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PREFACE 

Vakiational methods give us the simplest and most direct 
means of unifying those branches of mathematics which are 
(‘ommonly classified under the heading of A])plied Mathematics. 
They are the source of siu^h fundamental theorems as the 
ITinciple of lAnist Action and its various generalizations, with¬ 
out which a complete understanding of much of the recent 
revolutionary develo})ments of Mathematical Physics is hardly 
possible. 

Most third year students in honours mathematics should be 
able to master the ideas and techniques of the t'alculus of Varia¬ 
tions. During my many years of teaching at London University 
I felt that none of the existing texts covered the subject as I 
would like to teach it and so I undertook the task of writing 
one of my own. For the undei‘standing of this book a know¬ 
ledge of partial differentiation and differential equations will 
suffice. 

In my ()pini<ui the value of most honours courses in mathe¬ 
matics would be gre^atly enhanced by the inclusion of at least 
tlic elements of the ('alculus of Variations. But. considering the 
overburdened state of most curricula, this may be too much to 
expect at present. 

After the first two chaptei's. which deal with the first and 
s(*cond variation of an integral in the simplest ease, the reader 
can follow his own inclinations, if his interests lie in the domain 
of Pure Mathematics he can proceed to Chapters III and IV 
(generalizations, i.soperiinetrical j)roblems) or to \TII.IX,and X 
(variable end points, strong variations). If he finds A])]>lied 
Mathematics more congenial ('hapters V, VI, and VII (least 
a(‘tion, special relativity, Rayleigh Ritz principle, elasticity) 
will prove more interesting. 

The (’alculus of Variations possesses an exten.sive literature, 
mostly of a highly specialized nature. It is j>orhai)s unnecessary 
to enumerate all the works to which I am indebte<l because, lus 
far as is jiossible, I have indicated any source from which I have 
borrowed by a reference in the text. In ])articular 1 should 
like to exjiress my indebtedness to the classical works of (*. A. 
Bliss, 0. Bolza, C. ('aratheodory, A. R. Forsyth, and J. Hada- 
mard, 

C. F. 
M('(iiix University 

Montreal 
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CHAPTER I 

THE FIRST VARIATION 

1.1. Introduction 
The calculus of variations has ranked for nearly three centuries 

among the most important branches of mathematical analysis. 

It can be applied with great power to a wide range of problems 

in pure mathematics and can be used to express the fundamental 

principles of applied mathematics and mathematical physics in 

unusually simple and elegant forms. 

The problem of finding points at which functions of one or 

more variables possess maximum or minimum values is familiar 

to all students of the differential calculus. In the calculus of 

variations we deal with the far more extensive problem of finding 

functional form.s for which given integrals assume maximum 

or minimum values. In the language of geometry, we may say 

that this calculus deals with the problem of finding paths of 

integration for which integrals admit maximum or minimum 

values. 

As a simple example consider the problem of finding the 

shortest distance between two points A and J5, a problem whose 

intuitive answer is the straight line joining the two points. If s 
denotes the length of arc measured from A along any curve 

joining A and B, the problem becomes that of finding the curve 
B 

for which J is a minimum. The calculus of variations obtains 

the answer by analytical methods and shows that the curves 

which render this integral a minimum have equations of the 

form y = mx+c. Apart from this example, intuitive answers 

to problems of this nature are almost non-existent. The methods 

of the calculus of variations therefore form a most useful addition 

to the domain of mathematical analysis. 

Problems which can be solved by means of this calculus arose 

in classical times and perhaps even earlier. Grants of land, 

which could be completely encompassed by furrows ploughed 

in a specified time, were sometimes made as a reward for 
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exceptional military or civil achievement. Thus arose the prob¬ 

lem of finding the form which a plane curve of prescribed length 

must assume in order to enclose the greatest possible area (the 

isoperimetrical problem). Problems of this nature were dealt 

with largely by intuition or experiment and no progress was made 

towards a theoretical solution until the middle of the eighteenth 

century, when the researches of Bernoulli, Euler, and Lagrange 

first appeared. 

1.2. Ordinary maximum and minimum theory 

Before considering maxima and minima of integral forms we 

recall briefly the theory used in elementary calculus to find the 

maxima and minima of functions of a single variable. 

Let f(x) denote a continuous function of a single variable 

having a maximum or minimum value at — o. Then for a 

sufficiently small < we have at a maximum 

< 0, (1) 
and at a minimum 

/(a-f <)-/(a) > 0. (2) 

Taking the maximum case and a.ssuming that f(a + f) can be 

expanded in positive integral powers of c. by Taylor's theorem, 

we have ^ (3) 

W'here, as usual, dashes denote differentiation. The ]..andau 

symbol O has this meaning; 0(<’) possesses the property that 

as ( tends to zero the quantity e~^0((*) is bounded. From (1) 

and (2) at a maximum or minimum the sign of /(a-f e)~/(a) is 

independent of that of < and so from (3) we must have f'(a) == 0. 

Thus the values of x which make f{x) a maximum or minimum 

can be found by solving the equation / '{x) — 0. 

From (1) and (3) it follows that at a maximum/'(a) is negative 

and from (2) and (3) that at a minimum/"(a) is positive. Alterna¬ 

tively at a maximum/'(x) is a decreasing function of x and at a 

minimum it is an increasing function of x. Thus it is possible to 

discriminate quite easily between maxima and minima. 

It is possible, however, that /'(a) = 0 and that /(o) is neither 

a maximum nor a minimum value of /(x). Such a case occurs 
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when / '(a) = 0, /"(a) = 0, and /'"(a) ^ 0, and it is then cus¬ 

tomary to say that /(a) is a stationary value of f{x). In general 

all the roots of f'{x) = 0 are said to give rise to stationary values 

of/(a:). 

These ideas, which are largely based upon common-sense 

notions, are fundamental in the development of the calculus of 

variations. 

1.3. Weak variations 

Our first problem in the calculus of variations will be a rela¬ 

tively simple one. Let 
h 

7 = 1 F(x,y,dyldx)dx, (1) 
a 

where / is a convenient symbol for the integral and F denotes 

a given functional form. The functional relation between y 

and X is not known and the problem consists in finding this 

relation so that / is a maximum or a minimum. In other words, 

given F, find the path of integration for which / is a maximum 

or a minimum. We confine ourselves to the case w^here y is a 

single-valued function of x in the interv’^al (a, 6). 

As in § 1.2 we commence by finding the stationary values of 

I and then proceed to develop tests which enable us to dis¬ 

criminate betw een the cases when / is a maximum or a minimum 

or is neither. 

Evidently the arc of integration must be of such a nature that 

the integral (1) can be determined; such an arc is knovm as an 

admisdbU arc. In some cases discontinuous solutions are pos¬ 

sible, but in this book we shall confine ourselves almost entirely 

to continuous solutions. Subsequent analysis requires us to 

assume that F(x,y,p) possesses partial derivatives with respect 

to the variables x, y, and p of at least the fourth order 

in an interval which includes the points x = a and x = 6. 

This will justify our employment of the mean-value theorem for 

functions of several variables. We simplify the problem appre¬ 

ciably by assuming that a and 6, the limits of integration, 

are prescribed. In addition, although the functional relation 

between y and x is not yet known, we assume that the values of 
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y corresponding to a* == a and x = 6, say <x and p respectively, 

are also prescribed. Geometrically speaking the integral I 

must be taken along a plane curv’^e from the given point A, co¬ 

ordinates (a, a), to the given point coordinates (6,^), as 

shown in Fig. I. 1. 

Fig. I. 1. 

The problem then resolves itself 

into that of finding the admissible 

curve or curves joining A and B for 

which 7 is stationary. 

I^t y -r s(x) (2) 

be the equation of the admissible 

curve for which 7 is stationary and 

(see Fig. 1. 1) let APB be the curve 

whose equation i.s (2). The symbol s 

when used to denote a functional form 

will always refer to the stationary 

case; those investigations in which .h 

is used to denote the length of arc 

of a curve will be sufficiently self- 

explanatory to avoid the possibility 

of confusion, l^t AQB. Fig. I. 1, l>e 

another admissible curve joining A and B and let its equa¬ 

tion be 
y = ^(a-) + €l(x), (3) 

where c is an arbitrary constant independent of x and y and /(x) 

denotes any arbitrary function of x which is independent of c. 

With this restriction on t{z) the ordinate y is said to be subjected 

to weak variations.f The more general case of strong variations 

will be dealt with later. 

In Fig. I. 1 the points P and Q have the same abscissa x and 

PQ = €t{z). Since curve (3) also passes through the points 

A and B we must have 

t(a) == t(b) = 0. (4) 

t Forsyth, Calculus o/ VarUuions, p. S. The variation in y is said to be 
weak if t{z) and t'{x) are of the same order of smallness. Hadamard, Lemons sur 
h Calcul dfjt Variations, chap, ii, introdui^es the notion of neighbourhood to 
clarify the distinction between weak and strong variations. 
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Denoting differentiations by dashes or primes, we have from (3) 

dyjdx = (6) 

Hence, for weak variations, as « tends to zero Q tends to P and 

simultaneously the slope of A QB at Q tends to that of APB at P. 

An example of a strong variation is given by taking 

t{x) — sin(a-/€*). (6) 

Differentiation leads to 

Evidently, as f tends to zero, et{x) also tends to zero and so Q 

tends to P. But €l'(r) oscillates infinitely and the slope of AQB 

at Q tends to no definite limiting direction as Q tends to P. 

The distinction between weak and strong variations is of great 

importance, for, as will be seen later, I may admit a maximum 

or a minimum for weak variations but not for strong ones. Until 

('hapter IX we confine ourselves entirely to weak variations. 

Let the value of the integral (I) when taken along the curve 

APB. for which it is stationary, be denoted by /„and when taken 

along the neighbouring curve AQB be denoted by /, f S/,, 
Then h 

4 I F(x, .V, s') dx (8) 
a 

h 

and /^ f 87,| F{x,s-{-ft,s'+ (t') dx, (9) 

where s. s', t. and (' are abbreviations for s{x), s'(x), t(x), and 

t'{x) respectively. 

The assumption thet F{x,y,p) possesses continuous partial 

derivatives justifies an application of the mean-value theorem 

for functions of several variables. If the derivatives are con¬ 

tinuous up to at least the third order we have 

€<,.«»'-fet') = E(x,8.s')-h€ 
dF . 

es ds'f 

+ 
€*t d*F d*F d*F\ 

donotos denotes ?'>, etc. 
)« ds ds' da 
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From (8) and (9) we finally have 

6 

a 

(11) 

Denoting the coefficient of € by and that of t* by /j, the quan¬ 

tities ill sometimes referred to as the ‘ first variation ’ 

and ‘second variation’ respectively. 

Evidently if /, is a maximum then 8/, must be negative for all 

sufficientlj’ small values of «, whether positive or negative. Hence 

sufficient conditions for a maximum are /j -= 0 and /j < 0. 

Similarly for a minimum value of /, it is sufficient to have 

/j = 0 and 4 > 0. 

1.4. The Eulerian characteristic equation 

The equation /j — 0 is easily modified to a more convenient 

form. Integrating by parts we have 

a \ a 

In the term 
c>F/_ c‘F(a', #,.■(')) 

d«'\ bs' )' 
the variables x and n are treated 

as constants and only the terms are differentiated. In the 

term-^ m. 8 and s' must be treated as functions of x after the 
dx\&s 

partial differentiation with respect to s' and before the differen¬ 

tiation with respect to x. 

Now it has been stipulated that t(a) = t{b) = 0, equation (4), 

§ 1.3, and so the first two terms on the right-hand side of (1) 

vanish. The equation /j = 0 then readily reduces to 

d* = 0. (2) 
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So far no use has been made of the arbitrariness of the function 

t{x). We now proceed to prove that if i{x) is an arbitrary function 

of X, then (2) can be satisfied if and 

only if 
^ ^ d (dF\ 

' ' 0, (3) 
dfi dx\ds'l 

for all values of x between a and b. 

Denote the left-hand side of (3) by 

u{x) and suppose that n(x) is not zero 

at all points of the curve y ^ .s(x) 

from A to B, Let PqI\ (Fig. I. 2) be 

an arc of the curve at all of whose 

points ?/(x) never vanishes, then over 

this arc u(x) must always have the 

same sign, either positive or negative. 

Suppose it is positive, then choose 

/(x) to be zero at all points of the arcs 

and P^B and positive at all 

points of the arc /q A* example along PqPi we may take 

t{x) (x-Xo)(Xi-x), (4) 

where and Xj are the abscissae of Pq and P^ respectively. But 

6 x, b 

j t{x)u{x) dx = j t(x)u{x) dx+ j" t(x)H{x) dx+ J t(x)u{x) dx 
a a if Xi 

(5) 

and so, since t(x) vanishes in the two intervals a to Xq and x^ to 6, 

we have ^ j., 

J t(x)u(x) dx ^ dx. (6) 
a if 

But in the interval x^, to Xp I(x) and t/(x) are both positive, hence 

Fig. 1. 2. 

j* t(x)u(x) dx > 0. (7) 

But this contradicts (2), which in the terminology of this section 

can be written « 

j* t{x)u{x) dx = 0. 
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If instead of assuming that u(x) is positive in the interval Xq 

to Xi we had assumed it to be negative, (7) would have been 

arrived at by means of similar arguments but with the inequality 

sign the other way. In either case the assumption that (2) does 

not imply (3) leads to a contradiction. Consequently, since t{x) 

is an arbitrary function of Xy the truth of (2) implies that 

of (3). 

The discovery of (3) by Euler in 1744 inaugurated the calculus 

of variations in its modern form. It is a differential equation of 

the second order known as the characteristic equation or as 

Euler’s equation. Its solution is the equation of a curve known 

as a characteristic curve or more generally as an extremal. 

In applications of (3) we shall always replace «(.r) by the more 

convenient variable y. The results obtained may then be 

summed up as follows: 
b 

Theorem 1. The integral J /*(x, y, y*) dx, whose end points are 

fixedy is stationary for weak variations if y satisfies the differential 

equation ^ 

cy 
r^\ 

dx \^7 
0. (8) 

In full, this equation is.f 

dF_ c^F _ b^F dy^c^Fdhj ^ ^ 

by cxby* byby dx by*^ dx^ 

The two arbitrary constants in the general solution of (9) can 

be determined from the fact that the extremal must pass through 

the two given points A and B. It is possible for the conditions to 

be satisfied by more than one extremal. 

This theorem simplifies in two cases, case (i) when z does not 

occur explicitly in the function jF, and case (ii) when y does not 

occur explicitly in the function F. 

In case (i) it can easily be verified that (8) integrates to 

(10) 

t Dashen, or primes, here and aubeequently, denote differentiation with 
ra.p«rtto*.e^. 
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where c is an arbitrary constant. For on noting that F is now 

of the form F{y, y') we have 

dp/ -V dy’ 

and 
d 

dx (4^ dy' dF , d /c 

dx dx\dy\ 

(11) 

(12) 

Therefore, on differentiating (10) and using (11) and (12) we 

eF , ,d (ci 
z:: y -y 
('It dx \cy' 

= 0. (13) 

Since y is not in general a constant, y' cannot be zero every¬ 

where and so equations (13) and (8) are equivalent. It is thus 

proved that 
b 

Theorem 2. The integral J F(y,y')dx, whose end points are 

fixed, is stationary for weak variations if y satisfies the differential 

eanation ^ jy 
r-!,'V. = c. (U) 

<^J 

where c is an arbitrary constant. 

In case (ii) where y is not explicit in F it is evident that the 

characteristic equation (8) reduces to 

d /a 
dx \c^y\ 

0, (15) 

which integrates immediately to ^Fjby' = constant. It is there¬ 

fore pn>ved that 

6 

Theorem 3. The integral F(x, y') dx, whose end points are 
a 

fixed, ia stationary for weak variations if y satisfies the differential 

^ = c. (.6) 

where c is an arbitrary constant. 
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1.5. The Legendre test 

From (11), § 1.3, at a stationary value /, of /, we have 

/{'■ 
F F 

~ ™ 4- 2U* - ^ 
ds^ dsds* 

d^F\ 
(1) 

Hence 4 will be a maximum (or minimum) only if the integral in 

(1) is negative (or positive) independently of the choice of the 

arbitrary function t{x). If the sign of 84 does depend upon the 

choice of t(x), then 4 is neither a maximum nor a minimum value 

of /. 

The detailed treatment of the integral in (1) will be postponed 

to Chapter II. In the remaining sections of this chapter we give 

a number of examples to illustrate the use of Euler's equation, 

(8), § 1.4, in practical cases. In order to make our treatment of 

these examples reasonably complete we shall anticipate a result 

proven! in Chapter II, § 2.5. This is 

Theorem 4. Legendre's test. 

If (i) EuUr\s equation (8), § 1.4, i> mtisjied, 

(ii) the range of integration (a,b) is ffufficiently ffniall, 

(iii) the sign of d^F!di/^ is constant throughout this range, 

then 4 « maximum or a minimum value of I according as the 

sign of d'^F dy'^ is negative or positive. 

This result is incomplete since no indication is yet given of the 

full range of integration permissible. A complete test can be ob¬ 

tained only with the help of some extensive investigations 

due to Jacobi which contain ideas rather too difficult for us 

to anticipate here. We shall therefore confine ourselves, in this 

chapter, to the use of the Legendre test and re-examine some 

of our examples in the light of the Jacobi test after it has been 

established in Chapter II. 

The following considerations, while not forming a proof, give 

a certain plausibility to the Legendre test. 

Since i{a) ~ 0, (4), § 1.3, we have 

X 

l(x) = J t'(x) dx. 
a 

(2) 
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Hence, if M ia the upper bound of t'{x) in the interval (a,x), we 

1<(^)I < \x-a\M. (3) 

Consequently, if |6—a| is sufficiently small it follows that 

throughout the interval a ^ x < 6 the magnitude of t{x) is 

much smaller than the upper bound of t'{x). In such a case we 

may expect the dominant term in the integrand of (1) to be 

/ 
* 

1.6. Illustrations of the theory 

Example 1. To find the shortest distance between two given 

points a4 and H. 

We shall restrict ourselves to the case where all the curves 

considered lie in a fixed plane through A and B and leave the 

more general case to a later discussion. 

If APB is any curve in a fixed plane through A and B and if 

A’ -- arc AP. then the problem resolves itself into that of finding 

the curves for which the integral 

B 

/ - fd.s (1) 
A 

is a minimum. Now 

and so (1) can be replaced by the equation 

A 

I is now reduced to the form given by (1), § 1.3, and Euler’s 

equation can be applied directly to it. We have here 

nr..y.y') - (1+y'*)*- (4) 

Since y is not explicit in F we can use theorem 3, § 1.4, and the 

characteristic equation, (16), § 1.4, is then 

constant. (6) 
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Therefore y' is constant and by integration we obtain the family 

of straight lines y =. mx+n, (6) 

where m and n are arbitrary constants. If the coordinates of 

A and B are given, the values of m and n can be found uniquely. 

In order to apply the Legendre test, from (4) we have 

= . -A =.V . (7) 
(!+»«*)• 

If the positive value of the root is taken, the sign of is 

always positive. 

If the length of .45 is sufficiently small, then the straight lino 

AB is the shortest distance between A and B. But we cannot 

determine at present the maximum distance between A and B 

for which this is true. In § 2.9 the Jacobi test will tell us that 

the result is true for all values of the length of AB. 

If instead of using theorem 3, § 1.4, use had been made of 

theorem 1, the characteristic equation would have been 

which easily reduces to 

j'-_ = 0. (9) 

This tells us that at all points on the shortest distance the 

curvature is zero. 

Example 2. Find the shortest distance between two points 

A and B using polar coordinates instead of Cartesians. 

With the usual notation for polar coordinates we have 

d/<^ -- dr^ + r^dO^ (10) 

and so the problem becomes that of finding the curve which 

minimizes the integral 

(12) 
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Either of these forms for I will do. But (11), in which r is the 

independent and 6 the dependent variable, is more convenient 

since 6 is not explicit and we can then use theorem 3, § 1.4. The 

characteristic equation 

r^ddldr) 

{i'+r^dd/drf}i 

is easily reduced to 

' * 1. (14) 

constant (13) 

This integrates to 

r^'(r2~c2) dd 

c = r8in(0+a), (15) 

(X constant, which is the polar equation of a straight line. 

An application of the i^gendre test, § 1.5, shows that the 

conditions for a minimum are satisfied. On using (8), § 1.4, it 

can be shown that at all points of the shortest distance the 

curvature is zero, in agreement wdth the result of example 1. 

1.7. Application to statical problems. Thecatenary 

The calculus of variations can l>e usefully applied to a large 

variety of problems in statics. 

One of the most important concepts in statics is that of poten¬ 

tial energy. A system of bodies in a field of force possesses 

energy of position. This is defined as the work done by the field 

in moving the bodies from one configuration. P say, to a standard 

configuration O (O may be a configuration in which all the bodies 

are scattered to infinity). If the field is a conservative one, then 

the work function so arrived at is independent of the path from 

P to O and the work function is then known as the potential 

energy of the configuration. This is the case to which we shall 

confine ourselves. 

Hp, the potential energy, possesses the following properties. 

The forces of the field can be derived from MJ, by partial differen¬ 

tiation. If Wp is stationary then the system is in equilibrium, 

and if Wp is a minimum then the equilibrium is stable. For 

proofs of these and other properties of the reader is referred 

to treatises on statics, f 

t Huuth* Analytical Statical vol. i, ohap. 6; Ixiney, Statics, § 175. 
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This stationary property of the potential energy is one to which 

the calculus of variations can be applied with great effect, as 

the following example shows. 

^ g Example 3. Two small smooth 

horizontal pegs are fixed at the 

points A and B, The pegs are per¬ 

pendicular XoAB and the projec¬ 

tions of *4 and B on a horizontal 

table are .4^ and B^ respectively. 

A thin heavy uniform flexible rope, 

with its ends coiled at and B^, 

passes over the pegs and, between 

A and B, hangs in equilibrium 

under gravity. Determine the form 

of the curve in which the ro|>e 

hangs (see Fig. I. 3). 

Evidently the potential energy' of the vertical parts of the 

rope, AJj and BB^, is constant however the curve between the 

pegs is varied. It can therefore be ignored in the following 

analysis. 

If m is the mass per unit length of the rope and y is the height 

of the elementary arc ds above the table, then the jwtential 

energy of the part of the rope hanging between the pegs is 

p 
I mgyds. (1) 

A 

Hence in a position of equilibrium this integral must be a 

minimum. On using ds^ -- dx^^dy^ and ignoring the constant 

factor mg it follows that we must minimize the integral 

B 

I j y(l+y'*)^ dx. (2) 
A 

Here F{x,y,y') — and x is not explicit in F, hence we 

may use theorem 2, § 1.4. The characteristic equation is 

(3) 
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where c is an arbitrary constant. This simplifies to 

y'2 - (yVc^)-h 

which is easily integrated to 

y = cco8h|--^-j, (4) 

where b and c are arbitrary constants. (4) is the equation of a 
catenary whose directrix is the line ^4^ JBj. 

The constants 6 and c can be calculated if the coordinates of 
two points on the catenary are known, e.g. the points A and B, 
For simplicity let the coordinates of the j>egs be (—h,k) and 
(A, A), where A and k are positive. Then 

k = * r cosh I—=== ccosh|—-j, (5) 

from which it follows that 6 = 0 
and , 

rcosh ==A, (6) 
c 

the lost being an equation for c. On 
putting A = cx, equation (fi) can 
be solved by finding the intersec 
tion of the curves 

y = cosh.r and y = kx h. (7) 

Fig. I. 4 shows the curve y = cosh .r 
together with one of the tangents 
which passes through the origin. 
Denote the angle between the 
ar-axis and this tangent by a (oc = 66® 28' = 0-9855 radians 
approximately), then the curves (7) 

(i) do not intersect if A/A < tana, 
(ii) touch at one point if A/A = tana, 

(iii) intersect at two points if A/A > tana. 

In case (i) no catenary can be drawn through A and B having 
A^ Bi as its directrix, in case (ii) one such catenary can be drawn, 
and in case (iii) two such catenaries can be drawn. 

Fio. I. 4. 
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In order to apply the Legendre test we must find the sign of 

^_y_ /g) 
ay'* (l+y'*)»’ 

From (6) and (4), it, c, and y must have the same sign and so y 

is always positive. For the positive value of the root, it follows 

that I admits a minimum when the rope hangs in the form of the 

catenary (4), provided that the arc ylB is sufficiently small. 

In the next chapter, § 2.13, the Jacobi test will tell us that only 

for the larger of the two values of c in case (iii) is there a minimum; 

for the smaller of the values of c in (iii) and for case (ii), (1) has 

stationary values which are neither maxima nor minima. 

1.8. Applications to dynamical problems 

The calculus of variations can be applied with great power to 

problems in dynamics. Consider a particle of mass m moving 

under gravity and let its coordinates at time t be (x. y). where 

X is measured horizontally and y vertically upwards. Its 

equations of motion are 

rny —mg, wix = 0, (1) 

where, as usual, dots denote differentiation w'ith respect to t, 

the time. Denote the kinetic energy’ of the particle, in»lx*-f «/*), 

by T; the potential energy, mgy, by V and let 

L — T—V— ^m{x*-iy*)—mgy. 

by virtue of (1). But remembering that x is constant and using 

t as the independent and y as the dependent variable, it follows 

from theorem 1, § 1.4, that (2) is the characteristic equation for 

the integral 

I = f Ldi. (3) 

Thus for the motion of a particle under gravity and according to 
Newtonian laws of motion / is stationary. 

This is a special case of Hamilton’s principle, one of the most 
fundamental principles in applied mathematics (discovered 
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about 1834). Hamilton’s principle states that if L = T~V, 

where T is the kinetic and V is the potential energy of a system, 

then ,, 

j Ldt. (4) 
u 

taken between two fixed values of the time Iq and is stationary 

for a dynamical trajectory. 

In more detail, let a system describe a dynamical trajectory 

from configuration A to configuration B under given forces 

(e.g. a particle P describes a parabolic path from ^ to B in the 

earth *8 field). Consider the case when smooth constraints, which 

do no work, are imposed so that the system is compelled to pass 

from A to B along a neighbouring path in the same interval of 

time (e.g. the particle P is constrained to pass from A to B by 

sliding along a smooth vertical curve which deviates slightly 

from the actual trajectory under gravity). Then (4) is stationary, 

and frequently a minimum, for the actual dynamical trajectory. 

This principle will be proved in its most general form in 

Chapter V; in this chapter we shall illustrate it with a few^ 

examples. If the forces are conservative, then T+ V is constant % 

during the motion and Hamilton’s principle reduces to the 

principle of least action, which states that 

2\ Tdt (5) 
4 

is stationary for a dynamical trajectory. The integral (6) is 

called the action. This principle was announced by Maupertuis 

in 1744, but the first mathematical proof was given by Euler. 

v^XAMPLE 4. To find the trajectory of a particle moving under 

the earth’s gravitational field. 

On writing T and vdt (rftv/rf/) dt ^ ds in (5) and 

ignoring the constant factor m we have to minimize the integral 

B / = J D (6) 
A 

If u is the initial velocity and g denotes the acceleration of 
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gravity, then where y is measured upwards. Also 

ds^ = Substituting in (6) we have 

H 

/ = J (u*—2yy)*(14-i/'*)* (fx. (6a) 
A 

Yieve F(Xyy,y) — (w*—2^y)*(l-f y'®)* and since .r is not explicit 

we may use theorem 2, § 1.4. The characteristic equation then 

(„<-2SW)l _ ^ ,,, 
( f+V’)* “ 

where c is an arbitrary constant. On solving for y' this is easily 

integrated to (/(x-d)'^, (8) 

where c and d are arbitrary constants. (H) is evidently the 

equation of the well-known parabolic trajectory of elementary 

dynamical theory. 

It is worth noting that if y is taken as the independent variable 

instead of x then (7) could be obtained a little more easily from 

theorem 3. § 1.4. This is left as an exercise to the reader. 

To determine whether 1 is a maximum or a minimum it is 

best to go back to the form (5), where t is the independent 

variable and y the dependent one. Noting that x is constant, 

the Legendre test of § 1.5 then depends upon the sign of r*T/th/*. 

Now T — |w(x*-f i)*) and so b^Ticy^ -- m, which is jiositive. 

Hence for a trajectory with a sufficiently small arc the action 

is a minimum. For the maximum permissible length of this arc 

see §§ 2.10 and 2.14, where the Jacobi test will be applied. 

If the coordinates of the end-points A and B are given, then 

on substitution in (8) it is possible to evaluate the two arbitrary 

constants c and d. In general there are tw'o trajectories through, 

A and B; for example if the coordinates of A are (0,0) and those 

of B are (a, 0), the equations of the two trajectories are found to be 

g{x*—ax)+2yc^ .= 0, (9) 

where 2c* — gr*a*)L (10) 

This agrees with elementary theory in which it is shown that 

for every given horizontal range and given speed of projection 

there are two possible trajectories provided that m* > ga. 
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In its most general form Hamilton’s principle contains the 

whole of dynamics within its scope. Not only is it elegant in 

theory but the ease with which the variables in the integral (4) 

can be changed gives it great flexibility in practice. 

1.9. Applications to optical problems, paths of minimum 
time 
Consider the problem of finding the path of a ray of light (or 

of a particle) which passes from A to jB in minimum time. We 

shall confine ourselves to the case of isotropic media. If P is a 

point in an isotropic medium, then the physical properties of the 

medium at P are the same in all directions from P and are 

therefore functions of the coordinates (x, y, 2) of P (whereas in 

an anisotropic medium, such as a crystal, the speed of light 

at P would vary with the direction of the ray). To simplify the 

analysis we shall also confine ourselves to plane paths, although 

this is not essential. 

l^et fi be the inverse of the speed and ds the element of arc at the 

point P, then the time taken to traverse ds is p ds, where p is b, 

function of the coordinates of P only. The problem then resolves 

itself into that of finding the path for w hich 
B 

(1) 
A 

is a minimum. On using ds^ dx^+dy^ we must then minimize 

the integral ^ 

/ = J M>+yi)* (2) 
A 

where = dyjdx. From theorem 1, § 1.4, the characteristic 

equation is ^ \ 

This equation is capable of a simple but important physical 

interpretation. If the tangent to the minimum path makes an 

angle 0 with the z-axis, then from elementary theory we have 

(l+yf)* = ds/dx and yi/(l+yf)* = sin^. Equation (3) is then 

easily reduced to 
dfi 

(4) 
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Now this equation represents a geometrical property of the 

minimum path which is independent of the choice of axes. 

Therefore its interpretation can be obtained by using any con- 

venient system of axes. The most convenient system is chosen 

as follows. 

Since ft is a function of x and y only, the equation 

ft = constant (6) 

is that of a plane curve and by varying the constant we get a 

family of curves which w ill be called 

lerel rwnw. If is one-valued, then 

through any point there will be only 

one level curve (if ft is many valued 

the same will be true if one branch 

of ft is adhered to and branch points 

are avoided). If 0 is a |K)int on the 

minimum path, let us take it as the 

origin and the normal and tangent 

to the level curve through it as the 

X and y axes respectively. In Fig. I. 5 

the level curve is drawn as a con¬ 

tinuous line and the minimum path 

as a discontinuous line. 

Now at 0 the tangent to the curve (5) is [)erpendicular to the 

a:-axis, hence — mu.st be infinite and so -- o. Equation 
dx/ dy iy 

(5) then becomes . 
^(psiniA) - 0, (6) 

i.e. there is no variation in yHiinIt on travelling a small distance 

ds along the minimum cur\^e. In other words, if at a point of 

intersection of the level curves ft == constant and the path of 

minimum time the angle between the normal to the former and 

the tangent to the latter is then 

ftsin^ ^ constant (7) 

for all points along the minimum path. 

For a ray of light ft, which is inversely proportional to the 

speed, n|ust be directly propf>rtional to the refractive index of 
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the medium through which the ray is passing. Equation (7) is 

then a statement of Snell’s law of refraction. 

C/onversely from Snell’s law of refraction it follows that in its 

passage through isotropic media a ray of light moves from one 

point to another in stationary time. 

With more elaborate analysis these results can be extended 

to three-dimensional space, j The Jacobi test of the next chapter 

will show that in general the time along an optical path is a 

minimum. 

The Eulerian characteristic equation heus so far been integrated 

in two cases, namely theorems 2 and 3, § 1.4. Equation (7) 

above gives us another case of integration. This important result 

is not restricted to optical theory, as the following dynamical 

example shows. 

For a particle moving in a conservative field of force the 

principle of least action, § 1.9, states that 2 f T rf/ is stationary 
A 

for the actual path. Here 7’ (the kinetic energy) == and on 

writing v dt --- rf.v, and ignoring the constant factor rn the integral 

to be minimized becomes 
B 

[ r ds, (8) 
A 

If V is the potential energy and h the total energy of the particle 

we have 
r -- h. (9) 

Thus (8) can be rewritten in the form 

H 

A 

(10) 

where V is a function of position only. The results of the first 

part of this section then show' that the curves which minimize 

(10) must have the following property. Writing fi — (A—F)* 

in order to correlate integrals (1) and (10), we see that the level 

curves are given by (A—F)* = constant. This is equivalent to 

F ~ constant, so that the level curves are the same as the 

t For«yth. CalcttiuJt of V*ariaiions^ p. 258, 
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equipotential curves of dynamical theory. The interpretation 

of (7) for this case can be stated as follows: 

Let the path of the particle cut an equiix)tential curve at the 

point P and let the tangents to the two curves at P intersect at 

an angle Then 

(A — F)* sin 0 = constant. (11) 

This result, which is true at all points of the trajectory, has been 

obtained without integration. 

In the case of a particle moving in the earth's gravitational 

field V “ wgry, and it can be shown that (11) is equivalent to the 

statement that the subnormal at all points of the trajectorj’' is 

constant, a well-known property of the parabola. 

This idea was applied to djmamics with great effect by Hamil¬ 

ton and enabled him to develop the theory of contact trans¬ 

formations.! It is also found useful in the modern theory of 

wave mechanics. 

^1.10. Geodesics on a sphere 
Consider the family of curves lying wholly on a given surface, 

S say, and passing through two given points, A and B, both 

lying on S. Among these curves there will be one for which the 

length of the arc AB is a minimum and others for which this 

length is stationary. Such curves are known as geodesics. They 

are most easily determined by the methods of the calculus of 

variations, as the following example where S is a vsphere, will 

show. 

(x, y, z) be the coordinates of a point P on a sphere whose 

centre is at the origin and whose radius is a. Then in polar 

coordinates x == a sin 0 cos y == a sin 0 sin ^ and z = acosff, 

where 0 is the colatitude and ^ the longitude or azimuth (Fig. 

I. 6). Evidently 

ds^ = dx*+(iy*d-dz* = a*(<i0*-f sin*® (1) 

and so we are required to minimize the integral 
B 

I = a j 

t Whittaker, Analyiical Difnamic9^ chap. xi. 

(2) 
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where <f>i d<f>ldd and the positive value of the root is taken. 

From theorem 3, § 1.4, it follows that the characteristic equation 

is ^ 
7 (l+<^i8in20)l — constant. (3) 

sin rk. 

This differentiates to 
<^j sin^^ 

(l+(f>l sin^^)* 

where a is constant. Solving for 6^ and integrating we get 

sin at dd 
^+i3- f . J 811 

(4) 

(5) 
sin d(mnW~~sin^cx)^ * 

On substituting 0 ---- tan“'(l;M) in the integral on the right-hand 

side it reduces to r 4^ ^ ^ r tan Cl da 

J (1 —M’-^tan*ok)*' 

Equation (5) now integrates to 

which, on transformation into Cartesian coordinates, gives us 

xcosjS—i/sinjS -- stana. (8) 

This is the equation of a plane through the centre of the sphere. 

Thus the geodesics on a sphere are obtained as the intersection 

of the sphere and a plane through its centre, and so must be arcs 

of great circles. 
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The Legendre test of § 1.6 depends upon the sign of 

(9) 

Since the positive value of the root is taken it follows that /, 

equation (2), admits a minimum for a sufficiently small length 

of arc AB, The maximum permissible length of arc is obtained 

in § 2.9 and § 2.15, where the Jacobi test is used. 

1.11. Brachistochrone 

The following problem, first solved by Bernoulli in 1696, led 

to the foundation of the calculus of variations in its modern form. 

Example 6. A particle slides under gravity from rest along a 

smooth vertical curve joining two j>oints A and B. To find the 

cur\’e in which the time from A to B is a minimum. A curve of 

minimum time in dynamics is known as a brachistochrone. 

Taking the upi>er point -^4 as the origin and measuring y 

vertically downwards, the velocity at a depth y is (2^^)* and the 

time from A to B is 

where = dyjdx. 

From theorem 2, § 1.4, this is stationary when 

which simplifies to y(J+!/i) — (3) 

On putting tfi — tan^ in (3) we get 

y r(l-f cos2v5-), (4) 

and on writing dx = dycoitp, substituting for dy from (4) and 

integrating we get 

x~a—c(20+8in2^), (6) 

where a and c are arbitrary constants. Equations (4) and (5) 

are evidently the equations of a cycloid in the usual parametric 

form, with 2^ as the angular parameter and c as the radius of the 

generating circle. The generating circle rolls on the horizontal 

line through A which lies in the vertical plane through AB. 
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On substituting the coordinates of A, (0,0) in (4) and (6), we 

get ^ and a = cn. On substituting the coordinates of B 

in (4) and (6) and eliminating tfi the values of a and c are then 

easily found. 

The Legendre test of § 1.5 depends upon the sign of 

^ _I_ (6) 

On taking the positive value of each root it follows that the 

integrals of (1) admit a minimum for a sufficiently small arc of 

the cycloid. 

1.12. Minimal surfaces 

Example 7. Given tw'o points A and B and a line I which 

intersects AB produced. I^t denote the plane through A, 

B, and I. To find the curve joining A and B which lies in the 

plane w and w^hich. on rotation about / through four right angles, 

generates a surface of minimum area. 

If ds is the element of arc of a curve joining A to B and y is 

its distance from /, then the area generated by rotation about I is 

2njyds. (I) 

The problem of minimizing this integral has already been 

dealt with in § 1.7 and the solution is therefore given by (4), 

§ 1.7. Thus (1) is minimized by the curve whose equation is 

y (2) 

where 6 and c are arbitrary constants. This is a catenary whose 

directrix coincides with the axis of rotation. 

The analysis of § 1.7 applies completely to the problem of this 

paragraph. If for simplicity the two points A and B have co¬ 

ordinates (h,k) and (—/«,!•), where h and k are positive, and if 

k > h tan a (where a = 66° 28'), then there are two real values of 

c satisfying the equation 

ccosh- ==k. (3) 
c 

and for the larger of these values of c there will be a minimum. 
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The surface generated by the revolution of a catenary about 

its directrix is a special case of a class of surfaces known as 

minimal surfaces. A more general discussion of these surfaces 

will be given in § 3.11. 

1.13. Principle of least action. Inverse square law 

y*Example 8. A particle of mass m is attracted towards a 

fixed point O by a force of magnitude where ^ is 

constant and r is its distance from O. Show that the orbit of 

the particle is an ellipse, one of whose foci is at 0. 

On using the principle of least action, §1.8, we must minimize 

the integral 
2 I Tdt. (I) 

where T (the kinetic energy) == On writing v dt ■==- ds in 

(1) the integral is transformed to 

m j r d^. (2) 

We first find v in terms of r by using the potential energy. 

This is the work done by the field in displacing a unit particle 

to some convenient standard i>08ition. At a point distant r from 

O the potential energy is 

ao 

Hence, from the conservation of energy, we have 

Jmt'*—TO - = constant, (4) 

or, in more convenient form. 

■C-i)- (6) 

where a is constant. On using polar coordinates, for which 

dr^+r^ and ignoring the constant factor mV/n, (2) 

becomes /o i\i / 
(«) 
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Taking r as the independent and d as the dependent variable 

this integral can be minimized by using theorem 3, § L4, the 

characteristic equation being 

/2 lU r^idd/dr) 

\f a) {l+r^(dd/dr)^}^ 
= constant = c*. (7) 

Solving for dOjdr we have 

dd ^ (ac)^ 

dr r(2ar-~r*—ac)** 

On transforming to a new variable u, where r = c/u, this is 

easily integrated to 

?= l + |l-fj*co8(0+j3). (9) 

where jS is another arbitrary constant. For real results we must 

have c < a. 

The orbit is therefore a conic having O as a focus with eccentri¬ 

city (1 —cja)K In (7) c* must be real and so c must be positive. 

Hence (9) is an ellipse, parabola, or hyperbola according as a 

is p<jsitive, infinite, or negative. On applying this result to (5) 

we obtain the velocity formula appropriate to each type of orbit. 

The Ivegendre test tells us that the action is a minimum for a 

sufficiently small arc of the orbit. The details of the analysis are 

left to the reader. For the permissible length of this arc see 

§2.16, where the Jacobi test is applied. 

1.14. Principle of least action. Direct distance law 

Example 9. A particle of mass m is attracted towards a 

fixed point 0 by a force mfir, where fi is constant and r is its 

distance from O. Show that its orbit is an ellipse whose centre 

is at O, 

By using the potential energy as in the last section, it can be 

shown that (1) 

On using polar coordinates, the principle of least action shows 

that the integral to be minimized is 

J {a*-r«)* jl+r* (2) 
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From theorem 3, § 1.4, the characteristic equation is 

/.* r^dejdr) _ » 
(a*-r»)* 

{l+r*(dd/dr)*}* 

where c is an arbitrary constant. On writing r* = c*/« and solving 

for ddjdu this equation can be integrated. The details are left 

to the reader, the result is 

(4) 

where jS is another arbitrary constant. This is the polar equation 

of an ellipse whose centre is at O, the origin. 

The Legendre test shows that the action is a minimum for a 

sufficiently small arc of the orbit. For the j>ermi8sible length of 

this arc see § 2.17. 

1.15. A Problem in fluid motion 

Example 10. A uniform perfect liquid rotates inside a 

cylindrical container with constant angular velocity o alyout a 

vertical axis. Show that the free surface 

is a paraboloid of revolution. 

Let r and z be the distances of any 

point P of the liquid from the axis of 

rotation and the bottom of the con¬ 

tainer respectively. Consider the liquid 

as made up of a number of elementary 

particles of which one, of mass m, is 

situated at P and apply D'Alembert’s 

principle, which states that the external 

forces and the reversed effective forces 

are in equilibrium. 

For the particle at P the external 

force is mg vertically downwards. The 

reversed effective force (i) is of magnitude mrco*, (ii) lies in 

the horizontal line which passes through P and intersects 

the axis of revolution, (iii) is directed away from the axis 

(Fig. I. 7). The potential function for such a system of forces is 

mjrz—where a is constant. We now sum this function 

for all particles of the liquid situated on a thin cylinder whose 
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axis is the axis of revolution and whose internal and external 

radii are x and x-fda:. The sum is {\pgy^—\px'^y<x)+ay)27rzdx, 

where y is the height from the bottom of the cylinder to the free 

surface and p is the density of the liquid.. On summing for all 

such cylinders the potential energy of the system is then equal to 

b 

J (i/)9y*-Jpa:*yco+ay)27rxdx, (1) 
0 

where b is the radius of the container. 

When the potential energy is stationary the system is in 

equilibrium and when it is a minimum the equilibrium is stable. 

To minimize (1) we have the Eulerian equation 

(2) 

This is the equation of the free surface and is evidently a para¬ 

boloid of revolution. 

Since there is no term containing y' in the integrand the 

I^gendre test cannot be applied. On introducing the variationf 

y .^(x) + €t{x)y as in § 1.3, it is easily found that the second 

variation is ^ 

f iHx)pg dx; 
0 

This is positive, independently of the choice of c and t{x), 

and the jwtential energy is therefore a minimum when the 

free surface is the paraboloid (2). 

1.16. Newton’s solid of minimum resistance 

Example 11. The following problem, propounded by Newton 

in the Principia (1687), was one of the earliest to be solved by 

the methods of the calculus of variations. 

A solid of revolution moves, with constant velocitj’, in the 

direction of its axis in a perfect incompressible liquid. If 

the resistance at any point is proportional to the square of the 

normal component of the velocity, find the shape of the surface 

in order that the total resistance should be a minimum. 

Taking the y-axis as the axis of revolution, the positive 

t The variations must bo such that /(O) =* 0 and 1(6) — 0. A complicated 
mechanUm would be required in order to obtain these results in practice. 
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direction being the direction of motion (B'ig. I. 8), let r denote 

the velocity. If tf/ is the angle between the j--axis and the tangent 

to the meridian curve at the point P, the resistance of the solid 

is proportional to 

J {i!®cos*(jT—d*}cos^ - j c*cos*^27rar <ir, (1) 

the integration being taken along an arc of the meridian curve. 

Since cost/i dx ds and cos^ - 1 .sec^ ~ l,(l4y'*) where 

y' ~ dy'dx, it follows that we must minimize the integral 

I = r (2) 
i 

From theorem 3, § 1.4, the characteristic equation is 

= constant. (3) 

This is best solved in parametric form. On writing c for the 

constant and y' -- p we have 

z=.-(l-rp*)4 (4) 
P 

and y ~ j P dx. (6) 

Substituting for dx from (4) and integrating (5) we obtain 

y = aq-c(--logp-f-p*+jp*). (6) 

Equations (4) and (6) are the required equations, in parametric 

form, of the meridian curve of the solid of least resistance. 
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The Legendre test depends upon the sign of b^Fjdy'^ which, for 

this problem, is equal to 

Hence for a sufficiently small arc there will be a minimum if, 

when X is positive, y' > or y' < — 1/V3. The results, 

however, do not agree well with experiment. 

1.17. Discontinuous solutions 

In the examples hitherto discussed y and its derivatives have 

all been continuous functions of x. Discontinuous solutions are 

also possible in some coses. In these y is defined for every 

relevant value of x and must be continuous, but dyidx. or some 

higher derivative, may be a di.scontinuous function of x. Suppose 

that dy dx is discontinuous at x — x^, then, as x tends to 

dy-dx tends to the limit vi or n m) according as x—x^ tends 

to zero through negative or positive values. At x — x^ the path 

of integration is said to have a corner. Except for the brief 

remarks of this section, such solutions will not be considered in 

this book. 

Discontinuous solutions are generally obtained by joining 

together several continuous arcs, each of which satisfies the 

Eulerian characteristic equation. The corners occur at the points 

of junction. 

We now prove that dFjdy and F—y'(dFjdy') must be con¬ 

tinuous functions of x at all corner points as well as at ordinary 

points, t 
Differentiate the two equations 

JT 

i^F _ !?ld. 0) 
“ , ) i'S 

and (2) 
oy J 

t Sometimes known m the W'eierstrass-Erdmann comer conditions. The 
integral to be minimized is, as usiml. J F{r, y, y') djc and we write 

y* yl ** 
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totally with respect to z. In each case we deduce that y satisfies the 

characteristic equation. Conversely if y satisfies the characteris¬ 

tic equation, then (1) and (2) can be deduced by integration with 

respect to x. From the usual continuity properties of integrals 

it then follows that the expressions on the left-hand sides must 

be continuous functions of x. 

The following example illustrates how these results can be 

applied in practice. 

Example 12. Minimize the integral 

/- /(//'*-ly'rf-r. 

From theorem 3, § 1.4. the extremals are the straight lines 

y - ax-\ b. (4) 

Suppose that a corner exists at x x^ with slopes in and n 

m) on either side. From the continuity of nj we have 

4m(m2-l) - 4n(;i2-_I) (5) 

and from that of F — y{dF cy*) we have 

(m2-*l)-^4m2(m2~~ 1) -- l)2-4n2(yi2 1). (6) 

Since m ^ n we may divide each of these* equations by (w — 

when it follows easily that m — 1 and n = — 1 are solutions. 

Hence the minimizing path of integration consists of a series of 

straight lines making angles ijir with the x-axis. Evidently 

/ ^ 0 so that the minimizing path, for which y' — ± 1, gives an 

absolute minimum. 

Example 13. Minimize the integral 

/ z:r. J (y'—tan.:K)*(y' —tanj3)*dx, 

where ^ and ^ ex) are constants. 

At a comer with slopes m and n on either side, dFjdy* can be 

continuous only if it has the same value for i/ thm for y' = n. 

By Rollers theoremf it follows that b^Fj&y'^ must vanish for 

some intermediate value of y. Therefore no discontinuous 

solutions can exist for a region in which d^FIdy'^ has no zeros. 

t R. (/ourant, Difftrential and InUffral Calculus^ Blackie A Son, vol. I,p. 104. 
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For example, consider the catenary problem of § 1.7. Here 

b'^F __ y 
il) 

Since this has no zero for any finite value of y there can be no 

discontinuous solutions for the problem of § 1.7. 

Similar remarks apply to the least action and brachistochrone 

problems discussed in §§ 1.8, 1.11, 1.13, and 1.14. 

1.18. Characteristic equation an identity 

We conclude the chapter by discussing the case when the 

characteristic e(}uation reduces to a zero identity. 

Consider the problem of minimizing the integral 

J {-’.rv-J (x^-f :.V/2)v'} dx. 

From theorem 1. § 1.4. the characteristic equation 

(>/ dx\dy'J 

becomes (2.r4-(i//?/') —--(:r2+3y2) o. 

(1) 

(2) 

(3) 

On performing the differentiation the left-hand side vanishes 

identically. Evidently the calculus of variations has no applica¬ 

tion to cases of this sort. Instead we must make use of the 

following theorem: 

Theorem o. If the characteristic equation ('!) vanishes identiaiUy^ 

then th4' nidefiniie integral [ F(x, i/. f/) dx can he evaluated as 

a function of x and y, integral has then a value which is 

independent of the path oj integration and which is a function of 

the end point positions only. 

Proof. Supjwse that (2) reduces to a zero identity, then on 

writing out the equation in full we have 

c F_ b^F dy_d^F d^y _ ^ 

by bxbtj byby dx by ^ dx^ 

Since the factor d'\qidx^ occurs only in the last term on the 

left-hand side, if (4) is an identity then d^Fjby*'^ ~ 0, i.e. F can 

contain t/' only to the first degree. Hence F must be of the form 

F -- py'+q, (5) 
&tM& 
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where p and q are functions of x and y only. On substituting 

this in (4) we get 

^ dy^ 
(6) 

Hence dqjdy = dpjdx and so pdy-\-qdx must be a perfect 

differential. 

