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Preface to the Second Edition 

In the second edition of “Mechanics of Materials,” no change 
has been made in the presentation or the topics so ably covered 
by Professor George and Professor Rettger. 

The major change in arrangement consists in altering the order 
of the last four chapters, thereby bringing all the theory on beams 
into sequence. The data in all but four of the arithmetical 
problems have been changed and the rivet and column specifica¬ 
tions have been brought up to date. A new feature of this edition 
is the article on the graphical solution of combined stresses. 
Many of the problems have been rewritten, some have been 
omitted, and two hundred fifty six review problems, without 
answers, have been added at the end. 

The author here takes the opportunity to express his appre¬ 
ciation of the interest of teachers and others in the revision 
of this book as shown by the many helpful comments and 
criticisms offered. 

E. V. Howell. 

Ithaca, N.Y., 
February, 1943. 

v 





Preface to the First Edition 

This text covers the essential topics of a first course in 
mechanics of materials and is intended primarily for the use of 
students of engineering in American universities. 

Many years of experience have convinced the authors that the 
necessary parts of a course in mechanics of materials can be 
grasped most effectively if the treatment of the topics is simple 
and complete. References are, however, given in the text to 
more advanced treatises on the general subject. The addition 
of numerous complete examples, presented in as prominent a 
way as the theory of the subject matter itself, is considered 
by the authors to be a valuable and essential feature of the book. 
The limitation of the number of problems to what a reader can 
be reasonably expected to master in the time usually available 
for the subject has also been a prime consideration. Other 
problems based upon the text, the examples, and the given 
problems will suggest themselves to the reader. Both the 
examples and the problems have been devised to emphasize the 
fundamental theory underlying the solutions. In the selection 
of problems, the authors were guided by their conviction that a 
student gains more mastery of the subject if he can apply the 
basic theory to problems of some magnitude and difficulty. He 
profits less by the solution of many simple and elementary prob¬ 
lems all resembling one another. 

This text contains more material than is usually covered in an 

elementary course. The arrangement of the advanced material 

is such that any or all of the advanced topics may be eliminated 

without loss of sequence in the more elementary portions. 

No attempt has been made to avoid the use of elementary 
calculus since the simplest and most concise treatment of many 
of the topics requires the calculus method. On the other hand, 
the usual repetition of the discussion of centroids and moment 
of inertia has been omitted on the assumption that this theory 
is given in mathematics or in a previous course in analytical 

mechanics. 



PREFACE TO THE FIRST EDITION viii 

In topics having to do with the design of members, modern 

methods of analysis and of treatment have been used. This is 

particularly true in the case of beams, columns, and members 

subjected to combined bending and column action. 

One of the distinctive features of this text is the inclusion 

of the material in Chap. XII on the slope-deflection method, the 

value of which has been proved by the authors in many years of 

use. It has been found that the treatment of the slope-deflection 

method and the theorem of three moments, arouses the interest 

of students to a marked degree. At the same time it provides a 

valuable review of the theory of beams at an advantageous time 

near the end of the course. No difficulty has been experienced 

by students in mastering this subject. In one form or another, 

the slope-deflection method is used in more advanced methods of 

structural analysis, and the discussion given makes a useful 

introduction. 

The Authors. 

Cornell University, 

March, 1935. 
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Greek Alphabet, Mathematical Data 

Note.—Letters of the Greek alphabet will be used frequently. It is 

necessary for the reader to recognize these letters when they appear in the 

text and to be able to write them legibly. 

GREEK ALPHABET 

Letters Names Letters Names 

A a Alpha N Nu 

B 0 Beta S ( Xi 

r 7 Gamma O 0 Omicron 

A 5 Delta II 7r Pi 

E € Epsilon P P Rho 

z r Zeta 2 (T Sigma 

H 17 Eta T r Tau 
e e Theta T u Upsilon 

I i Iota $ <p Phi 
K K Kappa X x Chi 
A X Lambda ¥ p Psi 
M m Mu 0 CO Omega 

NUMERICAL CONSTANTS 

t — 3.1416, or approximately 3|, i.e., ^. 

- = 0.3183; 7T2 = 9.870; 4 = 0.10132; V* = 1772 
7T 7T* 

1° = 0.01745 radian. 1 radian = 57.3°. 

sin 1' = tan 1' = 0.000291. 

log« N = 2.303 logio N. logio N = 0.4343 log* N. 

TRIGONOMETRY 

sin2 A + cos2 A = 1. sin2 A - 1 cos 2A- 

sin 2A = 2 sin A cos A. cos_ 1+COS2.4 

cos 2A = cos2 A — sin2 A. tan2 A = sec2 A — 1. 

= 2 cos2 A — 1. 

= 1 — 2 sin2 A. 

xiii 
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DIFFERENTIAL FORMS 

dx{cx) = C. 

d , . dn 
-z-(cu) = Cj-- 
dx dx 

d . . » du . dv 
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MECHANICS OF 
MATERIALS 

CHAPTER I 

STRESS AND STRAIN 

FUNDAMENTAL CONCEPTIONS 

1. Knowledge of Materials in Connection with Engineering 
Design.—Before entering upon the treatment of the topics which 
form the content of this book, we shall consider briefly in what 
way the subject matter is related to the important field pf 
engineering design. 

Suppose, as a first case, that an existing structure is to be 
the subject of an engineering investigation. It may have been 
weakened by decay or corrosion, or a change in the forces or loads 
to which the structure is to be subjected may be proposed and it 
may be necessary to reinforce its members, or to make some 
improvement in the arrangement or sizes of its parts. 

It is evident that for such a structure the loads may be easily 
ascertained. The materials of which the parts are made may 
be examined. The essential dimensions of every member may be 
measured. The manner in which each part is acted upon by 
external forces and by forces coming upon it from adjacent parts 

may be determined. When all the necessary preliminary 

information is at hand, the investigation narrows down to the 

study of each separate member and terminates in the calculation 

of the strength (and possibly also of the deformation) of the 
member under the conditions in which it is found in the structure. 

The second type of problem is of more frequent occurrence and 

usually is more interesting. The structure is at first only a 

creation of the imagination of the designer. Naturally the struc¬ 

ture which he has in mind is likely to be influenced by former 

designs and by the ideas of others. Still a great deal of latitude 
1 



2 MECHANICS OF MATERIALS 

is offered to the designer of any new structure in the use of his 
inventiveness, his knowledge of facts and of materials, and his 
skill in analysis before his concept is fully developed. 

Among the many considerations that the designer of a new 
structure must take into account, the following should be 
included: 

a. The arrangement of members to form an advantageous type 
of structure. 

b. The determination of the loads which the structure must bear. 
c. The choice of materials to be used for its various parts. 
d. The selection of suitable shapes for the members. 
e. Provision for sufficient strength in every part of every member 

so that life and property may be safeguarded. 
/. Calculations for possible excessive deformations of its 

members. 
g. As a final step, the proposed structure should be compared 

with other conceivable and practicable structures on the basis 
of economy. Cost always is an important factor and often is 
the controlling factor. 

Viewing the considerations stated above, the present text 
deals in an elementary wray with the determination of the shape 
and dimensions of individual members so that a member may 
have the necessary strength and rigidity and at the same time 
will contain as little material as is practicable. That is, the 
question of economy will be limited to economy of material of 
individual members. Matters of general economy, shop prac¬ 
tice, erection, and the like are merely mentioned or are left to 
specialized courses. 

2. Mechanical Properties of Materials.—Experience has led 
to the conclusion that different materials are not affected in the 
same degree by the application of forces of a definite sort. A 
piece of wood may be bent much more easily than a bar of steel 

of the same size and shape. Such information is, however, 

not sufficiently definite to be of high engineering value. Mere 

casual observations of the behavior of materials under force 
action are naturally qualitative in character. It is clear that 
quantitative values, expressed in terms of established units, 
axe needed if reliable laws are to be deduced concerning the 
behavior of pieces of material under the action of forces. 
' The foregoing statement explains why so much effort has been 
expended in obtaining and in correlating information on the. 
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mechanical properties of various substances useful in construc¬ 
tion. Most of such information is obtained from tests performed 
in laboratories that are especially equipped for testing operations. 
In addition, other facts have been gradually collected by the 
engineering profession as a result of experience in the best 
laboratory of all, the laboratory of actual use. 

3. Mechanics of materials treats particularly of the internal 
stresses and also of the deformations of elastic solids due to 
the effect of external forces. This branch of mechanics is also 
called resistance of materials; or strength of materials. 

Starting with experimentally determined mechanical properties 
of materials, laws and formulas are established by a process 
of reasoning that is mainly mathematical in character—laws 
and formulas that will be used in the analysis of stresses, in 
the design of members of a structure, and in the calculation 
of the changes of form of the members as caused by these stresses. 

4. Stress.—It is a law of nature, first clearly formulated by 
Sir Isaac Newton, that forces always occur in pairs, i.e., as 

“action” and “reaction” between two bodies or between two 
parts of the same body. The forces constituting such a pair 
are always equal but are oppositely directed. In Mechanics of 
Materials, either force of such a pair is termed a stress. 

In Fig. 1, A and B are two bodies in contact. The force 
exerted by A on B (or by B on A) is called the stress acting on 
their surface of contact CD. In like manner (Fig. 2), if a body is 
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imagined as divided into two parts A and B by a surface CD, 
the force exerted by A on B (or by B on A) is called the internal 
stress acting on their surface of contact. 

The force exerted by A on B (or by B on A) is always dis¬ 
tributed over their surface of contact. This surface may be 
small but it never can be a point or line. When the term stress 
is used, it should be with the understanding that it is “force 
distributed over a surface.” No force should be termed a stress 
unless the surface over which it is distributed is clearly perceived. 
The surface may be curved or plane. A plane surface within 
a body will be called a section. Thus CD in Fig. 2 is a section. 

5. In the same problem a force may be treated as a stress for one purpose 

and as a load or a reaction or a concentrated force for some different purpose. 

Let OD be a beam resting on end supports and carrying a load G as shown 

(Fig. 3). Let CD be the surface of contact between the beam and the sup¬ 

port N. The upward force Fi exerted by the support against the beam, 

considered merely as a necessary force to keep the beam in equilibrium, 

becomes a reaction which for many purposes may be treated as a concen¬ 

trated force. In reality this force is distributed over the surface CD of the 

beam, and if the force exerted on a unit area of this surface is too great the 

beam will fail (crumble or crush) at this surface. In like manner, for many 

purposes the equal and opposite force Fi exerted by the beam on the support 

may be treated as a concentrated force. It is, however, actually distributed 

over the surface CD of the support, and if the force per unit area of this 

surface is too great the support will fail (crumble or crush) at this surface. 

Hence sufficient bearing surface must be provided between beam and sup¬ 

port to avoid injury to either along their surface of contact. For this 

purpose it is necessary to consider the forces exerted between beam and 

support as distributed over their surface of contact. That is, it is necessary 

to investigate the stress acting on the surface CD. 

6. Total Stress.—A stress is a force distributed over a surface. 
The resultant of this stress is called the total stress acting on that 

surface. 



STRESS AND STRAIN 5 

The total stress on a surface CD within a body in equilibrium 
may be found from the consideration that, if this surface is 
imagined as dividing the body into two parts A and B (Fig. 4), 
the resultant of the forces exerted by B on A together with all 
other forces acting on A form a system of forces in equilibrium 

Fig. 4. Fig. 5. 

(Fig. 5). In like manner, the resultant of the forces exerted by A 
on B together with all other forces acting on B form a system of 
forces in equilibrium. That is, the total stress acting on CD may 
be found by considering the equilibrium of either A or B. 

Example I.—Assume the eyebar (Fig. 4) to be in equilibrium. 
It is required to find the total stress F acting on the 
section CD. Imagine the plane CD to divide the bar into 

two parts A and B. Take A free (Fig. 5). If the weight of the 
bar is neglected, the only forces acting on A are P and F. For 
equilibrium to exist, these forces must be equal and opposite and 
must act in the same straight line; i.e., F = P. 

Example II. Fig. 6.—Assume the body in equilibrium under 

the action of the five forces Pi, P2, P3, Pi, P5. It is required 
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to find the total stress F acting on the section CD. Take B 
free (Fig. 7). Now the forces acting on B are Pi, P2, and F. 
The weight of the body is neglected. For equilibrium to exist, 
F must be equal and opposite to R, the resultant of Pi and P2; 
i.e., F = R. 

Note.—From Fig. 7, it is evident that the total stress on a 
section in a body need not act at right angles to the section nor 
need it act at the centroid of that section.* 

7. Normal or Direct Stress. Shearing Stress.—The resultant 
stress, i.e., the total stress on a section, may act normally, 
tangentially, or obliquely to the surface. If it acts obliquely, 
it may be resolved into a normal and a tangential component. 

Fig. 8 

For instance (Fig. 8), let a body be acted upon by two forces 
P and P. Imagine the section CD to divide the body into two 
parts A and B. Take A free (Fig. 9). From Art. 6 the total 
stress F acting on CD must be equal and opposite to P. Hence 
F acts obliquely to CD. . 

Let 6 equal the angle F makes with the normal to the section 
CD. Resolving F into its normal and tangential components, 

Fn = F cos 6,) 
F8 = F* sin d.) (1) 

The two components of F, i.e., Fn and F8, usually are called the 
stresses acting on the section CD. The normal component Fn 

is called the normal or direct stress, and the tangential component 

F9 is called the shearing stress or the shear. 
If the normal stress Fn acts away from the section (Fig. 9a), 

it is called a tensile stress; if it acts toward the section (Fig. 96), 
it is called a compressive stress. That is, if the normal stress Fn 
on a section is tensile, the two parts A and B into which the body 
is imagined as divided by the section tend to pull apart; if com¬ 
pressive, the two parts push against each other. 

* Center of gravity of that section. 
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Tensile and compressive stresses are essentially alike. If 
one is considered positive (+), the other is negative (—■). When 
it is desired to distinguish between them, they may be denoted 
by Ft and Fc, respectively. 

A compressive stress between two different bodies is called 
a bearing stress. For instance (Fig. 3, Art. 5), the compressive 
stress between the beam and the support N- is a bearing stress. 

_D 

f p 
a Xr^F 

FsV 
- 

Fig. 9 

If we imagine a given section in a body to divide that body 
into two parts A and B, then the shearing stress on that section 
measures the tendency of the two parts to slide one on the other 
along that section. For instance, let the body represented by 
Fig. 86 be a block of ice. Evidently the two parts A and B 
tend to slide one on the other along the surface CD, and they 
would do so if the block of ice actually were cut along CD (Fig. 
10). The block of ice, however, is not cut along CD and it is 
the shearing stress FM which B exerts on A (Fig. 96) that prevents 
A from sliding down on £ along the surface CD. In like manner^ 
it is the shearing stress which A exerts on B that prevents B 

from sliding up on A along the surface CD. 
If the stress on a section acts wholly normally (no tangential 

component, i.e., no shear on that 
section), it is called a pure normal 
stress, tensile or compressive as the 
case may be. For instance, with 

reference to Fig. 5 (Art. 6), the stress 
F on the right section CD acts wholly 

normally and hence F is a pure 
tensile stress (no shear along that section). In like manner, 
if the stress on a section acts wholly tangentially (no normal 
stress on that section), it is called a pure shearing stress or a 

pure shear. 
8- Unit Stress or Intensity of Stress—If a stress on a plane 

surface is so distributed that equal amounts of stress act on all 

c 
Fig. 10. 
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equal areas—if, for instance, each square inch of surface bears 
the same amount of stress—the stress is said to be uniformly 
distributed. In the case of a uniformly distributed stress, the 
stress per unit area is called the unit stress or the intensity of 
stress and is found by dividing the total stress on a surface by 
the area of this surface. Thus, for a uniformly distributed 
stress, if F equals total stress and S equals intensity of stress 
(unit stress) acting on a surface of area A, 

S = J or F = SA. (2) 

When the distribution of stress on a surface is not uniform, 
Eq. (2) gives the average intensity of stress. To find an expres- 

P 
I 

sion for the intensity of stress at a given point P of a surface, 
let AF be the total stress acting on an element of area A A sur¬ 
rounding the given point P (Fig. 11). The average intensity of 
stress on this increment of area is 

S = 
AF 
A A 

If A A is taken small enough, the stress on this increment of area 
may be considered as uniformly distributed and hence, in the 

limit as A A approaches zero, AF/AA becomes the intensity of 

stress on an indefinitely small area surrounding the given point 

That is, the intensity of stress at the point P is 

Urn AF dF 
*A * 0 AA dA (3) 

Equations (2) and (3) apply to normal, shearing, and oblique 
stresses. In practice, however, they are applied as a rule only 
to normal and shearing stresses. 
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It is important to understand clearly what is meant by the 
intensity of stress at a point. Suppose that the intensity of 
stress (normal, shearing, or oblique) at a given point in a surface 
is S = 10,000 pounds per square inch. This means that, if a 
stress were distributed over a square inch of surface in the 
same way in which it is distributed over an indefinitely small 
area surrounding the given point, there would be a stress of 
10,000 pounds uniformly distributed on this area of 1 square 
inch. 

The unit stress or intensity of stress is sometimes called 
simply the “stress” when the meaning is evident from the 
context. 

The English units used in expressing the intensity of stress 
are often written in abbreviated form. Thus 
11 pounds per square inch ” may be abbreviated into 
lb./sq. in., lb./in.2, #/sq. in., or lb. per sq. in.; 
“tons per square foot,” into tons/sq. ft. ortons 
per sq. ft., etc. 

Example ,1.—If a stress of 30,000 lb. is uni¬ 
formly distributed over a plane surface of 2 sq. in. 
(A = 2 sq. in.) and if the resultant stress (F = 12 
30,000 lb.) makes an angle of 30° with the normal 
to this surface (Fig. 12), the unit normal stress is [Eq. (1)] 

ph*r— 

_ Fn _ F cos a _ 30,000(0.866) 
~~ A ~ A 2 

= 13,000 lb./sq. in. 

and the unit shearing stress is 

F, F sin a _ 30,000(0.500) 
“ A A 2 

= 7500 lb./sq. in. 

Example II,—If a normal stress of 80 lb. is distributed uni¬ 

formly over an area of A = 0.005 sq. in., the normal stress 
per unit of area is Sn = 80/0.005 = 16,000 lb./sq. in. That is, 
if 16,000 lb. were uniformly distributed over an area of 1 sq. in., 
there would be 80 lb. on each bit of area measuring 0.005 sq. in. 

9. Stress Solid.—The distribution of the normal or direct 
stress acting on a section (or a surface) is conveniently shown by 
representing the intensity of the normal stress at various points 
in the section. In Fig. 13, suppose it is desired to represent the 
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distribution of the normal stress acting on the section CDEH 
(section may have any shape but represented as rectangular for 
convenience). At the point P in the section draw an ordinate 
PM perpendicular to the section to represent to some scale the 

intensity of the normal stress at P. That is, PM = S, where 
S equals intensity of the normal stress at P. Imagine this 
done for all points in the section. The solid CDEH . . . IJKL, 
thus formed, is called the stress solid for the section CDEH, 
its height at any point (_L section) representing the intensity of 
the normal stress at that point. 

I 

!y 
Fig. 13. 

In the case of a shearing stress, the stress acts tangentially. 
If, however, the intensity of the shearing stress at each point 
in the section is represented also by an ordinate (_L section), 
a stress solid is constructed for the shearing stress. The dis¬ 
tribution of the stress on a section may be fully represented, then, 
by drawing two stress solids—one for the normal or direct stress, 
and one for the shearing stress. 

10. Theorems concerning the Stress Solid.—If Fig. 13 
(Art. 9) is referred to, the stress (total) acting on the element 
of area dA surrounding the point P is dF = SdA = volume of 

the elemental prism having dA as its base and S as its height; 

i.c., 

dF = dV or F = V. (4) 

Hence 
I. The total stress (normal or shearing) acting on a section 

equals the volume of the corresponding stress solid for that section. 
Point of Application of Resultant Stress.—It is frequently 

necessary to know at what point of a section the total stress 
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acts. To locate 0, the point of application of the total stress 
acting on the section CDE (Fig. 13), take DE and DC as the 
X- and F-axes, respectively. In elementary mechanics it was 
seen that the moment of the resultant force with respect to the 
X- or F-axis equals 2 moments with respect to the same axis 
of the elementary forces dF acting on the elementary areas dA. 
That is, 

xF = JxdF and yF = jydF, 

or 

. fxdF 
X F 

and a - l«dF. y p 

Or, since dF = dV and F = V [Eq. (4)], 

. _ JxdV 
x ~ V and fl _ fydv 

y = (5) 

Equations (5) are the calculus expressions for the x- and y-coordi- 

nates of the centroid (center of gravity) of the stress solid. 

Hence 
II. The toted stress (normal or shearing) acting on a section 

passes through the centroid of the corresponding stress solid for 

that section. 
To illustrate (Fig. 13), if G is the centroid of the stress solid 

CK, then the total or resultant stress F acting on the section CE 

passes through G. 
Stress Uniformly Distributed.—If the stress is uniformly 

distributed over a section, the stress solid becomes a right prism 
(Fig. 14). In the case of a right prism, a line drawn through the 
centroid of the prism and perpendicular to the base goes through 

the centroid of the base; i.e., the point 0 is the centroid of the 

section CDE. Hence 
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III. If a stress is uniformly distributed over a section, the total 
or resultant stress on that section acts at the centroid of that section. 

Note.—Theorem III is very important. In many cases the 
stress may be assumed as uniformly distributed over the section, 
and in such cases the total stress on that section may be repre¬ 
sented as acting at the centroid of that section (Fig. 15). 

Fig. 15. 

11. Stress Figures.—In many cases, the distribution of the 
stress on a section may be represented by a plane figure called 
the stress figure. Figure 16 shows the distribution of the stress 
on the section CD (a section of any shape), it being assumed 
that the intensity of stress is constant along any line perpen¬ 
dicular to the plane of the paper. That is, Fig. 16 may be con¬ 
sidered a side view of the stress solid for that section. 

An important case is that of a rectangular section with a 
trapezoidally distributed stress (Fig. 16). The intensity of stress 
along any line perpendicular to the plane of the paper is constant 
and the stress figure is a trapezoid. If h and b are the dimensions 

D 

of the section (b JL plane of paper), and if Si and S2 are the 

maximum and minimum unit stresses, respectively, then the 
volume of the stress solid is 

V = hb area of section times average unit stress. 

If S2 = 0, the stress figure becomes a triangle (Fig. 17) and the 
stress is said to be triangularly distributed. Hence, since F = V, 

IV. For a rectangular section with a trapezoidally or a triangularly 
distributed stress, the total stress equals the area of section multiplied 
by the average of the maximum and the minimum unit stress. 
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Example. Fig. 18.—Find the total water pressure on the 
vertical face of a dam 40 ft. long if the water is 12 ft. deep. 

In hydraulics it is shown that the intensity of the water pres¬ 
sure in pounds per square foot at a point y ft. below the water 
surface is 

S = 62.5 y. (6) 

Since S is directly proportional to y, the stress figure HCD is a 
triangle; i.e., the pressure is triangularly distributed. 

From Eq. (6) it follows that, at D, S = 0; and at C, 

S = 62.5 X 12 = 750 lb./sq. ft. 

By Theorem IV the total pressure on the dam is equal to the 
wetted surface times the average water pressure. Hence 

P = (12 X 40) X^ = 180,000 lb. 

Fig. 18. Fig. 19. 

By Theorem II, P acts two-thirds the way down from D} 
or 8 ft. below D. (A line drawn through the center of gravity 
and parallel to the base of a triangle will cut the altitude h at a 
point |h from the vertex.) 

Note.—In many problems it is of importance to determine the 
actual distribution of stress on a section. In Fig. 19, assume 
that the stress on the lower part of the section CO is tensile, 

and that the stress on the upper part OD is compressive. This 

case occurs, as will be seen later, when a member is bent. If 

F\ = F2, the total stress on the section CD is F = Fi — F2 = 0. 
Although the total stress is zero (or in a similar case small), 
yet the intensity of the stress at C or D may be so great as to 

cause injury to the material. 
In many problems it is useful to sketch the stress figure for 

a given section and to determine by aid of this figure the maxi¬ 
mum intensity of the stress acting on the section. The maximum 
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intensity of stress must always be considered when determining the 
strength of a member. 

12.. Any straight piece of uniform (constant) cross-section is 
said to be 'prismatic in form and will be called a prism. Many 
of the standard structural shapes such as rods, bars, I-beams, 
and channels are prismatic in form. 

The straight line joining the centroids of the end sections of a 
prism is the axis of the prism (Fig. 20). Thus, if M and N are 
the centroids of the end sections of a prism (not necessarily a 
rectangular prism), the straight line MN is the axis and goes 
through the centroid of every section of the prism. 

A section made at right angles to the axis is a right or transverse 
section, and one cutting obliquely across the axis is an oblique 
section. In Fig. 20, CD is a right section and EF is an oblique 
section. 

A concentrated force that acts along the axis of the prism, 
or a distributed force whose resultant acts along the axis of the 
prism, is called an axial force and is said to act axially. Thus 
(Fig. 20) P is such a force. 

Note.—By definition, a prism is a straight piece. If forces 
are applied to this piece, it may be deformed (bent or twisted, 
etc.) so that it will no longer be exactly a prism. It will often 
be convenient to call it a prism, however, even after it is deformed. 

When this is done, it is meant to imply that originally before the 

forces were applied it was a prism and that it has changed but 

slightly from that shape. 
13. Simple Tension and Compression.—The simplest state 

of stress occurs when a prism is acted upon by two equal and 
opposite axial forces, one at each end of the piece. In Fig. 21, 
let the prism be a tie-rod of the usual form and let CD be a 
right section. Take M free (Fig. 216). Let F be the resultant 
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stress acting on the section CD. For equilibrium to exist, 
P and F must be equal and opposite and must act in the same 
straight line. By assumption, P is an axial force. Hence 
F is an axial stress and therefore acts normally to the right 
section. 

Fig. 21. 

If P is a concentrated axial force (as represented in Fig. 21 or 
Fig. 22) or the resultant of a nonuniformly distributed axial 
force, the stress on an end section or on a section near the end 
(such as GH) is not uniformly distributed. However, if the 
section CD is taken far enough away from the ends, experience 
warrants the assumption that the stress becomes (very nearly, 
at least) uniformly distributed over this section. Hence the 

intensity of stress on a section far enough removed from the ends 

may be taken as 

where A = area of section. 
Figure 23 shows one end of an eyebar. The hole is called 

the “eye.” The force is applied to the bar by means of a pin 
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going through the eye. This force is exerted on the bar along 
the left half of the eye (but not uniformly). Before the force 
was applied, lines were drawn on the bar in two directions divid¬ 
ing the surface of the bar into small areas (2 by 2 in.) as shown 
by the solid lines. When the force was applied, these small 

TEST NO. 713 
BAR No. 26. EYE A 

Bar. 15 by 1% in. 
Elastic limit = 33,330 lb. 

Ultimate strength = 65,220 lb. 
Pin clearance = 0.051 in. 

PERMANENT STRETCH OP PIN HOLE! 

At 12,000 lb. = 0.000 in. 
At 16,000 lb. = 0.002 in. 
At 20,000 1b. = 0.004 in. 
At 24,000 lb. = 0.012 in. 

At rupture = 1.969 in. 

Fig. 23.—New facts about eyebars. (Theodore Cooper, Trans. A. S. C. E., 
vol. 56, p. 411, 1906.) 

areas became distorted as is shown by the dotted lines. It will 
be seen later that the distortion at any point in a body will 
depend upon the magnitude and the nature of the stress acting 
at that point. From the irregularity in the distortion of the 
small areas along a section through or near the eye (as shown 
by the dotted lines), it is evident that the stress along this 
section is not uniformly distributed. Note, however, that 
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at some distance to the right of the eye the dotted lines tend to 
become straight and parallel, indicating that the stress on a right 
section tends to become a uniformly distributed normal stress. 
On a section whose distance from the center of the hole is about two 
diameters of the hole, the stress may be considered as uniformly 
distributed. 

A pure normal stress (no shear anywhere on that section) will 
be called a simple normal stress if it is uniformly distributed over 
that section. It may be compressive or tensile. 

A member is said to be in simple tension or in simple com¬ 
pression if on every right section (not too near the point of applica¬ 
tion of an external force, and not too near a hole, notch, or sudden 
change in the section) the stress is a simple normal stress. 
Accordingly, a prism subjected to an axial load is in simple tension 
or compression. The state of stress at or near the ends of such 
a prism may require special consideration. For the present, 
assume that the load is uniformly distributed over the end, or 
that only that part of the prism is under consideration for which 
the stress on every right section is a simple normal stress. 

Example I.—A steel rod of sectional area A = \ sq. in. is 
subjected to an axial pull of 5 tons. What unit stress does this 
imply on a right section of the rod? 
Ans. S = P/A = 5/0.5 = 10 tons/sq. in. = 20,000 lb./sq. in. 

Example II.—A rod is to be subjected to an axial pull of 
P = 4000 lb. If the maximum allowable stress on a right section 
of this rod is S = 20,000 lb./sq. in., what must be the sectional 

area of the rod? 
Ans. 20,000 = 4000/A; or A = 0.20 sq. in. 

14. Intensity of Stress on an Oblique Section of a Prism under 
Simple Tension or Compression.—If a prism (Fig. 24a) is acted 
upon by two equal and opposite axial forces P and P, one at 
each end, the stress on a right section CD of this prism is a simple 

normal stress of intensity 

where A = sectional area of the prism (Art. 13). 
The question now arises whether the intensity of the stress on 
some oblique section may not be greater than that on a right 
section. Consider the portion of the prism between the right 
section CD and the oblique section HG (Fig. 24b). The total 
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stress on the section CD is P = AS. For equilibrium to exist, 
the stress on the oblique section HG must be such that its resul¬ 
tant must be equal and opposite to that on CD. 

For convenience, replace the stresses on CD and HG by their 
resultants P and P (Fig. 24c). Now the stress on CD acts 
normally to CD but that on HG acts obliquely and makes an 
angle a with the normal to HG. Note that a is also the angle 
the oblique section makes with a right section. Resolve the 

D G 

resultant stress P acting on HG into its normal and tangential 
components Pn and P9, i.e 

Pn = P cos a and P9 = P sin a. 

If A' equals the area of oblique section HG, then A' = A/cos a, 
and the intensity of the normal stress on this section is 

Sn 
P cos a 

A 
a. 

cos a 

Or, since P/A = S equals the intensity of normal stress on the 

right section, 

Sn = S COS2 a. 

In like manner, the intensity of the shearing stress on the 

oblique plane HG is 
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P sin a 

A 
cos a 

P sin a cos a 

A 
S sin 2a 

2 

Hence, if S equals the intensity of the normal stress on a right 
section of a prism under simple tension or compression, then 
on an oblique section making an angle a with the right section 
the intensities of stress are respectively, 
Normal stress: 

Sn = S cos2 a. (7) 

Shearing stress: 

From Eq. (7) it follows that Sn is a maximum if cos2 a = 1, i.e., 
if a = 0. From Eq. (8) it follows that S8 is a maximum if 
sin 2a = 1, i.e., if 2a = 90° or a = 45°. Putting a = 45° in 
Eq. (8) 

Max. S. = (9) 

Hence, if a prism is in simple tension or compression, 
1. The intensity of the normal stress 

is a maximum on a right section. 
2. The intensity of the shearing 

stress is a maximum on an oblique 
section making an angle of 45° with 
a right section and its magnitude is 

Max. S. = £ 

where S = intensity of normal stress 
on a right section. 

Example. Fig. 25.—In a block of 
wood whose sectional area was A = 

16 sq. in., the grain made an angle 
of 60° with the axis of the block (30° with a right section). 
The prism was placed in simple compression and failed in shear 
along the grain when the total load was P = 29,600 lb. 
Required to find the corresponding intensity of the shearing 
resistance of the wood along the grain. 

The intensity of the normal stress on a right section was 

P 29,600 
“ A 16 

1,850 lb./sq. in. 
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Using Eq. (8), putting a = 30°(sin 2a = 0.866), 

c 1,850 X (0.866) Qnn „ , . 
S8 = —-y-- = 800 lb./sq. in. 

That is, the ultimate strength of the wood in shear along the 
grain was 800 lb./sq. in. 

Problem 1.—A steel bar, 0.8 in. in width and 0.16 in. in thickness, is tested 

to failure by pulling it apart with an ultimate load of 8950 lb. Failure 
occurred in shear on a plane making an angle of 42° with the cross-section. 

(a) Find the unit shearing stress on this plane. (b) Compute also the 

theoretical maximum unit shearing stress. 
Ans. (a) 34,800 lb./sq. in.; (b) 35,000 lb./sq. in. 

16. Columns.—For a prism to be under simple compression 
it must not bend. As soon as it bends (Fig. 26a), the end 
forces P and P, although applied at the centroids of the end 

ic 
(cO 

wjD ^_w 

ic Mk ^ p 
(b) 

Fig. 26. 

sections, are no longer axial forces since their line of action no 
longer goes through the centroid of every section such as CD. 
Hence the stress on a right section is no longer uniformly dis¬ 
tributed and therefore is not a simple normal stress. 

A prism that is relatively so long that it bends when two equal 
and opposite end forces are applied is called a column. Columns 
require special consideration and will be treated in a later 

chapter. 
When reference is made to a prism under simple compression, 

it should be understood that the prism is well supported laterally 
so as to prevent bending or buckling (Fig. 266) or that it is 
relatively so short that its tendency to bend may be neglected. 

16. Simple Shear.—If a stress acts wholly tangentially to a 
section (normal stress zero) it is called a pure shear. If, in 
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addition, it is uniformly distributed over the section, it is called 
a simple shear. 

A prism acted upon by two equal and opposite axial forces 
(one at each end) is a familiar example of simple tension or com¬ 
pression. It will be seen later that the state of simple shear can 
be brought about only by a combination of stresses. There are, 
however, familiar cases in which the stress on a section approxi¬ 
mates that of simple shear. 

As an example (Fig. 27) consider the action of two equal forces 
tending to push off toward the end of the timber the two blocks 
CD and C'D'. If P is the total force in the member, then by 
assumption the force on the right face of a block is Q = P/2. 
Consider the upper block CD. Owing to the force Q acting on 
its surface, a shearing resistance is developed along the surface 
CD. It is not possible to determine exactly how this resistance 
is distributed over the surface CD. It is customary to consider 
the average unit shear on this surface and to treat the shear as if 
uniformly distributed over the surface. 

c 

Fig. 27. 

If A equals the area of the surface CD and S8 equals the 
(average) unit shear on this surface, 

S. = | or Q = AS.. 

Since by assumption Q = P/2 where P equals the total force 
(pull) in the member, 

S. = £j- or P = 2 AS.. 

If CD is a rectangular area of dimensions b and c, then 

SB = Jr* or P = 2bcS8. 2 be 

In Fig. 28 is shown one end of a wooden roof truss. The 
strut or member M is set into a notch in the bottom chord N. 
The portion BDE of the bottom chord prevents the lower end of 
M from slipping or sliding. Owing to the horizontal component 



22 MECHANICS OF MATERIALS 

of P, a shearing stress is induced along the surface BD whose 
average intensity is 

where A = area of section BD. 
Example I.—Referring to Fig. 28, let P = 3 tons, a = 30°, 

and 6 = 6 in. What must be the length a of the surface BD 

/P 

Fig. 28. 

if the average unit shearing stress on this surface is not to exceed 
S, = 100 lb./sq. in.? 

100 = 
6000 X (0.866) 

a X 6 
or a — 8.66 in. 

Example II.—The bearing stress (compressive stress) between 
M and N (Fig. 28) along their surface of contact BE must 

be investigated. What must be the depth c of the notch if 
the average bearing stress on the surface BE is not to exceed 

S» — 1000 lb./sq. in.? Given b — 6 in., a = 30°, andP = 3 tons. 

1000 - 6000 X (0 866) 
6 X c 

or c = 0.866 in. 
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Example III. Fig. 29.—The ends of a steel I-beam rest on 
concrete piers. The beam carries a central load of 6 tons. 
Required to find the necessary bearing surface at the piers if 
Sc — 400 lb./sq. in. is the safe unit bearing stress for the piers. 
Concrete is much weaker in its resistance to compression than 
steel. Hence only the bearing stress on the piers needs be 
investigated. Bearing on each pier equals one-half of the load, 
equals 3 tons, or 6000 lb. 
Therefore 

400 
6000 

A 
or A — 15 sq. in. 

If the flange of the beam is 5 in. wide and the beam is to rest 
directly on the piers, then the beam must rest on each pier over 
a length of 3 in. 

17. Strain.—When a body is subjected to force it will change 
its shape. This change of shape is called strain or deformation * 

In theoretical mechanics bodies, as a rule, are considered rigid, 
i.e., as incapable of changing their shape or form. This assump¬ 

tion is permissible since the changes in the dimensions of a 

body due to the forces acting on it are, as a rule, relatively so 
small that, in comparison with the original dimensions of the 

* In nontechnical literature the word “strain” sometimes is used to 
designate force or stress. For example, such expressions as “the rope was 
not able to stand the strain” are sometimes used. In modem technical 
mechanics, however, strain applies to the change in shape of a body produced 
by stress. 
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body, these changes may be neglected for practical purposes. 
When a structure, such as a bridge, for example, is loaded, its 
members change their shape. Some are elongated, some 
shortened, some bent, etc. In a properly designed structure, 
however, any alterations in distances and angles within the 
structure due to any change in form of the structure or of its 

parts are relatively so small that for many 
purposes the main dimensions of a structure or 
of its parts after strain may be taken the same as 
those before strain. 

Illustration.—Figure 30 represents a steel 
rod subjected to a pull P. The rod is 15 ft. 
long and has a sectional area of A = \ sq. 
in. If the maximum allowable unit stress is 
S — 16,000 lb./sq. in., then the maximum 
allowable pull is P = AS = 8000 lb. It will be 
seen later that, owing to this pull, the rod 
will elongate (stretch) about 0.096 in., or 0.008 
ft. However, when compared with the original 
length of the rod, the elongation is so small 

Fig. 30. Fig. 31. 

that for practical purposes the length of the rod after strain may 
be taken the same as that before strain, i.e., as L = 15 ft. 

18. Elemental Prism, or Element.—Frequently it is found 
convenient to think of a body as composed of very small prisms 
in the form of right parallelepipeds. One of these small blocks 

is called an elemental prism or an element. In Fig. 31, we imagine 
the body divided into elemental prisms (rectangular blocks) 
by three sets of planes, the three sets of planes being at right 
angles to each other. (A similar method of marking areas on 
the surface of an eyebar was used in Art. 13.) 

Frequently, the elemental prism may be thought of as cubical 
in form, i.e.f as a cubical element (Fig. 32). Evidently, the cube 
may be represented by its front face, ABCD. The edge of the 
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elemental cube may be designated by a. It should be remem¬ 
bered, however, that the cube is infinitesimal in size so that a 
equals dx or dy or dz, as the case may be. 

The advantages of dealing with elemental prisms often are 
very great. A body subjected to a system of forces may be 
elongated in one direction and compressed in another direction. 
At the same time, the body also may be bent and twisted. As a 
result, the stress on a section of this body may be distributed 
in a very complicated manner. If, however, an elemental 
prism is considered, the prism being infinitesimal in size, the 
stresses on its faces may be assumed as uniformly distributed, and 

Fig. 32. Fig. 33. 

those on opposite faces as equal and oppositely directed. If not 
exactly equal, any pair of stresses such as the normal stresses 
on a pair of opposite faces can differ at most by an infinitesimal 
of a higher order and therefore, in the limit as the dimensions of 
the prism approach zero, these stresses approach equality. 

For instance (Fig. 33), the elemental cube is represented as 
acted upon by three sets of stresses, i.e., by two uniformly dis¬ 

tributed tensile stresses each equal to Sxa2 (Sx = intensity of 

stress), two uniformly distributed compressive stresses each 

equal to Sya2, and four (uniformly distributed) shearing stresses 
each equal to S8a2. 

Note that the four shearing stresses are represented as being 
all of the same intensity S8, and that those on two adjacent faces 
act either both toward or both away from the corner common to 
the two faces. In the next article it will be shown that this 

is always the case for an elemental prism. 
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19. Shearing Stresses on the Four Faces of an Elemental 
Prism Are of Equal Intensity.—With reference to Fig. 33 (Art. 
18) it should be noted that the normal stresses on any pair of 
opposite faces of an elemental prism are equal and opposite and 
therefore form a system of forces in equilibrium. That is, 
the normal stresses may be removed from the faces of an ele¬ 
mental prism without affecting its equilibrium. The shearing 
stresses on the faces of an elemental prism, therefore, must be 
in equilibrium among themselves. 

Consider now an elemental cube (Fig. 34) and assume that 
the intensities of the shearing stress on four of its faces are 

Fig. 34. Fig. 344. 

Siy S2, Szy and £4, respectively. For equilibrium to exist, 
2) moments about the edge A must equal zero. Or 

Sia2 X a — S2d2 X a = 0. 
Therefore 

Si = St. 

In like manner, by putting 2 moments about B = 0, S2 = Sz. 
That is, the intensities of the shearing stress on the faces of an 
elemental prism are always equal. Moreover, equilibrium cannot 
exist unless the shearing stresses on any two adjacent faces are 
directed either both toward or both away from the edge common 

to the two faces. Thus both Si and S2 must be directed either 

toward the edge C or away from C. 

Note.—This theorem is true in general only for an elemental 
prism since it is only for an elemental prism that the normal 
stresses on the faces of the prism may be assumed to form a 
balanced system of forces which may be removed without affect¬ 
ing the equilibrium of the prism.* 

* In the derivation of the theorem of this article an elemental cube was 
taken. Any elemental prism, however, may be taken. Let the elemental 
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20. Deformation of a Body Accounted for by Strains of Its 
Elements.—Consider now the strain of an elemental 'prism upon 
whose faces more than one set of stresses act (Fig. 33, Art. 18). 
Note that the prism is represented as acted upon by a set of 
(uniformly distributed) tensile stresses Sxa2, a set of compressive 
stresses Sya2, and a set of shearing stresses S8a2. Owing to the 
stresses acting on its faces, the prism will be strained (deformed). 
The strain of this prism will be the combination of the strains 
produced by each set of stresses acting alone.* Hence, if the 
strain of the prism due to each set (acting alone) can be deter¬ 
mined, the strain of the prism if all act together can be deter¬ 
mined, and in many cases the deformation of the body from which 
this prism is taken can be determined. That is, the study of the 
deformation of a body rests in its last analysis upon the study 

of the strains of an elemental prism of this body, the prism in 
turn being subjected to each set of stresses acting alone. 

21. Unit Longitudinal Strain.—If an elemental prism is 
acted upon by simple tensile stresses on two opposite faces (Fig. 
35), the strain of the prism will consist of an elongation (stretch¬ 
ing) of the prism in the direction of the stress and a contraction 
of the prism at right angles to the direction of the stress. The 
edges AB and DC will be elongated and the edges AD and BC 

will be shortened. The elongation of the prism in the direction 

of the stress is called a simple tensile strain or a simple strain of 

prism (Fig. 34A) have the dimensions a, b, and c (c _L plane of paper). If 
<Si is the intensity of shearing stress on the face BC, the total shearing stress 
on BC is Sibc. Similarly, the total stress on DC is S2ac. Putting Silf a = 0, 

(Sibc) X a — (S2ac) X b = 0. 

Therefore 
Sl = S2. 

* Provided the elastic limit is not exceeded (Art. 25). 
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elongation, and the accompanying contraction of the prism at 
right angles to the stress is called the lateral contraction. 

In like manner, if the prism is acted upon by simple compressive 
stresses on two opposite faces, the strain is a simple compressive 
strain (shortening in the direction of the stress) accompanied by 
a lateral expansion. 

Tensile and compressive strains are essentially alike. One 
is an elongation of the prism and the other is a shortening of the 
prism in the direction of the stress. Both are conveniently called 
longitudinal strains. Similarly, lateral contractions and lateral 
expansions are essentially alike. Both may be called lateral 
strains. 

Let dx equal the original length of prism (Fig. 35), and let 
d\ equal the elongation (or contraction) of the prism in the direc¬ 
tion of the stress. The unit longitudinal strain (strain per unit 
length of prism) is 

dX 

C dx 

If it is desired to distinguish between unit tensile strain and 
unit compressive strain, et and ec may be used respectively to 
designate them. 

In like manner (Fig. 35), if dy is a lateral dimension and d\' 
is the corresponding lateral strain, the unit lateral strain is 

f _ dX/ 

€ dy 

22. Poisson’s Ratio.—Poisson is credited with the discovery 
that for any given material the ratio of unit lateral strain to 
unit longitudinal strain is a constant (approximately). This 
ratio is called Poisson’s ratio and will be designated by m; i.e.y 

m = ~ = constant. (11) 

Hence, if Poisson’s ratio is known, the lateral strain can 

be calculated in terms of the longitudinal strain. 
The determination of Poisson’s ratio requires very sensitive 

instruments. The following are approximate values: for iron, 
m — 0.25; for steel, m = 0.27. 

23. Prism of Length L. Unit Longitudinal Strain.—If a 
prism of length L (a steel rod, for instance) is put under simple 
tension (or compression), the stress on any right section of the 
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prism is a uniformly distributed normal stress and the stresses 
on all right sections are equal. If the prism is assumed to be 
homogeneous, all equal lengths will be elongated (or shortened) 
equally, and the unit longitudinal strain (elongation or shortening 
per unit length) is 

€ (12) 

6 = L = 

0.0192 
4 X 12 

= 0.0004 (an abstract 

number). 

m 
p 

That is, every inch of the rod elongates 
0.0004 in.; every foot, 0.0004 ft., etc. If Fig. 36. 

the centimeter is used as the unit of measure, 
X = 0.0488 cm. and L = 122 cm. With these values 

2 

when X = elongation (or shortening) of a finite portion of this 
prism. 

L = original length of this portion. 
Hence, when the longitudinal strain of a homogeneous finite 

prism under simple tension or compression 
is studied, it will be found convenient to % 
deal with a portion of finite length. Since e 
is a length divided by a length, e is an 
abstract number or mere ratio and any 
consistent unit of length may be used for X 
and L. 

Example I.—A steel rod is subjected to 
an axial pull P (Fig. 36). A portion of 
length 4 ft. is elongated 0.0192 in. What I | i 
is the unit tensile strain? 

_ 0.0488 
e 122 

0.0004 

as before. 
Example II.—Originally the rod of Example I had a diameter 

of d = 0.5 in. Find the lateral contraction. Take Poisson’s 

ratio asm = 0.27. 
From Eq. (11) of Art. 22, the unit lateral contraction is 

c' = me. With e = 0.0004 (Example I), 

e' = 0.27 X 0.0004 = 0.000108. 
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Hence the total lateral contraction of the rod is 

V = e'd = 0.000108 X 0.5 = 0.000054 in. 

and the final diameter of the rod is 

d! = d - X' = 0.499946 in. 

Note that the lateral contraction of the rod is so small that for 
practical purposes it may be neglected. In Advanced Mechanics, 
however, there are important problems whose solution necessi¬ 
tates the use of Poisson’s ratio. 

24. Unit Shearing Strain.—Let ABCD (Fig. 37) represent an 
elemental prism in its unstrained state, and let ABC'D' represent 
this prism when strained under the action of simple shearing 
stresses. Note that the angles at the four corners of the prism 

Fig. 37. Fig. 38. 

all change by the same amount 8; i.e., those at A and C become 
smaller than 90° by an amount 8, and those at B and D become 
larger than 90° by an amount 8. 

The angle 8 is called the angle of shear or the angular distortion. 
The strain of an elemental prism due to the four simple shearing 
stresses acting on four faces is called a simple shearing strain 
and consists in a change of angles at the corners of the prism, all 

angles changing by the same amount 8. 

If for convenience the face AB is assumed fixed, the strain 

consists of the sliding of the face DC relative to the face AB, 
the corner C moving from C to C'. The sliding of the face DC 
relative to AB (i.e., CC') sometimes is called the total shearing 
strain. The unit shearing strain is defined as follows: 
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Note that if BC is unity (unit prism) then CCr is the unit shearing 
strain. 

The maximum allowable angle of shear 8 for a material in a 
properly designed structure is so small that for tan 8 we may put 8 
measured in radians. 
Hence 

Unit shearing strain = 8 

where 8 — angle of shear in radians.* 
Note.—It should be remembered that unit strain (whether 

longitudinal or shearing) is an abstract number; i.e., a unit strain 
always is a length divided by a length. Hence unit strain has no 
dimensions. 

25. Elasticity. Elastic Limit. Set.—Elasticity is the name 
given to that property which most materials possess to a greater 
or less extent by virtue of wrhich a body will recover its original 
form as soon as the forces producing a deformation are removed. 

A quantitative study of the elastic properties of a material 
rests in its last analysis upon the study of the elastic properties 
of a prism of this material, the prism being subjected to one of the 
simple stresses (tensile, compressive, or shearing). Experiments 
show that the strain (deformation) of such a prism will disappear 
as soon as the stress is removed provided the unit stress does not 
exceed a certain value called the elastic limit of that stress for 
that material. If, however, the stress exceeds its elastic limit, 
the prism will not fully recover its original form when the stress 
is removed. That part of the deformation which remains when 
the stress is removed is called the permanent set, or simply the 
set. If a soft steel rod of length L = 10 ft. and of sectional area 
A = \ sq. in. is subjected to an axial pull of P = 15,000 lb., 
the maximum unit tensile stress developed in that rod is 

* From trigonometry by definition (Fig. 38), 

5 in radians = a^C- • = - = abstract number, 
radius r 

For a very small angle, OC = r (approximately), and BC = s (approxi¬ 
mately). Therefore, for a very small angle we may put, 8 being measured 
in radians, 

sin 5 
BC 

tan 5 = 
BC 

OC 
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S = = 30,000 lb./sq. in. 

Owing to this stress, the rod will elongate about X = 0.120 in. 
When the stress is removed, the rod returns to its original length, 
L — 10 ft. Hence a unit stress of 30,000 lb./sq. in. is within the 
elastic limit for this rod in tension. If now the rod is subjected 
to an axial pull of P = 20,000 lb., the unit tensile stress is 
S = P/A — 40,000 lb./sq. in. The elongation of the rod will 
be about X = 0.240 in. When the stress is removed, the rod 
will have a length of about 10 ft. 0.08 in. Hence there is a set 
of 0.08 in. That is, a unit stress of 40,000 lb./sq. in. is beyond the 
elastic limit for this rod in tension. 

For each material there are three elastic limits—one for 
tension, one for compression, and one for shearing—the elastic 
limit of any one stress being the maximum intensity of that stress 
that can be developed in the material without producing a permanent 
set. 

As soon as the stress in any member of a structure exceeds 
its elastic limit, that member is permanently deformed. Hence 
to avoid injury to the structure the stresses induced in its mem¬ 
bers should not exceed their elastic limits. This is particularly 
to be avoided in case of repeated, varying, and reversed loads. 

Note.—Certain experiments of great precision indicate that 
perfect elasticity may not exist for any material. That is, 
wThen a body is deformed by the application of external forces, 
it never completely recovers as soon as the external forces are 
removed. This is obviously true for plastic material such as 
lead and tar. For iron, steel, wood, and some of the other more 
important engineering materials, so long as the material is not 
stressed beyond the so-called elastic limit, any failure of the 
material to recover completely when the stress is removed is so 
slight that it cannot be detected with the instruments ordinarily 
used. Practically, therefore, these materials possess an elastic 
limit. 

26. Hooke’s Law. Modulus of Elasticity —In its modernized 
form, Hooke’s law states that within the elastic limit stress of 
any one kind is proportional to the strain it produces. This is 
equivalent to stating that the ratio of unit stress to the unit strain 
it produces is a constant within the elastic limit. 

Experiments show that Hooke’s law is approximately true for 
most engineering materials. For steel it is very nearly true. 
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For materials like cast iron and concrete, deviation from the 
law may be considerable. For these materials, however, the 
range of stress that may be used in practice is such that within this 
range Hooke’s law may be used without introducing excessive 
errors. 

Tension.—If a prism (wire or rod) of length L and sectional 
area A is subjected to an axial pull P, the unit tensile stress is 
St = P/A. If X is the elongation of this prism, the unit strain 
is € = X/L. Hence designating the ratio of unit stress to unit 
strain by Etf 

Et = 
St 

= constant (a) 

for all values of P provided the elastic limit is not exceeded. 
This constant Et is called the modulus of elasticity in tension. It 
is also known as Young’s modulus or the modulus of stretch. 
The meaning of the word “modulus” in this connection is 
“measure.” Therefore Et is a measure of the elasticity of a 
material in tension.* 

Compression.—If a prism is subjected to a simple compressive 
stress, then, within the elastic limit, the ratio of unit compressive 
stress to unit compressive strain is a constant. That is, 

Ec = ~ = constant. (b) 

This constant Ec is called the modulus of elasticity in compression. 
Shearing.—In the case of an elemental prism (Fig. 39), the 

shearing stresses on the four faces of the prism are all of the 
same intensity (Art. 19). If S8 is the intensity of the shearing 

* Popularly, a body is said to possess great elasticity when it is easily 

deformed and is quick to recover. Rubber, for instance, is commonly 

thought of as possessing great elasticity. In technical literature, however, 

elasticity has a very different meaning. Technically, elasticity is the 

property which causes a body to resist deformation and afterwards to 

recover its original shape and size. Accordingly, the greater the resistance 

a body offers to a deformation of a given amount, the greater the elasticity 

of that body. If a bar of steel and a bar of rubber of the same length and 

sectional area are stretched the same amount, the force required to stretch 

the steel bar will be many times that required to stretch the rubber bar. 

Technically, therefore, the measure (modulus) of elasticity of steel is much 

greater than that of rubber (about forty thousand times as great). In 

general, since Et — St/€y it is evident that Et becomes very large when a 
large unit stress St results in a very small unit strain €. 
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stresses on the four faces of the elemental prism, and 8 is the unit 
shearing strain (angle of shear measured in radians, Art. 24), 
then, within the elastic limit, the ratio of unit shearing stress to 
unit shearing strain is a constant. That is, 

S 
Ea = = constant. (c) 

5 

Ss a2 

The constant E8 is called the modulus of elasticity in shear (shear 
modulus, modulus of rigidity). 

There are then three moduli of elas¬ 
ticity for each kind of material, one 
for tension, one for compression, and 
one for shearing. For most engineer¬ 
ing materials, however, the modulus of 
elasticity for tension and that for com¬ 
pression are approximately equal so 
that the same symbol E may be used 
for both. That is, 

;s<** 
Fia. 39. 

E = - 
e 

(d) 

where S = unit stress (tensile or compressive), 
c = unit strain produced. 

Now, 

Modulus of elasticity 
unit stress 
unit strain 

Unit strain, however, is an abstract number (Note, Art. 24). 
Hence the modulus of elasticity is of the same dimensions as the 
unit stress. For example, if unit stress is expressed in pounds 
per square inch, then the modulus of elasticity is in pounds per 
square inch. 

Example I.—A steel rod of length L = 20 ft. and sectional 
area A = 1.5 sq. iii. is subjected to an axial pull of P = 12 tons. 
The elongation of the rod is X = 0.128 in. Find unit stress S, 
unit strain e, and modulus of elasticity E. 

, = P 24,000 
* A 1.5 

_ X _ 0.128 
* L 20 X 12 
p _ S _ 16,000 

« 0.000633 

= 16,000 lb./sq. in. 

= 0.000533 (an abstract number). 

= 30,000,000 lb./sq. in. = 15,000 tons/sq. in. 
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Note.—The elastic limit for structural steel in tension is about 
35,000 lb./sq. in. Hence a stress of 16,000 lb./sq. in. is within 
the elastic limit. 

Example II.—If the intensity of the shearing stresses on the 
four faces of an elemental steel prism is S8 = 9000 lb./sq. in. 
(which is within the elastic limit) and the angle of shear is 
8 = 0.00075 radian, find the modulus of elasticity in shear. 

E. = y = 0^5 = 12,000,000 lb./sq. in. 

27. The ultimate stress or ultimate strength for a given mate¬ 
rial is the maximum unit stress that can be developed in that 
material. For instance, given a structural steel rod of area 
A = § sq. in. The maximum pull this rod can sustain is about 
30,000 lb: That is, the maximum unit stress that can be devel¬ 
oped in this rod is S = P/A = 60,000 lb./sq. in. Hence 
60,000 lb./sq. in. is the ultimate stress (ultimate strength or 
ultimate limit) for this rod in tension. 

For each material there is an ultimate stress for each kind of 
stress, i.e., one for tension, one for compression, and one for 
shearing. 

28. The variations in the properties of different pieces of the 
same kind of material may be considerable. For example, in the 
case of hemlock, the ultimate tensile strength of different pieces 
may range from about 6500 lb./sq. in. to about 13,500 lb./sq. in. 
On the other hand, the manufacture of steel has reached such a 
degree of perfection that steel may be depended upon not to 
vary much from the prescribed standard for that particular kind 
of steel. 

The values of the various properties of a few of the more 
commonly used materials are given in Table I (see page 36). 
Each value is an average of the values found experimentally 
from a great many pieces of that kind of material. In the last 
column, the percentage variation in the tensile strength is given 

for each material. Thus the tensile strength of structural steel 

is given as 60,000 lb./sq. in. and the percentage variation as 
9 per cent (approximately). Hence the ultimate tensile strength 
of structural steel ranges from about 55,000 lb./sq. in. to about 

65,000 l]t>./S(l* in.* 

*The 1935 Specifications for Railway Bridges prescribe steel with a 
tensile stress of 60,000 to 72,000 lb./sq. in. 
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29. Working Stress or Allowable Unit Stress. Factor of 
Safety.—The working stress or allowable unit stress is the 
maximum unit stress that is deemed safe to use when designing 
a member to carry a given load, or when calculating the load a 
given member may safely carry. As an example, suppose it is 
required to find the sectional area of a steel rod that is to carry a 
tensile axial load P = 9000 lb. If 18,000 lb./sq. in. is considered 
to be the maximum unit stress (working stress) that may be 
used when calculating the area of the section of this rod, then 

A P 9000 n 
A=s = lpoo = °-50 sq- m- 

The factor of safety is the ratio of the ultimate unit stress to the 
working stress. That is, 

Factor of safety 
ultimate stress 
working stress 

If the ultimate stress for a particular piece of steel is 64,000 
lb./sq. in. and if a factor of safety of four (4) is to be used, then 
the working stress is 

64,000 
4 

16,000 lb./sq. in. 

30. Selection of the Working Stress.—The selection of the 
working stress or of the factor of safety to be used for a material 
in a given case depends upon the following considerations: 

1. Economy dictates that the working stress should be taken 
as high in value as is consistent with safety. If the working 
stress is high, less material will be needed in a given structure. 
This reduces the cost of structure, which is always important. 

2. The working stress should always be taken less than the 
elastic limit. Even if the stress is less than the ultimate stress 
but greater than the elastic limit, it is not satisfactory since the 
structure will be permanently and progressively deformed. 

3. Working stresses should be selected low enough to give a 

sufficient margin of strength to guard against 
a. Uncertainties in the loading. Some loads cannot be 

determined definitely, especially if there are possible future 

or accidental increases. 
b. Uncertainties in the stresses. The nature of the structure 

may be such that the critical internal stresses can be only 

approximately determined. 



38 MECHANICS OF MATERIALS 

c. Uncertainties in the properties of the material. When 
a working stress is selected for a material, it must be 
remembered that the properties of a particular piece of this 
material may be appreciably less than that given in a 
published table of values. 

d. The deterioration of the material due to rust, decay, wear, 
age, chemical or electrical actions, etc. 

4. Seriousness of failure. If the failure of a structure is not 
likely to result in loss of life or in heavy monetary loss, the 
unit stresses may be taken higher than for a similar structure if 
failure endangers life or involves heavy monetary loss. 

Taele II.—Working Stresses for Static Loads 

Pounds per square inch 

Approximate factors of safety in parentheses ( ) 

Material Tension Compression Shear 

Structural steel. 16,000 to 16,000 to 10,000 to 

20,000 (4) 20,000 (4) 12,000 (5) 

Recommended for ordinary use.. 18,000 (4) 18,000 (4) 12,000 (5) 

Gray cast iron. 4,000 (6) 16,000 (7) 3,000 (8) 

Compression 
Shear 

Structural timber Tension * 
Parallel 

to grain 

Normal 

to grain 

parallel 

to grain 

Douglas fir. 1,300 1,000 225 90 

Western hemlock. 1,100 900 225 75 

Yellow pine. 1,300 1,000 225 125 

Soft pines. 800 750 150 85 

Oak.i 1,200 900 375 125 

* Unless otherwise directed, these stresses should be used also for extreme fiber stresses in 

flexure (see Art. 173). * 

The selection of the proper working stresses to be used in a 

particular case may not be a simple matter. A number of factors 

enter which can be evaluated only by experts who have had 
long experience in designing structures and in observing them 
either under test or in actual service. To protect the public, 
all important engineering constructions are subject to specifica¬ 
tions that embody the consensus of opinion of the best designers. 
In particular, the materials that may be used and the working 
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stresses for these materials are specified for the various kinds of 
construction. To a large extent, working stresses are standardized. 

31. The working stresses for a given material need not be 
the same for two different kinds of construction. For instance, 
the working stresses for a wooden roof truss may be taken higher 
than those for a wooden railway trestle. The uncertainties in a 
roof truss are less than those in a railway trestle. Moreover, a 
roof truss is protected from the weather while a railway trestle 
is not. 

Table II gives the working stresses for a few of the more 
commonly used engineering materials. In certain cases it may 
be desirable to use a stress larger or smaller than the tabulated 
value. In problems in this text, unless otherwise directed, use 
the tabular values. 

PROBLEMS 

2. A weight of 70 lb. is suspended from a wire 0.07 in. in diameter. 

What unit stress is induced in the wire? Ans. 18,200 lb./sq. in. 

3. In Problem 2, what is the unit elongation if E = 30,000,000 lb./sq. in.? 

If the wire was originally 400 ft. long, what is the total elongation? 

Ans. e = 0.000607; X = 2.91 in. 

4. A steel plate, f in. thick and 7 in. wide, is subjected to a pull of 

48,000 lb. Find the largest diameter of hole that may be drilled at the 

center of the plate if the unit stress is not to exceed 16,000 lb./sq. in. 

Ans. 3 in. 

6. A concrete pier is to support a load of 960,000 lb. uniformly dis¬ 

tributed. The American Institute of Concrete Construction specifies that 

the allowable stress may be 0.4 of the ultimate. Required the section area 

of the pier. Take the ultimate for concrete as 3000 lb./sq. in. 

Assume the stress in a member as 0.4 of the ultimate. What factor of 

safety does this imply? Ans. 5.55 sq. ft.; 2.5. 

6. Brick weighs 120 lb./cu. ft. How high may a circular brick chimney 

be if owing to its own weight the compressive stress at the base of the 

chimney is not to exceed 1080 lb./sq. in.? Ans. 1296 ft. 

7. One of the main cables in the General U. S. Grant Bridge across 

the Ohio River was designed for a total tension of 2,380,000 lb. The 

cable is 30 in. in diameter and consists of 1458 parallel wires each 0.162 in. 

in diameter. 

The wires are cold drawn, their average ultimate strength being 

230,000 lb./sq. in. What factor of safety was used in the design of the cable? 

Ans. 2.94. 

8. Figure 40 represents a steel bolt f in. in diameter with a square bolt 

head. The bolt is under a tension of P = 5000 lb. See figure for dimen¬ 

sions. Find (a) the unit tensile stress in the shank; (b) the unit shearing 

stress in the bolt head, assuming shearing on a cylindrical surface of the 
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same diameter as the bolt; (c) unit compressive stress under the surface of 

the bolt head, assuming stress uniformly distributed. 

Ans. 16,300 lb./sq. in.; 5090 lb./sq. in.; 11,420 

lb./sq. in. 

9. Find the length of a lead rod that will be on 

the point of rupturing in tension under its own 

weight when hung vertically. The weight of lead 

per cubic foot is 700 lb. Assume the cross-sectional 

area to be A (or dA). £«(ult.) = 1800 lb./sq. in. 

Ans. 370 ft. 

10. A rod f in. square is 50 ft. long when 

unstrained. Using the values for structural steel, 

find the total stress and also the unit stress 

when the total elongation of the rod under a ten¬ 

sile force is 0.320 in. State whether or not the 

elastic limit is exceeded. Ans. 9000 lb.; 16,000 lb./sq. in. 

11. A steel bar is 2 in. wide and | in. thick. Under a total axial pull of 

60,000 lb., what are the induced normal and shearing stresses per unit area 

on sections making angles of 40°; 45°; 50° with the cross-section? 

Ans. For 40°, Sn = 35,200 lb./sq. in.; S* = 29,500 lb./sq. in. For 45°, 

Sn — Ss = 30,000 lb./sq. in. 

12. Figure 41 represents the left end of a wooden member (western hem¬ 

lock) subjected to a pull P. A rectangular dowel pin holds the member in 

equilibrium (pin not shown). Assume the pressure between pin and member 

uniformly distributed. Dimensions shown in figure. Using the values 

- ■> 

1 'qua re bo 
head 

-f- 

, P 

Fig. 40. 

Fig. 41. 

given in the table for safe stresses (1100, 900, 75), find the safe value of the 

pull P. Investigate tensile stress across the section CD; strength in com¬ 

pression against EF; and the combined strength in shear along the two sur¬ 

faces HF and GE. Ans. 3300 lb.; 2700 lb.; 3600 lb. . 

13. A vertical plate, 3.5 ft. square, covers an opening in a dam. The 

upper edge of the plate is 4 ft. below the water surface. Construct the 

stress solid for the plate. Find the total water pressure on the plate. 

Ans. 4400 lb. 

14. One end of a roof truss takes the form shown in Fig. 28 (Art. 16). 

The member M is to be square and M is to have the same width as N. 
P = 4 tons and a = 50°. It is required to find (a) the dimensions of M 
if the allowable stress in M is 900 lb./sq. in.; (6) the depth c of the notch 

if the allowable bearing stress along the surface BE is 1000 lb./sq. in.; 
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(c) the length a of the surface BD if the allowable (average) shearing stress 

is 120 lb./sq. in. Ans. 3 in. square; c = 1.7 in.; a = 14.3 in. 

15. A block of hard wood, 6 in. square, supports a uniformly distributed 

load W. The grain of the wood makes an angle 6 with the right section 

(Fig. 9, Art. 7). The ultimate compressive stress, normal to the grain, is 

Sn — 3200 lb./sq. in. and the ultimate shearing stress, parallel to the grain 

(along the grain), is S, = 800 lb./sq. in. For what value of 0 and for what 

value of W will the block be as likely to fail in compression as in shear? 

Ans. 6 = tan"1 i = 14°; W - 122,200 lb. 



CHAPTER II 

TESTING MATERIALS 

LABORATORY TESTS IN TENSION, COMPRESSION, AND SHEAR 

32. Tensile Tests. Test Pieces.—A complete and detailed 

treatment of “testing materials” is far beyond the scope of this 

text. Special treatises are available, and usually separate 

technical courses are given covering this subject. In this chap¬ 

ter, only the most fundamental facts are presented, with the 

hope that the reader may be led to appreciate the importance of 

the subject and may obtain some idea of the methods used to 

determine the properties of the materials employed in engineering. 

33. Standardized Tests.—To make the results of tests of 

different pieces comparable with each other, the American 

Society for Testing Materials has set up specifications for the 

methods of conducting many different tests and has adopted 

definite sizes and shapes of test-pieces. 

For making tensile tests on metals two standard gage-lengths 

have been adopted, an 8- and a 2-in. gage-length. 

Figure 42 shows the dimensions of an 8-in. test-piece, the 

strain being measured over the 8-in. gage-length A ... B. 

34. Testing Machines.—In Fig. 43, one type of testing machine 

is shown. It is called the Riehl6 testing machine. The test- 

piece T is in place ready for a tensile test. The upper end of the 

test-piece is gripped firmly in the jaws or chuck of the upper 

or fixed head D. The lower end is gripped similarly in the jaws 

or chuck of the movable head L. As L is pulled down, the test- 

piece is subjected to tension. The magnitude of this tension is 
42 
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measured by the ordinary process of weighing, the total tension 
being indicated on the beam K with the counterpoise in balance.* 

Commercial types of such machines are built ranging in capac¬ 
ity from a few thousand pounds to ten million pounds. 

35. The fundamental principles underlying the construction of a machine 
such as that shown in Fig. 43 are embodied in the more or less ideal machine 

shown diagrammaticaliy in Fig. 44. That is, in Fig. 44 the essential 

details are shown and these have been slightly modified for convenience of 
description. 

Fig. 43.—Riehle U.S. standard vertical screw power testing machine, two rotat¬ 
ing screw type, 100,000 lb. (50,000 kg.) capacity. 

B is a weighing table corresponding to the platform of an ordinary platform 

scale. By means of knife-edges (two of which are represented, E and E') 
B rests on four levers, two short and two long (only one pair is represented, 

F and F'). By means of a knife-edge, each lever in turn rests on a heavy 

fixed base H (only two of these knife-edges are represented, G and G'). The 

four levers meet at /. The whole arrangement in principle is the same as 

that of an ordinary commercial weighing scale and any pressure exerted 

down on B may be measured by the ordinary process of weighing. 

The movable head L is driven by two (sometimes four) straining screws M 
and M'. These screws pass freely through the weighing table B and then 

through the base casting H and are held in place at N and N\ That is, the 

straining screws can turn but cannot move up or down. N and N' are gears 

firmly fastened to the lower ends of the straining screws. P is a driving 

gear (method by which P is driven is not shown in figure). As P is made to 

turn, the straining screws M and Mf are made to turn and the movable 

head L is pulled down. Since the straining screws pass freely through the 

* For compression tests, the test-piece is placed between the movable 

head L and the table B. 
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weighing table B they do not directly affect the pressure on the table. If a 

test-piece T is to be tested in tension, it is placed as shown in the figure and 

the straining screws are turned so that the movable head L pulls down on 

the test-piece and therefore down on the fixed head D. This downward pull 

on D is transmitted through the columns Q on to the weighing table B and 

its magnitude is indicated on the beam K when in balance. To obtain a 

convenient zero reading the adjustable counterweight CW is available. 

If a test-piece is to be tested in compression, it is put between the movable 

head L and the table B. As L is pulled down, the test-piece exerts a pres¬ 

sure directly on B. 

Note.—In the Olsen machine the gearing at N and Nf is such that the 

straining screws move up or down but do not rotate when the machine is in 

operation. 

36. Extensometers or Strain Gages.—To measure the elonga¬ 

tion of the gage-length of a test-piece, an “extensometer” is 

used, one type being shpwn in Fig. 45. As the title of the illustra¬ 
tion shows, this is known as the Berry strain gage. The dial D 

measures (to 0.0001 in.) the amount by which the conical points 
A and B are separated. One point A is fixed in the frame F, 

and the other point B is movable. The arrangement is such that 
by means of levers and gears any small motion of B produces an 
appreciable motion of the dial hand. 
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Below the figure of the strain gage is shown a clamp, and at 
the bottom is illustrated an accurate punch used to mark the gage 
points on the test-piece to make an 8-in. gage-length. 

The extensometers usually employed measure elongations 
to an accuracy of 0.001 or 0.0001 in. Instruments are made, 
however, which will measure to a precision of 0.00001 in. or to 
an even higher degree of accuracy. 

37. Ductility. Brittleness.—Ductility is that property by 
virtue of which a material may be drawn out by tension resulting 
in a permanent increase in length (set) and in a permanent 
decrease in sectional area. This drawing-out takes place after 

Fig. 45.—Eightfinch instrument. 

the elastic limit is passed. A perfectly ductile material could be 
drawn out indefinitely into a fine wire without breaking. 

Most structural materials possess the property of ductility to 
some extent. It is customary, however, to designate those 
materials as ductile which may be drawn out considerably 

before rupture takes place, and to designate those materials as 

brittle which can be deformed permanently only to a very limited 

extent. Accordingly, soft steel is ductile, while hard steel is 

brittle. If a rod of soft steel, 8 in. long, is subjected to tension 
beyond its elastic limit, the permanent elongation will exceed 
30 per cent of the original length before it breaks. On the other 
hand, a rod of hard steel will break suddenly, the permanent 
elongation being relatively very small. The distinction between 
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a ductile steel and a brittle steel is more clearly shown in the 
next article. 

38. Stress-strain Diagrams.—When a material is tested in 
tension for its mechanical properties, it is common practice to 
make a graphic report of the observed quantities obtained in the 
test. Such a graph or curve, termed the stress-strain diagram, 
presents the facts of the test in the most striking form. It shows 
the degree of accuracy attained in the testing, and from it may 
be found the important values of modulus of elasticity, propor¬ 
tional limit, ultimate limit, and breaking unit stress. An 
indication of the toughness and the brittleness of the material 
is also given. 

Fig. 46.1 

The procedure followed in obtaining data for the construction 
of a stress-strain diagram is substantially as follows: 

A test-piece of standard size is put in a testing machine. 
Successive loads are then applied. For each applied load the 
corresponding elongation is read by means of an extensometer. 

If X is the elongation for a particular load P, then for this load the 

unit stress is S = P/A and the unit strain is t = X/L. With S 

as ordinate and e as abscissa, the point represented by S, 6, is 
plotted (Fig. 46 or Fig. 47). If this is done for successive values 
of P ranging from zero to that value for which the test-piece 

1 Steels may be divided into three kinds, softy medium, and hard. Wide 

variations exist within each kind. Structural steel (0.20 per cent carbon) 

is a soft steel usually designated as mild steel. 
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breaks, a series of points is determined. A line drawn through 
these points gives the stress-strain curve. Such a curve, there¬ 
fore, shows the relation between the unit stress and the unit strain 
at each stage during the elongation of the test-piece. 

The stress-strain diagram for soft steel in tension is shown in 
Fig. 46, and that for hard steel is shown in Fig. 47. The two 
curves are more or less typical. By this is meant that the stress- 
strain diagram for any ductile material is likely to be quite 
similar to the diagram for soft steel in tension, and that the 
diagram for a brittle material is more or less similar to that for 
hard steel in tension. A discussion of the two stress-strain 
diagrams shown in Figs. 46 and 47 will cover the important char¬ 
acteristics of curves for many 
materials. In Art. 44, the 
stress-strain diagrams for sev- ^80 
eral of the commonly used engi- ^ 
neering materials are shown. 1 

39. Elastic Limit. Propor- £60 
tional Limit. Modulus of ^ 
Elasticity.—The elastic limit 1 
corresponds to the point B £40 
(Fig. 46 or Fig. 47). So long J 
as the experiment does not go ^ 

beyond the stage represented «20 
by the point B, the test-piece 
will recover its original length ~ 
when the pull is removed. 3 o 
If, however, the experiment 
reaches a stage represented by FlG* 
a point beyond B, say the 
point H, and if then the pull is removed the test-piece will not 
fully recover. There will remain a permanent strain (set) rep¬ 

resented by the line OJ. 
Note.—For convenience, the point B in the diagram may be 

called the elastic limit. It should be understood, however, that 
the elastic limit is the unit stress represented by the ordinate to 
the point B. A similar statement will apply to the other points 

on the curve. 
Proportional Limit.—The stress-strain diagram given in Fig. 

46 or Fig. 47 is very nearly a straight line up to the point A 

which is a little below the elastic limit B. Accordingly, up to 

J 0.001 01002 0.003 
Unit Strciin £ 

47.—Hard steel in tension (brittle 
steel.) 
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the point A the unit stress is very nearly proportional to the 
unit strain. The unit stress represented by the ordinate to the 
point A is called the proportional limit. That is, the proportional 

limit is the maximum unit stress within which the ratio of unit 
stress to unit strain may be considered constant. For con¬ 
venience, the point A in the curve may be called the proportional 
limit. 

The modulus of elasticity was defined as the ratio of unit 
stress to unit strain (Art. 26). Hence, within the proportional 
limit, 

S 
E = — = tan LJOA = constant (nearly). 

40. The values obtained for the proportional limit and the 
elastic limit of a material are approximations. Among other 
things, these values depend upon the care writh which the test 
is made and upon the sensitiveness of the instruments used. 
If very sensitive instruments are used, a permanent set may 
be obtained where, with the instruments ordinarily used, no 
set is observed. Moreover, if tests are carefully made and if the 
stress-strain diagram is plotted to a large scale, the lower part of 
the diagram, i.e., the part OA, will not be a straight line. In 
most cases, however, it will be very nearly straight. Hence, to 
make the results of different tests on a material comparable with 
each other and to allow for slight variations from the straight- 
line relation, certain definite methods of procedure are recom¬ 
mended for determining the proportional limit, i.e., for deter¬ 
mining that point on the stress-strain diagram up to which, for 
practical purposes, the diagram may be considered a straight line. 
For details concerning methods of procedure the reader is 
referred to textbooks on the testing of materials. 

For steel and some of the other more important engineering 
materials, the proportional limit and the elastic limit, as com¬ 

monly found, have approximately the same numerical value. 
This is particularly true of ductile materials. Moreover, the 

more accurately the tests are made, the more nearly do the two 
limits agree. Hence no distinction is commonly made between 
the proportional limit and the elastic limit. Since the propor¬ 

tional limit is more easily obtained, its value is commonly reported 

as the elastic limit. The proportional limit is frequently called 
the proportional elastic limit. 
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Note.—Unless a statement to the contrary is made, the “ elastic 
limit” should be interpreted to mean the “proportional limit.”* 

41. Yield-point. Commercial Elastic Limit.—When a prism 
of wrought iron or soft steel is stretched a little beyond the elastic 
limit By the bar suddenly elongates with little or no increase in 
the load. This stage of the test is represented by the point C 
in the stress-strain diagram for soft steel (Fig. 46). The unit 
stress corresponding to the point C is called the yield-point; 
i.e.y the yield-point is the unit stress at which the bar begins to 
elongate with little or no increase in the load. When the yield- 
point is reached, the prism acts as though somewhat viscous. 

If a piece is tested in a testing machine (Fig. 43), the beam K 
suddenly drops when the yield-point is reached. Hence the 
yield-point is readily determined. In commercial testing, 
it is customary to determine the yield-point instead of the elastic 
limit in the case of wrrought iron and soft steel. The yield-point 
is sometimes called the commercial elastic limit. 

Note 1.—A brittle material (hard steel, cast iron, concrete, 
etc.) has no sharply defined yield-point. 

Note 2.—Some ductile materials (copper for instance) show no 
well-defined yield-point. 

Note 3.—The division line between ductile and brittle materials 
is not clearly marked. For instance, if steels are arranged 
in order of their ductility, it will be found that there is a gradual 
transition from decidedly ductile to decidedly brittle steels. 
The statements made in this article as well as some of those made 
in the previous articles in this chapter must be modified when 
applied to materials that are near the division line. 

42. Ultimate Strength, Ultimate Stress, or Ultimate Limit.— 
The point D in the stress-strain diagram (Fig. 46 or Fig. 47) 
gives the greatest unit stress that can be developed in the test- 
piece. The unit stress corresponding to the point D is called the 
ultimate strength or the ultimate stress or the ultimate limit, and 

the corresponding total load (pull) is the ultimate load. 

* To determine the true elastic limit, the test-piece is subjected to a 
gradually increasing load and, after each definite increment of the load, the 
load is gradually removed. This is continued until a permanent set appears. 
The true elastic limit cannot be determined from the stress-strain diagram. 
The proportional limit, however, is determined from the stress-strain 
diagram. Accordingly, it is much easier to determine the proportional 
limit. 
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When the point D is reached, a brittle material acts very 
differently from a ductile material. A brittle material suddenly 
breaks when its ultimate stress is reached as is indicated in Fig. 47. 
A ductile material, however, begins to “neck” when its ultimate 
stress is reached, i.e., it is drawn out at some locality and the 
sectional area of the piece is greatly reduced before it breaks. 
Figure 48a represents a test-piece of soft steel just before necking 
began, and Fig. 486 shows this piece after necking took place at N. 
The reduction in sectional area at N may be as large as 50 per 
cent before the piece breaks. As soon as necking begins, the 
elongation may be continued under a decreasing load as is 
indicated in Fig. 46. 

43. Compression tests usually are made on short blocks, i.e., 
on cubes or short prisms of the material. Experiments show that 
the elastic properties of some materials in compression may 
differ markedly from the properties in tension. 

'll mm 
(a) (b) 

Fig. 49. 

In the case of a ductile material in compression, as soon as 
the yield-point is exceeded the material begins to flow laterally; 
i.e., it will be permanently flattened. Figure 49a shows a short 
prism of very soft steel before it was subjected to compression, 
and Fig. 496 shows the same piece after it had been compressed 
beyond its yield-point. The material has noticeably flowed 
laterally. The extent to which a piece of ductile material 
may be deformed in this way cannot be very definitely predicted, 
and for this reason a ductile material may show no well-defined 
ultimate compressive strength. A brittle material under com¬ 

pression shows no visible deformation and fails suddenly. 

Compression tests are made principally on brittle materials 
such as cast iron, concrete, brick, and stone—materials which 

are not suitable for tension members—and on wood. 
The properties of a hard steel in compression are very similar 

to those for this steel in tension. The same is true for soft 
steel up to the yield-point. Hence commercial tests on steel 
need be made only for the tensile values. 

(01) 

(b) 

Fig. 48. 
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44. Stress-strain diagrams may be constructed for the various 
materials commonly used in engineering construction. Figure 
50 gives the diagrams for wood in tension and in compression, 
for cast iron (tension and compression), and for three grades of 
steel (low carbon, medium carbon, and high carbon, i.e., soft 
steel, medium steel, and hard steel, all in tension). The broken 
lines indicate that the curves extend beyond the horizontal range 
of the figure. Figure 51 gives the complete diagrams for the three 
steels on a greatly reduced horizontal scale. 

Fig. 50. Fig. 51. 

Such materials as cast iron, concrete, stone, and brick show 
no well-defined proportional limit. Their stress-strain diagrams 
are curved from the start, and the curvature becomes more 
marked as the stress increases. In addition to their deviation 
from the law of proportionality, these materials have pronounced 
and erratic variations in their properties. Accordingly, the 

allowable stress for one of these materials is taken considerably 
below the ultimate stress, bringing the allowable stress down to a 

value below which the stress-strain diagram is only slightly 
curved. Hence the modulus of elasticity for such a material 

as cast iron or concrete may be taken as 
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where S = allowable stress. 
€ = corresponding unit strain. 

Illustration.—The allowable stress for cast iron in compres¬ 
sion is about 16,000 lb./sq. in. Up to this point the diagram is 
only slightly curved (Fig. 50). Therefore, no great error will 
be made by assuming that up to the allowable stress the ratio of 
unit stress to unit strain is constant. 

46. Actual and Nominal Unit Stress.—When a test-piece is 
subjected to tension its sectional area decreases, and when it is 

Relative Elongations 

Fig. 52.—Actual and apparent unit stress. 

subjected to compression its sectional area increases. To obtain 
the actual unit stress in the test-piece at any special stage during 

the operation of testing the piece, for strict accuracy the load 

should be divided by the actual sectional area of the test-piece 

at that particular stage of the test. It is customary, however, 
to express the unit stress at any particular stage as the unit 

stress based on the original sectional area, i.e., to divide the 
total load by the sectional area of the test-piece before the test began. 
The unit stress thus obtained is evidently not exactly correct, 
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but it is a simple and standard practice. This stress is termed 
the nominal or apparent unit stress. 

For brittle materials, and for ductile materials up to the 
elastic limit, the decrease (or increase) in the sectional area of 
the test-piece is relatively so small that no appreciable error is 
made if the sectional area is taken as that before the test began. 
The actual and the nominal stress-strain diagrams are practically 
identical, therefore, for a brittle material and up to the elastic 
limit for a ductile material. Beyond the elastic limit B, the two 
diagrams for a ductile material differ a great deal, as is shown 
in Fig. 52. 

46.- Shear Tests.—There are two kinds of tests for the deter¬ 
mination of the shear properties of materials, viz., torsion tests 

and tranverse shear tests. Torsion tests will be considered later 
(see Chap. V). Transverse shear tests are made primarily 
to determine the ultimate strength for a material in shear. 

There are various types of machines used for transverse shear 
tests. The fundamental principle underlying them is embodied 
in the simple diagram of Fig. 53. The test-piece T is assumed 
for convenience as having a rectangular section and is shown as 
partly sheared along the two sections CD and CD. The ends 
of T are firmly held between two plates M and N. Note that the 

test-piece is sheared along two sections CD and CD. Hence, 

if A is the area of the section of the test-piece, the shearing area 
is 2A. If P is the maximum force necessary to shear the piece, 
the ultimate intensity of the shearing stress (ultimate shearing 

strength) is 
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Evidently, the value of S8 thus found is the average intensity of 
the maximum shearing stress on the section. It is not known 
just how this stress is distributed over the section. 

47. Other Tests.—Materials are tested for various purposes. 
In addition to tests in tension, compression, and shear, it may 
be necessary to test a material to ascertain its ability to resist 
corrosion, or to ascertain its plasticity, flexibility, hardness, 
malleability, etc. (see Art. 51 for fatigue strength). 

In Mechanics of Materials, as in other branches of science, 
theory and experiments go hand in hand. The results of experi¬ 
ments often are the basis of a theory. The theory in turn must 
be tested experimentally. No theory can be accepted unless 
it agrees reasonably well with the results of experiments. In 
later articles, formulas will be developed for the design of beams. 
These formulas rest on certain facts experimentally determined. 
It becomes necessary, therefore, to test beams not only for the 
purpose of ascertaining the properties of a material when used in a 
beam but also for the purpose of determining the limitations 
that must be placed upon the formulas that are used to design 
beams. In like manner, column tests, torsion tests, in fact, 
tests of various kinds, must be made. Such tests, as a rule, 
are made on models, members, or structures especially designed 
for experimental purposes. Sometimes tests are made on full- 
size members or on structures such as are actually found in 

practice. 
48. Importance of Ductility.—Structural steel is the steel 

commonly used in buildings, bridges, cranes, etc. It is a soft steel 
(mild steel) having an ultimate strength of about 60,000 lb./sq. in. 
Since a hard steel may have an ultimate strength much higher 
than this, it may be asked why one of the harder steels is not 
used. 

As a rule, if the strength of a steel is high, its ductility is 
low. Now structural steel is as strong a steel as can be manu¬ 
factured at low cost consistent with the degree of ductility that 

is deemed necessary for the steel to have. It may be of interest, 
therefore, to give a few of the advantages of ductility. 

1. It frequently happens that there is a concentration of 
stress at some point in a member. To illustrate, Fig. 54 repre¬ 
sents a symmetrical member subjected to two equal but oppo¬ 
sitely directed uniformly distributed forces, one at each end. 
The member contains a hole (a rivet hole, perhaps). Careful 
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experiments show that the stress may be considered uniformly 
distributed on any section that is some distance away from the 
hole. On a section through the hole, however, the stress is 
not uniformly distributed as is indicated in the figure, the inten¬ 
sity of stress at C and D being much greater than the average 
intensity of stress on the net section. That is, there is a con¬ 
centration of stress at C and at D. 

The stress on a section is called a localized stress when its 
distribution is influenced by some local condition such as a 
hole, groove, notch, flaw, fissure, or an abrupt change in section. 
Localized stresses are found also near 
the point of application of a concen¬ 
trated load. 

If in a ductile material (such as 
structural steel) a localized stress at 
some point should exceed its elastic 
limit, the material at this point will 
yield; i.e., it will be drawn out with¬ 
out any appreciable increase in the 
stress at this point. This tends to 
equalize the stress on that section in 
that it compels the fibers at the other 
points in the section to sustain a greater 
share of the load without necessarily 
doing any appreciable damage to the 
member. For instance (Fig. 54), if the intensity of stress at C 
should exceed its elastic limit, the fibers at this point will yield 
slightly, and this will compel the other fibers along AC to sustain 
a greater share of the load. If in a brittle material (such as 
hard steel) the stress at some point should exceed its elastic 
limit, the material at this point is apt to fail. A local failure, 
however, must be regarded as the initial failure of the member as 
a whole. Ductility, therefore, is of great importance in that it 
tends to provide insurance against the failure of a member due to 
localized stresses. Except in extreme cases, localized stresses in 
ductile materials are of little significance (see Fatigue of Metals, 
Art. 51, for an exception). 

2. Frequently, some adjustment must take place among the 
members or parts of a member before each member or each part 
will sustain its share of the load. Ductility is very important in 
that it helps to make such adjustments possible. 

v V ,r \ v 

Fig. 54. 
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If one rivet in a riveted joint carries more than its share of 
the load, this rivet, if made of ductile steel, will yield slightly 
when overstressed, thus compelling the other rivets to carry a 
greater share of the load. If the rivets were made of hard steel 
the overstressed rivet would be apt to fail, thus compelling the 
other rivets to carry the whole load. 

3. A structure made of ductile steel often is deformed notice¬ 
ably before it finally collapses. If made of brittle steel, the 
structure, when overstressed, will fail suddenly without giving 
special warning by any obvious deformation. Hence, in many 
cases, ductility is of importance in that the deformation of a 
structure indicates that the structure is overloaded. 

4. It will be seen later (Art. 69) that a ductile steel can absorb 
the energy due to shocks, blow's, and suddenly applied loads 
better than hard steel. This is of importance in such structures 
as bridges and cranes. 

Note.—When ductility becomes of less importance, a harder 
steel may be used. The cables of the George Washington Bridge 
over the Hudson River are made of strands of cold-drawn steel 
wire whose ultimate strength is about 220,000 lb./sq. in. 

49. Measure of Ductility.—In commercial testing, ductility 
is measured, as a rule, in one of two ways. 

1. Percentage of Elongation.—A test-piece of a ductile material 
(such as soft steel) is elongated in a testing machine until it 
breaks. The two parts of the test-piece are then removed from 
the machine and are carefully fitted together so that they are 
relatively in the same position as they were before rupture took 
place. The elongation of the test-piece (i.e., of the gage-length) 
is then measured. If X is the elongation and L is the original 
length of the gage-length, the percentage of elongation is 

Percentage of elongation = ^ X 100. 

Now the elongation of the gage-length consists partly of a 

general elongation, which is practically uniform for the entire 

length, and partly of a local elongation due to the necking 
(Fig. 55). The part EF^containing the neck will elongate much 
more than any other part originally of the same length. In 
the case of mild steel, EF may elongate 100 per cent (double its 
length), while the elongation of 01 (originally 8 in. long) may be 
only about 30 per cent. Hence, if the percentage of elongation 
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is to have a definite meaning, the original gage-length must be 

either specified or understood. Standardized tests, therefore, 
make the results of different tests comparable with each other. 

2. Percentage of Reduction of Area.—If A is the original sec¬ 
tional area of the test-piece, and A' the final or minimum sectional 
area at the neck, then 

A — A' 
Percentage of reduction of area =-r.- X 100. 

A. 

In the case of soft steel, the percentage of reduction of area 
may be as great as 50 per cent; i.e., the sectional area at the 
neck may be reduced by one-half before rupture takes place. 

i i i i i i i 
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Fig. 55. 

60. The physical properties of a manufactured material such 
as steel may be modified in several ways. 

1. Chemical Composition.—The properties of steel may be 
materially modified by the addition of a small amount of one or 
more of the following elements: carbon, nickel, chromium, 
silicon, manganese, etc. Each element has a particular influence 
upon the properties of steel, and by a proper combination of 
these elements steels of various kinds are made. A steel that 
contains carbon only is called a carbon steel. If it contains one 
or more of the other elements, it is called an alloy steel, “Stain¬ 
less steel,” for instance, is an alloy steel usually made by the 
addition of chromium. Structural steel is a carbon steel, the 

carbon content ranging from about 0.15 to about 0.30 per cent. 

It can be manufactured on a large scale and at a low cost. 

Nickel steel (3 to 4 per cent), sometimes called structural 
nickel steel, possesses properties that are very desirable for high- 

grade structural work and for machines. It is a ductile steel 
with an ultimate strength of about 100,000 lb./sq. in. It is, 

however, too expensive for general use. 
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To increase the hardness of steel, carbon has long been used. 
To illustrate how the addition of carbon affects the elastic limit 

and the ultimate strength of steel, the following table is given. 

Amount of carbon, 

per cent 

Carbon steel Hot rolled 

Elastic limit, 

lb./sq. in. 

Ultimate strength, 

lb./sq. in. 

0.20 35,000 60,000 

0.60 60,000 100,000 

1.00 80,000 135,000 

Note.—A hot-rolled metal is a metal that has been rolled into 
shapes (rods, bars, beams, channels, etc.) while red hot. A 
cold-rolled metal is one that has been rolled into shapes while 
cold. 

2. Overstrain.—When a material is stressed beyond its elastic 
limit, it is said to be overstressed. When the strain is under 
consideration, it is said to be overstrained. 

Overstraining a ductile material may change its physical 
properties markedly. If a test-piece of soft steel is overstrained, 
say up to the point H in Fig. 46, and if then the stress is removed, 
there will remain a permanent set represented by OJ. If later 

the stress is again applied, it will be found that the stress-strain 
diagram now is given by JHE. This means that the new 

elastic limit is very nearly that represented by the ordinate to 
the point H. That is, the elastic limit has been raised. 

Hammering, cold-pressing, cold-drawing, cold-rolling, etc., 

are all cases of overstrain. The following table compares the 
elastic limits and the ultimate strengths of two pieces of struc¬ 
tural steel, one hot-rolled, the other cold-rolled. 

Structural Steel 

0.20 per cent carbon 

Elastic limit, lb./sq. in. Ultimate limit, lb./sq. in. 

Hot rolled. 35,000 60,000 

Cold rolled. 60,000 80,000 
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3. Heat treatment consists in heating a material (metal, glass, 
etc.) to a high temperature and then cooling it either slowly 
or suddenly. Different materials respond differently to heat 
treatment. Since steel is the metal of primary interest in 
this text, it will be advantageous to consider here the heat 
treatment of steel. 

Annealing steel, i.e.f heating it to a red heat (800°C. more 
or less) and then allowing it to cool slowly, tends to soften the 
steel and to make it more ductile. An overstrained steel if 
properly annealed will recover its original properties. Annealing 
also makes a steel more uniform internally. Hence, to produce a 
high-grade soft steel, the steel may be first hammered, rolled, 
drawn, etc., into shape and then annealed. 

Note.—Glass and aluminum are similarly annealed by slow 
cooling from a high temperature. On the other hand, copper, 
brass, and bronze are annealed by quenching or quick cooling 
from a heated state. Slow cooling hardens them. 

Hardening. Tempering.—Heating a steel to a red heat and 
then cooling it by plunging it into water or oil tends to harden 
it. Hardening raises the elastic limit and the ultimate strength 
of steel. A hardened steel is apt to be too brittle. When this 
is the case, the hardened steel is tempered. This process consists 
in heating it to 450°C. (more or less, depending upon the amount 
of tempering desired) and then allowing it to cool. This reduces 

the hardness and makes the steel more uniform in texture. 
The following table shows how the elastic limit and the 

ultimate limit of spring steel may be modified by heat treatment: 

Spring Steel 

0.93 per cent carbon 

Heat treatment Elastic limit, lb./sq. in. Ultimate limit, lb./sq. in. 

Annealed. 28,000 
107,000 
85,000 

84,000 

Hardened. 188,000 

Tempered. 97,000 

Note.—Since the properties of a manufactured material such 

as steel depend both upon the mechanical processes used in its 

manufacture and also upon its heat treatment, it is to be expected 
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that two pieces of metal of the same chemical composition 
may differ in their physical properties. 

61. Fatigue Failure. Endurance Limit.—The ultimate unit 
stress as defined in Art. 27 is often called the static ultimate 
stress since it is the maximum unit stress that can be developed 
in a material under static conditions (load slowly and gradually 
applied). The working stress as defined in Art. 29 is based upon 
the static ultimate stress. Experience shows that this is always 
permissible if the stress in a member is constant or is repeated 
only a relatively small number of times. 

If a load is applied to a member many times, it is called a 
repeated load. The unit stress induced in a member by a repeated 
load is called a repeated stress. For instance, a material may be 
subjected to a stress that varies between Si and S2, (from Si to 
S2, S2 to Siy etc.). If Si and S2 are of opposite signs (one tension, 
the other compression), the stress is called a reversed stress. 

Experiments show that a material may fail if repeatedly sub¬ 
jected to a stress that is less than the static ultimate stress. 
If there is a reversal of stress, the material may fail even if the 
stress is less than the static elastic limit for that material. 
Failure due to the repetition of stress is called fatigue failure. 

Parts of a machine or structure may be subjected to millions 
of stress repetitions. It is estimated that, during the lifetime of 
a steam engine, the piston rod may have a billion reversals 
of stress. Axles, crankshafts, automobile springs, etc., often 
fail owing to fatigue. Moreover, no warning of impending failure 
is given. The member fails suddenly. A knowledge of fatigue 
failure is therefore of practical importance. 

An extensive treatment of fatigue failure is beyond the scope 
of this text.* The following statements, however, may be con¬ 
sidered safe working hypotheses for cases of a stress repeated 
many times: 

1. For a given lower stress Si, there is an upper limit to the 
stress S2 (called the endurance limit) such that failure will not 

occur if a stress varying between Si and S2 is applied an indefinite 

number of times. When a member to be subjected to many 

repetitions of stress is designed, it is considered good practice to 
take, as the working stress, not more than one-third of the 
endurance limit. For instance, for a complete reversal of stress 

* For a detailed treatment of the subject, see “Civil Engineering Hand¬ 

book,” McGraw-Hill Book Company, Inc., 1934, 



TESTING MATERIALS 61 

the endurance limit is about one-third of the static ultimate. 

