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PREFACE 
In the field of marketing atid market analysis, statistical theory has 

far outdistanced practice, mainly because practical marketing men do not 
have the time to sit down and devote long hours to the translation of the 
abstract mathematical writings of'the statistical theorists. As a result, 
researchers are employing antiquated, and at times faulty, statistical 
methods in their market studies, resulting in needless expenditure of time, 
labor, and money. 

Market studies have been frequently rendered ineffective by the appli¬ 

cation of these outmoded techniques because of the misleading and incon¬ 
clusive findings that have ensued. Their t rue inaccuracy is often discovered 
only after long and costly experiences arising from the application of these 

erroneous findings to existing conditions. The fact that the newer and 
more powerful statistical procedures can be employed to yield more accu¬ 
rate and reliable results than could be attained by the older methods, and 
at less cost^ has not yet been widely realized. 

Statistics is the most widely used tool in market analysis, but there is 
nowhere available a simply written manual to indicate what the latest 

statistical methods are and to illustrate how statistical methods in general 
can be applied in market research. The need for such a manual has long 
been recognized. Yet, except for the pamphlet by Prof. T. H. Brown 
written several years ago, Application of Statistical Methods to Market 
Researchf no such publication exists at this writing. The recent develop¬ 
ment of new statistical methods, especially with reference to sampling, 
increases the need more than ever before. 

This book is intended to meet this need by supplying an up-to-date 
account of modern statistical methods in the simplest nontechnical manner 
possible, with illustrations of their practical application to market analysis. 
It differs from most general statistical texts in two major respects. For 
one thing, the bulk of this volume deals with those parts of statistics that 
are of greatest importance to market researchers, namely, the theory and 
application of sampling techniques and correlation methods. Within this 
framework, emphasis is placed on the latest and most useful procedures 
and on translating the mathematical theories into ‘‘English.^^ In this way, 
it is hoped that this book will aid in remedying the failing so prevalent 
among students and researchers of emerging from school with a solid 
knowledge of such things as table and chart construction and of the differ- 

vii 



PREFACE viii 

ence between a mean and a median, but with only the most fragmentary 

knowledge of practical sampling and correlation methods. 

The second point of departure is the specific distinction made in this 

book between population (descriptive) measures and sampling measures. 

Though most books do make such a differentiation more or less implicitly 

in univariate analysis, this is rarely the case with correlation statistics. 

The resultant confusion has reached the point where many researchers (and 

teachers of statistics) employ the so-called “standard error of estimate^ ^ 

to predict the sampling error in population estimates based on sample 

regressions. One recent book even places this measure under the heading 

of Sample Statistics. To avoid further confusion on this account, popula¬ 

tion measures are discussed in one chapter and the associated sample 

measures are presented in an immediately following chapter. Thus, 

Chaps. XI and XII discuss the descriptive measures of correlation, and 

Chap. XIII takes up the sampling problem in correlation analysis. 

Because of the scope of the subject under consideration, this book 

cannot hope to present a detailed coverage of all phases of statistical 

analysis as applied to marketing. Thus, it will be noted from the Table 

of Contents that such topics as table construction, chart analysis, time 

series, and index numbers have been completely omitted. These subjects 

have been extensively and adequately covered elsewhere, and references 

are provided in the Bibliography. 

As noted previously, the purpose of this book is to present the latest 

statistical methods in the simplest nontechnical manner possible. In the 

course of doing so, many compromises have had to be made between 

mathematical rigor and understandability. In general, the primary con¬ 

sideration in such cases has been to make the treatment as simple and as 

understandable as possible. And, when a rigorous exposition was believed 

to be inconsistent with this aim, simpler, less rigorous methods were sub¬ 

stituted where possible. It is for this reason, for example, that the same 

notation is generally used for both sample and population statistics despite 

the generally accepted practice among mathematical statisticians of using 

Latin letters for sample statistics and Greek letters for population statistics. 

Of course, no two statisticians will be found to agree completely on 

the best methods of exposition or on the relative emphasis to be given 

various topics. Thus, quota samplers will probably think that too much 

emphasis has been placed on area sampling, and area samplers will probably 

think that too much emphasis has been placed on quota sampling. In all 

such cases, the aim has been to present a frank, unbiased appraisal of both 

sides of the question. What bias is present is (at least, it is intended to 

be) in favor of differentiating between facts and value judgments. For 

instance, the assertion that quota samples are better than area samples is, 

in my opinion, a pure value judgment; the one universal fact emerging 
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from this controversy is that the relative superiority of either method 
depends on the conditions of the particular problem. 

Nevertheless, no one is entirely free from bias, and this book undoubt¬ 
edly contains certain evidences of it. Any suggestions or criticisms for 
improving this book would, therefore, be most welcome. 

I have been extremely foitunate in having the assistance of a number 
of organizations and people who have supplied data and have reviewed 
various parts of the manuscript. For furnishing data and other material, 
I would like to express my sincere thanks to the following people and 
organizations. Additional a^^knowleirnaents are made in the text. 

M. G. Barker, Promotion Manager, The Chicago Sun and Times 
Company. 

Cornelius DuBois, former Director of Research, and A. Edward 
Miller, present Director of Research, Life magazine. 

W. W. Heusner, Director of Marketing Research, Pabst Sales 
Company. 

Dr. Alfred Politz, Alfred Politz Research, Inc. 
Ray Robinson, Director of Research, Crowell-Collier Publishing 

Company. 
Harry Rosten, Research Manager, The New York Times. 
John T. Russ, Publisher, The Haverhill (Mass.) Gazette. 
Marian E. Thomas, Advertising Department, International Business 

Machines Corporation. 
Donald E. West, Director of Marketing Research, McCall 

Corporation. 
Stanley Womer, Vice President, Industrial Surveys Company, Inc. 

I am indebted to Prof. Ronald A. Fisher and to Oliver & Boyd, Ltd., 
Edinburgh and London, for permission to reprint Appendix Tables 6, 11, 
and 15 from their book Statistical Methods for Research Workers. The 
other statistical tables in Appendix E are reproduced with the permission 
of the editors of the following publications and organizations: Annals of 
Mathematical Statistics, Columbia University Press, Journal of Business of 
The University of Chicago, Journal of Marketing, McGraw-Hill Book 
Company, Printers' Ink, Sales Management, and the University of Chicago 
Press. I should like to thank Dr. C. I. Bliss, and Profs. E. A. Duddy, 
I. N. Frisbee, George W. Snedecor, W. Allen Wallis, and Albert E. Waugh 
for their kindness in aiding me to obtain this permission. 

I am deeply grateful to the people who have read part or all of the 
manuscript at various stages and have offered so many excellent criticisms. 
Without the wise comments of Dr, Alfred Politz and Stanley Womer, the 
book would have been far less lucid and understandable. And, were it 
not for the careful and methodical examinations of the manuscript at the 
hands of Prof. Leonid Hurwicz, 1. R. Kosloff, Prof. Don Patinkin, and 
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Dr. Gobind Seth, the technical exposition would contain many more inac¬ 
curacies than it actually does, and could not have attained its present 
state of organization. I am particularly grateful to Don Patinkin for the 
painstaking care with which he has gone over the manuscript and for his 
invaluable suggestions for improving and clarifying the exposition. Thanks 
are also due to Sophia Gogek for assisting me in checking the galley proofs 
and to Herbert Habel for advising me on grammar and style. 

In addition, I should like to acknowledge my debt to those teachers 

with whom I have studied who have been so kind to me, particularly to 
Dr. John M. Firestone, formerly of City College of New York, to Prof. 
Lucille Derrick of the University of Illinois, and to Prof. Jacob Marschak 

of the University of Chicago. Perhaps this book will show that the time 
they spent on me has not been altogether wasted. I shouM further like 
to thank Stanley Womer for the practical experience in cont;umer surveys 

that I acquired while working under him at Industrial Surveys Company. 
However, my greatest debt of gratitude is to those people without 

whose continued interest and encouragement I would never have had the 

courage to write this book. Besides their encouragement, Marji Frank 
Simon and my wife, Marianne Abeles Ferber, have read the manuscript 
in all its various stages and provided many helpful suggestions as to con¬ 

tent and style. Last, but definitely not least, I am deeply grateful to 
Prof. George H. Brown of the University of Chicago for his long interest 
in my work and for the unselfish manner in which he gave up his own time 

to read and correct my manuscript. I have profited immeasurably from 
his sound understanding and thorough knowledge of market-research prob¬ 
lems and people. Had I been able to work in closer contact with Dr. 
Brown, instead of through the medium of the U.S. Post Office Department, 
I have no doubt that the book would have turned out better than it has. 

Unfortunately, as in other books, I cannot shift the blame for any 
errors, mistakes, or omissions found in this volume onto anyone but myself. 

It was I who made the final decision in all cases, and it is I toward whom 
all brickbats, invectives, and criticisms should be directed. 

Robert Ferber 

Urbana, III. 
Aprily 1949 
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FOREWORD 

The two most striking developments in marketing research in the past 
few years have been its widespread acceptance by business and its rapid 
technical progress. As might be expected, the simultaneous occurrence of 
these two developments has created an unprecedented demand for more 

knowledge. Progressive sales and advertising, quick to recognize the 
power of consumer studies as a guide to marketing decisions, have found 
it necessary to master the basic laiigirnge of marketing research in order 

to merge their experience and judgment with the flow of facts they now 
encounter. Teachers and students of marketing have suddenly become 
.ware of an urgent need for trained people to serve a rapidly expanding 
field. Even the executive who is willing and able to delegate the respon¬ 
sibility for the execution of the research must know enough about the sub¬ 
ject to pick the man for the job and to evaluate the progress being made. 

Long experience does not protect a man from the need for more knowl¬ 
edge. Almost all marketing research practitioners have been so occupied 
in securing acceptance for the discipline that they have found it difficult 
to focus attention on the rapid changes in technical methods. There was 
a time when anyone in business who knew about multiple correlation was 
automatically an expert. Today the man who talks about multiple corre¬ 
lation as a device for estimating sates potentials is guilty of inaccurate use 

of language. A few years ago almost everyone accepted the ‘^representa¬ 
tive cross scction^^ sample as adequate for marketing studies. Today the 
research man who uses such a sample must make an elaborate defense of 

the method, giving adequate evidence that some type of random sample 
might not be more appropriate. The need of the experienced research man 
for up-to-date technical information actually increases as the range of 

problems he encounters broadens. 
While the rapid development and acceptance of marketing research 

has created a demand for knowledge, it has, at the same time, made the 

provision of this knowledge extremely difficult. The wide acceptance of 
research requires that the knowledge be made available in lay, or non¬ 
technical, terms. Yet the technical development of the field not only 
occurred in a large part outside the field of marketing research, but it has 
been so rapid that most of the information is in the hands of individuals 
who are accustomed to the rigorous precision of expression most easily 
found in technical terms‘and mathematical symbols. At a time when the 
need for knowledge has been growing by leaps and bounds our ability to 
communicate has steadily diminished. 

xiii 



XIV FOREWORD 

In view of this general situation it is easy to understand why I welcome 
a book which breaks the impasse by presenting an accurate but under¬ 
standable statement of the statistical aspects of marketing research. The 
task undertaken by Mr. Ferber has been a difficult one, but he has achieved 
a degree of success that I, for one, had not considered possible. In part, 
this has been done by restricting the statistical material to those areas 
having a direct bearing on marketing problems. In part, clarity has been 
achieved by the use of well selected specific examples of the application of 

the statistical method to pervasive problems in marketing research. But 
more than anything else, Mr. Ferber has brought a patience and under¬ 
standing in his exposition which will be sincerely appreciated by the 

nontechnical reader. It would be foolish to pretend that statistical con¬ 
cepts are easy to grasp and it would be equally foolish to attempt to avoid 
mathematical terms in the presentation of the subject. A careful and 
complete statement of the principles and a clear explanation of each mathe¬ 
matical term is the best way of enabling an interested reader to follow the 
points being developed. 

In addition to clarifying the statistical concepts now widely used in 
marketing research, Mr. Ferber has performed a considerable service in 
suggesting new concepts that may be of value. The chapter on the use of 
sequential analysis is a case in point, as is the section on the analysis of 
variance. Greater familiarity with these statistical concepts will undoubt¬ 
edly lead to their wider use in marketing research, since the range of prob¬ 
lems faced by practitioners is almost limitless. The absence of an available 
and understandable statement of these and other statistical concepts has 
been an important barrier to their use in day-to-day research operations. 

There is no question but that anyone seriously interested in marketing 
research will find value in both the new materials and the full statement 
of more familiar subjects. In some instances the reader may believe that 
the exposition is too detailed while in others it may seem altogether too 
brief. At no place, however, will he find that the author has deviated 
from the task of making clear the basic notions of statistics as applied 
to marketing research. The steadfastness of purpose, both in regard to 
subject matter and method of exposition, gives this book a character of 
its own. It will, I hope, become a model for future technical books in 
this important field. 

Geokge H. Brown 
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CHAPTER I 

STATISTICS AND MARKET RESEARCH 

The grefit majority of functions performed by business enterprise may 

be classified under one of two headings—production or marketing. 
Production refers to the develo2:)ment and manufacture of finished 
products; marketing deals with the sale and distribution of these finished 
products. From the marketing point of view, a product is ‘‘finished’’ 
once it has passed through the pr«xluction processes employed by the 
particular concern. The marketing function then takes over and seeks 

to dispose of the product in the manner most advantageous to that 
concern. If the product is employed by other firms in their own 
manufacturing processess, 6.</., raw materials, automobile parts, industrial 
machinery, the sale and distribution of the product is known as industrial 

marketing. If the product is destined for consumer use, we have consumer 
marketing. In some cases, the same product involves both of these 
marketing divisions. For example, glue is used in the manufacture of 

numerous other products and is also used by consumers.^ 
Wherever there is production there is marketing. In fact, under our 

free-enterprise system, if a product could not be marketed, it would not 
long be produced. Both production and marketing are geared to the 
profit motive. Production is the means with which profits are obtained; 
marketing is the means through which profits are obtained. Production 
seeks to supply the maximum number of most desirable products—^most 
desirable in the eyes of the purchaser—at the lowest possible cost; market¬ 
ing attempts to dispose of the products most advantageously. Essentially, 

both functions aim to perform their task most efficiently. 
The efficient operation of the production processes is necessarily 

based on production research. The reason for this is that any particular 

product may be produced by a number of alternative methods and, 
usually, in a number of different shapes or forms. It is only through 
continual experimentation and through scientific and laboratory research 

^ The definitions contained in this paragraph are not meant to be rigorous. Their 

purpose is merely to provide a general picture of the relationship between production 

and marketing and of the functions of each. It is outside the scope of this book to 

consider the finer points of the subject—such questions as: What is the most ‘^advan¬ 

tageous” way for a concern to market its product (s)? Where, does industrial market¬ 

ing end and consumer marketing begin? What is a “consumer”? References 26-29 in 
the Bibliography contain a more detailed discussion of such topics. 

3 
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that the most efficient production methods may be established. Pro¬ 
duction research is also responsible for the development of new and 
better products. Today, the indispensability of production research is 
universally recognized, and few producers of any significant size are 
without such research. 

Just as the efficiency of production is dependent upon production 
research, so the efficiency of marketing is dependent on market research. 
By market research is meant, broadly, the development of the most 

efficient means of marketing and, as in production research, the discovery 
of new and better methods of marketing — more economical means of 
distribution, new markets, better means of selling, and other marketing 
aids. (We shall consider shortly a more precise meaning of market 
research.) 

With the increasing complexity of our economy, the number of 
alternative methods of marketing has increased manyfold, and the need 
for market research has grown tremendously. Yet, only within the last 
few years has this need received any sort of wide acknowledgment. Why 

is this so? For one thing, market research is not as dramatic an aid 
to management as is production resean^h. When a new product or pro¬ 
duction process is developed, management sees it, management feels 
it, management touches it, and management sees the results that it 
produces. In the case of market research, the results and findings are 
not so tangible. An increase in sales following the introduction of a new 
distribution system may be attributed to general business conditions 
rather than to the market research that made the new system possible. 
Furthermore, management has felt that market research is of little 
consequence relative to the business cycle and that market research can 
do little to combat economic fluctuations. (To some extent this is 
true, for market research by itself cannot nullify general business fluc¬ 
tuations, but the experience of the last depression has shown that market 
research can mitigate the impact of a depression on an individual concern.) 
Lastly, management has not seen what benefits could be derived from 
having men do market research on a full-time basis, work that its sales 
and marketing executives felt equally qualified to do in their spare time. 

Though the urgent need for market research has been recognized 
only recently, the first known instance of its use in the United States goes 
back to the 1790’s when John Jacob Astor is said to have employed an 
artist to sketch hats in the park to help him determine the fashions of 
women's hats.' Presumably women's fashions were as much of an enigma 
in those times as they are today. Though scattered market research 

^ Converse, ''The Development of the Science of Marketing—An Exploratory 
Survey,*' p. 19. (Complete citation will be found in the Bibliography in the section 

devoted to this chapter.) 
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studies were made throughout the nineteenth century, it was not until 1911 
that a market research department was established in an American con¬ 
cern. In that year, C. C. Parlin organized a commercial research depart¬ 
ment for the Curtis Publishing Company. However, it was the advertis¬ 
ing agencies that conducted and financed most of the early market research 
work, partly because they recognized the value of market research to 
industry and partly because they wanted to supply their clients with some 
additional service. Only in the last 10 to 15 years has market research 

begun to be adopted on a wide scale by business and industrial concerns. 
Despite its rapid growth, markets esearch today is nowhere near the 

scale on which production research is conducted. In 1936j American 
industry spent 200 million dollars on production research but only 3 
million dollai-s on market research'- -although over 50 cents of the con¬ 
sumer's dollar was estimated to have been spent on marketing costs in 
that year. Eight years later, in 1944, the annual sum spent on market 
research had risen to about 12 million dollars.^ In due time it is entirely 
probable that market research will be conducted by American industry 

on a scale commensurate with production research. 
In the course of its rapid expansion, market research has taken on a 

host of different functions. Indicative of its present-day scope is the 
definition given it^ by the U.S. Department of Commerce in 1932: 

The study of all problems relating to the transfer and sale of goods and services 

between producer and consumer, involving relationships and adjustments between 

production and consumption, preparation of commodities for sale, their physical 

distribution, wholesale and retail merchandising and financial problems concerned.* 

As interpreted by one of the foremost marketing textbooks, market 
research in practice entails the following functions: 

. . . the analysis and interpretation of sales data, the relation of actual to 

potential volume, the setting of sales quotas, the analysis of salesmen's territories 

and accomplishments, the making of surveys of marketing expense and other cost 

studies, the testing of new commodities or new sales plans, the checking of the 

efficiency of advertising and sales-promotion efforts, the study of the attitudes of 

consumers and dealers toward the company and its products, the evaluation of the 

company's selling policies and products, and the gathering and analysis of informa¬ 

tion conerning many other special subjects.^ 

1 CouTANT, ‘‘Where Are We Bound in Marketing Research?’' p. 29. 

* Quoted by Frank LaClave in ‘fundamentals of Market Research,” p. 26. 
*The terms “market research” and “commercial research” are used interchange¬ 

ably in this book. Actually, commercial research has a somewhat broader connotation, 

referring to all research of a commercial or business nature, though by far the largest 

part of it is market research. 
* U.S. Department of Commerce, Market Research Agencies, U.S. Government 

Printing Office, Washington, D.C., 1932. 

® Alexander, Surface, Polder, and Alderson, Marketing, p. 598. 
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A graphic picture of the varied services which market research may 
perform in a modern corporation is shown in Fig. 1. The columns in 
this chart denote the major problems facing the top management of a 
corporation. Each row represents a different market research service. 
The crosses in the body of the chart indicate which market research 
services are of use in solving any one of the top management problems. 
Thus, we note that market research is of aid in determining man-power 
requirements through the analysis of economic trends, the measurement 

of sales trends, demand and price studies, and the analysis of competi¬ 
tion. Of course, not every corporation has exactly the same set of 
problems as the one represented in Fig. 1, but the major policy decisions 
facing corporate organization in general are sufficiently alike to enable 
this diagram to indicate the great variety of wa.^-^s in vhicb market 
research may prove valuable to business enterprise. 

All these market research services have one thing in common, and 
that is their dependence on the analysis of numerical data—statistics. 
Without statistics and statistical analysis, market research would not 

exist. Thus, the relationship of actual to potential volume involves the 
compilation of actual sales data and the estimation of a “potentiaF^ 
volume, usually by some sort of correlation method. The setting of 
sales quotas entails the determination of actual sales, their relationship 
to various sociological and economic factors, and the estimation of sales 
norms for each particular territory and sales region. The analysis of 
salesmen’s accomplishments involves a similar statistical analysis with 
the inclusion of salesmen’s personal characteristics such as age, sex, back¬ 
ground, character, etc. Testing new goods or services, checking advertis¬ 
ing efficiency, studying consumer attitudes, and evaluating a company’s 
selling policies are all based upon the analysis of numerical relationships 
between such factors as sales and advertising volume, consumer preference 
and consumer characteristics, and sales and type of distribution outlet. 
In addition, most of these latter functions depend upon the selection of 
representative samples from the population, one of the most difficult of all 
statistical problems. Even cost studies are based largely on statistical 
analysis, since the relationships between costs, production, and various 
other factors are generally determined by statistical formulas. 

Yet, despite this dependence of market research upon statistical 
analysis, many people in market research possess only a superficial 
knowledge of the tool they use as often as the artist uses his brushes. 
The plain fact is that some of the statistical methods currently used and 
relied upon in market research were discarded as biased or inefficient by 
agricultural and scientific researchers as long as 25 years ago. This is 
particularly true of sampling studies, where much of the so-called 

“scientific^^ market research is anything but scientific. Under these 





8 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

conditions it is not surprising that business spends so little on market 
research relative to its expenditures on production research. 

Why does such a state of affairs exist? Probably the main reason is 
that until recently market research was not considered a separate subject 
of its own. As late as the 1930^s, few men concerned themselves exclu¬ 
sively with market research as certain doctors did with medical research 
and as certain scientists did with scientific research. In business, market 
research was viewed as an auxiliary duty of the sales executives, and 

few colleges offered specialized courses in market research. The net 
result was that when the need for full-time market researchers was 
recognized, the dearth of well-trained personnel led to the recruiting of 
sales and marketing people who, unfortunately and through no fault of 
their own, did not have the necessary training and knowledge for such 
work. Many, probably most, of these men have proved themselves to 
be very competent in their new vocation and have succeeded in acquiring 
what training they lacked in the school of hard knocks -by actual ex- 
pewence. But some things are not readily acquired through business 

experience, and one such thing is, unfortunately, a knowledge of statistical 
methods, the basic tool of market research. 

Market research executives who have not mastered statistics do not 
have the time to go back to school and learn the subject. They are 
necessarily impelled to rely upon what elementary methods they do know, 
and are unable to take advantage of modern statistical developments, 
whose superiority they are unable to realize or, in some cases, of whose 
existence they are totally unaware. In a way it is a sort of vicious circle: 
because of their inadequate statistical knowledge, these active workers 
cannot understand modern statistical developments, and because of their 
inability to grasp these developments, their knowledge of statistics 
becomes progressively more antiquated. 

Yet, the continued development of market research is dependent to a 
large extent on the application of modern statistical methods. Because 
of ignorance of such methods, progress in many branches of market 
research has been extremely slow, time-consuming, and expensive. Copy 
research is an outstanding example of such a field. The progress attained 
during the last 10 to 15 years in evaluating the influence of various factors 
on readership has been (relatively) slow compared to what might have 

been accomplished had advanced statistical methods—specifically, 
variance analysis—^been systematically applied. 

The whole problem is complicated by the presently existing breach 
between the top-level practical commercial researchers and the highly 
skilled statisticians. Because of the statisticians^ use of abstract ter¬ 
minology and complicated mathematical formulas, the researcher con¬ 
siders him as “a guy with his head in the clouds'^ and of little practical 
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use. The statistician, on the other hand, seeing himself misunderstood 
and with little patience to try to make himself understood, views the 
researcher as a person trying to paddle upstream with his hands when a 
pair of oars are lying right behind him. (Naturally, there are a few 
exceptions to this situation, but unfortunately they are very few.) 

Both are actually correct, and in order to Mend this breach they must 
meet each other halfway. The statistician must come down from his 
perch in the clouds and talk English instead of mathematics. He must 

try to explain his theories and formulas in the simplest possible manner. 
The researcher must discuss his p’ob^erns with the statistician and put 
into practice the theories and procedures that are suggested to him. In 
the end both will profit; the researcher by solving his problems quickly 
and efficiently, the statistician by gaining an intimate conception of the 
practical nature of business problems, a conception that will enable him 

to develop new and better methods for dealing with such problems. 
The entire problem can be solved only by attacking it at its core, 

which is the lack of (statistical) education. The solution, of course, is to 
supply this education. However, in order to be effective, this educational 
campaign must be conducted on two fronts simultaneously. These 
fronts are 

1. Business and industry {mcluding^ of coursey government). Practical 
research men, too occupied to attend school, must be provided with means 
of ascertaining and understanding modern statistical methods. This does 
not mean that they have to know how to apply such methods, but they 
should certainly know what the available methods are and under what 
general circumstances each of them may be used. The application of 
such methods and the interpretation and limitations of the results can be 
left in the hands of the statistician. 

2. Colleges and universities. The present generation of budding young 
researchers in colleges and univei^ities throughout the country must be 

instilled with a thorough appreciation of modern statistical methods and 
their potentialities. Again, this does not mean that they have to be 
capable of setting up and carrying out complex statistical analyses (desir¬ 
able as this may be), but that they should be able to assimilate new tech¬ 
niques so as to make the most efficient use of such methods in their work. 

The primary media for this education are books and periodical litera¬ 
ture. Books on market research must place special emphasis on the 
latest statistical methods and their uses. Books like Market and Market¬ 

ing Analysis by Heidingsfeld and Blankenship and Say It with Figures by 

Zeisel are steps in the right direction. Marketing periodicals must devote 
more space to nontechnical descriptions of modern analytical methods 
and to case illustrations of their use. In the past, the amount of space 
devoted to this has been pitifully small, especially when compared to 
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journals in such fields as economics, agriculture, and psychology. And 
last, but not least, statistical books must be available discussing in detail 

the latest analytical methods as simply as possible and with specific refer¬ 
ence to market research. Such books can serve as textbooks for the stu¬ 
dent, as sources of knowledge for the practical researcher, and as ever¬ 

present reference manuals for all. Though statistical books are constantly 
being written in other fields, it is a curious as well as a sad commentary 

that no such book is at present available in market research. This is the 
main reason the present volume has been written. 



CHAPTER II 

ELEMENTARY CONCEPTS 

This chapter has a dual purpose: to aid those with some background 

in statistics to brush up on the necessary essentials, and to provide the 
beginner with the basic groimdworic ’n statistics. The chapter reviews 
the basic measures and concepts used in the .analysis of statistical data 

relating to one characteristic. Though this review covers most of the 
usual statistical measures, primary emphasis is placed on those measures 
and concepts that figure most prominently in sampling analysis. The 

review is somewhat concise, but no prior knowledge of statistics is pre¬ 
sumed, and the beginner with but an elementary knowledge of algebra is 
not likely to have any difficulty. 

The reader who is well acquainted with the subject of this chapter is 
advised to read Sec. 7 and then proceed to Chap. III. 

1. ELEMENTARY DEFINITIONS 

From a practical point of view, statistics may be defined as the science 
of the collection, analysis, and interpretation of numerical data. The 
most debatable part of this definition is whether or not statistics is a science 

akin to the physical sciences. To many a mathematical statistician it is 
indeed a science; to many a business statistician it is more of an art. 
However, this question is of little concern to the practical researcher who 

is more concerned with means of solving a particular problem than with 
reflecting on whether he is a scientist, an artist, or something else. Suffice 
it to say that statistics seeks to develop and use objective (scientific) 

methods where possible, relying on subjective judgment to fill the gaps 
where objective methods have not yet been developed. 

The figures collected on a particular subject are known as a set of 

statistics. Thus, while the term ‘‘statistics'^ in the singular sense refers 
to the general topic of discussion, in the plural sense it refers to a collection 
of figures. The appropriate meaning of the word is generally obvious 

from the phrase in which it appears. 
Statistics concerning a subject that itself is expressed in numerical 

values within a relevant range are known as variables. When the subject 

can take all possible values within the relevant range, the variables are 
said to be continuous. Age is a continuous variable since a person’s age 
might be stated as 32.578 years or 32.6 years or 33 years, depending on 

11 
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the desired degree of accuracy. Statistics that can take only a limited 
number of denumerable values within the relevant range are discrete or 
discontinuous variables. Family size is an example of a discontinuous 
variable—a family may have three members or it may have four members 
but it cannot have 3.2 or 3.76 members. 

Statistics concerning a subject compiled according to the possession of 
particular properties are known as attributes. Thus, the question ^What 
is your favorite radio program?^’ can have only a limited number of 

answers. 
From the practical point of view the distinction between continuous 

and discontinuous variables is not too important since the same procedures 

and formulas are generally applicable to either case. However, the dis¬ 
tinction between variables and attributes is of paramount iinT'ortance be¬ 
cause different analytical methods are usually applied in t>acb case. For 

example, the generally used descriptive measure of a group of variables is 
their average value; thus, we can say that the average age L»f people using 
product X is 34.6 years. But there is no such thing as au ‘‘average^^ value 

in the case of attributes—what is the ^^average^' favorite radio program? 
In the latter problem, the generally used descriptive measure is the per¬ 
centage of people favoring a particular radio program. Fortunately, the 
distinction between attributes and variables is rarely difficult to make, 
and so long as the researcher remembers which methods are applicable 
for each case, there is very little danger of confusion. 

A given set of statistics (or observations) comprises either a sample or a 

population. If data are obtained from each and every member of a par¬ 
ticular entity, the result is a set of population statistics. Data collected 
from a selected number of this entity comprise sample statistics. Popula¬ 

tion statistics on the size of United States families are obtained by ascer¬ 
taining the size of each and every family in the country; sample statistics 
on the same subject may be obtained by questioning a minute proportion 

of the nation’s 35-million-odd families. 
A descriptive measure of a set of observations is known as a statistic. 

A statistic computed from a set of population statistics is also known as a 

parameter. The parameter is the true value of that particular statistic in 
a given population. When the true value of a parameter is unknown, a 
sample may be taken from the population in order to estimate its approxi¬ 

mate value. A statistic computed from a sample is, therefore, used as a 
means of estimating the unknown parameter, though we shall see later 
that the sample statistic itself is not always the most reliable estimate of 

the corresponding parameter. Sampling is of such vital importance in 
commercial research because so many population parameters are unknown 
and because their values may best be estimated from sample data. For 
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example, the average size of all United States families as of a given date is 
a paramoter. If unknown, as is usually the case, a sample of families may 

be questioned. The average size of the families in this sample is a (sample) 
statistic and may be used to estimate the average size of all families in the 
population. Note that every parameter is also a statistic, but only statis¬ 
tics computed from population data are parameters. 

This chapter deals only with parameters in the sense that every set of 
data presented herein is assumed to comprise a specific population, and 

every concept and measure discussed relates to the computation of par¬ 
ticular descriptive parameters •* f that qrpulation. Methods of obtaining 
sample statistics, and their use in the estimation of unknown parameters, 
are the main subject of the remainder of the book. 

The analysis of statistics relating to one variable or attribute is known 
as univariate analysUj to two variables is bivariate analysis^ and to more 

than two variables is multivariate analysis. (Univariate analysis and bi¬ 
variate analysis are actually special cases of multivariate analysis.) Thus, 
a study of the number of individuals reading specified periodicals is a 

problem in univariate analysis; the same study relating readership to 
age level is a problem in bivariate analysis. If any other factors are 
introduced, such as the relationship between readership, age, and income, 

the researcher has a multivariate problem on his hands. From the 
practi(;al point of view, it is most important to distinguish univariate 
problems from multivariate problems, as the measures and concepts used 
in pra(;tice differ radically (though, again, from a theoretical point of 

view, the univariate measures are but special cases of the corresponding 
multivariate measures). The first three parts of this book, including 
the present chapter, are concerned primarily with univariate analysis. 

The more advanced topic of multivariate analysis is discussed in Part 
Four. 

2. THE FREQUENCY DISTRIBUTION 

Definition and Description 

When observations are taken of a variable, such as age, each possible 
value, or group of values, occurs a certain number of times, or with a 
certain frequency. The combination of these frequencies for all observed 

values of the variable is a frequency distribution. In other words, a 
frequency distribution is a compilation of the absolute, or relative, 
occurrence of all possible values of the variable under observation. If 

the frequencies are recorded in absolute terms, we have an absolute fre¬ 
quency distribution, and if they are recorded in percentage terms (per cent 
of total observations), we have a relative frequency distribution. 
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In the case of a continuous variable (as well as for many discontinuous 
variables), it is customary to group the possible values of the variable 
into a small number of frequency classes, or class intervals—10 to 20 groups 
being the usual practice. This is done not only to avoid the excessive 
paper work involved in recording each observed value of the variable but 
also to obtain a better understanding of the general distribution of the 
values. 

Table 1. Age Distribution of the United States Population, 1940* 

(\) 
Age interval 

(2) 1 
Number of people, millions 

v3) 
Per cent of total 

0- 4.9 10.54 8.0 
5- 9.9 10.68 S.l 

10-14.9 11.75 8.9 

15-19.9 12.33 9.1 

20-24.9 11.59 8.8 
25-29.9 11.10 8.4 

30-34.9 10.24 7.8 

36-39.9 9.55 7.2 

40-44.9 8.79 6.7 
45-49.9 8.25 6.3 

50-54.9 7.26 5 5 

55-59.9 5.84 4.4 
60-64.9 4.73 3.6 
65-69.9 3.81 2.9 

70-74.9 2.57 2.0 

75-79.9 1.50 1.1 
80-84.9 0.77 0.6 
85-89.9 0.28 0.2 

90 and ov(;r 0.09 0.1 

Total. 131.67 100.0 

♦ Source; U.S. Censun, 1940, Vol. IV, Characteristics by Age, Part 1, p. 2. 

As an example Table 1 contains the age distribution of the United 
States population as of the 1940 Census. All observed values of the 

variable, age, are shown in Col. (1); note that the size of every class 
interval but the last one is 5 years. The absolute distribution of the 
population by these age levels is given in Col. (2); this is the absolute age 
distribution of the population. By dividing each of these absolute 
frequencies by the total number of frequencies, z.e., the total population, 
one obtains the relative age distribution of the population, as shown in 
Col. (3). A graph of this distribution is shown in Fig. 2. Age is plotted 
on the horizontal axis and frequency on the vertical axis^ Each 

^ The distance along the horizontal axis is the abscissa, and the distance along the 
vertical axis is the ordinate. 
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frequency is plotted against the mid-point of its class interval. Thus, 
in plotting the absolute frequency distribution, the second frequency, 

10.68, is plotted against 7.45, the mid-point of the 5-9.9-year age interval. 
The result is a series of points that, when connected, give the general 
shape of this age distribution. 

Fig. 2. Age distribution of the United States population, 1940. {U.S, Census, 1940, 

Population, Vcl, IV, Part /.) 

The shape of this distribution is not altered by the type of frequencies 
plotted, as is evident from the fact that the left-hand vertical scale is in 
absolute frequencies and the right-hand scale is in the corresponding 
relative frequencies. Note that the resultant curve, known as a distribu¬ 
tion curvej is discontinuous in the sense that it consists of a series of jointed 
straight lines rather than of a smooth curving line, although the original 
data were continuous. The reason, of course, is that by condensing the 

data into a small number of classes we have transformed the continuous 
variable, age, into the discontinuous variable, age interval. Theoretically, 
as the size of the age interval is decreased, the number of plotted frequen¬ 
cies—and of points on the graph—is increased, and the distribution curve 
approaches continuity. In actual practice, this is usually not true because 
of the injection of extraneous, nonstatistical factors. For example, in 
the case of age, people tend to report their age to the nearest multiple of 5, 
thereby producing kinks in the distribution curve at 5-year intervals. 

We have now seen that the distribution curve of a continuous variable 
is obtained by joining the plotted frequency points with straight lines. 
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The height of the curve at any given point indicates the approximate 
frequency of occurrence of that particular value on the basis of the 
observations. However, if the variable is discontinuous, a distribution 
curve constructed in this fashion is meaningless since the variable can 
not then take all values. The size of a family, for example, must be a 
whole number. Instead of drawing a curve, the procedure in such cases 
is to represent each frequency in the form of a bar whose height corre¬ 
sponds to the frequency of the particular value and whose width extends 

*EtHinafecl by Author 

Fio. 3. Distribution of United States families by family size, 1940. {U.S, Census, 1940, 
Population and Housing, Families, General Characteristics.”) 

half of the distance between the given value and the two adjoining values. 
Such a graph is known as a histogram. An example of a histogram appears 
in Fig. 3, which depicts the family-size distribution of United States 
families as of the 1940 Census. Histograms are sometimes used to picture 
the distribution of continuous variables combined in class interval units, 
as the age distribution in Fig. 2. 

Attributes also possess frequency distributions in the sense that each 
property of the attribute may be said, or seen, to occur with a certain 
frequency. However, no sense of continuity is present, as in the case of 
variables, because there is usually no means of ordering the various (non- 
numerical) properties, such as different radio programs. In recent years, 
progress has been made in the ordering of certain attributes through the 
use of intensity scales, each reply being assigned a number. For example, 
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a respondent might be requested to give one of the following answers to a 
question: strongly like, like, not sure or no opinion, dislike, strongly 
dislike. These replies are assigned the numbers 1,2, 3, 4, 5, respectively. 
The resulting transformation yields a discontinuous variable instead of 
an attribute, thereby permitting averages and other variable measures to 
be computed. However, the implicit weighting involved in this technique 
may bias the results. 

The general shape of a frequency distribution is of great importance in 

statistical work because the validity of most current analytical methods is 
dependent upon the frequency distribution having some particular shape. 
The most common assumption, one that the reader will encounter through¬ 

out this book, is that the variable is distributed normally, or reasonably so. 
The normal distribution is pictured in Fig. 4A; we shall discuss its 

properties and characteristics in some detail in a later section. In practical 
work, only rarely is a variable encountered with a perfectly symmetrical 
bell-shaped distribution. However, many variables do have a similar dis¬ 
tribution, e.g., Figs. 2 and 3, and analytical methods based on “normal'^ 
curves have been found to be applicable to these variables with only slight, 
if any, modifications. Of course, not all variables possess reasonably^ 
normal distributions. At times, a distribution is clearly nowhere near 
normal, such as the U-shaped distribution of Fig. 4i?, the J-shaped distri¬ 
bution of Fig. 4C, and the inverted J-shaped distribution of Fig. 4D. In 
practical work, the researcher must be constantly on the alert to detect 
such nonnormal distributions and to guard against inadvertently applying 
analytical methods based on the normal distribution. 

Cumulative Distributions 

Cumulative distributions are obtained by cumulating the frequencies 
of an ordinary distribution in one particular direction. Cumulating the 
frequencies upward, ^.e., from the lowest values to the highest values, 
yields the total number or per cent of observations lying helow the upper 
limits of each class interval. Conversely, downward cumulation indicates 
the per cent or number lying above the lower limit of each class interval. 
The upward and downward cumulations of the relative age distribution of 
the United States population as computed from Table 1, are shown in 
Table 2. From this table it is readily noted, for example, that 34.4 per 
cent of the population were less than 20 years of age and that 26.7 per cent 
of the population were over 45 years of age in 1940. The ease with which 
such cumulated figures are obtainable is the reason for the frequent use of 
these distributions in statistical reports. 

The graph of a cumulative frequency distribution is known as an ogive. 
The ogive of the upward-cumulated age distribution of the United States 

1 The meaning of a ^‘reasonably” normal distribution is discussed on p. 35. 
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Age 
B. Percentage of female population not in labor force, by age groups, 1940. (17.S. Census, 

1940, Poimlatwn, “The Labor Force, Employment and Personal Characteristics,’’) 

Fia. 4. Different types of frequency distributions. 

population is shown in Fig. 5. In addition to its pictorial quality, the 
height of an ogive at any value of a continuous variable may be used as an 
estimate of the number or per cent of the observations above (or below) 
that particular value. For example, the per cent of the population under 
23 years of age would be the height of the ogive in Fig. 5 at the (approxi¬ 
mate) horizontal point 23. As indicated on Fig. 5, the estimate is 39.7 
per cent. This simple procedure is extremely useful when approximate 
figures are hastily desired, though, at best, it can provide only rough 
approximations to the true values. 

Moments of a Frequency Distribution 

Individuals are described and differentiated according to such charac¬ 
teristics as sex, height, weight, color of hair, age, etc. In a similar way, 

frequency distributions are described and differentiated according to 
characteristics of their own, of which the most commonly employed are 
momentSs^ The moments of a frequency distribution are its descriptive 

^ Theoretically, two frequency distributions may have exactly the same moments 
and yet differ from each other, just as two different people may have the same descrip¬ 

tive characteristics. In practical work, two such distributions are rarely encountered. 
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D. Number of companies spending given percentage of market research budget on con¬ 
sultants, 1945. {''Marketing, Research and Induntry," p. 25.) 

Fig. 4. Different types of frequency distributions {Continued), 

constants, and measure its average value, the relative scatter of the 
observations, its symmetry, and other characteristics. 

The statistical definition of moments is as follows. Let X represent 
any value a particular characteristic may take, and / represent the fre¬ 
quency of occurrence of each value of X. (Thus, in the case of an age 
distribution, X would be age and / would be the number of people at any 
particular age X.) Then, if there are N observations, the A:th moment of a 

A’ 

frequency distribution is equal to ^f{X)^/N^ where ^ is the Greek capital 
1 

letter sigma, indicating that the sum of the product of / times X to the A;th 
power is to be taken over all observations (l,2,...,Ar).' 

In practice, the first four moments [S/(X)/Ar,S/(X)7iV',S/(X)VA/’, and 
S/(X)^/iV] usually provide an adequate description of a frequency distribu¬ 
tion, and higher moments are rarely computed in practical problems. 
These first four moments have special meanings, and we shall see shortly 

’ A brief review of the meaning and interpretation of summation signs will be found 
on p. 442. 



STATISTICAL TECHNIQUES IN MARKET RESEARCH 

'0 10 20 30 40 50 60 70 40 90 10 
Age 

Fig. 5. Percentage of United States population below a gi’ en age, 1940. 

that the first moment estimates the average value of a. distribution, the 
second moment measures the dispersion of the observations, the third 

moment evaluates the asymmetry of a distribution, and the fourth moment 
measures its relative height. 

Table 2. Cumulative Relative Age Distributions of the 

United States Population, 1940 

Cumulated upward 

Per cent 

Under 4.9. 

Under 9.9. 

Under 14.9. 
Under 19.9. 

Under 24.9. 

Under 29.9. 
Under 34.9. 
Under 39.9. 

Under 44.9. 

Under 49.9. 

Under 54.9. 
Under 69.9. 

Under 64.9. 

Under 69.9. 
Under 74.9. 
Under 79.9. 

Under 84.9. 

Under 89.9. 

Cumulated downward 

Age Per cent 

Over 0. 100.0 
Over 5. 92.0 
Over 10. 83.9 
Over 15. 75.0 
Over 20. 65.6 
Over 25. 56.8 
Over 30. 48.4 
Over 35. 40.6 
Over 40. 33.4 
Over 45. 26.7 
Over 50. 20.4 
Over 55. 14.9 
Over 60. 10.5 
Over 65. 6.9 
Over 70. 4.0 
Over 75. 2.0 
Over 80. 0.9 
Over 85. 0.3 
Over 90. 0.1 

Total 100.0 
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As defined above, the moments of a distribution would be computed 
about the point, X = 0. However, moments may also be computed about 
any arbitrary origin. In practice, it is generally most convenient to com¬ 
pute the moments about the most frequently occurring value, or class inter¬ 
val, of X, or about the average value of the distribution, X, if the latter is 
readily available. Moments computed about an arbitrary point, Xo (which 

N 

may or may not be the average value), are defined as 2)/(X —Xo)VX. 
1 

The computation and interpretation of the first four moments of a distri¬ 
bution are discussed later in tl is cha^pte’*. 

Moments are not the only means of describing a frequency distribution, 

and a large number of auxiliary procedures and formulas exist for the same 
purpose. To bring out the relacionsbip, and differences, between these 
alternate measures and the corresponding moments, all measures that 

attempt to describe the same general characteristic of a distribution are 
discussed in one section. Thus, all measures describing the central tend¬ 
ency of a distribution, including the first moment, are discussed in the 
immediately following section. All measures describing dispersion are 
discussed in a succeeding section, etc. 

3. MEASURES OF CENTRAL TENDENCY 

The so-called measures of central tendency are distinguished by the fact 
that they seek to determine some central value of the distribution that can 
be said to be most characteristic^^ of it. A number of such measures are 
available, each measure based on a different interpretation of what is 
meant by the most characteristic value of a distribution. No one of these 
measures is consistently better than the others. The best, or most appro¬ 
priate, measure in a particular problem depends on the nature of the data 
and of the distribution. A working knowledge of the properties of the 
various possible. measures is therefore essential for their proper use. The 

present section discusses the four most popular measures of central tend¬ 
ency—the arithmetic mean, the median, the mode, and the geometric 
mean. 

The Arithmetic Mean 

The simple average of all the observations is known as the arithmetic 
mean. For data not in the form of a frequency distribution, the arith¬ 
metic mean is the sum of the values of all the observations divided by their 
total number.^ 

'Y — 
^ N 

* Henceforth the subscripts and interval of summation will not be given when they 

are obvious. 
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The arithmetic mean of a frequency distribution is its first moment. 
It is obtained by multiplying each value by its frequency, summing the 
products, and dividing by AT, the total number of frequencies. 

T - 
^ N 

If the frequency distribution is in class interval units, as is usually the 

case, the value of A" for any class interval is taken as the average of all the 

frequencies in that particular class interval. Where these average values 
are not readily ascertainable, the value of X is generally set at the mid-point 

of each class interval. 

The computation of the mean^ may be simplified by establishing the 
origin at the mid-point of one of the largest class interv ils, altering the 
other values of X accordingly, and computing the altered producl, /A', 
about this new origin. The mean value is obtained from the following 
formula:^ 

X = Xo + 
2/A^ 

N 

where Xo is the arbitrary origin. 

If the class intervals are of uniform size, it is possible to divide each value 
of X by the size of the class interval before computing 2/A'. The formula 
for the mean is then modified as follows: 

where k is the size of each class interval, and A" is the value of X (or A') 
divided by the size of the class interval. 

As an example, the computation of the mean of the absolute age 
distribution of the United States population by the use of both of the 
above formulas is shown in Table 3. With no other information available, 
the value of A is set at the mid-point of each class interval, i.e., the 
average of the lower and upper limits of the class interval.^ These mid¬ 

points were set on the assumption that people gave their ages as of their 
last birthdays, which means that a person who is 39 years and 11 months 
old would be reported as being 39 years of age. Hence, if one decimal 

' Mean or mean value shall always refer to the arithmetic mean. 

* Proof is given in Appendix C. 
’Because more ages tend to be reported as multiples of 5, this procedure yields 

average class interval values above those that would be obtained by averaging the 

reported ages of all the people in each class interval. The mid-point values are used 

here purely for illustrative purposes. In practice, the average of each class interval 
would be computed from Vol. IV, Part 1, of the 1940 Census of Population, which 

contains statistics on the number of people by single years of age. 
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place is used, the upper limit of the 35“39-year class interval is not 39 
years but 39.9 years. The lower limit, however, remains at 35 years. 
The mid-point of the class interval is, therefore, (36 + 39.9)/2, or 37.45, 
years. The mid-points of the other class intervals, with the exception 
of the 90-over class, are computed in the same manner. 

The products required for the computation of the mean in original 
units are obtained in Cois. (4) and (5). The products for computing the 
mean in class interval units are given in Cols. (6) and (7). The value for 

Z" for the last class interval is derived by dividing the difference between 
its mid-point and that of the origin (22.45) by the size of the class interval. 
Different origins were used in each case for illustrative purposes. The 

result by either method is, of course, the same. The reader may verify 
that the same result would be obtained by setting the origin at any other 
mid-point (or, for that matter, at any point in the distribution). 

Table 3. Computaiion of the Mean op the Absolute Age Distribution 

OF THE United States Population 

(Frequency in Millions of People) 

(1) 
Age 

(2) 
X 

(3) 

/ 
(4) 
X' 

(5) 

A" 
(6) 
X’ 

(7) 
SX‘ 

(8) 

/(A')* 

0-4 2.45 10.5 -15 -157.5 -4 -42.0 168.0 

5-9 7.45 10.7 -10 -107.0 -3 -32.1 96.3 
10-14 12.45 11.7 —5 -58.5 -2 -23.4 46.8 

15-19 17.45 12.3 0 0 -1 -12.3 12.3 

20-24 22.45 11.6 5 58.0 0 0 0 

25-29 27.45 11.1 10 111.0 1 11.1 11.1 
30-34 32.45 10.2 15 153.0 2 20.4 40.8 

35-39 37.45 9.6 20 192.0 3 28.8 86.4 

40-44 42.45 8.8 25 220.0 4 35.2 140.8 
45-49 47.45 8.3 30 249.0 5 41.5 207.5 

50-54 52.45 7.3 35 255.5 6 43.8 262.8 

55-59 57.45 5.8 40 232.0 7 40.6 284.2 

60-64 62.45 4.7 45 211.5 8 37.6 300.8 
65-69 67.45 3.8 50 190.0 9 34.2 307.8 
70-74 72.45 2.6 55 143.0 10 26.0 260.0 

75-79 77.45 1.5 60 90.0 11 16.5 181.5 

80-84 82.45 0.8 65 52.0 12 1 9.6 115.2 
85-89 87.45 0.3 70 21.0 13 3.9 50.7 

90 and over 92.55* 0.1 75.1 7.51 14.02 1.4 19.56 

Total 131.7 1,862.51 240.8 2,592.56 

* Estimated from Census breakdowns. 

X 

^0 + 

X'i+k 
S/X" 

N 
22.45 + 6 

1,862.51 

131.7 
(240.8) 
(131.7) 

31.59 

31.59 
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The arithmetic mean is the first moment of a distribution about its 
origin. When the origin is translated to the mean, the first moment 
becomes equal to zero, i,e,, 2f{X—l[)/N—0. This is one of the most 
useful properties of the mean and permits many valuable computational 
simplifications to be made in statistical analysis. Another very useful 
property of the mean is that the sum of the squares of the deviations of 
the values from the mean does not exceed the sum of the squares of the 
deviations from any other value, a property that is used to derive many 
statistical formulas. 

The fact that the arithmetic mean is the most frequently used 
measure of central tendency should not lead one to overlook its limita¬ 

tions. For one thing, it is strongly influenced by extreme values; 
especially in cases where N is not very large, a few extrei^ely high values 
may yield an abnormally high mean value for the entire distribution. In 

such cases, the mean is not a very reliable measure of central tendency. 
For another thing, the mean provides a ‘‘characteristic^^ value, in the 
sense of indicating where most of the values lie, only wheri the distribution 
of the variable is reasonably normal (bell-shaped), as in Figs. 2, 3, and 

4A. In the case of a U-shaped distribution, the mean is likely to indicate 
where the fewest values are and is meaningless for most practical purposes. 
Lastly, the mean cannot be computed if the distribution contains any 
open-end intervals, such as the last class interval in the preceding illustra¬ 
tion, unless reasonably accurate estimates of the mid-points of such 
intervals are possible. 

The Median 

The median is the middle value of a distribution. In other words, it 
is that value which divides the number of observations exactly in half. 
When the observations are not in the form of a distribution, the median 
is obtained by arraying the observations in numerical order and selecting 
the middle value. If there is an odd number of observations, the median 
is simply the middle value; for an even number of observations, the 
median is taken as the average of the two middle values. For example, 
suppose we want the median of the values 2,9,8,4,1,7,6,3,9,4. Arrayed 
in numerical order, these values are 1,2,3,4,4,6,7,8,9,9. Since there is an 
even number of observations, the median is the average of the two middle 
values, 4 and 6, or 5. 

The median of a frequency distribution is obtained by following the 
same principle. The frequencies are cumulated, usually upward, until 
the class interval containing the Ar/2nd frequency is found. The median 
is then determined by apportioning the ratio of N/2 minus the number of 
frequencies in the preceding class interval to the number of frequencies 
in the median class interval, multiplying by the size of the median class 
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interval, and adding the result to the lower limit of the median class 
interval. The formula is 

Median = 
lower limit of 
median class 

, interval 

N __ total frequencies in 
2 preceding intervals 

number of frequencies in 
median class interval 

(size of me¬ 
dian class 
interval 

As an example, let us compute the median of the age distribution in 
the preceding table. N/2j in this problem, is 65.85. By cumulating the 
frequencies in Col. (3)—or b^ glancing at the cumulative distribution in 
Table 2—it is readily seen t/iao the 15.85th frequency must be in the 

25-29-age interval. The total number of frequencies in the preceding 
five class intervals is 56.8. Substituting in the formula,^ 

Tv/r A- OK o 1 65.85 -- 56.8 
Median = 25.0 H-^ ” 29.1 years 

In other words, about half of the United States population may be 
said to have been under 29 years of age in 1940. Of course, this is only 

an estimate, since the original values were not used. However, if the 
distribution is reasonably continuous and contains a large number of 
observations, the discrepancy between the estimate and the true value is 
usually negligible. 

Because it is affected only by the number rather than by the size of 
unusually large or atypical values, the median is frequently used instead 
of the mean as a measure of central tendency in cases where such values 
arc likely to distort the mean. The median is also useful for distribu¬ 
tions containing open-end intervals since these intervals do not enter 
into its computation. 

However, like the mean, the median is a meaningful measure only for 
reasonably normal distributions. The median is not so popular as the 
mean because it docs not possess any mathematical properties compara¬ 
ble to those of the mean and therefore cannot be manipulated as easily. 

The Mode 

That value in a series of observations occurring with the greatest 
frequency is known as the mode, or the modal value. The mode of the 

^ The same result would be obtained if the frequencies were cumulated downward. 

The formula would then be modified, as follows: 

Median i i upper limit of 

\median class interval/ 

total frequencies i^ \ 
preceding intervals / ^ 

number of frequencies in ^ 

median class interval 

X 
{size of median 1 

class interval / 

The arithmetic computations may be foregone altogt^ther if only a rough estimate of 

the median is desired and an ogive of the distribution is available, as the median is 

simply the abscissa of the ogive corresponding to the ordinate iV/2. 
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series 2,7,1,4,6,4,9 would be 4, since this value occurs more frequently 
than any of the others. If a graph of the distribution is available the 
mode is readily ascertainable as the abscissa of the highest point of the 
distribution curve. If there is no graph of the frequency distribution, 
the mode is taken to lie within the class interval containing the greatest 
number of observations—the modal class —and is computed from the 
formula^ 

Mode = lower limit of modal class + . k 
tn J 2 J1 

where = number of frequencies in modal class interval 

/i = number of frequencies in preceding class interval 
/2 = number of frequencies in following class inte** /al 
k = the size of the modal class 

The modal class for the age-distribution data is the IS-lO-year age 
interval. Hence, the mode of this distribution would be computed as 

Mode - 15.0 + sn2if-7l“lll.7 ^ 

The mode is employed when the most typical value of a distribution 
is desired. It is the most meaningful measure of central tendency in the 
case of strongly skewed or nonnormal distributions, as it then provides 
the best indication of the point of heaviest concentration. Though a 
distribution has only one mean and one median, it may have several 

modes, depending upon the number of peaks of concentration. Thus, a 
U distribution is generally himodal (one mode at each end) in contrast to 
the unimodal nature of a normal distribution. A distribution with more 
than two modes is multimodal. In such cases, the peaks of concentration 
are most effectively located by computing the modes of the distribution. 

Like the median, the mode is not affected by open-end classes (unless 
one of them is a modal class) and is not at all affected by extreme values. 
However, it cannot be manipulated very easily mathematically and, 
except for extremely skewed or multimodal distributions, is not used 
very frequently in practice. 

The Geometric Mean 

The geometric average of all the observations is known as the geometric 
mean. Algebraically, it is the Nth root of the product of the (N) observa¬ 
tions, 

G = ViX,) (Xs) • • • iXy) 

^ This formula is valid only when the class intervals within the neighborhood of the 

modal class are of the same size as the latter. 
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For computational purposes, the geometric mean is more readily com¬ 
puted as the antilog of one-iV^th of the sum of the logarithms of the obser¬ 
vations. In the case of a frequency distribution, the formula is 

log G = +-h log/A 

where N = S/. 
The concept of the geometric mean is frequently encountered in statis¬ 

tical theory. It is not generally used in practice as a descriptive measure 
of a distribution, partly owin^ to greater difficulties involved in its 
calculation. However, it is very useful for avei aging ratios as well as for 

a number of other purposes. For illustrative examples, the reader is 
referred to Croxton and C'owden, Applied General Statistics (reference 7, 
pages 221-226). 

4. MEASURES OF DISPERSION 

A measure of central tendency locates a point of concentration, but it 
tells us nothing about the degree of concentration, about the manner in 

X 

Fio. 6. Frequency distributions with same mean but with different dispersions. 

which the observations are dispersed throughout the distribution. Knowl¬ 
edge of the dispersion of a distribution is important not only for its own 

sake but also because it enables us to evaluate the reliability of a measure 
of central tendency as a true measure of concentration. For example, the 
two distributions pictured in Fig. 6 have the same mean, X, but because 

the dotted distribution is much more widely dispersed, the mean value of 
the other distribution is a far more reliable (and meaningful) measure of 
concentration of the observations. 

Of the many possible measures of dispersion, only three are in wide 
general use today—the standard deviation, the coefficient of variation, and 
the range. A good description of some of the other measures of dispersion 
will be found in Croxton and Cowden, Applied General Statistics^ Chap. 10. 
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The Standard Deviation 

The sum of the squares of the differences between the observations and 
the mean value, divided by the number of observations, is known as the 
variance^ or the mean square. The square root of the variance is the 
standard deviation^ also known as the root mean square. The symbol for 
the standard deviation is o-, the small Greek letter sigma. Algebraically, 
the defining formula for the standard deviation is 

S(X - Z)2 _ 
N \ N 

To eliminate the square-root sign, the variance (a^) Is generally used 
in analytical work, its square root being taken as a last step in a compu¬ 
tational problem to interpret the final results. That is »vhv discussions 
of statistical procedures and formulas (here and elsewhere) are sc often 

framed in terms of the variance although the final numerical results are 
presented in terms of the standard deviation. 

For any given number of observations, the value of the variance will be 

proportional to the sum of the squares of the deviations of the observations 
from their mean. The more the observations are dispersed, the farther 
from the mean will the individual observations lie, and the larger will be 
the value of the variance, and of the standard deviation. Hence, the 
smaller is the variance, or the standard deviation, of a given distribution, 
the more concentrated are the observations. 

In actual practice, it is not very convenient to subtract each observa¬ 
tion from the mean, square the difference, and then sum the squares. A 
simpler procedure is made possible by the fact that is equivalent to 

— {XXy/N; a proof is given in Appendix C. Hence, a computational 
formula for the variance is 

, SX2 /zxv 
"" X' \n) 

In the case of a frequency distribution, either of the following forms 
may be used: 

2 _ /2/x'Y 
"W \ N J 

The first of these two formulas is in original units. No correction is 
required for the selection of an arbitrary origin since the degree of dispersal 
is obviously not affected by the location of the origin.^ The second formula 

1 If the mean is taken as the origin, the variance reduces to the single term S/(X')*/iV. 

The reader will note that this is the second moment about the mean. 
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is in class interval units; the variance of the observations in these units is 
multiplied by in order to express the result in the original units. 

The standard deviation of the age distribution on page 12 is computed 
below with the aid of the second of the preceding formulas. The sum of 
the squares is obtained from Col. (8) of Table 3, and the sum of the obser¬ 
vations from Col. (7). Substituting in the formula,^ 

= (5)‘^ 
2,592.50 _ /'24().8Y' 

131.7 Vil3l'7/ . 

ff = 20.21 

408.557650 

In describing a distribution it is customary to present the value of the 
standard deviation alongside thac of the mean. In a reasonably normal 
distribution, about two-thirds of the observations lie within the interval 
of the mean plus and minus 1 standard deviation, about 95 per cent within 
the interval of the mean plus and minus 2 standard deviations, and about 
99.7 per cent within 3 standard deviations of the mean. Hence, given a 
fairly normal distribution, one can obtain a pretty good idea of the area 
covered by any particular percentage of the observations from knowing 
the value of the mean and standard deviation. In the case of the age 
distribution data, estimates based on straight-line interpolation reveal that 
61.05 per cent of the observations lie within 31.59 plus and minus 20.21, 
96.28 per cent within the interval 0 to 72.01, and 99.92 per cent within the 
interval 0 to 92.22. The discrepancies from the expected percentages are, 
of course, due to the skewed nature of the distribution (Fig. 2). 

For such strongly nonnormal distributions as U and J distributions, 
the standard deviation is still a very useful measure of dispersion, though 
there is no knowing what percentages of the observations would be expected 
to lie within particular intervals. Since the standard deviation is apt to 
be abnormally high in such cases—because of the presence of a number of 
excessively large (squared) deviations from the mean —some statisticians 
prefer to use the absolute sum of the deviations divided by iV, the average 
deviation^ as an alternate measure of dispersion. 

1 In computing the variance of a frequency distribution, a small consistent upward 
bias is introduced by the fact that the mid-points of the class intervals tend to be farther 

from the mean than the true class interval averages. Hence, the deviations of the mid¬ 

points from the mean are more than the deviations of the true class interval averages. 

In computing the mean, this bias tends to cancel out when negative and positive devia¬ 
tions are combined, but this bias is magnified when the deviations are squared. The 

correction for this bias is known as Sheppard's correction and is <r*=' = <r2—A:V12, where 

is the computed variance, k is the size of the class interval, and is the adjusted variance. 
This correction is generally small. In the present illustration, o-*^=408.5576--(25/12) 
=406.4743, or (r**=20.16 as compared to <r=20.21. Sheppard’s correction is valid 

only for continuous distributions whose tails taper off gradually. 
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The Coefficient of Variation 

The standard deviation is an absolute measure of dispersion, being in 
original units, and does not permit comparisons to be made of the disper¬ 
sion of various distributions that are on ditferent scales or in different units. 
The coefficient of variation (V) has been designed for such comparative 
purposes. Being the ratio of the standard deviation to the mean, it is an 
abstract measure of dispersion. The greater is the dispersion of a dis¬ 
tribution, the higher is the value of the standard deviation relative to that 
of the mean. Hence, the relative dispersion of a number of distributions 
may be determined simply by comparing the values of their coefficients of 
variation. 

The coefficient of variation is extremely useful in market research as a 
measure of relative variability. For example, suppose thv, a\cras«.^ annual 

sales of all filling stations in City A are $12,000 with a standard deviation 

of $3,000 and that the average annual sales of all filling stations in City B 
are $16,000 with a standard deviation of $4,500. The coefficients of varia¬ 
tion of filling-station sales in these two cities are, respectively, Va — 

$3,000/$12,000, or 0.25 and Vb = $4,500/$16,000 = 0.28. Since Va is 
less than we may conclude that the sales of filling stations in City B 
are more variable, i.e., less consistent from store to store, than the sales of 
the same type of stores in City A. 

The Range 

The range was the original measure of dispersion, and is simply the 
difference between the highest and lowest values in a series of data. The 
one great advantage it has over all other measures of dispersion is its sim¬ 
plicity of computation. Yet in many, probably most, instances its one 
great disadvantage prevents its use in practical work. This disadvantage 
is the danger of obtaining one extremely high or extremely low observation 
in the data that will yield a misleadingly high value for the range. For 
example, the range of the series, 2,1,4,3,6,4,1,2,1,4,16,3, would be 15 
although 11 of the 12 observations are actually concentrated between 1 
and 6. Because of this danger, the range is rarely employed in descriptive 
work. Nevertheless, we shall see later (page 212) that the range is 
extremely useful in sampling analysis and makes possible the estimation 
of the variance in a population from as few as two observations with very 

little calculation. 

6. MEASURES OF SKEWNESS 

A distribution may be symmetrical, as in Fig. 4A, or asymmetrical, 
in which case it is skewed. Asymmetrical distributions are skewed either 
to the right (positively) or to the left (negatively). A right-skewed 
distribution is usually characterized by the fact that its longer tail is on 
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the right-hand side; most of the observations are then dispersed to the 
right of the mode. Similarly, a left-skewed distribution usually has its 
longer tail on the left-hand side, to the left of the mode. The age dis¬ 
tribution of Fig. 2 is an example of right skewness. Most distributions 
encountered in commercial research are skewed to the right because the 
variables studied generally have lower limits but no upper limits. For ex¬ 
ample, a family cannot purchase less than zero pounds of coffee per month, 
but it may purchase any amount above zero. Consequently, the re¬ 
sulting coffee-purchase distribution is likely to have a long tapering tail at 
the extreme right, reflecting the purchases of inveterate coffee drinkers, 
but a short tail to the l*jft necessarily ending at zero. 

A number of measures sre available for estimating the degree of 
skewness of a distribution. Probably the most prominent of these measures 
are the formula based on the third mumi'iit and the Pearsonian measure 
of skewness. Other measures will be found in Croxton and Cowden, 
Applied General Statisiics (pages 249-257). 

The Third-moment Measure 

If a distribution is positively skewed, the deviations to the right of 
the mean will be larger, i.e., farther from the mean, than the deviations to 
the left of the mean. The third moment about the mean, the sum of 
the cubed deviations divided by N, will then be positive since the sum 
of the cubed positive deviations will exceed the sum of the cubed negative 
deviations. Similarly, if a distribution is negatively skewed, the third 

moment will be negative. 
This is one measure of skewness. However, the third moment alone 

is an absolute measure and cannot be used to compare the skewness of 
different distributions. The third moment is therefore adjusted by 
dividing it by (t®. Since both the third moment and are in cubed original 
units, the resultant ratio is an abstract measure. This ratio is referred 
to as az {a is the Greek letter alpha), and is defined as^ 

third moment about the mean 
as - ^3 

In some instances, as^ — fii is used as the measure of skewness (0 is 
the Greek letter beta). 

The third moment about the mean is defined as S/(a;)VA, where x 
represents the deviation of each value from the mean. The labor of 
computing this term may be reduced to some extent by setting an arbi- 

^ The reader may wonder why the ratio is denoted by as and not, say, by just a. 

The reason is that the subscript refers to the moment and to the power of a. In general, 
an would be the nth moment about the mean divided by <r". The reader may care 

to verify that ai = 0 and a2 = 1. 
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trary origin at the mid-point of some class interval, as was done in the 
computation of the standard deviation. The third moment about the 
mean may then be secured from the following formula: 

ThW Boment about tho mean - - X' MIS + 2 
N N N 

If the computations are made in class interval units, the result could 
be converted into original units by multiplying by fc® (or <7® might also be 

used in class interval units in computing as). 
The third moment for the age-distribution example is computed to be 

(using class interval units) 

Thii:d moment about the mean = (5)® ~ 
r 16,542.18 

L r^i.7 

/24().8Y2,59?.56\ /240.8 

^31.7 A 131.7' \13i:7 

= 3,731.485625 

Substituting in the skewness formula, 

_ 3,731.485625 

(20.21)® 
= 0.45 

The result confirms our suspicion of a positive skewness in this dis¬ 
tribution. If the distribution were not skewed at all, as would V)e 0. In 
general, distributions arc not considered to be very skewed unless the 
absolute value of as is at least 2. 

The Pearsonian Measure of Skewness 

An alternate measure of skewness, developed by Karl Pearson, is 
based on the relative positions of the mean, median, and mode in a dis¬ 
tribution. We have already seen that the mode is not at all affected by 
extreme values, the median is affected only by the numl^er of such values, 
and the mean is strongly influenced by such values. In a symmetrical 
distribution, these three measures of central tendency are equal. But, 
if the distribution is skewed, the value of the mean will be strongly in¬ 
fluenced in the direction of skewness, the median will be partly affected, 

though not so much as the mean, and the mode will remain stationary. 
Thus, the mean of a right-skewed distribution will exceed the median, 
which will, in turn, exceed the mode. The reverse order will prevail in 
a left-skewed distribution. Hence, the difference between two of these 
measures of central tendency is a measure of the skewness of a dist i- 
bution. This measure can be converted into relative terms by dividing 
it by the standard deviation. 
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In practice, the difference between the mean and the mode is used to 
measure skewness. The formula is 

a, y “■ mode 
ISkewness =- 

a 

A second expression 

csi 3(y — median) 
Skewness =-- 

a 

involving the median instead of the mode, is an alternate form and is 
based on the fact that the median is roughly two-thirds of the distance 
from the mode to the mean in most skewed distributions. 

Like the third-moment measure of skewness, this measure is positive 
for a right-skewed distribution, negative for a left-skewed distribution, 
and zero for a syn>metrical distribution. The greater is the absolute 

value of this measure, the greater is the degree of skewness. 
For the age-distribution example, the Pearsonian measure of skewness 

would be 

Skewness = 
J - mode _ 31.59 - 17.31 

ff 20.21 
= 0.71 

As before, the result indicates a moderate degree of skewness in this 
distribution. As a general rule, a distribution is not considered to be 
markedly skew^cd as long as the Pearsonian formula yields an absolute 
value less than 1. 

6. MEASURES OF KURTOSIS 

Kurtosis is a Greek word referring to the relative height of a dis¬ 
tribution, i.e.j its peakedness. A distribution is said to be mesokurtic if 
it has so-called “normar^ kurtosis, platykurtic if its peak is abnormally 
fiat, and leptokurtic if its peak is abnormally high. 

There is only one generally employed measure of kurtosis^ 

fourth moment about the mean 

ai is a relative measure of kurtosis based on the principle that as the 
relative height of a distribution increases, its value of a decreases relative 
to the fourth moment. In other words, the more peaked is a distribu¬ 
tion, the greater is the value of a^. For a normal distribution, is equal 
to 3. Since the normal distribution plays such a large role in statistical 
theory, this value is taken as the norm. The less platykurtic is a dis¬ 
tribution, the further wdll ^4 decrease below 3, and the more leptokurtic 
is a distribution, the more will exceed 3. 

^ This measure is sometimes referred to as ft. 
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From the computational viewpoint, it is easier to secure the value of 
the fourth moment about the mean from moments taken about an 
arbitrary origin. The formula is 

T? .k f K . .u mx'y , s/z' xf(xy Fourth moment about the mean = ^ \ -4 -- 
N N N 

The reader might verify that the value of ^4 for the age-distribution 
example is 

395,365.510025 
(20.21)4 

2.37 

It therefore appears that the age distribution oi the United States 
population in 1940 is moderately platykurtic. 

7. THE NORMAL CURVE 

The normal curve, or the normal disirihutiony merits separate study 
because of its prominence in analytical work. Throughout statistical 
analysis one encounters such terms as normalityy a normal population, a 
normally distributed variabky and a normal distribution. All these terms 
refer to the normal curve. In addition, the great majority of sampling 
formulas are based on this normal curve concept. Hence, a working 
knowledge of statistics, and especially of sampling, requires an under¬ 
standing of the meaning of the normal curve and of its properties. 

The normal curve is pictured in Fig. 4A. Essentially, it is seen to be a 
symmetrical, unimodal, bell-shaped curve. Statistically, the normal curve 
is characterized by the fact that as is zero and a4 is 3. Because of its per¬ 
fect symmetry, all measures of central tendency of the normal curve are 
equal; geometrically, they are located at the abscissa of the highest ordinate 
of the curve, as illustrated in Fig. 7. 

The normal curve can be represented as having unit area, meaning that 
the ordinates (frequencies) of the curve are in relative terms and that the 

sum of the area under the curve is 1. In our terminology, 2/ = iV = 
1. Fifty per cent of the area (observations) of the normal curve is on 
either side of the measures of central tendency. Distances along the 
horizontal axis can be represented in standard deviation units; i.e., a unit 
length along the horizontal axis is equivalent to 1 standard deviation. 
68.27 per cent of the area under the normal curve is covered by the mean 
plus and minus 1 standard deviation, 95.45 per cent of the area between 
the mean plus and minus 2 standard deviations, and 99.73 per cent of the 
area between the mean plus and minus 3 standard deviations; this is shown 

in Fig. 7. 
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The percentage of the area lying between the mean value and any par¬ 
ticular ordinate is a basic concept in sampling and probability. In prob¬ 
ability terms, the fact that 68.27 per cent of the area under the normal 
curve is between the mean plus and minus 1 standard deviation means 
that 68.27 per cent of the observations drawn from a population described 
by a normal curve, i.e.^ a normal population, will be expected to fall within 
I standard deviation of the mean—or that 31.73 per cent of the observa- 

Fig. 7. Dispersion of a normal distribution. 

tions will be expected to fall outside this interval. A single observation 
drawn at random would have about 32 chances in 100 of falling outside 
this interval and less than 5 chances in 100 of falling outside the interval 
of the mean plus and minus 2 standard deviations. 

The percentage of the area lying between the mean value and any 
ordinate of the normal curve is given in Appendix Table 5. This is prob¬ 
ably the most important and most frequently used table in statistical 
analysis. Note that distances from the mean value are expressed in 
standard-deviation units. For example, 28.8 per cent of the area under 
the normal curve is between the mean value and plus or minus 0.8 standard 
deviation, 47.5 per cent of the area is between the mean value and plus or 

minus 1.96 standard deviations, etc. The table ends at 5 standard devia¬ 
tions because the proportion of the area under the normal curve between 5 
standard deviations and its extremity (infinity) is so small (0.00003 per 
cent) that only rarely is use made of ordinates beyond 5 standard devia¬ 
tions. 

The great value of this table may be appreciated even without a knowl¬ 
edge of sampling theory. Whenever a variable may be assumed to have 
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a normal distribution, the mere knowledge of its mean and standard devia¬ 
tion enables us to specify the entire distribution. And, knowing its 
distribution, we can then proceed to make probability statements about the 
degree to which observed statistics approximate the true unknown param¬ 
eters. For example, suppose the average age of automatic electric 
toasters in 1,000 homes selected at random is found to be 5.7 years with a 
standard deviation of 2.8 years. If we may assume the age of automatic 
electric toasters to be normally distributed, we can determine the percent¬ 
age of automatic electric toasters outstanding between any two age limits 
with the aid of Appendix Table 5. Thus, we could say that approximately 
two-thirds of such toasters are between 5.7 + 2.8, or between 2.9 and 8.5, 
years of age. 

Conversely, to determine the percentage of automatie electric toasters 

whose ages are, say, between 4.0 and 6.0 years, we would estimate the 

percentage of the area under the normal curve falling between these two 
limits. In the present case, 6.0 years is (6.0 — 5.7)/2.8, or 0.11, standard 
deviation above the mean; and 4.0 years is (4.0 — 5.7)/2.8, or 0.61, stand¬ 
ard deviation below the mean. From Appendix Table 5, 4.38 per cent 
of the area under the normal curve lies between the mean and 0.11 standard 
deviation, and 22.91 per cent of the area lies between the mean and 0.61 
standard deviation. Combining these two percentages, it is inferred that 
27.29 per cent of automatic electric toasters are between 4 and 6 years of 
age. 

Not only may we determine the age distribution of all automatic elec¬ 
tric toasters outstanding from this data, but we may also estimate the 
unknown parameters of the population in terms of the probable extent to 
which errors in sampling have caused the sample value to deviate from the 
true value. Thus, in the above example, we could estimate the extent to 
which the sample mean, 5.7 years, has deviated from the true unknown 
average age of all automatic electric toasters in use as a result of sampling 
fluctuations. In this way, the normal distribution permits estimates to 
be made of population values. The exact manner in which this is accom¬ 
plished is taken up in the following chapters. 

These are the major statistical properties of the normal curve, and 
these are the properties attributed to all variables, populations, and distri¬ 
butions characterized by the word “normal.” Thus, a normally dis¬ 
tributed variable refers to a variable the frequency distribution of whose 
values has the shape and properties of the normal curve. Age of the 
United States population is a variable. If the age distribution of the 
United States population had the same properties as the normal curve 
(which, in fact, it has not), we would refer to it as a normally distributed 
variable. A normal population is defined in the same way. 

The normal curve concept arose initially as an aid in the solution of 
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gambling problems.^ However, in due time, the same concept was found 
applicable to a great many other situations, and today it is the basis for 
statistical methods in subjects ranging from atomic to agricultural research. 
However, despite its use in so many practical procedures and formulas, the 
fact remains that the normal curve is practically never encountered in 
practice. Its great value derives from two main findings. One is that so 
many practical distributions approximate or approach the normal curve. 
The outstanding example of this fact is the distribution of measurements 
taken of a particular physical constant, i.e., length, weight, solubility, etc. 
Not all the measurements will be ahke but if the measurements are not 
biased, they will tend to concentrate in a symmr trical fashion about some 

particular value. Other values are seen to occur with increasing frequency 
the closer they are to a central value, and given enough measurements, the 
distribution will take on the form of the normal curve. 

Such instances occur more frequently in physical science than they do 
in commercial research, where distributions of the form of Fig. 2 are more 
prevalent. Therefore, a large part of the value of the normal curve con¬ 
cept in commercial research is due to the second finding, which is that the 
formulas and procedures based on the assumption of normality are equally 
valid for distributions that are reasonably normal; f.e., discrepancies due to 
nonnormality are generally negligible for all practical purposes.^ 

The question then arises: What is meant by a reasonably normal distri¬ 
bution? Though no exact definition has ever been put forward, a number 
of points are evident. For one thing, a reasonably normal distribution 

must be unimodal. There may, of course, be minor kinks in the distribu¬ 
tion, but one clearly definable mode must exist. For another thing, the 
percentage of observations falling within 1 standard deviation of the mean 
might be stipulated to be, at least, between 60 and 75 per cent, and the 
percentage falling within a 2-standard-deviation range should be, at least, 
between 90 and 99 per cent. A third stipulation would be that the absolute 
value of as (the measure of skewness) is less than 2. 

The above definitions of ^‘reasonable normality^^ are necessarily some¬ 
what arbitrary. In practice, the commercial researcher rarely has the 
opportunity to test the reasonableness of a particular distribution with 
numerical computations. In some cases he must arrive at a decision 
even before obtaining the actual data. The usual procedure is, there¬ 

fore, a graphical one. The approximate shape of the distribution is 
plotted on graph paper. If the curve is unimodal, tapering off from 
both sides of the mode, the associated distribution is considered to be 

reasonably normal. The age distribution in Fig. 2 would immediately 

^ For a history of the normal curve, and of statistics in general, see Helen M. Walker, 
Studies in the History of Statistical Method, (reference 16). 

2 Often even this assumption is too stringent, as in the standard error of the mean. 
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be accepted by these criteria. If, on the other hand, the distribution has 
some decidedly nonnormal shape, like Figs. 4^, C, and Z), it is not taken 
to be reasonably normal.^ 

Throughout this book the reader will encounter formulas and pro¬ 
cedures that are specifically applicable only on the assumption of nor¬ 
mality. All such methods may be considered as equally valid to reason¬ 
ably normal distributions unless expressly stated otherwise. 

SUMMARY 

In the plural, the word * ^statistics'^ refers to a set of data, and in the 
singular sense it defines the general subject we are studying. Statistics 

are termed continuous variables when they may take all possible values 
within the relevant range; discontinuous variables are r stricted to par¬ 
ticular values. Statistics are termed ‘‘attributes ^ when (oinj)iled accord¬ 

ing to the possession of particular properties. A statistic is a descriptive 
measure of a set of statistics. The value of a statistic in a population is 
known as a “parameter.’^ The primary object of sanipling analysis is 
to ascertain the values of unknown parameters on the basis of sample 
data. 

A frequency distribution is essentially an ordered tabulation of the 
absolute or relative frequency of occurrence of the different possible values 
of a variable. These values, if numerous, are generally grouped into 
class intervals, a device that clarifies the general shape of a particular 
distribution and that saves a good deal of computational work. Cumu¬ 
lative frequency distributions are obtained by cumulating the frequencies 
of an ordinary frequency distribution either upward or downward. The 
graph of such a distribution is known as an “ogive.^' 

The main descriptive constants of a frequency distribution are the 
moments, the kth moment being defined as Xf{Xy/N. Only the first four 
moments are generally used in practice; they are used to compute a 
distribution's average value, dispersion, asymmetry, and relative height, 
respectively. 

The first moment, the arithmetic mean, is not a very reliable measure 
of central tendency in the case of nonnormal distributions or of distribu¬ 
tions containing extreme values or open-end intervals. The median, the 
central value of a distribution, is not affected by open-end intervals and 

only slightly affected by extreme values. The mode, the value correspond¬ 
ing to the highest frequency, is not at all affected by extreme values; it is 
generally referred to as the “typical'' value and is the best measure of cen¬ 
tral tendency for most nonnormal distributions. The geometric mean is 

' An alternate procedure is to plot the distribution on arithmetic probability paper, 
which may be purchased from any graph-paper manufacturer. If the distribution is 

normal, or reasonably so, the result is an approximately straight line. 
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the Nth root of the product of the observations and is frequently used 
for averaging ratios. 

The second moment about the mean is known as the variance. Its 
square root, the standard deviation, is the generally employed measure 
of (absolute) dispersion. A relative measure of dispersion is the coefficient 
of variation F, which is the ratio of the standard deviation to the mean. 
The smaller is F, the more concentrated is a particular distribution. The 

range, the difference between the two extreme values of a distribution, 

is the simplest measure of dist>ersion but is not frequently used because 
of its instability. 

The degree of asymmetry (skewness) of a dis tribution is measured by 

the ratio of the third moment about the mean to the cube of the standard 
deviation. An alternate measure is the Pcarsonian formula, which is 
ST — mode/(r. Both measures are positive for a right-skewed distribution 

(the longer tail is to the right), zero for a symmetrical distribution, and 
negative for a left-skewed distribution. 

The relative height of a distribution, its kurtosis, is measured by the 

ratio of the fourth moment about the mean to the square of the variance. 
This measure, ^4, exceeds 3 for a relatively high (leptokurtic) distribution, 
equals 3 for a normally peaked (mesokurtic) distribution, and is less 

than 3 for a relatively flat (platykurtic) distribution. 
The importance of the normal curve arises from the fact that it is the 

basis for the derivation of a great many statistical procedures and for¬ 

mulas, which are applicable to the numerous approximately normal and 
reasonably normal distributions encountered in practice. Many dis¬ 
tributions in commercial research are of the reasonably normal variety. 

The specification of a reasonably normal distribution is largely subjective. 

Though approximate numerical standards are possible, the usual pro¬ 
cedure is graphical. If a plotted distribution is unimodal with frequencies 
tapering off from both sides of the mode, it is considered to be reasonably 

normal. Unless otherwise stated, formulas and procedures based on the 
assumption of normality are equally valid for cases of reasonable normality. 





PART TWO 

AN OUTLINE OF SAMPLING THEORY 

The preceding chapter has presented means of analyzing and measur¬ 
ing given series of data. In so doing, our primary concern has been to 
find descriptive measures of these data with nc regard to such matters as 
the manner in which the data were obtained, the representativeness of 

the data, and how to estimate the values of the corresponding population 
statistics (parameters) if the data were obtained by sampling. Actually 
most of the data used in commercial research are sample data, and more 

important than the problem of securing descriptive measures of the sample 
data is the problem of how to estimate the descriptive measures of the 
population from which the sample was drawn. Closely allied with this 
problem is that of testing certain theories concerning the true nature of the 
population. 

With the consideration of such problems, a new realm of statistics is 
unfolded, the realm of sampling. This subject includes the study of all 
matters pertaining to the relationship between samples and populations, 
to the manner in which inferences about the true nature of a population 
may be drawn on the basis of facts derived from a small, often minute, 
segment of that population. 

The greater part of this book is devoted to this subject, to a con¬ 
sideration of the various sampling theories and procedures and to how 
they may be applied in practice. The present part contains a general 
study of sampling theory with primary emphasis on the methods of 
drawing inferences about the population from sample data. We begin 
with a survey of the various steps involved in a typical sampling opera¬ 
tion and of the role played by statistical sampling theory in such an 
operation; this is Chap. III. We then proceed, in Chap. IV, to an ex¬ 
amination of the different principles involved in sample selection and to 
the problem of estimating the true (unknown) valuer of population 
characteristics—^the problem of estimation. The theory behind the 

testing of suppositions about the true nature of a population—^the problem 
of testing hypotheses—^is discussed in Chap. V. The practical application 
of these various theories is taken up in Part Three. 
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CHAPTER III 

THE SAMPLING OPERATION: MEANS AND OBJECTIVES 

Before embarking upon a detailed study of sampling theory and its 

application, it is wise to stand off at a distance for a moment and view the 
sampling system as a whole, to note the major divisions of this subject, 
their numerous ramitications and interlocking characteristics, to see how 

these parts fit together into a uriified picture, and to examine the functions 
each of them performs. By so doing, one avoids the perplexing difficulty 
Oif having read through and understood the subject matter of the individual 
sections of the sampling chapters but being unable to discern the basic 
intersectional relationship and the functions each of these sections per¬ 
forms in rounding out the complete system. This over-all survey is fol¬ 
lowed by two chapters that study the logic and theory of the component 
parts of sampling in some detail, after which are four chapters devoted 
primarily to the practical application of these theories. First, however, 
let us see just exactly what sampling is, the different concepts involved, 
and the problems that must be overcome in practice. 

It should be noted that it is not necessary to read Chaps. IV and V in 
order to understand the practical applications in Chaps. VI to IX. The 

practical reader who is not interested in sampling theory is advised to read 
this chapter, the description of different .sampling techniques in Sec. 2 of 
Chap. IV, Sec. 5 of Chap. V, and then proceed directly to Chap. VI. 

THE SAMPLING OPERATION 

Sampling, as probably everyone knows, arises from the impossibility or 

impracticability of studying an entire population.^ It is not very feasible, 
if at all possible, to study the entire population of the United States at a 
given time, nor is it necessary to test the entire contents of a well-sifted 

grain barrel to determine its quality content. Even where it is advisable 

^ The word ‘‘population” is employed in two somewhat different senses in this book. 

In one sense, population refers to the abstract notion of the source, or universe of dis¬ 

course, from which a sample is drawn. In this sense, as above, no specific reference is 

intended to any particular geographic, sociological, or other entity. In the second 
sense, population refers to a specific group of people, or objects; such as all United 

States families, all wage earners in the Northeast, all units produced in a particular 

plant, etc. In most instances, the sense in which the word is employed is obvious 

from the text, as references to populations other than in the abstract sense will contain 
qualifying remarks describing the particular population in question. 
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to study an entire population, time and cost elements are usually prohibi¬ 
tive. Essentially, sampling is a problem in inference^ the aim being to 
secure sufficient information from a representative segment of the popula¬ 
tion to enable one to infer the true state of affairs with respect to the char¬ 
acteristics under observation for the entire population within a certain 
range of error. The obtaining and analysis of the sample data for this 
purpose is the subject of sampling. The complete procedure of planning 
a sample survey and of collecting and analyzing the sample data is known 
as a sampling operation. 

The following major steps are involved in a typical sampling operation: 
1. Ascertaining the conditions of the problem: what information is 

desired, when it is desired, and with what degree of accuracy it is desired 
2. Determining the most efficient sample design and sample size subject 

to whatever limitations of time and cost may be imposed upon the survey 

3. Determining the method of sample selection and taking all possible 
precautions to avoid sample bias 

4. Preparing a questionnaire or interview form and instructing the 

interviewers, if personal interviews are to be made 
5. Obtaining the sample data 
6. Editing the sample returns and making whatever checks or callbacks 

are deemed necessary to ensure accurate reporting on the part of both 
interviewers (if used) and respondents 

7. Tallying or tabulating the sample results 
8. Analyzing the results and submitting a final report 
The reader will obtain a more dynamic picture of the entire operation 

from the flow-chart in Fig, 8. From this chart it can be seen that a sam¬ 
pling operation involves four basic steps: (1) ascertaining the given condi¬ 
tions, (2) selecting the sample design, sample size, and method of obtaining 
the sample data, (3) setting up the procedures for collecting the sample 
data and putting them into final form, and (4) analyzing the data. Let 
us now consider each of these steps and their subdivisions in some detail. 

The Given Conditions 

The specification of what information is desired, the accuracy with which 
it is desired, and cost and time limitations are predetermined factors in 
each sampling survey. The researcher is given these instructions by the 
management (or by the client), and it is his responsibility to design the 
most efficient sampling method for obtaining the required data subject to 
the conditions of the problem. Before any sample survey can be planned, 

the following information must be obtained: 
1. What information is desired? 
2. For which regions or areas is this information desired? 
3. With what degree of accuracy is it desired, i.e., what is the allowable 
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risk of obtaining faulty results? (This depends partially on point 5 
below.) 

4. How soon is the information wanted? 
5. What are the limitations to be imposed on the survey, specifically 

as to sample size and cost limitations? 
It is up to the researcher to obtain explicit information on all these 

matters beforehand. The first three items enable one to determine what 
the best sample type(s) and the optimum size(s) are likely to be, t.e., the 
sample types and sizes that will yield the desired information with a given 
precision at minimum cost. The last two items tell the researcher whether 
he will have sufficient time and resources to construct an optimum sample, 

and if not, what changes must be made in the sample design and/or 
sample size to obtain the desired information unJer the ?-pecified restric¬ 
tions. It will also enable the researcher to determine whether a particular 

sampling operation is practicable. For example, a pe/ iodical may impose 
a ceiling of $5,000 on a sample survey aimed at analyzing its readership by 
family size and income level within 12 geographic areas with specified 
error limits, when the minimum cost for such a survey could not be less 
than $20,000. Knowing the periodicars requirements and cost limitations 
beforehand, the researcher could readily determine the impracticability of 
this survey and would be able to request the periodical to allot more money 
for the survey or to lower its data requirements. 

In the same way, knowledge of the types of data and of the detail with 

which they are desired is an essential prerequisite for every survey. This 
knowledge is a major factor in the determination of sample design. The 
greater the amount of detail that is required, the more stratified a sample 

will usually have to be to yield the necessary breakdowns. The type of 
data required, e.gf., qualitative or quantitative changes, estimates of aggre¬ 
gates, etc., is also a very important determinant of sample design. For 

example, in many product-testing problems, where relative preference is 
the sole quantity involved, an unrestricted sample yields just as accurate 
information as highly stratified samples and at a fraction of the cost of the 
latter. The need for specification of the desired precision is self-evident; 
with a given sample design the size of the sample is directly related to the 
confidence with which the sample results are desired. 

Sample Selection 

Sample Design. Two distinct problems are involved in sample selec¬ 
tion. One is the determination of the optimum type and size of sample 
for the particular survey, i.e., that sample which will yield the desired 
information at minimum cost or with the lowest possible sampling error 
in the estimate subject to a given cost. This problem can be subdivided 
into two separate, though very closely related, parts; namely, what type 
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of sample to employ, e.gf., unrestricted, proportional, cluster, etc.,^ and 
how large it should be. Thus, the question may arise whether a stratified 
proportional sample^ of 1,000 families obtainable at a certain cost would 
yield more precise results in a certain survey than an unrestricted random 
sample of 1,500 families obtainable at the same cost. One might also 
ask in which instances ‘ disproportionate® (stra^ ificd) sampling would be 
preferable to proportional (stratified) sampling. 

As a result of the brilliant work of the statistical theorists, many of 

these problems can now be solved through the use of the formulas that 
are discussed later on. Nevertheless great number of problems still 
remain in the realm of subjective judgment—judgment that must be 
based on a knowledge of basic sampling theory as well as on existing 
conditions. 

The crucial importance of sample design to the success of any sampling 
operation,^ and the difficult, and at times apparently insoluble, nature of 
the problems involved, has resulted in a vast and ever-growing literature 
on the subject. New methods are continually being introduced, and one 
must keep in constant touch with the statistical periodicals to keep pace 
with the progress being made. To this end, Chap. IV reviews the theory 
of sampling techniques as it exists today with reference to the latest 
known methods; the practical application of the theory is illustrated in 
Chap. VIII. 

Determination of the Method of Collecting the Data. The second 
main problem involved in sample selection is itself a twofold entity; 
namely, how the sample members should be selected, and by what means 
the sample data should be collected, e.g,y mail questionnaire or personal 
interview. Except for purposive sampling, the basic assumption upon 
which all sampling techniques rest is that of random selection of the 
sample members.® By random selection is meant the selection of the 
sample members in such a way that every member of the area or category 

being sampled has an equal chance of being drawn in the sample. This 
is not the same as the so-called ‘‘random^' methods of selection frequently 

^ These terms are explained in detail in Chap. IV. 
* A sample where the population is divided into strata, or cells, and the number of 

sample members selected from each stratum is in proportion to its relative size in the 

population (see p. 75). 

® A sample that, in addition to considering the relative sizes of the various popula¬ 
tion strata, takes into account the varying heterogeneity of the different strata (seii 

p. 75). 
* This is not meant to imply, of course, that sample design is the only crucial factor. 

Properly planned samples are often ruined by biased methods of data collection or by 

faulty coding or tabulation. 
® We shall see later that the absence of this condition in purposive sampling seriously 

restricts the practicability of this method. 
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employed in market surveys. We shall designate the latter methods as 
arbitrary selection to distinguish them from the true random methods of 
selection required by statistical theory. Thus, a sample of the population 
of New York obtained by interviewing people “at random’^ in Times 
Square is a case of arbitrary selection because not every New Yorker has 
an equal chance of being included in the sample. Taken in the daytime, 
this sample would contain a disproportionately high number of white- 
collar working people; taken in the evening, the sample would tend to 

underrepresent the older age groups. 
The danger in such arbitrary methods of sample selection is that the 

resulting skewed distribution of the relevant characteristics in the sample as 

compared to the distribution of the population may lead to inaccurate 
estimates of the subject(s) under investigation. For example, the determi¬ 
nation of New Yorkers’ relative preferences for various brands of soap on 

the basis of a daytime sample in Times Square would undoubtedly lead to 
inaccurate results because of the underrepresentation of laborers and house¬ 
wives, whose relative preferences for soaps are diffeient from those of 
white-collar people. The means by which such biases may be avoided 
are discussed in Chap. IX. 

In addition to the selection of sample members, there is the related 
problem of how to obtain the required information from these people. 
This may be accomplished in a number of ways—by personal interview, 
by mail questionnaire, by telephone, by group sessions, etc.—each of 
which has its distinctive advantages and disadvantages. The fact that 
the manner of obtaining sample data may be as much a statistical sampling 
problem as are sample design and sample selection has been overlooked 
by many researchers. Too often in the past have technical people de¬ 
voted hours to the design and selection of the sample members in a 
particular survey, while giving only passing thought to the means of 
collecting data. The technical aspects of this problem, as well as illus¬ 

trations of how statistical procedures may be applied in its solution, 
comprise about half of Chap. IX. 

Operational Methods 

Once the technical questions of sample technique have been resolved, 
there remain a host of miscellaneous operations necessary to put the 

theory into practice and derive the final sample data. A questionnaire 
form must be constructed and printed; interviewers, if used, must be 
given specific instructions as to the information they are to obtain; the 
sample data must be collected; the returns must be checked and edited; 
callbacks must be made where necessary; the data must be tallied or 
tabulated; and final data sheets must be prepared. 

Each of these operations contains its own particular problems, and a 
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considerable literature has arisen from such subjects as the construction 
of impartial questionnaire forms, methods of training interviewers, the 
editing of sample returns, the advantages and disadvantages of machine 
tabulation relative to hand tallying, and others. However, for the most 
part these problems are not primarily of a statistical nature, and except 
for the problem of callbacks, they are not considered in any great detail 
in this volume. The reaaer who would likt to delve beyond the following 
brief discussion of these procedures is referred to the Bibliography. 

Constructing the Questionnaire Form. A clearly written impartial 
questionnaire form is an essential p’^erequisite for an unbiased sample 
survey. This condition is true irre^jpective of the method by which the 

data are to be collected. It is fairly obvious that the insertion of biased, 
or leading, questions will produce biased results. Even an apparently 
harmless question like Would you rather use Lux toilet soap than any 
other toilet soap?’* would bring a higher proportion of responses in favor 
of Lux than if one were asked ^What is your favorite toilet soap?” The 
latter question would be more likely to indicate the tiue situation. It is 
a well-proved fact that in order to be agreeable and ^^give the sponsor a 
break,” respondents will tend to reply not necessarily in accordance with 
their usual behavior but in the way in which they think the sponsor would 
like to have them behave! 

The psychological requirements for a good questionnaire are aptly 
summarized in the following quotation: 

1. A good questionnaire should make it easy to obtain the necessary informa¬ 

tion from the respondent. 

2. It should take into account the influence which its own wording might 

have upon the replies of the respondent. 

3. It should, by adequate formulation and arrangement, lay the groundwork 

for the sound analysis and successful interpretation of the returns.^ 

The methods and techniques of preparing a suitable questionnaire 

form are a subject in themselves. A wide and ever-growing literature 
has appeared on this subject in the last 10 to 20 years, and a number of 
references to this literature are provided in the Bibliography. Some 
further comments on the use of questionnaires in expediting the collec¬ 
tion of unbiased data are to be found in Chap. IX. 

Where personal interviews are employed, the interviewers must be 

very carefully instructed in advance. A poor interviewer will not only fail 
to obtain many interviews but may consistently antagonize the same type 
of people to the extent of submitting a strongly biased set of interviews. 

' Paul F. Lazarsfeld in The Technique of Marketing Research (reference 1), p. 62. 

Chapters 3 and 4 of this book contain an excellent discussion of the psychologi(?al 
aspects of questionnaire construction. See also Blankenship, Consumer and Opinion 
Research, Chaps. V to VII. 
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For example, white-collar interviewers tend to report laborers^ attitudes 
(on certain subjects) that are different from the attitudes reported by 
interviewers who are (or were) themselves laborers.^ Interviewers must 
also be instructed as to what information they are not to obtain as well as 
what information they are to obtain. For example, to request a respond¬ 
ent to designate within which of four income classes he belongs is not 
the same thing as asking him to state his current income. People are 
generally more willing to indicate their income class than to state their 
specific income.^ 

Besides instructing the interviewers in handling the interview and in 
what information is desired, it is also necessary to keep up the interviewers^ 

morale—a point that is generally overlooked. The reason for this is that 
since many interviewers are out in the field, they lose too h with the home 
office and consequently tend to lose the sense of cio^ie rapport in the organi¬ 
zation engendered by personal contact.® In dollars and cents such loss of 
morale is likely to mean higher survey costs and more biased information. 
Interviewers with low morale are likely to be more careless and submit 
incomplete returns, and ultimately they may become ^^cheaters,’^ z.e., they 
may write up imaginary interviews. The remedy is, in brief, closer per¬ 
sonal contact between the field supervisors and the interviewers, keeping 
the interviewers informed of relevant developments, and sending occasional 
friendly personal letters, e.g,^ acknowledging the submitted returns and 
even, if possible, mailing the interviewers a copy of the final report. 

The problem of interviewer bias is discussed in some detail in Chap. IX. 
Collecting the Data. In the more important surveys the actual collec¬ 

tion of the sample data is preceded by a so-called 'pretest in which the ques¬ 
tionnaire is tested on a small initial sample. By this method, the inter¬ 
viewers are given practice in obtaining the desired information, and any 
possible bias or ambiguity in the questions may be discovered and elimi¬ 
nated. The data obtained by this pretest are not made part of the 
main sample, though they may sometimes be used for comparative pur¬ 
poses. 

While the sample data are being collected, it is always wise to have the 
field supervisors and even the researchers check the data collected by the 
interviewers to be sure that instructions are being followed and that no 
consistent errors are being committed by any of the interviewers. Of 
course, such a procedure may not always be practicable, especially where a 
large number of widely dispersed interviewers are employed. 

Editing the Returns. All returns must be checked for completeness 
and carefully edited. The purpose of editing is to eliminate errors or bias 

^ For example, see Katz, “Do Interviewers Bias Poll Results?” (reference 142). 
* Blankenship, op. dt.y Chap. 11. 

® An excellent description of the interviewer's point of view on this matter is to be 

found in Snead, “Problems of Field Interviewers,” (reference 130). 
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in the returns and to prepare the data for final analysis. ‘ The returns are 
checked both individually and collectively. An individual check of each 
return enables one to locate omissions and inconsistencies. For example, 
a respondent who replies “No'' to “Have you used any shampoo in the 
past six months?" and later on remarks that he washed his hair with tar 
soap 2 weeks ago is obviously being inconsisient. Probably the most 
common example of such cases is a respondent replying “Yes" when asked 
which of two competitive products he prefers. Once located, such omis¬ 
sions and inconsistencies can readily be rectified, frequently by means of 
callbacks or “fill-in" postcards. 

Interviewer bi?is can often be uncovered by comparing each inter¬ 
viewer's returns with those of other interviewers. In this way, consistent 
di(Terences in any one set of returns as compared to the others may be 
brought to light.^ In many instances such diffei cnees reflect interviewer 

bias. Once located, the sample data can then be adjusted to counteract 
such bias effects. 

In preparing the data for final analysis, the editor must clarify all 
answers, indicate what replies are to be coded and how they are to be 
coded, and perhaps abstract representative respondent comments for inser¬ 
tion in the final report. Being based largely on personal opinion, tlu' 
impartial selection of representative respondent comments is one of tlu* 
more difficult tasks of an editor. As long as researchers are human (a 
reasonable prediction, in this writer's opinion) selection bias is bound to 
enter into any procedure in which the researcher uses his ‘^judgment." 
The overwhelming majority of comments selected by an inexperienced 
editor generally reflects either the not-so-great-majority opinion of the 
returns or a disproportionately large number of ‘‘cute" replies, the tendency 
being to minimize the importance of minority opinions. In some instances, 
comments are used to substantiate, or even establish, some pet theory, 
with little realization of the fact that a few comments on almost any point 
of view will be found in a sample of several hundred, or thousand, returns. 
The selection of a truly representative set of returns is a highly skilled 
operation. The beginning editor might frequently do better to select 
comments at random from the returns, preferably by using a table of 
random sampling numbers (page 225)—a method that does not appear to 
have been utilized as yet. 

Where opinion responses are to be coded, the editor frequently must 
code the replies himself, or at least indicate what code numbers are to be 
assigned to particular types of answers. In many cases, the respondent's 
true opinion on an issue may be ascertained only by means of indirect 

’ A good discussion of the functions of an editor is contained in Blankenship, op. cit.^ 

pp. 152-156. 
* The method by which such comparisons are made is described in Radio Remirchy 

194^-194Sy edited by P. F. Lazarsfeld and F. Stanton (reference 154), pp. 439-464. 
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questioning. For example, a survey on the part of plant management 
cannot discover whether the employees are satisfied with their foremen by 
inquiring bluntly ^^Are you satisfied with your foreman?^^ For fear of 
their answers falling into the foreman’s hands, the employees would tend 
to reply “Yes’’ almost without exception. Their true attitude is more 
likely to be discovered if they are asked a number of indirect probing 
questions on such matters as their satisfaction with their work, the amount 
of freedom they have, the attitude of the foreman toward them, the fore- 

Fio. 9. A standard IBM tabulating card. 

man’s appreciation of their work, his cooperativeness, etc. By studying 

these replies the editor is required to determine each employee’s attitude 
toward his foreman; in some cases the editor may be requested to rank 
these individual opinions on an attitude scale. 

If the data are collected by mail questionnaire, the editing function 
may also include follow-ups on the nonrespondents. Follow-ups either by 
mail or by personal interview are especially important if it is believed that 
the nonrespondents would answer differently than the respondents. This 
matter is discussed at some length in Chap. IX. 

Tallying or Tabulation. When all the sample returns have been edited, 
the answers are put into table form either by hand tally or by machine 
tabulation.' If the sample is fairly small, it is generally more economical 
to tally the data by hand. However, on large-scale surveys and when a 
great many cross-classifications are desired, the data are punched in 
special tabulation cards, which are . then tabulated on electrical sorting 
and tabulating machines. These machines are rented out to corporations 
and statistical organizations by International Business Machines Corpora¬ 
tion and by Remington Rand. One of the tabulation cards used in machine 
tabulation is shown in Fig. 9, and several tabulation machines are pictured 

' For a comparison of the relative merits of these two techniques, see Baton, *‘Selec¬ 

tion of Tabulation Method, Machine or Manual,” (reference 66). 
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1. All information ia transcribod origi- 
ally from the source documents into IBM 
cards in the form of permanent punched 
holes. This fast, accurate operation is ac¬ 
complished by the IBM Electric C^ard 
Punching Machine with automatic feeding 
and ejecting, and electric keyboard opera¬ 

tion. 

2. IBM accounting permits a positive 

verification of IBM cards while in the same 

sequence as the original documents and 
before they are used for accounting pur¬ 
poses. Accuracy of reports is established 
by this single verification of the original 
transcription of source information and by 
balancing report totals against accounting 

controls. 

3. The IBM Electric Punched Card 
Sorting Machine automatically arranges 
punched cards in alphabetical or numerical 
secjuence according to any classification 
punched in the cards. A fast, au^matic 
machine process is thus provided for the 
preparation of the various reports and 
records—all originating from the same 
cards but requiring a different sequence 
or grouping Of information. 

4. The Electric Punched Card Account¬ 
ing Machine prepares the final reports and 
records after the cards have been arranged 
in the required sequence. The machine 
reads the cards and 'positions the forms 
simultaneously at high speed, records all 

' required details, adds or subtracts, and 
secures any desired combination of totals. 

Fig. 10. IBM sorting, counting, and tabulating machines. , f 
through the courtesy of the IrUemational Business Machines Corporation.) 



54 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

in Fig. 10 with descriptions of their functions. Organizations that do not 
care, or are not able, to rent these machines on a term basis can arrange to 
have their survey data tabulated by IBM or Remington Rand or by any 
one of a large number of statistical tabulating services that specialize in 
this work. 

After the data have been tallied or tabulated, final summary tables are 
prepared, and the analysis of the sample results is begun. 

Analysis of the Sample Data 

All sampling operations have one or both of two ultimate objectives in 
mind. One objective is that of obtaining as accurate information as 
possible of the value of certain population characteristics (parameters) 
from the sample data; this is the problem of estiwation. llie characteristic 
being sought may be a single figure, such as the ax erage soap purchase per 

family in the United States, or it may be an entire dirtribution, such as the 
average soap purchase per United States family hy ineomt level. It may 
deal with only one specific subject, or it may comprise a whole range of 
subjects, as do some consumer panels. It may cover only one period of 
time, or it may cover several periods of time. In other words, there is 
almost no limit to the purposes to which samples are, and have been, put. 

Alternatively, the purpose of a sampling operation may be to test 
some theory about the composition of the population, in which case the 
acquisition of sample data is not the primary aim, but is simply the 
means to a further end; this is the problem of testing hypotheses. An 
example of this latter type is the situation where, knowing the 1944 
regional purchase pattern of coffee X, the research director is eager to 
determine whether there has been a significant change in the purchase 
pattern of that commodity by 1946, and thereupon samples the popula¬ 
tion to determine the 1946 regional purchase pattern. With the aid of 
this sample-determined 1946 regional purchase pattern, the significance of 
the change from the 1944 regional purchase distribution is then deter¬ 
mined. Of course, the purpose of the sample may be twofold; the re¬ 
search director in the above example may be just as anxious to ascertain 

the 1946 regional purchase pattern as he is to determine the significance 
of the difference between the 1944 and 1946 purchase distributions.^ 

Estimation. Only by the purest coincidence will a sample ever provide 
a perfect representation of the population. This is an unavoidable 
consequence of the erratic variations introduced by the sampling process 
itself, variations that cause the sample value to deviate from the true 
population value by a margin indicative of the deflecting effects of random 
sampling influences. Thus, if the average height of all United States 

^ The former might be used to estimate future sales and set sales quotas; the latter 

to test the effectiveness of advertising campaigns. 
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males is 68.8 inches, a sample of several thousand men may have a mean 
value of 68.6 inches or of 68.9 inches, but only by coincidence will it 
have the same mean value as that of the population. Therefore, any 
estimate of the true population value based on sample data must contain 
some allowance for such random sampling variations. In other words, 
the primary function of a sample in estimation problems is not to yield a 
point estimate of the population value but to provide a range of values 
within which the true value is thought to lie. 

As a consequence of the development of the theory of probability, 
this allowance for, or range of, rsnd mi variations can be measured 
statistically. If a gieat many laige fixed-size samples are taken from 
the same population, it is known that the mean values of the samples 
will tend to be normally distributed around the mean value of the popula¬ 
tion, so that, for example, approximately 68.27 per cent of the sample 

means will be contained within the interval of the population mean plus 
and minus its standard deviation. Consequently, by working back¬ 
ward and estimating the standard deviation of the population charac¬ 

teristic from sample data, it is possible to estimate the range within 
which a sample mean is likely to deviate from the true population mean. 
Thus, if 68 per cent of the sample means are known to lie within plus 
and minus 1 standard deviation of the true mean, then there is a 0.68 
probability that the mean of any one sample is within this interval.^ 
Conversely, if an infinite number of samples were drawn from this popula¬ 
tion, we would be correct 68 per cent of the time if we stated, in each case, 
that the population mean was within the interval of the sample mean 
plus and minus 1 ‘‘standard error^^ of that mean. The standard error is 
the estimated value of the (unknown) standard deviation of the sample 
means in the population, t.e., estimated from the sample data. Now, 
if only one sample has been taken, which is the ususal case in practice, 
we would have a 0.68 probability of being correct if we were to state 
that the true mean lies within the interval of 1 standard error of the 
sample mean. This interval is known as a confidence interval^ the asso¬ 
ciated probability being known as the confidence coefiicient. Hence, an 

^ Note that the theory is couched in terms of the probable deviation of the sample 
mean from the population mean. The reason for this is that the true population value 

in any problem is always fixed, though unknown. Therefore, one cannot speak of 

the probable distribution of a population mean about a sample mean, as there is no 
element of probability as to what the population value is. The element of probability' 
enters into the determination of how accurately it is possible to estimate the population 

mean from sample data. The true average height of United States males may be 

5 feet 8 inches; this, though unknown, is a definite fixed value. But the average 
height of United States males as estimated from a sample will not be fixed but will vary 
from sample to sample. It is this variation of the different sample means about the 

true population mean that the above theory seeks to measure. 
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interval having a 0.68 confidence coefficient means that the true popu¬ 
lation mean will lie within the interval of 1 standard error of the sample 
mean in 68 samples out of 100 (all of the same size and drawn from the 
same population). • 

As noted above, the sample mean plus and minus 1 standard error 
provides us with a 0.68 confidence coefficient. If a higher degree of 
certainty is desired, a larger confidence interval would have to be em¬ 
ployed, say, the sample mean plus and minus 2, or 3, standard errors, in 

which case the confidence coefficients would increase to 0.955 and to 
0.997, respectively. 

The numerical value of these standard errors is computed by means 
of the standard-error formulas. The probable range within which the 
true population value is likely to lie, the confidence region, or the con¬ 
fidence interval, is obtained as a multiple of these standard errors. It is 

this computed range that, together with the average, or aggregate, sample 
estimate, furnishes the final estimate of the population value. It should 
be emphasized, however, that the sample estimate^ by itself is not a 

satisfactory estimate of the population value, as the mathematical 
probability of a sample estimate coinciding with the true (unknown) 
population value is approximately zero in most of the usual populations; 
it merely serves as the reference point for the construction of the final 
estimate of the confidence region. 

The following example illustrates this point. To estimate the average 

value in a population as 50 units simply because the average value of 
the sample comes out to be 50, without specifying the value of the standard 
error, is meaningless, for one has no idea of the distortion introduced into 
the estimate by erratic sampling variations. If the standard error is 
computed to be 1 unit, then one can be fairly sure that the true population 
value is about 50.^ On the other hand, if the same sample value has a 
standard error of 15 units, very little reliability can be placed in the 
sample figure of 50, as the high value of its standard error indicates that 
the confidence interval for the true population value is between 20 and 
80—^using the sample mean plus and minus 2 standard errors to indicate 
the range within which erratic sample variations might cause the sample 
mean to deviate from the true figure. 

The theory of constructing confidence regions presents many separate 
problems of its own, but it is inherently linked to the problem of statistical 

'By which is meant the central sample value, or statistic. The wording is rather 

ambiguous here, for the sample estimate is an estimate of a population value, not of 

anything in the sample, as the term may imply. Furthermore, it is only a preliminary 
estimate, as a particular sample estimate will almost never coincide with the actual 
population value. 

* Assuming absence of bias in the sample. 
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estimation, for unless confidence regions are specified, estimates based on 
samples are practically valueless. As will be pointed out later, the pref¬ 
erability of different sampling techniques rests almost exclusively on a 
comparison of the relative size of the confidence regions they may be 
expected to produce, and the ultimate objective of all sampling research is to 
develop techniques that will either yield the smallest confidence region at a 
given cost or a given confiaence region at the most economical cost. 

The standard-error formulas used to specify confidence regions for 

various statistics are discussed in Chap. IV. Their application to estima¬ 
tion problems is illustrated in Chap. VI. 

Testing H3rpotheses. The validity of certain inferences about the 
nature or composition of the population is confirmed or disproved on the 
basis of statistical signilicaivce tests oi-. the sample data. The criterion 
for these tests is to determine whether the observed difference might have 
occurred as a result of random sampling variations or whether the difference 
actually exists in the population, i.e.y is statistically significant. Before 
proceeding any further let us see what is meant by statistical significance. 

In short, a difference is statistically significant if it actually exists in 
the population. Thus, if a certain city contains 50.5 per cent females and 
49.5 per cent males, this is a statistically significant difference in the sex 
ratio of that city’s population; no question of sampling variation arises at 

this point because the percentages refer to the entire population, not to a 
sample. Suppose, now, a sample of 100 people taken at random in the city 
contains 53 males and 47 females. The question then arises whether this 
preponderance of males in the sample is statistically significant. In other 
words, is it very likely that 53 males out of a sample of 100 people could 
have been selected from a population actually containing an equal or 
greater proportion of females, or could this difference only have occurred 
in a preponderantly male population? If the latter is true, then the 
observed difference is statistically significant, thereby leading to the conclu¬ 

sion that the population actually contains more males than females; if 
the former is true, then the difference is not statistically significant, meaning 
that a sample of 100 people containing 53 per cent males could easily have 

been drawn from a population actually containing as many or less males 
than females purely as a result of random sampling variations. 

Now, the purpose of statistical significance tests is to set up criteria 
and methods of approach for appraising the statistical significance of 
observed differences. The general approach to the problem is to determine 
a region of acceptance about the hypothetical or actual population value 
to be tested—^an interval over which the corresponding values of similar 
samples taken from the same population may be considered to fluctuate as 
a result of random sampling influences. In other words, a sample whose 
representative statistic falls within this interval may be considered to 
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belong to the same population as any other sample whose statistic falls 
within the same interval, the difference between the sample and population 
values being attributed to discrepancies caused by chance sampling varia¬ 
tions. The area outside the region of acceptance is termed the region of 

rejectionj and the samples whose statistic lies within the region of rejection 
are considered to be ^^significantly’’ diffenuit from the population under 
consideration. This subject is discussed in Chap. V and illustrative 
examples are supplied in Chap. VI. 

In practice, the region of acceptance is computed as a certain multiple 
of the standard error. Thus, for a large sample (drawn from a more or less 
normally distributed population) a 0.95 confidence coeffit^ient is obtainable 
by computing the region of acceptance as the real or hypothetical popula¬ 
tion mean plus and minus 1.96 times the standard euor of the sample 
statistic;^ the region of acceptance with a 0.99 confidence coetficient is 
computed as the population mean plus and minus ?.58 times the standard 
error of the sample statistic, etc. 

Suppose, for instance, that a radio sample of several hundred families 
reveals that 10 per cent of these families listen to a particular program, and 

it is desired to know whether the true population figure might conceivably 
be as high as 14 per cent, i.e,y whether the proportion of all families listening 
to this program might actually be 14 per cent, the 4 per cent difference 
being attributable to random sampling fluctuations. Suppose, further, that 
by applying the appropriate formula the standard error of the estimate 
comes out to be 1.5 per cent. With a confidence coefficient of 0.95, the 

region of acceptance around the hypothetical population value of 14 per 
cent is computed to cover the interval from 12.5 per cent and upward.^ 
Since the sample rating of 10 per cent is beyond the lower limit of the region 
of acceptance, the conclusion is that this difference is too great to have been 
caused by random sampling elements, and it is very unlikely that the true 
proportion of families listening to this radio program is as high as 14 per cent. 

A different line of reasoning sometimes employed to reach the same 
result is to consider the difference between the real or hypothetical popula¬ 
tion value and the relevant"* limit of the region of acceptance as constituting 

the maximum size of the difference that might be attributed to sampling 
fluctuations. If the difference between the two values to be tested is equal 
to or less than this allowable maximum, it is adjudged to be not significant; 
otherwise the difference is held to be a valid change. Thus, in the above 

'Alternatively, it may be obtained as the population mean plus or minus 1.645 

times the standard error of the sample statistic, or in any other number of combina¬ 

tions (see Chap. V, Sec. 5). 

* The mechanics of computation of such intervals is illustrated in Chap. VI. 
* Depending on whether the value of the other sample is above or below that of 

the first sample. 
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example any sample yielding a listenership percentage more than 2.5 per 
cent below the hypothetical value of 14 per cent would be considered to 
indicate a significant difference in program listenership. The sample cited 
above does represent such an instance. As will be shown later, the second 
method is preferable because of its wider applicability.^ 

The theory of significance tt^sts is not >*estrlcted to the testing of the 
importance of the difference between single values, but is also employed to 

test the significance of the difference between two or more entire distribu¬ 
tions, as in determining the significance of regional differences in consumer 
income purchase patterns - -by .aoans of < hi-square and variance analysis— 
as well as for many other purposes. Chapter X deals with some of these 
problems. 

Standard Errors and Confidence Regions. It was noted previously 
that the function of the standard error in the process of statistical estima¬ 
tion is to provide an interval within which the sample statistic might have 
deviated from the true population statistic as a result of random sampling 
variations—this is the confidence region, the interval that is believed to 

contain the true population value. By fulfilling this function, the 
standard-error concept is at the same time serving its purpose in the 
theory of testing hypotheses, for the interval that forms the confidence 
region in statistical estimation corresponds to the region of acceptance 
in testing hypotheses.^ 

Both regions are based on the standard-error concept and delineate 

intervals where random sampling fluctuations are thought to cause sample 
statistics to deviate from the true population value. Whereas in estimation 
this area is believed to contain the true population value, in testing hypoth¬ 
eses this region is taken to be the area within which similar samples from 
the same population would fall as a result of chance variations in sampling. 
Thus, in a survey of the Southwest region, it may be found that 20 per cent 
of the sample purchases brand X coffee. By applying the standard-error 
formulas, the confidence region (the interval within which the true popula¬ 
tion value is believed to lie) might turn out to be 17 to 23 per cent, with 
a probability, i,e., confidence coefficient, of 0.95. If one wishes to ascer¬ 
tain whether this brand is definitely more popular in the Southwest than 
in the Pacific region, where a similar sample reveals the proportion of 
families purchasing this brand of coffee to be 16 per cent, the region of 
acceptance is computed as a weighted average of the standard errors of the 
two samples. The resultant interval is then taken to indicate the maxi¬ 
mum permissible difference that could occur between the two sample 

averages as a result of random fluctuations. 

‘ Especially when the problem involves testing the significance of the difference 

between two samples. 

* Assuming that the same confidence coefficients are used throughout. 
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This, then, is the dual function of the standard-error concept in sam¬ 
pling analysis. It serves to delineate the area of the final estimate and to 
provide the means of computing the necessary criterion for the determina¬ 
tion of the significance of an estimate. The technical problems involved 
in the computation of these regions of acceptance and rejection are dis¬ 
cussed in Chap. V, and illustrations of their practical application are 
provided in Chap. VI. 

The Role of Probability and the Normal Curve. Probability^ is at the 
heart of all sampling theories. The very concept of sampling is based on 
the probability that one member will represent a group; on the probability 

that a number of members selected at random from a population will be 
so distributed as to provide a miniature representation of that population; 
on the probability that estimates drawn from this miniature will differ from 
the true population values only by a certain (measurable) amount attribut¬ 
able to the vagaries of sample selection. 

The most important role that probability plays in sampling is in the 
concepts of randomness and random selection. These concepts stipulate 

that a small number of members of a population selected in a true random 
manner will distribute themselves so that they tend^ to have the same 
central value as the population, and so that any particular value will 

occur in the sample with the same relative frequency as it does in the 
population. As an example, if a sample of the adult population of a 
certain city is selected in pure random fashion, a city where 10 per cent 

of the adult population buy two newspapers a week, 20 per cent buy 
three newspapers a week, 28 per cent buy four newspapers, 27 per cent 
buy five newspapers, etc., then the sample will also tend to have the same 
relative newspaper-purchasing distribution. In other words the sample 
distribution approximates the population distribution, thereby permitting 
estimates to be made of the probable deviation of a sample statistic from 
the corresponding population statistic. 

By knowing the probability distribution® of a population, it is possible 
to derive the standard errors of the central values and of the other de- 

1 The concept of probability refers to the likelihood that one particular event will 

occur out of the various different events that might possibly occur. Thus, the prob¬ 
ability that a coin tossed up in the air will fall heads is one-half, or 0.5—assuming that 
the coin is not biased {i. e., chipped, bent, etc.) toward either a head or a tail—as 

there are only two possibilities here, each of which is equally probable. Similarly, if 

20 per cent of the population of a certain city is between 20 and 30 years of age, the 
probability that an individual selected at random from this city is in this age group is 
one-fifth, or 0.2, as only 1 out of every 5 individuals in this city is in this age group. For 

a nontechnical exposition on probability, see Mises, ‘Trobability^^ (reference 69). 

* We can say only tend because of the presence of the erratic sampling variations 
due to the process of sample selection. 

® The relative frequency with which each value in the population can be expected 

to occur. 
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scriptive statistics of the population. The standard deviation, it will be 
remembered, describes the dispersion of the individual itqms in a popula¬ 
tion, or frequency distribution, and is found by ascertaining the dis¬ 
tribution of these individual items about the mean of the population. 
Similarly, the standard error of the mean describes the dispersion of the 
means of given-size samples about the populatior: mean, and is determined 
by deriving the distribution of the means of samples of the same sizes 
about the mean value of the population. The standard errors of other 

statistics (e.r/., the standard error of the median, the standard error of 
the standard deviation) are de-ived i i similar fashion. It is through this 
type of probability analysis that one is enabled t ^ ascertain the reliability 
and validity of sample estimates, as well as to construct proper sampling 
techniques. 

The entire analysis, it will be noted, is constructed on the hypothesis 
(»f the normal distribution—the bell-shaped symmetric curve described 
in Chap. II. Most distributions that one encounters in actual practice 
are, of course, not exactly normal and are skewed one way or another. 

For instance, consumer purchase distributions are, as a general rule, 
skewed to the right, because of the existence of a lower purchase limit 
(zero) but no upper limit. However, as pointed out in Chap. II, despite 
the presence of the abnormality, it has been found that for all practical 
purposes the concepts and formulas based on normal curve analysis 
remain valid in such cases. Only in such extreme cases as a U distribution 
will the customary sampling formulas fail to operate; for the great majority 
of marketing problems the standard-error formulas can be applied with 
little fear. 

One might ask however: What if the postulate of a normal distribution 
is not warranted, or what if nothing at all is known about the distribution 
of the relevant variable? In such a case, most of the formulas presented in 
this book are not valid, and resort must be had to so-called nonparamelric 

methods. These methods make no assumption whatsoever about the shape 
of the distribution, and are therefore always valid. Under these circum¬ 
stances, one may wonder why they are not employed in all statistical 
problems instead of the more restrictive methods based on the normality 
assumption. The reason is that the confidence interval obtained by non- 
parametric methods is a great deal larger than the corresponding con¬ 
fidence interval obtained by parametric methods. (Technically speaking, 
parametric methods are said to be more powerful than nonparametric 
methods.) Hence, greater preciseness is attainable if normality can be 
assumed; this is why such methods are preferred to nonparametric 
methods where possible. And, in most commercial research problems, 
the normality assumption is valid. 

Nonparametric methods are not discussed in this book. A relatively 



62 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

simple introduction to the subject will be found in Hoel, Introduction to 

Mathematical Statistics (reference 20), Chap. 9. 

The Final Report 

Although the main purpose of the final report is to present the results 
of the survey, many final reports go farther and present a summary 
account of the entire sampling operation. The reader, or client, is thereby 
provided with a complete picture of how the operation was conducted 
and is able to form his own judgment on the limitations of the survey 
and on the efficiency with which it was carried out. These summary 
accounts do not detract from the importance of the results, as they are 
usually placed either in a foreword or in an appendix to the body of the 
report. One attractive way in which this may be done is shown in Fig. 11. 

The generally employed form for the final report presents the main 

results of the survey at the very beginning, followtul by the body of the 
report including the analysis and the sample data, and concluded with a 
number of appendixes on the technical details of the survey, the sampling 

formulas employed, method of data collection, a copy of the questionnaire, 
etc. In addition to presenting the findings of the survey, it is also 
advisable to reveal the limitations of the survey. A frank and honest 
statement on what the survey did not accomplish, or did not seek to 
accomplish, is the best way of avoiding misunderstanding and adverse criti¬ 
cism at a later time. Nobody is better qualified to prepare such a state¬ 
ment than the researcher himself, and he can be sure that if he doesn^t, 
somebody else will.^ 

SUMMARY 

Sampling is a problem in inference, the aim being to secure, with 
maximum reliability, unknown information about the population on the 
basis of a representative segment selected from that population. The 

procedure of obtaining and analyzing sample data is known as a “sampling 
operation.^' The four major divisions of every sampling operation are 
(1) ascertaining the given conditions, (2) selecting the sampling methods, 

(3) putting the sample methods into operation, and (4) analyzing the sample 
data. The selection of the sampling method involves the three-way 
determination of the sample design, of the sample size and its allocation 

among strata, and the method of selecting the sample members and 
collecting the sample data. These subjects are discussed in Chaps. IV, 
VII, VIII, and IX. Putting the sampling methods into operation involves 
the preparation of a questionnaire, the instruction of interviewers if used, 
the collection of the sample data, the editing of the returns, and the tally 

^ For a more detailed discussion of the preparation of the final report, see The Tech- 
nique of Marketing Research (reference 1), Chaps. 15-17. 
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or tabulation of the data; these subjects are not considered at any length 

in this book. 
The ultimate objective of any sampling operation is either to estimate 

some unknown characteristics of the population or to test the validity of 

some supposition about the nature of the population. The former 
objective, estimation, is accomplished through the determination of so- 
called “confidence regions’^ that attempt to measure the effect of random 

sampling variations in causing the value of the sample charateristic to 

deviate from the true value. The probability that each of these regions 
will contain the true value if an infinite number of samples (of the same 

design and size) are drawn from the population is known as a “confidence 

coefficient.” The confidence coeflScient is an indication of the reliability 
that may be attributed to the estimate. A statistical tiypotheuLs is con¬ 
firmed or denied by testing the statistical significance of the observed 

deviations. This significance is determined as in estimation by construct¬ 
ing (confidence) regions of acceptance and of rejection, each region with 
a specified confidence coefficient. If the observed difference falls in the 

region of acceptance, it is assumed to be not significant and due to random 
sampling variations; if the difference falls in the region of rejection, it is 
assumed to be indicative of a real difference in the population. The 

methods and procedures involved in estimation and significance problems 
are discussed in Chaps. IV to VII. 

The final report of a sampling operation generally consists of three 

sections: a summary of the major findings, the body of the report pre¬ 
senting and analyzing the sample data, and appendixes containing an 
account of the methods and of the technical procedures and formulas 

employed in carrying out the operation. A frank objective analysis of the 
limitations of the survey should also be inserted in the final report for 
the benefit of the reader as well as for the benefit of the researcher. 



CHAPTER IV 

THE THEORY OF SAMPLING TECHNIQUES 

A proper understanding (jf the logical foundations of sampling formulas 
and procedures serves to facil: ;atc their application in actual practice, and 
is the only means of ensuring the avoidance of costly errors arising from the 

unknowing use of wrong and faulty sampling techniques. The danger of 
misinterpretation of final lesults and consequent erroneous policy forma¬ 
tion is considerably reduced by a sound knowledge of the underlying essen¬ 

tials. This chapter attempts to provide this knowledge by presenting as 
simply and as concisely as possible the basic theory and logic that form 
the foundation of all practical sampling techniques. Chapter VI will 

illustrate the application of these techniques to practical problems. 

1. BASIC SAMPLING CONCEPTS 

One of the most significant findings in the field of statistical investiga¬ 
tion is the fact that, for most practical purposes, the analysis of a small, 
carefully selected segment of a population will yield information about 
that population almost as accurate as if the entire population had been 
studied. The effect of this finding was to make accessible to investigators 
in marketing and in many other fields, facts about the aggregates with 
which they dealt that were hitherto inaccessible because of the prohibitive 
cost and other difficulties involved in studying great populations: facts 
about the purchasing, reading, and listening habits of the American people; 
facts about a nation^s thinking behavior; facts about the standardization 
of the quality of industrial product at minimum cost; facts about the nature 
of biological worlds; and facts about innumerable other subjects in many 

different fields. 
The truth of this finding is easily comprehensible, and is based on two 

fundamental premises. One is that sufficient similarity exists among large 
numbers in any population to permit the selection of a few as representative 
of the entire group. Thus, in ascertaining the purchase habits of American 
families by income levels, only a very small number of families is needed 
from each income level to provide adequate representation of the entire 
class; the proportion of families chosen is often less than 1/100 of 1 per cent 
of the total size of the particular class. However, because the habits of 
families of a given income level are not identical, the people selected to 
represent a large group will not necessarily be exactly representative, and 
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the average value obtained from this selected group may be a little greater 
or a little less than the true figure. Adjustments for these discrepancies 
between the sample and the true value are made by the second premise, 
which states that although some sample items will underestimate the true 
value of their groups, other sample items will overestimate their respective 
true values. When combined into one unified sample, the general tend¬ 
ency will be for these two opposite trends to counteract each other and 
thereby tend to result in an over-all sample estimate approximately equal 
to the true population value. 

Now, in order for this latter tendency to operate effectively, there must 
be a large enough number of items in the sample to provide the necjessary 
counteracting factors. It is for this reason that sample size is of such 
great importance in arriving at accurate sample estimates, for if the sample 
is not sufficiently large, a preponderance of forces acting in one direction 
may result in an inaccurate final estimate. 

Sample size, however, is not the sole determinant of accuracy in estima¬ 
tion; and carefully designed smaller samples have been found to yield 
better estimates than loosely improvised larger samples. The explanation 
for this fact is to be found in the sample design, in the manner in which the 
sample is constructed from the parent population. Where the population 
can be divided into segments of known size that are relatively homogeneous 
with respect to the characteristic being measured, and sample members 
can be drawn from these segments, a much more accurate estimate will 

result than if the sample members had been selected at random from the 
entire population. For instance, in studying the vitamin purchase habits 
of families, which have been found to be highly correlated with income, 

division of the population by income level and the subsequent selection of 
sample members from each division will ensure, at the very least, the repre¬ 
sentation of families of all different income levels in the sample. Had the 
sample been selected at random from the population at large, it is conceiv¬ 
able that the families in a particular income level might have been com¬ 
pletely omitted or so greatly underrepresented as to distort the final results 

seriously. 
In the final analysis, what we seek is a representative sample, one that 

adequately represents the relevant segments of the population in the neces¬ 
sary proportions. Proper sample design can ensure the representation of 
the relevant segments of the population in the sample; adequate represen¬ 
tation—enough sample members to permit opposing errors to counteract 
each other—is to be attained through variation of the sample size. 

Standard Errors and Sample Design 

The ultimate criterion of a good sample design is the degree of repre¬ 
sentativeness of the population attained by the sample, as indicated by the 
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validity of its estimates. Now, validity depends upon two factors. First, 
there is the amount of conscious, or unconscious, bias present in the sample 
estimate causing it to deviate from th^ true population value—the accuracy 

of the estimate; and second, there is the expected range of error within 
which the sample estimate may be expected to fluctuate as a result of the 
(unavoidable) random sampling elements—the precision of the estimate. 

Unless painstaking precautions are taken to avoid the risk of bias, there 
is no way of determining the exact extent to which it is present in a sample 
estimate. Bias is not measurable and is often present without the knowl¬ 
edge of the researcher. The I itprary Digest poll in 1936 is a prime example 
of sample bias. Since one of these apparentl^’^ uncontrollable forces is 
more or less present in als sampling operations,^ it cannot influence the 
selection of a sampling design in a pai^-ticular problem. 

The precision of an estimate is measurable and is gauged by the stand¬ 

ard error of the estimate as determined by appropriate formulas. Inas¬ 
much as bias is more or less constant throughout, the smaller is the standard 
error of an estimate, the larger is the precision of that estimate, and the 

greater is the validity of the estimate and of the sample design. In other 
words, the basic purpose of different sample designs and sample techniques 
is to arrive, by the most practicable means, at sample estimates with a 
minimum standard error. The smaller is the standard error, or confidence 
region,^ of an estimate, the more efficient is a particular sampling technique 
adjudged to be. 

Though unrestricted sampling—^selection of the sample members at 

random from the entire population—was originally employed in sampling 
operations, the wide margins of uncertainty as to the true value of an esti¬ 
mate based on such a sample and the great possibilities of error reduction 
through the use of different sampling techniques led research workers 
away from unrestricted sampling to the development of purposive and 
stratified sampling. Through the use of different sample designs, sub¬ 
stantial reductions in the standard error of an estimate have been achieved 
relative to its size under unrestricted sampling conditions. 

A Note on Sampling Terminology 

Before proceeding to the discussion of different sampling techniques, 
it would seem desirable to pause for a moment and consider specifically 

the basis for current sampling terminology and the meaning of the main 

* It has been asserted at different times that bias is more likely to occur in some 

sampling techniques than in others, and is most prc\'alent in purposive samples where 

sample members are not selected at random but according to a specific characteristic 

(see p. 78). 
* The confidence region, it will be remembered, is merely a multiple of the standard 

error. 
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sampling terms. In studying the application of statistical theory to practi¬ 
cal sampling problems, a twofold distinction must be made, according to 
the type of sample that is employed and according to the manner in which 
the sample members are selected. Now, from the point of view of statis¬ 
tical theory, the members of a sample can be selected in one of two ways— 
by random selection or by arbitrary selection. In random selection all 
requisite theoretical conditions are fulfilled and the subjective elements of 
sample selection are reduced to a minimum. In plain language, this means 
that every person (or unit) in the area being sampled has the same chance 
of being selected in the sample as any other person (or unit). Where 
personal interviews are made, the selection of the sample is not left to any 
arbitrary whims of the interviewers but is rigorously controlled by some 
random procedure.' Sampling the telephone-ov, ning population of a par¬ 
ticular city is one example of random selection; a complete list of this popu¬ 

lation would be available, and the sample could be selected in such a man¬ 
ner as to allow each telephone-owner an equal chance of being selected. 

Arbitrary selection may be defined as the absence of random selection; 

z.e., each member of the area being sampled does not have an equal chance 
of being selected in the sample. To sample the population of a city by 
sending out interviewers to the main business intersections to interview 
people ^^at random” is a case of arbitrary selection. The only ones who 
have any chance at all of being included in the sample are the people who 
happen to pass those intersections during a specified time, and even these 
people may not have equal chances of being selected. It should be noted 
that systematic selection—selecting every nth member—is also a form of 
arbitrary selection unless the selection is made from the entire population. 
Thus, interviewing every 2,000th person buying a driver's license would 
not provide a randomly selected sample of the population of the state. 

By type of sample is meant the sample design or sample technique on 
which the sample is based z.e., whether the sample is selected from the 
population as a whole, whether the population is first divided into special 
categories and sample members drawn from each category, etc. The 
selection of the sample from the population as a whole has generally been 
termed *‘random sampling,” the implication being that every member of 
the population has an even chance of being selected. However, by identi¬ 
fying a particular sampling technique with the method of sample selection^ 

this term has caused a great deal of confusion and has led many people in 
commercial research to overlook the fact that random selection is just as 

important in other sampling techniques as it is in so-called random sam¬ 

pling” This confusion has reached the point where many people believe 
that since the term “stratified sampling” does not contain the word 

1 The various means of random selection are discussed in Chap. IX. 

* The terms sample design and sample technique are used interchangeably in this book. 
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“random/^ random selection of the sample members from each stratum is 
not required when a stratified sampling technique is employed. To avoid 
such misleading terminology, this so-called ‘'random sampling'' is better 
called unrestricted sampling—unrestricted in the sense that the sample 
members are selected from the population at large. All other sampling 
techniques then become variations of restricted sampling—^restricted in the 
sense that the sample members are selected from specified geographic or 
sociological divisions (area and cluster sampling), from certain relevant 
categories (proportional and disproportionate sampling), or to meet desig¬ 
nated requirements (purposhe sampUi g). Restricted sampling includes 
all forms of stratified sampling, purposive sainpling, and such “mixed" 
sample designs as double samplbig. 

The use of this terminology places the need for random selection in its 
proper perspective, as the implicit and basic requirement of all sampling 

techniques whose sampling error can be estimated.^ The importance of 
random selection derives from the fact that the standard-error formulas 
used to compare the relative desirability of various sampling techniques 

are predicated upon this basic assumption of universal equal probability 
of selection. What this moans in practical terms is that if the sample is 
selected in an arbitrary manner^ the sampling error in the estimate cannot be 

estimated irrespective of the sampling technique employed. Consequently, 
there is no w«ay of evaluating the reliability of estimates based on samples 
constructed by arbitrary selection. 

Of course, in practice arbitrary selection is frequently used in sampling 
procedures, partly because of ignorance and partly because of established 
practice. And, by hindsight, the estimates based on these samples some¬ 
times turn out to be fairly accurate. Does this mean, then, that arbitrary 
selection can replace random selection in practice? The answer is no. 
Although arbitrary selection may yield reasonably accurate results at 
times, there is no way of knowing how reliable any particular set of esti¬ 
mates may be until the “hindsight" arrives. To predicate business policy 
upon such hazardous estimates would obviously be most unsound. Only 
when random selection is employed can one determine the sampling errors 
in the estimates. All the sampling error formulas in the following chapter 
are implicitly based upon random selection. In Chap. IX we shall see 
that besides being theoretically correct, random selection is not difficult 

to attain in practice. 

2. THE LOGIC OF SAMPLING TECHNIQUES 

Unrestricted Sampling 

The initial studies in the field of samjding resulted in the theory of unre¬ 
stricted sampling, and the first attempts to secure representative minia- 

1 As will be shown later, this excludes purposive sampling (see p. 79). 
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tures of a population were made to conform to the specifications of this 
theory. In brief, the reasoning underlying its development is that if a 
sufficient number of items are selected from a population, or universe, 
they will be so distributed as to reflect automatically the aggregate char¬ 
acteristics of the parent universe. One of the classic examples of unre¬ 
stricted sampling is that of drawing balls with replacement from an urn 
containing an infinitely large number, of which half are black and half 
white. As more and more balls are drawn at random from the urn, the 
proportions of black and white balls in the sample will gradually approach 
one-half. 

In application, the crux of this theory is the manner in which the sample 

items are drawn. Theoretically, in populations that are infinite or that 
may be so considered for all practical purposes, random sampling conditions 
are fulfilled when every member of a population has an equal chance of 
being drawn on every draw. It is the extent to which these conditions are 
not fulfilled that determines the degree of atypicalness in unn^stricted 
samples. When a certain segment of a population has no chance whatever 
of having any of its members included in a ^^random” sample, that sample 
cannot be representative of the whole population. Thus, a sample 
selected at random from all the telephone books in the United States will 
not adequately represent the total population of the United States, 
although it may be a perfect representation of the telephone-owners as of 
the date the separate directories were issued. 

In the great majority of sampling problems in market analysis, it is 
difficult, often impossible, to ensure random selection of the sample from 
the entire population owing to the absence of complete lists of population 
members and to the prohibitive cost of compiling such lists. 

A frequent method is to select the sample arbitrarily from the universe 
and trust to luck that no bias will creep in, a luck that generally fails to 
materialize. To estimate purchase characteristics of the TTnited States 
population from a “random” sample of as many as 2,000 or 3,000 families 
drawn by obtaining lists of names from name-getting agencies in different 
cities would more likely than not lead to very inaccurate results, since the 
lists are incomplete and collected in a haphazard fashion. To designate 
this type of sampling as “unrestricted sampling” is a misnomer in the 
technical sense of the word; it should more appropriately be termed “arbi¬ 
trary unrestricted sampling,” as in the preceding section, since some mem¬ 
bers of the population have no chance of being selected. If interviewers 
are sent out on a daytime doorbell-ringing assignment, households with 
working wives will tend to be underrepresented in the final results. 

In some instances, however, arbitrary unrestricted sampling methods 
have resulted in reasonably accurate estimates.^ They still are very 

^ Usually where the universe is more or less homogeneous; product-testing panels 
are a case in point. 
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widely used because of the simplicity and ease with which they can be 
applied and the relative difficulty involved in understanding and using the 
more complicated theories of stratified sampling and other types of sam¬ 
pling. In addition, the fact that all other sampling techniques are but 
outgrowths of and are fundamentally built upon this theory accounts for 
its basic importance in statistical and market analysis. 

Stratified Sampling 

The theory of stratified sampling recognizes the existence of different 
classes, or strata, in the pop ilatio^., and attempts to secure representa^ 
tiveness by dividing the population into more h >mogcneous segments than 
the aggregate, selecting items at random from each of these strata, and 
combining them to form one total saniple. The basic operational problem 
of unrestricted sampling is assuring random selection; the crucial issues in 
stratified sampling are dividing the population into strata and obtaining 
accurate information as to the distribution of the relevant characteristics 
in the population (though random selection within strata is still of major 
importance). 

The problem of determining the optimum number and typo of stratifi¬ 
cations is one of the most difficult in all statistical analysis, and does not 
seem capable of a unique practical solution. The solution will vary not 
only with the type and purpose of any given sample, but also with the 
number of different possil)le solutions for any one particular sample,' z.e., 
different types and combinations of stratifications that will yield the same 
minimum error of estimation. Theoretically, there is a unique solution, 
which consists of having as many strata as there are dissimilar members in 
the population. In this case, as will be noted later, the standard error 
of the estimate will be 0 (since, of course, the “sample” would then be the 
population). But in application such a procedure is so troublesome as to 
have no practical utility whatever. That the addition of more and more 
strata will increase the precision of an estimate is a statistical truism. 
The real problem is to find at what point the marginal increase in precision 
loses significance; this is ascertainable only through empirical investigation. 

Unrestricted sampling is but a special case of the more general theory 
of stratified sampling, namely, the case where there is only one stratum in 
the population. It is because of the division of the sample into strata that 
a stratified sample will yield more valid estimates than an unrestricted 
sample. Actually, each stratum is a separate unrestricted sample from 
which an estimate for the members in the stratum is obtained, the estimate 
being independent of estimates derived for each of the other strata in the 
sample. By summing or weighting these individual stratum estimates, an 

' Characteristics that influence one variable might not influence another. Thus, in 

a recent study, region alone was found to have little, if any, influence on family cold- 

c'oreal purchases but did affect soap purchases to some extent. 
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aggregate sample estimate is obtained that will be more accurate and pre¬ 
cise than a total or average figure obtained from an equally large unre¬ 
stricted sample, because of the ensured representation of all different 
elements. 

The reasoning behind this theory can be illustrated by the problem of 
estimating the average income of American families. Under unrestricted 
sampling a certain number of families would be selected from various parts 
of the country, and the average income of these families would be taken as 
the average income of all American families. If, however, the occupational 
distribution of family heads were known, American families would be split 
up into occupational groups, separate samples would be taken and average 
income estimates made for each group, and a weighted average of the 
family income estimates for each group would be taken to be the average 
United States family income. This procedure will tend to be more accu¬ 

rate than unrestricted sampling, because at the very L ast one is assured of 
the representation of all different occupational groups in the sample. 
Hence, by requiring randomness only within strata, it serves to reduce the 

potential errors involved in random selection. 
Quota and Area Sampling. There are two basic types of stratified 

sampling; quota sampling and area sampling. In quota sampling the strata 

are constructed along the lines of those characteristics which are thought 
to influence most the variable (s) under study, selection being made so as to 
have the proportion of sample members from each stratum reflect the rela¬ 
tive size and heterogeneity of that stratum in the population. Quota 

sampling derives its name from the fact that the number of sample mem¬ 
bers, i.e., quota, from each stratum and for each interviewer is set in 
advance. The strata may be formed along any number of lines of classifi¬ 
cation. Geographic division (e.g., region, state, city size), economic divi¬ 
sions (e.p., income, occupation), sociological divisions (e.gf., family size) 
are among the classifications employed. In some instances, several means 
of classification are used, either separately or in combination with each 
other. Thus, a sample may be stratified by region and by family size, or it 
may be stratified by region hy family size. In the former case, the sample 

is made to contain the proper proportion from each region and the proper 
proportion from each family size; in the latter case the sample is made to 
contain the proper proportion from each family size within each region. 