Let pdy-\-qdx = df(x,y), (7) 

then from (5) we obtain immediately 

\ F{x,y,y')dx=f{x,y). (8) 

It is evident from (8) that the value of the integral must be 

a function of the end points only. 

Example 14. In example 6, § 1.11, find the brachistochrone if 

the particle is projected from A with the velocity (-gh)^. 

Example 15. A plane curv'e is a free orbit under one central 

force and a brachistochrone under another central force to the 

same point, v, are the velocities of the respective particles at 

the same point (although not necessarily at the same time). 

Prove that is constant. 

Example 16. Prove that an ellipse is a brachistochrone for 

a particle moving under a central force to one focus varying 

inversely as the square of the distance from the other focus. 



CHAPTER II 

THE SECOND VARIATION 

2.1. Introduction 

In this chapter we shall deal with the second variation, see § 1.3, 

equation (11). The ideas upon which our study is based are much 

the same as those used in the maximum and minimum theory 

of functions of one variable. If/'(a) — 0, then we can deduce 

at most that f(x) is stationary at x ~ a. Further information 

about the nature of f(a) requires a study of the sign of/'"(a). 

If this is positive (negative), then f{x) has a minimum (maximum) 

value at .r - a, and if/"(«) ™ 0, then derivatives of order higher 

than the second must be considered. 

The corresponding vstudy in the calculus of variations is neces¬ 

sarily much more complex than this. 

2.2. The second variation 

Kecaj)itulating the investigations of the previous chapter, 

especially those of §§ 1.3 and 1.4, we have the following result: 

Let!/ .v(.r) be the j)ath of integration for which the integral 

b 

1 - j F{x.y.y')dx, (1) 

is stationary and let y = ,s{x)-r(t(x) be the path when a weak 

variation is made in y. If 4 and 4+84 are the corresponding 

values of 4 then M, l,+ 0(c^), (2) 

where 4, the second variation, is given by 

6 

€* 

‘>1 

d^F\ 
dx. 

o'.v- tsc.s cs * 
(3) 

Here dashes denote differentiation w ith respect to x and, for 

brevity, t{x) has been replaced by t. 

In order that 4 should be a maximum the sign of 84 must be 

negative independently of the choice of t(x), for all sufficiently 

small (. This requires that the integral of (3) should be negative 
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independently of the choice of t(x). Similar remarks, but with 

changed sign, apply to the case when is a minimum. 

By means of an ingenious artifice, due to Jacobi, this integral 

can be put into a form which shows that its sign depends almost 

entirely upon the sign of d^Fjds'^. The transformation will be 

divided into two stages, each of which will be dealt with by a 

simple lemma. The second of these will introduce the Jacobi 

accessory equation. 

For simplicity the following notation will be adopted: 

dF „ 8F _ ^*F „ t^F „ a*F „ 
(4) 

ds' ~ 
Fv 

dsds' ~ 

so that we have 
6 

h- 
e* 

“ 2! 
J (t^F^+2tt'F,,+t'^Fy,) dx. (5) 

a 

2.3. Lemma 1 

If t(a) = t(b) — 0, then 
6 

a b 

j (1) 

a 

To prove this it is evident that the right-hand side is equal to 
b 

a 

On integrating the negative terms by parts this becomes equal 

to 

J dx-/(/Foi+<'F„)‘:+ f dx. (2) 
a d 

But, by hypothesis, t(a) ~ ((b) — 0 and so = 0. 

Hence expression (2) reduces to the left-hand side of (1) and the 

truth of the lemma is established. 

The conditions ((a) — t(b) — 0 are those stipulated in § 1.3 

in order that t(x) should vanish at the end points of the curve 

APB (Fig. 1. 1). 
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2.4. Lemma 2. Jacobi’s accessory equation 

On solving the characteristic equation (3), § 1.4, the equation 

of the extremal y = ,v(x) which passes through the given points 

A and B can be determined. 

Thus the quantities IIq, *3“ i^oi) all be expressed 
dx 

in terms of x and the differential equation 

== 0 (1) 

can then be solved for u as a function of x. This is an ordinary 

linear differential equation of the second order and is known as 

the subsidiary or Jacobi’s equation or, more frequently, as the 

acce.ssory equation. 

On taking x to be the independent and t i{x)) the dependent 

variable in the integral of 4, (5). § 2.2, it is easily seen that (1) 

is the Euler equation for minimizing with t replaced by u. 

Lemma 2. If t{a) ^ t(b) — 0 and n is a solution of equation (1), 

then ,, 

f (-2) 
a 

where t(x) is denoted by f and, as usual, dashes or primes denote 

differentiation. 

Proof. From lemma 1, we have 

h 

^ J (3) 

and from equation (1) this can evidently be written in the form 

h 

a 

Now by straightforward differentiation it is easily shown that 
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80 that equation (4) can be written in the form 

b 

(6) 

On integrating by parts we have 

But, by hypothesis, t(a) = /(6) = 0 and so the terms not inside 

d It 
the integral vanish. On evaluating equation (7) then 

reduces to (2). 

One point remains to be considered. One of the terms on 

the right-hand side of (7) is pos.sible 

that u{a) or u{b) vanishes. Towards the end of this chapter, in 

§ 2.18, some general properties of the solutions of equation (1) 

will be established, and among them it will be shown that u(x) 

cannot have a double root. Anticipating this result, it follows 

that even if ii(x) vanishes at either or both of the values x = a 

and X = 6, both fi{a)lu(a) and t^(b)lu(b) still vanish since 

Ha) — t{b) ~ 0 by hypothesis. 

Since all the squared factors on the right-hand side of (2) 

must be positive or zero it is evident that the sign of 4 is more 

easily determined from equation (2) than from its definition 

in equation (3), § 2.2. 

2.5. Simple criteria for maxima and minima of /. The 
Legendre test 

The function {V—t(u'ju)Y must always be positive or zero. 

Consider first the case when it is always greater than zero except 

at a finite number of isolated points of the extremal arc AB. 

The difficult but important case when t(x) can be chosen so that 

{Vju)] vanishes at all points of the arc A B will be postponed 

to the next paragraph. 

From equation (2), § 2.4, it is evident that if {Vfu)] ^ 0 

and Fry has constant sign for all points of the extremal arc A B, 
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then /g must have a sign which is independent of the choice of 

either c or f(jr). Now in the stationary case we have 

87, == /,+ 0(e^h 

(2), § 2.2, and so tlie value of / will be a maximum if is 

negative (a minimum if it is positive) at all points of the extremal 

arc AB. This is essentially the Legendre test anticipated in 

theorem 4, § 1.5. 

If, however, /j, does not keep its sign constant at all points of 

the extremal arc AB, then it is easy to show that 7^, the corre¬ 

sponding stationary value of 7, is neither a maximum nor a 

minimum. Suppo.se that is po.sitive for values of x lying 

between a and c, where a < r < 6, and negative for values of x 

lying between c and 6. Then if /(x) is chosen so as to vanish in 

the range a to r and not to vanish in the range c to 6, we see from 

(2), § 2.4 that is negative. On the other hand, if t(x) is chosen 

so a.s not to vanish in the range a to r and to vanish in the 

range c to />. then 72 is positive. Hence if c^F does not 

keep constant sign for all points of the arc A B along the extremal, 

4 can be made either positive or negative by suitable choice of 
b 

t(x) and the integral j F(x,y,y') dx taken along y = .v(x) can be 
a 

neither a maximum nor a minimum. 

2.6. Conjugate points (kinetic foci) 

The possibility that t(x) can be chosen so that 

= 0 (1) 

at all points of the extremal arc AB must now be dealt with. 

The function is known, since it is a solution of the accessory 

equation (1), § *2.4, and equation (1) may therefore be regarded 

as a differential equation for t{x). The solution of this equation is 

t(x) -- cxn(x), (2) 

where <x is an arbitrary constant (assumed other than zero). 

Along an extremal the first variation 7^ vanishes by virtue of 

the characteristic equation, §§1.3 and 1.4. If in addition t{x) 

is chosen so as to satisfy equation (2), then by (2), § 2.4, the second 
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variation will also vanish. The sign of Ig will then depend 
upon the third variation /j, where 

c^F d^F 
^ e6'*a«' 

£)SP g3P\ 

Since the sign of 4 depends upon that of e there can be no maxi¬ 
mum or minimum values of I unless vanishes, in which case 
the sign of §4 will depend upon that of the fourth variation. 
Thus if t{x) can be chosen so as to satisfy (2) we are faced with the 
problem of establishing conditions which ensure (i) that /j 
vanishes and (ii) that has a constant sign independent of the 
choice of e and t{x). In order to avoid these difficult problems 
we proceed to establish a test (Jacobi’s test) which, if satisfied, 
makes it impossible to choose t(x) so as to satisfy (2). Thus when 
Jacobi’s test is satisfied the results of § 2.5 are valid 

The test depends upon the following idea. It has been stipu¬ 
lated in § 1.3 that t{x) vanishes both when x =- a and x b. 
If, therefore, u(x) can be made to vanish at only one of these 
points, say at a: = a and not at x b, then t(x) cannot be chosen 
to satisfy equations (1) and (2) of this paragraph. This leads 
us to the following definition : 

Definition of conjugate points or kinetic foci. Let M(a-), a solu¬ 
tion of the accessory equation (1), § 2.4, be chosen so as to vanish 
at the point Ay where x ^ a. Then all other points on the ex¬ 
tremal y 8(x) at which u(x) vanishes are knowm as points 
conjugate to ,4. In dynamics they are generally known as the 
kinetic foci of A, 

From (1), §*2.4, u{x) is the solution of a second-order differen¬ 
tial equation and is therefore of the form 

u{x) = (4) 

where Uy{x) and n^(x) are independent solutions of (1), § 2.4, 
and /3, and /Sj are arbitrary constants. If u{x) — 0 when x — a, 
then from (4) we have 
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If X is the abscissa of any point conjugate to A, then u(x) = 0 

Hence from (4) and (6) 

Ul(x) McO /g) 
«ij(x) u^(a)' 

This is the equation for the abscissae of all points conjugate 

to the point A (where x = a). It shows that the ratio u^{x)lu2{x) 

is the same for all conjugate points. 

Proceeding with Jacobi's test, suppose that the point B, 

where x 6, is not situated at a point conjugate to A. Then 

u{b) cannot vanish. Therefore, since we must have t[b) = 0, t{x) 

cannot be chosen to be proportional to u(x) for the whole arc ^5. 

In other words, equation (1) cannot hold if B is not conjugate 

to A. 

Let A' be the first point conjugate to A when moving along the 

extremal in the direction from A to B. There are three possible 

cases, as follows: 

Case (i) B lies between A and A\ 

Cavse (ii) B coincides with A\ 

Case (iii) B lies beyond A\ 

In all three cases M(.r) vanishes at A, but in case (i) it cannot 

vanish again at any point of arc ABj in case (ii) it vanishes again 

at B, and in case (iii) it vanishes again at some point of the arc 

AB lying between A and B, 

In case (i) we have u(a) t(a) = 0, u{b) ^ 0, f(6) = 0. 

Hence u{x) cannot be proportional to i{x) at all points of the ex¬ 

tremal arc AB, Therefore we must have (c —> 0 at all 

points of A By except, possibly, at a finite number of points where 

i{x) and t\x) vanish simultaneously. 

Theorem 6. Let y — 8(x) be the equation of the extremal through 
b 

the points A and B for tvhich the integral 7 == J 7’(a:,j/,j/') dx is 
a 

stationary. Let A and A' be two adjacent conjugate points {kinetic 

foci) on the curve. If (i) B lies between A and A' and (ii) d^Fjds'^ 

has constant sign for all points of the arc AB, then for weak 
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variations / is a maximum when is negative and a 

minimum when it is positive. 

This result is due to Jacobi (1837). 

2.7. Case when B does not lie between A and its nearest 
conjugate 
In case (ii), § 2.6, where B coincides with A we have 

u(a) “ t(a) 0 and u(h) ~ f(/j) ~ 0. 

Hence t(x) can be chosen to be proportional to at all points 

of arc^JS. In case (iii), where filies beyond A \ t(.r) can be chosen 

so as to be proportional to u(x) at all points of the arc A A' 

and zero at all points of the arc A'B. In such circumstances, as 

explained in the previous .section, the first and second variations 

both vanish and the sign of §4 depends upon that of the third 

variation, given by (3), § 2.6. For maxima or minima of I the 

third variation must also vanish and the sign of 8/„ will then 

depend upon that of 1^. Such problems are too complex to be 

dealt with in this book and we shall therefore confine ourselves 

entirely to those cases in which there are sutticient conditions 

to ensure the truth of theorem 6. 

The.se problems have been investigated by various mathe¬ 

maticians, and Weierstrass has proved that if B lies bt^yond A' 

then the .stationary values of / are neither maxima nor minima.f 

2.8. The accessory equation 
In order to apply the theory developed so far two differential 

equations must be solved, the characteristic and the acc€*ssory 

equations. The following inve.stigations will show that the solu¬ 

tions of the acce.s.sory equation can be derived from those of 

the characteristic equation by differentiation. 

Replacing s by y and using the terminology of § 2.2, the 

characteristic and accessory e(|uations take the forms 

t Forsyth, Calculxm of VaricUionA, p. 111 et seq. 

and 
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Equation (1) is a second-order differential equation for y 

and its solution is of the form 

y8(x,c^,c^), (3) 

where Cy and are arbitrary constants. We now show that 

dyjdCy and dyjdc^ are solutions of (2). 

Both and Fy contain y and y\ and these in turn contain Cy. 

Hence, on differentiating (1) partially with respect to we have 

^^0 9/ , ^ ^0 ± ^/y'\ ^ q ^4^ 
dy dCy cy' ccy dx \ ay cCy ^ by' bCyj 

We now write 

and (5) 

and make use once again of the terminology of § 2.2, with s 

replaced by y. Equation (4) then easily reduces to (2). Thus 

byjdCy is a solution of (2) and similar arguments show that 

bylbc2 is also a solution. 

From these results we shall make two important deductions, 

the first in the next section and the second in § 2.12. 

2.9. A property of conjugate points 

I^t k be a constant, ^/(r) a solution of the accessory equation 

(2), § 2.8. and .S’(.r,rj,r2) a solution of the characteristic equation 

(1), §2.8. Then the curves 

y Hx.Cy.c^) and y = s(x.Cy.C2) + ku(x) 

intersect at points given by u(x) ^ 0. But if i/(r) vanishes at A 

it also vanishes at all points conjugate to A (§ 2.6). Hence if 

these curves intersect at A they also intersect at the conjugates 

of^. 
Now^ consider two adjacent extremals 

and 

y == 8(x,ry,C2) 

y = s{x,c^+hci,c^). 

(1) 

(2) 

where Sr, is small. Neglecting 0(8cj)* (2) may be written in the 

form . 
y =- 5(a-,c„<-2) + ^8rj. 

dCi 
(3) 
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But in the previous section it was shown that is a 

solution of (2), § 2.8, the accessory equation, and therefore, by 

§ 2.6, if it vanishes at ^4 it also vanishes at the conjugates of .4. 

Hence if (1) and (2) intersect at A they must also intersect at all 

its conjugates. 
Consequently we may conclude that conjugates of A are the 

limiting point of intersection of neighbouring extremals passing 

through .*4. 
As a corollary the following result can be deduced from the 

geometrical theory of envelopes. Ifthe family of extremals pass¬ 

ing through A has an envelope E. then the points of contact of 

E and the extremal through A B are the conjugates of A. 

Some of the examples dealt with in the first chapter can now 

be completed. Consider the problem of finding the shortest 

distance between two points A and exam})le 1, § 1.6. The 

extremals are straight lines and the Legendre test shows that a 

minimum is possible if the length AB is sufliciently small. To 

apply the ideas of this chaptt^r we must first determine the 

conjugates of A either by (6). § 2.6, or by finding the points of 

intersection of AB and a neighbouring extremal. The latter 

method is easier in this case since straight lines through A 

cannot intersect again at any other point. Hence there is no 

point conjugate to A and the straight line is the shortest distance 

between A and B whatever the length of A B, 

Two further illustrations are given by the i)roblem8 of geo¬ 

desics on a sphere, § 1,10, and of optical paths in minimum time, 

§ Id). 

In § 1.10 it is shown that geodesics on a sphere are arcs of 

great circles. If A A' is a diameter of a sphere, then all great 

circles on the sphere passing through A are concurrent at A\ 

A' therefore is the conjugate of A, The I^gendre test of § 1.10 

shows that if the arc of the great circle between A and B is 

sufficiently small then it may be a minimum. The Jacobi test 

shows in addition that if B lies between A and its diametrically 

opposite point A\ i.e. \i AB subtends an angle less than n at 

the centre of the sphere, then the length of the great circle arc 

AB IB a minimum for all curves on the sphere joining A to B* 
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1{ A B subtends an angle greater than n at the centre, then the 

great circle arc AB ’m stationary but is neither a maximum nor 

a minimum. 

In the case of optical paths considered in § 1.9 the conjugate 

of A can be found easily if we confine ourselves to the case of the 

symmetrical optical instrument. If A is not too distant from the 

axis of the instrument, then all rays through A making small 

angles with the axis are concurrent at a point A' known as 

the optical image of A in the instrument. Hence the conjugate 

of A is its optical image, and if B lies between A and its optical 

image A \ the path of a ra\^ of light from ^ to is such that the 

time from to J? is a minimum. 

2.10. Principle of least action 

In example 4, § 1.8, it has been proved, by means of the prin¬ 

ciple of least action, that the trajectory of a particle moving 

in the earth’s gravitational field is a parabola. 

A/' 

M 

A particle is projected from a 

given point A with a given initial 

speed u. If we confine ourselves 

to one vertical plane through A 

and vary the direction of projec¬ 

tion, keeping u constant, a family 

of parabolas will be generated. 

Then it is known that thi.s family 

of parabolas has a parabolic en¬ 

velope whose focus is at A and 

whose principal diameter is the 

vertical through A. For complete¬ 

ness we give a proof of this state¬ 

ment. 

Fig. II. 1 shows a parabolic trajectory through A having S 

as its focus and MM' as its directrix. By elementary theory if 

the angle of projection with the horizontal is a the equation of 

the trajectory is 

2y w*cos®a = 2xu^ cos a sin (1) 

It is easy to show that the height of the directrix of (1) above A 

Fio. II. 1. 
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is v}j2g. Let AS meet the parabola again at let M and AV 
be the feet of the perpendiculars from ^4 and A' respectively to 

the directrix, and let be a rectangle with 

MN - 
Then 

AA' = AS+SA^ - AAI+A'M' - - A\\\ 

Hence the locus of is a parabola with ^4 as focus and A^N' as 

directrix. 

Again the tangent to the trajectory at A' bisects the angle 

Si4'3f' and the tangent to the locus of A' bisects the angle 

hence the tangents at A' to 

the trajectory and to the locus 

of .4' are the same. Summing up 

these results it is clear that (i) 

the envelope of the family of tra¬ 

jectories is the locus of A' (i.e. 

a parabola with A as focus), and 

(ii) that A' is the point of contact with the envelope. Hence 

from § 2.9 A' is the conjugate of .4. 

Now' it is known that if w, the spewed of projection, is sufficiently 

large, then there are two possible trajectorie.s through the two 

points A and B. This is shown in Fig. II. 2. w here .4 PB and AQB 

are the two possible trajectories. I^et the parabolic envelope 

touch APBsit A'a.ni\ AQBaiA". Then .4'and/I"'areconjugates 

of A. Also, Fig. II. 2, it is evident that if B lies inside the arc 

A A' it must lie outside thearc^4i4". Now theresultsof example 4, 
B 

§ 1.8, tell us that the action, 2 j T dt, taken along either of the 
A 

arcs APB or AQB is stationary. The Jacobi test tells us in 

addition that for arc APB the action is a minimum and for 

arc AQB the action is neither a maximum nor a minimum. 

2.11. Thecatenary 

We now consider example J, § 1.7, where it is shown that 

a uniform flexible chain hangs under gravity in the form of a 

catenary. If the pegs from w hich the chain hangs are on the same 
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horizontal level and if their coordinates are (±ih,k), then there 

will be two possible catenaries through A and B provided 

that k > h tan a, where ol ~ 28' approximately. It is also 

shown that the extremals are catenaries whose equations are 

y c cosh(j:/r). These all have the ar-axis as a common directrix. 

It is easy to prove that these catenaries touch the lines 

y -z tan ol((x — 56° 28') for all values of c. This is illustrated 

in Fig. 11. 3 which shows the two possible catenaries through 

A and B and their points of 

contact with these lines at A\ 

B' audA\B\ 

It is evident from the diagram 

that for the upper catenary, 

w’hich corresponds to the larger 

value of r, if lies betw^een A and 

its conjugate point B'. There¬ 

fore for this catenary the poten¬ 

tial energy is a minimum and 

w^e have .stable equilibrium. But 

for the lower catenary, which corresponds to the smaller value 

of r, B lies beyond A", the first conjugate of A. Therefore the 

potential energy of this catenary, although stationary, is neither 

a maximum nor a minimum. Thus for the lower catenary the 

equilibrium is uUvStable. 

This investigation applies also to example 7, § 1.12, where 

minimal surfaces are discussed. 

2.12. Analytical methods for finding conjugate points 

In the previous examples the positions of the points conjugate 

to A have been found either by physical considerations or because 

the envelope of the extremals through A can be found without 

much difficulty. When the conjugate points cannot be found 

easily by such means we must revert to the ideas of § 2.6. There 

we proved the following result: 

If a is the abscissa of the point A and x that of a point con¬ 

jugate to A, then 

u^{x) n^{ay (1) 
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where Ui{x) and «2(^) independent solutions of the accessory 

equation, (1), § 2.4. 
The characteristic equation (8), § 1.4, is a linear differential 

equation of the second order having a solution of the form 

y = (“) 

where Cj and C2 are arbitrary constants. Now it ha.s been shown 

in § 2.8 that and ^yldc^ are both 8olution.s of the accessory 

equation, (1). § 2.4. It follows that (1) can be rej)laced by the 

more convenient result 

ccj W<^'^2/(x a) 

The solutions of this equation are the abscissae of points 

conjugate to A (abscissa a). 

In some applications it is more convenient to use polar co¬ 

ordinates than Cartesians. If the vectorial angle is taken as the 

independent variable, then a and x in (3) denote, respectively, 

the vectorial angles of A and a conjugate point. 

We now apply this analysis to some of the problems of 

Chapter I. 

2.13. Conjugate points on the catenary 

In § 1.7 we dealt with the problem of the flexible chain by 

using the principle that a statical system is in stable equilibrium 

when its potential energy is a minimum. It was shown in § 1.7 

that the curve in which the chain must hang, in order to give a 

stationary value of the potential, is a catenary. Its equation is 

y = cco9h|?~j, (1) 

where b and c are arbitrary constants and the ar-axis is the 

directrix. 

In § 2.11 we dealt with a special case of this result when the 

two pegs over which the chain is suspended have coordinates of 

the form (±h, A). Here we shall deal with the problem in greater 
generality. 
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In order to use the results of § 2.12 we must differentiate the 

extremal (1) partially with respect to c and b. We have 

From (3), § 2.12, the equation for the abscissae of points con¬ 

jugate to A becomes 

where a is the abscissa of the point A. 

This equation has a simple geometrical interpretation. In 

Fig. II. 4 the catenary (1) is 

shown with its vertex at V and 

with IJ as the foot of the per¬ 

pendicular from V to the direc¬ 

trix (which lies along the o'-axis). 

Since y in (1) has a minimum 

when X -- —it follows that 

fJO -- 6, where O is the origin. 

P is any point on the curve, 

with abscis.sa equal to r, M is the 

foot of the perpendicular from 

P to the x-axis, i.e. OM - .r, 

and T is the point of intersection 

at P and the x-axis. We have 

of the tangent to the catenary 

TM - 3fP/t^nMTP 

= rcosh 

Hence 
ur 

W 

(5) 
c 

If the tangents to the catenary at A and at its conjugate A* 

intersect the x-axis at N and N' respectively, then from (3) 

and (5) we have y, IJ}}^ (0) 
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Therefore the tangents to the catenary at A and its conjugate 

point A' must intersect on the directrix. 

As z varies from — oo to oo, coth z—z decreases steadily from 

00 to —00 twice. Thus coth 2 = 2+a can be satisfied by two 

real values of z only. Hence (3), treated as an equation in x, 

can have only one real root other than x ~ a and therefore only 

two real tangents can be drawn from a point on the directrix to 

the catonary. Hence there can be only one point conjugate 

to A, In addition, if A' is con¬ 

jugate to Ay then, conversely, A is 

conjugate to 

The problem of the flexible chain 

hanging over two pegs can now be 

completed. In general only two 

catenaries can have a common 

directrix and pass through two 

given points^ and/i-t In Fig. II. 5 

the tw o catenaries through A and B 

are distinguished from each other by their vertices and To 

apply the Jacobi test we find the conjugates of A for each of 

the two catenaries, by the tangent property proved above. It is 

seen that A lies between B and its conjugate only for the upper 

of the two catenaries, i.e. for the one w ith the larger value of c. 

Hence only for the upper catenary is the potential energy a 

minimum, and the equilibrium therefore stable. 

2.14. Conjugate points on a parabolic trajectory 

The conjugate points of the parabolic trajectory, discussed 

in § 1.8, have already been obtained geometrically in §2.10. 

In thLs section we shall again find the conjugate points by using 

the analytical theory of § 2.12. The two methods can thus be 

contrasted. 

The equation of the family of trajectories, (8), § 1.8, is 

2gy = (I) 

where «, the speed of projection, is a known constant and c 

t For the proof of thisi Htatement »e€» Forsyth, (hilculun of Variatimia, 
p. 98 et seq. 
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and d are arbitrary constants. In equation (3), § 2.12, we write 

Cl = c, C2 — d and on taking the origin at A we have in addition 

a == 0. The equation for the abscissa of A\ the conjugate of 

Ay then becomes 

— 2c+(2g^lc^)(x—d)^ __ —2c-{-(2g^lc^)d^ 

which simplifies easily to 

(x~d)d = c^/sr^. 

(2) 

(3) 

In Fig. 11. fi ^ is the origin, S 

is the focus of the trajectory under 

consideration, V is the vertex, and 

U is the foot of the perpendicular 

from V to the x-axis. From (1) y 

is a maximum when x ^ rf, hence 

A U =-= d. Therefore, if M is the 

foot of the perpendicular from A' to UV. equation (3) is 

equivalent to 

.cf.>U 
Fig. II. 6. 

MA\Ar c^/g^. (4) 

Hut from (1) the latus rectum of the parabola is 2c^/g, Hence 

from well-known and easily proved properties of the parabola, 

equation (4) is the condition that the chord A A' should pass 

through S, the focus of parabola (1). This is in complete agree¬ 

ment with the result obtained geometrically in § 2.10. 

2.15. Geodesics on spheres 

This problem has been dealt with in § 1.10. The equation of 

the geodesics, (7), § 1.10, is 

where 6 is the co-latitude, <f) is the longitude, and a and j8 are 

arbitrary constants. In § 2.9 it was proved, by a geometrical 

method, that conjugate points on a sphere are at the opposite 

ends of a diameter ; we shall obtain the same result here by means 

of the analytical methods of § 2.12. 
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On taking 6 as the independent and (f> as the dependent 

variable, equation (3), § 2.12, becomes 

^ == (~^ /^\ 
da/ dp [da/ dp)e..e: 

where Oq and d are respectively the co-latitudes of A and A' 

(the conjugate of ^4). 
Applying this result to (1) above we have 

secret 1 _ sec^a 1 .... 

tAiid L tan^aU tan^o/j tan^.xU’ 

\ tanwj \ tan^^J 

whose solution is 0 — 6Q-\-m7r, w'hen m is an integer. It is evident 

from (1) that two points on a great circle whose co-latitudes 

differ by a multiple of rr must have the same longitude. Hence 

if the coordinates of A are (0o,(f>o). those of its conjugate A' are 

(0o+^» ^o), and so A and A' are diametrically opposite [)oints, 

in agreement w ith the result of § 2.0. 

2.16. Orbits under inverse square law of attraction 

The orbit of a particle of mass ///, attracted to a fixed centre 

of force 0 by the New tonian law' w here ^ is constant and r 

is its distance from O, has been investigated in § 1.13. The 

equation of the orbit in polar coordinates is (9), § 1.13, 

l + (1) 

Here p and c are arbitrary constants and a is a constant of known 
value, depending upon the initial speed of the particle. This is 
the equation of a conic, and if e is the eccentricity we have 
c = a(l — Equation (1) can then be WTitten 

(2) 
l+ecoa(9+^) 

In order to apply the methods of § 2.12 we must first put equation 

(3), § 2.12, in the form appropriate to the variables and constants 

of (2) above. We write c, = c, Cj = /3, and take 6 to be the 

independent and r the dependent variable. We choose OA to 

be the initial line and then /3 is equal to the angle between OA 
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and the major axis of the orbit. Equation (3), § 2.12, takes the 

form 
I nv I rnT\ I i r^T\ 

(3) 
I dr jdr\ I dr jdr\ 

\<le.l ~ ypej 

On applying this to (2) above we obtain 

2e-{~(l-\-e^)cos(9+^) _ 2e-f (l+^^)cos^ 

sin {6^-^} sinjS 
(4) 

Multiplying out and dividing through by sin ^0, whose zeros 

correspond to the point A only, we can then solve for tan ^6. 

The final result is 

6 2tan~ 
JI-\-2p cosj8+e2| 

I 2esin^ 
(5) 

which gives the vectorial angle of A\ the conjugate of A. 

Denoting the right-hand side of (5) by a, where 0 < a < 277, 

it follows that if 0 < ^405 < a. then the action 2 Td/ is a 

minimum, and if AOB > a then the action is stationary but is 

neither a maximum nor a minimum. 

When the conic reduces to a circle, p — 0, the points ^4 and 

A' are at opposite ends of a diameter and when the conic is a 

parabola, e -- 1, .4' is at infinity. 

2,17. Orbit of a particle attracted by a force m\kr 

In example 9, § 1.14, we found the orbit of a particle attracted 

towards a fixed centre of force 0 by a force where m is the- 

mass, /X is a constant, and r is its distance from O, The polar 

equation of the orbit, (4), § 1.14, obtained by the principle of 

least action, is: 

Here c and jS are arbitrary constants and a is a known constant 

whose value depends upon the initial speed of the particle. This 

is the equation of a conic with its centre at 0, the centre of force. 

On writing o} 2c^cosha and eliminating c from (1) we have 

^2 ^_^_ 

sinh 2(\ cos 2(0-f-/S) -|-1 -f cosh 2k\ 
(2) 
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where a and p are now the arbitrary constants. Use (3), § 2.12, 

in the form appropriate to polar coordinates (as in (3), § 2.16, 

but with € replaced by a) and take the vectorial angle of A to 

be zero. Then 6, the vectorial angle of A\ the conjugate of Ay 

is given by 

cosh 2cxcos 2(0+/3) + 5inh 2\ cosh 2(\ cos 2/3+sinh 2(x 

8in2(6^+^) ~ sin 2^ 

Simplifying and dividing by sin 6 we can solve for tan 0, the 

result being e-‘“tan(0+/3)tanj3 - -1. (4) 

From (4) it can be shown that the tangents to the conic (1) 

at A and .4' must intersect at right angles on the director circle 

of (2). 

The easiest way to prove this is to rotate the initial line of (2) 

through an angle —P about O and then transform (2) to Car¬ 

tesian coordinates. Its equation becomes 

2 cosh L\ 

The angle between the x-axis and OA is now equal to p and 

that between the z-axis and OA' is equal to 0+p. The slopes of 

the tangents at A and A' are easily found to be —f'*®cotj9 and 

~e^^coi(d+p) respectively. Equation (4) then shows that the 

two tangents are at right angles to each other and, from known 

properties of conic sections, it follow s that they intersect on the 

director circle. 

The orbit is a circle when a — 0 and the equation for 0 then 

reduces to 0 ™ Thus for the law of direct distance conjugate 

points on circular orbits subtend a right angle at the centre 

instead of being diametrically opposite as they are for the inverse 

square law (see § 2.16). 

The final conclusion is that if the angle subtended hy A B dX 

the centre of the elliptical orbit is less than 0 given by (4) then 
B 

the action 2 J T is a weak minimum, otherwise it is stationary 
A 

but neither maximum nor minimum. 
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2.18. Properties of solutions of the accessory equation 

The accessory equation (1), § 2.4, is a special case of a type of 

differential equation known as Sturm-Liouville equations.! 

It may be written in the form 

where (J is an abbreviation for ^2 

two independent solutions of (i), then 

’ , du^ 
(2) 

From this it follows easily that 

0 (3) 

and consequently 
duy diu B 

(4) 

where B is a constant. We are now in a position to justify an 

assumption made in the penultimate paragraph of § 2.4, where 

it was assumed that a solution of (1), cannot have 

double roots. For it is evident from (4) that, except in the 

special case when ijj becomes infinite, iq and du^jdx cannot 

vanish together and therefore that cannot have a double zero. 

From equation (4) it can be deduced further that 

d /uA _ ^ 
dx[uj 

(5) 

Now if the path of integration is not merely an extremal for the 
B 

integral | F(x, y, y') dx but makes it a maximum or a minimum, 
A 

then, as proved in § 2.5, must have the same sign at all points 

of the arc AB, Hence from (5) d{u^!u^jdx has constant sign for 

all points of arc AB and therefore the expression either 

steadily increases or steadily decreases along this arc. Such a 

t E. Lindsay Inco, Onlinary DiJfcretUial Kqnaiion^^ chap. x. 
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result appears to contradict the requirements of § 2,6, that 

Wi/Wg must have the same value at A and at all points con¬ 

jugate to A simple example will show that the contradiction 

is only apparent. Consider tan 0. which possesses the following 

two properties: (i) it steadily increases with 0, because its 

differential coefficient sec^fl is always positive, and (ii) it satisfies 

the equality tan0 = tan(^-+-Tr). These two properties can be 

Fio. II. 7. 

quite consistent with each other 

because tan 0 is not a continuous 

function for all values of 0. As 0 

increases from cx to ck + tt, tan0 

steadily increases to +oc, and 

then, as 0 passes through an odd 

multiple of in, it suffers a 

sudden drop to — x, after w hich 

it steadily increases again. In 

general if possesses dis¬ 

continuities it may increase or 

decrease steadily and yet take 

the same value for different values of the variable. 

In the investigations on spherical geodesics, § 2.15, and on 

orbits under various law\s of force, §§2.16 and 2.17, the ratio 

uju2 is, in each case, expressible as a function of tan 0. Hence, 

although the ratio either steadily increases or steadily decreases, 

it can take the same values at A and at the points conjugate to A. 

As a final example, consider the case of the conjugate points 

on a catenary, §2.13. If the tangent to the catenary at the point 

P cuts the directrix at T and if U is the foot of the perpendicular 

from the vertex V to the directrix, then the ratio is propor¬ 

tional to UT, proved in § 2.13. Fig. II. 7 shows the catenary 

and its directrix, which is also the x-axis, together with the points 

P, T, U, A and A\ the conjugate of A. Consider now the 

changes in UT as P moves from A to A\ UT steadily increases 

until P reaches the vertex F, when it becomes infinite. As P 

moves still farther along the curve T appears on the negative 

side of the ar-axis and it is clear that the algebraical value of 

UTy taking into account its sign as well as magnitude, steadily 
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increases. It is also clear that as P moves from ^ to T sweeps 

once across the whole of the x-axis in the positive direction before 

returning to its original position. 

2.19. Summary of the main results of Chapters I and 11 
6 

Theorem 1. The integral I — \ F(x, y, y') dx, whose end points 
a 

A and B are fixed, is stationary for weak variations, if y satisfies 

the differential equation (Euler’s characteristic equation) 

= 0. 
rf IdF 

cy dx\cy\ 

The solutions of Euler’s equation are known as extremals. 

§1.4 

Variable not explicit Elder 8 equation 

in F(x, y, y') integrates once to 

X r — y tr—, = constant. 
cy 

§ 1.4 

y 

cF 
-—; ~ constant. 
cy 

§ 1.4 

Legeyidrr's /tw/. If the range of integration (a, b) is sufficiently 

small and if the sign of is constant throughout this 

range, then the integral / is a maximum when the sign is negative 

and a minimum when it is positive. §§ 1.5, 2.5 

Characteristic equation identically zero. If the characteristic 

equation vanishes identically, then 1 can be evaluated as a 

function of x and y. § 1-18 

Jacobi's test. The acccvssory equation. 

Let // -- s(x) be the equation of the extremal which passes 

through A and B, the end points of the range of integration. 

Substitute this value of y in F(x,y,y') and let d^Fjds^ = F^q, 

d^Fjdsds = jFJji, and d^Fjds^ ~ F^^. Then the accessory equa- 

Conjugate points (kinetic foci): Definition, If (i) w(x) is a solu¬ 

tion of the accessory equation, (ii) a is the abscissa of the 

point A, (iii) u{a) = 0, then the roots of u{x) = 0 are the abscissae 

of points on the curve y = cs(x) conjug0.te to .*4. § 2.6 
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Theorem 6. If (i) y = s(x) is an extremal through A and B 
b 

for / = J F(x, y, y') dx, (ii) A' is the first point conjugate to 
a 

A along the arc .dB, (iii) B lies between A and A \ (iv) d^Fjdy'^ 

has constant sign for all points of arc A B, then for weak varia¬ 

tions / is a maximum when f'^Fjdy"^ is negative and a minimum 

when it is positive. § 2.6 

Analytical method of finding conjugate i)oint.s. If (i) a is the 

abscissa of the point .,4. (ii) ufix) and U2{x) are independent 

solutions of the accessory equation, then the equation for the 

abscissae of the points conjugate to .4 is 

«2(j*j «2(aj' 

.^(0*, Cj. Cj) is the general solution of Euler’s characteris¬ 

tic equation, then the equatioii for the abscissae of points con- 

jugate to ^ is ■ajIcy^rcyjcyX 

tcj'cc^ YcJ'CcJ^f 

These equations can be used with polar and other .sy.stems of 

coordinates if the variables are suitably interpreted. 

Geometrical method of finding conjugate points. If the 

extremals which pass through the point A have an envelo{)e E, 

then the points of contact of E and the extremal AB are the 

points conjugate to A. §2.9 

Properties of solutions of the accessory equation. If u(x) is a 

solution of the accessory equation it cannot have double zeros. 

§ 2.18 

If Mi(x) and M2(x) are independent solutions of this equation, 

then the ratio ufix)ju2{x) steadily increa.se.s or steadily decreases 

as X increases. §2.18 

§2.12 



CHAPTKR III 

GENERALIZATIONS OF THE RESULTS OF 

THE PREVIOUS CHAPTERS 

3.1. Introduction 

The results obtained in Chapters I and II can be generalized 

in several ways, many of which have extremely important 

applications to problems of pure and applied mathematics. 

In this chapter three possible methods of generalization will be 

considered. 

The first generalization will deal with integrals of the type 

h 

/ .= J .; 9,, q^ J)dt, (1) 

u 

where denotes dqjdt. In this integral the variables •••> ?n 

are assumed to be independent of each other, in the same 

way as the parameters which determine the configuration of a 

body in dynamical j)roblems. For example if n — 6, q^, q^, q^ 

may be the coordinates of 6r, the centre of gravity of a 

rigid body, and 74, q^ may be the Eulerian anglesf which 

orientate the body in relation to three mutually perpendicular 

axes through G, The problem can be restated in the following 

manner. 

Given the functional form of F and choosing the n parameters 

arbitrary functions of t, the value of the 

integral I of equation (1) can then be determined. What forms 

must these functions of t take in order to render / a maximum 

or a minimum ? 

Before the solution is attained the g’s are independent of 

each other, although each g is a dependent variable since it is a 

function of i, the only independent variable. The independence 

of the q'% is due to the fact that their functional forms are 

arbitrary until the solution of the problem is attained. 

t Ramsey, Dynamics, Fart II, p. 70. 



Here there is only one independent and only one dependent 

variable. 

The third investigation of this chapter will deal with cases in 

which there are several independent variables and only one 

dependent one. An illustration is given by the integral 

F{x, y; z;]).q)dxdy. 

Here the functional form of F and the curves which bound the 

integral are given, 2 is a function of x and //, the two independent 

variables, and p = dz/dx, q ~ 

We shall also deal briefly with integrals of this type in the 

case when there are three independent variables and one 

dependent variable, since such integrals occur with great fre¬ 

quency in diverse branches of mathematical physics. 

The ideas of the first two chapters are fundamental in each of 

these investigations. Confining ourselves entirely to the case of 

weak variations, as in § 1.3, each dependent variable is increased 

by a quantity of the form €7){x), or by some similar form api)rO' 

priate to the problem. Here € is a constant and 17 denotes an 

arbitrary function of x independent of e. The corresponding 

variation in I is then evaluated as a power series in e and, as in 

the elementary theory of maxima and minima, the coefficient 

of 6 is equated to zero. In the case of one dependent variable 

we obtain a characteristic equation, analogous to (8), § 1.4. In 

the case of an integral with n dependent variables we obtain, 

in this way, n characteristic equations. On solving the character¬ 

istic equation, or equations, we obtain the functional forms of the 

dependent variables for which / is stationary. 

Near a stationary value the variation of / will then depend 

upon the coefficient of c*. As in § 2.4, an accessory equation 

(or equations) can be derived from the characteristic equation 
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(or equations) by means of which this coefficient can be put into 

a form whose sign can be determined without excessive difficulty. 

The results, however, are so complex that in this book we shall 

confine ourselves to the investigation of the first variation of I 

only, i.e. the coefficient of €. For the second variation, i.e. the 

coefficient of w'e shall either state the relevant results w ithout 

proof and refer to the advanced literature of the subject or, in 

very complicated cases, give the references only. 

In dynamical problems F is usually a quadratic function of the 

quantities ’ ^/r simplification in F is reflected in the 

second variation which can usually be obtained without excessive 

difficulty. 

3.2. Maxima and minima of integrals of the type 

I \ .0 df- 

Since the arguments for two parameters, and are funda¬ 

mentally the same as for 7i parameters we shall restrict ourselves 

to the ease when 1 is given h\’ 

ti 

1 J I) dt. (1) 

h 
Here the values of (q and and the functional form of F are 

given. The dot, as usual, denotes differentiation w ith regard to /. 

Let r/i . ^ .S'l (2) 

and (/o ^2(0 “ ‘'2 (3) 

denote the functional forms of the ^’s w hich render / stationary. 

Consider the variation in / due to the q's being varied so that, for 

a given value of (, q^ is changed from to + tq and ^2 from S2 

to .^2+^2 ^2* Here Cj and eg are arbitrary’' constants independent 

of r/2, t and Wi(/)) and tig (~ ^^2(0) ^^e arbitrary 

functions of f, both independent of e^ and cg. These are know n as 

weak variations, as in § 1.3. For simplicity we assume that 

the end points of the range and are prescribed, and then 

^i(^o) ^ ^ '*^2(^0) ^ ^2(^1) ~ 

Substitute +e^ for and «2+^2 '^2 denote 
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the consequent variation in I by S/. Assuming that I possesses 

continuous partial derivatives with respect to and q^ of 

at least the second order, we may express the result in powers 

of €i and cg. The coefficients of and €2 io 8/ are then found to 

t. 

respectively. At a maximum the sign of 8/ mu.st be negative 

and at a minimum it must be positive, and in both cases it must 

be independent of the signs of and 62* Hence at a maximum or 

minimum value of I expressions (4) and (5) must vanish simul¬ 

taneously. 

On integrating the second term of the integrand of (4) by parts 

and using the conditions Mi(^o) “ ^ 
obtain the equation 

u 

Since Ui(t) is an arbitrary function of /, we may apply the 

arguments of § 1.4 and deduce that (6) can be true only if 

dF d 0 

dq^ dt Yqij 
(7) 

Similarly from (5) we have 

d_F 

^92 

d 
0. (H) 

These arguments can easily be extended to the case where 

there are n parameters The result is: 

Theorem 7. Let the values of t^ and and the functional forrn 

of F be given. Then the integral 

h 

/ 9i.92.-.9«: 0 
t. 
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where the q's are arbitrary functions of t, is stationary for weak 

variations when the q's satisfy the n equations 

dF 
(m = l,2,...,n). (9) 

3.3. The second variation for integral (1), § 3.2 

Reverting to the case when there are only two parameters q^ 

and q2y if equations (7) and (8), § 3.2, are satisfied then the sign 

of 81 will depend upon terms involving cf, €|, and CjCg* These 

terms are intricate but can be simplified slightly by assuming that 

™ ^2’ assumption which involves no great loss of generality 

since the functions and u^it) still remain arbitrary. With 

this simplification the second variation of 81 depends upon the 

coefficient of where = €. 

A further simplification of the formulae is effected by using the 

following notation: differentiation with respect to Ji, ?2 

is denoted by the suffi.xes 1, 2, 3, 4. For example 

^13 — o • > 
ff/i dq^dq^’ 

etc. 

On assuming that equations (7) and (8), § 3.2, are satisfied 

and that / possesses partial derivatives with respect to q^y q^, 

and q^, of at least the third order, we may use the mean value 

theorem for functions of two variables. We then obtain! 

<• 

■f 2Fis Ml Ml M2 + 2^14 Mj Mji + 

+ 2/’23 M1 Mj + 2F^ Ml Mj + 2^24 Mj M,} + 0(<»). (1) 

This formula has been studied by several mathematicians, but 

owing to its complexity we shall state their results without proof. 

The ideas of Chapter II can be repeated, although in a more 

elaborate form. From the two characteristic equations (7) and 

(8) two accessory equations can be derived, by arguments similar 

to those of §§ 2.3 and 2.4. With their help (1) can be put into a 

t Forsyth, loo. cit., pp. 204-25. 
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much more tractable form. The final conclusions are that 8/ 

has a sign independent of the choice of e and of the arbitrary 

functions WglO if 

(i) the range of integration to is sufficiently small, 

(ii) throughout the range (q to both F22 and ^44 have con¬ 

stant sign, 

(iii) throughout this range ^22 ^44 > ^24* 

If these conditions are satisfied, then / is a maximum or 

minimum according as ^22 negative or positive (evidently 

from (iii) -^22 and must both have the same sign). 

This result, which is clearly an extension of the Legendre 

test, §§ 1.5 and 2.5, can be generalized quite easily to the case of 

n variables, We then have 

Theorem 8. Lei / ^ | ^^(9^7*2.0 where 

the satisfy the n second-order partial differential equations (9), 

§ 3.2. If at every point of a sufficiently synall range t^ to t^ 

c^F 
(i) —-- (r “ 1,2,..., w) all have constant sign, 

cq^ 

then I is a maximum if the signs of i’^Ficq^ are all Jiegative aiid 

minimum if they are all jyositive {evidently (ii) ensures that they 

all have the same sign). 

In dynamics F is a quadratic function of the ^’s and these 

conditions are frequently fulfilled. 

3.4. Conjugate points (kinetic foci) for integral (1), § 3.2 

The extent of the range t^, L for which these results may be 

true still remains to be determined. The definition and develop¬ 

ment of con jugate points in §§ 2.fi, 2.9, and 2.12 can be generalized 

so as to be applicable to the case of two or more dependent 

variables. We give a descriptive account of these generaliza¬ 

tions, confining ourselves to the case of two dependent variables 

since the general formulae are very elaborate. 
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The theory of differential equations shows that solutions of 
(7) and (8), § 3.2, are of the form 

92 ~ ^2(^> ®1> ®®2> ®3> ^4)’ (^) 

where Oj, Oj- 03. <*4 are four arbitrary constants independent of t 
(the same for both (1) and (2)). The elimination of t from these 
equations leads to a relation between the q’s which in a dynamical 
problem would be the equation of a trajectory or orbit. If two 
points A and B on such a trajectory are given, then the corre¬ 
sponding values of and q^, their coordinates, are known and 
so the four constants a^, a^, a^, O4 can be determined. If this 
determination is unique there will be only one orbit through A 
and B, but it is also possible that there may be more than one, 
as in the case of parabolic orbits under gravity. If, however, A 
only is given, then two of the constants a^, Oj, a^, a^ can be 
determined and the other two still remain arbitrary. In this 
case a doubly infinite set of trajectories can be drawn through 
A, each of which makes the integral I, (1), § 3.2 stationary. 

Let T denote a trajectory through A and B and T' any other of 
the doubly infinite trajectories through A, and let P be a point of 
intersection of T and T' other than A. Then as T' tends to T the 
point P will tend to a limiting position. A’ say, on T. The point 
A' is then called the conjugate (or kinetic focus) of .<4; if there are 
several such limiting points of intersection the one nearest to 
A on T will be the one denoted by A' (the illustrations given in 
§§ 2.10 and 2.11 may be usefully referred to at this stage). The 
arguments of § 2.6 can then be generalized to show that if B 
lies between A and A' the solutions of (7) and (8), § 3.2, make 
the integral /, (1), § 3.2, a maximum or a minimum, and that if 
B lies outside the arc AA’ then, in general, I is stationary only 
and is neither a maximum nor a minimum. 

If the coordinates of A are given, then those of the conjugate 
point A' can be obtained analytically from an equation which is 
a generalization of the one given in § 2.12. Let the trajectory 
be given by equations (1) and (2), let A and its conjugate A' 
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be points which correspond respectively to the values Iq and (q 
of t. For brevity let 

^x(^o) ” ^1» ^3’^2(^0) “ ^2> ®3> ^4)- 

Then given the equation! for 4 is 

^^1(^0) 
da^ ca^ aog da. 

^'Mo) ^^2(^0) ^^2(^0) b<l>2(^o) 
da^ da^ da^ da. 

b^^lUo) dJX) 
da^ dd^ ba^ da. 

^^2(^0) ^^2(^0) dUQ 
da^ ba^ ba^ da. 

The general equation for the conjugate of a point when there 
are n variables 9i,72’* given in Forsyth.J 

3.5. Integrals of the type J F(x, y, y^, y^,.y^) dx, w^here 

— 

“ Si"* 

Since the arguments for the case n = 2 can be easily extended 
to the general value of n, we shall first deal w ith the integral 

h 
I ^ j F(x.y,yi,y^)dx, (1) 

a 

where the values of a and b and the functional form of F are 

y = s(x) (2) 

be the equation of the curve for which I is stationary. Confining 
ourselves to weak variations as before, let 

y -- ii(x)+(r){x) (3) 

be the equation of a neighbouring curve, where e is an arbitrary 
constant and ri(x) is an arbitrary function of x independent of c. 

t Forsyth, Calculus of Variations, p. 223. 
t Loc. cit., pp. 267-70. 
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We assume that the curves (2) and (3) have common ordinates 

and tangents at the end points of the range of integration, i.e. 