Accordingly, the working stress should be about one-ninth 

of the static ultimate (or even less, depending upon the kind 

of structure under consideration). If the static ultimate of a 

steel is 60,000 lb./sq. in., then the working stress for that steel 

subjected to many complete reversals of stress should be between 
6000 and 7000 lb./sq. in. 

2. If the lower stress is zero, the endurance limit for steel 

is about one-half of the static ultimate so that the working stress 

should be taken as about one-sixth of the static ultimate (i X |), 

provided the stress is repeated many times (millions of times). 

3. Provided there is no reversal of stress, the number of repeti¬ 

tions of stress in a member of a structure such as a bridge is not 

great enough during the lifetime of that structure to make it 

necessary to consider fatigue failure. Hence, in the design of a 

bridge, for instance, fatigue failure need not be considered as a 

rule if there is no reversal of stress. If there is a reversal of 

stress in a member of a bridge, the allowable stress is lowered. 

PROBLEMS 

16. A round rod of structural steel, f in. in diameter, is 12 ft. long. Using 
the stress-strain curve of Fig. 46, estimate the length of this rod if subjected 
to a pull of P = 15,400 lb. Ans. 12.8 ft. 

17. Using the stress-strain diagram for high-carbon steel (Fig. 50), find 
the modulus of elasticity of the steel. Ans. E - 30,000,000 lb./sq. in. 

18. A flat round-ended punch, J in. in diameter, is used to punch a hole 
through a steel plate. Plate is f in. thick. Find the ultimate unit shearing 
stress if the maximum force applied to the punch is P = 52,000 lb. 

Ans. 50,500 lb./sq. in. ’ 
19. A steel rod, 1.25 in. in diameter, ^subjected to a gradually increasing 

pull. Just before failure the pull in the rod was P = 90,000 lb. and the 
diameter of the neck was 1.07. Find the maximum nominal unit stress 
in the rod. Also the maximum actual unit stress. 

Ans. 73,400 lb./sq. in.; 100,000 lb./sq. in. 
20. In Problem 19, compute the percentage of reduction of area. 
21. A bar of ductile steel, \ in. in diameter, was used in a testing machine. 

The beam K dropped when the total load was 7500 lb. Compute the 

yield-point. Ans. 38,200 lb./sq. in. 

22. A Berry strain gage was applied to an 8-in. gage-length of a steel rod 
whose stress-strain diagram is given in Fig. 47. What was the reading of the 
dial of the gage at the elastic limit? Each unit on the dial registers 0.001 in. 

Ans. 19.5. 



CHAPTER III 

TENSION AND COMPRESSION 

There are a few formulas pertaining to tension (or to com¬ 
pression) that are of considerable practical importance. These 
will now be derived for the case of a prism in simple tension. 
There are also a few propositions that are more or less general 

in nature but that will be considered here in 
connection with a prism in simple tension. 

52. Law of Proportionality. Law of Super¬ 
position.—If X is the elongation of a (steel) 
prism due to an axial force P (Fig. 56), then 
within the elastic limit X is proportional to P 
(very nearly). That is, within the elastic limit 

YWM 

j—j—T 

Li_*X=Xt+X2 

P = P,+P2 

Fig. 56. 

X = mP (a) 

where m = a constant (very nearly) 
Assume that P = Pi + P2. The elongation 

due to P is then 

X = 771 (Pi + P 2) = 77lP 1 + TTlP 1 = Xi + X2 

where Xi = raPi = elongation due to Pi acting alone. 
\2 = mP2 = elongation due to P2 acting alone. 

Hence within the elastic limit the elongation due to Pi and P2 
acting simultaneously may be%obtained by adding the elongations 
due to Pi and P2 each in turn acting alone. Or 

X = Xi + x2. 

Consider now an ideal case and assume that 

X = mPn (6) 

where m and n = constants. Let P = Pi + P2. The elonga¬ 

tion due to P is 

X = m(Pi + P2)n; 

that due to Pi acting alone is 

Xi = raP?; 
62 
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and that due to P2 acting alone is 

X2 = mP\. 

Let us see under what condition X = Xi + X2. That is, under 
what condition will the elongation produced by P± and P2 acting 
simultaneously be equal to the sum of the elongations produced 
by Pi and P2 each in turn acting alone? If X = Xi + X2, then 

m(Pi + P2)n = mP\ + mP\. (c) 

Evidently, the relation expressed by Eq. (c) is possible only 
if n = 1. If n = 1, Eq. (6) becomes 

X = mP. 

Hence X = Xi + X2 if (and only if) the elongation is proportional 
to the force producing it—only if the law of proportionality holds. 

Considerations of the nature of the foregoing together with 
the results of experience lead to a very important generalization 
known as the law of superposition. This law may be stated as 
follows: 

So long as the law of proportionality is satisfied, the effect of 
a system of forces acting on a body may be found by combining 
the effects produced by the individual forces, each force in turn 
acting alone. That is, so long as the law of proportionality is 
satisfied, the effect of one force may he superposed upon the effect 
of another force to obtain the combined effect produced by both forces 
acting simultaneously. 

In theoretical mechanics, bodies are considered rigid. Expe¬ 
rience warrants the assumption that for rigid bodies the law of 
proportionality is strictly true. In mechanics of materials 
bodies are considered deformable, and when the deformation 
of a body must be considered the law is not always true. In 
the case of columns, for instance, it can¬ 
not be used. Generally, however, the 
law is nearly true within certain limits, 
and within these limits the law of super¬ 

position is extensively used. 
Illustration. Fig. 57.—Within the 

elastic limit, the deflection of the point 
D produced by Pi acting alone is very 
nearly proportional to Pi, and that due to P2 acting alone is very 
nearly proportional to P2. Hence, by using the law of superposi¬ 
tion, the deflection of D due to both loads acting simultaneously 



64 MECHANICS OF MATERIALS 

may be found by adding the deflections due to Pi and P2 each 
in turn acting alone, provided the elastic limit is not exceeded. 
If the elastic limit is exceeded in any member of that structure 
the elongation of that member is no longer proportional to the 
stress in that member and therefore the law of superposition 
should not be used. The law of superposition has a wide applica¬ 
tion inMechanics and its limitations should be clearly understood. 

Note.—The law of proportionality leads to the “method of 
unit load.” For instance, if u is the stress in a given member 
of a bridge due to a unit load acting at some definite point of 
that bridge, then the stress in that member due to a load P 
acting at that point is 

S = Pu. 

63. Total Elongation of a Prism under Simple Tension.— 
Given a prism of length L and sectional area A (Fig. 58). Let 

X equal the elongation of the prism when it is 
subjected to an axial pull P. Since unit stress 
is S = P/A and unit strain (elongation per 
unit length) is e = X/L, the modulus of elasticity 
is 

E ~ € - X - A\ 

T“ 
</// 

L A 

i_ ■ — 
Xl — 

Fig. 58. 

Or, solving for X, 

If P/A is replaced by S, 

(1) 

(2) 

Formula (1) is important. It is useful when solving problems 
involving the elongation (or contraction) of a prism under 

simple tension (or compression) within the elastic limit. If 

the elastic limit is exceeded, E, the ratio of stress to strain, 
is no longer constant and therefore Eq. (1) is no longer applicable. 

Note.—It is necessary to be consistent in the use of units of 
force and distance. If P is given in pounds and A in square 
inches, L must be expressed in inches and E in pounds per square 
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inch. “Mixing units” is one of the most common mistakes 
made by a beginner. Since E is usually given in pounds per 
square inch, it is advisable for the beginner to reduce all dimen¬ 
sions to pounds and inches. 

Example I.—A soft steel wire, 150 yd. long, is subjected to a 
pull of 500 lb. The diameter of the wire is d = 0.20 in. Taking 
E as 30,000,000 lb./sq. in., find the total elongation of the wire. 

The unit stress is 

S = I = x(0.020)2 = 15)900 lb’/sq- in- 
4 

Hence the elastic limit (about 35,000 lb./sq. in. for soft steel) is 
not exceeded. 
Therefore, by Eq. (1), 

PL _SL _ 15,900 X 150 X 3 X 12 
AE E 30,000,000 

= 0.286 in. 

Example II.—Solve Example I using the foot and ton as units. 
E must be expressed in tons per square foot. As given in 

pounds 
Example I, E = 

foot, 
square inches 

Converting to tons per square 

pounds 
2000 _ pounds 144 

square inches square inches 2000 

' 144 
30,000,000 X 144 

2000 
2,160,000 tons/sq. ft. 

Then 

A = 
PL 
AE 

0.25 X 450 
7t/0.20\2 

A12) 
X 2,160,000 

= 0.0239 ft. = 0.286 in. 

Example III.—A 10-in. length of steel measuring tape had 

a cross-section of 0.128 by 0.0127 in. (or 0.00162 sq. in.). The 
elongation under an applied load of 180 lb. was 0.0409 in. This 

was within the elastic limit of the piece. Find E. 

PL 180 X 10 
“ AX 0.00162 X (.0409) 

27,150,000 lb./sq. in. 
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64. Elongation of a Prism Due to Its Own Weight.—If a very 
long prism (such as a mine pump rod) is suspended from one 
end, the elongation of the prism due to its own weight must be 
considered. In Fig/59a, the prism is shown in its unstrained 
condition. At a distance x from its lower end, take a typical 
portion or element ED whose length in the unstrained condition 
is dx. Owing to the weight of DO, the part of the prism below 

the section CD, the element ED is elon¬ 
gated by an amount d\. If A is the sec¬ 
tional area and w is the. heaviness (weight 
per cubic inch) of this prism, the weight 
of part DO pulling down on the lower 
end of the element ED is P = wAx. In 
Fig. 59b the prism is shown in its strained 
condition and the length of the element 
ED after strain is shown as dx + d\. 

Since the elongation of a prism of 
(b) length L and sectional area A resulting 

Fig- from an end load P is X = PL/AE 
(within the elastic limit), we may write d\ for X, dx for L, and 
wAx for P. 
Therefore 

_ wAxdx 
~ ~~AE~' 

This is the elongation of any typical element of the prism due to 
the weight of the part below that element. 

The total elongation of the entire prism of length L will be the 
sum of the elongations of its elemental portions. 
Therefore 

x _ fowAxdx _ wAL2 _ GL 
K ” AE ~ 2AE ~ 2AE} w 

where G = wA L = weight of prism. By comparing the equa¬ 
tions X = PL/AE and X = GL/2AE, it is clear that the elongation 
of a prism due to its own weight is equivalent to the elongation of 
the same prism due to an end load of one-half the weight of the 
prism; or it is equivalent to the whole weight applied to the half 
length. 

The maximum intensity of the tensile stress in the prism due 
to its own weight occurs at the upper end B and is 
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Example.—A steel wire, 2880 ft. long, is suspended in the 
vertical shaft of a mine, and a weight of P = 500 lb. is hung 
from its lower end. The sectional area of the wire is 

A = 0.10 sq. in. 

Taking w = 490 lb./cu. ft. and E = 30,000,000 lb./sq. in., find 
the total elongation and the maximum intensity of stress in the 
wire. 

The elongation due solely to the end load P is 

_ 500 X 2880 X 12 
1 0.10 X 30,000,000 £>/bin- 

The weight of the wire is 

G = wAL = 490 X (™) X 2880 = 980 lb. 

The elongation of the wire due to its own weight is 

980 X 2880 X 12 
2 X (0.10) X 30,000,000 

The total elongation is, therefore, 

x = Xi + X2 = 11.41 in. 

= 5.65 in. 

In this case, the elongation due to the wire’s own weight is 
very nearly as much as that due to the end load P. 

To find out whether or not the elastic limit has been exceeded, 
compute the maximum intensity of stress in the wire. 

P + G _ 500 + 980 
A 0.10 

14,800 lb./sq. in. 

which is well within the elastic limit for steel. 
65. Temperature Stresses.—With few exceptions, the linear 

dimensions of a piece of material increase as the temperature 
rises and decrease as the temperature falls. If, then, a piece 

of material is prevented from expanding or contracting as the 

temperature rises or falls, stresses called temperature stresses will 
be induced in the material. To illustrate, Fig. 60 represents 

the steel arch of a bridge. This arch is firmly imbedded in con¬ 
crete at O and B and these supports are assumed to be immovable. 
Suppose that the arch was put in place when the temperature of 
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the air was 50°F. As the temperature of the air rises (say to 
100° in the summer), the arch tends to expand but is prevented 
from doing so by the immovable supports 0 and B. Hence 
temperature stresses are induced in the arch. As the temperature 
falls below 50° (let us say to —20° in the winter), the arch tends 
to contract. The temperature stresses thus set up in the arch 
as the temperature either rises or falls may be appreciable and 
are generally considered in designing an arch. They are com¬ 
puted separately and are then combined algebraically with the 
stresses computed for the loading. 

It should be noted that temperature stresses are induced 
only when the material is prevented from expanding or con- 

Fig. 60. Fig. 61. 

tracting as the temperature changes. In an ordinary railway 
bridge one end of the bridge rests on rollers or slides upon a 
plate. Such devices permit the bridge to expand or contract. 
This minimizes the temperature stresses. 

Within ordinary limits of temperature change, the elongation 
or contraction of a material per unit length for 1° change of 
temperature is called the coefficient of expansion (or contraction) 
of the material and will be designated by rj (Greek eta). If a 
steel rod of length L elongates (or contracts) by an amount X 
due to a change of temperature At° = tu — tf, then 

— elongation per unit length _ X ^ __ X 
v change of temperature L ’ LAt 

Or, 

X == rjLAt = 17L(jff — tf>) (a) 

in which t" = final temperature. 

tf = initial temperature. 
Consider the rod shown in Fig. 61a of length L and sectional 

area A, whose ends are held fixed. This state may be brought 
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about by bolting the ends of the rod to immovable supports. 
It is required to find the tension in the rod due to a fall of tem¬ 
perature A t°. 

If the ends were free to move (not held fixed, Fig. 616) the rod 
would contract by an amount X = rjLAt. The tension in the 
rod with ends held fixed must be equal to the pull required to 
elongate the rod by the same amount (Fig. 61c). If P is the 
pull or tension in the rod (Art. 53), 

(6) 

Equating the two expressions for X [Eqs. (a) and (6)], 

Therefore 

rjLAt = 
PL 
AE 

P = rjAEAL 

This is the value for the tension in the rod if the ends are fixed 
and the temperature falls, provided the elastic limit is not 
exceeded. This equation for P does not contain the length L. 
Hence the temperature stress in the rod is independent of the 
length but is not independent of its sectional area A. 

Note.—For values of rj for some of the structural materials 
commonly used, see Appendix. 

Example.—A steel rod of length L = 30 ft. and of sectional 
area A = 0.50 sq. in. is to be used to pull toward each other the 
two walls of a building (Fig. 61a). The temperature of the air 
(and rod) is 20°C. By means of torches the temperature of the 
rod is raised to 80°C., and the nuts on the ends of the rod are 
screwed up to a bearing. The rod is then allowed to cool to 
20°C. Taking rj = 0.0000117 and E = 30,000,000 lb./sq. in., 
what is the maximum pull which the rod can exert on the walls? 
P = rjAEAt = 0.0000117 X 0.50 X 30,000,000 X 60 = 10,5301b. 

The unit stress in the rod is 

10,530 

0.50 
21,060 lb./sq. in. 

which is within the elastic limit. Should the walls yield before 
the temperature of the rod becomes 20°C., the tension in the rod 

will not reach this amount. 
66. Statically Determinate and Statically Indeterminate Struc¬ 

tures.—When all the unknown forces acting on a structure or 
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when all the stresses in all of its parts or members can be found 
from the equations of equilibrium alone, the structure is said to 
be statically determinate. The trusses considered in Elemen¬ 
tary Statics were statically determinate since all the reactions 
acting on a truss and all the tensions and compressions in the 
members could be found from the equations of equilibrium, 
ZFX = 0; = 0; and Smoms. = 0. 

Whenever the equations of equilibrium will not suffice to 
determine all of the forces acting on a structure or all of the 
stresses in its parts or members, the structure is said to be 
statically indeterminate. To find those stresses or forces which are 
statically indeterminate, one or more equations in addition to 
the equations of equilibrium will be required. In a great many 
cases, such additional equations may be obtained in a manner 
similar to that used in the two articles which follow. 

57. Compound Prism.—If two or more prisms, each of length 
L, are placed side by side and fastened together, the resulting 

prism is called a compound prism. To investigate a compound 
prism consisting of three prisms (Fig. 62), proceed as follows: 
Assume that a longitudinal force P is applied in such a way 
that the three prisms must contract equally. If the three prisms 
are all made of the same material, the compound prism may 
be treated as a solid under simple compression. If, however, 
the three prisms are made of different materials, they will have, 

as a rule, different moduli of elasticity. Hence the unit 

stresses in the three prisms need not be the same even though 
they all contract equally. 

Let A i be the sectional area of prism 1 and let Elbe its modulus 
of elasticity. Similarly for prisms 2 and 3. Let CD be a right 
section of the compound prism and take “free” the part above 
CD (Fig. 62ft). If Fiy F2) and Fz are the total stresses or forces 
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acting in the three prisms, respectively, it follows from statics 
that 

Fi + F2 + F3 = P. (a) 

In this case, statics furnishes only one equation. Since there 
are three unknowns, two more equations are required.* 

By assumption, the three prisms contract equally. That is, 
\i = X2 — X3. 

Hence 
FXL _ FJL _ FJL 

A1E1 A2E2 A3E~3 W 

Equations (a) and (b) suffice to determine F1, F2, and F3. 
The unit stresses in the three prisms are, respectively, 

Si = £-S S2 = -J-2 and St = -J-*. 
^1 a2 a3 

Example.—Two steel plates each 1 by 4 in. are fastened to two 
opposite sides of a wooden prism 4 by 8 in. in size (Fig. 63). A 
longitudinal force of P= 96,000 lb. is applied 
to the compound prism. Assuming that the 
steel plates and the wTood elongate equally, 
find the unit stress induced in the steel and 
also in the wood. 

Let A1, Ei, F1, and Si refer to a steel plate 
(the two plates being alike), and A2, E2,*F2, 
and S2 to the wooden prism. Take Ei — 
30,000,000 lb./sq. in. and E2 = 1,500,000 
lb./sq. in. The equations of statics deter¬ 
mine one relation. That is, SF = 0 gives 

2Fi + F2 = 96,000. (c) 

Fig. 63. 

Since the elongations of the three parts are equal, 

FiL Fjb Fi _ Ft _ 
~ A2E2 °r 4 X 30,000,000 32 X 1,500,000' 

Therefore 
Fi = 2.5F2. (d) 

Solving Eqs. (c) and (d), 

Fi = 40,000 lb. and Ft = 16,000 lb. 

* The use of 2M = 0 will not help to find Fi, Ft, or F, since it will intro¬ 
duce another unknown, viz., the distance to the point of application of P. 
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Finally, 

Si = -7- = 10,000 lb./sq. in. and St = 4^ = 500 lb./sq. in. 
A. i A-2 

These values of S are within the elastic limits. 
68. Redundant Member.—Let ON (Fig. 64), be a rigid bar, 

Bi a steel rod, and B2 a wrought-iron rod. Neglect the weights 
of the bar and the rods. Assume Bi and B2 to have originally a 
close fit. That is, before the load Q is applied, Bi and B2 are 
just taut but not stretched. As soon as the load Q is applied, 
B\ and B2 are stressed and therefore strained (elongated). 

It is evident that, as a matter of stability, only one of the rods 
is necessary. If Bx is removed, B2 (if strong enough) would 
sustain the loaded bar ON. So one of the rods is redundant. 

With both rods in place and the load Q applied, the total 
stress in each rod will depend upon the relative ease with which 
these rods can be stretched. If Bi is a very slender rod compared 
with B2j the total stress in Bi might be negligible with respect 
to the total stress in B2. Again, given a steel rod and a wrought- 
iron rod of the same size and length, the wrought-iron rod will 

be stretched more easily than the steel rod. Consequently, 

the total stresses in the rods Bi and B2 depend not only upon 
the laws of statics but also upon the elastic properties of the rods. 

Example. Fig. 64.—Given, for the steel rod Bh L\ = 20 ft., 
Ai = 0.40 sq. in., and E\ = 30,000,000 lb./sq. in.; and, for 
the wrought-iron rod B2, L2 = 10 ft., A2 = 0.10 sq. in., and 
E2 = 25,000,000 lb./sq. in. It is required to find the total 
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stresses Fi and F2 in these rods if Q = 1200 lb. Other dimen¬ 
sions are shown in the figure. 

Consider the bar free (Fig. 646). Let ON be the original 
position and ON' the final position of the bar. The bar itself 
is assumed not to bend; i.e., it is so stiff that its bending may be 
assumed to be negligible when compared with the elongations 
of the rods. If Xi is the elongation of Bx and X2 is the elongation 
of Bi, it is evident from the geometry of the figure that X2 = 2Xi. 
Hence 

F2L2 _ g F\L\ 
A2E2 A1E1 

Or, substituting values for A1, A2, Li, L2, Ei and Fa, 

F2 X 10 X 12 __ 2Fl X 20 X 12 
0.10 X 25,000,000 0.40 X 30,000,000' 

Simplifying, 

This equation contains two unknowns, F1 and F2. Another 
equation is necessary. Statics furnishes this additional equation. 
2A/o = 0 gives 

1200 X 6 - 4F2 - 2Fi = 0. (6) 

Solving Eqs. (a) and (6), 

Fi = 1350 lb. and F2 = 1125 lb. 

The unit stresses are 

and 

Sl = Ti = JS* = 3875 lb-/s<*-in- 

= Tt = OT = 11)250 lb'/sq'in' 

Evidently, the elastic limits are not exceeded. It may be added 
that the other two equations of equilibrium, 2X = 0 and 

2F = 0, introduce the reactions at 0 and that, therefore, after 

F i and F2 have been found the two unknown components at 0 

may be computed. 

23. Fig. 65.—A rigid bar is supported by three rods each one in a vertical 
position as shown in the figure. The two rods Bi and Bi are steel rods 
for which Li = 100 ft., Ai = 0.50 sq. in., and Ei = 29,000,000 lb./sq. in. 
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R% is a copper rod with L2 = 100 ft., A2 = 2 sq. in., and E2 = 8,000,000 
lb./sq. in. Find the total stress in each of the rods. 

Owing to the symmetrical arrangement of 
rods and loads, the three rods will elongate 
equally. 

Ans. Fx = 7,725 lb.; F2 - 8,550 lb. 

WORK AND ENERGY. RESILIENCE. 
IMPACT 

59. External and Internal Work.— 
When a body is deformed (stretched, 
bent, twisted, etc.), the points of 
application of the external forces 
producing the deformation move. 
Hence work is done by the external 
forces. The work done by the exter¬ 
nal forces acting on a body is con¬ 
veniently called the external work. 

When a body is deformed, work must be done to deform 
the elements or parts of that body. This work is conveniently 
called the internal work. 

Now work is the measure of energy expended. Hence, if all 
the energy expended by the external forces is used to deform 
the body, it follows from the law of the conservation of energy 
that 

External work = internal work. 

60. Force or Load Gradually Applied.—According to Hooke's 
law, if a prism is acted upon by an axial force the elongation of 
the prism is proportional to the force acting, provided the elastic 
limit is not exceeded. Obviously, the law fails if the force is so 
suddenly applied that part of the force must be used to overcome 
the inertia of the particles of the prism or if an appreciable 
part of the energy expended by the external force (or forces) is 
transformed into kinetic energy of the particles. 

When tensile tests are made, the force, as a rule, is made to 
increase gradually from zero to its final value and is applied so 
slowly that the inertia of the particles may be neglected at all 
stages in the elongation. A load thus applied is called a force 
or load gradually applied. Hence Hooke's law holds if the force 
is gradually applied. 

12,0001b. 12,000(b. 
Fig. 65. 
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In many cases, the force, although not gradually applied, 
is applied in such a way that the final velocities of the particles 
are zero (momentarily). In such cases, in considering the whole 
range of motion, the total change in kinetic energy is zero (initial 
velocities of particles assumed to be zero) and the assumption 
may be made that the total energy expended by the external 
force (or forces) is used to deform the prism. 

In the problems to be considered, it will be assumed that 
the inertia of the particles of the prism may be neglected and 
that therefore the force may be treated as if gradually applied. * 

61. Work Done in Stretching a Prism under Simple Tension.— 
Let the prism be acted upon by an axial force that gradually 

'/////////////, 
A 

L 

P 

(a) 

increases from 0 to P, and let X equal the final elongation of 
the prism (Fig. 66a). Let F equal the value of this force at 
any given stage in the elongation, and let x equal the elongation 
at this stage. According to Hooke's law, F is directly propor¬ 
tional to x, provided the elastic limit is not exceeded. Under 
these circumstances, 

F = mx 

where m is a constant. Hence, within the elastic limit, the rela¬ 
tion between F and x as F increases gradually from zero value to 

* If a sledge hammer is used to strike (say) a beam resting on end supports, 
the hammer may rebound before the beam as a whole is appreciably 
deformed. Moreover, in the neighborhood of the point where the hammer 
hits there may be a local deformation of such magnitude as to injure the 
beam near that point. That is, the maximum stress in the beam in the 
neighborhood of the point where the hammer hits may be larger than that 
resulting from the deformation of the beam as a whole. Such localized 
stresses require special consideration. 
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the value P may be represented by the straight line OB (Fig. 666). 
The area of AOBB' = PX/2. By calculus, the area of AOBBf 

is f^Fdx. Now Fdx is the work done by F as the prism is elon¬ 

gated an infinitesimal amount dx. The total work done by 
F as F increases gradually from 0 to P is therefore, 

x 
Fdx = area of AOBB' = —• 

A 

Hence, if P is a load gradually applied, and X equals total 
elongation (or contraction) produced, then, within the elastic 
limit, the total work done is 

u = ~ (5) 

Equation (5) may be put in another form. If A is the sec¬ 
tional area of the prism and S is the final unit stress induced in 
the prism by the force P, then P = AS. Also, within the elastic 
limit, 

. _ PL _ SL 
AE E' 

Hence 

PX AS SL = S2AL 
2 2 X E 2E * 

Within the elastic limit, the total work done in stretching the 
prism is, therefore, 

S2 1 S2 
= = volume of prism. (6) 

Example.—A steel rod of length L — 5 ft. and of sectional 
area A = 0.50 sq. in. is stretched so that the unit stress is 
S = 18,000 lb./sq. in. The modulus of elasticity is 

E = 30,000,000 lb./sq. in. 

How much work is done in stretching the prism? 

U = \ SOWOO X (0’5 X 5 X 12) = 162 in.-lb. of work = 

13.5 ft.-lb.* 

62. Note.—When a prism is stretched beyond its elastic limit, 
the law of proportionality no longer holds. That is, the relation 
between F, the force, and xt the elongation produced, is no 
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longer linear. In Fig. 67, let OA represent the relation between 
F and x up to the elastic limit, and AB that beyond the elastic 
limit. It is still true that the total work done in stretching the 
prism is 

U = £Fdx 

and that this work is represented by the total area under the 
curve OAB. Note, however, that the area under the curve OAB 
does not equal PX/2. Hence Eq. (5) or Eq. (6) should not be 
used when the elastic limit is exceeded. 

63. Weight Suddenly Applied to a Prism.—Given a prism 
that is supplied with a flange at its lower end (Fig. 68). Let 
L equal length of prism in its unstretched state. If a body whose 
weight is W (body not shown in figure) is held (say, by the hands) 

Fig. 67. Fig. 68. Fig. 69. 

so that it just touches the flange of the unstretched prism and 
is then suddenly released (hands suddenly removed), the body 
begins to sink and the downward pressure exerted by the body 
on the flange increases from zero to some value P. 

If X equals the elongation of the prism when the weight comes to 
rest (momentarily) and is the maximum elongation of the prism, 
then, within the elastic limit, the work done by P in stretching 
the prism is (Art. 61) 

On the other hand, the body whose weight is W sinks through 
a distance X. Hence the work done by W (i.e., by gravity) is 

U = W\. 

If it is assumed now that all the energy expended by W is used 
to stretch the prism (no change in kinetic energy), it follows from 
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the law of the conservation of energy that, within the elastic 
limit, 

Or P = 2W is the final force exerted on the rod. Hence, 
within the elastic limit, a weight suddenly applied to the prism 
produces, double the tension and therefore double the stress 
it would produce if gradually applied.* 

If the body drops through a distance h before it strikes the 
flange of the prism (Fig. 69), the work done by W (gravity) is 

U = W(h + X). 

On the other hand, within the elastic limit, the work done by P 
in stretching the'prism is 

Hence, within the elastic limit, 

P\ 
= W{h + X) 

or 
2W(h + X) 

X 

If X is small when compared with h, the last equation may be 
written 

p _2Wh 
X 

Note.—It is assumed in the preceding argument that the falling 
body or the flange does not deform appreciably; and that the 
support does not move. If, for instance, the flange should bend, 
part of the energy expended by the falling body would be used to 
bend the flange. 

* If the load W is to be gradually applied, the body must be held (say by 
the hands) and then gradually released. As the body is being released, it 
slowly sinks (velocity negligible). The hands support less and less of the 
weight and the flange more and more until finally the flange supports 
the whole weight. That is, finally, P = W. In the gradual sinking of the 
weight, one-half of the work done by W is done to offset the gradually 
decreasing upward pressure of the hands and the other half is done to over¬ 
come the gradually increasing upward pressure of the flange. That is, only 
half of the energy expended by W is used to stretch the prism. 
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64. Force Suddenly Reversed—A force Q is gradually applied to the 

end of a rod, producing an elongation X (Fig. 70). The force Q is then sud¬ 

denly reversed. This is an ideal case but one suggestive of the magnified 

effect that may be caused by vibrations, especially if reversals of stress are 
produced in a member. 

The energy stored up in the rod by the gradual 

application of the force Q is Q\/2. When the load 

is suddenly reversed, this energy, together with the 
work done by the reversed force Q through the dis¬ 

tance X + X', will be expended in compressing the 

rod a distance X', and the total energy stored up in 

the rod will be P\'/2. That is (initial and final 
velocities being zero), 

^ + Q(X + V) = 

Or 

3 Q\ 
+ QX' 

PX' 
2 * 

Now X'/X = P/Q within the elastic limit. So 

-'x —J 

?0x , p = p* 
2 + X 2 Q 

Fig. 70. 

from which X cancels. Then 3Q2 + 2PQ = P2. Completing the square, 

taking P as the unknown, 

Therefore 

P2 - 2PQ 4-Q2 = 3Q2 + Q2 = 4Q\ 
P - Q = 2Q. 

P = 3 Q. 

So the effect of a force suddenly reversed is three times the effect of the 

same force gradually applied. 

65. Resilience.—So long as the stresses produced in a body 
are within the limits of elasticity, the body will resume its original 
size and shape when the external forces producing the strain are 
gradually removed. Hence the energy expended upon a body 
in producing an elastic strain is stored up in that body as potential 

energy and this energy is returned when the body recovers. 
For instance, within the elastic limit, the energy expended in 
winding a watch spring is stored up in that spring in the form of 
potential energy and this energy is returned by the spring as it 

runs the watch. 
When the elastic limit is exceeded and the material is over¬ 

strained, part of the energy expended in producing the strain is 
used in producing a permanent set and the rest is stored up in 
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that body as potential energy. That is, an overstrained body is 
not able to return all the energy expended upon it in producing 
the strain. 

To illustrate, let OAH (Fig. 71) be the stress-strain diagram 
for a steel rod stretched beyond its elastic limit. At the stage 
H let the stress be gradually removed. The stress-strain dia¬ 
gram for the return motion is given by HJ. That is, the rod 
will not resume its original size when the stress is removed. 
Now the work done (per unit volume of the rod) in stretching 

Unit S+rain 

Fig. 71. 

the rod up to H is represented by the area OAHF (area under the 
curve OAH, see Art. 62), and that done by the rod in its recovery 
is represented by the area JHF. Hence the potential energy 
(per unit volume) stored up in the rod as the rod is stretched 

up to H is represented by the area JHF and the energy used to 

deform permanently the rod is represented by the area OAHJ. 
The potential energy stored up in a body when under strain 

is called resilience. The resilience of a strained body, then, 
is the work this body can do by virtue of its elasticity. 

The resilience of a body (potential energy stored up in the 
body) when stressed up to its elastic limit is called elastic resilience 
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and is numerically equal to the total work done by the external 
force or forces producing the strain. 

The elastic resilience of a membe’r is a matter of practical 
importance. For a prism under simple tension, the elastic 
resilience is [Art. 61, Eq. (6)] 

1 iS2 
P = 2| X volume of prism (7) 

where Se = elastic limit. 

Example.—Compare the elastic resilience of two soft-steel 
rods. One is 1 sq. in. in area and 3 in. long, and the other 
is 0.50 sq. in. in area and 12 in. long. Take the elastic limit for 
soft steel as Se = 30;000 lb./sq. in. 

For the shorter rod, 

S]AL _ 30,0002 X 1 X 3 
2E 2 X 30,000,000 

45 in.-lb. 

For the longer rod, 

30^0002 X I X 12 
77 _ __z 

2 2 X 30,000,000 
90 in.-lb. 

The long rod can absorb more energy of shock than the short 
rod. Conversely, if a given amount of energy must be absorbed, 
the unit stress induced in the long rod will be less than that in the 
short rod.* 

66. Modulus of Resilience.—Parts of machines and structures 
often are subject to shocks or impact. It may be necessary, 
therefore, to design a member on the basis of its ability to absorb 
energy, i.e., on the basis of resilience. When that is necessary, 
it is convenient to know what the elastic resilience of unit volume 
of a material is. The elastic resilience of a material per unit 
volume is called modulus of resilience and will be designated by K. 

From Eq. 7 (Art. 65), it is seen that for a prism in tension the 

modulus of resilience is 

where Se = elastic limit. 

*See also p. 271 of Prof. F. B. Seely’s “Resistance of Materials” 

for interesting examples of constructions for increasing resistance to shock, 

or for absorbing more energy without exceeding a specified stress. 
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Note that in Fig. 71 the dotted area K represents the modulus 
of resilience of the rod. 

Illustration.—If for structural steel Se = 35,000 lb./sq. in. 
and E = 30,000,000 lb./sq. in. 

K 2 X 30,000,000 20,4 lb /sq- in- 

That is, a cubic inch of structural steel can absorb 20.4 in.-lb. 
of energy without exceeding its elastic limit. 

67. Energy Load.—If a member is subjected to an impact 
load, the maximum force exerted on the member may be taken as 
an equivalent static load and the stress in the member or the 
deflection of that member may be calculated in the usual wray. 
For instance, if a load W is suddenly applied to the flange of a 
rod (Art. 63), the stress or the elongation may be found by 
considering the rod as subjected to an equivalent static load, 
P = 2W. This assumes that the elastic limit is not exceeded. 

Frequently, it is advantageous to attack a problem from the 
standpoint of the energy input or energy load which a structure 
or a member must absorb. To illustrate, if a weight W is 
allowed to fall freely through a distance h before it strikes the 
flange of the rod (Fig. 69), the energy expended by W (gravity) 
is Wh. That is, Wh equals energy load.* If all this energy is 
used to stretch the prism, we may put 

Frequently, the impact is not due to a falling body. For 
instance, the prism may be horizontal and the body of weight 
W may be thrown against the flange. If V is the velocity of the 
body just before it strikes the flange, the kinetic energy of the 
body is \MV2 where M = W/g. That is, the energy load is 
\MV2. Hence 

-MV2 — - 
2M V 2 E 

In general, the energy load equals the total amount of energy 
the prism must absorb. 

Example I. Fig. 69.—A weight of 4 lb. is dropped through a 
vertical distance of 5 ft. before it strikes the flange of a rod that 

* If X is too large to be neglected, the energy load is W(h + X), or, since 

X = SL/E, the energy load = W(h + SL/E). 
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is 10 ft. long. Find the minimum sectional area of the rod if 
the unit stress is not to exceed 15,000 lb./sq. in. 

Or 

Therefore 

E = 30,000,000 lb./sq. in. 

U = Wh 
S2AL 

2 E ' 

4 X (5 X 12) = 
(15,000)^ X 120 

2 X 30,000,000 ' 

A = 0.533 sq. in. 

Example II.—The length of an unstretched steel rod is 

L = 5 ft., 

and its sectional area is A = 2 sq. in. With what velocity V 

may a body weighing W = 64.4 lb. strike the flange if the 
elastic limit (35,000 lb./sq. in.) is not to be exceeded? Note 
that 

g = 32.2 ft./sec.2 = 32.2 X 12 in./sec.2 

U = iMV2 = 
S2AL 

2 E ' 

Therefore 

1 v, 64.4 _ (35,000)2 X 2 X 5 X 12 
2 X 32.2 X 12 V 2 X 30,000,000 

V = 171.5 in./sec. = 14.3 ft./sec. 

68. Impact Stresses Experimentally Determined.—Impact 
stresses require special consideration. In certain simple cases, 
the stresses due to impact may be calculated. Frequently, 
however, it is not possible to do so for the reason that the values 
of the impact loads are not definitely known. In such cases, it 
may become necessary to determine the impact stresses experi¬ 

mentally. For instance, a train running over a bridge produces 

impact. To find the impact stress, in a certain member of that 
bridge, attach to that member a self-registering extensometer. 
First, let the train run very slowly over the bridge (load gradually 
applied). The extensometer registers the maximum elongation X 
for a certain length L of the member as the train runs slowly over 
the bridge. Knowing X and L, the unit stress S (static) may be 
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found from the equation [Eq. (2), Art. 53] 

In like manner, Si (impact stress) may be found when the 
train runs over the bridge say at 60 m. p. h. Suppose now that 
Si/S = 1.75. This means that the impact stress in that member 
for trains running at 60 m. p. h. is 75 per cent greater than the 
static stress. Hence, when a corresponding member of a similar 
bridge is designed, the static stress calculated for that member 
should be increased 75 per cent to take care of the impact.* 

69. Toughness.—Consider now the work that must be done 
per unit volume of a prism so as to rupture it. This work is 

represented by the area OBDG under 
the stress-strain curve (Fig. 72). In 
the case of steel, although the ultimate 
stress for soft steel may be much lower 
than that for hard steel, yet the total 
area under the stress-strain curve for 
soft steel may be greater than that for 
hard steel. Hence it requires more work 
per unit volume to rupture a piece of 
soft steel. That is, soft steel, owing to 
its ductility, can absorb more energy 
per unit volume than hard steel. This 
is of considerable practical impor¬ 
tance in the case of a structure (such 

0 G G as a bridge) that may be subjected to 
/ ’ impact or shocks of such magnitude that 

the unit stress may run considerably beyond the elastic limit. For 
instance, in designing a bridge, the impact due to trains running 
over it is considered. Suppose, however, that a derailment of 
an excursion train should take place on a bridge. The impact 

now may be much greater than that considered when designing 

the bridge and it is important for the bridge to be able to absorb 

the shock even though the bridge or some of its members may be 
injured. 

* Some authors apply the term “impact stress” to the stress in excess of 
the static stress. Accordingly, they would say that the impact stress is 
75 per cent of the static stress and that the impact stress should be added to 
the static stress to obtain the stress to be used when designing that member. 
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The total amount of energy a material can absorb per unit 
volume before it is ruptured is a measure of the toughness of the 
material. Accordingly, soft steel is a tough metal. Likewise 
white oak and longleaf pine are tough woods. The toughness 
of a material is represented by the total area under the stress-strain 
curve for that material. 

THIN-SHELLED CYLINDERS 

70. Introduction.—When a hollow cylinder (a water pipe, for 
example) is subjected to an internal fluid pressure, stresses 
are developed in the shell or wall of the cylinder. Owing 
to the stresses thus developed, the cylinder tends to burst. 
To design a hollow cylinder, it becomes necessary, therefore, to 
know what stresses will be developed in its shell when the cylinder 
is subjected to a given internal fluid pressure. 

If the thickness t of the shell or wall of a hollow cylinder 
is small when compared with the inner radius of the cylinder 
(Fig. 73), the cylinder is called a thin-shelled or a thirv-walled 
cylinder. In the case of a thin-shelled cylinder, the stresses 
on a section of the shell may be assumed 
as uniformly distributed without introduc¬ 
ing any appreciable error in the calcula¬ 
tions. For instance, the stress on the 
transverse section of a pipe (shaded ring, 
Fig. 73) may be assumed as uniformly 
distributed provided t is small when com¬ 
pared with R. Only thin-shelled cylin¬ 
ders will be considered here. Water pipes, 
steam pipes, tanks, boilers, etc., as a rule, may be treated as 
thin-shelled cylinders. 

From the law of hydrostatics, it is known that the fluid pressure 
at any point on the inner surface of a hollow cylinder acts 
normally to the inner surface at that point. Note that in Fig. 73 
the fluid pressure is represented as acting normally at all points 
on the inner surface and as having the same intensity q every¬ 
where. If the weight of the fluid is considered, the fluid pressure 
at A will be slightly greater than at B. In practice q is taken as 
the average pressure, i.e., as the intensity of the pressure at the 

center of the cylinder. 
Note 1. External Pressure.—The stress induced in the shell 

depends, however, upon the difference between the inside and the 
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outside pressure. This difference is the “bursting pressure” 
and will be designated by q. That is, the cylinder will be repre¬ 
sented as subjected to an internal pressure of q lb./sq. in. 

Illustration.—If a boiler is subjected to an actual internal 
pressure of 164.7 lb./sq. in., and if the pressure of the outside air 
is 14.7 lb./sq. in., then q = 164.7 — 14.7 = 150 lb./sq. in. 
The boiler must be designed to withstand a net internal pressure 
of 150 lb./sq. in. If the internal (steam) pressure is measured 
by an ordinary gage, the “gage reading” gives the excess of the 
internal over the external pressure. It will be convenient at 
times to call q the gage reading or the gage pressure. 

Note 2.—Sometimes a pipe is subjected to an external pressure 
that is greater than the internal pressure. This is the case, for 

example, with cylindrical boiler flues. It may be the case also 
with a pipe under water. When the external pressure exceeds 
the internal pressure, a thin pipe (or any thin-walled hollow 
cylinder) tends to collapse; i.e., it tends to bend or fold or cave 
in. Thin-shelled cylinders subjected to collapsing pressures 
require special consideration.* 

71. Circumferential Stress.—Let L equal the length of a 
hollow cylinder between two transverse sections (Fig. 74). 
Imagine this cylinder divided into two halves (semicylinders) 
by means of the plane BD drawn vertically for the sake of con¬ 
venience. Consider free the left half (Fig. 75). Note that the 

stress on a longitudinal section of this half shell, i.e., on the narrow 

rectangle AD (or BC)> acts circumferentially and therefore 

may be called the circumferential stress in the shell. Take the 
x-axis horizontal as shown. Now the forces that act on this half 
shell and that have components parallel to the x-axis are 

1. The internal fluid pressure whose resultant will be designated 
by X. Evidently X acts parallel to the x-axis. 

♦See Maurer and Withey, “Strength of Materials/, p. 80. 
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2. The tensile forces acting on the longitudinal sections AD 
and BC. If Si is the intensity of the stress on these sections 
(intensity of the circumferential stress), the total stress on each 
section is 

P = Si tL. (a) 

The half shell must be in equilibrium. Hence, putting 
ZFX = 0, 

X = 2P. 

That is [Eq. (a)], 

X = 2/SjL. (6) 

We must now determine X the resultant pressure on the inner 
surface of the half shell. 

First Solution.—Consider an elemental longitudinal strip of 

length L and width RdO (Fig. 75). Its area is dA = LRdd. 
The total pressure on this strip is 

dF = qdA = qLRdO, 

and its horizontal component is 

dF cos 0 = qLR cos Odd. 

Now X equals the sum of the horizontal components of the 
pressure on the elemental strips beginning at A and ending at B. 

Therefore 

+ - +- 
X = f J2 qLR cos Odd = qLR sin fll \ = 2qRL = qDL (c) 

J~2 

where D = inner diameter = 2R. 
It is very important to note that the area of the diametral 

plane AC (Fig. 75) is 2RL, or DL. Hence Eq. (c) becomes 
X = q(2RL) = q(DL) = q X (area of diametral plane AC). 

That is, the resultant pressure on the inner surface of a half shell 
equals the total pressure on a diametral plane of the hollow cylinder. 

To find Si, the intensity of the circumferential stress, proceed 

as follows: Combining Eqs. (6) and (c), or directly from Fig. 75, 

2S\tL = 2 qRL = qDL. 

That is, the circumferential stress (stress on a longitudinal 
seam) is 

Sl t 21 • 
(8) 
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The intensity of the circumferential stress sometimes is called 
the hoop tension. 

It is sometimes advantageous to find the total stress per unit 
length of seam. If Ti equals the stress per unit length of longi¬ 
tudinal seam, Ti = Sit. Or [Eq. (8)] 

Ti = Sit = qR=2®. (9) 

Second Solution.—Imagine the left half of the hollow cylinder 
solid (filled, say, with ice, Fig. 76), the intensity of the fluid 
pressure in the right half being q. Evidently this does not affect 
the stress in the shell at A or at B. Now take the left half free 
(Fig. 77). 

From 2FX = 0, 

2SxtL = qLD or Si = ^ 

72. Longitudinal Stress.—If the end of a hollow cylinder is 
closed and if this cylinder is subjected to an internal fluid pres¬ 

sure, stresses are developed in transverse sections of the cylinder 
giving rise to longitudinal stresses—longitudinal since such 
stresses are parallel to the axis of the cylinder. 

Figure 78 shows the end of a closed thin-walled pipe or cylinder 
taken free (side view) and Fig. 79 shows the transverse section 
AB. The total pressure on the end EF of the cylinder equals 
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icR2q. If S2 equals the intensity of the stress on the transverse 
section AB of the shell (intensity of the longitudinal stress), 
the total stress on AB = 2wRtS2 (approximately).* Hence, for 
equilibrium to exist, 

2wRtS2 = irR2q. 

That is, the intensity of the longitudinal stress (stress on a trans¬ 
verse or circumferential seam) is 

o =qR = qD . . 
Si 21 u' 

This equation gives also the intensity of the stress on a central 
section of a thin-shelled hollow sphere under internal fluid pressure. 

Note.—By comparing Eq. (10) with Eq. (8), it is seen that 
Si = 2S2. That is, the intensity of the stress on a longitudinal 
section (circumferential stress) is twice that on a transverse sec¬ 
tion (longitudinal stress). Accordingly, if the water in a closed 
pipe freezes, the pipe will split along a seam that runs lengthwise. 

Example I.—If a cast-iron water pipe 1 ft. in diameter (D = 1 
ft.) is to be subjected to an internal pressure (gage pressure) 
of 200 lb./sq. in., what should be the minimum thickness of 
the shell if the unit tensile stress in the shell is not to exceed 
4000 lb./sq. in.? 

From Eq. (8), 

qD _ 200 X 1 X 12 
1 “ 2Si "" 2 X 4000 

0.30 in. 

Example H.—A steam boiler is to be 4 ft. in diameter (D = 4 
ft.). The boiler is to be subjected to a gage pressure of 

q = 150 lb./sq. in. 

What will be the tension in the shell per linear inch of longitudinal 
seam? Per linear inch of circumferential seam? 

Total tension per linear inch of longitudinal seam is [Eq. (9)] 

T, - *§ - !“X«X_lj , 3600 lb. 

* The area of the transverse section of the shell (Fig. 79) is 

In a thin-shelled cylinder, 1/2 is small when compared with R and no appreci¬ 

able error is made if the area of the transverse section is taken as 2vRt, i.e., 
as equal to the inner circumference times the thickness of the shell. 
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and total tension per linear inch of circumferential seam is 

= 1800 lb. 

PROBLEMS 

Brass 
r^/,25* 

Z=14,000,000 
lb. per sq. In. 

1=534 lb. 
percu.fi 

24. A rod consists of two parts firmly connected at C (Fig. 80). The 

lower part is of brass (radius = 1.25 in., length = 80 ft., E = 14,000,000 
ib./sq. in.). The upper part is of copper (diam. = 

3 in., length = 250 ft., E = 15,000,000 lb./sq. in.). 

D V Compute the total elongation due to a weight of 

Copper j 42,000 lb. hung from the lower end. (Neglect the 

d2=jlt | weight of the rod.) 

E= 15,000,000 Ans. \eU = 1.19 in.; A&r = 0.59 in.; A = 1.78 in. 
lb. persq. in. 26. In Problem 24, assume that the end weight is 

1= 456 lb. ^ removed. Compute the total elongation due to the 
percu.ft. J weight of the rod. Brass weighs 534 lb./cu. ft. Cop- 

Dj per weighs 456 lb./cu. ft. 

Ans. Wcu = 5600 lb.; Wbr = 1460 lb.; ACtt = 0.12 in.; 

I Aftr = 0.01 in. 
Bras$ | 26. In Problem 24, considering both the end load and 

| the weight of the rod, find the maximum unit tensile 

^/bpersqfn stress induced in the rod. Ans. 6900 lb./sq. in. at D. 
1=534 lb 27. A steel wire has a sectional area of A — 0.15 

percu. ft. § sq. in. It is 450 ft. long when subjected to a pull of 
i 1000 lb. What will be the length when it is subjected 

! to a pull of 4000 lb. ? Ans. 450 ft. 3.6 in. 

28. A steel bar, J in. square and 12 ft. long, is sub- 

j jected to a pull of 9,000 lb. and the ends of the bar are 

n ! then held fixed (fastened to immovable supports). 

g /A_How much must the temperature rise for the stress in 

| the bar to become zero? Take the temperature coeffi- 

"42000 Jh c*en^ as V “ 0.000,0065. Arts. 82°F. 
/ * 29. A steel rod, 16 ft. long, is rigidly held at its 

m" ' ends. If at 40°F. the tension in the rod is 10,000 

lb./sq. in., what will be the stress at 90°F.? Ans. 250 lb./sq. in. 

30. One end of a steel rod, area = § sq. in. and 4 ft. long, is welded to one 

end of a copper rod, area = f sq. in. and 6 ft. long. The other ends are fas¬ 

tened to immovable supports. At 100°F. the two rods are just taut but not 

stretched. What will be the total stress in each rod when the temperature is 

20°F.? For copper, rj = 0.000,0093 and E = 15,000,000 lb./sq. in. 

Suggestion.—Assume the end B released. Find the total contraction of 

the rods due to temperature change. Then find the force P necessary to 

bring B back to its initial position. Find unit stresses. 

Ans. P=8180lb.; Sfor steel, 16,360 lb./sq. in.; for copper, 10,900lb./sq.in. 

31. A timber, 5J by 5J in., has two 5| by i-in. steel plates bolted to oppo¬ 

site sides. The compound member is subjected to an axial force of 72,000 lb. 

*42,000/b. 
Fig. 80! 
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Find the unit stress in the steel and in the wood. For steel, E = 30,000,000 

lb./sq. in.; for wood, E = 1,500,000 lb./sq. in. 

Ans. 16,900 lb./sq. in.; 850 lb./sq. in. 

32. A timber, 6 by 8 in., is reinforced on all four sides by plates, two being 

6 by i in. and the other two 8 by \ in. The allowable stress for steel is 

20,000 lb./sq. in. and that for wood is 1200 lb./sq. in. Find the maximum 

axial load the compound member can safely carry. Let n = Ea/Ew = 20. 

Assume first that the steel governs; i.e., assume that the stress in the steel 

is 20,000 lb./sq. in. and find Pi. Next assume that the wood governs and 

find P2. The smaller value of the two is to be used. Ans. 158,000 lb. 

33. Three steel rods are arranged in a vertical plane to support a 10-ton 

load, as shown in Fig. 81. Before the load was applied, the rods fitted 

closely but without initial stress. The central vertical rod (1) is 30 ft. long 

and has a sectional area of A\ — 0.80 sq. in. Each of the oblique rods (2) 

has a sectional area of A% — 0.25 sq. in. Find the total stress in each rod. 

Rigid support 

Fig. 81. Fig. 82. 

Suggestion.—The point B moves from B to B' (Fig. 82). Ai being small, 

we may assume the angles to remain 45°. From geometry, express Ai in 

terms of X2. Ans. P = 2560 lb.; Q = 16,380 lb. 

34. Referring to Fig. 69, let the sectional area of the rod be A = 0.60 

sq. in., L = 14 ft., and IF = 6 lb. Through what distance may the weight 

be dropped if the unit stress in the rod is not to exceed 18,000 lb./sq. in.? 

(See Art. 67.) Ans. 7.56 ft. 

36. A steel rod, 0.75 sq. in. in area and 10 ft. long, supports a total load of 

4500 lb. How’ much energy will be stored up in the rod due to a gradual 

increase of the load from 4500 to 22,500. lb.? Ans. 1,296 in.-lb. 

36. In Problem 35, what are the final total resilience and the unit resilience? 

Ans. 1350 in.-lb.; 15.in.-lb./qp. in. 

37. A water pipe is 25 ft. in diameter (about 79 ft. in circumference) and 

500 ft. long. Its shell is 2.5 in. thick. Owing to the radial water pressure, 

the shell is under a tension of 18,000 lb./sq. in. (Si = 18,000 lb./sq. in., 

Fig. 75). Find the increase in the circumference and the decrease in the 

length of this pipe due to the radial water pressure, assuming the pipe free 

to contract longitudinally. Take E = 30,000,000 lb./sq. in. and m (Pois¬ 

son's ratio, Art. 22) equal to 0.30. Ans. 0.570 in.; 1.08 in. 
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Note.—At the Boulder Dam, water pipes were used that are 30 ft. in 

diameter. The ends, however, are firmly anchored. 

38. The pipe of Problem 37 is to be firmly anchored at its ends and is to be 

installed at such a temperature that at a normal temperature of 65°F. the 

longitudinal expansion of the pipe due to change of temperature will be 

equal to the longitudinal contraction due to the radial water pressure. In 

other words, under normal working conditions (pipe filled with water at 

65°F.), the total longitudinal stress in the pipe is to be zero. At what 

temperature should the pipe be installed? Take the coefficient of temper¬ 

ature expansion as 77 = 0.000,0065. Ans. 37.7°F. 

39. What will accordingly be the total tension and the unit tension in the 

pipe when empty and at normal temperature, the ends being firmly held? 

Ans. 6414 tons, 5400 lb./sq. in. 

40. A water pipe, 2.5 ft. in diameter, is subjected to an internal water 

pressure of q = 300 lb./sq. in. Find the tension per linear inch of longi¬ 

tudinal seam. If the seams are welded and as strong as the solid metal, 

find the thickness t of the shell if S — 10,000 lb./sq. in. 

Ans. 4500 lb.; 0.45 in. 

41. In the Hydraulic Laboratory at Cornell University there is a riveted 

steel standpipe 6 ft. in diameter and 60 ft. high. Assume that the vertical 

riveted seams have an efficiency of 62 per cent; i.e., the strength of a seam 

is 0.62 times that of the solid plate. It is required to find the thickness of 

the lowest plates if S = 16,000 lb./sq. in. Ans. t = 0.0945 in. 

Note.—Since the steel in a standpipe will rust, it is necessary to increase 

the thickness by £ to £ in. The lower plates of the actual pipe are A or 

0.3125 in. thick. 

42. Three prismatic rods are fixed to unyielding supports and connected 

as shown in Fig. 83. The two inclined rods have equal values of angle with 

the horizontal, length, modulus of elasticity, and sectional area. These 

values are given in the figure. Neglect the weights of the rods. Find the 

elongation of each rod when each of the two loads (P, P) equals 7,000 lb. 

Ans. X = 0.28 in.; Xi = 0.158 in. 

43. In Problem 42, find the vertical and the horizontal displacement of 

the point B, noting that the center of the horizontal rod moves vertically 

downward on a line of symmetry. 

Ans. 0.31 in. down; 0.14 in. to the right. 



CHAPTER IV 

RIVETED JOINTS 

73. Introduction.—The simplest riveted joint is made by- 

lapping an edge or end of one plate over the end of another and 

fastening the two plates together by means of a single rivet 
(Fig. 84). 

Rivets are driven while red hot. On cooling, a rivet contracts. 

As a result, the plates are pressed together sometimes with con¬ 

siderable force. Owing to the pressure between the plates there 

may be developed an appreciable resistance to sliding of plates. 

D 

That is, the force may be transmitted from one plate to the other 

partly by friction. It has been found, however, that the plates 

may slip even when the joint is subjected to a normal load and 

that therefore friction between the plates cannot be depended 

upon as giving any material assistance in transmitting the 

force from one plate to the other. In practice, it has become 

customary to neglect the frictional resistance between the plates 

and to assume that the entire force is transmitted from one plate 

to the other through the rivet. This assumption will be made in 

the analyses of the joints considered in this chapter. 

74. Stress in a Lap Joint with a Single Rivet. Fig. 84.—The 

total force (pull) acting on the joint is P. 
93 
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Let b = width of plate. 
t = thickness of plate. 
d = diameter of rivet = diameter of rivet hole. 

That is, it will be assumed that the rivet fills the hole. 
a. Shear in Rivet.—Owing to the pull P, the rivet tends to 

shear along the section EF (Fig. 846), i.e., in the plane of contact 
of the two plates. Since shearing action takes place on only one 
cross-section, EF, the rivet is said to be in single shear. Figure 85 

shows a sketch of a rivet that has partly failed in 
single shear. 

If A8 = sectional area of the rivet, and 
Ss = safe unit shearing stress in the rivet, 

then the maximum value of P consistent with 
safety against shearing of the rivet is 

W“T 

Fig. 85. 

The value of P given by this equation is called the safe strength 
of the joint in shear and is designated by P8. 

If there are n rivets, each of diameter d, then 

and 

P. = AJ5. = n-~S„ 

b. Bearing between Rivet and Plate.—Consider the plate shown 
in Fig. 86. The pull in the plate is balanced by the pressure 

t^jjg 
b 

jL 
Fig. 86. Fig. 87. 

of the rivet against the side of the hole in the plate as the sketch 

shows. If the intensity of this pressure is too great, the plate 
will be crushed as is indicated at m. In like manner, if the 

equal and opposite pressure exerted by the plate upon the rivet 
is too great, the rivet will be crushed. Hence sufficient bearing 
surface must be provided between rivet and plate to avoid 
injury to either. 
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The mode of distribution of the pressure between rivet and 
plate is not well understood. It is, however, common practice 
to assume that the intensity of this pressure is the same as that 
of a square pin of side d in a square hole (Fig. 87), and on this 
assumption to determine experimentally the safe unit bearing 
stress between rivet and plate. Accordingly, the hearing area 
between a rivet of diameter d in a plate of thickness t is taken as 
Ac = td. Hence, if Sc is the safe unit bearing stress between 
rivet and plate, 

Pc = ACSC = tdSc . 

is the safe strength of the joint in bearing. * If there are n rivets, 
each of diameter d, then Ac = ntd, and 

Pc = ntdSc 

c. Tension on Net Section.—The portion of the plate now to 
be considered is shown in Fig. 88. The entire joint is in tension. 

Fig. 88. Fig. 89. 

Evidently, the greatest unit tensile stress in the plate occurs on 
the section CD. Hence, if At is the net sectional area of the 
plate at the rivet hole, and St is the safe unit tensile stress 
(assumed to be uniformly distributed over the net section CD), 

Pt = A tSt = (b - d)tSi 

is the safe strength of the joint in tension. 
If there are m rivets in one row, each of diameter d, then for 

that row 

At — {b — md)t and Pt = (b — md)tSt. 

d. Shear in Plate between Rivet Hole and End of Plate.—If the 

shearing resistance on the two rectangular areas FG and F'Gr 
(Fig. 89) has a combined value less than the force exerted by the 
rivet, the rivet may push the portion F'G of the plate out toward 

* If the intensity of pressure between rivet and plate were uniformly 

distributed in a radial direction [Art. 71, Eq. (c)], this expression for P0 
would be theoretically correct. 
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the end of the plate. If A8 is the combined area of the two 
rectangular surfaces FG and F'G', and S8 is the safe unit shearing 
stress in the plate, then 

P' = A'sSa 

is the safe strength of the joint as far as shear in plate is concerned. 
76. Note.—If the end of the plate is a sheared surface (cut by a 

shearing machine), it wTill be slightly damaged. Moreover, 
the plate may not start to shear at G and Gr but nearer the end 
of the plate, as is indicated in Fig. 89. To be on the side of 
safety, assume that e (see figure) is the length of a shearing sur¬ 
face. Then the total shearing area is A'8 = 2 et and the total 
strength of the plate in shear is P8 = 2S8 et where t is the thickness 
of the plate. Hence the joint will be at least as strong in shear 
in the plate as it is in bearing between plate and rivet if 

2Sset = Sctd. (a) 

Now the ultimate shearing stress in the plate is between 45,000 
and 50,000 lb./sq. in. and the ultimate bearing stress between 
plate and rivet is between 90,000 and 95,000 lb./sq. in. That is, 
approximately, 

Sc = 2S8. 

Substituting in Eq. (a), 

2S8et = 2 S8td, 
or 

e = d. 

Or the center of the rivet hole is d + d/2 = 1.5d from the end 
of the plate. 

In this chapter, it will be assumed that the center of the rivet 
hole is at least 1.5 diameters of the hole from the end of the plate 
and that therefore it will not he necessary to investigate shear in 
the plate in front of the rivet hole. For instance, if the rivet hole 
is 1 in. in diameter, it will be assumed that the center of the 

rivet hole is at least 1.5 in. from the end of the plate. 

If it is assumed that the center of the rivet hole is at least 

1.5d from the end of the plate, there remain three main force 
actions that must be examined in the analysis of a riveted joint. 

They are 
1. Shear in the rivet. 
2. Bearing between rivet and plate. 
3. Tension on a net section of a plate. 
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It should be noted that in the analysis of the riveted joint 
of Art. 74 it was assumed that the stress (shear, bearing, or 

tension) was uniformly distributed over the area on which it 
acts. It is not clearly understood just how a stress in a riveted 
joint is distributed. It is customary, however, to assume 

“uniform distribution” of stress and on this basis to determine 
experimentally the safe or allowable unit stress. 

Example I.—In a lap joint with one rivet (Fig. 84), t = | in., 
6 = 2 in., d = f in. Find the strength of this joint if Se — 10,000 
lb./sq. in., Sc = 20,000 lb./sq. in., and St = 16,000 lb./sq. in. 
Strength in rivet shear: 

P. = A,S. = Mf)2 x 10,000 = 6013 lb. 

Strength in bearing: 

Pc = AeSc - tdSc = f X f X 20,000 = 6560 lb. 

Strength in tension: 

Pt = AtSt = (2 - 0.875) X f X 16,000 = 6750 lb. 

If it is assumed that the plates are safe against shearing out in 
front of the rivet, it follows that the strength of the joint is 

P = P, = 6013 lb. 

Example II.—Let t = f in., 6 = 2.5 in., d = 1 in. Find the 
strength of the joint if S, = 12,000 lb./sq. in., Sc = 24,000 lb./sq. 
in., St = 18,000 lb./sq. in. 

Ans. P. = 9425 lb.; Pc = 9000 lb.; Pt = 10,120 lb. 
Example III. Fig. 90.—Two f-in. plates, 13.25 in. wide, are 

joined together by means of a lap joint. There are nine f-in. 
rivets placed in three rows as shown (chain arrangement). Find 
the strength of the joint. Given Ss = 13,500 lb./sq. in., Sc = 

ooo| T~r 
o o o! «i" 
ooo! I 

j" o 
~o~o~-*~f 

Fio. 90. 

30,000 lb./sq. in., and St = 18,000 lb./sq. in. There are nine 
rivets in the joint. Each rivet is assumed to carry one-ninth of 
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the load. That is, the total strength of the nine rivets is assumed 
to be nine times that of one rivet. 
Shear: 

P9 = A8Ss = 9 X 

Bearing: 

Pc = AcSc = 9 X | X 1 X 30,000 = 88,560 lb. 

Since there are three rivets in each row, the net section of 
the plate is the same for each row. Hence only the net section 
through the first row of rivets needs investigation to find the 
strength of the joint in tension. If the second row contained 
more rivets than the first row, it would be necessary (as will be 
seen later) to investigate also the net section through the second 
row of rivets. 
Tension: 

pt = A tSt = (13.25 - 3 X |) X f X 18,000 = 71,650 lb. 

Tension governs: 

Therefore 
P = Pt = 71,650 lb. 

76. The efficiency of a riveted joint is the ratio of the strength 
of the joint to the strength of the solid main plate. By “solid 
plate” is meant a plate without any rivet holes through it. 
Efficiency is usually expressed as a percentage. Since rivet 
holes reduce the effective sectional area of a plate, the efficiency 
of a riveted joint is always less than 100 per cent. 

Example.—With reference to the joint of Example III of 
Art. 75 (Fig. 90), it was found that the safe strength of the joint 
is 71,650 lb. The safe strength of the solid plate is 

13.25 X f X 18,000 = 89,500 lb. 

Therefore 

Efficiency = = 0.80 = 80 per cent. 
oy,ouu 

77. Single-strap Butt Joint.—Figure 91 represents a joint made 
by placing two (main) plates end to end and joining them by 

means of a single strap or cover plate. Such a joint is called a 

single-strap butt joint or a single covered butt joint. Figure 92 
shows the right half of the joint taken free. Evidently, each 

l(g) X 13,500 = 73,060 lb. 
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half of the joint is equivalent to a lap joint and therefore is 
analyzed in the same way as a lap joint. 

-O- 

Xr -Hr 
Fig. 91. 

A single-strap butt joint has no advantage over the correspond¬ 
ing lap joint except that in the butt joint a fairly smooth surface 
may be obtained by countersinking the rivet heads on the side 

Main plats' 

Fig. 92. 

opposite that on which the strap is placed. The butt joint 
requires twice as many rivets as the lap joint and therefore 
increases the expense of punching holes and setting rivets. 

78. Rivets in Double Shear.—Consider now a double-strap 
butt joint with one rivet through each main plate (Fig. 93). 

;-, 11 ii jj * i 

Fig. 93. 

If failure of this joint is due to shearing of a rivet, the rivet must 
shear along two surfaces, as is indicated on the left side in the 
figure. Such a rivet is said to be in double shear. A rivet is 
twice as strong in double shear as in single shear. The total 
shearing area in a cylindrical rivet in double shear is, therefore, 

A = 
2tt d2 

4 ‘ 

Fig. 94. 

Rivets, bolts, and pins occasionally 

may be subjected to more than double 
shear. For example, in the chain hinge 
shown in Fig. 94 a pin is in quadruple 

shear. 
The nature of shearing action on rivets and pins in double 

shear is shown in Fig. 95, which gives sketches of laboratory 
specimens after the application of shearing forces such as are 

applied in riveted joints. 
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79. Double-strap Butt Joint.—The computation of the 
strength of a given riveted joint will now be made for the double¬ 
strap butt joint of Fig. 96. 

(6) (e) 

(d) (e) 
Fig. 95.—Shearing of (a) rivet in double shear; (6) headless rivet showing 

double shear; (c) failure of rivet in shear; (d) lead cylinder; (e) wooden 
pin. 

V 
Fig. 96. 

Let S8 — safe unit shearing stress in the rivets. 
Sc = safe unit bearing stress between rivets and plates. 
St = safe unit tensile stress in plates. 

b = gross width of main plates. 
b' = gross width of cover plates. 

t = thickness of main plates. 
tf = thickness of each cover plate. 
d = diameter of driven rivet. 

n = total number of rivets through each main plate, 
= 12 in the given joint (Fig. 96). 

mly m2, mz = number of rivets in first, second, and third row, 
respectively. With reference to the joint of Fig. 96, 
mi = 3, ra2 = 4,. and ra3 = 5. 
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Note.—The exact nature of the distribution of stress to the 
several rivets is not known. It is customary to assume that 
the load is divided equally among them. With reference to the 
joint of Fig. 96, it is assumed that each rivet carries one-twelfth 
of the load [see Art. 48 (2)]. 

Strength of Joint in Shear.—Since there are 12 rivets through 
each main plate (n = 12), each rivet being in double shear, the 
total shearing area is A8 = 12 X 2 X 7rd2/4. Hence the strength 
of the joint in shear is 

P, = AA = 12 X 2 x (a) 

Strength of Joint in Bearing. Main Plate.—The total bearing 
area between the plate and the 12 rivets is Ac = 12td. Hence 
the strength of the joint in bearing is 

Pc = AcSc = 12 tdSc. (b) 

Strength of Joint in Tension. Main Plate. First Row of 
Rivets. (1 ... 1 in Fig. 96).—The net section of the main 
plate through the first row of rivets must carry the entire load P 
in tension. Hence, if P't designates the strength of the joint 
baled upon the tensile strength of the main plate at the first 
row of rivets, 

P\ = A\St = (b - m\d)tSt = (b - 3d)tSt (c) 

where A\ = net section of the main plate at the first row of rivets. 
Second Row of Rivets.—There are 12 rivets transmitting the 

entire load and each rivet is assumed to carry one-twelfth of the 
load. The first row of rivets has already transmitted three- 
twelfths of P before the second row is reached. This leaves 
nine-twelfths of P to be passed through the net area of section 
2 ... 2. Hence P must not be greater than that obtained from 

the equation 

^ = A't'St = (b - m2d)tSt = (b - 4d)tSt 
Iju 

in which A" = net sectional area of main plate at the second 
row of rivets. 

Or, solving for P and designating its value by P", 

P" = i£(b - 4d)tSt. (d) 

This is the strength of the joint based upon the tensile strength 
of the main plate at the second row of rivets. 
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Third Row of Rivets.—The tension in the main plate through 
the third row of rivets is 5P/12. Hence P must not be greater 
than that obtained from the equation 

*P = A't"St = (b - 5d)tSt. 

That is, the strength of the joint based upon the tensile strength 
of the main plate at the third row of rivets is 

PI" = ¥(& - 5d)tSt. (e) 

Bearing in Cover Plates.—If the combined thickness of the 
two cover plates equals the thickness of the main plate, there 
will be as much bearing area in the cover plates as there is in the 
main plate. Hence, if tf = t/2 or tf > t/2, bearing in the cover 
plates need not be investigated. For various reasons, it is the 
practice to select cover plates having a combined thickness a 
little greater than the thickness of the main plate. 

Tension in Net Area of Cover Plates.—Take free the right half 
of the joint (Fig. 97). For equilibrium to exist, the tension 

P 

Fig. 97. 

in each cover plate is one-half of P as shown. Evidently, the 

maximum tensile stress in a cover plate occurs on a section 
through the third row of rivets, 3 ... 3. Hence P must not be 
greater than the value found from the equation 

y = Q>' ~ 5d)t'St. (/) 

The smallest of the values of P as determined by the several 
equations [Eqs. (a) to (/)] of this article gives the strength of the 
joint. 

Example. Fig. 98.—In a double-strap butt joint, b = 14.25 in. 

= bf, t = 0.75 in., tf = 0.50 in., d = 1 in., and n = 9. The 

rivets are arranged as shown. 

Find the strength of the joint; given S8 = 12,000 lb./sq. in., 
Sc = 24,000 lb./sq. in., and St = 18,000 lb./sq. in. 
Shear: 

P, = 9X2Xy X 12,000 = 169,700 lb. 



RIVETED JOINTS 103 

Bearing, main plate: 

Pc = 9 X 0.75 X 1 X 24,000 = 162,000 lb. 

Tension, main plate. 
First row: 

P't = (14.25 - 2) X 0.75 X 18,000 = 165,500 lb. 

Second row: 

Y = (14.25 - 3) X 0.75 X 18,000 = 152,000 

or 

P" = 195,500 lb. 

Third row: 

$P = (14.25 - 4) X 0.75 X 
18,000 = 138,500 

or 

P’t" = 312,000 lb. 
Tension, cover plates: Fia. 98. 

% = (14.25 - 4) X 0.5 X 18,000, 
It 

or 
P' = 184,500 lb. 

Bearing governs, 
Therefore 

P = Pc = 162,000 lb. 

Efficiency = -- = 0.842 = 84.2 per cent. 
14.25 X j X 18,000 

80. Rivets. Rivet Holes.—Riveting is done usually by 
machines (pressure machines in the shop and pneumatic hammers 
in the field). A rivet having been heated to a red heat is put 

into the rivet hole and the head is formed by pressing or hammer¬ 
ing. As a result of the driving, the body of the rivet expands. 
For a good joint the driven rivet (finished rivet) should fill the 

hole completely.* 

* Rivets sometimes are driven cold. Such rivets are stronger than rivets 

driven hot. A cold rivet, however, is much harder to drive than a hot rivet. 
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Since the heated rivet must be inserted into the rivet hole, 
the hole must be slightly larger than the nominal diameter of 
the rivet. By “nominal diameter of the rivet” is meant the 
original diameter, i.e., the diameter of the rivet before it is heated 
and driven. In practice, as a rule, the rivet hole is made fa in. 
larger than the nominal diameter of the rivet. Thus, if a f-in. 
rivet (nominal size J in.) is used, the hole is made in. in 
diameter (J + fa = H)- 

When rivet holes are punched, the parts (plates, angles, chan¬ 
nels, etc.) are punched separately. In the assembly of the parts 
the holes seldom match perfectly. For instance, in the joint of 
Fig. 98, 9 rivet holes must be punched through each main plate 
and 18 rivet holes through each cover plate. When the holes are 
punched, the plates are punched one at a time. On assembling 
the plates it seldom happens that the holes through the cover 
plates agree perfectly with the holes through the main plates; 
i.e., the holes do not match or register perfectly. Moreover, the 
holes are not always perfect. It frequently happens, therefore, 
that the effective diameter of the driven rivet is less than the diam¬ 
eter of the rivet hole. In some cases, the effective diameter of 
the driven rivet is no greater than the nominal diameter of the 
rivet. In computing the strength of a rivet in shear and in 
bearing (holes punched to size), it is a common practice to use 
the nominal diameter of the rivet. 

Rivet holes usually are made by punching the plates cold. 
Punching, however, injures the material immediately around a 
hole. It is necessary, therefore, to make allowance for the 
injured material around a punched hole when the tensile strength 
of the plate ,is determined. This is done, as a rule, by adding 
fa in. to the diameter of the punched hole when the net sectional 
area of the plates is determined. For instance, if holes are 
punched to size a rivet hole should be taken | in. greater than 
the normal diameter of the rivet, i.e., fa in. to allow for the 

damaged material around the hole, and another fa in., since the 

rivet hole is fa in. larger than the normal diameter of the rivet. 
Thus, if a f-in. rivet (normal size) is used, the rivet hole (if 
punched to size) should be taken as 1 in. (f +f ) when determin¬ 

ing the net width of the plate. 
In high-class work, rivet holes are subpunched (punched 

undersize). The parts (plates, angles, etc.) are assembled and 
rivet holes are then reamed to size. As a result, the holes are 
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smooth and match. Moreover, reaming removes the damaged 
material around the hole.* 

In this text it will be assumed that rivet holes are reamed to 
size and that (as specified in the Boiler Code) the diameter of 
the driven rivet and the diameter of the reamed hole may he used in 
determining the strength of a joint or designing a joint to carry 
a given load. Moreover, when the diameter of a rivet is specified, 
assume that this is the diameter of the driven rivet (which equals 
that of the reamed hole). 

Riveted joints are important elements in structures and give 
practical illustrations of the simultaneous occurrence of tension, 
shear, and compression. The theory underlying riveted joints 
should be clearly understood. In this text no single code will 
be followed completely. If it is desired to comply fully with a 
particular code, the necessary modifications can readily be 
made. 

Fig. 99. 

Note.—The consensus of the opinions of experts as to what 
shall constitute good practice in the design of a particular kind 
of construction is embodied in a “code” in the form of specifica¬ 
tions. Some of these specifications are important “shop rules.” 
Others are based partly on theoretical considerations and partly 
on practical considerations. A code is a protection to the public 

since it fixes a standard. 
81. Unit Stresses.—The selection of the unit stresses for a 

joint depends in an important way upon the type of structure 
and its use. It also depends upon the way the rivet is driven. 
Field rivets usually are driven without being bucked by pneu¬ 
matically or electrically driven machines. Such rivets are called 
hand-driven rivets. The conditions in the field are often difficult 

to control, and the codes specify lower unit stresses for hand- 

driven rivets. 
In a lap joint (Fig. 99) the pulls in the two plates are not 

colinear. Hence there is a tendency for the plates to bend as is 
indicated in the figure (bending exaggerated). Owing to the 

* In special cases (high-class marine work, for instance) the solid parts 

are assembled and rivet holes are then drilled. 
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bending of the plates the bearing between rivet and plate is not 
uniformly distributed. The code adopted by the American 
Institute of Steel Construction (A. I. S. C.) specifies a lower 
unit bearing stress for rivets in single shear. On the other 
hand, the Structural Code for Railway Bridges (also the Boiler 
Code) makes no distinction between rivets in single shear and 
rivets in double shear so far as unit bearing stress is concerned. 
In this text the unit bearing stress for rivets in single shear will 
be taken the same as that for rivets in double shear. 

82. Shearing and Bearing Values of Rivets.—The strength 
of a cylindrical rivet is 
In single shear, 

In double shear, 

R" = 2R'9. 

and in bearing in a plate of thickness t, 

Rc = Sctd. 

Values of J?', R", and Rc may be calculated for different sizes 
of rivets, for different thicknesses of plates, and for different 

Fig. 100. 

unit stresses. A table of such values is very convenient when 
the strength of a joint in shear or in bearing is determined. 

If there are n rivets through each main plate, the strength of 

the joint is 
In shear, 
P8 = nR9 (lap joint, or single-strap butt joint), 

or 

P8 = nR" = 2nR\ (double-strap butt joint, all rivets being in 

double shear.* 
In bearing, 

Pc = nRc. 

* For a joint such as is shown in Fig. 100, if rii is the number of rivets in 

single shear and n2 is the number in double shear, the total strength of the 

joint in shear is P8 = niR[ + n2R 
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Table I.—Shearing and Bearing Values of Rivets in Kips 

Unit stresses;* S8 = 15,000 lb./sq. in.; Sc (s.s.) = 32,000 lb./sq. in.; 

Se (d.s.) = 40,000 lb./sq. in. 

d 
diameter 
of rivet, 
inches 

A 
area of 
section, 
sq. in. 

Shearing value, 
Rc, bearing value, kips 

kips 
t, thickness of plate, inches 

R'$ Single 
shear 

R"a Double 
shear A 1 * 1 

H 0.1963 2.95 5.89 3.00 
3.75 5.66 

32.0 
40.0 

2s 0.3068 4.60 , 9.20 3.75 
4.69 6.25 9.38 

32.0 
40.0 

% 0.4418 | 6.63 13.25 4.50 
5.62 

6.00 
7.50 11.3 

32.0 
40.0 

0.6013 9.02 18.04 5.25 
6.56 

7.00 
8.75 13.1 i7^5 

32.0 
40.0 

l 0.7854 11.78 23.56 8.00 
10.00 

12.0 
15.0 2o!o 

32.0 
40.0 

1M 0.9940 14.91 29.82 

1 

13.5 
16.9 22.5 

32.0 
40.0 

* From A.I.S.C. Manual, 1941. 

By referring to this table, it is seen that the shearing value of 
a f-in. rivet in single shear is R's = 6630 lb. and that its bearing 
value in a J-in. plate is Rc = 6000 lb. These values are obtained 
as follows: 

R’, = 15,000 x ^ X (?) = 6630 lb. 

Rc = 32,000 X 1 X 1 = 6000 lb. 

Table II.—Shearing and Bearing Values of Rivets 

Unit stresses; S8 = 10,000 lb./sq. in., Sc — 20,000 lb./sq. in. 

d 
Diameter 

of 

rivet, 

inches 

A 
Area 

of 

sec¬ 
tion, 

sq. in. 

Shearing 

value, lb. Rc , bearing value, lb. 

K 
Single 

shear 

K 
Dou¬ 

ble 

shear 

t, thickness of plate, inches 

i 
4 I i § i i 

i 0.1964 1,964 3,927 

1 GEII 6,136 3,125 4,688 jpg 
i 0.4418 4,418 8,836 5,625 9,375 

f BWflTEl 4,375 6,563 10,938 13,125 

l 0.7854 7,854 IriKiIi] inmniri 

n 0.9940 BH 14,063 16,875 19,688 
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Example I.—Ten f-in. rivets are used in a lap joint (being 
therefore in single shear). The thickness of the plate is t = \ in., 
S8 = 10,000 lb./sq. in., Sc = 20,000 lb./sq. in. 

From Table II, it is seen that R8 = 6013 lb. and Rc = 8750 lb. 
Hence, so far as shear and bearing are concerned, shear governs. 
The strength of the joint in bearing need not be calculated, since 
the joint will be stronger in bearing than in shear. 

P8 = 10 X 6013 = 60,130 lb. 

Example II.—If the joint is a double-strap butt joint (f-in. 
rivets, ^-in. main plates, 10 rivets), the rivets will be in double 
shear. From the table, R8 = 12,026 lb. and Rc = 8750 lb. 
Hence, so far as shear and bearing are concerned, bearing now 
governs and shear need not be calculated. 

Pc = 10 X 8750 = 87,500 lb. 

Example III.—A joint is to sustain a load of P = 30,000 lb. 
The thickness of plates is f in. and the diameter of rivets is 
d = 1 in. 

If S8 = 15,000 lb./sq. in. and Sc = 32,000 lb./sq. in., how 
many rivets are required for a lap joint? For a double-strap 
butt joint? 

Lap Joint.—For one rivet, R'8 = 11,780 lb. and Rc = 12,000 lb. 
(see Table I). Hence shear governs and the required number 
of rivets is 30,000/11,780 = 2.5. Therefore n = 3. 

Double-strap Butt Joint: R'8 = 23,560 lb. and Rc = 15,000 lb. 
Bearing governs and the number of rivets required is 

30,000 
15,000 

Therefore n = 2. 

PROBLEMS 

44. In a lap joint, b = 10J in., t = \ in., d = | in., and n = 9. Rivets 

are arranged in three rows of three rivets in a row. Required to find the 

strength and the efficiency of the joint. 

Given S8 = 10,000 lb./sq. in., Sc = 20,000 lb./sq. in., St = 16,000 lb./sq. 

in. Ans. P = 54,117 lb.; efficiency = 64.4 per cent. 

46. In Problem 44, a double-butt strap joint is used. Assume cover plates 

A in. thick. Ans. P = 63,000 lb.; efficiency = 75 per cent. 

46. In Problem 45, arrange rivets as follows: two in the first row, three in 

the second, and four in the third (see Art. 79). 

Ans. P = 70,000 lb.; efficiency = 83.3 per cent. 
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Note.—Compare the results of the three problems and note 
that the efficiency of the joint depends not only upon the arrange¬ 
ment of rivets but also upon the type of joint used. 

83. Riveted Seams. Continuous Joints.—The joints so far 
considered have been structural joints, i.en joints used in build¬ 
ings, bridges, and other structures. There is another class of 
joints called continuous joints. These joints occur, for instance, 
where bent plates are riveted (or welded) together to form a 
boiler, a tank, or a large water pipe (Fig. 101). A riveted con¬ 
tinuous joint often is called a riveted seam. The continuous 
joints considered here will be assumed to be riveted. 

In dealing with a riveted seam, it is convenient to limit con¬ 
siderations to a minimum width of plate containing a typical or 
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characteristic group of rivets. Such a wTidth is called a repeat¬ 
ing width and wrill be designated by b (see Figs. 101 and 102). 
Accordingly, in a riveted seam having the same pitch of rivets 
(Fig. 101), b = p, in which p is the pitch of the rivets and equals the 
distance between two rivets in the same rowr, center to center. In 
a seam of different pitch, b equals the maximum pitch. Thus 
(Fig. 102) b = 2p where p equals the minimum pitch. It should 
be noted that a repeating width may be viewed in a number of 
ways (see figures). The number of rivets in a repeating width 
will be designated by n. In the circumferential joint of Fig. 101, 
n = 1; in the longitudinal joint, n = 2; in the joint of Fig. 102, 
n = 5. 

A joint is said to be single riveted, double riveted, triple riveted, 
etc., according as the rivets through each main plate are arranged 
in one, two, three, etc. rows. Thus (Fig. 101) the circumferential 
joint is a single-riveted lap joint, and the longitudinal joint is a 
double-riveted lap joint of the same pitch (two rows of rivets, pitch 
the same for both rows). Figure 102 shows a triple-riveted double- 
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bvit strap joint of different pitch (three rows of rivets, two cover 
plates, pitch not the same for the three rows through each main 
plate). 

84* Investigation of a Riveted Seam.—As a rule, the investi¬ 
gation of the strength of a given riveted seam is a simple matter 
and is similar to that for a structural joint. 

Example. Fig. 102.—In a continuous triple-riveted double¬ 
strap butt joint of different rivet pitch, the minimum pitch is 
p — 3f in. Thickness of main plates is t = § in. Diameter of 
rivet is d = 1 in. Assuming that the combined strength of the 
cover plates is at least equal to the strength of a main plate, 
find the strength of the joint per linear inch of seam. Also find 
the efficiency of the joint. Note that there are five rivets in a 
repeating width and that the first row contains one rivet. Given, 
then, n = 5, b = 2p = 7.25 in., d = 1 in., and 

t = 0.75 in. 

Take S8 = 10,000 lb./sq. in., Sc = 20,000 lb./sq. in., and 

St = 16,000 lb./sq. in. 
From Table II (Art. 82) J8" = 15,708 lb., Rc = 15,000 lb. 

Bearing governs: 

pc = nRc = 5 X 15,000 = 75,000 lb. 

Tension. 
First row: 

P\ = (7.25 - 1) X 0.75 X 16,000 = 75,000 lb. 

Second row: 

iP = (7.25 - 2) X 0.75 X 16,000 

or 
P" = 78,750 lb. 

Therefore the strength of the joint for the repeating width is 
p = 75,000 lb. The strength per linear inch of seam is 

T = = 10,340 lb./lin. in. 
7.2o 

Efficiency: 

* “ 1 X 0.75 X°16,000 X 100 ‘ 86'2 per ccnt- 

Problem 47. Fig. 101.—In a tank, the longitudinal seam is a double- 

riveted lap joint of the same pitch. Given t *= in., d = | in., p = 2| in., 
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S, = 10,000 lb./sq. in., Sc = 20,000 lb./sq. in., and S, = 16,000 lb./sq. in. 

Find the strength of the joint per linear inch of seam and also the working 
efficiency. 

Ans. P8 = 8840 lb., Pt = 8750 lb. Therefore P = 8750 lb. 

T = 3500 lb./lin. in. of seam, and efficiency = 70.0 per cent. 

85. Design of Riveted Joints. Riveted Seams.—It is impor¬ 
tant to keep the efficiency of a riveted seam as high as practicable. 
Suppose that a long water pipe is to be installed. If the efficiency 
of the seam in the pipe is 60 per cent, then 40 per cent of the metal 
in the pipe between seams is not needed for strength. If the 
efficiency is 85 per cent, only 15 per cent of the metal between 
seams is not needed. It can be shown that the second pipe 
requires about 30 per cent less metal in the main plates than the 
first pipe. In general, increasing the efficiency of the riveted 
seams in a pipe (or boiler, tank, etc.) tends to decrease the cost 
of the pipe. 

A joint of a given type is called a joint of maximum efficiency 

if it is of equal strength in shear, bearing, and tension, i.e., if it is 
a balanced joint. Such a joint is an ideal joint but it is seldom 
practicable. It is apt to require too large a rivet, making diffi¬ 
culty in driving, or the pitch may be too large. If the pitch is 
too large, the seam cannot be made watertight. Moreover, 
commercially available sizes of plates and rivets must be used. 
Owing to such practical limitations upon the design of a riveted 
seam, it is seldom possible to make PSJ Pc, and Pt equal to each 
other. 

Standard designs of riveted seams have been made so as to 
attain as high an efficiency as the combination of theoretical 
and practical considerations will permit. These designs are 
taken as a guide in designing riveted seams. The design of 
riveted seams is beyond the scope of this text. 

Structural Joints.—As a rule, much greater freedom is given 
in the design of a structural joint than in the design of a riveted 
seam. Frequently, however, a structural joint is subjected to 

conditions that complicate the design. The joint may, for 
instance, be subjected to a bending moment. In all cases it is 
necessary to comply with shop rules, etc. The Structural Code 
specifies that the minimum distance between centers of rivet holes 

shall be three diameters of the rivet. If rivets are placed too 
closely together, the holes cannot be conveniently made or the 
heads of the rivets formed. In conformity with the rule of 
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spacing, if b is the gross width of plate and m is the number of 
rivets in a row, then the minimum gross width of the plate 
through that row of rivets is 

"bjnin. — 3md. 

In Fig. 103, if d = f in. and ra= 2, then 

min. b = 3 X 2 X | = 4.5 in. 

Hence the plate must be at least 4.5 in. wide; it may, of course, 
be much wider. 

A detailed treatment of the design of riveted structural joints 
is beyond the scope of this text. It seems sufficient to give two 
simple but typical examples. 

Example I.—Two f-in. plates are connected by a lap joint. 
The joint is to carry safely a load of P = 80,000 lb. Design 

Fig. 104. Fig. 105. 

the joint using 1-in. rivets. Given Ss = 15,000 lb./sq. in., 
Sc = 32,000 lb./sq. in., and St = 20,000 lb./sq. in. Put not 
more than three rivets in a row. (Note that the problem has 
already been simplified by the data and the assumptions.) 

1. Thickness of Plates.—Given t = f in. 
2. Required Number of Rivets.—From Table I (Art. 82), for 

1-in. rivets and f-in. plate, R8 = 11,780 lb. while Rc = 12,000 lb. 
Hence shear governs, being the lesser value. (It is clear that 
the strength is already unbalanced.) The number of rivets 

required is 

80,000 

n 11,780 
= 6.8. 

Of course, seven rivets must be used. Take n = 7. 
3. Arrangement of Rivets.—Several layouts of the rivet group 

are possible. Assume the rivets to be arranged as shown in Fig. 

104. 
4. Required Gross Width for Tension. 
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First row: 

80,000 = (61 - 2 X 1) X 0.375 X 20,000. 

Therefore 

bi = 12| in. 

Second row: 

4 X 80,000 = (b2 - 3 X 1) X 0.375 X 20,000. 

Therefore 

b2 = 10.62 in. 

5. Rule of spacing demands that 

bmin. = 3md = 3 X 3 X 1 = 9 in. 

6. Nearest commercial size above 12$ in. is 13 in. 
Therefore 

b = 13 in. 

Hence take plates 13 in. wide with rivets arranged as shown in 
Fig. 104. 

7. Efficiency:* 

80 000 
V = 13 X 0.375 X 20,000 x 100 = 82 Per cent 

Example II.—In the joint of Example I, arrange the rivets as 
shown in Fig. 105. 

Ans. bi = Ilf in.; b2 = 11.16 in.; 6min. = 6 in. 
Therefore 

b = Ilf in.; ry = 90.7 per cent. 

Example HI.—A double-strap butt joint is to carry a load of 
P = 120,000 lb. Design the joint using f-in. rivets. S8 = 10,- 
000 lb./sq. in., Sc = 20,000 lb./sq. in., St = 16,000 lb./sq. in. 
Put not more than five rivets in a row. 

1. Thickness of Main Plates.—Rivets are in double shear. 
R" = 12,026 lb. (Table II, Art. 82). Note that if a f-in. plate 

is used, Rc = 13,125 lb. That is, since a commercial thickness 

of plate must be used a f-in. plate makes the strength of a 

f-in. rivet in bearing as nearly equal as possible to the strength 
of this rivet in shear. Therefore take t = f in. 

* Since commercial sizes of plates must be used, it frequently happens 

that the strength of the joint is slightly greater than the load for which the 

joint is designed. It is customary, however, to base the efficiency of a joint 

on the load for which the joint is designed. 
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2. Required Number of Rivets.—Shear governs with 

R'' = 12,026 lb. 

n = = 10 (nearly). Use 10 rivets. 

3. Arrangement of Rivets.—Several designs are possible. 
Assume the rivets arranged as shown in Fig. 106. 

4. Required gross wicjlh for tension. Main plates. 
First row: 

120,000 = (&i - i) X f X 16,000. 
bi = 10J in. 

Second row: 

X 120,000 = (&2 - 2 X J) X f X 16,000. 
b2 = 10f in. 

Since b2 < &i, it is not necessary to test the third row. 
5. Rule of spacing requires that 

&min. = 3md = 3X4X1 = 10.5 in. 

6. Take b = 11 in. with rivets arranged 
as shown in Fig. 106. 

7. Efficiency: 

j.^0,000 nn nn n 

17 = 11 X 0.75 X 16,000 X 100 = 90 9 per cent- 

*4 ‘3 1 1 

Fig. 106. 

8. Cover plates: 
Required thickness of cover plates through row 4. 

cover plates to have the same width as main plates. 

Xt'X 16,000 = 
P 
2 

60,000. 

t' = 0.50 in. Take tf — i in. 

Assume 

Example IV.—In the joint of Example III, put the rivets in 
two rows, with five rivets in a row (chain arrangement). 

b = 14| in., bmin. = 13i in. 

Therefore 
b = 14£ in. 

and the efficiency is rj = 68.9 per cent. 

PROBLEMS 

48. Fig. 107.—A double-riveted continuous lap joint is made of f-in. 

plates of steel. If |-in. rivets are used, what spacing of rivets will give maxi- 
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mum efficiency? Let S8 = 12,000 lb./sq. in., Se = 24,000 lb./sq. in., and 

St = 18,000 lb./sq. in. 
Suggestion.—For maximum effi¬ 

ciency, the strength in tension must 

equal the strength in shear or in 

bearing, whichever one governs. 

A ns. x — 3.01 in. 

49. A lap joint (with rivets hand 

driven) is to carry 54,000 lb. Three- 

eighths-in. plates and J-in. rivets are 

to be used. Design the joint. 

60. A double-strap butt joint is to - — —r 

carry a load of 124,000 lb. (with '""-‘Idictm. rivets 
rivets power driven). Using J-in. Fig. 107. 

rivets, design the joint. 

WELDED JOINTS 

86. Introduction.—The theory of welded joints is not the same 
as that of riveted joints. Since welded joints are coming more 
and more into use, a brief discussion of their features, advantages, 
and the simpler methods used in their design will be included in 

this chapter. 
A welded joint is made, as a rule, by allowing fused metal to 

flow between the parts or pieces that are to be joined together. 
The methods of welding in use at present are 

1. Gas Welding.—That is, welding by the use of the oxyacety- 
lene, oxyhydrogen, or some other flame to fuse the metal. 

2. Arc welding, using the electric arc. 
3. Thermit Welding.—This process for welding iron and steel 

is dependent upon the strong chemical affinity between powdered 
aluminum and powdered iron oxide. The fine powders are mixed 
in the most suitable proportions and the chemical process is 
started by igniting the mixture. The temperature produced is 
stated to be from 5000 to 5400°F. This melts the iron to a white 
heat, and the molten mass of iron occupies the lower part of the 
form or container, while the aluminum oxide appears as a floating 

slag. The chemical reaction is given by the equation 

2A1 Fe203 = AI2O3 2Fe. 

Arc welding and gas welding are the methods most commonly 
used, the weld metal consisting of a slender rod of the same 

material as the parts or pieces to be joined by the weld. Some- 
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times welding is done without the use of weld rods, the two pieces 
being fused together usually by means of an electric arc. 

Fig. 108. 

The various terms used in welding are as follows: 
Butt Weld.—In a butt weld, the two main plates are butted 

squarely together (not necessarily in contact) and the weld metal 
is fused with the metal of both main plates. The edges of the 

main plates usually are beveled 
as shown in Fig. 108. 

Fillet Weld.—A fillet weld is 
made at the intersection of two 
surfaces approximately perpen¬ 
dicular to each other. In Fig. 

109, the two plates A and B are joined together by means of two 
fillets, one on each side of B. A fillet weld has a section approxi¬ 
mately triangular in shape, the two narrow surfaces (correspond¬ 
ing to the legs of the right tri¬ 
angle) being fused with the sur¬ 
faces of the pieces to be joined, 
the third surface (correspond¬ 
ing to the hypotenuse of the 
right triangle) being exposed to 
the air. Figure 110 shows a 
fillet on an enlarged scale. 
Figure 111 shows a welded lap 
joint. Note that the two 
plates are joined together by *<.f.—->t 
two fillets (shaded in the Fig. no. 

figure). The weld of Fig. 111 is a continuous weld. A continuous 
weld differs from an intermittent weld in having no alternating 
unwelded spaces. 

Tack Weld.—A tack weld is a short weld used to hold pieces 
together in assembling. 

87. Design of Fillet Weld.—In structural joints made by 
welding, the fillet weld is generally used. From the results of a 
large number of tests on actual welded structural joints, the 
load per linear inch of fillet is usually specified as follows: 

Fig. 109. 
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Size of fillet (see Fig. 110), inches. . .. i A f A 
Load per linear inch of fillet, pounds... 4000 3500 3000 2500 

These are safe or working values. 
Example I.—Referring to Fig. Ill, let each fillet be 8 in. in 

length (L = 8 in*), and the size of the fillet be f in. (/ = f in., see 

Fig. 111. 

Fig. 110). Since there are two fillets, the total length of fillet is 
2L = 16 in. Therefore the total load which the joint can carry is 

P = 16 X 3000= 48,000 lb. 

Example II.—A structural butt joint is made by welding the 
cover plates to the main plates (Fig. 112). Note that this is not 
a butt weld (Fig. 108) but a butt joint with fillet welds. 

Fig. 112. 

The main plates are 12 by f in. and the cover plates are 10 in. 
wide. With an allowable unit tensile stress of 

St = 16,000 lb./sq. in., 

design the joint for 100 per cent efficiency. 

