term differentiation is divergent. This in
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itself does not prove that f{x) is not differentiable, but it sug-

gests possibilities in this direction. We shall prove that if

ab > I+Itt, the function has no finite differential coefficient for

any value of x.

We have

/(a;+A)~-/(a:) _ ^ ,^cos{a”7r(a:-fA)}— cos{a’^7ra:)

n=o

m—i 00

= l + l = s^+K,
n=0 m

say. Now

|cos{a^7r(x+A)}— cos(a”7ra:)| ~ |a”7rAsin{a”7r(a;+^A)}| <a”7rlA|,

so that m—i a^b‘

n~0

1 a”'6'«

ab—l ^^ab—l*

We next obtain a lower limit for giving h a particular

value. We can write

a^x^oL^+^^y

where <x^ is an integer, and Let

a^

Then
2a^

Also a^7r(a:+A) == . a”*7r(a:+A) = a”~^7T(a,yj+ 1).

Since a is odd, it follows that

cos[a^7r(a:+A)} — (— ~ (— ijam+i.

Again

co8(a^7ra:) = cos{a^“^Tr(a^4‘^m)} “ cos(a’^“’”*7Ta,,j)cos(a^*^^7rf^)

= cos(a^~Mm)*

Hence 2 6”{l+co8(a“-'"7rf„)}.

7l«W

All the terms of this series are positive, and hence, taking the

first term only, . „
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Hence

If a6>l+|7r, the factor in brackets is positive; and when
m 00

, Ih 0, and the expression on the right tends to infinity.

Hence {f{x-\-h)—f(x)}/h takes arbitrarily large values, so that

f(x) does not exist or is not finite.

The graph of the function may be said to consist of an infinity

of infinitesimal crinkles; but it is almost impossible to form any

definite picture of it which does not obscure its essential feature.’*'

11.23. The following example of a continuous non-differen-

tiable function is due to van der Waerden.f The function is

similar to Weierstrass’s, but the result is obtained in quite a

different way.

Let fn{x) denote the distance between x and the nearest number

of the form where m is an integer. Then the function

n=l

is a continuous non-differentiable function.

Each ff^(x) is continuous; and \fifx)\ < so that the

series is uniformly convergent. Hence f(x) is continuous.

Let X be any number in the interval (0,1), and suppose

it expressed as a decimal. If the qth figure is 4 or 9, let

x' — otherwise let x' = Then if n<q, the

nearest number m/lO^ is the same for x and x\ and x and x' lie

on the same side of it; while if n the numbers m/lO^ and
m'/lO^ corresponding to x and x' differ by x—x'. These rules

may be verified by considering simple examples, such as g' “ 2,

X = -326, -346, or

It follows that

{n < q)

= 0 ^ q).

Hence /(a:')—/(«) —x) = —x),
n=l

For further properties of this function see Hardy (7), where the same result

is obtained for ab > 1. A general method of constructing continuous non-
differentiable fimctions is given by Knopp (2).

t Van der Waerden (1).



354 DIFFERENTIATION AND INTEGRATION

where p is an integer, and is odd or even with g— 1. Hence

{f{x')—f{x)]j{x'—x) cannot tend to a finite limit as -> x.

11.3. The four derivates of a function. Whether the dif-

ferential coefficient

A

exists or not, the four expressions

^f(x+h)-f(x)
^

^^nx+h)-fix)
h-^+0 A k^o ^

^f{x+h)-fix)
Jim

h-^-0 A h=r-o *

always have a meaning, being either finite, or positive or negative

infinity. They are called the upper and lower derivates on the

right, and the upper and lower derivates on the left, respectively.

We shall denote them by

D+SiP^), DJipc), D-fix), DJ{x)

respectively, the sign referring to that of A in the above ratio,

and its position corresponding to the ‘lower’ or ‘upper’ limit.

IfD+/==-0+/, the function is said to have a right-hand deri-

vative, if D“/= 2)_/, a left-hand derivative. The necessary and

sufficient condition for the existence of the ordinary differential

coefficient is that all the derivates should be equal.

We denote the left-hand and right-hand derivatives, when
they exist, by/l(a;) and/4.(a:).

Examples, (i) The function where the positive value of the

square root is always taken, has different left-hand and right-hand

derivatives at a; ~ 0.

(ii) Let/(ir) == xainllx {x ^ 0), 0 {x — 0). Then at a: — 0

(iii) Let f(x) = ax sinH lx-\-bx cos^l jx {x > 0)

0 (X - 0)

a'x8in*l/x-f 6'xcos^l/x (x < 0),

where a < b, a' < b\ Then at x = 0

D^f^a, D+f^b, ^b\
(iv) If f(x) is continuous in (o, 6), and one of its derivates is non-

negative in the interval, then /(a) < /(6).

[Let D+/ > 0, for example. Suppose that /(6)—/(a) < —€(6— a), and
let ^(x) =/(x)—/(a)-fc(x— a). Then ^(6) < 0. Also > 0 for some
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sufficiently small values of x—a^ since D+/(a) > 0. Hence = 0 for

some values of x between a and 6. Let f be the greatest such value.

Then < 0, D+/(f)4-t < 0, contrary to hypothesis. Hence

f{b)—f{a) > — e(fe— a) for every positive c, and the result follows.]

(v) The derivates and incrementary ratios of a continuous function

have the same bounds in any interval ; i.e. if any one of the derivates

satisfies a < D/ < jS, then a < {/(iP2)~'/(^i)}/(^2 “^i) < P* con-

versely.

[Consider (f)(x) ~ J(x)~-oLory and use the previoiLs example.]

(vi) If one of the derivates of a continuous function f(x) is continuous

at a certain point, then f(x) has a differential coefficient at the point.

11.4. Functions of bounded variation. We say that/(x)

is of bounded variation in (a, 6) if, in this interval, it can be

expressed in the form ^{x)—\lf{x), where ^ and ^ are non-

decreasing bounded functions.

It is easily seen that the sum, difference, or product of two

functions of bounded variation is also of bounded variation.

An alternative definition is obtained by assuming that, if the

interval (a, b) is divided up by points a~XQ<x^<.,.<x^~b,
then

v=0

is less than a constant independent of the mode of division.

The upper bound of these sums is called the total variation.

It is easily seen that, if the first condition holds, then so does

the second. For

so thiftt ^ j

v=0

To prove the converse, let p be the sum of those differences

f{Xy+i)—f{Xy) which are positive, —n the sum of those which are

negative. Then, if v is the sum J \f(^v+i)—fM\> we have

V =: p+n, f{b)—f{a) = p—n,

and so v = 2p+f{a)—f(b), v= 2n+f(b)—f(a).

Hence, if v is bounded for all modes of division, so are p and n.

Let F, P, and N be the upper bounds of v, p, and n. Then

F = 2P+/(o)-/(6), F= 2N+f{b)-f{a).

Let F^*), P(x), and N(x) be the corresponding numbers for
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the interval (a, a?). They are obviously bounded non-decreasing

functions of x\ and

V{x) = 2P(a:)+/{a)-~/(x), V{x) ^ 2N{x)+f{x)-^S{a),

so that f(x) ==f(a)-\-P[x)—N(x).

This is the required expression for /(a;).

The functions V(x), P{x), and N{x) are called the total varia-

tion and the positive and negative variations of f{x) in {a,x).

If f(x) is continuous and of bounded variation, its variation

V{x) is continuous. We can find a mode of division of the interval

(a, x), with a point of division x' as near x as we please, such that

V > V{x)—€

and also l/(^)~/(^')l <
Let =
Then v' is a sum corresponding to the interval (a, x'), and so

V(x')^v' >V{:x)-‘2€.

Since V{x*) is non-decreasing, it follows that V{x') -> V(x) as

X* -^x from below. Similarly V{x') V{x) as x' x from above.

Hence V(x) is continuous.

A continuous function of bounded variation is the difference

between two continuous non-decreasing functions. For if f{x) is

continuous, so are P{x) and N{x).

11.41. The differential coefficient of a function of

bounded variation. The object of the next three sections is

to prove that a function of bounded variation has a finite dif-

ferential coefficient almost everywhere.

Our proof depends on the following lemmas, due to Sier-

pinski.* They are of the same type as the Heine-Borel theorem,

but apply to sets which need not even be measurable.

Lemma 1. Suppose that each point x of a set E in (a, 6) is

the left-hand end-point of one or more intervals {x, x+h^) of a

family H. Then there is a finite non-omrlapping set 8 of intervals

ofH which includes a subset E* ofE such that mJ^E')

Let be the set of points of jK which are associated with some
Aj. > Ijn. Then E is the outer limiting set of the sets E^, we
have ]im tng(E„)= mg(E) (§ 10.29), and we can take n so large

that mg(EJ > m^(E)—y.

Sierpinski (1). A similar lemma is given by W. H. and G. C. Young (1),
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Let be the lower bound of its upper bound, and let

/ = Let 77
== Then there is a point of

such that Let {x^.x^+h^) be an associated

interval for which \ > 1/n.

If there are points of E^ to the right of let a^, be their

lower bound. Then there is a point of /J,, in Let

{x^yX^-^h^) be an associated interval with > Ijn,

Continuing the process, we reach in a finite number of

steps, since each step takes us at least 1 jn nearer to it. In fact,

if there are N steps, then {N—l)ln < Z, i.e. iV < wZ+l.

Let S denote the set of intervals {x^,x^-\~b^) so constructed,

and T the set of intervals {x^~ri,x^). Then < S-\-T, and

m{T) < Nrj < Hence

ine{E)—le < w.^(E„) < in,{E,^S)+m^(E„T) < 7n,{E,^S)+ le,

and the set E' = E^S has the required property.

Lemma 2. Suppose in addition that for every x there are

arbitrarily small intervals (x,x-\-h^). Then we may conclude in

add%t%on that / ci\ / 71 \ tm{S) < m^{E)-\-€,

The additional condition is necessary; we might, for example,

take JE' to be a single point Xy and associate with it the interval

(a:,a:+l). Then Lemma 1 would hold, but not Lemma 2.

Let O be an open set containing £*, such that

m{0) <m^(£')+€.

Let be the sub-class of the family of intervals // consisting

of those intervals that lie in O. In view of the additional

condition imposed in Lemma 2, every point of E is the left-

hand end-point of one or more intervals of We can now
apply Lemma 1 with // replaced by H^, We obtain a new set

of intervals S which has the same property as that constructed

in the proof ofLemma 1. But now S is a set of non-overlapping

intervals included in 0 . Hence

m{S) < m{0
) <

This proves the lemma.

In these lemmas the intervals of which S consists may be

regarded as either open or closed, whichever is most convenient

in any particular case. For if the result has been obtained with

S consisting of closed intervals, we can replace them by open
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intervals by removing a finite number of points, i.e. a set of

measure zero. This clearly does not affect the result.

Lemma 3. We may suppose S in the above construction to he

included in any given set of intervals O which contains E,

For we may replace O by 00 in the construction.

1 1 .42. //* f(x) is non-decreasing in (a, b), it has almost every-

where in (a,b) a differential coefficient f(z).

Let E be the set where Dj^f< D^f. We shall first prove that

mJ,E) = 0.

Now E is the sum of the sets E{u, v) where

D+f<u<v<D+f,
u and V running through all rational numbers {u<v). Hence

it is sufficient to prove that mg{E(u, t;)) — 0 for every pair of

such numbers.

Suppose on the contrary that one of these sets E{u,v) has

a positive exterior measure, say yu. Every point x of it is the

left-hand end-point of arbitrarily small intervals {x^x-\-h) for

f{x+h)—f(x) < hu.

Hence by Lemma 2 there is a finite set S of such intervals,

containing a part E' of E(u,v) such that m^{E')> ji—e, and

such that ^^h < where denotes a summation over S.

{f{x+h)-f(x)} <u2,h< u{^+e).

Again, every point of E' is the left-hand end-point of intervals

{x,x-\-k) such that

f{x-\-k)—}{x) > kv.

and by Lemma 3 there is a finite set of these intervals, included

in S and of measure greater than m^{E')—€>fi—2€. If ^2
denotes a summation over these intervals,

la {/(^+fe)-/(^)} > la ^ > v
(im—2€).

But since /(a:) is non-decreasing, and the Ai-intervals are included

in the A-intervals,

la {/(»;+*) -/(ic)} < li {f{x+7i)-f{x)}.

Hence v{/i—2€) < u{ix+€), which is false if t is small enough.

Hence f+(x) (and similarly fL{x)) exists almost everywhere.

* This proof is due to Rajchman and Saks (1).



INTEGRALS 350

Further, we can argue in the above way with Z>+ replaced

by Z>“; every point of E' is then the right-hand end-point of

arbitrarily small intervals {x—k,x) such that f{x)—f{x-~lc) > kv^

and the conclusion follows as before. Hence almost everywhere

D^f > D~f, i.e. almost everywhere f^.{x) > fL{x). Similarly we
can prove the reversed inequality, and the result follows.

11.43. There is a more general theorem on the possible sets

where fL{x) (.r), and the result has nothing to do with

monotony.
'I'he set of points ivhere the right-hand and left-hand derivatives

functio7i exist and are different is enumerable.

Let K be the set where f'-ix) <f\(x), and let all rational

numbers l)e arranged in a sequence rg, Then if x is a point

of E, there is a smallest integer k such that

/l(x) < r* </' (a:).

There is then a smallest integer m, such that < x, and such

that
< r*.

for < I < a:*; and a smallest integer n such that r^ > x, and

for .t: • ^ 'I'he two inequalities together give

/{^)-/(-»*) > (r„<^< r„, i x). ( 1 )

Tluis to every x corresponds a unique triad of numbers

{k,ni,n)\ and no two values of x correspond to the same triad;

for if and x^ correspond to the same triad, we have, on putting

$ = X2 in (1), /(Xg)—/(Xj) >r*(a:2— Xi), and, on putting

X “ Xg, ^ =" Xi, the same inequality reversed.

Since the set of triads (k,7n,7i) is enumerable, it follow^s that

E is enumerable or finite. This is the required result. Since

the measure of an enumerable set is zero, this theorem can be

used to give an alternative ending to the proof of the theorem

of the previous section.

1 1 .5. Integrals. A function which is the Lebesgue indefinite

integral of another function is called an integral.

An integral is continuous. For if F(x) is the integral of f(x),

then ^4 /,

F(x+h)-F(x) - J f{t) dt,

X

which tends to 0 with h, by § 10.73 (v).

AA
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The integral of a positive function is a non-decreasing function

For if f(x) ^0, A > 0,
x-\-H

F{x+h)—F{x) = J f{t) dt ^ 0.

X

An integral is a function of bounded variation. For let

F{x) = F{a)-^ \mdt,
a

and let /i(a:) —f(x) where f{x) ^ 0, and fy{x) ™ 0 elsewhere, and

Then /^(x) > 0, /a(x) > 0, and

F{x) = i?’(a)+
j flit) dt — j f^it) dt

a a

= F(a)+Fiix)-F,ix),

where F^ix) and hounded non-decreasing fimctions.

11.51. Differentiation of the indefinite integral. Let

fix) be integrable over (a, 6), and let

Fix)==jfit)dt.
a

Since F(x) is a function of bounded variation, it has a finite

differential coefficient F\x) almost everywhere. Our next object

is to prove that F'{x) =f{x) almost everywhere.

11.52. The proof depends on the following lemma.
X

If (f>{x) is integrable, and
J

<j>{t) = 0 for all values of x in

a

(a, 6), then (l>{x) == 0 for almost all values of x in (a, 6).

If this is not so, then either <f>{x) > 0 in a set of positive

measure, or (f>{x) < 0 in a set of positive measure—suppose, for

example, the former. Any set of positive measure contains a

closed set of positive measure, since its complement can be

included in an open set less than the whole interval. Hence

(f>{x) > 0 in a closed set of positive measure—say E,

Now the integral of over any interval is zero; hence, by

§ 10.7 1, the integral over any open set is zero. Hence the integral

over any closed set is zero, and in particular
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Hence, by § 10.73, ^{x) — 0 almost everywhere in E, contrary

to hypothesis. This proves the lemma.

11.53. If f{x) is bounded, and F{x) is its integral, then

F'(x) = f(x) almost everywhere.

Let \f{x)
\

^M. Then

\F{x+h)-F{x)\

h

,

X+h

Um dt

j F(x+h)—F(x)
,and hm I

= F'(x)

almost everywhere. Hence, by the theorem of bounded con-

vergence,* as A -> 0,

But the left-hand side is equal to

x\h X x\-h

a+h a X a

which tends to F{x)—F{a), since F is continuous. Hence

X

\F'{t)dt = F{x)-F(a), (1 )

a

i.e. j{F’{t)-f{t))dt = 0, (2)

a

for all values of x. The result now follows from the lemma.

11.54. To extend the theorem to unboimded functions, we
require another lemma.

If <f>{x) is continuous and non-decreasing in {a,b), then if>'(x) is

integrable, and ^

J (f>'(x) dx< tf>{b)—<f>{a).

a

For {^(x-\-h)—(f>{x))jh > 0, and {^{x-\-h)—^{x)}Jh tends to

To apply the theorem as given in § 10.5, we make ^ 0 through an
enumerable sequence; so also in the next section.
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^'(x) almost everywhere as A ^ 0. Hence, by Fatou’s theorem

(§ 10.81), , ^

J " J
a a

Also, since
<f>

is continuous, the left-hand side is equal to

as in the above proof. Hence the result.

11.55. If f{x) is any integrable function, F'(x) =f(x) almost

everywhere.

