
ilirla Central library I 
71LANf(lUf«*tl»Q) I 

Mt*0i.ci4y t 
AcMUloftNo;.^/^ g</ I 







FOURIER SERIES 

AND 

BOUNDARY VALUE PROBLEMS 

RV CH'JFcCHIL'- 





FOTJRIEB SEEIES 

AND 

BOUNDAET VALUE PEOBLEMS 

BY 

RUEL V. CHURCHILL 
Associate ProfesSor of Afathematics 

UniversUy of Michigan 

McGRAW^HILL BOOK COMPANY, Inc. 

NEW YOHK AND LONDON 

1941 



I'OTIIUKH SKUIKS AKD IJOT’NDAin* VALtUC hwTm.KMS 

(V)pyJllGIIT, ion, BY THK 

McGrwv-ITill Book CU)MrANY, iNf’. 

PRINTKD IN THE TNITED STATEB OF AMERICA 

All right ft reserved. This book, or 

parts thereof, may not he reprodueed 

in any form, urithout perrmssion of 

the publishers. 

XI 



PREFACE 

This is an introductory treaiment of Fourier series and their 
application to tlic solution of boundary valium j)roblems in the 
partial differential (equations of physics and engineering. It is 
d(‘signed for studcaits who have had an introductory course in 
ordinary differential equations and orui sem(\ster of advan(‘ed 
calculus, or an equivalent pr(‘])aration. Th(' concepts from the 
fi('ld of physics whi(*h are involvcid In^re aix^ kej^t on an elementary 
lev(^l. They are explaiiu'd in the early i)art of the book, so that 
no previous preparation in this direction need ))e assumed. 

The first obj(;ctive of this book is to introduce the reader to 
the con(uq3t of orthogonal sets of functions and to the basic 
id(‘as of the use of such fum^tions in r(‘pr(\s(>nting arbitrary 
functions. The most promiiuait special case*, that of n^present- 
ing an arbitrary function l)y its Fouri('r s(unes, is giv(ui spcnaal 
attention. The Fourier integral r(q)res(uitatioii and th(‘ repnv 
sentation of functions by series of Bessel functions ana Legendre 
polynomials are also tn^ated individually, but somewhat less 
fully. The mat(;rial coven^d is intended to prepan', the reader 
for th(i usual a})plicati()ns arising in the physi(;al scienccjs and to 
furnish a sound background for those who wish to pursue the 
subject further. 

The second objective is a thorough acquaintance with the 
classical process of solving boundary value problems in partiai 
differential (',qualioiis, with the aid of those expansions in series 
of orthogonal functions. The boundary value probhans treated 
here consist of a variety of problems in heat (conduction, vibra¬ 
tion, and potential. Emphasis is placed on the formal method of 
obtaining the solutions of such problems. But attention is also 
given to the matters of fully establishing the results as solutions 
and of investigating their uniqueiu^^ss, for the process cannot b(' 
properly presented without some consideration of these matters. 

The book is intended to be both elementary and mathe¬ 
matically sound. It has been tlie author\s experience that 
careful attention to the mathematical development, in contrast 
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to more formal procedures, contributes much to the student^s 

interest as well as to his understanding of the subject, whether 

he is a student of pure or of applied mathemati(*s. The few 

theorems that are stated here without proofs appear at the end 

of the discussion of the topics concerned, so they do not reflect 

upon the completeness of the earlier part, of the development. 

Illustrative examples are given whenever new processes are 

involved. 

The problems form an essential part of such a book. A rather 

gerH'rous supply and wide variety w'ill be found here. Answers 

are given to all but a few of the problems. 

The chapters on B('ss('l functions and liCgendre polynomials 

(Chaps. Vni and IX) are ind('pendent of each other, so that 

they can be taken up in eithcT order. The continuity of the 

subject matter will not be interrupted by omitting the chapter 

on the uniqueness of solutions of boundary value problems 

(Chap. VH) or by omitting certain parts of other chapters. 

This volume is a revision and extension of a planographed form 

developed by the author in a course given for many years to 

students of physics, (engineering, and mathematics at the Uni¬ 

versity of Michigan. It is to be followed soon by a more 

advanced book on further methods of solving boundary value 

problems. 

The selection and presentation of the material for the present 

volume have been influenced by the works of a large number of 

authors, including Carslaw, Courant, Byerly, Bocher, Riemann 

and Web(‘r, Watson, Hobson, and several others. 

To Dr. E. D. Rainville and Dr. R. C. F. Bartels the author 

wishes to express liis gratitude for valuable suggestions and for 

their generous assistance with the reading of proof. In the 

preparation of the manuscript he has bc^en faithfully assisted by 

his daughter, who did most of the typing, and by his wife and son. 

Ann AitBoit, Micn.. 

January j 1941. 

Ruel V. Churchill. 
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FOURIER SERIES AND 
BOUNDARY VALUE PROBLEMS 

CHAPTER I 

INTRODUCTION 

1. The Two Related Problems. We shall be concerned here 
with two general types of problems: (a) the expansion of an 
arbitrarily given function in an infinite scnies whose terms ar(' 
certain prescribed functions and (h) boundary value problems 
in the partial differential equations of physics and engineering. 
These two problems are so closely related that there are many 
advantages, especially to those intc'Tosted in applied mathematics, 
in an introductory treatment that deals wdth both of them 
together. 
‘ In fact an acquaintance with the expansion theory is neces¬ 
sary for the study of l)oundary value probhmis. The expansion 
problem can be treated independently. It is an interesting 
problem in pure mathematic^s, and its applications are not con¬ 
fined to boundary value problems. But it gains in unity and 
interest when pr(»sent(^d as a problem arising in the solution of 
partial differential equations. 

The series in the problem type (a) is a Fourier series when its 
terms are certain linear combinations of sines and cosines. 
Fourier encountered this expansion problem, and made the first 
extensive treatment of it, in his dcAelopment of the mathe¬ 
matical theory of the conduction of heat in solids.* Before 
Fourier^s work, however, the investigations of others, notably 
D. Bernoulli and Euler, on the vibrations of strings, columns 
of air, elastic rods, and membranes, and of Legendre and Laplace 
on the theory of gravitational potential, had led to expansion 

* Fourier, '^Th^rie analytique de la chaleiir,” 1822. A translation of 
this book by Freeman appeared in 1878 under the title ‘‘The Analytical 
Theory of Heat.'* 

1 



2 FOURIER SERIES AND BOUNDARY PROBLEMS [Sec. 2 

problems of the kind treated by Fourier as well as the related 
problems of expanding functions in series of Bessel functions, 
Legendre polynomials, and spherical harmonic functions. 

These physical problems which led the early investigators 
to the various expansions are all examples of boundary value 
problems in partial differential equations. Our plan of pres¬ 
entation here is in agreement with the historical development 
of the subject. 

The expansion problem as presented here will stress the 
development of functions in Fourier series. But we shall also 
consider the related g('neralized Fourier dcn^elopmcait of an arbi¬ 
trary function in series of orthogonal functions, including the 
important seiies of Bessel fuiurtions and J^egc^iidre polynomials. 

2. Linear Differential Equations. An e(]uation in a function 
of two or more variables and its partial derivatives is called a 
partial differential equation. The order of a partial diff(‘rential 
equation, as in the case of an ordinary differential ecpiation, is 
that of the highest ordered derivative appearing in it. Thus 
the equation 

(1) 

is one of the second order. 
A partial differential eciuation is linear if it is of the fii*st degix'tj 

in the unknown function and its derivatives. The equation 

^2) 3x1/ 

is linear; equation (1) is nonlinear. If the equation contains 
only terms of the first degree in the function and its derivnlives, 
it is called a linear homogeneous eciuation, Etjuation (2) is 
nonhomogeneous, but the eciuation 

dx^ + W 
dll 

= 0 

is linear and homogeneous. 
Thus the general linear partial differential equation of the 

second order, in two independent variables x and y, is 
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where the letters ^4, • * * , G, represent functions of x and y. 

If F is identically zero, the equation is homogeneous. 

The following theorem is sometimes reh^rred to as the prmciple 

of superposition of solutions. 

Theorem 1. Any linear co7nhinatio7i of two solutions of a linear 

homogeneous differential equation is again a solution. 

The proof for the oi*dinary c^cpiation 

(3) y'^ + P?/ + Qy = 0, 

where P and Q may be funeiions of a*, will show how the proof 

can be writ ten for any lim^ar homogeneous diff(u*eiitial equation, 

ordinary or partial. 

Let y = yi(x) and y = y‘i{x) be two solutions of equation (3). 

Then 

(4) y'! + PiA + Qvi - 0, 

(5) y'i + PiA + 0:^2 = 0. 

It is to be shown that any linear combination of 2/1 and 2/2— 

namely, Ay^ + P2/2, wh('re A and B are arbitrary constants—is 

a solution of (npiation (3). By multiplying equations (4) by A 

and (5) by B and adding, the e(iuation 

Ay'l + By'f + P(/l2/i + By'f) + Q{Ay\ + Byf) = 0 

is o])tained. This can b(^ written 

{Ay, + By.^ +P^ (Ay, + Bij,) + Q{Ay, + By^) = 0, 

which is a statemcait that Ayi + By2 is a solution of equation (3). 

For an ordinary differential eciuation of order n, a solution 

containing n arl)itrary constants is known as the general solu¬ 

tion. But a partial diffcaxMitial equation of ordtu" n has in 

general a solution ('ontaining n arbitrary functions. These are 

functions of A" — 1 variables, where k repn^sents the number 

of independent variables in the ecpiation. On those few occa¬ 

sions here where we consider such solutions, we shall refer to 

them as ^'general solutionsof the partial differential equations. 

But the collection of all possible solutions of a partial differential 

equation is not simple enough to be represented by just this 

^‘general solutionalone.* 

* See, for instance, Courant and Hilbert, ‘^Methodon der matheinatischen 

Physik,^^ Vol. 2, Chap. I; or Forsyth, “Theory of Differential Equations,'^ 

Vols. 5 and 6. 
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Consider, for example, the simple partial differential equation 

in the function u{x^ y): 

According to the definition of the partial derivative, the solution 

is 

M = /(*/), 
where/(2/) is aii arbitrary function. Similarly, when the equation 

is written ^ ~ general solution is seen to be 

u == ^f{y) + giy)y 

where/(2/) and g{y) are arbitrary functions. 

PROBLEMS 

1. Prove Theorem 1 for Laplace^s equation 

d^u _ 
dx^ dy'^ dz^ 

2. Prove Theorem I for the heat equation 

^ _ i. /^ ^ 4_ 

dt " ^ \dx^ dy^ ^J 

Note that k may be a function of x, y, 2, and t here. 

3. Show by means of examples that the statement in Theorem 1 is 
not always true when the differential equation is nonhomogeneous. 

4. Show that y = f{x + at) and y ^ g(x — at) satisfy the simple 

wave equation 

dt^ ~ “ dx‘’ 

where a is a constant and/and g are arbitrary functions, and hence that a 
general solution of that equation is 

y ^ f{x + at) + g(x - at). 

6. Show that 6“*"** sin nx is a solution of the simple heat equation 

du _ 

dt ” dx^ 
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If Ai, A2, • * * , An are constants, show that the function 
N 

w = A sin nx 
n = 1 

is a solution having the value zero at a: = 0 and x — tTj for all L 

3. Infinite Series of Solutions. Let Un (n = 1, 2, 3, • • •) be 

an infinite set of functions of an}^ number of variables such that 

the series 

+ Uu + • • * + Un -}-••• 

converges to a function u. If the series of derivatives of Un, 

with respect to one of the variables, converges to the same 

derivative of u, then the first series is said to be termwise differ- 

entiable with respect to that variable. 

Theorem 2. If each of the functions Ui, U2, • • • , Un, • • * , a 

solution of a linear homogeneous differential equation^ the function 

u Un 

is also a solution provided this infinite series converges and is 

termwise differentiable as far as those derivatives which appear in 

the differential equation are concerned. 

Consider the proof for the differential equation 

(1) 

where p and q ma^^ be functions of x and L Let each of the 

functions Un{x^ (n = 1, 2, • • • ) satisfy equation (1). The 

series 

^ U„{x, t) 

is assumed to be convergent and termwise differentiable; hence 

if w(x, t) represents its sum, then 

du _ ^ d^u _ d^Un ^ 
to “ ^ ^ ^ to^' dx at^ dx at 

Substituting these, the left-hand member of equation (1) becomes 
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and if this quantity vanishes, the theorem is true. Now expres¬ 

sion (2) can be written 

d^Un 

dx dt 

since the series obtained by adding three convergent series 

term by term converges to the sum of the three functions n^pro- 

sented by those scries. Since Un is a solution of equation (1), 

d^‘U‘n , S“Un I A / 1 o \ 

+ + = ^ (n= 1,2, • • • ), 

and vSO expression (2) is equal to zero. u{x, i) satisfies 

equation (1). 

This proof depemds only upon the fact that the diflfenMitial 

equation is linear and homogeneous. It can (d(%arl,y be^ applied 

to any such equation n^gardless of its order or nuinbei* of variables. 

4. Boundary Value Problems. In applied problems in dif¬ 

ferential ecpxations a solution which satisfies some si)(Hnfi(Kl con¬ 

ditions for given values of the independent variable's is usually 

sought. Thes(^ conditions are known as the boundary (;onditions. 

The diff(‘-reiitial equation tog(^ther with these boundary (con¬ 

ditions constitutes a boundary valu(' problem. The student is 

familiar with such problems in ordinary diffenuitial eciuations. 

Consider, for example, the following problem. 

A body moves along the r-axis under a force of attraction 

toward the origin proportional to its distance from the origin. 

If it is initiall}^ in the position x — 0 and its position one second 

later is x = 1, find its position x{t) at every instant. 

The displacement x{t) must satisfy the conditions 

d^x 
(1) If = 
(2) a: = 0 when < = 0, x = 1 when < = 1, 

where A; is a constant. The boundary value problem here con¬ 

sists of the equation (1) and the boundary conditions (2), 

which assign values to the function x at the extremities (or on 

the boundary) of the time interval from i = 0 to ^ = 1. 

The general solution of equation (1) is 

X = Cl cos kt + C2 sin kL 
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According to the conditions (2), Ci = 0 and C2 = 1/sin k, so 

the solution of the problem is 

sin kt 

^ sin k 

From this the initial velocity which makes a: = 1 when ^ = 1 

can be writ ten 

(It sin k 
when t = 0. 

This condition could have Ixhui used in place of either of the 

conditions (2) to form another l^oundary value problem with 

the same solution. 

In g(meral, the boundary conditions may contain conditions 

on the derivatives of the unknown function as well as on the 

function itself. 

The method corresponding to the one just used can sometimes 

bo applied in partial differential equations. Consid(?r, for 

instance, the following boundary value problem in u{Xj y): 

(3) 

(4) 

dx- 
- 0, 

m(0, y) = y-, u{l, ?/) = 1. 

Plere the values of u are j)rescribed on the boundary, consisting 

of the lines a* = 0 and x = 1, of the infinite strip in the 

between thos(' lines. 

The g(uieral solution of (‘quation (3) is 

u{x, y) = xfiy) + g{y), 

whero f{y) and g{y) are arbitrary functions. The conditions (4) 

require tliat 

(5) g{y) = f{y) + g{y) = 1, 
SO f{y) = 1 — and tin? solution of the problem is 

u{x, y) = a-(l - y-) + 

But it is only in exceptional cases that problems in partial 

differential equations can be solved by the above method. The 

general solution of the partial differential equation usually 

cannot be found in any practical form. But even when a gen- 
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eral solution is known, the functional equations, corresponding 

to equatifln^(5), which are given by the boundary conditions are 

often too difficult to solve. A more powerful method will be 

developed in the following chapters—a method of combining 

particular solutions with the aid of Theorems 1 and 2. It is, of 

course, limited to problems possessing a certain linear character. 

The number and character of the boundary conditions which 

completely determine a solution of a partial differential equation 

depend upon the character of the equation. In the physical 

applications, however, the int(u-pj‘etaiion of the problem will 

indicate what boundary conditions are needed. If, after a 

solution of the problem is established, it is shown that only one 

solution is possible, the problem will have been shown to be com¬ 

pletely stated as well as solved. 

PROBLEMS 

1. Solve the boundary value problem 

d^u 

^x dy "" ^ 

Am, w == y + sin X. 

= 2x] w(0, y) — 0, u{x^ 0) = x^. 

2. Solve the boundary value problem 

dhi 
dxdy 

Ans, u = x^y -f x^. 
3. Solve Prob. 2 when the second boundary condition is replaced by 

the condition 

du{x, 0) 
dx 

= x\ 

Am, u = x^y + Ja;®. 
4. By substituting the new independent variables 

X = a: + = x — at, 

show that the wave equation d^y/dt^ == a^{d^y/dx^) becomes 

_dy_ 
d\ djJL 

= 0, 

and so derive the general solution of the wave equation (Prob. 4, Sec. 2). 
6. Solve the boundary value problem 

dyjx, 0) 
dt y{x, 0) * F{x) 
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where F{x) is a given function defined for all real x. 

Ans. y = hWix + at) + F(x — at)], 

6. Solve Prob. 5 if the boundary conditions are replaced by 

y{x, 0) = 0, = G{x). 

Also show that the solution under the more general conditions 

y{x, 0) = Fix), ^1’ = Gix) 

is obtained by adding the solution just found to the solution of Prob. 5. 

[-at 



CHAPTER II 

PARTIAL DIFFERENTIAL EQUATIONS OF PHYSICS 

6. Gravitational Potential. According to the universal law 

of gravitation, the force of attraction exerted by a particle of 

mass m at the point (x, y, z) upon a unit mass at (A^, F, Z) is 

directed along the line joining the two points, and its magnitudes 

and sense are given by the equation 

where k is a positive constant and r is th(' distance betwe('n lh(‘ 

two masses: 

r = y/lX - .r)^ + (F — y)" + (Z ~ zyK 

The positive sense is taken from the point (.r, ?y, z), (^alk^d Q, 

tow^ard the point P {X, F, Z), 

The gravitational potential V at any point P du(^ to the mass 

7n at Q is defined to be the function 

y _ km 

r 

So the derivatives of this function is the force: 

dV _ km 

dr 

Let Q be fixed and consider F as a function of X, F, and Z. 

It will now be showm that the directional derivative of thc^ 

potential in any direction gives the projection of the force P 

in that direction. 

First let the direction be parallel to the X-axis. Then 

dV ^ dV dr 

dX dr dX 

km X — X 

r- r 
= F cos a 

where cos a is the first direction cosine of the radius vector r, 
10 
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and Fx is the projection of F on the X-axis. Similarly, 

0) 
dV 

dY 

dV 

dZ 
^Fx. 

Now if s is the directed distance along any line through P hav¬ 

ing the direction angles 7', the directional derivative of V 
can be written 

^ ^ ds dX ds SY ds dZ ds 

= Fx cos a' + Fy cos 13^ + Fz cos 7'. 

The last expression is the projection of the force in the direction 

of iiie line along which s is measiin^d. 

The (extension to the pob'iitial and forces due to a continuous 

distribution of mass is (iiiite dir(‘(*t. The potential function due 

to a mass of density 8(x, ?y, z) distributed throughout a volume r, 

at a point P not occupied by mass, is defined to l>o 

(3) F(X, 7,Z)==/c 
y, z) (h dy dz 

X - xY + (7 - yY + (Z - zYl^ 

This integral can be diff(‘r(‘ntiat(d with respect to X, 7, or Z 

inside the integral. Thus 

(4) 
dV 

dX 

- x8(x, y, z) 

r 7’“ 
dx dy dz. 

This is the total component Fx of the gravitational forces exerted 

by all the (elements of mass in r upon a unit mass at P. Like¬ 

wise the total components Fy and Fz satisfy relations (J), so 

that the directional derivative has the same form as in equation 

(2). 
Hence the projection, along any direction, of the force exert(id 

by a mass distribution upon a unit mass at (X, 7, Z) is given 

by the directional derivative, along that direction, of the poten¬ 

tial function (3); that is, 

(5) F.= 
dV 

ds' 

A force which can be derived in this manner from a potential 

function is known as a conservative force. 
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Let s be the arc length along any curve joining two points (Xi, 
Yiy Zi) and (X2, F2, Z2), at which s = Si and s = S2, respectively. 
Then, according to formula (5), 

("F,ds = y(X2, F2, Z2) - F(Xi, Fi, zo. 

That is, the difference between the values of the potential V 

at two points represents the W'ork done by the gravitational 
force upon a unit mass which is moved from one of these points 
to the other. The amount of work depends upon the positions 
of the points, but not upon the path along which the unit mass 
moves. 

6. Laplace’s Equation. The potential V(X, F, Z) due to any 
distribution of mass will now be seen to satisfy an important 
partial differential equation. Upon differentiating both members 
of equation (4), Sec. 5, with respect to we find that 

dW 

dX^ 

3(X - xy~ 
6 dx dy dz. 

Likewise 

dW 

dY^ 

dW 

dZ^ 

rfj/ dz, 

i 5 dx dy dz. 

The sum of the terms inside the three brackets is zero; so 

dW dW dW 
dX2 dY^'^ dZ^ 

This is Laplace’s equation. It is often written 

V^F = 0, 

where the Laplacian operator V^, sometimes called ''del squared,’’ 
is defined as follows: 

ax* ar* ^ az* 
The same operator is present in several other important equations. 

We have just shown that Laplace’s equation is satisfied 
by the gravitational potential at points in space not occupied 
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by mass. It is satisfied as well by static electric or magnetic 
potential at points free from electric charges or magnetic poles, 
since the law of attraction or repulsion and the definition of the 
potential function in these cases are the same, except for constant 
factors, as in the case of gravitation. 

Other important functions in the applications satisfy Laplace^s 
equation. One of them is the velocity potential of the irrota- 
tional motion of an incompressible fluid, used in hydrodynamics 
and aerodynamics. Another is the steady temperature at points 
in a homogeneous solid; this will be shown further on in this 
chapter. 

The gravitational potential at points occupied by mass of 
density 8 can be shown to satisfy Potssofi^s equation: 

= -47r5, 

a nonhomogeneous equation. The equations of Laplace and 
Poisson, like most of the important partial differential equations 
of physics, arc linear and of the second order. 

7. Cylindrical and Spherical Coordinates. Since cylindrical 
and spherical surfaces occur frequently in the boundary value 
problems of physics, it is important to have expn^ssions for 
the Laplacian operator in terms of cylindrical and spherical 
coordinates. 

The cylindrical coordinates (r, z) determine a point P 
(Fig. 1) whose rectangular coordinates are 

(1) X — r cos 2/ = ^ sin 2 = z. 

These relations can be written 

(2) r == ^ = arctan 2 = 2, 
X 
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provided it is observed that the quadrant of the angle ip is 
determined by the signs of x and not by tlu^ ratio y/x alone. 

Let u be a function of r, and z. In view of relations (2) it 
is also a function of x, y^ and according to the formula for 
differentiating a composite function, 

du _ du dr da dip _ du x du y 

dx dr dx dip dx dr 

Therefore 

dHi _ du d (da d \ ^ d /du\ __ y d /da\ 

dx- dr dx \r / dip dx \/ -/ r dx \dr ) r- dx \dKp) 

• The last two indicat(vl derivatives can written 

d-a X ^ d-u y 

dr- r dr dtp r- 

d-a X d-u y 

dip dr r dip'^ 

Substituting and simplifying, w(' find that 

d-u __ y-du 2xy da x- d-u ^ 2xy d-a y^ d-u 

dx^ dr r * dtp r- dr- r^ dr dp dp- 

Similarly, it is found that 

d'^u _ du 2xy du y- dhi 2xy d-u d-u 
'Qyi ^.3 2*4 fl QfS 2*3 2'“^ dp- 

so that the Laplacian of u in eylmdrical coordinates is 

(3) 
dhi 1 dii . 1 d'^u , d^U 

It is simpler to transform the right-hand member of equation 
(3) into rectangular coordinates. This operation furnishes a 
verification of equation (3). 

The spherical coordinates (r, p, 6) of a point P (Fig. 2), also 
called polar coordinates, are related to the rectangular coordinates 
as follows: 

(4) a; == r sin 6 cos pj y = r sin 6 sin p. z = r cos 6, 
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The Laplacian of a furu^lion u in spherical coordinates is 

(5) V-u - j5 [r M + » _ j + — J. 
Tlio dcunv^atioii or verification of tliis formula can Ix'. carried 
out in the same manner as that of th(' corresponding formula 
(3) for cylindrical cooi-dinates. It i>s h^ft as an exercise. 

Fk;. 2. 

PROBLEMS 

1. Derive the expression given above for dhi/dy^ in cylindrical 

coordinates, and thus coinidete the derivation of formula (3). 

2. Verify formula (3) by transforming its riglit-hand mem})er into 

rectangular coorc 1 inat.os. 

3. Verify formula (5) by transforming its right-hand mem])er into 

rectangular coordinates. 

4. Write the formulas wliich give the spherical coordinates in termf* 

of X, IJy z. 
6. Derive formula (5) for tlic Laplacian in terms of spherical coordi¬ 

nates. 

8. The Flux of Heat. Consider an infinite slab of homogene¬ 
ous solid material bounded by the planes a; = 0 and x — L. Let 
the faces x = 0 and x = L be kept at fixed uniform temperatures 
Ui and U2j respectively. After the temperatures have become 
steady, the amount of heat per unit time which flows from the 
surface x = 0 to the surface x = L, per unit area, is 

j^Uz - Ui 
-K—j—, 

where the constant K is known as the thermal conductivity. 
This statement is essentially a definition of the conductivity K. 
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The time rate of flow of heat per unit area through a surface 
is called the flux of heat. For the flux F through any isothermal 
surface (a surface at uniform temperature), the natural extension 
of the above definition is 

(1) 

Here u is the temperature as a function of position, no is the 
distance measured along a directc'd normal i^o the isotherm, 
and the positive sense of th(^ flux F is that of tlie normal. In 
formula (1) the conductivity^ K may be variable, and the solid 
nonhomogeneous. 

To indicate the extension of this formula to the flux Fn normal 
to an arbitrary surface in a solid at a point P, let coordinate? 
axes be chosen with origin at P so that tlu? a:^-plane is tangent 
to the isoth(‘rm through P (Fig. 3). Let X, ix, v be the direction 
cosines of the normal n of the giv('n surfacjc. Now lot the 
surface be displaced parallel to itself through a distaiujc p, so 
that its tangent plane and the coordinate planes bound an 
elementary volume in the form of a tetrahedron. 

If is the ar(?a of the face QHS made by the tangent plane, 
vhA is the area of the face in the a"]y-plane. As p approaches 
zero, the rate of flow of heat into the elem(?nt through one of 
these faces must approach the rate of flow out through the other: 

FnAA = F^vAA, 

where F» is the flux through the isotherm. The remaining two 
faces are perpendicular to the isotherm, so that the flux of heat 
through them is zero. 
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According to formula (1), F* = —K du/dz^ so that 

du 
Fn -Kv 

dz 

But according to the formula for the din^ctional derivative, 

du du . du . du , du 

dn &x dy dz dz 

since du/dx and dujdy are both zero, owing to the fact that 
X and y are distances along the isothermal surface. It follows 
that 

(2) 

that is, the flux of heat through any surface in the direction of the 

normal to that surface is proportional to the rate of change of 

the temperature with respect to distance along that normaL 

In the dcirivation of reflation (2) it was assumcnl that there is 
no source of heat in the neighborhood of the point P, and that 
the derivatives of the temperature function u exist. Further¬ 
more, our argument involved approximations, such as the use 
of tangent planes in i)lace of surfaces, the validity of which use 
was not examined. 

We shall not attem])t to make the derivation of relation (2) 
prcchse. In a rigonnis dcvc^lopment of the matlKunatical theory 
of heat conduction, n^lation (2) (*an be postulated instead of 
(1). The results which follow from (2)^ in particular, the heat 
equation derived in the next section -have long been known to 
agr(}(^ with experimental measurements. 

It should be observed that the tenq^erature u serves as the 
potential function from which the flux of heat is obtained by 
finding its directional derivative. In the case of the gravitational 
or electrical potential, the directional derivative gives, respec¬ 
tively, the gravitational force or the flux of electricity in that 
direction; the flux of electricity is the current per unit area of 
surface normal to the direction. 

9. The Heat Equation. Let u{x, y^ z, t) repre^sent the tem¬ 
perature at a point P (x, y, z) of a solid at time t, and let K be 
the thermal conductivity of this solid, where K may be a func¬ 
tion of X, y, z and t, or of u. Suppose that the point P is enclosed 
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by any surface S lying entirely within the solid, and let n repre¬ 
sent the outward-drawn normal to the closed surface S. Then 
according to the formula for the flux in Sec. 8, the time rate of 
flow of heat into the volume V enclosed by S, through the surface 
a8, is 

Now if 8 is the density of the solid and c its specific lieat, or 
the amount of heat requircKl to raise the temperature of a unit 
mass of th(' solid 1 degrc^e, another (expression for the rate of 
increase of heat in the volume V is 

If X, /X, V are the direction cosines of the normal n, the integral 
(1) can be writ ten 

This can be transformc'd, according to Green’s theorem, into 
th(' volume integral 

which must be equal to the integral (2), so that 

- c8 
du 

Tt 
dV = 0. 

We are assuming that all the terms in the brackets in equation 
(3) are continuous functions in a neighborhood of P. Since 
the integral in equation (3) vanishes for every volume V, its 
integrand must vanish at P. For if the integrand were positive 
at P, its continuity would require that a sufficiently small volume 
V exists which contains P and throughout which the integrand 
is positive. The integral over V would then be positive, in 
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contradiction to equation (3). Similarly if the integrand were 
iH^gative. Therefore, at P, 

^ f I ^ I ^ 

<■*) + + 

This is a general form of the equation of conduction of heat, or 
llie heat equation. 

It should be noted that wo have assumed in the derivation 
that no sources of heat exist in the neighborhood of the point. 

?/, 2:). 
10. Other Cases of the Heat Equation. If the conductivity 

K is constant, or docs not depend upon the coordinates, the 
heat equation becomes 

(1) 
^ /dhi ^-u d-u\ 

where the coefficient /b, called the diffusivity, is defined thus: 

Th(^ equation appears most frequently in the form (1), or the 
xibbreviated form 

(2) I - 

The right-hand member can be expressed in terms of other 
coordinates by using the results of Sec. 7. 

The heat equation is also called the equntio?i of diffusion. 

It is satisfied by the concentration u of any substam^e which 
penetrates a porous solid by diffusion. 

It was shown above tliat the temperature u everywhere 
within a solid satisfies the heat equation. To determine u as a 
d(‘finite function of x, y, z, and it is of course necessxiry to 
us(\ in addition to the heat equation, bouiidaiy conditions which 
describe the thermal state of the surface of the solid and the 
initial temperature. All these conditions make up the boundary 
value problem in the conduction of heat. 

There are several special cases and simple generalizations of 
the heat equation which are important. First there are the cases 
in which the temperature is independent of one or more of the 
four independent variables, which consist of the space coordinates 
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and time t. If the temperatures are ‘^steady’’—that is, if u 

does not change with time—ii satisfies Laplace's equation. This 
is approximately the case, for example, if the temperature 
distribution on the surface of a solid has been kept the same for 
a long period of time. 

If conditions are such that there can be no flow of heat in the 
direction of the 2;-axis, the heat equation for “two-dimensional 
flow" applies; 

1 

Similarly for one-dimensional flow. 
Continuous sources of heat may exist within a solid. If at 

each point {x, y, z) they supply heat at the rate of F(j, ?/, 2^, 0 
units per unit time per unit volume, the heat equation becomes 
nonhomogeneoiis. For the case of oiu'-dimensional flow, where 
the strength F of the source is a function of x and the equation 
becomes 

This follows readily from the derivation in Sec. 9. P]quation (3) 
may apply, for instance, to the temperature ii in a wire which 
carries an electric current. 

PROBLEMS 

1. The lateral surface of a homogeneous prism is insulated against 
the flow of heat. The initial temperature is zero throughout, and the 
end a: = 0 is kept at temperature zero while the end x = L is kept at 
To, a constant temperature. Write the heat equation for this case. 

Am. du/dt = k{d^u/dx^). 
2. Find the steady temperature in Prob. 1, after the conditions given 

there have been maintained for a very long time. What is the flux 
through one end during the steady state? 

A ns. u — {Tfi/L)x'j flux = KTo/L. 
3. State a physical problem whose solution is represented by the 

finite series in Prob. 5, Sec. 2. 
4. Show that the temperature w in a uniform circular disk whose 

entire surface is insulated, and whose initial temperature is a function 
only of the distance r from the axis of the disk, satisfies the equation 

^ hf ^ a. 1 
at “ ^ Vdf* r dr/ 
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6. If the initial temperature of a homogeneous sphere is a function 
only of the distance r from the center, and the surface is insulated, show 
that the temperature u of points inside satisfies the equation 

^ — hf _L ^ 
dt “ 

11. The Equation of the Vibrating String. The transverse 
displacements of the points of a strid^ched string satisfy an 
important partial differential e(|uation. Lcit the string be 
stretched between two fixed points on the ar-axis and then given a 
displacement or velocity j)arallel to th(‘ ?/-axis. Its subsequent 
motion, with no external forcu^s acting on it, is to be considered; 
this is described by finding the displacement y as a function of 
X and L 

It will b(^ assumed that 5, th(' mass ])er unit limgtli, is uniform 
over the entin' l(‘Ugth of the sti ing, and that the string is perfectly 
flexible, so that it can transmit tension but not bending or 
shearing forces. It will also be assumed that the displacements 
are small enough so that the square of the inclination dy/dx 

can be neglected in comi)arison to 1; hence, if s is distance 
measured along the string at any instant, 

approximately. The length of (iach part of the string therefore 
remains essentially unaltered, and hence the tension is approxi¬ 
mately constant. 

Consider the vertical components of the forces exerted by the 
string upon any element As of its length, lying between x and 
XAx (Fig. 4). The y-component of the tensile force P 

exerted upon the element at the end (x, y) is 

ds dxds dx 
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approximately. The eorrcspouding force at the end whose 
abscissa is a; + Aa: is 

where It is the usual factor in the remainder in Taylor\s formula. 
Setting th(^ sum of thes(^ forces equal to the product of the 

mass of the elemc^nt and the acceleration in the y-dircction, we 
have 

P p{ + R{^xY = B Ax 
dx- ^ c>/“ 

By dividing by Ax and letting Ax approa(th zero, it follows that 

(1) 

where 

d -y __ 
dt- ^ dx- 

P 
6 

This is the equation of the vibrating string; it is also called the 
simple wave equation, since it is a special cas(^ of the wnv^e 
eciuation of theoretical physics. 

If an external force parallel to the y-axis acts along the string, 
it is easily seen that the equation becomes 

(2) IH- 
a 

where bF{Xj t) is the force per unit knigth of string. In case 
the weight of the string is to be considered, for instance, the 
fuiujtion F becomes the constant g, the acceleration of gravity. 

If the transverse displacements are not confined to thexy-plano, 
two equations of type (2) are found, one involving the y, the 
other the z, of the points of the string, while the acceleration F 

is replaced by the y and z components of the external acceleratioti 
in those two equations, respectively. 

Equation (1) is also satisfied by the longitudinal displacements 
in a homogeneous elastic bar; y is then the displacement along 
the bar of any point from its position of equilibrium. A column 
of air may be substituted for the bar, and the equation becomes 
one of importance in the theory of sound. The equation also 
applies to the torsional displacements in a right circular cylinder. 
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PROBLEMS 

1. Derive equation (2) above. 
2. State Prob. 5, Sec. 4, as a problem of displacements in a stretched 

string of infinite length. Show that the motion given by the result of 
that problem can be described as the sum of two displacements, o})tained 

by sejiarating the initial displacement into two equal parts, one of which 
moves to the left along the string with the velocity a, and the other to 

the right with the same velocity. 
3. If a damping force proportional to the velocity, such as air resist¬ 

ance, acts upon the string, show that the eijuation of motion has the 

form 

, dh/ dy 
dx^' at ’ 

where h is a positive constant. 

12. Other Equations. Types. Some further partial diffc^r- 

eutial fHjuatioiis of imporiaiicf* in the ai)pli(iations will b(‘described 

briefly at this point. For tlicdr derivation and comphde dcvscrij)- 

tion, th(^ nuider should refer to books on the subjects involved. 

A natural g(Ui(;ralizath)n of (npiation (1) of the last section 

is the equation of the vibrating membrane: 

Here the position of ecpiilibrium of the stndched membrane is 

the TZ/-p]an(*, so that z is the transverse displacement of any jioint 

from that position. Assumptions similar to those in the case 

of the string ar(', necessary. The membrane is assumed to be 

thin and p(u*fectl.y flexible, with uniform mass 5 per unit ari^a. 

The tensile stress P, or tension per unit length across any line, 

is assumed to be large, and the displacements small. The 

constant a- is then the ratio P/5. 

The telegraph equation^ 

(2) g = KL II + {RK + SL) ^ + RSv, 

is satisfied by either the electric j^otential or th(^ current in a 

long slender wire with resistance P, the ek^ctrostatic capacity K, 

the leakage conductance S, and the self-inductance P, all per 
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unit length of wire. The simple wave equation is a special 
case of this. 

The transverse displacements y{x, t) of a uniform beam satisfy 
the fourth-order equation 

(3) dP 
2 - 4- 

dx^ 
0, 

where the constant depends upon the stiffness and mass of 
the beam.* 

Airy's stress function (p{x, ;</), used in the theory of elasticity, 
satisfies the fourth-order ecpiation 

(4) ^ I o _4_ = 0 
dx^ dx^ dy^ ' 

often written VV = 0* It serves in a sense as a potential 
function from which shearing and normal stresses within an 
elastic body can be derived. The form (4) assumes that no 
deformations exist in the ^-direction. 

Linear partial differential equations of the second order with 
two independent variables z, y are classified into three types 
in the theory of these equations. If the terms of second order, 
when collected on one side of the equation, arc 

. d'^u , n dHi ^ d^u 
A + B -■ . - + C ^; 

dx^ dx dy dy^ 

where Bj C are constants, the equation is of elliptic, parabolic, 

or hyperbolic type according as {B^ — 4A(7) is negative, zero, or 
positive. In the study of boundary value problems it will be 
observed that those three types require different kinds of bound¬ 
ary conditions to completely determine a solution. 

Note that Laplace's equation in x and y is elliptic, while the 
heat equation and the simple wave equation in x and t are 
parabolic and hyperbolic, respectively. The telegraph equation 
is also hyperbolic, if KL jA 0. 

13. A Problem in Vibrations of a String. When the differen¬ 
tial equation is linear and the boundary conditions consist of 
linear equations, the boundary value problem itself is called linear^ 

* See, for instance, Tunoshenko, '‘Vibration Problems in Engineering,” 
p. 221. 
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A method which can be used to solve a large class of such prob¬ 
lems will now be illustrated. It will be seen that the process 
leads naturally to a problem in Fourier series. A formal solution 
of the following problem will be given. 

Find the transverse displacements y{Xy t) in a string of length 
L stretched between the points (0, 0) and (L, 0) if it is displaced 
initially into a position y — fix) and released from rest at this 
position with no external forces acting. 

The required function y is the solution of the following bound¬ 
ary value problem: 

(1) = {t>0,0<x<L), 

(2) y(0, t) = 0, y{L, <) = 0 (t ^ 0), 
(3) y{x, 0) = fix) (0 g X ^ L), 

(4) = 0 (0 g X g L). 
ol 

Our method consists of finding particular solutions of the 
partial differential equation (1) which satisfy the homogeneous 
boundary conditions (2) and (4), and then of determining a 
linear combination of those solutions which satisfies the non- 
homogeneous boundary condition (3). 

Particular solutions of equation (1) of the type 

(5) y = XT, 

where X is a function of x alone and T a function of t alone, can 
easily be found by means of ordinary differential equations. 

According to equation (5), dy/dx — X'T, dy/dt = XV, etc., 
where the prime denotes the ordinary derivative with respect 
to the only independent variable involved in the function. 
Substituting into equation (1), we find 

xr' = a2X"r, 

or, upon separating the variables by dividing by a^XT, 

Z"(rc) __ r\t) 
X(x) a^Tit) 

Since the member on the left is a function of x alone, it cannot 
vary with t] it is equal to a function of t alone, however, and 
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thus it cannot vary with x. Hence both members must be equal 
to a constant, say 7, so that 

(6) X^\x) - yX{x) = 0, 
(7) r\t) - yan\t) = 0. 

If our particular solution is to satisfy conditions (2), A"7’must 
vanish when x = 0 and when x — L, for all values of t involved. 
Therefore 

(8) A(0) - 0, X{L) - 0. 

Similarly, if it is to satisfy condition (4), 

(9) 7^'(()) = 0. 

Equations (6) and (7) are linear homopjeneous ordinary 
differential ecpiations with constant coefficients. The auxiliary 
equation corresponding to (6), — 7 = 0, has the roots 

w = ± Vt* The gerKa’al solution of eciuation (6) is therefore 

X = 4. 

where C\ and Ci arc' arbitrary constants. Rut if 7 is positive, 
it is easily seen t hat th(‘re are no values of C\ and C2 for which 
this function A" satisfies both of coiidilioiis (8). 

Suiipose 7 is negative, and write 

7 = -0^ 

The general solution of ecpiation (6) can then be written 

X = A sin 0x + B cos 0Xy 

where A and B an^ art)itrary constants. 
If A(0) = 0, the constant B must vanish. Then A must 

be different from zero, since we are not interested in the trivial 
solution X(x) ^ 0. So if X(L) = 0, wc must have 

sin 0L = 0. 