For example, suppose that 10 per cent of all United States families are one- 
person families, 28 per cent of all families live in the East, and 2.5 per cent 
of all United States families are one-person families in the East. Then 

2.5 per cent of a region-by-family-size (proportional) sample would have to 
be one-person families residing in the East, whereas a region-and-family-size 
(proportional) sample would merely have to contain 10 per cent one-person 
families from the entire country and 28 per cent Eastern families. The 
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region-by-family-size sample is the more rigorously controlled, since the 
specification of the requisite proportion of families of each size in each 
region automatically ensures a correct national regional distribution and a 
correct family-size distribution, but the reverse is not true. The two main 
types of quota sampling, proportional sampling and disproportionate 
sampling, are discussed in succeeding secti'^ns. 

Area sampling is exactly what, its name implies, the sampling of areas. 
This method has been developed primarily bv the U.S. Bureau of the 
Census to deal with the case when no lists of the members of a population 
are available.^ In practice, tlui population is divided into separate areas, 
and a number of these areas are chosen for the sample by random selection. 
Within each of the chosen areas, a subsample of blocks or dwelling units 

dwelling units within blocks) is taken, and the households so selected 
are then interviewed. The actual pro(;cdure varies in different cases. 
The subsample may be of districts or of wards; only part of the households 
in a block or ward may be interviewed; a number of successive subsamples 
may be chosen, e.gf., blocks within wards within districts within cities; etc. 

It can be shown that this procedure fulfills the fundamental requisite of 
random selection, namely, that each individual or family in the population 
has an equal chance of being selected in the sample. 

An area sample is unrestricted in the sense that the primary areas may 
be selected at random from all the areas in the population.^ The sample is 
restricted in the sense that once the sample areas have been chosen, further 

selection, f.e., substratification, is restricted to these areas. This is the 
fundamental difference between a geographically stratified quota sample 
and an area sample. Within each geographic area, say region, the mem¬ 
bers of the quota sample would be selected from all parts of the region, the 
aim being to secure as much dispersion as possible. However, the members 
of the area sample would be selected from certain specified areas within the 
region, all the households within a subarea, or block, being interviewed. 

Since all or most of the members within a certain subarea may be inter¬ 
viewed, area sampling implies the sampling of clusters of elements, techni¬ 
cally known as cluster sampling.^ In cluster sampling the principle of ran¬ 
dom selection applies to the selection of a group, or cluster, of individuals 
or families instead of to the separate random selection of each individual 
or family. Although cluster sampling is generally considered to be an 
integral part of area sampling, it is possible to have a cluster sample with- 

^ A very lucid description of area sampling is to be found in the article by Hansen 

and Hurwitz, “A New Sample of the Population” (reference 84). 
* Though, in some cases where information is available, the areas are first segregated 

into more or less homogeneous strata and an unrestricted sample of areas is chosen 

from each stratum (see Hansen and Hurwitz, ibid, pp. 487-489). 

®See Hauser and Hansen, **On Sampling in Market Surveys” (reference 117). 
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out having an area sample. For example, an unrestricted sample of Man¬ 
hattan telephone-owners may be drawn by selecting at random groups of 
five names from the Manhattan telephone directory; this is a cluster 
sample. Why is this not done in practice? The answer is, as we shall see 
in Sec. 3 of this chapter, that the cluster sample with the lowest sampling 
error is invariably the sample that has only one member per cluster, i.e., 

an ordinary unrestricted sample.^ The reason cluster sampling is so useful 
in area sampling is usually not because it reduces the sampling error of a 
given-size sample but because by concentrating the interviews within 
selected areas it reduces the cost of the sampling i)peration, thereby increas¬ 
ing the reliability of the estimates per dollar expended. 

The relative merits of quota sampling versus area sampling have been 
a controversy of long standing in sampling circles. Quota sampling has 
been criticized on two main grounds.^ The first ground is that the diffi¬ 

culty of obtaining up-to-date accurate population statistics renders the 
specified quotas subject to large errors. The second ground is that placing 
the selection of the particular sample members in the interviewers’ hands 

may easily introduce some form of conscious or unconscious bias in the 
sample, and, in fact, violates the random-selection principle on which strati¬ 
fied sampling is based. In addition, many sampling organizations allow 
their interviewers to select sample members arbitrarily, all of which means 
that the sampling errors in the estimate cannot validly be estimated. The 
proponents of quota sampling retort that formulas are available for measur¬ 

ing the errors due to population inaccuracies.® It is also claimed that well- 
trained interviewers plus a policy of fixed route direction obviates the 
danger of interviewer bias or of arbitrary selection. Area sampling does 

possess the advantage of requiring less accurate information as to the com¬ 
position of the population and of eliminating the danger of interviewer bias. 
It does, however, possess the disadvantage of greater initial cost. No 
practical evaluative study has yet been published of the relative efficiencies 
of the two methods though one such study is at present under way. A 
brief analysis of the relative efficiencies of the two methods is to be found 
on pages 197//, and various situations in which each method may be desir¬ 
able are discussed in Chap. VIII. 

Proportional and Disproportionate Sampling.^ In the past the pro- 

^ There is an exception when the cluster intercorrelation is negative (see p. 95). 

2 Hauser and Hansen, op. city p. 27. 

® The author has heard several marketing people hold the Bureau of the Census 
partially responsible for the lack of up-to-date population statistics on the grounds 

that current population estimates have been neglected in favor of more intensive work 
on (area) sampling theory. 

^ The following is based in part on the author’s article;, ^‘The Disproportionate 
Method of Market Sampling” (reference 79). This material is used with the kind 

permission of the editor. Prof. K. A. Duddy, and of the TUniversity of Chicago IVess. 



75 THE THEORY OF SAMPLING TECHNIQUES 

portional quota system has been almost exclusively employed when 
stratified samples were used in market surveys; /.e., an attempt has been 
made to get the relative size of the sample strata in proportion to the rela¬ 
tive size of the various strata in the population. The logic behind this 
method is that if there are twice as many people in one population stratum 
as in another, then the sample ought to have twice as many members 
from the first stratum as from the second in order to secure proper and 
uniform representation throughout. The fact that this procedure has 

frequently yielded fairly accurate results in the past has tended to pro¬ 
mote its continued use. 

Except where all the strata have equal variation, the proportional 

method is not theoretically correct, for it does not take into account the 
variation in the degrees of iieterogeneity of the different strata. Thus, to 
cite an extreme illustration, suppose one stratum of a population consists 

of 50,000 families of identically the same purchase habits, whereas another 
stratum contains 25,000 families each of whom falls into one of 20 different 
and distinct purchase-habit classes. To obtain a true representative pic¬ 
ture of these two strata, only one family need be selected from the first 
stratum, irrespective of the size of the stratum and of the sample, but at 
least 20 families would have to be drawn from the second stratum, a ratio 
of 1:20, even though the former is twice as large as the latter. According to 
the proportional method, two families would have to be taken from the 
first stratum for every one family selected from the other. 

Of course, in actual practice one docs not encounter such extreme cases, 
but very similar though somewhat modified instances have been found to 
occur in market research far more frequently than one would ordinarily 
expect. In Chap. VIII, instances will be given where the use of population 
proportions results in stratum quotas very much out of line with quotas 
obtained when the element of varying heterogeneity is taken into account. 

The operational procedure for taking heterogeneity into account is to 

set up quotas for each stratum according to the proportion that the product 
of the number in the stratum (in the population) and the standard devia¬ 
tion of the stratum-member purchases is to the sum of these products 

taken over all strata.^ In other words, if the sample number from any 
given stratum is Niy the actual number, P<, and their standard deviation, 
(Ti, the number drawn from each stratum should be such as to satisfy the 

following equalities: 
N, ^ N2 ^_N, 

PlCl ^2(^2 P s 

In the proportional method no account is taken of the o-^s, and it can 

‘ llie theoretical foundation for this rule is to be found in J. Neyman, ‘'On the Two 

Different Aspects of the Representative Method," (reference 80) pp. 558-606. 



76 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

therefore be represented more simply; i.e.j the number selected from each 
stratum should be such as to satisfy the following: 

Pi P2 “ ’ Ps 

From the above equations it is readily noted that the proportional form 
is just a special case of the true representative form and assumes that all 
the (T^s are equal, i.e., assumes uniform heterogeneity. Only when this con¬ 

dition is fulfilled is the proportional method theoretically valid. Although 
it is well known that this situation rarely, if ever, occurs in marketing sur¬ 
veys, the proportional method is still almost universally employed, the 
implicit assumption being that differences in stratum purchase (or other) 
variation are not great enough to cause any appreciable error or loss of 
precision in estimates based on proportional samples. 

In the final analysis it is not very important whether the proportional 
method does or does not yield a very dissimilar quota system as compared 
with the true representative method. The crux of tiie matter is the magni¬ 

tude of the bias and loss in precision caused by the use of the proportional 
method. If this magnitude is very small, either method is acceptable, and 
the proportional method can justifiably continue to be employed in market 
studies; if this magnitude is large, it would indicate the need for some revi¬ 
sion of current sampling techniques in market analysis. 

In some fields, such as agriculture, little difference has been found in the 
efficiency of the two methods.^ However, in consumer market analysis, 
recent experiments have revealed that considerable discrepancies exist 
between the two methods, and, as will be shown in Chap. VI (see page 142), 
the disproportionate method will yield much more precise estimates in 
many instances. 

Cost Consideration and Optimum Allocation. The optimum sample 
allocation formulas for proportional and disproportionate sampling cited 
in the previous section are predicated on the implicit assumption that the 
cost of drawing a sample member from one stratum is the same as that of 
drawing a sample member from any other stratum. However, it frequently 
occurs in market analysis that the cost of selecting sample members varies 
between strata. Thus, when city sizes are employed as strata, much less 
expense is incurred per selection in selecting individuals from large-size 
cities than in selecting individuals in farm areas. In such instances, opti¬ 
mum allocation can obviously be attained only by taking these differential 
sampling costs into account. 

The correct formulas in this case are simply modifications of the 
formulas given previously. If we let Ci, C2, ..., C, denote the cost of 

1 Jessen, Statistical Investigation of a Sample Survey for Obtaining Farm FactSj 
(reference 119), pp. 41-44. 
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selecting individual sample members from the first stratum, the second 
stratum, and the sth stratum, respectively, the number drawn from 
each stratum should be such as to satisfy the following equalities: 

_Ni ^ ^ ^ ^ _ N, 

\/C'2 
or 

P It 's/i_ y 

where C< is the cost of selecting an individual fr'm the ith stratum.^ 

These various allocation formulas may be illustrated by the following 
hypothetical situation. Jjet us assum^^ that a sample of 200 families is 
w be divided into four strata whose relative sizes, standard deviations, 

and costs per unit of sample selection are known, as indicated in Cols. 
(2), (3), and (4) of Table 4. 

If costs are not considered, the proportional and disproportionate 

methods will yield sample distributions indicated in Cols. (6) and (7), 
respectively. In this case, neglect of varying strata heterogeneity would 
produce a strikingly different, and erroneous, sample distribution as 
compared to that resulting from consideration of this factor. In the 
former case, stratum 1 would contain 75 per cent more sample members 
than stratum 4, whereas the situation is practically reversed when 
differences in stratum variation are considered. 

If, in addition to varying heterogeneity, selection costs differ from 
stratum to stratum a different sample distribution is obtained, as indi- 

Table 4. Combarison of Different Methods of Sample Allocation 

Stra¬ 
tum 

number 

Rela¬ 
tive 
size 

Pi 

Stand¬ 
ard 

devia- 
1 tion 

Unit 
cost of 
selec¬ 
tion 

Ci 
1 

Cost not consitlcTed 

Optimum 
allocation 

^ Pi<ri/\(\ 

Propor¬ 
tional 

method 

Ni = PiN 

Dispropor¬ 
tionate 
method 

v'Ci APiai/y/(^) 

(1) (2) (3) (4) (5) (6) (7) (8) 

1 0.36 2 $0.15 0.258 70 58 70 

2 0.30 1 0.10 0.316 60 24 37 

3 0.16 3 0.30 0.183 30 36 32 

4 0.20 5 0.40 0.158 40 82 61 

Total 1.00 200 200 200 

' The same formula is, of course, applicable to proportional sampling, with the <r’s 

canceling each other. 
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cated in Col. (8). As compared to Col. (7), strata in which recruiting 

expenses are relatively high (z.e., strata 3 and 4), have lost sample members 
in favor of the low-cost strata (t.e., strata 1 and 2). Neither of the two 
previous sample distributions compares very favorably with this optimum 
distribution.^ 

Other Sampling Techniques 

Although marketing surveys are conducted almost exclusively in 
accordance with either the unrestricted or the stratified sampling methods 
described above, other sampling techniques exist; some have been em¬ 
ployed in the past and others are still being experimented with in related 

fields.^ A brief account of the two most prominent of these techniques 
is presented below. 

Purposive Sampling. Purposive sampling differs from the other 

sampling techniques in that a deliberate attempt is made to have the 
sample conform with some relevant average, or representative, statistic 
of the population. According to this procedure, sample members will be 

selected or discarded depending on the degree to which the relevant 
sample figure is brought into line with the desired population statistic. 
For example, a purposive sample attempting to determine adult magazine 

readership in the United States might be so selected as to have the average 
age of the sample members equal to the average adult age in the United 
States, if it is assumed that readership is highly correlated with age. 

Prospective sample members would be accepted or rejected according to 
whether they bias the average age of the sample toward or away from 
the population average, and the process of selection would continue until 
the sample and population averages coincide. 

Purposive sampling may be either unrestricted or stratified. If the 
parent population is treated as a unit, as in the previous example, the 
sample is designated as 'purposive unrestricted. On the other hand, if the 

population is divided into strata and separate purposive samples selected 
from each stratum, we have a purposive stratified sample.^ Such would 
be the case if, in the magazine readership study, the United States adult 

population were divided into strata of 10-year age groups, and the pur¬ 
posive sample representing each age group so selected as to have the 
average age of each sample equal to the average age of that age group in 

* The example will perhaps take on greater reality if the reader will assume that the 

four strata represent four city sizes in a certain region, or state, in descending order— 

stratum 1 represimting, say, very large size cities and stratum 4 representing farm 

areas. 

* For example, the lattice-design experiments in agriculture. 
“ By a little further reasoning the reader can readily define purposive stratified pro¬ 

portional and purposive stratified disproportionate sampling. 
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the population. Thus, if the average age of United States adults between 
30 and 40 years of age is 34.4 years, the average age of the purposive sample 

representing this age group would also be made to ecjual 34.4 years. 
Though purposive sampling was employed rather extensively 20 and 

25 years ago, it has since fallen into considerable disrepute as a result of 
the criticism leveled at this technique and of it; unsatisfactory operation 
in actual practice; it is rarely, if ever, u&ed in sample surveys today.' 
There are three major criticisms of this method. 

1. The logic behind purposive sampling is tiie belief that if the sample 
has the same average characb^ristic^' as the population, “everything else 
will take care of itself. ' Of this, however, there is no assurance—a 

fact that practice appean^ to confirm. Even if the most important 
characteristics have been selected a-; the sample controls, the mere 
equalization of the sample and population averages guarantees neither 
the representativeness of the sample distribution^ nor the accuracy of 
the sample estimate; for example, 30 is just as much the average of the 
numbers 29 and 31, as it is the average of the numbers 15 and 45. A 

purposive sample is likely to be more erroneous in estimating distribu¬ 
tions than in estimating population averages. 

2. A considerable amount of interviewer bias is possible in purposive 
sampling owing to the high subjectivity involved in sample selection and 
rejection. Especially when qualitative controls are employed, such as a 
“typicab^ city, an “average^^ laborer, etc., the results arc likely to be 
seriously biased. Because of this danger of bias, it is contended that the 

accuracy of a purposive sample estimate will be less than that of a random 
or stratified sample estimate. 

3. Probably the most important criticism is that, bec.ause of the 

absence of random selection, it is impossible to ascertain numerically the 
probable range within which the sample estimate may fluctuate as a 
result of erratic sampling variation. In purposive sampling the con¬ 

ditions of random sampling are not fulfilled, since each member of the 
population does not have an equal chance of being drawn on every draw; 
only those members that can bring the sample average closer to the 

population value have a chance of being selected. Hence, the simple 
laws of probability cannot be applied to purposive sampling, and there 
is no way of evaluating the standard error of an estimate based on a 

purposive sample. In other words, if 20 per cent of the members of a 
purposive sample read a certain periodical, one does not know if the true 
population percentage reading that periodical is most probably between 

' Nevertheless, the practice of having the sample conform with the population in 

some attribute, such as automobile ownership, which is quite common in market 

research, approaches the purposive concept in theory and in application. 
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19 and 21 per cent, between 5 and 35 per cent, or between some other 
tw‘0 limits. 

Double Sampling. Double sampling is nothing more than a sample 
within a sample. This technique is most advantageous where detailed 
information is sought about various characteristics of the population, 
where the sample budget is so limited as to prohibit the selection and 
examination of a large sample, and where the characteristics to be studied 
are very closely related to another characteristic on which data can be 

very inexpensively collected. In such a case, it might be expedient to 
select a large initial (unrestricted) sample, from which data are compiled 
on one characteristic and used to divide the total sample into strata. 

From each of these strata a small, carefully selected random segment is 
drawn, which then forms the basis for estimating the average values of 
the characteristics under study, each stratum being weight(jd by the rel¬ 

ative value of the initial characteristic in that stratum. 
For instance, if purchases of electrical consumer goods are assumed 

to be highly correlated with the occupations of family heads, a sample 

survey of this market might be undertaken by first estimating the occupa¬ 
tional distribution of family heads in the population from a large initial 
sample. This sample could be obtained inexpensively by sending out 
mail questionnaires to several thousand families requesting their co¬ 
operation in such a survey. The replies (including suitable callbacks, 
etc.) are then segregated according to, say, four or five major occupational 
groups, out of each of which a small unrestricted sample is selected for 
further study. These four or five unrestricted samples constitute the 
working samples, a nucleus of, perhaps, several hundred families who are 
visited by trained interviewers and from whom detailed data are obtained 
on their purchases of, and preferences for, electrical goods. The final 
estimate of each particular characteristic is obtained by weighting the 
average figure of each stratum by its occupational distribution percent¬ 

age, as in the determination of an over-all sample estimate from any 
stratified sample. 

The primary object of double sampling is to ascertain the distribution 

of some relevant population characteristic that can then be used as the 
basis for a stratified sample. Of course, if the distribution of this char¬ 
acteristic is known, as immediately after a census year, there is no need 

for double sampling. 
This method has not been employed very extensively in marketing 

or business, perhaps because the technique has only recently been de¬ 
veloped, and has not yet gained wide recognition.^ Whether this method 

^ The initial exposition of double sampling, and the derivation of its standard-error 
formula was published in “Contribution to the Theory of Sampling Human Populations^^ 

by Neyman (reference 87). 
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will gain wide usage is questionable. The more accurate and detailed is 
our knowledge of population distributions, the less will double sampling 
be required. 

The length of time necessary to form a double sample is usually 
greater than the time it takes to form one single sample, and in many 
market surveys time is a very important element. Furthermore, double 
sampling serves to increase rather than (te(^rease the problem of sample 
selection, since two separate random selections have to be made rather 
than one, and if the initial sajnple happens to be biased, the subsample 
may also be biased.^ 

However, the most important criticism of double sampling is that its 

estimates are in many practical instances only eciually, or even less, 
efficient than the estimiitcs of a coiTCf.ponding single unrestricted sample.^ 
The main reason for this fact is that a double sample contains two potential 

sources of sampling error, the possible error in estimating the distribu¬ 
tion of the basic population characteristic from the initial sample, and 
the possible error in the strata estimates of the characteristics under 

study. In short, double sampling is to be preferred only when the dis¬ 
tribution of a highly relevant population characteristic is unknown and 
when its distribution may be ascertained relatively inexi)ensively by 
sampling. 

3. STANDARD ERRORS IN SAMPLING ANALYSIS: THE MEAN AND 
THE PERCENTAGE 

The basic objective of sami)ling anal^^sis is, as has been noted earlier, 
to arrive at the most reliable possible estimates of population character¬ 
istics. The relative success of this objective is determined by the validity 
of the sample estimate. The function of the standard error is to gauge 
this success by measuring the precision of diffcient sample estimates and 
by determining the size of the confidence region; therein lies its funda¬ 

mental importance in sampling analysis. 
To understand more fully the nature of the problem, the reasoning 

underlying the mode of approach to different sampling techniques has 
been discussed in the preceding pages. The manner in which this reason¬ 
ing determines the standard errors of estimates based on random and 
stratified samples is now considered. The standard-error formulas for 
the important measures that marketing and business analysts seek to 

estimate are also presented below, together with a method of evaluating 
the preferability of stratified over random samples. First, however, the 
meaning and significance of the standard-error concept is taken up in 

some detail. 
^ This statement is not necessarily true if the bias is known to exist, for appropriate 

adjustment could be made in the selection of the suhsample. 
* Neyman, op. city pp. 114-115. 
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The Standard-error Concept 

As noted in Chap. Ill (see page 53), sampling procedures, by the very 
nature of the methods employed, bring into play random forces tending to 
distort the final estimate by a certain margin of error. The allowable range 
of error to be expected in the estimates of population characteristics based 
on sampling techniques determines the relative reliability of these esti¬ 
mates. The smaller the range of error is in relation to the estimate itself, 

the more reliable is the estimate adjudged to be. To measure this allow¬ 
able range of error, the standard-error concept has been developed. The 
meaning of this concept, as explained previousl3% is that if an infinite num¬ 
ber of large samples are drawn from the same (normal)^ universe, the mean 
values of 68.27 per cent of these samples will fall within a ranae of tlie popu¬ 
lation mean plus and minus 1 standard deviation of it. In ether words, 
there are about 2 chances out of 3 that an estimate based on anj one sample 

will approximate the true population value within a range of 1 standard 
error above and below that figune 

The range denoted by the estimate plus and minus its stanciard error is 

sometimes accepted by market analysts as indicating the reliability of the 
estimate.^ The greater the influence of erratic sampling valuations, the 
greater the standard error of the estimate will bo in order to reflect these 
fluctuations and still render the same probability (0.68 approximately) of 
yielding the true universe estimate; but as this allowable margin of error 
increases, the practical utility of such an estimate decreases, because of the 
greater range within which the true value is likely to lie as a result of the 
play of random sampling forces upon it. Thus, other things being ccjual, 
an estimate that the average annual cold-cereal purchase per family is 200 
ounces with a standard error of 15 ounces would be considered much more 
useful than the same estimate (from a different sample, say) but with a 
standard error of 30 ounces. In the former case, we can be reasonably 
sure that the true purchase figure is neither less than 170 ounces nor more 
than 230 ounces; in the latter case, the actual figure might be anywhere 
between 140 and 260 ounces (using 2 standard errors as the confidence 
interval). 

The standard-error formula for a sample estimate depends on the type 

^ In actual practice the universe is, of courses, not normal, but in most instances the 
degree of abnormality is insufficient to invalidate the above statements (see p. 35). 

* This range might alternatively be defined as the mean plus and minus 2 standard 
errors, or the mean plus and minus 3 standard errors. Though such an extension of 
the range would increase the accuracy of the estimate in the probability sense, it possesses 
the disadvantage of increasing the allowable range of error to two and three times its 
former size. Which error limit to choose depends on the particular problem at hand. 
The range of the mean plus and minus 1.96 standard errors, the 0.95 confidence co¬ 
efficient, is generally used in this book. 
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of sample employed. This is due to the fact that the amount of sampling 

variation to be expected in an estimate varies with the kind of sampling 

technique used. For each different type of sample design employed (unre¬ 

stricted sampling, proportional sampling, disproportionate sampling, etc.), 

a different amount of sampling variation will be expected, and hence a 

different formula for the standard error of the testimate will exist for each 

type, the formulation of which is based on the theoretical foundation of the 

particular sample design. For this reason a sound knowledge of the rea¬ 

soning behind a particular sampling technique is of great importance to the 

understanding of tlie standard-error formulas and the inlu'rently related 

efficiencies of different types of samples. 

Standard Errors and Smail-size Samples. The standard error of a 

statistic is also modified by tfie size of the sample, for if th(» sample is rela¬ 

tively small, there will not be enough items to counteract the play of erratic 

sampling variations, and the resulting sampling distribution will be some¬ 

what different from the usual normal distribution. This is not difficult to 

understand since, when only 10 or 15 items are selected from a large popu¬ 

lation, there is little likelihood that these few items will be so arranged as 

to represent the actual population distribution. The tluiory of the normal 

curve, and of standard errors, it will be remembered, is based on the selec¬ 

tion of a number of items large enough to balance the individual opposing 

tendencies of under- and overestimation, but when the items are few, this 

normalizing tendency is not so efficient as in the case of a large sample, and 

some distortion will result. 

The means of small-size samples are distributed according to the so- 

called t distribution. This t dist ribution is shown in Fig. 12, which depicts 

the normal distribution of large-size samples and the t distribution for 

samples of 5 members and 10 members each.^ It is to be noted that as the 

size of the sample decreases, the t distribution diverges more and more from 

the normal distribution, with increasing dispersion. Thus, although 

there is a 0.95 confidence coefficient that the area of the sample mean plus 

and minus 1.96 standard errors will contain the true population value, 

the allowable area is inc^n^ased to 2.06 standard errors when the size of the 

sample is reduced to 25, and for samples of 3, the limits become the sample 

mean plus and minus 4.3 standard errors. In general, if the sample 

size exceeds 30, the t distribution approaches the normal distribution, and 

the latter is applicable; for samples of less than 30 members, the t distribu¬ 

tion should be used. 

Values of the t distribution at various probability levels for degrees of 

freedom n from 1 to 30 are given in Appendix Table 6. (For our present 

purposes, the degrees of freedom may be taken as one less than the size of 

‘ These t distri1)utions were derived by taking the degrees of freedom as one less 

than the size of the sample. Degrees of freedom are discussed in Chap. X. 
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the sample.) Degrees of freedom are represented by the rows, and the 

probability levels by the columns. The figures in the body of the table are 

values of t in standard-deviation units. The probability corresponding to 

each value indicates the portion of the area of the particular t curve that 

lies between that value and the appropriate extremities of the curve. Thus, 

for 12 degrees of freedom, 10 per cent of the area under the t curve is 

-4<r -3<r -2<r -icr o +la’ +2a' +3<r +40* 
Fiq. 12. t distributions for N — 5, N — 10, and the normal distribution. 

outside of plus and minus 1.782 standard deviations, 5 per cent of the area 

is outside plus and minus 2.179 standard deviations, 1 per cent of the area 

lies outside 3.055 standard deviations, etc. In the following chapters, 

we shall see how this table is applied to sampling problems. 

Unrestricted Sampling: the Standard Errors of the Mean and of the 
Percentage 

The two most common measures used in commercial research are the 

mean and the percentage; the mean, when variates are being studied, the 

percentage, when attributes are under observation. For this reason 

primary emphasis is placed on the standard-error formulas for these two 

measures for various types of samples. As will be seen shortly, the logic 

behind the standard-error formulas for different types of samples can 

readily be explained in terms of the standard error of either of these two 

measures. 
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Although in practice the standard error is used to measure the expected 

margin of error in a universe estimate, statistically the square of the stand¬ 

ard error (the variance) is the more meaningful and logical concept, inas¬ 

much as it expresses directly the variance, or dispersion, of the estimate 

about the true value. For this reason the error formula is first defined and 

explained in terms of the variance and then (;onverted to the practical 
standard-error form by taking tlie square root of the former. 

The formula for the variance (or dispersion) of the mean of an un¬ 

restricted sample is 

{Variance of the nean of an| _ variance in the populaticm 

unrestricted sample (<rx)j N 

where N is the number of observations in the sample. 

Although this formula is generally derived by exact mathematical 

methods, it may be explained by the following intuitive reasoning: The 
variance in the population (the standard deviation squared) indicates 

the degree of dispersion of all the separate values in that population 

about their mean, /.e., the distribution of the individual items about the 

population mean. For a sample of two items, the vaiiancc of the mean 

will be half of the variance in the population itself, for by av^eraging the 

two items half of the original variance is eliminated. Similarly, the 

variance of the mean of a sample of three items is one-third of the variance 
in the population. By extension it follows that the variance of the mean 

of a sample of N items is one-Vth of the variance in the population. 

In practical operation it is naturally impossible to take all possible 

different samples of a given size (such as all possible samples of 2,500 

families in the United States), find the distribution of their mean values, 

and compute from them the variance of the mean in the poi3ulation; 
usually only one sample is available. Hence, the variance in the sample 

must be used to approximate the variance in the population, and the 

variance formula of the mean computed in this fashion approximates the 
sampling error in the sample mean in estimating the population mean. 

In this way faulty estimates are frequently made, for if the sample is not 

representative of all relevant segments of the population, not only will 
the mean value be biased but the true variance will be incorrectly esti¬ 

mated, and may result in a standard-error range completely excluding the 

true population mean. For instance, a sample may estimate the average 

United States monthly coffee purchase per family to be 3.1 pounds with 

a standard error of 0.1 pound, when the true figure is 3.5 pounds. Here, 

the sample was so poorly randomized that even a 3-standard-error range 

will fail to include the true value. Had the sample been chosen in a 
purely random manner, it would still be possible for the estimate to be as 

low as 3.1 pounds (owing to sampling fluctuations), but the more inclusive 

sample would show a much higher resultant value for the standard error. 
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In practice, the square root of the variance of the mean, the standard 

error of the mean (denoted by o-y), is employed as the quantitative measure 

of dispersion, there being about 68 chances in 100 that a range of the 

sample mean plus and minus 1 standard error will contain the population 

value. In terms of the standard error, with sample values inserted for 

those of the population, we have the usual operational standard-error 
formula 

(Standard error of| 

the mean of an un- j 

restricted sample 
-V 
_I standard deviation of 1 

/varianceIn sample _ [the randoii^ sample) 

N Vn 
But the standard deviation of any group of values is known to be 

By substituting this form into the standard-error form’da, we arrive at 

the practical computational form for the standard error of the mean 

of an unrestricted sample 

<r 

Vn 
2X2 

N 

In a similar manner, the variance of an unrestricted sample percentage 

is 

Variance of an unrestricted sample percentage {(j%) = ^ 

where p = the percentage of the sample possessing the given attribute 

q = the percentage of the sample not possessing the given at¬ 

tribute = I — p 

N = the size of the sample 

The numerator of the formula, pq, represents the variance of the per¬ 

centage distribution; dividing it by the size of the sample, iV, yields the 

variance of the sample percentage. By taking the square root of the 

expression, one arrives at the standard-error formula for a percentage 

as follows:^ 

= 

^ An alternate form of this formula exists that yields the standard error of the 
number having the given attribute. The formula is 

QNp ^y/Npq 

where p = the fraction of the sample having the attribute 

q = the fraction of the sample not having the attribute — \ — p 

N = the size of the sample 
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In a survey of 252 middle-class families in Haverhill, Mass., in 1946, 

56, or 22 per cent, of the families signified their intention of purchasing a 

new radio.^ What is the 0.95 confidence interval (the interval that has 

a 0.95 confidence coefficient) for this percentage? Substituting in the 

above formula 

(().22)a).78) 
252 

0.026 or 2.6% 

Since 95 per cent of the area under the normal curve is included 

between the mean value plus and ’ainus 1.96 standard errors, the 0.95 

confidence interval is 22 per cent plus and minus 1.96 times 2.6 per cent, 

or between 16.9 per cent and 27.1 per cent. 

Where the sample size is less than 30, the standard-error formulas 
must be modified to correct for the natural tendency of the standard 

deviation of a small sample to underestimate the true standard deviation 

of the population. The necessary correction factor is the substitution of 
N -- 1 for N in the denominator of the above large-sample formulas 

j Standard error of | standard deviation of the unrestricted sample 
\ the mean of a small > = —-- 

[ unrestricted sample) 
Vn - 1 

or 

<7X 

I 1 2X2 ^ /v^Y' 

”\iV-l N' \N/_ 

Standard error of the pei c^entage of a small unrestricted sample 

Other .illustrations of the application of these formulas are to be found 

in Chaps. VI and VIII. 
Correction Factor When the Sample Is Large in Relation to the Popu¬ 

lation. The standard-error formula of any statistic is affected not only 

by the absolute size of the sample, as discussed on page 85, but also by 
its relative size in relation to the population. The larger the sample is 

in relation to the population, the less room there remains for deviation 

of the sample statistic, say, the mean, from the true population value, 
and consequently the smaller one would expect the standard error of 

the sample mean to be. Obviously, when the ‘‘sample” includes the 

entire population, the sampling error (the standard error) of the mean 
is zero. 

However, as presently constituted, our standard-error formulas fail 

* Consumer Survey of Brand Preferences in Haverhill, Mass., issued by 7'he Haver- 
hill Gazette, Haverhill, Mass., July, 1946. Data presented through the courtesy of 

John T. Russ, Publisher, The Haverhill Gazette. 
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to account for a determinate relative size of the sample in relation to 

the population. Thus, irrespective of whether the size of an unrestricted 

sample is or is not infinitesimal in relation to the population, the standard 

error of the mean of the sample, will yield identical values in both 

instances. It can be shown that the correct formula for the latter case is 

2 N\ <T 

= nV - p) = Viv 

where a = the estimated variance of the population 

N = the size of the sample 

P = the size of the population 

In other words, the variance of the sample mean is multiy lied by 1 minus 

the ratio of the size of the sample to that of the population. Now when 

the sample constitutes the entire population, N is equal to P, and 

the adjustment factor, as well as the standard error itself, reduces to 

zero, as it should. The greater the size of the sample ’s in relation to 

the population, the smaller this adjustment factor will be, and the smaller 

will be the value of the true standard error. When the sample constitutes 

a negligibly small proportion of the population, as is usually the case in 

market and business analysis, the ratio N/P is approximc^ely zero, and 

there remains the customary standard-error formula cr/\/N. 

The reader will undoubtedly imiuire: When should the adjustment 

formula be used in preference to the regular form? The answer to this 

question depends on the magnitude of the error the researcher is willing 

to allow in his estimate of the standard error. In general, the adjustment 

terms may be neglected if the sample constitutes less than 4 per cent of the 

population, as the error in the estimate in such a case would not be more 

than 2 per cent.^ If the researcher is willing to accept an error as high as 

5 per cent in the standard-error estimate, he would neglect the adjustment 

term so long as the sample is less than 10 per cent. 

Where the sample comprises 10 per cent or more of the total popula¬ 

tion, the adjustment term should certainly be employed; in view of the 

great advances in computational methods and calculating machines, there 

is no reason why the adjustment term should not be employed in all cases 

where the sample constitutes 4 per cent or more of the population. 

For example, if the variance of a population is known to be 150, the 

standard error of the mean of a random sample of 200 families drawn from 

this population would be a/150/200 or 0.87. If, however, the sample 

‘ If the size of the sample is less than 2 per cent of the size of the population, the 

error in the standard error would not exceed 1 per cent. As a rough approximation, 
the percentage error in the standard-error estimate due to omission of th(‘ adjustment 

term will be half the proportion that the sample is of the population. 
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actually comprised 25 per cent of the members of this population, the true 

standard error would be 

<rx = (1 - 0.25) = 0.75 

which differs from the unadjusted estimate by 15 per cent. 

Stratified Sampling: The Standard Errors of the Mean and of the Percentage 

The data obtained from a stratified sample not only enable a single 

Over-all sample value to be computed, but also make it possible for us to 

estimate the mean or percentage value for each Sf‘parate stratum. There¬ 

fore, the variance of the estimate no longer denotes the computed dispersion 

of all the sample values about the sample mean or percentage, as is true for 
an unrestricted sample, but rather the computed dispersion of the sample 

values in each stratum about the particular stratum mean, or percentage, 

as taken over all the strata in the sample. This is because random selec¬ 
tion was applied within strata; f.e., the sample members of each stratum 

constitute a separate unrestricted sample. Therefore, the sampling vari¬ 

ance of any average value of a stratified sample must be a weighted average 
of the sampling variances of the various strata composing the sample. 

This principle is the basis for the standard-error formulas of all stratified 

samples, the differences between the various formulas being due either to 
simplifications made possible by the definition of the sample design or to 

the necessity for taking multiple variances into account, as in area and 

cluster sampling. The standard-error formulas of the mean and the per¬ 
centage for the main types of stratified samples are given below. 

A Disproportionate Sample. A disproportionate sample is the most 

general type of (piota sample, it will be recalled, because the variances of 
the various strata differ and because the allocation of the sample members 

between strata does not necessarily follow any fixed rule (though the opti¬ 

mum allocation is given by the formulas on page 75). Now the sampling 

variance of the mean or the percentage in any single stratum is a{/Ni. 
Therefore, the sampling variance of the entire sample is a weighted average 

of the individual strata variances, the weight of each stratum being the 

square of its relative size in the population. The formula is 

of Ihodiaproportion- - j + + \-p) {w,/ 
ate sample * 

where = the size of each respective stratum in the population, there 

being s strata 
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P = the size of the total population 

Wi = the relative size of each stratum in the population 

Ni = the number of sample members in each stratum 

(Ti = the variance of each stratum 

In the case of the mean, the formula becomes 

j - 1 

I == 1 t = 1 

In the ease of the sample percientage, the formula is 

r, 
F 

s s 

1-1 / -= I 

In practice it is usually wise to compute the various strata variances 

ai beforehand and then compute the sampling variance from the expres¬ 

sion X(Wi<Ti/Ni). The standard error is merely the square root of the 

latter. 

This formula 2{W'faf/Ni) is the most general sampling variance 

formula for quota sampling. The sampling variance formulas of all other 

quota samples are but simplifications of this expression. This formula 

must be applied whenever the strata variances are not equal. If, how¬ 

ever, the sample is allocated between strata by the optimum formula 

Wi(ri/'LWi<ri, the sampling variance can be computed from the following 

simplified expression:^ 

( i 
Sampling variance = —^- 

By eliminating the necessity of squaring (r< and dividing by Niy this 

formula permits the sampling variance of a disproportionate sample to be 

computed in one operation on an automatic calculating machine, once the 

strata variances are known. The term 21 IT i0-< is obtained by cumulatively 

multiplying Wi and <t<, the resultant figure is squared while still in the 

machine, and division by iV is performed by placing N in the keyboard 

and pressing the automatic division key.^ It should be remembered, 

however, that this simplified formula can be applied only if the sample is 

apportioned among the strata by the optimum allocation formula cited 

1 The derivation of this formula will be found in Appendix C. 
*This procedure is applicable on Friden, Marchant, and Monroe automatic cal¬ 

culators. 
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above. That this is the optimum allocation for disproportionate sampling 

is indicated by the fact that the sampling variance computed by this for¬ 
mula will be either less than or, at most, equal to the sampling variance 

computed by the general formula for any disprpportionate sample. 

The simplified formula given above should not be used when cost con¬ 

siderations are taken into account in allo(*ating the sample between strata. 
The size of each sample stratum is then 

iV. - 
S(»r.,-r,/V'G) ' 

The best method of computing the sampling ^ ariance would seem to be 

through the use of the general formula. 

A Proportional Sample. We know that a proportional sample is a 

special case of a disproportionate sample, the case where all the strata 

variances are equal and where the number of sample members from each 

of the various strata is proportional to their relative sizes in the population. 

If the sample is allocated among the strata by this proportional principle, 

we have Wt = Ni.^N. Substituting this expression in the general sampling 

variance formula of the preceding section yields the formula for the 

sampling variance of the mean or percentage of a proportional sample 

s 

Sampling variance = 

If, in addition, the sample turns out to be truly proportional in the 

sense that all the strata variances are equal, at is then a constant, and the 

sampling variance formula reduces to af/N. This formula can be used 

only when the strata variances are equal; in the case of a percentage, this 

means that the same proportion in each stratum must have the desired 

attribute. Of course, in practice this equality of strata variances rarely 

occurs, and therefore the sampling variance of the mean or percentage of a 

proportional sample is generally computed with the aid of the longer 

formula given above. 

An Area Sample. The sampling variance of an area sample is very 

similar to that of a disproportionate sample, the main difference arising 

from the fact that the area sample generally involves two or more stages 

of randomization. Thus, an area sample in a certain city may be con¬ 

structed by first taking an unrestricted sample of districts, then taking 

an unrestricted sample of blocks within each sample district, and finally 

taking an unrestricted sample of households within each sample block. 

The reader will note that this area design involves three distinct stages 

of random selection. This means that there are three sources of random 

sampling variation to be taken into account: the random variations in 



92 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

the selection of districts, the random variations in the selection of blocks 

within districts, and the random variations in the selection of households 
within blocks. Consequently, the aggregate sampling variance of this 

area sample, corresponding to <t'^/N in the unrestricted sample, must be 

the sum of these three variances, or 

Sampling variance 

of the area sample 
sampling variance in the 

random selection of districts 

+ 
sampling variance in 

the random selection of 

, blocks within districts 

I sampling variance in the 

random selection of 

households within blocks 

Now, let us denote by N© the number oi sanxole distvit^ts, the number 

of blocks selected from the fth sample distric^t by Nbj an^l the number of 

households selected from the jth sample block in the uh samide district 

by iVjy; we shall let Pd, Pd, Pjj equal the corresponding quantities in the 

population. For the sake of simplicity, Nbj Nhj Fb^ and Ph arc all 

assumed to be constant. The sampling variance of the area sample then 
becomes 

Sampling 
variance of I Pd "" Np (Td , Pb N b o’! i (Fh 

the area j Pd - 1 A^d Pb-\ NdNb Ph - l NdNbNh 
^ sample 

The first term in this formula represents the sampling variance in the 

(random) selection of districts. <t% is the variance between districts; 

<Pd/^d is the sampling variance of the mean or of the percentage between 

districts; (Pd — Nd)/{Pd — 1) is the correction factor when the number of 

sample districts is large in relation to the total number of districts in the 

population. In a similar way, the second term represents the sampling 

variance in the (random) selection of blocks within districts, <t% being 

the variance between blocks within each district as taken over all dis¬ 

tricts and al/NoN» being the sampling variance between all the sample 

blocks within districts. The sampling variance between households in 

the same block as taken over all blocks in the sample is represented by 

the third term, being the variance between households in the same 

block for all the sample blocks, and (Ph/NdN bNh being the sampling 

variance between these households. 

In terms of the mean and the percentage, the three variances are 
expressed as follows: 

al 

Mean 
Nd 

X 

Nd 

Percentage 
Nd 

X (Pi P)* 
1_ _ 

Nd Nd 
— - 
Nd ^ 
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Nd 

I 

Nh 

2) ■" ^»)* 
i=l_ 

NdNb 

ssT?i sX? 
NdNb Nd 

Nd Nb Nh 

III 
t = 1 y = 1 A; = 1 

NdNbNh iV dN bN H 

Nd Nb 

2 Z 
»= 1 y = 1_ 

iVoAffl 
Sp? 

iVoiVg ATd 

N dN B 

Nd 

I 

Nb 
V 
A, NdNb j “ 1 

where X mean value of entire sample 
NdNbNh 

mean value of ith sample district 

Nb Nh 

I I Xijk 
j^lk = \ 

NbNh 

mean value of jth sample block in ith sample district 

Nh 

lx,,, 

“IvT" 

Xi„ = value recorded for /rth sample household in ^th sample block 
of ith district 

p = percentage of entire sample having the given attribute 

Pi = p(‘rcentage of ith sample district having the given attribute 

Pij = percentage of households in ^th sample block in ith district 

having the given attribute 

In each case, the first expression is the defining form and the second 
term is the computational form; for ag of the percentage, the two terms 

are the same. Once the variances are computed, they are substituted in 

the formula for the sampling variance. The standard error is then the 

square root of the resultant computation. 

No simple general formula, like that obtained for quota sampling, can 

be given from which the sampling variance of the mean or percentage of 

all types of area samples may be determined. The reason for this is 

that the sampling variance of an area sample depends upon the number 

of stratifications and the number of separate stages of randomization 

according to which the particular sample is constructed. Thus the 

sampling variance formula given above applies to a triple randomization 

without any stratifications; this might be denoted as an unrestricted area 

sample. Alternatively, however, one might have stratified the sample by 

districts, then selected an unrestricted sample of blocks within each stratum, 

and then selected an unrestricted sample of households from each sample 

block—a stratified area sample. The formula for the sampling variance 

of this design would contain only two variance terms, one for blocks 

within strata and one for households within blocks. There is no longer 
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any sampling variance between districts because by grouping the districts 

into strata, the random sampling element in the selection of districts 

vanishes. Now, however, the remaining sampling variances must be 

weighted by the relative size of each stratum in the population, as in the 

case of stratified quota sampling. The formula for the sampling variance 

of this area sample design then becomes 

where Wi is the relative size of each stratum (of districts) in the popula¬ 

tion, there being N strata. 

This formula will perhaps be more understandable if the reader will 

compare it with the sampling variance formulc^ ^^f a iiispropf)itionate 

sample. W\ here is the same as Tff of the dispropo'tionat(' sample. 

The terms within the brackets correspond to a'^/Ni of the disproportionate 

sample; they estimate the sampling variance of each stratum. 

The beginning reader is probably confused now by the complicated 

nature of the area sampling formulas. However, with a little practice it 

will soon be realized that though the computations require a somewhat 

longer time, the formulas themselves are no more difficult than other 

sampling formulas. The formula for the sampling variance of an area 

sample contains as many variance terms as there are separate stages of 

randomization, and where stratifications are employed, the sampling 

variances are weighted by the relative sizes of the various strata in the 

population.^ 

A Cluster Sample. If instead of selecting households at random from 

each sample block in the preceding area sample design, all the households 

in the sample block were interviewed, we would have a cluater sample^ or, 

more appropriately, an area cluster sample. Because the entire popula¬ 

tion of the block is interviewed, there is no element of rando^nness in the 

selection of the sample households in each block. However, the sampling 

variance is affected by any correlation between households in the same 

block, the so-called intercorrelation. For example, the sampling variance 

of one particular district, or stratum, if all households in the randomly 

selected blocks are interviewed (the number of households in each block 

being constant), is given by the following formula:^ 

Sampling variance of cluster sample 
Pb-Nb <tI 

Pb — 1 N bN H 
[1 + p(N H — 1)1 

^ The basic exposition of area sampling is to be found in Hansen and Hurwitz, ^^On 
the Theory of Sampling from Finite Populations” (reference 83). 

* Adapted from Hansen and Hurwitz, “Relative Efficiencies of Various Sampling 

Units in Population Inquiries” (reference 82). 
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where Nbj Pb, and Nh are the same as before (note that now Nh = Ph) 

and (td is the variance of the sample. 

For the mean 

2 _ j _ _ __ — Y2 

NbN„ n„n„ 

where JC is the mean of all sample members in the stratum. 

For the percentage 
(Tn = pq 

where p is the percentage of sample members i^» the district, or stratum, 

having the desired attributve, and q = I — p. 

p is the intercorrelation between households in each block and is equal 

to the following: 

For the mean 

{[X0^^ -- [SS-d]} 
_ _l_J fy_ 

J k 

For the percentage 

{[I iVs - V)VPb\ - [X P/lj/PniNu - 1)]} 

Taken in terms of the mean and stripped of the correction factor, 

the sampling variance of the cluster sample is nothing more than 

o’xll + P(^ “ l)Jj which the reader will observe is the standard error of 

the mean of an unrestricted sample plus a correction factor <t^[p{N — 1)]. 

Now, the relative efficieiKjy of a cluster sample hinges on the magnitude 

and sign of the factor p(N — 1), or, more explicitly, on that of p. If the 

households in each block aie positively intercorrelated, it is obvious that 

the sampling variance of the cluster sample will be greater than that of 

an unrestricted sample (of the same size). If p is negative, the cluster 

sample will be more efficient than the unrestricted sample. The term 

— 1 generally acts to catalyze the effect of p on the sample variance. 

Thus, if p is only 0.02 but ^^=100, the sampling variance of the cluster 

sample will be three times as large as that of the corresponding unre¬ 

stricted sample. If p is positive, the term N — 1 indicates that the minimum 

sampling variance of the cluster sample will be attained when there is 

only one sample member in each cluster; i,e., when the sample is an 

ordinary unrestricted sample. Of course, if p is negative, it is desirable 

to increase N as much as possible, until p decreases more proportionately 

than the relative increase in N. 
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In practice, p is usually positive. This is because people tend to live 
with those who are as similar as possible to themselves. Thus, rich people 
are concentrated in certain neighborhoods, poor people in other neighbor¬ 
hoods; white people live in certain sections, Negroes in other sections; 
white-collar people live in certain areas, farmers in other areas. As a more 
concrete example, one would not expect the ownership of washing machines 
to be distributed at random over all areas. On the contrary, most wash¬ 
ing machines are owned by well-to-do households living close by, or next 

to, each other. If the first household in an unknown neighborhood is 
found to own a washing machine, the chances are more likel> that another 
household in this neighborhood owns a washing machine than that a 
household in some other neighborhood owns one—in other words, positive 
intercorrelation. 

For this reason, cluster sampling is useful in reducing sampling errors 
only in those restricted cases where p is nc^gative. One such case is in 
estimating the sex ratio of a population. If two members of a four-person 
household are found to be males, the chances are more likely than not that 
the other two members of the household are females.^ 

The reader may wonder whether increasing the size of the cluster might 
not act to reduce the positive intercorrelation. The answer, in one field, 
is that 

For most population and housing items the correlation decreases as the size of 
the sample cluster increases. But usually the decrease in p is at a less rapid rate 
than the increase in A, so that, ordinarily, increases in the size of the cluster lead 
to substantial reductions in efficiency.* 

The outstanding advantage of cluster sampling is in the economies 
effected by the concentration of interviews. Therefore, it frequently hap¬ 
pens that though a cluster sample is less efficient than an unrestricted 
sample of the same size, the cluster sample is the more efficient per dollar 
expended when cost considerations are taken into account. 

The Effect of Inaccuracies in the Population Weights. Where the 
relative sizes of the various strata in the population (the population 
weights) are not accurately known, the final sample estimate, which is the 
average of the various strata values weighted by their relative sizes, will 
be subject to a certain additional amount of variation. It has been 
shown® that the increase in the variance of the mean of a stratified sample 
due to this uncertainty as to the true sizes of the various strata is calculable 
by means of the following formula: 

^ Ibid.y p. 91. 

* Ibid., p. 90. 

* See Cochran, ‘^The Use of the Analysis of Variance in Enumeration by Sampling ” 
(reference 88) p. 50(). 
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Increase in due to inaccu- | _ y r/^ __ 2 i 
racies in population weights) ^ 

where X = over-all sample mean 
X i = various strata means 

a'w. = estimated variance of weights (z.e., relative sizes) of the various 
strata. 

The most difficult part of ihis formula is the estimation of the 
variance of the population A\roights. If very little is known about this 
magnitude, as is usually the -".ase, t!ie variance of each weight may be 
obtained by multiplying the estimated percentage by which this weight is 
likely to differ from the true unknown weight by the weight itself. This 
procedure is illustrated in C'haps. VI and VIII. 

It is when the true sizes of the various strata are not very accurately 
known that a stratified sample may be less efficient than an unrestricted 
sample. When these weights are accurately known, there is no doubt as 
to the superiority of stratified sampling over unrestricted sampling. But 

when these weights are not accurately known—the usual case in marketing 
studies—it is possible that the addition to the sampling variance attribut¬ 
able to this factor will more than counterbalance the ‘‘natural^' superiority 
of stratified sampling and render the latter less efficient than an ordinary 
random sample.^ It is entirely possible that because of inaccuracies in 
the population weights, many of the ^^scientific^' stratified sample surveys 

would have been more scientific had ordinary unrestricted sampling been 

employed. Yet few market researchers ever bother to compute the effect 
of this factor on sample efficiency. 

Measuring the Relative Efficiency of a Stratified Sample. To evaluate 
the practical utility of stratified sampling, it is necessary to have some 
measure of the improvement achieved by it in estimating efficiency. Such 
a measure can easily be devised by taking the percentage ratio of the vari¬ 
ance of the unrestricted sample to that of the stratified sample, and sub¬ 
tracting this quantity from 100 per cent, as follows: 

{Relative efficiency = 1QQ% (unrestricted sample _ j 
a stratified sample {E)j \variance of stratified sample 

A positive value indicates that the stratified sample is more efficient 

than the corresponding unrestricted sample. The higher is the value of 
Ej the greater is the efficiency of stratification in reducing the error of esti¬ 
mation. If stratification fails to produce any improvement whatsoever 
in the efficiency of estimation, the two variances will be equal and E will 

‘ For one such case see A. J. King and E. E. McCarty, ^Application of Sampling 
to Agricultural Statistics with Emphasis on Stratified Samples,'’ Journal of Marketing^ 
Vol. 5, No. 4 (1940 -1941), pp. 462-474. 
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be zero. A negative value indicates that stratification is producing a net 
loss in sampling efficiency and that an unrestricted sample is preferable. 
The use of this measure is illustrated in Chap. VI. 

4. THE STANDARD ERROR OF OTHER MEASURES 

Although the estimation of the true mean or percentage undoubtedly 
is the most frequent objective, these are not the only population charac¬ 
teristics that a sample may seek to estimate. The primary aim of a 
sampling operation may be to determine the median or the degree of 
absolute and/or relative variation in a population as reflected by the stand¬ 
ard deviation and the coefficient of variation, respectively. 

In estimating the values of these population characteristics, the stand¬ 
ard error of these estimates is fully as importan!. as is tl-r standard error 
of the arithmetic mean with respect to the estimate ot the me;in. Only by 
knowing these expected ranges of error can the reliability of such esti¬ 
mates be evaluated. The succeeding sections present very briefly the 
standard-error formulas of these three statistics for unrestricted samples; 

they are used in precisely the same manner as the standard error of the 
mean, and some illustrations of their use and practical application will be 
found in Chap. VI. 

The Standard Error of the Median 

Where a population is known to contain a few extremely atypical mem¬ 
bers that may seriously affect the significance of the arithmetic mean as a 

measure of central tendency, the true value of the median of the population 
may be sought as a suitable alternative. For example, a strong upward 
bias is present in the per-capita (or per-family) purchase of cold cereal 
or toilet soap because of the presence of an extremely small minority who 
purchase these products with an almost fanatical zeal.^ In su(;h an 
instance, the median would be a preferable value of central tendency. 

The formula for the standard error of the median has been found to be 
equal to the standard error of the mean multiplied by the figure 1.2538 

= 1.2533(rx = 1.2533 ~ 
VN 

The standard error of the median is, therefore, approximately 25 per 
cent greater than the standard error of the mean of the same sample, thus 
indicating that the median is subject to greater sampling errors than the 
mean. 

' In a sample survey where the average cold-cereal purchase per family was com¬ 

puted to be approximately 20 pounds, a few families were found who (even after adjust¬ 
ment for differences in family size) purchased over 200 pounds of cold cereal in one 
year I Though these families constituted only about 2 per cent of the sample, they 

served to raise the sample average by about 7 per cent. 



THE THEORY OF SAMPLING TECHNIQUES 99 

The Standard Errors of the Standard Deviation and of the Coefficient of 
Variation 

At first thought, it might seem a bit odd to consider the standard 
error, or probable dispersion, of the standard deviation or coefficient of 
variation, which are themselves measures of dispersion. However, on 
further consideration, it will be realized that in many examples the amount 
of variation, or dispersion, that eaii be expected in a population is just as 
important as, and perhaps more important, thjn the central value itself. 
In order to gauge the validity of these estimates of dispersion, it is just 
as important for one to know the gtuiidard error of these values as it is 
to know the standard error of the mean in evaluating the reliability of a 
mean estimate. 

The standard-error formulas for the standard deviation and co¬ 
efficient of variation of an unrestricted sample are, respectively,^ 

_ _ V 

V2N^ " V2N 

where N = the size of the sample 
o-p = the standard deviation of the population 
V = the coefficient of variation 

The standard deviation of the population, crp, is unknown, of course, 
and has to be estimated from the sample. However, contrary to what is 

true for the statistics considered previously—the mean, median, and 
sample proportion—the best estimate of the population standard de¬ 
viation is not always the standard deviation of the sample, a. The 

^ For those who are int(‘n\stefl, the standard error of the variance is 

where is the variance of the population (as estimated from the sample). The exact 
formula for the standard error of the standard deviation is 

_ <rp 

Vw 
fe - 3 

2 

The purpose of the second term under the radical is to correct the estimate for abnormal 
kurtosis. In general, however, if fio is between 2.8 and 3.2 ('normal is 3.0, it will be re¬ 

membered), the abbreviated form cited in the text above can be used with but slight 
error (about 5 per cent). 

The exact formula for the standard error of the coefficient of variation is 

cry 
V 

y/2N 
yji 

but for all practical purposes the abbreviated form can be used. The error in the for¬ 
mula will not exceed 1 per cent as long as V is less than 10 and will not exceed 2 per 

cent as long as V is less than 14; in actual practice V is almost never larger than 3. 
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reason is, as was pointed out earlier in this chapter (see page 83), the 
tendency for the standard deviation of a sample to underestimate the 
true standard deviation because of the narrower cluster of the sample 
values about the true mean than in the population itself. The correct 

estimate of the population standard deviation is then 

Estimate of <rp = o- 

If the sample is large, however, i.e., more than 30, the correction 
term may be neglected, as the resultant error in the standard-error 

estimate will be less than 2 per cent. 
Suppose, for instance, that a rnanufacd-urei wishes t(' assure himself 

that his product contains a uniform quality con ton i by specifying that 
the standard deviation of the quality content of the pro<luct must neither 
exceed 3 units nor be less than 1 unit. If a sample of 50 items of the 
product is found to have a standard deviation of 2 units, can the manu¬ 
facturer conclude that he is maintaining the specified uniforuiity? Since 

the standard error of the standard deviation is 0.2 unit,^ there is less than 
1 chance in 100 that the true standard deviation exceeds 2.0 or is less 
than 1.4, leaving little doubt that uniformity is being maintained. 

Perhaps a more realistic manner for the manufacturer to guarantee 
uniform quality would be to specify that the standard deviation shall 
neither exceed nor be less than the moan by selected percentages, say 
30 and 10 per cent, respectively. If, then, the mean of the sample of 50 
items referred to above is 10, with a standard deviation of 2, the co¬ 
efficient of variation is 20 per cent. Applying the formula for the standard 

error of the coefficient of variation, one arrives at substantially the same 
result as above; namely, that there is less than 1 chance in 100 that the 
true coefficient of variation exceeds 26 per cent or is less than 14 per 
cent. The advantage of this approach, it will be noted, is that it takes 
into consideration the possibility of fluctuating mean values and assures 
relative uniformity of quality. If, on the other hand, the mean is of no 
consequence, then the standard deviation approach is preferable. 

The Standard Error of the Standard Deviation of a Small Sample. 
When the sample is small the distributions of the standard deviation 
and coefficient of variation of small-size samples do not conform to either 
the normal or the t distributions. In such a case, the distribution of the 
sample standard deviation may be expressed in terms of (chi-square) ; 

2 
* 0.2 
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and Appendix Table 11 is used to select that value of corresponding 
to the desired probability levels. 

The method of determining the confidence interval differs from that 
employed in the preceding formulas because the interval is computed 
directly by means of the above formula and without determining the 
standard error of the standard deviation. Knowing the value of yc 

from the sample, the investigator then selects the confidence coefficnemt 

he desires. From Appendix Table 11 he reads off the two values of 
corresponding to this confidence coefficient, substitutes each of these 

values in turn in the above eq^ ation. ar 1 solves for <t% 

, N<r^ 
<rp = —^ 

X' 

The resultant vahies will be the desired limits within which it is con¬ 
sidered most probable that the true standard deviation of the popula¬ 
tion will be. 

For instance, suppose that the sample taken by our manufacturer 

of the previous example consists of only 10 units, but with the same 
standard deviation of 2 units, and he desires to know whether the true 
standard deviation of his product might be as high as 3 units or as low 
as 1 unit. We shall assume that he wants to have a 0.98 probability 
of being correct. 

From Appendix Table 11 with = A — 1 = 9, it is found that the 
values of x^ corresponding to probabilities of 0.99 and 0.01 are 2.088 and 
21.666, respectively,* Substituting each of these values in turn in the 
formula and solving for (r% we have 

2 10 X 4 _ ^ 2 _ 10 X 4 
2.088 21.666 

<Tp — 4.38 (7 p = 1.36 

Our results indicate that the true standard deviation of this product 
might very well be as high as 3 units though not as low as 1 unit when 

this 98 per cent confidence interval is employed. These results might 
alternatively be interpreted by the statement that there are 98 chances 
in 100 that the confidence interval between a = 4.38 and a = 1.36 con- 

^ The reason for taking values of x* corresponding to 0.99 and 0.01 prol)al)iliti(;s is 
that the area between these limits (0.99 — 0.01) comprises the central 98 per cent of 
the distribution, and it is the 98 per cent confidence interval that we are seeking. 

Although it is the most usual case, there is, theonjtically, no reason why we should 

use the central 98 per cent of the distribution. For instance, we might just as well 
use the area between the probabilities 0.985 and 0.005, assuming that the necessary 
values of x* were obtainable. For further elaboration on this point, see Chap. V, 

pp. 123//. 
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tains the true population standard deviation when the standard deviation 

of a sample of 10 is found to be 2 units 

SUMMARY 

The ability of a small, carefully selected cross section of a population 
to yield accurate estimates of population characteristics is attributable 
to two factors. First, there is the great similarity among large numbers 
of the population that permits one member to represent the group. And 

second, there is the tendency for the individual inaccuracies of sample 
members as representative of a group to cancel out, thereby tending to 
bring the over-all sample average into close proximity with the relevant 

population parameter. The primary determinants of sample accuracy 
are sample size and sample design, the Litter referring to the manner in 
which the sample is constructed from the parent population. 

The degree of representativeness attained by a sample is judged by 
the validity of its estimates. The two components of v^iilidity are ac¬ 
curacy and precision; the former reflecting the unavoulablo (and often, 

unmeasurable) bias present in the sample estimate, the latter revealing 
the (determinate) expected margin of error due to random sampling 
fluctuations. The standard error of an estimate is the numerical measure 

of the precision attained by a particular sample, its value (i.e., formula) 
being dependent on the type of sample design employed. In other words, 
sample precision, which is indicative of representativeness, is inversely 

proportional to the magnitude of the standard error of the estimate. The 
search for greater sample representativeness is essentially the search for 
that type of sample design which will yield optimum precision, the smallest 
possible standard error taking cost elements into consideration. 

The formulas and logic of sampling analysis and of different sample 
designs are based upon the principle of random selection; i.e,, where every 
member of the population or area being sampled has an equal chance of 

being included in the sample. When a sample is not drawn in this man¬ 
ner—arbitrary selection—the sampling error formulas cannot be validly 
applied, and there is then no way of estimating the sampling error in esti¬ 

mates based on such arbitrarily selected samples. Only when random 
selection is employed are the sampling-error formulas valid, and therein 
lies the fundamental importance of true random selection. To avoid the 

hitherto existing confusion between random selection and so-called 
^‘random sampling,’^ the procedure of sampling from the population at 
large is designated as ‘‘unrestricted sampling.^' All other sampling tech¬ 

niques—stratified sampling, purposive sampling, double sampling, etc.— 
are then categorized under “restricted sampling.'^ The use of this termi¬ 
nology permits random selection to be viewed in its true perspective, as 
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the equally basic requirement of all sampling techniques with the exception 
of purposive sampling. 

In actual practice, unrestricted sampling yields satisfactory results only 
when the population is fairly homogeneous throughout. The possibility 

of attaining greater accuracy with smaller size samples and at less cost 
has led to the development of stratified campling, where the population 
is divided into relatively homoge)ieous segments, or strata, and a separate 

unrestricted sample is selected from each stratum. In stratified quota 

sampling, sample members are selected from the entire population; in area 
sampling, selection takes plac*. v/itbiP. ertain designated areas, each of 
which is considered representative of the surrounding region. Where the 

entire populations of subareas or .substrata are interviewed, this is known 
as “cluster sampling.” Quota sampling is most extensively employed in 
•market and business analysis, though area sampling has been widely used 

by the Bun^au of the Census in its population surveys and by some market 
researcih firms. 

The type of stratified sample most frequently employed in actual prac¬ 

tice has been a proportional sample, one in which the number of sample 
members selected from each stratum is proportional to the relative size of 
each stratum in the population. Although the most efficient type of 

quota sample is a disproportionate sample, where the number of sample 
members selected from each stratum is dependent on the degree of hetero¬ 
geneity within the stratum as well as on its size, it has not been used fre¬ 

quently because of the (largely imagined) difficulty of its operation and 
be(^ause of the assumption that the greater efficiency of the disproportionate 
method is negligible. However, indications arc that the superior relative 

efficiency of this method is very much greater than has hitherto been 
supposed. 

The standard-error formula for a sample estimate depends on the type 
of sample employed (the sample design) and on the size of the sample. 
Because of the greater likelihood of sampling errors when small-size sam¬ 
ples are employed {N less than 30), the standard error of a particular esti¬ 
mate must be adjusted for its tendency to underestimate the true error 

range in such cases. In determining the reliability of estimates based on 
small-size samples, the t distribution (Appendix Table 6) is used instead 
of the normal distribution. 

The manner in which-the sample design determines the standard error 
is described with reference to the standard error of the mean and percent¬ 
age of an unrestricted sample and of stratified, disproportionate, propor¬ 

tional, area, and cluster samples. The standard-error formulas for the 
median, standard deviation, and the coefficient of variation are also pre¬ 
sented. 



CHAPTER V 

THE TESTING OF HYPOTHESES 

Having reviewed the logical foundations underlying the first of the 
two main objectives of sampling analysis, the estimation of unknown popu¬ 
lation parameters, we now turn to the second main division of the subject, 

the testing of hypotheses. As in the preceding chapter on statistical 
estimation, this chapter will present the basic theory and logic behind the 
various procedures and tests used in the testing of hypothc'sos, with exam¬ 
ples at various points to supplement and clarify the theoretical exposition. 

Illustrations of the practical application to marketing and business prob¬ 
lems of the various thcori(is and formulas developed in this (;hapter are to 
be found in Chap. VI. 

1. THE GENERAL PROBLEM 

As was noted in Chap. Ill, a sampling survey may be designed to 

estimate a population characteristic or to test the validity of some supposi¬ 
tion or hypothesis about the population, or to perform both functions. 
Even where the original purpose of a sample may have been solely to esti¬ 

mate the value of a population characteristic, a problem may subsequently 
arise that involves the use of the sample results to test some hypothesis.^ 
It is difficult to say which is the more important problem of sampling analy¬ 

sis, for without the ability to verify the significance of sampling surveys 
the resultant estimates are useless for all practical purposes. Market and 
business analysts are only now beginning to grasp the fact that figures 

drawn from samples, no matter how “scientifically^' designed, are of little 
worth unless their reliability is properly evaluated. 

Testing a statistical hypothesis is essentially the evaluation of the 
significance of one or more sample values with respect to related values 

prescribed by some theory or hypothesis. The problem in its original 
form is nonstatistical in character; its solution, however, depends on statis¬ 
tical analysis. Thus, the question whether a 10 per cent difference in 

average consumer purchases of product X between two cities, as revealed 
by sample surveys, indicates a real difference between the average pur- 

1 Public-opinion polls are a case in point. The revival of a certain public issue 

frequently enables public-opinion polls to secure back data on the very subject from 

their files, and by collecting current data they can easily determine whether the public 

has changed its attitude toward that subject. 
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chases of product X in these two cities, arises essentially out of marketing 
considerations. But in order to solve it, statistical analysis must be 
employed, and the problem must be reformulated in statistical terms, with 
the hypothesis reading as follows: The 10 per cent difference in consumer 
purchases as revealed by the two samples referred to above is due only to 
the chance element in the samples selected.^ The statistical problem is 
then to determine whether the i(^ per cent increase in consumer purchases 
is indicative of a real difference in consumer purchases in the population 
or is merely the result of sampling variations. With the aid of appropriate 
tests and formulas, one attempts to arswer this problem either in the 
negative or in the affirmative. If the answer i negative, meaning that 

the difference is not significant, the statistical hypothesis is accepted, and 
it is inferred that insufficient evidence exists to warrant the assertion that 
the purchase habits in these two cities differ with respect to product X. 

If the answer is positive, the hypothesis is rejected, and a real difference in 
purchase habits is presumed to exist. 

From this example it might be noted that there are three basic steps in 

testing statistical hypotheses. Fii*st is the task of transforming the ques¬ 
tion to be answered into a workable statistical hypothesis to facilitate its 
verification or rejection through the application of the theory and formulas 
of significance tests. The hypothesis generally employed today is the 
so-called null hypothesis, as illustrated in the above example, and as 
explained in some detail in the following section. 

Second is the problem of constructing a general theory for evaluating 
the significance of sample results. In other words, what are the basic 
principles one must follow in test ing for sample significance, and how docs 
one go about determining whether or not sample values are significant? 
In this section the underlying logic of all statistical significance tests is 
developed. A sound mastery of this underlying reasoning, as presented in 
Sec. 3 of this chaptc^r, is of inestimable value in the application and inter¬ 

pretation of tests of significance. 
The third basic problem involved in testing statistical hypotheses is 

the derivation and specification of the special formulas and techniques to 
be employed in the application of the general theoretical principles to actual 
problems. Even after the general principles of testing for significance are 
determined, there still remain the specific questions of how to put these 
principles into practice—the selection of the appropriate standard-erroi* 
formulas, the specification of confidence regions and confidence coeffi¬ 
cients, the use of probability distribution tables, the possible distorting 
effect of small-size samples, and other related subjects. These questions 
are discussed in Sec. 4 of this chapter. 

It should be noted that the main concern of this chapter is to lay down 

^ This is the mdl hypothesis, which is explained on pp. 10(V-107. 
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a set of principles and formulas for the evaluation of the significance of one 

representative sample value as compared with some other (population or 
sample) value. The problem of measuring the significance of a number of 
sample values, such as testing the significance of an entire sample distribu¬ 
tion in relation to another distribution (c.gf., determining whether or not a 
purchase-income distribution of one sample is significantly different from 
that of another), or testing the significance of a number of different sample 
values simultaneously {e.g,, measuring the significance of differences in 

market habits between the various strata of a stratified sample), is deferred 
to Chap. X, where such subjects as chi-square and variance analysis are 
considered. 

2. THE NULL HYPOTHESIS 

The purpose of a statistical hypothesis is reform 4 late the problem 
into a form that is readily amenable to statistical treatment. In other 

words, its purpose is simply to present a more rigorous statement of the 
original problem. However, in some problems, it is frequently impossible 
even to test for sample significance without explicitly stating the hypoth¬ 

esis to be questioned; an example of this type of problem is given below. 
The usual type of hypothesis employed in statistical significance tests 

is termed the null, or negativCy hypothesis. According to this approach, 

the original problem is restated in the form of a hypothesis alleging that 
any observed or apparent differences are not significant and are due solely 
to random sampling fluctuations. The appropriate test of significance is 
then designed to yield results that will either support or contradict this 
hypothesis, and it is on the basis of these results that the hypothesis is 
either accepted or rejected. 

The null hypothesis is not only the simplest one under most circum¬ 
stances but also provides a criterion for testing significance. Thus, the 
assumption that the difference between two statistics is null, or zero, imme¬ 
diately removes the perplexing question that invariably arises in connection 
with a positive hypothesis, namely, positive by how much? 

The criterion provided by a null hypothesis for testing significance may 
be illustrated by the case where it is desired to determine whether the pref¬ 

erence of 55 per cent of a consumer testing panel for a particular chocolate 
syrup represents a significant percentage in favor of that syrup. Stated 
in this manner, the problem presents no bench mark for ascertaining signifi¬ 
cance; it does not indicate any other value against which the significance 
of the 55 per cent figure could be measured. But by forming the null 
hypothesis—that the sample percentage of 55 per cent does not represent 
a significant preference for this syrup—one is at the same time supplied 
with a measure of nonsignificance; namely, the only case in which no signifi¬ 
cant preference in the population would exist for this syrup would be when 
the proportion in favor of the syrup is equal to the proportion against it. 
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ix., 50-50. The test of significance then proceeds to ascertain the signifi¬ 

cance of the sample figure of 55 per cent as against the hypothetical popu¬ 
lation percentage of 50 per cent; or to put it differently, the likelihood that 
a sample of the given size will deviate percentagewise from the assumed 

population percentage by as much as 5 per cent.^ 
In other cases the conditions of the par< iculaf problem may be utilized 

to set up the criterion for significance. Thus, if the significance of two 

sample percentages, 60 and 53 per cent, say, is at question, it is obvious 
that the figure to be tested is the difference between the two percentages. 
The null hypothesis, in this in; ionce wiM be that the observed 7 per cent 
difference is not significant and is attributable io sampling fluctuations. 
The example at the beginning of this chapter is an illustration of this type 
of problem. Numerous illustrative instances of the statement of the null 
hypothesis will be found throughout this and the following chapters. 

It should be noted that Lhe results of a statistical significance test do 
not definitely prove or disprove a hypothesis; they merely lend support to 
it or cast doubt upon it. For since the entire theory of significance tests, 

as explained in Secs. 3 and 4 of this chapter, is based upon probabilities, 
no absolutely definite conclusion can ever be drawn from such tests, but 
only one that can be stated in terms of probabilities. Hence, although 
the chances are very high that the validity of a hypothesis (assuming that 
it is true) has been accurately gauged, sometimes as high as 997 out of 1,000, 
and even higher, there still remains the probability that the test will yield 

misleading results, that this particnilar instance may be one of the 3 wrong 
chances out of the 1,000, 

3. THE GENERAL THEORY OF SIGNIFICANCE TESTS 

The problem of testing the significance of a sample value may arise in 
three different ways. The significance of a sample value may be evaluated 
with respect to itself, with respect to an actual or hypothetical population 
value, or with respect to a value drawn from another sample. The signifi¬ 
cance of the sample value itself is sought when it is desired to ascertain 
whether the sample value has any real meaning, ^.e., significance,^ usually 
using zero as the standard of nonsignificance. Thus, if only 2 per cent of a 
product testing panel express their preference for a proposed new product, 
the manufacturer might well question the real significance of such a small 
percentage and the desirability of proceeding with the production of the 
new product. 

' Other examples where the criterion for significance is based on the type of hy¬ 
pothesis scle(;tcd will be found in Chap. X under chi-square analysis. 

* The most typical example of this case is the correlation coefficient, but since 
correlation is not taken up till later in this book (Chaps. XI-XIII), the discussion of 
the estimates and significance of correlation statistics has been postponed to Chap. XIII. 
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Frequently, it is desired to know whether the results of a sample survey 

do or do not contradict the theory that the true value is some specified 
value other than the sample value, or it might be desired to know whether 
a sample could conceivably have been drawn from a certain population^—as 
indicated by the significance of the difference between certain represen¬ 
tative sample and population values. The example cited in Chap. Ill 
where the consistency of a 10 per cent sample listenership ratio with a possi¬ 

ble true population value of 14 per cent is investigated illustrates this type 
of problem. Another example under this heading would be to test whether 
the average annual income of a sample of United States families in 1942 is 

significantly greater than the average annual intjorne of United States 
families as taken from the 1940 Census, as an indication, perhaps, of 
whether 1940 Census data might also be applicable to 1941C co’*ditions. We 
shall see later that this type of problem is essentially an alternate formu¬ 

lation of the problem of statistical estimation as discussed in Chap. IV. 
The significance of the difference between two sample surveys, tfiken 

either at the same or at different moments of time, is one of the most 

recurrent problems in market analysis, and is becomirig increasingly 
important as sample data is accumulated. Probably the most frequent 
problem of this type is to ascertain whether a significant change in a firm^s 

market position has occurred, on the basis of samples taken at different 
points (or periods) of time. A very similar problem is to test the signifi¬ 
cance of regional or other relevant geographic or nongeographic differences 

as indicated by the same over-all sample. For instance, a sales manager 
might want to determine whether a stratified sample survey, which finds 
that 12 per cent of Northeast families buy the firm^s product as against 
10 per cent of Southwest families, actually reveals a significant preference 
for the product in the Northeastern states or whether the difference might 
really be nonexistent and simply due to random sampling variations. 

Now, the general approach to all three of these significance-test prob¬ 
lems is essentially the same, and their solution is accomplished by what we 
may call the general theory of significance tests, as follows: In order to 
determine the significance of any difference,^ one must know what part 

of that difference is attributable to random sampling fluctuations. But, 
as explained in the preceding chapters, the universal measure of sampling 
fluctuations in any statistic is the estimated standard error of that statistic 
in the population. Thus, given the mean value of a normally distributed 
population, one knows that the mean value of random samples selected 
from this population will differ from the true value as a result of random 

sampling variations by more than 1 standard error of the mean approxi- 
^ This is merely a restatement of the first phrase. 

* A difference may be between a sample value and zero as well as between any two 

other values. 
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mately 32 times out of 100,^ by more than 2 standard errors of the mean 

approximately 45 times out of 1,000, by more than 3 standard errors of 

the mean only 3 times out of 1,000, etc.; and the same thing is true if we 

substitute the standard deviation, the median, the percentage, or any other 

statistic, for the mean. 

A sample statistic deviating from the population value by 1 standard 

error or less would occasion no surprise because of the high expected fre¬ 

quency of such an occurrence (in 68 samples out of every 100), and the 
difference would immediately be charged to sampling variation. If, 

however, a sample statistic wore found to leviate from its (supposed) popu¬ 

lation value by, say, 3.5 st andard errors, its membership in this population 

would be seriously question^tl, for the extreme rarity of such an occurrence 

(1 time out of 2,000) renders it very unlikely that the sample could have 

been drawn from this population.^ Of course, there is always the possi¬ 

bility that this might be oiui of the single instances out of 1,000 in which a 

randomly drawn sample from this population could have such an atypical 

statistic, but the probability of such an event is so small (0.0005) that the 

other alternatives must be selected as by far the most likely. It is because 

of this slim probability, incidentally, that a statistical hypothesis cannot 

he defivitely confirmed or denied. 

Since the standard error of any statistic measures the allowable sam¬ 

pling fluctuations in that statistic, the significance of a sample difference 

can readily be evaluated by first calculating the distance between the 

sample value and the other (population or sample) value in terms of stand¬ 

ard errors. This is done by dividing the difference between the two 

values by the standard error of the difference between the two statistics, as 

estimated from the sample. The probability of such a difference is then 

determined from an appropriate distribution table. If this probability is 

high, which indicates that there is very little relative difference between 

the two values and that the difference might easily be due to random sam¬ 

pling, the difference would be taken to be nonsignificant. If the proba¬ 

bility is low, the difference would be taken to be significant, since the large 

relative difference between the two values indicates that the probability 

of their belonging to the same population is questionable. The lower the 

probability, the more likely it is that the difference is significant. 

The exact point at which a probability becomes significant, the signifi¬ 

cance (or probability) level, is not capable of a unique answer, but must 

' Since, from Appendix Tal)le 5, roughly C8 pc^r cent of the area of the normal curve 
lies within the mean plus and minus 1 standard deviation of the mean, it follows that 

32 per cent of the area will be outside this range. The other statements are derived in 

similar fashion. 
* Such a difference might arise either because the sample is not a nuunber of this 

population or because it is a member of this population but biiised nu^thods of sample 

stdcction were emi)loyed in its construction. 
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be left to the researcher’s judgment. A probability level of 0.05, i.e., a 
confidence coefficient of 0.95, is used by some as the dividing line. In 
other words, if the difference as great as the one in question could have 
occurred as a result of random sampling fluctuations less than 1 time out 
of 20, it is concluded that the difference is too large to be attributable to 
chance variation and is therefore significant. If the difference could have 
occurred more frequently than once out of every 20 times, say, 5 times out 

of 20, or 10 times out of 20, it is very likely that the difference was due to 
chance fluctuations and hence is not significant. Others utilize a proba¬ 
bility level of 0.01 (confidence coefficient of 0.99), claiming that only if the 
difference could have occurred less than 1 time out of 100 can it be con¬ 
cluded that factors other than chance may have caused this difference. 

Once a confidence coefficient is selected in a pai*ticular problem, the 
probability of rejecting the hypothesis whim it is true is fixed. This fol¬ 
lows from the definition of the confidence coefficient. Thus, a 0.95 confi¬ 
dence coefficient means that in 95 cases out of 100 the mean of a large 
sample will fall within 1.96 standard errors of the true mean when the 

sample is taken from this population^ i.e., when the null hypothesis is true. 
Hence, it follows that, with a 0.95 confidence coefficient, there is a 0.05 
probability that the sample mean will fall outside the confidence region 

(the region of acceptance) even when the sample is a member of this popu¬ 
lation. Technically, the probability of rejecting the hypothesis when it is 
true is known as a type I error. 

There is, however, a second danger in testing a hypothesis, and this is 
that we may accept the hypothesis when it is actually false—this is known 
as a type II error. To put it differently, our sample may not be a member 
of the particular population but, because the computed value of T happens 
to fall in the confidence region, we erroneously conclude that the sample 
was drawn from this population. 

The probability of making a type II error varies directly with the 
size of the selected confidence coefficient, for the greater is the size of our 
confidence region, the more likely is it to include samples from other popu¬ 
lations. For example, suppose that a sample mean is 20, with a standard 
error of 3. A 0.68 confidence coefficient might cover the interval from 
17 to 23, which means that this sample might have been drawn from a popu¬ 
lation whose mean is as low as 17 or as high as 23. But, if a 0.95 confidence 
coefficient were employed, the sample could have been drawn from a popu¬ 
lation whose mean is anywhere between 14 and 26 (20 — 1.96 X 3). 
Since the latter range is greater, it clearly admits many other populations. 

Obviously, some sort of compromise is necessary. The main criterion 
for such a compromise is the relative importance of the two types of errors. 
If it is most important to avoid rejecting a true hypothesis, a relatively 
high confidence coefficient will be used. If it is most important to avoid 
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accepting a false hypothesis, a low confidence coefficient may be used. 
This distinction may be illustrated by a legal analogy.^ Take the case 
of a jury trying to arrive at a verdict in a murder trial. Under our system 
of law, a man is presumed innocent until proved otherwise. Now, if the 
jury convicts the man when he is, in fact, innocent, a type I error will have 
been made—the jury has rejected the hypothesis that the man is innocent 
although it is actually true. If the jury absolves the man when he is, in 

fact, the real murderer, a type JI error will have been made—the jury has 
accepted the hypothesis of innocence when the man is really guilty. In 
such a case, most people will agree th \t i. type I error, convicting an inno¬ 
cent man, is the more senous of the two. 

This evaluation of the rel.ative importance of the two types of errors is 
the guiding principle in testing hypotheses. The actual procedure in most 
practical problems is first to select the confidence coefficient, i.e., to fix the 
desired probability of rejecting the hypothesis when it is true, and then to 
attempt to minimize the probability of accepting a false hypothesis within 
these limits. The manner in which the latter may be accomplished is 

discussed in Sec. 5 of this chapter. 
In general, the confidence coefficient will vary with the particular prob¬ 

lem and with the degree of conservativeness desired by the investigator 

with respect to rejecting a true hypothesis. The more conservative and 
careful the investigator is, the higher will be the confidence coefficient he 
will select. In testing the strength of parachute cord or the poison content 

of drugs, a very high confidence coefficient would obviously be called for, 
very likely even higher than 0.99, for an error in such a case might cost 
human lives. In market and business analysis, however, one can afford 
to be more liberal and employ a lower confidence coefficient. The 0.05 
value is a very safe and widely employed probability level for marketing 
problems, and it is this figure that is used thro'ughout most of this book. 

The general principle on which significance tests are based may be 
represented as a ratio of the difference to be tested to a measure of the 
random sampling influence that might be present in this difference, this 
measure being the standard error of the difference between the statistics. 

Sample statistic — other (sample or population) statistic 
h^stirnated standard error of the difference 

This ratio is called T, If the resultant probability of the value yielded by 
this formula, as interpolated from the appropriate distribution table,^ 
exceeds the probability level selected, the difference is assumed to be not 

^ Jastram, Elements of Statistical Inference^ (reference 74) p. 44. This booklet 
contains a very clear and simple discussion of the whole problem. 

* Usually, Apptmdix Table 5 of the normal distribution for large-size samples. Sec 

Chap. VI for examples illustrating the use of these tables. 
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significant and the null hypothesis is accepted; if the computed probability 
is less than the probability level, the difference is assumed to be significant 
and the null hypothesis is rejected. 

The example of the two consumer purchase samples at the beginning 
of this chapter may be used to illustrate this principle. Suppose the true 
standard error of the average is estimated to be 4.3 per cent, and the prob¬ 
ability level is chosen as 0.05. The ratio of the difference to be tested, 10 
per cent, to the standard error of this difference, is computed to be 2.34, 

which in Appendix Table 5 corresponds to a probability value of approxi¬ 
mately 0.02, indicating that in only 2 cases out of 100 would such a differ¬ 
ence occur as a result of mere chance fluctuations. Since this value is less 
than the confidence coefficient, it is concluded that the probability of such 
a difference occurring as a result of chance is so small that it <"*ould only 
indicate a real difference between the two sample values. Note, however, 

that if a probability level of 0.01 had been selected, the difference would not 
be adjudged significant. 

Although this principle is equally applicable to all three of the signifi¬ 

cance-test problems mentioned above, the actual procedure varies slightly 
with each type of problem. If the significance of the difference between 
the sample value and some hypothetical or actual population value is being 
tested, the standard error of the population statistic, when it is not known, 
is estimated from the sample data. Where the significance of the sample 
value itself is being tested, the other statistic in the sample becomes zero, 
and the standard error of the population statistic is likewise estimated from 
the sample data. If the significance of the difference between values based 
on two samples is being tested, a weighted average of the computed stand¬ 

ard errors of each of the two separate samples is estimated to be the true 
population standard error of the difference. Of course, if the necessary 
population data are known, the problem is considerably simplified (and 
the accuracy of the test is similarly greatly increased). 

The estimation of the true standard error of the statistic in the popula¬ 
tion is one of the central problems of testing hypotheses, and the accuracy 
of the estimation formulas will determine the reliability of the significance 
test. Overestimation of the true standard error may result in a verdict of 
nonsignificance when the difference is actually significant; for instance, a 
difference of 3 units between two samples would be adjudged not significant 
if the standard error of the difference were erroneously estimated to be 2 
units when it actually was 1 unit. Conversely, underestimation would tend 
to exaggerate the purported significance of the difference being tested. 

4. SPECIFIC TESTS OF SIGNIFICANCE 

We have now seen that the basic formula employed in testing the sig¬ 
nificance of sample differences, whether between two samples or between 
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a sample and a population is, 

y __sample statistic — other statistic_ 
estimated standard error of the difference between the two statistics 

The value yielded by this formula is then interpolated into an appropriate 
probability distribution table in order to determine the exact probability 
of the occurrence of the observed difference as a result of chance, its signifi¬ 
cance or nonsignificance being determined by comparison of the inter¬ 

polated probability of the event with a preselected probability level, or 
confidence coefficient. 

As remarked previously, since the values of the sample and other 
statistics are given, the accuracy of the value of T, as well as of the resulting 
verdict of significance or nonsignilicance, hinges to a very great extent on 
the accuracy with which the true standard error of the particular statistic 

in the population is estimated. Of course, if the value of the standard 
error is known on the basis of a priori information, there is no problem. 
But in the great majority of sampling operations, this value must be esti¬ 
mated from the sample data, in the same fashion as other population 
parameters are estimated from sample studies. 

This section presents the main statistical formulas that are used to esti¬ 
mate the true standard errors of various statistics under different condi¬ 
tions. For the purpose of standard-error estimation, the three different 
kinds of significance-test problems, as indicated on page 107, can be com¬ 
bined into two; namely, the significance of the difference between a sample 
statistic and a population parameter, and the significance of the difference 
between two sample values. The former type now includes the problem 
of testing the significance of a sample statistic alone. This test is, logically, 
nothing more than assuming that the true value in the population is zero 
(or some other value, depending on the statistic being tested) and testing 
the significance of the sample statistic with respect to zero. 

In testing the significance of a sample statistic as against some popula¬ 
tion value, the true standard error of the statistic in the population can be 
estimated only on the basis of this single set of sample data. The formulas 

to be used in the estimation of the true standard error of various sta¬ 
tistics under such conditions will be discussed briefly immediately below. 
The second half of Sec. 4 will present the formulas and methods for 

standard-^rror estimation when the significance of the difference between 
two samples is the problem at hand. 

Significance of the Difference between a Sample and a Population Value 

There are hardly any new formulas or techniques to be digested in 
this section, for the process of estimating the true standard errors of var¬ 
ious statistics from samples has been fully discussed in Sec. 3 of the 
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preceding chapter. A different procedure is necessary only when the 
significance of the difference between two standard deviations or between 
two coefficients of variation is being tested, and the sample is small. 
These two cases will be discussed later. 

Except for the standard deviation and coefficient of variation of a small 
sample, all that is necessary in a significance-test problem involving a 
sample statistic and a population parameter is to select the appropriate 
standard-error formula from Chap. IV, apply it to compute T, and then 

go through the procedure described on the preceding pages. 
With respect to the selection of the appropriate formula, the formulas 

in Chap. IV are applicable to significance-test problems under exactly 

the same conditions as they are when employed for purposes of statistical 
estimation. Thus, if the statistic under consideration were the mean of 
a large disproportionate sample drawn from a very large population, the 
appropriate standard-error formula would be 

If the significance of a percentage based on a large random sample that 
constitutes, say, 6 per cent of the total population were being tested, the 
appropriate standard-error formula would be 

The standard-error formula to be used in testing the significance of a sample 
median would still be 1.25 times the standard error of the mean of the 
particular sample. The appropriate standard-c^rror formula for testing the 
significance of the coefficient of variation of a large random sample from a 
very large universe would still be F/v'W, etc. 

The selection of the appropriate probability distribution table in which 
to enter the computed value of T is determined in the same manner as in 
the case of statistical estimation; namely, if the sample is large (over 30), 

enter the value of T in the normal distribution table on page 486; if the 
sample contains 30 members or less, enter the value of T in the t distribution 
table on page 487. In addition, when the sample is small, N — 1 must be 

substituted for N in computing the estimated standard deviation of the 
population, as is illustrated in Chap. VI. The procedure of evaluating 
the significance of the difference between a sample statistic and a popula¬ 
tion value may be illustrated by the following example. 

A consumer panel report on the economic and geographic distribution 
of the purchases of a particular product reveals, among other things, that 
the nation^s families bought, on the average, 17.5 pounds of that product 
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in the given year. This estimate is based on returns from a static unre¬ 
stricted sample of 1,225 families, the standard deviation of the purchase 
distribution from which this estimate was derived being, say, 7.5 pounds. 
From sales and inventory records, it is determined that the average pur¬ 
chase of that product per family in the preceding year must have been at 
least 18.5 pounds, 1 pound greater than the panel estimate. Now, could 
a difference of 1 pound be due to random sampling variation, or does it 
indicate that the average consumption of the product by families has 
really decreased from the preceding year? 

By substitution in the appropri» tandard-error formula, that of the 
mean of a large unrestricted sample, one obtains the following: 

try =■ 
7 5 

= —= 0.214 
\/N Vi ,225 

The statistic, T, is computed to be 

T = 
17.5 -18.5 

0.214 
= 4.07 

From the normal curve distribution table on page 486, it is determined 
that a difference as large as 4.67 standard errors between two statistics 
could have occurred less than 1 time out of 100 as a result of chance varia¬ 
tion. This difference is obviously significant (irrespective of whether a 
0.05 or a 0.01 significance level is employed) since it could very improbably 

have occurred as a result of chance.^ Assuming the validity of the com- 
pany\s purchase estimate, there is a strong indication that average family 
consumption of the product has decreased in the past year. 

The Significance of the Difference between a Sample and a Population 
Standard Deviation When the Sample Is Small. As noted previously (see 
page 87), the standard deviations of small-size samples are not normally 

distributed, and it is therefore inadequate to employ normal or t distribu¬ 
tion tables to evaluate their reliability. In testing the significance of the 
difference between two standard deviations, it has been found possible to 

take the ratio of one to the other and test the significance of this ratio. 
This is the so-called F distribution, the relevant formula of which is 

where <ri and <t2 represent the two standard deviations the significance of 

whose difference is being tested. <ti should be taken as the larger standard 
deviation. 

^ The difference is also significant if the problem considers only the significance of 
a 1-pound difference above the true population value (see Sec. 5 of this chapter). 
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The initial step in testing the significance between two standard devia¬ 

tions is to compute their value of F by means of the foregoing formula. Then, 
from Appendix Table 12, with ni = JVi — 1 and = N% — 1,^ is read off 
that value of F corresponding to the predetermined confidence coefficient.^ 
If the computed value of F exceeds the value given in the table, the dif¬ 

ference is adjudged significant. Otherwise, it is concluded that no evidence 
exists of a significant difference between the two standard deviations. 

The logic behind this procedure is that for each particular probability 

and for each particular set of sample sizes, the corresponding value of F 
represents the highest allowable relative difference that could occur between 
the two standard deviations and still be attributable to random sampling 

fluctuations. A computed F less than this tabular value indicates, there¬ 
fore, that the difference is very likely due to chance fluctuations. If the 
computed value of F exceeds the tabular value, it is outside the range 

of chance fluctuations and the difference is then taken to be significant. 
To illustrate this technique, let us suppose that a random sample of 20 

families in a certain small city is found to report their average weekly soap 

purchases with a variation, i.e., standard deviation, of 12 ounces, and it is 
desired to know whether the standard deviation of the soap purchases of 
all families in that city might be as high as 20 ounces. We shall assume 

that a confidence coefficient of 0.95 is desired. With o-i = 20 and 
0-2 = 12, we have 

^ = tS = 2.778 144 

Entering the table of the F distribution. Appendix Table 12, with 
ni = 00 and n2 = 20 — 1 = 19, the value of F at the 0.05 level of signifi¬ 
cance is found to be 1.878. Since the computed F exceeds this value, it is 
concluded that it is very improbable that the true standard deviation of 
these soap purchases would be as high as 20 ounces. 

The Significance of the Difference between a Sample and a Population 
Coefficient of Variation When the Sample Is Small. Like the standard 
deviation, the coefficient of variation is not distributed according to either 
the normal distribution or the t distribution when the sample is small. 
The reason for this fact is not difficult to see, as both the numerator (the 
standard deviation) and the denominator (the mean) of the coefficient of 
variation are subject to sampling fluctuations, and it is already known that 

' Where a population standard deviation is being considered, one of these n’s would 

be infinity. 
* In this instance, our choice is restricted to only two confidence coefficients, 0.99 

and 0.96, which correspond to the 0.01 (roman) figures and the 0.05 (boldface) figures, 

respectively, as the table does not contain any other values. 
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the standard deviation of a small-size sample is not normally distributed. 
The actual method of evaluating the significance of a difference between 
two coefficients of variation is rather complicated and involves the use of a 
new distribution, the so-called noncentral t distribution, together with a 
good deal of interpolation. Since the researcher is not likely to encounter 

in actual practice the problem of evaluating the significance of coefficients 
of variation based on small sampleiJ?, the exact method of approach to this 
problem is not considered in this book. Those who are interested, how¬ 

ever, will find a detailed description of this method, with illustrative 
applications, in reference 100 lU the Bi’Jiography. 

The Significance of the Difference between Two Sample Statistics. 

When we turn to the second type oi significance test problem, that of the 
same statistic based on separate samples, two distinct sets of data are now 

available for the estimation of the true standard error of the statistic in the 
population. One might apply the standard-error formulas of the preceding 
section, using that set of sample data which is considered to be most reli¬ 

able. However, this method would not be correct because, since both 
statistics are sample statistics estimating some population parameter, 
there is roughly twice as much leeway for error now as in the case of a single 
sample statistic. For instance, one sample statistic might overestimate 
the true population parameter by 1 standard error and another sample 
statistic may underestimate the population parameter by the same margin. 

In terms of the standard error of the population mean, the difference 
between the two sample statistics is 2 standard errors, although both 
samples were drawn from the same population and the difference between 
any one sample statistic and the population parameter is only 1 standard 

error. 
It follows from the above that in order to permit this additional margin 

of sampling error, which is due to normal random sampling variations in 

both samples, the variance of the difference between two sample statistics 
must be approximately twice as large as the variance of any one of these 
statistics as based on a single sample. In practice, the variance of the 
difference between two statistics, each based on a large sample, can be 
shown to be equal to the sum of the variances of each individual statistic. 
The same thing is true for the standard error of the difference of averages 

based on small-size samples^ except that the variance in the population is 
estimated as an average of the two sample variances. 

It will be seen in the succeeding sections that these two simple rules 

determine almost all standard-error-difference formulas. The only excep¬ 
tions occur when the sampling variations of the statistic are not distributed 

^ But not the standard deviation or coefRcieiit of variation (see p. 123). 
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in any sort of normal symmetrical form, as in the case of the standard 
deviation of a small-size sample.' 

It should be remembered that this entire technique of combining the 
data from two different samples is permissible only because of the null 
hypothesis, under which it is assumed that the two samples originate from 
the same population, ?.c., that the difference between the two sample 
statistics is nonsignificant. If it were assumed that these two samples 

were not from the same population, then combination of the two sets of 

sample data would not be permissible. 
The actual procedure for testing the significance of the sample difference 

is exactly the same as before, except that the numerator of T now repre¬ 

sents the difference between estimates of the same statistic based on two 
different samples. The denominator is the standard error of this differ¬ 
ence,* as estimated from the two sets of sample data. A number of special 

formulas for this purpose are presented below. 
The Standard Error of the Difference between Two Means. Unre¬ 

stricted Sampling, When both samples are large (over 30 items in each 

sample), the variance of the difference between the means of the tw^o sam¬ 
ples will be equal to the sum of the individually computed variances of the 
means, the standard error of the difference being the square root of the 
latter expression. Thus, if we denote statistics computed from one set of 
sample data by subscript 1, and statistics computed from the other set of 
sample data by subscript 2, we have** 

2 2 2 
5l , (72 

Nx ^ N2 
or 

If the samples are of equal size, Ni == = A, say, then the above 
formulas reduce to . 

<7T.-T2 = ^ (<^1 + ^2) 

or 

<7Xi -X, = ^ 

^ 4- <7l -r <72 

N 

1 The coefficient of correlation is another such statistic. If two samples arc cor¬ 

related, a correction factor for this correlation ent(*rs into the pitrture. Th(;se matters 

are discussed in Chap. XIII. 

* The standard error of the difference between two sample statistics is so called 

in order to distinguish it from the standard error of a statistic based on a single sample. 
* It is important to keep in mind that all of the standard-error formulas presented 

on this and on the following pages of this chapter are only estimates of the corresponding 

parameters in the population, inasmuch as they are based on sample data. 
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When one or both of the samples are small, the standard error of the 
difference of their means is computed as 

where (t% can be shown to be 

JVi Nt 

■i _j:i__ _ 3^_ 
A'.-F-A'2-2 

which is the variance in population as estimated from the data of both 
samples. This is simply a weighted sum of the two individual sample 
variances. The — 2 occurs in the denominator to adjust for the fact that 
the population variance is being estimated from two small-size samples, in¬ 
asmuch as it is known that the variance of a population as estimated from 
one small-size sample is (y'^/{N — 1). 

Suppose, for example, that it is desired to know whether urban families 
buy significantly greater amounts of coffee than rural families. The 
average coffee purchase per family as computed from a sample of 200 urban 
families is found to be, say, 3.2 pounds per year with a variance of 0.4, 
whereas a sample of 150 rural families reveals their average annual coffee 
purchase to be 3.0 pounds with a variance of 0.5. The question is: Could 
this difference ol 0.2 pound in the averages of the two samples be attributed 
to chance variations, or does it indicate a real significant difference between 
the two samples? 

By the null hypothesis we assume that the difference is not significant; 
namely, that the two samples belong to the same population. Applying 
the appropriate standard-error-difference formula, we have 

X, = 3.2, X, = 3.0 
a'l = 0.4, a'i = 0.5 

A, = 200, iV2 = 150 

ja'i <r'i foT 
\200 

0 5 

+ 130 = 

X, - Xa ^ 0.2 
0.073 

2.74 

Interpolating this value into the table of areas under the normal curve, 
it is found that one could expect a difference as large as this to occur less 
than 1 time out of every 100 tests. Therefore, with a confidence coefficient 
of 0.95 we would reject the hypothesis and conclude that there does appear 
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to be a significant difference in the coffee purchase habits of rural and urban 
families.^ 

Stratified Sampling. The standard-error formulas of the difference of 
the means of two stratified samples correspond exactly to the unrestricted 
sampling formulas elucidated on preceding page, except that the sample 
variances now estimate the variance of the stratified population and are com¬ 
puted according to the usual stratified sample formulas. This is true for 
area and cluster samples as well as for proportional and disproportionate 
samples. As examples, the standard error of the difference for the latter 
two samples is given below. If we denote the various strata of one sample 
by the subscript 1, and the various strata of the other sample by the 
subscript 2, the standard-error-difference formulas are as follows: 

For a proportional sample 

<rxi-y* 

N 2/(721 

Ai 

where Ni = total size of first sample = ^ 
1 

N2 = total size of second sample == ^ N^i 
i = 1 

For a disproportionate sample 

N2i 

where Wn and IF21 = true relative proportions of the population(s) in 
each of the various strata 

(Th and <72/ = variances of each of the various strata 
The reader will recognize the expression within the square-root sign 

to be the sum of the two different sample variances, corresponding to the 
unrestricted sample formula on page 118. For instance, if, in the pro¬ 
portional sample formula above, the sample had not been stratified, we 
would be left with the unrestricted sample difference formula 

* This is a h3rpothetical example, of course, and is not necessarily indicative of the 

true situation. 
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The Stanclard Error of the Difference between Two Sample Percent¬ 
ages. Unrestricted Sampling, The standard-error-difference formulas for 
sample percentages are constructed like those of the arithmetic mean. 
The only real difference between these two sets Of formulas is the use of 
pq/N for the variance of the sample percentage instead of 2(X — "Xy/N 
for the variance of an individual item. For laige-size unrestricted sam¬ 
ples we have as the standard error of the dilference of two proportions 

ffpi-pi 
_ Imi 

where jh and qi = the respe^*tive proportions of the first sample having and 
not having the desired characteristic 

P2 and 72 = the respective proportions of the second sample having 
and not having the desired characteristic 

When the samples are of the same size, the formula is reduced to 

<Tpi-p, + P272) 

If either or both of the unrestricted samples are small, the standard 
error of the difference of the two percentages is as follows: 

<rpi -V, - ^j■|>o(|<, 

where 

po = = a weighted average of the two sample percentages 
Ni + N2 

_ Niqi + iV2g2 ^ 1 _ ^ 
Ni + N2 ^ 

As before, the t distribution is used to test the significance of this difference 

when the samples are small. 
As an example, suppose a public-opinion poll of 200 people in a certain 

city reveals that 120 of them, or 60 per cent, favor a proposed health meas¬ 
ure. Six months later, a poll of 200 people in that city finds 140 of them, 
or 70 per cent, in favor of the bill. Does this increase represent a significant 
shift in the people's sentiment toward the proposed measure or could it be 
attributed to sampling variation? 

Our hypothesis is that the difference between the two proportions is not 
significant, that the two samples have actually been drawn from a common 
population. Computing the standard error of the difference, we have 

Ni = 200, A^2 = 100 
Pi = 0.60, p2 = 0.70 
qi = 0.40, 72 = 0.30 
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_ Imi 
- V iVi 

/(0.6)(0.4) 
\ 200 

(0.7) (0.3) 
100 

= 0.057 

0.70 - 0.60 
0.057 

From Appendix Table 5 listing areas under the normal curve, it is found 
that a difference as large as this could have occurred as a result of chance 
fluctuations as often as 8 times out of every 100 such tests. Consequently, 
with a significance level of 0.05, the hypothesis is confirmed, and it is con¬ 
cluded that there is no evidence of any significant shift in public opinion. 

Stratified Sampling. The standard error of the difference of sample 
proportions based on two different stratified samples again corresponds to 
the standard error of the unrestricted sample, the only difference being 
that the sample variances are now those of the particular stratified sample 
instead of those of the unrestricted sample. As an example, the standard- 
error-difference formula for a disproportionate sample is given below. The 
formula is 

where Nu == size of each stratum in the first sample 
N2i = size of each stratum in the second sample 

Pu and qn = the respective proportions of each of the strata in the first 
sample that do and do not possess the desired attribute 

P2i and q2i = the respective proportions of each of the strata in the second 
sample that do and do not possess the desired attribute 

The Standard Error of the Difference between Two Medians. Since 
the standard error of a sample median is known to be approximately 1.25 
times the standard error of the sample mean, the unrestricted formulas 
given on page 118 are equally applicable to testing the significance of the 
difference between two sample means. The only qualification necessary 
is to multiply these formulas by (1.25)^, or 1.5625. 

The Significance of the Difference between Two Sample Standard 
Deviations. Unrestricted Sampling, When both samples are large, it is 
possible to express the standard error of this diff erence as the square root 
of the sum of the two separate sample variances 

— 0-S “ 

where tri and (T2 = standard deviations of the two samples 
N\ and N2 — number of members in each sample, respectively 

If one or both of the samples are small, however, this formula is no 
longer valid, and recourse must be had to the method involving the com- 
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putation of F, as elaborated on page 115 of the previous section. The only 
difference in testing the significance of two sample standard deviations as 
compared to the case when one of the standard deviations is a popu¬ 
lation value is that both of the n’s are now finite, with ni = ATi — 1, and 
Th = N2 — 1. For instance, to test the significance of a difference between 
a sample standard deviation of 12 ounces brsed on 20 families and a sample 
standard deviation of 20 ounces based on 5 families, we would enter the F 
table with = 19 and rii = 4. In this instance, the previously computed 
value F = 2.778 is less than .the tabular value 2.895, thereby indicating 
that the difference is not signifi»'.aiit a *.icl ^night have been caused by chance 
fluctuations. 

The Significance of the Difference between Two Sample Coefficients 
of Variation. Unredrictf d Sampling. For large samples, the standard 
error of the difference between two sample coefficients of variation is deter¬ 

minable, as for the previous statistics, as the square root of the sum of the 
two separate sample variances 

/Tf ,n 

where Vi and V2 = coefficients of variation of the two samples, respec¬ 

tively 
N\ and N2 = number of members in each of the samples 

If one or both of the samples are small, the significance of the difference 

between the two sample coefficients of variation can be determined only 
by recourse to the aforementioned nonccntral t distribution. Since the 
method is rather complicated, and since such a problem is not likely to 

occur very frequently in actual practice, an explanation of the procedure 
is not given in this book. Those who are interested will find such an 
explanation in reference 100 in the Bibliography. 

5. ASYMMETRICAL CONFIDENCE REGIONS 

Throughout all the preceding discussion on methods of testing sample 
significance, and on methods of statistical estimation, symmetrical confi¬ 
dence regions have been employed. That is, the region of acceptance 
above the mean value—the interval within which one would expect random 
sampling fluctuations to cause the mean values of other samples from the 
same population to fall—has been made equal to the region of acceptance 
below the mean value. Thus, the 0.05 probability level has been taken to 

include the extreme 23^ per cent of the area of the normal curve above 
the mean value and the extreme 23-^ per cent of the area of the normal curve 
below the mean value; or, to put it differently, the region of acceptance 
(of the null hypothesis) for large samples has been taken to constitute the 
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range of the given statistic plus and minus 1.96 times its standard error. 
In other words, where the significance of large-size samples is being tested 
and the normal distribution is relevant, a value of T exceeding 1.96 auto¬ 
matically denotes a significant difference and a value of T less than 1.96 
is an indication of a nonsignificant difference. 

For instance, in the example on the significance of the increase in the 
consumer panel estimate on page 115, it was not necessary to look up the 

value of T in the normal distribution table in order to test the significance 
of this difference. Since the computed value of T, 4.67, exceeded 1.96, it 
was immediately apparent that the chances of such a difference occurring 
as a result of random sampling variations were less than 5 out of 100, and 

therefore, according to the present criterion, the difference would be 
adjudged significant. 

However, a given probability level, or confidence coefficient, need not 

necessarily be symmetrical. A 0.05 probability level may be achieved just 
as easily by taking the extreme 1 per cent of the normal curve area above 
the mean value and the extreme 4 per cent of the area below the mean 

value—the mean plus 2.33 standard errors and minus 1.75 standard errors— 
or even by taking the entire region of rejection on one side of the mean 
value, such as the mean plus 1.645 standard errors or minus 1.645 standard 

errors. Acceptance and rejection intervals set up in this manner, /.e., not 
distributed symmetrically about the central value, are known as asym¬ 
metrical confidence regions. 

The preferability of one type of confidence region to the other depends 
on the particular problem at hand and on the type of error one is willing to 
accept. To understand the two types of confidence regions more clearly, 

let us consider how each of them may logically be defined, primarily from 
the point of view of avoiding faulty decisions. A symmetrical confidence 
region about a population value yields the same interval for acceptance or 
rejection of an hypothesis irrespective of whether the sample value is above 
or below the population value. For the 0.05 probability level, this means 
that the hypothesis will be rejected only if the mean of a large sample 
deviates either above or below the population mean by more than 1.96 
times the standard error of the mean. In other words, it is immaterial 
whether the sample value is above or below the population mean; the 
determining element is the absolute size of the deviation. 

When an asymmetrical confidence region is employed the significance 
or nonsignificance of a difference depends on the direction of the difference 

^ The multiple of the standard error will vary according to the particular distribu¬ 

tion and the size of the sample. Thus, for small-size samples where the t distribution 

is applicable, the multiple will be 2.20 for samples of 12, 2.06 for samples of 25, etc. 

(Appendix Table 6). 
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as well as on its magnitude. Thus, if a 1 per cent above - 4 per cent below^ 
normal curve probability level is employed, a sample statistic would have 
to exceed the population value by more than 2.33 standard errors before the. 
difference would be taken to be significant, but it heed only be 1.75 stand¬ 
ard errors less than the population value for the same decision to be 
reached. If the 0.05 probability level is set up as the population value 
plus 1.645 standard errors, the corresponding statistic of a large sample 
can differ significantly from this value only if it is more than 1.645 standard 

errors above the given population value. 
The following example is designed to illustrate the difference between 

the two types of confidence regions. Suppose that it is known from past 

records and other data that approximately 20 per cent of farm families 
in a certain state read a particular national farm journal. After a vigorous 
promotional campaign conducted in this state alone, it is found that of an 

unrestricted sample of 225 farm families in the state, 56, or approximately 
25 per cent, are now reading this journal. To enable them to decide 
whether or not to appropriate additional funds and conduct the same cam¬ 

paign on a nation-wide scale, the publishers of this journal are anxious to 
evaluate the effectiveness of this test promotion scheme and discover 
whether it has led to a significant increase in readership in this state. 

Specifically, does the sample readership value of 25 per cent represent a 
real significant increase in readership over the previously known 20 per cent 
value, or is it attributable to random sampling variations? 

The standard error of the percentage is computed to be 2.67 per cent.^ 
Employing a symmetrical confidence region with the 0.05 probability 
level, the region of acceptance is computed to be 20% ± 1.96 X 2.67%, 

or the interval between 14.8 and 25.2 per cent. Since the sample value of 
25 per cent is within this region of acceptance, the observed difference is 
apparently attributable to sampling fluctuations and is not significant, 
thereby leading one to infer that the promotional campaign was not 

successful.® 
^ The extreme 1 per cent of the area of the given distrii^ution above the central value 

and the extreme 4 per cent of the area below the central value. 

0.0^7 

* This procedure is merely an alternate formulation of the more orthodox method 

of solving for the statistic T, and substituting it in the appropriate probability dis¬ 
tribution table. Thus by that method 

0^5 - 0 .20 ^ 0.05 ^ 

0.0267 0.0267 

which could have occurred 6 times out of 100 as a result of chance. Since this proba¬ 
bility exceeds our preselected probability level of 0.05, we would conclude, as above, 
that the difference is not significant. 
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, Now, however, let us ask ourselves why we selected a symmetrical 
confidence region. Such a region serves to determine the significance of 
-observed differences on both sides of the population value without regard 
to the direction of the difference. But in this problem we are primarily 
(in fact, exclusively) interested in the significance of sample values above 
that of the population. In other words, we do not care whether the sample 
percentage is less than 20 per cent because we would then immediately 
know that the promotional campaign had failed to increase readership 
above the previous level. Our sole concern is to avoid a faulty decision 
on the significance or nonsignificance of the excess of the observed sample 
percentage over the population value. 

In this case, our use of a symmetrical 0.05 probability level has in 
reality resulted in a 0.025 region of rejection^ since th(' 2} 2 pcr cent region 
at the lower extremity of the curve (see Fig. 13) possesses no relevance 

whatsoever. Obviously, the most desirable confidence region in this prob¬ 
lem would be the population percentage plus 1.645 standard errors. By 
using this, the entire region of rejection is placed at the (relevant) upper 

segment of the distribution, and therefore we minimize the probability of a 
type II error—accepting the given hypothesis when it is false. 

The asymmetrical confidence coefficient results in a region of acceptance 
of 20% + 1.645 X 2.67%, or the interval between 0 and 24.4 per cent. 
The observed percentage is now outside this range, i.e,, in the region of 
rejection, thereby leading us to reject the null hypothesis that the dif¬ 

ference was due to sampling variations. The publisher would then be 
advised to extend the promotional campaign on a nation-wide basis. 

This problem is shown graphically in Fig. 13, in which the normal 
distribution is centered around the population value of 20 per cent. Given 
the value of the standard error, 2.67 per cent, the symmetrical 0.05 prob¬ 
ability limits are computed to be 25.2 and 14.8 per cent, which are equiva¬ 
lent to a deviation of 1.96<r above and below the population mean, respec¬ 
tively. The regions of rejection based on these symmetrical limits are 
crosshatched in the diagram, whereas the region of rejection based on the 
asymmetrical 0.05 probability limits is the dotted area plus the right-hand 
crosshatched area. 

It wall be noted that the observed sample value of 25 per cent, equiv¬ 
alent to a deviation of 1.87 standard errors from the population value, lies 
between the asymmetrical confidence limit and the upper symmetrical con¬ 
fidence limit. Obviously, the lower half of the symmetrical region of 
rejection has no relevance to this problem, and by employing symmetrical 
confidence regions we would have inadvertently been using a 0.025 prob¬ 
ability level—the portion of the area of the curve above -|-1.96<r—insofar 
as rejecting the hypothesis when the true percentage is above 20 per cent. By 
taking 1.645<r as our probability limit, we are now employing a true 0.05 
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probability level, as 23^ per cent of the area of the normal curve is between 
+ 1.645(7 and +1.96(7. 

The type of confidence region to employ in a particular problem depends 
on the problem itself. If the magnitude of the deviation is of primary 
importance and it does not matter whether the sample statistic is above 
or below the population value, a symmetrical confidence region is most 
desirable. Such is the case in testing the significance between sample 

0(T 

Fig. 13. Symmetrical and asymmetrical confidence regions. 

values, since the true population value is not known. If one is primarily 
concerned with the significance of a difference in one particular direction, 
an asymmetrical confidence region should be employed. The general rule 

is to concentrate the greatest part of the region of rejection in the upper, 
or lower, end of the relevant distribution depending on whether primary 
concern is with the significance of a sample deviation above or below the 

population value. In this way, the probability of accepting a false 
hypothesis, the type II error, is minimized. 

In the example cited above we were exchisively concerned with the signif¬ 

icance of a sample deviation above the population value; hence, the entire 
region of rejection was concentrated at the upper extremity of the normal 
distribution. Had we been primarily, but not exclusively, concerned with 
this upper half of the distribution, a 1 per cent below-4 per cent above 
probability level might have been used, or even a 2 per cent below - 3 p>er 
cent above probability level. 

Asymmetrical confidence regions may also be employed in estimating 
population parameters through the specification of regions of estimation. 
The use of a symmetrical region of estimation in estimating the true popula¬ 
tion mean from the sample cited in the above example would yield a confi¬ 
dence interval between 19.3 and 30.7 per cent.' If, however, the investi¬ 
gator desired to make a conservative upper estimate of the true population 

' 25% ± 1.96 X \/(;25)(.75)/225 
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value, he might use the asymmetrical probability limit, and use the 
(95 per cent) confidence interval between 0 and 29.7 per cent.^ Here 
again, the selection of the appropriate region of estimation must depend 
upon the particular problem. Examples of the further application of 
asymmetrical confidence regions with respect to both significance tests 
and estimation will be found in Chaps. VI and VII. 

SUMMARY 

The testing of a statistical hypothesis involves the evaluation of the 
significance of the difference between a sample and a population, or between 

two or more samples, as reflected by the difference between the correspond¬ 
ing representative statistics of each sample, or of the population. In the 
final analysis, its purpose is to determine whether the observed difference 
is a real difference that actually exists in the parent population, or whether 
it is a spurious, nonexistent difference caused by random campling varia¬ 
tions. 

In practice, three basic steps are involved in evaluating the significance 
of an observed difference. They are 

1. The conversion of the original problem into a workable statistical 
hypothesis to which statistical methods can be applied. 

2. The formulation of a general theory and basic principles to be fol¬ 
lowed in testing the significance of a given difference. 

3. The derivation and specification of the formulas and techniques 
necessary to apply this general theory to practical problems. 

Conversion of the original problem into statistical form is accomplished 
by means of the null hypothesis. According to this hypothesis, the 

given difference is assumed to be nonsignificant. In other words, the 
difference between the corresponding statistics of the sample and the popu¬ 
lation (or of the two samples) is assumed to be spurious and attributable 

to random sampling variations. Significance tests are then designed either 
to affirm or reject this hypothesis. Rejection of the null hypothesis 
implies that a real and significant difference exists between the sample and 
the population (or between the two samples) and that they are not likely 
to belong to the same population. 

The general approach of testing for significance is to determine the 
maximum probable difference (or ratio, in some cases) between two statis¬ 
tics that could result from random sampling fluctuations. If the observed 
difference exceeds this maximum figure, the null hypothesis is rejected and 
the difference is taken to be significant; if it is less than this maximum 
figure, the null hypothesis is accepted and the difference is assumed to be 
nonsignificant, i.e,, spurious. The measure of this maximum is taken as a 

^25% 4- 1.645 X V‘(.25)(.75)/225 
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preselected multiple of the standard error of the particular statistic. The 
multiple is selected according to the degree of accuracy of the test desired 
by the researcher, and its choice depends on the particular problem. 

This general approach may be expressed (in the case of sample dif¬ 
ferences) in the following form 

y __sample statistic — ether (sample or population) statistic_ 
estimated standard error cf the difference between the two statistics 

If the probability of a deviation larger than the computed value of T, 
as determined from an appropriate piob'^bility distribution table, does not 
exceed the preselected probability level, the difference is adjudged to be 

not significant. It is because of this ever-present element of probability 
that statistical hypotheses can never be definitely confirmed or rejected on 
the basis of a significance test. The latter can only indicate the most 

likely answer, the degree of this likelihood being the confidence coefficient, 
the complement of the particular probability level employed. 

Two sets of formulas exist for estimating the standard error of the 

difference between two statistic^, according to whether it is desired to test 
for the significance of the difference between a sample and a population 
statistic or for the significance of the difference between statistics based on 
two different samples. The former are identical to the standard-error 
formulas discussed in Chap. IV. The formulas for the standard error of the 
difference of two sample statistics are presented in Sec. 4 of this chapter. 
All the standard-error formulas discussed in these two chapters are listed 
in Appendix D. 

The foregoing significance tests have been based upon the concept of 
symmetrical confidence regions. That is, the region of acceptance (of the 
null hypothesis) above the central value is equal to the acceptance region 
below the central value. Thus, the region of acceptance in our basic 
significance-test formula above is the population statistic plus and minus 
a preselected multiple of the true standard error of that statistic. How¬ 
ever, when in testing the significance of a difference between a sample and 
a population statistic, an error in evaluating significance is likely to be 
more serious when the sample statistic is on one side of the population 
statistic than when it is on the other side, asymmetrical confidence regions 
should be employed. These confidence regions yield the same over-all 
probability levels as symmetrical confidence regions, but maximize the 

' For some statistics the nature of the sampling distribution is such that it is more 

feasible to test the significance of the ratio of two statistics than it is to test the sig¬ 

nificance of their difference. The logic behind this approach is the same as that behind 

the difference approach except that it is the maximum possible ratio for which such a 
disparity could have occurred as a result of chance that is computed for various 
probability levels {e.g.^ see Appendix Table 12). In such cases it is not necessary to 

calculate the standard error of the differenc(». 
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probability of rejecting a false hypothesis when the sample statistic is 

on one particular side of the population value, by concentrating the 

major portion of the region of rejection on that side. 
When the absolute size of a difference is the main criterion of signifi¬ 

cance, symmetrical confidence regions should be employed. If the direc¬ 
tion of the difference is of primary significance, as3unmetrical confidence 
regions should be used. 

We have now concluded the technical discussion of sampling theory 

and sampling techniques. The succeeding four chapters will illustrate 
their application to practical marketing problems and situations. 



PART THREE 

SAMPLING THEORY IN APPLICATION 

The following four chapter’s are designed to illustrate the practical 
application to actual conimercial prohlems of the sampling principles and 

techniques presented in the preceding three chapters. The problems dis¬ 
cussed in these chapters cover nearly all the common sampling problems 
encountered in commercial research.^ 

Chapter VI is concerned with the direct application of the sampling 
formulas of Chap. IV and V in estimating unknown population character¬ 
istics and in testing for significance. In other words, this chapter deals 
with the practical use of the sampling formulas after sampling has been 

completed. The following three chapters deal with the major statistical 
problems involved in planning and directing a sample survey; namely, the 
selection of the proper sampling technique, determination of the size of the 
sample, alternative methods of collecting sample data, and the avoidance 
of sample bias. Chapter VII discusses a new sampling technique, sequen¬ 
tial analysis, from the viewpoint of practical application. Chapter VIII 

analyzes methods of determining sample size and the relative preferability 
of the different sampling techniques, and indicates under what conditions 
each type of sample is likely to be preferable. The use of mathematical 

methods in estimating the size of the sample necessary to obtain a specified 
precision and in determining the most economically efficient sample design 
in particular problems is illustrated in some detail. Chapter IX discusses 

the problem of sample bias, the potential sources of bias and ways and 
means of avoiding it. A large part of this chapter is devoted to methods 
of collecting sample data, and contains a rather detailed analysis of the 
relative preferability of mail questionnaires and personal interviews. 
Throughout these four chapters the so-called “case method^^ is employed 
extensively; where possible, actual data are employed. 

The reader may wonder why such a reverse order of presentation is 
employed, the discussion opening with the analysis of the final sample data 
and only later going on to methods of planning the sample and collecting 

the data. This procedure has been employed to facilitate the understand- 

1 With the exception of problems dealing with correlation techniques, involving the 
comparison of frequency distributions, or dealing with more than two samples (see 

Chaps. X-XII). 
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ing of the difficult problems involved in making a sample survey. The 

use of sample data for estimation or for testing significance is largely stand¬ 

ardized, as the reader will see in Chap. VI. But the selection of the 
proper sample design, the method of collecting the data, and the avoidance 

of bias involve a great deal more of subjective judgment based in part on a 

thorough understanding of the various sampling error formulas—an under¬ 
standing that is aided by the prior application of these formulas in practical 

estimation and significance-test problems. In this way it is believed that 

the reader will gain a more thorough comprehension of the use of the more 

precise methods of analysis in planning sample surveys. 



CHAPTER VI 

ESTIMATING POPULATION CHARACTERISTICS AND 
TESTING FOR SIGNIFICANCE 

This chapter illustrates the use of the standard-error formulas of the 
preceding two chapters in estimating unknown population characteristics 

from sample data and in testing a sample hypothesis. The concluding part 
of this chapter discusses the dilemma frequently confronting researchers 
of having to decide between two alternative courses of action on the basis 
of sample statistics not differing significantly from each other—the 
so-called problem of simultaneous decision. 

In all the examples presented in this chapter, it is implicitly assumed 
that the sample data satisfy the validity requirements for the use of the 
standard-error formulas, specifically, random selection, normality, and 
independence. This is done in order to illustrate the use of the various 
formulas. Of course, in an actual problem, it is the duty of the researcher 
to assure himself that these basic conditions are fulfilled before computing 
standard errors. 

1. ESTIMATING AN UNKNOWN POPULATION VALUE 
FROM A SAMPLE 

It has been pointed out in Chap. IV that to estimate an unknown value 
of some population characteristic as the value of that characteristic in the 
sample is nearly valueless unless the random sampling variation to which 
that sample value is subject, its standard error, is also determined. This 
is true whether the desired value is the mean, the median, the standard 
deviation, or any other statistical parameter. The danger of disregarding 
the standard error of a parameter is illustrated by the following example. 

A survey made by McCalVs Magazine in the spring of 1946 of its 
teen-age readers in the United States and Canada revealed the relative 
distribution of ages at which teen-agers begin to use make-up, as given in 
Col. (2) of Table 5.^ Assuming this to be a representative unrestricted 
sample of all teen-age girls, a cosmetics manufacturer desires to know 
whether there is any particular average age at which most girls begin to 

use make-up. 

1 McCalVn Peeks at a Private Worlds 1946. Data presented through the courtesy 
of Donald E. West, Director of Marketing Research. 
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Table 5. Age at Which Teen-age Girls Begin to Use Make-up 

By the methods discussed in Chap. II, the mean and standard deviations 
of this distribution are computed to be 13.6 years and 0.93 year, respec¬ 
tively. Since this sample is based on approximately 16,000 returns, the 
standard error of the mean is computed from the formula a/y/N to be 
0.93/\/16,000, or 0.007 year. In other words, there are 68 chances out of 
100 that the average age at which girls begin to use make-up is 13.6 ± 0.007 
years, or at an age between 13.59 and 13.61 years. And since 95 per cent 
of the normal curve lies between the mean plus and minus 1.96 times the 
standard error, the 0.95 confidence interval for this estimate is 13.6 ± 
1.96 X 0.007, or between 13.586 and 13.614 years. The extremely small 
confidence intervals of these estimates render the mean value of this dis¬ 
tribution a very meaningful concept and lend a very high credibility to the 

fact that the average girl begins to use makeup when she is about 13.6 
years old. 

Suppose, now, that the 50 responses from city Z are tabulated sepa¬ 
rately, and the age distribution at which they begin to use make-up is 
found to be as shown in Col. (2) of Table 6. 

The mean value of this subsample comes out to be exactly the same as 
the mean value of the entire sample, 13.6 years, but the standard deviation 
is now 2.121 years. This larger standard deviation and the smaller size 
of the sample increases the standard error of the mean to 2.12/\/^, or 
0.3 year. The 0.68 confidence interval is now 13.6 ± 0.3 years, or betwee 
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13.3 and 13.9 years. There are 95 chances out of 100 that the average age 

at which city Z girls begin to use make-up is 13.6 ± 1.96 X 0.3, or between 
13.0 and 14.2 years of age. Whereas it appeared very safe to conclude 
that the average age at which all United States and Canadian girls begin 
to use make-up is 13.6 years, it would not be nearly so safe to say that the 
average age at which girls in city Z begin to use make-up is 13.6 years. In 
the former case, the sampling error is so small, 0.014 year, that there is 
little danger of this estimate differing appreciably from the true figure 
(assuming the absence of sample bias). But for city Z, the true figure 
might be 13 years or it might be 14 years, using the 0.95 confidence coeffi¬ 
cient. Therefore a precise statement of the true mean for city Z to the 
nearest tenth of a year, or even to the nearest year, is not possible. 

Hence, to estimate an unknown population parameter two quantities 
must be specified—the sample estimate of the unknown parameter and 
the standard error of the parameter in the population, estimated on the 
basis of the sample data. The determination of both of these quantities 
involves the straightforward application of the formulas presented in 
Chap. IV. A number of further illustrations are provided on the following 
pages. 

1. Suppose that the McCalVs teen-age sample does not truly represent 

all Canadian and United States teen-age girls but does represent accurately 
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all teen-age readers of McCaWa Magazine. What is the average age at 
which all teen-age readers of McCall’s begin to use make-up? 

The total number of teen-age readers of McCall’s is, let us say, about 
150,000. Since the 16,000 girls in the sample constitute a significant part 
of this population, the standard error of the mean is now given by the 
formula 

<7X = 
<r /, _ W _ 0,934 /7 

Vn V P Vie,000 V 

16,000 

150,000 
0.007 

Substituting in this formula, the standard error of the sample mean is 
computed to be 0.007 year. Consequently, there are 95 chances out of 
100 that the average age at which all teen-age readers of McCalVs begin 
to use make-up is between 13.59 and 13.61 years, .is before. Tn this ease, 
the standard error of the estimate is so small that the fact that the sample 
formed a fair share of the population reduced the standara error by a neg¬ 
ligible amount. 

Suppose that it is desired to know, with a 0.95 confidence coefficient, 
what is the lowest possible average age at which the teen-age readers begin 
to use make-up. In other words, we do not care how high the average age 
may be, but we want to know, perhaps for promotional purposes, how low 
the average age is likely to be. 

This is a problem in asymmetrical confidence intervals (see pages 
123//). From the table of areas under the normal curve. Appendix Table 5, 
it is noted that 5 per cent of the area of the normal curve is contained 
between either extremity and 1.645<r. Hence, the lower limit of an asym¬ 
metrical 0.95 confiderce interval, disregarding the upper limit of the esti¬ 
mate, would be 13.6 — 1.645 X 0.007, or 13.59 years as before. 

2. A survey taken among 971 English school children revealed that 
24 per cent expected to take up teaching as a career.^ Assuming it to be an 
unrestricted representative segment of all English school children, what is 
the true percentage of all English school children expecting to take up 
teaching if a 0.98 confidence coefficient is desired? _ 

The standard error of this percentage is \/pq/Nj or •\/(0.24) (0.76)/971, 
which is 1.37 per cent. From the table of areas under the normal curve we 
find that 1 per cent of the area lies on either side of the mean plus and minus 
2.33(r. Hence, the 0.98 confidence interval would be 24% ± 2.33 X 1.37%, 
or between 20.8 and 27.2 per cent. 

Suppose that it had been previously estimated that between 23.5 and 
25 per cent of English school children were planning to take up teaching, 
and it is desired to know how likely is this interval to contain the true per¬ 
centage on the basis of the present sample. In other words, with what 
confidence could one assert that the true percentage is between 23.5 and 
25 per cent? 

1 The Economisty Jan. 25, 1947, p. 139. 



ESTIMATING POPULATION CHARACTERISTICS 137 

The standard error of the sample percentage has been computed to be 
1.37 per cent. The interval between the sample percentage, f.c., 24 per 
cent and 25 per cent contains 1/1.37, or 0.73 standard error. Similarly, 
the interval between the sample percentage and 23.6 per cent contains 
0.5/1.37, or 0.36 standard error. Now, from the table of areas under the 
normal curve it is seen that 26.7 per cent of the area is contained between 
the mean value and plus 0.73 standard error and that 14.1 per cent of the 
area is contained between the mean value and plus 0.36 standard error. 

Hence, the desired probability must be the sum of the two areas, or 40.8 
per cent. Since the true mean is likclv to lie between 23.5 and 25 per cent 
only about 41 times out of 100, there would be a strong presumption for 
revising the previous estimate. 

One may also be interested in knowing how variable is the standard 
ileviation of this sample percentage. For instance, how much larger or 

smaller are the estimated confidence limits, 20.8 and 27.2 per cent, likely 
to be because of possible variability in the standard deviation of the sample 
percentage? 

The standard error of the standard deviation is (r/\/2iV, or 

1.37%/\/i^ = 0.03%. 
Using the same confidence coefficient as before, 0.98, we would have as 
the confidence interval for the true standard deviation 

1.37% ± 2.33 X 0.03%, 

or between 1.30 and 1.44 per cent. Since this range is so small relative to 
the sample percentage and its standard deviation, we see that for all prac¬ 
tical purposes, cr — 1.37% is subject to negligible variation as a result of 
sampling influences. 

3. Throughout the year November, 1942, to October, 1943, 1,172 
families reported their cold-cereal purchases to Industrial Surveys Com¬ 
pany.^ On the basis of these returns, stratified by city size within region, 
the following data on annual cold-cereal purchases was obtained, as shown 
in Cols. (2), (3), and (4) of Table 7. 

For sample control purposes, estimates had been made by Industrial 
Surveys Company of the relative distribution of United States families 
by region by city size as of November, 1943, and are presented in Col. (5) 
of this table. The standard error of these estimates with reference to the 
given year is believed not to exceed 6 per cent; this error estimate takes 
into account variation in the relative family distribution during the year 
as well as possible errors in estimating the true distribution as of Novem¬ 
ber, 1943. 

1 Data presented through the courtesy of Stanley Womer, Vice-President. Actually 
the National Consumer Panel of Industrial Surveys Company is stratified much more 

finely than by farm and nonfarm areas within regions. Breakdowns are available by 

education and age in each of several city sizes within the four regions, as well as by 
other classifications. 
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Table 7. Cold-cereal Purchase data obtained from 1,172 Families 

(November, 1942-October, 1943) 

(1) 

Stratum 

(2) 

Number of 

families 
reporting 

Ni* 

(3) 
Average 

purchase 
per family 
in ounces 

(4) 

a of family 

purchases 
in ounces 

(5) 

Relative 

distribution of 
U.S. families, 

Nov., 1943, per cent 

1. East—farm. 14 403 490 1.93 
2. East—nonfarm. 331 295 260 26.86 

3. South—farm. 97 324 269 7.16 

4. South—nonfarm.... 146 268 205 13.43 
5. Central—farm. 61 411 517 5.35 
6. Central—nonfarm... 276 321 200 22.48 

7. West—farm. 46 404 419 4.67 

8. West—nonfarm. 201 314 276 18.12 

Total. 1,172 100.00 

* These figures have been altered somewhat. 

Given these facts, what would be the 0.95 symmetrical confidence 
interval for the average annual cold-cereal purchase of all families in the 
United States during the given year? 

Because of the great disparity in strata variances, the standard-error 
formula for the mean of a disproportionate sample must be applied. And, 
since the distribution of the sample was not determined by the optimum 
formula 

Ni = 
XWoTi 

N 

the simplified form for the standard error of the mean of a disproportionate 
sample cannot be used. Instead, the general formula must be applied, 

which is ox = In addition, there is the loss in precision due 

to inaccurate knowledge of the family distribution to be reckoned with. 
The reader will recall (see page 97) that this loss in precision is measured 
by the expression S[(X< — X)V^J. Consequently, the full standard- 
error formula for this estimate is 

= JsWf ^ + S[(Z< 

The computation of these various terms is best accomplished by means 
of two work-sheet tables. The first. Table 8, permits us to compute the 
first term of the sample variance. 
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Tablk 8. Work-sheet Table for Computing the First Term of the Variance 

OF THE Mean of the Disproportionate Sample 

(1) 

Stratum 

(2) 

Wi 

(3) (4) 

<r< 

(5). (6) 

Ni 

(7) 

Ni 

1 0.0193 0.000372 490 240,100 14 6.3798 
2 0.2686 0.072146 260 67,600 331 14.7343 

3 0.0716 0.005127 269 72,361 97 3.8247 
4 0.1343 0.018036 205 42,025 146 5.1915 
5 0.0535 0.002862 • 267,289 61 12.5407 

6 0.2248 0.050535 296 87,616 276 16.0423 

7 0.0467 0.002181 419 175,561 46 8.3239 
8 0.1812 0.032833 276 76,176 201 12.4432 

■ Total.... 1.0000 1,172 79.4804 

V _ 
^ ~ N 
14(403) 4- 331(295) -f 97(324) -f 146(268) + 61(411) -f 276(321) + 46(404) + 201(314) 

1,172 
= 315.00 

The second term of the variance formula Involves the determination of 
the variance of the weights, crfy,. Now, since each weight is subject to a 
possible 5 per cent standard error, the standard error of each weight must 

be the weight multiplied by 5 per cent.^ The square of this figure is the 
variance of the weight, and the sum of the variances is then the 
sum of the squares of the eight strata variances. The computation of the 

terms involving the variance of the weights is shown in Table 9. 
The standard error of the mean of the disproportionate sample is now 

computed by substitution of the terms derived in these work-sheet tables, 

as follows: 

<r\ = 79.4804 + 0.293774 = 79.7742 
<7x = 8.9 

The 0.95 confidence interval of the estimate is computed by the usual 
method as 315 ± 1.96 X 8.9, or between 297.6 and 332.4 ounces. 

In practice, all the calculations could be made in one table. In carrying 
out the calculations, it is important not to drop decimals until the last step 
of each term, especially in computing the variance of the weights where 
the first significant figure may not appear till the third or fourth decimal. 

1 Actually, the 5 per cent figure is the coefficient of variation of the weight, i.e., its 
relative variability. But the coefficient of variation is F =* a/X, or in this case, 

V = <T/Wi. Therefore, the standard error of the weight, in absolute terms, is 

- VWi, or <r = 0.05W.. 
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Table 0. Work-sheet Table for Computino the Variance op the Weights 

(1) 
stratum 

(2) (3) 
(X- 

(4) 
Wt 

(5) 
0.05 W, 

(6) 

<'w, 
(7) 

1 403 7,744 0.0193 0.000965 0.000000<.)3 0.007202 
2 295 400 0.2686 0.013430 0.00018036 0.072144 
3 324 81 0.0716 0.003580 0.00001282 0.001038 
4 268 2,209 0.1343 0.006715 0.00004509 0.099604 

5 411 9,216 0.0535 0.002675 0.00000716 0.065987 
6 321 36 0.2248 0.011240 0.00012634 0.004548 
7 404 7,921 0.0467 0.002335 0.00000545 0.043169 
8 314 1 0.1812 0.009060 0.00008208 0.000082 

Total.. 1.0000 0.293774 

However, when modem calculating machines are employed, as is usually 
the case, the carrying of additional decimal places does not involve aaiy 
extra difficulties. 

Suppose that a similar panel is to be set up to estimate cold-cereal 
purchases in 1944. To aid in selecting the sample design, it is desired to 
know what the efficiency of this disproportionate sample with optimum 

allocation would have been relative to a proportional sample and to an 
unrestricted sample. In other words, if this sample wore allocated among 
the eight strata in optimum fashion and the same strata means and vari¬ 
ances were obtained, how much more (or less) precise would be the popula¬ 
tion estimate of annual cold-cereal purchases per family than if either a 
straight proportional sample were taken or if an unrestricted sample were 
taken? 

Under conditions of (respective) optimum disproportionate and pro¬ 
portional allocation, we know that the sampling variances of the dispro¬ 
portionate and proportional samples are as follows: 

For the disproportionate sample 

For the proportional sample 

The sampling variance of the unrestricted sample could be computed in 

two ways. If the original sample data were readily accessible it could be 
ascertained by first finding the variance of the entire sample by the usual 
formula = (XX^/N) — and then dividing the result by iV, f.e., 
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~ However, a much simpler method, one that does not require 
the original data, is to use the formula 

What this formula does is^o add on to the variance of the hypothetically 
accurate proportional sample (SlF<<r?) the variance that has been elimi¬ 
nated by stratification; namely, the variance among the strata means. 
The result is the total variance of the unrestricted sample.^ 

In order to solve this part of the problem, we must compute three addi¬ 
tional quantities: Sifter<, Slf^erf, and SIf<(Xt — X)^ The computa¬ 

tion of these quantities is shown in Table 10.-^ 

Table 10. Additional Computations for Determining Sample Variance 

UNDER Optimum Allocation 

(1) 
' stratum 

(2) 
Wi 

1 
(3) (4) 

WiOi 

1 
(5) (6) 

(.V,- - 
(7) 

1 0.0193 490 9.4570 4,633.93 7,744 149.46 
2 0.2686 260 69.8360 18,157.36 400 107.44 

3 0.0716 269 19.2604 5,181.05 81 5.80 
4 0.1343 205 27.5315 5,643.96 2,209 296.67 
5 0.0535 517 27.6595 14,299.96 9,216 493.06 
6 0.2248 296 66..5408 19,696.08 36 8.09 

7 0.0467 419 19.5673 8,198.70 7,921 369.91 
8 0.1812 276 50.0112 13,803.09 1 0.18 

Total... 1,0000 289.8637 89,614.13 1,430.61 

Substituting into the sample variance formulas, we arrive at the fol¬ 
lowing results: 

For the unrestricted sample 

2 89,(514.13 + l,430.(n _ __ _ 

--M72 

For the proportional sample 

2 _ 89,614.13 
1,172 

+ 0.29 = 76.75 

For the disproportionate sample 

2 
err = 

(289.8(537)2 
TV172 

+ 0.29 = 71.98 

^ This division of variances is discussed in greater detail in Sec. 3 of Chap. X. 

* In actual practice such tables may be dispensed with altogether. With the aid 

of automatic calculating machines, each quantity in this table can be computed in a 

single operation by cumulative multiplication. 
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The efficiency of the disproportionate sample relative to the two alterna¬ 
tive sample designs is computed from our formula for E (see page 97). 

E = 100% 
^ variance of alternative sample 
variance of disproportionate sample 

For the proportional sample 

For the unrestricted sample 

106.6% 

107.9% 

Hence, the disproportionate sample would be about / per cent more 
efficient than either the unrestricted sample or the proportional sample 
under the given conditions. Note that the unrestricted sample is almost 
as efficient as the proportional sample. This indicates that the main 
advantage of stratification in this problem arises not from any great varia¬ 
tion in average family purchases between the various strata but rather 
from the extreme variability in family purchases within strata. It is 
precisely in such instances that stratification along proportional lines is apt 
to be a waste of time and money. 

4. An area sample is taken to estimate the percentage of families living 
in a certain city who prefer to own their own homes. The city is divided 
into 200 districts each having about 10,000 families. Five of these dis¬ 
tricts are selected at random. In each of these five districts, 100 randomly 
selected families are interviewed on this subject. The results are pre¬ 
sented in Table 11. 

Table 11. Per Cent of Respondents Preferring to Live in Own Home, 

BY District 

District Number of families 
Per cent preferring to 

live in own home 

Pi 

1 100 66 

2 100 69 

3 100 65 

4 100 73 

5 100 72 

Total. 500 

Average. 100 69 
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How likely is it that as high as 75 per cent of the city’s families prefer 
to live in their own homes? 

This is a two-stage unrestricted area sample. Its standard error is, 
therefore, a modification of the formula on page 92, i.e., 

4 4. 
- i N'^ 

Pi - Ni 4 
P. - 1 NNt 

where P = total number of districts in city = 200 

Pt = total number of families in each district = 10,000 
N = number of districts in .sam;;le 5 

Ni = number of families from each sample district = 100 

aj = variance of percentages between districts 
<7% = variance of percentage.^ between families within districts 

With p equal to 69 per cent, the two variances are computed as follows: 

2 _ ~ P)* _ (_o.03)2 + (0)* 4- (-0.04)2 ^ (0.04)2 + (0.03)2 
4 

0.0050 
4 

= 0.00125 

IPiRi 

N' 

_ (0.66) (0.34) + (0.69) (0.31) + (0.65) (0.35) + (0.73) (0.27) + (0.72) (0.28) 
5 

Substituting in the formula for o-J 

1.0645 

5 
= 0.2129 

•2 200 - 5 (0.00125) 10,000 - 100 (0.2129) 
■ 200 5 + 10,000 “ .500 

(The l\s in the denominators are dropped because N and Ni are both 

large.) 
al = 0.00024375 + 0.00042154 = 0.00066529 
(Tp = 0.026 or 2.6% 

Now, 75 per cent is (75-69)/2.6 standard-error units away from the 
sample mean, or 2.3cr. From Appendix Table 5, we note that only in 1 
case out of 100 would a sample mean deviate this far below the true mean. 
Hence, we may conclude that the true percentage is very unlikely to be as 
high as 75 per cent. 

Suppose it is estimated that an unrestricted sample of 300 families 
might have been taken at the same cost, the higher per unit cost of the 
unrestricted sample being attributable to the greater resultant dispersion 
of the sample members. By hindsight, would the unrestricted sample 
have yielded a lower sampling error? In the above case, p is 0.69. Con- 
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sequently, crj for the unrestricted sample would be 0.2139/300, oi* 
0.000713, which exceeds the variance of the area sample. The readei* 

may care to verify that only if the cost limitation permitted an unrestricted 
sample of more than 320 families would this technique be more precise 
than the area sample. 

2. TESTING A SAMPLE HYPOTHESIS 

It will be recalled that the theory behind testing the significance of the 
difference between a sample value and some other (sample or population) 
value involves determining whether the probability that the given dif¬ 

ference might have occurred as a result of sampling variation is above 
or below a certain critical value. If the probability is below this critical 
praselected level, the difference is adjudged to be significant, i,e.j a real 

difference exists, and it is not likely that the two values being tested are 
part of the same group or population. If the probability is above this 
critical level, the difference is held to be an imaginary one in the actual 

population, due to random sampling variations. 

The 0.05 significance level (equivalent to the 0.95 confidence co¬ 
efficient) is generally employed as the critical significance level in this 
section unless otherwise specified. In other words, if it is found that there 
are less than 5 chances in 100 that the given difference might have resulted 
from random sampling variations, the difference is held to be significant; 
otherwise, the presumption is that the difference is not really significant 

but is due to chance variation. 
Our basic formula for testing a statistical hypothesis is 

rp ^ sample statistic — other statistic 
estimated standard error of the difference between the two statistics 

the required probability being obtained by interpolating the value of T 

in the appropriate probability distribution table. A number of illustra¬ 
tive examples are provided below. 

1. In the sample survey of 971 English school children (see page 136), 
44 per cent of those questioned had no opinion as to whether pay in the 
English civil service was satisfactory. It is desired to know whether the 

true number in ignorance of civil service salaries might constitute as 
much as half of all English school children. 