We may as usual suppose that f{x) ^ 0. We define {fix)}^ as

in § 10.7. Since f(t)—{f(t)}n ^ 0, the function

]im-{m]n]dt
a

is non-decreasing, so that its differential coefficient is never

negative. Hence

wherever these differential coefficients exist. Hence, by the

theorem for bounded functions, F\x)'^{f{x)]^^ almost every-

where. Making n oo we see that F'{x) ^ f{x) almost every-

where. Hence
^ ^

J
F\x) dx^j f{x) dx,

a a

The above lemma, however, gives this inequality reversed.

Hence in fact the two sides are equal, i.e.

J
{F'{x)-f{x)} dx = 0.

a

Since the integrand is never negative, it must be zero almost

everywhere. This is the required result.

11.6. The Lebesgue set. The theorem that F'{x)=f(x)

almost everywhere was extended by Lebesgue as follows.

Iff{x) is integrable,

x+h

limi r \f{t)-oi\dt=\f{x)-(x\
A—© fif J

X
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for all values of a, except when x belongs to a set of measure zero;

that is, \f{x)—cx\ is the derivative of its indefinite integral for aU
values of a and almost all values of x.

If a were fixed there would be nothing to prove, since

\f(x)—oi\ is integrable, and the result follows from the above

fundamental theorem.

Consider next all rational values of a, say a2 »
•• • The sets

in which the theorem is false for agv are all of measure zero,

and so their aggregate is of measure zero. Hence \f(x)—oc\ is

the derivative of its integral for all rational values of a, except

when X belongs to a set E of measure zero.

Now let a; be a point not in E, a an irrational number, and

P a rational number near to a. Since

we have

I

x-ffc x-^h

' X X

I x^h.

But \l

j
if(t)-pidt-\f{x)-p\

' X

if 1^1 < Ao(j8, e). Hence

j

0?+/*

^ J
lf(t)-a\dt-\f{x)-cc\

' X

1

x+h x-^h

ij \f(t)-a\dt-lj \m-P\dt +
X X

x-\'h
j

+ \lj l/(0-i31d<-|/(x)-i81

I X '

<l/8-a!+e+|j8-«|,

which may be made as small as we please, by choice first of

P and then of e. Hence |/(a:)— a| is also the derivative of its

indefinite integral for all irrational a, if a; is not a point of E.

This proves the theorem.
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We may, in particular, take a =/(a;). Hence

h

j
l/(aJ+<)—/(«) \dt = o (h)

0

as 0, for almost all values of x. The set where this holds is

called the Lebesgue set.

All points of continuity are of course included in the Lebesgue

set.

The interest of the Lebesgue set lies in the fact that many
theorems which hold at all points of continuity are also found

to hold at all points of the Lebesgue set, and so almost every-

where. We shall have examples of this in the chapter on Fourier

series.

We note finally that if the modulus sign is omitted from the

formula, the a disappears, and the result reduces to the previous

theorem.

11.7. Absolutely continuous functions. A function f{x) is

said to be absolutely continvxms in an interval (a, 6) if, given €,

we can find 8 such thcU

i \f{3:y+K)-f{Xy)\ < e

for every set of non-overlapping intervals (XyyX^-\-hf) such that

An absolutely continuous function is contimums, since we can

take the above sum to consist of one term only.

An absolutely continuous function is of bounded variation,

sinee its total variation over an interval of length 8 is at most

€, and consequently its total variation over (a, 6) is at most

(6—o)e/8.

On the other hand, there are continuous functions of bounded

variation which are not absolutely continuous. An example of

such a function will be given in § 11.72.

11.71. A necessary and sufficient condition that a function

should be an integral is that it should be absolutely continuous.

If F(x) is the integral of f{x),

/
l/(x)ldx= fj^l/(^)idx.IlF(x„+hy)-F(x,)l^^
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where E denotes the set of intervals The right-hand

side tends to zero with in the sense of the above definition,

by § 10.73 (v). Hence F{x) is absolutely continuous.

To prove the converse we require the following lemma.

If (f>(x) is absolutely continuoTis in (a, 6), arid <f>\x) = 0 almost

everywhere^ then <f>{x) is a constant

Let E be the set where <l>\x) = 0. Every point x of is the

left-hand end-point of arbitrarily small intervals (x,x-\-h)y such

\<f>{x-\-h)—^{x)\ < eh.

By the lemmas of § 11.41, we can select a finite set S of these

intervals which do not overlap, and which contain all E except

a set of measure S, and so all (a, b) except a set of measure 8.

Let x^y iCg,- - be the end-points of the intervals of Sy and let

denote a summation over the intervals of 8y and over

the complementary intervals. Then

Now 2i < <b-a).

2* i^v+i~^v) < b, and so, by the property of absolute

oontinmty.

tends to zero with 8. Hence, making 8 0,

\<f>(b)-<f,ia)\^e(b-a).

Making €->0, it follows that <f>{b) = (f>{a)\ and similarly

— <f>(a) for every value of x.

Suppose now that F{x) is any absolutely continuous function.

Then it is continuous and of bounded variation, and we may

F{x) = F,(x)-F,{x),

where and F^ are continuous non-decreasing functions. By
the lemma of § 11.54, F[{x) and F'^ix) are integrable, and hence

so is J^'(a;). Hence
a,

J
F'it) dt

a

is absolutely continuous, and so also is

X

>l>(x) = F(x)-
j

F'{t) dt.
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But — 0 almost everywhere. Hence, by the lemma, (f>(x) is

a constant, i.e. ^

JJ’Ca:)- J
dt:=F(a).

a

Thus F{x) is the integral of F'(x),

11.72. A continuous increasing function which is not

an integral.* We can define a function of this type by means

of Cantor’s ternary set (§ 10.291).

Let a.^ always take the values 0 or 2, and lot so

that is always 0 or 1 . If

is a point of Cantor’s set E, we define

AVv-(2)
(in the scale of 2).

At the ends of an interval f{x) therefore has the values

.6i...6,/)lll...(2), •6,...6^1000...(2),

and these are equal. We define /(.r) throughout the interval 8^,.

to be equal to its value at the end-points.

The function f(x) is non-decreasing. In proving this it is

sufficient to consider points x of E, since f(x) is constant in the

intervals of CE. Let

x' = x'" = 'alal...{3)

be points of E, x'' >x'. Then there is a suffix n such that

< = (»K »)> < < <• Hence

The function f{x) is continuous. We have to prove that

fix') -*f{x) as x' -> X, and again it is sufficient to consider points

X, x' of Fj. Let

X= aia2-"(3), x' ==

If now x' -> X, there will be a value of n, which tends to infinity

as x' -> X, such that (to < n). Hence

/(x)-/(x') = •00...06„...—00...06;... 0.

On the other hand,

J/'(x)(fx^/(l)-/(0).
0

A detailed discuesion of this function is given by Hille and Tamarkin (1),
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For the right-hand side is 1, since /(I) — 111. ..(2) ™ l,/(0) = 0;

but f(x) is constant in the intervals so that f(x) 0 in the

interior of any of these intervals. Hence /'(a:) ^ 0 almost every-

where, and the left-hand side is 0.

It follows that f{x) is not the integral of its differential

coefficient, and so is not absolutely continuous. It is easy to

see this directly. Consider the sum

S
taken over the intervals (cx;.,^^) which remain after the jpth. step

of removing intervals ^pk' It is equal to

But
1 2 2»-i

— jj— - = r
which tends to zero as p oo- Hence f{x) is not absolutely

continuous.

11.8. Integration of a differential coefficient. If /(a:) has

a differential coefficient almost everywhere, or even everywhere,

in an interval (a, 6), the formula

X

j
f'(t)dt=f{x)—f{a) (a^x^b)

( 1 )

a

is not necessarily true. It may fail in one or other of two ways.

Consider, for example, the function

/(x) = x2 sin (x > 0), /(O) = 0,

already referred to in § 10.7. Here

/'(x) = 2x sin -i cos^ (x > 0), /'(O) = 0,

so that f{x) exists everywhere; but, as we saw in § 10.7, it is

not integrable in the Lebesgue sense, so that (1), on the Lebesgue

theory, has no meaning.

If we can imagine a function with this kind of singularity

distributed everywhere in an interval, we shall obtain some idea

of the nature of the problem of integrating a differential coeffi-

cient. The problem has been solved by means of the Denjoy

integral. This is a highly general type of non-absolutely con-

vergent integral, and it would take us too far to discuss its
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properties here. The result is that, iff(x) exists everywhere, the

formula (1) is true, the integral being a Denjoy integral.

If we do not assume that f(x) exists everywhere, but merely

almost everywhere, the formula (1) may break down still more

completely. The integral on the left may exist as a Lebesgue

integral, but be unequal to the right-hand side. We have

already had an example of this in § 1 1.72—in fact an example

where f'{x) — 0 almost cverywliere, without f{x) being a con-

stant.

In order to obtain the formula (1), the integral being a

Lebesgue integral, we have therefore to impose further condi-

tions on f{x) or on /'(:r). There are several theorems, varying

in difficulty according to what is assumed. Their common
feature is that we suppose that f'{x) exists everywhere. The

example of § 11.72 shows that no set of conditions which is

merely given almost everywhere is sufficient.

11.81. If f'{x) exists everywhere and is bounded, then 11.8 (1)

is true.

If !/'(^)l ^ {P,M, § 125) there is a number 6 between

0 and 1 such that

f(x+h)-f(x)
h

- \rix+oh)\ M.
(
1

)

Hence converges boundedly to f'{x), and the

proof is now the same as that of 11.53(1) (with f{x) instead

of F(x) ).

Alternatively, we may observe that it follows from (1) that

V 1

Hence f(x) is absolutely continuous, and the required result

follows from § 11.71.

11.83. If f(x) is any function such that f'{x) is finite every-

where and is integrable, then 11.8 (1) is true.

This evidently shows in particular that 11.8 (1) holds if f(x)

is of bounded variation and f'{x) is finite everyw here; for if

f(x) is of bounded variation. f'(x) is integrable (see § 1 1.54 and



IXTEGRATIOK OF DIFFEREXTIAL COEFFICIEXT 300

example 1*2 below).

The following proof is substantially that given by Schlesinger

and Plessner.| It depends on the two following lemmas.

Lemma 1. Let E be any set in (a, b) of measure zero, € a given

positive number. Then there is a non-decreasing absolutely

continuous function ;)^(.^’) such that jK', and

X(6)— x(a) < e.

We can include E in a sequence of open s(^ts Oj > Og > ...

such that m(0
^^) < Cj4-f2+ •

^ f,M charac-

teristic function of the set 'I'hen

b

a

Let ^„(.r) -^=/i(x)+/„(.r)+...+/„(.c).

Then is non-decreasing as n -> oo for every /, and

X

Hence by § 10.82 ^,,(0 tends to a finite limit </>(<) almost every-

where, and 3. X

lim
I

(It =
[

(i>[t) dt = x(x),
w->cc •' •'

a (t

say.

This function has the required properties. Since it is the

integral of a non-negative function it is non-decreasing and

absolutely continuous, and
b

xi^)- x(") J ^(0
a

X

Also *

.r

in O^, and so, if x,X^) = J
^„it) df>

a

V ‘1

n

t LcOeayucitcfte hitegrate, pp. 1(56-74.
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in 0„. Hence

X(a;+A)— x(^) ^ Xn{^+h)—Xn{^) >
h h

for |A| < Ao(S) and x in O^. Hence Dx > n for each of the four

derivates and a: in Since a point of E belongs to 0^ for

every n, it follows that x'(^) — +oo in E.

Lemma 2. If f{x) is continuous in (a,b), and D^f'^ 0 almost

everywhere in the interval^ and D^f is nowhere — oo, then f(x) is

a non-decreasing function.

It is sufficient to prove that f{b) '^f{a), since the general

result then follows by a similar argument.

Let E be the set of measure zero where Z>+/< 0. By Lemma 1

there is an absolutely continuous function x(^) such that

Xix) = +CO in E, and x(*)—x(«) <
Let g{x)=f{x)+x{x).

Then in E, D+g — +oo, since D^x = 2)+/ is finite,

and D+g ^ ^
D^g ^ D+f^ 0

since x is non-decreasing. Hence D^g > 0 everywhere, and so,

by § 11.3, ex. (iv), g{b)'^g{a). Hence

m-m > -{X(6)-X(®)} > -e,

and, making e -> 0, the result follows.

1

1

.84 . We can now prove the theorem stated in § 1 1.83. Let

n be any positive number, and let

gr„(x) = min{/'(a:), n}, Ojx) == max{/'(a;), —»}.

Then gj,x) </'(x) < G‘„(a;), and, since f'(x) is integrable, so are

gjpc) and 0^{x). Let

/n(*) = J ?»(0 = J ®n(0
a a

X

Then lim/„{a;) = limjF’„(®)=
\ f'(t)

dt= <f>{x),
flr-^OO flr^OO •'

a

say. Now Z)+{2’„(a:)—/(*)} £>+/•

This is almost everywhere equal to Qj^x)—f{x), i.e.

D^{F^{x)-f{x)}^0
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almost everywhere. Also

X

so that D+F„ —n, and so D+{F^—f) is nowhere — cjo. Hence,

by Lemma 2, Fn(x)—f(x) is non-decreasing, i.e.

-^n(®)-/(a:) ^ F„{a)-f{a)= -/(a).

Making ti -> oo, we obtain

A similar argument with /„(x) gives the reversed inequality,

and this proves the theorem.

MISCELLANEOUS EXAMPLES
1. For a; = ^ the function /(x) of § 11.23 heus the derivative +oo.

2. The density of a set E at a, point x may be defined as

m(EH)
hm —A^,

where H is the interval {x—h, x-^-h).

Prove that the density of a set is 1 almost everywhere in the set, and
0 almost everywhere outside it.

[Consider the integral of the characteristic function of E.]

3. A set in (0, 1) is such that, if (a, jS) is any interval, then

m{E{oL,p)} > 8(i3~-a)

where 8 > 0. Show that m(E) = 1.

4. Iff as Jt ^ Of ff

ji\f(x-\-h)—f(x)\ dx = o(h),

then /(x) is almost everywhere equal to a constant.

Xt

[Consider
J

{S(x-^h)’-f(x)} dx. See Titchmarsh (7), where, however,

Xx

the proof is uimecessarily complicated.]

6. Let a and jS be positive numbers, /(x) == x“ sinx*"^ (0 < x < 1),

find /(O) 0. Then /(x) is of boimded variation in (0, 1) if a > j9, but
not if a <)3.

6. A function /(x), defined for 0 < x < 1, is absolutely continuous

every interval (0, where f < 1, and its total variation in (0, f

)

bounded as f -> 1. Show that /(x) tends to a limit as f -> 1, and thatf

if we define /(I) to be equal to this limit, then/(x) is absolutely con-

tinuous in the whole interval (0, 1).

.3

-a
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[The point of this example is that the difference between ‘continuity

plus bounded variation* and absolute continuity is a property of a whole
interval, and cannot be traced to the behaviour of the function in the

neighbourhood of any one point.]

7. The theorem of § 11.83 remains true iff'{x) == 4>oo in an enumer-
able set.

8. A necessary and sufficient condition that a function should be
convex in an interval (a, 6), in the sense of § 6.31, is that it should be
the integral of a boimded increasing function over any interval interior

to (a, 6).

9. If J(x) is absolutely continuous, so is \f(x)\^, where p > 1.

10. A necessary and sufficient condition that f(x) should be almost

everywhere equal to a function of bounded variation in (a, 6) is that

as ^ —> 0 h

j \f(x+h)-f(x)\ dx = 0(h)

a

[where f{x) — 0, say, outside (a, 6)].*

[If f(x) is of bounded variation, we have f(x) — <f)(x)—ip{x), where

<f>
and ip are positive, non-decreasing and bounded in (o, b). Then, if

A > 0.

b b b

j \f(x+h)—f(x)\ dx ^ j {(f>(x+k)—<l>(x)} dx + j
{>p(X+h)—tli(x)} dx

a a a
b+h a+h bA-h

= J
dt — j <f>(t) dt+j iji(i) dt —

J
ip{t) dt = 0(h),baba

so that the condition is necessary.

Suppose now that the condition is satisfied. Let

x+l/n

if>„(x) = n
J /(<) dt.

Then
b x+h-^l/n x-bljn

^Jix)\ dx = n
j
dx f - f f(t)dt

a X+h X

t
Ifn

n
j
dx

J
{f{x-{-t~\-h)—f[x^t)}dt

b iln

<njda?j \f(x-\-t^h)--f(x+t)\dt

a 0

l/n b

*= n
j

dt
j

\f(x-i-t+h)--f{x+t)\ dx = 0(h),

0 a
* Hardy and Littlewood (6), pp. 699-601» and (6)» p. 619«
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If (Xy, Xj,~\-hp) is any set of non-overlapping intervals,

itfn-rty

j

U.y -r V

< 2 J < J
d*.

and, by Fatou’s lemma and the above result,

|^;;(a:)| dx

o

< hm
J

dx = 0(1

Hence 2 \<i>n(^v+K)-<t>nM\ =0(1).

But <f)J^x) —> f{x) almost everywhere. Hence

2 \J(Xv+K)-f(Xv)\ < A
if none of the points x^, Xy~\-hy belong to a certain setE of measure zero. If

a does not belong to E, itfollowsasin§ 11.4 that/(ic) — f(a)-{~P(x)—‘N(x)

in CEf where P(x) and N(x) are bounded and non-decreasing in CE, In

E we can define P(x) as limP(x'), where x'->x from below through CE*
The result follows without difficulty from this.]

11. In § 11.4 the existence of f'(x) at a point does not imply that

of V'{x)*

[Consider f(x) = a;*cosa:~“ (0 < a: < l),/(0) — 0, 1 < a < 2.J

12. In § 11.64 the condition that <j>{x) is continuous can be omitted.

[The proof shows that if a and P are any two points of continuity

J
^'(x) dx < ^03)-^(a).

a.