Thickness of Cover Plates.—Each cover plate must carry one- 
half of the total load in the main plate. 

Therefore 

10 X PX 16,000 = 
12 X f X 16,000 

o * 

or 

Take 
* t = 0.45 in. 

t = 0.50 in. 
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For a 5-in. fillet, the strength of the fillet per linear inch equals 

4000 lb. If L is the length of a fillet, there being four fillets, 

4L X 4000 = 12 X | X 16,000, or L = 9 in. 
Example III.—Design a welded connection for a 3|- by 2|- by 

TVin. angle and a gusset plate to develop the full tensile strength 
of the angle at 16,000 lb./sq. in. 

P = S,A = 16,000 X 1.78 = 28,480 lb. 

Assume a j-in. fillet at 2000 lb./linear in. 

OQ 4.CA 

Length of weld = 9^nn- = 14.24 in. = a + b (1) 

The tension P in the angle is considered acting along the gravity 
axis of the angle. So the lengths of the side welds are inversely 
proportional to their respective distances from the gravity axis of 

the angle. 

£ = HI or b = 0.483a. (2) 

Substituting the value of b, from Eq. (2), in Eq. (1), 

a + 0.483a = 14.24 
a = 9.6 in. 

and 

b = 0.483 X 9.6 = 4.64 in. 

88. Advantages of Welded Joints.—In general, it may be said 

that welding avoids the main disadvantages of riveted, bolted, 

angf/e, —^j. 

P__<* (6r<xvihi axis 
U4' 

l«~a 

Fig. 113. 

and keyed joints. In the first place, no holes, grooves, or open¬ 
ings need to be made in the main plates which are to be joined. 

Second, initial stresses due to forcing of parts into place are 

avoided. Third, the welded joint does not rely upon friction to 

develop any part of the strength of the joint. 
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Welded structures require less metal in a structure. Welding 
is adapted to joints in large-sized pieces and to parts of irregular 

shape. The operation of welding is relatively noiseless compared 
with the annoying clamor of riveting. Welding may be used 

with great success in making repairs to broken parts and also to 

add reinforcing pieces to parts of a structure which may have 
been weakened locally. Welded joints may be perfectly water¬ 
tight and are less subject to corrosion because of the reduced 
amount of exposed area. 

PROBLEMS 

In the following problems, unless a statement to the contrary is made, 

results are given on the assumption that the Boiler Code of the American 

Society of Mechanical Engineers is used, i.e., on the stipulation that rivet 

holes are reamed to size, and that the diameter of the driven rivet is used 

in calculating the strength of a rivet in shear and in bearing. The given 

rivet diameter is assumed to be that of the driven rivet. 

51. Two f-in. plates, 14 in. wide, are fastened together by means of a 

lap joint. Twelve rivets, f in. in diameter, are used, arranged in 3 rows 

having 4 rivets in a row. Let St be 18,000 lb./sq. in., S8 = 12,000 lb./sq. in., 

Sc = 24,000 lb./sq. in. Find the strength of the joint. Ans. 63,600 lb. 
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52. In Problem 51, assume that the plates are fastened together by means 

of a double-strap butt joint. Each cover plate is \ in. thick. Find the 

strength of the joint. Ans. 67,500 lb. 

53. In Problem 52, arrange the rivets in four rows of three in a row. 

Find the strength of the joint. Ans. 74,250 lb. 

64. Design a lap joint to carry 70,000 lb. Use 1-in. hand-driven rivets. 

St = 16,000 lb./sq. in. (see Example III, Art. 85). 

55. In a double-riveted, double-strap butt joint with a common pitch 

for the rivets in both rows, the continuous seam joins plates in. thick. 

The butt straps are ^ in. thick. The diameter of the rivets is | in. and 

the pitch is 2\ in. Find the strength of the joint per linear inch of seam. 

What is the efficiency of the joint? Given Ss = 10,000 lb./sq. in., Sc = 

20,000 lb./sq. in., and St = 16,000 lb./sq. in. 

Ans. P8 — 17,680 lb.; Pc = 16,880 lb.; Pt — 15,750 lb. and efficiency = 

63 per cent. 

66. In Problem 55, let the pitch in the outer rows be 5 in., the pitch 

in the inner rows remaining 2.5 in. Find the efficiency. 

Ans. 56.27 per cent. 

57. In Problem 55, assume that the pitch is not given. Find the pitch 

for which the efficiency is a maximum. (Use J-in. rivets and ^-in. main 

plates.) Ans. p = 2.62 in. ; efficiency = 71.4 per cent. 

The structural code for bridges and the A.I.S.C. code for buildings specify 

that the nominal diameter of the rivets shall be used when the strength 

of the rivets in shear and bearing is determined but that the rivet hole 

shall be considered to be J in. larger than the nominal diameter of a rivet 

in computing the net width of the plate (in tension). On this basis, Prob¬ 

lems 58 and 59 are to be solved. 

68. In a lap joint the plates are 13 in. wide, and ^ in. thick. The 

nominal size of the rivets is f in. Ten rivets are used, three in the first 

row, four in the second, and three in the third. Find the strength of the 

joint. Given S8 = 13,500 lb./sq. in., Sc = 30,000 lb./sq. in., and St = 

18,000 lb./sq. in. Ans. Ps — 59,600 lb.; Pc = 70,300 lb.; Pt — 58,400 lb. 

59. The A.I.S.C. code for buildings specifies that, for power-driven rivets 

in double shear, Ss = 13,500 lb./sq. in. and Sc = 30,000 lb./sq. in. Take 

St = 18,000 lb./sq. in. Design a double-strap butt joint to carry a load of 

112,500 lb. Use i-in. main plates and f-in. rivets (nominal size). See 

note preceding Problem 58. 

Ans. 10 rivets. For 1-2-3-4 arrangement, 6 = 13.375 in. 

60. A compression member is made of two 7-in. 14.75-lb. steel channels 

latticed together shown (Fig. 114). The lower end of the member is 

held by a single pin (Fig. 1146). The member is subjected to a compressive 

force of 112,000 lb. Given Ss = 8000 lb./sq. in. and Sc — 16,000 lb./sq. in., 

determine the diameter of the pin and the thickness of the pin plates to 

obtain an economical joint. The web of a channel is 0.419 in. thick. 

Ans. d = 3 in.; t = 0.456 in. 

61. A boiler 4 ft. in diameter is made of steel plates i in. thick. The 

longitudinal seams are double-riveted lap joints with rivets having a common 
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pitch. The diameter of the rivets is f in. The pitch is 2\ in. Given 

S8 = 10,000 lb./sq. in., Sc = 22,500 lb./sq. in., and St = 15,000 lb./sq. in., 

find the maximum allowable tension per linear inch of seam. 

Ans. 3536 lb./in. 

62. In Problem 61, what is the maximum allowable steam pressure? 

[See Art. 71, Eq. (9).] Ans. 147.3 lb./sq. in. 

63. An engineer’s flexible steel tape is 0.310 in. wide and 0.018 in. thick. 

In mending a break in the tape, a butt joint is made with a single strap 

of the same material as the tape. Four brass rivets are used on each side 

of the break. The rivets are 0.030 in. in diameter. The ultimate stresses 

are as follows: S* = 40,000 lb./sq. in., Sc = 60,000 lb./sq. in., and'St = 

150,000 lb./sq. in. Find the pull required to break the joint. What is 

the ultimate efficiency? 

Ans. Ps = 113 lb.;PC = 129.6 lb.; efficiency = 13.5 per cent. 

64. Figure 115 shows a joint of a steel roof truss. Member Bb is one 

2§- by 2- by i-in. angle with a compression of 5200 lb. Member Cb is made 

of two 2\- by 2\- by i-in. angles with a maximum tension of 19,700 lb. 

The gusset plate is f in. thick. Using the unit stresses of Table I, compute 

the number of f-in. rivets required for each member. Bb is 2. Cb is 3. 
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65. In Fig. 116, Cc is made of two 3-by 2£- by i-in. angles with a 

compression of 13,800 lb. cD is made of two 3|- by 2\- by i-in. angles 

with a tension of 15,400 lb. Using the unit stresses of Table I, compute 

the number of f-in. rivets required for each member. 

66. Design the welded connections for problem 64. Bb, a » 1.78 in.; 

b = 0.82 in.; 6C, a — 3.51 in., b = 1.42 in. 

67. Design the welded connections for Problem 65. 



CHAPTER V 

TORSION 

89, Twisting Moment. Torsion.—Figure 117 represents a 
cylindrical shaft or circular bar to which two equal and opposite 
couples PP and QQ have been applied. It is here assumed 
that each couple acts in a plane which is perpendicular to the 
axis of the shaft. Since the couples PP and QQ act in opposite 

directions, the part of the shaft 
between the two couples is 
twisted more or less. The 
shaft is therefore subjected to 
torsion 

In general, if a couple acts on p 
a shaft in a plane that is nor¬ 
mal to the axis of the shaft, Fig. 117. 
the couple tends to twist the 
shaft. Such a couple is a twisting couple. The moment of a 
twisting couple is called a twisting moment or a twisting torque or 
simply a torque. A torque frequently is represented by T. 

In Fig. 117, T = Pp = Qq. 
For equilibrium to exist, the algebraic sum of all the torques 

acting on a shaft must equal 
zero. Thus (Fig. 117), 

XT = Pp - Qq = 0. 

90. Resisting Moment or 
cf Resisting Torque.—Referring 

to Fig. 117 of the foregoing 
p article, imagine the section CD 

Fic,‘118, dividing the shaft into two 

parts M and N. Take M free as shown in Fig. 118. Since M 
and N tend to rotate in opposite directions about the axis of 
the shaft, shearing forces are induced on the section CD as 
shown in the figure. If equilibrium exists, the moment (with 
respect to the axis of the shaft) of the shearing forces acting on 
the section CD must hold the twisting moment (T = Pp) in 

equilibrium. 
123 
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The moment of the shearing forces acting on the section CD 
is called the resisting moment or the resisting torque or the internal 
torque. Hence, for equilibrium to exist, 

resisting moment = twisting' moment 

or, as it is usually stated, 

resisting torque = twisting torque. 

In general, if Tr is the resisting torque acting on a section of a 
shaft, and T is the resultant twisting torque acting to the left 
(or to the right) of that section, then, for equilibrium to exist, 

Tr = T. 

91. Elements of Volume.—In the case of a circular shaft in 
pure torsion, for convenience of analysis the elements of volume 
(or simply, the elements), are assumed to be bounded by three 
systems of surfaces, as follows (Fig. 119): 

D 

C 

Fig. 119. 

1. A system of planes at right angles to the axis, i.e.y a system 
of right sections such as CED. 

2. A system of radial planes, passing through the axis of the 
shaft and cutting the previous sections in radial lines such as OE. 

3. A system of concentric cylindrical surfaces dividing the 
shaft into a system of concentric thin-shelled cylinders, as 
shown by the circular rings on the end section. The dark- 
shaded ring is an instance. The outermost thin-shelled cylinder 
whose end is dot shaded in Fig. 119 sometimes is called the outer 
skin or the surface layer. 

Any two consecutive surfaces of a system are supposed to 
be so near together that an-element may be thought of as a 
right parallelepipedon (rectangular block). 

A line of elements forming a slender prism parallel to the axis 
of the shaft is called a fiber. As here used, the word fiber has 
no reference to any fibrous nature of the material A fiber in 
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the outer skin is an outer fiber and an element in the outer skin is 
an outer element. In Fig. 119, the dark-shaded fiber AB is an 
outer fiber, and the elements that constitute this outer fiber are 
outer elements. 

92. Assumptions.—In the derivations of the theorems of this 
chapter it will be assumed 

1. That cross-sections remain plane during twisting. That 
is, right sections such as CED (Fig. 119) will not warp when the 
shaft is subjected to pure torsion. 

2. That radial lines such as OE remain straight lines during 
twisting. 

Experiments with homogeneous circular shafts show that the 
foregoing assumptions are warranted. For noncircular shafts 
the foregoing assumptions are only approximately correct. If 
a noncircular shaft is twisted (see Art. 97), plane sections become 
warped. In the following discussion, if no statement to the 
contrary is made, it is to be understood that the shaft is circular 
and that the assumptions stated above are true. 

93. Angle of Torsion. Helix Angle.—Let a circular shaft of 
length L and radius r be subjected to two equal and opposite 
couples, one at each end (Fig. 120). If, for convenience, it is 

assumed that the left end is held fixed, then the twisting of the 
shaft consists of a rotation of the right end through an angle 0, 
and the point A (which was originally at A7) moves through 
the distance 

A'A = rd. (a) 

where 0 is measured in radians. The angle 0 is called the angle 
of torsion or the angle of twist. 

Consider the line AB on the surface of the shaft (Fig. 120). 
Originally, before the shaft was twisted, AB was a straight line 
parallel to the axis of the shaft. That is, AB coincided with 
A'B. Now, however, owing to the twisting of the shaft, AB 
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takes the form of a helix. If a sheet of tracing paper is wrapped 
around the shaft, and the helix A B together with the lines AB' 
and A'B are traced on the paper, it will be found when the paper 
is unwrapped (Fig. 121) that the helix will appear as a straight 
line AB making an angle 8 with A'B (or AB'). The angle 8 is 
called the helix angle. * If 8 is measured in radians, 

A'A = L8. (b) 

Hence, equating the two values of A'A, [Eqs. (a) and (6)], and 
solving for 8, 

in which 8 and 0 must be measured in radians. 

94. Shearing Stresses on the Faces of an Element.—Origin¬ 
ally, before the couples were applied to the shaft, the element E 
was at m! (Fig. 121), and the angles at its corners were all right 
angles, but now, owing to the twisting of the shaft, the element 
is at m and the angles of its corners (looking toward the axis of 
the shaft) have changed, each by an amount 8. It is evident 
that this angular distortion of the element equals the helix angle 
of the twisted shaft. This is true only if sections of the shaft 

such as CD remain plane sections during the twisting. If the 

section becomes warped (Fig. 121 A), the angular distortion of the 
element E is not necessarily equal to 8. Hence the theory of this 

chapter is strictly applicable only to circular (cylindrical) shafts. 
In Art. 19, it was shown that the angular distortion of an ele¬ 

ment can be brought about only by shearing stresses (all of the 
same intensity, S8) acting on four of its faces. In Fig. 122, the 

* In a shaft under conditions of actual use, the angle 6 is so small that 

tan 5 may be put equal to 8 in radians. 

D 
1 
1 
1 
„/ 
m 

jT> ^_«0 

k 
I 

1 
[C 

K--L-H 
Fig. 121. 
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element is shown on an enlarged scale and the shearing stresses 
on its faces are indicated by arrows, the faces being perpendicular 
to the plane of the paper. In Art. 26, the shearing modulus 
of elasticity is defined as Ea = Sa/8; so that 

S8 = E8d (a) 

provided the elastic limit is not passed. 
As shown in Art. 93, 

(b) 

Combining Eqs. (a) and (6), we obtain 

q _ rdE8 
Ss L ■(c) 

as the intensity of the shearing stress on the faces of an outer 
element of a shaft subjected to pure torsion, provided the elastic 

limit is not exceeded. In Eq. (c), r equals the radius of shaft, 
L equals the length, 6 equals the angle of torsion or angle of twist, 
and Ea equals the shearing modulus of elasticity. 

Consider now an element inside the shaft, whose distance 
from the axis is p. Let S' equal the intensity of the shearing 
stress on the faces of this element. To obtain S', note that 
the only change in the argument of Art. 93 lies in the substitution 
of p for r. Thus, for a point F, distant p from the axis (Fig. 1206), 
FF' = p0. (This is not necessarily true if radial lines, such as 
OFAy do not remain straight during the twisting.) Substituting p 

for r in Eq. (c), we obtain 

pOEa 
L 

(d) 

as the intensity of the shearing stress on the faces of an element 
distant p from the axis. Dividing Eq. (d) by Eq. (c), member 
by member, 



128 MECHANICS OF MATERIALS 

That is, within the elastic limit, the intensity of the shearing stress 
on the faces of an element of a circular shaft in pure torsion is 
directly proportional to the distance of this element from the axis 
of the shaft. Hence the maximum intensity of the shearing stress is 
induced on the outer elements of the shaft. 

Example.—A circular steel shaft of radius r = 0.5 in. and 
of length L = 5 ft. is held fixed at the left end. A torque 
applied to the right end rotates this end through 5.73° (Fig. 
120). If Es = 12,000,000 lb./sq. in. find the intensity of the 
shearing stress on the faces of an outer element; also on the 
faces of an element distant | in. from the axis. 
. The angle of torsion (angle of twist) is 

5.73t 
= 0.10 radian. 

180 

From Eq. (c), 

0.5 X (0.10) X 12,000,000 
& = 

From Eq. (<e), 
5 X 12 

= 10,000 lb./sq. in. 

Si = f X 10,000 = 6667 lb./sq. in. 
2 

on an element J in. from the axis. 
95. Torsion Formula. Strength in T orsion.—Ref erring to 

Fig. 120a of Art. 93, take free 
the part of the shaft to the 
left of the section CD (Fig. 
123). Since equilibrium exists, 
the torque (moment of the 
twisting couple PP) must be 
held in equilibrium by the 
resisting torque (moment with 
respect to the axis of the 

shaft of all the shearing stresses) 

That is (Art. 90), 

T = Tr. 

To find an expression for Tr, proceed as follows: The section 
CD is composed of tan infinite number of dAys, each dA being the 
area of an exposed face of an element. If Ss equals unit stress 

in shear on an obiter element dA, distant r from O, then, — = 

acting on the section CD. 



TORSION 129 

unit shearing stress on a dA distant p from 0 [Art. 94, Eq. («)], 
Cf 

and ^ydA = shearing force acting on this dA, distant p from 0. 

Therefore the sum of the moments (with respect to the axis of 
the shaft) of the shearing forces acting on all of the d4’s that 
constitute the section CD is 

Tr SJ 
r 

where J = fp2dA, 

= polar moment of inertia of the section CD with 
respect to the center 0. 

Hence, since T = 7V, 

T 
SJ 
r (1) 

provided the elastic limit is not passed. 
Equation (1) is called the torsion formula. It is a formula for 

strength. In this formula, Ss is the unit shearing stress in the 
outer fiber and therefore is the maximum unit shearing stress 
induced on the section CD. Hence, for a given allowable unit 
shearing stress, the torsion formula gives the maximum allowable 
torque T that may be applied to the right (or to the left) of a 
section. That is, the torsion formula enables one to determine 
T, the torsional strength of a circular shaft. 

Note.—It is necessary to be consistent in the use of units 
employed. If Ss is given in pounds per square inch (as is usually 
the case) and J and r depend upon inch units, then T will be 
expressed in inch-pounds of torque. 

96. Polar Moment of Inertia.—The torsion formula [Eq. (1)] 
contains J, the polar moment of inertia of the cross-section with 
respect to the axis of the shaft. In the study of the moments of 
inertia of areas, it was seen that for a circular section, 

J = 
Tr r4 

T; 
for a hollow circular section, 

J = 

Hence for a solid cylindrical shaft 

r = ^ = 
r 

Stirr3 
(1«) 

2 
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and for a-hollow cylindrical shaft, 

T _ r4 “ r\ __ S,ir(r2 - r\){r* + rf) . M 
T ~ ^*2 r --2r-(16) 

Note that r equals the distance of outer element from the axis of 
the shaft (see Fig. 124). 

Example I.—What is the safe torsional strength of a solid steel 
shaft of radius r = 1.5 in. if the safe unit shearing stress is taken 
as 5. = 9000 lb./sq. in.? 

Ans. T = SsJ/r = 90007rr3/2 = 47,700 in.-lb. 

Example II.—A solid steel shaft is to be subjected to a torque 
of 500 ft.-lb. The allowable unit shearing stress is 

Sa = 10,000 lb./sq. in. 

What should be the radius 
of the shaft? Substituting 
in the torsion formula [Eq. 

(la)], 

500 X 12 = 
10,00(hrr3 

2 

Therefore 

r = 0.726 in. 

Example III.—A hollow shaft, whose outer radius is r = 2 in. 
and whose inner radius is m = 1 in., resists a torque of 7500 ft.-lb 
Find the maximum unit shearing stress induced in the shaft. 
Substituting in the torsion formula [Eq. (16)], 

Therefore 

7500 X 12 = 
r(16 - 1) 

2(2) 

S8 = 7640 lb,/sq. in. 

Example IV.—For a given value of the allowable unit shearing 

stress Sa the torsional strength T of a solid circular shaft is pro¬ 

portional to the cube of its radius [Eq. (la)]. Compare the 
torsional strengths of two circular shafts (S8 being the same for 
both shafts), if the radius of one is twice that of the other. 

Ans. 8 to 1. 
Example V.—A solid shaft has a radius of 2 in. A hollow 

shaft of the same length has an inner radius of 2 in. 
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1. Find the outer radius of the hollow shaft so that it will 
contain the same amount of material as the solid shaft. 

7T (r2 - 22) = tt22. 
Therefore 

r = 2\/2 in. 

2. Compare their torsional strengths if S8 is the same for both. 
Ans. The strength of the hollow shaft is 2.12 times that of the 

solid shaft. 

Problem 68. a. Design a solid circular shaft that will have the same 

torsional strength as a hollow shaft whose inside diameter is 10 in. and whose 

shell is i in. thick. The two shafts are to be made of the same kind of 

material and are to be equally stressed. Ans. d = 7.5 in. 

b. Compare the weights of the two shafts per linear foot. 

Ans. 2.68 to 1. 

97. Square Shaft.—Figure 125 shows a square shaft under tor¬ 
sion. Note that the cross-section is warped. It can be shown 
that, owing to the warping of the section, the maximum shearing 

stress occurs at the middle of the sides, i.e., at A and B. The 
torsion formula is not strictly .applicable, therefore, to a square 

shaft or to any noncircular shaft. 

It has been found experimentally that the strength of a square 

shaft is only slightly greater (about 6 per cent) than that of a 

circular shaft having a diameter equal to the side of the square. 

For instance, a circular shaft 2 in. in diameter is very nearly as 

strong in torsion as a square shaft whose lateral dimensions 

are 2 in. (Fig. 126). Hence, in designing a square shaft, the side 
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of the cross-section may be made equal to the diameter of a 
circular shaft that can carry the same torque. 

98. Torsional Stiffness.—Eliminating Sa between the two 
equations 

a rdE8 
s--~r 

(Art. 94) and 
T_SJ 

r 

(Art. 95), we obtain 

T _ JE.e 
L 

Or, solving for 0, 

II 
H

 
.M

e 

Hence 

F _ tl 
Es ~ 7e' 

where 0 is measured in radians. Since for a given torque 0 the 
angle of torsion of a shaft of given length L may be taken as a 

measure of the torsional stiffness of the shaft, Eq. (2) may be 
called the formula for torsional stiffness. 

Note.—There are several types of torsion-testing machines. 
In a good machine of this kind, the torque T and the angle of 
torsion 0 (for a selected length of the test-piece) are recorded by 
suitable measuring devices. By substituting observed values of 
T and 0 in Eq. (2), E8, the shearing modulus of elasticity, is 
determined. Experiments with cylindrical test-pieces show that, 
for each kind of material, E8 is practically a constant within the 
elastic limit. 

Assume now that a torque T is applied to a test-piece and that 
the angle of torsion 0 is recorded. If the angle of torsion dis¬ 

appears when the torque is removed, the shearing stress is within 

the elastic limit. By a series of tests on a given test-piece, 

the maximum value of T may be found for which the torsional 

strain disappears when the torque is removed. That is, the 

value of T at the elastic limit may be found. With the value of 

T thus determined, the elastic limit S8 may be computed from the 
equation T = S8J/r. 
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Example I.—A steel rod is used in a torsion test. The gage- 
length of the rod is L = 36 in. and the radius of the rod is r = 1 in. 
If a torque of T = 23,660 in.-lb. produces an angle of torsion of 
6 = 2.58°, find the shearing modulus of elasticity. Also find 
the unit shearing stress in the outer fiber. (1° = 0.01745 radian, 
and 1 radian = 57.3 degrees, approximately.) 

E, 
TL 
J6 

S. 

23,560 X 36 

X 2.58 X 0.01745 

Tr T 23,560 _ 

= 12,000,000 lb./sq. in. 

15,000 lb./sq. in. 

Example II.—In a torsion test on a steel rod of radius r = 1.2 
in., the maximum torque within the elastic limit was found to be 
T = 65,200 in.-lb. Find the elastic limit in shear. 

65,200 ^ . nnn iu / 
—-- = 24,000 lb./sq. m. 
5(1-2)* 

(b) 

a 

99. Torsional Effect of a Force.—The deformation (strain) 
of a body subjected to external forces may be complex. A body 
may be elongated, bent, and twisted all at the same time. 

When the strain of a body is complex, it is convenient, as 

a rule, to resolve the strain 
into a combination of simpler 

strains. For instance, in Fig. 
127a, the torsional effect and 
the bending effect of the force 
P may be determined sepa¬ 
rately and these effects may then be combined to obtain the 
resultant effect of the force P on the shaft. * 

At the point 0 in the axis of the shaft (Fig. 1276), introduce 
two equal and opposite forces Pi and P2, each equal and parallel 

to P. This does not disturb the equilibrium of the pulley and 

shaft considered together as one body. The two forces Pi 

and P form a twisting couple. The moment of this couple 

(the twisting moment, or torque) is T = Pa. Owing to the 

Fig. 127. 

* With the proviso that the elastic limit is not exceeded. If the elastic 

limit is exceeded, the law of proportionality (Art. 52) is not applicable. 
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torque T shearing stresses are induced in the shaft. The force 
P2 acting down tends to bend the shaft. That is, owing to P2 
bending stresses are induced in the shaft (bending will be con¬ 

sidered in a later chapter). As will be seen later, P2 also induces 
direct vertical shearing stresses in the shaft. In most cases, 
however, the vertical shearing stresses due to P2 may be neglected. 
The stresses in the shaft may be considered, therefore, as a 
combination of the stresses due to the torque T = Pa and those 
due to P2 = P. 

In this chapter, only the torsional effect of forces on a shaft 
is under consideration. For the present it may be assumed 

that the bending effect of a 
force may be neglected. The 
combined effect of torsion and 
bending will be considered in 

Chap. X. 
If a system of forces acts on 

a shaft, the algebraic sum of 

the moments, with respect to 

the axis of the shaft, of the external forces that act to one side 
of a section is called the external torque (resultant torque) for 

that section. 
Example.—In Fig. 128, assume that the shaft rests in friction¬ 

less bearings. Assume also that each force lies in a plane that is 

perpendicular to the axis of the shaft. Consider the section CD. 
The torque of the forces to the left of the section is 

T = (140 - 50) X 1 + (500 - 200) X 1.5 = 540 ft.-lb. 

If the shaft is in equilibrium, the torque to the left of the section 
must be equal and opposite to the torque to the right of the 

section. Hence 

540 = (Pi - P2) X 2, 
or 

Pi - P2 = 270 lb. 

Note.—In this chapter, all shafts will be assumed to be in equi¬ 

librium. It should be remembered, however, that equilibrium 

does not necessarily mean “standing still.” Rest is only a partic¬ 

ular case of equilibrium. The shaft represented in Fig. 128 will 

be in equilibrium even if it is rotating, provided it is rotating 
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with constant speed. If it has no change of velocity, it will not 
have any acceleration. 

100. Power Developed by a Torque.—Figure 129 represents a 
pulley acted upon at a particular instant by a tangential force P 
as shown. Assume that at this instant the pulley is rotating 
at an angular velocity co. It is required to find an expression 

for the power developed by the force P at the instant. 
In the time dt the point A on the rim of the pulley, and there¬ 

fore the point of application of the force P, moves from A to A', 
a distance ds. This is the distance also through which the force 
P “works.” In this infinitesimal rotation, the work done by 
P is dW = Pds. 

By definition, power is the rate of doing work. Hence, if 
L equals power developed by P, 

_ dW _ pds 
” ~dt ~ dt 

Pv (a) 

in which v = velocity of the rim of the pulley at the particular 

instant. 
Since at the instant the applied torque is T = Pa and v = ooa 

Eq. (a) may be written 

L = Pv = P ooa = Pa o) = Too. (ib) 

Expressed in words, at any given instant power 
equals torque multiplied by angular velocity. 

If at the particular instant the angular 
velocity is such that the rate of rotation is n 

revolutions per unit of time, a> = 27m. Equa¬ 
tion (b) may then be written 

L = 27m T. (c) 

101. Transmission of Power.—A shaft is often used as a means 

of transmitting power. Assume in Fig. 130 that the pulley A 
is driven by an engine. Pulley A is rigidly attached to the 
shaft and causes it to rotate. Pulley B also rotates with the 

shaft and is used to turn the dynamo. Hence power is trans¬ 

mitted from pulley A to pulley B through the shaft. 

Consider pulley A. The torque applied to this pulley is 

T = (Pi — P2)a. If n equals the number of revolutions per 

unit time, the power developed is [Eq. (c), Art. 100] 

L = 27m T7. 
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To reduce to horsepower, divide by N, where N equals the 
number of units of work that must be done in a unit of time to 
constitute a horsepower. (1 hp. = 550 ft.-lb. of work per second; 

or 6600 in.-lb./sec.; or 396,000 
in.-lb. /min.) The horsepower 
transmitted by the shaft is, 

B 

n Ju 

1 

-— [gRf tnereiore, 

jj 2wnT Pv 
N ~ 550 ph f 

1 i Therefore 
l i 
V ; T = NH. 

Engine 2Ml 

Ta 
550 

Fig. 130. 

used. Usually the 

(a) 

In formula (a), any consist¬ 
ent system of units may be 

inch-pound-minute system is convenient. 
Then, as stated above N = 396,000. 

Therefore 
T,NH_ 39|000H= ooo? 

27r n 2tt m 
(3) 

n n 

in which n = the number of revolutions per minute (r.p.m.), 
and T = torque in inch-pounds. 

102. Resume.—In the foregoing articles of this chapter four 
very important formulas were developed; viz., 

T = ^ (Art. 95) 
r (i) 

S'irrs 
(for a solid circular shaft of radius r) 

S,ir(r4 — r{) 
2 r 

(for a hollow circular shaft, 

TL 
JE, 

(Art. 98). 

inner radius ri 

outer radius r). 

(2) 

(3) T = 63,000^ (Art. 101). 
n 

In formula (3), H = horsepower, n = revolutions per minute 
(r.p.m.), and T = torque in inch-pounds. 

H-m-m (4) 

In formula (4), H = horsepower, P = force acting on the rim 
of the pulley, in pounds, v = velocity of a point on the rim of the 
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pulley, in feet per second, T = torque in foot-pounds, and 
o) = radians per second. 

Example I.—With reference to Fig. 130, Pi = 450 lb., 

P2 = 150 lb., 

a = 1 ft., and n = 120 r.p.m. What horsepower is transmitted 
to the shaft? 

T = (450 - 150) X 1 X 12 = 3600 in.-lb. 

Hence by Eq. (4), 

H _ 3600(4tt) 
6600 

Therefore 
H = 6.86 

Example II.—Solve Example I using the foot-pound-second 
system of units. In this system, a = 1, n = 2, and N = 550. 
Using Eq. (4), 

„ 300(4?r) 
H = ”550“ 

Again 
# = 6.86. 

Example III.—A solid cylindrical shaft is to transmit 300 hp. 
and is to make 150 r.p.m. The safe shearing stress is 

S8 = 10,000 lb./sq. in. 

Required the diameter of the shaft. 

300(6600) 
1 5tr 

Substituting in the torsion formula [Eq. (1)], 

126,000 = 10,000^- 

Therefore 
r = 2 in.; d — 4 in. 

Example IV.—A hollow shaft whose outer radius is r = 3 in. 
and whose inner radius is r\ = 2 in. transmits 400 hp. and makes 

105 r.p.m. Find the unit shearing stress induced in the outer 
fiber. 

T = 400(6600)^ = 240,000 in.-lb. = 

Therefore 

S = 7050 lb./sq. in. 
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PROBLEMS 

*.Engine driven puf/ey 

9"radius 

69. A steel shaft is 4 in. in diameter (d = 4 in.) and is rotating at a speed 

of 210 r.p.m. If the angle of twist is 1° in 3 ft. of length, find the horsepower 

the shaft is transmitting. Take E, = 12,000,000 lb/sq. in. Assume that 

the elastic limit is not exceeded. Ans. 486.5. 

70. Find the unit stress induced in 

the shaft of Problem 69. 

Ans. S8 = 11,620 lb./sq. in. 
71. Three pulleys are fastened to a 

shaft (Fig. 131). Pulley B is driven 

by an engine. Neglect friction of 

bearings. 

a. Assume Pi = ZP2. Find Pi 
and P2 to maintain uniform motion. 

Ans. Pi = 812 lb. 

b. What horsepower is delivered 
by the engine if the shaft turns at the rate of 180 r.p.m.? Ans. 27.82 hp. 

c. If S8 = 10,000 lb./sq. in., required the radius of the shaft. 

Ans. Radius = 0.853 in. 

103. Rectangular Keys.—A pulley is fastened to a shaft 
usually by means of a key. Figure 132 shows a rectangular key. 

600lbs' SOOIbs. 

Fig. 131. 

When a torque is applied to the shaft (assumed to act in a 
counterclockwise direction), the torque is transmitted to the 
pulley through the key. As a result, a shearing force P8 is 
induced on the section CD of the key. In Fig. 133, the shaft, 
together with the lower half of the key, is taken Jree on an 
enlarged scale, and the shearing force P8 on the section CD 
is shown. 

If S'8 equals the average unit shearing stress induced on CD, 
L equals the length of key perpendicular to the paper, and 
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b equals the width of key, then P6 = SabL. Since equilibrium 
exists, the moment of Ps with respect to the axis of the shaft 
must be equal and opposite to the torque applied to the shaft. 
Therefore 

T = Par = S'JbLr* (a) 

Take free the lower half of 
the key (Fig. 135). If the key 
is driven into place and fits 
snugly, we may assume that 
the bearing force Pc exerted by 
shaft on key is uniformly dis¬ 
tributed over the lower half DB 
of the key. If Sc equals the 
unit bearing stress and t equals 

in which L equals the length of the key (_L paper). Since equilib¬ 
rium exists, P8 — Pc. Hence 

Fig. 135. Fig. 136. 

Or, since T = P,r [Eq. (a)], 

t - (» 

Example I.—By means of a key, a pulley is fastened to a shaft 
(Fig. 132). Diameter of shaft is 2 in. If 10,000 lb./sq. in. is 

* There is also a normal force Q acting on the section CD (Fig. 134). This 

normal force, however, acts through the axis of the shaft (or very nearly so, 

at least) and therefore has no moment with respect to the axis of the shaft. 

Thus R, the resultant of Pc and Q, goes through 0, the center of the key. 

At 0, resolve R into its two components P8 and Q. 
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the allowable shearing stress in the shaft and 8000 lb./sq. in. 
is that in the key, find the minimum safe width of the key if 
L = 4 in. 

The torque which the shaft can safely carry is 

T __ S8J _ 10,000tt X l3 
1 r 2 

15,710 in.-lb.* 

Hence, by Eq. (a), 

Therefore 

15,710 = 8000 X 6 X 4X1. 

b = 0.49 in. or § in. 

Example n.—In Example I, the allowable bearing stress 
between key and pulley, or key and shaft, is Sc = 24,000 lb./sq. in. 
Find t, the minimum safe thickness of the key. 
By using Eq. (6), 

15,710 = 24,000 X<X4Xi 

Therefore 

t = 0.328 in. or | in. 

Example III.—Keys are frequently made with a square section. 
Show that this should be the case if the allowable bearing stress is 
made equal to twice the allowable shearing stress, Sc = 2S'. 
By combining Eqs. (a) and (6), 

SgbLr = 
SdLr 

2 

Since Sc = 2b = t. 
Example IV.—The diameter of a shaft is 4 in. A 1- by f- by 

8-in. key is used to fasten the pulley to the shaft. What unit 
stresses are induced in the key if the shaft is transmitting 360 hp. 
at 180 r.p.m.? 

360 
T = 63,000 = 126,000 in.-lb. [Eq. (3)] 

Therefore [Eq. (a)] 

* The key way decreases the effective radius of the shaft. In the design 

of commercial keys, the effect of the keyway upon the strength of the shaft 

should be considered. This may be done by using a lower unit shearing 

stress, or a smaller diameter for the shaft. The complete design of keys, 

taking into account all possible refinements, is beyond the scope of this text. 
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126,000 = S;X1X8X2, or S' - 7880 Ib./sq. in. 
By Eq. (6), 

Sc X | X 8 X 2 
126,000 = --- = 5 Sc 

Sc = 25,200 lb./sq. in. 

Neglecting the weakening of the shaft by the keyway, what 
unit stress is induced in the shaft? 
From T = S8J/r, 

—03 

126,000 = S.~- 

Then S8 = 10,030 lb./sq. in. 
104. Shaft Couplings.—Frequently two shafts are connected 

by means of a coupling such as is shown in Fig. 136. Each half of 
the coupling is keyed to the corresponding shaft, and the two 
halves A and B are bolted together. Evidently, for equilibrium 
to exist, the sum of the moments (with respect to the axis of the 
shaft) of the shearing forces acting on the section CD of the 
bolts must be equal to the torque T transmitted from A to B. 
If P8 is the total shearing force in one bolt and n is the number of 
bolts, 

nP8a = T (a) 

where a = radius of the bolt circle.* 
If S8 is the unit shearing stress in the bolts and d is the diameter 

of a bolt, the shearing force in one bolt is 

Example.—A shaft is to transmit 180 hp. dt 210 r.p.m. If 
the radius of the bolt circle is a = 4 in., and f-in.-diameter bolts 
are to be used, how many bolts are required if the allowable 
unit shearing stress in the bolts is S8 = 8000 lb./sq. in.? 

From Eq. (3), 
TT 1 QA 

T = 63,000- = 63,000— = 54,000 in.-lb. 
7 n 210 

* The radius of the bolts is small compared with the radius of the bolt 

circle. So it may be assumed that the resultant shear in a bolt acts at the 

center of its section, i.e., at a distance a from the axis of the shaft. 
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The strength in shear of one bolt is 

D _ 7r(0.75)28000 
^ 4 3530 lb. 

Hence [Eq. (a)] n X 3530 X 4 = 54,000. Therefore n = 3.8, 
i.e., four bolts would be needed. 

106. Helical Spring or Spring Coil.—If a stiff wire is wrapped 
around a cylinder, the wire takes the form of a helix and the coil 
thus formed is called a helical spring or spring coil. The elon¬ 

gation (or the contraction) of such a coil is 
an interesting illustration of torsion, for 
it is due primarily to the torsion of the 
wire that the coil elongates or contracts. 
If the coil is to be used in tension, the ends 
usually are bent in toward the center of 
the coil and into a hook in such a way that 
the load P acts along the axis of the coil 
(Fig. 137). It will be assumed that the 
wire in a turn lies in a horizontal plane, 
an assumption approximately true for a 
closely coiled spring. (For open coiled 
springs, see Art. 107.) Let R equal the 

Fig. 137. Fig. 138. 

radius of coil (distance from center of wire to axis of coil, Fig. 137) 
and r equal the radius of wire. 

Consider an elementary length AB of the wire (Fig. 138). 
This element will be assumed to lie in a horizontal plane. Let 
ds equal the length of this element. The effect of the force P 
upon the element ds will be the same as if the end B were firmly 
held and the wire at A were bent in toward the axis of the coil, 
the force P being applied at 0. Then the wire at A is acted upon 
by a torque T = PR. Accordingly, if Se is the unit shearing 
stress induced in the wire, S8J/r = T = PR where J/r = irr3/2. 
This assumes that the wire is rouiid. Hence 
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T _ 2PR 
x r3 irr3 (4) 
~2 

where R = radius of the coil. 
r = radius of the wire. 

106. Elongation of a closely coiled spring due to the twisting 
of the wire. If dd equals angle of twist of an element ds due to 
the torque T = PR (Fig. 138), the deflection of the point 0, i.e., 
the elongation of the coil resulting from the twisting of the given 
element through an angle dd is 

dy = Rdd. (a) 

In the formula 8 = TL/JE, [Eq. (2)], put dd for 8, ds for L, 
PR for T, and xr4/2 for J, and obtain 

_ 2PRds 
rPE. 

Substituting in Eq. (a), 

dy Rdd 
2PRMs 
irPE. 

For a complete turn of the wire, 

2PR2 4PR3 
V irPE.J0 ds PE.' 

If the coil contains n turns of wire, the total elongation of the 
coil is 

4nPP3 
6 ~ r4E8 ’ 

(5) 

Since e is directly proportional to P, the law of proportionality 
holds for a closely coiled spring. Hence if 61 is the elongation 
due to Pi acting alone, and e2 is the elongation due to P2 acting 
alone, then the elongation due to P = Pi + P2 is e = e\ + 62, 
provided the elastic limit is not exceeded. 

Example.—A closely coiled spring consists of 25 turns (n = 25) 

and is made of a steel wire 0.25 in. in diameter (r = 0.125 = | in.). 
The radius of the coil is R = 1 in. A load of 30 lb. (P = 30) is 
applied. Find the elongation of the coil and the unit shearing 
stress induced in the wire. Take E8 = 12,000,000 lb./sq. in. 

25 X 30 X l3 

X 12/100,000 

1.024 in. e = 4 
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S. 
T 

xr3 
2 

2 X.30. * 1 = 9790 lb./in.2 

<0 
107. Open Coiled Spring.*—In the foregoing article it was 

assumed that the wire in a turn of the coil lies in a horizontal 
plane. This is approximately true for closely coiled springs. 
Consider now an open coiled spring (Fig. 139). If R is the radius 
of coil and p is the pitch of coil in its strained or final state 

Fig. 139. 

(distance between turns, center to center of wire), then the angle 
which the wire makes with a horizontal plane is (Fig. 1396), 

a. = tan-1 V 
2itR 

(a) 

If the angle a is considered, it can be shown that the elongation 
of the coil is 

4 nPRz( E8 \ 
e = 1 + 2¥tan a)cos a (b) 

where E = modulus of elasticity in tension (or compression). 
E8 = modulus of elasticity in shear. 

Note that if a = 0 Eq. (6) becomes 

e = 4 nPR* 
r*E8 (e) 

the same as that for a closely coiled spring (Art. 106). 
If a = 15°, the elongation as given by Eq. (6) is about 2 per 

cent greater than that given by Eq. (c); and if a = 30°, the 
elongation is about 10 per cent greater. Ordinarily, a is less 
than 15°. 

* 

♦See Maurer and Withey, “Strength of Materials.” 
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108. Note 1.—The elongation of a spring coil, as given in 
Art. 106 (or Art. 107), does not include the deflection of the hook 
portion of the coil (see Fig. 137). As a rule, the deflection of the 
hook portion may be neglected. 

Note 2.—In Fig. 140, OB represents a horizontal rod firmly 
held at B. The arm OD is perpendicular to the rod. For con¬ 
venience, assume OD in a horizontal position. At D a vertical 
load P is applied. In Art. 99 it is shown that, owing to the 
force P, the rod will twist and also 
bend. (Assume that the bending 
is slight so that the rod does not 
deviate appreciably from the hori¬ 
zontal position.) The amount of 
twist is proportional to the torque 
PR. It will be shown later that 
the curvature of the rod at a sec¬ 
tion C will be proportional to the 
bending moment Px, where x equals-the perpendicular distance 
of the line of action of P from the plane of the section at C. 

Referring now to Fig. 138, note that the line of action of P 
lies in the plane of every right section of the wire so that x 
equals zero for every section. (This is strictly true only if 
the turn lies in a horizontal plane.) Hence the bending moment 
at every section of the wire is zero. The wire, therefore, will 
not bend, and no deflection of the spring is caused by bending 
action of the load. 

In an open coiled spring, P cannot be assumed to lie in the 
plane of a right section of the wire. Assume Fig. 138 to represent 
a turn of an open coiled spring making an angle a with the 
horizontal plane. For a given section C, P may be resolved 
into two components. Since a right section perpendicular to the 
wire is not a vertical section but makes an angle of a with the 
vertical, one component of P lies in the plane of the section 
and has the value Pi = P cos a. The other component is per¬ 
pendicular to the inclined section and is of amount P2 = P sin a. 
The first component, Pi, lying in the plane of the inclined section 
will not bend the wire. The second component, P2, has a 
moment P2R and will exert a bending action on the wire of the 
coil in the plane of the turn. This bending moment will unwind 
the coil to a slight extent. Ifra spring coil is stretched so that it 
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becomes an open coiled spring (assume a = 30°), it will be noticed 
that the coil unwinds slightly. 

In a somewhat closely coiled spring, a is small. Then P2, 
i.e.f P sin a, becomes very small and its effect may be neglected. 
In general, in an ordinary coiled spring, tJ\e elongation of the 

coil due to the bending of the wire is negligible. 
Note 3.—Take free the part of the coil below the section 

at C (Fig. 141). Since equilibrium exists, a vertical force V = P 
must act on the section at C. Owing to this vertical force, shear¬ 
ing stresses are induced in the elemental prisms of the wire. 
A shearing stress always distorts the angles of an elemental prism. 
Hence the coil will elongate owing to the shear induced in the 
wire. In the case of a closely coiled spring it can be shown that 

if e' equals the elongation of the coil due to the vertical shear in 
the wire, and if e equals the elongation due to the torsion of the 
wire, 

6- = ^5 (very nearly). 

The elongation due to vertical shear, as a rule, may be 
neglected. 

Note 4.—The spring coils considered were assumed to hang 
vertically. This was done merely for convenience. Spring 
coils may take any position. 

Example.—If r = in. and R = \ in., e'/e = 0.0087. That 
is, the elongation due to vertical shear in this case is less than 
1 per cent of that due to torsion. 

109. Torsional Resilience.—Let the force P (Fig. 142) be 

gradually applied (increasing gradually from zero to its final 
value P), and let 0 equal angle of torsion of the shaft. Within 
the elastic limit, the work done in twisting the shaft is 

U = average force X RO = 
PRO TO 

9 ‘ 9 (a) 
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That is, U equals the energy spent on the shaft by a torque 
that twists the shaft through an angle 0. Since the elastic limit 
is not exceeded, this energy is stored up in the shaft in the form 
of potential (elastic) energy and is returned when the torque is 
removed. The potential energy thus stored up in the shaft 
is called torsional resilience (see Art. 65). 

The torsional resilience of a circular shaft under torsion may 
be found as follows. Within the elastic limit, 

rpT 

6 = [Eq. (2) Art. 102]. 

Substituting in Eq. (a) above, 

T2L 

2 JE8 
= torsional resilience. 

Or, since T = S8J/r, 

For a solid circular section, 

Therefore 

77 82 X irr2 X L S2 w , , , fl* 
U = ——X volume of shaft.* (b) 

4:£js 

The torsional resilience (energy that can be stored up) per unit 
volume of the shaft, when the shaft is stressed up to its elastic 
limit, is called the modulus of torsional resilience. From Eq. (b) 
it is evident that for a circular shaft, if S' equals the stress at 
elastic limit in torsion, 

j= modulus of torsional resilience. 
4 h8 

It is sometimes advantageous to attack a problem in torsion 

from the standpoint of the energy load, i.e., from the standpoint 

of the amount of energy a body can or must absorb in torsional 

elastic strain. 

* For a hollow circular shaft (with r = outer radius, n = inner radius), 

the resilience is 

U = X volume of shaft X T • 
4 Es r2 
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Example I.—A shaft of length L = 10 ft. has a radius of 
r = % in. What is the maximum amount of energy this shaft 
can absorb in torsion if the unit shearing stress is not to exceed 
S8 = 10,000 lb./sq. in.? 

Take E8 = 12,000,000 lb./sq. in. 

U = 
10,0002 

4 X 12,000,000 
X 120 = 196.4 in.-lb. 

Example II.—A bumper spring is made of 10 turns of a steel 
rod that is 2 in. in diameter (r = 1 in.). The radius of the coil 
is R = 6 in. A car when moving at the rate of 4.4 ft. per second 
(3 m.p.h.) bumps against this spring. What is the maximum 
weight the car may have if the elastic limit of the rod, namely 
S8 = 24,000 lb./sq. in., is not to be exceeded? 

If G is the wreight of the car, the kinetic energy of the car is 

(?(4.4)2 
2(32.2) 

= 0.30 G ft.-lb. or 3.60C? in.-lb. 

Therefore [Eq. (6)], since L = 2wRn = 2t X 6 X 10 = 120r in., 

Therefore 

3.60 G 
24,0002 

4 X 12,000,000 
X ttI2 X 120t. 

G = 3950 lb. 

Example III.—In Example II find the contraction of the 
spring. 

T = PR = S8 X r\ Also S'8 = 24,000 lb./sq. in. 

Therefore 

P = 24,000 % °~5?r P = 2000*- lb. 
6 

Assuming the spring closely coiled, 

_ 4 X 10 X 2000tt X 63 
e l4 X 12,000,000 

Hence, since there are 10 turns, the contraction per turn is 
0.452 in. Since the rod is 2 in. in diameter and contact between 

turns must be avoided, the minimum pitch of the coil in its 
unstrained state is 2 in. + 0.452 in. or, say, 2.5 in. 

PROBLEMS 

72. What shearing stress is induced in a shaft 6 in. in diameter if the 

torque on the shaft is 40,000 fti-lb.? Am. 11,320 lb./sq. in. 
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73. A shaft must carry a torque of 2100 ft.-lb. The allowable unit 

shearing stress is 12,000 lb./sq. in. Find the radius of the shaft. 

Arts, r = 1.10 in. 

74. If the shaft of Problem 72 is 15 ft. long, what is the angle of twist? 

Take Es = 12,000,000 lb./sq. in. Ans. 9 — 3.24°. 

76. A steel rod, \ in. in diameter, is to be twisted through an angle of 90°. 

If the shearing stress is not to exceed 12,000 lb./sq. in., what is the minimum 

length the rod may have? Ans. 16.3 ft. 

76. A shaft, 6 in. in diameter, is to transmit 1000 hp. with an allowable 

stress of 10,000 lb./sq. in. Compute the speed. Do not use Eq. (3), Art. 

102, but employ the fundamental conception of power developed by a torque. 

Read carefully Art. 101. Ans. n — 2.48 r.p.s. or 149 r.p.m. 

77. Use Eq. (3) and check the results of Problem 76. 

78. A shaft 3 in. in diameter is rotating at a speed of 180 r.p.m. Compute 

the horsepower this shaft may transmit if S8 is 9000 lb./sq. in. Do not 

use Eq. (3), Art. 102. Ans. 136. 

79. Use Eq. (3) and check the result of Problem 78. 

80. Design a hollow cylindrical shaft that has the same torsional strength 

as a solid shaft 5 in. in diameter. Compare the sectional areas of the two 

shafts. Assume an outer diameter for the hollow shaft. 

81. What is the greatest horsepower a steel shaft 3 in. in diameter can 

transmit at 270 r.p.m. if the allowable shearing stress is 12,000 lb./sq. in.? 

Ans. 272. 

82. What horsepower can the shaft of Problem 81 transmit if the allowable 

twist is 1° in 27 in.? Ans. 265. 

83. A pulley B is keyed to one end of a horizontal steel shaft at the other 

end of which there is a drum C. Distance between pulley and drum, center 

to center, is 15 ft. The diameter 

of the pulley is 1 ft. and the diam¬ 

eter of the drum is 2 ft. The shaft 

is 3 in. in diameter. A wire whose 

sectional area is 0.15 sq. in. is 

wound round the drum and then 

extends 250 ft. vertically downward. 

The lower end of the wire is attached 

to a body weighing 3000 lb. Ini¬ 

tially, the body rests on a floor and 

the wire is taut but not stretched. 

(a) What force P must be exerted 

tangentially on pulley B to lift the body from the floor? (b) Through what 

angle 9 must pulley B rotate to cause the body weighing 3000 lb. to be just 

free from the floor? Consider both the effect of the twisting of the shaft and 

also the elongation of the wire. 

Es = 12,000,000 lb./sq. in., E = 30,000,000 lb./sq. in. 

Ans. P = 6000 lb.; 9 = 0.269 radian =* 15.4°. 

84. In Problem 83, what is the stress in the shaft? In the wire? 

Ans. 6800 lb./sq. in.; 20,000 lb./sq. in. 
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85. How much energy is absorbed by the shaft? How much by the wire? 

Ans. 1225 in.-lb.; 3000 in.-lb. 

86. A pulley 3 ft. in diameter is keyed to a shaft 3 in. in diameter. Two 

rectangular keys of equal size are used. A force of 2000 lb. is exerted 

tangentially at the rim of the pulley. The pulley rotates with a speed of 

120 r.p.m. (a) Find the horsepower transmitted by the pulley to the shaft. 

Ans. 68.5 hp. 

(6) Find the unit stress induced in the shaft. Ans. 6780 lb./sq. in. 

(c) Find the total shearing stress induced in each of the two keys (see 

Fig. 133). Ans. 12,000 lb. 

(d) If the allowable unit shearing stress in a key is 12,000 lb./sq. in. and 

the allowable bearing stress on the key is 24,000 lb./sq. in., what are the 

minimum dimensions each key should have? Assume each key to, be 

4 in. long. Ans. 0.25 by 0.25 in. 

87. A closely coiled spring consists of 20 coils or turns and is made of 

heat-treated spring wire 0.30 in. in diameter. The radius of the coil is 

R = 1.50 in. What is the maximum load that may be hung from the end 

of the spring if Sa = 50,000 lb./sq. in.? Ans. 176 lb. 

88. What will be the total elongation of the spring of Problem 87 due to 

a load of 150 lb. hung from its lower end? Take Es = 12,000,000 lb./sq. in. 

Ans. 6§ in. 

89. It requires a force of 175 lb. completely to close the spring of Problem 

87. That is, a compressive force of 175 lb. will cause the coils of the spring 

just to touch. Find the pitch of the spring. What is the total contraction 

of the spring? 

Note.—The pitch of a spring is the distance between two neighboring 

coils, center to center of wire. The free space between the two coils is the 

pitch minus the diameter of the wire. Assume that there are as many 

free spaces as there are coils. Ans. 0.69 in.; 7.78 in. 

90. The constant C of a coiled spring is the force required to elongate or 

contract the coil 1 in. If the spring elongates or contracts s in., the force 

exerted on the spring is Cs lb. Find the constant of the spring of Problem 87 

if it requires 150 lb. to contract the spring 6§ in. What force is required to 

contract the spring 5 in.? Ans. 22.5; 112.5 lb. 

91. The spring of Problem 87 is placed in a vertical position with the 

lower end resting on a firm support. The pitch of the spring is p = 0.69 in. 

A 15-lb. body is dropped upon the spring from a height h in. above the 

original position of the upper end of the spring. The constant of the spring 

is C = 22.5 lb. per inch of contraction. Find h so that the maximum 

contraction of the spring is 4 in. (see Art. 63, Fig. 69). Ans. 8 in. 

92. Use the equation of dynamics, 2F = Ma, and solve Problem 91. 

Suggestion.—Find the velocity of the body as it hits the spring. Next 

assume the spring to have contracted a distance s. Take free the body 

representing the forces acting upon it, i.e., the weight of the body and the 

variable upward force exerted by the spring on the body. Put 2F = Ma 
and find a as a function of s. Finally, use vdv = ads and find s'when the 

velocity of the body is zero. 



CHAPTER VI 

SIMPLE BEAMS 

SHEAR AND MOMENT 

110. Beam Defined.—A member is called a beam if its principal 
function is to sustain forces that act transversely to its long 
dimension. Only simple beams will be considered in this chapter. 
As an illustration of a simple beam, consider the rectangular 
prismatic beam shown in Fig. 144. There are five external forces 
acting on the beam, the three loads Pi, P2, and P3 and the two 
reactions Pi and P2. The weight of the beam will be neglected 
for the present. The five forces are represented as concentrated 
forces. That is, each force represents the resultant of a force 

distributed over a small length of the beam. All forces are 
represented as acting perpendicular to the axis of the beam and 
as lying in a plane of symmetry (the plane ABCD). Note 
that this plane contains the axis of the beam. 

The five forces Pi, P2, P3, Pi, and P2 form a system of parallel 
forces in a plane. For such a system there are two independent 

equations of equilibrium; viz., 2 moments = 0 and 2Fv = 0; 

or two moment equations may be used. Tfye two equations 

suffice to determine the two reactions Ri and P2 in terms of Pi, 
P2, and P3. 

Illustration. Fig. 145: 
2Ma = 0; 

Rt X 12 - 6 X 4 - D. 
151 
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Or 

Or 

R2 = 2 tons. 

XMb = o 
Ri X 12 - 6 X 8 = 0. 

Ri = 4 tons. 
27 = 0, 4 + 2 — 6 = 0 (Check.) 

111. Statically Determinate and Statically Indeterminate 
Beams.—When the principles of statics suffice to determine the 
reactions, a beam is said to be statically determinate. Thus the 
beam of Fig. 145 is statically determinate since there are two 

reactions and two independent 
equations of equilibrium to 
determine them. When the 
principles of statics do not 
suffice to determine the reac¬ 
tions, the beam is said to be 
statically indeterminate. For 

instance (Fig. 146), if a beam rests on three supports (loads 
and reactions vertical), there will be three reactions, Ri, 
R2, and R%. For a system of parallel forces in a plane there 
are, however, only two independent equations of equilibrium. 
Hence in the case of a beam resting on three supports there are 
three unknown reactions and only two independent equations of 
statics to determine them. Such a beam is statically indeter¬ 
minate. Their analysis will be presented in later chapters. 

Fig. 145. 

Note.—At first sight, it may seem that three equations can be 
found (by statics) to determine Rh R2, and R3 (Fig. 146). Thus 
2Fy = 0, 2Mo = 0, 2Mb = 0; or 2M0 = 0, 2MB = 0, 2Mc = 0. 
It can be shown, however, that only two of the three equations 
in either group are independent. If 2Fy = 0 and 2ilf0 = 0 are 
chosen as the two equations, all other equations will be satisfied 
identically and therefore will not help to determine the reactions. 
This will be illustrated in the following case (Fig. 147): 
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'EFy = 0 gives 

Ri “h R2 "f" Rz — 2R = 0. 

2M0 = 0 gives 

PT 
R2L + J233L — — P2L = 0; 

or 
K P 

#2 + 3/23 - = 0. 

Subtract Eq. (5) from Eq. (a); i.e., eliminate R2; 

Rx-2R3 + ? = 0. 

Now take 2M* = 0. 

(o) 

(b) 

(c) 

(<*) 

Equation (d) is the same as Eq. (c). Hence 2MB = 0 may be 
obtained merely by combining 2Fy = 0 and 2M0 = 0. Accord¬ 
ingly 2Mb = 0 is not an independent equation. In general, 
if there are n unknowns, there must be n independent equations 
to determine them. For an equation to be independent, it must 
not be possible to obtain this equation by combining two or more 
of the other equations algebraically. 

112. Simple Beam Defined.—Figure 144 represents one type of 
simple beam. Any beam that satisfies the following description 
wTill be called a simple beam. 

1. A prism that is homogeneous and originally straight, 
or nearly so. 

2. Relatively long when compared with its lateral dimensions. 
3. The external forces (loads and reaction) acting on the beam 

all lie in a plane of symmetry. That is, the load plane (force 
plane) is a plane of symmetry (Fig. 144). 

Note.—A beam is said to be symmetrically loaded when the 
load plane is a plane of symmetry.* 

4. The external forces all act at right angles to the axis of the 
beam. 

* See Art. 154 for unsymmetrical loading. 
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5. The bending of the beams is slight and takes place in the 

direction of the forces producing it. 
6. The beam is statically'determinate. That is, the reactions 

are so few in number that they can all be determined by the 

principles of statics alone. , 
In spite of the restrictions thus placed upon the beam, results 

will be obtained that are applicable to more complicated beams 
beams for which one or more 
of the foregoing assumptions 
are modified or removed. 

Note.—As a rule, beams will 
be represented as horizontal 
with the loads acting vertically. 

It should be remembered, however, that beams may take any 
position. In practice, beams frequently are vertical and the 
loads frequently are horizontal. 

113. Types of Simple Beams.—There are three types of simple 

beams. 
1. The beam on two end supports (Fig. 148). 
2. The beam on two supports with one or both ends overhanging 

(Fig. 149). 
3. The cantilever (Fig. 150). 
Note that in each case there are two reactions, Ri and R2.* 

Fig. 149. Fig. 150. 

114. Distributed Load.—If a beam carries a load W uniformly 
distributed over a length L of the beam, the rate of loading is 

W 

That is, w equals the load carried per unit of length of the beam. 
Thus, if a load of 24,000 lb. is uniformly distributed over a length 
of 12 ft., then w = 2000 lb./ft, of beam. 

If the load is nonuniformly distributed, the rate of loading is 
variable. If dW equals the load on an infinitesimal length dx 

* Some authors apply the term “simple beam” only to the first type, i.e., 
to the beam on two end supports as in Fig. 148. 

Fig. 148. 
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at the point C of the beam (Fig. 151), then the rate of loading at 

C is 
dW 

W dx' 

The rate of loading at C, viz., w, is simply what would be the 
load on a unit length of the beam (shown by the dotted area in the 
figure) if over this unit length 
the load were distributed in 
the same way as it is over an 
infinitesimal length dx at C. 

Given a nonuniformly dis¬ 
tributed load W. This load is 
conveniently shown by repre¬ 
senting the rate of loading of 
all points along the beam (Fig. 
151). If w is the rate of loading at C, the load on a length dx at 

C is 
dW = wdx = dA 

length 

Fig. 151. 

where dA = area of the dark-shaded rectangle. 
Therefore 

where A is the area of the figure ODB. Hence, by calling the 
figure ODB the rate figure,* the distributed load W is numerically 
equal to the area of its rate figure. 

Let x = distance, from point 0, of the point of application 
of the resultant of the distributed load W (Fig. 151). In Ele¬ 
mentary Mechanics it is shown that 

fxdW 
W 

(a) 

Since W = A and dW = wdx = dA, Eq. (a) may be written 

. fxdA 
x “ A 

Equation (6) gives the x-coordinate of the centroid (center of 
gravity) of the rate figure ODB. Hence the resultant of a dis¬ 
tributed load acts through the centroid of the rate figure. 

* The “rate figure” must not be confused with the “stress figure” (see Art. 
9). If q equals intensity of the load at C (Fig. 151), and 6 equals width of 

surface, then w = bq. 
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116. Reactions.—Frequently the first step in the solution of a 
beam problem is the determination of the reactions. The student 
is supposed to know how to find the reactions of a simple beam. 
To refresh his memory, two illustrations will be given. 

Example I. Fig. 152.—The beam carries a uniform load of 
14 tons and a concentrated load of 2 tons, as shown in the figure. 

The weight of the beam is 
neglected. Required to find 
the reactions Ro and Rb- 

When finding the moment of 
a distributed load, this load 
may be imagined to be replaced 
by its resultant (Art. 114). 

Hence, by taking the whole beam free, and counterclockwise plus, 
'EMo = 0 gives 

Rb12 - 2 X 15 - 14 X 3 = 0. 

Therefore 
Rb — 6 tons. 

= 0 gives (taking clockwise as plus) 

R012 - 14 X 9 + 2 X 3 = 0; 
or 

Ro = 10 tons. 

As a check use 2Fy = 0 and see if R0 and RB satisfy this condition, 
as they should if no errors were made. 10 + 6 — 14 — 2 = 0. 

Example II. Fig. 153.—A simple beam on two end supports 
carries a uniformly distributed load W\ = 4000 lb. and a triangu- 

Fig. 153. 

larly distributed load W2 = 6000 lb. Required to find the 
reactions. 

2 Mo = 0 gives 

Rb X 12 - 4000 X 6 - 6000 X 8 = 0; 

Fig. 152. 

Therefore 
Rb = 6000 lb. 
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2Mb = 0 gives 

Ro X 12 - 4000 X 6 - 6000 X 4 = 0; 
or 

= 4000 lb. 

As a check see if 2Fy = 0. 6000 + 4000 — 4000 — 6000 = 0. 
116. Internal or Resisting Moment.—A loaded beam tends to 

bend more or less. If the beam is slender, the bending is quite 
noticeable. If the beam is stiff and short, the bending is not 
perceptible to the naked eye but may be detected by means of 
delicate measuring devices. 

In the beam of Fig. 154 (shown as rectangular for convenience), 
CE and GI are two sections a distance pn apart. Assume now 

/-I __ 
_If D' Jm 

^'2- >4-- 
! P n i 

6' 
G C 
Fig. 154. Fig. 155. 

that the beam is loaded (beam originally horizontal, loads 
and reactions vertical, Fig. 155). Experiments warrant the 
assumption that within the beam there is a surface pm, called 
the neutral surface, such that, when the beam is bent (Fig. 155), 
all fibers (as D'H') above the neutral surface are contracted and 
all fibers (as G'C') below the neutral surface are elongated; 
while fibers (such as pn) along the neutral surface are neither 
contracted nor elongated. That is, every fiber on the concave 
side of the neutral surface is subjected to an axial compressive 
stress and every fiber on the convex side is subjected to an axial 
tensile stress. 

Imagine the bent beam cut by the section CDE and take the 
part to the left of this section free, thus exposing the cross-section 
CDE (Fig. 156). Represent the normal force on an elementary 
area dA by dF. There is also a tangential force (shear) acting 
on this elementary area (as will be seen later), but for the present 
we are concerned only with the normal force. Note that the 
elementary area dA may be thought of as the end of a fiber 
(Fig. 156). Evidently, the force acting on an elementary area is 
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simply the action of the part to the right of the section CDE 
on the part to the left of this section. 

Consider now the normal forces dF acting on the elementary 
areas dA. Since all the fibers above the neutral surface pm are 
in compression, the normal forces on all the dA’s above the fine 
mn are compressive forces. In like manner, the normal forces 
on all the dA’s below the line mn are tensile forces. Since fibers 
along the neutral surface are neither in compression nor in 
tension, there are no normal forces acting on elementary areas 
along the line mn. Hence the line mn may be called the neutral 
axis of the section. 

The normal forces acting on the dA’s above the neutral axis, 
being all compressive, may be combined into a resultant 

—Qj = Q' 

<\ Mr=Qq 
—Q2=Q 

compressive force Qi (Fig. 156), and those below the neutral axis, 
being all tensile, may be combined into a resultant tensile force 
02. Since equilibrium exists, and since Qi and Q2 are the only 
horizontal forces acting on the part of the beam under considera¬ 
tion, it follows from 2FX = 0 that Qi = Q2 = Q. That is, Qi 
and Q2 constitute a stress-couple whose moment is 

Mr = Qq.* 
In general, the system of normal forces acting on a section of a 
beam subjected only to transverse loads is equivalent to a stress- 
couple. The moment of this stress-couple will be designated by 
Mr. For reasons that will appear later, the internal moment 
Mr acting on a section of a beam will be called the resisting 
moment. 

117. Internal or Resisting Shear.—Imagine the beam divided 
into two parts A and B by the section CD (Fig. 157). Owing 

* Since the beam is assumed to satisfy the conditions of Art. 112, the 

stress-couple QiQ2 lies in the plane of symmetry containing the loads and the 
reactions. 
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to the external forces acting on the beam, the two parts A and B 
tend to slide one on the other along their surface of contact CD. 
Hence shearing forces are induced on the elementary areas dA 
as indicated in Fig. 156. Since these shearing forces are all 
parallel and all lie in a plane (the plane of the section), they may 
be combined into a resultant. The resultant shear acting on a 
section of a beam will be designated by Fr and will be called the 
internal or resisting shear * 

Note.—It is assumed that the beam will not twist. If the beam 
is symmetrically loaded (force plane being a plane of symmetry 
of the section), the beam will not twist. 

118. Free Body Sketches.—Referring to Fig. 157, take A 
free (Fig. 158a). Note that the internal forces acting on the 
section CD are represented by a stress-couple (the resisting couple 

Fig. 157. Fig. 158. 

whose moment is Mr) and a vertical force (the resisting shear 
Fr). Hence, action and reaction being equal and opposite, 
if B is taken free (Fig. 1586), the Mr and Vr acting on B must be 
represented as equal and opposite to the Mr and Vr acting on A. 

Note.—It will be seen later that the resisting shear Vr and the 
resisting moment Mr acting on a section play very important 
roldl in the study of beams. It is necessary therefore to be able 
to determine the values of Fr and Mr at any section. The 
next article will show how this is done. 

119. Vertical Shear. Bending Moment.—Consider the beam 
shown in Fig. 159a. Imagine the section CD dividing the beam 
into two parts A and B. Take A free (Fig. 1596). Note that the 
internal forces acting on CD are represented by Fr, the resisting 
shear, and Mr, the resisting moment. 

Vertical Shear.—The external forces acting on A may be 
combined into a single force F, the resultant of R\, P\, and P2 

(Fig. 159c). That is, F = Ri — Pi — P2 equals the sum of the 
vertical forces acting to the left of the section CD. In like 

* Since the conditions of Art. 112 are assumed to hold, the internal or 
resisting shear Vr acting on a section lies in the plane of symmetry containing 
the loads and reactions. 
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manner, if B is taken free, V = R2 — Pz equals the sum of the 
vertical forces acting to the right of the section CD. 

It will be convenient to have a name for V, the resultant of the 
vertical* forces acting to one side of a section of a beam. It is 
due to V that part A tends to slide on part B along the surface 
CD. Accordingly, V is called the external or vertical shear for 

(or at) the section CD. Hence 
1^1 |^i 1^2 1^5 t ^2 the external or vertical shear 

I-Hi-^-1- is—h f°r (or at) a section is the result- 
H C || ant of all the vertical forces (loads 

C01) and reactions) that ad, on the 

.ai ._>j part of the beam that lies to one 

^_P2>P p] side of the section (to the left 
A of the section; or to the right 

| ^l|vr of the section). 
R,|- -\ Since equilibrium exists and 

^ since V and Vr are the only ver- 
1 tical forces acting on part A 

_\< b —•~>\\f (Fig. 159c), V and Vr must 
I A be equal in magnitude but 

(c) CVv opposite in direction. That 
Fig 159 is, if V and Vr are assumed 

to act in opposite directions, 
XFy = 0 gives 

V -Vr Vr = V. 
In general, the internal or resisting shear Vr on a section and 

the external or vertical shear V for that section are equal in magnitude 

but opposite in direction. If V acts up (if Ri > Pi + P2, Fig. 
159), Vr acts down; if V acts down, Vr acts up. 

Bending Moment.—Referring to Fig. 159c, note that V and 
Vn being equal in magnitude but opposite in direction, form a 
couple VVr. This couple tends to rotate the beam about the 
section CD and hence tends to bend the beam. The moment of 
this couple is called the external or bending moment at (or for) 
the section CD and will be designated by M. That is, by taking 
the center of moments on the section CD (in order to eliminate 
Vr), 

M = Vb. 

In Theoretical Mechanics it is shown that the moment of the 
resultant of a system of forces with respect to a point equals 
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the summation of moments (with respect to that point) of the 
forces of the system. Hence (Figs. 1596 and 159c) 

M = Vb = BiCi — Pi«i — P2a2. 

This leads to the following definition of the bending moment: 
The bending moment at (or for) a section of a beam is the algebraic 

sum of the moments (with respect to that section) of the external 

forces that lie to one side of that section. 
Since equilibrium exists, the external moment M and the 

internal moment Mr must be equal in magnitude but opposite in 
direction (Fig. 159c). That is, putting 2 moments = 0, 

M — Mr = 0 or Mr = M, 

In general, the internal or resisting moment Mr at a section 

and the external or bending moment M at that section are equal 

in magnitude but opposite in direction. 

Note.—It is important to remember that the internal forces 
acting on a section hold the external forces acting to one side of 
that section in equilibrium. That is, the internal forces resist 
the external forces and therefore are called resisting forces. 

Example. Fig. 160.—It is required to find the resisting shear 
and the resisting moment at a section 4 ft. from the left end of 

the beam. 
The reactions are Ri = 3 tons and P2 = 3 tons. 
1. Considering forces to the left of the section, 

7 = 3 tons (up); 
M = 3 X 4 = 12 ft.-tons (clockwise). 

Therefore 

Vr = 3 tons (down) and Mr = 12 ft.-tons (counterclockwise). 

2. Considering forces to the right of the section, 

7 = 3 — 6= —3; or 7 = 3 tons (down). 
M = 3 X 8 — 6X2 = 12 ft.-tons (counterclockwise). 
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Therefore 

Vr = 3 tons (up), and Mr = 12 ft.-tons (clockwise). 

Note.—In general, the resisting shear Vr and the resisting 
moment Mr at a section are determined as soon as the vertical 
shear V and the bending moment M at that section are deter¬ 
mined. The remaining articles of this chapter are concerned 
mainly with the vertical shear and the bending moment at 

various sections of beams. 
120. Sign of Bending Moment.—To be consistent, it is neces¬ 

sary to agree upon the algebraic sign to be given a bending 

R~ 10 forts 

-7. 

R2a IS forts 

) tyncav/fyI 
K-J'44 

Pf 5 forts 

Fig. 161. 

moment. A bending moment at a section will be considered 
positive (+) if at that section the concavity of the beam is 
above the beam, and negative (—) if the concavity is below the 
beam. Thus (Fig. 161) the bending moment at C is positive 
(concavity above), and at E it is negative (concavity below). 
It should be noted that a positive bending moment produces 
compression in the upper fibers and tension in the lower, and 
that a negative bending moment produces tension in the upper 
fibers and compression in the lower. So the sign of a bending 
moment will be consistent if the following rule is adopted: 

Rule of Sign.—If the forces to the left of the section are used, 
take clockwise as positive; if the forces to the right are used, 

Fig. 162. 

take counterclockwise as positive. In Fig. 162, if the forces to 
the left of the section C are used to find Mc (the bending moment 
at C), consider the moment of Ri as positive and the moment of 

Pi as negative; if the forces to the right of C are used, consider 
the moment of R2 as positive and that of P2 as negative. 
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Sometimes it is more convenient to state the rule as follows: 
Whether the forces to the left of a section or the forces to the right 

of the section are used, always take the moment of an upward force 

as positive (+) and the moment of a downward force as negative ( —). 
Illustration. Fig. 161.—The bending moment at the section 

C is, using forces to the left of the section, 

Me = 10 X 4 = +40 ft.-tons. 

Using forces to the right of the section, 

Mc = 15 X 8 - 20 X 1 - 5 X 12 = 40 ft.-tons. 

The bending moment at E is, using forces to the left of the 
section, 

Me = 10 X 13 - 20 X 8 + 15 X 1 = -15 ft.-tons. 

Using forces to the right of the section, 

Me = —(5X3) = —15 ft.-tons. 

121.—In the foregoing articles, it was shown that, if the part 
of a beam to one side of a section is considered, the internal 
forces acting on that section may be replaced by a resisting 
shear VT and a resisting moment Mr (Fig. 158). It was also 
shown that Vr is equal in magnitude but opposite in sign to the 
sum of the vertical forces acting on the part of the beam under 

consideration, and that Mr is equal in magnitude but opposite in 
sign to the sum of the moments of these external forces with 
respect to the given section. These conclusions are easily verified 
experimentally in a particular beam. 

Take a board (say 2 ft. by 2 in. by 1 in.). To one end nail a narrow strip 
AB as shown (Fig. 163). At A and B (say 12 in. apart) make small holes 
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sufficiently large for a thin strong cord to go through. In front of a large 

drawing board, set up the cantilever beam as shown. Let G equal the weight 

of beam, the center of gravity of the beam being a distance a from the line 

AB. (The center of gravity may be found experimentally by balancing.) 

Hang a weight (P) as shown, a distance b from AB. Now adjust the 

weights W and Q until the beam hangs freely in a horizontal position. It 

will be found that W = G + P. 

Also 

That is, 

Qq = Pb + Ga. 

Mr = M. 

PROBLEMS 

93. A simple beam of length L rests on end supports and carries a central 

concentrated load P. Determine the reactions of the supports. Find the 

expression for the moment under the load. Ans. Moment = PL/4. 

94. If in Problem 93 the load is moved to a point L/10 from the center, find 

the reactions; also the moment under the load. 

Ans. Reactions, 0.4P and 0.6P; M — 0.24PL. 
Compare results with those of Problem 93. 

96. A simple beam on end supports is 16 ft. long. It carries a concentrated 

load of 6 tons 4 ft. from the left end, and a concentrated load of 4 tons 6 ft. 

from the right end. It is required to find the reactions at the supports, 

and the vertical shear and the bending moment at a section 8 ft. from the 

left end. Ans. 6 tons, 4 tons; 0; 24 ft.-tons. 

96. Solve Problem 95 if, in addition to the loads there given, the beam 

carries a load of 12 tons uniformly distributed over its whole length. 

Ans. 12 tons, 10 tons; 0; 48 ft.-tons. 

97. A beam 16 ft. long is supported at the right end and at a point 4 ft. 

from the left end. At the left end a concentrated load of 1 ton acts. Begin¬ 

ning at the right support and extending to the left over a length of 8 ft. there 

is a uniformly distributed load of 8 tons. Required to find (a) reactions; 

(6) shear at a section just to the left of the left support, just to the right 

of the left support; (c) bending moment at a section 6 ft. from the left sup¬ 

port; 4 ft. from the left support. 

Ans. (a) 4 tons, 5 tons; (6) 1 ton, 3 tons; (c) 12 ft.-tons, 8 ft.-tons. 

98. A simple beam of length L rests on end supports. Beginning at the 

left support and extending over two-thirds of the length of the beam, there 

is a uniformly distributed load W (total). Find the reactions. Find also 

the moment at a section %L from the left support. 

Ans. \W, W,&WL. 

SHEAR AND MOMENT DIAGRAMS 

122. The shear diagram for a beam is a figure whose ordinates 
measured from a base line represent to some convenient scale 
the vertical shears for the corresponding sections in the beam. 
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For instance, Fig. 1646 is the shear diagram for the beam shown 
in Fig. 164a. That is, an ordinate such as DDf represents to some 
scale the algebraic sum of all the external forces (loads and 
reactions) that lie to the left of the corresponding point D in 
the beam. In determining the vertical shear at a section, the 

<C> Moment Dic^ram 

Fig. 164. 

forces that lie to the left of the section are used as a rule. Thus 
the vertical shear at the section D is 

VD = 7 - 5 = +2 tons. 

The shear diagram often plays a very important part in the 
solution of beam problems. The construction of the shear 

diagram, therefore, should be clearly understood. 
Consider the beam shown in Fig. 164a. The reactions are 

determined in the usual way; Ri = 7 tons, and R2 = 6 tons. 
At any point in the beam between 0 and C, the vertical shear is 

Voc = Ri = 7 tons. 
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Hence the shear diagram between 0 and C [i.e., OfCf (Fig. 164 6)] 

is a horizontal straight line 7 units above the base line OB. 

At any point in the beam between C and Dy the shear is 

Vcd = R\—P = 7 — 5 = 2 tons. 

Hence between C and D the shear diagram is a horizontal straight 
line 2 units above the base line OB. 

To find the shape of the shear diagram between D and B 

it will be convenient to determine the shear equation for the 
part DB of the beam. Let x equal the distance of the section E 

from some convenient point (say D) in the beam, and let Vx 

equal the vertical shear at the section E. Between D and B 

the load is uniformly distributed at the rate of w = 0.8 ton 
per running foot. Therefore the total load between D and E 

is wx = (0.8)x. The vertical shear at E is 

Vx = Ri — P — wx — 7 — 5 — 0.8*. 
Or 

V x = 2 — 0.8*. (a) 

Equation (a) is the equation of a straight line with the point 
D as the origin. [If y is put for Vx, Eq. (a) becomes y = 2 — 0.8*, 
the equation of a straight line.] Hence, between D and B, the 
shear diagram D'B' is a sloping straight line, the shear decreas¬ 
ing at the constant rate oiw(= 0.8) ton per running foot. 

By putting x = 0 in Eq. (a), VD = 2 tons as found before; by 
putting * = 10, VB = —6 tons. Hence the shear diagram for 
the part DB is conveniently constructed by laying off the ordi¬ 
nates DD' and BB' and then joining D' and Bf by the straight 
line D'B’. 

Note.—An examination of the shear diagram of Fig. 1646 leads 
to the following useful propositions: 
а. Neglecting the weight of the beam, the shear diagram is 

a horizontal straight line for any part of the beam that sustains 
no external forces. (Between 0 and (7, or between C and D, 
the shear diagram is a horizontal straight line.) 

б. Under a concentrated force (load or reaction), the shear 
abruptly changes, the change in the shear being equal to the 

force. Thus under the load P the shear diagram abruptly drops 
5 units. 

c. Under a uniformly distributed load, the shear diagram 
is a sloping straight line. 

123. The moment diagram for a beam is a figure whose 
ordinates measured from a base line represent the bending 
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moments at the corresponding sections in the beam. When 
determining the bending moment at a section, the rule of sign 
should be observed. Always consider the bending moment of 
an upward force as positive and that of a downward force as 
negative. 

Consider the beam of Fig. 164a. Between 0 and C, at a dis¬ 
tance x from 0, the bending moment is 

Mx = Rix = lx. 

This is the equation of a straight line, 0Cf in Fig. 164c, with 
the point 0 as origin. By putting x = 2 as one of the values 
of x, Me = 14 ft.-tons. Hence the ordinate at C should be 
drawn up from OB to represent 14 ft.-tons. 

Between C and D, at a distance x from C> 

Mx = Ri(2 + x) — Px = 7(2 + x) — 5x = 14 + 2x. 

This is the equation of a straight line with C as origin. By 
putting x = 3, Md = 20 ft.-tons. 

To determine the moment diagram under the uniformly dis¬ 
tributed load, consider a section E distant x from D. vox equals 
the resultant of the distributed load between D and E (Fig. 164a). 
x/2 equals the distance of this resultant from E. The moment 
of the distributed load between D and E with respect to the 
section E is 

v, x wx2 

wxX2 = ~2" 

The sum of the moments, with respect to E> of all the external 
forces to the left of E is therefore (E being a distance x fromD) 

Mx = fixC5 + x) - P(3 + x) - ~ 

= 7(5 + *) - 5(3 + x)~ ^■ 

Simplifying, 
Mx = 20 + 2x — OAx2. (a) 

Equation (a) is the equation of a parabola D'K'E'B (Fig. 164c) 
with D as the origin. Hence the moment diagram under the 

uniformly distributed load is a parabola. * 

* If y be put for Mx the equation takes the form y = 20 4* 2s — 0.4x2. 

Since this equation is of the first degree in y and of the second degree in x, 

the equation is that of a parabola. Moreover, it can be shown that its axis 

of symmetry is vertical. 
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Note.—An examination of the moment diagram of Fig. 164c 
leads to the following useful propositions: 

a'. If the weight of the beam is neglected, the moment diagram 
is a straight line (usually sloping), for any part of the beam that 
sustains no external forces. (OC' and C'D' are straight lines.) 

bf. Under a concentrated force (load or reaction), the slope 
of the moment diagram makes an abrupt change. Thus at Cf 

the slope changes from that of OC to that of C'D'. Expressed 
in another way, the moment diagram is a smooth curve except 
under concentrated forces. 

c'. Under a uniformly distributed load (acting downward) 
the moment diagram is a parabola with the concavity below. 

124. Relation between Shear and Moment.—An important 
theorem will now be developed. Let V equal the vertical shear 
at a section C in a beam loaded and supported in any manner. 

.V 

1 1W Per unit Ienatf\ 1 

1 L C| k-~ b ~»i 

-
 X

 

_
v

 J fp 
M 

Fig. 165. 

The vertical shear is defined as the resultant of all the external 
vertical forces (loads and reactions) acting (say) to the left of a 
section. Hence the vertical forces to the left of the section C 
may be replaced by their resultant 7, as is shown in Fig. 165. 
Assume that V acts at a distance b from the section C. The 
bending moment at C is therefore 

M = Vb. (a) 

Let C be a section tb the right of C and distant Ax from C. 
As we go from C to C', the bending moment increases by an 
amount AM. Hence the bending moment at C' is 

M' = M + AM = V(b + Ax) - (fe) 
It 

the last term being the moment with respect to the section C of 
the distributed load (if any) lying between C and C. 

Subtracting Eq. (u) from Eq. (6), member from member, 

am = VAx - ^M-2. 
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Dividing through by Ax, 

AM _ v wAx 

~Ax ~ V 2~ (<0 

Assume now that C* approaches coincidence with C. 

in the limit as Ax = 0, Eq. (c) becomes 

dM _ 
' dx V- 

That is, 

(1) 

Expressed in words: the value of dM/dx for any given point in 

the beam equals the vertical shear at that point. 

J \R\ R2, r w* w l 
1 II II II Ml 1 IT 

m 
ZM IS::.-:-* 

> 

— x ---> 

'Pi 

c 
> 

,p2 
Fig. 166. ' 

Illustration.—Consider the particular case given in Fig. 166. 
The vertical shear at C is 

V = Ri — Pi — wx. (id) 

The bending moment at C is 

M = RiX — Pi(x — a) — 

Differentiating with respect to x, 

dM D D , v 
-3— = Ri — Pi — wx. {e) 
ax 

Comparing Eqs. (d) and (e)y it is seen that dM/dx = V. 

Note.—Equation 1, dM/dx = V, has an interesting geometric 
meaning. 

Let A' be a point on a moment curve (Fig. 167). To find the 

slope of the curve at Af proceed as follows: Let Bf be a near 

point on the curve. Since the ordinate A A' = M equals the 

bending moment at the corresponding point A in the beam, 

the ordinate BB' = M + AM. Consider the triangle A’B'C. 

The slope of the secant A'B' is AM/Ax — tan 6. In the limit, 
as Br approaches coincidence with A', i.e., as Ax = 0, the secant 
Bf A' approaches coincidence with the geometric tangent at A'. 
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Hence in the limit as Ax = 0 we have 

= slope of curve at Af = tan a. 

The equation dM/dx = V may be interpreted therefore as 
meaning that the slope of the moment curve at any point of that 

curve is represented by the ordinate to the corresponding point in 

the shear curve. 
Illustration.—With reference to Fig. 164c, the slope of the 

moment curve at E' (i.e., tan a) is represented by the ordinate 
EEf of the shear diagram (Fig. 1646). 

125. Shear Area. Area of Shear Diagram.—With reference 
to Fig. 166, the shear diagram for particular values of Px, P2, 

and W will take the form shown in Fig. 168. If V equals the 
ordinate at C (equals vertical shear at the corresponding point 
in the beam), then dM/dx = V (Art. 124). Write this equation 
in the form 

dM = Vdx (a) 

and integrate between x = Xi and x — x2; i.e., integrate between 
the two points Ci and C2. The integration of Eq. (a) gives 

M2 — Mi — I Vdx = area of shear diagram between C1 and C2. 
Jxi 

Eq. (6). 

Hence, if C\ and C2 are two points in a beam, the increase (or 
the decrease) in the bending moment, going from C1 to C2, 
equals the area between the corresponding ordinates in the 
shear diagram. This theorem may be called the shear area 

theorem. 
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If the shear diagram is constructed from left to right, as is 
generally done, the integration in Eq. (b) should be performed 
from left to right in order to be consistent with the convention 
as to the sign of the bending moment (Art. 120). 

Important Note.—It is preferable to find the bending moment 
at a section in a beam by taking the summation of the moments 
of the external forces acting to one side of the section, always 
taking the moment of an upward force as positive (+). 

Illustration.—Referring to Fig. 164a, find the bending moments 
at Cy D, and K from the shear area. M0 = 0; 

Mc = 7 X 2 = 14 ft.-tons; 
MD = 7X2 + 2X3 = 20 ft.-tons, 

and 

Mk = 7X2 + 2X34- 2~y° = 22.5 ft.-tons. 

126. Sections of Maximum Bending Moment.—A bending 
moment is said to be a maximum if numerically (i.e., regardless 
of sign) this moment is larger than the moment at a near section 
to either side. In Fig. 169c, the moment diagram consists of a 
parabola Ok'B' and a straight line B'C. The diagram has two 
maximum ordinates—one at k and the other at B. Each of 
these ordinates is numerically larger than an ordinate near it 
on either side. Hence the largest moment in the beam is either 
at K or at B (Fig. 169a). 

The bending moment in a beam, numerically the largest, will 
be the true maximum moment and will be designated without 
regard to its sign by Mm. If, in the case illustrated 

MB = —15 ft.-tons and Mk = 14 ft.-tons, 
Mm = 15 ft.-tons. 

Referring to the moment diagram (Fig. 169c), note that at k' 

and at Bf the slope of the curve changes sign. That is, dM/dx 

passes through a zero value at k' and at B\ Just to the left 
of k'y dM/dx is positive (+); just to the right of k', it is negative 

(—■). Hence, at k\ dM/dx passes through the zero value. 
Since dM/dx = F, the shear passes through zero value at the 
corresponding point K in the beam. This means that the shear 
diagram must cross the base line at k (Fig. 1696). In like manner, 
just to the left of B' (Fig. 169c) dM/dx is negative; just to the right 
of B' it is positive. That is, the slope of the moment diagram 
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abruptly changes sign at 5', and therefore the shear abruptly 
passes through zero value at the corresponding point in the beam. 
Hence the shear diagram must cross the base line at B. This 
leads to the following very important theorem, true regardless 

of the type of loading: 
At sections where the moment is numerically a maximum, the 

shear passes through the zero value. 

This suggests the following procedure for the determination 
of the location and amount of the maximum moment Mm in a 

beam: 
Construct the shear diagram and locate the points where the 

shear diagram crosses the base line. Calculate the bending moment 
at each corresponding section in the beam and compare results to 
select the largest bending moment Mm. 

Illustration. Fig. 1696.—Having located the points K and B 
from the shear diagram, calculate MK and MB, the larger in 
numerical value being Mm. 
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Note.—By referring to Fig. 169c, it is seen that at kf the curve 
is smooth and the tangent is horizontal. That is, at k' 

The ordinate kk' is therefore a “ calculus maximum/' At B', 
however, the curve is not smooth and dM/dx does not equal zero 
but abruptly passes through zero, as is indicated in the shear 
diagram. 

127. Location of Sections Where the Shear Passes through 
Zero.—It will be shown in the next chapter that, if a prismatic 
beam (a beam of constant cross-section) fails in bending, it will 
fail at the section where the bending moment is a maximum. 
The section of maximum bending moment is therefore the 
critical or dangerous section in a prismatic beam (not necessarily 
in other shapes of beams). 

If a prismatic beam is to be selected to carry a given loading, 
or if a load is to be found that a given beam can carry, the 
maximum bending moment must be computed. To do so, it is 
first of all necessary to locate the section where the bending 
moment is a maximum. This is conveniently done by locating 

the section or sections where the shear passes through the zero 

value. 
Referring to the shear diagram of Fig. 1696, note that the point 

B is readily located. That is, B is directly under the reaction 
R2. The point k, however, cannot be determined by inspection. 
To locate k proceed as follows: Let x equal distance of k from 
some convenient point, as 0. Now Vie, the shear at k, must be 

zero. That is, 
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Vh = Ri — wx = 0. 

Therefore 

Illustration.—Figure 170 in part is a repetition of Fig. 164. 
It is required to locate the section K in the beam where the 

shear passes through the zero value. If x equals distance of K 

from the point D} 

VK = 7 - 5 - 0.8x = 0. 

Solving for x, 
x = 2.5 ft. 

Therefore, the moment will be a maximum 2.5 ft. to the right of D. 
Note.—Since the vertical shear at D is known, having been 

found when constructing the shear diagram, the shear at K may 
be written directly as 7* = V — wx = 2 — 0.8x. 

128. Cantilever Beam.—For the cantilever beam shown in 
Fig. 171a, the shear at any section between 0 and B is V = —P. 
The shear diagram between 0 and B is therefore a straight 
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horizontal line P units below the base line OB (Fig. 1716). The 
moment at a section between 0 and B is M = —Px. Hence 
the moment* diagram is a sloping straight line OB' with 

BB' = -PL (Fig. 171c). 

It is not known just how the pressure of the wall is distributed 
over the part BC—the part built into the wall. If it is assumed 
that the pressure is distributed as shown in Fig. 171a, it can be 
shown that the shear and moment diagrams for the part BC 
have somewhat the forms shown by the dotted lines in Figs. 1716 
and 171c, respectively. 

It is sufficient, as far as the beam is concerned, to construct 
the shear and the moment diagram only for that part of the 
cantilever which projects from the wall. Accordingly, the 
shear and the moment diagram for the cantilever are given by 
Figs. 171d and 171c, respectively. 

129. Shear and Moment under a Concentrated Load.—A 
concentrated load is a load distributed over so small a length of 
the beam that for 'practical purposes this load may be thought of as 
acting at a point (the point of application of the resultant of the 
load). In reality, however, all loads are distributed. 

Consider the beam shown in Fig. 172a. Assume that the load 
is distributed uniformly over the length Ax. The shear diagram 
under the uniformly distributed load P is a sloping straight line 
(Fig. 1726), and the moment diagram is a parabola (Fig. 172c). 
If KK' is the maximum ordinate in the moment diagram, the 
tangent at K' is horizontal. Hence, at K', dM/dx = 0; i.e., 
KK' is a calculus maximum. 

For practical purposes, however, it will be found much more 
convenient to represent loads distributed over a small length of 
the beam as a load acting at a point, i.e., as a concentrated load, 
and to draw the shear and moment diagrams on this assumption 

(Fig. 173). 
Note.—When a load is represented as a concentrated load and 

the shear diagram drawn accordingly, it is meaningless to speak of 

the shear under the concentrated load. In Fig. 173, for instance, 

under the concentrated load P the shear abruptly changes from 
KK' to KK". It is necessary, therefore* to speak of the shear just 
to the left,, or just to the right of the load. In Fig. 1736, KK' is the 
shear just to the left of K, and KK" is the shear just to the right 
of K. In this discussion, a reaction may be the load considered. 
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130. Examples.—When there is but one maximum moment 
in a beam, this moment is the largest moment. When there 
are two or more maximum moments, each maximum may be 
called a local maximum, and the largest of these local values 
(the largest moment in the beam) will be called the maximum 
moment. A similar statement holds for the maximum vertical 

shear in a beam. 
In each of the following examples it is required to construct 

the shear and moment diagrams, and to determine the maximum 
shear Vm and the maximum moment Mm. Note particularly 
the method of procedure used in these examples. This method 
is quite a general one and therefore should be carefully studied 
and clearly understood. 

The propositions given in the notes of Arts. 122 and 123 will 
be used. It is advisable to reread these notes before beginning 
the study of the examples that will now be given. 

Example I. Fig. 174.—Neglect the weight of the beam. 
1. Reactions.—These are found in the usual way. 

2Mo = 0; R2 X 15 - 3 X 12 - 5 X 7 - 3 X 3 = 0. 

Or 

R2 = 5.33 tons. 
= 0; Ri X 15 - 3 X 12 - 5 X 8 - 3 X 3 = 0. 

Or 
Ri = 5.67 tons. 

2. Shear Diagram.—The shear at any section between 0 and C 

is 
Voc = 5.67 tons. 
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At C, the shear drops 3 tons. 
Therefore 

Vcd = 5.67 — 3 = 2.67 tons. 

At Z>, the shear drops 5 tons. 
Therefore 

VDE = 2.67 — 5 = —2.33 tons. 

At E, the shear drops 3 tons. 
Therefore 

VEb= —2.33 — 3 = —5.33 tons, 

thus checking against the reaction R2. 

Fig. 174. 

Maximum Shear.—From the diagram it is seen that 7 is a 
maximum between 0 and C. That is, Vm = 5.67 tons. 

3. Maximum Moment.—Since the shear crosses the base line 
at Df the maximum moment occurs at D. Hence (Fig. 174a) 

Md = 5.67 X 7 - 3 X 4 = 27.69 ft.-tons = Mm. 

4. Moment Diagram.—Calculate the moment at every section 
where there is a concentrated load, i.e., at C, D, and E. The 
moment at D happens to be the maximum moment and has been 
found. 

Me = 5.67 X 3 = 17.0 ft.-tons. 
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Md = 27.67 ft.-tons. 
Me = 5.33 X 3 = 16.0 ft.-tons.* 

Plot these moments (Fig. 174c) and draw the straight lines OC', 
C'D', D'E', and E'B (Note a', Art. 123). 

Example II. Fig. 175.—Neglect the weight of the beam. 
1. Reactions: R\ = 5.89 tons. R2 = 6.61 tons. 
2. Shear Diagram.—Just to the right of 0, V = Ri = 5.89 tons. 
(Plot to some scale.) 
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Fig. 175. 

Just to the left of C, 

V = Ri — w X 5 = 5.89 — 0.5 X 5 = 3.39 tons. (Plot.) 

At C the shear drops 2 tons so that 
Just to the right of C, V — 1.39 tons. (Plot.) 

Just to the left of Z), V = 1.39 - 0.5 X 6 = -1.61. (Plot.) 
At D the shear drops 3 tons so that 

Just to the right of D, V = —4.61 tons. (Plot.) 

* In finding the moment at a section, either the moments of the forces 

acting on the portion of the beam extending to the left of the section or the 

moments of the forces acting on the portion of the beam extending to the 

right of the section may be used. In either case, the moment of a force 

acting upward is considered positive (Art. 120). 
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Just to the left of B, V = -4.61 - 0.5 X 4 = -6.61, thus 
checking against the reaction R2. 

Maximum shear occurs jlxst to the left of B and is (without 
regard to sign) Vm = 6.61 tons. 

3. Maximum Moment.—The shear diagram crosses the base line 
at K. 

To locate K, use the principle that, at K, V = 0 (Note, Art. 
127). 

VK = 1.39 - 0.5z = 0. 
Therefore 

x = 2.78' from C. 