The null hypothesis is that the difference is not significant and is due 

to random sampling variation. Since the other statistic in this problem is a 
(hypothetical) population value, the estimated standard error of the 
percentage (44 per cent) in the population is the standard error of the 
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sample percentage, a/VQ/^y which is \/(0.44) (0.56)/971, or 1.6 per cent.^ 
Substituting these values in the formula for T, we have 

0.44 - 0.50 
0.016 

3.75 

It is important to note that in this problem we are interested solely 
in the true population value exceeding the sample value. Therefore, in 
interpolating the value of T in the normal probability distribution table, 

we must consider only the probability that the sample percentage will be less 
than the hypothetical populadon percentage, i.e.y the probability that a 
sample value will be mc^re than 3.75(r below the population value. 

Since this probability is extremely low, less than 1 chance in 10,000, 
it is extremely unlikely that the sample value of 44 per cent would have 
occurred in a population ^\'here the true percentage is 50 per cent solely 

as a result of chance variations. The conclusion is, therefore, that the 
actual percentage not having any opinion of the level of I^nglish Civil 
Service salaries could hardly be as high as 50 per cent. 

Suppose, now, that it is desired to know whether the sample percentage 
might differ by as much as 6 per cent from the true percentage. This is 
much the same problem as before except that now both ends of the 

probability distril)ution are employed, ?’.e., we want to know the proba¬ 
bility of a deviation of as much as 6 per cent either above or below the 
true population value. This probability is, of course, twice the previous 

probability, or 2 chances in 10,000. Again, however, the difference is 

seen to be significant. 
2. A survey of 927 sales and advertising managers conducted by the 

Marketing and Research Service of Dun and Bradstreet for The New 

York Times revealed that 347, or 37.4 per cent, of the respondents read 
the Sunday edition of the TimeSy and 252, or 27.2 per cent, read the weekday 
edition.^ Assuming this sample provides a representative cross section 

of all sales and advertising managers in the country,^ does this difference 
represent a real preference on the part of such executives for the Sunday 
edition of The New York Times? 

^ The adjiistinent term NA is not substituted for N in this ease because of the large 

size of the sample. 
* Data presented through the courtesy of Harry Rosten, Rcsc^arch Manager, The 

New York Times. 
* In the present case, this assumption would be an optimistic one in view of the 

fact that 54 per cent of the questionnaires mailed out were either not returned (53 per 

cent) or not usable (1 per cent). Although 46 per cent is a very gratifying return on a 

mail questionnaire, there remains the likelihood that the other 54 per ct*nt might have 

significantly different reading habits, especially since no attempt Wiis made to follow 

up the nonrespondents. 
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The standard error of the difference between the sample percentages 
is given by the formula on page 121, as follows: 

= 2.2% 

T is then computed to be 10.2%/2.2%, or 4.6<r. The probability of 
such a large difference occurring as a result of chance is about 1 out of 
100,000, or almost negligible. Hence, the null hypothesis is rejected, 
and it is concluded that a strong preference for the Sunday edition of 
The New York Times as against the weekday edition actually exists. 

3. In an attempt to evaluate the influenc(j of interviewer bias in com¬ 
mercial surveys, a carefully selected group of intervie^vers were requested 
to interview respondents on dentifrice preference and brand recognition.* 
Among the questions asked was ^‘What brand of dentifrice do yon use?” 
After the survey had been completed, a letter was sent to about half 
of the interviewers requesting them to make additional interviews with 
the same questionnaire and casually mentioning that the makers of 
Ipana tooth paste were sponsoring the survey (which was not true). 
When the additional interviews were tabulated, it was found that 85, 
or 24.8 per cent, of the 342 interviewees indicated their use of Ipana as 
compared to 73, or 22.3 per cent, of Ipana users out of 328 replies obtained 
in the initial survey by the same group of interviewers. Does the higher 
proportion of Ipana users obtained when the interviewers knew the 
sponsor's identity reflect the presence of interviewer bias or could the 
difference have resulted from random sampling variations? 

Analytically, this problem is much the same as the previous one, the 
only difference being that two different surveys are involved. The 
standard error of the difference between the two percentages is^ 

_ Ipigi , M? 
yj Ni'^ Ni 

1(0.223) (0.777) (0.248) (0.752) 
“ \ 328 342 
= 3.3% 

The statistic T is then 2.5%/3.3%, or 0.76. Since a deviation of 0.76<t 
or more from the mean value would be expected to occur as often as 48 

* A. Udow and R. Ross, ^‘The Interviewer Bias,” in Radio Research^ 194^-1943, 
edited by P. F. Lazarsfeld and F. N. Stanton (see reference 164), pp. 439-448. 

* For a theoretically more justifiable procedure in this and the preceding type problem, 

especially when N is small, see Statistical Research Group (reference 24), Chap. VII. 
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times out of 100, the difference is obviously not significant. In other 
words, there is no indication that interviewer bias had any effect on the 

percentage of sample respondents reporting the use of Ipana tooth paste. 
4. Once in a while one comes across a significance problem involving 

the determination of sample size. This is illustrated by the following 
example. In the spring of 1947, the magazine Time stated in an adver¬ 
tisement^ that a features article on Fred Allen had been read by 101 
women for every 100 men. The director of an advertising agency is 
curious to know whether this indicates that more women than men 
actually did read this article. In other words, how large would the 
(unrestricted) Time sample have had to be in order for this reported 
difference to be significant? 

A ratio of 101 women reading the article to every 100 men means that 
50.2 per cent of the readers are women and 49.8 per cent are men. We 
now set up the null hypothesis that the difference is really not significant, 

Le., that there were as many men readers as women. This provides us 
with the population percentage (50 per cent) against which the signifi¬ 
cance of the observed difference can be evaluated. In order for the 

difference between the sample percentage (50.2 per cent) and the pop¬ 
ulation percentage (50.0 per cent) to be significant, the ratio of this 
difference to its standard error must equal or exceed the critical value of 

T. If we use a 0.95 symmetrical confidence interval, we know that the 
value of T, for significance, must be at least 1.96(r. Therefore, we have 
1.96<r = 0.002/<7p, or <Tp equals 0.001. Substituting this value for 

(Tp in the standard-error formula and solving for AT, we have 

0,001 .^<0: 502) (0.498) 
N 

0.249996 oAnana i ^ = 0.0^ = 249,996 people 

Consequently, in order for the advertisement to prove that more 
women than men had read the article, the Time sample would have had 
to contain almost 250,000 people. Since the Time sample could hardly 
have been this large, the director can conclude that for all practical 
purposes the article was read by as many men as women. 

6. In planning its advertising on the basis of the purchase-panel data 
in Example 3 on page 137, a cold-cereal manufacturer desires to know 
whether the average cold-cereal purchases of Southern nonfarm families 
can be said to be more variable than those of Central nonfarm families. 
In other words, are the nonfarm families in the South more homogeneous 
with respect to their cold-cereal purchases than the nonfarm families in 
the Central region? This information would aid the company in de- 

' For example, in The New Yorker^ June 14, 1947, pp. 78-79. 
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ciding whether to direct its advertising in' the Central region at the ^‘mar¬ 
gin'' consumers or at all consumers alike as it plans to do in the South. 

The relevant data are shown below: 

Stratum Ni Xi, ounces O',, ounces 

1. South—nonfarm. 146 268 205 
2, Central—nonfarin. 276 321 296 

In absolute terms, Central nonfarm families definitely appear to be 
more variable in their cold-cereal purchases than Southern nonfarm 

families, a fact that is confirmed by statistical analysis, as shown below: 

The value of T, 5.2<r, exceeds the 0.95 confidence coefficient, l.Ofio-, 
thereby indicating the difference to be significant. 

However, the absolute difference in variability does not necessarily 

furnish a true picture of the situation, because no account is taken of 
the greater average purchase of Central nonfarm families. For example, 
«7i = 5 may indicate a greater meaningful variability than a2 = 10, if 
the mean value of the first population is 10 and the mean value of the 
second population is 100. In the latter case, most (68 per cent) of the 
family purchases are concentrated within 10 per cent of the mean value, 

whereas in the former case most purchases extend over a range 50 per 
cent away from the mean value. Hence, where the mean values differ 
appreciably, as in the present example, it is more meaningful to consider 

the significance of the difference between the two coefficients of variation. 
By so doing, we shall know whether the greater variability of Central 
nonfarm cold-cereal purchases is merely due to the greater leeway 
allowed by the higher average purchase figure for the region or whether 
Central nonfarm families are in fact more variable in their cold-cereal 
purchases. 

The two coefficients of variation are computed to be 

G\ __ 205 
76.5%, 

296 
321 

92.2% 
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The significance of their difference is determined by applying the 

standard-error-difference formula on page 123, as follows: 

<rvi 
n 

2N2 

(0.765)2 (0.922)2 
+ 2(146) ^ 2(276) 

= 5.9^/ 

92.2%-76.5% _ 
^ “ 5.9% 

However, the difference is again significant, thus indicating that 
Central nonfarm families are in fact more variable in their cold-cereal 
purchases than their nonfarrn neighbors to the south. 

6. The significance of a difference between two statistics, each based 
on a different sample and sample design, is evaluated by the same pro¬ 
cedure as when two samples are of the same design. The standard error 
of the difference is again the square root of the sum of the two sample 
variances. For example, suppose that an unrestricted sample of 600 
United States families in 1945 reveals their average cold-cereal purchase 
to be 332 ounces with a- = 312 ounces. Does this mean that the cereal con¬ 
sumption of United States families has increased from the 315-ounce annual 
average per family of the disproportionate sample in 1942--1943, or could 
this difference be attributable to random sampling variations? 

If we denote the values of the unrestricted sample by the subscript 
2, and the values of the disproportionate sample by the subscript 1, the 
standard error of the difference between the two mean values is 

^ (Zh - ^ 

Substituting the relevant values in this formula (the value for the 
sampling variance of the disproportionate sample is taken from page 139), 
we have 

= ^79.7742 + 162.2400 = 15.5 ounces 

T = = 1.1 
15.5 

Since this value does not exceed the 0.05 level of significance, the 
difference is adjudged to be not significant and very probably due to 
random sampling variations. 

3. THE PROBLEM OF SIMULTANEOUS DECISION 

It has been pointed out that the problems to which significance tests 
are applied can be divided into two broad classes—decisional and 



150 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

nondecisional,^ Decisional problems are those where the exigencies of 
the particular situation necessitate an immediate, or simultaneous, 
decision as to future action, largely based on the results of the significance 
test. In such cases, time (or some other factor, such as the impossibility of 
securing further data) does not permit the postponement of business policy 
pending a more exhaustive study of the problem. Thus, a production 
chief, presented with the results of a survey showing a slight, statistically 
insignificant preference by consumers for one model of refrigerator over 
another model, may be faced with the choice of which type to produce 
without being able to conduct a more extensive market study. 

Where conditions permit sufficient further study of the issue until 
some sort of conclusive result can be obtained, we have the nondecisional 
type of problem. Obviously, the difference between thei.e two glasses 
is purely one of the presence, or absence, of expediency and time. In 
the example cited above, had the production head been able to postpone 
production pending further study, the problem would have assumed a 
nondecisional character. 

With respect to the nondecisional type of problem, the statistical 
theory of significance tests, as outlined in Chap. V, works very well, for 
if there is any doubt as to the significance or nonsignificance of the charac¬ 
teristic under study, one need merely extend the investigation^ until more 
definite results are attained. However, the issue cannot be side-stepped 
in this manner when a decisional problem is at hand, as is frequently the 
case in commercial research. The task of designating one of two alter¬ 
native courses as the preferable one becomes rather puzzling when the 
statistical significance test renders a verdict of not significant, for accord¬ 
ing to the older analysis, this signifies that either decision may validly be 
made. 

It is therefore apparent that some new criterion is needed to indicate 
what course to choose in a decisional problem of this nature. The 
refrigerator production head cannot sit back in his chair and tell his aides 
to do as they please; it is his duty to make a definite choice. But how 
should he do it? 

Of course, he may toss a coin in the air and select whichever alternative 
is indicated by the toss, thereby acting on the theory that since the 
observed difference is not significant it is immaterial which alternative is 
chosen. However, in practice it is wiser to select the more favorable 
alternative as indicated by the sample.® Operating on this criterion, 

^ Simon, “Statistical Tests as a Basis for ‘Yes-No^ Choices*^ (reference 102). 

2 By enlarging the present sample, taking a number of related samples, using a 
different sample design, etc. 

® See Simon, op. ci^., and “Symmetric Tests of the Hypothesis That the Mean of 

One Normal Population Exceeds That of Another” (reference 101). The technically 

minded reader is referred to these articles for a more rigorous explanation and proof of 
this proposition. 
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our production head would order into production the refrigerator model 
with the highest consumer preference. 

The reason for this rule may be stated simply as follows: Inasmuch 
as there is no statistically significant difference between the two (or 
more) figures tested, if a significant difference does exist in the actual 
population, it is more probable that the most favorable figure in the 
sample is also the most favorable figure in the population. Hence, one 
is not likely to lose by selecting the most favorable alternative indicated 

by the sample, for if there really is no significant difference, it is immaterial 
which one is chosen; and if thf re dor* \)appen to be a significant difference, 
it is most likely to be in this airection. 

To illustrate, suppose an advertising agency, in a pretest of the effec¬ 
tiveness of a particular mail questionnaire, receives a 25 per cent response 
when one type of circular is used and a 33 per cent reply when a differently 
worded circular is employed, after having mailed out 100 copies of each 
circular. The difference between the two percentages is not statistically 
significant (using a 0.95 symmetrical confidence interval). The question 
is: Which type of mail circular should be used when this mail survey 
gets under way? The answer, by our criterion, is to select the circular 
that yielded the higher (33 per cent) response, since if one circular really 
is more effective than the other, it is most likely to be this circular, and 
if there actually is no difference in the effectiveness of the two circulars, 
nothing has been lost as it is then irrelevant anyway which of the two 
is employed.^ 

One explanation for the apparent tendency of some statistical tests 
to underestimate the true significance between observed sets of data lies 
in the great amount of variation that has been found to exist in commer¬ 
cial data, especially in marketing studies. At times, the standard de¬ 
viations of consumer purchase distributions have been found to be three 
and four times as great as the average purchase. Since the standard 
error of a sample average is directly proportional to the standard devia¬ 
tion of the sample, the standard error will also be large and, as the number 
in the sample is usually not very large, 7.e., several thousand members, 
will magnify the range within which random sampling influences might 
cause the sample means from a given population to fluctuate. In such 
instances, the standard error of the sample average could be reduced and 
significant differences more easily ascertained only through the use of 
prohibitively large samples. For example, assuming the standard devia¬ 
tion of the sample is a good estimate of the standard deviation of that 
population, the only way the standard error of the mean can be reduced 
is by increasing the size of the sample, for as N gets larger and larger, 

* This assumes the costs of the two circulars to be equal. If this is not the case — 

if, say, the more popular circular is also more costly—then the above criterion is no 
longer valid. 
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(r/\/N becomes progressively smaller. However, a very large increase in N 

is needed to reduce the standard error appreciably, as the latter decreases 
only in proportion to the square root of the increase in the size of the sample. 

To illustrate the effect of variability on statistical significance, let us 
suppose that the average annual cold-cereal purchase in region A and in 
region B is estimated to be 20 and 30 pounds per family, respectively, as 
leased on a sample of 100 families in region A and 144 families in region 
B, the respective standard deviations being computed to be 70 and 60 
pounds. Applying the appropriate significance test, one finds that the 
difference of 10 pounds between the two regional averages is apparently 
not significant.^ 

Now, suppose that sample surveys in two other regions, regions C 

and D, also based on 100 and 144 families, respectively, rt'ves.l the average 
annual cereal purchases to be the same as in regions A and B, namely, 20 

and 30 pounds, respectively. But purchase habits are more uniform in 
regions C and D, thereby resulting in a standard deviation of 28 pounds 
per family in region C and a standard deviation of 24 pounds per family 
in region D. The difference between the two regional averages is now 
definitely significant.^ 

Actually, the difference between the average purchase figures of 
regions A and B may be just as significant as the difference between the 
average purchase figures of regions C and D—^significant in the sense 
that these differences really exist in the population. However, because of 
the extreme purchase variation existing among the families of regions A 
and B, as evidenced by their large standard deviations, it is impossible 
to demonstrate statistically that the two regions differ significantly in 
their average purchase habits unless the size of the samples is greatly 
increased. To arrive at the same degree of significance between the 
averages of regions A and B as was found between the averages of regions 
C and D (assuming that the difference really exists), the sample from 
region A would have to aggregate about 640 families and that from region 
B about 920 families.^ 

' ^ ^ Nb ~ ^ 100 + 
(00)2 

T = = 1.15 _ 15. 
100 ' 144 “ " 8.7 

A difference as large or larger than this could occur as a res\dt of chance variations 
about 25 times out of 100—clearly not significant. 

2 

^Nc ^ \ 
fp 
Nj} 

/(28)« 
100 

4. M! _ 

144 
3.44 

10 
3.44 

= 2.91 

This difference could occur only 4 times out of 1,000 as a result of random sampling 

variations. 

* This estimate is based on the assumption that the two samples are in the same 
proportion to each other as the two smaller samples, namely, 100:144. As a matter of 
fact, with disproportionate sampling the same degree of significance could be attained 

with a smaller number of families—784 from region A, 672 from region B, a total 
of 1,456 as against the 1,560 families required by unrestricted sampling. 
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The figures cited in the preceding example are fictitious but the ex¬ 
ample itself is not, and many similar instances have been encountered in 
actual practice. Although it is true that a spurious difference between 
two sample averages is more likely to occur when the sample variances 
(or standard deviations) are relatively large, if one of two alternatives 
has to be selected, in the absence of any other information it is more 
expedient to select the more favorable alternative. However, this pro¬ 
cedure is valid only in the case of a simultaneous-decision problem where 
one of two alternatives is to be selected. Such problems must be dis¬ 
tinguished from other simultaneous-decision problems where alternative 
selection is not necessaiily involved. For example, a survey of Redhooh 

readers revealed that of 648 replies, 38.3 per cent purchased rouge in a 
drugstore and 36.3 per cent purchased rouge in a department store.^ 
A cosmetics manufacturer, planning to put a new type of rouge on the 
market, wants to know whether to concentrate his sales appeals in one 
particular type of outlet, and if so, in which outlet. 

The difference between the two percentages is not significant.^ This 
indicates that the apparent preference for purchasing rouge in drugstores 
is probably due to sampling variations and that, consequently, drugstores 
and department stores are equally popular in this respect. The re¬ 
searcher's recommendation would then be to concentrate the sales cam¬ 
paign equally in both of these outlets. Note that this is not a problem 
of alternative selection, since the sales campaign does not necessarily 
have to be concentrated in either outlet.® If, however, the manufacturer 
had definitely decided to concentrate the sales campaign in one outlet, 
say, for economy, then we would have an alternative-decision problem, 
and concentration on drugstores would be recommended. 

SUMMARY 

Illustrations have been presented of the application of standard-error 
formulas to estimation and statistical-significance problems. In cases 
where one of two alternatives must be selected on the basis of sample 

1 Cosrnetics and Toilet Goods Buying Habits of 1,026 Redbook Families, September, 
1946. Data presented through the courtesy of Donald E. West, Director of Marketing 
Research, McCall Corporation. 

2 Because the two percentages are rdated to each other and are based on the same 

sample, the standard error of the difference is given by orp, _p, = \/2p/N, where p is the 
average of the two percentages. 

® Even this might be considered an alternative-decision problem in the sense that 

the alternatives are whether or not to concentrate the sales campaign. We would 

then have to treat this as a double alternative problem; namely, whether or not to 
concentrate sales appeal, and if yes, whether to concentrate it in drugstores or de¬ 
partment stores. However, because the data relate directly to the latter issue, the 

treatment of this problem as a double alternative, using the same set of data to decide 
both alternatives, appears to be a rather dubious proposition. 
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data that do not indicate a clear superiority of either alternative, it is 

wise to select the more favorable of the two. The reason for this is that 

if one of the two alternatives is superior, it is more likely than not 
to be the one indicated by the sample; and if neither alternative is superior, 
nothing is lost by this procedure. However, caution must be exercised 

in the practical application of this rule to restrict it only to appropriate 
cases. In all other instances, the general theory of significance tests 
explained in Chap. V remains valid. 



CHAPTER VII 

SEQUENTIAL ANALYSIS: A NEW TOOL FOR 
COMMERCIAL RESEARCH' 

To economize on the amount of inspection required to test new weapons 
during the war, a sampling method ?vas developed yielding the same 
accuracy as the conventional random sample with a sample size reduced 
on the average by as much as 60 per cent and more. Though originally 
used by the military forces, this method has gained increasing acceptance 
in industry, primarily in connection with the acceptance inspection of 
mass-production items. However, the simplicity of its operation and the 
substantial savings possible from its use render it a valuable aid in those 
sampling problems encountered in commercial research to which this 

method, sequential analysisy can be applied. Because of the radical 
departure of sequential analysis from the conventional sampling pro¬ 
cedure and the substantial economies in time and cost that may be 

achieved through its use, this entire chapter is devoted to an exposition 
of the theory and application of this new technique.^ 

In this chapter, we shall be concerned exclusively with those sampling 
problems involving a choice between alternative courses of action. Such 
problems may be divided into two groups. First, there are problems 
where a single action is under consideration and the question is to act or 
not to act. A copy-testing panel drawn to determine whether or not a 
particular layout would be liked by 75 per cent or more of the population 
is an example of such a problem. Second, there are problems in which one 
of two possible actions may be taken and the question is; Take action I or 
take action II? The same copy-testing panel being used to test the pref¬ 
erability of two alternative layouts for an advertisement illustrates this 
second group of problems. These problems are to be distinguished from 
sample estimation problems, where the purpose of the sample is to esti- 

^ A condensed version of this chapter appeared, with the same title, in an article in 

the Aug. 13, 1948 issue of Printers^ Ink, 
2 For a simplified explanation of the theory of stiquential analysis, see Wald, ‘^Se¬ 

quential Method of Sampling between Two Courses of Action” (reference 106); and 
Wald, Sequential Analysis (reference 107). A rigorous mathematical exposition of the 

theory is contained in the appendix of the above book and in Wald, “Sequential Tests of 

Statistical Hypotheses” (reference 105). A complete working manual on the subject 

containing all necessary computational procedures as well as tables to simplify calcula¬ 
tions is Sequential Analysis of Statistical Data: Applications, by the Statistical Research 

Group, Columbia University (reference 104). 

155 
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mate some population characteristic(s), e.g., a consumer survey seeking 
to ascertain the relative popularity of different brands of cigarettes. 
The development of sequential analysis in estimation problems has not yet 
reached the definitive stage it has reached with reference to alternative- 
decision problems. 

1. WHAT IS SEQUENTIAL ANALYSIS? 

The fundamental difference between sequential analysis and conven¬ 
tional sampling Js that in sequential analysis the size of the sample is 
not predetermined but is dependent upon the values of the observations 
themselves. After each sample observation or group of observations is 
secured, the result obtained from the accumulated observations is com¬ 
pared with a pair of statistics previously calculated. On the ba^is of this 
comparison, a decision is made on whether to take additional observations 
or to terminate the sampling operation and accept one or the other of the 
two alternative decisions, as indicated by the previously computed 
statistics. Additional observations continue to be added ‘‘sequentially^^ 

until one or the other of the two alternative decisions can be made. 
Besides depending upon the results obtained from the sample observa¬ 

tions, the size of a sequential sample is very naturally influenced by the 
acceptable risk of obtaining an incorrect decision and by the difference 
between the predetermined critical levels upon which the alternative 
decisions are to be based. Thus, a sampling operation where a 0.99 
probability of a correct decision is desired will require a larger sample 
than one where a 0.67 probability of a correct decision is desired. Similarly, 
a decision to use a new container design if it is preferred by 60 per cent or 
more of the population and to stick to the old container if the new one 
is preferred by 50 per cent or less of the population would require a 
smaller sample, other things being equal, than if it is not resolved to use 
the new container design unless it is approved by over 80 per cent of the 
population. 

Intuitively, it may readily be seen why a sequential sampling process 
should reduce the size of the sample relative to the conventional technique 
when the attitude of the population being sampled differs markedly from 
the critical acceptance and rejection limits. For instance, suppose that 
after a rural magazine had run photographic covers alternately with 
covers containing reproduced paintings for several months, 95 per cent 
of the subscribers actually prefer the covers with the reproduced paintings. 
Unaware of the true situation, the researcher is led to believe that the 
sentiment among the subscribers in favor of one or the other of these 
covers may possibly be evenly divided, and he does not want to advocate 
extensive use of either cover unless it can be presumed that at least 55 per 
cent of the subscribers favor it. By the conventional sampling technique, 
well over 150 interviews would be required in order to assure a minimum 
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90 per cent probability of making the right decision on the basis of the 
sample. By sequential analysis, a decision might be reached with the 
same 90 per cent confidence^ after the remarkably low number of 11 inter¬ 
views. The reason for this is that the sequential process permits a running 
analysis to be made of the trend in the accumulated sample observations. 
When certain precalculated values are exceeded by the value of the 
cumulated sample observations, the sampling operation is stopped and 
a decision is made, with the assurance that the probability is at least 
0.90 that this decision is correct. In the present instance, the very heavy 
percentage in favor of artists’ covers v'ould tend to show very early in 
the sampling process that at least 55 per cent of the subscribers prefer 
these covers. In the conventional sampling process, no decision would be 
made until all sampling is completed. 

The procedure by which a sequential operation is carried out in practice 
may be illustrated with reference to a modified version of the above 
example. Suppose that it is decided to employ artists’ covers extensively 
if at least 55 per cent of the population like them and not to employ these 
covers if 45 per cent or less of the subscribers (population) like them. 
The minimum probability of making the correct decision is set at 0.90. 

Before sampling is begun, two sets of critical values are computed. 
One set of values indicates, for each sample size, the maximum number 
of interviews in favor of artists’ covers permitting us to conclude with 
90 per cent confidence that 45 per cent or less of the subscribers favor 
these covers. We shall call this set the acceptance numbers^ because 
they tell us whether to accept the hypothesis that less than 45 per cent of 
all subscribers favor artists’ covers. The other set of critical values 
indicates for each sample size the minimum number of interviews in 
favor of artists’ covers to enable us to assert with 90 per cent confidence 
that at least 55 per cent of the subscribers like these covers. We shall 
denote this set as the rejection numbers. 

Given the two critical percentage values—45 per cent for acceptance, 
55 per cent for rejection—and given the desired confidence percentage to be 
90 per cent, the acceptance and rejection numbers are readily computed 
with the aid of established formulas.^ The following results are derived: 

^ By 90 per cent confidence we shall mean that the probability of arriving at a correct 
decision is at least 0.90. This minimum probability increases as the actual proportion 
of subscribers favoring one or the other cover exceeds 55 per cent by greater and greater 
amounts. 

* See p. 165. All calculations in this example are based on the assumption of sym¬ 
metrical confidence intervals, t.e., that one is as desirous of avoiding a faulty acceptance 
of the hypothesis as of avoiding a faulty rejection of the hypothesis. In the present 
case this means that the researcher is as anxious to avoid accepting the nonpreferability 
of artists' covers when actually the covers are liked by 55 per cent or more of sub- 
seribers as he is to avoid rejecting the nonpreferability of artists’ covers when actually 
they are not liked by at least 55 per cent of subscribers. 
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Acceptance number An = —5.47 + 0.5n 

Rejection number = 5.47 + 0.5n 
where n is the size of the sample. 

By substituting successive values for n (n = 1,2,3, . . . ) in these rela¬ 

tionships, acceptance and rejection numbers are obtained corresponding 

to each possible sample size.^ Thus, after 20 interviews we would be able 

to say with 90 per cent confidence that less than 45 per cent of the sub¬ 

scribers like artists’ covers if not mare than four of these interviewees 

have expressed their liking for these covers; and we would be able to say 

(with the same degree of confidence) that 55 per cent or more of the sub¬ 

scribers like artists’ covers if at least 16 of the interviewees have indicated 

their liking for artists’ covers. Note that a minimum of 11 interviews is 

required in this example before any sort of decision is possible. 

In practice, the acceptance and rejection numbers are computed 

beforehand, as indicated in Cols. (2) and (4) of Table 12, and are given 

Table 12. Illustration of Sequential Analysis in laE Case of 

Magazine-cover Preference 

(1) 
Size of sample 

n 

(2) 
Acceptance number 

A. 

(3) 
Cumulative number liking 

artists’ covers 

(4) 
Rejection number 

ft. 

1 1 

2 1 

3 I 2 
4 3 
5 4 

. 

6 5 

7 5 

8 6 
9 7 

10 8 

11 0 9 11 

12 0 10 12 
13 1 11 12 

14 1 12 13 

15 2 12 13 

16 2 12 14 

17 3 13 14 

18 3 14 15 

19 4 15 15 
20 4 16 

^ In rounding off computed acceptance and rejection numbers to the nearest whole 

number, it is customary to drop the decimal in the case of acceptance numbers and to 
round off to the next highest unit in the case of rejection numbers. Thus, 8.74 as an 
acceptance number would be rounded off to 8, and 2.08 as a rejection number would 

be rounded off to 3. 
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to the field supervisor. As successive interviews are made, the super¬ 

visor compares the cumulative number liking artists' covers with the 

acceptance and rejection numbers for that particular sample size. As 

soon as this cumulative number is equal to or less than the corresponding 

acceptance number, or is equal to or more than the corresponding re¬ 

jection number, the sampling is stopped and the appropriate decision is 

made. A hypothetical illustration of the process is provided in Col. (3) 

of Table 12. At the nineteenth interview the number liking artists' 

covers is equal to the rejection number (16) for that sample size. Sam¬ 

pling is thereupon stopped, and it is eluded with 90 per cent confidence 

that at least 55 per cent of the subscribers like the artists' covers. 

Note that the sequential process says nothing about the actual per¬ 

centage liking artists’ covers. All we know from this survey is that it 

indicates at least 55 per cent of the subscribers like artists' covers; actually 

it might be 60 per cent, it might be 95 per cent, or almost anything. 

The estimation of the true proportion favoring artists' covers on the basis 

of this sample would lead to a biased result.^ 

2. CHARACTERISTICS AND REQUIREMENTS OF SEQUENTIAL ANALYSIS 

Sequential analysis is applicable only when the sample data can be 

studied as they are compiled. Where the lack of time or the nature of 

the problem does not permit this consecutive accumulation and analysis 

of the sample data, as is true for radio audience-reaction sessions, the 

conventional fixed-size sample methods must be employed. However, in 

order to apply sequential analysis, it is not necessary to make comparisons 

after every single observation. As Avill be seen later (page 176), the 

method is equally valid when the necessary comparisons are made after 

a group of observations, say, after every 10 interviews. 

In sequential problems of the type considered here, some one value of 

the characteristic under study is unknown. This value may be the 

mean of the characteristic, its standard deviation, or any other param¬ 

eter relating to the distribution of that particular characteristic in the 

population. Although the value of the parameter is unknown, its dis¬ 

tribution is assumed to be known, e.g., in the case of the mean of a 

series of continuous measurements, the distribution of these measure¬ 

ments in the population and their standard deviation must be known 

(though the standard deviation need not be known if the distribution 

is normal). 

Another very important requirement for the applicability of sequential 

^ The unbiased estimation of population values from the sequential type of sample 

has been receiving increasing attention, and several articles on the subject have appeared 
in the 1946 and 1947 issues of the AmmUs of Mathematical StatisticSf notably ^‘Unbiased 

Estimates for Certain Binomial Sampling Problems with Applications,^' by Girschick, 

Mosteller, and Savage (reference 103). 
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analysis is that each sample observation, or interview, must be drawn at 

random from the population and generally must be independent of all 

the other observations. In other words, the value of one sample observa¬ 
tion should in no way influence the value of any other sample observation. 

Economic time series, such as family income data, is a notable instance 

where one observation usually does affect the value of successive, later 
observations. However, in most commercial research sampling problems 

this requirement does hold. The need for random selection is a more 

serious limitation, as it would seem to rule out the applicability of sequen¬ 

tial analysis in most mail surveys and, for that matter, in every survey 

where all members of the population do not have an equal chance of 

being selected in the sample. Hence, sequential analysis in commercial 

surveys is applicable primarily to cases where complete list* of the pop¬ 
ulation are available or where an area sampling design is employed. 

Every sequential problem is characterized by ihree quantities—an 

operating characteristic curve, an average-sample-number curve, and a 
set of acceptance and rejection numbers. The meaning of acceptance 

and rejection numbers has already been discussed and illustrated in the 

preceding section. Their importance lies in the fact that these numbers 

serve as the operating determinants of the size of the sample in actual 

practice and indicate the decision to be made. The acceptance and re¬ 

jection numbers for any sequential problem are computed from formulas 
involving four basic quantities, all of w^hich are predetermined by the 

researcher—the probabilities of making the correct and wrong decisions 

(discussed on page 161), the minimum value, number, or percentage for 
rejecting the hypothesis in question, and the maximum value, number, or 

percentage to warrant accepting the hypothesis. Illustrations of the 

manner in which the acceptance and rejection numbers are computed are 

provided in a later section. 

The average-mm'ple-number (ASN) carve is exactly what the name 

implies. It yields for all possible values of the unknown parameter being 

tested (liking for artists^ covers, in the previous example) the average 
number of interviews or units that would be required by the sequential 

process before a decision is reached. By this ^‘average” is meant the 

average sample size of a theoretically infinite number of sequential samples 
all taken under the same conditions in any given problem. Of course, 

there is no guarantee that in actual practice the size of a sequential sample 

will equal, or even be near to, this theoretical expectation. Its value 

lies in the fact that it serves as a bench mark to indicate the average 

number of interviews that will be required in a particular sequential 

problem, and by comparing it with the sample size of the corresponding 

conventional process, the researcher is able to evaluate the relative 

desirability of the sequential method in that problem. 

In addition to the ASN curve, every sequential problem is character- 



SEQUENTIAL ANALYSIS: A NEW TOOL FOR RESEARCH 161 

ized by an operating characteristic (OC) curve. This curve measures the 

probability of accepting a given hypothesis for alternative assumptions 

of the true value of the population characteristic. In the preceding 

example, the OC curve would measure the probability of accepting the 

hypothesis that 45 per cent or less of the subscribers like artists^ covers 

under alternative assumptions of the true perctmtage not preferring this 
type of cover, e.g.y 40 per cent, 50 per cent, 60 per cent, etc. With the 

aid of the OC curve we can calculate the probability of making either 

of the alternative decisions. In other words, the function of the OC curve 

is to determine whether or not the pr »posed sequential plan will yield 

satisfactory results. The cost of the analysis, J.e., the expected size of 

the sample, is given by the ASN 

curve. 
Ideally, the value of the OC' ^ '.j)a- 

curve Lp would be 1 for all true \ 

values of the unknown parameter \ 

p equal to or less than the accept- : 

ance value po, and would be 0 for \ 
all true values of p equal to or more \ 

than the rejection value pi, as q|_... 

shown by the heavy line in Fig. 14. ^ Po P, ^ 
The area between po and pi is a Vm. 14. 
zone of indecision. In the ideal 

case, the 0(' curve would drop abruptly upon entering this zone, whose 

width would then be reduced to zero. 

In actual practice, however, the vagaries of sampling rule out this 

ideal possibility, and the OC curve has the form of the dotted line in 

the figure. The difference between the value of the dotted line at po 

and 1 is the probal)ility of an erroneous decision at that point, /.e., the 

probability of rejecting the hypothesis when it is actually true. This is 

our type I error. We shall call this probability a; it was 0.10 in the pre¬ 

vious example. Similarly, the difference between the value of the dotted 

line at pi and zero is the type II error, the probability of accepting the 

hypothesis when it is actually false. We shall call this probability in 

the previous example was also 0.10. These probabilities can be made 

arbitrarily small by increasing the probabilities of a correct decision. 

However, the greater is the probability of a correct decision, the larger 

must be the size of the sample. The determination of these probabil¬ 

ities depends upon the particular problem and is at the discretion of the 

researcher. 

The computation of the entire OC and ASN curves is not required in 

most practical problems. Only a few readily attainable values of these 

curves are used in practice. The reason for this is that in most problems 

the expected sample sizes when p is equal in turn to the two critical 
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values, po and pi, are greater than the expected sample sizes for any 

value of p less than po or more than pi, respectively.' Hence, in order 
to choose between the sequential procedure and the conventional one, 

it is sufficient to know the expected sizes of the sample when p is equal, 

in turn, to these two critical values. 
The values of the OC curve used in computing the two expected sizes 

of the sample are the probabilities of accepting the hypothesis when the 

true value of the characteristic is assumed to be equal, in turn, to the 

critical value for acceptance and to the critical value for rejection. How¬ 

ever, these values are precisely the fixed predetermined accuracies with 

which the decision is desired. Thus, in the example of the magazine 

covers, the probability of accepting the hypothesis that 45 per cent or 

less of subscribers like artists’ covers when it is true is 0.90, the pre¬ 

determined confidence coefficient; and the probability of accepting the 

hypothesis when the true percentage is 55 per cent is 0.10.^ 

The mode of application of sequential analysis is always the same, 

being essentially that outlined with reference to the preceding illustra¬ 

tion. After the two critical values, po and pi, and the probabilities of a 

correct decision have been determined, the average sample numbers for 

the sequential process are computed and compared with the sample size 

required by the fixed sample. If the maximum of the two average sample 

numbers at p == po and p = pi is sufficiently below the number required 

by the fixed sample to warrant using sequential analysis, the acceptance 

and rejection numbers are computed and an operating schedule is pre¬ 

pared. The field supervisor then takes over, and sampling begins. 

The successful application of sequential analysis does not necessarily 

require comparison of the cumulated sample value with the correspond¬ 

ing acceptance and rejection values after each new observation or inter¬ 

view. It is entirely permissible to compute this cumulated sample value 

(and the corresponding acceptance and rejection numbers) after each 

group of interviews.^ The size of the group depends upon the expected 

1 If p is believed to lie between p© and pi, the maximum average sample size will be 

greater than that obtained when p = p© or p = pi. The computation of this maximum 

average sample size is then more difficult, as it involves the determination of the maxi¬ 
mum point on the ASN curve. The present discussion is limited to the case when 
the true value of p is believed to be less than p© or more than pi, which would seem 

to be the most usual case in practical work. 

* If desired, the shape and curvature of the two curves may be estimated from a 
selected number of points on these curves. Five such points are immediately ascertain¬ 
able—the points at whi(;h’ the unknown parameter p equals 1,0, the two critical values, 

and the slope of the acceptance- and rejection-number lines. For a further discussion 

of this subject, see Statistical Research Group, op. dt. 
® The effect of this procedure upon the seqiMuitial process is to increase the expected 

size of the sample with the size of the group and to decT('ase the probability of an 

erroneous decision. 
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size of the sample and \ipon the discretion of the researcher. If it is felt 

that a decision is likely to be reached with a small sample, cumulated 
values may be computed after every five or ten interviews beginning, say, 
with the twentieth interview. In this respect the average sample numbers 
of a particular problem are extremely useful; the lower the average sample 
numbers, the more frequently should cumulative comparisons be made. 
Where possible, the frequency of inspection should be increased as the 
size of the sample approaches the average sample numbers. Thus, if 
the lowest average sample number (when p equals po and when p equals 
pi) is 500, one inspection rule might be to compare the cumulated sample 
values with the acceptance and rejection numbers every 50 interviews up 
to the 300th interview, every 25 interviews from the 300th interview to 
the 450th interview, and every 10 interviews thereafter. 

If the sample values are cumulated at the end of each day’s inter¬ 

viewing, as is frequently convenient, acceptance and rejection numbers 
could not be computed beforehand, as there is often no way of telling 
exactly how many interviews will have been made at the end of each 

successive day. This presents no difficulty, however, as the required 
critical values can easily be computed by the field supervisor at the 
necessary time. The acceptance- and rejection-number formulas are 

reducible to the simple linear form, Y = a + 6X, so that given a and 6, 
anyone with the most rudimentary knowledge of algebra can obtain the 
acceptance or rejection number K, knowing the cumulated size of the 
sample, X. 

Though the mode of application is always the same, the specific for¬ 
mulas to be used in particular sequential problems vary with the nature 
of the problem. Where discrete measurements are involved, e.g.j yes-no 
responses or like-don’t like answers as in the previous illustration, 
a different set of formulas is used than where continuous, or scale, measure¬ 
ments are made. Determining whether at least 55 per cent of sub¬ 
scribers prefer photographic covers to artists’ c.overs requires formulas 
different from those used in testing whether at least 45 per cent but not 
more than 55 per cent of the subscribers prefer photographic covers.^ 
In some instances, the necessary formulas have not yet been derived. 
However, in the majority of commercial research problems of this nature, 
the formulas do exist. Formulas for computing the average sample 
number and the acceptance and rejection numbers for five of the more 
common types of problems are presented on the following pages. A more 
detailed discussion of these types of problems together with computational 

aids, will be found in the Statistical Research Group publication (op. c/0- 

' This test could be used to determine whether sentiment is equally divider! on the 

subject, and consequently, whether it might not be best to alternate photographic 

covers with artists' covers. 
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3. FORMULAS AND PROCEDURES FOR VARIOUS SEQUENTIAL PROBLEMS 

Case I. The Significance of an Attribute 

The problem is to test whether the proportion, ratio, or percentage of 
the population possessing a given attribute is above or below a certain 
critical value p. Two critical values, pi greater than p and po less than 
p, are chosen at the points where the possibility of making a wrong de¬ 
cision when p lies between these limits is considered to be of little practical 
importance. In other words, the seriousness of an error in estimating 
the true value of p on the basis of the sample is assumed to increase as 
the difference between the true percentage and p increases; this is the 

usual case in commercial research. 
For example, in the illustration on page 158, a pn liibitively large 

sample would be required to establish the significance of a veiy small 

margin of preference, e.g.^ a 51 per cent preference as against a 50 per 
cent preference. Therefore, the researcher must decide at what point an 
erroneous conclusion as to the true preference would have a significant 
effect on the circulation of the magazine.^ In this example, the critical 
points were set at 55 and 45 per cent, meaning that it is felt that no great 
drop in the magazine’s circulation is likely to ensue from a policy of 
alternating types of covers so long as the margin of preference between 
the two types of covers is less than 10 per cent. However, if the margin 
of preference is 10 per cent or more, the magazine considers it prudent 
to make more extensive use of the more popular type of cover. 

In addition to setting these critical points, it is also necessary to 
determine the degree of confidence with which a correct decision is desired. 
In other words, how great a risk are we willing to take of having the 
sample yield a faulty decision? Two quantities have to be determined 
in this respect: a, the probability of rejecting the hypothesis that p 
equals po (or less) when p actually equals po, and j3, the probability of 

accepting the hypothesis when p really equals pi (or more). Both these 
quantities have to be determined beforehand. 

In our magazine-cover example, the probability of securing a correct 

decision was placed at 0.90, thereby setting the probability of either type 
of faulty decision at 0.10. Since the magazine was already employing 
both covers, the risk of mistakenly concluding either type of cover to be 
the more popular would appear to be equally great. If, say, photo¬ 
graphic covers had been employed almost exclusively in the past and the 
use of artists’ covers would entail heavy additional expense, the magazine 
would naturally be relatively more anxious to avoid a faulty acceptance 
of the popularity of artists’ covers. As the example is set up, this would 

1 The determination of what is a significant effect is another item that must be left 

to the judgment of the researcher. 



SEQUENTIAL ANALYSIS: A NEW TOOL FOR RESEARCH 165 

mean that a would be lowered relative to e.g., to set a = 0.02 and 

^ = 0.05. 

Given these four quantities, po, Pi, of, 0, the expected size (ASN) of 

this type of sequential sample is computed from the following formula: 

Expected size of sample 
L, log [g/(l - g)] + (1 - L,) log [(1 - g)/a] 

p log (pi/po) + 0 - p) log [(1 ~ Pi)/(1 - Po)] 

Lp is the OC curve, the probability of accepting the hypothesis that p is 

le^ss than or equal to po depending upon the true value of p. The hypoth¬ 

esis is taken to be that p equals 7>o (or less). Now, the probability of ac¬ 

cepting this hypothesis when p equals po is 1 — a, since a is the probability 

of rejecting the hypothesis when it is true. Similarly, the probability of 

accepting the hypothesis that p equals po when p actually ecjuals pi 
is jS, since p is defined as the probability of accepting the hypothesis when 

it is false. The expected size of the sample is then obtained by substituting 

the values of Lp when p equals po and pi, in turn, into the above for¬ 

mula. 

If the highest of the two sample sizes computed with these formulas 

is considered to be sufficiently below the size of the corresponding fixed- 

size sample to warrant the use of sequential analysis, the acceptance and 

rejection numbers for the operation are computed from the following 

formulas: 

Acceptance number An 

Rejection number Rn 

log [i3/(l - a)] 

log [(1 - p)/a] 

log 
>l(l — Po)' 
_po(l — Pi) 

+ n 

+ n 

log [(1 - po)/(l - pQ] 

log 
>i(l - Po)' 

_Po(l - Pi) 

log [(1 - Po)/(l - Pi)] 

log 
'Pl(l — Po)' 
_Po(l - Pl)_ 

where n is the size of the sample. 

For each sample size where inspection is made, the cumulative number 

having the given attribute is compared with the corresponding acceptance 

and rejection numbers. If this sample value is between the acceptance 

and rejection numbers, sampling is continued; if the value is less than or 

equal to the acceptance number, the hypothesis that p is less than or 

equal to po is accepted, and if the value is equal to or more than the 

rejection number, the hypothesis is rejected. 

As noted previously, this procedure may be carried out either in 

chart or in table form; the latter is shown in Table 13. 

The values for Cols. (2) and (4) are computed for each sample size 

(n = 1,2,3,...) with the aid of the acceptance- and rejection-number 

formulas. Column (3) is based on the sample observations, and values 
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Table 13. Table Form for Carrying Out a Skouential Analysis 

(1) 

Size of sample 

n 

1 
2 
3 
4 
5 

(2) 

Acceptance number 

A, 

(3) 
Cumulative number 

passessing the particular 

attribute 

(4) 

Rejection number 

Rn 

continue to be recorded in this column until its value exceeds a rejection 
number or falls below an acceptance numl)er, at which point sampling 
is stopped. 

If a chart is employed, the acceptance- and rejection-number curves 
are drawn on the chart with sample size on the horizontal axis and the 
cumulated values on the vertical axis, as shown in Fig. lo. 

As sampling progresses, the 
cumulated values of the sample 
observations, [Col. (3) of Table 13], 
are plotted on the chart, as shown 
by the dotted line, and sampling 
continues until the dotted line 
intersects one of the two ‘‘boundary 
lines.'^ An illustration of the use 
of this chart in an actual example 
is given on page 178. 

Sample Size (n) computation of the expected 
Fio. 16. Chart form for sequential analysis, acceptance- and 

rejection-number formulas is considerably simplified by making use of 
the frequent repetitions of identical terms. This is best accomplished 
by first computing the following four quantities: 

a = log- 
a 

L 1 1 — a 6 = log — 

, = log| 
A = log p ~ Pi 

- V9 
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Values of a and b for all combinations of a and 0 from 0.01 to 0.10 

may be found directly from Appendix Table 10. If no subscript follows 
the word log, either common or natural logarithms may be used, pro¬ 
vided the same logarithmic base is employed consistently in any given 
problem. Natural logarithms are employed in some problems (see 
page 171) because of the considerable simplifications that result. 

The four required formulas reduce to the following readily computable 
forms: 

(Expected size of sample I a{a + b) — h 

when = po + (1 ~ Po)h 

(Expected size of sample 1 _ a — + b) 

when p = Pi j “ pifif + (1 — pi)h 

Rn 
a 

g - h 
+ n 

-h 

g - h 

Case II. The Significance of a Variable: One-sided Alternative 

Instead of testing whether a given proportion of the population 
possesses a particular attribute, it may be desired to test the value of a 
characteristic involving continuous measurement, e. gr., height, income, 

per-capita consumption, etc. In other words, one may want to know 
whether the true value of a certain characteristic, say, per-capita con¬ 
sumption of Y cereal in farm areas, is above or below a certain critical 

value, which we shall denote by X. 
Except for the fact that continuous measurements are involved instead 

of dichotomous replies, this problem is much the same as the preceding 
one. The procedures for carrying out this sequential analysis are identical 
with those explained in the preceding section. The unknown value of the 
parameter is now designated as X, instead of p. The critical upper 
limit is Xi, instead of pi, and the critical lower limit is Xo instead of 
Po. Correspondingly, the probability of accepting the hypothesis that the 
true value of the mean is Xo is denoted by L^o- « and retain the same 
meanings as before. 

The one new quantity that enters into this problem is the standard 
deviation of X, which we denote by <r. To carry out the analysis, the value 
of (T must be known beforehand, either from previous sample surveys or 
from related information. However, this restriction—that the value of <r 
must be known—is not too serious where a number of surveys are, or have 
been, carried out, for the value of a for the same population usually changes 
very little relative to the mean value over a period of time. 
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The formula for the ASN curve is 

Expected size _ 2<j2 <^)] + (1 — logg [(1 "" ff)/«] 
of sample Xo — Xi + 2(Xi — Yo)X 

The expected sizes of the sample when X = Xq and when X = Xi are 
obtained by substituting the appropriate values for Lx, as explained in the 
previous section. 

The acceptance and rejection numbers for the operation are computed 
from the following expressions: 

Acceptance number An 

Rejection number Rn 

+ n 
^0 + 

2 

Xo 4 f- - 

The operation is carried out in the same manner as before. And, as 
before, computational aids are contained in the Statistiral Research Group 
publication (op, cit). 

As in the preceding section, computational simplifications may be 
effected by computing the following quantities beforehand: 

, 1 ^ , 1 -a 
a = log, b = log, —— 

^ "XT 7 ^0 4* 
c = Ai — Ao, a =-2- 

The required formulas then reduce to the following expressions: 

(Expected sample size) 
[ when = 1^0 I 

(Expected sample size! 
I when X = Xi ) 

^2 "h b) — 6 
c(Xo-d) 

^2 ^ ~ + b) 
c{X,-d) 

An =-4- nd 
c 

Rn 4" 

Case in. The Significance of the Difference between Two Percentages 

A frequently employed procedure in testing the relative superiority of 
two alternative items or products is to give one product to one random 
sample and the other product to another random sample and simply ask 
the members of each sample whether or not they like the particular product. 
If the percentage of sample 1 favoring product A is significantly greater 
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than the percentage of sample 2 favoring product B (the numerical mean¬ 
ing of significantly greater being established in advance), product A is 

assumed to be the more popular of the two. Thus, in the magazine-cover 
example, one random sample of subscribers might be questioned as to their 
liking for artists’ covers and another randomly selected sample might be 
questioned as to liking for photographic covers. If the percentage of the 
sample liking artists’ covers exceeds the percentage of the other sample 
liking photographic covers by, say, 10 per cent or more, it may be assumed 

with a certain degree of confidence that artists’ covers are more popular. 
This type of problem differs from case I in that there are now two 

samples and two distinct percentages to be compared. These two per¬ 

centages are pi, the percentage of sample 1 liking product A, and P2, the 
percentage of sample 2 liking product B. The preference of sample 1 for 
7ts product may be measured by the ratio of the per cent liking the product 

to the per cent not liking it, i.e., pi/(l — pi), which we shall denote by ki. 
In a similar fashion, the relative preference of sample 2 for its product is 
k2 = P2/(l — P2). Hence, the relative superiority of product B over prod¬ 

uct A may be expressed as the ratio of these two preferences, ^2^1, which 
we shall call u. Product B is the more popular, the more u exceeds 1, 
and product A is the more popular, the more u is less than 1. 

It is in terms of this parameter u that the sequential analysis is carried 
out. A critical value wi, greater than w, is chosen by the researcher at the 
point where he considers an error of practical importance would result 
if product A were erroneously assumed superior to product B and the 
true value of u is above Ui. A critical value Uo, less than w, is chosen where 
an error of practical importance would result in mistakenly assuming 
product B to be the more popular of the two. As before, the risk of the 
latter error is assigned a value a, and the risk of the former error is assigned 
a value 

The sequential analysis is conducted by pairing the interviews of the 

same order in both samples and discarding those pairs of interviews that 
voice similar opinions, i.e,^ both likes or both dislikes. Only those pairs 
of interviews with dissimilar opinions are used for comparative purposes, 
the logic being that if, say, the nineteenth member of sample 1 dislikes 
product A and the nineteenth member of sample 2 dislikes product B, no 
indication is obtained of the relative popularity of the two products by com¬ 

paring these two interviews. Hence, the test procedure consists of cumu¬ 
lating the number of pairs of interviews where product B is liked and prod¬ 
uct A is disliked until this value falls below (or equals) the acceptance 
number for the hypothesis that product A is superior, or exceeds (or equals) 
the rejection number. These acceptance and rejection numbers are based 
on the total number of dissimilar pairs of interviews, and are computed 
from the following expressions: 
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Acceptance number Ax, log [/3/(l - g)] j log [(1 + Mi)/(1 + Mo)l 
log Ml - log Mo ^ log Ml - log Mo 

Rejection number R, = < logl(l+_y.)/(l + «o)] 
log Ui - log I/O log 1/1 - log I/O 

where t indicates the number of dissimilar pairs. 
The ASN curve for this problem is given by the following formula: 

Expected size 1 _ 
of sample | 

Lu log [/3/(l - a)] + (1 - Lu) log [(1 - ff)/a] 

[(rTi^]’°«[Ml(i + S] + [(T+ii)] 

This formula yields the expected number of dissimilar pairs of interviews 
(t) before a decision is reached. The total expected size of each sample, 
similar pairs plus dissimilar pairs, is obtained by dividing the above expres¬ 
sion by pi(l - P2) + P2(l “ Pi). 

Computational short cuts may be effected by means of the following 
substitutions: 

1 Ui J-log-, 

b = log 
1 — a 

~T~ 

The acceptance-number, rejection-number, and ASN formulas then 
reduce to the following expressions: 

A, = 
0 g 

R, = - + t- 
9 9 

ASN = 
-bLu + a (1 — Lit) 

[u/{l + u)] {g-h) + [l/h{l + u)] 

Case IV. The Significance of a Variable: Two-sided Alternative 

The previous cases have dealt with the problem of a one-sided alterna¬ 
tive, i.e.f where all the values for acceptance of the hypothesis are below the 
critical value p or ^ and all the values for rejection are above the critical 
value. Suppose, however, that it is desired to test whether the value of 
the particular characteristic lies within a particular central range of values. 

This is the sort of problem that arises most frequently in industrial 
acceptance inspection, where the maintenance of specified standards (such 
as density, tensility, etc.) at a certain level is essential for acceptance of 
the product. 

Though not so frequent as in industrial work, the same type of problem 
is also likely to be encountered in commercial research. For example. 
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suppose that for several years a real-estate agency has been basing its rental 

figures partially on the fact that the average rental of tenant-occupied 
dwellings in its area was $45 per month. Before setting its rental policy 
for the next year, the agency would like to make a spot survey to verify 
that this average rental figure has not changed appreciably in the past year. 

This problem is what is known as a two-sided alternative. The critical 
value Xo (= $45) is now in the middle. A range ar(>und this critical value 
is chosen within which the true value of X may lie without differing appre¬ 
ciably from the value under consideration. Thus, the real-estate agency 
may not consider a change in the avc*rag3 rental of less than $5 per month 
as a significant change for its purposes; in this case, the acceptance range 
would then consist of all average rental values between $40 and $50 per 
month. Any average rental figure outside of this range would lead to rejec¬ 
tion of the hypothesis that the average rental of tenant-occupied homes 
has remained at about $45 per month in that particular area. 

We shall denote this acceptance range by Xo + rf; for the real-estate 
agency this range is $45 ± $5. All values outside of Xo ± d would lead 

to rejection of the hypothesis that the true value of the characteristic is, 
for all practical purposes, equal to X. 

As in the previous example involving continuous measurement, the 
standard deviation <r of the characteristic being studied must be known. 
Then, when the risks a and /3 of arriving at a faulty conclusion have been 
set, we are ready to compute the expected size of the sample and the accept¬ 
ance and rejection numbers. 

The expected size of this sequential sample is given by the following 
two formulas: 

When X = Xo 

Expected size of sample 

When X = Xo ± d 

l^]xpected size of sample 

^,(1 - g) log. [g/(l - a)] + a log. [(1 - g)/a] 

~ + dXo ~ 0.693 

loge W(l ~ a)] + (1 - g) \oge [(1 ~ fi)/a] 
~3^d2 + d(X ± d) - 0.693 

It is not necessary to use the term d(X -|- d) in finding the expected 
sample size when X = Xo ± d, because it is the maximum of the two 
expected sample sizes that is being sought and this maximum is obviously 
reached when X = Xo — d. 

The acceptance and rejection numbers for this sequential operation are 
as follows: 

An 

Rn 

loge W(l - a)] + 0.693 . ^ d 
-d- 

log. [(1 - |S)/«] + 0.693 , _ d 

d ■'■”2 
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As before, the computation of these formulas may be simplified by look¬ 
ing up the value of a = log^ [(1 — P)/a] and b = log* [(1 — a)/fi] in 
Appendix Table 10. 

Corresponding to each sample size n, yields the maximum cumu¬ 
lated value for acceptance of the hypothesis, and Rn yields the minimum 
cumulated value for rejection of the hypothesis. However, in this case, 
the values of A „ and Rn are the cumulated absolute sums of the deviations 
from the mean value X. Hence, it is this sample quantity that must be 
used for comparative purposes.^ An appropriate table form for carrying 
out the sequential operation is shown in Table 14. 

Table 14. Table Form for Carrying Out a Sequential-analysis 

Case IV Operation 

(l) (2) (3) 

“1 

(4) 

r' 

(■■) (6) 
Sample size 

A' |X - A| 2 |x - X\ Rn n 

1 

2 
3 

The figures in Cols, (2), (3), and (5) are computed from the sample 
observations. The decision for acceptance, rejection, or continuation of 

the sampling operation is made on the basis of a comparison between the 
cumulated sample values in (^ol. (5) and the precomputed acceptance and 
rejection number’s in Cols, (4) and (6).^ 

Case V. The Significance of a Standard Deviation 

Another case that occurs more frequently in industrial quality control 

than in commercial sampling but that nevertheless deserves mention is 
testing the variability of a particular characteristic, as reflected by its 
standard deviation. For example, a survey taken 3 years earlier revealed 
the standard deviation of the ages of girls purchasing the product of a 
certain teen-age-cosmetics manufacturer at that time to be 1 year, his 
average customer having been 17 years old. Knowing from more recent 
surveys that the average age of his teen-age customers is now 16 years, the 
manufacturer desires to know, for advertising and publicity purposes, 

^ This assumes that the quantity (rf/<r) | S (X — X) | is greater than or equal to 3. 

If this is not so, an infrequent occurrence, we would have to compute in Col. 5 log« cosh 

WM x(X - X)]. 
* Actually, this is an approximation procedure, though it is valid for most practical 

problems. The exact procedure involves an extra step, which is described in 

Appendix B. 
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whether the age variability of his teen-age customers has risen to the point 
where the standard deviation is 1^ years or more. 

This type of problem is essentially the same as case II except for the 
fact that the roles of the mean and the standard deviation are now reversed. 
In the latter case, the unknown characteristic was the mean value, and 
the standard deviation had to be known before the sequential procedure 
was applicable; in the present case the unknown characteristic is the stand¬ 
ard deviation, and the mean value of the characteristic must be known 

before the sequential method can be applied. 
The procedure for carrying out the analysis is the same as in the first 

two cases of this section. Critical values (To and -i are selected for accept¬ 

ance and rejection of the hypothesis that the true value of a is (To, and 
or and /3, the risks of obtaining faulty conclusions, arc preset. In the case 
of the cosmetics manufacturer, cq would be 1.0 year, and ai would be 1.5 

years. The expected size of the sample is then computed from the follow¬ 
ing formulas: 

When a = (To 

Expected size of sample = 
(1 — a) log, [/3/(l — g)] + aloge [(1 — ^)/a] 

— (<ro/o^) — loge (o-f/<r§) ] 

When a = ai 

Expected size of sample = 
[g/(l - a)]+ (l-p) log, [(1 - fi)/a] 

VAi-Ol/ol) - 1 - loge (ff'l/ffo)] 

Acceptance and rejection numbers are obtained from the following: 

. _ 2 loge [<3/(l - a)] , „ loge W\/(rl) 
" (l/<7g) - (l/ai) ” (lAg) - (\/<A) 

,, 2 log,. [(1 — |3)/ar)] . loge (o-'i/o-?,) 

"" ■ ■ a7"4y - (l/Vf) (1/ag) - (l/Vf) 

Computation of these four formulas may be simplified by first com¬ 

puting the following quantities: 

a = log,. ~ h = loge ^ (from Appendix Table 10) 

11 , 

and substituting them in the reduced formulas as follows: 

When <r = (To 

Expected size of sample 
2 \ct(ci 4" 5) — h] 

I - \/t- s~ 
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When (T *• <ri 

V + j • t 1 2 [o - /3(a + 6)] 
Expected size of sample = —i—- 

t S X 

The sample quantity that is used for comparison with the acceptance 
and rejection numbers is the cumulated sum of squares of the deviation of 
the observations from the known mean value X, for it is in terms of this 
quantity that the acceptance and rejection numbers are expressed. A 
suitable working form for this problem is shown in Table 15. 

Table 15. Table Form for Carrying Out the Seoueittial Analysis 

(1) 
Size of sample 

n 

(2) 
Observed value 

X 

(3) 

X -X 

(4) 

(X-Jy 

(6) 

An 

(6) 

2(X - X)’ 

3
 

1 
2 

3 

Columns (5) and (7) are computed before sampling begins from the 
acceptance- and rejection-number formulas. Columns (2), (3), (4), 
and (6) are based upon the sample observations, the cumulated values 
of Col. (6) being compared with the acceptance and rejection numbers. 
If a chart form were employed, the computations of Cols. (2), (3), (4), 
and (6) would not be avoided, as the values from Col. (6) would be 
plotted on the chart against the acceptance- and rejection-number lines. 

4. THREE ILLUSTRATIVE EXAMPLES 

1. A meat packer is advised by his food experts that a new type of 
canned sausage they have perfected is far superior to his present brand of 
canned sausage. Not being in a position to produce both brands simul¬ 
taneously, the meat packer has to decide whether or not to discard his 
current brand in favor of the new sausages. He resolves to base his deci¬ 
sion upon a study of consumer preferences. He informs his commercial 
research department that in order to compensate for the additional cost 
involved in altering the production processes, at least 60 per cent of the 
customers would have to prefer the new type of sausage over the present 
one to induce him to make the change. On the other hand, if not more 
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than 40 per cent prefer the new type of sausage, he will discard these 
sausages altogether. 

It is decided to estimate the relative popularity of the two types of 
sausages among the customers, i.e., the population, by distributing sample 
tins of each sausage to a random sample of consumer units and then ascer¬ 
taining, by interviews, which of the two types oi sausage each consumer 
unit would purchase if it had the. choice. Because sausages constitute a 
large proportion of this meat packer’s business, he wants to have a high 

probability, say, 0.95, that the relative popularity findings of the sample 
truly reflect the actual situation in thf= pc pulation. 

By our classification, this is obviously a case 1 problem (though note 

that if each sausage were distributed to a separate random sample and the 
liking of the two samples compared, this would have been a case III prob- 
i^oi). Consequently, we know that if sequential analysis were employed, 

the expected size of the sample is given by the formula on page 165. Now, 
when p = po == 0.40, the probability of accepting the hypothesis, Lp^ is, 
by assumption, 0.95; when p = pi = 0.60, the probability of accepting the 

hypothesis is, similarly, 0.05. In this case, a and jS, the probabilities of 
erroneous decisions, are equal to each other.^ The expected sizes of the 
sample are now obtained by substituting these values in the formula on 
page 165, and using Appendix Table 10 as follows: 

When p = 0.40 

Expected size of sample 

When p = 0.60 

Expected size of sample 

0.95 log (0.05/0.95) + 0.05 log (0.95/0.05) 

0,40 log (0.60/0.40) + 0.60 log (0.40/0.60) 

0.05 log (0.05/0.95) + 0.95 log (0.95/0.05) 
0.60 log'(0.60/0.40) + 0.40 log (0.40/0.60) 

33 

33 

By applying the usual methods it can be determined that the conven¬ 
tional fixed-size sample would require about 67 consumer units and corre¬ 
sponding interviews, if p is 0.40 or 0.60, and an error of not more than 
5 per cent is to be tolerated. It is therefore decided to apply sequential 
analysis, as its use would seem to reduce the size of the sample substan¬ 
tially, with a corresponding reduction in cost. 

' In cases such as this one, the manufacturer is often more desirous of avoiding the 
rejection of the hypothesis when it is true than of avoiding the acceptance of the hy¬ 

pothesis when it is false. Thus, if the sample leads the meat packer to the faulty 

conclusion that the new type of sausage is preferable, he will be caused a great deal 
more inconvenience and loss in altering his production processes, marketing the new 
product, starting a new advertising campaign, etc., than if he continued to produce 

the old type of sausage on the erroneous indication by the sample that consumer units 

preferred these sausages. Allowance for the greater potential loss arising from one 
type of erroneous decision can be made by reducing the probability of making that 

particular type of error. In this example, that means to reduce the value of a relative 

to the value of c.g., let a — 0.03 and /3 = 0.05, instead of a = /3 = 0.05. 
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The acceptance and rejection numbers for the operation are computed 
by substituting the appropriate values in the formulas on page 165. 

(Acceptance) _ log (0.05/0.95) log (0.60/0.40) _ •> oo i n 
number A, , /0.60 X 0.60\ . /0.60 X 0.60A ~ ^ » 

'°*(oSn<a4oj '”5(0.40 X 0.40) 

I Rejection | _ log (0.95/0.05) log (0.60/0.40) 

Inumber “ ' /0.60 X 0.60\ ^ ”, /O.GO X 0.60\ 

^°^V0.40 X 0.46j ’®«V0.40-X().40j 

Here, An indicates for each sample size n the maximum number of 
consumer units preferring the new type of sausage consistent with the 
hypothesis that not more than 40 per cent of the consumer units prefer this 
type of sausage. Similarly, Rn indicates for each sample size the minimum 
number of consumer units preferring the new type of sausage that will 
permit the researcher to conclude that at least 60 per cent of the consumer 
units prefer these sausages over the present ones. 

It is decided to commence the sampling operation by distributing sample 

tins to 20 consumer units. After they have been interviewed and their 
preferences tallied, sampling is to continue by distributing sausage tins to, 
and interviewing, successive groups of 10 additional consumer units until a 
decision is reached.^ Hence, acceptance and rejection numbers are needed 
for n = 20, 30, 40, 50, etc. The required critical values are obtained by 
substituting these values for n in the above equations; the results are 

shown in Cols. (2) and (4) of Table 16. 

Table 16. Sequential Analysis of Sausage Problem 

(1) 

Size of sample 

n j 

(2) 

Acceptance number 

A-n 

(3) 
Cumulative number of 

consumer units pre- 

fei ring new sausages 

(4) 
Rejection 
number 

R, 

20 6 8 14 
30 11 14 19 

40 16 22 24 

50 21 30 29 

60 26 34 

70 31 39 

80 36 44 

90 41 49 

100 46 54 

^This operation assumes that no time trend in consumer preferences is present 

while the sample data are collected. Thus, if a high-powered advertising campaign in 
favor of the new sausages causes consumer preferences to shift while sampling is going 

on, biased results may ensue. If the presence of such a time trend is suspected, the 

case III procedure, which allows for such trends, should be used. 
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The data obtained from the sampling operation are shown in Col. (3). 
At the end of 50 interviews, the cumulated number of consumer units 
preferring the new type of sausage exceeds the rejection number for that 
sample size. The meat packer is thereupon advised to replace the present 
sausages with the new type, as the sample indicates with 95 per cent confi¬ 
dence that at least 60 per cent of consumer units i^refer this type of sausage. 

2. A medium-priced-clothing chain organization is thinking of locating 
a store in a certain middle-class neighborhood in a large city. From 

experience it knows that its chances of success are likely to be good in those 
neighborhoods where the average expur^diture on clothing per family is at 
least $400 per year, and that its chances for success are low when the 

average family clothing expenditure is less than $350 per year. The 
research department is requested to determine on the basis of a sample 
survey in which of these clothing-expenditure classes this particular neigh¬ 

borhood is likely to be. 
From past experience, the standard deviation of average annual family 

clothing expenditure is known to be, say, $100. The manager of the chain 

organization wants to have at least a 0.95 probability that the sample will 
not indicate the average clothing expenditure to bo $350 or loss per year 
when it is actually $400 or more, and he wants 98 per cent confidence that 
the sample will not lead him to believe that the average clothing expendi¬ 
ture is $400 per year when it is really $350 or less. The latter error would 
tend to prove more costly because it might lead to heavy outlays on estab¬ 
lishing a store in the neighborhood only to have it subsequently fail. 

The main difference betwcnm this problem and the previous one is that 
continuous measurements are now involved, ?.e., dollar expenditures, 
instead of dichotomous replies. Hence, the expected sample size for the 
sequential operation is given by the formula on page 168, which, when 
applied to the present data, yields the following results: 

When X = 350 

(Expected 1 _ onoov (0.05/0.98) + 0.02 log. (0.95/0.02) _ 
(sample size) ^ ^ (350)2 _ (4qo)2 + 2(400 - 350) 350 

When X = 400 

(Expected 1 ^ 0.05 log, (0.05/0.98) + 0.95 log. (0.95/0.02) ^ 
(sample size) ^ ^ (350)^ - (400)2 + 2(400 - 350) 400 

The acceptance and rejection numbers for the sequential operation are 

computed from the equations on page 168 to be 

An = -595 + 375n 
Rn = 772 + 375n 
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The acceptance and rejection numbers computed from these equations 
are to be compared with the cumulated sum of the sample family clothing 
expenditures. In other words, the sample value of any particular sample 
size to be used for comparison is the sum of the family clothing expenditure 
figures obtained from all the previous interviews. 

Sample Size (n) 
Fig. 16. Seciuential analysis of clothing expenditure problem. 

In a problem like this one, where the interviews are not usually made 
in predetermined groups, it is perhaps more convenient to compare the 
cumulated sample data with the corresponding acceptance and rejection 
numbers by means of a chart rather than the table form utilized in the 
previous example. Such a chart is presented in Fig. 16. Sample size (n) 
is indicated on the horizontal axis and the cumulated dollar expenditure 
values on the vertical axis. The acceptance and rejection curves are the 
two diagonal lines on the chart. As successive interviews are made, the 
cumulated family clothing expenditure values are plotted on this chart, 
and sampling continues until the sample curve intersects the acceptance 
curve or the rejection curve. 

In this example the sample curve, as indicated by the dotted line on 
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the chart, intersects the rejection curve after 34 interviews had been made. 
Consequently, it would be inferred that the average annual clothing expen¬ 
diture of families in that particular neighborhood is $400 or more, and 
hence, that it might be desirable to locate a store in that neighborhood. 

3. As a final example, let us consider the application of sequential 
analysis to the problem of determining the relative preference for artists' 
covers versus photographic covers by showing each type of cover to a sep¬ 
arate random sample. This is a case III problem. Let pi be the percent¬ 

age of the one sample liking photographic covers; k\ is then pi/(l — pi). 
Let p2 be the percentage of the other sample liking artists' covers; k2 is 
then p2/(l — P2). 

We are given that at least 55 per cent of subscribers must favor one 
cover before it can be adv ocated for extensive usage. In terms of the 
present problem, this statement may be interpreted to mean that a mini¬ 

mum 10 per cent differential must exist between pi and p2 before either 
cover can be assumed to be definitely superior to the other and before an 
error of practical importance would be made in erroneously concluding 
one type of cover to be superior. Now, if this (minimum) 10 per cent 
differential is in favor of artists' covers, the lowest value u could have is 
about 1.5;^ this is our value for u\. If the differential is in favor of photo¬ 
graphic covers, the maximum value u could have is about 0.67,^ which is 
our value for Uq. The errors of mistakenly acjcepting the hypothesis that 
u is 0.67 or less (/3), /.c., that photographic covers are more popular, and of 
mistakenly concluding that u is 1.5 or more (a), /.c., that artists' covers are 

more popular, are both set at 0.10. 
The expected numbers of dissimilar pairs of interviews when u equals 

Uq and Ui, in turn, are computed from the formula on page 170. 

When u = 0.67 

Expected number 
of dissimilar pairs] 

0.9 log (0.1/0.9) + 0.1 log (0.9/0.1) 

0.67 , (\.hX\.Wj\ \ 
1.67 VO.67 X 2.5/ Vl-67/ \ 2.5 / 

24 

When u = 1.5 

{Expected number^ 
of dissimilar pairs] 

0.1 log (0.1/0.9) + 0.9 log (0.9/0.1) 
= 24 

^ This minimum value occurs when jh is 0.55 and pi is 0.45, in which case 
A*2 = 1/fci — Actually, u could i>e over 1.5 with the true differential at less than 

10 per cent, e,g.^ pi = 0.90, p2 = 0.83; but then it might be felt that the preference 

for either cover is so high that the differential does not have much practical significance. 
The alternative, of course, would be to raise the value of U\. 

*This maximum value occurs when pi is 0.55 and />a is 0.45, in which case 

h = \/kt = Hi 
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The expected size of the total sample is obtained by dividing the above 
figure by pi (1 — P2) + P2 (1 — Pi), which is (0.55)2 ^ (0.45)2, or 0.5050. 
Hence, when u is 0.67 or 1.5, about 24/0.5050, or 48, interviews would be 
expected on the average, before a decision is reached by the sequential 
process. 

The acceptance and rejection numbers are obtained from the formulas 
on page 170. 

At = -2.7 + 0.5« 

lit = 2.7 + 0.5/ 

, An operational table for this problem is shown in Table 17, the accept¬ 
ance and rejection numbers for each successive pair of (dissimilar) inter- 

Table 17. Sequential Analysis op Magazine-coveh Problem 

(1) (2) (3) (4) (5) 
Number of Liking for Cunuilati d nimiber 

dissimilar A. 
— liking artists’, 

pairs Artists’ Photographic disliking 
fit 

t covers covers photographic covers 

1 Like Dislike 1 

2 Like Dislike 2 

3 Dislike Like 2 
4 Like Dislike 3 

5 Like Dislike 4 

6 0 Dislike Like 4 6 
7 0 Dislike Like 4 7 

8 1 Like Dislike 5 7 

9 1 Dislike Like 5 8 
10 2 Like Dislike 6 8 
11 2 Like Dislike 7 9 

12 3 Like Dislike 8 9 

13 3 Dislike Like 8 10 
14 4 Like Dislike 9 10 
15 4 Like Dislike 10 11 

16 5 Dislike Like 10 11 

17 5 Like Dislike 11 12 

18 6 Like Dislike 12 12 

19 6 13 

20 7 13 

views being listed in Cols. (2) and (5). The actual observations are 
recorded in Col. (3) and are cumulated in Col. (4). In the illustration 
above, the cumulated sum has equaled the rejection number at the eight¬ 
eenth set of dissimilar interviews, thereby indicating the superiority of 
artists’ covers. 
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Of course, the total size of each sample in this example was not neces¬ 

sarily 18 interviews, as the similar pairs of interviews ha^'e already been 
disregarded in constructing this table. 

The important thing to remember in this type of problem is to compare 
the interviews of both samples in the order in which they are taken, to 
compare interviews of the same order (the first interview of sample 1 with 
the first interview of sample 2, the second interview of sample 1 with the 
second interview of sample 2, etc.), and to record only those pairs of inter¬ 
views in the comparison table that contain opposite opinions. However, it 
is not necessary to make the comp^i^ iso* is with the acceptance and rejection 
numlx^rs after every single interview. So long as the order in which the 
inteiwiews in each sample arc made is kept intact, the comparisons may be 
made after a group of (pairs of) interviews have bocm collected. The only 
effect of this procedure is to increase the expected size of the samples and 

to decrease the probability of a faulty decision. 

6. A LIMITATION OF SEQUENTIAL ANALYSIS 

In some sequential problems, the cumulated value of the sample obser¬ 
vations may continue to oscillate betw^cen the two critical limits for a long 
time without exceeding the rejection number or equaling or falling below 

the acceptance number. To avoid such an undue prolongation of the 
sampling operation, it is customary to stipulate that the size of the sequen¬ 
tial sample shall not exceed three times its maximum expe(ded size when 
p equals po or pi. Although the probability of a correct decision is reduced 
in such cases, the reduction is only slight.^ If desired, it may be compen¬ 
sated for by increasing the probability of a correct decision. 

In these cases, a decision is made in favor of acceptance or rejection 
according to whether the final accumulated value of the sample observa¬ 
tions is below or above the mean value of the acceptance and rejection 
numbers for that particular sample size. For example, suppose that after 
a predetermined maximum of 99 interviews had been made in the sausage- 
preference survey, the cumulated number of consumer units preferring the 
new type of sausage was 51, as compared to the corresponding acceptance 
and rejection numbers, 45 and 53, respectively. Since the sample value 
51 is above the mid-point of the acceptance and rejection numbers, the 
conclusion would be that consumer units are more likely to prefer the new 
type of sausage than that currently sold. 

6. SEQUENTIAL ANALYSIS AND OTHER SAMPLING TECHNIQUES 

The reader may well ask at this point how the concept of sequential 
analysis fits in with the various sampling techniques (unrestricted sampling, 
proportional sampling, etc.) discussed in Chap. IV. The answer to this 

1 See Wald, ‘‘Sequential Tests of Statistical Hypotheses,’^ op. ciL, pp. 152-154. 
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question is that sequential analysis is supplementary rather than alterna¬ 
tive to the unrestricted and stratified sampling designs discussed in pre¬ 
vious chapters. Like all other sampling methods and formulas, sequen¬ 
tial analysis can be applied only where randomness is assured. At present, 
the method is used in unrestricted sampling. Where stratified sampling 
designs are employed, sequential analysis can be applied within strata but 
not between strata or over the entire sample. 

For example, suppose that the rural magazine referred to in the illustra¬ 
tion at the loginning of this chapter wants to determine whether the pref¬ 
erence for artists^ covers is 55 per cent or more for each of five income levels. 
If the sequential method were applied, each income class would have to be 
considered as a separate population, corresponding to which a separate set 
of cumulated sample observations would have to bo recorded Interview¬ 
ing in each stratum would continue until the cumulated sum of the sample 
observations in that stratum equaled or exceeded the rejection number or 
equaled or fell below the acceptance number. The sequential operation 
would not be completed until the five distinct cumulated sample sums met 

this requirement. If, say, the hypothesis was first accepted for the 
$2,000-83,000 income level, no more interviews would be made of members 
of this income class, but sampling would continue in the other four income 

classes until the sample observations warranted decisions for acceptance or 
rejection of the hypothesis in each class. 

In the dichotomous case, if the risks of error, ot and and the accept¬ 
ance and rejection limits, po and pi, are the same for all strata, only one set 
of sequential formulas would have to be computed for the entire operation. 
If any of these quantities differ from one stratum to another, separate sets 
of computations would have to be made for each stratum. In general, as 
many different sets of sequential formulas will have to be computed as 
there are different sets of specified risks and acceptance and rejection values. 
Thus, if the magazine wanted to determine whether the minimum pref¬ 
erence for artists^ covers is at least 55 per cent for the first income class, 
58 per cent for the second, 61 per cent for the third, 64 per cent for the 
fourth, and 67 per cent for the top income class, five different sets of sequen¬ 
tial formulas would have to be computed. 

In the same way sequential analysis could be applied to any typo of 
stratified sample, the general rule being to apply the method to the smallest 
row of strata in the sample, f.e., those strata where random selection has 
been employed. 

SUMMARY 

This chapter has discussed a recently developed sampling technique— 
sequential analysis—for carrying out alternative-decision problems. With 
the aid of sequential analysis the sample size may be reduced at times to 
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less than half that required by the customary sampling procedure. In 
sequential analysis the size of the sample is not predetermined but is 

dependent upon periodic comparison of the accumulated sample data with 
certain precalculated critical values. In order for a sequential problem to 
be carried out, four quantities must be known beforehand: the limits of the 

tolerance interval around the value of the characteristic that we are inter¬ 
ested in testing, the risk {a) with which faulty rejection of the hypothesis 

that the true value is at the lower end of the interval is to be avoided, and 

the risk (0) with which faulty acceptance of the hypothesis is to be avoided. 
Sequential formulas vary with the type of sampling problem. Identifi¬ 

cation of the sampling problem with the appropriate sequential formulas is 

extremely important. The sequential formulas for several of the most 
common types of problems have been presented and illustrated in this 
chapter. 

When applicable, sequential analysis supplements, rather than com¬ 
petes with, the various sampling techniques described in Chap. IV. In 
the case of stratified samples, sequential analysis can be applied only to 

each stratum separately, i.c., each stratum must be considered as a distinct 
population for which a separate set of sequential formulas is to be computed 
and a separate sequential operation is to be carried out. 

Sequential analysis can be employed only where examination of accumu¬ 

lated sample data is possible. At present, it is applicable primarily to 
alternative-decision problems where one is faced with a choice of one of 

two possible alternative actions. Sequential methods have also been 

developed for problems where the choice lies between one of a number of 
alternatives. 

The application of sequential analysis to problems of sample estimation 

is only a matter of time. In due course, one will be able to estimate popu¬ 
lation values from a sample within a predetermined range as well as with a 
given probability without having to know the population variance before¬ 

hand. However, even today, where sequential analysis can be employed, 
substantial savings in time and economy may be achieved relative to the 
conventional fixed-size sample. 



CHAPTER VIII 

PROBLEMS OF SAMPLE PRECISION 

This chapter considers the practical problems involved in selecting the 
type of sample design to use in a particular survey in order to achieve the 

maximum precision at minimum cost. In this chapter we shall see how the 

sampling theory and formulas developed in Chaps. IV and V can be applied 
in arriving at a solution to this difficult problem. The other inajo” techni¬ 
cal sampling problem, the avoidance of sample bias, is the subject of 

Chap. IX. 

1. SAMPLE DESIGN AND SAMPLE SIZE: GENERAL CONSIDERATIONS 

The primary objective of every sampling survey is to obtain tlie desired 
information with maximum validity and minimum cost. Abstracting 
from the problem of sample bias, this means to select that sampling method, 

or sample design, which will yield the lowest standard error of the estimate 
at the lowest cost. However, phrased in this manner, our objective is 
somewhat ambiguous, as there may be one method that will yield a lower 

standard error than other methods but at a relatively higher cost; even a 
zero standard error could be realized if there were no cost (and time) 
limitations at all. Which method is then preferable? In order to render 
this objective practicable, we rephrase it to say that the primary objective 

of every sampling survey is to obtain the desired information with maximum 

precision at a given cost or with a given precision at minimum cost (or, of 
course, a combination of the two). In other words, either the maximum 
allowable cost is given and it is desired to minimize the standard error(s) 
of the estimate(s) subject to this given cost, or the estimates may be 
required with a standard error not exceeding a stipulated figure and it is 
desired to obtain this standard error at the lowest possible cost. Which of 
these alternative criteria dominates a problem depends upon the conditions 
of the particular problem. If a research director is told to make a survey 
of consumer brand loyalty for the company's products at a cost of not more 
than $5,000, the first criterion is operative. If the research director is told 
to obtain the brand loyalty data with standard errors of not more than 

2 per cent of the estimates no matter what the cost, the second criterion is 
operative. If the research director is told to limit the standard errors to 
not more than 2 per cent of the estimates and not to spend more than 
$5,000, he is free to use either criterion and test the consistency of the 

184 
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requirement, t.e., to see whether it is possible to secure such small standard 
errors without spending more than $5,000. Actually, either criterion will 
lead to the same result, though, in practice, the first criterion is used most 
frequently in commercial sampling. 

In many instances, other restrictions also enter into a problem— 
mainly restrictions as to time oi to size of sample—that may either supple¬ 
ment or displace precision or cost requirements. For instance, an adver¬ 
tising director may want to know within 3 days^ time which of two slogans 

is the more popular. Here, the urgency of the time element outweighs 
all other possible criteria and iminedi^+eJy dictates the use of an unre¬ 
stricted random sample. Or a sampling organization may want to set up a 

continuous national consumer panel of 2,500 families. In this problem, 
sample size (and presumably, time) art' given, and it would be desired to 
minimize the standard errors of the estimates based on the panel data. 

In effect, sample size and cost are usually synonymous, for once the sample 
size has been set, the only other main (variable) determinant of cost is the 
method of collecting the data, and this is usually determined at the same 

time as is the sample size. Thus, in the case of a continuous national 
consumer panel, the mail questionnaire technique is the only practicable 
means of collecting the data. Consequently, it is usually possible to 

translate a predetermined sample size into a cost figure and then apply the 
first criterion. 

Where the element of time enters into the picture, it must be given 
primary consideration. In other words, all sampling methods that could 
not yield results within the given period are first eliminated, and one of the 
remaining sampling methods is then chosen on the basis of one of our two 
fundamental criteria. Suppose that a publisher desires to have an estimate 
of the potential market for a certain new magazine with a standard error of 
not more than 3 per cent within 4 weeks. In considering possible sampling 
methods, the researcher's first step is to eliminate all sampling methods 

that would require more than 4 weeks. If it is known that a dispropor¬ 
tionate stratified sample will yield the required 3 per cent standard error 
at the lowest cost given 6 weeks' time, this method must nevertheless be 
eliminated from consideration. The sampling method that is used is 
selected from the remaining possibilities as the one most likely to yield a 
standard error of not more than 3 per cent at the lowest possible cost within 
the 4-week period. 

Closely associated with this problem of the optimum sampling method 
is the question of sample size and sample allocation. Once the sampling 
method has been decided upon, the sampler must determine the sample 
size necessary to yield the required standard error at minimum cost. In 
cases where the sampling method is given, sample size is the primary con¬ 
sideration; the sampling method may be given beforehand either because 
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it is the practice of the organization to employ that particular method on 
all surveys, i.c., the machinery for applying the particular method is set up 
and it would be too costly for them to switch methods “midstream,^’ or 
because only one method is practicable. Some organizations employ pro¬ 
portional samples almost exclusively—notably the public-opinion polls; 
others employ area sampling almost exclusively—notably the U.S. Depart¬ 
ment of Agriculture and the Bureau of the Census. On a particular sur¬ 
vey, disproportionate stratified sampling may be cheaper, say, than area 
sampling—cheaper, that is, in the sense that the cost of setting up and 
collecting the data by the former method is less than the cost of setting up 
and collecting the data by area sampling. But since the area sample is 
already in operation, the cost of setting up the sample and collecting the 
data by the alternative method is more than thj cost of me'^ely cvllecting 

the data from the area sample. 

We shall see later that if the sampling method is selected by applying 
mathematical formulas, the size of the sample is simultaneously determined. 
If the sampling method is determined by subjective selection—in some 

cases the mathematical methods either are too complex or do not yield 
unique results—the size of the sample must be determined separately. 
However, in nearly all cases the size of the sample, as well as its allocation 
between strata, is uniquely determinable; the same thing is true in allocat¬ 
ing a stratified sample among the various strata. Because of this fact, the 
problem of sample size and optimum allocation is generally much simpler 
than that of selecting the most efficient sampling method. We shall 
therefore first consider this problem of correct sample size and then proceed 
to the more difficult problem of selecting the sampling method. 

2. SAMPLE SIZE AND OPTIMUM ALLOCATION 

In this section we assume that the sampling method (as well as the 
method of collecting the data) is given. Our problem then is how large the 
sample shall be in order to obtain the required precision. If a stratified 
sample is being used, there arises the associated problem of allocating the 
sample among the various strata to obtain the required precision; this is 
the problem of optimum allocation.^ Before going into the methods used 
to solve these two problems, let us first consider a method that has long 
been a stand-by of commercial researchers. 

The Rule-of-Thumb Method 

This method, the so-called rule-of-thumb method, consists of adding 

sample members until the cumulated value of the sample for the charac- 

^ The type of problem where the sample size is given and the sample is to be allocated 
among strata by that method (e.g.j proportional or disproportionate) which will yield 

maximum precision, is discussed in Sec. 3 (see p. 204). 
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teristic being measured approaches stability. The sampling operation 
continues so long as the cumulated sample value of the characteristic con¬ 

tinues to fluctuate back and forth. For example, the author tossed five 
coins 60 times and recorded the cumulated proportion of heads occurring 
on each toss, as shown in Table 18. 

Table 18. Cumulated ^^roportion of He* on Successive Tosses of 

Five Coins 
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Table 18. Cumulated Proportion of Heads on Successive Tosses op 

Five Coins—{Continued) 

Toss 
Number of 

heads 

Cumulated 
number of 

heads 

Cumulated 
coins 
tossed 

1 Cumulated 
proportion of 

heads 

38 2 94 190 0.495 
39 3 97 195 0.497 
40 5 102 200 0.510 
41 2 104 205 0.507 
42 2 106 210 0.505 
43 4 110 215 0.512 
44 3 !I3 220 0.514 
45 4 117 225 0.520 
46 1 118 ZiO 0.513 

47 0 118 235 0.502 
48 3 121 240 0.504 
49 1 122 245 1 0 498 
50 3 12.) 250 0.500 
51 5 130 255 0.510 
52 2 132 260 0.508 
53 I 2 134 265 0.506 
54 3 137 270 0.507 
55 1 138 275 0.502 
56 4 142 280 0.507 
57 0 142 ! 285 0.498 
58 2 144 290 0.496 
59 4 148 295 0.502 
60 2 150 300 0.500 

After about 50 observations the asymptotic tendency of the cumulated 
proportion to approach 0.5 becomes readily apparent. The additional 10 
observations confirm this tendency in that not only does the cumulated 

proportion fluctuate around 0.5, but the amplitude of the fluctuation 
steadily decreases as the number of tosses increases, as may be noted in 
Fig. 17. 

This rule-of-thumb method has been very popular in practical circles 
because of its simplicity and its nonmathematical nature. However, it is 
subject to two serious limitations that are generally overlooked in such 
circles. For one thing, how does one know when to terminate the sampling 
operation? The answer is, according to the proponents of the method, 
when the sample exhibits stability. But what is the criterion for such 
stability? Merely that the sample fluctuates about some particular value 
with decreasing amplitude. However, such a criterion is extremely sub¬ 
jective and may even be very misleading at times. For example, suppose 
that the data in the preceding table and chart do not represent tossed coins 
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but a recognition survey of the title of a certain movie,' each toss now being 
each set of five successive interviews. Not knowing that the true propor¬ 
tion is 0.50, the researcher would be strongly tempted to stop at the 
twenty-eighth or twenty-ninth set of interviews arid conclude that the true 
recognition is 0.45. For six consecutive sets of interviews—30 interviews— 
the sample proportion ho^^ers above and below 0.45; with a sample of 140 
to 145 people, all of them presumably drawn at random, one might very 

Number of Tosses 
Fio. 17. Cumulative proportion of heads obtained on (50 tosses of five coins. 

easily terminate the sampling operation at this point. Yet, to do so would 
be wrong. The fact that such instances can occur in a test conducted under 
near-perfect random conditions^ provides some evidence of what is likely 
to happen in human sampling. 

The second limitation is that the mere stability of the sample data does 
not guarantee that the sample is representative of the population being 
studied. For instance, suppose that a survey of the favorite shopping 
days of women was conducted by ringing doorbells in the daytime. In a 
very short while the field supervisor might find that the figures tend to 
stabilize at, say, 90 per cent preferring week-day shopping and 10 per cent 

' A survey made to estimate the proportion of the population recalling the title of 

the particular movie. 
* One indication of the randomness of the data is the nonsignificance between the 

distribution of heads in the 60 tosses and the expected (theoretical) distribution when 

a chi-square test is applied (see p. 278). 
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preferring to shop evenings and week ends. These results, though stable, 

are obviously not representative of all women, because those not at home 
in the daytime—primarily working women, most of whom must necessarily 
shop in the evenings and on week ends—are represented hardly at all in 
the sample. Stability of the sample data is indicative of representative¬ 
ness only when those being sampled are representative of the population, 
and even when this is true there is still the first limitation to consider. Too 

many times in the past have people mistakenly identified representative¬ 
ness with stability. 

Because of these two limitations, there is rarely any justification for 
using this method as an absolute determinant of sample size. If desired, 
it may be used to supplement the more precise methods presented below, 
though in most instances the sample results will have L'ecuine relatively 
stable before the sample-size quotas of the precise method have been filled. 
With a little study the researcher will find the precise method as easy to 
apply as the rule-of-thumb method, and a good deal safer. 

The Standard Method 

The precise method of determining sample size involves the use of the 
standard-error formulas presented in Chaps. IV and V. The principle 

upon which the method is based is very simple; namely, to substitute the 
relevant values in the appropriate standard-error formula and solve for the 
value of N rather than for the value of the standard error. In other words, 

our unknown variable is not the standard error but the size of the sample. 
The value of the standard error is now a preset constant—preset on the 
basis of the desired probability that a given range will include the true 
population value. The other variables in the standard-error formula, the 
unknown percentages or the standard deviation of the characteristic, are 
estimated from past experience and from the best data available. The 

estimation of the probable true values of the unknown characteristics is 
the single subjective factor in the process. In practice, it is usually wise 
to make conservative estimates of these characteristics, t.e., estimates 
that tend to increase the size of the sample. For example, for a given 
standard error of a percentage, the size of the unrestricted sample will be 
largest when p = 0.5. Therefore, if a certain percentage is thought to lie 
between 0.5 and 0.7, it would be more conservative to let p equal 0.5 for 
purposes of determining the required size of the sample. 

In application, the procedure is a little more complicated in signifi¬ 
cance-test problems than in straight estimation problems because of the 
necessity of taking into account the difference between the two samples. 
The following examples illustrate the method of determining sample size in 
both types of problems. 

1. An unrestricted random sample is to be taken in a certain city to 
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estimate the percentage of families willing to pay $250 or more to own a 
television set. It is desired to have a 0.95 probability that a range of 

5 per cent above and below the sample percentage will contain the true 
percentage. In other words, there should be 95 chances out of 100 that 
the sample value plus and minus 2.5 per cent accurately estimates the true 
percentage. It is estimated that, at most, this unknown percentage will 
not exceed 30 per cent, flow many families should be sampled? 

We know that the formula for the standard error of a percentage is 

cTp = \/pq/N. The most conservative vaiue for p is its highest probable 
value, namely, 30 per cent. Sir ce g - l — p,q must be 70 per cent. Now, 
in order for the confidence interval to have a 0 95 confidence coefficient, 

this interval must incliide the sample percentage plus and minus 1.96 
standard errors. We want this interval not to exceed 2.5 per cent on either 
Hivle of the percentage. Therefore, we have 1.96<7p = 2.5%, or 

Cp = 1.27%; this is the value we use for (Tp. 

Substituting these values in the standard-error equation, we have 

0.012- - 

or 

0.0()()1()12!) = 
0.21 
N 

Solving for N 

N = - 1 302 
^ 0.00016129 

The necessary size of the sample is, then, 1,302 families. With a sample 
of this size, the researcher knows that unless p exceeds 30 per cent, he will 
obtain an interval estimate having a range of not more than the sample 
percentage plus and minus 2.5 per cent that will have 95 chances out of 100 

of including the true value. If there is some fear in the researcher's 
mind that p might exceed 30 per cent, he could be ultraconservative and 
set p equal to 50 per cent. In that case, the reader can verify that the 

required size of the sample would be 1,550 families. 
2a. Suppose that instead of the percentage of families willing to buy, the 

average price a family is willing to pay for a television set is being estimated, 
under the same conditions as in the previous case except that the allowable. 
range of error is not to exceed the average price plus and minus $25. 
What is the necessary size of the sample? 

The standard error of the mean of a random sample is o-y = tr/y/N. 

By the same reasoning as before, with a 95 per cent probability of success 
we know that 1.96ory = $25, or o-y is $12.75. The only other quantity 
required is a, and its value must be estimated either from previous experi- 
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ence or, at the least, as a conservative guess. A conservative estimate 
would mean a high value for <r, since the higher <r is, the greater will be the 
required size of the sample. Suppose we have no previous information at 
all and we want to be ultraconservative. The (maximum) value of a might 
then be estimated by the following reasoning: Under present conditions 
(winter, 1948 to 1949), the great majority of families, at least 95 per cent, 
will be willing to pay anywhere from, say, $50 to $650 for a television set— 

95 per cent of those families who are willing to purchase a set. This 

$600 range must then include the mean value plus and minus 2 standard 
deviations, since this is roughly equivalent to 95 per cent of all families 
(actually it is 95.45 per cent). Therefore, 2 standard errors must equal 

$300, or a equals $150. 
Substituting in the standard-error formula and solving f(»r N, we have 

12.75 
150 

Vn 

N = = 139 (approximately) 

With a sample of 139 families the researcher is assured of obtaining the 
estimate with at least the specified precision, except for the unlikely possi¬ 
bility that a is greater than $150. If <r is actually less than $150, as is very 
likely the case, the estimate will be obtained with even greater precision. 

26. Suppose that a very conservative estimate of the lower limit of the 
average price that families are willing to pay for a television set is desired. 
In other words, the manufacturer does not care how high the true average 
price might be; he merely wants to know, with a 0.95 probability of being 
correct, how low it is likely to be, to guide him in setting a rock-bottom 
price policy. Assuming the same conditions as before, how large should 
the sample be? 

The reader will immediately recognize that this new problem involves 
the use of an asymmetrical confidence interval, as we are solely interested 
in estimating the lower boundary of the confidence interval, with 95 chances 

out of 100 of being correct. This is equivalent to a confidence interval of 
the mean minus 1.645 standard errors, since 45 per cent of the area on cither 
side of the mean of a normal distribution is between the mean and plus or 

minus 1.645(rx. Therefore, 1.645o'x equals. $25, or = $15.20. Solving 
for N in the standard-error formula 
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If the sample mean comes out to be $250, with a equal to $100 (and 
N = 100), the final estimate will be that there are 95 chances out of 100 

that the interval above $250 — (1.645) (100/\/l00), or $233.55, contains 
the true average price. 

3. A consumer panel is to be set up in the Pacific states to make periodic 
estimates of the average monthly canned-juice consumption per family. 
The panel is to be stratified by four city-size classes, (1) farm, (2) rural non¬ 
farm, (3) cities of 2,500 to 100,000 population, (4) cities of 100,000 and more, 

and it is stipulated that the over-all interval estimate must have a 98 per 
cent confidence coefficient within an interval of 0.4 can. From experience 
and from recent studies the size and the standard deviation of each of these 

strata is known to be as follows: 

Population Standard deviation of 

Stratum — .. -- monthly canned-juice 
WiCi 

number Absolute Relative purchase per family 
Pi w. 

1 1,250,000 0.125 2.6 0.325 

2 2,250,000 0.225 4.4 0.990 

3 2,500,000 0.250 4.4 1.100 

4 4,000,000 0.400 4.8 1.920 

Total. 10,000,000 1 1.000 4.335 

Because of the extreme variability in the values of o-^, a disproportionate 

stratified sample is to be set up. How large should the aggregate size of 
the sample be and how many sample members should there be in each 
stratum? 

From page 90, we know that the standard error of the mean of a dis¬ 
proportionate sample is 

= 

\ N 

The value of STTjV < is obtained from the preceding table. From the table 
of areas under the normal curve (Appendix Table 5), 98 per cent of the area 
about the mean is contained in the interval of the mean plus and minus 
2.33 standard errors, which corresponds to the specified interval of 0.4 can. 
Therefore, 2.33 standard errors must equal 0.4 can, or I standard error is 
0.172 can. Substituting in the standard-error formula and solving for N 

(0.172)* = 
(4.335)* 
' N 

„ 18.792225 
^ 0.029584 

= 635 
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The allocation of the 635 families among the four strata is readily 

obtained by the formula (page 90) Ni = {Wand is worked 
out in Table 19. 

Table 19. Optimum Allocation of 635 Families among the Four 
City-size Strata 

(1) 
Stratum number 

(2) 

Wiai/XWi(Ti 
(3) 

N X Col. (2) 

1 7.5 48 
2 22.8 145 

3 25.4 161 
4 44.3 281 

Total. 100.0 635 

Suppose this consumer panel is to be used for estimating a number of 
different characteristics, e.g.^ average monthly purchase of various groceries 

and drugs, place where purchase is made, brand loyalty, etc. The reader 
may then ask what figures should be used for the standard deviations of the 
various strata, o-i, if the value of in each stratum differs from character¬ 
istic to characteristic? The answer is to reduce the standard deviations 
of all the characteristics to a common denominator and then take a weighted 
average of the standard deviations within each stratum as for that stra¬ 

tum. For example, suppose the standard deviations shown in Table 20 
are known from past experience. 

Table 20. Standard Deviations op Various Characteristics within Strata 

(1) 

Stratum 

number 

(2) 
<r of average 

canned-juice 

purcha.'^e, cans 

(3) 
<r of average 

cold-cereal 

purchase, ounces 

(4) 
<r of average 

dentifrice 
purchase, dollars 

(5) 

(T of brand 

loyalty, per cent 

1 2.6 420 0.24 6.4 

2 4.4 360 0.27 5.8 

3 4.4 290 0.28 5.6 

4 4.8 250 0.25 5.5 

The best common denominator is obtained by expressing the standard 
deviation of each characteristic in each stratum as a percentage of the sum 
of all four standard deviations of that product, as is done in Table 21. 

The four within each stratum are now weighted to arrive at a com¬ 
posite estimate of <r<. The selection of the weights is at the discretion of 
the researcher and may be done in a number of ways. One method would 



PROBLEMS OF SAMPLE PRECISION 195 

Table 21. Relative Standard Deviations of Various Characteristics 

WITHIN Strata 

(1) 

Stratum 

number 

(2) 
a of average 

canned-juice 

purchase 

(3) 
a of average 

cold-cereal 
purchase 

(4) ■ 
<r of 

dentifrice 

purchase 

(5) 
<r of 

brand 

loyalty 

(6) 

1 16.0 3i.8 23.1 27.5 21.7 

2 27.2 27.3 26.0 24.9 26.5 

3 27.2 : 22.0 26.9 24.0 25.7 
4 29.6 1 IS.9 ' ^ 24.0 23.6 26.1 

Total. 100.0 ; iOO.O 100.0 100.0 100.0 

be to assign as weights arbitrary measures of the relative importance of the 
fcharacteristic in the survey. For example, if the researcher decides that it 
is twice as important for him to estimate canned-juice purchases as to esti¬ 
mate brand loyalty, which is in turn twice as important as the other two 

characteristics, weights of 4,2,1,1 would be used, respectively. The use 
of these weights leads to the cr* values shown in Col. (6) of Table 21. 

Another method would be to weight the food items by the relative pro¬ 
portion each item constitutes of the average family^s expenditure on all 
three items and assign some arbitrary weight to brand loyalty. The 
weights might even vary from stratum to stratum. The reader can 

undoubtedly devise a number of other weighting methods. The main con¬ 
sideration in the selection of the weighting procedure is to have the weights 
reflect the relative importance of each item to the successful attainment of 

the objective of the survey. 
4. Two unrestricted random samples of equal size are to be taken in 

two different cities, one in each city, to determine whether any significant 
difference exists between the two cities in the recognition of an advertise¬ 
ment. The researcher wants to have 95 chances out of 100 of discovering a 
significant difference if the two recognition percentages differ by at least 
7 per cent. Because of the widespread use of the advertisement, the 
researcher believes that the recognition in either city might be anywhere 
between 10 and 30 per cent. How large should each sample be? 

It will be recalled (page 121) that the test for significance in such a case 

involves the use of the statistic T 

rp ^ Vl - P2 

where 
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The use of a 5 per cent significance level in this problem means that T 

must be at least 1.96 standard errors before the difference can be adjudged 
significant. The minimum difference for significance, t.e., pi — p2, is 7 per 
cent. Therefore, must be 0.07/1.96, or 0.036. Now, pigi + p2?2 

will be greatest when pi and p2 are each equal to 0.3, that is, of course, 
assuming that there is no significant difference, the more conservative 
approach at this step. Substituting in the standard-error formula, we have 

0.036 = (0.42) 

or 0.42 0 42 
^ ^ (0.036)2 a0012% “ people 

6. Actually, the above procedure provides at best only a rough approxi¬ 
mation to the true answer, as it is subject to a number of theoretical objec¬ 
tions.^ For one thing, the standard error of the difference between the two 
percentages depends on the values of the percentages theniselves, which are, 
of course, unknown. It is therefore especially advisable to use the above 
method only for obtaining conservative estimates of the sample size, as 
was done above. Then the above objection is vitiated to a large degree. 

Still another reason for using values of p as close to 0.5 as possible is 
that the requirement of normality is not satisfied if one of the p^s is near 
0 or 1. In other words, the distribution of the difference between two per¬ 
centages is not approximately normal if the p^s are near 0 or 1, and then the 
procedure is no longer valid. The only exception is when N is very large. 

However, a more serious objection is the following: In effect, the above 
procedure indicates how large the sample size must be for a given difference 
(7 per cent in the above example) to be statistically significant at the desired 
probability level. In other words, a significant difference of a given 
amount is assumed to exist, and we then determine the requisite sample 
size for confirming this assumption. But in fact we do not know whether 
such a difference exists for, if we did, our problem would be answered then 
and there. The diflftculty is accentuated by the fact that the variance of 
the percentage depends on the estimated value of p. 

In such cases, a method recommended in the Statistical Research Group 
publication* is to be preferred. This method eliminates the need of using 
the variance formula for the difference between the percentages and, in 
addition, does not require estimates of each percentage. 

In passing, it might be noted that the sequential analysis procedures, 
if applicable, are far superior to the conventional method in dealing with 
such problems. Thus, the above example would be a Case III problem 
(pages 168-170). 

^ Statistical Research Group (reference 24) Chap. 7. The following paragraphs are 

based on this source, especially on pp. 255-261. 
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8. THE SELECTION OF THE SAMPLE DESIGN 

The selection of the proper sampling technique is probably the most 
basic problem in sampling analysis. As is indicated on the sampling organ¬ 
ization chart on page 43, this is the initial step in getting the operation 
under way. A poor or inadequate sample design can ruin a survey no 
matter how competently it is carried out. Though the knowledge of, and 
the ability to apply, the standard-error formulas for the various sample 
designs is extremely useful in selecting the proper design, a thorough under¬ 
standing of the logic behind each of these techniques is of fundamental 
importance. In a great man3^ cases sych an understanding of the basic 
precepts of the various sampling techniques enables one to select the proper 
technique without any recourse to mathematics. In other cases, where the 
mathematical method cannot be employed, subjective selection is the only 
alternative. 

This section is divided into three parts. The first part discusses the 
general considerations involved in selecting the proper sampling technique 
and indicates under what sort of conditions various sampling techniques 

are likely to be preferable. The second part presents the mathematical 
method of determining which of a number of alternative sampling tech¬ 
niques is likely to yield maximum precision at a given cost (or a given pre¬ 
cision at minimum cost). Several examples are used to illustrate the 
application of this method. The third part contains some comments on 
the practicability of the mathematical method and on the difficulties that 
may arise through its use. 

General Considerations 

The foremost consideration in any sampling problem is whether to use 
unrestricted sampling or some other type, f.e., stratified sampling, pur¬ 
posive sampling, double sampling.^ Unrestricted sampling has three major 
advantages on its side; in most cases it is faster, cheaper, and requires less 
knowledge of the population than any of the other techniques. Except for 
printing the questionnaire or interview form and determining how the 
sample members will be selected, no costly or time-consuming advance 
preparations need be made. The fact that all the returns are tallied or tab¬ 
ulated in the aggregate provides an additional saving in both cost and time. 

On the other hand, all the alternative sample designs require either 
more initial preparation, greater time in collecting the data, or greater 
time in editing and tabulating the returns. The specification of strata 
divisions and the subsequent tabulation of the data by strata is time- 
and cost-consuming when stratified sampling is employed. The selec- 

' These are the only alternative sample designs considered in this discussion. Other 

sample designs, such as*lattice designs, latin squares, etc., are not considered here 

because they are so rarely used in commercial sampling. 
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tion of just the right people in a purposive sample frequently proves 
quite difficult. And a double sample requires a good deal of time to 
take one sample, analyze it, and then select a subsample. It is therefore 
apparent that when time is the all-important factor, an unrestricted 
sample will almost always be preferable. The same thing is true when 
the results are desired at minimum cost with minor regard to the pre¬ 
cision of the estimate. The only other case in which unrestricted sam¬ 
pling can be said to be desirable as a general rule is when the population 

is homogeneous or is not amenable to stratification. In such cases, the 
means of the various sample strata would tend to be equal to each other, 
and stratification, even if possible, could hardly improve the precision 

of the results at all. Product-testing panels are a notable example where 
unrestricted samples are employed for this very reason. Thus, one 
would not expect preference for X brand of (tanned peaches over Y brand 

of canned peaches, both priced the same, to be very closely related 
to income level, size of family, occupation, or any other classifying 
characteristic.^ 

The real problem arises when the population is not homogeneous. If 
the distribution of the relevant population charactistics is not known, 
either a double sample or an area sample is usually preferable. Both 
these sampling techniques enable one to determine the distribution of 
the population characteristics and to relate them to the subject under 
study. Thus, suppose that estimates of milk consumption per family are 
desired, a factor that is strongly related to the size of the family. By 

double sampling, the family-size distribution in the particular region 
would be determined by taking a large initial sample, usually by mail 
questionnaire. On the basis of the returns, estimates would be made of 
the relative number of families of each size in the region. A random 
sample of the returns in each family size would then be drawn to which 
interviewers, or perhaps detailed questionnaires, would be sent requesting 

data on milk consumption. By area sampling, interviewers would can¬ 
vass certain areas, obtaining data from each family both on milk con¬ 
sumption and on family size. Thus, it can be seen that area sampling is 

quicker than double sampling, especially if mail questionnaires are utilized 
in the double sample. Area sampling, in most instances, will also 
yield more precise results, ^.e., lower standard errors, than a double 

sample. On the other hand, area sampling is likely to be the more ex¬ 
pensive method; this is a certainty if area maps have to be purchased. 

In the final analysis, the final choice must depend on which element— 
time, economy, or precision—^is most important. If speed or a high degree 
of precision is desired, area sampling is preferable; if economy is the 

^ Though, in some cases, country of origin might be a determining factor, e.g.j in 

comparing preference for different cheeses. 
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main consideration, double sampling would seem to be indicated. If two 
factors are of more or less equal importance, say, that the estimate of 
milk consumption per family is desired with a maximum precision within 
a certain range of cost, a relative evaluation of the potential standard 
error of the estimate by each design at the given cost would have to 
be made; the method is illustrated in the following section. Thus, it 
might be estimated that a double sample will yield a standard error of 6 
fluid ounces per family at a cost of $2,000, whereas an area sample of the 

same size would yield a standard error of 4 fluid ounces per family at a 
cost of $2,500. Confronted vith the^e facts, and knowing the conditions 
under which this particular problem has arisen, the researcher can readily 
evaluate the relative desirability of the area sample over the double 
sample, f.e., whether it is worth an extra $500 to reduce the standard 
error of the estimate by 2 fluid ounces. 

The more accurately known are the distribution and variability of the 
relevant population charactcnstics, the more preferable are quota sample 
designs. If the various strata are known to be homogeneous within and 

heterogeneous without, a disproportionate sample will usually yield the 
maximum reliability at a given cost, or a given reliability at minimum 
cost. For example, cold-cereal purchase per family is very closely related 
to family size; not only is the average purchase per family greater as the 
size of the family increases, but the variance of the family purchases for 
each family size also increases with increasing family size. In such a 
case, if the family-size distribution and the strata variances are known, 
the use of disproportionate sampling would be preferred, because full 
account is then taken of the varying heterogeneity as well as of the differ¬ 
ences in the average cold-cereal purchase per family between the various 
family-size groups. 

If a characteristic is known to exhibit slight variability between strata, 
a proportional sample or an area sample might be used. The selection 
of the specific method would depend, once more, upon a relative evalua¬ 
tion of the precision and costs probable by cither method. If area maps 
have to be purchased, a proportional sample is likely to be more econom¬ 
ical. If a continuously reporting panel is to be set up, the cost of the 
area sample can be reduced by amortizing the purchase price of the 
maps over all future samples. In cases where personal interviews are 

employed, the cost of the area sample may prove to be even less than 
that of the proportional sample because of the concentration of the inter¬ 
views in specific areas. Thus, to interview 20 farmers in one county is 

far cheaper than interviewing 20 farmers in 20 different counties. 
^ In weighing the desirability of an area sample versus some form of quota 
sample, the proponents of area sampling have often asserted that the area 
sample is the only possible choice because quota sampling does not permit 
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true random selection of the sample members. Thus, they ask, how can 

the members of a quota sample be selected at random if the population of 
each quota is not identified? The most frequent example cited in support 
of this contention is that of taking a quota sample by income levels. Since 
the identity of each member of each income level is not known, how can a 
member of any one income level be selected ‘^at random”? 

Actually, however, this is not a serious problem. The answer is simply 

to select each member at random/rom the aggregate population being sampled 
and then to classify the member in the particular stratum—income level in 
the above example—to which he belongs. Once the quota for any one 
stratum is filled, all future members of this stratum that may be selected 
are disregarded (or they may be included in the sample and its standard 
error computed by applying the general formula for a ‘lisproportionate 
sample).^ Hence, the problem of random selection of sample members 
would seem to be of little consequence in so far as choosing between area 
sampling and quota sampling is concerned. 

A purposive sample is useful only in isolated instances. For example, 

if the object of a study were to determine whether single girls whose 
average age is twenty-one years prefer men (presumably, single men) with 
hair of the same color as their own, a purposive sample of unmarried 
blonds, brunets, and redheads would have to be taken, i.e., the blonds in 
the sample would have to be chosen so that their average age is twenty- 
one, the same for the brunets, and the same for the redheads.^ However, 

purposive sampling cannot be recommended for general use because of 
the serious limitations to which the method is subject (page 79). The 
danger of bias, especially in human sampling, and the inability to estimate 

the sampling error in the estimate restrict its use to such isolated cases 
as illustrated above. 

In many practical problems, the issue is not so clear cut as the above 
illustrations would indicate. One usually has some inkling as to the 
distribution of a particular characteristic in a population, though one 
may not know its exact distribution. With most population character¬ 
istics, the closer the year of the sample is to a preceding census year, the 
more accurately is the distribution of the characteristics known. This 
fact has led one writer to reflect that ^fit may be that stratified samples 
should be used in the years immediately following a census, while a 

^ A somewhat more detailed discussion of the procedure is contained in an unpublished 
paper by the author entitled “The Common Sense of Sampling.” 

* This example should not be confused with a sample of twenty-one-year-old girls 

with a certain color of hair. The latter would be a regular stratified random sample, 
stratified by color of hair and randomized in the sense that every twenty-one-year-olfl 

girl with a certain color of hair in the area being sampled would have an equal chance 

of being selected. 
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random sample might be used in later years/’^ In other instances, the 
subject being studied is known to have some variability between strata, 
but one does not know the exact extent of such variations. 

In such cases, the judgment of the researcher plays a decisive role in 
the selection of the sample design. If it is possible to estimate the ap¬ 
proximate values of the strata means and varianccjs, mathematical com¬ 
parison of the probable standard error ouiaiiied by different sampling 
techniques is of invaluable aid in'eliminating the least reliable procedures. 

In particular, the preferability of an unrestiicted sample or a quota 
sample, one of the most frequently recurring problems in commercial 
sampling, can often be determined by estimating the increase in the 
standard error of the quota sample due to inaccurate knowledge of the 
sizes of the various population strata (see examples on pages 140 and 208). 

!»iuowing this quantity, it is possible to judge whether the increase in 
precision due to stratification is likely to be great enough to offset this 
reduction and whether the increased precision would warrant the in¬ 
creased cost of stratification. By the use of similar estimation methods, 

the relative desirability of different types of stratified samples in a par¬ 
ticular problem may be evaluated. Where such estimation methods 
cannot be employed, the following summary of the general considerations 
governing the use of various sampling techniques may prove helpful: 

1. If the population is largely homogeneous throughout, an un¬ 
restricted sample is preferable. 

2. If the population is not homogeneous and little or nothing is known 

about the distribution of the sampling controls, an area sample or a 
double sample is preferable; the former is likely to be quicker and more 
accurate but also more expensive. Of course, for the utmost economy 

an unrestricted sample would be chosen. 
3. The less accurately known is the distribution of the sampling con¬ 

trols in the population, the more preferable is an area sample to either a 

proportional or a disproportionate sample. 
4. The more heterogeneous are the strata in a population to each 

other, the more desirable is a disproportionate sample. Even where the 
relative strata heterogeneities are not known exactly, it is frequently wise 
to select a greater proportion of sampling units from the more hetero¬ 
geneous strata than to follow a strict proportional allocation scheme. 

5. A purposive sample is desirable only when a study of a ^Typical’^ 
characteristic is to be made. It is not practicable for general use. 

The Mathematical Method 

The problem considered in this analysis is that of determining which 
of several sample designs is likely either to maximize the sample pre- 

1 Brown, Comparison of Sampling Methods^^ (reference 112), p. 337. 
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cision at a given cost or to minimize the cost for a given precision in a 
particular survey. An associated problem also discussed on the following 
pages is to determine the most economical sample type for a given sample 
size. In other words, suppose that we are requested to set up a sample 
of 500 families for a certain purpose. What sample design will yield the 
maximum precision per dollar expended? 

As in determining sample size, the principle upon which the mathe¬ 
matical method for selecting a sample design is based is quite easy to 
understand; namely, if we have a relationship between two unknowns X 

and y, e.g.y F = 3 + 2X, and if we have another relationship between 
the unknowns X and Z, e.g., Z = 5 + 6X, then given either X, F, or Z, 
the other two unknowns can immediately be found. Thus, given F = 9, 
the value of X is found from the first equation to be 3, which, when sub¬ 
stituted for X in the second equation, gives a value for Z of 23. 

Now, the standard-error formula of a particular characteristic and 
sample design provides us with a relationship between the sample pre¬ 
cision—the standard error, and the sample size. The only other unknown 
variable in selecting a sample design is cost. But cost is a variable function 
of sample size; t.e., the total cost of a survey can generally be expressed as 
the sum of a fixed overhead cost and the cost of collecting the data, the 
latter being dependent on the size of the sample. We shall denote this 
expression as the cost function. This cost function together with the 
standard-error formula provides us with two distinct relationships in the 
three variables, sample size, sample precision, and cost. Consequently, if 
the other quantities in the two relationships can be estimated—strata 
means, variances, overhead cost, and cost per interview—given any one of 
these three variables, the other two can readily be determined. But, in fact, 
we are given one of these variables since, it will be noted, our problem is 
either to maximize precision at a given cost, to minimize cost for a given pre¬ 
cision, or to maximize the precision per dollar of cost for a given sample size. 

The procedure is now rather obvious. For each of the sample designs 
under consideration, the standard-error formula of the characteristic 
being measured is combined with the cost formula for that sample design.^ 
By substituting the given variable, say, cost, in the appropriate relation- 

' Both the overhead cost and the variable cost will usually vary with the sample 

design. The variation in the overhead cost is due to the necessity of taking into account 

fixed expenses peculiar to the sample design. Thus, the overhead cost in an area 
sample would ordinarily include the purchase of area maps, a factor that does not 
figure in the overhead costs of other samples. Strictly speaking, overhead cost is a 

variable function of time; the longer a survey requires, the more expensive it is likely 
to be. However, it is usually possible to side-step the inclusion of the variable, time, 
in the cost function, by taking time into consideration in estimating the overhead cost. 
Thus, if the initial survey expenditure is estimated at $300 with a probable additional 

overhead cost of $100 per week for each week that the survey requires, and if the 
survey is estimated to take 3 weeks, the overhead cost would be estimated at $600. 
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ship(s), the other two variables are computed. To determine which 
sample design is preferable the values of the variables for this sample 
design are then compared with the values obtained by applying the same 
procedure to the other sample designs. To see how this procedure works 
in practice, let us consider a few examples. 

1. Suppose that it has already been decided to use an unrestricted 
sample in estimating the percentage of households in a certain area pre¬ 
ferring oil heating to coal heating. The overhead cost of the survey is 
estimated at $150 with a variable cost of $2.00 for each interview. It is 
desired to have 95 chances out of ^00 that the sample percentage plus 
and minus 3 per cent will estimate the true percentage. How large must 
the sample be and how much will the survey cost? 

In this problem 1.96 standard errors are equivalent to 3 per cent, or 
<Tp must be 1.53 per cent. Since we know nothing about the probable 
value of p, it is wise to take the conservative approach and let p equal 
0.5. Substituting in the appropriate standard-error formula 

^ 

“ yiN_ 

0.oi.« . 

0 25 
^ = h — I>068 households 0.000234 

Now, the cost function C for this survey is C = $150 + %2N 

Since N = 1,068, the cost of the survey will be approximately $150 
+ $2 X 1,068, or about $2,286. 

Suppose that it is decided to spend only $2,000, and it is desired to 
know the maximum precision such an expenditure would yield. 

From the cost function we determine that the size of the sample for 
an expenditure of $2,000 is 

$2,000 = $150 + $2i\r 
or 

N = 925 households 

Inserting this value for V in the standard-error formula, we have 

I(0.5)(0.5) , 

which indicates that with a 0.95 confidence coefficient the confidence 
interval would extend at most 1.96 X 1.65 per cent, or 2.24 per cent, on 
either side of the sample percentage. This confidence interval is a maxi¬ 
mum figure because the farther away the value of p is from 0.5, the smaller 
will be <Tp and, also, the size of the confidence interval. 

Suppose now that it was desired to find the general relationship 
between cost and precision for the survey. From the cost function we 
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have that C = 150 + 2N, or iV = (C - 150). Substituting the ex¬ 

pression for N in the standard-error formula 

0.5 
<Tp — 

VM(C - 150) 

0.5 
(Tp 

C - 150 

C = 150 + ^ 
(Tp 

The last expression enables one to determine directly the expenditure 
necessary to produce any given precision. Thus, a sample with a standard 
error of 1.53 per cent would cost $150 + [$0.5/(0.0153)^], (;r about $2,286, 
the same as before. 

2. Let us consider the problem of selecting the best of three sample 
designs for the cold-cereal purchase panel discussed on page 137. The 
three alternatives are unrestricted random, proportional, and dispro¬ 

portionate sample designs. The relevant data on strata mearus and 
variances are presented in Table 7. In setting up a cost function for 
each of these sample designs, it must be remembered that returns are to 
be obtained by mail for 12 consecutive months. Therefore, allowance 
must be made for sample turnover during this period, i.e., respondents 
dropping out of the sample or not submitting 12 consecutive reports on 
their cereal purchases. To allow for this potential turnover, we shall 
assume that not more than 20 per cent of the sample will drop out during 
the year. Consequently, in order to have a completely stable sample of 
N families over the entire year, the initial mailing list must contain 
JV/O.S families. Let us say that the average variable cost of printing, 
mailing, checking, and editing the 12 monthly questionnaires mailed to 
any one family is $4.80; this is the same for any sample design because 
the additional cost of printing and checking classification data would be 
negligible in such a case. We shall assume that the fixed cost is $2,000 
for the unrestricted sample, and $2,400 for either of the stratified samples. 

This fixed cost includes all overhead expenses, e.g.^ rent, heat, light, as 
well as the wages of permanent personnel and the cost of analysis.^ The 
higher fixed cost of the stratified sample is due to the allocation, tabula¬ 

tion, and analysis of returns by strata. No additional fixed costs would 
be incurred by the disproportionate sample relative to the proportional 
sample because the strata variances would be computed in the course 
of estimating the standard error of the mean of the proportional sample. 

^ Strictly speaking, the cost of analyzing the final data does vary with the size of 
the sample, but the marginal cost of analyzing 25 or 50 additional returns is so small 

relative to the total cost of analysis that it may be considered as part of the fixed cost 

for all practical purposes. 
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The cost functions and standard-error formulas for this problem are 
now as follows: 

For the unrestricted sample 

C = 2,000 + 4.8i\r/0.8 = 2,000 + GN 

For the proportional saniple 

+ S[(Xi - X)VVJ, c = 2,m + 4.8iV/0.8 = 2,400 + 6iV 

For the disproportionate sample 

+S[(Xi - c = 2,400 + 4.8Ar/0.8 = 2,400 + QN 

The total sum to be spent on the study is $10,000. What is the 
precision-cost relationship for each of the three sample designs? Which 
sample design will yield the highest precision at the given cost and what 
is the required sample size? 

The three precision-cost relationships and the optimum sample design 
can be determined simultaneously in the following work-sheet form: 

Character¬ 

istic 

Unrestricted 

sample 

Proportional 

sample 

Disproportionate 

sample 

C = 

N = 

2,000 + m 

(C - 2,000) 

2,400 + 6N 

(C - 2,'iOO) 

2,400 4- 6Af 

{C - 2,400) 

6 6 6 

— 
6(^2 

C-2,400+^^^' 
OCsiPio-,-)* 

C - 2,000 C - 2,400 + 

From page 141 we know that 

(t2 = 91,044.74 

= 89,614.13 

{XWiaty = 84,020.96 

i:(Xi - = 0.29 

Substituting these values in the <rx formulas 

Character¬ 

istic 

Unrestricted 

sample 

Proportional 

sample 

Disproportionate 

sample 

N = 1,333 1,267 1,267 

6(91,044.74) 6(80,614.13) 6(84,020.96) , 
- 10,000 - 2,000 10,000 - 2,400 ^ * 10,000 - 2,400 ^ 

68.28355 71.03800 66.62234 

ax - 8.26 8.42 8.16 
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It is, therefore, apparent that despite the additional costs due to 
stratification, the disproportionate sample design is the most efiicient for 
the survey of the three sample designs considered. Of course, this will 
not always be the case. ’In some instances the additional costs of strati¬ 
fication may be so heavy or the inaccuracies in the estimated distribution 
of the sample control in the population may be so large that an unre¬ 
stricted sample will yield a lower standard error for a given expenditure 
than any stratified sample. If the fixed cost of the stratified samples 
had been $3,000 instead of $2,400, the reader can easily verify that the 
unrestricted sample would then be preferable. The strong superiority 
of the disproportionate sample in this example is due to the extreme 
heterogeneity in the variability of cold-cereal purchases within strata. 
When this heterogeneity is not taken into account, stratification loses its 
effectiveness in this example, as witnessed by the superiority of the un¬ 
restricted sample over a straight proportional sample. 

3. A survey is to be made of the average monthly rent paid in tenant- 
occupied homes in a certain city as well as of a number of attitudinal 
characteristics on the part of the renter. Since a large number of vquestions 
are to be asked, the cost of each (personal) interview is estimated at 
$5.00. Because of the generally high correlation between income and 
rent payments, the question is raised whether it might not be possible to 
obtain more reliable data by first accurately estimating the (unknown) 
income distribution of the city through the use of mail questionnaires and 
then interviewing a random sample of each income class on rental charac¬ 
teristics, t.e., by double sampling. The cost of mail questionnaires to 
determine the distribution of the city's renter families is figured at 15 
cents per mailing (including follow-ups). The probable return on the 
mail survey is estimated at 25 per cent. To aid in selecting the proper 
sample design, the following a priori estimates of the relevant charac¬ 
teristics are made: 

Income Stratum | 

Per cent of 
renter familicts 

in stratum 
Wi 

AveraKC 
monthly 

rental value 
X 

a of monthly 
rental payment 

per family 

<ri 

1 

1. $0-11,499..:. ...I 37.0 $12 $ 4 353.8161 
2. $l,50O-$2,499 . .. 34.0 28 . 6 7.8961 
3. $2,500-$3,999 . .. 17.0 49 9 330.8761 
4. $4,000 and over.. 12.0 71 14 1,615.2361 

Total. 100.0 

X = (0.37)(12) + (0.34)f28) + (0.17)(49) + (0.12)(71) - $30.81 

The choice is to be made between a double sample, a disproportionate 
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sample, or an unrestricted sample; if either of the latter two samples is 
used, all data would be gathered by personal interview. 

A disproportionate sample would be allocated among the four income 
strata on the basis of the W i and cr< figures estimated on preceding page, 
Wi being subject to an estimated 10 per cent relative variability. The fixed 
costs of the double, disproportionate, and unre 5tricted samples are esti¬ 
mated at $300, $200, and $100, respectively. If not more than $7,500 is to 
be spent on the survey, which of these three sample designs will yield the 
most precise estimate of the average rental payment per tenant-occupied 
home? 

The cost functions f6r each of the three sample designs arc readily 
determined from the given data as follows (in dollars): 

For the unrestricted sample 

C = 100 + 5M 

For the disproportionate sample 

C = 200 + 5M 

For the double sample 

C = 300 + 5M + ^ N = 300 + 5M + O.dN 

where N is the number of mail returns, the initial sample that would be 
used to estimate the income distribution of tenant families if double 
sampling were employed, and M is the number of personal interviews. 
In the case of double sampling, ilf is a subsample of N, 

The standard-error formulas for the random and disproportionate 
samples are the same as in the previous example. The standard error of 
the mean of a double sample is given by the following expression:^ 

where = 1 — 1F<. 

The first term measures the variance in the personal-interview sample 
and the second term represents the variance in the initial mail-questionnaire 
sample. The optimum value for M that will minimize the standard 
error is computed from the follomng formula: 

^ ^_Co 

A-SWiat + VAB{^Wt(Xt - 

where A = cost per personal interview = $5.00 
B — cost per mail questionnaire = $0.60 

Co = variable cost = $7,200 

‘ This is an approximation formula, which differs negligibly from the exact formula 
in most practical cases. For the exact formula, see reference 86 in the Bibliography. 
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The following computations are easily made: 

= (0.37)(4) + (0.34)(6) + (0.17)(9) + (0.12)(14) = 6.73 
- X)2 = (0.37)(-18.81)2 + (0.34)(-2.81)2 + (0.17)(18.19)2 

+ (0.12) (40.19)2 

= 130.911957 + 2.684674 + 56.248937 + 193.828332 

= 383.673900 

Substituting these values in the expression for My we have 

M = 
7,200(6.73) 

5(6.73) + \/6.6(5) (383.6739) 
= 718 personal interviews 

From the double-sample cost function, the value of N is found to be 
1.667[(7,200 — 5(718)], or 6,017 mail questionnaires.' From the other 

cost functions, the values of M for the random and disproportionate 

samples are computed to be 1,480 and 1,460 interviews, respectively. 
The remaining terms needed to calculate the standard errors of the 

three sampling techniques are obtained from Table 22. 

Table 22. Work-sheet Table for Computing Various Standard-error Terms 

Stratum Wi 
WiVi 

N 
W? |/f72 WiVi 

N (OAOWi) 
(r'wi 

1 0.37 0.000039 0.1369 0.136939 0.0370 0.001369 0.484374 

2 0.34 0.000037 0.1156 0.115637 0.0340 0.001156 0.009128 

3 0.17 0.000023 0.0289 0.028923 0.0170 0.000289 0.095623 
4 0.12 0.000018 0.0144 0.014418 0.0120 0.000144 0.232594 

Total. .. 
_1 

1.00 0.821719 

WiVt 
N 

= 4(0.370) + 6(0.340) + 9(0.170) + 14(0.120) = 6.73 

The sampling variance of the average rental payment for each of the 

three sample designs is now computed by substituting in the relevant 

formulas. 
For the unrestricted sample2 

2 
(TX = M 

432.8839 

1,480 
= 0.2925 

^ N could also be computed from the formula 

^_Co -X)« 

zwm Vab -\-bV-X)* 

which would lead to the same result. However, substitution in the cost function, when 

C is given, is a much simpler procedure. 
*The probable variance of the unrestricted sample is computed from the formula 

a* = XWioi + - J)* (see p. 141). 
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For the disproportionate sample 

- M + “ 1,460 

For the double sample 

2 

+ 

+ 0.8217 = 0.0310 + 0.8217 = 0.8527 

73)2 
= -7 

383.6739 

718 

6,017 
= 0.0631 + 0.0637 = 0.1268 

These computations reveal that the double sample is likely to yield 

the lowest standard error of the estimate, being 131 per cent more efficient 

than the unrestricted sample and 572 per cent more efficient than the 

disproportionate sample. The validity of these results depends, of course, 

on the relative accuracy of our estimates of (r< and Wi. The personal- 

interview sample is allocated among the four strata in accordance with 
the formula 

Mi = 
<TiVWi + W,V,/N 

i^CiVwi + w,v,/N 
M 

The optimum distribution of the 718 personal interviews is then computed 

to be Ml = 158, M2 = 218, M3 = 163, M4 = 179. 

It is interesting to compare this example with the preceding example. 

In the case of the cold-cereal purchase panel, the inaccuracies in the esti¬ 

mation of the relative sizes of the various strata were negligible. There¬ 

fore the large variability in family cold-cereal purchases from stratum 

to stratum gave the disproportionate sample clear superiority over the 

alternative designs, despite the additional cost of stratification. If 

the inaccuracies in the size of the various strata were also negligible in the 

present case, the disproportionate sample would again be superior to 
the alternative designs; the sampling variance of the former would then be 

0.0310 as compared to 0.0631 for the double sample and 0.2925 for 

the unrestricted sample. However, the influence of the inaccuracies in the 

weights is now so preponderant as to eliminate whatever advantages might 

have accrued from stratification and serves to increase the sampling vari¬ 

ance of the disproportionate sample over tiventy times what it would other¬ 

wise have been. As a result, the disproportionate sample would yield a 

standard error twice that of even the unrestricted sample under the given 

conditions. This is illustrative of how the advantage of stratification 

may be completely nullified by inaccuracies in the population weights, 

even in a strongly heterogeneous population. 

Additional Considerations 

The Construction of Cost Functions. The cost functions used in the 

preceding examples were all of the C = a + 6iV type; i.e., they were 

predicated on the twofold assumption that (1) the total cost of a survey 
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could be broken down into a fixed overhead cost and a variable cost and 

(2) the variable cost increased by a fixed amount h for each additional 

sample member. In the great majority of sampling problems, the division 

of total cost into fixed cost and overhead cost is valid as well as practicable. 

Of course, cases do arise where the classification of a particular expense 

item is a dubious proposition. For example, in a large sampling operation 

the punching of the sample data on machine cards might be reckoned as 

a fixed cost because of the negligible effect on this expense item of the 

addition of, say, 50 cards to several thousand cards. On the other hand, 

if an appreciable addition to the sample were made, say, 500 more cards 

instead of 50, this item would certainly have to be categorized as a variable 

cost. The general rule would seem to be to place under variable cost only 

those expense items that are affected appreciably by the proposed changes 

in sample size. Where the cost formulas are used for purposes of com¬ 

parative evaluation, as in problems of sample design, it is more important 

to be consistent than to be finicky in classifying expense items. The 

consistent classification of a borderline item as either a fixed cost or a 

variable cost in all sample designs^ will permit the effect of this item on 

sample design to cancel out for all practical purposes, especially when all 

the cost formulas are of the same type. 

The second assumption upon which the cost formula is based—^that 

variable cost increases by a fixed amount with each additional sample 

member—^may not necessarily hold in actual practice. In many in¬ 

stances the cost of each additional sample member decreases as the size 

of the sample increases. The reason for this phenomenon is the well- 

known economies of mass production. Thus, a printer will ordinarily 

charge less per questionnaire the more questionnaires he is asked to print, 

since his overhead cost—^inking, typesetting, etc.—is spread over a 

larger aggregate volume thereby reducing his cost of printing each ques¬ 

tionnaire. Similarly, the cost per interview is lower if two interviews are 

made in one block than if one interview is made in the block because the 

interviewer’s cost of transportation to that block can then be allocated 

to two interviews instead of one. In such a case, the cost function might 

more appropriately be expressed by a second-degree curve like C = a 

hN — ciV*, or by a logarithmic curve like log C = log a — iV log 6, or by 

any one of a number of possible curves. 

In rare cases the researcher may find that the cost per interview 

actually increases with larger size samples. For example, if widely 

dispersed personal interviews are required within a very short time, the 

lack of sufficient skilled interviewers may mean that for each additional 

five interviews a new interviewer must be hired and trained quickly 

^ That is, if the expense item is a borderline case in all sample designs under 

consideration. 
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and at considerable expense. One would then have cost functions like 

C - a + bN + cN^, or log C = log a + i\r log 6, or any number of others. 

In still other cases, a combination of these two factors may be encountered; 

i.e,, up to a certain sample size the cost per interview decreases, but beyond 

this point the unit cost increases.^ Such an instance would occur when 

mass-production economies am operative up to, say, 5,000 interviews, but 

thereafter the necessity of additional administrative facilities, more in¬ 

terviewers, etc., causes diseconomies to set in that increase the cost more 

proportionately than the relative increase in the size of the sample. The 

cost function then becomes more complicated: it may be a third-degree 

arithmetic curve like (7 = a -f- 6iV + cN^ — diV®, or it may be a second- 

degree logarithmic curve like log C = log a + Nlog b — N^log C, or one 

of a number of other curves. 

Well, the reader will ask, what is the most desirable form for a cost 

function to have? Though the exact form depends on the conditions of 

the particular problem, one general rule can be laid down immediately, 
namely, that the form should be as simple as possible. The more com¬ 

plicated is the form of the cost function, the more difficult it will be to 

manipulate the function and to express cost as a function of N. Thus, 

it is much easier to express cost in terms of N if the cost function is of 

the type C = a + bN than if it is of the type C — a + bN -j- cN^ — dN^. 
This does not mean to imply that the simpler type of cost function should 

always be used irrespective of the nature of the problem. But if two 

or more different types of cost functions are found to express the 

cost-sample-size relationship more or less equally well, the researcher is 

likely to save himself a good deal of labor, with no sacrifice in efficiency, 

by selecting the mathematically simplest form. 

The specific type of cost function to employ depends, of course, upon 

the particular problem. Most cost functions can be expressed in the 

G^a + bN or C = a + bN — cN^ forms. If the researcher is not sure 

of the most desirable form for the cost function, it is frequently very 

helpful to plot the cost data on chart paper and examine the curvature of 

the plotted points. For example, suppose that the total cost of a proposed 

personal-interview survey is estimated for various sample sizes as follows: 

N C 
50 $ 400 

100 600 

200 1,000 

300 1,300 

500 1,800 

1,000 2,400 

’ In economics this is the well-known U-shaped averaRc cost curve. See J. E. 
Meade and C* J. Hitch, An Introduction to Economic Analysis and Policy^ Oxford 

Univeraty Press, New York, 1938. 
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When plotted on the arithmetic chart in Fig. 18, the line exhibits a 

strong tendency to curve, and flattens out for larger sample sizes. Con¬ 

sequently, this particular cost function would seem to be represented by 
the C = o + hN — cN^ type. The reader who is mathematically inclined 

can employ more precise methods by selecting that curve type which 

minimizes the adjusted square 
of the deviations of the various 

cost estimates from the cost 

function.^ If the selection of 

the exact form of the cost func¬ 

tion remains in doubt, it is 

always possible, as a last resort, 
to applv each of the alternative 

cost functions in turn to the 

problem and compare the results 
so obtained. 

The A Priori Estimation of 

Variances. Practically all prob¬ 

lems of sample size or sample 
design involve, somewhere along 

Sample Size (N) the line, the estimation of the 

Fia. 18. A hypothetical cost function. true Unknown Variance in one 
or more populations. The fact 

that these are a priori estimations frequently tends to discourage 

researchers from using the techniques described in the preceding pages. 

Yet, in most cases, reasonably precise estimates of the strata, or over-all, 

variances are possible with surprisingly little difficulty, as is shown below. 

Commercial research problems involve the variance of a variable or 
of a percentage. In the case of a percentage, the estimation of the 

variance is quite simple, especially since primary interest is centered on 

the maximum probable value of the variance. For, as pointed out 

previously, the maximum value of the variance indicates the maximum 

probable size of the sample. But the variance of a percentage is simply 

pg. Hence, estimating the variance of a percentage reduces to the estima¬ 
tion of the probable value of p. 

Now, since the variance of a percentage (as well as the sample size) 

is at a maximum when p = 0.5, it follows that, in a particular problem, 

the safest procedure is to select that value of p nearest to 0.5. Thus, if 

p in a product-preference study is estimated to be between 0.25 and 0.40, 

the value p = 0.4 would be used for purposes of determining sample size 

' This is the variance of the regression line (see p. 310). For a clear and introductory 
survey of the most important types of statistical curves, s(;o Mills, Statistical Methods 
(reference 10), pp. 8-32. 
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and sample design. If the interval estimate of p includes 0.5, p would be 

set at 0.5. In the rare case where no knowledge at all is available, p could 
be arbitrarily taken as 0.5. 

The a priori estimation of the variance of a variable is more difficult 
in that the values it may take are not limited as is the variance of a per¬ 
centage (where 0 ^ Cp /L 0.25). However, as partial compensation, an 
ingenious statistical method is available that permits an estimate of the 
variance to be made from as few as two preselected observations. This 

is possible because the standard deviation of a variable has been found 
to be equal to a certain multiple, a^. of the range of the observations, i.c., 
estimate of cr = a,, range (or mean range). 

The value of depends on the size of the sample from which the rang(‘ 
is computed. Values of Un for various sample sizes from n = 2 to n = 20 
are given in Appendix Table 7 on page 488. Thus, if the range of six ran¬ 
domly selected observations comes out to be 12, the estimate of the stand¬ 
ard deviation of the population would be 12 X 0.394G, or 4.73. If three 
successive samples of six observations yielded values for the range of, say, 

12, 7, 8, the value used in the above formula would be the average of the 
three ranges, or 9. The estimate of a would then be 9 X 0.3946, or 3.55. 

In addition to the mean values, the probability distribution of the ratio, 

rangG/(r, has been tabulated. This permits us to set confidence limits 
for the true value of the standard deviation. The value of the ratio, 
range/(r, at the 1, 2.5, and 5 per cent levels of significance is provided in 

Appendix Table 7, in standard-deviation units. For instance, given the 
range of six observations to be 12, we could say that there are 95 chances 
in 100 that the interval 12/1.06 to 12/4.06 contains the true standard 
deviation. Or, if we are solely interested in the maximum probable value 
of (T, as is usually the case in problems of sample size and sample design, 
there would be 95 chances in 100 of being right if we stated that the true a 
does not exceed 12/1.06 = 11.3. 

As an example, let us take the problem on page 191 of judging the 
sample size required to estimate the average price a family would pay for a 
television set. Suppose that the prices that seven preselected families 
would be willing to pay are $340, $180, $150, $100, $300, $225, $250. 
The range is $340 — $100, or $240. From Appendix Table 7, the value 
of ay is seen to be 0.3698. Hence, the estimate of the standard deviation 
in the population is $240 X 0.3698, or $88.75. As an upper limit, we 
could state that there are 95 chances in 100 that the true value of a is not 
more than $240/1.60, or $150. 

Thus, Appendix Table 7 permits us to estimate the variance of a popu¬ 
lation with as few as two preselected observations. This is particularly 
true since the reliability of the range as a measure of dispemion tends to 
increase as the size of the sample decreases. The reason for this is that a 
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large sample is more likely to contain unusually extreme values than is a 

small sample, assuming random selection from a normally distributed popu¬ 
lation. Because of this instability of the range with large samples, the use 
of more than 20 observations to measure the range is quite risky. For this 
reason. Appendix Table 7 goes up only to n = 20. Actually, it has been 
shown^ that the most reliable estimates of the standard deviation of a 
population are made when samples containing between six and ten observa¬ 
tions are used to measure the range. In other words, if, say, 35 interviews 
had been made in a pretest, the most reliable estimate of the standard 
deviation of the population would be obtained by dividing the interviews 

into five equal groups (by some random procedure), computing the range 
of each group, and then multiplying the average of the five ranges by 
ttT (0.370). This procedure is more reliable than inultiplying the observed 

range of all 35 observations combined by 
Of course, it is not always necessary to employ this ratio method. In 

numerous instances, the variance of a population is known from previous 
or related surveys, especially so in the case of consumer panels end other 
periodic studies. This is possible because of the usual stability of the 
variance relative to the mean value. As a general rule, variances tend to 
remain remarkably stable in any particular population despite substantial 
changes in the mean value. In other words, changes that do occur in a 
population are more likely to cause the entire distribution to shift than 
to alter the relative dispersion of the values about the mean. Of course, 

there are exceptions. To guard against such exceptions, it is advisable to 
use the above ratio method, where possible, in any event to check the 
results obtained by other methods. 

The Practicability of the Mathematical Method. The mathematical 
method is obviously an extremely useful tool in determining the sample 
design for a particular problem. Where cost and sample precision are of 
primary importance, and where the cost of the survey car; be related to 
sample size, this method can be the sole determinant of the optimum 
design for the survey. Where other factors, e.g., time, are equally or more 
important, the mathematical method can still be employed very advan¬ 
tageously to provide estimates of the probable cost of the survey or of the 
probable precision at the given cost. By so doing it is possible to estimate 
in advance whether the contemplated survey will yield results of the desired 
precision and, consequently, whether the survey is worth while. For 
example, the preference for X tooth paste is believed to have increased in 
the past year from 15 to perhaps as high as 18 per cent. It is decided to 
spend S500 on an unrestricted personal-interview survey to determine 
whether a significant increase in brand popularity has occurred. The 

^Peabson, E. S., “The Percentage Limits for the Distribution of the Range in 

Samples from a Normal Population,” Biometrika^ Vol. 24, 1932, pp. 4O9j0^. 
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fixed cost of the survey is estimated at $200 and the cost of each interview 
at $0.75. A casual examination of these conditions reveals that, in so far 
as determining the significance of the supposed difference is concerned, the 
survey would be a complete waste of time and money. Since the standard 
error of a sample of 400 people with p. = 0.15 or 0.18 is about 1.8 per cent, 

an actual increase in brand preference of even as much as 3 per cent in the 
population would tend to be statistically not significant on the basis of 
the sample,^ especially when the sampling error in the original estimate of 
15 per cent is taken into account. 