But for any non-decreasing function points of continuity are everywhere

dense. Hence, making a~>-a+0, ^->6— 0, through such points, we
obtain 6

J
^'(x) dx < ^{6-0)-^(a+0).]

a

13. The set consisting of the intervals n = 1, 2,..., has

density J at a; = 0.

14. A convergent series of non-decrecising functions can be differen-

tiated term by term almost everywhere.

Fubini: see Bajchman and Saks (1).

[Let
Ml(x)+Mg(x)+ ...+ U,(x) = 9,(X)->«{X) (O < X < 6).

Then «(x) is non-decreasing; and

s(x+h)—s(x)

h '

' M,(x-f-^)-M.(x)

, h
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for every N. Making h~y 0, it follows that

A'

71—1

almost evorywher(\ Ilcmcc' J convt'rgc's almost evf^rywhere, to

(f)(x) say, and <f>{x) < s'{x).

Suppose that the set iE’C?/, i^), where ^(a-) < u r ' has 2>ositiv^e

measure /x. Almost cvervw}i(‘re in E(u^t>)

sl{x) < 'U < V s'{x),

so that s,X^:~\-h)-~Sn(’x) < hu < hv < b'{x
^
h) - ii(x)

for suffieiently small /i. This holds over a finite^ non-overlapping set of

interv^als of total length I > Jp > 0. Summing ovc'r th(*s(" interx als

Z(e— w) < ^{s(.r^ h)--sj.r-l-/i)l -l.<t(x) 6\(.r)}

< Wa)-.vja)}

since s(x}~s„(x) is non-d(X*reasing. Making n - ^ oo, I 0, a contradic-

tion. Hence s'(x) almost ev(‘rywhere.l

15. If /'(x) is finite everywhere, and equal to a continuous function

almost everywhere, it is equal to it everywhere.

16. Show that lim f —- dl
8->o J ^

8

exists for every x if/(x) is Weierstrass’s non -differentiable function.

Show that the limit does not exist at a: -- 0 iff(x) is the continuous

function 0 (x < 0), l/Iog(l/ir) (x > 0).

[This limit exists almost everywhere if/(x) is any integrable function.

See Titchmarsh, Fourier Integrals^ Theorem 105.]



CHAPTER XII

FURTHER THEOREMS ON LEBESGUE INTEGRATION

12.1 . In this chapter we adopt a slightly more practical point

of view than in the two preceding ones. We have carried the

general theory of definite and indefinite integrals as far as we
shall require it, and we shall now prove a number of theorems

which are useful in the manipulation of integrals.

12.11. Integration by parts. The formula of integration

by parts in the Lebesgue theory is, of course, the same as the

ordinary one: if G{x) is an indefinite integral of g{x), then

h h

/ f{^)9{x) dx -= [f{x)G{x)f^—
J
f'(x)G{x) dx.

a a

The formula holdfi if g{x) is any integrahle function, and f{x)

is an integral.

The proof depends on the fact that the product of two absolutely

continuous functions is absolutely continuous. For let ^{x) and

0(.r) be absolutely continuous in (a, 6), and let M and M' be the

upper bounds of |^(:r)| and Let be a set of

non-overlapping intervals in {a, b). Then

The last two sums tend to zero with 2 so ^{x)t}t(x) is

absolutely continuous.

In the given formula, f{x) and 0(x) are absolutely continuous,

and hence so f{x)0{x)\ and

b

O

But ^{f[x)0{x)} =f'{x)G{x)+f(x)g(x)

wherever f{x) and 0'{x) exist, and 0’(x) = g(x). Since this is

true almost everywhere the result follows.

RB
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12.2. Approximation to an integrable function. The
following theorem is often useful.

Iff(x) is measurable over afinite interval
^
then, given two positive

numbers 8 and e, we can define an absolutely continuous function

such that |/—^| < 8 except in a set of measure less than €,

Suppose first that f{x) is bounded. We may suppose without

loss of generality that f{x) > 0. Divide up the interval of varia-

tion of f{x) by the scale

0, 8, 28,..., n8.

Let Cj, be the set where i/S </(ar) < (i^4- 1)S- Let 0^(.r) ~ v8 in

and zero elsewhere. Then the function

differs from f(x) by less than 8.

J^t Ey be an open set, including of measure less than

m(e,,)+f/3w.. I^et be the sum of a finite number of the

intervals of E^,, such that < e/3n. Let (f)„{x) — v8 in

and zero elsewhere. Then except in a set of measure

Jess than 2c/3n; also is discontinuous at a finite number of

points, viz. the ends of the intervals of 4S\.. To remove these

discontinuities, we join the graph of the function to zero at the

end of each interval by a straight line inclined so that the

modifications all occur in a set of measure less than e/^n. Thus
if f/>^ is the modified function,

(f>l
is absolutely continuous, and

™ except in a set of measure ejn.

Let <f)(x) = <l>o+ <f>[+ -*-+^n~V

Then <f>{x) is absolutely continuous, and ^(a:) = i/r(x) except in

a set of measure c. Hence ^(x) has the required property.

If f{x) is not bounded, let {/(^r))^ ^ f{x) where |/(a:)| < k, and

^ elsewhere. We can take k so large that {f(x)}j^ ==/(^)

except in a set of measure |€. By the first part, we can deter-

mine <f>{x) so that \{f(x)}fc—(p(x) \ < 8 except in a set of measure

Je. Then <f){x) has the required property.

Notice that, if f{x) is bounded, (f>{x) can be constructed to lie

between the same bounds as/(x).

If f{x) is integrable, we can construct <P{x) so that, in addition to

the above properties,

J
\S^3C)-4>{3C)\dx<r], ( 1 )
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where tj is arbitrarily smaiL If f{x) is bounded, say \f(x)\ < M,
then

1^(3:) I < My and

b

j
\f{x)-4>{x)\ dx < 8 (6

-0)+ 2eilf,

a

giving the required result. Iff{x) is unbounded, we define {f(x)}/^

as above, and then determine <f>{x) so that \{f(x)}f^—(f){x)\ <8
except in a set of measure ic/fc. Then

b h h

J l/(*)— |/(*)—/{(a;)}*! dx + J |{/(x)}fc— <^(x)| dx.

a a a

The first term tends to zero as 00
, and the second term does

not exceed 8(6—a)4-^- Hence the result.

Example. lif(x) is integrable over (o—e, 6+ 6), then

b

lim r \f(x-\-h)—f(x)\ dx = 0.

A—*0 J
a

12.21. Change of the independent variable. Here again

the formula is familiar, but the conditions under which it holds

are novel.

If f(x) and g(x) are integrabhy g{x) > 0, and G{x) is an in-

definite integral of g{x)y a = 6r(a), 6 = G{p)y then

b p

j fit) dt = j f{6ix))g(x) dx,

a Qc

where f{G(x)} g(x) is defined as 0 if g(x) — 0.

The inverse function of f = 0(x), of which a and )3 are values,

is not necessarily one-valued, since 0(x) may be constant in

. some intervals. But if more than one value of x corresponds to

a given value of t, these values of x form a closed interval, and
we can make the inverse function one-valued by taking x to be,

say, the left-hand end-point of the interval.

We next observe that if F{x) and Oix) are absolutely corUintums

function, and 0(x) is monotonic, then F{Gix)} is absolutely con-

tinuous. For, since F is absolutely continuous,

2 lF{G(x,+A,)}-F{G(x,)}l

tends to zero with
2 lG'(*.+ft,)-G»(x,)l.
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and, since G{x) is absolutely continuous, this tends to zero with

It follows that, if F(x) and G(xy are integrals of f{x) and g{x),

then JP{(3'(a;)} has a finite differential coefficient for almost all

values of x, and

p b

J
dx = = J

fit) dt.

ot a

The result will now follow if

^[F{G(x)}] = f{Gix)}gix) (1)

for almost all values of x. But this is not obviously true. For

F{G(x+h)]-F{G(x
)} ^ F{G(x+h)}^F{G{x)} G(x_±?i)-G(x)

h G{x~\~h)—Glx) * h ’

and the second factor on the right tends to g{x) for almost all

values of x^ while the first factor tends to f{G(x)] for almost

all values of G{x)\ and the difficulty is that the exceptional set

of values of of measure zero, does not necessarily corre-

spond to a set of values of x of measure zero.

Let f(x) be bounded, say \f(x)\ ^ M. Divide the interval

(a,/S) into sets Ey,..., as follows. In E^, G'(x) = g(x) > 0,

and the first factor on the right tends to f{G{x)} \
in E^,

G'(x) == g{x) > 0

but the other condition is negatived; in E^,

in E^, G'(x) g{x). Clearly (1) holds in E^\ and it holds in

jFg, since there

F{G{x+h)]^F{G(x)}\

h

0(5- + A)

i

J
/«)* /A

0{x) 1

'

G{x+h)-G(x)

h

and each side of (1) is zero; m{E^) = 0; and we have to prove

that m{E2 ) = 0.
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Let be the part of E.y in which (J'(x) > Ijn. Enclose tlic

c orresponding /-set in an open set O of measure less than a given

€. With each x of J?
2,„ associate an interval (x, x-\-hj.) such that

(j{x~\-hj.)--G{x) > and such that the interval 0{x),

(i{x+hj,) is in 0, By Lemma J of § 11.41, there is a finite non-

overla})ping set S of the intervals [x, x+hj,) such that

tf )
'iyt{S

)+ 6 h j. -f- c .

This is less than

^ Zs {0{x+ h,.) -G{x)}-\~e -< nm(0)-^€ < (w-f-i)f.

Hence 7w(jS^2, «)
“ and, since is the outer limiting set of

the sets “ b.

Lastly let f{x) be any integrable function. We may suppose

without loss of generality that it is positive. Defining {/(x)}^^

in the usual way, the theorem holds for {/(x)},,, and it is suffi-

cient to prove that

lim
J

[/{G(a:)}]„ g{x) dx = J
f{G(x}}g{x) dx.

(X a

^ b b

But
J

[/{G'(a:)}]„ g(x) dx = J {/(<)}„ d< < j
f(i) dt.

a a a

The result therefore follows from the convergence theorem of

§ 10.82 (regarding /{C?(x)}gr(x) as 0 ^/{^(x)} = oo, g{x) =-- 0).

12.3. The second mean-value theorem. If f(x) is in-

tegrable over (a,b), and <f){x) is positive, bounded, and non-

increasing, then

b i

J
f(x)(f>(x) dx= ^{a+

0) J
f(x) dx,

a a

where | is some number between a and b.

Let e be a positive number less than ^(o-t-0)—^(6— 0). Then

there is a point x^ such that

<f>{a-j-0)—4>{x)<€ (a<x<Xi)

(x>x,).
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Similarly there are points x^, x^,... such that

<^(x,_i+0)-^(x) < e (x,_i<x<xj

(x>xj,

so long as ^(x^_i+0)—^(6— 0) > e. Otherwise we take x„ = b.

The point b is thus reached in a finite number of steps, since

the variation of ^(x) in each interval (x„_i, x^) is at least e.

Let ^(x) = ^(x„+0) in each interval x,,^x<x,,+i. Then

0 < >l>(x)—<f>(x) < € except possibly at the points a==XQ,

b, and

b !

J dx = ”^^(x,+0) / /(x) dx.

a X*,

X

Let F(x) — jf(t) dt; then, if m and M are the lower and upper
a

bounds of F{x), it follows from Abel’s lemma {§ 1.131) that

b

7n^{a+0) < J
i/j{x)f(x) dx < M<f}(a-\-0)»

But
j, “ft ft

J 4>{x)f{x) dx — j <f>{x)f{x) dx < € J
|/(x)| dx,

a a 'a
which tends to zero with c. Hence, making c -> 0, it follows that

b

m<f>{a-\-0) < J
^(x)/(x) dx < Mif>{a+0).

a

Since F(x) is continuous, it takes every value between m and
M, and so, at x = ^ say, the value

a

This proves the theorem.

If ^(x) is positive and non-decreasing, the corresponding

formula is
ft ft

J/(x)^(x) dx= ^{6—
0)J

f(x) dx,

where o<f <6.
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If ^(a;) is any monotonic function, there is a number ^ between

a and b such that

b
jf

ft

J/(®)^(*)^ — ^(®+0) J/(*) dx +^(6—0) J
f{x) dx.

This is obtained from the previous results by considering

ff){x)—<f>(a+0) or (f>(x)—<f>{b—0).

12A. The Lebesgue class* We denote by LP{a,b) the

class of functions /(a;) such that /(a:) is measurable, and \f{x)\P,

where p>0, is integrable over (a, 6). If it is not necessary to

specify the interval, we denote the class by simply. The
class is the class of functions integrable over (a, 6), and is

denoted simply by L.

We may classify functions defined over any set, or over an

infinite interval, in the same way; for example, the function

(l+a;)-^ belongs to i>(0, oo) if p > 2.

If f(x) belongs to and |g^(a;)K \f{^)\y then clearly g{x)

also belongs to IP,

Examples, (i) A bounded function belongs to Z^(a, 6), where (a, 6)

is a finite interval, for all values of p.

(ii) If /(a:) belongs to J>(a, b), where (o, 6) is a finite interval, then it

also belongs to L*(a, b) for q < p,

(iii) If f(x) belongs to i>(0, oo) and to X«(0, oo), where p < then it

also belongs to 2/(0, oo) if p < r < g.

[Consider separately the sets where \f{x)\ < 1 and |/(a;)| > L]

(iv) The sum of two fimctions of i> also belongs to 2>.

[For l/(a:)+gr{x)|'’ < max{2'|/(^c)|^ ^\g{x)\*).]

(v) The function {a; log*l/x}~^ belongs to 2y(0, \), but not to any
i>(0, J) for p > 1.

(vi) The function {ic*(l+ |log x|)}”i belongs to Z*(0, oo), but not to

J>(0, 00
)
for any other value of p.

12.41. Schwarz’s inequality. Iffix) and gix) belong to L\
thenf(x)gix) bdonga to L, and

I

J <^*1< (/ l/(»)l® dx J
|gr{a;)l® dzj*.

The interval of integration may be finite or infinite.

* See in particular F. Biesz (2).
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Since 2\fg \ fg belongs to L. Hence the integral

J
dx

= A2
J {f{x)Y dx+2Xp. j

f{x)g{x) dx+ii^
J {g{x)Y dx

exists for all values of A and /x. It is evidently never negative.

But the necessary and sufficient condition that

should be never negative is that ^ ab, 0, b^ 0; and this

gives the inequality stated.

Examples, (i) The case of equality in the above theorem occurs only

if f{x)/g{x) is almost everywhere equal to a constant.

(ii) If f(x) and g{x) belong to where p > 2, then /(.r)f7(j;) belongs

to

12.42. Holder’s inequality. This is a generalization of

Schwarz’s inequality.

If f{x) belongs to and g{x) to where 1, then

f(x)g(x) belongs to L, and

I (I
l/(^)Prfa:]^''(J ( 1 )

The interval of integration may be finite or infinite.

Let E be the set where \g{x)\ < Then

\f(x)g(x)\ < \f(x)\P

in E; hence f{x)g(x) is integrable over E. In the complementary

set CE, \f{x)
\ < lgr(x)lW^-^>. Hence

l/(a:)g'(x)| < \9{x)\Pl<P-^'>

in CE; hence f{x)g{x) is integrable over CE, and so over the

whole interval considered*.

This argument can be used to obtain an inequality similar to

(1), but with a factor 2 on the right-hand side. Let
b b

d = j \f(x)\p dx, J = j
dx.

a a
Then

h

//? \fg\ dx + \fg\ dx

a

< 1/ P dx + \g\Pl<s>--^) dx^I^J.

If we replace f{x) and g{x) in this inequality by

(Jliyp-^pfi(x), (IIJ)(P-«lP'g(x),

(2)
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respectively, the left-hand side is unchanged, and each term on

the right-hand side is replaced by /i/p Hence

dxj ^ 2/^/^*/^“'^/^. (3)

The inequahty (1) can be deduced from the well-known

inequality

x^—\<,m{x~~l) (x > 1, 0 < m < 1). (4)

Putting X ~ ajb {a > fe), and multiplying by 6,

Putting 7ri “ cx,

form

1— so that this takes the

<a(x+b^, (5)

and since this is symmetrical it holds if a and b are any unequal

positive numbers. If a ~ 6 it becomes an equality.

Using (5), we have, if F{x) ^ 0, G{x) ^ 0,

^

(jVwdJ (j
0(t)dtj

a a a a

i.e.

= a+^— 1,

6 b b

f
{F(x)}^{G(z)}fi dx ^ fj Jf(a:)da: “

J
Glx)

Finally, putting a = 1/p, F(x) = \f{x)\^, and G(x) — \g(x)\Pl^-'^\

the result (1) follows.*

Example. The case of equality occurs only if |/(a')|^'/|gr(x)|'’A^“^^ is

almost everywhere equal to a constant.

12.421. HSIder’s inequality for sums. This is

< (2 Kl'')^'’(2

The proof is similar to that of the integral inequality. We have

2 {(i^J (i^) )
^2
” a-f-^ == 1,

i.e.

and writing a— 1/p, B„— the result

follows.
* This proof is given by Hardy (20).
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12.43. Minkowski’s inequality. If f{x) and g{x) belong to

where p > 1, then

{/
\f(x)\P dxf^+[j \g(x)\PdxY^. (1)

For

/ J
|/i.|/+<;l»-^da; + J

\g\.\S-\-g\P~^ dx

<(J \f\^dxY^[^ \f^g\Pdx]^-^^+

+ (J
\9 \^dx]^^[j \f+g\P dxy-^'^

by Holder’s inequality. Dividing each side by

{/

the result follows.