Hence there is a discrete set of values of 0^ namely, 

(n = 1, 2, • • • ), 
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for which the system consisting of equation (6) and conditions 
(8) has solutions. These solutions are 

X = ^ sin 
mrx 

Note that no new solutions are obtained when n = —1, —2, 
-3, • • • . 

Substituting —nV/L^ for y in differential equation (7) and 
a})plying eondition (9), we find that 

T C cos 
nirdl 

~r’ 

where C is an arbitrary constant. 
Therefore all the functions 

(10) An sin 
mrx mrat 

17 ~ 

(n = 1, 2, • • • ) 

are solutions of our partial differential equation (1) and satisfy 
the linear homogeiu^ous conditions (2) and (4), when A i, .42, * * ' 
are arbitrary constants. 

Any finite liii(‘ar combination of these solutions will also 
satisfy the same conditions (Th(H>rem 1, Chap. I); but when 
t = 0, it will rediKH' to a finite linear combination of th(‘ functions 
sin (?nrx/L). Thus condition (3) will not be satisfied unl(\ss the 
given function/(.r) has this particular charact(n\ 

Consider an infinite s(‘ri(‘s of functions (10), 

(11) y = An sin 
mrx 

~L 
cos 

mrat 

"X~‘ 

This satisfies equation (1) providc'd it converges and is termwise 
differentiable (I'lK^orein 2, (^hap. I); it also satisfies (‘onditions 
(2) and (4). It will satisfy the nonhomogeneous condition (3) 
provided the numbers An can be so determined that 

(12) f(x) = ^Ausin^j^- 

It will be shown in Sec. 15 that if such an ex})ansion of f{x) is 
possible, the numbers A „ must have the values 

(13) = 2; /(^) sin dx. 
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Equation (11) with coefficients (13) is formally the solution 
of the boundary value problem (l)-(4). 

The series on the right of equation (12) with the coefficients 
defined by (13) is called the Fourier sine series of the function 
/(x). In a later chapter it will be shown that this series actually 
converges to the function f{x) in the interval 0 ^ x ^ L, pro¬ 
vided/(x) satisfies certain moderate conditions—conditions which 
are almost always satisfied by functions which arise in the 
applications. 

Other questions are left unsettled at this point in the treatment 
of this problem. Series (11) has not been shown to be conver¬ 
gent, or to repr(\seiit a continuous function, or to be termwise 
differentiable twice with respect to either x or t It has not 

been shown that series (11) is the only solution of the problem 
(l)-(4). Questions of this character are to be treated later on. 

14, Example. The Plucked String. As a special case of the 
problem just treated, let the string be stretched between the 
points (0, 0) and (2, 0), and suppose its mid-point is raised to a 
height h above the x-axis. The string is then released from rest 
in this broken-line position (Fig. 5). 

The function /(x) which describes the initial position can be 
written, in this case, 

/(x) = hx when 0 ^ x g 1, 
= ~/ix + 2h when 1 ^ x ^ 2. 

The coefficients in solution (11), Sec. 13, are, according to 
formula (13), Sec. 13, 

An = /(x) sin ^ dx 

= A X sin ^ dx + A (—x + 2) sin ^ dx. 
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After integrating and simplifying, we find that 

An 
Sh 

TT^n^ 
sm 

UT 

so that the displacement y{x, t) in this case of the plucked string 
is given by the formula 

1 

1 . 7i7r . nirx mrat 
-,sm^sm-2-cos-^ 

ttx Trat 1 . Stx ^rrat 
sm Y cos - ^-9 “2~“ 

, 1 . &irx ^rat 

+ 25 ) 

Another form of this solution will be obtained later [formula 
(4), Sec. 43]. 

16. The Fourier Sine Series. In the solution of the problem 
of Sec. 13 it was necessary to determine the coefficients An so 
that the series of sines would converge to /(x). Assuming that 
an expansion of the type needed there, namely, 

TTX 2tx 
0) fix) A, sin’^ + A2sm^;-^+ • 

jj ij 
I A • I + yl„sin-v + 

iJ 

is possible when 0 ^ ^ L, and that the series can be integrated 
term by term after being multiplied by sin (mrx/L), it is easy to 
see what values the coefficients must have. 

It is necessary to recall that 

. mirx . nwx if (m — ri)Trx (m + n)TX^ 
-j- sm-j- = 2 -1-«««-1-J' 

. - niTX 1 A 2mTx\ 
-cos-^j, 

and hence, when m and n are integers, 

(2) I sm —j- sm -j- ax = 0 if m n, 

L 
= 7: if m = n. 

The functions sin (nwxIL) (n = 1, 2, • • • ) therefore form an 
orthogonal system in the interval 0 < x < L; that is, the integral 
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over that int(?rval of the product of any two distinc.t functions 
of the system is zero. 

Now let all tc'rms in eejuation (1) be multiplied by sin {nTx/J.) 

and integrated between 0 and L. The first term on the right 
becomes 

. . TTX . riwx , 
AI I sin-7-sin , ax. 

Jo L L 

This is zero unless n = 1, according to the orthogonality property 
(2). Likewise all terms on the right except the nth oiu^ become 
zero; so the proci'ss givt‘s 

according to property (2). Hi'iice th(‘ (‘oefficients in (Mpiat ion (I) 
must have the values 

(3) An = Y ( fix) sin (lx. 
L Jo L 

The Fourier sine scu'ii's cornvsponding U) f{x) can lie writt en 

(4) 
2 ^ . mx 

Jo 
m «ii> -77 dn, 

whore the sign is iisi'd Ikto to dc'iiob' correspondence. It 
is to be shown lat('r on that the series does converge' io fix) in 
general. 

PROBLEMS 

1. Show that the Fourier sine series corresponding to fix) = 1 in the 
interval 0 < x < x is 

1 
4/ . 

i sin x + 7T sill 3a; + ^ sin 5a; + • • • «) o )■ 
2. Show that the sine series fe)r /(a;) = a; in the interval 0 < a; < 1 is 

X sin mrx. 

3. Find the solution of the problem of the string in Sec. 13 if the 
initial displacement is/(a;) = A sin iirx/L). Discuss the motion. 

Ans. y — A sin (xa;/L) cos iirat/L). 
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16. Imaginary Exponential Functions. According to the 
power series expansion of e*, 

(ix)"* 

n\ 

== 1 . 5!^ 
^ 2! ^4! 

where i = \/"— 1. So 

+ ^ - 

(1) — cos X -h ^ sill x. 

This is usually taken as the definition of the exponential function 
with imaginary exponents. Then 

= cos X — t sin j, 

and by first eliminating cos x and then sin x between this equa¬ 
tion and equation (1), we find that 

_ f—ix 

(2) i sin X = --^— = sinh (ix), 

(}ix _L ^~ix 

(3) oos X = -- 2-== 

When the coefficients of a linear homogeneous diffenmtial 
ec^uation are constant, particular solutions in the form of exponen¬ 
tial functions can be found. 

To illustrate the use of ex])on(*ntial functions in partial differ¬ 
ential equations, consider again the problem in Sec. 13. The 
function 

where a and fi are constants, is clearly a solution of the equation 

(4) 

provided that 

Hence the functions 

dt^ 
a 2^ 

dX^’ 

pi = o*«*. 

are solutions. 
Except for a constant factor, the difference between the two 

products just written is the only linear combination which 
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vanishes at x = 0 [condition (2), Sec. 13]. Thus the functions 

^±aat gjjjJj 

satisfy that condition as well as equation (4). The linear com¬ 
bination of these two functions which satisfies the condition that 
dy/dt = 0 when ^ = 0 is the sum, or 

(6) sinh ax cosh aaL 

But here a must be imaginar}^, since our function is to vanish 
when x == L, because the hyperbolic sine of a real argument 
vanishes only when the argument is zero. According to equations 
(2) and (3), when a = iy. the function (5) can be written, except 
for a constant factor, as 

sin yx cos yaL 

This vanishes when x = L if m = nir/L. 
Thus we again have the particular solutions 

. . mrx rnrat 
An sm cos 

of equation (4), which satisfy the homogeneous conditions in the 
problem in Sec. 13. From this point on the procedure is the 
same as in that section. 

As another application of imaginary exponential functions, 
note that 

N N 

2(cos 6 -f- cos 2^ + * • • + cos NS) = ^ 

Summing the finite geometric series on the right, this becomes 

2 ^ cos nS = + 
1 

1 —i6 

This can be written at once in the form 

o /» i . sin {N + i)6 
' ^ sm ^S 

which is known as Lagrange^s trigonometric identity. 
identity will be useful in the theory of Fourier series. 

This 
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PROBLEMS 

1. Use exponential functions to determine particular solutions of the 
simple heat equation 

m “ dx^ 

which vanish when x - 0 and x - w. (Compare Prob. 5, Sec. 2.) 
2. Use exponential functions to determine particular solutions of the 

equation 

dp ^ 

such that u — 0 when 2/ = 0, and du/dx = 0 when a; == 0 and a; = 1. 
Ans» u = An cos nrx sinh niry (n ~ 0, 1, 2, • • •)• 



CHAPTER III 

ORTHOGONAL SETS OF FUNCTIONS 

17- Inner Product of Two Vectors. Orthogonality. The 
concept of an orthogonal set of functions is a natural generaliza¬ 
tion of that of an orthogonal set of vectors, that is, a s('t of 
mutually perpendicular vectors. In fact, a function can bo 
considered as a generalized vector, so that the fundamental 
properties of the set of functions are suggested by the analogous 
properties of the set of vectors. In the following discussion 
of simple vectors, the terminology and notation which apply 
to the generalized case will be used whenever it seems advanta¬ 
geous for the later generalizations. 

Let citlu^r g or g{r) denote a vector in ordinary three-dimen¬ 
sional space whose' rectangular comporn^nts are the three numbers 
^(l), gr(2), and gf(3). It is the radius vector of the point having 
th(‘se numbers as rectangular cartesian coordinates. The square 
of the kuigth of this vector, called its norm^ will be written 
N{g)] it is the sum of the squares of the components of g\ 

(1) N{g) = ?^(1) + gK‘i) + 9^3) = % g'Kr). 
r = 1 

If N{g) = g is a unit vector, also called a normed or a nontml- 

ized vector. 
Let B be the angle between two vc^ctors gi{r) and g^ir), Sinco, 

the components 9^1(1), 9^i(2), gi(3) are proportional to the direc¬ 
tion cosines of the vector g\, and similarly for ^2, the formula 
from analytic geometry for cos B can be written 

n _ g^i(l)fl^2(l) + gi(2)g2(2) -H g^i(3)gr2(3) 

" lNigr)m92)? 

The numerator on the right is called the inner prodwt (or scalar 
product) of the vectors gi and g2, denoted by the symbol (gi, gt); 

thus 
34 
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3 

(2) {gi, 92) = X Si(x)g2{r) 
r = 1 

= VN{gi) y/NiOi) cos 6. 

When N{g^ = 1, {g\j g^) Is the projection of the vector gi in the 
direction of ^2. 

The condition that the vectors gi and g^ be orthogonal, or 
perpendicular to each other, can be written 

(3) {giy g^) = 0 

or, in terms of components, 

(4) X = 0. 

Note also that expression (1) for the norm of g can be written 

^{9) = (g, g)- 

18. Orthonormal Sets of Vectors. Given an orthogonal set 
of three vectors gn (n = 1, 2, 3), a set of unit vectors (pn having 
the same directions can be formed by dividing each component 
of gn by th(i length of gn^ The components of v?i, for instance, 
are v?i(r) = (/i(r)[iV(9fi)]~* (r = 1, 2, 3). This set of mutually 
pen’pendicular unit vectors obtained by normalizing the 
mutually perpcuidic^ular ve(;tors gn, is called an orthonormal set 

Such a set can be described by nuiaiis of inner products by writing 

(1) ~ 3), 

whercj 5mn, called Kronecker^s 8, is 0 or 1 according as m and n 

are different or equal: 

5mn == 0 if m 5^ n, 
= 1 if m = n. 

The condition (1) therefore requires that each vector of the 
set ^1, <p2, (fz is perpendicular to every other one in that set, and 
that each has unit length. 

The symbol {^n} will be used to denote an orthonormal set 
whose vectors arc ^1, ^2, and ^3. The simplest example of 
such a set is that consisting of the unit vectors along the three 
coordinate axes. 
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Every vector / in the space considered can be expressed as a 
linear combination of the vectors (p\, ^2, and ^3. That is, three 
numbers Ci, C2, cz can be found for which 

(2) /(r) = Ci^i(r) + c^ip^ir) + Cz(p%{r) (r = 1, 2, 3), 

when the components /(I), /(2), /(3) are given. To find the 
number ci in a simple way, consider equation (2) as a vector 
equation and take the inner product of both its members by ^1. 
This gives 

(ff ^1) ~ <Pi) + ^2(^2, <Pl) + ^3(^3, iPi) = Cl, 

since {(pi, (pi) = 1 and (^2, ^1) = {(pz, ^1) = 0, according to 
condition (1). Similarly C2 and cs are found by taking the inner 
product of the members of equation (2) by (p2 and (pz, respectively. 
The coefficients are therefore 

(3) c„ = (/, (Pn) = % f{r)<pnir) (n = 1, 2, 3). 
r = l 

The representation (2) can then be written 

(4) fir) = (/, <pi)<piir) + if, <pt)(ptir) + if, <ps)<f>3ir) 

= X if, <(>n)<Pnir). 
n * 1 

The representation (2) or (4) may be called an ** expansion 
of the arbitrary vector / in a finite series of the orthonormal 
reference vectors (pi, (P2, and (pz. These orthogonal reference 
vectors were assumed to be normalized only as a matter of 
convenience, in order to obtain the simple formulas (3) for the 
coefficients in the expansion. The normalization is not neces¬ 
sary, of course. 

The definitions and results just given can be extended immedi¬ 
ately to vectors in a space of k dimensions. In this case the 
index r, which indicates the component, has values from 1 to k, 
instead of 1 to 3; similarly the indices m and n, which distinguish 
the different vectors of an orthonormal set, run from 1 to k. 
The definition of the inner product of the vectors gi and 
in this space, for instance, becomes 

k 

(gi, gt) = X 
r»l 

(5) 
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The formal extension to vectors in a space of a countably 
infinite number of dimensions (A; == <») is also possible. In this 
case the numbers fif(r) (r = 1, 2, • • • ) which define a vector g 

would be so restricted that the infinite series involved, such as 
the series in (5) with k infinite, would converge. The possibility 
of the representation corresponding to (2) would have to be 
examined, of course. 

A generalization of another sort is also possible. The units 
of length on the rectangular coordinate axes, with respect 
to which the components of vectors are measured, may vary 
from one axis to another. In such a case the scalar product of 
two vectors gi and g2 in three-dimensional space has the form 

(9h 9i) = X P(r)9i{r)g2{r). 
r-1 

The weight numbers^’ p(l), p(2), and p(3) here depend upon 
the units of length used along the three axes. 

19. Functions as Vectors. Orthogonality. A vector g(r) in 
three dimensions was described above by the numbers g(l), 

g(2), g(S). Any function g{r) which has real values when 
r = 1, 2, 3 will represent a vector if it is agreed that these values 
are the components of the vector. This function may not be 
defined for any other values of r, in which case its graph would 
consist only of three points. 

The function g{r) will represent a vector in space of k dimen¬ 
sions if it has real values when r = 1, 2, • • • , A:, which are 
considered as the components of the vector. If g(r) is defined 
only at these points, it is determined by the vector; graphically 
it is represented by k points whose abscissas are r = 1, 2, * • • , 
k, and whose ordinates are the corresponding components of the 
vector. 

Now let g(x) be a function defined for all values of x in an 
interval a ^ x ^ b. To consider this function as a vector, the 
components should consist of all the ordinates of its graph in 
the interval. The argument x, which has replaced r here, has 
as many values as there are points in the interval, so that the 
number of components is not only infinite but uncountable. It 
is therefore impossible to sum with respect to x as we do with 
the index r. The natural process now is to sum by integration. 
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The norm of the function or vector g{x), or the sum of the squares 
of its components, is therefore defined as the number 

(1) N{g) = £[g{x)Ydx. 

The inner product of two functions gm{^) and gn{x) is defined 
as the number 

(2) (ffm, ffn) = £ g„{x)g„{x) dx, 

in analogy to equation (5), Sec. 18. The condition that the two 
functions be orthogonal is written 

{Qrn, gn) — 0, 
or 

(3) £ gm(x)gn(x) dx = 0. 

Just as before, definition (1) can be written N(g) = (g, g). 
A set (or system) of functions {grn(j)l (n = I, 2, • • • ) is 

orthogonal in the interval (a, h) if condition (3) is true when 
m ^ n for all functions of the set. The functions of the set 
are normed by dividing each function gn{x) by [A((7n).Hj thus 
forming a set {ipn(x)\ (n = 1, 2, • • * )? which is normed and 
orthogonal, or orthonormal. An orthonormal system in (a, b) is 
then characterized as follows: 

(4) (^m, ~ ^mn ^ ~ 2, * * ’ ), 

where dmn is Kronecker\s 5, defined in Sec. 18. Written in full, 
equation (4) becomes 

(5) JT^ (pm(x)ipn(x) dx = 0 if m n, 

= 1 if m = n, (m, n = 1, 2, * • • ). 

The interval (a, b) over which the functions and their inner 
products are defined is called the fundamental interval. Func¬ 
tions for which the integrals representing the inner product and 
the norm fail to exist must, of course, be excluded. 

Throughout this book, only functions which are bounded and 
integrahle in the fundamental interval, and whose norms are not 
zero, will be considered. The aggregate of all such functions for 
the given interval makes up the function space being considered, 
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in just the same way that the three-dimensional vector space con¬ 
sists of all vectors with three components g(r) (r = 1, 2, 3). 

An example of an orthogonal set of functions has already been 
given in Sec. 15; namely, the functions 

sin 
riTTX 

(n = 1, 2, • • • ). 

The fundamental interval is the interval (0, L). The norm of 
all these functions is th(^ same number, L/2, so the orthonormal 
set consists of the functions 

/2 . rtwx / 1 o \ 
Vi T“ (n = 1. 2, • ■ • 

The set {sin (titx/L)} is also orthogonal in the interval 

(—L, L); the normalizing factor is easily seen to be ll\/L in 
this case. 

PROBLEMS 

1. Show that the set of functions {cos nx\ (n = 0, 1, 2, * • • ) 
is orthogonal in the interval (0, tt). What is the corresponding ortho¬ 

normal set? Am. {1/Vt, \/2/7r cos rir) (n = 1, 2, • • • ), 
2. Show that the set {sin x, sin 2x, sin , 1, cos Xy cos 2x, 

• • • (is orthogonal in the interval (—tt, tt). Normalize this set. 

20. Generalized Fourier Series. Given a countably infinite 
orthonormal set of functions {<^n(^)) {n == 1, 2, • • • ), it may 
be possible to represent an arbitrary function in the fundamental 
interval as a linear combination of the functions (Pn(jr)j 

(1) f{x) = Cnpi(x) + C2(p2{^) -}-*••+ Cn^Pnix) + * • • 
(a < X < b)^ 

This corresponds to representation (2), Sec. 18, of any vector 
in terms of the vectors of an orthonormal set. 

If the series in equation (1) converges and if, after being mul¬ 
tiplied by <pn(x)y it can be integrat(id term by term over the funda¬ 
mental interval (a, b), th(^ coefficients Cn can be found in the same 
way as before. Writing the inner product of both members of 
equation (1) by fpn(x)—that is, multiplying (1) by <pn and integrat¬ 
ing over (a, b)—we have 

(L ^n) = Ci{iPu ^n) + C2(^2, <Pn) + * * ' + Cn(^n, <^n) + * * ’ 

~ Cm 
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since (^n», <pn) = ^mn. That is, Cn is the projection of the vector 
/ on the unit vector tpn- 

These numbers Cn are called the Fourier constants of f[x) 
corresponding to the orthonormal system {ipn{x)]) they can bo 
written 

(2) c« = £ f{x)<p„{x) dx (n = 1, 2, • • • ). 

The series in (1) with these coefficients is called the generalized 
Fourier series corresponding to f{x), written 

(3) Six) ~ X C„.p„(x) = V ^„(x) f/(«)^n(«) di. 

The above correspondence between f{x) and its series will 
not always be an equality. This can be anticipated at once 
by considering the case of vectors in three dimensions. In 
that case if only two vectors ^i(r), <^2(r), make up the orthonormal 
system, any vector not in the plane of those two could not 
be represented in the form Ci^i(r) + C2(p2(r)- The reference 
system here is not complete, in the sense that there is a vector 
in the three-dimensional space which is perpendicular to both 
of its vectors (pi and v?2. 

Likewise in formula (3), if f(x) is orthogonal to every member 
^n(x) of the system, every term in the series on the right is zero, 
and so the scries does not represent/(x). 

If there is no function in the space considered which is orthog¬ 
onal to every ^n(^), the system {<^n(a^)} is called complete. So 
the system must necessarily be complete if all functions are 
to be represented by their generalized Fourier series with respect 
to that system. 

PROBLEMS 

1. Show that the set 1 \^2/L cos (nTx/L)] (n « 1, 2, • • • ) is ortho- 
normal in the interval (0, L), but not complete without the addition of a 
function corresponding to n == 0. 

2. Show that the system {sin mrx] (n = 1, 2, • • • ) is orthogonal 
but not complete in the interval ( — 1, 1). 

21. Approximation in the Mean. Let Kfn(x) represent a finite 
linear combination of m functions of an orthonormal set {<pn(x)] 
(n = 1, 2, * • • ; a ^ X ^ b)] that is, 

(1) Km{x) = yi(pl{x) + 72^2(x) + • • • + ym(Pm(x). 
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The values of the constants yn can easily be found for which 
Km{x) is the best approximation in the mean to any given function 
f{x)\ this means the best approximation in the sense that the 
value of the integral 

(2) J = J[' Uix) - K^{x)Y dx 

is to be as small as possible; it is also the approximation in the 
sense of least squares. 

Writing Cn for the Fourier constants of f{x) with respect to 
<f>n{x), 

Cn = fix) <pn{x) dx, 

the integral J can be written 

J = ~ yi<pj(x) — y2<Pi(x) — • • • — da; 

= £[fix)]^dx + y\+yl+ • • • + yi 

— 2yiCi — 272C2 — • • • — 2ymCm^ 

Completing the squares here by adding and subtracting c?, 

cl • * • ,d, gives 

^ Ja dx - cl - cl - • • • - cl + (71 - c,)2 

+ (72 — C2y + • • ’ + (7m — CmY^ 

It is clear from (2) that J ^ 0, so it follows from equation (3) 
that J has its least value when 71 = Ci, 72 = C2, • • • , 7m = Cm. 
The result can be stated as follows: 

Theorem 1. The Fourier constants of a function f{x) with 
respect to the functions ip\{x), <^2(^), * ’ * , <pm{x) of an orthonormal 
set are those coefficients for which a linear combination Km{x) 
of these functions is the best approximation in the nu^an to /(x), in 
the fundamental interval (a, b). 

Since J ^ 0, it follows from equation (3), by taking 7n = Cn, 

that 

(4) cf+ ci+ • • • +c^g jr'[/(a;)?dx. 

This is known as BesseVs inequality. The number on the right 
is independent of m; so it follows that the series of squares of the 
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Fourier constants of any function 

Cl + ci + • • • + C* + • • • = c» 

1 

always converges; and its sum is not greater than the norm of 

fi^), 

(5) ^ £ lfix)Vdx. 

It follows that the Fourier constants of every function correspond¬ 
ing to any orthonormal system [ipn] approach zero as n tends to 
infinity: 

(6) lim Cn — 0; 
n~~* 00 

because a necessary condition for the convergence of the series 
in (5) is that its general term approa(*h(\s 7,oro as n be(a)mes 
infinite, 

22. Closed and Complete Systems. I.et S„,(x) bo the sum of 
m terms of the generalized Fouri('r series (corresponding to f{x)y 
with respect to an orthonormal set of functions {<^n! (n = 1, 
2, • • • ); that is, 

m 

(1) <Sm(x) = 2) 
1 

This is the sum Km(x) in the last section when jn = c,,. 
The sum Sn{x) is said to converge in the mean to the function 

/(x) if 

(2) lim r [f(x) - dx = 0. 
m—► 00 

This is also written 

l.i.m. S„(x) = f(x), 
m—* 00 

where the abbreviation l.i.m. stands for limit in the mean. 
If the relation (2) is true for each f{x) in the function space 

considered, the syst(^m [ipn{x)] is said to be closed* According 
to Theorem 1, then, the system is closed if every function can be 

The definitions of the terms closed and complete (Sec. 20) given here 

are those most commonly used today. Many German writers use the term 

closed (ahgeschloasen) to denote what we have called complete, and complete 

{volUtdndig) for our concept of closed. 
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approximated arbiti*arily closely in the mean by some linear 
combination of the functions (pn{x). 

By expanding the integrand in eejuation (2) and keeping the 
definition of Cn in mind, we have 

Ufh j 

[/(x)]“ - 2 T + V c*[ =0. 
a ) 

Hence for every elosed system it is true that 

(3) f 

This is known as FarsevaUs theorem. When written in the 
form 

(4) X 

it identifies the sum of the scpiares of the components of /, with 
respect to the reference vec.toi’s <^n, with tlu' norm of /. 

Suppose Q{x) is a function which is orthogonal to every func- 
thni of the (*losed set. Substituting it for / in ecpiation (4) 
gives N{0) = 0, so that B{x) cannot b(‘long to the function 
space; and thus it is shown that the s(‘t is complete (Sec. 20). 
The following theon'in is then'fore (‘stablislu'd: 

Theorem 2. If the set is closed^ it is complete. 

It is an immediate conseciuence that if there is a function 
which is orthogonal to ov(‘ry member of the set, th(' set cannot be 
closed. 

This is only a bare introduction to a general theory which 
has beom developed ('xte^nsively in recent years. To carry it 
further (even to prove the converse of Theon'm 2), a broader 
class of functions and t he idea of tlu^ Lebesgiu^ integral are needed. 

But the term closed'’ was defined here with r(*spect to con¬ 
vergence in the mean, and this type of convergc^iice does not 
guarantee ordinary convergence at any point. That is, the 
statement (2) is quite different from the statement of ordinary 
convergence: 

lim Sm{x) == f{x) (a ^ X ^ b). 
m—* • 

It is this ordinary convergence, and the concept of closed orthog- 
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onal sets with respect to it, which are usually needed in the 
applications. 

No general tests of a practical nature exist for showing that a 
set of functions is closed. That is another reason for deserting 
the general theory at this point. 

23. Other Types of Orthogonality. Some of the important 
extensions of the concept of orthogonal sets of functions should 
be noted. 

a. A set {fifn(a:)} (n = 1, 2, • • • ) is orthogonal in an interval 
(a, b) with respect to a given weight Junction p(x), where it is 
usually supposed that pix) ^ 0 in (a, t), if 

(1) v{^)Qrn{x)gn{x) dx =Q whcii m n (m, n = 1,2, • * * )• 

The integral on the left represents the inner product gn) 
with respect to the weight function, a generalization of the inner 
product of vectors in terms of components with respect to axes 
along which different units of length are used (Sec. 18). The 
norm of g^ix) in this case is, of course, 

Nijgn) = {gn, gn) = £ p{x)[gr,{x)f dx (n = 1, 2, • • • )• 

By multiplying each function g^ of the set by the normalizing 
factor [^(gn)]"^ the corresponding orthonormal s(^t is obtained. 

This type of orthogonality can be reduced at once to the ordi¬ 
nary type having the weight function 1. It is only necessary 
to use the products y/p{x)gn{x) as the functions of the system; 
then equation (1) shows that the system so formed has ordinary 
orthogonality in the interval (a, 6). 

An important instance of orthogonality with respect to weight 
functions will be seen in the study of Bessel functions later on. 

The Tchebichef polynomialsj 

(2) Tn{x) == cos (n arccos x), ToCx) == 1 

(w = 1, 2, • • • ), 

also form a set of this type. This set is orthogonal in the interval 
( —1, 1) with respect to the weight function 

p(®) s* (1 — 
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This is easily verified by integration; thus, Ji dx 1 
^ TUx)Tn(.x) cos cos ne dO 

= 0 a m 9^ n. 

h. Another extension of orthogonality applies to a system of 
complex functions of a real variable x (a ^ x ^ b), A system 
consisting of the functions Qnix), where 

gn(x) = Un(x) + iVn(x), 

is said to be orthogonal in the Hcrmitian sense if 

(3) gmix)gn{x) dx = 0 when m 9^ n, 

where gn{x) = Un(x) — ivnix), the conjugate of g^. The system 
is normed if 

gnix)gjx) dx = 1; 

that Ls, if 

£ + i»*(a:)] dx = 1 

for every n. 

When the functions are real, Vn{x) = 0, and this type reduces 
to the ordinary orthogonality. 

Imaginary exponential functions furnish the most important 
examples of such systems. For instance, the functions 

(4) = cos nx + i sin 7ix (n ~ 0, ±1, ±2, • • • ) 

form a system which is orthogonal on the interval (—tt, tt) in the 
above sense. The proof is left as a problem. 

c. Extensions to cases in which the fundamental interval is 
infinite in length are obtained by replacing a by — 00 or 6 by 00, 

or both. 
d. For systems {gnix, 2/)} (n = 1, 2, • • • ) functions of 

two variables, the fundamental interval is replaced by a region 
in the xtz-plane, and the integrations are carried out over this 
region. Similar extensions apply when three or more variables 
are present. Weight functions may be introduced in such cases 

too, as well as in case c. 
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PROBLEMS 

1. By using the binomial expansion and equating real parts in the 
well-known formula 

(cos 6 -Y i sin = cos nd -j- % sin nB, 

obtain the identity 

cos nd = cos’^ 0 — cos"”2 0 sin2 0 -f cos«~'*0sin^0 — • • • + .4,*, 

where are the binomial cocfhcients, and An = sin" 0 ii nm even, 

An = cos 6 sin"“^ 6 if n is odd. Hence show that the functions 

Tn{x) defined by eciuations (2) above are actually polynomials in x of 

degree n. 

2. Prove that the system of exponential functions in ecjuation (4) of 

this section is orthogonal on the interval ( —tt, tt) in the Herrnitian sense. 

3. Prove that the system in = 0, ±1, ±2, • • • ), 

where exp (a) denotes is orthogonal in the Herrnitian sense on the 
interval (a, 6). 

24. Orthogonal Functions Generated by Differential Equa¬ 
tions. In solving the problem of displacemonls in a stretched 
string in Sec. 13, we usc^d particular solutions of the partial 
differential equation of motion which vanished wIkui x = 0 and 
X = L. In order that y = X{'x)T{t) be such a solution, it was 
found that the function X{x) must satisfy the conditions 

(1) A^"(x) + \X{x) = 0, 
(2) A(0) = 0, X{L) = 0, 

for some constant value of X, denoted there by —7. 
Equations (1) and (2) form a homogeneous boundary value 

problem in ordinary differential equations containing X as a 
parameter. Since the soluticm of equation (1) that vanishes 
when X == 0 is A = C sin \/Xx, the problem has solutions not 
identically zero only if X satisfies the equation 

(3) sin y/\L = 0. 

Therefore X = (n = 1, 2, • • • ), and the corresponding 
solutions of the problem (l)-(2) for these values of X are, 
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except for a constant factor, sin {mrx/L), These functions were 
shown to form an orthogonal set on the interval (0, L). 

Corresponding results can be found in much more general 
cases. When applied to a more gemeral partial differential 
equation, separation of variables will yield an equation in X{x) 

of the tyi)e 

X" +/i(a:)X' + [/2(:r) + \U{x)]X = 0. 

Here/i,/2, and/3 are known functions involved in the coefficients 
of the partial differential equation, and X is the constant which 
arises upon vseparation of variables. 

When the last equation is multiplied through by the factor 
r(a:), where 

r(x) = 
it takes the form 

Tx vl] + 
known as the Sturm-Liouville equation. 

The boundary conditions on X{x) may have the form 

(5) aiX(a) + a2X'(a) = 0, h,X{b) + InX'i})) = 0, 

where ai, 02, {>1, and are constants. 
The problem composed of the differential equation (4) and the 

boundary conditions (5) is called a Sturin-Liouvillc problem or 
system, in honor of the two mathematicians who made the first 
extensive study of that problem.* 

Under rather general conditions on the functions p, q, and 
r, it can be shown that there is a discrete set of values Xj, X2, * * * 
of the parameter X for which the system (4)-(5) has solutions 
not identically zero. These numbers Xn are called the character¬ 

istic numbers of the system. In the above special case—equations 
(1) and (2)—^they are the numbers the roots of the char¬ 
acteristic equation (3). 

The solutions Xn(x) (n = 1, 2, • • • ), obtained when X == X„ 
in equation (4), are the characteristic functions of the Sturm- 
Liouville problem. These are the functions sin (ii-kx/L) in the 

special case. 

* Papers by Liouville and Sturm on this problem will be found in the first 
three volumes of Journal de math^matique, 1836-1838. 
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It will be shown in the following section that the set of func¬ 
tions {Xn(x)} (n = 1, 2, • • * ) is orthogonal on the interval 
(a, b) with respect to the weight function p{x). 

Moreover, it can be shown that any function f(x), defined in 
the interval (a, b) and satisfying certain restrictions as to its 
continuity and differentiability, is represented by its generalized 
Fourier series corresponding to that orthogonal set of functions. 
That is, if ipnix) is the function obtained by normalizing Xn(x), 

the series 
00 

(6) 5) c»^»(x), 
1 

where 

Cn = p(x)f(x)iPn(x) dx, 

converges to the function/(:r) in the interval (a, b). It should 
be noted that the normalizing factor for Xn here is the number 

(£pxidxy\ 
When r{b) = r(a), the statements made above arc also true 

when the boundary conditions (6) are replaced by the conditions 

(7) X(a) = X(6), X'(a) = X'(6), 

called the periodic boundary conditions. Conditions of this 
sort frequently arise when x represents a coordinate such as the 
angle 0 in polar coordinates, or cos 6. 

The proof that series (6) converges to the function f{x) is 
quite long and involved, as we may well expect in view of the 
fact that the coefficients in differential equation (4) are arbitrary 
functions of x. The proofs generally make use of the theory of 
functions of complex variables, or the comparison of the expan¬ 
sion with a Fourier series, or both. The development of a general 
expansion theorem, along with other interesting and useful 
results in the general theory of Sturm-Liouville systems, is 
beyond the scope of the present volume.* 

The expansions considered in the chapters to follow are all 
special cases of the general theory. But in two of the important 
cases, those of Bessel and Legendre functions, the equations are 

* A treatment of these topics is included in a companion volume, now 
being prepared by the author, on further methods of solving partial differen¬ 
tial equations. Also see Ince, “Ordinary Differential Equations,” pp. 
235 1927; and the references listed at the end of the present chapter. 
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singular cases of equation (4) which must be treated separately 
even in the general theory. Hence the plan of presentation 
followed here is not especially inefficient. 

Many of the important sets of orthogonal functions are gen¬ 
erated in the above manner, as solutions of a homogeneous 
differential system involving a parameter. The expansion 
theorem shows that these sets are closed with respect to ordinary 
convergence, rather than convergence in the mean, so that we 
have an important advantage over the general theory discussed 
in the preceding sections. 

26. Orthogonality of the Characteristic Functions. Two 
theorems from the general theory of Sturm-Liouville systems 
can easily be established liere. They will be useful in the 
following chapters. The first shows the orthogonality of the 
characteristic functions, and the second shows that the char¬ 
acteristic numbers are real. The existence of such functions 
and numbers will be established in each case treated later on, of 
course, by actually finding them. 

Theorem 3. Let the coefficients p, g, and r in the Sturm-Liouville 

problem he continuous in the interval a ^ x ^ b, and let Xn be 

any two distinct characteristic numbersy and Xm{x)y Xnix) the 

corresponding characteristic functionsy whose derivatives X'^(x), 

Xn(x) are continuous, 'Then Xm(x) a,nd Xnix) are orthogonal on 

the interval (a, 6), with respect to the weight function p{x). 

Furthermorey in case r{a) = 0, the first of the conditions (5), 
Sec, 24, can be dropped from the prohlemy and if r(h) = 0 the 

second, of those coiiditions can be dropped. If r{b) = r(a), those 

conditions can he replaced by the periodic conditions (7), Sec, 24. 
Since Xm and Xn are solutions of equation (4), Sec. 24, when 

X = Xm and X = Xn, respectively, 

^ (rX'J + (g + = 0, 

^ (rX'J + (g + X„p)X„ = 0. 

Multiplying the first equation by Xn and the second by Xm, and 
subtracting, gives 

(X„ - Xn)pX.^» = X„-f^ (rX'J - ^ (rX'J 

d 



50 FOURIER SERIES AND BOUNDARY PROBLEMS [Sec. 25 

Integrating both members over the interval (a, h), 

(1) (x» - x„) JT" dx = [r(z„^; - 

In the special case when a2 = = 0, the boundary conditions 
(5), Sec. 24, become 

(2) X(a) = 0, X{h) = 0. 

Since both Xm{x) and Xn(:x) then satisfy these conditions, it is 
evident that th(^ right-hand member of equation (1) ^'anish(^s. 
But Xm — X„ 5^ 0, so that 

(3) £ p(x)X„.(x)X„(x) dx = 0, 

which is the statement of orthogonality between and Xn- 

In case r(a) = 0, it is clear that (3) follows from (1) without 
the use of the first of the conditions (2). Similarly, if r(6) = 0, 
the second condition is not needed. 

The proof that equation (3) follows when the gcmc^ral boundary 
conditions (5), Se(\ 24, or the periodic boundary conditions, are 
substituted for (2), will be left for the problems. 

Theorem 4. If in addition to the conditions stated in Theorem 3 
the coefficient p{x) does not change sign in the interval (a, b), then 

every characteristic number of the Sturm-Liouville 'problem is reaL"^ 

Suppose there is a complex characteristic number X, where 

X = a + 0, 

Let 

X(x) = u(x) + iv(x) 

be the corresponding characteristic function. Substituting this 
in the Sturm-Liouville equation, we have 

^ (ru' + in/) + (^ + ap + ifip){u + iv) = 0. 

Equating the real and imaginary parts to zero, separately, 

^ {ru') + (g + ap)u - I3pv = 0, 

^ {rv') + (g + ap)v + fipu = 0, 

* The functions p, q, and r are assumed to be real. 
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and, upon multiplying the first of these equations by v and the 
second by w, and subtracting, it follows that 

— + v^)p ^ ^ ^ 

= ^ [{rv')u - {ru')v]. 

Consequently, an integration gives the relation 

(4) Ja ~ 

Again let us complete the proof here when the boundary condi¬ 
tions of the Sturm-Liouville problem have the special form (2). 
Since our characteristic function u + iv satisfies (2), its real 
and imaginary parts must each vanish when x — a and x = b. 

The right-hand member of (4) tluin'fore vanishes. But if the 
function p{x) in the integral does not change sign in the interval 
(a, 6), the integrand itself cannot change sign, and so the integral 
cannot vanish. It follows that = 0, and therefore the char¬ 
acteristic number X is real. 

As before, if r(a) = 0, the first of conditions (2) is not needed, 
and if r(h) = 0, the second can be droppe^d. 

The argument is not essentially different when the more 
general boundary conditions (5), Sec. 24, or the periodic con¬ 
ditions are used. This matter is left for the problems. 

PROBLEMS 

1. Complete the proof of Theorem 3 when the boundary conditions 
are (a) the conditions (5), Sec. 24; (b) the periodic conditions (7), Sec. 24, 
assuming that r(b) = r(a). 

2. Complete the proof of Theorem 4 when the boundary conditions 
are (a) the conditions (5), Sec. 24; (6) the periodic conditions (7), 
Sec. 24, assuming that r{b) = r(a). 

Find the characteristic functions of each of the following special cases 
of the Sturm-Liouville problem. Also note the interval and weight 
function in the orthogonality relation ensured by Theorem 3, and find 
the normalizing factors. 

3. X" + XX = 0; X'(0) = 0, X'(L) = 0. 
Ans. Xn = cos (rnrx/L) (n = 0, 1, 2, • • • ). 

4. X" + XX = 0; X(0) = 0, X'(L) = 0. 
Am. = Vi/Z sin [(2» - l)irx/{2L)] {n = 1,2, ■■■ ). 
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5. Z" + XX = 0; X{ir) = X(-ir), X'{t) = X'(^7r). 

11, cos a;, cos 2x, * * • , sin x, sin 2a:, * • • }. 

6. X" + XX == 0; X(0) - 0, X'(l) + hX{\) = 0, where A is a con¬ 

stant. Show in this case that Xn = sin anXj where a« represents the 

positive roots of the equation tan a = —ot/h, an equation whose roots 

can be approximated ^aphically. Also show that X„ is normalized by 

multipl3dng it by '\^2hl{h + cos^ a„). 

7. {d/dx){xKX') + \xX = 0; X(l) = 0, X(e) - 0. Note that the 

equation here reduces to one of the Cauchy type after the indicated 

differentiation is carried out. 