The applicability of the mi*thematical method hinges upon the determi¬ 
nation of the standard-error formula and cost function for each of the 
sample designs under consideration. Neither is very difficult to obtain. 
Since the sample designs hi commercial problems are generally of the type 
described in Chap. IV, the standard-error formulas are readily obtainable. 

If the sample design is not one of the more common designs, its standard 
error can usually be evaluated by a competent mathematical statistician. 
Reasonably close approximations to the actual cost functions may be 

obtained by the procedure outlined in the preceding section. 
Consequently, the mathematical method would seem to be as easy to 

apply as it is useful. However, in applying the method it is important to 
remember that the final results can be only as accurate as the variance and 
cost estimates used in arriving at these results. Too often does the word 
^^mathematical” imply such absolute accuracy to researchers that the 
dependence of the accuracy of a “mathematicar’ method upon the accuracy 
of the data used is completely overlooked. To this extent the results 
obtained by the mathematical method must be taken with a grain of salt, 
and the greater is the possible error in the estimates, the bigger must be 
this grain of salt. Nevertheless, if the estimates are reasonably accurate, 
the mathematical method is undoubtedly the best means available for 
determining sample design. 

SUMMARY 

The primary objective of a sample survey is to obtain the desired data 
either with maximum precision subject to a given cost or at minimum cost 
with a prescribed precision. If cost and precision are the only major 
considerations, precise methods are available for selecting that sample 

design that fulfills the above criteria. Where factors other than cost and 
precision are involved, more subjective methods of sample selection must 
be employed. If the sampling method is already prescribed, the main 
problem in sample precision is the determination of the size of the sample 
and its allocation among strata. 

The rule-of-thumb method of determining sample size by adding extra 

^ Using a 95 per cent asymmetrical confidence interval. 
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sample members until the cumulated value of the characteristic in the 

sample becomes stable is not very reliable. Fallacious results are some¬ 
times achieved by terminating the sample operation on the mistaken 
assumption that a temporarily stable level is permanent. This method 
also tends to engender a false sense of security by leading the researcher 
to infer that stability is indicative of representativeness. The preferred 
method of determining sample size involves the substitution of the required 
maximum standard error and of estimates of the particular parameters in 
the relevant standard-error formula and the solution of the formula for N, 
A number of illustrative examples of this procedure are provided. 

The selection of the proper sampling technique, or sample design, is one 

of the basic problems in sampling analysis. The proper sample design 
may be selected on the basis of a subjective e^’^aluation of the relative 
preferability of alternative designs under the given conditions, or by a more 

precise mathematical method. If speed or economy is the main consid¬ 
eration, an unrestricted sample is most desirable. The same thing is 
true in the case of a homogeneous population. If a heterogeneous popula¬ 

tion is being sampled where little or nothing is known about th(; distribu¬ 
tion of the sample controls, either an area sample or a double sample would 
be preferable; an area sample is likely to be more precise and quicker, but 
the double sample may be less expensive. The more accurately known is 
the distribution of the relevant sample controls, the more preferable are 
proportional or disproportionate samples, the latter being most useful 

when strata variability is very great. Purposive samples are useful when 
the characteristics of a so-called ‘Typical' group are being studied. How¬ 
ever, the susceptibility of this method to bias, and the inability to estimate 
the sampling error in estimates based on purposive samples, seriously 
restricts its general applicability. 

The mathematical method of determining sample design is based upon 

the combination of the relevant standard-error formula of the sample 
design with an estimate of the relationship between sample size and the 
probable cost of the survey. Given estimates of the relevant variances, 
this provides a dual relationship between cost, sample size, and sample 
precision. It is therefore possible to express any one of these factors in 
terms of any other or, given a numerical value for one factor, it is possible 
to determine the requisite values for the other two factors. By carrying 
out the same process for the alternative sample designs and comparing 
the resultant figures, the most economical or the most precise sampling 
method for the given conditions can be determined. The procedure is 
illustrated by several examples. Although this mathematical method is 
extremely useful and practicable, it must be remembered that the results 
obtained through its use can be only as accurate as the cost and variance 
estimates substituted in the relationships. 



CHAPTER IX 

PROBLEMS OF SAMPLE BIAS 

This chapter is divided into two parts. The first part is devoted to a 
discussion of the primary sources of sample bias and of ways and means of 

minimizing this danger. The second part of the chapter discusses the 
major methods of oVjtaining satnple data. Because selecting the proper 
method of obtaining sample data is important in avoiding sample bias 
and in minimizing the cost of a particular survey, a rather detailed evalua¬ 
tion is made in this second part of the chapter of the relative merits of 
personal interviews and mail questionnaires, and of the complementary 
use of both methods to increase accuracy and minimize cost. 

1. SAMPLE BIAS 

General Considerations 

As noted in Chap. IV, the accuracy with which sample results estimate 
the true value of various population characteristics is dependent upon the 
relative absence of bias in the sample data. Bias enters into sample 
results because of some conscious or unconscious prejudice on the part of 
the respondents or on the part of those making the survey. A bias is not 
a mistake in the real meaning of the word. A mistake is made accidentally 
as a consequence of an oversight in some respect. A bias is committed 
when a technique is used that is believed to yield accurate results but that 
in reality causes the results to deviate from the true situation. Thus, for 

an interviewer accidentally to interview old men when he is specifically 
told to interview young men is a mistake. But when an interviewer is 
sent out to interview a sex-controlled cross section of people on Main St. 
and returns with a disproportionately high number of interviews with 
better educated people, it is a bias.‘ Bias may be uncovered by careful 
analysis; mistakes are made continually and can be caught only by fre¬ 
quent checks. What is a mistake or deliberate misrepresentation to one 
person may be a bias to another. The tendency of many women to under¬ 
report their true ages is not a bias to them, but from the researcher^s view¬ 
point it is a bias because it tends to distort the true picture as indicated 
by the sample. 

1 This distinction between a bias and a mistake is, of course, quite narrow. Its 

main purpose is to exclude the more obvious types of mistakes from consideration as 

biases. 

217 
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The importance of avoiding sample bias cannot be overemphasized. 
The most carefully designed and most costly sample from the point of view 
of minimizing the standard errors of the estimates may nevertheless yield 
completely erroneous results if an oversight allows sample bias to enter the 
picture. One cannot, as in the case of sample precision, increase the size 
of the sample more or less indefinitely with the assurance that as the sample 
becomes larger the bias will become smaller and smaller. Bias is as likely 
to enter into a large sample as into a small sample. One of the largest 
samples of all time, the Literary Digest poll in 1936 consisting of over 
2 million ballots, resulted in a completely fallacious estimate because tele¬ 
phone-owners were mistakenly assumed to be representative of the total 
voting population. From the point of view of sample precision, the sam¬ 
pling error in the estimate of the percentage of the voters fa voring Roosevelt 
would have been expected to be about oo uf 1 per cent with a 0.95 prob¬ 
ability of success. Yet, the actual vote was 61 per cent; the Literary 
Digest estimate was 41 per cent. 

The avoidance of sample bias enters into every sampling survey. 

Unless bias can be made negligible for all practical purposes, no sampling 
operation can be very successful. The erroneous results (unknowingly) 
obtained from biased samples frequently cause more harm than if the sam¬ 
ple had never been taken at all. Thus, an unrepresentative product-testing 
survey might indicate that shortening A is preferable to shortening B 
when actually the reverse is true. Basing his decision on this survey, the 
manufacturer might incur considerable losses in producing and attempting 
to market shortening A before realizing the true state of affairs. 

The main reason why bias is apt to cause researchers to lie awake nights 
is that when it occurs its presence is usually not known until after the 
sample data have been collected. Neither is bias measurable, except in 
certain rare instances. As we have seen, standard-error formulas exist for 
each type of sample design and for each statistic being estimated. To 
measure the precision of a sample, one merely has to apply the proper 
formula; similarly, certain formulas and principles can be utilized to min¬ 
imize the standard error of a sample under given conditions. However, in 
the case of sample bias, there are no formulas that can be used to measure 
its effect in particular situations. Furthermore, its probable effect as well 
as its potential sources vary from survey to survey. In other words, every 
sampling survey must be considered independently of other surveys in 
evaluating potential bias effects. For example, an identical survey carried 
out by two different groups, of interviewers, each group being given only 
slightly different directions,*TOay yield two different sets of figures. 

The best procedure for ^voiding sample bias is to be acquainted with 
the most likely sources for bias, to know how to cope with the danger from 
each of these possible sources, and then to apply one^s own common senvse 
in removing this danger in each survey. The following pages attempt to 
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provide the necessary information on the first two points; the last requisite 
the reader must supply. 

Sources of Sample Bias^ 

Bias may arise in the course of selecting members of the sample or in 
the course of obtaining and analyzing the data from the respondents.^ In 
selecting the sjimple members, bias may arise because the area being sam¬ 
pled is not representative of the entire population, and/or the selection of 
the respondents within the area being sampled is not random. In obtain¬ 
ing and tabulating the sample data, bias may arise from a number of 
sources, the principal of which are interviewer prejudice, inaccurate report¬ 
ing, cheating, respondent bias, and editing. Let us now discuss each of 
these in turn. 

The Requirement of Representativeness. In order for a sample to be 

truly representative of the population being sampled, the area over which 
the sample is taken must itself be representative of the population. At 
first reading, this statement may appear to be a truism, and, in fact, it is a 
truism where the area from which the sample is drawn is synonomous with 
the population. But in many instances, the cost of sampling from an 
extensive population is so prohibitive, especially in the case of personal 
interviews, that the sample members are drawn from one or more restricted 
areas within the population. For example, in a study of consumer pur¬ 
chase habits in Cleveland, it might be feasible to select sample members at 
random from the entire population of the city. But in a personal-interview’ 
study of consumer purchase habits in all United States cities of 50,000 or 
more population, the sample would almost surely have to be drawn from 
a few of these cities. In order for such a sample to be representative of all 
such cities, the population of the areas, or cities, from which the sample is 
drawn must be representative of the population of all cities of 50,000 and 
over. As noted in Chap, IV (page 73), this principle of sampling from 
selected representative areas is the basis of area and cluster sampling. 

A frequent procedure is to select the sample from lists of part of the 
population; telephone books are often used for this purpose. In order for 

‘ A reading on sources of sample bias is Deming, ‘‘On P>rors in Surveys^^ 
(reference 126). See also Deming, “Some Criteria for Judging the Quality of Surveys” 
(reference 73). 

* The final analysis of the sample results may be biased because of some particular 

prejudice on the part of the researcher. This type of bias is discussed only briefly in 
this chapter because, strictly speaking, it is not a sample bias, i.c., it does not arise 
because of the fault of the sample. For example, a researcher may claim, after a sample 

survey, that the company’s sales position of a certain luxury product in territory A 
is weaker than in territory B because consumer purchases in territory B are 20 per 
cent greater than in territory A. However, he neglects to take into account the fact 

that, as indicated by the sample, average family income has risen by 25 per cent in 

territory B and has fallen by 10 per cent in territory A. This oversight does not reflect 
bias on the part of the sample. 
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such a sample to be representative of the population, the list itself must be 
representative of the whole, i.e., representative in respect to the particular 
characteristic(s) being studied. A sample of Brooklynites designed to 
estimate the relative popularity of the three major-league baseball teams 
in the City of New York would not be representative of the attitudes of all 
New Yorkers, unless the attitudes of Brooklynites on this subject were 
representative of all New York—a rather dubious assumption. 

The basic error in the Literary Digest poll was committed in overlooking 

this matter of representativeness; the entire operation was based upon the 
implicit assumption that telephone-owning voters were representative of 
all voters. The biased results yielded by many mail surveys are attribut¬ 
able to the same fact; namely, the assumption that respondents are repre¬ 
sentative of nonrespondents as well. In some cases tl>.is assumption is 
valid, but where it is not, biased results are obtained.* In no instance 
should a sample be drawn from a part of the population unless that part is 
assuredly representative of the entire population. The method of ensuring 
this fact is, if no past information is available, to use a small spot sample 

in the sampled and unsampled areas and test the significance of the dif¬ 
ference in the results; the sequential methods of analysis outlined in Chap. 
VII are particularly useful—and economical—for such an operation. 

The Requirement of Randomness. In striving to minimize the errors 
in sample estimates through the use of various sampling designs and tech¬ 
niques, one is apt to overlook the fundamental consideration on which all 

sampling error formulas are based; namely, that standard-error formulas 

are valid only ^vhen randomness within strata is assured. Whether the 
sample be unrestricted random or stratified random, the sample members 
from each stratum must be selected in a true random fashion from all 
the members of the stratum, as mentioned in Chap. IV. If an unrestricted 
random sample is being taken, this means that each member of the popula¬ 
tion must have an equal probability of being selected; e.gf., an unrestricted 
random sample of grocery stores in Illinois must be selected in such a man¬ 
ner that each grocery store in the state is equally likely to be drawn into 
the sample.^ 

In the case of stratified samples, randomness must be assured for the 
smallest strata divisions in the sample. For example, in a sample stratified 
by homeowners and tenants, the homeowners in the sample must be 

^ See p. 241 for further discussion of representativeness in mail surveys. 
* Where the relative importance of each member of a population differs, as in the 

case of estimating total sales of retail stores, selection of the sample members is made 

so that the probability of drawing any one member in the sample is proportional to 

the relative importance of that memlx;r in the population. Thus, if store A has a 
sales volume three times as large as that of store B, the former would be allotted three 

times as many chances of being drawn in the sample as store B. This probability- 
proportionate-to-size principle of sample selection is widely employed in area sampling. 
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selected in true random fashion from among all homeowners in the popula¬ 
tion, and the tenants in the sample must be selected in true random style 
from among all tenants in the population. If a sample is stratified by 
state by city size by home ownership, the sample members of each home- 
ownership group within a particular state and city-size classification must 
be selected at random from all those in this group in the given state and 
city size; e.g., the selection of sample members representing owners of mort¬ 
gaged homes in cities of over 100,000 population in Oregon must assure every 

owner of a mortgaged house in such cities an equal chance of being drawn. 
Essentially the same principle is ,,true for area sampling, where the 

sample members are drawn from certain representative segments of the 
population. Thus, in selecting an area sample from city blocks within 
boroughs in the city of New York, every individual in any particular 
block included in the area sample must have as much of a chance of being 

selected in the sample as any other inhabitant of that block. Further¬ 
more, the blocks from any particular borough must themselves have been 
selected at random from all blocks in that particular borough. In other 
words, in an area sample the sampling units as well as the individual sam¬ 
ple members must be selected at random. 

Well, the reader may ask, what if a sample has not been drawn in true 
random fashion? For one thing, the sample may then contain a bias that 
will lead to completely fallacious results. An excellent illustration of such 
a situation is provided by Alfred Politz^ and is reproduced below: 

The [figure below] bounds a hypothetical country with 40 people. One quarter 

of them have SlOO income (A); another quarter S80 (B); another $60 (C); and 

another $40 (D). Some people read magazine X, some read magazine Y, some 

read neither one. And besides, those on the right side of the square are extroverts; 

those on the left side are introverts. The introverts have a tendency to read 

magazine X, the extroverts have a tendency to read magazine Y. 

A research man wants to find out how many readers the magazines X and Y 

have. He knows the distribution of income from an earlier complete enumeration 

of the population. He makes the a.ssumption—or even has the evidence—that 

income has something to do with reading habits. Unknown to the research man, 

we can see that in the A class of 10 people, 5 read magazine Y—that is, 50 per cent; 

of 10 people in the B class, 4 people read magazine Y—that is, 40 per cent. Con¬ 

tinuing the listing we can .set up the two columns of figures on magazine Y: 

Income Readers of Y, per cent 

$100 50 

80 40 

60 30 

40 20 

^ PoLiTZ, “Can an Advertiser Believe What Surveys Tell Him?^' (reference 129), 

p. 24, presented through the courtesy of Dr. Politz and of Printers^ Ink. 
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We are confronted with an ideal case in which income not only has something 
to do with reading but it exerts its influence even in a completely regular propor¬ 
tion. We can see that the research man working in this hypothetical country does 

Fig. 19. Hypothetical leadcrsliip dintribiitioii by income and degree of extroversion. 

an efficient sampling job if he divides the population into the income strata and 
then builds his sample on the idea of having it contain exactly (corresponding 
proportions of A, B, C, and D. Suppose he wants to take a sample of 20 persons 
out of the universe of 40. . . . 

Suppose the interviewer has a tendency to talk to extroverts because they are 
more willing to be talked to. For simplicity's sake, let^s say that he talks to extro¬ 
verts only. That is, he interviews the 20 people on the right side of the diagram. 
He will find 14 readers of Y in his sample of 20. The research nian then may 
conclude, since his sample has 70 per cent readers and since his sample is a ^^repre- 
sentative” one, there must be about 70 per cent readers in the total population. 
By the same token, he finds that the number of readers of magazine X ecjuals 
zero. 

Both findings are wrong. In the hypothetical country, the fallacy is visible to 
ws (there are actually 35 per cent readers of magazine X and 35 per cent readers of 
magazine Y). In real surveys the fallacy is hidden; and uncheckable information 
is spread over the field. 

Another consequence of not drawing a sample in true random fashion is 
the inability to estimate the precision—^the standard error—of any estimate 
based on such a sample. Since all standard-error formulas are based on 
the fundamental premise of random selection, they immediately become 
inapplicable if the sample members are not selected in this manner. To 
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use any standard-error formula on unrandomized sample data would be 
like trying to run a narrow-gauge locomotive on the standard American- 
gauge tracks. The net result is to render estimates based on such samples 
useless for most practical purposes, as one could not then know the magni¬ 
tude of the error in the forecast.^ In practice, many organizations apply 
standard-error formulas irrespective of whether or not the sample has been 
randomized, in the hope that the resultant figure will yield an approxima¬ 
tion to the true standard error of the estimate. But, on theoretical grounds, 
there is no justification for such a procedure. Because of the basic 
importance of randomization in standard-error formulas, the removal 
of this condition completely invalidates the use of these formulas. The 
standard error of a nonrandom sample may be 10 per cent more, or a 
thousand times more, than the standard error of a corresponding random¬ 
ized sample—we do not know which. What we do know is that the 

standard-error formula of a randomly selected sample cannot be assumed 
to be an approximation to the standard-error formula of a nonrandomly 
selected sample. 

In concluding this discussion it is appropriate to quote the following 
analogy to illustrate the basic relationship between randomness and min¬ 
imizing the sampling error. 

The relationship between stratification and randomization can be compared in 

a rough way with the relationship l)etween tlie shape of a boat and the power of 

the motor in it. A smooth shape avoiding turbulent movement of the water 

increases the speed of the boat, but no matter how far we advance in hydrodynamic 

design, we cannot reach the point where a smooth shape replaces the motor.^ 

Methods of Obtaining Randomness. There are many who will accept the 
theoretical validity of the requirement of randomness and then wonder 
how such random selection can be attained in a practical problem where 
the population consists of thousands and, at times, millions of units. It is 

admittedly difficult to randomize a sample under such conditions, but in 
most instances the use of the correct sample design plus a little ingenuity 
will solve the problem. 

For the purpose of drawing randomized samples, two sorts of popula¬ 
tions may be said to exist—populations for which a complete list of mem¬ 
bers is or can be made available, and populations for which such lists are 

not available. If a list is available for only part of the population, it is 
sometimes possible to separate the two parts of the population, and sample 
one part of the population from the list and the unlisted part by other 
methods. Such a procedure is frequently appropriate for sampling small 
towns and farm areas. A list of all the members in a particular town can 

^ See the example on pp. 79-80. 

* PoLiTZ, op. city p. 23. 
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usually be obtained from the town clerk; the farm population is then 

sampled separately. 
If Lists Are Available. It is a relatively simple matter to obtain a 

truly random sample from a complete list of the population. This is 
accomplished either by direct random selection of names from the list or 
by the more scientific method of using a table of random sampling num¬ 
bers. Perhaps the most popularly known method of direct random selec¬ 
tion is drawing out slips of paper from a hat or bowl, each slip of paper con¬ 
taining one name on the list. However, where several thousand names 
are listed, this procedure becomes rather awkward—besides being likely 
to be biased.^ 

A more convenient and reliable procedure is to numhor the list and 
select names at specified intervals. If P is the size of the list and N is the 
desired sample size, then every P/iVth name in the list is selected beginning 
with an arbitrary number from 1 to P/N. For example, if a sample of 800 
is required from a list of 100,000 people, every ]25th person on the list is 
selected beginning with any number from 1 to 125. If we begin with name 
number 87, say, then the sample will consist of those people whose names 
are opposite numbers 87, 212, 337, 462, 587, etc. 

However, the most objective method of randomizing a sample from a 
list is to use a table of random sampling numbers. Such a table consists 
of lists of thousands of numbei’s that, according to the best statistical and 
scientific tests available, are dispersed entirely at random. For one thing, 

all digits occur with equal frequency—as one would expect in selecting a 
number from 0 to 9 at random out of a bowl containing these 10 digits. 
For another thing, the frequency of occurrence of the pairs of digits 00 to 
99 corresponds with the theoretical expectation. Similarly, the frequency 
of occurrence of the same sets of four digits—^‘four digits of the same kind, 
three of a kind and one of another, two pairs, one pair, and all different 
digits^^—compares favorably with the theoretical frequency, as does the 
lengths of gaps between successive zeros.^ 

There are two generally used tables of random sampling numbers: a 
table of 40,000 random numbers by Tippett, and a table of 100,000 random 
numbers by Kendall and Smith. Of these two, the table by Kendall and 
Smith is recommended because it is larger and because Tippett's table may 
contain some nonrandom deficiencies.^ Kendall and Smith's table con¬ 
tains 100 sets of 1,000 numbers, the numbers being arranged in groups of 

1 Such supposed irrelevancies as the order in which the names are placed in the 

bowl, the friction between the various surfaces, the length of the names, among other 

things, have been found to distort the necessary equal probability of name selection. 
* These requirements refer to the Kendall and Smith Tables of Rarulom Sampling 

Numbers, 
» Yule, G. U., Test of Tippett’s Random Sampling Numbers," Journal of the 

Royal Statistical Society^ Vol. 101, 1938, pp. 167-172. 
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First Thousand 

1^4 5-^ 0^12 13-16 iy-20 21-24 25-28 2^32 33-36 37-40 

^ *315 7548 59 01 8372 59 93 7624 9708 8695 2303 6744 
^ 0554 5550 4310 53 74 3508 9061 1837 4410 9622 13 43 
3 1487 1603 5032 4043 6223 5005 1003 2211 5438 0834 
4 3897 6749 5194 0517 5853 7880 59 01 9432 4287 1695 
5 9731 2617 1899 7553 0870 9425 1258 4154 8821 0513 

6 II 74 26 93 81 44 33 93 08 72 32 79 73 31 18 22 64 70 68 so 
7 4336 1288 59x1 0164 5623 9300 9004 99 43 6407 4036 
8 9380 6204 7838 2680 4491 55 75 1*89 3258 47 55 2571 
9 49 54 01 31 81 08 42 98 41 87 69 S3 82 96 61 77 73 80 95 27 

JO 3676 8726 3337 9482 1569 419s 9686 7045 2748 3880 

II 0709 2523 9224 6271 2607 065s 8453 4467 3384 5320 
4331 0010 8144 8638 0307 5255 5161 4889 7429 4647 

13 6157 0063 6006 1736 37 75 6314 8951 2335 0174 6993 
14 3135 2837 9910 7791 8941 3157 9764 4862 5848 6919 
^5 57 04 88 65 26 27 79 59 36 82 90 52 95 65 46 35 06 53 22 54 

16 0924 3442 0068 7210 7137 3072 97 57 5609 2982 7650 
17 97 95 53 50 18 40 89 48 83 29 52 23 08 25 21 22 53 26 15 87 
i^ 93 73 25 95 70 43 78 19 88 85 56 67 16 68 26 95 99 64 45 69 
19 72 62 II 12 25 00 92 26 82 64 35 66 65 94 34 71 68 75 18 67 
20 6102 0744 1845 3712 0794 95 91 7378 6699 5361 9378 

21 9783 9854 74 33 05 59 1718 45 47 35 41 4422 0342 3000 
22 89 16 09 71 92 22 23 29 06 37 35 05 54 54 89 88 43 81 63 61 

25 96 68 82 20 62 87 17 92 65 02 82 35 28 62 84 91 95 48 83 
24 8144 3317 1905 0495 4806 7469 007s 6765 0171 6545 
2$ 1132 2549 3*42 3623 4386 0862 4976 6742 2452 3245 

Second Thousand 

1-4 5-8 9-12 13-16 iy-20 21-24 25-2S 29-32 33-36 3y-4o 

1 647s 5838 8584 laaa S9 a® 1769 6156 SS 95 04 59 59 47 
2 1030 2522 8977 4363 4430 3811 2490 6707 3482 3328 
3 71 01 79 84 95 51 30 85 03 74 66 59 10 28 87 53 76 56 91 49 
4 60 01 25 56 05 88 41 03 48 79 79 65 59 01 69 78 80 00 36 66 
5 3733 0946 5649 1614 aSoa 48 87 45 47 55 44 55 3* 5090 

6 47 86 98 70 01 31 59 II 22 73 60 62 61 28 22 34 69 16 12 12 
y 3804 0427 3764 1678 9578 3932 34 93 2488 4343 8706 
^ 73 50 83 09 08 83 05 48 00 78 36 66 93 02 95 56 46 04 53 36 
9 3262 3464 7484 0610 4324 2062 8373 1932 3564 3969 

10 97 59 1995 4936 6303 5106 6206 9929 75 95 3205 7734 

11 74 ox 2319 55 59 7909 6982 6622 4240 1596 7490 7589 
5675 4264 5713 3510 50 14 90 96 6336 7469 0963 3488 

13 4980 0499 0854 8312 1998 0852 8263 7292 9236 5026 
14 4358 4896 4724 8785 6670 0022 1501 93 99 5916 2377 
15 1665 3796 6460 3257 1301 35 74 2836 3673 0588 7229 

16 4850 2690 5565 3225 8748 3144 6802 3731 2529 6367 
ly 9676 5546 9236 3168 6230 4829 6383 5223 8166 4094 
18 3892 3615 5080 3578 1784 2344 4124 6333 9922 8128 
19 77 95 88 x6 9425 2250 5587 5107 3010 7060 2186 1961 
20 17 92 82 80 65 25 58 60 87 71 02 64 18 50 64 65 79 64 81 70 

21 9403 6859 780a 3180 44 99 4105 4x05 3187 4312 1596 
22 4746 0604 7956 2304 84x7 1437 2851 6727 5580 0368 
23 4785 6560 8851 9928 2439 4064 4171 7013 4631 8288 
24 5761 6346 5392 29.86 2018 xo 37 5765 1562 9869 0756 
25 0830 0927 0466 7526 66x0 5718 8791 0754 2222 2013 

Fig. 20. First 2,000 random sampling numbers of Kendall and Smith. 
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four, as shown by the reproduction of the first two 1,000 numbers in Fig. 20. 
By identifying these numbers with the (numbered) list of names, a sample 
can be drawn that is as close to being perfectly random as is possible with 
present-day methods. 

As an illustration, let us see how one would select a sample of 800 from 
a numbered list of 100,000 people by using random sampling numbers. 
One method is to begin at any point in the random sampling table, mark off 
800 successive five-digit sequences, and select as the sample members the 

names whose numbers correspond to each of these five-digit numbers. If a 
number is repeated, the repetition is ignt)red and the next number is taken. 
For example, suppose we decide to start with the second 1,000 numbers from 
the random-sampling-number table on the previous page. Then, reading 
horizontally, our sample will consist of the names oppo.4te numbers 
64, 755, 83,885, 84,122, 25,920, 17,696, etc. If, say, the 743rd number 

happens to be 83,885, the same as the second, it is morel}" ignored. Note 
that in order to assure all numbers from 1 to 100,000 an ecjual chance of 
being drawn, the five-digit sequence 00,000 must be identified with name 

number 100,000 on the list. 
Alternately, one could select the sample by reading the numbers verti¬ 

cally, diagonally, by skipping every other number, or, in general, by any 
systematic manner. Thus, reading vertically, the first five sample num¬ 
bers would be 61,763, 43,739, 75,441, 49,371, 94,450; reading horizontally 
and skipping every other number, the first five sample numbers would be 

67,538, 81,252, 16,655, 90,554, 13,228. Essentially the same procedure 
would be employed if instead of a straight list of 100,000 names, one had, 
say, 100 pages with 1,000 names numbered from 1 to 1,000 on each page. 
The first two digits of the five-digit random sampling number would then 
indicate the page number and the last three digits would indicate the name 
on the particular page. Thus, 79,023 would represent the 23rd name on 
page 79 of the list. As in the previous illustration, page 1W of the list 
would be signified by 00 as the first two digits of a random sampling num¬ 
ber, and name number 1,000 on any page would be signified by 000 as the 
last three digits. Although the precise method of application of the ran¬ 
dom sampling numbers depends on the particular problem, the principle 
is always the same; namely, identify each member of the population with a 
distinctive number and select the members of the sample on the basis of 
digit sequences drawn from the table of random sampling numbers.^ 

If Lists Are Not Available. In many instances, lists of the mem¬ 
bers of a population are obtainable either from internal records (e.g., a 
magazine sampling its subscribers) or from such external sources as tele¬ 
phone directories, trade-association lists, town-clerk registries (for smaller 

1 For further illustrations of the use of random sampling numbers, see the Preface 

to Tippett's Tables on Random Sampling Numbers, 
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cities), and othei’s. Randomized samples can then be easily secured by 
applying the methods outlined in the preceding section. However, when 
such lists are not available, resort must be had either to area sampling or 
to some mechanical form of randomization. 

Area sampling is particularly useful when random selection cannot be 
achieved by the usual methods. The reason for this is the existence of 
up-to-date block maps of every city in the United States showing the loca¬ 
tion of every dwelling in the city and the number of dwelling units in each 

dwelling. These maps, when supplemented by airplane photomaps of 
rural areas, provide an almost compl^^te list of all buildings and dwelling 
units in the United States; only a few rural nonfarm areas have not yet 
been mapped in this manner. By employing the relevant maps for any 
region, city, or group of cities being sampled, eveiy block or other area can 

identified by a specific number. A random sample of blocks or areas 

can then be drawn by the use of random sampling numbers. The dwelling 
units or dwellings to be sampled within each block can be ascertained either 
through the further use of random sampling numbers or by selecting every 

nth dwelling unit in the block; the value of n might vary from block to 
block, depending on the number of dwelling units in a particular block and 
on the number of sample members desired from the particular block. For 
example, if a proportional sample of 20 families is desired from an area of 
four sample blocks comprising 100, 200, 300, and 400 families, respectively, 
one procedure would be to select families at intervals of 50 beginning with a 

different arbitrary number for each block. Thus, in the first block we 
might select family numbers 11 and 61, in the second block, family numbers 
37, 87, 137, 187, etc.^ 

The main disadvantage of this method is its cost. For instance, a 
complete set of area maps of the city of Philadelphia would cost about 
$5,000. Although the government maps of rural areas are somewhat more 
economical, this means of randomization is practicable only for very large 
organizations continually making sampling surveys. In studies where this 
method is not feasible (and where lists are not available), the only valid 
alternative is mechanical randomization. 

By mechanical randomization is meant rigid control by the researcher 
of the interviewers' course. In other words, the interviewer is not per¬ 
mitted to query whom he pleases or to select people haphazardly, “at 
random," but the area covered by him and the people to be interviewed are 
fixed according to a predesignated plan. Before setting out, each inter¬ 
viewer is told at which corner of which block to begin, what course to take, 
and in what specific order (or lack of order) to select the respondents. For 

^ For a number of varied methods of selecting members of area samples, see Breyer, 

“Some Preliminary Problems of Sample Design for a Survey of Retail Trade Flow'^ 

(reference 111). 
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example, suppose that a random sample of 500 families is to be selected by 
10 interviewers in the Borough of Manhattan of the City of New York. 
By random selection 10 of the borough^s election districts are selected as 
the areas to be sampled, one district for each interviewer. Each block 
within an election district is numbered (with the aid of a 50-cent sightseers^ 
map), and the starting point for each interviewer is determined as that 
block whose number is drawn from a table of random sampling numbers. 
Each interviewer is instructed to start at a different corner (e.gf., the first 
interviewer to start at the northeast corner, the second interviewer to 
start at the northwest corner,..., the fifth interviewer to start at the north¬ 
east corner, etc.) and to work counterclockwise around the block. One 
family from every other building is interviewed; the particular family is 
selected as the (k -|- n)th name on the letter boxes reading from left to 
right, where k is an arbitrarily selected numl>er and n is the number of 

interviews completed. If the (fc + ^)th letterbox is a vacancy, the imme¬ 
diately following name is to be taken. II k + n exceeds the number of 
letter boxes, that family whose name is on the letter box corresponding to 

(fc + n) minus the number of letter boxes is to be interviewed. No more 
than five interviews are to be made in any one block. The interviewer^s 
course from block to block is set according to a certain pattern and as many 

blocks are to be covered as are necessary to secure 50 interviews within the 
district. 

Of course, it is not necessary to use election districts; one might use 

police precincts, special sales territories, or any other sort of divisional 
classification. In rural areas, county or township divisions might be used. 
The methods by which complete randomization is accomplished vary 
according to the problem, and in most cases a number of alternative 
methods can be constructed. Nevertheless, the fundamental rule on 
which this method is based remains the same—to remove the selection of 
the sample members from the dangers of human discretion and fix the 
sample selection by means of a preset mechanical method. 

Bias in Obtaining and Preparing Sample Data. Bias may enter into 
sample data because of some prejudice on the part of the respondent, the 
interviewer—if the data are obtained orally, or the questionnaire—if the 
data are gathered by mail. Bias on the part of the respondent may be 
deliberate or it may be unintentional. In the former case, it may be more 
appropriately referred to as respondent misrepresentation, inasmuch as it 
is a conscious effort on the part of the respondent to mislead the interviewer 
(or the home office) by supplying wrong answers.^ Probably the most 

' Respondent misrepresentation is treated as a bias in this section because from the 
point of view of the sampling survey, our primary concern, intentional misrepresenta¬ 
tion and (unintentional) bias are both (dements tending to bias the sample findings; 

in most cases one is as difficult to discover as the other. 
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frequent instance of misrepresentation is when one^s exact age or income is 

requested, as in the case of the United States Census. People with very 
high incomes are likely to report their income as lower than is actually the 
case, either for fear of use of their reply in tax investigations or to avoid 
disclosure of the source of part of their income. Some people in the lower 
income brackets inflate tl-eir reported income at times for social prestige, 
t.e., to ‘^keep up with the Joneses.”^ In the case of age, one glance at the 
Census tables would cause a visitor from Mars to marvel at how many 
more people have ages ending with the digits 5 and 0 than have ages either 
above or below any one of these ages. 1 hus, in 1940 there were 1,809,301 
people aged 50 but only 1,533,704 people aged 49 and 1,274,650 people 
aged 51.2 many instances the respondent does not know, or is not sure 
of, his true age and guesses at it in round numbers, a practice that is most 
prevalent in the older age groups. However, it is extremely doubtful, to 
say the least, whether people of all age groups have such poor memories. 

Many instances of misrepresentation are attributable to the interviewer 
or to the questionnaire. If the respondent happens to be antagonized 

during the interview, he may deliberately give short, curt “No^^ or ^^Don’t 
know^’ replies to terminate the interview as soon as possible. The same is 
likely to happen on a lengthy overdrawn interview or questionnaire. 

When asked ‘^Have you ever used any floor wax?^^ a tired respondent may 
deliberately reply “No^^ for fear of being asked for the name of the brand, 
how she liked it, what she didnT like about it, etc., if she acknowledged 

her use of it. Such interviews are characterized by a steady diminution 
in the number of comments and aside remarks as the interview progresses. 

Unintentional respondent bias results when the respondent makes a 
false reply in all sincerity. Such instances are most prevalent in recogni¬ 
tion and readership surveys, where the respondent will claim to having- 
seen or read a particular advertisement, magazine, or brand name when in 
fact such is not the case. In a recognition survey of home economists in 
the Chicago area,** 3.1 per cent of the respondents claimed to have heard of 
a home economist by the name of Edith Roberts. Some even went so far 
as to name her sponsor, a veiy commendable achievement considering the 
fact that Edith Roberts was completely fictitious! Similarly, in almost 
every readership and recognition survey, cases are encountered of people 
recognizing brand names that do not exist or claiming to have seen an 
advertisement that was never released. Judging from their other replies 
and from callbacks, the respondents were speaking in all sincerity in the 
large majority of such cases, the errors being attributable to the inherent 

^ Actually, Census data on any individual or family unit is never disclosed, and its 
use for tax-investigation purposes is prohibited by law. 

2 U.S. Census^ 1940^ Population^ Vol. 4, Part 1, p. 9. 

3 Conducted by Mrs. Marji Frank Simon, formerly of J. R. Pershall Company. 
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imperfections of human memory (stimulated, now and then, by the respond¬ 
ent's eagerness to cooperate with an overzealous interviewer). It is one 
of the major headaches of the researcher to discover ways and means of 
ferreting out such cases. 

Respondent bias, whether intentional or not, can never be eliminated 
altogether. One can merely attempt to minimize it through proper con¬ 
struction of the questionnaire and through careful instruction of the inter¬ 
viewers. For instance, a very effective way of reducing misrepresentation 
of age, income, and other factual characteristics is, instead of asking the 
respondent “What is your age?” to ask in which of several age groups he 
belongs. Instead of asking the respondent to divulge his exact income, he 
could be asked to indicate in which of several income groups he belongs. 
In most practical problems, classifying information obtaim'd iii this manner 
is as useful as the exact information, even more so when the pronounced 

reduction in misrepresentation is taken into account. 
In addition, interviewers can be instructed on methods of recognizing 

respondents who intentionally or not give many wrong answers. By hav¬ 

ing the interviewers report such cases, the researcher is enabled to discount 
these interviews or, if he desires, to verify the interviewer\s impression by a 
callback. Interviewers can receive considerable aid in recognizing these 
cases from a good (and cleverly) constructed questionnaire form. By 
inserting one or two “catch” questions—questions specially designed to 
bring out inconsistencies—a surprisingly large number of respondent bias 

cases can be discovered. Thus, by inserting the fictitious name of Edith 
Roberts in the home-economist recognition survey, the researcher provided 
herself with one means of adjusting the recognition percentages of the true 
home economists for bias.^ Similarly, the insertion of one or two unpub¬ 
lished advertisements in recognition surveys enables one to estimate the 
approximate degree of respondent bias or “confusion” on the genuine adver¬ 
tisements. 

In order for such catch questions to be effective, they must be so 
designed and placed in the questionnaire as not to arouse the respondent's 
suspicion in any way. To ask a respondent if he had attended a Loew\s 
theater in the past 6 weeks immediately after asking whether he had seen a 
particular movie that was circulated only through Loew’s theaters would 
be recognized, and resented, by most respondents as an obvious attempt to 
catch them. Whether or not the respondent had seen the particular movie, 
he would be sure to know, from newspaper and billboard advertisements, 
where the movie had been shown. On the other hand, very few if any 
respondents would suspect anything if at the beginning of the interview 
they were asked what movie theaters they had attended during the past 6 

* For the method by which this adjustment was made, see Frank, “Measurement 

and Elimination of Confusion Elements in Recognition Surveys" (reference 127). 
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weeks and at the end of the interview they were requested to check off the 
movies they had seen from a long list—a list that by some ^‘coincidence” 
included all the movies shown at Loew^s theaters during this period. 

As in the case of respondents, interviewer bias may be deliberate or 
unconscious. The most common form of interviewer bias is the uncon¬ 
scious tendency of interviewers to select as respondents people most like 
themselves in income level, attitude, and various economic and sociological 
characteristics. In reality, this type of bias is attributable to lack of ran¬ 

domization and has already been discussed in a preceding section. Another 
form of unconscious bias is the tendency of some interviewers to phrase the 
questions incorrectly or misrepresent the replies of the respondent. Thus, 
instead of asking, “What is your opinion of electric refrigerators as com¬ 
pared to gas refrigerators?’’ a careless interviewer may inquire, “Do you 
like electric refrigerators better than gas refrigerators?” When the ques¬ 

tion is phrased in this manner, the replies will tend to be biased toward 
electric refrigerators. As another example, a respondent, asked whether 
he would like to own a television set, replies that he “wouldn’t mind owning 

one.” A careless interviewer may interpret this reply as “wants to buy a 
television set,” when in fact all that the respondent may mean is that he 
would not object to owning a set if someone gave it to him, but that he did 
not intend to buy one. Careful instruction and training is the best remedy 
for cases of interviewer misrepresentation. 

Deliberate interviewer bias is better known as “cheating,” and repre¬ 

sents a conscious attempt on the part of the interviewer to submit fraudu¬ 
lent interviews. In some cases only a few questions have been tampered 
with, i,e,j answered by the interviewer alone; in other cases, the entire 
questionnaire is filled in by the interviewer and identified with a fictitious 
respondent. Interviewers have been known to fill their entire quota with¬ 
out taking a step from the house, each questionnaire being returned with a 
different (nonexistent) name. 

Because of the ease with which it is accomplished and because of the 
difficulty of discovering it, the cheating problem is of great concern in 
almost all personal-interview studies. Contact between the central office 
and the interviewers in the field is very loose, inasmuch as assignments, 
questionnaire forms, instructions, etc., are generally sent out and returned 
by mail. If an interviewer does not understand something, his only 

recourse is to write for an explanation and then wait several days for a 
reply, days during which he would not be able to make any interviews and 
would lose part of the time allowed him to obtain his quota of interviews. 
Rather than resort to this costly and time-consuming procedure and rather 
than bother the respondents with something he does not understand, the 
interviewer is likely to answer the disputed points himself, either by insert¬ 
ing “Don^t know’s” or by writing a more imaginative reply. The fact 



232 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

that most interviewers are employed on a part-time assignment basis by a 
number of organizations does not increase their allegiance to any particular 
organization and, at times, leads to situations that invite cheating. Sup¬ 
pose that an interviewer who has been unemployed for some time suddenly 
receives simultaneous assignments from two different organizations that 
could not possibly both be filled within the stipulated time limits. In order 
to realize the income from the two assignments, and perhaps for fear of not 
receiving future assignments from one of the organizations should he reject 
the present assignment, the interviewer may deliberately fill in one of the 
sets of questionnaires himself. Having once begun, it is usually not diffi¬ 
cult to rationalize such actions on futu»e assignments. The low rate of 
compensation received by most interviewers is a contributing factor in such 
instances both directly and indirectly: directly because it increases the 
interviewer’s desire to fill the maximum number of asoigumcnts as quickly 
as possible, especially when payment is made on an assignment basis, and 
indirectly, because it leads to a high rate of turnover among interviewers, 
thereby preventing the establishment of a large force of highly skilled 

interviewers. 
To a large extent the sampling organizations themselves are to blame 

for the seriousness of the cheating problem. Two reasons have already been 
mentioned: the loose contact with the interviewers and the low rate of 
compensation, including the often unavoidable factor of part-time employ¬ 
ment. Faulty or inadequate instruction by the field supervisor often leads 
to well-intentioned interviewer cheating. This is particularly true when 
the name of the sponsor of the survey is divulged to the interviewers, and 
the importance of securing ‘‘accurate” information on the sponsor’s product 
is impressed upon the interviewers’ minds. While waiting in a suburban 
train terminal several years ago, I was approached by a middle-aged woman 
who identified herself as an interviewer for a certain advertising agency and 
requested my cooperation in a recognition test. I readily agreed. I was 
shown a booklet containing full-color reproductions of a number of liquor 
advertisements and was asked to indicate which of these advertisements I 
had seen and where I had seen it. Having had very little contact with the 
popular national magazines during the past few months, I was able to 
recognize only one or two of these advertisements from train posters. 
Obviously disappointed, the woman turned to an advertisement for a par¬ 
ticular rye whisky and asked, ''Are you sure that you haven’t seen this 
ad?” “I may have seen it,” I replied, “but I don’t recall it at the moment.” 
“Well,” the interviewer said, “then we’ll just put you down as having 
seen it with source unknown. You know,” she remarked half apolo¬ 
getically, “it doesn’t look nice to report that so few people have seen this 
ad.” 

The issuance of lengthy, complex questionnaires, ambiguous instruc¬ 
tions, or impracticable assignments as to quota or time limits invites 
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cheating.^ Rather than discard a half-completed questionnaire because of 

an abrupt termination of a lengthy interview by a respondent, the inter¬ 

viewer may fill in his own answers. To avoid antagonizing a respondent, 

the interviewer may also fill in his own answers. To avoid boring a respond¬ 

ent with an excessive number of ‘Why^s” or “Why not^s,^^ an interviewer 

may (wisely or not) omit these questions and answer them later on his own 
initiative. Similarly worded questions, whose difference may not be readily 

apparent to the interviewer, are frequently accorded the same treatment. 

And, where an unpracticably Large number of interviews are requested 

within a certain period, cheating iS a vc»;v -ikely consequence. An example 

of such an instance is related by Snead: 

One company recently sent the writer an unannounced assignment consisting 

of forty-five questionnaires, fifteen questions each, the interviews to be made 

vdth housewives in the home [in the South]. The quota price set by the company 

for this job was five dollars! When informed that no one around here could be^ 

obtained to work for that low price they wrote back that on the basis of their 

pretest in New York this number could be obtained in from four to five hours. 

They don^t answer doorbells that fast in the South! 

The apprehension of cheaters is not an easy task. Careful editing and 

comparison of all questionnaires returned by the same interviewer is a fre¬ 

quent precautionary measure. If all the questionnaires returned by one 
interviewer contain much the same expressions, appear to be written in 
the same style, or contain liberal sprinklings of “Don^t know^s,^^ this is a 

pretty good indication that something may be wrong. Replies that are 
inconsistent to the point of absurdity also indicate that something odd is 

going on. If a young bachelor comments at length on the advantages of 

Pablum for baby-feeding, one might justifiably wonder at the source of the 

bachelor^s inspiration. 

Many sampling organizations require interviewers to submit the names 

and addresses of all respondents, and a selected number of interviews are 

then verified by callbacks. This method is effective when the interviewer 

reports an address that is the seventh story of a four-story building, or 

reports the respondent's address as 5715 E. 53 St., Chicago, an address 

that, if it existed, would be 4 miles out in Lake Michigan. However, most 

cheaters are far too clever to be caught in this manner; genuine names and 

addresses are usually supplied, often with the full knowledge and collabora¬ 

tion of the supposed respondents.^ The author knows of at least one inter- 

^ See Crespi, “The Cheater Problem in Polling^’ (reference 125). For the inter¬ 
viewer's viewpoint on such matters, see Snead, ^'Problems of Field Interviewers^^ 

(reference 130). 
An alternative method designed to lull the interviewer's suspicion is to request 

only the address of each interview. A postcard is then mailed to each address in¬ 
quiring whether any member of the household had been interviewed on a specified 

date. However, if the address is an apartment building, this method is not very practi¬ 

cable. See Crespi, op. cit. 
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viewer, employed by one of the big three public-opinion organizations, who 

has been returning completed questionnaires for 3 years. Yet, at the 

present writing, this interviewer had not made one bona fide interview in 

the last year I 

To cope with this problem, some companies, such as Quaker Oats 

Company, have employed full-time interviewing staffs. Other companies 

have adopted the practice of giving their own employees some interviewing 

instruction and sending these employees out on interviewing assignments 

instead of obtaining outside help. However, the majority of personal- 

interview surveys are still made by poorly paid, part-time interviewers. 

An ideal solution would seem to be the formation of a nation-wide inter¬ 

viewing organization employing, and training, interviewers on a full-time 

basis, whose sole function would be to supply skilled interviewers for per¬ 

sonal-interview studies whenever and wherever they may be required.^ 

To date, no such organization has been formed. 

As a result of scientific progress, a new means of eliminating cheating 

and interviewer misrepresentation has appeared, f.e., the wire recorder.^ 

This pocket-sized gadget records sounds on a strip of wire insteaci of on the 

usual 10- or 12-inch records. Because of its light weight and small size, it 

can be hidden in an interviewer’s vest pocket, and the entire interview can 

be recorded on a wire instead of being written on a questionnaire form. 

However, the wire recorder does pose a couple of questions. Although it 

could be used without the respondent’s knowledge, such a procedure might 

be considered a breach of ethics and might seriously reduce the willingness 

of the public to submit to further interviews. On the other hand, to 

inform the respondent that every word he says is being recorded would 

undoubtedly cause the respondent to be far more cautious in voicing his 

opinions, thereby greatly restricting the value of the interview. The high 

cost of the recorder is another problem; the price of a wire recorder is cur¬ 

rently about $150 and the cost of a recording is about $2.50 per hour. Not 

until the cost of this device is reduced a good deal will personal-interview 

surveys be able to take full advantage of the wire recorder. 

Questionnaire bias arises through faulty construction of the question¬ 

naire, whereby some prejudice is imputed to the respondent. Questions 

like “Do you like Maxwell House coffee?” or even “Have you ever used 

Maxwell House coffee?” are biased, in that both tend to bias the respondent 

to reply “Yes.” This is true even for the second question, because the 

deliberate reference to the brand name might incite some cooperative 

respondents to answer in the affirmative to “help” the agency. This ques¬ 

tion can be phrased correctly in the form of a multiple choice, e.gf., “Which 

of the following brands of coffee have you used?” with Maxwell House 

^ Ibid. 
* Miller, “Consumer Interviews by Mechanical Recording” (reference 128). 
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coffee included in the subsequent list. In order for a questionnaire to be 

free from bias, the questions must be clearly and explicitly worded and must 

not influence the reply of the respondent in any direction.^ Even the 

sequence in which the questions are presented must be taken into account; 

this is more important for personal interviews than for mail questionnaires, 

where the respondent is able to glance over all the questions before answer¬ 

ing any one of them. The correct framing of a questionnaire is an art in 

itself, and a considerable amount of literature is available on the subject. 

The reader who wishes to delve into this subject is referred to references 

56-60 in the Bibliography. 

The main sources of bias in preparing the sample data are in editing 

and in the analysis of the results.*^ The danger of bias in editing question¬ 

naires lies in the possible misinterpretation of the meaning of a reply, 

tspecially when the editor has a prejudiced outlook on the subject. Impar¬ 

tial treatment of the returns is especially essential when the editor is called 

upon to summarize each respondent's comments or attitude, or when he is 

asked to select representative comments from the sample. A good editor 

is not one who interprets what he thinks the respondent should have meant, 

but one who interprets what the respondent appears to have thought on 

the basis of his statements. 

Prejudice can play as much havoc in analyzing the sample data as in 

editing the returns. It is a well-known fact that a person who is out to 

prove something invariably tends to find evidence in favor of his position 

and overlooks evidence tending to disprove the point. The unknowing 

use of faulty techniques is another cause of analytical bias. Confusion 

between the arithmetic mean and the mode is one of the outstanding exam¬ 

ples of such a bias. For example, a medium-priced-clothing chain may 

want to know how much money the average American family spent on 

clothing in 1946. On the basis of a sample survey the client receives a 

statement that ‘^the average American family spent $510 on clothing in 

1946,” where the figure is computed as the arithmetic average of the sample 

distribution. On the basis of this statement, the client would infer that 

the typical American family spent this sum for clothing in 1946. In fact, 

such is not the case, for the ‘‘typical” family is the modal family, the family 

that is representative of the greatest number of similar families, whose 

expenditure is not equal to the straight average of the expenditures of all 

* However, a new method has now been developed that purports to yield the pro- 
and-con division of attitudes among respondents on a particular subject independent 
of the manner in which the questions are phrased. It is beyond the scope of this book 

to go into the details of this method, known as intensity^ or scaZe, analysis. For further 

information, see reference 151 in the Bibliography. 
* Tabulating and checking the sample data presents many chances for arithmetical 

errors and other mistakes, but the chances for bias in these two procedures, in the 

sense of unknowingly using faulty methods, are not too great. 
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families. The modal family clothing expenditure in 1946 was about $345^ 

and it is this figure that is most relevant to a medium-priced-clothing 

chain.^ 
Analytical bias can be avoided only by having a thorough knowledge 

of the applicability and restrictions of the various statistical techniques 

and by maintaining an impartial outlook in analyzing the sample data. 

This does not mean that the researcher is not supposed to have any opinion 

or pet theory on the subject or that the researcher is not supposed to take 

any definite stand in the final report on the survey. It does mean that the 

researcher should not let his opinions infiuence his interpretation of the 

results and that he should take a definite stand only when the results bear 

him out. Too many researchers believe that a survey is not successful 

unless positive findings can be demonstrated, and attempt to stretch points 

in order to show the ^^positive^’ findings they have been able to unearth. 

Yet a negative result is every bit as important as a positive result. It is 

just as important for a company to know that the brand loyalty of.its 

product has not increased in the past year as it is to know that brand loy¬ 

alty has increased. Offhand, this would appear to be a truism. Yet, how 

many times does one find a survey stressing the positive findings with little 

if any attention to results where no appreciable change is apparent or where 

no definitive statement is warranted by the sample data? 

2. METHODS OF GATHERING SAMPLE DATA 

Sample data are generally obtained by one of three methods: personal 

interviews, mail questionnaires, or telephone calls. Almost all other 

methods of sample selection are variations of these three. A few miscel¬ 

laneous methods of obtaining sample data are discussed on pages 252ff. 

Telephone Calls 

The outstanding instance in which telephone calls are used to obtain 

sample data is in radio-audience measurements, as exemplified by the 

coincidental technique used by C. E. Hooper, Inc.^ The success of this 

technique derives from the fact that few questions are asked, only factual 

1 Although the mean and modal figures in the above example are rough estimates, 
the spread between the two figures is not imaginary. The magnitude of this spread is 

based upon computations by the author from a 1944 consumer expenditure survey 

as shown in the Statistical Abstract of the United States, 1946, U.S. Government Print¬ 
ing Office, Washington, D.C., p. 274. 

* The coincidental technique derives its name from the fact that telephone calls are 

made while the program is in progress, the purpose being to determine the relative 

number of homes and of people listening to the program. The listenership rating of 
the program is then expressed as the percentage of completed calls reported as listening 

to the program, including some minor adjustments for busy signals and for refusals to 

give information. 
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information that can be supplied in a few words is requested,^ and random 

selection from the population being sampled is feasible. 

Telephone interviewing possesses two great advantages over personal 

interviews and mail questionnaires. One advantage is that it is by far 

the most economical means of obtaining data, entailing an expenditure 

of about 10 cents a call as compared to a cost of about twice as much per 

mail questionnaire sent out and many times more for personal interviews. 

The other advantage is that the sampling process is considerably facilitated 

by the fact that complete up-to-date lists of telephone-owners are available, 

/.6., telephone directories. By applyh'.g tables of random sampling 

numbers to these telephone directories, the sample can be selected in true 

random fashion, thereby reducing the danger of sample bias to a minimum. 

Telephone-ownership samples are one of the fevr instances in population 

sampling where the danger of sample bias is reduced to zero, for all practical 

purposes. 

However, despite these two advantages, telephone calls arc very in¬ 

frequently employed in regular sampling operations. Probably the main 

reason for this is the atypicalness of the telephone-owning population as 

compared to the total population. To mention a few of the ways in which 

telephone homes and non-telephone homes differ, telephone-owners on 

the average are in a higher income bracket, are better educated, are more 

likely to be in a clerical, business, or professional occupation, and have 

fewer children than non-telephone-owners. So many purchasing and 

marketing consumer habits are influenced by these characteristics that a 

sample of telephone owners is more likely than not to be atypical of the 

total population. Therefore, telephone-ownership samples are practicable 

only if telephone-owners are known to be representative of the entire pop¬ 

ulation (known, presumably, on the basis of previous information), or if 

the information is desired specifically for the telephone-owning population. 

In addition, the very nature of a telephone call necessitates the re¬ 

striction of the call to a small number of readily understood questions 

that are not too personal and can be answered in a few words. The 

questions must be few in number to prevent the respondent's losing 

patience and hanging up the receiver in the middle of an interview. The 

questions must be readily comprehensible because the respondent has to 

reply immediately, and does not have the opportunity to mull over the 

meaning of the question as he does in the case of mail questionnaires 

and, to a lesser degree, during a personal interview. Personal questions 

1 Thus, telephone operators of the Hooper organization ask whether the respondent 

is listening to the radio at the time; if yes, the name of the program, station, and 
sponsor, and the number of men, women, and children in the home listening to the 

program. Each of these questions can be answered in one or two words. See Hooper, 

^‘The Coincidental Method of Measuring Radio Audience Size” (reference 152). 



238 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

or questions that might possibly antagonize the respondent cannot be 

asked over a telephone for fear of bringing about an abrupt end of the 

interview; there is the additional consideration that people are not 

likely to be too loquacious in phone conversations with strangers. 

In general, telephone calls are likely to be most successful when a 

small number of either factual or dichotomous questions are asked. 
However, unless a very high response rate is secured, the representative¬ 

ness of the sample remains in doubt until, and unless, callbacks are made 

on those people who refuse to respond, in order to determine whether 

any bias is injected into the sample by the exclusion of the nonrespondents. 

Such callbacks may prove to be rather difficult, as people who. refuse to 

talk once over the phone are not likely to be more agreeable on a repeat 

call. Hence, personal interviews would have tc be made to check non¬ 

respondents. In many instances, personal interviews would also have to 

be made where the accuracy of the sample data is to be verified. 

Still another serious limitation on the use of the telephone method is 

that it can usually be applied only when strata breakdowns are not 

required. Except for a few characteristics like sex, family size, and 

geographic location, classifying information on telephone respondents is 

not easily obtainable, and is even less readily verifiable. Thus, the 

applicability of the telephone method is greatly restricted. Only when 

telephone-owners are believed to be representative of the population 
under observation and when data on an over-all basis are sought, data 

that can be obtained by means of a few clearly phrased questions, is the 

telephone method likely to prove practicable. 

Personal Interviews and Mail Questionnaires 

Definitions. The relative merits of personal interviews versus mail 
questionnaires have been a controversial issue in sampling circles for 

many years.^ As a result of this controversy and of the numerous studies 

that have been undertaken to prove or disprove various theories, a number 

of facts have emerged that serve more or less to delimit the areas of 

endeavor in which each method is preferable. Before going into a detailed 

discussion of these various considerations, let us digress briefly and see 

what is meant by a personal interview and by a mail questionnaire. 

A- personal interview involves a direct face-to-face conversation 

between a representative of the sampling organization, the interviewer, 

and the person from whom information is being sought, the interviewee 

or the respondent. The replies to questions asked by the interviewer are 

recorded either while the interview is in progress or immediately after 

the termination of the interview. In most instances the replies are 

recorded by the interviewer; however, in some cases, usually where 

1 For example, see the Bibliography for articles in the 1945 and 1946 issues of 
Printers* Ink on this subject. 
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multiple selection is involved, the respondent may be asked to record his 

own replies. Personal interviews may last anywhere from 2 or 3 minutes 

in the case of public-opinion polls and spot preference samples to 2 or 3 

hours in the case of studies on sociological behavior, psychological 

motivations, etc.^ A questionnaire, or interview, form may or may not 

be used. If factual information is requested or multiple-choice questions 
are asked, such a form would generally have to be employed, but where 

the interview deals with opinions and beliefs, interviewers are frequently 

requested to memorize a basic outline and ask the questions orally.^ 

The basic distinction between a mai* questionnaire and a personal 

interview is that no representative of the sampling organization is present 

when the questionnaire is received. Although the term ^^mail question¬ 

naire'' undoubtedly arose because the questionnaires were sent through 

tiv3 mails, the use of the mails is not an absolute requirement of a mail 

questionnaire. From the sampling point of view, a questionnaire printed 

in a newspaper, sent by telegram, or distributed and collected by neigh¬ 

borhood stores is just as much a ‘‘mail" questionnaire as one sent through 

the mails; the sampling problems are much the same in all these instances. 

Because the recipient of a mail questionnaire is under no moral obliga¬ 

tion to return it, a high rate of response is obtained only when the question¬ 

naire is brief, explicit, and provides a stamped, self-addressed return 

envelope. The outstanding instance in which mail questionnaires are 

apt to be long is in the case of consumer diaries, where families are re¬ 

quested to keep continuing records of the purchase of specified products.* 

The high rate of response achieved by these diary questionnaires is due 
to the fact that the same families report week after week and that special 

inducements to stimulate regular reporting are offered by the sampling 

organizations.^ However, unless some pecuniary or token reward is 

offered, not many individuals are likely to sit down and fill out a four- or 

five-page questionnaire. 

' The latter is commonly known as a depth interview^ since its primary objective is 
to examine the causes and motivations for certain actions rather than the actions 

themselves. See ^‘What is Depth Interviewing?'’ (reference 151). Thus, in a study of 

employer-employee relationships, a depth interview with an employee would attempt to 
discover not only the reasons why the employee likes or dislikes the employer but also 
the circumstances or incidents that brought the reasons into being. 

* Many samplers believe that the sight of a formal interview form, especially if 
the interview is to be a long one, coupled with the sight of the interviewer transcribing 
replies is likely to make the respondent ill at ease and less open and talkative than 

might otherwise be the case. 

* Also in the case of radio diaries, where records are kept of radio programs, stations 
listened to, and related data over a given period of time. 

* For example, in maintaining its National Consumer Panel, Industrial Surveys 

Company allows bonus points for each continuous month of reporting as well as for 

complete returns over an entire year. These bonus points can be exchanged for special 
premiums ranging from lead pencils to bedroom furniture. 
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Special care must be given to the framing and wording of a mail 

questionnaire to avoid possible misunderstanding on the part of the 

recipient. Besides inviting unusable or faulty replies, poorly framed 

questionnaires lead to very low returns. A respondent who is puzzled 

by the meaning of several questions is just as likely as not to throw the 

questionnaire in the waste basket rather than bother mailing in back. 

A Relative Evaluation. The major advantages and disadvantages of 

mail questionnaires relative to personal interviews put forth at various 

times in the past are shown in Table 23. It is immediately apparent 
« 

Table 23. Alleged Advantages and Disadvantages op Mail Questionnaires as 

Compared to Personal Interviews 

Advantages 

1. Permits a wider and more representa¬ 

tive distribution of the sample. 

2. No field staff is required. 

3. Cost per questionnaire is lower. 

4. People are likely to be more frank. 

5. Eliminates interviewer bias; the an¬ 
swers are obtained in the respondent’s 
own words. 

6. Opinions of all family members are 
more readily obtainable. 

7. The questionnaire can be answered at 

the respondent’s leisure; it gives him 
a chance to ^‘think things over.” 

8. Certain segments of the population 

are more easily approachable. 

Disadvantages 

1. Control over the questionnaire is lost 

as soon as it is mailed out; it is dif¬ 
ficult to control the distribution of 
the questionnaires. 

2. It is difficult to interpret omissions. 

3. Cost per questionnaire is not lower 
when the rate of response is taken into 

account. 

4. People are likely to be more frank in 
personal interviews. 

5. Certain questions cannot be asked; 
the information obtainable by mail 
questionnaire is limited. 

6. Only those interested in the subject 
are likely to reply. 

7. Facts obtained by mail questionnaire 

conflict with facts obtained by per¬ 

sonal interview. 

8. Respondent’s own private opinion is 

not obtainable. 

that a number of these allegations conflict with each other. ^ To assess 

the validity of these statements let us examine each of them in some 

detail.^ 

Sample Control and Geographic Distribution, The use of the mails 

permits questionnaires to be distributed more uniformly and over a wider 

^ All the points listed in Table 23 have been transcribed almost verbatim from the 
references appearing in the subsequent footnotes. 

* The following sections are based on the author’s article “Which—Mail Question¬ 

naires or Personal Interviews?” which appeared in Printers* Ink (reference 139). 
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geographic area than is true for personal interviews, where the returns 
are necessarily restricted to, and clustered within, the areas canvassed by 
the interviewers. Of course, this is true only where the population being 
sampled is distributed over an extensive area, ^.e., where because of time 
or cost limitations, the interviewers are unable to cover the entire area 
being sampled. A sample of the entire United States population, or 
even of the eastern-seaboard states, would be such an instance. On the 
other hand, a sample of the population of Los Angeles can be distributed 

uniformly just as readily by personal interview as by mail questionnaire. 
Hence, this advantage of mail q\4estioriga*‘ res would appear to be restricted 
to samples covering extensive areas. 

However, the mere fact that a sample is distributed over a wide 
geographic area does not necessarily make it more representative of the 
population than a sample covering only part of the area. This presumed 

identity between representativeness and sample dispersion has long been 
one of the outstanding misconceptions in the mail-questionnaire-personal- 
interview controversy. As a matter of fact, one of the most efficient 

present-day sampling designs, area sampling, is based upon clusters of 
interviews within specified areas. In many instances, a sample covering 
a small representative segment of the population will prove equally as 
efficient as widely distributed samples, if not more efficient. As we have 
seen, there are two reasons for this fact. One is that a small number of 
restricted areas frequently proves to be sufficiently representative of the 

entire population to meet the requirements of the survey. Thus, samples 
from selected areas in 123 counties provided the Bureau of the Census with 
sufficiently accurate data to estimate labor-force statistics of the entire 
United States population.^ The second reason is that true random selection 
from a small population is usually easier to achieve than true random 
selection from a large population, because of the generally greater facility 
of working with smaller populations. The smaller is the population being 
sampled, the more likely it is that some sort of listing of families or of 
households is available or can be made available. 

Control over the questionnaire is lost only to the extent that the 
return of any particular questionnaire cannot be assured. However, 
control over the ultimate distribution of the questionnaires in the pop¬ 
ulation is not entirely taken out of the hands of the sampler. By careful 
distribution of the initial mailing,^ by follow-up letters, by a few supple- 

‘ See 7'he Labor Force BulletiTiy U.S. Bureau of the Census, November, 1944. There 

are over 3,000 counties in the United States. 

* That is, by a prior consideration of the probable rates of return in various sectors 
and by distributing the questionnaires accordingly. For example, if responsiveness 

increases as one goes from east to west, as has been sometimes asserted, a dispropor¬ 

tionately large number of mail questionnaires should be sent to eastern areas. 
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mentary personal interviews, and by the use of weighting factors in 
making the final estimates, the distribution of mail questionnaires can be 
controlled about as rigidly as that of personal interviews. By means of 
repeated callbacks, returns as high as 90 per cent can be attained.^ 

Relative Costs, Unless follow-up personal interviews are required 
(either to obtain data from nonrespondents or to verify the answers of 
the respondents), it is true that a field staff is not necessary when mail 
questionnaires are employed. Usually, however, a field staff cannot be 

dispensed with altogether, as some interviews must be made in order to 
obtain data from the nonrespondents to the mail questionnaire. 

It is largely because of the reduced field staff required by a mail survey 
that the cost of a mail survey is considerably below that of a personal- 
interview survey. The opposing contention that this economy in cost 
is nullified by the low rate of response to mail que^^tionnaires is hardly 
borne out by actual experience. A well-conducted mail survey can be 
expected to achieve a minimum return of at least 15 per cent. Con¬ 
sequently, the cost of a corresponding personal interview could not be 

less than the cost per mail questionnaire returned unless the variable 
cost of the former is below roughly seven times the variable cost of the 
mail questionnaire. By variable cost is meant the total unit cost less 
unit overhead cost. Overhead cost, in this case, represents all costs that 
are common to both methods, i.e,, those costs which would have been 
incurred irrespective of the method by which the data is collected. Foi* 

example, if the overhead cost of a mail survey realizing a 20 per cent 
return is 10 cents per return and its variable cost is 20 cents per return, 
personal interviews would prove more economical only if their variable 
cost were less than $1 per interview. The overhead cost does not enter 
into consideration because it would have been incurred whichever method 
was used. (Note that these are slightly different definitions from those 
employed in Chap. VIII.) 

Considering the fact that many mail surveys obtain initial rates of 
return of between 20 and 50 per cent, and that the variable cost of a 
personal interview is rarely less than ten times the variable cost of a 
mailed questionnaire, the latter would definitely appear to be more 
economical in most instances. 

This statement is valid only when the initial returns are considered. 
It does not, of course, take into account the increase in (unit) costs resulting 
from the use of follow-up letters and callbacks. On the other hand, by 
raising the rate of return, such letters tend to increase the cost advantage 
of mail questionnaires. In the final analysis, such callbacks and follow-ups 
will cause mail questionnaires to be relatively more or less economical 
according to whether the proportionate increase in unit expenditure 

* See Benson, ^'Mail Surveys Can Be Valuable” (reference 134), 
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resulting from the follow-ups and callbacks is smaller or greater than the 

relative increase in the rate of return. 
The Interpretation of Omissions. Difficulty in interpreting omissions 

in the returned questionnaires is sure to arise. However, in many in¬ 
stances the cause of this difficulty, the omissions themselves, is more 
likely to lie in poor construction of the questionnaire than in the technique 
itself. The use of a properly constructed and explicitly worded question¬ 
naire can reduce the number of omissions considerably. The few omissions 

that do occur can then be easily rectified with the aid of a few follow-up 
letters. 

The Frankness of Responses. Frank responses and replies in the 
respondent's own words are frequently alleged to be primary virtues of 
mail questionnaires.^ There is little doubt that replies obtained in the 
j-espondent’s own handwriting are a definite advantage of mail question¬ 
naires, not so much for the intrinsic value of these replies as for the 
consequent elimination of interviewer bias.^ Misinterpretation of 
respondents’ replies or opinions as well as deliberate cheating,® i.e., the 

submission of fictitious interviews, are ever-present trouble spots in 
personal-interview surveys. However, in all fairness to personal-interview 
methods, it should be noted that interviewer misinterpretation and 
cheating are most likely to occur on attitudinal and ‘Svhy” questions, 
the type of question that cannot readily be inserted in a mail questionnaire 
and that, when inserted, leads to the greatest proportion of nonusable 

replies. 
The actual frankness of responses received on mail questionnaires is 

a moot point. Presumably there are certain types of questions that the 

respondent is more willing to answer in private and, perhaps, on an 
unsigned questionnaire; this would appear to be especially true in small 
towns and in rural areas where the interviewer is likely to be a personal 
acquaintance of the respondent. Indicative of this fact is the finding of 
one experimental election-poll study of a marked decrease in the per¬ 
centage of ‘^undecided” when secret ballots were employed.^ On the 
other hand, it is frequently alleged that many people are extremely 
reluctant (or too lazy) to put their thoughts on paper and that only by 
means of a personal interview can these people be “opened up” and their 

1 See Colley, “Don’t Look Down Your Nose at Mail Questionnaires” (reference 

136); and Robinson, “Five Features Helped This Mail Questionnaire Pull from 60 per 
cent to 70 per cent” (reference 144). 

* Thus, in one study the findings of white-collar interviewers differed from those of 

working-class interviewers. See Katz, “Do Interviewers Bias Poll Results?” (reference 

142). 
* Interviewer cheating, especially on lengthy or complex interviews, is causing 

samplers a good deal of concern. See Crespi, op. cit. 
* Benson, “Studies in Secret-ballot Technique” (reference 133). 
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thoughts recorded. Such a reluctant attitude is more prevalent among 

the poorly educated and those in the lower income brackets including, 
of course, illiterates. 

Both of these groups are encountered in almost all surveys. Con¬ 
sequently, the frankness achieved by mail questionnaires relative to what 
might have been attained by personal interview in any particular survey 
must depend upon the relative influence of these two groups in the survey. 
A study of the attitudes of professional people toward licensed pros¬ 
titution would tend to elicit franker responses if mail questionnaires were 
used. But a survey of the purchase habits of lower-middle-class families 
would be more successful if made by personal interview. Where the 
population being sampled is very heterogeneous in this respect, it might 
prove advisable, and practicable, to obtain part (^f the replies by mail and 
part by personal interview; in many instances this is the ideal solution. 

It is, of course, true that certain questions and types of questions 
cannot be asked at all on mail questionnaires, a fact that greatly limits 
the applicability of this technique. Depth interviews, as well as any 

information as to causes and reasons for a respondent’s action or attitude, 
cannot be obtained by mail.^ In general, questions of a probing nature 
prove impracticable in mail questionnaires; the low rate of response and 
the high ratio of unusable replies among those actually received eliminates 
whatever economies might otherwise accrue from the use of mail question¬ 
naires. Unless the desired information can be put in the form of multiple- 

choice questions or requests for numerical data, mail questionnaires are 
not likely to prove very practicable. 

Do Only the Interested Reply? The assertion that facts obtained by 
mail questionnaires differ from the facts obtained by personal interview 
is very closely related to the criticism that only those interested in the 
subject are likely to reply to a mail questionnaire. The implication in 
these criticisms is, of course, that the nonrespondents, f.e., primarily those 
not interested, have different opinions than the respondents; the validity 
of both these criticisms of mail questionnaires hinges on the accuracy 
of this point. 

The data that have been gathered on the relative comparability of 
respondents' and nonrespondents' replies (the latter obtained by several 
follow-up letters or by personal interview) are to some extent contra¬ 
dictory In the case of attitude and opinion surveys, it docs appear 

1 See Salisbury, '‘Eighteen Elements of Danger in Making Mail Surveys” (reference 
145). 

*For example, compare Suchman and McCandless, “Who Answers Question¬ 
naires?” (reference 149), Stanton, “Problems of Sampling in Market Research” 

(reference 147), and Perrin, “Mail Questionnaires Aren’t Worth Their Salt” (reference 
143), with Colley, op. cit. 
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that a proportionately greater number of responses on mail surveys are 
obtained from people who are biased in one direction or the other.^ In 
particular, people with a strong negative attitude on the subject are most 
likely to respond. Where mail questionnaires deal with one specific 
subject, as in readership or interest surveys, the available evidence is too 
contradictory to permit any positive generalizations to be drawn on the 
representativeness of the replies; one can only advance the negative 
generalization that no reasonable assurance of representativeness can be 

had until follow-up letters and callbacks have been made. 
In so far as the differences between respondents and nonrespondents 

are correlated with interest and disinterest in the particular subject, this 
bias can be greatly reduced by widening the scope of the questionnaire.^ 
In other words, the questionnaire should be devised to mask the real 
subject interest by containing questions on a number of different subjects. 

In this way, people not interested in the particular subject being in¬ 
vestigated might respond nevertheless because of their interest in some 
other question(s) on the questionnaire. However, this technique must 

necessarily be limited because of the inverse relationship between the 
size of the questionnaire and the rate of response; the more questions 
that are added, the larger will be the size of the questionnaire, and the 
lower will be the consequent rate of response. 

The Scope of Mail Questionnaires. The ability of mail questionnaires 
to obtain the opinion of all family members is both an advantage and a 

disadvantage of this technique, depending upon the purpose of the partic¬ 
ular survey. If the aim of the survey is to obtain a composite family 
opinion, mail questionnaires would seem to be preferable.® If the 
respondent’s own private opinion is desired, there is no assurance that a 
returned questionnaire does not contain ‘^hybrid” responses.^ Of course, 
this danger can be alleviated to some extent by personalizing the ques¬ 
tionnaire and placing special emphasis in the covering letter on the need 
for the respondent’s own reply. Nevertheless, samplers are well 
acquainted with instances of secretaries answering questionnaires addressed 
to their employers, and signing the employer’s name, and of children 
answering questionnaires addressed to their parents, with or without the 

^ For some excellent illustrations of this fact, see Benson, “Mail Surveys Can Be 

Valuable, op. ciL 
* This procedure serves to increase the rate of response as well as to reduce interest 

bias. See Clausen and Ford, “Controlling Bias in Mail Questionnaires’’ (reference 

135). Also see Colley, op. cit, 
®In theory, the same objective could be accomplished by a personal interviewer 

who leaves blanks with the respondent to be filled in by the absent family members. 
However, this approach would appear to be merely another typo of mail questionnaire, 

at least in so far as the absent family members are concerned. 

* See Benson, op. cif., and Salisbury, op. cit. 



246 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

parents' consent. To the best of the author’s knowledge, no estimates of 

the magnitude of the resultant bias have yet been published. 
The greater amount of time available for replying to a mail questionnaire 

is likely to prove as much a disadvantage as an advantage. Presumably, 
this extra time permits the respondent to reflect thoughtfully on the 
meaning of the question and then sit down and write an intelligent com¬ 
prehensive reply.^ In practice, the author has found that the respondent 
is as likely as not to dash off a quick half-complete reply in order to ^^get 
it out of the way.” Where it is resolved to devote some thought to the 
questions and the questionnaire is put aside to await a more opportune 
moment, in many instances this opportune moment never arrives, and 
the questionnaire remains permanently unanswered. It is largely for 
this reason that the response rate on “thought” que.Ktionnaires is so low. 

The Matter of Approachability. Both mail questioiiDaires and personal 

interviews have distinct advantages in approaching certain groups in the 
population. As mentioned before, personal interviews are not only more 
economical than mail questionnaires in sampling the poorly educated, 

lower income brackets, but they are frequently the only way of obtaining 
information from these groups. On the other hand, a mail survey is 
likely to prove more successful, in terms of the number of returns as well 

as in terms of cost, in obtaining information from the upper income classes 
and especially from busy executives. Thus, in a recent mail survey of 
2,165 of the highest United States public officials by the Dun and Brad- 

street Marketing Research Department for The New York TimeSj a 
response rate of 42 per cent was obtained. Even with no allowance for 
cost differentials, it is doubtful if any better results would have been 
obtained by personal interview. 

Conclusions, In the light of the preceding analysis, the comparative- 
evaluation table (p. 240) can now be revised to yield a more objective pic¬ 
ture of the relative advantages and disadvantages of the two techniques. 
Such a revised picture is presented in Table 24. This table is largely 
self-explanatory, summarizing the points brought out in the preceding 
pages and indicating the situations and conditions under which one or 
the other of the two techniques is preferable. The statements in the 
table are based upon a comparison between an efficiently conducted mail 
survey and an efficiently conducted personal-interview survey—efficient 
in the sense that errors due to human prejudice, misinformation, the use 
of faulty techniques, and misdirection are kept at a minimum. 

The only item in this table not discussed in the analysis is the generally 
accepted fact that mail questionnaires are at a disadvantage when time 
is of paramount importance. A personal-interview study can be planned, 
conducted, and analyzed in a little over a week in most instances; a 

‘ See Robinson, op. city and Colley, op. cii. 
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mail-questionnaire study requires an allowance of at least 2 weeks just 

for the returns to come in after the questionnaires have been mailed out. 
The only general conclusion that can be drawn from this study, and 

from Table 24, is that no statement of absolute superiority in favor of 

Table 24. Advantages and Disadvantaoes of Mail Questionnaires 

AS Compared to Personal Interviews 

AdvantjiKiiS 

1. Permits a wider distribution of the 

sample where such distribution is de¬ 

sirable. 

2 A smaller field staff is requirt^d than 
in the case of personal interviews. 

3. Cost per questionnaire is lower unless 

its variable cost is more than one- 

seventh the variable cost of a personal 

interview (subject to assumptions on 
page 242). 

4. People are likely to be more frank on 
some qu(\stions, especially among the 
better educated groups. 

5. Opinions of all family members are 

readily obtainable. 

6. The higher income class<\s, especially 

busy executives, are more easily ap¬ 
proachable by mail questionnaire. 

Disadvantages 

1. Follow-ups by mail or by personal in¬ 

terview are necessary to interpret 

omissions. 

2. There is no reasonable assurance that 
the respondents are representative of 

the entire population unless callbacks 

are made on the nonrespondents. 

3. llequires a longer period of time. 

4. The causes and reasons for the re¬ 

spondent’s actions or attitudes cannot 
be obtained by mail questionnaire. 

5. There is no assurance that the replies 

are those of the person to whom the 

questionnaire is addressed. 

6. Cannot reach illiterates and yields 

very low response rates from certain 
other groups, e.gr., poorly educated 
people. 

either technique is possible. In particular, this analysis indicates that 
there is no justification whatsoever for the statements made every now 
and then that one technique is completely worthless. The superiority 
of any particular technique depends upon the conditions of the problem, 
and it is only when these conditions are given that a definite statement 
is possible as to the relative desirability of the two techniques. 

Complementary Use of Mail Questionnaires and Personal Interviews. 
In many instances the two techniques are not competitive, as so much 
of the literature on the subject would seem to imply, but are comple¬ 
mentary to each other. In other words, it is frequently possible to use 
both techniques in one survey and produce better results than if either 
technique were exclusively employed. Such cases are very common in 
public-opinion sampling as well as in commercial research; they are most 
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likely to occur either when verification of data obtained by mail question¬ 
naire is desired or when a heterogeneous population is being sampled. 
For example, in a survey designed to compare magazine readership with 
income level, it might be more expedient to send mail questionnaires to 
the upper income brackets and use personal interviews for the lower 
income brackets. 

The general procedure in such cases is to employ the more economical 
mail questionnaires in so far as the rate of return does not nullify the 
cost advantage. Personal interviews are then employed to sample the 
nonrespondents (and those to whom questionnaires are not mailed). 

Outlined in this manner, the procedure appears to be a very subjective 
one. However, mathematical formulas have been developed that enable 
one to compute the number of mail questionnaires and the number of 
supplementary personal interviews required in order to achieve a pre¬ 

determined precision at minimum cost. 
The principle behind these formulas is a simple one; namely, to 

determine the standard error of the estimate and the cost function of the 
survey and, by mathematical analysis, to find that allocation of the 
sample between mail questionnaires and personal interviews which will 
minimize the cost function while at the same time fixing the standard 
error at a predetermined value. ^ However, in practice the method is 
likely to become rather involved, and the services of a skilled mathematical 
statistician may be required to arrive at the necessary minimizing values. 

The fact that the standard error of the estimated population characteristic 
varies with the nature of the characteristic and with the sample design is 
one of the main difficulties. Thus, for the same sample design the standard 
error of an average is different from that of a population aggregate, which 
is in turn different from that of a percentage, etc. Once the standard 
error of a statistic is computed, the determination of the optimum sample 

distribution between mail questionnaires and personal interviews is a 
relatively simple matter. Appendix B contains a number of such optimum- 
allocation formulas for both unrestricted and stratified samples with 
directions for applying them. An illustration of the use of one of these 
formulas is given below.^ 

Suppose that in the course of estimating its market, a publishing 
house wants to know the total expenditure of New York City families 
on reading matter during the past year. If both mail questionnaires 
and personal interviews are used to obtain the data, the estimate of 

^ Technically, this is known as the method of La Grange multipliers. For a simplified 

treatment of the use of La Grange multipliers, see Crum, Rudimentary Mathematics for 
Economists and Statisticians (reference 8), pp. 129-133. 

* The following illustration is based on formulas developed by Hansen and Hurwitz, 

“The Problem of Nonresponse in Sample Surveys” (reference 140). 
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total reading expenditures can be expressed in the following form: 

X = ^ (mZi + SX2) 

where P = size of population 
N = number of questionnaires mailed out 
m = number of mail returns 

s = number not responding to mail questionnaire 
Xi = average recreation expenditure per family from mail returns 
X'2 = average recreation expenditure per family from personal inter¬ 

views 
X = estimated total recreation expenditure 

From the variance of this estimate and the cost function of the survey* 

the optimum allocation of the sample is found by the following formulas 

N = 
Pa^ 

<r2 + €VP' 
iV = iV 

Csp 
Cl + C2P 

where Sf = size of sample necessary to obtain a desired precision e 

r = number of personal interviews required among nonrespond¬ 
ents 

p = rate of response to mail questionnaire 
q == rate of nonresponse to mail questionnaire = 1 — p 

Cl = unit cost of mailing questionnaires 
C2 = unit cost of processing returned questionnaires 
C3 = unit cost of making and processing personal interviews 
0-2 = variance in the population 

There are approximately two million families in the city of New York. 
Let us assume that the standard deviation of reading expenditures per 
family is known from past experience to be $5, and it is desired that the 

standard error of the final estimate should not exceed $500,000. (The 
final estimate itself would probably be of the order of 50 million dollars.) 
The approximate cost of mailing a questionnaire, Ci, is estimated at 8 

cents, of processing a returned mail questionnaire, C2, at 30 cents, and 
of making and processing a personal interview, C3, at $2.00. Note that 
all these factors are predetermined. Now, what is the necessary size of 
the sample and how should it be distributed between mail questionnaires 
and personal interviews to minimize the cost of the survey? 

1 The formula for the variance of the estimate is given in Appendix B, p. 433; the 

cost function is C = CiN + C2m •+■ C^r. 
* Although these formulas are approximation formulas to the true relationships, 

the error in the approximation will be negligible in most practical instances. For more 

exact formulas, see Appendix B. 
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The sample size ^ necessary to achieve a standard error of not more 
than $500,000 is computed from the first formula on page 249, as follows: 

N = 
2,000,000(5)2 

(5)2 + (500,000)2/2,000,000 
= 400 families 

Now in order to achieve the optimum allocation between mail 
(luestionnaires and personal interviews, the rate of response to the mail 
questionnaire must be known. However, in most instances the rate of 

response is not known until the (mail) survey has been completed. 
(Continuing consumer panels are a notable exception. On the basis of 
past rates of response, the optimum allocation can be computed with a 
high degree of accuracy.) 

One way out of this dilemma is to compute a number of optimum values 
corresponding to those rates of return that are considered most probable. 

Although one cannot predict that the rate of response will bo a certain 
constant, say, 36 per cent, it is possible for a skilled researcher to estimate 
the approximate range in the rate of response. 

Let us assume in the present example that the rate of response is 
expected to be between 25 and 40 per cent. It is then possible to com¬ 
pute the optimum allocation for various rates within this interval, say, 
every 5 per cent. Thus, for p == 25 per cent, we have 

iV . 400 [1+ 0.75 (VsTSS) - *)] ■ 

r = 480 4 ^8 + 30(0.25) 
(200) (0.25) 

= 268 

In other words, if the rate of response is 25 per cent, the cost of the 
survey will be at a minimum if 638 questionnaires are mailed out and 
then supplemented by 268 personal interviews.^ 

In the same manner the optimum allocation for p = 0.30, 0.35, and 
0.40 is computed. The required number of mail questionnaires and 
personal interviews is shown in Cols. (2) and (4) of Table 25; the minimum 

cost of the survey for each of these response rates is shown in Col. (5).2 

1 According to this method, the optimum size of the sample (mail returns plus 

persohal interviews) is not constant for all rates of return nor is it necessarily equal to 

the minimum value, iV, because of these varying rates of return and because the variance 
of the sample estimate is, in effect, a weighted average of the variance of the mail- 
responding population and of the variance of the personal-interview population (see 

formula 9 on p. 433). 

* The formula for the total cost of the survey assumes that all the unit cost elements 
are constant, t.6., independent of the size of the sample. Where any of the unit cost 

elements Ci, C2, or Ci depends on the number of observations, the constant would have 

to be replaced by a function of the observations. 
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Table 25. Optimum Allocation for Minimum Cost in a 

Mail-questionnaire-Personal-interview Survey for Varying Response Rates 

(1) 
Hate of response 

to mail question¬ 
naire 

P 

(2) 
Questionnaires 

mailed 
out 
N 

(3) 
Expected 

mail 
return • 

Np 

• (4) 
Personal 

interviews 
required 

j. 

(5) 

Cost of 

Survey 
C 

0.25 638 160 268 $635 

0.30 646 194 240 590 
0.35 64f. ■ 22b 216 551 

0.40 
1 

640 256 192 512 

From this table it can be seen that such a survey can be made at a 
minimum cost of between $512 and $635, depending on the rate of response. 
In carrying out the survey, it is advisable to mail out the maximum 
number of questionnaires indicated in the table and then adjust the 
number of personal interviews to be made in accordance with the (observed) 
rate of response. By so doing, the possibility of a low rate of response is 
adequately provided for and at a negligible increase in cost, as is shown 
in Table 26. The data in this table are computed with the same formulas 
used to arrive at the preceding table except that N is held constant at 
646. 

Table 25. Optimum Allocation When 646 Questionnaires Are Mailed Out 

FOR Varying Response Hates 

(1) 
Hate of 
response 

V 

(2) 
Expected 

mail return 
Np 

(3) 

Personal interviews 
required 

r 

(4) 
Cost of 
survey 

C 

(5) 
Optimum 

cost 
C 

0.25 162 269 $638 $635 
0.30 194 240 

0.35 226 216 551 551 

0.40 258 194 517 512 

In the same manner, the other optimum-allocation formulas in 
Appendix B can be applied to practical problems. Note that this pro¬ 
cedure is equally valid for any two other methods of obtaining sample 
data, e.g,y telephone calls and personal interviews, or mail questionnaires 
and telephone calls (though this latter combination is not very feasible). 
The only changes required would be in the meaning of the various symbols. 
Thus, for a telephone-call-personal-interview sample, N would represent 
the number of telephone calls to be made, Ci the cost of making a telephone 
call, C2 the cost of processing a telephone response, etc. 
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Miscellaneous Methods of Obtaining Data 

A frequently used means of obtaining data, about halfway between a 
mail questionnaire and a personal interview, is the so-called audience- 

reaction or group-participation method. According to this method, the 
members of the sample are brought together in one room or in an audi¬ 
torium, and they record their answers on paper in response to written or 

spoken questions. Each question is explained in detail by a representative 

of the sampling organization; in addition, the respondents are given an 
opportunity to ask about anything on the questionnaire that they do not 
understand. In some instances, pei’sonal interviews follow up the 

written replies to determine the respondents^ reasons for various replies. 
This procedure is used extensively in product testing, it has recently 

been adopted by various radio networks to measure the relative popularity 
of radio programs—audience-reaciion sessions. An interesting develop¬ 
ment in these audience-reaction sessions is the use of mechanical devices 
to record the data. Probably the most prominent of these devices is the 
Program Analyzer developed by Paul F. Lazarsfeld and Frank Stanton.^ 
Each respondent is placed in front of a machine et^uipped with a red 
button and a green button. If the respondent likes a particular part of a 
program, he presses the green button; if he dislikes it, he presses the red 
button. These likes and dislikes are recorded on a tape, which is later 
used in a personal interview with the respondent to question him on the 
reasons for his likes and dislikes. 

The main advantage of the group-participation method is its assurance 
of 100 per cent response from the sample members as well as of a negligible 
number of omissions on the questionnaires. Its main disadvantage is, 

as the reader can well imagine, the difficulty of inducing a representative 
cross section to attend such a session. Because of this limitation, the 
use of the method is restricted primarily to problems where the degree of 

preference is expected to be uniform for all segments of tht^ population.^ 
For example, one would not expect preference for various brands of 
tooth paste to vary with income level or with most other classifying 

characteristics. 
Two other notable methods of obtaining sample data are the inventory 

poll and the Nielsen Audimeter, the latter developed and owned by the 
A. C. Nielsen Company. In an inventory poll, an investigator enters 
the store, or home, and records the groceries or reading matter currently 
present. The only cooperation required on the part of the storekeeper or 
housewife is permission to take the inventory and, generally, some classi- 

^ See Radio Research^ 1942-1943j edited by Lazarsfeld and Stanton. 
* In radio reaction sessions, where preference does vary with various population 

characteristics, the sample data are generally tabulated at least by education and occupa¬ 

tion of the respondents. 
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fying information. This method is currently employed by newspapers 
in various cities to provide advertisers with some indication of the relative 
popularity of various products and brands—the so-called pantry polls.^ 

Its main shortcoming is the fact that no indication is provided of the 
rate of turnover of sales or purchases, thereby precluding the possibility 
of a true dynamic picture of consumer expenditures. 

The Nielsen Audimeter is a mechanical device that, when attached to 
a radio, provides a continuous (tape) record of the periods when the radio 
is on, the lengths of these periods, the stations tuned in, and the amount 
of switching between statione. Its prmary advantage over the radio¬ 
diary technique, its main competitor, is the accuracy obtained through its 

use. Thus, the accuracy of a radio diary depends upon the diligence with 
which it is kept, whereas an Audimeter automatically records all periods 
when the radio is on. Besides the extremely high cost of operating and 

maintaining these Audimeters—a restriction that necessarily limits the 
size of the sample—the validity of the listenership data obtained has 
been questioned at times as not indicating how many people, if any, were 

listening at any particular moment. In many instances, people have been 
known to keep radios on without paying any attention to the program 
or even without being in the same room. From the advertiser\s view¬ 
point, in such instances the radio is not tuned in for all practical purposes. 
For a further discussion of the Audimeter the reader is referred to reference 
123 in the Bibliography. 

SUMMARY 

A well-designed survey carried out according to all the precepts of 
sampling theory may yield completely erroneous results because of the 
presence of a bias in the sample data. The existence of bias is usually 
not known until the sample data have been collected. Bias enters into 
the sample data because of conscious or unconscious prejudices on the 
part of the interviewer, or on the part of the respondent, or because of a 
poorly framed questionnaire, or because of unrepresentative or nonrandom 
selection of the sample. For a sample to be drawn in true random style, 

every member of the area or stratum being sampled must have an equal 
chance of being selected. Methods of drawing truly random samples 
are discussed. For the sample to be representative of a population, the 

areas from which the sample is drawn must themselves be representative 
of the population. The problem of minimizing bias due to the respondent, 
the interviewer, or the questionnaire is discussed in some detail. Bias 
in editing the returns and analyzing the sample results is also discussed. 

The second part of the chapter considers different methods of obtaining 

^ It is also used by the A. C. Nielsen Company to estimate food and drug sales by 

means of periodic inventory of a selected sample of food and drug stores. 
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sample data and the relative advantages and disadvantages of each 
method. Emphasis is placed on the three main methods of obtaining 
sample data—^telephone calls, personal interviews, and mail questionnaires. 
A special analysis is maxie of the advantages of the mail-questionnaire 
method relative to personal interviews. The superiority of one method 
over the other depends on the conditions of the problem: neither method 
can pbe said to be absolutely superior to the other. The ideal solution 
in many instances is to use one technique to supplement the other, thereby 
taking advantage of the good points of both methods and minimizing 
their disadvantages. 



PART FOUR 

MULTIVARIATE AND CORRELATION METHODS 

In this last part of the book we shrll be concerned with the determina¬ 
tion of the significance of obse^'Yed relationships between two or more 

sets of sample data or between statistics drawn from more than two 
samples, and the measurement of such relationships. Thus, a research 
;U rector may desire to know whether people who read his company^s 

advertisements are better potential customers than people who do not 
read the advertisements. Or, he may want to know whether the pro¬ 
portion of the company’s customers in the East is the same in respect to 

income level as that in the West. Or, one may seek to determine which 

factors, or combinations of factors, have the greatest influence on purchases 
of a certain product. Although solutions might be arrived at in some of 
these cases through the repeated use of the significance tests for the 

difference between two statistics, these problems are best solved by 
applying two methods that we have not yet considered—chi-square 
analysis and the analysis of variance. The theory and practical applica¬ 

tion of these two methods arc discussed in Chap. X. 
The measurement of the relationship between two or more series 

of data is a very frequent problem in commercial research. Sales directors 

are constantly faced with the task of determining the effect of particular 
factors on sales; advertising researchers seek to determine the major 
factors affecting readership; radio researchers attempt to measure the 

effect of various economic and sociological characteristics on listenership, 
etc. This measurement of the relationship between two or more series 
of data—correlation analysis—is the subject of Chaps. XI-XIII. The 

methods and techniques of correlation analysis with reference to pop¬ 
ulation data, abstracting from the problems of sampling, are discussed 
in Chaps. XI and XII. The problems involved in estimating the true 

relationships in the population on the basis of sample correlations are 
taken up in Chap. XIII. 

255 





CHAPTER X 

OTHER STATISTICAL SIGNIFICANCE TESTS IN 
MARKETING PROBLEMS 

This chapter presents the t vo mpir\ analytical techniques for dealing 
with the problem of determining the significance ‘^f the difference between 
more than two statistics. With respect to the flow chart on page 43, the 
subject of this chapter is essentially an extension of the testing of hypothe¬ 
ses in analyzing the final results. This chapter is divided into three 

main sections: an introductor}" section explaining the relationship between 
the present methods and the statistical significance tests of the preceding 
chapters, a section devoted to the theory and application of chi-square 

analysis, and a section devoted to the theory and application of variance 
analysis. 

1. RELATIONSHIP BETWEEN THE PRESENT METHODS AND THE 
PRECEDING STATISTICAL SIGNIFICANCE TESTS 

In all the preceding significance test problems, the significance of the 
difference between only two statistics was at question. Thus, it was 

desired to know whether a statistically significant difference existed between 
the average cold-cereal purchase per family of one sample and the average 
cold-cereal purchase of another sample. Or, it was desired to know 

whether the percentage of one sample having a particular attribute dif¬ 
fered significantly either from the percentage of a second sample having 
the same attribute or from some actual or hypothetical population per¬ 
centage; e.g.y the problem of the significance of the difference between 
weekday and Sunday readership of The New York Times (page 145). 

These, however, do not include all the types of significance-test prob¬ 

lems encountered in commercial research. For instance, consider the 
following problem. Table 27 gives the results of a Crowell-Collier survey 
that revealed the distributions of Collier (subscriber) families and of all 

families planning to buy an automatic electric toaster by make.^ 
Suppose that the research department of one of the firms whose make 

is listed in this table is asked to determine whether a real difference exists 
by make in the purchase plans of Crowell-Collier families as compared to 

' Automohiles-lidilios-Klevlrical A ppliatices in the Collier's Market^ Research Depart¬ 
ment, Crowell-Collier Publishing Company, June, 1946. Data presented through the 
courtesy of Ray Robinson, Director of Research. 
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the purchase plans of other families. The material in the previous chap¬ 

ters does not provide the researcher with any ready means of evaluating 
the significance of two such distributions. Of course, one might test the 
significance of the difference between each set of percentages separately, 

between the percentage of all families and of Collier families preferring 
Toastmasters, between the percentage of all families and Collier families 
preferring General Electric toasters, etc. However, besides being a 
laborious procedure, this device will not always yield correct results. If the 

Table 27. Buying Preferences of Collier Families and All Families for 

Automatic Electric Toasters 

Make All j 
families, i>er cent 

1 "oilier 
families, |)er cent 

Toastmaster. 30.7 33.8 
General Electric. 13.6 13.7 
Other makes. 7.9 11.9 

Make undecided. 47.8 40.6 

Total. 100.0 100.0 

Total families buying. 1,098 219 

outcome of all four of these tests is the same, a valid inference as to the 

significance or nonsignificance of the difference between these two distribu¬ 
tions can generally be made. But if only one of the results differs from 
the others, no conclusion of any sort can be drawn.^ 

Obviously, a different method is required for such problems, a method 
that will enable us to assess the significance of entire sample distributions 
instead of only two statistics at a time. The method that is used for this 

purpose is known as chi-square analysis. This method may also be used 
to test the significance of the difference between more than two distribu¬ 
tions, as in the following case. 

Another Crowell-Collier survey, studying the savings and insurance 
habits of its subscribers, found the following distribution shown in Table 

^ One might think, offhand, that if three of the results are in one direction, say, 

significant, and one of the results is in another direction, nonsignificant, the conclusion 

could be drawn that the distributions differ significantly from each other. This is not 
so, however, and examples can be constructed where two such distributions are not 

significantly different from each other. The reason for this is apparent, intuitively, 

because if the three significant sets are only barely significant whereas the fourth set 
is easily nonsignificant, the effect of the latter may reduce the degree of significance 
of the entire distributions to the point of not differing significantly. If all the sets of 

data are, say, barely nonsignificant, the cumulative effect of all sets taken together 

may even cause the two distributions to differ significantly. 
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28 for the potential market for life insurance among its subscribers.^ 
Through the use of chi-square analysis it can be determined whether 

there is any relationship between income level and the prospective pur¬ 
chase of life insurance. This particular problem is discussed on page 268. 
The significance of the difference between any number of such distributions 
may also be evaluated by applying chi-square analysis. 

A different method is used to test for the significance of a relationship 
between two or more means of classification. For instance, if the table 

Table 28. The Market for L;pe Insttrance among Collier Families by 

Income liEiEL 

Income level 
Plan to 

purchase 
Undecided 

Not planning 
to purchase 

Total 

Under $2,000. 17 23 70 no 
$2,000-$2,999. 56 23 177 256 
$3,000-$4,999.i 87 25 198 1 310 

$5,000 and over. 42 21 174 237 

Total. 202 92 619 913 

on the market for life insurance contained the amount of life insurance each 
of the 913 families planned to buy, classified by, say, income level and size 
of family, the significance of the relationship between income level and 

family size in influencing the purchase of life insurance would be determined 
by this other method, known as the analysis of variance. By applying the 
analysis of variance, one is able to evaluate the relative influence on the 
prospective life-insurance purchase of family size, of income level, and of 
the combined, or interactiony effect of family size and income level. Thus, 
family size alone may be found to have negligible influence on life-insurance 

purchase, but income level may influence the amount of life-insurance 
purchase and the combination of certain income levels and family sizes may 
also be found to influence the planned amount of purchase. 

In this way the analysis of variance is a more powerful tool than 
chi-square analysis. The latter method reveals only whether significant 
over-^ll relationships exist between the various classifications, but it does 
not indicate, without extensive further analysis, which factors contribute 
most to the relationship. Through the use of variance analysis, the signifi¬ 
cance of the various classifications on the variable under study, either 
singly or in combination with one or more of the others, can readily be 

' Collier^ Families Report on Savings and InsurancCy Research Department, Crowell- 
Collier Publishing Company, March, 1946. Data presented through the courtesy of 

Ray Robinson, Director of Research. 
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determined. Chi-square and variance analysis may also be used to test 
the significance of statistics based on more than two samples. For exam¬ 
ple, the significance of the differences in average sales per family as obtained 
from several spot samples is readily obtainable with the aid of variance 
analysis. However, the most useful part of variance analysis is its ability 
to locate the source of significant differences in two-way, three-way, and 
r-way classification problems.^ 

In general, then, chi-square analysis is used to determine the signifi¬ 
cance of sample (or sample and population) frequency distributions or 
the significance of the relationship between two or more sets of data, 
whether they are variables or attributes. Variance analysis enables one 
to determine the relative importance of the various factors in a problem. 
Each of these techniques is taken up in more detail in tlie following sections. 

2. CHI-SQUARE ANALYSIS 

Theory 
The logic behind the chi-square-analysis techniques uonsidered in this 

chapter is as follows: The observed set of data is compared with another 
set of data computed on the assumption of the null hypothesis, i.e., on 
the assumption that there is no relationship between any of the distribu¬ 
tions or between any of the means of classification. A measure of relative 
variation between the observed and the expected {i.e., data that would be 
expected if there were no causal relationship between the factors being 
studied) sets of data is computed by dividing the square of the differ¬ 
ence between the corresponding observed and expected figures by the 
expected figure, and summing over all the observations. This measure, 
which is denoted by (chi squared), is expressed algebraically in the fol¬ 

lowing form: 

t = 1 

where the subscript i denotes the ith cell in the table, there being a total 
of i = 1,2,..., 5 cells, Xi is the observed value for cell i, and 6i is the 
computed or expected value for cell i on the assumption of the null 
hypothesis. 

Like the other variables we have studied—the mean, the percentage, 
etc.—the value of x^ based on data from random samples has a certain 
probability distribution. That is, there is a certain probability that x^ 

1 The life-insurance example constituted a two-way classification, i.e., income level 

by size of family. If, say, income level had been further divided by age of family head, 
we would have had a three-way classification. The general case, an r-way classifica¬ 
tion, occurs when a particular set of data is classified and cross-classified according to r 

different characteristics. 
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will take any specified value in an infinite number of repetitions of selecting 
a sample of the given size from the same population where it is known 
that no causal relationships exist. We would expect small values of to 
occur most frequently, since the selected value X\ would tend to be very 
close to the population value Bi, The larger is the value of xS the less 
frequently we would expert it to occur, if the sample values are from the 
population represented by the Bi values. The values of x^ corresponding 
to specified probabilities have been computed by Prof. R. A. Fisher and are 
given in Appendix Table 11. The values in the body of the table are those 
of x^; the values in each row conespopdir g to specified numbers known as 
the degrees of freedorrij which we shall discuss shortly. At the head of each 
column is the probability that values of x^ larger than the specified values 
will occur as a result of random sampling variations. For example, if 

is computed to be 5.991 with two degrees of freedom, the table indicates 

that only 5 times in 100 would a value of x^ larger than 5.991 occur as a 
result of chance variations. 

Now, if the computed value of x^ is very low, ie., if there is a high prob¬ 

ability that the differences between the observed and computed (independ¬ 
ent) values could have resulted from sampling variations, the null hypoth¬ 
esis of the absence of any significant relationship is accepted, for then it 
appears very likely that the observed sample ^‘relationships^^ are nothing 
more than random sampling variations. If, however, the computed value 
of x^ is very high, say, so high that only 1 time in 100 such surveys could 
differences as large as those observed occur between the sample and the 
expected values, then a strong presumption exists that the sample members 
were drawn from a population where the different characteristics being 
studied are not independent of each other. In such a case, the null hypoth¬ 
esis is rejected, and it is inferi-ed that the given characteristics or attributes 
are related to each other. 

The reader will note that the approach is much the same as in all pre¬ 
vious significance-test problems; namely, to determine the maximum 
differences^that could normally be expected to occur as a result of sampling 
variations. If the computed ratio or difference measure falls within this 
allowable limit of sampling variation, the null hypothesis is accepted. If 
the measure falls outside the limit, the null hypothesis is rejected and 
evidence pointing toward a real difference, or relationship, is obtained. 

As in the former cases, the 0.05 probability level is generally used as the 
boundary line between significance and nonsignificance. That is, if the 
probability of obtaining a value of x^ larger than the computed value is 
greater than 0.05, the observed differences are ascribed to sampling varia¬ 
tions and the null hypothesis is accepted; if the probability is less than 0.05, 
the observed relationships are assumed really to exist in the population 
and the null hypothesis is rejected. Alternately, one could use the 0.02 
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probability value as the critical level, the 0.01 probability level, or any 
other probability level. However, in commercial research the 0.05 level 
generally proves adequate. 

The probability of obtaining a value larger than any particular com¬ 
puted value depends not only upon the relative variation between the 
observed sample values and the expected population values but also on the 
number of independent relationships between the various cells. The rea¬ 
son for this is that the larger is the number of cells that can fluctuate inde¬ 
pendently of the others, the more leeway there is for random sampling 
fluctuations to enter into the operation. For example, in a 2-by-2 table 
(two rows and two columns), only one of the 4 cells is independent of the 
others. Once any one cell value is given, the other three cell values are 
automatically fixed by the marginal totals (which are assumed to be 
given). To illustrate, suppose we have the following 2-by-2 table with 
rows labeled ai and and columns labeled hi and 62. 

h h Total 

ai a\hi aibi 9 
(li (libi a-Jh 7 

Total. 6 10 16 

The four cell values are denoted by the letters of the appropriate row 
and column. Now, if ai6i is, say, 2, the other three cell values are automat¬ 
ically determined. By subtraction from the marginal total of 5i, we know 
that 0261 must be 4. Similarly, O162 must be 7 and 0262 must be 3. The 
reader can verify for himself that the same thing is true if any other cell 
value is fixed. 

Consequently, only one cell value is independent in a 2-by-2 table. 
In a 3-by-2 table the reader will find that there are 2 independent cells. 
In general, a classification table with r rows and c columns has (r — 1) (c — 1) 
independent cells.^ Since independent cells are free to take dhy values 

at all within the limitations of the problem,^ the larger is the number of 
independent cells in any problem, the more chances there are for random 
sampling variations to occur. Allowance for this possibility is made by 
the rows in Appendix Table 11. The number at the beginning of each row 
under the heading n is nothing more than the number of independent cells, 
or relationships, in the problem. For instance, the probability of a value 

1 In the case of comparing two frequency distributions, the determination of the 
number of independent cells, or relationships, is a little more difficult (see p. 276). 

*For example, if the percentage of people having particular attributes is being 

studied, every cell value is necessarily limited to values not less than 0 nor more than 

100 per cent. 
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larger than a value computed from a 2-by-2 table as a result of sampling 
variation is obtained by interpolating the computed x^ value in the first 
row, since we know that a 2-by-2 table has only 1 independent cell, or 
degree of freedom. Similarly, a x^ value computed from a 5-by-4 table 
would be interpolated into the row for 12 degrees of freedom. Appendix 
Table 11 contains x^ values and probabilities for as many as 30 degrees of 
freedom. In the great majority of practical cases this table is adequate, 
as one rarely encounters a problem involving more than 30 degrees of 

freedom.^ 
The operational procedure for solving the x^ problems discussed in this 

chapter can now be outlined as follows: 
1. Set up the null hypothesis and determine the values of the various 

cells under the assumption of the null hypothesis. (In some cases where 
irequency distributions are being compared, the “population” distribution 

is automatically given by the specification of the problem; e.g.^ see page 
276.) 

2. Compute the value of x^ and determine the degrees of freedom. 

3. Interpolate the computed value of x^ in the appropriate row of 
Appendix Table 11. If the probability of a x^ value larger than the com¬ 
puted one is less than the critical level, 0.05 in most instances, reject the 
null hypothesis; if the probability is above the critical level, accept the 
null hypothesis. 

The method of determining the cell values under the null hypothesis 
will be discussed and illustrated in the examples that follow. However, 
before considering the applications of chi-square analysis, let us consider 
briefly the conditions and requirements under which its use is valid. 
There arc essentially four such conditions: (1) the sample observations 
must be independent of each other, (2) the sample observations must be 
drawn at random from the area or population being sampled, (3) the data 
must be expressed in original units and not in percentage or ratio form, and 
(4) the sample should contain at least 50 observations with not less than 5 
observations in any one cell. The first two of these conditions are the 
same as those postulated for the applicability of all previous standard-error 

formulas and tests for significance. The third condition does not limit 
particularly the applicability of chi-square analysis inasmuch as it is almost 
always possible to convert percentages or ratios back into their original 
form. The important thing is to keep this requirement in mind so as to 
avoid mistakenly computing a value for x^ relative data.^ The last 

' If n exceeds 30, the method described in the footnote to the table is used. 

* In some cases it is possible to apply chi-square analysis to relative data, though 
in every such case the number of observations on which each relative figure is based 
must also be known. For an illustrative example, see H. Cramer, McMiematical Methods 
of Statistics^ Princeton University Press, Princeton, N.J., 1946, pp. 449-450. 
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condition is necessary because the distribution of bke that of other 
measures we have studied, is likely to be erratic when the number in the 
sample or in each cell is fairly small. However, if the sample contains 50 
observations or more, with over 5 observations in each cell, valid results 
are generally obtainable. 

We shall now illustrate the application of chi-square analysis to two 
main types of problems: first, to determining the significance of a relation¬ 
ship between a number of attributes in so-called contingency tables, and 
second, to testing the significance of a difference between two continuous 
frequency distributions, at least one of which is based on sample data. 

Applications 

Contingency Tables. Where data arc classified according to two or 
more attributes, the resulting table is generally known as a contingency 

table. An r-by-c contingency table denotes a contingency table that has r 
rows and c columns. Thus, Table 27 is a 4-by-2 contingency table contain¬ 
ing two attributes—type of family and make of toaster. Table 28 on the 

market for life insurance is a 4-by-3 contingency table; its two attributes 
are income level and intention to purchase life insurance. If, say, income 
level was subdivided by five family sizes, we would have a 4-by-3-by-5 
contingency table—four income levels (rows), three intentions to purchase 
(columns), and five family-size classes within each income level (subdivi¬ 
sions within rows)—with three attributes. 

The testing of the significance of observed relationships between attri¬ 
butes is one of the important functions of chi-square analysis. Through 
its use we can determine whether two attributes are really related in a popu¬ 
lation or whether the observed relationship is actually spurious and non¬ 
existent. The manner in which this is accomplished is illustrated by the 
following examples. 

Table 29. Regular and Occasional Readership of Redbook by Sex 

Type of reader Male ' Female Total 

Regular. 152 523 675 
Occasional. 498 772 1,270 

Total. 650 1,295 1,945 

1. A sample of 1,945 readers of Redbook Magazine found the distribu¬ 
tion of ‘‘regular^^ and “occasionar^ readers by sex that is shown in Table 
29.^ Is there a relationship between sex and the type of reader of Redbook? 

^ Basic Data about ly026 Redbook Families, Redbook Research Department, January, 

1947. Data presented through the courtesy of Donald E. West, Director of Marketing 

Research, McCall Corporation. 
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In order to compute the value of in this 2-by-2 contingency table, 
we must know what would be the distribution of readers by sex under the 
null hypothesis, i,e.j assuming that no such relationship existed. The 
answer is provided by the marginal totals in the table. If no relationship 
existed between type of reader and sex, there would obviously be the same 
proportion of one type of reader in both sexes, i.e.j the percentage of males 
who are regular readers would be the same as the percentage of females 
who are regular readers, and the percentage of males who are occasional 
readers would equal the percentage of females who are occasional readers. 
In such a case, the percentage (»i cithri: who are regular readers would 
be equal to the percentage of all readers who are regular readers, or 
(®^^i945) (100%). Consequently, the yiumher of regular male readers under 
the null hypothesis would be expected to equal (^'^^{945) percent of the 
t >tal males (650) in the sample, and the number of regular female readers 

under the null hypothesis would be (^*^5^^945) per cent of 1,295. Similarly 
the number of occasional male readers would be (^^^5^i945) per cent of 650, 
and the number of occasional female readers would be (^^^?l945) per cent 

of 1,295. The reconstructed table under the assumption of no relationship, 
showing how the figure for each cell is computed, appears in Table 30. 

Table 30. Regular and Occasional Readership of Redbook by Sex, 

UNDER THE NuLL HYPOTHESIS 

Type of reader Male Female Total 

Regular. 
fi7R 

1>M5 = 225 

||gx 650 = 425 

S5X'-2»5=450 

X 1,295 = 845 
i 

675 

1,270 Occasional. 

Total. 650 1,295 1,945 

Squaring the difference between corresponding observed and expected 
values, dividing by the expected value, and summing over all 4 cells, we 

obtain the value of as follows: 

^ _ (152 - 225)2 (498 _ 425)2 (523 - 450)2 (772 - 845)2 
^ 225 425 450 845 

■*' 4^ 4M 845) 

= 54.372 

It has already been noted that a 2-by-2 contingency table has only 1 

independent cell—1 degree of freedom. We therefore interpolate this 
computed value of x^ with 1 degree of freedom into Appendix Table 11 
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with n = 1. It is immediately apparent that x* = 54.372, with 1 degree 
of freedom, is far beyond even the 0.01 probability level. In other words, 
the chances are far less than 1 in 100 that the observed values were ob¬ 
tained from a population where type of readership of Redbook is inde¬ 
pendent of sex purely as a result of sampling variations. Consequently, 
the null hypothesis is rejected, and it is concluded that regular and occa¬ 
sional readership of Redbook is related to sex. 

In the case of a 2-by-2 contingency table, the value of be more 
easily computed from the following formula: 

2 ^ N{ad - hcY_ 
^ (a + b)(c + d)(a + c)(6 + d) 

where N is the total size of the sample, and a, 5, c, d, are the four 
(actual) cell values in the table as follows: 

a b a b 
c d c "h d 

a 4- c 6 N 

This formula eliminates the necessity of computing the expected cell 
values under the null hypothesis. 

Substituting in this formula 

, ^ 1,945 [152(772) - 523(498) ]2 
^ (162 + 523)(498 + 772)(152 + 498)(523 + 772) 

= 55.204, the difference due to rounding in computing x^ 

As an alternative means of solving this problem, one might apply the 
test for significance of the difference between two percentages. Thus, what 
are the chances of obtaining a sample of 1,295 female readers of Redbook^ 
of whom or 40.4 per cent, are regular readers out of a popula¬ 
tion where ^^^945, or 34.7 per cent, of female Redbook readers are regular 
readers of the magazine? 

The standard error of the (hypothetical) population percentage is 

(Tp - yj- (0.347) (0.653). 
1,295 = 1.3% 

Computing the statistic T 

40.4 - 34.7 
T 

1.3 - ra - 

which, as before, is beyond even the 0.01 level of significance. 
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This alternative method can always be applied in lieu of chi-square 
analysis in testing the independence of a relationship in a 2-by-2 contin¬ 
gency table. The researcher can use whichever method he pleases in such 
cases. 

2. Let us now consider the problem of determining whether a real dif¬ 
ference exists in the automatic-toa.ster purchase; plans of Collier families 
as compared to other families. Before computing two changes must 
be made in Table 27: the data must be converted into absolute numbers, 
and Collier families must be segregated out of “all families.” In other 
words, “other families,” the group to, hr compared with Collier families, 
must be taken as the difference between all families and Collier families. 

These changes are readily made, and the final result is shown in Table 31. 

Table 31. Buying Prefeiiencks of Collteu Families and of Non-Collieii 

Families for Automatic Electric Toasters 

Make 
Non-(/ollier 

families 
Collier 
families 

All 
families 

Toastniast<*r. 263 74 337 
General Electric. 119 30 149 
Other makes. 61 26 87 

Make undecided. 436 89 525 

Total. 879 219 1,098 

If the toaster purchase preferences of Collier families and of other 
families are identical, the proportion of families preferring any particular 
make would be expected to be the ratio of all families preferring the make 
to the total size of the sample. Thus, the proportion of either Collier or 
non-Collier families preferring Toastmasters would be expected to be 
'^^Ko98J l^he proportion of Collier or non-Collier families preferring 
General Electric toasters would be etc. Hence, the number of 
non-Collier families preferring Toastmasters would be ^^Ko98 X 879, 

Table 32. Buying Preferences of Collier Families and of Non-Collier 

Families for Automatic Electric Toasters under the Null Hypothesis 

Make 
Non-Collier 

families 

Collier 

families 

All 

families 

Toastmaster. *®Ko98 X 879 = 270 ®»Ko98 X 219 = 67 337 

General Electric. X 879 = 119 *‘‘?fo98 X 219 = 30 149 

Other makes. «Ko98 X 879 = 70 *Ko98 X 219 = 17 87 

Make undecided. *2^098 X 879 = 420 ®*?io98 X 219 = 105 525 

Total. 879 219 1,098 
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and the number of Collier families preferring Toastmasters would be 

®®Ko98 X 219. The revisions under the assumption of the null hypothe¬ 
sis are shown in Table 32. 

The value of x‘ is now computed as before. 

, _ (263 - 270)* (119 - 119)* (61 - 70)* (436 - 420)* 
^ 270 119 70 420 

(74 - 67)* (30 - 30)* (26 - 17)* (89 - 105)* 

67 30 17 105 

“ 67) (to if) (iro m) 
= 9.882 

The reader can verify for himself that in a 4-by-2 contingency tabic 

the values of all 8 cells are automatically determined if the values of at least 
3 cells arc fixed. Therefore, we must enter the computed value of in 
Appendix Table 11 with 3 degrees of freedom. A value of x^ equal to 

9.882 with 3 degrees of freedom is beyond the 0.05 probability level, 
thereby leading to the inference that the automatic-toaster purchase pref¬ 
erences of Collier families are significantly different from those of non- 
Collier families. 

3. Consider next the problem of determining whether there is a signifi¬ 
cant relationship between income level and plans to purchase life insurance 
(see page 259). Under the null hypothesis, the distribution by incomes 
would be the same regardless of the families^ plans to purchase life insur¬ 
ance. In other words, any particular purchase plan would contain (see 
Table 28) of its families in the lowest income bracket, of its 
families in the $2,000--$2,999 income bracket, of its families in the 
$3,000-$3,999 income bracket, and of its families in the highest 
income bracket. The number of families in any particular cell is derived by 
multiplying the appropriate ratio by the total number of families with that 
particular purchase plan. The final figures are shown in Table 33. 

Table 33. The Market for Life Insurance among Collier Families by 
Income Level under the Null Hypothesis 

Income level 
Plan to 

purchase 
Undecided 

Not planning 

to purchase 
Total 

Under $2,000.... “%18 X 202 = 24 “%13 X92 = n “%18 X619 = 76 no 
$2,00a-$2,999. .. *«%18 X 202 = 57 *»%13 X 92 = 26 X619 = 173 256 

$3,000-84,999. .. »*%18 X 202 = 69 **%13 X92 = 31 X619 =210 310 
$5,000 and over.. *»J^i3 X 202 = 52 **J^i3 X92 = 24 X619 = 161 237 

Total. 202 92 619 913 
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The value of is computed in the usual manner, as shown below. 

, _ (17 - 24)* (56 - 57)* (87 - 69)* (42 - 52)* 
^ 24 57 69 , 52 

(23 - 11)* (23 - 26)* (25 - 31)* (21 - 24)* 
11 26 31 24 

(70 - 75)* (177173)* (198 - 210)* (174 - 161)* 
'75 173 210 161 

= 25.812 

By the formula (r — 1) (c ~ 1), the number of dej^rees of freedom in a 4-by- 
3 contingency table is computed to be 3 X 2, or 6. The reader can verify 
that if the values of as few as 6 cells in this table are fixed, the values of 
the other cells are automatically determined; Interpolating the computed 

value of in Appendix Table 11, it is vseen that the probability of a x^ 
value larger than the computed one is a good deal less than 0.01. The 
null hypothesis is, therefore, rejected and the conclusion is that income 

level is related to the life-insurance purchase plans of Collier families. 
By comparing the values of the chi-square ratio for each of the 12 cells, 

one can usually obtain more information about the meaning of a significant 
value of x^ and about the source of the deviation from the null hypothesis. 
For example, if the separate x^ ratios are more or less equal, a significant 
value of can very reliably be taken to indicate the existence of a uniform 
relationship between the attributes in question. If, however, most of the 
X^ ratios are very small and the significance of the over-all value of x^ is 
due to one or two abnormally large ratios, the existence of a relationship 

between the attributes is in doubt until the presence of a possible fluke is 
investigated and further studies are made. The present example is an 
excellent illustration of this point. Note that more than half of the com¬ 
puted x^ value of 25.812 is contributed by the Under $2,000-Undecided 
cell. This serves to place the significance of the result in doubt. If the 
observed value of 23 for that cell arose from some fluke, the value of x^ 
might then not be significant, since the x^ value at the 0.05 probability 
level for 6 degrees of freedom is 10.645, which is close to 25.812 minus 
13.091. Therefore, further analysis would be indicated. One approach 
would be to drop the undecided families and test the significance of the 
relationship between income level and “plan to purchase’^ and “not plan¬ 
ning to purchase.'' Another approach would be to test the significance of 
the relationship between the three upper income levels and the three pur¬ 
chase plans. The reader can verify that both these tests, which exclude 
the doubtful cell, lead to computed values of x^ that are beyond the 0.05 
probability level for their respective degrees of freedom. These findings 
tend to confirm the existence of the present relationship. 
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4. Chi-square analysis may be used to test the existence of specific 
relationships as well as of general relationships. The use of chi-square 
analysis in a problem of this type, a problem somewhat more involved than 
the previous ones, is illustrated by the following example. 

The 1946 Qualitative Study of Magazines^ revealed the percentages of 
women in whose homes copies of a particular magazine were found and 
who were keenly interested in receiving the magazine, classified by marital 
status. The eight magazines listed in Table 34 received top rankings 
among the women who were interested in home management and home 
decoration and in whose homes copies of these magazines were found. 

Table 34. Marital Status Distribution of Women in Whose Households 

Given Magazines Were Found and Who Exphe'i^sed Keen Interest in 

Receiving the Magazines 

Magazine 
Number expressing 

keen interest in 
receiving the magazine 

Per cent 
married 

Per cent 
single 

Per cent 
widowed 

The American Home. 598 82.4 8.8 8.8 
Belter Homes and Gardens.. 1,120 83.0 7.2 9.8 
Good Housekeeping. 1,243 77.6 11.9 10.5 

Ladies^ Home Journal. 1,360 75.7 13.5 10.8 
McCalVs Magazine. 1,019 76.7 9.6 
Redbook Magazine. 382 81.2 6.8 
Woman's Day. 335 81.8 11.9 6.3 
Wcrman's Home Companion. 980 77.6 13.6 8.9 

Suppose that the distribution by marital status of women who are 
keenly interested in receiving magazines on home decoration or home man¬ 
agement has been theorized in the past to be 80 per cent married, 11 per 
cent single, and 9 per cent widowed. As one step toward confirming or 
disproving this theory it is desired to know (1) how many, if any, of these 
eight magazines conform to this theory and (2) whether such a hypothesis 
is valid for all eight magazines taken together, and if so, how much reliance 
can be placed in the result. 

It can readily be seen that two distinct chi-square problems are involved 
in this problem; first, to compute and consider the validity of the hypoth¬ 
esis for each of the eight magazines separately, and second, to compute 
for the combined sets of data and consider the validity of the hypothesis 
for the combined data. However, in practice, both these problems can 
be solved in one operation. 

Instead of the hypothesis of no relationship as in the previous prob- 

' Sponsored by the McCall Corporation. Data presented through the courtesy of 

Donald E. West, Director of Marketing Research, McCall Corporation. The data in 
Table 34 was derived from the supplement to this study. 
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lems, we now have the hypothesis that an 80-11-9 per cent relationship 
exists in the given population. The expected or theoretical population 
values to be used in computing must be based on this hypothesis. The 
null hypothesis in this problem is that the distribution by marital status of 
women who are keenly interested in receiving any or all of the above 
magazines does not differ significantly from 80 per cent married, 11 per cent 
single, and 9 per cent widowed. 

The solution of the first part of this problem entails the computation 
of eight different values of x^? one for each of the magazines. The women 
reporting keen interest in receiving an^ particular magazine are considered 
as a separate sample for Vvdiich x^ be computed to determine the sig¬ 
nificance of the 80-11-9 relationship for that magazine. In effect, therefore, 
eight distinct random samples and eight distinct chi-square computations 
an* involved in this first part of the problem.^ The second part of the 
problem necessitates the combination of the marital-status distribution 
data of all eight magazines into one single over-all marital-status distribu¬ 
tion, whose agreement with the hypothesis is then tested by chi-square 

analysis. 
In order to compute the various values of x^, the data must be converted 

from percentages into original units. This is accomplished in Table 35. 

Table 35. Mauital-status Distribution of Women in Whose Households 

Particular Magazines Were Found and Who Expressed Keen Interest 

IN Receiving the Magazines 

0) 
Magazine 

(2) 
Total 

(3) 
Married 

(4) 
Single 

(5) 
Widowed 

(6) 
X* 

The American Home. 598 493 (478) 53 (66) 52 (54) 3.105 
Better Homes ami Ganiens.... 1,120 930 (896) 81 (123) 109 (101) 16.265 
Good Housekeeping. 1,243 966 (994) 147 (137) 131 (112) 4.799 
Ladies^ Home Journal. 1,360 1,030 (1,088) 183 (150) 147 (122) 15.475 
McCalVs Magazine. 1,019 782 (815) 139 (112) 98 (92) 8.236 
Redhook Magazine. 382 310 (306) 46 (42) 26 (34) 2.315 
Woinan^s Day. 335 274 (268) 40 (37) 21 (30) 3.077 
Woman^s Home Companion.. 980 760 (784) 132 (108) 88 (88) 6.068 

Total. 7,037 5,544 (5,629) 821 (775) 672 (633) 59.340 

The parentheses in Cols. (3), (4), and (5) contain the hypothetical popu¬ 
lation figures computed on the assumption that the marital-status dis- 

^ The fact that some of the women may be included under two or more of these 

magazine headings does not affect this interpretation in the present instance. Since 
all the sample members were selected at random, the women keenly interested in 
receiving any particular magazine may be considered as a separate sample of the 

marital-status distribution of keenly interested readers of that magazine, for purposes 

of this analysis. 
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tribution of the women in each magazine sample is 80 per cent married, 
11 per cent single, and 9 per cent widowed. Thus, the hypothetical 
marital-status distribution of The American Home sample is: married, 80 
per cent of 598; single, 11 per cent of 598; and widowed, 9 per cent of 598. 
The computation of the eight values of is shown in Col. (6). Each of 
these values is computed by the usual formula. For example, for the 
Ladies^ Home Journal, we have 

_ (1,030 - 1,088)2 (183 - 150)2 (147 _ 122)2 ^ 
1 nftft ' ' 122 lo.47o ^ 1,088 ' 150 

The x^ value for the combined sample is 

^ (5,544 ~ 5,629)2 (821 - 775)2 , (^2 - 033)2 ^ 
5,629 o.-iio 775 633 

The x^ value in the Total row of the table is the sum of the eight indi¬ 
vidual values of x^- As we shall see in a moment, this x^ has a special sig¬ 
nificance. 

We are now in a position to analyze the results. Each of the eight 
individual sample values of x\ ns well as the x^ for the combined sample, 
has 2 degrees of freedom, for if any 2 cells are fixed the value of the third 
cell is automatically determined.^ On interpolation into Appendix Table 
11 with 2 degrees of freedom, it is seen that the x^ values for The American 
Home, Good Housekeeping, Redbook Magazine, and Woman^s Day are 
below the 0.05 probability level; that the x^ values for Better Homes and 

Gardens, Ladies^ Home Journal, and McCalVs Magazine are beyond the 
0.05 probability level; and that the x^ value for Woman\s Home Companion 

just about equals x^ at the 0.05 level. From this data we would draw the 
preliminary conclusion that four of the magazine samples conform with 
the theorized marital-status distribution of the keenly interested readers, 
that three magazine samples are at variance with the theory, and that one 
magazine sample is on the border line, about which no definite conclusion 
can be drawn at the moment. Thus, on the basis of the first part of the 
problem, the results indicate that though the theory does seem to hold true 
for certain magazines, it does not appear to be true in all cases, four samples 
confirming the theory, three samples disproving it, and one sample being 
neutral. 

Now, when the eight samples are combined into one aggregate marital- 
status distribution, the resultant value of x^i 6.416 (with 2 degrees of free¬ 
dom), is seen to be beyond the 0.05 probability level. In other words, 
taken in its entirety, this group of samples tends to disprove the conjecture 
that the marital-status distribution of keenly interested readers of the 
particular magazines is 80 per cent married, 11 per cent single, and 9 per 

1 The 3 cells correspond to the three marital status categories of each sample, the 
observed and theoretical values for any particular cell being part of that cell. 
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cent widowed. Had only the combined data been available, this is the 
inference that would have been drawn. Further evidence of this fact is 
provided by considering the sum of the eight individual values of as is 
done below. 

One of the most useful characteristics of x^ is its additive property; f.e., 
the sum of two or more independent values of x^ can be tested for signifi¬ 
cance in Appendix Table 11 in the same manner as each individual x^> with 
degrees of freedom equal to the sum of the degrees of freedom on the compo¬ 
nent values of x^- Where a number of different samples are used to test 
the same hypothesis, this procedure yields a general over-all result that is 
more reliable than the result obtained from any individual sample, because 
the combination of the separate values of x^ accentuates any trends, or lack 
of trends, in the data and renders them more readily perceivable. For 
r^xample, a x^ of 2.55 with 1 degree of freedom would not be significant, but 
the combination of 10 such values of x^ (and, correspondingly, with 10 
degrees of freedom) would be significant, as is apparent from Appendix 
Table 11. 

In the present example the sum of the eight individual sample values of 
is 59.340, as shown in Table 35. Since each of the eight samples has 2 

degrees of freedom, this new x‘^ must have 16 degrees of Irecdom. From 
Appendix Table 11, it is seen that a x^ value of 59.340 with 16 degrees of 
freedom is far beyond the 0.05, or oven the 0.01, probability level. One is 
therefore strongly inclined to rejec^t the hypothesis. This is especially 
SO when it is noted that even if the two largest x^ values are omitted {Better 

Homes and Gardems and Ladies^ Home Journal)^ the resultant x^ value, 
27.600, with 12 degrees of freedom, is still significant. Obviously, sam¬ 
pling variations could not have caused the observed differences between the 
samples and theory. 

However, the analysis of the problem is not yet complete, for we have 
not explained how four of the eight samples could yield nonsignificant 
values of x^ when the over-all x^ ^^ud the x^ of the combined sample are 
clearly significant. The answer is obvious: that the magazine samples 
have very heterogeneous marital-status distributions. This fact may be 
confirmed by the following method. The measure of heterogeneity among 
the magazine sample distributions is the difference between the sum of the 
individual values of x^ and the x^ value of the combined sample. This is 
also known as the interaction x^. 

Interaction x^ = sum of individual values of x^ ““ of combined sample 

If the samples were perfectly homogeneous—every sample yielding the 
same x^ value, with observed values of corresponding cells of different 
samples deviating in the same direction and in the same proportion from 
the theoretical values—the sum of the individual values of x^ would be 
exactly equal to the x^ value for the combined sample and the interaction 
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would then be zero, as one would expect. When a group of extremely 

heterogeneous samples are combined, the resultant value of x* is relatively 
low, because, by combining the samples, the opposing trends of individual 
samples tend to cancel each other and average out. But the sum of the 
individual values does not permit the cancellation of opposing trends and 
is increased so much more in such cases. Therefore, in heterogeneous 
groups of samples, the interaction x^ is very large, and the more hetero¬ 
geneous are the samples, the larger is the value of the interaction x^« Be¬ 
cause of the additive property of x^, the significance of the interaction, or 
heterogeneity, may be evaluated in the same manner as the previous x^ 
values, namely, by interpolating into Appendix Table 11. The number of 
degrees of freedom of the interaction x^ is the difference between the degrees 
of freedom of the sum of the individual chi-square values and the degrees 
of freedom of x^ for the combined sample. 

If the interaction x^ is not significant, i.e., if the value of the interaction 
X^ is less than that at the 0.05 probability level, the degree of heterogeneity 
between the samples is assumed to be the result of sampling variations. 

In other words, it would be inferred that the samples are uniform with 
respect to the particular characteristic (s) under observation and that they 
all were drawn from the same population. Combination of the samples 

into an aggregate sample is then permissible. If the interaction x^ is found 
to be significant, it is taken to indicate that the samples could not have 
been drawn from the same population and that real differences exist in the 

distribution of the characteristic(s) from sample to sample. In such cases, 
combination of the individual samples is not valid, since they cannot be 
assumed to have originated from the same population. 

Let us now see how this theory works in the present case. The inter¬ 
action x^ and its associated degrees of freedom can easily be computed, as 
shown in Table 36. 

Table 36. Computation of Interaction Chi-square Value 

X* l)oj5r(H>s of freedom 

Sum of individual samples. 59.340 16 

Combined sample. -6.416 2 

Interaction. 52.924 14 

Since a x^ value of 52.924 with 14 degrees of freedom is far beyond the 
0.06 or 0.01 probability levels, it is apparent that considerable heteroge¬ 
neity is present among the marital-status distributions of the various 
samples. Besides confirming our suspicion as to the existence of heteroge¬ 
neity, this result indicates that the magazines samples are from different 
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populations and therefore are not amenable to combination. Conse¬ 
quently, for purposes of further analysis, the maritalnstatus distributions 

of the different samples cannot validly be combined and treated as a single 
marital-status distribution representative of all keenly interested readers 
of these eight magazines; the samples have been combined in this analysis 

to illustrate the technique and to arrive at the interaction x^- 
These examples have illustrated only a few of the ways in which 

chi-square analysis may be applied to contingency tables. Note that in 

testing for the independence of attributes, it is not necessary to assume 
normality or, for that matter, anything about the nature of the distribution 
of the characteristic under study. In other words, these chi-square tests 
of independence are valid in’espcctive of the nature of the distribution of 
the characteristic. This meiins that in this respect chi-square analysis is a 
r.oiiparametric test^ and is therefore of universal applicability. For 
further illustrations, the reader is referred to the references in the Bibliogra¬ 
phy, especially to Snedecor, Statistical Methods (reference 23), Chap. 9. 

Frequency Distributions. Chi-square analysis is frequently used to test 
the correspondence, or “goodness of fit,'' of a sample frequency distribu¬ 
tion to some actual or hypothetical population distribution. The proce¬ 
dure in such instances is much the same as in the case of contingency 
tables. Since the population distribution is usually given, either from past 
knowledge or by assumption, the null hypothesis is that no significant dif¬ 
ference exists between the two distributions, the significance or nonsig¬ 
nificance of the observed differences being ascertained by determining from 

Appendix Table 11 the probability that a larger than that computed is 
likely to occur as a result of sampling variations. There are, however, two 
main points to keep in mind in applying chi-square analysis to a comparison 
of frequency distributions. One point is that the frequency in any class 
should never be less than five; if there are less than five frequencies in a 
class interval, the interval should be combined with a neighboring class 
interval. The other point is that the degrees of freedom in a particular 
problem cannot be determined as easily as is true for contingency tables 
[where degrees of freedom equal (r — l)(c — 1)]. If the distribution with 

which the sample distribution is compared is computed from the sample 
data, the number of degrees of freedom is equal to r — fc — 1, where r is the 
number of class intervals and k is the number of restrictions imposed by 
the process of fitting the sample data to the hypothetical distribution. 
For example, if the observations are believed to have been drawn from a 
normally distributed population and the sample distribution is compared 
with a corresponding normal distribution, k is equal to 3, because the theo¬ 
retical distribution will have been computed so as to have the same mean, 
the same standard deviation, and the same sample size as the sample data. 

‘ The distinction between parametric and nonparamctric tests is discussed on p. 59. 
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If the sample distribution is compared with a population distribution that 
was not computed from the sample data, to fit some particular curve or 
distribution, the number of degrees of freedom is then simply equal to 
(r — 1), i.e., one less than the number of class intervals. Illustrations of 
both these types of problem are presented below. 

1. A study of the market for various commodities among 8,000 readers 
of Collier\s revealed the distribution shown in Table 37 of the sample 
households by size of household as compared with corresponding Census 
estimates for all United States households.^ 

Table 37. Relative Distkibution op 8,000 Collieu Families and 

All United States Families by Size of Household 

Persons in household Collier sample, per cent U.S faniilies, per cent* 

1 7.2 lU.O 
2 29.6 29.8 
3 24.0 24.2 
4 19.9 18.0 
5 10.0 10.0 
6 4.7 4..5 
7 1.9 1.7 
8 or more 2.1 1.8 

Total. 100,0 100.0 

* November, 1045, estimate of the Bureau of the Census, 

It is desired to know whether the Collier sample provides a representa¬ 
tive picture of the size-of-household distribution of all United States 
households. In other words, does the size-of-household distribution of the 
CoWt'er-sample families differ significantly from the corresponding (esti¬ 
mated) distribution of all United States households? 

The null hypothesis in this problem is that the Collier sample provides 
an accurate cross section of all United States families by size of household. 
Since the population distribution is provided by a priori knowledge, i.e., 

from estimates of the Census Bureau, there is no need to compute any 
hypothetical norms as in the case of a contingency table. The distribution 
of the Collier sample provides the values in the x‘ formula, and the 
estimates of the Bureau of the Census, which are assumed to be perfectly 
accurate for purposes of this analysis, provide the 6t values. The only 
change required in Table 37 to compute x* is the conversion of the percent¬ 
ages into the actual numbers of families; i.e., placing both distributions on 

* The Collier’a Market. A QualitaHve Survey. Research Department, Crowell-CoUier 
Publishing Company, May, 1946. Data presented through the courtesy of Ray 
Robinson, Director of Research. 
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an 8,000-family base, is then computed in the same manner as before, 

as shown in Table 38. 
Since the population distribution was obtained from a priori experience, 

there are n — 1, or 7, degrees of freedom in this problem. The computed 
value of x^ is obviously significant, indicating that the distribution of 
Collier families by size of household, as based on this sample, is not the 
same as that of all United States families. Some information about the 

Table 38. Computation of x* Comfahajive Size of Household 

Distributions of Collier Sample and All United States Families 

a) 

Persons in 
Viusehold 

(2) 

Collier sample 

(6) 

, {Xi-BiY 

^ Oi 

1 576 800 -224 50,176 62.720 
2 2,368 2,384 -16 2.56 0.107 
3 1,968 1,936 32 1,024 0.529 

4 1,592 1,440 152 23,104 16.044 

5 800 800 0 0 0 
6 376 360 16 256 0.711 
7 152 136 16 256 1.882 

8 or more 168 144 24 576 4.000 

Total. 8,000 8,000 0 85.993 

nature of this disparity may be gleaned from an examination of the com¬ 
puted data. For one thing, the extn‘me fluctuations in the individual x^ 
values illustrate the heterogeneous nature of the difference. Evidently, 
Collier families have much the same relative sizc-of-household distribution 
as all families when there are two, three, or five or more persons in the 
household, the significance of the x^ value being entirely due to the dispro¬ 
portionate number of Collier families having one or four persons in the 
household. Though 75 per cent of the final x^ value is due to the difference 
between the numbers of one-person households in the two distributions, 

one must not overlook the fact that the x^ value of 16.044 for four-person 
households is itself significant even if the former difference were not present. 

The signs of the successive numerical differences between the two dis¬ 
tributions [Col. (4) of the table] provides another means of analyzing these 
results. If two distributions are drawn from the same population, the 
signs of the successive numerical differences would usually be expected 
to alternate in some erratic fashion; i.e., first the sample value might 
exceed the population value for one or two class intervals, then the popula¬ 
tion value might exceed the sample value, then the sample value might 
exceed the population value, etc. If the alternation in signs does not fol- 
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low some such erratic pattern, the presence of a factor other than random 

sampling variations is usually suspected. For example, to have two suc¬ 
cessively smaller negative signs followed by six positive signs, as in the 
present case, would not generally be attributed to random differences in 
the two distributions. Besides bolstering our conclusion that the Collier 

families do not appear to have the same size-of-household distribution as 
all families, the abnormal succession of signs provides us with the further 
information that small-size households are underrepresented in the Collier 

sample and larger size households are (generally) overrepresented. The 
main differences, of course, are the underrepresentation of one-person 
households and the overrepresentation of four-person households. 

2. In the tossing of five coins 60 times in Chap. VIII (see Table 18, 
page 187), the distribution of the tosses shown in Table 39 was obtained 
by the number of heads in each toss. 

Table 30. Distribution of Heads in 60 Tosses of Fwk Coins 

Number of heads Number of tosses 
0 2 
1 7 
2 20 
3 23 

4 6 

5 2 

Total 60 

Could this distribution of heads have been ohtaintMl merely as a result 
of sampling variations or is it indicative of some bias in the coins (or in the 
tossing of the coins)? 

In order to answer this question, we first must know what would be the 
normal, or theoretical, expected distribution of the number of heads in 60 
tosses of five coins if the probability of tossing a head with each coin is 

one-half. These theoretical values are ascertained through the use of the 
so-called binomial distribution {X + F)”. The probabilities of different 
numbers of heads in tosses are given by the appropriate terms of the expan¬ 

sion of mH + where // stands for heads and T for tails. Thus, the 
probability of obtaining three heads and two tails is given by the coefficient 
of the term H^T^. The expected number of tosses out of 60 containing a 
particular number of heads is then obtained by multiplying the coefficient of 
each term in the binomial expansion by 60. This expansion is shown below: 

Expected number of] 
tosses withspecified [ = 60 ()^ff 

number of heads j + + ^2^^) 

= 1.875^« + 9,375H*T + IS.75IPT^ + IS.75H^T^ 

+ 9.375f/!r4 + 1.875r^ 



OTHER SIGNIFICANCE TESTS IN MARKETING 279 

The computation of x* is illustrated in Table 40. 

Table 40. Computation of x* for Theoretical and Observed Distribution of 

Heads in 60 Tosses of Five Coins 

(1) 

Number of 
heads 

(2) 

Observed number 
of toi.ses 

-V, 

(3) 

Expected 

number 
9i 

(4) 

1 

(5) 

(Xi - 

(6) 

(X. - 9,)* 

Bi 

0 2 1.875 0.125 0.0156 0.008 
1 7 9.375 -2.375 5.6406 0.602 
2 20 13.7L0 1.250 1.5625 0.083 

3 23 18.750 4.250 18.0625 0.963 

4 6 9.375 -3.375 11.3906 1.215 

6 2 1.875 0.125 0.0156 0.008 

Total. 60 60.000 0 2.879 

There are 5 degrees of freedom in this problem because no additional 

restrictions, other than holding the sample size constant at 60, were imposed 
in computing the expected distribution. For 5 degrees of freedom, a value 
of x^ larger than 2.879 could occ.ur over 70 times out of 100 as a result of 
sampling variations. Therefore, the observed deviations from the expected 
values are obviously not significant and there is no evidence of any bias 
in the coins or the tosses. 

Further illustrations of the application of chi-square analysis to the 

(jomparison of two fre(iuen<;y distributions are to be found in Yule and 
Kendall, An Introduction to the Theory of Statistics (reference 25), Chap. 22. 

3. VARIANCE ANALYSIS 

Theory 

Variance analysis is used to test for the existence of relationships 
between two or more characteristics. The underlying basis of variance 
analysis is the segregation of the total variance in a set of data into compo¬ 
nent variances attributable to each of the various factors involved in the 
problem. The significance or nonsignificance of each factor on the data is 
determined by taking the ratio of the variance attributable to that factor 
to the estimated sampling variance of the data. The latter variance is 
taken to indicate the effect of random sampling variations on the sample 
data. If the variance attributable to any one factor exceeds this estimated 
sampling variance by an amount greater than what could be expected 
merely from sampling variations, the factor is adjudged to have a signifi¬ 
cant effect on the sample data and the null hypothesis is rejected. The 
significance of an excess of a factor variance over the estimated sampling 
variance is determined by interpolating the value of this ratio, which we 
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shall call F, or the F ratio, into the appropriate probability distribution 
table and ascertaining whether or not the computed value exceeds the corre¬ 
sponding value of F at the required probability level, usually 0.05. 