The corresponding inequality for sums

(2 K+bn
\n^^ < (2 KI'’)^'^+(2

(
2 )

can be proved in a similar way.

12.44. The integral of a function of 1>. We have seen in

the previous chapter that a necessary and sufficient condition

that a fimction should be an integral is that it should be abso-

lutely continuous. There is a corresponding condition that a

function should be an integral of a function of the class

A necessary and sufficient condition that a function F{x) should

be the integral of a function of the class where p> I, is that

the sum

taken over any system of non-overlapping intervals {x,,Xy-\-h,),

should be bounded.

If instead of ‘should be bounded’ we say ‘should be bounded
and tend to zero with 2 K’y theorem is still true, and in

this form it is true for p = 1 also, and so includes the theorem

on absolute continuity as a particular case. For p > 1 the two
conditions, one of which appears to be more restrictive than the

other, turn out to be equivalent.

To prove that the condition is necessary, suppose that

F{x) = F(o)+
J fit) dt.
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where f{t) belongs to 1>. Then

j
Kt)dt

Xu

[
/ 1/(<)I^<^<)

[
J

dt]^
J

\f{t)\^dt^ .

Hence
Xv-\-hv b

J.\F{x,+K)-F(x;^\r>Kl-P
J

\f{t)\Pdt^l \m\^dt,
x^ a

SO that the condition is necessary. Since

Xu+ hu

1 /
\m\^dt

Xu

tends to zero with ^ alternative condition is also

necessary.

Suppose now that the condition is satisfied, and let M be the

upper bound of the given sums. Then, by H5lder’s inequality

for sums,

2 = 2 \F{x,+K)-F{x,)\hl!p-Khl-^P

< il \F{X,+K)-F(xj\phi-PYIP{2 < M^ipd KY-^p.

which tends to zero with 2 K- Hence F{x) is absolutely con-

tinuous, and so is an integral, say

X

F(x)= F{a)-{-
J /(<) dt.

a

It remains to prove that /(<) belongs to IP. Consider a

sequence of finite sets of points in the interval, the mth set

being x„_i, such that

lim max(z„, ,+i-x„, ,)
= 0.

For example, if the interval is (0, 1) we may take = vj2^.

Let /„(«) =
v+1 ®m, V

in each interval x^y^x<x^ If a; is not one of the points
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y, and F'{x) exists, and x^ y<x< x^ „+i, then

f t^\ v+l) F{x) ^m,v+l ^
I/mW— _ _ "T

v+1 v+1 **'m, V

^m, V ^ ^m, v+1 v

= {i?’'(x)+ S,} +(^’'(X)+ S,}

v+1 V ^m, v+1 '^rn, v

— /"(a;)+S3,

where jSgl < ISjl+ ISgl, and 8^ and Sg to zero as

v+1 ^m. V ^*

Hence lim f^(x) = F'(x) =f(x)
m—»

almost everywhere. Also

b

a

Hence, by Fatou’s theorem (§ 10.81), /(a:) belongs to and

J \f(^) 1^ da; <^ J
l/„,(x) [P da; < Jf

.

a a

12.5, Mean convergence. If we are given a sequence of

numbers, say we have usually to consider the behaviour of

the difference s^—s between and a given number s. In dealing

with a sequence of functions, say /^(x), and a given function

f(x), it is often not the difference but the mean or average value

of the difference which is important. This can be defined in

various ways. If the functions belong to the class where

p ^ 1, we consider the integral

b

j l/n(*)—/WPda;. ( 1 )

a

If this integral tends to zero as n~>co, we say that f„(x) con-

verges in mean (en moyenne, im Mittel), tof(x), with index p.

If / lfj^)-fn(^)l^dx (2)

a

tends to zero as m and n tend mdependently to infinity, we say



MEAN CONVERGENCE 387

that the sequence fn(x) converges in mean, with index p. Here

the function /(a:) is not involved explicitly.

The fundamental theorem^ of the subject is that if the

8eque7ice fj^x) converges in mean, with index p, then there is a

function f(x) of the class defined uniquely apart from sets of

measure zero, to which f^fx) converges in mean.

The theorem is analogous to the ‘general principle of con-

vergence’, that if s^—s^ 0, then there is a number s to which

s^ tends.

A word of explanation is necessary with regard to the ‘unique-

ness’ of the limit-function f{x). Suppose that we have found

a function f{x) which satisfies the given conditions. Then
obviously any other function g(x) which is equal to f{x) almost

everywhere also satisfies the conditions. So at any particular

point the value of f{x) is undetermined, though its general

aggregate of values is in a sense determined. The function f(x)

should be regarded as a representative of a class of functions,

any two of which are equal almost everywhere, and so all of

which behave in the same way in integration.

The theorem for a finite interval and p > 1 may be proved

as follows. To every integer v corresponds a smallest positive

integer n„ such that

h

I
(m > n„ n ^ wj.

a

In particular,

r 1

J
(v = 1, 2. 3,...).

a

If is the set where /„„(*)!
>2“*'^*', it follows that

m{Ey) < (§)*'. Hence the series

V=»l

is convergent, by comparison with 2 2-*’'^, if, for some value

of N, X does not belong to the set -®Ar+i+JS'jv+84---- • Since the

measrire of this set tends to 0 as oo, it follows that the

Fischer (1), F. Riesz (1), (2); W. H. and G. C. Young (2), where several

alternative proofs are given; and Hobson (1).
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above series is convergent for almost all values of x; hence so is

v«l

i.e. there is a fimctionf{x) (defined almost everywhere) such that

=/(x)
V—^00

almost everywhere.

This fimction /(a;) has the required property. For by Fatou’s

theorem

b b

f l/m(*) -/».(*)!*' dx^ j
\fm{x)-f{x)\i> dx;

K-*-® o o

b

but
J

|/„(x) -/„,(*)!» dx<€ (m > mo, y> Pg)-

a

b

Hence
J

|/m(x)—/{x)|^’ dx (m > mg),

a

b

i.e. lim
J

lfJx)-f(x)lP dx = 0,

a

i.e. the sequence fjipc) converges in mean to /(x).

Finally, suppose that /^,(x) converges in mean to/(x) and also

to g{x). Then, by Minkowski^s inequality,

(J \S-g? dx^ < (J \f-fn \^dx^ + (J \g-fn P dxj -> 0.

Hence the left-hand side is 0, and so /(a?) == g{x) almost every-

where.

If p = 1 the proof is simpler, since it is not necessary to use

Minkowski’s inequality. We have

\f-g\ = \f-fn-g+fn\ < \f-fn\+\g-fn\>

and hence

b b b

j \f-g\ dx < J !/-/„! dx + j \g-f„\ dx.

a a a

The same result therefore follows.
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12.51 • The proof applies almost unchanged to an infinite

interval. We find that the above series are convergent almost

everywhere in (a, b) for every 6, i.e. almost everywhere in (a, oo);

and Fatou’s theorem holds for an infinite interval; for, taking

the set of § 10.81 to be the interval (a, 6),

b b oo

J
/(a:) dx < lim

|
/„(x) dx < lim

J
/„(a;) dx,

a a a

and, making fe ->> oo, we obtain the required extension of Fatou’s

theorem. The proof for an infinite interval now follows.

12 .52 . We have also (for a finite or infinite interval)

lim { \fn(x)\^dx=: ( \f{x)\Pdx,.
n->oo •' V

For by Minkowski's inequality

( J
dx^^^

j J
\f(x)\v +

j J I

/(x) -/„(*) I” dxj^'^,

and also

( J
\f{x) |P dxY^ <

( J
\f^{x) |P +

( J
|/(X)-/„(X) dxf'^.

Hence lim
| J

|/„(x) |» =
| J

|/(x) \p

and the result follows.

12 .53 . If f^(x) converges in mean to f{x) with index p, and

g[x) belongs to then

lim f /„(x)sr(x) dx = f /(x)gf(x) dx. ( 1

)

n—« •' •'

For

<
( J l/n(*)-/(*)P J

\9{x)\Pl(^-^>dxf-^'\

which tends to zero.

In pa/rticular
a- a-

^ralf„(t)dt={f[t)dt (2)

a

for all vcduea of x in the interval considered.

For the function g{f) = 1 {a<t<x), = 0 (i > x), belongs to

ipKp-ii,
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Examples, (i) If fj^x) ->/(x) boundedly over a finite interval, then

fj^x) converges in mean to f(x) with any index.

(ii) Consider the closed intervals (0, i), (J, 1), (0, i), (J, f), (|, 1),

(0, J), etc. Let fj^x) = 1 in the nth interval, and fj^x) = 0 in the re-

mainder of the interval (0, 1). Then fj^x) converges in mean to zero

in (0, 1), with any index ; but fj^x) does not tend to zero for any value

of x,

(iii) If/„(a:) converges in mean to /(a?), and/„(.T) -> g(x) almost every-

where, then f(x) ™ g(x) almost everywhere. [Use Egoroff’s theorem.]

(iv) If/„(a;) converges in mean to f(x) with index p, and g„{x) to g{x)

with index pl{p— 1 ), then f9

12.6. Repeated integrals. As in the elementary cases con-

sidered in § 1.8, the equation

bp P b

^
dx

j
f{x,y)dy=^

j
dy

^
f{x,y)dx (1)

a a a a

is in general true in the Lebesgue theory. The general discussion

of this, however, depends on the theory of the double integral

/ J
dxdy,

which in turn depends on the theory of two-dimensional sets

of points. It would take us too far to carry this out in detail.

There is, however, a particular kind of repeated integral which

includes many cases of interest, and which can be dealt with

by the theory already developed.

Let f{x) be integrable in the Lebesgue sense over (a, 6), and g{y)

over (a, j8), and let k{x, y) be a continuous function of both variables,

or, if it has discontinuities, let them be of the type described in

§1.82. Thenbp p b

J
f(x) dx

J
g(y)k(x, y)dy = j g{y) dy J

f{x)k{x, y) dx. (2)

a (X <x a

Suppose first that /(re) and g(y) are bounded, say \f(x)
\ ^ M,

lg'(y)| < M. Let \k(x,y)\ < K.

Let <j>{x) be a continuous function satisfjdng 12.2 (1); and let

Let ^{y) be a continuous function related in the

same way to g{y).

Can the left-hand side of (2) I, and let

b p

r = j <f>(x) dx
j

ifi{y)k{x,y) dy.
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Then
^ ^

/
{/(^c)—^(x)} dx

J
g{y)k(x,y) dy +

a OL

h p

+ J
<l>ix) dx

J
{g{y)—^{y)}k(x,y) dy,

a . a
and hence

b

|/-/'K J
\f{x)-<f>{xm-a)MK dx +{b-a}Mr)

a

^ MK(P— (x~{-b— a)ri.

Similarly, if the right-hand side of (2) is J, and
/3 h

= J Hy) % /
dx,

OL a

then !*/—,/' I

tends to 0 with r].

But, by the theorem of § 1 . 81
,

— J', since (f){x)t{j{y)k(x,y)

is continuous, or has discontinuities of the restricted type.

Hence tends to 0 with 77, and so / == */.

The extension to unbounded functions may be left to the

reader; we suppose first that/(ic) and g(x) are positive, and argue

with {f{x)}„ and {^(x)}„ in the usual manner.

12.61 . Iff{x) is integrable over (0 ,
1 ), and g(x) over

(
0

,
2 ), then

the integral
^

f
/(x)g(x+() dx

0

exists for almost all values of t in (0 ,
1 ), and represents an in-

tegrable function of t.

It is sufficient to consider the case where / and g are positive.

Define {f{x)}^ as usual, and let

Fnit) = /
{f{x)}n9{X+t) dx.

0

This integral exists for all values of t, and, for a given n, F^ft)

is bounded, and for each value of ^t is a non-decreasing func-

tion of n. Also

J -^„(<) dt = ^dt^ {f{x)}ng(x+t) dx^
J

{/{x)}„ dx
J
g(x+t) dt,

0 0 0 0 0

if we may invert the order of integration,

cc
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To justify this, approximate to gr by a continuous function

as in the previous proof, and let

x(0 = I
dx.

011 1

Then
J x(0 = j {/(^)}n J </>(^+0 (2)

0 0 0

this inversion being justified by the above theorem. Now
1

l-^(0-x(0l < J {fiX')]n\9{x:+t)—tl)(x+t)\ dx<nrj,
0

so that the left-hand side of (1) differs from that of (2) by less

than nr). Similarly the right-hand sides differ by less than nr).

Hence, making rj -^0, we obtain (1).

1 12
Hence

J
F„(t) dt^j f{x) dx J g{y) dy.

0 0 0

Hence, as n oo, F^{t) tends to a finite hmit for almost all

values of t (§ 10,82). The result now follows from the theorem

of § 10.82.

12.62. Repeated infinite integrals. Iffix),g{y),andk(x,y)

are positive, and the conditions of ^ 12.6 are satisfied for all values

of b> a and ^> a, then

oo 00 00 00

j fix:) dx j
g(y)k{x, y)dy = j g(y) dy j

fix)k{x, y)dx (1

)

a <x OL a

provided that either side is convergent.

The theorem is similar to that of § 1.85, but the supplementary

conditions which appear there are now a consequence of the

main hypothesis.

Suppose that the right-hand side of (1) is convergent. Since

X 00

J
f(x)k{x, y)dx^j fix)k{x, y)dx, (2

)

a a

and the left-hand side of (2) is a measurable (in fact a con-

tinuous) function of y, it follows that

« X

J
giy) dy J fix:)kix,y) dx

Of a
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is convergent. Hence
71

lim f 9iy) dy f f{x)k{x, y) dx = lim f f{x) dx f g{y)k{x, y) dy
71—^00 *' n~^<X> ^ ^

a a

=/(^) J
g(y)Hx:, y) dy

n—>“00

a

is finite. Also

is a non-decreasing function of n for each value of x. It there-

fore follows from § 10.82 that F,X^) tends to a finite limit, as

n -> 00
,
for almost all values of x in (a, A); i.e.

QO

J
9(y)k{^^y)dy

a

is convergent for almost all values of x in (a, A); and by § 10.82

X 00

j/(x)dx
J
ff(y)k(x,y)dy

X n

lim jf(x)dx f g{y)k{x,y)dy
W-->GO *'

a a n a

n X TO at

(
3 )

By (2), the right-hand side of (3) is bounded as A - > oo; hence

so is the left-hand side, and thei'cfore the left-hand side of (1) is

convergent.

We can now prove in a similar way that the order of integra-

tion in Y ^

j g(y) dy j
f{x)k{x,y) dx

OC a

may be inverted. The final result then follows as in § 1.85.

miscp:llaneous p:xamples.

1. If /(a
)
is integrable over (a, 6), and a ~ Xq

then
ia;»' 4 i

,
b

n— 1
‘

2
v= 0

J'2 < ••• < b.

*'$' -t I U

j
f{t)di

j

\m\dt

os the greatest partial interval tends to zero.

[The proof is elementary for continuous functions ; and then the

general result may be deduced by means of the theorem of § 32.2.]

2. If F{x) is absolutely continuous in (a, b), its total variation in the

interval is b

J
1F'(^)| dx.

a

[Use the result of the previous example.]
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3.

Show that, iif(x) and g{x) belong to L^,

J {/(*)}* f — If
‘to}*

= J J% J
‘to.

and hence obtain another proof of Schwarz’s inequality.

4.

We us© log'a: to denote logo: if x > e, and log':r 1 if x < e.

Show that if {/(x)P log'/(x) and {g(x)Y/\og'g(x) are integrable over

(a, 6), then f(x)g{x) is integrable over (a, fe).

jLet E be the set where / < gflog'g. Then

fgdx ^
JE JE

(Sr(a:))^

^og'g(x)
dx.

In CE, g log'gr- If ^ < e this gives

(/</</ log'/-

If g > e, \'g < Agjlog'g < Af, logg<A\ogf, and hence again,

g<Af log'/. Hence

J^^/ff'to < J^^{/(x)}Mog/(a:) dx.j

5.

If /^(log7)« and grW<i»-i)(log'^)-W<r-i> are integrable, then f{x)g{x) is

integrable.

0. Prove that ^ , i . i / ^ i i \UV < wlogw4-C^“^ {U > lyV> 1).

Deduce that if f{x)\og'f(x) and are integrable, so is f(x)g{x).

[W. H. Young (4). The inequality may be verified by putting w = e*,

V = y-f 1.]

7. If a > 0, > 0, y > 0,

j

J/gA da:j < ^ J 1/ 1‘/"

J
|jf|>/P

J
dx^.

8. If A > 0, fi> 0, A|x < 1, and f(x) and g{x) belong to suitable

L-classes, then

'|(H.AK1+m)/U-Am)

j
fgdx

<
j

Igrp+^da:}
X(1 -f - A;u)

[W. H. Young (2); the result may be obtained by suitable sub-

stitutions in ex. 7.]

9.

If F{x) is the integral of a function of the class i>, where p> h
then aah->0 F{x+h)-F(x) = o
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[If F(x) is the integral of'f{x),

I

x~^h

\F{x+h)-F{x)\ = J
f{t)dt

<
I
mi^dA

J
d< =/.-» r i/(<)|.-rf< ,

and the last factor tends to zero with /<.]

10. If f(x) belongs to L^(0, 00 ), where jO > 1, the integral

oo

jfix)^^^P

is uniformly convergent in any finite interv^al.

11. lff(x) belongs to L^y where p> \y and <f>(y)
is the integral defined

in the previous example, then as ^ 0

00

[^For <f>(y+h)-4,(y) =
J

[si[sm{x(y-\-h)} — sin xy] dx

2 sin ixh cos x(y -f )
dx.