T^(a) = 7^(6) == 0 and (4) 

We also assume that F(x, y, i/i, ^2) continuous partial deriva¬ 

tives, of at least the second order, with respect to x, y, y^, and y^* 

Substituting from (2) and (3) in (1) we obtain for the integral 

the values 1 and 7+8/ respectively. On writing 

s(x) = s, 
ds{x) 

dx 

dh(x) 

~dx^ 
= S2,{x)y iqix) = rj, 

and applying the first mean-value theorem we have 

6 

8/ = J {F(x,S+€ri, + S2 + €rj^)--F(x,S,3j^yS2)} dx 

For a stationary value of I the coefficient of c must vanish 

and so 5 

dF dF j n 
1’'&+’>■ e7; + ’'* 87,r*”"' 

o 

ft (6) 

On integrating by parts we have 

a* a 

and since y(a) ™ 7^(6) = 0, the first of the two terms on the 

right-hand side must vanish at both limits of integration. 

Again, on integrating by parts twice we have 

/’’■S=’>■01-4(131+ /<*> 
a a 

Now, by (4), Tj(a) = rj(d) = 0 and 7j,(o) = ijj(6) = 0. Hence the 
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first two terms on the right-hand side of (8) vanish at both 

limits of integration and (6) can be rewritten in the form 

6 

Since -qix) is an arbitrary function of x we can apply the 

methods and arguments of § 1.4 to show that (9) can hold only if 

ds da:\0sj dx^\dsj 
(10) 

This is a differential equation of the fourth order. 

These arguments are easily extended to the case when the 

integral I contains differential coefficients of the nth order. 

The result is: 

Theorem 9. Let d”'yldx’^ be denoted by y„ and let the values of 

y,yt,yt^-.,yn-\ he given for both x — a and x = 6. Also let the 

functional form of F be given; then the integral 

b 

/ = J/’{x,y,yi,y.,y„)dx (11) 

is stationary when y satires the equation 

dy dx\dyjdx’‘\dyj ' dx^\dy„ 
0. (12) 

This equation is a differential equation of order 2n. 

The conditions which must be satisfied in order that these 

stationary values should be maxima or minima are so elaborate 

that we cannot deal with them here. A theory of conjugate 

points can be formulated, analogous to the one developed in 

Chapter II, and in the case when n — 2 it can be proved that if 

(i) equation (12) is satisfied when n = 2, 

(ii) the arc of integration from x = o to x = 6 does not en¬ 

close a point which is conj ugate to either of the end points, 

(iii) d^F/dyl maintains a constant sign throughout the arc of 

integration from x = a to x — 6, 

then / is a maximum if this sign is negative and a minimum if it 

is positive. 
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Proofs of these statements and formulae for conjugate points 

can be found in Forsyth’s Calcvlua of Variations.'^ 

3.6. The case of several Independent variables and one 
dependent variable 
We now deal with integrals of the type 

I = jj F{x,y',z-,p',q)dxdy, (1) 

where x and y are independent variables, z is a function of x 

and y, and p == dz/dx and q = dzjdy. The functional form of F 

is given and the problem consists in 

finding the functional relationship / \ 

between x, y, and z which renders / a / / 

maximum or minimum. Such a re- ^ ^ / 

lationship can be expressed graphic- 

ally by a surface in three-dimensional 

space. Surfaces for which / is station¬ 

ary will be referred to as extremals. 

In order to simplify the analysis we gj- 

shall assume that the curves which / 

bound the area of integration are Mr- 

fixed. ^ 

Let z^-s(x,y) (2)'^ Fio. ill. l. 

be the equation of an extremal surface 

passing through the given boundary curves. In Fig. III. 1, P 

is a point on this surface and OM — x, MN = y, NP = z, 

where {x, y, z) are its coordinates. A neighbouring surface can be 

obtained by producing NP to P', where PP' = «is an 

arbitrary constant, and rj(x,y) is an arbitrary function of x and 

y. We confine ourselves to weak variations, as in § 1.3, and for 

this purpose we assume that i){x,y) is independent of «. The 

equation of the neighbouring surface is 

z = 8(x,y)+(r){x,y). (3) 

Since the boundaries of integration of I are fixed, then at all 

points of the bounding curves we must have y) = 0. 

t Chap. iii. 
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Finally we assume that F{x,y,z,p,q) possesses continuous 

partial derivatives with respect to z, p, and q-, this enables us 

to utilize a mean-value theorem, f 

For brevity write «(x, y) = s, r]{x, y) = y, and let I denote the 

value of integral (1) w'hen taken over the extremal (2) and 

/-fS/ its value when taken over the surface (3). Then we have 

8/ 

-IJ 
/JB? 

^ dy, 

F(x,y, s,p,q) dxdy 

\ 

7 

dF^dr] dF 

~ cx dp ~ Idxy ~dq 
-"jdxdy-f (4) 

where p and q denote values of dzjdx and bzjdy on the surface (2). 

For a maximum or a minimum the coefficient of e must vanish 

and so 
II f n n ^ ri ft f'j-vi f" ft i 

(5) 
Hi ̂ dx dp dy dq 

^dzdy^O. 

By methods similar to those employed in § 1.4 we can deduce 

from (5) a second-order partial differential equation, but before 

doing so we must first generalize the principle of integration by 

parts to a form suitable for application to the process of double 

integration. 

For this purpose we prove the following lemma on double 

integration. This is usually known as Cauchy’s integral theorem. 

3.7. Lemma on double integration 

Fig. III.2 shows the closed curve A BCD in the (x,y) plane, a 

curve denoted by F. I^t <f>(x,y) { r£ ff>) and ifi{x,y) (:i~ 0) be two 

functions whose first-order partial derivatives with respect to 

X and y are continuous functions of both these variables. Then 

JJ "" J (») 
where (i) the double integral is taken over the area bounded by 

r, (ii) the line integral is taken along the curve F, and (iii) the 

direction of integration round F keeps the area of integration on 

the left-hand side. 

t O. A. Gibson, Advanced CalciiluSt p. 103 (Macmillan). 
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Proof. If AC, Fig. 3.2, is parallel to the a;-axis then, on 

integrating with respect to x, we have 

J J ^ ^ ^yo-<f>a dyj’ (2) 

where the subscript a denotes that the variables in dy^ take 

values corresponding to the point A. A corresponding inter¬ 

pretation applies to the subscript c. 

Now on traversing V so that the area is kept on the left-hand 

side we have dy^, -\-dy and d//„ —dy (Fig. III. 2). Also 

it is evident that as the chord AC varies from the position in 

which its distance from the x-axis is a minimum to one in which 

its distance is a maximum, the points A and C describe different 

arcs of r in such a manner that between them F is described once. 

Hence 

J J dxdy = I dy,-<f>, dyj = J ^ rfy, (3) 

r 

where the last integral is taken once round F. 

Again, if BD is parallel to the y-axis (Fig. III. 2), then, on 

integrating with respect to y, we have 

{iftj dxa-ipb dXft). 

But if F is described so as to keep the area on the left-hand side, 

thend.r^ ~ —dxanddxi, — -{-dx, Thus,similarly to(3), wehave 

J J — dxdy = — J </r dx. (4) 

r 

On adding (3) and (4) we obtain (1). 

Fig. III. 2 illustrates a simply connected region, i.e. one in 

which all curves of the region can be shrunk into points without 

having to cross the bounding-curve F. The lemma is still true 

for multiply connected regions, of which an illustration is given 

by Fig. III. 3. Here the boundary region consists of two closed 

ovals one lying entirely inside the other, A BCD and A*B'C'D\ 
The curve F consists of the two ovals taken together and, in 

order to satisfy the convention that F is to be described so that 
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the area is kept on the left-hand side, each of these ovals must be 

described in the sense indicated by the arrows in the diagram. 

On integrating with respect to x and taking A A 'C'C in Fig. III. 3 

to be parallel to the x-axis, we have 

JJ § ^ J ^ya+<t>c dye-<t>c' dye )- (5) 

Here dy„- = dy^ = +dy and = dy^- = —dy. Evidently as 

A A'C'C varies from its minimum to its maximum distance 

Fio. lU. 2. Fio. HI. 3. 

from the x-axis it is clear that the four points A A'C'C traverse 

four different arcs of the boundary and that these four arcs add 

up to r once, without overlap. Hence (5) can be written 

J J S = J ^ (6) 
r 

where the right-hand integral is taken once round F. Similar 

arguments applied to the integral jj {d^pldy) dxdy then enable us 

to complete the proof of the lemma for the case of multiply 

connected regions. This lemma is a special case of Stokes’s 

theorem and further details are available in most works on 

analysis.^ 

t Courant, Differential and Integral Calculus, vol. ii, chap, v; Rutherford, 
Vector Methods, p, 75. 
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3.8. The characteristic equation for the integral (1), § 3.6 

On writing <!> = rj— and ^ 
op 

dF 
n — in (1), § 3.7, we have 

dq 

CC\ jd (dF\ , d (8F\\ 

JJ [^{dx[dpl^dy[8ql] dx dp dydq 

where the hne integral is taken round the given boundaries of the 

integral (1), §3.6. Since these boundaries are the same for 

surfaces (2) and (3), § 3.6, we must have t; = 0 in the line integral 

on the right-hand side of (1). Hence (1) reduces to 

Idj] dF dr) dF 

\dx dp dy dq ^ 

and so equation (6), § 3.6, reduces to 

dx\dp J dy\dq 
dxdy, 

We can now make use of the fact that over the surface of 

integration -q == q(x,y) is an arbitrary function of x and y and 

apply the arguments of § 1.4. We then deduce that (3) can be 

true only if .p a /pp\ ri lfiF\ 

ds dx\dp} ^\dq 

This is the characteristic equation for the determination of 

the maximum and minimum values of the integral (1), § 3.6. 

It is a partial differential equation of the second order for the 

determination of 2 (= ^(x,y)) as a function of x and y. 

The ideas of these three paragraphs, including the lemma of 

§ 3.7, are easily extended to the case of n independent variables 

and one dependent variable z. We then deduce 

Theorsm 10. Let F be a given Junctional form, let p^ = dzjdx^ 

where z is a function o/xi,X2,...,x^, and let the integral 

,Xi,Xt,...;x„, pi, p^,...,p„) dxidx^...dx^ (6) 

be taken through an n-dimensional region bounded by given fixed 
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boundaries of dimension n— 1. Then the integral (5) is stationary 

when z is a sohition of the second-order partial differential equation 

3.9. The second variation of integral (1), § 3.6 

The study of the second variation of the integral in (1). § 3.6 

involves elaborate analysis. We limit ourselves to a summary, 

without proof, of the results obtained for the case of two and also 

of three independent variables. For ])roofs the reader is referred 

to Forsyth.t 

From the characteristic equation (4), § 3.8, we can deduce an 

accessory equation by means of which a theory of conjugate 

curves or surfaces can be developed, analogous to the theory of 

conjugate points in § 2.6. Suppose that the domain of integration 

of the integral (1), § 3.6, on an extremal surface is bounded by 

two closed non-intersecting curves V and A. Then it is possible 

to find curves conjugate to F and A either by analytical or by 

geometrical methods. For example, if the family of extremals 

passing through F po.sse.sses an envelope E, then the curve of 

contact of E and the extremal through both F and A is con¬ 

jugate to F. In the case of two independent variables it can be 

proved that if 

(i) the domain of integration on the extremal surface does 

not contain points on the conjugate of either of its bound¬ 

ing curves, 

(ii) at all points of this domain, 

(iig) d^Fjdp^ has constant sign and 

(ii6) 
dp^ dq^ ^ 

then the solution of 

=0 
dz dx\dp) ^y\dql 

(1) 

considered as an equation for z, makes jj F(x,y,z,p,q) dxdy a 

t Loo. cit., chap. ix. 
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maximum if d^Fjdjj^ is negative and a minimum if it is positive. 

From (ii b) d^Fjdp^ and d^Fjdrf’ have the same sign. 

In the case of three independent variables the integral to be 

considered is 

/ = JJJ F(Xi,X2,X3,z,pi,p2,P3) dxdydz, (2) 
where Xj, X2, X3 are the independent variables and — dzjdx-^, 

P2 ~ dzldx2. Pz ^ dzjdx^. The result just stated for the case of 

two independent variables remains true for the integral (2) if 

(1) is replaced by (6), § 3.8 with n ~ 3. Condition (i) still remains 

and (ii) is replaced by 

(iic) throughout the domain of integration d^Fjdpl has con¬ 

stant sign, and 

(iid) the following three inequalities hold: 

I^ Y d^F^ I d^F y 
cp\ dpi ^ Widp^j ’ dpi dpi ^ \dp3dpj ’ 

d^_ 
dpi dpi ^ [dpidpj ’ 

then the integral (2) is a maximum if d^Fjdp\ is negative and a 

minimum if it is positive. From (iid) it is evident that d^Fjdp\, 

d^Fjdpl, c^Fjdpl all have the same sign. 

3.10. Applications to physical and other problems 

The most important application of these results is to integrals 

of the type 

where x, y, z are independent variables and v is the dependent 

variable. On writing x = x^, y ~ 2 = Xg, dvjdx == pj, 

dvjdy == P2, and dvjdz = p^ so as to make use of the terminology 

of § 3.8, we have 

F(2,a;i,x,.a-3.Pi,P2,P3) -= (2) 

Equation (6), § 3.8 then becomes 

i.e. 

i-n\dx^ dy^ dz i 
(3) 

(4) 
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d»F 

dpi 
8'F _ 

dptdpa 

8*F _ 
^ dpi - 

d»F 

dp^dpi 

d*F 1 

dpi ~ ‘hi 

~ ^Pi^P» 

Hence from (ii c) and (ii d), § 3.9, the integral (1) admits minimum 

values for solutions of (4). 

For physical interpretations let v be the potential function 

arising from a distribution of matter attracting according to the 

Newtonian law of gravity! or from a distribution of electric 

charge in electrostatic equilibrium! or from a magnetic distri- 

bution,§ then integral (1) gives the energy density in space and 

(4) is Laplace’s equation. In the case of an electrostatic distri¬ 

bution Laplace’s equation holds throughout space, showing that 

the charge distributes itself in such a manner that the energy 

is a minimum. 

In hydrodynamics if r is the velocity potential of a fluid in 

irrotational motion and if the fluid density is independent of the 

time (i.e. if the motion is steady), then the integral (1) is 

proportional to the kinetic energy of the system and (4) is the 

equation of continuity, which holds throughout space. Thus the 

motion adjusts itself so that the kinetic energy is a minimum.|| 

3.11. Application to theory of minimal surfaces 
A minimal surface is one whose area, when bounded by two 

given closed non-intersecting curves, is a minimum. The area 

of a surface whose equation is 

(1) 

is given byft JJ (I-|-p*+g*)* dxdy, (2) 

where p = dzjdx and q = dzjdy. 

To minimize this integral we have 

F(z,x,y,p,q) = (\+p*+q*)\ (3) 

t Ramsey, Theory of Newtonian Attraction, §§ 5.3 and 4.1. 
X Jeans, The Mathematical Theory of Electricity and Magnetism, § 168. 
§ Jeans, loc. cit., { 461. 
Ii Ramsey, A Treatise on Hydromechanics, vol. ii, §| 4.6 and 4.7. 

tt Courant, Differential and Integral Calculus, vol. ii, pp. 268 et. seq. 
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80 that the characteristic equation, (6), § 3.8, is 

.1. 
?*)*) ^{( 

= 0. (4) 

On writing 1+p^-^q^ — E*, differentiating and multiplying 

through by E^, we obtain 

?PE^-p(p^-l + q^] 
dx ^Xdx^^dx) 

This easily simplifies to 

1 II p
 

(5) 

^ a*2 

dxdy 
+ (l+y)g = 0. (6) 

Equation (6), which is the well-known differential equation 

of minimal surfaces, was first obtained by Lagrange in 1760 and 

has been much studied since. It expresses in analytical form the 

geometrical property that the sum of the two principal curva¬ 

tures at any point of a minimal surface is zero.f This property 

is the one generally used to define a minimal surface, for it has the 

advantage that it is independent of any boundary conditions. 

A simple illustration of a minimal surface is given by the rota¬ 

tion of a catenary about its directrix. Taking the 2-axis as the 

directrix and a suitable scale of measurement, the equation of 

the resulting surface of revolution is 

= cosh 2, (7) 

where the positive value of the root is taken. 

Squaring (7), differentiating partially with respect to x and 

y, and writing p == dzjdXy q — dzjdy we have 

X = p cosh 2 sinh 2, y = <I cosh z sinh z (8) 

dh 1 
1 =: —5 cosh 2 sinh 2-fp® cosh 22 

dh 
dxdy 

^2 

dy 

cosh 2 sinh z -\-pq cosh 2z 

1 = — cosh 2 sinh 2+g* cosh 22 

(9) 

t R. J. T. Bell, Coordinate Geometry of Three Dimeneicna, p. 337, § 232. 
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Denoting the left-hand side of (6) by L we have from (9) 

Lcoshzsinhz = (l+q^)(l—p^cosh2z)+ 

+ cosh 22 + (1 +J9^)( 1 — cosh 2z) (10) 

= 2—2{jp2+g2)sinh^. (11) 

Using (8) and then (7) we have finally 

//cosh®2 sinh 2 = 2cosh^2-~2(a;^+y2) = 0. (12) 

Hence the surface whose equation is (7) satisfies (6) and is a mini¬ 

mal surface. 

In order to apply the tests of (ii), § 3.9, we find that 

d^F _ l+q^ d^F _ pq 

dp^ ““ (l+p^+q^)^' dpdq (l++^ + ^2)*' 

d^F l+p2 

^ [r+pH7^)*‘ 

It is then evident that 

c^F c^F r^FV 
dp^ dq^ ^ \opdq) 

Since the positive value of the root is taken it follows that 

d^Fjdp^ is always positive and so the surface admits a minimum. 

The problem of finding the conjugate of a given curve is natur¬ 

ally a difficult one, but the following result, which we quote 

without proof, has been obtained in a case with simplified con¬ 

ditions. Call the intersection of surface (7) with the plane 

2 = A, where h is constant, a circle of latitude. Then the con¬ 

jugate of a circle of latitude on the plane z ^ another circle 

of latitude which lies on the plane 2 = ^2* wheref 

cothA^—Aj = cothA2—^2- 

This equation is the same as (3), § 2.13, and the same geometrical 

consequences must therefore follow. 

Consider the problem of constructing a minimal surface, such 

as (7), to pass through two given circles and Q lying in planes 

perpendicular to O1O2, the join of their centres, Fig. III. 4. 

t Foniyth, loc. cit., p. 480. 
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If a plane through 0^ 0^ cuts the circles in the points and Pg, 

then at most two catenaries can be drawn to pass through P^ 

and P2 and to have 0^ 0^ as direc¬ 

trix, f On revolving these catenaries 

round 0^ as axis it follows that at 

most two surfaces, such as (7), can 

be constructed to pass through and 

Cg. Denote one of these surfaces by 

S and by means of (13) find C\ and 

C2, the respective conjugates of 

and Cg. If the region of S bounded 

by Cj and C2 does not contain either 

C\ or 6*2, then for any surface of 

revolution bounded by and-C2 the 

area of 5 is a minimum. 

In this section the theory of 

minimal surfaces has been considered in relation to three- 

dimensional space, but the idea can be extended to a hyperspace 

of any number of dimensions. The case of four dimensions has 

been dealt with by Forsyth.J 

Example. Find the minimal surface whose equation is 

expressible in the form 2 “ /(^)+P(2/)* 

(Answer - cos ax sec oy, where a is any constant.) 

t Forsyth, loc. cit.,p. 100. 
I Forsyth, loc. cit., p. 643. 



CHAPTER IV 

RELATIVE MAXIMA AND MINIMA AND 
ISOPERIMETRICAL PROBLEMS 

4.1. Introduction 
The problems dealt with in this chapter are iUustrated by the 

following two examples, (i) Given the length of a closed plane 

curve, find its shape when the enclosed area is a maximum. 

Expressed otherwise we require the maximum value of J dA 
subject to the condition j ds = L, where L is the given length, 

ds is the element of arc, and dA the element of area, (ii) Find the 

curve, lying wholly on a given surface S, whose length of arc 

between two given points P and Q is a minimum. Here we 

require the minimum value of J ds subject to the condition 

that S(x, y, 2) = 0, where ds is the element of arc and the 

equation is that of the surface S. 
Problems in which the conditional equation involves integra¬ 

tion are usually known as isoperimetrical problems. 

4.2. Relative maxima and minima 
Confining ourselves to plane curves we commence with the 

problem of finding the stationary values of the integral /, where 

b 

/ = I F(x,j/,yi)dx, (1) 
a 

and where the equation 
b 

L = j <f>{x,y,y^)dx (2) 
a 

must be satisfied by y and y-^ (— dyjdx) regarded as functions of x. 
Here L is a given constant and F and ^ are given functional forms. 

We may express the problem otherwise by saying that among all 

the curves which satisfy.(2) we require those which maximize 

or minimize (1). These maximizing (or minimizing) curves will 

be referred to as extremals. 

For simplicity we shall consider only the case where the 

end points of the range of integration, x — a and x ~ b, are 
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prescribed. We also assume that F and <f> possess continuous 

partial derivatives up to at least the second order, so that we 

may employ the mean-value theorem for functions of several 

variables. 

With the terminology of § 1.3 let 

y = s(x) (3) 

be the functional form of y for which / is stationary and let us 

consider the change in the value of / when y is subjected to a 

variation of the form 

y = + (4) 

Here € is a constant and, since the end points are prescribed, 

t(a) = t(b) = 0. If / changes to /-fS/ then, using the mean- 

value theorem, we have 

b 

‘ J (la fa" 
a 

where s = 5(x), = ds{x)ldx, t^ix) = dt{x)jdx and, using the 

Landau notation of § 1.2, O(e^) denotes terms contaim'ng e* and 

higher powers of e. 

Since L is constant, on dealing with integral (2) similarly we 

have ft 

0 - e J {^t(x)+^<i(x)Jrfx4-C?(f^). (6) 

a 

Now integrate by parts the second term in each of these 

integrals and make use of the conditions t{a) = t(b) — 0. 

Equations (5) and (6) then respectively become 

a 

«d (8) 

a 

From (8) it is evident that c and are not independent of 

each other and therefore we may not equate the coefficient of 

€ in (7) to zero, as in previous work. A similar difficulty occurs 
ilM o 
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when finding the stationary values of functions of several 

variables in the case where some of the variables satisfy sub¬ 

sidiary conditions. Among the methods used to overcome this 

difficulty is'the Lagrangian method of undetermined multipliersf 

which, fortunately, applies with equal success to the problems of 

this chapter. 

Multiplying equation (8) by an undetermined multiplier A and 

subtracting from (7) we have 

+ 0(c2). (9) 

Now if I is to be stationary the sign of 8/ must be independent 

of the choice of c and i(x). This result can be achieved if we 

assume that A is a constant and choose so as to satisfy the 

second-order differential equation 

It might appear sufficient to choose s(x) so as to satisfy the 

second-order equation 

dj^ 
bs dx \ds^j 

(il) 

For it would then follow from (7) that the sign of 81 is indepen¬ 

dent of € and t(x). But only a finite number of solutions of (11) 

can pass through the fixed end points A and By and none of 

these may satisfy condition (2). In the case of equation (10), 

A can be regarded as a third arbitrary constant in addition to the 

two of the solution; hence a solution of (10) can be found which 

passes through the end points A and B and in addition satisfies 

condition (2). 

Evidently the conditions under which (10) has been proved 

are sufficient but not necessary. 

t Courant. DiJJererUuU and Integral Cakulua, vol. ii, p. 188 et seq. 
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To summarize our results we have proved: 

Theorem 11. By suitable, choice of the constant A, a solution of 

the second-order equation 

can be found which renders the integral /, of equation (1), stationary ^ 

which passes through the end points of the range of integration of 

(1) and (2), and which also satisfies condition (2). 

The discussion of the second variation, i.e. the coeflScient of 

is postponed to § 4.12; the next three sections are devoted 

to illustrations of the theorem. 

4.3. Examples illustrating theorem 11 

Example 1. Two fixed points, A and JS, are joined by a plane 

curve r, of given length /. Find the form of F for which the area 

enclosed by F and the chord is a maximum. 

It is best to use polar coordinates, taking as the initial 

line and some convenient point 0, lying between A and B, as 

pole. It is assumed that a radius vector through 0 cuts F in at 

most one point. 

The problem evidently becomes that of maximizing the in- 

tegral „ 

I==ifr^-d0, (1) 
0 

subject to the condition that 
B 

(2) 
A 

(3) 

0 

where the positive value of the root is to be taken. 

Here 6 is taken as the independent variable and r as the depen¬ 

dent variable (instead of x and y respectively). On writing 

rj = drjdO we have F(d,r,r^) — and (f){6,r,ri) = (r*-[-rf)i. 

Hence with x replaced by 0 and y by r, (12), § 4.2 becomes 

Ar , d ( hri 

(r*-j-rl)i'^d0{(r»-hr!)* 
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If 8 denotes the length of arc we have = ds/dO, and so, 
since A is constant, equation (4) can be written 

. dd , . d /dr\ ^ 

If X is the angle between the radius vector OP and the tangent 
to r at P (Fig. IV. 1) and ip is the angle between the initial line 

and this tangent we have = sin x = cos x- 

Equation (6) can be written 

r = 

(6) 

Thus A — dsjdilt and, since A is constant, it follows that at all 
points of r the radius of curvature must be the same. Hence 
in the stationary case P is an arc of a circle of radius A. 

1{ AB = 2a and the circular arc AB subtends an angle 2(x 
at its centre C, it is easy to show geometrically that a = A sin a 
and I — 2afA. Eliminating A we have 

2o<* =3 lain a, (7) 

giving us an equation for a in terms of the known quantities 
I and a. Equation (7) always has a real solution if 2 > 2a, and 
if this is satisfied the length of the radius and the coordinates of 
C, the centre, are easily determined. 
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In § 4.12 it will be shown that this solution, with certain restric¬ 

tions, gives rise to a maximum value for the enclosed area. 

4.4. Examples 2 and 3 
Example 2. A heavy uniform flexible chain of given length 

hangs in equilibrium under gravity with its ends attached to 

two fixed points A and B, Find the equation of its curve. 

According to statical theory the chain must hang in a vertical 

plane so that its potential energy is a minimum, and this 

principle will form the basis of our investigation. 

Taking the vertical plane in which the chain hangs as the 

xy plane and any convenient horizontal line as the ar-axis, let 

p be the mass per unit length of chain and let a and b be the 

abscissae of the points A and B respectively. Then the potential 

energy of an element of length ds at a height y above the ar-axis 

is pgy ds and so we must minimize the integral 

B 

I=^pg^tjds, (1) 
A 

subject to the condition that 
B 

Z = J" (2) 
A 

On transforming to the variable x it then appears that we 

must minimize the integral 

b 
iIp3 ^ dx, (3) 

a 

subject to the condition thatf 

b 

I-= j (l-\-yl)*dx. (4) 

From (12), § 4.2, it follows that y must satisfy the differential 

da:\(l+yf)*l ’ (5) 

t The positive values of the roots eu*e to be taken throughout. 
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where A is a constant. It is then easy to verify that (6) is satisfied 

by the catenary whose equation is 

y = A+ccosh|^^^j, (6) 

where c and d are arbitrary constants. 

Before proceeding further it is interesting to compare this 

result with that obtained in the very similar problem discussed in 

§ i.7. In § 1.7 the chain was allowed to pass over two smooth 

pegs at A and B, there was no restriction in the length, and in 

the solution there were only two arbitrary constants. In 

the solution above, given by equation (6), there are three 

arbitrary constants, A, c, and rf, so that the condition (2) is 

counterbalanced by the appearance of an extra arbitrary con¬ 

stant. 

To complete the solution of the problem, suppose for simpli¬ 

city that the points A and B have coordinates (—a, h) and (a, h) 

respectively. Then from (6) we have 

“f^), (7) 

and so d = 0. From (6) and (4) we have 

I = 2c8inh|?j, (8) 

which is an equation for c. since I and a are known. Now write 

o = cX and consider the curves 2ay = IX and Y ~ sinhAf, 

where X and Y are the running coordinates. Since the curve 

Y = sinh X has a point of inflexion at the origin, whose tangent 

is inclined at an angle 7t/4 to the x-axis, it is easily proved that 

if 1 > 2a equation (8) has only one positive root for c, and that 

if Z < 2a there are no real roots for c. In practice the first 

inequality is satisfied, since the length of the chain must exceed 

the length of AB, and (8) gives us a unique value for c. From 

(7) A is then easily determined and so a unique catenary can be 

found for which the potential energy is stationary. 

The discussion of the second variation is too elaborate for us 

to consider bore. Some remarks will be made in § 4.12, which 

A—A = c cosh I—--^^1 = c cosh I 
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will show that I admits a minimum, but it is evident from 

physical considerations that / must be a minimum. 

Example 3. The arc F of a plane curve of given length I 

has its ends attached to two points A and B. If the arc is rotated 

through four right angles about an axis in its plane, determine 

the form of F in order that the superficial area so generated 

should be a maximum or minimum. 

(This is mathematically identical with example 2.) 

4.5. Example 4 

A and B are two adjacent points of intersection of a plane 

curve F with the ar-axis, the curve being such that any line parallel 

to the ^-axis and having A and B on opposite sides of it cuts it 

in one point only. The arc of F lying between A and B is rotated 

through four right angles about the x-axis and generates a 

closed surface whose superficial area is A and whose interior 

volume is V, Given A, find the form of F in order that V should 

be a maximum or a minimum. 
b 

Here we have V tt J dx, (1) 
a 

subject to the condition that 

b 

A - (2) 
a 

where A is given. 

From (12). § 4.2, I' is stationary if ?/ satisfies the differential 

equation 

2ny—X27r( 1 +yi)* +A 
dx 1(1 +^i)M 

(3) 

where A is a constant. It is not difficult to verify by direct 

differentiation that a first integral of (3) is 

2\y 
= c, 

where c is an arbitrary constant (this is a special case of theorem 

2, § 1.4). The surface generated by rotating the curve (4) about 
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the x-axis is a minimal surface,f see §3.11, and is of great interest 

in surface-tension theory.^ 

Since the complete integral of (4) involves elliptic functions 

we shall confine ourselves to the simple case where c = 0. In 

this case (4) reduces to 

where ^ is the angle between the ar-axis and the tangent to F. 

On differentiating (5) with respect to s, the length of arc, we have 

sini/r = ^ = ~-2Asin0^. (6) 
as as 

It therefore follows that the radius of curvature is equal to 

— 2A and is constant, since A is constant. Hence F must be an 

arc of a circle. If the arc is concave to the ar-axis its radius of 

curvature will be negative and A will then be positive. 

It follows also from (5) that at A and By where y = 0, we have 

0 == i.e. the curve must cut the a:-axis at right angles and F 

is therefore a semicircle. 

In § 4.12 we shall show that this case is not merely stationary 

but leads to a maximum. Thus among surfaces of revolution 

of given superficial area the one which encloses a maximum 

volume is the sphere. 

4,6. Further isoperimetrical problems 

We shall use the symbol f to denote an integral taken once 

round a closed contour. The problem of this section is to find 

the functional form of y which renders the integral 

I = j F(x,y,y^)dx (1) 

a maximum or a minimum subject to the condition that 

J = j<f>(x,y,yi)dx. (2) 

Here J is a given constant, the two contours of integration 

are the same, and F and <f> are known functional forms. An 

t The sum of the principal curvatures at a point of the surface is zero. 
The enclosed volume of revolution is a maximum. See Forsyth, loc. cit., p. 416. 

X See H. Lamb, SkUicSy chap. xiv. 
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illustration is the problem of finding the closed plane curve of 

given length which encloses a maximum area. 

The integrals in (1) and (2) can be transformed to the more 

familiar forms with given end points by the introduction of 

parameters. Although on traversing a closed contour once, the 

coordinates of a point return to their original values the para¬ 

meter of the representation need not do so. For example, if a 

point P describes the circle once, its coordinates 

will return to their original values. But if these coordinates, 

{Xy y) say, are given in parametric form by the equations 

X == acos^, y = asin^ 

then as P describes the circle once, the parameter t will vary 

from Iq to /o+27r. 

Suppose that x and y, the coordinates of any point on the 

contour of integration, can be expressed parametrically in the 

form x = p(t)y y — q{t)y and letf 

fi-Xy y. Vi) = F(x, y, y/x) = G{x, y, x, y) dtjdx (3) 

y,yi) = <f>(x, y, yjx) = 4t{x, y, x, y) dtjdx, (4) 

where, as is usual in dynamics, a dot denotes differentiation with 

respect to t. Suppose also that when the contour is traversed 

completely once, the parameter t varies continuously from 

to <2* On substituting in (1) and (2), taking i as the independent 

variable and x and y as the dependent variables, we reduce the 

problem to the following form. Find x and y as functions of t 

so as to make the integral 

I = ^ G{x,y,x,y)dt, (5) 

<1 

a maximum or a minimum, subject to the condition that 

J = I ifi(x,y,x,y) dt, (6) 
ti 

where J is a given constant. 

The methods used in § 3.2 to deal with integrals similar to 

(6) can now be employed here. Let x ~ «,{<) and y = s,(<) be the 

t See S 8.8 for some properties of the function 0{x, y, x, y). 
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functional forms of x and y which make I stationary, and let us 
consider a small variation 8/ in the value of 1 when x and y are 
replaced by x = s^(t)+€^u^(t) for brevity) and 

y == 52(04-^2^2(0 (= 52+€2 ^^2)* The quantities and are 
arbitrary constants and and 112(1) are functions of t one of 
which can be chosen arbitrarily (it is evident from (6) that only 
three of the quantities eg, Wi, ^2 arbitrarily chosen). 
Since the curve is closed the parameters 0 and /g correspond to 
the same point. We may without loss of generality assume that 
this point is fixed, giving us the conditions 

«i(0) ^2(0) = == ^2(^2) == <>• 

We confine ourselves to the case where ejiij and 631^2 both 
tend to zero as and ^2 lend to zero. 

Assuming that for sufficiently small values of and eg we may 
employ the mean-value theorem then, from (5) we have 

BG , . 2, 

(7) 

where 0(<*) denotes terms involving ef, cjc^, ef, and higher 
pow'ers of the epsilons. On integrating by parts, as in § 1.4, and 
noting that m, vanishes at both limits of integration, we have 

On combining this with the analogous result for the second 

integral of (7) we obtain 

'• (9) 

Noting that J is a constant we may similarly deduce from 
(6)that 

h <■ 

d 
dt 

(10) 
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Equation (10) shows us once again that all four quantities 

ei, €2, and U2(t) cannot be arbitrarily chosen. For we can 

take £1 and €2 to be arbitrary constants, U2(t) to be an arbitrary 

function of t, and then regard (10) as an integral equation for the 

determination of t^i(0* 

In order to find the conditions which ensure the vanishing of 

the first variation of 1 we proceed as follows. Choose x = ^^{t) 

and y = 82(1) to satisfy the equation 

dG d ^ l^W  0 
dx dt\dxj \dx dt\dx]f 

(11) 

where A is an undetermined constant whose value can be found 

by a method given later. This equation by itself is insufficient 

to define the two functions .^^(i) and S2{t). 

Now multiply (10) by A and subtract from (9). From (11) 

the co-factor of Uy(t) vanishes and we have 

8/ = €2 
d 

dt yC'^2/ / ^*^*2 \^^2/ ' 
rf^ + (?(e^). 

(12) 

If / is to be stationary the coefficient of €2 must vanish. Since 

2/2(0 is an arbitrary function of the arguments of § 1.4 then 

enable us to deduce that x = <5^(0 and y = ^2(0 must also satisfy 

= (.3) 
dy dt\ey) \dy dt\dy)f 

Equations (11) and (13) suffice for the determination of both 

5^(0 and 82(1). The arbitrary constants enable us to choose those 

solutions of (11) and (13) which satisfy given conditions, such as 

passing through given points, and the extra undetermined 

constant A can then be chosen so that condition (2) is also 

satisfied. 

We have therefore proved: 

Theorem 12. By suitable choice of the arbitrary constants and 

of the constant A it is possible to find solutions of (11) and (13) 

which make the integral of equation (1) stationary and at the same 

time satisfy condition (2). 

This result is illustrated by the following example. 
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4.7. Example 5 
Find the plane curve of given length which encloses a maxi¬ 

mum area. 

Let I denote the area and L the length of the curve and let the 

coordinates {x,y) of any point on the curve be expressed as 

functions of the parameter t. Thenf 

I = \ ^{xy-iy)dt (1) 
tx 

and ^ ~ f (**"t"i^*)* 
ii 

where the positive value of the root is to be taken. 

Equations (11) and (13) of § 4.6 become 

and = 0. 

(3) 

(4) 

If ds is the element of arc, these equations are easily reduced to 

and 

(5) 

(6) 

On solving these simultaneous equations for x and y in terms 

of « we obtain 

and 

X = a-l-csin 

y = 6—ccos 

(7) 

(x+“)' (8) 

where a, b, c, and a are arbitrary constants. This solution repre¬ 

sents a circle of radius c and centre (o, 6). Evidently c — LI2rr. 

Substituting from (7) and (8) in (2) and taking the .s-limits 

of integration to be and Sj-f-27rc we deduce that 

A = c = LI2n. 

t Coumnt, DifffererUial and Integral CalctUue, voL i, p, 273. 
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The remaining arbitrary constants a. 6, and a can be determined 

if we are given one point on the extremal and the slope of the 

tangent there. 

An alternative method is to note that if ^ is the angle between 

the x-axis and the tangent to the curve at the point {x,y)y then 

dxjda = COS0, dyjds = sin^, so that (6) becomes 

COS0—A {(jUfilds)cosilf = 0. 

Thus, since A is constant, the radius of curvature must be con¬ 

stant at all points and equal to A. Equations (5) and (6) can be 

easily integrated in terms of The results are 

X = a+Asin(j/f+a), (9) 

y = 6—Acos((/f-f a), (10) 

where a, 6, a are arbitrary constants whose values can be*deter¬ 

mined as above. 

In § 4.13 it will be shown that this solution gives a maximum 

value to the integral 1 of (1). Discontinuous solutions are 

possible in some cases.f For example, if the contour is required 

to pass through three non-collinear points .4, By C, then we must 

find three circular arcs of equal radius whose lengths add up to 

the given value i, each arc terminating in two of the points 

Ay By C. If BC ~ a, CA — 6, and AB — c, then the angle 

subtended by BC at the centre of arc BC is 2sin“^(a/2A), etc., 

where A is the common radius. Hence equation (2) becomes 

This is an equation for A, and if it can be solved the positions 

of the centres and the arcs are then easily obtained. 

If the three points are collinear, on taking AB — c, BC — a, 

and B to lie between A and C the equation (2) for A becomes 

i!A.in-(i)+2A,i„->(±)+2A.in-.(?+') = L. (12) 

t The obeervatione of § 1.17 apply to theee oases. 
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4.8. Subsidiary equations of non-integral type 

In previous sections relative maxima and minima have been 

obtained when the subsidiary equation involves integration. 

In this section we shall deal with cases where the subsidiary 

equation takes other forms. As an illustration consider the 

problem of finding geodesics on a surface. This requires us to 

minimize an integral of the type 

(t 

/ = J d/, (1) 
<» 

where the point (pc,y,z) is restricted to lie on the surface whose 

equation is = 0. (2) 

If (2) could be soh^ed for one of the variables, for example z, 

it would be possible to eliminate c from (1) and reduce the prob¬ 

lem to one of unre.stricted maxima and minima with one inde¬ 

pendent and one dependent variable. In practice the elimination 

may be too difficult or too inconvenient to perform and in some 

cases a certain desirable symmetry between the variables may 

be lost in the process. It is therefore worth while investigating 

the problem in the form stated above. 

We shall consider a more general problem than the one just 

mentioned. Find the maximum and minimum values of the 

integral 

/ = J 0(x,t/J.x,y) di, (3) 

h 

where the variables are subject to the condition that 

S(x,y,t,x,y) -= 0, (4) 

O and S being given functional forms. 

As in § 4.6, let x = 8^(i) -- and y = = 8^ be the 

functional forms of x and y which make / stationary. Consider 

8/, the variation in I when, for a given value of i, the values of 

X and y are varied to a; == and y ™ Here cj 

and ej are arbitrary constants and U2 (— ^2(0) arbitrary 

function of t, the fourth quantity, (= Ui(t)) being dependent 
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upon the three previous ones. At the end points it is assumed, 

for simplicity, that u^(ti) ~ ^^2(^1) = ^1(^2) = ^2(^2) — 
On employing the same analysis for (3) as for (5), § 4.6, we may 

deduce that 

where 0(€^) denotes terms involving cf, cg, cf and higher powers 

of the epsilons. 

From equation (4) we also have 

dS , . dS , dS , . , n/ 2^ ^ A 
(6) 

Now if fi is any function of x, y, and t, by straightforward 

differentiation of the terms on the right-hand side it is easily 

verified that 

I . es , . dS\ d f / 8S , aN\l 

- dt rr^j) ~ 

Hence, on multiplying (0) by y. and subtracting (7) we have 

{ 0.S’ dl es\\ , ( es d I 8S\\ , 
“-r s, ~j< r «,))+'■ ”t s, ~d,y‘wjr 

Integrating, and noting that 

— ^2(^1) “ ^1(^2) ” ^^2(^2) ~ 

we have 

-fO(«») = 0. (9) 
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Now assume that ft is chosen so that x = and y — 8^(1) 

satisfy the partial differential equation 

dx dt\dx) Ydx dty^dxjf ' ' 

On subtracting equation (9) from (5) it then follows that the 

cofactor of vanishes, so that 

dt ^^^2/ 
dt+0{€^), (11) 

If / is a maximum or minimum, then the coefficient of cj must 

vanish. Therefore, since ^2(0 is arbitrary function of 

the arguments of § 1.4 prove that the functions x = 8i(t) and 

y = 82(1) must satisfy the following equation: 

The three equations (4), (10), and (12) suffice to determine 

X, y, and y. as functions of t. 

We have thus proved: 

Theorem 13. SoltUions of the simultaneous equations (10) and 

(12) can be found which satisfy equation (4) and which make the 

integral I of (3) stationary. 

If another dependent variable, e.g. z, appears in (3) and 

(4) in addition to x and y we still use the same arguments. It 

is then found that for / to be stationary a further characteristic 

equation is required in addition to (10) and (12), one in which 

the partial derivatives are taken with respect to z instead of with 

respect to x or y. The factor y. is the same for (10), (12), and 

the additional equation. 

The details of proof are left to the reader. 

4.9. Example 6. Geodesics 
To find the geodesics on a given surface. 

Let S{x,y,z) = 0 (1) 

be the equation of the given surface and assume that the co¬ 

ordinates of a point situated on a ctirve which lies on (1) can be 

dy dt\dy) y dy 
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expressed as functions of a parameter t. Then the length of arc 

joining the two points A and 5 is / where 

/ = J (x*+y*+2*)* dt, (2) 

and the problem reduces to that of finding the minimum value of 

I subject to the restriction imposed by equation (1). 

Equation (10), § 4.8, becomes 

and in addition there are two corresponding equations for y 

and z. If a denotes the length of arc, (3) simplifies to 

da d*x 
(4) 

together with two corresponding results for y and z. It follows 

d*xjds^ ^ d’^/da^ ^ dHjds^ ^_^ . 
dSjdx dSjdy dS/dz dsjdt' 

The first three fractions have their numerators proportional 

to the direction cosines of the principal normal to the geodesicf 

and their denominators proportional to the direction cosines of 

the normal to the surface (1). The principal normal to the 

geodesic must therefore coincide with the normal to the surface. 

From the four equations given by (5) together with (1) it is 

possible to determine x, y, 2, and fx as functions of t. A slight 

simplification is effected by taking the parameter i to be equal 

to s, the length of arc, so that ds/dt = 1. 

4.10. Examples 7-9. Geodesics on a sphere 
Example 7. We illustrate the theory of § 4.9 by finding the 

geodesics on a sphere, a problem already discussed in § 1.10. 

Taking the centre of the sphere at the origin its equation is 

== a*, (1) 

t C. Smith, Solid Oeomelry, p. 202, § 233. 

61S« H 
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and taking the parameter t to be equal to a', the length of arc, 

equations (5), § 4.9, become 

1 d}x 1 d^y 

X ds^ y ds^ z ds^ 
(2) 

But on diiTerentiating (1) we have 

dx ^ dy ^ dz 

and on differentiating further we have 

d^x , d-^y , dH 

ds^^^ds^^ ds^ 

(3) 

(4) 

Hence from (2) and (4) we obtain 

-2y(x^-+y^ + z^) - -1, 

and so from (1) it follows that 

1 

(5) 

(6) 

It should be noted that in general y is a function of x, y, z, 

and not, as here, a constant. Equations (2) can now be .simplified 

to 
^ X 

ds^^a^ 
0, 

z 
0, (7) 

the solutions of which are 

z == A cos y Bcoh and 2 “ 6’co.s 

(8) 

Here the constants A, B, C\ a, /3, y are related in such a manner 

that only three are arbitrary. For on inserting the results of 

(8) in (1) we have an expression which is identically true for all 

values of s. We may then e([uate the coefficients of C0H(2sJa), 

Hin{2s/a) and the term independent of to zero, and so obtain 

three relations between the six con.stants. 

Eliminating s from equations (8) we deduce that 

z A cos oc A sin a 

y JScosjS Bninp 

z C cos y C sin y 

0. (9) 
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Hence the geodesics must lie on a plane through the centre and 

so must lie along arcs of great circles. This agrees with the result 

obtained in § 1.10. 

Example 8. Given the cylindrical surface whose equation is 

t/2 ^ ^2 2ind two points A and B whose coordinates are 

(a, 0,0) and (a cos a, a sin a, 6) respectively. Prove that the 

geodesics through A and B are given by 

X = a cost, y ~ a sin/, ^ ^ i//(2M7r-f a), 

where n is an integer. 

Example 9. Given a surface of revolution whose axis lies along 

the 2-axis. Let the Cartesian and cylindrical coordinates of a 

point P on the surface be (x, y> z) and (r, 6, z) respectively. Prove 

that along a geodesic — = c and = c, where c is a 
as ' (is ds 

constant, the same for both equations. 

4.11. Non-holonomic dynamical constraints 

We now deal with some ])rol)lems of relative maxima and 

minima which are of great importance in dynamics in connexion 

with systems of forces known as non-holonomic dynamical 

systems. They will occur again in the next chapter when we 

deal with Hamilton’s principle. 

Non-holonomic restraints occur w hen there is one independent 

and several dependent variables and they are significant only 

w hen there are at least three dependent variables. For simplicity 

we shall confine ourselves to the case of three dependent vari¬ 

ables, but we shall employ arguments which can be applied to 

the general case. 

If / is the inde{)endent and x, //. 2 the three dependent variables, 

then a dynamical constraint is given by an equation of the 

Px+Qy+Bz^O, (la) 

or what is equivalent, 

P dx -f- Q dy R dz = 0, (1) 

where P, Q, R are functions of x, y, z, and Such equations are 
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not, in general, integrable and can only be integrated \5 P,Q,R 

satisfy the integrability conditionf 

If this condition is satisfied (1) is integrable. We can then 

solve for z and by elimination reduce the problem to one with 

two variables and with no condition of restraint. If (2) is not 

satisfied, and (1) is therefore not integrable, then the problem 

cannot be reduced in this way. We then have a condition which 

corresponds to the case of a non-holonomic dynamical system. 

We now assume that (2) is not satisfied, and therefore (1) is 

not integrable, and proceed to find the conditions which ensure 

that the integral 

/ = I G(x, y, z, t, X. y, z) dt (3) 

is stationary subject to condition (1 a) or (1). In the stationary 

case let x = y = ^ “ ^3(0» denoted for brevity by 

Si, 82, 82 respectively, and in the varied case for a given value of t 

let X, y, z change from these values to Si-f Wj, ^2+^2 

respectively. Here €2, and €3 are arbitrary constants and Wg 

and W3 are arbitrary' functions of L The remaining quantity, Wj, 

which is also a function of t, is expressible in terms of the other 

five by virtue of (la). At the end points, t == and ( — 

the functions Wj, Wjt ^3 vanish. 

In (1) we may writedx = €yU^,dy — egWg, da: — €31/3, multiply 

by an undetermined factor v, and integrate with respect to i. 

We then have 

t% it it 

€j J V PUi d^ + Cj J V Qu2 d< + e3 J V Ru^ dt == 0. (4) 
ii ix 

We can now proceed as in § 4.8, replacing equation (9), § 4.8, by 

(4). First choose x = 8^(t), y = 2 = H(t)x and v to satisfy 

the equation 

t Forsyth, DiJJeretUial EqucUionSt 4th edition, p. 309; Piaggio, Differential 
Eqaativne (192S), p. 137. 
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Then write x — etc., in (3). On calculating the value 

of 8/ it is evident that the result must be the same as (6), § 4.8, 

except that we have a third integral to allow for owing to the 

presence of the additional variable z. Subtracting (4) from 8/ 

the coefficient of vanishes, owing to (6), and we are left with 

8/ = 
dt \d3j 

vQ 

tx 

If / is to be stationary, then the coefficients of eg and eg must 

vanish. Since and Wg are arbitrary functions of t, the argu¬ 

ments of § 1.4 enable us to deduce further that a: == y = 

and z cSg must also satisfy the equations 

and 

dy 

m 
dz 

d I^Cf\ 

dt \dyl 

d(^ 
dt{dz I 

— vR — 0 

(7) 

(8) 

in addition to (5). 

The three characteristic equations (5), (7), and (8) together 

with (1) suffice to determine x, y, z, and the factor v. 