For example, suppose the annual laundry-soap purchases of 100 house¬ 
wives living in city Y were cross-classified by age of housewife and by 
family income level. Assuming that there is more than one observation in 
each cell, we would be able to determine the significance or nonsignificance 
of each of the following three factors on purchases of laundry soap: (1) age 
of housewife, (2) income level, and (3) the interaction of age of housewife 
and income level, meaning the tendency, if any, for particular combinations 
of age of housewife and income level classifications to affect significantly 
the housewife’s purchase of laundry soap. (As we shall see later, if there 
were only one observation in each cell, the interaction effect could not be 
estimated.) In each case, the variance attributable to the factor is divided 
by the estimated sampling variance of the data; this is the F ratio. If the 
factor, say, income level, does influence laundry-soap purchases, the value 
of F will be significantly greater than 1, for the following reason. If income 

level has no effect on laundry-soap purchases, the variance due to income 
level will merely be another estimate of the sampling variation in the data, 
the denominator of F, in which case the expected value of F will be 1. 
Ample allowance for fluctuation in the value of F around 1 is then made by 
the F values in the probability distribution table. If, how^ever, income 
level does affect laundry-soap purchases, the variance due to income level 
will contain this additional element besides the normal sampling variance. 
The expected value of F will then exceed 1, for we would have 

_ sampling variance + variance due to effect of income level 
”” sampling variance 

Obviously, the greater is the influence of income level on laundry-soap 
purchases, the higher will be the value of F.* When interpolated into the 
probability distribution table, the probability of obtaining the given value 
of F merely as a result of sampling fluctuations will be seen to be so small, 
i.e., less than 0.05 or less than 0.01, as to make it apparent that some cle¬ 
ment other than sampling variation is operative. If no bias is deemed to 
be present, it is concluded that this other element is the (significant) effect 
of income level on the purchases of laundry soap. The influence of the two 
other factors on the variable is determined in a similar fashion. In prac¬ 
tice, all the F ratios are determined simultaneously. 

The probability distribution table used in analysis of variance problems 
is Appendix Table 12, the F distribution table. The reader may recall that 
this is the table used in Chap. V to test the significance of the difference 
between two standard deviations based on small samples. The body of the 

1 Note also that if the value of F is less than 1, the ratio is automatically not sig¬ 

nificant. 
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table contains the values of F, the lightface type for the 0.05 probability 
level and the boldface type for the 0.01 probability level. Each pair of F 

values corresponds to a particular combination of ni (vertical) degrees 
of freedom and n2 (horizontal) degrees of freedom. There are now two 
sets of degrees of freedom, instead of one set as in the case of chi-square 
analysis, because the ratio of two independent variances is being considered, 
and a different number of degrees of freedom corresponds to each variance. 
The number of degrees of freedom corresponding to the variance attribut¬ 
able to the factor under consideration is rii in Appendix Table 12, and the 
number of degrees of freedom of the e‘^timated sampling variance is rh. 

The value of F for any particular combination of Ui and denotes the 
selected probability that a value of F greater than that given is likely to 
occur as a result of random sampling variations. Thus, for m = 7 and 
tVi = 14, the 0.05 value of F, 2.77, indicates that only 5 times in 100 would 
the F ratio exceed 2.77 because of chance variations. As before, we shall 
use the 0.05 level as the critical level, though 0.01 critical values are included 
for the reader’s convenience. For example, if F = 1.12 with rh = 9 and 

n2 = 26, the particular factor will be inferred not to have any significant 
influence on the variable under study (since the critical value of F is 2.27), 
?.e., the null hypothesis will be accepted. Note that if one of the variances 
is known from past (nonsample) information, the number of degrees of 
freedom corresponding to that variance is infinity, recorded as »in Appen¬ 
dix Table 12. 

The procedure in a variance-analysis problem can be summarized, as 
follows: 

1. Set up the null hypothesis that the particular factor has no influence 
on the variable under study. 

2. Compute the value of F and determine Ui and n2. 
3. Interpolate the computed value of F in Appendix Table 12. If 

the value exceeds the critical value at the preselected probability level, 
reject the null hypothesis; if the computed value of F does not exceed 
the critical value, accept the null hypothesis. 

This procedure is much the same as that involved in a chi-square 
analysis, except for step 2. The methods of computing the various 
variances will be considered in the illustrative examples that follow. 
First, however, let us consider briefly the conditions for the applicability 
of variance analysis. There are two such conditions. One is, as in the 
case of all previous significance tests, that the individual sample observa¬ 
tions be independent of each other. The other is that the variance of 
the sample observations within each cell must be approximately equal, 
i.e., that there must be uniform variability among the sample members 
in all cells, or strata. Of course, this may not always be true in commercial 
problems. For example, there is the well-known tendency for the vari¬ 
ances of many strata to fluctuate in accordance with the mean values of 
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the strata. And, the variance of a percentage is known to be related to 

the percentage itself, i.e., <t\ = pq/N} In such cases, special mathe¬ 
matical transformations of the data must be made to eliminate the heter¬ 
ogeneities. An example of this procedure is provided in the following 

illustrations. 
Because variances have to be estimated, it is generally more con¬ 

venient, though not essential, to work with the original data in variance- 
analysis problems rather than with mean values. If, however, mean 
values are used, it is necessary to know the variance of each cell (when 
there is more than one observation to a cell). 

The following discussion presents a number of progressively more diffi¬ 
cult examples of the application of variance analysis in commercial problems. 

Applications 

1. Probably the simplest type of variance-analysis problem is the 
so-called one-way classification, i.e., where the variables are classified 

Table 41. Expected Vacation Expenditures op 40 Families Classified 
BY Interviewer 

Interviewer 1 Interviewer 2 Interviewer 3 Interviewer 4 Interviewer 5 

$290 $270 $300 $280 $290 
270 270 300 250 315 

310 290 310 300 285 

285 260 270 270 310 
320 280 300 300 300 
280 275 280 280 280 

285 300 290 280 260 
300 275 270 300 320 

Average $292.50 $277.50 $290.00 $282.50 $295.00 

in only one manner. For example, a survey was undertaken to determine, 
among other things, the expected vacation expenditures of families. To 

test the presence of interviewer bias, the interviews made in the same 
area with families of similar size and income level were segregated accord¬ 
ing to the particular interviewer. Each of the five interviewers involved 

was found to have made eight such comparable interviews, the anticipated 
vacation dollar expenditures of each family being shown in Table 41. 

If no interviewer bias is present, it is believed that the average vaca¬ 
tion expenditures of each of these five groups of families would be the 

1 Although percentages are generally considered under the heading of attributes, 
variance analysis is applicable to testing the significance* of the differences between 

sets of percentages when they represent the percentage of the total (sample) number 

in the particular stratum, or cell, having the desired attribute (s). See example on p. 286. 
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same. Now, can the variation in the mean values of these groups be 
attributed to sampling influences or does it indicate the presence of 
interviewer bias? 

The F ratio in this problem is the variance due to interviewers divided 
by the estimated sampling variance in the planned vacation expenditures 
of all such families. If we denote by Xtj the planned vacation expenditure 
of the jth family interviewed by the tth interviewer, JUt as the average 
vacation expenditure of all the families interviewed by the /th interviewer, 
and X as the average vacation expenditure of the entire sample, then an 
estimate of the sampling vari5.nce in the estimates of all the families 
interviewed by the tth interviewer is 

f (A„ - X,)* 
__ 
m — 1 

where m is the number of families (8) in each set.' Each of these five 
sets of interviews provides a separate estimate of the same thing, of the 
sampling variance in the population. Obviously, then, the most accurate 
estimate of the sampling variance is the average of all five of these inde¬ 
pendent estimates. Algebraically, we have 

k w 

l l iX,, - X.)* 
Sampling variance in the population = --- - " ^-- 

A’ //I — i j 

where k is the number of sets of families, i.e.j the number of interviewers. 
The summation with respect to i in this expression merely indicates 

that the variances for the various groups (interviewers) are to be summed 
and then divided by the number of groups, fc. 

Now the variance due to interviewers must be the variance in the 
average vacation expenditures per family reported by the various inter¬ 
viewers. In other words, this is the variance between groups as contrasted 
to the variance within groups used just before to estimate the sampling 
variance among the family vacation expenditures. Of course, if no 
interviewer bias is present, this variance between groups merely provides 
another estimate of the sampling variance in the population. The variance 
between groups, which is the variance in the mean values for the various 
interviewers, is defined as 

1_ 
k - 1 

' As noted in Chap. IV (see p. 100), the sum of the squared deviations must be 
divided by one less than the number of observations in estimatin{2; the variance in the 
population from a small sample. Actually, (m —1) represents the degrees of freedom 

within each group. 
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where k is the number of interviewers involved (5). The sum of squares 

is divided by one less than the number of groups for the same reason as 
before. 

The F ratio for this problem can now be expressed as follows: 

mX(X,-X)V(A:-1) 
pi _ i _ iC\17l 1) i 

~ X X^^J - ~ ~'k - 1 
i j i j 

For computational purposes, a number of simplifications may be 
effected. If we multiply out the squares in the numerator and denomi¬ 
nator, the F ratio reduces to the following expression:^ 

'2 
i 

i j i 

In this way, the tedious task of squaring and summing individual 

deviations from their mean values is eliminated. There are left only 
three values to be computed: the sum of squares of all the observations 

squares of the group means square 
% j i 

of the over-all sample mean [(X)^]. 
A very valuable computational aid in all variance-analysis problems 

arises from the fact that the value of the F ratio is not altered if all the 

sample observations are multiplied or divided by the same number, or if 
the same number is added to or subtracted from all the sample observa¬ 
tions, or if any combination of these procedures is applied. For instance, 
since all the observations end in 0 or 5 in the present problem and since 
all of them are in the vicinity of $270 to $300, a great deal of calculation 
could be eliminated by, say, subtracting $290 from each value, dividing 
through by 5, and computing F from the reduced observations.^ These 
calculations are shown in Table 42. 

We now have to compute the degrees of freedom, ni and 7^2. If 
seven of the eight values in any group are fixed, the eighth value is auto¬ 
matically determined by the group mean (which is taken as given) 
and by the other seven values. Therefore, within each group there are 
7 degrees of freedom. Over all five groups there are, then, 35 degrees of 
freedom; this is the value of 712. The number of degrees of freedom for 

^ See Appendix C for proof. 

* If an automatic calculating machine is available, the reduction of the sample values 

would ssive very little work in the present problem. However, in more complicated 
variance-analysis problems, this procedure is a very great timesaver. Even in the 
present case, it makes possible the solution of the problem without the necessity of a 

calculating machine. 

F = 
kirn — 1) 

k — 1 

m 
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Table 42. Variance Analysis of Expected Vacation Expenditubf.8 of 

40 Families 

Interviewer 1 Interviewer 2 Interviewer 3 Interviewer 4 Interviewer 5 

0 -4 2 -2 0 
-4 -4 2 -8 5 

4 0 4 2 -1 
-1 -6 -4 -4 4 

6 -2 2 2 2 
-2 -3 -2 -2 -2 
-1 2 i i ^ -2 -6 

2 -3 -4 2 6 

Total.4 -20 0 -12 8 
.0.6 -2.5 0 -1.5 1.0 

X?.0.25 6.25 0 2.25 1.00 

+ (-4)* + (4)* + (-1)' + • • • + (6)2 = 462 

2:X? = 0.25 + 6.25 + 0 + 2.25 + 1.00 = 9.75 

20 4-20-1-0-12+8 
X--= -40 = = 0.25 

5(8 - 1) 8[9.75 - (5)(0.25)1 ^ 35 68 

5 - 1 462 - (8)(9.75) *4 384 

the variance between groups (ni) is four, since if four of the group means 

are fixed the value of the fifth is ascertainable from the over-all mean and 
the four group means. By interpolation in Appendix Table 12, it is seen 
that the computed value of for n2 = 4 and n2 == 35 would have to 
exceed 2.485 to be significant. Since the present value of F is less than 
2.485, it is concluded that whatever interviewer bias may have been 
present did not influence the results of the survey. 

Note that the values of Ui and rh are obtainable from the F ratio 
itself, as the denominator and the numerator, respectively, of the first 
term in F; this is true for all analysis-of-variance problems. The results 
of this analysis are sometimes represented in the form of Table 43. 

Table 43. Analysis of Variance op Vacation-expenditure Problem 

(1) 
Variance 

(2) 
Sum of squares 

(3) 
Degrees of freedom 

(4) 
Estimate value of <r^ 

Within groups. 384 35 10.97 

Between groups. 68 4 17.00 

Total. 452 39 11.59 
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If the value of F is not significant, the total sum of squares, which 

is equal to 2) 2) ~ divided by the total degrees of freedom, 39, 
i 3 

provides the most reliable estimate of the sampling variance in the popu¬ 
lation, namely, 11.59. The F ratio is the variance between groups 
divided by the variance within groups, or 17/10.97 = 1.55, as before. 
The three estimates of in Col. (4) will be equal when the variance within 
groups is identical with the variance between groups, and the more sig¬ 
nificant is the influence of the particular factor, the farther the variance 
between groups will deviate from the variance within groups. 

As illustrated in Col. (2), the sum of squares within groups plus the 
sum of squares between groups will always equal the total sum of squares 
in this type of problem. In effect, we have the identity 

X 2 X ^ 
t J i i J 

Since the total sum of squares can be reduced to 2) 2 
i J 

which is very easy to compute, it is sometimes more convenient to obtain 
the sum of squares within groups by first computing the total sum of 
squares and subtracting from it the computed sum of squares between 

groups, especially so when the size of the various groups is not the same. 

Table 44. Percentage of Total Possible Audience Reached by Life Magazine, 

BY Economic Class and at Various Periods of Time 

Report 
Top 

20 per cent 

lTppi*r middle 
20 pea* cent 

Miildle 
20 per cent 

I.ower middle 
20 per cent 

Bottom 
20 per cent 

1 30 19 16 12 4 
2 30 21 17 11 6 
3 33 22 19 13 6 
4 33 21 19 14 8 
5 33 1 25 19 14 9 
6 37 I 27 20 15 11 
7 37 26 18 16 9 
8 37 26 20 15 7 

2. Table 44 shows the percentage of magazine audiences in each of 
five economic brackets reached by Life magazine, based on eight surveys 
taken at different periods of time.' 

It is desired to know (1) whether the relative audience reached by 
Life has really increased over the period of these eight reports or whether 
the observed percentage increases are due to sampling variation, and (2) 

^ Continuing Study of Magazine AudienceSy Report No. 8, August 15, 1946. Data 

presented through the courtesy of Cornelius Du Bois, former Director of Research, and 
of A. Edward Miller, present Director of Research, Life magazine. 
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whether significant differences exist in Lifers audience coverage at various 
economic levels. 

Since the data are in percentage form, the first step in solving this 
problem is to convert the percentages into a form in which they are 
independent of the variances. This transformation is effected by apply¬ 
ing the conversion formula X = arc sine y/percentage.^ The analysis of 
variance is then performed on the values of X, disregarding the fact that 
the X values represent angles. Tne transformation is readily accomplished 
with the aid of Appendix Table 13, the body of which contains the 
angles corresponding to the arc sine of the square root of the percentage 
indicated in the margin. Thus, the arc sine of the square root of 48.1 
per cent is 43.91. The transformed data are shown in Table 45. 

Table 45. Angular Transformation of Life Audience Data 

(Angle Signs Are Omitted) 

Report 
Top 

20 per cent 

Upper middle 

20 per cent 

Middle 
20 per cent 

Lower middle 
20 per cent 

Bottom 
20 per cent 

1 33.2 25.8 23.6 20.3 11.5 
2 33.2 27.3 24.3 19.4 14.2 

3 35.1 28.0 25.8 21.1 14.2 

4 35.1 27.3 25.8 22.0 16.4 

5 35.1 30.0 25.8 22.0 17.5 
6 37.5 31.3 26.6 22.8 19.4 

7 37.5 30.7 25.1 23.6 17.5 

8 37.5 30.7 26.6 22.8 15.3 

We now have a two-way classification problem to consider, the data 
being classified by economic class and by date (number of report). In 
order to answer the first part of the problem, we have to determine the 
significance of the differences between the various rows (periods of time); 
and in order to answer the second part of the problem, the significance 
of the differences between columns (economic levels) must be determined. 
Hence, there are two F ratios to be computed, one for rows {Fi) and one 
for columns (F^, These ratios are 

Fi = 
variance between rows _ 

sampling variance of the data 
F2 

variance between columns 
sampling variance of the data 

Let us denote X^ as the value in the ith row and jth column, Xi as the 
mean of the fth row, Xj as the mean of the jth column, and X as the over¬ 
all sample mean. Then, as in the previous problem, the variance between 

‘ An alternate transformation that permits an analysis of variance to be performed 
independent of the assumption of normality is through the use of ranks. See reference 

166 in the Bibliography. However, the use of ranks does entail a certain loss in efficiency 

(roughly between 9 and 36 per cent). 
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columns will be equal to m ^ — X)V(* — 1), there being k (5) columns 
3 

and m (8) observations in each column. In a similar fashion, the vari¬ 
ance between rows will equal k ^ (X< — — 1), since there are 

m rows and k observations in each row. 
Each of these two variances is an estimate of the sampling variance in 

the data plus the effect, if any, of the particular factor involved (time 
in the case of rows, and economic level in the case of columns). To 
determine the presence of such effects, we must have an estimate of 
the sampling variance alone, the denominator of the F ratio. Now 
the effect of sampling variations on any particular value Xi^ is 
{Xij — X) — (Xi — X) — (Xj — X), The first term measures the devia¬ 
tion of the particular value from the sample mean; ^his is the usual 
measure of sampling variation if no influences other than sampling 
variations are present. If, however, the rows and/or columns do influence 
the value of Xij, this nonsampling effect is removed by the next two 
terms. For instance, if the rows have no effect on X/y, i.e., if the value of 

Xij is independent of the row in which it may be situated, then Xf will 
equal X and the second term will vanish. If the row does influence the 
value of Xij, this effect is obviously the difference between the mean of 
the row and the over-all mean. The same is true for columns. Con¬ 
sequently, by subtracting these nonsampling effects from the deviation of 
Xij from the over-all mean, one is left with a pure measure of sampling 
variation.^ By eliminating the parentheses, this expression for the sam¬ 
pling variation reduces to Xfj — Xi — Xj X. The sampling variance 
is then the sum of squares of all such residuals divided by their degrees 
of freedom S S — Xf — Xy + Xf 

(m - 1)(Aj - 1) 

The number of degrees of freedom is (m ~ 1) (fc — 1) for this variance 
because in any row (or column) all the values are determined if one less 
than the total number of values in that row (or column) is fixed. In 
other words, if as few as (ni — \) {k ~ 1) cell values are given, the 
remaining values may be ascertained from the row and column means. 

The F ratios to be computed are now as follows: 

Fi = 
(m — l)(/b — 1) 

m — 1 2 5 - X, -X + X)*’ 

^ This assumes that there is no interaction effect between rows and columns. In 
two-way classification problems with one observation in each cell, interaction effects 

cannot be measured. If the interaction cannot be assumed to be zero on a priori grounds 
in such problems, the analysis-of-variance techniques cannot be applied. 
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F, (m — l)(k — 1) 
fc - 1 

As before, computational simplifications are feasible, k ^ (Xj — X)* 

reduces to k — mX’), and m ^ fX^ — X)* becomes m 

i 3 3 

The sum of squares of the residuals is best computed as the difference 
between the total sum of squares and the sums of squares between rows 
and between columns 

5 X + ^y- - II (Xij - ^y 

i j 

The total sum of squares is easily computed as ^ ^ X'ij — mlcX'K 
i j 

And, to further reduce the amount of calculation, 23.0 is subtracted 

from each observation; as noted previously, this procedure does not alter 
the values of the F ratios. The calculations are shown in Table 46. 

Table 46. Vahiance-anai-vsis Computations fou Life Audience Data 

(1) 

Report 

(2) 

Top 

20 

per cent 

(3) 
Upper 
middle 

20 
per cent 

(4) 

Middle 

20 

f)er C(‘nt 

(5) 
Lower 
middle 

20 
per crent 

(6) 

JJottom 

20 

per cent 

(7) 

Total 

(8) 

Xi 

(9) 

Ti 

1 8.2 0.8 -1.4 -4.7 -13.5 -10.6 -2.12 4.4944 

2 8.2 2.3 -0.7 -5.6 -10.8 - 6.6 -1.32 1.7424 

3 10.1 3.0 0.8 -3.9 -10.8 - 0.8 -0.16 0.0256 

4 lO.l 2.3 0.8 -3.0 - 8.6 1.6 0.32 0.1024 

5 10.1 5.0 0.8 -3.0 - 7.5 5.4 1.08 1.1664 

6 12.5 6.3 1.6 -2.2 - 5.6 12.6 2.52 6.3504 

7 12.5 5.7 0.1 -1.4 - 7.5 9.4 1.88 3.5344 

8 12.5 5.7 1.6 -2.2 - 9.7 7.9 1.58 2.4964 

Total. 84.2 31.1 3.6 -26.0 -74.0 18.9 19.9124 

Y 10.52 

110.6704 

3.89 

15.1321 

0.45 
0.2025 

- 3.25 
10.5625 

- 9.25 . 
85.5625 222.1300 

. 

2 Z + (8-2)’ + (10-1)* + • • • + (-5.6)* + (-7.5)* + (-9.7)* = 1,894.39 

X = — = 0.4725 
40 

Sum .of squares between rows *= 5119.9124 — 8(0.4725)®] = 90.63 
Sum of squares between columns = 8[222.13 — 5(0.4725)®] = 1,768.08 

Total sum of squares = 1,894.39 — (8) (5) (0.4725)^ - 1,885.46 

nesidual sum of squares * 1,885.46 — (1,768.08 -f- 90.63) =* 26.75 
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The analysis of variance of this problem is presented in Table 47. 

Table 47. Analysis of Variance op Life Audience Data 

Variance 

Between rows.... 
Between columns 
Residual. 

Total. 

From this table, Fi is computed to be 12.95/0.96, or 13.49, and F2 is 
442.02/0.96, or 460.44. Both values of F are obviously significant, as 
may be verified from Appendix Table 12; the critical (0 05) value for Fi, 
with ni = 7 and 112 = 28, is 2.36, and the critical (0.0b) value for Fo, with 
ni = 4 and n2 = 28, is 2.71. These results lead us to conclude that the 
Life magazine audience does vary significantly between economic levels, 
as would be suspected from examining the data, and that a significant 
increase^ in the relative size of Lifers audience has occurred through time. 
Judging from the relative size of Fi and F2, it also appears that the varia¬ 

tion in the audience between economic levels is much more pronounced than 
the variation through time. Once again, however, it must be recalled that 
these results are dependent upon the absence of any interaction between 
economic level and time. 

3. The coffee purchases of 60 families with the same family size and 
economic characteristics, living in four different cities, were recorded for 
3 months after an intensive advertising campaign by brand Y coffee in 
each of the four cities. The average monthly coffee purchase of the 60 
families during this period is shown in Table 48, each family being 
classified by city and by the number of times advertisements for brand Y 
were reported to have been seen. 

Table 48. Average Monthly Purchase op Y Coffee by 60 Families, by City 

AND BY Number of Y Advertisements Noticed 

6-10 advertisements Over 10 advertisements 
noticed noticed 

18,20,17,26,21 31,19,24,22,28 
19,27,21,28,24 31,18,24,27,25 
27.21.28.30.23 25,32,29,38,30 
19.31.27.29.24 37,34,32.28,28 

‘ The fact that it is an increase and not a decrease is inferred directly from the 

data. 

City 
1-5 advertisements 

noticed 

A 19,27,18,18,20 

B 18,26,19,17,21 

C 24,21,18,20,22 

D 18.26,28,21,25 

Sum of squares Degrees of freedom 
Estimate of 

sampling variance 

90.63 7 12.95 

1,768.08 4 442.02 

26.75 28 0.96 

1.885.46 39 
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To aid in evaluating the effect of this campaign on sales of brand Y 
coffee it is desired to know (1) whether the apparent relationship between 
advertisements noticed and purchases might be due to sampling variations, 
(2) whether any significant difference now exist in purchases between the 
four cities, and (3) whether any relationship exists between city and adver¬ 
tisements noticed in affecting purchase of Y coffee, ^.e., the interaction effect. 

Because there is more than one observation in each cell, the significance 
of the interaction effect can be determined from the sample data. The 
variance duo to interaction is now equivalent to the estimated residual 
variance in the previous problems multiplied by the number of families 
in each cell ^ ^ ^ X)2 

(m — i){k — 1) 

where lUij is the mean value of the cell in the ?th row and jth column, and 
n is the number of families per cell (5). If there is no interaction, the 
expected value of would be identically 3*^ + — X, in which case 
the interaction variance would become zero. The greater is the inter¬ 
action effect, the farther will X<^ deviate from Xi + X^ — X, and the 
larger will be the interaction variance. 

The estimate of the sampling variance alone, the residual variance, is 
now equal to the sum of squares of the individual purchase observations 
about their cell mean divided by the appropriate degrees of freedom. 
Obviously, if the sampling variance were equal to zero, each individual 
observation would be equivalent to the cell mean. If we denote X^a 
as the ath purchase observation in the ?^’th cell, the residual variance is 

7rik{n — 1) 

As before, the variance between rows (cities) is equal to 

nk^(Xi - X)V(w- - 1), 
i 

and the variance between columns (advertisements noticed) is equal to 
nm^(Xj — X)‘V(^"- !)• Since each cell contains n observations, both of 

i 
these variances are increased n times; that is the reason for n in the 
numerator of these two variance expressions. 

The three F ratios with which we are concerned in this problem can 
now be expressed as follows: 

Variation between cities 

mk(n — 1) 

^ 111 
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Variation between advertisements noticed 

F2 
ink(n — 1) 

k - 1 

nm ^ (Xy — T)* 

{Xna - 

i 3 a 

Interaction effect 

F, 
mkin — 1) 

(m — 1)(A; — 1) 

^ S — Xj + X)* 

Note that the residual degree of freedom is now mk{n — 1), since only 

one value is free to vary in each of the mk cells. 

For computational purposes it is best to compute the interaction sum 

of squares as the difference between the total sum of squares and the 
sum of the other three sums of squares 

n S X - X, - T, + = X S X - X)» 
i j i 3 a 

- [nk ^ (X, - Xy + nm ^ - Z)* + X 5 X (X„„ - 
i 3 > i 3 ct 

The short forms for computing the four sums of squares on the right- 

hand side of this identity are as follows: 

% j a 

% % 

nm 

:A v ^ (2S2X„,)* 
^ mkn 

(XX 
3 a (222X„.)* 

nk mkn 

Xll^o-Y 
i a (222X«.)* 

nm mkn 

^ 

To facilitate the computations, 25 is subtracted from each observa¬ 
tion. The calculations required to arrive at the sums of squares are 

shown in Table 49. 
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Table 49. Vabiancb-analtsis Computations on the Cofpeb-pubchase Data* 

1-5 6-10 Over 10 Total 

j a 

City advertisements 
noticed 

advertisements 
noticed 

advertisements 
noticed 

(X X ^<m) 
j a 

A -6,2,-7,-7,-5 -7,-5.-8,1,-4 6, -6.-1,-3,3 409 
(-23) (-23) (-1) -47 

B -7,1,-6,-8,-4 -6,2,-4,3,-1 6,-7,-1,2,0 322 
(-24) (-6) (0) -30 

C -1,-4,-7,-6,-3 2,-4,3,5,-2 0,7,4,13,5 417 

(-20) (4) (29) 13 

D -7,1,3,-4,0 -6,6,2,4,-l 12,9,7,3,3 460 

(-7) (5) (34) 32 

X X ■x'w. -74 -20 62 -32 1,608 

X X 
i a 

504 372 732 1,608 

* The figure in parentheses beneath each cell is the sum of the observations in the cell. 

X X (2 = (-23)^ + (-23)* + (-1)2 + . . . 
‘ “ + (-7)* + (5)* + (34)* = 4,158 

X (X X = (-47)* + (-30)* + (13)* + (32)* = 4,302 
i j a 

X (X X = (-74)* -f (-20)* + (62)* = 9,720 
j i a 

Total sum of squares 

Sum of squares between rows 

- 1,608 

^ 4,302 1,024 
(5)(3) (4)(3)(5) 

Sum of squares between columns 
9,720 1,024 
(4) (5) (4) (3) (5) 

1.590.93 

269.73 

468.93 

Residual sum of years = 1,608 — = 776.40 

Interaction sum of squares = 1,590.93 — 269.73 
- 468.93 - 776.40 = 75.87 

The analysis of variance of this problem is presented in Table 50. 
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Table 50. Analysis of Variance of Coffee-purchase Data 

Variance Sum of squares 
Degrees of 

freedom 

Estimate of 
sampling variance 

Between rows. 269.73 3 89.910 

Between columns. 468.93 2 234.465 
Interaction. 75.87 6 12.645 

Residual. 776.40 48 16.175 

Total. 1,590.93 59 

To test the significance of the variation in purchases between cities, 
we compute Fi as 89.910/16.175 = 5.56, with n\ — 3 and — 48. Since 
the critical value of F for these values of n\ and 712 is 2.795, the variation 
in purchases between cities is adjudged to be significant. In other words, 
the advertising campaign appears to have had differing effects in various 
cities. It also appears that family purchases were strongly influenced by 

the number of advertisements noticed, since the value of F2 is 
234.465/16.175 = 14.50, which greatly exceeds the critical value 3.19 for 
ni = 2 and rh = 48. However, no interaction effect is present between 
city and advertisements noticed, as the value of Fz is 12.645/16.175, 
which is less than 1. 

Assuming that no external effects were present that caused the pur¬ 

chases of these families to increase during the given period (e.gf., seasonal 
factors), the results of this analysis indicate that the advertisements were 
successful in increasing family purchases, and the more so the greater the 
number of advertisements noticed by the particular family. Hence, the 
aim of future advertising policy would seem to be wider circulation of the 
same advertisements rather than more attractive layouts. 

4, Table 7 on page 138 contains the strata means, standard deviations, 
and sizes of a stratified cold-cereal purchase panel. To evaluate the 
efficiency of the stratified sample relative to an unrestricted sample of 
the same size, it is necessary to know what would be the sampling variance 
of the unrestricted sample. If the original sample data were available— 
and if one had the time—one could compute the variance of the unre¬ 
stricted sample through the usual operation involving the square of each 
of the 1,172 individual sample observations, i.e., — {2X/Ny. 

But what if the original data are not available? Or, what if the sample 
contains several thousand observations and there is no time for such a 

long operation? 
With the aid of the analysis of variance, the variance of an unrestricted 

sample of a given size is easily obtainable from the strata statistics of the 
corresponding stratified sample. In effect, a stratified sample constitutes 
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a one-way classification of the sample data, like the first example of this 

section. The different interviewers in that example correspond to the 
different strata of the stratified sample, there being so many observations 
in each group, or stratum. Now, in a one-way classification problem 
we have seen that the total sum of squares is equal to the sum of squares 
within groups plus the sum of squares between groups, and the variance 
of all the observations is the total sum of squares divided by their degrees 

of freedom. In algebraic terms, we had 

Total sum of squares = X S ~ ^ ^ + 
t j i j 

i 

where is the number of observations in the ith group (assuming there 
is a different number of observations in each group), there being k groups 
in all. 

. i. XI X ^ 1 1 X- total sum of squares 
Variance of the total observations =-- 

iv-1 

where N is the total number of observations or ^ mi. 

In the case of a stratified sample, the strata variances are nothing 
more than the variance within groups. Hence, the sum of squares within 
groups (or strata) is ascertainable by the reverse process of multiplying 
the strata variances by their sample sizes, or if the strata group is small— 

less than 50—by one less than their sample sizes, which is the number of 
degrees of freedom within groups. The sum of squares between strata 
(or groups) is easily computed from the data provided by the stratified 

sample, from the strata sizes and means. The total of these two sums of 
squares then represents, by definition, the total sum of squares of the 
corresponding unrestricted sample, the variance of which is obtained 
by dividing this sum of squares by the total sample size. In terms of 
the notation in Chap. VI we have 

Total sum _ y y 
of squares) i 

(Xi, - xy = 

k Ni k 

Variance of unrestricted sample = 
total sum of squares 

The total sum of squares is divided by N instead of by — 1, because 
of the large size of the sample. Theoretically, V — 1, the total degrees 
of freedom in the sample, is the correct figure, but as pointed out before, 
the difference resulting from the substitution of iV for iV — 1 is negligible 
when N is large. 

In actual practice, the variance of the unrestricted sample is more 
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conveniently computed directly from the strata variances. This is 

accomplished by converting the equation in the sums of squares into 

variances by dividing through by iV (= ^Nt). (We also divide the 
i 

first term on the right by Ni/Ni.) 

Variance of unrestricted sample 
N 

~ 2^ N 1^ Nt ^ 2^ N 
1=1 ; = 1 i =1 

Ni in the denominator of the second fraction on the right side of this 
equation should be replaced by iVi — 1 if the stratum sample size is small. 

But we know that the variance of any stratum is equal, by definition, to 

. _ V (X,, - X,)- 
’•-I w, 

Also, if the size of the sample stratum is proportional to the size of the 
stratum in the population, we have Nt/N equal to 

Making these substitutions in the variance formula 
k k 

Variance of unrestricted sample = X + X ~ 
1=1 1=1 

= X 
i= 1 

This is the formula used on page 138 to ascertain what the variance 
of the corresponding unrestricted cereal purchase panel would have been; 
the calculations are shown in Table 10 on page 139. The formula is 
applicable in all problems where it is desired to know the variance of a 
corresponding unrestricted sample of the same size as a particular strati¬ 
fied sample. 

Variance Analysis and the Design of Experiments 

Although the preceding examples have illustrated a few of the ways in 
which variance analysis may be applied in commercial work, they have 
by no means covered the scope of the method. The great value of variance 
analysis derives from its ability to test the relative significance of the 
relationship and interrelationships of any number of factors on a particular 
variable. For example, if the Life magazine audience had been cross- 
classified by region and by city size in addition to date of survey and 

economic level, an analysis of variance would enable us to determine in 
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one operation the relative effect of the following factors on the size of 
Lifers audience: 

1. Variation in time 
2. Variation in economic level 

3. Variation in region 
4. Variation in city size 
5. Interrelated variation in time and in economic level 
6. Interrelated variation in time and in region 

7. Interrelated variation in time and in city size 
8. Interrelated variation in economir level and in region 
9. Interrelated variation in economic level and in city size 

10. Interrelated variation in region and in city size 
11. Interrelated variation in time, economic level, and region 
12. Interrelated variation in time, economic level, and city size 
13. Interrelated variation in time, region, and city size 
14. Interrelated variation in economic level, region, and city size 

Items 5 to 10, involving the interaction between any two factors, are 

known technically as the first-order interactions. Items 11 to 14, the 
interactions between any three factors, arc known as the second-order 

interactions. In general, the interactions between n factors is known as 

the (n — V)-order interactions.'^ 

The method employed in such a problem is essentially an extension of 
the method used in the preceding examples. The formulas and computa¬ 

tions are, unfortunately, somewhat more complicated, but the number of 
questions answered by one such operation—and the number of independ¬ 
ent surveys and significance tests eliminated—^more than compensates for 

the additional computations involved. 
The reader may wonder how an analysis of variance indicates the 

‘‘relative” effect of the various factors and combinations of factors on 
the particular variable. There are two answers to this question. One 
answer lies in a comparison of the variance of factors that prove significant. 
As indicated in the theoretical discussion of variance analysis, the signif¬ 
icance of a factor indicates that the variance attributable to that factor 
is made up of two components—^the “pure” sampling variance in the 
data and the variance due to the influence of that factor (see formula on 
page 280). Since the residual variance is an estimate of the sampling 
variance alone, it is possible to isolate the variance due to the influence 
of a particular factor from the total variance attributable to that factor. 
The relative size of these isolated variances then provide approximate^ 

^ In accordance with this dt^finition, the effects of individual factors—items 1 to 4 
in the above example—^are freqiumtly tomed the zero-order interactions. 

* We can say only ‘^approximate’^ bccausti these isolated variances are only sample 

estimates of the true variances and are therefore subject to sampling errors. 
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measures of the relative influence of each of the various factors. 

As an example, let us evaluate the relative importance of city and 
advertisements noticed on the purchases of coffee Y. From page 294 we 
see that the estimated sampling variance of the data is equal to 16.175. 

Now, the variance due solely to the influence of different cities will be 
equal to the total variance due to cities (89.91) less the estimated sampling 
variance, all divided by 4.^ The difference between the two variances is 
divided by 4 because there are four cities involved, and we are interested 

in the variance due to the influence of any one city. Consequently, we 
have 

Variance due to effect of cities 
89.91 - 16.175 

■ 4 

Similarly, 

I Variance due to effect of 1 234.465 — 16.175 

I advertisements noticed ) 3 

18.43 

72.76 

This indicates that the number of advertisements rjotii ed by a family 

appears to be about four times as influential on the amount purchased of 
coffee Y as the particular city in which the family happens to live. Hence, 
the efficiency of future sampling operations on the same subject would 

apparently be raised most by stratifying the sample primarily by number 
of advertisements noticed rather than by city. 

The second means of determining the relative influence of the various 
factors in a problem is through the use of correlation analysis. With the 

aid of correlation techniques, it is possible to derive a mathematical 
relationship between the variable under study and the various significant 
factors, giving the approximate numerical effect of a variation in any 

particular factor, or factors, on the particular variable. This method is 
described in Chap. XII; specific applications to variance analysis will be 
found in Snedecor, Statistical Methods (reference 23), Chap. 11. 

Thus, it is seen that variance analysis is important not only in its 
own right, as a test of significance of a number of factors, but is invaluable 
as an aid in the efficient design of further experiments and sampling 

operations. By enabling one to determine the relative influence of various 
factors on a particular variable, variance analysis selects the most efficient 
means of stratification to reduce the sampling variances in future surveys 

to a minimum. For instance, a future sampling operation designed to 
study the further effects of advertisements noticed and other factors on 
purchases of coffee Y would be much more efficient if it contained a greater 

number of stratifications by the number of advertisements noticed. Pro- 

‘ This assumes that th6 variance due to the influence of cities is not related (corre¬ 
lated) to the estimated sampling variances, a logical assumption in most instances. 
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(jedures such as these enable researchers to maximize the amount of 

information obtained for a given cost; $100 expended on a complete 
analysis of variance might well save $1,000 in sampling costs at a later 
date. 

However, variance analysis is itself most efficient when prior considera¬ 
tion is given to the ultimate application of the method before obtaining 
the sample data. A research dirc,ctor who hands a statistician the results 

of a sampling operation and says, '‘I want an analysis of variance of 

ihese data,'^ is not likely to get as much out of it as if he had consulted the 
statistician before collecting the da»^a.* A number of short cuts are 
available in the more complicated analysis of variance problems, which 

eliminate hours of calculation. Yet if the data are not prearranged in a 
certain manner, these short cuts cannot be applied. As one example, it 
iy a great deal simpler to carry out an analysis of variance if there is the 

same number of sample observations in each cell. If this is not possible, 
the next easiest calculations result when the number of sample observa¬ 
tions in any cell of a particular row (or column) is proportional to the 

number of sample observations in the corresponding cells of the other 
rows (or columns). Then, too, certain combinations of rows and columns, 
if possible, lighten the burden of computations -e.gf., an analysis of 

variance is easier when the data are divided into two rows and 18 columns 
than when there are six rows and six columns. A few minutes of a 
statistician’s time beforehand may save many hours, and perhaps days, 

of computation afterward. 
Where analysis of variance has been applied, important findings have 

almost inevitably resulted. Thus, the great strides made in agricultural 

research in recent years in the development of top soils, the best fertilizers, 
etc., are in a large measure due to continual resort to the analysis of 
variance to determine the superiority of alternative methods. Market 
research will have taken a great step forward when analysis-of-variance 

procedures are applied to commercial problems on a broad scale. 
It is unfortunately outside the scope of this book to present more than 

this sketchy description of the analysis of variance. The reader who 
desires to know more about the subject would do well to read Snedecor, 
Statistical Methods (reference 23), Chaps. 10-13, 17. 

SUMMARY 

In this chapter we have considered two methods for testing the 
significance of the difference between two or more statistics: chi-square 

analysis and the analysis of variance. Chi-square analysis is used to 
test the significance of the difference between a sample distribution and 
an actual or theoretical population distribution or to detect the presence 
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of a relationship between two or more attributes. The method is based 

upon the computation of the chi-square statistic, which is 

k 

t=l 

where is the observed sample value and di is the corresponding; expected 

value computed on the basis of a priori knowledge or on the basis of the 

particular hypothesis being tested. The acceptance or rejection of the 
hypothesis is determined by comparing the computed value of with 

the value of x^ at the preselected level of significance, the latter taken 

from Appendix Table 11. 
The analysis of variance is used to determixie what effect, if any, 

specified factors or groups of factors may have on the values of a particular 

variable. The method involves the computation of the I statistic, which 
is the ratio of the variance due to the particular factor to an independent 
estimate of the sampling variance in the data. If the fa(*tor has no effect 

on the variable, its variance will merely be another estimate of the sampling 
variance, and the expected value of F will be 1. If the computed value of 
F exceeds 1 by a margin too large to be attributed to sampling fluctua¬ 

tions, the factor is adjudged to have a significant effect on the variable in 
question. Critical values for F corresponding to the 0.05 and 0.01 
probability levels for certain combinations of Ui and ?i2 degrees of freedom 

are provided in Appendix Table 12. 
With the aid of variance analysis, the relative importance of specific 

factors on a particular variable can be determined by comparing the 

(isolated) variances due solely to the various factors. In this way, the 

most effective means of stratification may be selected and the sampling 
error in future surveys may be reduced appreciably. However, the most 
efficient use of variance analysis is obtained if the ultimate objective of 

applying the method is kept in mind during the planning stages of a survey. 



CHAPTER XI 

SIMPLE CORRELATION TECHNIQUES 

So far, we have dealt with only one characteristic at a time and have 
attempted to secure information about (1^ the true value of that character¬ 
istic in the population, (2) the significance of differences between observed 

values of this characteristic, and (3) the influence of various factors on 
the characteristic, solely from the observed values of this same character¬ 
istic under varying conditions. Thus, the average monthly cold-cereal 

purchase per family was estimated from sample data on family cold- 
cereal purchases; the significance of the difference between coffee purchases 
in two regions was determined from sample data on regional coffee-purchase 

habits; the influence of economic level and time on the Life magazine 
audience was determined from sample data on Lifers audience cross- 
classified by economic level and time; etc. Wliat we have not yet 

attempted to determine is the relationship between two or more character¬ 
istics. For example, what is the relationship between cold-cereal purchase 
and family size and family income level? In other words, would it bo 

possible to determine the average monthly cold-cereal purchases of 
families of a particular size and with specified incomes with greater re¬ 
liability than for all families taken as a group? In the latter case, the 
best estimate is the mean of the sample. But if a numerical relationship 
is found between family cold-cereal purchases on the one hand, and family 
size and family income on the other hand—a relationship that yields 
cereal-purchase estimates very close to the observed figure—the ac¬ 

curacy of cold-cercal-purchase estimates for particular groups in the 
population may be increased considerably. 

The derivation of such numerical relationships is known as regression 

analysis, and the measurement of the degree of relationship between the 
variables under consideration is known as correlation analysis. In 
practice, both of these subjects are generally combined under the single 
heading of correlation and are presented in conjunction with each other, 
a procedure also employed in the following three chapters. 

The present chapter outlines the more common regression and cor¬ 
relation methods as applied to sample data involving two variables. The 
discussion is devoted to the derivation and measurement of relationships 
between two sets of data with a minimum of regard for sampling errors 
in the data. The analysis of the relationship between more than two 

301 
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variables, abstracting from sampling considerations, is discussed in the 
following chapter. The problems involved in drawing inferences about 
the true population values from the sample-computed relationships is 
the subject of Chap. XIII. The tests for significance of various cor¬ 
relation statistics are also taken up in that chapter. 

1. THE PLACE OF CORRELATION IN MARKET RESEARCH 

Before considering the technical aspects of the subject, let us consider 
what practical use correlation may have in marketing problems. In this 
way, a better understanding is obtained of the purpose and value of the 
various statistical formulas and techniques discussed in subsequent 
sections. 

The purpose of a correlation problem may be twofold: it may seek to 
derive a numerical or graphic relationship between the variables in 
question, or it may seek to measure the degree of relationship with or 
without reference to the quantitative nature of the relation: hip An exact 
relationship between the variables is desired for purposes of estimation or 
forecasting. Where a company's sales form a significant portion of the 
sales of the industry, a relationship is generally sought between the sales 
of the company and those factors which might be thought to influence its 
sales. These factors may be very general, as prices and national income, 
or may be factors that relate specifically to the sale of the product, e.g., 

birth rates in the case of baby carriages. Such relationships, if found, 

may be used for a variety of purposes. They may be used to forecast 
salesto corroborate forecasts made by other methods; or they may be 
used as a measure of relative prosperity of the company (by noting the 
years, or periods of time, during which actual sales exceeded the sales 
expected on the basis of the relationship). They may be used to determine 
sales quotas in different sales areas, to determine sales or other aptitudes, 
to measure the effect of various characteristics on readership, to estimate 
the values of one unknown characteristic given the values of related 

‘ A frequently sought ideal in forecasting procedures is the use of lagged relation¬ 

ships, e.g.y to relate company sales in one period to related variables in previous periods. 
The value of such a relationship is obvious. If sales in one year were very closely 
related to the values of a number of factors in the preceding year, an accurate forecast 

of next year’s sales could be made from knowing the values of the related variables in 

the current year, assuming that the relationship does not shift. Though such relation¬ 
ships are more difficult to obtain than the usual “static” relationships, there is no 
doubt that intensive investigation will uncover a number of them. For example, 

increasing correlation has been noted between retail sales in one period and national 
income in the previous period as the length of the period is shortened. Hence, if a 
large retail organization can relate its sales to the total current retail sales in its area 
and, in turn, to the income of the area in the preceding period, it may find itself with a 
very valuable forecasting device. 
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characteristics, and in many other ways. In each case the variable 

being estimated is denoted as the dependent variable; theoretically it is 
supposed to be dependent on the values of the independent variables on the 
basis of which the dependent variable is estimated. 

A relationship between several sets of data is, however, not very useful 
until one knows the closeness of the relationship. The ideal relationship 
from the point of view of closeness^, or ‘‘goodness of fit,'' is obtained when 
the values of the dependent variable obtained from the relationship 
coincide exactly with the corresponding observed values. In such a case, 
the correlation coefficient or correlation "—the measure of the closeness 
of a relationship—^is plus or minus 1, as will be shown later. The farther 
the observed values of the dependent variable deviate from the computed 
values, the closer to zero will be the value of the correlation coefficient, 
'^'"here no relationship at all exists between the dependent variable and 
the independent variables, which means that the independent variables 
are useless for estimating the value of the dependent variable, the cor¬ 
relation coefficient is zero. Since the correlation coefficient is a measure 
of the relative variation of the observed values of the dependent variable 
from the values indicated by the relationship, the higher is the absolute 
value of the correlation coefficient, the closer is the relationship between 

the variables. 
Being an abstract measure, the correlation coefficient is particularly 

useful in comparing the relative degrees of relationship between a number 

of regressions, each with a different dependent variable. For example, 
suppose that a number of different regression equations have been fitted 
in turn to a company's profits, dollar sales, and volume sales, each equation 
with a different combination of independent variables, and it is desired to 
know which of these equations provides the best approximation to the 
company's actual experience during the period under observation. The 
answer is obtained by comparing the correlation coefficients of the various 
relationships, the best approximation being the regression equation that 
yields the highest (absolute) value for the correlation coefficient. 

In some cases the primary purpose of a correlation problem is to ascer¬ 
tain the degree of relationship, with little or no attention to its exact quan¬ 
titative nature. For instance, for stratification purposes it may be desired 
to know whether the purchases of product X are more highly correlated 
with income or with age, since the most highly correlated factor is likely 
to be the most effective single means of stratification. Or, a series of 
correlations may be undertaken between the product ratings of the various 
members of a product-testing panel and various of their personal charac¬ 
teristics to determine which factors seem to be most closely associated with 
their ratings. A very common problem in advertising research is to deter¬ 
mine the effect of readership of various advertisements on product sales; 
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i.e., to determine the degree of (causal) relationship between readership 

and sales. 
Correlation techniques are frequently employed in conjunction with the 

sampling formulas and procedures discussed in the previous chapters. In 

the analysis of variance of the Lije audience data, a strong relationship 
was seen to exist between the relative size of Life's audience, date, and 
economic level. In addition, economic level was found to have a stronger 
effect on the size of the audience than date (of the survey), but that was as 
far as we could go; i.c., we were not able to ascertain the numerical effect 
of a particular date and/or economic level on the size of the audience. 
Such numerical effects are now obtainable with the aid of regression meth¬ 
ods. Correlation methods are also used to test the validity of assumptions 
of independence between variables or between different periods of time. 
Thus, it will be remembered that all the standard-error formulas presented 
in the previous chapters were based on the assumed independence of the 
individual sample observations. If there is any iloubt as to the validity 
of such an assumption, this doubt can usually be verified or disproved 
through the use of correlation methods.^ 

Concrete examples of the practical application of correlation tech¬ 
niques are provided in the following sections. The remainder of this chap¬ 
ter is devoted to the presentation and interpretation of various correlation 
techniques, specifically to the methods and procedures involved in correlat¬ 
ing two variables—simple correlation. In the next chapter we shall con¬ 

sider the measurement of the correlation between more than two varia¬ 
bles—multiple correlation, 

2. LINEAR CORRELATION 

The relationship between two variables may be linear or curvilinear. 
The relationship is linear when a unit change in one variable produces a 
constant change in the other variable over the entire range of the observa¬ 
tions; technically speaking, when the slope® is constant. Thus, if 
F = 10 + 4X, any unit increase in X will cause the value of Y to rise by 

4 units, irrespective of whether X increases from 1 to 2 or from 51 to 52; 
the slope is a constant, and is equal to 4. 

The relationship is curvilinear when the slope is not constant. For 
example, if F = 10 + 4Z — X®, the slope is variable because the amount 
of increase in F per unit increase in X is dependent upon the initial value 

^ A particular case of such a problem is that of testing the independence of sample 

observations taken at different periods of time where the hypothesis of independence 
is disproved more frequently than not. For example, sales in one year are not usually 
completely independent of sales in previous years. The relationship between successive 
observations through time is known as serial correlation, 

* The relative change in one variable per unit change in the other variable. 
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of X. The reader can easily verify that Y rises from 13 to 14 as X increases 
from 1 to 2, but that Y decreases from —2,387 to —2,486 as X increases 
from 51 to 52. 

Since curvilinear correlation is essentially an extension of linear correla¬ 
tion and since the latter is less complicated and more readily understood, 
the bulk of the chapter is devoted to linear correlation. The extension of 
linear correlation methods to the curvilinear case is illustrated briefly in 
later sections, sections that also explain methods peculiar to curvilinear 
correlation, e.gf., the correlation ratio. 

Ungrouped Data 

The first step in most correlation problems is to construct a graphic pic¬ 
ture of the relationship between the two variables.^ Such a picture is best 
provided by a so-called scatter dia¬ 

gram, as shown in Fig. 21. In this 
diagram, total annual newspaper 
circulation is plotted on the ver¬ 
tical axis against total national 
income on the horizontal axis, both 
series covering the period 1930 to 
1940. (The actual data are shown 
in Table 51 on page 309.) Each 
point, or dot, on the chart repre¬ 
sents the newspaper circulation- 
national income figures for a par¬ 
ticular year, there being as many 
points as there are years. For 
example, to plot the figures for 1939, 
one would go up the vertical scale 
to 39.7 and then along the hori¬ 
zontal scale to 70.8. The plotted 
point is, therefore, the intersection 
of 39.7 on the vertical scale with 
70.8 on the horizontal scale. In a 
similar manner, the points for the 
other years are charted. 

The resultant diagram pictures 
the dispersal, or scatter, of the sepa¬ 
rate points in relation to each other. 

40 50 60 70 80 

National Income 
in Millions of Dollars-X 

Fig. 21. Scatter diagram between national 
income and newspaper circulation, 1930-1940. 

In this manner, the scatter diagram 
serves to bring out whatever relationship may appear to exist between the 
two sets of data. In the present case, the points seem to string fairly well 

^ The exception is when only the correlation coefficient is desired with no regard 

for the nature of the relationship (see p. 316). 
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along a straight diagonal line stretched from the lower left-hand corner of 

the diagram to the upper right-hand corner. Although the 1933 point is 
somewhat out of line, there is little evidence of any curvilinearity, and a 
linear fit between the variables appears to be adequate.^ 

We know that the linear regression form is 7 = a + bX, where X and 
Y are the two variables and a and h are the two unknown parameters. 
-Y is usually taken to be the independent variable, the variable that serves 
to determine the value of 7, the dependent variable. Technically, this is 
known as the regression of 7 on X. In most instances, the nature of the 
hypothesis will determine which variable is dependent and which is inde¬ 
pendent. For example, if in the present instance we want to know whether 
national income has any effect on newspaper circulation, we are implicitly 
assuming that the latter is determined, at least partially, by national 
income. If there is any doubt as to which variable is df^pendent and which 

variable is independent, the variable that is believed to be the less depend¬ 
ent of the other is frequently taken as the independent variable.^ If 

there were no theory in the present case, one could reason that newspaper 

circulation does determine national income to a limited extent in that news¬ 
paper revenue is included in national income. But the portion of national 
income attributed to newspaper revenue is so small (a fraction of 1 per cent) 

that it may be neglected for all practical purposes. On the other hand, 
national prosperity, as reflected in the national-income statistics, should 
have some effect on newspaper circulation, surely to a greater extent than 

the latter may affect national prosperity. Hence, national income is taken 
as X, the independent variable, and newspaper circulation is taken as 7, 
the dependent variable. 

The main problem in fitting the regression equation is, obviously, to 
determine the values of the unknown parameters a and h. In other words, 
what values of a and h will best describe the relationship between news¬ 
paper circulation and national income? There are, of course, a number of 

^ A more •bjeetive method of determining the desirability of curvilinear trends is 
discussed in Chap. XIII (see p. 396jf). 

* If the two variables are more or leas equally dependent, as production and prices, 

two regression equations are sometimes fitted, each variable being taken as dependent in 

turn. However, if two or more variables are jointly dependent, such as wages, prices, 
and employment, such a procedure will yield biased estimates of the regression param¬ 

eters, as has been brought out by the pioneering efforts of the Cowles Commission 

for Research in Economics. The correct procedure in such cases is to form a system 
of equations in which the variables influencing each of these jointly dependent variables 

are taken into consideration. The regression parameters are then derived by means 

of the so-called method of maximum likelihoody instead of the usual least-squares method. 

See Haavelmo, *The Statistical Implications of a System of Simultaneous Equations^’ 

(reference 203) and Koopmans, ^^Statistical Estimation of Simultaneous Economic 
Relations’’ (reference 204). 
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ways of determining these values, depending on what is meant by best. 
Actually, however, two methods are generally employed. One is the 

so-called graphic method^ whereby a straight line is fitted to the data in 
Fig. 21 by inspection. The values of a and h are then determined by read¬ 
ing off the coordinates of any two points on the line, substituting them in 

turn for Y and X in the equation, and solving the two resultant simulta¬ 
neous equations for a and h. 

Such a freehand line has beto drawn in Fig. 21. From this line, a 

national income of 47.5 billioii dollars is seen to coincide with a newspaper 
circulation of 37 million copies, and a national income of 75.0 billion dollars 
corresponds to a newspaper circulation of 41 million copies. These two 

points, when substituted for X and F, respectively, yield two simultaneous 
equations in a and b 

37 = a + 47.55 

41 = a + 75.06 

The values of a and 6 are determined by solving these two equations. 
This is readily accomplished by subtracting the first equation from the 

second, which leaves 4 = 27.56, or 6 = 0.14545. Substituting the value 
of 6 back into the second equation and solving for a, we have a == 30.09. 
Checking these values in the first equation, 37 = 30.09 + 6.91 = 37.00. 

The regression of F on X is, therefore, 

F = 30.09 + 0.145X 

which indicates that every billion-dollar increase in national income was 

accompanied by an average rise in newspaper circulation of 145,000 copies 
during the period under observation. 

The main advantages of this method are its speed and simplicity of 

calculation. Its main drawback is the subjective nature of the fitted line. 
Only after a good deal of experience is one able to fit an unbiased line to the 
data—unbiased in the sense that it agrees with the regression obtained by 

the mathematical method explained below. Unless the reader has had 
such experience, it is generally safer to forego the use of this graphic method, 
except for experimental purposes. 

The other means used to obtain the regression coefficients (another 
name for the parameters a and 6) is mathematical, and is known as the 
least-squares method. This method seeks to obtain those regression coeffi¬ 

cients which will satisfy the following two conditions: 
1. The sum of the vertical deviations from the regression line are equal 

to zero. Or, to put it differently, the sum of the differences between the 

observed values of F and the corresponding values of F based on the regres¬ 
sion line must be zero. 

2. The sum of the squares of the deviations from the regression line 
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must be less than from any other (straight) line. Actually the first con¬ 
dition is automatically met when the second is satisfied. 

These conditions have been found to be fulfilled when the regression 
coefficients are obtained from the solution of a set of so-called normal 

equations.^ There are as many normal equations as there are regression 
coefficients to be obtained. In the linear case, where two regression coeffi¬ 
cients are sought, there are two normal equations. They are^ 

SF = iVa + blX 

XXY = aSX + 62X2 

The terms 2F,2X,2XF, and ZX^ are computed from the data and are 
substituted in these equations, which are then solved simultaneously (as in 
the graphic case) for a and h. In practice, the simultaneous solution of the 
two equations may be avoided by expressing X and F in terms of devia¬ 
tions from their respective means, as follows: 

2^/ = Na + bXx 

Xxy = a'Zx + b'Ex^ 

But from Chap. II (page 22), it will be recalled that the sum of the 
deviations from the mean is zero, i.e., = 0 and 2x = 0. Therefore, all 
terms involving 2y or 2x drop out of these equations, which means that 
the first equation vanishes since a then becomes zero. This leaves us with 
only one equation to be solved.^ 

Xxy = 62x2 
or 

Once 6 is computed by this method, the value of a in absolute terms is 
ascertainable from the original first normal equation 2F = Xa + 62X, 
or a = Y — 6X'. 

As a further computational aid, the terms Xxy and 2x2 obtainable 

^ The reader with a little knowledge of calculus is urged to read the mathematical 
proof of this statement in Appendix C. 

* These equations may be obtained from the regression equation by first summing 
it over all the N observations and then summing the product of X and the equation. 
Thus, in the first case, we would have S(K = a -f- 6X), which is SF = Sa + 6SX. But 
the summation of a constant is N times the constant, or Sa = Na, which leads to the 
first normal equation. 

* In effect, the use of deviations from the means serves to translate the coordinate 
axis in Fig. 21 from the point (35,40) to the point (F,X), which now becomes th(j (0,0) 
point. Since a is the value of Y at which X equals zero and since the regression line 
passes through the point (7,X), the value of a becomes automatically equal to zero. 
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from the absolute measurements, without taking the deviation of each 
value from its mean, as follows: 

XY - 
(sx)(sr) 

N 

and 

Derivations arc provided in Appendix C. 
The actual computations shown ip. Table 51. 

Table 51. Computation of Product Sums for Linear Regression Problem* 

(1) 

Year 

(2) 

Newspaper circulation, 

millions of copiest 
Y 

(3) 

National income, 

billions of dollars J 
X 

(4) 

XY 

(5) 

X* 

(6) 

y* 

1930 39.6 68.9 2,728.44 4,747.21 1,568.16 

1931 38.8 54.5 2,114.60 2,970.25 1,505.44 
1932 36.4 40.0 1,456.00 1,600.00 1,324.96 

1933 35.2 42.3 1,488.96 1,789.29 1,239.04 

1934 36.7 49.5 1,816.65 2,450.25 1,346.89 

1935 38.2 55.7 2,127.74 3,102.49 1,459.24 

1936 40.3 64.9 2,615.47 4,212.01 1,624.09 

1937 41.4 71.5 2,960.10 5,112.25 1,713.96 

1938 39.6 64.2 2,542.32 4,121.64 1,568.16 

1939 39.7 70.8 2,810.76 5,012.64 1,576.09 

1940 41.1 77.5 3,185.25 6,006.25 1,689.21 

Total 427.0 659.8 25,846.29 41,124.28 16,615.24 

If an automatic calculator is available, the sums and product sums in Cols. (2) to (6) may be obtained 
and checked by cumulative multiplication without recordiiiK each individual product. 

t Source; Kintek, C. V., "Cyclical Considerations in the Marketing Problem of the Newspaper 
Industry," Journal of Marketing, Vol. 11, No. 1, 1946, p. 69. 

t Source: Statistical Abstract of the United States, 1946, p. 270. 

2 X,= 25,846.29 =234.05 

]^*» = 41,124.28 - = 1,548.28 

= 16,615.24 - = 39.88 

The value of h is now computed, by substitution into the short formula. 

6 = 
2a:j/ _ 234.05 
^ “ 1,648.28 

= 0.1512 



310 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Substituting into the original first normal equation 

a = 7-bX = ^- (^59.8K0.1512j ^ 29.7489 

The computed values of a and b may be checked by substitution in the 
second normal equation XXY = aXX + hXX^, 

25,846.29 = 29.75 (659.8) + 0.1512 (41,124.28) = 19,628.324 
+ 6,217.991 = 25,846.315 

The discrepancy of 0.025 is easily attributable to errors in rounding off 
figures. 

The final regression equation is 

Yc = 29.75 + 0.1512X 

To distinguish between actual newspaper circulation and estimates 

computed from the regression equation, the latter arc denoted by Yc. 

This regression indicates that annual newspaper circulation changed by 
150,000 copies for each change in national income of 1 billion dollars during 

the period covered. Although the regression coefficients obtained by the 
graphic method coincide remarkably well with these results, the reader 
should be cautioned that such a close correspondence is not very frequent. 

Given the regression equation between the two variables, the next ques¬ 
tion that comes to mind is how well does this regression equation describe 
the relationship between the data? Does the regression equation yield 
estimates of newspaper circulation for specified years, /.e., national-income 
levels that are very close to the actual values, or are there wide discrepan¬ 
cies between the computed and observed values? In other words, what 
we need is a measure of the dispersion of the actual values of Y about the 
regression line, similar to the variance or the standard deviation in the 
case of the mean. Such a measure is obtained in the same manner as 
the variance of the individual values was obtained in Chap. II. It 

will be recalled that the definition of the variance is (in terms of Y) 

(7-2 = 2(F — Yy/N. In a similar manner, the variance of the individual 
values about the regression line is X{Y — YcY/Nj where Yc represents 
the computed newspaper circulation values corresponding to the observed 
values. Obviously, the closer the actual values are clustered about the 
regression line, the less will be the differences between Y and Y^ and 
hence, the smaller will be the variance about the line of regression. We 
shall denote the square root of this variance as the standard deviation of 

regressiem.^ The standard deviation of regression is to the regression line 

1 This measure is frequently termed the standard error of estimate. But such a term 

is ambiguous in the present instance, because this measure gauges the deviation of 
the actual values about the regression line, not the possible error in an estimate based 
on the regression line. The latter is the true “standard error of estimate^* and, as we 

shall see in Chap. XIII, is not the same as the “standard deviation of regression.'^ 
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precisely what the standard deviation is to the mean. In a normal bivari¬ 
ate population/ 68.27 per cent of the observations would be contained 
within the area bounded by the regression line plus and minus 1 standard 
deviation of regression; 95.45 per cent of the observations would be between 
the regression line plus and minus 2 standard deviations of regression; etc. 

As in the case of the standard deviation, computational simplifications 
are possible. Squaring the numerator of the variance of regression, sum¬ 
ming and combining similar term's, we have^ 

(standard deviation I _ ~ — (a^V + b'EXY) 

\ of regression ) A/ ' \ N 

The second simplification obviates the necessity for computing Yc 

f n' each observed value of A' and then finding the sum of the squares. The 
only additional product sum now required is which is obtained in 
(.ol. (6) of Table 51. The standard deviation of regression, (Tu, is com¬ 
puted in the newspaper-circulation problem as follows: 

^2 ^ 16,615.24 - [29.75(427) + 0.1512(25,846.29)] ^ ^ 

(Tu = 0.61 

Thus, about two-thirds of the sample observations would be expected 
to be within a range of the regresvsion line plus and minus 610,000 copies, 
i.e., between (29.75 + 0.1512A) ± 0.61, or between 29.14 + 0.1512X and 

30.36 + 0.1512A. Ninety-five per cent of all the observations would be 
expected to lie between the regression line plus and minus 0.61 X 1.96, or 
plus and minus 1,200,000 copies. In the present example, these limits are 
not as accurate as one would expect; 55 per cent of the observations are 
between the regression line plus and minus 0.61, and all the observations 
are between the regression line plus and minus 1.2. The reasons for these 

discrepancies are the small number of observations and the likelihood that 
the separate sets of observations are not independent and normally dis¬ 
tributed, especially so because the data are time series. 

We know that the total variance is equal to S(F — Yy/N: We have 
also seen that the unexplained variance, the measure of the deviation of the 
observations from the line of regression, is equal to X{Y — YcY/N. In 
other words, as a result of the regression the deviation of any individual 
observation from the central average has been reduced from (F — T) to 
(F — Yc); t.e.y the deviation that has been explained by regression is 
[(F — Y) — (F — Fc)], or Yc — Y. The explained variance is, there¬ 
fore, S(Fc — Yy/N, This is shown in Fig. 22, a reproduction of Fig. 21 

^ A population in which both variables have normal distributions. 

* The short form for 27? is derived in Appendix C. 



312 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

containing the regression line and the mean value of annual newspaper 
circulation, which is 38.8 million copies. Take, first, the value of 1937, 
when Y = 41.4 and X = 71.5. If the national-income data had not been 
correlated with newspaper circulation, the value of Y for 1937 would 

deviate from the mean value by 

National Income in Millions 
of Dollars-X 

— Explained by Regression = 

M........ Unexplained by Regression = 

Flu. 22. Explained and unexplained 
components of regression of newspaper circu¬ 
lation on national income. 

41.4 — 38.8, or 2.6 million copies. 
When newspaper circulation is 
related to national income, the mean 
value of Y for 1937 shifts from 38.8 
to the regression line, to 

Yc = 29.75 + 0.1512(71.5), or 40.6. 

In other v.ords, the regression line 
has reduced, or explainedy the devi¬ 
ation of the 1937 value by 40.6 
— 38.8 = 1.8 million copies. The 
deviation still to be accounted for, 
i,e.f unexplained, is equal to F — 
Yc, or 0.8 million copies. The 
same thing can be shown for any 
other value, though in some cases 
minus signs are involved. Thus, for 
1939 the total deviation is 2.3, the 
explained deviation is 2.7, and the 
unexplained deviation is —0.4— 
here the regression line has over¬ 
accounted for the deviation. The 
variances are the squares of these 
deviations, and Avhen the deviations 
are squared and summed over all 

or 

observations, it is found^ that 
Total variance = explained variance + unexplained variance 

S(F - 7)2 ^ X{Yc - 7)2 2(F - F,)2 

N N N 

It is interesting to note how effective the regression line has been in 
reducing the variation among the observations on annual newspaper circu¬ 
lation. If only newspaper circulation were considered, the variance of the 
individual observations would be 2(F — 7)2/JV', which is computed to be 
3.63; the standard deviation is 1.90. By correlating newspaper circu¬ 
lation with national income, the standard deviation has been reduced by 

1 The proof is given in Appendix C. 
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two-thirds with the result that the variance in the data has been slashed 
almost 90 per cent. To put it differently, the variance that remains unex¬ 
plained—the variance that has not been accounted for by the mean 
value or by the regression—has been reduced from 3.63 to 0.37. Hence, 
the variance that has been explained by the regression is 3.63 — 0.37, 
or 3.26. 

This division of the total variance into explained variance and unex¬ 
plained variance forms the basis for the abstract measure of relationship 

between two series, the coefficient of correlation. The need for such a 
measure arises from the fact that^ the stui^ai d deviation of regression is an 
absolute measure of relationship; i.e., it is expressed in the same units as 
are the data (it is 61 million newspaper copies in the present example). 
Hence, the closeness of the relationship between two series of data is not 
<v:terminable solely from knowing the value of the standard deviation of 
regression. Thus, the fact that a standard deviation of regression is, say, 
3.6 pounds does not of itself tell us anything about the closeness of the 
relationship. Also, being in the same units as the data, the standard devia¬ 

tions of regression based on different units, or even on different magnitudes, 
are not comparable with each other, and cannot be used to ascertain which 
of a number of regressions provides the closest relationship between the 
various data. The measure used for such purposes is the coefficient of 
correlation, r, or the square of the coefficient of correlation, known as the 
coefficient of determination^ r^. 

As in the case of the standard-deviation and standard-error formulas, 
the coefficient of correlation derives its logical explanation from its square, 
the coefficient of determination. The latter is simply the proportion of the 
total variance that has been explained by regression 

xE • X i? j X • X- explained variance 
Coefficient of determination = —7-7-1-=- 

total variance 

In effect, the regression line is a moving average of the data, as con¬ 
trasted to the mean T, which is a stable average. (As a matter of fact, 
the mean value is itself a form of regression line, a line with zero slope; 
e,g,y the mean value of newspaper circulation could be expressed as 
Y = 38.8 + OX.) The regression line will coincide with the mean value 
when the introduction of the independent variable fails to explain any addi¬ 
tional variation in the dependent variable; then Yc will equal T. In such 
a case, the explained variance is zero, as will be the coefficient of determina¬ 
tion and its square root, the coefficient of correlation. If the regression 
accounts for all the variation in the dependent variable, which means that 
all the observations lie on the regression line, the explained variance will be 
equal to the total variance, making the coefficient of determination equal 
to 1; this is the highest value that the coefficient of determination, or the 
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coefficient of correlation, may have.^ The more effective is the regression 
in reducing the unexplained variance, the higher will be the values of the 
coefficients of determination and of correlation. 

The coefficient of correlation is generally used as the abstract measure 
of correlation, although the coefficient of determination is the more logical 
and meaningful measure. Because their value can never exceed 1, and 
because the square root of a fraction is always larger (in absolute size) than 
the fraction itself, the coefficient of correlation tends to exaggerate the 
degree of correlation in the eyes of the uninitiated. To many a beginner a 
coefficient of correlation equal to 0.8 seems quite good, yet it indicates that 
36 per cent, more than one-third, of the total variation in the dependent 
variable has not been accounted for by the regression. Although results 
may be presented in terms of the coefficient of correlation, the reader should 
learn to interpret them in terms of the coefficient of dete»‘mination, in terms 
of the proportion of the total variance that has been explained by the 
regression. 

The coefficient of determination is always positive, being the ratio of 
two sums of squares, but the coefficient of correlation may be positive or 
negative depending on the manner in which the series are correlated. Two 
series are correlated positively if an increase in one series is associated with 
an increase in the other series. The correlation is negative if an increase 
in one series is associated with a decrease in the other series. If a regression 
line is fitted to the data and the coefficient of correlation is computed as the 
square root of the coefficient of determination, the coefficient of correlation 
always takes the sign of h in the regression equation, a positive sign for a 
positive correlation and a negative sign for a negative correlation. If no 
regression line is fitted to the data and the correlation coefficient is obtained 
from the alternate formula presented shortly, the sign of the correlation 
coefficient is automatically determined. 

For computational purposes, it is more convenient to express the coeffi¬ 
cient of determination in terms of the unexplained variance than in terms 
of the explained variance. This is readily accomplished since, it will be 
recalled, the explained variance is equal to the total variance minus the 
unexplained variance. Substituting 

i unexplained variance^ 
Coefficient of determination = 1--=- 

total variance 

Since the unexplained variance is the same thing as the variance of the 
regression line, we have 

^2 

Coefficient of determination = I-^ 
(T 

^ Since, obviously, the explained variance can never exceed the total variance. 
* The ratio of the unexplained variance to the total variance is sometimes called 

the coefficient of nondetermindtionf the square root of which is known as the coefficient 
of alienation. 
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Or in terms of product sums 

2F= - (aSK + 6SXr) 
^ ' XY^-NY^ SF^-ATY^ 

The coefficient of correlation is, then, the square root of either of these 
formulas. 

In the newspaper-circulation example, we had previously computed 
<rl = 0.37 and <r^ = 3.63. Therefore 

0 *17 
= 1 ~ = 0.8981 

r = 0.95 

This is a rather high correlation between the two series, indicating that 
90 per cent of the total variance in the annual newspaper-circulation statis¬ 
tics has been accounted for by the (corresponding) variance in the national- 
income data. In other words, knowing the national-income figure for any 
year in the period 1930 to 1940 enables us to estimate the newspaper circu¬ 
lation in that year (assuming that it is unknown) with a variance 90 per 
cent smaller than if the figure was estimated as the average annual news¬ 
paper circulation during the 11 years without the benefit of the regression. 
The use of such regression equations for forecasting purposes is discussed 
in Chap. XIII. 

It is very important to note that the mere existence of a high correlation 
between two variables does not, of itself, assure the existence of a causal 

relationship; it does not prove that a shift in the national income was a 
(or the) cause of a shift in newspaper circulation. For example, one author^ 
has noted a coefficient of correlation of 0.9 between teachers^ salaries and 
liquor consumption. Yet, to assume that the degree of inebriation is 
causally related to the earnings of teachers would lead even liquor concerns 
to shake their heads. 

The existence of a causal relationship must be determined by nonstatis- 
tical considerations, by careful reasoning of the channels through which the 
independent variable might influence the dependent variable. In many 
instances it will be found that the supposedly causal influence of the inde¬ 
pendent variable is actually an indirect effect due to an underlying factor 
exerting pressure on both variables. For instance, a high correlation 
exists between the birth rate of the United States population and the price 
of pigs. Though neither is the cause of the other, the fluctuations in both 
of these variables are in fact caused largely by the same factor, i.e., 

national prosperity. In good times, people are more likely to have babies, 
and in good times people can afford to consume more meat, which increases 
the demand for meat, which, in turn, leads to rising prices. Consequently, 
more meaningful regressions would be obtained if the birth rate and the 

' Hobl, Introduction to Mathematical Statistics (reference 20), p. 88. 
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price of pigs are separately correlated with an indicator of national pros¬ 

perity. 
The newspaper-circulation example is a case where some basis exists for 

predicating a direct causal relationship. For when people have higher 

incomes, they are prone to buy newspapers more frequently, whereas when 
their incomes are low, newspaper purchases may be reduced or even elimi¬ 
nated to conserve every penny. Of course, other factors also influence 
newspaper circulation, e.flf., population. 

A high correlation tends to support an hypothesis of causal relationship, 
but it does not prove the existence of causation. On the other hand, a 
nonsignificant^ correlation obtained after a causal relationship has been 
postulated tends very strongly to disprove a hypothesis of linear correlation 
(but not necessarily one of nonlinear correlation). Henre, in so far as 
causation is concerned, correlation may disprove the hypothesis but it can 

never definitely prove causation. 

Table 52. Percentage of Negro Users of Specified Items in 

Baltimore and in Philadelphia, 1945* 

(Base for Percentages is Total Negroes Interviewed in the Particular City.) 

Item Baltimore Philadelphia 

Package coffee. 87.3 85.2 
Flour. 95.4 95.0 

Pancake or waffle mix. 67.3 64.4 

White bread. 94.5 90.6 
Dog food. 43.8 55.5 
Soap products for household laundry use. 1)8.7 98.9 

Tooth paste. 72.9 64.3 

Alcoholic beviTages. 37.2 42.3 
Cola drinks. 77.5 64.8 
Cigarettes (men). 61.7t 55.3t 
Cigarettes (women). 44.2t 40.5t 
Automobiles. 23.4 14.9 

♦ Sourcb: Steele, E. A., ‘‘Some Aspects of the Nenro Market,” Journal of Marketing^ Vol. 11, No. 4, 

1947, p. 400. 

t Percentage of interviews of particular sex. 

The Product-moment Formula. In some instances, there is no desire 
or basis for computing a regression between two series of data, and the 
sole object of the analysis is to measure the degree of association between 
the two variables. The following example illustrates such a case. A 
study of the Negro market in Baltimore and in Philadelphia revealed the 
percentages in Table 52 of Negro users of specified items in each of the two 
cities. 

^ The determination of a nonsignificant correlation is discussed in Chap. XIIL 
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Obviously, no direct causal relationship exists between the two sets 
of data, as the purchases made by Negroes in either city are not likely to 
influence the purchases of Negroes living miles away to any appreciable 
extent. The underlying factor in this problem is the degree of association 

between the two variables rather than of causation. In other words, to 
what extent arc the percentages of Negro users of these products associated 
in these two cities? This question is answered by the coefficient of correla¬ 
tion. 

Now, to arrive at the coefficient of correlation by any of the formulas on 
page 315 would involve the prior computation of the regression line, which 
is a waste of time in view of the fact that we are not interested in regression 
in this problem. Fortunately, it is possible to circumvent the regression 
calculations through the use of an alternate formula for the coefficient of 
correlation. This formula, known as the product-moment formula, is^ 

r = 

where x and y are deviations from their respective means. 

Table 53. Computation op Product Sums for Negro Market Data 

Item 

Baltimore 
- 70.0 

per cent 
Y 

Philadelphia 
- 60.0 

per cent 
X 

XY ya X* 

I^ackage coffee. 17.3 25.2 435.96 299.29 635.04 

Flour. 25.4 889.00 645.16 1,225.00 
Pancake or waffle mix. -2.7 4.4 -11.88 7.29 19.36 
White bread. 24.5 749.70 600.25 936.36 
Dog food. 

Soap products for household 

-26.2 -4.6 117.90 686.44 20.26 

laundry use. 28.7 38.9 1,116.43 823.69 1,513.21 
Tooth paste. 2.9 4.3 12.47 8.41 18.49 

Alcoholic beverages. 32.8 -17.7 -580.56 1,075.84 313.29 

Cola drinks. 7.5 4.8 36.00 56.25 23.04 
Cigarettes (men). -8.3 -4.7 39.01 68.89 22.09 
Cigarettes (women). -25.8 -19.6 603.10 665.64 380.25 

Automobiles. -46.6 -45.1 2,101.66 2,171.56 2,034.01 

Total. 29.5 61.7 6,408.79 7,108.71 7,140.39 

Xxy = SXF - (XX)(XY)/N = 5,408.79 - 127.0958 = 5,281.6942 
- (ZXp/N = 7,140.39 - 222.7408 = 6,917.6492 

= sya - {XYP/N = 7,108.71 - 72.5208 » 7,036.1892 

' A derivation of the formula is provided in Appendix C. 
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The product-moment formula is particularly amenable to coding as no 
later adjustments are required in the value of r if any numbers are either 
subtracted from, or divided into, either series. For the sake of illustration, 
70.0 per cent is subtracted from each of the Baltimore figures and 60.0 per 
cent from each of the Philadelphia figures in the calculation of the product 
sums. In these calculations, the Baltimore data are (arbitrarily) denoted 
by Y and the Philadelphia data are denoted by A"'. These calculations are 

shown in Table 53. 
Substituting the product sums into the correlation formula, we have 

_5,281.6942 _ 

\/(6,«i7.G492)(7,036. 
0.757 

Or, since r* = 0.573125, 57 per cent of the variation in f^ne variable is asso¬ 

ciated with the variation in the other variable. 
The product-moment formula may also be used to good advantage in 

computing the coefficient of correlation in regression probU^ms. Being less 
involved than the previous formulas for the correlation coefficient, it is apt 

to be quicker and provides less opportunity for error. Note that the sign 
of r is automatically determined by the product-moment formula. If the 
correlation ^vere negative, positive signs of X would be primarily associated 

with negative signs of F, and negative signs of with positive signs of F, 
with the result that and also r, would turn out to be negative. 

Grouped Data 

A correlation problem becomes very cumbersome when several hundred 
pairs of observations are involved. The labor of computing products and 
cross products for each separate pair of observations may be eliminated in 
such cases by first sorting the data into frequency classes and then carrying 
out the correlation computations. An example of such grouped data, 
technically known as a bivariate frequency distribution^ is shown m Table 54. 
This table presents the reported length of the last vacation period of 2,218 
families cross-classified by family income level. Originally, there were 
2,218 pairs of observations, each family reporting a certain income level 

and the length of its most recent vacation. To put the data into more 
manageable form, the observations were grouped according to the classifi¬ 
cations shown in this table. For example, if family No. 1,763, which earns 
less than $2,000 a year, spent 7 days on its last vacation, the family would 
be one of the 45 families in the 7 days-under $2,000 cell. 

As we shall soon see, the main advantage of this bivariate frequency 
classification is the reduction in the number of individual sets of product 
and cross-product computations from 2,218 to the number of cells (63) in 
the table. 

Suppose that the correlation between these two variables is to be deter- 
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Table 64. Length of Last Vacation Period of 2,218 Families, 
Classified by Family Income 

(Income Figures in Thousands of Dollars) 

Ltmgth of 

vaciition, days 
0-2.0 2.0-2.5 2.5-3.0 3.0-3.5 

1- 

3.5-4.0 4.0-5.0 5.0-7.5 
7.5- 

10.0 i 
Over 

10.0 
Total 

1-6 i 27 22 19 
1 

19 11 13 10 4 5 130 

7 45 52 52 48 23 33 24 8 9 294 

8-10 56 58 53 54 30 43 37 17 21 369 

11 14 53 76 96 104 63 89 81 39 49 650 
15 21 32 43 47 51 31 51 58 33 45 391 

22 31 32 27 24 22 12 22 31 21 30 221 

Over 31 21 26 20 19 10 19 21 11 16 163 

Total. 266 304 311 317 180 270 262 133 175 2,218 

mined by moans of a linear regression, the length of vacation, F, presum¬ 
ably dependent on family income level, X. The method and formulas 
employed to obtain this regression, and the associated correlation coeffi¬ 
cient, are much the same as those used for ungrouped data except that 
allowance must now be made for the different cell frequencies. For exam¬ 
ple, instead of 6 = as in the case of ungrouped data, we now have, 
h = Xfxy/Xfx(xy where / represents the various individual cell frequen¬ 
cies and/x represents the number of freijiiencies (families) for each value of 
X (income level). Similarly, fy represents the number of families for each 
value of Y (vacation period). The values of 'Efxy and Xfr(xy are obtained 
from the absolute figures by inserting the cell frequencies in the same 
formulas used for ungrouped data^ 

where 

Zfxy = XfXY - iVX7 
xfAxy = ^fAxy ~ 

and y = ^fAXl 
" N 

Following our procedure for ungrouped data, we would compute the 
parameter a of the regression line as 

a = Y — bX 

and the standard deviation of the regression line 

, _ XfyiYy - (aXfyY + bXfXY) 
<^u - jy 

^ The formulas for 7,7 and S/r(a;)* are the same as those used to calculate the 
mean and standard deviation of a frequency distribution. The reader might care to 

refresh his memory on these methods of calculation by referring back to pp. 20, 26. 
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and finally, the coefficient of correlation^ 

where 

-2 _ _ Y% 
a ■ 

The product terms required for these (;al(;ulations are perhaps best 

obtained by means of a work-sheet form used by Croxton and Cowden^ and 
shown in Table 55. The rows in this table, known as a correlation tahlcy 

represent the various values of Y (days’ vacation) and the columns repre¬ 

sent X (family income level). As in computing the mean and standard 
deviation of a frequency distribution, the mid-point of the class interval 
is taken to be the average value by which the corresponding frequencies are 
multiplied.® To reduce the amount of calculation, the mid-point values 
are now coded by making one value in each series equal to zero and reducing 
the other mid-points as much as possible. In the case of T, the mean of 
the fourth row is set equal to zero, since this row contains the greatest 

number of frequencies as well as being the central (;lass interval for Y, 

After 12.5 is subtracted from each value of 7, the coded values (denoted 
by 7') are further reduced by dividing through by 5; the results are shown 
in the 7' column. The relationship between 7 and 7' is 

y' = (F - 12.5)75, 

and this is the conversion formula used to transform the coded calculations 
involving 7 into the absolute figures. The reader will note that the fact 

^ This is not the only procedure that might be used to arrivti at these; statisti(;s, nor 

is it always the best procedure. An alternate approach, which is very popular among 

statisticians, is to compute first the coefficient of correlation by means of the product- 
moment formula. The slope of the regression line is then computed from the relation¬ 

ship h = (<ry/<r,)r, and the values of a and <r are obtained as above. This method is 

espcicially useful when the entire analysis is (;arried out in terms of deviations from 

the mean. The value of a is then not required, and the value of redu(;es to 

2 _ 
N- 

* Croxton and Cowden, Applied General Statistics (r(;ferenco 7), p. 676. 
® The mid-points of the Over 10,000 and Over 31 days class(;s were set more or less 

arbitrarily since the author did not have access to the original data. However, in 

practice the mid-points of these open-end intervals would be computed from the 
individual family reports; the mid-point of the Over 10,000 class would be the mean 
income of the 175 family incomes in that class. An additional precaution taken in 
practice is to verify whether the mid-points of the class intervals are actually the mean 

values of the families in these intervals. For example, it is quite possible that more 

families reported 14-day (2-week) vacations than either 11-day, 12-day, or 13-day 
vacations, in which case the mean value of the ll-14-days’-vacation class interval 

would be closer to 13 days than to the mid-point of the interval, 12.5 days. 
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that the class intervals are of unequal length introduces no new complica¬ 
tions, though if the class intervals were of equal length, Y would be a simple 
multiple of Y\ 

The mid-points of the X class intervals are coded in a similar fashion, 
the zero point being placed opposite X = $3,250. The coded values ot X 
are shown in the row labeled X'. The relationship, or conversion formula, 
isX' = (X - 3,250)/250. 

Each cell in Table 55 is seen to contain three values. The value in the 

middle is the cell frequency, as taken from Table 54. The value at the 
top of each cell is the product of the appropriate values of X' and of V'; 
e.g., for 8-10-day vacation and $2,500-$2,999 income level, the value at the' 

top of the cell is the product of X'{= —2) and of Y'{= —0.7), or 1.4. 
The latter, when multiplied by the cell frequency 53, yields the value of 
f{X'){Y') for that cell (74.2), the last of the three figures in the cell. The 

marginal totals of the rows are recorded in the /»colunm, and the marginal 
totals of the columns are recorded in the/, row. The sum of all 63 of these 
intracell products, recorded below the ruled portion of the table, is 

'Sf{X'){Y'), which is used to compute "Zfx'y'. The remaining product 
terms are obtained from the sum of the products of the marginal frequen¬ 
cies with the appropriate values of X',(X'y,Y', and {Y'Y, as shown in the 
margins of the table. 

The computation of the product sums in deviation form is shown at the 
bottom of the table. The value of b' is obtained from these product sums, 
b' denoting the value of b in deviation units. 

,, ^ Xfjx'Ky') ^ 8,877.07 
817,630.15 

= 0.01086 

The value of a' is computed next, a' denoting the value of o in deviation 
units. 

o' =Y'-b'T = 
966.7 - (0.01086) (15,273) 

2,218 
= 0.3611 

Next, the standard deviation of regression is 

„ _ 6,042.92 - [0.3611(966.7) -1-0.01086(15,533.7)] „ 
<r„ --pjg- = 2.491050 

ffh = 1.58 

And last, the coefficient of correlation (from the product-moment formula) 

8,877.07 _ 8,877.07 
r = 

•v/(817,630.15) (6,042.92) 70,291.35 
= 0.1263 

or 
r* = 0.0159 
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Evidently, the amount of (linear) correlation between family income 
and length of vacation is almost negligible, less than 2 per cent of the varia¬ 
tion in the length of vacation being accounted for by variation in the family 
income level. This is also indicated by the fact that the variance of the 
regression line (2.49) is very close to the total variance (2.99). 

To illustrate the procedure, let us convert those results into original 
units. It has already been pointed out that the value of r is not affected 
by coding. Therefore, only the regression equation and cr' need to be con¬ 
verted into original units. In deviation units, the regression equation is 

Y' = 0.3611 + 0.0d)86Z' 

Substituting the conversion formulas for Y' and X' 

= 0.3611 + 0.01086 

Multiplying through by 5 and combining like terms 

Yc = 13.6 + 0.00022Z 

which indicates that with each $1,000 of family income level, the length of 
its vacation period increases by 0.22 day. In other words, family income 
level has very little relation to the length of the vacation period, and, as 
indicated by r, with almost no correlation.^ 

The value of <r« has only to be adjusted for the division of the original 
values of Y by 5, as a shift in the origin (addition or subtraction) does not 

affect the size of a variance, or of a standard deviation. Therefore 
(J‘u = 5cr', or (Tu = 5(1.58) = 7.9, so that if these two variables had a 
normal bivariate distribution, about two-thirds of the observations would 

be expected to lie between the regression line plus and minus 7.9, i.e., 
between T = 5.5 + 0.00022X and F = 21.5 + 0.00022X. 

One final comment on the correlation of grouped data is in order, and 

that is that the number of class intervals in both variables must be suffi¬ 
ciently large to reveal the true relationship between the series. If the 
data are divided into only a few class intervals, the grouping of the obser¬ 
vations into these few cells may mask irregular variations between 
observations in the same class and thereby result in a spuriously high 
correlation—to cite the extreme case, a correlation table composed of only 
one cell will yield a correlation coefficient equal to 1 even if the two vari¬ 
ables are actually not correlated with each other. In general, a minimum 

^ It is possible for one variable to affect the value of another very slightly and still 

have r = 1. If in the present example we had r = 1, with h = 0.0002, it would signify 

that although family income has negligible effect on length of vacation, the former 
completely determines the latter; i.e., given the family income, one could estimate 
exactly the length of that family’s most recent vacation. In graphical terms, the slope 

is almost horizontal, but all the observations lie on the regression line. 



324 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

of eight to ten class intervals in each distribution would seem desirable; 

the more intervals, the fewer the number of observations. In the present 
case, the large size of the sample undoubtedly served to minimize possible 
distorting effects due to the division of length of vacation into only seven 

class intervals. However, unless the sample is very large the use of such 
a small number of class intervals is not to be recommended. 

3. CURVILINEAR CORRELATION 

Though two variables may be closely related, the relationship between 
them may not necessarily be linear. Such a case is shown in the scatter 

diagram in Fig. 23 between average annual income per consumer unit 

Fiq. 23. Scatter diagram between annual average income per consumer unit and average 
food expenditure per consumer unit. 

and average annual food expenditure per consumer unit. Although food 

expenditure does not increase by the same amount with successive con¬ 
stant increases in income, the two variables nevertheless appear to be very 
closely related in a nonlinear, or curvilinear^ manner. The fitting of a 

regression line to such a relationship is known as curvilinear regression. 
Unlike the case of linear regression, which contains only one type of 
equation (Fc = a + hX), curvilinear regression contains infinitely many 
equation types. From the point of view of correlation techniques these 
equation types may be divided into two broad groups, arithmetic and 
nonarithmetic, and we shall discuss briefly the application of correlation 
techniques to each of these types. It is beyond the scope of this book to 
present a detailed account of curvilinear regressions. The reader who 
desires more information on this subject is referred to Elderton, Frequency 
Curves and Correlation (reference 166). 
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Arithmetic Regression 

The general formula for an arithmetic regression equation is 
Yc = a + hX + cX^ + • • •. An equation of the form Yc — a + bX is 
known as a first-degree equation; this is our well-known linear regression. 

An equation of the form Yc — a + bX + cX^ is known as a second-degree 
equation. In general, the d^igree of an arithmetic equation is equal to the 
highest exponent of X, Thus, Yc — a + cX^ + hX^ is a fifth-degree 

equation; the fact that the X, X^ and X^ terms are missing indicates that 
the coefficients of these terms are zero, but it does not alter the degree of 
the equation. 

We have already seen that Yc — a + bX rcpiesents a straight line. 
All arithmetic equations of higher degree are curves, and the higher the 
degree of the equation, the more complex are its cuivilinear tendencies. 
A second-degree equation, Yc — a + bX + is a curve with one bend 

in it; ^.e., the direction of the slope of the curve changes only once. A 
third-degree curve, Yc = a + hX + cX^ + contains two bends; the 
direction of its slope changes twice. In general, an nth-degree curve 

contains n — 1 bends. Examples of a number of these curves are pro¬ 
vided in Fig. 24. 

This characteristic of the different arithmetic curves—the varying 
number of bends—is a very useful tool for determining from a scatter 
diagram the lowest degree arithmetic equation that will best describe 
a particular relationship. There are two reasons why the lowest degree 

arithmetic equation is desired and not, say, the highest degree equation. 
For one thing, the lower the degree of the equation, the simpler it is to 
fit the equation to the data. An arithmetic relationship requires the solu¬ 
tion of as many simultaneous equations as there are unknown parameters. 
In the linear case, there are two unknown parameters and two simultaneous 
equations to be solved; the second-degree equation, Yc = a + bX + cX^, 

contains three unknown parameters and requires the solution of three 
simultaneous equations; etc. The main reason, however, is that the 
higher the degree of the equation, the greater is the number of degrees of 
freedom lost in the fitting process and the lower is the reliability that can 
be placed in the resultant relationship. Though the technical discussion 
of this point is deferred to Chap. XIII, the reason for the foregoing state¬ 
ment is not difficult to comprehend. If there are only two observations, 
a linear regression will yield a perfect correlation; i.e., the equation will go 
through both points since a straight line is necessarily determined by any 
two points. In a similar way, it can be shown that a second-degree 
regression will 3deld a perfect correlation between any three points and 
that, in general, an (n — l)-degree regression will yield a perfect correla¬ 
tion between any n points. Thus, a tenth-degree regression fitted to the 
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11 observations on newspaper circulation and national income would 

result in a perfect correlation, since all the observations would then be 
on the regression curve. But what reliability can be placed in such 
a regression? The answer is none, because the value of the index of 

correlation—the name for the coefficient of correlation in the case of 

Fig. 24. Illustrative arithmetic curves. 

nonlinear regression—must be adjusted for the additional restrictions 
imposed on the data by the increased number of regression parameters. In 
fact, a higher degree equation is useful only if the increase in correlation due 
to its use (as compared with the correlation when a regression equation of 
the next lowest degree is fitted to the data) more than compensates for the 
reduction in the correlation when adjustment is made for the use of an 
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additional parameter. The number of apparent bends in a relationship, as 

observed from a scatter diagram, is about the best offhand method of 
selecting the best degree arithmetic curve.' 

The computational procedures employed in curvilinear arithmetic cor¬ 

relation problems are essentially the same irrespective of the degree of the 
equation, though, of course, increasing in complexity with higher degree 
equations. These computations are illustrated with reference to the 
income-food-expenditure regression in Fig. 23; the actual data are shown 

in Table 56. It is immediately evident from the scatter diagram that a 
second-degree curve will provide a very ^ sf tisfactory fit to the data, inas¬ 
much as only one bend is appa rent and all the obsei vations appear to be in 
line with each other. As noted before, three simultaneous or normal equa¬ 
tions need to be solved to derive the three parameters of the regression 
curve. These equations are^ 

XY ^ Na + bXX -h (1) 
XX Y = a2X + 5S.Y2 + (2) 

XX'^Y = aXX^ -h bXX^ + cXX^ (3) 

The product sums obtained from Table 56 are substituted in these equa¬ 
tions, as shown below.^ 

-4,455 = 14a - 1,3946 + 3,199,020c (4) 
2,932,380 = -1,394a + 3,199,0206 + 1,657,642,228c (5) 

420,379,304 = 3,199,020a + 1,657,642,2286 + 2,641,521,335,832c (6) 

The equations must now be solved for the values of a, 6, and c. This is 
perhaps best accomplished in the following manner: Multiply Eq. (4) by 

1,394/14 and add to Eq. (5). 

-443,590.7117 = 1,394a - 138,802.57066 + 318,530,989.6006c (4a) 

2,932,380 = -1,394a + 3,199,0206 + 1,657,642,228c (5) 

2,488,789.2883 = 3,060,217.42946 + 1,976,173,217.6006c (7) 

^ A more objective means is through the use of differences. See Yule and Kendall, 

An Introduction to the Theory of Statistics (reference 25), Chap. 24. The determination 
of whether or not a higher degree equation, once fitted, actually improves the relation¬ 

ship is discussed in Chap. XIII. 

* The equations may be derived from the regression form Yo = a + 6X + cX*, by 

first summing and then multiplying through, in turn, by X and XK 
* The variables are not expressed as deviations from their means in this problem 

because the slight reduction in calculation that would follow by this procedure— 

through the elimination of the terms involving XX and SY in the simultaneous equa¬ 

tions—would not seem to compensate for the additional computations involved in 

expressing the variables in deviation form. 
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Multiply Eq. (6) by 1,394/3,199,020, and add to Eq. (5). 
183,183.8339 = 1,394a + 722,331.60796 + 1,151,065,242.9441c (6a) 

2,932,380 = -1,394a+ 3,199,0205 + 1,657,642,228c (5) 

3,115,563.8339 = + 3,921,351.60796 + 2,808,707,470.9441c (8) 

Now multiply Eq. (8) by — 3,060,217.4204/3,921,351.6079 and add to 
Eq. (7). 
-2,431,381.752950 = -3,060,217.42946 - 2,191,911,467.170343c (8a) 

2,488,789.2883 = 3,060,217.42946 + 1,976,173,217.6006c (7) 

57,407.535350 = - 215,738,249.569743c 
c = - 0.000266098 

Substituting the value of c in Eq. (7) 
2,488,789.2883 = 3,060,217.42946 - 525,855.740857 

6 = 0.985108 

Substituting the values of 6 and c in Eq. (4) 
- 4,455 = 14a - 1,373.240715098 - 851.25282396 

a = -159.321890 

Checking the computed values of the parameters in Eq. (6) 
420,379,304 = -509,673,912.54780 + 1,632,956,813.884765 

- 702,903,544.422223 = 420,379,356.91 

The discrepancy, equivalent to an error of 0.00001 per cent, is attrib¬ 

utable to rounding off during the computations. 
The standard deviation of regression is computed from the formula 

2 sr* - (asr + 6sx'y' + csx'i*r) 
N 

Substituting 

3,564,423 - [(-159,32189)(-4,455) 
2 + 0.985108117(2,932,380) - 0.000266098(420,379,304)] 

<"« - 14 

= V5,556.766568 = 74.55 

The index of determination and of correlation is 

, _ 2F? - [{XYY/N] _ 3,486,628.2680 - 1,417,644.6429 _ 
^ SF2 - [(sF)ViV] 3,564,423 - 1,417,644.6429 

or 
r = 0.98 

Ordinarily, these computed values of r and of <r„ tend to exaggerate 
the true second-degree relationship between the two sets of data because 
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no adjustment is made for the additional parameters in the regression 

equation or for the relatively small number of observations. Such an 
adjustment is effected by the following relations:^ 

where m is the number of parameters in the regression equation, N is the 
number of sets of observations, and the asterisks indicate the adjusted 
values. 

Substituting in these formulas 

= 1 - (1 - 0.963702) (13/11) = 0.957173, r* = 0.978 

(r;2 = 5,556.766568(13/11) = 6,567.087761, d = 81.04 

The adjustments are quite small in the present case, largely owing to 

the very high value of the unadjusted correlation coefficient. 
If it is desired to convert the regression equation into original units, 

we would have 

Yc - 1,000 = -159.32189 + 0.985108117 

- 0.000266098 
or 

Yc = 281.59955 + 0.1251206117X ~ 0.00000266098X2 

Now, the coefficients of the regression equation may be rounded off. 
Had they been rounded off sooner, substantial errors might have resulted; 
this is especially true in the case of a very small coefficient, such as c in 

the present case. If one is not sure of how many significant places to 
carry, it is generally wise to carry as many significant figures through the 
computations as the calculating machine will permit. 

Our final regression equation is 

Yc = 281.6 + 0.1251X - 0.00000266X2 

' The same adjustment should also be made in linear regression problems contain¬ 
ing a small number of observations (less than 30), as in the previous regression between 
newspaper circulation and national income. Since two parameters are involved in a 
linear regression, the appropriate formulas would be 

5,000\ 
V 10" 7 
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Note that the standard error of regression does not require any adjust¬ 
ment in transferring from the coded units to the original units. As pointed 
out before, this is because its value is affected only by division or multipli¬ 
cation of the original Y units, not by any shift in the origin (which is what 
occurs when a fixed value is added to, or subtracted from, all the original 
Y observations). 

Higher degree arithmetic regressions are derived by the same procedure 
as illustrated above. However, the calculations become more complicated 
because of the necessity of having as many simultaneous equations as 
there are unknown parameters.^ Addiiiional terms must also be added 
in computing SF? for the standard error of re gression and for the 
index of correlation; e.g.y in a third-degree regression SFJ is equal to 
a :sy + 6 SXF + c XX^Y + d SX^F. 

There is a method for deriving successive higher degree regressions 

from the lower degree regressions without having to solve simultaneous 
equations each time. The method, based on so-called orthogonal poly¬ 
nomials, consists of applying the regression coefficients obtained in one 

regression to certain formulas that yield the coefficients of the regression 
equation of the next higher order. Thus, given a and 6 in F = a + hX, 
one can compute the second-degree regression F = a' + b'X ■+• c'X^, and 
then the third-degree regression F = a" + 6"X + c"X^ -f d"X®, etc. 
(Note that a is not necessarily equal to a' or to a"; the same is true for 
the other, corresponding, regression coefficients.) Orthogonal polynomials 

are extremely useful where regressions of different orders are desired, as 
when the choice of the best regression for a given set of data is in doubt. 
The reader will find the formulas for using orthogonal polynomials, as 
well as illustrative examples, in references 176-179 in the Bibliography. 

Nonarithmetic Regression 

In many instances the relationship between two variables is best 
described by some nonarithmetic regression equation. For example, 
many relationships are characterized by the association of proportionate 
increases in one variable with increases of a constant amount in the other 
variable. In such cases an exponential (semilogarithmic) equation of 
the form Yc = ob^ will best describe the relationship; the value of F 
increases by (6 ~ 100) per cent for each unit increase in X. Other re¬ 
lationships are characterized by corresponding proportional changes in 
both variables. The price and production of particular commodities are 
frequently associated in this manner, a given percentage increase in 
production giving rise to a certain percentage decrease in price. Still 
other relationships are characterized by finite upper or lower limits, 

* The general formula for deriving the normal equations required to fit any degree 

arithmetic curve is given in Appendix D. 
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by constant percentage declines in the rate of increase, by proportional 

changes in the reciprocals of the variables, or by innumerable other 
properties. The reader who is interested in learning more about these 
various types of curves is referred to Elderton^s book. 

The equation form that will best describe a particular relationship 
can frequently be selected from scatter diagrams. We have seen that a 

Fio. 26. Annual volume of bank deposits in the United States at 5-year intervals, 1860-1930. 

scatter diagram of a linear arithmetic relationship will reveal the observa¬ 
tions to lie in a straight line when they are plotted on the customary 
arithmetic graph paper. In the same manner, if a constant increase in 
X is associated with a proportionate increase in 7, the observations will 
fall in a straight line if the logarithms of Y are plotted against the actual 
values of X, Alternately, the need for finding logarithms may be avoided 
by plotting the observations on semilogarithmic chart paper, a type of 
chart that has a logarithmic scale on one axis and an arithmetic scale on 
the other; Fig. 25 provides an example of a semilogarithmic grid. Corre¬ 
sponding proportional fluctuation in both variables is indicated by a 
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straight-line relationship when the logarithms of both variables are 
plotted against each other on arithmetic paper or when the actual values 
are plotted on log-log paper—chart paper containing logarithmic scales on 
both axes. Other types of relationships may be discerned graphically in 
much the same fashion or by more refined mathematical methods.^ 

The use of one of these nonarithmetic curve typos is illustrated in the 
following example. The growth of total bank deposits of all active 
United States banks between 18(i0 and 1930 at 5-year intervals is pictured 

in Fig. 26, an arithmetic grid. A regression equation for this relation- 

1860 1870 1880 1890 1900 1910 1920 1930 

Fig. 26. Annual volume of bank deposits in the United States at 5-year intervals, 1860-1930. 

ship is desired to estimate the volume of bank deposits in each of the 
intervening years of this period. The relationship in Fig. 26 is strongly 
curvilinear and is very similar to the second-degree arithmetic curves 
illustrated in Fig. 23. However, the fact that bank deposits are increas¬ 
ing so much more rapidly through time, i.e.^ the convexity of the relation¬ 
ship to the time axis, Fig. 26 implies that the increase might be of a pro¬ 
portional nature. This suspicion is confirmed when the data are plotted 
on a semilogarithmic grid, as is done in Fig. 25. Now, the observations 

appear to lie more or less in a straight line, which indicates that a semi¬ 
logarithmic equation of the form Y = might also describe this 
relationship very well. 

Let us see how this equation would be fitted to the data, foregoing for 
the moment the reason for preferring this equation to the second-degree 
arithmetic form. Expressing the semilogarithmic equation in terms of 
logarithms, we have log F = log a + Z log 6. This is now a first- 
degree arithmetic relationship between log Y and X. It is therefore 
possible to obtain the unknown values of the parameters log a and log 6 

^ See footnote 1 on p. 327. 
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through the solution of the same two normal equations used in deriving 
linear arithmetic parameters, the only difference being the replacement 
of y, a, and 6, by their respective logarithms. The normal equations are: 

S(log F) = iVlog a + log h SZ (9) 

S(X log F) = log a SX + SZ2 log h (10) 

The calculation of log a and log 6, as well as of the standard error of 
regression and the index of correlation, is shown in Table 57. Note that 

Table 57. Pkoduct-sum Computation for Logarithmic Regression 

Year 

Bank 
deposits, mil¬ 

lions of dollars 
Y 

X log Y A’ log Y (log r)» 

1860 31 -7 1.491362 -10.439534 2.224160615 49 
1865 69 -6 1.838849 -11.033094 3.381365644 36 
1870 77 -5 1.886491 - 9.432455 3.558848293 25 
1875 201 -4 2.303196 - 9.212784 5.304711814 16 
1880 222 -3 2.346353 - 7.039059 5.505372401 9 
1885 308 -2 2.488551 - 4.977102 6.192886080 4 
1890 458 -1 2.660865 - 2.660865 7.080202548 1 
1895 554 0 2.743510 0 7.526847120 0 
1900 851 1 2.929930 2.929930 8.584489805 1 
1905 1,333 2 3.124830 6.249660 9.764562529 4 
1910 1,758 3 3.245019 9.735057 10.530148310 9 
1915 2,203 4 3.343014 13.372056 11.175742604 16 
1920 4,172 5 3.620344 18.101720 13.106890678 25 
1925 5,200 6 3.716003 22.296018 13.808678296 36 
1930 5,985 7 3.777064 26.439448 14.266212460 49 

Total.. 0 41.515381 44.328996 122.011119197 280 

log a 
2:(log Y) 

N, 
41.515381 

15 
= 2.767692 

328996 , , 2;(X log 7) 44 
log 6-2X5-280 = 0.15831784 

, 122.011119197 - [2.767692(41.515381) + .15831784(44.328996)] 
15 

(Tu = 0.0780 

r* 
121.919858767 - [(41.515381)V15] _ 
122.011119197 - [(41.515381)7151 " 

r = 0.994 

.00608403 

a major computational simplification is possible when a time trend (in 
equidistant units) is involved. If there is an odd number of years, the 
value of X for the central year of the period is set equal to zero, the 
preceding years are set equal to —1,-2, —3, etc., in successive fashion, 
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and the following years are numbered 1,2, 3, etc. In this way, XX becomes 
zero, and two terms are removed from the normal equations.^ So, instead 
of having to solve two simultaneous equations for log a and log 6, we can 
obtain the parameters individually; from Eq. (9), log a = S(log Y)/N^ 
and from Eq. (10), log 6 = X{X log Y)/ X X^. 

The final regression equation if 

log Yc = 2.767092 + 0.158318X 

or in original units 
Yc = (585.72)(1.43985)^ 

which indicates that bank deposits ipf^eabed, on the average, by 44 per 

cent during each 5-year interval between 1860 and 1930. The standard 
deviation of regression is 0.30209 in logarithms, or 20 million dollars in 
tenus of dollar bank deposits. In other words, if the volume of bank 
deposits at specified intervals were independently and normally distributed, 
approximately two-thirds of the values would lie within the area of the 
regression line plus and minus 20 million dollars. However, not too 
much confidence can be placed in this statement in the present case 
inasmuch as the level of bank deposits at one particular time is certainly 
not independent of the previous levels. The high value of the index of 
(correlation, 0.994, reflects the closeness of the relationship and, at least 

indirectly,2 tends to instill confidence in the reliability of interpolated 
values for bank deposits in the interim years; though, here again, serial 
effects must not be overlooked. 

In using the regression equation, it must be remembered that X is in 
5-year intervals and that the origin of the equation, the zero point in 
time, is 1895. These facts are usually specified beneath the equation, 

as follows: 
log Yc = 2.767962 + 0.158318X 
Origin, 1895 X = 5 years 

This logarithmic form of the regression equation is to be preferred in 
obtaining estimates of the level of bank deposits for interim years. For 
example, suppose we want to estimate the level of bank deposits in 1906. 
Since one unit of X is equivalent to 5 years, 1 year must equal 0.2 unit 
of X. The year 1906 is 11 years beyond 1895; in terms of X, 1906 must 

^ If the series contains an even number of (equidistant) time units, the values of X 
for the later and earlier of the two central years are set equal to 1 and —1, respectively, 
and the remaining years are numbered 3, 5, 7,. . . and —3, —5, —7 . . . successively, as 
in the case of odd years. ZX is, therefore, again equal to zero. 

^ We must say “indirectly” because the index of correlation does not gauge the 
sampling errors in correlation estimates as, say, the standard error of the mean measures 
the sampling errors in estimates of the population mean from sample data. However, 
we shall see in Chap. XIII that when the index of correlation is very high the sampling 
errors of estimates within the range of the sample data are relatively small. 
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be equivalent to (11)(0.2), or 2.2 units. Substituting this value in the 
regression equation 

log Yc = 2.767962 + 0.158318(2.2) 
= 3.1162616 

Taking the antilog of this value in Appendix Table 8 

Yc = 1,306.959 

or $13,070,000,000 in bank deposits. 

The formula for the standard error of this estimate is given in 
Chap. XIII. We shall also see in that chapter that, though this regression 
equation may be very useful for estimating bank deposits for interim 
years during the period covered by the regression, it may be useless for 
forecasting purposes. 

Now, why would the semilogarithmic regression be preferable to a 
second-degree arithmetic regression? The simplification in computations 
is one reason. Only two parameters, and normal equations, are required 
by this (first-degree) semilogarithmic regression as compared to three 

parameters and normal equations in the case of the second-degree arith¬ 
metic curve; yet, both curves, it will be noticed, have substantially the 
same shape (number of bends) when plotted on comparable graph paper. 

However, the most important reason is that bank deposits do appear to 
have increased in some fixed proportion during the period under con¬ 
sideration. Consequently, if the purpose of the regression is to interpolate 
for estimates of bank deposits in interim years, the semilogarithmic 
regression would be preferable; it would be still more preferable if the 
researcher had some a priori justification for believing that the dependent 
variable changed by a fixed proportion. A second-degree arithmetic 
curve used for interpolation would result in estimates of bank deposits 
that rise less proportionately as time goes on. 

Primary consideration in selecting an appropriate regression curve 
must be given to the ultimate purpose of the regression. In the present 
case, the semilogarithmic curve appears to be suitable. If, however, this 
were the year 1939 and the purpose of the regression was to forecast the 
future levels of bank deposits, the use of the semilogarithmic curve would 
be somewhat risky, inasmuch as bank deposits would then be assumed to 
continue their past proportionate increase. The second-degree arithmetic 
curve, according to which bank deposits increase less proportionately 
through time, might be a wiser choice. If there is danger of overestimation, 
a curve that tends to level off and approach-a-finite limit at some future 
time—a so-called asymptotic growth curve—might be employed.^ 

* A good description of the more common asymptotic growth curves and their 
properties is to be found in Croxton and Cowden, Applied General Statistics (reference 
7), pp. 441^63. 
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In closing this section, it may be noted that semilogarithmic and 

logarithmic curves are classified according to degree in the same manner as 
are arithmetic curves. Thus, Y = ah^(or log Y = log « + X log b) is 
a first-degree semilogarithmic curve; 

Y = (or, log Y = log a + X log b + X- log c) 

is a second-degree semilogarithmic- curve; etc. When plotted on semi¬ 
logarithmic paper, these curves possess the same properties as their arith¬ 
metic counterparts. On arithmetic graph paper, a semilogarithmic curve 
of a particular degree will have one nu‘rc*bend than the arithmetic curve 

of the same degree. 

4. THE CORRELATION RATIO 

When two variables are related in a nonlinear fashion, the measurement 
of the degree of relationship between them is frequently a long, time- 

Fiq. 27. A hypothetical relationship between two variables. 

consuming procedure, necessitating the prior fitting of a regression line 
to the observed relationship. This is especnally true when the variables 
are related in some irregular manner, as shown in Fig. 27. This chart 
presents a hypothetical relationship between two variables X and Y, a 
number of observations of the dependent variable Y corresponding to each 
particular value of X. For example, X may represent family size and Y 
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may denote the amount purchased of a particular product by the various 

families of each size in the sample. The variables in Fig. 27 are highly 
correlated since the value of Y is not independent of the particular value 
of X, though with anything less than a fourth-degree arithmetic regression 
(or its nonarithmetic equivalent), the index of correlation would undoubt¬ 

edly be misleadingly small. However, to determine the index of corre¬ 
lation by first finding the parameters of such a regression equation 
would lequire some fairly complicated, lengthy, and space-consuming 

calculations. 
Fortunately, a measure of nonlinear correlation is obtainable without 

the necessity of computing any regression parameters beforehand; this is 
the correlation ratio (denoted by the symbol the Greek letter eta). What 
the correlation ratio does is to replace the regression values Yc in the 
correlation formula by the mean of the Y values for each particular value, 

or class interval, of X. The correlation ratio then measures the extent 
to which the fluctuation in these mean values of Y accounts for the total 
fluctuation of the F^s, in the same manner as explained on page 313 for 

linear correlation. The square of the correlation ratio is, then, the propor¬ 
tion of the total variance of Y that has been explained by the various 
mean values. In algebraic terms, this is expressed as 

'f = ’'t ' .V, - t 
Jfc = 1 i = 1 

where Y = mean of all Y values in the sample 
Yk = mean of Y values in fcth column, /.c., mean of the F's cor¬ 

responding to kth value, or class interval, of -V, there 
being s different values of X 

Yjci = fth value of Y in kth column, there being X* observations in 
each column 

As in all the previous correlation formulas, the numerator of this 
expression measures the variance of Y that has been explained by the 

other variable, in this case the amount explained by the column (F) 
means. The denominator is the total variance of F. and ty, vary 
between 0 and 1. If the two variables are independent, f,6., if the value 
of F is independent of the value of X, the values of the various column 
means will be equal to each other and, hence, to the over-all mean. The 
numerator of if, and if itself, then reduces to zero. When the two variables 

are perfectly correlated, the observations in each column are identically 
equal to each other and to the column mean, ^.e., F^^ s The numerator 
and denominator of f are then equal, so that f — I, 
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For computational purposes, can be reduced to the following form: 

X N,Ti - iVY» 
« I 
r = -7—K- 

t I Y'i- NY^ 
I I 

where N is the total size of the saniple ( = ^ 

The correlation ratio may bo computed for either ungrouped or grouped 
data. However, in each case there musl be several values of Y for each 

value, or class interval, of X. The reason for this requirement is that 
misleadingly high values of the correlation ratio arc obtained with two 
or,three observations in each column and with a large number of columns; 

in the extreme case—only one observation in each column—the correla¬ 
tion ratio will always equal 1 (since then To avoid this 
danger it is wise to estimate the value of the correlation ratio in the popu¬ 

lation, a process that takes into account disproportionately large numbers 
of columns; the mechanics of carrying out this operation is discussed 
in Chap. XIII. 

As an illustration, we shall compute the correlation ratio for the 
length of vacation-family income data shown in Table 54. For grouped 
data, the most convenient form for computing the correlation ratio is 

17^ = 

« Nk X -Vit 

X L(X■■V^v.]-[(V V /„)-)viv] 
k ^ 1 

.V* A'a 

X X X X 
A: = 1 t = 1 k=\ 

where the symbols fy and F' have the same connotation as in the com¬ 
putation of the linear regression for this data (page 320). As in the 
latter case, the values of Y may be coded without affecting the degree 
of correlation. 

N Nk 
With the exception of the term ^ all the terms 

A- - 1 t = 1 

required to compute the value of the correlation ratio are obtainable from 
Table 55. However, for the sake of illustration, the data are reworked 
in Table 58, a form that is especially convenient for computing the corre¬ 
lation ratio. The light figure in each cell is the cell frequency, the bold¬ 

face figure is the frequency multiplied by the value of F'. These prod¬ 
ucts, fyY\ are summed both vertically and horizontally. The vertical 
sum, when squared, divided by iV* (note that Nk, in this table corresponds 
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to fz in Table 55), and summed over all columns, provides the first term 
in the numerator of the correlation ratio. A cross-check in the table is 
supplied by the horizontal sum of the fyY' products, as the sum of these 
products must equal the sum of all the fyY' column products (966.7). 

From this table, the correlation ratio is computed to be 

or 

547.5801S2 - |(966.7)V2,218] 
6,464.25 - [(966.7)72,218] 

0.021085 

ri = 0.145 

which again demonstrates that very httl< correlation exists between the 
length of a family^s vacation and its income, as applied to members of 
the sample. 

The fact that the value of the correlation ratio exceeds the value of the 
coefficient of correlation illustrates the rule that the former can never be less 
than the correlation coefficient. This is true because the correlation coeffi¬ 
cient is restricted to the measurement of the degree of linear relationship 
between two variables whereas the correlation ratio can measure such 

irregular relationships as those pictured in Fig. 27 in addition to linear rela¬ 
tionships. Only when a linear relationship exists between the means of 
the columns will the correlation ratio be equal to the correlation coefficient. 

6. RANK CORRELATION 

The coefficient of correlation between two sets of ranked data, known 

as the coefficient of rank correlation, is obtainable from the following 
simplified form of the product-moment formula:^ 

() 
Coefficient of rank correlation = 1 — 

where d is the difference between the two ranks of the same item, and N 
is the total number of items ranked. 

Like the coefficient of correlation, the coefficient of rank correlation 
can never exceed +1 or fall below —1; a value of +1 indicates perfect 
positive correlation, and a value of —1 indicates perfect negative cor¬ 
relation. The coefficient of rank correlation is zero when the two ranks 
are independent. 

The ranking, or ordering, of alternative preferences is quite common 
in market research, and in such cases the coefficient of rank correlation 
provides a very handy and easily computable measure of the degree of 
association between the two rankings. It is frequently useful as a measure 
of the consistency in the preferences of two product-testing or advertising¬ 
pretesting panels. The following example illustrates the use and method 
of computation of the coefficient of rank correlation. 

1A proof is given in Appendix C. 
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The sixth Chicago Times Pantry Poll revealed the brand ranking of 
15 puddings, tapiocas, and related products among Chicago families by 
upper and lower family income groups, as shown in Table 59.^ The 
brands are ranked according to the number of homes of the particular 
income classification that actually possessed each specified make. Thus, 
My-T-Fine Puddings were found more often than any other brand in 

Table 59. Rank of 15 Puddings, Tapiocas, and Related Products by 

Frequency of Stocking in Chicago Homes by Income Classification 

(1) 

Brand 

(2) 
Upper income 

families 

(3) 
Lower income 

families 

(4) 

d 

(6) 

(P 

My-T-Fine Puddings. 1 4 -3.0 9.00 
Jell-O Pudding. 2.5 1 1.5 2.25 
Royal P\idding. 2.5 3 *-0.5 0.25 
Kosto Pudding. 4 2 2.0 4.00 
Minute Tapioca. 5 5 0 0 
My-T-Fine Lemon Pie Filling.... 6.5 6.5 0 0 
Munket’^ Rennet Powder. 8 8 0 0 

Hixson’s Cocoanut Custard Mix.. 9.5 10 -0.5 0.25 
Kre Mel Pudding. 11 6.5 4.5 20.25 
Minute Dessert. 12 10 2.0 4.00 
Kre Mel Lemon Pie Filling. 14 10 4.0 16.00 
Rawleigh Pudding. 6.5 14.5 -8.0 64.00 
Hallmark Quick Dessert. 15 12 3.0 9.00 
Monarch Pudding. 9.5 14.5 -5.0 25.00 
Py-Mak Pie Filling. 13 13 0 0 

Total. 0 154.00 

upper income homes and fourth most often in lower income homes. 
Where two brands are found equally often, both brands are given the 
same rank, computed as the average of the two successive ranks to which 
the brands would otherwise be assigned. For example, Jell-0 and Royal 
were tied for second and third place in upper income homes, both being 
found in the same percentage of upper income homes; hence, each brand 
is assigned a rank of 2.5. 

As a measure of the consistency of the relative popularity of these 
brands among the two income classifications, it is desired to compute the 
coefficient of rank correlation. The differences between the two rankings 
for the same brand (d) are shown in Col. (4) of Table 59. The sum of 
the squared differences, as obtained from Col. (5) of the table, is then 

^ Adapted from The Chicago Times Pantry Poll, April, 1947, No. 6. Data presented 
through the courtesy of M. G. Barker, Promotion Manager. 



SIMPLE CORRELATION TECHNIQUES 343 

substituted in the rank correlation formula: 

Coefficient of rank correlation = 1 
6(154) 

15(225 - 1) 
= 0.725 

This result indicates that brand preference for puddinp;s and tapiocas 

does appear to be somewhat alike for the two income levels, as about 52.5 
per cent of the variation in one income classification is associated with 
the variation in the other income classification. However, we shall see 

in Chap. XIII that the coefficient of rank correlation is not very useful 
for prediction purposes since it does not permit any estimates to be made 
of the true rank correlation for all Chicago families, assuming the sample 
to be representative of Chicago consumer purchase habits. 

6. TETRACHORIC CORRELATION 

In many instances, commercial data dealing with the relationship 
between two characteristics are in the form of double dichotomies, each 
characteristic being classified according to two possible properties. If 
both of the characteristics are variables, and can be assumed to have 
approximately normal distributions, the correlation between them may 
be computed from the 2-by-2 contingency talile with the aid of a measure 
analogous to the ordinary correlation coefficient. This measure is known 
as the tetrachoric correlation coejficient (r^) and is given by the following 
formula: _ 

/ abed — bc\ 

where tt is the familiar symbol for 180 degrees, and a, 6, c, d, are the four 

components of the contingency table, arranged as follows: 

b a 
d c 

Though this is an approximation formula, it is sufficiently accurate 
for the great majority of practical problems. As before, the value of r, 

Table 60. Double Dichotomization of Family Income-Length 

OF Vacation Data 

Length of vacation 

2 weeks or less 
Over 2 weeks.. 

Family income 

Below $3,500 $3,500 or more 

834 609 
364 411 

Total 1,198 1,020 
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varies from —1 to +1, perfect tetrachoric correlation existing when 
rt is +1 or —1 and no correlation existing when is 0. 

As an example, suppose the income-vacation data on page 319 are 
classified in the form of a double dichotomy according to whether the 
length of the family^s vacation was more or less than 2 weeks and whether 
its income was over $3,500 or not. The results are shown in Table 60. 

With the aid of the tetrachoric correlation coefficient, we can estimate 
the degree of relationship between these two variables. Substituting in 

the formula 

= cos 
icn V'(609)(834)(411K364) - (834)(411)' 

(609)(3r)4) - (834)(411) 

= cos 99°77' = 0.013 

Special charts are available that permit the tetrachoric correlation 
coefficient to be computed very readily.^ Wiiere a large number of simple 
correlation coefficients between continuous variables are required, it is 
usually quicker to convert the data into 2-by-2 contingency tables and 
compute the tetrachoric correlation coefficients. This is especially useful 
when only approximate values are desired. 

The formulas for computing the degree of correlation between two 
characteristics vary with the manner in which the characteristics are 
classified and with the assumptions that may be made about their dis¬ 
tributions. The case when only one of the variables is dichotomized is 
known as biserial correlation, and a special formula exists for computing 

the biserial correlation coefficient. If the assumption of normality is not 
warranted for one of the characteristics, or if cither or both of the charac¬ 
teristics is a pure attribute, e.g,, sex, we have the correlation of attributes. 
A common measure of attribute correlation in a 2-by-2 contingency table 
is rA = {ad — he)/{ad + he), where a, h, c, and d represent the 4 cells 
of the table; the correlation in a general contingency table is frequently 
measured by the coefficient of mean square contingency, which is \/x^/{N+x^). 
It is beyond the scope of this book to enter into any further details on 
this subject. For further information, the reader is referred to references 
180-182 in the Bibliography. 

SUMMARY 

This chapter has discussed the more common methods used to measure 
the degree and quantitative nature of the relationship between two 
variables. The exact relationship between the two variables is determined 
by fitting a regression curve to the data, a curve that associates a given 
change in one variable with a corresponding change in the other variable. 

^ L. CuEsiRB, M. Saffir, and L. L. Thurstone, Computing Diagrams for the Tetra¬ 

choric Correlation Coefficient, University of Chicago Bookstore, 1933. 
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Regression curves are of an infinite variety of forms. The selection of a 

proper regression curve in a particular problem depends upon the observed 

nature of the relationship between the variables, generally ascertained by 
means of so-called *^scatter diagrams/’ The computation of several 

different forms of regression relationships is illustrated in the chapter. 

Two measures are used to describe the degree, of relationship between 
two variables; an absolute measure, the standard deviation of regression, 

and a relative measure, the coefficient or index of correlation. The 

standard deviation of regression measures the dispersion of the observa¬ 
tions about the line of regression. Ef-isertially, it beai*s the same relation 

to the regression line as the standard deviation of a series bears to the 

mean value. The smaller is the sl,andard deviation of regression in any 
particular problem, the closer does the regression curve describe the 

particular relationship. However, because the standard deviation of 

regression is expressed in terms of the variable whose dispersion is being 
measured, it cannot be employed as a universally comparable measure of 
relationship among different problems. Such a measure is the coefficient, 

or index, of correlation, which is the square root of the ratio of the variance 
explained by regression to the total variance in the variable being studied. 
If no (linear) correlation is present, the variance explained by the relation¬ 

ship is zero, as is the coefficient of correlation. The greater is the relation¬ 
ship between the two series, the larger will be the absolute value of the 
coefficient of correlation. The nature of the correlation, whether positive 

or negative, is expressed by plus and minus signs in front of the coefficient 

of correlation. Perfect positive correlation is indicated by a value of 
+ 1 for the coefficient of correlation; perfect negative correlation by a 

value of —1. It is important to remember that a high coefficient of 

correlation does not necessarily demonstrate causation between the two 
variables being studied. The presence of a causal mechanism must be 

determined by nonstatistical considerations; the coefficient of correlation 

may disprove the hypothesis of causation but can never prove it. 
The computation of the coefficient of correlation does not require the 

.prior fitting of a regression curve to the data. This is especially con¬ 

venient in problems where no causation is present and the sole aim is to 
measure the degree of association between the two variables. Several 
problems of this sort are discussed in the text, including the measurement 

of the correlation between variables related in some irregular fashion (the 
correlation ratio), between ranked variables (the coefficient of rank 
correlation), and between characteristics in a 2-by-2 contingency table 

(the tetrachoric correlation coefficient). 



CHAPTER XII 

MULTIPLE CORRELATION TECHNIQUES 

The preceding pages have presented methods for measuring the 

relationship between two variables. Multiple correlation extends the 
subject to the consideration of the relationship between three or more 
variables. As in simple correlation, there is one dependent variable in a 

multiple correlation problem, but a number of independent variables 
are now used to explain the variations of this dependent variable. The 
advantage of multiple correlation is obvious, for larely is it ever true that 
a variable is influenced solely or predominantly by only one other factor. 

For example, the sales of a light-plane manufacturer are influenced, 
among other things, by his prices, his competitive position in the industry, 
his competitors’ prices, industry sales, and national prosperity. In simple 

correlation, only one of these independent variables at a time could be 
correlated with the manufacturer’s sales, and there was no direct way of 
determining the extent to which the observed correlation might have 

been caused by the interacting influence of other factors on the two 
variables under study. For instance, in prosperous years a high level of 
national income may lead to increased industry sales, a share of which 

is captured by this manufacturer. But to what extent are the manu¬ 
facturer’s sales influenced by the universally buoyant effect of national 
prosperity and to what extent are his sales affected by the particular 

trend of the industry sales within the economy, i.e., assuming that the 
nation’s economy remains fairly stable? Such knowledge is extremely 
useful in setting managerial policies, and is obtainable by multiple cor¬ 

relation analysis. 
As in simple correlation, the relationship between the relevant factors 

may be determined by mathematical equation methods or by fitting 

freehand curves to the observed relationships. We shall first consider the 
mathematical method and then briefly describe the graphical method. 

^ 1. THE MATHEMATICAL METHOD 

The principle behind the measurement of multiple correlation is much 
the same as that for simple correlation, namely, to fit a regression curve 
(really a surface) between the observed relationships and to measure the 
correlation between the variables on the basis of the ratio of the variance 
explained or eliminated by the regression line to the total, original, 
variance in the dependent variable. In addition to this aggregate 

346 
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measure of correlation, measures of partial correlation are available that 
enable the researcher to determine the degree of correlation between the 
dependent variable and any number and combination of independent 
variables in the regression equation. 

The basis for the computation of these various correlation measures 
is, either directly or implicitly, the regression equation.^ A linear rela¬ 
tionship between the variables in the regression equation is known as 
linear multiple correlation. For four variables, the regression equation 
has the following form: 

Xi = a + 612.34X2 + 6H..24X3 + 614.23X4 

Here, Xi is the dependent variable, corresponding to Y in simple corre¬ 
lation, and X2, X3, and X4 are the three independent variables, a is the 
constant term in the equation; it is zero when the regression line passes 
through the origin. The 6^s represent the rate of change of the dependent 
variable per unit change in each of the independent variables when the 
other independent variables are held constant. The first subscript always 
represents the dependent variable and the second subscript denotes the 
particular independent variable being related to Xi. The subscripts after 
the period indicate the other independent variables, all of which are held 
constant while the effect of the particular independent variable on Xi is 
measured. Thus, 613.24 represents the change in X”! per unit change in Xa, 
when the values of X2 and X4 arc held constant; 612.34 represents the change 
in Xi per unit change in X2 when the values of X3 and X4 are not permitted 

to change.^ 
The Vs are generally termed the coefficients of net regression; the regres¬ 

sion is net in the sense that the regression of the dependent variable on the 
particular independent variable is measured while holding the values of 
the other independent variables constant. In contrast, the coefficients in 
simple correlation are sometimes called the coefficients of gross regression 

because no allowance is made for indirect influences on the regression. For 
example, the value of 6 in Xi = a + 6X2—the simple linear regression 
F = a + 6X in terms of the multiple correlation notation—is not the 

same as the value of 612.34 in the multiple regression equation 

Xi = a + 612.34X2 + 61.3.24-V3 + 614.23X4 

^ Though these ineasun^s of correlation may be computed without the prior determi¬ 

nation of the regn^ssion parametc^rs, wc shall see that the computations nevertheless 
impute a certain form to the regression equation, e.g., linear, second-degree arithmetic, 

etc. 
* Except for the different notation, an exact correspondence exists between linear 

multiple regression equations and curvilinear simple regression equations. Thus, the 
third-degree arithmetic regression Y == a -f- 6X -|- cA"* + dX^ is equivalent to the four- 
variable linear multiple regression when we make the following s\ibstitutions: 

Y = Ai, X = A2, A* = A3, A® = A4, 6 = 612.34, c = 6i3.24, d = 614.23. 
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assuming that Xi and X2 represent the same variables and that the same 
set of observations is used in both instances. In the latter case, that of the 
net regression coefficient, the potential distorting influfences of X3 and X^ 
on the regression of Xi on X2 have been eliminated; but in the computa¬ 
tion of the gross regression coefficient, no adjustment is made for the indi¬ 
rect effect on the regression of Xi on X2 of variations in X3 or in X4. For 
example, a simple regression of industry sales on the sales of a light-plane 
manufacturer may reveal that the latter sells 30 more planes for every 100- 
plane increase in industry sales; but when national income is taken into 
account, the manufacturer may find that he only sells 5 more planes for 
every 100-plane increase in industry sales. The high value of the gross 
regression coefficient is very misleading in this case, as it merely reflects 
the indirect effect of national prosperity on the individual manufacturer's 
sales acting through industry sales.' This segregation of direct and indi¬ 

rect effects is one of the most useful attributes of multiple correlation 
analysis. 

The above equation is a linear regression because the value of Xi 

changes by a constant value for a unit change in each independent value, 
and the magnitude of the change is not affected by the particular values of 
the independent variable, e.g., Xi shifts by 614.23 units for each unit change 
in X4, irrespective of the particular value of X4. Mathematically speaking, 
only the first powers of the independent variables are involved in the regres¬ 
sion equation. 

If higher powers of the independent variables (or fractional powers) are 
in the regression equation, we would have curvilinear multiple correlation. 
The following equations exemplify curvilinear multiple correlation in four 
variables: 

Xi = a -h 612.34-^2 + Ci2.34-^2 + 6l3.24A^3 + Ci.3.24-^3 + ^>14.23^4 + ^14.23^4 

Xi = a 6i2.34‘^2 + 613.24^3 + 614.23-Y4 + C14.23-V4 

Xi = a + b\2.ZiX2 + Ci2.34\/X2 + fel3.24^3 + ^^14.23-^4 
Xi = a + 612,34^2 + Ci2.34^2 + di2.34^2 + ^13.24X3 + 6i4.23-^4 + Ci4.23-^4 

In the remainder of this discussion we shall concern ourselves exclusively 
with linear multiple correlation. The same principles are also applicable to 
curvilinear multiple correlation, the only distinguishing characteristic 
between linear and curvilinear multiple correlation being the increased 
complexity of calculation in the latter case. In some instances curvilinear 
regressions may be transformed into a linear form through the use of 
logarithms, reciprocals, or some other conversion method (see example on 
page 333). Such procedures are to be recommended where possible be¬ 
cause of the substantial reductions in computations that invariably result. 

^The two regression coefficients would be equal only if industry sales were not 

correlated with national income. 
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Linear Multiple Correlation 

Multiple regression equations are not necessarily restricted to four 
variables, as one may think from the examples of the preceding section. 
They may contain three variables 

Xi == a + &12.3^2 + biz,2Xz 

or five variables 

Xi = a + 612.345^^2 + 6j3,245-^S + 614.235-^4 -j- 6i,r,.234-^5 

or any number of variables 

Xi = a + 612.34 . . . nXz + 6i3.2[314 . . . nXz + 61/.23 nX { 
+ ...+ 6in.234 ... [n]^n 

whore there are n variables and [d indicates that the ith variable is omitted 
fTom the sequence of variables being held constant. Thus, 613.2 [sh . .. n 
measures the change in Xi per unit change in X3 when all the independent 
variables but X3 are held constant. 

However, we shall use a four-variable regression to illustrate the multi¬ 
ple correlation procedures. As will be shown later, the procedures 

employed in connection with four variables are easily extended to cover 
correlation problems dealing with any number of variables. 

Table 61 contains statistics of (1) new dwelling units constructed per 
1,000 population, (2) median monthly rent, (3) population per dwelling unit, 
and (4) per cent of dwelling units vacant, for each of 31 large cities, all 
figures relating to 1940. These 31 cities were selected in a random fashion 

from a list of all cities with a population of 100,000 or more in 1940.^ 
It is desired to measure the extent to which the fluctuations in the con¬ 
struction of new dwelling units from city to city arc accounted for by the 
other three variables when related by a linear arithmetic regression. Infor¬ 
mation is also desired on the relative success of each independent variable 
in explaining the fluctuations in the construction of new dwelling units 
among these cities. In other words, assuming there is a causal relation¬ 
ship, to what extent did the median monthly rent, population per dwelling 
unit, and vacancy rate, singly or in combination with each other, affect the 
number of new dwelling units constructed per 1,000 population in each of 
these 31 cities in 1940? 

The estimating equation for this four-variable problem is 

Xi = a + 612X^2 + 613X3 + 614X4 

where Xi = number of new dwelling units constructed per 1,000 population 
X2 = median monthly rent 
X3 = population per occupied dwelling unit 
X4 = vacancy rate 

^ This was done by choosing a number at random from 1 to 3 and then selecting 

every third city from an alphabetized list of the 92 such cities. 
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For convenience, the period and the subscripts following the period are 
omitted in the net regression coefficients. Nevertheless, it should be 

understood that bn^ for instance, denotes the net regression of Xi on A'^2, 
i.e., holding constant the variables whose subscripts do not appear in the 
net regression coefficient, namely, Xz and X4. The other two net regres¬ 
sion coefficients are interpreted in a similar manner. 

In order to ascertain the values of the four unknown parameters in this 
equation—the value of a and of the three net regression coefficients—four 

equations in these parameters are required. According to the principle of 
least squares, it can be shown that the values of these parameters are 
derived from the simultaneous solution of the following four normal equa¬ 
tions:^ 

2A1 = No, -|- 6122A2 “f" -f- b.i^Xi 1 

SA,A2 = aSAa + br,XXl + + bu:^X,X, 

IX,Xz = alXz + 612SJ2A3 + bn'^Xl + b,,^XzX, 
XX,X, = a2:A4 + 6122X2X4 + 613SX3X4 + 6hSXJ 

The sum of the deviations of the X, observations from the regression 
line obtained in this manner will equal zero, and the sum of the squares of 
these deviations will never exceed the sum of the squares of the deviations 
from any other linear regression. 

As in the case of linear simple regression, one simultaneous equation 
may be eliminated by expressing each observation in terms of deviations 
from the mean values. We then have Xx, = Xx2 = Xxz = 2x4 = 0, 

which eliminates the first normal equation (since a, in deviation units, 
becomes equal to zero) as well as the first term on the right side of each of 
the other normal equations. This leaves three simultaneous equations in 
three unknowns 

2x1X2 = 6122x2 + 613SX2X3 + 614SX2X4 

2XjX3 = 6122X2X3 + 6132X3 + 6142X3X4 

2X1X4 = 6122.T2X4 + 6132X3X4 + 6142X4 

The value of a in original units is determined from the original first 

normal equation after the net regression coefficients have been computed 

u = Xi 612^^2 — bi^z — bi4X4 

The product sums required for the three, simultaneous equations are 
computed from the product sums in original units by the same type of 

1 For proof, see Appendix C. Note that these normal equations are obtainable by 

summing the estimating equation after multiplying through by 1, X2, X3, and X4, in turn. 

Alternately, these equations may be derived by making the substitutions indicated in 
footnote 2 on p. 347 in the normal equations for a third-degree arithmetic regression. 
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formula used in simple correlation. For example, 

^ XiXi = ^ XiXi 

i'sx.y 
N 

(2Xi)(2X4) 

N 

The computation of the sums and produce sums in original units is car¬ 
ried out in Table 61. Automatic checks are provided in this table by the 

columns containing X, which is the sum of the lour variables, f.e.. 

X = + Xf As + A4. 

Summing over all 31 observ^ations, we have 

XX = 2:Vi + XX. + XX-i + SA4 

which provides an automatic check for the sum. Now, if the above rela¬ 
tionship is multiplied by any one of the four variables, say, A"2, we have 
another identity 

SA2X ^ 2A2A1 + XXl + 2A2A3 + 2A2A4 

which provides an automatic check for all the cross-product terms involv¬ 
ing X2. In a similar way, automatic checks are provided by AVV, A'aA, 
A^A, for all cross-product terms involving A"i, A'a, or X4. However, it 
must be remembered that all cross-product terms involving a particular 
variable must be included in this check. For example, the terms A1A3 

and AVA3 must be included in cheeking the computations of A3 and X3X4 

even though the former terms had already been checked in connection with 
the Ai cross products and the A2 cross products, i.e., 

2A3A = SAjAg + 2A2A% -f 2A1 4- 2A3A4 

The product sums in deviation units are obtained from the work sheet 

shown in Table 62. This table contains the same system of automatic 
checks described above. 

Substituting the values of these product sums in the normal equations 

on page 352 results in the following set of equations from which the values 
of the net regression coefficients are to be derived: 

-207.537813 = l,076.5934846i2 - 5.5240676i3 + 29.8417526i4 

-5.404574 = -5.5240676i2 + 1.7205366i3 - 8.9588036i4 

35.799561 = 29.8417525i2 - 8.9588035i3 + 117.5539555x4 

The 5\s may be derived by the systematic elimination of unknowns from 
successive pairs of equations; this is the method used to derive the coeffi¬ 
cients of regression of the second-degree arithmetic curve in the example 



354 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Table 62. Computation op Product Sums for New-dwellino-construction 

Problem 

(1) 

Variable 

(2) 

ZXi 

(3) 

XXiXi 

(4) 
iZXMXXi) 

N 

(5) 

^XiXj 

Xi 127.92 
X, 807.49 -- - 

X, 111.72 

X, 125.99 — 

X 1,173.12 —_— 

Xf 837.8610 527.855690 310.005310 

x^x. 3,124.5306 3.332.068413 —207.537813 

X1X3 455.6026 461.007174 —5.404574 

XtXi — 555.6912 519.891639 35.799561 

x,x 4,973.6854 4,840.8229-16 132.862484 

Xi — 22,110.1451 21,033.551616 1,076.593484 

x,x. 2,904.5657 2,910.089767 -5.524067 

x^x. — 3,311.6374 3,281.795648 29.841752 
x,x — 31,450.8788 30,557.505444 893.373356 

XI 404.3450 402.624464 1.720536 
XjX, — 445.0929 454.051703 —8.958803 
x,x 4,209.6062 4,227.773108 —18.166908 

Xi 629.6017 512.047745 117.553955 
XtX 4,942.0232 4,767.786735 174.236465 

on page 327. However, where three or more equations are to be solved 
simultaneously, the so-called Doolittle rjiethod generally proves to be quicker 
and more convenient. The Doolittle method is essentially a neat tabular 
arrangement of the previous method. Because of its conciseness, the 
Doolittle method becomes progressively more preferable to the other method 
as the number of equations increases, and the reader who carries out multi¬ 
ple correlation studies is strongly advised to master this method, or one 
of its variations. A Retailed description of the Doolittle method as ap¬ 
plied to the solution of the present set of equations is given in Appendix B. 

References to the current literature on the Doolittle method and its 
variations will be found in the Bibliography.^ 

Regardless of the method used, the solution of these equations leads 
to the following regression line in deviation units: 

xi = -0.212503a:2 ~ 3.244307x3 + 0.111234x4 
' Those who know algebra may also use determinants to solve the equations. How¬ 

ever, with more than two equations, the use of determinants involves some very cumber¬ 

some computations. 
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The regression line may be expressed in original units by inserting the 
value of a, which is 

a = ^31 [127.92 + 6.212503(807.49) + 3.244307(1.11.72) 
- 0.111234(125.99)] = 20.901731 

so that 

X, = 20.901731 - 0.212503X2 - 3.244307X3 + 0.111234X4 

Apparently a city\s median monthly rent and its population per occu¬ 
pied dwelling unit are negatively related to the number of new dwelling 
units constructed per 1,000 popalutu)!:,- t.hereas the vacancy rate is posi¬ 
tively related to new construction. The higher is a city^s median monthly 
rent, the more compact is its population, and the lower is its vacancy rate, 
then the smaller is the expected number of new dwelling units constructed 
iii that particular city—at least on the basis of the present observations. 
Specifically, on the average the number of new dwellings constructed in 
any one of these cities increases by 2 units for each $10 drop in median 
monthly rent, by 3 units for each fewer person per occupied dwelling unit, 
and by 1.1 units for each 10 per cent increase in the vacancy rate. All 
these figures are net; i.e., the relationship between the dependent variable 
and each independent variable does not include the indirect effects of the 
other independent variables on the net regression coefficient. Thus, the 
additional construction of 2 dwellings for each $10 drop in median monthly 
rent is based on the maintenance of the same ratio of population to total 

dwelling units and of the same vacancy rate for all cities, thereby eliminat¬ 
ing any interacting influences of the latter two variables on the relationship 
between new dwellings constructed and the city^s median monthly rent. 

Having ascertained the (linear) relationship between new dwelling 
construction and the other three variables, the next step is to determine the 
degree of the relationship, the relative success of the independent variables 

in explaining the variation in new dwelling construction. As the measures 
of aggregate correlation, we have the coefficient of multiple correlation and the 
standard deviation of the regression line^ which fulfill the same function in 
multiple correlation as their like-sounding counterparts in simple correla¬ 
tion. The definitional expression for the standard deviation of regression 

Y{Y - YcY _ \^Y^- Y\ 
N \ N ' 

is reducible in a four-variable linear multiple correlation to the following 
computational form:^ 

SXi — {hi2l,XiX2 + bizXX\Xji + 6i4 2X1X4) 
" ■ AT 

^ The proof is given in Appendix C. 
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Substituting the computed values in this formula 

/310.005310 - [(~0.212503)(-207.537813) 
I + (~ 3.244307) (- 5.404574) + (O.'l 11234) (35.799561)] 

31 

310.005310 - 65.6186335044 
31 

= 2.8077466 or 2.81 

which indicates that two-thirds of the observations would be expected to 

lie within the range of the regression line plus and minus 2.81 dwelling units 
per 1,000 population. This is not much of an improvement over the stand¬ 
ard deviation of the dependent variable in the absence of regression, which 
is equal to or 3.16 dwelling units per 1,000 population. In 
other words, the introduction of the three independent variables has served 
to reduce the standard deviation of the new dwellings constructed per 1,000 
population in each of the 31 cities by 0.35 unit. This relatively small 
reduction in dispersion indicates that the degree of correlation between 
new dwelling construction and the independent variables cannot be very 

high. 
The definition of correlation, it is recalled, is the ratio of the variance 

explained by the regression to the total variance. In multiple linear corre¬ 
lation, this ratio is known as the coefficient of multiple determination and 
is denoted by the square root of this ratio, the coefficient of multiple 

correlation^ is the commonly employed measure of multiple correlation. 