X

Hence

\<f>{y+ h)-<f>(y)\ < 2 /(.r)
sin ^xh

I

^:2; \f(x)\^

The first factor is a constant, and the second factor, on putting x —
is seen to be a multiple of This gives the required result with O
instead of o. If, however, we apply the above argument to the integrals

over (0, 8) and (A, oo), where 8 is arbitrarily small and A arbitrarily

large, and notice that

{

d
i

^

j

J*

sin Ja?/icosa;(y-|-i^) <
J*

— |sin dx — 0(h)

for fixed 8 and A, the required result follows.]
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12. Show that the integral

oo

0

is absolutely convergent if /(.r) belongs to wliere I <p < 2; and
that, aH

2
/ . > 0, 4>(y).--o(yVp-^).

13. Tf f{x) is uniformly continuous over (0, oc>), and belongs to a class

7>^(0, cx ), then/(:r) —> 0 as x -> oo.

14. If /(.r) belongs to L^’((), oc, )* where > 1, so do the functions

4‘{^ /(/) dt,

OC

7
fit)

dt.

[Hardy (17) and (19). Consider (f>(x), for example. It is bounded except

as X —> 0 or x -v co. Hence
tj

J
\<t>(x)\Pdx

a

exists for 0 < a < 6 < co
; and it is sullicient to prove that this integral

remains bounded as a —> 0 and 6 —> oo.

We may suppose without loss of generality that f(t) > 0. Let

sr

fiM

Then x^'-^{fi(x)}p tends to zero, both as a? 0 and as a: -> oo ; for

X
/ ^ \p I

^

I
dt^ - » J

whence the result for x - 0 foJlow's. Again, if a: > f , a similar argument
show^s that $

/i(^) <- /m dt + 1'-'
J {/(o)'

''4'
",

0 ' ^
'

and we can choose ^ so large that the last factor is arbitrarily small,

for all X > ^. This gives the result for x oo.

// b

We write
J

{^{x)}^ dx ^ I
{fi(x))Px~P dx,

a a

iLTid integrate by parts, obtaining

b
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Hence

J
{<I>{X)}P dx^ 0 ( 1 )

j
J

{<f>{x)}p dx\
j
J

{f{x)}p dx \

,

and dividing by the faetor

{<f>(x)}P dx

and making a 0, 6 -> oo, we obtain

I
J < pZ I

I
J

yip
\P dT, I

We leave the corresponding process for i(j(x) to the reader.]

16.

Prove that, with the hypotheses of the previous example, the

integrals OO OO

J"

da:,
J

|0(a;)l«a:*/'’-’ dx

0 0

are convergent for ^ > p.

16. If f(x) belongs to -L^(0, co), where p > 1, and

^(x)
J
e-^f(y) dy.

then
<f)(y)

belongs to Lp.

ifx

'(a:)| < J
\f(y)\ dy f

and the result follows from ex.
14.J

17.

If f(x) belongs to 2/^(a, 6), there is a continuous function g(x)

such that h

I' dx < f.

[The result for bounded f{x) follows at once from § 12.2, and the

general result may then be deduced from this.]

18.

If f(x) belongs to Lp over an interval including (a, b), then

lira f \f(x+h)—f{x)\’’ dx = 0.

[The result is immediate for continuous functions. For the general
result use the previous example.]

19.

Iif(x) belongs to i>(~-oo, oo), then
OO

lim r \f{x-{-h)—f{x)\pdx==^0.
ftr-M) J
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20. If /(.r) belongs to — oo, co), and g(x) to LW<p-i>( — oc, oo), then

F(1) == J
J(x-\-t)g(x) dx

is a continuous function of t.

I^For \F(t !-/()-F’(«)|

r 1*'"^ 7 y-iip-]

I
+ /('•+

<)]'’ I J
\g(x)\pl^P-'''> dx\

~ao ^ ' — an

21. The function of the previous example tends to zero at infinity.

oo —i/ 00

[""<• J - J + J •]

-00

22. If f{x) belongs to Lp{ — oo, oo), tlien

J’(x)

OO

Jr
m dt

is continuous, and belongs to Lp{— oc, oo).

^Use the inequality

|F(x) f
_j/(t)idf.

( f
dt r’

{l + (x-t)^}iol
J {l + {x-t)-}ipl^-

'' — 00

23.

lif{x) is int^grable, the integral

/.(x)

it;

ria) J
(x -<)"-'/(<) dt {a > 0)

exists almost everywhere, and f„(x) is integrable.

[The function /«(x) is the integral of f{x) of order a

;

for some pro-

perties of such integrals see Hardy (12) and Hardy and Littlewood (5).]

24. If f(x) belongs to L^{p >1), show by the method of ex. 20 that

f^(x) is continuous if a > 1/p.

25. If f<x,^{x) denotes the integral of order ^ of fa(x), then

/«,^(x) =/.+p(x) (a > 0, > 0),

wherever the right-hand side exists.

[We have to invert the repeated integral

X t

J
dt
J

(t—u)^"^f(u) du

X /-8
and use Ch. I, ex. 18. The integral

|
J may be inverted by § 12.6,

We can then make S 0 and use the theorem of § 10.82.]



CHAPTER XIII

FOURIER SERIES

13.1. Trigonometrical series and Fourier series. A
trigonometrical series is a series of the form

iOo+ 2 (®n coswa: +b„ sin nx), (1

)

n = l

where the coefficients a^, are independent of x. The

problem of representing a given function f[x) by a series of this

form was first encountered by Fourier in a problem of the con-

duction of heat. Subsequently it was found that these series

play an important part in the theory of functions of a real

variable, and it is from this point of view that we shall consider

them here.

We naturally begin by trying to find formulae for the coeffi-

cients o„, 6„, in terms of the given function /(a;). Suppose that

the series converges uniformly, or even boundedly, to /(x); we
may then multiply by cosmx, where m is a positive integer, and

integrate term by term over the interval (0, 2tt). Since

and

2tr

J
COS mx cos nx dx~TT [n^ rn),

27r

/
COSmx sin nxdx^O

0

for all values of ?i, we obtain the result

= 0 (w ^ m)

am

2n

J
f{x)ooB mx dx.

(
2

)

0

The same formula also gives and similarly, multiplying by
sinmx and integrating term by term.

2Tr

6„,
=
1 J

/(a:)sinmx dx. (3)

0

The formulae (2) and (3) are known as the Euler-Fourier

formulae for the coefficients.

There is, however, no a priori reason for supposing that a
given function can be expanded in a boimde^y convergent

trigonometrical series. The above process is therefore not a
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proof that the coefficients necessarily have the above form.

What it really suggests is that we should adopt a different point

of view. Instead of starting with the series, and assuming that

it has a certain property, we start from the function, and define

the coefficients by the above formulae. We then consider the

properties of the series so formed.

Suppose, then, that we are given a function f{x), integrable

in the sense of Lebesgue over the interval (0, 27r). Then the

integrals (2) and (3) exist, and the numbers a^, 6^ defined by
them are called the Fourier coefficients of f{x). The trigono-

metrical series of the form (1), with these coefficients, is called

the Fourier series of f{x).

The scheme of the chapter is as follows. We first try to

determine conditions under which the Fourier series converges

to f(x), A number of these conditions are found, but they are

all rather special ones (§§ 13.11-13.25). We next consider a

generalized kind of convergence (summabiUty ((7, 1)), and find

that it enables us to put the theory into a more systematic

form (§§ 13.3-13.35). In the following sections we consider some
problems of term-by-term integration; and this leads us to con-

sider properties of the Fourier coefficients themselves, apart

from the Fourier series. In §§ 13.8-13.86 we return to the

question of the relation between Fourier series in particular and
trigonometrical series in general. Lastly we give some of the

corresponding theory of Fourier integrals.

13.11. The convergence problem. The first problem which

we have to consider is whether the series formed in the above

manner converges, and, if it does, whether its sum is /(a:).

At the time when Fourier series first came into use, there

seemed to many mathematicians to be something paradoxical

in saying that an ‘arbitrary’ function could be represented by

a series of functions, each of which is continuous and periodic.

The reader who has examined the peculiarities of some of the

series in Chapter I is perhaps prepared to believe that even this

is possible; and we shall show that the series does, substantially,

dowhat is required of it. Wemustnot, however, expecttoo much.

In the first place, every term of the series has the period 27r;

hence the sum of the series, if there is one, also has the period

27t. We therefore define the function f{x) first in the interval
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0<a:<27r; outside this interval we define it by periodicity,

i.e. by the equation

f{x+ 27r)=f(z).

Secondly, it is impossible that, whatever f(x) is, the series

should converge to the sum f(x) for every value of x. Con-

sider, for example, two functions f{x) and g{x) which differ at

one point only. They have the same Fourier series, so that it

cannot represent both functions at every point. More generally,

two ‘equivalent’ functions, i.e. functions which are equal almost

everywhere, have the same Fourier series, which therefore can-

not represent them both if they differ anywhere.

Actually we shall see that the series does represent the func-

tion, provided that the function is not too complicated; and
even in the most complicated cases, the series still represents

in some sense the main features of the function.

13.12. Fourier series and Laurent series. There is a

close formal connexion between a Fourier series and a Laurent

series. Let F(z) be a one-valued analytic function, regular for

R < \z\ < E. Then
F{z)= 2

n- — 00

where c„ = J
dz {R'<r< R).

!sl=r

Putting z = we have

where

F(re^) — 2
n~ —00

27r

r d<j>.

277 J

The expansion may also be written

F(re^^) = Ao+ 2 4_„)8in»0},
n=i

where
27r 27T

Aa =~j F{rei4‘) d^, = 1
J*

F{re^)cosTuf> d^,

0 0
2rr

i(An—A_„)=—J F{re^)Bm.v^d^.
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We have thus expressed the Laurent series in the form of

a Fourier series. The fact that in this case the series represents

the function, and indeed converges uniformly to it, follows from

the theory of analytic functions. In general we assume much
less about the function than that it is analytic, and the problem

requires quite different methods.

13.2. Dirichlet’s integral. Let 0^x<27t, and let

n

«n = ^ni^) = 2 (o,„cosma: + b^Binmx).
(
1

)

This partial sum can be represented as a definite integral. We
have

2n

S,

0

^ . 2it 2n

+-:i cosmx
I

f{t)cosmi dt sinmx I f(i)mnmtdt

(T 0

27r 27r

=
; 1 (

4+ ^ *

Putting t = x-}-u, this becomes

27T—X

1 r sisin(?i+i)^^

sin \u
f(x+u) du,

or, since the integrand has the period 2tt, and so takes the same
values in (27r—x, 27r) as in (—x, 0),

2Tr

2n J 8m|« (2)

This formula is known as Dirichlet’a integral. It may also be
written in the form

2^ j sin lu
(3 )

0

This is obtained by writing u= —v in the range (rr, 2ir), so that
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this part of (2) becomes

*-27r 0

by periodicity.

Suppose, in particular, that/(:r) = 1 for all values of x. Then
ttp = 2, and all the rest of the Fourier coefficients are zero, so

that Sn=l for n > 0. In this case the above formula becomes

i_± f 2 a.,
27t J sm fu

Multiplying this by 5, and subtracting from (3), we have

i J
{f(x+u)+f(x-u)-2s} du. (4)

A necessary and sufficient condition that the series should

converge to the sum s is, therefore, that this integral should tend

to zero. The 'convergence problem’ is the problem of deter-

mining under what conditions the integral tends to zero, and,

when it does so, whether s =f(x). We may consider the con-

vergence problem for one particular value of x, for all values of

X, or for almost all values of x; or for some other set of values

of X. We begin by considering one particular value of x.

13.21. The Riemann-Lebesgue theorem. The following

theorem is fundamental in the theory.

If f{x) is integrable over {a, 6), then as oo

b b

J
/(x)cos Ax dx 0, J

f{x)sm Ax dx -> 0.

a a

Consider, for example, the cosine integral. If f(x) is an

integral, we may integrate by parts, and obtain

b b

/(x)cos Xzdx=:^ ^{x)
^ J

/'(a;)sin Ax dx,

a a

The last integral is bounded, so that the whole is 0(1/A).
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In the general case, given e, we can (§ 12.2) define an abso-

lutely continuous function (f>{x) such that

b

J
dx<e.

a
h b

Then
J
{f{x)—'<f>{x)]co&Xxdx ^ j

\f{x)-<l>{x)\ dz < e

a a

for all values of A; and, by the first part,

b

J
(f>{x)cosXx dx <€ (A > Xq).

a

h

Hence J/(x)cosAx rfa; < 2e (A>Ao),
a

the required result. A similar proof applies to the sine integral.

There is an alternative proof on the lines of § 13.72, using

the example of § 12.2.

13.22. The Riemann-Lebesgue theorem has the following

important consequences:

The Fourier coefficients of any infegrable function tend to zero.

. This is the particular case of the theorem where A = n, and

the limits are 0 and 27r.

The behaviour of the Fourier series for a particular value of x

depends on the behaviour of the function in the immediate neigh-

bourhood of this point only.

Let S be a positive number less than tt, and let g{t) = f{t) in

the interval x—S <t<. x+S, and g{t) == 0 in the rest of the

interval (X’—7r,x+7T). Let the partial sums of the Fourier series

of g{t) be denoted by S^. Then

* =S J
{j(x+.)+s(a=-.)) du

0

0

“S J
{/(»+»)+/(>:-»)) *<

s

Hence



Now the function

CONVERGENCE TESTS 405

cosec lu{f{x-i-u)-\-f{x—u)}

is integrable over (S, tt) if 8 >0; and hence, by the Riemann-

Lebesgue theorem, a —Q o

Hence, however small 8 may be, the behaviour of depends

on the nature of f{t) in the interval (x--8,a:4-S) only, and
is not affected by the values which it takes outside this

interval.

It is this property which makes it possible for the series to

represent an arbitrary function; but the series only represents

the function at the point a: as a sort of limit of its average value

over the interval (x— 8,a:+S), and this will be equal tof{x) only

if the behaviour of the function is sufficiently simple. As we
have already remarked in § 13.1, the value oi f(t) at the point

tz=zx itself does hot determine or affect in any way the sum of

the series.

13.23. Convergence tests. We first put the ‘necessary and
sufficient condition for convergence to the sum s' into a more

convenient form. Let

<f>M ===f(x+u)+f(x—u)—2s.

Then the condition, by § 13.2 (4), is

lim r du = 0.
n-^oo J sin

0

We may replace this by

n-H.00 J sm

( 1 )

(2)

where 0< 8 ^ tt; for, by the Riemann-Lebesgue theorem, the

difference between the integrals in (1) and (2) tends to zero.

Next we may replace (2) by

Ito = (3)
n-^oo J 'll
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for {cosec lu—2/u)<l)(u) is integrable over (0,S), and so, by the

Riemann-Lebesgue theorem,

s

lim f sin(n+i)«^ ~] Mu) du = 0,

n-^^J Ismi^ uj
^

0

We are now in a position to state some tests for convergence.

13.231. Dini’s test. If (f>{u)lu is integrable over (0,S), then

the series converges to the sum s.

This theorem is at once obvious from the above formula (3)

and the Riemann-Lebesgue theorem. It should of course be

remembered that the integrability of (f>{u)lu in the Lebesgue

sense implies ‘absolute integrability’. The existence of

e

is not a sufficient condition for convergence.

Examples, (i) At any point where /(x) is differentiable, the series

converges to the sum f{x).

[At such a point, <l>(u)lu is bounded.]

(ii) More generally, if f{x) satisfies the ‘Lipschitz condition’ of order

f(xi-h)-f(x) - 0(|A|“) (0 < a < 1),

then the series converges to the sum f(x).

13.232. Jordan’s test. If f{t) is of bounded variation in the

neighbourhood of t — x, then the series converges to the sum

Since ‘bounded variation’ means ‘boimded variation over an

interval’, this condition is really one for convergence over an

interval.

We know that, if f{x) is of bounded variation, the limits

f{x+0) and f{x~0) exist. Hence

^(«) =/(«+«)+f{x—u)—/{*+ 0)~f{x—0)

is of bounded variation in an interval to the right of = 0, and

<f>{u) -> 0 as 0. Hence we may write

where and
(f>2 are positive increasing functions of u; each of

these functions tends to the same limit as u 0; and we may,
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by subtracting a constant from each function, arrange that this

limit shall be zero.

Suppose that 8 is so small that (f>{u) is of bounded variation

in the interval (0 ,
8 ). Then

J ^
® s s

= f “'^*1“ du-j du

0 0

=
say. Consider the integral Jj. Given e, choose 17 so small that

<f>i(v) < Then, by the second mean-value theorem,

f ??<!L+J_^ du ~ #.(,) f
“"(»+ i)” du (0 < f < ,)

J U J U
0 i

»«,) j
•^^dv.

(nf

The last integral is bounded for all values of n
,

and t], so that

fsm(j^+i)_«^

J
I

0

Having fixed rj, by the Riemann-Lebesgue theorem

J U
7

Hence Jj -> 0
;
and similarly -> 0 . This proves the theorem.

In particular if f(x) has only a finite number of maxima and

minima and a finite number of discontinuities in the interval

(0 ,
2rr), its Fourier series is convergent for all values of x to the

sum i{f(x~{-0)+f(x—0)}. For such a function is of bounded
variation in the whole interval. These conditions are known as

Dirichlefs conditions. They are, of course, satisfied in many
cases; but they have the disadvantage that the sum of two
functions which satisfy them does not itself necessarily satisfy

them.

DD
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In connexion with Jordan’s test, it is interesting to note that

*7/(^) a function of bounded variation over (0, 27r), its Fourier

series is boundedly convergent.