The moment at K is (Fig. 175a) 

Mk = 5.89 X 7.78 - 2 X 2.78 - °,5(7'78)2 = 25.05 ft.-tons 

= Mm. 

4. Moment Diagram.—Calculate the moment at each section 
where there is a concentrated load, i.e., at C and at D. 

Me = 5.89 X 5 - --^5)-2 = 23.20 ft.-tons. 

o 
MD = 6.61 X 4 ---— = 22.44 ft.-tons. 

Plot the moments Mc and MD. Also plot MK = Mm. Draw 
the curves OC', C'D', and D'B. These curves represent different 
parabolas (Note c', Art. 123). 

Note.—As a rule, it will suffice to approximate the shape of 
these parabolas. In drawing the curve representing the parabola 
C'D', it should be remembered that K' is the highest point in 
this curve. Since in this case the moment curve at Kf is smooth, 
the tangent to the curve at K' should be horizontal. Note 
also that at C' and D' the moment curve is not smooth (Note 
6', Art. 123); i.e.} at Cr and Df the slope of the curve abruptly 

changes. 

Example in. Fig. 176.—The cantilever beam weighs 40 lb. 
per running foot and carries a concentrated load of 600 lb. as 

shown. Treat the weight of the beam as a uniformly distributed 
load. Verify all results given. 

1. Reactions.—There are no reactions to the left of B. 
2. Shear Diagram.—Fig. 1766: Vm = 10001b. 
3. Maximum Moment.—Fig. 176c: Mm = —5000 ft.-lb. 
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4. Moment Diagram- 

40 tos. per foot 
i a i' i i t i 

Shear diagram 

Jo_C 

Moment 
diagram 

Fig. 176. 

Maximum shear = V„ 
3. Maximum Moment: 

Mc = -500 ft.-lb. 
Mb = -5000 ft.-lb. 

Plot Mc and MB (Fig. 176c). 
Draw OC" and C'B' to represent 
parabolas. 

Example IV. Fig. 177.— 
Over-hanging beam. Neglect 
its own weight. Verify all 
results given. 

1. Reactions: Ri = 10 tons. 
R2 — 4: tons. 

2. Shear Diagram: V ao — —3 
tons. At 0, the shear jumps 
up 10 tons. Hence Voc = +7 
tons. At C, the shear drops 5 
tons. Hence Vcd = +2 tons. 
At Dj the shear begins to 
decrease at the rate of w = 0.6 
ton/ft. Hence, just to the left 
of By VB — 2 — 6 = —4 tons, 
thus checking against the re¬ 
action R2. 

— 7 tons. 

Mo = —3 X 5 = —15 ft.-tons. To 
locate K (Fig. 1776), put 7* = 0. VK = 2 — 0.6z = 0. Then 
x = 3.33 ft. from D or 6.67 ft. from B. To find Mk, it is simpler 
to use forces to the right of K. 

0.6(6.67)2 
Mk = 4 X 6.67 - 13.33 ft.-tons. 

Hence the largest moment occurs at 0 and is Mm = 15 ft.-tons. 
4. Moment Diagram. Fig. 177c. 

M0 = —15 ft.-tons. (Plot below base line.) 
Mc = -3 X 8 + 10 X 3 = 6 ft.-tons. 

Taking forces to the right of D, 

Md = 4X10 — 6X5 = 10 ft.-tons. 
Mk = 13.33 ft.-tons as found above. 

Draw AO', 0fC', and CfD' as straight lines, and D'K'B to 
represent a parabola with K! as its highest point. Note that at 
Df, there being no concentrated force at D, the moment curve is 
smooth. 
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PROBLEMS 

99. A beam 20 ft. long rests on end supports, 0 and B. The beam carries 

a uniformly distributed load of 12 tons and also a concentrated load of 5 tons 

at 4 ft. from B. Draw the shear and moment diagrams. Compute the 

maximum moment and the maximum shear. 

Ans. Mm = 40.8 ft.-tons; Vm = 10 tons. 
100. In Problem 99, an additional load of 4 tons is placed 5 ft. from O. 

Locate and find the maximum moment and the maximum shear. 

A ns. x = 10 ft. from 0; Mm = 50 ft.-tons; Vm = 11 tons. 

101. In Problem 99, move the support 0 4 ft. toward B. Solve as before. 

Ans. Mm = 28.8 ft.-tons; Vm = 8.25 tons. 

102. In Problem 101, place a load of 3 tons at the outer end of the over¬ 

hanging part. Solve as in Problem 99. 

Ans. Mm - 25.2 ft.-tons; Vm = 7.5 tons. 

103. In Example III (Fig. 176), an additional load of 800 lb. is placed at 

O. Solve. 

131. Uniformly Loaded B^am with Two Symmetrical Sup¬ 
ports. Fig. 178.—It is required to locate the position of the 



182 MECHANICS OF MATERIALS 

supports so that the maximum moment Mm is less than that for 
any other position of the supports. 

If a uniformly loaded beam rests on end supports (Fig. 179), the 
maximum moment occurs at 
the center and is 

W = wL 

and solve for x. 

M° = = °-125TrL- ^ 

Assume now that the supports 
are moved in, each by an 
amount x (Fig. 178). The 
moment at C is decreased and 
that at 0 (and B) is numerically 
increased. It should be noted 
that Mo and Mc are of opposite 
signs. 

Evidently, the supports will 
be most advantageously placed 
(as far as moment is concerned) 
if M0 and Me are numerically 
equal. Therefore, put 

wx2 _ wL(L __ \ _ wL2 

~2 2\2 X) IT 

x = 0.207L. (b) 

With this position of the supports, the moments at 0, C, and B 
are all numerically equal. 
Therefore 

M.-'St. , o.02X43ti»L* 
A A 

= 0.02143TFL. (c) 

By comparing Eqs. (a) and (c), it is seen that the maximum 
moment in a uniformly loaded beam with end supports is 5.83 
times the moment in the same beam with the supports placed 
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0.207L in from the ends. Note that 0.207L is a little more 
than \L. Hence it is advantageous to place the supports a 
little more than L/5 in from the ends. For a beam 15 ft. 
long, the maximum moment will be least if the supports are 
placed 3.11 ft. in from the ends. 

Note.—If the moments at 0 and C are equal in magnitude and 
sign, the supports must be together at the middle. 

Fig. 180. 

132. Beam on End Supports, Triangularly Loaded. Fig. 180. 
Let Wx equal load between 0 and C. From similar triangles 
OCCf and OBB' 

Wx _ 
W ~ L2 

Or 

Wx = YiW. (o) 

Reactions: 
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Therefore 

Shear diagram: 

and Ri 
W 
3 * 

x2W 
U ' (6) 

This is the equation of a parabola (Fig. 1806). 
Moment diagram: 

Mx 
W Wa 

= TX~~S~ 
Wx _ Wx* 
3 3 ir (c) 

This is the equation of a cubic (Fig. 180c). 
Maximum Moment.—To locate the position of maximum 

moment, put Vx = 0 [Eq. (6)], and solve for x. 

x = 0.577L. 
Vs 

(d) 

Substituting this value of x into Eq. (c), 

ilf m 

WL 

3 VS 
WL 

9VS 
2WL 

9 VS 
= 0.1282TPL. («) 

If the weight W were uniformly distributed (rectangular 
loading), the maximum moment would be Mm = 0.125WL. 
Hence, as far as moment is concerned, rectangular loading is 
less trying to a beam than triangular loading. 

Note.—If the beam is trapezoidally loaded (Fig. 181), it is 
convenient to resolve the loading into a rectangular and a tri¬ 
angular loading. 

Example.—A beam on end supports carries a trapezoidal brick 
wall (Fig. 181). The wall weighs 125 lb./cu. ft. The lower end 
of the wall (00') is 4 ft. high and the upper end (BB') is 10 ft. 
The beam is 12 ft. long and the wall is 1.5 ft. wide. Assuming 
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that the brick wall is not counted upon to help support the load, 
required the value of the maximum moment. 

Consider the trapezoid as a combination of a rectangle and a 
triangle in the side view. 

For the rectangular block of wall, 

r = 4 X 12 X 1.5 X 125 = 9000 lb. 

For the triangular block, 

A v lO 

W" = X 1.5 X 125 = 6750 lb. 

Reactions: 
2 Mo = 0; 

Or 

Shear: 

Ri X 12 - 9000 X 6 - 6750 X 8 = 0. 
Rt = 9000 lb., and Rv = 6750 lb. 

V. = Ry 
W'x _ W"x2 
L L2 

Putting Vx = 0, 

Simplifying, 

Solving for x, 

Maximum moment: 

Mm = RlX — 

9000a: 6750a:2 A 
6750 - -nr- = 0. 

x2 + 16a; - 144 = 0. 

x = 6.43 ft. 

W'x2 W"x3 
2L 3 L2 

Or, putting x — 6.43', 

Mm = 6750 X 6.43 - 

= 23,770 ft.-lb. 

9000(6.43)2 
2 X 12 

6750(6.43)* 
3 X 12* 

PROBLEMS 

. 104. Draw the shear and moment diagrams for the loaded beam shown in 
Fig. 182. Determine the maximum moment and the maximum shear. 

Am. Mn “ 6 ft.-tons; Vm = 2.25 tons. 
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106. On the beam of Problem 104, place an additional load of 4 tons uni¬ 

formly distributed between 0 and B. Find the maximum moment and the 

maximum shear. Ans. Mm = 12.07 ft.-tons; Vm = 4.25 tons. 

2 tons 

Fig. 182. 

106. The beam of Fig. 183 is supported at two points and is loaded as 

shown. Draw the shear and the moment diagram. Determine the maxi¬ 

mum moment and the maximum shear. 

Ans. Mm = 1.32Pa; Vm = 1.625P. 

W=3P 

3 oi 

Fig. 183. 

107. For a system of coplanar parallel forces, there are only two inde¬ 

pendent equations of condition for equilibrium. Referring to Fig. 184, take 

SMo = 0 and 2A/b = 0 and show that by combining these equations 

algebraically we may derive HF — 0 (see note, Art. 111). 

Suggestion.—Between SA/o — 0 and 2A/S = 0, eliminate L2. 

108. Referring to Fig. 184, show that, if Sil/o = 0 and 2A/b = 0, then 

necessarily SAfc = 0. Consequently, if we put 2Afo = 0 and XMB = 0, 

SAfc = 0 will not be an independent equation. 

Suggestion.—Eliminate Rc between the two equations SAfo = 0 and 

XMb = 0. 

Fig. 184. 

109. A beam is triangularly loaded (Fig. 180). Obtain the expression for 

Mx [see Eq. (c), Art. 132], and then use the differential calculus to prove that 

the position of the section of maximum moment is given by 

110. With reference to Fig. 185, find an expression for Af*. Then use the 

differential calculus to locate the section of maximum moment. 

Ans. x = 9.8 ft. 

111. In Problem 110, determine the value of the maximum moment and of 

the maximum shear. Ans. Mm = 47.6 ft.-tons; Vm — 12.5 tons. 
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112. A beam resting on two supports is 30 ft. long. The maximum 

moment which the beam can carry is 12 ft.-tons. What is the maximum 

uniformly distributed load that may be applied to the beam if the supports 

may be placed so as to require the smallest beam, t.e., to produce the least 

bending moment? Ans. 18.65 tons. 

113. What is the maximum load that the beam of Problem 112 can carry 

if the supports are placed at the ends? Ans. 3.2 tons. 

114. The 12-ft. beam supports the 9000-lb. triangular load. Compute 

sufficient data and draw the shear and moment diagrams. Vm = ?; Mm — ? 

Ans. Vm = 4500; Mm = 7425 ft.-lb. 

115. (Fig. 187) The 20-ft. beam supports the 12-ton triangular load. 

Compute sufficient data and draw the shear and moment diagrams. 

Vm — ?; Mm = ? Ans. Vm = 9 tons; Mm = 24 ft.-tons. 

116. Apply an additional, uniformly distributed load of 12 tons over the 

12 ft. of the beam of Problem 115. Solve. 

117. Apply an additional, concentrated load of 4 tons at a distance of 4 ft. 

from the right support to the beam of Problem 115. Solve. 



CHAPTER VII 

STRESSES IN BEAMS 

STRESSES DUE TO FLEXURE 

133. In Art. 116 it was seen that, if the part to the left (or to 

the right) of a section of a loaded beam is taken free, the normal 

stress acting on that section is equivalent to a stress-couple 

whose moment Mr is called the resisting moment on (or at) that 

section (Fig. 188). It is now desired to develop an expression for 

Mr such that, if Mr is known, the intensity of the normal stress 

at any given point in the section may be calculated. 

Fig. 188. 

Before developing the expression for Mr we shall restate what 

is meant by the neutral surface and the neutral axis. Figure 189 

represents the part of the beam to the left of the section BD so 

drawn as to expose the section BD to view. The section is 

represented as rectangular merely for convenience. The plane 

Ln is the neutral surface. Fibers along this surface are neither 

contracted nor elongated. The intersection of the neutral 

surface Ln and the section BD, i.e., the line nm, is the neutral 

axis of the section BD. Along this line there are no normal 

forces acting on the section. 

The intensity of the stress on an element of area dA, distant y 

from the neutral axis nm, will be designated by Sy, and that on an 

outer element, distant c from the neutral axis, will be designated 

by S, as is indicated in Fig. 189. The shearing stress acting on 

an elementary area is not shown in the figure. 

Note that an element of area dA may be thought of as the end 

of a slender horizontal prism, i.e., as the end of a fiber. 

188 
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134. Additional Assumptions.—In addition to the assump¬ 
tions made in Art. 112, it will be assumed that 

1. The elastic limit is not exceeded. 
2. Cross-sections (such as BD, Fig. 189) remain plane surfaces 

during bending. 
3. Ec = Et = E. That is, it will be assumed that the modulus 

of elasticity for compression may be taken equal to that for 
tension. 

4. Hooke’s law may be applied. That is, it will be assumed 
that the stress in a fiber is directly proportional to the strain 
(elongation or contraction) of that fiber. 

5. The beam acts as a single unit. That is, it will be assumed 
that within the elastic limit the deformation of the beam is one of 
bending of the beam as a whole and not one of twisting, local 
wrinkling, or buckling of any of its parts. If an I-beam is used, 
it will be assumed that within the elastic limit there will be no 
twisting of the beam, wrinkling of the web, buckling of the 
flange, etc. 

Assumptions 2, 3, and 4 are approximations. Experiments 
show, however, that these assumptions, when applied to materials 

commonly used for beams, are sufficiently exact for ordinary 
engineering purposes provided assumption 1 is satisfied—pro¬ 
vided the elastic limit is not exceeded. Assumption 5 requires 
special consideration and will be considered in a later chapter. 
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Referring to Fig. 189, note that the neutral axis nm is perpen¬ 
dicular to the plane of loading. Obviously, this will always be 
the case if the beam is symmetrically loaded. * 

135. Distribution of the Normal Stress on a Section of a Sym¬ 
metrically Loaded Beam.—Sections are assumed to remain plane 
surfaces during bending. Thus (Fig. 190) the straight lines 
BD and FG, originally parallel and at a distance Ax apart, 
represent two sections after bending (bending much exaggerated). 

Draw the straight line B'D' parallel to FG. If Xy equals the 
elongation (or contraction) of a fiber distant y from the neutral 
surface pn, and X equals the elongation (or contraction) of an 
outer fiber distant c from pn, then, from geometry, 

Hence the elongation (or contraction) of a fiber is directly propor¬ 
tional to the distance of this fiber from the neutral surface. 

Let Ax equal the original length of a fiber (all fibers originally 
of the same length) and let E equal the modulus of elasticity 
(assumed constant and the same for all fibers within the elastic 
limit). Treat a fiber as a prism in tension (or compression). 
Now, in Art. 53, it was shown that, if a prism of length L is 

subjected to a direct tension (or compression) of intensity Sf 
then within the elastic limit, 

SL 
Elongation of prism = • 

In the present case, the original length of a prism fiber is L = Arc. 

* For unsymmetrical loading, see Art. 154. 
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Accordingly, 

\y — and X-2=7“ • (6) 

Since Ee = Et =* E (by assumption), Eq. (6) will hold for two 
fibers on opposite sides of the neutral surface (one in tension and 
the other in compression). 

Dividing the first of the two equations [Eqs. (£>)] by the 
second, member by member, 

Ne Eq. (a)]. 

Or 

Sy = &L. (1) 

Hence within the elastic limit the intensity of the fiber stress at any 
point in a section is directly proportional to the distance of this 
point from the neutral axis of that section. 

Note.—As a rule, a vertical shear also acts on a section of a 
beam. It will be shown later (Art. 170) that the vertical shear 
in a beam has no appreciable effect upon the fiber stresses in 
that beam. 

Example.—At a given section of a steel beam the outermost 
fiber is c = 6 in. from the neutral axis. If at this section the 
stress in the outer fiber is S = 12,000 lb./sq. in., what is the stress 
in a fiber 4 in. from the neutral axis? 

S„ - Vs or St = \ X 12,000 = 8000 lb./sq. in. 
c o 

136. Stress Figure.—The distribution of the normal stress on 
a section of a beam is conveniently shown by a stress figure 
(Fig. 191), i.e.j by representing the intensity of stress at various 
distances from the neutral axis n. Since the intensity of stress 
at a point in the section BD is directly .proportional to the 

distance of this point from the neutral axis (provided the elastic 

limit is not exceeded), it follows that the stress figure consists of 

two similar triangles, one above and one below n. 

Note.—It is sometimes more convenient to draw the stress 
figure as shown in Fig. 192. 

137. Center of Gravity. Moment of Inertia.—The determina¬ 
tion of the intensity of the stress acting at a point on a section of a 
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beam involves those summations which as integral forms lead to 
the concepts of the center of gravity and moment of inertia 
of the section. It is assumed that the reader is familiar with 
the theory of the center of gravity and of the moment of inertia 

of plane figures. 

BA B 

Fig. 191. Fig. 192. 

Center of Gravity.—Given a plane figure (a section, say, Fig. 
193). Take the line X as an axis of reference. If dA is an ele¬ 
ment of area distant y from the axis X, then the position of the 
center of gravity of the whole area is determined by the equation 

Ay = fydA (2) 

where A = total area of figure. 
y = distance of its center of gravity from the axis X. 

Fig. 193. Fid. 1£4. 

Moment of Inertia.—The moment of inertia of the plane figure 
Fig. 193) with respect to the axis X is defined as 

/* = $y2dA. (3) 

Note.—The moment of inertia frequently is written 

I = Ak2 (4) 

where k is called the radius of gyration of the section and is deter¬ 

mined from the equation k2 = I/A. 
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If Ig equals the moment of inertia of the area with respect to 
its own gravity axis, and d equals the distance of its gravity axis 
from the axis of reference X (X being parallel to the gravity 
axis g), 

Ix = Ig + Ad\ , r (5) 

Equation (5) is called the “parallel axis theorem.” 
Composite Area.—Frequently an area may be broken up into 

partial areas (Ah A2, Ah etc.) in such a way that the area and 
the center of gravity of each partial area may be readily deter¬ 
mined (Fig. 194). In such a case, the gravity axis N of the whole 
figure is located by the equation 

{Ai + A2 + • • • )y = Aiyi + A2y2 + • • • (6) 

where y\, y2, etc., are the distances of the centers of gravity of 
the respective partial areas from the axis of reference X. Equa¬ 
tion (6) may be written in the form 

(XA)y = Z(Ay). (7) 

In like manner, if Ig equals the moment of inertia of a partial 
area with respect to its own gravity axis <7, A equals the area of 
this part, and d equals the distance of its center of gravity from 
the axis of reference X, then 

lx = 2(1, + Ad*). (8) 

i h*.fj.»i 
—,CsJ I Flanae (2) • - -r-h 
* A • 1 

1 
1 

|n-t- ■ •- — —f-N 
v, 

i 1 (1) 
*3 

« ! 7T 
^ * 

- 
i * I 

j f Cvi 
1 

j i <0 1 
1 

__1_ D 
f 
7 <— 

Fig. 195. 

ygz 
i 
1 

f * 
1 

\ 
1 

Example. Fig. 195.—Taking B as the axis of reference, locate 
the gravity axis N of the section. Also find IN. Equation (6) 
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gives 

(iX4+4Xi)J = (JX4)X2 + (4Xi)X4J 

or 
4£ = 12.5 

Therefore 
y = 3.13 in. 

Take N as the axis of reference and use Eq. (8)*. 
Stem: 

* X * X 4s + (J X 4) X (3.13 - 2)2 = 5.23 

Flange: 

* X 4 X (i)3 +(4X|)X (4.25 - 3.13)2 = 2.55 

Therefore 
IN = 7.78 in.4 

Note.—When a figure is considered as a composite figure, it is 
convenient to designate the neutral axis (gravity axis) of the 

Fig. 196. 

entire figure by N. If the fig¬ 
ure is considered as a single 
unit, the neutral axis will be 
designated as the g • • • g axis. 

Problem 118.—Compute the mo¬ 
ment of inertia 7v of the section of 
an 14-in. 87-lb. beam. 

Ans. I = 966.9 in.4 

Note.—In the Appendix, a table 
will be found giving the properties 

of W sections. 

138. Neutral Axis Is a Gravity Axis.—Figure 196 is a repetition 
of Fig. 189 and represents as a free body that part of a loaded 
beam that lies to the left of the section BD. The shearing 
stresses on the section BD are not represented. 

Let S equal the intensity of stress on an outer element distant c 
from the neutral axis nm, and let Sy equal the intensity of stress on 
an element distant y from nrrt. By assuming now that the 
assumptions of Art. 134 are satisfied and that therefore the 

intensity of stress on an element of area is directly proportional to 
the distance of this area from the neutral axis, it follows that 

* The moment of inertia of a rectangle of width b and height h with respect 

to its gravity axis (parallel to b) is Ig = &bhz. Note that Ig is of the fourth 
dimension. 
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Su = ^ [feq. (1), Art. 135]. 

Therefore 
Intensity of stress on an element dA distant y from the 

neutral axis = — 
c 

S 
Normal force acting on this element = -ydA, 

s r 
Total normal force acting on the section BD = - I yd A. 

Or, since JydA = Ay [Eq. (2), Art. 137], 
s 

Total normal force acting on the section BD = -Ay, 

where A = area of section. 
y = distance of the center of gravity of the section from 

the neutral axis. 
The normal force acting on BD is the only horizontal force 

acting on the part of the beam under consideration. Hence, 
since equilibrium exists (since 2Fx = 0), 

SA- n -Ay = 0. 

Now S, the stress in the outer fiber, is not zero; and A, the area 
of the section, is not zero. 
Therefore 

y = 0. 

That is, the center of gravity of the section lies in the neutral 
axis. Expressed in another way, the neutral axis is a gravity axis, 
provided the assumptions of Art. 134 are satisfied. 

139. Flexure Formula.—The resisting moment Mr acting on 
the section BD (Fig. 196) is simply the sum of the moments (with 
respect to the neutral axis mn) of the forces acting on the elemen¬ 
tary areas dA of that section. Since the shearing forces acting 
on the elementary areas of the section lie in the plane of that 

section and therefore have no lever arms with respect to the 

neutral axis in that section, these forces take no part in the sum¬ 

mation. Hence the normal forces acting on the elementary 
areas of the section alone are involved in the summation for the 
resting moment Mr on that section. With reference to Fig. 196, 

S 
Normal force acting on an element of area = -ydA. 

c 
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Moment of this force with respect*to mn = —y dAy = —yHA. 

2 Moments of the normal forces acting on the section = 

y2dA. 

Or, since fy2dA = I equals the moment of inertia of the section 
with respect to the neutral axis mny 

Mr = —• (a) 

In Art. 119, it was shown that M = Mr where M equals the 
bending moment at that section. Hence Eq. (a) becomes 

M - " (9) 
c 

Equation (9) is called the flexure formula.* 
The flexure formula is an important formula since it gives 

us a relation between M (the bending moment at a section) and S 
(the intensity of the stress this bend¬ 
ing moment induces in the outer fibers 
at that section). 

140. Outermost Fiber.—Note that 
the flexure formula [Eq. (9)] contains 
c, the distance of the outer fiber from 
the neutral axis. There are, however, 
two sets of outer fibers, one above 
and one below the neutral axis. When 
the neutral axis is not an axis of sym¬ 
metry, the two outer fibers are not 
equidistant from the neutral axis. 
Thus (Fig. 197) Ci does not equal c2. 

If the intensity of stress in the outer fibers at D is in question, 
c = if at By c = c2. That is, c equals distance from the 
neutral axis of the outer fiber under consideration. 

In this chapter we are concerned with the maximum intensity 
of the fiber stress at a section. Now the maximum intensity 
of the fiber stress at a section occurs in the fiber that is most 
remote from the neutral axis (at B in Fig. 197). Hence, unless a 
statement to the contrary is made, the outer fiber should be inter¬ 
preted to mean the outermost fiber. 

* “Flexure” means “pertaining to bending.” 

D 

B 
Fig. 197. 
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Example.—Referring to Fig. 197, let I, = 7.78 in.4 and 
C2 = 3.13 (see Fig. 195). Find the stress in the outermost fiber 
if M = 24,850 in.-lb. 

JT-" 
c 

24,850 = £ X 

S = 10,000 lb./sq. in. 

Given Ci = 1.37 in., find the stress in the outer fiber at D. 
Ans. S = 4370 lb./sq. in. 

141. Section Modulus.—The ratio I/c contained in the flexure 
formula M = SI/c, is called the section modulus of the beam and 

Or 

Therefore 

D 

B 

Fig. 198. 

r~~ 
j 

A" 
J 
| 

JC 
CM|ro / / \ \ i 

\ \ j 
9 y \ ® i \ 1 

/ \i 
L. .... b - —j 

Fig. 199. 

will be designated by Z. That is, 

c 

where I — moment of inertia with respect to the neutral axis 
(gravity axis). 

c = distance of the outermost fiber from the neutral axis 

of the section.* 

The section moduli of beams of various shapes and sizes may 

be computed and tabulated. Such a table will be found useful. 
For a rectangular or a circular section, the general expression for 

the section modulus should be remembered. 

* In some handbooks, the section modulus is designated by S. Since 

in this book S is used for fiber stress, the section modulus will be designated 

by Z. 
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Rectangular Section. Fig. 198.—With respect to the gravity 
axis gg 

Therefore 

I a = jTjM* and c = 

Z - - = 
c o 

Triangular Section. Fig. 199: 

Therefore 

/, = c = 

z = - = kbh*- c 24 

Fig. 200. 

B 
Fig. 201. 

Circular Section. Fig. 200: 

Therefore 

Ig = r7rr4 and c = r. 

7 1 1 3 
Z = — = T7rr3. 

e 4 

Section of a Hollow Cylinder. Fig. 201.—Let r equal outer 
radius, and ri equal inner radius. 

Therefore 

I0 = j(r4 — ri4) and c = r. 

Z = L ±=- (r4 - ri4) 
£ 4 r 

Note that c equals the outer radius and equals the distance of 
outermost fiber from the neutral axis (gravity axis gg). 
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Note.—The moment of inertia of a plane section is of the 
fourth dimension since the unit of length (usually the inch) is 
used four times in a product. Hence the section modulus is of 
the third dimension. For instance, if / = 300 in.4 and c = 6 in., 
then 

Example I.—The bending moment at a particular section in a 
rectangular wooden beam is M = 51,200 in.-lb. Dimensions of 
section, 6 in. by 8 in. Find intensity of stress in the outer fiber 
at this section. 

Or 

51,200 = S X i X 6 X 82. 
Therefore 

S = 800 lb./sq. in. 

Example II.—Referring to Fig. 174, find the intensity of stress 
in the outer fibers at D due to the live load if the beam is an 
I-beam whose section modulus is I/c = 44.8 in.3 Also at C. 

Md = 27.67 ft.-tons = 27.67 X 2000 X 12 - 664,200 in.-lb. 

Therefore 

S X 44.8 = 664,200. 
Or 

S = 14,820 lb./sq. in. (at D). 

Mc = 17 ft.-tons = 408,000 in.-lb. 

Therefore 

Or 
S X 44.8 = 408,000. 

S. = 9100 lb./sq. in. (at C). 

Problem 119.—If 18,000 lb./sq. in. is the maximum allowable stress in an 

I-beam, find the maximum bending moment a 20-in. I-beam can carry. 

Given I - 1169.5 in.4 Ans. M = 175,400 ft.-lb. 

142. Equation of Safe Loading. Prismatic Beam.—If the 
flexure formula 

(a) 
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is applied to a given beam under a given loading, it will be found 
that S, the stress in the outer fiber, will be different for different 
sections. The section where S is a maximum is called the danger¬ 
ous section. If the beam fails in flexure (bending), it will fail at 
the dangerous section. Hence it is important to be able to locate 
the dangerous section in a beam under a given loading 

In this chapter, prismatic beams are considered. In a pris¬ 
matic beam I and c are constants and therefore I/c is a constant. 
With I/c a constant, it follows from Eq. (a) that S is directly 
proportional to M and is a maximum when M is a maximum. 
That is, S is a maximum when M = Mm. Hence for a 'prismatic 
beam, the dangerous section is the section of maximum bending 
moment. 

Assume now that for a prismatic beam there is one unknown 
quantity. This unknown quantity may be a moment, a load, a 
span, the section modulus, or any one dimension of the beam. 
If this unknown quantity is to be determined so that S} the 
stress in the outer fiber at the dangerous section, is to reach its 
maximum allowable value S', then the equation 

= Mm (10) 

must be satisfied. ♦ Equation (10), therefore, may be called the 
equation of safe loading for a prismatic beam. 

Note.—Equation (10) frequently will be written SI/c = Mm> 
where S equals the allowable stress in the outer fiber. In this 
book, when ambiguity is likely to result, S' will be used to denote 
the allowable stress in the outer fiber. 

Example I. Safe Load at the Middle of a Simple Beam on 
End Supports. Fig. 202.—Construct the shear and moment 
diagrams in the usual way. The maximum moment occurs at 
C and is 

M 
= P L 

2 ‘2 
PL 
4 * 

Therefore the equation of safe loading is [Eq. (10)] 

S'l PL , . 
— = ~i— (a) c 4 

Illustration.—A wooden beam on end supports is to carry a 

central load of P = 2000 lb. The beam is 12 ft. long and 4 in. 
wide. The safe fiber stress is given as S' = 1200 lb./sq. in. 
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Required to find the minimum safe height of the beam. 

^ bh2 = i X 4 X h2 = (see Art. 141). 

Mm = ^ = ?°0QX 12 = 6000 ft.-lb. = 72,000 in.-lb. 
4 4 

Therefore [Eq. (10)], 

1200 X \h2 = 72,000 or h = 9.49 in. 

Example II. Safe Load Uniformly Distributed over a Simple 
Beam on End Supports. Fig. 203.—Construct the shear and 
moment diagrams. The maximum moment occurs at C and is 

M L wL y L - wU - WL 
Mm 2*2 2X4 8 8* 

Therefore equation of safe loading is [Eq. (10)] 

S'l wL2 WL 1 ... 
T = “T = "r' (6) 

Illustration.—A round bar of steel, 2 in. in diameter, rests 

horizontally on end supports. Required the maximum length L 
this bar may have if, due to its own weight, the fiber stress is not 
to exceed 20,000 lb./sq. in. Steel weighs 490 lb./cu, ft. 

7T X l2 
w = weight per running foot = —X 1 X 490 = 10.68 lb. 

per foot of length. 
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Mm = |u>Ls - 10'g8I/2 = 1.335L2 ft.-lb. (L in feet). 

= 16.02L2 in.-lb. 

I = 1*t» = 0.786 in.3 (Art. 141). 

Therefore [Eq. (10)] 

20,000 X 0.786 = 16.02L2 or L = 31.3 ft. 

Example III. Safe Load on End of Cantilever. Fig. 204.— 
Construct shear and moment diagrams. Maximum moment 
occurs at B and is 

Mm = PL. 

Therefore equation of safe loading is 

— = PL. (c) 
c v 1 

Illustration.—A hollow iron pipe, one end of which is built 
into a wall, extends 6 ft. out from the wall. Outer radius of 

Moment Diagram 

Fig. 204. 

W= WL , , , , , y,„ mil urn m in ii mi vM. 
io 
1 
1 
1 

i 
i 

Shear Di agram 

wL*W 

1 
1 
1 

Moment Diagram 

Fig. 205. 

¥ 

pipe is r = 2 in., and inner radius is ri = 1.75 in. With the 
weight of the pipe neglected, what weight may be hung from the 
free end if the fiber stress is not to exceed S' = 9000 lb./sq. in. ? 

Mn = PL = P X 6 ft.-lb. = 72P in.-lb. 
II (r4 - ri) 1 (24 - 1.754) 
c 4" r 4* 2 

2.605.* 

* When a slide rule is used to evaluate an expression of the form o* — b\ 
or of the form o‘ — 64, proceed as follows: 

o* — 6* = (a + b) (a — b) = product of two numbers. 

a* — b* — (a1 -1- 6*) (a + 6) (a — 6) = product of three numbers. 
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Therefore [Eq. (10)] 

9000 X 2.605 = 72P or P = 326 lb. 

Example IV. 
Fig. 205. 

Safe Load Uniformly Distributed over Cantilever. 

Mm = 
WL 
2 

wL2 
~2~ 

Therefore equation of safe loading is 

57 WL wL2 
c 2 2 ' 

(d) 

Illustration.—An iron bar, one end of which is built into a 
wall, extends 6 ft. out from the wall. The bar has a triangular 
section (6 = 3 in., h = 4 in.). What uniformly distributed 
load can this cantilever safely carry if S' = 18,000 lb./sq. in.? 

Mm = 

7 
c 

W X 6 WL 
2 2 

sP - k 
ft.-lb. = 36W in.-lb. 

X 3 X 4! = 2 in.® 

Therefore [Eq. (10)] 

18,000 X 2 = 36W or W = 1000 lb. 

Steel weighs 490 lb./cu. ft. The weight of the bar equals 

^ X X 6 X 490 = 122.5 lb. 
2 144 

Hence, in addition to its own weight, the bar can carry 

1000 - 122.5, 

or 877.5, lb. uniformly distributed. 

PROBLEMS 

120. A rectangular wooden beam on end supports is to carry a central load 

of P = 2400 lb. The beam is to be 12 in. high and 20 ft. long. S = 1000 

lb./sq. in. Required to find the width of the beam. Arts. b =* 6 in. 

121. In addition to the load given in Problem 120, the beam is to carry a 

load of W = 4800 lb. uniformly distributed over the whole beam. Required 

to find the width. Ans, b = 12 in. 

143. Resume of the Four Simple Cases.—The four simple 
cases considered in Art. 142 arise frequently in one form or 
another. The following table should be carefully studied. 
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To complete the table the maximum deflection of each beam is 
given in the last column. Deflection will be considered later. 

Beam 
Maximum 
moment 

Equation 
of safe 
loading 

Safe load Relative 
strength 

Maximum 
deflection 

(1) (2) (3) (4) (5) 

Cantilever 

P at end (Fig. 204) PL S’- = PL 
c L c 

1 
1 PL3 
3 El 

W uniformly dis¬ 
tributed (Fig. 205) 

WL 
2 

«,/ WL 
Sc= — W =2j-~ L c 

2 
1 WL3 
8 El 

Beam on 

P at middle (Fig. 
202) 

PL 
4 

V,I PL 
SC = T 

P — 
L c 

4 
1 PL3 

48 El 

end 
supports 

; 

W uniformly dis¬ 
tributed (Fig. 203) 

WL 
8 

„,I WL 
Sc~~T 

0S’I 
^ = 8rc 

8 
5 WL® 

384 El 

In the fourth column, the relative strength of the beam is 
given. For instance, if a beam is used as a cantilever and the 
safe end load is P = 2 tons, then this same beam if resting on 
end supports can safely carry a uniformly distributed load of 

W = 8 X 2 = 16 tons. 
Note.—Column 3 gives the safe load the beam can carry on 

the assumption that flexure governs. Shear will be considered 

later. 
144. Moment Diagram as a Stress Diagram.—For a prismatic 

beam, S, the stress in the outer fiber at a section, is proportional 
to M, the bending moment at that section (Art. 142). Accord¬ 
ingly, the moment diagram for a loaded prismatic beam serves 
also as a fiber stress diagram. This interpretation makes the 
moment diagram useful, since the moment diagram considered 
as a stress diagram shows how the stress in the outer fiber of a 
prismatic beam varies from section to section. For instance 
(Fig. 204), the moment diagram shows that the fiber stress in a 
prismatic cantilever carrying an end load increases uniformly 

from zero at 0 to a maximum at B. 
146. Economical Section.—Let it be required to select a pris¬ 

matic beam to carry a given system of loads. Assume for the 

present that flexure governs. For the beam to be safe in flexure, 

the section modulus must not be less than that determined from 

the equation of safe loading S'I/c = Mm. That is, for safety, 

Mm 
S' 
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where Mm = maximum bending moment in the beam. 
S' = safe unit stress in the outermost fiber. 

Effect of Shape of Section.—The section modulus of a beam of 
a given sectional area depends upon the shape of the section. 
Figure 206 gives three sections of the same area. Note the 
difference in the values of the section modulus. In general, in 
so far as the strength of a beam depends upon the section mod¬ 
ulus, economy of material will result if the section is so shaped 
that the greater part of the area is as far from the neutral axis as 
practicable. 

Note.—Strength in flexure is not the only requirement for a 
beam. The beam must have the necessary strength in shear 

(a) (b) (c) 

Fig. 206. 

(shear will be considered later) and frequently must also have a 
certain degree of rigidity. In particular cases, special require¬ 
ments must be satisfied. If the section of a beam is so shaped 
that the beam meets all requirements as to strength, rigidity, 
etc., and at the same time contains as little material as practi¬ 
cable, the section is called an economical section. This assumes 
that the cost of the beam is proportional to the amount of 
material in that beam. 

Wooden beams are sawed to shape and are rectangular for the 
simple reason that it does not pay to shape them in any other 
way. Steel beams, however, are rolled to shape. By varying 
the shapes and the sizes of the rolls, many rolled sections 

become available (see Appendix). 
In practice, if a steel beam is to be used, I-beams usually are 

preferred. Or, if an I-beam is not suitable, a beam is “built up” 
of various shapes in such a way that the beam has the required 
section modulus and at the same time contains as little material 
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as is practicable. Figure 207 illustrates four built-up sections 
commonly used. 

Stock or Commercial Sizes.—A beam made to order will cost 
more, as a rule, than one that can be ordered from stock, even 
though the stock size contains a little more material than theoreti¬ 
cally required. Hence, when a beam is selected, it will be 
economical to use the nearest stock size available. 

Built- up Sections 

Fig. 207. 

146. Wooden Beams, Commercial Sizes.—The following table 
gives the commercial sizes adopted by the Southern Pine Associa¬ 
tion. 

Nominal Dimensions* 

Height, in. Width, in. 

4 2,4 

6, 8, 10, 12, 14, 16, 18 2, 2J, 3, 4, 6, 8, 10, 12, 14, 16, 18 

* The actual dimensions of dressed beams are slightly smaller. For instance, an 8- by 
12-in. beam when dressed is 7J by 11J in. 

Accordingly, a 4- by 7-in. beam is not a commercial size. Such 
a beam will cost more, as a rule, than a 4- by 8-in. beam. 

Example.—A rectangular wooden beam on end supports is 
12 ft. long and is to carry a uniformly distributed load of 

W = 4 tons. 

The safe fiber stress is S' = 1200 lb./sq. in. Determine the beam 
if h = 36. Then select a commercial size. 

The equation of safe loading is, since Mm = WL/8, 

or 
8 c 

(4 X 2000) X (12 X 12) 
8 

= 1200^. 
c 
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Therefore 

For a rectangular beam, 

= 120 in.3 

- = \bW (Art. 141). 
c o 

Or, since h — 36,. 

I/c = 163. Therefore 120 = fbz. Or b = 4.3 in. and 

h = 12.9 in. 

The nearest commercial size is either a 6- by 12-in. or a 4- by 
14-in. beam. 
For a 6- by 12-in. beam, 

- = l X 6 X 122 = 144 > 120. 
c o 

A = 72 sq. in. 

For a 4- by 14-in. beam, 

. - = h X 4 X 14* = 131 > 120. 
€ O 

A = 56 sq. in. 

Either beam has more than the required strength in flexure. 
The second beam, however, has the smaller sectional area A. 
It will be seen later that the second beam must be investigated 
for strength in shear. A 4- by 14-in. beam may cost more (on 
account of its height) than a 6- by 12-in. beam. If that is the 
case, a 6- by 12-in. beam is the economical beam. 

147. I-beams.—There are two types of I-beams rolled at 
present—the standard I-beam and the Wide Flange (YF) I-beam 
Figure 208a shows a standard I-beam, and Fig. 2086 a YF I-beam. 
The two beams shown are of the same height and weigh approxi¬ 
mately the same. Note that in the standard beam the flange 
tapers. In the W beam, this is not the case. Note also that 
the YF beam has a greater section modulus than the standard 
beam. As a rule, the YF beam is stronger in flexure (but weaker 

in shear) than a standard beam of the same height and 
weight. 

In the Appendix two tables are given, one for the standard 
and one for the YF I-beam. These tables give the properties 
of the various I-beams—dimensions of beam, weight per running 
foot, moment of inertia, section modulus, etc. Tables are also 
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given for standard channels and angles. If then a property of 
one of the rolled sections is required, the student is expected to 
consult the tables given in the Appendix, or a Steel Handbook. 

Standard beam WF- beam 
B8-40.8 lb. 12"-40 lb 

(a) (b) 

Fig. 208. 

Illustration.—A steel beam requires a section modulus of 
Z = 30 in.3 Select a standard I-beam. 

Consult the table for standard I-beams. In the column under 
Z (axis 1-1), the nearest section modulus above that required 
(above 30) is found to be 31.6. Hence a 10-in. 40-lb. beam is 
satisfactory. Note, however, that a 12-in. 31.8-lb. beam has a 
section modulus of 36. Since the 12-in. beam is lighter than the 
10-in. beam, the 12-in. beam is the more economical. 

Note.—When no special requirements are imposed, the lightest 
beam whose section modulus is above that required should be 
selected as a rule. 

Built-up Section 

Fig. 209. 

148. Built-up Section.—When a rolled beam is used, the 
properties of its section are obtained from tables. When a section 
is “built up,” the properties of the section must be calculated, 
the properties of the constituent parts (channels, I-beams, 
angles, etc.) being obtained from tables. This now will be 
illustrated. 
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Example. Fig. 209.—(1) The area of the section is 
Cover plate: 

20 X h =10 

Channels: 

2 X 14.64 = 29.28 
Therefore A = 39.28 sq. in. 

(2) Position of neutral axis. Take B as an axis and use the 
formula [Eq. (7), Art. 137]. 

(S A)y = 2 (Ay). 
Or 

39.28# = 10 X 15.21) + (2 X 14.64) X 7.5. 
Or 

y = 9.48 in. 

This locates the neutral axis. 
Therefore 

ci = 15.5 - 9.48 = 6.02 in. 
c2 = 9.48 in. = c. 

(3) Moment of inertia with respect to the gravity axis N 
[Eq. (8), Art. 137]. 
Cover plate: 

A x 20 X (i)3 + (20 x 4) x 57fp = 333.1 

Channels: 
2(401.4 + 14.64 X L982) = 917.6 

Therefore 
(4) Section modulus: 

1250.7 in.4 

„ I 1250.7 1qo. , 

Note.—If 18,000 lb./sq. in. is taken as the safe fiber stress, 
then the maximum moment this beam can safely carry is 

Mm = S- = 18,000 X 132 = 2,375,000 in.-lb. 
c 

DESIGN OF BEAMS FOR FLEXURAL STRENGTH 

149. Dead Load. Live Load.—The weight of the beam is a 
load that frequently must be considered when selecting a beam. 
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For convenience, the weight of the beam will be called the dead 
load, and the load or system qf loads placed on the beam (all 
loads except the dead load) will be called the live load. 

In some cases, the weight of the beam is so small when com¬ 
pared with the live load that it may be neglected. Moreover, 
it is seldom that a beam of standard or commercial size can be 
found whose strength is exactly that required to carry the live 
load. That is, it will be necessary, as a rule, to select a beam 
whose strength is slightly greater than that required to carry the 
live load. This excess strength often is more than sufficient to 
take care of the beanos own weight. An experienced designer 
usually knows when the weight of the beam should be given 
special consideration. 

160. Method of Procedure. Weight of Beam Neglected.— 
In Art. 130, it was shown how to find the maximum moment in a 
beam due to the live load. Assuming that this moment (now 
designated by Mi) has been found, we proceed as follows:* 

(5) SI/c = Mi. Or 
/ 
c 

Mi 
S 

= Zi = section modulus required to carry the live load. 

(6) Select a beam whose section modulus is equal to or pref¬ 
erably slightly larger than that required to carry the live load. 
That is, if Z equals section modulus of beam selected, then Z 
should be equal to or preferably slightly larger than Zi. 

Note 1.—If a wooden beam is to be selected, consult the table 
of Art. 146 for commercial sizes. If an I-beam is to be selected, 
consult the tables given in the Appendix. 

Note 2.—The unit stress usually is designated. If not, 
For structural steel use: 

S = 18,000 lb./sq. in. 

For wood use: 
S = 1200 lb./sq. in. 

Example I.—A standard I-beam is to be used to carry the load 

given in Example I of Art. 130. The maximum bending moment 
due to the live load was there found to be 

Mi = 27.69 ft.-tons = 27.69 X 2000 X 12 = 664,000 in.-lb. 

Neglect the weight of the beam. Take S = 18,000 lb./sq. in. 

* The complete analysis of a beam includes the analysis given in Art. 130. 
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(5) SI/c = 664,000. Or 

I _ 664,000 
c 18,000 ■= 

36.9 in.3 Zi 

where Zi = section modulus required to carry the live load. 
(6) By consulting the table (see Appendix), it will be found 

that the first standard beam whose section modulus is greater 
than 36.9 is a 12-in. 35-lb. beam whose I/c = 37.8. That is, 

Z = 37.8 = section modulus of beam selected. 

Note.—The beam selected has a section modulus 0.9 larger 
than that required to carry the live load. An experienced 
designer would know that this is sufficient to take care of the 
weight of the beam in this particular case. Therefore take a 
12-in. 35-lb. standard I-beam. 

Example II.—A rectangular wooden beam on end supports is 
8 ft. long and is to carry a central concentrated load of 

P = 2500 lb. 

Make the width of the beam not less than half its height. Take 
S = 1200 lb./sq. in. Neglect the weight of the beam. 

Maximum moment is 

Mi = \PL = \ X 2500 X 8 X 12 = 60,000 in.-lb. 

(5) SI/c = 60,000. 

I _ 60,000 
c 1200 

= 50 = Z i. 

Putting Zi = %bh2 (Art. 141) and b = A/2, 

50 = *A3. 
Therefore 

A = 8.43 in. and b = 4.22 in. 

Since the width of the beam is to be not less than half its height, 
the nearest commercial size is a 6- by 8-in. beam. 

(6) Try a 6- by 8-in. beam. 

Z = |6A2 = i X 6 X 82 - 64 > 50. 

That is, Z is greater than Z\. Therefore take a 6- by 8-in. beam. 

Problem 122.—A standard I-beam on end supports is to be used to carry a 
load of P = 20 tons. The beam is to be 16 ft. long and the load is to be 
placed 4 ft. from the left end. S = 18,000 lb./sq. in. Select a suitable 
beam of minimum heignt. A ns. 15-in. 60.8-lb. beam. 
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151. Weight of Beam Considered.—If the weight of the beam 
is to be considered, we may proceed as follows: 

Neglect the weight of the beam and determine Zi, the section* 
modulus required to carry the live load (Art. 150). 

As a first trial select a beam whose section modulus Z is a 
little larger than Zi. An experienced designer usually knows 
about how much allowance must be made in a particular case to 
take care of the beam’s own weight. 

Consider the weight of the trial beam as a uniformly distributed 
load superimposed upon the live load and determine Z', the 
section modulus required to carry both loads (dead and live load). 

If Z' (section modulus required to carry both the dead and the 
live load) is equal to or slightly less than Z (section modulus of 
trial beam), the beam is satisfactory. If not, make another 
trial. 

Illustration.—A standard I-beam, 30 ft. long, is to rest on end 
supports and is to carry a load of 64,000 lb. uniformly distributed 
over the beam. It is required to select the beam of minimum 
height. Its own weight is to be considered. Given 

S = 18,000 lb./sq. in. 

With the weight of the beam neglected, the maximum moment is 

Mi = \WL = | X 64,000 X (30 X 12) = 2,880,000 in.-lb. 

and the section modulus required to carry this moment is 

Mi _ 2,880,000 
S 18,000 

160 in.3 

As a first trial, select a 20-in. 100-lb. beam with section modulus 

Z = 164.8 in.3 

This beam weighs 100 X 30, or 3000, lb. Hence the total load 
this beam must carry is 67,000 lb. (uniformly distributed). 

The maximum bending moment due to both loads is 

M = \ X 67,000 X 30 X 12 = 3,015,000 in.-lb. 

and the section modulus required to carry both loads is 

7, _ 3,015,000 

18,000 
167.4 in.3 

Now Z' is greater than Z; i.e., 167.4 is greater than 164.8. Hence, 
the section modulus required to carry both^loads is greater than 
that of the beam selected. It is necessary, therefore, to select a 
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stronger beam. The next stronger beam is a 24-in. 79.9-lb. 
beam whose section modulus is 173.9 in.3 Since this beam 
weighs less than the first beam, it is not necessary to test it for 
its own weight. 

152. Weight of Beam. Simplified Method of Procedure.— 
Usually the weight of the beam is small when compared with the 
live load the beam is to carry. In such a case, when the weight 
of the beam is considered, the method of procedure often may be 
greatly simplified. 

Note 1.—When the weight of the beam is superimposed upon 
the live load, the position of the section of maximum moment due 

w to both loads (live and dead 

Fig. 210. Fig. 211. 

diagrams are combined (Fig. 210d), the shear diagram for the com¬ 
bined loads crosses the base line a little to the right of D and hence 
the dangerous section for the combined loads is at Dr. However, 
in all ordinary cases (weight of beam small when compared 
with the live load) no appreciable error will be made if it is 
assumed that D is the dangerous section due to the combined 
loads. It should be noted (Fig. 210e) that the ordinates to the 
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moment curve for a distributed load do not vary appreciably 
in the neighborhood of the maximum ordinate. That is, if the 
maximum ordinate due to both live and dead load is at Z>', 
then this ordinate does not differ appreciably from the ordinate 
at D (a neighboring point). 

If the shear diagram due to the live load alone crosses the base 
line under a concentrated load (Fig. 211), then, as a rule, the shear 
diagram due to both loads (live and dead load) also crosses the 
base line under the concentrated load. 

In general, with weight of beam small when compared with the 
live load (the usual case), the position of the section of maximum 
moment due to both live and dead load may be taken as that due to 
the live load alone. 

Note 2.—If Mi equals the bending moment at a given section 
due to the live load, and M2 equals the bending moment at that 
section due to the dead load, then M = Mi + M% equals the 
bending moment at that section due to both loads. The section 
modulus the beam must have at that section is 

Z' = ^ = 
M 
S 

Ml + M2 _ Ml , M2 _ 7 , ry 
--g- = ~r = Zi -f- z2 [a) 

where Zi = section modulus required at that section to carry the 
live load; 

Z2 = that required at that section to carry the dead load. 
With the results of Note 1 kept in mind, this suggests the follow¬ 
ing method of procedure: 

Find Zij the section modulus required to carry the live load. 
At the section of maximum moment due to the live load, find Z2, the 
section modulus required to carry the dead load. The section 
modulus required to carry both loads is 

Z' = Zi + z2. 
Note 3.—In a simple beam on end supports the maximum bend¬ 

ing moment due to a load uniformly distributed over its whole 
length occurs at the middle of the beam and is 

Mm = \wL2. 

where w = load per unit length of beam. 
If w equals the weight of beam per unit length, this equation 

gives the maximum bending moment developed in the beam due 
to its own weight. 
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Referring to Fig. 212, note that the moment diagram for the 
weight of the beam (dotted curve) is very flat (when compared 
with the moment diagram for the live load) and that the ordi¬ 
nates to this diagram do not vary appreciably for the middle 
half of the beam. This assumes that the weight of the beam is 
small when compared with the live load (the usual case). 

Accordingly, when determining Z2 (the section modulus required 
for the beam to carry its own weight) we may take ikf2 = \wL2, 
where w equals the weight of beam per unit length. That is, 

Z2 s 
(b) 

It should be remembered that Eq. (b) applies only to simple 
beams on end supports. This equation, therefore should not be 
used for overhanging beams or for cantilevers. 

Note 4.—For a beam of given length, supported and loaded 
in a given way, let w equal the weight per unit length of the beam 
selected as a first trial, and let Z2 equal the section modulus 
required for this beam to carry its own weight. 

Assume now that for some reason a beam weighing wf per unit 
length is to be considered. The corresponding section modulus 
Zo may be found from the relation 

z2 
or ip) 

Equation (c) is almost self-evident. This equation can easily 

be proved for a simple beam on end supports. For such a beam, 

7 - 1 wLi 
Zi ~ 8 S 

and 
1 w'L* 
8 S ' 

Dividing the second equation by the first, member by member, 

* ZL w' 
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Illustration.—If a 40-lb. beam requires a section modulus of 
Z2 = 1.20 in.3 to carry its own weight, then, under similar condi¬ 
tions, a 45-lb. beam will require a section modulus of 

Z' = Z2^ = 1.20 X^ = 1.35 in.3 

Note 5.—In the problems that follow, the student should note 
the effect of the weight of the beam upon the required section 
modulus. For short beams carrying a fairly heavy live load, it 
will be found that the weight of the beam may be neglected. 

153. Resume.—The design of a beam is one of the important 
problems in Mechanics of Materials. The method of procedure, 
therefore, should be carefully noted. 

For convenience of reference, the symbols used will be restated. 
S = allowable stress in outer fiber. 

Mi = maximum bending moment due to live load alone. 

Zi = section modulus required to carry live load = 

Z = section modulus of trial beam. 
M2 = bending moment due to weight of beam (at the section of 

maximum moment due to the live load). 
Z2 = section modulus required for the beam to carry its own 

weight = -g- 

Z' = Zi + Z2 = section modulus required to carry both loads 
(live and dead load). 

Example I.—Consider the weight of the I-beam selected in 
Example I of Art. 150. 

(5) The section modulus required for the beam to carry the 
live load was there found to be 

Zi= 36.9. 

(6) A 12-in. 35-lb. beam was selected whose section modulus is 

Z = 37.8. 

(7) The beam is a simple beam on end supports and is 15 ft. 
long (see Fig. 174). Hence (Note 3, Art. 152) the additional 
moment (due to its own weight) may be taken as 

M2 = \wL2 = | X 35 X 152 = 985 ft.-lb. = 11,830 in.-lb. 

(8) The section modulus required for the beam to carry its 
own weight is 

7 _ 11,830 
8 18,000 

0.66. 
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(9) Section modulus required for the beam to carry both the 
live load and the dead load is 

Z' = Zl + Z2 = 36.9 + 0.66 = 37.6. 

Since Z' is less than Z, i.e., since 37.6 is less than 37.8, the beam is 
satisfactory. 

Example II.—Consider the wooden rectangular beam selected 
in Example II of Art. 150. 

(5) Zx = 50. 
(6) A 6- by 8-in. beam was 

selected whose section modulus 
is 

Z = 64. 

(7) If wood weighs 40 lb./cu. 
ft., the weight of the beam is 
(L = 8 ft.) 

W a 10 tons 

w = 6X8 
144 

Therefore 

X 8X40 = 1071b. £ 

M2 = gTTL = i X 107 X 96 

= 1284 in.-lb. 

<8) * = S " 107- 
(9) Z' = 50 + 1.07 = 

51.07 < 64. 

*-30 ft ions 
Cc) i 

, w-66 lb. per ft. 

K 
Cd) 

BIS 

M ^6663 ft lb. 
Fig. 213. 

That is, Z' is less than Z. Therefore beam is satisfactory. 
Example III.—Select a W beam to carry the loading shown 

in Fig. 213. Take 18,000 lb./sq. in. as the safe fiber stress. 
Verify all results given. Neglecting the weight of the beam, 

(1) R0 = 20 tons, RB — 6 tons. 
(2) Shear diagram (Fig. 2136): 

• Vm = 14 tons. 

(3) Maximum moment: 

M0 = — 30 ft.-tons. 
x = 18 ft. M\ = 54 ft.-tons, = MK- 

(4) Moment diagram (Fig. 213c). 
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Note.—It was shown in Art. 144 that the moment diagram 
serves also as a stress diagram. Hence Fig. 213c indicates how 
the fiber stress due to the live load varies from section to section. 

(5) Zi = 
54 X 2000 X 12 

= 72. 
18,000 

(6) Try a W' 16-in. 45-lb. beam. Z = 72.4. 
Consider now the weight of the beam (Fig. 213d). 

(7) The weight of the beam is a load uniformly distributed. 
To find Mi, the moment at K, first find RB, the reaction at B due 
to the weight of the beam. 

hM0 — 0 gives* 

Rb X 30 - (45 X 35) X 12.5 = 0; 
Rb = 656 lb. = right reaction. 

Therefore 
4.K V 182 

M2 = 656 X 18 - —= 4518 ft.-lb. 

(8) Z2 = = 
Mi 4518 X 12 

= 3.01. 
S 18,000 

(9) Z' = Zt + Zi = 72 + 3.01 = 75.01. 
Since Z' is greater than Z (75.01 > 73.7), beam is unsatisfactory. 
A stronger beam is required. 

(6) Try an 18-in. 47-lb. W beam. Z = 82.3. 
(8) The section modulus required for this beam to carry its 

own weight may be found from the relation (see Note 4, Art. 152) 

Or 

Z'i = 3.01 X S = 3.14. 
45 

(9) Z' = Zi + Z'i = 72 + 3.14 = 75.14, 
which is less than 82.3. Therefore take a 47-lb. W beam. 

Example IV.—Select a W beam to carry the load given in 
Fig. 214. S = 18,000 lb./sq. in. Verify all results given. 

(1) R0 = 5.85 tons. RB = 5.15 tons. 
(2) Shear diagram (Fig. 2146): 

Vm = 5.18 tons. 

* The resultant of the weight of the beam acts at the middle of the beam 
or 17.5 ft. from the end or 12.5 ft. from O. 
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(3) Maximum moment: 

Mo = —0.667 ft.-ton. 
x = 7.45'. Mi = 22.56 ft.-tons, = Mk 

(4) Moment diagram (Fig. 214c). 
(5) Zi = 30.1 in.5 
(6) Try a 12-in. 25-lb. W beam. Z = 30.9. 

Fig. 214. 

(7) Weight of beam. XM0 = 0 gives* 

Rb X 17 - (25 X 19) X 7.5 = 0. RB = 209.5 lb. 

OK V 7 4^2 

M2 = Mk = 209.5 X 7.45 - 2 1 ~ = 867 ft.-lb. 

(8) Z2 = 
867 X 12 

= 0.578. 
18,000 

(9) Z' = Zx + Z2 = 30.68. 
Beam is satisfactory. Why? 

PROBLEMS 

123. Design an American Standard steel I-beam for the loading and 
supports shown in Fig. 215. Use 9 tons/sq. in. as the allowable stress in 
bending. Ans. 15-in. 45 lb. beam. 

* The resultant of the weight of #the beam acts at the middle of the beam, 
i e.f 9.5 ft. from the left end, or 7.5 ft. from 0, Weight of beam ^ 25 X 
19 lb. 
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124. In the preceding problem, recompute for the effect of the weight of 

the beam. Ans. The additional section modulus required is 1.26 in.3 

126. A wooden joist is 3 in. wide and the allowable bending stress for the 

material is 1200 lb./sq. in. The loading and supports are shown in Fig. 216. 

Find the “commercial” size of the beam. Ans. h = 12 in. 

126. Fig. 217. Compute the spacing of joists 2 in. wide, 6 in. deep, and 

16 ft. long to carry a dwelling-house floor load of 45 lb./sq. ft. of floor area. 

0 

6 tons 4 tons 

|< -—5 J"--> ^<- 

^-20'— 

Fig. 215. 

90 /b. per ft. 

0 Uniformly distributed toad 
B 

<--16'- 

r 
h000/b. 

Fig. 216. 

Use 1600 lb. per sq. in. as the safe value of the bending stress. Let x be 

the spacing of the joists. Ans. x = 13| in. 

127. Two horizontal steel I-beams are to support the two loads of 3 tons 

and 4 tons as shown in Fig. 218. (The suspension rods need not be investi¬ 

gated.) The upper load of 3 tons is uniformly distributed over the entire 

length of the upper beam. The 4-ton load is concentrated on the lower 

beam at a distance of 3 ft. from the right end. Neglect the weights of the 

beams. 

Compute the maximum bending moment and the maximum total shear 

for each beam. Then select standard steel beams containing as little metal 

Three tons 

as possible, consistent with safety. On account of imperfect lateral support, 

take 18,000 lb./sq. in. as the maximum safe fiber stress for bending. 

Ans. 10-in. 25.4-lb. American Standard for AB and 7 in. 15.3 lb. for CD. 
128. Fig. 219. Select a safe, standard, economical steel I-beam to carry 

the load of 8 tons as sketched in the figure. The load includes the weight 

of the beam. Use an allowable bending stress of 16,000 lb./sq. in. 

Ans. A 6-in. 12.5-lb. American Standard. 

129. A 15-in. 50-lb. I-beam (American Standard) is supporting a uniformly 

distributed load over part of its length (Fig. 220). Z = 64.2 in.3 Neglect 

the weight of the beam, (a) Locate position of maximum moment, (b) 
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Find max. moment in terms of W. (c) Maximum safe value of W if S — 
18,000 lb./sq. in. 

Ans. (a) x = 9.6 ft.; (b) Mm = 7.68IF ft.-lb.; (c) W = 12,540 lb. 

130. In Problem 129, consider weight of beam and find W (see Note 3, Art. 

152). Ans. W = 11,2501b. 

131. A 15-in. 50-lb. I-beam (American Standard) is to carry a live load 

of 430 lb. per foot of length. Beam on end support. Find the maximum 

safe length of the beam. Consider weight of beam. S = 18,000 lb./sq. in. 

Ans. L = 40 ft. 

132. A rectangular wooden beam (b not less than h/2) is to carry the loads 

shown in Fig. 221. The wall is 6 in. thick (6 in. _L paper). Select the beam. 

(The brick wall is assumed to have no beam action.) The weight of the 

beam may be neglected. Why? S = 1200 lb./sq. in. 

Ans. Mm = 3840 ft.-lb. If b = h/2, h — 7.72. Take beam 4 by 10 in. 

W 

6001b. 
Fig. 221. Fig. 222. 

133. Select a standard I-beam to carry the load shown in Fig. 222. S = 
18,000 lb./sq. in. Neglect weight of beam. 

Ans. Mm = 36,000 ft.-lb. 10-in. 25.4-lb. beam. 

134. If the weight of the beam of Problem 133 is considered is the beam 

safe? Ans. No. 

BEAM UNSYMMETRICALLY LOADED. OBLIQUE LOADING 

154. Beams with Two Planes of Symmetry.—In all beam 
problems so far considered it was assumed that the plane of load¬ 
ing was a plane of symmetry of the beam. That is, it was 

assumed that the beam was symmetrically loaded. 
The flexure formula M = SI jC was derived on the assumption 

that the neutral axis of a section of the beam is perpendicular to 
the plane of loading. If the plane of loading is a plane of sym¬ 
metry of the beam, this assumption will be satisfied (Fig. 189, 
page 189). Beams, however, may be unsymmetrically loaded. 
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We shall now consider briefly the case of unsymmetrical loading, 
it being assumed that all assumptions made in Art. 112 or Art. 
134, not inconsistent with unsymmetrical loading, are satisfied. 

Consider first the simple case of a prismatic beam with two 
planes of symmetry. For convenience, assume the sections of 
this beam rectangular. Designate the axes of symmetry of 
a section as the X- and the F-axis, respectively (Fig. 223). Con¬ 
sider now any given section of the beam and assume that the 
plane of loading intersects this section in a line p making any 
angle 8 with the F-axis as is indicated in Fig. 223. That is, 
assume that the plane of loading is oblique, making an angle 6 
with the vertical plane of symmetry. By referring now to 
Fig. 223, it can be shown that the neutral axis N is not perpendicu¬ 
lar to the plane of loading p. Hence the flexure formula is not 

applicable directly. However, if each 
load is resolved into two rectangular 
components, one in the vertical plane 
and the other in the horizontal plane of 
symmetry, the flexure formula may be 
applied to each component separately. 
For instance, if the ^-component of the 
load is used, then the neutral axis is the 
X-axis and therefore perpendicular to 
the plane of the ^-component. The 
stress at a point on a section may be 

found, then, by adding algebraically the stresses at this point due 
to the two component loads each in turn acting alone. 

Example.—An 8- by 12-in. wooden beam is 10 ft. long and 
rests on end supports. It carries a load P = 5000 lb. at the 
middle of the beam. The line of action of the load makes an 
angle of 30° with the vertical plane of symmetry (Fig. 223, 
b = 8 in., h = 12 in., 8 = 30°). 

The axes of symmetry are designated, respectively, as the 
X-axis and the F-axis. 

Resolve P into its x- and its ^/-component. 

Px = P sin 8 = 5000 X 0.50 = 2500 lb. 

Py = P cos 8 = 5000 X 0.866 = 4330 lb. 

Stresses Due to Px.—The neutral axis for Px is the F-axis. 
Hence 1 must be calculated with respect to the F-axis. 

Iy = * X 12 X 83 = 512. 
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The maximum bending moment due to Pz (i.e., the bending 
moment at the middle of the beam with respect to the F-axis) is 

My 
PJj 

4 
2500 X 10 X 12 

4 
75,000 in.-lb. 

If Sx equals the stress at a point in the section due to PX) and 
cx equals the distance of this point from the F-axis (the x-coordi- 
nate of the point), 

o _ MyCx _ 75,000 X cx 
Iy 512 

146.4c*. 

By designating a compressive stress as negative ( —), the stresses 
at the four corners of the middle section (due to Px) are, respec¬ 
tively, 

(Sx)a = —146.4 X 4 = —585.6 lb./sq. in. 
(Sx)b = +585.6. 
(Sx)c = +585.6. 
(,SX)D = -585.6. 

Stresses Due to Py.—In like manner the stresses due to Py are 
determined. 

I* = * X 8 X 12* = 1152. 
PyL 4330 X 10 X 12 

**» = ~f- =-4- 

CT _ MxCy _ 129,900 Xc,_ 
* Ix 1152 

= 129,900 in.-lb. 

112.7 Cy. 

Therefore 

(Sy)A = -112.7 X 6 = -676.2 lb./sq. in. 
OS,)* = -676.2. 
(Sy)c = +676.2. 
(Sy)0 = +676.2. 

Combining stress algebraically, 

Sa = -1261.8 lb./sq. in. 
SB = -90.6. 

So — +1261.8. 
SD = +90.6. 

166. Principal Axes.—Let Fig. 224 be a section of a beam of 
any given shape and let 0 be any given point in this section. It 
can be shown that there are always two axes through 0 such 
that the moment of inertia of the section with respect to one of 



224 MECHANICS OF MATERIALS 

these axes is greater and that with respect to the other axis is 
less than that with respect to any other line through 0. The 
two axes are called the principal axes for the point 0. If, then, 
X and Y are the principal axes for the point 0 (Fig. 224) and if 
'Iy is greater than Ix, it follows that Iy is greater than In and 
Ix is less than In where N is any line through 0. It can be shown 
that (see Art. 156) 

I. The two principal axes of a section (for any given point 
in that section) are always at right angles to each other. 

II. If Ix = Iy (X and Y being principal axes), then 

I x = Iy = In) 

i.e.y the moment of inertia is the same for all axes through 0. 
This is a limiting case. 

X- 

N 

Fig. 225. 

III. An axis of symmetry always is a principal axis for every 
point on that axis. 

In the discussion that follows, when reference is made to the 
principal axes of a section, it is to be understood that these are 
the principal axes for the centroid (center of gravity) of the section; 
i.e.y 0 is the centroid of the section. 

Illustration I.—Figure 225 represents a rectangular section. 
This section has two axes of symmetry, both principal axes. 
Here Ix is greater than Iy. If N is any line through 0, then 

Ix > In and Iy < In. 

Illustration II.—Figure 226 represents a channel section. Axis 
1 ... 1 is an axis of symmetry and hence is a principal axis. 
Since the principal axes are at right angles to each other, axis 
2 ... 2 is the other principal axis. It follows, therefore, that 
11 > In and 12 < In- Tables give the values of I1 and J2 for 
the various standard channels. 



STRESSES IN BEAMS 225 

Illustration III.—Figure 227 represents an angle section with 
no axis of symmetry. Axis 3 ... 3 is the axis of least radius of 
gyration. That is, I3 is the least moment of inertia of the 
section. Axis 3 ... 3 is, therefore, one of the principal axes, 
the other principal axis being 4 ... 4. Tables give the values of 
k3 (also of 11 and 12) for each of the various standard angle 
sections. 

2 
Fig. 226. Fig. 227. 

156. Proof of Theorems of Previous Article.—Figure 228 repre¬ 
sents a section of a beam. For two sets of rectangular axes 
having the same origin 0 

v = y cos 8 — x sin 8. 

The moment of inertia of the section with respect to the 
17-axis is, therefore, 

Iu = Jv2dA 
= J(y cos 8 — x sin 8)HA 
= cos2 8JyHA + sin2 8/xHA 

— 2 sin 8 cos 8jxydA. (a) 

If we let JxydA = P, Eq. (a) 
becomes 

Iu = lx cos2 8 + Iy sin2 8 
— P sin 28. (6) 

Hence, if /*, IV9 and P have been calculated with respect to 
any convenient set of rectangular axes (X and F), Iu is deter¬ 

mined for any line U making an angle 8 with the X-axis* 
To find 8 for which Iu is a maximum or a minimum, put 

dlu/d8 = 0. 
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Or [Eq. (6)], 

= —2 sin 0 cos 0 Ix + 2 sin 0 cos 0 Iy — 2P cos 20 = 0 

= (7y — /*) sin 20 — 2P cos 20 = 0. 

Or, solving for tan 20, 

tan 20 = (c) 

Note that Eq. (c) is satisfied for two values of 20, 180° apart, 
i.e., for two values of 0, 90° apart. Hence, for every point 0, 
there are two axes, 90° apart, such that the moment of inertia 
is a maximum with respect to one of these axes and a minimum 
with respect to the other. This proves Theorem I (Art. 155); 
viz., the two principal axes are always at right angles to each other. 

If X is an axis of symmetry, then, in jxydA, for every term 
x(+y) there is a term x{ — y) to cancel it so that jxydA = 0; 
i.e., P = 0. Hence, if X (or Y) is an axis of symmetry, P = 0 
and Eq. (6) becomes 

Iu = Ix cos2 0 + Iy sin2 0. (d) 

Putting P = 0 in Eq. (c), tan 20 = 0; i.e., 0 = 0, or 90°. Hence 
X is one principal axis and Y is the other. This proves Theorem 
III; viz., an axis of symmetry always is a principal axis for any 
point on that axis. 

Note.—It can be shown that in general, if X and Y are prin¬ 
cipal axes, P = 0. Conversely, if P = 0, the axes are principal 
axes. 

Let X and Y be principal axes, and assume that Ix = /„ = I. 
Since P = 0, Eq. (6) becomes 

Iu = I (cos2 0 + sin2 0) = I. (e) 

This proves Theorem II, viz., if Ix = Iv = / (X and Y being 

principal axes) then the moment of inertia with respect to any axis 

through 0 is I. 
157. Shear Center.—Consider now a beam of any given shape. 

Assumfe that the loads and reactions all lie in one plane, the load 
plane. Let the load plane cut a given section of the beam in the 
line p (Fig. 229). It can be shown that for the given section 



STRESSES IN BEAMS 227 

there is a definite point C (not necessarily the centroid of the 
section) such that if p goes through C the beam will not twist 
at that section; i.e., no torsional stresses will be induced on 
that section. The point C is called the shear center of that sec¬ 
tion. In general, if the plane of loading goes through the shear 
center of every section of the beam, the 
beam will not twist. 

Figure 230 represents a channel 
used as a cantilever. It can be 
shown that the shear center is attC. 
If the line of action of P does not go 
through C, the beam will twist as 
indicated in the figure. 

A detailed treatment of the shear center is beyond the scope 
of this text. For proofs of the statements made, see some recent 
work on advanced mechanics.* 

The following theorems are very important: 
I. An axis of symmetry of a section always contains the shear 

center of that section. 
II. Hence if a section is symmetrical with respect to two axes, 

the shear center coincides with the centroid of that section. For 

* Foppl, “Drang und Zwang,” Band II, Sec. 78. 

Seely, F. B., “Advanced Mechanics of Materials.” 
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instance, take an I-beam (Fig. 231). Axes 1 . . . land 2 ... 2 
are axes of symmetry and therefore gravity axes. The shear 
center, lying on both axes, must coincide with the centroid of 

that section. 
158. Neutral Axis of a Section.—If a beam is unsymmetrically 

loaded, the neutral axis of a section is not, as a rule, perpendicular 
to the plane of loading. For instance (Fig. 231), the neutral 
axis N is not perpendicular to p, the plane of loading. 

The following theorems are important: 
III. A neutral axis is always a gravity axis, provided the assump¬ 

tions of Art. 134 are satisfied (see Art. 138). 
IV. If for a section of a beam the plane of loading is parallel 

to one of the principal axes (through the centroid), then the neutral 

\P 
[2 

12 
Fig. 231. Fig. 232. Fig. 233. 

axis is the other principal axis. The beam, however, will twist 
unless the plane of loading goes through the shear center of every 

section of the beam (see Art. 159). 
Illustration I. Channel Section (Fig. 232).—Axis 1 ... 1 is 

an axis of symmetry and therefore a principal axis. Hence 
axis 2 ... 2 is the other principal axis through the centroid. 
(The two principal axes always are perpendicular to each other.) 
The shear center lies on axis 1 ... 1 (an axis of symmetry 
always contains the shear center). Let C be the shear center. 
If then the plane of loading goes through C and is parallel to 

axis 2 ... 2, the channel will not twist but will bend about 

axis 1 ... 1. Note that axis 1 ... 1 will be the neutral axis 
of the section if and only if p is parallel to axis 2 ... 2, and that 
the beam will not twist if and only if p goes through the shear center C. 

Illustration II. Fig. 233.—Let Y be an axis of symmetry (and 
therefore a principal axis through the centroid 0). The shear 
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center C lies on F (an axis of symmetry always contains the shear 
center). If then the plane of loading is a symmetrical plane 
(if p coincides with F), the beam will not twist. Morever, X 
(the other principal axis through the centroid) will be the neutral 

axis. 
Note.—In all beam problems, unless a statement to the con¬ 

trary is made, it is assumed, for convenience, that the plane of 
loading is a symmetrical plane (Assumption 3, Art. 112), and that, 
therefore, the neutral axis is a (gravity) axis perpendicular to 

the plane of loading. 
159. A Principal Axis in the Plane of Loading. Neutral 

Axis.—Figure 234 represents as a free body the part of a beam 

to the left of the section CD (part A). For convenience, the 
section is represented as rectangular and the plane of loading 

Y 

is represented as containing the F-axis. Since equilibrium exists, 
the internal forces acting on the section CD must hold in equilib¬ 
rium the external forces acting on A. Hence the sum of the 
moments with respect to the F-axis of the internal forces acting 
on CD must be equal to the sum of the moments with respect to F 
of the external forces acting on A. Since the external forces 
acting on A are parallel to the F-axis (by assumption), My = 0. 
(The moment of a force is zero with respect to a line that is 
parallel to the line of action of the force.) Therefore, the sum 
of the moments of the internal forces acting on CD must be 

zero with respect to the F-axis. Or, if S is the intensity of stress 

on an element of area dA distant x from F, 

JxQSdA) = 0. (a) 

Figure 235 represents the section CD (of any shape). Let 
X and F be the principal axes through the centroid 0. For 
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convenience assume that the plane of loading contains the 
F-axis (assume that p and Y coincide). Assume that U is the 
neutral axis. We wish to prove (X and Y being principal axes) 
that a = 0. That is, if the plane of loading contains one prin¬ 
cipal axis through the centroid (or is parallel to a principal axis), 
then the neutral axis is the other principal axis. 

If U is the neutral axis, then the intensity of stress S acting 
on an element dA is directly proportional to v, the perpendicular 

Y 

Y 
Fig. 236. 

distance of the element from the neutral axis U (Art. 135). 
Hence, if k is a constant, 

S = kv. 

Or, in terms of x and* y (see Art. 156), 

S = k(y cos a — x sin a). 

Therefore [Eq. (a)], 

or 
kfx(y cos a — x sin a)dA = 0 

cos ajxydA — sin afx2dA = 0. (6) 
Since X and Y are principal axes (by assumption), the first 
integral is zero (P = 0, see note of Art. 156). 
Also 

fx2dA = Iy. 

Therefore 
Iv sin a = 0. 

Or, since Iv is not zero, sin a — 0; i.e., a = 0. This proves 
the theorem; viz., if the plane of loading contains one principal 
axis (<or is parallel to a principal axis), then the neutral axis is the 
other principal axis. 
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Note.—Figure 236 represents a section (rectangular for con¬ 
venience). X and F are the principal axes (axes of symmetry 
in the figure). The load plane makes an angle 8 with the F-axis. 
It can be shown that the direction of the neutral axis N is given 
by the equation 

tan a = tan 0. (c) 

Note that, if 6 = 0, a = 0. That is, if p coincides with F, 
N will coincide with X (X and Y being principal axes). 

Example I.—Let /*//*, = 2 and 8 = 30° (Fig. 236). 
Substituting in Eq. (c), since tan 30° = 0.577, 

tan a = 2 X 0.577 = 1.155. 
Therefore 

a = 49°7'. 

Example II.—Referring to Fig. 231. let the beam be a 15-in. 
50-lb. standard I-beam. /i//2 = 5.47. 

Assume that p makes an angle of 5° with the 2 ... 2 axis 
(tan 5° = 0.0875). 

tan a = 5.47 X 0.0875 = 0.479, 
a = 24°37'. 

160. Oblique Loading. General Case.—If the stresses on a 
section of a beam subjected to a system of loading are required, 
it is necessary to proceed as follows: 

1. Locate the principal axes through the centroid of the 
section under consideration. Call the principal axes respectively 
the X- and the F-axis. 

2. Resolve each force acting on the beam into its ^-component 
and its ^/-component. 

3. Combine algebraically the flexural stress at a point due to 
the Px forces acting alone and that due to the Py forces acting 
alone. Note that, for the Px forces, F is the neutral axis; and 
that, for the Py forces, X is the neutral axis (X and F being 

principal axes). 
Note 1.—If the plane of loading does not go through the shear 

center of the section, torsional stresses are induced on the section. 
Note 2.—Beams in practice frequently are laterally supported 

in such a way that twisting of the beam is prevented or greatly 
reduced. In such cases the location of the shear center is a 

matter of secondary importance. 
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MOVING LOADS 

161. Largest Moment Due to Moving Loads.—In Fig. 237, a 
simple beam on end supports is shown carrying a system of 
concentrated loads. When these loads are fixed in magnitude 
and position, we may compute the reactions, construct the 
shear diagram, locate the section at which the moment is a maxi¬ 
mum, and finally obtain the maximum moment as was done in 
the examples of Art. 130. Since the loads are concentrated 
loads, the maximum moment will occur under one of the loads. 

Assume now that the loads form a set of moving loads of con¬ 
stant magnitude and at fixed distances apart. This is illustrated 
in the case of a locomotive running over a deck girder bridge. 
The pressures of the wheels on the track form a set of moving 

Fig. 237. 

loads that are fixed in magnitude and that remain at fixed dis¬ 
tances apart. Of the innumerable positions of this set of loads 
(Fig. 237) there will be one position such that the maximum 
bending moment induced in the beam will be larger than that for 
any other position of the loads. Let Mm designate the largest 
bending moment that will be induced in the beam as the set of 
moving loads passes over the beam. Evidently, Mm will occur 
under one of the loads and for a particular position of this load. 
It is required, therefore, to determine under which load and for 
which position of this load the largest bending moment Mm will 
occur. If this load and the position of this load are found, 
then no greater moment can occur under that load in any other 
position, and no other load can be found under which a larger 
moment is possible. 

As a first step in the solution of the problem, a rule will be 
developed for determining the position of the set of moving loads 

for which the moment under a particular load (P2, for instance) 
will be greater than the moment under that load for any other 
position of the loads. 
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Let R be the resultant of the loads on the beam. In Fig. 237, 
R — Pi ~f“ P2 ~t“ P3 -h P4 = 2P. The line of action of this 
resultant with respect to the load Pi may be found as follows: 
Since the moment of the resultant equals the sum of the moments 
of the several forces, 

Rz = P2a + P z{a + b) + P4(a + b + c), 

from which z, the distance of R from Pi may be calculated. 
Let e be the distance of R from P2, the load under consideration. 

Also let x equal the distance of P2 from the left end of the span. 
Putting the summation of moments about B equal to zero, 

\\L - R{L - x - e) = 0 or = R{L ~x ~ e)- 
L 

Therefore the moment under P2 is 

M2 = Vix — Pia = jfL — x — e)x — Pia 

= jfLx — x2 — ex) — Pia. 

To find the value of x for which M2 is a maximum, put 

dM2/dx = 0, 

and solve for x. (Note that R, L, a, e, and Pi are constants.) 

~dx = L L ~ 2x - e) = 0. 

Therefore 
L e 

L — 2x — e = 0 or - = x + ^ * 

That is, C, the center of the span, bisects the distance between P2 
and P. A similar result will be obtained for any other load, 
as P3 or P4. This leads to the following rule, applicable to a set 
of moving loads passing over a simple span on end supports: 

Rule.—The maximum moment under a given load of a set of 
moving loads (as of a group of wheel loads) occurs when that 

load is as far on one side of the middle of the span as the resultant 

of all the loads then on the span is on the other side. 
The rule is applied as follows: for each load in turn, place the 

set of loads so that the moment under that load reaches its 
maximum value and calculate this moment. The largest of the 
maximum moments thus obtained is the largest moment that will 
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be induced in the beam as the set of loads moves over the beam, 
and this moment (designated by Mm) is the moment to be used 
in the flexure formula 

Note 1.—It has been found that, if the load nearest the resultant 
R is one of the heaviest loads, it will be sufficient to deal only with 
that load. 

Note'2.—In any case, R always is the resultant of the loads 
actually on the beam. For instance, for a particular position of the 
loads it may happen that the front loads or the rear loads, are 
not on the beam. In that case R must be calculated in amount 
and in position for the loads actually on the beam. A scale 
diagram of the set of loads sliding along a scale diagram of the 
beam is a convenient device for finding what loads are on the 
beam. 

7' 

Pt-8fons Pz-4tons 
K. 6' .->i 

A2"1 ! Cp 1 *•***” 0) 
"cT 

-6' 
—34*-T - 

Fig. 238. 

Example I. Fig. 238.—Find Mm, the greatest moment induced 
in the 14-ft. beam as the moving loads pass over the beam. 

R = XP = 12 tons. 
P2a _ 4 X 6 
R 12 

z = = 2 ft. = 

That is, the resultant acts 2 ft. to the right of Pi. 
Now place the loads so that Pi is as far to the left of C (mid¬ 

span) as R is to the right of C. With the loads thus placed, Mm 
will occur under Pi (see Note 1). 

Since the resultant R and its position are known, it is simpler 
to use the resultant instead of the individual loads when finding 

Vi. 
Putting Mb = 0, 

Vi X 14 - 12 X 6 = 0. 
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Therefore 
Vi = 5.14 tons. 

Hence 

Mi = Fi X 6 = 5.14 X 6 = 30.8 ft.-tons AT 

Example II. Fig. 239.—A set of three loads on a 30-ft. beam 
Find M m. 

1«-is'-->t«.is'->1 
Fig. 239. 

R = 12 tons. 
4 X 16 + 1 X 8 

12 
6 ft. 

First consider P2. Place P2 as far to the right of C as R is to the 
left of C (Fig. 239). 

Therefore 
Fi X 30 - 12 X 16 = 0. 

Vi = 6.4 tons. 

Fig. 240. 

Hence 

Mi = 6.4 X 16 - 7 X 8 = 46.4 ft.-tons. 

Now place Pi as far to the left of C as R is to the right of C 

(Fig. 240). 
Vi X 30 - 12 X 12 = 0. 

Therefore 
Vi = 4.8 tons. 

Hence 
Mi = 4.8 X 12 = 57.6 ft.-tons = Mm. 
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Since the load nearest the resultant (i.eP2) is not one of the 
f heavier loads, Note 1 cannot be used. 

Problem 135. Fig. 241.—The three wheels, at fixed distances apart, roll 

across the 24-ft. beam. Draw the dimension sketches and compute the 

maximum moment under each wheel. Design an economical, standard 

I-beam, considering its own weight. S — 16,000 lb./sq. in. 

Ans. Mm = 16.45 ft.-tons. 

P,=2t P7=I.5K P3=lt 
K— -Vf-H 

(*) (*>6 
... 24'-— 

Fig. 241. 

SHEARING STRESS IN A BEAM 

162. Given a loaded beam (Fig. 242a). Let M equal the bend¬ 

ing moment at the section CD of the beam. In Art. 139, it is 
shown that 

Or, solving for S, 

(a) 

In Eq. (a), S equals the stress in the outer fiber at the given 
section, I equals the moment of inertia of the section (with respect 

Fig. 242. 

to the neutral axis N, Fig. 2426), and c equals the distance of the 

outer fiber from the neutral axis. Moreover, the intensity of 

the normal stress in a fiber distant y from the neutral axis is 
(Art. 135), 
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By means of Eq. (6) the intensity of the normal stress at any 
given point in a section can be found if M and I are known. 
Thus, if the bending moment at a section is M = 1,050,000 in.-lb. 
and if J = 525 in.4, then the stress at a point 4 in. from the neutral 
axis (y = 4 in.) is 

SA 
My _ 1,050,000 X 4 
I 525 ' 

8000 lb./sq. in. 

It is now desired to develop a formula that will give the 
intensity of the shearing stress at a point in a 
beam (either on a horizontal or on a vertical ^ S2CT? 
plane). Before developing this formula, A] 

reconsider the theorem which states that the 
intensities of the shearing stress on the four j? s? 

faces of an elemental prism are always equal 
(Art. 19). That is (Fig. 243), consider an ele- E ——2——>- F 
mental cube upon whose faces (faces perpen- 243 
dicular to plane of paper) act shearing stresses 
of intensities Si, S2, S3, and Si, respectively. Putting S moments 
about E = 0, 

s4*‘ 

Fig. 243. 

Therefore 
(Sia2)a — (S2a2)a = 0. 

Si = S2. 

Now G may be any given point in a body, and GH and GF may be 
thought of as two mutually perpendicular planes. Hence the 
theorem may be stated as follows: 

At any given 'point in a body, the intensities of the shearing stress 

on planes at right angles to each other are always equal. 
This theorem will be used repeatedly in the following form: 
At a point in a beam, the intensity of the shear on a horizontal 

plane equals the intensity of the shear on a vertical plane. 
163. Shearing Stress in a Beam.—In Fig. (244a), BD and 

BfD' are two sections a distance dx apart, and EE' is a horizontal 
plane distant y' from the neutral surface NN'. Take free the 
block DEE'D' (Fig. 2446, side view). Let H equal the sum of 
normal forces acting on the left face of this block, and Hf equal 
that acting on the right face. As a rule Hf does not equal H. 
Hence, as a rule, a shearing stress whose intensity will be desig¬ 
nated by S8 is induced on EE' the lower face of this block. If 
t is the thickness of the beam at E (or E'), and is therefore the 
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dimension (i_ the plane of the paper) of the lower face of the 
block, then the area of this face is tdx, and the shearing force 
on the area is S8tdx. 

Since the block is in equilibrium, 2FX = 0. 

Hf - H - Sstdx = 0. 
Or 

Satdx = H' - H. (a) 

For convenience, the cross-section of the beam is represented 
as rectangular. With reference to Fig. 244a, if dA is the element 
of area (dark shaded area) at a distance y from the neutral axis N, 
and Sy is the intensity of the normal stress on this area, then the 

Fig. 244. 

S D D' S' 

total force acting on the left face of the block (line shaded area) 
is 

H = £svdA- 

Or, since Sy = My/I [Art. 162, Eq. (6)], 

H = yjTW, (b) 

where M = bending moment at the section BD. 

In like manner, 

H’ = J's'ydA = (c) 

where Mf = bending moment at the section B’D'. 

Substituting the values of H and H' as given by Eqs. (6) and (c) 
into Eq. (a), 
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Or, since Mr — M = dM and is the increase in bending moment 
as we go from section BD to section B'D' (BD and B'D' being 
an infinitesimal distance dx apart), 

Or, solving for S8f 

S8tdx 

Sa 

dM C 

I Jv 

= dMlCc 
dX tl Jy' 

yd A. 

From Elementary Mechanics (Art. 137), 

yd A = A'y 

(d) 

where A' = area of section above EE (line shaded area, Fig. 244a). 
y = distance of the center of gravity of A' from the 

neutral axis N. 

Also (Art. 124) 

dM 
—— = V = vertical shear at the section BD. 
dx 

Hence Eq. (d) may be written 

- rJ}dA ~ tiav (11> 
In Eq. (11), 

S8 = intensity of the shearing stress on a horizontal plane 
and therefore also on a vertical plane at a point E 

distant y' from the neutral surface. 
V = total vertical shear at the section through that point. 
I = moment of inertia of that section. 
t = thickness of beam (dimension perpendicular to plane 

of paper) at that point. 
Af = area of section above that point. 

y = distance of center of gravity of A' from the neutral 
axis of that section. 

Example. Fig. 245.—The vertical shear at a section of an 
8- by 12-in. rectangular beam is V = 6400 lb. Find the intensity 
of the shear on this section (a) at the neutral axis; (6) at a point 
2 in. above the neutral axis. 

I = ^bh* = * X 8 X 123 = 1152 in.4 
t = 8 in. for both cases. 

* Some writers designate the product A'y the static moment. 
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(a) A' (shaded area, Fig. 245a) = 8 X 6 = 48 sq. in., y = 3 in. 
Therefore 

S’ = tIA’V = 8 X 1152 X 48 X 3 

= 100 lb./sq. in. at the neutral axis NN. 

(b) A' (shaded area, Fig. 2456) = 8 X 4 = 32 sq. in., y = 4 in. 
Therefore 

6400 
S. = X 32 X 4 

8 X 1152 
= 88.9 lb./sq. in. at a point 2 in. above NN. 

Problem 136.—A 4- by 8-in. rectangular wooden beam is 12 ft. long and 

carries a central concentrated load of P = 2 tons. Find the maximum unit 

shear induced in the beam. Arts. Ss = 93.75 lb./sq. in. 

Secfion of beam 
(a) (P) 

Fig. 245. 

164. Mode of Distribution of the Shear on a Vertical Section 
of a Loaded Beam.—Figure 246 represents a vertical section of a 
loaded beam. If V is the total shear on that section, then the 
intensity of the shear at a point distant y' from the neutral axis 
is [Eq. (11)] 

s. = ~yA'. (a) 

Evidently, A* = 0 for an outer element. That is, when E and D 

coincide, A' (shaded area) = 0, and therefore S8 = 0. More¬ 
over, it is found that, for beams of ordinary shapes, S8 usually 
is a maximum at the neutral axis.* Hence the intensity of shear 

* It is possible to devise a section (Fig. 247) such that S* is not a maximum 

at the neutral axis. This is also the case for a square with a diagonal set 

horizontally (Fig. 248). 
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on a section of a beam is zero at an outer element and, as a rule} is a 

maximum at the neutral axis. 
Rectangular Section. Fig. 249.—For a rectangular section, 

t = b and dA = bdy. Hence the unit shear at a distance yf 

Fig. 246. Fig. 247. Fig. 24S. 

from the neutral axis in a rectangular beam is 

Equation (6), considered as an equation between S8 and y', is 
the equation of a parabola. Hence the shearing stress on a 
rectangular section is parabolically distributed as shown in Fig. 
2496. 

h*b-*| • 

Fig. 249. Fig. 250. 

At the neutral axis, y' = 0. Putting y' = 0, c = h/2, and 
I = -i^bh3 in Eq. (6), 

3 y 3 
Max. S8 = ^ tt == o X (total shear -5- area of section) (12) 

2 bh 2 

3 
2 

X average unit shear on that section. 

For instance, if the total shear on an 8- by 12-in. section is 
V = 6400 lb., then the shear at the neutral axis (maximum unit 

shear) is 
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TV/T 0 3 6400 
Max. S8 2 X 8 X 12 100 lb./sq. in. 

Equation (12) may be derived directly from Eq. (a), i.e., from 

& - Zba'. 

Thus, for the neutral axis, A' = 66/2, and y = h/4. Also, 
t = b and I = 663/12. 
Making these substitutions in Eq. (a), 

2 66 

Solid Circular Section.—For a solid circular section of radius 
r, the unit shearing stress at the neutral axis is 

4 v 4 
S8 = «—i = o X average unit shear on the section.* (13) 

O 717*** o 

I-beam Sections.—The various commercial I-beams are not 
similar and no general relation exists between the dimensions 
of the section. Accordingly, no general expression or formula 
similar to formula (12) for rectangular sections or to formula 
(13) for circular sections can be found for I-beams. 

Consider the beam whose section is given in Fig. 251. The 
value of S8 at a point distant y' from the neutral axis is 

s. = jjA'y = + 2A2y2 + 24327s) 

where t = thickness of web at the point E at which the unit shear 
is to be found. 

If the values of S8 are found for the various points in the section 
and these values are plotted, the stress figure takes the form 
indicated in Fig. 2516. 

Example. Fig. 252.—A 12-in. 28-lb. W* beam has the dimen¬ 
sions indicated in the figure. I = 213.5 in.4. Required to find 
maximum S8 in terms of the vertical shear V. 

Maximum S8 will occur at the neutral axis. Hence, by con¬ 
sidering the upper half of the section, 

* For a semicircle of radius r, 

y t = 2r, and I = yrr4. 

Substitute in Eq. (a). 
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Max. Sa = 
V 

0.24 X 213.5 
[6 

= 0.383 F. 

X 0.24 X 3 + (6.50 - 0.24) X 

0.42 X (6 - 0.21)] 

165. Approximate Value of Maximum S8 in an I-beam.—In 
practice it is customary to assume that the maximum unit shear 
on a section of an I-beam is the same as if the total shear F at 
that section were distributed uniformly over the web, the web 
being considered as extending through the flanges. That is, it 
is assumed that, for an I-beam, 

Max. S8 = ^ 
tn 

where t = thickness of web. 

(14) 

Fig. 253. 

Example I.—Using Eq. (14), find maximum S8 for the W 

beam given in Fig. 252. 

- 53T502 " 0 347F- 

The exact value of maximum S8 for this beam is 0.383 F. The 
approximate value is about 9.5 per cent too small. 

Example II.—If F equals the total shear on a section of a 

15-in. 60.8-lb. standard I-beam, find maximum S8. From 

Table III, Appendix, t = 0.59 in. 

Max. S8 
V 

0.59 X 15 
0.113F. 

The exact value is 0.133F. The approximate value is about 
15 per cent too small. 
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Equation (14) was applied to -a wide range of rolled I-beams 
and gave results in error from 5 to 22 per cent. If, therefore, 

the unit shear in an I-beam must be determined accurately, the 

exact formula [Eq. (11)] should be used and not the approximate 
formula [Eq. (14)]. 

Note.—Corresponding to a safe flexural stress of 

S = 18,000 lb./sq. in., 

the safe shearing stress [as determined by Eq. (14)] usually 
is taken as S8 = 12,000 lb./sq. in. Shear in itself, however, 
is of little importance in an I-beam. If the shear is excessive 
the web will fail in buckling rather than in shear (Fig. 253). 
As the result of experiments it has been found that girders 
will be safe against buckling of the web if the unit shear [as deter¬ 
mined by the approximate formula, Eq. (14)] does not exceed 
12,000 lb./sq. in. provided h/t does not exceed 70 where h equals 
the distance between flanges (or flange angles in a built-up 
beam) and t equals the thickness of web. When h/t is greater 
than 70, the allowable shear must be decreased.* 

166. .Design of Beams for Flexure and Shear.—The most 
convenient method of procedure, as a rule, is as follows: First 

design for flexure and then test for shear. 

Example I. Fig. 254.—Design a wooden beam to carry the 
loading shown. Width of beam is to be not less than ^ its height. 
Take 

S' = 1000 lb./sq. in. and S'8 = 100 lb./sq. in. 

Mm = Mo = 1000 X 3 + 3000 X 1.5 = 7500 ft.-lb. = 

90,000 in.-lb. 

90,000 = 1000-. 
c 

Therefore 

If 6 = \h, 

- = 90 in.3 
c 

- = -hh* = —A3 

c on 18 ' 

* See “ A.I.S.C. Manual,” Safe Loads for Beams, explanatory notes. 
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Therefore 

90 = 4h3 or h = 11.75 in. 
lo 

Nearest commercial size is a 4- by 12-in. beam. Area of sec¬ 
tion = 48 sq. in. 

Now test for shear. Vm = 4000 lb. Therefore [Eq. (12), 
Art. 164], letting A equal the area of section required for shear, 

100 = | X or A = 60 sq. in. 