(The corresponding measures in multiple curvilinear correlation are known 
as the index of multiple determination and the index of multiple correlation,) 

Expressed algebraically we have, since the explained variance is 1 minus 
the unexplained variance, 

(7^ 
Coefficient of multiple determination = 1 “ ^ 

hn^XiXt + bisllXiXz + 6142X10:4 

The second of these formulas is most convenient in the present case, as 
its numerator has already been computed in finding the standard deviation 
of regression. Therefore 

Coefficient of multiple determination = = 0.211669 
olli.UuoolU 

and 

Coefficient of multiple correlation = 0.46 

As in the case of simple correlation, adjustments must be made for the 
number of parameters in the regression equation. The formulas used are 
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the same as those on page 330 but with slightly different notation 

-1 -[ (1 - «.) (^)] 

where N is the number of observations, and m is the number of parameters 

in the regression equation. 

In the present problem, the regression equation contains four parame¬ 
ters—three coefficients of net regiessior* ar 1 one constant value, a. There¬ 
fore 

= 1 _ 1^(1 - 0.211(169) ~ = 0.124077 

R* = 0.35 

(7^* = 7.883441 = 8.759375 

= 2.96 

Thus, it appears that the multiple regression has succeeded in explain¬ 
ing only 12 per cent of the variance in new dwelling construction, which is 
not a very high proportion. In the aggregate, the observed relationship 
is not very close. However, this still does not tell us which independent 
variables are most closely related to the dependent variable, t.e., the 
influence of each of the three factors on the multiple relationship, as well as 
whether any strong intcrcorrclation effects between the independent vari¬ 
ables are concealed by the over-all relationsliip. If the contribution to the 
over-all correlation by one independent variable is in fact predominantly 
due to the indirect effects of the other independent variables, this variable 
may be eliminated front the multiple regression with little effect on the 
closeness of the relationship, thereby permitting the substitution of another, 
more relevant, independent variable. 

These questions are resolved with the aid of two new concepts, the 
partial or net correlation coefficients and the beta coefficients. In short, the 
partial correlation coefficients are the relative counterparts of the net 
regression coefficients, the 6’s; they measure the degree of correlation be¬ 
tween the dependent variable and each independent variable when the 
values of specified combinations of the other independent variables are held 
constant. In the case of the simple correlation coefficient rtj (where i and 
j represent the two variables being correlated), no restrictions are imposed 
on the values of all variables other than Xi and is therefore referred 
to in multiple correlation as the zero-order correlation coefficient^ there being 
as many such coefficients as there are different pairs of variables in the 
problem. If one independent variable is held constant in correlating two 
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other variables, the resulting coefficient is known as the first-order correla¬ 

tion coefiUcient. Correlating new dwelling construction with median 
monthly rent while keeping the vacancy rate at a constant level leads to 
ri2.4, which is one of the first-order correlation coefficients in the present 
problem. In a similar manner, a correlation between two variables while 
holding the values of two other variables constant is known as a second- 
order correlation coefficient. To correlate new dwelling construction with 
median monthly rent while holding vacancy rate and population per 
occupied dwelling unit constant leads to one of the second-order correlation 
coefficients in this problem, ri2.34. By extending these definitions, it is 
easily seen that a correlation between two variables holding n other vari¬ 
ables constant is an nth-order correlation coefficient 

The notation of partial correlation coefficients always follows the same 
principle; namely, the two variables being correlated ar?* identified by the 

subscripts of r before the period, and the variables held constant are identi¬ 
fied by the subscripts after the period. So long as the particular subscripts 
of r are on the correct side of the period, the order in which they are placed 

is of no consequence. For example, ri2.84 = ^21.34 == ^2.43 = ^21.43; how¬ 
ever, the usual practice among statisticians is to place the subscripts in 
ascending order. 

Now, exactly what is the difference between, say, ri2, ri2.4, and ri2.34? 
The difference is simply this: By placing no restrictions on the values of 

the vacancy rate (X4) or of population per dwelling unit (X3), the value of 

ri2 reflects the indirect correlation between new dwelling construction 
(Xi) and between vacancy rate (Z4) and population per dwelling unit 
(Xz) acting through median monthly rent (X2) as well as the direct corre¬ 
lation between the dependent variable and median monthly rent. In other 
words, the true degree of relationship between new dwelling construction 
and median monthly rent is distorted in the value of ri2 by the indirect 
effects of the other variables. The corresponding first-degree correlation 
coefficients, ri2.3 and ri2,4, alternately remove one of these indirect influ¬ 
ences. By keeping vacancy rate constant, 7*12.4 removes the adulterating 
effect of the relationship between vacancy rates and median monthly 
rent from the correlation between new dwelling construction and median 
monthly rent; however, the indirect effect of population per dwelling unit 
is still present. The reverse is true for ri2.3. Both of these interacting 
effects are removed when the second-order correlation coefficient ri2.34 is 
computed; this coefficient measures the direct relationship between new 
dwelling construction and median monthly rent when the possible indirect 

effects of both of the other independent variables are removed. Of course, 
this does not guarantee that the relationship between Xi and X2 may not 
be distorted by the influence of some other factor not considered in the 
multiple correlation. Statistical analysis can only isolate the direct and 
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indirect effects on a relationship of the variables being studied; the selec¬ 

tion of the relevant variables is up to the researcher. 
The distinction between the corresponding partial correlation coeffi¬ 

cients of different order is brought out in the definitional expressions for 
these coefficients. For example, the definition of ri4.2 in terms of its square 
(the coefficAent of partial determinaiion) is 

2 — va,riance explained by intioduction of Xa in regression equation 
total unexplained variance before introduction 

of Xa in regression equation 

which, in algebraic terms, is 

ri4.2 = 2:(Xi - 
- sxf, 

SXf - SXf.2 

where X1.2 represents the simple regression of Xy on X2, X1.24 represents the 
multiple regression of Xy on X2 and A%, and Xi is the mean value of the 
dependent variable. 

Higher order partial correlation coefficients are defined in a similar 
manner. Thus 

2 __ variance explained by introduction of X4 in regression equation 
total unexplained variance before introduction 

of Xa in regression equation 

^Ai.234 ^Xi.23 
XXI - SXf.23 

S(Xi,234 - Xi)*^ - 2(Xi.23 - Xi)2 
S(Xx -- Xi.23)2 

In the present problem the computation of the partial correlation coeffi¬ 
cients is best accomplished by expressing each coefficient in terms of the 
partial correlation coefficients of next lower order. This is done with the 
aid of the following formulas:^ 

ri2 = 
XX1X2 

ri2.3 = 

ri2.34 == 

V(sxf)(sxi) 

_ri2 ~~ ^13^23_ 

V{1 - rfaXl - 4)) 

ri2.3 ~ ^24.3^14.3 

\/(l — r24.3)(l ^"14.3) 

ri2.4 ~ ^23.4^13.4 

V(1 - r^3.4)(l - ria.i) 

r-ii = -- 
V(Sx?)(s4) 

Tjj ^ TikVjk 

rtj.ki 

V(1 - 4)(1 - rjt) 

rtj.k - rji.„ru.i 

\/(i - 4.t)(l - »«.i) 

Tjj.i ~ rjk.l'l'ik.l 

Vl - rju){l - 4..) 

The formulas for computing ri2, ri2.3, and ri2.34 are on the left-hand side 
of the page, and the formulas for the general case, ^.e., for computing any 

^ A derivation is given in Appendix C, 
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Table 63. Computation op Partial Correlation 

Notation Direction X? XiX, 

'SXiXj Copy from Tabic 62. 310.005310 -207.637813 -5.404574 

(Zx5)(S7“) 

* 
1 — Uj 

Place product of and Sxy from 
line 1 under appropriate . 

Square root of line 2 . 

333,749.696751400040 

677.71073796 
533.375296046160 
23.09491036 

Line 1 divided by line 3. -0.35924 -0.23402 
Line 4 equared.' 0.129053 0.054765 
1 — line 5. 0.870947 0.945235 

Line Notation Direction 

1 

rii.s ri2.4 ria.s 

7 riiTii Place cross products of line 4 
under appropriate ri,-,. 0.030036 0.016730 0.046108 

8 rii - riiTii Appropriate fit of line 4 — line 7 -0.389276 -0.374970 -0.280128 
0 (l-rf,)(l-r?,) Cross products of line 6. 0.929663108610 0.958044435012 0.856599019122 

10 Square root of line 9. 0.964190 0.978797 0.925526 
11 ’•u-.i Line 8 divided by line 10. -0.40373 -0.38309 -0.30267 
12 ru.i Line 11 squared . 0.162998 0.146758 0.091609 
13 1 - ru.i 1 — line 12 squared. 0.837002 0.S63242 0.908391 

Line Notation Direction 

14 rik.jrtk.i Place cross products of line 11 under appropriate ru.jk. 
15 r\i j — rik.fik.i Appropriate ri,., of line 11 — line 14. 
16 (1 - r?..,)(l - rl,) Cross products of line 13. 

17 Va - r?».,)(l - ri,) S<iuare root of line 16. 
18 rii.jk Line 15 divided by line 17. 

zero-order, first-order, or second-order partial correlation coefficients, are 
on the right-hand side. Note that two different forms may be used to 
compute the second-order partial correlation coefficients. 

In a four-variable problem, the partial correlation coefficients do not 
go beyond the second order. In general, the highest order partial corre¬ 
lation coefficients in any problem are two less than the number of variables. 
A partial correlation coefficient of any order may be computed in the same 
manner as above. For example, to compute the fifth-order partial corre¬ 
lation coefficient, ri3.24667, we might use 

— ^3.4567 ~ r23.4567ri2.4567 

13.24667 ^(1 _ ri3.4667)(l “ r?2.4867) 

or any one of four other forms. 
The computation of the partial correlation coefficients in the present 

problem is performed in the work-sheet form of Table 63. A systematic 
arrangement like that employed in Table 63 is extremely useful in long 
computations. The main purpose of this table is to ascertain the different 
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Coefficients for New-dwelling-construction Problem 

X1X4 n CO 

N
 

X
 X

 
X

 

35.799561 

36,442.350261501050 

190.89879586 
0.18753 
0.035167 
0.964833 

1,076.593484 -5.524067 ! 

1,852.317846587424 
43.03856232 

-0.12135 
0.016474 
0.983526 

29.841752 

126,557.821971429220 
355.74966194 

0.08388 

0.007036 
0.992964 

1,720536 -8.958803 

202.255811519880 

14.22166697 
-0.62994 

0.396824 
0.603176 

117.553956 

. 

ri3.4 

-0.118133 
-0.115887 

.•.581964109608 

0.762866 
-0.15191 

0.023077 
0.976923 

ri4.2 

-0.030133 
0.217663 

0.864819016908 

0.929957 
0.23406 
0.054784 
0.945216 

ri4.» 

0.147419 
0.040111 

0.570143066360 

0.755078 

0.05312 
0.002822 
0.997178 

' * rn.A 

-0.052839 
-0.075511 

0.598932053664 

0.773907 

-0.09757 
0.009520 
0.990480 

r24.8 

0.080853 
0.003027 

0.593239278576 

0.770220 

0.00393 
0.000015 
0.999985 

r34.2 

-0.010766 
-0.619174 

0.976605911064 

0.988234 

-0.62655 
0.392565 
0.607435 

ntM 113.24 ri4.23 

0.000209 -0.146650 0.189638 

-0.403939 -0.156020 0.044422 

0.997163042330 0.574157280960 0.551788487085 

0.998680 0.757732 0.742825 
-0.4045 -0.2059 0.0598 

order correlation coefficients between the dependent variable and each of 
the independent variables. Although such partial correlation coefficients 
as r23 and r34.2 were computed primarily because of their presence in higher 
order partial correlation coefficients involving the dependent variable, we 
shall sec that they are also useful in examining the interactions between 

the independent variables. 
For convenience, the results of these computations are summarized in 

Table 64. 
This table provides some very interesting illumination on the relation¬ 

ships between the variables. For one thing, the zero-order correlation 
coefficients of new dwelling construction with median monthly rent and 
population per dwelling unit, in turn, apparently do provide close approxi¬ 
mations to the true relationship between each of these independent varia¬ 
bles and the dependent variable. In other words, in each case the indirect 
or interaction effects of the other two independent variables on the rela¬ 
tionship is nearly negligible. On the other hand, the first-order correlation 
between new dwelling construction and vacancy rate is seen to be mislead¬ 
ingly high, the true correlation being very close to zero. 
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Table 64. Partial Correlation Coefficients in 

Dwellino-construction Problem 

Order of 
correlation 

coefficient 

Correlation between Xi and 

X, ^4 

Zero order. ri2 = — 0.36 r,3 = - 0.23 ri4 == 0.19 

First order. ri2.3 = - 0.40 ra.i = - 0.30 ri4.2 = 0.23 

ri2.4 = ~ 0.38 ri3.4 = — 0.15 n4.3 = 0.05 
Second order. ri2.34 = - 0.40 II 1 0

 
iss

 

ri4.23 = 0.06 

Order of 
correlation 

coefficient 

Correlation between and Correlation 
between 

Xsand Y4 Xa X4 

Zero order. r23 = - 0.13 
rn.i = — 0.10 

^24 = 0.08 
>*24.3 = 0.004 

ra. = -- 0.63 
>*34.2 = — 0.63 First order. 

These facts could be foreseen by studying the partial correlation coeffi¬ 
cients between the independent variables. For example, both rn and r^A 
are very small; therefore to hold either Xz or Xa constant in correlating Xi 
with Xz cannot have much effect on the value of this relationship. On the 
other hand, a relatively strong correlation exists between Xz and A% 
{rzA = — 0.63). Holding the value of .Y3 or of ^4 constant and removing this 
interaction effect from the correlafions between Xi and .Y4 and between Yi 
and Y3, respectively, reduces their values from ri3 = — 0.23 to ri3.4 = — 0.15 
and from = 0.19 to ri4.3 = 0.05. Thus, the observed relationship 
between new dwelling construction and vacancy rate is seen to be largely 
spurious, owing to the interacting effect of the correlation between vacancy 
rate and population per dwelling unit. 

The fact that strong interacting effects are generally revealed by the 
zero-order correlation coefficients between the independent variables pro¬ 
vides a very useful way of eliminating the variables responsible for such 
effects before performing any regression computations (especially when the 
problem contains only three or four variables). All that is required is a 
set of scatter diagrams between each pair of independent variables in 

addition to the customary scatter diagrams between the dependent variable 
and each of the independent variables. If two independent variables 
appear to be strongly correlated, one of the variables is omitted from the 
subsequent analysis, usually the variable that appears to be least corre¬ 
lated with the dependent variable. 

The scatter diagrams of the dwelling-construction problem are pre¬ 
sented in Fig. 28. As in the foregoing table, Xz and Y4 appear to be fairly 
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closely related; they are easily more related to each other than to the de¬ 

pendent variable. However, in the present case it is difficult to determine 
from the scatter diagrams which of these two independent variables is least 
related with Xi. The answer is obtained by computing the zero-order 
correlation coefficients, ria and r^, a process that would lead to the elimina¬ 
tion of Xa from the regression analysis.' 

The greater is the relationship between two independent variables, the 
more desirable it is to eliminate one of them from the regression analysis. 
This is because only one of these variables can make any appreciable con¬ 
tribution to the over-all rehitior.^hip;,‘!.iie net effect of the other variable is 
likely to be negligibly small or even negative, i.e., it may reduce the value 
of the coefficient of multiple correlation. The reason for this is that the 
influence each independent variable exerts on the multiple correlation 
coefficient may be direct or indirect. Direct influence is exerted, as 

explained before, when an independent variable affects the multiple rela¬ 
tionship solely through its own variation. Indirect, or joint, effects arise 
when some of the variation in the dependent variable is explained by the 

coordinated, or interacting, influence of several independent variables. 
The net effect of an independent variable on the multiple relationship is the 
sum of its direct effect and of its various indirect effects. The aggregate 
net effect of all the independent variables is the coefficient of multiple 
determination. 

The direct effect of an independent variable on the multiple correlation 
coefficient is never negative. At worst, when the independent variable is 
totally unrelated to the dependent variable (vu = 0), its direct effect will 
be zero. On the other hand, the indirect effects of an independent variable 
may be positive or negative depending on whether the variable acts in 
conjunction with each of the other independent variables to increase or 
decrease the over-all relationship. Consecpiently, the net effect of an 
independent variable on the multiple correlation may be negative as well 
as positive. A negative net effect signifies that the particular independent 
variable is acting to reduce the over-all relationship; in such a case the 
correlation would be improved by dropping that particular variable. 

These various direct and indirect effects are measurable with the aid of 
the coefficients. In essence, the coefficients are the regression coeffi¬ 
cients transposed to standard, comparable units. For example, 612.34 is 

in terms of new dwelling units per dollar of monthly rent whereas 614.23 is 

' Some statisticians prefer to supplement the preparation of scatter diagrams with 

the computation of the partial correlation coefficients before the regression computa¬ 

tions are begun. This is possible since it will be noticed that the partial correlation 
formulas do not require a prior knowledge of the values of the regression coefficients. 
In this way, they are able to determine which variables arc of the greatest value in 

explaining the variations in the dependent variable. 
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in terms of new dwelling units per 1 per cent vacancy rate; the two coeffi¬ 

cients are not comparable. But if 612.34 is multiplied by the ratio of the 
standard deviation of to the standard deviation of Xi((72/o'i), and if 
614.23 is multiplied by the ratio of the standard deviation of to that of 
Xi (<r4/o'i), abstract, directly comparable, regression coefficients are 
obtained. These ^^standardized’^ regression coefficients are denoted by 
/3^s instead of 6\s, and are therefore known as the coefficients. Thus, 
fiu.u = 612.34 (<^2/0-1), or = 6i2.34(VSxl/Sxi). The general formula for the 
jS coefficient corresponding to any net regression coefficient is 

/3h = 6u- = 6.i ai \ Ixi 

The three 0 coefficients for this problem are computed in the first six 
lines of Table 65. p]xpressed in terms of the fi'a (and in terms of deviations 
from the mean values), our regression equation beccmes 

Xi = -0.396010a:2 - 0.241696x3 + 0.068497x4 

The great value of these coefficients is that, unlike the 6 coefficients, 
the effect of each variable on the dependent variable is indicated by the 
relative size of its regression coefficient. For example, in the present 
problem, median monthly rent is seen to have a greater effect on new 
dwelling construction than both population per dwelling unit and vacancy 
rate combined. Vacancy rate has the least effect, less than one-third that 
of population per dwelling unit and about one-sixth that of median monthly 

rent. Now, the square of the 0 coefficient of each independent variable 
represents the direct effect or contribution of that variable to the coefficient 
of multiple determination. For instance, median monthly rent directly 
contributes ( — 0.39601)^, or 0.3592, unit to the value of the coefficient of 
multiple determination. The indirect, or joint, effects of any two vari¬ 
ables, say, Xi and are measured by the cross-product term, 

the term is multiplied by 2 because the joint effect of Xi with X^ on the 
dependent variable is obviously identical with the joint effect of Xj with 
Xi on Xi, Thus, the joint effect of median monthly rent and vacancy rate 
on the multiple correlation is 

2ft2i8i4r24 = 2(~ 0.396010) (0.068497) (0.08388) = -0.00455; 

i.6., this particular joint effect serves to reduce the value of the coefficient 
of multiple determination by 0.00455 unit. 

It follows from the above that the coefficient of multiple determination 
may be expressed as the sum of the direct effects of the independent vari¬ 
ables and the sum of their indirect effects 

1.234 = direct effects + indirect effects 

= (^12 "H ^13 “h ^14) “f* (2^12^13^23 + 2^12^14^21 + 
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The direct and indirect numerical effects of each independent variable 
are determinable by computing and analyzing these various terms. Thus, 
the direct effect of vacancy rate is ^4] its indirect effect is 

012^1*^24 + i3l3^ 14^34. 

The net effect of vacancy rate is the sum of these three terms, and the 
greater is the sum, the more beneficial is vacancy rate in explaining the 
variation in new dwelling construction. The net relative influence of the 

three independent variables is determined by comparing these sums of 
their direct and indirect effects. 

The computation of these various effects is shown in Table 65. The 
results are then transferred to Table 66. 

Table 66. Direct and Indirect Effects of the Independent Variables 

ON THE Multiple Correlation 

Effect 

Median 
monthly 

rent 

X2 

Population per 
occupied 

dwelling unit 

Xz 

Vacancy 

rate 

Xt 
Total 

Direct. 0.156824 0.058417 0.004692 0.219933 

Indirect 
X2 and Xa. —0.012285 -0.012285 -0.024570 
X2 and X4. -0.002275 -0.002275 -0.004550 

Xji and Xi. 0.010429 0.010429 0.020858 

Total indirect. -0.014560 -0.001856 0.008154 -0.008262 

Net effect. 0.142264 0.056561 0.012846 0.211671* 

* Diflference of 0.000002 between this value and value of /?* on p. 350 is duo to errors in rounding. 

A number of very interesting facts are brought out by this table. For one 
thing, median monthly rent contributes about two-thirds of the value of 
the coefficient of multiple determination, whereas the net effect of vacancy 
rate on the multiple correlation is almost negligible. Percentagewise, we 
have the following net relative effect of each independent variable: median 
monthly rent, 67 per cent; population per dwelling unit, 27 per cent; and 

vacancy rate, 6 per cent. Therefore, for all. practical purposes, vacancy 
rate is of no consequence in influencing new dwelling construction and may 
be omitted from the regression with negligible effect on the multiple corre¬ 
lation. 

For another thing, although the indirect effects are negligibly small in 
the aggregate, they are not so small for each separate variable. The indi¬ 
rect effect of vacancy rate acting through population per dwelling unit is 
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more than twice as large as the direct effect of vacancy rate on the multiple 
correlation. In other words, the main effect of vacancy rate on new 
dwelling construction, little as it may be, is not direct but rather through its 
interacting influence on population per dwelling unit; this is in striking con¬ 
trast to the negligibly small interacting effect of vacancy rate and median 
monthly rent on the multiple correlation. Note also the relatively large 
negative indirect effect of median monthly rent and population per dwelling 
unit on the multiple correlation. Foitunately, this large negative effect is 
nullified in the case of population per dw(‘lling unit by the positive inter¬ 
acting effect of the latter variabae wit!» v xancy rate. 

We have now completed our analysis of this foar-variable multiple cor¬ 
relation problem as well a3 our survey of the mathematical methods and 
formulas used in multiple correlation analysis. Modifications in these 
methods necessitated by the use of sampling to obtain the data are con¬ 
sidered in the following chapter. 

The procedure in an actual problem of the type considered above would 
be somewhat different than that followed on the foregoing pages, which was 

a procedure designed primarily to explain the meaning and significance of 
the various multiple correlation concepts rather than to expedite the com¬ 
putations or facilitate the analysis. The first step in most actual problems 
is to plot the data in a series of scatter diagrams, like those shown in Fig. 28. 
In this way, variables that are wholly unrelated to the dependent variable, 
and variables that are very closely related to other independent variables, 
may be eliminated from further consideration. In intermediate cases, any 
doubts as to the utility of a particular variable may be resolved by comput¬ 
ing the partial correlation coefficients. The derivation of the net regres¬ 
sion coefficients through the simultaneous solution of normal equations is 
the next step. Actually, procedures vary a great deal in this respect, 
depending primarily on the object of the problem and of the regression 
analysis. If the object of the problem is such that the net regression coeffi¬ 
cients are desired in original units, the procedure presented in the preceding 
pages is most direct and will yield the most accurate values of the b^s. If 
the net regression coefficients are required to be in standardized comparable 
units, the most efficient procedure is to substitute the zero-order correlation 
coefficients for the product sums. The solution of the resultant set of 
equations is the coefficients. Equations are as follows for four variables:^ 

Ti2 = Pl2 + r2Si8l3 + ^24)814 

Tiz = r^sPn + P12 + ^84^14 

ri4 = ^24)812 + rziPiz +PiA 

On the other hand, if a number of regressions are desired with the same 
variables, but each regression with a different dependent variable, a dif- 

‘ A derivation is given in Appendix C. 



STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Scatter Diagrams For Housing Regression Problem 
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ferent method altogether is employed. The Bibliography contains some 
of the foremost references on these various methods. 

Following the solution of the normal equations, the statistical calcula¬ 
tions are completed with the computation of the multiple and partial 
correlation coefficients, the standard error of regression, and the relative 
contribution of each variable to the multiple correlation (Table 66). Of 
course, not all multiple correlation problems are of the type described 
above, in which a complete analysis was performed. Some problems are 

concerned exclusively with the measurement of the interrelationships 
between a number of variables. In such cases, the solution of simultaneous 
equations and operations involving the net regression coefficients are 
superfluous, as the entire analysis may be carried out by computing the 
partial correlation coefficients. In other instances, the sole object of the 
sualysis may be to obtain an estimating or forecasting equation with 

certain given variables, the relative utility of each variable being de¬ 
termined with the aid of the cross products; the partial correlation 
computations may then be foregone. Which correlation measures to 

compute in a particular problem depends entirely upon the conditions 
and object of the problem and upon the discretion of the researcher. 

Multiple correlation problems involving a number of variables other 
than four are handled in the same manner as a four-variable problem, the 
only differences being in the changing number of terms in some of the 
formulas and in the complexity of calculation. For example, a six-variable 
problem will require the solution of five simultaneous normal equations 

for a like number of net regression coefficients, the summation of five 
terms to obtain Zxic, and the derivation of partial correlation coefficients 
up to the fourth order. All these additional terms are easily obtained 
because of the inherent symmetry in the multiple correlation. Thus, 
the five normal equations are essentially extensions of the three equations 
in the four-variable case 

+ bi^Xx2X^ + 6162x2X6 

-f- 6152X3X5 6162X3X5 

+ 6152x4X5 + 6162x4X6 

2x1X5 = 6122x2X5 + 6132x3X5 + 6142x4X5 + 6152x5 + 6162x5X6 

2X]X6 = 6122X2X6 + 6132X3X6 + 6142X4X6 + 6152X5X6 + 6i62X6 

2X1X2 = 6122X2 + 6132X2X3 + 6142X2X4 

2Xi.T3 = 6122X2X3 + 6132X3 + 6142X3X4 

2X1X4 = 6122X2X4 + 6132X3X4 + 6142X4 

Note that the three equations within the rectangle are those used in a 
four-variable problem. In a similar manner, the sum of the squares of 
the observations from a six-variable regression is 

2x?o = 6122x1X2 + 6132x1X3 + 6142x1X4 + 6152X1X5 + 6i62XiX6 

the first three terms on the right-hand side being the sums of squares of 
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the observations from a four-variable regression. The partial correlation 

formulas for a six-variable problem are the same as those given on page 
359; for a fourth-order partial correlation coefficient, they are extended by 
two additional subscripts after the period. Multiple correlation problems 

with other numbers of variables are treated in a similar fashion. 

2. THE GRAPHIC METHOD 

Graphic multiple correlation is an extension of the graphic method of 
simple correlation. The latter, it will be recalled (see page 307), consists 
of drawing a freehand line to fit the relationship observed when the data 
were plotted on a scatter diagram. Only one scatter diagram was required 
to detect the pattern of the relationship, since but two variables are in¬ 
volved in simple correlation problems. However, one such two-dimensional 
diagram is no longer adequate when the relationship betw'cen more than 

two variables is sought. Furthermore, in analytical work of this sort, 
one is restricted to two dimensions. Of course, three-dimensional diagrams 
could be constructed, either on paper or as a scale model, that would 

describe the relationship between three variables simultaneously, but the 
difficulties of construction do not render these models very practical. And 
then, what if there are more than three variables? 

This dilemma is resolved in practice through the use of as many 
separate two-dimensional scatter diagrams as there are independent 
variables in the problem; each scatter diagram pictures the relationship 

between the dependent variable and a different independent variable. 
For purposes of graphic analysis, the scale for the dependent variable on 
all scatter diagrams beyond the first one is in terms of deviations from a 
freehand regression line. 

The graphic method proceeds as follows: The values of the dependent 
variable Xi are plotted against the corresponding values of the first 
independent variable X2, and a freehand line or curve is fitted to the 
resultant relationship. The deviations of the actual observations of Xi 
from this freehand curve are plotted against the corresponding actual 
values of the independent variable X3 in a second scatter diagram; a free¬ 
hand curve is drawn to describe this relationship. The deviations from 
this second freehand curve are plotted against the corresponding actual 
values of the next independent variable X^ in a third scatter diagram, and 
a new freehand curve is drawn. This process, of plotting the deviations 
from the freehand curves against the values of the next independent 
variable and fitting a new freehand curve, continues until all the inde¬ 
pendent variables have been plotted on such scatter diagrams. 

In actual practice, two operational “tricks” are generally employed to 
increase the accuracy of the graphic method. One device is first to 
correlate the dependent variable with those independent variables with 
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which it appears to be most closely correlated. This procedure tends to 
clarify the relationships between the dependent variable and the least 
correlated independent variables by removing, to some extent, the in¬ 
direct influences of the more highly correlated independent variables on 
these relationships. The other device is to arrive at the regression line 

between the dependent variable and any independent variable by fitting 
preliminary lines to groups of observatioi^s for which the values of the 
other independent variables are’more or less constant. Essentially, this 

is the graphic counterpart of estimating the values (slopes) of the net 
regression coefficients. The slope of the final regression line for the par¬ 
ticular independent variable is deteimined as an average of the slopes of 
these pndiminary lines. 

For illustrative purposes, let us apply the graphic method to the 
construction data of the preceding section. As in the mathematical 

example, only linear n^gression lines will be employed. No new principles 
arc involved in fitting curved lines to the observed relationships, although 
the additional complication then appears of judging the correct type and 

curvature of the fitted lines. 
The basic data for the problem are given in the first five columns of 

Table 61 and scatter diagrams of the relationship between the dependent 
variable and each of the independent variables are contained in Fig. 28; 
for purposes of identification, the observations (cities) have been numbered 
from 1 to 31. From Fig. 28, Xi is seen to be most highly correlated with 
.Y2, then with X3, and then with X4. (By hindsight, this is already known 

from the computation of the simple correlation coefficients.) Hence, 
the first relationship to be approximated is that between Xi and X2. 

In order to estimate the relationship between Xi and X2, preliminary 
lines are to be fitted to those sets of observations which have about the 
same values for the other independent variables Xz and ^^4. Three such 
sets may be distinguished. (Actually, the number of sets into which the 
observations are grouped is arbitrary, depending on the number and 
type of data, though as a general rule the utilization of more than four 
sets becomes rather cumbersome.) The first set contains those cities 

whose vacancy rate (X4) exceeds 5 per cent, and whose population per 
dwelling unit (Xz) is less than 3.5.^ The reader can verify on page 350 
that this set contains nine observations—numbers 1, 10, 13, 14, 18, 19, 21, 

23, 24. The Xi and X2 values of these observations are plotted as circles 
on Fig. 29, and their trend is approximated by the line IIH. Next are 
selected those cities whose vacancy rate is less than 3 per cent and whose 
population per dwelling unit exceeds 3.7; these are observations 2, 9,11, 22, 
25, 30, 31. These observations are plotted as squares in Fig. 29, and line 
LL is drawn to describe their trend. The third group is an intermediate 

1 Note from Fig. 28 that Xs and X4 are negatively correlated. 
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Fia. 29. First approximation to net regression of new dv elHug units per 1,000 population 
(^i) on median monthly rent (X2). 

set consisting of those cities whose vacancy rate is between 3 and 5 per 
cent and whose population per dwelling unit is between 3.5 and 3.8, or 
nearly so. These 10 observations (numbers 3, 5, 6, 8, 12, 16, 17, 27, 28, 
and 29) are plotted as crosses on Fig. 29 and line MM is drawn to fit 
their trend. 

The remaining, unclassified observations (five in all) are now plotted 
as black dots on Fig. 29, and an over-all line of relationship is drawn in 
as an approximate average of the three preliminary slopes and with due 
regard to the unclassified observations. The position of this over-all 
line is automatically fixed, because all multiple regressions determined by 
the least-squares principle must intersect the mean values of the variables. 
Hence, in the present case, we know that the regression line must pass 

X3 
Fio. 30. First approximation to net regression of new dwelling units per 1,000 population 

(Xi) on population per occupied dwelling unit (Xs). 
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through the point Xi = 4.16, X2 = 26.05, indicated by the filled-in 
square in Fig. 29. This leaves only the slope of the line to be determined. 
The heavy black line in Fig. 29 represents the first approximation to the 
net regression between Xi and X2. 

The relationship between Xi and Xz is next determined in Fig. 30. 
Note that the vertical (Xi) scale of this chart is in deviation units, 
vertical deviations from the regrfjssion line of Fig. 29. The deviation of 
each observation from this regression line is plotted in Fig. 30 against its 

value of X3. For example, cit}^ 13 is about 3.7 units below the regression 
line in Fig. 29. From page 350 :cs valne c f Xz is 3.27; hence, its coordinates 
in Fig. 30 are —3.7, 3.27. The vertical axis of Fig. 30 is labeled Xi — 612X2 

because the influence of X2 is taken into account by these deviation units. 
As in Fig. 29, the observations are grouped into three sets, only this 

.inie the grouping is based solely on the value of X^. The same demarca¬ 
tions as used before with X4 are employed. First are plotted the deviation 
and X3 values for those cities whose vacancy rate exceeds 5 per cent, 
and an approximate line of relationship {Il'H' on Fig. 30) is drawn. The 

deviations and X3 values for those cities whose vacancy rate is less than 
3 per cent are next plotted (as squares), and approximate line L'L' is 
drawn. The cities with intermediate vacancy rates are then plotted (as 
crosses), and a third line, M'M\ is drawn to fit their trend. The final 
regression approximation, the heavy black line, is a rough average of the 
slopes of the three preliminary lines and passes through the mean point 

of the two variables, namely, 0, 3,60. 
The net regression between Xi and A"4 is estimated in Fig. 31. Here 

again, the vertical scale is in deviation units; it is labeled Xi — 612X2 — 613X3 

Fig. 31. First approximation to net regression of new dwelling units per 1,000 population 
(Xi) on per cent of total dwelling units vacant (X4). 
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to indicate the fact that the influences of and of Xz on the dependent 

variable have already been considered. The vertical coordinate of each 
point in Fig. 31 is the deviation of that particular observation from the 
net regression line of Fig. 30; the horizontal coordinate is its value of X4. 
For example, to plot observation 13 on Fig. 31, we note from Fig. 30 that 
it is about 4.9 units below the regression line; from page 350 the X4 value 
of this observation is 8.30. Hence, it is plotted in Fig. 31 4.9 units below 
the zero line and 8.3 units to the right. The other 30 observations are 
plotted in this chart in the same manner. There is no longer any purpose 
to grouping the observations, as the influence of both of the other in¬ 
dependent variables on the multiple relationship have been taken into ac- 

Fig. 32. Second approximation to net regression of new dwelling units per 1,000 population 
(ATi) on median monthly rent (.X"*). 

count. The very slight positive relationship that appears on this chart is 
approximated by the heavy black line; once again, this line passes through 
the mean values of the two variables, t.e., zero and X4 = 4.06. 

The previous two net regression lines now must be verified. In the 
case of X2, this is accomplished in Fig. 32, which has the same scales as 
Fig. 29. First, the over-all regression line from Fig. 29 is transposed to 
Fig. 32. Then the deviation of each observation from the regression line 
in Fig. 31 is plotted from the regression line in Fig. 32 against its X2 

value. If the net regression line for X2 is a good fit, the observations 
will be grouped more or less equally on both sides of the line as they are 
in Fig. 29. If such were not the case, the regression line would have 
to be adjusted. 

In the present case, no adjustment appears to be necessary as the 
position of the observations has changed but slightly from their position 
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in Fig. 29. There remains to be checked, therefore, the net regression 

line for X3. This is done in the same manner as for Z2. Fig. 33 is con¬ 
structed with the same coordinate scales as Fig. 30, and the net regression 
line from the latter chart is transposed to the present chart. The vertical 
deviation of each observation from the regression line in Fig. 32 is plotted 
from the regression line in Fig. 33 against its Xz values. The manner in 
which the observations are then grouped about the regression line indicates 
its adequacy. As in the previous chart, no change in the slope of the 
regression line appears necessary; although only 13 of the 31 observations 
are above the regression line, these ^3 observations appear to deviate 
more widely from the line than the other 18 observations. 

2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 

X3 
Fia. 33. Second approximation to net regression of new dwelling units per 1,000 population 

(Xi) on population per occupied dwelling unit (Jra). 

Had adjustments in any of the regression lines been required, the 
procedure would have had to be continued until two consecutive charts 
were obtained that did not require any changes. As it is, the chart¬ 
drawing part of the problem is now completed, and the last three charts 
are taken to indicate the true relationships—Fig. 31 for the net regression 
with X4, Fig. 32 for the net regression with ^^2, and Fig. 33 for the net 
regression with A3. From these charts, the net regression coefficients are 
determined as the slopes of the respective lines. Thus, from Fig. 31 it 
may be observed that the regression line increases by 0.4 unit as X4 goes 
from 0 to 4, so that the net regression coefficient of Xi on A4 (614.23) is 

0.4/4, or 0.10. In a similar manner, from Fig. 32, 

^ _ 2-6.6 _ -4.6 
35 - 16 19 

-0.24 
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and, from Fig. 33, 
^ _ -0.8 - 2.4 
&13.24 3 g __ 2 95 

The final regression equation is 

Xi = —0.24x2 — 

On the whole, these results coincide very well with the figur(»s obtained 
by the mathematical method (page 354). 

If desired, the standard deviation of regression and the coefficient of 
multiple correlation may be obtained from the graphic results. The 
procedure involves estimating the regression (Xi) value of each observa¬ 
tion, substracting this estimate from the actual value, squaring and sum¬ 
ming these differences, and dividing by the num'oer of observations. The 
reader will recall that this is, in effect, the definiticn of the standard 
deviation of regression 

- XO^ 
N 

The coefficient of multiple determination is then calculated as 1 
minus the ratio of the variance of regression to the computed variance of 
the dependent variable. 

The calculations are shown in Table 67. The regression values 
corresponding to each observation are read off in turn from Figs. 32, 33, 
and 31, and are placed in Cols. (2), (3), and (4) of the table.^ The sum of 
the three regression values for each observation, placed in Col. (5), 
represents the regression estimate of X, for that particular observation 
(city). Thus, the regression estimates for observation 13 are 4.52 from 
Fig. 32, 1.20 from Fig. 33, and 0.43 from Fig. 31. The sum 6.15 is the 
regression estimate of new dwelling units per 1,000 population. 

The differences between the actual values of Xi [Col. (6)] and the 
regression estimates are computed in Col. (7) and are squared in Col. (8). 
The sum of these squares divided by the number of observations is the 
variance of regression, and is computed at the bottom of the table together 
with the coefficient of multiple correlation. 

The fact that the results coincide almost perfectly with the (un¬ 
adjusted)^ figures obtained by the mathematical method is a sheer accident. 
The graphic method does not usually yield such precise results even 

‘ Actually, it is quicker to read off all the regression values for one variable (chart) 
and then go on to the following variables (charts). 

* In actual practice, the computed values of /? and of would be adjusted for the 

number of parameters in the regression, with the aid of the formulas on p. 357. In the 
graphic case, the number of parameters is determined by inspecting the number of 
bends in the regression curves. When straight lines are fitted to the data, as in this 

problem, there is one parameter for each independent variable plus an extra parameter 
to account for the fact that all the lines pass through the mean value of the four series. 

3.2 
’0.85 

= -3.7 

- 3.7x3 + 0.10x4 
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Tahi.k 67. Computation of Standard Deviation of Regression for 

Graphic Correlation Problem 

Number 

Interpolated digression values 
for given values of 

Yi X. - A-,' (A, - A,')« 

,v., 1 -Y4 

(1) {2) i 
1 

(3) (4) (3) (6) (7) (8) 

1 2.35 0.58 0.20 3.13 2.98 -0.15 0.0225 
2 6.80 -0 55 -0.13* ‘ ^ 6.12 7.51 1.39 l.<)321 

3 3.73 -0.76 -O.Ol 2.06 0.22 -2.74 7.5076 

4 3.55 -0.35 -0.21 2.99 3.15 0.16 0.0256 
5 2.60 0.02 0.00 2.62 0.98 -1.64 2.6896 

6 3.65 -0.25 -0.01 3.39 7.50 4.11 16.8921 

7 4.00 1.00 0.02 5.02 8.03 3.01 9.0601 
8 4.22 -0.17 -0.02 4.03 2.62 -1.41 1.9881 
\) 6.20 -1.03 -0.23 4.94 2.74 -2.20 4.8400 

10 5.78 0.58 0.10 6.46 7.51 1.05 1.1025 

11 2.52 -0.63 1.70 5.36 3.66 13.3956 
12 5.90 -0.82 -0.03 5.05 10.13 5.08 25.8064 

13 4.52 1.20 0.43 6.15 0.80 -5.35 28.6225 

14 3.15 2.03 0.27 5.45 10.93 5.48 30.0304 
15 6.55 -0.05 -0.12 6.38 7.21 0.83 0.6889 

16 2.75 0.55 -0.04 3.26 2.54 -0.72 0.5184 

17 6.03 0.00 -0.06 5.97 3.91 -2.06 4.2436 

18 1.22 -0.20 0.38 1.40 4.96 3.56 12.6736 
U) 4.98 0.58 0.40 5.96 5.19 -0.77 0.5929 

20 2.20 0.55 -0.11 2.64 2.62 -0.02 0.0004 

21 4.60 2.27 0.20 7.07 5.78 -1.29 1.6641 
22 4.98 -0.76 -0.10 4.12 3.19 -0.93 0.8649 

23 4.90 0.43 0.24 5.57 1.63 -3.94 15.5236 

24 6.40 -1.00 0.17 5.57 10.96 5.39 29.0521 

25 4.54 -1.26 -0.18 3.10 0.13 -2.97 8.8209 

26 3.93 -0.17 -0.16 3.60 2.94 -0.66 0.4356 

27 3.06 -0.05 0.03 3.04 0.44 -2.60 6.7600 

28 3.79 0.10 0.00 3.89 2.13 -1.76 3.0976 

29 4.58 -0.55 0.03 4.06 0.17 -3.89 15.1321 

30 2.50 -0.93 -0.10 1.47 2.04 0.57 0.3249 

31 3.10 -1.50 -0.20 1.40 1.62 0.22 0.0484 

Total. 244.3571 
1 i 

= 7.8825 
244.3571 

- 31 
(T,* = 2.81 

^ ^ <r2 “A 10,0002 = 0.211766 

R = 0.46 
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when employed by experts. Were the author to repeat this graphic 

analysis, the chances are that a coefficient of multiple correlation would 
be obtained differing by as much as 5 units fi^m the preceding result. 

In comparison with the exact mathematical method, graphic multiple 
correlation possesses the advantages of speed and flexibility. The 
graphic procedure requires but a fraction of the time needed by the 
mathematical method to arrive at the same measures. Thus, it took 

the author less than 5 hours to perform the graphic manipulations and 
interpolations in the above illustrated example, whereas almost 2 days, 
about 15 hours, were spent in obtaining the same measures by finding 
product sums and solving the simultaneous equations (and in locating 
and correcting computational errors). The graphic method is more 
flexible in that curvilinear regressions can be fitted to the observed re¬ 
lationships as readily as linear regressions. If a curvilinear relationship 
has been mistakenly assumed to be linear, the change can be made almost 
instantly on the relevant scatter diagrams when graphic analysis is used, 
but would require a number of additional calculations in the case of the 

mathematical method. 
Another flexible characteristic of the graphic method is the ease with 

which atypical observations may be discounted in determining the true re¬ 
lationships among the variables. Observations that are known to have been 
affected by unusual circumstances need not be used in estimating the 
relationship between variables influenced by these circumstances. For 

example, in Fig. 32, the median monthly rent of city 18 (New York) is 
seen to be much larger than that of the other cities. If this value were 
known to be the result of some unusual event, the observation might be 
neglected in fitting a regression line between A"i and (but it would be 
used in estimating the net regressions with the other two independent 
variables). However, this advantage of the graphic method has been 
questioned at times on the ground that it introduces too much subjectivity 
in the analysis and permits the researcher to influence the result, con¬ 
sciously or unconsciously, according to his wishes; and, in the hands of an 
inexperienced analyst, this is frequently the case. 

The main disadvantages of the graphic method are its lack of pre¬ 
ciseness and the inability to obtain certain measures of multiple cor¬ 
relation such as the coefficients of partial correlation. A good deal of 
experience is required before reasonably accurate results are attained. 
For this reason, the occasional user of multiple correlation techniques is 
not advised to employ the graphic method, nor is it advisable to use 

this method when the whole gamut of correlation measures is desired 
with absolute accuracy. However, the graphic method generally proves 
to be a very useful tool, once the necessary experience has been acquired, 
and it is certainly to be preferred when quick knowledge is sought of the 
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approximate character and degree of multiple relationships. It is also 
very useful in helping the beginner to understand the principles of multiple 
correlation. 

For a further discussion of graphic multiple correlation, the reader is 
referred to Ezekiel, M., Methods of Correlation Analysis (reference 167). 

SUMMARY 

The measurement of the relationship between a dependent variable 
and two or more independent variables has been the subject of this 
chapter. With slight modifications, the measures employed in simple 
correlation problems are carried over to multiple correlation problems. 
The coefficients of the regression curve describing the relationship between 
the variables are known as the coefficients of net regression to indicate 
; .j:it the relationship between the dependent variable and any particular 
independent variable is obtained while keeping the values of the other 
independent variables constant. As before, the standard deviation of 
regression measures the dispersion of the observations about the lino 

of regression. The over-all degree of relationship between the dependent 
variable and the various independent variables is measured by the co¬ 
efficient of multiple correlation—in the nonlinear case by the index 
of multiple correlation—which has the same definition as the coefficient 
of correlation in simple correlation. 

Two new correlation measures have been introduced: the coefficients 
of partial correlation and the beta coefficients. The former measures 

the degree of correlation between the dependent variable and one inde¬ 
pendent variable while the values of any number of the other independent 
variables are held constant. These coefficients enable us to determine 
the direct relationship between any two variables independent of the 
indirect effects of the other variables. The beta coefficients are essentially 
the coefficients of net regression converted into comparable, standardized 
units. The great value of these beta coefficients arises from the fact that 
they immediately reveal the relative importance of each of the independent 
variables in influencing the dependent variable. The beta coefficients 
are also used to measure the direct and indirect contribution of each 
independent variable to the coefficient (or index) of multiple correlation. 

The computation of these measures of multiple correlation is illustrated 
by a four-variable linear correlation problem. The same procedures are 
used in correlation problems with more than four variables and in measur¬ 
ing curvilinear multiple relationships. 

Graphic multiple correlation is much quicker and more flexible than 
the algebraic methods generally employed. However, a great deal of 
experience is required before the method can be used with much confidence, 
and even then only approximate results can be expected. 



CHAPTER XIII 

SAMPLING STATISTICS IN CORRELATION ANALYSIS 

In Chap. II we reviewed the properties of such descriptive measures 
of a population as the mean, median, standard deviation, and coefficient 
of variation. In Chap. Ill we saw that when such statistics are com¬ 
puted from sample data, chance variations cause them to deviate from 
the true population values. These chance variations were measured in 
terms of the standard error of each of the statistics, and Chaps. Ill to IX 
were devoted to the estimation of the standard errors (or sampling errors) 
of various statistics and then to the determination of p^-obability limits 
for population estimates. 

All these chapters were concerned with the descriptive properties of 
one variable at a time. Now, in the last part of the book, we are con¬ 
sidering means of describing the relationship between two or more variables. 
The preceding two chapters have discussed the properties of these measures 
of relationship with a minimum of reference to sampling problems. In 
this respect. Chaps. XI and XII on correlation arc analogous to Chap. II 
on central tendency. The present chapter injects the sampling problem 

into the subject of correlation. In other words, we shall now be con¬ 
cerned with the problems of estimating the true values of correlation and 
regression parameters from sample data and of determining the significance 
between sample-computed correlation statistics. In connection with the 
latter problem, illustrations will be given of the application of variance 
analysis to correlation problems. 

This discussion of sampling with reference to correlation analysis is 
necessarily brief, though it includes nearly all the procedures and formulas 
required by commercial researchers in correlation studies. For a more 
intensive discussion of various phases of the problem, the reader is referred 
to. the references listed in this chapter and in the Bibliography. 

1. THE RELIABILITY OF CORRELATION STATISTICS 

This part of the chapter is concerned with the estimation of correlation 
parameters in the population from sample data and with testing the 
significance of differences between sample correlation statistics by means 
of the standard-error method explained in Chaps. IV and V. For the 
sake of conciseness, the problems of estimation and of testing hypotheses 
are discussed jointly in the following pages, though separate illustrations 

380 
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of each are generally provided. The use of variance analysis in some of 
these problems is taken up in Sec. 2 of this chapter. 

The Coefficients of Simple and Partial Correlation 

The estimation and significance-test formulas for the coefficient of 
simple correlation and the coefficient of partial correlation are for all 
practical purposes identical. The best point estimate of the true value of 

either of these measures of correlation in the population is given by the 
following formulas! 

-1 - [*i - 
^*2 __ Hi.23...(II. . (N — 7>l + 1) — 1 
ru.« m.- 

where the asterisks indicate the population estimates, and 
r and ri<... = sample values of simple and partial correlation coefficients, 

respectively 
N = number of observations 
m = number of parameters in regression equation 

Unfortunately, the standard error of the sample correlation co¬ 
efficient is not valid unless the true value of r is at or close to zero and N 
is large, in which case the func^tion is normally distributed. If r is much 
larger than zero or N is small, the sample estimates of a particular cor¬ 

relation coefficient will not be normally distributed about the true popula¬ 
tion value. It is easy to see why this is so if we assume that, say, the 
true value of ri2.3 in a certain population is 0.95. Since a correlation 

coefficient can never exceed 1, the value of ri2.3 computed from a random 
sample drawn from the population has only a 5-point margin by which to 
exceed the true value but has a far greater latitude, from —1.0 to + 0.949, 
to underestimate the true value. Consequently, the mean expectation 
of the sample value of ri2.3 is likely to be considerably below the population 
value, thereby nullifying the validity of a standard-error formula in 
direct terms of the correlation measure.^ 

The difficulty is circumvented by means of a transformation that 
normalizes the skewness of the correlation measures. This so-called 
z transformation is 

1 4- r 
z = 1.1513 log 

® 1 — r 

For small-size samples, the quantity r/2{N — 1) must be added to z. 

^ In fact, such a formula does exist [«•, = (1 — r^)/\/N — ml, but it is valid only 
with large-size samples (over 50) where the correlation in the population is not too 
high, as a general rule, less than 0.9. 
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This variable z is almost normally distributed with a variance equal to 

l/(iV’ — 3) for the simple correlation coefficient, and l/(iV’ — n — 3) for the 
partial correlation coefficient, where n is the number of variables held 
constant. Therefore, the standard error of any of the two measures of 
correlation, r (and corresponding confidence intervals for estimating r*), 
is computed by transforming r to z, computing the standard error of z for 
the given sample size, determining the desired confidence interval in 

terms of z (thus, the 95 per cent symmetrical confidence interval would 
be, as before, z ± l.OGo-^), and converting the computed values of z back 
in terms of r. Computations are considerably simplified with the aid of 
Appendix Table 15, which contains the corresponding values of z and r. 

The z transformation is also used to test the significance of differences 
between the same correlation measures computed from different samples 
or between a sample correlation measure and a population value. In 
testing the difference between two simple correlation coefficients, the 
standard error of the difference is 

where Ni is the size of the first sample, and 

N2 is the size of the second sample. 
Note that the standard-error formula is independent of the true value 

of the correlation measure in the population. 

The test of significance is carried out in the usual way; by taking the 
ratio of Zi — Z2 to its standard error and ascertaining the probability of a 
difference as large as that observed as a result of chance variations from 

the table of areas under the normal curve (Appendix Table 5). The 
following examples illustrate the use of the z transformation in estimation 
and significance-test problems. 

1. On page 318 the simple correlation coefficient between the per¬ 
centages of Negro users of certain products in Baltimore and in Philadelphia 
was found to be 0.76. Assuming the percentages in Table 52 to be accurate 
estimates of the true percentages of Negroes using these products,^ what 
are the 95 per cent confidence limits for the true correlation between the 
percentages of Negro users of all market products in the two cities? The 
value of z corresponding to r = 0,76 is, from Appendix Table 15, .996. 
Since this was a small sample, we add 0.76/2(12 — 1), or 0.035, to .996. 
With 12 pairs of observations 

' Actually, this is not true because the percentages are themselves based on sample 

observations. The assumption is made solely to clarify the illustration of the z trans¬ 

formation. 
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Now, the 95 per cent confidence limits for z are z ± 1.96o-„ or 
1.326 ± 1.96(0.33), which leads to a lower limit of 2; = 0.68 and an upper 
limit of 25 = 1.97. Hence, from Appendix Table 15, the 95 per cent con¬ 
fidence limits in terms of r are seen to be r = 0.59 and r = 0.96. This 
extremely large confidence interval illustrates how little reliability can be 
placed in an estimate of the true correlation in the population based on a 
small number of observations. 

2. In the dwelling-construction example in Chap. XII, the value of 

ri2.34 was found to be —0.40. (1) Could the true value of ri2.34, i.e., the 
value of ri2.34 for all large United States cities,^ really be zero, and (2) 
could it be as low as —0.75? Although these constitute two separate 
problems in the testing of hypotheses, namely, hypothesis 1, that the true 
value of ri2.34 is zero, and hypothesis 2, that the true value of ri2.34 is 

' 0.75, both problems can be dealt with at the same time, in the follow¬ 
ing manner. 

From Appendix Table 15, the values of 25 corresponding to r = 0, 0.40, 
0.75 (with signs ignored), are 0, 0.423, 0.973, respectively. Since the 

sample contained 31 observations 

<^z 
_]__ 

V31 - 2 
= 0.196 

To test hypothesis 1, we have the ratio 

0.423 - 0 
0.196 

2.16 

and to test hypothesis 2, we have the ratio 

0.423 - 0.973 
^ 0.196 

-2.81 

With 95 per cent (asymmetrical) confidence limits, both of these 
differences are significant. It would therefore be inferred that the true 
value of ri2.34 is not likely to be as high as zero or as low as —0.75. Note, 
however, that if 99 per cent confidence limits are employed, ri2.34 does not 
differ significantly from zero. 

3. On page 361 the correlation coefficient between median monthly 
rent and vacancy rate was found to be 0.08. Suppose that the cor¬ 
relation coefficient between these two variables in 21 other cities came 
out to be 0.34. Is there a significant difference between these two values 
of the coefficient of correlation? In other words, can the difference 

^ The population in this case is assumed to consist of all large United States cities 

in all years similar to 1940. If it was desired to restrict the population to large United 
States cities only in 1940, the sample then forms an appreciable proportion of the 
population (31 cities out of 92), and <r« must be modified by the expression on p. 88, 

i.e.j <r, must be multiplied by y/1 — N/P. 
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between the correlation coefficients for the two groups of cities be at¬ 
tributed to sampling fluctuations or does it indicate differing relation¬ 
ships between these two variables? 

From Appendix Table 15, the values of z corresponding to correlation 
figures of 0.08 and 0.34 are 0.080 and 0.327, respectively. There were 
31 observations in one sample and 21 in the other, so that the standard 
error of the difference is 

+ 0.302 

The ratio of the difference to the standard error of the difference is 

^ 0.327 - 0.080 ^ 0.^47 _ 
0.302 0.302 “ 

From Appendix Table 5, it appears that a difference as large as, or 
larger than, this would occur over 20 out of 100 times as a result of chance. 
Therefore, the difference would be taken to be not significant and as 
reflecting merely random sampling variations. 

A method other than the z transformation may be used in testing the 
significance of one of these measures of correlation, z.e., in determining 
whether its true value might actually be zero. This alternate method 
involves the computation of the statistic 

and ascertaining the probability of t exceeding the computed value through 
chance variations from the t distribution table (Appendix Table 6). This 
table is entered with N — m degrees of freedom; \i N — m exceeds 30, 
the infinity row (<») is used. 

For example, let us test the significance of ri4.2 = 0.234 in the dwelling- 
construction problem by this method. Substituting the appropriate 
values in the formula for we have' 

‘ - 

Entering Appendix Table 6 with 27 degrees of freedom, we find the 
0.05 probability value to be 2.052 and the 0.01 probability value as 2.771. 
Since our computed value of t is far below these critical limits, the 
conclusion is that the sample correlation, r = 0.234, does not differ sig¬ 
nificantly from zero, which implies that Xi and X4 might not be correlated 
at all in the actual population. 

* Footnote 1 on p. 383 is also relevant to this method. 
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The restrictions and limitations of the preceding estimation and 
significance-test procedures may be summarized as follows: 

1. The z transformation is a serviceable method for deriving con¬ 
fidence limits for the simple or partial correlation coefficient and is equally 
valid for both small and large samples so long as the population is reason¬ 
ably normal. 

2. The f test is an alternate means of testing the significance of a 
simple or partial correlation coefficient based on a small sample, but is 

valid only for a reasonably normal population where the true value of the 
correlation coefficient is at or near zero. 

3. The use of the standard-error'formula for simple and partial cor¬ 
relation coefficients (see footnote 1 on page 381) is valid only when N 
is at least 50 and the correlation in the population is not very large. 

The Coefficient of Multiple Correlation and the Correlation Ratio 

The derivation of standard-error limits for both of those measures is 
beset with the same difficulties encountered in the case of the simple and 
partial correlation coefficients. As before, when small samples are 
involved, a transformation method has to be employed in testing the 
significance of one of these correlation statistics, a method that happens to 
be applicable to the correlation ratio as well as to the coefficient of multiple 
correlation. This transformation, which we shall term Z, is 

„ N — VI r, N — m 
\ — R m — I 1 — — l 

where N = size of sample 
m = total number of variables in multiple correlation = total num¬ 

ber of columns used in computing correlation ratio 
R = coefficient of multiple correlation 
ri = correlation ratio 

The computed value of Z is entered in Appendix Table 12 with 
ni = m — 1 and = N — m degrees of freedom. Appendix Table 12 is 
the same F distribution table used in the analysis of variance. As before, 
a value of Z exceeding its 0.01 point indicates that less than once in 100 
times could ri deviate from zero as a result of chance. A similar inter¬ 
pretation is given to the 0.05 points in the table. 

As an example, let us test the significance of the multiple correlation 
coefficient in the dwelling-construction problem; it will be recalled that 
R^ was 0.211669 in that (four-variable) problem. Computing the value 
of Z 

_ 0.211669 (31 - 4) 
0.788331 (4 - 1 ) 

= 2.42 
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Entering Appendix Table 12 with ni = 3 and n2 ~ 27, we find the 
computed value of Z to be below the 0.05 point, 2.96. The inference is 
therefore drawn that the multiple correlation coefficient of 0.46 in the 
dwelling-construction sample might have been obtained from a population 
whose true coefficient of multiple correlation for these four variables is 
zero, i.e., the variables might be completely uncorrelated in the actual 
population. 

An alternate method of testing the significance of a multiple cor¬ 
relation coefficient is given in Sec. 2 (page 396). 

For large-size samples where the multiple correlation coefficient or 
correlation ratio in the population is not very high, the formula 

1-/^2 1-7/2 

\/N — m \/N -- no 

may be used in conjunction with the normal distribution taljle to measure 
the sampling variation of R or r). When applicable, this formula may be 
used for estimation purposes as well as for testing the significance of corre¬ 
lation. It is applied in the same manner as other standard-error for¬ 
mulas, as illustrated by the following example. 

On page 341, the correlation ratio between family income and length 
of last vacation period for 2,218 families was computed to be 0.145. 
Assuming this sample to be representative of all American families, what 
would be the (symmetrical) 98 per cent confidence limits for the true 
correlation ratio in the population? 

The standard error of this estimate is 

1 - (0.145)2 

VX'2lS - 9 
0.0208 

From Appendix Table 5 it is seen that the central 98 per cent of the 
area under the normal curve is bounded by plus and minus 2.33(t. Hence, 
the required limits are 0.145 ± 2.33(0.0208), or between ri = 0.097 and 
rj = 0.193. Note that despite the low value of the sample correlation 
ratio it is definitely significant. To demonstrate this fact, we place 
t; = 0 in the standard-error formula and compute o*, = l/\/2,218 — 9 = 
0.0213. Taking the ratio of rj to <7„ we see that the sample correlation 
ratio is almost seven times as large as its standard error if the true value 
of rj were zero. It is therefore obvious, from Appendix Table 5, that the 
probability of such a deviation occurring as a result of chance is almost 
nil and, consequently, that the two variables are correlated in the pop¬ 
ulation, though not to any great degree. 

The Coefficient of Rank Correlation 

The rank correlation coefficient is not very desirable from the sampling 
viewpoint, because the one available measure of its sampling variation is 
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valid only in testing the significance of this coefficient, i.e., whether or not 
the true value of the rank correlation coefficient in the population might be 
zero. This measure is the t statistic 

liN - 2) 
- V(1 - ••?) 

where N is now the number of ranks, which is interpolated in Appendix 
Table 6 with N—2 degrees of freedom. However, the table is valid for this 
purpose only for samples containing more than 8 ranks. A computed value 
of t for a rank correlation coeflSoient based on less than 8 ranks should be 
interpolated into Appendix Table 16, which presents the 0.05 and 0.01 
levels of significance in terms of the correlation coefficient. From this 
ojble, it will be noted that the significance of a rank correlation coefficient 

cannot be evaluated at the 1 per cent level for samples with 5 ranks or less 
nor at any level for samples of 4 or less. In other words, in such cases 
sampling variations may easily yield a rank correlation coefficient as high 
as 1 from a population with zero rank correlation. 

On page 343, the rank correlation coefficient of pudding preferences 
between lower and upper income families was computed to be 0.757. Is 
this value significantly greater than zero? Since there are 15 ranks, our 
value for t is 

‘ - Vi -'(MW). - 

From Appendix Table 6 it is seen that, with 13 degrees of freedom, 
t — 4.178 exceeds both the 0.05 and 0.01 levels of significance, which indi¬ 
cates that pudding preferences of upper and lower income families are very 
likely correlated in the population. 

The Tetrachoric Correlation Coefficient 

Since the tetrachoric correlation coefficient r* measures the degree of 
relationship in a contingency table, its significance in sampling problems 
is best evaluated through the use of the chi-square test, the application of 
which is illustrated in Chap. X. There is a standard-error formula for the 
tetrachoric correlation coefficient that may be used for the same purpose 
as well as for estimation purposes. However, the formula is somewhat 
complicated and is not reproduced here. It may be found on page 371 of 
Peters and Van Voorhis, Statistical Procedures and Their Mathematical 

Bases (reference 21). 

The Coefficients of Regression 

Simple Regression. The coefficients of the regression line are subject 
to sampling variations in the same manner as are the coefficients of correla- 



388 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

tion. It is frequently desired to set confidence limits for the true value of a 
particular regression coefficient or to determine whether a sample-computed 
coefficient might possibly be zero or some other value in the actual popula¬ 
tion. Such tests are readily made given the standard-error formula for the 
regression coefficient, which is 

Ncrl 

(N — m)Xx^ 

where m is the number of parameters in the regression equation. 
As is true for most of the previous standard-error formulas, the standard 

error of the regression coefficient is used in conjunction with Appendix 
Table 5 for large samples {N over 30), and in conjunction with Appendix 
Table 6 for small samples, in the latter case with N — in degrees of freedom. 

For example, the linear regression coefficient between national income 
and newspaper circulation was found to be 0.1512 (page 309). Assuming 
the absence of serial correlation effects, (1) could the true value of the 
regression coefficient be as low as zero, and (2) could the true value be as 
high as 0.20? The standard error of this regression coefficient is 

V(ll - 2)1,548.28 

If the true value of h were zero, our T statistic would be 

„ ^ 0.1512 
^ ‘ 0.0171 

8.842 

And if the true value were 0.2 

_ 0.1512 - 0.2000 
0.0171 

2.854 

From Appendix Table 6 it appears that with 9 degrees of freedom, the 
true value of the regression coefficient is almost certainly greater than zero 
but that it might possibly be as high as 0.2, since exceeds the critical 
value at the 0.05 level of significance but not the value at the 0.01 level. 

Suppose we wanted to set 90 per cent confidence limits for the true value 
of this regression coefficient. With 9 degrees of freedom, the relevant 
boundary limits are seen to be, from Appendix Table 6, plus and minus 
1.83(7. Hence, the desired range is 0.1512 ± 1.83(0.0171), or between 
0.1199 and 0.1825. 

The standard-error formula for testing the significance of the difference 
between two sample regression coefficients, say, bi and 62, is 

(76i 

the test being carried out in the usual way. 
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Multiple Regression. The standard errors of multiple (net) regression 
coefficients are usually determined simultaneously with the multiple 
regression coefficients themselves in the solution of the normal equations 
by the Doolittle method or by one of its variations. These standard errors 
are obtained with the aid of certain multipliers, the c's, which are derived 
in the four-variable case by setting the left-han^l sides of the three normal 
equations equal to first 1,0, 0, then 0,1,0, and then 0, 0,1, and solving them 
for c^s instead of for b^s. A mote detailed ai^count of this process and its 
application to the solution of the c^s in the dwelling-construction problem 
will be found in Appendix B. In terms of these multipliers, the standard 
error of any net regression coefficient bu is given by the expression 

where m is the number of variables in the problem. 
This formula is used for estimation and for testing hypotheses in the 

same manner as the standard-error formula for the simple regression coeffi¬ 
cient. For example, suppose that 95 per cent confidence limits are desired 
for 6i3.24 in the dwelling-construction problem, the computed value of 
which was —3.244. Obtaining the value of C33 from page 439 and the value 
of <rl from page 356, we have 

= yj'- 
31(7.8834)(0.972853) 

31-4 
2.!)()7 

From Appendix Table 6, with 27 degrees of freedom, the necessary 
boundary limits are read off as plus and minus 2.0520-. Hence, we can say 
that the chances are 95 out of 100 that the interval —3.244 ± 2.052(2.967), 
or between —9.332 and +2.844, contains the true population value of 613. 
Note that the true value of this coefficient might well be positive. 

For those who are interested, the standard error of the difference 
between two sample net regression coefficients bn and bij is given by the 
expression 

~ + Cjj — 2cij 

The Mean Value and the Regression Line 

Simple Regression. Because of the regression relationship between the 
two variables Y and X, we have seen that the unexplained variance in the 
dependent variable Y has been reduced from to <tI. j^r the same reason, 
the standard error of the mean of Y now becomes (7„/ y/N instead of o-/y/Nf 
as formerly; and, if the sample is small, both expressions are multiplied by 
y/N/{N — m). Thus, by relating newspaper circulation to national 
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income (page 309), the standard error of the average annual newspaper 
circulation for the given period has been reduced from 

1.90/\/9 = 0.667 to 0.61/\/9 = 0.203. 

Without the aid of this regression, the average annual newspaper circulation 
in the population would have been said to be between 37.3 and 40.3 million 
copies with a 95 per cent confidence coefficient, whereas with the same 
degree of confidence we can now predict that the true population value is 

between 38.3 and 39.3 million copies. 
However, the main concern in most estimation and prediction problems 

is with the probable range within which an estimate based on a regression 
relationship may fluctuate as a result of sampling variations. This esti¬ 
mate may be in terms of an average or in terms of an individual item. For 
example, given the newspaper-circulation-national-iiicome regression on 
page 310, we might want to ascertain confidence limits for (1) the average 

annual newspaper circulation for years in which the national Income is 75 
billion dollars and (2) the annual newspaper circulation of any particular 

year with a 75-billion-dollar national income. Obviously, the confidence 
interval for an individual observation will be much greater than the confi¬ 
dence interval for the average of a group of observations, but the question 
is, by how much? 

For some reason or other, the problem of prediction in correlation has 
been considerably befuddled. Thus, one frequently comes across a regres¬ 
sion analysis based on sample data accompanied by the assertion that, 
assuming a normal distribution, about two-thirds of the observations will 
fall between the regression line plus and minus the ^‘standard error of 
estimate” (our standard deviation of regression), 95 per cent will fall 
between the regression line plus and minus 2 standard deviations of regres¬ 
sion, etc. The author then often proceeds to ^‘predict” that there are, 
therefore, 68 chances out of 100 that any particular observation will fall 
between the regression line plus and minus 1 standard deviation of regres¬ 
sion, 95 chances out of 100 that an observation will fall between Yc ± 2(7-„, 
etc. 

The fact is that such statements are valid only if we know the true 

values of the regression coefficients and of the standard deviation of regres¬ 
sion, z.e., only if we base the analysis on the entire population. However, 
in sampling problems, the regression line is only an estimate of the true 
regression line, and the standard deviation of regression is only an estimate 

of the true standard deviation of regression. Thus, in the linear case 
=s a + the sample-computed values of a and b only estimate the 

true regression parameters in the population. Hence, in estimating the 
range in which the true value of a particular Y is likely to lie, we must allow 
for the sampling errors in the values of the regression coefficients. For 
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this reason, it is entirely incorrect to use the standard deviation of regres¬ 

sion as the measure of sampling variation in the data. The standard 

deviation of regression measures the dispersion of the given observations 

about the regression line; it is a population measure, not a sample measure, 

because this dispersion exists in the population as well as in the sample. 
Since the regression coefficients are subject to sampling error, the 

(sampling) variance in an estimate of the average value of Y corresponding 

to a value of X must be a composite of the sampling errors of the regression 

coefficients. In the linear case, Yc = a + 6X, the variance of the regres¬ 

sion line is the sum of the independent variances of these two separate 

terms, which from the previous pages is 

2 _ I _^ ^ 1 Xx^\ 
jV' — m (iV — m) N — m\ Sxy 

vviiere is the square of the value of X being estimated, in deviation units. 
Substituting the values for N, and from pages 309-311 

2 _ 0.36645/, Ux^ \ 

9 1,548.28/ 

= 0.040717 + 0.000289a:‘^ 

Now, when X is 75 billion dollars, x is 9 in terms of the deviation units 
employed in this regression problem. Hence 

4, = 0.040717 + 0.000289(81) 

' = 0.064126 
= 0.253 

When X = 75, Yc = 41.09. Therefore, we would have 95 chances 

in 100 of being correct if we predicted that the average annual newspaper 
circulation in years when the national income is 75 billion dollars, was 

between 41.09 ± (2.262) (0.253), i.e., between 40.5 and 41.7 million copies. 

To find the standard error of the same prediction for a particular year 

with a 75-billion-dollar national income, we must add on the variance of an 

individual observation, 4, to the above formula. The result is 

The reader can verify that the standard error for a particular year 

with a 75-billion-dollar national income is 716,000 copies. In other 

words, to make the same prediction for an individual year in which the 

national income was 75 billion dollars as was made above for the average 

of all such years, f.e., with the same confidence coefficient, would require 

a range from 39.5 to 42.7 million copies, two and one-half times as large 

as the previous range. 
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The preceding two formulas are the ones used to compute the sampling 

errors in predictions or forecasts. Notice how completely dependent 

both of these formulas are on the value of a:, for in any particular problem 

the values of iV, m, cr^, and of the sums of the powers of x, are fixed (by the 

sample computation). Only the value of x is free to vary, and the larger 

is the value of x^ the greater is the sampling error of a particular estimate. 

But X is in deviation units, a fact that brings out one of the most important 

rules in forecasting and prediction by regression methods, namely, the 

greater is the difference between the mean of X and the value he mg forecast ^ 

the greater will be the sampling error of the forecast. The minimum error of 

prediction occurs, obviously, when x is the mean value, zero, for then all 

terms involving x vanish, and we are left with the usual formula for the 

standard error of the mean (or with the standard eri*or of an individual 

observation, in the second case). So long as the value of x is within the 

range of the sample observations, the standard-error terms involving x 

contribute relatively little to the error of prediction. However, these 

terms rapidly increase in importance as the value of x passes farther and 

farther outside of the sample range and result in disproportionately large 

increases in the sampling error. » 

It is for this reason that researchers are constantly cautioned not to 

attempt to make predictions for values far outside the range of observations, 

as the ensuing terrifically large errors of prediction render these estimates 

useless for most practical purposes. Thus, in the previous example, the 

standard error of predicting the average annual newspaper circulation in 

years with 75-billion-dollar national incomes was computed to be about 

250,000 copies, but the reader can verify for himself that the same standard 

error at the 200-billion-dollar national income level—far above the actual 

range of the observations—is about 2,300,000 copies. 

The rate of increase in the standard error of prediction with rising values 

of X in the newspaper-circulation-national-income problem is graphically 

shown in Fig. 34. The heavy dark line is the regression relationship from 

page 310. The vertical distance between the dotted lines on either side 

measures, for any particular value of X, the 95 per cent confidence range 

for the predicted annual average newspaper circulation at that income level. 

This distance is seen to be a minimum at the mean of X^ but as the distance 

from the mean value increases, the rapidly increasing convexity of the two 

dotted lines to each other vividly portrays the increasing range of sampling 

error to which the prediction is subject. 

A word of caution needs to be inserted at this point against the indis¬ 

criminate use of these sampling error prediction formulas. For one thing, 

these formulas are applicable only when the population has a reasonably 

normal distribution and when the sample observations are independent of 

each other. Because of this latter restriction, these formulas are not valid 



SAMPLING STAriSTICS IN CORRELATION ANALYSIS 393 

National Income in Billions of Dollars 

Fig. 34. Ninety-live per cent conlidenoe for predicting newspaper circulation at a 
given level of national income. 

in the case of most time-series problems. For example, to estimate the 

sampling error in a forecast for bank deposits in 1940 based on the 1860 to 

1930 time-series regression on page 334 would not be valid, because the 

level of bank deposits in one year is at least partially dependent on the level 

in preceding years. Although these formulas arc in fact sometimes applied 

in such problems, it should be realized that the results are at best rough 

approximations to the true sampling; errors; how rough, one does not know. 

For another thing, these formulas measure only the sainpUng error in 

predictions. They make no allowance for errors due to ignorance, bias, 

omission, and other factors—errors that are at times many times greater 

than the sampling error in the prediction. Such allowances must be left 

to the researcher\s judgment and knowledge of the particular problem; 

they cannot be made by standard statistical formulas. The value of the 

prediction error formulas presented in this section is that they enable the 

researcher to gauge the magnitude of the chance variations affecting the 

estimate and to make the allowance for this factor in his final prediction. 

Multiple Regression. As in the case of simple correlation, the standard 

error of the mean of the dependent variable Xi in a multiple correlation 
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problem is reduced to the ratio of the standard deviation of the multiple 

regression to the square root of N. Thus, the multiple regression between 

new dwelling construction and the three other variables in Chap. XII 

reduces the standard error of the average number of dwellings constructed 

per city from 3.16/\/27 = 0.61, to 2.81/\/27 = 0.54 units. 

The standard error of an estimate or prediction based on a multiple 

regression is ascertainable in terms of the c multipliers. In estimating an 

average value, the general formula in the case of n variables is 

^2 

— [1 + {C22xl + C33a:i + * * * + Cnnxl + 2023*^2^:3 + 2c2a2X^ 

^ +-h 2CijXiXi +-f- 2Cn-UnXn-lXn)] 

All values for x are in deviation units from their respective means. If 

the sample is large, N/{N— rn) may be assumed equal to 1. As before, the 

standard error of an estimate for an individual observi^tion is obtained by 

adding the variance of an individual observation, al, to the above formula. 

This formula is not as complicated as it may seem. The terms within 

the parentheses are nothing more than (^2 + X3 + + XnY with their 

corresponding c^s. In a four-variable problem, the variance of an estimate 

of an average value is 
^2 

4. = [1 + N (C22X2 + C33XI + C44XI + 2C2SX2X3 + 2cuX2Xi + 2034X3X4)] 
iV in 

Suppose, for example, that we want to find the 95 per cent confi¬ 

dence interval for an estimate of the number of new dwelling units that 

would be constructed in all large cities where X2 = $30.00, Xz = 3.80, 

and X4 = 3.00. 

In deviation units we have X2 = 3.95, xz = 0.20, Xi = —1.06; al is 

known from page 356 to be 7.8834, and the values of the c multipliers are 

computed on page 439. Substituting in the above formula 

4, = {1 + 31 [(0.000944) (3.95)2 + (0.972853) (0.20)2 

+ (0.014103) (-1.06)2 + 2(0.002957) (3.95) (0.20) 

+ 2(0.000014)(3.95)(-1.06) -h 2(0.073390)(0.20)(-1.06)]} 

= 0.682641 

= 0.83 

P>om Appendix Table 6, the desired confidence limits for 27 degrees of 

freedom are seen to be plus and minus 2.052a. And from the multiple 

regression equation on page 355, the value of Xi for the given values of the 

independent variables is computed to be 2.53. Consequently, the required 

confidence interval is 2.53 ± (2.052)(0.83) or between 0.83 and 4.23. 

It is perhaps needless to point out that the restrictions on the appli¬ 

cability of the standard-error prediction formulas for simple correlation are 

equally valid for the corresponding multiple correlation expressions. 
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However, caution against the indiscriminate use of these formulas cannot 

be overemphasized. 

2. VARIANCE ANALYSIS IN CORRELATION PROBLEMS 

Variance analysis is an extremely effective method for analyzing the 

significance of correlation results derived from sample data. In some 

instances it merely provides an alternate, and generally simpler, means of 

testing the significance of correlation and regression measures, but in 

other problems it is the only known method of solution. The illustrations 

in the following sections of the applieatihii of variance analysis to correla¬ 

tion problems by no means exhaust the ever-widening potentialities of this 

method. The reader who desires to delve deepei* into this subject is 

referred to Snedecor, Statistical Methods (reference 23), Clhap. 12 to 15, 

aiid to Gouldeii, Methods of Statistical Analysis (reference 157), Chap. 13. 

The Significance of Correlation 

The analysis of variance provides a ready means of testing the signifi¬ 

cance of simple and multiple correlation coefficients in place of the stand¬ 

ard-error formulas given in Sec. 1 of this chapter. This method is based 

on the fact that a coefficient of (simple or multiple) determination is essen¬ 

tially the ratio of the sum of squares accounted for by the correlation to the 

total sum of squares. The difference between these two sums of s(|uares 

is the sum of squares remaining after correlation, which presumably meas¬ 

ures the random sampling variations in the variable under study. Hence, 

the significance of a correlation coefficient may be gauged by the extent to 

which the sum of squares explained by correlation exceeds the unexplained 

(sampling) sum of squares, both terras being divided by their appropriate 

degrees of freedom. The more significant is a correlation coefficient, the 

more will this ratio, our familiar F ratio, exceed 1. As in previous 

variance-analysis problems, the probability of a particular F ratio arising 

as a result of chance is determined with reference to Appendix Table 12. 

As an example, let us test the significance of the multiple correlation 

coefficient in the dwelling-construction problem. From page 354, the 

sum of squares of the dependent variable is computed to be 310.00531. 

This figure, when multiplied by the proportion of total variance explained 

by the multiple regression, the coefficient of multiple determination, yields 

the explained sum of squares. Since the coefficient of multiple determina¬ 

tion is 0.211669, the explained sum of squares is 65.61851. The unexplained 

sum of squares may be ascertained simply as the difference between the 

total sum of squares and the explained sum of squares, or it may be com¬ 

puted as the product of 1 — and the total sum of squares. 

An analysis-of-variance table may now be constructed, as shown in 

Table 68. The number of degrees of freedom associated with the unex- 
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plained sum of squares is the number observations less the parameters in 

the regression eciuation; 27, in this case. The number of degrees of free¬ 
dom associated with the explained sum of squares is the total number of 
observations less one more than the degrees of freedom associated with the 

explained sum of squares, or 3 in this problem. 

Table 68. Significance of Correlation by Analysts of Variance 

(1) 
Type of 

variance 

(2) 
Sum of 
squanis 

(3) 
Degiees of 

freedom 

(4) 
Estimate of 

Explained by corndation. 65.61851 3 21.8728 
Unexplained. 244.38680 27 9.0514 

Total. 310.00531 30 
_1 

The F ratio is computed as 21.8728/9.0514, or 2.417. Since this value 

does not exceed the F value at the 5 per cent level for ni = 3 and 712 = 27 
in Appendix Table 12, we may conclude, as before, that the actual multiple 
correlation in the population might be zero. The significance of other 
types of correlation coefficients may be tested by the same procedure. 

Probably the simplest test for the significance of a simple or multiple 
correlation coefficient is through the use of Appendix Table 14. This table 

contains, for degrees of freedom from 1 to 1,000 and for linear regressions 
involving from two to five variables, the maximum value a correlation coeffi¬ 
cient could have at the given level of significance and still be drawn from a 
population with zero correlation. The degrees of freedom in this table are 
the number of observations less the number of parameters (or the number of 
variables involved) in the regression equation. For example, a three- 
variable multiple correlation coefficient based on 28 observations would 
not be adjudged significant at the 0.05 level unless its value was at least 
equal to 0.462. 

In the housing regression, four variables were involved with 31 observa¬ 
tions of each. From Appendix Table 14, the value of R at the 0.05 level 
of significance for 27 degrees of freedom and for four variables is 0.498. 
Since the computed value of R, 0.46, is less than this critical value, it is 
immediately seen to be not significant. 

The Significance of Regression 

In Chap. XI, empirical examination of scatter diagrams was used to 
determine the degree of the equation that would best describe a particular 
relationship, and the reader was referred to the present chapter for a more 
objective test. This test is carried out by means of the analysis of variance 
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and is based on much the same principle as the test for the significance of 
correlation. Thus, to test whether a second-degree arithmetic regression 
of 7 on X really improves the relationship between the two variables as 
compared to a linear regression, we attempt to determine whether that 
additional portion of the sum of squares of the dependent variable explained 
by the second-degree regression could be attributed to chance variations in 
sampling from a population in which the tiue regression is linear. The 
actual test is our familiar F ratio. The total sum of squares of the depend¬ 

ent variable explained by the second-degree regression is the product of 
the index of determination and of thj total sum of squares. Similarly, 
the total sum of squares of Y expkinea by the linear regression is the prod¬ 
uct of the coefficient of determination and the total sum of squares. The 
difference between these two figures is, then, that increment of the sum 
c" squares of Y explained by the second-degree regression. The portion 
of the sum of squares of Y unexplained by the second-degree regression is 
taken to measure the effect of sampling variations on the regression. The 
value of F is now computed as the ratio of the increment explained by the 

second-degree regression to the unexplained sum of squares, both figures 
being divided by the appropriate degrees of freedom. The computed F is 
then interpolated into Appendix Table 12 as before. 

As an example, let us test the significance of the second-degree regression 
of food expenditures on consumer income, as worked out on page 327. 
We know that the index of determination is 0.9638 (page 329) and that the 
sum of squares of 7, food expenditure per consumer unit, is 2,146,778 

(page 328).^ With the aid of the product-moment formula (page 317), 
the coefficient of determination between food expenditures and consumer 
income is computed to be 0.73. Hence, the total sum of squares explained 
by the second-degree regression is (2,146,778) (0.9638), or 2,069,065, and 
the total sum of squares explained by the linear regression is (2,146,778) 
(0.73), or 1,567,148. On the ba.sis of these figures, we can set up the 

analysis-of-variance table shown in Table 69. 

^ For the purposes of this and the preceding test, the unit in which the sum of 

squares of Y is expressed is of no relevance. The sum of squares in absolute units, in 
deviations from the mean of F, and in deviations from an arbitrary mean, differ from 
each other only by certain proportionality factors that cancel out once the F ratio is 

computed. As a matter of fact, for all practical purposes, the sum of squares of Y 
could be omitted altogether, i.e., set arbitrarily equal to 1, and the test carried out in 
terms of differences and ratios between the index of determination of the second-degree 
regression and the coefficient of determination of the linear regression. The sum of 

squares in deviation units from the mean is useful only when the sizes of the respective 

variances are desired for purposes of sample design or for other analytical motives. The 
conventional method is followed in the text to illustrate the principle of the test. How¬ 
ever, once this principle has been mastered, the computations may be simplified con¬ 

siderably by neglecting the sum of squares. 
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Table 69. Analysis of Variance op Second-degree Regression 

0) 
Type of 
variance 

(2) 
Sum of 
squares 

(3) 
Degrees of 

freedom 

(4) 
Estimate of 

<r* 

Total explained by second- 
degree regression. 2,069,065 11 

Total explained by linear 

regression. 1,567,148 12 

Increment explained bv 

second-degree regression. . 501,917 1 501,917 

Unexplained (by second- 
degree regression). 77,713 11 7,065 

Total. 2,146,778 12 

One decree of freedom is associated with the increment sum of squares 
explained by the second-degree regression, as one additional parameter is 

added in going from a linear regression to one of second degree. But since 
three parameters were used to fit the second-degree equation, there are 
14 — 3, or 11, degrees of freedom for the unexplained sum of squares. 

Our hypothesis is that the increment sum of squares explained by the 
second-degree regression is the result of sampling fluctuations in a popula¬ 
tion where the true regression between the two variables is linear. To test 
the hypothesis, the F ratio is computed, which is 501,917/7,065, or 71.0. 
This figure far exceeds both the 5 and 1 per cent critical values, for ni = 1 
and 712 = 11 in Appendix Table 12. Hence, we conclude that the incre¬ 
ment explained by the second-degree regression is too large to be attribut¬ 
able to ordinary sampling fluctuations, that the true regression in the popu¬ 
lation is in fact curvilinear, and that the second-degree regression definitely 
improves the relationship between the two variables. 

The same test may be applied to test the significance of regressions of 
any order. In a particular problem, the test could be carried out to deter¬ 
mine the value of each successive regression of higher degree; the best rela¬ 

tionship is then the regression equation immediately preceding the one 
yielding a nonsignificant value for F. An important thing to remember in 
these tests is that the unexplained sum of squares is always the difference 
between the total sum of squares and the supa of squares explained by the 
highest degree regression involved in the test.^ 

This test is also applicable to multiple regression problems, where the 
significance of either a curvilinear trend or of a variable on the multiple 
relationship may be determined. Testing the significance of a variable is 

^ Or, it may be computed as the product of the index of nondetermination (1 — i2*) 

and the total sum of squares. 
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no different from testing for curvilinearity. For instance, suppose we 

wanted to test the significance of X3, population per dwelling unit, in the 
dwelling-construction regression in Chap. XII. In other words, does Xz 

make a significant (real) contribution to the multiple relationship or could 
its observed effect be attributed to sampling fluctuations? The procedure 
is exactly the same as in the preceding example. Instead of the second- 
degree regression, we now have the four-variable multiple regression; and 

instead of the linear regression, we have the multiple regression of Xi on 
X2 and X4. The sum of squares of the dependent variable is Sxi from 
page 354. That part of the sum of sO;.:ar^s explained by the four-variable 
regression is the product of 2x1 and the coefficient of multiple determina¬ 
tion of the four variables (page 3r^6); the part explained by the three- 
varinble regression is the product of Sref and the coefficient of multiple 
d .^termination of Xi on X2 and X4. This latter measure is readily com¬ 
puted by means of the formula^ 

^^1.24 = 1 — (1 — rU) (1 — ri2.4) 

The unexplained sum of squares is the difference between the total sum 
of squares and that explained by the four-variable regression. The reader 
might now care to complete the operation by setting up an analysis-of- 
variance table like Table 69 and computing the value of F. The result will 
be, as one would expect, a verdict of nonsignificance; i.e.y that Xz makes no 
significant contribution to the multiple relationship and its apparent effect 

is attributable to sampling fluctuations. 

The Intraclass Correlation Coefficient 

The correlation measums that we have studied so far arc all measures of 
interclass correlation—measures of the relationship between two or more 
variables based on a number of observations of the corresponding values of 
these variables. However, in many instances, observations of a particular 
variable are taken in groups, or subsamples, that are later combined to 
form one aggregate sample. Such is the case in the example on page 282, 
where a number of interviewers were sent out to collect data on the planned 
vacation expenditures of families. The interviews made by each inter¬ 
viewer form a subsample, all of these five subsamples being combined later 

into one large sample to arrive at the over-all results of the survey. Now, 
if a random sampling procedure has been employed, the data obtained from 
the interviews are infiuenced by two major considerations: random sam¬ 
pling fluctuations, and any particular bias on the part of each interviewer 
in the selection process, as well as other nonrandom effects, if they exist. 

^ The general expression is 

f2?.23...n = 1 ^ (1 - r?J (1 - •••(!- 
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The detection of these nonrandom effects through the use of variance analy¬ 

sis was illustrated in Chap. X. Thus, on page 285, we were able to ascer¬ 

tain whether the differences between the interviews made by each of the 

five interviewers were due to sampling fluctuations or to some inherent bias 

either in the interviewers’ selection method or in some other procedure. 

However, at that time we were not able to measure the bias. In other 

words, we could determine, with a certain degree of confidence, whether or 

not it existed, but we could not determine to what extent it existed. The 

measurement of this bias is the subject of the present discussion. 

The bias, or degree of relationship, between subsamples or classes of 

the same sample is known as intraclass correlatiorL The measure of this 

bias is known as the intraclass correlation coefficient^ which we shall denote 

by r^. In the population, the intraclass correlacion coefficient is defined as^ 

__variance due to snbsamples_ 

^ variance due to subsamples + random sampling variance 

Like the other correlation measures, the intraclass correlation coefficient 

varies between —1 and +1. Where no intraclass correlation is present, 

Tc is zero. Perfect intraclass correlation, wlien is plus or minus one, 

means that all members of the class or subsample are identical, the values 

of at least two classes differing from each other, is negative when the 

sampling variance exceeds the variance between classes, though in most 

practical problems is positive. The intraclass correlation coefficient is 

based on one important assumption, Le., that the variance due to the 

subsample is unrelated to the random sampling variance. However, this 

assumption is not very restrictive, as it is generally valid in practice. 

For computational purposes, it is necessary to have estimates of the two 

variances in the formula for the intraclass correlation coefficient. The 

estimate of the random sampling variance is taken to be the variance within 

classes, as in the previous analysis-of-variance problems. The reader will 

recall that if we denote as the jih value in the ith class, or subsample, 

then the variance within classes (a'i) is defined as 

lliXu-Jir 
'I _ * j__ 

k{n - 1) 

where is the mean value of the fth class, there being k different classes 

with n members, or interviews, in each class. 

The variance due to the classes or subsamples (af) is the difference 

between the variance between classes (af) and the variance within classes 

^ Rigorously speaking, this definition of the intraelass correlation coefficient should 
have been placed in Chap. XI with the other definitions in terms of populations. How¬ 
ever, in the present instance, the exposition was thought to be clearer and more concise 

by postponing the discussion of this subject to the variance-analysis part of this chapter. 
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(the sampling variance al) divided by the size of each class. 
words i _ a 

2 _ 

In other 

where it will be remembered from Chap. X that 

(^b k-T 

The reason for this definition of the variance due to classes is not diffi¬ 
cult to see. Since (r% measures the inf ce of the random sampling varia¬ 
tion on the sample members, the extent to which nonrandom influences 
affect the various classes is reflected by the excess of the variance between 
classes over the random sampling variance. This difference is divided by 
the size of the class^ because it is the variation in the class means that is 
being examined. 

Making the above substitutions in the definitional formula and clear¬ 
ing fractions yields the usual computational form for the intraclass correla¬ 

tion coefficient 2 2 

(To + (n — i)(ri 

Since is generally computed in connection with analysis-of-variance 
problems, the required variances are merely copied into the formula from 
the analysis-of-variance table constructed for that particular problem.^ 
For example, suppose it is desired to compute Vc for the interviewer prob¬ 
lem on page 282. Referring to Table 43 on page 285, we find that al is 
17.00 and <r^ is 10.97. Since each interviewer obtained data from eight 
families, we have 

, =_17-00 - 10-97_ 
17.00 + (8 - 1)(10.97) 

^ If the classes vary in size, an average value no is used instead of n. It is computed 
from the following formula: 

“ A: - 1 ^k) 

* The following approximation formula may be used to compute Vc directly from the 
sample data: 

kA - (k - 1) B - C 
~ A+ n(.k - l) B - C 

where A = 2 ^ 

B = 
C = (SSXc,)* 

Thus, only three product sums are required: the sum of squares of all the observations 
{B), the sum of the squared totals of the observations in each class (A), and the square 
of the sum of all the observations (C). With an automatic calculator, all three product 

sums may be computed in a single operation. 
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In this case, the sampling variation within each class is very large rela¬ 

tive to the variation from class (mean) to class (mean). The low value of 

Tc indicates that the correlation between classes is very small, if it actually 

exists, and hence that the results obtained by the different interviewers do 

not seem to differ appreciably from each other. 

Once the intraclass correlation coefficient is computed from sample 
data, the next problem becomes to determine the significance of The 

value of Tc computed from a sample drawn from a population in which no 

intraclass correlation is present will obviously not be zero because of ran¬ 

dom sampling variations. Given a sample-computed intraclass correla¬ 

tion coefficient, the question becomes: Does this value indicate the presence 

of intraclass correlation in the population, or could it arise from a popula¬ 

tion with zero intraclass correlation purely as a result of random selection? 

The answer is simple, for the relevant significance test is, as the reader may 

have guessed, the same F test used in Chap. X. Ar, pointed out on page 
400 of this section, the F ratio tests the presence of bias or oMier nonrandom 

factors, or, in other words, of intraclass correlation. Therefore, the signifi¬ 

cance of an intraclass correlation coefficient is determined by the signifi¬ 

cance of the appropriate F ratio. For example, in the case of the inter¬ 

viewer-bias problem, the computed value of F had been found to be not 

significant (page 285). Hence, it was a foregone conclusion that the corre¬ 

sponding value of the intrachiss correlation coefficient would be due to 
sampling fluctuations. 

Because the significance of an intraclass correlation coefficient can be 

determined without having to know its actual value, the procedure in such 
cases is generally the reverse of that used in other correlation problems. 

The usual procedure is to compute the value of the particular correlation 

coefficient and then test its significance. However, in an intraclass correla¬ 

tion problem, it is more economical first to carry out the analysis of vari¬ 

ance, which would be required in any event, and test the significance of the 

computed value of F, If the F test indicates the presence of intraclass 

correlation, Vc is then computed as the measure of the degree of this correla¬ 

tion. If the value of F is not significant, indicating that the apparent intra¬ 

class correlation merely reflects normal sampling variations, the value of 

becomes superfluous and need not be computed. 

3. SERIAL CORRELATION 

The term serial correlation refers to the relationship between successive 

observations in the same series of data. Serial correlation occurs most 

frequently in the case of time series, where the value of the variable at one 

period of time is thought to influence its value in a succeeding period. 

However, serial correlation is not restricted to time series and problems do 

arise in determining whether the successively chosen members of a sample 

are serially correlated. 
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Serial correlation differs from the other types of correlation we have 
studied in that primary interest is in ascertaining its presence rather than 
its magnitude. The reason for this is that practically all the sampling 
formulas and procedures used in practice assume that successive observa¬ 
tions are independent of each other, and most analytical tools are invali¬ 
dated when this assumption does not hold. Since no exact means are yet 
available for measuring the extent of bias due to serial correlation, the 
magnitude of such correlation, once its presence is discovered, is of minor 
interest at the present time. 

Hence, the main object of currenlj statistical analysis is to test whether 
or not serial correlation in a sample is indicativ’-e of a serially correlated 
population. Up until 8 yeai-s ago, comprehensive significance tests for 
this purpose did not exist. Today, two such tests, both developed in 1941, 
are in general use. They are discussed separately below. 

The Serial Correlation Coefficient 

One test for the presence of serial correlation is based on determining 
the significance of the sample serial correlation coefficient. This coefficient 
is defined as^ 

N 

sx? - {xXty/N 

where X < = the ith sample observation 
X i — the deviation of the tth sample observation from the mean 

Xn + \ = Xi 

Because is set equal to Xi, this is known as the circular definition 

of the serial correlation coefficient. Except for this restriction, the reader 
will note that this formula is essentially the product-moment formula for 
the simple correlation coefficient with Xi+i replacing 2/<. 

The significance of the serial correlation coefficient computed from this 
formula is determined by referring to Appendix Table 17. For given sam¬ 
ple sizes, this table indicates the lowest value a sample serial correlation 
coefficient is likely to have, at cither the 0.05 or 0.01 level of significance, if 
it is drawn from a population in which serial correlation is present. For 
example, a serial correlation coefficient of 0.184 based on a sample of 25 
observations would be adjudged not significant at the 0.05 significance 
level, since it is not as large as the value of r, (0.276) at that level. On the 
other hand, a sample serial correlation coefficient of 0.572 based on the 
same number of observations is clearly significant at both the 0.05 and 0.01 
levels of significance. In the latter case, a strong presumption as to the 
existence of serial correlation in the population would be indicated. In 

^ Unit lags are assumed throughout this discussion, i.c., we are restrictiijg ourselves 

to the correlation between each observation and the immediately succeeding one. 



404 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

using Appendix Table 17, note that the value for N is the actual sample 
size, not iV — m as in so many other cases, and that different significance 
values exist for positive and negative values of r,. 

Let us test for the presence of serial correlation in the bank-deposit data 
on page 334. The required calculations are shown in Col. (1), (2), and (3) 
of Table 70. The table is shown here to illustrate the calculations; with 
modern calculating machines such tables are superfluous. 

Table 70. Computation of Sehial Correlation Coefficient 

FOR Bank-deposit Data 

(1) (2) (3) (4) 

Ki 
billions of dollars X? A ,• A ,■ }. 1 I (X.+. - Xtr 

31 , 961 2,139 1,444 
69 4,761 5,313 64 
77 5,929 15,477 15,376 

201 40,401 44,622 441 
222 49,284 68,376 7,396 
308 94,864 141,064 22,500 
458 209,764 253,732 9,216 
554 306,916 471,454 88,209 
851 724,201 1,134,383 232,324 

1,333 1,776,889 2.343,414 180,625 
1,758 3,090,564 3,872,874 198,025 
2,203 4,853,209 9,190,916 3.876,961 
4,172 17,405,584 21,694,400 1,056,784 
5,200 27,040,000 31,122,000 616,225 
5,985 35,820,225 185,535 

Total 23,422 91,423,552 70.545,699 6.305,590 

^XiXi f 1 — 
N 

= 70,545,699 - = 33,973,027 
lo 

24 = XXi - = 91,423,552 - = 54,850,880 

_ 33,973,027 _ 
• 54,850,880 

^ = 5^86|8^ = 3,656.725 
lo 

= 5-W-5 = 450,399 
14 

K = 0.1232 

■"This product sum may also be obtained directly from Cols. (2) and (3) by the 

N - 1 

2 + 2A-? + i-2SX< + ,A:( + SX? 

formula 



SAMPLING STATISTICS IN CORRELATION ANALYSIS 405 

The serial correlation coefficient is computed to be 0.619. With 15 
observations, it is evident from Appendix Table 17 that this value is signifi¬ 
cant at both the 0.05 and 0.01 levels. In other words, a strong basis 
exists for presuming that bank deposits are serially correlated through time. 

The Mean-square Succersive-difference Method 

An alternate means of determining the presence of serial correlation is 
the computation of the following statistic, which we denote by K: 

N 

Haerea^ = variance of ^sample data = x-/N 
1=1 

5^ = mean v^alue of sum of the squares of differences between each 
pair of two successive observations 

N~\ 

= X (.V.+. - x,)VAr - 1 
i = 1 

8 = the small Greek letter delta 

8^ is known as the mean-square successive difference. For any given 
sample size, the mean-square successive difference is large relative to the 
sample variance if negative serial correlation is present, small relative to 
the sample variance when positive serial correlation is present, and assumes 
intermediate values when there is no serial correlation. By deriving and 
computing the probability distribution of the statistic Ky critical limits are 
found for the probability of obtaining a serially correlated sample, i.e., 
relatively high or relatively low values of K from an independently dis¬ 
tributed population. These critical limits arc then used for determining 
the presence of serial correlation. 

Appendix Table 18 contains the critical values of K for the 0.05 and 0.01 
levels of significance, for various sample sizes. For a given sample size 
and significance level, the corresponding critical values of K indicate the 
lowest and highest values K could have and still come from an independently 
distributed population. If the computed value of K is below the lower 
critical limit, the presence of 'positive serial correlation is indicated; and if K 

exceeds the upper critical limit, 'negative serial correlation is presumed to 
exist in the population. For example, a value of A" = 1.6082 computed 
from a sample of 60 observations indicates that only 5 times in 100 would 
such a low value of K be obtained if the sample were drawn from a serially 
noncorrelated population. Hence, for N = 60, any value of K below 
1.6082 would be adjudged significant, indicative of a positive serially corre¬ 
lated population, and any value of K above 2.8120 would be termed signifi¬ 
cant of a negative serially correlated population. 
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The value of iii for the bank-deposit data is computed in Col. (4) and 
at the bottom of Table 70. Since the computed value of K is far below the 
critical values for iV = 15 at both the 0.05 and 0.01 levels of significance, 
positive serial correlation is once again indicated. 

Either the serial correlation coefficient or the mean-square successive 
difference may be used to test for serial correlation. However, the latter is 
somewhat preferable because it is the more powerful test. By this is 
meant that although both tests are equally efficient in indicating the 

absence of serial correlation when no serial correlation in fact exists, the 
mean-square successive-difference method is more likely to forewarn the 
researcher as to the real presence of serial correlation. In other words, a 

serial correlation coefficient is more likely to yield a nonsignificant value for 
a sample drawn from a serially correlated population than is the correspond¬ 
ing mean-square successive difference. 

The reason for this is that the relationship between the serial correlation 
coefficient and the mean-square successive-difference ratio is analogous to 
that of the product-moment correlation coefficient to the correlation ratio. 

If linear correlation is present, both measures are equally effective. But if 
the two series are correlated in a nonlinear manner, the correlation ratio 
provides the more accurate measure. Similarly, the serial correlation coef¬ 
ficient can detect the presence of linear serial correlation but is not very 
effective for nonlinear serial correlation. In the latter case, the mean- 
square successive-difference ratio is the better measure of such correlation. 

In practice, if serial correlation is suspected, one of these two tests is 
applied. If the test indicates that serial correlation is present, all the 
standard-error formulas contained in this book are invalidated. Actually, 
many researchers still employ the usual standard-error methods in cases of 
serial correlation in the absence of alternate procedures, in order to obtain 
an “approximate” idea of the random sampling errors in the data. How¬ 
ever, this they do at their own risk, as very little is known of the degree of 
approximation attained in such cases. Though the error in such approxi¬ 
mations would logically appear to be related to the amount of serial corre¬ 
lation present, no correction factors are yet available to adjust for this 

effect. 

4. THE EFFECT OF CORRELATION ON THE STANDARD ERRORS 
OF UNIVARIATE STATISTICS 

The standard-error formulas for the mean, median, standard deviation, 
and other measures presented in Chap. IV, were based on the implied 
assumption that the degree of relationship existing between the characteris¬ 
tic under observation and any other characteristic was unknown. And the 
standard-error formulas presented in Chap. V for testing the significance of 
the difference between two sample statistics were based on the assumption 
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that the two samples were not related to each other. If the two samples 
are known to be related, the standard-error-difference formula must be 
modified accordingly; and if, in the former case, the series being studied is 
known to be correlated with some other series, the standard error of the 
statistic can be reduced. We shall first consider the case of a single statistic 
and then that of the difference between two statistics. 

We have already seen (page 389) that the standard error of the mean 
of a correlated variable is modified by substituting the standard deviation 

of regression (o-^) in place of the standard deviation of the variable itself. 
The standard-error formulas for the other statistics—^the median, the 
standard deviation—are adjusted in exactly the same fashion. Thus, the 

stand^d error of the median of a correlated variable would be 1.2533 
N, and the standard error of the standard deviation of a correlated 

Nrariable would be <ru/y/2Ni etc. Now, since the standard deviation of 

regression can never exceed the standard deviation of the variable—in the 
worst case the two are equal—the standard error of a sample statistic may 
be reduced substantially if the variable being studied is highly correlated 

with some other variable. In this respect, correlation analysis is a valuable 
supplementary aid in estimating the true value of various population char¬ 
acteristics even when the correlation measures themselves are of minor interest 
Though widely known among theoretical statisticians, many commercial 
researchers do not appear to be aware of this fact. 

Suppose, for example, that a 95 per cent confidence range is desired for 
the average food expenditure per consumer unit in 1936. From page 328, 
the average food expenditure of consumer units in the sample (of 14 obser¬ 
vations) is computed to be $682. If we ignore the expenditure-income 
regression in Chap. XI, we would go ahead in the usual way, compute 
the standard error of the mean as $391.59/\/i3 = $109, and set up the 
95 per cent confidence interval as $682 ± (2.160) ($109), or between $447 
and $917. But, by making use of the expenditure-income regression, we 
obtain the additional fact that the average income of consumer units 
sampled was about $4,000. In other words, estimating the average food 
expenditure of consumer units in 1936 now reduces to the problem of esti¬ 

mating the average food expenditure of consumer units earning on the 
average $4,000 in that year. Because of this fact, the standard error of the 
mean becomes o-„/\/jV — m, or $74.55/\/lI = $22.5. As a result, our 
95 per cent confidence interval is now $682 ± (2.201)($22.5), or between 
$632 and $732. Thus, even though no interest whatsoever may be evinced 
in the regression, the use of this relationship enables us to reduce our esti¬ 
mate from a $470 range to a $100 range and with the same degree of confi¬ 
dence. 

From the computational viewpoint, note that it is not necessary to 
compute the parameters of the regression equation in order to arrive at 
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the standard deviation of regression. The only additional quantity 
required is the value of the correlation coefficient, since the variance of 
regression is equal to <r2(l — r^), the unexplained variance. 

In the case of two samples that are correlated with each other, the 
standard error of the difference between the two sample means is 

- ^2 + 4_ 2r 120'\<t2 

where <ri = standard deviation of one sample 
0*2 = standard deviation of the other sample 
ri2 = coefficient of correlation between the two samples. 

If either sample is small, iV—1 is used instead of N. 

The reader will note that, with the exception of the correction term 
involving ri2, this is the same formula as given in Chap. V. The earlier 
formula is merely a special case of the present one, namely, the case when 
the two samples are uncorrelated. If the samples are positively correlated, 
the standard error of the difference will be less than in the uncorrelated 
case, but negative correlation serves to increase the standard error of 
the difference. 

The standard-error-difference formulas of other statistics are of the 
same form as the above formula, merely containing a correction term for 
the correlation effect. Thus, the standard error of the difference between 
two percentages based on correlated samples is 

^Pl-P2 \Ni~^N2 
Vmhq^ 

NxN2 

(ri2 in this case would be the tetrachoric correlation coefficient.) 
The standard error of the difference between two standard deviations 

is^ 

O’lTj — 02 
4. 

<Tl 

2Ni 
+ 

2N2 

r|2<7l(72 

VnM 

(The above is an approximation formula for small-size samples. It 
should not be used if the samples are less than 10.) 

If there is any suspicion of correlation, the standard-error formulas 
presented in this section should be applied. The use of the abbreviated 
formulas where correlation is present may seriously bias the results, whereas 
if there is no correlation both formulas will yield the same figure. 

' The general formula for the standard error of the difference between any two 
statistics is 

aw —V ^ <rl — 2ry,v(rw<rv 

where aw = standard error of the stati.stic w in one sample 
<r„ = standard error of the corresponding statistic v in the other sample 

Twv ~ coefficient of correlation between w and v. 
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SUMMARY 

Correlation and regression estimates based on sample data are subject 

to sampling fluctuations in the same manner as other sample statistics. 
To deal with this, a number of standard-error formulas are given for 

estimating the true values of correlation and regression statistics and for 

testing their significance. Illustrations are provided of the alternate use 
of variance analysis in testing the significance of correlation statistics. 

In connection with variance analysis, a measure was introduced of the 

relationship between classes or subsamples in a sampling operation. This 
measure, the intraclass correlation cocfficitmt, is defined as 

Variance due to subsamples 
Variance due to subsamples + random sampling variance 

Computational formulas are developed and the application of the intra¬ 

class correlation coefficient in a practical problem is illustrated. 
Two methods are provided for determining the presence of serial 

correlation: the serial correlation coefficient and the mean-square successive- 

difference method. Both methods are equally efficient when no serial 
correlation is present, but the mean-square successive-difference method 
is more likely to detect serial correlation when it is present. 

When a characteristic under obser\'ation can be correlated with some 
other known variable, substantial reductions in the standard errors of the 
descriptive statistics of that characteristic may be effected. If two samples 

are correlated with each other, the standard-error formula for the difference 
between corresponding statistics computed from these samples must be 
modified to take the correlation effect into account. The modified 

formulas are given in Sec. 4 of this chapter. 
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BIBLIOGRAPHY 

This appendix is designed to aid the res(iarcher in locating further information on 

the various topics covered in this t)ook. The following list is by no means an exhaustive 

compilation of the published mate»'ial in the field; it merely contains those references 

which, in the author’s opinion, are likely to prove most informative and most useful 

to the commercdal researcher—and which are also readily accessible. Contrary to 

the practice in most statistical volumes, a deliberate attempt has been made to exclude 
primary sources and to list secondary sources where possible. The reason for this is 

that primary sources are generally not easily procurable, and even when they are 

available, the methods of exposition used in most of these sources are far above the 

mathematical capabilities of the average researcher. And besides, excellent bibliog¬ 
raphies already exist of primary statistical sources. Those who are interested in such 
sources are referred to the bibliogra])hical appendix of Yule and Kendall: An Intro- 

ductiou to the Theory of Statistics (reference 25). 

With one exception, the major classifications usetl in this bibliography correspond 

to chapter headings. The first classification is the exception, and contains general 
introdu(^tory references. Where possible, the references are further divided by sub¬ 

classifications. References are listed alphabetically within each subclassification. 

To aid the researcher further in selecting the rea<lings that are most likely to prove 
useful to him, a few descriptive remarks accompany each listing. 

References marked with an asterisk are esjHJcially recommended. 

INTRODUCTORY REFERENCES 

General Books on Market Research 

1. American Marketing Association: The Technique of Marketing Research^ McGraw- 

Hill Book Company, Inc., New York, 1937. A very detailed account of how” to 

conduct a market research operation, discussing the problems encountered in 

each step of the process. 

2. *Brown, L.O.: Market Research and Analysis, The Ronald Press Company, New 
York, 1937. A well-written review of the different aspects of market research, 

of the problems and procedures involved in market research and of the steps 

required in market .surveys. It is more comprehensive than the American 
Marketing Association book but not as detailed on the specific steps of a market 
survey. 

3. CouTANT, F.R., and J.R. Doubman: Simplified Market Research, Walther 

Printing House, Philadelphia, 1935. A somewhat out-of-date but still useful 

handbook on the major steps involved in a market study, with brief discus¬ 

sions of each. Chapter 2 on the selection of a research study is especially good. 

4. Heidingsfeld, M.S., and A.B. Blankenship: Market and Marketing Analysis, 
Henry Holt and Company, Inc., New York, 1947. A general survey of market 

research problems with reference to internal market analysis as well as to external 

market analysis. 

413 
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6. Zeisel, H.: Say It with Figures, Harper & Brothers, New York, 1947. A handy 

little book dealing with the classification and tabular and graphic presentation 

of market research data. Especially useful for the beginning researcher. 

General Statistical Texts. Elementary 

6. Brumbaugh, M.A., and L.S. Kellogg: Bminess Statistics, Richard D. Irwin, 

Inc., Chicago, 1942. A very elementary and voluminous text, replete with 
case illustrations, providing a broad, though somewhat superficial, coverage of 

the entire field of statistics. Recommended for those with just a knowledge 

of arithmetic desiring to know something about statistical methods. 

7. Croxton, F.E., and D.J. Cowden: Applied General Statistics, Prentice-Hall, 

Inc., New York, 1939. A general and widely used text on elementary statistical 

methods. It is best on tabular and graphic presentation, frequency distribution 

measures, time-series analysis, and index numbers. 
8. Crum, W.L. : Rudimentary Maihemativs for Economists and Statisticians, McGraw- 

Hill Book Comiiany, Inc., New York, 1949. A more advanced exposition of 

elementary mathematics than reference 15. RtM ommended for those who want 

to study graphical interpretation and differential calculus. 
9. Davies, G.R., and D. Yooer: Business Statistics, John Wiley Sons, Inc., 

New York, 1941. A very useful general elementary text, providing the Ijeginner 

with a good foundation in practical statistics, with primary emphasis on frequency- 

distribution analysis, correlation, and time-series analysis. 
10. Mills, F.C. : Statistical Methods, Henry Holt and Company, Inc., New York, 

1938. A good general text covering much the same subjects as Croxton and 

Cowden, somewhat weaker on tabular and graphic presentation and on time 

series but better on sampling and on correlation analysis. 
11. *NEiswAN<iER, W.A.: Elementary Statistical Methods, The Macmillan Company, 

New York, 1943. One of the easiest and most elementary statistical textl)ooks. 

Recommended for the beginner. Best on its treatment of tables, charts, frequency 

distributions, and of time-.series analysis. 

12. *Peatman, J.G.: Descriptive and Sampling Statistics, Harper & Brothers, New 

York, 1947. One of the best general elementary texts yet published and one of 

the few books to make a clear differentiation between sampling statistir^s and 
population (descriptive) statistics and to present separate treatments of each. 

Also separates the analysis of attributes from that of variables. Though directed 

at psychology, market researchers will find in this book unusually clear treat¬ 

ments of frequency-distribution analysis, simple correlation, and of the standard 
errors and tests of significance for unrestricted sampling statistics. 

13. *Smith, J.G., and A.J. Duncan: Elementary Statistics ami Applications, Vol. I 

of Fundamentals of the Theory of Statistics, McGraw-Hill Book Company, Inc. 

New York, 1944. An excellent introductory statistical text with a very good 
co\'erage of correlation, probability, time series, and index numbers. 

14. •Tippett, L.H.C.: Statistics, Oxford University Press, New York, 1944. An 

excellently written nontechnical little book describing in the simplest possible 

language the meaning of statistics and the logic behind statistical methods. It 
should be read by every beginning student. 

16. "“Walker, H.M.: Mathematics Essential for Elementary Statistics, Henry Holt and 

Company, Inc., New York, 1934. A little book that is invaluable for acquiring, 

or refreshing, the mathematical fundamentals required for statistical work. 
Even contains a chapter on the use of summation signs. 
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16. -: Studies in the History of Statistical Method, Williams & Wilkins Company, 

Baltimore, 1929. This is about the best book on the history and development 

of statistics. 

17. Waugh, A.E. : Elements of Statistical Method, McGraw-Hill Book Company, 
In(;., New York, 1938. A general statistical text containing good discussions 

of the measures of a frequency distribution and of correlation. 

More Advanced 

18. Deming, W.E.: Some Elementary Theory of Sampling, John Wiley & Sons, Inc., 

New York, 1949. 

19. Fisher, R.A. : Statistical Methods for Research Workers, Oliver & Boyd, Ltd., 

Edinburgh and London, 6th ed., 1936. A somewhat advanced treatment of 

sampling methods, with primary emphasis on chi-square and variance analysis, 

simple correlation, and tests of significance. 
90. *Hoel, P.G.: Introduction to Mathematical Statistics, John Wiley & Sons, Inc;., 

New York, 1947. An excellent, simply written book e8i)ecially recommended 

for the researcher desiring an acquaintance with mathematical statistics. It 
develops neatly and concisely frequency-distribution analysis and sampling and 
correlation theory. Can be read easily by anyone having a knowledge of elementary 

calculus. 

21. *Peters, C.C., and W.R. Van Voorhis: Statistical Procedures and Their Mathe¬ 

matical Bases, McGraw-Hill Book Company, Inc., New York, 1940. Though 
directed primarily at students of edu<*ation, this is an extrtjniely useful reference 

book for a wide range of statistical formulas and their derivations, many of 

which are not to be found in most other texts. Emj)hasis is placed on correlation 
analysis, especially on the correlation of attributes. In addition. Chap. 1 explains 
the elements of cahmlus in the most lucid manner yet seen by this author. 

22. Smith, J.G., and A.J. Duncan: Sampling Statistics and Applications, Vol. II of 

Fundamentals of the Theory of Statistics, McGraw-Hill Book Company, Inc., 
New' York, 1945. A more difficult text than Vol. I by the same authors, dealing 

exclusively with sampling theory and with the theory of frequency curves. Its 

exposition of the theory and use of various types of frequency curves is particu¬ 

larly good and its treatment of sampling is much more up to date than that of 
most books. A knowledge of algebra and elementary calculus is desirable for 

reading this book. 

23. *Snei)ecor, G.W.: Statistical Methods, ('ollegiate Press, Inc., of Iowa Stafe College, 

Ames, Iowa, 4th ed., 1946. One of the rare texts that places sampling, variance 

analysis, and other significan(*e tests in their proper perspective. Contains an 

ex(;ellent and comprehensive treatment of variance analysis on a fairly elementary 

level; it also has a very good treatment of mathematical correlation methods. 
24. Statistical Research Group, Columbia University, Selected Techniques of Statistical 

Analysis, McGraw-Hill Book Company, Inc., New York, 1947. Each chapter 

deals with a different type of statistical problem, outlining in detail the method of 

solution. Though dealing primarily with the physical scituices, many of the 

problems are also encountered in market research. A know'ledge of statistics 

and some mathematics is a desirable prerequisite. 

26. Yule, G.U., and M.G. Kendall: An Introduction to the Theory of Statistics, 

Charles Griffin & C'o., Ltd., London, 12th ed., revised, 1940. A general and 
widely used text with a (comprehensive treatment of attribute analysis, correlation, 

and unrestricted sampling theory. Its treatment of attribute analysis equals 
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that of any other text in the field. Also contains a special chapter on interpola¬ 

tion methods. 

CHAPTER I 

The Meaning and Functions of Marketing 

26. Agnew, H.E., R.C. Jenkins, and J.C. Drury: Outlines of Markeiing^ McGraw- 
Hill Book Company, Inc., New York, 2nd ed., 1942, Chaps. 1-3. A general 
discussion of the main divisions of marketing and of the various marketing 
functions. 

27. Alexander, R.S., F.M. Surface, R.F. Elder, and W. Alderson: Marketing, 
Ginn & Company, Boston, 1944, Part 1. Five chapters are devoted to the 

economics of marketing and its relation to distribution, the nature and charac¬ 

teristics of the ultimate consumer market, commodity characteristics, marketing 
functions, and the importance of merchandising. 

28. Converse, P.D., and H.W. HuEtiv: The Elemerda af MarkHing, Prentice-Hall, 
Inc., New York, 1940. Chaps. 1, 4, 8. A general discussion of the meaning of 

marketing and of the functional and commodity approaches to marketing. 

29. Maynard, H.H., and T.N. Beckman: Principles of Mnrkeiiag, Ronald Press 
Company, New York, 4th ed., 1946. Chaps. 1, 2. The finst chapter defines and 
traces the growth of marketing. The second chapter defines the different types 

of goods involved in marketing and discusses marketing functioiis. 

History of Marketing and of Market Research 

30. Converse, P.D.: “The Develoi)ment of the Science of Marketing—An Exploratory 

Survey,” Journal of Marketing, Vol. 10, No. 1 (1945), pp. 14-23. The author 
ranks the important contributions to the development of marketing on the basis 
of a survey conducted among leading marketing people. 

31. -and Huegy: The Elements of Marketing (reference 28), ('hap. 3. A review 

of the history of marketing with primary reference to marketing developments 
in this country during the past century. 

32. Hotchkiss, G.B.: Milestones of Marketing, The Macmillan Comi)any, New York, 

1938. An interesting description of the development of marketing and marketing 
institutions from early Pkiglish times to the present day. 

The Importance and Value of Market Research 

33. Agnew, Jenkins, and Drury: Ontlines of Marketing (reference 26), Chap. 12. 
A general discussion of the value of market research to industry with case illustra¬ 
tions. Emphasis is placed on the correct designing of questionnaires. 

34. Alexander, Surface, Elder, and Alderson: Marketing (reference 27), Chap. 

24. Defines market research and describes some different types of market 
research with emphasis on consumer attitude surveys. 

36. Brown: Market Research and Analysis (reference 2), CJhaps. 1, 16, 18. Interesting 

accounts of the value and limitations of market research in specific fields. 

36. *Coutant, F.R.: “Where Arc We Bound in Marketing Research?” Journal of 
Marketing, Vol. 1, No. 1 (1937), pp. 28^34. An excellent article on the need for 
market research and on the puriK)ses that it may serve. 

37. ♦Heusner, W.W.: “How To Double Your Returns from Dollars Spent for Sales 
Research,” Sales Management, May 1, 1946, pp. 113//. An excellent description 
of how market research can aid in the solution of management problems. 

38. LaClave, F.: “Fundamentals of Market Research,” Printers' Ink, Feb. 16, 1945 

pp. 26//. Those connected with advertising will find this article especially useful! 
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as it contains a check list of the ways in which market research can aid advertis¬ 

ing men. 

39. Odle, H.V.: “Why Every Company Should Do Market Research,” Printers 

Ink, Oct. 20, 1944, pp. 83//. Very similar to reference 38 except that it stresses 
the importance of market res(iarch in distribution and the various functions 

market research can perform in that sphere. 

40. Phelps, D.M.: Marketing Research, University of Michigan, Bureau of Business 
Resiiarch, Business Studies, Vol. 8, No. 2 (1937). A survey of the theoretical 
and functional aspects of market research. 

41. *Thomsen, F.L. : “How Good Is Marketing Research?” Harvard Business Review, 

Vol. 24, 1945-1946, pp. 453-465. A very interesting critical examination of the 
quality of market research in industry with emphasis on its coverage, direction, 

usage, and methods employed. 

CHAPTER n 

42. *Brumbaugh and Kei.i.ogg: Business Statistics (reference 6), Chaps. 15-18. 

An excellent introductory treatment of frequency distributions and their measure¬ 
ment, full of illustrative examples. 

43. *Croxton and (Bowden: Applied General Statistics (reference 7), Chaps. 8-11. 

Chapter 8 contains an excellent description of the construction of frequency 

distributions and their graphical analysis. A comprehensive treatment and 
relative comparison of the mean, median, and mode is to be found in Chap. 9, 

which also devotes some space to the geometric mean and the harmonic mean. 

A large number of measures of disi)ersion, skewness, and kurtosis are described 
in Chap. 10, and a discussion of the normal curve is in ('hap. 11. 

44. Davies and Yodeu: Business Statistics (referen<*e 9), Chaps. 3-6. Contains very 

good descriptions of the construction of frequency distributions and of measures 

of c(*ntral tend(*ncy and of disj)ersion. 
46. * Mills: Statistical Methods (reference 10), Chaps. 3-5, 13. The development of 

the normal curve in C'haf). 13 is particularly recommended. Chapters 3-5 cover 

much the same material as Chapters 8-10 in Croxton and Cowden. 
46. Mode, E.B.: Elements of Statistics, Prentice-Hall, Inc., New York, 1941, Chaps. 

4-6, 8-10. A very comprehensive and detailed elementary treatment of fre¬ 

quency distributions and their analysis. 

47. *Neiswanger: Elementary Statistical Methods (reference 11), Chaps. 8-10. Very 
simple, easily understood discussion on constructing frequency distributions and 
the measures of a frequency distribution, including a detailed description of the 

geometric mean and its uses. 

48. *Peatman: Descriptive and Sampling Statistics (reference 12), Chaps. 3, 5-8. 
Contains excellent discussions of the descrijition and analysis of both attributes 
and variables with freciuent reference to market research. Chapter 7 is entirely 

devoted to the computation of the mean and standard deviation, and Chap. 8 

to the characteristics of the normal curve. 
49. Wa U(Jh: Elements of Statistical Method (reference 17), Chaps. 3-6. A good 

general survey of almost all the descriptive measures of a frequency distribution. 

Chapter 3 contains a very useful discussion on the construction of frequency 

distributions. 
60. * Yule and Kendall: An Introduction to the Theory of Statistics (reference 25), 

Chaps. 6-10. An excellent description of frequency distributions is provided 

in Chap. 6. Measures of central tendency and of dispersion are treated at some 
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length in Chaps. 7 and 8. Chapter 9 derives the various moments of a frequency 

distribution and presents measures of skewness and of kurtosis, and Chap. 10 

derives and analyzes the normal curve. The latter two chapters are somewhat 

mathematical. 

CHAPTER in 

The Sampling Operation 

61. *American Marketing Association, The Technique of Marketing Research (reference 
1). The entire book is devoted to a detailed analysis of the various steps involved 

in a sampling operation with separate chapters discussing each distinct problem 

in simple nontechnical fashion. 
62. Blankenship, A.B. : How to Conduct Consumer and Opinion Research^ Harper 

& Brothers, New York, 1946. A very useful symposium describing how surveys 

are conducted in various fields, the authors supplying case illustrations. 

63. Croxton and Cowden: Applied General Statistics (reference 7), Chap. 2. A fairly 
detailed procedural outline for conducting a, sampling operation with emphasis 

on devising the questionnaire and selecting the type of sample. 

64. Hauser, P.M., and M.H. Hansen: Sample Surveys in Census Work, U.S. Bureau 
of the Census, Washington, D.C., 1944. Mimeographed. A description of the 
use of sampling in dealing with census problems. 

66. Heidingsfeld and Blankenship: Market and Marketing Analysis (reference 4), 

Part 2. A general discussion of the steps and problems involved in a sampling 

survey. 
Note: Numerous accounts of survey procedure as applied to ac^tual market studies 

are to be found in such periodicals as the Journal of Marketing, Printers^ Ink, and 

Sales Management, e.g., see references 122, 123, 125, l25o, 126, 131-136 in the Journal 
of Marketing Subject and Author Index to Volumes I-X. 

Determination of the Method of Collecting Data 

See references 133-151 under Chap. IX. A general discussion of means of obtaining 
data will be found in Chaps. 5 and 6 of The Technique of Marketing Research (reference 
1) and in Chap. 2 of Brown, Market Research and Analysis (reference 2). 

Questionnaire Construction 

66. * American Marketing Association: 7"he Technique of Marketing Research (reference 

1), Chaps. 3, 4. Dr. Paul F. Lazarsfeld presents an excellent review of the 

psychological aspects of questionnaire construction. 
67. Bennett, A.S.: ‘^Some Aspects of Preparing Questionnaires,” Journal of Market¬ 

ing, Vol. 10, No. 2 (1946), pp. 175-179. An account of considerations entering 

into the construction of questionnaires on package preference and of the pitfalls 

involved. 
68. ’“Blankenship, A.B.: Consumer and Opinion Research, Harjjer & Brothers, New 

York, 1943, Chaps. 5-7. A very informative account of correct questionnaire 

construction and of the various pitfalls to be avoided. 

69. *Eastwood, R.P. : Sales Control by Quantitative Methods, Columbia University 

Press, New York, 1940, Appendix B. An excellent and extremely useful list of 
principles governing the use of mail questionnaires. 

60. Ghiselli, E.E.: ^^The Problem of Que.stion Form in the M(‘asure of Sales by 
Consumer Interviews,” Journal of Marketing, Vol. 6, No. 2 (1941), pp. 170-171. 
An account of how wording of questionnaires influences the respondents. 

Note: Numerous articles on this subject are to be found in the Public Ojnnion 

Quarterly, Journal of Applied Psychology, and the Journal of Consulting Psychology, 
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Tabulation Methods 

61. American Marketing Association: The Technique of Marketing Research (reference 

1), Chap. 14. A review of the steps involved in the machine tabulation of survey 

data. 
62. *Benjamin, K.: ^‘Problems of Multiple-punching with Hollerith Machines/^ 

Journal of the American Statistical Association, Vol. 42, No. 237 (1947), pp. 46-71. 
A detailed account of the advantages and disadvantages of multiple punching 
with Hollerith macdiines, of parti<;ular interest to tabulation men in market 

research. 

63. Black, B.J., and E.B. Olds: Punched Card Method for Presenting, Analyzing, 
and Comparing Many Series of Statistics for Areas,” Journal of the American 
Statistical Association, Vol. 41, No. 235 (1946), pp. 347-355. Description of a 

method used to obtain statistical tables pertaining to many areas by first tran¬ 

scribing the data on punched cards and then reproducing the necessary tables 
directly from the cards by machine tabulation. 

64. Brown: Market Research and Analysis (reference 2), Chap. 13. Contains a 

collection of rules for obtaining accuracy in tabulation, and analyzes the relative 
merits of ma<*hine versus hand tabulation. 

66. *Eiidos, P.L. : “How to Save Time and Money on the Tabulation of Surveys,” 

Printers’ Ink, Feb. 13, 1948, pp. 36-37. A very instructive arti(!le on the impor¬ 

tance of taking tabulation into account in planning a survey, with various pointers 

on how to do so. 
66. *Paton, M.R. ; “Selection of 'Tabulation Method, Machine or Manual,” Journal 

of Marketing, Vol. 6, No. 3 (1942), pp. 229-235. An excellent account of the 

factors to be considered in choosing between a hand tally or machine tabulation. 
67. Phelps, K.: “A Flexible Method of Hand Tabulation,” Journal of Marketing, 

Vol. 3, No. 3 (1939), pp. 265-268. A description of a quick, flexible hand-tallying 

method for classifying replies by respondent characteristics. 

Note: A wealth of information on tabulation methods is available from concerns 
in the field, especially from IBM and Remington-Hand. 

Probability 

68. Levy, H., and L. Roth: Elements of Probability, Oxford University Press, New 
York, 1946. The mathematically minded reader will find this book to be an 

excellent introductory treatise on the mathematical aspects of probability and 

of the place of probability theory in statistical analysis. 
69. Mises, R. von: “Probability,” in Encyclopedia of the Social Sciejices. A very 

good, though rather technical, account of the nature and meaning of probability 

and of the various theories on the subject. 
70. Na(JEL, E. : “The Meaning of Probability,” Journal of the. American Statistical 

Association, Vol. 31, No. 193 (1936), pp. 10-26. An examination of the various 

meanings attributed to the term probability, and of the different theories on the 

subject. 
71. *Smith and Duncan: Elementary Statistics and Applications (reference 13), Chap. 

8. A very good clear discussion of the different concepts of probability. 

The Final Report 

See references 51-55 under The Sampling Operation, Chaps. 14-15 of Brown, 

Market Research and Analysis (reference 2), and Chaps. 15-17 of The Technique of 
Marketing Research (reference 1). 
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CHAPTERS IV TO VI. SAMPLING TECHNIQUES, ESTIMATION, 
AND TESTING HYPOTHESES 

Basic Concepts 

72. Committee on Market Research Techniques, ^^Design, Size and Validation of 

Samples for Market Research,” Journal of Marketingj Vol. 10, No. 3 (1946), pp. 

221-234. A very broad discussion of some of the basic principles involved in 
sampling procedures. 

73. *Demin(}, W.F].: “Some Criteria for .Judging the Quality of Surveys,” Journal of 

Marketing, Vol. 12, No. 2 (1947), pp. 145-157. An excellent discussion of the 

fundamental considerations in sampling, of biases in surveys, and of widely held 
misconceptions on the subject. Dr. Deming’s definition of reliability corresponds 

to that of validity used in this book. 

74. *Jastram, R.W.: Elements of Statistical Inference, California Book Co., Ltd., 

Berkeley, 1947. An excellent introductory pamphlet on the theory behind 
statistical estimation and testing hypotheses. 

76. Peatman, J.G.: Descriptive and Sampling Statistics Preference 12;, Chap. 11. 

A good discussion of unrestricted and stratified sampling and of precision and 
adequacy in samples. 

Sampling Techniques and Their Standard Errors. History 

76. Cassady, R., Jr.: “Statistical Sampling Techniques and Marketing Research,” 
Journal of Marketing, Vol. 9, No. 4 (1945), pp. 317-341. An interesting descrip¬ 

tive article on the historical development of sampling methods. 

77. *Snedecor, G.W.: “Design of Sampling Experiments in the Social Sciences,” 
Journal of Farm Economics, Vol. 21, No. 4 (1039), pp. 846-855. An excellent, 
clearly written article on the history of sampling te(‘hniques and on the develop¬ 

ment of the fundamental concepts in sampling theory. 

Quota Sampling 

78. Crossley, A.M.: “Theory and Application of Representative Sampling As 

Applied to Marketing,” Journal of Marketing, Vol. 5, No. 4 (1940), pp. 456-461. 
A general discussion of the sampling problems peculiar to market research. 

79. Ferber, R.: “The Disproportionate Method of Market Sampling,” Journal of 

Business of the University of Chicago, Vol. 19, No. 2 (1946), pp. 67-75. A dis¬ 

cussion of the theory of proportional and disproportionate sampling with a case 
illustration of the superiority of the latter technique. 

80. Neyman, J. : “On the Two Different Aspects of the Representative Method,” 

Journal of the Royal Statistical Society, New Series, Vol. 97 (1934), pp. 558-606. 

A basic article on the superiority of proportional and disproportionate sampling 
as compared to purposive sampling; fairly mathematical. 

Area and Cluster Sampling 

81. *Hansen, M.H.: “Census to Sample Population Growth,” Domestic Commerce, 
November 1944, p. 6. A very simply written outline of an area sampling pro¬ 

cedure for obtaining a sample census of population. 

82. -, and W.N. Hurwitz: “Relative Efficiencies of Various Sampling Units in 
Population Inquiries,” Jourrud of the American Statistical Association, Vol. 37, 

No. 1 (1942), pp. 89-94. A description of cluster sampling, comparing the 

sampling variance of this design with ordinary unrestricted sampling. 
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83. -: “On the Theory of Sampling From Finite Populations,” Annals of Mathe¬ 

matical Statisticsf Vol. 14, No. 4 (1943), pp. 333-362. A basic mathematical 

article on the sampling variance of different types of area samples. Strongly 
recommended for the mathematical reader. 

84. *-: “A New Sample of the Population,” Journal of the Inter-American 

Statistical Institute, Vol. 2, No. 8 (1944), pp. 483-497. Contains a very clear 

and simply written explanation of area sampling. 
86. Madow, W.G., and L. Madow: “On the Theory of Systematic Sampling,” 

Annals of Mathematical Statistics, Vol. 15, No. 1 (1944), pp. 1-24. 

86. LI.S. Bureau of the Census, A Chapter in Population Sampling, U.S. Government 

Printing Office, Washington, D.C., 1947. A description, with illustrations, of 
the design of area samples and of the estimation of their sampling variance. 
Recommended for the mathematical readcir. 

Double Sampling 

87. Neyman, J.: “C'ontribution to the Theory of Sampling Human Populations,” 

Journal of the American Statistical Association, Vol. 33, No. 201 (1938), pp. 

101-116. Contains the derivation of the sampling variance in double sampling 
with illustrative comparisons of the relative efficiency of this method. Very 
informative but very mathematical. 

Inaccuracies in Population W(dghts 

88. CociiiiAN, W.G.: “The Use of the Analysis of Variance in Enumeration by 

Sampling,” Journal of the American Statistical Association, Vol. 34, No. 207 

(1939), pp. 492-510. Illustrates the use of the analysis of variance in estimating 
the efficiency of sample designs and derives the formula for measuring the effect 
of inaccuracies in poimlation weights on the sampling variance. 

Textbook References on Estimation and Testing Hypotheses 

These textbooks concentrate on the standard-eiror formulas for unrestricted 

sampling with but passing reference to other sampling techniques. As a result of 

this unrealistic treatment, the researcher cannot hope to secure much worth-while 

information on stratified sampling from these sources. However, these books do 
provide excellent illustrative examples of the use and interpretation of the various 

standard-error formulas of unrestricted samples. 

89. Brown, T.H. : The Use of Statistical Techniques in Certain Problems of Market 

Research, Harvard University, Division of Business Research, Study No. 12, 

Cambridge, Mass., 1935. 

90. Croxton and Cowden: Applied General Statistics (reference 7), Chaps. 12, 13. 

91. Davies and Yoder: Business Statistics (reference 9), Chap. 7. 
92. Fisher: Statistical Methods for Research Workers (reference 19), Chap. 5. 

93. Mills: Statistical Methods (reference 10), Chaps. 14, 18. 

94. *Peatman: Descriptive and Sampling Statistics (reference 12), Chaps. 12-14. 

The roles of probability and the normal curve in sampling theory are discussed 
very clearly in Chap. 12. The other two chapters contain excellent illustrations 

of the use of standard errors in testing hypotheses and in estimating population 

parameters. 
96. Peters and Van Voorhis: Statistical Procedures and Their Mathematical Bases 

(reference 21), Chaps. 5, 6. 

96. *8mith and Duncan: Sampling Statistics and Applications (reference 22), Chaps. 

8-11, 13, 14, 16. Though somewhat advanced, this book contains by far the 
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best and most comprehensive treatment of unrestricted sampling theory. Chapter 

8 is an excellent introduction to the subject and discusses in detail the two types 

of errors inherent in sampling problems and asymmetrical confidence regions, 
a fundamental concept completely ignored in most textbooks. 

97. Snedecor: Statistical Methods (reference 23), Chap. 3. 

98. Waugh: Elements of Statistical Method (reference 17), Chap. 7. 

99. Yule and Kendall: An Introduction to the Theory of Statistics (reference 25), 

Chaps. 19-21, 23. 

Estimation and Significance of the Coefficient of Variation for Small Sa7riples 

100. Johnson, N.L., and B.L. Welch: ^^Applications of the Non-Central /-Distril)u- 
tion,” Biometrika, Vol. 31, 1939-1940, pp. 3()2-389. This article discusses and 

illustrates the estimation of a population coefficient of variation from a small 

sample and tests for the significance of the difference })etween coefficients of 

variation. However, it is quite mathematical and will be understood only by 
those who have some knowledge of distribution tlieory. 

Simultayieous-decision Problem s 

101. Simon, H.A.: “Symmetric Tests of the Hyimthesis That the Mean of One Normal 
Population Exceeds That of Another,” Amials of Mathematical Statistics^ Vol. 

14, 1943, pp. 149-154. A technical mathematic al treatment of the best procedure 

to use in cases of simultaneous decision. 
102. *-: “Statistical Tests as a Basis for ‘Yes-No’ Choices,” Journal of the 

American Statistical Associationy Vol. 40, No. 229 (1945), pp. 80-84. A more or 

less nontechnical discussion of the same problem. 

CHAPTER VII 

103. Gtrschick, M.A., F. Mosteller, and L.J. Savage: ‘‘Unbiased Estimates for 

C'eitain Binomial Sampling Problems with Applications,’’ Annals of Mathematical 
Statistics, Vol. 17, No. 1 (1940), pp. 13-23. A mathematical discussion of the 
uiil)iased estimates of unknown percentages in sequential analysis. 

104. ♦Statistical Research Group, Columbia l-niversity: Sequential Analysis of Statis¬ 

tical Data: Applications, Columbia University Press, New York, 1945. A very, 
thorough, comprehensive working manual on sequential analysis complete with 
all necessary formulas, tables, and computational aids. Essential for the con¬ 

stant user of sequential analysis. 

105. Wald, A.: “Sequential Tests of Statistical Hypotheses,” Annals of Mathematical 
Statistics, Vol. 10, No. 2 (1945), pp. 117-180. The fundamental exposition of 

the currently used methods of sequential analysis; very mathematical. 

106. *-: “Sequential Method of Sampling between Two Courses of Action,” 
Journal of the American Statistical Association, Vol. 40, No. 231 (1945), pp. 277- 
306. A nontechnical, clear explanation of sequential analysis; provides an 

excellent introduction to the subject. 

107. -: Sequential Analysis, John Wiley & Sons, Inc., New York, 1947. A 
review of the theory of sequential analysis as of the early part of 1947; com¬ 
prehensive but quite mathematical. 

CHAPTER VIII 
Sample Size 

Most referen<?es to sample size and sample allocation in the current literature are 

interspersed among the discussions of the efficiency of different sample designs. Ref- 
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erences 79, 82 and 86 are notable examples of this fact. The following references do 

deal explicitly with this problem but limit themselves to the case of estimating an 

unknown percentage on the basis of an unrestricted sample. 
108. Brown: The Use of Statistical Techniques in Certain Prohlt ms of Market Research 

(reference 89). 

109. Link, H.C.: “How Many Interviews Are Necessary for Results of a Certain 

Accuracy?’^ Journal of Applied Psychology^ Vol. 21, 1937, pp. 1-17. 
110. Smith, E.D.: “Market Sampling,” Journal of Marketing, Vol. 4, No. 1 (1939), 

pp. 45-50. 

Sample Design 

111. Breyer, R.F.: “Some Preliminary Problems of Sample Design for a Survey 

of Retail Trade Flow,” Journal of Marketing, Vol. 10, No. 4 (1946), pp. 343-353. 

A very interesting account of the considerations entering into the planning of an 
area sample for estimating the flow of retail trade in and around Philadelphia. 

112. *Brown, G.H. : “A Comparison of Sampling Methods,” Journal of Marketmg, 

Vol. 11, No. 4 (1947), pp. 331-337. A very informative and clearly written 
review of the relative merits of area samy)iing and quota sampling. 

113. Churchman, C.W., M. Wax, et al.: Measurement of Consumer Interest, Iiniversity 

of Pennsylvania Press, Philadelphia, 1947. Contains some very interesting 

discussions on the relative merits of quota sampling versus area sampling. 
114. Demin(., W.E., and W. Simmons: “On the Design of a Sample for Dealers Inven¬ 

tories,” Journal of the AmeHcan Statistical Assomation, Vol. 41, No. 233 (1946), 

pp. 16-33. An interesting case illustration of the planning and design of an 

area sample for estimating the size of dealers’ inventories of tires. 
116. *Hansen, M.n., and P.M. Hauser: “Area Sampling—Some Principles of Sample 

Design,” Public Opinion Quarterly, Vol. 9, No. 2 (1945), pp. 183-193. An 

excellent discussion of the relative merits of area sampling in market surveys. 

116. Hansen, M.H., W.N. Hurwitz, and M. Gurney: “Problems and Methods of the 
Sample Survey of Business,” Journal of the Ainerican Statistical Association, Vol. 

41, No. 234 (1946), pp. 173-189. A good discussion of the methods used to deal 

with the various problems encountered in designing a samjile survey of business. 

117. *Hauser, P.M., and M.H. Hansen: “On Sampling in Market Surveys,” Journal 
of Marketing, Vol. 9, No. 1 (1944), pp. 26-31. A very clear discussion of the 

advantages of area sampling relative to quota sampling. 

118. Hochstim, J.R., and D.M.K. Smith: “Area Sampling or Quota Control?—Three 

Sampling Experiments,” Public Opinion Quarterly, Vol. 12, No. 1 (1948), pp. 
73-80. An ac(!ount of three sampling experiments leading the authors to con¬ 

clude that, in general, the measurement of exact quantities is best accomplished 

by area sampling and that quota sampling is more efficient in studying attitudes 
and opinions. The ultimate determinant is the nature of the survey. 

119. Jessen, R.J.: Statistical Investigation of a Sample Survey for Obtaining Farm 

Facts, Iowa State College, Agricultural Experiment Station, Research Bulletin 

304, Ames, Iowa, 1942. An account of a study undertaken to determine the 
best method of obtaining farm facts from sample data. 

120. Kiser, C.V.: “Pitfalls in Sampling for Population Study,” Jow'tial of the American 

Statistical Association, Vol. 29, No. 187 (1934), pp. 250-256. An account of 

difficulties encountered in securing a representative sample for the study of 

birth rates. 
121. Madow, L.H. : “Systematic Sampling and Its Relation to Other Sample Designs,” 

Journal of the American Statistical Association, Vol. 41, No. 234 (1946), pp. 204- 
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217. A comparison of the relative efficiency of systematic sampling with unre¬ 

stricted sampling and with stratified sampling. Recommended for the mathe¬ 

matical reader. 
122. Stephan, F.: “Practical Problems of Sampling Procedure,” American Soci¬ 

ological Review^ Vol. 1, No. 4 (1936), pp. 569-580. A general discussion of the 

pro(;edurcs and problems encountered in sample surveys. 

123. Tepping, B.J., W.N. Hurwitz, and W.E. Deming: “On the Efficiency of Deep 
Stratification in Block Sampling,” Journal of the American Statistical Association, 

Vol. 38, No. 221 (1943), pp. 93-100. An analysis of the efficiency of deep stratifi¬ 

cation (a design comparable to the latin square in agric^ulture) relative to unre¬ 

stricted sampling in population studies. 
124. Yates, F. : “A Review of Recent Statistical Developments in Sampling and 

Sampling Surveys,” Journal of the Royal Statistical Society, Vol. 109, No. 1 (1946), 

pp. 12-42. A somewhat technical review of different sampling methods and of 
the estimation of standard errors of estimates. The only source yet seen by this 
writer that states clearly and explicitly that a stratified sample may be derived 

from an unrestricted sample simply by classifying the members of the latter into 

strata. 
CHAPTER IX 

Sources of Sample Bias 

125. *Crespi, L.K.: “The Cheater Problem in Polling,” Public Opinion Quarterly, 
Vol. 9, No. 4 (1945-1946), pp. 431-444. A very informative and frank discussion 
of the prevalence and constant danger of interviewer cheating in ]jei'sonal-inter- 

view surveys. 