These ideas can be generalized to the case w hen n dependent 

variables appear in the integrand of /. When there 

are conditional equations of the type (4), § 4.8, and also non- 

holonomic restraints of the type (1) above, the general result 

is as follows: 

For a stationary value of 

/ = J G(Xi,X2,---,X„\ X^,Xf,...,X„', t) dt, (9) 
<1 

subject to conditional equations of the type 

ii,Xa,...,x„; t) = 0, (10) 

m = l,2,...,p, and non-holonomic equations of constraint of 

the type dx,+P,^, dx,+ ...+P,^„ dx„ = 0, (11) 
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1^1,2,...,7, the dependent variables must satisfy the n 

characteristic equations 

0. (12) 

r — 1,2,..., w. where and t\ are independent of r. 

The equations (10), (11), and (12) suflice to determine all the 

quantities .*r„ together with the multiplier.s and i\. 

4.12. The second variation 

The conditions obtained so far ensure that the integrals con¬ 

cerned are stationary. In order to determine whether these 

integrals are maxima or minima a study must be made of the 

second variation, i.e. those terms in 8/ which contain ef, e.^, 

etc., as factors. The ideas which underlie this study are the 

same as those expounded in Chapter II. But the nature of the 

analysis is in general so elaborate and intricate that we shall 

confine ourselves to a .statement of the results, either without 

proof or with ju.st an outline of one. 

From the characteristic e(|uation.s we can derive acces.sory 

equations which enable us to expre.ss the second variation.s 

in forms whose signs are easily determined. The theory is 

analogous to that of § 2.4, but far more intricate. It is then 

possible to deduce two tests which are generalizations of the 

Legendre test of§§ 1.5 and 2.5 and the fJacobi test of (’hapter II. 

The first test requires the sign of certain derivatives to remain 

constant throughout the range of integration and the second 

defines the maximum permis.sible length of this range. 

The second test consists of an application of Jacobi's theory 

of conjugate points outlined in Chapter II. Given a point on a 

curve (or a curve on a surface) it is pos.sible to generalize Jacobi's 

theory and define conjugate points (or curves). The second test 

then requires that the range (domain) of integration must lie 

within the arc (region) bounded by a point (curve) and its next 

conjugate point (conjugate curve). The ideas can be extended to 

integrals with any number of variables of integration. 

Conjugate points may be defined as in § 2.0 by considering the 

zeros of solutions of the accessory equations. From this 
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definition analytical expressions, such as (6), § 2.6, or (3), § 2.12, 

can be obtained for the determination of all the conjugates of a 

given point or curve. It can also be shown, as in § 2.9, that con¬ 

jugate points possess the following property. Let E denote the 

family of extremals passing through a given point P (or curve C), 

then the limiting points (curves) of intersection of neighbouring 

members of E are the conjugates of P (or C). Of these methods 

the second is, in general, much the easier to use in practice. If 

the family E has an envelope, then the conjugate points (curves) 

can be found as points of contact w ith the envelope, as in§§ 2.10, 

and 2.11. 

Consider the results of § 4.2, w^here it was shown that solutions 

of the characteristic equation (10), § 4.2, make the integral /, 

of (1), § 4.2, stationary. In order to find the second variation 

we must find the coefficient of in (9), § 4.2. This can be done 

by finding the coefficients of in (5) and (6), § 4.2, multiplying 

the second by A, and subtracting from the first. The second 

variation is then found to be 

dx, (1) 

where t ---■ ((x) and — dt 'dx. The arguments of § 1.5 then 

indicate tliat if the range of integration is sufficiently small the 

dominant term in (1) is 

it 
(d^F , 

1^4 ds\ 
(2) 

Reverting to the more customary y notation the following 

result can be proved 

Theorem 14. If the range of integration of the integral I of 

(1), § 4.2, sufficiently small, and if the expression 

^yl ^y\ 
has the same sign throughout this range, then the integral I has a 

maximum if E is negative and a minimum if E is positive. 

t Forsyth, loc. cit., p. 407. 
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(Consider the example of § 4.3. It was required to find the 
curve r, of given length, which joined two given points A and B 

in such a manner that F and the chord AB enclosed a maximum 
area. The characteristic curves, as shown in § 4.3, are circles of 
radius A and the function is 

where (f, ff) are polar coordinates and = drjdd. The test 
function of theorem 14 is 

8*F 

dr* dr*' 

and on evaluation, this is found to be equal to —Ar*(r*-f rf)“*. 
Hence, taking the positive value of the root, for a sufficiently 
small value of the length AB the area will be a maximum. 

To determine the permissible extent of the length AB we 

shall find A', the conjugate of .d, by considering the intersection 
of neighbouring extremals through A. Take A as the origin 
and B on the x-axis (Fig. IV. 2) and let B' be another point on 
the x-axis, where AB' < 21, the given length of the curve F. 
Let C be the centre of the circle which passes through A and B' 

whose arc AB' = 21, and let 2a denote the angle subtended by 
AB' at C, so that its radius is Ija. Then (Fig. IV. 2) the 
equation of this circle is 

21 
x*-\-y*-(x sin a—y cos a) = 0. (3) 
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When B' coincides with By let a = so that AB ^ (2Z8inj3)/j9, 

an equation for ^ which must have one root between 0 and n if 

AB < 21, The equation for the stationary curve F will then be 

x*+y* — ~(xBm^~ycosP) = 0. (4) 
P 

Regarding a as a variable parameter, (3) is the equation of a 

family of extremals each of which (i) satisfies the characteristic 

equation (4), § 4.3; (ii) passes through A; and (iii) has the length 

of arc between A and B equal to 21, the given length. Hence A\ 

conjugate of can be found as the limiting point of intersection 

of (4) and a neighbouring circle of (3). In the usual manner put 

(X = jS+SjS in (3), subtract (4), divide by Sj8, and then let SjS 

tend to zero. The result is that the required conjugate A' must 

lie on the line 

a:(/3cosj9—sinj3)+y(j3sin/9+cosj9) = 0. (5) 

Evidently, from Fig. IV. 2, if is to lie outside the arc AB the 

line (5) must make an angle with the x-axis whose tangent is 

negative. Hence for a maximum to be possible, the expression 

j3co8j3—sinjg 

^sinjS+cosjS 

must be positive. Since p lies between 0 and n the numerator is 

always negative and so the denominator must also be negative 

and this requires that p should lie between 160° 20' (approxi¬ 

mately) and 180°. The area enclosed by F and the chord AB 

then admits of a maximum if the arc F subtends an angle greater 

than 320° 40' at the centre. 

By making the length of the chord A B tend to zero it follows 

that a plane curve of given length encloses a maximum area 

when it is in the form of a circle, thus completing the solution 

of the isoperimetrical problem of § 4.7. 

In the case of example 2, § 4.4, where it was required to find 

the shape in which a heavy uniform flexible chain hangs under 

gravity, the Legendre test depends upon the sign of 
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From (3) and (4), § 4.4 this is equal to which, 

from (6), § 4.4, is found to be equal to 

Hence for positive c the potential energy admits of a minimum if 

the range of integration is sufficiently small. The Jacobi test is 

too intricate to discuss here, but it is obvious from physical 

considerations that the only limitation is that the length of the 

chain must exceed the distance between the points of suspension. 

In example 4, § 4.5, where it was required to find the closed 

surface of revolution with given superficial area and maximum 

volumetric content, the Legendre-test function 

is equal to —27rAy(lFrom (5), §4.5, this is equal to 

— 47rA^co8^(/r, SO that the enclosed volume admits of a maximum 

for a sufficiently small range of integration. The Jacobi test is, 

once again, too intricate for discussion here. 

4,13, Isoperimetrical problems (second variation) 

In this section we shall state without proof the Legendre and 

Jacobi tests for the isoperimetrical problems of § 4.6. Indications 

will be given to show how .some of the expressions occurring in the 

tests are obtained. 

Let the solutions of the characteristic equations (11) and (13), 

§ 4.6, be given by ^ ^ X(t,a„a„X) (1) 

y ^ r(<,o,,a,,A), (2) 

where a,, a^, are arbitrary constants and A is the constant intro¬ 

duced in (11), §4.6. Now conjugate points are the limiting 

positions of intersections of neighbouring extremals. A neigh¬ 

bour of the extremal defined by equations (1) and (2) is obtained 

by replacing o, by a,-f€cx,, Cj by a^-f ectj- ^ by A-fe/x, where 

f is small. It is then not difficult to show that the coordinates 

of the points of intersection must satisfy the equation 

a(<,A) 0. (3) 
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Here the usual notation for the Jacobian of two functions has 

been employed, namely 

d[x,y) dx dy dx dy 

cu dv 
(4) 

b{u,v) bu dv dv du 

Thus, if is the parameter of A and t\ that of its conjugate 

point A\ both must satisfy (3) giving us two equations. If we 

could find a third linear ecjuation between ntj, otg, /x it would 

be possible to eliminate these three quantities and so obtain the 

desired relation between and t\. 

The third ecpiation can be obtained from (10), § 4.6, by means 

of some rather elaborate analysis. By choosing Cj = 

be shown that this entails no loss in generality), dividing (10), 

§ 4.6, by €i and then letting tend to zero, we get an equation 

which can be transformed into the following form. Letting 

d^(f> d^(f) ^'^4^ 

cycx dxcy ^ xy dxdy' 
(5) 

where (f> is the function in the integrand of (2), § 4.6, and a dot, 

as usual, denotes differentiation with respect to f, then 

n 

a,j + A) 
dt = 0. (6) 

We now have three equations, two from (3), which holds for 

t ™ t^a.ndt /'i'a^^d (^0- Eliminating otj, ag,/x we have 

?/) y) e(x.y) 

d(t„X) 

//) d(x. y) 

e{t[,X) 

dt 
■d(t,a,) 

(K?i'-^dt 
J 

c' e{x,y) 

J ^{t,X) 
dl 

where 
8{x,}j) 

<1 

d{x, y) 

0 (7) 

with t = fj. 

The parameters of the end points of the range of integration 

of (5) and (6), § 4.6, are and and the Jacobi test then states 
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that for a maximum or minimum value of /, as defined by 

equation (6), § 4.6, we must have <t^ < t\ (or t\ <t^< tj). 

For the Legendre test let 

H(x,y,x,y) = G{x,y,x,y)-Xfl>(x,y,x,y), (8) 

where the functions 0 and ip are those which occur in (5) and (6), 

§ 4.6. Then it can be shown by differentiating (3) and (4), § 4.6, 

that (9) 

y* dx^ xy dxdy x* dy^ * 

The Legendre test then requires that these expressions main¬ 

tain constant sign throughout the range of integration. 

Denoting the expressions in (9) by P it can be shown by 

elaborate analysis that the second variation is equal to 

P^—iwJdt, (10) 

<1 

where q denotes the left-hand side of equation (3) above and w is 

a function of the variations Wj(/) and U2(t)y introduced in § 4.6. 

With the help of this expression we can finally obtain the 

following result. If the characteristic equations (11) and (13), 

§ 4.6, and the Jacobi and Legendre tests are all satisfied, then the 

integral /, of (1), § 4.6, is a maximum if the expressions in (9) are 

negative and a minimum if they are positive.f 

To illustrate these results consider the problem of § 4.7, where 

it is required to find the plane curve of given length which 

encloses a maximum area. For this example: 

j 

H(x,y,x,y) \{ry-xy)-X(i^+y^)^, (11) 

and so _^ 
xydxdy~ (i*+y*)'' 

(12) 

Taking the positive value of the root it is then evident that 

the area enclosed is a maximum subject to possible limitations 

which may arise from the Jacobi test. 

t For details of proofs of all statements in this section see Forsyth, loc. oit., 
pp. 60 and 367-406, 



IV. §4.13 AND ISOFERIMETRICAL PROBLEMS 100 

For the Jacobi test we shall use the solutions of the charac¬ 

teristic equations given by (9) and (10), § 4.7. Taking the para¬ 

meter ^ to be equal to and replacing a and b by and o, 

respectively, we have 

a: = Ci-fAsini, y = Cj—Acosi. (13) 

The top row of the determinant in (7) evidently becomes 

—Asinfj, Acos<i, —A 

and the second row can be obtained from these expressions by 

replacing by For the third row we have <f> — (x*-l-y*)*, 
so that the function K, defined by (5) above, is equal to 1/A, 

the curvature. The integrals in the third row of (7) are then 

easily evaluated, since A is constant, giving us finally 

—Asin^i Ac08<i —A 

—Asin<'i Acos<i —A = 0. 

cosl'j—cos/i sin/j—sin<i — 

This is an equation for i[ and its root nearest to /j is found to be 

Hence there is no conjugate point within a complete 

circumference and the circle solution of the problem gives an 

enclosed area which is a maximum without restriction, in 

agreement with the result obtained in § 4.10. 

4.14. Subsidiary equations of non-integral type 

Problems in which the equation of condition does not involve 

integration, as in § 4.8, are of such diverse nature that a general 

discussion of their second variation terms is beyond the scope 

of this book. 

When non-holonomic restraints are absent the most important 

case is that of the geodesic, and then it is possible to reduce the 

problem to one dealt with in Chapter III. The reduction is 

effected by the use of Gaussian coordinates. The coordinates of 

a point P lying on a surface S can be expressed in terms of two 

parameters u and v. If u and v are made to depend upon a third 

parameter, t say, then as ( varies the point P describes a curve 

lying wholly on S. The length of arc which joins two points 
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whose parameters are ty and is then given by the integral I, 

where 

/ = j (Eu^+2Fiiv+Gv^)i dt (1) 
<1 

and E, F, G are functions of u and t'.f 

The condition that the point should lie on the given surface 

is then implicit in the form of (1) and no further condition is 

necessary. The problem is thus reduced to that of finding the 

maximum and minimum of an integral whose integrand is a 

function of one independent variable, t, and of two parameters 

which in turn are also functions of t. Such problems have already 

been discussed in §§ 3.2 and 3.3. and they will be discussed again 

later in § 9.13 by means of a method introduced by VVeierstrass. 

Example 10. Let (j:j,a‘2i3‘3,a‘4) be the Cartesian coordinates of 

a point in four-dimensional space and let ds, the element of arc on 

a surface embedded in this space, be given by 

d-s^ I I g^,Jx„dx,„ 
771 1 n “ 1 

where 

the equations 

Show that the geodesics on the surface satisfy 

« 

2 9n 
d^x„ 

ds^ 

4 

2 
9 _ 

2 '■] ds ds 
0 (r -r. 1,2, 3,4), 

m-l m-i n=»l 

where the Chrlstoffel three-index symbol [w,«; r] is defined by 

the equation 

[Find the stationary value of the integral 

f(i 
^ 'm’’* 1 n** 1 ’ 

by means of the characteristic equations (9), § 3.2.] 

t Courant, DifftrtrUial and Integral CakidoB, p. 102. See also § 9.13. 



CHAPTER V 

HAMILTON’S PRINCIPLE AND THE 
PRINCIPLE OF LEAST ACTION 

5.1. Introduction 

The Calculus of Variations and the Principle of Least Action 

combine to form a powerful method of investigating problems of 

dynamics and mathematical physics, as the illustrations given 

in Chapters I and II show. MaupertuLs, the author of the 

Principle of Least Action in 1744, declared it to be a meta¬ 

physical principle on which all the canons of motion are based. 

Professor E. B. Wilsont has said that Hamilton’s Principle, 

w hich contains the Principle of Least Action as a special case, is 

the most fundamental and important single theorem in mathe¬ 

matical physics. 

In this chapter we shall discuss in detail the theory of Hamil¬ 

ton’s Principle and commence by defining three terms which are 

of frequent occurrence, all familiar to the student of dynamics. 

5.2. Degrees of freedom 

A particle in three-dimensional space requires three numbers 

to specify its position relative to a given frame or set of axes, for 

example its position can be specified by its three Cartesian co¬ 

ordinates (jc, y, z). The particle is then said to have three degrees 

of freedom, one for each of its independent coordinates. If 

there are p particles all independent of each other, then we have a 

system with independent coordinates, namely 2^), 

i -- and so there are 3p degrees of freedom. If con¬ 

straints are imposed upon the particles, then the number of 

degrees of freedom is lowered. For example if the distance 

betw^een the first two points is fixed and equal to I we have the 

relation (1) 

Hence if the values of y,, 2,, Xj. are known, that of x, can be 

calculated. In this case the system has only 3p— 1 independent 

t Frofeiisor of Mathematics at the Massachusetts Institute of Technology. 
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coordinates and it is then said to have Sj?—1 degrees of 

freedom. 

It is evident that every constraint which is expressible in the 

form of one equation between some or all of the coordinates will 

lower the number of independent coordinates, and therefore 

the number of degrees of freedom, by one. Consequently a 

system consisting of p particles subjected to r such constraints 

has 3p—r degrees of freedom and requires 3p—r coordinates or 

parameters to specify its configuration at any instant of time.f 

In dynamics these parameters are generally denoted by 

i = 1,2,..., {3p~r)y and their derivatives with respect to the 

time are usually called the generalized velocities. 

An unconstrained rigid body in three-dimensional space has 

six degrees of freedom since six coordinates are required to fix 

its position in relation to a given frame or set of axes. For ex¬ 

ample the three Cartesian coordinates of the centre of gravity 

and the three EulerianJ angles which measure the orientation 

of three fixed lines in the body in relation to a given frame fix 

the position of a rigid body in space. 

In dynamics a rigid body is considered as if it were built up 

of a number of particles whose distances apart are kept invariable 

by suitable constraints. For purposes of visual imagination the 

particles can be considered as if they were situated at the vertices 

of a frame built of massless rigid rods smoothly jointed to each 

other at their extremities. Now each rod gives rise to an equation 

of restraint such as equation (1), so that if the frame consists 

of p particles and r rods, then the number of degrees of freedom is 

3p—r. But a rigid body in three dimensions has six degrees of 

freedom and so we must have r = 3/>—6. 

A little further consideration is required before we can leave 

the subject, for p particles can be joined by \p(p--1) rods and, 

when p > 4, this quantity exceeds 3p~“6. It must therefore be 

noted that in order to attain rigidity by means of this imaginary 

frame only 3p—6 rods are necessary. For example, if there are 

t 8e© Whittaker, Analytical DynamicMt p. 34, for an alternative definition 
of degrees of freedom. 

X Whittaker, loc. cit., p. 9. 
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five particles numbered 1, 2, 3, 4, 5, then 1) = 10 and 

3^—6 = 9, so that nine rods are sufficient for rigidity. This is 

exhibited in Fig. V. 1, where the points 2, 3, 4 are joined by a 

triangle of light rigid rods and then particles 1 and 6 are eftch 

joined to 2, 3, and 4, the rods being smoothly jointed at their 

extremities. This is evidently sufficient to ensure rigidity 

without a connecting rod between particles 1 and 5. 

If 3p — 6 rods are used to join the particles the resulting frame 

is called simply stiff and if more than 3p-~6 rods are used the 

frame is called overstiff .f If no external 

forces act on a simply stiff frame, then 

there are no internal stresses in the rods; 

and if a system of external forces acts 

on a simply stiff frame, then the stresses 

in the rods are determinate. This is not 

the case for overstiff frames which may 

be self stressed even if unacted on by 

any external forces. It is evident that 

the simply stiff frame which will turn 

a system of particles into a rigid body 

can be chosen in more than one way. 

Since the stresses at the ends of each rod of the frame are 

equal and opposite it follows that for a rigid body conceived in 

this manner the internal forces are in equilibrium among them¬ 

selves. This leads to D’Alembert’s principle that the external 

forces and the reversed effective forces are in equilibrium during 

the motion of a rigid body. 

All these statements are easily modified to suit the case of a 

plane rigid lamina moving in its own plane, the only essential 

difference from the results above being that for such a case we 

have three degrees of freedom instead of six. Hence if a plane 

rigid lamina is conceived as being built up of p coplanar particles, 

each having two degrees of freedom, the p particles must be 

joined by 2p—3 massless rigid rods, smoothly jointed at their 

ends, in order 'to achieve rigidity. 

t Routh, Analytical Staiica, vol. i, § 150 et seq. Sometimes redundant or 
over-rigid may be used inatead of overetilY. 
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5.3. Holonomic and non-holonomic systems 

It sometimes happens that one or more of the particles are 

subjected to constraints of a different character from those 

discussed in § 5.2, for example, the equations of constraint may 

contain the velocities as well as the coordinates, or even time 

derivatives of higher order. In particular when one body rolls 

on a fixed body the point of contact of the moving body must be 

instantaneously at rest and the conditions for this to be the case 

must necessarily involve velocity terms. If those equations of 

constraint which involve time derivatives of the coordinates 

can be integrated so as to lead to equations involving the co¬ 

ordinates only (such as (1), § 5.2), then the system is said to bo 

holonomic. If the equations of constraint cannot be so in¬ 

tegrated, then the system is said to be non-holonomic. 

This distinction can be put in another form. For a holonomic 

system the number of parameters required to specify the con¬ 

figuration of the system is equal to the number of degrees of 

freedom. But for a non-holonomic system the number of para¬ 

meters required is greater than the number of degrees of freedom, 

the excess being equal to the number of non-integrable ecjuations 

of constraint. 

The distinction between the two systems is im{X)rtant since 

the equations of motion for the two cases differ in character. 

To illustrate these remarks consider the following two cases. 

In the first case a vertical wheel, of radius a, rolls down the line 

of greatest slope of a perfectly rough non-horizontal plane 

inclined at an angle to the horizontal. After time / let x be the 

distance traversed by the centre and 0 be the angle through which 

the wheel has turned. Then the condition that the point of 

contact should be instantaneously at rest is x—ad -- 0. Since 

this equation can be integrated to x—ad — constant, which 

does not involve the time, the system is holonomic. 

For the second case consider the motion of a vertical wheel 

rolling on a perfectly rough horizontal plane so that it cannot 

slip sideways.f Let x and y be the coordinates of the point of 

t Thia illunti^tion is taken from Whittaker’s Analytical Dynamics^ p. 214. 



V,|6.3 THE PRINCIPLE OF LEAST ACTION 115 

contact and d the angle between the x-axis and the plane of the 
wheel. Then, since the wheel cannot slip in a direction perpen¬ 
dicular to its plane, we must have 

xHind—ycosO ■— 0. (1) 

In general, 8 is not constant. Therefore this equation is not 
integrable and the system is non-holonomic. This system has 
only two degrees of freedom, but its dynamical specification 
requires three parameters, x, y, and 6, together with the equation 
of constraint (J). 

5,4. Conservative and non-conservative systems of force 
Consider the work done by the forces of a field during the 

displacement of the system from one configuration C to another 

C\, If the work is independent of the intermediate displacements 
between C and but depends only on the parameters required 
to specify C and Q the system is sai<l to be conservative. Gravita¬ 
tional fields of force offer simple examples of conservative 
systems. 

Gonservative systems possess important properties. It is 
usual to fix the configuration permanently so that the work 
done is then a function of the parameters of the configuration C 
only. The work function is then usually called the potential 
function and denoted by W If 8.s is an element of length, then 
— c^VIds is equal to the force exerted by the field in the direction 
Sv, and if hO is an element of aiif ,lar displacement about an axis 
(.4), then —dVjC^d is the moment of the couple exerted by the 
sj’stem about the axis (^), in the same sense of rotation as 88. 
In vector language, for a conservative system the forces and 
moments of forces are expressible as the negative gradients of 
the scalar potential function of the system.f 

Another important proj)erty associated with conservative 
83^8tem8 of force is the Conservation of Energy (see §5.14). 
This states the circumstances under which the sum of the kinetic 
and potential energies of a system is constant throughout the 
motion. 

t WhittAker, loo. cit., p. 38. 
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5.5. Statement of Hamilton's principle 
Letqi,qi,...,qn be the n independent parameters of a dynamical 

system and let us consider that the system is built up of a 

number of elementary particles joined by massless rigid rods as 

in § 6.2. Let m be the mass and (x,y, z) be the coordinates of a 

typical particle. Then the coordinates must be expressible in 

terms of the parameters g,-, so that we have expressions of the 

(1) 

together with corresponding relations for y and z. 
The potential energy V is a function of the coordinates only 

and so must bo expressible in the form 

.9n)- (2) 

If T denotes the kinetic energy, then 

T = 2 i*), (3) 
m 

where J denotes that the sum is taken over all the particles of 
m 

the system. From (1) it follows that T is a function of the para¬ 

meters of the form 

T = ^(91,9a. •••,?„; gi,92.M9„; t), (4) 

where ^ is of the second degree in 

The function L = T—F is known as the Kinetic Potential. 

Hamilton’s principle then states that for a time interval with 

given end points (q, the integral 

j Ldt (5) 

is stationary when taken along an actual dynamical path. If, 

in addition, Jacobi’s test is satisfied, i.e. the range of integration 

does not include any point conjugate to either of the extremities, 

then the integral (5) is a minimum. 

In more detail let A,B,C,D denote the configurations through 

which the system passes during the time interval A and D 
being the configurations at times and respectively, and B and 

C configurations for intermediate values of the time. Suppose 

now that in addition to the forces of the system other forces are 
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imposed, by means of smooth constraints which do no work, so 

that the intermediate configurations are and instead of 

B and C, Then Hamilton’s principle states that the value of the 

integral (5) taken along the actual dynamical path A BCD is less 

than its value when taken along A B^ D, subject of course to 

Jacobi’s test being satisfied. 

The principle can also be expressed in the following manner. 

If the differences between the two dynamical paths A BCD and 

AB^C^D are expressible in terms of infinitesimals of the first 

order, then the differences between the corresponding values of 

integral (5) are of the second order in these infinitesimals. 

When the forces are conservative, the principle as it stands 

is true both in the holonomic and non-holonomic cases. If the 

forces are not conservative, then the principle is still true, but 

in a modified form, as we shall see later in § 5.12. 

The whole of ordinary dynamical theory, such as equations of 

motion, etc., can be deduced from Hamilton’s principle. 

5.6. Statement of the principle of least action 

In the ca^ of a conservative system of forces we have 

T+V 

where k is constant. Hence L = T—V = 2T—k, so that 

j Ldt = 2 j T (1) 

Since constant it follows that if Hamilton’s principle is 

true then the integral 

U 
is also stationary for a dynamical path and a minimum if Jacobi’s 

test is satisfied. The integral (2) is known as the action and its 

stationary character is known in dynamics as the principle of 
least action. 

For a single particle 2T mr® and v dt == dSy where s is the 

length of arc of the trajectory. The principle then becomes 

m J V (3) 

when taken along the actual dynamical path, is a minimum. 



118 HAMILTON’S PRINCIPLE AND V. 5 5.6 

This was the form in which the principle was stated by its 

author Maupertuis in 1744. His actual statement was as follows: 

* L’Action est proportioimelle au produit de la masse par la vitesse 

et par Tespace. Maintenant, voici ce principe, si sage, si digne de 

rfitre supreme: Lorsqu'il arrive quelque changement dans la 

Nature, la quantite d'action employee pour ce changement est 

toujours la plus petite qu’il soit possible.’ 

The statement of the principle of least action by Thomson 

and Taitf is as follows: ‘Of all the different sorts of paths along 

w^hich a conservative system may be guided to move from one 

configuration to another, with the sum of its kinetic and potential 

energies constant, that one for which the action is least is such 

that the system will requiie only to be started with the pro|)er 

velocities, to move along it unguided.’ 

5.7. Proof of Hamilton's principle: preliminary remarks 

In the case when the system is conservative, the parameters 

being as usual .the characteristic e(|uations which 

ensure a stationary value for the integral 

U 

I Ldt (I) 
U 

are given by theorem 7, § 3.2. They are 

{i — l,2,...,n). Since T is a function of the ooonlinate.s only, we 

have ^V|^q^ = 0, so that equations (2) can be written in the form 

These are the well-known Lagrangian equations of motion 

of a dynamical system. If they are proved dynamically the 

stationary property of integral (1) is an immediate consequence. 

This is the usual and probably one of the best methods of proving 

Hamilton’s principle and will form the basis of our first proof. 

We shall also give another proof which is cpiite independent of 

t Natural Philosophy; vol. i. 327. For thi.s rofurcnoo anti MaujKTtuiH’s 
statement I am indebted to Forsyth, loc. cit., p. 303 footnote. 
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Lagrange’s equations; it will be based upon the earlier and more 

fundamental notions of dynamics, namely Newton’s laws of 

motion. The first variation of integral (1) will be dealt with in 

§§ 5.8 to 5.12 and the second variation in §§ 5.15 to 5.17. 

5.8. First proof of Hamilton's principle for conservative 
holonomic systems 

In this proof we first establish Lagrange’s equations, (3), 

§ 5.7, and so infer that (1), § 5.7, is a stationary integral for a 

dynamical path. 

To establish these equations for a conservative holonomic 

system having n degrees of freedom, let a configuration be 

specified by the n parameters * let every rigid 

body be considered as built up of a number of elementary par¬ 

ticles kept at invariable distances apart by means of a massless 

rigid simply stiff frame as described in § 5.2. Let m be the mass 

and (x, y, z) be the coordinates of a typical particle of the system, 

and let the external forces acting on this particle have com¬ 

ponents (A', Y, Z). By external forces we mean forces other 

than those in the rods of the simply stiff frames; the forces in 

these rods are called the internal forces. The components of 

the internal forces acting on m will be denoted by (A,, 

Since the external forces form a conservative system, there exists 

a potential energy function V whose value is equal to the energy 

of the system. 

From Newton’s second law^ of motion we have 

mx — A+A'^, (1) 

with corresponding equations for the y and z coordinates. But 

the internal forces of the frame must be in equal and opposite 

pairs and so are in equilibrium among themselves. Hence from 

(1) the system of forces, a typical one of which has components 

[(A —mi:), (F—my), (Z—mz)], must also be in equilibrium. The 

principle of Virtual Workf then tells us that the work done by 

these forces in small displacements of the particles, namely 

2 {{X—nu:) Sx+{Y—my) 8ij+(Z--mz) 82}, (2) 
m 

t Routh, AncUyiical Statics, vol. 1, chap, vi (2nd edition). 
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where 2 denotes summation over all the particles of the system, 
m 

is a quantity which is of the second order of smallness; Bx, By, Bz 
being of the first order of smallness. Hence, if (2) is expressed 
in terms of the independent parameters gj.y,.q„, the co¬ 
efficients of Bq,Bq,...,Bq„ must each vanish. 

Now X, y, z are functions of the parameters and of the time, t, 
given by expressions of the form 

*=/(?!. 9*.-. 9»;0. (3) 

with corresponding equations for y and z, and from this equation 
we can calculate Sz in terms of (t — l,2,...,n). Inmakingthe 
calculations it must be remembered that the displacements used 
in the principle of virtual work are purely geometrical and inde¬ 
pendent of the time, so that we have 

dq^ ag, ag„ (4) 

with corresponding expressions for By and Bz. Inserting these 

values for Bx, By, Bz in (2) and equating the coefficients of Sq^, 
(i — l,2,...,n), to zero we have 

+ + = 0 ,5) 

(t — 1,2,...,n). These are essentially Lagrange’s equations and 
the rest of the proof contains no further dynamical principles 
but consists of anal3rtical transformations only. We shall 
transform these equations into the form (3), § 5.7, by means of 
two lemmas, one dealing with the potential energy terms and the 
other with the acceleration terms of (6) 

Lkmma 1. (6) 

Pboof. Vary the parameter g< to keeping all the other 
g’s and i constant. From (4) it follows that the particle at (x, y, z) 
is displaced to 
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Hence the work lost by the system of external forces is equal to 

the left-hand side of (6) multiplied by 

But, from the definition of F in § 5.4, the energy gained by the 

system in the variation from to qi + Bq^ is (^Vjdq^)dq^. Hence 

the right-hand side of (6) multiplied by Bq^ is also equal to the 

work lost by the system and the truth of (6) is therefore estab¬ 

lished. 

Lemma 2. If x, y, z have continuous partial derivatives with 

respect to ^ ^ least the second order, then 

together with corresponding equations for y and z{i = 1,2,..., n). 

Proof. From equation (3) we have 

dz . dx , , dx , dz 
^ + ^ ?2+ **• ?n + ^‘ 

It then follows that 
ox dx 

dq^ 

and that 

But 

d /. dz\ . d ldz\ 

dt \ dqj ^ dt \dqj 

d Idx\ ^ d^x 

^Wil ~ 

8^x 
?« + • 

dx 

dqi 

d^x 
9n"f 

d^x 

(8) 

(9) 

(10) 

(11) 
‘ " ' ' dq^dq.^^'^dtdq,’ 

and since the partial derivatives are continuous we may write 

dh: _ d*x d*x _ d*x 

^ ^ ' ’ ’ 

for all the relevant integral values of i and m. From (8), (11) 

then reduces to j d (—] 
W 

in th< 

d 11 f^|_l' 

dqi 
(13) 

(14) 

and so (10) can be written in the form 

1 d^ 

dqi 

Equation (7) then follows on multiplying by m. The corre¬ 

sponding equations for y and z are proved similarly. 

..dx 

dqi 
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We can now proceed with the proof of Lagrange’s equations. 

Add (7) to the analogous equations for y and z, sum over all the 

particles, and let T denote the kinetic energy. Then 

+y ^ ^2 \ d _a 
dt dqi m 

a 

dqa^J dqi 

(15) 

(16) 

Using (6) and (16) equation (5) then becomes 

d/aT\_£T_ _dV_ 

dt\tqj tqi~ dqi 
(17) 

The proof of Hamilton's principle now follows, since these 

equations are not only the equations of the dynamical paths 

but, by theorem 7, § 3.2, they are also the characteristic equations 

which ensure that | L dHs stationary. 

5.9, Second proof of Hamilton's principle for conservative 
holonomic systems 

The second proof commences by considering the motion of a 

single particle, of mass m, whose coordinates at time t are (z, y, z). 

This is acted on by a conservative force whose potential function 

V is a function of j*, y, z only. We have 

j Ldt j {jTO(i*+y*+z*) —F}d<, (1) 

t» i. 

and froih theorem 7, § 3.2, the integral is stationary if x, 

satisfy d/£L\_ 

dt \dzj 

dj. 

dx 
0. 

.y- 2 

(2) 

together with two corresponding equations for y and z. Evalu 

ating (2) and the corresponding equations we have 

dV .. dV 
mz = — 

bV 
dz' 

(3) 

which, according to Newton’s second law, are the equations of 
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motion of the particle. Hence for the dynamical path of a par¬ 

ticle integral (1) is stationary. 

The stationary character of (1) is unaltered by transferring to 

any other system of coordinates. For example, using spherical 

polar coordinates, it follows that for a dynamical path the 

integral [ ^ 8mW)—V} dt must be stationary. 
U 

From this may be deduced the equations of motion of a particle 

in spherical polar coordinates. The actual deduction is left as an 

exercise for the reader. 

We now proceed to show that the principle is true for two 

particles. There are two cases to be considered. In the first 

case the two particles are independent of each other, as e.g. 

when two [)articles attract each other according to the Newton¬ 

ian law of gravity. In the second case the particles are not 

independent of each otlier but are connected by a massless 

rigid rod so that their distance apart is invariable. 

In the first ease, in which there are six degrees of freedom, 

let and masses of the particles and 

their respective coordinates. If F is the potential 

energy of the system, then 

j Ldl + (4) 

Then, since the coordinates are all independent, according to 

theorem 7, § 3.2, there will be six characteristic equations to 

ensure that the integral (4) is stationary. They are 

dV .. dV ... 
mx, = — —, mxj = — —, (5) 

together with analogous equations for ^2' these 

are once again the equations of motion of the particles according 

to Newton’s second law of dynamics, so that (4) must be station¬ 

ary for the dynamical paths. 

It is evident that these arguments apply to any number of 

particles. In the case of n independent particles with 3n degrees 

of freedom in a conservative field of force the characteristic 
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equations which ensure that ^ Ldt should be stationary are also 

the equations of motion according to Newton’s laws. 

We now deal with the second case in which the two particles 

are connected by a massless rigid rod so as to maintain an 

invariabie distance between them. Equation (4) above still 

holds, but in this case we have five degrees of freedom only 

and in addition to (4) we have 

= i*. (6) 

where I is the length of the rod. 

The equations which ensure that ^ Ldt should be stationary 

in this case can be obtained from the results of § 4.8. Theorem 

13, § 4.8, which deals with integrals having two dependent and 

one independent variable together with one subsidiary con¬ 

ditional equation, is easily extended by the same arguments to 

the case of integrals with n dependent variables and m (< n) 

subsidiary conditional equations. The generalizations of (10) 

and (12), § 4.8, give us the characteristic equations which ensure 

that (4) should be stationary when subjected to the restriction (6). 

They are 
Wii-i =- —-I-M(a^j-Xi), (7) 

(8) 

together with analogous equations for y^, Zj, Zj, where y, 
is the same function for all six equations. These six equations 

together with equation (6) determine the seven quantities 

*i> Vv **> yi> *a> M uniquely in terms of t, the time. 
Now if F denotes the thrust in the connecting rod, then the 

component parallel to the x-axis acting on the first particle is 

— F(x^—Zi)ll. On writing down the equations of motion of each 

particle, according to Newton’s laws, we obtain six equations. 

It is easily seen that the two x equations are the same as (7) 

and (8), except that y has been replaced by F/l, and that similar 

remarks apply to the corresponding y and z equations. But 

these together with (6) give Xj, y^, z,, Xj, y^, Zz, F uniquely in 

terms of t. But we can pass from one set of equations to the 
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other by a change of terminology in which fi is replaced by F/l. 
Therefore fi = F/l and the dynamical equations are the same as 

the characteristic equations (7), (8), etc. Hence J Ldtia stationary 

for actual dynamical paths of the particles. 

This stationary property is independent of the coordinates 

chosen and is still true if the system is reduced to one with five 

independent parameters, e.g. by eliminating one of the co¬ 

ordinates from L by means of equation (6). 

We now deal with the general case of a rigid body. This, as 

in § 5.2, we envisage as built up of n particles situated at the 

vertices of a light rigid simply stiff frame of 3n—6 rods, thus 

leaving the body with six degrees of freedom. Let be the mass 

and (X(,yi,Zi) be the coordinates of a typical particle, which 

we shall refer to as particle t. Then 

ti „ 
LcU = j (if)-F) di. (9) 

u 

If the particles i and e are joined by a rod of length we have 

the equation 
= il, (10) 

which is one of 3n —6 such equations, one for each rod of the 

frame. If particles p and q are not joined by a rod, then for them 

there is no equation such as (10), the invariance of their distance 

apart being a consequence of the S/i—6 equations already in 

existence. 

From the results of § 4.8, and in particular the generalization 

of theorem 13, § 4.8, the conditions that the integral (9) should 

be stationary are embodied in 3n equations of which 

8V 
= -^+ 1 (H) 

CX^ e 

is typical. Here t™l,2,...,n and there are n analogous 

equations for and for (t ~ 1,2,..., n). is an undetermined 

multiplier which may be a function of the coordinate and which 

satisfies the condition The symbol J denotes that 
e 

the sum is taken over all particles e which are joined to particle 

i by a rod of the frame. 

I 
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We now proceed to count up the unknowns and the number 

of equations we have to determine them. There is a for each 

equation such as (10), i.e. 3n—6 of them, and there are 3n co¬ 

ordinates, making 6w—6 unknowns in all. On the other hand, 

there are 3n—6 equations such as (10) and 3n equations such as 

(11), so that w'e have sufficient to determine the coordinates 

and the undetermined multipliers uniquely in terms of the time, i. 

Consider now the problem from the point of view of Newtonian 

dynamics and let denote the thrust in the rod joining particles 

% and e whenever such a rod exists. By means of Newton’s second 

law write down the equation of motion of particle i parallel to 

the x-axis. A result is then obtained which is the same as (11) 

above except that is replaced by /,>. Since the dynamical 

equations also determine the coordinates and the quantities 

uniquely in terms of t, it follow's (i) that (h) that 

the dynamical equations and the characteristic equations w hich 

ensure that (9) is stationary are the same. Hence for a dynamical 

path j Ldt must be stationary. 

At the same time w'e have also obtained an interesting relation¬ 

ship between the undetermined multipliers and the internal 

forces. 

This stationary property of j L dt is indej>endent of the co¬ 

ordinates used and is still true if L is expressed in terms of six 

independent parameters, such as are required to give six degrees 

of freedom to a rigid body. The above proof although restricted 

to the case of one rigid body is easily extended to the case of 

several such bodies and such an extension completes the proof of 

Hamilton’s principle for conservative fields of force. 

5.10. First proof of Hamilton's principle for non-holo- 
nomic systems 

Non-holonomic dynamical systems, defined in § 5.3, arise 

whenever there are non-integrable relations tietween the co¬ 

ordinates and their time derivatives. We shall deal with 

relations of the type: 

+ = 0 (>) 

(t = p < n), where the A’b are functions of the 
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parameters and t, the time. It is sometimes more convenient 

to use (1) in the equivalent form 

In the proof which follows we shall not assume that (1) or (2) 

can be integrated. 

On making small geometrical displacements consistent with 

the p efpiations (2), and noting that the internal forces do no 

work, it follows that the virtual work is given by (2), § 5.8. If 

the external forces are conservative and possess a potential 

function T, then lemmas 1 and 2, § 5.8, still remain true and we 

may write (2), § 5.8, in the form 

dv_d /m 
dqi dt [dqj 

+ 
cT 
Cqi hi- (3) 

As in § 5.8, D'Alembert’s principle tells us that (3) is the 

virtual w'ork of a system of forces in equilibrium and so must be 

of the second order of small quantities, w here hq^ (2 = 1,2,..., n) 

are all of the first order. But the r//s are no longer independent 

parameters, as in § 5.8, since they are subjected top constraints 

of the type (I). Hence w e cannot equate each coefficient to zero, 

as in the liolonomic case of § 5.8, hut must proceed as follows. 

Since there are p ecjuations such as (2), then there ai*e n—p 

independent parameters. Multiply (2) by A,, so far an un¬ 

determined multiplier, and then subtract from the virtual w’ork 

expression (3). Choose Aj (/ 1,2,..., ii) so that the coefficients 

of (r - l,2,...,p) all vanish, giving us 

(r l,2,...,p). The expre.ssion for virtual work then becomes. 

i( r.pi 1' 

dV 

hr 

d 

lit fXfAJhr- 
{hri hr .-1 ' 

(5) 

Since the n—parameters » independent 

of each other it follow s that (5) can be a second-order quantity 

only if each coefficient of S</,. (r p+1, p+2,..., w) vanishes. 
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On equating these coefficients to zero we obtain equations 

identical with (4) except that r has the values 

r = 2)+l,p+2,...,n. 

It is important to note that is independent of r. 

Equations (4), now proved true for r = are the 

Lagrsmge equations for the non-holonomic case. Together with 

the p equations (1) they suffice to determine uniquely the n 

parameters and the p undetermined multipliers A<. If we use 

the kinetic potential L — T—V equations (4) become 

(6) 

(r = 1.2,...,n). 

This completes the dynamical part of the investigation and we 

now proceed to find the characteristic equations which ensure 

that J L dl is stationary when subjected to the restraints given 

by equations (1). 

From (12), § 4.11, these characteristic equations are 

d 
dt 

== 0 (7) 

(r = 1,2.n), where is independent of r. Once again these 

equations together with equations (1) serve to determine the r 

parameters and the p multipliers uniquely. By comparison 

of (6) and (7) we conclude that Aj = (t = 1,2,...,p) and that 

the dynamical and characteristic equations are the same. 

Hence j L(U is stationary for a dynamical path. 

5.11. Second proof of Hamilton's principle for non- 
holonomic systems 
We now proceed to extend the ideas used in § 5.9 to the non- 

holonomic case. A non-holonomic system can always be reduced 

to a holonomic one by the introduction of extra forces which 

(i) do no work and (ii) guide the system so that the equations of 

constraint are satisfied. 

Clonsider the illustration given in § 5.3 of a vertical wheel 

rolling on a perfectly rough horizontal plane without slipping 
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sideways. Let (x, y) be the coordinates of the point of contact 

and 6 the angle between the x-axis and the plane of the wheel. 

Then for no side slipping we must have 

xsin6 — yco»d ■---= 0. (1) 

This non-integrable equation shows that the system is non- 

holonomic. 

Now apply to the point of contact forces X and 7, parallel to 

the .r and y axes respectively, so that no work is done during the 

motion. This requires that 

.Y Sx+r - 0. (2) 

By comparison of (1) and (2) it follows that 

A" -- Asin0, y —- — Aeos0, (3) 

wliere A is a convenient factor. Thus by introducing these forces 

the ecjuation of constraint (1) can be dispensed with and the 

system reduced to a holonomic one. 

In the general case, considering that a rigid body is made up 

of i( particles situated at the vertices of a rigid massless frame 

as in vi 5.2. let a typical ])article be of mass and have co¬ 

ordinates (T,. //,. r,). Let the external forces acting on particle i 

have (‘oni|)on(‘nts (.Vy. Z,) parallel to the axes and suppose 

that tlu' syst(‘m is rendered holonomic by the introduction of 

additional forces acting on particle i whose components are 

{Pr Vr Pi)- 
Since these additional forces do no work we must have the 

equation t „ 
V(/’5.r, I =0. (4) 

i \ 

Also, if V is the j>otential of the external forces we have 

0 n 
^ Ldl = ) { 2 f .vH (5) 

i, I, ‘ * 
together with 

(.r, -—-= 1%. (6) 

where is the length of the rod which joins particles i and e. 

There are (3« —6) equations such as (6). 

t If there are q ct^ufttions Hiich a-«i (4) then there will be q constants such as 
c in (7). But the arguments are essentially unaltered. 

6 If 
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The characteristic equations which ensure a stationary value 

for j Ld^, when subjected to constraints (4) and (6), are given by 

(12), §4.11. There are 3n such equations, one for each co¬ 

ordinate of the n particles, a typical one being 

CXi 
0. (7) 

Here J denotes a sum over all the particles e which are con- 
e 

nected to particle i by a rod of the frame which gives rigidity to 

the system and o is an undetermined multiplier. The total 

number of equations (4), (6), and (7) is Gw — 5, and there are thus 

sufficient to determine the values of the coordinate.s of the n 

particles, the values of the 3/i —0 multipliers and also that 

of cr in terms of /, the time. 

Xow consider the equations of motion of the particles accord¬ 

ing to Newton’s laws. If denotes the thrust in the rod joining 

particles i and e, then the equation of motion parallel to the 

x-axis of particle i is the same as (7) except that is replaced 

by I if and a by - 1. Since the dynamical equations deter¬ 

mine the coordinates and uniquely in terms of/, it follows that 

™ ^ • Hcncc oncc more the dynamical 

and the characteristic equations are the same and so for a 

dynamical path j L dt i.s stationary. 

This completes the proof of Hamilton’s principle when the 

system is non-holonomic. 

5.12. Hamilton’s principle for non-conservative dyna¬ 
mical systems 

If we except lemma 1 the analysis of § 5.8 is independent, of 

the nature of the external forces and is therefore still valid when 

they are not conservative. Using the terminology of § 5.8, 

let Sir denote the work done by the external forces in a small 

displacement so that 

SW - 2{NSx+r8y+Z82). (1) 
m 

For a consen’ative system of forces W — —V but for a non¬ 

conservative system W depends upon the path of integration 

and is no longer a function of position. 
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From (4), § 6.8 we have 

t-1 

131 

(2) 

where (3) 

8(/t‘ ^he work done by the external forces in a displacement 

where all the parameters except are kept constant and is 

increased to + 

If we replace (6), § 5.8, by (3) above and use (5), § 5.8 and 

lemma 2, § 5.8, we deduce that 

d 

dt 

dT 

cqt 
(4) 

This is the form which the Lagrange equations take when the 

external forces are not conservative. 

In the case of conservative external forces we may write the 

Hamilton’s principle in the following manner: let 

fi 

I - r)rf/ |‘(7’+ir)(/r (s) 
/o /© 

then 81- 0 along a dynamical path. In the case of non- 

con.servative forces the statement of Hamilton’s principle is that 

8 \ Tdl+ \ 0 (6) 
/. /. ‘ ‘ 

along a dynamical path. For evidently from (2) the variation 

((i) yields characteristic equations which are identical with (4). 

5.13. Proof of Lagrange’s equations of motion 

The proofs of Hamilton’s principle given in §§6.9 and 5.11 

depend upon Newton’s laws of motion and make no appeal to 

Lagrange’s equations. These equations may then be legitimately 

deduced from the results of §§ 6.9 and 6.11. 

The Lagrangian equations are an immediate consequence of 

Hamilton’s principle, for on expressing L, the Kinetic Potential 
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in terms of the parameters the characteristic eqiia- 

tions which ensure that j Ldt is stationary are the Lagrange 

equations. In the holonomic case they are in the form given by 

(2) (or (3)), § 5.7. In the non-holonomic case, where we have 

non-integrable equations of the type 

they are in the form given by (6), § 5.10. 

5.14. The energy equation for conservative fields of force 

For conservative fields of force there is frequently an important 

first integral of the equations of motion known as the energy 

equation. 

If the time is not explicit in the equations relating the co¬ 

ordinates of a point to the parameters, then (3), § 5.K, becomes 

fMiUi '/„)• (1) 

with corresponding equations for y and 2. The kinetic energy T, 

given by ^ ^ (2) 
m 

isthenafunctionof9jand^,(/ ^ 1,2....,/?), whic h is homogeneous 

and of degree two in (i ™ 1,2,...,??). Hence, by Euler's theorem 

on homogeneous functions, we have 

27'. 
cT 

CQ: 
» 1 

I^grange’s equations in the holonomic case state that 

V 
I 

(3) 

dt\tqj C-qi iqi' 

and on multiplying by q^ and reananging we have 

If we sum this result for all values of i — 1,2,..., 
(3) we get . 

(4) 

(5) 

n and use 
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which integrates immediately to 

T-\-V = constant, (7) 

the desired energy equation. 

For the non-holonomic case, with constraints of the type 

(m 1,2.]) < w), the Lagrange equations take the form 

d ldT\ bT_ 

dt\bqj bq,- bq, 
(9) 

as proved in § 5.10. Multiplying this equation by and summing 

for i ^ l,2,...,n the terms involving cancel out, by virtue 

of (8), so that (G) and (7) still remain true for the non-holonomic 

case. 

Equation (7) is also frequently true for non-dynamical prob¬ 

lems in which the characteristic equations are of the Lagrange 

type. 

5.15, The second variation 

The study of the second variation of j L dt is necessarily 

difficult. The account given here depends upon two facts, the 

first that a small variation in the characteristic curves effect 

a change in J L dt which is largely dependent upon the kinetic 

energy, and the second that the kinetic energy must be positive 

or zero. A function whose value is always positive is called 

positive definite and one whose value is always either positive 

or zero is called positive semi-definite.f The kinetic energy is 

evidently included in the second category. 