For let 0 c^'TTi and write Dirichlet’s integral for s^{x) in

the form
3^

27t J sinKx-t)
'

~i7T

Since
1 _ 1

sin h(x—t) l(x—t)

is bounded for

function from

—
Itt < x—t < Itt, this differs by a bounded

7T J X t

~iv

hetfit) — fi(t)—f2{t), where and/g are positive non-decreasing

in (— Itt). Then, by the second mean-value theorem,

J X— t J X t

"in f
(--i7r<| <|7r),

which is bounded for all n and x, as in the above proof. A
similar result holds for /g. Hence the series is boundedly con-

vergent over (0, 7t), and similarly over (tt, 27r).

13.233. de la Vall6e-Poussin’s test.* If the function

t

j J
<f>{'u)du

0

is of bounded variation in an interval to the right of ^ = 0, then

the series is convergent. If s is so chosen that iff{t) Q as t 0,

the sum of the series is s.

For =

Since ijj{t) is of bounded variation and tends to zero, the part

of the integral § 13.23 (3) involving it tends to zero, as in

Jordan’s test; and since tfi\t) is integrable (§ 11.54), the part

involving tiff^t) tends to zero, as in Dini’s test.

* The same test was given previously by du Bois-Re3miond, but of course

with Biemann integrals.
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13.24. Relations between the above tests.* Consider the

function
.

f{x) =
Yo'^Yfx

^ ^ ^ (tt < a: < 27t).

This function is bounded and monotonic in the neighbourhood

of a: ™ 0, so that Jordan’s condition is satisfied, and the series

converges. But Dini’s condition is not satisfied, since the

integral §

r (it

J tiogl/t
0

is divergent. Thus Dinis condition does not include Jordan's.

On the other hand, Jordan's condition does not include Dini's.

For consider the function

f{x) == sin 1/x (0 <x < tt), -- 0 {n '^x < 27r),

where 0<a:<l. Then Dini’s condition for convergence at

X — 0 is obviously satisfied. But the function is not of bounded

variation (Ch. XI, ex. 5), i.e. Jordan’s condition is not satisfied.

Lastly, de la Vallee-Poussin s test includes both Dints and

Jordan's, i.e. if either Dini’s or Jordan’s condition is fulfilled,

then so is de la Vallee-Poussin’s.

We first remark that if g{x) is of bounded variation in (0,8),

then so is ^

^ J
'7(0

0

For g{x)
(7i(^)~!72(^)’ where gx{^) and g^i^) are positive, non-

decreasing, and bounded; and

X X

0(x)=^
J J

^ G'i(x)— (?
2 (a:),

0 0

say, and it is easily seen that Gi(x) and (?
2 (.r)

are both positive,

non-decreasing, and bounded. Hence G{x) is of bounded varia-

tion.

The relation between Jordan’s test and de la Vallee-Poussin’s

test follows at once; if <l){t) is of bounded variation, so is ift(t).

* For a detailed discussion of this question see Hardy (13).
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Now consider Dini’s test. If ^(u)ju is integrable,

xV) = I
du

0

is a function of bounded variation
;
and

t t

4>it) =

7

J “^ = x(0-
j J

x(“)

0 0

which is also of bounded variation, by the above remark.

Hence de la Vallee-Poussin’s condition is satisfied.

13.25. Convergence throughout an interval. If one of

the above conditions is fulfilled at all points of an interval, of

course the series converges throughout the interval; and if the

condition is fulfilled uniformly, the convergence is uniform. The
simplest case is as follows.

The Fourier series of f(x) converges uniformly to f(x) in any

interval interior to an interval where f(x) is continuous and of

bounded variation.

For in such an interval we can write /(a;) =^fi(x)—f2{x), where

fi{x) andf^ix) are continuous and non-decreasing. Then, by the

property of uniform continuity, we can find rj so that

\fi{x+h)—fj{x)\ < e (1^1 < rj),

the choice of rj depending only on e and not on the value of

X in the interval. It will be seen on referring to the proof of

Jordan’s test that this implies the xmiform convergence of the

integral dealt with in proving the test. We have also to show
that the parts of Dirichlet’s integral which have been shown to

tend to 0, actually tend uniformly to 0; the reader should have

no difficulty in verifying this.

The property of uniform convergence is, however, not so

important as might be expected in the case of Fourier series,

because questions of term-by-term integration can be dealt with

under much more general conditions (§ 13.5).

No simple restriction on f(x) which ensures that the Fourier

series shall be convergent almost everywhere, without obviously

proving more than this, appears to be known. It might, for

example, be conjectured that continuity would be such a con-
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dition; but no result of the kind suggested has been proved.

On the other hand, a condition bearing not on the function

itself, but on the Fourier coefficients, has been given: the Fourier

series is convergent almost everywhere if the series

2 {<+f>l)logn
is convergent."*^

13.3. Summation of series by arithmetic means. If a

series convergent, i.e. if s^ ==

not tend to a limit, it is sometimes possible to associate with

the series a ‘sum’ in a less direct way. The simplest such

method is ‘summation by arithmetic means’. We take the

arithmetic mean « i i i o

of the partial sums of the given series. If s^ s, then also

s\ for if s^^ = s-\-8,^y then

„ I

8i+S2+...+8„

and the last term tends to zero if S„ -> 0, by the lemma of § 1.23.

But o-,„ may tend to a limit even though does not. Con-

sider, for example, the series

1- 1+ 1-1+ ....

Here the partial sums are alternately 1 and 0, and it is easily

seen that <7„ -> i.

A series for which <t„ tends to a limit is said to be summable
by arithmetic means, or by Cesiro’s means of the first order,

or (C, 1).

Examples, (i) The series 1-f O-l-fl-f 0— l-f ••• is summable (C, 1)

to the sum f

.

(ii) The series sin x -f- sin 2x 4- sin 3a; -f*-- is summable ((7, 1) for all

values of x

;

the sum is i cot ^x if x is not an even multiple of tt, and
otherwise is 0.

(iii) The series | f cos x 4- cos 2x -f cos 3a; 4- ... is summable (C, 1) to

the sum zero if a; is not an even multiple of tt.

(iv) If 2 is summable (C, 1), = o(n).

[For = wo'„-(n- lK_i.]
(v) Let 1^1+ 2^24-- •'hwWn* If summable (C, 1), a neces-

sary and sufficient condition that it should be convergent is = o (w),

[For = {n4- IK-na^.]
Plessner (2).
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summable (C, 1), and -- o(l/n), then 2
vergent.

[For “ o(n), by the lemma of § 1.23. The result is analogous to

Tauber’s theorem.]

(vii) A neee.ssary and sufficient condition that 2 should be sum-
niable (C, 1) is that V

^ 1)

should be convergent.

ly

Zw ri{n-h 1Zwn{n-hl) iV f 1
-

rj 1

(viii) If 2 is summable ((7, 1), and 'u^ — 0(l/r?), then ^ '^n

vergent.

[Hardy; this is analogous to Littlewood’s extension of Tauber’s

theorem. If ^ is not convergent, then /jv > or tjj < —A^N^ for

an infinity of values of N—say e.g. the former. Since

^«4i = in-\- (n-l-lK > ^n-A^,

we have (0 v < JAMj/Aj).

A'-l-hV^iM2

Hence
n(n-\-\)

and by (vii) the series is not summable (C, 1).]

(ix) A series of positive terms is summable (C, 1) only if it is con-

vergent.

[If*. -> cc, then oo,]

13.31. Summabiiity of Fourier series. It was discovered

by Fejer* that the method of summation by arithmetic means
applies particularly well to Fourier series. We write

n — •••.+*« -1
” n

’

where is given by § 13.21 (3). Hence

0

This formula is known as Fejer's integral. Its importance is due

to the fact that the factor ^ix)?\nul^in^\u is positive. This makes

Fej4r(l).
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it much easier to deal with Fejer’s integral than with Dirichlet’s,

in which the corresponding factor, sin(n+i)i^/sin oscillates

between positive and negative values.

In the particular case where f(x) = 1, the formula becomes

_ 1

2n7r J sin^|u
2 dUy

since now — 1 for n > 0. Hence, multiplying by s and sub-

tracting, ^

0

A necessary and sufficient condition that the series should be

summable (C, 1) to the sum s is, therefore, that the integral

(2) should tend to zero.

As in the convergence problem, we can simplify the condition.

We wnte
^j(^x+u)+f(x—v.)—23

as before. Then, if 8 is any positive number less than tt, a

necessary and sufficient condition that the series should be

summable ( (7, 1) to 5 is

for 1 f mUu.
n J sm®jtt n J

8 ' 8

which plainly tends to zero. Finally, the condition may be put

in the form §

(
4)

limi
n J

for

which tends to zero.
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13.32, Fej^r’s theorem. The Fourier series of f(x) is sum'
mable {C^l) to the sum

i{/(a^+0)+/(a;-0)}

for et)ery value of x for which this expression has a meaning. In
particular, the series is summable ((7, 1) to the sum f(x) at every

point where f(x) is continuous.

We now put s~ i{f(^+0)~{-f{x—0)} in the above formulae.

Then (t)(u) -> 0 with u, and we have to prove that 13.31 (4) is

true. Suppose that \(f>(u)
\
< e for u^rj. Then

r sin^i/itt ^ 1 r sinHn?/ , .If ^in^hnu

J
—

<-J -y
0 ' 0 7}

«:£ hmdu
n J u^ n J u^

say. Now
V i^V

1 r sin^i^it^ J __ f r sin^t?

n J
' ^

2 J
'

0 0

CO

1 f sin2^; ,

2 J

which is a constant. Hence < Ae. Having fixed y, it is clear

that /g -> 0 as n -> 00 . This proves the theorem.

13.33. Summability throughout an interval. The fol-

lowing theorem is an almost immediate consequence of Fej^r’s

theorem.

The Fourier series off{x) is uniformly summable in any interval

included in an interval where f(x) is continuous.

For f{x) is uniformly continuous in any such interval, and so,

in the above proof, the choice of y depends only on c and not

on x. The result follows at once from this.

Weierstrass’s approximation theorem. If f{x) is con^

tinuous in (a, 6), and e is a given positive number, there is a poly-

nomial p{x) such that

\f(x)—p(x)\ < € (a^x^b).

We can make a preliminary transformation so that the

interval considered lies within (0, 27t). Then, by the above

theorem, there is a ‘trigonometrical polynomiar (t^{x) such that
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\f(x)—a^(x)\ < |€ throughout the interval. If we replace each

sine and cosine in cr^^(x) by a sufficiently large number of terms

in its power series, we obtain a polynomial p{x) such that

throughout the interval. This proves the

theorem.

13.34. Almost everywhere summability. As long as we
restrict ourselves to ordinary convergence, we cannot show that

the Fourier series of a function represents the function in

general, without imposing some rather heavy restriction on the

function. The theory of summability removes this defect.

The Fej6r-Lebesgue theorem. The Fourier series of f(x)

is summable (C, 1) to the sum f(x), for every value of x for which

f l/(^+u)-f(^)l du = o{t). (1)

0

In particular^ it is summable (C, 1) to f(x) almost everywhere.

We have shown in § 11.6 that the condition (1) is satisfied for

almost all values of x, for any integrable function. The second

part of the theorem therefore follows at once from the first.

Let a; be a point where (1) is satisfied, and take s=f{x) in

the formulae of § 13.31. Then

t t

I
\(f>(u)\ du = j \

f{x+u)+f(x—u)—2f{x)\ du

0 0

i i

< 1 /(a:)| du + j
\f{x—u)—f{x)\ du = o (t).

0 0

i

Let = j \<f>{u)\ du,

0

and, given e, choose rj so that 0(<) < e< for We suppose

that » > l/ij, and write

B l/n rf 8

j
d« = J + J + J=

J,+J,+Js.

0 0 l/n 7}

Then, since sin^d < 0®,

l/n

1

*^
1 1 < (!«)* J l^(«)l du < Jew,
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l/« 1/n

<- + 2€
V j.

I In

< €/7}+ 2€n < SeUy

Ifn

and obviously l^al < T

Hence - f ^^^~(f>(u) dn
n

}

< Je+SeH -
y

717]^

and the required result follows on choosing first c, then rj, and

then n.

13.35. An immediate corollary is that a trigonometrical series

cannot be the Fourier series of two functions which differ in a set

of positive measure. For if it is the Fourier series of f{x) and of

g{x)y it is summable ((7, 1) both to f(x) and to g{x) almost every-

where. Hence f{x) — g{x) almost everywhere.

13.4. A continuous function with a divergent Fourier

series. While we have seen that the continuity of a function

is a sufficient condition for its Fourier series to be summable

((7, 1), for convergence we have had to assume other conditions.

That this is really in accordance with the facts is shown by the

following example, due to Fejer,* of a Fourier series which is

divergent at a point, although the function which gives rise to

it is continuous.

13.41. We first require a lemma.

The sum

~ ^ C03(r+l)a; C08(r+2)a; co8(r+«)»
' 2n—l 2n-3 1

oos(r-f-«+l)x cos(r+»+2)a: C08(r+2»)a;

i 3 2n-l

M bounded for aU valties of n, r, and x.

* Fej6r (2). (3). (4).
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<l>(n,r,x) 2
cos(r+n—v+l)a: cos(r+n+v)

V I V I

V^l

/ 2n

: 2sin(r4-n+ 1)2;|^
sin^Ao; 1

2 2.“7x~")
/i-i

and each of the sums in the bracket is bounded (§ 1.76).

13.42. Let denote the group of 2n numbers

1

•4’ '• .i._i -

3

1

12n~-r 2n~S ’3' '3 2n-

Let Aj, Ag,. * denote an increasing sequence of integers. Take the

numbers of the groups Gx^ ^ order, and multiply each

of the numbers of the group Gx^ by We obtain the sequence

11 11 1 1

l2'2A,~i’ 12 2Ai— L 22(2A2— 1)' 22(2~A2-3)'‘

say ag,...

.

Now consider the series

2 cos no;. (1)

Suppose first that the terms corresponding to each group 6?;^

are bracketed together. The bracketed series is

00

2
<f>{Xnf 2Ai+2A2+...+ 2Ayj_|,x)

(2 )

which is absolutely and uniformly convergent, by the lemma.

The sum of the series (2), say /(x), is therefore a continuous

function.

We next observe that the series (1) is the Fourier series of

f(x). For since (2) is uniformly convergent, we may multiply it

by cosmx or sinmx and integrate term by term. The integral

of each term is zero, except that of the one containing the term

cosmx; and from this we obtain

2n

J
/(ic)cosmx dx = noc^
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The numbers (x„^ are therefore the Fourier cosine coefficients

of/(x).

We show finally that the numbers can be chosen so that

the series (1) is divergent at the point x = 0, i.e. that the series

(Xi+a2 +... is divergent. Let be its nth partial sum. Then

_ 1

^2Aj+2A2+...4-2Ar— 1+Ap ' ^2 2A„ >+ +i+')
^ogK

*

If the numbers Aj, tend to infinity sufficiently rapidly, e.g. if

A^ — it follows that s^->oo as n -> oo through a certain

sequence of values. Hence the series is divergent.

13.43. Fejer’s example, together with a simple argument

depending on Dirichlet's integral, enables us to say how large

the partial sums of a Fourier series of a continuous function

can be.

Iff(x) is continuoiLs, then

s„ = o(logn);

and no more is true, since, if t}i(n) is a function which decreases

steadily to zero, however slowly, there is a Fourier series of a con-

tinuous function for which

Sn>4>{n)logn

for arbitrarily large values of n.

For the first part, we have to prove that

r
(f,{u) du — o (log n)

J u
0

if 4>{u) 0 as n 0. Suppose that \<f>(u)
\
<€ for u^rj; and,

if n+ \ > Ijr], put

8
,

i/(n+|) v S

j
^E(^±J}^^(u)du=

j + j
+
J
= /l+/2+/3-

0 0 i/(n+i) y

i/(n+i)

Then |/,| < (»+|) J
\4>('u)\ du < e,

0

3

l/aK
J

^dii<elog{n+i),

!/(»+«
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5

and \<f>{u)\du.

The result clearly follows from these inequalities.

The second part is obtained by taking sufficiently large in

Fejer’s example. Suppose that > 2v, and let

n = 2AjL-f’2A2-i-...H-2A^_i4- A^.

Then X^<n< 2vX^ < A^.

Now > (/f(rt)log n for sufficiently large values of u, if

and since ^{n)\ogn<, v^(A^)logAJ, this is true if

and this will be so if the numbers A^, tend to infinity rapidly

enough,

13.5. Integration of Fourier series. Any Fourier series,

whether convergent or not, may be integrated term by term between

any limits) that is, the sum of the integrals of the separate terms

is the integral of the function of which the series is the Fourier

series.

Let /(a) have the Fourier coefficients a^, 6„, and let

X

F{x) = J {/(<)— dt.

0

Then F(x) is periodic, continuous, and of boxmded variation.

Hence it can be expanded in a Fourier series, say

00

F(a;) = 1^0+ 2 cos no: sin n:c),

n~l

convergent for all values of x. Here
2tr

^ j
F(x)coBnxdx

^ J
0

2ir

*1
I
{f(x)-lao}^mc dx

0
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— f flx)Bmnxdx~ ^

;

nTT J n
0

2it

and = F{x)&innx dx

0

= ~ [— +— f {f{x)—^aQ}coBnx dx
77 L ^ Jo J

0
in

=— J
f(x)coB nx dx

,

the integrated terms vanishing since i^(277-) == F(0) == 0. Hence

F(x) = U,+ ^^sin nx — cos nx

Putting 5; ^ 0, we obtain

m.»2:
and, adding,

sin nx b^{l— cos nx)

This proves the theorem.

13.51. An interesting particular case is that the series

^ n

is convergent. This remark enables us to write down convergent

trigonometrical series which are not Fourier series. A simple

example is

This is convergent for all values of x, but it cannot be the

Fourier series of its sum, since the series

y__2.^ nlosL^ n\ogn

is divergent. Actually the sum of this trigonometrical series is

not integrable in the sense of Lebesgue, and it is easy to prove
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directly that the sum of the integrated series 2 oo^nxjnlogn

tends to infinity as a; 0.