The area required for shear is greater than the area of the section 
selected (60 > 48). Hence a 4- by 12-in. beam is unsatisfactory. 
Select a 6- by 12-in. beam. Area of section = 72 sq. in. > 60. 

3,000 lb. 

if 1 M.1 t 1.1 i 

-j/->r 

1,000 lb. 

Fig. 254. 

Since the I/e of this beam is greater than 90 (that needed for 
flexure), the second beam is satisfactory. 

Example II.—In Example III of Art. 153, the beam selected 
on the basis of flexure is an 18-in. 47-lb. W\ Test this beam for 
shear. 

Vm = 14 tons. S' = 12,000 lb./sq. in. 

From Table II, Appendix, t = 0.52 in. and h = 17.9 in. 
Therefore area of web = th = 9.30 sq. in. If A equals the area 
of web required for shear [Eq. (14), Art. 165], 

Therefore 

A 

or 12,000 = 
14 X 2000 

A 

2.33 sq. in. < 9.30. 

Note.—It is seldom that shear governs in an I-beam. Fre¬ 
quently, however, deflection governs. That is, a limitation is 
placed upon the amount the beam may deflect. Deflection will 
be considered in a later chapter. 
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PROBLEMS 

137. What should be the height of a wooden floor joist 3 in. wide and 15 ft. 

long if it is to carry a load of 3200 lb. uniformly distributed? Consider shear 

at 100 lb./sq. in. and bending stress at 1200 lb./sq. in. Ans. 12 in. 

138. A 24-in. 110-lb. American Standard I-beam is 7 ft. long. What is the 
maximum safe load uniformly distributed that this beam can carry? Take 
S = 18,000 lb./sq. in. and S8 = 12,000 lb./sq. in. End supports. 

Ans. W = 388,000 lb. 

167. I-beam on End Supports. Span Limit. Case I. Beam 

Uniformly Loaded.—The equation of safe loading is 

\WL = S'- 
8 c 

where Sf = safe unit stress in flexure. 
For a. given I-beam, I/c is constant. 
Therefore 

WL = 8/S'- = constant = k (say) (a) 
c 

or 

Hence, for a given I-beam, as far as flexure is concerned, W may 
be increased if L is decreased. Shear, however, imposes a limita¬ 
tion upon the maximum value W may have. If Sf8 equals the 
safe unit shearing stress, 

Or, since Vm = IF/2, 
W = 2 S'8th. (6) 

Note that Eq. (b) does not contain L. Hence the maximum 
safe load W the beam can carry in shear is independent of the 
length of the beam. 

By substituting the value of IF as determined by Eq. (b) into 

Eq. (a) and solving for L, a length L0 is determined such that the 
shearing stress in the beam reaches its maximum allowable 
value S' at the same time that the flexural stress reaches its 
maximum allowable value S'. Moreover, if L < L0, shear 
governs [Eq. (6) must be used to determine IF]; and if L > Lo} 

flexure governs [Eq. (a) must be used]. For convenience, LQ 



STRESSES IN BEAMS 247 

is called the span limit for a uniformly loaded I-beam (also for a 
channel) on end supports. 

Note. *—Handbook tables give the span limit for a uniformly 
loaded beam (I-beam or channel). If the length of the beam is 
less than that designated as the span limit, shear governs and 
Wy the load the beam can safely carry, is determined by Eq. (&). 
In these tables, 

S' = 18,000 lb./sq. in.; and S' = 12,000 lb./sq. in., 

provided h/t < 70, 
where h = distance between flanges. 

t = thickness of web. 
If h/t > 70, the value of S' must be decreased. 

Case II. Beam Loaded Centrally.—The equation of safe load¬ 

ing is 

\PL = S'- 
4 c 

Also, since 

S‘ = Ih = 2th’ 

P = 2 S'Jth. 

By comparing with Eqs. (a) and (6), it is seen that the span limit 
for a centrally loaded beam on end supports is one-half that for this 
beam uniformly loaded. For instance, if L0 = 6 ft. for a beam 
uniformly loaded, then L0 = 3 ft. for this beam centrally loaded. 

Example I.—A 12-in. 28-lb. W is to be used as a simple beam 
on end supports. For this beam h = 12 in., t = 0.24 in., and 

I/c = 35.6 in.3. By taking 

S' = 18,000 lb./sq. in. 

and S£ = 12,000 lb./sq. in., it is required to find L0, the span 
limit: (a) beam uniformly loaded; (6) beam centrally loaded. 

(a) For safety in flexure [Eq. (a)], beam uniformly loaded, 

^ = 18,000 X 35.6 or WL = 5,126,000. (c) 
8 

Note that, in Eq. (c), L must be expressed in inches. 
For safety in shear [Eq. (6)], 

12'°°° " 2 X 0.24 X 12 " W " 69’12° lb' W 

or PL = 4 S'-- 
c 

Vm P 

See “A.I.S.C. Manual.” 
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Solving Eqs. (c) and (d), 

L0 = 74.2 in. = 6.18 ft. (beam uniformly loaded). 

(6). If loaded centrally, 

L0 = 3.09 ft. (central concentrated load). 

Example II.—In Example I, S'8 is given as 12,000 lb./sq. in. 

This assumes that h/t :§ 70. Find h/t for the given beam. 
Flange thickness = 0.420 in., t = 0.240 in. (see Table II, 

Appendix). Hence 

Therefore 

ft = 12 - 2 X (0.420) = 11.16 

ft 
1 

11.16 
0.240 

= 46.5 < 70. 

168. Rectangular Beams on End Supports. Span Limit. 
Case I. Uniformly Loaded.—For a rectangular beam I/c = \bh2. 
Therefore 

\WL = S'- = lm2 or WL = is'6/i2. (o) 
O c u o 

If S' equals the safe unit stress in shear [Art. 164, Eq. (12)], 

__ 3 Vm _ 3 W ( . T7 __ W\ w 4e/,, 
S‘ 2 bh 4 bh (smce “ 2 / 0r ^ ^ 

Dividing Eq. (o) by Eq. (5), member by member, we obtain as 
the span limit 

Lo 

Case II.—In like manner, for a central concentrated load, the 
span limit is 

Lo = 
S' 2 

Wooden Beams.—For wood in general, kind not specified, we 
may take S'/S'8 = 12. Thus, if S' = 1200 lb./sq. in., we may 

take S8 = 100 lb./sq. in. Putting S'/S'8 = 12 (h and L0 in 

inches), 

Lo = 12 h or 

Lo = 6ft or 

ft = beam uniformly loaded. 

ft l 
2 = concentrated load at the middle. 
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This leads to the following convenient rule: A wooden beam on end 

supports should be tested for shear (1) if its height in inches is 
greater than its length in feet (beam uniformly loaded); (2) if 
half its height in inches is greater than its length in feet (con¬ 
centrated load at the middle). 

Example I.—A rectangular wooden beam on end supports is 
to be uniformly loaded to its full capacity. Beam is 8 ft. in 
length, and 10 in. in height. Is it necessary to test for shear? 

Yes (10 > 8). 
Note.—This means that shear governs. Equation (6) should 

be used to determine W. 

Example II.—If the beam of Example I is to be loaded cen¬ 
trally, is it necessary to test for shear? No. (5 < 8). 

Note.—This means that flexure governs. The flexure formula 
should be used to determine the safe load. 

169. Actual Distribution of the Stress on the Section of a 
Beam.—Assume that, at a point E in a section (Fig. 255a), 
S equals the intensity of the normal stress and >Ss equals that of 
the shearing stress. If the two stress intensities are combined, 
their resultant is the actual stress intensity at that point and 
acts obliquely to the section. 

For convenience, consider a rectangular beam. The normal 
stress figure consists of two triangles (Fig. 2556). The shear¬ 
ing stress figure is parabolic (Fig. 255c). * Note that the shearing 
stress on the outer fibers is zero (Fig. 255c). Hence on the outer 
fibers the resultant stress acts wholly normally, as is shown in 
Fig. 255d. On the other hand, the normal stress is zero at the 

neutral axis (Fig. 2556) so that the resultant stress acts wholly 
tangentially at the neutral axis. At any other point on the sec¬ 
tion, the resultant stress acts obliquely. Figure 255d is, there¬ 
fore, the actual stress figure for that section. 

* The shearing stress acts along the section but for convenience is repre¬ 

sented by lines normal to the section. 
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170. Effect of Shear on a Section of a Beam. Fig. 256.— 
Figure 256a represents a portion of a beam before the beam is 
loaded (side view). Let BD be a plane section. Consider the 
element A. Before the beam is loaded, the angles at the corners 
of this element are all right angles as ^s indicated in Fig. 256a. 

Assume now that the beam is loaded. If there is a shearing 
stress on the section BD, there will be a shearing stress on the 
right face of the element A and hence (Art. 19) there must be 
shearing stresses on all four faces of this element as is indicated 
in Fig. 2566. As a result, the angles at the corners of this element 
are no longer right angles. The shearing stress, however, is 
zero on an outer element and a maximum on an element at the 
neutral axis. Elements along the section, therefore, are une- 

(co (b) 
Fig. 256. Fig. 257. 

qually distorted and the section becomes curved (warped) as is 
indicated in Fig. 2566. In general, if shear acts on a section, that 
section becomes curved.* 

Consider now two sections originally plane and parallel and at 
a distance Ax apart. If the beam carries no load between D 

and D' (Fig. 257), then V = 7'. That is, with no load between 
D and D', the vertical shear at D equals that at Dr and hence the 
angular distortion of an element along BD equals that of the 
corresponding element along B'Df. Accordingly, the curving 
of the two sections as due to equal shearing stresses acting on 
them will have no effect upon the length of a fiber such as EEf. 

Any change in the length of this fiber must be due then to the 

bending moment in the beam. (The effect of bending is not 

shown in the figure.) 

* The angular distortion of an element is very small as a rule. For 

instance, under usual conditions of loading, the curving of a section of a bent 

rubber beam is hardly perceptible to the naked eye. 
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If the beam carries a uniformly distributed load between D 

and D', the vertical shears at the two sections differ by an 
amount 

AV = V' — V = wAx, 

where w = load per unit length of beam. 
It can be shown, however, that for beams of usual proportions 

this difference between the vertical shears at the two sections 
has no appreciable effect upon the length of a fiber such as EE'. 

In general, for beams of usual 'proportions and under usual 
conditions of loading, no appreciable error is made in assuming 
that the longitudinal strain of a fiber is due solely to the bending 
moment in the beam. 

The derivation of the flexure formula is based upon the assump¬ 
tion that, within the elastic limit, plane sections remain plane 
sections during bending. The “assumption of plane sections” 
is, however, merely a matter of convenience since from it follows 
the essential fact that the longitudinal strain of a fiber is directly 
proportional to the distance of this fiber from the neutral surface. 
This may be expressed in another way. It is assumed that the 
longitudinal strain of a fiber is due solely to the bending moment 
in the beam and that this strain is the same as if plane sections 
remained plane sections during bending. 

Note.—The “common theory of flexure” is based upon assump¬ 
tions that are more or less approximations. Elaborate investiga¬ 
tions, both mathematical and experimental, show, however, 
that for beams of usual proportions and under usual conditions 
of loading the results obtained from the common theory are in 
very fair agreement with facts. 

STRESS BEYOND THE ELASTIC LIMIT. MODULUS OF RUPTURE 

171. Distribution of Fiber Stress When the Elastic Limit Is 
Exceeded.* Case I.—For some materials, such as steel, the 

elastic limit in tension is the same as that in compression. If 
then a symmetrical steel beam (an I-beam, say) is overstressed 

(stressed beyond the elastic limit), corresponding fibers on the 

two sides of the neutral axis will be overstressed the same amount. 
If in Fig. 258 it is assumed that fibers up to E and down to Ef are 

* For most engineering materials, the elastic limit and the proportional 

limit are practically the same. When this is not the case, the proportional 

limit is meant. 
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not overstressed, then EE' is a straight line. Beyond E (or E') 

fibers are overstressed. Now the stress in an overstressed fiber 
does not increase as fast as the strain. Thus (Fig. 46) the 
ratio of stress to strain becomes smaller as the prism is over¬ 
stressed. For instance, in the neighborhood of the yield-point, 
the strain is comparatively large with little or no increase in the 
stress. Accordingly, the line EC (or E'Cf) of the stress figure 
(Fig. 258) becomes curved, indicating that the stress in a fiber 
above E (or below Ef) is not proportional to the distance of this 
fiber from the neutral axis. 

Case II.—For some materials, the elastic limit in tension is 
not the same as that in compression. For wood, the elastic limit 
in tension is greater than that in compression. Since wooden 

beams are rectangular as a rule, consider a rectangular wooden 
beam. So long as the elastic limit is not exceeded, the stress 
figure takes the form indicated in Fig. 259a, where N, the neutral 
axis, coincides with 0, the gravity axis (Art. 138). 

Assume now that the elastic limit in the upper side of the beam 
(compression side) is exceeded but that the elastic limit in the 
lower side (tension side) is not exceeded. The stress figure takes 
the form indicated in Fig. 2596. Note that N, the neutral axis, 
does not coincide with 0, the gravity axis. The neutral axis 
is shown as having shifted toward the side that is not overstressed. 

It is readily seen why this should be the case. Since equilibrium 
exists, Qi must equal Q2. That is, the total force Qi above the 
neutral axis must be equal and opposite to the total force Q2 
below the neutral axis. As long as NEC (Fig. 259a) is a straight 
line, N and 0 coincide. When NEC begins to curve (Fig. 2596), 
N must shift down to keep Qi equal to Q2. 
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Note.—For a rectangular section, Qi is proportional to the area 
NECD and Q2 is proportional to the area NBC. Hence, when 
EC becomes curved, N must shift down to keep the two areas 
equal. 

In general, when a beam is overstressed, the neutral axis shifts 

toward that side of the beam that is less overstressed. 

172. Section Unsymmetrical with Respect to the Horizontal 
Gravity Axis. Fig. 260.—Let the stress in the outer fibers at D 

and at B be >Si and S2, respectively. Within the elastic limit 
(strictly, within the proportional limit), 

51 = £1 

52 c2 
(a) 

Evidently, it will be advantageous (as far as strength in 
flexure is concerned) if the beam is so shaped that the elastic 
limit (or the allowable stress) in tension and that in compression 
are reached at the same time. That is [Eq. (a)], if Si is the elastic 
limit for the fibers at D, and S2 is that for the fibers at B, it 
will be advantageous (as far as strength in flexure is concerned) 
so to shape the section that 

51 = Cl. 

52 c2 

Note.—It must be remembered that cost frequently is the 
determining factor. If a wooden beam is used, the extra cost 
involved in shaping the beam as suggested above makes such a 
beam, as a rule, not economical. It is usually more economical 
to use beams of standard shapes. 

Illustration.—For cast iron, the stress-strain relation from the 
start is not the same for compression as it is for tension. More¬ 
over, there is no well-defined proportional limit for cast iron 
in tension. Referring to Fig. 50, note that the stress-strain 
diagram for compression is very nearly a straight line up to 
18,000 lb./sq. in. and that the stress-strain diagram for tension 
crosses that for compression at 9000 lb./sq. in. If the beam 

is so shaped that, when the tension side reaches 9000 lb./sq. in. at 
the same time that the compression side reaches not more than 

18,000 lb./sq. in., the shifting of the neutral axis is not excessive 
and within these limits no great error is made in assuming that 

the stress-strain relation for tension is the same as that for 
compression. 
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Formerly, cast-iron beams were used extensively and they 
were so shaped (Fig. 261) that Ci = 2c2, i-e., so that the outer 
fibers on the compression side were twice as far from the gravity 
axis as the outer fibers on the tension side. 

173. Modulus of Rupture.—For convenience, consider a 
beam symmetrical with respect to the horizontal gravity axis. 
Assume that for this beam the stress-strain relation in compres¬ 
sion is the same as that in tension. Subject this beam to a 
gradually increasing load until it breaks. Now the bending 
moment at the section where the beam fails may be computed 
since the loading is known. Call this bending moment the 
ultimate bending moment and designate it by M". If the beam 
fails at the section BD (Fig. 262), then just before failure the stress 

distribution is indicated by the heavy line. In the figure, 
S" equals the ultimate stress in the outer fiber (actual stress at 
failure) and M" equals the ultimate resisting moment. 

There is no formula that will enable one to find S"y the ultimate 
fiber stress in flexure. The flexure formula does not apply 
since this formula assumes that the stress is triangularly distrib¬ 
uted over the section as is indicated by the dotted line in the 
figure. It is convenient, therefore, to use a fictitious stress. 
This fictitious stress is called the modulus of rupture and is the 
stress that would exist in the outer fiber if at rupture (1) the 

*stress distribution were triangular, and (2) the neutral axis did 

not shift. That is, by designating the modulus of rupture by Sr 

(see figure), 

where M" = bending moment that actually produced rupture 

in a test. 
From the figure it is evident that Sr > S". As stated above, 

we do not know the value of S". It is customary, therefore, 
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to take the ultimate in direct compression or tension (the smaller 
of the two) as a basis for comparison. By designating the 
ultimate in direct compression or tension (no bending) by Su, 
it has been found that Sr may be as much as 100 per cent larger 
than Su- 

The modulus of rupture Sr for a given material depends not 
only upon the properties of that material but also upon the shape 
of the section. Hence, to make the results of different tests 
comparable with each other, such tests are standardized. For 
instance, in the Forest Products Laboratory, the standard size 
for wood is taken as 2 by 2 by 28 in. 

Ductile materials, such as soft steel, will bend without breaking. 
For such a material, the modulus of rupture has little meaning. 
The modulus of rupture is applied primarily to materials that 
will break when slightly bent. For a beam of such a material 
it may be used as a basis for selecting the safe fiber stress. 

Illustration.—The ultimate strength Su of Southern yellow pine 
in direct compression is (on the average) about 4000 lb./sq. in. 
The modulus of rupture Sr of this wood, if used as an ordinary 
beam, is about 8000 lb./sq. in. If now a factor of safety of 4 
(say) is used for this wood in direct compression (no bending), 
thus making the allowable stress in direct compression 

1000 lb./sq. in., 

it seems logical to use a factor of safety of 6 (say) applied to 
the modulus of rupture and thus make 1300 lb./sq. in. the 
allowable fiber stress in a beam of this material (see Art. 30, 

Table II, footnote). 

PROBLEMS 

139. A 14-in. 87-lb. W' beam has a plate, 10 by 1 in., riveted to its top 

flange. Locate the neutral axis N of the compound section. Also find 
In and the corresponding section modulus Z. 

Ans. y = 9.11 in. from bottom of beam; In — 1372 in.4; Z — 150.6 in.3 

140. The beam of Problem 139 is 30 ft. long and rests on end supports. 

What uniformly distributed load can this beam carry if the allowable value 

of S is 18,000 lb./sq. in.? Ans. W = 60,240 lb. 

141. Four planks, 3 in. wide, 2 in. thick, and 10 ft. long, are firmly nailed 

together to form a beam 3 in. wide and 8 in. high. If placed on end sup¬ 

ports, what uniformly distributed load can this beam carry if S = 1200 

lb./sq. in.? Ans. W = 2560 lb. 

142. In Problem 141, if the boards had not been nailed together, what 

total load could the four boards carry? Ans. W = 640 lb. 

143. In Problem 141, spikes 4 in. long are used to hold the boards together. 

Assuming that the safe lateral resistance of one spike is 200 lb., how many 
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spikes should be used near the support per foot of length of the beam to 

hold the two inner pieces together? 

Ans. 15, or one spike to every 2.5 sq. in. of board surface. 

Find a similar result for the quarter point of the span. 

144. A beam is loaded as shown in Fig. 263. Neglect its weight, (a) 

Find a value of P so that the moment at B is numerically equal to the 

largest moment between 0 and B. (b) For this value of P draw the shear 

and moment diagrams, (c) Select an American Standard I-beam to carry 

the loads. S = 18,000 lb./sq. in. 

Suggestion.—First find Ro in terms of P. Then locate the section of 

maximum moment along OB in terms of P. 

Ans. P = 2.28 tons; a 12-in. 35-lb. I-beam. 

Fig. 263. Fig. 264. 

145. A 2^-in. pipe is used as a lever (Fig. 264). The actual outside diam¬ 

eter of the pipe is 2.87 in. and the inside diameter is 1.77 in. The moment of 

inertia of the section of the pipe about a diameter is 2.85 in.4 A man 

weighing 160 lb. places his whole weight upon the outer end of the hori¬ 

zontal pipe. What is the maximum fiber stress in the pipe? Construct the 

shear and moment diagrams. Ans. 7,255 lb./sq. in. 

146. Two loads, of 2 tons and of 3 tons, roll over a wooden beam 16 ft. long. 

The fixed distance between the two loads is 5 ft. For what position of 

the loads will the bending moment be a maximum? Find the maximum 

moment. The wooden beam is 6 in. wide and 16 in. high. What is the 

maximum fiber stress that will be induced in the beam? 

Ans. 1435 lb./sq. in. 

147. A 10-in. 49-lb. W' beam has the dimensions shown in Fig. 265. 

If V is the total shear acting on a section of this beam, find the unit shear 

(a) by means of the exact formula [Eq. (11), Art. 163]; 

if (b) by means of the approximate formula [Eq. (14), 

•> <-0.34" Art. 165]. Ans. 0.331 F; 0.294F. 

JO* 148. A wooden beam on end supports is 6 in. wide 

0.558'' ! an<* ^ *n* The beam carries a central load P. 
' \ i What is the greatest value P may have if the unit 

j - f shear in the beam is not to exceed 125 lb./sq. in. [Eq. 
U-/O'- >1 (12) Art. 164]? Ans. 12,000 lb. 

Fig. 265. 149. A 15-in. 45-lb. American Standard I-beam, 16 ft. 

long and on end supports, was chosen to carry a 

central load of P = 22,500 lb. on the assumption that the load plane would 

be normal to the 1 ... 1 axis. Afterward it was found that the load plane 

made an angle of 6 = 3° with the 2 ... 2 axis (see Fig. 223). What was 

the assumed maximum fiber stress and what was the actual fiber stress in 

the beam? Ans. 17,850 lb./sq. in.; 28,300 lb./sq. in. 
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150. In Problem 149, the load actually makes an angle of 0 — 3° with the 

2 ... 2 axis. Locate the neutral axis N [Art. 159, Eq. (c)]. 

Ans. 57° 45'. 

151. An area 8 in. square has a central circular hole 4 in. in diameter, 

(a) Compute the section modulus with respect to a gravity axis parallel to a 

side of the square. Ans. 82.2 in.3 

(6) Compute a similar value with respect to a diagonal of the square. 

Ans. 58.1 in.3 

152. Compute the greatest value of the distance a at which the load can 

be placed if the stress in the wooden beam 

(Fig. 266), 6 in. wide and 8 in. high, is not to 

exceed 1200 lb./sq. in. Neglect the weight of 

the beam. Ans. a — 5.53 ft. 

153. Take the weight of wood as 48 lb./cu. ft. 

What effect will the weight of the beam have 

upon the maximum fiber stress for the particular position of the load deter¬ 

mined in Problem 152? 

16001b. 
-—20' — 

Fig. 266. 

Ans. It increases maximum S by 120.8 lb./sq. in. 

154. A floor beam of Norway pine is 2 in. wide and 10 in. high. The beam 

rests on end supports and is uniformly loaded. Take S = 1100 lb./sq. in. 

and S8 — 110 lb./sq. in. What is the span limit? That is, for what length 

will the beam be as strong in flexure as in shear? Do not use Eq. (c) of 

Art. 168. Ans. L = 8 ft. 04 in. 

155. What is the maximum safe load the beam of Pfoblem 154 can carry if 

7 ft. long? If 9 ft. long? Ans. 2933 lb., 2716 IK 

156. A 30-in. 180-lb. W* beam of length L is to rest on end supports and 

is to be loaded to its full capacity. S — 18,000 lb./sq. in. and S8 = 12,000 

lb./sq. in. What is the span limit? Given t = 0.67 in. and Z = 555.2 in.3 

. Ans. L — 13.8 ft. 

167. A temporary timber foot bridge consists of wooden planks laid on 

two logs as the sketch indicates. A loading uniformly distributed over the 

entire deck of the bridge and amounting to 90 lb./sq. ft. is to be carried 

safely. Design the planks and the logs for necessary bending strength. 

Use 800 lb./sq. in. bending stress. Consider the weight of the wood (40 

lb./cu. ft.) when determining the size of the logs. 

Ans. 2.5-in. planks; d = 18.8 in. 



CHAPTER VIII 

ELASTIC CURVE 

DEFLECTION OF BEAMS 

174. In the preceding chapter, simple beams were considered 
with special reference to the stresses induced in such beams when 

loaded. Now a beam subjected to a transverse load will 

bend more or less. That is, the transverse load will produce a 
“deflection.” 

In some cases a beam must be able to sustain loads without 
an undue deflection. In other cases, a certain amount of 

deflection is desired. For instance, floor beams must not 

sag to such an extent that the plastered ceiling of the room 
below will crack to an unsightly and unsafe degree. The limit 
for the deflection below which such cracking will not occur 

is usually specified as 1/360 of the span (L/360). On the 
other hand, a leaf of a spring used for a car is particularly dimen¬ 
sioned to give appreciable deflection. Many other instances in 

which the deflection of beams is important might be cited. 
It may be of interest to state here that the theory of deflection 

leads to the solution of statically indeterminate beams as will be 

seen at the end of this chapter. 
The purpose of this chapter is to develop certain fundamental 

equations pertaining to deflection, and to apply these equations 
to a few of the simpler cases of beams. In Chap. IX, the 
moment area method for determining the deflection of beams will 

be considered. 

The usual assumptions will be made in the analyses. The 

most important of these assumptions are here repeated for con¬ 

venience of reference. 

1. Originally the beam was straight, prismatic, and horizontal. 

2. The deflection is relatively slight. 

3. The elastic limit is not exceeded. 
176. Elastic Curve.—The (straight) line going through the 

centroids of the sections of a beam in its unbent state is the 

axis of the beam. The curved line into which this axis changes 
258 
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when the beam is bent is termed the elastic curve of the beam 
(Fig. 268). Equations for this curve are now to be developed. 

Let CD and FG be two sections originally parallel and at a 
distance ds apart but now inclined (as an effect of the bending) 
so that their extensions meet at the point 0 as shown (Fig. 268). 
If the length ds of the elastic curve is considered as an arc of a 
circle, then 0, the center of this circle, is called the center of 
curvature of the elastic curve at the point N (or N'), The 

0 

T 
M 

i\ 
I i I \ 
I l 
« \ I \ 
I l 
I I 

Deflection greatly exaggerated 

Fig. 268. 

radius of this circle is called the radius of curvature and will be 
designated by p.* 

Through the point N' draw the line F'G' parallel to CD. It 
is evident from the figure that the lower fiber has elongated 
an amount d\ = G'G. The relative or unit elongation of this 
fiber is 

From similar triangles (G'N'G and NON'), 

* Draw a circle through three neighboring points in a curve (three points 
determine a circle). When the three points approach coincidence (say 
at B), then the circle is called the osculating circle at B, and the radius of 
this circle is the radius of curvature at the point B. 
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d\ _ c 
ds p 

Or [Eq. (a)] 
c 

e = — 
P 

Now E = S/e (Art. 26) and therefore 

8 = Ee. 
Or [Eq. (b)] 

Q>) 

Substituting this value of S in the flexure formula M = SI/c, 

(1) 

Note 1.—If in a 'prismatic beam (E and I constants) the bending 
moment M is constant between two points, then the elastic curve 
between these two points takes the form of a circle (p = constant). 

For instance, let Fig. 269 represent a 
beam symmetrically loaded as shown. 
The reactions are Ro = P and Rb = P. 
The moment at the point N, a distance 
x from C,is M = P(a + x) — Px = Pa 

= constant for all values of x between C and D. Hence the elastic 
curve of the beam between C and D is a circle of radius 

Fig. 269. 

Note 2.—In calculus it is shown that at a point of inflexion in 
a curve p is infinite.* Putting p = oo [Eq. (1)], M = 0. That 
is, the bending moment is zero at a point of inflexion in a beam. 
For instance, Fig. 270 represents an overhanging beam. At the 
point C in the elastic curve there is a point of inflexion. Hence 
the bending moment at C is zero. Note that the moment 
diagram crosses the base line under C. Conversely, since the 
moment diagram crosses the base line under C, C is a point of 
inflexion in the elastic curve. 

Note 3.—If p is the radius of curvature at a point in a curve, 
then, by definition, 1/p equals curvature at that point. The 

* At a point of inflection in a curve the Concavity shifts from one side to 

the other side of the curve. Thus (Fig. 270), to the left of <7, the concavity 

is above and to the right of C the concavity is below the beam. 
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curvature at a point in a curve is a measure of the bending 
of the curve at that point. If p = qo, the curvature is zero; 
i.e., there is no bending at that point in the curve. Hence, for 
a straight line, p = oo. * 

Example.—For a given beam, I = 721 in.4, 

E = 30,000,000 lb./sq. in., 

and the maximum bending moment in the beam is 

M = 180,000 ft.-lb. = 2,160,000 in.-lb. 

Fig. 270. 

0 

What is the radius of curvature at the section of maximum 
moment? 

P = 
El 
M 

= 10,000 in. = 833 ft. 

Hence the curvature is (using the foot as the unit), 

1 _ 1 
P 833 

0.0012 (radians per foot of arc). 

176. Differential Equation of the Elastic Curve.—In calculus 
it is shown that, if p is the radius of curvature at a point (x, y) 
in a curve (Fig. 272), 

* Let AB be the arc of a circle of radius p (Fig. 271). Let As be an incre¬ 

ment of the arc and A<£ the angle subtended at the center of the circle. By 

definition, 

» .* x arc As 
Ad> (m radians) = —-p— = —• 

radius p 

Or 

A0 1 

As p 

If As = 1, then A<t> = 1/p; that is, 1/p, the curvature of the circle, equals 

the angle subtended at the center of the circle per unit length of arc. 
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d2y 

in which dy/dx = slope of the tangent at the point'(a, y) = tan 0.* 

Equation (a) is applicable to any curve. When applied to the 
elastic curve of a beam (originally straight), this equation 
can be simplified. Take the X-axis parallel to the unbent 

* At the point N (Fig. 272), dy/dx = tan 6. By differentiation 

d2y „ dd , 2 v de , /di/\2~| dd 
=secS 6 -& =(1 +tan2 e)irx = L1 + Xdx) \Tx 

Solving for dO/dxt 

d2y 

do _ dx2 

dx 

■ + (2)' 
From trigonometry, 

pde = ds = s/dx* + dy2 = dxyji + ^*0*. 

S-3>+QDT 
Equating values of dO/dx [Eqs. (6) and (c)] and solving for 1/p 

d2!/ 

dx2 

['+(2)7 

(6) 

(«) 
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beam (Fig. 273). Since the deflection is small, the slope at any 
point in the elastic curve is so small that (dy/dx)2 may be neg¬ 
lected when compared with unity. Hence, if the X-axis is parallel 

to the unbent beam, we may put 

l = tfy 
p dx2 

Substituting in Eq. (1), i.e., in the 
equation 

(1) Fig. 273. 

we obtain 

as the approximate differential equation of the elastic curve. 
177. Rule of Sign.—When the equation 

is used, the sign of M and that implied in d2y/dx2 must be 
considered. 

It was agreed (Art. 120) to consider the bending moment M 

at a section in a beam as positive (+) if the concavity is above 
the beam (compression in the upper fibers) and negative (—) 

Fig. 274. 

if below. If the moment of an 

upward force is taken as positive 

and that of a downward force as 

negative, the sign of M will take 

care of itself. 
Figure 274 represents the 

elastic curve for a portion of a 
beam (bending much exagger¬ 
ated, beam originally straight 
and horizontal). Since the 
concavity is above the beam, 
the bending moment at N is 

^ positive by assumption. Take 
0 as the origin and draw the 
axes as shown. Note that the 

7-axis is positive upward. As the point (x, y) moves from N to 
N'\ the angle 0, and therefore tan 6 or dy/dx, increases. If a 
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quantity increases as x increases, its derivative with respect to x 

is positive. Hence, if the concavity is above the beam and if y 

is measured upward as positive, or is intrinsically 

positive; i.e., M is positive by assumption, and d2y/dx2 is intrinsi¬ 
cally positive. On the other hand, if the concavity is below the 
beam, M is negative by assumption, and d2y/dx2 is intrinsically 
negative. Hence, in applying Eq. (2) to a beam originally 
straight and horizontal, sign will take care of itself if the following 

rule is observed: 

1. Take upward as the positive direction of y. 

2. When determining the bending moment M at a section, 
take the moment of an upward force as positive and that of a 
downward force as negative. 

Illustration. Fig. 275.—At the point N 

= RoX - P(x - a). 

Note that, if y is positive upward, the rule of sign is observed 
and that therefore the equation is consistent as far as the implied 

signs are concerned. 
178. Note on the Calculus.—The student is expected to be 

familiar with the calculus. The following discussion may be 
helpful. Let ONB (Fig. 276) be a curve whose equation is 

y = axz + bx2 + CiX + C2 (a) 

where a, b, Ci, and C2 are known constants. If in this equation 
a value for x is substituted, the y of the corresponding point in 

the curve is determined. 
Differentiating Eq. (a) with respect to x, 

= Sax2 -I* 2bx -f- C\. (6) 
ax 

Note that the constant C2 disappears. Equation (6) gives 
the slope of the curve at.the point (x, y) of the curve. Differ- 
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entiating Eq. (6), 

Note that the constant Ci disappears. 
Assume now that Eq. (c) is given and that, starting with this 

equation, we are required to retrace our steps and find Eq. (a) 
This reverse process is called integration. Sometimes it is called 
taking the anti-derivative. 

Integrating Eq. (c), taking the first anti-derivative, we obtain 
Eq. (&). Note that the constant Ci must be introduced. This 
constant now is not known but must be determined from known 
conditions. For instance, if the values of x and dy/dx are known 
for a given point in the curve, say for the point N, these values 
may be substituted in Eq. (b) and the constant Ci may be 
determined. With C1 known, Eq. (b) is fully determined. 
Integrating Eq. (5), finding the second anti-derivative of Eq. (c), 
we obtain Eq. (a). Note that the constant C2 is not known but 
must be determined from known conditions. For instance, if x 

and y are known for some point, say the point 0, (72 can be 
determined. 

Note.—It may be of interest to note that in the integral 

S*dy = faXf(x)dx 
the lower limits merely state that y = b when x = a, and that 
this integral is equivalent to saying that 

y = ff(x)dx + C 

where C may be determined from the limiting condition that 
y = b when x — a. 

179. Case I. Deflection of Simple Beam on End Supports. 

Fig. 277.—Central load P. E and I constant. Weight of beam 
neglected. 

Each of the pier reactions is P/2. T#ke 0 as the origin of 
coordinates and y as positive upward. Let N be any point 
between 0 and A, A being the center of the beam. Considering 
forces to the left of the section, the bending moment at A is 
Mx = Px/2. Since the rule of sign is observed (Art. 177), 

El 
dx2 2 
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Integrating 
Px* 

4 
+ Ci (a) 

in which Ci is a constant of integration. Equation (a) holds 
for any point between 0 and A and therefore it holds for the 
point A. At A the tangent to the elastic curve is horizontal 

Elastic curve 

(b) 
Figs. 277a and b. 

(zero slope). Putting x = L/2 and dy/dx = 0 in Eq. (a) 
pj 2 pj2 

Em = it + Ci or Ci = _ir 
Substituting this value of Ci in Eq. (a) 

WTdy _ Px* PL* 

Integrating again, 

FTv - PxS PUx A- C 
EIy ~ 12 “ ~W + °2- 

This equation holds for any point between 0 and A. It holds 
therefore at the point 0 where both x and y are zero. Putting 
x = 0 and y = 0 in Eq. (c), C2 = 0. Therefore 

EIy = l2~ ~W’ (d) 

This is the equation of the elastic curve between 0 and A 
with reference to an origin of coordinates at 0* 

* The equation of the elastic curve between A and B with 0 as the origin 
of coordinates takes a different form since, for a point between A and B, 

Now, y = 0 when x = L. 
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The maximum deflection is at A, the center of the beam. 
Hence, putting x = L/2 in Eq. (d). 

1 /PL3 _ PL3\ PZ^3 
#/\96 32/ 48 

The minus sign indicates that the deflection of A is opposite to 
the positive direction of y. If this is understood, the minus sign 
may be omitted. With the maximum value of y represented 
numerically by d, we have 

d = 
PL3 

48 El (3) 

Note.—When Eq. (3) is used, it is necessary to be consistent in 
the use of units. If E is in pounds per square inch, and I in 

inches4, P must be in pounds and L in inches. The deflection d 
will then be expressed in inches. 

Problem 158.—If the center of the beam in its deflected position is taken 

as the origin (Fig. 277c) 

M3 -S(S")- 
Derive the equation of the elastic curve. 

PLx* Pz9 
Ely = 

8 
Show that 

12 

1 PL9 
2/max. + 4g EI 

180. Case II. Simple Beam on End Supports. Load Uni¬ 
formly Distributed. Fig. 278.—Taking 0 as the origin, the bend¬ 
ing moment at the section N (any point in the beam) is 

,, wLx wx2 



Hence 

Integrating, 
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-pijd2y _ wLx _ wx2 
dx2 ~ ~2 ~2" 

Tnjdy wLx2 wx3 ~ 
EIdx = “1 (T + Cl- 

At the point A, the center of the beam, dy/dx = 0 and x = L/2. 
Substituting these values in Eq. (a) and solving for Ci, 

Therefore 

mL3 wL3 
“16 + 18 

_ wLx2 wx3 wL3 
dx 4 "6“ "24 ‘ 

Integrating again, 

r7T mLx3 wx* wL3x . ~ x 
** = 12- " 24- - "2T + ^ (C) 

At the point 0, x = 0 and y = 0. Hence C2 = 0. 
Finally, 

y-m T mLx3 wx4 wL3x , 7N 
TT - 24 --M- W 

Aote.—Since A may be any point in the beam, the point B may 
be taken to determine C2. At By y = 0 and x = L. Sub¬ 
stituting in Eq. (c), C2 = 0. 

The maximum deflection is at A, the center of the beam. 
Putting x = L/2 in Eq. (d) 

= -( *• EI\ 

wL4 wL4 wL4 
1)6 384 48^ ') = - 

5wL* 
3841/ 

5 FL3 
"384 £/ ‘ 

Therefore, if d designates the numerical value of the deflection, 

- 5 10L4 _ 5 FL3 
d 384 El 384 ' 

(4) 
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Problem 169.—If the center of the beam is taken as the origin, show that 

,, wL(L \ w(L \2 
M-si?-*) - 2(2-x)’ 

and that the equation of the elastic curve becomes 

181. Case III. Cantilever Beam with Concentrated Load P at 
End. Fig. 279.—Take the origin 0 at the free end of the beam in 
its position before the load is applied. At the section N, distant x 

Fig. 279. Fig. 280. 
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Problem 160.—Taking B as the origin (Fig. 280), Mx = —P(L — x), 
and the equation of the elastic curve is 

!==&== 

W*wl 

Fig. 281. 

Ely = - 
PLx2 Px3 

+ 6 ’ 
(Show.) 

182. Case IV. Cantilever Beam with Uniformly Distributed 

Load. Fig. 281.— 

Therefore 

m = = Ei^y. 
Mx 2 dx3’ 

Elf = 
ax 

Ely = 

y max. = 

wx3 wL3 
6~+ ir; 

wx 
~24 

4 wL3x 
+ 6 

t«L4 
8 ' 

y>L* WL3 
8EI 8 El 

d = 
wLA WLA 
8El 8EI' 

(o) 

(6) 

183. Case V. Simple Beam on End Supports Bearing a Single 
Concentrated Load P in an Eccentric Position. Fig. 282.—To find 

Y 

Ro, the reaction at 0, consider the whole beam free and put 
2 moments about B equal to zero. Similarly, 2 moments about 

0 gives Bb. 

L 
Rb 

Fb 
L 

The bending moment at a section N that lies to the left of the 
load is Mx = Pcx/L in which x may have any value between 0 
and b. The moment at a section that lies to the right of P is 
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Mx PCX T>t JA _ _ P(X _ ft) 

in which x may have any value between b and L. Accordingly, 

El 

To the left of the load 
d2y _ Pcx 
dx2 *L 

(a) 

Ely =^ + ClX + C, (c) 

To the right of the load 

(oo 

TPTdv _ ^ca;2 p(x - w , 
2L 2 + 

C{. (6') 
FT,. _ Pcx® P(* - 6)3 
EIy~-QL-6-+ 

cix + a. (co 
Note particularly the integra¬ 
tion of the term in (x — 6).* 

Equation (c) is the equation of the elastic curve OA and 
equation (c') is the equation of the curve AB. Each of these 
equations contains two undetermined constants which must be 
found. To determine the four constants Ci, C[, C2, and C2, we 
shall make use of four known conditions; viz., 

1. At the point A there is a common tangent so that dy/dx of 
curve OA equals dy/dx of curve AB. 

2. At 0, the deflection is zero; y — 0 when x = 0. 
3. At A, the y of curve OA equals the y of curve AB. 
4. At 1By the deflection is zero; y = 0 where x — L. 
First Condition.—If x is made equal to b in Eqs. (b) and (V), 

the right-hand members of these equations are equal. 

Pcb2 , „ Pcb2 

2r+Cl = ~2L 
- 0 + C[. 

* The integral /(ax 4- b)ndx is evaluated in a simple manner by making 
use of the formula 

un+l 
n + r 

Note that, if u = ax + 6, du = adz. To evaluate the given integral, pro¬ 

ceed, therefore, as follows: 

f(ax + b)ndx = - f (ax + b)nadz = - f (ax -f b)nd(az + b) = - —.l. 
J aj aj a n -+* 1 

For instance, 

J*(i - b)Mx = J*(® - 6)Jd(i - 6) = fe ~ 6)i- 
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Therefore 1 
Ci = C[. f- \ 

Second Condition.—If in Eq. (c) x is put equal to zero, y also 
is zero. Therefore 

C2 = 0. 

Third Condition.—If x is made equal to 6, the right-hand 
member of Eq. (c) is equal to the right-hand member of Eq. (cf). 
That is, since C[ = Ci and C2 = 0 as proved above, 

Therefore 

Prh 3 

t£" + Cib = ir -0 + CJ> + c*• 

Ci 0. 

Accordingly* Eqs. (c) and (c') may be written (Ci = Ci, C2 = 0, 

Ci = 0) 

Ely 

Ely 

Pcx3 
6L 

Pcx** 
"6L 

+ Cix. 

p(* - by3 

6 
+ Cix 

(d) 

(d') 

Fourth Condition.—If x has the value L, y in Eq. (d') equals 
zero. 

PcL3 P{L - b)3 
0 = 

6L 6 
+ CiL. 

Or 

„ _ PcL3 , P{L - b)3 
Cl~ 6L + 6L ' 

Since L — b = c, this may be simplified. 

C — _P°Li , Pc3 _P^_(i 2 _ c2) 
Cl 6L + 6L 6L{ h 

If this value of Ci is substituted in Eq. (d), we have 

Pcx3 Pc(L2 - c3)x 
Ely = 

6L 6L (e) 

This is the equation of the elastic curve for the part OA. 
In (Fig. 282), b is larger than c; hence j/m«. occurs to the left 

of P. If D is the point at which the maximum ordinate is found 
(see figure) then at D the slope dy/dx is zero. Differentiating 
Eq. (e) and putting dy/dx = 0, 
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_ Pcx2 Pc(L2 — c2) 
" ~2L 6L 

Solving for x, 

(/) 

This locates the point of maximum deflection x\ measured from 0- 
If this value of a; is substituted in Eq. (e), ?/,„*. is determined and 
is found to be 

_ pc(L2 - c2y 
3/nu». - 9£.7La/3 (g) 

If c is larger than b, take point B as the origin. The result 
is to replace c by b in Eqs. (/) and (g) and to measure x from B. 

From Fig. 282 it is seen that there are two limiting cases; 

viz., c = 0 and c = L/2. If in Eq. (/), c = 0, then Xi = L/\/3; 
and if c = L/2, Xi = L/2. It thus appears that the point 
in the elastic curve that has the greatest deflection cannot be 

more than L/\/3 — L/2 from the middle of the span, i.e., 
0.0733L or nearly L/13. For instance, if the beam is 13 ft. in 
length, the point of maximum deflection lies within 1 ft. from the 
middle of the beam. Moreover, at the point of maximum deflec¬ 
tion the tangent to the elastic curve is horizontal and in the 
neighborhood of that point y does not vary appreciably. 

In general, no appreciable error is made by assuming that the 
maximum deflections of a simple beam on end support occurs at 
the middle of the span for any system of loading. 

CONTINUOUS BEAMS 

184. The beams so far considered are statically determinate; 
the available equations of equilibrium are sufficient in %.e 

number to determine the reac¬ 
tions. Thus for simple beams 
there are two reactions. 
These may be determined 
from the two equations 'EMq = 

0 and 2Mb = 0. 

i_i mmmuiiTmrnuTT] 

w 
Fig. 283. 

Frequently a beam is supported at three or more points 
(Fig. 283) or is “built in” at one end and simply supported at one 
or more points (Fig. 284a) or is built in at both ends (Fig. 285a). 

Such beams are statically indeterminate. There are at least 
three unknowns (reactions) and at most two equations of equili- 
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Fig. 284. Fig. 285. 

Fig. 286. 
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brium to determine them (Art. 111). Statically indeterminate 
beams often are called continuous beams. 

In dealing with a continuous beam with one end built in 
(Fig. 284a), it is simpler to cut the beam just to the left of B and 
to take the part of the beam to the left of B free as is shown in 
Fig. 2846, where MB is the moment of the couple and VB is ‘the 
shear acting on the section at B. For convenience the three 
unknowns Ro, VB, and MB will be called the three reactions. 
In like manner, Fig. 285a represeiits a continuous beam with both 
ends built in, and Fig. 2856 represents this beam taken free. The 
four unknowns V0, M0, VB, and MB will be called the four reactions. 

To determine the reactions of a continuous beam it is necessary 
to consider the deflection. This is equivalent to saying that the 
reactions of a continuous beam depend upon the way the beam 
bends. 

In the remaining articles of this chapter, a few of the simpler 
cases of continuous beams will be considered primarily for the 
purpose of showing how the equation of the elastic curve may be 
used to determine the reactions. In Chap. IX, a simpler method 
of procedure will be used and continuous beams loaded in 
various ways will there be considered. 

185. Fixed End.—If a built-in beam is so firmly held that the 
tangent to the elastic curve at the built-in end does not change 
its direction when the beam is loaded, the end is said to be 
fixed. In this chapter, unless a statement is made to the con¬ 
trary, built-in ends are assumed to be fixed horizontally. That is, 
at a built-in end, dy/dx = 0. 

186. Case I. Beam with One End Fixed Horizontally. Other 
End Resting on Support. Uniform Load. 0 and B at the Same 
Level. Fig. 286.—If the axes are chosen as indicated in the 
figure, 0 being the origin, 

d wx* M x — RoX 2 " 

“S - «<■* - f- <“> 

Figure c gives the elastic curve. Note that there are three limit¬ 
ing conditions, 

(1) dy/dx = 0 when x = L. 
(2) y = 0 when x — 0. 
(3) y = 0 when x = L. 
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These three limiting conditions suffice to determine the two 
constants of integration C\ and Ct and the reaction Ro- 

Integrating Eq. (a), 

WTdy _ Rox* wx8 
Mdx 2 6 (M 

At B the tangent to the elastic curve is horizontal. 
dy/dx = 0 and x = L (first limiting condition), 

0 = 
RoL2 

-t-3 + C- 
Therefore 

n _ RoL2 wLz 

Cl - 2 + 6 ’ 

Putting 

Substituting this value of C\ into Eq. (6), 

Fjdy _ Rox2 m3 /?0L2 mL3 

XTx ““2 T" + ~6~‘ 

Integrating again, 

R0xz wx4 , wZ/3z , ^ N 
^ = _ _ _ _ -2- + -g- + (C2 = 0). (c) 

At 0, x = 0, and y = 0 (second limiting condition). Therefore 

= 0. 
To determine R0, use the third condition, y = 0 where x = L. 

RoL* wLi RoL* wLA 
0 6 24 2 + 6 ' 

Or, solving for Ro, 

R0 = ^wL = lw* (d) 

187. Case I {Continued). Shear and Moment Diagrams, 2?£c. 
Fig. 286.—Knowing R0, we can now proceed exactly as was 
done for simple beams (Art. 130). 

* Assume that the support 0 sinks an amount d and that the built-in end 
rotates counterclockwise through an angle a (in radians) as shown in Fig. 287. 
With 0 as the origin and upward as positive, the limiting conditions are 

(1) dy/dx = a when x — L. 

(2) y = 0 when x - 0. 
(3) y — d when x = L. 

The three limiting conditions suffice to determine the two constants of 
integration Ci and C2 and the reaction Ro> 
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1. Reaction at 0 is R0 = f wL = §TF. 
2. £7&ear Diagram.—The vertical shear just to the right of 

0 is V = |wL; just to the left of B, V = fwL — wL = —\wL. 
Since the shear diagram under a uniformly distributed load is 
a sloping straight line, draw the straight line O’B' (Fig. 286d). 

The shear is a maximum (numerically the largest) at B. 
Therefore 

Vm = g»L. (a) 

3. Maximum Bending Moment.—The moment is a maximum 
(numerically the largest) either at k or at B. To locate k, put 

F* = \wL — wx = 0. 

That is, k is |L from 0. 

The moment at Z? is 

Mb = - ^ = = -\wL. (b) 

The moment is a maximum at 

Mm = iTFL. (c) 

4. Moment Diagram.—Plot the moments M* and ilf* (Fig. 
286e and draw the curve OkfB' to represent a parabola. (The 
moment under a uniformly distributed load is a parabola.) 

* The shear area theorem (Art. 125) may be used to advantage here. 

M* = area of shear diagram between O and k = ^ X 
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As a rule, the shape of the parabola may be approximated. 
Note, however, that the tangent to the curve at kf should be 
horizontal. At E the moment goes through zero. Hence the 
point E in the elastic curve is a point of inflection. That is, 
at E the concavity shifts from one side of the beam to the other 
side. 

Problem 161.—Locate the point of inflection for the beam of Fig. 286. 

Ans. x = |L. 

188. Case II. Beam on Three Supports at the Same Level. 
Spans of Equal Length. Load V niformly Distributed. Fig. 288.— 

W=wt W* wL 

fii m Li f r:.i iiiiiiu jnimni 

.-Is.L' •• 

Owing to symmetry, the tangent at B remains horizontal. The 
span OB bends therefore exactly as if the end B were fixed 
horizontally. That is, the results of Case I apply to either 
span of the present beam. 
Therefore 

Ro = |«L - = Rc. (a) 

From = 0, 

Ro "I- Rb "I- Rc — 2wL — 0. 
Or 

Rb = J/wL = 

The moment is (numerically) a maximum at B. 

Mn = \wL2 = \WL. 

(b) 

(c) 
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189. Case III. Beam Fixed at Both Ends. Supports at the 
Same Level. Load Uniformly Distributed. Fig. 289.—Take OB 
free (Fig. 2896) and consider V0, M0, VB, and MB as four reactions 

Fig. 289. 

to be determined. With 0 as the origin, the bending moment 
at a section distant x from 0 is (Fig. 289c) 

Mx= Vox - Mo - ~ (a)' 

Therefore 

m2‘ m 
This equation contains the two unknowns Vo and Mo] and the 

integration introduces the two constants of integration Ci and C2. 

We need then four limiting conditions. 
In this particular case, V0 may be determined directly from 

the principle of symmetry. That is, from symmetry, 
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Vo = V* = - - —• Ko kb 2 2 

Substituting this value of V0 in Eq. (b), 

&y wL 
EIdx2 2 

Mo 
wx* 

Only three limiting conditions are now required. Integrating, 

nA , - Ma - =.'+ (Ci - 0). 
ax 4 6 (c) 

At 0, rr = 0 and dy/dz = 0 (see Fig. 289d). 
Therefore 

Ci = 0. 

To determine Mo, use the condition that at B the tangent to the 
elastic curve is horizontal. That is, in Eq. (c) put dy/dx = 0, 
and x = L. 

o - Hf - MoL - !f. 
4 6 

Or 
Mo — i\wL2 = j^WL. 

Substituting this value of M0 in Eq. (c), 

(d) 

Ejdy = wLz2 
dx 4 

wL2x 
~12 

wx6 
IT 

Integrating, 

Ely 
wLxz 
~12 

wL2x2 
“24“ 

wx4 
~24 

+ (C2 = 0). (e) 

At 0, x = 0, y = 0. Therefore C2 = 0. 
The maximum deflection occurs at the middle of the span. 
Putting x = L/2 in Eq. (e), 

Therefore 

Ely, 
wL* _ wL4 wL4 
“96 ” "96 ” 384 

wL* _ WL3 

384M ” 384E/' 

tuL4 

384 

if) 

190. Note.—Referring to Fig. 2896, note that M0, F0, Af*, 
and VB are considered external reactions. When the beam 
is taken free, these external reactions must be represented. As 
a rule, it is found convenient to represent a reaction as acting 
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in its true direction. If this direction is not apparent, it must be 
assumed. 

In general, if the equations of equilibrium are written for an 
assumed direction of a reaction and if the sign of this reaction 
as resulting from the solution of equations of equilibrium (or of 
equations derived from them) is positive, the assumed direction 
of the reaction is correct. If the sign is negative, the reaction 
acts in the opposite direction. For instance, the couple at 0 
(Fig. 2896) is.drawn so as to produce tension in the upper fibers. 
On this basis the moment at 0, i.e., Mo, is found to be equal to 
+^WL [Eq. (d)], the plus sign indicating that the direction of 
the couple is correct. 

It was agreed to designate a moment as negative if it produces 
tension in the upper fibers (Art. 120). Hence, after both the 
direction and the magnitude of the moment at 0 have been 
determined, this moment may be written 

Mo = -i\WL, • (a) 

the minus sign now indicating that the moment produces tension 
in the upper fibers. 

It is very important to distinguish between the sign of a 
force or a moment resulting from the solution of an equation 
and the sign that later must be given this force or this moment 
so as to be consistent with the convention of signs. When the 
moment diagram is constructed, the convention of sign must be 
followed. Hence in the moment diagram M0 must be represented 

as a negative moment. 
191. Case III {Continued). Shear and Moment Diagrams, Etc. 

Fig. 289. 

(1) Vo = ~ Mo = —~WL. 

(2) Shear Diagram. Fig. 289e.—The shear diagram under 
a uniformly distributed load is a sloping straight line. 

(3) Maximum Bending Moment.—The moment at the middle 

of the beam is 

M _ W L 1 wr W L _ ,1 jjrjj 
Mc 2 X 2 12^ 2 X 4 
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Hence the moment (numerically) is a maximum at the supports 
and is (without regard to sign) 

Mm = *TTL. 

(4) Moment Diagram.—The bending moment at 0 is —^WL, 
and at C it is +^fWL. Hence (Fig. 289/) draw O'C'B' to repre¬ 
sent a parabola. (The moment under a uniformly distributed 

Fig. 290. 

load is a parabola.) 
192. Case IV. Beam Fixed 

Horizontally at Both Ends. 
Supports at the Same Level. 
Concentrated Load at Middle of 
Span. Fig. 290.—The student 
should verify the following 
results: 

P P 

p 
M x = -gc — Mo- 

EITx = ~ Mo* + 
(Ci = 0). 

The plus sign indicates that the couple at 0 is properly drawn. 

Px3 PL v. x2 m nN 
EIy = *12 " T x 2 + (C* = 0)- 

d = i^2 w (numerically)- 

„ _ P _PL 
2 X 2 8 

M _PL 
Mm — g ” 

PL 
8 ’ 

If the convention of sign is followed, 

PL 
Mo = -• 8 

and 
PL 

Me « +-tF 

(o) 

(6) 

193. Advantages of Continuous Beams.—The equation of safe 
loading is 
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Max. M — M (a) 

Given a horizontal beam of length L. If the ends of this 
beam are built in horizontally (vertical load Pi concentrated 
at the middle, Art. 192), 

M 
LV1 m — 8 * 

Therefore [Eq. (a)] 

PjL = s,l 
8 c 

Or 
_8S7 

Pl Lc ' (b) 

Assume now that the ends of this beam rest on supports 
(P2 concentrated at the middle, Art. 142, Fig. 284), 

M IVlm ^ 

Or [Eq. (a)] 
PiL S'I 

4 c 
Or 

p 4/S'7 
Pt Lc' 

By comparing Eqs. (b) and (c), it is seen that Pi = 2P2. 
That is, the beam with ends built in can carry twice the load that 
the same beam can carry with ends resting on supports (loads 
concentrated at the middle). 

On the other hand, the deflection of the first beam is (Art. 192) 

, _ 1 P^z 
ai 192 El ’ 

while that of the second beam is (Art. 179) 

, _ 1 P*L* 
~ 48 El ‘ 

Hence, since Pi = 2P2, di = d2/2. That is, the deflection of 
the beam when built in is one-half that of this beam when resting 

on end supports, the built-in beam carrying twice the load that 
the same beam can carry when resting on end supports. 
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In like manner, it can be shown that, if the beam is uniformly 
loaded, 

Wi = 1.5TT2 and di = 0.30d2. 

Note.—The tendency in modern steel construction is to use 
continuous beams with the ends riveted or welded to the vertical 
frame, thus making the whole structure statically indeterminate. 
This increases the rigidity of the structure very much and results 
in increased strength or in economy of material. 

194. Method of Equating Deflections.—An examination of the 
equations of the elastic curves developed in the foregoing articles 
will show that the deflection of a given point in a beam is directly 
proportional to the load producing this deflection. For instance 
(Art. 179), if a simple beam on end supports is loaded centrally, 
the equation of the elastic curve is 

Hence, for a specified value of x, y is directly proportional to P. 
If P is doubled, y is doubled. The principle of superposition 
may be used, therefore, to determine the deflection due to two 
or more loads (Art. 52). That is, the deflection of a point in a 
beam due to two or more loads equals the algebraic sum of the 
deflections of this point if each load in turn acts alone. For 
instance, if di equals the deflection of a point if a load Pi acts 
alone, and d2 equals the deflection of this point if P2 acts alone, 
then d = di + d2, equals the deflection of this point if both loads 
act simultaneously, provided the elastic limit is not exceeded. 
Frequently, this principle may be used to determine the reactions 

for a statically indeterminate beam 
as the following examples will 
illustrate. 

Example I. Fig. 291.—Beam 
with one end fixed horizontally and 
the other end resting on a support. 

Supports at the same level. Load uniformly distributed. If the 
support 0 is removed, then the downward deflection of 0 is 

1 WL3 
di = g Zgj- (Art. 182). 

If the load W is removed and R0 is assumed to act, then the 
upward deflection of 0 would be 

Fig. 291. 
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<k = * 
1 R0L3 

(Art. 181). 
3 El 

Since the point 0 does not move, the two deflections are equal. 
Hence 

1 WL3 1 RoL3 

Therefore 
8 El 3 El 

Ro = \W. 

This agrees with the result obtained in Art. 186. 
Example II. Fig. 292.—Beam on three supports. Supports 

at the same level. Spans equal. Load uniformly distributed. 
If the support B is removed, the 

downward deflection of the point B 
would be Ro 

d i = 
5 (2W)(2L)S 

384 El 
(Art. 180). ■ 

Rb 

1 w w 
111111 itt m mniimii 

$8 3 B 

Fig. 292. 

Rc 

If the reaction RB is assumed to act alone, the upward deflec¬ 
tion of B would be 

j RB(2L)3 /a i S7n\ 
~~ 48El ^rt* 

Since the point B does not move, these deflections are equal. 
Hence 

Rb(2LY _ 5 (2W)(2L)3 
48 El 384 pi 

Therefore 

Rb = 

This agrees with the result obtained in Art. 188. 
Example III. Fig. 293.—Beam C is fixed at B and the other 

end rests on beam D. Beam D rests on two end supports. 
Point 0 is the middle of beam D. Before the load W was applied, 
both beams were horizontal and just touching at 0. Find 
the pressure P between the two beams at 0 after the load W 
has been applied. Let Ei, h, and Li refer to beam C; and 

Et, 12, and L2 to beam D. 
Consider beam C. The deflection of the point 0 due to 

W and P is 

j _ 1 WL\ 1 PL\ 
dl ~ 8 EJt 3 EJi 
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Consider now beam D. The deflection of 0 due to P is 

Fig. 293. 

The two deflections are equal. Hence 

1 WL\ 1 PL\ = 1 PL| 
8 E\I i 3 E\I i 48 EJ2 

The only unknown in the last equation is P. If = Eif 
Li = L2, and h = 2/2, the last equation becomes, 

Q-3.5 tops -W — -p = —p 
8 3 24 

; Incompressible 
S block *"-> 

p = 

PROBLEMS 

p p 162. Given two beams as shown in Fig. 294. 

p I i p Initially there is a gap of ^ in. between beam 

(2) 1 and the incompressible block B. A central 

H pt-/5'-J ^ load of 3.5 tons is gradually applied to beam 1. 

Fig. 294. The beams are 7-in. beams. I = 42 in.4 for 

each beam. Length of beams = 15 ft. E = 

15,000 tons/sq. in. Find the final pressure P exerted by the upper beam 

(beam 1) on the block. Also find the deflection of the lower beam 

(beam 2). 

HirU: di = di — rV Ans. P = 1.49 tons. d2 = 0.2875 in. 

163. A 10-in. 40-lb. standard I-beam, 30 ft. long, rests on end supports. 

It carries two loads, P ... P (each 2 tons), at the one-third points of the 

span. Find the radius of curvature at the center; at the J points. Neglect 

weight of beam. Ans. p = 823 ft. 
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164. A bar of high carbon steel, 1 in. wide and f in. thick, is to be bent into 

the form of a circular arc. The stress in the outer fibers is not to exceed 

60,000 lb./sq. in. Find the minimum radius of the circle. 

Arts, p = 7.81 ft. 

165. A 12-in. 50-lb. standard I-beam is 30 ft. long and rests on end sup¬ 

ports. It is loaded to its full capacity at 18,000 lb./sq. in. The load is 

uniformly distributed. Find the deflection at the middle. E = 30,000,000 

lb./sq. in. 

Ans. W = 20,120 lb. (including the weight of the beam); d = 1.35 in. 

166. In Problem 165, find the deflection 10 ft. from the end. 

Ans. d = 1.17 in. 

167. In Problem 165, find the radius of curvature of the elastic curve at the 

middle of the beam. Ans. p — 10,000 in. 

168. The beam of Problem 165 is not to deflect more than 3^ of its length 

(the limit usually given for plastered ceilings). Find W. Compare the 

result with that of Problem 165. What is the maximum fiber stress induced 

in the beam? Ans. W — 14,890 lb. (including weight of beam). 

169. In Problem 165, assume that the ends of the beam are built in hori¬ 

zontally. Find W and d. Compare with the results of Problem 165. 

Ans. IF = 30,180 lb.; d = 0.405 in. 

170. A simple beam on end supports carries a uniformly distributed load 

IT. Show that the maximum slope of the elastic curve is 

dy WL2 
dx 24 El 

What is the slope at the J points? 

dy = 13WL2 

dx 648El 

171. In Problem 165, what is the angle which the tangent to the elastic 

curve makes with the horizontal at the supports? At the \ points? 

Ans. tan 0 = 0.012; 0 = 41'; tan 0 = 0.00578, 0 = 20'. 

Note.—In Art. 176, it was stated that, since (dy/dx)2 is small when com¬ 

pared with unity, it may be neglected in the calculus expression for 1/p 

[Eq. (a)]. A rigorous analysis shows that we may put 1/p = d2y/dx2 even 

if dy/dx is considerably greater than the value found for the beam of Problem 

171 above. 

172. A steel bar, 1 in. square and 4 ft. long, is used as a cantilever. A load 

of 30 lb. is hung from the free end 0. The deflection of 0 is 0.444 in. Find 

the modulus of elasticity. Ans. E = 29,890,000 lb./sq. in. 

173. A steel rod 1.5 in. in diameter is built in at one end, the other end 

resting on a support. Both supports are at the same level. What is the 

maximum length this rod may have if, owing to its own weight, the maximum 

fiber stress is not to exceed 20,000 lb./sq. in.? Steel weighs 490 lb./cu. ft. 

Ans. 76 ft. 9 in. 

174. A 4- by 12-in. wooden beam is 6 ft. long. One end is built in hori¬ 

zontally. The other end is supported by a vertical rod 0.5 in. in diameter 

and 30 ft. long. The beam carries a uniformly distributed load IT = 12,600 
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lb. For the steel, E = 30,000,000 lb./sq. in.; for wood, E = 1,500,000 
lb./sq. in. Find the tension P in the rod (see Fig. 295). 

Arts. P - 3,320 lb. 

175. Construct the shear and moment diagrams for the beam of Problem 

174. P = 3,320 lb. Compute the maximum moment and the maximum 

fiber stress induced in the beam. 

Ans. Mm = 17,880 ft.-lb.; S = 2236 lb./sq. in. 

176. If the right end of the beam of Problem 174 were placed on a support 

at the same level as the left support, what would the maximum moment be? 

177. A 12-in. 31-lb. standard steel I-beam, 15 ft. long, is built in hori¬ 

zontally at the right end B. The other end O rests on a support. Origi¬ 

nally the supports were at the same level. 
The beam carries a load of W = 10 tons 

uniformly distributed. Later the left sup¬ 

port O sinks 1 in. Find the maximum 

fiber stress in the beam. 

Suggestion.—Use the method of equating 

deflections to find the reaction at O. Then 

find Mm. 
Ans. Ro = 4180 lb.; Mm = 87,300 

ft.-lb.; S = 24,250 lb./sq. in. 

178. In Problem 177, assume that the 

support O sinks 1 in. and that simultane¬ 

ously the support B rotates counterclock¬ 

wise through an angle of 0.6°. Find Ro. 
Use the method of Art. 186, being careful to read the footnote. 

Ans. Ro = 10,440 lb. 
179. Solve Problem 177 using the method of equating deflections. 

Suggestion.—Consider the deflection of 0 as the combination of three 

deflections: (a) the downward deflection due to rotation of support B\ (b) 

the downward deflection due to the load W; (c) the upward deflection due 

to the reaction Ro. 
Ans. A local maximum moment occurs 7.83 ft. from 0. M7 = 40,900 ft.-lb.; 

Mb = 6,690 ft.-lb. 
180. A prismatic homogeneous beam of length L is supported at the ends 

and has two equal loads each equal to P applied at the ends of the middle 

third of the span, (a) Using El/p, find the kind of curve into which the 

middle third of the beam is bent. (b) Using El d2y/dx2 and an origin 

at the middle of the span, find the equation of the elastic curve and compare 

the nature of the curve with that obtained under (a). Compare the results 

for a wooden beam, 4 in. wide by 8 in. and 15 ft. long, if each of the loads is 

1000 lb. Explain the reason for the difference between the two results. 



CHAPTER IX 

SLOPE AND DEFLECTION. MOMENT AREA METHOD. 
THEOREM OF THREE MOMENTS 

196. Introduction.—In Chap. VIII, a method was derived 
for finding the deflection of a beam and the reactions of a stati¬ 
cally indeterminate beam. The method there used requires the 
integration of the differential equation 

Efg - M. <«) 

It was seen, however, that the integration of this equation may 
be complicated. The method now to be developed, the slope 
deflection method, greatly simplifies the algebraic detail of finding 
slopes, deflections, moments, and reactions. 

The slope deflection method, in the form it will be developed 
in this chapter, applies only to beams originally straight but 
now slightly bent under the action of transverse forces (loads 
and reactions).* When use is made of the area of the moment 
diagram for the beam, the slope 
deflection method will be called the 
moment area method. 

Note.—For convenience it will be 
assumed that originally (before the 
loads were applied) the beam was 
horizontal (and straight). The X-axis will be taken as horizon¬ 
tal, x being measured in the direction of the axis of the unbent 
beam (Fig. 296). 

In the beams used for structural purposes the bending is 
generally so slight that no appreciable error is introduced if the 
^-coordinate of a point on the elastic curve is made equal to s, the 
distance of this point measured along the curve (see Fig. 296). 

A beam frequently will be represented by its elastic curve, and 
the bending will be much exaggerated. 

* Equation (a) assumes that the neutral axis is perpendicular to the plane 

of loading. For convenience, assume plane of loading a plane of symmetry 

(see Arts. 155, 158). 

289 
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196. Angle between End Tangents to the Elastic Curve of a 
Beam.—Let AND (Fig. 297) represent the elastic curve of a beam 
originally straight and horizontal, but now slightly bent under the 
action of vertical forces. These forces are not shown and the 
bending is much exaggerated. 

Consider the point N in this curve. In Art. 175, it is shown 
that, if p is the radius of curvature of the elastic curve and M 
is the bending moment in the beam at N, then, within the 
elastic limit, 

(a) 

in which I is the moment of inertia of the section of the beam at N. 

.'H 
i0 

§i i 
|i \ 

! i 
yy Angle cty 

Let N' be a point in the elastic curve adjacent to the point 
N (Fig. 297). Bending being slight, dx may be put for ds. That 
is, NNf = ds = dx (very nearly). Hence (from geometry) 

dx = pd<t> (b) 

where d<t> = angle between the two normals NC and N’C, 
= angle between the two tangent lines tN and t'Nf. 

Eliminating p between Eqs. (a) and (6), we obtain as the angle 
between the two tangent lines tN and t'N‘ 

d<t> = 
Mdx 
El ' 

(c) 
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Originally, before the beam was bent, ANN'D was a straight 
line and the angle between the two tangents tN and t'N' was zero. 
After the bending of the beam the angle between the two tangents 
became d<f>. That is, equals the change of angle between the 
tangents to the elastic curve for a portion (of length dx) of the 
beam. 

Let 0 and B (Fig. 297) be any two points in the elastic curve of 
the beam. Draw the tangents at 0 and B. Before the beam 
was bent.the tangents at 0 and B coincided, but after the bending 
they make an angle A</> with each other. That is, A<t> equals the 
change of angle between the end tangents for the portion OB of the 
beam. 

If, beginning at 0 and ending at B, d<j> is found for each dx 
(or ds) in succession, then the summation of the d<t>’s will equal 
A <f>. 
Or 

A<£ = f*d<t>. 

Substituting the value d<j> = Mdx/EI [Eq. (c)], 

]s 
is used to indicate that A<f> is the change in angle 

between the tangent at 0 and the tangent at B, i.e., between the 
end tangents of the portion OB of the beam. 

Note that d<t> in Eq. (6) is measured in radians. Hence A<t> is 

measured in radians. 
In the derivation of Eq. (a), M is the moment in the beam at 

the section N. In the summation of the d<$> s for the successive 
dx's, N moves from 0 to B. Hence, to perform the integration 
indicated in Eq. (1), M must be expressed in terms of x, where x 
is the horizontal distance of N from the origin (0 in this case). 
Bending being slight, x may be taken as the distance of N from 0 

measured along the original or unbent axis of the beam. In a 
few instances, M may be constant or even zero in value through¬ 

out a part of the beam. 
Example. Fig. 298.—Beam built in at B. Find change of 

angle between end tangents due to load P. 

The moment at N is M *= Px. 
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Therefore 

. .Is CBMdx CLPxdx 
4*Jo ■ Jo ~MT - Jo ST - 

PL2 
2 El 

where A<j> is measured in radians. 
197. Relative Displacement of a Point in the Elastic Curve 

of a Beam.—Let 0 and B (Fig. 299) be two points in the elastic 
curve of a bent beam. The 
tangent line drawn to the elas¬ 
tic curve at B will be called B’s 
tangent. In Fig. 299, O'B is 
B’s tangent. Originally before 
the beam was bent, 0 lay on 
B’s tangent (i.e., originally O' 
and 0 coincided), but now, 
owing to the bending of the 
beam, 0 no longer lies on B’s 
tangent. The displacement 
00' is called the displacement 

of 0 relative to B’s tangent, or the deflection of 0 from B’s tangent. 
For a beam originally horizontal but now slightly bent, 00' 

is very nearly a vertical line so that, very nearly, 

A y]B0 = 00’ 

where AyJo designates the vertical displacement of 0 relative 

to B’s tangent (deflection of 0 from B’s tangent). 

To find an expression for Ay, consider two successive points 
N and N' in the elastic curve. Draw tN and t'N', the tangent 
lines at N and N', respectively. The angle between tN and t'N' 
is [Art. 196, Eq. (c)] 

d<t> 
Mdx 
El “ (a) 
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Originally, t coincided with 0. Hence tN = ON = x (very 
nearly). In the limit, as N and N' approach coincidence, 

ttf = tN X d<t> = xd<l>. 

Or putting ttf = 

[Eq. (o)], 
dt/ and substituting the expression for d<t> 

dy = x 
Mdx _ 
~eT ~ 

Mxdx 
~ET‘ (6) 

If now, beginning at 0 and ending at B} the dy is found for each 
dx in succession, then the summation of the dy’s equals Ay. 
That is [Eq. (&)], 

f Jo J Jo 

BMxdx 

o ~ET' (2) 

Note again that ili" is the moment in the beam at N, a distance 
2 from 0. Hence to perform the integration indicated in Eq. (2) 
M must be expressed in terms of x. 

Note also that x is measured from 0 whose relative displacement 
is desired. 

Example. Fig. 300.—Find the deflection of 0 from B’s 

tangent. 

A ~\B CBMxdx fLPx X xdx __ PLZ 

y\o - Jo El - J El 3El' 

Note that the tangent at B does not change in position or direc¬ 

tion. Hence (in this case) Ay gives the actual deflection of 0. 

198. Resume.—Formulas (1) and (2) may be applied to any 

beam that was originally straight but afterward was slightly 
bent under the action of transverse forces that lie in a plane that 
is perpendicular to the neutral axis of every section of the beam.* 

* See footnote of Art. 195. 
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Hence, in general, 0 and B being any two points in the elastic 
curve of the beam and x being measured along the axis of the 
unbent beam (from point 0), 

Y 
Change of angle between tangents at 0 and B = A<p J 

CBMdx 
Jo El 

Displacement of 0 relative to B’s tangent = Ay 
B = CBMxdx 
o Jo El 

(1) 

(2) 

Note 1.—Generally in this chapter, beams will be assumed 
homogeneous (E constant) and prismatic (/ constant). When 
E and I are constants, they may be taken from under the integral 
sign, and formulas (1) and (2) may be written 

y i r 
A*J o Eljo 

Mdx and 4!,]I" m£ Mxdx. 

Note 2.—If the beam is homogeneous (E constant) but not 
prismatic (I varying, as in the case of a tapering beam), formulas 
(1) and (2) may be written 

..]B _ i cBMdx A ]B i r1 
*Jo Ejo I ’ y\o Ejo 

Mxdx 

to I 

in which only the E may be taken from under the integral sign. 

0 B 

Fig. 301. 

Note 3.—In Fig. 301 it is clear that the angle between the 
tangent lines at 0 and B is the same regardless of the line used 
as the reference line. But the displacement of 0 with respect 
to B’s tangent may not be equal to the displacement of B with 
respect to 0’s tangent. That is, 

But 

always equals 
o 
B* 

Ay does not necessarily equal AyJ 
o 
B* 
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line at B does not change in direction or in position. The 
moment at a typical section N (distant x from O) is M = wx2/2,. 
where w is load per foot of beam. 

4*I - hi 
r -h& Mxdx 

- hi 
" 17 Jo 

wx3dx 

'wx2dx _ 

2“ " 

wL4 
8EI 

wLz 
Mi = 

FX3 

8EI 

WL2 
= 6£/' 

(see Art. 182). 

Example III. Simple Beam on End Supports, with Concen¬ 
trated Load P at Mid Span. Fig. 304.—Find the deflection d of 

Fig. 304. 

mid-point B. The tangent line at B does not change its direction. 
It may even be assumed that the beam is loaded while supported 
on level ground, and that the ends are jacked up until the ground 
at B exerts no pressure. The portion OB is then like a cantilever 
built in horizontally at B. Since the tangent line of the elastic 

curve at mid-point B remains horizontal, the actual deflection 

of B equals the deflection of 0 relative to B’s tangent. 

d = 00' = A y\BQ. 

Let N be any point in the elastic curve of the beam between 0 
and B. The moment at section N is M = Px/2. 
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Therefore 
L 

d = 4 = Elfo Mxdx = o ~2 iSz (see ^179)- 

The tendency is common to integrate from x = 0 to x = L, i.e., 
from 0 to C. This is in error. We want the deflection of 0 
from B’s tangent. Hence we must integrate from x = 0 to 
x = L/2) i.e., from 0 to B. 

Example IV. Simple Beam on End Supports with a Uniformly 
Distributed Load W over the Entire Span. Fig. 305.—Find the 
deflection d of the mid-point B. 

The moment at a section N distant x from point 0 is 

— w^x _ wx2 

d = OOf = Ay~\ = f Mxdx 
Jo til Jo 

L 

1 C2(wLx2 wx*\j 
- mJ. - - 2>ix 

L 

_ 1 ["wLxz wx4!2 
~El[ 6 ^Jo 

5 wL4 _ 5 WL3 . a + i co\ 
384 El ~ 384 El (seeArt-180)' 

Example V. Simple Cantilever Beam with an Upward Concen¬ 
trated End Load V and a Downward Concentrated Middle Load P. 
Fig. 306.—Find the end deflection. 

Between points 0 and C the expression for the moment is 
M = Vx\ between C and By M = Vx — P(x — a). Hence 

1 CB 
J Mxdx must be divided into two parts, viz., from 0 to C and 

from C to B. 
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Accordingly, 

v=±c 
Jo EIJo 

=±r 
EI Jo 

Mxdx 

Vx2dx + hi. 

Mxdx + gj 
2a 

Mxdx 

[Vx — P(x — a)]xdx 

_1_ Vxz]a . l\Vx* Pxz . Pax2]2* 
EI 3 Jo+ El[_ 3 3 + 2 Ja 
(167 - 5P)az _ (167 - 5P)LZ 

6EI 4SEI 

Example VI. One End of a Beam Is Built in Horizontally; the 
Other End Rests upon a Support without Being Horizontally 
Constrained. Fig. 307.—A concentrated load P is applied at 

mid span. Find the reaction 7 at 0 if the end 0 is at the same 
level as B. The point 0 is on B’s tangent. Hence the deflection 
of 0 from B’s tangent is zero. That is, the value of 7 in Example 
V is such that Ay = 0. Putting Ay = 0 and solving for 7, 

Problem 181.—In Example VI, replace the concentrated load P by a load 

W uniformly distributed over the beam. A ns. V = \W. 
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200. Moment Area Method.—Let AOBD (Fig. 308) be the 
elastic curve of a beam originally straight and horizontal. 
Assume the beam homogeneous and of constant cross-section 
so that E and I are constant. 

The change in angle between tangents at 0 and B is [Eq. (1), 
Art. 198] 

4* ” wSMdx- <«> 

Let A1O2B2D1 be the moment diagram for this beam and its 
loading (loading not shown). Since M, the bending moment 
at a point N in the beam, is represented to scale by the cor¬ 
responding ordinate nk, the product Mdx is represented by the 

area of the narrow strip nk'. Hence J^Mdx represents the 

area of the moment diagram between 0 and B, i.e., between 
the ordinates 0i02 and BiB2. The area of the moment diagram 
between 0 and B will be called the moment area between 0 

Q. That is 

foMd*-A]B0. 

Equation (a) may be written, therefore, 

A<t> I (3) 

Hence, E and I being constant, the change in angle between the 
tangent at O and the tangent at B equals the moment area (between 0 

and B), divided by El; 
The displacement of 0 relative to B’s tangent is [Eq. (2) 

Art. 198] 

- iSMxix- (h) 
Now Mxdx may be written x(Mdx) = xdAy where dA = Mdx = 

area of the narrow strip nk'. Furthermore, by the theory of 
center of gravity, JxdA = xA, where x equals the horizontal 
distance of the center of gravity of the area A from the origin. 

That is, 

f*Mxdx = Jo x(Mdx) = f*xdA = A*]®. 
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Equation (6) may be written, therefore, 

(4) 

Hence, E and I being constants, the displacement of O relative to 
B’s tangent equals the moment of the moment area between 0 and B 
{with respect to the ordinate through O) divided by El. 

The two formulas 

and 

are very important and therefore should be clearly understood. 

Note.—When there is no danger of ambiguity, the bracket 

may be omitted. 
Example I. A Simple Cantilever Carries a Concentrated Load 

at the Free End. Fig. 309.—The moment at B is M = PL. The 
moment diagram is a triangle whose base is L and whose altitude 
is PL. The moment area under OB is 

A 
-B 

.0 

PL2 
2 ’ 

Also 
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Therefore, by formulas (3) and (4), 

and 

* A PL2 
o El ~ 2 El 

Ax_PV^2L^m-?V 
El 2 A 3 3 El 

Example II. A Simple Beam on End Supports Carries a 
Uniformly Distributed Load over the Entire Length. Fig. 310.— 
Find the deflection d of its middle point B. 

0 from B’s tangent. Hence the moment area to be considered 
is that under OB (Fig. 3106), i.e., the shaded portion. 

The moment at B is M = WL/S. Therefore,* 

Also 

WL2 
24 ' 

* The shaded area (Fig. 311) is the segment of a parabola with B as its 

vertex. The area of the segment of the parabola is A = ?a&. The x of 

the shaded area is x = fa. In Example II, a =^= L/2 and b = WL/S. 
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Problem 182.—Take the equation of the parabola x% = py (Fig. 312). 
Show that the area of the shaded portion is A ~ fab, and that 2 = fa. 

Therefore 

J A T* Ax WL2 w 5L \ VT_ 5 WLZ _ 5 wL* 
- *y\Q ~eI~ ~24~ x 16 • m ~ 384 El ~ 384 El' 

Example III. A Simple Beam on End Supports Carries Two 
Equal Concentrated Loads Symmetrically Placed. Fig. 313.— 

Owing to symmetry, the tangent at B remains horizontal as the 
beam bends. Hence 

d 
Ax ~\B 

Elio 
Draw the moment diagram (Fig. 3136). Since Ay is the deflection 
of 0 from B’s tangent, the shaded portion only is to be considered. 
The shaded portion consists of two parts, a triangle and a rec¬ 
tangle. Using the principle that Ax of a composite area equals 
2(Ax) of the separate areas, equals A \X\ + A2x2, 

A -1 n ® v 2 ID u 5 23d . 
Ax\o =Pa-2X3? + Pa2X4:a = 2iPa • 

Therefore 

,_A Is _ AxY _ 23Pa* _ 23PL8 
V\o El J0 “ 24 El ~ 648El 

201. Normal Moment Diagram.—Let OB be a simple beam 
on end supports (Fig. 314a). For simplicity the beam is assumed 
to carry a single concentrated load P. The results obtained hold, 
however, for any system of vertical loads. 

The reactions of the supports are 

Ro — 
Pc 
L 

and 
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Designating the moment at the point N by Mnf 

(a) 

This moment is represented in the moment diagram by the 

ordinate mn. 
With reference to Fig. 3146, it should be noted that the line 

O1B1 need not be drawn horizontally. For instance, 0\l\Bi 
(Fig. 314c) is the moment diagram for OB and its loading with 
OiBi drawn obliquely. Each ordinate mn of Fig. 3146 equals 
the corresponding ordinate mn of Fig. 314c and each equals 
Mn. 

In Fig. 314a, OB represents a simple beam on end supports. 
Now assume OB to be part of a longer beam AOBD (Fig. 314d). 
Let A1T1D1 (Fig. 314c) be the moment diagram for AD and its 
loading. Consider the shaded moment area O'OiTiBiB' under 
the part OB of this beam. The ordinate O'Oi represents M0, the 
moment in the beam at 0; and B'Bi represents MB. Join 
Oi and Bi. Note that the line 0\B\ divides the moment area 
under OB into two parts, a dot shaded area and a line shaded 
area. It will be shown in Art. 202 that the part O1T1B1 above 
the line 0\B\ (the dot shaded area) is identical with the area 
of OiTiBi of Fig. 314c in size and in position of centroid. That is, 
if the beam AD be conceived as cut at 0 and at B} and the part OB 
placed on end supports (Fig. 314a), the moment diagram for the 
simple beam OB will be given by the dot shaded area OiTiBi 
of Fig. 314c. 

In this chapter, it frequently will be necessary to construct the 
moment diagram for a part OB of a longer beam. For conven¬ 
ience, the part above the line 0\B\ (the dot shaded area of 
Fig. 314c) will be called the normal moment diagram for OB and 
its loading for the reason that it is the moment diagram which 
would be obtained if OB were a simple beam on end supports 
(the normal case). 

OB may be any part of a longer beam. To avoid the necessity 

of representing the longer beam, OB may be shown as a free 

body. With OB as a free body, the moment and shear at 0 

and at B must be represented as is done in Fig. 314/. 
Given M0 (the moment in the beam at 0) and MB (the moment 

in the beam at B), the complete moment diagram for OB and its 
loading may be constructed as follows: Draw the ordinates 
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O'Oi and B'Bi to represent the moments M0 and MB, respec¬ 
tively (Fig. 314e). On O1B1 construct the normal moment 
diagram for OB and its loading. 

Example. Fig. 315.—Construct the complete moment dia¬ 
gram for OB and its loading, assuming M0 equal to 6 ft.-tons, and 
Mb equal to 4 ft.-tons. 

Draw O'Oi to represent Mo = 6 ft.-tons and B'Bi to represent 
Mb = 4 ft.-tons (Fig. 3156). On 0\B\ as the base line, draw the 
normal moment diagram 0\T\T2Bi. 

Fig. 315. 

To construct the normal moment diagram for OB, treat OB 
as a simple beam on end supports. If OB were actually a simple 
beam on end supports, the moment at 0 and the moment at 
B would be zero, and the reaction at 0 (Fig. 315d) would be 

Vq = 2 tons. 

Hence at C the normal moment is 

Mn = 2X4 = 8 ft.-tons. 

Similarly, 

Mn at D = 8 ft.-tons. 
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The complete moment M at a section N of the beam is repre¬ 
sented by the full ordinate kn of the moment diagram (Fig. 3156). 
If N is at the middle of the beam, km = (6 + 4)/2 = 5 and 
mn — 8. 
Therefore 

Mn = km + mn = 5 + 8 = 13 ft.-tons. 

The same result for MN may be obtained if ON is taken free 
(Fig. 315c) and the moment at N is found in the usual way. 
Note, however, that now it is first necessary to find Vo, the shear 
at 0. Considering the whole beam free (Fig. 315a), and putting 
S moments about B equal to zero, 

Mo — Mb 4“ Vo X 12 — Pi X 8 — P2 X 4 = 0. 

With Mo = 6, Mb = 4, and Pi = P2 = 2, V0 = 11/6 tons 
Hence (Fig. 315c) 

Mn = Mo +7oX6-PiX2 = 0 + yX-6-2X2 

= 13 ft.-tons. 

202. Proof of the Theorem Concerning the Normal Moment 
Diagram.—Let OB (Fig. 316a) be part of a longer beam. Assume 

that the part OB carries a single concentrated load P. Take OB 
free, representing the moment and the shear at 0 by M0 and Vo, 

respectively, and those at B by MB and VB. 
The complete moment at N is (Fig. 316a) 

M = Mo + Vox. (a) 



SLOPE AND DEFLECTION 307 

To find an expression for Vo, put the summation of moment* 
about B equal to zero. 

Mo — Mb "I- VoL — Pc — 0. 
Solving for V0, 

V0 
Mb — Mo . Pc 

L + L 
Substituting in Eq. (a), 

M = Mo + \(Mb - Mo) + (6) 

Putting Mo — 0 and Mb = 0 [Eq. (b)] gives the normal moment 
at N* 
That is, 

Per 
Mn = -j- [see Eq. (a) Art. 201], (c) 

Equation (b) may be written, therefore, 

M = Mo + - Mo) + Mn. (d) 

Hence M, the complete moment at N, consists of three parts 
[Eq. (d)]. The first part M0 is represented in the moment 
diagram (Fig. 3166) by ks (0\E is drawn parallel to O'B'). The 
second part is represented by sm. This may be proved as 
follows: 

From the similar triangles Oism and OiEBh 

sm _ x 

Also 

EBi = Mb — Mo. 
Combining 

sm = j-(Mb - Mo). 

The third part M„, the normal moment, must be represented, 

therefore, by mn. That is, 0\TBh the part of the moment dia¬ 

gram above the line OiBh is the normal moment diagram for 

OB and its loading. 

* If Mo = 0 and Mb — 0, the beam is a simple beam or may be analyzed 

as a simple beam on end supports. 
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Note.—If the point N is taken to the right of the load, or if 
a system of loads is applied, the expression for Mn [Eq. (c)] 
becomes more complicated. Equation (d), however, holds for 
any system of loading. 

203. Theorem of Three Moments.—Let AD (Fig. 317a) repre¬ 
sent a homogeneous prismatic beam, originally straight and 
horizontal but now slightly bent under its vertical loading. Let 
OBC (Fig. 3176) represent the elastic curve of the portion OBC 
of this beam, showing the bending much exaggerated. Let 
Mo, Mb, and Mc, respectively, be the moments in the beam 

Fig. 317. 

at 0, B, and C. Note that M0, MB, and Mc are assumed to be 
positive (compression above and tension below, Art. 120). 
Construct the complete moment diagram for OBC and its loading 
(Fig. 317c), proceeding as follows: Draw a horizontal line O'B'C'. 
Draw verticals O'Oi, B'Bh and C'Ci to represent M0, MB, and 
Mc, respectively. Draw the straight lines OiBi and BXC\. 
On OiBi construct the normal moment diagram 0\T\Bi for OB 
and its loading; and on BiCi construct the normal moment dia¬ 

gram BiT2Ci for BC and its loading. Then 0'0iTiBiT2CiCf 
is the complete moment diagram for OBC and its loading. 

Join Oi and B'; also B' and Ci (Fig. 317c). The complete 
moment diagram under OB consists now of three parts, two 
triangles and the normal moment diagram OiT\B\ whose area is 
Ai and whose center of gravity is at a distance xx from O'Oi. In 
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like manner, the complete moment* diagram under BC consists of 
three parts, two triangles and the normal moment diagram 
B1T2C1 whose area is A 2 and whose center of gravity lies at a 
distance x2 from C'CV 

At the point B of the elastic curve (Fig. 3176), draw the 

tangent h . . . t2. Now Oti (or di) = AyJ^, equals the deflec¬ 

tion of point O from B’s tangent, and hence [Art. 200, formula (4)] 

Eldi — AxJ^ = 2(Ax) 

for the three separate areas constituting the moment diagram 
under OB. That is (Fig. 317c), 

pr, MoL\ L\ MbL\ 2T . . _ 
Eld 1 = —X y + —2~ X gL 1 + A1X1. 

Or, dividing through by L\ and simplifying, 

EId\ MoL\ . MbL\ . A1X1 . N 

TET = ~W~ + — + XT' (o) 

Similarly, Ct2 (or d2) = AyJ*, equals the deflection of point C 

from B’s tangent. Hence 

c = 2(Ax) of the separate areas. 

That is, 

PTJ McLi2 L2 , MbLi2 v 2r 4 . 
EId2 = —2~ X y H-x 3^2 + ^2X2- 

Or, dividing through by L2 and simplifying, 

EId2 McL2 , MfiZ/2 , A2X2 

"XT = XT- + “3 XT' (6) 

Adding Eqs. (a) and (6), 

_ MaLn , MB(L\ + L2) , McLt , A1X1 , A.2®2 

S7VFi + w = “6_+ 3 +_6~ + xr+"xr' 
(c) 

Referring to Fig. 3176, join 0 and C and let d equal the deflec¬ 
tion of B from the straight line OC. Through B draw m\ ... mt 
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parallel to OC. From similar triangles rriiBti and m^BU, 

That is 

miti _ ra2£2 
L i L2 

d\ — d __ d — d* 
L\ L2 

The last expression may be written 

Or, multiplying through by El, 

E,(r, + r)‘E,d(h + r} « 
Equating right-hand members of Eqs. (c) and (d), we obtain 

M0L1 1 Mb(Li + £2) , MCU , Aix% A%x% 1 , l\ 

6 ^-3-+ ^ + ^ + ^-EId\L1 + I2) 
(5) 

which is the theorem of three moments. 
Note 1.—The theorem of three moments [in the form given in 

Eq. (5)] is applicable only to homogeneous prismatic beams. 
Note 2.—For simplicity, the part OB of length Li will be 

called the left panel; and BC of length L2, the right panel. The 
points 0, B, and C may be any three points in the beam. 

0 _>[_10 

i— % 
*.— .—* 

Fig. 318. 

When the theorem of three moments is applied to a continuous 
beam, as, for example, Fig. 318, the points immediately above 
the three supports usually are taken as the three points O, B, and 
C for reasons explained later. 

Note 3.—If the three points 0, B, and C lie in a straight line, 

for instance, if the three supports (Fig. 318) are at the same level, 
the deflection of B from the straight line joining 0 and C is zero; 

i.e., d = 0 and the right-hand member of Eq. (5) becomes zero. 
Note 4.—If 0 (or C) is the end of a beam resting on a support 

with the end not clamped or built in, the moment at 0 (or C) 

is zero. For instance, in Fig. 318, Mo = 0 and Mc — 0. 
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M0 = 20 ft ions 
Mb = 40 ft tons 

Fig. 319. 

T7 

Note 5.—In the derivation of the theorem of three moments 
(see Fig. 317), the bending moment at a point in the beam was 
considered positive if the elastic curve at that point was concave 
above. That is, it was assumed that a positive bending moment 
at a point in the beam produced compression in the upper fibers 
and tension in the lower fibers. If then, as a result of the applica¬ 
tion of the three moment equation, M0 or MB or Mc is found to 
be negative, this indicates that . 
the beam at 0 or B or C bends u ^ * ft 
so that its concavity is below - 
the beam, and that therefore the 
bending moment at that point 
produces tension above and 
compression below. For instance (Fig. 319), suppose that as the 
result of the application of the theorem of three moments it is 
found that M0 = +20 ft.-tons and that MB = —40 ft.-tons. 
These signs show that at 0 the stress couple should be drawn to 
indicate compression above and tension below, while the stress- 
couple at B should be drawn to indicate tension above and 
compression below. Note that when the stress-couple at B in 
Fig. 319 is drawn to indicate tension above and compression below, 
the negative sign for MB (obtained as a result of the application 
of the theorem of three moments) is properly observed, and that now 

Mb = +40 ft.-tons. 

Note 6.—In the derivation of the three-moment equation, it 
was assumed that B deflects down from the line OC (Fig. 317). 
Hence, if B deflects down from OC (Fig. 320a) d is positive (+); 
if up (Fig. 3206), d is negative ( — ). 

Fig. 320. 

Note 7.—When a panel is not loaded, the term Ax/L for the 
normal moment diagram for that panel is zero. For instance, 
if the left panel is not loaded, the area A\ of the normal moment 
diagram for the left-hand panel is zero. Hence, 

204. Values of AiXi/Li and A2x2/L2 for Special Cases of 
Loading.—In the theorem of three moments, O, B, and C are 
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any three points in the beam (Fig. 321). For convenience, OB is 
called the left panel and BC the right panel. The expressions 
A1Z1/L1 and A2X2/L2 refer, respectively, to the normal moment 
diagrams for the left and for the right panel, i.e., for OB and BC. 
If, for instance, A1X1 is to be found, OB is treated as a simple 
beam on end supports (Fig. 322a) and A1X1 is found from its 

Fig. 321. Fig. 322. 

moment diagram, xi being measured from the left end 0. In 
like manner, if A 2X2 is to be found, BC is treated as a simple 
beam on end supports (Fig. 3226), x2 being measured from the 
right end C. 

Consider now a single concentrated load P. If P is on the 
left panel, let b designate its distance from the left or outer end 0, 
and let c designate its distance from the intermediate point B. 
If P is on the right panel, let b and c designate its distance, 
respectively, from the right or outer end C and from the inter¬ 
mediate point B. That is, for either panel, b is measured from 
the outer end of the panel. If for any reason it is desired to 
designate which panel is under consideration, 61, Ci, and L\ will 
be used for the left panel and 62, c2, and h2 for the right panel, 
as shown in Fig. 321. General expressions or formulas will now 
be obtained for Ax/L for special cases of loading.* 

Note.—It sometimes will be convenient to let H = Ax/L, 
so that, for the left panel, 

H2 
A 2X2 

TT 

and for the right panel, 
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Or, if it is desired to designate the part of the beam considered 
as a simple beam, 

If _ A.X~\B „ _ AxY* 
£lOB — I J 11 CB — —f— I * 

L JO L \c 

Case I. Noncentral Concentrated Load P. Fig. 323.—For 
either panel, the moment under P is* 

(a) 

and is represented by the ordinate NT of the moment diagram. 
To find an expression for Ax/L, either panel may be considered. 
Consider the left panel (Fig. 323b). Extend the line BiT to meet 

the vertical through 01 at Dx. If the area of the triangle O1D1B1 

is designated by Af, and that of triangle 0\D\T by A", then 
from the theory of center of gravity of a compound figure 

Ax (of shaded area) = Afxf (of area O1D1B1) — Anxtr 
(of area OiDiT). (b) 

* Given a simple beam (of length L) on end supports. 
1. For a central load P (Fig. 324), the moment under P is M — PL/4. 
2. For a noncentral load (Fig. 323), the moment under P is Af = Pbc/L. 
3. For a uniformly distributed load W, the moment at the center is 

These equations are used frequently. It is very important clearly to see 
and to remember them (see Art. 143). 
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From similar triangles (B1O1D1 and BiNT), 

UlDl = L 
c 

Therefore 

NT 

O1D1 = — X NT. 
c 

Or, since NT = Pbc/L [Eq. (a)], 

EZTi = - x - P6. 