In the proof we shall confine ourselves to the case where there 

is conservation of energy in the form given by (7), § 5.14, and 

consider only the special variation in the characteristic curves 

defined in the next section. It can be shown that the general 

weak variation of the characteristic curves can be expressed as 

the sum of special variations of the type considered here, but 

t A function whose value is always negative is called negative definite and 
one whose value is always either negative or zero is called negative semi- 
definite. 
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for the general case the reader is referred to Variaiionsrechnung 

by C. Carath^odory.f 

As pointed out in §5.14, the kinetic energy is a quadratic 

function of and we may write 

i i (1) 
t - 1 m“l 

where is a function of the parameters 7, (/ = 1,2,..., n), but 

not of 7,- (i ™ 1^ 2,..., n). We may assume, without loss of general- 

ity, that a,„, = 

The fact that T is a positive semi-definite function is a property 

of coefficients as we shall prove in § 5.17; in other words, 

because (1) is positive semi-definite then all expressions of the 

type „ n 

I (2) 

are also positive semi-definite for all values of (i = I, 2,..., n). 

5.16. A special variation of the extremals 

The characteristic curves, or dynamical orbits, for which 

^ Ldt is stationary are given by Lagrange's equations (3), 

§ 5.7. Consider the deviation from these curves tabulated below. 

Here the values of the parameters for those 

dynamical paths which make | Ld/ stationary and qiAz '-^^n 
denote the values for the deviated path (see Fig. V. 2). 

Interval of time | Value ~ l,2,...,n) Consequent value oj 

t^iot'~h \ q, fli 7» = 7» 
t' -h tot' Qi ~ V f ^ 7i 
t' to t' \ h ; 7, - Vi ^ Vi - 7, 

t'4-htoti \ qi^qi qi Ui 

In this table A is a positive constant and (i = 1,2,..., n), are 

convenient constants, all independent of the time i. Also 

<0 < V-h < V+h < 
Denote the kinetic potential in the two cases by L(q^,q^,i) 

and L(q^, q^, i) and the corresponding values of J L by / and J. 

t B. O. Teubner (Leipzig), chap. xii. For an alternative discussion see 
Forsyth, loc. cit., p. 371 et seq. 
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Since q^ is varied inside the time-interval t'—h to only, we 

have f+h 

- I (1) 
t-h 

l+h 

t-h 

t’-i h 

I f mqv^i4)-~L{qi,qi’f)}dt. 
t‘~-h 

We shall take h to be small and make use of the Landau O 

notation defined in § 1.2. We can now prove with little cal¬ 

culation that the first integral of (2) is 0(h^), For, by the first 

mean-value theorem, the integrand of the first integral is the 

sum of n terms of the type 

iq-qt) L(q,.q,.l), (3) 
dq^ 

where < qi- From the table we have 

V-^h t' r + h 
f (qi-qi)dt == ^ {t-t’ + h)0Cidt+ [ {h+t'-t)acidf =. 

i-h t-h r 
(4) 

Now let ilL be the greatest value of — in the 
dqi 
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interval t'—h to T+A, and let M be the greatest of the quan« 

titles 3/2,..., Then since qi — <ii has the same sign through¬ 

out the interval t' — h to t'-\-h it follows that 

I /'('/.• 7.01 f// «•»//'“ (5) 
Vk I 

(W)- («) 

In the second integral of (2) only changes in are encountered. 

Hence the value of the integrand is due entirely to changes in the 

kinetic energy and is independent of the potential energy. But 

is a function of 7, only, so that from (1) we have 

.IV 7,7,J (7) 
< I /M 1 

n f J II II 
i (7, 7,) • •• i i^) 

I I fq, I I u> I 

where L L(q^,q^J). We may deduce (s) from (7) either by 

using the table or by expanding the left -hand side of (7) in j)owers 

of iqi — qi) (i 1,2./i), with the help of'raylor ’s theorem. 

On integrating by parts and noting that (7,- 7.) vanishes at 

both limits of integration we have 

t h t h 

V , h 

- f '^"(7, 7,)'/' (10) 
J <7, 

r h 

on using Lagrange's ecjuations which are true for the character¬ 

istic curves. But the integrand of (in) has the same form as 

(3), so that by the arguments applied to (3) have 

t'hh ^ 

f o(/,a (11) 
J f-\ ('li 

t h ‘' 

Finally we must consider the integral 

' V '■ ", » 

,4 ■ ' 
(12) 
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where is a function of (but not of and is therefore a 

function of L Denote the integrand of (12) by K(t), then 

r f h r: h r, k H 

i 1 m 1 
V' h 

(■ {E{t)-E(t')]dt. 

(13) 

Now in the interval of variation of q^ we have, from the table 

above, i—V ™ 0(h) and the range of integration is equal to 2h. 
Hence the second integral on the right of (13) is 0(/<^), and we 

have .,, 

(' li -ihEin+om. (14) 
(• •a ' * 

On assembling the results of equations (6), (S). (11), and 

(14) it follows that 

/--/ '>hE(r)~rO(h'^). (15) 

This is a fundamental result. For sufficiently small positive 

A, it is evident that 7 > I if and only if E(t') ^ 0. Now let 

the interval to be subdivided into elements of length 'Ih 
and let variations such as those defined by the table above be 

imposed on the parameters If 1 denotes the consequent value 

of I L (It. then 1 V * 1 if and only if E(t') is ])ositive definite for 

all values of /' inside the interval to It follows that 1 is a 

minimum for the range of integration (/q'^) if ^^^^d only if 
t? n 

hy(0 ^ i L 'm poisifive definite at all points of the 
1 m 1 

range. 

In §5.18 we shall prove that E(t) is positive semi-definite 

because the kinetic energy is positive semi-definite. If we 

antici{)ate this result we see that J Ldt, when taken along an 

e.xtremal, is a minimum for a range which excludes points at 

which E(() vanishes. Points for which E(t) — 0 then remain to 

be dealt with. 

5.17. Conjugate points 

It is evident from (15), § 5.16, that if E(() vanishes at some 

point of the range (^o ^ varied path can be found such 

that I~I ~~ 0(h^), whereas if E(t) does not vanish then this 

difference is 0(h). 
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We now show, by means of a contradiction, that if 

/-/ - 0(A2) 

then the varied path must also be an extremal for J L dt. We 

shall once again anticipate the result of § 5.18 so that along an 

extremal J L d/ is a minimum. 

I^t C denote the extremal, C the varied curve, and Pq, the 

points corresponding to /q, respectively. If (' is not an extremal 

we may take two points and 4^, on it, lying between Pq and 

Pj, and draw the extremal through say Qq KQ^. Then the 

value of I Ldt taken along P^ RQ^ Pi must be less than w hen 

taken along C. Hence, if these values are denoted by I and /, 

we have / < / and by choosing Qq and suitably we can make 

I = /— \0(h)\. Thus / — l-~0{h)-j~0(h'^) and so I < /, which 

is impossible if C is an extremal. 

If / = J^O(h^) and C is not a characteristic curve w e are led 

to a contradiction. Therefore, from (15), § 5.15, it follows that 

E(t) must vanish at points of intersection of neighbouring 

characteristic curves. If ,.4 is one of these points of intersection 

then, as shown in § 2.9, the others are the conjugate points or 

kinetic foci of A. 

It is now evident that if the range of integration does not 

contain two points w hich are conjugates of each other then E{t) 

can never vanish and Hamilton s principle may be stated as 

follow's. For ranges of integration which exclude points con¬ 

jugate to either end point the value of J L diy when taken along 

actual dynamical paths, is a minimum for weak variations. 

In § 9.3 below it will be proved that j L dt admits a strong 

minimum for the dynamical path of a particle. 

5.18. Positive semi-definite quadratic forms 

To complete the theory the assumption made at the end of 

§ 5.16, namely that E{t) is positive semi-definite, remains to be 

justified. 

Let E ~ (1) 
1 

where a„„ - Using the language of geometry, consider the 
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quantities (i == l,2,...,n) as the coordinates of a point in 

n-dimensional space and the equation 

™ 1 (2) 

as the equation of a hypersphere with unit radius. 

It is easy to show that if i? ^ 0 for all points on sphere 

(2) then E > 0 for all points of the space. 

For if - F, (3) 

then ocjk (i ~ l,2,...,n) is a point on (2) so that by hypothesis 

Consequently 

r > 0. 
/ 

-<■’2 
1 m~ 1 

(4) 

> 0. (5) 

I 1 m 1 

The problem is then reduced to that of finding the maximum 

and minimum values of E subject to condition (2). By the usual 

theory of maxima and minimaf the stationary values of E 
occur when 

dE tXi ^ ^ ^2 __ \ ia\ 

where A is an undetermined multiplier. This gives us 

2 ^ ^ni 
’ . _ = ... ITA- A, (7) 

\l l\2 

from which two deductions are easily made. 

The first deduction is made by eliminating (i =1,2,...,n) 

from equations (7). The following equation is then obtained 

for A, 

«12 -- 0. (8) 

«Sl ^22 ^ a^n 

^«2 

t Courant, Difftrtniial and Integral Calculus, vol. ii, p. 188. 
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The second deduction is obtained by multiplying the numera¬ 
tor and denominator of the first fraction of (7) by the second 
fraction similarly by etc., and then summing all the numera¬ 
tors and denominators. The result, on using (2), is 

It 

^ ^ ^ (^) 
i - 1 m - 1 

Hence A is equal to one of the stationary values of E. 
From these two deductions it follows that the roots of (8), 

considered as an ecpiation in A. are the stationary values of E. 
Before proceeding further with the proof a digression is made 

in order to prove that if is real then all the roots of (8) are 
real. For if A is a complex root and A is its conjugate then, by 

virtue of (8), there exist real or complex numbers .H-ny 
such that „ 

i V,’ (!<*) 
nt 1 

(i I, 2,..., n). 
IfA,,. is the conjugate complex of then, since is real, W’e 

must also have „ 

r/i 1 

(i -- F-.'0- 

Multiply (10) by yn and (11) by and sum for i -- l,2,...,n 
in each ca.se. On subtracting one sum from the other and* using 

^iw = ^rni' left-hand sides cancel, leaving 

(A A) i0. (12) 
i ■ 1 

n 

Since ^ Mi Mi cannot vanish it follows that A A and therefore 
I -1 

that A must be real. 
Reverting to the main proof, since the .stationary values of E 

on the hypersphere (2) are equal to the roots of equation (8) it 
follows that if all the roots of (8) are positive, then all the maxi¬ 
mum and minimum values of E are positive, and so E is positive 
definite. Similarly if all the roots are either positive or zero, then 
E is positive semi-definite. It is also obvious that if all the roots 
of (8) are negative then E is negative definite, and if the roots 
are negative or zero then E is negative semi-definite. 
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Now the roots of (8) depend for their values entirely upon the 

quantities and are independent of the quantities Hence 

the property of being positive definite (or positive semi-definite) 

must depend only upon the values of the and not upon the 

values of a,. But T, the kinetic energy, must be positive or zero 

since it is of the form ^ it remains positive 
VI 

or zero when transformed to generalized coordinates. Hence 

Z '^'hich from (1), § 5.15 is equal to 2T, is positive 
n n 

semi-definite and consecpiently J ^ ^bso be 

positive semi-definite. 

This proves an assumption made in the last part of§ 5.16 and 

so completes the proof of Hamilton's principle. 

5.19. A particle under no forces describes a geodesic 
Several illustrations have been given in diapters I and II 

to show how the principle of least action can be applied to 

practical problems of dynamics, we give some further applica¬ 

tions her(‘. 

(’onsider a particle P which moves on a smooth surface S 
but which is not acted on by any force other than the normal 

reaction of S. Since no work is done upon P, by the principle of 

conservation of energy its kinetic energy, and therefore its 

velocity, must be constant. From the statement of the principle 

of least act ion given by (5), § 5.6, it follows that [ ds is .stationary 

when integrated along the path of P, But the integral is station¬ 

ary for a geodesic on aS\ Hence the path of P is a geodesic on S. 

5.20. Dynamical paths related to geodesics on hyper¬ 
surfaces 
In a conservative dynamical system with parameters 

.7m ^ 

let the kinetic energy T be given by 

^ i(1) 
i - 1 ni« 1 

and let the potential energy be denoted by V. From (7). § 5.14, 

we have 
TtV A, (2) 
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where h is constant. We also have the principle of least action 

which states that 2 J T rf/ is a minimum, or at least stationary, 

along a dynamical path. 

From (1) we have 

iai,ndqiH„)\ (3) 
V i-l m-1 

and from (2), T* — (A—F)*. (4) 

Hence the principle of least action requires that along a 

dynamical path 

2 I J f rf'/m)* (5) J \ i..l 

must be a minimum, or at least stationary. This is a geodesic 

on the hypersurface whose linear element d.s* is given by 

2(/(-F)( V 2 (fi) 
' I - 1 Wl - 1 ' 

Thus to every trajectory corresponds a geodesic on the surface 

defined by (6). As an illustration consider the following example: 

Example 1. A particle describes a plane orbit under a 

central attractive force ^'(r), where r is its distance from the 

centre of force. Show that the orbit corresponds to a geodesic 

on the following surface of revolution: if (p, 6, z) are the cylindrical 

coordinates of a point on the surface and the ::-axis is the axis of 

revolution, then ™ — and the equation of the meri¬ 

dian curve is 2 = f{p) where 

Here we have 

dV 
— — = —if>'{r) 80 that V ~ 

Take (r, d) to be the polar coordinates of the particle where 6 
is the azimuthal angle of the cylindrical coordinates. We have 

T = so that by comparison with (1) abovef we 

have — r, g,j = d, a„ 1 , a„ — 0, -= r*. From (6) 

we obtain the linear element of the surface whose geodesics 

t A constant factor, such a« m, can evidently l>o ignored. 
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correspond to the family of orbits of which one is described by 

the particle. It is 
— {h — <l>{r)\{dr'^-^r^dd^). (8) 

Now, Fig. V. 3, the linear element on a surface of revolution 

with the 3-axis as the axis of revolution and with {p,0,z) as 

cylindrical coordinates is given by 

(9) 

(’ompari.son of (8) and (9) shows that 

and that 
r 

dp-^dz^ 

f^{h 4>{r)} 

-- {// -<^(r)} dr^ 

(10) 

(H) 

(12) 

on using (10). From (12) we have 

so that, if z f{p), then 

/'(P) “ 

(13) 

(14) 

as required. 
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Example 2. A particle acted on by a constant gravitational 

force describes a parabola. Show that such parabolic orbits 

correspond to geodesics on the following surface of revolution. 

Let X and //, respectively, be the horizontal and vertical co¬ 

ordinates of the particle at time t and let (p, 0, z) be the cylindrical 

coordinates of the corresponding })oint on the surface of revolu¬ 

tion, where the c-axis is the axis of revolution. Then 

p a(li - ft X (t. 

and along the meridian 

where g is the constant of gravity and a and h are constants. 

5.21. Hamilton’s equations 

Other systems of dynamical equations exist which are as 

comprehensive in their scope as the Lagrange equations, for 

example the canonical equations of Hamilton. These equations, 

which can be derived from Lagrange's, have important applica¬ 

tions to problems in the Calculus of \’ariations as well as to 

dynamics. We shall first derive them from Lagrange's cfiuations 

and then illustrate their use in the calculus. 

With the terminology already used in this chapter let 

L T V U<h<h..'}„■>) (1) 

be the kinetic potential and let 

/>,• {i .n) (2) 
(•li 

since the potential is a function of the parameters only. 

Let //, the Hamiltonian function, or simply the Hamiltonian, 

be defined by the equation 

// . - L+ i(4) 
t-1 

From (2) we may soIvt. for q^(i ~~ l,2....,n), and then elimi¬ 

nate qi from (4), leaving // as a function of p,, and L Or, 
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what is essentially the same, we may regard as a function of 

and t, where is a function of Pm^q^ 
and t. Taking the latter view we have 

8H 
(iPi 

^ bL , V « 

^ ‘ ml ‘ ^ 
(5) 

(6) 

from (2). Also 

cH 
ap 

(7) 

bL 
(8) 

cvy, 

from (2), 
d lbL\ 

dt\b(jj (9) 

from Lagrange’ s equations, (2), § 5.7, 

- -Pi, (10) 

from (2) again. Kquations (6) and (10) (i ™ l,2,...,n.) comprise 

Hamilton’s equations and from them (i l,2,...,n) can 

be determined as functions of t. They are frequently referred 

to as Hamilton’s canonical equations. 

In the case of conservative systems, //, the Hamiltonian 

function has a simj)le interpretation. For T is now a homo¬ 

geneous quadratic function of (ij-, §5.14, and so by Euler’s 

theorem on homogeneous functions we have, from (3), 

” ^ dT 

•'I 

Hence 

// -T+W'^T T+V, (12) 
i -1 

and // is thus e([ual to the total energy. 

The theory developed so far deals with Hamilton’s equations 

largely from the dynamical point of view. But it is evident 

that even if J L dt does not arise from a dynamical problem, 
5185 T. 
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Hamilton's equations ((>) and (10) are still equivalent to the 

characteristic ecjuations 

Hamiltoirs equations can be used in the calculus of variations 

independently of dynamics, although in such cases we cannot 

associate H with the conce{)t of energy. This will be illustrated 

in § 5.23 by the discussion of a special case of Zermelo's navi¬ 

gational problem. In the next paragraph we shall deal with some 

interesting properties of the Hamiltonian function and equations 

for the non-dynamical case where L is a homogeneous function 

of degree one in the variables {i 1,..., n). 

5.22. The non-dynamical case when L is homogeneous 
and of degree one in {i 1,2.n) 

The ease where L is of degree one in q^ cannot arise in dynamical 

theory since in dynamics L must be of degree two in q^. It is, 

however, frecjuently encountered in geometrical and similar 

problems and has many features of interest. 

In this section we assume that L is homogeneous of degree 

one in (/, (/ - 1,2,..., n), and (ii) that L does not contain t ex¬ 

plicitly. W'e shall express the dependence of L on the r/’s and 

q's by writing 

L 72.7„)- (C 

By Euler’s theorem on homogeneous functions we have 

L. (2) 
. cl^ .clj , Cfj 

^hv. +(h-r, + • rtf,,. , 
cq^ cq.^ C7„ 

In finding the stationary values of J Ldt by means of Hamil¬ 

ton’s equations we first find the functions defined by 

Pi 1,2,..., n) (3) 

and then eliminate 

by H 

(jlii 

" Pl4i+P2^2 + - 

from the function H defined 

(4) 

as in § 5.21. From (2) and (3) it follows that in the case con.sidered 
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here // = 0. Or, writing H in a form in which it is expressed as a 

function of and {i --- 1,2,...,n) we have 

.^ 0. (6) 

The converse of this result is also true, as we now proceed to 

show. The converse can be stated as follows: 

Let L — L(q^,q^) be a homogeneous function of degree one in 

q^ (i ~ 1,2,...,n), and let be defined by (3). If between the 

variables qr., there exists a relationship given by 

K - K(q^,q.^..Pn'i (fi) 

then K is the Hamiltonian function for L. 
For let F be the function whose Hamiltonian is K. Then from 

the definition of the Hamiltonian given by (4), § 5.21, and the 

condition that p^ is defined by eciuation (3), we have 

r V r (7) 

On using (2) and (6) it follows immediately that F - L and 

therefore that L has K a.s its Hamiltonian function. 

The canonical equations (t>) and (lO)- § which render 

^ Ldi stationary, are then 

dK . 
(/n (8) 

and 

dpi 

dK 
Pi 1.2.u). (9) 

This result is .sometimes of great use in simplifying our calcu¬ 

lations, for frequently it is easier to find a relation such as (6) 

than to perform the eliminations necessary to find H by the 

methods of § 5.21. This point is illustrated by (15), § 5.23, below. 

Another interesting property of the Hamiltonian in the case 

when L is homogeneous and of degree one in the variables q^ 
is as follows. Having found the Hamiltonian H according to the 

rules of § 5.21, the solutions of the canonical equations 

ay/ _ . dJl_ 
^Pie<ii ~ 

are the extremals of J L dt. 

j>i (»=1,2.n), (10) 



148 HAMILTON’S PRINCIPLE AND V,§5.22 

Now write t — f(u) and denote differentiation with respect to 

« by a prime, i.e. q'^ — dqjdu, etc. If L is homogeneous of 

degree one in and if in addition t is not e.xplicit in L, we have 

L(q^,qi,...,q„-,qx.qi.q„) 

= j U'h 'ii.'/«: '/i- '/*.7n)- (• •) 

SO that 

I ^(7i-72.7i 72. 

J fA'ii-q-i..<u)d»- (•-) 

Also the Hamiltonian equations (10) become 

/'(«)--• -7;; 1>\ ('■ 1-’."). (J3) 

Thus the right-hand integral of (12) is stationary for solutions 

of (13) and on replacing u by t (the actual symbol used is im¬ 

material), it follows that ^ Ldi is stationary for solutions of the 

equations 
<H cH . 

M. 1’-.'0. (U) 
<Ui 

where fi is any convenient function of t. By choosing /x suitably 

our calculations can frequently be simplified 

These results will be illustrated in the next section, where we 

deal with a special case of Zermelo’s navigational problem.f 

We shall confine ourselves to the first variation only. 

5.23. Path of minimum time in a stream with given flow 

A streani of water flows parallel to a fixed given horizontal 

line a in such a manner that its velocity at a point distant (j^ 
from a is proportional to r/g. If a ship moves with constant 

speed u relative to the water, find the path of minimum time 

between two points in the stream. 

Let (^1,92) be the coordinates of the ship at time t, where 

is measured parallel to a, and let <f> be the angle between a 
and the direction in which the ship is being steered. Then the 

t E. Zermelo, ZeiUichrift JUr angewandu MathenujUik und Mechanik, vol. xi 
(1931), pp. 114-24. A full aroount is given by (\ Carat hvoclory, VaricUions- 
rechnung, pp. 276 and 458. 
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components of the ship’s velocity relative to a are respectively 

^ ^ ^ ^ parallel to the and axes. By suitable 

choice of units it is possible to make k - -- 1 and u— 1, so simplify* 

ing these components to 72+cos and sin<^ respectively. 

U v is the velocity of the ship relative to a and s the length of 

arc of its trajectory, then v dsjdt, so that the integral to be 

minimized is 
t 

In order to put this integral in a form to which the theory of 

§ 5.22 can be applied a parameter A is introduced. The object of 

this is to replace the variable t and so avoid possible confusion 

with the time. Denote differentiations with respect to A by 

dashes, e.g. ^ ds'dX, etc., so that 

/ 

The integrand N'/r must now be expressed in the form 

^(7i 72- 7i'72' ^ fcr brevity). 

We then have ~ -- L, (3) 

where r is the velocity of the ship relative to the fixed line and L 
remains to be determined. 

If the direction of motion of the ship makes an angle i/r with 

the given line a, then, by the usual formulae of the differential 

calculus, 

tanj/i 
sin <f) 

siiii/f — ^2. 
f ) COSifi = = (4) 

72fcos<^’ d^i ds ' 

Hence rcos0 == II 

L’ (5) 

from (3). Similarly 

V sin «/f II 11 (6) 

Now the velocity components can be written either as 

{vcoHi/j, vsintp) or as (72+cos<)S, 8in<^). 
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Hence we have r/g-f cos<^ 

On eliminating (f> from equations (7) and (8) we have the 

quadratic equation 

(/^/2 <lz (‘‘>) 

from which L can bo found. We can then minimize (2) by using 

the characteristic equations. But, as we wish to illustrate 

the use of Hamilton's equations and as, evidently from (9), L 
is homogeneous and of degree one in q\ and r/g, w e shall proceed 

according to the methods of§§ 5.21 and 5.22. It is first necessary 

to calculate the two quantities and pg, where 

y>, mul P, (10) 
rr/i cv/.g 

and thi.s is most conveniently achieved by differentiating (9) 

with respect to q[ and (/g. We then obtain the equations 

(/^i72 - •)(/-72 '/i) i-Pv (11) 

Pi<li(L<lr-<l\)-.U2 I'Pi- (12) 

Using (7) and (8) these equations can be rewritten in the form 

(/h72- 1)(—cos^) />!. (13) 

/'2 72(-co8<^)+sin(^ /)2. (14) 

and on eliminating ^ we then have 

p\\-pl~(Vi<h-\? 0. (15) 

From (9) L is homogeneous and of degree one in q\ and q^\ hence 

from the results of § 5.22 the Hamiltonian H is given by 

W - 7>f-hpi-(/>,72-I)*- (16) 

From (14), § 5.22, the canonical equations take the form 

m(Pi--72(Pi72-I)} 7i. (17) 

P-Pi ~~ 72' (16) 

0 - ~p\, (19) 

-Mbi(?h72-1)} (20) 

where /x is a function of A which can be chosen arbitrarily. 

From (19) we have py — 1 /c, where c is a constant independent 
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of A. Choose /x to be constant, differentiate (18). and substitute 

for P2 in (20). We obtain 

0. (21) 

Now choose p so that 
p^ (22) 

The solution of (21) i.s then 

72 c-\ A i Bf 'V (23) 

wdiere A and B are arbitrary constants. 

From (18) we have 

pp2 q2~ Ae^—Be (24) 

and substituting for p^, and in (15) and using (22) we have 

AB ^ But the parameter A is a function of the time, and on 

measuring the time so that A ~ 0 at the instant when q^ -- 0 it 

follows from (24) that A - B. Finally then, A^ I and 

ti* For the rest of the paragraph whenever an ambiguous 

sign occurs the uj)per sign is to be taken if A ^ and the lower 

sign if .4 - We then have 

72 " cicoshA; pp2 isinhA. (25) 

Since L is homogeneous and of degree one in q[ and f/g " ^ have 

L i>i7i + P:i72 T(M^^>«hA)/c (26) 

on using the values ofp^, p2. q\^ 7^, and p given by (17), (18), (19), 

and (20). The sign of g can be cho.sen arbitrarily and the choice 

is made so that L is always positive. It is for this ])urpose that 

p has been introduced. We then have 

1 (27) 

and L cosh A, From (2) and (‘^) we have 
A 

t - L dA sinhA. (28) 
b 

All the parameters can now be expressed in terms of the time, 

[7j after integrating (17)J. The final result.s are 

<h~ d - c/iJ[/(I+/‘-^)i~--log,{/-(14-/2)i^ (29) 

72 r±(\\(^)K (30) 

Pi - (i;V), (31) 

/>2 ('/O, (32) 
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where c and d are arbitrary constants. In the case of am¬ 

biguity of sign, all upi>er or all lower signs are taken together. 

The coordinates of the ship at time t -- 0 are (rf, 1) where the 

ambiguous sign obeys the rule above. 

The formulae obtained for cos<^ and sitK^ on substituting 

for q\, 72' ^ (") (^) 

cos<^ - ^ 
I 

sin(^ ±. (33) 

where again the ambiguous signs obey the same rule as tho.se of 

equations (29) et seq. Equations (33) show that the ship can be 

steered along the path of minimum time by blind reckoning 

since the angle (f> can be calculated at any instant independently 

of e.xternal observations. 

Interesting diagrams of the paths and a detailed discussion of 

the question whether maxima or minima occur can be found in 

the work of Caratheodoryt already referred to. 

Example 1. Solve by the above method the problem of the 

Brachistochrone, ^ l.ll. (The integral to be minimized is 

I'"'! 
J 75 

w'here r/j and q^ are respectively the horizontal and vertical co¬ 

ordinates of the particle, and // />^4-y^^~( 1,72) Use 
(6) and (10), §5.21.) 

Example 2. Solve by the abov<^ method the problem of the 

minimum .surface of revolution, §1.12. (The integral to be 

minimized is 

J 72(71+72)* 
where q^ and q^ are .suitably cho.sen Cartesian coordinates, and 

// />i+7^2-72 '»•) 

t p. 242 ot seq. 



CHAPTER VI 

HAMILTON’S PRINCIPLE IN THE SPECIAL 

THEORY OF RELATIVITY 

6.1. Introduction 

It is (‘lear from the results obtained in the previous chapters, 

and particularly from (Chapter V', that configurations for which 

energy functions have stationary or minimum values are of 

gr(‘at importance in the study of physical phenomena. The basic 

principles of sucli ])henomena can be expressed more concisely 

and the mathematical analysis effected more readily by using 

the calculus of variations than by any other means. 

Hamilton \s stationary principle plays an important part in the 

tlieory of relativity, especially in the generalized theory.t but 

an account of this theory is beyond the scoi)e of any work which 

does not establish the Tensor Calculus first. In this chaj)ter we 

shall only deal with the special theory of relativity and show how' 

the stationary character of J /> (it. w Inch plays such an important 

part in Newtonian dynamics, can lead us naturally from New¬ 

tonian to Einsteinian mechanics. 

6.2. The physical bases of the special theory of relativity 

The wave theory of light, advocated by Fresnel and Young 

early in the nineteenth century, conceived the ether as the me¬ 

dium in which the undulations of light take place. (Jalilean 

dynamics precludes the possibility of absolute velocity, since 

laws of nature referred to a frame Gy still remain true when 

referred to a frame ^' hose velocity relative to Gy is uniform 

and translatory. But we are not prevented from choosing any 

convenient frame and setting up our dynamics relative to it. 

Since the ether, sometimes referred to as the stagnant ether, 

naturally suggests itself as a most convenient frame of reference 

numerous experiments were performed in order to determine 

t A. S. Eddington, The McUhematical Theory of Relativiiy, §60, pp. 137 
et seq,, H. Weyl. Space, Time, and Matter, §§ 28 and 36. 
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the velocity of the earth relative to it. Some of these experi¬ 

ments were based on optical and some on electrical methods, 

but the results were always the same; the velocity of the earth 

relative to the ether is zero. 

After much controversy the first convincing explanation was 

given by Einsteinf in 1905, an explanation so comprehensive 

that a number of hitherto inexplicable facts were accounted 

for in addition to the null results of these experiments. Before 

discussing the theory we give a slight account of two of the most 

famous experiments, that of Michelson and Morley,J performed 

in 1887, and that of Trouton and Noble,§ performed in 1903. 

Both experiments were repeated with greater refinements only to 

confirm the result that the velocity of the earth relative to the 

ether is always zero. 

6.3. The Michelson and Morley experiment 

A ray of light, emitted from a source ..4 (Fig. VI. 1), strikes 

a partly silvered plane glass sheet G at 45^ to the normal and is 

divided into two rays and being reflected and trans¬ 

mitted. The rays and are reflected back to G by two mirrors 

and J/g, being then transmitted through G and reflected 

from G. The two rays and are now recombined along the 

line GB, after each part has experienced one reflection and 

one transmission at 0. If there is a difference of time be¬ 

tween the two paths from A to B there will be a conse(|uent 

difference of phase between the two parts of the ray when re¬ 

combined and this can be detected by the usual technique of 

interference patterns. 

The two paths of light as seen by an observer moving with the 

apparatus are shown in Fig. VI. 1 and the paths as seen by an 

observer at rest relative to the ether are shown in Fig. VI. 2. 

In Fig. VT. 2 the various parts of the apparatus are not shown 

at the same instant of time, for example during the passage of 

time from reflection at O to and back the glass sheet 0 has 

moved from to Fig. VT. 2 raises the question of how light is 

t A. Einutein, ‘Zur Elektroilynamik bewegter Korper*, AnnaUn dtr Phyaik, 

17 (1905). t P^<1’ 1887. 
f Froc. Roy. Soc. 72 (1903), p. 132; Phil. Trans. 202 (1903), p. 166. 
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reflected from moving mirrors. This is easily answered by means 

of Huygens’s principle and is dealt with in most books on 
physics.t 

M, 

M, 

Suppose that the apparatus is moving in the direction of GM^ 
with velocity v relative to the ether and that c denotes the speed 

of light. J Then during the journey from Q to il/j the velocity 

of light relative to the apparatus is f—p and from back to O 
it is c-f-j/'. The time from O to il/, and back is therefore 

GAL , GAL 2cGAL 

t See E. Cunningham, The Principle of Relativityt pp. 19 and 20 for a dis- 
cussion of this point. J c = 3.10‘® cm. per second. 



156 HAMILTON'S PRINCIPLE IN THE VI. § 6.3 

Along the path GM^ and back the velocity of light relative to 

the apparatus is and the time taken is therefore 

(2) 

Hence the excevss of the time along the path to and back 

over that to and back is 

2of/J/2_ 2GMi 

If the apparatus is turned through a right angle so that GM^ 
now lies along the direction (»f i\ its velocity relative to the 

ether, then the same argument shows that the excess of the 

time along the path GM^G over the path GM^ G is 

■lOM, _icaM, 

The difference between expressions (3) and (4) is 

2(GM,-^GM, (OM/i-ffr’J/a) (•">) 

w’hen terms of order smaller than are neglected. 

Although the right-hand side of (5) is extremely small, yet, by 

means of the technique of interference, it would have been 

detected even if v were only one-tenth of the earth's velocity 

relative to the sun. It recpiires little consideration to realize 

that during its orbit round the sun the earth’s velocity relative 

to the ether must at some point be at least as great as its velocity 

relative to the sun. It therefore came as a great suri)rise when the 

first experiments revealed that v - 0. Repetition of tlu'se 

experiments, with every possible refinement, confirmed this 

result conclusively. 

6.4. The Trouton and Noble experiment 

This experiment had the same object as the Michelson and 

Morley experiment, namely the determination of the velocity 

of the earth relative to the ether, but the method adopted was 

entirely different. 
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A moving electric charge generates a current and with each 

current, as discovered by Oersted, is associated a magnetic field. 

Thus if a charged parallel plate condenser is at rest in the ether 

it possesses electrostatic energy only. But if it is in motion the 

currents generated by the equal and opposite charges of the 

condenser ])lates set up a magnetic field whose energy must be 

added to that of the electrostatic field. Hence the total electro¬ 

magnetic energy of the condenser is a function of its velocity 

relative to the ether. 

I^et T denote the total electromagnetic energy, which is not 

ditfioult to calculate, and let 0 denote the angle between the 

direction of velocity (►f the condenser relative to the ether and the 

normal to the plates. Then by standard mechanical theory 

— (f'T/iiJj) is e(|iial to the moment of the couple tending to in¬ 

crease the value of 0. On evaluationf it is found that the moment 

of this couple is proportional to where r is tlie velocity of the 

condenser relative to the ether and r, as before, denott*s the 

speed of light. Hence if the condenser is suspended by a torsion 

thread and charged and di.scharged alternately it should rotate 

through an angle proportional to r-. 

Although the experiment was performed with great accuracy, 

the value of r deduced was again zero in every case. 

6.5. The principles of special relativity 

The null results of these experiments indicate clearly that the 

speed of light must be the same for all observers independently 

of their individual vel<)(‘ities. This statement is one of the 

fundamental postulates of the special theory of relativity. 

The following considerations show' how w idely this postulate 

and its consequences differ from Cialilean or Newtonian ideas. 

Let the position of a j)oint in space be determined by Cartesian 

coordinates (.r. //,^), the origin of coordinates being O: we shall 

refer to this as the O system. Suppose (i) that an observer M 
moves along the .r-axis with constant velocity r and (ii) that at 

the instant when M j)asses () a source of light at 0 instan¬ 

taneously emits rays in all directions with velocity c relative to 

t For the calculations seo the roferoncos in the footnote to § 6.3. 
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the axes. Then after time / the equation of the spherical wave 

front formed by the light rays will be 

™ 0, (1) 
and the coordinates of 3/ will be 0) (Fig. VI. 3). 

Consider now the system of axes which are parallel to those 

through O but which have 3/ as origin; we shall refer to this as 

the 3f system and denote the coordinates of a point in it by 

(x\y\z'). With respect to the 3/ system the wave front is still 

a sphere of radius ct, but its centre has coordinates ( — if, 0,0) 

and its equation is 

{z'(). (2) 

But clearly, if we adopt Einstein’s postulate stated at the 

beginning of this section, the distance of the wave front from 3/ 

must be ct in all directions, for the speed of light relative to M is 

always c independently of 3/ ’s motion. The equation of the wave 

front in the M system must then be 

0 (3) 
instead of (2). 

Reverting to Galilean conceptions of relativity the linear 

relations which enable us to change from the O to the 3f system 

are those which transform (1) to (2) and vice versa. They are 

z z'+vt, y y\ z === z', \ 
' r::: X — Vt, y' -- f/, Z' Z. / z (4) 



VI, §6.r> SPECIAL THEORY OF RELATIVITY 169 

Galilean theory asserts that all physical phenomena must 

appear the same whether viewed from a frame of reference 

or a frame G,^, provided that either frame moves with uniform 

velocity relative to the other. If these phenomena are expressible 

in mathematical form, then such forms must be covariant! for 

transformation (4). 

Starting from the initial postulate of this section, the Einstein 

theory requires our laws of relativity to be based upon the linear 

transformations which change (1) to (3) instead of (1) to (2) 

(the transformations which cliange (1) to (3) will be obtained 

in § I>.7 below). The Einstein theory thus requires that all laws 

of physics expressible in mathematical form must be covariant 

for (3), § 0.7, instead of for (4) above. 

In order to make further progress in his theory Einstein 

introduced another very remarkable postulate. Before stating 

it we note that in Newtonian theory the space variables are dealt 

with in (|uite a different way from the time variable which 

a[)pears to he specially privileged.! Although two observers, 

one in the 0 and one in the M system, assign different values to 

the coordinates and relative velocities of a particle P, yet they 

assign the same value to /. In this concept time is independeht 

of the velocity of any observer, as illustrated by the use of t in 

(4). Although this agrees with our intuitive conceptions it is 

rejected by Einstein, who assumes that the measurement of 

time depends as much upon tlie velocity of the observer as does 

the measurement of velocity. Thus in passing from the 0 to the 

t Dejinitioti of cotniriant. If a transformation from the variables ari, iCj,..., 

tor/pf/,.t/„ is given by ^/i (j/i. ?/i. •»«/») (* = L 2,..., n), then the function 
F(rp r,,..., is a covariant of the transformation if 

/•>,. = i'Xvi.y,.y„). 

As an examples for the group of rotations about the origin O given by 

cos (1-ygsin ot, x, = y^sin ot-j-yjcosa 

the expression xj \ x!j is covariant since xj-fxj = yJ-fy.J. Interpreted geo¬ 
metrically, if the point P rotates about O, then the distance OP remains 
unaltered. 

The essential property of a covariant for our purpose is that its form remains 
unaltered by a transformation. This is wider than the normal usage of the word 
in generalized relativity theory. 

I Or perhaps it is the space variables which are privileged. 



160 HAMILTON'S PRINCIPLE IN THE VI, § 6.5 

M sj'^stem not only must we make the change from {x,y,z) to 

(x\y\z') but we must also allow^ for a possible change of time 

measurement from t to t\ This postulate proves most fertile in 

its applications to physical problems. 

Since the space variables (x.y.z) and the time variable t 

are now on an equal basis, it is natural to group them together 

and by analogy with three-dimensional geometry to regard the 

set of numbers (x,y,zj) as the coordinates of a point in a four¬ 

dimensional space. This is generally referred to as space-time 

(or the space-time continuum). The second postulate stakes that 

if (x^ y^zj) are the space time coordinates of a point P in the O 

system, then in the M system its space-time coordinates will be 

(x\y\z\ /'), where t' ditTers from / l)ecause of J/ 's velocity relative 

to O. Thus the eciuation of the wave front in the M system must 

be .r - y^+z'^- -CH'- 0 (•">) 

instead of (3) (t is re[)laced by /'). To sum up, as a consecpience 

(i) of the null results of the experiments described in §§ (>.3 and 

6.4 and (ii) of the displacement of time from its privileged position 

accorded in Galilean concepts the relativity laws must be linear 

transformations which change (1) to (5) or, in other words, 

which leaV'C invariant. 

6.6. Galilean and Newtonian conceptions of time 

Before considering the consetpiences of these j)ostulatc.s it 

is worth while considering the concept of time according to the 

ideas of Galileo and Newton. For although simple and intuitive 

it is by no means free of paradox, as the following example will 

show. 

Suppose that two observers A and B correlate their clocks 

when together and that c cm. j)er second is the speed of light. 

Let A move to a jK>int distant c cm. from B and then come 

to rest relative to B, According to Newtonian conceptions 

the.se changes do not affect A'h time system, i.e. his clock, in 

any manner. Now if A and B are at rest relative to the ether and 

if light waves are the only medium of communication, then B'h 
clock will api>ear to be one second slow to A and vice versa'. 
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But if A and B are not at rest relative to the ether then the 

apparent time differences of their clocks will depend upon their 

velocity. If they are moving in the direction B to A, then B'a 

clock will appear to be more than one second slow to A and A *a 

clock will appear to be less than one second slow to B, and if 

they are moving in the opposite direction then the contrary will 

appear to be true. Suppose now that A wishes to determine how 

events which appear simultaneous to him will appear to B. Then 

he must first find his velocity relative to the ether and this, 

according to the Michelson and Morley experiment, is impossible. 

Thus the so-called intuitive conceptions of time give us no means 

for correlating the time systems of two observers and in this 

respect the Einstein theory is undoubtedly superior.! 

6.7. The transformations of the special theory of relativity 

Reverting to the theory of § 6.5, we have already assumed 

that the transformations of relativity must be linear, an assump¬ 

tion justified by Einstein because of the homogeneity of space 

and time. In addition a further a.ssumption is made that a point 

at rest in one system or frame of reference must correspond to a 

point moving with uniform velocity in the other. Evidently 

7/ y', 80 that the transformations from the 0 to the 31 

systems of § 6.5 must be of the form 

X p{.r' + 7i'); ij ~ \j \ z ^ z\ t ^ px -rqij -\-rz' + st\ (1) 

The constants /3, p, cp r, .s must be determined so that (1), § 6.5 is 

transformed to (5), § 6.5. We have 

f r/' )2 -f y'2 c'2—r2(px' + (pj -|- rz' -f st')2 

(2) 

and so g — r ™ 0, 

X---^(x' + vf): y y'\ 2 =2'; < = + (3) 

where /3 = 

t In hU book Space, Time, and Matter, p. 147, H. Weyl says : ‘The physical 
purport of this is that we are to discard our belief in the objective meaning of 
simultaneity ; it was the great achievement of Einstein in the field of the theory 
of knowled^ that he banished this dogma from our minds, and this is what 
leads us to rank his name with that of Copernicus’. 

61S6 M 
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The reverse transformation from the M to the O system is 

x’ = P{x-vl)- y' = y; z' = 2; t' - —(5) 

where has the value given by (4). 

The interesting feature of these transformations is that not 

only do they account for the null results of the Michelson and 

Morley and similar experiments but that they had already been 

in use some years prior to the publication of Einstein’s theory in 

order to account for an entirely different phenomenon. The 

study of electricity and magnetism in the early part of the nine¬ 

teenth centurj’ led finally to a system of equations, known as 

Maxwell’s equations. These cover the whole field of electro¬ 

magnetic phenomena and are so completely in accord with 

experiment that they have become the classical equations of 

electromagnetic theory. Nevertheless they suffered from one 

serious drawback, they were not covariant for the Galilean 

relativity transformations given by (4), § 6.5. This difficulty 

provoked much thought and study until it was ultimately dis¬ 

covered by Lorentz and Larmor that Maxwell’s equations are 

covariant for the transformations (3) and (5) above.f This 

remarkable success in explaining two groups of apparently 

unconnected phenomena together with many other successes, 

some of which we shall deal with later, have firmly established 

Einstein’s special theory of relativity in the field of modern 

mathematical physics. 

6*8. Relativity transformations for small time intervals 

In § 6.7 it has been assumed that v is constant. If we wish to 

extend the theory to the case when v is no longer constant we 

must consider time intervals so small that for their duration 

the variations of v are negligible. In the formulae of § 6.7 we 

replace (x,y,Zrt) in the 0 system of reference by (dx,dy,dz,dt) 
and (x\y\z\t') in the M system by (dx\dy\dz\dt'), and the 

t For th© proof of thin Mtatoment »©e E. Cunningham, loo. cit., chap, iv, or 
R. C, Tolman, RHaiivity Tfiennodynamics and Cosmology, § 52. The electrical 
and magnetic intensities also undergo transformations similar to (2) above. 
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theory then requires that the relativity transformations from 

the 0 to the ilf system must change 

dx'^+dy^+dz^—c^ dt^ (1) 

to dx'^+dy'^+dz'^-c^dt'\ (2) 

The transformations (3) and (5), § 6.7, from the O to the M 
system of reference and back, then become 

dx -= ^(dx'-\-r dt'), dy — dy'. dz ~ dz', dt = 

dx’=r p{dx-vdt), dy'=- dy, dz' -^-^dz, dl'^^{dt-'^ 

(3) 

where 

6.9. The space-time continuum 

We have already mentioned that it is convenient to group the 

space and time variables together and to regard (Xyy,z^t) as 

the coordinates of a point in four-dimensional space, referred 

to as the space-time continuum. It is more convenient to take 

{Xyy,z,ict) {i v(—1)} as the coordinates of the point so that 

is the element of arc. On taking i ds to be the length of the 

element we have 
rf.v2 c^dr- dx^--dy^-~dz^-. (1) 

The reason for choosing i ds for the length of the element instead 

of ds is that in practical problems the speed of a 

particle, is always less than r, the speed of light. Hence in (1) 

is positive. The choice of i ds instead of ds is merely a matter of 

convention and has no object other than that of convenience. 

The sign associated with each space variable is different from 

that associated with the time variable. This fact is of no great 

importance mathematically but it is important when we wish 

to correlate our mathematical results with the phenomena of 

the real world around us. 
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Gaussf has shown that an equation between the line element 

and the coordinate elements, such as (1), characterizes com¬ 

pletely the geometry of space. For example, from the equation 

ds^ = dx^+dy^+dz^ (2) 

can be deduced all the well-known properties of three-dimen¬ 

sional Euclidean space. Thus the sp'^ce-time continuum is com¬ 

pletely characterized by (1). 

In three-dimensional geometry the trajectory of a particle is 

generally specified in terms of equations of the form x ^ /i(0» 

y z=i z ~ where /g, /g denote various functional 

forms. In the space-time continuum defined by (1) the.se equa¬ 

tions specify a curve known as the world line of the particle. 

6.10* An approach to relativity dynamics of a particle 

Having generalized the relativity formulae our next ta.sk is to 

generalize dynamical theory. In carrying out this task we must 

bear in mind the great successes of Newtonian theory in dyna¬ 

mics, in astronomy, and in physics generally, so that common 

sense enjoins us to pursue the following policy. The Newtonian 

principles of dynamics must be examined in order to discover 

which, if any, will fit into the framework of Einstein relativity. 

If none such are found, then those principles are to be u.sed which 

can be made to fit with the least j)o.s.sible modification. 

A dynamical principle can be fitted into the Einstein frame¬ 

work if in its mathematical form no di.stinction is showm 

between the properties of the space and time variable.s, for other¬ 

wise the mathematical expres.sions would not be covariant for 

the relativity transformations (3), § 6.8. This remark applies 

to Hamilton’s principle (Chap. V), as we proceed to demon¬ 

strate. 

If T and V denote the kinetic and potential energies respec- 
h 

tively and L = T—F, then the principle states that J LdMs 

stationary for a dynamical path. In addition, if the arc of 

integration does not extend beyond the nearest conjugates 

t T. Levi-Civita, The AbeoluU Differential Cakulue, chap. v. 
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of either of the end-points, then the integral is a minimum. 
Denoting, as usual, a variation by 8 the principle can be stated 
in the form 

8 j Ldt = 0, (1) 
ft 

where the end-points and are fixed. 
In our proof of Hamilton’s principle the space parameters 

- were varied as follows. On the extremal we had 

~ (i l,2,...,n), (2) 

and on a varied curve 

(3) 

where is an arbitrary constant and u^(t) is an arbitrary function 
of t independent of each Evidently the time is not varied, so 
that the theorem established in Chapter V is essentially 

I* (SL) dt 0. (4) 
it 

Before we try to fit Hamilton’s principle into relativity 
mechanics we must first prove that 

h. 
I" h(L dt) = 0, (5) 

where the time is varied as wdl as the space parameters 

when we pass from a point on the extremal to a point on a neigh¬ 
bouring curve. It is evident that the variation of the g’s will 
lead us once again to Lagrange’s equations, (2), § 5.7; we may 
therefore regard - » constants and vary t only. But a 
variation in t will give us a variation in even if q^ is constant. 
For 

dt-*o di 
(6) 
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Therefore if i is varied by the amount St and the consequent 
variation in is denoted by S^,-, we have 

lim iJlL^ (7) d/-.old(<+S0 dt J 

lim |—-[l — (8) 
rf/-.o 1 dt [ (it dt 1 

. d(U) 
'^^~dt ' (9) 

where (80* and higher powers have been neglected. There are, 

in addition, corresponding results for 92*93’' 

6.11. Applicability of Hamilton's principle to relativity 

mechanicsf 
We now proceed with the proof of equation (5), § 6.10, assuming 

that the q^s remain constant and that the end points of integra¬ 

tion are fixed. We have 

j 8(L dt) r.-. j L Hdt) 4- j S/-f 2 Sv.) (•) 
f, I, I, ' 

on using (9), § 6.10. Integrating by parts and using 8^o = 0 

we have 

u u * ^' 

n . dL ^cL . , ^dL.. , dL 

Hence from Lagrange's equations, (2), § 5.7, we have 

dL ^ dldL\, , ^dL„ , dL d [dL\ . ^ dL .. dL 

i^i \ 

t 6.11 and mibeequent sectiona follow the treatment of Levi-Civita. loc. cit., 
p. 289 et seq. For an alternative treatment eee Tolman, loc. cit., }§ 26 and 27. 
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which is equivalent to 
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bL d 
cd'^dt 

(6) 

The proof of (5), §6.10, is then completed by combining 

(6) and (3). 

6.12. Equations of motion of a particle in relativity 
mechanics 

One of the simplest problems in Newtonian dynamics is that 

of a paiticle moving on a smooth surface under no forces other 

than the normal reaction. Since energy is conserved and there 

is no potential energy, the velocity must be constant. The 

principle of least action, §§5.6 and 5.19, then states that J ds is 

stationary. Thus, the path is a geodesic. 

Alternatively we may say that the path is given by 

U 

8 C (1) 

where r/.r2^ dz^. 