An8. ipn = (a/2/x) sin {m log x) (n = 1, 2, * • • )• 

REFERENCES 

1. Courant, R., and D. Hilbert: ^^Methodcn der mathematischen Physik,*' 
Vol. 1, 1931. 

2. Mises, R. v.: “Die Differential- iind lutegralgleichungcn der Mechanik 
und Physik“ (Riemann-Weber), Vol. 1, 1925. 



CHAPTER IV 

FOURIER SERIES 

26. Definition. The trigonometric series 

(1) iao + (cLi cos X + hi sin x) + (ct2 cos 2x + 62 sin 2x) 

+ • * • + (fln cos nx + hn sin nx) -f- • * • 

is a Fourier series provided its coefficients are given by the 

formulas 

1 f’" 
an = - I fix) cos nx dx (n = 0, 1, 2, • • • ), 

(2) "" 
w 1 r*" 

fcn = - I fix) sin nxdx (n = 1, 2, • • • ), 
^ J-T 

whore/(a:) is some function defined in the interval (—tt, tt). In 

particular, series (1) with the coefficients (2) is called the Fawner 

series corresponding to fix) in the interval (—tt, tt), written 

(3) fix) ~ ^ao + ^ ian cos nx + bn sin nx) (—tt < x < t). 

Formulas (2) for the coefficients are special cases of those 

for the generalized Fourier series in the chapter preceding. The 

functions 1, cos x, sin x, cos 2x, sin 2x, • • • constitute an orthog¬ 

onal (but not normalized) set in (—tt, tt). This was noted in 

Prob. 5, Sec. 25; but we can easily show it here independently. 

For if m, n = 0, 1, 2, • • • , then 

cos mx cos nx dx = 0, 

sin mx sin nx dx = 0, 

and whether m and n are distinct or not, 

if m 5*^ n, 

cos mx sin nx dx = 0. 

53 
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When m ^ n the first two integrals become 

^ cos^ nxdx T 

= 2t 

sin^ nx dx = tt. 

if n 0, 

if n = 0; 

Considering (3) as an equality and multiplying first by cos nx 

and integrating therefore gives formally 

f(x) cos 7LX dx = TTAn (n = 0, 1, 2, * * * ). 

Similarly, multiplying by sin nx and intcigrating gives 

f{x) sin nx dx = Trhn (n = 1, 2, • • * )• 

These are formulas (2) for the Fourier coefficients. 

Again, the corresponding orthonormal set of functions is 

1 cos x sir^ cos 2x sin 2x 

\/^ x/tt \/^ \/^ x/ir 

and the Fourier constants Cn of /(x) corresponding to theses 

functions are the integrals of the products, or th(' inner products, 

of these functions by /(x). So the Fourier series, with respect 

to this set, corresponding to/(x), is 

r T" r, t\ <50s nx' , , cos n. + 
nx 

+ 
sin nx' , , sin nxl 

where x' is used for the variable of integration. This can be 

written 

(4) /(x') dx'+~ j^cos nx J* /(x') cos nx'dx' 

+ sin nx J* /(x') sin nx' dx'j; 

which is the same as series (3) with the coefficients (2). 
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Formula (4) can be written in the more compact form 

(5) /(a:) ^ J'_ ^ fi^') dx' 

00 

+ ~ J COS [n(x' — a;)] dx\ 

Note that the constant term is th(‘ mean value of f{x) over the 

interval (—tt, t). 

27. Periodicity of the Function. Example, flvery term in 

the above seri(\s is periodic with the period 27r. Consequently, 

if the series convc^rges to f{x) in the interval (—tt, tt), it must 

converge to a periodic function with period 27r for all values of x. 

Thus it would repr(\senl f{x) for every finite value of x, provided 

-2;r -IT 0 IT lir 7>tt 47r 

Fig. 6. 

the definition of f{x) is extended to include all values of x by 

the periodicity relation 

fix + 2ir) ^ fix). 

Thus the Fourier series may conceivably serve either of two 

purposes: (a) to represent a function defined in the interval 

(—TT, tt), for valuers of x in that interval, or (6) to represent a 

periodic function, with period 27r, for all values of x. It clearly 

cannot represent a function for all values of x if that function is 

not periodic. 

The particular interval (—tt, tt) was introduced only as a 

matter of convenience. We shall soon see that it is easy to 

change to any other finite interval. 

It is not necessary that fix) be described by a single analytic 

expression, or that it be continuous, in order to determine the 

coefficients in its Fourier series. Of course the mere fact that 

the series can be written does not ensure its convergence or, if 

convergent, that its sum will be fix). Conditions for this are 

to be established in Sec. 33. 
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\^xample. Write the Fourier series corresponding to the func¬ 
tion/(x) defined in the interval —v < x < tt && follows: 

f(x) == 0 when —x < x ^ 0, 
= X when 0 ^ x < w. 

The graph of this function is indicated by the heavy lines in 
Fig* 6. The Fourier coefficients are 

do 

dn COS nx dx 

- ; /_'/<*> - Kr," + X' * ''*) 
if’" if"" == *" I f(^) COS nx dx = - I X 
X J~X ^ Jo 

if . • = —i COS nx + nx sm nx 
xn^ L 

/(x) sin nx dx 

X 

2' 

1 
= —5 (cos nx — 1), 

, 0 

-if 

= A U sm nx — nx cos nx 
i-^ 

X sin nx dx 

cos nx 
n 

The series is therefore 

(1) Six) 
(_i)« _ 1 (_i)» . 
-—-COS nx — -sm nx 

xn^ n 

T , ( . 2 \ 1 . „ 
= j + Ism a; — - cos a: 1 — ^ sm 2x 

(5“ 
sin 3x 

9x 
COS 3x sin 4x + 

If this converges to /(x) when —x < x < x, it also converges 
for all other values of x to the periodic function represented 
by the dotted lines in the figure. Note that this periodic func¬ 
tion is discontinuous at x = ±x, ±3x, • • • ; the value repre¬ 
sented by the series at such points will be found later. 

As an indication of the convergence of the series (1) to /(x) 
it is instructive to sum a few terms of the series by composition 
of ordinates. It will be found, for instance, that the graph of 
the ciuwe 

X , . 2 1*0 
y — + Bin X-cos X — K sill 2x 

4 X 2 
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is a wavy approximation to the curve shown in the figure. 
The addition of more terms from the series generally improves 
the approximation. 

''-^PROBLEMS 

Write the Fourier series corresponding to each of the following func^ 
tions defined for —ir < x <t. In a few of the problems, sum a fe^ 
terms of the series graphically; also show graphically the periodic func¬ 
tion which is represented by the series provided the series converges to 
^e given function. 

1. f{x) = X when —w < x Kir. (Also note the sum of the series 

when X = ±ir.) 

2. fix) = e* when —tt < x <t. 

Am. 2 sin nx. 

Am. —^ (cos nx — n sin na:) j. 

3. fix) = 1 when —tt < a; < 0; fix) = 2 when 0 < x < x. 

Am, 2 + 
1^1- (-1)" 

TT n sm nx. 

4. fix) = 0 when —x < x < 0; fix) — sin x when 0 < x < x. 

1.1. 2^ cos 271X 
4n2 - l‘ Am, - + o shi X- 

X 2 X 

28. Fourier Sine Series. Cosine Series. When fi—x) = 
—fix), fix) is called an odd function; its graph is symmetric with 
respect to the origin, and its integral from —x to x is zero. When 
/( —x) — fix), the function is even; its graph is symmetric to 
the axis of ordinates, and 

= 2 fix) dx. 

As examples, the functions x, x^, and x® sin kx are odd, while 
1, X*, cos kx, and x sin kx are even. 

Although most functions are neither even nor odd, every 
function can be w^ritten as the sum of an even and an odd one by 
means of the identity 

(1) m = i[/(x) +f(-x)]+mx) - f(-x)]. 
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When/(a:) is an odd function defined in (—tt, it), formulas (2), 
Sec. 26, for its Fourier coefficients become 

On = 0 (n = 0, 1, 2, • • • )> 

bn = - I /(j*) «in 7ix dx (n = 1, 2, • • • ). 
TT Jo 

Hence its Fourier series reduces to 

(2) f{x) ~ ^ sin 7ix J f(x^) sin nx' dx\ 

The series in (2) is known as the Fourier sine serie^s. It can 
clearly be written when f(x) is any function defined in the 
interval (0, tt), provided the intef>:rals representing; its coefficients 
exist. Furthermore, wIkui f(x) is defined onl^^ in the intc^rval 
(0, x), an odd function exists in (—x, x) which is identical with 
f(x) in (0, x). If that odd function is represcuited by its Fourier 
series, so is f(x) in (0, x). Thus the question of convergence 
of the sine series to f(x) in (0, x) depends direetlj" upon the 
conditions of convergence of the series in the last section. 

Similarly, w"hen/(:r) is an even function defint^d in the interval 
(—X, x), the coefficients in its Fourier series are 

2 f’" 
an = - I f(x) cos nxdx (a = 0, 1, 2, • • • ), 

TT Jo 
&n = 0 (a = 1, 2, • • • ); 

and the series becomes the Fourier cosine series 

(3) f{x) ~ ~ r f{x') dx' + - cos nx f f{x') cos nx' dx'. 
^ JO ’T ^ Jo 

When f(x) is defined only in (0, x), this series can be written, 
in general, and again the conditions under which it converges 
tof(x) will be known when the conditions are found for the more 
general series in the last section. 

For functions defined in the interval (0, x), then, both the sine 
series and the cosine series representations can be considered. 
As indicated earlier, these are the series corresponding to f(x) 

with respect to two different sets of functions, {\/2/x sin nx], 

and {l/\/x, •v/2/x cos nx] (n == 1, 2, • • • )» ^s-ch of which is 
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orthonormal in (0, tt). The series (2) and (3) can be written 
more easily from this viewpoint; but in the theory of these series 
it is important to consider them as special cases of the series in 
Sec. 26. 

Every term of tluj sine series is an odd function. So if the 
series converges when 0 < a: < -tt, it must (converge to an odd 
function with the period 2t for all values of x. 

Similarly, if the cosiiui series converges, it must represent an 
even periodic function with period 27r. 

(/>) the Fourier cosine s(‘ries, c()rres])onding to the function f{x), 

defined in the interval 0 < a: < tt as follows: 

f{x) = X when 0 g x < 

when ^ < X ^ TT, 

a. The coefficients in the sine seric^s are 

hn = ” I f(x) sin nx dx — ~ | x si 
TT Jo TT Jo 

sin nx dx 

~ (2 si 
nr 

sm — nir cos 
n7r\ 

2)’ 

so the series is 

m 
1 X'l / 2 . wir TT mt\ . 
- , Hin -5-cos ) sm nx 
JT ^ \n^ 2 11 2 f 

= i ^2 sin a; + ^ sin 2a; — | sin 3a: — j sin 4a; + • • • 

If this sine series converges to our function /(a:), it must also 
represent the odd periodic extension of /(x) shown in Fig, 7. 
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b. The coefficients in the cosine series are 

X cos nx dx 

ao = - \ f(x) da: = ~ f x dx — 
^ Jo " ' TT Jo 4 

2 f" N ^ 2 On = - I f{x) COS na: oa: = - I x cos n 
TT Jo T Jo 

1 / UT . , TIT 
= +nx8in-2 -2j. 

erefore 

, T , 1 / 2 nir , jr . njT 2 \ 

g + i [(»■ - 2) cos I - cos + Ij cos 

Therefore 

= g + - |^(ir — 2) cos a: — cos 2a: — cos 3a: + • • • 

Assuming its convergence to /(a:), this cosine series would 

converge for all x to the even periodic function shown in Fig. 8. 

^ PROBLEMS 

Find (a) the Fourier sine series, and (6) the Fourier cosine series, 
corresponding to each of the following functions defined in the interval 
(0, tt). Assuming that each series represents its function within that 
interval, show what function it represents outside the interval. 

1. f{x) == X when 0 < a: < t. (Compare Prob. 1, Sec. 27.) 
00 00 

i / V r. 'NT' / sin na: ir 4 '%ri cos (2n — l)a; 
Am. (») 2 ^ (W 2 - - ;2 car--!?- 

2. f{x) = sin X when 0 < x < ir. 

Am. (a) sin *; | ^ 2 
cos 2na: 
4n2 -- 1 

3. fix) = cos X when 0 < a: < t. 

i / V 8"^nsm 2na: 
Ana. (a) - ^ ’^^rZTi J (^) cos z. 
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4. f{x) = TT — X when 0 < x < ir. 

Am, (a) 2 
sin nx . TT , 4 ^ -ir~' 2 + 

cos (2n — l)x 
(2n - 1)2 

5. /(x) = 1 when 0 < x < 7r/2, /(x) = 0 when 7r/2 < x < tt. 

. / X 2 /, n7r\ sin nx 
Am. (“) 

2n — 1 

6. /(x) = X when 0 < x < t/2, f{x) == tt — x when 7r/2 < x < tt. 

8 '^1 cos {in — 2)x 

1 

7. fix) 

Am, (a) (Compare Sec. 14); (h) ^ ~ -- 
■(4n - 2)2 

c® when 0 < x < tt. 

Ans. (a) f 2 [I - (-l)“e']^ 
sm re® 

+ 1 

(b) 
c' — 1 2 / , N 1 cos nx 

8. Obtain series (4), Sec. 26, for any function in (—tt, tt) from series 
(2) and (3), Sec. 28, for odd and even functions, respectively, using 
identity (1), Sec. 28. 

30. Other Forms of Fourier Series. The Fourier series cor¬ 

responding to any function F(z), defined in the interval 

-TT < X < TT, 

IS 

^ J F{z^) dz' + ~ j^cos nz J F{z') cos nz' dz' 

+ sin nz J F{z') sin nx' dx'j. 

Substituting the new variable x and the new variable of inte¬ 

gration x' throughout, where 

X == 
TT 

and wriuing /(x) for F{irx/L), the above correspondence becomes 
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(1) /(x) ~ ^ /(x') dx' 

mrx ,v WKx! , , 
cos -y- I /(j ) cos —— ax 

L L 

. . nwx . ri'Kx! , ,1 
+ sin -j- I ) ’-jj-dx' . 

The series in (1) is the Fourier scries on the interval (—L, L) 

corresponding to any function f{x) defined in tliat interval. 

The same substitution (diangc^s the sine series to one cor¬ 

responding to a function f{x) defined in the interval (0, L), or an 

odd function in ( — L, L): 

(2) sin 
mrx^ 

nr dx\ 

It also changes the cosine s(‘ri(\s to the form 

(3) fix) 

corresponding to a function/(r) defined in the interval (0, L), or 

an even function in (—L, L). The substitution simply changes 

the unit of length on the x-axis. 

Of courses the forms (1) to (3) can also be writtcui by noting 

the orthogonality of the sine and cosine functions involved there 

in the interval (~-L, L) or (0, L). Let us obtain the series for 

any interval (a, b) in this manner. 

Upon integrating, it will be found that 

f2mirix\ f2nwix\ , , X \r^) 
= 6 — a if m = —n. 

That is, the set of complex functions 

|exp (” = 0, ±1, ±2, • • • ), 

is orthogonal on the interval (a, 6), in the Hermitian sense. 
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Assuming a series representation of f{x) in terms of those 
functions, 

f{^) = 2 (r^) (a < a: < b), 

the coefficients Cn can h(^ found formally by multiplying through 
by exp [ — 2imnx/(b — a)] and integrating. In view of the above 
orthogonality property, this gives 

j fix) oxp dx = (b - a)Cn,. 

Thus, th(^ exj)onential form of the Fourier series corresponding 
to a function f{x) defined in the interval (a, h) is 

(4) fix) /(x') exp 2n7^^■(x — X- O' dx* 

Grouping the terms for which the indices n differ only in 
sign, (4) takes the trigonometric form, 

(5) /(a-) r « Ja 
f(x') dx' 

cos dx’. 
b — a 

of the Fourier series cojrcsporuHng to f{x) in (a, fc). This can 
be obtained as well from the earlier form (5), Sec. 26, for the 
interval (—tt, tt) by making a linear substitution in the variables 
X and x'. 

These additional forms of the series, therefore, arise from the 
original form for the interval (—x, x) by changing the origin 
and the unit of length on the x-axis. SoTTls oiiTy necessary to 
develop the theory of convSrg^ice of the series for the interval 
(—X, x); the results will then be evident for the other forms. 

Form (5) contains the earlier forms as special cases. The 
series represents a periodic function with period (6 — a), if 
it converges. Therefore it can be considered as a possible 
expansion of either a function which is periodic with period 
(6 — a), or a function which is defined only in the interval (a, h). 
Both types of applications are important. In the second case, 
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however, there may be many Fourier series representations of 
the function; for the function can be defined at pleasure in 
any extension of the interval, and the new series in the extended 
interval may still represent its function. It would then represent 
the given function in (a, h). 

'"Problems 

1. Write formula (1) in the form corresponding to (3)-(2), Sec. 26; 
also in the form corresponding to (5), Sec. 26. 

2. Write formula (5) when a ~ 0, 6 = 2L, and compare it with for¬ 
mula (1). 

Write the Fourier series corresponding to each of the following 
functions. 

3. f{x) = — 1 when —L < oj < 0, f{x) = 1 when 0 < x < L, 

Ans 
4'^ _1_ 
TT 2n — i 

4. f{x) = |x| when — L < x < L; that is, fix) = — a; in (—L, 0) and 

(2n — l)irx 
v/ 

fix) ^ xin (0, L) Ans. 
L 4L ^ 1 

'* 2 7r2 ^ (2n - l)^ 

—f sin 

-X ir 

cos 

(2n — \)Trx 

L 

6. fix) = a;* when —L < x < L. 

, L2 (-!)»» mrx 
3 + ^ „2 COS J ■ 

1 

1 . 
cos nirx-sm nrx 

n )■ 

y 6. fix) ^ X + x^ when — 1 < a; < 1. 

1 ^ 
fix) = 0 when —2 < x < 1, fix) == 1 when 1 < x < 2. 

, 1 1 if. nw mrx , ( mr\ . nrxl 
Ans. 4 ~ ijj: ^ sill ^2 \ — cos I sin -y* • 

J 8. fix) =* 1 when 0 < a; < 1, fix) — 2 when 1 < a; < 3, and 
fix + 3) = fix) for all x. 

2nvxl 
Au,. l-l'Sif 3 T n 

2n?r 2nirx , , . 
sin cos -h I 1 2nA (^l-co8-^jsm 3 j 

9. fix) = e* when 0 < x <1, using the exponential form of the 

Fourier series. 

31. Sectionally Continuous Functions. At this point let us 
introduce some special classes of functions, the use of which will 
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keep the theory which is to follow on a fairly elementary level. 
These classes will include most of the functions which arise 
in the applications; but they are rather old-fashioned classes. 
As we shall point out from time to time, our principal results can 
be obtained for a considerably broader class of functions by 
using somewhat more advanced methods of modem analysis. 

A function is sectionally continuous, or piecewise continuous, in 
a finite interval if that interval can be subdivided into a finite 
number of intervals in each of which the function is continuous 
and has finite limits as the variable approaches either end point 
from the interior. Any discontinuities of such a function are 
of the type known as ordinary points of discontinuity. Every 
such function is bounded and integrable over the interval, its 
integral being the sum of a finite number of integrals of continu¬ 
ous functions. 

The symbol /(xo + 0) denotes the limit of f{x) as x approaches 
xq from the right. For /(xo — 0) the approach is from the left. 
That is, if X is positive, 

Kxo + 0) = lim/(xo + X), 
X—+0 

— 0) = lim/(xo — X). 
X-40 

We define the right-hand derivative, or derivative from the right, 

of f{x) at xo as the following limit: 

liin/(^" + -/(^o + 0) 
x-»o X 

where X is positive, provided of course that this limit exists. 
Similarly, the left-hand derivative is 

lim /(^o - 0) - /(a^o - 
x->o X 

where X is again a positive variable. * 
It follows at once that if f{x) has an ordinary derivative 

/'(x) at Xo, then its derivatives from the right and left both exist 
there and have the common value /'(^Po). But a function may 
have one-sided derivatives without having an ordinary derivative. 
For example, if 

/(x) — x* when x g 0, 
= sin X when x ^ 0, 
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then /'(O) does not exist, but at the point x = 0 the derivatives 
from the right and left have the values 1 and 0, respectively. 
Again, for the step function 

f(x) = 0 when a: < 0, 
= 1 when a: > 0, 

/'(O) does not exist, but its one-sided derivatives have the common 
value zero. 

All the functions described in the problems and examples 
in this book are scctionally continuous and have one-sided 
derivatives. 

If two functions f^(x) and f2(x) have derivatives from the 
right at a point x = Xoy so does their product. For the right- 
hand derivative of their product is the limit, as X approaches 
zero through positive values, of the ratio 

+ X)/2(3^0 + X) — fi(Xo -f- 0)/2(^0 + 0) 
X 

This can be written 

Mxo + X) + ^) 

+ f2(Xo + 0) /i(3-o + X) -~/i(xo + 0) 
X 

The limit of /i(jo + X) exists, and the limits of the two frac¬ 
tions exist, since they represent the right-hand derivative's of 
/2(x) and fi(x) at the point xo. Hence the limit of the ratio 
representing the right-hand derivative of the product/i/2 exists. 

In the same manner it can be seen that the left-hand derivative 
of the product exists at each point where the two factors have 
left-hand derivatives. 

One further propertj^ will be useful, in connection with our 
theorem on the differentiation of Fourier series (Chap. V). 

Let fix) be a function which is continuous in an interval 
a ^ x ^ b, and whose derivative fix) exists and is continuous 
at all interior points of that interval. Also let the limits/'(a + 0) 
and fib — 0) exist. Then the right-hand derivative of fix) 
exists at a; = a, and the left-hand derivative exists at x = 6, and 
these have the values/'(a + 0) and/'(6 — 0), respectively. 
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Since f(x) is continuous, and differentiable when a < x <hy 

the law of the mean applies. So, for every X (0 < X < 6 — a), 
a number ^ (0 < ^ < 1) exists such that 

/(g + X) — /(g) 
X 

= /'(a + ^X). 

Since /'(g + 0) exists, the limit, as X approaches zero, of the 
function on the right exists and has that same value. The 
function on the left must have the same limit; that is, the deriva¬ 
tive from the right at x = g has the value/'(g + 0). /Similarly for the derivative from the left at a; = 6. 

It follows at once that if f(x) and f{x) are sectionally continu¬ 

ous ^ the one-sided derivatives of f{x) exist at every 'point. 

32. Preliminary Theory. In order to establish conditions 
under which a Fourier series (5onv(jrges to its function, a few 
preliminary theorems, or lemmas, on limits of trigonometric 
integrals are useful. The integrals involved in these lemmas 
ai’e known as Diri(^hlet^s integrals. 

The lemmas luxe will be so formulated that they can also be 
used in the theory of the Fourica* integral (Chap. V). There 
it is essential that the paramc'ter k used in the first lemma be 
permitted to vary continuously rather than just through the 
positive integers. In the latter case (fc = n) the limit in Lemma 1 
would follow^ quite easily from equation (6), Sec. 21. 

Lemma 1. If F(x) is sectionally continuous in the interval 

a ^ x ^ then 

(1) lim F{x) sin kx dx = 0. 
00 

Let the interval (g, h) be divided into a finite number of 
parts in each of which F{x) is continuous, and k^t (gr, h) represent 
any one of those parts. Then, if it is shown that 

(2) lim r* F{x) sin kx dx = 0, 
/c—♦ 00 Jo 

the lemma will be proved. 
Divide the interval (g^ h) into r equal parts by the points 

Xq = gr, xi, X2j ' ' ' , Xr = h. Then the integral in equation (2) 

can be written 

sin kx dx, 
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or 

X” ' kxdx\- 

Carrying out the first integration and using the fact that the 
absolute value of an integral is not greater than the integral 
of the absolute value of the integrand, we find that 

(3) J F(x) sin kx dx *2{| 
»-0 1 

Fix.) COS kxi— cos kxi.^i 

k 

I[F(a:) - F(xi)] sin kx\ dx\ 

The oscillation of F(x) in the interval (xi, Xi^i) is the difference 
between the greatest and least values of the function in that 
interval. Let i?r be the greatest oscillation of F(x) in any of the r 

intervals (x<, Xi^i)^ so that lF(x) — F{xi)\ g Tjr in each interval. 
Also let M be the greatest value of \F{x)\ in the interval (gr, h). 
Then according to (3), 

X* “ sin kx dx 

= 2Af ^ + Vrih - g). 

Now let r be selected as the largest integer which does not 

exceed y/k. Then 
r 2M 

and this approaches zero as k tends to infinity. But r tends to 
infinity with fc, and so rir approaches zero too, because the 
oscillation of a continuous function approaches zero uniformly 
in all intervals of length {h — g)/r r becomes infinite. Hence 

lim j jT* F{x) sin fcx dx | = 0; 

so relation (2) is true, and the lemma is established. 
Lemma 2. If F(x) is sectionaUy continuous in the interval 

0 ^ x ^ b and has a rightrhand derivative at x = 0, then 
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(4) lim = |i?’(+0). 
k^„Jo X 2 

The integral in (4) can be written as the sum 

(5) fVc+O) + rg(?) - sinfeardx. 
Jo X Jo X 

Consider the first of th(\se integrals. We can write 

lim rV(+0) dx = F(+0) lim = ^FC+O), 
k-* 00 Jo X k—*«Jo y* It 

since 

The function [F(x) — F'(+0)]/x in the second integral in (5) 
is sectionally continuous in the interval (0, h) since F{x) itself 
is, and since 

T-^+0 X 

exists because Fix) has a right-hand derivative at x = 0. Lemma 
1 therefore applies to the second integral in (5), giving 

fw- 

k—* 00 Jo X 

The limit of expression (5) is therefore F(+0)7r/2; hence (4) is 
true and the lemma is proved. 

Lemma 3. If F(x) is sectionally continuous in the interval 

(a, h) and has derivatives from the right and left at a point x = Xo, 
where a < Xo < 6, then 

(6) lim f" F{x) — dx = 5 [F(xo + 0) + F(xo - 0)]. 
00 Ja X — Xo ^ 

The integral in (6) can be written as the sum 

pj.(x)»»^^(L-..l»)dx+ - y-^dx. 
Jc X Xo Jxo X Xo 

Substituting x' = Xo — x in the first of these integrals, and 
x" s= a; — Xo in the second, we can write their sum as 
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,, sin kx' , , 
x') —-r~ dx' + 

~ aro 

Jo ^ 
F{x" + X,) 

sin kx'^ 
dx' 

Lemma 2 applies to each of the integrals here, and since 

lim F{x^ — x') = F{x^ — 0), 
af'-»+0 

and 
lim F{x" + :ro) = F{xo + 0), 

fO 

the limit of their sum is [F(xo — 0) + F{xo + 0)]7r/2. State¬ 
ment (6) in the lemma is therefore Iriu'. 

33. A Fourier Theorem. A theorem which gives conditions 
under which a Fourier series corresponding to a function con¬ 
verges to that function is called a Fourier theorem. Oiu' such 
theorem will now be established. The conditions are only 
sufficient for the representation; necessary and sufficient con¬ 
ditions are not known. 

It will bo convenient to considcu' the function as periodic with 
period 27r. 

Theorem 1. Letf(x) satisfy these conditions: (a) f(x + 27r) = /(.r) 
for all values of x, and (6) f{x) is sectionally continuoiis in the 

interval (—tt, tt). Then the Foiirier series 

(1) iao + ^ (an cos nx + K sin nx)j 

where 

1 C 
“ I f(^) cos nx dx (n = 0, 1, 2, • • • ), 

(2) 
1 C"" 

= “ I f(x) sin nx dx {n = 1, 2, • • • ), 
^ J-T 

converges to the value 

mx + 0) + fix ^ 0)] 
at every point where f(x) has a right- and left-hand dedMtiv.c, .. 
.Condition (Jb) ensures the existence of the Fourier coefficients 
defined by equations (2), since the products fix) cos nx and 
fix) sin nx are continuous by segments and therefore integrable. 

It was pointed out in Sec. 26 that series (1) with coefficients 
(2) can be put in the form 
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2x 
fix') dx' + - 

TT 
COS [m(x/ ~ x)] dx'. 

The sum Snix) of the first n + 1 terms of the series can there¬ 
fore be written 

s„(x) = i 1^ + 2 ~ dx’. 

Applying; Lagralige’s trigonometric identity (Sec. 16) to the 
sum of cosines here, we have 

-If- fU') 
sin [(n 4- ^)(x' - j)] 

2 sin [^(:r' — x)] 
dx' 

The integrand here is a periodic function of x' with period 27r; 
hence its integral over every interval of kiugth 27r is the same. 
Let us integrate over the interval (a, a + 2t), where th(^ number 
a has hi)on sek^ctc^d so that th(^ point x is in the intc'rior of that 
interval; that is, a < x < a 2Tr, 

Introducing the factor {x' — a*) in both the numerator and 
the denominator of the integrand, w(^ have 

1 
(3) ' F(x') 

^ Ja 
where 

A sin [in + i){x' - t)] 
X — X 

X — X 

Now 

(4) Urn F{x') = lim /(x') lim » ,.1i = li^n fix') 
x'-~*x x'—*x ^ 

Moreover, F{x') is written as the product of two functions 
each of which is sectionally continuous in every interval and 
has a derivative from the right and left at the point x' = x. 

This was assumed in the theorem for th(^ first factor fix'), 

and it is easily verified for the second. Therefore, F{x') is 
sectionally continuous, and, according to Sec. 31, its derivatives 
from the right and left exist at x' — x. 

Therefore F{x') satisfies the conditions of Lemma 3 in which 
xo = a: and A; == n + Applying that lemma to the integral 
in equation (3), we have 
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lim S„(x) = i[F(a; + 0) + F{x - 0)]. 
n—+ 00 

But according to equation (4), 

F(x + 0) = /(x + 0), F(x - 0) = /(x - 0), 

and therefore 
lim Sn(x) = ^[/(x + 0) +/(x - 0)]. 
n—► 00 

This is the same as the statement in the theorem. 
34. Discussion of the Theorem. At any point where the 

periodic function /(j) is continuous, 

/(^ + 0) =/(x~0) =/(x); 

hence at such a point the mean value of the limits of the function, 
from the right and left, is the value' of the function. If the 
one-sided derivatives of /(x) exist there, the Fourier series 
converges to/(r). 

Suppose/(x) is defined only in the int/erval (—tt, tt). Then 
it is the periodic extension of this function which is referred 
to in Theorem 1. Consequently, if /(x) is sectionally continuous, 
its Fourier series converges to the value 

i[/(^ + 0) +/(x - 0)] 

at each interior point where both one-sided derivativ(\s exist. 
But ai both the end points x = ±t the series converges to the value 

- 0) +/(-7r + 0)], 

provided f(x) has a right-hand derivative at x = —tt and a 
left-hand derivative at x = tr, because that is the mean value 
of the periodic function at those points. 

It follows that if the series is to converge to /(—ir +0)when 
X = —IT, or to /(tt — 0) when x = x, it is necessary that the 
function have equal limiting values at the end points of its 
interval; that is, 

/(-X + 0) = /(x -* 0). 

It was pointed out that the other forms of Fourier series 
(Sec. 30) arise from the form used in Theorem 1 by changing 
the unit or the origin of the variable x. The sine series and 
cosine series are special cases arising when f(x) is an odd or an 
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even function. Consequently the Fourier theorem applies to 
these series at once with the quite obvious modifications neces¬ 
sary because of the changes in the interval. 

For the series corresponding to the interval (—L, L), for 
example, the theorem becomes 

Corollary 1. Let f(x + 2L) = f(x) for all x, and let f(x) be 

sectionally continuous in the interval L), Then at any point 

where f(x) has a right- and left-hand derivative^ it is true that 

(1) luix + 0) + fix - 0)] 

where 

a. 

bn 

1 . 
= 2«o + 

1 j_i ^ 

2 sin ^ da: 

UTX , , . riTrxX 
cos -j-—[- On sm h 

(n = 0, 1, 2, • • ■ ), 

(n = 1, 2, • • • )• 

It should be observed here, as well as in Theorem 1, that the 
existence of the one-sided derivatives is not required at all points 

of the interval, but only at those points where representation (1) 

is used. The function in the interval (—L, L), for instance, 
does not have one-sided derivatives at x = 0. But, according 
to our expansion theorem, the Fourier series corresponding to 

this function must converge to at all points for which 
—L ^ X < 0 or 0 < X ^ L. Ata; = 0 the convergence is not 
ensured by our theorem. 

Again, if f{x) is defined in the interval (0, L) and is sectionally 
continuous there, its Fourier sine series 

(2) 2 

where 

b„ = ^ fix) sin ^dx (n = 1, 2, • • • ). 

converges to i[f{x + 0) -f- f{x — 0)] at each point x (0 < x < L) 

where f{x) has one-sided derivatives. Series (2) obviously 
always converges to zero when x = 0 and when x = L. 
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Under the same conditions S{x) is represented by its Fourier 

cosine series in the interval (0, L): 

(3) ^ [fix + 0) + fix - 0)] = i ao + 2 ^ 

(0 < X < L)y 
where 

an = ^ f{x) cos dx (n = 0, 1, 2, • • • ). 

But in view of the even periodic function represented by the cosine 
series, this series converges to/(+0) at the point x = 0 when the 
derivative from the right exists at that point. It converges to 
/(L — 0) at the poiat x — L when/(a:) has a left-hand derivative 
at that point. 

Broader conditions than these, under which the Fourier series 
coiw^rges to its function, will be stated in the next chapter. 

36. The Orthonormal Trigonometric Functions. Let us denote 
by Al the aggregate or space of all functions defined in the 
interval (—L, L) which arc sectionall^^ continuous there and 
which possess right- and left-hand derivatives at all points, 
except the end points, of the interval. At tlu^ end points let 
th(i derivatives from the interior exist. Also let every function 
of the class Al be defined at each point x of discontinuity to 

have the value +/(^ ^)]y l^be end points 
x = ± L to have the value ^[/(L — 0) -b/(—L + 0)]. 

Then, according to Corollary 1, for every function/(x) belong¬ 
ing to the class Al there is a series (the Fourier series) of the 
functions sin (nirxfL), cos (nwx/L) which converges in the ordi¬ 
nary sense to f(x). This can be stated as follows in the termi¬ 
nology of Chap. III. 

Corollary 2. In the function space Al^ the orthonormal set 

consisting of all the functions 

11 nwx 1 . mrx . 
1, 2, ), 

is closed with respect to ordinary convergence. It is also complete. 

The proof of completeness is left for the problems. 
Similar statements can be made for functions defined in the 

interval (0, L), with respect to either the set of sine functions 
or the set ox cosine functions. 
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Note that the last corollary is a statement about functions 
whose one-sided derivatives exist at all points of the inteiwal, a 
condition which is not used in Corollary 1. 

Let us observe finally how the conditions of our Fourier 
theorem apply to our examples. The function in the example 
treated in Sec. 27; namely, 

f{x) = 0 when — tt < a: ^ 0, 
= X when 0 ^ a: < tt, 

is continuous in the interval (—tt, tt). It has one-sided deriva¬ 
tives at all points. Series (1), Sec. 27, therefore converges to 
f{x) at all points in the interval —tt < x < tt, according to 
Theorem 1. At the points x — ±7r it conv^erges to the value 
7r/2, since/(—TT + 0) = 0 and /(tt — 0) = tt. I'he graph of the 
periodic function shown there (Fig. 6) would be a complete 
representation of the function represented by the series if the 
points (±'7r, 7r/2), (±37r, 7r/2), • • • wer(‘ inserted. 

In Sec. 29 the cosine and sine series were found for the function 

fix) == x when 0 g 

— 0 when ~ < a; ^ tt. 

This function is sectionally continuous in the interval (0, tt), 

and its one-sided derivatives (‘xist there. The sine series therc'- 
fore converg(\s to /(x) when 0 g a* ^ tt, except at x = 7r/2, 

where it converges to 7r/4. At a:^ = 0 and x = tt it converges to 
/(+0) and /(tt — 0), since these are both zero. The cosine 
series for this function converges in just the same manner in the 
interval (0, tt). 

PROBLEMS 

1. Show that each of the fimctions described in Probs. 1 to 4, Sec. 27, 
satisfies the conclitions under which the series found there converges to 

the function, except possibly at certain points. What is the sum of the 

series at those points? 
Ans. Prob. 1: x == ±7r; sum = 0; 

l^ob. 2: X == ±ir; sum = coshTr; 
Prob. 3: X = 0, ±7r; sum = J. 

2. Solve Prob. 1 above for each of the functions in Probs. 1 to 7, 

Sec. 29, 
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3. Solve Prob. 1 above for each of the functions in Probs. 3 to 9, 
Secs 30. 

If f{x) = 0 when — 1 <x <0, f{x) = cos irx when 0 < a; 
/(O) = I, /(I) = — and/(a; + 2) = f{x) for all a;, show that 

< 1, 

f{x) = ^ cos Tra: 4* ~ ‘4^2“ f ^riTra; 
'i 

for all values of x. 

6. If f{x) = r/4 — a; when 0 ^ a; ^ c/2, f{x) — x — 3c/4 when 
c/2 ^ ^ c, show that 

(2« - 1)* 
(An “ 2)7ra; -, 

c 

for all a; in the interval 0 ^ a; ^ c. 
6. If f(x) = x^ when —1 < a; ^ 0, f(x) = 0 when 0 ^ a; < 1, 

/(I) = 5, and f{x + 2) == /(a;) for all a:, find its Fourier series and show 
that it converges to f(x) for all values of x, 

7. Prove that the orthonormal set of functions in Corollary 2 is 
complete in the function space Al. (Compare Sec. 22; show that any 
function in Al which is orthogonal to every member of the set must be 
identically zero.) 

8. State and prove the corollary, corresponding to Corollary 2, for 
functions defined in the interval (0, L), with respect to the orthonormal 

set of functions 1 V^/L sin (nwx/L)). 
9. Show that the series 

^ f>n (^» I j] ^ 

of squares of the coefficients in the Fourier sine series converges when¬ 
ever/(a?) is bounded and integrable on the interval (0, L), and that 

[See formula (5), Sec. 21.] 
10. Show that the series 

/(x) cos 

involving the squares of the coefficients in the Fourier cosine series, 



Ssc. 35] FOURIER SERIES 77 

converges whenever f{x) is bounded and integrabie in the interval 
(0, L), and that 

ao _ 

^ oj + ^ oj S I \f(x)Y dx. 

(Compare Prob. 9.) 
11. If f(x) is bounded and integrabie in the interval (—L, L), show 

that the series 
00 DO 

where a» and 6« are the coefficients in Fourier series (1), Sec. 34, con¬ 
verges to a sum not greater than 

I 

(Compare Prob. 9.) 
12. For every function which is bounded and integrabie in the interval 

(—L, L), the Fourier coefficients a„ and bn in series (1), Sec. 34, approach 
zero as n tends to infinity. Show how^ this follows from Prob. 11. 
When the function is sectionally continuous, show that the result for bn 
follows also from Lemma 1. 

13. The coefficients an and 5„, in Corollary 1, are those for which the 
sum of any fixed finite number of terms of the series written there will be 
the best approximation in the mean to /(x), in the interval (—L, L). 
Show how this follows as a special case of Theorem 1, Chap. III. 

14. Find the values of Ai^ A2j and A^ such that the function 

. , TTX ^ . . 2tx , . . Sttx 
y = Ai sin Y + -^2 sm “2“ + A^ sin -y 

will be the best approximation in the mean to the function f{x) = 1, 
over the interval (0, 2) (compare Prob. 13). Also draw the graph of 
using the coefficients found, and compare it to the graph of f(x). 

Arts, Ax = 4/7r, A^ = 0, As = 4/(37r). 
15. Show that it follows from the expansion in Prob. 5, Sec. 30, by 

setting a; = L, that 

Similarly, show that 



CHAPTER V 

FURTHER PROPERTIES OF FOURIER SERIES; 
FOURIER INTEGRALS 

36. Differentiation of Fourier Series. We have scon that the 
Fourier series representation of the function f{x) = x is valid 
in the interval —tt < x < it; thus (Prob. 1, Sec. 29) 

X = 2(sin X — ^ sin 2:r + i sin 3x — * * * ) 

when —TT < X < TT, But the series obtained by diffenuitiatinp; 
this series term by term, namely, 

2(cos X — cos 2.r + cos ^x — * * * )> 

does not converge to the derivative of x in the interval (—tt, tt). 

The term cos nx does not approa(^h zero as 7i tends to infinity; 
hence the series does not converge. 

For all values of x, the above series for the function f(x) = x 

represents a periodic function with discontinuities at the points 
a: = ±7r, ±37r, • • • . We shall see that the continuity of the 
periodic function is an important condition for the t(u*mwise 
differentiation of a Fourier series. A complete set of sufficituit 
conditions can be stated as follows: 

Theorem 1. Lei f{x) be a continuous function in the interval 

—-TT ^ a: ^ TT such that /(tt) = /(—tt), and lei its derivative f(x) 

be sectionally continuous in that interval. Then the one-sidexi 

derivatives of f{x) exist (Sec. 31), and hence f{x) is represented by 

its Fourier series 

00 

0) /(^) = ^ (an cos nx + bn sin nx) (—tt g a: g tt), 

where 

if if 
(2) On == - I f{x) cos nx dx, 6n = ~ I f{x) sin nx dx, 

J-TT 

and at each point where f'{x) has a derivative that series can be 
differentiated termwise; that iSf 

78 
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(3) f{x) = ni'-an sin nx + bn cos nx) (—tt < x < t). 

Since f'(x) satisfies the conditions of our Fourier theorem, it 
is represented by its Fourier scries at ea(;h point where its deriva¬ 
tive/"(x) exists. At such a point/'(a*) is continuous, so that 

f(x) = -^a'o + + K ^2^), 

where 

< = i r f(x) cos nx dx, ft' = 1 r /' (x) sin na* da*. 