Therefore 

A'*' (of area O1D1B1) = (pb X ^ X ^ = 
PbL2 

A"x" (of area OiDjT) = X 0 X | = ~ 

Hence [Eq. (6)] 

PbL2 Pbz Pb,T2 Pb/T ,wr , 
Ax = -g- = -g-(I/2 - b2) = -g-(L - 6)(L + 6) = 

Pbc(L + 6) 
6 

Or, divided through by L, for either panel, 

„ _ Ax _ Pbc(L + b) __ Pb(L2 - b2) 
L 6L 6L (I) 

where b is measured from the left end for a left panel, and 
from the right end for a right panel. 

Case II. Single Central Con- 
centrated Load P. Fig. 324.— 
For a central concentrated load, 
b = c = L/2. Using Case I 
and putting b = c = L/2, we 
obtain for either panel 

tj _ Ax _ PL2 . . 
Fig. 324. L 16 K > 

The same result may be obtained directly as follows. The 

moment under the load is M = PL/4 = NT. 
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Therefore, 

Also 

Therefore 

PU 
8 ‘ 

. L 
X\ — Xi = •=• 

Ax _ PL2 
L 16 ' 

Case III. Two or More Concentrated Loads. Fig. 325.—For 
convenience, assume two loads P* and P" as shown. At any 
point in the beam the moment due conjointly to Pf and P" equals 
the sum of the moments due to Pf and P" acting separately, 
or M = M*f + ilf". Hence, if Fig. 3256 is the moment diagram 

due to both loads, Fig. 325c that due to Ph acting alone, and Fig. 
325d that due to P" acting alone, then each ordinate of Fig. 3256 

equals the sum of the corresponding ordinates of Figs. 325c and 
325d. Therefore, A = A' + An and Fig. 3256 may be con¬ 

sidered to be a combination of Figs. 325c and 325d. Hence 
Ax = A'xf + A"xN*. Dividing through by L, 

Ax _ A'x' A"x" 
L ~ L + L 

+- • • • (a like term for each additional load). 
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That is, Ax/L of a system of concentrated loads equals 'S(Ax/L) 
of the separate loads. Or, making use of Case I, 

_ Ax _ P'b’c'iL + b') 
~ L 6L 

, P"6"c"(L + b") , 
I £* T I 6L 

= ^Pbc(L + b) \ 
6L 

Pb(L2 - b2) 
6L 

(III) 

where the Vs are measured from the left end for a left panel and 
from the right end for a right panel. 

Note.—From the law of superposition, formula (III) follows 
immediately from formula (I)- 

^ Case IV. Continuous Load 
^ over Any Part of the Span. 
f Fig. 328.—Let w equal the rate 
j of loading (load per linear foot) 

Fig. 326. a point distant x from the end. 
Then wdx is the load on a 

length dxy and this load may be treated as a concentrated load 
like one of the P’s of Case III. Hence, using Case III, since 
& = Xj 

rr _ Ax _ X?Pb(L2 - b2) _ fewdx x(L2 - x2) _ 
M L ^-1 6L Jd 6L 

ew(L2 — x2)xdx st\t\ 
:-6L-(IV) 

Here x is measured from the left end for a left panel and from the 
right end for a right panel. 

Fig. 327. 

Note.—If the load is uniformly distributed, w is constant 
and may be taken from under the integral sign. If w is variable, 
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it must be expressed in terms of x before the integration can be 
performed. 

Case V. Uniformly Distributed Load over Whole Span. Fig. 
327. 

W = wL. 

The rate of loading is w and is a constant. From Case IV, 

H = T = ^l (L2 ~ xi)xdx 
w_\LW _ x^\L 

6l|_ 2 4 Jo 
wL3 _ WL2 
"24 “ ~W 

(V) 

The value of Ax/L may be found directly as follows: 

NT = A = $NT XL, x = \L. 

Therefore 

2 (WL\L 
rj _ Ax _ 3\ 8 /2 _ WL2 _ wLz 

~L ~~ L ~ "24 24 * 

Case VI. Triangularly Distributed Load over the Entire Panel. 
Fig. 328.—Let q equal the rate of loading at unit distance from 0 

Fig. 328. 

(or C). Then w — qx, equals the rate of loading at distance x 
from 0 (or C). The total load on the panel is * 

Therefore, solving for q, 
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Using Case IV, since w = qx, 

Ax _ CLqx(L2 — x2)xdx _ q TL2xz 
L ~ Jo 6L “ 6L[~3~ 

Or [Eq. (a)] 
„ Ax 2WL2 
H = T = "45~ (VI) 

Note that the vertex of the triangle is at 0 (or C). If the vertex 
of the triangle is at B, 

rr = AX 7WL2 
L 180 ’ 

Case VII. System of Loads. Fig. 329.—By the method of 
reasoning used in Case III, it can be shown that for any two or 
more systems of loads 

Ax 
L 

for a system of loads for the separate loads. (VII) 

For instance, Fig. 329 shows a panel carrying a uniformly dis- 

W=wL W=wL 

—i 
r ■’ tP 1 

HHIUUU.c 

r~ 
k- c > *— b - 

T | 

m 
i 
i 

Fig. 329. 

tributed load W (Case V) and a concentrated load P (Case I) 
Hence 

_Ax _ WL2 Pbc(L + b) 
L 24 ' 6L 

205. Application of the Theorem of Three Moments to a 
Continuous Beam on Three Supports.—In the solution of a 
continuous beam on three supports, it is necessary as a rule to 
determine the reactions. In the determination of these reactions, 
the theorem of three moments may be used to great advantage. 

Note carefully the method of procedure used in the solution of the 
following example. Note also that, with the exception of ^the 
first step, the general procedure is the same as that for a simple 
beam. 

Example I. Fig. 330.—Given a homogeneous prismatic beam 
bn three supports at the same level. The left panel (L\ == 20 ft.) 
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carries a load of 8 tons uniformly distributed over the whole 
span and the right panel (L2 = 14 ft.) carries a single concen¬ 
trated load of 5 tons as shown. First determine Mb, the moment 
of tfle beam over the middle support, and then the reactions R0, 
Rb, and Rc. Also draw the shear and moment diagrams and 
determine the maximum shear and the maximum moment. 

9-5 hns 

1. To determine Mb, apply the theorem of three moments to 
the three sections 0, B, and C (immediately above the supports). 
The three moment equation is [Eq. (5) Art. 203] 

MoLi , Mb(Li + Li) 

6 3 
l McLj , AiXi , ,4.2^2 

^ 6 ^ Li ^TT 

EId\ 

Li 
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Since the three supports are on the same level, d = 0 (Note 3, 
Art. 203). v Hence the right-hand member of Eq. (5) becomes 
zero. Since the end supports are simple contact supports (Note 

4, Art, 203), Mo = 0 and Mc = 0. ^ 
For the left panel (Case V), 

Axxx __ WL2 _ 8(20)2 
Lx 24 24 l66m6m 

For the right panel (Case I), 

A2x2 _ Pbc(L + b) _ 5 X 6 X 8(14 + 6) _ 7 
L2 6L 6 X 14 

Substituting these values in Eq. (5), putting d = 0, M0 = 0, 

Mc = 0, 
Q } Mb(20 + 14) 

+ 0 + 133.3 + 57.1 = 0. 

Or 
Mb = —16.80 ft.-tons. 

2. Reactions.—The negative sign oi MB indicates that at B 
the beam bends so that its concavity is below (tension above and 
compression below; see Note 5, Art. 203). Take OB free, cutting 
the beam just to the left of Z?. In Fig. 3306 the minus sign of MB 
is observed by drawing the stress-couple at B to indicate tension 
above and compression below. 

S moments about B = 0 gives 

20R0 - 8 X 10 + 16.8 - 0. 
Therefore 

R0 = 3.16 tons. 

In like manner, take BC free, cutting the beam just to the right 
of B (Fig. 3306). The stress-couple is again drawn to indicate 
tension above and compression below. 

2 moments about B = 0 gives 

14i2c -5X8 + 16.8 = 0. 
Therefore 

Rc = 1.66 tons. 

2 vertical forces = 0 gives (Fig. 330a) 

Ro + Rb + Rc — 5 — 8 = 0. 
Therefore 

Rb = 8.18 tons. 



SLOPE AND DEFLECTION 321 

3. Shear Diagram. Maximum Shear.—With the reactions at 
the supports known, the shear diagram may be drawn in the same 
way as for simple beams. In Fig. 330c, just to the right of 0, the 
shear is V = 3.16 tons; just to the left of B, 

V = 3.16 — 8 = —4.84 tons; 

between B and K, V = —4.84 + 8.18 = 3.34 tons; and between 
K and C, V = 3.34 — 5 = —1.66 tons. The shear that is 
numerically the largest occurs just to the left of B and is 

Vmax. = 4.84 tons. 

4. Maximum Moment MmK(.—A local maximum occurs at 
every section of the beam at which the shear passes through a 
zero value, i.e., at /, B} and K (Fig. 330c). At J (distant x 
from 0) the vertical shear is zero, or 

Therefore 

The moment at J is 

V j = Ro — wx = 0 

-316 -1 - «• 

x = 7.90 ft. 

Mj = Rox - ^ = 316 X 7-90 “ = 12.45 ft.-tons.* 

The moment at K is (see Art. 120 for rule of sign) 

Mk = Rc X 6 = 1.66 X 6 = 9.96 ft.-tons. 

The moment at B has already been found and equals —16.8 
ft.-tons. Of the three possible maximum values MJ} Mr, and 

Mb, Mb is numerically the largest. Hence 

Mmsx. = 16.8 ft.-tons. 

5. Moment Diagram. Fig. 330c?.—The moment diagram for 
the left panel is a parabola and that for the .right panel consists 

of two straight lines. 

On OiBi construct the normal moment diagram OiTiBi for 

the left panel, and on BiCi construct the normal moment diagram 

* The shear area theorem may be used to advantage (Art. 125). 

Mj 
3.16 X 7.90 

12.45 ft.-tons. o 
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BiTiCi for the right panel. Draw BiB' to represent Mb. 

Join Oi and B’ \ also B' and Ci. Intercepts in plus shaded areas 
give positive moments, and intercepts in minus shaded areas 

give negative moments. 

8 tons 

. Example II. Figure 331 represents an overhanging beam on 
three supports at the same level. Apply the theorem of three 
moments to the points 0, B and C and determine MB. 
Note that the moment at C is 

Mc = —6 X 3 = —18 ft.-tons. 

(the moment of a downward force is negative in accordance 
with our convention of sign). Hence the equation of three 
moments may be written 

„ , (15 + 12) 18 X 12 , 12 X 152 t 8 X 122 A 
0 + Mb-3-g— + 24 + “ig— = 0 

Therefore, 
Mb = —16.5 ft.-tons. 

To find the reaction at C, take BD free; 

RcX 12 + 16.5 - 8 X 6 - 6 X 15 = 0 

Rc — 10.13 tons. 

Similarly Ro = 4.9 tons and Rb = 10.97 tons. 
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206. Selection of Economical Beam.—If it is required to 
select an economical beam (an I-beam in the case of Example I 
of Art. 205), the method of procedure is analogous to that used 
for a simple beam. That is, first find Zh the section modulus, 
required for the beam to enable it to carry the applied loads 
(weight of the beam not considered). Then select a beam whose 
section modulus Z is a little larger than Zx to take care of the 
weight of the beam. Consider next the effect of the weight of 
the beam alone and determine the section modulus Z2 required 
for the beam to carry its own weight (at the same section pre¬ 
viously used for the maximum moment due to the applied loads). 
Evidently Z should not be less than Zx + Z2. 

Example.—Referring to Example I of Art. 205, select an 
economical I-beam. Use an allowable unit stress of 15,000 
lb./sq. in. 

6. To determine Zh put SI/c = Mm. 

15,000- = 16.80 X 2000 X 12 = 403,000 in.-lb. 
c 

Therefore 

- = 26.9 = Zi. 
c 

Hence a section modulus of Zx = 26.9 in.3 is required to enable 
the beam to carry safely the applied loads. 

7. Select a beam whose section modulus Z is a little greater 
than 26.9. Try a 12-in. standard I-beam weighing 31.8 lb./ft., 
whose section modulus is Z = 36 in.3 (A 10-in. I-beam weighing 
35 lb./ft. has a section modulus of 29.2 in.3 Being heavier, it 
would be more expensive.) 

w- 31.8 lb. per linear foot 

||0 jp 

k-20'-4<—_ H'-*J 
Fig. 332. 

8. Consider the weight of the beam. Treat the beam as uni¬ 
formly loaded with 31.8 lb./lin. ft. (Fig. 332). At the section of 
maximum moment found for the applied loads (at B in this 
instance) find the additional value of I/c; i.e., find Z2 Required 
by the beam’s own weight. Applying the theorem of three 
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moments (using Case V for both panels), 

M'a{20 + 14) 31.8(20)* 31.8(14)* _ n 
u -i- 3 -r ” 24 ^ 24 

Therefore = —1255 ft.-lb. Putting 

15,000^ = 1255 X 12 = 15,050, 

- = 1.00 in.3 = Z2. 
c 

Z is larger than Z\ + Z2; i.e., 36 is greater than 26.9 + 1.00. 
The beam selected is large enough to carry its own weight in 
addition to the applied loads.* 

PROBLEMS 

In the following problems, the beams are homogeneous and prismatic, 

and the supports are at the same level. For the method of solution, see 
Art. 205. Verify the results given. 

183. Fig. 333.—The two spans are 0rMp c 

% s ^ 
~~ L L —H 

ries a central concentrated load P 
(Case II, Art. 204). Neglect the 

Fig. 333. weight of the beam. 

Use the theorem of three moments to determine Mb. Then find reactions 

Ro, Rb, and Rc. 
3 , A ,, 3PL v 5P D D 

Ans. Mb = -—Ro = -yg = Rc] Rb M- = t*pl- 

184. Fig. 334.—Same as Problem 183, except that the beam carries a 

W= wL W= wL 
t ♦ itt-fH U U U U 

cm 
I*-L ->j<-l ->1 

Fig. 334. 

uniformly distributed load W over each span (Case V, Art. 204). 

Ans. Mb = Ro = Rc 
3 W D 10 W 
T; Rb =~s-> 

Mm WL 
8 * 

185. Fig. 335.—Neglect the weight of the beam and find M*, Ro, Rc, and 

Rb• Also construct shear and moment diagrams. 

Ans. Mb = —15 ft.-tons, Ro — 2.25 tons. Rc = 1.56 tons, Rb = 7.19 

tons, x = 7.50 ft., Mj = 8.44 ft.-tons, Mr ~ 12.48 ft.-tons, and Mm = 

15 ft.-tons. 

* If for any reason a beam of different weight w' per linear foot is to be 

considered, the corresponding Z'2 may be found from the relation Z'2/Z2 = 

w'/w (see Note 4, Art. 152). For example, a 10-in. 35-lb. beam would 

require Z2 — 35/31.8 X 1.00 = 1.11 in.3 This beam would be safe but 

more expensive. 
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186. Select an economical standard I-beam as the beam for Problem 185. 
Follow the outline of Art. 206. Take S as 18,000 lb./sq. in. for steel. 

The value of I/c required to carry the applied loads is Zi = 20 in.8 Try 

a 10-in. 25.4-lb. I-beam whose I/c is 24.4 in.3 = Z. 
Treating the beam as carrying its own weight alone, M'b = —1067 ft.-lb., 

Z2 = 0.71 in.3 Since Z > Zi + Z2, the beam is satisfactory. 

187. Fig. 336.—A beam with loads as shown is supported by three piers at 

the same level. Neglecting the weight of the beam, find Mb, Ro, Rc, and 

Rb• Also construct shear and moment diagrams. 

Results are as follows: MB — —19.88 ft.-tons, MK — 25.05 ft.-tons, 

Mj = 1.8 ft.-tons, Mm — Mk — 25.05 ft.-tons, Ro — 5.01 tons, Rc = 
1.34 tons. 

188. Select an economical I-beam for the beam of Problem 187. Take 

S — 18,000 lb./sq. in. 

Results are as follows: Z\ = 33.40 in.3 Try a 12-in. 31.8-lb. I-beam whose 

section modulus is Z = 36 in.3 Treating this beam as carrying solely its 

own weight, M'b = -751 ft.-lb., R'0 = 188 lb., M'k = 543 ft.-lb., Z2 = 

0.362 in.3 Note that Z2 must be found for the section at K, since the 

maximum moment occurs at that section. 

The beam selected is satisfactory, since Z > Z\ + Z2. 

Note.—An experienced designer would know that the trial beam in this 

case has a margin in its section modulus more than sufficient to take care 
of the beam's own weight. 

207. Continuous Beams on More than Three Supports.— 
Figure 337 represents a prismatic, homogeneous continuous {beam on five supports at the 

\ same level. The ends O and 
H| gn ^ E rest on simple contact sup- 
^ ports (not clamped or built in). 

FlG- 337‘ Hence M0 = 0 and ME = 0. 
The theorem of three moments may be applied to any three 

points in a beam. To find Mb, Me, and MD apply the theorem 
first to the three sections O, B, and C; next to B,C, and D; and 
finally to (7, D, and E. This procedure furnishes three simul¬ 
taneous equations in MB, Mc, and MD. The solution of these 
three equations determines the three moments MB, Me, and MD. 
An extension of this procedure will serve to make solutions of 
more complicated cases. 

It should be remembered that, when the theorem of three 
moments is applied to the portion BCD, for instance, BC is the 
left panel and CD is the right panel. 

Example. Fig. 338.—The continuous beam has four supports 
at the same level and is loaded as shown. Find MB and Mc; also 
the reactions of the four supports, viz., R0, RB, Rc, and RD. 
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Applying the theorem of three moments to OBC, 

n , Mb{ 12 + 15) , Mc X 15 , 18(12)2 , 15X6X9X21 A °+-3--+-Q— +~2r~ +-6)05-= ° 
Or, simplified, 

18 Mb + 5 Mc + 594 = 0. (a) 

Applying the theorem to BCD, 

Mb X 15 f Mc{ 15 + 18) , A 15 X 9 X 6 X 24* 12(18)2 _ 
• 6 3 ^ ^ 6X15 *" 24 

Or, simplified, 
5Mb + 22MC + 756 = 0. (6), 

Solving Eqs. (a) and (6), 

Mb = —25 ft.-tons, and Mc — —28.7 ft.-tons. 

To find the reaction at 0, take OB free (Fig. 3386), represent 
the stress couple at B as shown, and write the summation of 
moments about B equal to zero. Then R0 = 6.92 tons. 

Next, take OBC free (Fig. 338c), and write 2 moments about 
C = 0; 

6.92 X 27 + Rb X 15 - 18 X 21 - 15 X 6 + 28.7 = 0. 

Therefore 
Rb = 16.8 tons. 

With CD free (Fig. 338d), RD = 4.41 tons. Finally, 2 vertical 
forces = 0 gives Rc = 16.87 tons. 

208. Beams with Supports Not at the Same Level.—In the 
foregoing applications of the theorem of three moments, it was 
assumed that the supports of the beam were all at the same level. 
Accordingly, the quantity d in the three-moment equation was 
zero. Even if the supports were originally at the same level, 
they may later be out of level owing to the unequal settling of the 
supports. Sometimes it is important to know the effect of any 

given or assumed settling of the supports upon the stresses in the 
beam. 

In considering .the theorem of three moments as developed in 
Art. 203, it should be noted that d was taken as a downward 
deflection of the point B from the line joining 0 and C. Hence, 
if B deflects upward from the line OC, d is negative in Eq. (5). 
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Whenever d is not zero, the quantities E and I are left in the 
equation and the right-hand member of the equation may have 
a large value even for a small value of d. 

Example. Fig. 339.—Originally, 0, B, and C were at the same 
level. Later, owing to unequal settling of the supports, it is 
found that B is 0.25 in. above the line joining 0 and C. That is, 
d = —0.25 in. = — ft. 

W* 12.000 lb. w--12.000 !b. 
nnutuuuinii 

if ip % 
I*-/2'--- /2'.>1 

Fig. 339. 

The beam is a 10-in. standard I-beam weighing 30 lb./ft. for 
which I = 133.5 in.4, or 133.5/124 if expressed as ft4. 

E = 30,000,000 lb./sq. in. = 30,000,000 X (12)2 lb./sq. ft. 

Note.—Great care must be taken to have the units consistent. 
Do not use two different units for force or for distance in an 
equation. If desired, the inch and the pound may be used as 
units. * 

1QO K 

In the foot-pound system, E = 30,000,000 X 122; I = —; 

d=-48 

0 + .Mb24 

Writing the equation of three moments, 

. n . 12,000 X (12)2 , 12,000 X (12)2 
+ 0 +-24- +-24- 

(30,000,000 X 12s) X (!§#) X (-^) X (^ + i) 

from which MB (the moment at B) equals —30,100 ft.-lb. If the 
supports were at the same level (Problem 184), the moment 
at B would be — WL/S = —18,000 ft.-lb. 

From these values it is seen that in this example the moment 
at B is increased more than 65 per cent if the support at B is 

0.25 in. above the line OC. 
209. Deflection of a Point in a Beam.—In the theorem of three 

moments, O, B, and C are three points in the beam (not neces¬ 
sarily points of support) and d is the deflection of the point B 

* The solution of this problem with the inch and the pound as units makes 

a good exercise in the use of units. 
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from the line joining 0 and C (Fig. 317, Art. 203). This theorem, 
then, may be used to determine d in terms of E, I, and other 
constants, provided the moments at 0, B, and C are known, i.e., 
provided Mo, Mb, and Mc are known. If the value of d thus found 
is positive, the deflection of the point B from the line OC is downward; 
if negative, the deflection is upward. Note that OB of length L\ 
is the left panel, and that BC of length L2 is the right panel. 

Example I. Fig. 340.—A prismatic homogeneous beam rests 
on two end supports (a simple beam). It is loaded with a single 
load P at the center B. Find the deflection of B from the line 
joining 0 and C. Mo = 0, and Mc = 0; MB = -{-PL/A. Since 
the panels OB and BC are not loaded (Note 7, Art. 203), 

AiXi 

U = o, and 

The three moment equation for the points 0, B, and C becomes, 
therefore, 

0 + 

PL 
4 

X (L\ + L/) 

3 
+ 0 + 0 + 0 = dEI 

Or, since Li — L2 = L/2, 

Therefore 

PL2 
12 

d = 

4dEI 
L 

PL3 
48 El 

Example II. Fig. 341.—Same as Example I except that the 

Fig. 341. 

beam is loaded uniformly over the entire span. 
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Mo — 0, Me = 0, Mb — 
WL 

Also (Case V, Art. 204), 

A iXi _ A 2X2 2 
L\ Z/2 

W 

24 
WIS 
192' 

Therefore 

0 + -C- + 0 + 3S?-*!' 192 
f1 + = W U) 

d = 
5 WLZ 

384 El ' 

4dEI 
L ; 

210. Beam Built In at One End and Resting on a Support at 
the Other End. Supports at the Same Level. Fig. 342.—For 
convenience, a concentrated load P is used. The results, how¬ 

ever, are applicable to any system of loading. Replace the 
beam by a continuous beam on three supports, symmetrical and 
symmetrically loaded with respect to B, and apply the theorem 
of three moments to the points 0, B, and 0' (Fig. 3426). 

Mo == 0, M& = 0, d = 0, L\ — Z/2 = L. 

A1X1 _ A2X2 _ Ax 1g 
Li Z/2 L Jo 

0 -f — * — + 0 + ^T = 0. 
o L Jo 

Or, letting ffoe = I and solving for Mb, 

Mb = 
3 Hob (6) 
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Example I.—Assume the beam loaded as shown in Fig. 342a. 

Hob = PbC%+ ~ (Case I, Art. 204). 
6L 

_ _Pbc(L + 6) 
Mb 2L2 

UP is centrally applied, b = c = L/2 

Mb = — -foPL (see Problem 183). 

Example II.—Assume the beam uniformly loaded, W = wL. 

Hob = -foWL2 (Case V, Art. 204). 
Mb = -\WL. 

Problem 189.—Assume the beam triangularly loaded (Fig. 343). Find Mb- 

Ans. Mb = -ihWL. 

Fig. 343. 

STATICALLY INDETERMINATE FRAMES 

211. Modern steel-frame or reinforced-conerete buildings are 
statically indeterminate often to a high order (Art. 111). In the 
five-story building of Fig. 344, for instance, the beams and 
columns are riveted or welded together in the case of a steel build¬ 
ing or are built together integrally (at the joints) in the case of a 
concrete building. Assume the floors loaded as shown. Such a 
loading is possible (although not probable) and the stresses in the 
various members of the building are determined on the assump¬ 
tion that the floors may be loaded in this critical way. Moreover, 
the building must be able to withstand a heavy lateral wind 
pressure, as shown in Fig. 344. 

If our attention is directed to the panel OB (any panel in the 
frame), we should note that the joint 0 will rotate since OB, OC, 

OD, and OE (as well as all other members of the structure) will 
deform slightly. In like manner the joint B will rotate. That 
is, the beam OB is not fully restrained at 0 and B. To determine 
the stresses induced in the various members of the frame it is 

* necessary, therefore, to consider the rotation of the joints. Theo¬ 
retically, the rotation of a joint such as 0 will depend upon the 
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length and rigidity of all the individual members of the frame. 
In design, the process is greatly simplified, however, by making 
certain assumptions that for practical purposes will give suffi¬ 
ciently close approximations to the stresses. 

In the solution of statically indeterminate frames, the slope 
deflection method may be used to great advantage. In the remain¬ 
ing articles of this chapter two equations will be developed— 
equations that in one form or another are used almost universally 
at present. In these equations 0 and B will designate, respec¬ 
tively, the left and the right end of any given panel in the frame. 

= 
mum MMM 

—» 
MMMT mum MMM 

E 

MM MMM 
—» D 0 B 

C MMIT MMM MMM 

Fig. 344. 

Note.—The moment area will be used and it is very important 
to see clearly what is meant by the expressions 

Hob = 4and Hbo = ~ 
L Jo L 

In these expressions, A equals the area of normal moment 
diagram under OB (Art. 201). That is, A is the area of the 
moment diagram that would be obtained if OB were a simple 

beam on end supports. In Hob, x is the distance of the centroid 

of A from the point 0. In HBo, x is the distance of the centroid 

of A from the point B. 
212. Beam with Both Ends Built In. Supports at the Same 

Level. Tangents at Built-in Ends Remain Horizontal. Fig. 
345.—Required to find M0 and MB. 
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Ay] 

The deflection of 0 from B’s tangent equals zero. That is, 

= 0. Also the deflection of B from O’s tangent equals 

zero. That is, At/J* = 0. The solution of the two equations 

will determine Mo and MB. 
To show how the theorem of three moments may be used to 

solve problems of this kind, conceive the beam replaced by a 
continuous beam on four supports (Fig. 3456). Note that B'O 

Fig. 345. 
and OB must be symmetrical and symmetrically loaded with 
respect to 0 to insure that the tangent at 0 remains horizontal. 
Hence MB> = MB. In like manner OB and BOf must be sym¬ 
metrical and symmetrically loaded with respect to B. Hence 
M<y = M0. Apply the theorem of three moments to B'OB, 
remembering that MB> = MB and HB>0 = HB0 (Art. 211, note). 

MbL , M02L , MbL , or7 _ A 
^ ^ ’ "i 0 “T* BO v. 

Apply the theorem of three moments to OBOr} remembering that 
M& = Mo and Hob = Ho>B. 

MoL , MB2L , MoL , OI7 A nr + ~r- + -q- + 2Hob = o. 

These equations when simplified become 

MrL 2 MoL , OIJ A MoL 2 MBL , orj 
—«-1-q-r diibo = 0, —«-1-q-h dHoB = 0. 

The solution of the last two equations gives 

Mo = -|(2Hbo - Hob). 

Mb = -|(2Hob ~ Hbo). 

(7) 
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Example I.—Beam carries a single concentrated load (Fig. 
345a). 

Hob - 

Hbo = 

Pbc(L + b) 
6L 

Pbc(L + c) 
6L 

(Case I, Art. 204). 

2Hbo - Hob = ^(2L + 2c - L - b) = ~{L + 2c - b) = . 

Hence [Eqs. (7)] 

M0 = 

6T(b + c + 2c - b) 

Pbc2 
L* ' 

Pbc2 
2L ' 

(8a) 

In like manner 

Mb = 
P62c 
L2 ‘ (86) 

Example II.—Beam carries a uniformly distributed load over 
its whole length. 

WL2 

Hence 

Hob = Hbo = (Case Y, Art. 204). 

Mo = -&WL.\ 
Mb = 

(9) 

213. Beam Carries No Load. Supports Not on the Same 
Level. End Tangents Not Horizontal. Fig. 346a.—Required to 
find Mo and MB. Figure 3466 gives the complete moment dia¬ 
gram for OB (no load on beam). By using the moment area, 
the deflection of 0 from B’s tangent is [Eq. (4), Art. 200] 

A 7 . To 1 (M0L L MbL v 2r\ 
H “ L,‘ ~ m\ir x s + -r x sL) 

+ («) 

Or, dividing through by L and letting d/L = B = AO'BO in 

radians (deflection small), Eq. (a) becomes 

R — Ob — + 2 Mb). (6) 
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The angle between the tangent at 0 and the tangent at B is 
[Eq. (3), Art. 200] 

A0 
B 

O 
0O — 0B 

1 (MoL MbL\ 

EI\ 2 + 2 / 2 El (Mo + Mb). <e) 

Solving Eqs. (b) and (c) for M0 and MB, 

Mo 

Mb 

-^(3R - 200 - 0b). j 

2 El 
(3 R — 2 6 b — @o) - 

(10) 

Note.—It is necessary to be consistent in sign. In Fig. 346a, 
all quantities are taken as positive. That is, Mo or MB is positive 

(+) if the beam bends so as to produce compression in the upper 

fibers; B0 or 0B is positive if the tangent at 0 or B rotates clockwise. 
R is positive if the straight line OB rotates clockwise. 

214. General Case.—By the law of superposition the results 

of Art. 212 [Eq. (7)] or, for special cases, Eq. (8) or (9) may be 
combined with the results of Art. 213 [Eqs. (10)] with the pre¬ 
caution that the signs must be consistent. 
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Example. Fig. 347.—A 12-in. 40.8-lb. standard I-beam, 15 ft. 
long, is built in at both ends and carries a uniformly distributed 
load of W = 50,000 lb. Originally 0’s tangent and B’s tangent 
coincided but later, owing to the settling of the pier B, B was 
| in. below the level of 0, and B’s tangent had rotated clockwise 
through |° (0.00393 radian). 

Find 

1. Mo and MB, before the pier settled. 
2. Mo and MB due to settling of pier. 
3. Resulting moments. 

1. Using Eq. (9), Art. 212, 

Mo = Mb 
WL 
12 

50,000 X 15 X 12 
12 

-750,000 in.-lb. 
* 

2. Use Eqs. (10), Art. 213, to find M0 and MB due to settling 
of pier (no load on beam). 

Take E = 30,000,000 lb./sq. in. From a steel company’s 
handbook, I = 269 in.4 

d = i in. L = 15 ft. = 180 in. Therefore 

R = d/L = +0.00139 radian. » 

Note that R is plus since the line OB rotates clockwise. 

do = 0, 0B = +0.00393 radian. 

Note that 0B is plus since tangent at B rotates clockwise. 
Therefore [Eqs. (10)], M0 due to settling of pier is 

4^(3R - 20o - Ob) 
Li 

-2 X 30,000,000 
180 X 

269(3 X 0.00139 - 0 - 0.00393) = -21,500 in.-lb. 
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In like manner, 

Mb = 2 X 3(^’000 X 269(3 X 0.00139 - 2 X 0.00393 - 0) = 

-331,000 in.-lb. 

3. By adding algebraically, the total moments at 0 and B are, 
respectively, 

Mo = -750,000 - 21,500 = -771,500 in.-lb. 
Mb = -750,000 - 331,000 = -1,081,000 in.-lb. 

Note.—With 18,000 lb./sq. in., the safe moment in the beam is 
Mm = 807,000 in.-lb. Hence, after the pier has settled, the fiber 
stress is excessive. 

PROBLEMS 

190. A prismatic homogeneous cantilever carries an end load P (Fig. 348). 
Find the deflection of the mid-point O. 

Suggestion.—Take the point O as an origin and integrate between O and 
B. Use the slope deflection method [Eq. (2), Art. 197]. 

Ans. Ay = IPcP/EI. 
191. In Problem 190, move the load to 0 and find the deflection of C. 

Note now that C is the origin. Compare result with that of Problem 190. 
192. A beam of length L rests on end supports and carries a central con¬ 

centrated load P. Find the deflection of the quarter points. Find sepa¬ 
rately the deflection of the end and of the quarter point, from the tangent 
drawn at the middle of the beam. Ans. PL3/El. 

193. In Problem 190, use the moment area method. 
194. In Problem 191, use the moment area method. 
195. A 10-in. 30-lb. standard steel I-beam, 10 ft. long, has one end B 

built in horizontally, the other end 0 resting on a support. The beam 
carries a central concentrated load of 20,000 lb. Assume that the support 
0 sinks 1 in. below the level of B. Find the reaction of the support at 0 
and construct the shear and moment diagrams (Note 4, Art. 198; Ex. V, 
Art. 199). Ans. R0 = 4512 lb. 

196. In Problem 195, assume that the support 0 moves up 1 in. 
197. Let OB of length L = 16 ft. be part of a longer beam; Mo = 3 ft.- 

tons, Mb — — 5 ft.-tons, P — 4 tons placed 6 ft. from O. Construct the 
complete moment diagram for OB and its loading. Ans. Mm = 15 ft.-tons. 
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198. With reference to Fig. 330, let Li = 20 ft., L2 = 16 ft., W = 7.5 tons, 

P = 9 tons placed 7 ft. from the end support C. Neglect the weight of the 

beam and find the economical standard steel I-beam. S = 18,000 lb./sq. in. 

Am. Mm = 25.9 ft.-tons. 

199. In Problem 198, consider the weight of the beam. 

200. A beam rests on three supports at the same level (Fig. 349). Apply 

the theorem of three moments to the points O, B, and C and find Mb- 

4hns !2fons lion 

pfcrar W2=WAV7S 4*- 6'- 

----—^—: 

«.l 1 1 

-
2

 -i 
Fig. 349. 

What is the sign of Mo and Me? Construct the shear and the moment 

diagram. Am. Mb — —18.56 ft.-tons; Rc — 12.53 tons. 

201. In Problem 200, select an economical I-beam. Take S = 18,000 

lb./sq. in. Neglect the weight of the beam. 

202. In Problem 201, consider the weight of the beam. 

203. A beam rests on four supports at the same level. The length of each 

span is L = 12 ft. Each of the outer spans carries a central load of 5 tons 

and the middle span carries a uniformly distributed load of 9 tons. Find 

the reactions and construct the shear and the moment diagram. 

Am. Mb = Me = —9.9 ft.-tons; Mm = 10.05 ft.-tons. 

204. The cantilever of Fig. 350 is reinforced as shown. The I for the part 

CB is twice the I for the part CO. 

weight of the beam. J*B rc fB 

o =Jo +Jc 

Find the deflection of O. Neglect the 

Am. &%PL*/EI. 
205. A 12-in. steel I-beam, AD, 22 ft. long, is. strengthened with flange 

4 ions 

B |c ~ 

i 5'~4«-12'.-4<~ s'-* 
...22--* t 

Fig. 351. 

plates between points B and C (Fig. 351) and is simply supported at its two 

extremities (at same level). 
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The moment of inertia of the cross-section anywhere between A and B 
and also between C and D is 200 in.4, while for any section between B and C 
it is 300 in.4 A load of 4 tons is placed in the middle of the span. From B 
to C is 12 ft. 

Compute the deflection of the middle point of the beam, neglecting its 
weight, and assuming the modulus of eleasticity E as 30,000,000 lb./sq. in. 

Ana. 0.357 in. 



CHAPTER X 

STRESS INTENSITIES ON DIFFERENT PLANES 
THROUGH A POINT IN A BODY 

215. Introduction.—In the foregoing chapters, formulas were 
derived which in many cases enable one to calculate the intensi¬ 
ties of stress at a point in a body on each of two mutually per¬ 
pendicular planes. For instance (Fig. 352), at a point E in a 
beam the intensity of the normal stress on a vertical plane CD 
(right section) may be found by means of the formula (Art. 162) 

s-% 
and the intensity of the shearing stress at E on the horizontal 

Fig. 352. 

plane EH (and therefore also on the vertical plane EC) may be 
found by means of the formula [Eq. (11), Art. 163] 

S. 
VAy 
tl ' 

Moreover, the stress on the vertical plane HEC (plane parallel to 
the plane of the paper) is zero or may be assumed to be zero. 
Hence at a point in a beam the intensity of stress on each of three 
mutually perpendicular planes is known or may be found. 

Let the intensities of stress at a point in a body on three 
mutually perpendicular planes be known. The question now 
arises whether these stresses are the most significant stresses at 
that point. That is, may not the intensity of a stress at the 
point E be greater on some oblique plane (such as EG) than on 
any of the three given planes? 

341 
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To answer this question, consider an elemental prism at E. 
Figure 353 shows this prism in perspective. In Art. 18, it was 
shown that the stresses on a face of an elemental prism may be 
assumed as uniformly distributed and that the stresses on 
opposite faces may be assumed to be equal and opposite. Hence, 
by knowing the intensities of stress on the three adjacent faces EF, 
EH, and EG (three mutually perpendicular planes), those on 
all six faces are known. 

In this chapter, the stresses on the face EG (the face parallel 
to the plane of the paper) are assumed equal to zero. That is, it 
is assumed that the stresses on one of the three mutually per¬ 
pendicular planes are zero. This is the case that commonly 
occurs in engineering. 

H 

For convenience, the prism will be represented by a side view 
with the axes respectively horizontal and vertical (Fig. 354). 
Note that the dimensions a and b (c is perpendicular to the 
paper) are of infinitesimal magnitude. By varying the ratio of 
a to b, the diagonal EG may make any desired angle with the 
horizontal or with the vertical. The problem of finding the 
intensities of stress on an oblique plane through E reduces 
itself, therefore, to this: If the intensities of stress on the faces of an 
elemental prism are known, it is required to find the intensities of 
stress on the diagonal planes of this prism. 

Note<—In the limit, a and b approach zero. Hence (Fig. 354) 

the diagonal plane FH may be thought of as an oblique plane 

through E. 
216. Stresses Resulting from Simple Shear.—Consider first the 

simple case of an elemental prism upon four of whose faces only 
shearing stresses act (Fig. 355a). It is assumed that no stresses 
act on the two faces that are parallel to the plane of the paper. 
By Art. 19, the shearing stresses on the four faces are all of the 



STRESS INTENSITIES ON DIFFERENT PLANES 343 

same intensity S*. Hence the total shearing force on each of the 
horizontal planes is S8ac {c being the dimension of the prism JL 
the plane of the paper), and on each of the vertical planes it is 
Ssbc. Divide the prism into two halves by the diagonal plane GE 
and take the upper half free' (Fig. 3556). If d is the length of the 
diagonal plane and S'8 is the intensity of shear on this plane, then 
the total shearing force on the diagonal plane is S8dc. In like 
manner, the total normal force on the diagonal plane is S'dc. 

Fig. 354. 

Shearing Stress on Diagonal Plane.—Take the X-axis along the 
diagonal plane and the F-axis perpendicular to it as is indicated 
in Fig. 3556. Since equilibrium exists, 2F* = 0; i.e., the summa¬ 

tion of forces parallel to the diagonal plane must equal zero. 

S8dc — (S*oc) cos 0 + (S8bc) sin 0 = 0. 
Or 

S8 = S8^ cos 0 — S«^ sin 0. 

From the figure, a/d = cos 0, and 6/d = sin 0. 
Therefore 

S' = S8 cos2 0 — S8 sin2 0 = S8 (cos2 0 — sin2 0) 
= S8 cos 20. 

The value of S' becomes a maximum numerically when cos 20 = 1 
or — 3, i.e., when 0 = 0 or 90°. Hence, numerically, the shearing 
stress is a maximum on the planes EH and EF. 
Therefore 

Max. S'8 = S8. (a) 

Normal Stress on a Diagonal Plane.—To determine the normal 

stress on the diagonal plane EG (Fig. 3556), put 2Fy = 0. 

Sfde — {SJbc) cos 0 — (S8ac) sin 0 = 0. 
Or 

S' = sX cos 0 + S$~3 sin 0 
a d 

= S8 sin 0 cos 0 + S, cos 0 sin 0 = 2S, sin 0 cos 0 
= S8 sin 20 (in simplest form). (6) 
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The. value of S' as given by Eq. (6) becomes a maximum when 
sin 26 = 1, Le., when 6 = 45°. Putting 6 = 45° in Eq. (6), we 

obtain 
Max. S' = S8. (c) 

Note.—With the shearing forces acting as shown in Fig. 3556, S' 
is a tensile stress and may be designated by S't. If the direction 
of the shearing forces are reversed, or if the other diagonal, HF 
(Fig. 355a), is chosen, S' becomes a compressive stress and may be 

Fig. 355. 

designated by S'c. Equation (c) is to be interpreted to mean 
that numerically 

Max. S't = max. S'c = St. 

The results of this article may be stated as follows: If the 
stress at a 'point on each of two planes at right arises to each other 
is one of simple shear of intensity Ss, then 

Theorem I.—The intensity of this stress is numerically greater 
than that on any oblique plane through that point. That is 

[Eq. (a)], 

Max. Si = St. (1) 

Theorem II.—The intensity of the normal stress is numerically 
a maximum on planes making an angle of 45° with either of the 

given planes and its value is [Eq. (c)] 

Max. S' = S8. (2) 

Illustration I.—In Chap. V, it was seen that the stress on a 
right section of a shaft under pure torsion is one of pure shear 
(no normal stress). It follows then from Theorem I (above) 
that, if a shaft is put under pure torsion, the maximum intensity 
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T = (Art. 95). 

of shear occurs on a right section and hence may be determined 
by means of the torsion formula 

SJ 
r 

Illustration II. Fig. 356.—Since the stress at a point on a right 
section of a shaft under pure torsion is one of simple shear of 
intensity S, (no normal stress), it follows (Theorem II) that 
max. S' = Sa and that this stress occurs on oblique planes making 
an angle of 45° with the axis of the shaft. In 
the case of chalk, cast iron, and other brittle 
materials, the strength in tension is less than 
the strength in shear. Hence, if a cylinder 
of such material is subjected to an increasing 
torque until it fails, failure will be due to tension and will take place 
along a surface making approximately an angle of 45° with the 
axis of the cylinder.* 

217. Stresses Resulting from Simple Normal Stresses.— 
Figure 357 represents an elementary prism acted upon by two sets 

of simple normal stresses of 

Fig. 356. 

fS2ac 
/ / t 

S|bc y* / a 

t^ac 

<«> 
Fig. 357. 

intensities Si and S2, respec¬ 
tively. That is, the prism is 
acted upon by simple biaxial 
stresses, f Take free the upper 
half (Fig. 3576). 

Shearing Stress Resulting from 
Biaxial Stresses.—Putting 

= 0, 

S'adc — (Sibc) cos 0 + (S2<zc) sin 0 = 0. 

S' = Si^ cos 0 — S2^ sin 0 
a d 

= Si sin 0 cos 0 — S2 cos 0 sin 0. 
Therefore 

S' = 

Si — s2 
sin 20. (a) 

Evidently S'8 is numerically a maximum when sin 20 = 1, i.e.} 
when 0 = 45°. Hence, numerically, 

Si-S2 
Max. S'8 = (b) 

* Take a cylindrical piece of chalk and twist it. 
t “Biaxial” means along two axes. 

Note how it fails. 
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Normal Stress Resulting from Biaxial Stresses.—Putting 
2FV = 0, 

S'dc — (Sibc) sin 0 — (/S2oc) cos 0 = 0. 

/S' = aSi^ sin 0 + $2*5 cos 0. 
a a 

Therefore 

/S' = /Si sin2 0 + /S2 cos2 0. (c) 

To find that value of 0 which will make S[ a maximum or a 
minimum, put dS'/dd = 0. 

dsf 
= 2/Si sin 0 cos 0 — 2S2 cos 0 sin 0 

= 2(/Si — /S2) sin 0 cos 0 = 0. 

That is, dS'/dd = 0 if sin 0 = 0, or if cos 0 = 0. If sin 0 = 0, 
0 = 0. If cos 0 = 0, 0 = 90°. 

Putting 0 = 0 in Eq. (c), /S' = /S2.) / 
Putting 0 = 90°, /S' = /Si.j 

Hence, if the stresses at a point on two mutually perpendicular 
planes are simple normal stresses of intensities Si and /S2, respec¬ 
tively, then 

Theorem HI.—One stress is the normal stress of maximum 
intensity, and the other is the normal stress of minimum inten¬ 
sity at that point. That is [Eqs. (d)], 

Max. /S' = Si or S2; min. /S' = S2 or Si. (3) 

Note.—In Fig. 357 the stresses /Si and S2 are represented as 
tensile (+). One or both, however, may be compressive ( —). 
Assume now that as 0 varies in Eq. (c) /S' varies continuously 
from = 4000 to S2 = —8000. In the calculus sense, 
Si = 4000 is the maximum value of /S' and S2 = —8000 is 
the minimum value of /S'. By our convention of signs a tensile 
stress is designated as positive (+) and a compressive stress as 
negative (—) and it is convenient to say that Si = 4000 is the 
maximum tensile stress and St = 8000 is the maximum com¬ 
pressive stress. 

Theorem IV.—The intensity of the shearing stress is numer¬ 

ically a maximum on a plane making an angle of 45° with either 
of the given planes and its value is [Eq. (6)] 

Max. S', = o (4) 
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Example I.—A boiler is subjected to an internal steam pres¬ 
sure. Let S2 equal the unit tensile stress on a longitudinal section 
and Si equal that on the circumferential section of the shell 
(see Fig. 358). In Art. 72, it was shown that 
S2 = 2Si. Since S2 and Si are simple normal 
stresses, S2 is the maximum and Si is the mini¬ 
mum unit tensile stress induced in the shell Fig. 358. 

(Theorem III). 
IfS2 = 16,000 Ib./sq. in., then Si = 8000 lb./sq. in. Therefore 

(Theorem IV), 

Max. S'. = - ■ = -4000 lb./sq. in. 

That is, numerically, 

Max. S' = 4000 lb./sq. in. 

If 16,000 lb./sq. in. is taken as the allowable tensile stress, then 
10,000 lb./sq. in. may be taken as the allowable shearing stress. 
Hence, in a boiler, shearing stresses in the shell need not be 
considered. 

Example II. Fig. 359.—Let Si = 18,000 lb./sq. in. (tension). 

S2 = —16,000 lb./sq. in. (compression). 
,, 18,000 + 16,000 1f7AAAiU / 
Max. S'a = — ----— = 17,000 lb./sq. m. 

If i2,000 lb./sq. in. is considered the maximum safe unit shear, 
then 17,000 lb./sq. in. is excessive. 

From Theorem III, max. S' = Si = 18,000 
lb./sq. in. (tension). 

$ibc 
Problem 206.—A prism is under simple tension. 

Let P equal the pull in the prism and A equal the 
area of right section. Make use of the theorems and 
show that (1) max. S' = P/A; (2) max. S' = P/2A 

218. Stresses Resulting from Shearing and Axial Stresses — 
Assume that shearing stresses act on four faces of an elemental 
prism and that normal stresses act on one pair of opposite 
faces (Fig. 360). That is, assume that the prism is acted upon by 
shearing and axial stresses. 

Putting 2F, = 0 (Fig. 3606), 

S'dc — (Sbc) cos 0 — (S9ac) cos 0 + (S„bc) sin 0 — 0. 



348 MECHANICS OF MATERIALS 

Or 

S' = cos 8 + Stq cos 8 — Sag sin 0. 

SJ = S sin 8 cos 8 + S, cos2 0 — S, sin2 0. 

Therefore 

S' = § sin 28 + S9 cos 28. (5) 

Putting 2FV = 0, 

S'dc - (Sbc) sin 6 - (S,ac) sin 0 — (S,bc) cos 0 = 0. 
Or 

S' = >sin 0 + S>2 sin 0 + S,^ cos 0; 

S’ = 8 sin2 0 + S8 cos 0 sin 0 + S. sin 0 cos 0; 
s 

S' = 2 0- — cos 20) + S, sin 20. 

Therefore 

S' = ^ ^ cos 20 + 8. sin 20. (0) 

Note. Equations (5) and (6) were derived on the supposition 
that S and S. have the directions indicated in Fig. 360. If S or S, 

is reversed in direction, it should be given the negative sign when 
substituted in these equations. ° 

219. Maximum Unit Shearing Stress. Fig. 360.—The unit 
shearing stress on a diagonal plane is [Eq. (5), Art. 218] 

s 
S’. = 2 sin 20 + 8. cos 20. (a) 
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To find that value of 6 which will make S'a a maximum (or a 
minimum) put dS'Jd6 = 0. 

Therefore 

dS'a 
dd 

= S cos 26 — 2S9 sin 26 = 0 

tan 26 = _(i) 
s8 (7) 

There are always two angles, 180° apart, whose tangents are 
equal. Thus tan a = tan (a + 180). Accordingly, if a is the 
least value of 26 that will satisfy Eq. (7), then 26 = a, or 
26 = a + 180. Therefore 

e = l or 6 = ? + 90. 

That is, there are two values of 6, 90° apart, that will satisfy 
Eq. (7). One value of 6 will give maximum S' and the other 
will give minimum S'. 

The maximum and the minimum value of S' may be found by 
substituting in Eq. (a) the values of sin 26 and cos 26 as deter¬ 
mined by Eq. (7). These values of sin 26 and cos 26 may be 
found from trigonometric formulas.* A better way perhaps is 
as follows: 

Construct a right triangle ABC (Fig. 361) with S8 as base and 
S/2 as altitude. For convenience assume S and S8 as positive 

(+). The hypotenuse of this triangle is \/(S/2)2 + SSince 
tan 26 is positive [Eq. (7)], this triangle may be in the first quad¬ 
rant or in the third quadrant. 
Therefore 

S 

Note that in the first quadrant both sin 26 and cos 26 are posi¬ 

tive (+) and that in the third quadrant both are negative (—). 
Hence for the first value of 26 use the upper signs, and for the 

* sin 20 
tan 20 

\/l + tan* 26 
cos 20 

‘\7l + tan* 20 
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second value of 26 use the lower signs. Substituting the values 
of sin 26 and cos 26 as given by Eqs. (6) in Eq. (a), 

That is, the intensity of the shearing stress is numerically a maxi¬ 
mum on each of two planes at right angles tq each other and its 
value is 

Max. S'. = + si (8) 

Note.—In the calculus sense, the upper (plus) sign in Eq. (c) 
gives maximum S’, and the lower (minus) sign gives minimum 

S'.. The two values of S' are numerically equal as they ought 
to be since the shearing stresses at a point on two planes at right 
angles to each other always are numerically of the same intensity 
(Art. 19). 

Example.—With reference to Fig. 360a, let S = 16,000 
lb./sq. in. and S. = 10,000 lb./sq. in. From Eq. (8), 

Max. S', = a/80002 + 10,0002 = 12,800 lb./sq. in. 
From Eq. (7), 

20 = tan_1 = tan_1 °-8 = 38° 40' or 218° 40'. 
Therefore 

0 = 19° 20' or 109° 20'. 
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220. Maximum Unit Normal Stress. Fig. 360.—The normal 
stress on the diagonal plane is [Eq. (6), Art. 218] 

S' = ^ — — eos 20 + S, sin 20. . (a) 

To find that value of 6 that will make S' a maximum or a mini¬ 
mum, put dS'/dd = 0. 

JO/ 

-^0* = S sin 26 + 2Sa cos 26. 

Therefore 

S. 
tan 26 = (9) 

If a is the least value of 26 that will satisfy Eq. (9), then 
26 = a or 26 = a + 180°. Hence 

"I or • -! + 90°. 

That is, the two planes are 90° apart. The normal stress is a 
maximum on one of these planes and a minimum on the other. 

Since tan 26 is negative [Eq. (9)], the angle 26 is either in the 
second quadrant or in the fourth. To find sin 26 and cos 26 as 
determined by Eq. (9), construct the right triangle ABC (Fig. 
362) with Ss as the altitude and S/2 as the base. From this 
triangle we obtain 

sin 26 = ± 
S8 

yl(lj + « 

cos 20 = + 

S 
2 

(b) 

Note that in the second quadrant the sine is positive (+) and 
the cosine is negative (—), and that in the fourth quadrant the 
sine is negative and the cosine is positive. Hence in Eqs. (b) 
the upper signs go together and the lower signs go together. 

Substituting the values of sin 20 and cos 20, as determined by 

Eqs. (b), in Eq. (a), 
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*-f± 

Or [Eq. (8), Art. 219] 
# 

S' = j ± max. S'. (c) 

The normal stress S in Eq. (c) may be tensile (+) or com¬ 

pressive (—). Since numerically y/(S/2)2 + SJ is always 
greater than S/2, the first equation (upper sign) always gives 
a positive value for S' (tensile stress; designate it by Max. and 
the second equation (lower sign) always gives a negative value 
for S' (compressive stress; designate it by Max. S'e). Hence 
Eq. (c) may be written 

Max. 5! 

Max. Si =W(D' 

+ = -jj + max. S',. ] 

+ Sf = - max. S',. ] 

(10) 

Note- 

Ss^c 

She- 

-Evidently, if S is negative (compressive stress), S'c is 
numerically larger than S't. 
Frequently, however, the sign 
of the stress at a point is imma¬ 
terial. If Max. S' designates 
the numerical value of the 
maximum normal stress at a 
point (tensile or compressive as 
the case may be), then 

Ssao 

Fig. 363. 

Max. S '-!W(0 + S] = H + max. S'.. (10) 

in which the numerical value of S must be used. 
Example. Fig. 363.—Let S = —16,000 lb./sq. in. and 

S, = 10,000 lb./sq. in. 

From Eq. (8), 

Max. S', = \/80002 + 10,0004 = 12,800 lb./sq. in. 
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From Eqs. (10), 

Max. SI = -8000 + 12,800 = 4800 lb./sq. in. 
Max. S'c = -8000 - 12,800 = -20,800 lb./sq. in. 

Therefore 

Max. S' = 20,800 lb./sq. in. (compression). 

Problem 207.—In an elemental block subject to shear and uniaxial stress,* 
the maximum normal stress is 12,000 lb./sq. in. and the maximum shearing 
stress is 9000 lb./sq. in. Find the normal and shearing stresses on the faces 
of this block. Ans. S = 6000 lb./sq. in.; S8 = 8485 lb./sq. in. 

221. Stresses on an Oblique Section of a Beam. I-beams.— 
Consider a NF 47-lb. beam (Fig. 364). The beam is 17.9 in. 

high and the flange is 0.52 in. thick. The distance of the junction 
of flange and web from the neutral axis is, therefore, 8.43 in. 

If at a given section the allowable flexure stress 

(18,000 lb./sq. in.) 

is developed in the outer fibers, then the normal stress at the 
junction of web and flange is (Art. 135), 

S = 2 X 18,000 = 141 x 18,000 = 16,960 lb./sq. in. 
c o.yo 

Assume that at this point on the section the unit shearing stress 

is 
S8 = 9000 lb./sq. in. 

The maximum shearing stress at this point on an oblique plane 
is, then, 

Max. S' = V84802 + 90002 = 12,350 lb./sq. in. 

* “Uniaxial” means along one axis. 
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And the maximum normal stress is 

Max. S' = 8480 + 12,350 * 20,830 lb./sq. in. 

This illustration shows that, in exceptional cases, the resulting 
normal stress or the resulting shearing stress at some point in 
an I-beam may exceed the allowable value even though the 
direct flexural stress and the direct shearing stress in that beam 
do not exceed the allowable values. * 

In practice, as a rule, the design of a beam is based upon the 
direct flexural and shearing stresses. If the resulting normal 
stress or the resulting shearing stress at some point in this beam 
should exceed or even approach the allowable stress, it is advis¬ 
able at this point to reinforce the. web by plates or angles. 

It should be noted that the combination of a high direct 
flexural stress and a high direct shearing stress at some point 
in a beam is apt to occur only under a heavy concentrated load 
or over a reaction at which the common theory of flexure hardly 
applies. Moreover, specifications commonly require that the 
web be reinforced by stiffeners under a heavy concentrated load 
or over a reaction. 

Wooden Beams.—In a wooden beam (if properly sawed) the 
grain runs parallel to the longitudinal axis of the beam (Fig. 365). 
Let S8 be the unit shear along the grain at the neutral surface, 
and S' the unit shear along an oblique plane as shown in the 
figure. In a wooden beam it frequently happens that S' is 
greater than S8. Now the safe unit shear along the grain is 
low (say 150 lb./sq. in.) while that across the grain is much 
higher (say 1000 lb./sq. in.). Hence, since S'8 acts partly across 
the grain, its safe value is much higher than that for S8. That 
is, in a wooden beam the unit shear along the neutral surface is the 
significant unit shear. If a wooden beam fails in shear, it splits 
along the grain at or near the neutral surface. 

On account of the low value of the safe unit shear (along the 
grain) it is very seldom that the maximum normal stress S' on 

an oblique plane through a point exceeds the stress in the outer 

fiber at the section through that point. 

* A normal stress on a right section as determined by the flexure formula 
is called a direct flexural stress. 

A shearing stress on a right section as determined by the shear formula 
is called a direct shearing stress. 
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Concrete Beams.—The tensile strength of concrete is very 
low (relatively). A concrete beam (if not reinforced) will 
fail therefore in tension. Consider the beam as uniformly 
loaded (Fig. 366). Let A be a point in the middle right section. 
There being no vertical shear at the middle section, the maximum 

Fig. 365. 

T 
I 

Fig. 366. 

tensile stress at A acts normally to the right section as shown in 
the figure. 

Nearer a support (at B, say), there is a vertical shear (and 
a bending moment also). Hence at B the maximum tensile 
stress acts obliquely to the right section as shown. Reinforcing 
bars (steel bars, Fig. 367) are embedded, therefore, in the concrete 

Fig. 367. 

with the ends bent upward so that toward the ends of the beam 
the steel bars tend to follow the lines of maximum tensile stress. 
In designing concrete beams it is assumed that the steel bars 
carry the entire tension on the tensile side of the beam. 

222. Graphical Solution.—The problem of the previous article 
may be solved by the following graphical construction. In 
Fig. 368 lay off OK equal to S (to the right for tension). Lay off 
KL perpendicular to OK and equal to S8. Consider the direc¬ 
tion of S8 on face be of Fig. 360 as positive. Bisect OK. With 
M as a center and ML as radius draw the circle. OP is the maxi¬ 
mum normal stress. ON is the minimum normal stress. ML 
is the maximum shearing stress. The maximum normal stress 
occurs on a plane parallel to PL and passing through the element. 

The minimum normal stress occurs on a plane parallel to NL, 
which is perpendicular to LP. The maximum shearing stress 
occurs on the perpendicular planes LT and LR. 

223. Combined Flexure and Torsion.—A shaft transmitting 
power is usually subjected to bending and twisting, i.e., to flexure 
and torsion. Consider the crankshaft shown in Fig. 369. Let P 
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be the vertical pressure against the crank pin when the arm is in 
a horizontal position. 

If two equal and opposite forces P' and P", each equal and 
parallel to P, are introduced at 0, the force P acting at B may be 
replaced by a force P" (equal to P) acting at 0, and a couple PP' 

whose torque is T = Pa (Art. 99). The force P" produces a 
bending moment in the shaft. This moment is a maximum 

at N and has a value MmBX. = PL. 
The torque T produces shear on a right section. The maxi¬ 

mum intensity of this shear occurs on an outer element (say at m) 
and may be found by means of the torsion formula T = SJ/r, 
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That is, since J/r = m*/2. 

The bending moment M produces a normal stress on the section 
at N. The maximum intensity of this stress occurs in the 
outer fiber (at m) and may be found ^ 
by means of the flexure formula M 
= SI/c. That is, since I/c = irr$/A, 

Me AM 
(b) h 

0*TA 

The unit stresses acting on the outer 
element m are represented in Fig. 370. The maximum stress 
acting on an oblique plane (diagonal plane) may be found, 
therefore, by means of the formulas 

Max. S'a 

Max. S' (c) 

Note.—The force P" acting at 0 (Fig. 369) produces a vertical 
shear. The intensity of this shear is a maximum at the neutral 
axis (on the central horizontal line) and is zero at m (Art. 164). 
As a rule, the vertical shear in a shaft need not be considered. 
Even at the neutral axis the intensity of the vertical shear is 
relatively small. 

Example I.—In Fig. 369, let P = 4000 lb., a = 6 in., and 
L = 8 in. Required the radius of a steel shaft if the maximum 
tensile (or compressive) stress is not to exceed 16,000 lb./sq. 
in. and the maximum shearing stress is not to exceed 10,000 
lb./sq. in. 

From Eqs. (a) and (6), respectively, 
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Therefore [Eq. (c)], 

Max. S', = = ^V20,3752 + 15,2702 

_ 25,450 
^•3 

Or, since maximum S' is given as 10,000 lb./sq. in., 

Therefore 

Also, [Eq. (c)], 

10,000 
25,450 

rz 

r — 1.365 in. 

Max, S' = ^(20,375 + 25,450). 

Or, with max. S' = 16,000, 

Therefore 

16,000 = ^(20,375 + 25,450). 

r = 1.42 in. 

That is, r must be 1.365 in. if the shearing stress is not to exceed 
10,000 lb./sq. in., and r must be 1.42 in. if the tensile stress is 
not to exceed 16,000 lb./sq. in. Hence make the diameter of 
the shaft the nearest commercial size above 2.84 in. (say 2£ in.). 

Example H.—Two pulleys are mounted as shown in Fig. 371. 
The diameter of the shaft is 2 in. Required to find the maximum 
unit tensile and shearing stresses in the shaft. 
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The maximum bending moment occurs either at A or at B. 
To find maximum M, deal with the shaft as a beam loaded as 

J 

0 
k eco ib. 
A 6 

IRq-450 lb. 

Lr_ o' _^ .. o' _ 

J 

_ 
Rb , 
^ Z' V .— *• -. C. -^ 

900 lb. 
Fig. 372. 

shown in Fig. 372. Putting 2 moments about 0 = 0, 

RbX 4 + 600 X 2 - 900 X 4f = 0; 
Rb = 750 lb. 

Putting SAfs = 0, 

4 R0 = 600(2) + 900(1) 

Ro = 450 lb. 
Ma — —450 X 2 = — 900 ft.-lb. 
Mb = -900 X f = —600 ft.-lb. 

Therefore numerically 

Max. M = 900 ft. lb. = 10,800 in.-lb. 

Hence [Eq. (b)] 

4Af 
8 = 

tit* 

, v 10,800 10_,nl, , . 
4 X — p = 13,750 lb./sq. in. 

The torque is T — (650 — 250) X 6 = 2400 in.-lb.* 
Hence [Eq. (a)] 

„ 2T 2 X 2400 , KOO „ . . 
S, = —; = -,-= 1528 lb./sq. in. 

HT8 IT 1 

Therefore 

and 
Max. S', = V68752 + 15282 = 7040 lb./ q. in. 

Max. S' = 6875 + 7040 = 13,920 lb./sq. in. 

224. Torsional, Flexural, and Axial Stresses Combined. Fig. 

373.—The figure represents a cylindrical prism subjected to a 

flexural and an axial stress as shown. Let Si equal the unit 

* Note that (650 - 250) X 6 = (400 - 200) X 12. That is, the shaft 
is in equilibrium. Equilibrium, however, does not mean “standing still.” 
A body is in equilibrium when it is not accelerating. 
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stress in the outer fiber due to the bending moment PL, and 
let S2 equal the axial stress due to Q. At A the two stresses 
combine. That is, at A, the stress in the outer fiber is 

S = Si + S2, (compression). (a) 

Assume now that the prism is subjected also to a torque. 
Let Ss equal the unit shearing stress on an outer element of the 

right section AB. Hence at A 

Max. S'. = V(f)2 + Si 

and 

Max. S' = | + + Si 

where S = Si + S2. 
Note.—Sometimes a shaft is subjected to 

an axial thrust. For instance, owing to the 
thrust of the water against a propeller, the 
propeller shaft is subjected to a thrust and 
may be subjected also to a bending moment 
in rough water. Turbines are sometimes 
fastened to vertical shafts, and the weight 
of turbine, pulleys, etc., attached to the shaft 
may produce a thrust (or a tension) that 
must be considered. 

Example.—A shaft 4 in. in diameter 
(d = 4 in.) is subjected to a bending moment 

M = 2000 ft.-lb., and to an axial thrust of Q = 24,000 lb. What 
torque may be applied if max. ££ = 9000 lb./sq. in. and max. 
S'= 15,000 lb./sq. in.? 

51 

52 

Therefore 

S 

Consider now the torque [Eq. (a), Art. 223], 

2T 2T = 0;0796r 
tr* t2® 

4M 4 X 2000 X 12 „Qon ,, , . 
—? =-135-= 3820 lb./sq. in. ir r“ t2s 
Q = 24,000 

irr2 • x22 
= 1910 lb./sq. in. 

= Si + St = 5730 lb./sq. in. 

iiiiiiiiiiur* 
Fig. 373. 
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Hence 

S'. = 9000 = + S2 = V28652 + (0.0796T)2. 

Solving for T, 

T = 107,000 in.-lb. = 8920 ft.-lb. 

S' = 15,000 = | + <y/(i)2 + S> 

= 2865 + V2865s + (0.079627)2. 
Again solving for T, 

T = 148,100 in.-lb. = 12,340 ft.-lb. 

Shear governs: 
Max. T = 8920 ft.-lb. as the largest permissible value. 

PROBLEMS 

208. A shaft, 2 in. in diameter, is subjected to torsion and bending. The 

torque is T = 1000 ft.-lb. and the bending moment is M = 800 ft.-lb. Find 

the maximum unit stresses (S't, S'c, S's). 
Ans. S = 12,230; Ss — 7643; max. S[ = 15,900; max. S'e = 15,900; 

max. S'9 = 9790 lb./sq. in. 

209. Solve Problem 208 with the following change: in addition to the 

torque and bending moment the shaft is subjected to an axial pull of 2000 lb. 

Ans. S = 12,860; S8 = 7640; mai S't = 16,400; max. S'c = 15,780; 

max. = 9990 lb./sq. in. 

210. A solid steel shaft is to transmit 240 hp. at 120 r.p.m. The shaft 

must also sustain a bending moment of 4000 ft.-lb. Given that max. S'a = 

8000 lb./sq. in. and max. S' = 12,000 lb./sq. in., find the radius of the shaft. 

Ans. r = 2.21 in. 

211. Solve Problem 210 if the shaft is to be a hollow steel shaft with an 

inside diameter of 4 in. Ans. Outside diameter = 5.14 in. 

212. Compare the hollow shaft of Problem 211 with the shaft of Problem 
210 with respect to the amount of metal they contain. 

Ans. Aa/Az = 8.19/15.27. 

225. Relation between Planes of Maximum Unit Shear and 
Maximum Unit Normal Stress.—Figure 374 is a repetition of 

Fig. 3606 except that the stresses on the faces are represented 

by their intensities. Let 0' designate a value of 0 that will make 
S' a maximum (numerically). That is [Eq. (7), Art. 219], 

S 
o 

tan 20' = o. (a) 
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In like manner, let 0' designate a value of 0 that will make S' a 
maximum (or a minimum). That is [Eq. (9), Art. 220], 

tan 20' = — — (6) 
o 

2 
Comparing Eqs. (b) and (a), 

tan 2d' = ~i^20i= ~cot2e> <c> 
= tan (20' + 90°), by trigonometry. 

Therefore 
20' = 20; + 90° 

or 
0' = 0; + 45°. 

Hence (Fig. 375) a plane of maximum (or minimum) unit normal 
stress makes an angle of 45° with a plane of maximum unit shear. 

Fig. 374. Fig. 375. 

226. Principal Planes. Principal Stresses.—In Art. 217, it 
was shown that if the stresses at a point on two mutually per¬ 
pendicular planes are simple normal stresses (no shear), then one 
stress is the normal stress of maximum intensity and the other is 
the normal stress of minimum intensity at that point. It will 
now be shown that the unit shear at a point always is zero on a 
plane of maximum or minimum unit normal stress. 

With reference to Fig. 374, the unit shear on the diagonal 
plane EG is [Art. 218, Eq. (5)] 

Sf9 = ^ sin 20 + S8 cos 20. 

Putting S' = 0, 
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Equation (a) is satisfied by two values of 0 that are 90° apart. 
Hence, at a point in a body, the unit shear is zero on each of two 
mutually perpendicular planes. Now Eq. (a) also gives the 
planes of maximum and minimum unit normal stress [Eq. (9), 
Art. 220]. That is, a plane of zero shear is a plane of maximum 
or minimum unit normal stress. 

A similar investigation of an elementary prism on whose six 
faces act stresses (normal, sheafing, or both) leads to the con¬ 
clusion that at a point in a body three planes at right angles to 
each other can always be found on which no shearing stresses 
act. The three planes of no shear are called the 'principal planes 
at that point, and the simple normal stresses acting on these 
planes are called the principal stresses at that point. Moreover, 
a normal stress of maximum or minimum intensity always is a 
principal stress. 

The results of this article may be stated in another way. At a 
point in a body under stress there is always an elementary 
prism on whose faces only normal stresses act (Fig. 376). The 
normal stresses acting on the faces of this prism are the principal 
stresses at that point. One stress is the normal stress of maxi¬ 
mum intensity, and one is the normal stress of minimum inten¬ 
sity at that point. A principal stress may be tensile (+) or 
compressive (— ). 

In the engineering problems that commonly occur, at least 
one of the principal stresses is zero. The assumption of such 

zero stress will be made in the remaining articles of this chapter. 
227. Theory of Failure.—Consider two unit cubes of a material 

(cubes of unit dimensions), and assume that the two cubes 
have the same physical properties. Since the cubes are unit 
cubes, the stresses on their faces are unit stresses (Fig, 377). 
For the first cube (Fig. 377a), S is the unit axial stress, S» is the 
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unit shearing stress along the diagonal plane EG, and e is the 
unit longitudinal strain. For the second cute (Fig. 3776), 
Si and S2 are unit biaxial stresses, S' is the unit shearing stress 
along the diagonal plane, and ei is the unit longitudinal strain in 
the direction of the maximum normal stress (assuming Si > S2). 

Note that S (Fig. 377a) and Si and S2 (Fig. 3776) are principal 
stresses (Art 226). Note also that S8 or Si is numerically 
greater than the unit shearing stress on any other plane through 
E. (A plane of maximum unit shear makes an angle of 45° 
with the plane of the maximum or minimum unit normal stress, 
Art. 225.) Moreover [Art. 217, Eq. (4)], 

Max. S. = max. S'. = Sl ~ —■ (a) 

Assume that the elastic limit is reached in both prisms. A very 
important question now arises. At the elastic limit, is Si = S 
or €1 = e or S'8 = S«? That is, does the maximum unit normal 
stress or the maximum unit longitudinal strain or the maximum 
unit shearing stress determine the safety of the material? This 
question has led to three theories. 

1. Maximum Normal Stress Theory.—According to this theory, 
the elastic limit is reached when the maximum unit normal stress 
reaches a certain value, irrespective of the other stresses that 
may act. For instance, if in Fig. 377a the elastic limit is reached 
when S = 35,000 lb./sq. in., then the elastic limit in Fig. 3776 will 
be reached when Si = 35,000 lb./sq. in. irrespective of the 
value of S2 (Si being greater than S2). 

2. Maximum Strain Theory.—According to this theory, the 
elastic limit will be reached when the unit strain in the direction 
of the maximum unit normal stress reaches a certain value, 
irrespective of how this strain is produced. For instance, if in 
Fig. 377a the elastic limit is reached when e = 0.002, then the 
elastic limit will be reached in Fig. 3776 when ei = 0.002 irrespec¬ 
tive of how this strain is produced. 

3. Maximum Shear Theory.—According to this theory, the 

elastic limit will be reached when the maximum unit shear 

reaches a certain value, i.e., when S' = (Si — S2)/2 reaches a 
certain value. For instance, if in Fig. 377a the elastic limit is 

reached when S8 = 20,000 lb./sq. in., then the elastic limit in 
Fig, 3776 will be reached when S' = 20,000 lb./sq. in. irrespective 
of how this stress is produced. 
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It is a very common occurrence for a material to fail in shear. 
Figure 378 illustrates how a material subjected to simple tension 
or compression is apt to fail. In some cases, however, the 
maximum shear theory does not seem to hold when a material 
is subjected to a simple normal stress. For instance, if a bar 
of cast iron (Fig. 378d) is subjected to simple tension, the plane 
of the fracture is at right angles to the axis of the bar. This 
seems to indicate that cast iron under simple tension will fail 
according to the maximum normal stress theory or according 
to the maximum strain theory. 

Wood Cast Iron Soft Steel Cast Iron 
Fig. 378. 

Note.—For a fourth theory based on maximum strain energy, 
see texts on advanced Mechanics of Materials. 

Experiments to determine the true cause of failure are difficult 
to make, and such experiments as have been made are not con¬ 
sistent. The more recent experiments, however, seem to 
indicate that a material will fail either in shear according to the 
maximum shear theory or in strain, according to the maximum 
strain theory, depending upon which of the two, shear or strainy 
reaches its limiting value first.* If a plate of a material is sub¬ 
jected to increasing biaxial stresses (Fig. 3776), the shear along 
the diagonal plane is 

If S2 is nearly equal to Si (and of the same sign), i.e.y if Si/S2 
is nearly equal to unity, S'8 is small and the strain €i will reach 

its limiting value first. Failure then will occur according to 

the maximum strain theory. If the ratio Si/S2 is increased, 
i.e.f if Si is large in relation to S2y S8 is increased. If S', reaches 

* Becker, A. J., Univ. Illinois Expt. Sta., Bull, 85. 
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its limiting value before €1 reaches its limiting value, failure will 
occur in accordance with the maximum shear theory. It should 
be remembered, however, that these experiments were limited 
in their scope and that, therefore, it is not safe to conclude that 
the maximum shear or maximum strain theory is applicable to all 
materials or under all conditions of loading. The only conclu¬ 
sions that can safely be reached at present are 

1. In many cases, the maximum shear theory can hardly be 
questioned. 

2. In some cases, the maximum strain theory seems the most 
probable. In the design of heavy guns and in similar problems, 
the maximum strain theory is extensively used. 

228. Applications of Maximum Strain Theory.—Referring to 
Fig. 377a, 

E = | (Art. 26). 

Therefore 

In like manner (Fig. 377&), if Si acts alone, 

If m = Poisson’s ratio (Art. 22), the lateral contraction due to 
S2 (acting alone) is 

n mS2 
ei =~w 

Hence, putting e = ei — e[ — e", 

Or 

8 _ Si mS2 
EE E ' 

S = Si- mS2. (6) 
That is, the simple axial stress S will, if acting alone, produce 

the same unit longitudinal strain as is produced by the biaxial 

stresses Si and Sa acting simultaneously. The stress S is called 

the equivalent simple unit stress. Accordingly, the maximum 

strain theory may be interpreted as meaning that S, the equiva¬ 
lent simple stress, may be taken as the criterion of safety. That is, 
the prism is safe against injury if the equivalent simple stress S 
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does not exceed a certain value, this value of S being deter¬ 
mined experimentally by subjecting a prism of the material to a 
simple axial stress (Fig. 377a). 

Example I.—Let Si = 2S2 (stresses in a boiler shell, say). If 
the allowable stress in simple tension is S = 16,000 lb./sq. in., 
and the allowable unit shear is S8 = 10,000 lb./sq. in., find the 
maximum safe value of Si if Poisson’s ratio is m = 0.30. 

On the basis of strain [Eq. (6)], 

16,000 = Si(l - 0.30 X |) = OMSu 
Therefore 

Si = 18,800 lb./sq. in. 

On the basis of shear, 

Therefore 
Si = 40,000 lb./sq. in. 

Hence strain governs, and Si = 18,800 lb./sq. in. 
Example II.—Take the same data as in Example I except that 

S2 is a compressive stress and Si is a tensile stress. 

16,000 = £i(l + 0.30 X 0.50) = 1.15Si. 
Therefore 

Si = 13,900 lb./sq. in. 
Also 

(*+t) 
10,000 = ' 2 = 0.75Si. 

Therefore 
Si — 13,330 lb./sq. in. 

In this case shear governs and Si = 13,330 lb./sq. in. 'Note 
that Si is less than 16,000. 

229. The Ordinary Maximum Stress Theory.—When a mate¬ 
rial is under a simple axial stress, the theory of failure is of little 

practical importance. For instance, in a soft steel rod under 
simple tension, incipient failure seems to be due to shear. Theo¬ 

retically, since S2 = 0 [Eq. (a), Art. 227], the maximum unit 
shear is 
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and the longitudinal strain at the elastic limit is [Eq. (a), Art. 
228] 

S 
6 E 

It is immaterial, therefore, which of the three, S( = 2Ss), 
Ss(= S/2), or e(= S/E), is taken as the criterion for the elastic 
limit of the material. When a material is subjected to biaxial (or 
to triaxial) stresses, the situation is very different, since then the 
unit shear S', and the unit strain ei depend largely upon the ratio 
S1/S2. 

In practice, it is assumed in all ordinary cases that failure 
occurs when some unit stress, shearing, tensile, or compressive, 
exceeds its ultimate value. That is, in practice, it is usually 
assumed that failure is due to the maximum normal stress or to 
the maximum shearing stress, depending on which of the two, 
normal or shearing, reaches its ultimate value first. So long as 
the true cause of failure is not satisfactorily explained, it seems 
wise to continue this procedure. It may be added that, except 
in unusual cases, the ordinary maximum stress theory gives 
results fairly consistent with the results of experiments. 

PROBLEMS 

213. A steel shaft 2 in. in diameter is subjected to a bending moment of 

600 ft.-lb. and a torque of 300 ft.-lb. Compute the resulting maximum 

shearing and tensile stresses. 

Ans. S's = 5130 lb./sq. in.; S' = 9720 lb./sq. in. 

214. In Problem 213, determine the directions of the planes of maximum 

shear and of maximum normal stress. For 31°44' and 121 °44'; for S', 
76°44' and 166°44'. 

215. The shaft of Problem 213 is to be subjected also to a total tension P in 

addition to the other actions mentioned. Compute P if the allowable 

resulting shearing stress S'8 = 10,000 lb./sq. in. Ans. P = 32,300. 

216. Find the induced maximum normal stress in Problem 215: 

Ans. S' = 19,730 lb./sq. in. 

217. A shaft 3 in. in diameter is subjected to a torque of 2000 ft.-lb. 

What bending moment can the shaft sustain in addition to the torque if 

S', = 10,000 lb./sq. in.? Ans. 47,300 in.-lb. 

218. In Problem 217, what normal stress is induced by the combination of 

the torque and the bending moment? Ans. 18,900 lb./sq. in. 

219. A shaft is subjected to a torque T and a bending moment M. Prove 

that the maximum shearing stress S', and the maximum normal stress S' 
may be written, respectively, as 

S', = jVM* + T* = 
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where T' (equaling s/Mi + 2’2) is called the equivalent torque; and 

cM + VW + T2 M'c 
S =?-2-r 

where Mf [replacing (ilf + y/M2 + T2)/2] is called the equivalent bending 
moment. 

Suggestion.—For torsion Sa = Tr/J — Tr/2I; for bending 5 = Mc/I = 
Mr/1. 

220. Design a solid cylindrical steel shaft to transmit 200 hp. at 100 r.p.m. 
The shaft is subjected to a bending moment of 4000 ft.-lb. Take S’ = 
16,000 lb./sq. in. and Sa — 10,000 lb./sq. in. Use the equations of Problem 
219. Ans. d required by shear = 4.09 in. 

221. A hollow shaft whose inside diameter is 3 in. and whose outside diam¬ 
eter is 6 in. must carry a bending moment of 20,000 ft.-lb. What horsepower 
can this shaft transmit at 90 r.p.m. if S[ is 9000 lb./sq. in. and S’ is 15,000 lb./ 
sq. in.? Ans. 376 hp. 

222. On the basis of the difference in shearing resistance across the grain 
and parallel to the grain in wood, explain why twisting a cylindrical piece 
of wood with the grain parallel to the axis of the piece will cause it to split 

lengthwise. 
223. A cylindrical piece of wood with the grain parallel to the axis of the 

cylinder had a diameter of J in. In a testing machine it failed under a 
torque of 9 in.-lb. Compute the ultimate shearing stress parallel to the 
grain. Ans. 367 lb./sq. in. 

224. At a point in a member, the horizontal tensile stress is 16,000 lb./sq. 
in. and the vertical shearing stress is 3430 lb./sq. in. Compute the angles 
locating the principal planes. Ans. 78.4° and 168.4°. 



CHAPTER XI 

NONPRISMATIC AND SPECIAL BEAMS 

230. Preliminary Remarks.—In addition to the ordinary cases 
of prismatic beams, and yet subject to the same general methods 
of analysis used with such beams, there are several other types of 

beams of great practical importance. Nonprismatic or taper¬ 
ing beams, reinforced beams, curved beams, and flat plates 

are examples of these types. 
As in the case of prismatic beams, the determination of their 

strength is of prime importance. This requires the finding of the 
maximum bending stress. This stress is dependent upon the 
span, kind of loading, the material in the beam, and particularly 
the dimensions of the cross-sections. 

Aside from strength, there is also the usual consideration of 
deflection as in the case of prismatic beams; also the bearing 
area, internal shear, etc., may need examination. 

The purpose of this chapter is to take up a few cases of several 

types of beams other than prismatic beams; to show how they 
are related in their analysis to simpler beams; and to give certain 
useful methods and results. 

231. Dangerous Section in a Nonprismatic Beam.—For a 

prismatic beam, the moment diagram is also a diagram of fiber 

stresses (Art. 144) and its importance is due to the fact that it 
shows the variation of bending stress as well as the variation of 
moment at all the sections of the beam. The maximum moment 
occurs at the section of greatest bending stress and this section 
is consequently the dangerous section. 

In the case of a prismatic beam, under a fixed loading, the 

maximum fiber stress is directly proportional to the maximum 

moment in the beam. That is, with S = Me/1, since c/I is the 

same for all sections, S is directly proportional to M. With 

sectional dimensions varying, it is clear that the moment of 

inertia of the section, viz., I, as well as the distance to the outer 

fiber c must vary.. The fiber stress in such beams is not pro¬ 
portional to the moment alone but must be found from the equa- 

370 
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tion S = Me/1, in which all of the quantities on the right of 
the sign of equality may have different values for different sec¬ 
tions of the beam. The dangerous section obviously occurs where 
the unit fiber stress is a maximum. 

The moment diagram, while still of some use, is not in such a 
case a graph of the stress due to bending. A separate stress 
diagram should be constructed if it is needed. Usually, however, 
such diagrams are not constructed, since it is not difficult to 
perceive the dangerous section after a few typical cases have been 
studied and the methods of analysis are understood. 

If it is assumed that local concentrations of stress are neglected, 
a beam which is apparently prismatic, if holes or notches are 
made in it, might become a case in which the dangerous section 
is not the section at which the maximum moment is found. 

832. Dangerous Section in a Truncated Wedge. Cantilever 
Beam with End Load P. Uniform Thickness b.—Neglect the 

weight of the beam. Continue the sloping surfaces until they 
meet in a line whose mid-point is 0. Let / be the distance from 
the free (loaded) end of the cantilever to the point 0. Let the 
variable height of the beam at any intermediate section along the 
beam be u} the width being of constant value b. 

From similar triangles (Fig. 379), 

A u_ x 

hi 7 f 
Consequently 

I bu2 bh\x2 
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The moment at the section is P(x — /) = Px — Pf. 
Putting 

Px - Pf = — 
c 

Sbh\x2 
6/2 ’ 

and solving for S, 

= 6 Pfx 6Pf 
bh\x2 6/ifx2 

= 6W _ A 
bh\ \ x x2J 

The value of S will be a maximum for that value of x which will 
make dS/dx equal to zero. 

Therefore 

dS 
dx 

6P/V 1 2f\ 
bh{\ x2^x*J 

= 0. 

x = 2/. 

Stated in words, this result is as follows: If a truncated wedge 
of constant width is used as a cantilever with a concentrated load 
at the end, the dangerous section will be as far from the free end A 
(Fig. 379) as the point 0 of the completed wedge is on the other 
side. The moment at the dangerous section will be M = Pf 
and the depth of the beam will be 2Ai. The section modulus 
at this section is 

I bu2 _ b{2hl)2 _ 4bh\ 
c 6 6 6 

Therefore 
« = Mc 3 Pf_ 
b I 2 bh\ 

If / should exceed L in length, that fact would imply the 
existence of a dangerous section beyond the face B of the support. 
Since a dangerous section cannot occur within the wall in any 

of the well-protected sections of the beam, the maximum stress 

is found in the section at the face B of the wall into which the 

beam is built. The bending moment at section B is tbfen PL. 
The stress computed as in the case above is 
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The results of the foregoing analysis may readily be adapted to 
the case of a double truncated wedge-shaped beam on end sup¬ 
ports, bearing a concentrated load at the section which forms the 
common base of the two wedges (Fig. 380). Each of the wedges 
increases in size from the support toward the load point. The 
two portions of the beam are not necessarily alike geometrically. 
Each portion may be viewed as a cantilever beam under the 
bending action of the reaction of the support as the end load. 
Then, from the preceding case of a cantilever, the dangerous 
section may be located on each portion as far from its support 
as the distance to the edge of the wedge if the surfaces are 
extended to an intersection. 

Example.—A wooden beam has a constant thickness b equal to 
6 in. perpendicular to the side surface shown in Fig. 379. Given 
hi = 4 in., hi = 12in.,L = 48in.,P = 3200 lb., find the bending 
stress in the outer fiber at the dangerous section. By similar 
triangles, 

/ _ L 
h\ h% — hi 

Using the given numerical values, 

f _ 4 X 48 
J 8 

24 in. 

This is the distance from 0 to the load P and is also the distance 
from P to the dangerous section. 

At the dangerous section, u = 8 in., b = 6 in.; then the 

section modulus 

I = bv? 

c 6 
64 in.3 

From the moment equation, 
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Therefore 

S = 
3200 X 24 

64 
= 1200 lb./sq. in. 

For comparison as well as a partial check on the result just 
obtained, the bending stress at section B adjacent to the wall 
will be computed. The height of the beam at this section is 
12 in. and the computed section modulus is 144 in.3 
Then 

8 b = 

3200 X 48 
144 

= 1077 lb./sq. in. 

This value is considerably less than the unit stress computed 
for the dangerous section. 

233. Truncated Cone or Pyramid as a Cantilever Beam. End 
Load P. Weight of Beam Neglected.—Figure 381a shows a 
truncated cone used as a cantilever beam, and Fig. 3816 shows a 
truncated pyramid. All right sections of either the cone-shaped 
beam or of the truncated pyramid are geometrically similar. 

As in the case of the truncated wedge, extend the edges of the 

beams to an intersection at the vertex 0, which will be taken as 

the origin of coordinates. Let / be its distance from the loaded 
free end and let x be the distance from 0 to any section of the 

beam between the limiting values / and f + L. 
The moment of the load about a section at a distance x from O 

is 
M = P(x — /) = Px — Pf. 
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For equilibrium, this moment must equal the resisting (internal) 
moment whose value is 

Since the moment of inertia I is expressed in linear units 
raised to the fourth power and since c is a linear dimension, 
the I/c values for two geometrically similar sections are in the 
ratio of the cubes of similar dimensions. Whether measured 
vertically, horizontally, or in any inclined direction, these dimen¬ 
sions, by similar triangles, are in the direct ratio of the distances 
of the sections from the vertex 0. 

Let the I/c value at distance x from 0 be designated Z, and 
the value at the support P, distant / + L from 0, be Zx. From 
the geometric similarity, 

or 

Accordingly, 

Therefore 

Z x3 
Zi (/ + L)*’ 

„ _ 2ix3 
(f + LY 

M = Px -Pf = SZ 
SZix3 

(/ + LY 

O _P(f + LY(x -/) 
s --’ 

P(/ + LV 
Z i 

(x~2 — fx~z). 

To find the maximum value of S, this equation is to be differ¬ 
entiated with respect to x, and the derivative equated to zero. 
It should be noted that P, Zlf and / + L are constants and will 
disappear from the equation when dS/dx equals zero and may 
accordingly be omitted while differentiating. 
Then 

^ = —2a;-3 + 3/a;-4 = 0 

for a maximum S. Solving, 
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This value of x locates the section of maximum bending stress 
with respect to the origin 0. 

Stated in words, the dangerous section of a truncated cone or 
pyramid (of any shape of cross-section) will be found at a distance 
from the free (loaded) end equal to one-half of the distance 
from that end to the vertex, the solid beam being conceived to 
be extended to the vertex 0. This result does not apply to 
other types of loading. 

If //2 is greater than L, it necessarily follows that the maximum 
bending stress will occur at the section B adjacent to the support. 

As in Art. 232, the result obtained may be used in the case of a 
double truncated cone or pyramid (Fig. 382), loaded at the com¬ 

mon base with a concentrated load and having end supports. 
The moment at the dangerous section will be the product of a 
reaction and the distance f/2. 

234. Nonprismatic Beams of Uniform Strength in Bending.— 
The preceding articles suggest that it would be desirable to 
design beams as to their loading, support, and the varying dimen¬ 
sions of their cross-sections so that the outer fiber stress in bending 
would have an allowable maximum value at all sections of the 
beam. This stress would then be uniform in the outer fibers 
but would, of course, be of lesser value on all interior fibers. 
A beam designed so that the outer fiber stress is constant (the 
same for all) is termed a beam of uniform strength. 

It is not possible at the same time to make the design involve 

uniform unit internal shear of the allowable value for the material. 
Therefore, the greatest measure of economy of design cannot be 

attained. Nevertheless, a considerable saving of material may be 

made, and the resulting shape of the beam may be more attractive 
in appearance if beams of uniform strength are employed. 
Plate girders, reinforced-concrete bridges, levers, and many 
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parts of small tools illustrate the tendency in industry to adopt 
designs including beams of uniform strength. 

The next articles present methods of solution and illustrative 
examples of beams of uniform strength in bending. 

The weight of the beam itself will be neglected. The method of 
solution requires the design of a section of the beam at the point 
of maximum moment. All other sections are then obtained by 
making the stress in the outer fiber equal to that previously 
selected or computed at the section of maximum moment. 

Modifications are usually necessary at sections where the internal 
unit shear governs the dimensions of the beam. 

235. Beam of Constant Thickness b. Unsymmetrical Con¬ 
centrated Load P. Parabolic Form. Fig. 383.—Assume all sec¬ 
tions of the beam to be rectangular and of constant width 6. 
The heights of the sections vary. Let the height at any section 

be v. 
The value of R0 is found by taking the sum of the moments 

about B for the entire beam as a free body. Ro = PL^/L 
(Fig. 383a). The value of h for the section under the load P is 

found by putting 
S'bh2 

6 
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Therefore 
o; _ 6R0L1 

S bh2 (a) 

Next, the expression for the outer fiber stress at any other 
section distant x from 0 is obtained, involving the variable height 
v of the section (Fig. 383b). For the free body in this figure 
which shows the portion of the beam from the origin 0 to the 
section at distance x from 0, the internal moment 

SI 
c 

Sbv2 

6 
= Rox, 

the last term of the equation being the expression for the moment 
of the external reaction. 
Solving, 

~ 6 Rox 

S bv* ’ (b) 

For the beam to have uniform strength, S 

°r, 
QRqX _ &R0L1 

= ~bhT' 

Then 

and this may be written 

S’. 

Equation (c) shows that the outline of the beam from 0 to the 
load is a parabola with the vertex at 0. 

The parabolic outline for the right-hand portion of the beam is 

obtained similarly. 
236. Shear and Bearing on Beams of Uniform Strength.— 

To make allowance for shear and bearing, modifications must 

be made at the ends of the beam as is indicated in Fig. 383. 
Consider the left end 0 and assume that the modified end has a 
rectangular section of width b0 (perpendicular to the paper) and 

depth ho. 
Shear.—Since the maximum unit shear in a rectangular section 

of a beam is 1.5 times the average shear [Eq. (12), Art. 164], 
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the required dimensions of the section at the end may be deter¬ 
mined from the equation 

« _3 Ro 
* ~ 2 boho 

where S8 is the allowable unit shear. 
Bearing.—The bearing area needed for the reaction Ro (Fig. 

383) is determined from the equation 

where Se is the allowable unit bearing stress (of the weaker mate¬ 
rial of beam or support). Hence the modified end must extend 
to the left of 0 a distance a0/2 as is indicated in the figure. 

In a similar manner, modification of the right end of the beam 
must also be made. 

Problem 225.—Design a cast-steel beam having varying rectangular sec¬ 

tion. The beam has a thickness of 4 in. and carries a central concentrated 

load of 36,000 lb. on a span of 8 ft. The unit stress in bending is to be the 

same for all sections, equal to 18,000 lb./sq. in. Find the height at the sec¬ 

tion under the load and determine the equation of the contour of the beam 

with respect to an origin at the end. 

Find also the necessary depth at the 

end for shearing using 10,000 lb./sq. 

in. and taking the maximum unit 

shear equal to 1.5 times the average 

shear. 

Arts, h — 8.5 in., 2v2 = 3x, and, at 

the ends, ho = 0.675 in. (minimum). 

237. Cast Beam of I-section. 
Uniform Strength. Fig. 384. 
The beam carries a single con¬ 
centrated load and has end supports. Assuming that the flange 
areas are the same at all sections and that they carry all of the 
bending stress while the web carries all of the shear, the internal 
or resisting moment is 

M = SA X v. (a) 

This must equal the bending moment which has a value 

M = Roz (Fig. 3846). 

Equating the two values, 

R 
v = = constant X x. 

SA 

(b) 

(c) 
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Equation (c), in the final form, may be written thus since the 
unit stress is to be the same at all sections and it is evident that 
R0 and A are also constants. The portion of the beam from P to 
B may be similarly analyzed. 

Equation (c) is the equation of a straight line and therefore the 
top and'bottom surfaces should be plane surfaces. 

238. Beam of'Uniform Strength on End Supports. Single 
Eccentric Load. Constant Height h. Fig. 385.—Let the width 

at the load section equal 6. The stress at this section is found 
from the equation 

RoLi 
S'bh2 

6 ' 
(a) 

or 

6R0L1 

S bh2 

The stress at any section, 
variable width u, is 

distant x from 0, and having a 

Equating S' and S, 

Li 
b 

x 
u 

q fSRox 
s = HhT9 

or u 
b 
ux- 

(6) 

This equation shows that u increases directly with x and therefore 
the beam must be wedge shaped. The ends and the load point 
would have to be designed for local stresses. 

239. Beam of Uniform Strength on End Supports. Similar 

Rectangular Sections. Single Eccentric Load. Fig. 386.—The 

load P causes reaction R0 at 0 and Rc at C, where the end sup¬ 
ports are placed. Let 0 be the origin, x locating any vertical 
section of varying height 2v and width 2u in the range 0 to B. 

At the load point, the necessary section is a rectangle of height 
2h and of width 26, the coefficient 2 being of convenience in later 
algebraic work. 
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The similarity of sections results in the relation 

u __ b 
v h 

For the portion OB of the beam, 

_ QRoLi 
~ 2b{2hY 

For the portion of length x, 

Q _ 6 RoX 

2u(2vY 

(a) 

(&) 

(e) 

Fig. 386. 

Equating S and S' for uniform strength, 

x _ Li 
uv2 bh2 

This may be written 

uv? 

From Eq. (a), this becomes 

or 

M> 

M 

The two equations [Eqs. (e)] show that the median curves are 

cubic parabolas. 

Problem 226. Fig. 387.—Required to find how the width should vary in 

a beam of uniform strength, the height being constant, the sections rectangu¬ 

lar, and the load uniformly distributed. The weight of the beam is neglected. 

Ans. u = 46(Lx — x*)/LK 
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240. Reinforcing of Girders for Approximate Uniform Strength. 
In the effort to economize on material, not only have beams 
been designed with special outlines and cross-sections, but 
beams of prismatic section have been reinforced by the addition 
of plates, angles, or other shaped pieces so that their resistance 
in bending would conform more nearly to the change in the 
bending moment of the external loads. If bridge trusses, viewed 
in a broad way, are considered as skeletonized beams, it will 
be observed that the most economical modern types have material 
disposed in the various sections in close agreement with the 
arrangement most favorable to uniform strength. Modern 
repair work on steel structures by means of welding is quite 

Fig. 387. 

commonly in accord with a revised design aiming at more uniform 
stress distribution. 

In the design of plate girders, the most obvious plan to follow 
in increasing the section modulus of the beam at the necessary 
points is to rivet cover plates at the top and at the bottom 
flanges. A similar but simpler problem arises when a beam of 
prismatic section is to be reinforced with added plates, angles, or 
bars with the idea of modifying the beam to make it more nearly 
a beam of uniform strength. Reinforcing of a heavy I-beam 
with flange plates is the topic of the following article. 