13.52. The following alternative proof of the above integra-

tion theorem is also interesting. We know that the series

sin(a:— <)

i

sin2(a:~<)
,

2

is boundedly convergent. Hence we may multiply by/(^)/77 and
integrate term by term over (0, 2tt), On the left we obtain

2i rBin»(x-()/m *= 2
n^l

Q
n=l

the integrated series. On the right we get

27r X X

j J
u^-x+i)fit) dt

0 ' x~2Tr X— 27r

X 2n

= J
nt}dt = F(x)-±

j
F{i)dt,

x—2'tr 0

since F(x—2tt) = F{x). The result now follows as before.

13.53. A similar method leads to the following more general

integration theorem,

A Fourier series may be multiplied by any function of bounded

variation and integrated term by term between any finite limits,

OO

Let g{x) = JoiQ-f- 2 i^n

be a function of bounded variation. The series being boundedly

convergent (§ 13.232), we may multiply by any integrable func-

tion /(a:) and integrate term by term over (0, 27t), We obtain

2Tr

- f f(x)9{x) dx = K«0+ f («»“n+^»n^n). (1)
TT J n-1

0

where a„, 6„, are the Fourier coefficients of f{x). This is the

same result as we should have obtained by multiplying the

Fourier series for/(x) by g{x) and integrating term by term over

(0. 27t).
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A similar result may be obtained for other ranges of integra-

tion by replacing g{x) by 0 outside the required range.

13.54. Parseval’s theorem. If /(a:) is of bounded varia-

tion, we may put g{x) =f{x) in 13.53 (1), and obtain

27r

- f dx = \al^r f {al+bl).
7T J n=l

0

This is known as Parseval’s theorem. We shall show in § 13.63

that it is true under much more general conditions than those

we have so far assumed.

13.6. Functions of the class L^: Bessel’s inequality. Let

f(x) be a function of the class L^(0, 2tt), with Fourier coefficients

o„, 6„. Then
n

^{pc) —f(x)— |ao— 2 (®m cos sui mx)

also belongs to L^
;
and

27r 2ir

1 f
{<f>(x)Ydx = l

f
{f(x)}^dx+H+ 1 {<+bl)-

0 0

dx -- if (a^ cosmx + 6^ sin mx)f(x) dx

0 0
2Tr

= - f{/(x)F<ix-K- i
*37 J rn=l

by the Euler-Fourier formulae. Since the left-hand side is not

negative, it follows that
2n

(1)
m^l j

0

for all values of n. This result is known as Bessel’s inequality.

Since the right-hand side of (1) is independent of n, it follows

that <Ae sme« „

K+ 2 «+bl) (2)
m~i

is convergent. Also

K+ 2 «+*m) < ; f
{/(*)}* da. (3)
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13.61. Parseval’s theorem for continuous functions.

We have seen that, for functions of bounded variation, the

above inequality becomes an equality, viz. Parseval’s theorem.

The same result for continuous functions may be proved as

follows. If f{x) is continuous, o-„(:r) tends uniformly to f(x),

and hence 27r

n->QO 7T J
0

^ ^ / \

Now cr^(^) " ™ I >

and, evaluating the integral as in the previous section, we obtain
‘27r n~l

Parseval’s formula therefore holds if the series is summed (C,l).

Since by § 13.6 the series is convergent, it follows from § 13.3

that it holds in the ordinary sense.*

There is no dilficulty in extending this proof to functions

which have simple discontinuities. Actually ParsevaFs theorem

holds for all functions of the class L-. We shall prove this as

a corollary of the theorem of the next section.

13.62. The Riesz-Fischer theorem. Let
00

2^+ 2 (^n sin nx) ( 1

)

n^l

be any trigonometrical series with coefficients such that the

series 13.6 (2) is convergent. Nothing that we have proved so

far in this chapter enables us to decide whether such a series

is a Fourier series. The problem is solved by means of the

theory of mean convergence (§ 12.5). This theory was in fact

originally constructed to deal with this very problem.

The following theorem was proved almost simultaneously by
F. Riesz and Fischer.

f

If the numbers a^, are such that the series 13.6 (2) is con-

vergent
y
then the series (1) is the Fourier series of a function f{x)

* A number of different proofs under various conditions are given by Julia,

Exercices d'analyse^ 180-6.

t F. Kiesz (1), Fischer (1).

EE



FOUKIER SERIES

of the class The partial sums of the series converge in mean
to fix).

Denoting the nth partial sum of (1) by s^{z), we have
27r 2n ^

f
(s„(x)~s^(a:)}‘‘ dx —

f ( ^ (a^coBvx + b^ainyx)}^ dx

0 0
'‘’=’"+1 ^

= 7r 2
all the product terms disappearing on integration. The right-

hand side tends to zero when m and n tend independently to

infinity. Hence s„(x) converges in mean to a function, /(cfc) say,

of the class L^.

Also, by § 12.53,

27r 27r

lim
I

Sn(x)co8ux dx =
j

f(x)cosyx dx,
fl~>CC

0 0

But the integral on the left is equal to 7ra^, il n^v. Hence
ZTT

- j

i.e. a^ is the rth Fourier cosine coefficient of f{x). Similarly 6^

is the vth sine coefficient. Hence the given trigonometrical series

is the Fourier series of the function f(x).

It is important to observe that it is here that the Lebesgue

integral first plays an indispensable part in the theory. Most

of the previous analysis is true for Riemann integrals and
elementary generalized absolutely convergent integrals. Here

the result shows that the extension to Lebesgue integrals is

really necessary.

13.63. Parseval’s theorem for functions of the class

Let f(z) be any function belonging to 1/^(0, 27r), and let its

Fourier series have the usual form. Then the series 13.6 (2) is

convergent. Hence, by the Riesz-Fischer theorem, the partial

sums s^{z) converge in mean to a function g{x), of which the

given series is the Fourier series. Hence, by § 13.35, g(z) =^fiz)

almost everywhere. Also, by § 12.52,

n-^oo
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and on evaluating the integral on the left-hand side we obtain

Parseval’s formula.

The more general formula 13.53 (1) also holds if f(x) and g{x)

are any two functions of the class For Parseval’s formula

holds for the functions /(a;) -f (/(a:) and f{x)—g{x), and the result

stated follows on subtraction.

13.7. Properties of Fourier coefficients. Originally the

Fourier coefficients were merely the material out of which the

Fourier series was constructed. But the coefficients have some
interesting properties of their own. In fact Bessers inequality,

and the theorems of Parseval and Riesz-Fischer call attention

to the problem of the behaviour of the Fourier coefficients of

given classes of functions and give some important information

about it.

The first theorem of this kind (§13.22) is that the Fourier

coefficient's of any integrable function tend to zero. On the other

hand, they do not tend to zero in any definite order; that is,

any theorem such as = 0(l/log?^) for all integrable func-

tions’ is certainly false. For consider the series

2
"*

cosfc^a;
*

n^l

where denotes a sequence of positive integers which tends to

infinity rapidly as n -> oo. The series is uniformly convergent,

and so is the Fourier series of its sum; and

1

which falsifies any theorem of the kind suggested, if k^ tends

to infinity rapidly enough.

13.71. Suppose next that f{x) belongs to the class This

does not enable us to prove any more about the order of the

coefficients; in fact the function defined by the above series is

clearly continuous, and so belongs to L^. But we do obtain

a definite result about the average order, viz. that

is convergent (§ 13.6).

This result has been generalized so as to apply to other
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Lebesgue classes; iff(x) belongs to where 1 </) < 2, then the

2 (
|a^ |p/(p-i)+ \h^ |p/(P-i))

is convergent.

The proof of this theorem is, however, too long to be given

here.*

There is also a corresponding extension of the Riesz-Fischer

theorem: if the series
^

where 1 < jp 2, is convergent, then the numbers b^^ are the

Fourier coefficients of a function of the class

Both these theorems cease to be true if p > 2, so that they

are not converses of each other unless p = 2.

13.72. If we make still more special assumptions about the

function, we obtain new results about the coefficients. Suppose

thatf{x) satisfies a Lipschitz condition of order a, i.e. as h 0

f(x+h)-~f(x) - 0(\h\-) (0<oc^l)

uniformly with respect to x. Then

27r 2Tr— -TT/n

a„ = -
\
f(x)cosnx dx= /(-+MCosn<

rr J n J \n /
dt

-Ttln

and hence also

2.TT

= —
- J /^^+ <jcosn< rfi,

0

27r

0

and similarly for b^.

13*73. The next result of this kind is that iff{x) is of bounded

variation, then oim, Oiljn).

* W. H. Young (2), (3), (5), (6), Hausdorfl (1), F. Riesr (4).
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For f(x) := fi(x)~f2 (x), where fi{x) and/2(x) are positive and

non-decreasing. Hence, by the second mean-value theorem,

27T 2TT

J
/i(^)cos nx dx “ J\ (27t)

J
cos nx dx (0 < ^ < 27t)

-/i(27r)
sinn^

n
o(il

and a similar result holds for the other integral.

An alternative proof of Jordan’s theorem (§ 13.232) can be

deduced from this result. If f(x) is of bounded variation, its

Fourier series is summablo (6\ 1) to the sum l{f(x+0)-\~f(x—0)},

by § 13.32. Since a,^ — 0(1/??), — 0(1/??), the series actually

converges to this sum (§ 13.3, ex. (viii)).

If f{x) is an integral, and has the period 27r, then

X

For if /(x)
=/{0)+ J ^(0

0

27r

then Tra,^ — j/(‘<^)

J
4^(x)^in nx dx,

0

27T

7Tb^^ — /(x)

j
+“ J

<l>{x)cos7ix dx,

0

• The integrated terms are zero, since /(277) ™/(0) and the in-

tegrals on the right tend to zero, by the Riemann-Lebesgue

theorem. This proves the theorem.

If f{x) satisfies special conditions, such as a Lipschitz con-

dition, still furtlier results of the same kind can, of course, be

obtained.

13.8. Uniqueness of trigonometrical series. At the be-

ginning of the chapter we associated with an integrable function

a particular trigonometrical series, viz. the Fourier series of the

function; and we have shown that the Fourier series does, in

various ways, represent the function. The reader might, how-

ever, still contend that we had attached undue importance to

Fourier series, and that there might be other types of trigono-

metrical series in which a given function could be expanded.
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It is difficult to give a complete solution of this problem. If,

however, we assume enough about th^ set of points where the

series converge, we can show that, if a trigonometrical series

converges to a given function, it is the only such series which

does so; and therefore that, if the function can be expanded in

a convergent Fourier series, it cannot be expanded in a con-

vergent trigonometrical series of any other form.

The theory is due to Riemann, du Bois-Reymond, and Cantor.

The theorem which we shall prove is as follows.

If two trigonometrical series converge to the same sum in the

interval (0, 27r), with the possible exception of a finite number of

points^ then corresponding coefficients in the two series are eqiuil,

i.e. the series are identical.

This is not all that is known, and more general theorems will

be found, e.g., in Hobson’s Theory of Functions^ §§ 420-50. But
some extensions which might naturally be suggested are not

true; if we say ‘are summable (C, 1)’ instead of ‘converge’, the

theorem becomes false, as is shown by § 13.3, ex. (iii).

The question whether a given trigonometrical series is a

Fourier series is really a problem of integral equations. We are

given numbers a^, bj,..., and it is required to determine

whether there is an integrable function /(a:) such that the Euler-

Fourier formulae § 13.1 (2), (3), are true. The question is not

settled by mere convergence, since a trigonometrical series may
be everywhere convergent without being a Fourier series

(§ 13.61). But if it converges uniformly, or boundedly, or in

mean with index p (p ^ 1), then it is a Fourier series; and the

theorems of §§ 13.62-13.71 enable us to state conditions for

mean convergence, with p > 2.

Another theorem which would naturally suggest itself is that

if a trigonometrical series converges almost everywhere to an

integrable function, then it is the Fourier series of the function;

but this is not necessarily true, and the state of affairs is rather

complicated.

The proof of the theoi'em stated above depends pn a number
of lemmas.

13.81. Cantor’s lemma. Ifa^cosnx-{-b^minxtendstoO

for all values of x in an interval, then a^ and b^ tend to 0.

Suppose that a^cosnx + bj^&mnx-^O in the interval
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If the lemma is false, there is a constant A and a sequence of

values of n for which A. Hence, as through

this sequence, the function

(a,^ cos nx+ b^ sin nx)^

^bl
converges boundedly to 0 in (a,j8). Hence, by the theorem of

bounded convergence.

J fni^) dx -> 0 .

a

But, evaluating the integral, we find that

jUx)dx=U^-a)+ 0(^\,
a

and this gives a contradiction. This i)roves the lemma.

13.82. Suppose now that the series

00

i«o+ 2 (®« CO® nx+ b„8innx) ( 1

)

n=l

converges to the sum f(x) in (0, 2tt), except possibly at a finite

number of points. Let

F{x) = 2
n=l

cos nx 4- Bin nx
(
2

)

Since by Cantor’s lemma o„ and b„ tend to zero, this series is

uniformly convergent, and JF'(x) is continuous, for all values of

X. If we could differentiate twice term by term, we should have
F"{x) —fix). We cannot necessarily do this, and instead have
to proceed as follows.

Iliemann’s First Theorem. If

_ F(x+2h)^F{x-2h)-2F{x)
u(x, n) , (3)

then G{x, h) ->f(x) as h-*0, for all values of x for which the series

(1) converges to f{x).

We have

cosn{x -f- 2A)+ COBn{x— 2h)— 2 cosnx = — 4 cosnx sin^n^,

sinn(x+2A)+sinn(x—2A)—2sinnx= —4sinnx8in*7»A.
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and hence

G{x, h
)
= 2 (®>i cos nx + sin nx) (4)

n=i

The nth term of (4) tends to the nth term of ( 1) as A- 0. Hence

it is sufficient to prove that the series (4) converges uniformly

with respect to h. Let denote the remainder of the series (1)

after the term in sinno:. Then -> 0, say lr,J < € for n > iV'.

Hence

2
,

1 / • \
sin^nA

{a^ cos nx + sin nx) —
n -N

/sin NhV'

M ;

“

2
.

,/sinnA\2

n-N ^ ^

^ r/sinn/A^ fsin(n-f 1)A1^

“(Tn+iyr) J’

and the modulus of this does not exceed

€-f C 2 f
xV+I nh

/sin^A
(it < €+€

QO

J
d /sin^A

dt\^)
dt,

the last integral being convergent. Hence (4) is uniformly con-

vergent, and the result follows.

13.83. Riemann’s Second Theorem. //a„ and tend to

zero, then
F{x-\-2h)+ F{x-'2h)-2F(x)

Jim ^ —— 0.

h~^()

for all values of x.

We have to prove that

00
_

a^h-\- 22
sin^nA

n%

tends to zero. Given e, we have

Itt^cosn^: + sinna;| < e (n > iV).

Since sin^TiA < for n^ 1/A, the modulus of the sum does

not exceed

<AN\h\+2eJrj
j
^^^,<AN\h\+Ae,

llh
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and the result follows by choosing first e and then h sufficiently

small.

13.84. Schwarz’s theorem. // F(x) is continuous in an

interval (a, 6), and

— 2F(x)
^

for all valuer of x in the interval, then F(x) is a linear function.

The expression on the left is called the generalized second

derivative of F{x). If F{x) has an ordinary second derivative,

the generalized second derivative is equal to it, and the result

follows at once.

To prove the theorem, consider the function

<i>(x) = F{x)-F{a)-^^^{F{b)-F{a)].

We have (f>{a) = 0 and <f){b) = 0. If = 0 for all values of x,

the result follows. Otherwise it takes values different from zero,

say, for example, positive values. Suppose that j>{c) > 0. Let

— <f>{x)~\€{x~a){b—x),

where c is positive and so small that i/r(c) > 0. Then 0(;r) has

a positive upper bound, say at x which it attains, since it

is continuous. Hence

But

F(^-^1i)+F(^~h)-2F{^)
, ^

and the right-hand side tends to € as h 0. This gives a con-

tradiction. Similarly the supposition that <f>{x) takes negative

values leads to a contradiction. Hence ^{x) ~ 0 for all values

of x, which is the desired result.

13.85. The proof of the main theorem now follows from

Schwarz’s theorem. It is sufficient to prove that, if a trigono-

metrical series converges to zero except at a finite number of

points, then it must vanish identically. If the series 13.82 (1)

has this property, the function F{x) is continuous, and its

generalized second derivative is zero except at a finite number
of points. Hence F{x) is linear in the interval between any two
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exceptional points, and the straight lines which form the graph

join at the exceptional points. Now, taking x in Riemann’s

second theorem to be an exceptional point, it follows from the

lemma that the slopes of the lines on the two sides of the

exceptional point must be the same. Hence F(x) is linear

throughout the whole interval (0, 2tt), say

F{x) = ax+b.

Hence f
n=«l

Since the sum of the series is periodic, and a must be zero.

Then, the series being uniformly convergent, we may multiply

by cosmx or sinm:r and integrate term by term; and we obtain

Tra^

2i

cos mx dx == 0,
TTb,

m

2i

-‘J
sin mx dx = 0,

for m > 0. This completes the proof.

13.9. Fourier series for any range. All our series so far

have represented fimctions with the period 27r. A series of the

form 00
,

.

fix) = K+ 2 kcos^+ 6, sin^)

represents a function with the period 27rA. Formulae for the

coefficients may be calculated as before; we obtain

ttA ttA

On =^ J
/(Ocos^^ dt, ^ J

/(<)sin^ di.