These integrals can be integrated b^^^ parts, since f(x) is con¬ 
tinuous and/'(^) is sectionally continuous. Therefore 

= ~ /(x) cos nx T += r J-TT ^ J- 
f(x) sin nx dx 

(6) + 

This reduces to nhn because of our condition that/(7r) = /(—?r). 
Furthermore, aj = Likewise, 

ft' = ~ sin na:j J 

= —nan- 

Substituting these values of a' and ft' into equation (4), we 
have 

f(x) = 2) cos nx — 7?aZn sin nx), 
1 

This is the equation (3) which was obtained by differentiating 
(1) term by term; hence the theorem is proved. 

It is important to observe that, according to equation (6), the 

Fourier series for f{x) does not reduce to series (3) obtained by 

termwise differentiation if the function fails to satisfy the condition 

fw 
This condition ensures the continuity of the periodic extension 
of f(x) at the points x = ±t, and therefore at all points, in view 
of the continuity of f{x) in the interval (—tt, tt). 
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At a point where f{x) has a derivative from the right and 
from the left, but no ordinary derivative, we can easily see 
from the above proof that termwise differentiation is still valid 
in the sense that 

ee 

+ 0) + f{x — 0)] = ^n{ — an sin nx + hn cos nx). 

Since this is true for the periodic extension of f{x), the derived 
series converges at the points x — ±7r to the value 

iff + 0) +/'(7r - 0)] 

if /'(x) has a right-hand derivative at — x and a left-hand deriva¬ 
tive at X. We are assuming the continuity of the periodic 
extension of /(x) at all points, of course. 

Theorem 1 applies with the usual changes to the other forms 
of Fourier series. 

PROBLEMS 

1. Show that the series in Pro]). 4, Sec. 27, can be differentiated term 
by term, and state what function is represented by the derived series. 
(Compare Prob. 4, Sec. 3o.) 

2. In the problems, Sec. 29, obtain tlie scries in Prob. 3^ by differen¬ 
tiating the series in Prob. 2h. Note that this is permissible according 
to Theorem 1; but we cannot reverse the process and obtain the latter 
series by differentiating the former. 

3. In Probs. 1 to 7, Sec. 29, which of the series can be differentiated 
termwise? Ans, 1(6); 2(a), (6); 3(6); 4(6); 6(a), (6); 7(6). 

4. Show that in Probs. 4 and 5, Sec;. 30, the series are termwise 
differentiable. 

6. Show that the Fourier coefficients a„ and 6n for the function/(x), 
described in the first sentence of Theorem 1, satisfy the relations 

lim nan = 0, lim n6„ = 0. 
n—» 00 n—* 00 

37. Integration of Fourier Series. Termwise integration of 
a Fourier series is possible under much more general conditions 
than those for differentiation. This is to be expected, because 
an integration introduces a factor n in the denominator of the 
general term. It will be shown in the following theorem that 
it is not even essential that the original series converge to its 
function, in order that the integrated series converge to the 
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integral of the function. Of course, the integrated series is not a 
Fourier series if ao 0, for it contains a term aox/2. 

Theorem 2. Lei f(x) he sectionally continuous in the interval 

(—TT, ir). Then whether the Fourier series corresponding to fix), 

CO 

(1) fix) ^ 4* ^ (un cos nx + hn sin nx), 

converges or not, the following equality is true: 

(2) fix) dx = ^(x + it) 

* 1 
+ X “ [^n sin nx ~ hn (cos nx — cos nw)], 

when —TT^x^TT. The latter series is obtained by integrating 

the former one term by term. 

Since fix) is sectionally continuous, the function Fix), where 

(3) Fix) = 

is continuous; mon^over 

F'ix) = fix) - iao, 

except at points where fix) is discontinuous, and even there 
Fix) has right- and left-iiand d('rivativ(^s. Also, 

f (tt) = /(^) ■“ = aoTT — -J-aoTT = iOoT, 

and Fi—rr) = ^aow; hence Fiw) = Fi—ir). According to our 
Fourier theorem then, for all x in the interval —tt g ^ tt, it is 

true that 
00 

F(x) = ^ (A„ cos nx + B„ sin nx), 

where 

An \ Fix) cos nx dx, Bn = - \ Fix) sin nx dx. 
ir J_, x 

Since Fix) is continuous and F’ix) is sectionally continuous, 
the integrals for An and JS„ can be integrated by parts. Thus if 

n 0, 
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An — — \ F{x) sill nx\-^ I F'ix) sin nx dx 

= -1]= -I 
Similarly, Bn = ^n/n; henco 

(4) F(x) = 2 Ao + ~ (an sin nx — K cos nx). 

1 

But since Fiir) = ^aoTr, 

“ aoTT = 2 "^0 — - ?^n cos nir. 

Substituting the value of .to givim here in equation (4), 

F(x) = [a» sin nx — /;»(cos nx — cos nTr)]. 

iT 

In view of eciuation (3), equation (2) follows at once. 
The theorem can be written for the integral from Xo to x, when 

—IT g Xo ^ TT and —tt ^ x ^ tt, by noting that 

Hfix) dx = P Six) dx ~ p” fix) dx. 
Jxa J — 'K J — tt 

The other forms of Fourier serk^s can be integrated termwise 
under like conditions, of course. 

Still more general conditions under which the Fourier s(‘ries 
can be integrated term by t(?rm will be noted in Sec. 39. 

PROBLEMS 

1. By integrating the expansion found in Prob. 4, Sec. 27, from —tt 
to a;, obtain the expansion 

Fix) 

oo 

a; . 1 1 1 1 sin 2nx 
= + 2 - 2 ^ ^ n Tn^V 

where —tt ^ a; ^ tt, andF(^) = Owhen —tt ^ o; ^ 0, F(a;) 1 — cos a; 
when 0 £ X ^ T. 

2. Integrate the series obtained in Probs. 1 and 3, Sec. 27, from 0 to x, 
and describe the functions represented by the new series. 

38. Uniform Convergence. If An and 5^ (n = 1, 2, • • • , m) 
represent any real numbers, the equation 
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£ (A„x + X ^« + 2x X A„Bn + X = 0 
1 111 

cannot have distinct real roots. In fact, if it has a real root 
X = Xqj then AnXo + Bn — 0 for all n, and the ratio BJAn must 
be independent of n. The discriminant of the quadratic equa¬ 
tion in X is therefore negative or zero; that is, 

(m m m 

^A„bA ^^Al'^Bl 

With the help of this relation, known as Cauchy^s inequality^ 
we can readily show that the convergciK^e of the Fourier series 
to the function f{x) described in Theorem 1 is absolute and 
uniform. 

Broader conditions for uniform convergence will be cited in 
the next section. But it should be noted that a Fourier series 
cannot converge uniformly in any interval containing a dis¬ 
continuity of its function, since a uniformly convergent series of 
continuous functions always converges to a continuous function. 

Theorem 3. Let f{x) be a continuous function in the interval 
—TT ^ X S TT such that f(ir) =/(—tt), and let its derivative f'(x) 
be sectionally continuous in that interval. Then the Fourier series 
for the function f(x) converges absolutely and uniformly in the 
interval (—tt, tt). 

The theorem will be proven! if we can show that for each 
positive number t an integer viq, independent of x, can be found 
such that 

m' 

^ \an cos nx + bn sin nx\ < e 
m 

when m > nh, for all m' > m. The term between the absolute 
value signs represents, of course, the general term in the Fourier 
series corresponding tof{x). Since it can be written as 

\/a2 + 6* cos (nx — 0) = arctan 

it is clear that 

lon cos nx + bn sin nx\ ^ y/alA- bl; 
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so it will suffice to show that 

(2) ^ Von + h* < e (w > Too, m' > m). 
m 

In the proof of Theorem 1 we found that 

(3) ~ = tl(Xn f 

where and are the Fourier coefficients of the function/'(x). 
Therefore 

m' 

2 V'al + K = 2 ^ VW + ib'J\ 
m m 

Applying inequality (1) to the Last sum, we have 

(4) 2 = {2^2 ■ 
w ^ m m ■' 

BesseLs inequality (4), See. 21, applies to the bounded inte- 
grable function /'(x), with respect to the orthonormal set of 
functions 

(11 1 • ) 
j — f — cos nx, —7= sm nx V 
(v27r VTT VT j 

(n == 1, 2, • • • ), 

giving the relation 

2 ^ i 

for every integer m'. Let M denote the member on the right 
here; then the second sum on the right of inequality (4) does not 
exceed the number M, 

Now the series 

converges; so for any positive number e^/M an integer vto can 

be found such that 
m' ^ » 

2^<b- 
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when m > mo, for all m' > m; and mo is clearly independent of 
X, For this choice of mo, the right-hand member of inequality (4) 
is less than €, so that inequality (2) is establislu^d and the theorem 
is proved. 

But in view of inequality (2) we have also shown that, under 
the conditions in Theorem 3, the series 

00 

^ + K 

always converges. Consequently each of the following series 
converges: 

It is of interest to note that th(^ Parseval relation (3), Sec. 22, 
applies to the class of functions dcNscrilx^d in Theorem 3 with 
respect to the orlhonorinal set of trigonometric functions (5). 
This follows by multiplying tlu* Fourier series expansion of f(x) 
by /(x), thus leaving it still uniformly con^x>rgent, and integrat¬ 
ing, to obtain 

UixW dx = in, f^Jix) dx + 

“f" hn /:. f{x) sin nx da; j. 

In view of the definitions of On and f>n, this can be written 

(6) fl^ \f{x)]^ rfx = T [iag + X (al + 6D]• 

This is the Parse val relation. 

PROBLEM 

Show that if a class of functions satisfies the Parseval relation, the 
orthonornial set is closed with respect to the limit in the mean (Sec. 22). 
Hence deduce that set (5) is closed in that sense, for the class of all 
functions satisfying the conditions in Theorem 3. 

39. Concerning More General Conditions. The theory of 
Fourier series developed above will be suflBcient for our purposes. 
Let us note at this point, however, a few of the many more 
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general results which are known. These will be stated without 
proof, since our purpose is only to inform the reader of the 
existence of such theorems. Tlmy cannot be stated in their 
most general form, usually, without introducing Lebesgue 
integrals in place of the Riemann integrals considered here. 

a. Fourier Theorem. Let f(x) denote here a periodic func¬ 

tion with period 27r, and let f(x) dx exist. If the integral is 

improper, let it be absolutel.y convergent. Then the Fourier 
series corresponding to fix) converges to the value 

i[/(^ + 0) + fix - 0)] 

at each point x which is interior to an interval in whi(‘ii fix) is of 
bounded variation.* 

h. Uniform Convergence. If the periodic func tion/(a:) described 
under (a) is continuous and of bounded variation in some interval 
(a, h) then its Fourier seric^s convergers to fix) uniformly in any 
interval interior to (a, 6).t 

We have noted earlier that the partial sums Snix) of a Fourier 
series cannot approach the func^tion fix) uniformly over any 
interval containing a point of discontinuity of fix). The nature 
of the deviation of Sni^c) from fix) in such an interval is known 
as the Gibbs phenomenon. % 

c. Integration. The Parseval relation 

(1) \ j ^ = I a? + ^ (a* + hi), 

is true whenever fix) is bounded and integrable in the interval 
(—TT, tt). § That is, the series of squares of the* Fourier coefficients 
of fix) on the right of equation (1) converges to the number on 
the left. 

Now let an and ^n be the Fourier coefficic^nts of a function 
^(x), bounded and integrable in the interval (-"tt, tt). Then 
(Un + an) and (6n + ^n) are the coefficients of the function 
if + ip)f and according to equation (1) we have 

* See first the proof in Ref. 2 at the end of this chapter, 
t For a proof, see Ref. 2. 
t See Ref. 1. 
5 See first the proof given in Ref. 2. 
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- f [/(a^) + <p{x)Y dx 
^ J -TT 

00 

Likewise 

-r ''T J-TT 
[/(^) - 

(ao — «())“ 4" [(«n ““ OLn)^ + (?>n PnY 

and by adding Uie last two (‘(luations wo find that 

(2) i j f(x)ip(x) dx = ~ a„ao + ^ 
^ J—n- 

In form (2) of the Parseval formula suppose that 

<p(x) — g(x) when — x < j < /, 
= 0 when t < x < t ( —x ^ ^ ^ x), 

where g(x) is bouiidc^d and integrabh^ in the interval ( — x, x). 

g{x) cos nx d.r, g(x) sin nx dx, 

and form (2) becomes 

(3) dx = l-a,, I g(x) dx 

g(x) cos nx dx + hn I g(x) sin nx dx 

So it follows from statement (c) that if the Fourier series cor¬ 
responding to any bounded integrable function f{x) is multiplied 
by any other function of the same class and then integrated 
term by term, the resulting series converges to the integral of the 
product/(x)^(x). When g(x) = 1, we have a general theorem 
for the termwise integration of a Fourier series. 
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PROBLEM 

Assuming statement (c), show that it follows that the set of func¬ 
tions (5), Sec. 38, is closed, in the sense of convergence in the mean, 
with respect to the class of bounded integrable functions in the interval 
(—TT, tt). (Compare the problem at the end of Sec. 38.) 

40. The Fourier Integral. The Fourier series (Sec. 30) cor¬ 
responding to f(x) in the interval (—L, L) can be written 

(1) ^ j ^ 12 / T ~ dx' 

It converges to ^[f(x + 0) + f(x — 0)] when —L < x < L, 
provided f(x) is sectionally continuous and has right- and left- 
hand derivatives in the interval (—L, L), If f(x) satisfies those 
conditions in every finite interval, then L may be given any fixed 
value, arbitrarily large but finite, in order that we may obtain 
a representation of f(x) in a large interval. But this series 
representation cannot be valid outside that interval unless /(x) 
is periodic with the period 2L^ since series reoresentg^ only 
such functions. 

k To indicate a representation which may be valid for all real 
p when/(x) is not periodic, it is natural to try to extend series (1) 
to the case L = qo . The first term would then vanish, assuming 

that I f(x) dx converges. Putting Aa = w/L, the remaining 

terms can be written 

00 

= i 2 Aor r fix') COS [nAaix' — a:)] dx'. 

OP 

The last series has the form ^ F(nAa)Aa, where 

F{a) = 

hence when Aa is small, it may be expected to approximate the 

integral F(a) da. (Note, however, that its limit as Aa 



Sec. 40] FURTHER PROPERTIES OF FOURIER SERIES 89 

approaches zero is not the definition of this integral; further¬ 
more, when Aa approaches zero, L becomes infinite, so F(a) itself 
changes.) But if the process were sound, when L becomes 
infinite series (1) would become 

if da \ fix') cos la(x' x)] dx', 
^ Jo j-« 

This is the Fourier integral of fix). Its convergence to fix) 
for all finite values is suggested but by no means established 
by the above argument. It will now be shown that this repre¬ 
sentation is valid when/(a:) satisfies the conditions in the follow¬ 
ing Fourier integral theorem: 

Theorem 4. Let fix) be sectionally continuous in every finite 

interval (a, 6), and let J ^ \fix)\dx converge. Then at every point 

rr(—00 < X < oo), where fix) has a right- and left-hand deriva¬ 
tive, fix) is represented by its Courier integral as follows: 

(2) i[/(x + 0)+/(x-0)] 

fix') cos [aix' — x)] dx'. 

In every interval (a, 6),/(x) satisfies the conditions of Lemma 3, 
Sec. 32, so that 

(3) |lf(i + 0)+/(a;-0)] = lim C/(x') dx' 
cc—* «o ^/o ^ 2. 

at any point x ia < x < b), where fix) has a right- and left-hand 
derivative. Now 

(4) f' 

Whenever a < x. 

X X '’s 

•nd the latter integral convolves because |/(a:)| dx does. 
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Similarly for the last integral in equation (4), when h > x. 
Hence for any € > 0 a positive number N can be found such that 

if a < —N and 6 > iV, the first and last integrals on the right 

of equation (4) will each be numerically less than e/3. The 

second integral there can be made to differ from the value 

iT[f(x + 0) + /(.r — 0)] by an amount numerically less than 

e/3 by taking a sufficiently large, according to equation (3). 

Hence the inte^gral (4) differs numerically from the above value 

by an amount less than e for all a greater than some fixed number; 

that is, 

(5) lim r fix') ~ ■ dx' = | [fix + 0) + fix - 0)]. 
a—> 00 ^ — 00 J. X- M 

Writing the frac^tion in the integrand as an integral, and divid¬ 

ing by TT, this becomes 

5 [fix + 0) + fix - 0)] 

= lim - r fix') dx' j cos [a'ix' — a:)] da' 

= lim - j da' j fix') cos [a'(x' — x)] dx'. 

The inversion of order of integration in the last step is valid 

because the integrand does not exceed |/(x')l in absolute value, so 

that the integral 

X- « ^)] 

converges uniformly for all a',* The last equation is the same 

as statement (2) in the theorem. 

Fourier integral theorems with somewhat broader conditions 

on f(x) are also known. The more modern theorems take 

advantage of the use of Lebesgue integration. 

PROBLEMS 

1. Verify the Fourier integral theorem directly for the function 
fix) = 1 when —1 < x < 1, fix) = 0 when x < — 1 and when x > 1. 
The following integration formula, usually established in advanced 
calculus, will be useful: 

See, for instance, p, 199 of Ref. 1. 
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= 0 if A; = 0, 

= ~ if fc < 0. 

2. Show that the function f(x) = 0 when a? < 0, f(x) = e“* when 
X > 0,/(O) = is represented by its Fourier integral; hence show that 
the integral Jcos ax a sin ax , 

„-r+tf— 

lias the value 0 if a; < 0,7r/2 if a; = 0, and ttc"* if x > 0. 
3. Show that the Fourier integral of the function f(x) — 1 does not 

converge. 

41. Other Forms of the Fourier Integral. Loif(x) be an odd 
function which satisfies the conditions of Theorem 4. Then 

J /(a:') cos [a{x/ — a:)] dx' 

^ 00 

- X ) cos [a:(x' — x)] dx' -x; fi-y) cos [a{y + x)]dy 

= r fix') cos [a(x' — x)] dx' — I /(x') cos [a(x' + x)] dx' 
Jo Jo 

00 

= 2 sin ax I /(x') sin ax' dx'. 
Jo 

Hence the Fourier integral formula becomes 

(1) i[/(a: + 0)+/(:r-0)] 

2 r * . r * 
= - I sin ax da I fix') sin ax' dx', 

TT Jo Jo 

This is the Fourier sine integral, corresponding to the Fourier 

sine series. If /(x) is defined only when x > 0, formula (1) 

is valid provided /(x) is piecewise continuous in each finite 

interval in x ^ 0 and has a right- and left-hand derivative 

at the point x (x > 0), and provided JT* |/(•^^)| dx converges. 

Similarly if /(x) is an even function satisfying the conditions 

of Theorem 4, it is represented by its Fourier cosine integral: 
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(2) g[/(* + 0)+/(a;-0)] 

^ 2 
T X cos ax da COS ax' dx'. 

Under the conditions just given for the sine integral, formula (2) 
is also valid if f{x) is defined only when a: > 0. Moreover, the 
integral converges at x = 0 to /(+0) provided f(x) has a right- 
hand derivative there. 

By writing cos [a(x' — x)] in terms of imaginary exponential 
functions, the integral formula of Theorem 4 can be reduced to 

(3) ~[f{x + 0)+f{x-0)] 

da c-»“^7(x') dx\ 

This is the exponential form of the Fourier integral of the func¬ 
tion/(x) defined for all real values of x. 

If g{a) is a known function when a > 0, note that the integral 
equation 

(4) ^ f(x') sin ax' dx' = gf(a), 

can be solved easily for the unknown function /(x) (x > 0), 
provided that function is one of the class for which the Fourier 
integral formula (1) is true. For by multiplying equation (4) 

through by \/2Jt sin ax and integrating with respect to a over 
the interval (0, oo) we have, in view of formula (1), 

(6) g{a) sin ax da (x > 0). 

Of course this formula would give the mean value of /(x) at a 
point of discontinuity. 

The integral in equation (4) is called the Fourier sine transform 
of /(x). Formula (5), which gives /(x) in terms of its transform 
g{a), has precisely the same form as equation (4). 

In view of formula (2), the sine functions can clearly be 
replaced by cosines in equations (4) and (5). 

PROBLEMS 

1. Show that the formula in Theorem 4 reduces to formula (2) when 
/(x) is an even function. 
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2. Transform the formula in Theorem 4 to the exponential form (3). 
3. Apply formula (2) to the function fix) “ 1 when 0 ^ a; < 1, 

fix) = 0 when a; > 1, and hence show that 

r * sin a c 

Jo « 
cos OcX j TT I ^ ^ ^ 
-da — - when 0 ^ a; < 1, 
a L 

j when a; ~ 1, 

0 when a; > 1. 

4. Apply formula (1) to the function/(a:) == cos x, and thus show 

jo 

jh. 
sin ax , t 

da = cos x if x > 0, 
‘ + 4 2 

6. By applying formula (1) to the function fix) = sin x when 
0 ^ X ^ IT, fix) =0 when x > show that 

* sin ax si 

0 

sin J TT . T n ^ ^ 
—-— aa = - sin a; if 0 ^ a: ^ tt, 
a* 2 

= 0 if a: > TT. 

6. Apply formula (2) to the function fix) of Prob. 5 and obtain 
another integration formula. 

7. Show that the solution of the integral equation 

^ flO 

fix) sin ax dx gia), 

where gia) = 1 when 0 < a < ir, gia) = 0 when a > tt, is 

. 2 1 — cosira; 
ix > 0). 

8. Show that the integral equation 

cos axdx e”* 

has the solution 

“ IT 1 + X* 
(x > 0). 
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CHAPTER VI 

SOLUTION OF BOUNDARY VALUE PROBLEMS BY THE 
USE OF FOURIER SERIES AND INTEGRALS 

42. Formal and Rigorous Solutions. In an introduotory 
iroatmoiit of boundary valium probh'ms in the partial differential 
equations of physics, it se(uns best to follow to some extc'iit 
the plan used in introdiK^torv cours(\s in ordinary differential 
equations; that is, to stress the method of obtaining a solution 
of the problem as stattni, and giv'e less attention to the precise 
statement of the jwoblem that w^ould ensure that the solution 
found is the only one possible. But it is important that the 
student be aware of the shortcomings of this sort of treatment; 
hence some discussion of the rigorous statement and solution of 
problems will be given. The subject of boundary value problems 
in partial differential equations is still under develoi)ment; in 
particular, the uniqueness of tlie solutions of some of the impor¬ 
tant types of problems has not yet been satisfactorily investigat (d. 

In ordinary differential equations, the solution for all x ^ 0 
of the simple boundary value problem 

y'{x) = 2, yiQ) = 0, 

would generally be given as y — 2x, because it is understood 
that y{x) must be continuous. Without such an agreement, 
however, the function y = 2x + c when x > 0, ?/ = 0 when 
X = 0, is a solution for every constant c; that is, the solution is 
not unique. Even when the boundary condition is written 
2/(+0) = 0, the solution could be written, for instance, as y = 2x 
when O^x^a, y = 2x + c when x > a, unless y{x) is required 
to be continuous for all x ^ 0. 

Such tacit agreements necessary for the existence of just 
one solution are not nearly so evident in partial differential 

equations. Furthermore, if the result is found only in the 
form of an infinite series or integral, it is sometimes quite difficult 

94 
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to determine the precise conditions under which that series or 
integral converges and represents even one possible solution. 

The treatment of an applied boundary value problem is only 
formal one unless it is shown (a) that ilm result found is actu¬ 

ally a solution of the differential equation and satisfies all the 
boundary conditions, and (b) that no other solution is possible. 
The physical problem will require that there should be only 
one solution; hence the mathematical statement of the problem 
is not strictly complete unless the uniqueness condition (b) is 
satisfie^d. 

43. The Vibrating String. The formula for the displacements 
y(Xf i) in a string stretched between the ])oints (0, 0) and (L, 0) 
and given an initial displacement y = f{x) was found in Sec. 13 
to be 

The function f{x) must of course be continuous in the interval 
0 ^ X ^ L and vanisli when :r = 0 and x = L. In addition, 
lei f(x) be reejuired to have a right- and left-hand derivative at 
each point. Then the Fourier sine series obtained when t = 0 
in formula (1) does conveu-ge to f(x); hence this initial condition 
is actually satisfied. Thus an important im})rov(nnent in the 
formal solution is made possible by the th(H)ry of Fourier series. 

The nature of the problem requires the solution ?/(x, t) to be 
continuous with respect to x and t Since y{x, t) is to satisfy 
the equation of motion 

(2) S = (00,0 <x<L), 

and all the boundary conditions 

^(0, 0 = 0, y{L, t) = 0, 

= 0, y{x, 0) = Six), 

some conditions relative to the existence of its derivatives 
must also be satisfied. We shall now examine the function 
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defined by formula (1) to see if it is actually a solution of our 
problem. 

The Solution Established. It is possible to sum the series in 
formula (1); that is, to write the result in a closed, or finite, 
form. This will make it much easier to examine the function 
y{x, t). 

Since 

„ . nwx nwat . [nr. .vl , . \nr . , ..1 
2 sin -j-- cos = sm -j- (x — aO + sin -j- (x + at) b 

equation (1) can be written 

00 — 

(3) y = ^ ^ sin 1^^ (x - apj 

+ ^ 2 sin (x + aO j- 

The two series here are thase obtained by substituting (x — at) 
and (x + at), respectively, for the variable x in the Fourier 
sine series for f(x). Since the sine series represents an odd 
periodic function, the last equation can be written 

(4) y = i[F(x - at) + F{x + at)], 

where the function F(x') is defined for all real values of x' as the 
odd periodic extension of f{x'); that is, 

F(x') =/(x') if 0 ^ x' gL, 
F{-x^) = ~F(x'), 

and 
F(x' + 2L) = F(x') for all x'. 

The function /(x) is continuous in the interval (0, L) and 
vanishes at the end points; hence F(x') is continuous for all x'. 
According to our Fourier theorem, the two sine series in equation 
(3) converge to the functions in equation (4) whenever /(x) has 
one-sided derivatives. The same function y{x, t) is then repre¬ 
sented by each of the three formulas (1), (3), and (4); moreover, 
according to (4), y{x, 0 is a continuous function of x and t for 
all values of these variables. 
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By differentiating equation (4) we can easily see that y{x^ t) 
satisfies differential equation (2) whenever the derivative F"{x') 
exists. When it is observed that 
and odd functions, respectivelv^t carL be see^ the se^^qd 
derivative exists for all x' provided fix) has a second derivative 
whenever 0 < x < Z. and provi^^ dcnvat^™^ 

value zerQ^,.. 
Under these rather severe conditions on fix), then, our func¬ 

tion yix, i) satisfies the equation of motion for all x and t, and 
it is also evident from (equation (4) that dy/dt is continuous 
and vanishes when t = 0. The remaining boundary conditions 
are clearly satisfied, in view of either equation (1) or (4); hence 
yix, t) is established as a solution. 

If we permit/'(^) and f\x) to be only sectionally continuous, 
or if the one-sided second derivatives of fix) do not vanish at the 
points X = 0 and x = L, then at each instant t there will be a 
finite number of points x at which the second derivatives of 
yiXy t) fail to exist. Except at these points, differential equation 
(2) will still be satisfied. In this case we have a solution of our 
problem in a broader sense. 

In either case an examination of the uniqueness of the solution 
found would be necessary to make the treatment of the problem 
complete. 

An Approximate Solution, Except for the nonhomogeneous 
boundary condition —* 

(5) yix, 0) = fix)y 

our boundary value problem is satisfied by the sum of any 
finite number of terms of the series in equation (1), say 

. . mrx nwat 
(6) yjf ^ An sin -j-- cos 

where N is some integer. In place of condition (5) this function 
satisfies the condition 

N 

(7) yAx, 0) = 2 

The function 2/jv(a;, t) has continuous derivatives of all orders. 
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The sum in condition (7) is that of the first N terms of the 
Fourier sine series for/(x). According to Theorem 3, Chap. V, 
that series converges uniformly to f(x) provided f(x) is con¬ 
tinuous by segments. Hence, by taking N sufficiently large, 
the sum can be made to approximate f(x) arbitrarily closely for 
all values of x in the interval 0 ^ x ^ L, 

The function y]^(x, t) is therefore established as a solution of 
the approximating problem,^’ obtained by replacing condition 
(5) of the original boundary problem by (jondition (7). 

Similar approximations can be made to the problems to be 
considered later on. But the remarkable feature in the present 
case is that the approximating function yN{x, t) does not deviate 
from the actual displacement y{x, t) by more than the maximum 
deviation of 0) from f{x). This is true because 2/jv(:r, t) can 
be written 

2/Ar = I {2 [t 2 j|' 
and each sum here consists of the first N terms of the sine series 
for the odd periodic extension of f(x), except for substitutions of 
new variables. But the greatest deviation of the first sum from 
F(x — at), or of the second from F(x + at), is the same as the 
greatest deviation of 0) from/(a;). 

PROBLEMS 

1. Show that the motion of every point of the string in the above 
problem is periodic in i with the period 2L/a. 

2. The position of the string at any time t can be found by moving 
the curve y = -J-F(x) to the right with the velocity a and an identical 
curve to the left at the same rate and adding the ordinates, in the 
interval 0 ^ x ^ L, of the two curves so obtained at the instant t. 

Show how this follows from formula (4). 
3. Plot a few positions of the plucked string of Sec. 14, using the 

method of Prob. 2 above. 

44. Variations of the Problem. If each point of the string is 
given an initial velocity in its position of equilibrium, the bound¬ 
ary value problem in the displacement y{x, t) is the following: 
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1/(0, t) = 0, y{L, t) = 0, 

yi.x, 0) = 0, = g{x). 

As before, functions of the form y = X{x)T{t) which satisfy 
the differential equation and all the homogeneous boundary 
conditions can be found. Writing the series of these particular 
solutions, we have 

00 2. . mrx . mrat 
An sm -j~ sin -j—- 

1 

The final condition, that dy/dl = g{x) when ^ = 0, shows that 
the numbers nraAnlL should be the Fourier sine coefficients of 
g{x); hence the solution of the problem becomes 

(1) 
mrx 

sin 
nrai 

Jo 
g(x') sin 

UTX' 

'T' 
dx\ 

By the method of the last section, dy/di can be written hero 
in terms of the odd periodic extension G{x') of the function 
g{x'). This leads to the closed forms 

(2) [G{x - at') + G{x + at')] dt' 

2a Jx- 
G(x') dx' 

of solution (1). The dc^tails of these derivations are left for the 
problems, 

Superposition of Solutions. If the string is given both an 
initial displacement and initial velocity, the last two boundary 
conditions become 

(3) V{x,0)=f{x), ^-^^^ = 9{x). 

All the other conditions of the linear boundary problem are 
homogeneous. They are satisfied by the solution of the problem 
of the preceding section and by solution (2) above, and therefore 
by the sum of those two functions, namely 

dx\ (4) y = \ [F{x - at) + F{x + at)] + ^ 
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When ^ = 0, the first function of the sum becomes f(x) and the 
second vanishes; hence the first of conditions (3) is satisfied. 
Likewise it is seen that the second of those conditions is satisfied, 
and therefore equation (4) is the required solution. 

In general the solution of a linear problem containing more 
than one nonhomogeneous boundary condition can be written 
as the sum of solutions of problems each of which contains only 
one nonhomogeneous condition. Of course we cannot always 
find the solutions of the simpler problems which are to be super¬ 
posed in this way. 

Units, It is often possible and advantageous to select units 
so that some of the constants in our problem become unity. 
For example, if we write r for the product {at)^ the equation of 
motion of the string reduces to 

d^y ^ d^y 
dT^ dx/ 

Such changes sometimes help to bring out reductions in compu¬ 
tation, or general properties of the solution. 

Since the boundary problem of the last section, for example, 
does not involve the number a when the problem is written in 
terms of r and x, its solution must be a function only of x, L, and 
the product (at). This conclusion is possible without our 
knowing the formula for the solution. But is proportional 
to the tension in the string; hence if z/i(x, i) and y^ix, i) are the 
displacements when the tension has the values Pi and P2, respec¬ 
tively, then 

(5) yi(x, ti) = yzix, 12) if = t2\/Pl. 

That is, the same set of instantaneous positions is assumed by 
the string whether the tension is Pi or P2, but the times h and 
t2 required to reach any one position are in the ratio \/P2/Pi. 

Nonhomogeneous Differential Equations, The substitution of a 
new unknown function sometimes reduces a linear differential 
equation which is not homogeneous to one which is homogeneous, 
so that our method of solution can be employed. 

To illustrate this, consider the problem of displacements in a 
stretched string upon which an external force acts proportional 
to the distance from one end. If the initial displacement and 
velocity are zero, the units for t and x can be so selected that the 
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problem becomes 

^ + yla: (0 < a: < 1, f > 0), 

y(0, t) = 0, y(l, t) = 0, 

J,(x, 0) - 0. - 0. 

In terms of the new function F, where 

y{x, t) = Y{x, t) + '('{x), 

and \l/{x) is to be determined later, the differential equation 
becomes 

^ (0 < X < 1, < > 0). 

This will be homogeneous if 

(6) = —Ax (0 < X < 1). 

The first pair of boundary conditions on Y are 

F(0, 0 + = 0, F(l, 0 + ^(1) = 0; 

hence these are homogeneous if 

(7) ^(0) - 0, ^(1) = 0. 

In view of conditions (6) and (7), 

(8) ^^l{x) = ^ (x - x») (0 < X < 1), 

and with this clioice of \l/ the problem in F becomes a special 
case of the problem in the preceding section; for the initial 
conditions arc 

F(x, 0) = -^(x), = 0. 

The solution of our problem in forced vibrations therefore can 
be written 

(9) y = ^(x) - i[>J^(x - 0 + 

where 'i^(x') is the odd periodic extension of the function ^(x') 
defined by equation (8) in the interval (0, 1). 
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PROBLEMS* 

1. Carry out the details in the derivation of formula (1). 
2. Write out the steps used in deriving formulas (2) from (1). 
3. Show that relation (5) fails to hold between the displacements of a 

given string under different tensions if the initial velocity is the same 
in both cases and not zero. What change in initial velocity must accom¬ 
pany an increase in tension to cause a more rapid vibration with the 
same arniditude? 

4. A string is stretched between the points (0, 0) and (1, 0). If it is 
initially at rest on tlie T-axis, find its displacements under a constant 
external force jiroportional to sin tx at each point. \"crify your solu¬ 
tion by showing that it satisfies the equation of motion and all boundary 
conditions. Arts, y = A/(7rV) sin7ra;(l — cosTraf). 

6. A vire stretched between two fixed iioints of a horizontal line is 
released from rest wliile it lies on that line, its subsecpient motion being 
due to the force of gravity and the tension in the wire. Set up and 
solve the boundary value problem for its displacements. Show that its 
solution can be written in the form (9), if a = 1 and = (x^ — Lx)g/2 
in the interval (0, L), where g is the acceleration of gravity. 

46. Temperatures in a Slab with Faces at Temperature Zero. 
Let a slab of homogeneous material bounded by the planes 
a; = 0 and x = tt have an initial temperature u = f(x), varying 
only with the distance from the faces, and let its two faccvs b(^ 
kept at temperature zero. The formula for the temperature u 
at every instant and at all points of the slab is to be determiiK'd. 

In this problem it is clear that the temperature is a function 
of the variables x and t only; hence at each interior point this 
function u(Xj i) must satisfy the heat equation for one-dimen¬ 
sional flow, 

(1) = ,(0<x<.,<>0). 

In addition, it must satisfy the boundary conditions 

(2) w(+0, t) = 0, - 0, 0 = 0 {t> 0), 
(3) u{Xj +0) = f{x) {0 < X < tt). 

The boundary value problem (l)-(3) is also the problem 
of temperatures in a right prism or cylinder whose length is 

* Only formal solutions of the boundary value problems here and in the 
sets of problems to follow are expected, unless it is expressly stated that the 
solution is to be completely established. 
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(taken so for convenience in the computation), provided its 
lateral surface is insulated. Its ends x = 0 and x = t are held at 
temperature zero and its initial temperature is/(x). 

To find particular solutions of equation (1) that satisfy 
conditions (2), we write u — X{x)T{i). When substituted in 
equation (1), this gives XT' = kX"7\ or 

^ ^ yv 

X kT 

Since the function on the left/ can vary only with x and the one 
on the right/ only with ty th<\v must both eciual a constant a; 
that is, 

(4) Z" - a.Y = 0, 7^' - aJcT - 0. 

Moreover, if the function X7’ is to satisfy conditions (2), then 

(5) X(0) = 0, X(r) = 0, 

provided X(a:) is a continuous function. 
The solution of the first of differential ecpiations (4) that 

satisfies the first of conditions (5) is X = Ci sinh j\/a, and this 
can satisfy the s(iCond of conditions (5) only if 

oj = — (n = 1, 2, • • • ). 

Then X = C2 sin nx. The solution of the second of equations 
(4) is, then, T — Hence the solutions of ecpiations (1) 
and (2) of tln^ form u = XT are 

(6) sin nx (n = 1, 2, • • • ), 

where the constants hn are arbitrary. 
Clearly no sum of a finite number of functions (6) can satisfy 

the nonhomogeneous condition (3) unless f{x) happens to be a 
linear combination of sines of multiplc.s of x. But the infinite 
series of those functions, 

00 

(7) u(x, i) = ^ sin nXy 

does in general reduce to f{x) in (0, w) when ^ = 0, provided the 
coefficients K are those of the Fourier sine series for f{x); namely, 

2 C 
?>» = - I f(x) sin nx dx (n = 1, 2, • • • ). 

TT Jo 
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More precisely, if f(x) is sectionally continuous and has one¬ 
sided derivatives at all points in (0, tt), then 

00 

u(x, 0) = bn sin nx = i[f(x + 0) + f(x — 0)] (0 < < tt), 

and this represents f(x) at each interior point where /(x) is 
continuous. 

With those mild restrictions on /(x), then, the solution of the 
problem is 

(8) U(X, 0 = ~ J* 

provided this series converges to a function u(x, t) such that 
u{x, +0) = u{Xy 0) when 0 < x < tt, t/.(+0, t) — -^(0, t) and 
uiv — 0, 0 = 0 when ^ > 0, and provided thc^ series can 
be differentiated termwise once with respect to t and twice 
with respect to x when t > 0 and 0 < x < x. It will be shown 
in the next section that the series docs satisfy those conditions. 

PROBLEMS 

1. Solve the above problem if the faces of the slab are the planes 
X = 0 and x = L, 

Ans. u(x, 0 exp sin f(^') sin 

2. Find the formula for the temperatures in a slab of width L which 
is initially at the uniform temperature uo, if its faces are kept at tem¬ 
perature zero. 

4 / .X 1 r (2n-l)^ml . (2n-l)7rx 
Aru. u(x, 0 = — ^ i exp ^--J Bin-j- 

3. The initial temperature in a bar with ends x = 0 and x = ir is 
u = sin X. If the lateral surface is insulated and the ends are held at 
zero, find the temperature w(x, t). Verify your result completely. How 
does the temperature distribution vary with time? 

Ans, u == sin x. 
4. Write the solution of Prob. 1 if /(x) = A when 0 < x < L/2, 

/(x) 0 when L/2 < x < L. 

Ans, w(x, t) 
iA sin* (nr/4) -^2 exp 

/ nhrm\ 

V / sin ■ 
nrx 
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6. Two slabs of iron, each 20 cm. thick, one at temperature 100®C. 
and the other at temperature 0®C. throughout, are placed face to face 
in perfect contact, and their outer faces are kept at 0®C. (compare 
Prob. 4). Given that k = 0.15 c.g.s. (centimeter-gram-second) unit, 
find to the nearest degree the temperature 10 min. after contact was 
made, at a point on their common face and at points 10 cm. from it. 

Arts, 37°C.;33‘^C.; 19*^0. 
6. If the slabs in Prob. 5 are made of concrete with k = 0.005 c.g.s. 

unit, how long after contact will it take the points to reach the same 
temperatures found in the iron slabs after 10 min.? Arts. 5 hr. 

46. The Above Solution Established. Uniqueness. It is not 
difficult to show that the series found in Sec. 45, namely 

00 

(1) ^ sin nx, 

represents a function u{x, i) which satisfies all the conditions 
of the boundary value problem, provided the initial temperature 
function f{x) is sectionally continuous in the interval (0, tt) and 
has one-sided derivatives at all interior points of that interval. 
For the sake of convenience, we define the value of }{x) to be 

+ 0) + /(.r — 0)] at each point x where the function is 
discontinuous. 

Since \f{x)\ is bounded, 

2 I C 
li^nl = - I /(^) sin nx dx 

^ I Jo 

where M is a fixed number independent of n. Consequently, for 
each to > 0, 

sin nx\ < when t ^ to. 

The series of the constant terms converges; hence, accord¬ 
ing to the Weierstrass M-test, series (1) converges uniformly 
with respect to x and t when t toj 0 ^ x ^ v. Also, the terms 
of series (1) are continuous with respect to x and <, so that 
the function u{x, t) represented by the series is continuous for 
those values of x and t] consequently, whenever t > 0, 

14(+0, t) - u(0, 0 == 0, 
u(ir — 0, f) = u(wy t) ^ 0, ^ 

2 p 

^ Jo 
|/(x)l dx < M, 
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The terms of the series obtained by differentiating (1) with 
respect to t satisfy the inequality 

I sin nx\ < when ^ ^ ft). 

Since the series whose terms are also converges, accord¬ 
ing to the ratio test, that differentiated series is uniformly 
convergent for all ^ ^ ft). Hence series (1) can be differentiated 
termwise; that is, 

00 

^ ^ sin 7ix) {t > G). 