241. Design of Reinforcing Plates for an I-beam.—A W 

steel I-beam (Fig. 388) has a nominal depth of 36 in. and weighs 
300 lb./ft. The moment of inertia about the centroidal axis 
perpendicular to the web is 20,290 in.4 and the section modulus 
is 1105.1 in.8 The actual depth of the beam is 36.72 in., the area 
of the section is 88.17 sq. in., and the width of the flanges is 
16.65 in. 
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Assume that the beam has end piers. The applied load, 
exclusive of the weight of the beam, is 180 tons. Let the allow¬ 
able unit stress in bending be 18,000 lb./sq. in. The span is 
60 ft. In addition to the external load of 6000 lb./ft., it is 
necessary to consider the weight of the beam itself, making the 
total load per foot 6300 lb. The reinforcing plates, when added, 
will increase the load, but their effect in bending will not be 
included in the following calculations. 

Applied load\ 3 ions per foot or 180 tons 

Fig. 388. 

The maximum bending moment at mid span is 

o.x6o- = 2j83;[000,t-ib. 
34,050,000 in.-lb. 

Hence the section modulus required at the center is 

M = — = SZ; 
c • 

7 — 34,050,000 
z ~ “18,066“ “ 1890m* 

The section modulus of the beam is only 1105 in.3 The beam 
must, therefore, be reinforced, and top and bottom cover plates 
will be used. Let the width of the cover plates be 16.65 in., 
the same as the width of the flanges of the I-beam. 

If t is the required total thickness of the top (or bottom) 
cover plates at mid span, 

20,290 + 2(16.65 X t) X H+lL 
18.36 + t 

= 1890. 

In solving by trial, the nearest commercial thickness is t = 1.5 in. 
Use two cover plates on top and two on the bottom, each f in. 

thick. 
The bending moment at a distance x from either pier is 

(wLx 

2 
12 in.-lb. 
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and the equation for the resisting moment just beyond the ends 
of the plates is 

( 
6300 X 60s 

2 

Solving for x, 

6300?2\ 

2 ) 
12 = 18,000 X 1105. 

x = 10.7 ft. or 49.3 ft. 

Accordingly, the first cover plates (the lower of the top plates, 
and the upper of the bottom plates) must have a minimum 
length of 38.6 ft.* 

The section modulus of the beam reinforced by the first pair 
of cover plates is 

20,290 + 2(16.65 X 0.75) X (18.36 + 0.375)2 
18.36 + 0.75 

1520 in.3 

Now 

c 6300 X 60? 6300j:2 

2 / 
)l2 = 18,i 

solving, 

000 X 1520; 

x = 16.8 ft. or 43.2 ft. 

The length of the second pair of plates is 26.4 ft.* 

Problem 227.—A 12-in.-50-lb. standard I-beam, 20 ft. long, is to be rein¬ 
forced by cover plates 5 in. by | in., one on the top and one on the bottom. 
What must be the minimum theoretical length of the cover plates so that 
the beam may carry the maximum allowable uniformly distributed load? 
Also find the load in addition to the weight of the beam. Take 

S = 16,000 lb./sq. in. 

For the I-beam I/c = 50.3 in.3 and I = 301.6.4 
Ans. W — 36,300 lb.; length of plates 10.6 ft. 

242. Flat Plate.—If a flat rectangular plate is supported at 
two opposite edges (Fig. 389) and is loaded (say) uniformly, 
the plate will bend as indicated in the figure. By assuming the 
plate of constant thickness h, cross-sections such as CD will 
remain rectangular during bending. The plate acts as a simple 
beam on end supports and the fiber stresses in the plate may be 
found by means of the flexure formula M = SI/c. 

* Note.—The values of x computed above are theoretical maximum values. 
The lengths of the reinforcing plates must be increased to allow for the weak¬ 
ening effect of the rivet holes and to enable the rivets to transfer stress from 
the flanges of the beam into the reinforcing plates. 
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Assume now that the plate is supported at the four edges. 
The plate no longer acts as a simple beam on end supports. The 
corners of the plate tend to curl up and the supporting forces 
are not uniformly distributed along the edges. The flexure 
formula is not applicable. To show this, consider a square plate 
of thickness h. Take free the part of the plate lying to one 

side of the diagonal AB (Fig. 390). The moment of the external 
forces with respect to this diagonal is 

W 
I = 2X~X 

4 
JL w y 1 y a - a y K 

2 V2 2 X 3 X V2 V2 12' 

If we assume the flexure formula applicable, 

CL W SI w 1 /o v 
—7= X = — = S X 5av 2 > 
-y/2 12 c 6 

or 

W = 4<S7i2. (a) 

Equation (a) would give the maximum safe load W for a given 
value of £ if the moment along AB were uniformly distributed. 
In reality the moment along AB is not uniformly distributed 

.and therefore Eq. (a) is an approximation. A mathematical 
analysis shows that the maximum safe load W for a homogeneous 
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square plate of constant thickness h is (taking Poisson’s ratio 
asm = 0.27) 

W = 3.15aSA2. 

243. Plate Uniformly Loaded.—The mathematical analysis for 
a flat plate supported all around its edge (or edges) is very 
complicated. Such a treatment is beyond the scope of this 
text. A few of the results, however, will be given for plates 
uniformly loaded. 

W = load uniformly distributed over the plate. 
S = maximum unit stress. 
r = radius of circular plate. 
a = side of square plate or 

= longer side of a rectangular plate. 
b = shorter side of a rectangular plate. 
h = thickness of plate. 

m = Poisson’s ratio (Art. 22). 
Circular plate, uniformly loaded. 

Plate resting on a support all around its edge: 

_ 8trh2S 
W 3(3 +m) 

Plate clamped all round its edge: 

TJ7 Srh2S 
W = 3(1+ m) 

Square plate, uniformly loaded. 
Plate resting on a support all round its edges: 

W = 
4/i2S 

1 + m 

Plate clamped all round its edges: 

W = 
32h *S 

5(1 + m) 

Rectangular plate, uniformly loaded, a > b. 

Plate resting on a support all round its edges: 

(a2 + b2)2h2S 
ab(a2 + mb2)' 

Plate clamped all round its edges: 

w 4 [3(a2 + 62)2 - 4a2i»2]A2S 
5 (a2 + mb2)ab 
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Problem 238.—The end of a steel water tank is a circular plate of radius 
r = 8 in. The water is under a pressure of 320 lb./sq. in. Assume plate 

clamped. Given S = 16,000 lb./sq. in. and m = 0.27, find the thickness 

of the plate. Am. h = 0.78 in. 

BEAMS OF TWO MATERIALS 

244. Introduction.—Figure 391a shows a steel prism, and Fig. 

Taking E, = 30,000,000 lb./sq. in. and 
Ew = 1,500,000 lb./sq. in., n = 20. 

Since the prisms elongate equally [Art. 53, Eq. (1)], 

Or 

Therefore 

PL = PL 
A,E, AWEW 

AgEg = AwEw. 

Aw = ijrA, = nA,. (a) 

Two prisms are said to be equivalent to each other if they are 
of the same length and elongate or contract equally under equal 
loads. From Eq. (a), it follows that, if a wooden prism is the 
equivalent of a steel prism, the area of the wooden prism (the 
wood equivalent) is n times that of the steel prism. 
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Since P/Aa = S and P/Aw = Sw, we may write 

Or 

SL _ SWL 
Eg Etc 

_ & 
E 

TlSw (b) 

Hence the unit stress in the steel prism is n times the stress in 
the wood equivalent. 

245. Beams of Wood and Steel.—The principles of the preced¬ 
ing article may be used to advantage when a beam composed 
of wood and steel is analyzed. Three cases will be considered. 

Case I. Wooden Beam Reinforced with Steel Plates Fastened to 
the Sides. Fig. 392.—Replace the steel plates by their wood 
equivalents and determine the stresses in the resulting wooden 
beam (Fig. 3926). The stress at a point in the steel is n times 
that at the corresponding point in the wood equivalent. 

^ihood 
// Steel 

i 
» 
i 
i 
i 
i 

% 
Wood 

/■ - 
-s- 
't r?-* 

<- nt -»{ 
h j 

''Wood equivalent' 
(<*) (b) 

Fig. 392. 

Note.—Cross-sections of the beam are assumed to remain 
plane sections during bending. Hence, for the wood and the 
steel to have corresponding fibers, the height of the wood equiv¬ 
alent should be the same as that of the steel, and the width of 
the wood equivalent (at a given distance from the neutral axis) 
must be n times that of the steel plate. That is, the prisms 
referred to in Art. 244 are now fibers of equal length at equal 
distances from the neutral axis. * 

Example I. Fig. 392.—A wooden beam, 4 in. wide, 10 in. 
deep, and 16 ft. long, has a steel plate, i by 10 in., fastened to 
each side. If the allowable stress in steel is S = 18,000 lb./sq. in. 
and that in wood is Sw = 1000 lb./sq. in., find the maximum 
uniformly distributed load the beam can carry. Take 

n = Ea/Ew = 20. 

* Fibers J. plane of paper. 
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Replace the steel plates by their wood equivalents. The 
resulting wooden beam (Fig. 3926) is then 4 + 2 X 20 X or 
14 in. wide. From Eq. (6), Art. 244, the allowable stress in the 
wood equivalent is S/n = 900 lb./sq. in. The stress in the steel 
governs since 900 is less than 1000. 

Mm 

l 
c 

= lW X 16 X 12 = 24W in.-lb. 

i X 14 X 102 = ^2 in.s 
o o 

Substituting in the flexure formula, we obtain 

Or 

24 IF = 900 X 

W = 8760 lb. 

Problem 229.—In the example above, assume that the allowable stress for 

wood is given as Sw = 720 lb./sq. in. A ns. W = 7000 lb. 

Case II. Wooden Beam Reinforced by Two Steel Plates, One on 
the Top and One on the Bottom. Fig. 393. 

Example II. A wooden beam, 4 in. wide, 6 in. deep, 
and 12 ft. long, is reinforced by two steel plates one on the 
top and one on the bottom. Each plate is 1 in. thick and 
3 in. wide. The beam carries a concentrated load of P = 9000 lb. 

at the middle of the span. Find the unit stress induced in the 

steel and the unit stress in the wood. Take n — 20. 
If the steel plates are replaced by their wood equivalents, the 

resulting beam takes the form of an I-beam. The moment of 
inertia of the I-beam with respect to the neutral axis N is 

For the flanges, 
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For the web, 

2(6012 ~ + 60 X 3l52) = 1480 

4 X 6s 
12 

72 

In = 1552 

Mn 
9000 X 12 X 12 

4 
324,000 in.-lb. 

SI 
c 

S X 1552 
4 

Then S = 835 lb./sq. in. equals the stress in the wood equivalent. 
Hence the stress in the steel is 20 X 835 = 16,700 lb./sq. in. 

The maximum stress in the actual wooden part is f of 835, or 

626 lb./sq. in. 

Problem 230.—A wooden beam, 4 in. wide and 6 in. deep, 20 ft. long, is 

reinforced by two steel plates, one at the top and one at the bottom. Each 

plate is 1 in. thick and 4 in. wide (see Example II above). The allowable 

stress for steel is S = 18,000 lb./sq. in. and that for wood is Sw = 1000 

lb./sq. in. What uniformly distributed load can the beam safely carry? 
Ans. 15,300 lb 

Case III. Wooden Beam Reinforced by a Steel Plate on the 

Bottom (or on the Top). Fig. 394. 
Example III.—A wooden beam, 2 in. wide, 6 in. deep, and 

' 10 ft. long, is reinforced at the bottom by a steel plate 2 in. by 
| in. If the allowable stress for steel is 18,000 lb./sq. in. and 
that for wood is 1200 lb./sq. in., find the maximum uniformly 
distributed load the beam can carry. Take n = 20. 
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Replace the steel plate by its wood equivalent (Fig. 3946). 
Area of Section: 

A = 2 X 6 + 40 X i = 17 sq. in. 

Position of the Neutral Axis N—'Take BB as an axis and use 
the formula (JZA)y = 'LAy [Eq. (7), Art. 137]. 

17X£ = 2X6X3-40XiX-* = 35.7; 
y = 2.10 in. 

Therefore 
Ci = 2.23 in. and C2 = 3.90 in. 

Moment of Inertia with Respect to Neutral Axis N.—Use the 
common line BB as a reference axis. 

/B = iX2X63 + |X40X (i)3 = 144. 
Then 

IN = IB - Ay2 = 144 - 17(2.10)2 = 69.0 in.4 

With 18,000 lb./sq. in. in the steel (outer fibers), the stress 
in the wood equivalent is 900 lb./sq. in. With 900 lb./sq. in. 
at A in the resulting wooden beam, the stress in the wood at C is 

^ X 900 = X 900 = 1575 lb./sq. in. > 1200. 
Ci A.Zo 

The stress in the wTood governs. Hence, at C, 

X 10 X 12 = 1200 X 3~ 

W = 14201b. 

Problem 231.—Find the maximum stress in the steel and in the wood of the 

beam of Example III if a concentrated load of 700 lb. is applied at the middle. 

Ans. 13,550 lb./sq. in. in steel and 1210 lb./sq. in. in wood. 

246. Reinforced-concrete Beams.—Since concrete in tension 
is weak and unreliable, concrete beams are reinforced by imbed¬ 
ding steel rods or steel reinforcement in the concrete on the ten¬ 
sion side of the beam. The steel is assumed to carry all of the 
tension. Figure 395 represents a section of a rectangular rein- 

forced-concrete beam. The neutral axis is N. The part of the 

beam above N (the shaded part in section) is in compression. 
Evidently, for an economical design, the ratio of steel to con¬ 

crete should be such that simultaneously the full compressive 
stress of the concrete (above the neutral axis) and the full 
tensile stress of the steel (below the neutral axis) may be 
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utilized. For instance, if the compressive strength of concrete is 
500 lb./sq. in. and the tensile strength of steel is 16,000 lb./sq. in., 
the beam should be so designed that when the unit compressive 
stress in the concrete reaches 500 lb./sq. in., the unit tensile stress 
in the steel will be 16,000 lb./sq. in. 

A detailed discussion of reinforced-concrete beams is beyond 
the scope of this text. The design of such beams is complex. 
The investigation of a given beam, however, is comparatively a 
simple matter as the following example will show. 

Example. Fig. 395. Using the standard notation for rein- 
forced-concrete beams, 
Let b — 8 in. = width of the concrete beam. 

d = 10 in. = distance from compressive face to the plane of 
the steel. 

A9 = 0.40 sq. in. = total area of the cross-section of the steel. 
Ea = 30,000,000 lb./sq. in. = modulus of elasticity of steel. 
Ec = 2,000,000 lb./sq. in. = modulus of elasticity of concrete. 
n = E8/Ec = 15. 
fs = unit tensile stress in the steel rods. 
fc = unit compressive stress in the concrete (upper fiber). 

Ma = resisting moment as determined by the stress in the steel. 
Me = resisting moment as determined by the stress in the 

concrete. 

It is required to find the maximum bending moment which 

this beam can carry if the safe stress in the steel is 16,000 lb./ 

sq. in. and the safe stress in the concrete is 500 lb./sq. in. 
Replace the steel by its concrete equivalent (Fig. 396). Since 

the area of the steel is A = 0.40 sq. in., the area of the concrete 
equivalent is nA = 15 X 0.40 = 6 sq. in. [Eq. (a), Art. 244]. 
If the allowable stress in the steel is 16,000 lb./sq. in., then the 
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stress in its concrete equivalent is 16,000/15 = 1065 lb./sq. in. 
[Eq. (6), Art. 244]. To locate the neutral axis, take N as the 
axis of reference; 

(8 X e) X | = 6(10 - e), 

and e = 3.20 in. = distance of neutral axis from top face. 
Also, 10 — e = 6.80 in. = distance of neutral axis from plane of 
steel. 

The moment of inertia is 

Ik = + 6 X (10 - e)2 = 364.7 in.4 

Hence (for the allowable stress in the concrete) 

Mc = 500 X = 57,000 in.-lb. 

and (for the allowable stress in the concrete equivalent) 

M. = 1065 X = 57,000 in.-lb. 
O.oU 

Since Mc = Ma, the beam is of balanced design. 

Problem 232.—In the beam of the example above, make the following 
changes: b = 10 in., d = 10.58 in., A, = 0.529 sq. in. The beam is under a 

bending moment of M = 80,000 in.-lb. Find/.and/.. 
Ans. fc = 500 lb./sq. in.;/. = 16.000 lb./sq. in. 

CURVED BEAMS. HOOKS 

247. Curved Beams.—Assume that a beam is subjected to a 
bending moment only. If A equals the elongation or contraction 
of a fiber originally of length L, then, within the elastic limit 

[Eq. (2), Art. 53], 

x-f or S-^-|x. (a) 

If the beam is originally straight (Fig. 397a), all fibers originally 
are of the same length L. Hence, for a beam originally straight 
[Eq. (a)], S is directly proportional to A and therefore to y, 
the distance of this fiber from the neutral axis. That is, within 
the elastic limit, the stress on a section of a beam originally 
straight is triangularly distributed (Fig. 3975). Note that the 
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flexure formula, M = SI/c, was derived on the assumption that 
the stress on a section of a beam is triangularly distributed. 

Consider now a curved beam (Fig. 398a). Figure 3986 repre¬ 
sents the section of this beam as rectangular merely for con- 

D. l ) 

' 
•EEF 

I y w \ 
L ZT 

1 |1 , 
— 

1 l:4 
C V- ( % 0 

(«) (b) 
Fig. 397. 

venience. It can be shown that when the curved beam is bent 
the neutral axis will lie above the centroidal axis as shown in the 
figure. Note that now the lengths of the fibers between two 
sections are not of the same length (Fig. 398a). Since both X and 
L vary, S is not proportional to X but to X/L [Eq. (a)]. For a 

curved beam, therefore, S is not proportional to the distance of 

this fiber from the neutral axis. For instance, take two fibers 
equidistant from, but on opposite sides of, the neutral axis. 
Experiments warrant the assumption that, when a beam (straight 
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or curved) is bent, plane sections remain plane sections during 
bending. Hence we may assume that X is numerically the same 
for two fibers equidistant from, but on opposite sides of, the' 
neutral axis. If V and L" are, respectively, the lengths of these 
fibers (Fig. 398a), we may put [Eq. (a)] 

X = 
S'L' S"L' 
E E 

or 
T ft 

S' = ±LjS". 

Since L" > Z/, S' > S". That is, the stress in a fiber above the 
neutral axis is numerically greater than the stress in the corre¬ 
sponding fiber below the neutral axis. The distribution of the 

bending stress on the section CD is indicated in Fig. 398c. Since 
the stress is not triangularly distributed, the flexure formula is 
not applicable to curved beams. 

248. Correction Factor.—A theoretically correct curved-beam 
formula may be derived.* In practice, however, it is more 
convenient to apply a correction factor to the formula for a 
straight beam. In following this practice, the stress in the outer 
fiber of a curved beam subjected to a bending moment M may 
be expressed as 

S 
_kMc 

where Mc/I is the straight-beam formula and if is a correction 
factor determined from the correct curved-beam formula for 
each particular case. 

If R equals the radius of curvature of the axis of the unloaded 
beam (Fig. 398a), and c equals the distance of the outer (inside) 
fiber from the centroidal axis, then for circular, elliptical, or 
rectangular sections K depends upon the value of R/c. For 
sections other than circular, elliptical, or rectangular, K usually 
depend also upon other dimensions of the section. 

The following table gives values of K for 
1. Circular or elliptical sections. 
2. Rectangular sections. 

3. Average values for other sections commonly used. 

Note.—The fiber on the concave side of the beam, that is, the 
fiber DF (Fig. 398) will be called the inside fiber; and the fiber on 
the convex side (CE) will be called the outside fiber. 

* See Boyd, “Strength of Materials,” p. 350; also Maurer and Withey, 
p. 212; Poorman, p. 309; Seely, “Resistance of Materials,” p. 336. 
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Fig. 399. Fig. 400. 

Values of K for Inside and Outside Fibers 

R/c 

Circle or ellipse 

Fig. 399 

Rectangle 
Fig. 400 

Other sections, 
average values 

Inside Outside Inside Outside Inside Outside 

1.2 3.41 0.54 2.89 0.57 

When a section is 

unsymmetrical, 
1.4 2.40 0.60 2.13 0.63 

1.6 1.96 0.65 1.79 0.67 
R/c refers to the 

inside fiber 

1.8 1.75 0.68 1.63 0.70 

2 1.62 0.71 1.52 0.73 1.63 0.74 

3 1.33 0.79 * 1.30 0.81 1.36 0.81 

4 1.23 0.84 1 1.20 0.85 1.25 0.86 

6 1.14 0.89 j 1.12 0.90 1.16 0.90 

8 1.10 0.91 1.09 0.92 1.12 0.93 

10 1.08 0.93 1.07 0.94 1.10 0.94 

20 1.03 0.97 1.04 0.96 1.05 0.95 

Note.—If R/c > 20 it is customary to use the straight beam 
formula with K = 1. Beams for which R/c > 20 are said to 
be slightly curved. li R/c < 20, the beam is said to be sharply 
curved. For a sharply curved beam the correction factor, as 

given in the table, should be used. 
Example. Fig. 401.—The section of a curved beam is circular 

and its radius is r = 1 in. Hence c = 1. The radius of curva¬ 
ture of the axis of the bar is R = 12 in. 

- = 12, K = 1.07. 
e ’ 
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Therefore 

8 = 1.07 ^ = i-07 
4 M 

x X l3' 

249. Hooks.—Figure 402 represents a hook carrying a load P. 
The maximum bending moment occurs at the section CD and 
is M = Pe where e equals the distance of the line of action of P 
from the centroid of the section. 

The stress on the section CD consists of (1) a direct stress whose 
intensity is 

and (2) a bending stress whose intensity in the outer fiber is 

s, - kM?, 

where if is a correction factor as explained in Art. 248. At D, 
the resulting stress is 

SD = Si + Sz = L + K~ (o) 

8a = Si - St = (b) 

and, at C, 
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It should be remembered that the value of K for the inside 
fiber is not the same as that for the outside fiber (Table, Art. 248). 

Note.—Hooks usually are sharply curved so that R/c is less 
than 20. Hence it is seldom that K may be put equal to unity 
when analyzing hooks. 

Example.—The section of a hook (Fig. 402) is a circle of radius 
r = 1 in. The radius of curvature is R = 2 in. = e. Find P 
if the allowable stress is 16,000 lb./sq. in. 

For a circular section for the inside fiber, K = 1.62 if R/c = 2. 

A = irr2 = 3.14 sq. in., c = r = 1 in., I = = 0.785 in.4 

Hence [Eq. (a)], for the inside fiber, 

16,000 = + 1-62P fAf-1 or P = 3600 lb. 

With this value of P, the stress at C is (since for the outside 
fiber K = 0.71) 

Sc 
3600 A ^ w 3600 X 2 X 1 

- 3 14 u./i X 0 7g5 —5360 lb./sq. in. 

(compression). 

Note that 
SD = 16,000 lb./sq. in. (tension). 

PROBLEMS 

233. A hook of rectangular section, 2 by 3 in., has a load applied 3 in. from 

the centroid of the section CD (Fig. 402). The radius of curvature of the 

axis of the hook is R = 2.85 in. What is the maximum load this hook can 

carry at 18,000 lb./sq. in.? Ans. P = 10,300 lb. 

234. A wooden beam, 12 ft. long, rests on end supports. It has a constant 

width of b * 4 in. The beam is a double-truncated wedge symmetrical 

with respect to the center. The height of each end section is hi = 2 in. and 

the height of the section at the middle is hi = 8 in. What central load P 
can this beam carry if the safe fiber stress is 1200 lb./sq. in.? Also, when 

this load is applied, compute the stress in the outer fiber at a section 2 ft. 

from the middle of the span. 

Ans. 1066 lb.; 1066 lb./sq. in. 
236. A beam of constant width b and of length L is to rest on end supports 

and is to carry a uniformly distributed load W = wL. If S is the allowable 

fiber stress and v is the height of the section at a distance x from the end 0, 
show that for a beam of uniform strength 

3 w(L — x)x 
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236. In Problem 235, if h is the required height of the beam at the center, 
show in full detail that 

v2 _ 4 (L — x)x 
h*~ L2 

237. A 3 by 12-in. wooden floor joist on end supports is 16 ft. long. It 
is desired to cut out a notch 2 in. square for the purpose of concealing a 
water pipe. How far from the end support may the inner edge of this 
notch be placed if the strength of the joist is not to be weakened? The 
load is uniformly distributed. Ans. x = 3.57 ft. 

238. A 6-in. 14.75-lb. standard I-beam, 20 ft. long, is to be reinforced by 
steel plates, \ by 3 in., on the top and bottom flanges so that the beam may 
be able to carry a load of 480 lb./lin. ft. Determine the minimum theo¬ 
retical lengths of the reinforcing plates if S is 18,000 lb./sq. in. 

Ans. 14.2 ft. and 1.94 ft. 
239. A steel plate is to be used to serve as a rectangular manhole cover in 

the upper lining of a concreted tunnel of rectangular section. The hole is 
3 by 4 ft. and the plate must be able to support a depth of 6 ft. of earth. 
Assume the earth above the plate to weigh 7200 lb. Find the minimum 
safe thickness of the plate if S is 16,000 lb./sq. in. and m = 0.30. 

Ans. h = 0.402 in. 
240. A hook is to be made by bending a round steel rod. If R/c is not to 

be greater than 4, what size of rod should be used if the hQok is to lift a load 
of 540 lb. acting through the center of curvature of the axis of the hook? 
Let S be 18,000 lb./sq. in. Ans. Diameter = 0.893 in. 



CHAPTER XII 

COLUMNS 

Q 

„F. m-n 

250. Introduction.—Figure 403 represents a prism subjected to 
two equal, opposite, compressive forces Q and Q, one at each end.* 
For the present, assume that the forces act centrally upon the 
end sections. This is a restricted case. Consider the right 

section mn. Let F be the centroid of 
this section. If the prism does not 
bend (deflect), the line of action of Q 
and Q goes through F (Fig. 403a), and 
hence the stress on the section mn may 
be considered as uniformly distributed, 
its intensity being 

Q 
A tim 

Si = (a) 

: Q 
A 

(b) 

Fio. 403. 

where A — area of the section (see Art. 
i3). 

If the length of a prism is less than 
eight to ten times its least lateral dimen¬ 
sion, the prism is called a short prism 
or block. When such a prism is sub¬ 
jected to centrally applied compressive 
forces, the sidewise deflection of the 
prism is relatively so small that it may 

i£ed. Hence, if a short prism is centrally loaded, the 
H right section is obtained by dividing the total load Q 

the section [Eq. (a)]. 
Hjxt a long prism, i.e.y a prism whose length is more 

%n times its least lateral dimension (Fig. 404). Let 

bjected to centrally applied end loads. Assume 
lvalue of Q the prism bends. Let a equal the 

[ism at mid height. Since the line of action 
through the centroid of the section mn, the 

, member is called a prism, it is meant to signify 
[ids it is a prism and therefore straight, 

400 
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stress is not uniformly distributed. To determine the stress on 
the section nm, replace Q by an equal and parallel force Qi (Fig. 
4046) whose line of action goes through F (the centroid of the 
section) and a couple whose moment is M = Qa. The force 
Qi, as far as the section mn is concerned, will produce a direct 
compression whose intensity is (since Qi = Q) 

The moment Qa will produce a flexural stress. If, owing to this 
moment, S2 equals the unit stress 
(compressive) in the outer fiber at 
m, then within the elastic limit 
[since M = (SJ)/c] ‘ 

c Me Qac 
S2 = ~r = -j- 

The maximum unit stress on the 
section mn is, therefore, 

s = Si + S2 = | (1) 

From Eq. (1) it is evident that the 
deflection of the prism has a decided 
influence upon the unit stress in¬ 
duced on a section of that prism. 

25L Column Defined.—Any 
originally straight compression 
member is called a column if its 
deflection (lateral bending) must 
be considered when determining its strength. Pillars in build¬ 
ings, compression members in bridges, piston rods and connecting 
rods in engines are examples of columns. Struts, posts, and 
braces are other terms for columns. 

For the present, assume that the column is centrally loaded. 

Columns which are loaded eccentrically require special analysis 
(Art. 280). Centrally loaded columns may be divided into two 
classes on the basis of relative length as follows: 

A slender column is one relatively so long that failure will 
be due primarily to flexure (bending). Consequently, Si may 
be neglected [Eq. (1)]. 

_ fw 
TTTTTT 
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J A column of medium length is one of such length that failure 
will be due to the combined effect of direct compression and 
flexure. Accordingly, both Si and S2 must be considered 

[Eq. (1)]. 
Note.—A short prism or block under compression sometimes 

is called a short column. In a short column flexure may be 
neglected; i.e., S2 may be omitted in Eq. (1). 

If the deflection of a column could be determined, the stress S 
in the outer fibers could be calculated. For instance (Fig. 404a), 
if the deflection a were known, S could be found from Eq. (1). 
There is, however, no theoretically correct expression that will 
determine a. Equation (1), therefore, cannot be used to find S. 
The analytical treatment of a column requires special procedure. 

The purpose of this chapter is to derive equations that will give 
the relation between the breaking load (or else the working load) 
and the dimensions of the column. Such equations are called 
column formulas. 

Note.—Columns need not be prismatic. In this chapter only 
prismatic columns will be considered. 

262. An ideal column is one that is homogeneous, of constant 
cross-section, initially straight, and subjected only to centrally 
applied end loads. Actual columns never fully satisfy these 
conditions. Any slight variation from these conditions may have 
a marked effect upon the strength of a column. For instance, 
if a column has a slight initial crookedness, there will be an 
initial bending moment with loads centrally applied. This 
initial bending moment will produce a deflection. This deflection 
will increase the bending moment, which in turn will increase 
the deflection, and so on. The mutual dependence of bending 
moment and deflection is such that any deviation from ideal 
conditions may result in a decided reduction in the strength 
of the column. 

The deviations of an actual column from ideal conditions 
are difficult and may even be impossible to include in a mathe¬ 

matical analysis. Hence, in deriving a column formula, an 

ideal column is first considered. The physical constants which 
theory introduces in a column formula are then determined 
experimentally so that the results obtained from the formula 

may be in fair agreement with actual conditions. Note that 
the physical constants thus determined involve slight discrepancies 
from ideal conditions. Sometimes the algebraic form of an equa- 
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tion for the strength of a column is modified to meet actual 
conditions. Column formulas, therefore, are more or less empirical. 

Theoretically, an ideal column should not bend. There 
must be an initial bending moment to start the column to bend. 
An actual column, however, will always bend if subjected to a 
supposedly central loading. In the theoretical treatment of 
an ideal column it will be assumed that the column bends. 
It may be assumed, for instance, that the load is gradually 

(b) 

applied and that at the same time a lateral pressure is exerted 
against the column sufficient to cause the column to bend slightly, 
this lateral pressure being removed gradually as soon as the 
column can be held in a bent position by the end load. 

253. Ideal End Conditions.—End conditions affect the strength 

of a column very much. In an actual column, the end conditions 
are difficult, if not impossible, to determine definitely. For ideal 

columns, end conditions may be classified as follows: 
I. Round Ends. Fig. 405a.—Ends free to turn in all directions 

but not free to move laterally. As the ends turn, the load 
continues to act through the centroids of the end sections. 
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II. Fixed Ends. Fig. 4056.—Ends so rigidly held that the tan¬ 
gents to the column axis at the ends do not turn. In Fig. 4056, 
the ends are shown as built into unyielding abutments. 

III. Flat Ends. Fig. 405c.—Ends faced to an accurate surface, 
perpendicular to the column axis, and bearing against plane 
surfaces that will not rotate. 

IV. Pin Ends. Fig. 405d.—Ends free to turn in one direction 
but restrained in the other direction. For an ideal pin end, the 
pin is assumed smooth so as to eliminate friction and, further¬ 
more, is held in an immovable bearing so that the end is fixed 

as regards flexure in the plane containing the axis 
of the pin. 

V. End Free from Any Restraint. Fig. 405e. 
VI. Combination of End Conditions.—For 

instance (Fig. 405/), one end may be free to turn 
and the other end may be fixed. 

254. Equivalent Lengths of Ideal Columns.— 
In Fig. 4056, the points 0 and B are points of 
inflection. At such a point there is no bending 
moment. If an ideal fixed-ended column is cut 
at the points of inflection 0 and B (Fig. 406) 
and central forces equal to Q are there applied, 
the three portions as separate columns will 
behave just as they do as parts of the original 
column DC. Now the portion OB is in the 
condition of a round-ended column. Evidently 
OB is one-half of DC. 

Lr = length of the fixed ended column DC, 
and 

L = length of the equivalent round-ended column OB, 

In like manner, in the column with one end fixed and the other 
end free to turn (Fig. 405/), the portion OB is in the condition of a 
round-ended column. A mathematical analysis shows that 
OB = DB/y/2 (approximately).* Hence, if 

* With reference to Fig. 4056, OB approximately equals \DB. The point 
B, however, does not lie on the vertical through D (Fig. 407a), but a little to 
the right of it. If then the column is cut at B and a central load Q is applied, 

'Q 
Fig. 406. 

That is, if 
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V = length of the round- and fixed-ended column DB 
and 

L = length of the equivalent round-ended column OB, 

With reference to Fig. 405e, it is evident that if 
L' = length of the column with one end free from restraint 

and 
L = length of the equivalent round-ended column, 
L = 2Z/. 

Hence, given a column formula for an ideal round-ended column 
of length L, the corresponding column formulas for the other 
ideal end conditions just considered maybe obtained 
by making the following substitutions: 

For fixed ends (or flat ends), put L/2 for the L in 
the formula for round ends. 

For round and fixed {or fiat) ends, put L/\/2 for 
the L in the formula for round ends. 

For one end free from restraint, put 2L for the L 
in the formula for round ends. 

Note.—It is evident, then, that in the theoreti¬ 
cal treatment of columns round-ended columns 
are of primary interest. 

255. Euler’s Column Formula for Round Ends.—An ideal 
slender column with round ends is made to bend (deflect) by an 
amount a (Fig. 408). The bent column is represented by its 
elastic curve OFB. It is required to find what central end load 
Q will hold the column in the bent position. Assume that the 
elastic limit is not exceeded. 

Take 0, the lower end of the elastic curve, as the origin, and 
the axis of the column in its unbent position as the x-axis. Take 
the y-axis as positive in the direction the column bends (to the 
left in Fig. 408), so that the ^-coordinate of any point in the curve 
OFB is positive. Sometimes it is convenient to place the column 

a horizontal force H must be exerted at B to bring B directly over D (Fig. 
4076). When this is done, the point of inflection O moves down slightly. 
That is, OB of Fig. 407a is not quite equal to OB of Fig. 4076. A mathe¬ 
matical analysis shows that OB (Fig. 4076) equals 0.7DB (very nearly), or 
approximately DB/\/2. See “Strength of Materials,” p. 288, by Maurer 
and Withey. 

(a) (b) 
Fig. 407. 



406 MECHANICS OF MATERIALS 

in the horizontal position as shown in Fig. 409. In this position 
the mathematical relations are more clearly seen. 

From previous proof (Art. 176), 

where M is the bending moment at the point N whose coordinates 
|q are x and y. It is necessary, however, to consider 

sign. If the bent column and the axes are taken 
as shown in Fig. 409, d2y/dx2 is intrinsically nega¬ 
tive (Art. 177).* Hence M must be negative. 
Since y is positive, we must put M = — Qy. 
Therefore 

Fra' 

Y-axis OV 

<1 - -e»- (a) 

a* 
T 

In Eq. (a), I is the moment of inertia of the sec¬ 
tion at N with respect to the centroidal axis (grav¬ 
ity axis) perpendicular to the plane of bending, 
i.e.j with respect to the centroidal axis perpen¬ 
dicular to the plane of the paper in Fig. 408 or 
Fig. 409. 

Note that the sign given to M is in agreement 
with the rule of sign adopted in Art. 120. That is, 

if the axes are chosen as shown in Fig. 409, M is negative if the 
concavity is below the piece. 

JLjL 

Q 
Fig. 408. 

Fig. 409. 

Equation (a) may be written 

Or 

* That is, the derivative of a decreasing quantity is negative. Note that 
d*y d (dy\ dy . • 
5S* = dx\dx) an<^ decreases as the point N moves to the right. 
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Multiplying through by dy/dx, 

®§K§) - -«>*• 
Putting u = dy/dx, 

Eludu = —Qydy. 
Integrating, 

e4=+ci 

where C1 = constant of integration. 
Substituting dy/dx for uy 

(b) 

This last equation must hold for any point in the elastic curve. 
It must hold, therefore, for the point F. At F, dy/dx = 0 and 
y = a. 
Therefore 

or Ci 
Qa2 

2 ‘ 

Substituting this value of Ci in Eq. (b), and simplifying, 

“(a;)’ - «»’ - »')■ 

Solving for dy/dx, 

Using the plus sign and separating variables (see Art. 257), 

- M dx. 
y/a2 — y2 \ FI 

Integrating, 

where C2 is the constant of integration. To determine C2, 
substitute simultaneous known values of x and y. At 0, x = 0 
andy = 0. 
Therefore 

sin-"1 0 = 0 + C%. 
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Taking sin-1 0 = 0, 

and Eq. (d) becomes 

C2 = 0 

M 

This is the equation of the elastic curve and may be written 

y = a sin (/) 

By assumption, the column is made to deflect an amount a, 
and it is required to find the value of Q that will maintain this 
deflection. That is, by assumption, y = a when x = L/2. 
Substituting in Eq. (e), 

Or 

Solving for Q, 

sin' -l = sm" 1.^/2. 
2\EI 

Z = L IE 
2 2\EI 

Q = 
IT2 El 
U~' (2) 

Since I = Ak2, where fc is the radius of gyration [see Eq. (4), 
Art. 137], 

Equation (2) or Eq. (3), is known as Euler’s formula for a column 
with ends free to turn. The load Q is called the Euler load. 

Equation (2) or Eq. (3) is seen to be independent of a, the 
deflection. That is, a load which will maintain a given deflection 
will maintain any deflection so long as the elastic limit is not 
exceeded. Hence a load slightly greater than the Euler load will 

bend the column until it fails. The Euler load therefore is the 

critical load and is often called the breaking load for a slender 
column. 

Euler’s formula was developed for an ideal column. In the 
derivation of this formula the direct stress Si = Q/A was not 

considered. It was assumed that failure will be due solely to 
flexure. If the direct stress Si were appreciable, the column 
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would. fail before the Euler load is reached. Hence Euler’s 
column formula is applicable to slender columns only. 

Actually, it is seldom that a column may be considered slender. 
Euler’s column formula, however, is of great importance since 
it is used to determine practical column formulas as will be seen 
later. Moreover, in some cases, this 
formula enables one to obtain readily 
a first approximation to the necessary 
size for a column by solving for I. 

Place one end of a long thin steel straight¬ 
edge on a platform scale as shown in Fig. 
410, and press down on the other end. The 
downward pressure may be determined by 
the ordinary process of weighing. After the 
straightedge begins to bend, it will be found 
that the deflection may be increased without 
any material change in the load Q. That 
is, within the elastic limit, Q is practically 
the same for all deflections. Moreover, it 
will be found that the value of Q thus deter- 

1° 

Fig. 410. Fig. 411. Fig. 412. 

mined experimentally will differ but slightly from the theoretical value 
determined by Euler’s formula [Eq. (2)]. 

256. Note.—In the derivation of formula (2) or (3) it was 
assumed that the column bends as shown in Fig. 408. It is theo¬ 
retically possible, however, for a column to bend in a number 
of ways. For instance, the column may be made to bend as 
shown in Fig. 411 if it is laterally supported at^Cr as indicated in 
the figure. Each half of the column is in the condition of a round- 
ended column. Accordingly, in the column formula for round 
ends [Eq. (2)], put L/2 for L and obtain 
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a _ 4tr® 
W L2 

That is, theoretically, a round-ended column of length L with 
a double bend is four times as strong as the same column with a 
single bend. 

In like manner, if the column is made to bend as shown in 
Fig. 412, 

Q _ 9ir2EI 
« L2 

These examples show the advantage of side bracing. 

257. In dealing with a multivalued function, it is not always a simple 

matter to determine which value of the function should be used. The 

ultimate criterion is this: The equation or equations finally obtained must 

satisfy all assumptions made. For those interested in the mathematics of 
column problems, the following discussion may be of interest: 

|Y 
I 

Fig. 413. 

1. If in Eq. (c) of Art. 255 the minus sign is used, the equation of the 
elastic curve [corresponding to Eq. (/)] becomes 

y = 

This is the equation of the elastic curve if the column and the axes are taken 
as shown in Fig. 413. 

2. Consider the round-ended column with two bends (Fig. 411). Per¬ 
forming the integration (as was done in Art. 255), we obtain 

« 

That is, in the derivation of Eq. (e), of Art. 255, no assumption was made 

that is not applicable to the column of Fig. 411 (or of Fig. 412). Let the 

student review the derivation of Eq. (e) to assure himself that this is the case. 

Referring now to Fig. 411, we have 

At 0, 

x = 0, y = 0, sin-10 = 0. 

(This condition was used to determine the constant of integration and there¬ 

fore should not be \feed again.) 
At F, 

sm * 1 = y = o, 
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At G, 

L 
y = o, sin"1 0 = v. 

X ~ 5f 

At H, 

3L 
sin"1 (-1) = ~ X = T’ y = -a, 

At B, 

II y = o, sin"1 0 = 27r. 

To determine the value of Q that will hold the column in the bent condition 

shown in Fig. 411, use any one of the foregoing conditions (except the first) 
and substitute the values in Eq. (e). For instance, putting x — L/4, 
y = a, and sin-1 1 = tt/2, 

7T 

2 

268. Slenderness Ratio.—Euler’s column formula for round- 
ended columns is [Eq. (3), Art. 255] 

where L = length of column. 
k = radius of gyration of the cross-section with reference 

to that centroidal axis which is perpendicular to the 
assumed plane of bending, the plane of bending 
being defined as the plane of the elastic curve. 

For instance, in Fig. 408, the column is represented by its 
elastic curve OFB, and this curve is assumed to lie in the plane 
of the paper. Hence the plane of the paper is the assumed 
plane of bending, and k is the radius of gyration of the cross- 
section with respect to the centroidal axis g-g, which is per¬ 
pendicular to the plane of the paper. 

The ratio L/k is called the slenderness ratio. The slenderness 
ratio enters into all column formulas. It is important, therefore, 
to be able to determine the k that should be used in a particular 
case. If a round-ended column, centrally loaded, is free to bend 

in any direction, the column will bend in the plane of the least 
radius of gyration. Hence, if a centrally loaded column is free 
to bend in any direction, the value of k to be used is the least 
radius of gyration. From Eq. (3), the load Q will have the least , 
value when L/k is a maximum, i.e., when k is the least radius of j 
gyration. , f 
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Wooden columns usually are rectangular, and commercial 
column formulas for wooden columns often are expressed in 
terms of L/d where d is the dimension of the cross-section parallel 
to the plane of bending. If the plane of the paper is the assumed 
plane of bending, then d is the dimension (of section) parallel 
to the plane of the paper. 

Note.—Unless a statement to the contrary is made, it will be 
assumed that the column is free to bend in any direction. 

x- 

Fig. 414. Fig. 415. 

259. Radius of Gyration.—Rectangular section of dimensions 
b and h (Fig. 414): 

bhz h2 
Ix = ~= (bh% = Ak*- 

Therefore 
,, h2 , , h 
k* = 12 and k* = vis 

Iv = ^ = (bh)b^ = Ah*. 

Therefore 
12 

A:2 = — 
^ 12 

and kv = 
\/l2 

Hence, if d is the smaller of the two, b or A, 

Min. k = -4 = 
\/12 2a/3 

Solid Circular Section. Fig. 415. 

= Iy = ^ = («■*£ = Ak\ 

Therefore 

fc2 = -r and 
4 

7 r d 

k = 2 = r 

Here d is the diameter of the circular section. 
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Hollow Circular Section. (Fig. 416).—Outer radius equals 
r = d/2; inner radius equals ri = di/2. 

T T t r4 xrf , r2 + r\ A1 
I* = Iv = ~£ = T(r ~ ri)~4— = 4fc2- 

Therefore 

/r2 + r\ 
2 

'd2 + dl 
4 

The values of k for other sections may be found in the many 
handbooks for engineers. 

Example I.—A hollow round column has an outer diameter of 
d = 8 in. and an inner diameter of di = 6 in. Find its radius of 
gyration. 

s,v3L±3.vli±f, 2 60in 

Example II.—Find the radius of gyra- [A / |\' l|\ 
tion of a solid round column of the same _(jvf L<' \ \ 
sectional area as that of Example I. t j 1 r ] 
Let d equal the diameter of the solid V \L/ I 
section. T •1(1'/ 

, 7Td2 tt(82 - 62) — 
A = -j- = --A--• Fig. 416. 

4 4 

Therefore 

d = V2S = 5.29 in. 
d 5.29 1 QOQ . 

k = -r = -7— = 1.323 m. 
4 4 

Fig. 416. 

1.323 in. 

Problem 241.—In a triangle, b is the base and h is the altitude. Let X be 

a gravity axis parallel to the base. Given Ix = show that 

260. Effect of Direct Stress.—If Eulers formula is plotted by 
taking L/k as abscissa and Q/A as ordinate, the curve thus 
obtained is called Euler’s curve. In Fig. 417, Er is Euler’s curve 
for a round-ended mild-steel column with w2E = 300,000,000. 
The curve Er represents the equation 

Q ir2E 300,000,000 , v 

3'©‘" (*)’' 
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Since ir2 = 9.87 . . . , this is equivalent to taking 

E = 30,400,000 lb./sq. in. 

The curved line T represents the mean of the results of 
Tetmajer’s tests on round-ended mild-steel columns. The curve 

• T is an experimental curve based upon the average values of the 
results obtained from carefully made tests on round-ended 
mild-steel columns. Note that for L/k > 120, the two curves 
T and Er practically coincide, and that for L/k < 120 the two 
curves diverge more and more as L/k decreases. This means 
that for L/k less than 120 the direct stress Q/A cannot be neg¬ 
lected [see Eq. (1), Art. 250], and that the effect of the direct 

Ratio of Slenderness 

Fig. 417. 

stress becomes more and more pronounced as L/k decreases. 
Note also that for L/k < 40 the experimental curve is practically 
a straight horizontal line. This indicates that if L/k < 40 failure 
is due almost wholly to the direct stress. Hence 

If L/k > 120, the column is a slender column. 
If 40 < L/k < 120, the column is of medium length. 
If L/k < 40, the member may be treated as a short prism or 

block and no column formula is needed. 

It is accordingly seen that if L/k is less than 120 Euler’s 

column formula should not be used for round-ended mild-steel 
columns. For columns in general it is not possible to set a value 

for L/k below which Euler’s formula should not be used, since the 

value of Q depends also upon the kind of material in the column 

and upon the “end conditions.” 
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Example.—In a laboratory test, a solid mild-steel rod is used 
as a round-ended column. The radius of the rod is r = \ in. 
and the length is L = 3 ft. 

k = ^ = 0.25 in. (Art. 259.) 

^ = = A = Trr2 = 0.785 sq. in. 

The column is a slender column (L/k >120), and from Eq. (a), 

Q _ 300,000,000 
0.785 1442 

Therefore 
Q = 11,380 lb. 

Problem 242.—A 1- by 3-in. rectangular steel rod, 3 ft. in length, is used 

as a round-ended column. Find the breaking load. 

Arts. L/k = 125; Q = 57,600 lb. 

261. Rankine’s Formula.—Figure 418 represents a round- 
ended column of medium length carrying a central load Q. The 
maximum unit stress S occurs in the outer fibers at m. 

From Art. 250 [Eq. (1)], 

£-S1 + S, = § + ^ 

where a = the deflection of the column. 
Substituting Ak2 for 7, 

Note that, whereas S is the maximum unit stress, Q/A is the 
average unit stress on the section mn. % 

Within the elastic 'limit, Eq. (a) is theoretically correct. This 

equation contains a, the deflection. ‘However, no theoretically 

correct expression for a can be found and it is necessary to resort 

to approximations. 

Let Q equal the breaking load; i.e., Q equals the minimum load 
that will cause the column to fail. Note that at failure the elastic 
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limit is exceeded and that therefore Eq. (ib) does not strictly 
apply. Note also that a slight deviation from the assumed ideal 
conditions may have a marked effect upon the strength of the 
column. Accordingly, the value to be given S in Eq. (b) is in 
doubt. Hence put S = C, a constant (different for different 
materials) to be determined experimentally. Moreover, exper¬ 
ience warrants the assumption that if we put ac = qL2, where q 
is another constant to be determined by experiment, results will 

be obtained which are sufficiently accurate for practical pur¬ 
poses. Making these substitutions, Eq. (b) becomes 

(4) 

As stated above, C and q are experimental constants. L/k is the 
slenderness ratio of the column and Q is the breaking load. 

This formula is known as Rankings formula and the curve 

representing the formula is called Rankings curve. 
Illustration.—For round-ended mild-steel columns, Rankine 

and other authors give C = 50,000 lb./sq. in. and q = 1/9000. 
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Hence 

This is Rankine’s formula for breaking loads for mild-steel columns 
under round-ended conditions. 

50,000 

jc 

£40,000 
v. 
a. 
^30,000 

£20,000 
Kf) 
*+2 

3 io,ooo 

0 

Fig. 419. 

In Fig. 419, R is Rankine's curve [Eq. (5)], Er is Euler’s curve, 
and T is the experimental curve based upon results obtained from 
carefully made tests on round-ended mild-steel columns. Note 
that for L/k < 50 Rankine’s curve gives values for Q/A that 
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are too large. If L/k < 50, no column formula is needed. 
If L/k > 50, Rankine’s curve is in fair agreement with the 
experimental curve T. 

Example.—A mild-steel rod of length L = 2 ft. and radius 
r = | in. is used as a round-ended column in a carefully made 
laboratory test. For what value of Q may this column be 

expected to fail? k = ~ in., ^ = 96, A = 0.785 sq. in. 

Q 
0.785 

Therefore 

Q 

262. Straight Line Formula.—Referring to Fig. 420, note 
that between A and B the experimental curve T is approxi¬ 
mately a straight line. This suggests the straight line formula. 
Draw the straight line CD. This line agrees fairly well with the 
experimental curve between A and B. Note that this line is 
drawn through the point C where Q/A = 50,000 and the point D 
where L/k = 200. Observe also that the line CD is very nearly 
tangent to Euler’s curve at B. 

To find the equation of the straight line CD, let x =» L/k and 
y = Q/A. The equation of the straight line is 

y — 50,000 + mx 

where m is the slope of the line and equals —50,000/200 = —250. 
Therefore 

® = 50>000 — 250(breaking load, mild steel, round-ended) 

(6) 

provided L/k lies between 40 and 140. If L/k is less than 40 
no column formula is needed. If L/k is greater than 140, 
Euler’s formula may be used. 

There is a straight line formula for each type of column and for 

each kind of material. 

263. In Fig. 420 the line CD is drawn very nearly tangent to Euler’s curve 

at B. Note that, at B, Q/A — 50,000/3 (very nearly). In general, let the 

straight line formula take the form 

50,000 

1 + toW X 962 

= 19,400 lb. 

= 24,700. 
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where C and b are constants. It can be shown that if the straight line 

represented by this equation is tangent to Euler9 s curve, then at the point of 

tangency Q/A — C/S. 
In some cases, wooden columns for instance (see Fig. 424), the line CD is 

drawn to cut Euler’s curve. If the line CD were drawn tangent to Euler's 

curve, the value of Q/A as given by the straight line formula for values of 

L/k between A and B would be considerably less than the Q/A from the 

experimental curve. 

264. Parabolic Formula for Columns.*—In some cases, the 
parabolic formula 

2-c~ <§)■ 
gives results more closely in agreement with experimental data 
than either Rankine’s formula or the straight line formula. 

Fig. 421. 

In Eq. (7), C and b are constants experimentally determined so 
that the parabola represented by the equation agrees closely 
with the experimental curve within a certain range of values 

of L/k. 
In Fig. 421, Er is Euler's curve and P is the parabolic curve. 

It can be shown that, if the constants C and b of Eq. (7) are 

determined so that P is tangent to Er at Bf then at B, Q/A = C/2. 
• 266. Factor of Safety. Safe or Working Load.—In the fore¬ 
going column formulas, Q is the load under which the column 

♦The column formulas recently adopted by the American Railway 

Engineering Association are parabolic formulas. See Art. 270. 
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may be expected to fail. In other words, Q is the breaking load. 
If n is the factor of safety to be used, then the safe or working 

load is P = Q/n or Q = nP. 
With a factor of safety of n = 2.5, Eq. (6) becomes 

P L 
= 20,000 — 100-^ (safe load, mild steel, round-ended condi¬ 

tions, n = 2.5). (8) 

If L/k is less than 40, no column formula is needed. By putting 
L/k = 40, P/A = 16,000 lb./sq. in. That is, if L/k is less than 
40, the member is designed as a short prism with an allowable 
unit stress of 16,000 lb./sq. in. 

Example I.—A 12-in. 28-lb. W beam, 10 ft. long, is to be 
used as a round-ended column. Using a factor of safety of 2.5, 
find the safe load the column can carry. 

The least radius of gyration is k = 1.46 in. Hence 

L 120 
. k 1.46 

82.2. 

Also, A = 8.23 sq. in. Using formula (8), 

j = 20,000 - 100 X 82.2 = 11,780 lb./sq. in. 

Therefore 

P = 97,000 lb. 

Example II.—Assume that the column of Example I is laterally 
supported so that it will bend in a plane perpendicular to axis 
1-1. Then k = 5.09 in. and L/k = 23.6. Since L/k is less 
than 40, the member is designed as a short prism with an 
allowable stress of 16,000 lb./sq. in. 
So 

P = 16,000 X 8.23 = 131,700 lb. 

COMMERCIAL COLUMNS 

266. In commercial columns (columns in buildings, bridges, 

etc., i.e., columns used in engineering structures), the deviations 

from ideal conditions may be quite marked, so much so that 

practical column formulas are only rough approximations at 
best. Such formulas necessarily must be conservative since they 
must make allowance for such possible deviations from ideal 
conditions as these: defects and lack of homogeneity in the mate- 
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rial, variations in the cross-section of the column, an accidental 
eccentricity in the loading, an initial crookedness in the column. 
It should be kept in mind that laboratory tests on selected columns 
that satisfy ideal conditions as nearly as possible may give results 
quite at variance with the results obtained from commercial column 
formulas. In the following pages, commercial or practical column 
formulas will be considered. 

267. Pin-ended Columns.—Round-ended columns are not 
used in practice. Pin-ended columns are used but not to the 
same extent as formerly. It is seldom that a column in practice 
is fixed or fl#t ended in the same way that a test-piece in a testing 
machine may be fixed or flat ended. For instance, columns 
in bridges, buildings, etc., usually are riveted to other members 
of the structure and at first sight may seem to be fixed ended. 
They are not fixed ended, however, since the members to which 
they are riveted are not fixed or rigid. Moreover, tests on such 
columns show that they are little better, as far as strength is 
concerned, than pin-ended columns. It has become, therefore, 
a general practice among engineers to treat commercial columns 
as pin ended. * 

Occasionally, however, it is known that the ends of the column 
are well restrained and that the load is very nearly centrally 
applied. In such cases, a formula for fixed ends may be used. 
As stated above, this is seldom the case in practice. 

268. Euler’s Formulas Modified to Meet Actual End Con¬ 
ditions.—Theoretically a round-ended column and a pin-ended 
column are essentially alike. Practically, however, they are 
not alike. Friction between pin and column brings in an end 
restraint that in a particular case is difficult if not impossible to 
determine. Experiments show that a column-with pin ends is 
stronger than the same column with round ends. Experiments 
also show that Euler’s formula for fixed or flat ends must be modi¬ 

fied to meet actual end conditions. 
The following formulas give results fairly consistent with the 

results of tests on slender columns. 

Bound ends: 

Q ir*E 10 E 
(approximately). 

* In the 1935 Specifications for Railway Bridges a distinction is made 

between pin-ended and riveted-ended columns. 
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Pin ends: 

Q 16E 

Fixed or flat ends: 

Q 25 E 

(9) 

(10) 

Note.—For an ideal column, the coefficient in Eq. (10) should 
be 4tr2. * 

269. Given two columns of the same cross-section and of the 
same kind of material so that A, fc, and E are the same for both 
columns. Let one column of length Lp be pin ended and the other 
of length Lf be fixed or flat ended. Assume that the two columns 
are equally strong. Equating the right-hand members of 
Eqs. (9) and (10), 

16 25 

Ll L) 

Hence, if for the L in a 'practical column formula for pin ends 
we put |L, the corresponding practical column formula for fixed or 
flat ends is obtained. 

270. Structural-steel Columns.—In 1909, a committee on steel 
columns was appointed by the American Society of Civil Engi¬ 
neers (A. S. C. E.). In 1912, a similar committee was appointed 
by the American Railway Engineering Association (A. R. E. A.). 
A careful study of all the available data on the subject led both 
committees to recommend for structural steel the following 
formula for the breaking load: 

j = 37,500 - 125§;) 
T /Pin ends, structural steel, breaking load 

50 < £ < 225.) (ID 

In Fig. 422, Ep represents Euler’s modified formula for pin 
ends. The modulus of elasticity is taken as 

E = 30,000,000 lb./sq. in. 

The straight line S represents Eq. (11). The curved line R 
represents Rankine’s formula 
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37,500 

—(-Y 
3,000^; }pi Pin ends, structural steel, breaking load 

(12) 

Note that the straight line S is very nearly tangent to Euler’s 
curve Ep, and that Rankine’s curve R gives fairly satisfactory 
results if L/k > 60. 

t2 30,000 

uami 
-S-37,500 -125 fe — 

2: 10,000 --— - 

£ -j-_ 

25 50 60 75 100 125 150 175 206 M5 iW tStp 

Ratio of Slenderness ^ 

Fig. 422. 

By using a factor of safety of n = 2.08 (as is done in designing 
buildings, etc.), 

P _ 18,000 \ 
A , , 1 /LV/ ±-fk\ 

l,000\k ) (A.I.S.C.) (13) 

> 120 

In 1936 formula (13) was adopted by the American Institute of 
Steel Construction (A.I.S.C.). And, for L/k not greater than 
120, they adopted the formula 

= 17,000 
- °-485©’ 

\ si2° 

(A.I.S.C.) (14) 

Formula (14) is a column formula of the parabolic type. 
In 1935 the American Railway Engineering Association 

adopted the following parabolic formulas: 
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j “ 15,000 — Riveted ends (15) 

2 - 15'000 - 50 
Pin ends 

The committee of the A.R.E.A. which made the above recom¬ 
mendation used the secant formula (Art. 281) as a basis. 

Note.—If the column is made of some ductile material such as 
structural steel, a load that will bring the unit stress in the outer 
fiber up to the yield-point will, if continued, cause the column to 
fail. This seems evident from the fact that as soon as the yield- 
point is reached, the outer fibers at m (Fig. 418) will suddenly 
shorten (yield) without any appreciable increase in the unit 
stress in these fibers. This will result in an increased deflec¬ 
tion and therefore in an increase in the bending moment Pa 
without a corresponding increase in the unit stress at m. Hence 
the column will fail. The factor of safety to be used when a 
column is made of some ductile material should be based, there¬ 
fore, upon the yield-point. The yield-point for ductile steel is 
about one-half of the ultimate so that a factor of safety of 2 
or 2.5 based upon the yield-point is equivalent to a factor of 
safety of 4 or 5 based upon the ultimate stress. 

In general, a column is apt to fail as soon as the elastic limit 
is exceeded to any appreciable extent. This explains why 
in the case of a column the factor of safety as a rule is lower than 
that used for the same material in direct compression or tension. 

271. Cast-iron Columns.—Formerly cast-iron columns were 
extensively used. At present, steel columns are preferred. 

Working formula recommended for cast-iron columns: 

j = 9000 — 40^(N. Y. law; n = about 4) (17) 

t<m- 

1 ^(LY 
2,500\k ) 

\ <125- 

(18) 
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The constants in formula (18) were selected to make the two 
curves in fair agreement for L/k < 125, as is shown in Fig. 423. 

Note.—The Building Code Committee of the U.S. Department 
of Commerce recommended that formula (17) be used for values 
of L/k up to 90. 

10,000 
z 

£ 
£ 7500 

A 
i 5,000 

± 2,500 
15 

O 

c P s -15 5 _ Eulers formula,pin ends l j 
r n-*r,c* I3,uw,uwip.perstj.in. 

P - _ L straight line 
5 A ™ K i.<125 

* 
R-; 

8.500 
+ 1 f J=A — Ran Wines fo 

19.500 1 k ' L , _ 
rmu la 

_ •s & h\ L_j 
25 
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s 

2 __ 

h t 
0 25 50 75 100 125 150 175 200 225 

Ratio of Slenderness 

Fig. 423. 

Example.—A round, hollow cast-iron column is 12 ft. long. 
Its outer radius is r = 4 in. and its inner radius is n = 3 in. 
Find the safe load. 

Therefore 

A = tt(42 - 32) = 22 sq. in.; 

V32 + 42 
k = 2.50 (see Art. 259). 

L 
k 

P_ 
22 

144 
= 57.6. 

2.5 

= 9000 - 40 X 57.6. 

P = 147,500 lb. 

272. Wooden Columns.—There are several kinds of wood used 

for columns. Each kind is divided into two main divisions, 
common and select. A rational column formula for wood should 

consider, therefore, not only the kind of wood used but also the 
grade. Now a wood of a particular kind and grade varies appre¬ 
ciably in its physical properties, so much so that a column formula 
for wood must be very conservative. 
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The column formula that seems to have the preference is that 
developed by the Forest Products Laboratory (F.P.L.) of the 
Federal Government. The formula is 

where S = allowable compressive stress for a block of the given 
kind and grade of wood. 

d = least lateral dimension (rectangular section). 
K = constant defined as 

* - u&- « 
By the use of tables, formula (19) is readily applied. 

Figure 424 is constructed for select hemlock. 

E = 1,400,000 lb./sq. in. 

and S = 900 lb./sq. in. Er represents Euler’s working formula 
for round-ended wooden columns with a factor of safety of 
n = 3. That is, Er represents the equation* 

7T2 X 1,400,000 
Q>) 

The curve F represents Eq. (19). This curve is tangent to 
Euler’s curve at C where P/A = |S. Hence, if by the use of 
the F.P.L. formula [Eq. (19)] P/A < §S, the results should be 
discarded and Euler’s formula [Eq. (b)] should be used. 

Note that Euler’s formula for round ends is used and that 
therefore, the F.P.L. formula is conservative. 

As stated above, by the use of tables, the F.P.L. formula 
[Eq. (19)] is readily used for any specified kind and grade of 
wood. For general use, however, a straight line formula is 
preferable. Draw the straight line BC (Fig. 424). The equation 
of this line is (for select hemlock) 

* Do not confuse K and k. K is defined by Eq. (a), while k is the radius 

of gyration of the section. For a rectangular section, k2 = d2/12. 

Hence 
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= 1100 — 20^ = 1100 — 5.8^ (not a legal formula). (20) 

10 < ^ < 25. 34.6 <j<87. 

Max. j = 900. E = 1,400,000 lb./sq. in. 

If L/d < 10, no column formula is needed. The member is 
designed as a short prism with 900 lb./sq. in. as the allowable 
unit stress. If L/d > 25, Eulers formula [Eq. (6)] is used. 

Fig. 424. 

Note..—For a good grade of wood, kind not specified, formula 
(20) may be used. 

In a similar manner, straight line formulas may be derived for 
the various kinds and grades of wood. 

For Select Oak: 
« 

j = 1200 - 20^ (N. Y. law). 

10 < ^ < 25. 

Max j = 1000. • E = 1,500,000 lb./sq. in. 

(21) 
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273. Note.—It is frequently convenient to let fc designate the 
value of the right-hand member of a column formula. If this is 
done we may put 

Hence, fc having been evaluated for a particular value of L/k (by 
means of a column formula), the sectional area required for the 
column to carry the load P is 

274. Resume. Working Formulas.—For the same kind of 
material and the same kind of construction, various working 
formulas were used in the past. Almost every principal city had 
its own formulas, and the formulas of two cities sometimes 
differed widely. Since 1934 there has been a strong tendency 
toward standardization of formulas. In the following formulas, 
when two sets of upper limits are given for L/k, the first set is 
that determined theoretically and the second set gives the 
maximum limits specified in practice (see Art. 276). 

1. Structural Steel, 
a. Railway Bridges: 

j = 15,000 

< 140 

^ = 15,000 
A -m 

Riveted ends (22) 

Pin ends (23) 

b. Buildings or any structure for which the live and the impact 
load are fairly definitely defined: 

= 17,000 - °-485©! 

P 
A 

\ S120 
18,000 

1 + 

r>6° 

_L_(iY 18,000yA;) 

> 120 

(A.I.S.C.) (24) 

(A.I.S.C.) (25) 



COLUMNS 429 

2. Cast Iron: 

j = 9000 - 40^ (N. Y. law). (26) 

^ < 125. Max. ^ = 90 (Note, Art. 271). 

3. Wood. 
a. Good Grade, Kind Not Specified: 

J = 1100 - 20^ = 1100 - 5.8^- (27) ' 

10 < ^ < 25. 34.6 < r < 87. 
d k 

Max. = 900 lb./sq. in. E = 1,400,000 lb./sq. in. 

b. Select Oak: 

j = 1200 - 2o| = 1200 - 5.8^ (N. Y. law). (28) 

10 < ^ < 25. 34.6 < ^ < 87. 

Max. j = 1000. E = 1,500,000 lb./sq. in. 

Note.—It is necessary to be consistent in the use of units. 
If k (or d) is expressed in inches, L must be expressed in inches 
when determining L/k (or L/d). In column formulas the inch 
and the pound are commonly used as units. 

Example I.—A 12- by 12-in. wooden column is 8 ft. long. 
What central load may be applied? 

j = ** jn— — 8 < 10. (No column formula is needed.) 

Putting P/A = 900, 

P = 900 X 144 = 128,600 lb. 

Example II.—If the column of Example I is 15 ft. long, find P. 

L 

d 

15 X 12 
12 

= 15 > 10. 

Hence [formula (27)], 

~ = 1100 - 20 X 15 = 800 
144 

Therefore 
P = 800 X 144 = 115,200 lb. 
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Example III.—A standard I-beam, 12 in. 31.8 lb., is to be used 
as a column in a building. The column is 10 ft. long. What 
central load may be applied if the column is not supported 
laterally? 

A = 9.26, k = 1.01, r = ^ = 119 < 120. 
k 1.01 

^ = 17,000 - 0.485(119)2 = 10,130 lb./sq. in. 

Therefore 
P = 93,800 lb. 

PROBLEMS 

243. An 8-in. 23-lb. standard steel I-beam, 16 ft. long, is used as a column. 
This column is laterally unsupported. Show that Euler's formula is appli¬ 

cable (Fig. 422). Find the safe load if a factor of safety of n = 2.5 is used. 

Ans. 22,900 lb. 

244. If the column of Problem 243 is laterally supported so that it must 

bend about the 1-... 1 axis (perpendicular to the web), find the safe load 

if a factor of safety of 2.5 is used [Eq. (16)]. Ans. 92,000 lb. 

245. If the column of Problem 243 is firmly held at the ends so that it may 
be considered fixed ended, find the safe load (Art. 269). Ans. 97,900 lb. 

246. Find the load a 10- by 10-in. wooden post, 20 ft. long, can safely carry 

if laterally unsupported [Eq. (27)]. Ans. 62,000 lb. 

247. If the post described in Problem 246 is laterally braced at mid height, 

find the safe load. Ans. 86,000 lb. 

248. A wooden post, 8 by 10 in. (nominal size), is 10 ft. long and is unsup¬ 
ported laterally. Find the load [Eq. (27)]. Ans. 64,000 lb. 

249. Find the load for the actual commercial size of the post considered in 

Problem 248. The actual size of a timber nominally 8 by 10 in. is 7.5 by 9.5 

in., allowance being made for the width of the saw kerf and for shrinkage of 

the wood. By what percentage is the amount of the load for Problem 248 

reduced? Ans. 55,575 lb.; 13 per cent. 

275. Economy of Material.—1. A column free to bend in any 
direction will bend in the direction of the least radius of gyration. 

If the radius of gyration is the same in all 
directions, the column is equally strong in all 
directions. 

x Let X and Y (Fig. 425) be two axes of symmetry 
and let Ix and IVJ respectively, be the moments 
of inertia of the section with respect to these 
axes. In Elementary Mechanics it is shown 

(X and Y being axes of symmetry) that, if Ix = Iv = /, say, then 
the moment of inertia of the section with respect to any gravity 
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axis is I. For instance, if Ix = Iy = I, then In = / where n is 
any gravity axis of the section (see Art. 155). 

Assume now that I is the same for all gravity axes. Since 
I = Ak2, it follows that k is the same for all gravity axes and, 
therefore, is the same in all directions. Hence 

I. If Ix = Iy (X and Y being axes of symmetry), the column 
is equally strong in all directions. 
It can also be shown that 

II. If Ix < Iy (X and Y being axes of symmetry), then kx is 
the least radius of gyration of the section. 

In designing a column, it is frequently advantageous (as far 
as economy of material is concerned) to make Ix = Iy. That is, 
for a given value of the load P it is frequently possible to reduce 
the required sectional area A by making Ix = Iy. 

iY 

Fig. 426. 

Example.—A column is to consist of two 10-in. 20-lb. channels 
latticed together as shown in Fig. 426. Find the distance 
between channels, back to back, so that Ix = Iy. 

For each channel Ii = 78.5, 12 = 2.80, A = 5.86. Distance 
of center of gravity of channel from back = 0.61 in. (see figure). 
Therefore 

Ix = 2 X 78.5. 

To find Iy use the theorem that 

Iy = Z(I, + Ad2) (Art. 137). 

= 2^2.80 + 5.86^| + 0.61 

Equating Ix to J„ and solving for a, 

a = 6 in. 

Iy — 2 I2 + J + 0.6l)2 
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2. For a given sectional area A, the strength of the column is 
increased if k is increased. Now & may be increased by placing 
the material as far from the axis of the column as is practicable. 
For instance, a cast-iron column is hollow. Such a column is 
stronger (and stiffer) than a solid column of the same sectional 

area. 
276. Practical Limits for L/k.—If L/k is large (if k is small 

relative to L), the column may lack the rigidity deemed necessary. 
A slender column is liable to bend if subjected to an accidental 
lateral pressure. Moreover, in the case of impact, such a column 
may be subject to excessive vibrations. Hence an upper limit to 
L/k often is specified. For instance, the A.I.S.C. specifies that for 
main members of a building max. L/k = (120) [see Eq. (24)]. 
Note that theoretically the A.I.S.C. formula [Eq. (25)] holds 
for L/k > 60. 

On the other hand, if L/k is small (if k is large relatively,) 
the material may be so placed that it is too thin and hence liable 
to buckle, particularly if subjected to an accidental lateral 
pressure. Moreover, practical considerations often limit the 

size of column. 
All things considered, a column of moderate slenderness ratio 

may be the most advantageous. 
277. Design of a Column.—If a column is to be designed, it 

will be necessary to determine the area and the shape of a section 
so that A and k will satisfy a specified column formula. If the 
section is to be round or square, the value of A and of k may be 
expressed in terms of sbme dimension d of the section. Thus, 
if the section is to be square, A = d2 and k — d/ *VT2 where d 
is the side of the square (Art. 259). By substituting these 
expressions for A and k in the column formula, the resulting 
equation may be solved for d. 

When a column is to consist of one or more structural shapes, 
it is not possible as a rule to find expressions for A and k in 

terms of some one dimension of the shape or shapes. In such 

cases the method of trial may be used. That is, assume a 

section and Substitute the values of A and of k in a column 

formula. If the value of P thus determined is larger or smaller 

than that required for the column to carry, make another trial. 

Repeat until a suitable section is found. 

Note 1.—In practice, the column formula usually is specified. 
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Note 2.—If only commercial sizes of the material are available, 
select the nearest commercial size above that theoretically 
required. 

Note 3.—If a column is free to bend in all directions, k is the 
least radius of gyration of the section. 

An experienced designer develops methods of his own for the 
design of columns. For the beginner, the method of procedure 
used in Examples I and II will probably be found the most 
convenient. Note that in these examples the minimum sectional 

area of the member is first determined on the assumption that the 
member is a short prism. 

Example I.—A wooden column, 11 ft. long, is to carry a load 

of 30,000 lb. Design the column (square). Use formula (27) 
of Art. 274. 

For a short prism, P/A = 900. 
Or 

30,000 
900 

33.3. 

Nearest commercial size above is a 6 by 6 in. 
Try a 6- by 6-in. section. A = 36, d = 6. 

L = 11X12 = 22 
d 6 

Since L/d > 10, the column formula must be used. 

Therefore 

£ = 1100 - 20 X 22 = 660. 
ob 

Or 
P = 23,750 < 30,000. 

The section is too small. 
Try an 8 by 8 in. A = 64, d = 8. 

Therefore 

Or 

L 

d 

11 X 12 

8 
= 16.5 > 10. 

64 
= 1100 - 20 X 16.5 = 770. 

P = 49,200 > 30,000. (Too large.) 
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Take an 8 by 8 in. since there is no commercial section between a 
6 by 6 in. and an 8 by 8 in. 

Note.—Since the column is to be square, the size of the column 
may be directly determined. If d is the lateral dimension of 
the column, Eq. (27) may be written 

= 1100 - 20 X 
a2 d 

Simplifying, 

d2 - 2Ad'- 27.5 = 0 or d = 6.50 in. 

since L/d = 11 X 12/6.50 = 20.6 > 10, the column formula is 
applicable. 

Example II.—A standard I-beam is to be used as a column in 
a building [formula (24)]. The column is to be 25 ft. long and 
laterally supported in such a way that it will bend about the 
1 ... 1 axis. Design the column to carry a load of 120,000 lb. 

For a short prism, P/A = 15,000. Or 

, _ 120,000 _ 0 

15,000 *• 

The nearest commercial size above (of least weight) is a 10-in. 
30-lb. beam. (Consult Table III for properties of this section.) 

Try a 10-in. 30-lb. beam. A = 8.75, k = 3.91. 

Therefore 

Or 

Note.—Handbook tables give the value of 

25 X 12 
3.91 

= 76.8. 

8.75 
= 17,000 - 0.485(76.8)2 = 14,140 

P = 123,700 > 120,000. 

fe = 17,000 -0.485 ©■ or fc = 
18,000 

1 + 1 
18,000 

for values of L/k between 1 and 200. The design of a column 
(or beam, etc.) is often simplified if use is made of tables. 

If a laterally unsupported I-beam, channel, or angle is to 
be used as a column, the L/k is apt to be large since minimum k 
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for any one of these sections, as a rule, is relatively small. In 
such cases, the method of design often may be simplified by 
assuming, as a first trial, a section for which L/k equals the maxi¬ 
mum value allowed. 

Example III.—An angle with equal legs is to be used as a 
column in a bridge [formula (22), Art. 274]. The column is to 
be 10 ft. long and is to be used as a secondary member (max. 
L/k = 120). Design the column to carry a load of 45,000 lb. 

Put L/k = 120 and solve for k. That is, 10 X 12/k = 120. 
Or k = 1. As a first trial select an angle df minimum weight 
whose A; 5 1. Try a 6-by 6-by f-in. angle. A = 4.36, k = 1.19 
(axis 3 ... 3). 

L 120 
k 1.19 

100.8 

Therefore 

= 15,000 - i(100.8)2 = 12,460. 

Or 
P = 54,300 lb. > 45,000. (Too large.) 

Try a 5- by 5- by angle. A =4.18, k = 0.98, 

Or 

L/k = 122.4. 

^ = 15,000 - j(122.4)2 = 11,250 

P = 47,000 lb. > 45,000. 

Select a 5- by 5- by TVin. angle. 

PROBLEMS 

250. A square wooden column, 15 ft. long, is to be used to carry a load of 

P = 70,000 lb. Design the column [Eq. (27)]. Ans. 10 in. square. 
251. A standard steel I-beam, 23 ft. long, is to be used as a column in a 

building. The column is to be laterally supported and is to carry a load of 

P = 150,000 lb. Design the column. Ans. 12-in. ,35-lb. beam. 

252. A structural-steel angle, 8 ft. 4 in. long, is to be used as a column in a 

building; the column is unsupported laterally. The column is a secondary 

member and is to be designed for a load of P = 15,000 lb. 

Ans. 4 by 4 by I in. 

278. The compression flange of a beam acts as a column. If 
then the unbraced length of a beam is excessive, the flange may 
buckle (Fig. 427). Hence for a given fiber stress a limitation 
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must be placed upon the unbraced length of a beam. In prac¬ 
tice, as a rule, long beams are laterally braced. 

The vertical strip AB of the web under a load or over a reaction 
(Fig. 428) acts as a column. If the unit compressive stress in 
this strip is excessive, the strip may buckle. It may be neces¬ 
sary therefore to reinforce the web under a concentrated load or 
over a reaction. 

The student should consult his handbook (“ A.I.S.C. Manual,” 
for instance) for details regarding unsupported compression 
flanges and stiffener angles. 

COLUMN AND BEAM ACTION COMBINED 

279. Method of Adding Areas.—A member subjected to a 
transverse load Q and an axial load P (Fig. 429) may be called a 
beam subjected to column action or a column subjected to beam 

action. 
The theoretically correct treatment of a member subjected 

to both beam and column action leads to a formula so cumber¬ 

some and involved that it is of little practical use. In practice an 
approximate formula is used. The method of adding areas will 

now be explained. 
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It will be assumed that the member tends to bend in the direc¬ 
tion of the transverse load Q. Hence k equals the radius of gyra¬ 
tion of the member in the direction of Q. 

Given two members, both of length L (Fig. 430). Assume 
both members rectangular and of height h so that for both 
members k — h/y/12 (Art. 259) and c = h/2. Note that k 
and c are functions of h (and not of the width of the members). 
Member a is to carry a transverse load Q, and member 6 an 
axial load P, 

Fig. 4306. 

Consider the beam (Fig. 430a). Let S equal the safe unit stress 

in the outer fiber. Let M equal the maximum bending moment 

due to the transverse load Q. Since M = SI/c = SAk2/c, the 

area required to carry safely the load Q is (solving for A and 

designating it by Ab) 
Me 
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That is, for given values of k and c, Eq. (a) determines the sec¬ 
tional area required for the beam to carry the load Q. 

Consider now the column (Fig. 4306). If fc is the safe average 
unit stress for a column of the given slenderness ratio L/k, then 
the area required for the column to carry the load P is 

Ac = fc (b) 

To determine /c, a column formula must be used. 
If the two members are placed side by side and fastened 

together (glued together, say, in case of rectangular sections, 
Fig. 429) so that they will form a single member whose sectional 
area is 

Mr P 
A = Ab + Ac = gj-2 + j> (29) 

this member ought to be able to carry both the transverse load Q 
and the axial load P. 

Assume now that it is required to design a member that is to 
sustain a transverse load Q and an axial load P. The foregoing 
discussion suggests the following method of procedure: 

1. Select a trial member. Let k equal the radius of gyration 
of this member in the direction of Q. If the section is to be 
rectangular, it is more convenient to assume the height h of the 
member. 

2. Find Ab, the area required to resist the beam action. 

(fi) 

where M = maximum bending moment in the member due to 
the transverse load Q. 

S = allowable unit stress in the outer fibers of a beam of 
the given material. 

c = distance of outermost fiber from the neutral axis. 

3. Find /c, the allowable average unit stress for a column 

of the given slenderness ratio L/k (as determined by a suitable 
column formula). Then find Ac, the area required to resist 
column action, 

Ac =£• (d) 
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4. For a safe and economical member, A, the area of the 
member, should not be less than Ab + Ac and should be as nearly 
equal to Ab + A c as standard sizes of sections will permit. As 
a rule, several trials must be made before a satisfactory member 
is obtained. 

Note.—If the beam action (or the column action) predominates, 
a first approximation to the required size of the member may be 
obtained by considering the beam action (or the column action) 
alone. 

Example I.—A wooden member, 14 ft. long, is to carry a uni¬ 
formly distributed load of W = 9600 lb. and an axial load of 
P = 2,400 lb. (Fig. 431). Take S = 1200 lb./sq. in. Let 

Fig. 431. 

b = about fh. Design the member. An experienced designer 
would know that in this case beam action strongly predominates. 
Hence a first approximation may be obtained by considering 
beam action alone. 

Beam Action: 

M = \WL = \ X 9600 X 14 X 12 = 201,600 in.-lb. 

Since M = SI/c, 

201,600 = 1200-- 
c 

Therefore 

- = 168. 
c 

For a rectangular section (putting b = f/i), 

- = h>h2 = Irh8 = 168 or h = 11.5 in. 
c 6 9 

Try h = 12 in. Therefore 

k = —= = 3.46, k2 = 12, and r = —7nr^—• = 48.6. 
-v/12 k 3.46 
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Area required to resist beam action is [Eq. (c)] 

, _ Me _ 201,600 X 6 _ -. 
h Sk2 1200 X 12 * 

Column Action.—Using formula 27 (Art. 274), 

fc = 1100 - 5.8 X 48.6 = 818. 

Area required to resist column action is [Eq. (d)] 

Ac 
2400 
818 

2.94. 

Hence area required to resist both beam action and column action 
is 

A = Ab + Ac = 84.00 + 2.94 = 86.94 sq. in. 

Or, since A = bh = 126 (for the trial member, h = 12), 

86.94 
12 

7.24 in. 

Nearest commercial size is 8 by 12 in. 
Example II.—A steel member is to be subjected to a maximum 

bending moment of 1,440,000 in.-lb. and an axial thrust of 
60,000 lb. The member is to be 20 ft. long and is to consist of 
two channels with flanges turned in (Fig. 432). The transverse 

Fig. 432. 

load producing the bending moment is to act at right angles to 
the axis X ... X. It is required to select the channels. Take 

S = 18,000 lb./sq. in. The A.I.S.C. column formula is to be 

used [Eq. (24), Art. 274]. 
For a first approximation to the size of the channel, consider 

beam action alone. 

M = — or 1,440,000 = 18,000-- 
c 71 c 
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Therefore 

Since there are two channels, the I/c for each channel is 40. 
Try a 15-in. 45-lb. channel. For each channel, 

A = 13.17, -c = 49.8, k = 5.33, k2 = 28.4, 

L 20 X 12 .. 

k = 5^33 = 45‘ 
For the two channels,* 

A = 26.34, - = 99.6, k = 5.33, k2 = 28.4, ^ = 45. 
C a) 

Therefore, the total area required for beam action is 

Ah = 
Me 1,440,000 X 7.5 

= 21.10 sq. in. 
Sk2 18,000 X 28.4 

Next consider column action. 

fc = 17,000 - 0.485(45)2 = 16,000 
. 60,000 „ _c 

Ac “ lpoo = 3 75 sq- in- 

Now A > Ab + Ac. That is, 26.34 > 21.1 + 3.75. The 
channels selected are satisfactory. 

In the solution of this problem, the channels were actually 
decided upon on the third trial. 

Problem 253.—A standard I-beam, 20 ft. long, is to carry a uniformly dis¬ 
tributed load of W = 32,000 lb. and an axial load of P = 32,000 lb. Take 
S = 18,000 lb./sq. in. The A.I.S.C. column formula is to be used [Eq. (24), 
Art. 274]. Design the member. Ans. 15-in. 50-lb. I-beam. 

280. Column Subjected to an Axial Load and an Eccentric 
Load.f—Let a column be subjected to an axial load P and an 

eccentric load Q (Fig. 433). Let Q be applied to the side of the 

column by means of a bracket as shown, and assume that Q 

*For one channel, k2 = I /A. For the two channels, A;2 = 21/2A = 
I/A, Hence the A; for the two channels (with respect to any axis of sym¬ 
metry) is the same as that for one channel. 

t Assume eccentric load to act in a principal plane (a plane of symmetry 
always is a principal plane, Art. 156). 
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acts in a plane of symmetry. Since commercial column formulas 
assume that the column is pin ended, let P be the vertical pressure 
of the pin on the column. 

Replace the load Q by an axial load Q' (equal to Q) and a 
couple QQ whose moment is M = Qe. There 
are then three actions to be considered: 

1. Column action due to P. 
2. Column action due to Qr (Q' = Q). 
3. Beam action due to the couple QQi whose 

moment is M = Qe. 
Let L = length of column between pins. 

L' = length below the section CD. 
Li = length above the section CD. 

X = greater length, Lf or L\. 
fc = safe average unit stress (as determined 

by a column formula) for the column 
of length L. 

/' = safe average unit stress for the column 
of length L'. 

Figure 433 represents the column as a free 
body. By putting SF* = 0, Hi = H' = 0. 
Therefore Hi = Hr = H (say). Putting S mo¬ 
ments about the lower pin = 0, 

HL - Qe = 0. 

«-%■ M 

Hence the internal moment just above section CD is 

My = HiLi = HLi = ^Qe. 

The internal moment just below section CD is 

M' = H’L’ = HL’ = j-Qe. 

The maximum moment in the column is, therefore, 

Mn = jQe, 

where X = greater of the two lengths, L\ or TJ. 

Therefore 
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The column must have a sectional area A sufficient to with¬ 
stand the three actions. The area required to withstand the 
column action due to P is 

Area required to withstand the column action due to Qr is 

iff = Q) 
A' - 9.. 
A° f. 

Area required to withstand the beam action due to Q is 

Mmc X Qec 
Ah = 

Sk* L Sk* 

Hence the total area required is 

A Ac + A'c + Ab 
P Q X Qec 
fc Jc L Sk*' 

(30) 

Note.—1. If the eccentric load acts near the upper end, we 
may put U = L = X and /' = fc. Therefore 

P + Q , Qec 
fc ^ Sk*' (31) 

2. If the eccentric load acts near the middle of the column, 
put X = Lf2. Therefore 

A = p i Q . Qec 
fc^ f'c 2Sk* 

(32) 

Example. Fig. 433.—A wooden column 12 by 12 in. is 16 ft. 
long. It carries an axial end load of P = 60,000 lb. An eccen¬ 
tric load Q is to be applied 4 ft. from the upper end with an 

eccentricity of e = 8 in. Taking S = 900 lb./sq. in., find Q. 

L = 192 in., L' — 144 in., k = y/12 = 3.46, A = 144 sq. in., 
L/k = 192/3.46 = 55.5, L'/k = 144/3.46 = 41.6, A/L = = f. 
Using formula (27), Art. 274, 

/. = 1100 - 5.8 X 55.5 = 778, 
/' = 1100 - 5.8 X 41.6 = 858. 
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There [Eq. (30)], 

144 = 
60,000 Q 3 Q X 8 X 6 

778 + 858 - 4 900 X 12 * 

Q = 14,820 lb. 
# 

281. Secant Formula.—A theoretically correct expression for 
the maximum unit stress induced in an eccentrically loaded 
column will now be derived for the particular case shown in 

. Jq t |*e jq Fig. 434. The forces Q and Q are 
aPP^e<i at a distance e from the 

III ; jit j centroids of the end sections and 
j i jj I lie in a plane of symmetry (or a 

y -Of y ^ principal plane). 
i ^ ii The maximum unit stress occurs 
l : ij. in the outer fibers at C and is 

n if-c-io M=Qy (Art. 261) 

S-I + -!+ 

-ft 

F where a = distance of the line of 
action of Q from the centroid of 

FlG* 434* the section CD. 
Take the point 0, the middle of the line FB, as the origin. 

Take y as positive to the left and x as positive upward. Con¬ 
sider the point N. The bending moment at N is (see Art. 255) 

Hence 

eis- 

This equation may be written 

'KD - -«» 

!"(s) - 
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Multiply through by dy/dx, 

- -«>*• 
Integrating, 

At D, dy/dx = 0; y = a. Substituting, 

0 = —2-h C1 or 

Therefore 

KD* - «<“• - **>• 
Solving for dy/dx, 

Separating variables, 

[q, 
V«2 - y2 ~ \ El 

Integrating, 

(6) 

Note that Eq. (b) is the same as Eq. (d) of Art. 255. To deter¬ 
mine the constant C 2, substitute simultaneous values of x and y. 
At 0, x = 0 and y = a. 
Therefore 

sin-1 1 = C2 or C2 = g* 
du 

Substituting in Eq. (b), 

At B, y = e and x = L/2. Substituting in Eq. (c) and solving 
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for a, 

Substituting this value of a in Eq. (a), 

Or, as it is commonly written (since I = Ak2), 

S = + 3fc*sec (33^ 
Equation (33) is known as the secant formula. Within the 
elastic limit this formula is theoretically correct for the eccen¬ 
trically loaded column shown in Fig. 434. 

Example.—A 12- by 12-in. wooden column, 16 ft. long, is 
loaded as shown in Fig. 434. e = 8 in., S = 900 lb./sq. in., 
E = 1,400,000 lb./sq. in. 

1. Determine Q by the method of adding areas. 
2. With the value of Q thus determined, find maximum 

unit stress induced in the column by means of the secant formula. 
(1) L = 192 in., k = Vl2 = 3.46, k2 = 12, 

L 
k 

192 
3.46 

55.5. 

By means of formula (27) of Art. 274, 

fc = 1100 - 5.8 X 55.5 = 778. 

Hence [Eq. (31), Art. 280, putting P = 0], 

144 = JL + g X S X 6 
778 T 900 X 12 

Or 
Q = 25,150 lb. 

m L_ [IT = 55J> 25,1 
K ’ 2k\EA 2 \ 1,400,00( 

,150 

i,000 X 144 
= 0.308 rad. = 17.64° 

* In Art. 255 it was seen that, for a centrally loaded column, the critical 

LjI load is obtained when ^ \ J'jr = 2' If tn Eq. (d) we put e = 0 and 

a = ~ That is, for a centrally loaded column, a is 
El It U 

indeterminate. 
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sec 17.64° = 1.048. Therefore [Eq. (33)], 

s = 1 + 8-t^ x 1048]= 906 lb/sq-in- 

SHORT PRISM SUBJECTED TO AXIAL AND BENDING STRESSES 

282. In Art. 274, column formulas for supposedly centrally 
loaded columns are given. Note that for each column formula 
there is a value for L/k (or L/d), such that if L/k (or L/d) is less 
than this value the member may be treated as a short prism or 
block with a given allowable maximum compressive stress. 

In practice it frequently occurs that a compressive member 
may be treated as a short prism. In the remaining articles of 
this chapter, a short prism subjected to both axial and flexural 
stresses will be given further consideration. 

Fig. 435. Fig. 436. 

283. Eccentric Load in Plane of Symmetry. Fig. 435.— 
Replace the load P by an axial load Pi equal to P, and a couple 

whose moment is M = Pe (Fig. 436). Note that the deflection 
of a short prism may be neglected. Hence the stress on a 
section CD may be considered as composed' of a direct stress 
whose intensity is (Fig. 436a) 
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and a bending stress whose maximum intensity is (Fig. 4366) 

c Me Pec 
= T = ~T’ 

Combining the two stresses (Fig. 436c), we obtain the resultant 
stress acting on the section CD whose maximum intensity is 
at C, 

>Smax. = Si + S2y 

and whose minimum intensity is at D, 

Sunn. — Si — $2. 

Hence the stress in the outer fiber is 

S-S,±S,-f ±5p-£(l±g). (34) 

Referring to Fig. 436 [or Eq. (34)], note that if S2 is less than Si 
the stress at D is compression, while if S2 is greater than Si the 
stress is tensile. If S2 = Si, the stress at D is zero. 

From Eq. (34), it is seen that SD = 0 if ec/k2 = 1, i.e., if 
e = k2/c. If, then, e ^ k2/c, there will be no tensile stress 
induced in the prism. This is a matter of practical importance. 
Brick and stone masonry and plain concrete structures have 
little tensile strength. Hence, to insure safety, no tensile stress 
should be permitted in a wall, dam, or support made of brick, 
stone, concrete, or any like material. 

Note.—If ec/k2 = 1, then by Eq. (34) 

op 
fiw = =£- and Smin. = 0. (35) 

For a rectangular section, k2 = d2/12 and c = d/2. Hence 
k2/c = d/6. If then the line of action of P falls within the middle 
third of a rectangular section, there will be no tensile stresses 
induced on the section (Fig. 437). 

For a circular section, k2 = r2/4 and c = r. Hence 

k? __ r _ d 
7 ~ 4 " 8* 

If then the line of action of P falls within the middle fourth 
of a circular section (if e 5 d/8), there will be no tensile stresses 
induced on the section (Fig. 438). 
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Note.—If the eccentric load is tensile, the deflection of the 
member tends to lessen the effect of eccentricity (Fig. 439). The 
maximum stress occurs at the ends where the moment is a maxi¬ 
mum and is equal to Pe the same as that for a short prism. 
Hence any tensile member eccentrically loaded may be treated 
as a short prism and Eq. (34) may be applied, due regard being 
given to sign. 

_r:——ru 
Fio. 439. 

Example. Fig. 440.—A 2- by 6-in. eyebar is subjected to a pull 
of P = 24 tons whose line of action is e — 0.8 in. from the axis 
of the bar. Find the stresses in the outer fibers neglecting the 
deflection of the bar. 

Fig. 437. Fig. 438. 

S1 

s2 

P 24 
A 12 
Pec _ 24 X 0.8 X 3 
I 

= 2 tons/sq. in. (tensile). 

= 1.6 tons/sq. in. 
A X 2 X 63 

8 = Si ± S2. 

Therefore Sc = 3.6 tons/sq. in. (tensile), and SD — 0.4 ton/sq. 
in. (tensile). 

Problem 254.—A concrete foundation 4 ft. square is to sustain an eccentrip 
load. What is the maximum eccentricity if no tensile stress is to be induced 
in the foundation? With this eccentricity, find the maximum load this 
foundation can sustain if the allowable stress is 600 lb./sq. in. [Eq. (35)]. 

A ns. e = 8 in.; P = 691,000 lb. 

284. Transverse Load in Plane of Symmetry, and Axial Load. 
Fig. 441.—The normal stress on the section CD is a combination 
of the direct stress due to P and the flexural stress due to Q. 
If e equals the distance of point of application of .Q-from the 
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section CD, then M — Qe'. Note that by assumption the line 
of action of P goes through 0 (the centroid of CD) and that 

therefore the moment of P with respect 
to any axis through 0 is zero. Hence 
the maximum and minimum normal 
stresses on CD are 

p Mr 
8 = Si± = j ± 

-5* 
Qe' c 

(36) 

Fig. 441. 

Note.—There is also a shearing stress 
on the section CD. If V equals the 
total shear on CD,V = Q. 

Example.—A 12- by 12-in. wooden 
post is 6 ft. long. It carries an axial 
load of P = 72,000 lb. If the allow- 

S|+S2 able unit normal stress is S = 900 lb./sq. 
in., what transverse load Q may be 
applied 1 ft. from the top? 

51 = ^ = 500 lb./sq. in. (compression). 

„ Qe' c Q X (5 X 12) X 6 _ 5 „ 
52 = -j- = —j 24^- 

1 ^ X 12 X 12’ 

Therefore [Eq. (36)], 

900 = 500 + 4jQ = Sm„. 
or 

Q = 1920 lb. (compression) 

With Q = 1920 lb., 

(Smm.= 500 — -fc X 1920 = 100 lb./sq. in. (compression) 

286. Transverse Load and Eccentric Load, Both in a Plane 
of Symmetry. Fig. 442.—By assumption, the deflection of the 
prism may be neglected. Note that the line of action of P does 
not go through O, the centroidal axis of CD. Hence the moment 
of P with respect to O is not zero. If e equals the distance of 
line of action of P from O (eccentricity of P), and e' equals the 
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distance of line of action of Q from the section CD, then the sum 
of the moments (with respect to 0) of P and Q is (assuming P 
and Q to act as shown in Fig. 442) 

Mo = Pe + Qe'. 
Therefore 

c _P ^Mc _P ^(Pe + Qe')c 
" “ A - I A “ I 

If the direction of Q in Fig. 442 is reversed, 

of p _L (Pe - Qe')c 
S A±-1- 

(37a) 

(376) 

PROBLEMS 

256. Let Fig. 442 represent a 12- by 12-in. wooden post, 6 ft. long. The 

post carries an eccentric load of P = 72,000 lb. with an eccentricity of 1 in. 

to the left (e = 1 in.). A transverse load of Q — 600 
lb. acts at the upper end also to the left (e' = 72 in.). 

Find Sc and Sd. Q- 
Ans. Sc = 900 lb./sq. in. (compression); Sd = 100 

lb./sq. in. (compression). 
256. In Problem 255, the direction of Q is reversed. 

Find Sc and Sd. Ans. 600 lb./sq. in.; 400 lb./sq. in. 
267. In Problem 256, assume Q not given in mag¬ 

nitude. (All other data as given in Problem 255.) 

For what value of Q will the stress on CD be 

uniformly distributed? 

Am. Q - 1000 lb.; S = P/A - 500 lb./sq. in. 

Fig. 442. 

286. In a concrete or masonry dam (not 
reinforced) there must be no tensile stress 
on any section of the dam. Figure 443 
represents the end view of a portion of the dam. In analyzing a 
dam it frequently is convenient to deal with a length of 1 ft. 
(1 ft. ± plane of the paper). Consider now the horizontal 
section CD and assume that Sc = 0. This is the limiting case. 
For this case the normal stress on CD is triangularly distributed 
(Fig. 443). Assuming CD rectangular, the stress solid is a rec¬ 
tangular wedge (Fig. 444). Hence the resultant normal stress 
on CD goes through N, the outer edge of the middle third of CD 
(see Art. 10, Theorem III). Since equilibrium exists, the 
resultant of P (the weight of the dam), and Q (the water pressure) 
must also go through N (see Fig. 443). If, then, the resultant of 
P and Q falls within the middle third of the section CD, there 
will be no tensile stress on this section. 
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In designing a concrete dam (not reinforced) at least two 
conditions must be satisfied. 