126. *Deming, W.E.: “On Errors in Surveys,” American Sociological Renew, Vol. 9, 
No. 4 (1944), pp. 359-369. An excellent article listing and discussing 13 major 
sources of error that affect sample surveys. 

127. Frank, M. : “Measurement and lOlimination of Confusion Elements in Recognition 

Surveys,” Journal of Marketing, Vol. 12, No. 3 (1948), pp. 362-364. A case 
illustration of respondent confusion in a recognition survey and of how adjustment 
was made for this bias. 

128. Mili .ER, A.E.: “Consumer Interviews by Mechanical Recording,” Printers^ 

Ink, Oct. 5, 1945, pp. 122//. A novel proposal for the use of the wire recorder 
in personal interviews to eliminate interviewer misrepresentation and cheating. 

129. *PoLiTz, A.: “Can an Advertiser Believe What Surveys Toll Him?” Printers' 

Ink, Apr. 5, 1946, pp. 23-25. An excellent simply written article on the need 

for random selection in selecting members of unrestric^ted or stratified nonpurposive 
samples. Should be read by all. 

130. ♦Snead, R.P.: “Problems of Field Interviewers,” Journal of Marketing, Vol. 7, 

No. 2 (1942), pp. 139-145. An unusually interesting and somew'hat humorous 
article by a former interviewer contending that interviewers are human too. The 
writer proves his point. 

Random Sampling Numbers 

131. *Kendall, M.G., and B.B. Smith: Tables of Random Sampling Numbers, Univer¬ 
sity of London Tracts for Computers No. 24, Cambridge University Press, 

London, 1939. Contains 100,000 random sampling numbers, the “randomness” 

of which appears to have been more thoroughly tested than Tippett’s random 
sampling numbers. 

132. Tippett, L.H.C. : Random Sampling Numbers, University of London Tracts for 

Computers No. 15, Cambridge University Press, London, 1927. Contains 
40,000 random sampling numbers. 
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Methods of Gathering Sample Data. Mail Questionnaires and Personal Interviews 

133. Benson, L.E.: “Studies in Secret-ballot Technique,'' Public Opinion Quarterly^ 
Vol. 5, No. 1 (1941), pp. 79-82. A ease illustration of differences in responses 
obtained when the secret ballots were used in an election poll instead of direct 
questioning. 

134. *-: “Mail Surveys Can Be Valuable,” Public Opinion Quarterly^ Vol. 10, 
No. 2 (1946), pp. 234-241. A very intere.^ting and objective discussion of the 
value of mail surveys in public-opinion sampling. 

136. *Clausen, J.A., and R.N. Ford: ‘Controlling Bias in Mail Questionnaires,’' 

Journal of the American Staiistical AssodaiioUj Vol. 42, No. 240 (1947), pp. 497- 

511. An excellent treatment <’»f the |.roblcm of bias in mail questionnaires and 
of methods of dealing with it. 

136. Colley, R.H.: “Don’t Look Down Your Nose at Mail Questionnaires," Printers' 

Inky Mar. 16, 1945, pp. 2lff. A rebuttal of Perrin’s article (reference 143) 
showing that coiiipetont supervision can make mail surveys useful and accurate. 

iS7. (Jrespi: “The Cheater Problem in Polling” (reference 125). 

138. Kastman, R.O.: “Dangers in Direct-mail Surveys,’’ Printers' Ink, Jan. 5, 1945, 
pp. 36, 40. The author brings out the point that mail surveys arc not very 
reliable for depth studies. 

139. *Ferber, R. : “Which—Mail Questionnaires or Personal Interviews?’’ Printers' 

Ink, Feb. 13, 1948, pp. 44//. An evaluation of the relative advantages of mail 

questionnaires and personal interviews summarizing the material that had 
appeared on the subject up to that time. 

139a. P'erber, R.: “The Problem of Biiis in Mail Returns: A Solution," Public Opinion 

Quarterly, Vol. 12, No. 4 Winter 1948-1949, pp. 669-^76. Provides statistical tests 
for d(5t(*rmining whether nonresponse bias is present in a mail survey. 

140. *1Iansen, M.H., and W.N. Hurwitz: “The Problem of Nonresponse in Sami)le 

Surveys," Journal of the American Statistical Association, Vol. 41, No. 236 (1946), 

pp. 517-528. A fundamental article containing the sampling variance formulas 
of estimates ba.sed on both unrestricted and stratified samples when two different 
nuithods are used to gather the sample data; also indicates, and illustrates, how 

optimum sample allocation is achieved. 
141. Houser, J.D. : “Measurement of the Vital Products of Business," Journal of 

Marketing, Vol. 2, No. 3 (1938), pp. 181-189. Points out that the number of 
mail-questionnaire returns is no indication of the reliability of a survey. 

142. *Katz, D. : “Do Interviewers Bias Poll Results?" Public Oinnion Quarterly, Vol. 
6, No. 2 (1942), pp. 248-269. An account of an experimental survey in which 
the results obtained by white-collar interviewers on various labor and war issues 

differed from those reported by working-class interviewers. 

143. Perrin, K.M.: “Mail Questionnaires Aren’t Worth Their Salt," Printers' Ink, 
Feb. 9, 1945, pp. 109//. An attempt to jirove that mail questionnaires are useless 
in readership surveys on the basis of the writer’s experience. 

144. Robinson, R. : “Five Features Helped This Mail Questionnaire Pull from 60% to 

70%,” Printers' Ink, Feb. 22, 1946, pp. 25 26. A discussion of the five main 
features that Robinson believes have aided him to secure increased returns 

on mail surveys. 

146. Salisbury, P.: “Eighteen Elements of Danger in Making Mail Surveys,” Sales 

Management, Vol. 42, No. 4 (1938), pp. 28//. An 18-point check list of possible 

dangers in mail surveys. 
146. *Seitz, R.M. : “How Mail Surveys May Be Made to Pay,” Printers' Ink, Dec. 1, 

1944, pp. 17^. A (lis<!Ussion of the advantages of mail surveys, containing 

hints on how to get the best results out of them. 
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147. Stanton, F.N.: ‘Troblems of Sampling in Market Research,’^ Journal of Con- 

suiting Psychology, Vol. 6, No. 4 (1941), pp. 154-163. A good general discussion 

of problems of sample size and of representativeness with primary reference to 
radio research. 

148. -: ^‘Notes on the Validity of Mail Questionnaire Returns,” Journal of 

Applied Psychology, Vol. 23, No. 1 (1938), pp. 95-104. The report of a study 

on radio listenership in schools finding that follow-up responses tend to differ 
from the responses of the initial returns. 

149. SucHMAN, E.A., and B. McCandless: “Who Answers Questionnaires?” Journal 

of Applied Psychology, Vol. 24 (1940), pp. 758-769. A report of one study in 

which interest in the subject and education were found to influence returns to 

mail questionnaires. 

160. *-, and L. Guttman: Solution to the Problem of Bias,'' Public Opinion 

Quarterly, Vol. 11, No. 3 (1947), pp. 445-455. A very clear description of a 
revolutionary method of obtaining stable pro-and-con divisioxis of opinion on 
questionnaire surveys that is invariant of question wording. 

161. *^‘What is Depth Interviewing?” Printers^ Ink, Feb. 16, 1946, pp. 36, 38. A 

concise but clear explanation of the meaning of ^^depth interviewing." 

Other Means of Gathering Sample Data 

162. *Hooper, C.E.: “Coincidental Method of Measuring Radio Audience Size," in 

Blankenship, How to Conduct Consumer and Opinion Research (reference 52), 

pp. 156-171. An excellent description of the methods involved in the coinci¬ 
dental technique used by Hooper to gauge radio-audience size. 

168. Nielsen, A.C.: “Two Years of Commercial Operation of the Audimeter and 

the Nielsen Radio Index," Journal of Marketing, Vol. 9, No. 3 (1945), pp. 239-255. 
An interesting account of the type of information provided by the Nielsen Audi¬ 
meter and of its uses in solving problems of radio listenership. 

164. *Radio Research, 1942-43, edited by P.F. Lazarsfeld, and F.N. Stanton, Duell, 

Sloan and Pearce, Inc., New York, 1944, pp. 265-334. An excellent description 
of the use of the program analyzer in radio research. 

CHAPTER X. CHI-SQUARE AND VARIANCE ANALYSIS 

166. Fisher: Statistical Methods for Research Workers (reference 19), Chaps. 4, 7, 8. 
Chapter 4 contains a detailed treatment of the application of chi-square analysi.s. 

Chapter 7 presents the most comprehensive discussion of any text on intraclass 

correlation. 

166. ^Friedman, M. : “The Use of Ranks to Avoid the Assumption of Normality 
Implicit in the Analysis of Variance,” Journal of the American Statistical Associa¬ 

tion, Vol. 32, No. 200 (1937), pp. 675-701. A very clear description, with illus¬ 

trations, of how ranked data may be used in analysis-of-variance problems when 
the assumption of normality is not valid for quantitative values or when time 
is at a premium. 

167. Goulden, C.H.: Methods of Statistical Analysis, John Wiley & Sons, Inc., New 

York, 1939, Chaps. 9-12. A fairly comprehensive, though somewhat advanced, 
exposition of chi-square analysis, and especially of variance analysis with primary 
reference to agricultural research. 

168. Mills: Statistical Methods (reference 10), Chap. 15 and pp. 618-636. Good 

elementary explanations of variance analysis and chi-square methods. 
169. Peters and Van Voorhis: Statistical Procedures and Their Mathematical Bases 

(reference 21), Chaps. 12 and 14. Contains some illustrations of the application 

of chi-square and variance analysis to practical work. 
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160. Smith and Duncan: Sampling StaiUtica and Applications (reference 22), Chap. 

12. Good treatment of the analysis of variance with illustrative examples. 

161. Smith, J.H.: “Tests of Significance: What They Mean and How to Use Them,'’ 
Journal of Business of the University of Chicago^ Vol. 10, No. 1 (1937). An 
evaluation and review of the uses of four main significance tests—the use of the 

normal distribution, the use of the i distribution, chi-square analysis, and variance 
analysis. 

162. *Snedecor: Statistical Methods (reference 23), Chaps. 1, 9-13, 15. The most 
(jomprehensive and easily understandable treatment of variance and chi-square 

analysis. One of the few books to discuss covariance analysis and the analysis 

of variance with unequal class numbers. 

163. Yule and Kendall: An Infroductio:*, to the Theory of Statistics (reference 25), 

Chapter 22. A somewhat more advanced treatment of chi-square analysis, 

with applications. 

CHAPTERS XI-XIII 

General Correlation Methods 

164. Croxton and Cowden: Applied General Statistics (reference 7), Chaps. 15, Ki, 

22-25. Particularly good in its treatment of asymptotic growth curves (Chap. 

16), which includes illustrative examples. Chapter 23 contains useful illustra¬ 
tions of the correlation of bivariate frequency distributions. Chapter 24 has a 
good illustration of graphic multiple curvilinear correlation and of the use of 

variance analysis to test the significance of multiple and partial correlation 

coefficuents. The correlation of time scries is dis(;ussed in Chap. 25. 
166. Davies and Yoder: Business Statistics (reference 9), Chaps. 10, 11, 14-18. Con¬ 

tains a very good treatment of curve-fitting and of simple, multiple, and partial 

correlation measures with illustrations of their use. A special chapter is devoted 

to the correlation of time series. 
166. Elderton, W.P.: Frequency Curves and Correlation^ Cambridge University 

Press, London, 1938. A technical treatment of simple correlation and curve¬ 

fitting. Contains about the best available description of the Pearsonian curve 
system with explicit instructions and examples of how to fit each curve to empirical 
data. 

167. *Ezekiel, M.: Methods of Correlation Analysis, John Wiley & Sons, Inc., New 

York, 1941. The standard reference work on correlation containing very 
thorough and elaborate discussions of the usual correlation methods with emphasis 

on graphic correlation. 

168. ♦Mills: Statistical Methods (reference 10), Chaps. 7, 10-12, 15-17. Chapter 10 

develops the theory of simple linear correlation very clearly, and Chap. 11 presents 
an excellent treatment of the correlation of time series. Some good illustrations 
of the use of variance analysis in correlation are to be found in Chap. 15. Chapter 

16 discusses the mathematical method of multiple correlation. Illustrations 

of the fitting of arithmetic, logarithmic, and reciprocal curves are provided in 

Chaps. 7 and 17. 
169. Neiswanger: Elementary Statistical Methods (reference 11), Chaps. 16, 17. An 

elementary discussion of linear regression and of the concept of simple correlation. 

170. Peters and Van Voorhis: Statistical Procedures and Their Mathematical Bases 
(reference 21), Chaps. 4, 7, 8, 10, 15. The usual correlation methods are con¬ 

sidered very thoroughly. Recommended especially for the mathematically 

minded researcher, as the various derivations are interspersed in the text. 
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171. ♦Smith and Duncan: Elementary Statistics and Applications (reference 13), 

Chaps. 13-18. An excellent modern survey of the mathematical methods of 

correlation with detailed examples. 
172. *Snedecor: Statistical Methods (reference 23), Chaps. 6, 7, 13, 14. A very clear 

development of correlation methods and of sampling in correlation. It is slightly 

more difficult than Mills but is much more advanced, especially on the subject 

of sampling. An excellent treatment of intracdass correlation will be found on 
pp. 243-246, and a very detailed example of the use of orthogonal polynomials 
is on pp. 388-399. 

173. Waugh: Elements of Statistical Method (reference 17), Chaps. 9-11. A clear 

general survey of the mathematical methods of simple and multiple correlation. 
174. Waugh, F.V.: ‘^Choice of the Dependent Variable in Regression Analysis,” and 

“Comments” by M. Ezekiel, Journal of the American Statistical Association^ 

Vol. 38, No. 222 (1943), pp. 210-216. An interesting discussion of the criteria 
for selecting the dependent variable in a regression problem, pointing out that in 
association problems the causal variable may be taken as dependent. 

176. Yule and Kendall: An Introduction to the Theory of Statistics (reference 25), 

Chaps. 11-17. A comprehensive treatment of the mathematical methods of 
correlation containing the derivations of the various correlation formulas. How¬ 
ever, those with little mathematics will have a hard time reading it. 

Orthogonal Polynomials 

176. ♦Anderson, R.L., and E.E. Houseman: Tables of Orthogonal Polynomial Values 
Extended to N = 104, Iowa State College, Agricultural Experiment Station, Research 

Bulletin 297, Ames, Iowa, 1942. An indispensable booklet for those doing much 

curve-fitting, containing an excellent description of what is probably the best 
available method of fitting orthogonal polynomials as well as computational 
tables to expedite the work. 

177. Fisher: Statistical Methods for Research Workers (reference 19), Chap. 5, pp. 

148-156. A detailed, though somewhat advanced, explanation of the summation 
method of fitting orthogonal polynomials, with computational tables. Explains 

the fitting of orthogonal polynomials by the so-called summation method^ a method 

that is somewhat more involved and laborious than that presented in the Iowa 
State bulletin, especially if calculating machines are not available. 

178. Smith and Duncan: Elementary Statistics and Applications (reference 13), Chap. 

12. A detailed description of the summation method. Also contains com¬ 

putational tables. 

179. Snedecor: Statistical Methods (reference 23), pp. 388-399. A more detailed 
and elaborate explanation of the summation method. 

Tetrachoric Correlation and Related Measures of Association of Attributes 

180. ♦Peatman: Descriptive and Sampling Statistics (reference 12), Chaps. 4, 10. 
Chapters 4 and 10 present unusually clear and comprehensive treatments of the 

correlation of attributes and of discrete data. 

181. ♦Peters and Van Voorhis; Statistical Procedures and Their Mathematical Bases 
(reference 21), Chaps. 9, 13. An excellent discussion of tetrachoric and similar 
correlations will be found in Chap. XIII, containing material not found in most 

books. Chapter IX discusses different means of analyzing the association of 

attributes. 
182. ♦Yule and Kendall: An Introduction to the Theory of Statistics (reference 25), 

Chaps. 3-5. About the most thorough and complete discussion of the analysis 

of attributes to be found anywhere, and abounding with illustrative examples. 
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The Doolittle Method and Other Means of Solving Simultaneous Equations 

183. Bruner, N., and D.H. Leavens: **Notes on the Doolittle Solution,” Ccmles 
Commission Papers^ New Series^ No. 20, University of Chicago, 1947. Also in 
Econometrica, Vol. 15, No. 1 (1947), pp. 43-50. A discussion of the biases in¬ 

volved in various arrangements of the normal equations in using the Doolittle 

method. Recommended for experienced users of the Doolittle method. 
184. *Dwyer, P.S. : “Recent Developments in C^orrelation Technique,’^ Jourmil of 

the American Statistical AssociatioUy Vol. 37, No. 218 (1942), pp. 441-460. A 

very informative review of the different a^'ailable variations of the Doolittle 

method with an evaluation of the advantagcis and disadvantages of each 
method. Also contains a larg^ hibliegrtqdiy. Invaluable to the frecjuent user 
of the Doolittle method. 

186.-: “The Square Root Method and Its Use in Correlation and Regression,” 

Journal of the American Statistical Association, Vol. 40, No. 232 (1945), Part 1, 
pp. 493-503. An account of still another variation of the Doolittle method. 

186. Ezekiel: Methods of Correlation Analysis (reference 167), pp. 468-478. A care¬ 

fully worked-out example and explanation of the use of the Doolittle method in 
obtaining the regression coeffic*ients and the c’s in a multiple regression problem. 

Graphic Correlation 

187. Croxton and Cowden: Applied Ceneral Statistics (reference 7), Chap. 24. 
Contains a good illustration of curvilinear multiple graphic correlation. 

188. *Ezekiel: Methods of Correlation Analysis (reference 167), Chaps. 6, 14, 16. The 

clearest and most thorough elaboration of the graphic method, with illustrations 

of its application to })oth linear and curvilinear relationships. 
189. *Malenbaum, W., and J.D. Black: “The Use of the Short-cut Graphic Method 

of Multiple Correlation,” Quarterly Journal of Economics, Vol. 52, 1937-1938, 

pp. 66-112. An excellent, clearly written, critical evaluation of the advantages 

and disadvantages of the graphic method. 

The Standard Errors of Correlation Statistics 

The literature on this subject is interspersed with the descriptive correlation 
material in most popular texts. The best treatments are to be found in the references 

to Peters and Van Voorhis, Snedecor, and Yule and Kendall. The phases of the 

subject treated best by ea(^h of these texts are as follows: 

190. Peters and Van Voorhis: Statistical Procedures and Their Mathematical Bases 
(reference 21), (^hap. 13. Tetrachoric correlation. 

191. Snedecor: Statistical Methods (reference 23), pp. 118-121, 367-369. Sampling 

errors in predictions. 
192. Yule and Kendall: An Introduction to the Theory of Statistics (reference 25), 

pp. 453-458. The Z test. 

Variance Analysis in Correlation 

193. Croxton and Cowden: Applied General Statistics (reference 7), pp. 682-683, 

710-712, 734-735, 776-778. Illustrates the application of variance analysis in 

testing the significance of correlation and regression measures. 

194. Fisher: Statistical Methods for Research Workers (reference 19), Chaps. 7, 8. 
Chapter 7 brings out the relationship between variance analysis and intraclass 

correlation. Chapter 8 illustrates the use of variance analysis in testing the 

significance of correlation measures. 
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196. Goulden: Methods of Statistical Analysis (reference l67), Chap. 13. Describes 
the use of the analysis of variance in testing the significance of regression and 
multiple correlation coefficients. 

196. *Mills: Statistical Methods (reference 10), pp. 502-522, 545-546. An excellent 

explanation, with illustrations, of the variance-analysis test of significance of 

correlation and of linear and curvilinear relationships. 

197. *Snedecor: Statistical Methods (reference 23), Chaps. 10, 12-14. By far the 
best reference on this subject. Chapter 10 contains a very clear explanation of 

intraclass correlation. Chapters 12 and 13 discuss the subject of covariance, 

of determining the significance of relationships between two or more variables 

in sample data. Chapter 14 describes the use of variance analysis in testing 

the significance of regression. 

Serial Correlation 

Simple nontechnical treatments of the tests for serial correlation are not yet 
available. The following references are the primary sources, all of which are heavily 

mathematical. 

Serial Correlation Coefficient 

198. Anderson, R.L.: “Distribution of the Serial (brreiation Coefficient," AnnaLs 

of Mathematical Statistics, Vol. XIII, No. 1, 1042, pp. 1-13. 

The Mean-square Successive-difference-ratio Test 

199. Neuman, J. von: “Distribution of the Ratio of the Mean Square Succ^essive 

Difference to the Variance,” Annals of Mathematical Statistics, Vol. 12, No. 4 

(1941), pp. 367-395. 
200. -, R.H. Kent, H.R. Bellinson, and B.I. Hart: “The Mean Square 

Successive Difference,” Anruils of Mathematical Statistics, Vol. 12, No. 2 (1941), 

pp. 153-162. 

201. Hart, B.I.: “Significance Levels for the Ratio of the Mean Square Successive 

Difference to the Variance," Annals of Mathematical Statistics, Vol. 13, No. 4 

(1942), pp. 445-447. 

202. -, and J. von Neuman: “Tabulation of the Probabilities for the Ratio of 

the .Mean Square Successive Difference to the Variance," Annals of Mathematical 

SUitistics, Vol. 13, No. 2 (1942), pp. 207-214. 

Maximum-likelihood Methods 

203. Haavelmo, T. : “The Statistical Implications of a System of Simultaneous 

Equations," Econometrica, Vol. 11, No. 1 (1943), pp. 1-12. The basic article 

on the bias inherent in applying single-equation least-squares methods to estimate 

simultaneous relationships. Recommended for the mathematical reader. 

204. ♦Koopmans, T.: “Statistical Estimation of Simultaneous Economic Relations," 

Journal of the American Statistical Association, Vol. 40, No. 232, Part 1 (1945), 

pp. 448-466. About the simplest exposition available of the biases involved in 

using the least-squares method to estimate the relationships between jointly 

dependent variables. 
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MISCELLANEOUS STATISTICAL PROCEDURES 

Exact Procedure for Testing the Significance of a Variable: Two-sided 

Alternative (Chapter Vn) 

This section is a continuation of the test procedure outlined on page 

171, and refers to footnote 1 on page 172. The reader is therefore advised 
to review the material on page 171 before going any farther. 

The one additional step involved in this sequential test is as follows; 
As soon as the cumulated sample values in Col. (5) of Table 14 exceed 

Rn or fall below An, compute the following quantity: 

d|2(X-X)| 
rr2 

If Y exceeds Fo, the value of which depends on the accuracy desired 
in the sequential test, the decision of the preceding step (either acceptance 
or rejection of the hypothesis) is accepted as final. Fo is 2.7 if two decimal 
places are considered sufficiently accurate; 3.8 for three decimal places; 
and 5.0 for four decimal places. 

If F does not exceed Fo, compute 

log« L„ = log. cosh ^ 
2(7*”' 

Reject the hypothesis if loge Lq exceeds a; accept the hypothesis if 
loge Lo is less than —6; and continue sampling if logc Lo is between —6 
and o. Repeat the entire process after, each additional observation until 
loge Lo either exceeds a or falls below —5. [a and b are loge (1 P)/ot 
and loge (1 “ ot)/Pj respectively.] 

Sample Allocation and Standard-error Formulas When Two Comple¬ 
mentary Methods of Collecting Data are Used' (Chapter IX) 

Though the formulas in this section are interpreted in terms of the 
joint use of mail questionnaires and personal interviews, they are equally 
valid for any other two complementary methods. For example, they may 

be used to determine the optimum allocation of a sample between phone 

^ The formulas and content of this section are based on the article by Hansen and 

Hurwitz, *The Problem of Nonresponse in Sample Surveys,(reference 140). 

431 
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calls and personal interviews merely by substituting “telephone calls’^ 

wherever the words ‘‘mail questionnaires^^ appear. 
The formulas presented below are designed to yield that allocation of 

the sample between mail questionnaires and personal interviews that will 
produce a given standard error at minimum cost, i.e., to minimize the 

cost of securing a given precision. 
Case I. Estimating an Average Value: Unrestricted Sampling. It is 

desired to estimate the average value X of a characteristic X—say, the 
average sales of retail food stores—by sending out questionnaires to a 
selected number of stores and using personal interviews to obtain informa¬ 
tion from a certain proportion of the nonrespondents. 

Let P = the total size of the population, e.g., total food stores 
N = the number of mail questionnaires sent out 
Ni = the number of respondents 
N2 = the number of nonrespondents = N — 

r = the number of personal interviews conducted with non- 

respondents 
k = the number of nonrespondents per personal interview = N^/r 

“^9 "V "A 

"Xi = the average value for the respondents = ^ 

X2 = the average value for the personal interviews s 
p = the rate of response to the mail questionnaires 
g = 1 - p 

S = the total estimated number of nonrespondents had mail 
questionnaires been sent to every member of the popu¬ 
lation = pP 

= the estimated variance in the population 

o-f = the estimated variance among the nonrespondents 
6 = the maximum standard error desired in the estimate 

Cl = the cost of mailing out a questionnaire 

C2 = the cost of processing a returned questionnaire 
Cz = the cost of conducting and processing a personal interview 

Approximation Formulas. Assuming that = (t? and that iV/(iV' — 1) 
and S/{S — 1) are approximately 1, the optimum number of mail ques¬ 
tionnaires to be sent out is given by the following expression: 

N^N[l + {k- l)q] (1) 

where 

Pa^ 

(P - 1)€2 -h (T® 
N (2) 
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The number of follow-up personal interviews is given by 

where 

k = 
Cip 

Cl 4- Cip 

(3) 

(4) 

The final estimate of the average value is of the form 

AT.Xi JV2Z2 
A = — 

N 

and its sampling variance is 

2 P - N + S{k- 
NP 

Exact Formulas 

N = N [l4-(fc 
- 14] 
- 1 <r*J 

‘-•J 
\P^{S - l)<r* / CiQ 
_S^iP - 1)4 \ Cl + CiP 

_ P- N , , k-1 2 

/"D 1\ \T ^ “T »r n 1 (P- 1)N nN S-I ” 

(6) 

(6) 

(7) 

(8) 

(9) 

The formulas for Nj r, and X are the same as before. 

Case II. Estimating an Aggregate Value: Unrestricted Sampling. 
Suppose, for example, that we want to know the total amount of sales 

of retail food stores—SX, say—rather than the average sales per store. 

In this case, the formulas for N and for the standard error differ from 

those given above, and, of course, the estimate of X differs from that of 
X. The new formulas are presented below; the formulas for V, r, and k 
are the same as before. 

Approximation Formulas, These formulas assume that = or? and 

that N/{N — 1) and S/{S — 1) are approximately equal to 1. 

N =_—__ 
<r2 + 

2^ = 1 (Ar.X, 4- ATjXs) = PX 

_ „P-Ar + -S(&- 1) “-T,-<r 

(10) 

(11) 

(12) 
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Exact Formulas. The exact formulas for iV and k are the same as be¬ 

fore. The exact formula for a%x is 

p ^ N P 5 
Case III. Estimating an Average or an Aggregate Value: Stratified 

Disproportionate Sampling. Simple Approximation Formulas. If sam¬ 

pling costs do not differ widely from stratum to stratum, i.e., if Ci, C2, 

and C3 have about the same values in all strata, the following approxima¬ 

tion formulas may be used. 

Let the subscript i denote the value of a particular characteristic in 

the ith stratum. 

The value of is obtained from the following expression: 

where 

N{ = Ntll + (kf - l)g,] (14) 

II (15) 

and 

N = W, = A (16) 

The values of and k{ arc obtained from Eqs. (3) and (4). 

II (17) 

where 

k - / 
ylcu + 

(18) 

The final estimates are of the form 

^ NIp^li + ^ N2i^2i 
J = - (19fl) 

if the average value is being estimated, or 

% I 

if the population aggregate is being estimated. 

The sampling variances of the estimates are 

(20a) 
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for the average value, where is Eq. (6) with subscript i attached to 

each statistic. 
(^ix = X (206) 

i 

for the aggregate value, where alx is Eq. (13) with subscript i attached. 

More Exact Formulas. If sampling costs do differ widely from 

stratum to stratum, the optimum stratum allocation of mail question¬ 

naires, Ni, is obtained by a different set of formulas. If it is reasonable 

to assume that v? = oli and that Ni/(Nf — 1) and Si/{Si — 1) are approx¬ 

imately 1, the following simplified forms may be used: 

where 

and 

Ni Al N 

kjOt 

PiSiO^i jki 
<t>i C^PiCif, 

The value of N is computed as 

-1- Slf ;<r?) 

(21) 

(22) 

(23) 

(24) 

From here on, formulas (17) to (20) are used. 

Exact Formulas. Ni is computed from Eq. (21). The values of 4>i. 

N, and N are computed from the following expressions: 

. _ _ kiSiOh!_ 

“ VCziqiiSi - l)/K 
(25) 

PWi , V PAki - 1) 

UPi -1)^ ^ <>1 
i 

Si - 1 
PiOi ' Y 

[P,/(P, - 1)] .r.f 

V -H [Pi/{Pi - DWi 

Ti is found from Eq. (17). ki is computed by attaching the subscript i to 

the various terms of Eq. (8). The final estimates are obtained from 

Eq. (19). The sampling variances are derived from Eq. (20) where <rxj 

is (9) with the subscript i attached, and alxi is (13) with the subscript 

i attached. 



436 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

The Doolittle Method (Chapter XII) 

The Doolittle method is a quick, relatively easy way of solving a set of 

normal equations. It is especially useful when there are more than three 

equations, for the conventional methods of algebraic substitution and of 

determinants then become very awkward to apply. Essentially, the 

Doolittle method involves much the same operations as the usual algebraic 

substitution method. It is solely because of its systematic arrangement 

of terms that this method is so much faster and more convenient. 

In the past few years a great many variations of the Doolittle method 

have been developed. The interested reader is referred to references 

183 to 186 in the Bibliography for accounts of some of these variations. 

The particular variation employed in this illustration, though a very old 

one, is probably still the most commonly employed procedure in such 

problems. And, when the same variable is treated as dependent in the 

entire study, this variation still provides one of the quickest and most 

accurate solutions. If a scries of multiple regressions are to be under¬ 

taken with each variable taken as dependent in turn, the reader is advised 

to master one of the methods described in reference 184 in the Bibliography. 

The normal equations in deviation units in the four-variable case are 

as follows: 

^XiXn + bi4Xx2X4 = ^XiX2 (28) 

2X8X4 = 2xiX8 (29) 

6122x2X4 + 6i82xaX4 + 6i4SxL..^^2xiX4 (30) 

A diagonal line has been drawn through the sums of the squares in the 

left-hand sides of the equations. Notice that the cross-product terms on 

opposite sides of this diagonal line are identical. Thus, to the right of the 

diagonal line we have 6132x2X3, and the corresponding term to the left is 

6122x2X3; and similarly for the other two terms to the right and left of the 

diagonal line. It is this symmetry that makes the Doolittle method 

possible. The advantages derived from this symmetry may be noted by 

considering the various algebraic steps involved in the method. 

The first step in the solution consists of dividing Eq. (28) by — 2x1, 

which yields 612 in terms of the other two net regression coefficients. 

— 612 “ 613 

2x2X3 

"sir 
- 614 

"ZXiXi _ SxiX2 

sxi ~ 
(28o) 

Next, we multiply the first normal equation by the coefficient of hu 

in the above equation. Doing so, results in the following form of the 

first normal equation: 

—buSx,** — ht 
(SX2X3)* 

Sxi 

^ (SX2X»)(SX2X4) _ (SXiXs)(SX2X8) 

s^ sii 
(28i>) 
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Because of the symmetry of terms, the coefficient of 612 in the above 
equation is identical to minus the coefficient of 612 in the second normal 
equation (29), which means that 612 drops out when these two equations 
are combined. The result is 

X3XA 
^X2X3'ZX2xA 

2:xi ) 

^X\X2^X2Xz 

Sxl 

(31) 

Dividing this equation through hy rainus the coefficient of 613 results in 
an expression for hiz in terms of the one unknown, 614, as follows: 

^ ^ f 7:x3X4^2 — 2x23*41 _ f 2x1X22x2X3 — 2xi2xiX3l 
[ 2xi2xi - (2x2X3)" J [ 2xi2xi - (2x2X3)" J 

For brevity, we may denote the two bra<^keted terms by C and D, 
respectively 

— 613 — buC = D (296) 

The next step is to eliminate 613 from the equations. To do this, we 
first multiply P)q. (28) by the coefficient of 614 in (28a), which is — 2x2X4/2x1. 
The resultant equation is 

“612 2 
X2X4 — 

SX2X3 2x2x4 

2x1 
- 6.4 

(2X2X4)" 
2xi 

2X1X22X2X4 

2x1 

Then we multiply Eq. (31) by the coefficient of 614 in (29o). The 
result is 

. /V 2X2X3 2X2X4\ l rr/V 2X2X3 2X2X4\ -b,. (^2, - -^3—j ■ {I - ~~i^) ■ ,3^, 
D 

Now, if these two equations are added to the third normal equation 

(30), the 612 and 613 terms are seen to cancel out, once again because of 
the symmetry of the cross-product terms. The final result is an equation 
of the form 

-buE = F (32) 

where E and F involve only cross-product terms. Hence, 614 is immedi¬ 
ately ascertainable as —FjE, The values of the other two 6's are obtained 
from the so-called back solution; 613, by substituting the value of 614 in Eq. 
(29a), and 612, by substituting the values of 613 and 614 in Eq. (28a). The 
6's may then be checked by substituting their values in one of the 

normal equations. 
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In practice, the Doolittle method is much easier than would appear 
from this algebraic illustration, because the coefficients of the Vs are then 
single numbers instead of the complicated-looking combinations of 
cross-product terms in the preceding equations. The actual calculations 
required to determine the net regression coefficients in the four-variable 
case are shown in Cols, (a) to (d) of Table 1, using the housing multiple 
regression data from Chap. XII. 

This table is nothing more than a systematic arrangement of the 

algebraic process explained above. The three normal equations are written 
in the first three lines of the table, the 612 terms under the column labeled 
X2, the 613 terms under X3, the 614 terms under X4, and the Xi cross- 
product terms under Xi. The first normal equation is copied over in 
line 4. Multiplying through by the negative reciprocal of the first term 
( —or —1/1,076.593484 in this case) yields the values in line 5; 

this completes the first step of the solution, expressing 612 in terms of 
the other unknowns. 

The second normal equation, with the exception of the first term, is 

copied in line 6. The X2 term in this equation is one of the symmetrical 
terms and, as we have seen, vanishes once the first and second normal 
equations are combined. Line 7 is line 4 multiplied by the term in Col. (6) 
of line 5 (this is — 2x2X3/20:2). The sum of lines 6 and 7 is placed in 
line 8; this corresponds to our equation (31). Multiplying through by the 
negative reciprocal of the coefficient of 613 (—1/1.6921916744) yields 
Eq. (29a) in line 9. We now have expressed 613 in terms of bu. 

The last two terms of the third normal equation are copied in line 
10; the X2 and X3 terms are superfluous since they later cancel out. 
Line 11 contains the product of the Z4 and Xi terms in line 4 with the 
X4 term in line 5 (which is —2x2X4/2x1). The product of the X4 term 
in line 9 with the Xi and Xi terms in line 8 is placed in line 12. Line 
13 is then the sum of lines 10 to 12, and corresponds to Eq. (32) in the 
algebraic illustration; 70.9045157766 is E and 7.8869930110 is F, The 
value of 614 is the quotient of F over E, as shown in line 14. 

The back solution is performed in lines 15 to 17. Line 15 contains 

the value of 614 from line 14. The value of 613 is derived in line 16 by 
substituting the value of 614 in line 9. As explained before, this is pos¬ 
sible because line 9 expresses 613 in terms of bu. Translated literally, this 
line states that 

-6i8 + 5.2037149698614 = 3.8231267227 

so that 6i8 = (9c) 614 — 9d, using the numerical line designations and the 
alphabetic column designations to indicate particular values. 

In a similar way, the value of 612 is derived in line 17 from the equation 
in line 5. As a check, the Vs are substituted in the first normal equation 
in line 18. 
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Actually, Table 1 contains four distinct Doolittle solutions, not merely 
the one solution that we have just discussed. The other three solutions 
involve the determination of the c<y’s, the sampling error coefficients 
(page 389), and are performed with the aid of the columns labeled C2, C3, 
and C4. The c's are found by replacing the cross-product terms involving 
Xi in the normal equations by 1,0,0, then by 0,1,0, and then by 0,0,1, and 
substituting c's for 6’s without changing subscripts. Making the first 
substitution, we would have 

022^x1 + C232x2:r3 + C24 2x20:4 = 1 
C22 2X2X3 + C232x| + Czi'SXzXi = 0 
C222X2X4 + C232X3X4 + C242x1 = 0 

which enables us to determine the values of C92, C23, and ^24. Making the 
second substitution, we obtain 

C32^XI + C33^X2Xb + C342.X2X4 = 0 

C32 2X2X3 + C33 2x§ + C34 2x3X4 = 1 

C32 2X2X4 + C33 2x3X4 + C342xJ = 0 

which yields the values of C32, C33, and C34. 
And making the last substitution 

C422xi + 0432X2X3 + C44 2x2X4 = 0 
C42 2x2X3 + C432xi + C44 2x3X4 = 0 

C42 2X2X4 + C43 2X3X4 + C442X^ = 1 

which furnishes the values of C42, C43, and C44. 
Because the cross-product terms on the left-hand side of all four sets 

of these equations (the one set with bu and the three sets with c<;) remain 
the same throughout, the Doolittle method permits all four solutions to 
be carried out simultaneously. All that is required is a different column 
for the right-hand side of the equations in each case. In the solution of 
the Vs we used the column labeled Xi. In solving for the first set of 
c’s, we substitute the column labeled C2; this column, together with 
columns X2, A3, and X4, furnish the values of the three C2/S by the same 
process as that yielding the Vs, Similarly, in obtaining the three cz/s 
we use the column labeled C3, and in arriving at the C4^’s, we use the column 
labeled C4 as the right-hand side of the normal equations. 

The actual procedure is exactly the same as before. It is even easier 
because of the frequency of zeros. As before, line 14 yields the value 
of the third unknown in each case, and the other two c^s in each set are 
obtained from the back solution. Thus, -0.0733904591 in line 14, col¬ 
umn cz, is — C84. The value of Cs3 is obtained by substituting this value 
in line 9, which reads 

-C83 + 6.2037149698C34 = -0.5909496042 

C92 is obtained by substituting the values of Czz and czi in the corre- 
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spending equation of line 5. The various back solutions are performed 
in lines 19 to 28. 

The last column in Table 1 is a check column. The first three figures 
in this column (lines 1 to 3) are the sums of all the values in the particular 
row. Thus 

894.373356 
= 1,076.593484 - 5.524067 + 29.841752 - 207.537813 + 1 + 0 + 0 

These values are copied In lines 4, 6, and 10 respectively, at the same 
time as the other values in the normal equations are copied. These check 

values are then subjected to the same operations as all the other values 

in the table. For example, the ^^check^^ value in line 5 is obtained in the 
same manner as all the other values in line 5 are obtained—by multiplying 
the value in line 4 by —1/1,076.593484. If the operation has been 

performed correctly, the sum of all the other values in line 5 should equal 
the check value in that line. This check factor is operative wherever 
checks have been placed in the check column, i.e., in lines 5, 8, 9, 13, and 

14. It is not operative in other lines because of the omission of the 
symmetrical cross-product terms. 

An additional check in the computation of the c's derives from the fact 
that Cij is equivalent to Cjt. In other words, in the final solution C23 must 
equal C32, C24 must equal C42, and C34 must equal C43. If these relations check, 
C33 and C44 are almost surely correct also, since C33 enters into the determina¬ 
tion of C32,*and C44 figures in the solution of C42 and C43. Only C22 then 
needs to be checked, and this is accomplished by substitution in the 
normal equation containing C22, as shown in line 28 of Table 1. 

The entire process may be shortened somewhat by eliminating lines 
7, 11, and 12, which is possible with the cumulative multiplication mech¬ 
anisms of modern calculating machines. However, it is wise not to do 
so until one has acquired a high degree of proficiency in applying the 
method, for the mistakes resulting from using faulty multipliers and 
from misplaced decimal points more often than not lead to a net loss in 
time and to an unwarrantedly harsh opinion of Doolittle. 

In so far as decimal places are concerned, about the only general (and 
safe) rule is to carry as many decimal places as possible and not to round 
off till the very end. With modern calculating machines this rule entails 
no extra work other than copying the additional figures. 

Problems involving the simultaneous solution of more than three 
normal equations are handled in the same manner as above, the only dif¬ 
ferences being in the greater numbers of lines and of columns required. 
In general, the number of distinct steps in the forward solution equals 
the number of equations. An illustrative example of a Doolittle solution 
of five normal equations will be found in Appendix 1 of Ezekiel, Methods 
of Correlation Analysis (reference 167). 
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SOME MATHEMATICAL DERIVATIONS 

This appendix contains the derivations of a selected number of the 

formulas presented in the text. The appendix is meant to be read, and 
to this end only those derivations are included which, it is believed, the 
average reader can follow. Thus, such derivations as Sheppard's Correc¬ 

tion or a rigorous derivation of the standard error of the mean are excluded 
as being too technical for the average reader. In this way, it is hoped 
that this appendix will furnish the mathematical besrinner with an insight 

into the analytical methods used in statistical derivations and, perhaps, 
interest him in further study. 

The Interpretation of Summation Signs 

The Greek capital letter S (sigma), is used to indicate the summation 
of a series of values. The variable being summed is placed after the 

summation sign. The range of summation is indicated by adding a 
subscript to the variable, placing the first number of the variable under 
the summation sign and the last number over the summation sign. For 

7 

example, ^ means that the variable X is summed from its first value 
I = i 

to its seventh value, inclusive. 
7 

In many cases, this is abbreviated to and where the range of 
1 

summation is obvious, it may be reduced simply to 2)X. Some writers 

employ the alternate symbol to indicate that X is to be summed over 
i 

all possible values. Thus, the summation of the series 

i = 1, 2, 3, 4, 5, 6, 7 
X = 4, 1, 7, 2, 9, 1, 5 

7 7 

may be represented as X<, or as ^X, or as SX, or as ^X*. 
*-11 i 

would be 7 + 2 + 9 + 1, or, 19. 

The following are some of the major properties of summation signs: 
1. The summation of a constant is N times the constant, N being the 

442 
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number of times the constant occurs. Thus, if C = 2, 2, 2, 2, 2, then C 
is simply 2 + 2 + 2 + 2 + 2, or 5(2), which is NC, 

2. If C is a constant and X is a variable, XCXt = C'LXt. For 
example, if 

i = 1, 2, 3, 4 
X = 4, 2, 1, 6 

then 

= C(4) + C(2) + C(l) + C(6) = C(4 + 2 + 1 + 6) = C2A:< 

Similarly 

as the reader can easily i:rove. 
3. If X and Y are variables, '^XtYi is obtained by summing the 

products of the corresponding values of A' and Y. Using the following 

data: 
i = 1, 2, 3, 4 

a: = 2, 3, 6, 2 
y = 4, 0, 1, 3 

we would compute as (2)(4) + (3)(0) + (6)(1) + (2)(3), or 20. 
This is not the same as taking the product of the sums. The latter 

would be represented by (SX<)(sy<) and, in our example, would be 
(2 + 3 + 6 + 2)(4 + 0 + 1 + 3), or 104. (As an exercise, the reader 
might care to prove that {'I,X^{'I,Y^ ^ ZXfYi,) 

4. (2X)2 means that the variable is summed first and then squared, 
whereas 2X2 nicans that the variable is first squared and then summed. 
Thus, using the data given in connection with the second property, 
(2X)2 = (4 + 2 + 1 + 6)2 = 169, but 2X2 = (4)2 + (2)2 + (1)2 + (5)2 

= 57. (The reader may prove that (2X)2 ^ 2X2.) 
5. The summation of an expression is obtained by first carrying through 

multiplication or division operations and then summing each separate 
term. As examples 

2(x, + x,y, + y,) = 2X, + 2X,y, + 2y< 
2(x + y)2 = 2(X2 + 2xy + y2) = 2x2 + 22xy + 2x2 

XXiiXi + c +Yi) = 2(X? + eXt + X,Yi) = 2X? + C2X, + XX^Y, 
N M 

6. ^ ^ Xy means that the variable X is summed over its j values 
t*1 

from j = 1 to Af, for each i from 1 to N, Suppose we are given the 
following values of X (in the body of the table): 
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3 

i 1 2 3 

Values of X 

1 1 3 1 
2 0 1 4 
3 2 1 5 
4 4 0 2 

Here, j varies from 1 to 3 and i varies from 1 to 4, i.e., M = 3 and 
N = 4:, Hence 

t t = I X,J + I X,J + I X,J + X 
‘ =» 1 y “ 1 y y y y 

= (1 + 3 + 1) + (0 + 1 + 4) -h (2 -f i + 5) + (4 + 0 + 2) 

Alternately 
3 4 

^ ”1“ S ^ "^<3 
y =• 1 »■ -1 i t J 

= (1 + 0 + 2 + 4) + (3 + 1 + 1 +0 ) + (1 + 4 + 5 + 2) 

Note that ^ X^j = (0 + 1 + 4) and = (1 + 4 + 5 + 2); here 
y i 

one variable is held constant and the summation is carried out ov(U’ all 
values of the other variable. 

N M L 

A triple summation, for example, 2) X S i® interpreted in a 
»=iy=®l A:=l 

similar manner. 
Practice exercises involving the use of summation signs will be found 

in Walker, Mathematics Essential for Elementary Statistics (reference 15), 
Chap. 16. 

CHAPTER II 

1. Alternative Forms for the Mean. The mean of a frequency dis¬ 
tribution is defined as X = XfX /N. 

a. Let X equal Xo + X', where Xo is any arbitrary constant and X' 
is X — Xo. Then 

y, _ S/(Xo + X') _ S/Xo , S/X' 
N “ iV ^ X 

But, S/Xo = XoS/ = XoX, since Xo is a constant and can therefore 
be taken out of the summation, and since S/ = X, Hence 

X-X. + ^ 
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b. Let X equal fc(Xo + X”), where k is the size of the class interval, 
Xo is an arbitrary constant, and X" is the difference between X/k and 
Xi Then 

^ s/fc(xi + x") _ mx'a I mx" 
^ ~ " N N ^ N 

Since both k and an* constants, we can combine them into, say, 
A’o, that is, let Xo = kX'o. Also, k can be taken out of the summation 
in the second term on the right. Hence, by the same process as above 

X = Xo + k 
S/X" 
' N 

2. Alternative Forms for the Variance (or Standard Deviation). The 
variance of a frecjuency distribution is defined as 

_ S/(X - 
N 

a. Multiplying ovit 

, _ Xf{X^ - 2XX 4- X2) S/X^ - 2XS/X + X^S/ 
N ■■ N.. 

But 2/ = AT and 2/X = NX. Substituting, 

, 2/X'' - 2XX' + XX' _ 2/X' - XX' 
~ N X 

= ^ ^ 
X X \ X / 

b. Let A' equal Xo + X', where Xg is any arlntrary constant and 
X' = X - Xo. Then 

, _ 2/{(X„ + XO - fXo + (2/X7X)]l' 
Ov 

since X = Xo + (S/X'/X). 

, _ 2/|X' - (2/X7X)]' 
X 

Now, 2/X7X is itself a constant = M, say, so that 

, _ 2/(X' - MY ^ 2/X'' - 2M2/X' + M'2/ 
“ X~ X ” 

But, 2/ = X and M = ZfX'/N. Therefore, 

_ 2/^ /2/X'Y 
X V X / 
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e. Let X = kX". Then, from paragraphs lo and 16, 

, lf(kX’'-kJr _ ,,rs/(A''0* /2/X"Vl 
N ~ N \ N ) \ 

3. Alternative Form for the Third Moment about the Mean. The 
third moment about the mean is defined as S/(X — Xy/N. Let 
•Y = Xo + A”'. Substituting, 

Third moment = 

Let iif = XfX'/N. Then 

2/1 Yo + X' - [Yo + (2/YW)])» 
Y ‘ 

Third moment = 
2/(Y' - M)’ 2/Y'» - 32/Y'W + - 2/M’ 

N ~ " Y ■ ". 
_ 2/Y'’ - UI'LfX'^ -b SM'^^fX' - NM^ 

N"~ 
Substituting for M, 

Third moment = -"f* - 8 + 3 

_ (XfX'Y _ 2/Y'» _ {xfX’\ /2/Y'A /'2/Y'Y 

Y’ “'Y \Y/\^/'^ \^7 

The alternative form for the fourth moment about the mean is de¬ 
rived by the same procedure. 

CHAPTER IV 

1. Sampling Variance of a Disproportionate Sample under Optimum 
Allocation, a. If optimum allocation is employed, with sampling costs 
constant between strata, the size of each sample stratum, Nt, is 

Wiaj 
N 

Substituting in the sampling variance formula, 

Sampling variance = 

by canceling terms and noting that 

. V _ (2Pr,<r,)* 
' A/'{W,at/2W„T,)N ~ N 

i 

X (X ^“^0 = 

5. If the strata variances are all equal, the optimum size of each 
stratum is Ni = (Tf</STF<) N, or T7< = Ni/N (since XWi = 1, by defi¬ 
nition). Then we have 

Sampling variance = ^ F, “ = F 2 
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If (Ti is constant, it can be taken out of the summation. But = N, 

Therefore, 

Sampling variance = = = ^ 

CHAPTER X 

1. Short Forms for Computing Various Sums of Squares, a. Given 

k groups of data, m observations in each group, with mk = N. 
The sum of squares between groups is 

m ^ (Xi ~ X)2 = m Xi - 2X Xf + fcX^) = m 2) X? 
% * 1 

- 2rriX ^ X< + 

But nix ^ X, = X (m ^ X.^) = mkX-, since X = m ^ Xf/mk. There¬ 

fore 

m^ (Xi — X)^ = — 2mkX'^ + mfcX^ = ~ mk'X^ 

The Slim of squares within groups is 
k m 

% I {x^- = XX+ = 
i = 1 ;' =» 1 » i i j 

i j % 

But X/ = ^ Xijim. Substituting, 
j 

k m 

X X (^^’«-^‘)^ = XX^'^^«-2mXXf + mX^? 
?: =. 1 ;• = 1 i y $ i 

= X X X 
t J % 

The total sum of squares is 
k m 

X X - ^)“ = X X 

i j % J 

But X = ^ ^ Xijimk. Substituting, 
i j 

k m 

X X - ^)^ = X X + mfcX* = X X 
t =* 1 y = 1 i J i j 

b. We can now prove the identity 
Total sum of squares = sum of squares within groups -f- sum of squares 

between groups 

X X - ^)* = X X +»»X 
* j \ 3 » 
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Substituting the equivalent short forms, 

+ (mX^ - mkJ^) = X X ~ 
i i j 

In a similar way, the corresponding identity for a two-way classifica¬ 
tion may be proved. 

X X - ^)^ = X X +‘^r 

+ k'i(ji-xr + mX 
i ; 

CHAPTER XI 

1. The Normal Equations for Simple Regression, a. By the least- 

squares principle, we seek those values of the parameters a and b that 
minimize the sum of the squared deviations of the observations from the 
regression line Yc = a + bX^ f.e., those values of a and b that minimize 

S[y — (a + bX)Y = Zj say. From differential calculus we know that 
such minimum values are obtained by setting the first derivatives of Z 
with respect to a and 6, in turn, equal to zero. Carrying out this process, 

II = -2 (y - a - 6X) = 0 or XY = Na + 6SX 

II = -2X (7 - o - 6X) = 0 or SXF = aSX + 

b. The values of the parameters for an n-degree curve that satisfy 
the least-squares principle are obtained in a similar manner, by equating 
the first derivative of the sum of the differences between the observations 
and the regression line with respect to each of the parameters to zero. 
Thus, to fit the curve F* = oo -I- oiX + 02 X* -|- • • • -1- o„X®, we would 
have to minimize X[Y — (oo -f- ajX H-f- = Z, say. Taking 
partial derivatives 

11= -2 2) (1" - ao - a,X - ojX*-o„X») = 0 

H = -2X ^ (7 - ao - o,X - a*X*-a„X") = 0 

II = -2X» ^ (7 - ao - a.X - a,X»-a.X") = 0 

H = -2X» 2) (5" - ao - a,X - a,X*-a.X») = 0 
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Summing each term, we obtain the following set of n equations in n 
unknowns, a©, ai, a2, * • • , an*. 

SK == Nao + aiXX + 02"h * * * 4“ 

= clqXX -j- UiSX^ 4“ (h^X^ “h * * * 4" 

XiX^Y = floSA^ -|“ di^X^ -f“ (l2^X^ “f” * * * "f" CLn^X^'^^ 

SX”F = ttoSX” + + a22)X^+2 + ... + 

2. A Short Computational Form for Sxy. By definition Sxy = 
2:(X — Y)(7 — Y). Multiplying out, 

^xy = SXF TSX - Xsr + NT? 

Silt 2X = NT and SF = XY. Substituting, 

^xy = SXF - NT? - NT? + NTY = 2XF - XYY 

3. A Short Computational Form for SF?. Since Yc = a + bX, 

2F? = 2(a + 6X)2 = + abX + a6X + ¥X^) 
= “f" cih^X “1“ cih^X -f" 6^SX^ 

Factoring out a from the first two terms and b from the second two 
terms 

XY'i = a{Na + bXX) + b{aXX + 62X2) 

Now, the first expression in parentheses is the first normal equation, 
which equals 2F, and the second expression in parentheses is the second 
normal equation, which equals 2A’'F. Substituting 

2F? = a2F + 62XF 

4. The Identity of Total Variance with the Sum of Explained and 
Unexplained Variance. 

Total variance = 1 (y - Y)'' = ^ - NY^ 

as shown on page 445. 

Unexplained variance ^ ^ ^ ~ ^ 

since 

2FFc = 2F(a + 6X) = a2F + 62XF = 2F? 

Explained variance ” ^ ^ ~ ^ ^ ““ XY^^ 

since 

Y2F, = Y2(a + 6X) = Y(Xa + 62X) = YzF = XP 
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Equating the three variances and canceling the N in each of the 

denominators, 

S(r - 7y = S(F - FeF + S(F, - T)^ 
2F2 - NT^ = (2F2 - 2F?) + (2F^ - iVP) = 2F=‘ - NY^ 

The same result could be arrived at by expanding 2(F — 7)® = 
2[(F - Ye) + (F, - 7’)]’* and showing that 2[(F - F,)(F, - 7)] = 0, 
by virtue of the fact that (F^ — 7) is constant and 2(F — F^) = 0. 

6. The Product-moment Correlation Formula. The coefficient of 
determination is 

2F» - (a2F + bSXF) 

- JVY* 

2y^ — b^xy 
Yyi 

since 7 is then zero and 2t/ = 2(F — 7) = 0. 

.2 = 

or in deviation units 

But the value of b in deviation units is 2xy/2x“. Therefore, 

, ^ ^ ^ {XxyY^ 
Sx^ 2y^ 'Lx^'Ly^ 

at 

r = 

V^x'‘Xy^ 

6. The Coefficient of Rank Correlation. The product-moment corre¬ 
lation formula is 

_ Xxy 

V 2x^22/* 

If X and y arc ranked, let d = x — j/. Then 

X<P = 2(x - yy = 2x* - 2Xxy + 2y* 

Now, 2x*' = 2j2® represents the sum of the squares of the deviations 
of the first N natural numbers from the mean, which is (JV -|- l)/2. 
Hence, 

2ni 
N + 1 
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In any algebra book it is shown that the sum of the first N numbers 

is N{N + l)/2 and that the sum of the squares of the first N niunbers 
is [(2JV + l)/3][iV(iV + l)/2]. Substituting, 

N(N + 1){2N + 1) 
6 

N{N + ly N(N + !)*• 
O • 4 

N{N + l)i2N -I- 1) N(N + ly 
6 ■ " 4 

4iV(A^ 4- 1)(2.V + 1) - GN(N + 1)* 
. 24 ' 

2N(N + l)(4N + 2 
■ -- ^ 

N{m -1) 
12 

3Ar - 3) _ NiN + l)(Ar 
12 < 

1) 

Now 

xy or 5)^1/ = 
N(m - 1) 

12 

Sd* 
2 

Substituting in the product-moment formula, 

\N(m - ])/121 - (2(f'/2) 
N{N-^ - 1)/12 

_ , _ 62d“ _ 

CHAPTER XII 

1. The Normal Equations for a Four-variable Linear Multiple 
Regression. The normal equations for A'u = a + 4- biaXi + buXt 

n 

are obtained by equating the first partial derivatives of Z = ^ [Xi 
1 

— (a + + 614X4)]^ to zero, as in the case of simple regres¬ 

sion. Working this out 

^=-22^(X, - a- braXa - b„X, - 5.4X4) = 0 

^ = -2X, ^ (X. - a - 6,*X, - 6.,X, - 5.4X4) = 0 

^ = -2X3 ^ (X, - o - 5,2X2 - 5.3X3 - 5.4X4) = 0 

^ = -2X4 2 (Xi - a - 5.2X2 - 5,3X3 - 5.4X4) = 0 
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Summing each term and transposing terms, 

XXi = Nd 4" -f* tiaSXs 4" bulSiXi 

SX1X2 = aSX2 4- 5i22A1 4- 5132X2X3 4- 6142X2X4 

SX1X3 = a2X3 4- 6122AVY3 + 5i32Xi 4- 6142X3X4 

2X1X4 = a2X4 + 6122X2X4 + 6132X3X4 4- 6i42XI 

2. The Short Form for If 

Xu = bi2X2 + 6130:3 + 614X4. 

then 

2.ri, = 2(612X2 + 613X3 4- 6,4X4)^ 

A^ltiplying out, 

2xic = 6122x2 4"6i26|32x2X3 4" 6126142X2X4 4“ 6136122X2X3 4” 6132x3 

4- 6,36142x3X4 4- 6146,22x2X4 4- 6146132x3X4 4- 6142x4 

Factoring out bn from the first three terms, 613 from the second three 
terms, and 6,4 from the last three terms 

2x?c = 6i2(6i22xi 4- 6132x2X3 4- 6,42x2X4) + 613(6122x0X3 + 6i32xi 

+ 6142x3X4) + 614(6122x2X4 4“ 6132x3X4 4- 6142x4) 

The terms in parentheses are the three normal equations in deviation 

units, and are therefore equal to 2x1X2, 2x1X3, and 2x1X4, respectively. 
Hence 

2xfc = 6122x1X2 + 6,32x1X3 4- 6142x1X4 

3. The Coefficients of Partial Correlation in Terms of Lower Order 
Coefficients. The value of ri2.4 is derived below to illustrate the procedure. 
In deviation units 

Now 

And 

r?4.2 
2x'ff.24 ~ 2Xic.2 

2Xi — 2xfc.2 

2 
2x,X2 

= -Yxf Z/ 
('sxiX2y 

sxi 

2Xif_24 612,42X1X2 I 614.22X1X4 

where 612.4 and 614.2 are the solutions of the following two normal equations: 

2x1X2 = 612.42x2 4- 614.22x2X4 

SX1X4 = 612.42X2X4 4" 614.22x4 
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the solutions of which are 

^ — 2x10:42:0:20:4 , _ SxiSxiX4 — 2x1X22x2X4 
■“ 2xi2xl - (2x2x4)*^' “ 2x^2x| - (2x0x4)^“ 

Substituting in 2x1^ 24 and tlien in r‘14.2, 

(2XiX2)^2X4 — 2X1X22X1X42X2X4 + 2X2(2XiX4)‘‘^ 

— 2x1X22x1X42x2X4 (2:xiX2)^ 
2x12x1" - (2x2X4)^ 2xi 

i';rf - '1(2x1x2)72x11 

Multiplying through and clearing fractions, 

2X2(2XiX2)“2X4 — 22X1X22X1X42X2X42X2 + (2X2)^(2XiX4)2 

2 _ - 2xl2xl(2x,X2)* 4- (2x1X2)72x2X4)* 
[2x12x1 - (2x2X4)*][2x12x1 - (2x1X2)*] 

Dividing both numerator and denominator by 2xi(2a^)*2a^, 

2X|X2 2X|X4 2X2X4 J_ (2X1X4)* (2X1X2)* (2X2X4)* 
_ V2^r2'^i V2^^ V2^xl 2x12x1 2x12x1 2xi2x| 

U - [(2x2X4)72x12x11) {1 - [(2xiX2)7S^iSxi]l 

_ -2ri2ri4r24 + rf4 + rf2?24 (rn — ri2r24)* 
(1 - »-i4)(l - lii) (1 - »i4)(l - rfa) 

Taking the square root 
^ ^ y’14 — ri2r24 

V(I - rf2)(l - ri^) 

4. The Normal Equations for Four Variables in Standard Units. 
The normal equations in absolute deviation units are 

2:0:10:2 = bi2^X2 + 61320:20:3 + 61420:20:4 
20:10:3 = 6122x20:3 + 6132x3 + 6142x3X4 

2:xiX4 = 6122x20:4 + 6132x3X4 + 6142x4 

By definition 6^ = cri/o-i = /3h \/2x‘i/2x?. Substituting, 

sm, - 

s».a - ft. + ft. + ft. 

Jw. - ft.. ^ + ft, + ft.VW24 
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Dividing the 
respectively, 

'^XiX2 

'ZxxXz 
Vsxfzxi 

V^fsxj 

But since = 

above equations by \/2xfSx|, \/2xi2x3, v^SxfSxJ, 

= As 

SX2X3 

2x2x4 

Vsxisxl 

+ As 

+ As 

SX2X3 

+ As 
23*33:4 

V 2x12x1 

H" 014 

+ /9i4 

2X2X4 
Vsxisxl 

2X3X4 
•\/Sxi2x| 

+ A4 

2XiXy/V SxjfSxy, 

ri2 = 012 + 0lsTf'23 4" 0lJ'24 

TlZ = 012^23 + ^3 + ft4?"34 

ri4 = ^12?*24 + A3r34 + 0U 
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A LIST OF THE STATISTICAL FORMULAS DISCUSSED 
IN THIS BOOK: THEIR PURPOSE AND GENERAL 

APPLICABILITY 

The statistical formulas discussed in this book have been compiled in the following 

table and classified under general subject headings. Corresponding to each formula 

are a few brief remarks on its purpose and applicability. For more detailed information, 
the reader is referred to the accompanying page reference(s). 

The symbols used in these formulas correspond to those used in the text. A list 

of standard symbols appearing in this book follows. 

A LIST OF STANDARD SYMBOLS USED IN THIS BOOK 

This list does not apply to the symbols used in the first two sections of Appendix B. 

(If bf Cf df 6 

hif 

d 
E 
f or fi 

h 

ft 

fm 
G 
h 

K 
km 
K 

U 
Im 
M 
Med. 
Uxi 

N 
Ni (or Nik) 

P 
Vi 
P 

Parameters of a regression equation 
The coefficient of net regression between Xi and Xj 
Multipliers in standard-error formulas of various multiple correla¬ 

tion measures 

A difference between two observations 
An efficiency ratio 

The frequency of occurence of A' or X< 

Number of observations in class interval immediately preceding the 
modal class interval 

Number of observations in class interval immediately following 

the modal class interval 

Number of observations in the modal class interval 
The geonw^tric mean 

The size of a class interval; also the number of j^roups or subgroups 

in a sample 

Size of the median class interval 
Size of the modal class interval 

The mean-square succ'essive-difference ratio S^/<r^ 
Lower limit of median class interval 
Lower limit of modal class interval 
The size of a sample 

The median 

The number of observations in the cell (t, j) 
The size of a sami)le 
The size of the sample from the jth stratum (or from the ^th subclass 

within the jth stratum) 

A percentage 

The p)ercentage in the ith stratum having a particular attribute 

The size of a population 

455 
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Pi (or Pjk) 

(or g. ) 
r 

Te 
n,.l . . . [ii\ . . .« 
r, 
rt 
Ri.n . . . n 

V 
Vi 
Wi 
X(Xi) 
J 
X (or Xi) 

Xii 

Xi (or X/) 

Xo,X' 
X" 

Xi. 
r 
Vo 
a 
on 

Su 
5* 
*7 
<r (or <r*) 

O’*-!/ 

(Tfcii (or (Tft) 

<ri 

<r2, <r|, or 

O’Med. 

Or 
<Tu 
ay 

^Wi 

The actual size of the ith stratum (or of the kth class within the 

jth stratum) 

1 - 7? (or 1 - Pi) 
The coefficient of simple correlation 

The coefficient of intraclass correlation 

The coefficient of partial correlation between Xi and Xj 
The coefficient of serial correlation 
The coefficient of tetrachoric correlation 
The coefficient of multiple correlation between the dependent variable 

X\ and the independent variables X2, X3, . . . , Xn 

The coefficient of variation 

1 - Wi 

The proportion of the total population in the ith stratum 

The value of the ith observation of a certain characteristic 

The mean of the X values 
X - X (or Xi - X) 

The value of the jth observation in the ith subclass 

The mean of the X values in the ith (or jth) stratum 
The mean of the X values in the jth subsatnple of the ith stratum, 

or of the values in the (i, j) cell 

An arbitrarily selected value of X 

An arbitrarily selected value of X in class interval units 

The regression value of Xi 
The value of an observation on a certain characteristic 

The regression value of Y 
The probability of rejecting the hypothesis when it is true 

The ratio of the ith moment about the mean to <x^ 
The probability of accepting the hypothesis when it is false 

The coefficient of net regression in standard-deviation units 

The mean-square successive difference 
The correlation ratio 

The standard deviation (or the variance) 

The standard error of the difference between two statistics 3? 

and y 
The variance between groups 

The standard error of the coefficient of net regression (or of the co¬ 

efficient of gross regression) 

The standard error of the characteristic under study in the ith 
stratum 

The variance of the characteristic between districts, between 

blocks within districts, or between homes within blocks within 
districts 

The standard error of the median 

The standard error of a percentage 

The standard error of the coefficient of correlation 
The standard deviation of regression 

The standard error of the coefficient of variation 

The variance within groups 

The standard error of a stratum weight 
The standard error of the mean 
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(O'* 

(or ‘'P.) 

<r< 

(Tf 

The standard error of estimate of an individual (or an average) 

value of xx on the basis of the multiple regression between Xi and 
other variables 

The standard error of estimate of an individual (or an average) 
value of y on the basis of the regression between X and Y 

The standard error of ? 
The standard error of the standard deviation 
The standard error of the variance 
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Table 2. The Greek Alphabet 
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Table 3. Squares, Square Roots, and Reciprocals* 

Squares of Numbers 

N 0 1 2 3 4 5 6 7 8 9 

100 10000 10201 10404 10609 10816 11025 11236 11449 11664 11881 
110 12100 12321 12544 12769 12096 -3225 13456 13689 13924 14161 
120 14400 14641 14884 15i;{9 15376 15625 15876 16129 16384 16641 
130 16900 17161 17424 17689 17956 18225 18496 18769 19044 19321 
140 19600 19881 20164 20449 20736 21025 21316 21609 21904 22201 

150 22500 22801 23104 2:^409 20Vlf 24025 24336 24649 24964 25281 
160 25600 25921 2C244 26669 26^J96 27225 27556 27889 28224 28561 
170 28900 29241 29584 29929 30276 30625 30976 31329 31684 32041 
180 32400 32761 33124 33489 33856 34225 34596 34969 35344 35721 
190 36100 36481 36864 37249 37636 38025 38416 38809 39204 39601 

200 40000 40401 40804 41209 41616 42025 42436 42849 43264 43681 
210 44100 44521 44944 45369 45796 46225 46656 47089 47524 47961 
220 48400 48841 49284 49729 50176 50625 51076 51529 51984 52441 
230 62900 53361 53824 64289 54756 55225 55696 56169 56644 57121 
240 67600 58081 58564 59049 59536 60025 60516 61009 61504 62001 

260 62500 63001 63504 64009 64516 65025 65536 66049 66564 67081 
260 67600 68121 68644 69169 69696 70225 70756 71289 71824 72361 
270 72900 73441 73984 74529 75076 75625 76176 76729 77284 77841 
280 78400 78961 79524 80089 80656 81225 81796 82369 82944 83521 
290 84100 84681 85262 85849 86436 87025 87616 88209 88804 89401 

300 90000 90601 91204 91809 92416 93025 93636 94249 94864 95481 
310 96100 96721 97344 97969 98596 99225 99856 100489 101124 101761 
320 102400 103041 103684 104.329 104976 105625 106276 106929 107584 108241 

330 108900 109661 110224 110889 111556 112225 112896 113569 114244 114921 

340 116600 116281 116964 117649 118336 119025 119716 120409 121104 121801 

860 122600 123201 123904 124609 125316 126025 126736 127449 128164 128881 

860 129600 130321 131044 131769 132496 133225 133956 134689 135424 136161 

370 136900 137641 138384 139129 139876 140625 141376 142129 142884 143641 
380 144400 145161 145924 146689 147456 148225 148996 149769 150544 151321 
390 152100 152881 153664 154449 155236 156025 156816 157609 158404 159201 

400 160000 160801 161604 162409 163216 164025 164836 165649 166464 167281 

410 168100 168921 169744 170569 171396 172225 173056 173889 174724 175561 

420 176400 177241 178084 178929 179776 180625 181476 182329 183184 184041 
430 184900 185761 186624 187489 188356 189225 190096 190969 191844 192721 
440 193600 194481 195364 196249 197136 198025 198916 199809 200704 201610 

450 202500 203401] 204304 205209 206116 207025 207936 208849 209764 210681 
460 211600 212521 213444 214369 215296 216225 217156 218089 219024 219961 
470 220900 221841 222784 223729 224676 225625 226576 227529 228484 229441 

480 230400 231361 232324 233289 234256 235225 236196 237169 238144 239121 

490 240100 241081 242064 243049 244036 245025 246016 247009 248004 249001 

500 250000 251001 252004 253009 254016 255025 256036 257049 258064 259081 

510 260100 261121 262144 263169 264196 265225 266256 267289 268324 269361 

520 270400 271441 272484 273529 274576 275625 276676 277729 278784 279841 

530 280900 281961 283024 284089 285156 286225 287296 288369 289444 290521 

540 291600 292681 293764 294849 295936 297025 298116 299209 

1 
300304 301401 

* Wauqh, A.E., Laboratory Manual and Problems for Elementa of Statistical Method^ 

McGraw-Hill Book Company, Inc., New York, 1944. Reproduced through the courtesy of 
Professor Waiigh and of McGraw-Hill. 
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Tabi<b 3. Squares, Square Roots, and Reciprocals.—{Continued) 

Squares of Numbers.—{Continued) 

N 0 1 2 3 4 5 

1 

6 7 8 9 

5S0 302500 303601 304704 305809 306916 308025 309136 310249 311364 312481 
S60 313600 314721 316844 316969 318096 319225 320356 321489 322624 323761 
670 324900 326041 327184 328329 329476 330625 331776 332929 334084 335241 

680 336400 337661 338724 339889 341056 342225 343396| 344569 345744 346921 

690 348100 349281 350464 351649 352836 354025 355216^ 356409 357604 358801 

600 360000 361201 362404 363609 364816 366025 367236 368449 369664 370881 
610 372100 373321 374544 375769 376996 378225 379456 380689 381924 383161 

620 384400 385641 386884 388129 389376 390625 391876j 393129 394384 395641 

630 396900 398161 399424 400689 401956 403225 404496 405769 407044 408321 
640 409600 410881 412164 413449 414736 416025 417316 418609 ;I19904 421201 

650 422500 423801 425104 426409 427716 429025 430336 ^31649 432964 434281 

660 435600 436921 438244 439569 440896 442225 44355^ 444889 446224 447561 
670 448900 450241 451584 452929 454276 455625 456976 458329 459684 461041 
680 462400 463761 465124 466489 467856 469225 470596 471969 473344 474721 
600 476100 477481 478864 480249 481636 483026 484416 

i 
485809 487204 

1 
488601 

700 490000 491401 492804 494209 495616 497025 498436 498849 501264 502681 
710 504100 505521 506944 508369 509796 511225 512656 514089 515524 516961 
720 518400 519841 521284 522729 524176 525625 527076 528529 520984 531441 
730 532900 534361 535824 537289 538756 540225 541696 543169 544644 546121 

740 547600 549081 550564 552049 553536 655026 556516 558009 559504 561001 

750 562500 564001 565504 567009 568516 570025 571536 573049 574564 576081 
760 677600 579121 580644 582169 583696 585225 586756 588289 589824 591361 
770 592900 594441 595984 597529 599076 600625 602176 603729 605284 606841 

780 608400 609961 611524 613089 614656 616225 617796| 619369 620944 622521 
790 624100 625681 627264 628849 630436 632025 633616| 635209 636804 638401 

800 640000 641601 643204 644809 646416 648025 649636 651249 652864 654481 
810 656100 657721 659344 660969 662596 664225 665856: 667489 669124 670761 

820 672400 674041 675684 677329 678976 680625 6822761 683929 685584 687241 
830 688900 690561 692224 693889 695556 697225 698896 700569 702244 703921 
840 705600 707281 708964 710649 712336 714025 715716 717409 719104 720801 

850 722500 724201 725904 727609 729316 731025 732736 734449 736164 737881 

860 739600 741321 743044 744769 746496 748225 749956 751689 753424 755161 
870 756900 758641 760384 762129 763876 765625 767376 769129 770884 772641 
880 774400 776161 777924 779689 781456 783225 784996 786769 788544 790321 
890 792100 793881 795664 797449 799236 801025 802816 804609 806404 808201 

900 810000 811801 813604 815409 817216 819025 820836 822649 824464 826281 
910 828100 829921 831744 833569 835396 837225 839056 840889 842724 844561 
920 846400 848241 850084 851929 853776 855625 857476 859329 861184 863041 
980 864900 866761 868624 870489 872356 874225 876096 877969 879844 881721 

940 883600 885481 887364 889249 891136 893025 894916 896809 898704 900601 

950 902500 904401 906304 908209 910116 912025 913936 915849 917764 919681 
960 921600 923521 925444 927369 929296 931225 933156 935089 937024 938961 
970 940900 942841 944784 946729 948676 950625 952576 954529 956484 958441 

980 960400 962361 964324 966289 968256 970225 972196 974169 976144 978121 
990 980100 982081 984064 

1 
986049 988036 990025 992016 994009 996004 998001 
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Table 3. Squares, Square Roots, and Reciprocals.—{Continued) 

Square Roots of Numbers from 10 to 100 

N 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

10 3.162 3.178 3.194 3.209 3.225 3 240 3.256 3.271 3.286 3.302 
11 3.317 3.332 3.347 3.362 3.376 3.391 3.406 3.421 3.435 3.460 
12 3.464 3.479 3.493 3.5U7 3.521 3.536 3.550 3.564 3.578 3.592 
13 3.606 3.619 3.633 3.647 3.661 3.674 3.688 3.701 3.715 3.728 
14 3.742 3.76S 3.768 3.782 3.795 3.808 3.821 3.834 3.847 3.860 

15 3.873 8.886 3.899 8.912 3 064* 3.937 3.950 3.962 3.975 3.987 
16 4.000 4.012 4.025 4.037 4.050 4.062 4 074 4.087 4.099 4.111 
17 4.123 4.135 4,147 4.159 4.171 4.183 4.19S 4.207 4.219 4.231 
18 4.243 4.254 4.206 4.278 4.290 4.301 4.313 4.324 4.336 4.347 
19 4.359 4.370 4.382 4.393 4.405 4.416 4.427 4.438 4.450 4.461 

20 4.472 4.483 4.494 4.506 4.517 4.528 4.539 4.550 4.561 4.572 
21 4.583 4.593 4.604 4.615 4.626 4.637 4.648 4.658 4.669 4.680 
22 4.690 4.701 4.712 4.722 4.733 4.743 4.754 4.764 4.775 4.785 
23 4.796 4.806 4.817 4.827 4.837 4.848 4.858 4.868 4.879 4.889 
24 4.899 4.909 4.919 4.930 4.940 4.950 4.960 4.970 4.980 4.990 

25 5.000 5.010 5.020 5.030 5.040 5.050 5.060 5.070 5.079 5.080 
26 5.099 5.109 5.119 5.128 5.138 5.148 5.158 5.167 5.177 5.187 
27 5.196 5.206 5.215 5.225 5.234 5.244 5.254 5.263 5.273 5.282 
28 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.357 5.367 5.376 

29 5.385 5.394 5.404 5.413 5.422 5.431 5.441 5.450 5.459 5.468 

30 5.477 5.486 5.495 5.505 5.514 5.523 5.532 5.541 5.550 5.559 
31 5.568 5.577 5.586 5.595 5.604 5.612 5.621 5.630 5.639 5.648 
32 5.657 5.666 5.674 5.683 5.692 5.701 5.710 5.718 5.727 5.736 

33 5.745 5.753 5.762 5,771 5.779 5.788 5.797 5.805 5.814 5.822 
34 5.831 5.840 5.848 5.857 5.865 5.874 5.882 5.891 5.899 5.908 

35 5.916 5.925 5.933 5.941 5.950 5.958 5.967 5.975 5.983 5.992 

36 6.000 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.075 

37 6.083 6.091 6.099 6,107 6.116 6.124 6.132 6.140 6.148 6.156 
38 6.164 6.173 6.181 6.189 6.197 6.205 6.213 6.221 6.229 6.237 
39 6.245 6.253 6.261 6.269 6.277 6.285 6.293 6.301 6.309 6.317 

40 6.325 6.332 6.340 6.348 6.356 6.364 6.372 6.380 6.387 6.395 

41 6.403 6.411 6.419 6.427 6.434 6.442 6.450 6.458 6.465 6.473 
42 6.481 6.488 6.496 6.504 6.512 6.519 6.527 6.535 6.542 6.550 
43 6.557 6.565 6.573 6.580 6.588 6.595 6.603 6.611 6.618 6.626 

44 6.633 6.641 6.648 6.656 6.663 6.671 6.678 6.686 6.693 6.701 

45 6.708 6.716 6.723 6.731 6.738 6.745 6.753 6.760 6.768 6.775 

46 6.782 6.790 6.797 6.804 6.812 6.819 6.826 6.834 6.841 6.848 

47 6.856 6.863 6.870 6.878 6.885 6.892 6.899 6.907 6.914 6.921 

48 6.928 6.935 6.943 6.950 6.957 6.964 6.971 6.979 6.986 6.993 

49 7.000 7.007 7.014 7.021 7.029 7.036 7.043 7.050 7.057 7.064 

50 7.071 7.078 7.085 7.092 7.099 7.106 7.118 7.120 7.127 7.134 

51 7.141 7.148 7.155 7.162 7.169 7.176 7.183 7.190 7.197 > 7.204 

52 7.211 7.218 7.225 7.232 7.239 7.246 7.253 7.259 7.266 7.273 

53 7.280 7.287 7.294 7.301 7.308 7.314 7.321 7.328 7.335 7.342 

54 7.348 7.355 7.362 7.369 7.376 7.382 7.389 7.396 7.403 7.409 
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Table 3. Squares, Square Roots, and Reciprocals—(CoRtmwed) 

Square Roots of Numbers from 10 to 100.—(Continued) 

N 0.0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 

65 7.416 7.423 7.430 7.436 7.443 7.450 7.467 7.463 7.470 7.477 

66 7.483 7.490 7.497 7.603 7.610 7.617 7.623 7.630 7.537 7.643 

67 7.660 7.666 7.663 7.670 7.576 7.682 7.689 7.696 7.603 7.609 

68 7.616 7.622 7.629 7.636 7.642 7.649 7.665 7.662 7.668 7.675 

69 7.681 7.688 7.694 7.701 7.707 7.714 7.720 7.727 7.733 7.740 

60 7.746 7.762 7.769 7.766 7.772 7.778 7.786 7.791 7.797 7.804 

61 7.810 7.817 7.823 7.829 7.a36 7.842 7.849 7.865 7.861 7.868 

62 7.874 7.880 7.887 7.893 7.899 7.906 7.912 7.918 7.926 7.931 

63 7.937 7.944 7.960 7.966 7.962 7.969 7.976 7.981 7.987 7.994 

64 8.000 8.006 8.012 8.019 8.026 8.031 8.037 8.U44 8.050 8.066 

66 8.062 8.068 8.076 8.081 8.087 8.093 8.099 oM06 8.112 8.118 

66 8.124 8.130 8.136 8.142 8.149 8.15.5 8.161 8.167 8.173 8.179 

07 8.186 8.191 8.198 8.204 8.210 8.216 8.222 8.228 8.2.34 8.240 
68 8.246 8.262 8.268 8.264 8.270 8.276 8.283 8.289 8.296 8.301 

69 8.307 8.313 8.319 8.326 8.331 8.337 8.343 8.349 8.355 8.361 

70 8.367 8.373 8.379 8.386 8.390 8.396 8.402 8.408 8.414 8.420 

71 8.426 8.432 8.438 8.444 8.4.50 8.456 8.462 8.468 8.473 8.479 

72 8.486 8.491 8.497 8.603 8.509 8.615 8.521 8.526 8.632 8.638 

73 8.644 8.660 8.666 8.662 8.667 8.673 8.579 8.585 8.691 8.697 

74 8.602 8.608 8.614 8.620 8.626 8.631 8.637 8.643 8.649 8.654 

75 8.660 8.666 8.672 8.678 8.683 8.689 8.696 8.701 8.706 8.712 

76 8.718 8.724 8.730 8.736 8.741 8.746 8.752 8.768 8.764 8.769 

77 8.776 8.781 8.786 8.792 8.798 8.803 8.809 8.816 8.820 8.826 

78 8.832 8.837 8.843 8.849 8.864 8.860 8.866 8.871 8.877 8.883 

79 8.888 8.894 8.899 8.906 8.911 8.916 8.922 8.927 8.933 8.939 

80 8.944 8.960 8.966 8.961 8.967 8.972 8.978 8.983 8.989 8.994 

81 9.000 9.006 9.011 9.017 9.022 9.028 9.033 9.039 9.044 9.050 

82 9.066 9.061 9.066 9.072 9.077 9.083 9.088 9.094 9.099 9.106 

83 9.110 9.116 9.121 9.127 9.132 9.138 9.143 9.149 9.154 9.160 
84 9.166 9.171 9.176 9.182 9.187 9.192 9.198 9.203 9.209 9.214 

86 9.220 9.226 9.230 9.236 9.241 9.247 9.252 9.267 9.263 9.268 
86 9.274 9.279 9.284 9.290 9.296 9.301 9.306 9.311 9.317 9.322 
87 9.327 9.333 9.338 9.343 9.349 9.354 9.369 9.365 9.370 9.376 
88 9.381 9.386 9.391 9,397 9.402 9.407 9.413 9.418 9.423 9.429 
89 9.434 9.439 9.446 9.460 9.466 9.460 9.466 9.471 9.463 9.482 

90 9.487 9.492 9.497 9.603 9.508 9.513 9.618 9.624 9.529 9.534 
91 9.639 9.646 9.660 9.666 9.660 9.666 9.671 9.676 9.581 9.586 
92 9.692 9.697 9.602 9,607 9.612 9.618 9.623 9.628 9.633 9.638 
93 9.644 9.649 9.664 9.669 9.664 9.670 9.676 9.680 9.685 9.690 
94 9.695 9.701 9.706 9.711 9.716 9.721 9.726 9.731 9.737 9.742 

96 9.747 9.762 9.767 9.762 9.767 9.772 9.778 9.783 9.788 9.793 
96 9.798 9.803 9.808 9.813 9.818 9.823 9.829 9.834 9.839 9.844 

97 9.849 9.864 9.869 9.864 9.869 9.874 9.879 9.884 9.889 9.894 

98 9.899 9.906 9.910 9.915 9.920 9.926 9.930 9.935 9.940 9.946 
99 9.960 9.966 9.960 9.966 9.970 9.976 9.980 9.986 9.990 9.996 
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Table 3. Squares, Square Roots, and Reciprocals.—{Continued) 
Square Roots of Numbers from 100 to 1,000 

N 0 1 2 3 4 5 6 7 8 9 

100 10.00 10.05 10.10 10.16 10.20 10.26 10.30 10.34 10.39 10.44 
110 10.49 10.54 10.68 10.63 10.68 10.72 10.77 10.82 10.86 10.91 
120 10.96 11.00 11.06 11.09 .11.14 11.18 11.22 11.27 11.31 11.36 
130 11.40 11.46 11.49 11.63 11.58 11.62 11.66 11.70 11.75 11.79 
140 11.83 11.87 11.92 11.93 12.00 12.04 12.08 12.12 12.17 12.21 

130 12.25 12.29 12.33 12.3" 12.41, ,."2.45 12.49 12.53 12.67 12.61 
160 12.65 12.69 12.73 12.77 12. SI 12.86 12.88 12.92 12.96 13.00 
170 13.04 13.08 13.11 13.16 13.19 13.23 13.27 13.30 13.34 13.38 
180 13.42 13.46 13.49 13.53 13.56 13.60 13.64 13.67 13.71 13.75 
190 13.78 13.82 13.86 13.89 13.93 13.96 14.00 14.04 14.07 14.11 

200 14.14 14.18 14.21 14.25 14.28 14.32 14.35 14.39 14.42 14.46 
210 14.49 14.63 14.66 14.59 14.63 14.66 14.70 14.73 14.76 14.80 
220 14.83 14.87 14.90 14.93 14.97 16.00 16.03 16.07 16.10 15.13 
230 16.17 16.20 15.23 16.26 16.30 15.33 15.36 15.39 15.43 15.46 
240 15.49 16.62 16.66 16.59 15.62 15.65 15.68 15.72 16.76 16.78 

250 15.81 15.84 15.87 15.91 15.94 15.97 16.00 16.03 16.06 16.09 
260 16.12 16.16 16.19 16.22 16.26 16.28 16.31 16.34 16.37 16.40 
270 16.43 16.46 16.49 16.62 16.66 16.68 16.61 16.64 16.67 16.70 
280 16.73 16.76 16.79 16.82 16.86 16.88 16.91 16.94 16.97 17.00 

290 17.03 17.06 17.09 17.12 17.15 17.18 17.20 17.23 17.26 17.29 

300 17.32 17.36 17.38 17.41 17.44 17.46 17.49 17.52 17.65 17.68 
310 17.61 17.64 17.66 17.69 17.72 17.76 17.78 17.80 17.83 17.86 
320 17.89 17.92 17.94 17.97 18.00 18.03 18.06 18.08 18.11 18.14 

330 18.17 18.19 18.22 18.26 18.28 18.30 18.33 18.36 18.38 18.41 

340 18.44 18.47 18.49 18.52 18.66 18.67 18.60 18.63 18.65 18.68 

360 18.71 18.74 18.76 18.79 18.81 18.84 18.87 18.89 18.92 18.95 

360 18.97 19.00 19.03 19.05 19.08 19.10 19.13 19.16 19.18 19.21 

370 19.24 19.26 19.29 19.31 19.34 19.36 19.39 19.42 19.44 19.47 

380 19.49 19.52 19.64 19.67 19.60 19.62 19.65 19.67 19.70 19.72 

390 19.76 19.77 19.80 19.82 1 19.86 19.87 19.90 19.92 19.95 19.98 

400 20.00 20.02 20.06 20.07 20.10 20.12 20.15 20.17 20.20 20.22 

410 20.26 20.27 20.30 20.32 20..35 j 20.37 20.40 20.42 20.44 20.47 

420 20.49 20.62 20.64 20.67 20.69 20.62 20.64 20.66 20.69 20.71 

430 20.74 20.76 20.78 20.81 20.83 20.86 20.88 20.90 20.93 20.96 

440 20.98 21.00 21.02 21.05 21.07 21.10 21.12 21.14 21.17 21.19 

450 21.21 21.24 21.26 21.28 21.31 21.33 21.35 21.38 21.40 21.42 

460 21.46 21.47 21.49 21.62 21.64 21.66 21.69 21.61 21.63 21.66 

470 21.68 21.70 21.73 21.76 21.77 21.79 21.82 21.84 21.86 21.89 

480 21.91 21.93 21.95 21.98 22.00 22.02 22.06 22.07 22.09 22.11 

490 22.14 22.16 22.18 22.20 22.23 22.26 22.27 22.29 22.32 22.34 

500 22.36 22.38 22.41 22.43 22.46 22.47 22.49 22.52 22.54 22.66 

610 22.58 22.61 22.63 22.65 22.67 22.69 22.72 22.74 22.76 22.78 

520 22.80 22.83 22.86 22.87 22.89 22.91 22.93 22.96 22.98 23.00 

530 23.02 23.04 23.07 23.09 23.11 23.13 23.15 23.17 23.19 23.22 

540 23.24 23.26 23.28 23.30 23.32 23.36 23.37 23.39 23.41 23.43 

550 23.45 23.47 23.49 23.62 23.64 23.66 23.58 23.60 23.62 23.64 
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Tabi.p. 3. Squares, Square Roots, and Reciprocals.—(Continued) 
Square Roots of Numbers from 100 to 1,000.—{Continued) 

N 0 1 2 3 4 5 6 7 8 9 

650 23.45 23.47 23.49 23.52 23.54 23.56 23.58 23.60 23.62 23.64 
560 23.66 23.69 23.71 23.73 23.75 23.77 23.79 23.81 23.83 23.85 
670 23.87 23.90 23.92 23.94 23.96 23.98 24.00 24.02 24.04 24.06 

580 24.08 24.10 24.12 24.15 24.17 24.19 24.21 24.23 24.25 24.27 

590 24.29 24.31 24.33 24.35 24.37 24.39 24.41 24.43 24.45 24.47 

600 24.49 24.52 24.54 24.56 24.58 24.60 24.62 24.64 24.66 24.68 

610 24.70 24.72 24.74 24.76 24.78 24.80 24.82 24.84 24.86 24.88 

620 24.90 24.92 24.94 24.96 24.98 25.00 25.02 25.04 25.06 25.08 

630 25.10 25.12 25.14 25.16 25.18 25.20 25.22 25.24 25.26 25.28 
640 25.30 26.32 25.34 25.36 26.38 25.40 25.42 25.44 25.46 25.48 

660 25.50 25.51 25.53 25.55 26.57 25.59 25.61 25.63 25.65 25.67 

660 25.69 26.71 25.73 25.76 26.77 25.79 25.81 26.83 25.85 25.86 
670 26.88 25.90 25.92 25.94 26.96 25.98 26.00 26 02 26.04 26.06 
680 26.08 26.10 26.12 26.13 26.15 26.17 26.19 26.21 26.23 26.25 
690 26.27 26.29 26.31 26.32 26.34 26.36 26.38 26.40 26.42 26.44 

700 26.46 26.48 26.50 26.51 26.53 26.55 26.67 26.59 26.61 26.63 
710 26.65 26.66 26.68 26.70 26.72 26.74 26.76 26.78 26.80 26.81 
720 26.83 26.85 26.87 26.89 26.91 26.93 26.94 26.96 26.98 27.00 
730 27.02 27.04 27.06 27.07 27.09 27.11 27.13 27.15 27.17 27.18 

740 27.20 27.22 27.24 27.26 27.28 27.29 27.31 27.33 27.35 27.37 

760 27.39 27.40 27.42 27.44 27.46 27.48 27.50 27.51 27.63 27.55 
760 27.57 27.59 27.60 27.62 27.64 27.66 27.68 27.69 27.71 27.73 
770 27.75 27.77 27.78 27.80 27.82 27.84 27.86 27.87 27.89 27.91 

780 27.93 27.95 27.96 27.98 28.00 28.02 28.04 28.05 28.07 28.00 

790 28.11 28.12 28.14 28.16 28.18 28.20 28.21 28.23 28.25 28.27 

800 28.28 28.30 28.32 28.34 28.35 28.37 28.39 28.41 28.43 28.44 
810 28.46 28.48 28.50 28.51 28.53 28.65 28.57 28.58 28.60 28.62 
820 28.64 28.65 28.67 28.69 28.71 28.72 28.74 28.76 28.78 28.79 
830 28.81 28.83 28.84 28.86 28.88 28.90 28.91 28.93 28.95 28.97 
840 28.98 29.00 29.02 29.03 29.06 29.07 29.09 1 29.10 29.12 29.14 

850 29.16 29.17 29.19 29.21 29.22 29.24 29.26 29.27 29.29 ' 29.31 
860 29.33 29.34 1 29.36 29.38 29.39 29.41 29.43 29.44 29.46 1 29.48 
870 29.50 29.61 ! 29.53 29.55 29.56 29.58 29.60 29.61 29.63 29.65 
880 29.66 29.68 29.70 29.72 29.73 29.75 29.77 29.78 29.80 29.82 
890 29.83 29.85 29.87 29.88 29.90 29.92 29.93 29.95 29.97 1 29.98 

900 30.00 30.02 30.03 30.05 30.07 30.08 30.10 30.12 30.13 30.15 
910 30.17 30.18 30.20 30.22 30.23 30.25 30.27 30.28 30.30 30.32 
920 30.33 30.35 30.36 30.38 30.40 30.41 30.43 30.45 30.46 30.48 
930 30.50 30.51 30.53 30.54 30.56 30.58 30.59 30.61 30.63 30.64 
940 30.66 30.68 30.69 30.71 30.72 , 30.74 30.76 30.77 30.79 30.81 

950 30.82 30.84 30.85 30.87 30.89 30.90 30.92 30.94 30.95 30.97 
960 30.98 31.00 31.02 ; 31.03 31.05 31.06 31.08 31.10 31.11 31.13 
970 31.14 31.16 31.18 31.19 .31.21 31.22 31.24 31.26 31.27 31.29 

980 31.30 31.32 31.34 31.35 31.37 31.38 31.40 31.42 31.43 31.45 
900 31.46 31.48 31.50 31.51 31.53 31.54 31.56 31.58 31.59 31.61 
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Table 3. Squares, Square Roots, and Reciprocals.—(Continued) 
Reciprocals of Numbers 

N .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

1.00 1.0000 .9901 .9804 .9709 .9615 .9624 .9434 .9346 .9259 .9174 
1.10 .9091 .9009 .8929 .8850 . 8772 .8696 .8621 .8647 .8476 .8403 
1.20 .8333 .8264 .8197 .8130 .8065 .8000 .7937 .7874 .7812 .7762 
1.30 .7692 .7634 .7676 .7519 .7463 .7407 .7363 .7299 .7246 .7194 
1.40 .7143 .7092 .7042 .6993 .6944 .6897 .6849 .6803 .6757 .6711 

1.30 ,6667 .6623 .6579 .6«hi. .64H 6452 .6410 .6369 .6329 .6289 
1.60 .6260 .6211 .6173 .6130 .6098 .6061 .6024 .6988 .5952 .6917 
1.70 .5882 .5848 .5814 .5780 .6747 .6714 .6682 .6660 .6618 .5587 
1.80 .6656 .5525 .5496 .5464 .5435 .5405 .6376 .6348 .5319 .5291 
1.90 .5263 .5236 .5208 .5181 .5166 .5128 .5102 .5076 .5051 .6025 

2.00 .5000 .4975 .4950 .4926 .4902 .4878 .4854 .4831 .4808 .4785 
2.10 .4762 .4739 .4717 .4694 .4673 .4651 .4630 .4608 .4587 .4566 
2.20 .4545 .4525 .4504 .4484 .4464 .4444 .4425 .4405 .4386 .4367 
2.30 .4348 .4329 .4310 .4292 .4274 .4255 .4237 .4219 .4202 .4184 
2.40 .4167 .4149 .4132 .4115 .4098 .4082 .4065 .4049 .4032 .4016 

2.50 .4000 .3984 .3968 .3953 .3937 .3922 .3906 .3891 .3876 .3861 
2.60 .3846 .3831 .3817 .3802 .3788 .3774 .3759 .3745 .3731 .3717 
2.70 .3704 .3690 .3676 .3663 .3650 .3636 .3623 .3610 .3597 .3684 
2.80 .3671 .3559 .3546 .3634 .3521 .3609 .3496 .3484 .3472 .3460 
2.90 .3448 .3436 .3425 .3413 .3401 .3390 .3378 .3367 .3356 .3344 

3.00 .3333 .3322 .3311 .3300 .3289 .3279 .3268 .3257 .3247 .3236 
3.10 .3220 .3216 .3206 ,3196 .3186 .3176 .3166 .3166 .3146 .3136 
3.20 .3125 .3116 .3106 ,3096 .3086 .3077 .3067 .3058 .3049 .3040 

3.30 .3030 .3021 .3012 .3003 .2994 .2985 .2976 .2967 .2959 .2950 

3.40 .2941 .2933 .2924 .2915 .2907 .2899 .2890 .2882 .2874 .2865 

3.50 .2867 .2849 .2841 .2833 .2825 .2817 .2809 .2801 .2793 .2786 
3.60 .2778 .2770 .2762 .2766 .2747 .2740 .2732 .2726 .2717 .2710 

3.70 .2703 .2695 .2688 .2681 .2674 .2667 .2660 .2653 .2646 .2639 
3.80 .2632 .2625 .2618 .2611 .2604 .2597 .2691 .2684 .2577 .2671 
3.90 .2564 .2568 .2651 .2545 .2538 .2632 .2525 .2519 .2613 .2606 

4.00 .2600 .2494 .2488 .2481 .2475 .2469 .2463 .2457 .2451 .2445 

4.10 .2439 .2433 .2427 .2421 .2416 .2410 .2404 .2398 .2392 .2387 
4.20 .2381 .2375 .2370 .2364 .2368 .2363 .2347 .2342 .2336 .2331 

4.30 .2326 .2320 .2315 .2309 .2304 .2299 .2294 .2288 .2283 .2278 

4.40 .2273 .2268 .2262 .2257 .2252 .2247 .2242 .2237 .2232 .2227 

4.50 .2222 .2217 .2212 .2208 .2203 .2198 .2193 .2188 .2183 .2179 

4.60 .2174 .2169 .2164 .2160 .2155 .2161 .2146 .2141 .2137 .2132 
4.70 .2128 .2123 .2119 .2114 .2110 .2105 .2101 .2096 .2092 .2088 

4.80 .2083 .2079 .2075 .2070 .2066 .2062 .2058 ,2053 .2049 .2045 

4.90 .2041 .2037 .2033 .2028 .2024 .2020 .2016 .2012 .2008 .2004 

5.00 ,iooo .1996 .1992 .1988 .1984 .1980 .1976 .1972 .1968 .1965 
5.10 .1961 .1967 .1963 .1949 .1946 .1942 .1938 .1934 .1930 .1927 

5.20 .1923 .1919 .1916 .1912 .1908 .1906 .1901 .1898 .1894 .1890 

5.30 .1887 .1883 .1880 .1876 .1873 .1869 .1866 .1862 .1869 .1855 

5.4C \ .1852 .1848 .1845 .1842 .1838 .1836 .1832 .1828 .1825 .1821 
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Table 3. Squares, Square Roots, and Reciprocals.—{Continued) 
Reciprocals of Numbers.—{Continued) 

N .00 .01 .02 .03 .04 .06 .06 .07 .08 .09 

6.50 .1818 .1816 .1812 .1808 .1806 .1802 .1799 .1796 .1792 .1789 
6.60 .1786 .1783 .1779 .1776 .1773 .1770 .1767 .1764 .1761 .1767 
6.70 .1754 .1761 .1748 .1746 .1742 .1739 .1736 .1733 .1730 .1727 
6.80 .1724 ,1721 .1718 .1716 .1712 .1709 .1706 .1704 .1701 .1698 

6.90 .1696 .1692 .1689 .1686 .1684 .1681 .1678 .1676 .1672 .1669 

6.00 .1667 .1664 .1661 .1668 .1666 .1663 .1660 .1647 .1645 .1642 
6.10 .1639 .1637 .1634 .1631 .1629 .1626 .1623 .1621 .1618 .1616 
6.20 .1613 .1610 .1608 .1606 .1603 .1600 .1697 .1596 .1692 .1590 

6.30 .1687 .1686 .1682 .1680 .1677 .1675 .1672 .1570 .1567 .1565 
6.40 .1662 .1660 .1668 .1666 .1663 • 1660 .1648 .1640 .1643 .1541 

6.60 .1638 .1536 .1634 .1631 .1629 .1627 .1624 .1622 .1620 .1617 
6.60 .1616 .1513 .1611 .1608 .1506 .1504 .1602 .1499 .1497 .1495 
6.70 .1493 .1490 .1488 .1486 .1484 .1481 .1479 .1477 .1476 .1473 
6.80 .1471 .1468 .1466 .1464 .1462 .1460 .1458 .1456 .1463 .1451 
6.90 .1449 .1447 .1446 .1443 .1441 .1439 .1437 .1436 .1433 .1431 

7.00 .1429 .1427 .1424 .1422 .1420 .1418 .1416 .1414 .1412 .1410 
7.10 .1408 .1406 .1404 .1403 .1401 .1399 .1397 .1395 .1393 .1391 
7.20 .1389 .1387 .1385 .1383 .1381 .1379 .1377 .1376 .1374 .1372 
7.30 .1370 .1368 .1366 .1364 .1362 .1361 .1369 .1367 .1355 .1363 

7.40 .1361 .1350 .1348 .1346 .1344 .1342 .1340 .1339 .1337 .1336 

7.60 .1333 .1332 .1330 .1328 .1326 .1324 .1323 .1321 .1319 .1318 
7.60 .1316 .1314 .1312 ,1311 .1309 .1307 .1306 .1304 .1302 .1300 
7.70 .1299 .1297 .1296 .1294 .1292 .1290 .1289 .1287 .1285 .1284 

7.80 .1282 .1280 .1279 .1277 .1276 .1274 .1272 .1271 .1269 .1267 

7.90 .1266 .1264 .1263 .1261 .1269 .1258 .1266 .1266 .1263 .1252 

8.00 .1260 .1248 .1247 .1246 .1244 .1242 .1241 .1239 .1238 .1236 
8.10 .1236 .1233 .1232 .1230 .1228 .1227 .1226 .1224 .1222 .1221 

8.20 .1220 .1218 .1217 .1216 .1214 .1212 .1211 .1209 .1208 .1206 
8.30 .1206 .1203 1 .1202 .1200 .1199 .1198 .1196 .1196 .1193 .1192 
8.40 .1190 .1189 .1188 .1186 .1186 .1183 .1182 .1181 .1179 .1178 

8.60 .1176 .1176 .1174 .1172 .1171 .1170 .1168 .1167 .1166 .1164 

8.60 .1163 .1161 .1160 .1169 .1167 .1166 .1165 .1163 .1162 .1151 
8.70 .1149 .1148 .1147 .1146 .1144 .1143 .1142 .1140 .1139 .1138 
8.80 .1136 .1136 .1134 .1132 .1131 .1130 .1129 .1127 .1126 .1126 

8.90 .1124 .1122 .1121 .1120 .1119 .1117 .1116 .1116 .1114 .1112 

9.00 .1111 .1110 .1109 .1107 .1106 .1106 .1104 .1103 .1101 .1100 
0.10 .1099 .1098 .1096 .1096 .1094 .1093 .1092 .1091 .1089 .1088 
9.20 .1087 .1086 .1086 .1083 .1082 .1081 .1080 .1079 .1078 .1076 
9.30 .1076 .1074 .1073 .1072 .1071 .1070 .1068 .1067 .1066 .1066 

9.40 .1064 .1063 .1062 .1060 .1069 .1068 .1067 .1066 .1066 .1064 

9.60 .1053 .1062 .1060 .1049 .1048 .1047 .1046 .1046 .1044 .1043 
9.60 .1042 .1041 .1040 .1038 .1037 .1036 .1036 .1034 .1033 .1032 

9.70 .1031 .1030 .1029 .1028 .1027 .1026 .1025 .1024 .1022 .1021 

9.80 .1020 .1019 .1018 .1017 .1016 .1016 .1014 .1013 .1012 .1011 
9.90 .1010 .1009 .1008 .1007 .1006 .1006 .1004 .1003 .1002 .1001 
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Table 4. Trigonometric Functions* 

Angle 
(degrees) 

sin tan cot cos 
Angle 

(degrees) 
Angle 

(degrees) 
sin tan cot oos 

Angle 
(degrees) 

0 .000 .000 1.00 90 23 .391 .424 2.36 .920 67 

H .009 .009 115 1.00 89H 23M .399 .434 2.30 .917 66H 
1 .017 .017 57.3 1.00 89 24 .407 .445 2.25 .914 66 

.026 .026 38.2 1.00 88H 24.H .415 .456 2.19 .910 66H 

2 .035 .035 28.6 .999 88 25 .423 .466 2.14 .906 65 

2M .044 .044 22.9 .999 87H 25H .431 .477 2.10 .903 64H 
3 .052 .052 19.1 .999 87 26 .438 .488 2.05 .899 64 

3H .061 .061 16.4 .998 86M 26>^ .446 .499 2.01 .895 63H 

4 .070 .070 14.3 .998 86 27 .454 .510 1.96 .891 63 
4H .078 .079 12.7 .997 85M 27H .462 .521 1.92 .887 ^2H 
6 .087 .087 11.4 .996 85 28 .469 .532 1.88 .883 62 

.096 .096 10.4 .995 84K 28H .477 .543 1.84 .879 61M 

6 .105 .105 9.51 .995 84 29 .485 .554 1.80 .875 61 
.113 .114 8.78 .994 83H 29>^ .492 .566 1.77 .870 60H 

7 .122 .123 8.14 .993 83 30 .500 .577 1.73 .866 60 

7H .131 .132 7.60 .991 82H 30H .508 .589 1.70 .862 69H 

8 .139 .141 7.12 .990 82 31 .515 .601 1.66 .857 59 

8H .148 .149 6.69 .989 81M 31H .522 .613 1.63 .853 58H 
9 .156 .158 6.31 .988 81 32 .530 .625 1.60 .848 58 

9H .165 .167 5.98 .986 80H 32H .537 .637 1.57 .843 57K 

10 .174 .176 5.67 .985 33 .545 .649 1.54 .839 57 

lOH .182 .185 5.40 .983 79H 33K .552 .662 1.51 .834 56H 
11 .191 .194 5.14 .982 79 34 .559 .675,1.48 .829 56 

llH .199 .203 4.92 .980 78H 34H .566 .687 1.46 .824 55M 

12 .208 .213 4.70 .978 78 35 .574 .700 1.43 .819 55 

12H .216 .222 4.51 .976 77M ZbH .581 .713 1.40 .814 54H 

13 .225 .231 4.33 .974 77 36 .588 .727 1.38 .809 54 

13H .233 .240 4.17 .972 76K 36H .595 .740 1.35 .804 53H 

14 .242 .249 4.01 .970 76 37 .602 .754 1.33 .799 53 

14H .250 .259 3.87 .968 75H 37M .609 .767 1.30 .793 52H 
15 .259 .268 3.73 .966 75 38 .616 .781 1.28 .788 52 

15H .267 .277 3.61 .964 74H 38H .623 .795 1.26 .783 51M 

16 .276 .287 3.49 .961 74 39 .629 .810 1.23 .777 51 

16H .284 .296 3.38 .959 73H 39H .636 .824 1.21 .772 50H 
17 .292 .306 3.27 .956 73 40 .643 .839 1.19 .766 50 

17H .301 .315 3.17 .954 72H 40H .649 .854 1.17 .760 49M 

18 .309 .325 3.08 .951 72 41 .656 .869 1.15 .755 49 

18M .317 .335 2.99 .948 71H 41H .663 .885 1.13 .749 48>4 
19 .326 .344 2.90 .946 71 42 .669 .900 1.11 .743 48 

19H .334 .354 2.82 .943 70M 42H .676 .916 1.09 .737 47H 

20 .342 .364 2.75 .940 70 43 .682 .933 1.07 .731 47 

20H .350 .374 2.67 .937 69>i 43H .688 .949 1.05 .725 46H 
21 .358 .384 2.61 .934 69 44 .695 .966 1.04 .719 46 
2iyi .366 .394 2.54 .930 68H 44H .701 .983 1.02 .713 45H 

22 .375 .404 2.48 .927 68 45 .707 1.00 1.00 .707 45 

22}4 .383 .414 2.41 .924 67H 

Angle 
(degrees) 

008 oot tan sin 
Angle 

(degrees) 
Angle 

(degrees) 
oos cot tan sin 

Angle 
(degrees) 

* Adapted from Waugh, A.E., Laboratory Manual and Problems for Elements of Statistical 
Method, McGraw-Hill Book Company, Inc., New York, 1944, Table A27. Reproduced with 

the kind permission of Professor Waugh and of McGraw’-HilL 
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Table 5. Areas under the Normal Curve* 

This table contains the proportion of the area under the normal curve 
lying between the mean and an ordinate a certain distance away from the 
mean, this distance being expressed in standard-Kleviation units. Note that 
only owe side of the normal curve is considered. For example, 47.5 per cent 
of the total area under the normal curve lies between the mean value and 
either +1.96 or —1.96. The proportion of the area under the curve lying 
between +1.96 ami —1.96 is twice the above figure, or 95.0 per cent. For 
further details, see pages 33-34. 

x/a .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 00000 00399 00798 01197 01595 01994 02392 02790 03188 03586 

0.1 03983 04380 04776 05172 05567 05962 06356 06749 07142 07535 

0.2 07926 08317 08706 09095 09483 09871 .10257 10642 11026 11409 

0.3 11791 12172 12552 12930 13307 13683 14C58 14431 14803 15173 

0.4 15554 15910 16276 16640 17003 17364 17724 18082 18439 18793 

O.ff 19146 19497 19847 20194 20450 20884 21226 21566 21904 22240 

0.6 22575 22907 23237 23565 23891 24215 24537 24857 25375 25490 

0.7 25804 26115 26424 26730 27035 27337 27637 27935 28230 28524 

0.8 28814 29103 29389 29673 29955 30234 30511 30785 31057 31327 
0.9 31594 31859 32121 32381 32639 32894 33147 33398 33646 33891 

1.0 34134 84375 34614 34850 35083 35313 35543 35769 35993 36214 

1.1 36433 36650 36864 37076 37286 37493 37698 37900 38100 38298 

1.2 38493 38686 38877 39065 39251 39435 39617 39796 39973 40147 
1.8 40320 40490 40658 40824 40988 41149 41308 41466 41621 41774 
1.4 41924 42073 42220 42364 42507 42647 42786 42922 43056 43189 

1.5 43319 43448 43574 43699 43822 43943 44062 44179 44295 44408 
1.6 44520 44630 44738 44845 44950 45053 45154 45254 45352 45449 
1.7 45543 45637 45728 45818 45907 45994 46080 46164 46246 46327 
1.8 46407 46485 46562 46638 46712 46784 46856 46926 46995 47062 

1.9 47128 47193 47257 47320 47381 47441 47500 47558 47615 47670 

2.0 47725 47778 47831 47882 47932 47982 48030 48077 48124 48169 
2.1 48214 48257 48300 48341 48382 48422 48461 48500 48537 48574 
2.2 48610 48645 48679 48713 48745 48778 48809 48840 48870 48890 
2.8 48928 48956 48983 49010 49036 49061 49086 49111 49134 49158 
2.4 49180 49202 49224 49245 49266 49286 49305 49324 49343 49361 

2.6 49379 49396 49413 49430 49446 49461 49477 49492 49506 49520 
2.6 49534 49547 49560 49573 49585 49598 49609 49621 49632 49643 
2.7 49653 49664 49674 49683 49693 49702 49711 49720 49728 49736 
2.8 49744 49752 49760 49767 49774 49781 49788 49795 49801 49807 
2.9 49813 49819 49825 49831 49836 49841 49846 49851 49856 49861 

8.0 49865 

1 

8.6 4997674 
4.0 4999683 
4.6 4999966 

6.0 4999997133 

♦Wauoh, A.E., Laboratory Manual and Prohlerna Jar Elements of Statistical Method, 

Table Al, as adapted from F. C. Kent, Elements of Statistics, McGraw>Hill Book Company, 
Inc., New York, 1924. Copied through the courtesy of Professor Waugh and of McGraw-Hill. 
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Table 6. Table op t* 

The value at the head of each column indicates the probability of obtaining a value 
of ^ as large as that shown, for different degrees of freedom, purely as a result of random 
sampling variations. For example, with 10 degrees of freedom, a value of t as high 
as 2.228 would be expected to occur 5 times out of 100 purely as a result of chance. 
For further details, see pages 83-84. 

* Reprinted from Table IV of R. A. Fisher, Statistical Methods for Research Workers, Oliver A Boyd, 
Ltd., Edinburgh and London, 1Q36, by permission of the author and publishers. 
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Table 7. Mean Value op Ratio Sigma/Range and 6 Per Cent, 2.6 Per Cent, 

AND 1 Per Cent Significance Points* 

[Estimate of <r in the population = a» X range (or mean range)] 

The values in the body of the table are in units of the range. The corresponding 
percentages indicate the proportion of the area under the particular curve lying beyond 
the values of the range. Thus, for n = 6, 5 per cent of the area under this distribution 
curve lies beyond 0.8 range. Confidence intervals are constructed accordingly. As 
an example, for a sample of eight observations, there would be 95 chances out of 100 
that the interval, 0.709 range to 0.217 range, contains the true value of the standard 
deviation; or there would be 95 chances out of 100 that the true value of the standard 
deviation is not more than 0.625 times the observed range. For further details, see 
pages 212-214. 

Size of 
sample 

n 

an 
Lower percentage points Upper i)ercentage points 

1.0 2.5 5.0 5.0 2.5 1.0 

2 0.8862 0.275 0.361 11.111 25.000 50.000 
3 0.243 ■ifwM 2.326 3.333 5.263 

4 0.4857 0.227 0.251 0.275 1.316 1.695 2.326 

5 0.4299 0.217 0.238 0.259 0.971 1.176 1.515 
6 0.3946 0.229 0.248 0.800 0.943 1.149 

7 0.3698 0.205 0.223 0.694 0.800 0.952 

8 0.200 0.217 0.233 0.625 0.709 0.833 
9 0.3367 0.197 0.213 0.228 0.575 0.645 0.746 

10 0.3249 0.194 0.209 0.224 0.538 0.599 0.680 

11 0.3152 0.191 0.206 0.508 0.562 0.633 

12 0.189 0.203 0.216 0.483 0.532 0.595 
13 0.2998 0.187 0.200 0.213 0.463 0.505 0.565 
14 0.2935 0.185 0.198 0.211 0.446 0.485 0.538 
15 0.2880 0.183 0.196 0.431 0.467 0.518 
16 0.2831 0.182 0.195 0.206 0.418 0.454 0.498 

17 0.2787 0.180 0.193 0.408 0.439 0.483 
18 0.2747 0.179 0.192 0.398 0.427 0.467 
19 0.2711 0.178 0.190 0.389 0.417 0.454 
20 0.2677 0.177 0.189 0.380 0.408 0.444 

Adapted with the kind permission of Prof. E. S. Pearson, editor of Biometrika, from E. S. Pearson, 

*The Percentage Limits for the Distribution of the Range in Samples from a Normal Population," Buh 

metrika, Vol. 24,1932, pp. 404-417, and E. S. Pearson, "The Probability Integral of the Range in Samples 

of n Observations from a Normal Population," Biometrika, Vol. 32,1941-1942, pp. 301-308. The values at 
significance points are the reciprocals of the corresponding values, range/sigma, contained in Professor 
Pearson’s tables. 
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Table 8. Common Logarithms of Numbers* 

100-149 

1 No. ■ 1 2 3 ■ ■ ■ 6 7 8 0 

mm 00 000 00 043 00 087 00 130 00 173 00 217 00 260 00 303 00 346 00 389 
101 00 432 00 476 00 518 00 561 00 604 00 647 00 680 00 732 00 775 00 817 
102 00 860 00 003 00 045 00 088. 01 030 01 072 01 116 01 157 01 109 01 242 
103 01 284 01 320 01 368 01 410 01 452 01 494 01 636 01 578 01 620 01 662 
104 01 703 01 745 01 787 01 828 01 870 01 012 01 053 01 005 02 036 02 078 

106 02 119 02 160 02 202 02 243 02 284 02 325 02 366 02 407 02 449 02 490 
100 02 531 02 672 02 612 02 653 02 (.94 02 736 02 776 02 816 02 857 02 808 
107 02 038 02 070 03 010 03 060 03 100 03 141 03 181 03 222 03 262 03 302 
108 03 342 03 383 03 423 03 463 03 503 03 543 03 583 03 623 03 663 03 703 
100 03 743 03 782 03 822 03 802 03 002 03 941 03 081 04 021 04 060 04 100 

110 04 189 04 170 04 218 04 258 04 207 04 336 04 376 04 415 04 454 04 403 
111 04 532 04 671 04 010 04 650 04 680 04 727 04 766 04 805 04 844 04 883 
112 04 022 04 061 04 990 05 038 05 077 05 115 05 154 05 192 05 231 05 269 
113 05 308 05 346 05 385 05 423 05 461 05 500 05 538 05 576 05 614 05 652 
114 05 600 06 720 05 767 05 805 05 843 05 881 05 018 05 056 06 994 06 032 

115 00 070 00 108 00 145 06 183 00 221 06 258 06 296 06 333 06 871 06 408 
110 00 446 00 483 06 521 00 558 06 595 06 633 06 670 06 707 06 744 06 781 
117 00 810 00 856 06 893 06 930 00 067 07 004 07 041 07 078 07 115 07 151 
118 07 188 07 225 07 262 07 298 07 335 07 372 07 408 07 445 07 482 07 518 
119 07 565 07 501 07 628 07 664 07 700 07 737 07 773 07 800 07 846 07 882 

ISO 07 018 07 054 07 090 08 027 08 063 08 090 08 135 08 171 08 207 08 243 
121 08 270 08 314 08 350 08 386 08 422 08 458 08 493 08 520 08 565 08 600 
122 08 630 08 672 08 707 08 743 08 778 08 814 08 840 08 884 08 020 08 055 
123 08 001 00 020 00 061 00 096 00 132 00 167 00 202 09 237 00 272 00 807 
124 00 342 00 377 00 412 00 447 00 482 00 517 00 552 09 587 09 621 00 656 

125 00 601 00 726 00 760 00 795 00 830 00 864 00 809 00 934 09 968 10 003 
126 10 037 10 072 10 106 10 140 10 175 10 200 10 243 10 278 10 312 10 346 
127 10 380 10 415 10 440 10 483 10 517 10 551 10 585 10 619 10 653 10 687 
128 10 721 10 765 10 780 10 823 10 857 10 800 10 024 10 958 10 002 11 025 
120 11 060 11 003 11 120 11 160 11 103 11 227 11 261 11 294 11 827 11 361 

180 11 304 11 428 11 461 11 494 11 528 11 561 11 504 11 628 11 661 11 604 
131 11 727 11 760 11 793 11 826 11 860 11 893 11 026 11 959 11 002 12 024 
132 12 067 12 090 12 123 12 156 12 189 12 222 12 254 12 287 12 320 12 352 
133 12 385 12 418 12 450 12 483 12 516 12 548 12 581 12 613 12 646 12 678 
134 12 710 12 743 12 775 12 808 12 840 12 872 12 005 12 037 12 960 13 001 

135 13 033 13 000 13 008 13 130 13 162 13 104 13 226 13 258 13 200 13 322 
130 13 354 13 386 13 418 13 450 13 481 13 513 13 545 13 577 13 600 13 640 
137 13 672 13 704 13 735 13 767 13 790 13 830 13 862 13 893 13 925 13 956 
138 13 088 14 010 14 051 14 082 14 114 14 145 14 176 14 208 14 239 14 270 
130 14 801 14 333 14 364 14 395 14 426 14 457 14 489 14 520 14 551 14 582 

140 14 613 14 644 14 676 14 700 14 737 14 768 14 709 14 829 14 860 14 801 
141 14 022 14 053 14 083 15 014 15 045 15 076 15 106 15 137 15 168 15 108 
142 16 229 15 250 15 200 15 320 15 351 15 381 15 412 15 442 15 473 15 503 
143 15 534 15 564 15 594 15 625 15 655 15 685 15 715 15 746 15 776 15 806 
144 15 830 15 866 15 897 15 027 15 957 15 987 16 017 16 047 16 077 16 107 

145 10 137 10 167 10 197 16 227 10 256 16 286 16 316 16 346 16 876 16 406 
140 10 435 16 465 10 406 10 524 16 554 16 584 16 613 16 643 16 673 16 702 
147 16 732 10 761 16 791 16 820 10 850 16 870 16 009 16 038 16 967 16 907 
148 17 026 17 050 17 085 17 114 17 143 17 173 17 202 17 231 17 260 17 280 
140 17 310 17 348 17 377 17 406 17 435 17 464 17 403 17 522 17 551 17 580 

No. 0 1 2 8 4 5 6 7 8 9 

100-149 
Reproduced through the courtesy of the authors and of the publisher from J. R. Riggleman and 

I. N. Frisbee, Buaineaa Statiatica, McGraw-Hill Book Company, Ino., New York, 1932. 
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Table 8. Common Louarithms of Numbers.—(Continued) 

160-199 

No. 0 1 2 3 4 5 6 7 8 0 

160 17 609 17 638 17 667 17 696 17 725 17 764 17 782 17 811 17 840 17 869 
151 17 808 17 026 17 055 17 984 18 013 18 041 18 070 18 099 18 127 18 156 
152 18 184 18 213 18 241 18 270 18 298 18 327 18 355 18 384 18 412 18 441 
153 18 469 18 408 18 526 18 554 18 683 18 611 18 639 18 667 18 696 18 724 
154 18 752 18 780 18 808 18 837 18 865 18 893 18 921 18 949 18 977 10 005 

155 19 033 19 061 19 089 19 117 19 145 19 173 19 201 19 229 19 257 19 285 
156 19 312 19 340 19 368 19 396 19 424 19 451 19 479 19 607 19 635 19 562 
157 19 590 19 618 19 645 19 673 19 700 19 728 19 766 19 783 19 811 19 838 
158 19 866 19 893 19 921 19 948 19 976 20 003 20 030 20 058 20 085 20 112 
159 20 140 20 167 20 104 20 222 20 249 20 276 20 303 20 330 20 368 20 385 

160 20 412 20 439 20 466 20 493 20 620 20 548 20 m 20 602 20 629 20 656 
161 20 683 20 710 20 737 20 763 20 790 20 817 20 844 20 871 20 898 20 925 
162 20 952 20 978 21 005 21 032 21 069 21 085 21 112 21 139 21 165 21 192 
163 21 219 21 245 21 272 21 299 21 325 21 352 21 378 21 405 21 431 21 458 
164 21 484 21 611 21 637 21 664 21 690 21 617 21 643 21 669 21 696 21 722 

165 21 748 21 775 21 801 21 827 21 854 21 880 21 906 21 932 21 958 21 985 
166 22 Oil 22 037 22 063 22 089 22 116 22 141 22 167 22 194 22 220 22 246 
167 22 272 22 298 22 324 22 350 22 376 22 401 22 427 22 453 22 479 22 605 
168 22 531 22 657 22 683 22 608 22 634 22 660 22 686 22 712 22 737 22 763 
160 22 789 22 814 22 840 22 866 22 891 22 917 22 943 22 968 22 994 23 019 

170 23 04S 23 070 23 096 23 121 23 147 23 172 23 198 23 223 23 249 23 274 
171 23 300 23 325 23 350 23 376 23 401 23 426 23 452 23 477 23 502 23 528 
172 23 553 23 678 23 603 23 629 23 654 23 679 23 704 23 729 23 754 23 779 
173 23 805 23 830 23 855 23 880 23 905 23 930 23 955 23 980 24 005 24 030 
174 24 055 24 080 24 105 24 130 24 155 24 180 24- 204 24 229 24 254 24 279 

175 24 304 24 329 24 353 24 378 24 403 24 428 24 452 24 477 24 502 24 627 
176 24 651 24 676 24 601 24 625 24 650 24 674 24 699 24 724 24 748 24 773 
177 24 797 24 822 24 846 24 871 24 895 24 920 24 944 24 969 24 993 25 018 
178 25 042 25 066 25 091 25 115 25 139 25 164 25 188 25 212 25 237 26 261 
179 25 285 25 310 26 334 25 358 25 382 25 406 25 431 25 455 25 479 25 603 

180 25 627 25 651 25 675 25 600 25 624 25 648 25 672 25 696 25 720 25 744 
181 25 768 25 792 25 816 25 840 25 864 25 888 25 912 25 935 25 959 26 083 
182 26 007 26 031 26 055 26 079 26 102 26 126 26 150 26 174 26 198 26 221 
183 26 245 26 269 26 293 26 316 26 340 26 364 26 387 26 411 26 435 26 458 
184 26 482 26 605 26 629 26 663 26 676 26 600 26 623 26 647 26 670 26 694 

185 26 717 26 741 26 764 26 788 26 811 26 834 26 868 26 881 26 905 26 928 
186 26 951 26 975 26 098 27 021 27 045 27 068 27 091 27 114 27 138 27 161 
187 27 184 27 207 27 231 27 254 27 277 27 300 27 323 27 346 27 370 27 303 
188 27 416 27 439 27 462 27 485 27 608 27 631 27 654 27 677 27 600 27 623 
189 27 646 27 669 27 692 27 715 27 738 27 761 27 784 27 807 27 830 27 862 

190 27 875 27 898 27 921 27 944 27 967 27 989 28 012 28 035 28 058 28 081 
101 28 103 28 126 28 149 28 171 28 194 28 217 28 240 28 262 28 285 28 307 
192 28 330 28 353 28 375 28 398 28 421 28 443 28 466 28 488 28 611 28 633 
193 28 656 28 578 28 601 28 623 28 646 28 668 28 691 28 713 28 735 28 768 
194 28 780 28 803 28 825 28 847 28 870 28 892 28 914 28 937 28 960 28 981 

105 29 003 29 026 29 048 29 070 29 092 29 115 29 137 29 159 29 181 29 203 
196 29 226 29 248 29 270 29 292 29 314 29 336 29 358 29 380 29 403 29 425 
197 29 447 29 469 29 401 20 613 29 635 29 657 29 679 29 601 29 623 29 645 
198 29 667 29 688 29 710 29 732 29 764 29 776 29 798 29 820 29 842 29 863 
199 29 886 29 907 29 929 29 961 29 973 29 994 30 016 30 038 30 060 30 081 

1 No. 1 0 1 2 8 1 1 B 0 7 8 0 

160-199 
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Table 8. Common Logarithms of Numbers.—{Continued) 

200-249 

Ko. 0 1 2 3 4 5 6 7 8 0 

soo 30 103 30 125 30 146 30 168 30 190 30 211 30 233 30 255 30 276 30 298 
201 30 320 30 341 30 363 30 384 30 406 30 428 30 449 30 471 30 492 30 514 
202 30 535 30 657 30 578 30 600 30 621 30 643 30 664 30 685 30 707 30 728 
203 30 7fi0 30 771 30 792 30 814 30 835 30 856 30 878 30 899 30 920 30 042 
204 30 963 30 984 31 006 31 027 31 048 31 069 31 091 31 112 31 133 31 154 

206 31 175 31 197 31 218 31 239 31 260 31 281 31 302 31 323 31 345 31 366 
206 31 387 31 408 31 429 31 450 31 471 31 402 31 513 31 534 31 555 31 576 
207 31 697 31 618 31 639 31 660 31 681 31 702 31 723 31 744 31 765 31 785 
208 31 806 31 827 31 848 31 869 31 890 31 911 31 931 31 952 31 973 31 994 
209 32 015 32 035 32 056 32 077 32 098 32 118 32 139 32 ICO 32 181 32 201 

210 32 222 32 243 32 263 32 284 32 305 32 325 32 346 32 366 32 387 32 408 
211 32 428 32 449 32 469 32 400 32 510 32 531 32 552 32 572 32 593 32 613 
212 32 634 32 654 32 675 32 695 32 715 32 736 32 756 32 777 32 797 32 818 
213 32 838 32 858 32 879 32 899 32 919 32 940 32 960 32 980 33 001 33 021 
214 33 041 33 062 33 082 33 102 33 122 33 143 33 163 33 183 33 203 33 224 

215 33 244 33 264 33 284 33 304 33 325 33 345 33 365 33 385 33 405 33 425 
216 33 445 33 465 33 486 33 506 33 526 33 546 33 566 33 586 33 606 33 626 

m 33 646 33 666 33 686 33 706 33 726 33 746 33 766 33 786 33 806 33 826 
33 846 33 866 33 885 33 005 33 925 33 945 33 965 33 985 34 005 34 025 wm 34 044 34 064 34 084 34 104 34 124 34 143 34 163 34 183 34 203 34 223 

34 242 34 262 34 282 34 301 34 321 34 341 34 361 34 380 34 400 34 420 
221 34 439 34 459 34 479 34 408 34 518 34 537 34 557 34 577 34 596 34 616 
222 34 635 34 655 34 674 34 694 34 713 34 733 34 753 34 772 34 792 34 811 
223 34 830 34 850 34 869 34 889 34 908 34 928 34 947 34 967 34 986 35 005 
224 35 025 35 044 35 064 35 083 35 102 35 122 35 141 35 160 35 180 35 199 

225 35 218 35 238 35 257 35 276 35 295 35 315 35 334 35 353 35 372 35 392 
226 35 411 35 430 35 449 35 468 35 488 35 507 35 526 35 545 35 564 35 583 
227 35 603 35 622 35 641 35 660 35 679 35 698 35 717 35 736 35 755 35 774 
228 35 793 35 813 35 832 35 851 35 870 35 889 35 908 35 927 35 046 35 965 
229 35 984 36 003 36 021 36 040 36 059 36 078 36 097 36 116 36 135 36 154 

880 36 173 36 192 36 211 36 229 36 248 36 267 36 286 36 305 36 324 36 342 
231 36 361 36 380 36 399 36 418 36 436 36 455 36 474 36 493 36 511 36 530 
232 36 549 36 568 36 586 36 605 36 624 36 642 36 661 36 680 36 698 36 717 
233 36 736 36 754 36 773 36 791 36 810 36 829 36 847 36 866 36 884 36 903 
234 36 922 36 940 36 959 36 977 36 996 37 014 37 033 37 051 37 070 37 088 

235 37 107 37 125 37 144 37 162 37 181 37 199 37 218 37 236 37 254 37 273 
236 37 291 37 310 37 328 37 346 37 365 37 383 37 401 37 420 37 438 37 457 
237 37 475 37 403 37 511 37 530 37 548 37 566 37 585 37 603 37 621 37 639 
238 37 658 37 676 37 694 37 712 37 731 37 749 37 767 37 785 37 803 37 822 
239 37 840 37 858 37 876 37 894 37 912 37 931 37 949 37 967 37 985 38 003 

S40 38 021 38 039 38 057 38 075 38 093 38 112 38 130 38 148 38 166 38 184 
241 38 202 38 220 38 238 38 256 38 274 38 292 38 310 38 328 38 346 38 364 
242 38 382 38 309 38 417 38 435 38 453 38 471 38 489 38 507 38 525 38 543 
243 38 561 38 678 38 506 38 614 38 632 38 650 38 668 38 686 38 703 38 721 
244 38 739 38 767 38 775 38 792 38 810 38 828 38 846 38 863 38 881 38 899 

245 38 917 38 934 38 952 38 970 38 987 39 005 39 023 39 041 39 058 39 076 
246 39 094 39 111 39 129 39 146 39 164 39 182 39 109 39 217 39 235 39 252 
247 39 270 39 287 30 305 39 322 39 340 39 358 39 375 39 303 39 410 39 428 
248 39 445 39 463 39 480 39 498 39 515 39 533 39 550 39 568 39 585 39 602 
249 39 620 39 637 39 655 39 672 39 690 39 707 39 724 39 742 39 759 39 777 

No. 0 1 % 8 4 5 6 7 JL 9 

200-249 
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Table 8. Common Logarithms of Numbers.—(Continued) 

260-299 

No. 0 1 2 3 4 i 3 7 8 9 

260 30 794 30 811 30 820 30 846 80 863 80 881 80 808 30 015 30 033 30 050 
261 30 067 30 085 40 002 40 010 40 037 40 054 40 071 40 088 40 106 40 123 
252 40 140 40 157 40 175 40 102 40 209 40 226 40 243 40 261 40 278 40 205 
253 40 312 40 320 40 346 40 364 40 381 40 308 40 415 40 432 40 440 40 466 
254 40 483 40 500 40 518 40 535 40 552 40 560 40 586 40 603 40 620 40 637 

255 40 654 40 671 40 688 40 705 40 722 40 730 40 756 40 773 40 790 40 807 
256 40 824 40 841 40 858 40 875 40 802 40 000 40 026 40 043 40 060 40 976 
267 40 003 41 010 41 027 41 044 41 061 41 078 41 095 41 111 41 128 41 145 
258 41 162 41 170 41 106 41 212 41 220 41 246 41 263 41 280 41 206 41 313 
250 41 330 41 347 41 363 41 380 41 897 41 414 41 430 41 447 41 464 41 481 

260 41 407 41 514 41 531 41 547 41 564 41 581 41 597 41 614 41 631 41 647 
201 41 664 41 681 41 607 41 714 41 731 41 747 41 764 41 780 41 797 41 814 
262 41 830 41 847 41 863 41 880 41 896 41 013 41 020 41 046 41 063 41 079 
263 41 006 42 012 42 020 42 045 42 062 42 078 42 095 42 111 42 127 42 144 
264 42 160 42 177 42 103 42 210 42 226 42 243 42 250 42 275 42 202 42 308 

265 42 325 42 341 42 367 42 374 42 300 42 406 42 423 42 430 42 455 42 472 
266 42 488 42 504 42 621 42 537 42 553 42 570 42 586 42 602 42 610 42 635 
267 42 6S1 42 667 42 684 42 700 42 716 42 732 42 740 42 765 42 781 42 797 
268 42 813 42 830 42 846 42 862 42 878 42 894 42 Oil 42 927 42 043 42 050 
260 42 075 42 001 43 008 43 024 43 040 43 056 43 072 43 088 43 104 43 120 

270 43 136 43 162 43 160 43 185 43 201 43 217 43 233 43 240 43 265 43 281 
271 43 207 43 313 43 320 43 345 43 361 43 377 43 393 43 400 43 425 43 441 
272 43 467 43 473 43 480 43 505 43 521 43 537 43 553 43 560 43 584 43 600 
273 43 616 43 632 43 648 43 664 43 680 43 696 43 712 43 727 43 743 43 750 
274 43 775 43 701 43 807 43 823 43 838 43 854 43 870 43 886 43 002 43 017 

276 43 033 43 040 43 065 43 081 43 006 44 012 44 028 44 044 44 059 44 076 
276 44 001 44 107 43 122 44 138 44 154 44 170 44 185 44 201 44 217 44 232 
277 44 248 44 264 44 270 44 205 44 311 44 326 44 342 44 358 44 373 44 380 
278 44 404 44 420 44 436 44 451 44 467 44 483 44 498 44 514 44 529 44 545 
270 44 560 44 576 44 502 44 607 44 623 44 638 44 654 44 660 44 685 44 700 

280 44 716 44 731 44 747 44 762 44 778 44 793 44 800 44 824 44 840 44 855 
281 44 871 44 886 44 002 44 017 44 032 44 048 44 063 44 970 44 094 45 010 
282 45 025 45 040 45 056 45 071 45 086 45 102 45 117 45 133 45 148 45 163 
283 45 170 45 104 45 200 45 225 45 240 45 255 45 271 45 286 45 301 45 317 
284 45 332 45 347 45 362 45 378 45 303 45 408 45 423 45 430 45 454 45 469 

285 45 484 45 500 45 515 45 530 45 545 45 561 45 676 45 501 45 606 45 621 
286 45 637 45 652 45 667 45 682 45 607 45 712 45 728 45 743 45 758 45 773 
287 45 788 45 803 45 818 45 834 45 840 45 864 45 870 45 804 45 900 45 024 
288 45 030 45 054 45 060 45 084 46 000 46 015 46 030 46 045 46 060 46 075 
280 46 000 46 105 46 120 46 135 46 150 46 165 46 180 46 195 46 210 46 225 

200 46 240 46 255 46 270 46 285 46 300 46 315 46 330 46 345 46 369 46 374 
201 46 380 46 404 46 410 46 434 46 440 46 464 46 470 46 404 46 500 46 523 
202 46 538 46 553 46 568 46 583 46 508 46 613 46 627 46 642 46 657 46 672 
203 46 687 46 702 46 716 46 731 46 746 46 761 46 776 46 790 46 805 46 820 
204 46 835 46 850 46 864 46 879 46 804 46 000 46 023 46 038 46 953 46 067 

205 46 082 46 007 47 012 47 026 47 041 47 056 47 070 47 085 47 100 47 114 
206 47 120 47 144 47 150 47 173 47 188 47 202 47 217 47 232 47 246 47 261 
207 47 276 47 200 47 305 47 310 47 334 47 340 47 363 47 378 47 302 47 407 
208 47 422 47 436 47 451 47 465 47 480 47 494 47 500 47 524 47 538 47 553 
200 47 567 47 582 47 506 47 611 47 625 47 640 47 654 47 660 47 683 47 608 

No. 0 1 2 8 4 5 6 7 8 9 

250-299 
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Table 8. Common Logarithms of Numbers.—(Continued) 

300-349 

No. 0 1 2 8 4 5 6 7 8 9 

soo 47 712 47 727 47 741 47 756 47 770 47 784 47 799 47 813 47 828 47 842 
301 47 857 47 871 47 SS5 47 900 47 914 47 929 47 043 47 058 47 072 47 086 
302 48 001 48 015 48 029 48 044 48 058 48 073 48 087 48 101 48 116 48 130 
303 48 144 48 159 48 173 48 187 48 202 48 216 48 230 48 244 48 259 48 273 
304 48 287 48 302 48 316 48 330 48 344 48 359 48 373 48 387 48 401 48 416 

305 48 430 48 444 48 458 48 473 48 487 48 501 48 515 48 530 48 544 48 558 
306 48 572 48 586 48 601 48 615 48 629 48 643 48 657 48 671 48 686 48 700 
307 48 714 48 728 48 742 48 756 48 770 48 785 48 799 48 813 48 827 48 841 
308 48 855 48 869 48 883 48 807 48 Oil 48 026 48 040 48 054 48 068 48 982 
309 48 906 49 010 49 024 49 038 49 052 49 066 49 080 49 094 49 108 49 122 

310 49 136 49 150 49 164 49 178 49 192 49 206 49 220 49 234 49 248 49 262 
311 49 276 49 200 49 304 49 318 49 332 49 346 49 360 49 374 49 388 40 402 
312 49 415 40 429 49 443 49 457 49 471 40 485 49 409 49 513 40 527 49 541 
313 49 554 49 568 49 582 49 596 40 610 40 624 49 638 49 651 49 665 49 679 
314 49 693 49 707 49 721 49 734 40 748 49 762 49 776 49 700 49 803 49 817 

315 49 831 49 84Q 49 859 49 872 49 886 49 000 49 914 49 927 49 941 49 06S 
316 49 069 49 082 40 006 50 010 50 024 60 037 60 051 50 06g 50 079 50 002 
317 50 106 50 120 50 133 50 147 50 161 50 174 50 188 50 202 50 215 50 229 
818 50 243 50 256 50 270 50 284 50 207 50 311 50 325 50 338 50 352 50 365 
310 50 379 50 303 50 406 50 420 50 433 50 447 50 461 50 474 60 488 50 601 

820 60 515 60 529 50 542 50 656 60 669 50 583 50 506 50 610 50 623 50 637 
321 50 651 50 604 50 678 50 691 50 70§ 60 718 50 732 50 745 50 759 50 772 
322 50 786 50 700 50 813 50 826 50 840 50 853 50 866 50 880 50 803 60 907 
323 50 020 50 034 50 947 50 061 50 974 50 987 51 001 51 014 51 028 51 041 
824 51 055 51 068 51 081 51 005 51 108 51 121 51 135 51 148 51 162 51 175 

826 51 188 51 202 51 215 51 228 51 242 61 255 51 268 51 282 51 295 51 808 
326 51 322 51 335 51 348 51 862 51 375 51 388 51 402 51 415 51 428 51 441 
327 51 455 51 468 51 481 51 495 61 508 61 521 61 534 51 548 51 561 51 574 
328 51 587 51 601 51 614 51 627 51 640 51 654 51 667 51 680 51 603 51 706 
329 51 720 51 733 51 746 61 759 51 772 51 786 51 709 51 812 51 825 51 838 

380 51 851 51 865 51 878 51 891 51 904 51 017 51 930 51 043 51 957 51 970 
331 61 083 51 006 52 009 52 022 52 035 52 048 52 061 52 075 52 088 52 101 
332 52 114 52 127 52 140 52 163 52 166 52 179 52 102 52 205 52 218 52 231 
333 52 244 52 257 52 270 52 284 52 297 52 810 52 323 52 336 52 349 52 362 
334 52 375 52 388 52 401 52 414 52 427 52 440 52 453 52 466 52 479 52 402 

335 52 504 52 517 52 530 52 543 52 556 52 569 52 582 52 505 52 608 52 621 
836 52 634 52 647 52 660 52 673 52 686 52 609 52 711 52 724 52 737 52 760 
337 52 763 52 776 52 789 52 802 52 815 52 827 52 840 52 853 52 866 52 879 
838 52 802 52 005 52 917 52 030 52 943 52 056 52 069 52 082 52 004 53 007 
339 53 020 53 033 53 046 53 058 53 071 53 084 53 097 53 110 53 122 53 135 

340 53 148 53 161 53 178 53 186 53 100 53 212 53 224 53 237 53 250 53 268 
341 53 275 53 288 53 301 53 314 53 826 53 839 53 852 53 364 53 377 53 390 
342 53 403 53 415 53 428 53 441 53 4.53 53 466 53 479 53 491 53 504 53 517 
343 53 529 53 542 53 555 53 667 53 580 53 593 53 605 53 618 53 631 53 643 
344 53 656 53 668 53 681 53 694 53 706 53 719 53 732 53 744 53 757 58 769 

845 53 782 53 704 53 807 53 820 53 832 53 845 53 857 53 870 53 882 53 895 
346 53 008 53 020 53 933 53 045 53 958 53 070 53 983 53 005 54 008 54 020 
347 54 033 54 045 54 058 54 070 54 083 54 095 54 108 54 120 54 133 54 145 
848 54 158 54 170 54 183 54 106 54 208 54 220 54 233 54 245 54 258 54 270 

849 54 283 54 205 54 307 54 320 54 332 54 345 54 357 54 370 54 382 54 304 

No. 0 1 2 8 4 5 6 7 8 9 
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494 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Table 8. Common Logarithms of Numbers.—(Continued) 

360-399 

No. 0 1 2 3 4 5 6 7 8 0 

850 54 407 54 410 54 432 54 444 54 456 54 460 64 481 64 404 54 506 54 518 
351 54 531 54 543 54 555 54 568 54 580 54 503 54 605 54 617 54 630 54 642 
352 54 654 54 667 54 679 54 691 54 704 54 716 54 728 54 741 54 753 54 766 
353 54 777 54 700 54 802 54 814 54 827 54 830 M 851 54 864 54 876 54 888 
354 54 000 54 013 54 025 54 937 54 940 54 062 54 074 54 986 54 098 55 011 

855 55 023 55 035 55 047 56 060 55 072 55 084 65 096 65 108 55 121 55 133 
356 55 145 55 157 55 160 55 182 55 104 55 206 55 218 55 230 55 242 55 255 
357 55 267 55 270 55 201 55 303 55 315 55 328 55 340 55 352 55 364 55 376 
358 55 388 55 400 55 413 55 425 55 437 55 440 55 461 55 473 55 486 55 497 
350 55 500 55 522 55 534 55 546 55 558 55 570 55 582 56 504 55 606 55 618 

860 55 630 55 642 55 654 55 666 55 678 66 601 65 703 66 715 66 727 56 730 
361 55 751 55 763 55 775 55 787 55 790 55 ail 55 823 56 835 55 847 55 860 
362 65 871 55 883 55 805 55 907 55 910 55 031 65 943 55 055 65 907 55 079 
363 55 001 56 003 56 015 56 027 56 038 56 050 56 062 66 074 56 086 56 098 
364 56 110 56 122 56 134 56 146 56 158 66 170 56 182 66 104 56 206 56 217 

365 56 220 56 241 56 253 56 265 66 277 66 280 66 301 66 312 66 324 56 336 
366 56 348 56 360 56 372 56 384 56 396 56 407 56 410 56 431 66 443 56 455 
367 56 467 56 478 56 490 56 502 56 514 56 526 56 538 56 549 56 561 66 573 
368 56 585 56 507 56 608 56 620 56 632 56 644 56 656 56 667 56 670 56 601 
360 56 703 56 714 56 726 56 738 56 750 56 761 56 773 56 785 56 707 56 808 

870 56 820 56 832 56 844 56 855 56 867 56 879 66 801 66 002 66 914 66 926 
871 56 037 56 940 56 961 56 972 56 984 56 996 57 008 57 010 57 031 57 043 
372 57 054 57 066 57 078 57 089 67 101 57 113 67 124 57 136 57 148 57 150 
373 57 171 57 183 57 194 57 206 67 217 57 220 57 241 57 252 57 264 67 276 
374 57 287 57 200 67 310 57 322 57 334 57 345 67 357 57 368 57 380 57 302 

375 57 403 57“41fi 57 426 57 438 67 449 57 461 67 473 57 484 57 496 67 607 
376 57 510 57 530 57 542 57 553 57 565 57 576 57 588 57 600 57 611 57 623 
377 57 634 57 646 57 657 57 660 57 680 57 692 67 703 57 715 57 726 57 738 
378 57 740 57 761 57 772 57 784 67 795 57 807 57 818 57 830 57 841 57 852 
370 57 864 57 875 57 887 67 898 67 010 57 021 57 033 67 044 57 056 57 967 