In just the same way it follows that the series can be differenti¬ 
ated twice with respect to x whenever t > 0, and since each 
term of series (1) satisfies the heat equation, the function u{Xy i) 
must do so whenever t > 0 (Theorem 2, Chap. I). 

p It only remains to show that w(a:, t) satisfies the initial condition 

^(2) u{x, +0) = f{x) (S)<x< tt). 

This can be shown with the aid of a test, essentially due to 
Abel, for the uniform convergence of a series. At this time 
let us show how the test applies to the ]>resent problem, and 
defer the general statement of the test and its proof to the 
following chapter (see Theorem 1, Chap. VII). 

CO 

For each fixed x (0 < x < tt), the series bn sin nx con¬ 

verges to f(x). According to AbeFs test, the new series formed 
by multiplying the terms of a convergent series by the cor¬ 
responding members of a bounded sequence of functions of 
such as whose functions never increase in value with n, 
converges uniformly with respect to L Series (1) therefore con¬ 
verges uniformly mth respect to t when 0 ^ ^ g 0 < a; < ir, 

for every positive h. 
The terms of series (1) are continuous functions of i; hence 

the function w(x, t) represented by that series is continuous with 
respect to t when t ^ 0 and 0 < x < tt. Therefore 

u(x, -fO) = u{x, 0), 

and condition (2) is satisfied because w(x, 0) = f(x) (0 < x < t). 
The function w(x, t) is now completely established as a solution 

of the boundary value problem (l)-(3), Sec. 45. 



Sec. 461 SOLUTION OF BOUNDARY VALUE PROBLEMS 107 

It is necessary to add to the statement of the problem some 
further restrictions as to the properties of continuity of the 
function sought, before we can prove that we have the only 
solution possible. We illustrate this by stating one complete 
form of the problem. For the sake of simplicity, we shall impose 
rather severe conditions of regularity on the functions involved. 

A Complete Statement of the Problem. Let the function u(Xj t) 
be required to satisfy the heat equation and boundary conditions 
as given by equations (1) to (3), Sec. 45, in which the function 
f{x) is now supposed continuous in the interval 0 ^ a; ^ t. We 
also assume that /(O) = /(tt) = 0, and that f{x) is sectionally 
continuous in the interval (0, tt). In addition let it be required 
that u{Xy t) be continuous with respect to the two variables 
T, i together when 0 ^ a: ^ x, t ^ 0, and that the derivative 
du/dt be continuous in the same manner whenever t > 0. 

We can show that there is just one possible solution of this 
problem, and that solution is the function represented by series 

(1). 
It was shown above that that function satisfies the heat equa¬ 

tion and boundary conditions; also, that the series for du/dt 
converges uniformly with respect to x and t together when 
0 ^ a: ^ TT, t t{) {Iq > 0). Since the terms of the derived 
series are continuous functions of x and t together, it follows that 
du/dt is continuous with respect to both variables together 
when(‘ver / > 0, 0 g a* ^ tt.* 

The continuity of the function when 0 ^ x ^ t and t 0 
follows again from our form of Abehs test. For the conditions 

00 

on/(x) ensure the uniform convergence of the series ^ 6nSinn:r. 

In this case the introduction of the factors into the terms 
of that scries produces a series which is uniformly convergent 
with respect to x and t together, when 0 ^ x ^ ir, 0 ^ t ^ 
for every positive h. Hence series (1) has this uniform con¬ 
vergence, and the continuity follows as before. 

The function defined by vserics (1) therefore satisfies all the 
conditions of the problem. Of course, the derivative d'^u/dx^ is 
continuous in the same sense as du/dtj since these two deriva¬ 
tives differ only by the factor fc. 

* Concerning the continuity of a series with respect to more than one 
variable, see the remarks preceding Theorem 1, Chap. VII. 



108 FOURIER SERIES AND BOUNDARY PROBLEMS [Sec. 47 

It is not difficult to show that two distinct functions, satisfying 
all the requirements made upon u{x^ t) in the above statement 
of the problem, cannot exist. The complete statement and 
proof of this uniqueness theorem will be given later (Theorem 2, 
Chap. VII). If we accept this statement for the present, the 
only possible solution of our problem has been found. 

47. Variations of the Problem of Temperatures in a Slab. 
With only slight modifications in the method, the temperature 
distribution can be found for the slab of Sec. 45 when the faces 
are subject to certain other conditions, or when the heat equation 
is modified. 

a. One Face at Temperature A. To find the temperature 
u{x, t) in a slab with initial temperature f{x) when the face 
or = 0 is held at zero and the face :r = tt at constant temperature 
i4, a simple transformation can be used to obtain the result from 
that of Sec. 45. 

Here u(x, t) must be a solution of the boundary value problem 

^ = *1^ (0<a;<x, i>0), 

w(+0, /) = 0, w(7r — 0, <) = A, 
xi{x, +0) = /(x). 

It follows that the function 

(1) v{x,t) = u{x,t) - ^x, 

must satisfy the conditions 

= (0<a;<x,<>0), 

d(4-0, <) = 0, viir — 0, 0 = 0, 

vix, +0) = fix) — ~x. 
TT 

This is the boundary value problem of Sec. 45 with f{x) replaced 
by f(x) — Ax/r, so that its solution is 

v(x, 0 = “ gin nx J j 

Substituting this for v(x, t) in equation (1) and carrying out 
part of the integration, we obtain the following solution of the 
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problem: 

u(x, t) = — X 
TT 

T (?“^**'* sin na: j^( —1)” ~ + J* f{x') sin nx' dx' 

b. Insulated Faces, Find the temperature u{x, i) in a slab 
with initial temperature f{x) if the faces x = 0 and x = t are 
thermally insulated. 

Sinc(i the flux of heat through those faces is proportional to 
the values of bujbx there, the boundary value problem can be 
wTitten 

(2) II (0 < X < X, i > 0), 

(3) 
dl/(+0, t) ^ duiir — 

dx ' dx 

o
 

A
 

o
 II 

o
' 

(4) u{x, +0) = f{x) (0 < X < x). 

Setting u = X{x)T{t)^ it is found that the functions 

cos nx (n = 0, 1, 2, • • • ) 

satisfy the homogeneous conditions (2) and (3). The infinite 
series of those fuiK^tions satisfies condition (4) as well, provided 
the coefficients an are those in the P\)urier cosine series correspond¬ 
ing to fix). So if fix) satisfies the conditions of our Fourier 
theorem, th(i solution of the problem is 

(5) uixj 0 = ~ r /(^O dx' 
^ Jo 

+ ^ ^”''*** j* ) cos nx' dx'. 

c. One Face Insulated, If the face a; = 0 is held at tempera¬ 
ture zero and the face a: = is insulated, the problem can be 
reduced to one in which both faces are held at zero. 

Let the slab be extended to x == 27r with the face a: = 2t 
held at temperature zero, and let the initial temperature of the 
new slab be symmetric with respect to the plane x = ir. Then, 
when TT < X < 2x, the initial temperature is /(2ir — x), where 
fix) is the initial temperature of the original slab. In the 
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physical problem the symmetry indicates clearly that no heat 
will flow through the plane x = w. When the solution is found, 
it can be verified that dufdx == 0 when x = tt. 

According to Prob. 1, Sec. 45, the temperature in the extended 
slab is 

/N • J / X ) sin ax . 

By substituting a new variable of integration in the second 
integral, this can be reduced to 

w(x, i) 
2 
TT , 

n = 1 

m\kt I ^ y ^ 

Jo 

where m„ = (2n — l)/2. When i) ^ x ^ w, this is the solution 
of problem c. 

d. The Radiating Wire, Suppose the diameter of a wire or 
bar is small enough so that the variation of temperature over 
every cross s(K?tion can be negh'cted. If thc^ latc'ral surface is 
exposed to surroundings at temperature zero and los(\s or gains 
heat according to Newton\s law, the heat eciuation takes the 
form 

(6) 
du _ , d^u 
dt dx- 

hUy 

where x Ls the distance along the wire and h is a positive constant. 
Newton^s law of surface heat transfer is an approximate law 

of radiation and convection according to which the flux of 
heat through the surface of a solid is proportional to the differ¬ 
ence between the temperature of the surface and that of the 
surroundings. It is generally valid only for small temperature 
differences; but it has the advantage over the more exact laws 
of being a linear relation. That the heat equation does take 
the form (6) when such surface heat transfer is present can be 
seen from the derivation of the heat equation (Sec. 9). 

When the ends x = 0, x = tt, of the radiating wire are kept 
at temperature zero and the initial temperature is f(x)y the 
temperature function can be found by the method of Sec. 45. 
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The result is 

(7) u{x, i) == 0, 

where Wi(x, t) is the function u in equation (8), Sec. 45. 

When the (uids are insulatc^d, the result is 

(8) w(x, t) = c~*^Hi2{x, i), 

where i) is the function u in e(iuation (5) above. 

PROBLEMS 

1. Derive the solution of the problem in Sec. 476 above when the faces 
are a; = 0 and x = L. 

Ans. u = Y r fix') dx' 
Jo 

12' 

n^kt nl 
-fj- nwx I 
^ cos -y— I 

Jo 
fix') cos dx'. 

2. Show that the result of Prob. 1 can be completely established as a 
solution of the boundary value problem by the method of Sec. 40. 

3. Solve the problem in Sec. 47r above for a slab of width L with the 
face X - L insulated. It will be instructive to carry out the solution 
directly by obtaining particular solutions u = XT, without using the 
method of extension, noting the orthogonal functions generated by the 
differential equation in A" and its boundary conditions (compare Sec. 25). 

Aris. u 

” /• 
= Y sin vinX I fix') sin vinx' dx', 

J« 
where nin — in — \/2)7r/Ij. 

4. Derive formula (7). 

5. Derive formula (8). 
6. Use the substitution v — to simplify equation (6) and, by 

writing the boundary value problem in terms oi vix, t), obtain formulas 

(7) and (8) from known results. 
7. P'or a wire in which heat is being generated at a constant rate, 

w'hile the lateral surface is insulated, the heat equation takes the form 

du 
dt 

_ d^u 
+ 

where ^ is a positive constant. If the ends x ~ 0 and x == tt are kept 

at temperature zero and the initial temperature is fix), set up the 
boundary value problem for uix, t) and solve it. Note the result when 
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f{x) = Bxiw — x)/{2k). Suggestion: Apply the method used in Sec. 44 
to reduce the nonhomogeneous differential equation to a homogeneous 
one. 

Ans. w = ^ (ir - x) 

+ ^ e"****^ sin nx j — '»r) 4* j sin nx' dx'. 

8. Solve Prob. 7 when the end x = tt is insulated, instead of being 
kept at temperature zero. 

9. A wire radiates heat into surroundings at temperature zero. The 
ends X = 0 and x == x are kept at temperatures zero and A, respectively, 
and the initial temperature is zero. Set up and solve the boundary 
value problem for the temperature uixj t). Suggestion: Substitute 
t; = + ^(x), then determine yp so that hp'' — h\p = 0 and ^(0) = 0, 

\p{ir) = -A. 

M . sinh x\/V^ I ^Ak — . Ans. u ^ A..+ — e c sin nx. 
sinh TrVh/k ^ ^ h A- kn^ 

10. The face x = 0 of a slab is kept at temperature zero and heat is 
supplied or extracted at a constant rate at the face x = x, so that 

du/dx « A when x = x. If the initial temperature is zero, derive the 
formula 

for the temperatures in the slab, where the unit of time has been so 
chosen that k — 1. 

48. Temperatures in a Sphere. Let the initial temperature in 
a homogeneous solid sphere of radius c be a function /(r) of the 
distance from the center, and let the surface r = c be kept at 
temperature zero. The temperature is then a function w(r, i), 
of r and t only, and the heat equation in spherical coordinates 
becomes 

du _ k d^{ru) 
“ r dr^ * 

The boundary conditions are 

u(c — 0, ~ 0 
u(r, +0) = /(r) 

(t > 0), 
(0 < r < c). 
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If we set v{ry t) = rw(r, boundary value problem here 
can be written 

dv j dh 

«;(+0, t) = 0, v{c — 0, 0 = 0, 
v(r, +0) = r/(r), 

where the condition ?;(+0, <) = 0 is included because i6(r, i) 
must be bounded at r = 0. Except for the presence of r instead 
of X and r/(r) instead of f{x), this problem is that of the tempera¬ 
tures in a slab of width c. Hence the temperature formula 
for the sphere can be written at once (Prob. Sec. 45). It is 

(1) 
O nhr^kt /»c mrr’ , , 

sm-dr . 
c 

PROBLEMS 

1. Find the temperatures in a sphere if the initial temperature is zero 
throughout and the surface r — c is kept at constant temperature A, 

A ns. u(r, t) 
nhr^kt 

sin 
rwrr 

c 

2. Prove that the sum of the temperature function found in Pro]>. 1 
and the function given by formula (1) above represents the temperature 
in a sphere whoso initial temperature is f(r) and w^hose surface is kept 
at temperature A. 

3. An iron spliere with radius 20 cm., initially at the temperature 
100°C. throughout, is cooled by keeping its surface at 0°C. Find to 
the nearest degree the temperature at its center 10 min. after the cooling 
begins, taking k = 0.15 e.g.s. unit. Arts. 22°C. 

4. Solve Prob. 3, assuming that the sphere is made of concrete with 
k = 0.005 e.g.s. unit. Arts. 100°C. 

6. The surfaces r = 6 and r == c of a solid in the form of a hollow 
sphere are kept at temperature zero. The initial temperature of the 
solid is /(r) (6 < r < c). Derive the following formula for the tem¬ 
peratures w(r, t) in the solid: 

u 
nhr^kt . mr{r — b) 

(c — o)*J c — 6 

r/(r) sin 
n7r(r — b) 

c — b 
dr. 

where 
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6. Show that when the surface of a sphere is insulated, the solution 
of the temperature problem no longer involves the expansion of r/(r) in 
a Fourier series, but an expansion in a series of the functions sin a»r, 
where a„ are the roots of the mixed equation tan ac = ac. Show why 
these functions form an orthogonal set in the interval 0 < r < c 
(Sec. 25). 

49, Steady Temperatures in a Rectangular Plate. Let u(Xy y) 
be the steady temperature at points in a plate with insulated 

faces, the edges of the plate being the lines (or planes) a: = 0, 

X — a, ?y = 0, and y = h. Let three of the edges be kept at 

temperature zero and the fourth at a fixed temperature distribu¬ 

tion. Then w(x, y) is the solution of the following problem: 

(1) f-5 + = 0 (0 < a: < a, 0 < y < 6), 

(2) m(+0, y) = 0, u{a — Q, y) - Q, {Q < y < b), 
(3) u{x, 6 — 0) = 0, u(x, +0) = /(x), (0 < X < a). 

Since special case (1) of the heat equation is also a case of 

Laplace^s equation, the function u(x, y) is also the potential 

in the rectangular n^gion when the potential on the edges is 

prescrib(jd by conditions (2) and (3). The region also may be 

considered as an infinitely long rectangular prism, or the right 

section of any prism in wLich the potential or steady temperature 

depends only upon x and y. 
Setting u = X(x)V(y), the functions 

sin ^ sirih (y - C) j (n = 1, 2, ■ ■ ■ ) 

are found as solutions of (1) which satisfy conditions (2), for 

every constant C. If C = b, they also satisfy the first of con¬ 

ditions (3), and the series 

u = 2 ^ (2/ — i*) j 
satisfies the nonhomogeneous condition in (3) provided 

f(x) = — (0 < X < a). 
"i 

According to the Fourier sine series, this is true if the coeflEi- 

cients An are determined so that 
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— An sinh 
nirb rvKX j 

sin — ax, 
a 

So the formal solution of the problem can be written 

2/) = a 2 sinh {(riTr/a) (h — y)} 

sinh (mrb/a) 

. mrx j,. ,v . nvx' , , 
sin- I /(x )sm-ax , 

« Jo « 
Our result can be completely established as a solution of the 

problem (l)-(3) by the method used in Sec. 46. But in this 

case let us defer that part of the discussion, along with a com¬ 

plete statement of the problem which ensures just one solution, 

until a later time when the necessary tests have been derived 

(Sec. 59). 

PROBLEMS 

1. Find the solution of the above problem if xi{x, y) is zero on all edges 

except a; = a, and i/(a, xj) = g(y). 

Ans, u(Xf y) = 
I sinh (nirx/b) . mr?/ 
I sinh (mra/h) h sW) ■ ”’^2/ j / 

Sin ,.dxj , 

2. When the temperature distributions on all four edges are given, 
show how the formula for the steady temperatures in the plate can be 
written by combining results already found. 

3. What is the steady temperature at tlie center of a square plate 
with insulated faces, (a) if three edges are kept at ()°C. and the fourth 
at 100°C.; {h) if two adjacent edges are kept at 0°C. and the others at 
100°C.? Sxiggesiion: Superpose the solutions of like problems here to 
obtain the obvious case in which all four edges are kept at 100°0. 

Ans. (a) 25°C.; (b) 50°C. 

4. A square plate has its faces and its edge ?/ = 0 insulated. Its 
edges X = 0 and x — -tt are kept at temperature zero, and its edge y — tt 
at temperature/(x). Derive the formula for its steady temperature. 

Am. u(x, 2/) = - 2 w 
cosh ny . 
—— sin nx 
cosh nx j: 

/(x') sin nx' dx'. 

5, Derive the formula for the electric potential F(a;, y) in the space 
0 ^ a; ^ L, 2/ ^ 0, if the planes x = 0 and x = L are kept at zero 
potential and the points of the plane 2/ = 0 at the potential f(x), if 
V(x, y) is to be bounded as y becomes infinite. 

i tr/ N 2 . nvx . nirx' . , 
Am. V{x, y) = e ^ sin J /(*') sm -j^ dx'. 



116 FOURIER SERIES AND BOUNDARY PROBLEMS [Sec. 60 

6. Find the electric potential in Prob. 5 if the planes x = 0 and x = L, 
instead of being kept at potential zero, are insulated, so that the electric 
force normal to those planes is zero; that is, dV/dx = 0. Also state 
this problem as a temperature problem. 

'•L 

Ans, V{x, 

cos- fix') cos dx'. 

7. Solve Prob. 5 if the electric potential is zero on the plane x — 0 
and the electric force normal to the plane a; = L is zero. 

8. Find the steady temperatures in a semi-infinite strip whose faces 
are insulated and whose edges x — 0 and x = w are kept at temperature 
zero, if the base 7/ = 0 is kept at temperature 1 (Prob. 5). 

Ans. uixj 2/) = ~ sin X + g sin 3a; + g e"-*" sin 5x -f • • * 

9. In the power series expansion of [log (I + z) — log (I — z)] 
{\z\ < 1), set z = and equate imaginary parts to find the sum of the 
series 

S = r sin ^ sin 3<p + sin 5^ + • • • ; 

also note that 

log [p(cos ^ t sin 0)] = log (pe*®) = log p + 

and therefore show that 
„ 1 ^ 2rsin(p 
S - 2 a-rctan ^-—2' 

Thus show that the answer to Prob. 8 can be written in closed form as 
follows: 

2 sin X 
uiXf y) — - arctan -r-r— 

^ TT smh y 

Verify the answer in this form. Also trace some of the isotherms, 
uix, y) = a constant. 

60. Displacements in a Membrane. Fourier Series in Two 
Variables. Let z represent the transverse displacement at each 
point (x, y) at time t in a membrane stretched across a rigid 
rectangular frame in the x^z-plane. Let the boundaries of the 
rectangle be the lines x = 0, x = 2/ — 0, and y = If the 
initial displacement « is a given function /(a:, y), and the mem¬ 
brane is released from rest after that displacement is made, the 
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boundary value problem in z{x, y, t) is the following: 

- 2 4- 

dt^ “^32/7’ (1) 
2(0, y, t) = 0, 
z(x, 0, t) = 0, 

dz(x, y, 0) _ » 
at 

2(a:o, y, t) = 0; 
z(x, 2/0, 0 = 0; 

z{x, y, 0) = fix, y). 

In order that the product z = X(x)Y(y)T{i) be a solution 
of equation (1), its factors must satisfy the equation 

rpn vn rr// 

All three terms in this equation must be constant, since they are 
functions of x, t/, and t separately. Write 

then 

The solutions of these three equations, for which z — XYT satis¬ 
fies all the homogeneous boundary conditions, are 

X = sin ax, Y = sin %, T = cos 

where a = rmr/xo, and = rnr/yo (m, n = 1, 2, • • • ). 
So the function 

(2) 
00 00 

m-'l n*l 

COS 
/ . fni^ . nA . rmrx . nwy 

sin-sin —- 
Xo ya 

satisfies equation (1) and all the boundary conditions, formally, 
provided the coefficients A^n can be determined so that z = /(x, y) 
when i = 0; that is, provided 

(3) fix, 3/) = 2 2 ^ 
m 1 n ■■ 1 

. mwx . mry 
mn Hin - Sill ■- 

xq 2/0 

(0 g X ^ Xo, 0 g 2/ ^ 2/o). 

By formally grouping the terms of the series, equation (3) 
can be written 

(4) fix, y) = 2 (2 
. . mry\ . mirx 

sin —^ 1 sin • 
Vo O' Xo 



118 FOURIER SERIES AND BOUNDARY PROBLEMS [Sbc. 60 

For each fixed y between zero and yo this series is the Fourier 

sine series of the function f(x, y) of the variable x (0 g x ^ Xo), 
provided the coefficients of sin (m-Kxlxi^ are tliose of the Fourier 

sine series. So equation (4) is true in general if 

(5) sin 

» = 1 

Wiry 

yo 

2 f , . . rmx' , , 
= - /(*. y) dx'. Xo Jq Xo 

Again, using the formula for the Fourier sine coefficients of the 

functions Fmiy), where 

P'”‘(y) = |- f 2/) (0 ^ y g yo), Xo Jo Xo 

expansion (5) is valid if 

= — f ^m(y') «in dy'. 
2/0 Jo 2/0 

The series in equation (3) is then a Fourier sine series in two 

variables for/(x, y) provided its coefficients have the values 

. V . 4 . . mwx . 7nry , 
(6) = — dy \ fix, y) sin — sin dx. 

xo2/o Jo Jo Xo yo 

The formal solution of the membrane problem is then given 

by equation (2) with the coefficients defined by equation (6). 

According to equation (2), the displacement z is not in general 

periodic in since the numbers l{m-/xl) + (w“/2/o)]^ do not 

change by multiples of any fixed number as the integers m and n 

change. Consequently the vibrating membrane, in contrast to 

the vibrating string, will not generally give a musical note. It 

can be made to do so, however, by giving it the proper initial 

displacement. 

If, for instance, for any fixed integers M and iV, 

, j • Mttx . Niry 
y, 0) — A sm-sin — 

^ ^ Xo yo 

then the displacement (2) is given by a single term: 

zix, y,t) = A cos (vat 
. Mrx . 
sin-sm 

Xo 

In this case z is periodic in t with the period 

Niry 

{2la){Myxl + Nyyl)-^. 
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PROBLEMS 

1. Solve the above problem if the membrane starts from the position 
of equilibrium, z = 0, with an initial velocity at each point; that is, 

2. The four edges of a plate tt units scjuare are kept at temperature 
zero and the facies are insulated. If the initial temperature is /(x, y), 
derive the following formula for the temperature u{x, y, t): 

00 QO 

\ — k.(?n^ + 7i^)t\ sin mx sin r??/, 
m — 1 7< = 1 

where 
4 ^TT nir 

Arnu “ -r, I sin 7UJ dy I /(x, y) sin irix dx. 
Jo Jo 

3. When /(x, y) == .lx, show that the solution of Prob. 2 is 
u = ?/i(x, t)U‘>{y, i), where 

ui = 2.4 
(_J)h4 

i/2 -12 
1 - (-i)» 

-n^t fii Sin ny. 

Show that Ui and represent temperatures in cases of one-dirnensional 
flow of heat with initial temperatures .lx and I, respectively. 

4. Solve Prob. 2 if, instead of being kept at tem])erature zero, the 

edges are insulated. Note the result when/(x, ?/) = 1. 
6. If the faces x ^ x — w, y — 0, y — tt, z ~ 0^ z = t of a cube 

are kept at temperature zero and the initial temperature is given at each 
point u{x, y, z, 0) — /(x, ?/, z), show that the temperature function is 

u{Xj y, -2, 0 == 5) ‘^y 
ni~ l n p —I 

where 

Amnp = I I I fixy y, z) sin mx sin ny sin pz dx dy dz. 
JO Jo Jo 

6. When f(x, y, z) = 1, show that the solution of Prob. 5 reduces to 
u = U2{x, t)u2(yf t)ii2{z, 0, where the function Uo is defined in Prob. 3. 
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61. Temperatures in an Infinite Bar. Application of Fourier 
Integrals. Let the length of a homogeneous cylinder or prism 

be so great that it can be considered as extending the entire 

length of the x-axis. If the lateral surface is insulated and the 

initial temperature is given as a function /(x) of position along 

the bar, the temperature u(x, t) is the solution of the following 

boundary value problem: 

(1) (-00 <a:< oo,i> 0), 

(2) u{Xy +0) = f{x) (—00 < X < oo). 

Particular solutions of equation (I) which are bounded for all 

X and t (t ^ 0) are found by the usual method to^be 

(3) cos [a(x + C)], 

where a and C are arbitrary (*.onstants. Any series of these 

functions, formed in the usual manner by taking a as multiples 

of a fixed number, would clearly reduce to a periodic function 

of X when ^ = 0. But f{x) is not assumed periodic, and con¬ 

dition (2) is to be satisfied for all values of x; hence it is natural 

to try to use the Fourier integral here in place of the Fourier series. 

Since function (3) is a solution of equation (I), so is the 

function 

- /(x')c“®**' cos [a(x' — x)], 
IT 

where the parameters x' and a arc independent of x and t. The 

integral of this with respect to these parameters, 

(4) u{x, i) = l ( 
rr Jo 

is then a solution of equation (1) provided this integral can be 

differentiated twice with respect to x and once with respect to t 

inside the integral signs. 

When t = Oj the right-hand member of equation (4) becomes 

the Fourier integral corresponding to/(x). Hence if /(x) satisfies 

the conditions of the Fourier integral theorem, and if the function 

u(x, t) defined by equation (4) is such that u(x, 0) = i/(x, +0), 

then 

u(x, +0) = i[/(x + 0) +/(x ~ 0)], 

and this is condition (2) at each point where /(x) is continuous. 

j. da I /(x')e"®*** cos [a(x' — x)] dx', 
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The solution of the problem is therefore given, at least formally, 

by equation (4). By inverting the order of integration and using 

the integration formula 

X -»)*>- ^ “P [ - TT^’] « > •». 

equation (4) becomes 

This can be still further reduced by using a new variable of 

integration where 

_ x' — a: 

this gives 

(6) u{x, <) = -V r fi^ +2 Vkt 

When /(x) is bounded for all values of x and integrable in 

every finite interval, it can be shown that the function defined 

by equation (5) satisfies equation (1) and condition (2).* Under 

those conditions, then, the required solution is given either by 

equation (5) or by equation (6). 

PROBLEMS 

1, Derive the temperature function for the above bar if f(x) is periodic 

with period 27r. 

.4 ns. u(x, t) 

) COS [n{x^ — x)] dx\ 

2. If f{x) = 0 when x < 0, and f{x) = 1 when x > 0, show that the 
temperature formula for the infinite bar becomes, for ^ > 0, 

u{x,t) = J" 
2Vh 

3(2 5-21(2 ^kty 

‘ For a proof, see p. 31 of Ref. 1 at the end of this chapter. 
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3. One very thick layer of rock at 100°C. is placed upon another of 
the same material at ()°C. Jf k — 0.01 c.g.s. unit, find the temperatures 
to the nearest degree at points 00 cm. on each side of the plane of con¬ 
tact, 100 hr. after contact is made. Afis. 7G°C.; 24°C. 

62. Temperatures in a Semi-infinite Bar. If tho bar of the 

foregoing section extends only along tlu^ positi\^(* half of the 

a:-axis and the end = 0 is kept at t(unperatiire zero, the bound¬ 

ary value problem in the temperature function u(x, t) becomes 

the following: 

0) 
du , 

(a; > 0, < > 0), 

(2) m(+0, 0 = 0 {t > 0), 

(3) u{x, +0) = f{x) (x > 0). 

Tin’s solution can be formed from the function sin ax, 

which satisfies conditions (1) and (2). Multiplying this by 

(2/7r)/(x') sin ax' and integrating with rc'spc^ct. io the parameters 

a and x', which are indepcnident of x and t, the function 

2 r * r * 
(4) w(x, 0 = “ I sin ax da I /(x') sin ax' dx' 

’T Jo Jo 

is found. When t = 0, the integral on the right re^duces to 

the Fourier sine integral of /(x), which represents /(x) when 

0 < X < 00. 

If we write 

2 sin ax sin ax' = cos [a(x' — x)] — cos [a(x' + x)], 

the integration formula used in the fon'going section (;an be 

applied to reduce formula (4) to the form 

(5) ^ j 

when < > 0. This can be written 

(6) u(x, t) e-('f(x + 2Vkti)d^ 

+ 2 0 
X 

2VSt 
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These reisults can also be found directly from those of the last 

section by making /(x) there an odd function. Under the 

conditions stated in the preceding section, function (5) then 

satisfies all the conditions of the problem. 

PROBLEMS 

1. Whenf(x) — 1, prove tliat the ternperiiture in tlie semi-infinite bar, 
or in a semi-infinite solid x ^ 0, with its boundary x = 0 at zero, is 

T 

2 civil 
uix, t) = —y- I e -P 

Vtt Jo 

^ 2 [j; _ :r3 _ 
' Ly/kt 3(2 ^kty 5 • 2!(2 y/W 

2. Wlien the end a; — 0 is kept at temi)erature A and the initial 
temperature of the bar is zero, show that 

X (9 
I-I ^-{2 

VV Jo 

3. Show that wlicn a semi-infinite solid initially at a uniform temper¬ 
ature througliout is cooled or heated by keeping its plane boundary at a 
constant temperature, the times required for any two points to reach 
the same temperature are proportional to the squares of their distances 
from the boundary plane. 

Show that the function 

X --- 
== p c 

satisfies all conditions of the boundary value problem consisting of 
equations (1) to (3) when f(x) — 0. Hence this function can be multi¬ 
plied by any constant and added to the solution obtained above, to 
obtain as many solutions of that problem as we please. But also show 
that Ui is not bounded at x = t — 0; this can be seen by letting x 

vanish while = L 

63. Further Applications of the Series and Integrals. Many 

other boundary value problems, arising freciuciiitly as probhuns 

in engineering or geology, can be solved by the methods of this 

chapter. A few will be stated at this point. The derivation 

of the results given here can be left as problems for the student. 

a. Electric Potential between Parallel Planes, Tlie plane 2/ == 0 

is kept at electric potential F = 0, and the plane y = 6 at the 
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potential V — f{x). Assuming that the space between those 

planes is free of charges, the potential V{x, y) in the space is to 

be determined. 

It can be shown that 

<*) ''-li'Mr.-*>'*'• 
Problems of this type are idealizations of problems arising 

in the design of vacuum tubes. They are also problems in steady 

temperatures, or steady diffusion, in solids; hence their applica¬ 

tions are quite broad. The following problem is another of the 

same type. 

h. Potential in a Quadrant. A medium free of electric charges 

has the planes a: = 0 and y = 0 as its boundaries. If those 

planes are kept at electric potential F = 0 and V = /(a:), 

respective!}^, and if the potential F(x, y) is bounded for all x 

and y (x ^ Oj y ^ 0)y the formula for V(Xy y) is to be found. 

The result can be w^ritten, when y > 0, as 

® - F+7xV.?] 
When/(a:) = 1, this formula becomes 

(3) F = - arctan ~ • 
TT 2/ 

In this case the equipotential surfaces are the planes x = cy, 

where the constant c has the value tan (7rF/2). 

c. Angular Displacements in a Shaft. Let t) be the angular 

displacement or twist in a shaft of circular cross section with 

its axis along the x-axis. If the ends x = 0 and x = L of the 

shaft are free, the displacements ^(x, t) due to an initial twist 

B = /(x) must satisfy the boundary value problem 

d^e , d^B 
di‘‘ “ dx^’ 

dejo, t) dd{L, t) ^ 
dx ’ dx ’ 

= 0, dix, 0) = fix), 

where a is a constant. 
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The solution of this problem can be written 
00 

..v . 1 , mrx meat 
(4) ^ = 2^0 + ^ an cos cos ~-j~7 

where an (n = 0, 1, 2, * • • ) are the coefficients in the Fourier 

cosine series for/(a:) in the interval (0, L). 

d. The Simply Supported Beam. The differential equation 

for the transverse displacements ?/(x, t) in a homogeneous beam 

or bar was given in Sec. 12. At an end which is simply supported 

or hinged, so that both the displacement and the bending moment 

are zero there, it can l)c shown that dhj/dx^ must vanish as well 

as y. The displacements are to be found in a beam of length L 

with both ends simply supported, when the initial displacement 

is 2/ = and the initial velocity is zero. 

The result is 

/rN 2 . mrx nVet . nirx' , , 

y "" Tj ^ 77 ~U~ Jo ” i" ' 

where c is the constant appearing in the differential equation. 

PROBLEMS 

1. Write the boundary value problem in Sec. 53a above, and derive 
solution (1). 

2. Write the boundary value problem in Sec. 535, and derive solution 

(2). 
3. Obtain solution (3) from (2), and show that the function (3) 

satisfies all the conditions of the boundary value problem when/(x) = 1. 
4. Derive the solution (4) of Sec. 53c. Also show^ how this formula 

can be written in closed form in terms of the even periodic extension of 
the function/(x). 

5. Set up the boundary value problem in Sec. 53d, and derive solution 
(5). 

6. Derive the formula for the temperatures u{Xj t) in the semi¬ 

infinite solid X ^ 0, if the initial temperature is f(x) and the boundary 
x == 0 is kept insulated. 

7. Find the formula for the displacements 2/(x, t) in a string stretched 
between the points (0, 0) and (ir, 0), if the string starts from rest in the 

position y = f{x) and is subject to air resistance proportional to the 
velocity at each point. Let the unit of time be selected so that 

the equation of motion becomes 
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where h is a positive constant. 

Am, y — 
2‘-( 

1 ^ 

COS Knt + -7— sin K si sin nx, where 

Kn = ^/n^ — h'^, 

and hn arc the coefficients in the Fourier sine series for f(x) in the 
interval (0, tt). 

8. Let r(r, <p) be the electric potential in the space inside the cylin¬ 

drical surface r = 1, wlien the potential on this surface is a pven function 

f{(p) of (p alone. Note that ip) must he periodic in ip with ])eriod ‘Jtt; 

it must also be a continuous function within the cylinder, since the space 

is supposed free of charges. Derive the following formula for V(r^ <p): 

-2^0 + r'ion cos Uip + hn sin 7}<p), 

where a„ and are the Fourier coefficients of f{(p) for the interval 

(—TT, tt). 

9. In Prob. 8, suppose f(ip) — ~ 1 when —tt < v? < 0, a-nd f{(p) - 1 

when 0 < <p < ir, and show in this case that the potential formula can 

be written in the closed form 

V — - arctan 
TT 

2r sin ^ 
T^r2 

with the aid of the result found in Prob. 9, Hec. 49. 

10. From the infinite solid cylinder bounded by the surface r = c 

a wedge is cut by the axial planes ip = 0 and ip — ipo. Find the steady 
temperatures v(r, <p) in this wedge if ?/ = 0 on the surfaces ^ ~ 0 and 

ip = ^0, and u — f(ip) (0 < ip < ipo) on the convex surface of the wedge. 
» nr 

Am. u — ^ hjr/c)'^'^ sin {nTip/ipo)^ where 5« are the coefficients in 
1 

the Fourier sine series for/(<^) in the interval (0, ipo). 

11. If in Prob. 10, /(v?) == d, where .4 is a constant, show^ that the 
formula for ?/(r, ip) can be w'ritten in closed form with the aid of the 

result found in Prob. 9, Sec. 49. 
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CHAPTER VII 

UNIQUENESS OF SOLUTIONS 

64. Introduction. For the most part, our solutions of the 

boundary value problems in the last chapter were formal, in that 

we did not usually ai-bmpt to (\stablish our result comphd/ely, 

or to find conditions under which the formula obtained represents 

the only possible solution. We shall develop a few theorems 

here which will furnish the reader interested in such matters with 

a mathematically comph'te treatment of many of our problems. 

A multiplicity of solutions may actually arise when the problem 

is incompletciy stat(‘d. Also, it is generally not a simple matter 

to transcribe a physical problem completely into its mathe¬ 

matical foi*m as a boundary value problem. Consequently, the 

precise treatment of such problems is of practical as well as 

theoretical interest. 

Our first theorem (Abel’s test) enables us to establish the 

continuity of many of our results obtaincid in the form of 

series. The continuity property is useful both in demonstrating 

that our result is actually a solution of the boundary value 

problem, and in showing that it is the only solution. 

The remaining theorems give conditions under which not 

more than one solution is possible. It will be evident that they 

can be applied only to specific types of problems. But no 

“general” uniqueness theorem exists in the theory of boundary 

value problems in partial differential equations, in the sense that 

the same theorem applies to temperature problems, potential 

problems, etc. 

The uniqueness theorems given below are again special in 

that they require a high degree of regularity of the functions 

involved. But they will make possible a complete treatment of 

many of the problems considered in this book. 

66. AbePs Test for Uniform Convergence of Series. We now 

establish a test for the uniform convergence of infinite series 

whose terms are products of specified types of functions. Appli¬ 

cations of this test have already been made in the foregoing 
127 
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chapter, to establish the continuity of the solution of a boundary 

value problem (Sec. 46). 

The function represented by a uniformly convergent series 

of continuous functions is continuous. This is true regardl(\ss of 

the number of indc'peiident variables, as will be evident upon our 

recalling the method of proof for a single variable.* It is to 

be understood that the terms of the series are continuous with 

respect to all the indepcaident variables taken together, in som(^ 

region. The uniform conv('rgence of the series in this region 

then ensur(\s the same type of continuity of the sum of the seri(\s. 

A sequence of functions (n = 1,2, • • • ) is said to be i/m- 

formly bounded for all values of t in an interval if a constant X, 

independent of n, exists for which 

(1) iT’nWI < K 

for every n and all values of t in the int(u*val. The seqiien(;e is 

monotone with respect to n if either 

(2) TnUt) ^ TM) 

for every t in the interval and for ev(^ry n, or else 

(3) rn+l(0 S Tn{t) 

for every i and n. 

The following somewhat generalized form of a test due to 

Abel shows that when the terms of a uniformly convergent 

series ani multiplu^d l^y functions Tn{t) of the type just described, 

the new series is uniformly convergent. 

Theorem !• The series 

converges uniformly with respect to the two variables x and t together, 

in a closed region R of the xUplane, provided that (a) the series 
00 

^ X»(x) .converges uniformly with respect to x in R, and (b) for 

all t in R the functions Tn{t) (n = 1, 2, • • • ) are uniformly 

bounded and monotone with respect to n. 

Let Sn denote the partial sum of our series, 

8r.{x, t) = Xiixmt) + X2(x)T2(t) + • * • + Xn(x)Tr.(t). 

* See, for instance, Sokolnikoff, Advanced Calculus,p. 256, 1939. 
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We arc to prove that, given any positive number €, an integer 

N independent of x and t can be found such that 

t) ~ Sn{x, 01 < ^ li n > N, 

for all integers m = n + 1, n + 2, • • • , and for all t in the 

region R. 

If we write 

Sn{x) = X,(X) + X^{X) + • • • + Xn{x), 

then for every pair of integers m, n (m > n), we have 

(4) Sm - Sr. 
= 2 + ‘ * ‘ H" XmTm 

= (Sn-fl n+\ + (fin-^-2 ““ •^*n+l)^’n4 2 + * * * + (*S'm — 

= (Sn+l Sn)(Tr.^i — T + (^*71^2 “ tSn) (7^4-2 — 

+ ’ * * + — Sr^{Tm-\ — jTm) + {Sm — Sf^T m. 

Suppose now that the functions Tr. are nonincreasing, with 

respect to n, so that they satisfy relation (2). Also let K be an 

upper bound of their absolute' values, so that condition (1) is 

true. Then the factors (T„4.i — 7nH2), (7’n4-2 , in 

equation (4) are non-iKJgative, and |7"m| < K, Since the series 
00 

^ Xn(x) is uniformly convergent, an integer N can be found for 

which 

l«Sn+p — Sr.\ < ^ when n > A, 

for all integers p, where € is any given positive number and N 

is independent of x. For this choice of N it follows from equa¬ 

tion (4) that 

\Sfn — Sn\ < “* ^”+2) + {Tn+2 ““ Tn+s) 

+ • • • + |3r„|] = 3^ [Tn+l - 7’n. + \T„,\], 

and therefore 
— S»| < e, when n > N {m > n). 

The proof of the theorem is similar when it is supposed that 
the functions T„ arc of the nondecreasing type (3), with respect 

to n. 
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When the variable x is kept fixed, or when the functions 

Xn{x) are constants, the theorem shows that the series with 

terms XnTn is uniformly convergent with respect to t. Thc^ only 

requirement on the series in Xn in this case is that the scenes 

shall converge. 

Extensions of the theorem to the case in which the functions 

Xn involve the variable t as well as x, or wlu're Xn and Tn are 

functions of any number of variables, become evidc^nt when it 

is observed that our proof rests on tlui uniform converg(‘nce of 

the AVseries and the bounded monotone character, with respect 

to n, of the functions Tn- 

66. Uniqueness Theorems for Temperature Problems. Let li 
denote the region interior to a solid V)Ounded by a closc'd surfaces 

iS, and let R S denote the closed region consisting of the 

points within the solid and upon its surface. If ii{x^ ?y, 2, t) 

represents the temperature at any point in the solid at time' a 

rather general problem in the distribution of teinp('i*atures 

in an arbitrary solid is represented by the following boundary 

value problem; 

(1) = kV^u + ^(a:, y, z, t) {t > 0), 

at all points (x, y, z) in R; 

(2) u = fix, V, z) 

in R, when ^ = 0; 

(3) u = (7(x, y, z, t) (t > 0), 

when (x, y, z) is on S. 