The generalization of this result in Einstein mechanics is that 

the world line of a particle under no forces is a geodesic in the 

space-time continuum. In other words, the generalization re¬ 

quires the path of a particle under no forces to be specified by 

ti 

8 I d.v - 0. (3) 

where d^s^ dt^ -dx^ -dj/^ — dz'^, (4) 

The change in the definition of ds from (2) to (4) is essential 

since the relativity transformations (3), § 6.8, hold for (4) but 

not for (2). If v is the velocity of the particle, (3) can be written 

in the form 
8 J dl = 0. (5) 

For reasons which will appear later there can be no complete 

analogue of (1) and (2) in Einstein mechanics. But if w'e are 

prepared to accept an approximation, a result can be obtained 

which is not only of great interest in itself but which also explains 
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why such an analogue cannot exist in a simple form. In making 

the approximation the terms we neglect are of the order v^jc^ 

in comparison with unity, where r is the velocity of the particle 

and c (== 3.10^® cm. per sec.) is the velocity of light. If v is equal 

to the velocity of the earth in its orbit, then v^jc^ is about 

Terms of order must be retained, although in normal 

motion they are very small. For when v compares with c these 

terms are of appreciable magnitude and it is then possible to 

detect differences between Newtonian and Einsteinian mecha¬ 

nics by experimental means. 

In Newtonian dynamics, when a particle moves in a conserva¬ 

tive field of force, we have 

V ~ constant, (6) 

where m is the mass, v the velocity, and V the potential energy. 

Hence V is of the same order as and to our degree of approxi¬ 

mation we may neglect terms containing and higher 

powers. 

In fitting Hamilton’s principle into Einsteinian mechanics, a 

step justified by § 6.11, we may modify the statement of the prin- 

ciple, 8 I L d/ = 0, in non-assential particulars. This means that 
U 

the integrand can be multiplied by or increased by a constant, 

for such modifications have no influence upon the characteristic 

equations and their solutions. For simplicity we confine our¬ 

selves to the case of a particle with unit mass for which 

(7) 

The form the principle then takes for use in relativity is 

u 
—S J c(c*—2L)‘ dl = 0. (8) 

For, to our degree of approximation, (i) (8) differs non-essentially 

from the Newtonian form j Ldl = 0, and (ii) when the particle 

is under no forces and V = 0, (8) reduces to a form which differs 

non-essentially from (5). 

The world lines of a particle of unit mass in a space-time con¬ 
tinuum are then the characteristic equations of (8). Writing 
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2L = and using theorem 7, §3.2, the world 

lines are given by 

d i ci I ^ c dV 

d4(c*- 2L)*l ‘~(c2- 2iji Jx (9) 

together with two analogous equations for y and z. 

6.13. Mass in relativity mechanics 

In Newtonian dynamics the equations of motion of a particle, 

whose mass is m, are given by 

d(mx) _ dV 

~dr "" ^ ^ 

together with two analogous equations for y and z. Now 

(9), § 6.12, shows that in relativity dynamics a unit particle with 

velocity components (i, y, z) parallel to the axes has momentum 

components , , . . , 
" . <'1.. ... (2) 

(c^-2L)i’ (c^-2L)if' ^ ’ 

Even if there are no external forces, i.e. V = 0, the momentum 

components become (^i, ^y, /9z), (3) 

where j3 ^ (1 —as in § 6.8. Hence if we wish to retain 

the concept of momentum together w ith the principle, so funda¬ 

mental in New tonian theory, that the rate of change of momen¬ 

tum is proportional to force, we must abandon the principle of 

constancy of mass. We can retain the principle and account for 

the factor jS in (3) only by introducing the following postulate. 

A particle which, to an observer at relative rest, appears to have 

unit mass must appear to have mass j3 to an observer with 

relative velocity v. Proportionately a particle which, to an 

observer at relative rest, appears to have mass ytIq will, to an 

observer with relative velocity r, appear to have mass ?n, where 

The quantity is called the invariant or rest mass and m is 

called the relative mass. According to (4) the relative mass of a 

particle tends to infinity as its velocity tends to that of light. 
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Thus in the Einstein theory the velocity of light must be regarded 

as a limiting velocity which can be approached from below, but 

never attained by any physical particle. 

Equation (4) necessitates a very substantial modification of 

our physical ideas of matter. But it had already been noticed 

before the publication of the special theory of relativity, in 

1905, that the mass of fast moving electrons could not be con¬ 

stant in the sense required by Newtonian concepts. Accurate 

experiments, performed from 1901 onwards, have established 

the truth of (4) and so confirmed Elinstein’s theory. 

In spite of this radical change in the conception of mass, it can 

be shown that if two particles collide directly their total relative 

mass and their total momentum is unaltered by the collision.f 

6.14. Energy in relativity mechanics 

The far-reaching changes in our views of matter required by 

the preceding results must necessarily be accompanied by com¬ 

mensurate changes in our views of energy. 

We must first find an acceptable definition of energy for use in 

relativity mechanics and in this search we must be guided once 

more by the principles outlined at the beginning of § fi. 10. Since 

Hamilton’s principle is equally applicable to both Newton’s 

and Einstein s theories (§ 0.10), a suitable definition of energy can 

be based upon the Lagrangian function L (= - T—V). When 

the forces are conservative the kinetic energy T is a homogeneous 

function of degree two in the variables .nhown in 

§5.14. Since the potential energy V is independent of these 

variables it follows that 

y f f tf;- L 2T~ L . T-f V, (1) 

and therefore, in the Newtonian case, the left-hand side of (1) 

is equal to the total energy. 

Before a definition can be accepted for use with the Einstein 

theory its mathematical expression must remain covariant for 

the relativity transformations (3), § 6.8, and distinctions between 

t A. 8. Eddington, loc. cit., } 12; H. C. Tolnmn, loc. cit., § 23. 
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the space and time variables eliminated. These requirements are 

not fulfilled by the left-hand side of (1). But if we are prepared 

to accept an approximation, as in § 6.12 (i.e. we retain terms of 

order v^jc^ and neglect terms of order v^jc^ and smaller), further 

progress can be made. The arguments of § 6.12 then show that 

the requirements will be fulfilled if L is replaced by —c(c^—21/)* 
and that the left-hand side of (1) can serve satisfactorily as the 

definition of energy in the Einstein theory. 

For a particle of unit mass we have 

-»r(r2-2L)i - r{r^ - z^ f~2V)K (2) 

To our degree of approximation, with x, r/g ^ 2, 

the energy of a unit particle is 

Thus even when at rest and not acted on by any forces, i.e. 

r 0 and V -- 0, the particle possesses a store of energy equal 

to ergs ( - 9. lO^o ergs). 

For a particle of relative mass m the store of energy E is given 

E - wc*. (4) 

Evidently this cannot be classified in either of the two traditional 

categories of energy, kinetic and potential, and it must therefore 

represent energy in a new form. Enormous quantities of energy 

other than kinetic and potential occur in nature associated with 

the phenomena of radioactivity and atomic fission. In both these 

phenomena quantities of energy of the order me* are released 

and after the release of the energy it is found that the total 

amount of matter has diminished. The matter lost has been 

transformed into energy in accordance with (4), an equation 

fundamental in modern investigations in nuclear physics. 

6.15. Further observations 

Since Hamilton’s principle can be applied to relativity mecha¬ 

nics it follows that the calculus of variations plays an important 

part in the development of relativity theory. The theory has 
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been extended so as to include all gravitational and electro¬ 
magnetic phenomena and in these extensions the new principles 

have been put into simple and elegant forms by means of 

variational methods. For an account of these developments the 

reader is referred to the standard works on relativity.f 

t A. S. Eddington, loc, cit., p. 139 et seq. In particular the definition and 
use of the Hamiltonian o|)erator. H. Weyl, loc. cit., §§ 28 and 36. R. C, Tolman, 

loo. cit., § 87. 



CHAPTER VII 

APPROXIMATION METHODS WITH 

APPLICATIONS TO PROBLEMS OF 

ELASTICITY 

7.1. Introduction 

Our account of the Calculus of Variations has so far been based 

upon the properties of Euler’s differential equation (8), § 1.4, 

and the generalizations of this equation given in Chapters III 

and IV. A new and fruitful line of development was inaugurated 

by Rayleigh and later used by Ritz and others to deal with prob¬ 

lems of elasticity and numerous other branches of Applied 

Mathematics, including Quantum theory. In this chapter, after 

a brief introduction to the mathematical theory of elasticity, 

we shall develop the Rayleigh-Ritz method and then illustrate 

its use in practice by an application to the Saint-Venant torsion 

problem. 

We commence by an investigation in which the stationary 

value of an integral can be found either by the use of Euler’s 

equation or by the use of the Rayleigh-Ritz method. The two 

procedures can then be contrasted with each other. 

7.2. Illustration using Euler's equation 

Consider the problem of finding the functional form of y 

which renders the integral ,1) 
-1 

stationary subject to the condition 

1 

1 == J t/* dx. (2) 
-1 

This type of problem is solved in Chapter IV and its Eulerian 

equation [see (12), § 4.2] is 

= 0. (3) 
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where A is an undetermined multiplier and -- dyjdx. 
simplifies to ^ 

dx 

which is the well-known Legendre equation. If we write 

This 

(4) 

A n(/i-r 1) 

the two solutions of (4) are usually denoted by P„(ar) and 

the first and second Legendre function respectively.! The 

general solution of (4) is 

y-^:~-Al\(xHBQ,Xx)^ (5) 
where A and B are arbitrary constants. If n is a positive integer 

Pn{x) is a polynomial which is the coefficient of in the expansion 

of (l — 2a:A4“A^)~* in positive integral powers of h. The first six 

of these polynomials are given in the following table: 

n A ; i’„U) 

(1 0 = 1 
1 *> .r 
2 »> , i(3-r« 1) 
3 12 ; }(:».r* :ix) 
4 20 J(35x* 30j-* • 3) 
.5 30 7Ox* r l.V) 

It is easily verified that 

satisfies (2) when « ^ 0, 1,2, 3, 4, or 5. In fact it satisfies (2) 

for all positive integral values of n. 

The introduction of condition (2) enlarges considerably the 

range of functions which render (I) stationary. For the omission 

of (2) is equivalent to writing A ™ 0 in (3), and then from (5) the 

most general function which renders (1) stationary is 

y - A Po(x) -f BQg(x) = ^ + /i log| J - , (6) 

where A and B are arbitrary conatantH. 

t Whittaker and Wat«on, Modem Analyme, rhap. xv, where a comprehen¬ 
sive account of theee function!) can be found. 
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7.3. Illustration using the Rayleigh-Ritz method 

The object of the Rayleigh-Ritz method is to replace the 

problem of finding the maxima and minima of integrals by that 

of finding the maxima and minima of functions of several 

variables. This is soluble by the ordinary processes of the 

differential and integral calculus.f A simplified account of the 

method is as follows. 

First it is assumed that y, the dependent variable, can be 

expressed in terms of known functions of x in a form which 

involves unknown coefficients or parameters. On substituting 

for y in the integral (1), § 7.2, the value of I can be found in 

terms of these parameters. The theory of maximum and 

minimum values of functions of several variables then enables 

us to determine the values of the parameters which render I 
stationary. 

Let us assume that the integral /. (1), § 7.2, is stationary when 

y a+bx+c:f, (1) 

w’here u. 6, c remain to be determined. Substituting for y we have 

/ (2) 

From (2), § 7.2, we have 

0- I- (3) 

Denoting the right-hand side of (3) by the values of a, 6, c 

for w'hich I is stationary are given byj 

i ljm ( Ijdb _ cljdc_ 
ctfijdb d<f)ld€ ^ 

Evaluation of (4) gives us 

__ 32r/15 _ . 
^ + f 5) “ ' ' 

and the possible solutions are as follows: 

(i) b ~ c ^ - 0; (ii) a ~~ c — 0, /it — 2; 

(iii) r -- b ^ 0, ^ -- 6. 

Using (3) we have in addition for case (i) a ^ 1/V2; for case 

t Courant, Differential awl Integral Calculus, vol. ii, p. 183. 
{ Courant, loc. oit., vol. ii, p. 194. 
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(ii) b = V(3/2), and for case (iii) a == V(5/8). The final results 

are then 

M y 
0 1/V2 

2 Vfx 

6 Vf (1-3x2) 

On comparison with the table in § 7.2 these functions are 

evidently equal to ^n(^) three cases n ~ 0, 1, 2. 

They satisfy both the Eulerian equation (4), § 7.2, with fx ™ A, 

and condition (2), § 7.2. They give us therefore an exact solu¬ 

tion of the problem of minimizing the integral /, (1), §7.2, 

subject to condition (2), § 7.2. 

Example. Obtain similarly solutions proportional to /six), 

P4{x), and Psix) (assume y - etc.). 

7.4. Rayleigh's method 
In the example above an exact solution has been obtained, but 

in most cases the Rayleigh-Ritz method gives approximations 

only. To illustrate the degree of accuracy which can be attained 

we shall consider one of Rayleigh’sf own examples, the problem 

of vibrating strings. We first obtain the exact solution and 

then compare it with the result obtained by Rayleighs 

method. 

Consider the transverse vibrations of a taut uniform string 

whose end-points are fixed. The tension is r, the length /, the 

coordinates of a point on it (x,y) and those of the end points 

(ifc ^)- If is th® mass per unit length, then the kinetic energy 

of an element of length ds is Ja d8(dyjdt)^. Since the string is 

taut dy/dx is small compared with unity, so that 

ds = (dx^+dy^)^ = dx, 

on neglecting infinitesimals of the third order. Hence the total 

kinetic energy of the string T is given by the equation 

r=i.| (ip., 
t Lord Rayleigh, Theory oj Sounds vol. i. § 89. 

(1) 
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Since the change in length of the string during the vibration 

is negligible we may take the tension r to be constant. The work 

done in extending an element from dx to da is 

r(da—dx) — T{{dx^-{-dy^)^—dx} 
\dx) 

dx, 

neglecting (dyldx)^dx and smaller terms. Hence the potential 

energy of the string V is given by 

/(f- 
(2) 

By Hamilton’s principle, (5), § 5.5, it follows that 

to to - n 

is stationary. The characteristic equation for this integral, 

given by (G). §3.8, is 

(4) 
chj 

’ C'/ 2 

chj 

cx^ 

The most general solution is 

whereand /g are arbitrary functions. In the slowest or funda¬ 

mental mode the string vibrates as a whole without nodes except 

at the fixed end points. The particular form of (5) which satis¬ 

fies these end conditions is 

where a and e are constants. Hence the period of the funda¬ 

mental mode is , 
21 y? (7) 

and the exact solution of the problem is obtained. 

The Rayleigh method assumes that the vibrations of the 

string are periodic but does not attempt to find the exact form. 

Instead, from the data, a simple relationship is inferred which 

must be approximate to the exact form of vibration. In this 
SISS 
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case we can account most simply for (i) the period 'Injp by the 

factor cos(/)/+€), and (ii) the end conditions, y ^ 0, x 

for all values of /, by the factor {1 — (4.r2//*)}. We therefore 

assume that / . 2\ 
tj -- «cos(p/-f €)|l -- jy|, (8) 

is an approximation to the mathematical expression for the 

vibration. Here a and € are constants, and p is to be deter¬ 

mined as below. The form of vibration assumed is parabolic. 

Rayleigh continues by using the following principle:! when 

a conservative dynamical system, with a finite number of 

degrees of freedom, vibrates in a normal mode, then the periods 

are stationary. From which it follows that the mean kinetic and 

potential energies taken over a period are equal. In the case of a 

string, for which there are an infinite number of periods of 

vibration, the principle is still true for the fundamental mode. 

From (S) and (1) we have 

T = + (9) 

and from (8) and (2) we have 

y cos2(/>/-f c). (10) 

On averaging these expressions for T and V over the time f)eriod 

27T/p and equating the results we get 

Comparison between (II) and the exact result (7) show^s that the 

approximation is slightly too small in the ratio tt/v 10 ( - 0*9936). 

Thus in spite of the somewhat crude nature of assumption (8), 

the final result differs from the correct residt by less than 0*7 

per cent., a degree of accuracy sufficiently high for most practical 

purposes. We also observe that this result is arrived at by 

relatively short and simple calculations. 

t Rayleigh, loc. rit., vol. i, f 88. Thin is fioinotimes known as Rayleigh'fi 
principle and ia provcxl in moat hooka on dynamica, e.g. Whittaker. Analytical 
Dynamics, f 82; Ramiiey, Dynamics, Part II, f 10.6. 
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7.5. The Raylelgh-Ritz method 
We first consider integrals of the type studied in § 3.5, namely 

b 

1 j F{x,y,y^,y^,...,yjdx,. (1) 
a 

where a and 6 are given, ^ is a known function and = d^yldx^. 

In order to determine the functional form oiy which renders (1) 

stationary we assume that y can be expressed in the form 

y == f a,/f(x), (2) 

where the functions fi{x) (i ~~ l,2,/..,w) are arbitrarily chosen 

and the parameters (i - are for the moment un¬ 

determined. On substituting for y in (1) and evaluating the 

integral we obtain an expression for I in terms of the parameters 

{i “ l,2,...,w). By the usual methods of the differential 

calculus I is stationary if the parameters a, are chosen so thatf 

(t - l,2,....n). (3) 
ca,. 

On solving these simultaneous equations for and sub¬ 

stituting in (2) the form of y is determined. J 

The result obtained may be the exact answer, as in § 7.3, but 

in most cases it will be an approximation only. Its closeness to 

the exact answer will depend very largely upon the initial choice 

of the functions /,(^) and can be tested by substituting for y 

in the Eulerian equation for the integral [(12), §3.5]. If the 

left side vanishes, then the answer is exact, but if it differs from 

zero then the answer is approximate only. In some cases this 

difference from zero is used as a measure of the degree of approxi¬ 

mation attained. 

As most applications of the Rayleigh-Ritz method lead to 

approximate answers, the problem of estimating the degree of 

approximation is of great importance. In some elasticity 

investigations, as we shall show later, the exact answer can be 

enclosed between narrow bounds by a series of approximations 

from above and below. In investigations for which such bounds 

t Courant, loc. cit., vol. ii, p. 194. 
X Ritas, Journal JUr rtine umi angeuxindU MiUhetnatik, 125 (1909), 1-61. 
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cannot be obtained the problem of estimating the degree of 

approximation can become very difficult. 

Care must be exercised in choosing the functions fi(x). For 
upon this choice depends both the degree of approximation 

attained and the amount of computation involved in obtaining 

the answer. The nature of the problem must be carefully studied 

and used as a guide. For example if there is any symmetry in 

the problem this should be reflected in the choice of /,(.r). If 

the exact answer is required to satisfy certain prescribed con¬ 

ditions, then it is advisable to choose the functions f^(x) so that 

each one satisfies these condition.s, if possible. An illustration 

of this point is given in the problem of vibrating strings dealt 

with in § 7.4 where for all values of the time y — 0 when 

X z=:z The form assumed for y therefore contained the 

factor {l~-(4x^//2)}. 

If the degree of approximation is insufficient, closer approxi¬ 

mations can be obtained by increasing the value of n in (2). In 
n 

some cases J converges to the exact an.swer as n tends 
i-l 

to infinity, but there is no certainty that this will always happen. 

If, in order to obtain close approximations, a large number of 

functions /(x) are utilized, it is advi.sable to choose a sequence 

of functions which are complete. The functions /-(x) (? 1,2,...), 

are said to be complete if it is possible to express an arbitrary 

function in the form ^ (lifM). 
i 

A more precise definition of completeness is as follows. A 

function of x is said to l>e piece-by-piece continuous in an interval 

(or piecewise continuous) if (i) on dividing the interval into a 

finite number of sub-intervals it is continuous in each sub¬ 

interval, and (ii) it tends to finite limits as x approaches any of 

the sub-interval boundaries. If for any piece-by-piece continuous 

function F(x) a set of coefficients (i — I, 2,...) can be found 

such that 

lim JI F(x)— 2 a,/<(x)}*rfx -- (», (4) 

then the functions /^(x) are said to be complete. 
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The trigonometric functions sinwa:, cosnx(n == 1,2,...), and 

also the Legendre polynomials P^(x) {i ~ 1,2,...), possess this 

property. A very large class of functions which are complete in 

the above sense are the Sturm-Liouville functions. 

7,6. Sturm-Liouville functions 

These functions are solutions of the differential equation 

where p, r/, r are continuous functions of a: in a given interval 

(a, 6) and X is a parameter independent of x. Most of the well- 

known differential equations of mathematical physics can be 

obtained from (1) by suitable choice of /), q. and r. For example 

p ^ . q - 1, r = 0 leads to the differential equation of simply 

periodic function; p = I —q ^ 1, r ~ 0 leads to the Legendre 

equation of § 7.2; p - - q -• r. r ~ —n^jx leads to the Bessel 

equation. Other special cases of (1) are the Mathieu equation, 

(Jauss's hypergeometric equation, the equation for the Hermite, 

Tschebyschef, and I^agueri'e polynomials and many of their 

associated functions. In spite of their great diversity these 

functions have many properties in common. 

In most practical applications the solutions of (1) are required 

either to satisfy conditions at the ends of the interval (a, 6), 

known as boundary conditions, or to satisfy conditions of con¬ 

vergence. In such cases the parameter A cannot assume any 

value but is restricted to take one of a determinate sequence of 

values Aj, Aj, A3,..., A„. These numbers are known as eigenvalues 

and to each eigenvalue there corresponds a solution of (1) which 

is called an eigenfunction. 

As an illustration consider the problem of the vibrating string 

dealt with in § 7.4. On writing y ~ a(.r)cosa^ in (4), § 7.4 we 

obtain .. 
+ (2) 

where, for brevity, u has replaced u(x). This equation is of the 

Sturm-Liouville form with p==7=l,r = 0, A = aa^/r, and 

the solution is ^ ^ ,, (3) 
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If for all values of the time t we must have y = 0 at the end 

points x = then A — 0 and A ^ where n is an 

integer. This is the nth eigenvalue and the corresponding 

eigenfunction is given by 

M„(a-) (4) 

The Legendre equation (4), § 7.2. has important applications 

to problems of quantum theoryf in which conditions of con¬ 

vergence can be satisfied only if A ^ n(n-}-l). where n is a 

positive integer. This, then, is the nth eigenvalue and the 

Legendre polynomial is accordingly the nth eigenfunction 

for such problems. 

In the case where q > 0 it can be proved that there are an 

enumerable infinityj of eigenvalues and eigenfunctions and that 

these functions have the property of completeness. It can be 

shown that any continuous function can be developed in terms 

of Sturm-Liouville functions and that such development con¬ 

verges or diverges in the same way as the cosine development of 

the function. 

Proofs of this statement and comprehensive accounts of the 

properties of these functions are to be found in numerous works 

on differential equations and quantum theory.§ 

7.7. The case of several independent variables 
Integrals of the type 

/ = IJ F(x,y,z-, p,(])dxdy, (1) 

where x and y are independent variables, c is a dependent 

variable, p = dz/dXy and q = ^zjdy, have already been studied 

in § 3.6. The determination of stationary values of such integrals 

can be approximately effected by Rayleigh-Ritz methods and 

there is no difficulty in extending the process to integrals with 

several independent variables. 

t E. C. Kemble, The Fundamental Principles of Quantum Mechanics, § 28. 
J An miumerable infinity of nambers can bo put into one-one correepondonce 

with the integertt. 
I E. Lindeay Ince, Ordinary Differential Fquations, chap, xi, in particular 

p. 276 et leq.; E. C. Titchmarsh, Eigenfunction Expansions-, Courant and 
Hilbert. Methoden der mathematischen Physiky vol. i, chap, vi; E. C. Kemble, 
loo. cit., { 23. 
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For (1) we assume an expansion of the form 

z (2) 
1-1 

where y) are suitably chosen functions and a, (i ~ 1,2,..., n) 

are for the moment undetermined parameters. On substituting 

for 2 in (1) I can be evaluated as a function of the parameters 

and is stationary if these parameters are chosen to satisfy 

the n simultaneous equations 

(/--!, 2.n). (3) 
Cfti 

The amount of computation involved and also the degree of 

approximation attained both depend upon the choice of the 

functions /,(r. y). If, for example, 2 is symmetrical in x and ?/, 

this should be reflected in the choice of f^(x.y). Again, if z 

satisfies certain boundary conditions it is advisable that each 

function /,(.r,//) should also satisfy these conditions, if possible. 

If 2 satisfies Laplace's equation in two dimensions then, in 

general, each function f((x.y) should also satisfy Laplace’s 

equation. In this case we may sometimes choose /,(jr,y) from 

the real or imaginary polynomial parts of (x-fiy)". where 

i ■— 1) and is a positive integer. 

Since the development of Rayleigh-Ritz methods has largely 

centred round ehisticity problems, we shall illustrate our re¬ 

marks by applications to the theory of elasticity and particu¬ 

larly to the 8aint-V"enant problem of torsion in prisms. To 

acquire a better understanding of the nature of this problem 

we shall, in the next three sections, give a brief account of the 

principles underlying the theory of elasticity. 

7.8. The specification of strain 

The simplest examples of elasticity are those associated with 

the extension or compression of thin rods. If a rod is extended 

or strained by an amount x beyond its natural length a it exerts 

a tension Xx/a (Hooke’s law), where A is known as Young's 

modulus. The potential energy of the extension is Ax*/2a. 

These results are true only if x does not exceed a quantity known 
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as the proportional limit, for when this is exceeded Hooke’s 

law no longer applies.f We shall restrict ourselves entirely to 

the case when this limit is not exceeded. 

As a concrete illustration: for certain types of steel the pro¬ 

portional limit is reached when under a load of 10 tons weight 

per square inch. If the extension is defined as the change in 

length per unit length, then under a load of 6 tons weight the 

extension of steel is 0*00046. 

For the case of an elastic body in the shape of a plane lamina 

let (x, y) and (x+f. y+‘^) be the coordinates of two neighbouring 

points P and P^ respectively when the body is unstrained. When 

the body is strained let P be displaced to Q, w hose coordinates 

are where u and r are functions of x and y. Then 

Pi will be displaced to whose coordinates are 

w’here terms of the order and smaller have been 

neglected. Thus before the strain the projections of PPj on the 

axes are (f, r]) and after the strain the projections of QQ^ on 

the axes are 

L\ \ <y }\ 

These changes in the projections are due partly to rotation 

and partly to deformation or strain. The rotational part causes 

no strain and so is of no interest to us. The terms due to deforma¬ 

tion must therefore be disentangled from those due to rotation, 

and this is done by means of the following two identities: 

cu. cu 

OX &y 

cv j, . cv 

(1) 

(2) 

t When X exceeds a quantity known as the elastic limit the material acquires 
a permanent deformation. In many materials the difference between the 
proportional and elastic limits is small and frequently the distinction between 
these two limits is disregarded. For steel the elastic limit is reached under a 
stress of 16 tons per square inch. 
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For a sufficiently small strain the terms 

185 

2\dx dyj 
and +it 2\dx by (>yl 

correspond to a rotationf through the small angle 

Therefore the terms which correspond to pure strain are given by 

CH 

( X 

. Xlcii (i\ 

2\c!/ cxf 

1 lev c u\ tH 
C+. V- 

n/ 

(3) 

(4) 

These ideas can be extended to three dimensions. Let (r,y, z) 

and (x-t-^.//4-T],2+0 respectively the coordinates of Pand 

Pj, two neighbouring ]K)ints in an elastic body, and let P be 

displaced to Q, whose coordinates are y+e. 2 + w ). where 

w, ?*, and ir are functions of y, and z. Then will be displaced 

to whose coordinates are 

( , . , ((( . ru f VI 

( X <1! 

(ci\ cr (i\^ 
y I f] T- I M» 

cx 

I y . , bll' , (fV 

■'Ml- (X c y 

The difTerences in the projections of QQ^ and PP, on the co¬ 

ordinate axes can be written as follows: 

(It . (It (It y (It 
: ^ 
(X ( IJ cz (X 

f + 

('V 

cx 

^ '(V (V^ 1/r'r '(u\^ (V 

^+. v + -^J + . - K+- ’J + (1/ (Z 2V.r cyj <;/ 
(5) 

f?/’ \ Ibu 

^bz^'^2\hz' 

dti 

bx 

t A. S. Ramsey, Dynamics^ vol. ii, p. 61. 
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It can be seen that the terms 

correspond to small rotations through the angles 

lev du\ 1 lev- cv\ 1 (cu div\ 

~^r 2\c’i/ tzj' 2^- 

about the x, y. z axes respectively.t 
It therefore follows that the part of (5) which corresponds to a 

pure strain of the elastic body is given by 

There are only six independent coefficients of ^ in these 

expressions. They are known as the components of strain and 

are not all independent but are related by equations known 

as conditions of compatibility. 

As an illustration of these formulae we consider the Saint- 

Venant torsion problem. A prism of elastic isotropic material is 

bounded by a cylinder and two planes perpendicular to the 

generators of the cylinder. Couples act in the plane ends so 

that the prism is twisted about an axis perpendicular to them. 

Taking this axis as the z-axis let the point P, whose coordinates 

in the unstrained state are be displaced by the strain to 

Pj, whose coordinates are (x+u,y-^v,z-\-w). Then, for reasons 

t A. 8. Ramsey, Dynamics^ vol. ii, p. 66; E. T. Whittaker. Analyticcd Dyna- 
micst p. 17. 
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which will appear later (§7.12 below), it may be assumed that 

n rr. —Tf/z; ?• =- rzx\ w = T<f}(x,y). (8) 

Here the constant r is the angular measure of the twist per unit 

length of prism and <f>(x,y) is a function of x and y only—for 

brevity we shall write it <f). The expressions (7) then become 

7.9. The specification of stress 

The forces acting on a small element of a continuous elastic 

medium are of two kinds. The first are body forces such as 

gravity which are proportional to 

the volume and, in most cases, to 

the density of the element. The 

second an* forces which arise from 

the actions and reactions between 

the surface of the element and the 

surface of the surrounding medium 

in contact with it: they are pro¬ 

portional to the areas of contact. 

It is assumed tliat the ratio of the 

second kind of force to its area of 

contact tends to a limit iis the mag¬ 

nitude of the area tends to zero. 

This limit, which is a force per unit ^ , 

area, is known as the stress. 

(’onsider a small element of the medium in the form of a 

rectangular parallelepiped ABCD, I\, Fig. VII. 1, and 

let AB dj\ AD - dy, AA^ - dz. Let the stress components 

of the action between this element and the surrounding medium 

across the area ADD^A^ be parallel to the axes. 

It will be assumed that these stresses act at the centre of the 



APPROXIMATION METHODS 188 VII. § 7.9 

area ADDiA^. Across the parallel area BCC^Bi the stress 

components are 

p V ^ V 
A' + rfa-, A' 4- - dx, X, -f — ? dx 

dx dx ' dx 

in the opposite direction acting hi the centre of BCC^ 

Similarly the components of stress across the area ABB^A^ 

are Yy, and across DCC^ they are 

^Y dY dY \ 

/ 

For the area A BCD the stress components are {Zj^,Zy,Z^) 

and for A^B^C^ they are 

[z, + ^4^ dz, Z, + ^-?ydz. 
[ CZ CZ 

7.10. Conditions for equilibrium 

Let p be the density of the medium and let {pF^, pFy, pt\) per 

unit volume be the components of the body forces acting on the 

element. It will be assumed that they act at the centre of the 

parallelepiped. 

If the element is in statical equilibrium, then the forces acting 

on it must have (i) the sum of their com|X)nent8 in any direction 

equal to zero and (ii) the sum of their moments about any line 

equal to zero. On summing parallel to the x-axis we have 

dydz — ^Xj. -f r/j*j dydz^- Y^, dzdx— -f dy^ dzdx i 

-r Zj. dxdy—-f dz j dxdy 4- pFj. dxdydz : 0. (1) 

This evidently lewds to 

Similarly 

dX BY dZ, 

to' + ey +-fe - 

dx dy dz * 
(2) 
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On taking moments about a line parallel to the a^-axis through 

the centre of the parallelepiped, it can be seen from Fig. VII. 2 

that 

dxdy -f- 4- dzj dxdy — 

-Y,dzdx 
dy 

+ dyj dzdx^ == 0, (3) 

leading to Y. 

Similarly we have 

and Xy 

7.11. Stress strain relations 

The simple form of Hooke's law which applies to strained 

elastic rods has been generalized by Cauchy into a form which 

can be applied to strained elastic media in three dimensions. 

In this generalization it is assumed that each component of 

stress is linearly related to the six coefficients of strain. Denoting 

the components of strain in (7), § 7.8, by Cj, €4, a 

typical Cauchy equation is 

(^) 
1-1 

where (i 1,2.6) are constants depending upon the nature 

of the medium. There are six such equations involving altogether 
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thirty-aix constants, not all necessarily independent of each 
other. In the case of isotropic mediaf, i.e. media whose properties 
at a point are the same in all directions, it can be show n that all 
the constants can be expressed in terms of two independent 
parameters.^ 

From the six equations such as (1) and the six equations given 
by the equilibrium conditions, (2) and (4), § 7.10, it is possible 

to eliminate the comjx)nents of stress (or strain) and obtain six 
partial differential equations for the six components of strain 
(or stress). It can then be proved that there is only one solution 
of these equations which assumes given values, either of stress 
or strain, over a known boundary.§ 

The Cauchy assumptions (1) cannot be tested directly, but 
from the theory which rests ui)on them deductions can be made 
which are in close agreement with experiment. 

In the case of the Saint-Venant torsion problem the relations 
between thp components of stress and strain are practically self- 
evident and therefore we shall omit this part of the general 
theory. The part of the general theory which is of importance 
to us is the uniqueness theorem for given boundary conditions 
and this we shall assume w ithout proof. 

7,12. The Saint-Venant torsion problem 

This problem, outlined in § 7.S, is treated here in more detail. 
A body, built of isotropic and elastic material, is in the shape of 
a prism bounded by a cylinder and two plane ends perpendicular 
to the generators of the cylinder. The body is twisted about an 
axis parallel to a generator by couples acting in the plane ends 
so that the relative rotation of two cross-sections is proportional 
to the distance between them, the rotation for unit distance 
being denoted by r. If there are no external forces acting on the 

t Media whoee propertiee at a point are not the fiame in all directions are 
known as anisotropic. Examplofi of anisotropic media are crystals, drawn wire, 
and wood. 

X A. E. H. Love, Mathematical Theory oj Elasticity^ § 66, p. 97; I. 8. Sokol* 
nikoff and R, D. Specht, Mathematical Theory of Elasticity, { 21, p. 59. 

{ A. K. H. Love, loc. cit,, f 118, p. 167; I. 8. Sokolnikoff and R. D. S[>ec?ht, 
loc, cit., I 27, p. 92; 8. Timoshenko, Theory of Elasticity, { 64. 
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curved cylindrical part of the prism, then the problem of 

determining the internal stresvses and strains admits of a unique 

solution which we now proceed to find. 

For the case of a medium such as steel the problem can be 

simplified by using the following facts. For a stress of 6 tons 

weight per square inch in a steel rod the extension of length is 

0*00046 inches per inch length of rod. Consequently the angle 

T is very small in practice and the change in shape of the prism 

due to the strain is negligible. Again the mass of a cubic inch of 

steel is about | lb., so that the body forces, which are due to 

gravity, are negligible in comparison with the stresses which 

occur in practice. We shall therefore write — pF^ ~ pF^ — 0 

in (2), § 7.10. 

When the prism is a portion of a right circular cylinder an 

exact solution can easily be found. Taking the axis of symmetry 

to be the c-axis (this being also the axis of twist), the point whose 

coordinates are (x,y.z) is displaced so that its coordinates are 

(.r-f where 

u ~-ryz\ r - rzx\ iv — (1) 

(Juided by this. Saint-Wnant assumed for the case of the general 

cylindrical surface a displacement for which the functions 

ti, r, tr are defined as follows: 

u ” ~rijz\ V - Tzx: w ™ r(f>(x,y), (2) 

where r is the angle of twist per unit length of prism and <f>{x, y) 

(for brevity denoted by <f>) is independent of s. For such dis¬ 

placements points coplanar in the unstrained state are no 

longer coplanar when the strain is imposed. 

In § 7.8 two neighbouring points in the unstrained medium, 

P and Pj, are displaced by the strain to Q and respectively. 

The differences between the projections of QQ^ and PP^ on the 

coordinate axes are then evaluated and separated into tw'o parts, 

one part due to rotation and the other to strain, (5), § 7.8. The 

part due to strain is given by the expressions (7), § 7.8, w^hich, 

where the displacements are those of (2) above, reduce to the 



192 APPROXIMATION METHODS yjh § 7.12 

expressions (9), § 7.8, namely 

b(|+-)£ (3) 

The components of strain are the coefficients of r;, ^ in (3). 

We must now obtain the relations between the components of 

stress and the components of strain in (3). Note first that these 

Fio. VII. 3. 

relations are linear, that the medium is isotropic and that among 

the components of stress we must have ~ Zy, ™ 
and Xy = Tjp, from (4), § 7.10. It is then evident from Fig. VTI. 3 

that all the conditions are satisfied by choosing 

where /x, a constant depending upon the nature of the medium, 

is known as the modulus of rigidity or the shear modulus. 

On using the equilibrium equations (2), §7.10, and writing 

pF^ r- pF^ ™ pFg - - 0, as agreed at the commencement of this 
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section, we see that the function 

equation 
d^<f> d^(f> 

dx^ by^ 

<f> must satisfy the Laplacian 

= 0. (5) 

The boundary condition which <f> must satisfy is easily ob¬ 

tained. Over the cylindrical part of the prism there is no normal 

stress, so that if u is the angle between the or-axis and the normal 

(Fig. VII. 4) we must have 

Zj.cosv-\-ZyS\r\v ~ 0. (6) 

From (4) this reduces to 

- cos V 4- -- Sin r == y cos v—x sin v. {7) 
bx cy 

Thus the Saint-Venant problem of torsion in an isotropic 

prism is reduced to the problem of finding a solution of (5) which 

satisfies (7) for all values of .r and y on the boundary of a cross- 

section. 

7.13. The variational form of Saint-Venant’s problem 

From theorem 10, § 3.8, and the results stated in § 3.9 it 

follows that the function y), which satisfies (5)^ § 7.12, also 

minimizes the integral /, where 

'-//IS'-S'l"- 
The area of integration for / is a cross-section of the prism. 

In addition to making I a minimum <i>{x,y) must also satisfy 

the boundary condition (7), §7.12. This requirement can be 

expressed in a much more convenient form, as w^e now show. 
6186 o 
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If/(2) ia an analytic function of the complex variablef 

2 — x+iy 

then, in some domain D, df(z)jdz is independent of the value of 

BkTgdz as dz tends to zero. If/(z) = where ^ and */> 

are real functions of x and y, then differentiation parallel to 

either coordinate axis must give the same result. Hence 

&x i cty 

On equating real and imaginary parts wo obtain the well-known 
Riemann-Cauchy equations 

fx 

c'd> 

dip 

% 

dX 

(3) 

From these we deduce that 

cx^ 

and 

ty^ 

b^ip bhp 
(4) 

Thus to every function <p(x,y) which satisfies (5), § 7.12, there 

corresponds a conjugate function ip(x,y) which also satisfies 

Laplace’s equation and which is related to <p{x,y) by (3). The 

function ip{x,y) enables us to express the boundary condition 

(7), § 7.12, in a more convenient form. 

Let A denote the angle between the x-axis and the tangent 

to the boundary of a cross-section and, as in § 7.12, let v denote 

the angle between the x-axis and the normal. Then (Fig. VII. 4) 

V = X-j-itr, cosv = —sinA = —sin^ = cosA = 
ds ds 

t Analytic functions of complex variables are treated in all works on mathe- 
maticul analysis, e.g. K. T. Whittaker and G. N. Watson, Modem Analysis. 
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Combining these with (3) it is clear that the boundary condition 

(7), § 7.12, can be written in the form 

_ ^ ^ 
dy ds dx ds ^ ds ^ ds 

By integration we then have 

(5) 

ifj — +constant (6) 

at all points of the boundary. The value of the constant is not of 

great importance, since in practice only the derivatives of 0 are 

required. There is therefore no loss of generality in taking its 

value to be zero, as we shall do in future. 

It is also evident that the boundary condition can be simplified 

still further by introducing a new function T' defined by the 

equation T =: (7) 

so that on the boundary Y - 0. Throughout the interior the 

second equation of (4) shows that 

m' c^- + 2 ---= 0. («) 

A further appeal to theorem 10, § 3.8, and the results of § 3.9 

shows that T minimizes the integral J, where 

As before, the area of integration is a cross-section of the prism. 

The Saint-\’^cnant torsion problem is therefore equivalent to 

that of finding a function 4’ which minimizes J and which 

vanishes on the boundary of the prism. Having determined 4* 

we obtain i/i from (7) and (f> from (3). The stresses and strains in 

the medium can then be olitained from (4) and (2), § 7.12. 

Example 1. Consider the case of a prism with circular cross- 

section of radius a, the centre of the circle being on the axis of 

twist. Take 4'* -- and show that J is a minimum 

when a ” J. Deduce the values of <f>, Z,, and Zy. 

Example 2. Deduce the minimum property of J, equation 

(9), from that of I, equation (1). 
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Example 3. For the prism with the elliptical boundary whose 

equation is x^ja^+y^ib^ — 1 take H:* — 

the value of a which makes J a minimum. Deduce thatf 

a^-b"- 

7.14, The torsion of beams with rectangular cross- 
section 
The Saint-Venant problem for the beam with cross-section 

bounded by the rectangle x -- 4-f/, y . -£/> has been solved in 

terms of Fourier series.J In applying the Kayleigli-Ritz method 

to this problem the simplest approximating function to H' is 

H; .. (1) 

where ct is to be determined. evidently vanishes on the boun¬ 

dary. On substituting in the integrand of (9). § 7.13, and integra¬ 

ting between the limits —a and a for x. —b and b for y we obtain 

J ==-. «*6’{2a*{a262)-5v]. (2) 
45 

Consequently J is a minimum when 

For comparison with the exact answer we rnakc^ us(‘ of the 

quantity known as the torsional rigidity. If K is the torsional 

rigidity and r is the twist per unit length of prism, then Rr 

is equal to the moment, about the axis of twist, of the forces 

acting over a cross-section of the prism. From Fig. \'II. 3 we 

have 
Rr = 

on using (4), § 7.12. From (3) and (7), § 7.13, we deduce that 

t This rmiilt w the corre<!t aiiiiw€»r, »eo A. E. H. l.^ve, loc. cit,, p. 305. 
X A. E. H. Love, loc. cit., § 221, p. 305; S, Timochenko, loc. cit., p. 246. 

/ (Z,x- ■Z^y) dxdy 
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A simple transformation enables us to put this into a much 

more convenient form for practical use. Evidently we have 

But from the lemma of § 3.7 w^e have 

where the left-hand integral is taken over the area of a cross- 

section and the right-hand one over the boundar}" curve. But on 

the boundary we have H' ™ 0, hence each side of (7) must vanish 

and (6) reduces to 

R 2fjL j j r dxdy. (8) 

Taking the simple case of the scpiare, where 2a == 2b ~ I, the 

length of a side, we have y - - from (3). .so that the approxi¬ 

mate form for becomes 5(a‘^—x2)(a^—?/^) Sa^. On inserting 

this in (H) we get R p20a^ ^ 0-1389^/*. The exact resultf 

is 0*140f)/i/^, showing how close the approximation is although 

the form assumed for M j is a function of the simplest kind. 

Example 4. Calculate the value of R for the rectangular 

l)eam whose sides are of length 2a, 26. Show that when 6 = 10a 

the approximate value of R is 2*75gZ^, where I = 2a. (The 

exact value is 3*12p/^,) 

Example o. For a beam with square cross-section take 

% -a cos(nx;l)cos(7Tij, l)y whej e / is equal to the length of a side, 

as the function approximating to 4’. Show that J. (9), § 7.13, is 

minimized when cx \ 61^/77* and that the torsional rigidity 

is approximately 0*1331/li/'‘. 

There is a sim])le relation betw^een R. the torsional rigidity, 

and the minimum value of J, the integral of (9), § 7.13. Writing 

for the minimum value of J the relation is 

R = (9) 

t I. 8. Sokolnikoff ond R. D, Speoht, loc. cit., p. 309; S. Timoshenko, loc. 

cit., p. 249, R = Mtie. 
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To prove this, from the definition of J in § 7.13 it follows that 

- JJ 
P>om the lemma of § 3.7 the first integral is equal to 

taken round the boundary where 'F 0. Hence the first integral 

of (10) vanishes. P\3r the second integral we note that J is a 

minimum if H" is chosen to satisfy equation (S). § 7.13, .so that 

(10) then red\ices to 

•4- (11) 

The proof of (0) is completed by comparing (8) and (11). 

7.15. Upper bounds for the integral */, (9), § 7.13 

In applying the Rayleigh-Ritz method to the problem of 

minimizing the integral J, the unknown function 4' is replaced 

by a series of known functions multipli(*d by unknown para¬ 

meters. Let such an approximating series be denoted by 

and the corresponding value of the integral by In this section 

we shall attempt to estimate the degree of approximation 

attained by these methods. We prove that if 4’, vanishes on the 

boundary then J >J (1) 

Writing D 'F—4*^ (2) 

and using the definition of J given by equation (9). § 7.13, wo 

have 

= JjIs JJ »"»+ 
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where, an always, the integration is taken over the cross-section 

of the prism. 

Since T and both vanisli on the boundary the same must 

be true of D. Hence on integrating by parts with respect to x 

it follows that 

// cT tD 

ex tx 
dxdy IJ D^^-dxdy. (5) 

Similarly, on integrating by parts with respect to y, we have 

(6) 

But we also know that 'F satisfies equation (8), § 7.13, namely 

tx'^ 
4-2 I 

== 0. (7) 

Consecjuently the sum of the first two integrals on the right- 

hand side of (4) must be zero. 

But the integrand of the third integral of (4) is obviously 

positive, so that we have 

> J (8) 
as required. 

This re.sult shows that the Rayleigh~Ritz method furnishes 

a series of upper bounds for the value of J. At the same time, 

from (9), §7.14, we obtain a series of lower bounds for the 

torsional rigidity 

7.16. Lower bounds for the Integral J, (9), § 7.13 

A method of finding lower bounds for the integral J, and upper 

bounds for the torsional rigidity It, was evolved by Trefftz.l 

In this method we revert to the function i/i introduced in 

§7.13. The properties of ifj are as follows: 

(i) Throughout a cross-section 

dx^'^by^ 
(1) 

t E. Trofft7., *Konvergenz und Fehlerabsrh&tzungboim Ritz’sehenVerfahron\ 
Mathtmaiische Annahn, 100 (1028). 503-21; ‘Ein Gegenstuok zum Ritz’sclien 
Verfahren*. Proc. Second International Congress for Applied Mechanics 1927, 

pp. 131-7. 
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(ii) Over the boundary of a cross-section 

^ (2) 

(iii) The relation between the function 4* of the previous 

section and 0 is vi* / i/ 2 . 2\ /o\ 

In §§7.14 and 7.15 we approximated to 4’ by means of a 

function T*, which satisfied the same boundary conditions as 4*, 

i.e. 4*„ vanished on the boundary. In the Trefftz method we 

approximate to the function 0 by means of a function which 

satisfies Laplace’s equation (1). Of these two method.s the first 

leads to a series of upper bounds for J, as we have already shown, 

and the second leads to a series of lower bounds for J, a.s we now^ 

proceed to prove. 

e must first express the integral J, (9). § 7.13, in terms of the 

function </r and for this purpose we introduce the integral K 

defined by 

Here, a.s in all subsequent double integrals of this .section, the 

area of integration is over a cross-section of the prism. 

The relation we require is 

J ^ K— J| (x^-\-tf)dxdy. (5) 

To prove this result by (3) the right-hand .side of (5) is equal to 

J/ |(S +*)’ + (fJ J 
= y+JJj4T+2.e| + 2,|:ji.iy (6) 

On using the lemma of § 3.7 we have 

2 J J ^ ^ j ^y~y 
where the right-hand integral is taken round the boundary. 

But on the boundary T 0 (equations (2) and (3)), so that 
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the integral in (7) vanishes. Consequently the right-hand side 

of (5) is identically equal to J. 

From (5) the difference between J and K is equal to the 

moment of inertia of a cross-section about the axis of twist. 

Since this is constant we see that from a set of low^er bounds for 

it is a simple matter to deduce a set of lower bounds for J, 

We now proceed to find «/r by means of an approximating 

function defined by the series 

•An = (9) 
m 

where each function satisfies Laplace’s equation in two 

dimensions, i.e. 

y) _L. == 0 a 01 

{m From the results of §7.13 the functions/^ can 

be chosen from the real or imaginary parts of any convenient 

function of the complex variable z (-- where i == ^!{—l)), 

and in particular from the polynomial real or imaginary parts of 

(x-+-?[/)”. For with such choice of the function must also 

satisfy Laplace’s equation. 

ut (11) 
then we shall write 

The relation between Ky Kf^y and reveals the Tretftz method 

most clearly. We have from (4) 

= «.+iC,+2j|{(g)(§)+(Df|=))<W». (16) 

So far the coefficients a,„ {m = l,2,...,n) in (9) are arbi¬ 

trary. The Trefftz method depends upon the fact that if these 
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coefficients are chosen to make stationary, then the integral 

in (15) must vanish, leaving us with the equation 

K - A, + AV (16) 

To prove this, the values of for which is stationary are 

obtained by solving the n equations 

= 0 (m - l,2,....n). (17) 

But from (9) and (11) we have 

~ - -= -/m- (18) 

Hence from (13) and (17) we have 

J j \cx tx iy ty I 
(19) 

(m = l,2,...,w). These n equations suttice to determine the n 

parameters 

Multiply (19) by sum for all values of rn from 1 to 7i and use 

(9). It follows that the integral in (15) vanishes when is 

stationary, thus justifying the statements which led up to (16). 

From (13) > 0, so that when is stationary we see from 

(i6)that K„'%K. (20) 

In general Kj has only one stationary value and as it is positive 

semi-definite this must be a minimum. The value of K„ will then 

be as near to K as the choice of the functions fm(x,y) permits. 

7.17. Applications of the Trefftz method 

Although equations (19), §7.16, enable us to evaluate the 

parameters yet they are not in the form most convenient 

for practical application. By means of the lemma of § 3.7 the 

integrals in these equations can be transformed into boundary 

integrals which are much easier to evaluate. 