880 57 078 67 990 58 001 68 013 68 024 68 035 58 047 68 058 68 070 58 081 
381 58 002 58 104 58 115 58 127 58 138 58 140 58 161 58 172 58 184 58 195 
382 58 206 58 218 58 220 58 240 58 252 58 263 58 274 58 286 58 297 58 300 
383 58 320 58 331 58 343 58 354 58 365 58 377 58 388 58 390 58 410 58 422 
884 58 433 58 444 58 456 58 467 58 478 58 490 58 501 58 512 58 524 58 535 

885 58 546 58 557 58 560 58 580 68 591 68 602 68 614 68 625 68 636 58 647 
386 58 650 58 670 58 681 58 692 58 704 58 715 58 726 68 737 58 749 58 760 
387 58 771 58 782 58 704 58 805 58 816 58 827 58 838 58 850 58 861 68 872 
388 58 883 58 804 58 906 58 917 58 928 58 930 58 950 58 061 58 073 58 084 
380 58 905 50 006 50 017 59 028 50 040 50 051 50 062 50 073 50 084 50 095 

890 50 106 59 118 50 120 59 140 60 151 50 162 69 173 50 184 50 195 60 207 
301 59 218 50 220 50 240 50 251 59 262 59 273 69 284 60 296 50 306 59 318 
302 50 320 50 340 50 351 50 362 59 373 50 384 60 306 50 406 60 417 59 428 
303 50 430 50 450 50 461 50 472 50 483 50 494 50 506 50 517 50 528 59 530 
804 50 550 59 561 50 572 50 583 50 594 50 605 59 616 50 627 50 638 50 649 

306 50 660 50 671 50 682 59 693 59 704 50 715 69 726 60 737 60 748 60 769 
306 50 770 50 780 50 791 59 802 50 813 50 824 60 835 60 846 50 857 60 868 
307 50 870 50 890 50 901 59 912 59 923 59 934 50 946 50 956 59 066 60 977 
308 50 088 50 090 60 010 60 021 60 032 60 043 60 054 60 065 60 076 60 086 
300 60 007 60 108 60 110 60 130 60 141 60 152 60 163 60 173 60 184 60 105 

No. 0 1 2 8 B B 6 B B 0 
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Table 8. Common Logarithms op Numbers.—{Continued) 

400-419 

No. 0 ■ B a 1 5 . 5 r B 

400 60 206 60 217 60 228 60 230 60 249 60 260 60 271 60 282 60 293 60 304 
401 60 314 60 325 60 336 60 347 60 358 60 369 60 379 60 390 60 401 60 412 
402 60 423 60 433 60 444 60 455 60 466 60 477 60 487 60 498 60 509 60 520 

60 631 60 541 60 552 60 663 60 574 60 584 60 595 60 606 60 617 60 627 
60 638 60 649 60 660 60 670 60 681 60 692 60 703 60 713 60 724 60 735 

406 60 746 60 756 60 767 60 778 60 788 60 799 60 810 60 821 60 831 60 842 
406 60 853 60 863 60 874 60 885 60 895 60 906 60 917 60 927 60 938 60 940 
407 60 959 60 970 60 981 60 691 61 no2 61 013 61 023 61 034 61 045 61 055 
408 61 066 61 077 61 087 61 098 61 109 61 119 61 130 61 140 61 151 61 162 
409 61 172 61 183 61 194 61 204 61 215 61 225 61 236 61 247 61 257 61 268 

410 61 278 61 289 61 300 61 810 61 321 61 331 61 342 61 352 61 363 61 374 
411 61 384 61 395 61 405 61 416 61 426 61 437 61 448 61 458 61 469 61 479 
412 61 490 61 500 61 511 61 521 61 532 61 542 61 553 61 563 61 574 61 584 
413 61 595 61 606 61 616 61 627 61 637 61 648 61 658 61 669 61 679 61 690 
414 61 700 61 711 61 721 61 731 61 742 61 752 61 763 61 773 61 784 61 794 

415 61 805 61 815 61 826 61 836 61 847 61 857 61 868 61 878 61 888 61 809 
416 61 909 61 920 61 930 61 941 61 951 61 962 61 972 61 982 61 993 62 003 
417 62 014 62 024 62 034 62 045 62 055 62 066 62 076 62 086 62 097 62 107 
418 62 118 62 128 62 138 62 149 62 159 62 170 62 180 62 190 62 201 62 211 
419 62 221 62 232 62 242 62 252 62 263 62 273 62 284 62 294 62 304 62 315 

420 62 325 62 335 62 346 62 356 62 366 62 377 62 387 62 397 62 408 62 418 
421 62 428 62 439 62 440 62 459 62 469 62 480 62 490 62 500 62 511 62 521 
422 62 631 62 542 62 552 62 562 62 572 62 583 62 593 62 603 62 613 62 624 
423 62 634 62 644 62 655 62 665 62 675 62 685 62 696 62 706 62 716 62 726 
424 62 737 62 747 62 757 62 767 62 778 62 788 62 798 62 808 62 818 62 820 

425 62 839 62 840 62 850 62 870 62 880 62 890 62 900 62 910 62 021 62 031 
426 62 941 62 951 62 961 62 972 62 982 62 992 63 002 63 012 63 022 63 033 
427 63 043 63 053 63 063 63 073 63 083 63 094 63 104 63 114 63 124 63 134 
428 63 144 63 155 63 105 63 175 63 185 63 195 63 205 63 215 63 225 63 236 
429 63 246 63 256 63 266 63 276 63 286 63 296 63 306 63 317 63 327 63 337 

480 63 347 63 357 63 367 63 377 63 387 63 397 63 407 63 417 63 428 63 438 
431 63 448 63 458 63 468 63 478 63 488 63 498 63 508 63 518 63 528 63 538 
432 63 548 63 558 63 568 63 579 63 589 63 599 63 COO 63 619 63 629 63 639 
433 63 649 63 659 63 660 63 679 63 689 63 699 63 709 63 719 63 729 63 739 
434 63 749 63 759 63 769 63 779 63 789 63 799 63 809 63 819 63 829 63 839 

435 63 849 63 859 63 869 63 870 63 889 63 899 63 909 63 919 63 929 63 939 
436 63 949 63 959 63 969 63 979 63 988 63 998 64 008 64 018 64 028 64 038 
437 64 048 64 058 64 068 64 078 64 088 64 098 64 108 64 118 64 128 64 137 
438 64 147 64 157 64 167 64 177 64 187 64 197 64 207 64 217 64 227 64 237 
439 64 246 64 256 64 266 64 276 64 286 64 296 64 306 64 316 64 326 64 336 

64 345 64 355 64 365 64 375 64 385 64 395 64 404 64 414 64 424 64 434 
441 64 444 64 454 64 464 64 473 64 483 64 493 64 503 64 513 64 523 64 532 
442 64 542 64 552 64 562 64 572 64 582 64 591 64 601 64 611 64 621 64 631 
443 64 640 64 650 64 660 64 670 64 680 64 689 64 699 64 709 64 719 64 729 
444 64 738 64 748 64 758 64 768 64 777 64 787 64 797 64 807 64 816 64 826 

445 64 836 64 846 64 856 64 865 64 875 64 885 64 805 64 904 64 914 64 924 
446 64 933 64 943 64 953 64 963 64 972 64 982 64 992 65 002 65 Oil 65 021 
447 65 031 65 040 65 050 65 060 65 070 65 079 65 089 65 099 65 108 65 118 
448 65 128 65 137 65 147 65 157 65 167 65 176 65 186 65 196 65 205 65 215 
449 65 225 65 234 65 244 65 254 65 263 65 278 65 283 65 292 66 302 65 312 

No. 
. 
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Table 8. Common Looaiiithms of Nombebs.—(Continued) 

460-499 

No. 0 1 2 3 4 5 6 7 8 0 

450 66 321 65 331 65 341 65 350 65 360 65 360 65 379 65 389 65 308 65 408 
451 65 418 65 427 65 437 65 447 65 456 65 466 65 475 65 485 65 495 65 504 
462 65 514 65 523 65 533 65 543 65 552 65 562 65 571 65 581 65 591 65 600 
468 65 610 65 610 65 620 65 630 65 648 65 658 65 667 65 677 65 686 65 606 
464 65 706 65 715 65 725 65 734 65 744 65 753 65 763 65 772 65 782 65 702 

466 65 801 65 811 65 820 65 830 65 839 65 849 65 858 65 868 65 877 65 887 
466 65 806 65 006 65 016 65 025 65 935 65 044 65 054 65 063 65 973 65 082 
457 65 092 66 001 66 011 66 020 66 030 66 030 66 049 66 058 66 068 66 077 
458 66 087 66 006 66 106 66 115 66 124 66 134 66 143 66 153 66 162 66 172 
469 66 181 66 191 66 200 66 210 66 210 66 229 66 238 66 247 66 257 66 266 

460 66 276 66 285 66 205 66 304 66 314 66 323 66 332 66 342 66 351 66 361 
461 66 370 66 380 66 380 66 308 66 408 66 417 66 427 66 436 66 445 66 455 
462 66 464 66 474 66 483 66 492 66 502 66 511 66 521 66 530 66 530 66 549 
463 66 558 66 567 66 577 66 586 66 596 66 605 66 6U 66 624 66 633 66 642 
464 66 652 66 661 66 671 66 680 66 680 66 609 66 708 66 717 66 727 66 736 

466 66 745 66 755 66 764 66 773 66 783 66 702 66 801 66 811 66 820 66 829 
466 66 830 66 848 66 857 66 867 66 876 66 885 66 894 66 904 66 913 66 922 
467 66 032 66 941 66 050 66 960 66 969 66 978 66 987 66 997 67 006 67 015 
468 67 02(2 67 034 67 043 67 052 67 062 67 071 67 080 67 089 67 099 67 108 
460 67 117 67 127 67 136 67 145 67 154 67 164 67 173 67 182 67 191 67 201 
470 67 210 67 210 67 228 67 237 67 247 67 256 67 265 67 274 67 284 67 203 
471 67 302 67 811 67 321 67 330 67 330 67 348 67 357 67 367 67 376 67 385 
472 67 304 67 403 67 413 67 422 67 431 67 440 67 440 67 459 67 468 67 477 
473 67 486 67 405 67 504 67 514 67 523 67 532 67 541 67 550 67 560 67 569 
474 67 578 67 587 67 506 67 605 67 614 67 624 67 633 67 642 67 651 67 660 

475 67 660 67 670 67 688 67 607 67 706 67 715 67 724 67 783 67 742 67 752 
476 67 761 67 770 67 770 67 788 67 797 67 806 67 815 67 825 67 834 67 843 
477 67 852 67 861 67 870 67 870 67 888 67 897 67 906 67 016 67 925 67 934 
478 67 043 67 052 67 061 67 970 67 970 67 988 67 997 68 006 68 015 68 024 
479 68 034 68 043 68 052 68 061 68 070 68 079 68 088 68 007 68 106 68 115 

480 68 124 68 133 68 142 68 151 68 160 68 169 68 178 68 187 68 196 68 205 
481 68 215 68 224 68 233 68 242 68 251 68 260 68 269 68 278 68 287 68 296 
482 68 305 68 314 68 323 68 332 68 341 68 350 68 359 68 368 68 377 68 386 
483 68 305 68 404 68 413 68 422 68 431 68 440 68 449 68 458 68 467 68 476 
484 68 485 68 404 68 502 68 511 68 520 68 520 68 538 68 547 68 556 68 565 

485 68 574 68 583 68 502 68 601 68 610 68 619 68 628 68 637 68 646 68 655 
486 68 664 68 673 68 681 68 600 68 699 68 708 68 717 68 726 68 735 68 744 
487 68 753 68 762 68 771 68 780 68 780 68 797 68 806 68 815 68 824 68 833 
488 68 842 68 851 68 860 68 869 68 878 68 886 68 805 68 004 68 913 68 022 
489 68 031 68 040 68 940 68 958 68 066 68 075 68 084 68 003 60 002 60 011 
490 60 020 60 028 60 037 60 046 69 055 60 064 69 073 69 082 60 000 69 000 
401 60 108 60 117 60 126 60 135 60 144 60 152 60 161 69 170 60 179 60 188 
402 69 107 60 205 60 214 60 223 69 232 60 241 60 249 60 258 60 267 69 276 
493 69 285 60 294 60 302 69 811 69 320 69 320 60 338 60 346 60 355 60 364 
494 60 873 60 381 69 890 69 809 69 408 60 417 69 425 60 434 60 443 60 452 

405 60 461 60 460 69 478 69 487 69 496 69 604 69 513 60 522 60 531 60 539 
406 69 548 60 557 60 566 69 574 69 583 69 502 69 601 60 609 60 618 60 627 
407 60 636 69 644 69 653 60 662 69 671 60 670 60 688 60 697 60 705 60 714 
408 69 723 69 732 69 740 69 749 69 758 69 767 69 775 60 784 69 703 69 801 
400 60 810 60 810 69 827 69 836 69 845 60 854 60 862 69 871 60 880 69 888 

No. 0 1 3 8 ■ ■ 6 7 8 0 
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Table 8. Common Locsarithms of Numbers.- 

600-649 
-{Continued) 

No. 0 1 2 3 4 5 6 7 8 9 

600 69 897 69 906 69 914 69 923 69 932 69 940 69 949 69 958 69 966 69 975 
601 69 984 69 992 70 001 70 010 70 018 70 027 70 036 70 044 70 053 70 062 
502 70 070 70 079 70 088 70 096 70 105 70 114 70 122 70 131 70 140 70 148 
503 70 157 70 166 70 174 70 183 70 191 70 200 70 209 70 217 70 226 70 234 
504 70 243 70 252 70 260 70 269 70 278 70 286 70 292 70 303 70 312 70 321 

505 70 329 70 338 70 346 70 355 70 364 70 372 70 381 70 889 70 898 70 406 
506 70 415 70 424 70 432 70 441 70 449 70 458 70 467 70 475 70 484 70 492 

70 501 70 509 70 518 70 526 70 535 70 644 70 552 70 561 70 569 70 578 
70 686 70 59§ 70 603 70 612 70 621 70 629 70 638 70 646 70 655 70 663 

500 70 672 70 680 70 689 70 697 70 706 70 714 70 723 70 731 70 740 70 749 

610 70 757 70 766 70 774 70 783 70 791 70 800 70 808 70 817 70 825 70 834 
511 70 842 70 851 70 859 70 868 70 876 70 885 70 893 70 902 70 910 70 919 
512 70 927 70 935 70 944 70 952 70 961 70 969 70 978 70 986 70 995 71 003 
513 71 012 71 020 71 029 71 037 71 046 71 054 71 063 71 071 71 079 71 088 
514 71 096 71 105 71 113 71 122 71 130 71 139 71 147 71 155 71 164 71 172 

616 71 181 71 189 71 198 71 206 71 214 71 223 71 231 71 240 71 248 71 257 
516 71 265 71 273 71 282 71 290 71 299 71 307 71 816 71 324 71 332 71 341 
517 71 349 71 357 71 366 71 374 71 383 71 391 71 399 71 408 71 416 71 425 
518 71 433 71 441 71 450 71 458 71 466 71 475 71 483 71 492 71 500 71 508 
519 71 517 71 525 71 533 71 542 71 550 71 559 71 567 71 575 71 584 71 592 

620 71 600 71 609 71 617 71 625 71 634 71 642 71 650 71 659 71 667 71 675 
521 71 684 71 692 71 700 71 709 71 717 71 725 71 734 71 742 71 750 71 759 
522 71 767 71 775 71 784 71 792 71 *800 71 809 71 817 71 825 71 834 71 842 
523 71 850 71 858 71 867 71 875 71 883 71 892 71 900 71 908 71 917 71 925 
524 71 933 71 941 71 950 71 958 71 966 71 975 71 983 71 991 71 999 72 008 

625 72 016 72 024 72 032 72 041 72 049 72 057 72 066 72 074 72 082 72 090 
526 72 099 72 107 72 115 72 123 72 132 72 140 72 148 72 156 72 165 72 173 
527 72 181 72 189 72 198 72 206 72 214 72 222 72 230 72 239 72 247 72 255 
528 72 263 72 272 72 280 72 288 72 296 72 304 72 313 72 321 72 329 72 337 
529 72 340 72 354 72 362 72 370 72 378 72 387 72 395 72 403 72 411 72 419 

680 72 428 72 436 72 444 72 452 72 400 72 469 72 477 72 485 72 493 72 501 
531 72 509 72 518 72 626 72 634 72 642 72 550 72 558 72 567 72 575 72 583 
532 72 691 72 699 72 607 72 616 72 624 72 632 72 640 72 648 72 656 72 665 
533 72 673 72 681 72 689 72 697 72 705 72 713 72 722 72 730 72 738 72 740 
534 72 754 72 762 72 770 72 779 72 787 72 795 72 803 72 811 72 819 72 827 

535 72 835 72 843 72 852 72 860 72 868 72 876 72 884 72 892 72 900 72 908 
536 72 916 72 925 72 933 72 941 72 949 72 957 72 965 72 973 72 981 72 989 
637 72 997 73 006 73 014 73 022 73 030 73 038 73 046 73 054 73 062 73 070 
538 73 078 73 086 73 094 73 102 73 111 73 119 73 127 73 135 73 143 73 151 
530 73 159 73 167 73 175 73 183 73 191 73 199 73 207 73 215 73 223 73 231 

640 73 239 73 247 73 255 73 263 73 272 73 280 73 288 73 296 73 304 73 812 
541 73 320 73 328 73 336 73 344 73 352 73 360 73 368 73 376 73 384 73 392 
542 73 400 73 408 73 416 73 424 73 432 73 440 73 448 73 456 73 464 78 472 
543 73 480 73 488 73 496 73 604 73 512 73 620 73 528 73 536 73 544 73 552 
544 73 660 73 568 73 576 73 584 73 592 73 600 73 608 73 616 73 624 73 632 

645 73 640 73 648 73 656 73 664 73 672 73 679 73 687 73 695 73 703 73 711 
546 73 719 73 727 73 735 73 743 73 751 73 759 73 767 73 775 73 783 73 791 
547 73 799 73 807 73 815 73 823 73 830 73 838 73 846 73 854 73 862 78 870 
548 73 878 73 886 73 894 73 902 73 910 73 918 73 926 73 933 73 941 73 949 
549 73 957 73 965 73 973 73 981 73 989 73 997 74 005 74 013 74 020 74 028 

No. 0 1 2 3 ■ ■ 6 7 8 9 
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Table 8. Common Logarithms of Numbers.—{Continued) 

660-599 

No. 0 1 2 3 4 5 6 7 8 9 

660 74 036 74 044 74 052 74 oco 74 068 74 076 74 084 74 092 74 000 74 107 
651 74 116 74 123 74 131 74 139 74 147 74 155 74 1G2 74 170 74 178 74 186 
552 74 104 74 202 74 210 74 218 74 225 74 233 74 241 74 240 74 257 74 265 
553 74 273 74 280 74 288 74 206 74 304 74 312 74 320 74 327 74 335 74 343 
554 74 361 74 350 74 367 74 374 74 382 74 390 74 308 74 406 74 414 74 421 

555 74 420 74 437 74 445 74 453 74 461 74 ifSi 74 476 74 484 74 402 74 BBil 

566 74 507 74 615 74 623 74 531 74 530 74 647 74 554 74 562 74 570 74 678 
557 74 586 74 503 74 601 74 600 74 617 74 624 74 632 74 640 74 648 74 656 
558 74 663 74 671 74 670 74 687 74 74 702 74 710 74 718 74 726 74 733 
550 74 741 74 740 74 767 74 764 74 772 74 780 74 788 74 706 74 803 74 811 

660 74 810 74 827 74 834 74 842 74 850 74 S58 74 865 74 873 74 881 74 889 
561 74 806 74 004 74 012 74 020 74 027 74 935 74 943 74 950 74 058 74 966 
562 74 074 74 081 74 080 74 097 75 75 76 020 75 028 76 75 043 
563 75 051 76 050 75 066 75 074 75 082 75 089 V6 097 75 76 113 75 
564 75 128 76 136 76 143 75 151 76 150 76 166 75 174 75 182 75 180 76 197 

565 75 205 76 213 75 220 75 228 76 236 75 243 75 251 75 250 76 266 75 274 
566 75 282 76 280 75 207 75 305 75 312 76 320 75 328 75 335 76 343 76 351 
567 76 358 76 366 76 374 75 381 75 380 76 76 404 75 412 75 420 75 427 
568 76 435 76 442 76 450 75 458 75 4C5 76 473 75 481 76 488 76 75 504 
560 76 611 76 510 76 526 76 534 75 542 75 76 557 76 565 75 572 76 580 

670 76 687 76 505 76 603 76 610 75 618 76 626 75 633 75 641 76 648 76 656 
571 76 664 76 671 76 670 76 686 75 694 75 702 76 700 76 717 76 724 76 732 
572 76 740 75 747 76 765 76 762 75 770 76 778 75 786 76 793 76 75 808 
573 76 815 76 823 76 831 76 838 75 846 76 853 76 861 76 868 75 876 76 884 
574 76 801 75 800 76 006 76 014 76 021 75 029 75 037 75 044 75 052 75 959 

575 76 067 76 074 76 082 76 089 76 76 E91 76 012 76 020 76 027 76 035 
576 76 042 76 050 76 057 76 065 76 76 080 76 087 76 005 76 76 110 
577 76 118 76 125 76 133 76 140 76 148 76 155 76 163 76 170 76 178 76 185 
578 76 103 76 200 76 208 76 215 76 223 76 230 76 238 76 245 76 253 76 260 
570 76 268 76 275 76 283 76 200 76 208 76 305 76 313 76 320 76 328 76 335 

680 76 343 76 350 76 358 76 366 76 373 76 380 76 388 76 305 76 76 410 
581 76 418 76 425 76 433 76 440 76 448 76 455 76 462 76 470 76 477 76 485 
582 76 402 76 500 76 507 76 515 76 522 76 530 wm 637 76 545 76 552 76 559 
583 76 567 76 574 76 582 76 580 76 604 76 612 76 610 76 626 76 634 
584 76 641 76 640 76 656 76 664 76 671 76 678 76 76 701 76 708 

585 76 716 76 723 76 730 76 738 76 745 76 763 76 760 76 768 76 775 76 782 
586 76 700 76 707 76 805 76 812 76 810 76 827 76 834 76 842 76 840 76 866 
587 76 864 76 871 76 870 76 886 76 803 76 901 76 008 76 016 76 023 76 
588 76 038 76 045 76 053 76 060 76 067 76 975 76 082 76 089 76 997 77 004 
580 77 012 77 010 77 026 77 034 77 041 77 048 77 056 77 063 77 070 77 078 

600 77 086 77 003 77 100 77 107 77 US 77 122 77 120 77 137 77 144 77 161 
501 77 160 77 166 77 173 77 181 77 188 77 105 77 203 77 210 77 217 77 225 
502 77 232 77 240 77 247 77 254 77 262 77 260 77 276 77 283 77 201 77 208 
503 77 306 77 313 77 320 77 327 77 335 77 342 77 349 77 357 77 364 77 371 
504 77 370 77 386 77 303 77 401 77 408 77 415 77 422 77 430 77 437 77 444 

505 77 462 77 450 77 466 77 474 77 481 77 488 77 405 77 503 77 610 77 517 
506 77 525 77 532 77 530 77 546 77 554 77 561 77 568 77 676 77 583 77 
507 77 507 77 605 77 612 77 610 77 627 77 634 77 641 77 648 77 656 77 663 
508 77 670 77 677 77 685 77 602 77 690 77 706 77 714 77 721 77 728 77 735 
500 77 743 77 750 77 757 77 764 77 772 77 770 77 786 77 793 77 801 77 
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Table 8. Common Logarithms of Numbers.—{Continued) 

600-649 

No. 0 1 2 3 ■ 1 ■ 6 7 8 9 

600 77 816 77 822 77 830 77 G37 77 844 77 851 77 859 77 866 77 873 77 880 
601 77 887 77 806 77 902 77 909 77 916 77 924 77 931 77 938 77 946 77 962 
602 77 9G0 77 907 77 974 77 981 77 988 77 996 78 003 78 010 78 017 78 026 
003 78 032 78 039 78 046 78 063 78 061 78 068 78 076 78 082 78 089 78 097 
604 78 104 78 111 78 118 78 126 78 132 78 140 78 147 78 164 78 161 78 168 

605 78 176 78 183 78 190 78 197 78 204 78 211 78 219 78 226 78 233 78 240 
606 78 247 78 254 78 262 78 269 78 276 78 283 78 290 78 297 78 306 78 312 
607 78 319 78 326 78 333 78 340 78 347 78 356 78 362 78 369 78 376 78 383 
608 78 390 78 308 78 406 78 412 78 419 78 426 78 433 78 440 78 447 78 466 
609 78 462 78 469 78 476 78 483 78 490 78 497 78 604 78 612 78 610 78 626 

610 78 533 78 640 78 647 78 654 78 661 78 669 78 676 78 683 78 690 78 697 
611 78 604 78 611 78 618 78 626 78 633 78 640 78 647 78 664 78 661 78 668 
612 78 675 78 682 78 689 78 696 78 704 78 711 78 718 78 726 78 732 78 739 
613 78 746 78 763 78 760 78 7G7 78 774 78 781 78 789 78 796 78 803 78 810 
614 78 817 78 824 78 831 78 838 78 845 78 862 78 869 78 866 78 873 78 880 

616 78 888 78 806 78 902 78 909 78 916 78 923 78 930 78 937 78 944 78 961 
616 78 958 78 965 78 972 78 979 78 986 78 993 79 000 79 007 79 014 79 021 
617 79 029 79 036 79 043 79 050 79 057 79 064 79 071 79 078 79 086 79 092 
618 79 099 79 106 79 113 79 120 79 127 79 134 79 141 79 148 79 156 79 162 
610 79 169 79 176 79 183 79 190 79 197 79 204 79 211 79 218 79 226 79 232 

€60 79 239 79 246 79 253 79 260 79 267 79 274 79 281 79 288 79 296 79 302 
621 79 309 79 316 79 323 79 330 79 337 79 344 79 351 78 358 79 365 79 372 
622 79 379 79 386 79 393 79 400 79 407 79 414 79 421 79 428 79 436 79 442 
623 79 449 79 466 79 463 79 470 79 477 79 484 79 491 79 498 79 506 79 611 
624 79 618 79 626 79 632 79 639 79 646 79 653 79 660 79 667 79 674 79 681 

626 79 688 79 606 79 602 79 609 79 616 79 623 79 630 79 637 79 644 79 660 
626 79 657 79 664 79 671 79 678 79 686 79 692 79 699 79 706 79 713 79 720 
627 79 727 79 734 79 741 79 748 79 754 79 761 79 768 79 776 79 782 79 789 
628 79 796 79 803 79 810 79 817 79 824 79 831 79 837 79 844 79 861 79 868 
620 79 865 79 872 79 879 79 886 79 893 79 900 79 906 79 913 79 920 79 927 

680 79 034 79 941 79 948 79 956 79 962 79 969 79 976 79 982 79 989 79 996 
631 80 003 80 010 80 017 80 024 80 030 80 037 80 044 80 051 80 058 80 066 
632 80 072 80 079 80 086 80 092 80 099 80 106 80 113 80 120 80 127 80 134 
633 80 140 80 147 80 154 80 IGl 80 168 80 176 80 182 80 188 80 195 80 202 
634 80 209 80 216 80 223 80 229 80 236 80 243 80 250 80 257 80 264 80 271 

636 80 277 80 284 80 291 80 298 80 806 80 312 80 318 80 326 80 332 80 339 
636 80 346 80 363 80 369 80 366 80 373 80 380 80 387 80 393 80 400 80 407 
637 80 414 80 421 80 428 80 434 80 441 80 448 80 456 80 462 80 468 80 476 
638 80 482 80 489 80 496 80 602 80 609 80 616 80 623 80 630 80 636 80 643 
639 80 660 80 667 80 664 80 670 80 677 80 684 80 691 80 698 80 604 80 611 

640 80 618 80 626 80 632 80 638 80 646 80 662 80 669 80 665 80 672 80 679 
641 80 686 80 603 80 699 80 706 80 713 80 720 80 726 80 733 80 740 80 747 
642 80 764 80 760 80 767 80 774 80 781 80 787 80 794 80 801 80 808 80 814 
643 80 821 80 828 80 836 80 841 80 848 80 866 80 862 80 868 80 875 80 882 
644 80 889 80 805 80 902 80 909 80 916 80 922 80 929 80 936 80 943 80 949 

646 80 066 80 063 80 969 80 976 80 983 80 990 80 996 81 003 81 010 81 017 
646 81 023 81 030 81 037 81 043 81 050 81 057 81 064 81 070 81 077 81 084 
647 81 090 81 097 81 104 81 111 81 117 81 124 81 131 81 137 81 144 81 161 
648 81 158 81 164 81 171 81 178 81 184 81 191 81 198 81 204 81 211 81 218 
649 81 224 81 231 81 238 81 246 81 261 81 268 81 266 81 271 81 278 81 286 

No. 0 1 2 ■ 1 ■ ■ ■ 6 7 8 9 

600-649 



500 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Table 8. Common Logarithms of Numbers.—(.Continued) 

660-699 

No. 0 1 2 3 1 5 3 7 8 0 

B60 81 201 81 208 81 305 81 311 81 318 81 325 81 331 81 338 81 345 81 351 
651 81 358 81 365 81 371 81 378 81 385 81 391 81 308 81 405 81 411 81 418 
652 81 425 81 431 81 438 81 445 81 451 81 458 81 465 81 471 81 478 81 485 
653 81 491 81 498 81 505 81 511 81 518 81 525 81 531 81 538 81 544 81 551 
654 81 £68 81 564 81 57) 81 578 81 584 81 501 81 598 81 604 81 611 81 617 

655 81 624 81 631 81 637 81 644 81 651 81 667 81 664 81 671 81 677 81 684 
656 81 690 81 607 81 704 81 710 81 717 81 723 81 730 81 737 81 743 81 750 
657 81 767 81 763 81 770 81 776 81 783 81 790 81 796 81 803 81 800 81 816 
658 81 823 81 820 81 836 81 842 81 849 81 856 81 862 81 860 81 875 81 882 
659 81 880 81 805 81 002 81 008 81 915 81 021 81 028 81 035 81 041 81 048 

860 81 054 81 061 81 068 81 074 81 081 81 987 81 004 82 000 82 007 82 014 
661 82 020 82 027 82 033 82 040 82 046 82 053 82 060 82 066 82 073 82 070 
662 82 086 82 002 82 090 82 105 82 112 82 119 82 125 82 132 82 138 82 145 
663 82 151 82 158 82 164 82 171 82 178 82 184 8? 191 82 197 82 204 82 210 
664 82 217 82 223 82 230 82 236 82 243 82 249 82 256 82 263 82 260 82 276 

665 82 282 82 289 82 295 82 302 82 308 82 315 82 321 82 328 82 334 82 341 
666 82 347 82 354 82 360 82 367 82 373 82 380 82 387 82 393 82 400 82 406 
667 82 413 82 410 82 426 82 432 82 439 82 445 82 452 82 458 82 465 82 471 
668 82 478 82 484 82 491 82 497 82 504 82 510 82 517 82 523 82 530 82 536 
660 82 543 82 540 82 556 82 562 82 569 82 575 82 582 82 588 82 505 82 601 

670 82 607 82 614 82 620 82 627 82 633 82 640 82 646 82 653 82 650 82 666 
671 82 672 82 679 82 685 82 692 82 698 82 705 82 711 82 718 82 724 82 730 
672 82 737 82 743 82 750 82 756 82 763 82 769 82 776 82 782 82 789 82 705 
673 82 802 82 808 82 814 82 821 82 827 82 834 82 840 82 847 82 853 82 860 
674 82 866 82 872 82 879 82 885 82 892 82 898 82 005 82 Oil 82 918 82 024 

675 82 930 82 037 82 043 82 050 82 056 82 063 82 060 82 075 82 082 82 988 
676 82 005 83 001 83 008 83 014 83 020 83 027 83 033 83 040 83 046 83 052 
677 83 050 83 065 83 072 83 078 83 085 83 091 83 097 83 104 83 no 83 117 
678 83 123 83 120 83 136 83 142 83 149 83 155 83 161 83 168 83 174 83 181 
679 83 187 83 193 83 200 83 206 83 213 83 210 83 225 83 232 83 238 83 245 

680 83 251 83 257 83 264 83 270 83 276 83 283 83 280 83 296 83 302 83 308 
681 83 315 83 321 83 327 83 334 83 340 83 347 83 353 83 359 83 366 83 372 
682 83 378 83 385 83 391 83 398 83 404 83 410 83 417 83 423 83 429 83 436 
683 83 442 83 448 83 455 83 461 83 467 83 474 83 480 83 487 83 493 83 400 
684 83 506 83 512 83 518 83 525 83 531 83 537 83 544 83 550 83 556 83 563 

685 83 569 83 675 83 582 83 688 83 594 83 601 83 607 83 013 83 620 83 626 
686 83 632 83 639 83 645 83 651 83 658 83 664 83 670 83 677 83 683 83 680 
687 83 696 83 702 83 708 83 715 83 721 83 727 83 734 83 740 83 746 83 753 
688 83 759 83 765 83 771 83 778 83 784 83 790 83 797 83 803 83 800 83 816 
680 83 822 83 828 83 835 83 841 83 847 83 853 83 860 83 866 83 872 83 870 

690 83 885 83 801 83 897 83 004 83 010 83 016 83 023 83 020 83 035 83 042 
601 83 048 83 054 83 060 83 967 83 073 83 070 83 085 83 002 83 098 84 004 
692 84 Oil 84 017 84 023 84 020 84 036 84 042 84 048 84 055 84 061 84 067 
603 84 073 84 080 84 086 84 092 84 098 84 105 84 111 84 117 84 123 84 130 
604 84 136 84 142 84 148 84 155 84 161 84 167 84 173 84 180 84 186 84 192 

605 84 108 84 205 84 211 84 217 84 223 84 230 84 236 84 242 84 248 84 255 
696 84 261 84 267 84 273 84 280 84 286 84 292 84 298 84 305 84 311 84 317 
607 84 323 84 330 84 336 84 342 84 348 84 354 84 361 84 367 84 373 84 370 
608 84 386 84 302 84 398 84 404 84 410 84 417 84 423 84 420 84 435 84 442 
600 84 448 84 454 84 460 84 466 84 473 84 470 84 485 84 401 84 497 84 504 

No. 0 1 2 3 4 5 6 7 8 0 

660-699 



APPENDIX D 601 

Table 8. Common Logarithms of Numbers.—{Continued) 

700-749 

Q| 1 ■ 1 ■ 2 3 ■ 1 ■ 6 7 8 

700 84 510 84 516 84 522 84 528 84 535 84 541 84 547 84 553 84 559 84 566 
701 84 572 84 578 84 584 84 590 84 597 84 603 84 609 84 615 84 621 84 628 
702 84 634 84 640 84 646 84 652 84 658 84 665 84 671 84 677 84 683 84 689 
703 84 696 84 702 84 708 84 714 84 720 84 726 84 733 84 739 84 745 84 751 
704 84 757 84 763 84 770 84 776 84 782 84 788 84 794 84 800 84 807 84 813 

705 84 819 84 825 84 831 84 837 84 844 84 850 84 856 84 862 84 868 84 874 
706 84 880 84 887 84 893 84 399 84 905 84 911 84 917 84 924 84 930 84 936 
707 84 942 84 948 84 954 84 960 84 967 84 973 84 979 84 985 84 991 84 997 
708 85 003 85 009 85 016 85 022 85 028 85 034 85 040 85 046 85 052 85 058 
709 85 06S 85 071 85 077 85 083 85 089 85 095 85 101 85 107 85 114 85 120 

710 85 126 85 132 85 138 85 144 85 150 85 156 85 163 85 169 85 175 85 181 
711 85 187 85 193 85 199 85 205 85 211 85 217 85 224 85 230 85 236 86 242 
712 85 248 85 254 85 260 85 266 85 272 85 278 85 285 85 291 85 297 85 303 
713 85 309 85 315 85 321 85 327 85 333 85 339 85 345 85 352 85 358 85 364 
714 85 370 85 376 85 382 85 388 85 394 85 400 85 406 85 412 85 418 85 425 

715 85 431 85 437 85 443 85 449 85 455 85 461 85 467 85 473 86 479 85 486 
716 85 491 85 497 85 503 85 509 85 516 85 522 85 528 85 534 85 540 85 540 
717 85 £52 85 558 85 564 85 570 85 576 85 582 85 588 85 594 85 600 85 606 
718 85 612 85 618 85 625 85 631 85 637 85 643 85 649 85 655 85 661 85 667 
719 85 673 85 679 85 685 85 691 85 697 85 703 85 709 85 715 85 721 85 727 

720 85 733 85 739 85 745 85 751 85 757 85 763 85 769 85 775 85 781 85 788 
721 85 794 85 800 85 806 85 812 85 818 85 824 85 830 85 836 85 842 85 848 
722 85 854 85 860 85 866 85 872 85 878 85 884 85 890 85 896 85 902 85 908 
723 85 914 85 920 85 926 85 932 85 938 85 944 85 950 85 956 85 962 85 968 
724 85 974 85 980 85 986 85 992 85 998 86 004 86 010 86 016 86 022 86 028 

725 86 034 86 040 86 046 86 052 86 058 86 064 86 070 86 076 86 082 86 088 
726 86 094 86 100 86 106 86 112 86 118 86 124 86 130 86 136 86 141 86 147 
727 86 153 86 159 86 165 86 171 86 177 86 183 86 189 86 195 86 201 86 207 
728 86 213 86 219 86 225 86 231 86 237 86 243 86 249 86 255 86 261 86 267 
729 86 273 86 279 86 285 86 291 86 297 86 303 86 308 86 314 86 320 86 320 

780 86 332 86 338 86 344 86 350 86 356 86 362 86 368 86 374 86 380 86 380 
731 86 392 86 398 86 404 86 410 86 415 86 421 86 427 86 433 86 439 86 445 
732 86 451 86 457 86 463 86 469 86 475 86 481 86 487 86 493 86 499 86 504 
733 86 510 86 516 86 522 86 528 86 534 86 540 86 546 86 552 86 558 86 504 
734 86 570 86 570 86 581 86 587 86 593 86 599 86 605 86 611 86 617 86 623 

735 86 629 86 635 86 641 86 646 86 652 86 658 86 664 86 670 86 676 86 682 
736 86 688 86 694 86 700 86 705 86 711 86 717 86 723 86 729 86 735 86 741 
737 86 747 86 753 86 759 86 764 86 770 86 776 86 782 86 788 86 794 86 800 
738 86 806 86 812 86 817 86 823 86 829 86 835 86 841 86 847 86 853 86 850 
739 86 864 86 870 86 876 86 882 86 888 86 894 86 900 86 906 86 911 86 917 

740 86 923 86 929 86 935 86 941 86 947 86 953 86 958 86 964 86 970 86 970 
741 86 982 86 988 86 994 86 999 87 005 87 Oil 87 017 87 023 87 029 87 035 
742 87 040 87 046 87 052 87 058 87 064 87 070 87 075 87 081 87 087 87 093 
743 87 099 87 105 87 111 87 116 87 122 87 128 87 134 87 140 87 146 87 151 
744 87 157 87 163 87 169 87 175 87 181 87 186 87 192 87 198 87 204 87 210 

745 87 216 87 221 87 227 87 233 87 239 87 245 87 251 87 256 87 262 87 268 
746 87 274 87 280 87 286 87 291 87 297 87 303 87 309 87 315 87 320 87 326 
747 87 332 87 338 87 344 87 349 87 355 87 361 87 367 87 373 87 379 87 384 
748 87 390 87 396 87 402 87 408 87 413 87 419 87 425 87 431 87 437 87 442 
749 87 448 87 454 87 460 87 466 87 471 87 477 87 483 87 489 87 495 87 500 

No. 0 1 2 3 ■ ■ ■ ( S 1 8 \ 

700-749 



502 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Table 8. Common Logarithms op Numbers.—{Continued) 

760-799 

No, 0 1 2 1 i S 7 8 9 

760 87 606 87 512 87 618 87 623 87 620 87 635 87 641 87 647 87 662 87 668 
761 87 664 87 670 87 676 87 681 87 687 87 693 87 609 87 604 87 610 87 616 
762 87 622 87 628 87 633 87 630 87 645 87 651 87 656 87 662 87 668 87 674 
763 87 679 87 686 87 601 87 607 87 703 87 708 87 714 87 720 87 726 87 731 
764 87 737 87 743 87 749 87 754 87 760 87 766 87 772 87 777 87 783 87 780 

765 87 79S 87 800 87 806 87 812 87 818 87 823 87 829 87 835 87 841 87 846 
766 87 862 87 868 87 864 87 869 87 876 87 881 87 887 87 802 87 808 87 004 
767 87 910 87 016 87 921 87 927 87 033 87 038 87 944 87 050 87 065 87 061 
768 87 967 87 073 87 078 87 084 87 000 87 996 88 001 88 007 88 013 88 018 
769 88 024 88 030 88 036 88 041 88 047 88 063 88 058 88 064 88 070 88 076 

760 88 081 88 087 88 003 88 008 88 104 88 no 88 116 88 121 88 127 88 133 
701 88 138 88 144 88 150 88 156 88 161 88 167 88 173 88 178 88 184 88 190 
762 88 106 88 201 88 207 88 213 88 218 88 224 88 230 88 235 88 241 88 247 
763 88 262 88 258 88 264 88 270 88 275 88 281 88 287 88 292 88 208 88 304 
764 88 309 88 316 88 321 88 326 88 332 88 338 88 343 88 349 88 365 88 360 

766 88 366 88 372 88 377 88 383 88 389 88 305 88 400 88 406 88 412 88 417 
766 88 423 88 429 88 434 88 440 88 446 88 461 88 457 88 463 88 468 88 474 
767 88 480 88 485 88 401 88 497 88 602 88 508 88 513 88 519 88 625 88 630 
768 88 636 88 642 88 647 88 653 88 659 88 664 88 670 88 676 88 581 88 687 
769 88 603 88 698 88 604 88 610 88 615 88 621 88 627 88 632 88 638 88 643 

770 88 649 88 665 88 660 88 666 88 672 88 677 88 683 88 689 88 604 88 700 
771 88 705 88 711 88 717 88 722 88 728 88 734 88 739 88 745 88 760 88 766 
772 88 762 88 767 88 773 88 779 88 784 88 790 88 796 88 801 88 807 88 812 
773 88 818 88 824 88 829 88 835 88 840 88 846 88 852 88 867 88 863 88 868 
774 88 874 88 880 88 885 88 801 88 897 88 002 88 008 88 913 88 919 88 925 

776 88 030 88 036 88 941 88 947 88 053 88 958 88 964 88 969 88 975 88 081 
776 88 986 88 902 88 907 89 003 80 009 89 014 89 020 89 025 89 031 89 037 
777 89 042 89 048 89 063 80 059 80 064 89 070 80 076 89 081 89 087 89 002 
778 89 008 89 104 89 109 89 115 80 120 89 126 89 131 89 137 89 143 89 148 
779 89 164 89 169 89 165 89 170 89 176 89 182 89 187 89 103 89 198 80 204 

780 89 209 89 215 89 221 89 226 89 232 89 237 89 243 89 248 89 264 89 260 
781 89 265 89 271 89 276 89 282 80 287 89 293 89 208 89 304 89 310 89 315 
782 89 321 80 326 89 332 89 337 80 343 80 348 89 364 89 360 80 366 89 371 
783 80 376 80 382 89 387 89 303 80 308 80 404 89 409 89 415 80 421 89 426 
784 89 432 89 437 89 443 89 448 89 464 89 469 89 465 89 470 89 476 89 481 

786 89 487 89 492 89 498 89 604 89 609 89 615 89 620 89 526 89 631 89 637 
786 89 642 89 648 89 663 89 659 80 664 89 670 89 676 89 681 80 686 89 602 
787 89 697 89 603 89 609 89 614 80 620 80 625 80 631 80 636 80 642 89 647 
788 89 663 89 668 89 664 89 669 80 675 80 080 80 686 89 601 89 697 89 702 
789 89 708 89 713 89 719 89 724 89 730 89 736 89 741 89 746 89 752 89 767 

790 89 763 89 768 89 774 89 779 89 785 89 790 89 796 89 801 89 807 89 812 
791 89 818 89 823 89 829 89 834 80 840 89 846 89 861 89 866 89 862 89 867 
792 89 873 89 878 89 883 89 889 80 804 80 900 89 005 89 on 89 916 89 022 
793 89 927 89 933 89 938 89 944 89 049 80 055 89 060 89 066 89 971 89 077 
794 89 982 89 988 89 993 89 998 90 004 90 009 90 015 90 020 90 026 90 031 

796 90 037 90 042 90 048 90 063 90 069 90 064 90 069 90 075 90 080 90 086 
706 90 091 90 097 90 102 90 108 00 113 90 119 90 124 90 129 00 135 00 140 
797 90 146 90 151 90 167 90 162 00 168 00 173 90 179 90 184 00 189 00 105 
798 90 200 90 206 90 211 00 217 00 222 00 227 90 233 90 238 90 244 90 240 
799 90 265 90 260 90 266 90 271 00 276 90 282 90 287 90 293 90 298 90 304 

No. 0 1 2 3 4 5 6 7 8 0 

760-799 



APPENDIX D 503 

Table 8. Common Logarithms op Numbers.—(Continued) 

800-849 
No. 0 1 2 3 i 5 6 1 8 9 

800 90 309 90 314 90 320 90 825 90 331 90 336 90 342 90 347 90 352 90 358 
801 90 363 90 369 90 374 90 380 90 386 90 390 90 396 90 401 90 407 90 412 
802 90 417 90 423 90 428 90 434 90 439 90 446 90 460 90 455 90 461 90 466 
803 00 472 90 477 90 482 90 488 90 493 90 499 90 504 90 509 90 516 90 620 
804 90 526 90 531 90 536 90 542 90 547 90 553 90 558 90 563 90 569 90 574 

805 90 580 90 5815 90 690 90 596 90 601 90 607 90 612 90 617 90 623 90 628 
808 90 634 90 639 90 644 90 6g0 90 655 90 660 90 666 90 671 90 677 90 682 
807 90 687 90 693 90 698 90 708 90 709 90 714 90 720 90 725 90 730 90 736 
808 90 741 90 747 90 752 90 757 90 763 90 768 90 773 90 779 90 784 90 780 
809 90 792 90 800 90 806 90 811 90 816 00 822 90 827 90 832 90 838 90 843 

810 90 849 90 854 90 859 90 865 90 870 90 875 90 881 90 886 90 891 90 807 
811 90 902 90 907 90 913 90 918 90 924 90 929 90 934 90 940 90 946 90 950 
812 90 956 90 961 90 966 90 972 90 977 90 982 90 988 90 993 90 908 91 004 
813 91 009 91 014 91 020 91 025 91 030 91 036 91 041 91 046 91 052 91 057 
814 91 062 91 068 91 073 91 078 91 084 91 089 91 094 91 100 91 105 91 110 

813 91 116 91 121 91 126 91 132 91 137 91 142 91 148 91 153 91 158 91 164 
816 91 169 91 174 91 180 91 186 91 190 91 196 91 201 91 206 91 212 91 217 
817 91 222 91 228 91 233 91 238 91 243 91 249 91 254 91 259 91 266 91 270 
818 91 275 91 281 91 286 91 291 91 297 91 302 91 307 91 312 91 318 91 323 
819 91 328 91 334 91 339 91 344 91 360 91 356 91 860 91 365 91 871 91 376 

880 91 381 91 387 91 392 91 397 91 403 91 408 91 413 91 418 91 424 91 420 
821 91 434 91 440 .91 445 91 450 91 455 91 461 91 466 91 471 91 477 91 482 
822 91 487 91 492 91 408 91 503 91 508 91 514 91 519 91 524 91 529 91 536 
823 91 540 91 545 91 551 91 556 91 561 91 566 91 572 91 577 91 582 91 587 
824 91 593 91 598 91 603 91 609 91 614 91 619 91 624 91 630 91 636 91 640 

823 91 645 91 651 91 656 91 661 91 666 91 672 91 677 91 682 91 687 91 693 
826 91 698 91 703 91 709 91 714 91 719 91 724 91 730 91 736 91 740 91 745 
827 91 751 91 756 91 761 91 766 91 772 91 777 91 782 91 787 91 793 91 708 
828 91 803 91 808 91 814 91 819 91 824 91 829 91 834 91 840 91 846 91 850 
829 91 855 91 861 91 866 91 871 91 876 1 91 882 91 887 91 892 91 897 91 903 

880 91 908 91 913 91 918 91 924 91 929 91 934 91 939 91 944 91 960 91 956 
831 91 960 91 965 91 971 91 976 91 981 91 986 91 991 91 997 92 002 92 007 
832 92 012 92 018 92 023 92 028 92 033 92 038 92 044 92 049 92 054 92 059 
833 92 065 92 070 92 075 92 080 92 085 92 091 92 096 92 101 92 106 92 111 
834 1 92 117 92 122 92 127 92 132 92 137 I 92 143 92 148 92 153 92 158 92 163 

833 92 169 92 174 92 179 92 184 92 189 92 196 92 200 92 205 92 210 92 215 
836 92 221 92 226 92 231 92 236 92 241 92 247 92 252 92 257 92 262 92 267 
837 92 273 92 278 92 283 92 288 92 293 92 298 92 304 92 309 92 314 92 319 
838 92 324 92 330 92 335 92 340 92 345 92 350 92 855 92 361 92 366 92 371 
839 92 370 92 381 92 887 92 392 92 397 92 402 92 407 92 412 92 418 92 423 

840 92 428 92 433 92 438 92 443 92 449 92 454 92 459 92 464 92 469 92 474 
841 92 480 92 485 92 490 92 495 92 500 92 505 92 511 92 516 92 521 92 526 
842 92 531 92 536 92 542 92 547 02 552 92 557 92 562 92 567 92 572 92 578 
843 92 583 92 588 92 593 92 598 92 603 92 609 92 614 92 619 92 624 92 629 
844 92 634 92 639 92 645 92 660 92 656 92 660 92 665 92 670 92 675 92 681 

845 92 686 92 691 92 696 92 701 92 706 92 711 92 716 92 722 92 727 92 732 
846 92 737 92 742 92 747 92 752 92 758 92 763 92 768 92 773 92 778 92 783 
847 92 788 92 793 92 799 92 804 92 809 92 814 92 819 92 824 92 829 92 834 
848 92 840 92 845 92 850 92 856 92 860 92 865 92 870 92 875 92 881 92 886 
849 92 891 92 896 92 901 92 906 92 911 92 916 92 921 92 927 92 932 92 937 

I 
No. 

800^9 

6 8 9 



504 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Table 8. Common Looarithms of Numbers.—(Continued) 

850-899 

No. 0 1 2 3 1 5 6 7 8 0 

810 02 942 92 947 92 952 92 957 92 662 92 967 92 973 92 978 92 983 92 988 
851 02 093 92 998 93 003 93 008 93 013 93 018 93 024 93 029 93 034 93 039 
852 03 044 93 049 93 054 93 059 93 064 93 069 93 075 93 080 93 085 93 090 
858 93 095 93 100 03 105 03 110 93 115 93 120 93 125 93 131 93 136 93 141 
854 93 146 93 151 93 156 93 161 93 166 93 171 93 176 93 181 93 186 93 192 

665 93 197 93 202 93 207 93 212 93 217 93 222 93 227 93 232 93 237 93 242 
856 93 247 93 252 93 258 93 263 93 268 93 273 93 278 93 283 93 288 93 293 
857 93 298 93 303 93 308 93 313 93 318 93 323 93 328 93 334 93 330 93 344 
858 93 349 93 354 93 359 93 364 93 369 93 374 93 379 93 384 93 389 03 394 
850 03 390 93 404 93 409 93 414 93 420 93 425 93 430 93 435 93 440 93 445 

860 93 450 03 455 93 460 93 465 93 470 93 475 93 480 93 485 93 490 03 495 
861 03 500 93 505 93 610 04 615 93 520 93 526 93 531 93 536 93 541 93 546 
862 03 561 03 556 93 561 93 566 93 571 93 ri6 93 581 93 586 93 591 93 590 
863 03 601 93 606 93 611 93 616 93 621 93 626 93 631 93 636 93 641 93 646 
864 93 651 93 656 93 661 93 666 93 671 93 676 93 682 93 687 93 692 93 697 

868 03 702 93 707 93 712 93 717 93 722 93 727 93 732 98 737 93 742 93 747 
866 03 752 03 757 93 762 03 767 93 772 93 777 93 782 93 787 93 792 03 797 
867 93 802 93 807 93 812 93 817 93 822 93 827 93 832 93 837 93 842 03 847 
868 93 852 93 857 93 862 93 867 93 872 93 877 93 882 93 887 93 892 93 897 
869 93 902 93 907 93 912 93 917 93 922 93 927 93 932 93 937 93 042 93 947 

870 93 952 93 957 93 062 93 967 93 972 93 977 93 982 93 987 93 992 03 097 
871 04 002 94 007 94 012 94 017 94 022 94 027 94 032 94 037 94 042 94 047 
872 94 052 94 057 94 062 94 067 94 072 94 077 94 082 94 086 94 091 94 096 
873 94 101 04 106 94 111 94 116 94 121 94 126 94 131 94 136 94 141 94 146 
874 94 151 94 156 94 161 94 166 94 171 94 176 94 181 94 186 94 191 94 196 

878 94 201 94 206 04 211 04 216 94 221 94 226 94 231 94 236 94 240 94 245 
876 04 250 94 255 94 260 04 265 94 270 94 275 94 280 94 285 94 290 94 295 
877 94 300 94 305 94 310 94 315 94 320 94 325 94 330 94 335 94 340 94 345 
878 94 349 94 354 94 359 94 364 94 369 94 374 94 379 94 384 94 389 94 394 
879 94 309 94 404 94 409 94 414 94 419 94 424 94 429 94 433 94 438 94 443 

880 04 448 94 453 94 458 94 463 94 468 94 473 94 478 94 483 94 488 94 493 
881 94 498 94 503 94 507 94 512 94 517 94 522 94 527 94 532 94 537 94 542 
882 94 647 94 552 04 557 94 562 94 567 94 571 94 576 94 581 94 586 94 591 
883 94 596 04 601 04 606 94 611 94 616 94 621 94 626 94 630 94 635 94 640 
884 94 645 94 650 04 655 94 660 94 665 94 670 94 675 94 680 94 685 94 689 

885 94 694 94 699 94 704 94 709 94 714 94 719 94 724 94 729 94 734 94 738 
886 94 743 94 748 94 753 94 758 94 763 94 768 94 773 94 778 94 783 94 787 
887 94 792 94 797 94 802 94 807 94 812 94 817 94 822 94 827 94 832 94 836 
888 94 841 94 846 94 851 94 856 94 861 94 866 94 871 94 876 94 880 94 885 
889 94 890 04 895 94 900 94 905 94 910 94 915 94 919 04 924 94 929 94 934 

890 94 939 94 944 94 949 94 954 94 959 94 963 94 968 94 973 94 078 94 983 
801 04 988 94 993 94 998 95 002 95 007 95 012 95 017 95 022 95 027 95 032 
602 95 036 95 041 05 046 95 051 95 056 95 061 95 066 95 071 95 075 96 080 
803 95 085 95 090 95 09S 95 100 95 105 95 109 95 114 95 119 95 124 95 129 
804 95 134 95 139 95 143 95 148 95 153 95 158 95 163 95 168 95 173 95 177 

805 05 182 05 187 95 192 93 197 05 202 95 207 05 211 05 216 05 221 95 220 
806 95 231 95 236 95 240 95 245 95 250 95 255 95 260 05 265 95 270 05 274 
807 95 279 95 284 95 289 95 294 95 299 95 303 95 308 95 313 95 318 95 323 
808 95 328 95 332 95 837 95 842 95 347 95 852 95 357 95 361 95 366 95 371 
809 95 376 95 381 95 386 95 390 95 395 95 400 05 40S 95 410 95 41g 95 410 

No. 0 1 2 3 4 5 6 7 8 9 

860-899 
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Table 8. Common Locjarithms of Numbers.—{Continued) 

900-949 

No. 1 1 2 8 4 5 6 7 8 9 

900 05 424 95 429 95 434 05 439 95 444 95 448 95 453 05 458 95 463 95 468 
001 95 472 96 477 95 482 05 487 05 402 05 497 95 501 95 606 05 511 05 516 
002 05 521 95 525 95 530 95 535 95 540 05 545 95 550 95 564 95 559 95 564 
003 05 569 95 574 95 578 05 68'u 95 588 95 503 95 598 95 e02 95 607 95 612 
904 95 617 95 622 95 626 95 631 95 636 95 641 95 646 95 650 95 655 95 660 

905 05 665 95 670 95 674 95 679 95 684 95 689 95 694 95 608 95 703 95 708 
906 95 713 95 718 95 722 05 727 95 732 05 737 95 742 95 746 95 751 95 756 
907 05 761 95 766 05 770 95 775 95 V80 05 785 95 789 95 704 95 799 95 804 
908 95 809 05 813 95 818 95 823 95 828 05 832 95 837 95 842 95 847 95 852 
909 05 856 95 861 95 866 95 871 95 875 95 880 95 885 95 800 95 895 95 899 

910 05 904 95 909 95 914 95 918 95 923 95 928 95 033 05 038 95 942 95 947 
911 95 952 95 957 95 061 95 066 05 971 05 976 95 980 95 985 05 900 95 905 
012 95 909 96 004 96 009 06 014 06 019 96 023 06 028 96 033 96 038 96 042 
913 06 047 06 052 96 057 06 061 06 066 06 071 96 076 96 080 96 085 96 090 
914 06 oog 06 099 96 104 96 100 96 114 96 118 96 123 96 128 96 133 96 137 

015 06 142 96 147 96 152 96 156 96 161 06 166 06 171 06 175 96 180 96 185 
916 96 100 96 104 96 199 06 204 06 209 06 213 06 218 06 223 06 227 96 232 
917 96 237 96 242 96 246 96 251 96 256 06 261 06 265 06 270 06 275 96 280 
918 06 284 96 289 96 204 96 208 96 303 06 308 06 313 96 317 96 322 96 327 
010 96 332 96 336 96 341 96 346 96 350 06 355 96 360 96 365 96 369 96 374 

920 06 379 96 384 96 388 96 303 96 308 06 402 96 407 06 412 96 417 96 421 
921 06 426 96 431 96 435 96 440 96 445 06 450 96 454 06 459 96 464 96 468 
022 06 473 96 478 06 483 96 487 96 402 06 497 06 501 06 506 96 511 96 515 
923 96 520 96 525 96 530 96 534 96 530 06 544 96 548 96 553 96 558 06 562 
924 96 567 96 572 96 577 96 581 96 586 06 501 96 595 96 600 96 605 96 609 

925 06 614 96 619 96 624 96 628 96 633 96 638 96 642 96 647 96 652 96 656 
926 06 661 96 666 96 670 96 675 96 680 06 685 96 689 96 694 96 699 96 703 
927 06 708 96 713 96 717 06 722 96 727 06 731 96 736 06 741 96 745 96 750 
028 06 755 96 759 96 764 96 769 96 774 96 778 96 783 96 788 96 702 96 797 
020 96 802 96 806 96 811 96 816 96 820 06 825 96 830 96 834 96 839 96 844 

930 96 848 96 853 96 858 96 862 96 867 06 872 96 876 96 881 96 886 96 800 
931 06 895 96 000 96 904 96 009 96 914 06 018 96 023 06 928 96 932 96 937 
932 06 042 96 046 06 951 96 956 96 960 06 065 96 970 96 074 96 079 96 984 
933 96 088 96 093 96 907 97 002 97 007 97 Oil 97 016 97 021 97 025 97 030 
934 97 035 97 039 97 044 97 049 97 053 97 058 97 063 97 067 97 072 97 077 

935 97 081 97 086 97 090 97 095 97 100 97 104 97 109 97 114 97 118 97 123 
936 97 128 97 132 97 137 97 142 97 146 97 151 97 155 97 160 97 165 97 169 
937 97 174 97 179 97 183 97 188 97 192 97 197 97 202 97 206 97 211 97 216 
938 97 220 97 225 97 230 97 234 97 259 97 243 97 248 97 253 97 257 97 262 
930 1 97 267 97 271 97 276 97 280 97 285 97 290 97 204 97 299 97 804 97 308 

940 97 813 97 817 97 822 97 327 97 331 97 836 97 840 97 845 97 850 97 354 
941 97 859 97 364 97 368 97 373 97 377 97 382 97 387 97 891 97 396 97 400 
942 07 405 97 410 97 414 97 419 97 424 97 428 97 433 97 437 97 442 97 447 
943 97 451 97 456 97 460 97 465 97 470 97 474 97 479 97 483 97 488 97 493 
944 07 497 97 502 97 506 97 511 97 516 97 520 97 52§ 97 529 97 534 97 539 

045 97 543 07 548 97 552 97 557 97 562 97 566 97 571 97 575 97 580 97 585 
046 97 589 97 594 97 598 97 603 97 607 97 612 97 617 97 621 97 626 97 630 
047 97 635 97 640 97 644 97 649 97 653 97 658 97 663 97 667 97 672 97 676 
048 97 681 97 685 97 600 97 605 97 609 97 704 97 708 97 713 97 717 97 722 
040 97 727 97 731 97 736 97 740 97 745 97 749 97 754 97 759 97 763 97 768 

No. 1 1 0 1 2 8 □ 6 1 6 7 8 1 9 

900-949 



506 STATISTICAL TECHNIQUES IN MARKET RESEARCH 

Table 8. Common Logarithms of Numbers.—(Continued) 

960-1000 

No. 0 1 2 8 n B 6 7 8 0 

950 97 772 07 777 97 782 07 786 07 791 97 705 07 800 97 804 07 800 07 818 
051 97 818 07 823 97 827 07 832 07 836 07 841 07 845 07 850 97 855 97 850 
052 07 864 07 868 97 873 07 877 07 882 07 886 07 801 97 896 07 000 07 005 
053 97 909 07 914 07 018 07 923 07 028 97 032 97 037 97 941 07 046 97 950 
054 07 052 07 059 97 964 97 968 97 973 07 078 97 082 97 987 97 901 97 096 

055 08 000 08 005 08 009 08 014 08 019 08 023 08 028 08 032 08 037 98 041 
056 98 046 08 050 08 055 08 050 98 064 08 068 98 073 08 078 08 082 98 087 
057 08 091 08 096 98 100 08 1C5 98 109 98 114 98 118 98 123 08 127 98 132 
058 08 137 08 141 08 146 08 150 98 155 98 150 98 164 08 168 08 173 08 177 
059 98 182 08 186 08 101 08 195 08 200 08 204 98 209 98 214 08 218 98 223 

960 08 227 98 232 08 236 08 241 08 245 08 250 98 254 08 250 08 263 08 268 
061 08 272 08 277 08 281 08 286 08 200 98 295 98 299 08 804 08 308 08 313 
062 98 318 08 322 08 327 08 331 08 336 08 340 98 £45 08 349 08 854 98 358 
063 98 363 08 367 98 372 08 376 08 381 98 385 93 300 08 894 08 809 98 403 
064 08 408 08 412 08 417 08 421 08 426 98 430 98 435 98 439 08 444 98 448 

065 08 463 08 457 08 462 08 466 08 471 98 475 98 480 98 484 08 489 98 403 
066 98 498 08 502 08 507 08 511 98 516 98 520 98 525 98 529 08 584 08 538 
967 98 543 08 547 08 552 98 556 98 561 08 565 98 570 98 574 98 579 08 583 
068 08 588 08 592 08 597 08 601 08 605 08 610 98 614 08 619 08 623 08 628 
060 98 632 08 637 08 641 08 646 08 650 08 655 98 650 08 664 98 668 98 673 

970 08 677 08 682 08 686 08 691 08 695 08 700 98 704 08 709 98 713 98 717 
071 08 722 08 726 08 731 08 735 08 740 98 744 98 749 98 753 98 758 98 762 
072 98 767 98 771 08 776 08 780 98 784 98 789 98 793 08 798 08 802 98 807 
073 08 811 08 816 08 820 08 825 08 829 98 834 98 838 08 843 98 847 08 851 
074 98 856 08 860 08 865 08 869 98 874 98 878 98 883 08 887 98 802 08 806 

075 08 000 98 905 08 009 98 914 98 918 08 923 98 927 98 932 98 936 98 941 
076 98 945 08 949 98 054 08 958 98 963 98 967 98 972 98 976 98 981 98 985 
077 98 089 08 994 98 098 09 003 99 007 99 012 99 016 99 021 09 025 90 020 
078 09 034 99 038 99 043 09 047 99 052 99 056 99 061 99 065 09 069 00 074 
070 99 078 09 083 09 087 09 002 09 096 99 100 99 105 99 109 99 114 99 118 

980 09 123 09 127 99 131 99 136 09 140 09 145 99 149 99 154 99 158 90 162 
081 99 167 99 171 09 176 09 180 99 185 99 189 99 193 99 198 09 202 09 207 
082 99 211 09 216 09 220 09 224 09 229 99 233 99 238 99 242 09 247 99 251 
083 99 255 99 260 09 264 99 269 09 273 00 277 99 282 09 286 09 201 90 295 
084 99 300 99 304 09 308 09 313 09 317 99 322 99 826 99 830 09 835 09 330 

085 99 344 09 348 99 352 99 357 99 361 99 366 99 370 99 874 99 879 90 383 
99 388 99 392 09 396 09 401 99 405 99 410 99 414 99 419 99 423 99 427 

087 99 432 09 436 99 441 09 445 99 449 09 454 99 458 09 463 09 467 99 471 
088 99 476 09 480 09 484 09 489 99 493 09 498 99 502 99 506 09 511 90 515 
089 09 520 09 524 99 528 99 533 99 537 09 642 99 546 99 560 99 555 99 559 

990 00 564 09 568 09 572 09 577 09 581 09 585 09 590 00 594 09 509 00 603 
001 00 607 09 612 09 616 09 621 09 625 09 629 09 634 99 638 09 642 09 647 

00 651 09 656 09 660 09 664 09 669 09 673 09 677 99 682 09 686 09 601 
99 605 09 699 09 704 09 708 00 712 99 717 09 721 99 726 09 730 09 734 

994 09 739 09 743 09 747 09 752 99 756 99 760 99 765 99 760 99 774 90 778 

005 00 782 09 787 09 791 09 795 09 800 00 804 99 808 90 818 09 817 09 822 
006 09 826 09 830 09 835 99 839 09 843 99 848 99 852 99 856 00 861 00 865 
007 00 870 99 874 09 878 09 883 00 887 99 801 90 896 00 900 90 904 99 009 
008 99 913 09 917 09 922 09 926 09 030 09 935 99 939 99 044 99 048 90 952 
090 99 957 99 961 99 965 09 970 09 974 09 078 99 983 99 987 09 091 90 906 

1000 00 000 00 004 00 009 00 013 00 017 00 022 00 026 00 030 00 035 00 030 

Na 0 1 2 8 4 5 6 7 8 0 

960-1000 
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Table 9. Logarithms to the Base e* 

607 

0 1 8 8 4 5 
• 

8 9 
Mean differences 

1 8 8 4 6 6 7 8 9 

1.0 0.0000 0000 0108 0206 0302 0488 0583 0677 0770 0862 10 10 20 38 48 57 67 76 86 
1.1 .0053 1044 1133 1222 1310 1308 1484 1570 1655 1740 0 17 26 35 44 52 61 70 78 
i.a .1823 1006 1080 2070 2151 2231 2311 2300 2460 2546 8 16 24 32 40 48 56 64 72 
1.8 .2624 2700 2776 2852 2027 3001 3075 3148 3221 3203 7 15 22 30 37 44 52 50 67 
1.4 .3365 3436 8507 3577 3646 3716 3784 3853 3020 3088 14 21 28 35 41 48 55 62 

IB :406S 4121 4187 4253 4318 4383 4447 4511 4574 4637 6 13 10 26 32 30 45 52 58 

1.6 .4700 4762 4824 4886 4047 5008 5068 5128 5188 5247 6 12 18 24 30 36 42 48 55 
1.7 .5306 5365 5423 5481 5530 5506 5653 5710 5766 5822 6 11 17 24 20 34 40 46 51 
1.8 .5878 5033 5088 6043 6008 6152 6206 6250 6313 6366 11 16 22 27 32 38 43 49 
1.9 .6410 6471 6523 6575 6627 6678 6720 6780 6831 6881 5 10 15 20 26 31 36 41 46 

2.0 ;6031 6081 7031 7080 7120 7178 7227 7275 7324 7372 5 10 15 20 24 20 34 30 44 
8.1 .7410 7467 7514 7561 7608 7655 7701 7747 7703 7830 5 0 14 10 23 28 33 37 42 
8.8 .7885 7030 7075 8020 8065 8100 8154 8108 8242 8286 4 0 13 18 22 27 31 36 40 
8.8 .8320 8372 8416 8450 8502 8544 8587 8620 8671 8713 4 0 13 17 21 26 30 34 38 

8.4 .8755 8706 8838 8870 8020 8961 0002 0042 0083 0123 4 8 12 16 20 24 20 33 37 

2.6 .0163 0203 0243 0282 0322 0361 0400 0430 0478 0517 4 8 12 16 20 24 27 31 35 
8.6 .0555 0504 0632 0670 0708 0746 0783 0821 0858 0805 4 8 11 15 10 23 26 30 34 

8.7 .0033 0960 1.0006 0043 0080 0116 0152 0188 0225 0260 4 7 11 15 18 22 25 20 33 

8.8 1.0206 0332 0367 0403 0438 0473 0508 0543 0578 0613 4 7 11 14 18 21 25 28 32 
8.9 1.0647 0682 0716 0750 0784 0818 0852 0886 0010 0053 3 7 10 14 17 20 24 27 31 

8.0 1.0086 1010 1053 1086 1110 1151 1184 1217 1240 1282 3 7 10 13 16 20 23 26 30 

8.1 1.1314 1346 1378 1410 1442 1474 1506 1537 1560 1600 3 6 10 13 16 10 22 25 29 

8.8 1.1632 1663 1604 1725 1756 1787 1817 1848 1878 1000 3 6 0 12 15 18 22 25 28 
8.8 1.1030 1060 1.2000 2030 2060 2000 2110 2140 2170 2208 3 6 0 12 15 18 21 24 27 
8.4 1.2238 2267 2206 2326 2355 2384 2413 2442 2470 2400 3 6 

» 
12 15 17 20 23 26 

8.6 1.2528 2556 2585 2613 2641 2660 2608 2726 2754 2782 3 6 8 11 14 17 20 23 25 

8.6 1.2800 2837 2865 2802 2020 2047 2075 3002 3020 3056 3 5 8 11 14 16 10 22 25 
8.7 1.3083 3110 8137 3164 3101 3218 3244 3271 3207 3324 3 5 8 11 13 16 10 21 24 
8.8 1.3350 3376 8403 3420 3455 3481 3507 3533 3558 3584 3 5 8 10 13 16 18 21 23 

8.9 1.3610 3635 8661 3686 3712 3737j 3762 3788 3813 3838 3 6 8 10 13 15 18 20 23 

4.0 1.3863 3888 8013 3038 3062 3087 4012 4036 4061 4085 2 5 7 10 12 15 17 20 22 
4.1 1.4110 4134 4150 4183 4207 4231 4255 4270 4303 4327 2 5 7 10 12 14 17 10 22 
4.8 1.4351 4375 4308 4422 4446 4460 4403 4516 4540 4563 2 5 7 0 12 14 16 10 21 

4.8 1.4586 4600 4633 4656 4670 4702 4725 4748 4770 4703 2 5 7 0 12 14 16 18 21 

4.4 1.4816 1830 4861 4884 4007 4020 4051 4074 4006 5010 2 6 7 0 11 14 16 18 20 

4.6 1.5041 5063 5085 5107 5120 5151 5173 5105 5217 5230 2 4 7 0 11 13 15 18 20 

4.6 1.5261 5282 5304 5326 5347 5360 5300 5412 5433 5454 2 4 6 0 11 13 15 17 19 

4.7 1.5476 5407 5518 5530 5560 5581 5602 5623 5644 5665 2 4 6 8 11 13 15 17 19 

4.8 1.5686 5707 5728 5748 5760 5700 5810 5831 5851 5872 2 4 6 8 10 12 14 16 19 

4.9 1.5802 5013 5033 5053 5074 5004 6014 6034 6054 6074 2 4 6 8 10 12 14 16 18 

6.0 1.6004 5114 6134 6154 8174 6104 6214 6233 6253 6273 2 4 6 8 10 12 14 16 18 

6.1 1.6202 5312 6332 6351 8371 6300 6400 6420 6448 6467 2 4 6 8 10 12 14 16 18 

5.8 1.6487 5506 6525 6544 8563 6582 6601 6620 6630 6658 2 4 6 8 10 11 13 15 17 

6.8 1.6677 5606 6715 6734 8752 6771 6700 6808 6827 6845 2 4 6 7 0 11 13 15 17 

5.4 1.6864 5882 6001 6010 8038 6056 6074 6003 7011 7020 2 4 6 7 0 11 13 15 17 

* Taken, with the kind permission of the author and publisher from A. E. Waugh, Lab¬ 
oratory Manual and Problems for Elements of Statistical MeUiod, McGraw-Hill Book Company, 
Ino., New York, 1044, Table A16. 
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Table 9. Logarithms to the Base e.—{Continued) 

0 1 2 8 4 5 6 7 8 9 
Mean differences 

L 2 8 4 5 il 7 8 9 

6.6 1.7047 7066 7084 7102 7120 7138 7166 7174 7192 7210 2 4 6 7*9 11 13 14 16 

6.6 1.7228 7246 7263 7281 7299 7317 7334 7362 7370 7387 2 4 6 7 9 11 12 14 16 

6.7 1.7405 7422 7440 7467 7476 7492 7609 7627 7644 7661 2 3 6 7 9 10 12 14 16 
6.8 1.7679 7696 7613 7630 7647 7664 7681 7699 7716 7733 3*8 5 7 9 10 12 14 16 
6.9 1.7760 7766 7783 7800 7817 7834 7861 7867 7884 7901 2 3 6 7 8 10 12 13 16 

6.0 1.7918 7934 7981 7967 7984 8001 8017 8034 8060 8066 2 3 6 7 8 10 12 13 16 
6.1 1.8083 8099 8116 8132 8148 8166 8181 8197 8213 8229 2 3 5 6 8 10 11 13 15 
6.9 1.8246 8262 8278 8294 8310 8326 8342 8368 8374 8390 2 3 5 6 8 10 11 13 14 
6» 1.8406 8421 8437 8463 8469 8486 8500 8616 8632 8647 2 3 6 6 8 9 11 13 14 
6.6 1.8563 8679 8694 8610 8625 8641 8666 8672 8687 8703 2 3 5 6 8 9 11 12 14 

6.6 1.8718 8733 8749 8764 8779 8796 8810 8826 8840 8856 2 3 5 6 8 9 11 12 14 
6.6 1.8871 1.8886 1.8901 8916 8931 8946 8961 8976 8991 9006 3 8 5 6 8 9 11 12 14 
6.7 1.9021 9036 9061 9066 9081 9096 9110 9126 0140 9166 13 4 6 7 9 10 12 13 
6.8 1.9169 9184 9199 9213 9228 9242 9237 9272 9286 9301 1 3 4 6 7 9 10 12 13 
6.9 1.9316 9330 9344 9369 9373 9387 9402 9416 9430 9446 1 3 4 6 7 9 10 12 13 

7.0 1.9469 9473 9488 9502 9616 9630 9544 9669 1.9573 eS87 1 3 4 6 7 9 10 11 13 
7.1 1.9601 9616 9629 9643 ^67 9671 9686 9699 9713 9727 13 4 6 7 8 10 11 13 
7.9 1.9741 9755 9769 9782 9796 9810 9824 9838 9851 9866 13 4 6 7 8 10 11 12 
7J 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 2.0001 13 4 5 7 8 10 11 12 
7.4 2.0016 0028 0042 0056 0069 0082 0096 0109 0122 0136 1 3 4 5 7 8 9 11 12 

7.6 2.0149 0162 0176 0189 0202 0216 0229 0242 0266 0268 13 4 5 7 8 9 11 12 
7.6 2.0281 0296 0308 0321 0334 0347 0360 0373 0386 0390 13 4 6 7 8 9 10 12 
7.7 2.0412 0426 0438 0461 0464 0477 0490 0603 0616 0628 13 4 6 6 8 0 10 12 
7.8 2.0541 0664 0667 0680 0692 0605 0618 0631 0643 0666 1 3 4 5 6 8 9 10 11 
7.9 2,0669 0681 0694 0707 0719 0732 0744 0767 0769 0782 134 6 6 8 9 10 11 

8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 13 4 6 6 7 9 id 11 
8.1 2.0910 0931 0943 0966 0968 0980 0992 1006 1017 1029 124 5 6 7 9 10 11 
8.9 2.1041 1064 1066 1078 1090 1102 1114 1126 1138 1150 12 4 6 6 7 9 10 11 
8.8 2.1163 1176 1187 1199 1211 1223 1236 1247 1258 1270 12 4 6 6 7 8 10 11 
8.4 2.1282 1294 1306 1318 1330 1342 1363 1366 1377 1389 12 4 5 6 7 8 9 11 

8.6 2.1401 1412 1424 1436 1448 1469 1471 1483 1494' 1606 12 4 5 6 7 8 9 11 
8.6 2.1618 1629 1641 1662 1664 1676 1687 1699 1610 1622 1 2 3 6 6 7 8 9 10 
8.7 2.1633 1646 1666 1668 1679 1691 1702 1713 1726 1736 1 2 3 5 6 7 3 9 10 
8.8 2.1748 1769 1770 1782 1793 1804 1816 1827 1838 1849 12 3 5 6 7 8 9 10 
8.9 2.1861 1872 1883 1894 1906 1917 1928 1939 1960 1961 12 3 4 6 7 8 9 10 

9.0 2.1972 1983 1994 2006 2017 2028 2039 2060 2061 2072 1 2 3 4 6 7 8 9 10 
9.1 2.2083 2094 2106 2116 2127 2138 2148 2169 2170 2181 12 3 4 5 7 8 9 10 
9.9 2.2192 2203 2214 2226 2235 2246 2267 2268 2279 2289 12 3 4 5 6 8 9 10 
9.8 2.2300 2311 2322 2332 2343 2364 2364 2376 2386 2396 12 3 4 5 6 7 9 10 
9.4 2.2407 2418 2428 2439 2460 2460 2471 2481 2492 2602 1 2 3 4 5 6 7 8 10 

9.6 2.2513 2523 2634 2544 2555 2566 2576 2686 2697 2607 1 2 3 4 5 6 7 8 9 
9.6 2.2618 2628 2638 2649 2669 2670 2680 2690 2701 2711 12 3 4 5 6 7 8 9 
9.7 2.2721 2732 2742 2762 2762 2773 2783 2793 2803 2814 12 3 4 5 6 7 8 9 
9.8 2.2824 2834 2844 2864 2866 2876 2886 2896 2906 2916 1 2 3 4 5 6 7 8 9 
9.9 2.2926 2936 2946 2956 2966 2976 2986 2996 3006 3016 1 2 3 4 5 6 7 8 9 

10.0 2.3026 

Napibbiak Logarithms op lO"*^ 

n 1 2 8 4 s 1 « 7 8 9 

log« 10* 2.3026 4.6062 6.9078 9.2103 ll.6mll3.8166 16.1181 18.4207 20.7233 
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Table 10. Values op a = log [(1 — /3 )/a\ and h = log [(1 — «)//*]* 

Natural Logarithms (Base e)t 

a for computing a, for computing h 

0.001 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20 0.30 0.40 

0.001 6.907 4.604 3.911 3.506 3.218 2.995 2.302 1.896 1.608 1.203 0.915 

0 0.01 6.898 4.595 3.902 3.497 3.209 2.986 2.293 1.887 1.599 1.194 0.906 

8 0.02 6.888 4.685 3.892 3.486 3.199 2.976 2.282 1.877 1.589 1.184 0.896 

0.03 6.877 4.574 3.882 3.476 3.188 2.965 2.272 1.867 1.579 1.174 0.886 

.fi.s 0.04 6.867 4.564 3.871 3.466 3.178 2.955 2.262 1.856 1.569 1.163 0.875 

c rv 0.05 6.857 4.554 3.861 3.455 3.168 2.944 2.251 1.846 1.558 1.153 0.865 Oh ^ 
s s 0.10 6.802 4.500 3.807 3.401 3.113 2.890 2.197 1.792 1.504 1.099 0.811 

2 8 0.15 6.745 4.443 3.750 3.344 3.056 2.833 2.140 1.735 1.447 1.041 0.754 

0 0.20 6.685 4.382 3.689 3.283 2.996 2.773 2.079 1.674 1.386 0.981 0.693 

'll 0.30 6.551 4.248 3.555 3.150 2.862 2.639 1.946 1.540 1.253 0.847 0.560 

0.40 6.397 4.094 3.401 2.996 2.708 2.485 1.792 1.386 1.099 0.693 0.405 

* Talfen with the kind permission of Prof. W. Allen Wallis, Director of Research, Statistical Research 

Group, and of the publisher, from Statistical Research Group, C’olumbia University, Sequential Analysis 

of Statistical Data: Applications, Columbia University Press, New York, 1045. 

t Example: If a * 0.04, 0 - 0.01, find column headed 0.04 and row 0.01. The common element 
gives a = 3.200. I'ind row headed 0.04 and column 0.01. The common element gives b =» 4.504. In 

general, in finding a, a is tlie column heading and 0 the row heading; in finding 6, a is the row heading 

and 0 the column heading. 
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TABiiB 10. Values op a = log [(1 - /3)/a], and h = log [(1 - a)/^]*—{CoiUinued) 

Common Logarithms (Base 10) t 

a for computing a, /3 for computing b 

0.001 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20 0.30 0.40 

0.001 3.000 2.000 1.699 1.522 1.398 1.301 1.000 0.823 0.699 0.522 0.398 

s 0.01 2.996 1.996 1.695 1.519 1.394 1.297 0.996 0.820 0.695 0.519 0.394 

Q 0.02 2.991 1.991 1.690 1.514 1.389 1.292 0.991 0.815 0.690 0.514 0.389 
0.03 2.987 1.987 1.686 1.510 1.385 1.288 0.987 0.811 0.686 0.510 0.385 

^.S 0.04 2.982 1.982 1.681 1.505 1.380 1.283 0.982 0.806 0.681 0.505 0.380 

it 0.05 2.978 1.978 1.677 1.501 1.376 1.279 0.978 0.802 0.677 0.501 0.376 

I 6 0.10 2.954 1.954 1.653 1.477 1.352 1.255 0.954 0.778 0.653 0.477 0.352 
S 2 0.15 2.929 1.929 1.628 1.452 1.327 1.230 0.0211 0.753 0.628 0.452 0.327 

0.20 2.903 1.903 1.602 1.426 1.301 1.204 0.903 0.727 0.602 0.426 0.301 
0.30 2.845 1.845 1.544 1.368 1.243 1.146 0.845 0.669 0.544 0.368 0.243 
0.40 2.778 1.778 1.477 1.301 1.176 1.079 0.778 0.602 0.477 0.301 0.176 

* Taken with the kind permission of Prof. W. Allen Wallis, Director of Re.search, Statistical Research 

Group, and of the publisher from Statistical Research Group, Columbia University, Sequential Analyaie 
of Statistical Data: Applications, Columbia University Press, New York, 1945. 

t Example: If a » 0,04, fi =* 0.01, find column headed 0.04 and row 0.01. The common element 
gives a = 1.394. Find row headed 0.04 and column 0,01. The common element gives b — 1.982. In 

general, in finding a, a is the column heading and fi the row heading; in finding h, a is the row heading 

and the column heading. 
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Table 11. Values of Cm Squared (x*)* 

The use of this table is described on page 261. 

nt II o
 

§
 

0.98 0.95 
1 

0.90 0.80 0.70 0.50 0.30‘ 0.20 0.10 
o

 
6

 0.02 0.01 

1 0.000157 0.000628 0.00393 0.0158 0.0642 0.148 0.455 1.074 1.642 2.706 3.841 5.412 6.635 

2 0.0201 0.0404 0.103 0.211 0.446 0.713 1.386 2.408 3.219 4.605 5.991 7.824 9.210 
3 0.115 0.185 0.352 0.584 1.005 1.424 2.366 3.665 4.642 6.251 7.815 9.837 11.345 
4 0.297 0.429 0.711 1.064 1.649 2.195 3.357 4.878 5.989 7.779 9.488 11.668 13.277 

5 0.554 0.752 1.145 1.610 2.343 3.000 4.351 6.064 7.289 9.236 11.070 13..388 15.086 

6 0.872 1.134 1.635 2.204 3.070 3.828 .5.348 7.231 8.558 10.645 12.592 15.033 16.812 

7 1.239 1.564 2.167 2.833 3.822 4.671 6.346 8.383 9.803 12.017 14.067 16.622 18.475 

8 1.646 2.032 2.733 3.490 4.594 5.527 7.344 9.524 11.030 13.362 15.507 18.168 20.090 

9 2.088 2.532 3.325 4.168 5.380 6.393 8.343 10.6.56 12.242 14.684 16.919 19.679 21.666 

10 2.558 3.059 3.940 4.865 6.179 7.267 9.342 11.781 13.442 1.5.987 18.307 21.161 23.209 

:i 3.053 3.609 4.575 5.578 6.989 8.148 10.341 12.899 14.631 17.275 19.675 22.618 24.72.5 

12 3.571 4.178 5.226 6.304 7.807 9.034 11.340 14.011 15.812 18.549 21.026 24.0.54 26.217 

13 4.107 4.765 5.892 7.042 8.634 9.926 12.340 15.119 16.985 19.812 22.362 25.472 27.688 

14 4.660 5.368 6.571 7.790 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141 
15 5.229 5.985 7.261 8.547 10.307 11.721 14.339 17.322 19.311 22.307 24.990 28.2.59 30.578 

16 5.812 6.614 7.962 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 29.633 32.000 

17 6.408 7.255 8.672 10.085 12.002 13.531 i 16.338 19.511 21.61.5 24.769 27.587 30.995 33.409 

18 7.015 7.906 9.390 10.865 12.857 14.440 17.3.38 20.601 22.760 25.989 28.869 32.346 34.805 

19 7.633 8.567 10.117 11.651 13.716 1.5..352 18.338 21.689 23.900 27.204 .30.144 33.687 36.191 
20 8.260 9.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37..506 

21 8.897 9.915 11.591 13.240 15.445 17.182 20.337 23.8.58 26.171 29.615 32.671 .36.34.3 38.932 

22 9.542 10.600 12.338 14.041 16.314 18.101 21.337 24.9.39 27.301 30.813 33.924 37.659 40.289 

23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 3.5.172 38.968 41.638 

24 10.856 11.992 13.848 15.659 18.062 19.943 23.337 27.096 29.5.53 33.196 .36.415 40.270 42.980 

25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 37.6.52 41.566 44.314 

2(i 12.198 13.409 15.379 17.292 19,820 21.792 25.336 29.246 31.795 35.56.3 38.885 42.856 45.642 

27 12.879 14.125 16.151 18.114 20.703 22.719 26.330 30.319 32.912 .36.741 40.113 44.140 46.963 

28 13.565 14.847 16.928 18.939 21.588 23.647 27..336 31.391 .34.027 .37.916 41.3.37 45.419 48.278 

29 14.256 15.574 17.708 19.768 22.475 24.577 28.336 32.461 35.139 39.087 42.557 46.693 49.588 

30 14.953 16.306 18.493 20.,599 23.304 25.508 29.336 33.530 36.2.50 40.256 43.773 47.962 50.892 

* Table 11 is reprinted from Table HI of R. A. Fisher, Statistical Methods for liesearch Workers, Oliver 

& Boyd, Ltd., Edinburgh and London, 1936, by permission of the author and publishers. 

t For larger values of n, the expression — \^2n — 1 may be used as a normal deviate with unit 

variance. 
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Table 13. Values of arc sin y/p* 

The figures in the body of the table are the values of the arc sin Vp corresponding 

to the values of p shown in the margin. For example, the arc sin \/p for p = 39.7 
per cent is 39.06. The use of this table is described on page 287. 

♦ Reproduced through the courtesy of the author from C. I, Bliss, Plant Protection^ No 12, 1937, 
Leningrad, U.S.S.R. 
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Table 13. Values of arc sin Vp.—{Continued) 

0.2 0.3 0.4 0.5 0.6 0.7 

1- 

0.8 

25 30.00 30.07 30.13 30.20 30.26 30.33 30.40 30.46 30.53 30.59 
26 30.66 30.72 30.79 30.85 30.92 30.98 31.05 31.11 31.18 31.24 
27 31.31 31.37 31.44 31.50 31.56 31.63 31.69 31.76 31.82 31.88 
28 31.95 32.01 32.08 32.14 32.20 32.27 32.33 32.39 32.46 32.52 
29 32.58 32.65 32.71 32.77 32.83 32.90 32.96 33.02 33.09 33.15 

45.00 45.06 
45.57 45.63 
46.15 46.20 
46.72 46.78 
47.29 47.35 

45.46 45.52 
46.03 46.09 
46.61 46.66 
47.18 47.24 
47.75 47.81 

47.87 47.93 
48.45 48.50 
49.02 49.08 
49.60 49.66 
50.18 50.24 

48.33 48.39 
48.91 48.97 
49.49 49.54 
50.07 50.13 
50.65 50.71 

50.77 50.83 50.89 50.94 51.00 51.06 51.12 51.18 51.24 51.30 
51.35 51.41 51.47 51.53 51.59 51.65 51.71 51.77 51.83 51.88 
51.94 52.00 52.06 52.12 52.18 52.24 52.30 52.36 52.42 52.48 
52.53 52.59 52.65 52.71 52.77 52.83 52.89 52.95 53.01 53.07 
53.13 43.19 53.25 53.31 53.37 53.43 53.49 53.55 53.61 53.67 
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Table 13. Values op abc bin y/p.—{Conlinued) 
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Table 13. Values op akc sin Vp.—{Continued) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

99.2 84.87 84.90 84.93 84.97 85.00 85.03 85.07 85.10 85.13 85.17 

99.C 85.20 85.24 85.27 85 31 85.34 85.38 85.41 85.45 85.48 85.52 
99.4 85.56 85.60 85.03 85.67 85.71 85.75 85.79 85.83 85.87 85.91 

99.5 85.95 85.99 86.03 86.07 86.11 86.15 86.20 86.24 86.28 86.33 

99.6 86.37 86.42 86.47 86.51 86.56 86.61 86.66 86.71 86.76 86.81 
99.7 86.86 86.91 86.97 87.02 87.08 87.13 87.19 87.25 87.31 87.37 
99.8 87.44 87.50 87.67 87.64 87.71 87.78 87.86 87.93 88.01 88.10 

99.9 88.19 88.28 88.38 88.48 88.60 88.72 88.85 89.01 89.19 89.43 

100.0 90.00 i • i 
1 
i 
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Table 14. 5 ANt) 1 Per Cent Significance Points for r and R for Regressions 

Containing up to Five Variables* 

In order to be significant, a particular correlation coefficient has to exceed the 

critical value corresponding to the appropriate degrees of freedom and number of vari¬ 

ables at the preselected level of significance (5 per cent level in roman type, 1 per cent 

in boldface type) shown in the body of the table. The number of degrees of freedom 
in this case is the number of observations less the number of variables used to compute 
the (linear) correlation. Thus, a simple correlation coefficient computed from 15 obser¬ 

vations would not be significant at the 0.05 level unless its value was over 0.514. For 

further examples, see page 396. 

Degrees 

of 
Freedom 

Number of Variables Degrees 

of 
Freedom 

Number of Varia])les 

2 3 4 5 2 3 4 5 

1 0.997 

1.000 

0.999. 

1.000 

0.999 

1.000 
0.999 

1.000 
12 0 532 

0.661 
0.027 

0.732 
0.683 
0.773 

0.722 

0.802 

2 0.950 

0.990 

0.975 

0.996 

0.983 

0.997 

0.987 

0.998 

13 0.514 

0.641 

0.608 

0.712 

0.664 

0.766 

0.703 

0.786 

3 0.878 
0.969 

0.930 

0.976 

0.950 

0.983 
0.961 

0.987 

14 0.497 

0.623 

0.590 

0.694 

0.646 

0.737 

0.686 

0.768 

4 0.811 
0.917 

0.881 
0.949 

0.912 
0.962 

0.9.30 
0.970 

15 0.482 
0.606 

0.574 
0.677 

0.630 
0.721 

0.670 
0.762 

5 0.754 

0.874 
0.836 
0.917 

0.874 
0.937 

0.898 
0.949 

16 0.468 
0.690 

0.559 
0.662 

0.615 
0.706 

0.655 
0.738 

6 0.707 

0.834 

0.795 

0.886 

0,839 

0.911 
0.867 

0.927 
17 0.456 

0.676 
0.545 

0.647 
0.601 

0.691 
0.641 

0.724 

7 0.666 

0.798 

0.758 

0.866 

0.807 

0.886 

0.838 

0.904 

18 0.444 

0.661 

0.532 

0.633 

0.587 

0.678 

0.628 

0.710 

8 0.632 

0.766 
0.726 

0.827 

1 0.777 

0.860 
0.811 
0.882 

19 0.433 

0.649 
0.520 

0.620 
0.575 

0.666 
0.615 

0.698 

9 0.602 
0.736 

0.697 
0.800 

0.7.50 
0.836 

0.786 
0.861 

20 0.423 
0.637 

0.509 
0.608 

0.563 
0.662 

0.604 
0.686 

10 0.576 
0.708 

0.671 

0.776 
0.726 
0.814 

0.763 
0.840 

21 0.413 
0.626 

0.498 
0.696 

0.5.52 
0.641 

0.592 
j 0.674 

11 0.553 

0.684 

0.648 

0.763 

0.703 

0.793 
0.741 

0.821 
22 0.404 

0.616 
0.488 
0.686 

0.542 

0.630 
0.582 

0.663 

* Reproduced through the courtesy of the author and of the publisher from G. W. Snedecor, Statistical 
Methods, Collegiate Press, Inc., of Iowa State College, Ames, Iowa, 1946, Table 13.6. 
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Table 14. 6 and 1 Per Cent Significance Points for r and R for Regressions 
Containing up to Five Variables.-—(Cow<in?^eri) 

Number of Variables Degrees 
of 

Freedom 

Number of Variables 

2 3 4 5 2 a 4 5 

23 0.396 
0.605 

0.479 
0.674 

0.532 
0.619 

0,572 
0.652 

60 0.250 
0.326 

0.308 
0.377 

0.348 
0.414 

0.380 
0.442 

24 0.388 
0.496 

0.470 
0.666 

0..523 
0.609 

0.562 
0.642 

70 0.232 
0.302 

0.286 
0.361 

0.324 
0.386 

0.354 
0.413 

25 0.381 
0.487 

0.462 
0.666 

0..>14 
0.600 

0.553 
0.633 

80 0.217 
0.283 

0.269 
0.330 

0.304 
0.362 

0.332 
0.389 

26 0.374 
0.478 

0.454 
0.646 

0.506 
0.690 

0.545 
0.624 

90 0.205 
0.267 

0.254 
0.312 

0.288 
0.343 

0.315 
0.368 

27 0.367 
0.470 

0.44fi 
0.638 

0.498 
0.682 

0.536 

0.615 

100 0.195 
0.264 

0.241 

0.297 

0.274 

0.327 

0.300 
0.361 

28 0.361 
0.463 

0.439 
0.630 

0.400 
0.673 

0.529 
0.606 

125 0.174 
0.228 

0.216 
0.266 

0.246 
0.294 

0.269 
0.316 

29 0.355 
0.466 

0.432 
0.622 

0.482 
0.666 

0.521 
0.598 

150 0.159 
0.208 

0.198 
0.244 

0.225 
0.270 

0.247 
0.290 

30 0.349 
0.449 

0.426 
0.614 

0.476 
0.668 

0.514 
0.691 

200 0.138 
0.181 

0.172 
0.212 

0.196 
0.234 

0.215 
0.263 

35 0.325 
0.418 

0.397 
0.481 

0.445 
0.623 

0.482 
0.656 

300 0.113 
0.148 

0.141 
0.174 

0.160 
0.192 

0.176 
0.208 

40 0.304 
0.393 

0.373 
0.464 

0.419 
0.494 

0.455 
0.626 

400 0.098 
0.128 

0.122 
0.161 

0.139 
0.167 

0.153 
0.180 

45 0.288 
0.372 

0.353 
0.430 

0.397 
0.470 

0.432 
0.601 

500 0.088 
0.116 

0.109 
0.136 

0.124 
0.160 

0.137 
0.162 

50 0.273 
0.364 

0.336 
0.410 

0.379 
0.449 

0.412 
0.479 

_i 

1000 0.062 
0.081 

0.077 
0.096 

0.088 
0.106 

0.097 
0.116 
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Table 15. Equivalent Values of r and 

The body of the table contains the value of r corresponding to each particular 
value of z along the margins. For example, if 2 = 1.28, the equivalent value of r 
is 0.8565. The value of z corresponding to a particular value of r is found by interpola¬ 
tion, if necessary. The use of this table is illustrated on page 382. f 

z 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0.0 0.0100 0.0200 0.0300 0.0400 0.0500 0.0599 0.0699 0.0798 0.0898 0.0997 
0.1 0.1096 0.1194 0.1293 0.1391 0.1489 0.1586 0.1684 0.1781 0.1877 0.1974 
0.2 0.2070 0.2165 0.2260 0.2355 0.2449 0.2543 0.2636 0.2729 0.2821 0.2913 
0.3 0.3004 0.3095 0.3185 0.3275 0.3364 0.3452 0.3540 0.3627 0.3714 0.3800 
0:4 0.3885 d.3969^ 0.4053 0.4136 0.4219 0.4301 0.4382 0.4462 0.4542 0.4621 

0.5 0.4699 0.4777 0.4854 0.4930 0.5005 0.5080 0.5154 0.6227 0.5299 0.5370 
0.6 0.5441 0.5511 0.5580 0.5649 0.5717 0.5784 0.58.50 0.5915 0.5980 0.6044 
0.7 0.6107 0.6169 0.6231 0.6291 0.6351 0.6411 0.6469 0.6527 0.6584 0.6640 
0.8 0.6696 0.6751 0.6805 0.6858 0.6911 0.6963 0.7014 0.7064 0.7114 0.7163 
0.9 0.7211 0.7259 0.7306 0.7352 0.7398 0.7443 0.7487 0.7531 0.7574 0.7616 

1.0 0.7658 0.7699 0.7739 0.7779 0.7818 0.7857 0.7895 0.7932 0.7969 0.8005 
1.1 0.8041 0.8076 0.8110 0.8144 0.8178 0.8210 0.8243 0.8275 0.8306 0.8337 
1.2 0.8367 0.8397 0.8426 0.8455 0.8483 0.8511 0.8538 0.8565 0.8591 0.8617 
1.3 0.8643 0.8668 0.8692 0.8717 0.8741 0.8764 0.8787 0.8810 0.8832 0.8854 
1.4 0.8875 0.8896 0.8917 0.8937 0.8957 0.8977 0.8996 0.9015 0.9033 0.9051 

1.5 0.9069 0.9087 0.9104 0.9121 0.9138 0.9154 0.9170 0.9186 0.9201 0.9217 
1.6 0.9232 0.9246 0.9261 0.9275 0.9289 0.9302 0.9316 0.9329 0.9341 0.9354 
1.7 0.9366 0.9379 0.9391 0.9402 0.9414 0.9425 0.9436 0.9447 0.94,58 0.94681 
1.8 0.94783 0.94884 0.94983 0.95080 0.95175 0.95268 0.95359 0.95449 0.95537 0.95624 
1.9 0.95709 0.95792 0.95873 0.95953 0.96032 0.96109 0.96185 0.96259 0.96331 0.96403 

2.0 0.96473 0.96541 0.96609 0.96675 0.96739 0.96803 0.96865 0.96926 0.96986 0.97045 
2.1 0.97103 0.97159 0.97215 0.97269 0.97323 0.97375 0.97426 0.97477 0.97526 0.97574 
2.2 0.97622 0.97668 0.97714 0.97759 0.97803 0.97846 0.97888 0.97929 0.97970 0.98010 
2.3 0.98049 0.98087 0.98124 0.98161 0.98197 0.98233 0.98267 0.98301 0.98335 0.98367 
2.4 0.98399 0.98431 0.98462 0.98492 0.98522 0.98551 0.98579 0.98607 0.98635 0.98661 

2.5 0.98688 0.98714 0.98739 0.98764 0.98788 0.98812 0.98835 0.98858 0.98881 0.98903 
2.6 0.98924 0.98945 0.98966 0.98987 0.99007 0.99026 0.99045 0.99064 0.99083 0.99101 
2.7 0.99118 0.99136 0.99153 0.99170 0.99186 0.99202 0.99218 0.99233 0.99248 0.99263 
2.8 0.99278 0.99292 0.99306 0.99320 0.99333 0.99346 0.99359 0.99372 0.99384 0.99396 
2.9 0.99408 0.99420 0.99431 0.99443 0.99454 0.99464 0.99475 0.99485 0.99495 0.99505 

♦ Table 15 is reprinted from Table VB of R. A. Fisher, Statistical Methods for Research Workers, Oliver 
A Boyd, Ltd., Edinburgh and London, 1936, by permission of the author and publishers, 

t For greater accuracy, and for values beyond the table. 
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Table 16. 6 and 1 Per Cent Significance Points for the Coefficient of Rank 

Correlation Based on Less than 9 Ranks* 

In order to be significant, a coefficient of rank correlation based on a certain number 
of ranks (or observations) must have a value above the critical value at the chosen level 
of significance. For more than 8 ranks, the test of significance may be carried out with 

the aid of the method explained on page 387. 

Number of ranks 
5 per cent level 

of significance 

1 per cent level 

of significance 

4 or less none none 
6 1.0 none 

6 0.886 1.0 
7 0.750 0.893 
8 0.714 0.857 

* Reproduced through the courtesy of the author and publisher from G. W. Snedecor, Statistical 

Methods^ Collegiate Press, Inc., of Iowa State College, Ames, Iowa, 1946, Table 7.10 
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Table 17. 6 and 1 Per Cent Significance Points for the Coefficient of 

Serial Correlation (Circular Definition)* 

Serial correlation is presumed to be present in the population if the computed 
value of the coefficient of serial correlation exceeds the value at the preselected signifi¬ 
cance level for the particular sample size and at the appropriate tail of the distribution. 
Use the positive tail for positive values of r, and the negative tail for negative values 
of r,. For further details, see pages 403-404. 

n Positive tail Negative tail 

^5 per cent level 1 per cent level 

5 0.297 -0.798 
6 0.345 0.447 -0.863 
7 -0.674 -0.799 
8 0.371 0.531 -0.625 -0.764 
9 0.366 0.533 -^0.593 -0.737 

0.525 -0.564 -0.705 
11 0.353 0.515 -0.539 -0.679 
12 0.348 0.505 -0.516 -0.655 
13 0.341 0.495 -0.497 -0.634 
14 0.335 0.485 -0.479 -0.615 

15 0.328 0.475 -0.462 -0.597 
0.299 0.432 -0.399 -0.524 

25 0.276 0.398 -0.356 -0.473 
30 0.257 -0.325 -0.433 
35 0.242 0.347 -0.401 

0.229 0.329 -0.279 -0.376 
45 0.218 0.314 -0.262 -0.356 

0.301 -0.248 -0.339 
55 0.289 -0.236 -0.324 

0.191 0.278 -0.225 -0.310 

65 0.184 0.268 -0.216 -0.298 
0.178 0.259 -0.287 

75 0.173 0.250 -0.199 -0.276 
80 0.171 0.247 -0.197 -0.273 
85 0.166 0.240 -0.264 

90 0.161 0.234 -0.183 -0.256 
95 0.157 -0.248 

0.154 -0.244 

* Adapted, with the kind permission of the editor, from R. L. Anderson, “Distribution of the Serial 
Correlation Coefficient,” Annals of Mathematical Statistics, Vol. 13, No. 1, 1942, pp. 1-13. 

t For values of N above 100, use the following formulas to determine the significance points: 

For the 5 per cent significance level 

- 1 =fc 1.645 ViV - 2 
N 

For the 1 per cent significance level 

- 1 d= 2.326 ViV - 2 
N 
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Table 18. 6 and 1 Per Cent Significance Points for the Ratio of the 

Mean-square Successive-difference to the Variance* 

At the given level of significance and the appropriate sample size (iV), a computed 
K is indicative of positive serial correlation if it falls below the critical value of Kj and 
is indicative of negative serial correlation if it exceeds the corresponding critical value 
of K'; if it falls between the two critical values, no evidence of serial correlation is 
present. Further details will be found on page 405. 

N 
Values of K Values of K' 

N 
' 

Values of K Values of K' 

P = 0.01 P = 0.05 P « 0.9o /• - 0.99' P = 0.01 P = 0.05 P = 0.95 P = 0.99 

4 1.0406 4.2927 4.4992 33 1.2667 1.4885 2.6365 2.8583 
5 0.6724 1.0255 3.9745 4.3276 34 1.2761 1.4951 2.6262 2.8451 
6 0.6738 1.0682 3.7318 4.1262 35 1.2852 1.5014 2.6163 2.8324 
7 0.7163 1.0919 3.5748 36 1.2940 1.5075 2.6068 2.8202 
8 0.7575 3.8139 37 1.3025 1.5135 2.5977 2.8085 

9 0.7974 1.1524 3.3476 38 1.3108 1.5193 2.5889 2.7973 
10 0.8353 1.1803 3.2642 39 1.3188 1.5249 2.5804 2.7865 
11 1.2062 3.1938 3.5294 40 1.3266 1.5304 2.5722 2.7760 
12 0.9033 1.2301 3.1335 41 1.3342 1.5357 2.5643 2.7658 
13 0.9336 1.2521 3.0812 3.3996 42 1.3415 1.5408 2.5567 2.7560 

14 0.9618 1.2725 3.0352 3.3458 43 1.3486 1.5458 2.5494 2.7466 
15 0.9880 1.2914 2.9943 3.2977 44 1.3554 1.5506 2.5424 2.7376 
16 1.0124 1.3090 2.9577 3.2543 45 1.3620 1.5552 2.5357 2.7289 

17 1.0352 1,3253 2.9247 3.2148 46 1.3684 1.5596 2.5293 2.7205 
18 1.3405 2.8948 3,1787 47 1.3745 1.5638 2.5232 2.7125 

19 1.3547 2.8675 3.1456 48 1.3802 1.5678 2.5173 2.7049 

20 1.3680 2.8425 3.1151 49 1.3856 1.5716 2.5117 2.6977 
21 1.1131 2.8195 50 1.3907 1.5752 
22 1.1298 1.3923 2.7982 51 1.3957 1.5787 2.5013 
23 1.1456 2.7784 52 1.4007 1.5822 2.4963 2.6777 

24 1.1606 1.4141 2.7599 53 1.4057 1.5856 2.4914 2.6712 
25 1.1748 1.4241 2.7426 2.9919 54 1.4107 2.4866 2.6648 

26 1.1883 1.4336 2.7264 2.9718 55 1.4156 1.5923 2.4819 2.6585 
27 1.2012 1.4426 2.7112 2.9528 56 1.4203 1.5955 2.4773 2.6524 
28 1.2135 1.4512 2.6969 2.9348 57 1.5987 2.4728 2.6465 

29 1.2252 1.4594 2.6834 2.9177 58 1.4294 2.4684 
30 1.2363 1.4672 59 1.4339 IPSI 2.6350 
31 
32 

1.2469 
1.2570 

1.4746 
1.4817 

2.6587 
2.6473 

2.8864 
2.8720 

60 1.4384 1.6082 2.4596 2.6294 

* Adapted, with the kind permission of the editor, from B. I. Hart, “Significance Levels for the Ratio 
of the Mean Square Successive Difference to the Variance,'* Annals of Mathematical Statistics, Vol. 13, 
No. 4, 1942, p. 446. 
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Davies, G.R., 414, 417, 421, 427 
Decisional problems, 149-150 
Degrees of freedom, 83-84, 261 

contingency tables, 262-263, 265, 268- 

269, 273-274 

frequency distributions, 275-277, 279 
regression analysis, 325-327, 330, 384- 

385 

variance analysis, 281, 283-285, 288, 
290-296, 300, 395-402 

mean-square successive difference, 404- 

406 

Deming, W.E., 219n., 415, 420, 423, 424 

Dependent variable, 303, 306, 346, 357- 
359, 361#. 

Depth interviews, 239n., 244 

Determinants in regression analysis, 35471. 

Deviations from the mean, multiple corre¬ 

lation, 352-356, 364-365, 369, 394 
simple correlation, 308-309, 317-322, 

334-335 

simple frequency distribution, 20, 22, 26 

Diary, consumer, 239 
radio, 239, 253 

Direct effects in multiple correlation, 347- 

348, 363-367, 379 

Dispersion, measures of, 27-30, 39 
{See also Coefficient of variation; 

Range; Standard deviation) 

Disproportionate ('stratified) sample, defi¬ 
nition of, 4771. 

derivation of sampling variance, 446- 

447 
description of, 76-78, 103 
desirability and limitations, 199-201 

determination, of sample design, 204-209 

of sample size, 193-195 
standard'error for two complementary 

means of data collection, 434-435 

standard errors of mean and percentage, 

89-91, 149, 467 
application, 137-142 

Distribution, binomial, 278-279 

curve, 15, 38 

F, 115-116, 122-123, 280#., 396-397, 
402 

frequency, 13#., 38 

J, 17, 19, 29 

K, 404-406 

normal, 17-18, 29, 39, 61 

{See also Normal distribution) 

range/sigma, 488 
t, 83-84, 103, 383-385, 389 
U, 17, 18, 29 

z, 381-385 

Distribution curve, 15, 38 

{See also Frequency distribution) 
Domestic Commerce, 420 

Doolittle method, 354, 436-441 

references on, 429 

Double sample, advantages and limita¬ 

tions, 198-199, 201 

determining desirability of, 206-209 
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Double sample, reference on, 421 

standard error of, 468 

theory of, 80-81 
Doubman, J.R., 413 

Drury, J.C., 416 

Du Bois, Cornelius, 286n. 

Duddy, E.A., 74n. 
Dun and Bradstreet, 145, 246 

Duncan, A.J., 414, 415, 419, 421-422, 427, 

428 
Dwyer, P.S., 429 

E 

E, efficiency ratio, 97, 142, 468 
Eastman, R.O., 425 

Eastwood, R.P., 418 

Econometricaf 430 
Economistj The, 136n. 

Editing, 50-52 

bias in, 235 

Elder, R.F., 5n., 416 
Elderton, W.P., 324, 332, 427 

Estimation, 41, 54 

applications, 133-144 

references on, 421-422 
in sequential analysis, 156, 159 

theory of, 54-57 

Erdos, P.L., 419 
17, correlation ratio, 337-341, 460 
Expected size of sample, sequential analy¬ 

sis {see Average sample number) 

Expected values, in chi-square analysis, 

265, 267-268, 271-272, 278-279 
Experimental design, variance analysis 

and, 296-300 

Explained variance, 310-315, 346, 356- 

357, 359, 395-399 

Ezekiel, M., 379, 427, 429 

F 

/, frequency {see Correlation, simple linear, 

grouped data; Frequency distribution) 

/i, /2, fm, in formula for mode, 26 
F distribution, table of, 512-515 

in testing significance of difference 

between standard deviations, 115- 

116, 122-123 
in variance analysis, 280, 285, 290, 294, 

300, 396-397, 402 

F ratio, 280-281, 300, 474 

one-way classification, 282-286 

in testing significance of correlation 
measures, 395-402 

two-way classification, 287-294 

Ferber, R., 420, 425 

Fifth-order partial correlation coefficient, 
formula for, 360 

Final report of sample survey, 62-64 

First moment, 24, 38 

First-order correlation coefficients, 358- 
362 

Fisher, R.A., 261, 415, 421, 426, 428, 429, 

487n., 51 In., 522n. 

Fit, goodness of, by chi-square analysis, 

275-279 

by correlation analysis, 310-314 

{See also Cofficient of correlation) 
Fixed cost, 204, 210, 242 

Follow-ups, 242, 247 

Ford, R.N., 245n., 425 

Forecasting, 302, 346 
sampling errors in, regression analysis, 

389-395 

Fourth moment, 39, 459 
Frank, M. {see Simon, Marji F.) 
Frankness, in mail surveys, 243-244, 247 

Freehand lines, multiple correlation, 370- 

378 
simple correlation, 305, 307 

Frequency distribution, alisolute, IZff. 
definition of, 13, 38 

examples of, 14ff. 
references on, 417-418 
relative, 13-15 

{See also particular types of distribu¬ 

tions) 
Friedman, M., 426 

Frisbee, I.N., 489/1. 

G 

G, geometric mean, 26-27, 38-39, 458 

Geographic distribution in mail question¬ 

naires, 240-242, 247 
Geometric mean, 26-27, 38-30, 458 

Ghiselli, E.E., 418 

Girschick, M.A., 159n., 422 

Goulden, C.H., 395, 426, 430 
Graphic method of correlation analysis, 

multiple correlation, 370-378 
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Graphic method of correlation analysis, 

multiple correlation, references on, 

427-428, 429 
relative evaluation of, 378-379 

simple correlation, 305, 307 

Greek alphabet, 476 
Group participation method of obtaining 

sample data, 252 

Gurney, M., 423 

Guttman, L., 426 

H 

Haavelmo, T., 306n., 430 
Hansen, M.H., 73n., 74n., 94?i., 248w., 418, 

420-421, 423, 425, 43U. 

Hart, B.I., 430, 525 
Hauser, P.M., 73n., 74n., 418, 423 
Heidingsfield, M.S., 9, 413, 418 

Heusner, W.W., 5, 416 

Histogram, 16 
Hitch, C.J., 211/1. 
Hochstim, J.R., 423 

Hocl, P.G., 62, 315n., 415 

Homogeneity, in chi-square analysis, 273- 
275 
test for, 277-278 

and sample design, 198-201 

Hooper, C.E., 236, 237n., 426 
Hotchkiss, G.B., 416 
Houseman, E.B., 428 

Houser, J.D., 425 

Huegy, H.W., 416 

Hurwitz, W.N., 73n., 94/i., 248n., 420- 

421, 423, 424, 425, 431n. 

Hypotheses, testing of (see Testing hy¬ 

potheses) 

1 

IBM tabulating equipment, 51-53, 419 

Inaccuracies in population weights, appli¬ 

cation, 137-142 

reference on, 421 
and sample design, 201, 204-209 

standard errors and, 96-97 

Independence, of attributes, 264-275 

of sample observations, 160, 263, 281, 

406-409 

Independent variable, 303, 306, 346, 357- 

359, 361#. 

Index of correlation, 303, 326, 329-330, 

334-335, 338, 345 

significance of, 385-386, 395-396 
Index of determination, 329-330, 334, 397 

in multiple correlation, 356-357 

significance of, 385-386, 395-396 
Index of nondetermination, 398n. 
Indirect effects in multiple correlation, 

347-348, 363-367, 379 

Industrial marketing, definition of, 3 

Industrial Surveys Company, 137, 239n. 
Intensity analysis, 235n. 

Interaction 273-275 

Interaction effect, 291-294 

in multiple correlation, 362-367 

orders of, 297 

Interaction variance, 291-294 

Interclass correlation, 399 
Intercorrelation, cluster sample and, 94-96 

Interest and mail response, 244-245, 247 

Interview, personal {see Personal inter¬ 
views) 

Interviewer bias, 231-234 

statistical test for, 146-147 

use of variance analysis, 282-286 
Interclass correlation, 399-402 

references on, 428, 429-430 

Inventory poll, 252-253 

Ipana tooth paste, 146-147 

J 

J distribution, 17, 19, 29 

inverted, 17, 19 

Jastram, R., 11 In., 420 

Jenkins, R.C., 416 

Jessen, R.J., 76n., 423 
Johnson, N.L., 422 

Joint effects in multiple correlation, 363- 

367 
Journal of Applied Psychology, 418, 423, 

426 

Journal of Business of the University of 

Chicago, 420 
Journal of Consulting Psychology, 418, 426 

Journal of Farm Economics, 420 

Journal of Marketing, 416#. 
Journal of the American Statistical Associa¬ 

tion, 419#. 

Journal of the Inter-American Statistical 

Institute, 421 
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Journal of the Royal Statuiical Society^ 420, 

424 

K 

Kf mean-square successive-difference ratio, 

404-406, 463 
table for judging signiffcancc of, 525 

k, size of class interval, 22-26, 28-29, 32 

hy size of median class interval, 458 

kmj size of model class interval, 458 

ku k2, 160, 179 
Katz, D., 243n., 425 

Kellogg, L.S., 414, 417 

Kendall, M.G., 224-225, 327n., 415-416, 
417-418, 422, 424, 427, 428, 429 

Kent, R.H., 430 

King, A.J., 97n. 
Kiser, C.V., 423 

Koopmans, T., 306n., 430 

Kurtosis, measures of, 33, 34, 39 

L 

L {eee Operating characteristic curve) 

Ity lower limit of median class interval, 458 
im, lower limit of modal class interval, 458 
La Grange Multipliers, 248m. 

Labor Force Bulletin, 24In, 
LaClave, F., 5n., 416-417 
Lazarsfeld, P.F., 49w., 51n., 146n., 252, 

426 

Least-squares method, 307-308 

multiple linear case, 352-354, 369 
standard units, 367 

simple linear case, 308-310, 334-335 

grouped data, 322-323 

Leavens, D.H., 429 

Leptokurtic, 33, 39 

Levy, H., 419 

Life magazine, 286-290, 296-297, 301, 304 
Linear regression, 306-316, 318-323 

multiple, 349-355, 367, 369 

significance of, 389, 396-399 
standard error of estimate, 389 395 

Link, H.C., 423 

List of formulas, 458-475 

List of standard symbols, 455-457 

Literary Digest poll, 218, 220 
Logarithmic curves, 331-333, 337 

Logarithms, tables of, 490-508 

to the base c, 507-508 

M 

My sample size, 207-209 
McCall Corporation, 270w. 

McCalVs Magazine, 133-136 

McCandless, B., 244n., 426 
McCarty, E.E., 97n. 
Madow, L., 421, 423-424 

Madow, W.G., 421 

Mail questionnaires, advantages and dis¬ 

advantages, 237-247, 254 
comparative evaluation table, 247 

complementary use of, 247-251, 431- 

435 

definition of, 239 

in determining sample design, 204-209 

references on, 424-425 
Mail returns, rates of, 242, 247 

relation to interest of respondent, 244- 

245 

Malenbaum, W., 429 
Market research, definition of, 3, 5 

expenditure on, 5 

functions and uses, 4-7 

references on, 413-414, 416-417 
and statistics, 8-10 

Marketing, definition of, 3 

history, references on, 416 

meaning and functions, references on, 
416-417 

Mathematical method of determining 

sample design, applications, 203 209 

practicability of, 214-215 
theory, 201-203 

Mathematical references on statistics, 

414-415 

Maximum likelihood method, 306n. 
references on, 430 

Maynard, H.H., 416 

Meade, J.E., 21 In. 

Mean, estimation of population, 133-136 

(See also Arithmetic mean; Standard 

error) 

Mean square (see Variance) 
Mean-square successive-difference method, 

405-406, 409, 463 

references on, 430 
table for, 525 

Mechanical randomization, 227-228 

Median, description of, 24, 38, 458 

illustrative computation, 25 
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Median, standard error of, 98, 464 

standard-error-difference formula, 122 

usefulness and limitations, 25 
Mesokurtic, 33, 39 

Method of collecting data, operational 

procedure, 50 

problems involved, 47, 48 
Miller, A.E., 234n., 286/i., 424 

Mills, F.C., 212n., 414, 417, 421, 426, 427, 

430 
Mises, R. von, 419 
Misrepresentation, interviewer, 231-234 

respondent, 228-231 

Mistake, distinction between bias and, 217 
Modal class, 26 
Modal value (see Mode) 

Mode, E.B., 417 

Mode, confusion with arithmetic mean, 
235-236 

definition of, 25, 39, 458 

illustrative computation, 26 

usefulness and limitations, 26 
Moments, definition of, 18, 19, 38 

first moment, 24, 38 

second moment, 28, 39 

third moment, 31, 39 
fourth moment, 39 

nth moment, 3In. 

Mosteller, F., 159n., 422 

Multimodal, 26 

Multiple correlation, 346-379 

linear and curvilinear, 347-348 

graphic approach, 370-379 
mathematical approach, 349-370,378- 

379 

references on, 427-428, 429 
significance of, 385-386 

by variance analysis, 395-396 

Multivariate analysis, definition of, 13 

N 

Ny sample size, 75-77, 85-95, 98-101,114- 

123, lS4ff.y 191-196, 203-212, 249- 

251, 266, 294-296, 308-312, dl7ff,y 

352jf., 381jf. 

Nb, Nd, NHf strata sample sizes, 92-95, 
468 

nth moment, 31n., 458 

nth-order correlation coefficients, 358 

Nagel, E., 419 

Neiswanger, W.A., 414, 417, 427 

Net effects, in multiple correlation, 363- 

366 

graphic method, 370-379 
Net regression coefficients, 347-348, 352, 

355 

by graphic method, 375-376 
significance of, by variance analysis, 

396-399 

standard error of, 389 
in standard units, 364-365, 367 

Neuman, J. von, 430 

New York Times, The, 145-146, 246, 

257 
New Yorker, The, 147 
Neyman, J., 80n., 81n., 420, 421 

Nielsen, A.C., 426 

Nielsen Aiidimeter, 252-253 
reference on, 426 

Nielsen Company, A.C., 252-253 

Nonceniral t distribution, 117 

Nondecisional problems, 150 
Nonparainetric methods, 61 

Normal curve (see Normal distribution) 

Normal distribution, 17-18, 29, 39, 61 

application and practical value, 36-38, 
39 

and asymmetrical confidence regions, 

124-128 

• background, 36, 37 
characteristics of, 34 

dispersion of, 35 

in correlation, 344, 383-385 
in significance tests, 109^. 

table, 35, 36, 486 

Normal equations, 308 

general arithmetic, 331 
derivation of, 448-449, 453-454 

linear multiple correlation, 352-354,369, 

436-441 

derivation of, 451-452 
in standard units, 367 

simple curvilinear, 327-329 

simple linear, 308-310, 334-335 

Normal population (see Normal distribu¬ 

tion) 

Normally distributed variable, 36 

Null hypothesis, 105, 106-107, 128, 144 
in chi-square analysis, 261, 263, 265, 

267-268, 276 

in variance analysis, 279-281 
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O 

OC curve {see Operating characteristic 

curve) 

Odle, H.V., 417 
Ogive, definition of, 17, 38 

illustration, 18, 20 

Olds, E.B., 419 
Omissions on mail questionnaires, 243, 247 

One-way classification, 282 

Operating characteristic curve, applica¬ 
tion, 175, 177, 179 

description, 161-162 

formulas for, 165, 168, 170, 471-473 

Operational methods, 48-54, 62 
{See also Editing; Method of collect¬ 

ing the data; Personal intcrvi<nvs; 

Questionnaire construction; Tab¬ 

ulation) 
Optimum allocation, in double sampling, 

209, 471 

between mail questionnaires and per¬ 

sonal interviews, 247-251 
in stratified sampling, 75-77, 194, 470 

Ordinate, 14n., 34 

Orthogonal polynomials, 331 
references on, 428 

Overhead cost {see Fixed cost) 

P 

p. Pi {see Percentage) 

P, P<, Pb, Pd, Ph, sizes of populations, or 

of population strata, 75-77, 88-89, 
92-95, 136, 143, 249, 383a, 

Pantry poll, 253 

Parameter, definition of, 12 

{See also Estimation; Standard error) 
Parametric methods, 61 

Parlin, C.C., 5 

Partial correlation, 347, 357-363, 379 

point estimate of population, 381 
significance of, 381-385 

Paton, M.R., 52a., 419 

Pearson, E.S., 214n., 488a. 

Pearson, K., 32 
Pearsonian measure of skewness, com¬ 

putation, 33 

definition of, 32, 33, 39, 459 

Peatman, J.G., 414, 417, 420, 421, 428 
Percentage, estimation of population, 136- 

137 
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Percentage, estimation of variance, 212- 
214 

sequential analysis, application, 174- 

177, 179-181 
significance of differences, 157-159, 

164-167, 168-170, 471-472 

{See also Standard error) 
Perrin, E.M., 244/^., 425 
Pershall Company, J.R., 229n. 

Personal interviews, advantages and dis¬ 

advantages, 237-247, 254 
comparative evaluation table, 247 

complementary use of, 247-251, 431- 

435 
definition of, 238-239 
references on, 425-426 

use of, random selection of sample 

members, 227-228 
Peters, C.C., 387, 415, 421, 426, 427, 428, 

429 

Phelps, D.M., 417 

Phelps, K., 419 

Philadelphia, area maps of, 227 
Platykurtic, 33, 39 

Point estimate, 55 

Politz, A., 221, 223n., 424 
Population, definition of, 12 

different connotations, 43 

in random selection, 223 

statistics, 12 

Population variance, approximated by 

sample variance, 85-86 

correction factors for small-size samples, 
87-89, 383h. 

Precision, definition of, 67, 102 

Predictions, sampling errors of regression, 

389-395, 466-467 
Printers' Ittk, 155n., 221a., 238a., 240a., 

416^. 
Probability, definition of, 60 

and estimation, 55 
references on, 419 

and testing significance, 107, 109 

Probability distribution {see Probability) 
Probability level, 109-112, 124^., 144-149, 

196 

in chi-square analysis, 261-262, 266, 

269, 272-274, 279 
in correlation analysis, 383-386, 391, 

403-406 

in sequential analysis, 156, 164-165 
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Probability level, in variance analysis, 281, 

285, 290, 396, 398 

Product-moment formula, 316-318, 322 

derivation of, 450 

Production, definition of, 3 

Production research, definition of, 3 

expenditure on, 5 
Program analyzer, reference on, 426 

Proportional (stratified) sample, definition 

of, 47n. 

description of, 74-75, 103 
in selecting sample design, 204-206 

standard errors of mean and percentage, 

91, 467 
application, 140-142 

Public Opinion Quarterly, 418, 423, 424, 

425, 426 

Purposive sampling, advantages and limi¬ 
tations, 198, 200-201 

definition of, 78 

limitations, 47n., 79-80 
theory of, 78-80 

Q 

q (qi), 1 — p (1 — p<) (see Percentage) 

Quaker Oats Company, 234 

Questionnaire bias, 234-235 

Questionnaire construction, rules for, 49, 

50 
references on, 418 

Quota samples, and random selection, 199- 

201 
references on, 420 

types of, 74-78, 103 

{See also Proportional (stratified) 

sample; Disproportionate (stratified) 

sample) 

versus area samples, 72, 74, 199-201 

R 

r {see Coefficient of correlation, simple 

linear) 

r-by-c contingency table, 262, 264 

Ve, coefficient of intraclass correlation, 

399-402, 463 

rij.i...{see Coefficient of partial determina¬ 

tion) 

r«, coefficient of serial correlation, 402-405, 

463 

n coefficient of tetrachoric correlation, 

343-344, 461 

significance of, 387 

r-way classifications, 260n. 
Run...{see Coefficient of correlation, mul¬ 

tiple correlation) 

Radio diary, 239, 253 
Random sampling, 68-69 

Random sampling numbers, references on, 

424 

in selecting representative comments, 51 

in selecting sample members, 224-227 

table of, 225 

Random sampling variance {see Variance 

within classes) 
Random selection, definition of, 47 

importance of, 48, 68-69, 102, 220-223, 

263 
methods of obtaining, 223-228 

of quota samples, 199-201 

in sequential analysis, 160, 182 

in stratified sampling, 89, 91-92 

Randomness {.see Random selection) 

Range, definition of, 30, 39, 459 

use to estimate variance, 212-214 

table of sigma/range, 488 
Rank correlation, 341-343, 345 

significance of, 386-387 

Reciprocals, table of, 483-484 

Recognition surveys and respondent bias, 

229-231 

Redhook, 153, 264 

Region of acceptance, application, 

definition of, 57, 58, 64 

Region of rejection, definition of, 58, 64 

Regression analysis, 801, 303 

curvilinear, 324-337 

linear, 306-316, 318-323 

multiple, 346-348 

linear, 352-358 

operational procedures, 367-370 

standard error of estimates based on, 

389-395 

^ tests for significance of coefficients, 

387-389, 396-399 

Regression parameters, 306 

graphic method of solving for 307 

mathematical method {see Least-squares 

method) 

significance of, 387-389, 396-399 
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Rejection numbers, 157-159, 160, 162- 

163 

in application, 175-181 

formulas for, 165-166, 168, 170, 171, 
173-174 

Relationships between variables, 302-304, 

331-333, 344-345, 380 
curvilinear, 304, 337-338 

linear, 304 

multiple, 346-349 
graphic approach, 370-379 
(See also Regression analysis) 

partial, 358-362 - 

Relative costs, mail questionnaires versus 
personal interviews, 242-243, 247, 

248-251 

Relative effects, measurement of, by cor¬ 
relation methods, 304 
by variance analysis, 297-298 

Reliability of correlation statistics, 380- 

395 
coefficient of rank correlation, 386- 

387 
coefficients of regression, 387-389 

correlation ratio, 385-386 

multiple correlation coefficients, 385-386 

predictions, 395 

simple and partial correlation statistics, 

381-385 
tetrachoric correlation coefficient, 387 

(See also Intraclass correlation; Vari¬ 

ance analysis) 

Remington Rand Corporation, 51, 53, 419 

Representativeness in sampling, 66, 102, 

219-220, 241 

and bias, 218, 253 

and rule-of-thumb method, 189-190 

Restricted sampling, definition of, 69, 102 

Riggleman, J.R., 489n. 

Robinson, R., 243n., 246n., 257n., 259n., 

276n., 425 
Root mean square (see Standard devia¬ 

tion) 

Ross, R., 146n. 

Rosten, Harry, 145n. 

Roth, L., 419 

Rounding off in sequential analysis, 158w. 

Rule-of-thumb method for determining 

sample size, 186-190, 215-216 

Russ, John T., 87n. 

S 

Saffir, M., 344n. 

Sales forecasting and correlation, 302, 346, 
348 

Sales Management^ 416, 425 

Salisbury, P., 244n., 245n., 425 
Sample, definition of, 12 

statistics, 12 

Sample bias (see Bias) 

Sample control of mail questionnaires, 
240-242, 247 

Sample design, in determining represent¬ 

ativeness, 66 

factors determining selection of, 197-201 

mathematical approach, 201-209, 

214-215 

in using mail questionnaires and per¬ 
sonal interviews, 248-251 

importance of, in sampling operation, 

46, 47 
references on, 423-424 

and sample precision, 184-186 

and standard errors, 66-67 

time limitations and, 185 

(See also Sampling techniques) 
Sample precision, 184-216 

general considerations, 184-186 

and sample design, 197-216 

relation to cost, 202-209 
sample size and optimum allocation, 

186-196 

Sample selection, 46-48 

(See also Method of collecting data; 

Sample design) 

Sample size, in determining represent¬ 

ativeness, 65-66 

for determining significance, 147 

mathematical method, 190-209, 214- 

215 
allocation between mail question¬ 

naires and personal interviews, 

248-251, 431-435 

references on, 422-423 

rule-of-thumb method, 186-190 

and sample precision, 184-186, 216 

(See also Average sample number) 

Sample surveys, objective of, 184 

references on, 418 
Sample turnover, allowance for, 204 
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Sample variance, as approximation to 

population variance, 85-86 

correction factors for small-size sample, 
87-89 

unrestricted sample, estimation of, 294- 

296 

in variance analysis {see Variance an¬ 
alysis) 

Sampling, reason for, 43 

scope of, 41, 62 

and standard errors, 2>2f. 
terminology, 67-69 

and testing hypotheses, 104-130 

ultimate objective of sampling research, 

57 
Sampling concepts, basic, 65-66 

Sampling operation, references on, 418 

steps involved in, 44-46, 62 
ultimate objective of, 54, 64 

Sampling techniques, references on, 420- 

422 

and sequential analysis, 181-183 
theory of, 65-103 

{See also specific sampling techniques) 

Savage, L.J., 159n., 422 

Scale analysis, 235n. 
Scatter diagram, 305, 312, 324, 337- 338, 

345, 362-363, 367jf. 

Second moment, 28, 39 

Secret ballots, 243 
Seitz, R.M., 425 

Semilogarithmic regression, 333-337 

Sequential analysis, 155-183, 196 
characteristics and requirements of, 

159-163 

description, 156-159 

formulas and procedures for specific 
cases, 164-174, 431 

illustrative examples, 174-181 

limitation of, 181 
and other sampling techniques, 181-183 

references on, 422 

table to expedite calculations, 509-510 

Serial correlation {see Correlation, serial) 

Sheppard^s correction, 29 
<r, {See Standard deviation; Variance) 

aht apiif standard error of coefl&cient of 

regression, 387-389, 466 
cTbj _ 6j, difference formula, 388-389 

<rj, variance between groups, 283-295,400- 

402 

<r?W,), variance between districts (families 

withing districts), 143 

variance between sampling 
units, 92-94 

O’Med, standard error of median, 98, 464 

difference formula, 114 

o-p, standard error of percentage, 86-89, 
136-137, 266, 464, 467-468 

o-pj _ P2, difference formula, 121-122, 144- 

147, 153n., 408, 470 

Cry standard error of coefficient of correla¬ 
tion, 381n., 385-386, 465 

standard error of standard deviation, 

99-102, 137, 464 

_ ffj, difference formula, 147-148, 408, 
470 

Guy standard deviation of regression, 310- 

313, 322-323, 329-330, 334, 460, 461 
(TVy standard error of coefficient of varia¬ 

tion, 99-102, 137, 465 

<rrj - V2 difference formula, 148-149, 470 

<Tw _ V, standard error of difference be¬ 
tween any two statistics {see Standard 

error, difference formulas) 

<r%y variance within groups, 283-295, 400- 
402 

iTwiy standard error of stratum weight, 96- 

97, 137-142 

o-xj, standard error of individual multiple 

regression estimate, 467 
<r3f, standard error of mean, 84-89, 133- 

142, 464 

stratified samples, 89-96, 137-142, 

467-468 
{See also specific type of sample) 

difference formula, 118-120, 149, 

408, 469 
erjj, standard error of average multiple 

regression estimate, 393-395, 467 

cy^y standard error of individual simple re¬ 

gression estimate, 391-393, 466 
cy^j standard error of average simple re¬ 

gression estimate, 389-391, 466 

<r„ standard error of z, 382-383, 465 
Sigma/range, table of, 488 

use of ratio, 212-214 

Significance of difference between two 

statistics, 117^., 144-149 
arithmetic mean, 118-120, 149, 408 
coefficient of regression, 388-389 

coefficient of variation, 148-149 
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Significance of difference between two sta¬ 

tistics, general formula, 408n. 

median, 114 

percentage, 121-122, 144^147, 153n., 
408 

standard deviation, 147-148, 408 

Significance level (see Probability level) 
Significance tests, and chi-square and 

variance analysis, 255, 257-260 

for correlation statistics, 380-409 

(See also specific measures) 
and simultaneous decision problem, 

15a-154 

specific tests, 112^. 
application, 144-149 

theory of, 107-112 

(See also Chi-square; Sequential anal¬ 

ysis; Variance analysis) 
Simmons, W., 423 
Simon, H.A., 150n., 422 

Simon, Marji F., 229n., 230n., 424 

Simultaneous decision, problem of, 133, 
149-154 

references on, 422 

Simultaneous equations, means of solving, 

308-310, 327-329, 334-335, 352 354, 
436-441 

references on, 429 

Skewness, measures of, 30-33, 39 

(See also Pearsonian measure of skew¬ 
ness; Third-monent measure of 

skewness) 

Small-size sample, standard error of, 83- 
84, 103 

the mean and the percentage, 87-89 

significance of difference between 

sample and population coefficients 
of variation, 116-117 

between means, 119 

between percentages, 121-122 

the standard deviation, 100-102 
significance of difference between 

sample and population values, 11 fi¬ 

ne 
Smith, B.B., 224-225 
Smith, D.M.K., 423 

Smith, E.D., 423 

Smith, J.G., 414, 415, 419, 421-422, 427, 

428 
Smith, J.H., 427 

Snead, R.P., 233n., 424 

Snedecor, G.W., 298, 299, 395, 415, 420, 

422, 427, 428, 429, 430, 513n., 520m., 

52371. 
Squares and square roots, table of, 477-482 
Standard deviation, computation of, 28, 29 

definition of, 28 

derivation of computational forms, 445- 
446 

of a population characteristic, 55 

of regression, 316-313, 322-323, 329 

330, 334 

multiple correlation, 355-357, 376- 

377, 379 

sampling error of, 391-395 
significance of, in sequential analysis, 

172-174, 473 

and simultaneous decision problem, 

151-153 
standard error of, 99-102, 137, 147-148, 

464 

small-size sample, 100-102 

significance of difference between 
sample and population standard 
deviation, 115-116 

standard-error-difference formula, 

122-123, 470 
units, 34, 35 

usefulness and limitations, 29 

weights for, in sample size estimation, 

194-195 
Standard error, and a priori estimation of 

variances, 212-214 

and asymmetrical confidence regions, 

124-128 
the coefficient of variation, 148-149 

general formula, 408/i. 

the standard deviation, 147-148, 408 
of coefficients of correlation, 3817*., 385- 

386 

of coefficients of regression, 388-389 

definition of, 55-57, 61, 82-83, 102 
in determining sample size and sample 

design, 190-196, 202-209, 248-251 

of difference between population and 

sample statistics, 113-115 

difference formulas, 117^., 144-149 

coefficient of regression, 388-389 

the mean, 118-120, 149, 408 
the percentage, 121-122, 144-147, 

153n., 408 

effect of correlation on, 406-409 
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Standard error, effect of over- and under¬ 

estimation, 112 

inaccuracies in population weights, effect 

of, 95-97, 137-142 

of the mean, reduction due to correla¬ 

tion, 389-390, 406-408 

stratified samples, 89-96, 137-142 
{See also specific type of sample) 

unrestricted iample, 84-89, 133-142 

of the median, 98 

of the percentage, stratified samples, 

89-96, 142-144 

{See also specific type of sample) 

unrestricted sample, 86-89, 136-137, 

266 

and random selection, 220-223 

{See also Sequential analysis) 

of regression-line estimates, 389-395 
and sample design, 66-67 

and significance tests, 108^. 

in simultaneous decision problems, 151- 

152 

of small-size sample, 83-84, 136 

of the standard deviation and coefficient 

of variation, 99-102, 137 

small-size sample, 100-102 
when two complementary methods of 

data collection are used, 432-435 

Standard error of estimate, 310ai. 

multiple regression, 393-395 

simple regression, 389-393 

Standardized regression coefficients, 364- 

365, 367 

Stanton, F.N., 51n., 146n., 244n., 252, 

426 

Statistics, definition of, 12, 38 

Statistical Abstract of the United States, 

236n., 351n. 

Statistical Research Group, 155w., 162n,, 

163, 196, 415, 422, 509n., 51 On. 

Statistical significance, and chi-square, 

258n. 

definition of, 57, 64 ^ 

examples, 58, 59 

and sampld size estimation, 196 

and simultaneous decisions, 151-154 

tests, purpose of, 57 

and variance analysis, 279-294, 395-402 

Statistical texts, general references on, 

414-416 

Statistics, definitions, 11, 38 

distinction between population and 

sample, 12 

Steele, E.A., 316 
Stephan, F., 424 

Stratified sampling, determination of 

sample size, 193-195 
division of sum of squares, 294-296 

in relation to other sampling techniques, 

197-201 

relative efficiency, 97-98, 142, 298-299 

and sequential analysis, 181-183 

significance of difference between means, 

120 
between percentages, 122 

for two complementary methods of data 

collection, 434-435 

types of, 71-78 
{See also Area sample; Disproportion¬ 

ate sample; Proportional sample; 

Quota samples) 

Suchman, E.A., 244n., 426 
Sum of squares, derivation of computa¬ 

tional forms, 447-448 

multiple correlation, 353-354, 369-370, 

376-377 
simple correlation, 308-312 

variance analysis, 283-286, 288-296, 

395-399 

Summation signs, interpretation of, 442- 

444 

reference on, 414 

Surface, F.M., 5w., 416 

Systematic selection of sample members, 

226-228 

T 

t distribution, 83-84, 103, 383-385, 389 

table of, 487 

t statistic for significance of correlation, 

384-385, 387 

T ratio, application, 115, 118-119, 122, 

145, 146, 195-196, 266, 383-384, 388 

and asymmetrical confidence regions, 

124-125 

description of, 111-114, 128-129, 144 

T statistic. 111#., 469 
Tabular and graphic presentation, refer¬ 

ence on, 414 
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Tabulation, 51-53 

references on, 419 

Tallying {see Tabulation) 

Telephone calls, complementary use of, 
251 

for gathering sample data, 236-238 

Tepping, B.J., 424 
Testing hypotheses, 41, 54, 104-130, 144- 

149 

basis for, 57-59 

and correlation, 316, 383-389 

references on, 421-422 

by sequential analysis, 156-159 

{See also Signihcance tests) 

Tests of significance {see Significance 
tests) 

Tetrachoric correlation, 343 -344, 345 

references on, 428, 429 
significance of, 387 

Third-moment measure of skewness, com¬ 

putation, 32 

definition of, 31, 39, 459 
derivation of computational form, 446 

Thomsen, F.L., 417 

Thiirstone, L.L., 344w. 

Time, effect of, on mail questionnaires, 
246, 247 

Time magazine, 147 

Time trends, effect of, on errors of pre¬ 

diction, 393 

in sequential analysis, 176n. 

{See also Correlation, serial) 

Tippett, L.H.C., 224, 226n., 414, 424 

Trigonometric functions, table of, 485 

Two-way classification, variance analysis, 

286-294 

Type I and type II errors, 110-111, 120- 

127 

in sequential analysis, 161, 162 

U 

u, 169-170, 179-180 

U distribution, 17, 18, 29 

Udow, A., 146n. 

Unexplained variance, 310-315, 346, 356- 

357, 359, 395-399 

Unimodal, 26, 39 

Unit lags, 403n. 

Univariate analysis, definition of, 13 

641 

Unrestricted sampling, advantages and 

limitations, 197-198, 201 

and complementary methods of collect¬ 
ing data, 247-251, 432-434 

definition of, 69, 102 

determination of sample size, 190-193, 

195-196, 203-209 
standard error, of the mean, 84-89, 133- 

136, 140-144, 149 

of the percentage, 86-89, 136-137 

standard-error-difference formulas, 117 

the coefficient of variation, 123 

the mean, 118-120 

the median, 122 

the percentage, 121-122 

the standard deviation, 122-123 

theory of, 69-71 

V 

7, coefficient of variation, 30, 39 

standard error of, 99-100, 116-117, 

123, 148-149 

Vi, 1 - Wi, 207-209 

Van Voorhis, W.R., 387, 415, 421, 426, 

427, 428, 429 
Variable cost, 210-212, 242, 247 

Variables, continuous, 11, 38 

definition of, 11, 12, 38 

discontinuous or discrete, 12, 38 

significance of, sequential analysis, 167- 

168, 170-172, 472-473 

application, 177-179 

Variance, a priori estimation of, 212-214 

between classes (or groups), 283-295, 

400-402 

within classes (or groups), 283-295, 400- 
402 

computation of, 28, 29 

definition of, 28, 458-459 

derivation of computational forms, 445- 

446 

explained and unexplained, 310-315,338 

{See also Variance analysis) 

proof of identity between components, 

449-450 

of the regression line, 212n., 310-315 

multiple regression, 355-357, 376-377 

in sampling analysis, 390-395 

Variance analysis, applications, 282-296 
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Variance analysis, and copy research, 8 

in correlation problems, 395-402 

intraclass correlation, 399-402 

and design of experiments, 296-300 

list of formulas, 474-475 

references on, 426-427, 429-430 

relationship to other significance t^ests, 
255, 257-260 

theory of, 279-282 

W 

Wiy relative size of stratum t, 89-91, 94, 

120, 122, 138-141, 193-194, 205 -209 

Wald, A., 155w., 422 

Walker, H.M., 414-415, 444 

Wallis, W.A., 509n., 510n. 

Waugh, A.E., 415, 417, 422, 428, 477n., 

485n., 486n., 507n. 

Waugh, F.V., 428 

Wax, M., 423 

Welch, B.L., 422 

West, Donald E., 133n., 153n., 264rt., 270a. 

Wire recorder, 234 

Womer, S., 137?^ 

X 

X\e {see Regression analysis, multiple) 

Xoi X\ arbitrary values of X, 22-23, 

28-29, 32, 34, 134-135, 320-323 

X (see Arithmetic mean) 

Y 

Ye {see Regression analysis) 

7', arbitrary values of 7, 320-323,339-341 

Yates, F., 424 

Yoder, D., 414, 417, 421, 427 

Yule, G.U., 224n., 327n., 415-416, 417- 

418, 422, 424, 427, 428, 429 

Z 

z transformation, 381-385 

table of, 522 

Z transformation, reference on, 429 

for testing significance of multiple cor¬ 

relation coefficient and of correla¬ 

tion ratio, 385-386 

Zeisel, H., 9, 414 

Zero-order correlation coefficients, 357-363 