This is the problem of determining the temperatures u in a 

solid with prescribed initial temperatures /(x, y, z) and surface 

temperatures gf(x, ?/, 2, 0* ^ continuous source of heat, whoso 

strength is proportional to <^(x, y^ z, t), may be present in the 

solid. 

Suppose there are two solutions 

u = ui(xy y, 2, 0, w = U2(x, y, z, t), 

of this problem, where both Ui and U2 are continuous functions 

of X, y, z, t, together, in the region R + S when t ^ 0, while 

dui/dt, dU2ldty and all the derivatives of Ui and U2 once or twice 
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with respect to either a:, y, or z are continuous functions when 

{Xj y, z) is in R + S and t > 0. 

Since ui and U2 satisfy each of the linear c.onditions (1) to (3), it 

follows at once that their difference w, 

w{x, y, z, t) = Ui{x, y, z, t) - Ui{x, y, z, t), 

satisfies the; following linear homogeneous i)rol)l(;m: 

(4) 
dw >

 il in R (t > 0) 

(5) w = 0 when t = 0, in R; 
(6) w = 0 on S (1 > 0) 

Moreover, w and its derivatives appearing in (filiation (4) must 

have the continuity properties required above; of u\ and U2 and 

theur derivative's. • 

We shall show now that w must vanish at all points of It 

fe)r all i > 0, so that the; two solutions anel U2 are identical. 

It follows that not more than ejne solution of the problem (1)- 

(3) can exist if the solution is re'quired to satisfy the continuity 

ejonditions stated above. 

Since the function w is e'ontinuous in 7^ + Sj the' inte'gral 

where dV = dx dy dz, is a cemtinuems functie^n of t whe'ii ^ ^ 0. 

According to condition (5), 

/(O) = 0. 

In view of the continuity e)f dw/dl whem ^ > 0, we can write 

j'it) m. 
‘//X 

dW 
wjidY 

vN^w dV (t > 0). 

Since the second derivatives e)f w with rcspee;t to each e)f the 

coordinates are continuous functions in R + S when / > 0, we 

can use Greenes theorem to write 

- XX 
=xxx 

dw 
w — dS 

dn 

wV^w dV + 
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Here n is the outward-drawn normal to the surface S. But 

according to condition (6), = 0 on aS, and so 

^ j j X Ks)’+(Ify+(s)’] (‘ > »)■ 
Since the integrand here is nevc^r negative, 

J\t) ^ 0 when t > 0. 

The mean-value theorem applies to J(i) to give 

J(i) ~ J(0) - tJ\U) (0 <ti < i), 

and since J(0) = 0, it follows that 

J(t) go whenever t > 0. 

However, the definition of the iiitcigral J shows that 

J(t) ^0 0). 

Therefore 

J(l) =0 ^ 0); 

and so the integrand of tht^ integral J cannot be positive 

in R, Consequently 

w(x, y, 2, 0 = 0 

throughout R + >8, when i ^ 0. 

This completes the proof of the following uniqueness theorem: 

Theorem 2. Lei u{x, ?/, t) satisfy these conditions of regu¬ 

larity: (a) it is a continuous function of x, y, z, /, taken together^ 

when (x, 2/, z) is in the region R + S and ^ ^ 0; (?>) those derivatives 

of u which are present in the heat equation (1) exist in R and are 

continuous in the same manner when t > 0. Then if u is a solu¬ 

tion of the boundary value problem (l)-(3), it is the only possible 

solution satisfying the conditions (a) and (5). 

Our proof required only that the integral 

dw 
w — dS 

dn 

in Greenes theorem be zero or negative. The integral vanished, 

since w == 0 on S because of condition (3); but it is n(‘ver positive 

if (3) is replaced by the condition 

(8) 
du 

dn 
+ hu = gix, y, z, t) on S, 

where A is a non-negative constant or function. So our theorem 

can be modified as follows: 
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Theorem 3. The statement in Theorem 2 is true if boundary 

condition (3) is replaced by condition (8), or if (3) is satisfied on 

part of the surface Sy and (8) on the remainder of S. 
The condition that u be continuous when t = 0 makes our 

uniqueness test somewhat limited. This condition is clearly 

not satisfied, for instance, if the initial temperature function is 

discontinuous in + >S, where the initial temperature on S is 

taken as the surface temix'rature. 

If the regularity conditions (a) and (5) in Theorem 2 are 

added to the requirement that u must satisfy the heat equation 

and boundary conditions, our temperature ])roblem will be 

completely stated provided it has a solution. For that will be 

the only possible solution. 

57. Example. In t he problem of temperatures in a slab with 

insulated faces and initial temperature f(x) (Sec. 476), suppose 

f{x) is continuous when 0 ^ :r ^ tt, and /'(x) is sectionally 

continuous in that int('rval. Then tlu' Fourier cosine series for 

/(x) converges uniformly in the interval. 

Let w(x, t) denote the function defined by the series 

oe 

(1) cos nx, 

which was obtained in Sec. 47 as the formal solution, a„ being 

the coefficients in the Fourier cosine series for/(x). 

Seriei5 (1) converges uniformly with respect to x and t togethc^r 

when 0 g X ^ TT and t ^ 0, according to Theorem 1. In any 

interval throughout which ^ > 0, the series obtained by differ¬ 

entiating series (1) term by term, any number of times with 

respect to either variable, is uniformly convergent according 

to the Weicrstrass M-test. It readily follows that u(x, t) not 

only satisfies all the conditions of the boundary value pioblem 

(compare Sec. 46), but that it is also continuous when 0 ^ x ^ tt, 

< ^ 0, and its derivatives du/dt, d^ufdx^ are continuous when 

0 ^ X ^ IT, > 0. That is, tt(x, t) satisfies our conditions of 

regularity. 

The temperature problem for a slab is just the same as the 

problem for a cylindrical bar with its lateral surface insulated 

[du/dn = 0); hence the region R can be considered here as a 

finite cylinder. Theorem 3 therefore applies, showing that the 
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function defined by series (1) is the only possible solution which 

satisfies the above regularity conditions. 

PROBLEMS 

1. In Prob. 7, Sec. 47, let f{x) be continuous, and f(x) sectionally 
continuous, in the interval (0, x), and suppose/(()) = fiir) = 0. Show 
that the solution found is the only one possessing the regularity prop¬ 

erties stated above. 
2. Make a complete statement of Prob. 8, Sec. 47, so that it has one 

and only one solution. 
3. Establish the solution of Prob. 10, Sec. 47, and show that it is the 

only possible solution satisfying the regularity i)roi)erties stated above. 

68. Uniqueness of the Potential Function. A function of 

X, z is said to be harmonic in a closed region li + wh(‘re S 

is a closed surface bounding a region R, if it is continuous in 

R S and if its second oi*dered derivatives with respect to 

X, 2/, and z are continuous in R and satisfy Laplace\s ('(piation 

there. 

Let U{x^ y, z) ))e a harmonic function whose derivatives of the 

first order are continuous in R + S. Then since 

(1) vm = 0 

throughout R, Green’s formula (7), Sec. 56, can be written as 

follows: 

This formula is valid for our function Uj even though we have 

not required the continuity of the second ordc^red derivatives 

of U in the closed region R + S. We shall not stop here to 

prove that, since = 0, this modific^ation of the usual condi¬ 

tions in Green’s theorem is possible.* 

If 17 = 0 at all points on S, the first integral in equation (2) 

is zero, so the second integral must vanish. But the integrand 

of the second integral is clearly non-negative. It is also con¬ 

tinuous in jB. So it must vanish at all points of R] that is, 

(3) 
dx dy dz 

* The proof is not difficult. See, for instance, p. 119 of Ref. 1 at the end 
of this chapter. 
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so that U is constant in R, But U is zero on S and continuous 

in R + S, and therefore C7 = 0 throughout R + S. 

Suppose that dUIdn^ instead of C7, vanishes on S; or, to make 

the condition more gc^neral, suppose 

(4) ^ + hU =0 on Sy 
^ ^ dn 

where h ^ 0, and h can be either a constant or function of x, yj 

and z. Then on Sj 

dU 
= ^hlP ^ 0, 

dn 

so that the integral on the left in equation (2) is not positive. 

But the integral on the right is not negatives Both integrals 

tlK^refore vanish and again condition (3) follows, so that U is 

constant throughout H. 

Of course U may vanish over part of S and satisfy condition (4) 

ov(ir the rest of the surface, and our argument still shows that U 

is constant in R. In this case the constant must be zero. 

Now suppose that the function V(Xy ?/, z), together with its 

d(u-ivatives of th(‘ first order, is continuous in R + Sy and let 

its derivative's of the' second order be continuous in R, Also let 

V{Xy y, z) be required to satisfy these conditions: 

(5) VW = / 

wIk'ii {Xy yy z) is in R] 

(6) + = ^ 

when {xy t/, z) is on the surface S. The prescribed quantitic's 

/, p, hy and g may be functions of {x, ?/, z); but it is assumed that 

p ^ 0 and A ^ 0. 

We have made boundary condition (6) general enough to 

include various cases of importance. When p = 0 on /S, or on 

])art of Sy the value of V is assigned there; and when h = 0, the 

value of dVfdn is assigned. Of course p and h must not vanish 

simultaneously. 

If F = Fi and V = V2 are two solutions of this problem, then 

their difference, 

f/ = Fi - 72, 
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satisfies Laplace^s equation (1) in /?, and the condition 

+ /iC7 = 0 

on aS. Since U is harmonic and has continuous derivatives 

of the first order in R + we have shown that U must bo 

constant throughout R + S, Moreover, if p = 0 at any point 

of aS, so that U vanishes there, then U — 0 throughout R + S. 

We therefore have the following unicpieuess theorem for 

problems in potential or steady temperatures, and other prob¬ 

lems in which tlu^ differential equation is that of Laplace or 

Poisson. 

Theorem 4. Let the function V{Xy y, z) be required to satisfy 

these conditions of regularity: (a) it is continuous, together urith 

its partial derivatives of the first order, in the region R + S; and. 

(b) its derivatives dW/dx^, d-V/dy"^^ and d^Yjdz^ are continuous 

functions in R, Then if V is a solution of the boundary value 

problem (5)-(6), it is the only p(fssihle solution satisfying the 

conditions of regularity, except for an arbitrary additive constant. 

If. in condition (6), p at any point of S, then the additive 

constant is zero and the solution is unique. 

It is possible to show that this theorem also api)lies wlum R 

is the infinites n^gion outside the closed surfac(‘ S, provided V 

satisfies the additional rc*(piirement that the absolute values of 

pV, .dV^ 
' dy’ 

o 

9“ 

d_V 

dz 

shall be bounded for all p greater than some fixed number, 

where p is the distance from the point (x, y^ z) to any fixed point.* 

Since V is required to approach zero as p becomes infinite, the 

additive constant in this case is always zero. But note that even 

here aS is a closed surface, so that this extension of our unique¬ 

ness theorem does not apply, for instance, to the infinite region 

between two planes or the infinite region inside a cylinder. 

The regularity requirement (a) in Theorem 4 is quite severe. 

It will not be satisfied, for instance, in problems in which V 

is prescribed on the boundary as a discontinuous function, or as a 

function with a discontinuous derivative of the first order. 

For the proof, see Ref. 1. 
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For problems in which V is prescribed on the entire boundary 

S [that is, p == 0 in condition (6)] of the finite region it is 

possible to relax the conditions of regularity so as to require 

only the continuity of V itself in R + S. The derivatives of the 

first and second order are only required to be continuous in R, 

This follows directly from a remarkable theorem in potential 

theory: that if a function is harmonic in R + S, and not constant, 

its maximum and minimum values will be assumed at points on 

S, never in R.* But this uniqueness theorem is limited in its 

applications to boundaiy value problems, because it does not 

permit such a condition as dVIdn = 0 on any part of S, a condi¬ 

tion which is often present or implied in the problem. Tliis will 

be illustrated in the example to follow. 

69. An Application. To illustrate the use of the theorem in 

the preceding section, consider the problem, in Sec. 49, of deter¬ 

mining the steady temperature u(x, y) in a rectangular plate 

with three cadges kept at temperature zero and with an assigned 

temperature distribution on the fourth. The faces of the plate 

are kept insulated. For the purpose of illustration it will be 

sufficient to consider h(*re only the case of the square plate with 

edge TT units long. We also observe that as long as dujdn = 0 

on the faces, the thickness of the plate do(\s not affect t he problem. 

We may as well consider this as a problem in the potential 

V{Xy y) in the finite region R bounded by the planes a: = 0, 

x = TT, 2/ = 0, 2/ = TT, and any two planes z = Zj, z = Z2. Then 

our boundary value problem can be written 

(1) 
dW dW 

dx^ dy^ 

(2) F(0, y) = 0, V{t, y) = 0, 

(3) V(x, 0) = fix), Vix, n) = 0, 

and of course, dVfdz = 0 on z = 2i and z = z^. 

The given function/(x) will be required here to be continuous, 

together with its first derivative, in the interval (0, x). It is 

also supposed that/"(x) is sectionally continuous in that interval; 

and finally, we require f{x) to satisfy the conditions 

m == /w = 0. 

*The proofs of these theorems will be found quite interesting, and not 
difficult to follow. See Refs. 1 and 2. 
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Then, according to our theory of Fourier series, the sine series 
for/(x), 

(4) 2 sin nx ? 

converges uniformly, and so does the cosine series for/'(a*), 
00 

(5) nhn cos nXy 

obtained by differentiating the sine series termwise. In demon¬ 
strating the uniform convergence of the Fourier series in Sec. 38, 

however, we proved that the series of the constants y/al + b\ 
converges. In the case of series (5), in which the sine* coefficie^nts 
are zero and the cosine coefficients are nhn, this means that the 
series 

^ |n6„| 

Since the absolute values of the terms of the 

00 

^ nhn sin nx 

are not greater than |n&n|, it follows from the Weierstrass test 
that the series (6) also converges uniformly. 

In addition to the conditions (1) to (3), let the unknown 
function V{x, y) be required to satisfy the regularity conditions 
(a) and (6) of Theorem 4. That is, V, dVIdx, and dV/dy must 
be continuous in the closed region = while 
dWIdx"^ and bWjdy’^ are required to be continuous at all interior 
points of the region. We shall call this a complete statement 
of the problem of determining the function V(x, y). For accord¬ 
ing to Theorem 4, this problem cannot have more than one 
solution, and we shall now prove that it does have a solution. 

The series derived in Sec. 49 as the formal solution of our 
problem can be written here as 

is convergent, 
series 

(6) 

i: f(x) sin nx dx 

sinh n(w — y) 
sinh nw 

sin nx. (7) 
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Let us show that this represents a function y) which satis¬ 

fies all the requirements made upon V in the complete statement 

of our problem, so that V = ^ (x, y) is the unique solution of that 

problem. 

To examine the uniform convergence of series (7), let us 

first show that the sequence of the functions 

/ON sinh njir - y) 
^ sinh mr * 

which appear as factors in the terms of that series, is mono¬ 

tone nonincTeasing as n increas(\s, for every y in the interval 

0^2/ = ^* This is evident when y — 0 and y = ir. It is true 

when 0 < 7/ < TT, i)rovid(Kl that the function 

T(t) = 
sinh bt 
sinh at 

alw^ays decreases in value as i grows, when i > 0 and a > ?> > 0. 

Now 

2r'(0 sinh2 at 
= 2b sinh at cosh bt — 2a sinh bt cosh at 
= — (a — h) sinh (a + b)t + (a + b) sinh (a — b)t 

' I a + b a — 6] 

= 

^2n+l 

{271 -j- 1)! 

The terms of this s('ri(\s are positive, so that 

r{t) < 0, 

and T{t) decreases as t increases. Therefore functions (8) never 

increase as n grows. 

Likewise the functions 

cosh n(w — y) 
sinh mr 

(O^y^T) 

never increase in value when n grows; because the squares of 

these functions can be written as the sum 

1 , sinh^ njv — y) 
sinh^ tit sinh^ mr ^ 

(10) 
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and as n grows the first term of the sum clearly decreases, while 
the second was just shown to be nonincreasing. 

Functions (8) arc clearly positive and not greater than unity 
for all values of y and n involved. Functions (9) are also uni¬ 
formly bounded; this is evident from the expression (10) for 
their squares. 

Therefore the sequence of functions (8), or of functions (9), 
can be used in our form of Abel’s test for uniform convergence. 
So, from the uniform convergence of th(^ sine and cosine series 
(4), (5), and (6), when 0 ^ x ^ tt, we conclude not only that 
our series (7) converges uniformly with respect to y in the 
region 0^2/ = but also that this uniform con¬ 
vergence holds true for the series 

00 

2 nhn 
sinh n(7r — y) 

sinh mr 
cos nx, 

obtained by differentiating series (7) with respect to x, and for 
the series 

-2 nhn 
cosh nU — y) 

sinh nir 
sm nx, 

obtained by differentiating series (7) with respect to y. 
Consequently series (7) converges to a function ^(x, y) which, 

together with its partial derivatives of the first ord(u-, is con¬ 
tinuous in the closed region O^x^tt, The func¬ 
tion yp clearly satisfies boundary conditions (2) and (3). 

When differentiated twice with respect to either x or y, the 
terms of series (7) have absolute values not greater than thii 
numbers 

(11) ~ - ' ' sinh nw 

for all X and y in the region 0 S x ^ Wj yo ^ y ^ where yo is 
any positive number less than tt. Since the series of the constants 
(11) converges, the series of the second derivatives of the terms 
of series (7) converges uniformly in the region specified. Hence 
series (7) can be differentiated termwise in this respect whenever 
0 < y < t; also the derivatives d^jdy^ are continuous 
whenever 0^x^Wf0<y^w. 
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Thus yl/{x, y) satisfies the regularity conditions. It only 

remains to note that it satisfies Laplace^s equation (1) in R. 

This is true because the terms of series (7) satisfy that equation, 

and scries (7) is t(u*mwise differentiable twice with respect to x 

and to y in R, so that Theorem 2, Chap. I, applies. 

The only solution of our completely stated problem is therefore 

V = 2 bn 
sinh n(7r — y) 

sinh nir 
sin nx. 

In particular, note that we have shown that our complete 

problem, which includes the condition that dYjdz = 0 on iho, 

})Oundaries z -- and z = 22, has no solution which vari<\s with z. 

In the formal treatment of the problem given earlier, tlie absence 

of the variable z was regarded as iihysically evident. In the 

jirescnt section we have omitted the term dWIdz^ in Laplace’s 

equation, and at other times have neglected writing the variable 

Zf only as a matter of convenience. 

PROBLEMS 

1. Show that the formal solution found in Sec. 40 can be completely 
established as one possible solution of the boundary value problem 
written there, provided the function fix) is sectionally continuous in the 
interval (0, a) and has one-sided derivatives there, imdfix) is defined to 
have the value [fix 4* 0) -f fix — 0)]/2 at each point x of discontinuity 

(0 < X < a). 

2. Make a complete statement of the boundary value problem for the 
steady temperatures in a square plate with insulattid faces, if the edges 

a; = 0, a; = TT, and y — 0 are insulated, and the edge ytt is kept at 
the temperature u == fix). Assume that f'ix) is continuous when 

0 ^ a; ^ TT, and that /'(O) = /'(tt) = 0. Show that your problem has 

the unique solution 

cosh ny 
cosh nir 

cos nx fix) cos nx dx 

3. Establish the result found in Prob. 5, Sec. 49, as a solution (but 
not as the only possible one) of the boundary value pr<^blem, when the 

function fix) there is represented by its Fourier sine series. 
4. In Prob. 8, Sec. 53, let the infinite cylinder be replaced by a finite 

cylinder bounded by the surfaces r = 1,2; == 21, « =*= 22, on the last two 
of which dV/dz = 0. Also let the periodic function/(^) have a con- 
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tinuous second derivative. Then show that the result found there is 

actually a solution, and that it is the only possible solution of the 

problem satisfying our conditions of regularity. 
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CHAPTER VIII 

BESSEL FUNCTIONS AND APPLICATIONS 

60. Derivation of the Functions J„(x). An}' solution of the 

differential equation 

(1) + + = 

known as Bessd\^ equation, is called a Bensel function or cylindrical 

function. It will be shown later on liow this equation arises 

in the proc(‘ss of obtaininji; particular solutions of the partial 

differential ecpiations of physics, written in cylindrical coordi¬ 

nate's. We shall let the parameter n be any real numb(‘r. 

A particular solution of Besse'bs eejuation in the form of a 

poweu* series mult iplied by where p is not lu'cessarily an integer, 

(^an always b(^ found. Let Uo be the coefficient of the first non¬ 

vanishing teu’in in such a series, so that Uq 9^ 0. Then our pro¬ 

posed solution has the form 

00 00 

(2) y = a,x' = ^ o,x’’+’. 

If the series here can be differentiated termwise, twice, the 

coefficients ay can be determined so that the scTies is a solution 

of equation (1). For upon differentiating and substituting in 

equation (1), we obtain the equation 

X [(p + J)(P + i - 1) + (p + 3) + - «■■*)]«,= 0. 
i = 0 

Dividing through by and collecting the coefficients of the 

powers of a:, we can write the equation in the form 

(p2 _ n^)aQ + t(p + 1)^ — 

143 
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This is to be an identity in x, so that the coefficient of each 

power of X must vanish. The constant term vanishes only if 

p = ±n. The second term vanishes if Oi = 0; and the coeffi¬ 

cients of the second and higher powers of x all vanish if 

[(p + jy - + a;-2 = 0 O' = 2, 3, • • • ); 

that is, if 

(p - ft +i)(p + n +j)a, = -a;_2 (j = 2, 3, • • • )• 

This is a recursion formula for ay, giving each coefficient in 

terms of one appearing earlier in the series. 

L()t us make the choice 

P = 

so that the recursion formula b(H‘omes 

(3) .;(2n + j)aj = ~ay..2 (j = 2, 3, • • • ). 

Since ai = 0, it follows that Og = 0; hence = 0, etc.; that is, 

(4) a2k~y = 0 (fc = 1, 2, • • ), 

provided n is such that 2n + i 0 in formula (3). But even 

if 2n -}- j does vanish for some integer j, coefficitmts (4) still 

satisfy formula (3). Since this is all that is required to find a 

solution, we can take all the coefficients a^k-i as zero regardless 

of th() value of n. 

Replacing j by 2j in formula (3), we can write 

jj ^^27-2 (j — 1, 2, • ' • ), 

provided n is not a negative integer. Replacing j by j — 1 here, 

we have 

-1 
“^'-^-2Hy-i)(ft+j-i)“^'"‘’ 

so that 
(-1)2 

" 2i{j-l)in+j)(n+j - 1) 

Continuing in this manner, it follows that 

a« = (-l)*04,-_2*/[2“j(j - 1) • • . (y - A: + 1) 
(ft +j)in+j - 1) • ■ • (ft + i - fc + 1)]; 



Sec. 6t] BESSEL FUNCTIONS AND APPLICATIONS 145 

80 that when k = we have the formula for a^j in terms of a^: 

__( 1) _/ * __ 1 9 . , . \ 

~ 22'j!(n + j){n + j - 1) ■ ■ ■ Jn + 1) ^ ~ 

The coefficient ao is left as an arbitrary constant. Let its 

value be assigned as follows: 

1 
““ 2»r(n + !)■ 

Recalling that the Gamma function has the factorial property 

kr(k) = r{k + 1), 
it follows that 

(n +j){n + j - 1) • * • (n + 2)(/i + l)r(^i + 1) 

= T{7l+j + l), 

Our formula for a^j can therefore be written 

(5) a2; = + j + 1)2'*-^ 2,' 0* = 2, • • • ), 

where j! = 1 if j = 0. 

The function rcpr('sent(Hl by series (2) with (coefficients (4) 

and (5) is called a Bessel function of the first kind of order n: 

<« 1 (!)■"' 

r x^ 

"" 2"r(n + 1) ” ^2« + 2) 

■*" 2 • 4{2n + 2)(2n + 4) 

The series in brackets is absolutely convergent for all values 

of X, according to the ratio test. It is a power sc^ries, so that 

the termwise differentiation emi)loyed above is valid, and hence 

function (6) is a solution of BccsseFs equation. Of course, when 

n is not a positive integer, Jn{x) or its derivatives beyond a 

certain order will not exist at a: = 0, because of the factor 

61. The Functions of Integral Orders. Whc'.n n = 0, the 

important case of the function of order zero is obtained: 

X^ X^ 
Jq(x) = 1 — ^ + 22 . ^ ”” 2^ • 42 • 02 + * ' ’ * 
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Wlieii n is a negative integer, the choice p — —n can be made 

and the recursion formula (3) of the last section gives the coeffi¬ 

cients just as before. If, in this case, 

r(-ra + l)’ 
the solution of Bessel’s equation will be found to be 

(1) ''-SiTfr:: 
(-ly 

,=0 
j\r{-n +j + 1) (i)' 

n+2; 

Now if we define 1 /r(p) to b(^ zero when 30 = 0, —1,-2 * • • , 

formula (6) of the last section can be uscid to dt^fine a function 

Jn(x) even when n is a iK'gative integer. For if n = —m, where 

m is a positive integer, that formula becomes 

~ 2/!r(- 
(-1)' 

JlY(-m + j + 1) (0 
—»n 4 2; 

Summing with respect to k, where fc = — m + i, this can be 

written 

/ i\fc /„\»>»4-2A; 

/_„(x) = (-!)-» 2 i 
^*0 

(-1)^_/xV 
m)\r(k + 1) \2/ {k + m) !l 

_(zjy_ 
klV{7n + A; + 1) \2 

m-{'2k 

But the last series represents Jmix); hence for functions of 

integral order, 

(2) J^(x) = (-i)^JUx) (m = 1, 2, 3, • • • ). 

According to solution (1) now, the function y = (~l)Vn(a’), 

and hence the function y — Jn{x) is a solution of BesseFs equa¬ 

tion when n is a negative integer; hence the fu7iction defined by 

equation (6), Sec. 60, is a solution for every real n. 

When n is neither a positive nor a negative integer, nor zero, it 

can be shown that the particular solution J-^n(x) obtained by 

taking p = is not a constant times the solution Jn{x); hence 

the general solution of BesseFs equation in this case is 

y = AJn{x) + BJ-.n{x), 

where A and B are arbitrary constants. 
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When n is an integer, the general solution of Bessers equation is 

y = AJn{x) 4* BYn(x)y 

whore Yn{x) is a Bessel function of the second kind of order n. 

Theses functions will not be used here. For their derivation 

and properties, as w(ill as for a more extensive treatment of the 

theory of Bessel functions of the first kind than we can give 

here, the reader should consult the references at the end of this 

chapter. 

There are several other ways of defining the functions Jn(x). 

When n is zero or a positive or negative integer, the generating 

function exp ~ 1/0], i« often used for this purpose. By 

multiplying the two series 

it can be seen that 

(3) exp “ l)] "" 2 

== Jo(x) + Ji{x)t + J2(x)t’^ + * • • 

+ + J-.2{x)t~^ + • ' • , 

for all values of x and i except t — 0. Hence Jn{x) can be defined 

as the coefficients in this expansion. It is on the basis of this 

definition that the above choice of tbe constant ao was made. 

PROBLEMS 

1. Prove that 

2. Prove that 

3. Derive solution (1) when n is a negative integer. 

4. Carry out the derivation of formula (3). 

6* Show that, for every n, 
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62. Differentiation and Recursion Formulas. By differenti¬ 

ating the series 

(I) 

it follows that 

''O ( — 1)' 
^mn+j+ 1)\2) ’ 

00 

= nJn{x) -t- ^ (-1)' 
(j- l)!r(n+j + l)V2 

n+2;—1 

= nJ„(x) - ^ 2h fc!r(n -h A; + 2) V2 

n4'14-2fc 

That is, 

(3) xJ'^{x) = nJn(x) ~ xJn+i(x). 

Similarly, if wc write n + 2j = 2{n + j) — n in the sec¬ 

ond member of equation (2), and replace r(n + j + 1) by 

(n + j)T{n + j)j we obtain the relation 

that is, 

(4) xJ'^(x) = —nJn(x) + xJn^i(x). 

Elimination of Jn(x) between equations (3) and (4) gives the 

formula 

(5) 2J'„{x) = - Jn+,(x):'^ 

and the elimination of J^ix) between the same two equations 

gives the formula 

(6) - Jn{x) = J^l(x) + J„+l(x). 
X 

The recursion formula (6) gives the function Jn+iix) of any order 

in terms of the functions J„(x) and Jn~i(x) of lower orders. 

By multiplying equation (4) by and equation (3) by 

we can write these formulas, respectively, as 

= -X-^Jn+lix)/ 
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The following consequences of the above formulas should be 
noted; 

J'(^) = 

(7) j%J„{r)dr ^ xJ,{x). 

PROBLEMS 

1. Obtain formula (7) above. 
2. Prove that 

xM”{x) = [n(n — 1) — x'^]Jn{x) + xJn+\{x), 

3. With the aid of Probs, 1 and 2, Sec. 61, prove that 

Jlix) = 

sin x 
— — cos x 
X > 

4. When n is half an odd integer, show that ./«(x) can always be 

written in closed form in terms of sin x, cos x, and powers of 1/VT. 

63. Integral Forms of /«(/), Lot us first n^call that the Beta 
function is defined by the formula 

B{n + i, j + i) = 2 jT" .sin-" 0 cos-’' 0 de (n > —j > 

Let j be zero or a positive ini(‘ger. Then 

B{n + I, i + i) = Jj sin^" 0 cos 0 <10 (n > — 

This function is given in terms of thc^ Gamma function by the 
formula 

B (n -f 1. j + 0 r(H -f Ti)i'(j -|- i) 

T{n+j + l) ’ 

and as a consequence we shall be able to write the general 
term of our .serje.s for Jnix) in terms of trigonometric integrals. 

Our formula for J„(x) can be written 

Now 

/„(x) = 
^2='j!r(« +j + !)■ 

_1_ _ i ' Y ' ¥ ' ' ' 0 ~ i)l'('g) 
2*'j!r(n +j + l) (2j) !T(n + T+ 1 )r(ir 

r(j + i) ^ B{n+lj+i) 

“ (2j!)r(n +j + l)r(i) (2i)!r(i)r(n + i)' 



160 FOURIER SERIES AND BOUNDARY PROBLEMS [Sec. 63 

Therefore 

(1) j„{x) = Cn 2 ® ^ 

(x/2)" 
where 

^ r(i)r(n + i)- 

When n ^ 0, the sori(\s 

2(-i) 

(2j)! 
sin- C082? ^ 

eonverg€\s uniformly with respect to 6 in the interval (0, tt); 

because^ the absolute values of its terms are not greater than the 
corresponding terms of the (^onv(urgent series 

and the terms here are independent of 6. The first series can 
therefore be integrated termwise with r(\spect to 0 over the 
interval (0, tt). In other words, the integral sign in formula 
(1) can be written either before or after the summation sign. 
Therefore, 

Jn(x) J ^ 2 ~(2^ oy^^'dB, 
Since the series in the integrand represents cos {x cos 6), 

(3) /n(^) = Cn sill^"* d cos {x COS 6) dSj 

where Cn is defined by formula (2). 
Formula (3) gives one of LomnutVs integral forms of Jn{x), 

Although the above derivation holds only for n ^ 0, form (3) 
is valid when n > —This can be shown by writing the first 
term in series (1) separately and integrating the remaining terms 
by parts to obtain the equation 

Jn{x) - Cn sin^" B dS 

{-iyx^i2j - 1 
(2i)! 2n + l 

J gin2n+2 0 0 do , 
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if n > — Here again the second integral sign can be written 

before the summation sign, and the series in the integrand can 

be seen to represent the function 

_siii2"^ ^ 0 d /cos {x cos ^) — 1 

2n + 1 \ cos 6 

The details here are left to ih(‘ reader. Integrating this by 

parts and adding the first integral in bra(jkets gives formula (3) 

for n > — 

When n = 0, formula (3) l)ecomes 

1 f’" 
Jo(j*) = ~ I cos {x cos 6) do, 

^ Jo 

When n = 0, 1, 2, • • * , the following integral form is valid: 

(4) Jn{jc) = ~ I cos {nO — X sin B) dd (y?- = 0, 1, 2, * • • ). 
^ Jo 

This is known as BcifscVs integral fimn. By writing the int(‘grand 

as 

cos nB cos {x sin B) + ^^in 'nB sin {x sin B), 

it can b(i secai that formula (4) reduces to 

(5) J-„{x) = ~ I cos 7iB (^os (.r sin B) dB if n = 0, 2, 4, • * • ; 
TT Jo 

(6) Jn{x) = “ I sin nB sin {x sin B) dB if y/ = 1, 3, 5, • • • . 
TT Jo 

Th(\s(^ forms can be obtained from formula (3), Sec. 61. By 

su1>stit\iting t = in that formula, we find that 

(7) cos (x sin B) + i •‘^in (j* sin B) 
00 00 

= Jn{x) + 2 V Jin{x) cos 2ne + 2i V J2„_i(x) sin (2«. — 1)0. 
— 1 « “ 1 

Equating real parts and imaginary parts sei)arately here, and 

multiplying the resulting equations by sin 7iB or cos 7iB and 

integrating, using the orthogonality of these functions in the 

interval 0 < ^ < tt, we get formulas (5) and (6). Formula (4) 

follows by the addition of the right-hand members of formulas (5) 

and (6). The details are left for the problems. 
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From formula (4) the important property of boundedness 

|Jn(a;)| (n = 0, 1, 2, • • • ), 

follows at once. It also follows from the same formula that 

each derivative of /»(x) is bounded for all x: 

Jnix) S 1 (n = 0, 1, 2, • • • ;fc = l,2, • • • ). 

According to formula (5), 

2J2n(x) == a2n (n = 1, 2, * * * ), 

where an denotes the coefficients in the Fourier cosine series, 

with respect to of the function cos (x sin 6), Similarly if bn 

denotes the coeffichints in the Fourier sine series of the function 

sin (x sin d), formula (6) shows that 

2J2n-i(x) = b2n~i (n == 1, 2, * ‘ 

Since the Fourier coefficients of every bounded integrable 

function tend to zero as n tends to infinity, it follows that for 

every x the Bessel functions of integral orders have the property 

lim Jn{x) = 0. 
n—►« 

As to the behavior of the functions J„{x) for large values of x, it 

can be shown that 

(8) lim J„{x) = 0 (n = 0, 1, 2, • • • ). 
X—► 00 

The proof is left to the problems. 

PROBLEMS 

1. Use the Lommel integral form of /»(x) to prove that 

2. Prove in different ways that 

Jn{-x) = (-1)-J»(x) (n = 0, 1, 2, • • • ), 

and hence that J.(x) is an even or odd function of x according as n is an 
even or odd integer. Also deduce that 

= 0 (n - 1, 2. • • . 
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3. Prove in different ways that 

Jo(0) - 1. 

4. Obtain formula (7) above by the method indicated there, and 
follow the process outlined to derive Bessel’s integral forms (5) and (6), 
and thence (4). 

5. Deduce from formula (5) that 

TT 
2 P2 

Jinix) = - I COS 2nB cos (x sin B) dB (n == 0, 1, 2, • • • ). 
Jo 

6. Deduce from formula (6) that 

2 ri 
J^n-\{x) = “ I sin (2n — 1)B sin (x sin B) dB (n = 1, 2, * * • ). 

Jo 
7. Write the integral in Prob. 5 as the sum of the integrals over the 

intervals (0, t/2 — rj) and (‘jr/2 — rj, t/2), where > 0, and thus show 
that 

ir / M ^2 1 f2~’'co8 2n^ , . nN m 
\j2n(x)| ^ 5 I qos T + 2 

By integration by parts, show that the absolute value of the integral 
appearing here is not greater than a positive number M,, independent 
of X, Hence, given any small positive number e, by first selecting rj 

sufficiently small and then x large, show that 

|j'2n(x)| < 6 when x > Xq, 

This establishes formula (8) when n = 0, 2, 4, • • , there. 
8. Apply the procedure of Prob. 7 to the formula in Prob. 6, and thus 

complete the proof of formula (8). 
9. Note that the functions cos (x sin B) and sin (x sin B)j of the vari¬ 

able By satisfy the conditions in our theorem in Sec. 38; also, since they 
are even and odd functions, respectively, the series of absolute values 
of their Fourier coefficients converges. Deduce that the series 

00 

n “0 

is absolutely convergent for every x. 

64. The Zeros of Jn{x), The following theorem gives further 
information of importance in the applications of Bessel functions 
to boundary value problems. 
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Theorem 1. For any given real n the equation Jn{x) == 0 has an 

infinite number of real positive roots :ri, ^2, * • * , , 

which become infinite with m.. 

This will first be i)roved when — i < n ^ The proof for 

every real n will then follow from Kollo’s theorem. For if 

Jn(x) vanishes when x = Xi and x = 0*2, for any real then so 

do x\Tn{x) and x~^Ju{x), and hence tln^ir derivatives vanish 

at least once between 0*1 and .r2. But it was shown in Sec. 62 that 

these derivatives are x'*^Jn~\{x) and — a-“Vn-fi(x), respectivady. 

Therefore between two zeros of Jjfx) there is at least one 

zero of Jn-i{x), and one of t/«-}.i(:r). So if there is an infinite 

numbea* of zeros of Jn{x) wh(‘n — ^ < n ^ the same is true 

when n is diminislu^d or increased by unity, and repcititions of 

the argument show the same for any real n. 

For the proof when wc shall use the Lommel 

formula derived in the last se(*tion; namely, 

(1) Jn{^) = p^Ty]v^7' Yj I sin-'* 9 cos {x cos 9) d9. 

Now suppose that x is confined to the alternate intervals of 

length 7r/2 on the positive axis; that is, 

X = mir + ^t, 

where m = 0, 1, 2, • • • , and 0 ^ ^ ^ 1. Also let a new 

variable of integration X, when^ 

cos 9 = 
IT X, 

be introduced into the integral in formula (1). Then the 

integral becomes 
2x 

T cos (7rX/2) dX 

2^ [1 - (7rX72xpf^' 

and except for a factor which is always positive, this can be 
written 

(2) 
Jo 

cos (■7r\/2) dk 
[{2m + iy- 
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The sign of Jn{x) is therefore the same as the sign of integral 

(2) . That integral can be broken up into this sum of int(^grals: 

(3) —/i + /2 — /a + • * * + + ( — 1 

where 

/y = (-1)^ 

n 

■z 

cos (irX/2) d\ 

2 [(2m + <)'•' 
'27n\-t 

i-n 

(j = 1, 2, 

r J2n 

- X2J-nii 

COS (7rX/2) d\ 

[(2m + ty 

Now let Ij be brokcm up into the sum of two irib^grals, one 

over the interval (2j — 2, 2j — 1) and the other over the interval 

(2j — 1, 2j). By substituting a new variable of integration /i 

int o th(iso int.egrals, where 

in the first, and 
X == 2j - 1 - M 

X = 2j — 1 + /X 

in the second, it will be found that 

where 

Fy(M) - [(2m + 0^ - (2j - 1 + 
- [(2m + ty ~ (2j - 1 - 

Since n — ^ 0, the function F;(/i) is never negative. By 

letting j assume continuous values and differentiating Fjifj) with 

respect to j, we find that tliis function always iiicr('as(\s in value 

with j. 

The integral Ij is therefore a positive^ inen^asing function of j; 

that is, 
= ••• ^ I 

Furthermore Ilm is not lu^gativc^; because llu' mimerator 

cos (7rX/2) 

in the integral there can be written as ( — 1)''' cos (7r/x/2) when 

X = 2m + M, and cos (Trn/2) is positive. 
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Now the sum (3) can be written 

+ (Im ~ /m-l) + (/m-2 “ /m-s) + * * * ]> 

where the final term in the brackets is (/2 — /i) if m is even, and 

/i if m is odd. The quantity in the brackets is therefore positive, 

and consequently the sign of Jn{mT + Trt/2) is that of ( —1)”*; 

that is 

Jr, ^ > 0 if m = 0, 2, 4, • • • , 

<0 if m = 1, 3, 5, • * • . 

Since Jn{x) is a continuous function of x, its graph therefore 

crosses the x-axis between x = 7r/2 and x = tt, and again between 

X = 37r/2 and x = 27r, and so on, when < n g That is, 

Jn{x) vanishes at an infinite number of points x = Xi, X2, * * * , 

where Xm tends to infinity with m. The theorem is therefore 

proved. 

It follows at once from Rollers theorem that the equation 

j:ix) = 0 

also has an infinite number of positive roots x^ (m = 1, 2, • • • ), 
and xi, tends to infinity with m. 

It should be observed that whenever Xw» is a zero of Jr,{x), the 

number — Xm is also a zero. This is true for any n, as is evident 

from our series for Jn{x), Sec. 60. 

The difference between successive roots of J«(x) == 0 can be 

shown to approach ir as the roots become larger. 

Tables of numerical values of Jn{x), and of the zeros of these 

functions, will be found in the references at the end of this 

chapter.* We list below the values, correct to four significant 

* See Refs. 1, 3, and 4. 
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figures, of the first five zeros of and the corresponding 

values of Ji{x), 

JoiXm) = 0 

m 1 2 3 4 5 

Xfn 2.405 8.654 14.93 
Jl(Xm) 0.5191 1 ^0.3403 0.2715 1 -0.2325 0.2065 

The graphs of the functions Jo(a*) and Ji{x) are shown in 

Fig. 9. 