— ttA —ttA

Naturally the whole theory can be applied to series of this kind.

13,91. Fourier’s integral formula. The above expansion

may be written

+ 2s J4a 4a
Suppose now that A - oo. Then the series on the right behaves

very much like one of the sums by which a Riemann integral

is defined. In fact, if we write = n/A, it is

00

2 (“«+l-'On)^(«»).
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where ( f{t)coBu{x—t) dt.

If, therefore, we make A oo, and ignore such difficulties as the

fact that (l>(u) depends on A, and that the approximating sum
is an infinite series, we obtain

00 oo

I
du

j
GOSu{x—t)f(t) dt,

0 —oo

This is Fourier’s integral formula. It represents a function

defined over (—00,00) in the same way that a Fourier series

represents a function with a finite period.

The difficulty of justifying a proof on these lines would be

considerable. A direct consideration of the formula suggested

is comparatively easy.

13 .92 . Suppose that/(:r) is integrable in the Lebesgue sense

over (—00,00). Then the integral
00

J
CO& u(x—t)f(t) dt

—00

converges uniformly with respect to u over any finite range.

We may therefore integrate with respect to u over
(
0

,
f7 ), and

invert the order of integration. Thus
C7 00 00

sin U(x—t)jduj cosu(x—t)f(t) dt

/ x—t
^ f(t) dt.

Given €, we can choose T so large that
— J. w

j\m\dt<€, j\m\dt <«,

and we may suppose that T> |a;|+ l, a; being supposed fixed.

Then

J
BmU(x—t)

x—t
f{t) dt

00

J
T

j* sin U{x—t)

J x-t
f{t)dt <«.

for all values of U. Having fixed T, the integrals

J 3?—
r J x~^tx—t
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tend to zero as ?7 -> oo, by the Riemann-Lebesgue lemma.

Hence
U 00 X4-S

^ { du [ cosu{x—t)f{t)dt~^ f f{t) dt
77 J j 77 j X~t

0 —oo x—

5

8

= ^ J
— dt +0 (1).

0

The value of the limit, as U ->co, therefore depends only on

the behaviour of /(^) in the immediate neighbourhood of t = x;

and the problem has been reduced to the discussion of an

integral similar to Dirichlet’s. Any of the convergence criteria

of §§ 13.231-3 apply equally well to this problem. In particular

U oo

lim - \ du \
Q.o^u(x-~t)f{t)dt~\{f{x-[-())-^f{x~-(})}

u-^aon j j
0 — oo

if f(t) is integrable over (—oo, oo), and of bounded variation in an

interval including t~x.

13.93. Fourier transforms. If f(x) is an even function,

Fourier’s integral becomes
oo oo

f(x) = ~
I

cos XU du cos utfif^ d'ty ( I

)

0 0

the term involving sint^^ vanishing identically. This is Fourier’s

cosine formula. Similarly for an odd function we obtain

Fourier’s sine formula
00 00

= sin xu du
J

sin utf{t) dt,

0 0

(2)

If we write

oo

g(x) = J
cos xtfit) dt,

0

(3)

then (1) gives

CO

fix) = J
cos^tffit) dt.

n

(4)

There is therefore a reciprocal relation between the functions

f{z) and g{x); a pair of functions coimected in one sense or
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another by these formulae are known as Fourier cosine trans-

forms of one another. Thus, for example, if f(x) belongs to

Z/(0,oo), and is of bounded variation in any finite interval, then

(3) is absolutely convergent, and (4) holds in the sense that the

integral converges (not necessarily absolutely) to

^{/(x+0)+/(x-0)}.

Similarly from (2) we obtain the reciprocal formulae

OO QO

h{x) =J j J
sin xtf{t) dt, f{x) —J J

sincc^ h(t) dt, (5)

0 0

and f{x) and h{x) are Fourier sine transforms.

13.94. Integration of Fourier integrals. It is convenient

to notice at this point a theorem similar to that of § 13.5: the

formula obtained by integrating 13.93 (1),

I QO
^

CO

J
f{x) dx = -j du

J
COB utf{t) dty

0 0 0

holds for any function f(t) integrable over (0, oo).

For

u
sin ^24 cos ut

U OO U

J
du

J
cos utf{t) dt=:

j
f{t)

J
— du

u
0 0 0 0

by uniform convergence; and the inner integral on the right is

bounded for all U and t\ for it is equal to

1 rsin(^^^
1 fsing-i)u^^

2 J u ~2
j u

0 0

U\i~t\

1 r sin^; , ,1 r sinv ,=
2 J V 2 J V

the sign being that of and

r sinv

J
dv

is a bounded function of F. Hence, by Lebesgue’s convergence
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theorem, we may make U ->oo under the integral sign. Since

(«<f), =0 «>J),
0

the result now follows.

A similar result may be obtained from Fourier’s sine formula.

13.95. Fourier transforms of the class L^. The analysis

of § 13.93 gives conditions imder which the reciprocal formulae

connecting Fourier transforms hold; but they suffer from the

defect that, while the formulae are symmetrical inf(x) and g{x)y

the conditions which these functions satisfy are quite different.

An alternative set of conditions, which has perfect symmetry,

can be obtained by considering functions of the class and
using the theory of mean convergence.*

Let f(x) belong to the cldss L2(0,oo). Then the forynulae for

cosine transforms hold in the sense thaty as a aOy the integral

a

= y(~) J
^ )

0

converges in mean to a function g(x) of the class L\0y oo); and

a

fa(^) = y(“) J
^

converges in mean to f{x).

We prove this by a method suggested by the formal process

of § 13.92. Let
^ (n+D/A

«n= f fix)dx (n=l,2,...).

n/A

Then, as A cx), the sum
n

v=m+l
tends to the integral

f,

J
cos uxf{u) du,

a

if 0 < B < 6, and m = [Aa], n — [A6]— 1 ; for the difference is

* Plancherel (1), (2), (8); Titchmargh (1), (3); Hardy (12); Pollard (1).
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n

2 Jv=m+i ^

yy(tt) du +

b

+ j
cos wcf{u) du

j
cos uxf{u)duy

cosux — cos

(m+D/A

(n+ l)/A

and
vx

cos ux — cos—
A

so that the sum is 0(1/A), while the last two integrals plainly

tend to zero. Further, the convergence is clearly uniform with

respect to x for Q^x^X.
Now we can apply to ^ an argument similar to that used

in proving the Riesz-Fischer theorem. We have

(n+l)/A (n-fi)/A (n-f-i)/A

<< J
{f{x)Ydx

J
da; = i

J
{S{x)f dx-,

w/A n/A w/A

and hence

ttA (n+l)M

/ ^m.ndx= l-nX J; f {fi^)Y dx^ln j {f(x)Y dx,

0 (m+l)/A a

X b

and a fortiori
J n ^ J {/(^)}^

0 a

if ttA > X. Keeping X fixed and making A -> oo, we obtain

X b

j {9b{^)—9J<^)Y < J
{/(x)}* dx,

0 a

and then, making X -> oo,

GO 1}

J {9b{^)-ga{^)f < J {f(x)f dx. (3)

Since the right-hand side tends to zero as a oo, 6 -> oo, so does

the left-hand side; that is, g^J^x) converges in mean to a function,

g(x) say, of the class L^(0, oo).

The same argument now shows that the integral (2) converges

in mean, to a function ^(o:), say. We have to prove that

if>{x)==f(x) almost everywhere, and for this it is sufficient to

show that
^ ^

J <f>{z) dx = j f{x) dx

0 0

(4)
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for all values of Now

f (f>{x) dx == lim r fj^x) dx = lim / \
dx

\
cosa:^g^(/) dt

J a->«) J a->oo V \7t/ J J

On the other hand, for 0<i<a,

g{t) dt.

J
f{x) dx — -j (iu

J
cosutf(t) dt—J J

gj,u) du,

by § 13.94, /(or) being integrable over (0, a). Making a -> oo, and

observing that mi^uju belongs to jL^, we obtain, by § 12.53,

0 0

This proves (4), and completes the proof of the theorem.

There is, of course, a similar theorem for Fourier sine trans-

forms.

13 .96 . We can also obtain a formula corresponding to Par-

seval's theorem. Putting a = 0 in 13.95 (3), we have
00 6 oo

/ < J {fix)Y dx^ j {f(^)Y dx,

0 0 0

and making 6 -> oo, by § 12.51

00 00

J {g{x)Y dx < J
{/(x)}2 dx.

0 0

But since the relation between f(x) and g{x) is reciprocal, the

opposite inequality also holds. Hence in fact

J{g(x)ydx=J{f(x}}^dx. (1)

0 0

Finally, if <f>{x) also belongs to L®, and ^(a:) is its transform,

then g(x)+^(x) is the transform of/(x)+^(a;). Hence
00 00

/
{g{x)+t/>{x))^dx=

j
{f{x)+<f>{x)}^ dx,

0 0
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and, subtracting (1) and the corresponding formula for ({> and
tp, we obtain « «

J
dx = j

S{x)^{x) dx. (2)

0 0

MISCELLANEOUS EXAMPLES
1 . If f(x) is first defined in (0 , tt ), then in (—77, 0 ) by the equation

f(— x) — /(.t), and elsewhere by periodicity, show that J{x) has the

Fourier cosine series 00

i®o+ 2 cos na:,

n 1

where

TT

/
f{f)cos lit (it.

Similarly, if/(~.r) — —fix), then f(x) has the Fourier sine series

00

^ 6„sinn.r,

where

2. Show that

TT

K - /(Osin nt dt.
TT

{

00

1 ,
NT' a cos no:: —n sinner! ,,, _ ,

-f-
N

^
— I (0 < < 277),

2a -|- n-
j

c« = + ?y {(_
77

71 = 1

cos nx

aiT -f n-
(0 < a; < 77),

e« = ? y {l_(- (0 < z < n).
77 Z-r

Find the sums of the series when x = 0.

3. Sum the series

2
a cos nx

2
n sinn

n-i n=i

4. Expand in Fourier series valid over (0, 277 ), and also in Fourier

cosine and sine series valid over (0 , 77), the fimctions

1, Xf x^, cosax, sin ax, cosh ax, sinhax,

e«*cos6x, e*'sin6x, [^p/tt], [2x/77],

Consider the values of x for which the series converge to a value diferent

from the value of the function expanded.

FF
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5. Prove that, if — 1 < r < 1,

_—-i-— - 1 + 2 y r«cosn<9
1 — 2rcos^+r2

for all values of B,

6. If denote the Fourier coefficients of /(a;), then for — 1 < r < 1

|cfo+ 2 («» cos na; + sin n:r)r**

n=i
JL r 1-^^

27r J 1 — 2rcos(a7— -rJWdt.

7.

Prove that

2T

f
r->i27r J 1 — 2r cos(a;—0+ ^

: fit) fit ^ J(/(x+ 0)+/(x-0)}

for all values of x for which the right-hand side exists.

[The discussion is similar to that of Fej6r’s integral.]

8. Show that, if f(x) is bounded, then

«n O(logn).

9. Show that, if m < f(x) < M, then

m < crj^x) < M
for all values of n and x.

10. Show that, if w < /(x) < 3f, and

Kl<^. Wcf.

Use the formula
n

via^cosvx + 6„sinva:).

1 1

.

Show that

TT—x sina^
,
sin2x

,
sin 3a;

(0 < a; < 27r),

and deduce that

sin a; sin 2a;
, ,

sinna;
_ -j [-••'+12 n

for all values of n and x,

[Compare § 1,76. The actual upper bound of the partial sums is

^ .

J
dx ~ 1.85... ; see Gronwall (1).]

0

12.

Use Parseval’s theorem to sum the series

is' 25^- 2 (a^+n*)*
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13. A necessary and sufficient condition that

where /: > 0, for all positive values of e, is that f{x) should be almost

everywhere equal to the value on the real axis of an analytic function

f{z)f which is regular for —k<y<k, and has the period 27r.

14. Construct a Fourier series for which

loglogn
for arbitrarily large values of n.

15. Show that if, in the F'ourier series of § 13.42, we substitute v\x

for X in the terms corresponding to the group of numbers wo obtain

a series which is also the Fourier series of a continuous function, and
which diverges for all values of x such that x/n is a rational number.

16. Show that, if the series

OO

2 cx,„cos(2'".r)

m~0
is a Fourier series, it is convergent for almost all values of x.

[In this case the formula used in example 10 becomes

^2 2’"a„coB(2-».r),

and since —> 0 the right-hand side tends to 0 for all values of x.

Hence ^^2* tends to a limit wherever <73* does, i.o. almost everywhere.

See Kolmogoroff (1).]

17.

If f(x) — a;**®, where 0 < a < 1, for 0 < x < 27r, show that, as

2r(a)cos 2r(a)sini7ra

Show that f(x) belongs to if p < I /a, and that Zda-l’+IU') is

divergent if
S'
< l/(l-a).

[See Bromwich, Infinite Series (2nd ed.), § 174, Ex. 5, and Hoslam-
Jones (1). The result should be compared with the extended Riesz-

Fischer theorem referred to in § 13.71. It shows that the exponent of

convergence of the series of coefficients is the ‘best possible’.]

18.

A function f{x) is equal toy*cos{v^x) in the intervals

where 0 < oc < ^ < 1, and is defined in (—tt, 0) by the relation

f(-x) ^ -fix).

Show that f(x) is integrable in the Lebesgue sense, and that its Fourier

sine coefficients satisfy _ 0(n‘-* log n).

By taking ot small enough and )S/a near enough to 1, show that the

convergence of 2 |^nl*» where g > 2, is not sufficient to ensure that fix)

shall belong to i>, where p = piq) > 1.
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[The point of the example is that if <7 = 2 the convergence of ^
does imply that f(x) belongs to L^, and there is an abrupt change in the

state of affairs when q becomes greater than 2 .

We have
, ^

11 -

1

V=1 „ ^ _

{sin(n-f-j^“)j; sin(n— dx.

^ ttUv+I)^

The terms for which Vn --2 < v < Vn-f-2 are

the tenns for which v < Vn—

2

are

,(2 £v.) -ly
V^Vn-2 '

^ 0
'

0 (n*''-*k)gn),

and a similar result holds for the remaining terms. See also Titch-

marsh ( 2 ).]

19. Show that the function

X

f(x) lim
j

(1 -fco80(l 4-cos 40...(1 -fees
m->oo •'

0

is continuous and of bounded variation, and has the period 2Tr; but

that, if is its nth Fouriet sine coefficient, nb„ does not tend to zero

so that/(ic) is not an integral.

[This example is due to F. Riesz (3). Let t^{x) denote the integrand.

It is a cosine polynomial of order

14-44-... 44"-^ - i( 4”*-l).

On multiplying by 1 -f cos 4”‘x, the first new term involves

cos{4’"— J{
4*”— 1 )}a; — cos J ( 2 .

4’"4* 1 ).r,

which is of higher order than any of the terms in r„(x). Hence
is obtained by adding new terms to r^{x) without altering the existing

ones. Also it is easily seen that all the coefficients lie between 0 and 1 .

Let be the number of non-vanishing terms in The recurrence

relation == 1 is easily verified. Hence
3*”- Hence, if 0 < a; < 27r,

X

j{r^n(t)-rjt)}dt

0
X

Hence f rj^t) dt tends uniformly to a limit, i.e. f{x) is continuous. Also
0
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rj^x) is non-decreasing, and so is its limit. Hence f(x) is of bounded
variation. Finally 64m 1/4”*.

J

20. Show that, if a^cosnx F b^sinnx -> 0 in a set of po.sitivo measure,

then >0 and

21. Show that the reciprocal formulae

F{x)

CO

— OO

00

e-^^F(t) dt.

hold under the same conditions as Fourier’s integral.

22. Show that Mellin’s inversion formulae

C-flOO

(j)(8) =
j

dx. xls(x)

C-M«

2iTi /
(j>(s)x~* ds.

0 c—ico

may, with suitable conditions, be deduced from the formulae of the

previous example.

23. Show that the functions

e“l*^ sechxAji^)

are their own Fourier cosine transforms, and that

x-i, .TC-i*,
gxv(a»)_i “a;.y(27rj

are their own sine transforms.

24. Express e~**l*l, where a > 0, as a Fourier integral. Verify the

formula 13.96 (2) in the case where f(x) — e”", (/>(x) — e~^.

25. Evaluate the integral

ou

J
sinax sin 6

dx

by means of the formula 13.96 (2).

26.

Let J{x) belong to L(0, qo), and be continuous and steadily de-

creasing to zero as X —> 00 (or be the difference between two functions

of this type). Let a > 0 ,
= 27r, and let g{x) be the Fourier cosine

transform of /(x). Then

Va|i/(0)+^2^/(no£)| =V/3|isr(0)+ 2 fir(n;3)|.

[This is known as Poisson’s formula. It is easily verified that

TT ^ (2w+l)7r

f
r/Asin(n+|)«

I

Va V f //<\sin(n4-i)<
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This differs from the left-hand side of Poisson’s formula by

_ (2»l+l)w

2 /
sin(n-j-

sin|^

(2w-l)Tr

The given conditions ensure that this series converges uniformly with

respect to n; in fact, it is easily seen from the second moan-value

theorem that the general term is Of/{(2m— l)7r/^}] independently of n;

and each term tends to zero as n ~> oo (as in the proof of Jordan’s test),

and the result follows.

For other conditions for the formula see Linfoot (1), Mordell (2).]

27. Verify Poisson’s formula for the function f{x) == 1/(14-^'^)* [The
result is equivalent to that of § 3.22, ex. (iii).]

28. Deduce from Poisson’s formula that if a; > 0

oo

2 e

29.

Sum the series 2 ^“*'*4 where jS > 0, v > by means of

Poisson’s formula and the first result of Ch. 1, ex. 5,
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