From (2) and (11), § 7.16, we have on the boundary 

d - (1) 
But from (10), § 7.16, we can write (19), § 7.16, in the form 

(2) 
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Combining this with the lemma of § 3.7 it follows that (19), 

§7.16, can be replaced by 

J —= 0 (3) 

(m — 1,2,...,n), where the integration is taken round the boun- 

<lary. These equations are not identities since i/f„ satisfies 

Laplace's equation (see (9) and (10), § 7.16), and does not assume 

the value i(x*+y^) on the boundary. 

If the functions in the integrand of (3) have the property 

of completeness (see § 7.5), then as n tends to infinity it may 

reasonably be expected that i/<„ will tend to i/r, but an analytical 

discussion of this point presents great difficulty. Sufficient 

conditions to ensure the validity of — ifi are of great 

importance, but in practice a knowledge of the magnitude of the 

error 4^—4*n often even more important. P^or this reason we 

shall omit a theoretical discussion and rely upon the upper and 

lower bounds established in §§ 7.15 and 7.16 whenever calcula¬ 

tions of torsional rigidity or other quantities of interest are 

recjuired. 

There still remains one point for di‘5cussion. It is often con¬ 

venient to take to be a constant and in fact many complete 

sets of functions commence with a constant. Since the integrals 

for involve only derivatives of iJj and the value ofhas no 

influence upon the stationary values of K^. Consequently 

equations (2) start from the value = 2 and do not contain a^. 

Clearly the best choice of Uj is one w hich makes attain as near 

as possible the value on the boundary, and this is done 

by making the mean value of the difference vanish. We then 

have the equation 

= (4) 

where the integration is taken round the boundary of a cross- 

section. Equations (3) for m = 2,3,..., n together with (4) give 

us sufficient equations to determine all the parameters 

To illustrate these results we consider once again the torsion 

of a prism of square cross-section. From the nature of the 
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problem the functions /,„(•«*» y) must be of even degree and 

symmetrical in x and \j in addition to satisfying Laplace’s 

equation. We therefore choose 

/i = A = P^rt of (x + iijy (5) 

and so assume that 

jL+p(x^~iyxhj^+i/), (0) 

where a and jS are to be determined from ecjuations (3) and (4). 

From the symmetry of the problem it is suflicient to take the 

boundary integrals along one side of the square, say the side 

parallel to the y-axis where x ^ a. tlqiiation (4) gives us 

a 

j —Cmh/-+!/*)} dy -= 0, (7) 

which leads to 15^—12a‘*/3 - : lOi^. (8) 

Equation (3), with rn -- 2, gives us 

a 

((») 

where x — a after the difTerentiation has been performed. On 

using (7) it is evident that (9) reduces to 

a 

j ——6aV+J/«)Jy*dy U. 
-a 

This gives us 35a(—76a*j3 = 28a*. 

From (8) and (11) we have 

53 

90 ‘ 
2- 

(10) 

(11) 

(12) 

53 7 
and so = 95“*- (13) 

From (3), §7.16, the corresponding approximation to 'F, 

namely Hj, is given by 

T, -=.^?a*--l-(x<-6a:V+yi)-^(x*-j-2/*). (14) 



VII, §7.17 APPROXIMATION METHODS 205 

We now apply these results to obtain an approximation to the 

value of J?, the torsional rigidity defined in §7.14. For this 

purpose we make use of equation (8), § 7.14, namely 

12 = 2/1 JJ T dxdy. (15) 

Substituting Ho ^ o,nd evaluating we obtain the desired 

approximation to It. If 2a ~ Z the result is 

19 
R -- ^ 0-1407/xZ^ (16) 

1 «iO 

The TrefTtz method furnishes us with the following informa¬ 

tion: (i) from (20), §7.16, lower bounds for K; (ii) from (5), 

§ 7.16, lower bounds for J; and (iii) from (9), § 7.14, upper bounds 

for R. The Rayleigh-Ritz method gives us: (i) from (8), § 7.15, 

upper bounds for J, and (ii) from (9), § 7.14, lower bounds for R, 

On comparing (16) above with the approximation for R ob¬ 

tained by the Rayleigh-Ritz method in § 7.14 w^e see that w ithout 

finding the exact value (namely 0-1406/i/^) we have proved that 

R must lie between 0 1389/i/‘‘ and 0-1407/xZ^. Evidently for 

most practical purposes such close limits will suffice. 

7.18. Galerkin's method 

An ingenious alternative to the Rayleigh-Ritz method has 

been evolved by Galerkin.f To explain the ideas involved we 

must refer back to some of the work of Chapter III. In §§ 3.6, 

3.7, and 3.8 we investigated conditions which ensured that 

I jj F(x,y,z.p.q)dxdy (1) 

should have a statiouary value. In this integral is a known 

functioiial fotni. x and y are the independent variables, z is the 

dependent variable, p ~ dzjdx and q — dzjdy. 

Let 2 = a(x, j/) be the equation of the surface for which (1) is 

stationary and z s(x,y)-{-€r](x,y) be the equation of a neigh¬ 

bouring surface. Let the values of (1) for these two surfaces 

t The original paper is in Russian but the ideas have been expounded by 
Professor W. J. Duncan in a series of papers in the Philosophical Magazine. 
The paper by B. O. Galerkin is ‘Series Solutions of Some Problems of Elastic 
Kquiltbrium of Rods and Plates’, Vestnik lnghenero\\ 1 (1915), 879-908. 
See also VV. J. Duncan ‘Application of Galerkin’s Methoil to the Torsion and 
Flexure of Cylinders and Prisms’, Phil. Mag., Ser. 7, 25 (1938), 635-49. 
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be I and 74*8/ respectively. It was established in §§ 3.6 and 3.8 

that for suflSciently small c 

For a stationary value of I the coefficient of e must vanish and 

the arbitrary nature of i7(x,y) enables us to deduce further, as 

in § 1.4, that z must satisfy the equation 

dz dj\dp) dq) 
(3) 

The Galerkin method of minimizing (1) consists in finding an 

approximation to the solution of (3). If 2^ is such an approxima¬ 

tion it is assumed that 

= i (4) 
m“ 1 

where the functions /„(^,y)are known and are chosen according to 

the nature of the problem and the quantities (m ™ 1,2,..., n) 

are a group of n parameters w hose values remain to be deter¬ 

mined. Galerkin determines these values by a method which 

depends upon the fact that the integral on the right-hand side 

of (2) must vanish for any arbitrary function 7^{x. y). He chooses 

r){z,ij) ao th&t r){x,y) (5) 

where m can have any value from 1 to n, and writes 

d Id 

dy\dq 
dxdy ^ 0 (6) 

(m = These n equations suffice to determine the n 

parameters a^. 

Since is not an exact solution of the Eulerian equation (3), 

the coefficient of c in (2) does not, in general, vanish for any 

arbitrary variation 7j(x,y), It vanishes only when yix.y) is 

chosen in accordance with (5). If the infinite sequence fjix,y)y 

(m = 1,2,...), possesses the property of completeness, then an 

arbitrary function subject to some general restriction 

such as piecewise continuity, can be expressed in the form 

2 b„L(x,y). 
1 

(7) 
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Under such circumstances it may reasonably be expected that as 

n tends to infinity will tend to a solution of (3), but the analysis 

required to establish such a result involves considerations of 

great complexity into which we do not enter here. 

If we \vTite 
dF d \ ^ \ 
dz„ dx\dpl cy\dql (8) 

and if does tend to a solution of (3) as 7i tends to infinity, then 

must simultaneously tend to zero. Thus may be used to 

measure the degree of approximation attained. 

Like all methods of approximation success depends largely 

upon the choice of the functions As far as possible 

they should be chosen to satisfy the same conditions as are 

prescribed for 2. f^or example, if 2: is to satisfy given boundary 

conditions it is advisable to choose each of the functions y) 

so as to satisfy these conditions also. 

For the torsion of a prism the discussion of § 7.13 shows that 

we must minimize the integral 

where the function 'F vanishes on the boundary of the area of 

integration. To apply the tJalerkin method we write ^ T, 

p -- q cYjty in (0), and assume that an approxi¬ 

mation to '1\ is given by 
n 

(10) 

The Galerkin equations for are then 

(H) 

where, as usual, the area of integration is over a cross-section of 

the prism. The functions/,„(►<:,?/) are chosen so as to vanish on 

the boundary if possible. 

For the case of the beam whovse cross-section is bounded by 

the rectangle x La. y -- we assume, as in § 7.14, that 

(12) 
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Equation (11) then gives us 

b a 

J J {a^-—x^)(b^‘-y^){2oi(x^+y^--a^--b^)-\~2}dxdy ~ 0. (13) 
— 6 -o 

On evaluation we obtain a = —~ as in the Rayleigh- 

Ritz application in §7,14. The Galerkin method is usually 

quicker in practice than the Rayleigh-Ritz method as this 

example shows. 

Example 6. Apply the Galerkin method to the torsion of a 

beam of square cross-section using the assumption that 

7.19. Variations of the Rayleigh-Ritz and Galerkin 
methods 

Numerous variations of the Rayleigh-Ritz and Galerkin 

methods have been proposed in recent times. In most cases the 

function sought is approximated to by means of an expansion of 
n 

the form 2 where the function.s f„^(x,y) are chosen 
m^l 

according to the nature of the problem and the quantities 

remain to be determined. 

In one variation the quantities are taken to be functions of 

X so that the n simultaneous algebraical equations which occur 

in the Rayleigh-Ritz, TrefTtz, and Galerkin methods are re¬ 

placed by n simultaneous differential ecjuationa. From these 

{m ~ 1,2,..,, n) can be determined as functions of x.f 

In the Galerkin method the function rj(x, y) is chosen according 

to equation (5), § 7.18. In some of the variations of the method 

a different choice is taken for y]{x.y), for example, in one cose 

7](x, y) is chosen to have the value 1 over some parts of the cross- 

sectional area of the prism and the value zero over the remaining 

parts.J 

t L. V. Kantorovitch, Bulktin of thf Academy of Scienrefi of U.S.SIR. No. 5 
(1903); Applied McUhematicA ami Mechanics, 6 (1942), 31 ”40. 

X C. B. Biazeno and J. J. Koch, De Jngenieur, 38 (1923), 25-36. 
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Anothi^r method consists in setting up the usual approximate 

lorm for and then finding the values of so that 

^^•Idxdij (1) 

is a minimiim, whore is defined by (8), § 7.18. As usual the 

area of integration is a cross-section of the prism. As pointed 

out in § 7.1s, is a measure of the degree of approximation, 

so that minimizing (1) makes the a})proximation as close as 

possible. The e(|milions for minimizing (1) are 

(m 1,2.n). \V(^ thus obtain n (M|uations to determine the 
71 parameters a 

The success of all tliesc^ nu'thods depends largely upon the 

choice of th(‘ first appro.ximation or z^. If this is carefully 

chosen a high degrct* of accuracy can often be attained with 

comparatively little numerical eah ulation. but if the choice 

is not a fortunate one a consichuable amount of labour may 

follow. 'Fhe method of linite dilTerences has been developed in 

order to overccjuu* the uiulesirable consequences caused by an 

unsuitable choice of the first approxiTUuting function. In this 

method the area of integration is replaced by a set of points 

and the difTenuitial equation for minimizing the integral is 

replaced by oik' or more dilTerence equations. Accounts of this 

and similar methods c an be found in various works,f and a very 

interesting and comprehensive review of the subject together 

with a large list of references is given by R. CourantJ in an 

address delivered to the American Mathematical Society. 

t 1. J. SokohiikofT l R. D. loo. cit.. § 73. 

X R. Courant, ‘Variational Motliods for the Solution of Problems of Equi¬ 
librium and Vibration', Hulletin of the American Mathcmaiicul Society^ 49 

(1943), K23. 

6186 P 



CHAPTER VIII 

INTEGRALS WITH VARIABLE END POINTS 

HILBERT’S INTEGRAL 

8.1. Introduction 

The analyses of the previous chapters apply only to integrals 

whose paths of integration have fixed end points. In this chapter 

we shall deal with case.s where the end points can be displaced 

along prescribed curves. 

We confine ourselves to the case of one independent and one 

dependent variable only, but we shall use somew hat more general 

arguments than those employed in Chapters I and II. 

It will appear later that the vanishing of the first variation 

gives the same characteristic ecpiation as found in § 1.4 and in 

addition gives equations known as transversality conditions. 

These conditions enable us to determine the constants of the 

solution although the coordinates of the end points are not 

know n. The study of the second variation is somew hat complex. 

It leads to the introduction of focal points, w hich are analogous 

to the conjugate fioints of§ 2.0 but have a wider tield of applica¬ 

tion. 

8.2. First variation with one end point variable 
h 

Let I ^ F(x,y,y')dx (i) 
a 

w^here y* ™ dyjdx and A and /i, the end points of the arc of 

integration, have abscissae a and b resjKJCtively (Fig, VUI. 1). 

In finding the stationary value of I we shall not only vary the 

arc AB but we shall also allow B to move along the curve r2 

whose equation is 

y -= (2) 

In this investigation the pciint A will be kept fixed, but the results 

obtained are easily generalized to allow for the case when A 

can be displaced along the curve y ^ 
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In § 1.3, for given x, the ordinate was varied from y ~ 

the stationary curve or extremal, to y ^ 5(x)+€<(a:). In this 

chapter we shall vary the ordinate in a more general manner. 

For the extremal we take y y(x,i)) (arc AB \n Fig. VIII. 1) 

and for the varied curve y ^ y(x,e) (arc AB' in Fig. VIII. 1). 

A 

Fig. VIII. 1. 

The stationary ease occurs when c -- 0. Now in the varied 

case / will be a function of 6 and the usual methods of the calculus 

then givH^ the following results: for a maximum at c ~ 0 we have 

d€ de^ tte 

If B is displaced along r2 to B\ whose abscissa is 6+da:^, 

then 
b -» djT^ b 

8/--- /’(.r, //-r8//,//'+S//') d.r— F(r,y.y')dx, (3) 
a a 

where MB' in Fig. VIII. 1 and By //(.r,e)—y(.r, 0). The 

part of (3) which contains dXf, 8y, By' linearly will, as usual, be 

called the first variation and \vill be denoted by S/j. We have 

b 

87, - 7; rfx,+ J + 8^'} dx, (4) 

a 

where F is an abbreviation for F{x,y,y') and is the value of 

F at X ^ 6-1 If By' d(Sy)/dx, then the second term in the 

b 
t (4) can l)c obtainoil by difTerentiating J F(x, y. y') dx with respect to 

o 
allowing for the fact that 6 is a function of c. 
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integral of (4) can be integrated by parts, giving us 

Here ^ y(b,€)—y(b,0) and the subscript 6 denotes that 

the variables have values corresponding to x ^ 6. Since A is a 

fixed point, the value of hy at .4 is equal to zero. 

For stationarj’ 1 the first variation must vanish even if B is 

fixed, i.e. when the first two terms on the right of (5) are zero. 

Since 8y is arbitrary the arguments of § 1.4 can then be used to 

show that the integral in (5) can vanish only if the Eulerian 

equation 

is satisfied. But this condition by itself is not sufficient in the 

present ca.se, for when (fi) is satisfied and B varies along r2, 

(5) reduces to 

8/^ 

With the help of Fig. VIII. I the right-hand side of (7) can be 

put into a much more useful form. Through B draw the ordinate 

so as to cut the varied curve at X and the line through B parallel 

to the jr-axLs at M. Then hy^, ~ BM—XM. 
Now, for sufficiently small displacement BB\ we have, 

from (2), BM ^ g2(b) and from the e(juation of the varied 

cur\'e, XM ^ y'(b, c) dx^^. But evidently i/(b, t) dxf^ differs from 

y'(b,0)dxf, by second-order quantities only, so that 

" UA-y'hdJCf,, (8) 

where and y are, re.spectively, the slo[>es of Fg and the extremal 

at B. Hence (7) can be written in the form 

87,(9) 

Finally to make / stationary and d/.'de vani.sh wo must have, 

in addition to (6), 

(10) 
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This equation is known as a transversality condition and 

is said to be tran.sversal to the extremal at B. 

8.3. First variation of an integral with both end points 
variable 

If/I can be displaced along the curve Fj, whose equation is 

y it evident that we must have another transversality 
condition analogous to (10),§ 8.2. The complete result is summed 

up in the following theorem. 

Theorem 15. If the end points A and B of the range ofintegra- 
h 

tion of the integral I | F{x.y.y) dx can he displaced along pre~ 
a 

scribed curves, then I is stationary when th^ following necessary 

conditions are satisfied: 

(i) //, the ordinate of the extremal, satisfies the Eiderian 

fquation ^ 

Cy dx 
m=0, 
Vy I 

(1) 

(ii) at X ™ a (2) 

where a is the abscissa of the end jwint. A, which can be displaced 

along the curve y 

(iii) at X b F— ~ t), (3) 
^y 

where b is the abscissa of the end point, B, which can be displaced 

along the curve y - g2M- 

In these equations i/ is the slope of the extremal and g[, g^ are 

respectively the slopes of the displacement curves of A and B 

at 0- - a and x ft. 
VVe shall mostly exclude the case when the extremal touches 

Fi at A or F* at B, so that at - a, g\-if 0 and at a: = ft, 

0. From (2) and (3) this assumption is equivalent to the 

statement that F(x, y^y ) docs not vanish at = a or at u: = ft. 
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8.4. Illustrations of the theory 

Example I. The end points, A and B, of the arc of integration 
« 

of the integral f — J dar can be displaced along 

given curves Fj and Fj. If G(x, y) does not vanish at A or B, prove 

that the extremal is orthogonal to F, and Fj. 

From (2), § 8.3, we have at the point A 

G(z,yHl+y'^)* + (g\-ymx,y) - = 0. (1) 

This is easily simplified to ffiy'+l ~ showing that the 

extremal and intersect orthogonally at A. Similarly for the 

intersection at B, 

This result contains many welFknown theorems as sjMJcial 

cases and shows that transversality can in some w'ays be regarded 

as a generalization of orthogonality Some simple illustrations 

are (i) the shortest distance from a point to a line is perpendicular 

to the line, (ii) the shortest distance between two non-coplanar 

lines lies along their common peri)endicular. (iii) the shortest 

distance between two curves lies along a common normal. 

The result is also applicable to dynamical problems, par¬ 

ticularly when the principle of least action is employed. For a 

particle of unit mass moving in a conservative field of force the 

principle states (§ 5.6) that 2 J T dt - J r(l dx is a mini¬ 

mum, where v is the velocity. Since v is a function of .r and y, 

the conditions of example 1 are satisfied. 

Example 2. With the conditions of example 1 except that 

B 

/ J (?(x,y)(l+y rfx, 
A 

prove that the extremal intersects F, and Fj at an angle a. 

8.5. The Brachistochrone 

The problem of § 1.11 can be generalized in the following 

manner. 

(dven a vertical plane containing a straight line L and a point 

A not on L, A particle slides along a smooth curve in the plane 
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starting from rest at A and terminating at a point of L, Find the 
curve for which the time from ^ to L is a minimum. 

Take A as the origin, the horizontal line through A in the plane 
as the a^-axis, and the downward vertical through A as the 

Fio. VIII. 2. 

positive y-axis, Fig. VIII. 2. The velocity at depth y is {2gy)^ 
and if the trajectory mc^ets L at t he point jB, then the time from 
A to B is ji ji 

f ds 
r 

(1) 

A A 

The F]ulerian ecjuation, (1), § S.3, for this integral has already 
been considered in § 1.11 and we shall quote the results obtained 
in that section. By using theorem 2, § 1.4, the characteristic 
equation can be integrated and simplified to 

y(l ... 2r, (2) 

where c is an arbitrary constant. On writing y'~ tani/r, so that 
<// is the angle between the o'-axis and the tangent to the extremal, 

y .r( 1+008 2./.). (3) 

Since x - | cotij/dy 

we also have .r - b—ci-tft+a'm'lip), (4) 

where 6 is a second arbitrary constant. 
Equations (3) and (4) show that the curve is a cycloid whose 

directrix is the x-axis and the radius of whose generating circle 

is c. 
We now proceed to evaluate the constants b and c from the 

given end conditions. On substituting (0,0), the coordinates 
of .4, in (3) and (4) we got ip - = and b == nc. Equation (4) then 

becomes ^ c(7r-~2,p-sin2,p), (5) 
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showing that the cycloid has a cusp at .*1. At the point B example 

1, § 8.4, shows that the cycloid is perpendicular to the line L. 

y --=■ {x -a)tan<x (6) 

be the equation of the line L (Fig. VIII. 2). where a and a are 

given constants. Since iantp is the slope of the tangent at B 

we must have / , 

so that from (3) and (5) the coordinates of B are 

[c(27r — 2jt f sin 2a), r(l — cos 2a)J. 

Since B is on (6) we have 

c(l—cos2a) ~ [c(27r—2a + sin2a) —njtaiia, 

which simplifies to c = —^ - . (8) 
2(7r-~a) 

We thus determine c, the radius of the generating circle, and 

by substitution in (3) and (5) obtain the extremal required. 

8.6. The second variation 

As in § 8.2, we commence by keeping the end point A fixed 

and allowing B to vaiy^ along the curve I^. The result is easily 

generalized to allow for the displacement of .4 along the curve Fi- 

On varying (4), § 8.2, from B to B' and difTcrencing we have 

d^l = If d'‘x+^ (dx)»-f 2 — 8vrfx-;-2 ‘ -i S//'rfx) + 
I dx cy ' ih 

b 
r I d^F C^F 
J \ ^y<^y Cv 

+ ? (1) 
^y <"// j 

The subscript b and the symbol hj have the meanings assigned 

to them in § 8.2 and the interpretation of d’^x w ill be obtained 

shortly, (5) below. The other terms are obtained as follows. 

bf b f 
The terms — Sydx-f — by’dx occur once owing to the varia¬ 

tion of JFJ, dxf, from B to N, Fig. VIII. 1, and again on differen¬ 
tiating the integral of (4), § 8.2, and allowing for the change in 
the upper limit of integration b. 
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d F' 
The term {dx^ occurs owing to the variation of 

from N to B\ Fig. VIII. 1. 

The integrand of (1) is obtained by differentiating the inte¬ 

grand of (4), § 8.2, with respect to e. 

On integrating the last term of (1) by parts and using the 

characteristic equation (b), § 8.2, it follows that the last two 

terms of (1) reduce to 

Again we may write (8), § 8.2, 

We assume this in (4) below, 

in the form 

(in ^ y' rf,r+8y, at x ~ b, (2) 

where dy denotes the change in the ordinate of B when it is 

displaced along the curve r> to B'. From (2) we deduce 

d^y y' (Bx ry''{dx)^-\ 2 Sy'dx-r^^y, at x ~ b. (3) 

On using these tw^o e(]uations to eliminate by and by' from 

(1) we obtain 

dU 

‘ ‘ cy \cx cy) cy 

+ 
:2V P2/r P2P 

{?>y? T , + -5-^-, + {byy 
cy^ dycy c^y ^ 

dx. (4) 

Suppose now that the coordinates of points on the curve Fg 

are given in terms of a parameterf ^ i e. on Fg we have x = 

and ?/ Denoting differentiation with respect to ^ by a 

dot w^e have 
dx = X (//, d^x ~ x dt^+x dH 

dy = ydt, dhj == y dt^-{-y dH. (5) 

On inserting these values in (4) and using the transversality 

condition (10), § 8.2, it is found, since = y/x, that the terms in 

dH cancel. We are now' able to divide (4) by and make rfe 

t No conception of time is e^ssociat-ed with the parameter /. 
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tend to zero and then place « — 0. The ordinate of the extremal 

is y(x, 0) and that of the varied curve is y(x, e), so that 

% -= A- y(x,()de. 
C( 

For brevity we shall write 

liin — 7], lim ^ = tj', when e = 0. 
0€ dc-M) de 

We then deduce from (4) that 

a 

Here « = 0 in all the terms of the equation, including those 

inside the integral sign and x - : b in all terms of the ejcpression' 

inside the square brackets. 

It is now easy to allow for the additional variation of the other 

end*point A along the curve Fp If the coordinates of points on 

Fi are expressed as functions of a parameter A, then we must 

subtract from (6) a term analogous to that in sfjuare })rackets 

but with i replaced by dxjdX, etc., dtide replaced by rfA dc. and 

with values taken at 2* «,€ -- 0. We shall denote the complete 

result by /j, the terms in the square bracket of (6) by j3, and the 

corresponding terms which arise for the variation of A by a. 

Further, we shall write i^Fjdydt/ F^y and 

S^Fjdy'^ = Fy^y^y all taken at c 0. Our final result is then 
b 

‘”0 “ (7) 

For maximum or minimum 1 the quantity 7, must maintain 

a constant sign for all permissible variations. Our next aim 

is to ^tablish a sot of conditions sufficient to ensure such 
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constancy of sign. We can, with great advantage, use once 

again the ideas of §§ 2.2, 2.3, and 2.4. 

8.7. The accessory equation 

When the Eulerian characteristic equation (1), § 8.3, has been 

solved and Fy>y> become known functions of x. We can 

then define the accessory equation (Jacobi’s or the subsidiary 

characteristic equation) as in § 2.4, namely 

This is a second-order differential equation for u so that the 

solution contains two arbitrary constants. It is the characteristic 

equation for the integral of (7). § 8.6, if we take x to be the 

independent and r] to be the dependent variable. Let 

// .y(r.Ci,r2)» 

where Cj and are arbitrary con.stants, be the solution of (1), 

§ 8.3. Then as in § 2.S we can prove that and cyjtc^^ are 

solutions of (1). 

With the help of (1) and some simple, but lengthy, transforma¬ 

tions we can e.\])ress in a form whose sign is easily determined. 

Writing (2) 

and observing that ii is homogeneous in tj and t]' of degree two, 

we have 

on integration by [)arts. Hence, from (2), we have 

di) 
\{f - [[fuu dx 1 

),-l (Vi (5) 
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Now if w is a solution of (1) and u' is its derivative we may 

re-write (5) in the form 

After integration by parts we have 

This, in turn, reduces to 

J 2Q<ix = ^ (ttJF’^y.+uT„-^.)4- J — Tjj dx, (6) 

where the terms not inside the integral have values corre¬ 

sponding to the end points of the arc of integration. The (|uantity 
CN 

7/ has been defined in §8.6 as equal to liin j-, when c - 0. 

Hence from (8). § 8.2 it follows that 

at X a 
, , dx d\\ 

and at X = 6 
, > ... dt 

V = (92-y 

(") 

VVe now' choose two solutions of the accessory ecjuation (1), 

Uj(x) and U2(x). For brevity these will be denoted by and 

and their derivatives by u[ and z/g respectively. Since (1) is a 

second-order differential equation we may choose each of thcvse 

solutions to satisfy the following two conditions: 

at A, 

at J5, 

X = a, Ui 
/ / ,.dx 

S’ 

x=^b,Ui = {9i-y')x\ 

where a and $ are the quantities employed in (7), § 8.0. 

(8) 
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In (6) take m = Mj, a ^ x < c, u = u^, c < x < 6. 

obtain 

b 

We 

(9) 

In all terms t 0 and inside the brackets {} x = c, as indicated 

b}' the subscript. Combining (7), § 8.6, with (2) and (9) we 

finally obtain 
C 

a 

b 

+ (10) 
c 

In this expression 7/ is any permissible variation satisfying 

the end conditions (8), //j and solutions of the accessory 

equation (1), and, as indicated by the subscript, in terms outside 

the integral signs, we must have x c. a ^ c ^ b. 

The accessory equation (1) is a special case of a type of differ¬ 

ential e(|uation known as Sturm-Liouville equations. Some 

properties of the solutions of these equations have been obtained 

in § 2.18 and one important property is that (w'l 

is constant. 

8.8. Focal points 

Consider that solution of the accessory equation (1), 

§ 8.7, which satisfies the end conditions (8), § 8.7, at the point 

X ^ a. A point P on the extremal is said to be a focal point of 

Fj when its abscissa is a zero of Similarly for focal points 

of Fg. These are points of the extremal wdiose abscissae are zeros 

of ti2(^)y where is that solution of (1), § 8.7, which satisfies 

the end conditions (8), § 8.7. at the point B, x h. 

Focal points play in variable end point theory the part played 

by conjugate points in fixed end point theory, see § 2.6. If one 
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of the end points, e.g, A, is fixed the end conditions at x - • a, (8), 

§ 8.7, are replaced by u^(a) — 0 and the focal points for l\ then 

become the conjugate points of A, 

Suppose that there exists a focal iK)int of I\ at x - r, where 

a 0 ^ 6. Then Mi(c) ™ 0 and so a jvermissible choice for r; is 

•q = a .r < Cy j] “ i), c < X h. 

For the necessary end condition at A. (7), § 8.7, is satisfied and 

the other end B can be kept fixed. From (10), § 8.7, it follows 
h 

that 7^ 0 and therefore that when I j F(x, y,y') dx is 
a 

stationary its first and second variations vanish. For such a 

case the value of 8/ will then dejx'nd upon the third variation 

which, for sufticiently small €. contains terms of the tyi>e c®. 

Consequently 8/ cannot in general maintain the constant sign 

required at a maximum or minimum value of /. To obtain a 

maximum or minimum value of / we must thend'ore exclude all 

focal points from the arc AB of the extremal. 

If one end point, e.g. A, is fixed, these arguments show that 

the conjugate j)oints of ^4 must be excluded from the arc ^4/i 

of the extremal as in § 2.0. 

The results obtained so far can be 8uinme<l up in the following 

theorem: 

Theorem 16. If the end jxnnU of the arc of integration of 
t> 

7^1 F(x,y,y') dx can be di^tplaced along prencribed then 
a 

to enmre that I han a maxim urn orminimtan ml tie the follomng con- 

ditiom muM be mtinfied in addition to those of Theorem 15, § 8.5: 

(iv) No focal points of either of the prescribed curves Pj, Pj exist 

within or at either end of the extremal arc AB. 

(v) 7/t<j{x) and u^ix) are solutions of the accessory equation 

(1), § 8.7, satisfying the end conditions (8), § 8.7, then 

has the same sign as u,(x)u,(x) throughout the range of 

integration AB. 
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(vi) d^F/dy'^ (= Fy^y>) maintains constant sign throughout 

this range, 

(vii) The Bliss condition. This deals unth the case when the 

focal points lie outside the arc A B and on the same side of 

it, as in Figs. VIII. 3 and VIII. 4, where Sy andS^ are, 

respectively, the focal points of Vy and r2. On traversing 

the extremal in the direction from A to B the condition 

requires that the order of the points A, B, should be 

either ABt^^S^, as in Fig. VIII. 3, or iSVSj/lB, as in 

Fig. VIII. 4. Possibilities such as ABSyS2 and SyS2AB 

must be excluded. 

With these cojulitions fulfilled I has a maximum when Fy ^- is 

negative and a 7n ini mum when it is positive. 

Fiu. VII I. .3. Fio. VIII. 4. 

The proof of the nece.Hsity of the Bliss condition will be post- 

jx)ned to § H. 14. The necessity of the other conditions is evident 

from the form of (lo), § 8.7, For the exclusion of the focal jK)ints 

together with (v) and (vi) ensure that ^ is j>ositive definite if 

Fy>y0 is positive, and negative definite if it Ls negative. 

8.9. The determination of focal points, (i) Geometrical 

The method of envelopes, used in § 2.0 for conjugate points, 

can be applied with ecjual facility to the problem of finding the 

imitions of focal points. 

Since the Eulerian characteristic equation (1). § 8.3 is of the 

second order, it follows that the extremals form a two-parameter 

family of curves with equations of the form 

y ^ s(x,Cy,C2). (1) 

where Cy and Cg are arbitrary constants. Suppose that those 

members of (I) which satisfy one of the transversality conditions, 
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say (2), § 8.3, possess an envelope. Then we can prove that the 
focal points of Fj, B'b displacement curve, are at the points of 
contact of the extremal and the envelope. 

To prove this let a neighbouring curve to (1) have the equation 

If == s(x,c^+hc^.c.i-\^bc.^) (2) 

a(x. Cl, «•,) + Sr, + Stj,. (3) 

where terms containing Srf, SrjSr^. Sr| and higher powers are 

neglected. 

Since ™8r, 4- —Sr^ is the difference between the ordinates 
crcj cc^ 

of two neighbouring curves it may be denoted by Sy, defined in 

§ 8.2. Again, since cy ccj and c*i/ cc2 both satisfy tJie accessory 

equation (1), § 8.7, sec' § 2.8 for proof, then 8y must also satisfy 

(1), § 8.7. \\> may then w rite 

f—Scj-f Sr- "■ "" 
tCi cCj ‘ a< 

where (i) t is the parameter in terms of w Inch the coordinates 

of points on I j are expressed, (ii) c is as defined in § 8.2, and 

(iii) Mj Ls a solution of (1). § 8.7. 

Evidently the i)oints of intersection of (1) and (2) occur at 

the zeros of u^. But a solution of (1), § H.7. which satisfies the 

conditions (H), § H.7, at x - h has its zt^ros at the focal j>oints of 

Fg. Hence, if we can prove that s^itisfie's these conditions, then 

(1) and (2) must, in the limit, intersect at the focal {x^ints of Fj. 

To prove that a, satisfies the first of these conditions w o com¬ 

bine (4) above and (H), § 8.2, when it follows immediately that 

Wa - (5) 

at X = b. Hence satisfies the first condition. 

To prove that satisfies the second of the conditions, 

-P (6) 

at z — b, is much more difficult. The method of proof is as 
follows: Since F, is transversal to (1) at where x — 6, and 
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transversal to (2) at B\ Fig, VIII. 1, we have two transversality 

conditions, ^« 
(7) 

oy 

at B and a corresponding one at B'. On subtracting one of these 

equations from the other, dividing by dt, and proceeding to the 

limit dt > 0, we obtain (0). This procedure is evidently equiva¬ 

lent to differentiating the left-hand side of (7). Or, on eliminating 

d F 
{g^—y') by means of (4) and (5), we rnav vary Fdx-^hy—^ from 

B to B' and then insert x 6. 

This variation, which arises from the displacement of B to 

B\ can be jierformed in two stages. The first stage is due to 

the displacement from B to X, Fig. VIlI. 1, and here we must 

allow for the change in the ordinate from y to y-rSy together with 

the consequential changes in hy\ The second stage is due to the 

displacement from X to B\ Fig. \Tn. 1. and here we allow for the 

change from x to x f Sjt. The result.s are tabulated below, where 

the expression to l>e varied is in the first column, the variation 

in the first stage is in the second column, and that in the second 

stage is in the third column. 

vF cF ; dF 
F dr -hy'dr 

i'y ry' dr 

hy , 1 ^.V dr 

<F ! t*F i . 
1 7 (—,)dx 

‘•V i cy<y c'y • dr\t*y / 

From the characteristic equation we can write 

in the lant term of the thinl row. 

On lining thin table the reault of varying 

in to give us a number of terms which we classify into three 

groups (a), (6), and (r). Group (a) contains all the terms inside 

the brackets { )* of (1), § 8.6. group (6) consists of the term 
»i« a 
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dF 
— S*y, which arises from (1), § 8.6, from integration by parts, 

and group (c) consists of the terms 

On dividing by d/* and proceeding to the limit, from (4), the terms 

of group (c) lead to the left-hand side of (6) and. from the analysis 

of § 8.6, the term.s of group.s («) and (b) sum to the e.xj)re8sion 

denoted there by /3. Hence satisfies conditions (S), § 8.7, at 

X = b, and the focal points of Pj mu.st be at the limiting points of 

intersection of (1) and (2). The envelojw property stattnl at the 

commencement of this section then immediately follows. 

An illustration Is given by the problem of finding the shortest 

distance betwe«‘n two coplanar curves P, and Pj. The integral 

to be minimized is J (1 -r y'*)* dx and the extremals arc meml^ers 

of the family of straight lines y r,x ; r^. Example I. § 8.4, 

shows that when the extremals satisfy the transversality con¬ 

ditions they are normal to P, and I’,. 

Consider now the family of straight lines normal to P,. They 

all touch the evolute of P,. Coasequently the focal iwint of P, 

for an extremal intersecting it at A isN,, the centre of curvature 

of A for P, (Fig. VIII. 6). I.iet d/I be a common normal to P, 

and P, with *Sj the centre of curvatuie of Pj at Ji, Fig. VTII. 6. 

Then AB in the required minimum distance if (i) and lie 

outside the segment d Band (ii) the Bliss condition of Theorem 16, 

§ 8.8, is satisfied. 

This example illustrates the fact that the position of the focal 
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points depends upon the curv^ature of the transversals. It has 

been shownf that as the focal point of Fj varies from A to the 

first conjugate of A, then the radius of curvature of F^ at A varies 

from —00 to +00. 

8.10. The determination of focal points, (ii) Analytical 

The abscissae of focal [x>ints are the zeros of a function u(x) 

which satisfies (i) the accessory equation (1), § 8.7, and (ii) one 

of the j>air of end conditions (8), § 8.7. We shall illustrate this by 

means of a catenary problem similar to the ones discussed in 

§§ 1.7, 2.11, and 2.1‘i, but with one end point variable. 

A uniform flexible heavy string ha.s one end coiled and lying 

on a horizontal [)lane and the other end B attached to a small 

smooth ring of negligible mass. The string rises vertically from 

the coil ami passes over a fixed small .smooth j>eg A before 

reaching /i. If the ring can slide on a fixed straight line situated 

in a vertical plane through A, find the equilibrium position of the 

string. 

The potential energy of the arc AB is a constant multiple of 

IJ B 

I I y( I r ^ F dx, (1) 
A A 

where the {Kjsitive value of the root is taken. When the string is 

in st^able et|uilibriuin this integral must be a minimum. 

The characteristic equation for (1) has already been obtained 

in § 1.7, when' it i.s show n that the extremals are catenaries whose 

equations are 

y = rcoshi—(2) 

w'here c and d are arbitrary constants. F^xample 1, § 8.4, shows 

that the transvcrsality condition is satisfied if the given straight 

line is normal to the catenary (2) which passes through -4. The 

coordinates of A and the equation of this line then suffice to 

determine the values of r and d. 

t O. A. Blijm, lActures on Caintlu* of Variations, University of Chicago 
PrcMW, } 56; O. ikher Variationsrschnung, Tenbner, § 39. 
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From § 2.8 it follows that the solutions of the accessory equa¬ 

tion (1), § 8.7, are ^ 

i = '^) 

and (4) 

w e may therefore define a general solution of the accessory 

equation, as follows: 

ttj(x) ™ j5 8inh|’™—j . (o) 

where p and q are arbitrary constants. 

In this problem is the given straight line and for its para- 

metric equations we take 

X - a -r tcoa y /sin (fi) 
Evidently 

X • cos j) “ sin X y 0. (7) 

From example 1, § 8.4, tin? transversality condition is satisfied 

if Pg and the extrtMiml intersect orthogonally at li. We can 

therefore draw up the following table of values at li: 

y' — cot y r(l • rcoscc 

dF ^ dF ,, r ' 1 
— = 0, - — cosec ji, cos x, ^ ~ rsirr x. 
cx cy 

From § H.fi wo can determine^, which is equal to the exprcs.sion 

inside the square brackets of (fi), § H.fi. Using (7) and (8) it follow s 

that rt 
^ \ {2xy^ yJ^) 

oy 

cos X 'f cos xCOHC»C® X. (9) 

Applying these results to the end conditions (H). § H,7, we have 

{g*^'-y*)x (tan X t cot x)co.Ha 

cosec X (10) 

and (11) 
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where is the slope of the given line. Solving these equations 

for u^ib) we obtain, after some simplification, 

rr. -IcOta. (12) 
C 

The constants p and q of (5) can now be calculated. By 

choosing a point underneath the vertex of the catenary as the 

origin we make d - 0 and simplify the calculations without loss 

of generality. We then have at the ix)int x - b 

cosec (13) 

P 
c 

-cot i. 
c 

(14) 

On noting that at x b the sIojk^ of the catenary is sinh(6/r) 

it follows that sinh(/> r) y - cot a, cosh(6 r) = cosec a. 

From (13) and (14) we then obtain 

q - ^ sin^x, 

Finally from (5) the e<|uation for abscissa of the focal points, 

M2(x) 0. becomes 

4-sinh|^^jcc)sh|^^j|sinh‘^4~c(>sh|'^j—^si^^ = 0. (16) 

This e(|uation can be given an interesting geometrical inter¬ 

pretation. If the normal at B to the catenary y — rcosh(x r), 

Fig. VIH.6. meet.s the directrix at G. and O is the origin, then 

OO 6 f rsinh|^jcosh|^j. (17) 

If the tangent at ^S, a focal point of /if?, meets the directrix at 

Op then 

<>») 

where x i« the abacma of S. From the equation of the catenary 

we obtain 



230 INTEGRALS WITH VARIABLE END POINTS VIII, §8.10 

from (16) and (17). Consequently the tangent at S, the normal 

at B and the directrix are concurrent at (7. Since there are two 

tangents from G to the catenary there are two focal points. 

If C is conjugate to B, then the 

tangents at B and C intersect on 

the directrix, § 2.13, and so one of 

the focal iK>ints. lies between C 

and B and the other, S\ lies outside 

the arc CB. see Fig. VIII. 6. The 

appropriate focal point of BG is S 

when A lies between C and B and S' 

when B lies between G and A. 

On taking the {K)sitive value of the root it follows that 

is positive at all iK)int8 of the catenary. Hence the integral / of 

(1) has a minimum if A lies between S and B or between B and 

5' (Fig. VIll. 6). 

8.1 L Hilbert*8 integral 

lmfX)riant deductions can be ma<le from the results obtained 
in § 8.2. We consider, as before, 

B li 

I j" F(i,y.y’)dx --r j" F dx. (1) 
A A 

where /I is a fixed end prjint and B can be displaced along the 

curve Fj whose equation in y If ^ satisfies the Eulerian 

equation (6), § 8.2, so that the curve AB i.s an extremal, then 

(9), § 8.2, states that 

(2) 

where and y' are respectively the slopes of F, and the extremal 

at jB, X ” b. Terms containing t* and higher powers have been 

neglected. 

Equation (2) is easily generalized to the case when A is no 
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longer fixed but can be displaced along the curve whose 

equation is y ^ The result is 

8/ =.= {^+(9;-y')^y!jdx,-ji’+(<7;-y')^jdx„ (3) 

where the subscripts 1 and 2 denote, respectively, values taken at 

Ay X a, and JS, x ^ b. If A is displaced to A\ a neighbouring 

point on Fj. and li to /i\ a neighbouring point on Fg then we also 

have (Fig. VIII. 7) 

ir n 

8/ I F(x, y. y') fix - j F{x,y. y') dx. (4) 
A A 

w'here the arcs AH and A'B' are l)Oth extremals. 

('on.sider now a displacement of the whole arc AB in which (i) 

A is displaced along l\ to C and B along F^ to D (Fig. VIII. 7), 

and (ii) the arc .*1B remains an extremal, i.e. its equation satisfies 

the Flulerian equation (<>), § 8.2, in all intermediate positions. 

Then (3) holds throughout the displacement. We deduce that 

D li 

J F{x,y,y')dx~ J F{x,y,y')dx 

V A 
D V 

- f (5) 

H ' A 

w^here the subscripts 1 and 2 denote integration along the curves 

r, and Fj respectively. On writing 

(6) 
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and similarly for I}, (5) becomes 

I{CD)--I(AB) - l*(BD)-^I}{ACh (7) 

where the letters inside the brackets denote the end points of 

the range of integration in each case. The integral /♦ is known as 

Hilbert’s integral. 

We can make C coincide with D and A with B without making 

the paths AC and BD coincide with each other. From (7) wo 

then have I^(BD) -- I*(AC), which indicates that the value of 

is in general, inde{XMident of the ])ath of integration. This 

Fio. VIII. 8. 

fundamental property of Hilbert \s integral cannot be ade(juately 

discusse<l without the concept of a *Held' introduced in the ne.xt 

section. We shall therefore po.stfX)ne the general discussion of /* 

until § 8.13 and deal only with some sjx^cial causes in this section. 

Con-sider a one-parameter family of extremals passing through 

a fixed point A and possessing an envelojK*. In Fig. VHI. H /I /i 

and AD are two members of the family touching their envelope* 

BD at B and D res{>ectively. We can displace the arc A B to A D 

through a series of intermediate extremals each of w hich passes 

through A and touches the envelope BD, Such a displacement 

satisfies the requirements of (5) in the sj^ecial case w hen A and 

C coincide. Now along the envelo|)e we have = y\ bo that 

in this case (5) reduces to 

v B D J F(z,y,y')dx = J F{x,y,y') dx^- f F{x,y,y')dx, (8) 
A A B 

where the first two integrals are taken along the extremals AD 

and A B respectively and the last along the envelope. 

An example of a one-parameter family of extremals passing 

through a point occurs when a particle is projected under gravity 
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from a given point A with given initial speed u. By varying the 

direction of projection we obtain different members of the 

family. This was discussed in §§ 1.8, 2.10, and 2.14 where, by 

means of the principle of least action, it was proved that the 

trajectories are extremals of the integral 

j" (u^-2gy)^(l+y'^)i dx. 

Restricting ourscdves to one vertical plane through A, the 

extremals are found to be a family of paral)olas pa.s8ing through 

A, each touching another parabola having A as a focus. The axis 

of the enveloping parabola is the vertical through A and its latus 

rectum is 2u‘^ g. Equation (8), with 

Fix,y.y') . {u^-.->gy)i(l-^y'^)i, 

holds for such a system. 

E(|uation (8) can be generalized in a very interesting manner. 

If the extremals and their slopes //' are know n at every point we 

can solve the first-order differential equation 

f (9) 
^1/ 

for g. A one-parameter family of curves is then obtained, one 

curve passing through each point of the plane. By the definition 

of § 8,2 the member of this family which passes through P is 

transversal to the extremal through P. If the are AC of (5) is 

one of the curves (^f th(‘ family defined by (9). i,e, if we take 

g'i g\ then the last integral of (5) vanishes. 

('onsider now’ a one-parameter family of extremals possessing 

an envelope anil let A li. Cl) be tw o of the members touching the 

enveloiH^ at B and D respectively. If in (5) the arc A R is displaced 

to CD so that Pi, the displacement curve of ^, is one of the trans¬ 

versals defined by (9) and Fj is the envelo[>e Bl) on w hich g^ — y\ 

see Fig. VIII. 9, then we obtain 
I) n n 

J F(x.y,y')dx == | F(x,y,y')dx-\~ [ F(x,y.y')dx. (10) 
CAB 

The first two of these integrals are taken along the extremals and 

the third along the envoloin;. 

Equation (10) contains as a special case the well-known 
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8.12. Fields of extremals 

The resuItH of the previous section lead to the concept of a 

field of extremals which is much used in modern theory. 

Starting with the integral 

/ I(1) 

we can, hy moans of the Eulerian characteristic equation, obtain 

a two-parameter family of extremals. When the Eulerian 

equation is solved we can then find a direction g' defined by the 

equation .p 
(2) 

Supj)08e that by introducing some suitable restrictions w’e 

obtain from the two-parameter family of extremals a one- 

parameter family. Then a field of extremals is defined if no 

two meinbers of this one-parameter family have a point in 

common. Through every point P of such a field there passes a 

uni(jue extremal E and, if is its sloi>e at P, we obtain from (2) 

a uni(|ue slope g' transversal to E, On solving (2) for the function 

g we obtain a one-jmraineter family of curves no two of which 

have a common point in the field. These are transversal to the 

extremals. The part of the plane to which the field is limited can 

evidently be covered by a network of extremals and transversals 

in such a manner that through each point of the field we can draw 

one extremal and one transversal only. 

Hilbert's integral, as defined in § 8.11, is 

(3) 
A 

where g' Ls the slope of the arc of integration and y' is the slope 

of the extremal. If F is one-value<I, or if inulti-value<I is restricted 

by the field to the values of one branch only, then the integrand 

of (3) is uniquely defined at every pt>int of the pat h of integration 

and the integral can therefore be evaluated. The fundamental 

property of /* is that the value of I*{AB) is independent of the 

path AB the arc of integration lies entirely inside a field of 

extremals. We shall prove this in the next section. 
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If AB, the arc of integration, is an extremal, then g' 

and so _j 

If the arc AB is transversal then, from (2), we have 

- y' 

(4) 

/♦ - 0. (;,) 

The simplest example of a field is derived from the integral 

I r-. j F(lj')llx. (ti) 

The extremals are the lines ij tux \ ti. where m and « are 

arbitrary constants. We can obtain a field by eonfininj; ourselves 

to a family of lines parallel to a given direction. The transversals 

would then be the family of parallel lines jKTpendicular to 

them. 

A field can be obtained for (fi) in another way. (‘onsider a 

family of lines concurrent at O. Then if we t\\clude a domain 

which contains the point (), i\n* remaining segments of the 

extremals form a field. The transversals are arcs of concentric 

circles having O as a common centre. 

A more complicated example is given by the integral 

^ f »/(l r '/*)* d-r. (") 

The extremals are the catenaries // rcosh{(.r ‘ a) rj. where a 

and c are arbitrary constants and the :r-axis is a common direc¬ 

trix. From this twTi-jmrameter family we can obtain a one- 

parameter family by restricting ourselves to those ( urves which 

pass through a given point A on the p(»sitive i/-axis. This sub¬ 

family has an envelope (see Fig. Vll I. 12), ami if B lies outside 

Ec there are no memliers of the family w hieh j>as.s through both 

A and B. But if B lies inside A’,, i.c. in the region w hi(’h contains 

the i>ositive ly-axis, then there are two catenaries of the sub¬ 

family passing through A and B. In Fig. VIII. 12 the tw'o 

possible catenaries are shown as AA^B and AHA^, where A<^^ 

and are points of contact with E^. From § 2.9, A^ and A^ 

are conjugate p<jints of >4. We can obtain a field by restricting 
ourselves to arcs w^hose eiKl-|K)ints lie Ix'tweeri A and its 

conjugates. For, Fig. VIII. 12, the arc /IjB is then excluded 
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and through U passes only one extremal of the field, namely 

that arc of the catenary AA^ which lies between A and A^. 