PROBLEMS 

1. Draw the graph of J\(x). (See Prob. 2, Sec. 61.) 
2. Draw the graph of J-\{x). (See Prob. 1, Sec. 61.) 
3. Draw the graph of J2{x) by composition of ordinates, using recur¬ 

sion formula (6), Sec. 62, and the graphs of Jq{x) and J\{x), 

66. The Orthogonality of Bessel Functions. Since Jn{r) satis¬ 

fies BessePs equation, we can write 

rV^(r) + rJn(r) + {f - n^)Jn(r) = 0. 

Substituting the new variable a:, where r = Xx and X Ls a constant, 

it follows that 

x^ ^ ^ ./n(Xx) + (X^x^ — nr)Jn(\x) = 0; 

that is, f/n(Xx) satisfies BessePs equation in the form 

Tx L " ?) 

For each fixed n this form is a special case of the Sturm-Liou- 

ville equation 

with the parameter written as X^ instead of X (Sec. 24). The 

function r(x) == x here; hence it vanishes vhen x = 0. It 

follows from Theorem 3, Sec. 25, that those solutions of equation 

(1) in an interval 0 < x < c, which satisfy the boundary condition 

Jn0<c) = 0, 
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form an orthogonal set of functions on that interval, with 

respect to the weight function p{x) = x. It will be obwserved 

that in this case q{x) = —n-Jx, so it is discontinuous when 

X = Oy unless n = 0; but this does not affect the proof of the 

theorem. 

Now Jn(Nx) is a solution of equation (1), and it was shown in 

the last section that Jn(Xc) = 0 if \c = xj 0’ = 1, 2, • • • ), 

where xj are the positive zeros, infinite in number, of Jn(x). Let 

X/ denote the corresponding values of X, so that 

Then the functions Jn(XyT) (,7 = 1, 2, • • • ), are orthogonal 

provided their derivatives J^X^jX) are continuous. I'liis is 

true except possibly at x = 0, and if ^ 0 an insj^ection of the 

series for Jn shows that xJ!^{\jx) vanishes at j = 0, whic^h is all 

that is necessary in th(‘ theorem. The result can be stated as 

follows: 

Theorem 2. Let Xy (j = 1, 2, • • * ) be the positive roots of the 

equation 

(2) Jn(Xr) = 0, 

where n is fixed and n ^ 0. 7‘hen the functions ./„(Xij), ./n(X2x), 

• • • form an orthogonal set in the interval (0, c) with respect to the 

weight fujiction x; that iSj 

(3) xJrXKx)Jn(\hX) dx = 0 fc 5^ j. 

No new functions of the set are obtained by using the negative 

roots of equation (2), for an inspection of the series for Jn shows 

that 

Jni-hjX) = i-^yJniXjX), 

It should be carefully noted that n is the same for all functions 

of the set; hence an infinite number of sets has been determined 

here, one for each n {n ^ 0). 

Another boundary condition at :r = c which gives still other 

orthogonal systems can be seen by examining the proof of the 

above theorem. For any two distinct real values Xy and \k of 

the parameter X, the functions Jn(Xyx) and Jn{XkX) satisfy 



Sec. 65] BESSEL FUNCTIONS AND APPLICATIONS 159 

equation (1); hence 

A 
dx 

£ 
dx 

X ^ Jn{\kX) 

- t) 

( + lX|a; 

J - 0| 

^ Jn{\kX) = 0. 

Multiplying the first of these equations by J„(X*x) and the 
s(!cond by J„(\jx), tlu!u subtracting and integrating, we find that 

(X| — X^) xJni\jx)J„(\kx') dx 

" i" s [* 

(lx 
[x;^J„(X,:r)]} 

,x)j rfx. 

dx 

When 7/ ^ 0, both t(‘rms in th(^ brackeis in the last expression 
vanish when j = 0; hence 

(4) (X? - \l) JT" xJ„(X,x).7„(Xa-x) dx 

cX7-«/n(XyC)t/^(X|rC) cXjrt/n(X]tC)J^^(XyC)j 

where »/Jj(Xc) d(^notes the value of {d/dr)Jn{r) when r = Xc. 
Since X| — X| 0, the orthogonality (3) exists whenever the 

right-hand rnemlxu' of equation (4) vanishes. This will be the 
(^ase when Xy and Xa- are two distinct values of X which satisfy 
the equation 

(5) XcJ'(Xc) = —hJn(Xc)j 

where h is any constant, including zero. The result can be 
written thus: 

Theorem 3. Fo?' emy fixid n (n ^ 0), the functums JniXjx) 

(ji = 1, 2, • • • ) form an orthogonal set in the interval (0, c) 

mth respect to the weight function x, when Xy are the non-negative 

nwts of equation (5). 
Here again, for every root Xy there is a root —Xy. This can be 

seen by writing equation (5) in the form 

(6) (n +,/0^n(Xc) - XcJn4-i(Xc) = 0. 

Consequently the negative roots introduce no new characteristic 
functions. The details here can be left to the problems. 

If n + h ^ Oj equation (6) has no purely imaginary roots. 
This is easily seen by examining our series for Jn(x). From now 
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on let us assume that A ^ 0, as is usually the case in the applica¬ 
tions; then n + A ^ 0. 

Similarly, equation (2) has no purely imaginary roots. 
Now equation (5) can be written 

(7) c ^ [Jn(\x)] + AJn(Xa*) = 0 when x = c (A ^ 0); 

hence it is a boundary condition of the type introduced earlier. 
It involves a linear combination of the dependent variable in 
Bess('rs equation and the derivatives of that variable. 

Consider the Sturm-Liouville problem, consisting of Bessers 
equation (1) and either one of thci boundary conditions (2) or 
(7). A boundary condition at ar = 0 is not involved because', 
the function r(x) in the general Sturm-Liouville equation is the 
independent variable x in this case, and it vanishes at x = 0. 
The characteristic functions here, «/n(X/2:), are continuous in the 
interval (0, c), since n ^ 0. Likewise for their first ordered 
derivatives, except possibly at the point x = 0; but the product 
x{d/dx) Jn{\x) is continuous and vanishes at the point x = 0, 
which is all that matters. Finally, note that the function p{x) 

is also X itself here, and therefore it does not change sign in the 
interval (0, c). Hence according to Theorem 4, Sec. 25, the 
characteristic numbers are all real. 

According to eejuation (6), X = 0 is a root of equation (5) only 
if either Jn(0) = 0 or n + A = 0. In the first case the char¬ 
acteristic function Jn(Xx) vanishes, so that the root X = 0 can 
contribute a characteristic function only if n = A == 0. A root 
X = 0 of equation (2) can never contribute a characteristic 
function. 

We state our results as follows: 
Theorem 4. When n ^ 0 and A ^ 0, equations (2) and (5) 

have only real roots X;. For either equation we use only the non-- 

negative roots, since no new characteristic functions correspond to 

the negative roots. The root X = 0 is used only in the case of 

equation (5) with n = A = 0. 
* 

PROBLEMS 

1. Derive form (6) of equation (5). 

2. Prove that when X, is any root of equation (6), —X/ is also a root 
of that equation. 
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66. The Orthonormal Functions. It can be shown that, when 
n ^ 0, the function Jn{x) is, except for a constant factor, the only 
solution of Bessel’s equation that is bounded at x == 0. Hence 
it follows from the results of the last section that the functiorus 
JnO^jx) (j = 1, 2, • • • ) represent all the characteristic functions 
of the Sturm-Liouville problem involved there, on the interval 
(0, c). We can therefore anticipate an (expansion of an arbitrary 
function in series of the functions of this set. 

It should be obs(^rved that the orlhogonality hero with respect 
to the weight function x is the sam(5 as the ordinary orthogonality 
of the set of functions 

{j = 1, 2, • • • )• 

Let us now find the value of the norm, 

= ^x[J^{\ix)Ydx, 

of the functions Jn(X/j); these functions can then be normalized 
by multiplying them b}^ the factors h 

If we multiply the terms in Bessel’s etjuation, 

by the factor (2xd/dx)Jn(^x)f we can write the equation as 

Txi^i J«(Xx)] + ^ [J„(Xx)]^ = 0. 

Integrating, and using integration by parts in the second term, we 

find that 

[{x^J„(Xx)} +(XV 

Since 
rj;(r) 

it follows that 

2X* £ x[Jn(Xx)]“ dz 

= [{nJ„(Xx) - XxJ„+i(Xx)p + (XV - n*){J„(Xx))*]'; 

-n»){J„(Xx)}“T 
Jo 

— 2X“ J x[J„(Xx)]® dx — 0. 
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or, since n ^ 0, 

(1) £ x[M\x)]^ ^ |[J^»(Xc)]» + [A+i(Xc)]^l 

- ^J„(\c)J„+i(Xc). 

Hence, when X,- represents the roots of the equation Jni'hc) = 0, 

(2) 3'[J„(X,x)]“da; = [./„m(X,-c)]* (j = 1, 2, • • • )• 

When Xy represents the roots of equation (5), Sec. 65, we have 
seen that 

XyCt/n-f-l (X/C) (/? *4“ h^tIn(,\jC^y 

and hence formula (1) reduces to 

(3) :r[J„(X,a:)]^ dx = [J»(X,c)]^ 

O' = 1, 2, • • • ). 

The normalized functions (pmix) can now be written 

<Pny(x) = 0 = 1, 2, • • • ), 

where the norms Nnj are given for the two types of boundary 
conditions by equations (2) and (3). The set of functions 
{<^„y(x)} is orthonormal in the interval (0, c) with a; as a weight 
function; that is, for each fixed n {n 0), 

f x<pni{^)(p„k{.x) dx = 0 if j ^ k, 

= 1 Uj = k O’, * = 1, 2, • • • )• 

67. Fourier-Bessel Expansions of Functions. Let c„; be the 
Fourier constants of a function/(x) with respect to the functions 
<Pni(x) of our orthonormal set, where/(x) is defined in the interval 
(0, c). Then 

x<p,^{x)f(x) dx 

== —4= r xJn{\ix)f(x) dx {j = 1,2, ■ ), 
V Nnj Jo 
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and the generalized Fourier series corresponding to f(x) can be 
written here as 

Cn,<Pn,ix) = 2 dx', 

when n ^ 0, and 0 < x < c. 
In view of the formulas given in the last section for Nniy this 

series can be written 

(1) ^ AiJr.{\ix) (n ^ 0), 
j-i 

where the coefficients Aj are defined as follows: 

Jo 
w^hen Xi, X2, • • * arc the positive roots, in ascending order of 
magnitude, of the equation 

(3) J„(Xc) = 0; 

but 
2x? 

“ (Xfc^ + h} - n=)(J„(X,c)]2 Jo dx, 

when Xi, X2, * * • are the positive^ roots of the equation 

(5) XcJ^(Xc) + feJn(Xc) =0 (/i ^ 0, n g 0). 

However, in the special case where /i = n = 0, Xi is to be taken 
as zero, and the first term of the series is the constant 

(6) ill = J r xf{x) dx. 

It can be shown that, when 0 < x < c, the series here does 
converge to /(x) under the conditions given earlier for the repre¬ 
sentation of this function by its Fourier series. Let us state one 
such theorem here explicitly, and accept it without proof for the 
purposes of the present volume.* 

Theorem 6. Let f{x) be any function defined in the interval 

(0, c), such that y/x f{x) dx is absolutely convergent Then at 

each point x (0 < x < c) which is interior to an interval in which 

* A proof, using contour integrals in the complex plane, will be found in 
Ref. 1. 
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f{x) is of hounded variation, series (1) converges to 

that %s, 
Ufix + 0) +fix - 0)]; 

00 

(7) i Ifix + 0) + fix - 0)] = ;^ AiJnM iO<x< c), 

where the coefficients Af are defined by equation (2) or (4), and 
n § 0, ^ 0. 

The theorem holds true for the special case = n = 0, men¬ 
tioned above, if A\ is defined by formula (6). 

It can be shown that all conditions here on /(x) are satisfied 
everywhere, so that formula (7) is true for every x < x < c) 
when f(x) and its derivative f'(x) are sectionally continuous in the 
interval (0, c). These conditions are narrower, but perhaps more 
practical for us, than those stated in the theorem. 

Expansion (7) is usually called the Fourier-Bessel expansion; 
but when X, represents the roots of eciuation (5), the expansion is 
sometimes rehirred to as Dint's, 

Other expansion formulas in terms of the Bessel functions 
are known. There is, for instance, an integral representation 
of an arbitrary function which corresponds to the Fourier 
integral representation. 

Suppose the interval (0, c) is replaced by some interval (a, h) 
in the Sturra-Liouville problem with BesseFs equation, where 
(a, h) does not contain the point x = 0. Then a boundary 
condition is required at each end point x = a and x = h, and 
the problem is no longer a singular case, but an ordinary special 
case, of the Sturm-Liouville problem. Hence the expansion in 
this case will be another one in series of Bessel functions; but 
here the functions of the second kind may be involved together 
with the functions Jn. 

PROBLEMS 

1. Expand the function f{x) = 1, when 0 < x < c, in series of the 
functions t/o(X,x), where X, are the positive roots of the equation 

2. In the expansion of /(x) = 1 (0 < x < c) in series of Jo(X/c), 
where X/ are the non-negative roots of Jj(Xc) = 0, show that A; ^ 0 
when j == 2, 3, • • • , and Ai == 1. 
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3. Expand the function f{x) = 1 when 0 < a: < 1, f{x) = 0 when 
1 < a: < 2, /(I) = §, in series of Jo(KiX) where \j are the roots of eo 
/«(2X) = 0. Ans. m = 5 2 (0 < r < 2). 

y-1 

4. Expand f{x) ==x(0<a;<l)in series of /i(X,a;), where X/ are the 
positive roots of Ji(X) = 0. Also note the function represented by 
the series in the interval — 1 < x ^0. 

OO 

Ans. X = 2 ^ Ji0<ix)/[\iJ20^i)] (—1 < X < 1). 

68. Temperatures in an Infinite Cylinder. Let the convex sur¬ 
face r = c of an infinitely long solid cylinder, or a finite cylinder 
with insulated bases, be kept at temperature zero. If the 
initial temperature is a function /(r), of distance from the axis 
only, the temperature at any time t will be a function 2/(r, t). 
This function is to be found. 

The heat equation in cylindrical coordinates, and the boundary 
conditions, are 

du , /1 du\ , , ^ m 
(1) ^ = + (0^r<c,<>0), 

(2) u(c — 0, if) == 0 {t > 0), 
(3) u(r, +0) = f(r) (0 < r < c). 

It will be supposed that /(r) and /'(r) are sectionally continuous 
in the interval (0, c) and, for convenience, that f{r) is defined 
to have the value ^[/(r + 0) + /(r — 0)] at each point r where 
it is discontinuous. 

Particular solutions of equation (1) can be found by separation 
of variables. The function u = is a solution, provided 

RT' = kT(^R" + ^y, 

that is, if 

Since the member on the left is a function of t alone, and that 
on the right is a function of r alone, they must be equal to a 
constant; say, — X'^. Hence we have the equations 

rR" + 12' + XV12 = 0, 
r + k\^T = 0. 
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The equation in R here is Bessel’s equation (Sec. 65), in which 
n = 0. If the function RT is to satisfy the condition (2), then 
R(r) must satisfy the condition 

R(c) = 0. 

According to Theorem 4, there are only real values of the param¬ 
eter X in B(\ss(4’s equation for which a solution exists and 
satisfies this condition, and the positive values alone yield all 
possible solutions. We are supposing that the function R{r) 
and its derivative of the first order are continuous functions 
when 0 ^ r ^ c. It can be showm that the second fundamental 
solution, R — Fo(Xr), of Bessel’s equation, or Bessel’s function 
of the second kind, is infinite when r — 0. Therefore the only 
functions R(r) which satisfy the required conditions are Jo(\jr), 
where Xy are the positive roots of the ecjuation 

(4) Jo(Xc) = 0. 

The only particular solutions u = RT of the heat equation (1) 
which satisfy the homogeiu'ous boundary condition (2) are 
therefore (except for a constant factor) 

t( = Jo(Xyr)c~^^^% 

where Xy are the positive roots of (^piation (4). 
A series of these solutions, 

00 

(5) u{r, 0 = X 
j = i 

will formally satisfy the heat equation (1) and the condition (2); 
it will also satisfy the initial condition (3) provided the coefficients 
Aj can be determined so that 

fir) = X (0 < r < c). 

This is true, according to the Fourier-Bessel expansion, if 

= cvl^iC)Y i (J = 1, 2, • • • ). 

The formal solution of the boundary value problem is there¬ 
fore represented by series (5) with coefficients (6), where Xy are 
the positive roots of equation (4). That is, our solution can 
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be written 

Jo(X/) 
[/,(X,c)p 

(\y) dr\ 

This njsult can bo fully established as a solution of the boundary 
value problem stated hero, by following the method used in 
Sec. 46. For it can be shown that the numbc^rs l/[XyJf(Xyc)] 
are bounded for all the roots X/.* Cousecpiently the numbers 
Aj/\.j are bounded for all j (j = 1, 2, • • • ), because f(r) and 
./o(Xyr) are bounded. Hence for c.'\ch positive number the 
absolute values of the terms of series (5) are less than the constant 
t(^rms 

M\j exp ( — kXfti)) 

for all r (0 g r ^ c) and all t (I ^ /o), where M is a constant. 
The series of theses constant terms converges, since X/+i — Xy 
approaches w as j increases. 

S(‘ries (5) ther(‘for(; coriv(»rges uniformly when t > 0, and so 
the function w(r, t) represented by it is continuous with respect 
to r wh(»n r = c. But u(c, i) is clearl}" zero; hence condition (2) 
is satisfied. 

Since tlu' d(*rivatives of .y'o(Xyr) are also bounded, it follows 
in just the same way that the differentiated series converge 
uniformly when t > 0, and hence that result (5) satisfies the heat 
equation (1). 

Finall}^ owing to tlu; convergence of series (5) when t = 0, 
AbeFs test applies to show that ?/(r, +0) = u(r, 0), when 
0 < r < c; hence tlui condition (3) is satisfied. 

To determine conditions undiT which our solution is unique, 
we should need information about the uniform convergence 
of the Fourier-B(^ssel exi)ansion. This matter is beyond the 
scope of our introductory treatme^nt. 

PROBLEMS 

1. Write the solution of the above problem when the initial tempera¬ 
ture /(r) is a constant A, and c == 1. Give the approximate numerical 
values of tlie first few coefficients in the series. 

Ans. u - 2A[0.80Jo(2 - .53Jo(5.5r)e-3o** 
-f .43Jo(8.6r)c~^^*‘ -*•*]. 

* This can be seen, for instance, from the asymptotic formulas for Xy and 
Ji(x) developed in Ref. 1. 
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2. Over a long solid cylinder of radius 1 at temperature A throughout 
is tightly fitted a long hollow cylinder of the same material, with thick¬ 
ness 1 and temperature B throughout. The outer surface of the latter 
is then kept at temperature B, Find the temperatures in the composite 
cylinder of radius 2 so formed. This is a heat problem in shrunk fittings. 
(Note that it becomes a case of the problem in this section when B is 
subtracted from all temperatures.) 

00 

Ans. u{r, t) = B + —^ ^j|(2X,)p ^where Xi, 

Xj, • • • are the positive roots of ./o(2X) == 0. 
3. Derive the formula for the potential in a cylindrical space bounded 

by the surfaces r = c, 2 = 0, and 2 = 6, when the first two surfaces are 
kept at potential zero and the third at potential V ^ f(r). 

00 

Ans. F(r, z) = ^ A,>/o(X,r)(8inh X,2/smh X,6), where Xy are the 

positive roots of equation (4), and the coefficients Aj are given by 
equation (6). 

4. Derive the formula for the steady temperatures u(r, z) in the solid 
cylinder bounded by the surfaces r = 1, 2 = 0, and 2=1, w'hcn the 

first surface is kept at temperature w = 0, the last at u = 1, and the 
surface 2 = 0 is insulated. 

69. Radiation at the Surface of the Cylinder. Let the surface 

of the infinite cylinder of the last section, instead of being kept at 

temperature zero, undergo heat transfer into surroundings at 

temperature zero, according to Newton^s law. The flux of heat 

through the surface r = c is then proportional to the temperature 

of the surface; that is, 

—K ^ = Eu when r ^ c. 

where K is the conductivity of the material in the cylinder and 

E is the external conductivity, or emissivity. Let us write 

h = cE/K. 
The boundary value problem for the temperature u(r, t) can 

be written as follows: 

(1) 

(2) 

(3) 
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The particular solution of equation (1) found before, 

u = Jo(Xr)e~^^% 

will satisfy condition (2) provided X is any root X/ of the equation 

€^Jo(\r) = —/iJo(Xr) when r == c, 

that is, of the equation 

(4) XcJq(Xc) = —hJo(Xc), 

Hence the solution of the problem (l)-(3) can be written 

(5) u(r, 0 = S 

where X, are the positive roots of equation (4), and where, accord¬ 

ing to Theorem 5, 

2x2 p 
= (xF+T.>ipi(w Jo * y “ 1.2, • ■ ■ )• 

7/ X = 0, then Xi = 0, and the first term of the series in formula 

(5) is the constant A i, where 

Ai = % f rf(r) dr. 
c Jo 

This is the case if the surface r = c is thermally insulated. 

PROBLEMS 

1. Find the steady temperatures «(r, z) in a solid cylinder bounded 
by the surfaces r = 1, 2 = 0, and z — L if the first surface is insulated, 

the second kept at temperature zero, and the last at temperature 
u = fir). 

Ans. " = 27 

7o(X,r) sinh(Xyz) 
[7o(X/)psinh(X/L) r rVo(X,r')/(r') dr\ 

where X2, X3, • * • are the positive roots of Ji(X) == 0. 
2. Find the steady temperatures in a semi-infinite cylinder bounded 

by the surfaces r = 1 (ai ^ 0) and 2 = 0, if there is surface transfer of 
heat at r = 1 into surroundings at temperature zero, and the base z = 0 

is kept at temperature w = 1. 
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3. Show that the auswer to Prob. 1 reduces to = Az/L when/(r) 
is a constant A. 

70. The Vibration of a Circular Membrane. A membrane, 

stretched over a fixed circular frame r = c in the plane 2 = 0, 

is given an initial displacement z —fir, <p) and released from 

rest in that position. Its displa(‘einent 2(r, /), where (r, v?, 2) 

are cylindrical coordinates, will be found as the continuous 

solution of the following bouiidarj^ value problem: 

(1) 

(2) 

(3) 

— 1 1^4.1 

^ \dr‘^ r dr 

z{c, t) = 0, 

- = 0, r(r, <p, 0) = Sir, ^). 

The function z = R{r)^{<p)T{i) satisfies equation (1) if 

where — is any const;ant, according to the usual argument. 

Hence T = cos {a\i) if the first of conditions (3) is to be satis¬ 

fied. Also R and ^ must satisfy the equations 

1 irm" + rR') + XV^ = -^ = A 

where is any constant, since the member on the left cannot 

vary wdth either <p or r. 
Hence 

^ = A cos sin yup. 

But z must be a periodic function of ip wdth period 27r; hence 

= n (n = 0, 1, 2, • • • ). The eejuation in R then becomes 

BessePs equation with the parameter X, 

rnr + r/e' + (XV2 - 7i^)R = 0, 

and so R = Jr*(Xr). The solution z = R^T wall satisfy condi¬ 

tion (2) if X is any of the roots Xn/ of the equation 

(4) A(Xc) =0 (n = 0, 1, 2, • • • ). 

Therefore if A„/ and Bnj are constants, the functions 

/n(Xn,r)(An; COS Uip + -Bnj Sill Ui^ COS (aXn;0 
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are solutions of (1) which satisfy all but the last of conditions (3). 

The function 

(5) z(r, 0 
00 00 

= 5) X JnO^{r){Ani cos nip + sin n<(>) cos (aX„,0 
n — 0 i = 1 

satisfies this last condition also, provided the coefficients are 

such that 

(6) /(r, 

X X cos + I 5) ^n;*/Tt(Xn/r) 1 sin rupU 

when —TT <^^7r, O^r^r. 

For each fixed r, the right-hand member of equation (6) is the 

Fourier series for /(r, v?), in tlu^ interval — tt < (^ < tt, provided 

the coc^fficients of cos rup and sin mp are the Fourier coefficients; 

that is, if 

(7) 

00 

2-^ r.jJn(Xn;r) = ^ j /(r, V") cos inp dip 
^ J-iT 

(n = l,2, • • • ), 

(n = 0), 

(8) 
J-1 

,,>/n(X„,r) = X 1 f(r, <p) sin rup dip 
^ J-r 

(n = 1, 2, • • • )• 

But the left-hand member of equation (7) is a stories of Bessel 

functions which must represent the function of r on the right when 

0 ^ r ^ c. It is the Fourier-Bessel expansion of that function, 

provided 

(9) A„i = -—or> ^7.—;x-T2 I dr I /(r, <p) cos n,pdv< 

(a = 1, 2, • • ■ 

- wv.'x./^)r r ■'> '''■ 
Similarly, according to equation (8), 
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The displacement is therefore given by formula (5) when the 

coefficients have the values given by equations (9), (10), and 

(11), and Xnj are the positive roots of equation (4), provided 

series (5) has the necessary properties of convergence, differenti¬ 

ability, and continuity. 

PROBLEMS 

1. Derive the formula for the displacement of the above membrane 
if the initial displacement is /(r), a function of r only. Also show that 
when /(r) = AJ'o(Xitr), where X* is a root of J^Q^c) — 0, the displacement 
of the membrane is periodic in time, so that the membrane gives a 
musical note. 

Ana. z{t, t) _ 2 X? *^o(X,r) cos (aX,0 r'/o(X,r')/(r') dr', where Xy 

are the positive roots of Jo(Xc) == 0. 
2. Find the displacements in the above membrane if at i = 0 every 

point within the boundary of the membrane has the velocity dz/dt = 1 
in the position 2 = 0. This is the case if the membrane and its frame 
are moving as a rigid body with unit velocity and the frame is suddenly 

brought to rest. 

sin (iKjt 

Xj/i(XyC) 
«j^o(Xyr), where X, are the positive 

roots of Jo(Xc) = 0. 
3. Derive the following formula for the temperatures in a solid 

cylinder with insulated bases, if the initial temperature is u f{r,<p)f and 
the surface r = c is kept at temperature zero: 

u(r, <p, <) = X X /n(X»ir)(A„/ cos + Bni sin 
n-O;-l 

where Anj and Bnj have the values given by equations (9), (10), and 
(11), and Xn/ are the positive roots of equation (4). 

4. Derive the formula for the temperature i/(r, z, t) in a solid cylinder 

of radius c and altitude L whose entire surface is kept at temperature 
zero and whose initial temperature is A, a constant. Show that the 
formula can be written 

u{r, 2, t) = Ai/i(2, t'\u2{r, t), 

where ui(2, t) is the temperature in a slab whose faces 2 = 0 and 2 = L 
are kept at temperature Ui = 0, and whose initial temperature is = 1; 
while i42(r, t) is the temperature in an infinite cylinder whose surface 
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r = c is kept at Ui = 0, and whose initial temperature is = 1. That 
is, 

and 

«i(*, 0 4 sin 
L rrin 

n * 1 

(2n — 1}k 
1 J' 

«^(r, 0=12 
J«1 

JoQ^jr) 
\jJ i(XyC) 

e-k\}h^ 

6. Derive the following formula for the temperatures in an infinitely 
long right-angled cylindrical wedge bounded by the surface r = c and 
the planes ^ - 0 and ip = ir/2, when these three surfaces are kept at 
temperature zero and the initial temperature is == f{r, (p): 

00 ao 

«(»•, T, t) = xx. sin 
n = 1 j — 1 

where Xny arc the positive roots of J2n(Xc) = 0, and are given by the 
formula 

Trc^[J2n^i(Kn}C)YAn) = ^ siii 2n(p dkp r/2n(Xn/r)/(r, (p) dr. 

6. If the planes of tlie wedge in Prob. 5 are <p = 0 and <p = <po, show 
that the formula for the temperature will in general involve Bessel 
functions of nonintegral orders. Derive the formula for u(r, tp, t) in 
this case. 

7. Solve Prob, 5 if the planes v? = 0 and ip = 7r/2 are insulated, 
instead of being kept at temperature zero. When /(r, ^) = 1, show 
that your formula reduces to 

c > 

where Xy are the positive roots of /o(Xc) - 0; thus u is independent of 

the angle (p. 
8. Solve Prob. 5 if all three surfaces r = c, ^ = 0, and 9 = 7r/2, are 

insulated instead of being kept at temperature zero. 
9. Let w(r, t) be the temperature in a thin circular plate whose edge, 

r = 1, is kept at temperature w = 0, and whose initial temperature is 
w = 1, when there is surface heat transfer from the circular faces to 
surroundings at temperature zero. The heat equation can then be 

written 
du d^u \ du , 
It ~ dr* r dr 
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where A is a positive constant. Derive the following formula for 
w(r, t): 

u = 

Jo(X,r) 

where X, are the positive roots of Jo(X) — 0. 
10. Solve Prob. 9 if there is also surface heat transfer at the edge 

r = 1, instead of a fixed temi>crature there, so that 

^ = — hau when r — 1. 

11. Derive the following formula for tlie potential V(r, z) in the semi¬ 
infinite cylindrical space, r ^ 1, 2 ^ 0, if the surface r = 1 is kept at 
potential 1" = 0, and the base z — i) at V = 1: 

V = 
^ jhQ^ir) 

^^X,JT(X;) 

where X, are the positive roots of ./o(X) = 0. 
12. Let V'C'*? be the potential in the space inside the cylinder r = c, 

when the surface r — c is kept at the potential V = f{z), where the given 
function f(z) is defined for all real z. Derive the following formula for 

V{r, z): 

^ ^ Jo 

where i — — 1. 
13. Let P(r, z) be the potential in the semi-infinite cylindrical space 

r ^ 1, 0 ^ 0, if dV/dz — 0 on the surface z = 0 and if, on the surface 
r = 1, F = 1 when 0 < 2 < 1, while V == 0 when z > \. Show that 

F(r, z) 
2 p 
^ Jo 

Joiiar) 
aJo(ia) 

cos az sin a da. 
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CHAPTER IX 

LEGENDRE POLYNOMIALS AND APPLICATIONS 

71. Derivation of the Legendre Polynomials. Any solution of 

the diff(n(uitial equation 

(1) (1 -a-^)£l-2a-^ + «(n + l)2/ = 0, 

known as Legendrc'H equation, is ealkd a Legendre function. 
Later on we shall se(i how this (equation arises in the process of 

()l)taining particular solutions of Lai)lace’s equation in spherical 

coordinates, when x is writtcm for cos d. We shall consider 

here only the easels in which the parameter n is zero or a positive 

integer. 

To find a solution which can be represented by a power series, 

if any such exist, we substitute 

00 

(2) y = X 
J = 0 

into equation (1) and determine the coefficients a,-. The substi¬ 

tution gives 

00 

X ~ - 2jajx’ + n(n + l)a,x>] = 0 
y =«o 

or 

(3) g {[n(n + 1) - j{j + i)]aixi+j(j - l)a,r'-^! = 0. 

Since this must be an identity in x if our series is to be a 

solution, the coefficient of each power of x in series (3) must 

vanish. Setting the total coefficient of x’ in this series equal to 

zero gives 

(j + 2){j + l)a,+2 + [n(n 4- 1) — j{j + 1)]0; = 0 
(i = 0, 1, 2, ■ • • 

175 
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which is a recursion formula giving each coefficient in terms 

of the second one preceding it, except for and ai. It can be 

written 

(4) 
(n - i)(w + i + 1) 

O’ + 1)0 + 2) 
a,- 0 = 0, 1, 2, • • • ). 

The power series (2) is therefore a solution of Legendre^s 

equation within its interval of convergence, provided its coeffi¬ 

cients satisfy relation (4); this leaves ao and ai as arbitrary 

constants. But since n is an integer, it follows from relation (4) 

that an+2 = 0, and consequently 

= 0. 

Also, when ao = 0, then a2 = = • • • =0; and when ai = 0, 

then as = as = ‘ * =0. 

Hence if n is odd and ao is taken as zero, the series reduces 

to a polynomial of dt^gree n containing only odd powers of x. 
If n is even and ai is set equal to zero, the series reduces to a 

polynomial of degree n containing only even powers of x. So 

there is always a polynomial solution of equation (1), and for it 

no question of convergence arises. 

These polynomials can be written explicitly in descending 

powers of x whether n is even or odd. All the non vanishing 

coefficients can be written in terms of an by means of recursion 

formula (4); thus 

an-2 
n(n ~ 1) 

■2(2n - 1) 
anf 

{n - 2) {n- 3) 

” 4(2n - 3) 

_ n(n — l)(n — 2)(n — 3) 

¥^4(2n - 1)(271 - 3) 

and so on. Hence the polynomial 

(5) j, = [x-- 

. n(n — l)(n — 2)(n — 3) 

2 • 4(2n - l)(2n - 3) 

is a particular solution of Legendre’s equation. 

Xnr-* — 

J 
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Here the coefficient an is arbitrary. It turns out to be con¬ 

venient to give it the value 

On = 
(2n - l)(2n - 3) 3 • 1 

n\ 
if n = 1, 2, 

ao = 1. 

With this choice of Un functions (5) arc known as the Legendre 
polynomials: 

Pn(x) = 
(2n - l)(2n - 3) • • • 1 [ _ n(n - 1) . 

n! L 2(2w - 1) 

4. n(7i - l)(n - 2)(n - 3) . 

2-4(2n - l)(2n -3) 

The function P„(a;) is a polynomial in x of degree n, containing 

only even powers of a: if n is even and only odd powers if n is odd. 

It is therefore an even or odd function according as n is even or 

odd; that is, 

P„(-x) - (-l)'‘P„(x). 

The first few polynomials are as follows: 

P„(x) = 1, P^ix) = X, P^ix) = i(3x* - 1), 

Pz(x) = i(5x* - 3x), Pt{x) = i(35x^ - SOx^ + 3), 

Psfx) = i(63x* - 70x» + 15x). 

PROBLEMS 

1. Show that formula (G) for P«(x) can be written in the following 
compact form: 

P. 

m 

(x) = 2 
y-o 

(-l)>X2n-2i)! . 
'2«j!(n ~ j)l(n — 2j)! ’ 

where m = n/2 if n is even, and m = (n — l)/2 if n is odd. 

2. With the aid of the formula in Prob. 1, show that 

PiniO) - ( l)”22»»(n!)2 

P2n~l(0) - 0, 

(-1)" 
1 • 3 • 5 

2'4 
» (2n - 1) 

• • (2n) 
(n = 1, 2, • • ). 

72. Other Legendre Functions. When n is a positive integer 

or zero, we obtained the solution y = Pn(x) of Legendre^s equa¬ 

tion by setting one of the two arbitrary constants ao or ai in the 
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series solution equal to zero. If these constants are left arbitrary, 

it is easily seen that the general solution of Legendre^s equation 

can be written 

(1) y = APr.(x) + BQ^(x), 

where A and B are arbitrary constants. The functions Qn(x) 

here, called Legendre^s f unctions of the second kmd^ are defined 

by the following series when |a:| < 1: 

Q n(x) = ai x — 
(n - 1)(». + 2) 

3! 

(n - l)(w - 3)(w + 2)(n + 4) 

5! 

if n is even; and 

<3n(x) 

= an 
n(n + 1) ,. , n(n - 2)(n + l)(n + 3) 

2! 
X* + 

4! 

if n is odd; and where 

ai = (-1) 

ao = ( —1) 

I 2-4 • • • n 

1 • 3 • 5 • • • (n - 1)’ 

2 • 4 • • • (n -J) 

1 • 3 • 5 • • n 

Of course Pn(x) is a solution for all x. But when la*! > 1, 

the above series for Qn{x) do not converge. To obtain a second 

fundamental solution in that case, a series of descending powers 

of X is used. The following solution so obtained is taken as the 

definition of Qn{x) when |a-| > 1: 

Qn(x) 
_a!_r^-«-i I (n + l)(n + 2) 

1 • 3 ■ 5 • • • (2w + 1) L 2(2n + 3) 

(n d-JI.)(n + 2)(n + 3)(n + 4) 

2 • 4(2n + 3)(2ra + 5) 

Both Pn(x) and Qn(x) are special cases of the function known 

as the hypergeometric function. 

When n is not an integer, the two fundamental solutions of 

Legendre^s equation can be written as infinite series. These 
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arc both power series when la:| < 1; but when \x\ > 1, they are 

series in descending powers of x. 
Of these various Legendre functions the polynomials Pn(x) 

are by far the most important. Let us now continue with the 

study and application of those polynomials. 

73. Generating Functions for PJx). If ~1 ^ x g 1, the 

function 

(i - 2xz + 

and its derivatives of all orders with n^spcct to z exist when 

\z\ < 1. For these functions are infinite only whc'ii 

1 ~ 2xz + z^ = 0, 

that is, if 

z X ± 's/x“ — i — cos d i sin 0, 

where we have written cos 6 for x. But this shows that \z\ = J. 

It is shown in the theory of functions of complex variables that 

such regular functions of z are always represent(Hl by their 

Maclaurin series within the region of regularity (|2:| < 1, in this 

case). 

It will now be shown lhat the coefficients of the powers of z 
in that series representation of the above function are the 

Legendre polynomials; that is, when —l^x^l and <1, 

(1) (1 - 2xz + z^y^ 
= Po(x) + Pi(x)z + P2{x)z^ + * • • + Pn(x)z^^ + • • • . 

To find tlie coefficients, it is best to write the expansion by 

means of the binomial series: 

[1 - z(2x - z)]-i = l+^z(2x-z)+ z^-(2x - zy 

+ + 1 -3 • 5 (2n - 1) 
2”n! 

z’'{2x - 2)" + 

The terms in z'‘ come from the term containing z’'{2x — 2)" and 

preceding terms, so that the total coefficient of 2" is 

1 -3 (2n - 1) 1 -3 

2’*n! 
. 1 

2«-Hn - 2)! 

(2a-)’* 

(2n — S) (n — 2){n — 3) 

2! 

(2n - 3) (n - 1) 

1! 

(2x)’*-< - 

(2x)’‘- 
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This can be written 

1 -3 • • (2w - 1) 
w! 

x” _ - 1) a.»-2 

2(2w - 1) * 

n(n — l)(n — 2)(n — 3) 

2 • 4(2n - 1)(27i - 3) 
a;n-4 _ 

But this is Pn(x); hence relation (1) is established. Incidentally, 

this shows the reason for the value assigned to an in our defi¬ 

nition of Pn(x) (Sec. 71). 

For X = 1, expansion (1) becomes 

Consequently 

Pn(l) = 1 

Likewise, putting x — 0 gives 

= (1 — 2)“^ = 
“o 0 

(n = 0, 1, 2, ). 

jp„(0)3» = (1 + 2=)-‘ = 1 - 

+ (-1)” 

and therefore 

P2n(0) = (-!)” 

Pj„_,(0) = 0 

1 -3 (2n - 1) 

2 • 4 • • • (2n) 

1 • 3 • 5 • • • (2n - 1) 

2*» + 

2 • 4 (2n) 

(n = 1, 2, ). 

By differentiating equation (1) with respect to z and multiply¬ 

ing the resulting equation by (1 — 2xz + 2^), the following 

identity in z is found: 
w 

(a: — 2)(1 — 2xz + «*)“* = (x — z) VP„(x)z“ 

te 

= (1 ~ 2xz + z^) V nPn{x)z”^^, 

Equating the coefficients of z^ in the last two expressions, it 

follows that 

{n + l)Pn+i(a:) - (2n + l)a:Pn(a;) + nP„-i(a;) = 0 

(n = 1, 2, • * • ); 

this is a recursion formvla for Pn(a;)r It is valid for all values of x. 
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The result of integrating polynomial (6), Sec. 71, n times from 0 

to X is 

(2n - l)(2n - 3) 

(2n)! 
-1, ^2n _ nx^ 

n(n - 1) 

^2! 

and the expression in brackets differs from (x- — 1)" only by a 

polynomial of degree less than n. By differentiating 7i times^ 

then, it follows that 

Pn(x) = 
1 

2”n! dx^*’ 
(x^ 1)". 

This is Rodrigues^ formula for the Legendre polynomials. 

PROBLEMS 

1. Show that the derivatives of Legendre polynomials have the 
properties 

P5.(()) = 0; PL+.(0) = 

The latter can be found by differentiating equation (1) with respect to x 
and setting x = 0. 

2. Carry out the details of the derivation of Rodrigues’ formula. 
3. Using Rodrigues’ formula, show that 

^ - P:_,(x) = (2n + l)P„(x) (n = 1, 2, • • • ). 

4. Using the formula in Prob. 3, obtain tlie integration formula 

P,(x) dx = (w = 1, 2, ■ • • 

74. The Legendre Coefficients. When — 1 g x g 1, we have 

just shown that Pn{x) is the coefficient of 2” in the expansion of 

the generating function (1 — 2xz + z^)~^ in powers of z. "WTien 

X == cos ^ 

this generating function can be written 

[1 - z(e^^ + + z^]-^ = (1 - ze^^yHl - 

and therefore as the product of the series 

1 + 

+ • • + 1 -3 • 

2-4 
(2n - 1) » , 

• (2n) + 
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and the series 

l+^ze .-i« + 1-3, 

2 • 4 ‘ 

+ + 1 -3 (2"-1) 
2 • 4 • • • (2n) 

The coefficient of z" in this product is 

inB + 

1 • 3 • • • (2n - 1) 

2*4 •• • (2n) 

1 2n 
2 2n -~\ 

hence this is Pn (cos 6). Thus we have the following formula 

for this function: 

(1) P„(cos e) 

__ 1 • 3 • • • (2w - 1) 

+ 
1*3* n{n — 1) 

cos 1x6 -\- 
1 • 71 

1 • 2(2n - l)(2/i - 3) 

1 • (2n - 1) 

cos {n — 4)^ + 

cos (n — 2)0 

• + Tn 

where the final term Tn i« the term containing cos 0 if 7i is odd; 

but it is half the constant term indicated if n is even. 