1. The resultant of P and Q must fall within the middle 
third of every section of the dam. 

2. The intensity of the normal stress at D (the toe) must 
not exceed its allowable value. 

Note.—If the stress on the section is triangularly distributed, 
the maximum intensity of stress on the section is twice the 
average stress on this section. That is, 

op 
Srnax. = 2 Sav. = (38) 

where P = sum of the vertical forces acting on the dam (or 
prism or block). 

A = area of the section CD. 
Example I. Fig. 445.—A triangular dam, 24 ft. high, is made 

of concrete (not reinforced). Water flush with top. For what 
width b of the section CD will the resultant of P and Q go through 
N, the outer edge of the middle third? 

Concrete weighs 150 lb./cu. ft. 
Water weighs 62.5 lb./cu. ft. 
Water pressure at C = 62.5 X 24 = 1500 lb./sq. ft. 

Q = Mp X 24 X 1 = 18,000 lb.* 

P = 150 X -4-X2b X 1 = 18006 lb. 

If the resultant of P and Q goes through W, then the sum of the 
' n 

* Water pressure is triangularly distributed. Hence Q equals the area of 

wetted surface (per 1-ft. length of dam) times the average intensity of the 

water pressure (Theorem IV, Art. 10). 
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moments of P and Q with respect to N equals zero. Therefore 

QX8—PX^ = 0. 

Or 

Therefore 

18,000 X 8 = 
180062 

6 = 15.5 ft. as a minimum. 

Example II. Fig. 445.—If 6 = 15.5 ft., what is the intensity of 
stress at D [Eq. (38)]? A ns. 3600 lb./sq. ft. 

Example III.—The result of Example II may be verified as 
follows: A (of CD) = 6X1 = 15.5 sq. ft., ef = 8 ft., 

6 
e = 6 

i con?)2 
Mo = Qef -Pe= 18,000 X 8 - = 144,000 - 30062ft.-lb. 

T 1 240 
- (of CD with respect to 0 as axis) = ^ X 1 X 62 = -g- = 40 ft.3 

’ P . Me 18006 . 144,000 - 30062 
Sd== A+ ~T= ~b~ +-40- 

Or, since 6 = 15.5 ft. 

SD = 1800 + 1800 = 3600 lb./sq. ft. = 25 lb./sq. in. 

Note.—The value of 3600 lb./sq. ft. (or 25 lb./sq. in.) will 
evidently be amply safe for a rock foundation. For earth, 
gravel, clay, etc.., this value might exceed the allowable stress 
for such materials. 

287. Eccentric Load Not in a Plane of Symmetry.—Figure 446 
represents a short prism eccentrically loaded, the load P not 
acting in a plane of symmetry. For convenience, assume the 
prism rectangular. Take the axes of symmetry of the section CD 
as the X- and F-axes and 00', the axis of the prism, as the 

Z-axis. (In general, X and F must be principal axes, Art. 155.) 
Let ex and ey, respectively, be the x- and ^/-coordinates of the 
point of application of P, and cx and cy be the x- and ^-coordinates 
of some point N in the section CD. 

At O', the centroid of the end section, introduce two equal 
and opposite forces Pi and P2, each equal (and parallel) to P; 
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The load P is thus replaced by an axial load Pi(= P) and a 
couple whose moment is M = Pe. The couple may be replaced 
by its x- and ^/-components. * That is, M may be replaced by 
Mx and My, where 

Mx = Pey and My = Pex. 

The stress at a point N in the section CD may be considered as 
composed of three stresses. 

1. The direct stress, where A = area of section, 

' Si = J (O) 

2. That due to the bending moment Mx [see Art. 162, Eq. (6)]. 

S2 
ill jCj P €yCy 

~TT = ~T7' (b) 

Note that X is an axis of symmetry and that therefore the 
flexure formula applies. 

Fig. 446. Fig. 447. 

3. That due to the bending moment My, 

q Mycx P e^fix 
= —j = — 

1v £y 

* Given the couple PPi whose moment is M =Pe (Fig. 447). Construct 
the rectangle OABC. At C introduce two equal and opposite forces P’ 
and P[ each equal and parallel to P. P and Pf form a couple whose moment 
is M» = PeVt and Pi and P[ form a couple whose moment is My — Pex. 
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Note that Y is an axis of symmetry. 
The total stress at N is, therefore, 

S = -Si + s2 + s3 = J + ^ (39) 

When Eq. (39) is used, signs must be considered. That is, 
ex, eyj cx, and cy are coordinates of points and, therefore, have 
sign. If the quadrant in which P acts is taken as the first 
quadrant, ex and ey are positive, but the signs of cx and cy, the 
coordinates of the point N at which the resultant stress is desired, 
depend upon the quadrant in which N lies. This will now be 
illustrated. 

Example. Fig. 448.—A short post, 8 by 12 in., carries an 
eccentric load of P = 48,000 lb. as shown. Find the stress at 
each of the four corners of the section CD. 

Taking XOY as the first quadrant, ex = 2 in. and ey = 1 in. 
At D, c* = 6 in. and cy = 4 in. 

0 P 48,000 
81 A 96 

500 lb./sq. in. 

o _ Peycy _ 48,000 X 1 X 4 

2 Ix * X 12 X 83 
o Pejx _ 48,000 X 2 X 6 
** Iv * X 8 X 12* 

= 375 lb./sq. in. 

= 500 lb./sq. in. 
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so that 

SD = 500 + 375 + 500 = 1375 lb./sq. in. (compression). 

At E, cx = +6, and cy = —4. 

Se = 500 — 375 + 500 = 625 lb./sq. in. (compression). 

At C, cx — — 6 and cv = —4, 

Sc = 500 — 375 — 500 = —375 lb./sq. in. (tension). 

At F, cx — —6 and cy = +4, 

& = 500 + 375 — 500 = 375 lb./sq. in. (compression). 

PROBLEMS 

258. In a laboratory test a steel rod, 1 in. in diameter and 30 in. long, is 

used as a round-ended column. All precautions are taken to make this 

column act as an ideal column. Referring to Fig. 419, first use the experi¬ 

mental curve T, and then Rankine’s curve R, and find the load for which 

the column may be expected to fail. Referring to Fig. 420, find the breaking 

load by means of the straight line formula (curve S). 
Ans. 16,100 lb.; 15,100 lb.; 15,700 lb. 

Note.—In the following problems it is assumed that the columns are com¬ 

mercial columns and that, therefore, the formulas of Art. 274 should be used. 

259. A steel rod, 1 in. in diameter and 45 in. long, is used as a prop. Use 

Fig. 422 and a factor of safety of 2.5. Find the safe load the prop may carry. 

Use Rankine’s curve R. Ans. 5350 lb. 

260. With a factor of safety of about 3, Eq. (27) may be used for a good 

grade of timber. Use a factor of safety of 4 and find the safe load a 10- by 

10-in. wooden column, 15 ft. long, may carry. Ans. 55,500 lb. 

261. A square wooden column of oak [Eq. (28)] is to be 18 ft. long and is 

to carry a load of P — 117,600 lb. Design the column. 

Ans. 12 by 12 in.; L/d = 18 < 25. 

262. A 5- by 5- by TVin. steel angle, 16 ft. long, is used as a column unsup¬ 

ported laterally. Find the buckling load. 

Ans. 54,300 lb.; L/k « 196 < 225. 

263. A cast-iron pipe, 14 ft. long, is used as a column. The pipe has an 

outside diameter of 9 in. and an inside diameter of 7 in. What safe load can 

the pipe carry? 

264. Three 4- by 12-in. planks are firmly nailed together to form a square 

column 12 ft. long. Find the safe load this column can carry. 

Ans. 123,800 lb.; L/d = 12 < 25. 

265. In Problem 264, if the nails are rusted away or loosened so that the 

three planks act as separate units, find the total load P they can carry. 

First find L/d for a plank (see Art. 272). Ans. L/d — 36; P = 42,600 lb. 

266. Find the maximum allowable length of a 4- by 4r-in. wooden post that 

is to carry a load of (a) 14,400 lb., (6) 12,800 lb., (c) 6400 lb. * 
Ans. 3| ft.; 5 ft.; 10£ ft. 
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267. Formula (5), Art. 261, gives the breaking load for a rounded-ended 
column. From it derive the formula for an ideal fixed-ended column. 

Am. 
P 
A = 

50,000 

1 + .JLJkY 
36,000\K) 

268. A rectangular steel bar, 8 ft. long, is to be used as a column, pin ended 

one way and fixed ended the other way (Fig. 405d). The bar is carefully 
selected and the pins are carefully centered and are oiled so as to reduce 
friction to a minimum. The bar is 3 in. thick. Treat the bar as an ideal 

column, round ended one way and fixed ended the other way, and find the 

width for which the column is equally strong both ways (see Problem 267). 

What is the breaking load? Am. 6 in.; 670,000 lb. 
269. Two 12-in. 30-lb. channels are latticed together to form a column. 

Find the distance between channels, back to back with flanges turned out so 

that the column will be equally strong in all directions. 

Am. a ~ 7.15 in. 
270. A 10-in. 40-lb. standard I-beam, 18 ft. long, carries a uniformly dis¬ 

tributed load of 12,000 lb. and an axial load P. Determine the maximum 

safe value P may have. Use Eq. (22). Take 15,000 lb./sq. in. as the safe 
flexural stress (see Art. 279). Am. 52,500 lb. 

271. A wooden member, 16 ft. long, is to carry a concentrated transverse 

load of 4000 lb. at the middle (parallel to h) and an axial load of P = 4000 lb. 
Take 900 lb./sq. in. as the safe flexural stress. Let b = about j/i. Design 
the member for combined bending and column action (see Art. 279). 

Am. 8 by 14 in. 

272. Figure 449 shows the section of a short wooden prism. What load 

may be applied at F, if the allowable fiber stress is 1000 lb./sq. in.? \ 

273. What load may be applied at G? (Fig. 447, Problem 272.) 
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274. A vertical plate 3 ft. wide and 2 ft. high covers an opening in a dam. 

The upper edge of the plate is 10 ft. below the water surface. Construct 

the stress solid for the plate. Compute the total water pressure on the 

plate. Compute the distance above the bottom of the plate at which the 

total pressure acts. 

275. Figure 1 is the bottom of a column which supports 400 tons. The 

channels are steel, A is stone, and B is concrete which rests upon earth. 

The allowable bearing stresses are as follows: steel 20,000 lb./sq. in., stone 

1000 lb./sq. in., concrete 400 lb./sq. in., and earth 3 tons/sq. ft. Compute 

the areas required for bearing. 

276. A total load of 35 tons is supported by a 7-in. solid, circular column 

which rests upon a square, cast-iron bearing plate EF (Sc — 8500 lb./sq. in., 

S8 = 2200 lb./sq. in.). EF rests upon a square stone block AD (Sc = 300 

lb./sq. in., Ss = 70 lb./sq. in.), which rests on earth (Sc = 2 tons/sq. ft.). 

Considering only the 35 tons, compute the side and thickness of EF and AD. 
277. A f-in. round bolt has a square head in. on a side and { in. thick. 

The bolt is in a %-in. round hole. A tension of 1800 lb. is applied to the bolt. 

Compute (a) unit stress in the shank, (6) unit bearing stress on the head, 

(c) unit shearing stress in the head. 

278. Design a square-headed bolt to carry a tension of 30,000 lb. The 

hole is | in. larger than the diameter of the shank. Bolt diameters to vary 

by | in. from J to 2 in., other dimensions by ye in. A = 16,000 lb./sq. in., 

S8 = 10,000 lb./sq. in., Sc — 20,000 lb./sq. in. 

279. Compute the safe load for the bolt of Problem 278, using the com¬ 

mercial dimensions. 

280. A vertical steel wire f in. in diameter and 1500 ft. long supports a 

load of 6000 lb. Compute the total elongation (a) neglecting its own 

weight, (6) considering its own weight. 

b 281. A vertical steel wire, \ in. in diameter and 1600 ft. long, has a f-in. 

steel wire 2400 ft. long attached to its lower end. The f-in. wire, in turn, 

supports 1500 lb. at its lower end. Compute the total elongation (a) 
neglecting weights of rods, (6) considering weights of rods. 

282. A wire is composed of a steel core \ in. in diameter, surrounded 

by a layer of copper ye in. thick. Total length is 600 ft., and the total pull 

on the wire is 3000 lb. Assume the elastic limit is not exceeded. Compute 

(a) unit stress in each material, (b) total pull on each material, (c) unit 

elongation, (d) total elongation. E8 — 30,000,000 lb./sq. in., Ecu - 
15,000,000 lb./sq. in. 

283. A wrought-iron bar 4 in. wide and f in. thick is placed between 

two steel bars, each 3 in. wide and J in. thick. The total elongation is 

. 458 
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0.018 in. in a gage length of 36 in. Compute (a) total pull on the combine 
tion, (b) unit stress in each material, (c) total load on each material. Es = 
29,000,000 lb./sq. in., EWi = 27,000,000 lb./sq. in. 

284. A wood block 10 by 10 in. is reinforced with a 5- by 5- by f-in. 
structural steel angle at each corner. Compute (a) total load that will 
cause a stress of 900 lb./sq. in. in the wood, (6) unit stress in the steel, (c) 
unit shortening if the original length is 18 in. Es = 29,000,000 lb./sq. in., 
Ew = 1,800,000 lb./sq. in. 

285. In Fig. 65, the length of each of the vertical rods is 50 ft. Rods 
Bi are of steel and \ in. diameter (E = 29,000,000 lb./sq. in.). B2 is of 
copper and 1 in. in diameter (E = 8,000,000 lb./sq. in.). The concentrated 
loads are each 4000 lb. Compute (a) the total tension in each rod, (b) 
unit stress in each rod, (c) total elongation. 

286. Two by 6-in. plates are riveted together to make a lap joint. 
The four 1-in. rivets are one in the first and third rows and two in the 
second. Compute the safe load and efficiency of the joint, using unit 
stresses of Table II, page 107. St = 16,000 lb./sq. in. 

287. Two j^- by 6-in. plates are riveted together to make a lap joint. 
Use the arrangement of the four rivets as in Problem 286 and Table I, page 
107. Compute the safe load and efficiency. 

288. Two f- by 7-in. plates are riveted to make a lap joint. The nine 
f-in. rivets are arranged as follows: one in the first and fifth rows, two in the 
second and fourth, and three in the third row. Using the unit stresses 
of Table II, page 107, compute the safe load and efficiency. St = 16,000 
lb./sq. in. 

289. Two f- by 7-in. plates are riveted to make a lap joint. Arrange the 
nine f-in. rivets* as in Problem 288. Using Table I, page 107, compute 
the safe load and efficiency. 

290. Two i- by 4-in. plates are riveted to make a double-strap butt joint. 
The three f-in. rivets in one plate are arranged one in the first row and 
two in the second. Using Table II, page 107, compute the safe load and 
efficiency. St = 16,000 lb./sq. in. 

291. Two f- by 4-in. plates are riveted to make a double-strap butt joint. 
Arrange the three f-in. rivets as in Problem 290. Using Table I, page 107, 
compute safe load and efficiency. 

292. Two f- by 7-in. plates are riveted to make a double-strap butt joint. 
The six f-in. rivets in one plate are arranged one in the first row, two in 
the second row, and three in the third row. Using Table II, page 107, 
compute the safe load and efficiency. St = 16,000 lb./sq. in. 

293. Two f- by 7-in. plates are riveted to make a double-strap butt joint. 
Arrange the six f-in. rivets as in Problem 292. Use Table I, page 107, and 
compute the safe load and efficiency. 

294. Design a structural lap joint of maximum efficiency to carry 40,000 
lb. Use f-in. rivets and the unit stresses of Table II, page 107., 

295. Design a structural lap joint of maximum efficiency to carry 25,000 
lb. Use f-in. rivets and Table I, page 107. 

296. Design a structural lap joint of maximum efficiency to carry 80,000 
lb. Use f-in. rivets and Table I, page 107. 
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297. A joint in a roof truss is made by welding a 4- by 4- by ^-in. angle 

to a f-in. gusset plate. Design the weld to develop 80 per cent of the gross 

section of the angle. St — 20,000 lb./sq. in. 

298. A joint in a roof truss is made by welding a 3- by 3- by J-in. angle 

to a A-in. gusset plate. Design the weld to develop 80 per cent of the gross 

section of the angle. St = 20,000 lb./sq. in. 

299. A solid circular shaft is 24 ft. long and carries a torque of 16 ft.-tons. 

Compute (a) diameter of shaft, (b) helix angle in degrees, (c) angle of torsion 

in degrees. S8 = 10,000 lb./sq. in., Es = 10,000,000 lb./sq. in. 

300. A hollow circular steel shaft carries a torque of 6 ft.-tons. The 

outside diameter is 6 in., and S8 = 10,000 lb./sq. in. Compute (a) thickness 

of shaft, (b) diameter of solid shaft to carry above torque, (c) per cent saving 

in material of the hollow compared with the solid shaft. 

301. A solid circular steel shaft is to withstand an external moment of 

9000 ft.-lb. and a twist of 2° in a 6-ft. length. Compute the diameter of 

the shaft. S8 = 6 tons/sq. in., Es = 6000 tons/sq. in. 

302. A simple beam 16 ft. long is supported at each end. A uniformly 

distributed load of 3200 lb. covers the left half of the beam. Four feet 

from the right end, a concentrated load of 3200 lb. is applied. Draw 

the shear and moment diagrams. 

303. A simple beam 16 ft. long is supported at each end. A uniform 

load of 4800 lb. extends the full length of the beam. Four feet from the left 

end, a concentrated load of 2400 lb. is applied. Draw the shear and moment 

diagrams. 

304. A beam 12 ft. long is simply supported at the right end and 2 ft. 

from the left end. At the left end, a concentrated load of 1200 lb. is applied. 

Over the right 8 ft. of the beam, a uniformly distributed load of 2560 

lb. is applied. Draw the shear and moment diagrams. 

305. A beam 48 ft. long is simply supported at the right end and 12 ft. 

from the left end. The left 30 ft. support a uniformly distributed load of 

7200 lb., and 6 ft. from the right support, a concentrated load of 1800 lb. 

is applied. Compute (a) the shear just to the right of the left support, (5) 

the shear 20 ft. from the right end, (c) the moment 13 ft. from the left end, 

(d) the moment 19 ft. from the right end. 

306. A beam 50 ft. long is simply supported at the left end and 10 ft. 

from the right end. A concentrated load of 900 lb. is applied 6 ft. from the 

left support. The right 30 ft. support a uniformly distributed load of 

2700 lb. Draw shear and moment diagrams. What is the maximum shear 

and maximum moment? 

307. A beam 15 ft. long is simply supported at the right end and 3 ft. from 

the left end. The left 3 ft. of the beam support a uniformly distributed 

load of 1800 lb. Two feet to the right of the left support is a concentrated 

load of 3600 lb. The right 6 ft. of the beam support a uniformly distrib¬ 

uted load «f 7200 lb. Draw the shear and moment diagrams. What is 

the maximum shear and the maximum moment? 

308; A beam 22 ft. long is simply supported at the right end and 6 ft. from 

the left end. • At the left end of the beam is a concentrated load of 1000 lb. 

The right 16 ft. support a uniformly distributed load of 4000 lb., and 14 ft. 

from the right end is a concentrated load of 1000 lb. Draw the shear 
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and moment diagrams. What is the maximum shear and the maximum 

moment? 

309. A beam 40 ft. long supports a uniformly distributed load of 200 lb./ 

linear foot. The supports are 8 ft. from each end of the beam. Draw shear 

and moment diagrams. What is the maximum shear and the maximum 

moment? 

310. Solve Problem 309 if the supports are 9 ft. from each end of the beam. 

311. A beam 18 ft. long is simply supported at each end. A triangular load 

of 9000 lb. extends from the left support to within 6 ft. of the right support, 

with the toe of the load at the right. Draw shear and moment diagrams 

and find maximum shear and maximum moment. 

312. A beam 18 ft. long is simply supported at each end. A triangular 

load of 9000 lb. extends from the right support to within 6 ft. of the left 

support, with the toe of the load at the right support. Draw shear and 

moment diagrams and find maximum shear and maximum moment. 

313. A beam 15 ft. long is simply supported at each end. A uniformly 

distributed load of 4800 lb. extends the entire length of the beam. On top 

of this load is a triangular load of 2400 lb. Compute the maximum moment. 

314. A beam 24 ft. long is simply supported at the left end and 4 ft. from 

the right end. A triangular load of 6 tons extends over the left 12 ft. of the 

beam, with the toe of the load to the right. Ten feet from the right end 

is a concentrated load of 2 tons and another 2 tons at the right end. Draw 

the shear and moment diagrams, and find the maximum shear and the 

maximum moment. 

316. A beam 24 ft. long is simply supported at the right end and 4 ft. from 

the left end. A uniformly distributed load of 6000 lb. extends over the 

left 20 ft. of the beam. On top of this load is a triangular load of 9000 lb. 

with the toe of the load to the left. Compute the two local maximum 

moments. 

316. A 24-ft. simple beam is supported at the left end and 4 ft. from the 

right end. Six feet from the left end is a concentrated load of 2000 lb. Over 

the right 12 ft. is a uniformly distributed load of 3000 lb. and a triangular 

load of 6000 lb., with the toe at the right end of the beam. Compute the 

maximum moment. 

317. A 16-ft. simple beam is supported at the right end and 4 ft. from the 

left end. Two feet from the right end is a concentrated load of 9000 lb. 

Over the left 10 ft. of the beam is a uniformly distributed load of 36,000 lb. 

If the rectangular wood beam is 8 in. wide, compute the minimum safe 

height. St — 1600 lb./sq. in. 

318. A 30-ft. simple beam is supported at the right end and 6 ft. from the 

left end. The 6-ft. cantilever supports a uniformly distributed load of 

1200 lb. Four feet to the right of the left support is a concentrated load 

of 2400 lb. The right 12 ft. support a uniformly distributed load of 4800 lb. 

If the rectangular wood beam is 4 in. wide, compute the minimum safe 

height. St = 1500 lb./sq. in. 

319. A 30-ft. simple beam is supported 4 ft. from the left end and 6 ft. 

from the right end. A uniform load of 15,000 lb. is distributed over the 30 

ft., and 12 ft. from the right end of the beam is a concentrated load of 350 

lb. Design an economical wood beam (36 =6). St ** 1000 lb./sq. in. 
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320. A 20-ft. simple beam is supported 5 ft. from the left end and 3 ft. from 

the right end. A uniformly distributed load of 32,000 lb. is distributed 

over the 20 ft. A concentrated load of 800 lb. is 9 ft. from the left end. 

Design an economical wood beam (26 = 6). St =» 1200 lb./sq. in. 

321. A 15-ft. simple beam, supported 3 ft. from each end, carries a uni¬ 

formly distributed load of 36,000 lb. Draw the shear and moment diagrams, 

and design an economical wood beam (26 — h). St = 800 lb./sq. in. 

322. A 16-ft. simple beam, supported at the ends, carries a uniformly 

distributed load of 20 tons. Design an economical American Standard 

I-beam (S = 10 tons/sq. in.) (a) neglecting weight of beam, (6) considering 

weight of beam. 

323. Solve Problem 322 if the 20 tons is concentrated at the center of the 

beam. 

324. Solve Problem 322 if the 20 tons is concentrated 6 ft. from one end 

of the beam. 

325. A 32-ft. simple beam is supported at the left end and 8 ft. from the 

right end. A load of 14,400 lb. is uniformly distributed over the left 

16 ft. of the beam. A second load of 3600 lb. is uniformly distributed over 

the right 8 ft., and a concentrated load of 2160 lb. is 4 ft. to the left of the 

right support. St = 10 tons/sq. in. Considering the weight of the beam, 

design an economical (a) American Standard I-beam, (6) VF beam. 

326. A 40-ft. simple beam is supported 6 ft. from the left end and 10 ft. 

from the right end. A load of 50,000 lb. is uniformly distributed over the 

40 ft. and a concentrated load of 1250 lb. is 18 ft. from the right end of the 

beam. St = 10 tons/sq. in. Considering the weight of the beam, design 

an economical (a) American Standard I-beam, (6) VF beam. 

327. A 40-ft. simple beam is supported at each end. A triangular load of 

12 tons is distributed over 24 ft. with the toe of the load 4 ft. from the right 

support. St — 10 tons/sq. in. Considering the weight of the beam, design 

an economical (a) American Standard I-beam, (6) VF beam. 

328. Two wheel loads, of 10 tons and 5 tons, respectively, are 15 ft. apart 

and roll across a 27-ft. span. Draw the dimension sketches, and compute 

the maximum moment under each wheel. St = 10 tons/sq. in. Con¬ 

sidering its own weight, design an economical (a) American Standard I-beam, 

(6) NF beam. 

329. Two wheel loads, of 3 tons and 2 tons, respectively, are 10 ft. apart 

and roll across a 30-ft. span. Draw dimension sketches, and compute the 

maximum moment under each wheel. St = 6 tons/sq. in. Considering 

its own weight, design an economical (a) American Standard I-beam, (6) 

VF beam. 

330. An 8-ft. simple wood beam 4 by 16 in., supported at the ends, has a 

concentrated load of 5 tons at the center of the span. Compute the unit 

shearing stress at points 2, 4, and 6 in. from the bottom of the beam. 

331. A 20-in. 70-lb. American Standard I-beam, 20 ft. long with supports 

at the ends, has a concentrated load of 20 tons 9 ft. from one end. Compute 

the maximum unit shearing stress by (a) the exact formula, (6) the approxi¬ 

mate method. 

332. A 26-ft. simple beam is supported at the left end and 6 ft. from the 

right end. A load of 4500 lb. is uniformly distributed over the left 10 ft. 
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One concentrated load of 900 lb. is 4 ft. to the left of the right support and 

a second 900 lb. is at the right end of the beam. St = 1040 lb./sq. in., 

S8 = 80 lb./sq. in. Design an economical wood beam of nominal com¬ 

mercial size. 

333. A simple beam on end supports has a concentrated load P at its 

center. E and I are constants. From the equation of the elastic curve, 

find the slope of the curve and its deflection at a distance of L/3 from the 

end. 

334. Solve Problem 333 with a uniformly distributed load W = wL 
instead of the load P. 

335. A cantilever beam has a concentrated load P at the free end. E 
and I are constants. From the equation of the elastic curve, find its slope 

and deflection at a distance of 2L/3 from the support. 

336. Solve Problem 335 with a uniformly distributed load W = wL 
instead of the load P. 

337. Find the deflection of the beam of Problem 333 by the Slope- 

deflection Method. 

338. Find the deflection of the beam of Problem 334 by the Slope- 

deflection Method. 

339. Solve Problem 333 by the Moment-area Method. 

340. Find the deflection of the beam of Problem 333 by the Theorem of 

Three Moments Equation. 

341. Find the deflection of the beam of Problem 334 by the Theorem of 

Three Moments Equation. 

342. A simple beam on two end supports is loaded at the third points 

with two equal concentrated loads, P, P. E and I are constants. Find the 

maximum deflection by the Slope-deflection Method. 

343. Solve Problem 342 by the Moment-area Method. 

344. Solve Problem 342 by the Theorem of Three Moments Equation. 

345. A continuous beam rests on three supports which are at the same 

level. Each panel is 15 ft. long. The two equal concentrated loads of 9 

tons are 10 ft. from the center support. Compute sufficient data, draw shear 

and moment diagrams, and find maximum shear and maximum moment. 

346. Solve Problem 345 if the concentrated loads are replaced by two 

9-ton uniformly distributed loads extending from the free ends of the 

beam for 5 ft. 

347. A continuous beam rests on three supports which are at the same 

level. The left panel is 18 ft. and the right panel 16 ft. A 4-ton load is 

uniformly distributed over the entire left panel. Six tons is concentrated 

4 ft. from the right end. Compute sufficient data, draw the shear and 

moment diagrams, and find the maximum shear and maximum moment. 

348. A continuous beam on three level supports is 36 ft. long. The left 

panel, 20 ft. long, has a uniformly distributed load of 9 tons on the left 

6 ft. The right panel, 16 ft. long, has a concentrated load of 3 tons at 4 ft. 

from the right end. Compute sufficient data, draw the shear and moment 

diagrams, and find the maximum shear and maximum moment. 

349. A continuous beam on three level supports is 31 ft. long. The left 

support is 3 ft. from the left end of the beam, the right support is at the 

right end of the beam and the other support is 16 ft. from the right end. 
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One ton is concentrated at the left end, 12 tons is concentrated 4 ft. from the 

left support, and 8 tons is uniformly distributed over the right panel. St = 

1200 lb./sq. in. Design an*economical wood beam (26 = 6, approximately). 

350. Considering its own weight, select an economical rolled beam to 

support the loads of Problem 345. St = 20,000 lb./sq. in. (a) American 
Standard I-beam, (6) YF beam. 

351. Considering its own weight, select an economical rolled beam to 

support the loads of Problem 346. St = 20,000 lb./sq. in. (a) American 

Standard I-beam, (6) VF beam. 

352. Using the equation of the Theorem of Three Moments, compute 

the deflection at the center of the 12-ft. panel for the beam of Problem 349. 

E — 1,000,000 lb./sq. in. 

353. A continuous beam on four level supports is 40 ft. long. The two 

end panels are each 14 ft. long and support a uniformly distributed load of 

12 tons over the 14 ft. The center panel supports a concentrated load of 

6 tons at the center of the 12 ft. Compute sufficient data, draw the shear 

and moment diagrams, and find the maximum shear and maximum moment. 

354. Compute the safe load for a 2- by 2- by J-in. angle, 4 ft. 10.5 in. long, 

used as a column. Use Eq. (24) or (25). 

356. Compute the safe load for a 3- by 2J- by A-in. angle, 6 ft. 06 in. 

long, used as a column. Use Eq. (24) or (25). 

356. Compute the safe load for an 8- by 8-in. wood column 15 ft. long. 

Use Eq. (27). 

367. Design an economical angle with unequal legs, 8 ft. 04 in. long, to 

support a safe load of 25,000 lb. [Eq. (24) or (25).] 

358. Design an economical angle with unequal legs, 8 ft. 04 in. long, to 

support a safe load of 50,000 lb. [Eq. (24) or (25).] 

359. Design an economical angle with equal legs for the data of Prob¬ 

lem 357. 

360. Design an economical angle with equal legs for the data of Prob¬ 

lem 358. 

361. Design an economical wood column of nominal commercial size, 15 ft. 

long, for a safe load of 35,000 lb. [Eq. (27).] 

362. Design an economical wood column of nominal commercial size, 

15 ft. long, for a safe load of 70,000 lb. [Eq. (27).] 

363. Design an economical wrood member of nominal commercial size, 

20 ft. long, to carry an axial compression of 4000 lb. and an eccentric con¬ 

centrated load of 2000 lb. at 8 ft. from one end. St = 1100 lb./sq. in. 

Eq. (27). 

364. Design an economical wood member of nominal .commercial size, 

10 ft. long, to carry an axial compression of 20,000 lb. and an eccentric 

concentrated load of 5000 lb. at 3 ft. from one end. St = 1200 lb./sq. in. 

[Eq. (28).] 

365. Design a pair of economical American Standard channels, 15 ft. 

long, to support an axial compression of 40,000 lb. and an eccentric con¬ 

centrated load of 15,000 lb. at 6 ft. from one end. St = 20,000 lb./sq. in. 

[Eq. (24) or (25).] 

366. A weight of 7000 lb. is suspended from a steel bar 0.60 in. in diameter. 

What unit stress is induced in the bar? 
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367. In Problem 366 what is the unit elongation if E = 30(10)6 lb./sq. in.? 

If the rod was originally 500 ft. long; what is the total elongation? 

368. A concrete pier is to support a load of 1,120,000 lb. uniformly 

distributed. The American Institute of Concrete Construction specifies 

that the allowable stress may be 0.4 of the ultimate. Compute the section 

area of the pier, using 3500 lb./sq. in. concrete. 

If the stress in a member is 0.4 of the ultimate, what safety factor does 
this imply? 

369. Solve Problem 275 if the column load is 240 tons. 

370. A total load of 25 tons is supported by an 8-in. circular concrete 

column which rests upon a square cast-iron bearing plate EF (Sc = 8000 

lb./sq. in., Ss — 2000 lb./sq. in.). EF rests on a square stone block AD 
(Sc = 800 lb./sq. in., Ss — 150 lb./sq. in.), which rests on earth (Sc = 2.5 

tons/sq. ft.). Considering only the 25 tons, compute the side and thickness 

of EF and AD. 
371. A f-in. round bolt has a square head 1 ^ in. on a side and ^ in. high. 

The bolt is in a xiHn- hole. If a tension of 8300 lb. is applied to the bolt, 

compute (a) unit tensile stress in the shank, (b) unit bearing stress on the 

head, (c) unit shearing stress in the head. 

372. A 1 J-in. round bolt has a square head 1H by J in. The bolt is in a 

l^-in. hole. If a tension of 16,000 lb. is applied to the bolt, compute (a) 
unit tensile stress in the shank, (b) unit bearing stress on the head, (c) unit 

shearing stress in the head. 

373. Compute the length of a brass rod that will be on the point of 

rupturing in tension under its own weight when hung vertically. Brass 

weighs 534 lb./cu. ft. Ultimate stress is 50,000 lb./sq. in. 

374. A steel bar 1 by f in. sustains a pull of 42,000 lb. What are the 

induced normal and shearing stresses per unit area on sections making 

angles of 40°, 45°, and 50° with the cross-section? 

376. A vertical plate, 2 ft. wide and 4 ft. high, covers an opening in a 

dam. The upper edge of the plate is 8 ft. below the water surface. Con¬ 

struct the stress solid for the plate. Compute (a) the total water pressure 

on the plate, (b) the distance below the water surface at which the resultant 

pressure acts. 
376. Design a square-headed bolt to sustain a tension of 50,000 lb. 

The hole is ts in. larger than the shank. St = 20,000 lb./sq. in., Ss — 

10,000 lb./sq. in., Sc — 20,000 lb./sq. in. 

377. Compute the safe load for the bolt of the preceding problem, using 

the commercial dimensions. 

378. A vertical steel wire | in. in diameter and 3,000 ft. long supports a 

tension of 800 lb. Compute the total elongation (a) neglecting its own 

weight, (b) considering its own weight. 

379. A vertical steel wire § in. in diameter and 2000 ft. long supports a 

tension of 3000 lb. Compute the total elongation (a) neglecting its own 

weight, (b) considering its own weight. 

380. A vertical steel wire in- in diameter and 1800 ft. long has a &-in. 

wire 2600 ft. long attached to its lower end. The A-in. wire, in turn, 

supports 1000 lb. at its lower end. Compute the total elongation due to 

the 1000-lb. weight only. 
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381. In the preceding problem assume that the 1000-lb. weight is removed. 

Compute the total elongation due to the weights of the rods. 

382. In Problem 380, considering both the end load and the weights of 

the rods, compute the maximum unit tensile stress induced in the rod. 

383. A steel wire is ys in* in diameter. It is 400 ft. long when subjected 

to a pull of 1500 lb. What will be its length when it is subjected to a pull 

of 7500 lb.? 

384. A steel bar | in. square and 20 ft. long is subjected to a pull of 

2200 lb., and the ends are then fastened to immovable supports. Compute 

the temperature rise for the stress in the bar to be zero. 

385. A steel rod 18 ft. long is rigidly held at its ends. If, at 30°F., the 

tension in the rod is 12,000 lb./sq. in., what will be the stress at 90°F.? 

386. A steel rod 14 ft. long is rigidly held at its ends. If, at 100°F., the 

tension in the rod is 160 lb./sq. in., what will be the stress at 25°F.? 

387. A block of wood 8 in. square is reinforced with a 3- by 3- by f-in. 

structural steel angle at each corner. Compute the (a) total compression 

that will cause a stress of 1000 lb./sq. in. in the wood, (b) the unit stress in 

the steel. Area of one angle is 2.11 sq. in. Es = 30(10)6 lb./sq. in., 

Ew = 15(10)5 lb./sq. in. 

388. A wood block 4 in. square has two 4- by i-in. steel plates bolted to 

opposite sides. The compound member is subjected to an axial compres¬ 

sion of 35,000 lb. Compute the unit stress in each material. See preceding 

problem for moduli of elasticity. 

389. Two by 8-in. steel plates are riveted together to make a lap joint. 

The nine 1-in. rivets are arranged three in each row. Compute the safe 

load and efficiency of the joint, using the unit stresses of Table I, 

page 107. 
390. Solve the preceding problem if the nine rivets are arranged one 

in the first and fifth rows, two in the second and fourth rows, and three in 

the third row. 

391. Two § by 11 i-in. steel plates are riveted together to make a lap 

joint. The nine li-in. rivets are arranged three in each row. Compute 

the safe load and efficiency. See Table I, page 107. 

392. Solve the preceding problem, but arrange the li-in. rivets as in 

Problem 390. 

393. Two i- by 8-in. steel plates are riveted together to make a double¬ 

strap butt joint. The six 1-in. rivets are arranged three in each row in 

one main plate. The rectangular cover plates are A in. thick. Compute 

the safe load and efficiency of the joint. (Table I, page 107.) 

394. Solve the preceding problem if the six rivets are arranged one in 

the first row, two in the second, and three in the third row. 

395. Two f- by 11 i-in. steel plates are riveted together to make a double¬ 

strap butt joint. The six li-in. rivets in one side of the joint are arranged 

three in each row. Cover plates are A in. thick. Compute the safe load 

and efficiency of the joint. (Table I, page 107.) 

396. Solve the preceding problem if the li-in. rivets are arranged as in 

Problem 394. 

397. Design a structural lap joint of maximum efficiency to carry 39,000 

lb. Use J-in. rivets and Table I, page 107. 
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398. Design a structural lap joint of maximum efficiency to carry 54,000 

lb. Use |-in. rivets and Table I, page 107. 

399. A 5- by 5- by A-in. angle is to be welded to a §-in. gusset plate. 

Design the weld to develop 80 per cent of the gross section of the angle. 

St = 10 tons/sq. in. 

400. A 6- by 6- by £-in. angle is to be welded to a A-in. gusset plate. 

Design the weld to develop 80 per cent of the gross section of the angle. 

St =» 10 tons/sq. in. 
401. Design a solid circular shaft to resist a torque of 6000 ft.-lb. Sa = 

12,000 lb./sq. in. 

402. If the shaft of the preceding problem is 24 ft. long, compute the 

angle of twist. Ea = 12(10)6 lb./sq. in. 

403. Design a solid circular shaft to resist a torque of 8000 ft.-lb. Sa = 

12,000 lb./sq. in. 

404. If the shaft of the preceding problem is 30 ft. long, compute the 

angle of twist. 

405. A steel rod J in. in diameter is to be twisted through an angle of 90°. 

Compute the minimum length of the rod. S8 — 12,000 lb./sq. in. 

406. A steel shaft 5 in. in diameter is to transmit 1500 hp. with an allow¬ 

able stress of 12,000 lb./sq. in. Compute the r.p.m. 

407. A steel shaft 4 in. in diameter rotates at 210 r.p.m. Compute the 

horsepower transmitted if Sa — 12,000 lb./sq. in. 

408. Compute the outside diameter of a hollow steel shaft to resist a 

torque of 10 ft.-tons. Assume inside diameter 0.8 of the outside diameter. 

Sa = 10,000 lb./sq. in. 

409. Compute the outside diameter of a hollow steel shaft to transmit 

6,000 hp. at 120 r.p.m. Assume inside diameter 0.6 of the outside diameter. 

Sa ~ 8,000 lb./sq. in. 

410. A hollow steel shaft is to transmit a torque of 12 ft.-tons. If the 

outside diameter is 6 in., compute the thickness. Ss — 10,000 lb./sq. in. 

411. An 18-ft. simple beam on end supports has a concentrated load of 

9 tons 5 ft. from the left end and a concentrated load of 6 tons 8 ft. from the 

right end. Compute the vertical shear and the bending moment (a) 7 ft. 

from the left end, (b) 9 ft. from the right end. 

412. Solve the preceding problem if the beam has an additional uniform 

load of 27 tons distributed over the 18 ft. 

413. Solve Problem 412 if the right support is 6 ft. from the right end of 

the beam. 

414. Solve Problem 412 if the left support is 6 ft. from the left end of the 

beam. 

415. A 20-ft. simple beam on end supports has a concentrated load of 8 

tons 5 ft. from the left end and a concentrated load of 6 tons 8 ft. from the 

right end. Compute the vertical shear and the bending moment (a) 6 ft. 

from the left end, (b) 10 ft. from the right end. 

416. Solve the preceding problem if the beam has an additional uniform 

load of 16 tons distributed over the 20 ft. 

417. Solve the preceding problem if the left support is 6 ft. from the left 

end. 

418. Solve Problem 416 if the right support is 9 ft. from the right end. 
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419. A 20-ft. simple beam is supported at the left end and 4 ft. from the 

right end. At the right end is a concentrated load of 2 tons. Beginning 

at the left support and extending 12 ft. to the right is a uniformly dis¬ 

tributed load of 18 tons. Compute (a) the shear 6 ft. from the right end 

of the beam and 8 ft. from the left end, (b) the moment 8 ft. from the right 

end and 6 ft. from the left end. 

420. A 30-ft. simple beam rests on end supports. A uniform load of 24 

tons is distributed over the 30 ft., and a concentrated load of 6 tons is 

5 ft. from the left end. Compute the maximum shear and the maximum 

moment. 
421. Solve the preceding problem if the right support is 6 ft. from the 

end. 

422. In Problem 420 an additional load of 5 tons is placed 4 ft. from the 

right end. Compute the maximum shear and maximum moment. 

423. In Problem 421 place a 4-ton load at the outer end of the cantilever. 

Compute the maximum shear and maximum moment. 

424. A 16-ft. beam is supported at each end. A uniform load of 2400 

lb. is distributed over the right half of the beam. Four feet from the left 

end is a concentrated load of 2400 lb. Draw the shear and moment dia¬ 

grams, and compute the maximum moment. 

425. A 16-ft. beam rests on end supports. A uniform load of 3200 lb. 

extends the full length of the beam. Four feet from the right end is a 

concentrated load of 1600 lb. Draw the shear and moment diagrams. 

426. A 12-ft. beam is simply supported at the left end and 2 ft. from the 

right end. At the right end is a concentrated load of 1800 lb. Extending 

8 ft. from the left end is a uniformly distributed load of 3840 lb. Draw 

the shear and moment diagrams. 

427. A 48-ft. beam is simply supported at the left end and 12 ft. from 

the right end. On the right 30 ft. is a uniformly distributed load of 3600 lb. 

A concentrated load of 900 lb. is 6 ft. from the left end. Compute (a) the 

shear 13 ft. from the right end and 18 ft. from the left end, (b) the moment 

18 ft. from the right end and 16 ft. from the left end. 

428. A 23-ft. beam is supported 4 ft. from the left end and 3 ft. from 

the right end. The left 20 ft. has a uniformly distributed load of 20 tons. 

At the right end is an 8-ton load. Draw the shear and moment diagrams, 

and determine the maximum shear and the maximum moment. 

429. A 50-ft. beam is simply supported at the right end and 10 ft. from 

the left end. A concentrated load of 2700 lb. is 6 ft. from the right end. 

On the left 30 ft. is a uniformly distributed load of 8100 lb. Draw the shear 

and moment diagrams, and determine the maximum shear and maximum 

moment. 

430. A 23-ft. beam is supported 3 ft. from the left end and 4 ft. from 

the right end. At the left end is a concentrated load of 6 tons. Over the 

right 4 ft. is a uniformly distributed load of 3 tons. Over the 16 ft. between 

supports is a uniformly distributed load of 24 tons. Draw the shear and 

moment diagrams, and determine the maximum shear and the maximum 

moment. 

431. A 15-ft. beam is simply supported at the left end and 3 ft. from the 

right end. On the cantilever is a uniformly distributed load of 2700 lb. 



REVIEW PROBLEMS 469 

Two feet to the left of the right support is a concentrated load of 5400 lb. 

The left 6 ft. support a uniformly distributed load of 10,800 lb. Draw 

the shear and moment diagrams, and determine the maximum shear and 

the maximum moment. 

432. A 22-ft. beam is simply supported at the left end and 6 ft. from the 

right end. The 16 ft. between supports has a uniformly distributed load 

of 6000 lb. Fourteen feet from the left end is a concentrated load of 

1500 lb. At the right end is a concentrated load of 1500 lb. Draw the 

shear and moment diagrams, and determine the maximum shear and the 

maximum moment. 

433. A 25-ft. beam has a uniformly distributed load of 300 lb./ft. The 

supports are 5 ft. from each end. Draw the shear and moment diagrams, 

and determine the maximum shear and the maximum moment. 

434. Solve the preceding problem if the supports are 6 ft. from 

the ends. 

435. Solve Problem 433 if the supports are 4 ft. from the ends. Which of 

these three problems has the least maximum moment? 

436. An 18-ft. beam is simply supported at each end. A triangular load 

of 12,000 lb. extends from the left support for 12 ft. with the toe of the load 

to the right. Draw the shear and moment diagrams, and determine the 

maximum shear and the maximum moment. 

437. An 18-ft. beam is simply supported at each end. A triangular load 

of 6 tons extends from the right support over 12 ft. with the toe of the load 

at the right support. Draw the shear and moment diagrams, and deter¬ 

mine the maximum shear and the maximum moment. 

438. A 15-ft. beam is simply supported at each end. A uniformly dis¬ 

tributed load of 6000 lb. covers the 15 ft. On top of this load is a triangular 

load of 3000 lb. Compute the maximum moment. 

439. A 20-ft. beam on end supports is loaded with a uniform load of 15 

tons, on top of which is a triangular load of 12 tons. Compute the maximum 

moment. 

440. A 24-ft. beam is simply supported at the right end and 4 ft. from the 

left end. A triangular load of 9 tons extends over the right 12 ft. with the 

toe of the load to the left. Ten feet from the left end is a concentrated 

load of 3 tons and another 3 tons at the left end. Compute the maximum 

moment. 

441. A 24-ft. beam is simply supported at the left end and 4 ft. from the 

right end. A uniform load of 9000 lb. extends over the right 20 ft. On 

top of this load is a triangular load of 13,500 lb. with the toe of the load at 

the right end of the beam. Compute the maximum moment. 

442. If 10 tons/sq. in. is the maximum allowable fiber stress in an I-beam, 

compute the maximum bending moment a 12-in. 45-lb. I-beam can carry. 

I = 284.1 in.4 

443. A 12-ft. rectangular wood beam on end supports has a central con¬ 

centrated load of 3200 lb. If the depth of the beam is 12 in., compute 

its width. S = 1200 lb./sq. in. 

444. A 12-ft. rectangular wood beam on end supports is 12 in. high. 

It is loaded with a central concentrated load of 3200 lb. and a uniform load 

of 6400 lb. Compute its width. S = 1200 lb./sq. in. 
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445. A 16-ft. beam is simply supported at the left end and 4 ft. from 

the right end. Two feet from the left end is a concentrated load of 4500 

lb. On the right 10 ft. is a uniform load of 18,000 lb. Compute the 

minimum safe height if the wood beam is 6 in. wide. S = 1000 lb./sq. in. 

446. A 30-ft. simple beam is supported at the left end and 6 ft. from 

the right end. The cantilever has a uniform load of 900 lb. Four feet 

to the left of the right support is a concentrated load of 1800 lb. The 

left 12 ft. has a uniform load of 3600 lb. If the rectangular wood beam 

is 3 in. wide, compute the minimum safe height. S = 1600 lb./sq. in. 

447. A 30-ft. simple beam is supported 6 ft. from the left end and 4 ft. 

from the right end. A uniform load of 9000 lb. is distributed over the 

30 ft. Twelve feet from the left end is a concentrated load of 210 lb. 

Design an economical wood beam (36 = h). S = 1200 lb./sq. in. 

448. A 20-ft. simple beam is supported 5 ft. from the right end and 3 ft. 

from the left end. A uniform load of 20,000 lb. is distributed over the 20 ft. 

Nine feet from the right end is a concentrated load of 500 lb. Design an 

economical wood beam (26 = h approx.). S = 1400 lb./sq. in. 

449. A 16-ft. simple beam, supported 3 ft. from each end, has a uniform 

load of 48,000 lb. Draw the shear and moment diagrams, and design an 

economical wood beam (26 = h approx.). S — 1000 lb./sq. in. 

460. Solve the preceding problem if the supports are 4 ft. from each end. 

451. Design an economical wood beam for the loads of Problem 447. 

Given S = 1200 lb./sq. in., S8 = 100 lb./sq. in. 

452. Design an economical wood beam for the loadings of Problem 448. 

Given S — 1400 lb./sq. in., S8 = 84 lb./sq. in. 

453. Design an economical wood beam for the loadings of Problem 449. 

Given S = 1000 lb./sq. in., Ss = 90 lb./sq. in. 

464. An 18-ft. beam on end supports has a concentrated load of 12 tons 

placed 8 ft. from the right support. Select an economical American Stand¬ 

ard I-beam. S — 10 tons/sq. in. 

466. In the preceding problem check the design, considering the weight 

of the beam. 

456. An 18-ft. simple beam on end supports has a uniform load of 12 tons 

over the span. Select an economical American Standard I-beam (a) neglect¬ 

ing weight of beam, (6) considering weight of beam. S = 10 tons/sq. in. 

457. Solve the preceding problem if the 12 tons is concentrated at the 

center of the span. 

458. Solve Problem 456 if the 12 tons is concentrated 6 ft. from one end. 

469. An 18-ft. simple beam on end supports has two 6-ton loads at the 

third points. Design an economical American Standard I-beam (a) neglect¬ 

ing weight of beam, (6) considering weight of beam. S = 10 tons/sq. in. 

460. Solve Problem 459 if the loads are placed at the quarter points. 

461. An 18-ft. beam is simply supported at the ends. Six tons is con¬ 

centrated 5 ft. from the left end and 9 tons at 7 ft. from the right end. 

Select an economical American Standard I-beam (a) neglecting weight 

of beam, (6) considering weight of beam. S = 10 tons/sq. in. 

462. A 20-ft. wooden joist is 2\ in. wide. It supports a uniform load of 

70 lb./ft. and a concentrated load of 800 lb. at 4 ft. from the right end. 

Compute the commercial size of the joist. S = 1200 lb./sq. in. 
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463. Compute the spacing of 2- by 8-in. by 16-ft. joists to carry a floor 

load of 45 lb./sq. ft. of floor area. S = 1600 lb./sq. in. 

464. A 32-ft. simple beam is supported at the right end and 8 ft. from the 

left end. A uniform load of 12,000 lb. is distributed over the right 16 ft. 

of the beam. A second uniform load of 3000 lb. is distributed over the left 

8 ft. A concentrated load of 1800 lb. is 4 ft. to the right of the left support. 

S = 10 tons/sq. in. Considering its own weight design (a) American 

Standard I-beam, (b) W* beam. 

466. An 18-ft. beam is supported 3 ft. from one end and 4 ft. from the 

other end. A uniform load of 9 tons is distributed over the 18 ft. Design 

a standard I-beam, considering its own weight. S = 10 tons/sq. in. 

466. A 15-in. 65-lb. American Standard I-beam, 40 ft. long, has a section 

modulus of 84.3 in.3 and rests on end supports. Neglect weight of beam. 

It is to support a uniform load over 16 ft. of the span beginning 8 ft. 

from the left support, (a) Locate the point of maximum moment, (b) 
compute the maximum moment in terms of W, (c) compute W if S = 10 

tons/sq. in. 

467. Considering the weight of the beam, compute W for the data of the 

preceding problem. 

468. A 15-in. 65-lb. standard I-beam on end supports is to carry a ware¬ 

house load of 600 lb./ft. of length. Considering its own weight, compute 

the maximum safe length of the beam. S = 9 tons/sq. in., Ss = 6 tons/ 

sq. in. 

469. A 30-ft. simple beam is supported at each end. A triangular load of 

10 tons is distributed over 18 ft. with the toe of the load 5 ft. from the right 

support. S = 10 tons/sq. in. Considering its own weight, design an 

economical (a) American Standard I-beam, (b) Wr beam. 

470. A 24-ft. simple beam is supported at the left end and 4 ft. from the 

right end. A uniform load of 12 tons is distributed over the entire beam. 

On top of this load is a triangular load of 9 tons with the toe of the load at 

the right end of the beam. S — 10 tons/sq. in. Neglecting the weight 

of the beam, design an economical (a) American Standard I-beam, (6) 

W' beam. 

471. Solve the preceding problem, considering the weight of the beam. 

472. Two wheel loads of 4 tons and 6 tons, respectively, are 12 ft. apart 

and roll across a span of 20 ft. End supports. Draw the dimension 

sketches and compute the maximum moment under each wheel. S = 9 

tons/sq in. Considering its own weight, design an economical (a) American 

Standard I-beam, (b) W beam. 

473. Two wheel loads of 8 tons and 12 tons, respectively, are 10 ft. apart 

and roll across a 20-ft. span. Solve as in the preceding problem. 

474. A wood beam 3 in. wide, 10 in. high, and 12 ft. long is simply sup¬ 

ported at the ends. A concentrated load of 2 tons is at the center of the 

span. Compute the unit shearing stress at 1, 3, and 5 in. from the top of 

the beam. 

476. A wood beam 4 in. wide, 14 in. high, and 18 ft. long is simply sup¬ 

ported at the ends. A concentrated load of 3 tons is at the center of the 

span. Compute the unit shearing stress at 3, 5, and 7 in. from the bottom 

of the beam. 
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476. Compute the height of a wood floor joist 2J in. wide and 14 ft. 

long if it is to carry a load of 2800 lb. uniformly distributed over its entire 

span. S = 1200 lb./sq. in., S8 = 100 lb./sq. in. 

477. A 15-in. 50-lb. American Standard I-beam, 20 ft. long, with end 

supports has a concentrated load of 10 tons 8 ft. from one end. Compute 

the maximum unit shearing stress by the (a) exact formula, (6) approximate 

formula. 

478. Solve the preceding problem for a 12-in. 50-lb. W' beam. 

479. A 26-ft. simple beam is supported at the right end and 6 ft. from 

the left end. At the left end is a 7200-lb. concentrated load, and 10 ft. 

from the left end is another 7200-lb. concentrated load. Over the right 

10 ft. is a uniformly distributed load of 3600 lb. Design an economical 

wood beam of actual commercial size. S = 1040 lf)./sq. in., S8 = 80 lb./ 

sq. in. 

480. A simple beam on end supports has a concentrated load P at the 

center of the span. E and I are constant. From the equation of the elastic 

curve, find the slope of the curve and its deflection at a distance L/4 from a 

support. Origin at a support. 4 

481. Solve the preceding problem using a uniformly distributed load, 

IF = wL, instead of the concentrated load. 

482. A cantilever beam has a concentrated load at the free end. E and 

I are constants. From the equation of the elastic curve, find the slope 

of the elastic curve and its deflection at a distance 3/4L from the support. 

Origin at the support. 

483. Solve the preceding problem using a uniformly distributed load, 

IF = wL} instead of the concentrated load. 

484. Solve Problem 480 by the Slope-deflection Method. 

485. Solve Problem 480 by the Moment-area Method. 

486. Solve Problem 480 by the Theorem of Three Moments Equation. 

487. Solve Problem 481 by the Slope-deflection Method. 

488. Solve Problem 481 by the Theorem of Three Moments Equation. 

489. A simple beam on end supports is loaded at the quarter points 

with two equal concentrated loads. E and I are constants. Find the 

maximum deflection by the Slope-deflection Method. 

490. Solve the preceding problem by the Moment-area Method. 

491. Solve Problem 489 by the Theorem of Three Moments Equation. 

492. A continuous beam rests on three supports at the same level. Each 

panel is 18 ft. long and has a concentrated load of 12 tons at 6 ft. from the 

end support. Compute sufficient data, draw the shear and moment 

diagrams, and determine the maximum shear and maximum moment. 

493. Solve the preceding problem if the concentrated loads are replaced 

by 12 ton uniformly distributed loads extending from the free ends for 

12 ft. 

494. A continuous beam rests on three level supports. The left panel 

is 20 ft. long and has a uniform load of 9 tons over the 20 ft. The right 

panel is 16 ft. long and has a concentrated load of 7 tons at 7 ft. from the 

right pier. Draw the shear and moment diagrams, and determine the maxi¬ 

mum shear and the maximum moment. 
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496. Considering its own weight, design an economical steel beam for 

the preceding problem, S — 10 tons/sq. in., (a) American Standard I-beam, 

(6) W' beam. 

496. A continuous beam rests on three level supports. The left panel is 

16 ft. and has 9 tons concentrated 4 ft. from the left end. The right panel 

is 18 ft. and has 6 tons uniformly distributed over its length. Compute 

sufficient data, draw the shear and moment diagrams, and determine the 

maximum shear and the maximum moment. 

497. Considering its own weight, select an economical steel beam for the 

loads of the preceding problem, (a) American Standard I-beam, (6) W1 beam. 

Safe flexure stress is 10 tons/sq. in. 

498. A continuous beam on three level supports is 36 ft. long. The left 

panel is 20 ft. long and has a uniform load of 12 tons on the left 6 ft. The 

right panel is 16 ft. long and has a concentrated load of 6 tons placed 5 ft. 

from the right end. Compute sufficient data, draw the shear and moment 

diagrams, and find the maximum shear and the maximum moment. 

499. Considering its own weight, design an economical steel beam for 

the loads of the preceding problem (a) American Standard I-beam, (b) 
W beam. Safe bending stress is 10 tons/sq. in. 

600. A continuous beam on three level supports is 31 ft. long. The left 

support is 3 ft. from the left end of the beam, the right support is at the 

right end, and the third support is 16 ft. from the right end of the beam. 

One ton is concentrated at the left end, 9 tons is 7 ft. from the left end, and 

6 tons is uniformly distributed over the right panel. Design an economical 

wood beam (26 = h approx.) for a bending stress of 1200 lb./sq. in. 

601. Considering its own weight, design an economical steel beam for the 

loads of the preceding problem, using a flexure stress of 10 tons/sq. in. 

(a) American Standard I-beam, (6) W' beam. 

602. Using the Theorem of Three Moments Equation, compute the deflec¬ 

tion at the center of the left panel of Problem 500. E — (10)6 lb./sq. in. 

603. A continuous beam on four level supports is 40 ft. long. The two 

end panels are each 14 ft. long and have a uniformly distributed load of 

10 tons over the 14 ft. The center panel supports a concentrated load of 

5 tons at mid-span. Compute sufficient data, draw shear and moment 

diagrams, and determine the maximum shear and maximum moment. 

604. A continuous beam on four level supports is 26 ft. long. The two 

end panels are each 8 ft. long and have a concentrated load of 8 tons at 

mid-span. The middle panel has a uniform load of 15 tons distributed over 

the 10 ft. Compute sufficient data, draw the shear and moment diagrams, 

and determine the maximum shear and moment. 

606. In an elemental block subject to shear and uniaxial stress the 

maximum normal stress is 10,000 lb./sq. in. and the maximum shearing 

stress is 7000 lb./sq. in. Compute the simple normal and shearing unit 

stresses on the faces of the block. 

606. In an elemental block subject to shear and uniaxial stress the maxi¬ 

mum normal stress is 15,000 lb./sq. in. and the maximum shearing stress 

is 12,000 Jb./sq. in. Compute the simple direct normal and shearing unit 

stresses on the faces of the block. 
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607. A 0.75- by 1.5-in. rectangular steel rod 3 ft. in length is used as a 

round-ended column. Compute the breaking load, using Euler's equation. 

608. Compute the safe load for a 3- by 3- by f-in. angle 7 ft. long, used as 

a column. Use Eq. (24) or (25). 

609. Compute the safe load for a 4- by 4- by J-in. angle 10 ft. long, used 

as a column. Use Eq. (24) or (25). 

610. Compute the safe load for a 3- by 2- by f-in. angle 4 ft. long, used 

as a column. Use Eq. (24) or (25). 

611. Compute the safe load of a 4- by 3- by f-in. angle 5 ft. long, used as a 

column. Use Eq. (24) or (25). 

612. Compute the safe load for a 5- by 3- by f-in. angle 5 ft. long, used as 

a column. Use Eq. (24) or (25). 

613. Compute the safe load for a 6- by 6-in. wood column 12 ft. long. 

[Eq. (27).] 

614. Compute the safe load for a 6- by 6-in. wood column 12 ft. long, if it 

is laterally braced at mid-height. [Eq. (27).] 

616. Compute the safe load for a 4- by 6-in. wood column 8 ft. long. 

[Eq. (27).] 

616. Design an economical angle with unequal legs 8 ft. 04 in. long to 

support a safe load of 70,000 lb. [Eq. (24) or (25).] 

617. Design an economical angle with unequal legs 8 ft. 04 in. long to 

support a safe load of 90,000 lb. [Eq. (24) or (25).] 

618. Solve Problem 516 for an angle with equal legs. 

619. Solve Problem 517 for an angle with equal legs. 

620. Design an economical wood column of nominal commercial size 15 ft. 

long for a safe load of 45,000 lb. [Eq. (27).] 

621. Design an economical wood column of nominal commercial size 

15 ft. long for a safe load of 90,000 lb. [Eq. (27).] 

622. Design an economical wood member of nominal commercial size 

16 ft. long to support an axial thrust of 6000 lb. and an eccentric beam load 

of 3200 lb. placed 6 ft. from one end of the member. S = 1100 lb./sq. in. 

[Eq. (27).] 

623. Design an economical wood member of nominal commercial size 

10 ft. long to support an axial thrust of 12 tons and an eccentric beam load 

of 3 tons placed 7 ft. from one end of the member. S — 1100 lb./sq. in. 

[Eq. (27).] 

624. Design a pair of economical American Standard channels 10 ft. 

long to support an axial thrust of 18 tons and an eccentric beam load of 6 

tons placed 2 ft. from one end of the member. S = 9 tons/sq. in. [Eq. 

(24) or (25).] 

626. Design a pair of economical American Standard channels 10 ft. 

long to support an axial thrust of 15 tons and an eccentric beam load of 5 

tons placed 3 ft. from one end of the member. S = 9 tons/sq. in. [Eq. 

(24) or (25).] 

626. Solve Problem 520 for the actual commercial size. 

627. Solve Problem 521 for the actual commercial size. 

628. Solve Problem 522 for the actual commercial size. 

629. Solve Problem 523 for the actual commercial size. 
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Table I.—Average Heaviness and Coefficient of Expansion 

Linear coefficient 
of thermal 

Material 
Weight, expansion 

lb. /ft.3 per degree 

Fahrenheit 

V 

Aluminum. 
Brick: 

168 0.000 0128 

Common soft. 120) 
Good quality hard. 144 > 0.000 0030 
Masonry (ordinary). 120) 

Concrete: 

Stone or gravel. 
Cinder. 

150/ 
110) 

0.000 0060 

Copper. 555 0.000 0093 

Iron: 
Grey cast. 450 0.000 0060 
Wrought. 480 0.000 0067 
Steel. 490 0.000 0065 

Wood: 

Cedar and spruce. 26 
Hemlock and soft pine. 30 . 
Douglas fir and tamarack. 36 
Ash and maple. 38 
Southern yellow pine. 40 0.000 0030 
Hickory and oak. 48 

477 
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Table II.—W Sections* 

Properties of sections 

2 

i—:p=a 
i 

Depth 
of 

section, 
in. 

Weight 
per 

foot, 
lb. 

Area 
of 

section, 
in.2 

Flange 

Web 
thick¬ 
ness, 
in. 

| Axis 1-1 Axis 2-2 

Width, 
in. 

Thick¬ 
ness, 
in. 

7, 
in.4 

z, 
in.3 

k, 
in. 

7, 
in.4 

z, 
in.3 

k, 
in. 

36.72 300 ^ 88.17 16.66 1.680 0.945 20290.2 1105.1 15.17 1225.2 147.1 3.73 
36.00 240 70.60 16.50 1.320 0.790 15724.0 873.6 14.92 920.1 111.5 3.61 
30.00 180 52.89 15.00 1.125 0.670 8328.2 555.2 12.55 585.6 78.1 3.33 
24.00 100 29.43 12.00 0.775 0.468 2987.3 248.9 10.08 203.5 33.9 2.63 
17.90 47 13.81 7.492 0.520 0.350 736.4 82.3 7.30 33.5 9.0 1.56 
16.32 78 22.92 8.586 0.875 0.529 1042.6 127.8 6.74 87.5 20.4 1.95 
14.00 87 25.56 14.500 0.688 0.420 966.9 138.1 6.15 349.7 48.2 3.70 
12.00 28 8.23 6.500 0.420 0.240 213.5 35.6 5.09 17.5 5.4 1.46 
10.50 72 21.18 10.170 0.808 0.510 420.7 80.1 4.46 141.8 27.9 2.59 
10.38 66 19.41 10.117 0.748 0.457 382.5 73.7 4.44 129.2 25.5 2.58 
10.00 49 14.40 i io.ooo 0.558 0.340 272.9 54.6 4.35 93 0 18.6 2.54 
10.22 29 8.53 5.799 0.500 0.289 157.3 30.8 4.29 15.2 5.2 1.34 
9.90 21 6.19 5.750 0.340 0.240 106.3 21.5 4.14 9.7 3.4 1.25 
8.00 31 9.12 8.000 0.433 0.288 109.7 27.4 3.47 37.0 9.2 2.01 

* Of the many W*' sections, Table II gives the properties of beams referred to in the text. 
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Table III.—Properties of American Standard Beams* 

Z 

Z 

Depth 
of 

beam, 
in. 

Weight 
per 

foot, 
lb. 

Area 
of 

section, 
in.2 

Width 
of 

flange, 
in. 

Web 
thick¬ 
ness, 
in. 

Axis 1-1 Axis 2-2 

I, 
in.4 

P 
II k, 

in. 
I, 

in.4 
Z-*-‘ 

C 

in.* 

ifc, 
in. 

120.0 35.13 8.048 0.798 3010.8 250.9 9.26 84.9 21.1 1.56 
115.0 33.67 7.987 0.737 2940.5 245.0 9.35 82.8 20.7 1.57 

24 110.0 32.18 7.925 0.675 2869.1 239.1 9.44 80.6 20.3 1.58 
105.9 30.98 7.875 0.625 2811.5 234.3 9.53 78.9 20.0 1.60 

100.0 29.25 7.247 0.747 2371.8 197.6 9.05 48.4 13.4 1.29 
95.0 27.79 7.186 0.686 2301.5 191.8 9.08 47.0 13.0 1.30 

24 90.0 26.30 7.124 0.624 2230.1 185.8 9.21 45.5 12.8 1.32 
85.0 24.84 7.063 0.563 2159.8 180.0 9.33 44.2 12.5 1.33 
79.9 23.33 7.000 0.500 2087.2 173.9 9.46 42.9 12.2 1.36 

100.0 29.20 7.273 0.873 1648.3 164.8 7.51 52.4 14.4 1.34 
95.0 27.74 7.200 0.800 1599.7 160.0 7.59 50.5 14.0 1.35 

20 90.0 26.26 7.126 0.726 1550.3 155.0 7.68 48.7 13.7 1.36 
85.0 24.80 7.053 0.653 1 1501.7 150.2 7.78 47.0 13.3 1.38 
81.4 23.74 7.000 0.600 I 1466.3 146.6 7.86 45.8 13.1 1.39 

75.0 21.90 6.391 0.641 1263.5 126.3 7.60 30.1 9.4 1.17 
20 70.0 20.42 6.317 0.567 1214.2 121.4 7.71 28.9 9.2 1.19 

65.4 19.08 6.250 0.500 1169.5 116.9 7.83 27.9 8.9 1.21 

70.0 20.46 6.251 0.711 917.5 101.9 6.70 24.5 7.8 1.09 
65.0 18.98 6.169 0.629 877.7 97.5 6.80 23.4 7.6 1.11 

18 60.0 17.50 6.087 0.547 837.8 93.1 6.92 22.3 7.3 1.13 
54.7 15.94 6.000 0.460 795.5 88.4 7.07 21.2 7.1 1.15 

*75.0 21.85 6.278 0.868 687.2 91.6 5.61 30.6 9.8 1.18 
70.0 20.38 6.180 0.770 659.6 87.9 5.69 28.8 9.3 1.19 

15 65.0 18.91 6.082 0.672 632.1 84.3 5.78 27.2 8.9 1.20 
60.8 17.68 6.000 0.590 609.0 81.2 5.87 26.0 8.7 1.21 

55.0 16.06 5.738 0.648 508.7 67.8 5.63 17.0 5.9 1.03 
60.0 14.59 5.640 0.550 481.1 64.2 5.74 16.0 5.7 1.05 

15 45.0 13.12 5.542 0.452 453.6 60.5 5.88 15.0 5.4 1.07 
42.9 12.49 5.500 0.410 441.8 58.9 5.95 14.6 5.3 1.08 

55.0 16.04 5.600 0.810 319.3 53.2 4.46 17.3 6.2 1.04 
50.0 14.57 5.477 0.687 301.6 * 50.3 4.55 16:0 5.8 1.05 

12 45.0 13.10 5.355 0.565 284.1 47.3 4.66 14.8 5.5 1.06 
40.8 11.84 5.250 0.460 268.9 i 44.8 1 4.77 13.8 5.3 1.08 

* From “ AJ.S.C. Manual.’ 
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Table III.—Properties op American Standard Beams.*—(iContinued) 

1 

2 

Depth 
of 

beam, 
in. 

Weight 
per 

foot, 
lb. 

Area 
of 

section, 
in.2 

Width 
of 

flange, 
in. 

Web 
thick¬ 
ness, 
in. 

Axis 1-1 Axis 2-2 

J, 
in.4 

11 
s 

tsj 

k, 
in. 

7, 
in.4 Z = 

c 
in.3 

k, 
in. 

35.0 10.20 5.078 0.428 227.0 , 37.8 4.72 10.0 3.9 0.99 

12 31.8 9.26 5.000 0.350 215.8 . 36.0 4.83 9.5 3.8 1.01 

40.0 11.69 5.091 0.741 158.0 31.6 3.68 9.4 3.7 0.90 

35.0 10.22 4.944 0.594 145.8 29.2 3.78 8.5 3.4 0.91 
10 30.0 8.75 4.797 0.447 133.5 26.7 3.91 7.6 3.2 0.93 

25.4 7.38 4.660 0.310 122.1 24.4 4.07 6.9 3.0 0.97 

25.5 7.43 4.262 0.532 68.1 17.0 3.03 4.7 2.2 0.80 
23.0 6.71 4.171 0.441 64.2 16.0 3.09 4.4 2.1 0.81 

8 20.5 5.97 4.079 0.349 60.2 15.1 3.18 4.0 2.0 0.82 
18.4 5.34 4.000 0.270 56.9 14.2 3.26 3.8 1.9 0.84 

20.0 5.83 3.860 0.450 41.9 12.0 2.68 3.1 1.6 0.74 
7 17.5 5.09 3.755 0.345 38.9 11.1 2.77 2.9 1.6 0.76 

15.3 4.43 3.660 0.250 36.2 10.4 2.86 2.7 1.5 0.78 

17.25 5.02 3.565 0.465 26.0 8.7 2.28 2.3 1.3 0.68 
6 14.75 4.29 3.443 0.343 23.8 7.9 2.36 2.1 1.2 0.69 

12.5 3.61 3.330 0.230 21.8 7.3 2.46 1.8 1.1 0.72 

14.75 4.29 3.284 0.494 15.0 6.0 1.87 1.7 1.0 0.63 
5 12.25 3.56 3.137 0.347 13:5 5.4 1.95 1.4 0.91 0.63 

10.0 2.87 3.000 0.210 12.1 
4-8! 

2.05 1.2 * 0.82 0.65 

10.5 3.05 2.870 0.400 7.1 3.5 1.52 1.0 0.70 0.57 
9.5 2.76 2.796 0.326 6.7 3.3 1.56 0.91 0.65 0.58 

4 8.5 2.46 2.723 0.253 6.3 3.2 1.60 0.83 0.61 0.58 

7.7 2.21 2.660 0.190 6.0 3.0 1.64 0.77 0.58 0.59 

7.5 2.17 2.509 0.349 2.9 1.9 1.15 0.59 0.47 0.52 
3 6.5 1.88 2.411 0.251 2.7 1.8 1.19 0.51 0.43 0.52 

5.7 1.64 2.330 0.170 2.5 1.7 1.23 0.46 0.40 0.53 

* From “ A.I.S.C. Manual. 
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Table V.—Properties of Equal Angles* . 

Weight 
per 

foot, lb. 

Area Axis 1-1 and axis £-2 Axis 3-d 
Size, 
in. 

Thickness, 
in. 

of 
section, 

in.2 
I, 

in.4 
k, 
in. 

s, 
in.3 

x, 
in. 

k min., 
in. 

1 37.4 Mm oi 35.5 1.80 8.6 1.86 1.17 
tt 35.3 10.37 33.7 1.80 8.1 1.84 1.17 
i 33.1 9.73 31.9 1.81 7.6 1.82 1.17 
H 31.0 9.09 30.1 1.82 7.2 1.80 1.17 
I 28.7 8.44 28.2 1.83 6.7 1.78 A 

6X6 H 26.5 7.78 26.2 1.83 6.2 1.75 
i 24.2 7.11 24.2 1.84 5.7 1.73 v S 
A ’ 21.9 6.43 22.1 1.85 5.1 1.71 ■ 
1 19.6 5.75 19.9 1.86 4.6 1.68 ■ H 
A 17.2 5.06 17.7 1.87 4.1 1.66 
1 14.9 4.36 15.4 1.88 3.5 1.64 

1 30.6 19.6 1.48 5.8 1.61 
tt 28.9 8.50 18.7 1.48 5.5 1.59 ijj» 
i 27.2 7.98 17.8 1.49 5.2 1.57 ijt* 
tt 25.4 7.46 16.8 1.50 4.9 1.55 
f 23.6 6.94 15.7 1.51 4.5 1.52 

6X5 tt 21.8 14.7 1.51 4.2 1.50 Ik 

*A 
5.86 13.6 1.52 3.9 1.48 0.98 

18.1 5.31 12.4 1.53 3.5 1.46 0.98 
1 16.2 4.75 11.3 1.54 3.2 1.43 0.98 
A 14.3 4.18 10.0 1.55 2.8 1.41 0.98 
t 12.3 3.61 8.7 1.56 2.4 1.39 0.99 

f 18.5 5.44 7.7 1.19 2.8 1.27 0.78 tt 17.1 5.03 7.2 1.19 2.6 1.25 0.78 

fA 
15.7 4.61 6.7 1.20 2.4 1.23 0.78 

4X4 14.3 4.18 6.1 1.21 2.2 1.21 0.78 
1 12.8 3.75 5.6 1 22 2.0 1.18 0.78 
A 11.3 3.31 5.0 1.23 1.8 1.16 0.78 

9.8 2.86 4.4 1.23 1.5 1.14 0.79 
8.2 3.7 1.24 1.3 1.12 0.79 i 6.6 1.94 3.0 1.25 1.1 1.09 0.80 

16.0 4.69 5.0 1.03 2.1 1.15 0.68 
14.8 4.34 4.7 1.04 2.0 1.12 0.68 

1 13.6 3.98 4.3 1.04 1.8 1.10 0.68 
A 12.4 3.62 SKI 1.05 1.7 0.68 

3J X 31 1 11.1 3.25 3.6 1.06 1.5 1.06 0.68 
A 9.8 2.87 3.3 1.07 1.3 1.04 0.68 

** 8.5 2.48 2.9 1.07 1.2 1.01 0.69 
7.2 2.09 2.5 1.08 0.98 0.99 0.69 

i 5.8 1.69 2.0 1.09 0.79 0.97 0.69 

1 11.5 3.36 2.6 0.88 1.3 0.98 0.58 A 10.4 3.06 2.4 0.89 1.2 0.95 0.58 
1 9.4 2.75 2.2 0.90 1.1 0.93 0.58 

3X3 A 8.3 2.43 2.0 0.91 0.95 0.91 0.58 
1 7.2 2.11 1.8 0.91 0.83 0.89 0.58 
A 6.1 1.78 1.5 0.92 0.71 0.87 0.59 
1 4.9 1.44 1.2 0.93 0.58 0.84 0.59 

7.7 2.25 1.2 0.74 0.72 0.81 0.49 
6.8 1.1 0.75 0.65 0.78 0.49 r 5.9 1.73 0.98 0.75 0.57 0.76 0.49 

21 X 21 A 5.0 1.47 0.85 0.76 0.48 0.74 0.49 
i 4.1 1.19 0.77 0.39 0.72 0.49 

A WkEEm 0.90 MSSM 0.78 0.30 0.69 0.49 

The foregoing table is a partial listing only. Other sizes are available. 
* From “A.I.S.C. Manual." 
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Table VI.—Properties of Unequal Angles* 

Size, 
in. 

Thick¬ 
ness, 
in. 

Weight 
per 

foot, 
lb. 

Area 
of 

section, 
in.2 

Axis 1-1 Axis 2-2 Axis 
3-3 

J, 
in.4 

k, 

in. 
z = -j 

C 

in.3 

x, 

in. 
/, 

in.4 
k, 
in. c 

in.3 

y, 
in. 

h 
min., 
in. 

1 30.6 9.00 30.8 1.85 8.0 2.17 10.8 1.09 3.8 1.17 0.86 
tt 28.9 8.50 29.3 1.86 7.6 2.14 10.3 1.10 3.6 1.14 0.86 
* 27.2 7.98 27.7 1.86 7.2 2.12 9.8 1.11 3.4 1.12 0.86 
H 25.4 7.47 26.2 1.87 6.7 2.10 9.2 1.11 3.2 1.10 0.86 
\ 23.6 6.94 24.5 1.88 6.3 2.08 8.7 1.12 3.0 1.08 0.86 

6X4 21.8 6.40 22.8 1.89 5.8 ! 2.06 8.1 1.13 2.8 1.06 0.86 
t 20.0 5.86 21.1 1.90 5.3 2.03 7.5 1.13 2.5 1.03 0.86 
A 18.1 5.31 19.3 1.90 4.8 2.01 6.9 1.14 2.3 1.01 0.87 
i 1 16.2 4.75 17.4 1.91 4.3 1.99 6.3 1.15 2.1 0.99 0.87 
A 14.3 4.18 15.5 1.92 3.8 1.96 5.6 1.16 1.9 0.96 0.87 
i 12.3 3.61 13.5 1.93 3.3 1.94 4.9 1.17 1.6 0.94 0.88 

\ 19.8 5.81 13.9 1.55 4.3 1.75 5.6 0.98 2.2 1.00 1 0.75 
H 18.3 5.37 13.0 1.56 4.0 1.72 5.2 0.98 2.1 0.97 0.75 
f 16.8 4.92 12.0 1.56 3.7 1.70 4.8 0.99 1.9 0.95 0.75 

5X3* A 15.2 4.47 11.0 1.57 3.3 1.68 4.5 1.00 1.7 0.93 0.75 
* 13.6 4.00 10.0 1.58 3.0 1.66 4.1 1.01 1.6 0.91 0.75 
A 12.0 3.53 8.9 ■1.59 2.6 1.63 3.6 1.01 1.4 0.88 0.76 
i 10.4 3.05 7.8 1.60 2.3 1.61 3.2 1.02 1.2 0.86 0.76 
A 8.7 2.56 6.6 1.61 1.9 1.59 2.7 1.03 1.0 0:84 0.77 

\ 16.0 4.69 6.9 1.22 2.7 1.42 3.3 0.84 1.6 0.92 0.64 
H 14.8 4.34 6.5 1.22 2.5 1.39 3.1 0.84 1.5 0.89 0.64 
I 13.6 3.98 6.0 1.23 2.3 1.37 2.9 0.85 1.4 0.87 0.64 
A 12.4 , 3.62 5.6 1.24 2.1 1.35 2.7 0.86 1.2 0.85 0.64 

4X3 * 11.1 3.25 5.1 1.25 1.9 1.33 2.4 0.86 1.1 0.83 0.64 
A 9.8 I 2.87 4.5 1.25 1.7 1.30' 2.2 0.87 1.0 0.80 0.64 
* 8.5 j 2.48 4.0 1.26 1.5 1.28 1.9 0.88 0.87 0.781 0.64 
A 7.2 1 2.09 3.4 1.27 1.2 1.26 1.7 0.89 0.73 0.76 0.65 

5.8 1.69 2.8 1.28 1.0 1.24 1.4 0.90 0.60 0.74 0.65 

* 8.5 1 2.50 2.1 0.91 1.0 1.00 1.3 ; 0.72 0.74 0.75 0.52 
■ A 7.6 2.21 1.9 0.92 0.93 0.98 1.2 0.73 0.66 0.73 0.52 

3X2* 1 6.6 1.92 1.7 0.93 0.81 0.96 1.0 0.74 0.58 0.71 0.52 
A 5.6 1.62 1.4 0.94 0.69 0.93 0.90 0.74 0.49 0.68 0.53 
i 4 5 1.31 1.2 0.95 0.56 0.91 0.74 0.75 0.40 0.66 0.53 

* 6.8 2.00 1.1 0.75 0.70 0.88 0.64 0.56 0.46 0.63 0.42 
A 6.1 1.78 1.0 0.76 0.62 0.85 0.58 0.57 0.41 0.60 0.42 
1 5.3 1.55 0.91 0.77 0.55 0.83 0.51 0.58 0.36 0.58 0.42 

2*X2 A 4.5 1.31 0.79 0.78 0.47 0.81 0.45 0.58 0.31 0.56 0.42 
i 3.62 1.06 0.65 0.78 0.38 0.79 0.37 0.59 0.25 0.54 0.42 
A 2.75 0.81 0.51 0.79 0.29 0.76 0.29 0.60 0.20 0.51 0.43 

The foregoing table is a partial listing only. Many other sizes are available. 
♦From “A.I.S.C. Manual.” 
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A 

Allowable stress per square inch, 36 
for various materials, 36 

American Institute of Steel Con¬ 
struction, 420 

Angle, helix, 125 
of maximum induced normal 

stress, 351 
of maximum shear, 349 
of slope in beams, 290 
of torsion, 125 

Angles, steel, 482-483 
Appendix, 477 
Axe welding, 115 
Area of cross-section in prisms, 27, 

437 
of moment diagrams, 301 
moment method, 299, 311 
reduction of, in tension, 52 
of shear diagram, 170 

B 

Bars, compound, 71 
stress due to weight of, 67 

to end load, 64 
sudden application of load, 77 

Beam, built-in, 275, 279, 331, 333 
cantilever, 154, 174, 202, 269-270, 

371 
with column action, 436 

continuous, 152, 273, 282, 318, 

326 

curved, 393, 397 
defined, 151 
design, 244 

fixed ends, 275, 331 
flange buckling, 436 
flitched, 387 

Beam, kinds defined, 152, 154 
neutral axis, 158, 188, 251 
nonprismatic, 370, 382 
simple, 151, 153-154, 258, 265 
web buckling, 243 
web shear, 243 
wedge shaped, 371 

Beams, 188 
allowance for weight of, 212 
American Standard, 207, 479-480 
bending moment in, 162, 171, 175, 

183, 318 
with column action, 436 
curvature of, 259, 394 
deflection of, 258, 265, 267, 270, 

293, 295, 329 
design of, 216, 244, 382 
economical sections, 204, 323 
elastic curve, 265 
fiber stress in, 188, 251 
flitched, 387 
formulas for deflection, 260 

for strength, 195, 242 
modulus of rupture, 251, 254 
moment in 157, 177, 181, 319, 

322 
with oblique loads, 221, 228 
overstressed, 251 
of parabolic form, 377 
principal axes of, 223 
reactions of piers, 151 
reinforced, 382, 387 

reinforced concrete, 391 

reinforced wooden, 388 
resisting moments in, 157 
rolling loads on, 232 

shearing stress in, 158, 236, 353 
standard steel beams, 479 
statically indeterminate, 152, 332 
steel, 206, 242, 478 

485 
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Beams, stiffness of, 258 
stress on oblique section, 353 
supports out of level, 328, 335 
tapering, 370 
timber, 206, 255 
of two materials, 387 
ultimate strength of, 251, 255 
of uniform strength, 376 
W\ 207, 217-218, 242, 353, 382 

Bearing stress, 4 
values of rivets, 106, 107 

Bending, 151, 258 
with column action, 436 
moment, 162 
sign of moment, 162 
and torsion, 355 
in two planes, 221 

Berry strain gage, 44 
Brittle material, 45 
Brittleness, 45 
Butt joints, 98, 100, 109 

C 

Calculus, 264, 271, 275, 351 
Cantilever, 269-270 
Cast iron, 253, 424 

properties of, 36, 38 
stress-strain diagram for, 51 

Ceilings, deflection of, 258 
Center, of gravity, 11, 191 

of pressure, 13 
shear, 226 
of stress figure, 10 

Centroid, 11, 155, 191 
Channels, 481 
Circular plates, 386 
Coefficient of temperature, 477 
Columns, 20, 400-401, 428 

action on flange of beam, 436 
American Institute of Steel Con¬ 

struction formula, 423 
with beam action, 436 
classification of, 400, 402 
combining areas for bending, 436 
commercial, 420 
design of, 432 
eccentric loads on, 441 

Columns, end conditions, 403 
equivalent lengths of simple, 403- 

404 

Euler's formula for, 405, 414, 
421 

examples, 433 
factor of safety for, 419 
fixed-ended, 404, 422 
flat-ended, 404, 422 
Forest Products Laboratory for¬ 

mula for, 425 
I of section, 412 

initial eccentricity of, 402, 421, 
441 

length of equivalent simple, 403 
parabolic formula for, 419 
pin-ended, 403, 421 
problems, 419 
Rankine’s formula for, 415, 417 
round-ended, 403, 405 
secant formula for, 444 
simple, 400 
slenderness ratio of, 411 
steel, 422 
straight-line formula for, 418 
stresses in, 413 
types of, 403 
working formulas for, 408, 419, 

423, 424 
Commercial columns, 420 
Common theory of flexure, 188, 258 
Compound prisms, 70 
Compression, definition of, 7, 14 

members, 36, 400 
strength in, 36, 400 
tests, 50, 414 

Continuous beams, 152, 273, 282, 
318, 326 

Correction faqtor, 395 
Cover plates, 102, 383 
Critical loads on columns, 408 

Curvature, of beams, 258 
radius of, 259 

Curved beams, 393 
Curved hooks, 397 

Cylinders, 198 
hollow, 85, 198 
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D 

Dangerous section, 370 
Deflection of beams, 258, 292, 295, 

329 
by El d2y/dx2, 263 
by moment areas, 289, 299 
by theorem of three moments, 329 

Deflection, of columns, 405 
method of equating, 284 

Deformation, 2, 23, 27, 190 
Differential equation, 263, 406, 445 
Distribution of shear in a beam, 241, 

243 
Ductility, 45, 54, 255 

E 

Eccentricity of loads, on beams, 270, 
379, 381 

on columns, 453 
on prisms, 446 

Economy, 323, 430 
Efficiency, of riveted joints, 98 

of welded joints, 115 
Elastic curve, 258 

of beams, 258 
of columns, 405, 444 

point of inflection, 260, 278, 404 
slope of, 266, 290 

Elastic failure, 363 
Elastic limit, 31, 251 

apparent, 47 
defined, 47 
stress at, 47 

Elasticity, defined, 31 
Element, 24, 27, 124, 126 
Elements of sections (see Properties) 
Elongation, 46, 56, 64, 66, 143 

per cent, 56 
Endurance limit, 60 
Energy, 74 

at elastic limit, 79 
kinetic, 78 
load, 82 
potential, 79, 147 
at rupture, 84 

Equating deflections, 284 

Equation of elastic curve, 261 
Euler’s formula for columns, 405 

curve showing, 414 
limitation of, 408 

Extensometer, 44 
Berry’s, 45 

Eyebar, 16 

F 

Factor of safety, 37 
Failure, theory of, 363 
Fatigue of metals, 60 
Fiber strain, 190 
Fiber stress, 190, 196 

in beams, 191, 196 
formula for, 191, 196 

Fillet, for welds, 116 
Flange buckling, 436 
Flat plates, bending, 384 
Flexure, 188, 258 

and axial stress, 447 
combined with column action, 436 
combined with torsion, 355 
stresses, 38, 353 

Flitched beams, 387 
Force, gradually applied, 74 
Frames, statically indeterminate, 

332 

G 

Gas welding, 115 
George Washington Bridge, 56 
Graphical solution, of combined 

stresses, 355 
Gyration, radius of, 412, 430 

H 

Heaviness of materials, 477 
Hemlock, 38, 426 
Hooke’s law, 32, 74, 189 
Hooks, theory of, 397 
Hoop tension, 88 
Horsepower transmitted by shafts, 

135 
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I 

I-beams, 207, 243, 379, 382, 478-480 

Impact, strain, 77 

stress, 77, 83 

Indeterminate stresses and struc¬ 

tures, 152, 273, 332 

Integrals, xiv 

Intensity of stress, 341 

J 

Joints, riveted, 93, 100, 111 

welded, 115-116, 118 

K 

Keys in shafts, 138 

L 

Lap joints, 93 

Law, Hooke's, 32, 74 

of proportionality, 62 

of superposition, 63, 316 

Load, distributed, 154, 246 

energy, 82 

M 

Materials, 1, 36, 255, 387, 477 

Maximum moment, 171 

Maximum shear, 243, 348 

Maximum shear theory, 364 

Maximum strain theory, 364 

Maximum stress theory, 364 

Mechanics of materials, 1 

Member, redundant, 72 

Modulus, of elasticity, 32, 47 

of resilience, 81, 147 

of rigidity, 33 

of rupture, 254 

of shear, 33 

Modulus, section, of a beam, 197 

of a spring, 148 

Moment, bending, 159-160, 162, 

170, 260 

of inertia, 129, 191, 412 

Moment, of moment area, 300, 311 

resisting, 157 

sign of, 263, 281 

twisting, 123 

Moment area, 289, 299 

Moment diagram, 165, 169, 174, 

176-178, 180-181, 279, 319, 322, 

325, 327 

Moments, theorem of three, 308, 318 

Moving loads, 232 

N 

Necking, of tension member, 50 

Neutral axis, 158, 188, 194, 228, 251 

Neutral surface, 157, 188 

Nonprismatic beams (see Beams) 

Normal moment diagrams, 302, 306 

0 

Oak, 38, 427 

Oblique loading, 231 

Oblique section, 17, 341, 353 

Olsen testing machine, 43 

P 

Parabola, as beam contour, 378 

as moment diagram, 165, 179 

Parabolic formula for columns, 419, 

423 

Per cent efficiency, 98, 115 

Per cent elongation, 56 

Per cent reduction in area, 57 

Permanent set (see Set) 

Pipes under pressure, 86 

Plane section assumptions, 189, 258 

for beams, 189, 258 

for shafts in torsion, 125 

Plates, cover, 102, 383 

thin flat, 94, 384 

Poisson’s ratio, 28 

Post (see Column) 

Principal axis, 221, 228 

Principal planes of stress, 362 

Prisms, 24, 28, 64, 66, 70 

under eccentric loads, 447 

(See also Bars) 
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Properties, of materials, 2, 35, 36 

of sections, 478-483 

Proportionality, law of, 62 

R 

Radius, of curvature, 259 

of gyration, 412, 430 

Rankine’s column formula, 415, 417 

Ratio of slenderness, 411, 432 

Reactions of beams, 151, 320 

Rectangular plates, 384 

Reduction in area, 52 

Redundant members, 72 

Reinforced beams, 382 

Reinforced concrete beams, 355, 391 

Repetition of loading, 60 

Resilience, defined, 79 

modulus of, 81 

Resistance of materials, 1 

Resisting moment, 123, 157, 196 

Resisting shear, 158 

Resultant, 11, 233, 451 

Reversal of stress, 79 

Riehle testing machine, 43 

Riveted joints, 93, 103, 109 

butt joints, 98, 100 

design of, 111 

efficiency of, 98 

lap joints, 93 

problems and examples, 112, 119 

Rivets, shear in, 94, 106 

table of shearing and bearing 

values for, 107 

Rolling loads, 232 

Rule for spacing rivets, 112 

Rupture (see Modulus) 

S 

Safety factor, 37 

Secant formula for columns, 444 

Section modulus, 197, 214 

Set, permanent, 31 

Shafts, 123, 129 

angle of torsion, 125 

couplings, 141 

helix angle of, 125 

Shafts, hollow cylindrical, 129 

horsepower transmitted by, 135 

keys, 138 

modulus of elasticity of tests of, 

132 

resilience, 146 

square, 131 

stiffness of, 125, 132 

strength of, 129, 355, 359 

stresses in, 127, 355 

Shear, 26, 151, 168 

center, 226 

diagrams, 164, 170, 172-173, 319, 

322 

double, 99 

induced, 248, 347, 350 

intensity, 26, 243, 350 

in rivets, 94, 106 

zero, 173 

Shear stress, 7, 21, 126, 237, 353 

Shearing force, 34, 347 

sign of, 158, 160 

Shearing modulus of elasticity, 34 

Shearing strain, 30, 250 

Shearing strengths, 36, 243 

Shearing values, of materials, 36 

of rivets, 93, 107 

Sizes of wooden beams, 206 

Slenderness ratio (see Ratio) 

Slope-deflection method, 289 

Southern yellow pine, 38 

Spacing of rivets, 111 . 

Span limit, 246 

Springs, helical, 142, 147 

Statically indeterminate structures, 

69, 152, 273, 332 

Statics, laws of, 151 

Steel, 36, 57 

alloys, 57 

annealed, 59 

effect of carbon in, 36, 57 

of nickel in, 36, 57 

effects of temperature change, 67 

equivalent, concrete, 392 

wood, 71, 387 

overstrain, 58 

stress-strain diagrams for, 51 

tempering, 59 
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Steel beams, 207, 243, 353, 382, 479 

Steel channels, 481 

Steel columns, 420, 422, 439 

Stiffeners, 354 

Stiffness of beams, 205 

Strain, defined, 23 

elastic, 27 

lateral, 28 

measurement of, 44 

torsional, 126 

unit, 23, 127 

Strength of materials, 1, 2 

Stress, actual unit, 52 

allowable unit, 4, 36, 38 

alternating, 60 

bearing, 7 

bending, 38, 188, 212, 236, 353 

and torsional, 355, 359 

circumferential, 86 

combined bending and axial, 447 

combined tension and shear, 347, 

353 

compressive, 20, 252, 343 

definition of, 3 

direct, 413 

distribution, 55, 190, 241, 243, 

249, 351 

due to impact, 77, 83 

to shear, 6, 236, 347, 353 

to temperature, 67 

figures, 12 

impact, 77, 83 

induced, 342, 345 

intensity of, 7, 243, 341 

longitudinal in pipes and cylin¬ 

ders, 88 

maximum, 346, 353, 359, 361, 364 

nominal, 52 

normal, 6, 190, 345 

reversed, 60 

shear, 53, 236, 342, 353, 359 

sign of, 7, 344 

tangential, 20, 86 

tensile, 46, 343, 451 

torsional, 128, 355 

unit, 7, 81 

variation, 16, 55 

Stress solid, 9-10, 191 

Stress-strain diagrams, 46-47, 51-52 

Stresses, 3 

axial and other, combined, 347, 

447 

induced, 341 

on oblique sections, 17, 341 

principal, 346 

total, 3 

Structural steel columns, 422 

Strut (see Column) 

Sudden application of a force, 77 

Superposition, law of, 63, 284 

T 

Tables, allowable stresses, 36 

deflections of beams, 204 

moduli of elasticity, 36 

physical properties, 36, 477 

properties of sections, 478-483 

rivets in bearing and shear, 107 

sizes of timbers, 206 

strengths of piaterials, 36 

Temperature coefficients, 477 

Temperature stresses, 67 

Tempering of steel, 59 

Tension, definition, 14, 36, 62 

(See also Stress) 

Tension tests, 42, 46 

mode of failure in, 49, 252 

types of, 42 

work in, 75 

Testing, 54 

machines, 42 

methods of, for compressive tests, 

43 

for shear tests, 53 

for tensile tests, 42 

Theorem of three moments, 308, 318 

Theory, 125 

of columns, 400 

of failure, 364 

of flexure, 189, 258 

Thermit welding process, 115 

Timber (see Wood) 

Torque, 123 

relation to power, 135 
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Torsion, 123, 132 

angle of, 125 

and flexure combined, 355, 359 

formula, 128 

in helical springs, 142 

resilience in, 146 

strength in, 128 

Torsional strain, 132 

strengths, 128 

stress, 128 

Toughness of materials, 84 

Transverse bending, 258 

Trigonometry formulas, xiii 

Twisting moment (see Moment) 

U 

Ultimate strength, 35 

Ultimate stress, 35, 37, 46, 49, 254 

Uniform strength in bending, 376, 

380 

Unit load, 64 

strain, 30 

stress, 8 

Useful limit of stress, 36 

V 

Value of rivets, in bearing, 106-107 

in shear, 106-107 

W 

Web failure, 243 

Weight, stress due to member’s own, 

66, 212 
Welded joints, 115, 118 

W beam sections, 207, 217-218, 242, 

353, 382 

Wood, beams, 206, 254, 354, 389 

columns, 412, 425, 443 

properties of, 36, 38 

Work, external, 74 

internal, 74 

in stretching a prism, 75 

Working formulas for columns, 428 

Working stress (see Allowable stress) 

Wrought iron, 36 

Y 

Yield point, 49 
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