A similar example of a field can be obtained from the integral 

1 j - !nidr. (8) 

This occurs in th(‘ |)roblem of finding the trajectory of a particle 

by means of the principle of least action. § 1 .S. The extremals are 

a two'jiarameter family of parabohis 

r") (/(X -<l)\ 

where r and d are arbitrary constants and a is the given initial 

velocity. We can obtain a oiu‘>paramet(‘r family by confining 

ourselves to those trajectories which lie in a fixed vertical plane 

through A and whi(‘h are obtained by projection from A with 

initial sj>eed //. In § 2. IG it was shown that these trajectories touch 

a parabola with latus rectum g having A as focus and the 

vertical through A as diameter. If li lies outside the envelope 

there are no trajectories passing through A and li. If B lies 

inside there are two trajectories, AAj B and A BA^. Fig. VIII. 13, 

where and are the ixiinLs of contact with the envelope and 

therefore, § 2.0, arc* the conjugate's of A, As in the previous 

example, we can <»btain a field by confining ourselves to thovse 

arcs of the trajectories w hich lie in betw(*en A and its conjugate, 
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for we then have only one extremal through a i>oint B inside the 

envelope. The field is confine<i to the interior of a domain 

bounded by the parabolic envelope and a small curve enclosing A. 

8.13. Hilbert's Integral Independent of the path of in¬ 
tegration 

In this section we give an analytical proof of the theorem that 

the value of Hilbert's integral /•, defined by § 8.12, is inde¬ 

pendent of the path of integration if we confine ourselves to a 

field of extremals. 

Consider the integral 
H 

^(xdx+^dtj), (1) 

A 

where a and are functions of x and tj. If (i) a, and their first 

partial derivatives are continuous and one-valued in a simply 

connected region of the (x,y) plane, and (ii) 

i’x_ 

'ey ~ ex' 
(2) 

then is an exact differential and the value of the 

integral (1) is independent of the jjath from A to Ii. These 

conditions are both necessary and sufticient.f 

Consider now the following integral J whose integrand 8ati.s- 

fies (i) and (ii) in a field of extremals. J is defined by 

J = (3) 

where g' is the slope of the path of integration and y' is a function 

of X and y. Along the path of integration g' dx -- dy, so that we 

have 

Hence 

fir-.- 
BF 

V 
{•*) 

By \By dyj \by by~^'^ 'by by'"^^ by'* by] 

t R. Couiwt, BiJJermtial and Integral Calculus, vol. ii, p. 3r;2. 
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and (2) becomes 

. d^F 

dy ^ dydy' 

Since 

d^F dy' 

^ ty'^ by dxby' by'^ bx ' 

d x cx^ t 

(6) 

(7) 

it is easy to deduce that (6) is equivalent to Euler’s characteristic 

equation ^ 
~—UA) - 0. (8) 
cy dx\cy} 

The value of J is therefore independent of the path of integra¬ 

tion if y' is the slo]>e of an extremal. But this is the case for /*, 

the integral defined by (3), § 8.12. Consequently is indepen¬ 

dent of the path of integration in a field of extremals. 

8.14. The method of Carath^odory 

A simple method for dealing with the relationship between 

extremals and transversals has been introduced by Caratheo- 

dory. 

Consider a one-parameter family of curves and let 

g{x.y) -a (1) 

and g(^\y) (-) 

be the equations of two neighbouring curves of the family, Fig. 

VIII. 14. JSu})pos<‘ that we are given (i) a point F on (1). co¬ 

ordinates (j*, y), and (ii) a functional form F{x,y,y') where F 

is known and y is the derivative of y with respect to x. Consider 

the problem of finding an arc w hich minimizes the integral 

Q 
I ^ j F{x.y.y’)dx, (3) 

where the arc starte at P on (1) and terminates at a point Q on (2). 

If the arc is sufficiently small I can be expressed as a function 

of the variable y' as we now proceed to show. 

Let the coordinates of Q be (x+&r,y+Sy), then we have 

/ F{x,y,y’)&x+0(&xf, (4) 

where {x, y) are the coordinates of P. 
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Since Q lies on (2) we have 

g{x-\-hx,y-\-hy)-g(x,y)ha. (6) 

Via. VIII. 14. 

From this wc deduce that 

where second-order (luantitie.s have be<*n ignored. Hence 

/ . (7) 
ai , < i i 
- +// 
ex (V 

where again second orcUT <(uantities havi* been ignored. Evi¬ 

dently y* i-** the only variable in (7), .so that for stationary I we 
must have dl dij : 0. 

If g* is the sloixj of (1) at /\ i.e. g' < ‘ then the 
(xj dij 

condition becomes 

F ¥{g'-y')~^-. - f. (H) 

<^y 

Comparison with (10), § 8.2, sliows that we have once again 
arriveil at the transversality condition. I'his may he 8umme<i up 
by the statement that the extremals of (3) must be cut trans- 
versally by the family of curves (1). 

8.15. The Bliss condition 
We can now prove the necessity of condition (vii), Theorem 16, 

§ 8.8. It has l>een shown in § 8.8 that if the integral / is to be a 
maximum or minimum and not inc^rely stationarj', then focal 
points must be excluded from the arc of integration A B. The 
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BUbs condition is additional to this. Let A and B be displaceable 

along l\ and r2 respectively and let be the focal point of 

and 82 of Fj, and 8^ both lying on the extremal AB. The con¬ 

dition deals with the case when 8^ and 82 lie on the same side of 

the arc AB, as in Figs. VIII. 3, VIII. 4, and VIII. 15. If the 

extremal is traversed in the direction from .4 to jB it can be 

enunciated as follows: 

I can be a maximum or minimum for either of the orders 

AB82S^ (Fig. VIII. 3) ot828^AB (Fig. VIII. 4). / is neither a 

maximum nor a minimum for the orders A 88^82 (Fig. VUI. 15) 

and 8^82 A B. 
Before the proof we give an illustration showing the necessity 

of the condition. Con.sider the problem of finding the shortest 

distance between two coplanar circles, Fj and F2. The extremals 

of the integral to be minimiml. f d,*?. are straight lines and the 

transversality condition.s recpure these lines to be orthogonal 

to the circles, example 1, § H.4. From the results of § 8.1) the focal 

(K)ints of Fj lie on its evolute, which, for a circle, i,^ its centre. 

Similarly for the focal [K)int.s of F^. Fig. VIII. IG shows the two 

circles F^ and F^ with their centres iSj and which are also their 

respective focal points. If^SjNj produced cuts the circles at AB 
and as in Fig. V’lII. 16. then the common normals AB 
and Ay By are the stationary positions for J Evidently the 

Bliss condition is satisfied for ,4/?, so that 4B is a minimum 

distance between the circles. But the condition is not satisfied for 

Ay By, and in fact Ay By is neither a maximum nor a minimum. 

It is easy to prove this hy elementary reasoning. 
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For on displacing and /fj to so that S^, P, and Q are 

collinear, we have S^P < 5,S,+5i P =S^Ai and 5, Q -- Bi- 
Hence PQ<A^Bi. 

But evidently A^Q > AiBi and consequently A^By can be 

neither a maximum nor a minimum. 

We now proceed with the proof of the Bliss condition. We 

assume that all the conditions for minimum / are satisfied except 

that the focal points are .in the order exhibited in Fig. VIII. 15, 

and we then show that this leads to a contradiction. For 

brevity j F{x,y,y‘) dx taken along the arc ABC will be de¬ 

noted by I (AC) or by l(ABC). 
Take any point 0 between and iri Fig. \T11. 15. Then, 

since the focal point Sy is not excluded from the arc AO, the 

arguments of § 8.8 show that we can find a curve such tus PQO 
for which I {PQO) < I(ABO). But since the focal jK)int .S, is 

excluded from the arc BO, we have 

I{QO) > 1(B0). 

Consequently I(PQ) < I{AB). which contradicts the original 

assumptions. Thus the necessity for the Bliss condition is proved. 



CHAPTER IX 

STRONG VARIATIONS AND THE 

WEIERSTRASSIAN E FUNCTION 

9.1. Introduction 

Weak variatioiiH have already been defined in §1.3. If y = 

is the e(|uation of an extremal and that of a 

neighbouring curve r„ then, in the cast' of weak variations. i(x) 
is indej>endent of« and so €t'(x) tends to zero with e. Alternatively 

if. as f tiuuls to zero, a point Q on approaches P on I'),, then the 

slope of C, at Q must tend to that of 1] at P. This excludes an 

important type of variation, as the following example shows. 

_A/VWs_ 

Kkj. IX. 1. 

Consider the problem of finding the shortest distAnce lietween 

two points .-1 and li. for which the extremal 1' is the straight 

line AH (Fig. IX. 1). Divide AH into it erpial intervals, each of 

length AH n. and let .I,,,(.d, A, *4„., -- B) denote the 

with interval. Con.struct the eipiilateral triangles A^A,„^^C^ 
{m -■ 1.2.») and for the neighbouruig curve F,, take the series 

of lines A,„('„ and C,,,.-!,,,,, (in 1.2.w). Evidently as n 
tends to infinity each point on l„ tends to some jiomt on F, but 

the slojK' of F„ always differs from that of F, by w/S. The length 

of F„ is twice that of F^. so that the straight line A H still gives 

us the minimum case. 

The limitation imposed upon variational theory by the use 
of weak variations was first transcended by Weierstrass who, 
in the year 1H79, introduced an expression now fundamental 
in variational theory. The study of this expression, generally 

known as the Weierstrassian E function, is the main puriH).se of 
the present chapter. The E function enables us to deal with the 
most general possible variations from F^ to r„. 
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9.2. The Weierstrassian E function in the simplest case 

Suppose that with the integral 

B H 

I = I J F da-, (1) 
A A 

whose end points A and B are fixed, we can associate a field of 

extremals, as defined in § 8.12. Then. § S.13, the value of the 

Hilbert integral 

(2) 

Jt 

is the same for all paths from -.4 to B confined to the dtiinain of 

the field. Ifthe path is along the extremal then y' y'.so that 

L (:i) 

I^t P and Q l>e two points, one on and the s(»cond on a 

neighbouring curve P,., Fig. IX. 2. and let their respective 

coordinates be (x,y) and (jt, }'). The sIojm* of P^, at Q will be 

denoteil by P'. Taken along the path P,^ we have 

/• J j/’(x. ¥,>/) + (}" - dx, (4) 

A 

where t/' is the sIojkj of the extremal through Q, 
From the invariant properties of /* it follf)ws that 

J J {/’(X, y,y) Hy' yl'’^^'^J'^jdx, 

^ (5) 

where the left-hand integral is taken along P, and the right-hand 
one along r„. 

In (1) we take / to be the value of the integral when the path 
from to B is along the extremal P,, and / -}-8/ to be its value 
when taken along the neighbouring path P„. Then 

B 

7+8/ = j F{x,Y,Y')dx, 
A 

(6) 
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and so from (5) we have 

B 

Fio. IX. 2. 

T}ie integrand of (7) is the Weicrstrassian E function for the 

integral (1), and on writing 

K(x, 1") 

(7) becomes 

F(x,y, Y')-F{x. y. y')-(F'-y') 
<^y 

(8) 
H 

hi [ E[x, Y,y',Y’) dx. (9) 
A 

In this integral the j}ath is taken along r„, a curve which lies in 

the field of extremals containing F^. The coordinates of a point Q 
on r„ are (x. Y), the slope of r„ at Q is 1''. and that of the extremal 

passing through Q is i/\ 
As Q on r„ tends to P on F^, }' tends to y but Y' need not 

necessarily tend to y\ A simple civse is given by the example 

of § 9.1. The variations of this section are therefore much more 

general than those of § 1.3 and are acconlingly known as strong 
variations. Associated minima (maxima) are knowii as strong 

minima (maxima). It is evident from (9) that a necessary con¬ 

dition for a strong minimum is that 

at all points of the extremal and for all finite values of 1"' (we 
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exclude the possibility that E(x, y, y', Y') — 0 at all points of the 
extremal). For a strong maximum the inequality sign must be 
reversed. Inequality (10) is known as the Weierstrassian con¬ 
dition. 

In addition to this there are, of course, other conditions such 
as the Eulerian equation and the exclusion of conjugate points; 
these aiU appear later in the general discu.ssion of § 0.0. 

9.3. The simplified form of the Weierstrassian condition 

If E has continuous ])artial derivatives of the tii-st and second 
order we may apply the .second mean value theoremt to (s), 
§ 9.2. We then have 

E(x,y.y\ }■') =--- i{Y'-y') ,^,d^‘r[x.y.y' ,-e(Y'~-y')} 
f'/ 

(1) 

where 0 < 0 < 1. Thu.s the inequality (lo). § en.sured if 

e*F{x,y,p) 
tp* 

(^) 

at every point of the extremal and for all finite values of p. 
It is possible, however, for (10), § 9.2. and (1) to be true for all 
values of Y', but for (2) to l>c true for only a limited range of 
values of p. Thus (2), although useful in practice and sufficient 
to ensure the truth of (10). § 9.2. is not a necessary condition. 

The inequality (2) must lie carefully distinguished from the 
Legendre test of § I..*} and § 2.5, which requires that c^F'cy'* 
should have a constant sign at all points of the extremal P,. In 
the Legendre test y' i.s the slo|>e of P,, whereas in (2) the variable 
p can assume any finite value. 

To ensure a maximum value for I the inequality sign of (2) 
must be reversed. 

Example 1. Investigate the case when 

B B 

I j fix, y)djf == j fix, y)i I + y'»)» dx, 

where the positive value of the root only is taken. 

(3) 

t R. Coaiant, DifftftnUtU and Inttgral Caltulus, vol. ii, p. 80. 
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Here 
t^Fjx.y.p) ^ f(x,y) 

cp^ (1+^2)*’ (4) 

80 that 1 |)08»es8e8 a strong minimum iff{x,y) > 0 at all points 

of the extremal (excluding the case when f(x,y) = 0 all 

along i;). 

This result includes the following 8i)ecial cases: 

(i) The shortest distance betwetm two points, where the 
H 

integral to be minimized is | ds. Here f{x,y) = 1 and the 

integral therefore admits a strong minimum. 

(ii) Problems associated with catenaries, § 1.7, and minimal 
B 

surfaces, § 1.12. The relevant integral is f ?/ so that the con- 
A 

dition for a strong minimum i.s satisfied if y > 0 and the arc of 

the catenary remains wholly above the x axis. 

(iii) The principle of least action for a particle in a conserva- 
B 

t ive field of force, §1.8. The integral is f v ds, where v is the speed. 
i 

If r ' 0 throughout the path, the condition for a strong mini¬ 

mum is Realized. 

(iv) Problems associated with optics, § 1.9, and the brachisto- 
B 

chrone, § 1.11. The integral is | ds t\ where r is the si>eed. A 
A 

strong minimum is realized once again if r > 0 at all points of the 

optical or dynamical path. 

(v) (ieodeaies satisfy the requirements for strong minima. 

The general case is more easily dealt with by expressing the 

integral in parametric form, as in § 9.14, and in this section we 

shall confine ourselves to the case of geodesics on a sphere. The 

relevant integral, equation (2), § 1.10, is 

B 

/ = J (1 +y'*8in*/^)‘ dx, (5) 

where the jwsitive value of the root only is taken. VVe have 

d*F 8in*j; 
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so that > 0 except at x 0 and x - n where it 

vanishes. 

Example 2. Newton’s solid of minimum resistance. This 

problem was discussed in § 1.10 and the integral to be minimized 

r X 

For this case we have 

dp* (i+p*f' ^ 

so that c*F,dp* cannot maintain a constant sign for all values 

of p. Since this test is sufficient but not necessary, we return to 

the necessary E test, (10). § 9.2. From- (8), § 9.2. we have 

E{x.y,y',Y') 
(T+f'*)(i .• (ft) 

Evidently the inequality E(x.y,y\Y') 0 is not true for all 

finite values of Y\ so that the intej^ral po8.ses.Kes a weak but not 

a strong minimum. 

The extremals of (7) are given by eliminating the parameter 

p from equations (4) and (6), § 1.16, and the solid of minimum 

resistance, is then obtained by revolving these curves about 

the f/-axis. The investigation of this section shows that it must 

be possible to construct solid.s of revolution. which offer 

less resi.stance to fluid.s than The meridian curves of 

would not possess continuously varying tangent.s, as i.s the ca.ne 

for*S„» but would be built up from a series of arcs which change 

direction discontinuously at their points of intersection, as in the 

discontinuous solutions of § 1.17. 

9.4. The Weierstrasslan condition by an alternative 
method 

The Eulerian equation of the integral 

B B 

I ^ ^ F(x,y,y')dx ~ j Fdx (1) 

defines a family of extremals with two parameters. I^et F, denote 

the extremal which passes through A and B, the fixed end 
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points of the arc of integration, and let ns assume that there 

are no points conjugate to A ov B lying within the arc. Take P 
and Q, any two points on the arc between A and B, and through 

P draw any curve V making an angle other than zero w ith at 

P (Fig. IX. 3). Through Q can be drawn a singly infinite one- 

parameter family of extremals of (1). Let one of these meet F 

at B. 

Consider the integral 

p R Q h 

J : (‘ Fdx- f Fdx r I* Fdx-r f F dx, (2) 
A p U it 

As R moves along F. J will be a function of the abscissa of R, 
and we may denote it by If the abscissa of P is x^ it is 

evident that L 
If / is to be a tninimum for the path F^, then J must be a non- 

decreasing function of ^ as R moves away from P, so that 

t) when ^ Xj. In interpreting this result we must 

look u}K)n Sf as the radius vecU>r of i? in a system of polar co¬ 

ordinates of which P is the pole and the tangent to AB at P is 

the initial line. The direction from A to B along the extremal 

will be called the forward direction. In Fig. IX. 3, as Q tends 

to P the direction of PQ tends to that of the forw ard tangent 

at P, The vectorial angle of PR will be the angle measured 

counter-clockwise from the forward tangent at P. 

VVe now proceed to evaluate Evidently the deriva¬ 

tives of the first and fourth integrals of (2) vanish for fixed P and 
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Q. The derivative of the second integral is F{x\y, Y*)^ where F' 

is the slope of PB at P. Since QR is an extremal wdth variable 

end point R the derivative of the third integral can be obtained 

by the method of § 8.2. From (0), § 8.2, the result is 

(3) 

where (i) the suffix p denotes that all variables have their values 

taken at the point P, (ii) y' is the slope of the forward tangent to 

the extremal at P, and (iii) Y' is the slope of F at P. 

CJollecting these results w’o have 

F(x,y. Y')-F{x.y.y')--(Y'-y') 
^F(x,y.y') 

'ey' I 
= F(x,y.y'.Y’)^, (5) 

from (8), § 9.2. Consequently F, is the path for minimum. I if 

E{x,y,y',Y') > Oat all {wints of F, and for all finite values of 

}", in agreement with (10), § 9.2. 

9.5. Conjugate points related to fields of extrenaals 

The object of this section is to show that there is a close con¬ 

nexion between conjugate pf>ints, definetl in § 2.0. and fields of 

extremals, defined in § 8.12. The results obtaine<l so far can then 

be expressed in terms of whichever of these two concepts is 

more convenient. We shall prove the following result. 

Let be an arc of an extremal for the integral (1) of § 9.4. 

If A B can be enclo8e<l in an arc .^1. B^ which contains no points 

conjugate to A and B and no zeros of d^Fley'*, then we can 

construct a field of extremals, as definefJ in § K. 12, of which the 

extremal AB is & member. 

To prove this we first observe that the Eulerian equation for 

the integral (i), § 9.4, has solutions of the form 

y = «(x,ci,c,), (1) 

where c, and c. are parameters. Associated with this is the 

accessory equation, (I), § 2.4, a second-order equation having 

By/dCi as independent solutions, § 2.8. Let P be a 
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point on the extremal then the solution of the accessory 

equation which vanishes at P also vanishes at all points on P^ 

which are conjugate to P, § 2.6. 

I.»et bo the coordinates of a point P on P^. Then the 

one-parameter family of extremals passing through P can be 

obtaineil by eliminating one of the parameters or from (1) 

and . V /rtv 

A more symmetrical result is obtained if and C2 are expressed 

in terms of a third parameter \, define<l by 

(3) 

The one-})arameter family of extremals through P then takes 

the form 

From (1) we have 

n/ 
cx 

y - 4>(x, a). W 

(5) 

Differentiating (2) and (3) with resj)ect to a we can then eliminate 

and cr.^ c x from (o). The result is 

c\x 
n/ g/o] 
rc, ( fjj crj’ 

(6) 

where C is a constant <iej>en(iing ni)on .r^ and i/q. On writing 

Ml ■ t'.Vo. c’ri. »i - dw, dj-Q. m, - r'i/o ^<'2 "2 — du^ dx^ we 

have 
I 

«, Mj— m'i Mj. (7) 

•Since dyidCi and dyj^i are solutions of the accessory equation 

it follows from (4), § 2.18, that (7) can be written in the form 

(8) 

where is a constant independent of .r^ and hypo¬ 

thesis, d^Fjdy'* does not vanish at any point of an arc Ai 
enclosetl by and enclosing AB, see Fig. IX. 4. There¬ 

fore C cannot vanish at any point of Ai B^. 
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Now, from (6), (}IC)Byjca is a solution of the accessory equa¬ 

tion which vanishes at P, where y ^ i/q, and consequently its 

zeros can occur only at the conjugates of P, Hence, if is the 

nearest conjugate, dyld^x has constant sign for that section of 

PP^ which lies inside (Fig. IX. 4). By choosing P sullici- 

ently near to A, but outside the arc A B, and observing that the 

conjugate of ^4 lies outside A /i, we deiluce that cy has constant 

Fio. IX. 4. Vui. IX. 5. 

sign and cannot vanish for S4>ine arc A ,^ By which enclo.ses .4 B. 
Assuming that ty dx is a continuous function of x and this 

constancy of sign must hold at all points of a strip t)r domain *S* 

which encloses AB. Thus, if a member of (4) |H>.s.sesse,s an arc 

CD which lies in the domain S, by b \ has constant sign at all 

[K)ints of CD. In constructing S wc must cxcludi* the point P. 
We can now prove that those are.s of (4) which lie within 4S‘ 

possess the properties of a field of extremals. For let Q be a 

point in S (Fig. IX. 5) and let the ordinate through Q intersect 

the boundaries of S at Qf^ and A.s Q, coordinates 

traverses the interval Q^^Qi, Xj remains constant and (4) becomes 

a relation Ijetween y, and a, namely y^ ff>{x^, x). But the 

constancy of sign of dyid-x shows that as y stea<iily increase's nt 

either steadily increases or steadily decreases. Hence, for given 

the equation for a, ^(x,, a) - y,, can have only one root, and 

only one member of (4) can therefore pass through Q. (Con¬ 

sequently the domain H encloses a field of extremals of which the 

extremal AJ9 is a member, as requirech 
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9.6. Conditions for a strong maximum or minimum 

The results bo far obtained can be summarized in the form of 

two theorems. The integral /, with fixed end points A and B 

for the range of integration, is defined as usual by 

B 1i 

I j" F(x.y,y)dx - \ F dx, (1) 
A A 

Theorem 17. The JoUoiving conditions are necessary to ensure 

a strong minimum for the integral /. 

(i) The equation of the arc of InUgraiion. must satisfy 

tf_d UF 

cy dx\cy 

(ii) The arc AB, of F^. contains no point conjugate to eitfur A 

or B (see § 2.fi). 
i'iF 

(iii) all points of this arc - : - 0. 
< y ■- 

(iv) At all points of this arc and for all finite mines of p 

(.see § 1J.2). The possibility A"(.r. y,//',;>) 0 at all points 

of the arc for all finite mines of p is excluded. 

For a strong maximum the inequality signs of (iii) and (iv) must 

be reversed. 

Theorem IS. The fedlowing conditions are sufficient to ensure a 

strong minimum for tin integral I. 

(i) and (ii) as for Tfoorcm 1 /. 

(iiiri) At all points of the arc AB. of F^. and for all finite values 

//./>) ^ 

For a .strong maximttm (he ineguality sign of (iiia) must be 

reversed. 

The differencfi between conditions (iii) and (iiifl) has already 

been noted. In Theorem is (iiia) p can have any value, 

whereas in Theorem 17 (iii) y’ is the slope of the extremal. 
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Conditions (ii) and (iii), or (ii) and (iii a), enable us to construct 

a field of extremals containing as a member. The proof of 

Theorem 17 then follows immediately from (iv) and the analysis 

of § 9.2, in particular (9), § 9.2. The proof of Theorem 18 follows 

from (1), § 9.3, for if (iii a) holds, then conditions (iii) and (iv) of 

Theorem 17 are both satisfied. 

But it is possible for (iii) and (iv) to be witLsHed w ithout (iiia) 

holding for all values of so that the conditions of Theorem 18 

are sufficient but not necessary. 

Evidently if I has a strong minimum it must also have a weak 

one, but the converse is not necessarily true, as the problem of the 

solid of minimum resistance, § 9.3, shows. Weak variation.s are 

very special cases of strong ones, so that a w eak minimum can 

hardly be regarde<l as a true minimum. Nevertheless the 

possession of a weak minimum is an im{X)rtant functional 

property which may have useful applications to practical prob* 

lems. Much of the analysis which occurs in the theory of weak 

variations still retains its value in the theory of strong variations, 

e.g. accessory equations, conjugate points, focal jM)intH, etc. 
It is mainly the Legendre tt^st of§§ 1.5 and 2.5 w hich is seriously 

affected by the W'eierstrassian intrmluction of .strong variations, 

for this must be replaced by the far more jx)werful E test of § 9.2. 

9J. Strong variations for integrals with two dependent 
variables 

The results obtained al)ove for integrals with one de{>endent 

variable can be generalized in many ways. In this section we 

shall state, without proof, the generalization to integrals of the 

typ® B B 

A A 

where the path of integration is along a twisted curve in three- 

dimensional space. Here x is the independent and y, z are the 

dependent variables. We confine ourselves to the case where 

the end points of intc^pwtion, A and B, are fi.xed, and fur brevity 

we write p =» dyfdx and q « Bzjdx. 
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3-1 
(2) 

I is stationary if y and z, as functions of x, satisfy the two 

Eulerian equations! 
'e H_d 

dy dx\dpj 

d pm 
6'2 dx\t<l} 

Theories of conjugate points and fields of extreniak can be 

develoj>ed for (1) in much the same way as for the integral 

J* y, dx. The ct>rre.sponding Hilbert integral 1* is given 

0. 

*>y 

I* II dx r ((/»- » 4-(d: 
rp 

qdx)-^\dx. (3) 

At every |M)int A' of the path there is a tangent to the path and 

a tangent to the extremal of the field through A". The direc¬ 

tion ratios of and are resj>ectively (dx:dy\dz) and (1 :p:g). 

In a field of extremals it can he proved that the value of is 

indejKMident of the path of integration and depends upon the 

coordinates of the eml points only.J 

If at a {xiint P of a fieki of extremals we have 

H dx \-{dii —p dx)-\-(dz -~q dx)— =0, (4) 
ip dq 

then the direction {dx:dy:dz) is said to be transversal to the 

extremal through P, All transversal directions at P evidently 

1 ie in a j)lane and t he en veloixxs of these planes are surfaces known 

as transversals of the field. 

The Weiorstrassian E function for (I) is given by 

E{x,!pz\ p.q\ I\Q) - H(x.ipz: P,Q)-H(x,y,z\p,q)- 

tH{x,y.z\p.q) 

ip 
,5) 

r). denot'O the extremal through A and B and r„ a neigh¬ 

bouring curve passing through these i^ints. If 8/ denotes the 

t 8eo § 3.2. e<|UAtioi%a (7) and (8). 
X For proofH of thcwio and fiubfliHjuont «tat4»inont« mo G. A. Bliss. Leciurts 

on lAi? ro/r«/u» of Variaiirm*, University of Cliioago Pre«a. B'or conjugate 
points and IlcUts. pp. 29 and 46; for Hilbert's integ^l. pp. 44 and 49; for 
extensions to space of (n 1) dimensions, p. 86. 
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difference between the values of I when the paths of integration 

are and F^. it can be proved that 
B 

hi I K(r,y,z-.p.q-, P,Q)dx, (6) 
Jt 

where the integration is along F„. At a point X of F„ the direction 

ratios (l :P:Q) and (I:p;) are rt^spectively those of the 

tangent to F,, and the tangent to the extremal of the Held passing 

through A'. 

In a field of extremals we can obtain generalisations of 

theorems 17 and IH. Thus I has a strong minimum if (i) equa¬ 

tions (2) are mitisfie<l, (ii) the arc Ali of 1^^ contain-s no |K)int 

conjugate to .4 or B, (iH) Q) > Oat every point 

of this arc and for every finite value of P and 

9.8. The Weierstrassian theory for integrals in para¬ 
metric form 

Curves can often be studied with great facility when the 

coordinates of their points are expresse<l in parametric form. 

For example the coordinates of points on the* circle ar^-f p* 

can be express<Hl in the form (a cos/, a sin/) or alternatively in 

a- a —An infinite number of such para- 
\ l^rij ^ 

metric repre-simtatioiiH are |K)s.sible fi^r any curve. 

In the general case we shall assume that the coordinates (.r.p) 

can be? expressed in parametric form by means of the ecpiations 

^ y (1) 

and we shall denote differentiation with resfH'ct to ( by means 

of dots.J: The integral 

A 

then becomes (3) 

t lo<r. cit. For proof of (6) moo p. 41 unrl for ronditionii for a iiiroiig 
minimum noe p. 45. 

t No aiAociiilion with time in implied hy the use of t. 
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We shall write this in the form 
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I - (4) 

and observe that the integrand of (4) is a homogeneous function 

of degree one in the variables x, y. 

Evidently the value of / must he independent of the para¬ 

metric form chosen for x and y. For example the length of the 

circular arc, . . 
I (U j (x- ry^)^ (It, (5) 

must be the same whether we use x ~~ a cos/, y ™ a sin/ or 

X — a y as is easily verified. If we write 

/ 2tan”'*T in the first pair of these equations we obtain the 

secomi pair with / replaced by r. Our first problem then is to 

determine the conditions w hich ensure that (2) remains invariant 

whatever parametric form is chosen. 

The change from one parameter to another may be expressed 

by a relati(mship of the form 

/ ^(r). (b) 

where t is the parameti^r after the chamre. Thus we require the 

conditions under which (4) remains invariant for the trans- 

formati<m (fi). For such invariance we must have 

T 

Tj 

dr. (7) 

w here and r, correspond to the imint A and / and r correspond 

to any j>oint on the arc of integration. 

On ditferentiating (7) we have 

.J dx dy\ dt dx dff\ 

In the cme of the spt^cial transformation 

t kr {k jmsitive and constant) 
this becomes 

/ dx dy\,... ,dx ,dtf\ 

(«) 

(») 
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The invariance of (4) under transformation (6) must hold not 

merely along a given arc but in some domain D enclosing the arc 

AB, In such a domain we can choose paths of integration for 

which X, y, y can assume arbitrary values. If I’is other than 

unity, (10) can hold only if 0(x, y,i. y) is homogeneous and of 

degree one in i and y. 

Conversely if Gr(x. y, jr. y) is homogeneous and of degree one in 

the variables x and y, equation (8) is obviously true. If di dr > 0 

we may then integrate with resix'ct to r and deduce (7). 

Consequently the homogeneity condition i.s nece.s.sivry and 

sufticiant to ensure the invariance i>f / whatever parametric form 

is chosen. For the rest of this chapter we coidirje ourselves 

entirely to functions satisfying this condition. 

—— 

9.9, The Eulerian equation for ( 0{x, y, x, y) di 
^ I 

The great advantage of the jmrarnetric form is that x and y can 

be varied inde{)enflently of each other. Let <*oordinate.H y). 

be a point on the [)ath of integration whi(‘h renders the integral 

I — ^ 0{x,tj,x,f/) dt I (1) 

t\ u 

stationary. Consider a path of integration along a neigltbouring 

curve r„ obtained by displacing P to the jKjint Q, coordinates 

fdOr Here f, and are cMuistants and iiU), 

^j(/)ar<r arbitrary functions of / indejx^ndent of c, and Restrict¬ 

ing ourselves to the of lixe<l end |Kunts wo have 

The arguments used in § 3.2 can be rtq)eated here and we then 

prove that / is stationary if x and y, regarded as functions of /, 

satisfy the equations 
cG d p 

ix di 
(2) 

dG d lii 

ty dt Yi 
(3) 

When 0 satisfies the homogeneity conditions these equations are 

not independent of each other, as we now proceed to prove. 
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Since 0 is homogeneous and of degree one in x and y we have 

(4) 
.eG , .ac 

= G. 
dx cy 

Differentiating this identity first with respect to z and then to y 
proves that 

1 eHJ 1 1 . .. 
= *^2*^ == S(z,y,z,y) = .S, (o) 

y^ xy oxcy x^ cy^ 

where S(x.y,x,y) denotes the common value of each of these 

expressions. Again on differentiating (4) partially with resi>ect 

to X we obtain 
r%r r'-fv /••*•!» 

(6) 
HI 

ix 

. r-G . c^G 
X -—y -—^ . 

cxcx cxcy 

Now apply (5) and (6) to (2). It follows that 

(X 

d 

dt © 

Hi 

(X 

cH} 

(XCX 

cHi .. 
, -f- ( «•" 

a*c . 
■ ~-.y- 
cycx 

e^G .. 
■ y 
cycx 

Similarly wo can prove that 

cycx 
S(yx—iy)\. (7) 

cG_d Idfr 

by dt\by ^ 

^G 

cycx 
S(yx-xy) r«^l r (8) 

Since x an<l // do not in general vanish togetherf the two equations 

(2) and (3) are e(pnvalent to the single etpiation 

' _ S(x.y, X, ij)(xy—yx) = 0. (9) 
cxcy cycx 

This is known as the Weierstnissian form of the Eulerian 

e(juation. To use (9), first e\})ress x in terms of any convenient 

function of t, substitute in (9), and solve for y in terms of t. 

Alternatively choose any relationship between x,y, and i and 

by means of (9) x and y can then be expresseil in terms of 

In the subsequent analysis we shall sometimes take / to be the 

length of arc and (i.y) are then the direction cosines of the 

tangent to the extremal at the point (x.y)> 

t X and y vanish Riinultaneoualy at singular pointa. We nhall aasume that 
the extrt*mal in free from surh points when f li<^ iiMide the interval {ti, 
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9.10, The Weierstrassian E function for J 0(x, y, f, y) dt 

Let r, be the extremal and r„ a neighbouring curve. Our 

present aims are firstly to obtain hi, the difference between the 

iB values of ^ Gdt taken along r„ and and 

fnjl secondly to express the result in a form 

J analogous to (7), § 9.2. For these purjM>8es 

I /r^ we toke a convenient point O on P^ along the 

produce<l. Fig. IX. 6, and draw the 

family of extremals which pass thn)ugh O, 

lA^t two neighbouring members of this family 

Q intersect P„ at and Fig. IX. and 

Fio. IX. 6. /{3/X) denote the value of j G{jt, y. i% y)di 

when integrateil along the arc MX, Then it is eiisy to see fn)m 

the figure that 

where — A and ~~ J?. 

The evaluation of the right-hand side of (1) can be much 

shortened by using the results of § 8.2, where a difference similar 

to 1{0Q„^) h<is alrea<ly Ix'en obtained. We use (9), 

§8.2 and make two modifications, one a change of the inde|Km- 

dent variable from x to the current variable and the other a 

change due to the introduction of the second de|H*ndent variable 

in the present investigation. 

To allow' for the extra variable we separate the right-hand 

side of (9), § 8,2, into tw o parts. The first part, F arises from 

the displacement of one end |K>int B to B' along Pj. Fig. VIl I. 1. 

The corresponding displacement here is from to along 

P^ and so F dx^ must Ix^ replaced by G dl. The second part, 

d F 
{9t^y')~,dx, arises from the change In the value of the deinm- 

cy 

dent variable y on passing from the extremal A B, Fig. VUI, 1, 

to the neighbouring curve A B\ The corresfxjnding term for the 

c)G 
prcHient ca»e is {q~y) »nd (»>mpamon of Figs. VIII. 1 and 
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IX. 6 enables us to interpret q and y as follows. They are both 

rates of change of the ordinate of with respect to ^ as 

move.s along and y as move.s along the extremal OQj^, 

The extra dej)endent variable is now easily allowed for by the 

addition of the term dt. where the interpretations oip 

and X are as for q and y above w ith the w ord ordinate replaced by 

abscissa. If dt is the element of arc of then q) are the direc¬ 

tion cosines of the tangent to r„ at 

One point still recjuires investigation. The term 

(Q2~~y ) : dx 

in (9), § 8.2, was obtained w ith the help of the Eulerian equation 

(6). § 8.2. In the present case each of the variables x and y 

sati.sfies an Eulerian equation similar to (6), ^ 8.2, namely (2) 

cG 
and (3). §9.0. The forms we have assunu^d, {q—y)—rdt and 

^y 
cir 

(/> —i) dt. are therefore justified. 

Our final result is 

where terms of order {dt)'^ and smaller are neglecteil and the 

values of the variables are taken at the point 

Since 0(x,y.x,y) is homogeneous and of degree one in x and 

y, we may rei)lace (2) by 

Evidently HQmQm*i) (•*) 

where p and q have the same interpretations as for (2). Once 

again terms of order and smaller have been neglected, as 

will be the case for the rest of this section. 

Now write 

E{x,y;i,y\p,q) 0(x,y,p,q)-p 
.V. •>[-!/) 

dx 
(5) 
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then we have 

E(x,y,i,y;p,q)dt. (6) 

From (1) it follows immediately that 

B 

8/ = J E{x.y, x,y \ p,q) dt. (7) 
A 

where the integration is along the curve r„. 

The function E{x,y \ x,y \ p,q) is the Weierstrassian E function 

for the case when the integrand of 1 is expressed in parametric 

form. Since G{x,y.x.y) is homogeneous and of degree one in 

i, I/, it follows that E{x,y\ x,y ; p,q) is h(mu)geneous and of 

degree one in p, q and also homogeneous and of degret' zero in 

i, y. Thus, regarded as a function of i and //. the E function must 

be of the form x) and so the individual values of x and // are 

immaterial as long as their ratio is unaltered. In E we may 

therefore take (i, y) to I>e the direction cosines of the tangent to 

the extremal at Fig. IX. t>. 

In the case where dt is the element of arc of I'^ we may then 

replace by (cosd,sin0) and (p.q) by (eos^, sin<^) in the E 

function, w here tan 6 and tan are the slo|)es at of ()Q,„ and 

respectively. After these substitutions the K function usually 

assumes its simplest and most u.scTul form. 

9.11. Alternative forms for the E function 

The E function can l>e expressed in a more convenient form 

by means of Taylor’s theorem. Iff{x,y) has continuous partial 

derivatives of the second onler, thenf 

/(xi-h,y+k) = f{x,y) + lh~--^k !~]f(x,y) + 
\ cx cy) 

where ar, = x+Xh, y, = y+Xk, and 0 < A < 1. Applying this 

t R. Coumni. Differential and Integral Calculus, Blackie, vot. ii, p. 80. 
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theorem to G{x, y,p, q), regarded as a function of ja and 9, we have 

0(x,y,p,q) 0(x,y,x,y)-{-{p—x)~ + (q-y)^^-\- 
dx cy 

+ o (”r2+-y) “r"+ 2\ cpl (^Ihc^<h 

+ (2) 

where x \-X{p~~x)y y-i Mfi—y) and 0 < A < 1. 

From the homogeneity property of G(x,y,x,y) the first three 

dG dG 
terms on the right-hand side of (2) simplify to r + 

cx ty 

On using (5), § 9.9, th(i remaining terms on the right of 

(2) .implify to i(py-,K,<iV., 

From the definition of E given by (5), § 9.19. it then follows that 

E(x.y\ i\y\ p.q) l(py—<P')^>^(^f^.y^Pi(Ji)^ (3) 

where Pi and r/j are as defined above. 

When t is the length of arc of r„ may write x -- cos0, 

;> ■ cos^, where tantf and lan<^ are respectively the sloj>es of 

the extremal and of \\. W'e now prove that 

E(x,y; costbsinfb cos<f>,sin<f>) 

^(d~~<f>)S(x,yyQosd,m\d). (4) 

where 0 lies l)etweent 0 and <f>. 

From (5), § 9.10, and the homogeneity property of 0{x,y.i\y) 

we have 

E(x, y \ cm B, sin B\ cos sin <^) 

( cp tx I 

. jli^G(x.y.p,q) f(r(x.y.x,y)) ... 

I ty ) 

where, after the differentiations have been }>orforineti, we must 

write X co8 0, y sin^, p ■■■-- eos^, an<l q sin^. 

t (4) cannot bo dtHlucod fn>m (3) by writing * t'os etc. 
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Now the coefficient of cos ^ is equal to 

&U 
(«) 

where, after the partial ditTerentiation with resjwct to u and 

before the differentiation with resj)eet to ip, we write u = cos ifi 

and V = sin^. On differentiating with respect to ip and using 

(5), § 9.9, the integrand of (6) can be expressed in terms of 

ii(z,i/,cos<p,»intp). We then prove that (6) is equal to 

f 

— j S{x, y, cos Ip, sin <p)iiin Ip dtp. (7) 

0 

In the same way we can prove that the coefficient of sinip in 

(5) is equal to ^ 

J S(x,y, coH Ip. sill tp)cos Ip iUp, (8) 

B 

From (7) and (8) it follows that the right-hand side of (5) is 

equal to ^ 

/ •sv.y. cosip,Amip)sin(fp~-ip) cUp. (9) 

B 

But by suitably measuring the angles 0 and 4> we can satisfy the 

inequaUty ^ 

and so ensure that sin(<P—ilf) does not change sign anyw'here in 

the range of integration. We may then apply the mean-value 

theorem of the integral calcuhist to (9) and de<Jucc the relation¬ 

ship (4), 

9J2* Cionditions for maxima and minima of 
n 

/ = J G{x,y,x,y)dt 
A 

Theorem 19. The following necessary and sufficient con¬ 

ditions ensure a strong minimum for / in the case where the end 

points A and B are fixed and where G{x,y,x,y) is homogeneous 

and of degree one in i and y. 

f R. Coursfit, Differeniiat ami Iniegrat Caiculm, %*ol, i, p. 12S. 
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(i) The variables x and y, which are functions of t, either satisfy 

the two equations 
0 

lc:0\ 

dx dt \c;x / 

SG_d /k;\ (1) 

or satisfy the single equivalent equation (9), § 9.9. 
The curve whose equations in paratnetric form satisfy (1) and 

which jHisses through the fixed end points A and B will be denoted 

f>y i;- 

(ii) The arc AB of contains no imints conjugate either to A 

or to B (see § 2.tt). Singular points must also be excluded (see § 9.9). 

(iii) At all points of this arc 

S(x,y..r,y) > i), (2) 

where the function S is defined by (5), § 9.9. 

(iv) At all points of the arc 

K{x,y,x,y-,p.q)>0 (3) 

for fvrry pair of finite values of p and 7, other than 2> = x and 

q ^ y simultaneously. 

If dt is the element of arc of r„, see § 9.10, then (3) can be replaced 

E[x,y \ cos O,m\0; cos sin > 0, ' (3 a) 

where tand is the slope of the extremal, l^his inequality must be 

satisfied at every point of the arc AB and for all finite values of if>. 

For a strong maximum the signs of the ineqmlities must be 

reversed. 

To prove this wo take l\ to be the extremal and r„ to be a 
neighbouring curve, as in § 9.9, but for simplicity we make 
€j cj. Since and ^^(0 arbitrary functions of e, this 
entails no loss of generality. 

From the analysis of § 9.9 and condition (i) it follows that the 
first variation, i.e. the term in 8/ containing to the first degree, 

must vanish. 
We continue for the moment with the case of weak variations. 

Here, if Q on tends to P on as c tends to zero, then the slojie 
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of at Q tends to that of at P, Hence p--x and q—t) must 

both tend to zero with c. Thus, for sufficiently small < we have 

j>~i = i-,e+0(f*) j 

g-j/- r 

where k\ and are mde|)endent of €. From (7), § 9JO, and (3), 

§ 9.11, we deduce that 
B 

hi J (k^y~-k\xfS(x,y,x.y)dt, (5) 
A 

neglecting terms of order and smaller. Hence condition (iii), 

in conjunction with (i), erasures a weak minimum for /. As in 

§§ 2.6 and 2.7, the |K'rmis,sible length of arc for such minimum 

is governed by the pro[K'rties of conjugate point.'^. ('ondition (ii) 

then allows a weak minimum for the whole length of arc AB. 

Reverting to the case of strong variations, we observe that 

S{z,y,x,y) plays in parametric theory a part analogous to that 

playe<i by c^Fl'cy^ in the analysis of § 2.4. If conditions (ii) and 

(iii) are fulfilled it can \>e proved, by arguments .similar to those 

of § 9.5, that a field of extremals can Ih> constructed of which l\ 

is a member. At every point of such a field x and y have* unictue 

values and therefore the integral of (7), § 9.10, can Ih^ evaluated 

for any giv'en path F^ in the field. It follows immediately from 

(7),§ 9.10, that condition (iv) is neces.Hary and sufficient to ensure 

a strong minimum for /. 

Theorem 20. The follomng are sufficient conditions to ensure a 

Mtemg minimum for I in the case wherf (he end points, A and Ii, 

are fixed and where 0(x, y, i, y) is homogeneous and of degree one in 

z and y. 

(i) and (ii) as in Theorem 19. 

(iiia) li{x,y,p,q) > i) (6) 

al every point of A B and for every pair of values of p and </. 
For a strong maximum the sign of the inequality (6) must be 

reversed. 

To prove this it is evident that condition (iii), Theorem 19, is 
a special case of (uia). Also, from (3), § 9.11, it follows that 
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condition (iv), Theorem 19, is satisfied if (iiia) is satisfied. There¬ 

fore the conditions are sufficienttoensurethetruth of Theorem 20. 

But it is possible for conditions (iii) and (iv), Theorem 19, to be 

satisfied without (iiia) being true for all values of p and q. Thus 

the conditions of Theorem 20 although sufficient are not neces¬ 

sary. 

9.13. Applications to special cases 
Applying (5) §9.9 and (5) §9.10 to integrals of the type 

n 

Ij di, (1) 
A 

wljcre the {M)sitive value of the root is taken, \vc have 

>^(x,y,x,f/) 

g(x, y) 
E{x,y-x,y-/m/) 

E{x,y: cost?,sintl: cos<^.sin<^) -- {\~cos{d—<f>)\g{x,y). 

(2) 

(3) 

(•1) 

If g{x, y) ^ • (I the theorems of § 9.12 then show that I possesses 

a strong mininuun when ihe path of integration is the arc of an 

extremal which contains no jmints conjugate to either end }X)int. 

Among the .s}H'cial civses of thi.s result are (i) the shortest 

distance between two jKiiuls, for which / — {x^-~y‘)^ dt and 

g{x,y) 1. (ii) the principleofleji-st action foraparticleforwhich 

I - f v(x^ i-y^)> d/. and (iii) the brachistochrone problem. 

/- J (l/t)(x^-•-'/*)* dt. j)n)vided that v remains positive 

throughout the motion for (i.' and (iii). 

9.14. Applications to geodesics on surfaces 
I.«t (x, y, z) be the coonlinates of a point P on a surface S and 

eup{>ose that each coordinate can be expressed as a function of 

two variables u and e. If « and r are independent of each other 

their variations give us all points on S, but if they are functions 

of another variable t, then their variations give us points on 

curves lying wholly on .S'. VVe shall confine ourselves to a region 

which contains only one point corresponding to a given («, r). 
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The distance fn)m ^4 to /?. measumi along a curve lying on 

S, is t, 

/ = / (i*+y*+s*)‘rf/ (1) 
A 

H 

- f {Eu'-+‘2Fuv+(}v^)i dl, (2) 

where the positive value of the nxjt is taken and where 

1c z\^ 1 

U) a 1 +(.'») 1 

t x cx ■‘y cz cz i 
—f- ■ ” ■ 

CU CP ch i : v ( It ( »• ' 

/ f jr\ • j fnA ^ fizV- 1 

[aj 1 1 ' I 1 
\c r/ ' ^C* I y < 

(3) 

To avoid singular ptiints on the are .4 li we assume that 

EG—F^ > 0. The geodesics of S are the paths of integration 

for which / is a minimum. 

The Weierstrassian form of the Kulerian tHpiation, (9). § 9.9, 

gives us, after some re<iuction. 

{EG~F^){uv~va) + 

In spite, of its complexity this e(|uatiun has a simple geo¬ 

metrical interpretation in terms of the concept known as geo¬ 

desic curvature. For a plane curve let ifi l>c the angle between 

one of the axes and the tangent at a point P and let s be the 

length of arc measured from some convenient {mint to P. Then 

the rate measures the cun>'ature at P. For the shortest 

distance between two points lying in the plane the curvature is 

zero at every i>oint. This theorj' of curvature can be extended 

to curves lying on surfaces. 
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Let P be a point on a curve C lying on the surface S, then the 

geodesic through P which touches C is known as the geodesic 

tangent at P. Ckinsider the curve on S defined by « = constant. 

By varying this constant we obtain a family of curves which is, in 

many ways, analogous to the family of lines in a plane parallel 

to the x-a-xis. Through each point P passes only one member of 

this family. Ixjt ip denote the angle between this member and 

the geodesic tangent at P and .<t the length of arc of C measured 

from some convenient point to P. Then diplds is the measure of 

the geodesic curvature of the curve C at P. 

E(jualion (4) simply states that at every point of a geodesic 

the gt^odesic curvature is zero.f 

The S function of (.5), § !>.9, becomes for this ca.se 

S(i(, r, 71, i) 
EG-FI_ 

(5) 

.Since EG— P- > 0 and the positive value of the root is taken, 

the inecjuality (<5), § 9.12, is sfitisfied. Hence, for geodesics the 

oonditioiis for a strong minimum are satisfied, subject, of 

course, to the re(|uircmcnts of conjugate points, (ii). § 9.12. 

t A. H. Kt>rs\ til, Lrcturr^i on (he OtiGneiry of Cnri't^ nnii Surface/:^ 

(Viinbriil^ rijivorHity I’rt'ss, }.. \y.\. Tho geotJenic curvature in this lK>ok is 

»lcnot4*4i hy 1 y. th<* parameters ujwmI are p ant^ '» ^instead of u ami cl; and the 
syrnlMils A and F art* tlefined on p. 46. 
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