These functions are calh^d the Legendre coeffieivnts. Tables 

of their numerical values will be found in some of the more 

extensive books of mathematical tabkvs, or in Ref. 3 at the end 

of this chapter. 

According to formula (1), the first few functions are 

Po(cos 0) = 1, 

Pi (cos 0) = cos 0, 

P2(cos 0) = |■(3 cos 20 + 1), 

Pz(cos 0) = 1(5 cos 30 + 3 cos 0), 

P4(cos 0) == ^(35 cos 40 + 20 cos 20 + 9). 

The coefficients of the cosines in formula (1) are all positive. 

Consequently Pn(co8 0) has its gre?atest value when 0=0. 

Since Pn(l) = 1, it follows that Pn(cos 0) ^ 1. Also, each 

cosine is greater than or equal to —1, so that Pn(cos 0) ^ — 1. 

That is, the Legendre coefficients are uniformly hounded as follows: 

|Fn(cos d)\ ^1 (n = 0, 1, 2, • • • ), 

for all real values of 0. 
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76. The Orthogonality of Pn{x). Norms. Legendre's equa¬ 

tion can be written in the form 

(1) ^[(1 -x=)|]+n(n + ])2, = 0. 

It is clearly a special case of the Stiirm-Liouville equation 

(Sec. 24), in whicli the parameter X has been assigned the values 

(2) X = n{n + 1) (n = 0, 1, 2, • • • )• 

In this case r{x) ~ I — q{x) — 0, and the wciight fTinction 

V{x) = 1. 
Since r{x) = 0 when x = ±1^ no boundary conditions need 

accompany the diffen'iitial equation to form the Sturm-Liouville 

problem on the interval ( — 1, 1). It is only required that the 

characteristic functions and their first orden^d derivatives be 

continuous when — 1 ^ :r ^ 1. But the polynomials Pn(x) are 

solutions of equation (1), and, of course, they have these recjuired 

continuity properties. 

The Legendre polynomials Pn(^) are thcTcfore the characteristic 

functions of the Sturm-Liouville probhun here, corresponding 

to the characteristic numbers (2). According to Sec. 25, then, 

the funcMons Pn{x) form an orthogonal set in the interval ( — 1, 1), 

with respect to the weight function p{x) — 1; that is, 

(3) Pm{x)Pn{x) dx = 0 \i m 9^ n (m, = 0, 1, 2, • • • ). 

Furthermore, there can be no characteristic functions of the 

Sturm-Liouville problem here which corr(\spond to complex 

values of the parameter X, because p{x) docs not change sign. 

We shall soon see that the functions Prfx) and the numbers (2) 

are the only possible characteristic functions and numbers of 

the problem. 

To find the norm of Pn{x), that is, the value of the integral in (3) 

when m == n, a simple method consists first of squaring both 

members of equation (1), Sec. 73, to obtain the formula 

(1 ~ 2xz + = \XPn{x)z-'Y. 

We now integrate both members here with respect to x over the 

interval ( — 1, 1) and observe that the product terms on the right 
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vanish in view of the orthogonality property (3). Thus, 

dx 
1 — 2xz + 

[PnixWdx (N < 1). 

The integral on the left has the value 

- ^log (1 - 2xz + 

= 2(l+| + ^+ -- -+ + • • • ) (|zl < 1). 

By equating the coefficients of 2^” in the last two series, we 

have the following formula for the norm of Pn{or): 

(4) [Pn(:r)]'^ dx = 2;^ (ra = 0, 1, 2, • • • ). 

The orthonormal set of functions here in the interval ( — 1, 1) is 
therefore where 

<Pn{x) = (n = 0, 1, 2, • • • ). 

Since [Pn(ir)]- and the product Pm{x)Pn{x), in which m and 

n are both even or both odd, are even functions of x, it follows 

from formulas (4) and (3) that the polynomials of even degree^ 

(5) V2n + 1 Pn( x) (n = 0, 2, 4, • • • ), 

form an orthonormal set of functions in the interval (0, 1); and the 

same is true for the polynomials of odd degree^ represented by (5) 

when n = 1, 3, 5, * • • . 

PROBLEMS 

1. Establish the orthogonality property (3) by using Rodrigues’ 
formula for Pn{x) and successive integration by parts. 

2. State why it is true that 

P„(®) dx = 0 (n - 1, 2, 3, • • ■ 

3. Use the method of Prob. 1 to obtain formula (4) for the norm of 
Pn(x). 
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76. The Functions Pn(x) as a Complete Orthogonal Set Let 

us now prove the following theorem: 

Theorem 1. In the interval ( — 1, 1) the orthogonal set of func¬ 
tions consisting of all the Legendre 'polynomials 

P^(x) (n = 0, 1, 2, • • • ) 

is complete with respect to the class of all functions whichy together 
'with their derivatives of the first order^ are sectionally continuous in 
(-1,1). 

We are to prove that if is a function of this class which is 

orthogonal to (*ach of the functions Pn{x)y then ^(a:) = 0 except 

at a finite number of points in the interval. 

Let us suppose, then, that 

(1) Pn{x)f(x) dx = 0 (n = 0, 1, 2, • • • )• 

According to our recursion formula (Sec. 73), 

(2n + l)a:Pn(2:) = (n + l)Pn+i(^) + nPn-.i(x) 

(n= 1,2, • • • ); 

and this formula can be replaced by the formula xPo(x) = P\{x) 
when n = 0. When we multiply its terms by ^(x) and integrate 

from —1 to 1, the integrals in the right-hand member vanish, so 

that 

(2) ^^^Pn{x)xyp{x) dx 0 (n = 0, 1, 2, • * • ). 

If we suppose that the orthogonality property (1) is true 

when ^(a*) there is replaced by x^\p(x)y the method just employed 

clearly shows that property (1) is true when ^(a:) is replaced by 

x^-^^\l/(x). In view of equation (2), then, we conclude by 

induction that, for every integer j, 

Pn{x)x>'\l/{x) dx = 0 {n, j = 0,1,2, 

As a consequence, we have 

£ [l - (2^ + -] & - 0; 

because the power series in the brackets, representing cos mvXy 
is uniformly convergent. Moreover, the series obtained by multi- 
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plying all terms of this series by the scctionally continuous func¬ 

tion Pn{x)yp{x) is also uniformly convergent, so it can be integrated 

termwise. Thus 

Pn(x)}//(x) COS mTTX dx = 0 (m = 0, 1, 2, • * • ); 

and in just the same manner it follows that 

J*^^P„(x)\f'(x) sin niTTX dx = 0 (m == 1, 2, * * * ). 

All the coefficients in the Fourier series corresponding to the 

function Pn{x)\p(x) in the interval ( — 1, 1) therefore vanish. 

But this function and its first derivative are sectionally con¬ 

tinuous; hence it is repr(\sented by its Fourier series excc'pt at 

the points of discontinuity of the function. Kxc-(‘pt possibly 

at a finite number of i)oints, then, 

i'(x) =0 1)^ 

and the theorem is proved. 

There is an interesting consequence of the above theorem. 

Suppose that for some real value of X other than 7i(n -|- 1), 
Legendre^s equation 

has a solution y = t/o(^), where y'o(x) is continuous in the interval 

— Then, according to Sec. 25, yoix) is orthogonal to 

all the characteristic functions Pn(x) already found and cor¬ 

responding to X = n(n + 1). But this is impossible according 

to Theorem 1, unless yo ^ 0. 

Since we have already shown that X must be real if equation (3) 

is to have such a regular solution, we have the following result: 

Theorem 2. T'he only values of X for which the Legendre equa¬ 
tion (3) can have a non-zero solution with a continuous derivative of 
the first order, in the interval are 

X == n(n -hi) (n == 0, 1, 2, • • • ). 

It can be shown that the Legendre functions of the second 

kind, Qn{x), which also satisfy equation (3) when X = n{n + 1), 

become infinite at x = ±1. Consequently, the polynomials Pn(x) 
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are, except for constant factors, the only solutions of equation (3) 

which have continuous first derivatives in the interval — 1 ^ ^ 1. 

77. The Expansion of Without the use of a general expan¬ 

sion theorem, we can easily show how every integral power of x, 

and therefore every polynomial, can l>e expanded in a finite 

series of the polynomials Pn{x), It will be clear that these 

important expansions are valid for all not just for the values 

of X in the interval ( — 1, 1). 

According to its definition, the poljuiomial Pm{x) has the form 

(1) Pm{x) = + * * • , 

wh(ir(^ a^ ‘ • are constants depending on the integer 7n. 
Therefore 

a a a 

That is, every integral power x”^ of x can be written as a constant 

times Pm(x) plus a polynomial in x of degree m —• 2. Applying 

this rule to in the last equation, we see that x^ is a linear 

combination of Pm(x)y Pm-2(x), and a polynomial of degree 

m — 4. Continuing in this way, and noting that only the 

alternate exponents m, m — 2, m — 4, • • * appear in the poly¬ 

nomials here, it is clear that there is a finite series for x'" of the 

following form: 

(2) X"* == AruPnfx) + Afn--2Pm—2{x) + * * * + P, 

where the final term T is a constant An if m is even, and 

T = A,P,(x) 

if m is odd. 

To find the value of any coefficient A„*_2y, we multiply all terms 

of equation (2) by and integrate^ over the interval ( — 1,1). 

In view of the orthogonality of the functions Pn(x)y this gives 

x”*Pm-.2j(x) dx = A,n-2i (a:)]^ dx. 

But the integrand on the left is an even function of x for every 

integer m; and the integral on the right, the norm of Pw,~2/(a:), 

has the value 2/(2m — 4j + 1). Therefore, 

(3) Am^23 — (2m ^ jo 
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We shall develop here the following integration formula, 
valid for every real number r greater than — 1: 

(4) r x'^P (x) dx =_1) * ‘ * (r — n + 2)_ 
Jo ^ (r + n + l)(r + n -IT^^r- n + Sj 

(n = 2, 3, • • • )• 

In view of this formula, the integral in equation (3) has the 
value 
_m(m - 1) — * (2j + 2)_ 
(2m - 2j + l)(2m -- 2j - 1) • • • (2j + 3) 

ml 
1 • 3 • 5 • • • (2m - 2j + l)2^j!‘ 

The values of the coefficients therefore determined, 
and we can write expansion (2) for a?iy integral power of x as 
follows: 

ml = (2m + l)P„.(a:) 
1 • 3 • 5 • • • (2m + 1) ^ 

+ (2™ - 7) + -■) +...]. 

For the first few values of m, we have 

1 = Po(x), z = Pi(x), = \Pi{x) + iPo(x), 
= |P8(x) + |Pi(a;), a:* = ^P,{x) + \P,{x) + \P,{x). 

Derivation of Formula (4). To obtain the integration formula 
(4), let us first observe that, in view of expression (1), 

(5) ^\^P^{x)dx 

=r 
(ax*^" + hx'*^^ + ) dx 

+ + 
r + n + l^r + n-1^7- + n- 3 

as long as r > —1. The last member can be written 

+ 

(6) _/W_, 
(r + n + l)(r + n — l)(r + n — 3) • • • 
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where 

/(r) = a(r + n — l)(r + n — 3) • • • 
+ 4.n + l)(r + n~3) 

We can see that/(r) Ls a polynomial in r of degree n/2 or (n — 1)/2, 
according as n is even or odd. 

Now the product is an even function of x for every n, 
when j = 1, 2, * • • ; so it is evident from equation (2) that 

^ a;»-2jp„(x) dx = 0 (j = 1, 2, • • • ; n ^ 2j). 

Therefore our integral (5) vanishes when r is replaced by n — 2, 
n — 4, n — 6, etc., down to zero or unity, and so does the poly¬ 
nomial /(r). Also, the coefficient of the highest power of r in 
/(r) is a + 6 + c + * * * , which is Pn(l) or unity. Hence, 
when n = 2, 3, * ‘ , the factors of/(r) can be shown as follows: 

/(r) = (r — n + 2)(r — 7i + 4) • • • r, 

if n is even; and 

/(r) = (r - n + 2)(r - n + 4) • • • (r - 1), 

if n is odd. In either case the fraction (6) can be written as 

r(r — l)(r — 2) • • * (r — n + 2) 

(r -f- 71 + 1)(7' + ^ 1) • * * (r — 71 + 3) 
(n = 2, 3, • • • ;r > -1). 

This is the value of our integral; hence formula (4) is established. 
78. Derivatives of the Polynomials. The derivative P^J^x) is a 

polynomial of degree n — 1 containing alternate powers of x, 
namely, • • • . It can therefore be written as a finite 
series of Legendre polynomials: 

P'JX) = An-lPn-lCx) + An-^sPn^s(x) + * * * . 

To find the coefficient A/ (j = n — 1, — 3, • • • ), we 
multiply all terms by Pj(x) and integrate; thus 

A, = Pi(x)P’.(x) dx. 

When integrated by parts, the integral here becomes 

- ^[^P.{x)Fi(x) dx. 
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and this last integral vanishes because PJ(x) is a linear combina¬ 
tion of the polynomials Py-i(x), etc., each of which is of 
lower degree than P„(a^). Therefore 

= _ (-1)/+"] = 2i + 1, 

since j + n = 2n — 1, 2n ~ 3, • • • . 
Consequentl3^ we have the following expansion, valid for all x\ 

(1) p;(i:) - (2n - l)P„_i(a-) + (2n - 5)Pn-3(:r) 
+ (2n — ^)Pn~h{x) + * * * , 

ending with 3Pi(a:) if 7i is (won, and with Po(.r) if 7i is odd. 
When — 1 ^ X ^ 1, we have seen that |P«(x)| ^ 1; lumee fcjr 

these values of x it follows from expansion (1) that 

\P2n(x)\ ^ (4n 1) + (4n - 5) + • • • + 3 - n(2n + 1); 

and similarly, 

|PL+i(^)l ^ (« + l)(2n + 1). 
Therefore, 

1P5.WI ^ (2n)S \P'^^^{x)\ ^ (2n + 1)^; 

that is, for all x in the interval — 1 ^ x ^ 1, 

(2) |Pi(a:)| S n* (n = 0, 1, 2, • • • ). 

Differentiating both members of expansion (1) and noting that 
\P'r^i{x)\ ^ n^, |P^3(a:)| S etc., we see by the method used 
above that 

(3) |p;'(x)| ^ (-1 ^ :r g 1, /I = 0, 1, 2, - • ). 

Similarly, for derivatives of higher order, iP{*>(x)| g n^*. 
Let us collect our properties on the order of magnitude of the 

Legendre coefficients and their derivatives as follows: 
Theorem 3, For all x in the interval — 1 ^ x g 1, and for 

w = 1, 2, 3, • * * , the values of the functions 

|p-(^)i,^|p4(*)i,^|p;'(x)i, • • • 

can never exceed unity. 
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79. An Expansion Theorem. The normalized Legendre poly 
nomials were found in Sec. 75 to be 

<pn{x) = Vrt -F^P„(a:) (n = 0, 1, 2, • • • ). 

The Fourier constants, corresponding to the orthonormal set 
here, for a function fix) defined in the interval (—1, 1), are 

c„ = j^J{x)ipn{x) dx = Vn + i ^^J{x)Pn{x) dx. 

The generalized Fourier series corresponding to fix) is therefore 

2 ^ I f(x')Pnix') dx'. 
() lO 

This can be written 

(1) XAJ^n(x), 
0 

where 

(2) A„ = £^fix)P„(x) dx (n = 0, 1, 2, • • • ). 

The series (1) with the coefficients (2) is called Legendre^s 

scries corresponding to the function f(x). It was shown above 
that if f(x) is any polynomial, this series contains only a finite 
number of t(^rms and represents/(a:) for all values of x. 

It can be shown that, when — 1 < or < 1, Legendre^s series 
converges to f{x) under any of the conditions given earlier for 
the representation of this function by its Fourier series. We now 
state explicitly a fairly general theorem on such expansions, and 
accept it without proof for the purposes of the present volume.’^ 

Theorem 4. Let f(x) be bounded and integrable in the interval 

(~1, 1). Then at each pointy a:( — l<x<l) which is interior 

to an interval in which f(x) is of bounded variation^ the Legendre 

series corresponding to f(x) converges to ^[f(x + 0) +f(x — 0)]; 

that 

(3) i[/(x + 0) + fix - 0)] = 2 AJ>n(x) (-1 < a; < 1) 

where the coefficients An are given by formula (2). 

♦ * The theorem stated here is a special case of a theorem proved in Chap. 
VII of Ref. 1. The proof is lengthy and involves more advanced concepts 
than we employ in this book. 
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In particular, if f(x) is seciionally continuous in the interval 
( — 1, 1), and if its derivative f'(x) is sectionally continuous in 
every interval interior to (~1, 1), then expansion (3) is valid 
whenever —1 < a: < 1. For it can be shown that the condi¬ 
tions in the theorem are then satisfied at all points. 

If f{x) is an even function^ the product/(a:)Pn (3:) is even or odd 
according as n is an even or odd integer. Hence i4n = 0 if n is 
odd, and 

(4) = (2w + 1) £ f{x)P^{x) dx (w = 0, 2, 4, • • • ): 

so that expansion (3) becomes 

(5) + 0) + fix - 0)] 
= i4o + A2P2(^) + A^4(x) + * * • , 

where the coefficients are defined by formula (4). 
Similarly, if f{x) is an odd function^ the expansion becomes 

(6) i[/(^ + 0)+/(a:-0)] 
= AiPi{x) + /I3P8(^) + AhPh{x) + * ’ * > 

where 

(7) An = (2n + 1) ff(x)Pn(x) dx (n = 1, 3, 5, • • • ). 

In the interval (0, 1), either one of the expansio7is (5) or (6) 
can be usedj provided of course that f{x) satisfies the conditions 
of the theorem in that interval. For if f{x) is defined only in 
(0, 1), it can be defined in ( — 1, 0) so as to make it either even 
or odd in ( — 1, 1). It was pointed out earlier (Sec. 75) that the 
polynomials P2n(x), and the polynomials Pin-xix)^ appearing in 
expansions (5) and (6), respectively, form two sets of orthogonal 
functions on the interval (0, 1). 

When X = cos B, expansion (3) can of course be written 

F{9) = X 9) (0 < < t) 
0 

at points where F{B) is continuous, where 

An = ^”'2^ F{0)Pnico8 0) sin 0d0 (n = 0,1, 2, • • • ). 

PROBLEMS 

1. If fix) « 0 when —1 < x <0, fix) « 1 when 0 < « < 1, and 
/(O) ** i, obtain the following expansion for/(aj) when — 1 < a; < 1: 
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00 

/(*) = ^ + 5 2 " -P2»+s(0)]P,„+l(®) 
0 

][ 

(2n - 1) 
4n +4 2*4 (2n) Pin+lix). 

Suggestion: Soe Prob. 4, Sec. 73. 

2. If f{x) - 0 when —1 < x ^ 0, and /(x) = x when 0 ^ x <1, 
show that, when — 1 < x < 1, 

Six) = + +|^2(x) - 
9 • 2! 

2iT3TTt^^‘W 
^ iilil p / ^ 
“b 07 . >« I Of P^\^} T • 4!2r /3. Expand the function /(x) = x, when 0 g x < 1, in series of 

gendre polynomials of even order, in the interval (0, 1). 

80. The Potential about a Spherical Surface. Let a spherigal 
surface be kept at a fixed distribution of electric potential 
V = F(&)^ where r, 6 are spherical coordinates with the origin 
at the center of the sphere. The potential at all points in the 
space, assumed to be free of (charges, interior to and exterior to 
the surface is to be determined. It will clearly be independent 
of (p] hence it must satisfy the following case of Laplace^s equation 
in spherical coordinates: 

(1) r^,(rV) + —B I Sin ^ I = 0. 
sm 6 d6\ dd / 

The potential F(r, B) will also be required to be continuous, 
together with its second-order derivatives, in every region not 
containing a point of the surface, and to vanish at points infinitely 
far from the surface. The boundary conditions are therefore 

(2) lim F(r, 6) = F{e) (0 < B < ir), 
r—»c 

where c is the radius of the spherical surface, and 

(3) lim F(r, (?) = 0. 
J"-—♦ SQ 

Particular solutions of equation (1) can be found by the usual 
method. Setting V = R(r)6(d), equation (1) becomes 
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R dr^ 0 sin 
1 d ( ■ a dQ\ 

Both members here must be equal to a constant, say X; hence we 
have the equations 

1 d 

(c 

COS' 
+ xe = 0. 

sin 6 dd\ sin 6 dB / 

The first of tlu'se is Cauchy\s linear (‘(luation, 

rUt" + 2rR' - XA» = 0, 

which can be reduced to one with (‘oiistant co(‘fficients by substi¬ 
tuting r == cK Its general solution is 

Writing — i + Vx + i Hy SO that X = ??(7i + 1), we have 

R{r) = Ar- + 

where n is any constant. 
Writing x for cos 6, thcj eciuatiori in 0 becomes, in terms of the 

new parameter n, 

which is Legcndre^s equation. We Imve seen that the solution 
of this equation can be cont inuous, together with its first ordered 
derivative, in the int erval — 1 ^ x ^ 1, or 0 ^ 6 ^ w, only if 
n is an integer. The solutions are then the Legendre poly¬ 
nomials, which have continuous derivatives of all orders. Hence 

and 

n = 0, 1, 2, • • * , 

0 = Pn{x) = Pn(C0S B). 

Thus two sets of particular solutions /£0 of Laplace's equation 
(1) have been determined: 

(4^, V**Pn(cos B)] r””"^Pn(cos (n = 0, 1, 2, • • ' ). 
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In the first set the functions and their derivatLves of all jcy^rs 
with respect to r or g are continuous in aviny. and 
in the second set they are continuous in every region, finite or 
infinite, not containing the origin. 

Then at points inside the sphere the function 

00 

X d) (r < c) 
0 

satisfies (1) and (2) formally, provided can be determined so 
that 

00 

/(cos 0) = V BnC’‘P„{cos e) (0 < e <ir), 

where/(cos 0) — F(B). This is the expansion of the last section, 
provided BnC'' are the eex^fReiemts An given there; that is, if 

Bn = j /(cos ^)Pn(eos 6) sin Odd. 
c A Jo 

Hence for points inside the sphere, thc^, solution of the problem 
can be written 

(5) F(r, 0) = 2 S f' /(^)^«(^) dx 

[r g c; V{0) = /(cos 6)]. 

For points exterior to the sphere, the functions of the second 
set in (4) satisfy condition (3), and the solution can be written 

(6) V(r, e) = 2 ^-1 - ^ ^'n(cos (?) (r ^ c), 
Oi 

where 

(7) A„ = j ^ f{x)Pn{x) dx, 

since the series in (6) then reduces to /(cos 6) when r — c. 
The Solution Established. To show that our formal solution 

does satisfy all the conditions of the problem, we use the same 
method here as in earlier problems (for example, Sec. 46). We 
shall suppose that the given function F{e) and its derivative 
F'{6) are sectionally continuous in the interval (0, it). Then 
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f{x) is sectionally continuous in the interval ( — 1, 1), and so is 
f(x)f in every interval interior to ( — 1, 1). 

Now consider the function F(r, 6) represented by formula (5). 
When r = Cy the scries there converges to /(x) if —1 < x < 1. 
But the sequence of functions (r/c)^ (n = 0, 1, 2, * • • ) is 
bounded, and monotone with respect to n; hence according to 
AbeFs test the series is uniformly convergent with respect to 
r (0 ^ r ^ c) for each fixed x ( —1 < x < 1). Therefore 
V(c — 0, 6) = V(Cj 6)y and so condition (2) is satisfied. 

The terms of the series in equation (5) can be written as 
the product of the three factors A„/n, Pn(cos 6), and n(r/cy. 
Since the first two factoids arc bounded for all r, By and n 

(n = 1, 2, • • • ). 

and since the series whose general term is the last factor con¬ 
verges when r < Cy the series in equation (5) is uniformly con¬ 
vergent when r < c. But the scries of terms n^{r/cY, for each 
fixed positive fc, also converges when r < c; and since rr‘^P^(x) 
and are uniformly bounded (Theorem 3), it follows 
easily that the series in equation (5) can be differentiated term- 
wise twice with respect to r and with respect to 6, when r < c. 
The individual terms of that series satisfy Laplaco^s equation (1); 
hence our function V(r, B) satisfies that equation. Also, F(r, B) 
and its derivatives are continuous when r < e. 

This establishes our solution when r < c. When r > c, 
solution (6) can be proved valid in the same manner. If, as a 
periodic function of the angle By F{B) is supposed continuous and 
F'(B) sectionally continuous, it is also possible to show that the 
above solutions are the only possible solutions satisfying certain 
regularity conditions, ess<mtially that F(r, B) be continuous at 
r = c (see Sec. 58). 

PROBLEMS 

1. If the potential is a constant Fo on the spherical surface of radius c, 
show that V — Vo at all interior points, and V = Foc/r at each exterior 
point. 

2. Find the steady temperatures at points within a solid sphere of 
unit radius if one hemisphere of its surface is kept at temperature zero 
and the other at temperature unity; that is, /(cos 6) ^ 0 when 
7r/2 < B <T, and /(cos B) - 1 when 0 < ^ < t/2. 

Ans, u{ry r cos ^ — J ir^Piicos B) 
+ H J ir®P«(co8 — • * • . 
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3. Find the steady temperatures u(r, 9) in a solid sphere of unit radius 
if w == C cos 6 on the surface. Am, u — Cr cos 9, 

4. Find the potential V in the infinite region r > c, 0 ^ ^ ^ ir/2, 
if F == 0 on the plane portion of the boundary {9 ~ 7r/2, r > c) and at 
r = 00, and V = /(cos 6) on the hemispherical portion of the boundary 
(r - c, 0 ^ ^ ^ 7r/2). 

Am. V(.r, fl) = (4n + 3)(c/r)^»«P*„+i(cos<?) f(x)P^^i(x) dx. 

6. Find the steady temperatures u{r, 9) in a solid hemisphere of 
radius c whose convex surface is kept at temperature u = /(cos 9)j if 
the base is insulated; that is, 

1 ^ 
r 99 when 9 = 

T 

2* 

Also write the result when /(cos 9) = 1. 
oo ^ 

Am, u(r, (4n + l)(r/r)2"P2«(cos 9) f f(x)P2n(x) dx, 

6. Find the steady temperatures in a solid hemisphere of unit radius 
if its convex surface is kept at temperature unity and its base at tem¬ 
perature zero. 

7. Show that the steady temperature u(r, 6) in a hollow sphere with 
its inner surface r = a kept at temperature u = /(cos 0), and its outer 

surface r = 6 at w = 0, is 

where 

^ _ r!»+x f aY' ^ 

An = 

2n -f- 
f{x)Pn{x) dx. 

8. If u{x, t) represents the temperature in a nonhomogeneous bar 
with ends at a? = —1 and x - 1, in which the thermal conductivity is 

proportional to 1 - x^, and if the lateral surface of the bar is insulated, 

the heat equation has the form 

du _ , 9 
dt ^ 9x 

x^) 
9u 

9x 
7 

where 6 is ft constant, provided the thermal coefficient cS is constant 
(Sec. 9). The ends x = ± 1 are also insulated because the conductivity 
vanishes there. If « = fix) when t = 0, derive the following formula 
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for u{Xj t): 

^An = ^ ^ J f(x)Pn{x) dx 

9. When the initial temperature function in Prob. 8 is (n) fix) = 
(b) f(x) — x^j show that the solution reduces to the following formulas, 

resi)ectively: 

(а) \ \{Zx^ - l)c-«'S 

(б) u “ -f iPs(x)e~^^K 

81. The Gravitational Potential Due to a Circular Plate. 
Another type of application of Legtuidre polynomials to the 
solution of boundary value problems will be illustrated by the 
following problem: 

Find the gravitational pot(uitial due to a thin homogeneous 
circular plate, or disk, of mass 5 per unit area and radius c. 

Let the c(uiter of the disk be taken as the origin and the axis 
as th(' 5;-axis, 6 = 0, when^ r, 6 arc spherical coordinates. 
The potential is a function V(r, 6) ind(‘pendent of (p; hence it 
satisfies the following form of Laplace’s equation: 

(1) r in I 1 
dr- 

• ^ XT. \ sm 6 ) = 0, 
sin 6 d6\ 66/ 

except at points in the disk. Its value at points on the positive 
axis ^ = 0 can l>e found from the definition of i)otential by a 
simple integration; thus 

r® 2wx8 __ 
V{r, 0) = A: "" 2vU{i/^ + c* - r), 

where k is the gravitational constant in the definition of poten¬ 
tial. Then V{r, 6) must be symmetric with respect to the origin 
and satisfy the following boundary condition in the space 
0 ^ 6 < 7r/2, r > 0: 

(2) F(r, 0) = - r), 

where M is the mass of the disk. 
Two solutions of equation (1) were found in the last section, 

namely, 
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(3) 
00 

F = y a„r-l\(cos d), 

ao 
(4) 

0 

The coefficients an, bn are now to be determined, if possible, so 
that boundary condition (2) is satisficed. But when ^ = 0, 
Pw(cos d) — } and tlie .series in (3) and (4) become power series 
in r and in reciprocals of r, respectively. 

Now the binomial expansions 

Vr^ + = c ^ ^ 
2.4 2 • 4 • 6 c« 

1 c-* 1 • 3 c' 
2-4r<'^2-4’6/-« 

...) 
(0 ^ r < c), 

•) 
(r > c). 

are absolutely convc^rgent in the indicated intervals, and con¬ 
vergent when r = c. Hencc^ boundary condition (2) can be written 

(5) F(r,0) 
c \ c 2 c‘- 

■^2-4-6^6 

2Mk /ic 1 
~r~\2r 2-4r3'^ 

1 r4 
2 • 4 6‘4 

• • • ^ wdien 0 < r ^ c; 

3 • 3 \ 
2 • 4 • 6 / 

when r ^ c. 

The series in (3) will then satisfy (5) for r < c if its coefficients 
are identified with those of the first series in (5); thus Uo = 2Mk/Cy 
ai = —2MA;/c-, etc. Similarly, for the case r > c the series in 
(4) can be used if its coefficients are taken as those in the second 
series in (5), namely, 6o = Mk, hi = 0, etc. 

Hence the solution of the boundary value problem (l)-(2) 
can be written as follows, when 0 ^ B < 7r/2: 

V(r, 0) = 1^1 - ^ P,(cos P2(cos 0) 

- 0) - • • • ] 
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if 0 < r < c; and 

V{T, e) = 
2Mk r 1 c 

c _2 r ^ e) 

if r > c. 
When r ^ Cj the convergence of the series here follows from 

the absolute convergence of the series in (5) and the fact that 
|Pn(C0S 0)1 ^ 1. 

PROBLEMS 

1. Derive the following formula for the gravitational potential due to 
a mass M distributed uniformly over the circumference of a circle of 
radius 1, when 0 ^ 6 S tt : 

F(r, 6) = *3/ [l - ^ r»Pj(cos d) + r*l\{coB 0) - • • • ], 

if 0 g r < 1; and 

,,,ri IP^fcosO) , l-3P4(cose) 
i (r, 6) = kM ---r - 

if r > 1. 
2. Find the gravitational potential, at external points, due to a solid 

sphere, taking the unit of mass as the mass of the sphere, and the unit of 
length as the radius, if the density of the sphere is numerically equal to 
the distance from the <liainetral idane 0 = t/2. 

1 PiicosJ) 
G“ 8" 

1'3 PeCcos 6) 1 

Ans. V(r, 6) — k 
[i 

1 P2(cos 6) 
+ 0 ;-3~ 

+ 6 • 8 • 10 

3. Find the gravitational potential, at external points, due to a 
hollow sphere of mass M and radii a and 6, if the density is proportional 
to the distance from the diametral plane d = ir/2. 

4* The points along the g-axis, 0 = 0 or 0 = tt, in an infinite solid 
are kept at tem{)erature u = (V’**. P'ind the steady temperature 

OQ 
u(r, 0) at all points. Am. w(r, 0) = ( —l)”(r^V^0^2»(cos 0). 

0 

5. The surface 0 = 7r/3, r ^ 0, of an infinitely long solid cone is kept 
at temperature u = Ce“^ Find the steady temperatures u(r, 0) in the 

oe 

Am. u{r, 0) *= C 2) (-“l)"[r*P«(cos 0)]/[nlPn(})]. 
0 

cone. 
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6. Solve Prob, 5 if the surface temperature is uir^ tt/S) = C/r^j 

where m is a fixed positive integer. 

REFERENCES 

1. Hobson, E. W.: “The Theory of Spherical and Ellipsoidal Harmonics,’' 

1931. 
2. Whittaker, E. T., and G. N. Watson: “Modern Analysis,” 1927. 

3. Byerly, W. E.: “Fourier’s Series and Spherical Harmonics,” 1893. 
Appendix. 





INDEX 

A 

Ahers test, 127 

Absolute convergence, 83 

Approximation in mean, 40 

B 

Beam, displacements in, 24 
simply supported, 125 

Bessel func.tions, of first kind, 48, 

143-174 

applications of, 165-174 

boundedness of, 152 

differentiation of, 148 

expansions in, 102 

integral forms of, 149 

of integral orders, 145 

norms of, 161 

orthogonality of, 157 
recursion formulas for, 148 

tables of, 156n. 

zeros of, 153 

of second kind, 147 
BesseFs equation, 143, 157, 166, 170 

Bessel’s inequality, 41, 84 

Bessel’s integral form, 151 

Beta function, 149 
Boundary value problem, 6, 94-142, 

165-174, 193-201 

complete statement of, 107, 133, 

138 

linear, 24 

units in, 100 
{See also Solutions of boundary 

problems) 

C 

Characteristic functions, 47 

Characteristic numbers, 47 

Characteristic numbers, of I-eg- 
endre's equation, 186 

Closed system IS, 42 

of trigonometric functions, 74, 85, 

88 
Complete systems, 40, 42 

of Legendre polynomials, 185 

of trigonometric, functions, 74 
Conduction, equation of, 19 

Conductivity, 15, 168 

Convergence in mean, 42 

Cyliudri(;al coordinates, 13 

Cylindrical functions (see Bessel 

functions) 

D 

Derivative from right, 65 

Differential equation, linear, 2 

linear homogeneous, 2 
(See also Partial differential 

equation) 

Differentiation, of Fourier series, 78 

of series, 5, 106, 140, 196 
Diffusion, equation of, 19 

Diffusivity, 19 

Dini’s expansion, 164 

Dirichlot’s integrals, 67 

p: 

P^lectrical potential, 13 
(See also Potential) 

Even function, 57 

Expansion, Dini’s, 164 

Fourier-Bessel, 162 

in Fourier integrals, 88-93 

in Fourier series, 53-88 
in Legendre’s series, 187,190,191 

in series of characteristic func¬ 

tions, 48, 49 

203 
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P^jxponential form, of Fourier inte¬ 
gral, 92 

of Fourier series, 63 
Exponential functions, 31, 45, 46 

F 

Flux of heat, 15 ^ 
Formal solutions, 94 * 
Fourier-Bessel expansions, 162 
Fourier coefficients, 53, 70 

properties of, 76, 77, 80, 85, 86 
Fourier constants, 4(1-42 
Fourier cosine integral, 01 
Fourier cosine series, 57, 62, 74 
Fourier integral, 88 

applications of, 120-123 
convergence of, 89 
forms of, 91 

Fourier integral t heorem, 89 
Fourier series, 53-88 

convergence of, 70, 86 
absolute, 83 
uniform, 82, 86 

differentiation of, 78 
forms of, 61 
generalized, 39 
integration of, 80, 86 
in two variables, 116 

Fourier sine integral, 91 
application of, 122 

Fourier sine series, 28, 29, 57, 62, 73 
in tAVO variables, 118 

Fourier theorem, 70, 86 
Function space, 38, 74 
P'undamental interval, 38 

G 

Gamma function, 145, 149 
Generating function, for Bessel 

functions, 147 
for Ijcgendre polynomials, 179 

Gibbs phenomenon, 86 
Gravitational force, 10-12 
Gravitational potential, 10 

{See also Potential) 
Green’s theorem, 18, 131, 134 

H 

Heat equation, 17, 19 
Heat transfer, surface, 110 

I 

Infinite bar, tcmi:)eratures in, 120 
Infinite series of solutions, 5 
Inner product, 34, 38 
Integration, of Bessel functions, 

149 
of Fourier series, 80, 86 
of Ijcgendrc polynomials, 181, 

188 

L 

Lagrange’s identity, 32, 71 
Laplace’s equation, 12, 20 
Laplacian operator, 12, 14, 15 
l^ast squares, 41 
licbesgue integral, 43, 86 
Left-hand derivative, 65-67 
Ijogendre coefficients, 181 

boundedness of, 182 
Legendre functions, 175 

of second kind, 178 
Legendre polynomials, 175-193 

applications of, 193-201 
bounds of, 190 
complete set of, 185 
derivation of, 175 
derivatives of, 189 
expansions in, 187, 190, 191 
generating functions for, 179 
integration of, 181, 188 
norms of, 183 
orthogonality of, 183 
recursion formula for, 180 

I^egendre’s equation, 175, 183, 194 
characteristic numbers of, 186 
general solution of, 178 

Legendre’s series, 191, 192 
Limit in mean, 42 
Linear differential equation, 2 
Lommel's integral form, 160 
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M 

Membrane {aee Vibrating mem¬ 
brane) 

Monotone sequence, 128, 139 

N 

Newton^8 law, 110, 168 
Norm, 34, 38 

O 

Odd function, 67 
One-sided derivative, 65-67 
Orthogonal functions, 29, 38 

generated by differential equa¬ 
tions, 46 

Orthogonal sets, 34 -52 
Orthogonality, 34, 37, 44, 49 

of Bessel functions, 157 
of characteristic functions, 49 
of exponential functions, 45, 46, 62 
Hermitian, 45 
of Legendre polynomials, 183 
of trigonometric functions, 29, 

39, 40, 53 
with weight function, 44 

Orthonormal sets, 35, 38 
of Bessel functions, 161 
of Legendre functions, 184 
of trigonometric functions, 54, 74 

P 

Parscval relation, 85, 86 
Parseval’s theorem, 43, 86 
Partial differential equation, 2 

for beam, 24 
of conduction, 19 
general solution of, 3 
Laplace’s, 12 
linear homogeneous, 2 
for membrane, 23 
nonhomogeneous, 100 
for string, 21 
types of, 24 

Periodic boundary conditions, 48 
Periodic extension, 96 
Periodicity of function, 55 

Piecewise continuous function, 65 
Plucked string, 28, 98 
Poisson’s equation, 13 
Polar coordinates, 14 
Potential, electric, in cylindrical 

region, 126, 141, 174 
equation of, 13 
between parallel planes, 115, 

116, 123 
in quadrant, 124 
about spherical surface, 193 
in square, 137 

gravitational, dcjfinition of, 10 
due to disk, 198 
due to hollow sphere, 200 
due to ring, 200 
due to sphere, 200 

(See also Temperature, 
steady) 

K 

Radiation, 110, 168, 173, 174 
Right-hand derivative, 65-67 
Rodrigues’ formula, 181, 184 

S 

Schwarz ineqiiality, 83 
Sectionally continuous functions, 64 
Semi-infinite bar, temperatures in, 

122 
Shaft, twist in, 124 
Solutions of boundary problems, 94 

approximate, 97 
closed form of, 96,116, 126 
established, 96, 105, 133, 141, 167, 

195 
superposition of, 99 
uniqueness of, 105, 127-142 

Sources, heat, 20, 111 
Spherical coordinates, 13 
String (see Vibrating string) 
Sturm-Liouville equation, 47 
Sturm-Liouville problem, 47-52 

in Bessel’s equation, 160 
in Legendre’s equation, 183 

Superposition of solutions, 3, 99 
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T 

Tchebichef polynomials, 44 
Telegraph equation, 23 
Temperature, steady, in cone, 200, 

201 
in cylinder, 168, 169 
in cylindrical wedge, 126 
in hemisphere, 197 
in hollow sphere, 197 
in infinite solid, 200 
in sphere, 196, 197 

variable, in bar, 104, 120-123, 
197, 198 

in circular plate, 173, 174 
in cube, 119 
in cylinder, 165, 168, 172 

in cylindrical wedge, 173 

in hollow sphere, 113 
in infinite solid, 120-123, 125 

in radiating wire, 110-112 
in slal), 102-112 
in sphere, 112 
in square plate, 119 

{See also Potential) 
Termwise differentiable series, 5 

U 

Uniform convergence, of Fourier 
series, 82, 86 

of series, 105, 127 
Uniqueness of solutions, 127-142 

for potential, 134, 137 
for temperature, 105, 130 

Units, selection of, 100 

V 

Vectors, 34-37 
Vibrating membrane, 23 

circular, 170, 172 
rectangular, 116 

Vibrating string, 21 
with air resistance, 125 
approximating problem of, 98 
forced vibrations of, 100-102 
problem of, 24, 28, 95-102 

W 

Wenerstrass test, 105, 133 
Weight function, 44 








